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Abstract. Recently, a lattice based public key cryptosystem mixed with
a knapsack was presented in the CANS 2011 conference. In this paper,
we propose two message recovery attacks on this cryptosystem. The first
one is a broadcast attack: a single message of m bits can be recovered
if it is encrypted for �m+1

2
� recipients. The second attack is a multi-

ple transmission attack in which a message can be recovered with a
probability of (1 − 2−l)m if it is encrypted under a same public key for
l = �log2 m + 2� times using different random numbers. The multiple
transmission attack can be further improved with a linearization tech-
nique to that only � log2 m+1

2
� times of encryptions are required to recover

the message. An open problem related to the message recovery attack
using only one cipehertext is discussed.

Keywords: Public Key Cryptosystem, Lattice, Knapsack, Lineariza-
tion.

1 Introduction

Ever since the discovery of the quantum algorithm [26] which can factor inte-
gers and compute discrete logarithms in polynomial time and hence can break
RSA, DSA, and ECDSA efficiently, the necessity for new designs of public key
cryptosystems immune to quantum algorithm attacks has become strong and
urgent. Several new designs based on computational hard problems resistant
to quantum algorithm attacks have been extensively studied, including hash
based, code based, multivariate polynomial equation based and lattice based
cryptography.

The first lattice based cryptosystem was proposed by Ajtai and Dwork [1] in
1997. However, to avoid Nguyen and Stern’s heuristic attack [20], implementa-
tions of the Ajtai-Dwork cryptosystem would require very large keys, making
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it far from being practical. To increase the efficiency of the Ajtai-Dwork cryp-
tosytem, Cai and Cusick [6] constructed a new cryptosystem by mixing the
Ajtai-Dwork crytosystem with a knapsack. Unfortunately, Pan and Deng [23]
presented an iterative method to recover the message encrypted by the Cai-
Cusick cryptosystem under a ciphertext-only scenario.

With several known attacks in mind, Pan et al [24] proposed a new lattice-
based public key cryptosystem which mixes with a knapsack in its design in the
CANS 2011 conference. Unfortunately, it does not enjoy any security proof and is
slower than state-of-the-art lattice-based encryption schemes (e.g., [11, 18, 27]),
although its security was carefully evaluated against some lattice based attacks
in [24]. One of such lattice based attacks, for example, is some attack similarly
as that in [15–17] against NTRU [14] targeting at its cyclic structure, but the
underlying lattice in this new cryptosystem has no special cyclic structure like
in NTRU. Furthermore, the new cryptosystem hides the knapsack structure
behind linear combinations. This strategy is very different from those knapsack
based public key cryptosystems which hide their trapdoors by transforming a
superincreasing knapsack into a generic one. Therefore, the existing successful
attacks [21] against knapsack based cryptosystems seem to not be applicable to
the new system.

In this paper we propose two feasible attacks on the cryptosystem of Pan
et al [24]. The first one is a broadcast attack, it assumes a single message is
encrypted by the sender directed for several recipients with different public keys,
the message can be recovered by solving a system of nonlinear equations via
linearization technique. The second one is a multiple transmission attack in
which a single message is encrypted under the same public key for several times
using different random vectors. In this situation, the message can be easier to
recover.

The rest of this paper is organized as follows. Section 2 gives a description
of the cryptosystem of Pan et al. Section 3 presents a broadcast attack and a
multiple transmission attack on the crytosystem. In section 4, we further improve
the multiple transmission attack by linearization technique. Section 5 is devoted
to discuss an open problem related to the message recovery attack using only
one cipehertext. The last section is a conclusion.

2 Description of the Cryptosystem of Pan et al.

In this section we describe the cryptosystem recently proposed by Pan et al [24].
For detailed information on its design rationale, please refer to their paper [24].

This cryptosystem is parameterized by a security parameter m. Let n = 2m.

Key Generation:Randomly choose a superincreasing sequence {N1 = 1,
N2, · · · , Nn} and a permutation τ on {1, 2, · · · , n} such that τ−1(1) ≤ m. For
each 1 ≤ i ≤ m, representNτ(i+m) as a linear combination of {Nτ(1), · · · , Nτ(m)}
with integer coefficients, namely,
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Nτ(i+m) =

m∑

j=1

bi,jNτ(j), i = 1, 2, · · · ,m.

