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Abstract. Driven by the potential economic profits, cyber-criminals are
on the rise and use the Web to exploit unsuspecting users. Indeed, a
real underground black market with thousands of collaborating organi-
zations and individuals has developed, which brings together malicious
users who trade exploits, malware, virtual assets, stolen credentials, and
more. Among the various malicious activities of cyber-criminals, rogue
security software campaigns have evolved into one of the most lucrative
criminal operations on the Internet. In this paper, we present a novel
method to analyze rogue security software campaigns, by studying a
number of different features that are related to their operation. Con-
trary to existing data mining techniques for multivariate data, which
are mostly based on the definition of appropriate proximity measures on
a per-feature basis and data fusion techniques to combine per-feature
mining results, we take advantage of the structural properties of the
k-partite graph formed by considering the natural interconnections be-
tween objects of different types. We show that the proposed method is
straightforward, fast and scalable. The results of the analysis of rogue
security software campaigns are further assessed by a visual analysis tool
and their accuracy is documented.

Keywords: unsupervised learning, security, k-partite graphs.

1 Introduction

Over the last decade, there has been a significant shift in the nature of cy-
bercrime, from server-side to client-side attacks and from mainly destructive
(e.g. fast spreading worms) to omnivorously profit-oriented activities like iden-
tity theft, fraud, spam, phishing, online gambling, extortion [1]. It is now evident
that cybercriminals become increasingly collaborative and organized, changing
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the ways that cybercrimes are committed. Individuals with different skill-sets
join in ephemeral relationships to commit a common act and to reproduce their
skills and knowledge. All the facts and figures presented in public threat re-
ports are certainly valuable and help to shed some light on those cyber-criminal
phenomena, but a lot of unknowns remain.

Among the various malicious activities of cyber-criminals, the spreading of
fake antivirus (AV) programs stands out. Fake AV software has been utilized to
defraud millions of computer users into paying as for services that the never ac-
tually receive. Rogue security software is actually the most common form of scam
software, also called scareware, which makes use of social engineering to exploit
a computer user’s fear of revealing sensitive information, losing important data,
and/or causing irreversible hardware damage. Therefore, a fake AV program im-
personates an antivirus scanner and displays misleading or fraudulent alerts in
an attempt to dupe a victim into purchasing a license for a commercial version
that is capable of removing non-existent security threats. However, users not
only do they never receive what they have paid for, but, to make things worse,
their machines get compromised by the installed software, offering new attack
opportunities to cyber-attackers. As a result, fake AV software has evolved into
one of the most lucrative criminal operations on the Internet.

Moreover, as cyber crime is becoming more organized, new crime mecha-
nisms utilise all available means to automate their malicious activities. This
leads to patterns or fingerprints in relevant datasets that are valuable if identi-
fied. Such identification within a large set of heterogeneous data is a very difficult
and time-consuming task, particularly across layers (network transport, service,
transaction). Furthermore, Internet criminals have become adept at modifying
their strategies and tactics as new methods are developed to combat their activ-
ities. As such, the tools used to identify and characterise their activities must be
able to cope with fast-changing requirements. In order to be successful, the tech-
niques used to commit crimes need to be as automated as possible and, of course,
stealthy. This automation, by definition, leaves fingerprints that, if found, offer
valuable information for the implementation of new detection strategies or for
forensic purposes. The problem is that these fingerprints are, a priori, unknown
and hidden in a massive amount of data. However, current analysis techniques
do not allow us to automatically discover new relevant knowledge about attack
phenomena, certainly not from a strategic viewpoint.

