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Abstract. In many everyday scenarios, sensitive information must be
shared between parties without complete mutual trust. Private set op-
erations are particularly useful to enable sharing information with pri-
vacy, as they allow two or more parties to jointly compute operations
on their sets (e.g., intersection, union, etc.), such that only the mini-
mum required amount of information is disclosed. In the last few years,
the research community has proposed a number of secure and efficient
techniques for Private Set Intersection (PSI), however, somewhat less
explored is the problem of computing the magnitude, rather than the
contents, of the intersection – we denote this problem as Private Set
Intersection Cardinality (PSI-CA). This paper explores a few PSI-CA
variations and constructs several protocols that are more efficient than
the state-of-the-art.

1 Introduction

Proliferation of, and growing reliance on, electronic information generate an
increasing amount of sensitive data stored and processed in the cyberspace.
Consequently, there is a compelling need for efficient cryptographic techniques
that allow sharing information while protecting privacy. Among these, Private
Set Intersection (PSI) [14,28,17,25,18,26,11,10,21], and Private Set Union (PSU)
[28,18,20,15,35] have recently attracted a lot of attention from the research com-
munity. In particular, PSI allows one party (client) to compute the intersection
of its set with that of another party (server), such that: (i) server does not learn
client input, and (ii) client learns no information about server input, beyond the
intersection. Efficient PSI protocols have been used as building blocks for many
privacy-oriented applications, e.g., collaborative botnet detection [31], denial-of-
service identification [2], on-line gaming [7], intelligence-community systems [23],
location sharing [32], just to cite a few.

Nonetheless, in certain information-sharing settings, PSI and PSU functional-
ities offer very limited privacy to server. Consider the following scenario where,
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after running PSI, the set intersection learned by client corresponds to entire
server input: server privacy is actually non-existent, while client’s is fully pre-
served. This illustrates the need for server to enforce a policy, based on the
cardinality of set intersection/union, that governs whether it is willing to take
part in PSI or PSU protocols. (We explore this intuition in Section 6.)

This paper investigates Private Set Intersection Cardinality (PSI-CA) and
Private Set Union Cardinality (PSU-CA). These functionalities are appealing
in scenarios where client is only allowed to learn the magnitude – rather than
the content – of set intersection/union. For instance, PSI-CA is useful in social
networking, e.g., when two parties want to privately determine the number of
common connections (or interests) in order to decide whether or not to become
friends. Moreover, PSI-CA is useful to privately compare equal-size low-entropy
vectors, e.g., to realize private computation of Hamming Distance between two
strings on an arbitrarily large alphabet: two parties may use PSI-CA, by treating
each symbol, together with its position in the string, as a unique set element,
such that client privately learns the number of elements (symbols) in common
(thereby also obtaining the Hamming Distance). Other relevant applications
of PSI-CA include role-based association rule mining [27], affiliation-hiding au-
thentication [3], as well as to estimating the similarity of sample sets [6]. Finally,
efficient PSI-CA protocols are becoming instrumental to privacy-preserving ge-
nomic tests, as recently showed in [4].

1.1 Contributions

This paper focuses on PSI-CA – a cryptographic primitive, involving server (on
input of a private set S) and client (on input of a private set C), that results in
client outputting |S ∩C|. Computation of PSI-CA naturally implies that of PSU-
CA, since |S|, |C| are always mutually disclosed and |S ∪ C| = |S|+ |C| − |S ∩ C|.

Although prior work has yielded some PSI-CA techniques (see Section 2), a
number of open problems still remain to be addressed. This paper presents the
following contributions:

1. We present a very efficient PSI-CA protocol that incurs computational and
communication complexities linear in the set sizes. Our protocol is secure
under the DDH assumption in the Random Oracle Model (ROM) against
semi-honest adversaries. This protocol is a very close variant of the protocol
of Agrawal, Evfimievski, and Srikant [1], and our merit is really a security
analysis of this modification rather than the protocol itself.