The absolute values of the coefficients bi,j (1 ≤ i, j ≤ m) should be made rea-
sonably small [24] and this can be done by employing Babai’s nearest plane
algorithm [3].

Use the above integer coefficients to form an m× n matrix

A =

⎡

⎢⎢⎢⎣

1 0 · · · 0 b1,1 b2,1 · · · bm,1

0 1 · · · 0 b1,2 b2,2 · · · bm,2

...
...
. . .

...
...

...
. . .

...
0 0 · · · 1 b1,m b2,m · · · bm,m

⎤

⎥⎥⎥⎦ ,

and let

li,1 =
∑

j=1,··· ,n
Ai,j<0

Ai,j , i = 1, · · · ,m

li,2 =
∑

j=1,··· ,n
Ai,j>0

Ai,j , i = 1, · · · ,m

q = max
i=1,··· ,m

{li,2 − li,1}.

Finally, randomly choose a permutation σ on {1, · · · , n} such that the matrix
S = [Aσ(1), Aσ(2), · · · , Aσ(m)] is an invertible matrix over the field Fp, where p
is the smallest prime such that p > q and Aj denotes the j-th column of A.

Public Key: The smallest prime p such that p > q, andH = S−1[Aσ(m+1), · · · ,
Aσ(n)].

Here the entries of the matrices are regarded as integers in the interval [0, p−1]
and identically regarded as elements of the field Fp, and the matrices are oper-
ated modulo p.

Private Key: N2, · · · , Nn, S, τ, σ, li,1, li,2 (i = 1, · · · ,m).

Encryption: For any message t ∈ {0, 1}m, randomly choose a vector r ∈ {0, 1}m
and the ciphertext c is computed as follows

c = Ht+ r mod p.

Note that all vectors are written as column vectors in this paper as in [24].
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Decryption: Let v = (rT , tT )T = (v1, · · · , vn)T , and d = Sc mod p. The mes-
sage t and the random number r are recovered by solving the following superin-
creasing knapsack problem with unknown coefficients xi ∈ {0, 1}

(Nτ(1), · · · , Nτ(m))d̃ =
n∑

i

xiNi,

where d̃ = d mod p with its entries li,1 ≤ d̃i ≤ li,2. It can be shown that
xi = vσ−1(τ−1(i)).

3 Two Attacks on the Cryptosystem of Pan et al.

In this section we present two attacks against the cryptosystem of Pan et al,
one is a broadcast attack and the other is a multiple transmission attack, they
can recover the encrypted messages with practical complexities, without any
knowledge on the structure of the public and secret keys.

3.1 Broadcast Attack

The first broadcast attack was introduced in 1988 by H̊astad in [13] to com-
promise the security of the RSA cryptosystem with low public key exponents.
Broadcast attacks against lattice based encryption schemes have already been
proposed by Plantard and Susilo [22]. In a broadcast attack, it is assumed that
a single message is encrypted by the sender several times for multiple recipients
with different public keys.

Below we will show that Pan et al’s cryptosystem is insecure under this attack
scenario. To be more specific, if the number of recipients exceeds l := �(m+1)/2�,
an attacker can derive the corresponding plaintext from the l ciphertexts.

Let H = (hij)m×m. From c = Ht+ r mod p, we have

⎡

⎢⎢⎢⎣

c1
c2
...
cm

⎤

⎥⎥⎥⎦−

⎡

⎢⎢⎣

h11 h12 · · · h1m

h21 h22 · · · h2m

· · · · · ·
hm1 hm2 · · · hmm

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎣

t1
t2
...
tm

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

r1
r2
...
rm

⎤

⎥⎥⎥⎦ mod p

Since ri ∈ {0, 1} for 1 ≤ i ≤ m, we have

(
ci −

m∑

j=1

hijtj

)
·
(
ci − 1−

m∑

j=1

hijtj

)
= 0 mod p

Obviously, this results inm quadratic equations over Fp onm variables t1, · · · , tm.
These variables are binary, but we do not know how to exploit this feature to
solve them out from a single encryption (see the discussion in Section 5). In a
broadcast scenario, assume a same message t = (t1, · · · , tm)T is encrypted under
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l = �(m+1)/2� different public keys, say H(k) = (h
(k)
ij )m×m, 1 ≤ k ≤ l, into the

