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Abstract. Grain-128a is a new version of the stream cipher Grain-128.
To analyse the security of the cipher, we study the monomial structure
and use high order differential attacks on both the new and old ver-
sions. The comparison of symbolic expressions suggests that Grain-128a
is immune against dynamic cube attacks. Additionally, we find that it is
also immune against differential attacks as the best attack we could find
results in a bias at round 189 out of 256.
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1 Introduction

Grain is a family of lightweight stream ciphers that share the property of a very
small hardware implementation. As any modern stream cipher, Grain allows for
public initial vectors so that the initial state for keystream generation is produced
by an initialization mechanism that depends on the secret key and on the initial
vector. There are two versions, Grain v1 [9] with a 80-bit key, and Grain-128a [1]
with a 128-bit key. The latter has built-in support for optional authentication.
Grain v1 is a finalist in the eSTREAM portfolio of hardware oriented stream
ciphers. Grain-128a is modelled on its predecessor Grain-128 [8], but uses slightly
different non-linear functions with the aim to strengthen it against known attacks
on Grain-128.

Grain v1 and Grain-128a share a very similar structure based on non-linear
feedback shift registers (NFSR). In [10], conditional differential cryptanalysis,
first introduced in [4], has been applied to such constructions. The idea is to
control the propagation of differences by imposing conditions on the public vari-
ables, i.e. the initial vector (IV), of the cipher. Depending whether these condi-
tions involve secret variables or not, key-recovery or distinguishing attacks can
be mounted. The technique extends to higher order differential cryptanalysis. A
different but related concept is the dynamic cube attack presented in [7]. Be-
cause of the higher complexity of the update functions of Grain v1, the attacks
are not applicable to this cipher.

The aim of this paper is to compare the security of Grain-128a with that of
Grain-128 with regard to higher order differential attacks, including conditional
differential cryptanalysis. By studying the monomial structure in the initiali-
sation mechanism it is argued that dynamic cube attacks will not be effective
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against Grain-128a as was the case for Grain-128. This is the first analysis of
the security of Grain-128a in a chosen IV scenario.

The paper is organized as follows. Section 2 gives a brief summary of the cube
attack as well as the dynamic cube attack and recalls the idea of conditional
differential analysis. Section 3 gives a concise overview of the design of Grain-
128a and the changes made with respect to its predecessor Grain-128. Section 4
provides a comparison of Grain-128a with its predecessor describing the impacts
of the improvements made to the cipher. It shows the results achieved with higher
order differential attacks in general and the conditional differential analysis in
particular. In order to make a statement concerning the security of the cipher,
these results are again compared to results on Grain-128.

2 Background

This section briefly depicts the two different variants of the cube attack, namely
the static and the dynamic variants. The section is a summary of [6], [7] and [5],
respectively. Initial work related to cube attacks is also [13]. Section 2.3 recalls
relevant facts on conditional differential analysis in a concise manner. For more
detailed information we refer to [10].

2.1 Cube Attack

For most stream ciphers, an output bit can be described as a master polynomial
p(k1, . . . , kn, v1, . . . , vm) over F2. Such a polynomial can be split and written as
a sum of two polynomials:

p(k1, . . . , kn, v1, . . . , vm) = tI ∗ pS(I) + q(k1, . . . , kn, v1, . . . , vm)

Where:

– tI is called maxterm and is a product of certain IV bits, for example v1v2v5
– pS(I) is called superpoly. It does not contain any variables of tI
– q(k1, . . . , kn, v1, . . . , vm) is the remainder polynomial. The summands of this

polynomial miss at least one of the variables of tI .

The maxterm tI is defined through a subset of indices I (a so-called cube).
In order to get the super polynomial pS(I), one assigns all possible values to
the variables contained in I, evaluates the master polynomial and sums up the
results. In this way, every summand missing k (k≥1) variables of the maxterm tI
is added exactly 2k times and is therefore eventually eliminated with the modular
reduction. The super polynomial pS(I), however, is part of the evaluated master
polynomial if and only if all variables of tI have value one. All other variables
whose indices are not contained in I are assigned a certain value, usually zero.
The idea of cube attacks is to find enough maxterms tI whose super polynomial
is linear and not a constant. This enables to recover the key through solving a
system of linear equations.
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2.2 Dynamic Cube Attack

The Dynamic Cube Attack is very similar to the static version. The difference is
that certain variables which are not part of tI are assigned a function of public
and private variables instead of a constant value. Those functions are chosen in
a way that the symbolic expressions of certain variables are simplified. The idea
is to rewrite a polynomial P with three polynomials:

P = P1 ∗ P2 + P3

In order to simplify the polynomial P , one sets a linear term of P1 in such a way
that the whole polynomial P1 is zero. This eliminates P2 and simplifies P to P3.
An example is given in [7]. The attack was further improved and published in [5].
This attack breaks the full version of Grain-128 with a complexity of about 290

and memory usage of 263 bit.