2. We introduce the concept of Authorized PSI-CA (APSI-CA), whereby client
input must be pre-authorized by an off-line mutually-trusted authority, and
present an appropriate protocol extension with linear complexities (as op-
posed to quadratic in related prior techniques).

3. We show how to combine PSI-CA with PSI such that server can decide
whether to allow client to obtain the set intersection according to its policy,
based on the size of the intersection itself (privately obtained using PSI-
CA). This first-of-a-kind approach is very efficient, as it requires only one
additional message on top of PSI-CA protocol.
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Paper Organization. Next section reviews related work. After preliminaries in
Section 3, Section 4 presents our PSI-CA protocol. Then, Section 5 constructs a
variant for APSI-CA, and finally, Section 6 sketches a three-round policy-based
PSI variant. The paper concludes in Section 7.

2 Related Work

2.1 (Authorized) Private Set Intersection and Union

Agrawal, Evfimievski, and Srikant [1] introduce a Private Set Intersection (PSI)
construction based on commutative encryption.1 The protocol has linear com-
plexity – that is, assuming that server and client sets contain w and v items,
respectively, computation and communication complexity amounts to O(w+ v).
[1] also presents a variant that only discloses the size of the intersection – we
review it in Section 2.2 below.

The work in [14] propose a few protocols for Private Set Intersection (PSI)
based on Oblivious Polynomial Evaluations (OPE-s) and additively homomor-
phic encryption (e.g., Paillier [33]). The intuition is to represent a set as a polyno-
mial and its elements – as the polynomial’s roots. Client encrypts the coefficients,
that are then evaluated homomorphically by server. As a result, client learns
the intersection and nothing else. Client’s computation complexity amounts to
O(w + v), and server’s to O(wv) exponentiations. [14] proposes techniques to
asymptotically reduce server workload to O(w log log v), by using Horner’s rule
and balanced bucket allocation. [18] obtains similar complexities while also offer-
ing PSU techniques. Whereas, [28] extends OPE-s to more than two players, all
learning the intersection/union, with quadratic computational and linear com-
munication complexities. Additional PSU constructs appear in [20,15,35].

Other PSI constructs, such as [17,25], rely on Oblivious Pseudo-Random Func-
tions (OPRF-s) and reduce computation overhead to a linear number of expo-
nentiations. Recent results in the Random Oracle Model (ROM) have led to very
efficient PSI protocols, also with linear complexities, while using much more effi-
cient cryptographic tools. They replace OPRFs with unpredictable functions [26]
and blind signatures [11], with security under One-More-DH and One-More-
RSA assumptions [5], respectively. Finally, [10] achieves linear communication
and computational complexities, using short exponents, with security in the ma-
licious model, while [21] shows a construction in the semi-honest model based
on garbled circuits [38] which, leveraging so-called Oblivious Transfer Exten-
sion [24], scales relatively gracefully for very large security parameters.

Authorization of client input in PSI has been first investigated in [8] and [9].
Authorized Private Set Intersection (APSI) is later formalized in [11] and [10]
that construct efficient techniques with linear complexity in the presence of,

1 It is quite interesting to observe that several PSI papers (e.g., [14,26]) erroneously
cite the work by Evfimievski, Gerke, and Srikant [12] as the work introducing
commutative-encryption based PSI, which is, in fact, [1]. Also, observe that pro-
tocols in [1] are essentially the same as those sketched earlier, in [22], although the
latter provided no security analysis.
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respectively, semi-honest and malicious adversaries. Finally, [36] proposes Policy-
Enhanced PSI, allowing two parties to privately share information while enforc-
ing complex policies. In this model, both parties’ sets must be authorized, and
both parties obtain the intersection.

2.2 Private Set Intersection Cardinality

Prior work yielded several PSI-CA protocols:

• Agrawal, Evfimievski, and Srikant [1] present an adaptation of their PSI
protocol to PSI-CA, also secure under the DDH assumption in the presence
of semi-honest adversaries. Their construction is actually similar to ours
(presented in Figure 1), although we also present two extensions.
• The PSI protocol by Freedman, Nissim, and Pinkas [14] can be extended
to PSI-CA with the same complexity, i.e., O(w log log v) computation and
O(w + v) communication.
• Hohenberger andWeis [19] present a PSI-CA construction, also based on [14],
and with similar (sub-quadratic) complexities.