Consequently, many open issues remain. Who is behind the deployment of
rogue AV websites, how many organized communities are responsible for them,
where do they originate, what are the emerging strategies used in cybercrime and
how do they evolve over time? Are cyber-criminals able to coordinate their ac-
tions? All previously described issues are related to a common security problem
often referred to as “attack attribution” [1]. In this paper, we present an unsu-
pervised method for root cause analysis of rogue AV campaigns, by studying a
number of different features that are related to their operation and by ascribing
large-scale attack phenomena to the same group of individuals or communities.
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Contrary to existing data mining techniques for multivariate data, which are
mostly based on the definition of appropriate proximity measures on a per-
feature basis and data fusion techniques to combine per-feature mining results,
we take advantage of the structural properties of the k-partite graph formed by
considering the natural interconnections between objects of different types.

The rest of the paper is structured as follows. In Section 2, we provide an
overview of the background work in analysis of security software campaigns.
Section 3 presents the developed method for unsupervised learning on k-partite
graphs, while Section 4 provides an overview of the analysis results. Finally,
Section 5 concludes the paper.

2 Background Work

The spreading of rogue security software has been observed as early as in 2005
[2]. A thorough description of various instances of rogue software is presented in
security industry reports [3] [4]. These studies aim to shed light on the strategies
of cyber-criminals, the prevalence of rogue AV software and its distribution mech-
anisms. In [5], [6] and [7], the authors provide a study of malicious websites and
their underground economy. Last, in the their seminal work in [8] and [9], Cova
et al. present a methodology for ascribing rogue security software websites to the
same campaign. The proposed methodology requires the definition of proximity
measures and clustering on a per-feature basis. Then, the per-feature cluster-
ing results are combined using a data fusion technique based on mutli-criteria
decision analysis. While the presented technique yields meaningful results, its
accuracy largely depends on the security analyst who has to parametrize it at
various steps.

3 Clustering Analysis Using k-Partite Graphs

The proposed clustering algorithm aims at identifying the structural properties
of graphs by applying dynamic methods based on the class of flow-based graph
clustering algorithms represented by Markov Clustering (MCL) [10]. MCL offers
several advantages in that it is an elegant approach based on the natural phe-
nomenon of flow, or transition probability, in graphs [11]. Contrary to clustering
techniques that are based on the selection of appropriate distance or dissimi-
larity metrics and on fusion of per-feature results, flow-based graph clustering
algorithms take advantage of the similarities of data instances as these are re-
flected on the structural properties of the graph (e.g. common connections).
Therefore, we extend flow-based graph clustering algorithms to search for nat-
ural groups of rogue websites (common campaign) in k-partite graphs, and we
present a number of enhancements to improve their performance, as well as
to enhance the meaningfulness of results. Their operation relies on an iterative
process which applies three operators - expansion, inflation and pruning - on an
initial transition matrix P, in alternation, until convergence.
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The merit of the proposed method compared to existing distance-based clus-
tering methods is threefold. First, defining appropriate distance measures is a
not straightforward procedure and different distance measures result in different
clustering results. On the contrary, our proposed method searches for similarities
rather than dissimilarities between data objects, by considering their intercon-
nections with respect to different features. Second, in many cases defining an
appropriate distance metric may not be feasible. For example, one cannot define
an appropriate distance metric for two blocks of IP addresses that belong to the
same ISP but are located far apart in the IP space. The proposed method does
not take into account the actual IP address, but the interconnections of rogue
websites with different IP addresses and, therefore, it can capture the case of
different IP blocks belonging to the same ISP. Last, our method can work with
categorical, numerical, ordinal and binary data without requiring complex data
transformations which usually depend of the security analyst’s knowledge and
expertise.

The security problem of rogue AV websites analysis involves data objects of
multiple types that are related to each other, which can be naturally formulated
as a k-partite graph. For example, rogue websites are related to malware types,
geolocation of the websites, IP address of the website and the nameserver, etc.
However, the research on mining the hidden structures from a k-partite graph
is still limited and preliminary. Therefore, our research work aims at proposing
a principal framework for unsupervised learning on k-partite graphs of vari-
ous structures. Under this model, we derive a novel algorithm to identify the
hidden structures of the graph by identifying strongly connected nodes, using
neighbourhood information. The strength of our approach resides in its ability
to incorporate multiple features, searching for clusters in the multidimensional
space.