2.3 Conditional Differential Analysis

The notion of a conditional differential characteristic has been introduced in [4]
to improve differential attacks against DES. Similar ideas are used to accelerate
the differential collision search in hash function cryptanalysis [14,15]. In [10,11]
the principle has been applied to NFSR-based constructions and extended to
higher order differential attacks.

The Basic Idea for NFSR-based Constructions. Let us consider the case of a
synchronous stream cipher taking as its input an initial value (IV) and a key.
We assume a scenario where the attacker can observe the keystream for many
chosen IVs under the same secret key. The basic idea of conditional differential
cryptanalysis is to control the propagation of a difference in the IV through the
first few rounds of the initialization process. This is done by imposing specific
conditions on certain bits of the IV. From these conditions, a sample of IV
pairs is derived and experimentally tested for a bias in the resulting keystream
differences. Conditions might be also imposed on the key which defines classes
of weak keys.

An example for Grain-128a . Consider a difference in bit 69 of the IV. The
difference does not affect the rounds 0 to 8. Then, at round 9, the value of the
feedback is computed as x17k21+x22x29+x51k104+x69x88+k11+k21k104+k24+
k45 + k54 + k73 + k82 + k98 + 1, that is, the difference eventually propagates to
s9+128 and b9+128. Imposing the condition x88 = 0 we can prevent the difference
from propagating. Similarly at round 27, h is computed as x35k39 + x40x47 +
x69k122 + x87 + k29 + k39k122 + k42 + k63 + k72 + k91 + k100 + k116 + 1 and the
propagation can be prevented by the condition k122 = 0. Testing a sample of 216

randomly chosen IV pairs separated by a difference in bit 69, a significant bias
can be detected at round 140. However, if the IVs satisfy the conditions x88 = 0
and the key satisfies k122 = 0, biases can be detected up to round 159.



4 M. Lehmann and W. Meier

Extension to Higher Orders. If the keystream bits are modeled as Boolean func-
tions of the form f : {0, 1}κ × {0, 1}n → {0, 1}, a first order attack evaluates

Δvf(k, x) := f(k, x) + f(k, x+ v)

for a fixed difference v ∈ {0, 1}n many chosen x ∈ {0, 1}n. In [12], Δvf is called
a first order derivative of f with respect to v. More generally, if V ⊂ {0, 1}n is
a linear subspace of dimension d,

ΔV f(k, x) :=
∑

v∈V

f(k, x+ v)

is called the derivative of f with respect to V . The principle of conditional
differential cryptanalysis extends to higher orders as follows. If {a1, . . . , ad} is
a basis of V , conditions are derived for each bi as a first order difference and
merged to a total set of differences from which the sample is derived.

Notation and Terminology. In this paper, the subspaces V will be always gener-
ated by IVs of Hamming weight one and we write vi, 0 ≤ i ≤ 95 for the IV with
a 1 at position i and 0s otherwise. Conditional differential cryptanalysis can be
seen as a refinement of cube testers introduced in [3].

3 Grain-128a

In our analysis, the authentication mechanism will be ignored. Fig. 1 depicts an
overview of the building blocks of the output generator, which is constructed
using three main building blocks, namely an LFSR, an NFSR and a pre-output
function. We denote by si, si+1, . . . , si+127 the contents of the LFSR. Similarly,
the content of the NFSR is denoted by bi, bi+1, . . . , bi+127. Together, the 256
memory elements in the two shift registers represent the state of the output
generator.

The primitive feedback polynomial of the LFSR, denoted f(x), is defined as

f(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128.

We also recall the corresponding update function of the LFSR as

si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96.

The nonlinear feedback polynomial of the NFSR, g(x), is defined as (changes to
the predecessor Grain-128 are in boldface)

g(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60

+ x61x125 + x63x67 + x69x101

+ x80x88 + x110x111 + x115x117

+ x46x50x58 + x103x104x106 + x33x35x36x40.
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Fig. 1. An overview of the output generator

Again, recall the rule for updating the NFSR, with changes to Grain-128 in
boldface.

bi+128 = si + bi + bi+26 + bi+56 + bi+91 + bi+96

+ bi+3bi+67 + bi+11bi+13 + bi+17bi+18

+ bi+27bi+59 + bi+40bi+48 + bi+61bi+65

+ bi+68bi+84 + bi+88bi+92bi+93bi+95

+ bi+22bi+24bi+25 + bi+70bi+78bi+82.

