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Preface

CANS 2012 was held at the Darmstadtium Congress Center in Darmstadt,
Germany, during December 12–14, 2012. The conference was organized in co-
operation with the International Association for Cryptologic Research (IACR).

The history of CANS started in 2001, when the first edition of the conference
was organized in Taipei, followed by San Francisco (2002), Miami (2003), Xiamen
(2005), Suzhou (2006), Singapore (2007), Hong Kong (2008), Kanazawa (2009),
Kuala Lumpur (2010), and Sanya (2011). CANS 2012 was the 11th event in this
series and it was the first time that the conference came to Europe.

Since 2005, CANS proceedings have been published by Springer in their Lec-
ture Notes in Computer Science (LNCS) series. We thank Alfred Hofmann from
Springer for his support in the publication of the CANS 2012 proceedings.

CANS 2012 received 99 submissions of which the Program Committee chose
22 papers to be included in the conference program. Each submitted paper got
assigned to three reviewers. However, papers submitted by Program Committee
members were reviewed by five referees. The double-blind review process con-
sisted of two stages. In the first stage, papers were evaluated by reviewers and
their comments very submitted to the EasyChair server. In the second stage,
the papers were scrutinized in extensive anonymous discussions among the com-
mittee members. Some papers received up to 21 discussion comments. We hope
that all good submissions that did not make it into the program of CANS 2012
will eventually be accepted elsewhere and that the papers that got accepted to
the conference are interesting to the readers.

Special words of appreciation go to Nicolas Courtois, Sherman Chow, and
Vincent Rijmen, who kindly agreed to shepherd three papers that were accepted
to the conference. The authors of the accepted papers had two weeks for revision
and preparation of final versions. The revised papers were not subject to editorial
review and the authors bear full responsibility for their contents. The submission
and review process was supported by EasyChair and we thank the EasyChair
team for letting us use their server.

The paper “A Simple Key-Recovery Attack on McOE-X” by Florian Mendel,
Bart Mennink, Vincent Rijmen and Elmar Tischhauser won the best paper
award.

CANS 2012 also featured two invited talks

– “Confined Guessing: Practical Signatures from Standard Assumptions” by
Dennis Hofheinz, Karlsruhe Institute of Technology, Germany.

– “Cryptographic Failures and Successes” by Bart Preneel, Katholieke Univer-
siteit Leuven, Belgium.

There are many people who contributed to the success of CANS 2012. First, we
would like to thank the authors of all papers (both accepted and rejected) for
submitting their results to the conference. A special thanks goes to the members
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of the Program Committee and the external referees who gave their time, ex-
pertise, and enthusiasm in order to ensure that each paper received a thorough
and fair review. Last but not least, we thank Stanislav Bulygin, Heike Meissner,
and Anette Mittenhuber for their support in the organization of the conference.

December 2012 Josef Pieprzyk
Ahmad-Reza Sadeghi

Mark Manulis
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Invited Talks

Confined Guessing: Practical Signatures from
Standard Assumptions

Dennis Hofheinz

Karlsruhe Institute of Technology

email: Dennis.Hofheinz@kit.edu

Abstract. In the first part of the talk, we survey existing paradigms to
construct digital signature schemes. We highlight the surprising difficulty
to build practical schemes. Namely, from a theoretic point of view, digital
signatures are equivalent to one-way functions, which in turn appear
to be a weaker primitive than public-key encryption (PKE). However,
while we know how to construct practical PKE schemes from standard
complexity assumptions, it seems much harder to construct practical
signature schemes.
In the second part of the talk, we put forward a new technique to
construct very efficient and compact signature schemes. Our technique
combines several instances of an only mildly secure signature scheme to
obtain a fully secure scheme. Since the mild security notion we require
is much easier to achieve than full security, we can combine our strategy
with existing techniques to obtain a number of interesting new (and fully
secure) signature schemes. Concretely, we obtain efficient and compact
new signature schemes from the Computational Diffie-Hellman, RSA,
and Short Integer Solutions assumptions. Each of the arising schemes
provides significant improvements upon state-of-the-art schemes.



Cryptographic Failures and Successes

Bart Preneel

Katholieke Universiteit Leuven, ESAT/COSIC
Kasteelpark Arenberg 10 Bus 2446, B-3001 Leuven, Belgium

email: bart.preneel@esat.kuleuven.be

Abstract. This talk discusses a broad range of applications of cryptog-
raphy and tries to make the balance of the achievements. Topics that will
be covered include credit card payments (EMV), e-commerce (SSL/TLS
and PKI), mobile communications (GSM and 3G) and identification tech-
nologies (eID and e-passport). We will also evaluate how cryptography
can lead to new architectures, that result in distributed solutions for
privacy-friendly metering, that have applications in insurance pricing,
road pricing and smart electricity grids.
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Conditional Differential Cryptanalysis

of Grain-128a

Michael Lehmann and Willi Meier

FHNW, Switzerland

Abstract. Grain-128a is a new version of the stream cipher Grain-128.
To analyse the security of the cipher, we study the monomial structure
and use high order differential attacks on both the new and old ver-
sions. The comparison of symbolic expressions suggests that Grain-128a
is immune against dynamic cube attacks. Additionally, we find that it is
also immune against differential attacks as the best attack we could find
results in a bias at round 189 out of 256.

Keywords: stream ciphers, Grain-128, Grain-128a, conditional differ-
ential cryptanalysis.

1 Introduction

Grain is a family of lightweight stream ciphers that share the property of a very
small hardware implementation. As any modern stream cipher, Grain allows for
public initial vectors so that the initial state for keystream generation is produced
by an initialization mechanism that depends on the secret key and on the initial
vector. There are two versions, Grain v1 [9] with a 80-bit key, and Grain-128a [1]
with a 128-bit key. The latter has built-in support for optional authentication.
Grain v1 is a finalist in the eSTREAM portfolio of hardware oriented stream
ciphers. Grain-128a is modelled on its predecessor Grain-128 [8], but uses slightly
different non-linear functions with the aim to strengthen it against known attacks
on Grain-128.

Grain v1 and Grain-128a share a very similar structure based on non-linear
feedback shift registers (NFSR). In [10], conditional differential cryptanalysis,
first introduced in [4], has been applied to such constructions. The idea is to
control the propagation of differences by imposing conditions on the public vari-
ables, i.e. the initial vector (IV), of the cipher. Depending whether these condi-
tions involve secret variables or not, key-recovery or distinguishing attacks can
be mounted. The technique extends to higher order differential cryptanalysis. A
different but related concept is the dynamic cube attack presented in [7]. Be-
cause of the higher complexity of the update functions of Grain v1, the attacks
are not applicable to this cipher.

The aim of this paper is to compare the security of Grain-128a with that of
Grain-128 with regard to higher order differential attacks, including conditional
differential cryptanalysis. By studying the monomial structure in the initiali-
sation mechanism it is argued that dynamic cube attacks will not be effective

J. Pieprzyk, A.-R. Sadeghi, and M. Manulis (Eds.): CANS 2012, LNCS 7712, pp. 1–11, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 M. Lehmann and W. Meier

against Grain-128a as was the case for Grain-128. This is the first analysis of
the security of Grain-128a in a chosen IV scenario.

The paper is organized as follows. Section 2 gives a brief summary of the cube
attack as well as the dynamic cube attack and recalls the idea of conditional
differential analysis. Section 3 gives a concise overview of the design of Grain-
128a and the changes made with respect to its predecessor Grain-128. Section 4
provides a comparison of Grain-128a with its predecessor describing the impacts
of the improvements made to the cipher. It shows the results achieved with higher
order differential attacks in general and the conditional differential analysis in
particular. In order to make a statement concerning the security of the cipher,
these results are again compared to results on Grain-128.

2 Background

This section briefly depicts the two different variants of the cube attack, namely
the static and the dynamic variants. The section is a summary of [6], [7] and [5],
respectively. Initial work related to cube attacks is also [13]. Section 2.3 recalls
relevant facts on conditional differential analysis in a concise manner. For more
detailed information we refer to [10].

2.1 Cube Attack

For most stream ciphers, an output bit can be described as a master polynomial
p(k1, . . . , kn, v1, . . . , vm) over F2. Such a polynomial can be split and written as
a sum of two polynomials:

p(k1, . . . , kn, v1, . . . , vm) = tI ∗ pS(I) + q(k1, . . . , kn, v1, . . . , vm)

Where:

– tI is called maxterm and is a product of certain IV bits, for example v1v2v5
– pS(I) is called superpoly. It does not contain any variables of tI
– q(k1, . . . , kn, v1, . . . , vm) is the remainder polynomial. The summands of this

polynomial miss at least one of the variables of tI .

The maxterm tI is defined through a subset of indices I (a so-called cube).
In order to get the super polynomial pS(I), one assigns all possible values to
the variables contained in I, evaluates the master polynomial and sums up the
results. In this way, every summand missing k (k≥1) variables of the maxterm tI
is added exactly 2k times and is therefore eventually eliminated with the modular
reduction. The super polynomial pS(I), however, is part of the evaluated master
polynomial if and only if all variables of tI have value one. All other variables
whose indices are not contained in I are assigned a certain value, usually zero.
The idea of cube attacks is to find enough maxterms tI whose super polynomial
is linear and not a constant. This enables to recover the key through solving a
system of linear equations.
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2.2 Dynamic Cube Attack

The Dynamic Cube Attack is very similar to the static version. The difference is
that certain variables which are not part of tI are assigned a function of public
and private variables instead of a constant value. Those functions are chosen in
a way that the symbolic expressions of certain variables are simplified. The idea
is to rewrite a polynomial P with three polynomials:

P = P1 ∗ P2 + P3

In order to simplify the polynomial P , one sets a linear term of P1 in such a way
that the whole polynomial P1 is zero. This eliminates P2 and simplifies P to P3.
An example is given in [7]. The attack was further improved and published in [5].
This attack breaks the full version of Grain-128 with a complexity of about 290

and memory usage of 263 bit.

2.3 Conditional Differential Analysis

The notion of a conditional differential characteristic has been introduced in [4]
to improve differential attacks against DES. Similar ideas are used to accelerate
the differential collision search in hash function cryptanalysis [14,15]. In [10,11]
the principle has been applied to NFSR-based constructions and extended to
higher order differential attacks.

The Basic Idea for NFSR-based Constructions. Let us consider the case of a
synchronous stream cipher taking as its input an initial value (IV) and a key.
We assume a scenario where the attacker can observe the keystream for many
chosen IVs under the same secret key. The basic idea of conditional differential
cryptanalysis is to control the propagation of a difference in the IV through the
first few rounds of the initialization process. This is done by imposing specific
conditions on certain bits of the IV. From these conditions, a sample of IV
pairs is derived and experimentally tested for a bias in the resulting keystream
differences. Conditions might be also imposed on the key which defines classes
of weak keys.

An example for Grain-128a . Consider a difference in bit 69 of the IV. The
difference does not affect the rounds 0 to 8. Then, at round 9, the value of the
feedback is computed as x17k21+x22x29+x51k104+x69x88+k11+k21k104+k24+
k45 + k54 + k73 + k82 + k98 + 1, that is, the difference eventually propagates to
s9+128 and b9+128. Imposing the condition x88 = 0 we can prevent the difference
from propagating. Similarly at round 27, h is computed as x35k39 + x40x47 +
x69k122 + x87 + k29 + k39k122 + k42 + k63 + k72 + k91 + k100 + k116 + 1 and the
propagation can be prevented by the condition k122 = 0. Testing a sample of 216

randomly chosen IV pairs separated by a difference in bit 69, a significant bias
can be detected at round 140. However, if the IVs satisfy the conditions x88 = 0
and the key satisfies k122 = 0, biases can be detected up to round 159.
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Extension to Higher Orders. If the keystream bits are modeled as Boolean func-
tions of the form f : {0, 1}κ × {0, 1}n → {0, 1}, a first order attack evaluates

Δvf(k, x) := f(k, x) + f(k, x+ v)

for a fixed difference v ∈ {0, 1}n many chosen x ∈ {0, 1}n. In [12], Δvf is called
a first order derivative of f with respect to v. More generally, if V ⊂ {0, 1}n is
a linear subspace of dimension d,

ΔV f(k, x) :=
∑
v∈V

f(k, x+ v)

is called the derivative of f with respect to V . The principle of conditional
differential cryptanalysis extends to higher orders as follows. If {a1, . . . , ad} is
a basis of V , conditions are derived for each bi as a first order difference and
merged to a total set of differences from which the sample is derived.

Notation and Terminology. In this paper, the subspaces V will be always gener-
ated by IVs of Hamming weight one and we write vi, 0 ≤ i ≤ 95 for the IV with
a 1 at position i and 0s otherwise. Conditional differential cryptanalysis can be
seen as a refinement of cube testers introduced in [3].

3 Grain-128a

In our analysis, the authentication mechanism will be ignored. Fig. 1 depicts an
overview of the building blocks of the output generator, which is constructed
using three main building blocks, namely an LFSR, an NFSR and a pre-output
function. We denote by si, si+1, . . . , si+127 the contents of the LFSR. Similarly,
the content of the NFSR is denoted by bi, bi+1, . . . , bi+127. Together, the 256
memory elements in the two shift registers represent the state of the output
generator.

The primitive feedback polynomial of the LFSR, denoted f(x), is defined as

f(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128.

We also recall the corresponding update function of the LFSR as

si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96.

The nonlinear feedback polynomial of the NFSR, g(x), is defined as (changes to
the predecessor Grain-128 are in boldface)

g(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60

+ x61x125 + x63x67 + x69x101

+ x80x88 + x110x111 + x115x117

+ x46x50x58 + x103x104x106 + x33x35x36x40.
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Fig. 1. An overview of the output generator

Again, recall the rule for updating the NFSR, with changes to Grain-128 in
boldface.

bi+128 = si + bi + bi+26 + bi+56 + bi+91 + bi+96

+ bi+3bi+67 + bi+11bi+13 + bi+17bi+18

+ bi+27bi+59 + bi+40bi+48 + bi+61bi+65

+ bi+68bi+84 + bi+88bi+92bi+93bi+95

+ bi+22bi+24bi+25 + bi+70bi+78bi+82.

Note that the update rule contains the bit si which is not part of the feedback
polynomial and is output from the LFSR, thus masking the input to the NFSR.

Nine state variables are taken as input to a Boolean function, h(x): two bits
come from the NFSR and seven from the LFSR. This function is defined as

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8

where the variables x0, . . . , x8 correspond to, respectively, the state variables
bi+12, si+8, si+13, si+20, bi+95, si+42, si+60, si+79 and si+94 (or si+95 for Grain-
128, respectively). The pre-output function is defined as

yi = h(x) + si+93 +
∑
j∈A

bi+j ,

where A = {2, 15, 36, 45, 64, 73, 89}.
Before keystream is generated the cipher must be initialized with the key

and the IV. Denote the bits of the key as ki, 0 ≤ i ≤ 127 and the IV bits
IVi, 0 ≤ i ≤ 95. The initialisation of the key and IV is done as follows. The 128
NFSR elements are loaded with the key bits, bi = ki, 0 ≤ i ≤ 127, and the first
96 LFSR elements are loaded with the IV bits, si = IVi, 0 ≤ i ≤ 95. The last 32
bits of the LFSR are filled with ones and a zero, si = 1, 96 ≤ i ≤ 126, s127 = 0.
Then, the cipher is clocked 256 times without producing any keystream. Instead,
the output function is fed back and xored with the input, both to the LFSR and
to the NFSR, see Fig. 2.

In the mode without authentication, all output bits are used directly as
keystream. This mode of operation is the same as in Grain-128.
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NFSR LFSR

g f

h

Fig. 2. The state initialization

4 Findings

The NFSR-update used by Grain-128 is merely of order two, whereas the one
used by Grain-128a is of order four and contains two extra monomials of order
three. Consequently, the symbolic expressions of Grain-128a grow faster. Fig. 3
depicts this fact using the data we collected.

160 165 170 175 180 185 190 195
101

102

103

104

105

106

107
Number of terms

b
i

Grain−128
Grain−128a

Fig. 3. Number of terms

To illustrate the difference relating to the order of the symbolic expressions,
i.e. the order of monomials in variables bi and si, and the number of terms of
maximum order, Table 1 shows the order and number of terms of some bi of
Grain-128 and Grain-128a, respectively. Note that the two columns on the left
both describe the number of monomials of order greater or equal the maximum
order in the symbolic expression of Grain-128.
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Table 1. Order of the symbolic expressions of the bi for Grain-128 vs Grain-128a

Order of symbolic expressions #terms ≥ max. order Grain-128

Grain-128 Grain-128a Grain-128 Grain-128a

b160 3 4 1 7

b161 6 7 7 4

b162 5 8 35 153

b163 5 9 35 768

b164 5 11 35 20786

b165 5 11 35 20757

b166 5 11 35 20229

b167 5 11 35 19701

b168 5 13 35 597807

b169 5 13 35 597807

b170 5 13 35 597507

b175 5 13 35 583133

b180 5 13 28 577368

b185 5 13 28 570672

b190 5 13 28 583829

b191 5 13 28 583514

b192 5 13 28 583514

b193 6 14 21 859311

b194 9 out of memory 89 out of memory

b195 8 out of memory 466 out of memory

Table 1 shows that after 36 rounds (b164), the symbolic expression of Grain-
128a is of order 11 as opposed to 5 in the case of Grain-128, but even more
striking is the difference in the number of terms. After the same 36 rounds, the
number of terms of order 5 or greater is 35 for Grain-128 compared to 20786 for
Grain-128a, which is over 590 times more.

An interesting fact is that the order of the expressions of Grain-128 stays the
same for rounds 34 - 64. The reason is that the term of highest order is part of the
pre-output function and the LFSR is filled with ones during the initialisation.
The seven monomials of maximum order 6 in Grain-128’s b161 are the following:

s95b45b12b95(b3b67 + b11b13 + b17b18 + b27b59 + b40b48 + b61b65 + b68b84)

For the next 31 rounds, the bit si+95 will have the value one, hence reducing the
order to 5 and keeping it on that same level during those rounds. The growth
of the number of terms of maximum order has the same cause. As the terms of
maximum order are determined through those of the pre-output function and
the monomial of order 3 is only of order 2 during those 31 rounds, there are five
monomials of maximum order 2 in the pre-output function, as opposed to one
of maximum order 3 for b161.
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Grain-128a’s monomial with maximum order lies in the NFSR update:

bi+88bi+92bi+93bi+95

The smallest index reaches 128 exactly four rounds later than the other indices,
which results in the stall of the order from b164 up to b168. After that, the order
of this term is determined by the sub-terms, i.e. the monomials in the expanded
expressions of the variables, of order 3 and 4. No more indices reach 128 before
b193. This b193, however, contains the term b153b157b158b160, and b160, in turn,
contains the bit b128 (bi+96 in the NFSR update) which results in the observed
order 14.

4.1 Higher Order Differential Analysis on Grain-128 and
Grain-128a

In order to investigate the impacts of the higher order and the higher number of
terms of the symbolic expressions, a higher order differential attack is conducted
with random cubes of different dimensions. For each dimension, sums over 100
random cubes are calculated and in each case the last round with a significant
bias is identified. The number of random IVs used per cube is 212 = 4096 and the
significance level for the frequency test is 0.001. The result, i.e. the last rounds
with a bias for each dimension, is shown as a Boxplot in the following Fig. 4.
Note that the upper boxes are the results of the analysis of Grain-128, whereas
the lower boxes correspond to Grain-128a.

Not only are the sums biased up to many more rounds for Grain-128 than
for Grain-128a, but the dimension of the cube also has a much bigger influence.

140
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160

170

180
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200

210

1010 1212 1414 1616 1818 2020 2222
Dimension of cubes

Last round with a bias for random cubes

Fig. 4. Boxplot of last bias for random cubes
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Cubes constructed by looking at the conditions of the cube bits and combin-
ing those with similar conditions, however, yield better results. For example, a
random cube of dimension 20 results in a bias approximately up to round 152
without conditions (cf. Fig. 4) or up to round 160 with conditions, whereas the
constructed cube of the same dimension results in a bias up until round 167.

4.2 Conditional Differential Analysis on Grain-128 and Grain-128a

To find the mentioned constructed cubes, we first symbolically sum over cubes
of dimension one and examine the obtained symbolic expression of this sum over
the cipher output zi, thus getting the conditions of all public variables. The next
step is to look for indices with the same conditions, as they seem to usually
lead to good cubes. The reason is that the conditions generally do not occur at
the same round and therefore one condition prevents that derivatives propagate
at different rounds. Calculating the sum over v20, for example, one finds the
condition v27 at round 7 (z7), whereas when calculating the sum over v34, one
finds the same condition at round 14 (z14).

The following Table 2 lists the best results, i.e. the number of rounds attacked,
on Grain-128 and Grain-128a for various cube dimensions, using 2048 random
IVs and a significance level of 0.01:

Table 2. Best results for various cube dimensions on Grain-128 and Grain-128a

Cube dimension 12 16 20 24 28 33

Grain-128 207 215 219 225 231 236

Grain-128a 164 165 167 172 175 177

The best cube is of dimension 33 and results in a bias of approximately 0.463
at round 177. The public variables used as cube are the following:

v1, v2, v3, v20, v21, v22, v23, v24, v25, v26, v34, v35, v36, v37, v48, v49, v50,

v51, v52, v53, v54, v63, v64, v65, v66, v67, v68, v69, v77, v78, v79, v80, v95

If we apply the same cube to Grain-128, we find a bias of approximately 0.469
at round 236. In [2], the best cube found is of dimension 40 and results in a
bias up to round 237. Furthermore, we find that the initialisation of Grain-128a
is clearly much better as we find the last bias 59 rounds earlier with the same
cube.

The results presented so far are achieved by imposing conditions only in the
public variables. If we consider conditions in the private variables of Grain-128a
as well, we get even better results in much less computing time. Evaluating the
sum over the cube

v64, v65, v66, v67, v68, v69
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of dimension 6, we find a significant bias at round 189. The conditions, i.e. the
public and private variables set to a certain value, imposed here are the following:

v57, v58, v59, v60, v61, v62, v71, v72, v73, v74, v75, v76, v83, v84, v85, v86, v87, v88

k117, k118, k119, k120, k121, k122

Note that in order to attack the mentioned 189 rounds, all conditions have to
be set to zero. This is the best attack we could find using conditional differential
analysis. Based on the data collected and described in this section, we do not
expect significantly better results to be found using this approach.

5 Conclusion

We evaluated the security of the stream cipher Grain-128a by comparing the
monomial structure to its predecessor Grain-128. The significantly higher order
of the symbolic expressions and the significantly higher number of monomials
suggests that the dynamic cube attack, which breaks the predecessor Grain-
128, is not applicable to Grain-128a. Additionally, we evaluated the security
with respect to higher order differential attacks including conditional differential
cryptanalysis. We used an automatic approach to find and analyse the conditions
in terms of polynomial ideals. The attack of order 6 for 189 out of 256 rounds is
the best attack we could find. Imposing conditions in only the public variables,
the best attack found was of order 33 and attacked round 177. Consequently,
Grain128a seems to have a comfortable security margin with respect to the
approaches described in this paper.

Acknowledgements. We thank the reviewers of CANS 2012 for their helpful
comments and Simon Knellwolf for his support and the contribution of the results
with conditions in the private variables.
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Abstract. The stream cipher A2U2 proposed by David et al. [7] is one
of lightweight cipher primitives. In this paper we present a real-time key
recovery attack on A2U2 under the known-plaintext-attack model, which
only needs at most 210 consecutive ciphertext bits and its correspond-
ing plaintext with the time complexity about 224.7. Our result is much
better than that of the attack proposed by M. Abdelraheem et al. in [9]
whose complexity is O(249 ×C), where C is the complexity of solving a
sparse quadratic equation system on 56 unknown key bits. Furthermore
we provide a new approach to solving the above sparse quadratic equa-
tion system, which reduces the complexity C to a very small constant.
Finally we do an entire experiment on a PC and recover all bits of a
random key in a few seconds.

Keywords: Stream ciphers, A2U2, Lightweight ciphers, Key recovery
attacks.

1 Introduction

Recently, Radio Frequency Identification (RFID) becomes more and more at-
tractive [1]. For the security of RFID tag, cryptographic protection is required.
The main problem is that the cryptographic primitives involved must be small
and cheap enough to make the whole system practical. This limits many tradi-
tional cryptographic primitives like AES. So a new kind of cryptographic primi-
tives called lightweight cipher primitives is proposed, for example PRESENT [2],
KATAN/KTANTAN [3], Hummingbird [4], PRINT [5], Grain [6], and so on.

More recently, David et al. [7] proposed a new lightweight stream cipher called
A2U2 in RFID’11. As the authors said, it is one of the most lightweight ciphers,
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Table 1. Comparison of our attack and other known attacks on A2U2

Source Attack Model Time Complexity Data(bits)

Our attack known-plaintext-attack 224.7 ≤ 210

M. Abdelraheem et al’s attack [9] known-plaintext-attack 249 × C about 200

Q. Chai et al’s attack [8] chosen-plaintext-attack − 638

and in one instance it only has 284 GE in hardware implementation. In [8], Q.
Chai et al. proposed an ultra-efficient key recovery attack under the chosen-
plaintext-attack model against A2U2, which requires two chosen plaintexts en-
crypted using the same key and initialization vector. In [9] M. Abdelraheem et al.
presented a guess and determine attack under the known-plaintext-attack model
against A2U2 with the time complexity O(249 × C), where C is the complexity
of solving a quadratic equation system on 56 unknown key bits. In this paper,
we present another key recovery attack under the known-plaintext-attack model
whose time complexity is about 224.7, which is much better than that of the
attack proposed by M. Abdelraheem et al. in [9]. Furthermore we present a new
approach to solving the above sparse quadratic equation system, which reduces
the complexity C to a very small constant. Our attack only needs at most 210
pairs of consecutive plaintext/ciphertext bits, and can recover all key bits on a
PC in a few seconds. The comparison of our attack and other known attacks on
A2U2 is showed in Table 1. It should be pointed that, comparing to Q. Chai
et al’s attack [8] under the chosen-plaintext-attack model, our attack under the
known-plaintext-attack model is a stronger attack more likely to occur.

The rest of the paper is organized as follows: in Section 2 we recall the A2U2
algorithm briefly, and in Section 3 we give some basic properties of A2U2. In
Section 4 we describe all the details of our attack method on A2U2, and finally
conclude the paper in Section 5.

2 Description of A2U2

In this section we recall the A2U2 algorithm briefly and all the details can be
found in [7,8]. Here we use different notations from that in [7,8], which are more
suitable for our cryptanalysis.

A2U2 has a key size of 61 bits and is composed of four blocks: a counter (7
bits), two NFSRs (17 bits and 9 bits, resp.), a key register (56 bits), and a filter
function. The structure of A2U2 is illustrated in Fig.1. In the rest of the paper,
we denote an XOR operation by“+”, and an AND operation by “·”.

2.1 The Counter

The counter is a 7-stage Linear Feedback Shift Register (LFSR), and its feedback
function F (X) = X7+X4+1 is a primitive polynomial over the binary field F2

(whose period is 27 − 1). Below we denote the state of the LFSR at time i by a
binary vector (ti+6, ..., ti) ∈ F 7

2 , i ≥ 0.
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Fig. 1. The structure of the Stream Cipher A2U2

2.2 The NFSRs L and S

The design of the nonlinear parts of A2U2 is highly inspired by the block cipher
KATAN [3], which introduces a new combination of two NFSRs, namely L and
S, where the feedback function of each NFSR provides a feedback to the other.
The states of the NFSRs L and S at time i are denoted by a binary vector
(li+16, ..., li) and (si+8, ..., si) respectively. At time i, the feedback functions of
L and S are defined by the nonlinear Boolean functions given in (1) and (2)
respectively:

si+9 = li + li+2 · li+3 + li+5 + li+7 · ti +
li+10 · li+11 · li+12 + li+13 · li+15, (1)

li+17 = si + si+1 · si+2 + si+3 + si+6 + ski, (2)

where ski is the subkey bit generated by the key schedule.

2.3 The Key Schedule

The key of A2U2 has 61 bits, and the front 56 bits among them are used to
generate the subkey and the last 5 bits are reserved for the counter initialization.
At time i, five of 56 key bits are combined with three bits of the counter and
one bit of the NFSR L to generate the subkey ski as follows:

ski = mux(k5i mod 56, k(5i+1) mod 56, ti+1) ·
mux(k(5i+4) mod 56, li+14, ti+5) +

mux(k(5i+2) mod 56, k(5i+3) mod 56, ti+3), (3)
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where mux() is a multiplexer, that is, for any given x, y, z ∈ F2, mux(x, y, z) = x
if z = 0, otherwise mux(x, y, z) = y.

2.4 The Filter Function

The final building block of A2U2 is a filter function, named the shrinking filter in
reference to the clock controlled generator design of the Shrinking Generator [10].
Without loss of generality, we suppose the cipher begins to output ciphertext at
time 0. The filter is defined by (4):

ci = mux(si+8 + ti+6, si+8 + pf(i), li+16), (4)

where pi, ci are the plaintext bit and ciphertext bit at time i respectively, and
f(i) =

∑i−1
j=0 lj+16 for i ≥ 1, f(0) = 0.

2.5 Initialization

The initial value of the counter and two NFSRs are determined by the secret
key and two 32-bit pseudo-random numbers generated by the tag and the reader
respectively, see [7] for the details. After the state registers of the counter and
two NFSRs are filled up, the counter and two NFSRs will clock without any
output until the counter has the state of all 1s.

3 Some Properties of A2U2

In this section we give some basic properties of A2U2 which will be used in the
next section.

3.1 On the States of the Counter

Note that after the initialization the counter has the state of all 1s, since the
counter simply works by self and the non-zero sequences generated by the counter
are m-sequences of period 127, so we can know the state of the counter at any
time after the cipher begins to output. A fragment of the sequences generated by
the counter after the initialization is listed in Table 2, namely, (t0, t1, · · · , t127).

Table 2. One period of the sequence{ti}i≥0

1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 0 0 0 1 0

1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0

0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0
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3.2 On Two NFSRs

By (1) we have

li = si+9 + li+2 · li+3 + li+5 + li+7 · ti +
li+10 · li+11 · li+12 + li+13 · li+15, (5)

which shows that when li+j(j = 2, 3, 5, 7, 10, 11, 12, 13, 15) and si+9 are known,
we can deduce li. This property makes it possible to deduce the previous state
backward by the current state.

What’s more, by (2) we have

ski = li+1+16 + si + si+1 · si+2 + si+3 + si+6, (6)

which shows that we can recover the subkey when the state of two NFSRs L and
S are known.

3.3 On the Key Schedule

By (3), when ski, ti+j(j = 1, 3, 5) and li+14 are known, we can collect an equation
on the unknown key bit variables. When ti+5 = 1, it is easy to check that
the collected equation is linear, and furthermore, if li+14 = 0, k(5i+2) mod 56

or k(5i+3) mod 56 will be obtained directly from the collect equation. When the
number of the collected equations is large enough, all 56 key bit variables can
be solved out uniquely from those equations.

3.4 On the Filter Function

By (4) we have

si+8 = mux(ci + ti+6, ci + pf(i), li+16). (7)

So, if we know f(i) and li+16, we can deduce si+8 under the known-plaintext-
attack model.

4 Real-Time Attack on A2U2

In this section we present a real-time attack on A2U2 under the known-plaintext-
attack model. We suppose that an attacker captured a fragment of ciphertext
c0, ..., cn from the starting time 0, and he had known their corresponding plain-
text p0, ..., pn′ , where n and n′ are two positive integers such that n′ ≤ n, and n
is required to be large enough to execute our attack successfully. Our attack is
divided into the following three phases:



A Real-Time Key Recovery Attack on the Lightweight Stream Cipher A2U2 17

4.1 Recover li (0 ≤ i ≤ n) and si (8 ≤ i ≤ n + 8)

At first we guess the values of li (n ≤ i ≤ n + 16) and f(n). Because all ti
are known in A2U2’s work stage, we first deduce sn+8 by (7), and then ln−1 by
(5). Since f(i) = f(i + 1) − li+16 for i ≥ 0, repeating the above procedure for
i = n−1, n−2, · · · , 0, we can recover all the states of two NFSRs L and S. More
precisely, the above procedure can be described as follows:

For i = n− 1, ..., 0, repeat the following 3 steps:

1. f(i) = f(i+ 1)− li+16;
2. si+8 = mux(ci + ti+6, ci + pf(i), li+16);
3. li = si+1+8 + li+2 · li+3 + li+5 + li+7 · ti + li+10 · li+11 · li+12 + li+13 · li+15.

The above whole process is described in Algorithm 1.

Algorithm 1. Recover li(0 ≤ i ≤ n) and si(8 ≤ i ≤ n+ 8)

Input: li (n ≤ i ≤ n+ 16) and f(n).

Output: li (0 ≤ i ≤ n) and si (8 ≤ i ≤ n+ 8), or error information.

1: if f(n) > n or f(n) < 0 then
2: Return 0 (error information);
3: else {0 ≤ f(n) ≤ n}
4: if ln+16 = 0 then
5: sn+8 = cn + tn+6;
6: else {ln+16 = 1}
7: sn+8 = cn + pf(n);
8: end if
9: end if
10: f(n− 1) = f(n) − ln+15;
11: for i = n− 1 to 0 do
12: if f(i) > i or f(i) < 0 then
13: Return 0 (error information);
14: else {0 ≤ f(i) ≤ i}
15: if li+16 = 0 then
16: si+8 = ci + ti+6;
17: else {li+16 = 1}
18: si+8 = ci + pf(i);
19: end if
20: f(i) = f(i+ 1)− li+15;
21: li = si+1+8 + li+2 · li+3 + li+5 + li+7 · ti + li+10 · li+11 · li+12 + li+13 · li+15;
22: end if
23: end for
24: Output li (0 ≤ i ≤ n) and si (8 ≤ i ≤ n+ 8).

Remark 1. At Line 1 and Line 12 of Algorithm 1, when we get f(i) > i or
f(i) < 0, it shows that the guessed values of li (n ≤ i ≤ n + 16) or f(n) are
incorrect. Then we will try another possible values of li (n ≤ i ≤ n+16) or f(n).
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Remark 2. By the definition of f(·), it follows that two sequences { li }i≥0 and
{ f(i) }i≥0 are one-to-one. The further experiments show that for each state li
(i = n, n+ 1, ..., n+ 16), only a few values of f(n) can survive in Algorithm 2.

Algorithm 2. Recover f(n)

Input: li(n ≤ i ≤ n+ 16)

Output: {f(n)}
1: A = ∅.
2: for 0 ≤ f(n) ≤ n do
3: Invoke Algorithm 1;
4: if Algorithm 1 outputs li’s and si’s then
5: A = A ∪ {f(n)};
6: end if
7: end for
8: Return A.

Remark 3. Suppose the value of each register of the NFSR L is uniformly
distributed, then E(f(i)) = i

2 , where E(·) is the expectation function. So we
should first guess f(n) = �n2 	 in practice, if it is incorrect, then guess f(n) =
�n2 	 ± 1, �n2 	 ± 2, ... until we get the correct one.

4.2 Recover the Key ki (i = 0, 1, ..., 55)

In the previous section, we have recovered the internal states of the NFSRs L
and S, that is, li (i = 0, 1, ..., n+ 16), si (i = 8, 9, ..., n+ 8). By (6), we further
deduce all subkeys ski (i = 8, , 9, ..., n− 1). So we can collect n− 8 equations of
56 key bit variables by (3):

k40 · k44 + k43 = sk8

k46 · l23 + k48 = sk9

k51 · l24 + k52 = sk10

k0 · k3 + k2 = sk11

k4 · k8 + k7 = sk12

k10 · k13 + k11 = sk13

k15 · l28 + k16 = sk14

k19 · k23 + k21 = sk15

...

In [8] Q. Chai et al. proposed a method for recovering ki (i = 0, 1, ..., 55): first
collect 56 linearly independent linear equations and then get ki (i = 0, 1, ..., 55)
by solving this linear equation system. Based on their testing experiments, they
claimed that 56 linearly independent equations about ki (i = 0, 1, ..., 55) were
got with probability 1 when n ≥ 512.
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Here we present a new approach to getting ki (i = 0, 1, ..., 55). It is noticed
that when ti+5 = 1, we get a linear equation of the form kx · ly + kz = skw,
where x, y, z and w are positive integers. By the properties of the m-sequence
{ ti }i≥0, it is known that about half of tis are equal to one, so about half of
the above equation system are linear. In particular, when ly = 0, we can get kz
directly. Next we take all the known kz into the rest of equations, and we will
get some new kz’s further. Repeat the above process until we can not get new
kz any more. In this process, each equation can be used at most one time. And
once some equation is used, one of the following two situations will occur: (1)
get some new kz’s directly from this equation; (2) when the kz’s in this equation
are all known, we can use this equation to determine our guess, that is: if this
equation does not hold, it shows that our guess is incorrect.

In order to determine how many candidate keys we can recover by means of
our new approach and how many key bits we can recover for each candidate key,
an experiment is done as follows:

Experiment

1. Choose a pair of a random key (k0, k1, ..., k60) and a random plaintext string
(p0, p1, ..., pn′);

2. Encrypt the plaintext (p0, p1, ..., pn′) with the key k0, k1, ..., k60 and get the
ciphertext (c0, c1, ..., cn);

3. Use the plaintext (p0, p1, ..., pn′) and its corresponding ciphertext (c0, c1, ..., cn)
to recover kis by means of our new approach mentioned above;

4. Count how many candidate keys we could get, and how many key bits we
could recover among all kis for each candidate key.

In practice the length n of the ciphertext is a key parameter to determine the
number of candidate keys and the number of key bits for each candidate key in
average. In order to demonstrate the relation of the parameter n and the number
of candidate keys in average, we did the following three tests:

Test 1. For each n(n = 120, 125, 130, ..., 210)(where the step is 5.), we did the
above experiment 2000 times, where the key (k0, k1, ..., k60) and the plaintext
(p0, p1, ..., pn′) were taken randomly each time, and counted the number of can-
didate keys and the number of key bits for each candidate key in average, which
were listed in Table 3. From Table 3, it is seen that there are more than one
candidate keys recovered when n is small, and there is about one candidate key
recovered when n is no less than 205.

Test 2. For each n(n = 203, 204, 205, ..., 212) (where the step is 1.), we did the
same experiment as Test 1 10000 times, and the results were listed in Table 4.

Test 3. For a fixed random key, we did the above experiment 200000 times for
each n (n = 203, 204, ..., 212), where the plaintext were taken randomly. We got
the results similarly to those of Table 4.

By Tests 1, 2 and 3, in order to get exactly one candidate key, we should take
n ≥ 205 in practice.
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Table 3. The number of valid recovered ki’s for n = 120, 125, ..., 210 in average

n
the average num. of

candidate keys

the average num. of

valid recovered ki’s

120 1.0540 55.401919

125 1.0360 55.420974

130 1.0270 55.557312

135 1.0240 55.601034

140 1.0195 55.777562

145 1.0170 55.805874

150 1.0155 55.829585

155 1.0150 55.834000

160 1.0125 55.870905

165 1.0105 55.908321

170 1.0100 55.899753

175 1.0080 55.935500

180 1.0050 55.928000

185 1.0045 55.963147

190 1.0030 55.968531

195 1.0020 55.988072

200 1.0005 55.999000

205 1.0000 56.000000

210 1.0000 56.000000

4.3 Recover the Key ki(i = 56, 57...,60)

After the ki (i = 0, 1, ..., 55) are recovered, we will go on to recover ki (i =
56, 57..., 60). There are three approaches to recovering ki (i = 56, 57..., 60): one
in [8], two in [9]. Here we adopt the approach in [8] where the correct ki (i =
56, 57..., 60) will lead to the same values of li (0 ≤ i ≤ n) and si (8 ≤ i ≤ n+ 8)
as recovered above. And the time complexity is 25.

4.4 Time Complexity of Our Attack

Our attack is subdivided into three phases. In Phase 1 (i.e., Section 4.1) we
guess the values of ln+i(i = 0, 1, ..., 16) (17 bits) and f(n)(0 ≤ f(n) ≤ n). So its
time complexity is O(217 × (n+ 1)). Since only a few values of f(n) can survive
for each state ln+i(i = 0, 1, ..., 16), the time complexity in Phase 2 (i.e., Section
4.2) is O(217 ×K × C), where K is the number of f(n) survived in Algorithm
2 such that K 
 n + 1, and C is the time complexity of solving the key bits
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Table 4. The number of valid recovered ki’s for n = 203, 204, ..., 212 in average

n
the average num. of

candidate keys

the average num. of

valid recovered ki’s

203 1.0002 55.99920016

204 1.0001 55.99960004

205 1.0000 56.00000000

206 1.0000 56.00000000

207 1.0000 56.00000000

208 1.0000 56.00000000

209 1.0000 56.00000000

210 1.0000 56.00000000

211 1.0000 56.00000000

212 1.0000 56.00000000

ki (0 ≤ i ≤ 55) from the equation system. In Phase 3 we recover the key ki
(56 ≤ i ≤ 60) with time complexity 25. Summing the above time complexity of
all phases, we get the total time complexity is O(217×(n+1)+217×K×C+25).

In our attack we choose n = 210. This is because almost all ki(i = 0, ..., 55)
can be obtained directly in this case by Tables 3 and 4. Thus C is not large, and
we have 217 ×K × C < 217 × (n + 1). So the time complexity of our attack is
about 217× 210 ≈ 224.7, which is very low and can be done successfully on a PC
in a few seconds.

5 Conclusion

In this paper we presented a real-time key recovery attack under the known-
plaintext-attack model against the stream cipher A2U2, which only needs at
most 210 consecutive ciphertext bits and its corresponding plaintext to recover
all key bits with time complexity 224.7.

Acknowledgement. The authors gratefully acknowledge the anonymous ref-
erees, whose comments helped to improve the presentation.
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Abstract. In this paper, we present a key-recovery attack on the on-
line authenticated encryption scheme McOE-X proposed by Fleischmann
et al. at FSE 2012. The attack is based on the observation that in
McOE-X the key is changed for every block of message that is encrypted
in a deterministic way. This allows an adversary to recover the key by
using a standard time-memory trade-off strategy. On its best setting the
attack has a complexity as low as 2 · 2n/2, while this should be 2n for
a good scheme. Taking AES-128 as an example this would result in an
attack with complexity of 265.

Keywords: authenticated encryption, McOE-X, key-recovery attack.

1 Introduction

Motivation. Authenticated encryption is an important part in information
security. Whenever two parties communicate over a network an authenticated
encryption algorithm might be used to provide both privacy and authentication
of the data. In most applications, there is not much value in keeping the data
secret if they are not authenticated. Authentication of data is often of more value
than their confidentiality.