• Kissner and Song [28] proposes a PSI-CA protocol for multiple (n ≥ 2) par-
ties, incurring O(n2 · v) communication and O(v2) computational overhead.
• Vaidya and Clifton [37] construct a multi-party PSI-CA protocol, based
on commutative one-way hash functions [30] and Pohlig-Hellman encryp-
tion [34]. It incurs n rounds, and involves O(n2 · v) communication and
O(vn) computational overhead.
• Camenisch and Zaverucha [8] present an APSI variant (private intersection
of certified sets) that computes the cardinality of (certified) set intersection
and incurs quadratic communication and computation complexity.

3 Preliminaries

This section defines PSI-CA/PSU-CA functionalities, along with their privacy
requirements, and introduces computational assumptions.

DDH Assumption. Let G be a cyclic group and g be its generator. We assume
that bit-length of group size is l. The DDH problem is hard in G if, for every
efficient algorithm A, the following probability is a negligible function of κ:
∣
∣
∣Pr[x, y ← {0, 1}l : A(g, gx, gy, gxy) = 1]− Pr[x, y, z ← {0, 1}l : A(g, gx, gy, gz) = 1]

∣
∣
∣

Definition 1 (Private Set Union Cardinality (PSU-CA)). A protocol in-
volving server, on input a set of w items S = {s1, . . . , sw}, and client, on input
a set of v items C = {c1, · · · , cv}. It results in the latter outputting |U|, where:
U = S ∪ C.
Definition 2 (Private Set Intersection Cardinality (PSI-CA)). A proto-
col involving server, on input a set of w items S = {s1, . . . , sw}, and client, on
input a set of v items C = {c1, · · · , cv}. It results in the latter outputting |I|,
where: I = S ∩ C.
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Client, on input Server, on input

C = {c1, . . . , cv} S = {s1, . . . , sw}

Rc ← Zq (ŝ1, . . . , ŝw)← Π(S)
∀i 1 ≤ i ≤ v : ∀j 1 ≤ j ≤ w : hsj = H(ŝj)
hci = H(ci);

ai = (hci)
Rc

{a1, . . . , av}
��
Rs ← Zq

∀i 1 ≤ i ≤ v : a′
i = (ai)

Rs

(a′
�1
, . . . , a′

�v ) = Π ′(a′
1, . . . , a

′
v)

∀j 1 ≤ j ≤ w : bsj = (hsj)
Rs

∀j 1 ≤ j ≤ w : tsj = H ′(bsj)∀i 1 ≤ i ≤ v:
{ts1, . . . , tsw}

{a′
�1
, . . . , a′

�v}��

bci = (a′
�i
)1/Rc mod q

∀i 1 ≤ i ≤ v:

tci = H ′(bci)

Output: |{ts1, . . . , tsw} ∩ {tc1, . . . , tcv}|

Fig. 1. Proposed PSI-CA Protocol. All computation is mod p. Π and Π ′ are random
permutations

Informally, both PSI-CA and PSU-CA entail the following privacy requirements:

• Server Privacy. Client learns no information beyond: (1) cardinality of set
intersection/union and (2) upper bound on the size of S.
• Client Privacy. No information is leaked about client set C, except an upper
bound on its size.

• Unlinkability. Neither party can determine if any two instances of the pro-
tocol are related, i.e., executed on the same input by client or server, unless
this can be inferred from the actual protocol output.

Remark: As mentioned earlier in the paper, for any C and S, the size of C ∪ S
can be computed as |C|+ |S| − |C ∩ S|. Thus, privately computing cardinality of
the intersection of C and S allows one to privately compute the cardinality of
their union as well. Consequently, the rest of the paper only focuses on PSI-CA.