Note that the update rule contains the bit si which is not part of the feedback
polynomial and is output from the LFSR, thus masking the input to the NFSR.

Nine state variables are taken as input to a Boolean function, h(x): two bits
come from the NFSR and seven from the LFSR. This function is defined as

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8

where the variables x0, . . . , x8 correspond to, respectively, the state variables
bi+12, si+8, si+13, si+20, bi+95, si+42, si+60, si+79 and si+94 (or si+95 for Grain-
128, respectively). The pre-output function is defined as

yi = h(x) + si+93 +
∑

j∈A
bi+j ,

where A = {2, 15, 36, 45, 64, 73, 89}.
Before keystream is generated the cipher must be initialized with the key

and the IV. Denote the bits of the key as ki, 0 ≤ i ≤ 127 and the IV bits
IVi, 0 ≤ i ≤ 95. The initialisation of the key and IV is done as follows. The 128
NFSR elements are loaded with the key bits, bi = ki, 0 ≤ i ≤ 127, and the first
96 LFSR elements are loaded with the IV bits, si = IVi, 0 ≤ i ≤ 95. The last 32
bits of the LFSR are filled with ones and a zero, si = 1, 96 ≤ i ≤ 126, s127 = 0.
Then, the cipher is clocked 256 times without producing any keystream. Instead,
the output function is fed back and xored with the input, both to the LFSR and
to the NFSR, see Fig. 2.

In the mode without authentication, all output bits are used directly as
keystream. This mode of operation is the same as in Grain-128.
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Fig. 2. The state initialization

4 Findings

The NFSR-update used by Grain-128 is merely of order two, whereas the one
used by Grain-128a is of order four and contains two extra monomials of order
three. Consequently, the symbolic expressions of Grain-128a grow faster. Fig. 3
depicts this fact using the data we collected.
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Fig. 3. Number of terms

To illustrate the difference relating to the order of the symbolic expressions,
i.e. the order of monomials in variables bi and si, and the number of terms of
maximum order, Table 1 shows the order and number of terms of some bi of
Grain-128 and Grain-128a, respectively. Note that the two columns on the left
both describe the number of monomials of order greater or equal the maximum
order in the symbolic expression of Grain-128.
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Table 1. Order of the symbolic expressions of the bi for Grain-128 vs Grain-128a

Order of symbolic expressions #terms ≥ max. order Grain-128

Grain-128 Grain-128a Grain-128 Grain-128a

b160 3 4 1 7

b161 6 7 7 4

b162 5 8 35 153

b163 5 9 35 768

b164 5 11 35 20786

b165 5 11 35 20757

b166 5 11 35 20229

b167 5 11 35 19701

b168 5 13 35 597807

b169 5 13 35 597807

b170 5 13 35 597507

b175 5 13 35 583133

b180 5 13 28 577368

b185 5 13 28 570672

b190 5 13 28 583829

b191 5 13 28 583514

b192 5 13 28 583514

b193 6 14 21 859311

b194 9 out of memory 89 out of memory

b195 8 out of memory 466 out of memory

Table 1 shows that after 36 rounds (b164), the symbolic expression of Grain-
128a is of order 11 as opposed to 5 in the case of Grain-128, but even more
striking is the difference in the number of terms. After the same 36 rounds, the
number of terms of order 5 or greater is 35 for Grain-128 compared to 20786 for
Grain-128a, which is over 590 times more.

An interesting fact is that the order of the expressions of Grain-128 stays the
same for rounds 34 - 64. The reason is that the term of highest order is part of the
pre-output function and the LFSR is filled with ones during the initialisation.
The seven monomials of maximum order 6 in Grain-128’s b161 are the following:

s95b45b12b95(b3b67 + b11b13 + b17b18 + b27b59 + b40b48 + b61b65 + b68b84)

For the next 31 rounds, the bit si+95 will have the value one, hence reducing the
order to 5 and keeping it on that same level during those rounds. The growth
of the number of terms of maximum order has the same cause. As the terms of
maximum order are determined through those of the pre-output function and
the monomial of order 3 is only of order 2 during those 31 rounds, there are five
monomials of maximum order 2 in the pre-output function, as opposed to one
of maximum order 3 for b161.
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Grain-128a’s monomial with maximum order lies in the NFSR update:

bi+88bi+92bi+93bi+95

The smallest index reaches 128 exactly four rounds later than the other indices,
which results in the stall of the order from b164 up to b168. After that, the order
of this term is determined by the sub-terms, i.e. the monomials in the expanded
expressions of the variables, of order 3 and 4. No more indices reach 128 before
b193. This b193, however, contains the term b153b157b158b160, and b160, in turn,
contains the bit b128 (bi+96 in the NFSR update) which results in the observed
order 14.