Authenticated encryption can be generically constructed by combining an
encryption scheme and a MAC. In [3], Bellare and Namprempre analyzed the
three generic compositions of these two primitives: MAC-then-Encrypt (MtE),
Encrypt-then-MAC (EtM), and Encrypt-and-MAC (E&M). They showed that
the strongest notion of security for authenticated encryption can only be achieved
by the EtM approach. However, schemes built from generic composition have
some disadvantages. Besides that two different algorithms with two different
keys are needed, the message needs to be processed twice, making the scheme im-
practical for some applications. Therefore, ISO/IEC specifies, next to the generic
composition EtM, five authenticated encryption modes for block ciphers, namely
OCB, SIV (Key Wrap), CCM, EAX, and GCM. Most of them are much faster
than any solution which uses generic composition. All of them are proven to be
secure against nonce-respecting adversaries assuming that the underlying block
cipher is ideal. However, as pointed out in [8,9] all these schemes, excluding SIV,
are vulnerable to nonce-reusing adversaries. SIV has been explicitly designed
to resist nonce-reuse attacks, but it has the disadvantage that it is inherently

J. Pieprzyk, A.-R. Sadeghi, and M. Manulis (Eds.): CANS 2012, LNCS 7712, pp. 23–31, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



24 F. Mendel et al.

offline. For encryption one must either keep the entire message in memory or
read the message twice.

Therefore, Fleischmann et al. proposed a new family of authenticated encryp-
tion schemes in [8,9] that are on the one hand secure against nonce-reusing ad-
versaries and on the other hand are online. The construction extends the online
encryption scheme TC3 by Rogaway and Zhang [16] to a provable secure nonce-
reuse resistant online authenticated encryption scheme. The family consists of
three members: McOE-X, McOE-D and McOE-G.

Our Contribution. In this paper, we present a key-recovery attack on McOE-X.
The basic idea of the attack is very simple. Since in McOE-X the key is changed
for every block of message that is encrypted, an adversary can recover the key
by keeping the message input of some block cipher operation fixed and using a
time-memory trade-off strategy. In its best setting the attack has a complexity
as low as 2 · 2n/2 with similar memory requirements, while this should be 2n in
the ideal case. Our attack allows a free trade-off between memory (precompu-
tation) and time (online phase), and as such can be tailored to different attack
scenarios. In all variants, it is significantly more efficient than Hellman’s generic
time-memory trade-off.

Note that this is close to the security bound of the McOE family. In more de-
tail, Fleischmann et al. provide a formal security proof, which guarantees CCA3
indistinguishability up to about 2n/2. Since our key-recovery attack on McOE-X
matches this bound (and from a theoretical point of view it even invalidates the
proof), we took a detailed look at their security proof and identified a severe
mistake that causes this gap: at a high level, Fleischmann et al. use ideal cipher
results as if they were standard model results. These issues with the proof can,
however, be resolved by explicitly considering the ideal cipher model.

Outline. The remainder of the paper is organized as follows. Section 2 describes
the generic McOE construction and in particular McOE-X. In Section 3, we recall
the security claims of the McOE construction respectively McOE-X. We present
our key-recovery attack on McOE-X in Section 4 and discuss its relation to the
security proof of McOE-X in Section 5. Finally, we discuss how McOE-X might
be fixed in Section 6.

2 The McOE Family

The McOE construction is a new family of online authenticated encryption
schemes recently proposed by Fleischmann et al. [8,9]. It consists of three mem-
bers: McOE-X, McOE-D and McOE-G. The general structure follows the online
permutation approach described by Bellare et al. in [1] and is based on the
Tweak Chain Hash construction [12] that is adapted from the Matyas-Meyer-
Oseas construction. To be more precise, the construction itself is built on the
online encryption scheme TC3 recently proposed by Rogaway and Zhang in [16]
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that is based on a tweakable block cipher Ẽ. With an additional overhead of
only two invocations of the tweakable block cipher Ẽ the authors extend it to an
online authenticated encryption scheme that is also secure against nonce-reusing
adversaries. Both the encryption/authentication and the decryption/verification
operations are described in Figure 1.

Encryption/Authentication E(K,V,M)

1 : Partition M into M1 · · ·ML

2 : U ← 0n

3 : τ ← Ẽ(K,U, V )
4 : U ← τ ⊕ V
5 : for i = 1 to L do

Ci ← Ẽ(K,U,Mi)
U ← Mi ⊕ Ci

6 : T ← Ẽ(K,U, τ )
7 : C ← C1 · · ·CL

8 : return (C, T )

Decryption/Verification D(K, V,C, T )

1 : Partition C into C1 · · ·CL

2 : U ← 0n

3 : τ ← Ẽ(K,U, V )
4 : U ← τ ⊕ V
5 : for i = 1 to L do

Mi ← Ẽ−1(K,U,Ci)
U ← Mi ⊕ Ci

6 : T ′ ← Ẽ(K,U, τ )
7 : M ← M1 · · ·Mm

8 : i f T = T ′ return M
else return FAIL

Fig. 1. Encryption/Authentication and Decryption/Verification operation of the
McOE construction, where Ẽ(K,U, ·) is a tweakable block cipher with key K and
tweak U . Furthermore, M denotes the message, C denotes the ciphertext, V denotes
the nonce and T is the authentication tag.

Additionally, Fleischmann et al. proposed a second scheme to provide length
preservation using tag-splitting. The concept of tag-splitting is very similar to
ciphertext stealing. We refer to the specification [9] for a detailed description of
this method, since we do not need it for the attack described in this paper.

The generic construction of the McOE family with and without tag-splitting
is depicted in Figure 2, where Ẽ denotes a n-bit tweakable block cipher and V
is a nonce. Due to the current lack of a dedicated n-bit block cipher with an n-
bit tweak, Fleischmann et al. proposed three different constructions to convert
an ordinary block cipher into a tweakable block cipher resulting in the three
members of the McOE family: McOE-X, McOE-D and McOE-G.

2.1 McOE-X

In this instance of the McOE family the tweak U (i.e. the chaining value) is
xored to the key K to turn the block cipher E into a tweakable block cipher

Ẽ(K,U, ·) := E(K ⊕ U, ·) (1)

As noted by the designers for McOE-X related-key security is needed for the
block cipher E. However, this requirement is not needed for the other two in-
stances of the McOE family.
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Fig. 2. Outline of the generic McOE construction (a) with and (b) without tag-
splitting [9]

2.2 Other Members of the McOE Family

In addition to McOE-X, Fleischmann et al. proposed two other members of the
McOE family not requiring related-key security, McOE-D and McOE-G. The
first uses two block cipher invocations per message block to update the chaining
value similar to the TCH-CBC construction as described in [5]. The second is
based on the HCBC2 construction described in [2] and uses a universal hash
function to update the chaining value. For a detailed description of the two
schemes we refer to the specification [9].

3 Security of the Schemes

Fleischmann et al. [9] analyze their McOE schemes with respect to CCA3 se-
curity, a security notion for authenticated cryptosystems proposed in [15]. We
informally describe the security definitions, referring to [9] for a more formal
treatment. For an authenticated cryptosystem Π = (K, E ,D), where K denotes
the key derivation function, we denote by AdvCCA3

Π (q, �, t) the CCA3 security of
Π against any nonce-reusing adversary A, where q denotes the number of total
queries an adversary A is allowed to ask to E and D, � the total length in blocks
of the queries, and t the running time of A.

They derive the following result for the McOE schemes without tag-splitting.
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Theorem 1 (Thm. 2 of [9]). Let Π = (K, E ,D) be a McOE scheme based on
a tweakable block cipher Ẽ. Then,

AdvCCA3
Π (q, �, t) ≤ 3(q + �)(q + �+ 1) + 4q + 3�

2n − (q + �)
+ 3δ.

Here, δ = AdvIND
Ẽ (q + �, O(t)) denotes the advantage of distinguishing Ẽ from

an ideal tweakable block cipher, where q + � denotes the number of queries an
adversary A is allowed to ask to Ẽ and Ẽ−1 and O(t) the running time of A.

A significantly worse bound is obtained for McOE with tag-splitting. We refer
to [9] for more details.

For the McOE-X construction without tag-spitting, they generalize this re-
sult as follows. Note that in this case δ refers to the related-key advantage of
distinguishing E from an ideal block cipher.

Theorem 2 (Thm. 4 of [9]). Let Π = (K, E ,D) be a McOE-X scheme based
on a block cipher E. Then,

AdvCCA3
Π (q, �, t) ≤ 3(q + �)(q + �+ 1) + 4q + 3�

2n − (q + �)
+ 3δ.

Here, δ = AdvRK
E (2q+ �, O(t)) denotes the related-key advantage of distinguish-

ing E from an ideal block cipher, where 2q+ � denotes the number of queries an
adversary A is allowed to ask to E and E−1 and O(t) the running time of A.

Again, the bound is slightly worse in case of tag-splitting and we refer to [9] for
more details.

4 Our Attack on McOE-X

In this section, we propose our simple key-recovery attack on McOE-X. The
attack consists of two phases: an offline (precomputation) phase and an online
phase. It is a chosen plaintext attack and in its best setting it has a complexity
as low as 2 · 2n/2 with similar memory requirements.

4.1 Basic Attack

The basic idea of our attack can be explained as follows. The McOE-X mode
changes the key for every block of plaintext that is encrypted. By keeping the
plaintext input of some block cipher operation fixed, the adversary can exploit
a basic time-memory trade-off strategy.

Let E(k, x) denote the raw block cipher encryption operation with key k and
plaintext x, and denote by K the target key we want to recover. Since the nonce
plays no role in our attack, we omit it from the notation. The attack goes as
follows.
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Offline Phase (Precomputation)

1. Choose an arbitrary value a.

2. Repeat r times:

(a) Choose a new value for k.
(b) Compute b = E(k, a) and save the pair (b, k) in a list L1.

Online Phase
Repeat 2n/r times:

1. Choose a new value for x and set m = x‖a.
2. Ask for the ciphertext/tag pair (c, T ) = McOE-X(K,m), with c =

C1‖C2, and save the pair (x⊕ C1, C2) in a list L2.

Every match between a b-value in the list L1 and a C2-value in the list L2 gives
a candidate key K = k ⊕ x ⊕ C1. We have set the number of iterations such
that the expected number of matches between the two lists equals 1. Since the
expected number of false alarms is small, we can state that the algorithm finds
the correct key with a total complexity of approximately r + 2n/r encryptions.

Note that the queries in the online phase can be grouped. The adversary
can ask for the encryption of m = x‖a‖a‖ . . . ‖a and save in L2 the pairs
(x⊕ C1, C2), (a⊕ C2, C3), (a⊕ C3, C4), . . . . In this way the total number of block
cipher encryptions is reduced.

Obviously by choosing r = 2n/2 the attack has the best overall complexity,
considering both the offline and the online phase, resulting in a final attack
complexity of about 2 · 2n/2 and similar memory requirements. We want to note
that in the online phase of the attack we do not need to store the values in a list
L2 which reduces the memory requirements of the attack.

Sometimes an attacker wants to recover more than only a single key. In these
cases only the second phase of the attack has to be repeated, while the precom-
putation phase has to be done only once. In such settings, in particular if the
number of attacked keys is large, other values of r might result in a better overall
complexity. In Table 1 we give the complexities and memory requirements for
different choices of r.

Table 1. Complexities and memory requirements for both phases of the attack with
different choices of r

log2(r) offline phase online phase memory total

n/4 2n/4 23n/4 2n/4 23n/4

n/3 2n/3 22n/3 2n/3 22n/3

n/2 2n/2 2n/2 2n/2 2 · 2n/2

2n/3 22n/3 2n/3 22n/3 22n/3

3n/4 23n/4 2n/4 23n/4 23n/4
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4.2 A Memory-Less Variant of the Attack

In practice, there is a profound imbalance between the cost of storage and the
cost of computations. Hence, the high memory requirements of the attack could
be seen as the bottleneck of the attack. It is therefore important to note that the
attack with r = 2n/2 can be implemented with negligible memory requirements
and only a small increase in runtime by using a memory-less variant of the
meet-in-the-middle attack introduced by Quisquater and Delescaille [14].

4.3 Comparison to Hellman’s TMTO Attack

In [10] Hellman described a generic cryptanalytic TMTO attack on DES. Even
though the attack was specifically designed for DES, it is applicable to any block
cipher. For a block cipher with a key size of n bits and a precomputation with
time complexity of about 2n, Hellman’s method has an (online) time complexity
of T = 22n/3 and memory requirements of M = 22n/3. In more detail, it allows
a time/memory trade-off curve of M · √T = 2n. Since we are only interested in
attacks with T ≤ 2n (faster than brute force),M has to be at least 2n/2. We want
to note that the attack described in this paper is on a much better time/memory
trade-off curve, i.e. M · T = 2n, and does not require a 2n precomputation.

5 Relation of the Attack to the Security Proof

Fleischmann et al. [9] derive a security proof for McOE, which they also gen-
eralize to McOE-X. They derive security up to approximately 2n/2 queries (see
Thm. 2). Although we want to stress that our attack is a key-recovery attack,
which is much stronger than a distinguishability attack, it does not seem to di-
rectly invalidate the security proof of [9]. Yet, it turns out to expose a critical
weakness in the security proof.

In short, the proof is technically invalid due to the fact that the authors
(implicitly) consider security in the standard model. The security advantage is
expressed in terms of parameters q, �, and t. A critical observation is that q only
denotes the number of queries made by the adversary to the full evaluation of
McOE-X (E or D), and in fact, the queries made in the offline phase of our attack
do not count as queries. The adversary is considered to have free access to the
underlying block cipher E and this offline phase only influences the variable t.

In this respect, for our attack we have parameters q = 2n/r, � = 2 · 2n/r,
and t ≈ r + 2 · 2n/r. Now, considering the security claims of [9] for McOE-X
in more detail (see Thm. 2 of this work), we see that the first part of the
bound is independent of t.1 As the authors claim, this part of the bound is
determined by the event that a collision for the keyed compression function
f(K,U,M) = E(K ⊕U,M)⊕M occurs, and the bound is obtained by applying
the results of Black et al. [6,7] for the PGV compression functions [13]. However,

1 When we apply our attack for r = 2n, this part of the bound misleadingly suggests
an almost zero advantage.



30 F. Mendel et al.

the authors oversee that these results do not apply: Fleischmann et al. consider
the standard model where the underlying block cipher E is freely accessible by
the adversary, while the results of Black et al. hold in the ideal model, where
E is an idealized block cipher to which the adversary has query access only.
Note that in our attack, the success probability of a collision (between L1 and
L2) increases if more offline computation is done: we could for example choose
r = 23n/4 and recover the key with q = 2n/4 queries (see Table 1). In fact, (con-
trived) examples are known where the results of Black et al. do not apply when
the PGV compression functions are instantiated with a CCA secure block cipher
[11]. In [4], Biryukov et al. present an attack on the Davies-Meyer compression
function f(U,M) = E(M,U)⊕U when instantiated with the AES block cipher.

In order to restore the proof of Thm. 1 as given in [9], one needs to consider
the ideal cipher model for Ẽ. This means that an adversary has query access to
Ẽ and Ẽ−1 (next to the query access to E and D). In this way, the results of
Black et al. do apply. Additionally, the second part of the bound of Thm. 1 gets
superfluous: an ideal cipher is obviously perfectly indistinguishable from an ideal
cipher, and hence δ = 0. The same remarks apply to Thm. 2. Note that in this
model, the evaluations in the first phase of our attack are counted as queries,
and the attack corresponds to parameters q = r + 2n/r and � = r + 2 · 2n/r.

6 How to Fix McOE-X

As an alternative to McOE-X one can always use McOE-D or McOE-G which are
not vulnerable to the attack presented in this paper. However, both constructions
have some drawbacks. In McOE-D two block cipher invocations are needed per
message block processed and in McOE-G a universal hash function is used to
update the chaining value.

The main problem of McOE-X construction is that the tweak U (i.e. the
chaining value) of n bits is xored to the key K of also n bits to turn the block
cipher E into a tweakable block cipher. This allows generic TMTO attacks on
the construction with complexity as low as 2 ·2n/2 in its best setting as described
in Section 4. For instance in the case of AES-128 this could be as low as 265.
One option to fix the construction with still using only a single block cipher
invocations per message block processed is to use a block cipher with a key
input of 2n bits instead of n bits.

Ẽ(K,U, ·) := E(K‖U, ·) (2)

For instance AES-256 seems to be natural choice and the performance overhead
compared to AES-128 is not so large, only about 40%.
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Abstract. Recently, a lattice based public key cryptosystem mixed with
a knapsack was presented in the CANS 2011 conference. In this paper,
we propose two message recovery attacks on this cryptosystem. The first
one is a broadcast attack: a single message of m bits can be recovered
if it is encrypted for �m+1

2
� recipients. The second attack is a multi-

ple transmission attack in which a message can be recovered with a
probability of (1 − 2−l)m if it is encrypted under a same public key for
l = �log2 m + 2� times using different random numbers. The multiple
transmission attack can be further improved with a linearization tech-
nique to that only � log2 m+1

2
� times of encryptions are required to recover

the message. An open problem related to the message recovery attack
using only one cipehertext is discussed.

Keywords: Public Key Cryptosystem, Lattice, Knapsack, Lineariza-
tion.

1 Introduction

Ever since the discovery of the quantum algorithm [26] which can factor inte-
gers and compute discrete logarithms in polynomial time and hence can break
RSA, DSA, and ECDSA efficiently, the necessity for new designs of public key
cryptosystems immune to quantum algorithm attacks has become strong and
urgent. Several new designs based on computational hard problems resistant
to quantum algorithm attacks have been extensively studied, including hash
based, code based, multivariate polynomial equation based and lattice based
cryptography.

The first lattice based cryptosystem was proposed by Ajtai and Dwork [1] in
1997. However, to avoid Nguyen and Stern’s heuristic attack [20], implementa-
tions of the Ajtai-Dwork cryptosystem would require very large keys, making
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it far from being practical. To increase the efficiency of the Ajtai-Dwork cryp-
tosytem, Cai and Cusick [6] constructed a new cryptosystem by mixing the
Ajtai-Dwork crytosystem with a knapsack. Unfortunately, Pan and Deng [23]
presented an iterative method to recover the message encrypted by the Cai-
Cusick cryptosystem under a ciphertext-only scenario.

With several known attacks in mind, Pan et al [24] proposed a new lattice-
based public key cryptosystem which mixes with a knapsack in its design in the
CANS 2011 conference. Unfortunately, it does not enjoy any security proof and is
slower than state-of-the-art lattice-based encryption schemes (e.g., [11, 18, 27]),
although its security was carefully evaluated against some lattice based attacks
in [24]. One of such lattice based attacks, for example, is some attack similarly
as that in [15–17] against NTRU [14] targeting at its cyclic structure, but the
underlying lattice in this new cryptosystem has no special cyclic structure like
in NTRU. Furthermore, the new cryptosystem hides the knapsack structure
behind linear combinations. This strategy is very different from those knapsack
based public key cryptosystems which hide their trapdoors by transforming a
superincreasing knapsack into a generic one. Therefore, the existing successful
attacks [21] against knapsack based cryptosystems seem to not be applicable to
the new system.

In this paper we propose two feasible attacks on the cryptosystem of Pan
et al [24]. The first one is a broadcast attack, it assumes a single message is
encrypted by the sender directed for several recipients with different public keys,
the message can be recovered by solving a system of nonlinear equations via
linearization technique. The second one is a multiple transmission attack in
which a single message is encrypted under the same public key for several times
using different random vectors. In this situation, the message can be easier to
recover.

The rest of this paper is organized as follows. Section 2 gives a description
of the cryptosystem of Pan et al. Section 3 presents a broadcast attack and a
multiple transmission attack on the crytosystem. In section 4, we further improve
the multiple transmission attack by linearization technique. Section 5 is devoted
to discuss an open problem related to the message recovery attack using only
one cipehertext. The last section is a conclusion.

2 Description of the Cryptosystem of Pan et al.

In this section we describe the cryptosystem recently proposed by Pan et al [24].
For detailed information on its design rationale, please refer to their paper [24].

This cryptosystem is parameterized by a security parameter m. Let n = 2m.

Key Generation:Randomly choose a superincreasing sequence {N1 = 1,
N2, · · · , Nn} and a permutation τ on {1, 2, · · · , n} such that τ−1(1) ≤ m. For
each 1 ≤ i ≤ m, representNτ(i+m) as a linear combination of {Nτ(1), · · · , Nτ(m)}
with integer coefficients, namely,
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Nτ(i+m) =

m∑
j=1

bi,jNτ(j), i = 1, 2, · · · ,m.

The absolute values of the coefficients bi,j (1 ≤ i, j ≤ m) should be made rea-
sonably small [24] and this can be done by employing Babai’s nearest plane
algorithm [3].

Use the above integer coefficients to form an m× n matrix

A =

⎡
⎢⎢⎢⎣
1 0 · · · 0 b1,1 b2,1 · · · bm,1

0 1 · · · 0 b1,2 b2,2 · · · bm,2

...
...
. . .

...
...

...
. . .

...
0 0 · · · 1 b1,m b2,m · · · bm,m

⎤
⎥⎥⎥⎦ ,

and let

li,1 =
∑

j=1,··· ,n
Ai,j<0

Ai,j , i = 1, · · · ,m

li,2 =
∑

j=1,··· ,n
Ai,j>0

Ai,j , i = 1, · · · ,m

q = max
i=1,··· ,m

{li,2 − li,1}.

Finally, randomly choose a permutation σ on {1, · · · , n} such that the matrix
S = [Aσ(1), Aσ(2), · · · , Aσ(m)] is an invertible matrix over the field Fp, where p
is the smallest prime such that p > q and Aj denotes the j-th column of A.

Public Key: The smallest prime p such that p > q, andH = S−1[Aσ(m+1), · · · ,
Aσ(n)].

Here the entries of the matrices are regarded as integers in the interval [0, p−1]
and identically regarded as elements of the field Fp, and the matrices are oper-
ated modulo p.

Private Key: N2, · · · , Nn, S, τ, σ, li,1, li,2 (i = 1, · · · ,m).

Encryption: For any message t ∈ {0, 1}m, randomly choose a vector r ∈ {0, 1}m
and the ciphertext c is computed as follows

c = Ht+ r mod p.

Note that all vectors are written as column vectors in this paper as in [24].
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Decryption: Let v = (rT , tT )T = (v1, · · · , vn)T , and d = Sc mod p. The mes-
sage t and the random number r are recovered by solving the following superin-
creasing knapsack problem with unknown coefficients xi ∈ {0, 1}

(Nτ(1), · · · , Nτ(m))d̃ =
n∑
i

xiNi,

where d̃ = d mod p with its entries li,1 ≤ d̃i ≤ li,2. It can be shown that
xi = vσ−1(τ−1(i)).

3 Two Attacks on the Cryptosystem of Pan et al.

In this section we present two attacks against the cryptosystem of Pan et al,
one is a broadcast attack and the other is a multiple transmission attack, they
can recover the encrypted messages with practical complexities, without any
knowledge on the structure of the public and secret keys.

3.1 Broadcast Attack

The first broadcast attack was introduced in 1988 by H̊astad in [13] to com-
promise the security of the RSA cryptosystem with low public key exponents.
Broadcast attacks against lattice based encryption schemes have already been
proposed by Plantard and Susilo [22]. In a broadcast attack, it is assumed that
a single message is encrypted by the sender several times for multiple recipients
with different public keys.

Below we will show that Pan et al’s cryptosystem is insecure under this attack
scenario. To be more specific, if the number of recipients exceeds l := �(m+1)/2�,
an attacker can derive the corresponding plaintext from the l ciphertexts.

Let H = (hij)m×m. From c = Ht+ r mod p, we have⎡
⎢⎢⎢⎣
c1
c2
...
cm

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎣
h11 h12 · · · h1m

h21 h22 · · · h2m

· · · · · ·
hm1 hm2 · · · hmm

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎣
t1
t2
...
tm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
r1
r2
...
rm

⎤
⎥⎥⎥⎦ mod p

Since ri ∈ {0, 1} for 1 ≤ i ≤ m, we have

(
ci −

m∑
j=1

hijtj

)
·
(
ci − 1−

m∑
j=1

hijtj

)
= 0 mod p

Obviously, this results inm quadratic equations over Fp onm variables t1, · · · , tm.
These variables are binary, but we do not know how to exploit this feature to
solve them out from a single encryption (see the discussion in Section 5). In a
broadcast scenario, assume a same message t = (t1, · · · , tm)T is encrypted under
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l = �(m+1)/2� different public keys, say H(k) = (h
(k)
ij )m×m, 1 ≤ k ≤ l, into the

ciphertexts (c
(k)
1 , · · · , c(k)m )T , 1 ≤ k ≤ l, then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
c
(1)
i −

m∑
j=1

h
(1)
ij tj

)(
c
(1)
i − 1−

m∑
j=1

h
(1)
ij tj

)
= 0, 1 ≤ i ≤ m

· · ·(
c
(l)
i −

m∑
j=1

h
(l)
ij tj

)(
c
(l)
i − 1−

m∑
j=1

h
(l)
ij tj

)
= 0, 1 ≤ i ≤ m

(1)

This is a system of m�(m+1)/2� ≥ m(m+1)/2 quadratic polynomial equations
in t1, · · · , tm. Utilizing the known linearization technique [2, 4, 9] and regarding
all quadratic monomials titj as new variables, the system (1) become a linear
system inm(m+1)/2 unknowns (t1, · · · , tm and the

(
m
2

)
new variables), it can be

solved in time complexity (m
2

2 )ω by a naive or advanced linear equation solving
method, where ω = 3 for a naive Gaussian elimination and ω = 2.376 for the
method of Coppersmith and Winograd [7].

Complexity and Experimental Result: To demonstrate the feasibility of
the broadcast attack, we have implemented the attack in the Magma computer
algebra system on a PC with Intel(R) Core(TM) Quad CPU (2.83GHz, 3.25GB
RAM, Windows XP). For m = 100, which is one of the parameter suggested
by the designers [24], we can recover the unknown message in no more than
one hour. We chose p = 271, our Magma experiment successfully obtained the
corresponding message within 46 minutes assuming l = 51.

For other suggested parameters: m = 200, 300, 400, 500, our Magma experi-
ment failed to recover the message due to un-optimized programming and large
memory consumption, but in all these cases, the time complexity of the attack is
still in an acceptable range since even for m = 500 and by using a naive method,

it is roughly (500
2

2 )ω ≈ 250.79, which can be done on a minicomputer like DELL
PowerEdge 7250 [10] and it will output a desired result within a week for an
optimized memory management.

3.2 Multiple Transmission Attack

As observed in [14], multiple NTRU encryptions of a single message under a sin-
gle public key may compromise the security of the encrypted message of NTRU,
and this method used to recover the secret message is named as Multiple Trans-
mission Attack [17]. In this section, we show that a similar vulnerability exists
in Pan et al’s cryptosystem, and we propose an efficient attack targeting at this
vulnerability.

Assume a single message t is encrypted using the same public key H for l
different but uniformly and independent random m-dimensional vectors in the
encryption. Let

c(j) = Ht+ r(j) mod p, 1 ≤ j ≤ l
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be the ciphertext under the random m-dimensional vectors r(j), and use them
as columns to form n× l matrices C and R:

C =

⎡
⎢⎢⎢⎢⎣
c
(1)
1 c

(2)
1 · · · c(l)1

c
(1)
2 c

(2)
2 · · · c(l)2

...
...

...

c
(1)
n c

(2)
n · · · c(l)n

⎤
⎥⎥⎥⎥⎦ , R =

⎡
⎢⎢⎢⎢⎣
r
(1)
1 r

(2)
1 · · · r(l)1

r
(1)
2 r

(2)
2 · · · r(l)2

...
...

...

r
(1)
n r

(2)
n · · · r(l)n

⎤
⎥⎥⎥⎥⎦ .

Let uk and r
(j)
k be the k-th entries of Ht and r(j), respectively. It is clear that

the j-th entry of the k-th row (c
(1)
k , c

(2)
k , · · · , c(l)k ) of C is equal to uk+r

(j)
k , which

is either uk or uk + 1 mod p.
We determine each row of R as follows. We have assumed that p ≥ 3. Thus, for

any two elements in {0, 1, · · · , p− 1} which differ by 1 modulo p, we define their
cyclic minimum as min{a, a+1} = a if a ∈ {0, 1, · · · , p− 2} and min{p− 1, 0} =
p − 1. For a fixed 1 ≤ k ≤ l, since the entries c

(1)
k , c

(2)
k , · · · , c(l)k either take

two values which differ 1 modulo p or take the same value, we can always find

a value ũk as min{c(1)k , c
(2)
k , · · · , c(l)k }. ũk will be equal to uk in almost cases

except when (r
(1)
k , r

(2)
k , · · · , r(l)k ) = (1, · · · , 1). Therefore, we can obtain correctly

the value of uk with a probability of 1 − 2−l. Assuming the uniformness and
independence of random vectors r(j), we correctly get the vector Ht with a
probability of (1−2−l)m. Consequently, we can successfully recover the message
t by computing t̃ = H−1ũ with a probability of (1− 2−l)m.

Let l ≈ log2 m+ 2, we have

(1− 2−l)m ≈ ((1 +
1

2l − 1
)−2l)2

−2 −→ e−1/4 ≈ 0.78, when m→∞,

which means that roughly l = �log2 m�+2 encryptions can be used to probably
successfully recover the message t. This number (�log2 m�+ 2) of needed times
of encryptions is greatly less than the corresponding number (�(m+ 1)/2�) in a
broadcast attack. The concrete value of the probability (1 − 2−l)m for different
pairs of m and l are listed in Table 1, which are verified in our experiment on
multiple transmission attacks.

Table 1. Success probability of the multiple transmission attack

�
��m
l

7 8 9 10 11 12 13 14

100 0.4542 0.6649 0.8237 0.9034 0.9510 0.9746 0.9885 0.9935

200 0.2047 0.4583 0.6742 0.8203 0.9038 0.9525 0.9753 0.9886

300 0.0956 0.3080 0.5654 0.7461 0.8640 0.9281 0.9643 0.9841

400 0.0461 0.2109 0.4596 0.6753 0.8231 0.9051 0.9476 0.9766

500 0.0220 0.1413 0.3731 0.6235 0.7874 0.8901 0.9414 0.9709
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4 Improved Multiple Transmission Attack

In this section we show that the number of transmissions needed to successfully
recover the message in a multiple transmission attack can be halved with the
help of linearization technique.

Suppose a single message t is encrypted using the same public key H for l
times and let⎡

⎢⎢⎢⎢⎣
c
(k)
1

c
(k)
2
...

c
(k)
m

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
h11 h12 · · · h1m

h21 h22 · · · h2m

...
...

...
hm1 hm2 · · · hmm

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
t1
t2
...
tm

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
r
(k)
1

r
(k)
2
...

r
(k)
m

⎤
⎥⎥⎥⎥⎦ mod p

be the k-th ciphertext, where k ∈ {1, 2, · · · , l}.
According to Section 3.2, each row of R can be determined correctly with

a probability 1 − 2−l, and can be correctly determined with a probability 1 −
2 · 2−l since we can correctly determine uk when c

(1)
k , c

(2)
k , · · · , c(l)k are not the

same, namely when (r
(1)
k , r

(2)
k , · · · , r(l)k ) �= (1, · · · , 1) and (0, · · · , 0). Thus, about

(1− 21−l)m rows of R can be determined surely. Without loss of generality, we
assume the remaining undetermined rows of R are the last ρ = �21−lm� ones.

Now from the first ciphertext and⎡
⎢⎢⎢⎢⎣

c
(1)
1

c
(1)
2
...

c
(1)
m−ρ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

h11 h12 · · · h1m

h21 h22 · · · h2m

...
...

...
hm−ρ,1 hm−ρ,2 · · · hm−ρ,m

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
t1
t2
...
tm

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

r
(1)
1

r
(1)
2
...

r
(1)
m−ρ

⎤
⎥⎥⎥⎥⎦ mod p,

we can linearly represent m − ρ unknowns tj by other ρ ones. Without loss of
generality, we assume the ρ unknowns are t1, t2, · · · , tρ and the linear relations
are ⎧⎪⎨

⎪⎩
tρ+1 = Lρ+1(t1, t2, · · · , tρ)
...

tm = Lm(t1, t2, · · · , tρ)
Then from binary property of ti, i = 1, · · · ,m, a system of quadratic polynomial
equations with ρ unknowns can be built as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

t21 = t1
...

t2ρ = tρ
L2
ρ+1(t1, t2, · · · , tρ) = Lρ+1(t1, t2, · · · , tρ)
...

L2
m(t1, t2, · · · , tρ) = Lm(t1, t2, · · · , tρ)

(2)



Cryptanalysis of a Lattice-Knapsack Mixed Public Key Cryptosystem 39

It can be successfully solved by linearization technique provided m ≥(ρ2) + 2ρ,

or equivalently, provided l ≥ � log2 m+1
2 �. Thus, about � log2 m+1

2 � encryptions can
be used to recover the secret message, which is about one half the number of the
method proposed in Section 3.2. As an example, for m = 500, this number is 5,
we need only 5 encryptions to recover the secret message.

5 Discussion and Open Problem

The broadcast and multiple transmission attacks presented in the previous two
sections do not use the inherited information about the structure of the public
key H except that it is invertible. A natural question to ask is that in the case
of only assuming H is an invertible matrix, whether it is possible to recover the
encrypted message with only one ciphertext, namely is there a ciphertext only
attack on the cryptosystem in this case? Mathematically, this problem can be
formulated as follows:

Problem: Let n = 2m, A be an m×n matrix of rank m over Fp. Given c ∈ Fm
p ,

find a binary vector x ∈ {0, 1}n (if any) such that c = Ax mod p.
For most such matrices A, this problem has at most one solution for a general

c, this is a requirement for cryptographic decryption scenario. We may further
assume any m columns of A are linearly independent. Then, how to find the
solution x efficiently?

The above problem can be viewed as a syndrome decoding of a linear code
with parity check matrix A where the error noise vector is limited to be binary.
A slightly general but essentially equivalent limitation is that each component
of the error noise vector only takes two distinct values and the two values for
different components may be different. This case can be translated to the case
of binary noise vectors via an affine transformation. Here for the syndrome de-
coding, we do not limit the number of the errors (namely the Hamming weight)
of the noise but limit the component of the noise to be binary. On the contrary
in classical coding theory, the Hamming weight of the noise is limited but its
component values are not restricted.

Another point of view is to look at the above problem as a knapsack problem
on a vector space, that is, a subset sum problem on the column vectors of A.

In the encryption scheme of Pan et al [24], the corresponding A is chosen as
(H, I), where I is identity matrix. This scheme is like the problem of Learning
With Errors (LWE) [25]. It can be treated as the problem to solve a specific
system of 2m quadratic equations over Fp in m variables of the form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
1 − x1 = 0
...

x2
m − xm = 0

(c1 − h11x1 − · · · − h1mxm)2 − (c1 − h11x1 − · · · − h1mxm) = 0
...

(cm − hm1x1 − · · · − hmmxm)2 − (cm − hm1x1 − · · · − hmmxm) = 0

(3)
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We do not know how to efficiently solve (if possibly) this seemingly very spe-
cific nonlinear system for large m. We have tried several methods such as XL
[9], Fix-XL [4] and ElimLin [8] to solve (3), but failed to achieve an efficient
solving method. We think this highly structured system of equations or knap-
sack problem on a vector space is an interesting pursuing topic and it may be a
computational hard problem.

Finally, we point out that the cryptosystem of Pan et al is not secure under
chosen plaintext attacks (CPA-secure) [12]. It is obvious that one can tell the
difference between two messages (0, · · · , 0)T and (1, 0, · · · , 0)T by simply check-
ing whether the ciphertext is close to the all zero vector or to the first column
of H . However, this does not mean that this kind of observation can be directly
utilized to launch an above-mentioned narrow-sense ciphertext-only attack, i.e.,
recovering a message given its only one ciphertext.

6 Conclusion

In this paper, we proposed two efficient attacks on a recently proposed cryp-
tosystem that mixes the lattice and knapsack ideas in its design rational. Both
attacks are capable of recovering the encrypted messages in practical time com-
plexities under broadcast-like attack modes. The vulnerability of the new design
is clearly due to the characteristic that the random vectors in its encryption
process are chosen from a very limited set, namely the binary vectors.

We did not propose a ciphertext-only attack on this new cryptosystem, this
type of attacks is equivalent to solve a knapsack problem on a vector space,
which is an interesting research topic.
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Abstract. TWINE is a lightweight block cipher firstly proposed at
ECRYPT Workshop on Lightweight Cryptography 2011 and then pre-
sented at the Conference on Selected Areas in Cryptography 2012. The
cipher consists of 36 rounds and has two versions TWINE-80 and TWINE-
128 supporting key lengths of 80 and 128 bits, respectively. The block
length of the two versions is 64-bit. In this paper, we present the first
single-key attacks on both the versions of the cipher. In these attacks, we
use the recently developed biclique technique. The complexities of the at-
tacks on TWINE-80 and TWINE-128 are 279.10 and 2126.82 respectively
and the data requirement for the two attacks is 260.

Keywords: TWINE, lightweight block cipher, biclique cryptanalysis,
meet-in-the-middle attack.

1 Introduction

The needs for security and privacy issues in resource constraint platforms such
as RFID tags and sensor nodes give rise to design lightweight cryptographic
algorithms. Some of the lightweight algorithms recently proposed are HIGHT
[6], PRESENT [2], KATAN/KTANTAN [3], PRINTcipher [7], KLEIN [4], LED
[5], Piccolo [9], and TWINE [10].

In this paper, we give our cryptanalytic results on TWINE. TWINE supports
two key lengths, 80 and 128 bits. For each key length, encryption functions are
the same but the key schedules are different. Corresponding to the key lengths,
we denote TWINE-80 and TWINE-128. To the best of our knowledge, the most
powerful attack is the impossible differential attacks against 23-round TWINE-80
and 24-round TWINE-128 with time complexities of 276.88 and 2115.10 encryp-
tions, respectively [10]. In this paper, we present attacks on the full TWINE-80
and TWINE-128. In these attacks, we use the biclique technique [1]. The com-
plexities of the attacks on TWINE-80 and TWINE-128 are 279.10 and 2126.82,
respectively.

The organization of the paper is as follows. In Section 2 we give the notation
which we use throughout the paper and a short description of TWINE algorithm.

J. Pieprzyk, A.-R. Sadeghi, and M. Manulis (Eds.): CANS 2012, LNCS 7712, pp. 43–55, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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We overview the biclique technique in Section 3. In Section 4 and 5 we present
the attacks on TWINE-80 and TWINE-128, respectively. We conclude the paper
in Section 6.

2 Notation and a Short Description of TWINE

2.1 Notation

Throughout the paper, we use the following notations:
A : a bit string
A(i) : i-th nibble of A. The left most nibble is A(0).
A(i, j, ..., k) : concatenation of i, j, ... , k-th nibbles of A.
A(i − j) : concatenation of i, (i+ 1), ..., j-th nibbles of A where i ≤ j.
A[i] : i-th bit of A. The left most bit of A is A[0].
A[i, j, ..., k] : concatenation of i, j, ..., k-th bits of A.
A[i− j] : concatenation of i, (i+ 1), ..., j-th bits of A where i ≤ j.
A <<< i : i-bit cyclic left shift of A.
A||B : concatenation of A and B.
RKi : 32-bit round key used in the i-th round where 1 ≤ i ≤ 36.
Ki : k-bit value calculated after i iterations in the key schedule

where k is the key length of the cipher.
Xi : the output of the i-th round where X0 is the plaintext

and X36 is the ciphertext.

2.2 TWINE

TWINE is a block cipher supporting two key lengths, 80 and 128 bits. The
global structure of TWINE algorithm is a variant of Type 2 generalized Feistel
structure [12] with 16 4-bit sub-blocks. Each version of the algorithm has the
same round function depicted in Figure 1 and consists of 36 rounds.

S S S S S S S S

Fig. 1. One round of TWINE

In the round function, the key addition is applied before the S-box operation
as seen in the figure and then the permutation is performed. In the last round
the permutation does not exist.

The two versions of TWINE have key schedules which consist of S-box, round
constant addition, CON i = CON i

H ||CON i
L, and permutation operations.
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The key schedule of TWINE-80 generates 36 32-bit round keys from the 80-bit
master key as follows:

1. K0 = K
2. RK1 = K0(1, 3, 4, 6, 13, 14, 15, 16)
3. for i=1,2,...,35 do the followings
4. – Ki = Ki−1

– Ki(1) = Ki(1)⊕ S[Ki(0)]
– Ki(4) = Ki(4)⊕ S[Ki(16)]
– Ki(7) = Ki(7)⊕ (0||CON i

H)
– Ki(19) = Ki(19)⊕ (0||CON i

L)
– Ki(0, 1, 2, 3) = Ki(0, 1, 2, 3) <<< 4
– Ki = Ki <<< 16
– RKi+1 = Ki(1, 3, 4, 6, 13, 14, 15, 16)

TWINE-128 has the following key schedule which generates 36 32-bit round keys
from the 128-bit master key.

1. K0 = K
2. RK1 = K0(2, 3, 12, 15, 17, 18, 28, 31)
3. for i=1,2,...,35 do the followings
4. – Ki = Ki−1

– Ki(1) = Ki(1)⊕ S[Ki(0)]
– Ki(4) = Ki(4)⊕ S[Ki(16)]
– Ki(23) = Ki(23)⊕ S[Ki(30)]
– Ki(7) = Ki(7)⊕ (0||CON i

H)
– Ki(19) = Ki(19)⊕ (0||CON i

L)
– Ki(0, 1, 2, 3) = Ki(0, 1, 2, 3) <<< 4
– Ki = Ki <<< 16
– RKi+1 = Ki(2, 3, 12, 15, 17, 18, 28, 31)

Our attacks are independent from the S-box and constants so we skip the details.
For a complete description of the algorithm one can refer to [10].

3 An Overview of the Biclique Cryptanalysis Technique

In this section, we give an overview of the biclique technique on block ciphers
proposed in [1]. In the biclique attack, firstly the key space is divided into 2k−2d

subspaces in which there exists 22d keys where k and d is the key length and
the dimension of the biclique, respectively. Then, for all the key subspaces the
two steps, biclique construction and meet-in-the-middle attack, are applied. To
perform the two steps, firstly the cipher E is considered as a composition of three
parts f , g, and h where E = h ◦ g ◦ f . Then, a biclique is constructed on the
first or last parts (in the attack on TWINE-80 and TWINE-128 we construct
the bicliques on the first and last parts as done in [11] and [1], respectively).
After that, the meet-in-the-middle attack is applied on the remaining parts.
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In this section we give the attack idea in the case that the biclique is constructed
in the first part. The attack idea is similar for the other case.