3.1 Problem Definition

A k-partite graph is a graph where nodes can be divided in k disjoint groups
(V0, . . . , Vk−1), such that no edge connects the vertices in the same group. More
formally, a k-partite graph G is defined as G = 〈V0 ∪ . . . ∪ Vk−1, E〉, where

Vl = {ni|1 ≤ i ≤ Nl}, ∀l ∈ [0, k − 1], and E ⊂
k−1⋃

l=1

{V0 × Vl} as shown in Fig. 1.

We assume an edge-weighted directed k-partite graph. Moreover, nodes in
V0 (white circles in Fi. 1) correspond to rogue security software websites, while
nodes in Vl, l ∈ [1, k − 1] (coloured circles) correspond to feature values of a
specific feature. Nodes in Vl �=0 can have connections only to nodes in V0.

Given a query node ni in Vl, l ∈ [0, k− 1], our clustering algorithm computes
an attractor node. All nodes that are attached to the same attractor node belong
to a single cluster. Based on the graph structure, the attractor node can be either
a rogue website or a feature value of any given feature. Nodes that belong to
the same group Vl have the same type; it is the connections between the k types of
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Fig. 1. A 6-partite graph. White circle nodes in the middle represent rogue security
software websites. The nodes corresponding to the feature values of 5 different features
are placed on the sides of a pentagon using different colouring schemes. Feature values
can be connected only to rogue websites and not with each other.

objects that hold the key to mining the hidden structures in the k-partite graph.
Given the natural inter-group connections (between Vl and Vm), our objective is
to discover the intra-group relationships, such as the clusters within the group.
An effective mining algorithm should thus be able to utilize these links across the
(k − 1) natural groups that are formed by considering the connections between
rogue websites and each of the (k − 1) features.

3.2 Building the k-Partite Graph

The subgraph Gl formed by considering nodes only in V0 and Vl, l ∈ [1, k − 1],
can be conceptually stored in a N0-by-Nl matrixMl, whereMl(i, j) is the weight
of the edge 〈i, j〉. The nodes in V0(Vl) are called row (column) nodes. Note that
a column node links to a row node if the corresponding matrix element is not
zero. Moreover, row node ni connects to another row node nj if there is a column
node c linking to both ni and nj . We call that path a connection between ni

and nj through c. Nodes ni and nj can have multiple connections via different
column nodes.
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For each subgraph Gl, l ∈ [1, k − 1], we can construct the adjacency matrix
Al of Gl using Ml:

Al =

(
0 Ml

MT
l 0

)

In particular, Al(i, j) denotes the element at i-th row and j-th column in Al.
Suppose we want to traverse the subgraph starting from the row node ni. Then,
we have to transform matrix Al into a transition matrix Pl, such that the sum
of the probabilities of taking an edge 〈i, j〉, starting from the row node ni, does
not exceed 1. Therefore, the most common approach is that, for each row node
ni, the normalization of the weight of any edge 〈i, j〉 is proportional to the edge
weight over all the outgoing edges from ni. More formally:

Pl(i, j) =
Al(i, j)

Nl∑

m=1

Al(i,m)

and

Pl =

(
0 M′

l

M′T
l 0

)

Then, by considering the transition matrices Pl corresponding to each subgraph
Gl, we can construct the transition matrix P of G as follows :

P =

⎛

⎜⎜⎜⎜⎜⎝

0 M′
1 M′

2 . . . M′
k−1

M′T
1 0 0 . . . 0

M′T
2 0 0 . . . 0
...

...
...

. . . 0
M′T

k−1 0 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎠

3.3 Clustering Formation

To find the hidden clusters in a graph we make use of Markov Clustering (MCL)
algorithm which is based on (stochastic) flow simulation. This algorithm shares
the ideas behind random walks. However, unlike random walks which compute
a relevance score from a given node in a group to any other node in the group,
MCL aims at calculating an “attractor” node, by which all nodes belonging to
the same cluster will be attracted.