4 New PSI-CA and PSU-CA

This section presents our PSI-CA construction, secure in the presence of semi-
honest adversaries in the Random Oracle Model (ROM). We outline it in Figure
1. Protocol executes on common input of two primes p, q (where q|p − 1), a
generator g of a subgroup of size q, and two hash functions (modeled as ran-
dom oracles), H : {0, 1}∗ → Z∗

p and H ′ : {0, 1}∗ → {0, 1}κ, given the security
parameter κ. (Notation a ← A denotes that a is chosen uniformly at random
from A).
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Intuition. First, client masks its set items (ci-s) with a random exponent (Rc)
and sends resulting values (ai-s) to server, which “blindly” exponentiates them
with its own random value Rs. Server shuffles the resulting values (a′i-s) and
sends them to client. Then, server sends client the output of a one-way function,
H ′(·), computed over the exponentiations of server’s items (sj-s) to randomness
Rs. Finally, client tries to match one-way function outputs received from server
with one-way function outputs computed over the shuffled (a′i-s) values, stripped
of the initial randomness Rc. Client learns the set intersection cardinality (and
nothing else) by counting the number of such matches. As showed below, unless
they correspond to items in the intersection, one-way function outputs received
from server cannot be used by client to learn related items in server’s set (un-
der the DDH assumption). Also, client does not learn which items are in the
intersection as the matching occurs using shuffled a′i values.

Complexity. Protocol complexity is linear in the sizes of the two sets. Let |S| =
w and |C| = v. Client performs 2(v + 1) exponentiations with short, i.e., |q|-bit,
exponents modulo |p|-bit and v modular multiplications. Server computes (v+w)
modular exponentiations with short exponents and w modular multiplications.
In practice, one can select |p| = 1024 or |p| = 2048, and |q| = 160 or |q| = 224.
Communication overhead amounts to 2(v + 1) |p|-bit and w κ-bit values.

Semi-Honest Participants. We start with security in the semi-honest model.
Note that the term adversary refers to insiders, i.e., protocol participants. Out-
side adversaries are not considered, since their actions can be mitigated via
standard network security techniques.

Definition 3 (Correctness). If both parties are honest, at the end of the pro-
tocol, executed on inputs ((S, v), (C, w)), server outputs ⊥, and client outputs
(|S ∩ C|).

The following client and server privacy definitions follow from those in related
work [14,13,17]. In particular, as formalized in [16] (Sec. 7.2.2), in case of semi-
honest parties, the traditional “real-versus-ideal” definition framework is equiva-
lent to a much simpler framework that extends the formulation of honest-verifier
zero-knowledge. Informally, a protocol privately computes certain functionality
if whatever can be obtained from one party’s view of a protocol execution can
be obtained from input and output of that party. In other words, the view of a
semi-honest party (including C or S, all messages received during execution, and
the outcome of that party’s internal coin tosses), on each possible input (C,S),
can be efficiently simulated considering only that party’s own input and output.

Definition 4 (Client Privacy). Let ViewS(C,S) be a random variable repre-
senting server’s view during execution of PSI-CA with inputs C,S. There exists
a PPT algorithm S∗ such that:

{S∗(S, |S ∩ C|)}(C,S)

c≡ {ViewS(C,S)}(C,S)
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Definition 5 (Server Privacy). Let ViewC(C,S) be a random variable repre-
senting client’s view during execution of PSI-CA with inputs C,S. There exists
a PPT algorithm C∗ such that:

{C∗(C, |S ∩ C|)}(C,S)

c≡ {ViewC(C,S)}(C,S)

In other words, on each possible pair of inputs (C,S), client’s view can be effi-
ciently simulated by C∗ on input: C and |S ∩C| (as well as v, w). Thus, as in [16],
we claim that the two distributions implicitly defined above are computationally

indistinguishable. (Notation “
c≡” indicates computational indistinguishability.)

We claim that the protocol in Figure 1 is correct under Definition 3 and secure
under Definitions 4 and 5 above. Proof of such claims is provided next.