A d dimensional biclique is a 3-tuple ({Pi}, {Sj}, {Ki,j}) such that fKi,j (Pi) =
Sj , ∀i, j ∈ {0, 1, ..., 2d − 1}. Two methods to construct a biclique are given
in [1]. In this work, we use one of the methods called independent related-
key differentials. In this method, first S0 is calculated from a chosen P0 un-
der the key K0,0. Then, Sj and Pi values are calculated from P0 and S0 using
K0,j = K0,0⊕ΔK

j and Ki,0 = K0,0⊕∇K
i , respectively. Lets the differential trails

in forward and backward directions called as Δj and ∇i, respectively. If the trails
do not have common active non-linear operations such as S-boxes then the prob-
ability of the equation fKi,j (Pi) = Sj where Ki,j = K0,0 ⊕ ∇K

i ⊕ ΔK
j is 1 as

proved in [1].
The second step is the meet-in-the-middle attack on h ◦ g. In this step first

Ci = EK(Pi) values are obtained from the encryption oracle. After that a partial
matching is searched at some portion v between g and h. This matching step has
two sub-steps also. Firstly, in the forward and backward directions the internal
values which affect the value of v and does not depend on the value of i and j
respectively calculated using K0,j and Ki,0. Then the remaining internal values
which affect the values of v are calculated using Ki,j for all i and j. The keys
Ki,j are selected as candidate keys which lead to a matching on v. The number
of candidates will be approximately 22d−m in a subspace where m is the bit
length of v. The total number of key candidates will be 2k−2d × 22d−m = 2k−m.
At the end approximately 2k−m encryptions using �k−m

n � plaintext-ciphertext
pairs are performed to eliminate all the wrong candidates.

4 Biclique Cryptanalysis of TWINE-80

In this section, we present a biclique attack on the full TWINE-80. Firstly,
we divide the key space into 272 subspaces of 28 keys each. Then for each key
subspace we construct a biclique on the first 8 rounds and by using this biclique
we apply the meet-in-the-middle attack on the last 28 rounds of the cipher.

4.1 Key Partitioning

The base keys of the key subspaces are of the form K0,0 = (∗ ∗ ∗ ∗ | ∗ ∗ ∗ 0| ∗
∗ ∗ ∗|0 ∗ ∗ ∗ | ∗ ∗ ∗ ∗), where two nibbles are fixed to zero and the remaining 18
nibbles determine the subspace. The 28 keys {Ki,j} in the subspaces are taken
as follows

Ki,j = K0,0

⊕
(0000|000i|0000|j000|0000), i, j ∈ {0, 1, . . . , 24 − 1}.

4.2 Biclique Construction on 8 Rounds

First of all, S0 is calculated from a randomly chosen P0 as S0 = fK0,0(P0)
where f is the first 8 rounds of the cipher. Then a biclique is constructed using
the following two sets of 24 related-key differentials with respect to the base
computation P0

K0,0−−−→ S0.
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1. Δj-differentials over f . Each related-key differential in the first set maps
input difference ΔP = 0 to an output difference Δj = ΔS = S0

⊕
Sj under

the key difference ΔK
j = (0000|0000|0000|j000|0000).

0
ΔK

j−−→
f

Δj .

2. ∇i-differentials over f−1. Each related-key differentials in the second set
maps input difference ΔS = 0 to an output difference ∇i = ∇P = P0

⊕
Pi

under the key difference ∇K
i = (0000|000i|0000|0000|0000).

0
∇K

i−−→
f−1

∇i.

Δj and ∇i differentials are given in Figure 2.

#1

#2

#3

#4

#5

#6

#7

#8

active s−box

a nibble which has a difference

Fig. 2. Δj and ∇i differential trails for TWINE-80 on the left and right respectively

As seen in the figure the differential trails do not share any active S-box.
Thus

∇i

ΔK
j

⊕∇K
i−−−−−−−→

f
Δj , ∀i, j ∈ {0, 1, . . . , 24 − 1}.

As a result, the triple ({Pi}, {Sj}, {Ki,j}) with the definition



48 M. Çoban, F. Karakoç, and Ö. Boztaş

Pi = P0

⊕∇i,
Sj = S0

⊕
Δj ,

Ki,j = K0,0

⊕
ΔK

j

⊕∇K
i

is an 8-round biclique of dimension 4.
Note that there is no difference in the 2-nd nibble of the plaintext in the

biclique. Thus we can use the plaintexts whose 2-nd nibble is a fixed value. This
reduces the data requirement of the attack to 260.

4.3 The Meet-in-the-Middle Step

By the biclique construction, 24 plaintexts Pi and 24 intermediate states Sj

are available with corresponding Ki,j ’s. First of all, we obtain Ci in the chosen
plaintext scenario. Then, we check if there is some i, j such that

Ci
Ki,j−−−−−−→

g−1◦h−1
Sj . (1)

where g and h as the composition of the rounds from the beginning of the 9-th
round to the end of the 19-th round and from the beginning of the 20-th round
to the end of the 36-th round respectively. For each one of the 272 key subspaces,
the complexity of this stage is 28. Hence, the overall complexity of the attack
will be near exhaustive search, but we can reduce this complexity applying the
attack given in Algorithm 1. In the algorithm the nibble X19(3) is taken as the
matching variable v. To meet on v, we do partial calculations in forward direction
starting from Sj and in backward direction starting from Ci.

4.4 The Attack Complexity

The computational complexity of the attack is composed of several parts. In
the biclique construction step, for each of the 272 key subspaces we perform 24

8-round encryptions to compute 24 intermediate states Sj and 24 − 1 8-round
decryptions to compute 24 Pi’s. Therefore, 24×8+(24−1)×8

36 ≈ 22.78 encryptions
are performed to construct a biclique. In the meet-in-the-middle attack given
in Algorithm 1, the total number of S-boxes calculated for 24 and 28 different
keys are 30 and 127 as seen in Figure 3 as gray and black S-boxes, respectively.
Since the average number of remaining keys after the condition in Step 11 is
28 × 2−4 = 24, we perform 24 encryption operations in Step 12. Thus the total
number of operations in the algorithm is 24×30+28×127

36×8 + 24 ≈ 27.03 encryptions
under the assumption that the time needed for one S-box look-up is equivalent to
the running time of 1

8 round function and 1
8×36 encryption function. Therefore,

22.78+27.03 ≈ 27.10 encryptions are performed for each key subspace. As a result,
the overall complexity of the attack on the full TWINE-80 is approximately 279.10

encryptions with 28 memory.
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Algorithm 1.
1: Sj and Ci’s are given.
2: for j in 0,1,...15 do
3: Calculate the nibbles colored in gray in the forward direction in Figure 3 and

S[X10(2) ⊕ RK10(1)], S[X11(12) ⊕ RK11(6)], S[X12(2) ⊕ RK12(1)], S[X12(6) ⊕
RK12(3)], S[X12(2) ⊕RK12(1)], S[X13(12) ⊕RK13(6)] using K0,j and Sj .

4: for i in 0,1,...15 do
5: Calculate the nibbles colored in black in the forward direction in Figure 3

using Ki,j and the values calculated in step 3.
6: Store X19(3) in the (16× i+ j)-th cell of a table called A.
7: end for
8: end for
9: for i, j in 0,1,...15 do

10: Calculate the nibbles colored in black in the backward direction in Figure 3 using
Ci and Ki,j .

11: if The calculated value of X19(3) is equal to the value in the (16× i+ j)-th cell
of A then

12: if Ki,j satisfies another plaintext-ciphertext pair then
13: Output Ki,j as the right key
14: end if
15: end if
16: end for

5 Biclique Cryptanalysis of TWINE-128

In this section, we introduce a biclique attack on the full TWINE-128. In this
attack we divide the key space considering K32. The attack steps are similar to
the attack steps given in the previous section. Firstly, we divide the key space
into 2120 subspaces of 28 keys each and then for each key subspace we construct
a biclique on the last 11 rounds and by using this biclique we perform the meet-
in-the-middle attack on the first 25 rounds.

5.1 Key Partitioning

The key subspaces are enumerated by 2120 base keys of the form K32
0,0 = (∗ ∗ ∗ ∗

|∗∗∗∗|∗∗∗∗|∗∗∗∗|0∗∗∗|∗∗0∗|∗∗∗∗|∗∗∗∗). The 28 keys {K32
i,j} in a subspace are

taken as follows K32
i,j = K32

0,0

⊕
(0000|0000|0000|0000|i000|00j0|0000|0000), i, j ∈

{0, 1, . . . , 24 − 1}.

5.2 Contructing a Biclique

First of all, S0 is calculated from a randomly chosen C0 as S0 = h−1
K32

0,0
(C0)

where h is the last 11 rounds of the cipher. Then a biclique is constructed using
the following two sets of 24 related-key differentials with respect to the base

computation C0

K32
0,0−−−→

h−1
S0.
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Fig. 3. Meet-in-the-middle step for TWINE-80

1. Δj-differentials over h−1. Each related-key differential in the first set maps
input difference ΔC = 0 to an output difference Δj = ΔS = S0

⊕
Sj under

the key difference ΔK
j = (0000|0000|0000|0000|0000|00j0|0000|0000).
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0
ΔK

j−−→
h−1

Δj .

2. ∇i-differentials over h. Each related-key differentials in the second set maps
input difference ΔS = 0 to an output difference ∇i = ∇C = C0

⊕
Ci under

the key difference ∇K
i = (0000|0000|0000|0000|i000|0000|0000|0000).

0
∇K

i−−→
h

∇i.

Δj and ∇i differentials are given in Figure 4.

#26

#27

#28

#29

30

#31

#32

#33

#34

#35

#36

a nibble which has a difference

active s−box

Fig. 4. ∇i and Δj differential trails for TWINE-128 on the left and right respectively

As seen in the figure the differential trails do not share any active S-box.
Thus

∇j

ΔK
j

⊕∇K
i−−−−−−−→

h
Δi, ∀i, j ∈ {0, 1, . . . , 24 − 1}.
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As a result, the triple ({Sj}, {Ci}, {Ki,j}) with the definition

Ci = C0

⊕∇i,
Sj = S0

⊕
Δj ,

Ki,j = K0,0

⊕
ΔK

j

⊕∇K
i

is an 11-round biclique of dimension 4.
Note that there is no difference in the 7-th nibble of the ciphertext in the

biclique. Thus we can use the ciphertexts whose 7-th nibble is a fixed value.
This reduces the data requirement of the attack to 260.

5.3 The Meet-in-the-Middle Step

The attack is very similar to that in TWINE-80. In this attack we choose the
subcipher f from the beginning of the 1-st round to the end of the 6-th round,
and the subcipher g from the beginning of the 7-th round to the end of the 25-th
round. The nibble X6(11) is taken as the matching variable v. The meet-in-the-
middle step is given in Algorithm 2.

Algorithm 2.
1: Pi and Sj ’s are given.
2: for i in 0,1,...15 do
3: Calculate the nibbles colored in gray in the forward direction in Figure 5 using

K32
i,0 and Pi.

4: for j in 0,1,...15 do
5: Calculate the nibbles colored in black in the forward direction in Figure 5

using K32
i,j and the values calculated in step 3.

6: Store X6(11) in the (16× i+ j)-th cell of a table called A.
7: end for
8: end for
9: for j in 0,1,...15 do

10: Calculate the nibbles colored in gray in the backward direction in Figure 5 and
S[X23(15)⊕RK23(6)], S[X22(11)⊕RK22(7)], S[X21(7)⊕RK21(2)], S[X21(3)⊕
RK21(3)], S[X20(3) ⊕RK20(3)], S[X20(15) ⊕RK20(6)] using K32

0,j and Sj .
11: for i in 0,1,...15 do
12: Calculate the nibbles colored in black in the backward direction in Figure 5

using Sj , K32
i,j and the values calculated in step 10.

13: if The calculated value of X6(11) is equal to the value in the (16× i+ j)-th
cell of A then

14: if K32
i,j satisfies another plaintext-ciphertext pair then

15: Output K32
i,j as the right key

16: end if
17: end if
18: end for
19: end for
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Fig. 5. Meet-in-the-middle step for TWINE-128
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5.4 The Attack Complexity

For each key subspace, to construct a biclique 24×11+(24−1)×11
36 ≈ 23.24 encryp-

tions are performed. Also, in the meet-in-the-middle step 28×96+24×39
36×8 + 24 ≈

26.69 encryptions are needed. Thus, 23.24 + 26.69 ≈ 26.82 encryptions are per-
formed for each key subspace. As a result, the overall complexity of the biclique
attack is approximately 2126.82 encryptions with 28 memory.

6 Conclusion

In this paper, we present the first single-key attacks on the full TWINE-80
and TWINE-128 by using recently developed biclique attack technique. In the
both attacks 260 data and 28 memory are required and the time complexities
of the attacks on TWINE-80 and TWINE-128 are 279.10 and 2126.82 encryption
operations, respectively.
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Abstract. We report on differential and linear analysis of the full 8.5-
round WIDEA-n ciphers for n ∈ {4, 8}, under weak-key assumptions.
The novelty in our attacks include the use of differential and linear rela-
tion patterns that allow to bypass the diffusion provided by MDS codes
altogether. Therefore, we can attack only a single IDEA instance out of
n copies, effectively using a narrow trail for the propagation of differ-
ences and masks across WIDEA-n. In fact, the higher the value of n, the
better the attacks become. Our analyses apply both to particular MDS
matrices, such as the one used in AES, as well as general MDS matrices.
Our attacks exploit fixed points of MDS matrices. We also observed a
curious interaction between certain differential/linear patterns and the
coefficients of MDS matrices for non-trivial fixed points. This interac-
tion may serve as an instructive design criterion for block cipher designs
such as WIDEA-n. The authors of WIDEA-n suggested a compression
function construction using WIDEA-8 in Davies-Meyer mode. In this
setting, the weaknesses identified in this paper can lead to free-start col-
lisions and even actual collisions depending on the output transformation
of the hash function.

Keywords: wide-block cipher, cryptanalysis, WIDEA-n, free-start
collisions.

1 Introduction

In [6], Junod and Macchetti presented a Wide-block version of IDEA cipher [7]
called WIDEA-n, combining n instances of the 8.5-round IDEA cipher joined by
an n×n matrix derived from a Maximum Distance Separable (MDS) code. Their
approach not only led to improved performance, due to the bit-slicing technique
allowing parallel instances of IDEA to be evaluated altogether, but also showed
wide-block cipher variants operating on bit strings whose size is a multiple of 64
bits (the original block size of IDEA).

The contributions of this paper include

– the first differential and linear distinguishers of the full 8.5-round WIDEA-n,
for n ∈ {4, 8}, under weak-key assumptions. Actually, our attacks would hold
even if n was allowed to be much larger than 8. Weak-key assumptions
mean that user keys in our attacks lead, through the key schedule,
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to round subkeys which are either 0 or 1 in specific positions along
differential or linear trails [2]. In this way, both the user key and some
subkeys are weak. For this reason, we refer equally to weak-key and weak-
subkeys assumptions.

– differential and linear distinguishers that apply both in a secret-key and
in a hash/compression function settings, assuming WIDEA-n becomes the
compression function in Davies-Meyer (DM) mode [8].

– we show how to bypass the MDS matrices using trivial and non-trivial fixed
points. This procedure is possible due to carefully chosen differences and
linear masks that lead to trivial differences and masks at the input to the
MA/MAD-boxes. Therefore, avoiding these diffusion components in every
round of WIDEA-n, for any n, means that we restrict the propagation of
differences and masks to one single IDEA instance, out of n. The larger n is,
the better the attacks become. Previous analyses using fixed points include
[1,3,11], but the latter worked on fixed points for an entire block. As far as
we aware of, this paper presents the first use of fixed points (in differential
and linear settings) that bypass MDS codes in block cipher designs such as
WIDEA-n.

– we show how and why some matrices from MDS codes can rather help the
cryptanalysis of WIDEA-n, depending on where they are placed in a block
cipher design such as WIDEA-n, and even depending on the exclusive-or
sum of its coefficients. See Sect. 4.2.

This paper is organized as follows: Sect. 2 briefly details WIDEA-n; Sect. 3 de-
scribes the key schedule algorithms of WIDEA-n; Sect. 4 describes differential
attacks on WIDEA-n; Sect. 5 details linear attacks on WIDEA-n. Sect. 6 de-
scribes attacks on WIDEA-n used in compression function constructions. Sect. 7
discusses weak keys. We conclude in Sect. 8.

2 The WIDEA-n Block Ciphers

WIDEA-n, n ∈ {4, 8}, stands for two Wide-block variants of the IDEA cipher
[7] operating on 64n-bit blocks. The rationale is to join n instances of the IDEA
cipher using an n×n matrix derived from an MDS code, placed inside the MA-
box (Multiplication-Addition) in each round of each IDEA instance (see Fig. 1).
Thus, the original MA-box in IDEA becomes a so called MAD-box (Multiply-
Add-Diffuse) [6] in WIDEA-n. The key size is 128n bits and WIDEA-n iterates
8.5 rounds. Fig. 1 depicts one round of WIDEA-4 cipher. For WIDEA-8, there
are eight copies of IDEA side-by-side, connected by an 8×8 MDS matrix (Fig. 2).
The MDS matrix in WIDEA-4 is the one used in the AES cipher [4]:⎛

⎜⎜⎝
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞
⎟⎟⎠ . (1)
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In WIDEA-4, the matrix (1) is multiplied on the right by a 4×1 vector (a, b, c, d)t

containing part of the internal state of four IDEA instances, where t denotes
vector transpose. This matrix product operation will be denoted MDS(a, b, c, d)t.

The MDS matrix in WIDEA-8 comes from the W cipher in the Whirlpool
hash function [5], and the semantics for matrix multiplication is the same as
explained for (1): ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 4 1 8 5 2 9
9 1 1 4 1 8 5 2
2 9 1 1 4 1 8 5
5 2 9 1 1 4 1 8
8 5 2 9 1 1 4 1
1 8 5 2 9 1 1 4
4 1 8 5 2 9 1 1
1 4 1 8 5 2 9 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

In both (1) and (2), matrix coefficients and operations are performed over
GF(216) = GF(2)[x]/(p(x)), where p(x) = x16 + x5 + x3 + x2 + 1 is an irre-
ducible polynomial over GF(2).

We briefly describe an MA-box (Fig. 1): let the input to the i-th MA-box of the
i-th IDEA instance, for 1 ≤ i ≤ n, be denoted (pi, qi), its output be (ri, si) and
(Z5,i−1, Z6,i−1) be the round subkeys in it. We ignore the superscripts since they
are irrelevant in this setting. The three group operations in IDEA and WIDEA-n
are: ⊕ denote bitwise exclusive-or, � denote addition modulo 216 and � denote
multiplication in GF(216+1), with 0 ≡ 216. Then, si = (pi�Z5,i−1�qi)�Z6,i−1

and ri = pi � Z5,i−1 � si, where � has higher precedence than �.
Now, for the MAD-box (Fig. 2): the MDS matrix in WIDEA-n is placed inside

the original MA-box of IDEA after pi�Z5,i−1 � qi. This way, a single MAD-box
of WIDEA-n has output (r′, s′) such that

– s′ = MDS(pi�Z5,i−1�qi)�Z6,i−1, and r′ = pi�Z5,i−1�s′, where 1 ≤ i ≤ n
and MDS(pi �Z5,i−1 � qi) stands for the multiplication of an MDS matrix
(1) or (2) by an n × 1 vector containing the n values pi � Z5,i−1 � qi, for
1 ≤ i ≤ n.

– every single output tuple (r′, s′) depends on all (pi, qi, Z5,i−1), for 1 ≤ i ≤ n,
but not on Z6,i−1.

– the placement of the MDS matrix also implies that its dependence on (pi,
qi, Z5,i−1), for 1 ≤ i ≤ n, is spread to both (r′, s′) in all n IDEA instances
in every round.

– the MDS matrix is preceded by � and followed by �, while inside the matrix
computation there is a combination of xor and multiplication in GF(216).
Except for the repeated xor in the matrix product, no other operation is
repeated twice in a row in the MAD-box.

– since the half-round containing the MAD-box is an involution there is no
need to compute the inverse MDS matrix for decryption.

To allow a compact representation for analysis, and taking into account the 3-
dimensional structure of WIDEA-4, we denote the internal state of WIDEA-4
by the 4× 4 matrix:
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⎛
⎜⎜⎝

a12 a13 a14 a15
a8 a9 a10 a11
a4 a5 a6 a7
a0 a1 a2 a3

⎞
⎟⎟⎠ , (3)

where each ai, for 0 ≤ i ≤ 15, is a 16-bit word and the numbering follows from
Fig. 1, where (a4(j−1), a4(j−1)+1, a4(j−1)+2, a4(j−1)+3) represent the state of the
j-th IDEA instance for 1 ≤ j ≤ 4. The MAD-boxes of the four IDEA instances
are connected to each other via the 4 × 4 MDS matrix (1). Analogously, we
denote the internal state of WIDEA-8 by the 8× 4 matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a28 a29 a30 a31
a24 a25 a26 a27
a20 a21 a22 a23
a16 a17 a18 a19
a12 a13 a14 a15
a8 a9 a10 a11
a4 a5 a6 a7
a0 a1 a2 a3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where each ai, for 0 ≤ i ≤ 31, is a 16-bit word. Word numbering follows Fig. 2
where (a4(j−1), a4(j−1)+1, a4(j−1)+2, a4(j−1)+3) represents the state of the j-th
IDEA instance, 1 ≤ j ≤ 8. The MAD-boxes of the eight IDEA instances are
connected by a single 8× 8 MDS matrix (2) in every round.

3 The Key Schedule of WIDEA-n

Let Zi, for 0 ≤ i ≤ 51, denote the round subkeys used in 8.5-round WIDEA-n,
n ∈ {4, 8}. The key schedule algorithm of WIDEA-4 is as follows [6]: due to
the 4-way parallelism, each subkey has 64 bits. Thus, each subkey Zi can be
split into four slices Zi,0, . . . , Zi,3 (see Fig. 1). Let Ki, for 0 ≤ i ≤ 7, denote the
eight 64-bit words representing the user key. The round subkeys are computed
as follows:

– Zi = Ki, for 0 ≤ i ≤ 7.

– Zi = ((((Zi−1 ⊕ Zi−8)
16

� Zi−5)
16
≪ 5) ≪ 24) ⊕ Ci/8−1, for 8 ≤ i ≤ 51,

i ≡ 0 mod 8.

– Zi = ((((Zi−1 ⊕ Zi−8)
16

� Zi−5)
16
≪ 5) ≪ 24), for 8 ≤ i ≤ 51, i �≡ 0 mod 8.

where operations superscripted with ’16’ indicate that the operation is actually
carried out over 16-bit slices of Zi. Othewise, the operation is carried out across
64-bit words, such as the bitwise left-rotation ≪ 24. Following [6], C0, . . . , C5

are constants inserted every eight rounds. This design using nonlinear feedback
shift registers was inspired on the key schedule of MESH ciphers [9].

The key schedule algorithm of WIDEA-8 [6] follows an 8-way parallelism.
Each 128-bit subkey Zi can be split into eight slices Zi,0, . . . , Zi,7 (see Fig. 2).
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Let Ki, for 0 ≤ i ≤ 7, denote the eight 128-bit words representing the user
key. The round subkeys are computed exactly as for WIDEA-4, except that the
subkeys and constants Ci/8−1 are 128 bits long.

4 Differential Cryptanalysis of WIDEA-n

For a differential analysis, we start with Table 2 (in the appendix) that lists
exhaustively all one-round characteristics of IDEA [2] using wordwise difference
δ = 8000x. The subscript x indicates hexadecimal value. This difference propa-
gates across ⊕ and � with certainty and for any subkey value because the only
active difference is in the most significant bit position. The arrows indicate differ-
ence propagation across one-round or across an MA/MAD-box in the encryption
direction, depending on the context. All these characteristics hold with proba-
bility 1 under weak-key assumptions. Thus, the main purpose of weak keys is
that they cause weak subkeys in specific positions inside WIDEA-n which allow
straightforward propagation of differences (and bit masks). The third column in
Table 2 shows the difference propagation inside the MA-box and consequently,
if the MA-box is differentially active or not. An MA/MAD-box is differentially
active if its input difference is nonzero. It is passive, otherwise.

We choose characteristics based on two criteria: (i) minimize the number of
weak-key assumptions per round, and (ii) choose iterative difference patterns.
Under these two conditions, the best choices include the 3-round characteristic

(0, 0, δ, δ)→ (0, δ, δ, 0)→ (0, δ, 0, δ)→ (0, 0, δ, δ), (5)

with four weak-subkey assumptions1: Z6(j−1)+3, Z6(j−1)+4, Z6j+4, Z6(j+1)+3

starting from round j, for j ≥ 1. All rotations of (5), for instance, starting
from (0, δ, δ, 0) instead of (0, 0, δ, δ), result in equivalent characteristics.

Another relevant choice is the 1-round iterative characteristic

(δ, δ, δ, δ)→ (δ, δ, δ, δ), (6)

with two weak-subkey assumptions: Z6(j−1), Z6(j−1)+3 starting from round j.
We next describe attacks on WIDEA-n that bypass all the MDS matrices

across 8.5-round WIDEA-n.

4.1 Differential Attack on One IDEA Instance Only

We use (6), a 1-round iterative characteristic whose differential trail does not
include any MA-box, that is, all MA-boxes are passive. See Table 2. Extending
it to WIDEA-4, one IDEA instance will follow the differential pattern (6), while

1 We adapted the original terminology Z
(j)
i that represents the i-subkey of the j-

th round in [7] to the notation Zl in WIDEA-n as described in Sect. 3, where
l = 6(j − 1) + i− 1, since there are six subkeys per round in IDEA.
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the other three IDEA instances will have zero input difference. This means that
all MAD-boxes will be passive. In other words, we exploit the (trivial) fixed point

MDS(0, 0, 0, 0)t = (0, 0, 0, 0)t,

where the superscript t denotes the transpose operation. In other words, if all
weak-subkey assumption are satisfied, then the differential trail (6) concatenated
with itself will propagate across a single 8.5-round IDEA instance in WIDEA-
n, instead of (nonzero) differences spreading to all n IDEA instances, effectively
bypassing the MDS diffusion layer in every round. This attack holds independent
of which MDS matrix is used. Note that our attack does not contradict the
branch number of the MDS matrix [4], but rather exploit a (trivial) fixed point.

Thus, we have the following 1-round iterative characteristic, using (6) in only
a single IDEA instance in WIDEA-4:⎛

⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
δ δ δ δ

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
δ δ δ δ

⎞
⎟⎟⎠ , (7)

following the state representation (3). Without loss of generality, we picked the
last row of the state as the active IDEA instance. The same reasoning applies
if we had picked any of the other IDEA instances (but the weak key would
not be the same). Thus, the fifteen most significant bits (MSB) of the following
eighteen subkeys should be zero across 8.5 rounds of one IDEA instance: Z6(j−1),
Z6(j−1)+3, for 1 ≤ j ≤ 9. Under these conditions, the output difference pattern
in (7) will appear as ciphertext difference with certainty. If the key schedule of
WIDEA-4 behaves as a random mapping and the weak-subkey conditions hold
independently, then in WIDEA-4’s key space of 2512 keys, the weak subkeys
would represent a class of about 2512−15·18 = 2242 keys. The reasoning is that
each 16-bit weak subkey can be either 0 or 1, and we need eighteen of them to
be weak. For WIDEA-8, the same reasoning applies, but the weak-key class size
is estimated at 21024−15·18 = 2754.

In order to avoid this distinguishing attack using (7), more than 512/15 = 34
weak-subkey conditions would be required, since each weak subkey implies the
fifteen MSBs to be zero. This means WIDEA-4 would need more than 34/2 = 17
rounds, which means more than double the original number of rounds, since each
round requires two weak subkeys. But, the resulting performance would hardly
be acceptable.

A key-recovery attack on the full 8.5-round WIDEA-4, using (7), can obtain
the subkeys Z48,0 and Z51,0 of the last half-round. In this case, only sixteen
subkeys need be weak, which imply a weak-key class of about 2512−15·16 = 2272

keys. The output difference after eight rounds, restricted to one IDEA instance,
is (δ, δ, δ, δ). For the additive subkeys, the δ difference propagates across to the
ciphertext, but not for Z48,0 and Z51,0. This means a 16-bit condition for each
16-bit subkey piece. Thus, one chosen pair of texts is enough. Decrypting two
multiplications in a half-round in one IDEA instance is equivalent to 1

17·2·4 of
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a full WIDEA-4, that is, the cost becomes 232

17·8 ≈ 225 WIDEA-4 encryptions.
There are 17 half-rounds in 8.5-round IDEA. Memory cost is negligible. Time
complexity for WIDEA-8 becomes 224 encryptions since WIDEA-8 contains eight
copies of IDEA. Moreover, the weak-key class size becomes 21024−15·16 = 2784.
Recovering subkeys from the other IDEA instances is not possible because of
the zero differences in (7). If we shift the (δ, δ, δ, δ) pattern to another row of
the state in (7), then we would need another key that has weak subkeys in that
same part of the state. We leave the issue of a full key-recovery attack as an
open problem.

4.2 Differential Attack on All IDEA Instances

Let us analyse WIDEA-4. If we use the 3-round iterative linear relation (5), then
there are active MAD-boxes along the differential trail. See Table 2. This means
we need to exploit another fixed point of the AES MDS matrix (1):

MDS(δ, δ, δ, δ)t = (δ, δ, δ, δ)t.

When a MAD-box is active, we have to attack all four copies in WIDEA-4 at
once so that the same value δ appears inside each MAD-box. This means that
the input to the active MDS matrices is (δ, δ, δ, δ). Applying it to the matrix in
(1) results in 2 · δ⊕ 3 · δ⊕ δ⊕ δ = (2⊕ 3⊕ 1⊕ 1) · δ = δ in all four rows since the
MDS matrix in AES is circulant. In other words, this fixed point exploits the fact
that the exclusive-or of the coefficients in a line (or column) of the AES MDS
matrix xor to 1. This is a new and surprising interaction between the differential
pattern (δ, δ, δ, δ) and the coefficients of the AES MDS matrix.

This attack does not contradict the branch number of the MDS matrix [4],
but rather exploit a non-trivial fixed point. Note that this property does not
hold for the 8 × 8 MDS matrix in (2) since in the latter, the exclusive-or sum
of the coefficients in a line or column is 3. A consequence of this finding is an
additional criterion for block cipher designs that employ matrices from MDS
codes in the way they are used in WIDEA-4: carefully select the coefficients in
these matrices in order to avoid fixed-point (differences).

We arrive at the following 3-round iterative characteristic:⎛
⎜⎜⎝

0 δ 0 δ
0 δ 0 δ
0 δ 0 δ
0 δ 0 δ

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

0 0 δ δ
0 0 δ δ
0 0 δ δ
0 0 δ δ

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

0 δ δ 0
0 δ δ 0
0 δ δ 0
0 δ δ 0

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

0 δ 0 δ
0 δ 0 δ
0 δ 0 δ
0 δ 0 δ

⎞
⎟⎟⎠ . (8)

Thus, we exploit a combined symmetry in the AES MDS matrix, the differential
pattern and the four identical copies of IDEA in WIDEA-4. Across 8.5 rounds,
we need the following eleven 64-bit subkeys to be weak: Z3, Z9, Z10, Z16, Z21,
Z27, Z28, Z34, Z39, Z45 and Z46, across all four IDEA instances. These weak
subkeys imply conditions on 11 · 4 · 15 = 660 > 512 bits. In a key space of 2512

keys we do not expect any weak-key class to satify all these conditions. It is a
negative result, though. Analogous conclusions hold for WIDEA-8.
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5 Linear Cryptanalysis of WIDEA-n

For a linear analysis, we listed exhaustively all one-round linear relations of IDEA
[2] in Table 3 (in the appendix). All these linear relations hold with maximum
bias 2−1 under weak-subkey assumptions.

The linear relations with the best profile for an attack on WIDEA-n have the
same patterns as the characteristics used in Sect. 4, with γ instead of δ. From
Table 3 we choose linear relations that: (i) minimize the number of weak-subkey
assumptions per round, and (ii) are iterative. Under these two conditions, the
best choices include the 3-round relation

(0, γ, γ, 0)→ (γ, 0, γ, 0)→ (γ, γ, 0, 0)→ (0, γ, γ, 0), (9)

with only four weak-subkey assumptions: Z6(j−1)+4, Z6j , Z6(j+1), Z6(j+1)+4 start-
ing from round j. All rotations of (9), for instance, starting from (γ, 0, γ, 0)
instead of (0, γ, γ, 0), also fulfill the same criteria.

Another relevant choice is the 1-round iterative characteristic

(γ, γ, γ, γ)→ (γ, γ, γ, γ), (10)

with only two weak-subkey assumptions per round: Z6(j−1), Z6(j−1)+3 starting
from round j.

If we use linear relation (10) in a single IDEA instance in WIDEA-4, we arrive
at the following 3-round iterative linear relation:⎛

⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
γ γ γ γ

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
γ γ γ γ

⎞
⎟⎟⎠ . (11)

Similar to (7), there are no active MAD-boxes along (11) because all approxi-
mations at the input to the MAD-boxes are trivial: (0, 0, 0, 0). Thus, once again,
we exploit the fixed-point relation MDS(0, 0, 0, 0)t = (0, 0, 0, 0)t. Concatenating
(11) with itself across 8.5 rounds, this linear relation holds with maximum bias
2−1 as long as the following eighteen subkeys are weak: Z6(j−1), Z6(j−1)+3 for
0 ≤ j ≤ 9. The weak-key class for this linear relation has size 2512−15·18 = 2242

keys. Using relation (9) instead of (10) would require all IDEA instance to be at-
tacked at once. This means using the fixed point MDS(γ, γ, γ, γ)t = (γ, γ, γ, γ)t,
which leads to the same problem as in Sect. 4.2: there are too many weak-subkey
conditions because some MAD-boxes become active.

The linear relation (11) can be translated into P · Γ = EK(P ) · Γ , where
Γ = (γ, γ, γ, γ). This linear relation can be used to distinguish the full WIDEA-
4 from a random permutation. A equally interesting consequence would be its
implications in a hash function context. We discuss it in Sect. 6.

Applying (11) to WIDEA-8 gives even better results, since the later has key
size of 1024 bits, and the same weak-subkey conditions lead to an estimated
weak-key class of 21024−15·18 = 2754 keys.
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A (partial) key-recovery attack on the full 8.5-round WIDEA-4, using (11),
can recover subkeys Z48,0 and Z51,0. In this case, we attack the last half-round
and only sixteen subkeys need be weak: Z6(j−1), Z6(j−1)+3 for 0 ≤ j ≤ 8, which
implies a weak key class of about 2512−15·16 = 2272 keys. Using Matsui’s estima-
tion for a high-success rate attack, 8(2−1)−2 = 32 known plaintexts are enough.
The effort is equivalent to 232 multiplications per subkey, which is equivalent to
fraction of 1

17·2·4 of a full WIDEA-4 computation, or 232/(17·2·4) ≈ 225 WIDEA-
4 encryptions. The memory needed is 32 counters. Recovery of the remaining
subkeys has the same problems as in the key-recovery attack in Sect. 4.1. The
time complexity for WIDEA-8 becomes 224 WIDEA-8 encryptions since there
are eight IDEA instances, Also, the weak-key class size is 21024−15·16 = 2784.

6 WIDEA-n in Davies-Meyer Mode

In [6], the authors suggested to use WIDEA-n as a compression function in
Davies-Meyer (DM) mode, since the key size is double the block size2. The hash
digest could range from 224 bits up to 512 bits, as in the SHA-2 hash function
family [10] by truncation of the last chaining variable. The DM mode for a
compression function construction is as follows [8]: the i-th chaining value is

Hi = Hi−1 ⊕ Emi(Hi−1), (12)

where H0 = IV is the initial value, mi is the i-th message block and Ex(y) is a
block cipher with key x and plaintext y. In particular, E is WIDEA-n, |mi| is
128n bits, |Hi| is 64n bits.

The issue of weak subkeys in WIDEA-n is even more relevant in a hash func-
tion setting. In this case, the message to be hashed becomes the key input and
can be chosen by the adversary.

We point to the following consequences from the results in the previous sec-
tions when WIDEA-n is used in DM mode:

– semi free-start collision: suppose we can set Hi−1 with difference (7) for
WIDEA-4. If mi is a weak key that leads to weak subkeys as required in
Sect. 4.1, then Hi−1 = Emi(Hi−1), that is, Hi contains only zero word dif-
ferences according to (12). It is a semi free-start collision because only the
chaining variable has nonzero difference [8]. The same reasoning applies to
WIDEA-8, using the same difference (7), but extended to a 1024-bit state.
Note that this attack is independent of the MDS matrix used.

– truncation: suppose the output transformation in a (hypothetical) hash func-
tion using WIDEA-n in the compression function simply truncates the
output to the least significant 192 bits for WIDEA-4 (3), or to the least
significant 448 bits for WIDEA-8 (4). In both cases, we assume that at least
64 bits are cut off from the last chaining variable. Alternatively, more bits

2 The number of rounds was increased from 8.5 to 10.5 to provide some security
margin.



Differential and Linear Attacks on the Full WIDEA-n Block Ciphers 65

can be dropped, but 64 bits is enough for our attack. Suppose we have a
differential trail like (7) in Hi−1 but with weak subkeys up to the 8th round.
These trails reduce the number of required weak subkeys to sixteen instead
of eighteen (increasing the weak-key class size), but the input and output
difference patterns are not the same. This fact implies that in DM mode,
the exclusive-or between Hi−1 and Emi(Hi−1) will not vanish. But, on the
other hand, the nonzero difference words are isolated in a single 64-bit piece
of the state. If that 64-bit piece is in the most significant part of the state, it
will be truncated and we have a collision since the rest of the state has only
zero word difference. In this way, we use the output transformation of the
hash function to an attacker’s advantage, if we can control the difference to
remain in the part of the state that is going to be truncated3.

– a linear relation such as⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
γ γ γ γ

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
γ γ γ γ

⎞
⎟⎟⎠ , (13)

for WIDEA-4 = E, using relation (10), imply the linear relation Hi−1 ·Γ1 =
Emi(Hi−1) · Γ1, where Γ1 is any of the masks in a state in (13). Applying
this iterative relation to a single compression function in DM mode, leads to

Hi · Γ1 = 0, (14)

that is, the linear relation does not depend on Hi−1 due to feedforward in
the DM mode and the splitting of the Γ1 mask. Relation (14) could be used
to distinguish the compression function using WIDEA-4 in DM mode from a
random function. Note that (14) depends only on the output Hi, and could
be applied to the hash digest only if the masked bits are not truncated. This
linear relation have implications for WIDEA-n in applications such as pseu-
dorandom number generation, since the masked bit would leak information
in the output bitstream.

Similar reasoning applies for WIDEA-8 in place of WIDEA-4 since the
reasoning concerns one single IDEA instance (out of n).

Another example of collision using only two text blocks is in DES using
the complementation property: suppose two texts P and P encrypted un-
der an arbitrary key K and its bitwise complement K. The corresponding
ciphertexts are C = DESK(P ) and C = DESK(P ). In DM mode, ΔHi−1 =
ΔP = P ⊕ P = ffffffffffffffffx and ΔHi = ΔHi−1 ⊕DESK(P ) ⊕

3 This collision has to happen in the last message block hashed. If the message length
is say at most 2128 − 1 bits, then the last 128 bits are reserved for the message
length. Assume the first 64 bits are variable, so we can control the difference in it.
For WIDEA-4, the remaining 256-64-128=64 bits are padding. For WIDEA-8, the
remaining 1024-64-128=832 bits are padding. So, this is feasible, since we only need
nonzero difference in the most significant 64 bits, while the rest of the state has zero
difference.
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DESK(P ) = ffffffffffffffffx⊕ ffffffffffffffffx = 0, which is
a free-start collision (we have nonzero difference in both the key and the
plaintext, which corresponds to message and chaining variable). This is yet
another example of how a weakness in the key schedule turns into a weak-
ness in a hash function setting, jeopardizing potential applications of a block
cipher in a hash function setting.

7 Weak Keys

An important question to address is whether weak keys exist in WIDEA-n that
can generate the weak subkeys required in the attacks in Sect. 4, 5 and 6. Re-
calling the key schedule of WIDEA-4 in Sect. 3 and taking, for instance, the
pattern (7) repeated over six rounds, requires that the most significant fifteen
bits (corresponding to the first IDEA instance in Fig. 1) of the following subkeys
to be zero: Z0, Z3, Z6, Z9, Z12, Z15, Z18, Z21, Z24, Z27, Z30 and Z33. Satisfying
Z0, Z3 and Z6 is straightforward since they are part of the user key. There are
nine subkey conditions left. Writing down the corresponding equations in the
key schedule we got the following, where the variables in boldface are either 0
or 1. So far, we did not find any contradiction. That is, even though we could
not yet find a 512-bit user key that leads to the eleven weak subkeys, we have
found no reason these nine equations (15 )–(23) cannot be satisfied.

Z9 = (((Z8 ⊕ Z1)
16

� Z4)
16
≪ 5) ≪ 24, (15)

Z12 = (((Z11 ⊕ Z4)
16
� Z7)

16
≪ 5) ≪ 24, (16)

Z15 = (((Z14 ⊕ Z7)
16

� Z10)
16
≪ 5) ≪ 24, (17)

Z18 = (((Z17 ⊕ Z10)
16

� Z13)
16
≪ 5) ≪ 24, (18)

Z21 = (((Z20 ⊕ Z13)
16
� Z16)

16
≪ 5) ≪ 24, (19)

Z24 = ((((Z23 ⊕ Z16)
16

� Z19)
16
≪ 5) ≪ 24)⊕ C2, (20)

Z27 = (((Z26 ⊕ Z19)
16
� Z22)

16
≪ 5) ≪ 24, (21)

Z30 = (((Z29 ⊕ Z22)
16

� Z25)
16
≪ 5) ≪ 24, (22)

Z33 = (((Z32 ⊕ Z25)
16

� Z28)
16
≪ 5) ≪ 24. (23)

Assuming that the key schedule behaves as a random mapping, generating (ap-
proximately) uniformly distributed subkeys, we expect each subkey to have
equal chance to assume a value in the range [0, . . . , 264 − 1] for WIDEA-4, or
[0, . . . , 2128− 1] for WIDEA-8. Therefore, we assume each 16-bit subkey for each
IDEA instance to have approximately the same chance to have values in the
range [0, . . . , 216 − 1]. For the particular values 0 and 1 the chance is 2−16 for
each. Under these assumptions, we estimated the weak-key classes in Sect. 4, 5
and 6.
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In order to have some experimental evidence of the presence of weak subkeys,
we searched for them in mini-versions of the WIDEA-4 key schedule. Recall that
in WIDEA-4, the subkeys are 64-bit wide since each one of them has to key four
IDEA instances at once. As such, the search effort is too big even though we
are looking for a weak subkey value in a 16-bit piece of the 64-bit WIDEA-4
subkey. Taking into account that the key schedule operates wordwise, we shrank
the word size from 16 to 4 bits. So, for instance, equations such as (15) would

be modified to Z9 = (((Z8⊕Z1)
4

� Z4)
4
≪ 1) ≪ 6, where the rotation amounts

1 and 6 were chosen to match the reduced word sizes. Attack simulations on
such reduced scale equations shows weak 4-bit weak subkey values to appear for
the first IDEA instance, as expected for the attacks in Sect. 4, 5 and 6. The
same behavior was observed when the word size was reduced to 5 bits, leading

to equations such as Z9 = (((Z8 ⊕ Z1)
5

� Z4)
5
≪ 2) ≪ 7. These experiments

provide evidence that weak subkey values can and do appear in critical places
in differential and linear trails, which gives some evidence for the propagation
of differential and linear patterns.