ciphertexts (c
(k)
1 , · · · , c(k)m )T , 1 ≤ k ≤ l, then

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
c
(1)
i −

m∑
j=1

h
(1)
ij tj

)(
c
(1)
i − 1−

m∑
j=1

h
(1)
ij tj

)
= 0, 1 ≤ i ≤ m

· · ·(
c
(l)
i −

m∑
j=1

h
(l)
ij tj

)(
c
(l)
i − 1−

m∑
j=1

h
(l)
ij tj

)
= 0, 1 ≤ i ≤ m

(1)

This is a system of m�(m+1)/2� ≥ m(m+1)/2 quadratic polynomial equations
in t1, · · · , tm. Utilizing the known linearization technique [2, 4, 9] and regarding
all quadratic monomials titj as new variables, the system (1) become a linear
system inm(m+1)/2 unknowns (t1, · · · , tm and the

(
m
2

)
new variables), it can be

solved in time complexity (m
2

2 )ω by a naive or advanced linear equation solving
method, where ω = 3 for a naive Gaussian elimination and ω = 2.376 for the
method of Coppersmith and Winograd [7].

Complexity and Experimental Result: To demonstrate the feasibility of
the broadcast attack, we have implemented the attack in the Magma computer
algebra system on a PC with Intel(R) Core(TM) Quad CPU (2.83GHz, 3.25GB
RAM, Windows XP). For m = 100, which is one of the parameter suggested
by the designers [24], we can recover the unknown message in no more than
one hour. We chose p = 271, our Magma experiment successfully obtained the
corresponding message within 46 minutes assuming l = 51.

For other suggested parameters: m = 200, 300, 400, 500, our Magma experi-
ment failed to recover the message due to un-optimized programming and large
memory consumption, but in all these cases, the time complexity of the attack is
still in an acceptable range since even for m = 500 and by using a naive method,

it is roughly (500
2

2 )ω ≈ 250.79, which can be done on a minicomputer like DELL
PowerEdge 7250 [10] and it will output a desired result within a week for an
optimized memory management.

3.2 Multiple Transmission Attack

As observed in [14], multiple NTRU encryptions of a single message under a sin-
gle public key may compromise the security of the encrypted message of NTRU,
and this method used to recover the secret message is named as Multiple Trans-
mission Attack [17]. In this section, we show that a similar vulnerability exists
in Pan et al’s cryptosystem, and we propose an efficient attack targeting at this
vulnerability.

Assume a single message t is encrypted using the same public key H for l
different but uniformly and independent random m-dimensional vectors in the
encryption. Let

c(j) = Ht+ r(j) mod p, 1 ≤ j ≤ l
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be the ciphertext under the random m-dimensional vectors r(j), and use them
as columns to form n× l matrices C and R:

C =

⎡

⎢⎢⎢⎢⎣

c
(1)
1 c

(2)
1 · · · c(l)1

c
(1)
2 c

(2)
2 · · · c(l)2

...
...

...

c
(1)
n c

(2)
n · · · c(l)n

⎤

⎥⎥⎥⎥⎦
, R =

⎡

⎢⎢⎢⎢⎣

r
(1)
1 r

(2)
1 · · · r(l)1

r
(1)
2 r

(2)
2 · · · r(l)2

...
...

...

r
(1)
n r

(2)
n · · · r(l)n

⎤

⎥⎥⎥⎥⎦
.

Let uk and r
(j)
k be the k-th entries of Ht and r(j), respectively. It is clear that

the j-th entry of the k-th row (c
(1)
k , c

(2)
k , · · · , c(l)k ) of C is equal to uk+r

(j)
k , which

is either uk or uk + 1 mod p.
We determine each row of R as follows. We have assumed that p ≥ 3. Thus, for

any two elements in {0, 1, · · · , p− 1} which differ by 1 modulo p, we define their
cyclic minimum as min{a, a+1} = a if a ∈ {0, 1, · · · , p− 2} and min{p− 1, 0} =
p − 1. For a fixed 1 ≤ k ≤ l, since the entries c

(1)
k , c

(2)
k , · · · , c(l)k either take

two values which differ 1 modulo p or take the same value, we can always find

a value ũk as min{c(1)k , c
(2)
k , · · · , c(l)k }. ũk will be equal to uk in almost cases

except when (r
(1)
k , r

(2)
k , · · · , r(l)k ) = (1, · · · , 1). Therefore, we can obtain correctly

the value of uk with a probability of 1 − 2−l. Assuming the uniformness and
independence of random vectors r(j), we correctly get the vector Ht with a
probability of (1−2−l)m. Consequently, we can successfully recover the message
t by computing t̃ = H−1ũ with a probability of (1− 2−l)m.