4.1 Higher Order Differential Analysis on Grain-128 and
Grain-128a

In order to investigate the impacts of the higher order and the higher number of
terms of the symbolic expressions, a higher order differential attack is conducted
with random cubes of different dimensions. For each dimension, sums over 100
random cubes are calculated and in each case the last round with a significant
bias is identified. The number of random IVs used per cube is 212 = 4096 and the
significance level for the frequency test is 0.001. The result, i.e. the last rounds
with a bias for each dimension, is shown as a Boxplot in the following Fig. 4.
Note that the upper boxes are the results of the analysis of Grain-128, whereas
the lower boxes correspond to Grain-128a.

Not only are the sums biased up to many more rounds for Grain-128 than
for Grain-128a, but the dimension of the cube also has a much bigger influence.
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Fig. 4. Boxplot of last bias for random cubes
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Cubes constructed by looking at the conditions of the cube bits and combin-
ing those with similar conditions, however, yield better results. For example, a
random cube of dimension 20 results in a bias approximately up to round 152
without conditions (cf. Fig. 4) or up to round 160 with conditions, whereas the
constructed cube of the same dimension results in a bias up until round 167.

4.2 Conditional Differential Analysis on Grain-128 and Grain-128a

To find the mentioned constructed cubes, we first symbolically sum over cubes
of dimension one and examine the obtained symbolic expression of this sum over
the cipher output zi, thus getting the conditions of all public variables. The next
step is to look for indices with the same conditions, as they seem to usually
lead to good cubes. The reason is that the conditions generally do not occur at
the same round and therefore one condition prevents that derivatives propagate
at different rounds. Calculating the sum over v20, for example, one finds the
condition v27 at round 7 (z7), whereas when calculating the sum over v34, one
finds the same condition at round 14 (z14).

The following Table 2 lists the best results, i.e. the number of rounds attacked,
on Grain-128 and Grain-128a for various cube dimensions, using 2048 random
IVs and a significance level of 0.01:

Table 2. Best results for various cube dimensions on Grain-128 and Grain-128a

Cube dimension 12 16 20 24 28 33

Grain-128 207 215 219 225 231 236

Grain-128a 164 165 167 172 175 177

The best cube is of dimension 33 and results in a bias of approximately 0.463
at round 177. The public variables used as cube are the following:

v1, v2, v3, v20, v21, v22, v23, v24, v25, v26, v34, v35, v36, v37, v48, v49, v50,

v51, v52, v53, v54, v63, v64, v65, v66, v67, v68, v69, v77, v78, v79, v80, v95

If we apply the same cube to Grain-128, we find a bias of approximately 0.469
at round 236. In [2], the best cube found is of dimension 40 and results in a
bias up to round 237. Furthermore, we find that the initialisation of Grain-128a
is clearly much better as we find the last bias 59 rounds earlier with the same
cube.

The results presented so far are achieved by imposing conditions only in the
public variables. If we consider conditions in the private variables of Grain-128a
as well, we get even better results in much less computing time. Evaluating the
sum over the cube

v64, v65, v66, v67, v68, v69
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of dimension 6, we find a significant bias at round 189. The conditions, i.e. the
public and private variables set to a certain value, imposed here are the following:

v57, v58, v59, v60, v61, v62, v71, v72, v73, v74, v75, v76, v83, v84, v85, v86, v87, v88

k117, k118, k119, k120, k121, k122

Note that in order to attack the mentioned 189 rounds, all conditions have to
be set to zero. This is the best attack we could find using conditional differential
analysis. Based on the data collected and described in this section, we do not
expect significantly better results to be found using this approach.

5 Conclusion

We evaluated the security of the stream cipher Grain-128a by comparing the
monomial structure to its predecessor Grain-128. The significantly higher order
of the symbolic expressions and the significantly higher number of monomials
suggests that the dynamic cube attack, which breaks the predecessor Grain-
128, is not applicable to Grain-128a. Additionally, we evaluated the security
with respect to higher order differential attacks including conditional differential
cryptanalysis. We used an automatic approach to find and analyse the conditions
in terms of polynomial ideals. The attack of order 6 for 189 out of 256 rounds is
the best attack we could find. Imposing conditions in only the public variables,
the best attack found was of order 33 and attacked round 177. Consequently,
Grain128a seems to have a comfortable security margin with respect to the
approaches described in this paper.
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