8 Conclusions

This paper described the first differential and linear analyses of the full WIDEA-
n ciphers [6], for n ∈ {4, 8} under weak-key assumptions, both in the block cipher
and in the hash function settings. Table 1 summarizes our attack complexities
for WIDEA-n.

We exploited iterative differential characteristics and iterative linear relations
that bypassed the MDS matrices in WIDEA-n by carefully choosing trails that
input trivial differences or relations, such as (0, 0, 0, 0)t, or symmetric ones such
as (δ, δ, δ, δ)t to the MAD-boxes. The rationale is to exploit fixed points for the
MDS matrix for these particular differences and masks. This effectively means
that we found and exploited narrow differential and linear trails. This
phenomenon was observed for the AES MDS matrix, for which MDS(δ, δ, δ, δ)t

= (δ, δ, δ, δ)t. This simple observation allowed us to bypass all diffusion layers
connecting the four IDEA instances in WIDEA-4 because the exclusive-or sum of
the coefficients in the MDS matrix of AES equals one. This result does not hold
for the MDS matrix used in WIDEA-8. Our attacks exploit structural weaknesses
due to the way MDS matrices are placed inside WIDEA-n to connect n IDEA
instances. These attacks do not appply to the AES cipher [4].

Other attacks, that hold for any MDS matrix in WIDEA-n, exploit iterative
differential (and linear) patterns that avoid the MAD-boxes altogether in ev-
ery round. Such patterns cause zero input differences or zero input masks into
each MAD-box, and thus, exploit the all-zero fixed point: MDS(0, 0, 0, 0)t =
(0, 0, 0, 0)t. This approach is much more effective than the previous one because:
(i) there are many fewer weak-subkey restrictions, (ii) it applies to any MDS
matrix, (iii) we only attack one IDEA instance instead of n, which reduces con-
siderably the attack complexity and increases the weak-key class size for the
attack. The larger the value of n, the better the attacks become.
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The implications of weak differential and linear attacks are not restricted to
the block cipher setting. In [6], the authors suggested to use WIDEA-n in a
compression function in Davies-Meyer mode. Our attacks lead to semi free-start
collisions (depending on truncation of the final hash digest) or distinguishing
attacks on the compression function using WIDEA-n in Davies-Meyer mode.

Even though the weak-key classes correspond to a small fraction of the key
space, their existence implies that WIDEA-n are not ideal ciphers, and as such
cannot be used in cryptographic constructions that require tight security, in the
same way as IDEA [12].

Table 1. Attack complexities for the full 8.5-round WIDEA-n with n ∈ {4, 8}

cipher attack type complexity # weak keys comment
data time memory (‡)

WIDEA-4 DC (distinguishing) 2 CP 2 negl. 2242 see (7)
DC (key recovery)* 2 CP 225 negl. 2272 see (7)
LC (distinguishing) 32 KP 32 negl. 2242 see (11)
LC (key recovery)* 32 KP 225 negl. 2272 see (11)

WIDEA-8 DC (distinguishing) 2 CP 2 negl. 2754 see (7)
DC (key recovery)* 2 CP 224 negl. 2784 see (7)
LC (distinguishing) 32 KP 32 negl. 2754 see (11)
LC (key recovery)* 32 KP 224 negl. 2784 see (11)

CP: chosen plaintext; CC: chosen ciphertext; KP: known plaintext; *: partial key re-
covery; ‡: estimated

Open problems include: (i) how to recover the full (512- or 1024-bit) key of
WIDEA-n; (ii) find weak keys that through the key schedule algorithms lead
to weak round subkeys fitting in the requirements of our differential and linear
distinguishers.
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A Appendix

Table 2. One-round characteristics of IDEA using xor differences and δ = 8000x

1-round characteristics weak subkeys j-th round diff. in MA-box

(0, 0, 0, δ) → (δ, δ, δ, 0) Z6(j−1)+3, Z6(j−1)+5 (0, δ) → (δ, δ)
(0, 0, δ, 0) → (δ, 0, 0, 0) Z6(j−1)+4, Z6(j−1)+5 (δ, 0) → (0, δ)
(0, 0, δ, δ) → (0, δ, δ, 0) Z6(j−1)+3, Z6(j−1)+4 (δ, δ) → (δ, 0)
(0, δ, 0, 0) → (δ, δ, 0, δ) Z6(j−1)+5 (0, δ) → (δ, δ)
(0, δ, 0, δ) → (0, 0, δ, δ) Z6(j−1)+3 (0,0)→(0,0)
(0, δ, δ, 0) → (0, δ, 0, δ) Z6(j−1)+4 (δ, δ) → (δ, 0)
(0, δ, δ, δ) → (δ, 0, δ, δ) Z6(j−1)+3, Z6(j−1)+4, Z6(j−1)+5 (δ, 0) → (0, δ)
(δ, 0, 0, 0) → (0, δ, 0, 0) Z6(j−1), Z6(j−1)+4, Z6(j−1)+5 (δ, 0) → (0, δ)
(δ, 0, 0, δ) → (δ, 0, δ, 0) Z6(j−1), Z6(j−1)+3, Z6(j−1)+4 (δ, δ) → (δ, 0)
(δ, 0, δ, 0) → (δ, δ, 0, 0) Z6(j−1) (0,0)→(0,0)
(δ, 0, δ, δ) → (0, 0, δ, 0) Z6(j−1), Z6(j−1)+3, Z6(j−1)+5 (0, δ) → (δ, δ)
(δ, δ, 0, 0) → (δ, 0, 0, δ) Z6(j−1), Z6(j−1)+4 (δ, δ) → (δ, 0)
(δ, δ, 0, δ) → (0, δ, δ, δ) Z6(j−1), Z6(j−1)+3, Z6(j−1)+4, Z6(j−1)+5 (δ, 0) → (0, δ)
(δ, δ, δ, 0) → (0, 0, 0, δ) Z6(j−1), Z6(j−1)+5 (0, δ) → (δ, δ)
(δ, δ, δ, δ) → (δ, δ, δ, δ) Z6(j−1), Z6(j−1)+3 (0,0)→(0,0)
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Table 3. One-round linear relations of IDEA with γ = 1

1-round linear relations weak subkeys j-th round masks in MA-box

(0, 0, 0, γ) → (0, 0, γ, 0) Z6(j−1)+3, Z6(j−1)+5 (0, γ) → (γ, 0)
(0, 0, γ, 0) → (γ, 0, γ, γ) Z6(j−1)+4, Z6(j−1)+5 (γ, γ) → (0, γ)
(0, 0, γ, γ) → (γ, 0, 0, γ) Z6(j−1)+3, Z6(j−1)+4 (γ, 0) → (γ, γ)
(0, γ, 0, 0) → (0, 0, 0, γ) Z6(j−1)+5 (0, γ) → (γ, 1)
(0, γ, 0, γ) → (0, 0, γ, γ) Z6(j−1)+3 (0,0)→(0,0)
(0, γ, γ, 0) → (γ, 0, γ, 0) Z6(j−1)+4 (γ, 0) → (γ, γ)
(0, γ, γ, γ) → (γ, 0, 0, 0) Z6(j−1)+3, Z6(j−1)+4, Z6(j−1)+5 (γ, γ) → (0, γ)
(γ, 0, 0, 0) → (0, γ, γ, γ) Z6(j−1), Z6(j−1)+4, Z6(j−1)+5 (γ, γ) → (0, γ)
(γ, 0, 0, γ) → (0, γ, 0, γ) Z6(j−1), Z6(j−1)+3, Z6(j−1)+4 (γ, 0) → (γ, γ)
(γ, 0, γ, 0) → (γ, γ, 0, 0) Z6(j−1) (0,0)→(0,0)
(γ, 0, γ, γ) → (γ, γ, γ, 0) Z6(j−1), Z6(j−1)+3, Z6(j−1)+5 (0, γ) → (γ, 0)
(γ, γ, 0, 0) → (0, γ, γ, 0) Z6(j−1), Z6(j−1)+4 (γ, 0) → (γ, γ)
(γ, γ, 0, γ) → (0, γ, 0, 0) Z6(j−1), Z6(j−1)+3, Z6(j−1)+4, Z6(j−1)+5 (γ, γ) → (0, γ)
(γ, γ, γ, 0) → (γ, γ, 0, γ) Z6(j−1), Z6(j−1)+5 (0, γ) → (γ, 0)
(γ, γ, γ, γ) → (γ, γ, γ, γ) Z6(j−1), Z6(j−1)+3 (0,0)→(0,0)
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Abstract. Developed by Hitachi, MULTI2 is a block cipher used mainly
to secure the multimedia content. It was registered in ISO/IEC 9979 and
was patented in US and Japan. MULTI2 uses the Feistel structure and
operates on the 64-bit blocks. The encryption key has 256 bits.

This paper studies the linear analysis on MULTI2. We give a detailed
bias analysis on MULTI2 round functions. For the first time formal proofs
on their bias properties are given. This allows to find a new 4-round bias
2−2. Previously, the best 4-round bias 2−5.7 was proposed. Using our
results on the MULTI2 round functions, we propose the linear attacks
on r-round MUTLI2 to recover the encryption key. Our linear attack can
recover the 256-bit encryption key in time 246, 260.4, 283.8, 291.7, 2123.4,
2123.2 of r-round encryptions for r = 8, 12, 16, 20, 24, 28 respectively. Fur-
ther, we can recover the 32-bit sub-key in last round much faster than the
whole encryption key recovery, i.e., in time 237 for r = 8, 12, 16, 20, 24.
Note that previously, the best linear key-recovery attack was a 20-round
attack with time 293.4 (of 20-round encryptions) and data 239.2. As ISO
register recommends to use at least 32 rounds, our attacks remain to be
theoretical and do not threaten security for the practical use currently.
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1 Introduction

MULTI2 is a block cipher developed by Hitachi. It has been used mainly to se-
cure the multimedia content. It was registered in ISO/IEC 9979 in 1994 and
was patented in US and Japan [7]. MULTI2 is the only cipher specified in
Japanese standard ARIB [3] for conditional access systems. ARIB is the basic
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Table 1. Our linear key-recovery attacks on r-round MULTI2, and the time unit is
one r-round encryption

key-recovery attack r time data

[2] linear attack 20 293.4 239.2

[2] guess-and-determine attack any r 2185.4 3

[2] related-key slide attack r = 0 (mod 8) 2128/r 233

(strong assumptions on key relations)

this paper 8 246 217

this paper 12 260.4 233

this paper 16 283.8 249

this paper 20 291.7 263

this paper 24 2123.4 263

this paper 28 2123.2 263

256 bits. The ISO register recommends to use at least 32 rounds. For a survey
on backgrounds and the attacks on MULTI2, we refer to [2].

This paper gives the linear analysis on MULTI2. Our main contributions are
the following. First, we give a detailed bias analysis on MULTI2 round functions.
In particular, we give formal proofs on the bias properties for the first time. This
allows to discover new interesting results. Secondly, we give a new 4-round bias
2−2. Previously, the best 4-round bias 2−5.7 was proposed in [2]. Thirdly, using
our results on the MULTI2 round functions, we propose the linear attacks on r-
round MUTLI2 to recover the 256-bit encryption key for r = 8, 12, 16, 20, 24, 28.
In Table 1, we give our attack results and compare with the best known key-
recovery attacks [2]. Note that to recover the 32-bit sub-key in the last round
we need (time, data): (237, 212.4) for r = 8, (237, 223.8) for r = 12, (237, 235.2)
for r = 16, (237, 246.6) for r = 20, and (237, 258) for r = 24 respectively, which
are much faster than the whole key recovery. Previously, the best linear key-
recovery attack was a 20-round attack [2] with time 293.4 and data 239.2. The
rest of the paper is organized as following. In Sect. 2, we give preliminaries on
MULTI2 and review the related work. In Sect. 3, we present detailed analysis
on MULTI2 round functions with formal proofs. In Sect. 4, we give a new 4-
round distinguisher. This is the best known 4-round linear attack. We give the
key-recovery attacks on MULTI2 in Sect. 5. Finally, we conclude in Sect. 6.

2 Preliminaries on MULTI2

MULTI2 (Multi-Media Encryption Algorithm 2) is a standard balanced Feistel
structured block cipher [10]. The block length is 64 bits and each half branch
has 32 bits. The ISO register entry recommends at least 32 rounds. The round
functions are π1, π2, π3, π4 repeatedly every 4 rounds. The basic operations are
XOR (denoted by ⊕), modulo 232 addition (denoted by +) and subtraction
(denoted by −), bit-wise left rotation (denoted by ≪) and logical OR (denoted
by OR). We give detailed description and analysis on π1, π2, π3, π4 in Sect. 3.
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Fig. 1. MULTI2 encryption diagram

The 256-bit encryption key consists of k1, k2, . . . , k8 of 32 bits each. The eight
sub-keys are derived from a 256-bit system key and a 64-bit data key (see [2] for
details). In this paper, we restrict ourselves to the encryption key. Note that by
the key schedule, we always have

k4 = k2 ⊕ k3, (1)

k8 = k6 ⊕ k7. (2)

Thus, the 256-bit encryption key only consists of 32 × 6 = 192 unknown key
bits. Note that Round 1 through Round 4 use sub-keys k1, . . . , k4 and Round 5
through Round 8 use sub-keys k5, . . . , k8. The eight sub-keys are used repeatedly
every 8 rounds. Throughout the paper, let the 32-bit L0, R0 be the left half and
right half of the plaintext respectively. We let Ln, Rn denote the left half and
right half of the n-round MULTI2 output. Figure 1 shows MULTI2 encryption
diagram.

Previously, [1,2] studied linear analysis on MULTI2. Based on the 4-round bias
2−5.7 in [2], the best linear key-recovery attack [2] was proposed for 20-round
MULTI2 to recover the encryption key. For this 20-round attack, [2] proposes to
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recover k1, . . . , k4 with 32× 3 = 96 unknown bits1 all together using 239.2 data,
which needs 293.4 computations2 of 20-round encryptions.

3 Detailed Analysis on MULTI2 Round Functions

We define the bias (also called imbalance [6, page 14]) of a binary random variable
X by

bias(X)
def
= |Pr(X = 0)− Pr(X = 1)|. (3)

In this section, we discuss the bias properties for each of MULTI2 round func-
tions in details. We not only give the detailed experimental results, but more
importantly, we present formal proofs for our important results for the first time.

The round function π1 is an identity function without key mixing, π1(L)
def
= L,

which directly outputs the left half input to the right half. It is trivial to see that
regardless of the distribution of L, we always have the bias 1 for α·(L⊕π1(L)) for
any 32-bit α. Below, we discuss the bias properties for the other round functions.

3.1 Analysis of π2

The function π2 takes two inputs of 32 bits each, R and ki, and it is defined by

π2(R, ki) = (x ≪ 4)⊕ x, (4)

and
x = ((R + ki) ≪ 1) +R+ ki − 1. (5)

Previously, [2] reported the bias3 1 for 0xaaaaaaaa · π2(R, ki) by experiments.
Below, we give the complete results with formal proofs on the bias properties of
π2. Note that x as defined in (5) is not uniformly distributed assuming R, ki are
random with uniform distribution. We first analyze a simplified case, in which
we let x come from a truly random source rather than generated by R, ki.

Property 1. Given 32-bit x, let π′
2(x) = (x ≪ 4) ⊕ x. We assume that x is

random with uniform distribution. Then, the bias for α ·π′
2(x) is 1, if α is in the

set E1 defined below

{0x11111111, 0x22222222, 0x33333333,
0x44444444, 0x55555555, 0x66666666,

0x77777777, 0x88888888, 0x99999999,

0xaaaaaaaa, 0xbbbbbbbb, 0xcccccccc,

0xdddddddd, 0xeeeeeeee, 0xffffffff};
and the bias for α · π′

2(x) is 0, if α /∈ E1 ∪ {0}.
1 By Eq.(1), k1, . . . , k4 only contain 96 unknown bits.
2 Throughout the paper, we adopt the conventional time unit of one r-round encryp-
tion for time estimate of the r-round attack; this makes easy to compare with the
time complexity O(2L) of exhaustive search, where L denotes the key size.

3 Note that our definition of bias slightly differs from [2] and our bias is always twice
in quantity of that in [2]. For comparison, throughout the paper, we always cite the
reported bias results from [2] by adjusting with our definition, which is twice of [2].
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Proof. For the first half of the results, we show a more general result, i.e., the
bias for α · π′

2(x) is 1 with any distribution of x if α ∈ E1. We demonstrate with
the input mask α = 0x11111111 assuming x complies with any distribution as
follows. On one hand, we have α · (x ≪ 4) = x[28]⊕ x[0]⊕ x[4]⊕ x[8]⊕ x[12]⊕
x[16]⊕x[20]⊕x[24], where x[0] denotes the Least Significant Bit (LSB) of x. On
the other hand, we have α·x = x[0]⊕x[4]⊕x[8]⊕x[12]⊕x[16]⊕x[20]⊕x[24]⊕x[28].
Thus, we always have α · π′

2(x) ≡ 1, for any x. Consequently, α · π′
2(x) has bias

1 for any distribution of x. Our proof can be easily extended to other α’s in E1.
Meanwhile, we note the trivial case with α = 0, in which the bias is 1.

To prove the second half of the results, first, we want to show that if α /∈
E1 ∪ {0}, we have α · π′

2(x) = b · x for a nonzero 32-bit b. Let y = π′
2(x).

Let y[31] and y[0] denote the MSB and the LSB of y respectively. We have
(y[31], . . . , y[0])= (x[31]⊕x[27], x[30]⊕x[26], x[29]⊕x[25], x[28]⊕x[24], . . . , x[7]⊕
x[3], x[6]⊕x[2], x[5]⊕x[1], x[4]⊕x[0], x[3]⊕x[31], x[2]⊕x[30], x[1]⊕x[29], x[0]⊕
x[28]). And α · π′

2(x) = α · y is linear in x = (x[31], . . . , x[0]). So, there exists a
32-bit b, such that α ·π′

2(x) = b ·x for all x. We now prove b �= 0 if α /∈ E1∪{0} by
contradiction. Suppose b = 0, we have α · π′

2(x) = 0, for all x. By linear algebra,
we can check that the solution set to α ·(y[31], . . . , y[0])t = 0 for all x (where α is
the unknown variable and 0 denotes 32-bit zero vector) is E1 ∪ {0}, because the
basis for the kernel is {0x11111111, 0x22222222, 0x44444444, 0x88888888}. This
contradicts the assumption α /∈ E1 ∪ {0}. Hence, we know if α /∈ E1 ∪ {0}, then
we must have α · π′

2(x) = b · x for a nonzero 32-bit b,
Secondly, assuming x is uniformly distributed over GF (2)32, we know that

x[31], . . . , x[0] are 32 i.i.d. balanced binary random variables4. So, if b �= 0, the
bit b · x is balanced too. Consequently, we know if α /∈ E1 ∪ {0}, the bit α ·π′

2(x)
is balanced. ��

From the first half of above proof, we can immediately get the following result
for the case, in which we let x be defined in (5) by R, ki rather than come from
a truly random source.

Property 2. Assuming that R, ki are random with uniform distribution, the bias
for α · π2(R, ki) is 1 when α ∈ E1.

Further, our computation shows that the second largest bias 2−6.2 is obtained
when α is in the set E2 defined below

{0x0f0f0f0f, 0x1e1e1e1e, 0x2d2d2d2d, 0x3c3c3c3c,
0x4b4b4b4b, 0x5a5a5a5a, 0x69696969, 0x78787878,

0x87878787, 0x96969696, 0xa5a5a5a5, 0xb4b4b4b4,

0xc3c3c3c3, 0xd2d2d2d2, 0xe1e1e1e1, 0xf0f0f0f0}.

4 We call a binary random variable balanced if it is uniformly distributed. Note that
the bias for a balanced binary random variable is 0.
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3.2 Analysis of π3

The function π3 takes three inputs of 32 bits each, L and ki and kj , and it is
defined by

π3(L, ki, kj) = (x ≪ 16)⊕ (x OR L), (6)

where OR denotes the logical OR, and

x = (((y ≪ 8)⊕ y + kj) ≪ 1)− ((y ≪ 8)⊕ y + kj),

and y = ((L+ ki) ≪ 2) + L+ ki + 1.
Note that the input space of π3 has 296 possibilities. Generally speaking, a

good π3 should make it impossible to obtain bias characteristics, due to impos-
sibility of exhaustive enumeration. Nevertheless, we point out that π3 was not
well designed actually. Our experiments already confirm that the largest bias
2−2 for α · π3(L, ki, kj) is achieved when α is in the set E3 defined below

{0x10001, 0x20002, 0x40004, 0x80008,

0x100010, 0x200020, 0x400040, 0x800080,

0x1000100, 0x2000200, 0x4000400, 0x8000800,

0x10001000, 0x20002000, 0x40004000, 0x80008000}.
Property 3. Assuming that L, ki, kj are random with uniform distribution, the
bias for α · π3(L, ki, kj) is 2

−2 when α ∈ E3.
Proof. We let the function π′

3(L, u) have two inputs of 32 bits,

π′
3(L, u) = (x ≪ 16)⊕ (x OR L), (7)

where
x = (u ≪ 1)− u. (8)

According to definition of π3, it is easy to see that assuming L, u are independent
and uniformly distributed, the output distribution of π′

3(L, u) is identical to that
of π3(L, ki, kj) with L, ki, kj being independent and uniformly distributed. So, we
just need to show that when L, u are independent and uniformly distributed, the
bias for α · π′

3(L, u) is 2
−2 when α ∈ E3. For α = 0x10001, we look at this bit

β = x[0]⊕ x[16]⊕ (x[0] OR L[0])⊕ (x[16] OR L[16]). (9)

According to the two bits L[0], L[16], we have four cases.

Case One: L[0] = L[16] = 0. We have β1 ≡ 0, regardless of the values of
x[0], x[16].

Case Two: L[0] = L[16] = 1. We have β2 = x[0]⊕ x[16].

Case Three: L[0] = 1, L[16] = 0. We have β3 = x[0] (i.e., the complement
of x[0]).

Case Four: L[0] = 0, L[16] = 1. We have β4 = x[16].
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The bias for β2, β3, β4 can be obtained, because we can easily compute the bias
for x in (8) when u is uniformly distributed. Computation shows that the bias
for β2, β3, β4 is zero. As L is uniformly distributed, we have the bias for β =
(1+ 0+0+0)/4 = 2−2. For other α’s in E3, we can adjust Eq.(9) and our proof
follows similarly with the four cases. ��
Interestingly, with regards to the bias for α ·(L⊕π3(L, ki, kj)), we have the same
results.

Property 4. Assuming that L, ki, kj are random with uniform distribution, the
bias for α · (L ⊕ π3(L, ki, kj)) is 2

−2 when α ∈ E3.
Proof. Recall assuming L, u are independent and uniformly distributed, the out-
put distribution of π′

3(L, u) is identical to that of π3(L, ki, kj) with L, ki, kj be-
ing independent and uniformly distributed. Further, given L, the distribution of
π′
3(L, u) (with uniformly distributed u) is identical to that of π3(L, ki, kj) with

uniformly distributed ki, kj . Thus, we have the output distribution of π′
3(L, u)⊕L

is identical to that of π3(L, ki, kj)⊕ L with uniformly distributed inputs.
Therefore, we just need to show that when L, u are independent and uniformly

distributed, the bias for α · (L ⊕ π′
3(L, u)) is 2−2 when α ∈ E3 to complete the

proof. For α = 0x10001, we look at this bit

β′ = x[0]⊕ x[16]⊕ (x[0] OR L[0])⊕ (x[16] OR L[16])⊕ L[0]⊕ L[16]. (10)

According to the two bits L[0], L[16], we have four cases.

Case One: L[0] = L[16] = 0. We have β′
1 ≡ 0, regardless of the values of

x[0], x[16].

Case Two: L[0] = L[16] = 1. We have β′
2 = x[0]⊕ x[16].

Case Three: L[0] = 1, L[16] = 0. We have β′
3 = x[0].

Case Four: L[0] = 0, L[16] = 1. We have β′
4 = x[16].

Our computation shows that the bias for β′
2, β

′
3, β

′
4 is all zero, when u is uniformly

distributed. As L is uniformly distributed, we have the bias for β′ = (1 + 0 +
0+0)/4 = 2−2. For other α’s in E3, we can adjust Eq.(10) and our proof follows
similarly with the four cases. ��
Note that we can easily extend Property 3 and Property 4 to other symmetric
mask patterns similarly. For illustration, the results below are useful for our
attacks later (and proofs are omitted).

Property 5. Assuming that L, ki, kj are random with uniform distribution, the
bias for α · π3(L, ki, kj) and α · (L⊕ π3(L, ki, kj)) both are 2−8 when α is in the
set E4 defined by

E4 = {0x11111111, 0x22222222, 0x44444444, 0x88888888}. (11)

Note that previously, [2] reported the estimated bias 2−7.6 with α = 0x88888888
(which is in E4) by experiments. From that, [2] estimates α·(R0⊕R4) has the bias
2−7.6, when α = 0x88888888. By Property 5, it is easy to see that α · (R0 ⊕R4)
has the precise bias of 2−8 when α ∈ E4.
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3.3 Analysis of π4

The function π4 takes two inputs of 32 bits each, R and ki, and it is defined by

π4(R, ki) = (x ≪ 2) + x+ 1, (12)

and x = R+ki. The largest bias
5 for α ·π4(R, ki) is 2

−5.7 with α = 0xaaaaaaaa.
Based on that, [2] proposes the best 4-round linear distinguisher, i.e., α·(L0⊕L4)
has the bias 2−5.7 when α = 0xaaaaaaaa. Moreover, there exist 81 biases in total,
which are all larger than 2−7. For completeness, we list them in Table 2 and the
largest one is underlined.

Table 2. Complete list of all the biases α · π4(R, ki) which are larger than 2−7

α bias α bias α bias α bias

0x55555557 2−6.2 0x55555575 2−6.2 0x55555755 2−6.2 0x55557555 2−6.2

0x55575555 2−6.2 0x55755555 2−6.2 0x57555555 2−6.2 0x75555555 2−6.2

0xaaaaaaaa 2−5.7 0xaaaaaaae 2−6.6 0xaaaaaaaf 2−6.6 0xaaaaaabe 2−6.6

0xaaaaaaea 2−6.6 0xaaaaaaeb 2−6.6 0xaaaaaafa 2−6.6 0xaaaaabae 2−6.6

0xaaaaabea 2−6.6 0xaaaaaeaa 2−6.6 0xaaaaaeab 2−6.6 0xaaaaaeba 2−6.6

0xaaaaafaa 2−6.6 0xaaaabaae 2−6.6 0xaaaabaea 2−6.6 0xaaaabeaa 2−6.6

0xaaaaeaaa 2−6.6 0xaaaaeaab 2−6.6 0xaaaaeaba 2−6.6 0xaaaaebaa 2−6.6

0xaaaafaaa 2−6.6 0xaaabaaae 2−6.6 0xaaabaaea 2−6.6 0xaaabaeaa 2−6.6

0xaaabeaaa 2−6.6 0xaaaeaaaa 2−6.6 0xaaaeaaab 2−6.6 0xaaaeaaba 2−6.6

0xaaaeabaa 2−6.6 0xaaaebaaa 2−6.6 0xaaafaaaa 2−6.6 0xaabaaaae 2−6.6

0xaabaaaea 2−6.6 0xaabaaeaa 2−6.6 0xaabaeaaa 2−6.6 0xaabeaaaa 2−6.6

0xaaeaaaaa 2−6.6 0xaaeaaaab 2−6.6 0xaaeaaaba 2−6.6 0xaaeaabaa 2−6.6

0xaaeabaaa 2−6.6 0xaaebaaaa 2−6.6 0xaafaaaaa 2−6.6 0xabaaaaae 2−6.6

0xabaaaaea 2−6.6 0xabaaaeaa 2−6.6 0xabaaeaaa 2−6.6 0xabaeaaaa 2−6.6

0xabeaaaaa 2−6.6 0xaeaaaaaa 2−6.6 0xaeaaaaab 2−6.6 0xaeaaaaba 2−6.6

0xaeaaabaa 2−6.6 0xaeaabaaa 2−6.6 0xaeabaaaa 2−6.6 0xaebaaaaa 2−6.6

0xafaaaaaa 2−6.6 0xbaaaaaae 2−6.6 0xbaaaaaea 2−6.6 0xbaaaaeaa 2−6.6

0xbaaaeaaa 2−6.6 0xbaaeaaaa 2−6.6 0xbaeaaaaa 2−6.6 0xbeaaaaaa 2−6.6

0xeaaaaaaa 2−6.2 0xeaaaaaab 2−6.2 0xeaaaaaba 2−6.2 0xeaaaabaa 2−6.2

0xeaaabaaa 2−6.2 0xeaabaaaa 2−6.2 0xeabaaaaa 2−6.2 0xebaaaaaa 2−6.2

0xfaaaaaaa 2−6.2

4 New 4-Round Distinguisher on MULTI2

In this section, we discover a much larger bias (i.e., 2−2) for 4-round MULTI2
and give an improved 4-round distinguishing attack. Given the 32-bit (nonzero)
α, we study the bias (see Figure 2),

α · L0 ⊕ α · R0 ⊕ α · R4. (13)

5 Note that this bias 2−5.7 was reported in [2] without mentioning this is the largest.
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Fig. 2. The 4-round linear trail

Note that we have R0 ⊕R4 = π1(L0)⊕ π3(x, k2, k3) = L0 ⊕ π3(x, k2, k3), where
x = L0 ⊕ π2(L0 ⊕R0, k1). So, (13) is equal to α · π3(x, k2, k3). By Property 3 in
Sect. 3.2, we know when α ∈ E3, (13) produces the bias d = 2−2. This is much
larger than the best 4-round bias 2−5.7 in [2]. As a known plaintext attack, the
number N of known plaintexts required in linear cryptanalysis [8] is proportional
to d−2, where d is the bias for the linear relation. If N is taken as 2 · d−2, the
attack will be successful with very high probability. So, our new bias implies the
4-round MULTI2 distinguisher with O(25) samples. In contrast, based on the
known bias 2−5.7, the 4-round distinguisher in [2] would need O(212.4) samples.
Note that though our 4-round bias cannot be iterated, i.e., the input mask (α, α)
is not equal to the output mask (0, α) (see Figure 2), we will see in the next
section that it is useful for our key-recovery attacks.

5 Improved Key-Recovery Attacks

Given a Feistel-structured block cipher, in linear cryptanalysis, we have a biased
linear relation for k rounds, with the input masks β, α and output masks β′, α′

(for the left and right half respectively),

β · L0 ⊕ α ·R0 ≈ β′ · Lk ⊕ α′ ·Rk (14)

holds with bias d, i.e., the bit β ·L0⊕α·R0⊕β′ ·Lk⊕α′ ·Rk has bias d. Usually, we
look for the biased linear relation with β = β′ and α = α′ so that we can iterate
the linear relation (14) n times to obtain a biased linear relation for nk rounds.
That is, we have β ·L0⊕α·R0 ≈ β ·Lnk⊕α·Rnk holds with the reduced bias dn by
Piling-up lemma [8]. The biased linear relation is known to be useful to make key-
recovery attacks on (nk+1) rounds by Matsui’s algorithm 2 [8]. Its basic idea [8]
is to use this nk-round bias to construct a nk-round distinguisher, which obtains
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the nk-round outputs from the (nk+1)-round ciphertexts by exhaustively trying
all possible �-bit sub-keys in last round. Assuming that only the correct sub-key
would yield a biased nk-round linear relation (with bias dn), the distinguisher
works with O(d−2n) pairs of known plaintexts and (nk + 1)-round ciphertexts,
which allows to get this sub-key. Let N be the data complexity of the attack. The
time complexity of the original Matsui’s algorithm 2 [8] is O(2	N). For a survey
on the improved Matsui’s algorithm 2 [9] and recent optimization techniques,
we refer to [5].

5.1 Our 8-Round Key-Recovery Attack

Given the 32-bit L0, R0, L8, R8, we aim to recover k1, k2, . . . , k8. From [2], we
know α · (L0⊕L4) has the bias d = 2−5.7, when α = 0xaaaaaaaa. By Property 2
in Sect. 3.1, we know α ·π2(R, ki) has bias 1 with α = 0xaaaaaaaa. The 8-round
linear trail (see Figure 3, Appendix) allows to deduce an important property,
that is, α · (L0 ⊕ L7) (with α = 0xaaaaaaaa) has exactly the same bias d as
α · (L0 ⊕ L4). Therefore, using Matsui’s algorithm 2 [8], we recover k8, which is
used to compute π4 at Round 8 with the data complexity 2 · d−2 = 212.4. We
need time 212.4 × 232 = 244.4.

Now, starting from the recovered L7, R7, for all possible (k
′
5, k

′
6, k

′
7), when we

decrypt back from the end of Round 7 to the end of Round 4, we obtain the
corresponding L′

4. We claim that α ·(L0⊕L′
4) has the same bias d as α ·(L0⊕L7)

with α = 0xaaaaaaaa. We briefly explain the reason as follows. Let L′
i denote

the left half at Round i obtained with the sub-key candidate (k′5, k′6, k′7) by going
backward from Round 7. The Feistel structure allows to have both L7 = L′

6 and
L′
6 = L′

5 ⊕ π2(R
′
6, k

′
5) hold true always. From proofs of Property 1 in Sect. 3.1,

we know α · π2(R
′
6, k

′
5) with α = 0xaaaaaaaa has bias 1 regardless of the inputs

R′
6, k

′
5. Thus, we can deduce α · L7 = α · L′

5 = α · L′
4 holds true always for all

(k′5, k′6, k′7). Consequently, we have the equality α · (L0⊕L7) = α · (L0⊕L′
4) with

α = 0xaaaaaaaa holds true always, which completes our proof.
This important result implies that to recover k5, k6, k7, k8, we cannot directly

apply the key-recovery attack idea [2], which is based on the linear distinguisher.
This is because the correct key and all the wrong keys of the form (k′5, k

′
6, k

′
7,

k8) all produce the same sequence (of same bias d), and we cannot distinguish
the correct key (k5, k6, k7) from the wrong keys (k′5, k

′
6, k

′
7). In fact, we can

only obtain the correct k8. This serves as a counter-example of the wrong key
randomization hypothesis, which is also discussed in [4].

To solve this problem, we proceed as follows to recover the other sub-keys.
Recall the 4-round bias as mentioned in Sect. 3.2, i.e., α′ · (R0⊕R4) has the bias
d′ = 2−8, when α′ = 0x88888888. Similarly as done before, we can show that
α′ ·(R0⊕L7⊕R6) has the same bias d′ as α′ ·(R0⊕R4) (see Figure 4, Appendix).
By Eq.(2), k6, k7 only have 32 bits unknown, given k8. To recover k6, k7, which
are used to compute π3 at Round 7, we need to have data 2 · d′−2 = 217 and
time 232 × 217 = 249.

After recovering k6, k7, we obtain L6, R6. We use α′′ · (L0 ⊕ R0 ⊕ R4) with
α′′ = 0x10001 and the bias d′′ = 2−2, as introduced in Sect. 4. We get k5, which
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Table 3. Our 8-round attack details to recover k5, k6, k7, k8

step sub-keys bias used bias time data

No.1 k8 0xaaaaaaaa · (L0 ⊕ L7) 2−5.7 244.4 212.4

No.2 k6, k7 0x88888888 · (R0 ⊕ L7 ⊕R6) 2−8 249 217

No.3 k5 0x10001 · (L0 ⊕R0 ⊕R4) 2−2 237 25

is involved in π2 at Round 5 with data 2 · d′′−2 = 25 and time 232 × 25 = 237.
We give our results on recovering k5, . . . , k8 in Table 3. Similarly, we can recover
k1, . . . , k4 with obviously much less data and time costs. In total, with time
O(249) of one-round encryption (i.e., O(246) of 8-round encryptions), and data
O(217), we recover k1, . . . , k8.

5.2 Key-Recovery Attacks on Higher Rounds

Our 12-Round Attack: We can recover k4 (in Round 12) and k2, k3 (in Round
11) as we do to get k6, k7, k8 on the previous 8-round attack. To recover k1, we
note that the 4-round bias we used in above 8-round attack (as introduced
in Sect. 4) cannot be iterated for higher rounds. However, we can still use this
4-round bias to get k1 as follows. We peel off the first and last 4 rounds of the 12-
round MULTI2 by guessing k1, based on α′′ · (L4⊕R4⊕R8) with α′′ = 0x10001
and the bias d′′ = 2−2. Once we obtain the keys k1, k2, k3, k4, we can easily
recover the keys k5, . . . , k8 for the middle 4 rounds. Following the discussions
of our 8-round attack, we know the data complexity for the r-round attack, is
determined by the bias d′ for α′ · (R0 ⊕ Rr−4) with α′ = 0x88888888, based on
which we recover k2, k3 (in Round 11). For r = 12, we have d′ = (2−8)2 = 2−16.
The data complexity of the 12-round attack is thus calculated by 2×d′−2 = 233.
The time complexity of the attack is dominated by the time to get k2, k3 (in
Round 11). By (1), k2, k3 have 32 bits unknown, given k4. So, by the improved
Matsui’s algorithm 2 [9], the time complexity of the attack is 232 × 232 = 264 of
one-round encryption, i.e., O(260.4) of 12-round encryptions.

Our 16-Round Attack: We recover k6, k7, k8 (used in Round 15 and Round 16)
similarly as before. For k5 (in Round 14), we note that the previous trick used in
the 12-round attack does not work, because the first 4 rounds and last 4 rounds of
the 16-roundMULTI2 use different sub-keys. Hence, we consider to useα·(L0⊕L8)
(with α = 0xaaaaaaaa and the bias d = 2−5.7×2 = 2−11.4) and to recover k4
(Round 12) and k5 (Round 14) together. This step will take data 2× d−2 = 223.8

and time 223.8 × 264 = 287.8. After that, the attack follows the same procedure
as the 12-round attack above. For the data complexity, we note that to recover
k6, k7 (in Round 15), we use α′ · (R0 ⊕R12) with α′ = 0x88888888 and bias d′ =
(2−8)3 = 2−24. The data complexity is thus calculated as 2× d′−2 = 249. Clearly,
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the time complexity of the attack is dominated6 by the step to get k4, k5 together,
i.e., 287.8 of one-round encryption, that is, O(283.8) of 16-round encryptions.

Our 20-Round Attack: Note that the first and last 4 rounds both use
k1, k2, k3, k4. First, we obtain k4 (in Round 20) by using α · (L0 ⊕ L16) with
α = 0xaaaaaaaa and bias d = 2−5.7×4 = 2−22.8. This step takes time O(264) of
one round encryptions by improved Matsui’s algorithm 2 and data 2d−2 = 246.6.
Next, we want to get t k2, k3 with 32 unknown bits for Round 19. We take the pre-
vious approach and use α′ ·(R0⊕R16) with α′ = 0x88888888 and bias d′ = 2−32.
By Property 5 in Sect. 3.2, we know when α′ ∈ E4, the bias for α′ · (R0 ⊕ R16)
is the same d′. This allows to get k2, k3 with data 2d′−2 × 1

4 = 263 by using the
multi-bias approach. Similarly as our 16-round attack, we recover k1 (Round 18)
and k8 (Round 16) of 64 bits together. We need the data 2× (2−5.7×3)−2 = 235.2

and time 264 × 232, i.e., O(296), by the improved Matsui’s algorithm 2 [9]. We
then use our 16-round attack to recover the remaining keys. The total data com-
plexity of the attack is 263. We need total time 296 of one-round encryption, i.e.,
O(291.7) of 20-round encryptions.

Our 24-Round Attack: We get k8 in Round 24 using α · (L0⊕L20) with bias
d = 2−5.7×5 = 2−28.5. We need data 2d−2 = 258 and time 264 of one-round
encryption (i.e., 259.4 of 24-round encryptions) to obtain k8. To recover k6, k7
in Round 23, the previous approach, which is based on α′ · (R0 ⊕ R20) with
α′ = 0x88888888 and the bias d′ = (2−8)5 = 2−40, would need data amount
higher than the maximum 264. So, we propose to recover many keys together.
Due to the same reason as explained in Sect. 5.1, we cannot recover k5, k6, k7
together by simply going backwards three rounds from the end of Round 23.
However, by going backwards four rounds from the end of Round 23, we can
recover k4, k5, k6, k7 together based on α · (L0 ⊕ L19) with α = 0xaaaaaaaa
and the bias d = 2−5.7×4 = 2−22.8. With data 2d−2 = 246.6, we get k4, . . . , k7
with 96 unknown bits. We need time 296 × 232 = 2128 one-round encryptions
by the improved Matsuis algorithm 2 [9]. After that, the attack degrades to the
previous 20-round attack, which works with data 263. In total, the time cost is
2128/24 = 2123.4 24-round encryptions and the data cost is 263.

Our 28-Round Attack: If we use α · (L0⊕L24) with α = 0xaaaaaaaa and the
bias d = 2−5.7×6 = 2−34.2 to get k4 in Round 28, we need data 2d−2 = 268.4,
which is above the maximum 264. So, in our fist step, we apply the linear attack
idea [2] on 20-round MULTI2, which uses the fact that the first and last 4
rounds use same sub-keys k1, . . . , k4. So, we use α · (L4 ⊕ L24) with the bias
d = 2−5.7×5 = 2−28.5. With data 2d−2 = 257, we recover k1, . . . , k4 with 96
unknown bits. This step takes time 296 × 232 = 2128 one-round encryptions by
the improved Matsuis algorithm 2. After that, we peel off the first and last 4
rounds and the attack degrades to the previous 20-round attack, which works

6 Note that to recover k6, k7 (in Round 15) with 32 unknown bits, by improvedMatsui’s
algorithm 2 [9], we need time 232 × 232, i.e., O(264).
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with data 263 and time 296 one-round encryptions. In total, our attack works with
data 263 and time 2128 one-round encryptions, i.e., 2123.2 28-round encryptions.
Finally, we give our results in Table 1 and compare with the best known key-
recovery attacks [2] on MULTI2. It is interesting to see that for our r-round at-
tacks, the time complexities (calculated in units of one-round encryption) are the
same for r = 24, 28; further, the data complexities are the same for r = 20, 24, 28.
Meanwhile, following our discussions, recall that we can recover the last round
sub-key of 32 bits with (time, data): (244.4, 212.4) for r = 8, (255.8, 223.8) for
r = 12, (264, 235.2) for r = 16, (264, 246.6) for r = 20, and (264, 258) for r = 24
respectively. By optimized Matsui’s algorithm 2 [5], we can recover the last
round sub-key much faster than the whole 256-bit key recovery, i.e., in time
32× 232 = 237 for r = 8, 12, 16, 20, 24.