Let l ≈ log2 m+ 2, we have

(1− 2−l)m ≈ ((1 +
1

2l − 1
)−2l)2

−2 −→ e−1/4 ≈ 0.78, when m → ∞,

which means that roughly l = �log2 m�+2 encryptions can be used to probably
successfully recover the message t. This number (�log2 m�+ 2) of needed times
of encryptions is greatly less than the corresponding number (�(m+ 1)/2�) in a
broadcast attack. The concrete value of the probability (1 − 2−l)m for different
pairs of m and l are listed in Table 1, which are verified in our experiment on
multiple transmission attacks.

Table 1. Success probability of the multiple transmission attack

�
��m
l

7 8 9 10 11 12 13 14

100 0.4542 0.6649 0.8237 0.9034 0.9510 0.9746 0.9885 0.9935

200 0.2047 0.4583 0.6742 0.8203 0.9038 0.9525 0.9753 0.9886

300 0.0956 0.3080 0.5654 0.7461 0.8640 0.9281 0.9643 0.9841

400 0.0461 0.2109 0.4596 0.6753 0.8231 0.9051 0.9476 0.9766

500 0.0220 0.1413 0.3731 0.6235 0.7874 0.8901 0.9414 0.9709
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4 Improved Multiple Transmission Attack

In this section we show that the number of transmissions needed to successfully
recover the message in a multiple transmission attack can be halved with the
help of linearization technique.

Suppose a single message t is encrypted using the same public key H for l
times and let

⎡

⎢⎢⎢⎢⎣

c
(k)
1

c
(k)
2
...

c
(k)
m

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

h11 h12 · · · h1m

h21 h22 · · · h2m

...
...

...
hm1 hm2 · · · hmm

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

t1
t2
...
tm

⎤

⎥⎥⎥⎦+

⎡

⎢⎢⎢⎢⎣

r
(k)
1

r
(k)
2
...

r
(k)
m

⎤

⎥⎥⎥⎥⎦
mod p

be the k-th ciphertext, where k ∈ {1, 2, · · · , l}.
According to Section 3.2, each row of R can be determined correctly with

a probability 1 − 2−l, and can be correctly determined with a probability 1 −
2 · 2−l since we can correctly determine uk when c

(1)
k , c

(2)
k , · · · , c(l)k are not the

same, namely when (r
(1)
k , r

(2)
k , · · · , r(l)k ) 
= (1, · · · , 1) and (0, · · · , 0). Thus, about

(1− 21−l)m rows of R can be determined surely. Without loss of generality, we
assume the remaining undetermined rows of R are the last ρ = �21−lm� ones.

Now from the first ciphertext and

⎡

⎢⎢⎢⎢⎣

c
(1)
1

c
(1)
2
...

c
(1)
m−ρ

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

h11 h12 · · · h1m

h21 h22 · · · h2m

...
...

...
hm−ρ,1 hm−ρ,2 · · · hm−ρ,m

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

t1
t2
...
tm

⎤

⎥⎥⎥⎦+

⎡

⎢⎢⎢⎢⎣

r
(1)
1

r
(1)
2
...

r
(1)
m−ρ

⎤

⎥⎥⎥⎥⎦
mod p,

we can linearly represent m − ρ unknowns tj by other ρ ones. Without loss of
generality, we assume the ρ unknowns are t1, t2, · · · , tρ and the linear relations
are ⎧

⎪⎨

⎪⎩

tρ+1 = Lρ+1(t1, t2, · · · , tρ)
...

tm = Lm(t1, t2, · · · , tρ)
Then from binary property of ti, i = 1, · · · ,m, a system of quadratic polynomial
equations with ρ unknowns can be built as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

t21 = t1
...

t2ρ = tρ
L2
ρ+1(t1, t2, · · · , tρ) = Lρ+1(t1, t2, · · · , tρ)
...