The MCL algorithm is an iterative process of applying three operators - ex-
pansion, inflation and pruning - on an initial transition matrix P , in alternation,
until convergence. Each of these steps is defined below:

The expansion step requires that matrix CN×N, which will finally hold the
attractor nodes for each node ni, is multiplied with the transition matrix P:

C = P ·C (1)
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The ith row of matrix C can be interpreted as the final distribution of a random
walk of length 1 starting from node ni, with the transition probabilities of the
random walk given by P.

The inflation step requires raising each entry in the matrix P to the power r
and then normalizing the rows to sum to 1.

C(i, j) =
C(i, j)r

∑N
m=1 C(i,m)r

(2)

The inflation step has the effect of strengthening intra-cluster flow and weakening
inter-cluster flow, by reducing the probability of visiting nodes that do not belong
to the same cluster. This is due to the fact that there are more paths between
two nodes that are in the same cluster than between those in different clusters
and, therefore, there is a higher probability of visiting the inter-cluster nodes.

Last, the prune step removes the entries below a threshold q:

C(i, j) =

⎧
⎨

⎩
0 , if C(i, j) ≤ q · n

max
j=1

{C(i, j)}
C(i, j) , otherwise

(3)

Then, the retained entries are rescaled to have the row sum to 1. This step is
primarily meant to reduce the number of non-zero entries in the matrix and
hence save memory.

4 Experimental Results

The set of studied rogue AV domains is built by aggregating information from
a number of different sources [8]. The considered dataset consists of 5, 852 DNS
entries, collected in July and August 2009, pointing to 3, 581 distinct IP addresses
hosting rogue AV servers. It is worth noting that at least 45% of these domains
were registered through just 29 out of several hundred existing domain registrars.

To study the dynamics of rogue domains and their relation with the associ-
ated web servers, we make use of the data collected by HARMUR (HARMUR,
a Historical ARchive of Malicious URLs), which enables us to study the relation
between client side threats and the underlying server infrastructure, and their
evolution over time [12]. The HARMUR dataset was developed by Symantec in
the context of the WOMBAT EU-FP7 project [13] and extended in the frame-
work of the VIS-SENSE EU-FP7 project [14] where Symantec is also involved in
as a key partner. Instead of developing new detection technologies (e.g., based
on honeyclients, or special web crawlers), HARMUR integrates multiple infor-
mation sources and takes advantage of various data feeds that are dedicated to
detecting Web threats. By doing so, HARMUR aims at enabling the creation of
a “big picture” of the client-side threat landscape and its evolution.

4.1 Feature Selection

HARMUR collects a number of features associated with each rogue AV domain
described in the following list:
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– Geolocation (FGeo). The country in which the web server of the domain is
located.

– ASN (FASN ). The number of the Autonomous System associated with the
web server IP address.

– Registrant email address (FRegn). The email address provided upon regis-
tration of the domain.

– Registrar (FRegr). The organization which registered the domain.
– Creation date (FCD). The date that the domain was registered.
– Web Server IP address (FIP ). The IP address associated with the domain.
– Class C (FIPC ) and Class B (FIPB) subnets of Web Server IP addresses. To

allow the identification of servers belonging to the same infrastructure, the
/24 and /16 network prefix of each IP address is extracted.

– Web Server version (FV er). The version of the web server of the domain.
– Nameserver IP address (FNS). The IP address of the authoritative name-

server(s).
– Registered domain name (FDom). The domain name can reveal common

naming schemes.

Among the different information tracked through HARMUR, we select a number
of features that we believe to be likely to reveal the organized operation of
one specific individual or group. Therefore, we define the following feature set:
F = {FRegn, FNS , FIP , FIPC , FIPB}, which will be used by the proposed method
to link rogue domains to the same campaign.