6 Conclusion

This paper studies the linear analysis on block cipher MULTI2. We give formal
proofs on bias properties of MULTI2 round functions for the first time, which
allows to discover new interesting results. Our linear attacks on r-round MUTLI2
recover the 256-bit encryption key in time 246 (for r = 8), 260.4 (for r = 12),
283.8 (for r = 16), 291.7 (for r = 20), 2123.4 (for r = 24), 2123.2 (for r = 28) of
r-round encryptions respectively. As ISO register recommends to use at least 32
rounds, our attacks remain to be theoretical and do not threaten security for the
practical use currently.
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Abstract. GOST, the Russian encryption standard, is a block cipher of
64-bit block and 256-bit key size and consists of 32 rounds. In this work,
we show that the probability that the GOST permutations produced
through random keys have at least one fixed point and exactly two fixed
points of special type are twice and five times more than those of random
permutations respectively. We utilize this property of GOST to mount a
new reflection attack on full GOST.

The reflection property on GOST was defined and exploited to mount
an attack on the full cipher by Kara [7] which was successful only for one
out of 232 keys. This property has been further studied by Courtois [1],
Dinur et al. [5] and Isobe [6]. Isobe mounted an attack that works for
any key with a time complexity of 2225 [6]. Isobe’s attack was improved
by Dinur et al. reducing the time complexity to 2192 using the whole
codebook [5]. They introduce a new version of the meet-in-the-middle
technique which they call "2-dimensional meet in the middle (2DMITM)"
attack. Their attack is based on applying 2DMITM attack on 8-round
GOST 264 times. In this work, we mount an attack with time complexity
of 2129 using 232 chosen plaintexts instead of the whole codebook utilizing
the 2DMITM attack. The main advantages of our attack is that we mount
the 2DMITM attack on 8-round GOST only twice. On the other hand,
our attack works only for the weak key set of 2192 keys, which indicates
that the security level of full GOST is equivalent to 129 bits for these
keys. In addition, we have computed the success rates of Kara attack in
[7] and our attack. We have verified our calculations experimentally.

Keywords: block cipher, self similarity, reflection attack, GOST, fixed
point, Feistel network.

1 Introduction

GOST, the Russian encryption standard, is a Feistel network of 64-bit block and
256-bit key size and the number of rounds is 32 [8]. It has a relatively simple key
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schedule. The key is divided into 8 parts and each part is used as a subkey, first 3
times in a direct order and then in a reversed order. This leads to a self-similarity
property of the cipher which we exploit to mount a reflection attack.

Several attacks have been published recently on full GOST. The first reflection
attack on full GOST exploits extending the special fixed points of the first 8
rounds that occur only for a subset of the key space, to the whole cipher [7]. The
extension of these fixed points comes from the extremely simple key schedule of
GOST. This attack works for 2224 keys with a complexity of 2192 encryptions
by using 232 chosen plaintexts. The biased distribution of fixed points through
the rounds was examined in the attack which was simply called "the reflection
property". The reflection property has been further exploited to mount several
other attacks on GOST [1,5,6].

Recently, Isobe mounts an attack on the full cipher which works for the whole
key space using the reflection property [6]. The complexity and data requirements
of the attack are 2225 and 232 respectively. Then Dinur et al. proposed an attack
on the full cipher with a complexity of 2192 and a need of 264 data [5]. In
their attack, two input/output pairs for 8-round GOST are guessed using the
whole codebook since each guess is correct with a probability of 2−64.These two
input/output pairs allow them to eliminate the possible keys to 2128 candidates
with a cost of 2128 GOST encryptions with 236 memory by mounting a meet
in the middle type attack which they call "2-dimensional meet in the middle
(2DMITM)" attack. Then, they use other pairs to check their guesses. Thus,
the total time complexity of their attack is 2192 since the 2DMITM attack is
performed 264 times. The 2DMITM technique has been further improved and
generalized by Zhu and Gong [9].

Courtois has proposed many different attacks on full GOST including some
attacks with Misztal [4,3,2,1]. Most of his attacks are collected in [1] where he
mounted several reflection and other self-similarity attacks on full GOST, some
of them works on weak keys. Courtois and Misztal mounted differential attack
on full GOST with a complexity of 2226 GOST encryptions using the whole
codebook [2]. Then, Courtois himself has further improved the time complexity
of a differential attack on GOST to 2178 [3].

In this work, we show that the probabilities of having at least one fixed point
and exactly two fixed points of a special type (whose left and right parts are
equal) for GOST are twice and five times more than the corresponding proba-
bilities of random permutations respectively. Moreover, we mount an attack on
full GOST with a complexity of 2129 encryptions using two input/output pairs
for 8 rounds obtained by exploiting this non-randomness property.

In our improved attack, we make use of only 232 chosen plaintext/ciphertext
pairs instead of the whole codebook to construct the two pairs. If there are
two fixed points having equal halves then we mount the key recovery attack.
One important advantage of our attack is that two input/output pairs of 8-
round GOST are known to cryptanalyst with very high probability. Therefore, we
perform the 2DMITM attack typically not more than twice. However, the attack
works for only 2192 keys. As a result, we have shown that GOST provides only 129
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bit security for the weak keys. In addition, the 2DMITM attack is not performed
if there isn’t a pair of suitable fixed points. The complexity of the attack is only
to examine the 232 texts in this case. Therefore our attack gives nice results in
the following realistic scenario proposed in [1]: Assume there are many distinct
keys used and the attacker tries to recover some of them. Then the complexity
of our attack to recover one key is 2.5 · 2129 + (264 − 2.5)232 ≈ 2130.3. Because,
among 264 keys, there is roughly one weak key and the attack is performed
about 2.5 times. On the other hand, if a random number generator providing
keys to GOST, produces weak keys deliberately then the security margin of
GOST declines dramatically.

We have calculated the success rate of the Kara attack on full GOST which is
left out in [7] and the success rate of our attack. We prove that the probability of
having two fixed points with equal halves is around 5·2−65 and we can recover the
key with a probability of 40% if such two fixed points occur. We have validated
these calculations by computer simulations.

The paper is organized as follows. We give a short description of GOST and
the first reflection attack on it given in [7] in Section 2. The improved attack is
stated in Section 3. Then, the success rates of both the first reflection attack and
the improved attack are computed in Section 4 and the experimental results are
depicted in Section 5. We conclude the paper in the last section with an open
question.

2 A Brief Description of GOST and the First Reflection
Attack

GOST, the Russian encryption standard [8], is a 32-round Feistel network with
64-bit block and 256-bit key length. It has a simple key schedule: 256 bit key is
divided into eight 32 bit words k0, ..., k7 and the sequence of round keys is given
as k0, ..., k7, k0, ..., k7, k0, ..., k7, k7, k6, ..., k1, k0. We do not consider details of the
round function. We only assume that it is bijective. Denote the first eight rounds
of GOST as FK [1, 8]. Note that FK [1, 8] ends with a swap operation. Then, the
GOST encryption function is given as EK(x) = FK [8, 1] ◦ S ◦ F 3

K [1, 8](x) where
S is the swap operation of the Feistel network and FK [8, 1] is the inverse of
FK [1, 8].

The first attempt to propose a key recovery attack on full GOST was the reflec-
tion attack [7]. We briefly describe this attack in this section. Assume there exists
(x, x) for x ∈ GF (2)32 such that (x, x) is a fixed point FK [1, 8]. Note that (x, x) is
also a fixed point of the swap operation S. Then, (x, x) will be a fixed point of the
encryption function EK . This observation leads to the following attack. Encrypt
all 232 plaintexts whose left and right halves are equal and collect the fixed points
in a set, say UE . If UE is empty, then the attack is not applicable. Otherwise,
for any (x, x) in UE solve the equation FK [1, 8](x, x) = (x, x) for K. Guess-
ing k0, k1, ..., k5, one can construct a two-round Feistel network with unknown
keys k6 and k7 and an input/output pair given as (FK [1, 6](x, x), (x, x)). Then,
solving the system for k6 and k7 is straightforward since the round functions
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Fk6 and Fk7 are bijective and their outputs are known. By taking the inverses
of Fk6 and Fk7 , obtain the inputs and then k6 and k7. Consequently, obtain
2192 candidates for the key by solving FK [1, 8](x, x) = (x, x). Then one can
recover the correct key by searching over all the candidates by roughly 2192

encryptions. However, it is most likely that UE is empty if there exists no fixed
point of FK [1, 8] with the equal halves. On the other hand, the expected number
of fixed points is one and the probability that any arbitrary value is a fixed
point of S is 2−32. Hence, the number of keys satisfying that ∃ x such that
FK [1, 8](x, x) = (x, x) is roughly 2224.

3 Improved Attack on Full GOST

We improve the Kara attack on full GOST given in [7] by exploiting the ad-
ditional fixed points and using the attack idea given by Dinur et al. in [5].
Dinur et al. showed that for a given two input/output pairs for 8 rounds, the
key space is diminished to 2128 with 2128 GOST encryptions using 236 memory
and the right key can be recovered by searching these 2128 by using some other
plaintext/ciphertext pairs for full GOST. The total complexity is 2192 since the
probability of finding two correct input/output pairs for the 8-round GOST is
2−64. One input/output pair produces just one guess for two pairs of 8-round
GOST and hence they use the whole codebook to produce a right pair overall.
We give our observation finding the two pairs in Theorem 1 with much less data
complexity.

Theorem 1. Assume that ∃(x, x) and (y, y) such that FK [1, 8](x, x) = (y, y)
and FK [1, 8](y, y) = (x, x) where x and y are 32-bit values. Then EK(x, x) =
(x, x) and EK(y, y) = (y, y).

Proof. Remember that EK(x, x) = FK [8, 1]◦S ◦F 3
K[1, 8](x, x). Then EK(x, x) =

FK [8, 1] ◦ S ◦ F 2
K [1, 8](y, y) = FK [8, 1] ◦ S ◦ FK [1, 8](x, x) = FK [8, 1] ◦ S(y, y) =

FK [8, 1](y, y) = (x, x). The proof for the equality EK(y, y) = (y, y) is similar.

Let us note that a more generalized property than the property given in Theorem
1 has been studied in [1] to obtain four input/output pairs for 8-round GOST.
The idea is based on forming two points of order two where one is the output
of the other for 8-round GOST. The probability that a given pair satisfies this
property is 2−127. Hence, it is expected to have one such pair among all the pairs
produced from the whole codebook. The nice property that these points provide
is that the required pair gives two more input/output pairs for 8-round GOST.
These pairs are formed by the completion of two points with their corresponding
ciphertexts. The main difference which gives us an advantage in reducing the
complexity of our attack is that four input/output pairs are not known to the
attacker in [1]. She has to try each pair as a candidate. However, in the case given
in Theorem 1, the attacker most probably knows which plaintext/ciphertext
pairs give two input/output pairs for 8-round GOST. We give these pairs a
special name since we use it through the paper.
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Definition 1. Let us call that a given pair ((x, x), (y, y)) satisfies Event-1 if
FK [1, 8](x, x) = (y, y) and FK [1, 8](y, y) = (x, x); and similarly ((x, x), (y, y))
satisfies Event-2 if the points (x, x) and (y, y) are fixed points of FK [1, 8].

Let us recall that similar to Theorem 1, we can state that a fixed point (x, x)
of FK is also a fixed point for EK . This is because (x, x) is also a fixed point of
both F−1

K and the swap operation.
The probability of Event-1 for a pair ((x, x), (y, y)) where x �= y is 1

264(264−1) .
For a fixed key, the probability that there exists one pair satisfying Event-1 is
roughly 2−65 since there are approximately 263 such pairs. Thus, only about
2256−65 = 2191 keys will produce pairs satisfying Event-1 that means we can
find two pairs for 8 rounds for 2191 keys. We expect roughly 2191 more keys that
satisfy Event-2 (none of them do not satisfy Event-1 most probably). So, there
are approximately 2192 weak keys in total.

The attack works as follows. Get the encryptions of 232 possible (x, x)’s check-
ing fix points. If there are two fixed points then these are most probably caused
due to either Event-1 or Event-2. Each event provides two input/output pairs
for 8-round GOST. The attacker checks if full GOST has two fixed points of
form (x, x) and (y, y), and if so, he applies the 2DMITM attack by Dinur et
al. for the resulting input/output pairs for 8 rounds which are ((x, x), (y, y))
and ((y, y), (x, x)) with time 2128 and 236 of memory. This produces 2128 candi-
dates for the key which are then filtered by checking with 2-3 additional plain-
text/ciphertext pairs for full GOST. If this is not successful then one needs
to run the 2DMITM attack once more this time with the input/output pairs
((x, x), (x, x)) and ((y, y), (y, y)) for 8-round GOST. Thus the number of keys
which subject to this attack and the time complexity of the attack will be 2192

and 2129 respectively.
The probability that full GOST has two fixed points of the form (x, x) is

approximately 5 · 2−65 whereas the probability that a random permutation of
64-bit block length has two fixed points of the form (x, x) is approximately 2−65.
The detailed calculations are given in Section 4.

4 Success Rates of the Attacks

In this section we give the success rates of both the Kara attack in [7] and our
improved attack. By the success rate we mean the ratio of the number of the
successful key recoveries among all the key recovery attempts. Hence, it is the
probability that FK has a fixed point of the form (x, x) when full GOST has a
fixed point of the form (x, x) for the Kara attack and the probability of having a
pair ((x, x), (y, y)), where x �= y, satisfying Event-1 or Event-2 when (x, x) and
(y, y) are fixed points of full GOST for the improved attack.

4.1 Success Rate of the First Reflection Attack on Full GOST

The success rate of the attack on full GOST is left out in [7]. Indeed, if the
function FK [1, 8] has a fixed point of the form (x, x) where the former half of
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the input is equal to its latter half, it is definitely a fixed point of the encryption
function EK . Nevertheless, the attack makes use of the opposite direction of
the statement. That is, the attack is mounted if there is a fixed point of EK ,
assuming that it is (probably) a fixed point for also FK [1, 8]. In this section, we
examine this direction and find the probability that any fixed point of EK is
also a fixed point of FK [1, 8]. Let us remark that the attack is not successful for
those fixed points of EK which are not fixed points of FK [1, 8].

Let the set of the fixed points of the form (x, x) of FK [1, 8] be UF . Recall that
UE is the set of the fixed points of EK of the form (x, x). Then, the success rate,
Pr(S), of the attack is given as the conditional probability that UF is nonempty
given that UE is nonempty. That is, Pr(S) = Pr(UF �= ∅|UE �= ∅). The following
statement gives the success rate explicitly.

Theorem 2. Assume the encryption function EK behaves randomly when the
function FK has no fixed point of the form (x, x). Then, the probability that UF

is nonempty given that UE is nonempty is

Pr(S) = Pr(UF �= ∅|UE �= ∅) = 1

1 + (1− 2−64)232
≈ 1

2− 2−32
·

Proof. We have Pr(S) = Pr(UF �= ∅|UE �= ∅) which leads to Pr(S) = Pr(UF 	=∅)
Pr(UE 	=∅)

since UF is a subset of UE. On the other hand Pr(UF �= ∅) = 1 − (1 − 2−64)2
32

and Pr(UE �= ∅) is given as Pr(UF �= ∅) + Pr(UF = ∅) Pr(UE �= ∅)|UF = ∅).
Assuming that EK is a random function when FK has no fixed point of the form
(x, x), we have Pr(UE �= ∅)|UF = ∅) = 1 − (1 − 2−64)2

32

. Hence, we calculate
Pr(UE �= ∅) as 1− (1 − 2−64)2

32

+ (1− 2−64)2
32

(1 − (1− 2−64)2
32

) which yields
to the probability

Pr(S) = Pr(UF �= ∅|UE �= ∅) = 1− (1 − 2−64)2
32

(1− (1− 2−64)232)(1 + (1− 2−64)232)
·

For the Kara attack, the key recovery attempt is successful if UF is nonempty
and hence the probability given in Theorem 2 gives the success rate of the key
recovery part of the attack. Let us remark that the success rate is very close to
one half since the value (1− 2−64)2

32

is roughly 1− 2−32. One interesting result
is that assuming that the encryption permutation EK behaves randomly when
the function FK has no fixed point of the form (x, x), then EK does not behave
as a random permutation because the probability that UE is not empty is twice
as large as the probability for a random permutation. Note that the probability
that a random permutation has at least one fixed point of the form (x, x) is
1− (1− 2−64)2

32

. The following corollary states this phenomena formally.

Corollary 1.

Pr(UE �= ∅) = (1− (1− 2−64)2
32

)(1 + (1− 2−64)2
32

) ≈ 2(1− (1− 2−64)2
32

).

which is roughly 2−31.
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4.2 Success Rate of Improved Attack

Similarly, we compute the success rate of the improved attack given in Section
3. The key recovery part of the attack is performed if there exists (at least) two
symmetric fixed points for the encryption function. The attack is mounted by
assuming that the fixed points are due to the existence of (x, x) and (y, y) such
that FK [1, 8](x, x) = (y, y) and FK [1, 8](y, y) = (x, x) (Event-1) or the existence
of two fixed points of FK [1, 8] (Event-2). However, there is a probability that two
fixed points may occur by chance also. That is, EK may have two fixed points
of the symmetric form whereas neither Event-1 nor Event-2 happened. In this
case the key recovery attack will not be successful.

Recall that we simple call the success rate of the attack as the ratio of the
attempts where the keys are recovered over all the attempts. Hence, it is the
ratio of the probability of having a pair ((x, x), (y, y)) which satisfies Event-1 or
Event-2 over the probability of having two fixed points of the form (x, x) for the
encryption function EK . Because we attempt to recover the key when there are
two symmetric fixed points for full GOST and we get exactly two input/output
pairs for 8-round GOST when these fixed points satisfy Event-1 or Event-2. We
derive this ratio in the following statements. We also show that the probability of
having two symmetric fixed points for EK is five times more then the probability
of having two symmetric fixed points for a random permutation of the same size.

Lemma 1. The probability that a given pair ((x, x), (y, y)), where x �= y, satis-
fies Event-1 or Event-2 is

1

263(264 − 1)
·

Proof. Let us recall that Event-1 is the event that FK [1, 8](x, x) = (y, y) and
FK [1, 8](y, y) = (x, x). The probability that a given pair (x, x), (y, y) satisfies
Event-1 where x �= y is

1

264(264 − 1)

since the probability that FK [1, 8](x, x) = (y, y) is 2−64 and the probability
that FK [1, 8](y, y) = (x, x) provided that FK [1, 8](x, x) = (y, y) is (264 − 1)−1.
Similarly, the probability that the pair (x, x), (y, y) satisfies Event-2 is

1

264(264 − 1)
.

On the other hand the pair ((x, x), (y, y)) cannot satisfy both Event-1 and Event-
2 simultaneously since x �= y. Hence, the probability that ((x, x), (y, y)) satisfies
Event-1 or Event-2 is

2 · 1

264(264 − 1)
=

1

263(264 − 1)
·

The following lemma gives the probability that any given two symmetric points
are the fixed points for full GOST. This probability is about five times more
than the probability for the random case.
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Lemma 2. For a given pair ((x, x), (y, y)) where x �= y, the probability that
EK(x, x) = (x, x) and EK(y, y) = (y, y) is given as

2 + 2(1− 2−64) + (1− 2−64)2

264(264 − 1)
− 2(1− 2−64) + (1− 2−64)2

2127(264 − 1)2
·

Proof. The probability that EK(x, x) = (x, x) and EK(y, y) = (y, y) can be eval-
uated when ((x, x), (y, y)) satisfies Event-1 or Event-2 and when ((x, x), (y, y))
satisfies neither Event-1 nor Event-2. Hence the probability is given as

1 · 1

263(264 − 1)
+

2(1− 2−64) + (1 − 2−64)2

264(264 − 1)
· (1− 1

263(264 − 1)
)

since both (x, x) and (y, y) are the fixed points of EK when ((x, x), (y, y)) satisfies
Event-1 or Event-2 and the probability that both (x, x) and (y, y) are the fixed
points of EK is

2(1− 2−64) + (1− 2−64)2

264(264 − 1)

otherwise. Let us recall that if neither Event-1 nor Event-2 happened then we
have either (x, x) is a fixed point of FK and (y, y) is not a fixed point of FK or
vice versa ((x, x) is not a fixed point of FK and (y, y) is a fixed point of FK) or
none of them are fixed points of FK . The probability that they both are fixed
points of EK in all three cases is

1− 2−64

264(264 − 1)
+

1− 2−64

264(264 − 1)
+

(1− 2−64)2

264(264 − 1)
=

2(1− 2−64) + (1− 2−64)2

264(264 − 1)
·

The probability of satisfying Event-1 or Event-2 is taken from Lemma 1. Then,
if we add all the probabilities we obtain the probability that both the points are
the fixed points of EK as

2 + 2(1− 2−64) + (1− 2−64)2

264(264 − 1)
− 2(1− 2−64) + (1− 2−64)2

2127(264 − 1)2
·

The following theorem is the main statement of this section. It shows the nonran-
dom selection process of GOST permutations in terms of having two symmetric
fixed points and gives the success rate of the improved attack.

Theorem 3. For a randomly chosen key K, the encryption function EK of
GOST has the following properties:

– The probability that EK has two fixed points of the form (x, x) is given as

231(232 − 1) ·
(
2 + 2(1− 2−64) + (1− 2−64)2

264(264 − 1)
− 2(1− 2−64) + (1− 2−64)2

2127(264 − 1)2

)
·

(
1− 2 + 2(1− 2−64) + (1 − 2−64)2

264(264 − 1)
+

2(1− 2−64) + (1− 2−64)2

2127(264 − 1)2

)231(232−1)−1

which is approximately 5 · 2−65.
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– Assume there are two fixed points of EK of the form (x, x) for some K. Then
the probability that these fixed points satisfy either Event-1 or Event-2 is(

1 +
264 − 1

264
+

(1 − 2−64)2

2
− 1

2127
− (1− 2−64)2

2128

)−1

≈ 0.40.

Proof. We prove the statements as we have itemized them.

– The probability that a given pair ((x, x), (y, y)) forms two fixed points of EK

where x �= y is given by Lemma 2 as

2 + 2(1− 2−64) + (1− 2−64)2

264(264 − 1)
− 2(1− 2−64) + (1 − 2−64)2

2127(264 − 1)2
·

On the other hand, for a fixed key, there are
((2322 )

1

)
= 231(232 − 1) pairs

((x, x), (y, y)) that can be produced from the symmetric points. We expect
just one pair to satisfy the fixed point condition. Hence the probability is
derived.

For the approximation, we have 231(232 − 1) ≈ 263,

2 + 2(1− 2−64) + (1− 2−64)2

264(264 − 1)
− 2(1− 2−64) + (1− 2−64)2

2127(264 − 1)2
≈ 5

2128

and

(1 − 2 + 2(1− 2−64) + (1− 2−64)2

264(264 − 1)
+

2(1− 2−64) + (1 − 2−64)2

2127(264 − 1)2
)2

31(232−1)−1

≈ (1 − 5

2128
)2

63 ≈ exp(−5/265) ≈ 1− 5

265
≈ 1

and hence if we combine all these approximations we have the probability
approximately 5 · 2−65.

– The probability that a given pair ((x, x), (y, y)) satisfies Event-1 or Event-2
given that the pair ((x, x), (y, y)) forms two fixed points for EK is given as
the ratio of the probability that a given pair ((x, x), (y, y)) satisfies Event-1
or Event-2 over the probability that the pair forms two fixed points of EK

since if the pair ((x, x), (y, y)) satisfies Event-1 or Event-2 then both (x, x)
and (y, y) are the fixed points of EK . On the other hand, the ratio is given
as the inverse of the ratio

263(264 − 1)

(
2 + 2(1− 2−64) + (1− 2−64)2

264(264 − 1)
− 2(1− 2−64) + (1 − 2−64)2

2127(264 − 1)2

)

which is equal to

1 +
264 − 1

264
+

(1− 2−64)2

2
− 1

2127
− (1 − 2−64)2

2128
·

Let us remark that this ratio is close to 2.5 since 264−1
264 ≈ 1, (1−2−64)2

2 ≈ 0.5

and 1
2127 + (1−2−64)2

2128 ≈ 0. Hence the probability is approximately 0.40.



Fixed Points of Special Type and Cryptanalysis of Full GOST 95

Let us remark that the probability that two symmetric fixed points of EK

satisfy Event-1 or Event-2 is equivalent to success rate of the key recovery part
of the improved attack. Hence the success rate of the improved attack is approx-
imately 40%. Also remark that the probability that EK has two fixed points
of the form (x, x) is roughly 5 · 2−65 which is 5 times more then that of ran-
dom permutations. Note that the probability that a random permutation has
two fixed points among 232 points of the form (x, x) is approximately 2−65 (see
Appendix). Hence we derive a distinguisher for the selection process of random
permutations through the GOST encryption by random keys.

5 Experimental Results

In this section we show the experimental results for both the Kara attack and
the improved attack.

We have computed the success rates and the probabilities of having symmetric
fixed points for minimized versions of GOST with block sizes of 16, 20, 24 and
28-bit lengths for the Kara attack and 12, 16, and 20-bit lengths for the improved
attack. The number of rounds is fixed to 32 for any block length and we use n×8-
bit key for the n-bit block length. The key is divided into 8 equal parts k0, ..., k7
and incorporated into the round function as for the original GOST function. The
experimental results verify our statements in Theorem 2 and Theorem 3.

Table 1. The expected # of fixed points and weak keys are 3200 and 1600 respectively

Block length # of keys # of keys with symmetric # of weak keys Success rate
fixed points of GOST

16 bits 100× 212 3153 1556 0.493
20 bits 100× 214 3255 1618 0.497
24 bits 100× 216 3193 1598 0.501
28 bits 100× 218 3229 1588 0.492

The expected number of fixed points of the form (x, x) for the encryption is
fixed to 3200 and the expected number of weak keys is fixed to 1600 for the first
experiment. The experimental results verify our statements for the Kara attack
as depicted in Table 1. We have seen that the probability of having at least one
symmetric fixed point for full GOST is roughly 21−n/2 (the third column divided
by the second column) and the probability that it is caused by having fixed point
in 8-round GOST is around 50% where n is the block length.

We perform another set of experiments for the improved attack. The results
are depicted in Table 2 which go along with the theoretical statements. We scan
221, 225 and 228 keys randomly for 12, 16 and 20-bit block lengths respectively.
We count the number of keys which produce two fixed points of the form (x, x)
for the encryption function EK and keys which produce pairs ((x, x), (y, y))
satisfying Event-1 or Event-2 which give weak keys. We have seen that the
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Table 2. The expected number of keys which have two fixed points

Block length # of keys # of keys with two symmetric # of weak keys Success rate
fixed points of GOST

12-bit 221 1228 526 0.428 %
16-bit 225 1312 533 0.406 %
20-bit 228 675 267 0.395 %

probability that GOST has two symmetric fixed points is around 5 · 21−n (the
third column divided by the second column) and the success rate is roughly 40%.

6 Conclusion

We show that the probabilities that a randomly chosen GOST permutation has
a fixed point and two fixed points of special type are twice and five times more
than those of a random permutation respectively. This allowed us to propose a
new attack in which the reflection property introduced by Kara occurs twice.
Our attack has a time complexity of 2129 encryptions and requires only 232

chosen plaintexts in order to break GOST for a subset of the key space of size
approximately 2192. Let us remark that 232 data is used to identify if the key
is weak. One can note that given 232 of data we can see if the key is weak very
efficiently.

The open question is how to efficiently enumerate the set of weak keys. If
it is possible to produce weak keys by a polynomial time algorithm then an
intentionally weak protocol having a random number generator which provides
weak keys to GOST can decrease the security margin of GOST to 129 bits even
though the key length is 256 bits. In addition, we have calculated the success
probabilities of the attacks given in [7] and our attack. We have validated these
calculations by computer simulations.
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A The Probability of Having Two Symmetric Fixed
Points of Random Permutations

In this section we show the probability that a random permutation of 64-bit
block length has two fixed points.

Theorem 4. The probability that a random permutation of 64-bit block length
has two fixed points of the form (x, x) is given as

231(232 − 1) ·
(

1

264(264 − 1)

)(
1− 1

264(264 − 1)

)231(232−1)−1

which is approximately 2−65.

Proof. For a random permutation of 64-bit block length, the probability that
given two distinct symmetric points are fixed points is given as

1

264(264 − 1)

and hence among 231(232 − 1) pairs, the probability that just one pair forms
fixed points is

231(232 − 1) ·
(

1

264(264 − 1)

)(
1− 1

264(264 − 1)

)231(232−1)−1

.

For the approximation we can deduce similarly that 1
264(264−1) ≈ 2−128 and

(1− 1

264(264 − 1)
)2

31(232−1)−1 ≈ exp(−2−65) ≈ 1− 1

265
≈ 1

and hence the probability will be approximately 2−65.
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Abstract. It is widely accepted that one of the principles in state-of-
the-art text-based CAPTCHA design, requires that a robust CAPTCHA
scheme be segmentation-resistant. This paper establishes the fact that
the segmentation-resistant principle does not only apply to traditional
single image CAPTCHAs, but is very much relevant to the design of an-
imated CAPTCHAs. In this paper, we show that animated CAPTCHAs
not designed with this principle in mind can be easily be broken using
simple techniques to extract individual characters from the animation
frames. We present our experimental results on attacking 13 existing
animated CAPTCHAs.

Keywords: Animated CAPTCHA, automated attack, character extrac-
tion, segmentation resistant.

1 Introduction

Since its inception, CAPTCHAs (Completely Automated Public Turing test to
tell Computers and Humans Apart) have become a vital part of protecting on-
line services against automated abuse. CAPTCHAs are essentially automated
challenge-response tests to distinguish between human users and automated
computer programs, or bots [15]. Over the years, many diverse CAPTCHA de-
signs have been proposed and implemented on the Internet. At the same time,
many techniques have been developed to successfully break various CAPTCHAs.

The success of these CAPTCHA breaking techniques are due in part to a
variety of flaws present in the design of various CAPTCHA schemes. It has been
suggested that the development of good CAPTCHA schemes is hampered by the
fact that the current collective understanding of CAPTCHAs is rather limited
[18]. As such, a number of researchers have attempted to identify some of these
design flaws in order to provide a better understanding of how to develop more
robust CAPTCHAs.
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One of the well established and widely accepted design principles for text-
based CAPTCHAs is the need for a robust CAPTCHA to be segmentation-
resistant [2]. This is because text-based CAPTCHAs typically consist of two
challenges; a segmentation challenge, followed by a recognition challenge [6]. Seg-
mentation refers to the identification and separation of a sequence of characters
into individual characters. Research has shown that computers can outperform
humans when it comes to character recognition [7]. In that respect, if a computer
program can reduce a CAPTCHA challenge to the problem of recognizing indi-
vidual characters, it is essentially broken. A number of CAPTCHAs have been
shown to be vulnerable to segmentation attacks [16,17]. Furthermore, it has been
suggested that relying on segmentation-resistance alone does not provide reliable
defense against automated attacks [5].

In light of the fact that many existing CAPTCHAs have already been broken,
a number of CAPTCHA developers have resorted to using different CAPTCHA
design paradigms. Animated CAPTCHAs is an example of a paradigm, which
relies on the mechanism of distributing the information required to solve the
CAPTCHA challenge over multiple animation frames. The addition of the time
dimension is assumed to provide better security over traditional single image
CAPTCHAs. Cui et al. [9] dubbed this the ‘zero knowledge per frame princi-
ple’ because the information required to solve an animated CAPTCHA is not
completely contained within a single image.

In this paper, we examine the security of animated text-based CAPTCHAs
and show that the segmentation-resistant principle is still one of the design
principles that apply to this type of CAPTCHA. In particular, we demonstrate
how simple techniques can be used to easily extract characters from across the
animation frames in order to break animated CAPTCHAs that are not designed
to be segmentation-resistant.

Our Contribution. Animated text-based CAPTCHAs are assumed to provide
better security over traditional single image text-based CAPTCHAs because
important information can be spread over multiple animation frames, rather
than being contained within a single image. We demonstrate how the use of
simple techniques to extract characters from animation frames can be performed
on a number of existing animated CAPTCHAs. The adopted techniques are
a generalization of those used in Nguyen et al. [13] and essentially reduce the
CAPTCHA challenge to a single image, which can easily be solved using existing
OCR (Optical Character Recognition) programs. Our results show that we can
attack these animated CAPTCHAs with a high degree of success. The purpose
of our work is to highlight design flaws in existing schemes, which should be
avoided in future animated CAPTCHA designs.

2 Related Work

The robustness of CAPTCHA schemes has been the topic of much scrutiny. Over
the years, many techniques for breaking CAPTCHAs have been developed to ex-
ploit certain design flaws in various CAPTCHA schemes. Using these techniques,
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a number of researchers have demonstrated that many existing CAPTCHA
schemes are vulnerable to automated attacks.

One of the earliest efforts in breaking text-based CAPTCHAs was put forward
by Mori and Malik [11]. In their work, they described the techniques they used
to successfully break the EZ-Gimpy CAPTCHA 92% of the time, along with the
Gimpy CAPTCHA at a success rate of 33%. The approach that they developed
is based on matching the shape contexts of characters using a database of known
objects. Since then, other techniques have also been develop to break the Gimpy
family of CAPTCHAs. For example, Moy et al. [12] used a distortion estimation
technique to break EZ-Gimpy and Gimpy-r.

In the work by Chellapilla et al. [7,8], they demonstrated that machine learn-
ing algorithms can successfully be used to break a variety of CAPTCHA schemes.
In particular, they showed that computers can perform better than humans at
the task of recognizing characters. Based on this, they postulated that since text-
based CAPTCHAs mainly consist of a segmentation challenge and a recognition
challenge, a secure CAPTCHA scheme must be designed to be segmentation-
resistant [6]. In other words, once a computer program can adequately reduce a
CAPTCHA challenge to the problem of recognizing individual characters, it is
essentially broken.

As such, it is widely accepted that a robust CAPTCHA scheme must be
designed to be segmentation-resistant [2]. However, Yan and Ahmad [17] have
shown that even carefully designed CAPTCHAs may be vulnerable to segmen-
tation attacks. In their work, they successfully broke a Microsoft CAPTCHA
by developing a low-cost attack for segmenting this CAPTCHA scheme.They
have also demonstrated that simple pattern recognition algorithms can be used
to exploit flaws and design errors in CAPTCHA schemes, thus making them
susceptible to simple attacks like counting the number of pixels to identify indi-
vidual characters [16].

In a systematic study regarding the strengths and weaknesses of text-based
CAPTCHAs, Bursztein et al. [5] observed that the segmentation-resistant princi-
ple alone is not enough to guarantee that a CAPTCHA scheme is secure against
automated attacks. In other recent work, Li et al. [10] demonstrated the use of
image processing and pattern recognition algorithms, such as k-means clustering,
digital image in-painting, character recognition based on cross-correlation, etc.
to successfully break a variety of e-Banking CAPTCHAs. The popular Google
reCAPTCHA has also been broken using a holistic approach of recognizing shape
contexts of entire words [3].

3 Our Approach

3.1 Extracting Characters

A number of animated CAPTCHAs merely rely on the addition of the time
dimension to increase the security of the CAPTCHA scheme. These animated
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CAPTCHA schemes are designed to spread the information required to solve
the CAPTCHA challenge over multiple animation frames. This is unlike tra-
ditional single image CAPTCHAs where all relevant information must to be
presented in a single image. As such, the CAPTCHA challenge in many ani-
mated CAPTCHAs is obscured in individual frames where the text characters
may only be partially visible, joined together, overlapped with extra characters
at random, and so on.

To attack this purported security mechanism, our strategy is to extract rele-
vant information from the multiple animation frames into a single image which
contains all the characters in the CAPTCHA challenge. Once this information
is extracted, the animated CAPTCHA is in effect converted into a single image
containing all the individual characters. From here, the standard techniques that
are used to break traditional single image CAPTCHAs can easily be applied to
this resulting image. Due to the fact that a number of animated CAPTCHAs
are not designed to be segmentation-resistant, the relevant characters can be
extracted using the two straightforward methods described below.

Pixel Delay Map (PDM). In various animated CAPTCHA schemes, the text
characters required to solve the CAPTCHA challenge often appear at certain
fixed locations for longer periods of time. This does not necessarily mean that
the characters themselves are not moving from frame to frame, it simply means
that their movement tends to pause or delay at specific locations long enough
to get a human user’s attention. In that manner, the noise elements and other
peripheral components can be distinguished from the main text using what we
call a Pixel Delay Map (PDM).

APDM is an image that has the same dimensions as the animated CAPTCHA’s
frame dimensions. It is constructed by accumulating the lengths of timewhere each
pixel’s color is distinct from the background. The background color is easily de-
termined for animated CAPTCHA schemes that use plain colored backgrounds,
because this can automatically be obtained by finding the most frequently used
color in each animation frame. In other schemes that use textured backgrounds,
for usability purposes the main text in the challenge is most often displayed in a
different color or luminance value from the background colors. Using a PDM, we
can obtain the total duration in which the pixels are displayed in a color that is dis-
tinct from the background. This allows us to identify text characters in animated
CAPTCHAs that appear, or pause, at certain locations for longer periods of time.

Figure 1 illustrates an example of character extraction using the PDM ap-
proach. Figure 1(a) shows six frames from an animated CAPTCHA1, which were
taken at different times during the animation with time increasing from left to
right. This looks like a moving search light that reveals different sections of the
challenge at different times. The PDM that was constructed from the animation
frames is shown in Figure 1(b). The x and y axes represent the pixel positions,
whereas the different colors represent the duration in which each pixel’s color

1 This is an example of an Animierte CAPTCHA.
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(a) Several frames from an animated CAPTCHA challenge

(b) PDM of the challenge

(c) Extracted from the PDM (d) Post-processed

Fig. 1. Example of character extraction using the PDM method

was distinct from the background. This was computed in terms of milliseconds
(ms), as depicted in the color scale on the right of Figure 1(b). The extracted
binarized image shown in Figure 1(c) was obtained by thresholding the PDM,
and the final image after a post-processing process to remove the thin lines is
shown in Figure 1(d).

Catching Line (CL). Another observed approach commonly used in animated
CAPTCHA schemes features text characters changing within a number of ver-
tical areas over the animation frames. In these cases, the text characters are
usually moved or scaled vertically within their respective columns. The reason
for restricting text characters to their allocated columns, is so that the user can
solve the CAPTCHA challenge by determining the characters in the correct or-
der. Since the text characters usually move or scale vertically, this means that
in most cases a ‘good’ image of a character can be obtained when the character
reaches a certain height. This is because the entire character typically becomes
legible as it is fully displayed at that height. For this, we define a virtual Catch-
ing Line (CL) to ‘catch’ a character (i.e. get an image of the character) when
the character is displayed at a particular height. The CL can either be defined
at a fixed position for all the characters in a CAPTCHA challenge or can adap-
tively be determined for each character based on the maximum height that each
character’s pixels reaches in the animation frames.

An example of how the CL method can be applied is depicted in Figure 2.
Figure 2(a) shows several frames from an animated CAPTCHA challenge2. In
this animated CAPTCHA, the text characters are constantly moving up from
frame to frame. Figure 2(b) in turn shows the same frames after pre-processing

2 An animated CAPTCHA from the AmourAngels website.
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(a) Several frames from an animated CAPTCHA challenge

(b) Frames after noise removal

(c) Virtual catching line and the ‘caught’ characters (in red)

(d) Moving areas identified using PDM (e) ‘Caught’ characters

Fig. 2. Example of character extraction using the CL method

to remove noise. An illustration of the virtual Catching Line (CL) that was used
to ‘catch’ the characters is shown in Figure 2(c). The CL was set to a position
1
10 th from the top of the frame. To facilitate character extraction, the movement
areas of each character can be identified using a PDM, as depicted in Figure
2(d). Figure 2(e) shows an image containing the extracted characters.

3.2 Character Recognition

Once the individual characters have been extracted into a single image, character
recognition can be performed by passing the image through any good OCR
program. In some cases, a pre-processing stage may be required to remove noise
or to increase the legibility of characters in the image before passing it through
the OCR software. This is discussed in the section to follow.

For our work, we used the ABBYY FineReader 11 Professional Edition [1],
which is widely recognized as one of the best currently available OCR programs.
The ABBYY FineReader uses a machine learning approach that can be trained
from a training set of character samples. To improve the character recognition
accuracy for some animated CAPTCHA schemes, we created a training set to be
used in conjunction with the ABBYY FineReaders’s existing embedded train-
ing database. In addition, certain CAPTCHA schemes only used a selection of
uppercase letters and/or digits. In such cases, the input language for the OCR
could be restricted to this subset.

4 Attacking Animated CAPTCHAs

The previously described PDM and CL methods were used to attack a number
of existing animated CAPTCHA schemes. These schemes are listed in Table 1,
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Table 1. Animated CAPTCHA schemes

CAPTCHA/Website
Name

URL

1 SiteBlackBox http://www.siteblackbox.com/captchaService.php

2 Animierte CAPTCHA http://www.animierte-captcha.de

3 Sandbox http://sandbox.palmnet.me.uk/gifcaptcha/index.php

4 CharitelBilling http://charitelbilling.com/login.php

5 iCaptcha http://www.icaptcha.com

6 Atlantis http://www.atlantis-caps.com/eng/7-3-contacts.php

7 AmourAngels http://members.amourangels.com/cgi-bin/login.cgi

8 SnapPages http://snappages.com/register

9 Bayu http://bayu.freelancer.web.id/blogfiles/captchaGIF

10 BulletDrive http://www.bulletdrive.com/register.php

11 CAPTCHANIM http://www.captchanim.cs.technion.ac.il

12 Dracon CAPTCHA http://dracon.biz/captcha/

13 KillBot Professional http://www.notonebit.com/projects/killbot

along with their respective URLs. Some of these are animated CAPTCHAs used
on the respective websites, whereas others are commercial CAPTCHA schemes
developed by CAPTCHA service providers. Please note that since there are too
many different CAPTCHA schemes to adequately describe in this paper, we
encourage interested readers to visit the respective websites for further details.

It has been observed that in general, an automated CAPTCHA attacking
process may consist of five generic stages: pre-processing, segmentation, post-
segmentation, recognition, and post-processing [5]. Of the animated CAPTCHA
schemes listed in Table 1, the CAPTCHA schemes on the following websites: Site-
BlackBox, Animierte, CharitelBilling, iCaptcha, Bayu and BulletDrive could be
broken by directly applying the PDM method, followed by character recognition.
The animated CAPTCHA scheme used by the SnapPages website on the other
hand, could be broken by directly applying the CL method followed by character
recognition. In other cases, some pre-processing and/or post-processing had to
be performed before and after character extraction to improve the accuracy of
the attack. The specific details for these cases are described below.

CAPTCHANIM. CAPTCHANIM was developed by a researcher at the Tech-
nion, Israel Institute of Technology. There are two versions of CAPTCHANIM,
namely, the GateKeeper and the DataProtector. The main difference between
the two versions is that GateKeeper is constructed using random characters,
whereas DataProctector is to be constructed from a user specified string (the
purpose of which to protect data against web-crawlers). As both versions are
essentially built from the same concept, we only performed our attack on the
GateKeeper version.