4.1 Proofs

Correctness. For any ci held by client and sj held by server, if ci = sj , hence,
hci = hsj , we obtain:

tc�i = H ′(bc�i) = H ′(a�i
(1/Rc)) = H ′(hciRs) = H ′(hsjRs) = H ′(bsj) = tsj

Hence, client learns set intersection cardinality by counting the number of match-
ing pairs (tc�i , tsj). �

Client Privacy. We claim that the views of server – i.e., S and ai = H(ci)
Rc for

i = 1, . . . , v where H is modeled as a random oracle – is indistinguishable from
r1, . . . , rv with ri ← Zp. Therefore it is possible to construct a PPT algorithm

S∗ such that {S∗(S, |S ∩ C|)}(C,S)

c≡ {ViewS(C,S)}(C,S).

When v = 1, for any hc1 = H(c1) there exists Rc1 such that a1 = hc
Rc1
1 .

Therefore, a1 is uniformly distributed – i.e., distributed identically to r1.
For v ≥ 2, elements a1, . . . , av are indistinguishable from r1, . . . , rv assuming

the hardness of DDH. In particular, the existence of an efficient distinguisher
D that outputs 0 when presented with r1, . . . , rv and outputs 1 when it ob-
serves a1, . . . , av allows us to construct a simulator SIMs that violates the DDH
assumption, as follows.

Upon receiving a DDH challenge (ḡ, ḡx, ḡy, ḡz), SIMs:

– Selects random set C composed of v elements C = {c1, . . . , cv}, v− 2 random
values d1, . . . , dv−2 from Zq and Rc at random from Zq.

– Sends {a1, . . . , av} = {ḡy, ḡz, (ḡy)d1 , . . . , (ḡy)dv−2} to D.
– Answers queries for H as follows: H(c1) = ḡ; H(c2) = ḡx; H(ci) = ḡdi−2 for

3 ≤ i ≤ v and with a random value otherwise. Queries and responses to H
are stored by SIMS for consistency.

Note that if (ḡ, ḡx, ḡy, ḡz) is a Diffie-Hellman tuple, i.e. z = xy, then a1, . . . , av is
distributed like a1, . . . , av; thus, D must output 1. If (ḡ, ḡx, ḡy, ḡz) is not a Diffie-
Hellman tuple, then a1, . . . , av is not properly distributed (since a2 
= (H(c2))

y)
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and therefore D must output 0. As a result, SIMs can use D’s output to respond
to the DDH challenge correctly iff D’s output is correct. Therefore, D can only
answer correctly with negligible advantage over random guessing. �

Server Privacy. We show that client’s view can be efficiently simulated by a

PPT algorithm SIMC , i.e., {SIMC(C, |S ∩ C|)}(C,S)

c≡ {ViewC(C,S)}(C,S). The
simulator is constructed as follows:

1. SIMC builds two tables T1 = (u, h) and T2 = (u′, h′) to answer the H and
H ′ queries respectively. SIMC responds to a query u (resp. u′) with a value
in h ← Zp for H (resp. h′ ← Zp for H ′), and stores (u, h) in T1 ((u′, h′) in
T2 resp.). SIMC uses T1, T2 to respond consistently to queries from client.

2. SIMC constructs a set TS = {ts1, . . . , tsw}, where tsi ← {0, 1}κ, and a
random subset TS′ = {ts′1, . . . , ts′|S∩C|} ⊆ TS, such that |TS′| = |S ∩ C|.

3. Then, SIMC adds |S ∩ C| distinct pairs (H(ci)
Rs , ts′i ∈ TS′) to T2 and con-

tinues to answer queries to H and H ′ consistently using T1 and T2 as defined
in Step 1.

4. Upon receiving {a1, . . . , av} from client, SIMC picks Rs ← Zq and computes

a′i = aRs

i . Finally SIMC sends Π ′(a′i, . . . , a
′
v) and {ts1, . . . , tsw} to client.

Any efficient semi-honest client C∗ cannot distinguish between an interaction
with an honest server with input S = {s1, . . . , sw} and SIMC .