L2
m(t1, t2, · · · , tρ) = Lm(t1, t2, · · · , tρ)

(2)



Cryptanalysis of a Lattice-Knapsack Mixed Public Key Cryptosystem 39

It can be successfully solved by linearization technique provided m ≥(
ρ
2

)
+ 2ρ,

or equivalently, provided l ≥ � log2 m+1
2 �. Thus, about � log2 m+1

2 � encryptions can
be used to recover the secret message, which is about one half the number of the
method proposed in Section 3.2. As an example, for m = 500, this number is 5,
we need only 5 encryptions to recover the secret message.

5 Discussion and Open Problem

The broadcast and multiple transmission attacks presented in the previous two
sections do not use the inherited information about the structure of the public
key H except that it is invertible. A natural question to ask is that in the case
of only assuming H is an invertible matrix, whether it is possible to recover the
encrypted message with only one ciphertext, namely is there a ciphertext only
attack on the cryptosystem in this case? Mathematically, this problem can be
formulated as follows:

Problem: Let n = 2m, A be an m×n matrix of rank m over Fp. Given c ∈ F
m
p ,

find a binary vector x ∈ {0, 1}n (if any) such that c = Ax mod p.
For most such matrices A, this problem has at most one solution for a general

c, this is a requirement for cryptographic decryption scenario. We may further
assume any m columns of A are linearly independent. Then, how to find the
solution x efficiently?

The above problem can be viewed as a syndrome decoding of a linear code
with parity check matrix A where the error noise vector is limited to be binary.
A slightly general but essentially equivalent limitation is that each component
of the error noise vector only takes two distinct values and the two values for
different components may be different. This case can be translated to the case
of binary noise vectors via an affine transformation. Here for the syndrome de-
coding, we do not limit the number of the errors (namely the Hamming weight)
of the noise but limit the component of the noise to be binary. On the contrary
in classical coding theory, the Hamming weight of the noise is limited but its
component values are not restricted.

Another point of view is to look at the above problem as a knapsack problem
on a vector space, that is, a subset sum problem on the column vectors of A.

In the encryption scheme of Pan et al [24], the corresponding A is chosen as
(H, I), where I is identity matrix. This scheme is like the problem of Learning
With Errors (LWE) [25]. It can be treated as the problem to solve a specific
system of 2m quadratic equations over Fp in m variables of the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
1 − x1 = 0
...

x2
m − xm = 0

(c1 − h11x1 − · · · − h1mxm)2 − (c1 − h11x1 − · · · − h1mxm) = 0
...

(cm − hm1x1 − · · · − hmmxm)2 − (cm − hm1x1 − · · · − hmmxm) = 0

(3)



40 J. Xu et al.

We do not know how to efficiently solve (if possibly) this seemingly very spe-
cific nonlinear system for large m. We have tried several methods such as XL
[9], Fix-XL [4] and ElimLin [8] to solve (3), but failed to achieve an efficient
solving method. We think this highly structured system of equations or knap-
sack problem on a vector space is an interesting pursuing topic and it may be a
computational hard problem.

Finally, we point out that the cryptosystem of Pan et al is not secure under
chosen plaintext attacks (CPA-secure) [12]. It is obvious that one can tell the
difference between two messages (0, · · · , 0)T and (1, 0, · · · , 0)T by simply check-
ing whether the ciphertext is close to the all zero vector or to the first column
of H . However, this does not mean that this kind of observation can be directly
utilized to launch an above-mentioned narrow-sense ciphertext-only attack, i.e.,
recovering a message given its only one ciphertext.

6 Conclusion

In this paper, we proposed two efficient attacks on a recently proposed cryp-
tosystem that mixes the lattice and knapsack ideas in its design rational. Both
attacks are capable of recovering the encrypted messages in practical time com-
plexities under broadcast-like attack modes. The vulnerability of the new design
is clearly due to the characteristic that the random vectors in its encryption
process are chosen from a very limited set, namely the binary vectors.

We did not propose a ciphertext-only attack on this new cryptosystem, this
type of attacks is equivalent to solve a knapsack problem on a vector space,
which is an interesting research topic.
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