The GateKeeper itself has two variations. In the first variation, shown in
Figure 3(a), characters are distorted and scaled vertically in different animation
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(a) Example frames showing characters distorted and scaled vertically

(b) Characters distorted and scaled vertically, and moving from left-to-right

(c) Frame with vertical line (d) Converted frame

(e) 1st and 2nd characters ‘caught’ using the CL method (in red)

(f) Extracted image (g) Post-processed

Fig. 3. Example of character extraction using the CL method to attack CAPTCHAIM

frames. In the second variation, not only are characters distorted and scaled
vertically, they also move horizontally in and out of the frames either from left-
to-right or from right-to-left. In order for a user to identify the correct character
sequence, the start of the sequence is marked with a vertical line. Figure 3(b)
shows a number of frames depicting this, where the characters are moving from
left-to-right.

The presence of the vertical line marking the start of the character sequence
in the second GateKeeper variation, means that it can easily be converted to be
similar to the first variation. This can be done by simply swapping the contents
on the left side of the vertical line with the contents of the right, for each frame.
By doing so, the character sequence will always start on the left and no longer
moves in the horizontal direction between animation frames. An example of an
original frame is shown in Figure 3(c), whereas Figure 3(d) shows the same frame
after swapping left and right sides.

The CL method can be used to attack CAPTCHANIM by extracting char-
acters whenever they reach their highest position. The position of the catching
line can automatically be determined for each character based on the maximum
height reached by a character’s pixels. Figure 3(d) shows example frames in
which the first two characters were ‘caught’. In addition, a pre-processing step
was used before passing the extracted image to the OCR program, in order to
fill in the hollow characters in the extracted single image. This was done by per-
forming a boundary-fill in the area within each characters’ boundaries. Figure
3(d) shows an example of an extracted image, whereas Figure 3(e) shows the
results after the boundary-fill process.

In our experiments, we broke both GateKeeper variations using samples col-
lected from their website. While the developers of CAPTCHANIM allow users
to request various customizable features (e.g. number of character, image size,
font style, colors, etc.) for their animated CAPTCHA, these are essentially built
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(a) Example frames from a Dracon CAPTCHA challenge

(b) PDM of the challenge (c) Extracted image

Fig. 4. Example of character extraction using the PDM method for a Dracon
CAPTCHA

from the same underlying concepts and the same method described here can be
used to attack them.

Dracon CAPTCHA. Dracon CAPTCHAs are animated visual Flash
CAPTCHAs. The developers state on their website that their CAPTCHA scheme
addresses OCR attacks. For our study, we collected samples for Dracon
CAPTCHAv2.0 via screen recording and were able to attack these using the PDM
method. We observe that other versions of the Dracon CAPTCHA are built using
similar concepts and can thus be attacked similarly. As can be seen from the ex-
ample frames provided in Figure 4(a), DraconCAPTCHAv2.0 use five characters,
which may be letters or numbers, at fixed locations which fade and blur at various
times over the animation frames. In addition, the animation frames contain ran-
dom falling bars in the foreground and small text characters in the background.

While the Dracon CAPTCHAs use noisy backgrounds, the main text charac-
ters typically appear in a different color, usually with a brighter luminance value,
compared to the rest of the CAPTCHA. As such, the PDM method can be used
to identify the text characters that fade in and remain displayed for a period
of time, before blurring and fading out. This can be seen in the PDM shown
in Figure 4(b). Figure 4(c) in turn, shows an image of the extracted characters
obtained by thresholding the PDM.

KillBotProfessional. There are anumber of versions of theKillBotCAPTCHA.
While the static version is free, theKillBotProfessional version is a commercial ani-
matedCAPTCHA.The developers state on their website thatKillBotProfessional
is used by the United States Federal Government.

From the samples collected from their website, it was observed that the
CAPTCHA challenges consist of five characters amidst a noisy foreground and/or
background. Of these characters, some may be moving vertically up or down, oth-
ers may blur, scale and fade in and out from view, yet others may rotate. The noise
on the other hand, typically consist of small random characters moving horizon-
tally, and/or colored circles that scale whilst fading in and out (like rain drops).
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(a) Example frames from a KillBot Professional CAPTCHA challenge

(b) Vertical segmentation using the PDM

(c) 1st and 2nd characters (in red) extracted

(d) 3rd character extracted (e) Extracted image

Fig. 5. Example of character extraction for a KillBot Professional CAPTCHA

One of the characteristics of the noise is that it is very often displayed in colors
that are lighter than the main text characters.

Example frames from a KillBot Professional CAPTCHA are shown in Figure
5(a). A number of different effects can be employed for KillBot Professional. The
samples that we collected were for the version that was freely available on their
website. Nevertheless, we note that the other versions provide different noise
characteristics whilst the challenge characters are presented in a similar fashion.
In the example shown in Figure 5(a), all characters blur and fade in and out.
The first two characters move in the vertical direction, the third character scales
in size, the fourth character appears at a fixed location and the fifth character
rotates.

This CAPTCHA can be vertically segmented using the PDM to identify the
areas containing the text characters. An example of this is depicted in Figure
5(b). From the PDM, it can be seen that the characteristics of each of the
individual characters can be identified. Some characters can be directly extracted
from the PDM, for example the fourth character in Figure 5(b). Other characters
can be extracted using the CL method. Figure 5(c) shows the first and second
characters extracted using the CL method with a fixed line located at a position
1
10 th from the top of the CAPTCHA frame. In Figure 5(d), the third character
is extracted using a line determined from the highest position at which the PDM
for that character gives the highest value (as can be seen in Figure 5(b)). The
fifth character which rotates, blurs and fades in and out is ‘caught’ using the
CL method when the character’s pixels reaches its maximum height. Figure 5(e)
shows the resulting image containing all the extracted characters.
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(a) Example frames from the animated CAPTCHA used on Atlantis-caps.com

(b) PDM with overlapping regions (c) Extracted image

Fig. 6. Example of character extraction for the animated CAPTCHA used by Atlantis-
caps.com using the PDM method

Animated CAPTCHA on the Atlantis website. The animated CAPTCHA
used on the Atlantis-caps.com website3 uses a text-on-text approach. What the
user sees is a number of persistent characters over other continuously changing
background characters. Frames from an example of this animated CAPTCHA
are shown in Figure 6(a).

To extract characters into a single image, the PDM method can directly be
used. However, in some cases the characters in the extracted image may not fully
be segmented, resulting in lower accuracy when it comes to character recognition
if passed directly into an OCR program. Nevertheless, these overlapping regions
can easily be identified from the PDM because these regions have much higher
PDM values, as can be seen from the example shown in Figure 6(b). Therefore,
pre-processing the image to segment the characters can be done prior to char-
acter recognition. An example of an extracted image with separate characters is
depicted in Figure 6(c).

Animated CAPTCHA on the Sandbox website. Similar to the case of
the Dracon CAPTCHA, text characters in the animated CAPTCHA available
from the Sandbox website have a higher luminance value compared to the noise.
As such, the PDM method can be used to attack this CAPTCHA scheme. The
character extraction process is portrayed in Figure 7. Figure 7(a) shows several
frames from a sample of this CAPTCHA scheme. The PDM for this CAPTCHA
is shown in Figure 7(b) and the extracted image is provided in Figure 7(c).

Animated CAPTCHA on the AmourAngels website. As can be seen
from the sample frames for this animated CAPTCHA, shown in Figure 8(a), the
characters for this CAPTCHA scheme move vertically from frame to frame. All
characters move a vertically at a constant speed (i.e. 2 pixels per frame) and
some diagonal lines appear at random, presumably to deter segmentation.

3 This is probably the JkCaptcha, which can be found at:
http://www.kessels.biz/captcha/
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(a) Example animated CAPTCHA challenge available on the Sandbox website

(b) PDM for challenge (c) Extracted image

Fig. 7. Example of PDM character extraction for the animated CAPTCHA available
on the Sandbox website

(a) Sample frames from an animated CAPTCHA used on the AmourAngels website

(b) Example showing 2 adjacent frames (c) Noise removed

(d) Extracted image

Fig. 8. Example of character extraction using the CL method for the animated
CAPTCHA used on the AmourAngels website

These diagonal lines can easily be removed before the character extraction
process. Since all characters move from frame to frame at the same speed, whilst
noise appears at random, the noise can be removed by simply comparing two
adjacent animation frames. An example of two adjacent animation frames is
shown in Figure 8(b). In adjacent frames, pixels representing characters simply
move vertically by 2 pixel positions. All other pixels are treated as noise and can
be removed, as shown in Figure 8(c). Subsequently, characters can be extracted
using the CL method. Figure 8(d) shows the resulting image.

5 Results and Discussion

To test the accuracy of our methods, experiments were performed to attack the
animated CAPTCHAs listed in Table 1. A total of 2,600 animated CAPTCHA
samples were collected from the respective websites (i.e. 200 samples for each
of the respective CAPTCHA schemes). A summary of our results is provided
in Table 2. The table shows the breakdown of results for each of the different
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Table 2. Experimental results

CAPTCHA/
Website Name

Extracted
Image

Extraction
Method

Accuracy Average
Time

1 SiteBlackBox PDM 97.5% 0.9s

2 Animierte CAPTCHA PDM 94% 0.9s

3 Sandbox PDM 87.5% 0.6s

4 CharitelBilling PDM 79% 0.6s

5 iCaptcha PDM 23.5% 1.8s

6 Atlantis PDM 19% 2.6s

7 AmourAngels CL 47% 0.7s

8 SnapPages CL 99.5% 2.2

9 Bayu PDM 100% 0.4s

10 Bulletdrive PDM 100% 0.5s

11 CAPTCHAIM CL 21% 1.9s

12 Dracon CAPTCHA PDM 83.5% 2.1s

13 KillBot Professional PDM and CL 18% 5.8s

schemes. For each scheme, the table shows the specific method that was used to
perform character extraction. An example of an extracted image is also provided,
along with the accuracy results and the average length of time it took for our
automated attack to solve the respective CAPTCHA scheme. All experiments
were conducted on an Intel Core 2 Duo 3.33Hz PC.

Based on the observations make by Bursztein et al. [5], a CAPTCHA scheme
is deemed broken if it can be automatically solved more than 1% of the time, and
they note that it is enough to know if a CAPTCHA scheme can be broken within
the first 100 CAPTCHA samples. As such, our results show that the animated
CAPTCHA schemes used in our experiments are effectively broken. In addition,
the average length of time required to solve the animated CAPTCHAs is well
within the length of time that a human user would take to solve a CAPTCHA.

The success of our approach can mainly be attributed to the fact that these
animated CAPTCHA schemes are designed based on the assumption that the
addition of the time dimension alone sufficiently increases the security of the re-
sulting CAPTCHA. While it is certainly true that most animated CAPTCHAs
cannot be solved using a single animation frame, this does not preclude auto-
mated attacks from gathering information from multiple animation frames. In
fact, in some sense increasing the number animation frames also increases the
amount of information that can be exploited to attack animated CAPTCHA
schemes that are not well designed.
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Since a CAPTCHA scheme must be designed to be human usable, there are a
number of common features that many animated CAPTCHAs use to attract a
user’s focus of attention. This is mainly done to aid human perception in iden-
tifying the important information required to successfully solve the CAPTCHA
challenge, amidst noise and the other elements that are included to deter au-
tomated attacks. While the implementation of these features can improve the
usability of the resulting CAPTCHA scheme, several of them can also be ex-
ploited to break the CAPTCHA. In particular, some of the features exploited by
our approach of using the PDM and CL methods to extract characters include:

• Characters and positions: In a number of animated CAPTCHAs, the text
characters either remain at fixed locations over multiple animation frames,
or only change (e.g. move and/or scale) within their respective columns.
While this facilitates usability, as it is easy for a human to determine the
correct order of the character string, it also makes the resulting CAPTCHA
easier to break. Furthermore, many of the CAPTCHA scheme have a fixed
number of characters, which makes it easier to determine the correct number
of characters to extract.

• Time delays: Another feature commonly adopted is one where the impor-
tant information appears and remains displayed for a longer duration as
compared to the noise elements. This is done so that a human has time
to actually read the challenge characters before they disappear, fade out or
blur. It is particularly irritating for a user to ‘miss’ characters and be forced
to wait for the animation cycle to repeat itself, which consequently also in-
creases the length of time that the user must spend to solve the CAPTCHA
challenge. However, this disproportion in the length of time given to infor-
mation relevant to the challenge and the noise elements, allows automated
attacks to efficiently filter out the noise.

• Movement direction: In some CAPTCHA schemes, the main text charac-
ters move in a certain direction (or remain stationary) while noise and other
impediments, which may be in the form of other text characters, move in
different directions. In most cases, to maintain the correct character order,
the main characters normally only move vertically. This difference in move-
ment allows both humans and computers to distinguish between the main
characters and the noise elements.

• Color or brightness: Several animated CAPTCHA schemes use distinct
colors, or luminance values, for the main text characters. While this succeeds
in drawing the user’s attention to the main characters contained within the
CAPTCHA challenge, it also allows computers to easily filter out the other
non-important elements. In such cases, it does not even matter whether the
noise elements, the foreground or the background are changing from frame to
frame, as they are simply removed when the unimportant colors or brightness
levels are filtered out.

Not only have our results shown that naively adding a time dimension does not
improve the security of a CAPTCHA scheme, it can be seen from the exam-
ple extracted images provided in Table 2, that the resulting images are even



112 V.D. Nguyen, Y.-W. Chow, and W. Susilo

easier to break than some of the existing traditional single image CAPTCHAs.
The reasons for this are two fold. First, the absence of any attempt to include
segmentation-resistant mechanisms in the animated CAPTCHAs makes it is
easy to extract individual characters using simple techniques like the PDM or
CL methods. Standard segmentation-resistance techniques like overlapping or
crowding characters together would certainly make the character extraction pro-
cess more difficult. Second, unlike existing single image CAPTCHAs that must
rely on the use of character warping and distortion to deter automated attacks,
these animated CAPTCHAs have not really made use of such techniques. As
such, in most cases the extracted characters are clearly legible to any good OCR
program, without having to improve the quality of the image. Automated attacks
on single image CAPTCHAs may require extensive pre-processing to improve
character quality before the character recognition process.

Limitations. Other than horizontal or vertical movement, rotation is another
type of movement that can be applied to characters in animated CAPTCHAs.
While it is straightforward enough to automatically extract characters that are
rotating separately, there may be some ambiguity in the resulting extracted im-
age. In particular, depending on the extracted character’s orientation, ambiguity
arises between certain characters, e.g. ‘N’ and ‘Z’, ‘b’ and ‘q’, ‘d’ and ‘p’, ‘n’ and
‘u’, etc. The subtleties between such characters maybe recognizable by a human,
but it is more difficult for automated attacks because the extracted image may
contain noise or other impediments.

It should also be noted that in its current form neither the PDM method
nor the CL method will work in the case of animated CAPTCHA schemes that
are designed to be segmentation-resistant like NuCaptcha [14]. This state-of-
the-art animated CAPTCHA has a much better design, because characters in
NuCaptcha are constantly moving and do not remain within fixed columns. In
addition, as the characters are overlapping and crowded together, this would pre-
vent the PDM or CL methods from separating the characters. However, there
are more sophisticated attacks that have been used to successfully break Nu-
Captcha [4].

6 Conclusion

Unlike traditional visual CAPTCHAs where information required to solve the
challenge must be presented within a single image, animated CAPTCHAs
provide a mechanism for important information to be spread over multiple ani-
mation frames. In this paper we demonstrate that naively adding the time dimen-
sion alone does not make an animated CAPTCHA scheme more secure. Using
automated character extraction methods, we present our results on attacking
13 existing animated CAPTCHAs that were not designed to be segmentation-
resistant. In addition, we describe several design flaws that can be exploited in
animated CAPTCHAs and discuss various design issues that have to be consid-
ered in the design of animated CAPTCHA schemes.
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Abstract. Driven by the potential economic profits, cyber-criminals are
on the rise and use the Web to exploit unsuspecting users. Indeed, a
real underground black market with thousands of collaborating organi-
zations and individuals has developed, which brings together malicious
users who trade exploits, malware, virtual assets, stolen credentials, and
more. Among the various malicious activities of cyber-criminals, rogue
security software campaigns have evolved into one of the most lucrative
criminal operations on the Internet. In this paper, we present a novel
method to analyze rogue security software campaigns, by studying a
number of different features that are related to their operation. Con-
trary to existing data mining techniques for multivariate data, which
are mostly based on the definition of appropriate proximity measures on
a per-feature basis and data fusion techniques to combine per-feature
mining results, we take advantage of the structural properties of the
k-partite graph formed by considering the natural interconnections be-
tween objects of different types. We show that the proposed method is
straightforward, fast and scalable. The results of the analysis of rogue
security software campaigns are further assessed by a visual analysis tool
and their accuracy is documented.

Keywords: unsupervised learning, security, k-partite graphs.

1 Introduction

Over the last decade, there has been a significant shift in the nature of cy-
bercrime, from server-side to client-side attacks and from mainly destructive
(e.g. fast spreading worms) to omnivorously profit-oriented activities like iden-
tity theft, fraud, spam, phishing, online gambling, extortion [1]. It is now evident
that cybercriminals become increasingly collaborative and organized, changing
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the ways that cybercrimes are committed. Individuals with different skill-sets
join in ephemeral relationships to commit a common act and to reproduce their
skills and knowledge. All the facts and figures presented in public threat re-
ports are certainly valuable and help to shed some light on those cyber-criminal
phenomena, but a lot of unknowns remain.

Among the various malicious activities of cyber-criminals, the spreading of
fake antivirus (AV) programs stands out. Fake AV software has been utilized to
defraud millions of computer users into paying as for services that the never ac-
tually receive. Rogue security software is actually the most common form of scam
software, also called scareware, which makes use of social engineering to exploit
a computer user’s fear of revealing sensitive information, losing important data,
and/or causing irreversible hardware damage. Therefore, a fake AV program im-
personates an antivirus scanner and displays misleading or fraudulent alerts in
an attempt to dupe a victim into purchasing a license for a commercial version
that is capable of removing non-existent security threats. However, users not
only do they never receive what they have paid for, but, to make things worse,
their machines get compromised by the installed software, offering new attack
opportunities to cyber-attackers. As a result, fake AV software has evolved into
one of the most lucrative criminal operations on the Internet.

Moreover, as cyber crime is becoming more organized, new crime mecha-
nisms utilise all available means to automate their malicious activities. This
leads to patterns or fingerprints in relevant datasets that are valuable if identi-
fied. Such identification within a large set of heterogeneous data is a very difficult
and time-consuming task, particularly across layers (network transport, service,
transaction). Furthermore, Internet criminals have become adept at modifying
their strategies and tactics as new methods are developed to combat their activ-
ities. As such, the tools used to identify and characterise their activities must be
able to cope with fast-changing requirements. In order to be successful, the tech-
niques used to commit crimes need to be as automated as possible and, of course,
stealthy. This automation, by definition, leaves fingerprints that, if found, offer
valuable information for the implementation of new detection strategies or for
forensic purposes. The problem is that these fingerprints are, a priori, unknown
and hidden in a massive amount of data. However, current analysis techniques
do not allow us to automatically discover new relevant knowledge about attack
phenomena, certainly not from a strategic viewpoint.

Consequently, many open issues remain. Who is behind the deployment of
rogue AV websites, how many organized communities are responsible for them,
where do they originate, what are the emerging strategies used in cybercrime and
how do they evolve over time? Are cyber-criminals able to coordinate their ac-
tions? All previously described issues are related to a common security problem
often referred to as “attack attribution” [1]. In this paper, we present an unsu-
pervised method for root cause analysis of rogue AV campaigns, by studying a
number of different features that are related to their operation and by ascribing
large-scale attack phenomena to the same group of individuals or communities.
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Contrary to existing data mining techniques for multivariate data, which are
mostly based on the definition of appropriate proximity measures on a per-
feature basis and data fusion techniques to combine per-feature mining results,
we take advantage of the structural properties of the k-partite graph formed by
considering the natural interconnections between objects of different types.

The rest of the paper is structured as follows. In Section 2, we provide an
overview of the background work in analysis of security software campaigns.
Section 3 presents the developed method for unsupervised learning on k-partite
graphs, while Section 4 provides an overview of the analysis results. Finally,
Section 5 concludes the paper.

2 Background Work

The spreading of rogue security software has been observed as early as in 2005
[2]. A thorough description of various instances of rogue software is presented in
security industry reports [3] [4]. These studies aim to shed light on the strategies
of cyber-criminals, the prevalence of rogue AV software and its distribution mech-
anisms. In [5], [6] and [7], the authors provide a study of malicious websites and
their underground economy. Last, in the their seminal work in [8] and [9], Cova
et al. present a methodology for ascribing rogue security software websites to the
same campaign. The proposed methodology requires the definition of proximity
measures and clustering on a per-feature basis. Then, the per-feature cluster-
ing results are combined using a data fusion technique based on mutli-criteria
decision analysis. While the presented technique yields meaningful results, its
accuracy largely depends on the security analyst who has to parametrize it at
various steps.

3 Clustering Analysis Using k-Partite Graphs

The proposed clustering algorithm aims at identifying the structural properties
of graphs by applying dynamic methods based on the class of flow-based graph
clustering algorithms represented by Markov Clustering (MCL) [10]. MCL offers
several advantages in that it is an elegant approach based on the natural phe-
nomenon of flow, or transition probability, in graphs [11]. Contrary to clustering
techniques that are based on the selection of appropriate distance or dissimi-
larity metrics and on fusion of per-feature results, flow-based graph clustering
algorithms take advantage of the similarities of data instances as these are re-
flected on the structural properties of the graph (e.g. common connections).
Therefore, we extend flow-based graph clustering algorithms to search for nat-
ural groups of rogue websites (common campaign) in k-partite graphs, and we
present a number of enhancements to improve their performance, as well as
to enhance the meaningfulness of results. Their operation relies on an iterative
process which applies three operators - expansion, inflation and pruning - on an
initial transition matrix P, in alternation, until convergence.
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The merit of the proposed method compared to existing distance-based clus-
tering methods is threefold. First, defining appropriate distance measures is a
not straightforward procedure and different distance measures result in different
clustering results. On the contrary, our proposed method searches for similarities
rather than dissimilarities between data objects, by considering their intercon-
nections with respect to different features. Second, in many cases defining an
appropriate distance metric may not be feasible. For example, one cannot define
an appropriate distance metric for two blocks of IP addresses that belong to the
same ISP but are located far apart in the IP space. The proposed method does
not take into account the actual IP address, but the interconnections of rogue
websites with different IP addresses and, therefore, it can capture the case of
different IP blocks belonging to the same ISP. Last, our method can work with
categorical, numerical, ordinal and binary data without requiring complex data
transformations which usually depend of the security analyst’s knowledge and
expertise.

The security problem of rogue AV websites analysis involves data objects of
multiple types that are related to each other, which can be naturally formulated
as a k-partite graph. For example, rogue websites are related to malware types,
geolocation of the websites, IP address of the website and the nameserver, etc.
However, the research on mining the hidden structures from a k-partite graph
is still limited and preliminary. Therefore, our research work aims at proposing
a principal framework for unsupervised learning on k-partite graphs of vari-
ous structures. Under this model, we derive a novel algorithm to identify the
hidden structures of the graph by identifying strongly connected nodes, using
neighbourhood information. The strength of our approach resides in its ability
to incorporate multiple features, searching for clusters in the multidimensional
space.

3.1 Problem Definition

A k-partite graph is a graph where nodes can be divided in k disjoint groups
(V0, . . . , Vk−1), such that no edge connects the vertices in the same group. More
formally, a k-partite graph G is defined as G = 〈V0 ∪ . . . ∪ Vk−1, E〉, where

Vl = {ni|1 ≤ i ≤ Nl}, ∀l ∈ [0, k − 1], and E ⊂
k−1⋃
l=1

{V0 × Vl} as shown in Fig. 1.

We assume an edge-weighted directed k-partite graph. Moreover, nodes in
V0 (white circles in Fi. 1) correspond to rogue security software websites, while
nodes in Vl, l ∈ [1, k − 1] (coloured circles) correspond to feature values of a
specific feature. Nodes in Vl 	=0 can have connections only to nodes in V0.

Given a query node ni in Vl, l ∈ [0, k− 1], our clustering algorithm computes
an attractor node. All nodes that are attached to the same attractor node belong
to a single cluster. Based on the graph structure, the attractor node can be either
a rogue website or a feature value of any given feature. Nodes that belong to
the same group Vl have the same type; it is the connections between the k types of
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Fig. 1. A 6-partite graph. White circle nodes in the middle represent rogue security
software websites. The nodes corresponding to the feature values of 5 different features
are placed on the sides of a pentagon using different colouring schemes. Feature values
can be connected only to rogue websites and not with each other.

objects that hold the key to mining the hidden structures in the k-partite graph.
Given the natural inter-group connections (between Vl and Vm), our objective is
to discover the intra-group relationships, such as the clusters within the group.
An effective mining algorithm should thus be able to utilize these links across the
(k − 1) natural groups that are formed by considering the connections between
rogue websites and each of the (k − 1) features.

3.2 Building the k-Partite Graph

The subgraph Gl formed by considering nodes only in V0 and Vl, l ∈ [1, k − 1],
can be conceptually stored in a N0-by-Nl matrixMl, whereMl(i, j) is the weight
of the edge 〈i, j〉. The nodes in V0(Vl) are called row (column) nodes. Note that
a column node links to a row node if the corresponding matrix element is not
zero. Moreover, row node ni connects to another row node nj if there is a column
node c linking to both ni and nj . We call that path a connection between ni

and nj through c. Nodes ni and nj can have multiple connections via different
column nodes.
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For each subgraph Gl, l ∈ [1, k − 1], we can construct the adjacency matrix
Al of Gl using Ml:

Al =

(
0 Ml

MT
l 0

)

In particular, Al(i, j) denotes the element at i-th row and j-th column in Al.
Suppose we want to traverse the subgraph starting from the row node ni. Then,
we have to transform matrix Al into a transition matrix Pl, such that the sum
of the probabilities of taking an edge 〈i, j〉, starting from the row node ni, does
not exceed 1. Therefore, the most common approach is that, for each row node
ni, the normalization of the weight of any edge 〈i, j〉 is proportional to the edge
weight over all the outgoing edges from ni. More formally:

Pl(i, j) =
Al(i, j)

Nl∑
m=1

Al(i,m)

and

Pl =

(
0 M′

l

M′T
l 0

)

Then, by considering the transition matrices Pl corresponding to each subgraph
Gl, we can construct the transition matrix P of G as follows :

P =

⎛
⎜⎜⎜⎜⎜⎝

0 M′
1 M′

2 . . . M′
k−1

M′T
1 0 0 . . . 0

M′T
2 0 0 . . . 0
...

...
...

. . . 0
M′T

k−1 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

3.3 Clustering Formation

To find the hidden clusters in a graph we make use of Markov Clustering (MCL)
algorithm which is based on (stochastic) flow simulation. This algorithm shares
the ideas behind random walks. However, unlike random walks which compute
a relevance score from a given node in a group to any other node in the group,
MCL aims at calculating an “attractor” node, by which all nodes belonging to
the same cluster will be attracted.

The MCL algorithm is an iterative process of applying three operators - ex-
pansion, inflation and pruning - on an initial transition matrix P , in alternation,
until convergence. Each of these steps is defined below:

The expansion step requires that matrix CN×N, which will finally hold the
attractor nodes for each node ni, is multiplied with the transition matrix P:

C = P ·C (1)
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The ith row of matrix C can be interpreted as the final distribution of a random
walk of length 1 starting from node ni, with the transition probabilities of the
random walk given by P.

The inflation step requires raising each entry in the matrix P to the power r
and then normalizing the rows to sum to 1.

C(i, j) =
C(i, j)r∑N

m=1 C(i,m)r
(2)

The inflation step has the effect of strengthening intra-cluster flow and weakening
inter-cluster flow, by reducing the probability of visiting nodes that do not belong
to the same cluster. This is due to the fact that there are more paths between
two nodes that are in the same cluster than between those in different clusters
and, therefore, there is a higher probability of visiting the inter-cluster nodes.

Last, the prune step removes the entries below a threshold q:

C(i, j) =

⎧⎨
⎩0 , if C(i, j) ≤ q · n

max
j=1

{C(i, j)}
C(i, j) , otherwise

(3)

Then, the retained entries are rescaled to have the row sum to 1. This step is
primarily meant to reduce the number of non-zero entries in the matrix and
hence save memory.

4 Experimental Results

The set of studied rogue AV domains is built by aggregating information from
a number of different sources [8]. The considered dataset consists of 5, 852 DNS
entries, collected in July and August 2009, pointing to 3, 581 distinct IP addresses
hosting rogue AV servers. It is worth noting that at least 45% of these domains
were registered through just 29 out of several hundred existing domain registrars.

To study the dynamics of rogue domains and their relation with the associ-
ated web servers, we make use of the data collected by HARMUR (HARMUR,
a Historical ARchive of Malicious URLs), which enables us to study the relation
between client side threats and the underlying server infrastructure, and their
evolution over time [12]. The HARMUR dataset was developed by Symantec in
the context of the WOMBAT EU-FP7 project [13] and extended in the frame-
work of the VIS-SENSE EU-FP7 project [14] where Symantec is also involved in
as a key partner. Instead of developing new detection technologies (e.g., based
on honeyclients, or special web crawlers), HARMUR integrates multiple infor-
mation sources and takes advantage of various data feeds that are dedicated to
detecting Web threats. By doing so, HARMUR aims at enabling the creation of
a “big picture” of the client-side threat landscape and its evolution.

4.1 Feature Selection

HARMUR collects a number of features associated with each rogue AV domain
described in the following list:
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– Geolocation (FGeo). The country in which the web server of the domain is
located.

– ASN (FASN ). The number of the Autonomous System associated with the
web server IP address.

– Registrant email address (FRegn). The email address provided upon regis-
tration of the domain.

– Registrar (FRegr). The organization which registered the domain.
– Creation date (FCD). The date that the domain was registered.
– Web Server IP address (FIP ). The IP address associated with the domain.
– Class C (FIPC ) and Class B (FIPB) subnets of Web Server IP addresses. To

allow the identification of servers belonging to the same infrastructure, the
/24 and /16 network prefix of each IP address is extracted.

– Web Server version (FV er). The version of the web server of the domain.
– Nameserver IP address (FNS). The IP address of the authoritative name-

server(s).
– Registered domain name (FDom). The domain name can reveal common

naming schemes.

Among the different information tracked through HARMUR, we select a number
of features that we believe to be likely to reveal the organized operation of
one specific individual or group. Therefore, we define the following feature set:
F = {FRegn, FNS , FIP , FIPC , FIPB}, which will be used by the proposed method
to link rogue domains to the same campaign.

Moreover, the set F ′ = {FGeo, FASN , FRegr , FCD, FV er, FDom} of the remain-
ing features is used to validate the accuracy of our results. Indeed, rogue domains
that are grouped in a single cluster should exhibit high homogeneity in terms
of their location, the associated AS number, the registrar of the domain and
the version of the webserver they are running on. Moreover, rogue domains that
are linked to the same campaign are probably registered on the same dates and
the domain names should follow similar patterns. This is due to the fact that,
cyber-criminals registering a high number of rogue domains try to automate
their methods in order to save time and increase their revenue.

4.2 Cluster Analysis

The 12-partite graph that is constructed by considering each of the 11 features
is shown in Fig. 2. The graph is positioned using a force-directed algorithm.
Force-directed algorithms aim at positioning the vertices of a graph in such a
way that preserves the structure of the high-dimensional data as possible in
the 2-dimensional space. Therefore, two nearby vertices on the 2-dimensional
space have highly similar feature vectors, whereas two distant points should
have nothing in common. This allows us to visualize the high-dimensional data
set, but also to assess the consistency of the obtained clustering results.

However, the visual clusters formed by the force-directed algorithm should
not be considered as indicative of the actual clusters in the dataset for a number
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Fig. 2. The k-partite graph comprising of nodes corresponding to both websites and
feature values positioned with a force-directed layout algorithm

of reasons. First, the force-directed algorithm takes into account the connections
to all features and not only to the features in set F . Second, the force-directed
algorithm does not take into account the weight assigned to each feature. Last,
force-directed algorithms are known to converge to local minima, which results
in sub-optimal positioning of the vertices in a graph.

The weights assigned to each feature in set F is given by vector w:

w = [0.35, 0.2, 0.2, 0.15, 0.10]

In our discriminant analysis, we assign a higher weight to features FRegn, FNS

and FIP , since these specific features will yield a high probability that correlated
rogue sites are likely due to the same campaign. On the other hand, by assigning
lower weight to features FIPC , FIPB we give them a little less confidence, since
these features are redundant with feature FIP . The inflation parameter r and
the cutting threshold q were set equal to 1.15 and 0.01 respectively.

Fig. 3 shows the results of the clustering analysis, where a different colour
is used to represent a single cluster. The comparison of clusters corresponding
to the results of the force-directed algorithm (position in the 2D space) with
clusters corresponding to the results of our cluster analysis (colouring scheme)
validate the accuracy of our method. The colour mapping allows us to have a
clear overview of the coherency and high homogeneity of each cluster. Moreover,
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Fig. 3. Results of the clustering analysis. Only nodes corresponding to websites are
depicted.

to gain insight into the root causes of each rogue AV campaign, we have to look
at the contribution of each separate feature in the formation of clusters.

Indeed, from our clustering analysis, it is evident that, as far as the features
in set F are concerned, one or a few clusters of the separate features contribute
to the formation of a single cluster in the big graph. This is not always the case
with features in set F ′, where a single cluster of the separate features is related
to multiple clusters in the big graph. For example, rogue websites located in
the USA belong to many different clusters, meaning that many different rogue
campaigns are hosted in the USA. By paying special attention to the contribution
of each separate feature in the formation of clusters, our clustering analysis
allows us to make an interesting observation. For a specific campaign, although
the rogue websites address Chinese people, as it is made obvious by the “.cn”
extension of their domains, the websites themselves are hosted either in the USA
or in Germany.

5 Conclusion

In this paper, we presented an unsupervised method for learning on k-partite
graphs for the analysis of rogue AV campaigns. The proposed method takes
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advantage of the structural properties of the k-partite graph formed by consid-
ering the natural interconnections between objects of different types. We showed
that the proposed method is straightforward, fast and scalable. The results of
the analysis of rogue security software campaigns were further assessed by a
visual analysis tool where their validity was documented.
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Abstract. The mobile computing world is undergoing major changes
both in the capability as well as in the proliferation of mobile devices.
While, up to now, mobile malware has played a relatively small role com-
pared to the behemoth of desktop malware, the changing environment
is steadily increasing the attractiveness of mobile devices as exploitable
resources. The increased usage and connectivity of mobile devices opens
up a much larger set of attack vectors to compromise them. In this paper,
we adapt the evil twin rogue access point attack to the mobile domain
and show how it can be used to create a mobile malnet, which is capable
of spreading epidemically. We implemented the key components of the
concept for the iPhone to study its properties in a laboratory environ-
ment. To demonstrate the dangers which come along with this kind of
attack we simulate a metropolitan area and show how fast a malware
can spread in a mobile environment.

1 Introduction

Researchers have predicted the epidemic spread of mobile malware many times
in the last decade. However, a true outbreak of mobile malware has not occurred
in the wild yet, leading to a certain level of complacency towards the threat of
mobile malware.

That mobile devices have not been targeted in the past is partly due to the
fact that the proliferation and capabilities of mobile devices were so limited that
they were consequently also only of limited use to attackers. Compared to the
effectiveness of Wi-Fi desktop worms with epidemic qualities such as the wildfire
worm presented by Akritidis et al. [1] the capabilities of worms for mobile phones
have been relatively small.

However, several key factors in mobile computing have changed in recent
years, significantly altering the playing field and giving rise to a new threat
of mobile malware [2]. The proliferation and capabilities of mobile, networked
devices has increased markedly and the mobile phone has become the central
digital hub of our lives, storing personal information, multimedia content as well
as offering access to social networks, online banking, work networks and a host of
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other functionality. This increases both the value as a target as well as the attack
surface. Recent work has also shown the potential dangers of mobile malnets [3].
Malnets are botnets created from routers, cellphones, and other non-traditional
computational Wi-Fi devices. The main focus of malnet research has been in the
area of router attacks, such as presented by McDaniel [4].

In this paper we show how recent advances in mobile devices can be used to
combine the most dangerous aspects of these two worlds - mobile malnets and
Wi-Fi worms. We will show how the inclusion of mobile hotspot capabilities in
virtually all new mobile devices opens the door to leverage the evil twin attack1

to create a mobile malnet capable of spreading from device to device. Unlike in
previous work we do not require vulnerabilities in the Wi-Fi access points, nor
it is a problem that most private and corporate Wi-Fi networks now use WPA
to encrypt their traffic. To test the feasibility of our approach we implemented
the key components needed to create the malnet for iOS. In lab experiments we
analyze the basic parameters and requirements of this malware mechanism and
measure infection and propagation times in a controlled environment.

The rest of the paper is organized as follows: In section 2 related work in
the field of mobile malware and evil twins is presented. Section 3 describes how
mobile evil twin malnets work and which weaknesses of todays smartphones
are utilized to render this type of attack possible. Additionally our prototypical
implementation is described in-depth. In Section 4 we present the simulations
we used to study the spreading characteristics, their assumptions and results.
Section 5 concludes the paper and gives an overview of possible future work in
this research area.

2 Related Work

There is a large body of related work discussing the spread of mobile device
malware. Most of this work [5,6,7,8,9,10,11] relies on Bluetooth or user errors as
an infection vector. One prominent example for Bluetooth-based worm research
is described in a paper from Wang et al. [12] where they analyzed the spreading
patterns of mobile viruses. They considered Bluetooth and multimedia messaging
as distribution channels for this kind of worms. They predict serious threats to
mobile phones once an operating system reaches high enough market shares.
How vulnerable even feature phones2 are, is shown in the work by Collin et al.
[11]. They studied the vulnerabilities of these mobile phones and possible attacks
against the mobile network using SMS and Bluetooth.

In 2007 Akritidis et al. [1] presented a simulated study of Wi-Fi-based mal-
ware in metropolitan area networks. The work explores the idea to utilize the
proximity of Wi-Fi routers to spread malware. Akritidis et al. present two modes

1 Evil twin is a term for a malicious Wi-Fi access point that appears to be a legitimate
one by spoofing its SSID.

2 Phones that are not considered to be smartphones, but have additional functionality
beyond standard mobile services.
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of infection labeled push and pull. Push infection resembles traditional worm
infection methods most closely. With push infection a vulnerability in a device
connected to a vulnerable hotspot is exploited to infect that device, which then
goes on to infect further devices. The second method is the pull method. In this
case the infected node waits for a device connected to a vulnerable access point
to make some form of network request and then injects the worm code into this
connection. The advantage of this method is that instead of relying on a service
vulnerability, the attacker exploits vulnerabilities, such as browser vulnerabilities
which are much more frequent and patched at a slower rate. In the studies case
both the push and the pull method rely on visible, open and unencrypted access
points to launch the attacks against other connected devices.

Another source of related work and inspiration for our work are malnets.
Malnets are botnets created from non-traditional Wi-Fi devices such as mobile
phones, but in particular wireless routers. In their work McDaniel [4], Hu et al.
[13] and Traynor et al. [14] show that traditional network routers can be used to
build up large malnets in areas with a high density of routers. The attack uses
weak or default passwords to compromise wireless routers, which are in range,
which then in turn attempt to infect other vulnerable routers in range. They
developed epidemiological models and showed that in densely populated areas
with enough vulnerable routers an epidemic spread of the malnet is completed
within hours. While not strictly being a malnet the research presented by Akri-
tidis et al. above has similar properties. But since these works only consider
static environments where APs themselves have to be infected we describe in
this work a new kind of infection and explore an alternative route to creating
malnets, which does not require vulnerable routers.

The attack vector we utilize is based on the evil twin attack presented by
Bauer et al. [15]. They showed that it is possible to trick a wireless client into
associating with a rouge (evil twin) access point. The paper describes how an
attacker can execute MITM attacks against selected victims by tricking them
into connecting with the evil twin hotspot instead of the legitimate one. While
this was viable and serious even then, it did not receive a great deal of atten-
tion. We assume this lack of interest was due to the fact that at the time of
the attack it was only discussed in the context of infrastructure-based Wi-Fis,
where targeted attacks against specific locations were the goal. The proliferation
of WEP, WPA/WPA2 made this attack significantly harder in most scenarios.
Also the effort of setting up the evil twin and the targeted nature of the attack
reduced the mass-effect of the approach. The changes in the mobile computing
landscape and our research into extending this attack by leveraging the capa-
bilities of current smart mobile devices to create a potentially massive mobile
malnet increases the threat significantly.

3 Mobile Evil Twin Malnets

In this section we show that the currently dormant threats shown above can
be combined and extended to once again be a serious threat in the new mobile
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computing landscape. There are two key factors which enable the approach pre-
sented in this paper; the proliferation of Universal Authentication Mechanism
(UAM) Wi-Fi hotspots [16] accessed through captive portals and the capability
of modern smart mobile devices to act as a mobile hotspot. Before we present
the concept of the mobile malnet, we discuss the usage and security environment
which has now made this type of malware possible.

3.1 Wi-Fi Hotspot Usage and Security

Wi-Fi access has become a commodity service in most urban areas, such as
malls, coffee shops, hotels, airports and other public locations. A relatively small
number of Wireless Internet Service Providers (WISPs) offer Wi-Fi access for
either ad-hoc usage or bundled with other services such as mobile phone plans.

While most Wi-Fi routers now usually come pre-configured with WPA/WPA2
or similar channel encryption mechanisms, public Wi-Fi is often unencrypted.
The lack of channel encryption for public Wi-Fi is mostly due to the fact that
WISPs have not found a way to incorporate the necessary configuration steps
into their business and usage model. While the lack of encryption brings with
it a number of security problems such as impersonation, credential theft and
other violations of a Wi-Fi user’s privacy, the lack of strong mutual authentica-
tion during the connection to a public Wi-Fi hotspot and the unsecured use of
SSIDs (Service Set Identifiers) for both ESS (Extended Service Set) and IBSS
(Independent Basic Service Set) networks is the main problem.

In most public Wi-Fis authentication of users is handled by the UAM. With
UAM, any device is allowed to associate with the Wi-Fi access point (AP) and is
issued an IP address and other network information such as the standard gateway
automatically via DHCP. After association, the user opens a web browser and
enters any URL. A transparent HTTP proxy (also called captive portal) on
the AP (or the underlying infrastructure) captures the request and redirects
it to a login page. In the case of free Wi-Fi, the user is usually just required
to accept the terms of use; in the case of subscription or pay-as-you-go Wi-Fi
the user needs to provide valid credentials or purchase access on the fly. The
credentials entered in the login form are forwarded to a back-end processing
facility (AAA server, credit card processor, etc.) and after successful validation
the user’s session is started. Now the user’s primary HTTP request is sent and
the response is delivered to the user. Critically, the content of this portal is
controlled entirely by the WISP. Later in this paper we will show that this issue
creates several dangerous problems.