By construction, C∗’s view differs from the interaction with an honest server
only in the way elements {ts1, . . . , tsw} are constructed. Let distinguisher D be
an algorithm that outputs 0 on input an element from distribution:

D0 ={(H(s1), . . . , H(sw)), Π(ts1 = H ′(H(s1)
Rs), . . . , tsw = H ′(H(sw)

Rs)),

(a1 = H(c1)
Rc , . . . , av = H(cv)

Rc), Π ′(a′1 = H(c1)
RcRs , . . . ,

a′v = H(cv)
RcRs)}hsi

and 1 on input an element from:

D1 =
{
(hs1, . . . , hsw), Π

(
ts1 = H ′(H(c1)

Rs), . . . , ts|S∩C| = H ′(H(c|S∩C|)Rs),

ts|S∩C|+1 = H ′(r|S∩C|+1), . . . , tsw = H ′(rw)
)
,

(a1 = H(c1)
Rc , . . . , av = H(cv)

Rc),

Π ′(a′1 = H(c1)
RcRs , . . . , a′v = H(cv)

RcRs)}hsi
with r|S∩C|+1, . . . , rw random elements from Zp and where D is allowed to select
the elements in sets C = {c1, . . . , cv} and S = {s1, . . . , sv}. The existence of D
violates the hardness assumption of DDH: Let (g, gx, gy, gz) be a DDH challenge
for simulator SIM, which interacts with D as follows: SIM responds to H(x)
queries from D with grhi for a random rhi ∈ Zq, and stores (x, grhi) in table TH

for consistency and to queries H ′(x) with a random string, using TH′ to store
queries-response for consistency.
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Client, on input Server, on input

C = {(c1, σ1), . . . , (cv, σv)} S = {s1, . . . , sw}
(∀i, 1 ≤ i ≤ v : σi

e = hci)

Rc ← ZN/2

∀i, 1 ≤ i ≤ v :

ai = (σi)
2Rc

{a1, . . . , av}
��

Rs ← ZN/2

∀i, 1 ≤ i ≤ v, tci = H ′((ai)
eRs )

(tc�1 , . . . , tc�v ) = Π(tc1, . . . , tcv)

∀j, 1 ≤ j ≤ w, bsj = (hsj)
Rs∀i, 1 ≤ j ≤ w :

tsj = H ′((bsj)2Rc)

{bs1, . . . , bsw}
{tc�1 , . . . , tc�v}��

Output: |{tc�1 , . . . , tc�v} ∩ {ts1, . . . , tsw}|

Fig. 2. Authorized PSI-CA. All computation is mod N

W.l.o.g., let H(ci) = grhi; SIM computes a′i = (gy)rhi·Rc and constructs ch =
((g, gx, gr3 , . . . , grw), Π(ts1 = H ′(gy), ts2 = H ′(gz), ts3 = H ′((gy)r3), . . . , tsw =
H ′((gy)rw)), (a1, . . . , av), (a′1, . . . , a′v)) with r3, . . . , rw random elements in Zp.
Note that ch belongs to distribution D0 iff (g, gx, gy, gz) is a proper Diffie-
Hellman tuple, i.e., z = xy and to D1 otherwise. Moreover, while D can test
for which elements H ′(a′i) = tsj , pairs i, j are distributed as expected because of
the permutationΠ ′. Therefore,D has only negligible advantage in distinguishing
the two distributions. �

5 Fast Authorized PSI-CA

We now introduce the concept of Authorized PSI-CA (APSI-CA). It extends
“plain” PSI-CA to enforce (pre-)authorization of client input. Similar to APSI
[11] (reviewed in Section 2), APSI-CA involves an offline trusted third party
– Certification Authority (CA) – that provides client with authorizations (in
practice, signatures) to input into the set intersection cardinality computation.