Moreover, the set F ′ = {FGeo, FASN , FRegr , FCD, FV er, FDom} of the remain-
ing features is used to validate the accuracy of our results. Indeed, rogue domains
that are grouped in a single cluster should exhibit high homogeneity in terms
of their location, the associated AS number, the registrar of the domain and
the version of the webserver they are running on. Moreover, rogue domains that
are linked to the same campaign are probably registered on the same dates and
the domain names should follow similar patterns. This is due to the fact that,
cyber-criminals registering a high number of rogue domains try to automate
their methods in order to save time and increase their revenue.

4.2 Cluster Analysis

The 12-partite graph that is constructed by considering each of the 11 features
is shown in Fig. 2. The graph is positioned using a force-directed algorithm.
Force-directed algorithms aim at positioning the vertices of a graph in such a
way that preserves the structure of the high-dimensional data as possible in
the 2-dimensional space. Therefore, two nearby vertices on the 2-dimensional
space have highly similar feature vectors, whereas two distant points should
have nothing in common. This allows us to visualize the high-dimensional data
set, but also to assess the consistency of the obtained clustering results.

However, the visual clusters formed by the force-directed algorithm should
not be considered as indicative of the actual clusters in the dataset for a number
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Fig. 2. The k-partite graph comprising of nodes corresponding to both websites and
feature values positioned with a force-directed layout algorithm

of reasons. First, the force-directed algorithm takes into account the connections
to all features and not only to the features in set F . Second, the force-directed
algorithm does not take into account the weight assigned to each feature. Last,
force-directed algorithms are known to converge to local minima, which results
in sub-optimal positioning of the vertices in a graph.

The weights assigned to each feature in set F is given by vector w:

w = [0.35, 0.2, 0.2, 0.15, 0.10]

In our discriminant analysis, we assign a higher weight to features FRegn, FNS

and FIP , since these specific features will yield a high probability that correlated
rogue sites are likely due to the same campaign. On the other hand, by assigning
lower weight to features FIPC , FIPB we give them a little less confidence, since
these features are redundant with feature FIP . The inflation parameter r and
the cutting threshold q were set equal to 1.15 and 0.01 respectively.

Fig. 3 shows the results of the clustering analysis, where a different colour
is used to represent a single cluster. The comparison of clusters corresponding
to the results of the force-directed algorithm (position in the 2D space) with
clusters corresponding to the results of our cluster analysis (colouring scheme)
validate the accuracy of our method. The colour mapping allows us to have a
clear overview of the coherency and high homogeneity of each cluster. Moreover,
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Fig. 3. Results of the clustering analysis. Only nodes corresponding to websites are
depicted.

to gain insight into the root causes of each rogue AV campaign, we have to look
at the contribution of each separate feature in the formation of clusters.

Indeed, from our clustering analysis, it is evident that, as far as the features
in set F are concerned, one or a few clusters of the separate features contribute
to the formation of a single cluster in the big graph. This is not always the case
with features in set F ′, where a single cluster of the separate features is related
to multiple clusters in the big graph. For example, rogue websites located in
the USA belong to many different clusters, meaning that many different rogue
campaigns are hosted in the USA. By paying special attention to the contribution
of each separate feature in the formation of clusters, our clustering analysis
allows us to make an interesting observation. For a specific campaign, although
the rogue websites address Chinese people, as it is made obvious by the “.cn”
extension of their domains, the websites themselves are hosted either in the USA
or in Germany.

5 Conclusion

In this paper, we presented an unsupervised method for learning on k-partite
graphs for the analysis of rogue AV campaigns. The proposed method takes
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advantage of the structural properties of the k-partite graph formed by consid-
ering the natural interconnections between objects of different types. We showed
that the proposed method is straightforward, fast and scalable. The results of
the analysis of rogue security software campaigns were further assessed by a
visual analysis tool where their validity was documented.
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