Today there is no practical way to authenticate APs wherefore it is neither
mandatory nor automated and common. If at all, it needs to be performed by the
user checking a SSL/TLS certificate. Unlike the use of certificates in traditional
client/server Internet applications (which also can be fraught with difficulty),
this measure has very little security effect in practice, when applied to hotspot
security. SSL certificates are issued for a FQDN (fully qualified domain name).
However, since there is no verifiable or even any form of specified link between
the FQDN and the SSID, the certificate-based approach is not feasible. Thus,



130 C. Szongott, B. Henne, and M. Smith

the vast majority of users will not be able to associate a hotspot SSID with the
”correct” host name for the hotspot’s authentication service.

The final problem in current Wi-Fi security is the fact that for increased
usability many mobile devices are configured to automatically connect to known
Wi-Fi hotspots, where ”known hotspot” is defined only by the SSIDs being equal.
Since SSIDs are not authenticated this opens up the possibility of the evil twin
attack [17].

3.2 Mobile Evil Twin Attack

If a device has been connected to a hotspot with a given SSID at any time in the
past, it is susceptible to an ”evil twin” attack. An attacker positioned outside the
Wi-Fi range of the real hotspot or with a stronger signal can create an evil twin
hotspot by spoofing its SSID. In the previous section, we showed that there is
currently no practical way for users of a UAM-enabled Wi-Fi hotspot to reliably
determine its authenticity. So if an evil twin broadcasts a ”known” SSID and
a device connects to it, the evil twin is then capable of executing man in the
middle attacks (MITMAs) against that device. In this paper we introduce an
adaptation of the evil twin attack to create a far more potent attack type, the
Mobile Evil Twin attack (MET). Unlike the evil twin attack, the MET does not
aim at subverting a specific AP to carry out targeted attacks, but to misuse the
UAM weaknesses as an infection channel and replicate itself.

In order to spread, any malware needs to find vulnerable hosts and an infection
vector. The environment described above offers both. In a lot of countries, mobile
hotspots are ubiquitous in many establishments like Starbucks, Barnes&Noble
and McDonald’s. These hotspots usually have a single SSID per brand to al-
low customers to easily connect to hotspots across any of their locations. In
some cases even the WISP’s default SSID is used (i.e. by BT in the US and the
UK, which use the SSID BTOpenzone). While the default SSID for public Wi-Fi
makes sense from a usability perspective, it opens the door to the MET attack
since it creates a large user base which has connected to a well known SSID.
In the following, we will show the design of the MET attack and the prototyp-
ical implementation of the key components. The implementation extends the
jailbreakme.com jailbreak to deploy all components for a self-replicating mobile
malnet. All components were separately tested in the lab using iOS 4.3.3 run-
ning on an iPhone 4, an iPad 1 and an iPad 2. The principle can be ported to
any OS with a root vulnerability. However, the usability feature of an automatic
browser-based captive portal popup makes iOS the more attractive target. The
whole attack process consists of four steps that are graphed in Figure 1 and
described below.

Step 1: Masquerading and Injection. The first step of the MET attack is
the exploitation of the auto-reconnection feature to known hotspots. The MET
attack starts with the initial infection host broadcasting an SSID corresponding
to a well used SSID such as those used by public hotspots like tmobile. If a mobile
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Fig. 1. MET attack overview

device has previously been connected to a legitimate AP of that SSID label, it
is likely that it will automatically connect to the MET hotspot, unless there is
a competing AP with higher signal strength or a SSID with higher priority.

Once the mobile device is connected to the MET hotspot all Internet activity
of the device goes via the hotspot. With this setup, we can run a rogue Wi-Fi
hotspot which can not only sniff, but also modify all unencrypted communication
sent through it and inject malicious content.

The proof of concept malware presented in this paper uses pf, the iOS internal
firewall and packet forwarding engine, to redirect all incoming traffic on port 80
to a locally deployed web server where the malicious payload is hosted. A more
detailed description will follow later in this paper.

Step 2: Application Exploit. Once the mobile device is connected to the
MET hotspot the second step of infection can occur. Since we use iOS for the
prototypical implementation, which creates a MobileSafari popup window during
the login process on the captive portal we can utilize a browser-based attack.

For all of the relevant smartphone platforms, i.e. iOS, Android, Palm/HP
WebOS, BlackBerry and Symbian, the preinstalled web browsers are based on
the WebKit [18] rendering engine. The WebKit engine is under constant scrutiny
by security researchers and has had a number of security issues in the past (e.g..
[19,20,21]). Many of these security issues could be exploited by an attacker to
execute arbitrary code on the phone with the same permissions as the web
browser. Based on the long years of experience with desktop browsers and the
recent history of mobile browsers, it can be assumed that mobile browsers will
continue to be affected by security issues that allow arbitrary code execution for a
fair while. For the proof of concept implementation we used the jailbreakme.com
jailbreak which makes use of a PDF rendering vulnerability of the CoreGraphics
framework in iOS 4.3.3 [22,23].

Step 3:KernelExploit. Executing codewith the browser’s permissions is rarely
sufficient to install malware on a device. Compartmentalization and ”sandboxing”
of processes is a typical security approach for modern operating systems, including
those on smartphones.Usually thismeans that the web browser –which runs under
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an unprivileged user id – does not have privileges to install software on the phone.
Therefore, another successful exploit on the operating system level is necessary to
obtain full administrative privileges.Although harder to find than bugs inWebKit,
these exploits exist and have existed for most mobile operating systems and it is
likely that they will be available for future OS versions.

Step 4: Crossing-Over into the Evil Twin Malnet. Once a kernel-level
exploit was executed on a mobile device the attacker gains complete control over
that device, including the ability to control network and radio functions. This
control is necessary for the propagation concept which we will outline in the
following section. It makes use of the ”personal hotspot” feature (Apple iOS
≥4.3). This hotspot functionality can be used by the device owner to share their
3G Internet connection with others by creating a mobile Wi-Fi access point.
It conveniently bundles a small DHCP server, routing capabilities and Wi-Fi
channel management and the setup is trivially easy. During the MET attack the
mobile hotspot is activated using the target SSID making the device a new MET
carrier.

By deploying lighttpd as a light weight web server on the infected mobile
phone and rerouting all HTTP traffic of connected devices to it, we can deliver
malicious code within any HTTP response and thus infect more mobile devices.
Now, the infection cycle starts back at step 1.

3.3 Automating Infection

In the steps above an infection only occurs when a user manually triggers an
event that receives content from the Internet into which the attack code can be
injected. However, iOS has a convenient usability feature which enables almost
instantaneous infection. When the iOS device is active, it automatically connects
to the MET captive portal and as soon as any application requires Internet access
an automated pop-up meant for credential input is shown.

This login page contains content which is fully controlled by whoever runs
the Wi-Fi hotspot. It is, moreover, rendered with the same browser engine that
is used for all other browsing activities. Therefore, virtually all exploits and
security issues that exist for the WebKit browser family can also be exploited
on that login page. Since the login page is displayed automatically, the MET
infection routine can be executed as soon as the iOS device requests data from
the MET hotspot.

Under the hood the following happens. After successfully associating with
an AP and receiving an IP address, the iPhone’s network stack sends one
HTTP request to a specified URL. In the majority of cases the request goes
to http://www.apple.com/library/test/success.html.

The response is then evaluated by iOS and if it consists of a valid HTML
document containing only HTML metadata and exactly the word ”Success”
in the title tag, the network stack uses this as an indicator for the Internet

http://www.apple.com/library/test/success.html
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access being functional and finishes the connection setup. If any other response is
received, the apple.com website is requested. In a second step the corresponding
response is shown to the user in an automatic full-screen pop-up window which
we use to deliver the exploit. The reason for this is the Universal Authentication
Mechanism (see Section 3.1) where the user is prompted for his credentials by
the captive portal login page.

3.4 Infection Implementation

In the following we describe the infection process with all involved systems and
configurations. In the proof of concept presented in this paper we used a jailbro-
ken iPhone 4 running iOS 4.3.3 as the initial infecting device. All further devices
did not need to be prepared or jailbroken since all jailbreaks were executed auto-
matically by the MET. The components of the prototype were tested on iPhone
4, iPad 1 and iPad 2.

To run an evil twin access point hotspot software needs to be configured
that opens up Wi-Fi networks spoofing legitimate hotspot SSIDs. As the iOS
internal personal hotspot cannot be activated and configured from the command
line3, we deployed MyWi 44, an app for jailbroken devices that has the same
features, but can be configured through a plist file. It can be started through
an undocumented program parameter from a shell script. This adds 1.8 MB to
the MET prototype which could be avoided, but since optimizing the malware is
not in the focus of this paper we chose the convenience MyWi offers. In addition
to MyWi we installed the web server lighttpd due to its easy configuration and
small footprint. The server is set up to listen on port 80 and is ready to deliver
the exploit and the payload.

When a victim connects to this MET hotspot he gets an IP address from
the local DHCP server that comes along with MyWi. We set up the firewall
rules shown in Listing 1.1 to redirect all port 80 HTTP traffic from the hotspot
network to the local lighttpd server.

� �

1 nat on pdp_ip0 inet
2 from 192.168.40.0/24 to any
3 -> (pdp_ip0:0) static-port
4 no nat on ap0 inet
5 from 192.168.40.1 to 192.168.40.0/24
6
7 rdr on ap0 proto tcp
8 from 192.168.40.0/24 to any port 80
9 -> 127.0.0.1 port 80

10
11 pass on pdp_ip0
12 from any to any flags S/SA keep state
13 pass on ap0 all flags any
14 xkeep state (source-track global) rtable 4
� �

Listing 1.1. PF firewall rules including the redirection for incoming traffic (line 7-9)

3 The hotspot functionality relies on undocumented iOS Kernel APIs.
4 Product website: http://intelliborn.com/mywi.html

apple.com
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When the victim’s device checks the Internet connection, the web server re-
sponds to the first request of http://www.apple.com/library/test/success.html
with a non-success webpage. Thus, the pop-up opens and displays the content
of http://www.apple.com, which is also delivered by the local web server.

In this case it contains a hidden HTML iframe element showing a PDF file.
Even within the popup and the hidden iframe, the iOS browser MobileSafari
renders the PDF file. The malicious PDF file then exploits a vulnerability of the
CoreGraphics library which is called by the Webkit engine. We use the exploit
code from http://www.jailbreakme.com which first leads to a root shell and then
uses it to download and install the actual jailbreak.

At this point there is an implementation issue with the jailbreakme.com PDF
exploit. After the initial exploit is executed it tries to download the files that
are required for the rest of the jailbreak and Cydia installation process. But
since we are still in captive portal mode and the network state is set to ”no
internet connection” the download fails. Serving the success page for the por-
tal and recapturing the device could solve this. However, the download would
have to be delayed briefly until a functioning internet connection is recognized
by iOS. This is not a conceptual problem and only stems from the fact that
we are recycling an existing exploit which can not be modified at that point.
If the malware was to be created for real a new exploit would be needed in
any case and the delay would not be a problem. This issue does not affect the
first infection case described above when a web browser is used. During the jail-
break process file downloads are initiated through plain HTTP requests without
any authentication of the download server. Thus, we can redirect all requests
to http://www.jailbreakme.com to the local web server as well and replace the
jailbreakme.com payload with our own.

The jailbreak itself consists of three main parts: an initial filesystem image
contains the directory structure including the /bin directory with utilities such
as dpkg; a Debian package containing further programs; and a dynamic library
that triggers and controls the installation of all these components. During the
jailbreak process the integrity of the initial filesystem is checked. However, there
is no integrity check made for the Debian package. Thus, we can modify the
package and deliver it to the victim’s device when the jailbreak process attempts
to download the original one.

The modified Debian package contains not only the jailbreak files, all MET-
related packages and configurations, a metadata file and a description of the
package, but also command and control shell scripts that are executed before and
after the installation or removal of the package. In the post-installation script of
the modified package the installation of further packages is triggered. However,
it is not possible to use the dpkg package manager directly for this purpose
since the packaging system is locked during a running installation process. To
circumvent this problem we register a daemon script to the iOS launch daemon
launchd which usually monitors running iOS services and restarts them in
the case of an abnormal termination (the script can be found in Listing 1.2 of
appendix A).

http://www.apple.com/library/test/success.html
http://www.apple.com
http://www.jailbreakme.com
http://www.jailbreakme.com


Mobile Evil Twin Malnets – The Worst of Both Worlds 135

Thus, after the post-installation script of the Debian package terminates suc-
cessfully and removes the lock, iOS activates the daemon script and installs the
rest of the malware. The daemon script checks if it was executed successfully in
the past. If so, the daemon script deregisters itself from the iOS launchd service
daemon and terminates. This is done to make sure that the installation of the
evil twin software is not triggered twice. Otherwise it launches the installation
of Debian packages that have been transferred to the victim’s device within the
Debian package. The hotspot software MyWi, the web server lighttpd and all
of their package dependencies are included. The daemon script can be found in
Listing 1.3 of appendix A.

To operate the malicious hotspot the two main components are started. The
hotspot is started by a simple shell script call. For the web server a start script is
registered as a daemon at the launchd service, like in the installation process.
Now we have a fully operational evil twin hotspot that is ready to infect other
devices.

There are currently three usability issues in the MET prototype. Firstly, as
mentioned above, the popup-based installation would require a short delay to
restore Internet access after the local redirection. Secondly, the installation of
MyWi requires a restart of the device which would either be noticeable by the
user or require the malware to wait for the next ordinary reboot. Thirdly, we
do not hide the fact that we jailbreak the device. While the jailbreak process is
executed in the background, we leave the AppStore equivalent Cydia in place.
All three issues are implementation issues which do not affect the MET concept.
Delaying the additional downloads by a couple of seconds solves the first issue.
The second could be solved by subverting the iOS hotspot capability and the
third would require the removal of the visible jailbreak signs. However, since it
is not the goal of this work to create a stealthy real world malware and since
these issues do not affect the concept of the MET attack there is currently no
plan to address these issues.

4 MET Simulation

We used simulations to analyze the potential spreading characteristics of the
mobile malware prototype presented in this paper. We developed a simulation
framework [24] to study various security and privacy related issues in mobile envi-
ronments. The framework allows us to carry out agent-based simulations on real-
world road networks that are based on geospatial data from OpenStreetMap5. For
the simulations in this work we used the framework and chose Downtown Chicago
as the simulation area. Based on transport statistics we estimated a total number
of 400,000 people using smartphones in downtown Chicago. Since we are simulat-
ing an exploit for the iOS platform we take the iOS market share of 20% [25] and
the vulnerable iOS versions (∼ 5% of iPhones are still running iOS version 4) into
account. Thus, we have an infection base of about 4,000 devices. Considering the

5 http://www.openstreetmap.org

http://www.openstreetmap.org
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rising iOS market share and possible future multiplatform exploits we ran simula-
tions also with a population size of 10,000 people. We implemented several types
of agents which have different behavior patterns and walking speeds as well as di-
verse mobile device usage patterns. An agent chooses between different actions
with a specified probability depending on his type.

Crucial factors for the simulation are the transmission speed and the battery
lifetime of the devices. Therefore we investigated parameters like the infection
duration and battery consumption of the prototype in order to set up the sim-
ulations as realistic as possible. We also conducted several parameter studies,
varying population size as well as other parameters and found out characteris-
tics for this type of attack in urban areas. For a more detailed description of the
simulations we refer to [26].

4.1 Infection Duration and Battery Consumption

We conducted several lab experiments to determine the parameters of the MET
prototype with the above limitations. The PDF file containing the initial exploit
has a size of 17kB and its transfer plus the execution of the initial exploit takes
under 1 second. This was measured using the browser based infection vector.
Following this, the rest of the malware is downloaded by the initial exploit.
Since this value is of relevance for the spreading characteristics of the malware,
we measured the time needed for this download. Therefore we transferred a
comparable 10MB MET package between the iPhone running the MET malware
and a victim iPad at different distances.

(a) MET transfer duration measured over
the distance between the mobile devices

(b) Battery consumption of the MET

Fig. 2. MET-related measurements

Figure 2a shows that the download time at the range of 1-2 meters was about
9 seconds. At distances of up to 15 meters download times rise to approxi-
mately 12 seconds, increasing to more than 32 seconds at a 25-meter distance.
The measurements were conducted outside in a populated area with four other
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Wi-Fi hotspots active in the immediate vicinity. Each measurement was repeated
five times and the standard deviation is shown in the figure.

Figure 2b shows the mean battery consumption of the MET measured over a
six hour period. The red line marked with a triangle shows the battery consump-
tion of the uninfected phone being idle. The green line marked with a diamond
represents an infected phone with an active MET hotspot but otherwise idle.
The blue line marked with a square shows a MET device which infects another
device every 20 minutes. As can be seen the MET, if operated continuously,
might be noticeable for the user due to the shortened battery lifetime. But with
this shortened battery lifetime the infection of numerous other devices is still
possible. Even if a user notices a suspicious behavior of his device, he will be not
able to remove the MET without a complete phone reset. However the current
version of the MET has not been optimized for stealth or longevity, since it is
out of the focus of this paper.

The measured values are the basis for the simulations of mobile phones with
limited battery life. In addition to the regular consumption each time a device
infects another one, a small amount of battery lifetime is subtracted representing
the running hotspot and the transfer of the mobile malware. If a device becomes
infected its battery lifetime is reduced according to the measured values. Devices
that run out of battery during the simulation neither can become infected nor
can infect other nearby devices.

4.2 Simulation Results

In the following we present the results of the simulations to give a rough idea of
how this kind of mobile malware could spread in an urban area.

(a) Infection simulation with different pop-
ulation sizes

(b) Infection simulation with different in-
ternet usage intervals

Fig. 3. Parametric study of the MET attack

Since the number of infectable devices has a significant effect on the epidemic
spread of the malware, we conducted a parameter study over the number of
devices in a closed world scenario, where no agent enters or leaves the simulated
area. Figure 3a shows the normalized results of this study. As can be seen from
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5,000 devices onwards an almost total infection occurs within 12 hours. From
10,000 devices onwards almost total infection is achieved within 8 hours.

To show the effect of usage patterns on the spread of the mobile malware,
Figure 3b plots the amount of infections with different device activation intervals.
As can be seen in the Figure the spreading of the malware has an epidemiological
character for Internet usage intervals less than 30 minutes. Device usage intervals
greater than 30 minutes lead to a significantly slower but nevertheless substantial
spreading of the malware.

Fig. 4. Infection of 10,000 people depending on initial battery levels

Figure 4 shows a parameter study with different distributions of initial charge.
Each simulation starts with a Gaussian distribution of initial charges in the range
shown in the key of the figure. As can be seen the distribution of initial battery
levels has a greater effect than the battery power drain. Surprisingly, even when
a large number of devices run out of battery during the simulation there are still
enough active infected devices to create almost full infection.

4.3 Mobile Evil Twin Malnet Summary

To summarize, the Mobile Evil Twin attack introduced above represents a new
approach for creating mobile malnets. Unlike current Internet- (e.g.. spyeye [27])
or App Store-based (e.g.. Droid Dream [28]) attacks the user is not required to
surf to a specific site or install a specific App to be infected. Unlike previous
malnet approaches we do not require vulnerabilities in hotspots nor does the
wide scale deployment of WPA/WPA2 pose a problem as long as there are some
popular captive portal-based hotspots in operation somewhere. The concept for
the automatic popup based infection was shown in theory and the web browser-
based infection vector was fully implemented and shows the viability of the
attack. The type of mobile malware presented in this work is made possible by
both personal hotspot capabilities of smart devices as well as the fact that the
usability and security measures in place for using and protecting Wi-Fi devices
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were designed without this scale of capabilities in mind. Thus they offer very
little protection against attacks in this realm. The conducted lab tests show the
viability of the approach on a device-to-device basis.

5 Conclusion and Outlook

In this paper, we showed how new capabilities of mobile devices can be used to
create a mobile evil twin malnet which is capable of spreading epidemically in
current metropolitan areas. We present a proof of concept implementation for
iOS 4.3.3 and measured the key attributes of the MET. In lab experiments we
measured the infection time and battery consumption of the prototype to use
these values in simulations. We simulated a metropolitan area to analyze the
spreading characteristics of this new kind of mobile malware and showed that a
large user base gets infected within a small amount of time.

There are many areas of future work. The mobile malware is just a proof of
concept and could easily be made more effective or stealthy depending on the
desired use. The malware can be extended to exploit more than one OS and cycle
between different SSIDs to significantly increase the potential infection base and
thus also significantly speed up the infection rate. Or the rate could be artificially
slowed to make the spread more stealthy and energy saving. More importantly, an
effective countermeasure needs to be researched to combat this type of malware.
Current countermeasures do not work well against MET, thus opening up room
for new ideas and research in this area. One promising idea is to use context
information, such as the location or other environmental parameters to augment
the decision when to automatically connect to known SSIDs or raise an alarm.
IPSs and IDSs could also be ported to mobile platforms to collaboratively detect
emerging malnets.
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A Scripts and Configurations

� �

1 #!/bin/sh
2 launchctl submit -l evilTwinInstall -- /tmp/evilTwinInstall.sh
3 launchctl start evilTwinInstall
� �

Listing 1.2. Post installation script of the Debian package registering the daemon
script to the launch daemon

� �

1 #!/bin/sh
2 name=evilTwinInstall
3 sleep 10
4 if [ -f /tmp/evilTwinInstall.success ]
5 then
6 launchctl remove evilTwinInstall
7 else
8 dpkg -i /tmp/lighttpd_1.4.18-6_iphoneos-arm.deb
9 [...]

10 dpkg -i --force-all /tmp/com.mywi4.ondemand_4.50.6_iphoneos-arm.deb
11 dpkg -i /tmp/com.mywi4_5.03.2_iphoneos-arm.deb
12
13 mv /tmp/www /var/
14 mv /tmp/com.mywi.plist /private/var/mobile/Library/Preferences/com.mywi.

plist
15 mv /tmp/lighttpd.conf /etc/lighttpd.conf
16 mv /tmp/mypfrules.conf /etc/mypfrules.conf
17
18 launchctl submit -l webserver -- /usr/sbin/lighttpd -f /etc/lighttpd.

conf
19 /Applications/MyWi.app/MyWiApp_ startmywi
20 pfctl -F all
21 pfctl -f /etc/mypfrules.conf
22 touch /tmp/evilTwinInstall.success
23 fi
� �

Listing 1.3. Daemon script triggering the installation of all required packages

http://bit.ly/eAtn0B
http://bit.ly/eKPLQj
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Abstract. Clients trust servers over the Internet due to their trust in
digital signatures of certification authorities (CAs) which comprise the
Internet’s trust infrastructure. Based on the recent DigiNotar attack and
other attacks on CAs, we formulate here a very strong attack denoted
“Certificate in The Middle” (CiTM) and propose a mitigation for this
attack. The solution is embedded in a handshake protocol and makes it
more robust: It adds to the usual aspect of “CA vouching” a client side
vouching for the server “continuity of service,” thus, allowing clients and
server to detect past and future breaches of the trust infrastructure. We
had simplicity, flexibility, and scalability in mind, solving the problem
within the context of the protocol (with the underlying goal of embed-
ding the solution in the TLS layer) with minor field changes, minimal
cryptographic additions, no interaction with other protocol layers, and
no added trusted parties.

1 Introduction

August 2011 presented a wakeup call for Internet security, when it was revealed
that an unidentified attacker hacked into the computers of DigiNotar, a DutchCA,
and issued a fraudulent certificate for, among others, google.com. This certificate
was subsequently used in a Man-in-the-Middle attack deployed against users in
Iran. The certificate fooled browsers into assuming that they were encrypting data
with a public key assigned to Google, where in fact they were using a public key
chosen by the attacker. As a result, users’ data, including their Gmail credentials
such as their passwords and cookies, was revealed to the attacker.

The attack was possible since “trust” is assumed to operate “top down”.
Namely, the normal way for browsers to operate, based on the SSL/TLS proto-
col, is to trust any assertion made by a certificate authority (CA) that is trusted
by the browser. In most cases this means that any CA whose key is preinstalled
with the browser is trusted. The attack was identified since the Google certificate
was “pinned” in the Chrome browser. Namely, its value was hardcoded in the
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browser, and the browser was not willing to accept certificates for Google (the
browser’s manufacturer) except from a very small number of CAs [10] (inciden-
tally, this technology was deployed a mere two months before the attack). As a
result, a suspicious user noticed the error and posted the rogue certificate on the
web, and subsequently the certificate was identified as a fake one.

In the days that followed, it was revealed that the attackers issued hundreds
of certificates for different high-importance web services, such as Google, Ya-
hoo, Skype, Facebook, Microsoft Windows Update services and the anonymous
communication system Tor, as well as some intelligence agencies. It was also
revealed that DigiNotar knew of the breach more than a month before the rogue
certificate became public, but has not notified anyone about it. Consequently,
the root certificates of DigiNotar were revoked from all major browsers and the
company went out of business [19,1].

The goal of this work is to mitigate attacks like the one described here, by fun-
damentally changing the notion of trust over the web. This is done by adding a
“bottom-up” component allowing clients to vouch for the server’s trustworthiness:
following the first server-clienthandshake, the client has a cross-session“firmgrip”
on the server.The goal is to add this propertywith relatively small efforts andmod-
ifications, and yet to achieve a much more robust authentication for the typical
client-server web interactions (i.e., via a modified SSL/TLS protocol).

1.1 The Current Trust Infrastructure and Our Goals

The web’s trust infrastructure based on its early days’ need to bootstrap trust in
an essentially unlimited number of sites from an initial trust in a limited number
of CAs. The trust model is built top-down (reflecting on the CA infrastructure
and X.509 standards). The core idea is that each browser ships with the public
keys of a limited number of root CAs, and subsequently trusts a public key
presented by a web site if it is accompanied by a certificate chain leading to
the public key from one of the root CAs. Over the years, the number of CAs
trusted by browsers became very large: more that 650 organizations, located in
52 countries, were identified as valid CAs for Mozilla or Microsoft browsers [7,5].
It is likely that some of these CAs suffer from security vulnerabilities or are not
managed properly. Indeed, earlier in 2011 an attacker obtained bogus certificates
from Comodo, a major CA, but no actual attack using these certificate was
identified in the wild [20].

The threat that the current infrastructure poses to users is very serious. It is
sufficient for an attacker to forge certificates from a single “trusted CA” in order
to apply Meet-in-the-Middle (MiTM ) attacks to all web sites in all jurisdictions
(with the help of phishing, malware or DNS contamination). This situation,
allowing a very local exposure to potentially affect the web globally, is a colossal
failure of the trust infrastructure from a risk managemnt perspective. 1

1 Indeed, it is very hard to come up with a set of policies defining a “normal” usage
of CAs and certificates, and any such policy will result in many false warnings. We
do not suggest to use such a policy, but rather use this situation to exemplify that
the current trust model is very flawed and must be fixed.
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Toward our goals, let us define the attack we aim to prevent, which we denote
as the “certificate in the middle” (CiTM) attack. It is modeled after the DigiNo-
tar incident, and is stronger than a man in the middle (MiTM) attack since it
assumes that the attacker can both mount an active attack (e.g., by controlling
the Domain Name System) and forge arbitrary valid certificate chains.

Definition 1 (CiTM attack). A “certificate in the middle” (CiTM) attack is
an attack by an adversary with the following capabilities:

– It can eavesdrop on any communication channel (in particular, to commu-
nication between the client and server).

– It can change messages that are sent on any communication channel.
– It can generate arbitrary valid certificate chains. In particular, the adversary

can generate a certificate which states that a certain public key (for which
the adversary knows the corresponding private key) is the public key of a
different party.

Being polynomial-time bounded and deprived of access to secure private mem-
ories, the adversary cannot, however, learn the private keys of specific parties.
In particular it does not know the private keys of the server which it tries to
attack.

The current web trust infrastructure is completely vulnerable to CiTM attacks
since its top-down approach assumes that all CAs are trusted, whereas the CiTM
attacker is able to issue certificates in the name of trusted CAs.

It is easy to verify that due to the strong capabilities of the adversary, one
cannot protect unfortunate users who have all their communication channels
permanently controlled by a CiTM attacker. These users will always receive the
same certificates forged by the attacker, whereas the server will always observe
messages that will comply with whatever policy the server might have.

Have we formulated above an attack we cannot prevent? Are we at a loss
here since we formulated such a strong adversary? We claim that, nevertheless,
there is hope for protecting users very efficiently. This is so since not all users
will be permanently under the control of the attacker. Some clients will use un-
compromised connections before they are subject to a CiTM attack, whereas
others might first be subject to the attack and then be able to connect to
the server through a legitimate channel (say, when they travel outside of the
affected country or if the attacker’s infrastructure fails for a short period of
time). Although not all users might fall into these categories, it is important
to note that, as with the DigiNotar breach, even a single educated user who
notifies the world about the attack is likely to lead to a complete revocation
of the relevant CA. Furthermore, deploying a CiTM attack requires compro-
mising a CA, and therefore even the most determined attackers cannot deploy
the attack too many times. We thus argue that even alerting a limited num-
ber of users to the existence of the attack can severely diminish its utility to
attackers.
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1.2 Contributions

We propose a concept and a framework for handshake protocols, that extends
an initial handshake and minimizes the “window of opportunity for an attack”
that can be employed by the adversary. This type of limitation is a principle
in designing robust and secure systems. Specifically, our framework uses a form
of “chaining” between all protocol handshakes that are performed between a
specific client-server pair (hence we call it a “firm grip handshake”). As a result,
if a client establishes an uncompromised handshake before it is subject to a CiTM
attack then the client identifies the attack at the moment that it is attempted
due to lack of chaining. Alternatively, even if all client-server handshakes were
subject to an attack, it is sufficient to have a single uncompromised handshake
in the future in order to inform the client about the attack by breaking the
chaining to the compromised certificate.

Regarding server side security, we cannot guarantee that the server identifies
an attack: due to the stateless nature of web servers, the attacker can modify all
communication from the client to look as if each interaction is the first interaction
between the client and server, and therefore no chaining with a previous hand-
shake exists. However, by forcing attackers to resort to such behavior we enable
servers to identify attacks by examining connection statistics and attempting to
use, say, off-line anomaly detection techniques on the server’s logs; (for example,
if an exceedingly large proportion of connections from a certain location seem to
be coming from new clients, e.g., new web browsers, then further examination
of this phenomenon might be needed).

To highlight the new concepts and avoid implementation variations, we de-
scribe a high-level conceptual version of the protocol, rather than the specifics
of embedding the protocol in existing TLS implementations (although we do
discuss issues relevant to such an implementation). Our protocol is based on two
main ideas:

– Extending the initial client-server handshake by having the server choose a
key that will be used, together with the initial certificate chain, in order to
MAC all future client-server handshakes. (The MAC value can be considered
part of the reconstructable state and can be further hashed and MACed in
existing fields, say in TLS).

– In order to improve scalability and retain the stateless-ness of web servers,
the protocol stores the MAC key in the client side in encrypted and authen-
ticated “sandwich cookies”, or oreos, rather than storing it at the server.

Desired Properties. We suggest the following protocol properties:

– Security requirements

• Client identifying future attacks. If the initial client-server handshake
is not affected by a CiTM attacker, then any future CiTM attack is
identified by the client.



146 O. Berkman, B. Pinkas, and M. Yung

• Client identifying past attacks. If the initial client-server handshake is
compromised by a successful CiTM attack, then once the client per-
forms a handshake with the server over an uncompromised channel, i.e.,
a channel whose contents cannot be changed by the attacker, the client
identifies that an attack has previously occurred.

• Server identifying irregular behavior. Any active attack will result in
either the server identifying the attack, or it identifying a usage pattern
which is different than normal.

– Simplicity and flexibility. Changes required for preventing CiTM attacks
must be easily integrateable with existing protocols. The changes to the
existing implementations of the protocol must be minimal.
Changes should be applied to only one layer of the communication stack (e.g.,
TLS) rather than several layers (e.g. TLS and the application which uses it).
Ideally, they can be implemented without changing existing standards (e.g.,
consist of a few added fields in existing messages and data structures). No
infrastructure changes should be required (e.g., no additional trusted parties
are added).

– Scalability. The server need not keep a long-lived state for each client.
– Efficiency. The protocol requires only a few added crypto operations, prefer-

ably symmetric key operations.

The protocol does require the server to store a single short long-lived state. In
Section 3.1 we describe how to support recovery from the server erasing this
state, or from having this state being compromised.

1.3 Related Work

There have been several recent proposals for moving away from the current
complete trust in certificate authorities, and they all deserve credit for worthy
efforts to solve this problem. One such approach which is already deployed is the
pinning of certificates in Chrome for the google.com domain [10], which proved
to be successful in the DigiNotar attack. This approach, however, cannot scale
since it requires to encode in the browser an entry for each supported domain.

In the origin-bound certificates [4] solution, the client browser generates a
self-signed client certificate in its initial handshake with the server, and passes
it to the server in all future handshakes. The server can then embed that cer-
tificate in the authentication processes, for example by storing it in a cookie in
the application layer, and use it for authentication. This project has done re-
markable work in implementing this solution as a TLS extension in the Chrome
browser and in Google’s web serving infrastructure. There are, however, some
major differences between our solution and this project: Our protocol can be im-
plemented in the TLS layer alone, and does not require integration with cookies
served by the application layer. In addition, it identifies CiTM attacks even if
they occur before the first uncompromised interaction between the client and
the legitimate server, whereas such attacks against the origin-bound certificate
solution remain undetected. A solution implemented in [2] is similar to origin-
bound certificates but employs client’s passwords available from any browser.
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It allows web applications to use secrets that they share with clients, in order to
attest for the authenticity of their certificates.

The TACK Internet draft [14] describes a TLS extension that enables a server
to assert the authenticity of its public key by signing it with a server “TACK
key”. TLS connections to a pinned hostname require the server to present a
TACK containing a pinned TACK key and a corresponding signature of the
TLS server’s public key. Unlike our solution, TACK enables only the client, and
not the server, to identify CiTM attacks. Another difference stems from the
way TACK implements its goal of limiting the damage from transient attacks
on servers. Unlike our approach (see Section 3.1), TACK tries to minimize the
“window of attack opportunity” by using time. Specifically, it limits the duration
in which a TACK key is pinned in the client to be the minimum between 30 days
and the length of time in which this TACK key has been observed by the client.
As a result, a user who, for example, connects to his bank quite rarely, say once
every 31 days, is not offered any protection by TACK.

Another set of solutions is based on using third-party services for extending
the current trust infrastructure. For example, it is suggested in [13] to form a
public auditable repository of every publicly visible certificate. Each certificate
issued must be accompanied by an audit proof, and servers must send these
proofs along with the certificates to browsers, which will then check them. Unlike
our suggestion, this solution adds a third party to the infrastructure. In addition,
domain owners must regularly monitor the public logs to ensure that no rogue
certificates were issued for their domain. This is a commendable project that will
provide complete transparency of certificate usage. Yet, this project is somewhat
orthogonal to our local protocol extension approach, and requires considerable
global resources in order to be implemented and maintained. A project with
similar goals is EFF’s Sovereign Keys [6]. Another suggestion along these lines is
to use DNSSEC to bound certificates to domain names [16]. Another third-party
approach is to use a notary service, i.e. to ask a third-party observer whether it
observes the same certificate as the client. This approach was taken in [18,15,11].

2 The Protocol

We give a high-level conceptual version of the protocol, which can be applied to
any handshake protocol (where embedding it in TLS and other certificate-based
protocols is a major goal). All that we assume is that the initial message in the
protocol is sent from the client to the server, and that it is possible to add fields
to protocol messages. This latter assumption can be justified by instantiating
these additional fields in several ways, as we discuss in Section 2.1.

The protocol is based on two main ideas. The first idea is that in the initial
handshake between the client and server, the server chooses a fresh key, denoted
as the “cream” for reasons that will shortly become clear, and sends it to the
client. (This key can be sent encrypted or in the clear; see discussion in Sec-
tion 2.1.) Later, each handshake is accompanied with MACs, keyed with this
key, of the messages seen by the parties in the handshake, as well as with hashes
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of the initial certificate chain that each of the parties had received. Therefore, an
attacker who does not know the cream key will not be able to mount an active
attack on future handshakes, even if it can issue a certificate of the server. Also,
if the client receives an initial certificate chain different than the one sent by the
server, then their hash values will be different and this fact will be identified in
the first uncompromised communication.

The second idea is that the server need not store a state containing the cream
key. Rather, it generates a sandwich cookie, or oreo, which contains an encrypted
and authenticated envelope over the cream key and over a hash of the initial
certificate chain. The oreo is stored at the client side and is sent by the client to
the server in future handshakes. The server can then decrypt the oreo, verify its
authenticity and use the resulting key for generating MACs and verifying MACs
received from the client. We note that given the stateless nature of web servers
the idea of keeping state at users has been suggested before (perhaps for the
first time in [12]), and is typically used for providing the server with encrypted
keys/states in cookies, for the server to restore keys and common state. We
describe the protocol below. Its main steps are also depicted in Figure 1.

The Basic Protocol

Long Lived States: The server stores a long-lived server key, sk. This is a
symmetric key and is the only state that must be stored by the server. The
client stores a “cream file”, which is defined in the protocol below.

The Protocol:

When initiating a connection to the server the client sends an additional bit, the
sbit, which states whether the client already stores a state for this server.
If sbit = 0 (no state) then

1. The server picks a random key, denoted as the “cream key”, or ck. This key
is a symmetric key chosen using fresh randomness.

2. The server computes a hash of the certificate chain that it sends to the client.
Denote this value as the server hash, sh = H(certificate chain sent), where
H() is a collision intractable hash function, for example a function from the
SHA family.

3. The server uses the long-lived server key sk to generate an encrypted and
authenticated version of the cream key ck and of the server hash sh. The
result is denoted as the “sandwich cookie”, or oreo (which contains a cream
filling in it).

4. During the handshake, or immediately afterwards, the server sends the key
ck and the oreo to the client. (See discussion in Section 2.1 on how these
values can be sent, and whether they should be encrypted or not.)

5. The client receives the cream key ck. It also computes a hash of the certificate
chain that it received. Namely, computes a client hash ch = H(certificate-
chain received) using the same function H() as the server. The values ck and
ch will never be sent in the clear by the client.
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The client stores a state for the server in an entry which includes the cream
key ck, the client hash ch and the oreo, and is stored in a special cream file.
If all went well, the oreo contains a server hash sh that is identical to the
client hash ch. (See discussion in Section 2.1 on storing this cream file.)

If sbit = 1 (namely, the client connects to a server for which it already has an
entry in its cream file) then

1. The client sends the oreo to the server. This is done during the handshake
or immediately afterwards. (See discussion in Section 2.1 on how this data
can be sent.)

2. At the end of the handshake the client sends to the server a MAC, keyed
with the cream key ck, of the concatenation of the string “client view” to
all messages seen by the client in the handshake (messages both sent and
received by the client). It also sends ch, the hash of the certificate chain
received by the client in the initial handshake. (See discussion in Section 2.1
on why this value is not included in the MAC.) We assume that the “view” (of
client/ server ) is different in each interaction, and thus serves as a mechanism
that prevents “replay attacks.”

3. The server decrypts the oreo and learns the cream key ck and the server
hash sh of the certificate chain sent by the server in the initial handshake.
If the check of the authenticity of the oreo fails then the server aborts and
notifies its operator.
Otherwise, the server uses ck to check the MAC received from the client
(namely, compute a MAC keyed by ck of the string “client view” concate-
nated to the messages seen by the server, and compare it to the MAC re-
ceived from the client). It also compares the received ch value to its own
sh value. If any of these checks fails then the server aborts and notifies its
operator.

4. The server sends to the client a MAC, keyed with the cream key ck, of the
string “server view” containing the concatenation of all messages seen by the
server in the handshake. It also sends to the client the server hash sh. The
client checks the MAC using the cream key ck and compares the received sh
value to the ch value (recall that ck and ch are stored in the client’s cream
file). If any of these checks fails then the client aborts and notifies the user.
(In a way similar to the message that is presented when certificate pinning
is used and the wrong certificate is received.)

Note that if the client has an entry for the server in its oreo file, then the client
always expects to receive a MAC at the end of the protocol, assuming (for now)
that the MAC key is always available at the server.

2.1 Comments

Sending ck from server to client. In the initial handshake the server chooses a
cream key ck and sends it to the client. It is possible to send this value encrypted
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Fig. 1. The basic protocol

or unencrypted. The advantage in sending ck encrypted is that this prevents an
adversary from learning the value even if the adversary is able to eavesdrop on
the initial handshake. The disadvantage in encrypting ck is that encryption can
only be performed after the two parties agree on a common key. Therefore an
encrypted ck can only be communicated in the last message sent by the server
in the handshake protocol (the server-finished message in TLS), or immediately
after the handshake. This might complicate the implementation, as well as its
integration with the existing protocol and the applications using it.

Note that the only advantage in encrypting ck is against an adversary that
at the time of the initial interaction has capabilities which allow it to eavesdrop
on the first handshake, but do not enable it to forge a server certificate or
mount an active attack. Yet at a later time the adversary has the full capabilities
required for mouting a full CiTM attack. The decision about whether to use
encryption depends on whether one expects to encounter adversaries with this
set of capabilities.

Sending separately the hash of the certificate chain. The last steps of the pro-
tocol have each party send to the other party a MAC of its respective view,
as well as a hash of the initial certificate chain. A more natural way of imple-
menting this step would have been to send just a single value equal to the MAC
of both the view and the initial certificate chain. Namely, have, say, the client,
send MACck(client

′s view | ch). This, however, prevents us from proving security
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based on standard assumptions2 and therefore we resulted to sending the hash
of the certificate separately.

Storing the cream file. For each server the client must store an entry which
contains the cream key ck, the client hash ch, and the oreo that the client
received from the server. The client might store additional information that
could be useful for forensic examination in case that a CiTM attack is identified,
such as the time of the initial handshake and the certificate chain received in it.

This data can be stored in a special “cream file”. This file is similar to a
cookie file except for one important difference: the contents of the cream file
are never sent outside of the client, except for the oreo data which is sent to
the relevant server. Similar to a cookie file, the cream file contains sensitive
private information that reveals, for example, which sites were visited by the
user. Therefore it must be possible to apply to the cream file the same privacy
controls as for cookie files, for example the option of deleting entries for specific
sites (at the cost of losing CiTM protection for connections to these sites).

Changing to a new CA. The protocol does not prevent the server from having a
new CA sign its certificates (say, because that CA gives the owner of the server
a better financial offer). Future interactions with the client will be made using
certificates signed by the new CA, but the oreo will not change, and handshakes
will be MACed using the original cream key ck, and will include the hash of the
certificate chain used in the initial client-server interaction.

Using existing TLS modes. Following the initial handshake which establishes the
cream key ck, which then servers as a shared key between client and server, the
protocol could be modified in many ways. Two, perhaps interesting, variants are
to use ck as the pre-shared-key in [8] (using, say, the RSA-PSK key exchange)
or as the password in [17].