Definition 6 (Authorized PSI-CA (APSI-CA)). A protocol involving a
server, on input of a set of w items: S = {s1, · · · , sw}, and a client, on in-
put of a set of v items with associated authorizations (i.e., signatures), C =
{(c1, σi) · · · , (cv, σv)}. It results in client outputting |I∗|, where:

I∗ = {sj ∈ S | ∃(ci, σi) ∈ C s.t. ci = sj ∧ Verify(σi, ci) = 1}.
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APSI-CA entails the following informal privacy requirements:

• Server Privacy (APSI-CA). The client learns no information beyond what
can be inferred from the protocol output, i.e., (1) cardinality of set intersec-
tion on authorized items and (2) upper bound on the size of S (the server
could conceivably add “dummies” to its input; such dummies do not alter
the output of the protocol, but conceal the exact number of elements in the
server’s set).

• Client Privacy (APSI-CA). No information is leaked about items or autho-
rizations in client set (except an upper bound on their number).

• Unlinkability. Similar to PSI-CA, we require that neither server nor client
can determine if any two instances of the protocol are related, i.e., executed
on the same input by client or server.

We illustrate our APSI-CA protocol in Figure 2. Observe that the CA is respon-
sible for generating all public parameters: on input the security parameter κ,
it executes (N, e, d, g) ← RSA.KGen(κ), where g is a generator of QRN , and
selects H : {0, 1}∗ → ZN

∗ (Full-Domain Hash) and H ′ : {0, 1}∗ → {0, 1}κ (ran-
dom oracles). The CA authorizes client input ci by issuing σi = H(ci)

d mod N
(i.e., an RSA signature). The protocol is executed between client and server,
on common input (N, e,H,H ′). We assume that server’s input (S) is randomly
permuted before protocol execution to mask any ordering of the items contained
in it. Finally, hci and hsj denote, respectively, H(ci) and H(sj).

Similar to its PSI-CA counterpart, this APSI-CA has the following properties:

• Correctness. For any (σi, ci) held by client and sj held by server, if: (1)
σi is a genuine CA signature on ci, and (2) ci = sj , hence, hci = hsj , we
obtain: tc�i = H ′((σi)

2eRcRs) = H ′((hci)2RcRs) = tsj .

• Privacy. In this version of the paper, we only provide some intuition for our
security arguments, and defer to future work formal proofs. Client privacy
is based on its input being statistically indistinguishable from a random dis-
tribution in QRN . Arguments regarding server privacy are similar to those
for PSI-CA, thus, we do not repeat them here. We argue that if one could
violate APSI-CA server privacy, then the one would also violate server pri-
vacy of the APSI construct in Figure 1 of [10], proven secure under the RSA
and DDH assumptions. Finally, note that the protocol is unlinkable, given
that random values, Rc, Rs, are selected fresh for each protocol execution.

• Efficiency. This APSI-CA protocol incurs linear computation (for both
parties) and communication complexity. Specifically, client and server per-
form respectively O(w) and O(w + v) modular exponentiations. However,
exponents are now taken in the RSA settings, while in PSI-CA can be taken
from a smaller group, thus, be much shorter (e.g., 160-bit vs 1024-bit long).
Communication complexity amounts to O(w + v). Note that this is signifi-
cantly lower than related work, i.e., [8], which incurs quadratic overhead (see
Section 2.2).
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6 Combining PSI-CA and PSI

As mentioned in Section 1, it is often desirable to privately assess the magnitude
of the set intersection before engaging in an actual (private) set intersection
computation. We are motivated by potential concerns with respect to server
privacy, arising in PSI executions where the intersection obtained by client is
close to the entire server set (i.e., |S ∩ C| ≈ |S|).

We now show how to combine our proposed PSI-CA construct with with
PSI functionality, in order to address such concerns. Specifically, rather than
engaging in PSI, parties first run the PSI-CA protocol with their client/server
roles reversed. This way, server learns (only) the intersection cardinality and
the size of the parties’ inputs, and uses this information to decide whether to
proceed with PSI. In case it decides to proceed, client only needs to receive one
more message from server to compute the intersection. In other words, server
defines a policy – based on the size of (i) the two sets and (ii) the intersection
– and only if the policy is satisfied, server engages in PSI protocol (thus, client
privately obtains the set intersection).

The resulting protocol is presented in Figure 3. In the first two rounds, server
and client run PSI-CA with their roles reversed (i.e., server learns the cardinality
of the intersection), and, assuming server’s policy is satisfied, the last round
allows client to learn the set intersection. The same approach can be used for
other private set operations, such as PSU [18]. Indeed, similar concerns about
server privacy occur in a scenario where |C ∪ S| ≈ |C| + |S|, and can again
be addressed by running PSI-CA with roles reversed. Observe that protocol in
Figure 3 incurs complexities comparable to the underlying PSI-CA (illustrated
in Figure 1): only one additional message must be sent to realize policy-based
PSI.

The security of this protocol, in presence of semi-honest adversaries, trivially
stems from that of the underlying PSI-CA. Nonetheless, we defer to future work
extending our constructions to malicious security. In fact, there is no guarantee
that malicious parties maintain the same input over multiple interactions or do
not abort execution prematurely. This constitutes an interesting open challenge
that we defer to future work.

Remark: Our technique in Figure 3 is not to be confused with the concept of
Policy-Enhanced PSI, recently proposed by [36]. Using the latter, two parties
privately obtain the intersection of their sets, while enforcing policies pertaining
what/how to share, based on policies and authorizations related to single items.
Whereas, policy enforced by server in our protocol is much simpler – it is based
on the cardinality of set intersection: depending on this (and on its relationship
to set size), server decides whether or not to disclose set intersection’s content to
client. A vaguely comparable approach is so-called Knowledge-oriented Multi-
party Secure Computation [29], where each participating party is able to reason
about the increase in knowledge that other parties could gain as a result of the
secure computation, and may choose not to participate to restrict that gain.
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Server, on input: Client, on input:

S = {s1, . . . , sw} C = {c1, . . . , cv}

Rs ← Zq (ĉ1, . . . , ĉv)← Π(C), with Π
random permutation

∀i 1 ≤ i ≤ v : ∀i 1 ≤ i ≤ v : hci = H(ĉi)
ai = (hsi)

Rs Rc ← Zq{a1, . . . , aw}
�� ∀i 1 ≤ i ≤ w : a′

i = (ai)
Rc

(a′
�1
, . . . , a′

�w) = Π ′(a′
1, . . . , a

′
w)

∀j 1 ≤ j ≤ v : bcj = hcj
Rc

∀j 1 ≤ j ≤ v : tcj = H ′(bcj)∀i 1 ≤ i ≤ w :
{tc1, . . . , tcv}

{a′
�1
, . . . , a′

�w}��
bsi = (a′

�i
)1/Rs

∀i 1 ≤ i ≤ w, tsi = H ′(bsi)

T ∗ = {tc1, . . . , tcv} ∩ {ts1, . . . , tsw}
If Policy.isSatisfied(w, v,|T ∗|):

T ∗
�� ∀ tcj ∈ T ∗: Output cj ∈ S ∩ C

Fig. 3. Combining PSI-CA and PSI for a three-round policy-based Private Set Inter-
section protocol. (All computation is mod p).

7 Conclusion

This paper presented a protocol for PSI-CA, with linear computational and
communication complexities. It can be used to compute PSU-CA, without in-
troducing any additional overhead.

Next, we presented two novel extensions. We introduced Authorized PSI-CA,
or APSI-CA, that is useful in settings where client input must be authorized by
a certification authority. Then, we showed how PSI-CA can be used to realize a
PSI protocol where server determines (in privacy-preserving manner) cardinality
of set intersection before deciding whether or not to engage in a PSI interaction
with client. Such an approach is very efficient, as it requires only one additional
message on top of our PSI-CA protocol.

We will release an optimized implementation of all protocols presented in
this paper along with the final version of the paper. As part of future work, we
plan to investigate extensions to guarantee security in the presence of malicious
adversaries and in the UC framework.

Acknowledgments. We wish to thank Stanislaw Jarecki and Jens Groth for
their valuable feedback.
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