Correctness. Let us state an easy and yet important claim about the well-
functioning of the protocol if no active attack is used.

Claim. If no change is made to the messages exchanged between the client and
server, then the new protocol provides the same functionality as the original
handshake protocol.

Proof. If no changes are made to the messages then, in particular, the certificate
chain sent by the server is identical to the certificate chain received by the client,
and therefore the server hash sh is equal to the client hash ch. In addition, both
parties have identical values for the key ck, and also the MAC values received

2 The problem is with the case of an adversary that controls the initial communication
with the server. That adversary can send the client an arbitrary MAC key ck and
has to make sure that MACs computed with this key, of the certificate chain that
it sent, are equal to the MACs that the server expects to receive. This seems as a
very hard task, which is indeed impossible if we assume the MAC to be computed
by a random oracle. However, the security definition of MACs in the standard model
assumes that the adversary has no information about the key that is used, and this is
not the case with this attack. Therefore we cannot prove the security of this protocol
variant in the standard model.



152 O. Berkman, B. Pinkas, and M. Yung

are equal to those that are sent. Therefore all checks made by the parties are
successful and the original protocol is allowed to run in its entirety.

2.2 Embedding the Protocol Data in Existing Protocols

The new protocol requires sending additional fields between the client and server,
namely sbit, oreo, MAC and ch from the client to the server, and ck, oreo, MAC
and sh from the server to the client. The most straightforward way would have
been to change existing protocols, such as TLS, in order to support these new
fields. However, changing TLS would be a lengthy process and it is preferable to
be able to communicate the new fields without changing the original protocol.
This goal is aided by the fact the new fields are not very long: if we assume a
symmetric key to be 10-16 bytes long, the output of H() to be 20 bytes long,
and a MAC value to be 8-12 bytes long (shorter than a key, since attacking it
requires an online attack), then the length of the oreo would be 18-28 bytes, and
the length of the hash values ch, sh would be 20 bytes.

We describe here how the additional fields can be embedded over TLS mes-
sages. In particular, we describe how superflous certificate and implicit sending
of values, can be used to communication the required information with minimal
or no changes to the messages that are sent in the protocol.

Client to server communication. With regard to TLS, the oreo and ch value
sent by the client can be embedded in either the client-hello or client-finished
messages. The MAC sent by the client must be sent in the client-finished message,
or after the handshake is over. The client-hello message contains an “extra data”
field which can be used for sending arbitrarily long data [3]. In addition, the
client-random field of the client-hello message contains a 28 byte long random
string, part of which can be used to send data. The client-finished message
contains a client-certificate field, which can be used in order to send a certificate
that contains the MAC and the oreo (and which does not need not be signed by
a CA since it will be otherwise ignored by the server).

Superflous certificates. In the first handshake the server needs to send ck and
the oreo to the client in the server-hello or server-finished message. A natural
solution is to embed these values in a new field of a certificate sent by the server.
An unfortunate disadvantage of this approach is that CAs are known to charge
significant amounts of money for adding new fields to certificates. A workaround
is to use “superflous certificates”, based on an undocumented feature of TLS.3

This method works in the following way. The server server-hello message sent
by the server contains a set of certificates. Ideally these certificates should form
a certificate chain to a CA trusted by the client, but it is often the case that the

3 See references to this method in
http://www.ietf.org/mail-archive/web/tls/current/msg08820.html,
http://tools.ietf.org/agenda/81/slides/tls-2.pdf, and
http://code.google.com/p/certificate-transparency/source/browse/src/

client/ct.cc?r=103ff6cd41788fb51d37c3362632f639759ef4a7

http://www.ietf.org/mail-archive/web/tls/current/msg08820.html
http://tools.ietf.org/agenda/81/slides/tls-2.pdf
http://code.google.com/p/certificate-transparency/source/browse/src/client/ct.cc?r=103ff6cd41788fb51d37c3362632f639759ef4a7
http://code.google.com/p/certificate-transparency/source/browse/src/client/ct.cc?r=103ff6cd41788fb51d37c3362632f639759ef4a7
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server sends a set of certificates, only some of which form this chain. (This hap-
pens, for example, if instead of removing old certificates the server just adds new
certificates to the set that it is sending to clients.) As a result, all major browsers
accept server-hello messages in which only a subset of the certificates sent by
the server form a chain, and the other certificates are superflous. Therefore, if
in our protocol the server wishes to send additional information to the client, it
can encode this information in a new certificate and add it to the certificate set
sent to the client. It is not required to have this certificate signed by any CA
since the client will identify a different valid certificate chain leading to a trusted
CA. Note that the entire server-hello message is authenticated in the MAC sent
in the server-finished message, keyed by the key agreed upon in the handshake
protocol (here we refer the MAC sent as part of the TLS protocol, not the MAC
in our protocol). Therefore an attacker cannot change this set of certificates or
add new ones. In effect, the result is that by using superflous certificates, servers
can add arbitrary authenticated information to TLS handshakes.

Using implicit MACs and hash values. The last steps of the protocol have each
of the parties send to the other party a MAC of its view and a hash of the initial
certificate. The other party checks these messages by computing its own version
of these values and comparing it to the the values that it receives. Therefore,
there is no need to send these values but only to make sure that both parties
agree on them. Note also that TLS already requires each party to send, as its last
message, a hash of all the messages it sent and received in the handshake pro-
tocol. These messages are denoted in TLS as the client-finished/server-finished
messages, respectively.

We can therefore make the following change to the protocol: the client (and
similarly the server) does not send the MAC and hash as required by our protocol
but instead computes the last hash in the client-finished message as if it has
sent these values. The server, which knows which values it expects to receive as
the MAC and hash, uses these values to verify the client-finished message. The
effective result is that each party can verify that the other party could have sent
the correct MAC and hash values, but this is accomplished without sending any
value expect for normal TLS fields.

3 Security and Extensions

We show that the client can identify CiTM attacks as long as it runs a single
uncompromised handshake with the server. We also claim that although the
server might not be explicitly warned about these attacks, it is likely to have
sufficient information to implicitly suspect the presence of the attacks.

Intuitively, if the initial handshake is uncompromised then the client and
server share the cream key ck which is unknown to any attacker, and which is
used for MACing future handshakes. Therefore no active attack can be applied
to a future handshake. If, on the hand, an attacker mounts a successful CiTM
attack on the initial handshake, and since we assume that the attacker does not
know the secret keys of the server, then the attacker must have used a certificate
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chain different than any certificate chain used by the server. As a result, whenever
the client performs a handshake with the original server they do not agree on
the hash values, and the client informs its user about this discrepancy.

A note about the cream key ck. Our analysis here assumes that the cream
key ck is sent encrypted in the initial client-server handshake. As is discussed in
Section 2.1, this value can be sent either encrypted or unencrypted. The same
analysis holds even if ck is sent unencrypted, as long as we assume that the
attacker does not eavesdrop on that initial handshake.

The claims about security are based on assuming that some connections are
made over “uncompromised channels”, which we now define.

Definition 2 (Uncompromised channel). A channel is uncompromised if
an adversary can eavesdrop on communication carried out over the channel but
cannot change it. (Namely, the adversary is only a passive eavesdropper.)

We first state and prove two claims about the client identifying CiTM attacks if
it has an uncompromised connection with the server.

Claim. Assuming that the cryptographic primitives used in the protocol are
secure, then if the initial client-server handshake is uncompromised, the client
will identify any future CiTM attack.

Proof. (Sketch) Since the initial handshake was uncompromised, the client re-
ceived in it certificate chain and an oreo identical to the ones sent to it by the
server, and therefore the client hash ch is equal to the server hash sh, and the
oreo contains valid encrypted and authenticated values of ck and of sh.

Consider what happens before the first active attack attempt by the adversary.
The adversary might have eavesdropped on the initial handshake and learned
the certificate chain as well as an encryption of ck and the encrypted and authen-
ticated oreo. (These encryptions are done using keys which are indistinguishable
from random by the attacker.) The adversary might have also eavesdropped
on subsequent handshakes which contained copies of the same oreo, and MACs
keyed by ck. The adversary might have eavesdropped on communications of
other clients, but these used key values which were independent of those used
by the attacked client, except for the oreos which are all encrypted by the same
server key sk. Standard cryptographic arguments can therefore show that if the
adversary can learn anything about the cream key ck then either the encryp-
tion functions or the MAC are insecure. Since we assume these to be secure we
conclude that the adversary cannot distinguish ck from a random string.

Now, consider the first handshake in which the adversary aims to change any
of the messages. The adversary must send to the client a MAC of the new tran-
script of messages sent and received by the client, keyed by ck. Since part of these
messages contain randomness chosen by the client, it holds with overwhelming
probability that the transcript of messages in the current handshake is not iden-
tical to any of the transcripts of previous handshakes. Therefore the adversary
must forge a MAC with a key it has no information about. A secure MAC
algorithm ensures the adversary’s failure, except with negligible probability.
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As for CiTM attacks on the initial handshake, note that we need only consider
attacks in which the attacker sends a certificate chain different than the cer-
tificate chain sent by the server to the client, since using a certificate chain of
the original server requires the attacker to complete the initial handshake with
a MAC based on a key encrypted with the public key of the server, which the
attacker cannot decrypt. We are now ready to state our second claim.

Claim. If the initial handshake is compromised by a CiTM attack, and the at-
tacker sends in it a certificate chain that is different than the one used by the
server, then the client will identify the attack when it first connects to the server
through an uncompromised channel.

Proof. (Sketch) The client receives an oreo from the attacker in the initial hand-
shake. Then, in the client’s first handshake with the real server it sends it this
same oreo. The server checks the authenticity of the oreo, and therefore aborts
the protocol unless the oreo was generated by the server itself. (It is possible
that the oreo is not rejected, if the attacker sends to a client a valid oreo that a
different client received from the same server.) The oreo contains a server hash
sh of a certificate chain sent by the server. That certificate chain is different than
the one received by the client, and as a result sh is different than the client hash
ch, since both are computed by applying a collision intractable hash function to
the certificate chain seen by the server and client, respectively. The last step of
the handshake requires the server to send sh to the client, which then compares
it to ch and aborts, since the two are different.

Attack identification by the server. In many cases it is sufficient to alert the
client alone to the fact that a CiTM is taking place, since, as in the DigiNotar
case, clients can use alternative communication channels to notify the rest of the
world about the attack. Still, it is preferable to let the server learn in realtime
that an attack is taking place.

The server checks the MAC sent to it by the client at the end of the handshake,
and this check rejects any changes that an attacker injected into the messages.
There is, however, an easy way for the attacker to prevent the server from iden-
tifying the attack, by setting the sbit to 0 and pretending that this handshake
is the first handshake made by the client. In this case the server assumes that
there is no oreo stored at the client, and it does not expect to receive a MAC at
the end of the handshake (and therefore the attacker can drop this MAC from
the messages transferred to the server).

This attack works in principle, but it should be possible for the server to use
other signals in order to identify that an attack is taking place. Normally, we
can assume that clients will set the sbit to 0 whenever they first connect to a
server (say, when a user switches to a new web browser and connects to a site it
frequented in the past). However, this event should not happen too often. The
server could therefore gather relevant data and analyze it, perhaps using machine
learning techniques, in order to identify suspicious signals. These signals could
include, for example, a large percentage of users from the same physical location
or country who all seem to be using a new browser. Or a specific user who,
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in every new connection, seems to be connecting from a new browser. Overall,
we expect that large scale or persistant CiTM attacks will be identified by the
server as well as by the client.

3.1 Recovery of Server Keys

The basic protocol assumes that the server key sk is always accessible by the
server and is never learned by an attacker. The protocol states that once the
client stores an entry for a server in its cream file, it always expects to receive
MACs from that server. Therefore, if the server loses its server key sk and is
unable to decrypt oreos, it will not be able to communicate with the client.
Furthermore, if sk becomes known to an adversary then that adversary will be
able to compute valid MACs on future handshakes and apply CiTM attacks.

An extension to the protocol must therefore enable the server to recover from
losses or compromises of the server key sk. This functionality is supported using
a “recovery key” prk. This key is part of a public key-pair of secret/public keys
(srk, prk) which are used for signining and for signature verification, respectively.
An important property is that the private key srk can be easily kept offline until
the time that it is needed (i.e., until the unlikely case that the server key sk is lost
or is compromised). The key srk can be stored disconnected from the network,
or even be stored in a non-electronic format, in order to minimize the chances
of it being compromised.

The protocol is changed so that in the initial handshake the server sends the
public key prk to the client, which stores it in its cream file. Afterwards, the
protocol continues as usual except for the following change: the client sends an
sbit equal to 1, but it agrees to receive server answers corresponding to sbit = 0
if those answers and the entire handshake are signed with the secret key srk
corresponding to the key prk in the server’s entry in the cream file. Namely, the
client accepts a change of the handshake by the server to an initial client-server
handshake, as long as this change is signed by srk. Note that this feature can be
used for periodic update of keys, as well as for recovery from key compromise.
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Abstract. A compiler is presented which, in the random oracle model,
allows to add perfect forward secrecy to any secure authenticated group
key establishment protocol P which has at least one round. The com-
piler does not modify the session identifier and does not impose changes
on the underlying public key infrastructure. Building on a secure unau-
thenticated 1-round 2-party key establishment Q with perfect forward
secrecy as auxiliary input, P is transformed into an authenticated group
key establishment protocol with perfect forward secrecy and with one
more round than P.

Keywords: protocol compiler, group key establishment, forward secrecy.

1 Introduction

The establishment of a common session key among a set of users over an in-
secure network is a fundamental cryptographic task. The most basic security
requirement usually considered in group key establishment is semantic security
of the session key in the presence of a suitably formalized adversary. To address
the problem of compromised long-term secrets, this basic security requirement is
often extended so that perfect forward secrecy is provided—even if all long-term
secrets are leaked, the session key remains computationally indistinguishable
from a uniformly at random chosen element of the session key space.

A substantial body of work on modularizing the design of group key establish-
ment protocols is available, including techniques to augment a passively secure
protocol so that it offers security against an active adversary [KY03] and ma-
licious insiders [Boh06], or to scale a 2-party solution to an n-party solution
[ABVS07, NPW11]. Interestingly, there does not seem to be much work avail-
able on how to achieve perfect forward secrecy in a systematic way. While it is a
common design practice to separate secret key material used for authentication
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purposes (such as a signing key) from the actual derivation of a session key,
we are not aware of a discussion of provable generic techniques which allow to
‘lift’ a given group key establishment protocol—e. g., a key transport—to one
which provides perfect forward secrecy. A one-round construction for group key
establishment is available [GBNM10], but no such solution with perfect forward
secrecy appears to be available. Combining one-round constructions with an
efficient compiler to add forward-secrecy in a generic way appears to be an at-
tractive modular design approach to identify new two-round protocols for group
key establishment.

Below we suggest, in the random oracle model, a compiler which does not make
use of digital signatures and does not require parties to make additional data
publicly available. From a practical point of view this means that the compiler
does not impose the introduction of a modified or new public key infrastruc-
ture. The construction builds on the availability of an unauthenticated 1-round
key establishment for two parties which provides perfect forward secrecy—such
as a 2-party Diffie-Hellman with a session key of the form H(abP ). The ses-
sion identifier of the underlying group key establishment is invariant under the
compiler.

2 Technical Preliminaries

To formalize the task of group key establishment we use a model of Bohli et al.
[BVS07] which builds on Bresson et al. [BCP01] and Katz and Yung [KY03].

2.1 Security Model and Security Goals

Protocol participants. Let k be the security parameter and U the set of protocol
participants which we assume to be polynomial in k. Each user U ∈ U is a
probabilistic polynomial time algorithm and we allow each U ∈ U to execute
concurrently a polynomial number of protocol instances Πs

U (s ∈ N). User iden-
tities are assumed to be bitstrings of identical length k and to keep notation
simple, throughout we will not distinguish between the bitstring identifying a
user U and the algorithm U itself. To a protocol instance Πs

U , the following seven
variables are associated:

accsU : is set to true if the session key stored in sksU has been accepted;
pidsU : stores the identities of those users in U with which a key is to be estab-

lished, including U (the latter ensures that being partnered is a reflexive
relation);

sidsU : stores a session identifier, i. e., a non-secret identifier for the session key
stored in sksU ;

sksU : is initialized with a distinguished null value and after a successful protocol
run holds the session key;

statesU : stores state information needed for executing the protocol (e. g., a secret
scalar of an ephemeral Diffie-Hellman key);

terms
U : is set to true if this protocol execution has terminated;

usedsU : indicates if this instance is used, i. e., currently involved in a protocol
execution.
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Initialization. Before actual protocol executions take place, we allow an optional
trusted initialization phase without adversarial interference. In this phase, for
each U ∈ U a (public key, secret key)-pair (pkU , akU ) can be generated, akU is
given to U only, and pkU is handed to all users in U and to the adversary. The
initialization phase can also be used to disseminate further public parameters,
if necessary.

Adversarial capabilities and communication network. The adversary A is repre-
sented as a probabilistic polynomial time algorithm with full control over the
communication network. This results in a fully asynchronous, non-private net-
work allowing arbitrary point-to-point connections among users. More specifi-
cally, A’s capabilities are expressed through the following oracles :

Send(U, s,M) : This oracle serves two purposes.

– With the Send oracle, A can initialize a protocol execution; sending the
special message M = {Ui1 , . . . , Uir} ⊆ U to an unused instance Πs

U with
U ∈M initializes a protocol run among Ui1 , . . . , Uir . After such a query,
Πs

U sets pidsU := {Ui1 , . . . , Uir}, usedsU := true, and processes the first
step of the protocol.

– The message M is sent to instance Πs
U and the protocol message output

by Πs
U after receiving M is returned.

Reveal(U, s) : returns the stored session key sksU if accsU = true and a null
value otherwise.

Corrupt(U) : for a user U ∈ U this query returns U ’s long-term secret key akU .

It is worth noting that, unlike Reveal, Corrupt refers to a user rather than an in-
dividual protocol instance. An adversary with access to all of the above oracles is
considered active. To capture a passive adversary, access to Send is replaced with
access to an Execute oracle, returning a complete protocol transcript among the
specified unused instances.—An active adversary can simulate such an Execute
oracle by means of Send in the obvious manner.

For technical reasons, there is one more oracle, Test, and A must submit
exactly one query of the form Test(U, s) with an instance Πs

U that has accepted
a session key, i. e., with accsU = true. In response to such a query, a bit b ←
{0, 1} is chosen uniformly at random and for b = 1 the established session key
stored in sksU is returned. For b = 0 the output is a uniformly at random chosen
element from the space of session keys. The idea is that for a secure group key
establishment protocol, no efficient adversary can distinguish between b = 0 and
b = 1. To turn this idea into a definition we first exclude trivialities and restrict
our discussion to correct group key establishment protocols:

Definition 1 (Correctness). A group key establishment is correct if on honest
delivery of all messages and all users being honest, a single protocol execution
among users U0, . . . , Un−1 involves n instances Πs0

0 , . . . , Π
sn−1

n−1 such that with
overwhelming probability all of the following hold:
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– all users accept, i. e., accs00 = · · · = acc
sn−1

n−1 = true;
– all users obtain the same session identifier, i. e., sids00 = · · · = sid

sn−1

n−1 ;
– all users accept the same session key, i. e., sks00 = · · · = sk

sn−1

n−1 �= null
associated with the same session identifier sids00 ;

– all communication partners are specified as desired communication partner,
i. e., pids00 = · · · = pid

sn−1

n−1 = {U0, . . . , Un−1}.
Correctness refers to a scenario where no attack takes place; to formulate security
guarantees we have to specify under which circumstances a correct guess for the
random bit used by the Test oracle constitutes a viable attack. For this we use
the following notions of partnering and freshness.

Definition 2 (Partnering). Two instances Πsi
Ui

and Π
sj
Uj

are partnered if

sidsiUi
= sid

sj
Uj
, pidsiUi

= pid
sj
Uj

and accsiUi
= acc

sj
Uj

= true.

Based on this notion of partnering, we can specify what we mean by a fresh
instance—an instance where the adversary does not know the session key for
trivial reasons. We consider two types of freshness. In the first one the adversary
cannot corrupt any user associated with the Test-instance, and therefore forward
secrecy is not implied:

Definition 3 (Freshness without forward secrecy). An instance Πsi
i is

called fresh if none of the following two conditions hold:

– For some Uj ∈ pidsii a Corrupt(Uj)-query has been executed.
– A query Reveal(Uj , sj) with Πsi

i and Π
sj
j being partnered occurred.

The second formulation allows an adversary A to reveal all secret keys with-
out violating freshness, provided A does not send any “relevant” messages after
having received the secret keys. As a consequence, security in the sense of Defi-
nition 6 below implies forward secrecy:

Definition 4 (Freshness with forward secrecy). An instance Πsi
i is called

fs-fresh if none of the following two conditions hold:

– For some Uj ∈ pidsii a Corrupt(Uj) query was executed before a query of the
form Send(Uk, sk, ∗) has taken place where Uk ∈ pidsii .

– A query Reveal(Uj , sj) with Πsi
i and Π

sj
j being partnered occurred.

We write SucckeA for the event that A queries Test with a fresh instance according
to Definition 3 and outputs a correct guess for the Test oracle’s bit b. Similarly,
we write Succfs-keA forA correctly identifying b when querying Test with an fs-fresh
instance in the sense of Definition 4.

Definition 5 (Semantic security without forward secrecy). A key estab-
lishment protocol is said to be (semantically) secure, if the advantage AdvkeA =

AdvkeA(k) :=
∣∣∣2 · Pr[SucckeA]− 1

∣∣∣ is negligible for all probabilistic polynomial time

algorithms A.
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Analogously, with Advfs-keA = Advfs-keA (k) :=
∣∣∣2 · Pr[Succfs-keA ]− 1

∣∣∣ taking the role

of AdvkeA, we obtain the stronger

Definition 6 (Semantic security with forward secrecy). A key establish-
ment protocol is said to be fs-(semantically) secure, if Advfs-keA = Advfs-keA (k) is
negligible for all probabilistic polynomial time algorithms A.
To make explicit that adversaries are considered to be active, i. e., have access to
Send, it is common to refer to a group key establishment protocol as authenti-
cated. Complementing this terminology, we speak of unauthenticated group key
establishment to indicate that adversaries are passive.

Remark 1. In Definitions 5 and 6 the advantage can equivalently be written as

Adv
(fs-)ke
A = |Pr [1← A | b = 1]− Pr [1← A | b = 0]|.

Remark 2. In case of ambiguity we will also include the name of the protocol

in the index, writing Adv
(fs-)ke
A,R for the advantage of adversary A when attacking

protocol R.

3 A Compiler to Achieve Forward Secrecy

Throughout, we refer to the set of protocol participants aiming at a common
session key as U0, . . . , Un−1 and think of them as being arranged in a circle with
indices being taken mod n. By H : {0, 1}∗ −→ {0, 1}k we denote a random
oracle, and we assume the session key space to be {0, 1}k.

3.1 Construction

As a protocol P which is not forward-secure may leak the complete session key
when long-term secret keys leak, the compiler below uses the session key estab-
lished by P as ephemeral authentication key only. The session identifier of P
is preserved, however. To derive the new session key, our construction assumes
the availability of a secure unauthenticated 1-round 2-party key establishment
Q with perfect forward secrecy.1 A natural choice is a 2-party Diffie-Hellman
key establishment over a suitable cyclic group 〈P 〉 with an established key of
the form H(abP ), but more conceptual proposals such as [KLC+00] indicate
that our compiler might also be of interest in a post-quantum setting. The pro-
posed compiler assumes that the given authenticated group key establishment P
involves at least one round of communication and modifies P in two ways:

Modification of Round 1. In addition to the first round of protocol P, Ui broad-
casts two messages mL

i and mR
i to execute two instances of Q, establishing

2-party keys skLi and skRi with Ui−1 (mod n) and Ui+1 (mod n).

1 The formal definition is obtained by restricting Definition 6 in the obvious way to a
2-party setting.
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Addition of a final round. After Ui has accepted the session key skP,i with session
identifier sidP,i in protocol P, participant Ui performs the following additional
steps:

– Compute the values

Ti := skLi ⊕ skRi ,

θi := H(sidP,i||pidUi
||(mL

0 ,m
R
0 )|| . . . ||(mL

n−1,m
R
n−1)||Ti||Ui||skP,i).

– Broadcast (Ti, θi, Ui).
– Recover skR0 from

skR0 = skLi ⊕ T0 ⊕
n−1⊕
j=i

Tj , (1)

verify θ0, . . . , θn−1, and check if T0 ⊕ · · · ⊕ Tn−1 = 0. If any check fails,
terminate without accepting a session key.

– Accept the session key skR0 with session identifier sidP.

Remark 3. Security in the sense of Definition 5 does not guarantee that accepting
parties hold the same session key or session identifier. The index i in skP,i and
sidP,i tries to make this explicit.

3.2 Design Rationale

As mentioned in the previous section, we assume no guarantees about the forward
secrecy of the key established in protocol P, and hence the computation of the
actual session key established by the compiler relies on the 2-party protocol Q
only. Our use of 2-party keys in a circle of participants follows the well-known
construction of Burmester and Desmedt [BD94], using the key established in P
to authenticate legitimate protocol participants. As the security definitions allow
the session key to be determined by a proper subset of the protocol participants,
doing without an elaborate key derivation and using one of the 2-party keys as
established session key seems a viable and inexpensive option.

The tag θi in the additional round provides an explicit key confirmation for
the group key established in P and uses this key to authenticate messages added
by the compiler. When aiming at a standard model construction it is tempting
to derive the tags θi by means of a message authentication code, using skP,i as
secret key. The technical issue one encounters here, however, is that the relation
among the keys accepted by U1, . . . , Un−1 in P is not clear—neither do they have
to be equal nor independent. So when trying to argue that the tags cannot be
forged, one had to deal with a situation where an adversary has access to tags
under potentially related keys, a scenario which is not directly addressed in the
usual definition of existential unforgeability. When using a random oracle, as is
done in our compiler, possible relations among the skP,i are of no concern.

Finally, in the described form, the compiler uses protocol Q as a black box, but
it is worth noting that for a specific Q it can be possible to avoid the execution of
two independent instances of Q in Round 1. Specifically, for a Diffie-Hellman key
exchange, Ui can use a single message (uiP,Ui) to establish both keys, therewith
reducing the communication cost.
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3.3 Security Analysis

The following theorem shows that the above compiler indeed augments P in the
desired way.

Theorem 1. Let P be authenticated and secure according to Definition 5 and Q
an unauthenticated 1-round 2-party key establishment which is secure in the sense
of Definition 6. Then the group key establishment obtained from the compiler in
Section 3.1 is authenticated and secure according to Definition 6.

Proof. Let qsend be a polynomial upper bound for the total number ofA’s queries
to the Send oracle. Moreover, let qro be a polynomial upper bound on the total
number of A’s queries to the random oracle H , including both direct calls of A
to H and indirect calls through queries to Send.2 We prove the security of the
protocol by “game hopping”, letting the adversary A interact with a simulator.
The advantage of A in Game i will be denoted by AdvGame i

A :

Game 0: This game is identical to the original attack game, with all oracles
of the adversary being simulated faithfully. Consequently,

Advfs-keA = AdvGame 0
A .

Game 1: In this game we modify the adversary in such a way that at the be-
ginning she guesses uniformly at random which instance Π

si0
i0

will be queried

to the Test oracle as well as one more instance Π
si0−1

i0−1 with which Π
si0
i0

will,

after the compiler’s modification of Round 1, establish a 2-party key skRi0 .
Whenever at least one of these guesses turns out to be wrong, we abort the
simulation and consider the adversary to be at loss. Otherwise the game is
identical with Game 0. Consequently,

AdvGame 0
A ≤ 2 · q2send ·AdvGame 1

A ,

and as qsend is polynomial in k, it suffices to recognize AdvGame 1
A as negligi-

ble.
Game 2: Let Collision be the event that two values x �= x′ are queried to H

such that H(x) = H(x′). Whenever this event occurs, we abort and count
this as success for the adversary. There are at most

(
qro
2

) ≤ q2ro/2 candidate
pairs (x, x′) and the range of H is of size 2k. Hence

|AdvGame 2
A −AdvGame 1

A | ≤ 2 · Pr[Collision] ≤ q2ro
2k

.

Game 3: Let Forge be the event that at least one of the messages mL
i , m

R
i , Ti

of at least one party Ui has been modified, and Πs0
i0

terminates successfully,
i. e., accepts a session key despite the message modification(s). Whenever
this event occurs, we abort and count this as success for the adversary. As
Collision did not occur, for Forge to take place, A has either guessed the tag

2 In particular, qro depends on the number of random oracle calls in P and Q.
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θi correctly (which happens with probability ≤ 2−k) or submitted a random
oracle query of the form H(· · · ||skP,0). As transmitting θi to Πs0

i0
requires

a Send query, the freshness definition ensures that A submitted the query
involving skP,0 toH before possibly corrupting Ui0 or any other users holding
an instance partnered with Πs0

i0
. This enables us to turn A into an adversary

B against protocol P:
The adversary B runs a simulation of A and answers oracle queries of A by
means of its own oracles as detailed below.

– Random oracle H : B uses its own random oracle in the obvious way.
Moreover, when receiving a direct random oracle query of A, then B
adds the last k bits of the query to an (initially empty) list Lro.

– Send: Performing the necessary computations for executing protocol Q
itself, B can simulate A’s queries to Send perfectly with its own Send
oracle—with the exception of the computation of the θi-values for those
instances which in protocol P are partnered with Πs0

i0
. (For all other

instances, B can simply reveal the group key established in protocol P.)
To simulate θi-values of instances partnered with Πs0

i0
in P, B replaces

such values θi with independently chosen random values; note that θi =
H(. . . ||Ui|| . . . ), i. e., even with identical group keys in protocol P the
random oracle queries for θi differ for each Ui. If A never submits a
query of the form H(. . . ||skP,i) with skP,i being held by an instance
partnered with Πs0

i0
in P, this simulation is perfect. If such a query is

ever submitted by A, we make no claims about A’s further behavior.
– Reveal: If A should ever submit a query to this oracle that violates the

freshness of Πs0
i0

(which in principle could happen in the case where B’s
simulation of Send is incorrect), the simulation ofA is aborted. Otherwise
B can compute the required session key from its simulated executions
of Q.

– Corrupt: If A should ever submit a query to Corrupt that violates the
freshness of Πs0

i0
(which in principle could happen in the case where B’s

simulation of Send is incorrect), the simulation of A is aborted. In all
other cases B uses its own Corrupt oracle (and the data of the simulated
Q executions, if Q should involve long-term secrets) in the obvious way.

At the latest when A queries Test, the adversary B ends the simulation of A
and chooses a candidate session key among the entries of Lro at random—if
the event Forge occurred and A did not guess θi, then Lro is non-empty.
Then B queries Test with an instance randomly chosen among all instances
partnered with Π

si0
i0

in P. This instance is fresh for protocol P, as the session
identifier of the compiled protocol and of P are identical and the compiler
does not modify partner identifiers. If the challenge obtained from Test is
equal to the candidate session key selected in Lro, B outputs 1, otherwise B
outputs 0.

Using qro as upper bound for the number of entries in Lro and qsend as
upper bound for the number of instances possibly partnered with Πs0

i0
, we

see that B’s success probability is at least
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Pr[SucckeB ] ≥ 1

2
·
(

1

qro · qsend · (Pr[Forge]−
1

2k
)− 1

2k

)
+

1

2
·
(
1− 1

2k

)
,

and hence

|AdvGame 3
A −AdvGame 2

A | ≤ 2 · qro · qsend ·
(
AdvkeB +

1

2k−1

)
+

1

2k−1
.

Game 4: This game differs from Game 3 in the simulator’s response in the final
round. If the simulator has to output the message of instance Π

si0
i0

then the

simulator replaces skRi0 with a random value from {0, 1}k in all computations

of Π
si0
i0

. To keep consistency, the same value has to be used for skLi0+1 in the

neighbored instance Π
si0+1

i0+1 .
An adversary A that distinguishes Game 3 and Game 4 can be used as

black box to construct an adversary against the 2-party protocol Q:
C runs a simulation of A and faithfully simulates all instances for A with

the exception ofΠ
si0
i0

andΠ
si0+1

i0+1 . To answerA’s oracle queries, C can proceed
as follows.

– Random oracle H : To answer A’s random oracle queries, C queries its
own random oracle.

– Corrupt: For instances other than Π
si0
i0

and Π
si0−1

i0−1 , C has all information
available as part of its simulation. For the latter two instances, C has
the long-term secrets for protocol P available, and uses its own Corrupt
oracle to obtain the long-term secret for protocol Q.

– Reveal: For instances other than Π
si0
i0

and Π
si0−1

i0−1 , C simply computes

the session key that needs to be revealed. Moreover, as Π
si0
i0

is A’s ‘Test
instance’ and partnered withΠ

si0−1

i0−1 , both of these instances must remain
fresh and cannot be revealed. Therefore C can faithfully simulate all
Reveal queries.

– Send: For instances other than Π
si0
i0

and Π
si0−1

i0−1 , C simply performs the
necessary computations. The same holds for these two instances in regard
to computations for the protocol P. To compute in Round 1 the protocol
messages of protocol Q, the adversary C uses its own Execute oracle and
takes from the respective reply the corresponding messages of protocol
Q for the answer for A.

To simulate the messages in the final round for instances Π
si0
i0

and

Π
si0−1

i0−1 , C queries its own Test oracle on instance Π
si0
i0

and uses this

value s̃kRi0 to compute Ti0 and Ti0+1. To compute the tag θi0 and the
tags for the instances partnered, C uses the messages for protocol Q
obtained through the Execute query. The other elements involved in the
random oracle query can be faithfully simulated by C.

– Test: When A queries Test(Ui0 , si0), the queried instance must be fresh
for A and hence is ensured to be fresh for C, too. In this case, C chooses

a random bTest ∈ {0, 1}. If b = 1, C hands the answer s̃kRi0 obtained as
answer to its own Test query to A, otherwise it hands a uniformly at
random chosen k-bit string to A.
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Whenever A correctly identifies bTest, C outputs 1, i. e., claims that the real
session key was given, whenever A guesses incorrectly, C outputs 0. Denoting
by bQ the internal random bit of the Test oracle faced by C, we obtain (with
a slight abuse of notation) the following bound.∣∣AdvGame 3

A −AdvGame 4
A

∣∣
≤ ∣∣Pr[1← AbTest=1 | bQ = 1]− Pr[1← AbTest=0 | bQ = 1]−

Pr[1← AbTest=1 | bQ = 0] + Pr[1← AbTest=0 | bQ = 0]
∣∣

=
∣∣Pr[1← C | bQ = 1]− Pr[0← C | bQ = 1]−
Pr[1← C | bQ = 0] + Pr[0← C | bQ = 0]

∣∣
≤ AdvQC +AdvQC
= 2 ·AdvQC .

In particular, under the assumption that protocol Q is fs-secure, the right-
hand side of this inequality is negligible in k.
None of the partners of the adversary’s Test-instance are allowed to be cor-
rupted or to be revealed, because of the definition of freshness. Thereby,
those instances were affected in Game 4 and use a random value as session
key. Therefore, the adversary has only a probability of 1

2 for guessing the
internal random bit of Test, yielding

AdvGame 4
A = 0.

Putting the probabilities together we recognize the adversary’s advantage in
the real model as negligible:

Advfs-keA ≤ 2q2send ·
(
q2ro
2k

+ 2qroqsend ·
(
AdvkeB,P +

1

2k−1

)
+

1

2k−1
+

2 ·Advfs-keC,Q

)
.

��

4 Conclusion

The presented compiler offers a generic technique to augment a secure group key
establishment protocol which does not offer perfect forward secrecy—e. g., a key
transport—to one that provides forward secrecy. For this, no modifications of
the session identifier or of an underlying public key infrastructure are needed. In
connection with one-round constructions for group key establishment, this seems
an interesting option to design two-round protocols for group key establishment
with perfect forward secrecy in a modular way.
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Abstract. We discuss the applicability of the well known OR-proof
technique to hierarchical identity-based identification (HIBI) protocols
for enhancing their security. We first describe formal security definitions
for HIBI protocol not only in the adaptive hierarchical-identity setting
but also in both “static” and “weak selective” hierarchical-identity set-
tings. Next, we investigate whether the security enhancement transfor-
mations for identity-based identifications presented at ACNS 2012, which
is based on the OR-proof technique, can be applied to HIBI protocols.
We formally prove that several of these transformations are applicable
to HIBI with slight modification. Curiously, the rest do not seem ap-
plicable, which stems from hierarchy and delegation. We also present a
variant transformation and show that it can enhance the security of HIBI
protocols in all three hierarchical-identity settings.

Keywords: hierarchical identity-based identification, OR-proof, imper-
sonation under concurrent attacks.

1 Introduction

Identification is a protocol between a prover and a verifier through which the
prover tries to convince the verifier of his/her identity. The security of identifica-
tion protocols is defined by an experiment consisting of learning and challenge
phases. In the learning phase, an adversary acts as many verifiers to gather
much information and in the challenge phase, acts as a prover to impersonate
an entity. A strong security model of identification protocols is formulated as a
model against impersonation under concurrent attacks [2], in which an adver-
sary is allowed to concurrently access entities who prove their identities, even
in the challenge phase. On the other hand, in the security model against imper-
sonation under passive attacks [2], an adversary is only allowed to eavesdrop on
identification communications in the learning phase.

After the proposal of identity-based cryptography [13], identification in the
identity-based setting, called identity-based identification (IBI), has also been
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investigated. In an IBI protocol, the existence of a private key generator (PKG)
is assumed as well as in other identity-based cryptographic schemes. The PKG
generates a secret key corresponding to the inputted identity of an entity, and
gives the secret key to the entity. For IBI protocols, we can consider other types
of attack models with respect to an adversary’s selection of identities. Under
adaptive identity attacks (i.e., in the adapt-id-imp-atk security model) [1,12], an
adversary is allowed to adaptively ask identities to oracles. Under static identity
attacks (i.e., in the stat-id-imp-atk security model) [12], an adversary declares,
only at the beginning of the learning phase, the identities of all entities to be
in queries or challenged. Under weak selective identity attacks (i.e., in the wsid-
imp-atk security model) [14], an adversary requests secret keys of identities only
at the beginning of the learning phase. Here, atk denotes a type of attack such
that atk ∈ {pa, ca}, and pa and ca mean passive attack and concurrent attack,
respectively.

It is natural to extend IBI to identification in the hierarchical identity setting,
called hierarchical identity-based identification (HIBI). In an HIBI protocol, the
single PKG functionality of generating secret keys is divided into partial ones
and the divided functionalities are delegated to multiple PKGs. If a PKG is
assigned a hierarchical identity, ID(k−1) = (I1, . . ., Ik−1), and given a secret key,
sk ID(k−1) , corresponding to the hierarchical identity, then it can generate a secret
key, sk ID(k) , corresponding to a hierarchical identity, ID(k) = (I1, . . ., Ik). We may
omit the word “hierarchical” to indicate a hierarchical identity if its meaning is
clear and denote a (hierarchical) identity by ID if we do not need to specify
its hierarchy depth. Since IBI has three phases, HIBI also has three: Setup,
Extract, and Identification.

Security for HIBI. The first security formulation for HIBI was given by Chin,
Heng, and Goi [3] with their first proposal of an HIBI protocol. However, they
formulated the passive and concurrent security only under adaptive hierarchical-
identity attacks. Therefore, we can consider three types of attack models re-
garding an adversary’s selection of hierarchical identities for HIBI protocols, as
well as for IBI protocols. One is called security against impersonation under
adaptive hierarchical-identity attacks (adapt-hid-imp-atk security), which is an
extension of adapt-id-imp-atk security. The second one is called security against
impersonation under static hierarchical-identity attacks (stat-hid-imp-atk secu-
rity), which is an extension of stat-id-imp-atk security and in which an adversary
requests secret keys of hierarchical identities only at the beginning of the learn-
ing phase. The third one is called security against impersonation under weak
selective hierarchical-identity attacks (wshid-imp-atk security), which is an ex-
tension of wsid-imp-atk security and in which an adversary declares, only at the
beginning of the learning phase, the hierarchical identities of all entities to be in
queries or challenged.

Security Enhancement Transformations of IBI. It is well known that the
OR-proof technique [5,4] enhances the security of not only standard identification
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but also IBI protocols from passive security to the concurrent security [11,6].
Thus, we expect that the OR-proof technique can be also applied to HIBI pro-
tocols to enhance their security. Actually, HIBI protocols proposed in [7] utilize
the OR-proof technique, and they are concurrently secure.

In [6], Fujioka, Saito, and Xagawa investigated OR-proof techniques for IBI
protocols, which are formulated as three transformations, DIsk, MI, and DPsk
transformations with double-key variants DIdk and DPdk transformations.1 The
authors proved that all the transformations can enhance an adapt-id-imp-pa
(resp. wsid-imp-pa) secure IBI protocol to an adapt-id-imp-ca (resp. wsid-imp-ca)
secure one, and that the DPsk, and DPdk transformations can enhance a stat-id-
imp-pa secure IBI protocol to a stat-id-imp-ca secure one [6].

Our Contributions. We formally define security against impersonation un-
der static hierarchical-identity attacks (stat-hid-imp-atk security) and security
against impersonation under weak selective hierarchical-identity attacks (wshid-
imp-atk security), along with the existing adapt-hid-imp-atk security, where atk
denotes a type of attack such that atk ∈ {pa, ca}.

Next we introduce two properties of HIBI protocols, which are extensions of
the Σ+-type and Σ∗-type properties defined for IBI protocols [6]. The require-
ment of Σ+-type is weaker than that of Σ∗-type in HIBI.

We examine whether the transformations discussed in [6] can be applied to
HIBI protocols to enhance their security, and show the following points:

– To apply the DIdk transformation to a Σ+-type HIBI protocol, we need a
slight modification in choosing (imaginary) identities.

– The DIdk, MI, and DPdk transformations can convert an adapt-hid-imp-pa
(resp. wshid-imp-pa) secure Σ+-type HIBI protocol to an adapt-hid-imp-ca
(resp. wshid-imp-ca) secure one.

– The DPdk transformation can convert a stat-hid-imp-pa secure Σ∗-type HIBI
protocol to a stat-hid-imp-ca secure one.

– It seems difficult to enhance the passive security of an HIBI protocol in the
static hierarchical-identity attack model by the DIdk and MI transforma-
tions.

– It seems difficult to enhance the passive security of an HIBI protocol in all
the three hierarchical-identity attack models by the DIsk and DPsk trans-
formations.

We also present a modified version of the DIdk transformation (named mDIdk
transformation) and show that the mDIdk transformation can also convert a
stat-hid-imp-pa secure HIBI protocol to a stat-hid-imp-ca secure one. While it
is an open problem [6] whether there exists an OR-proof security enhancement
1 DIsk, MI and DPsk stand for Dual-Identity single-key, Master-Identity, and

Double-Parameter single-key, respectively. Also DIdk and DPsk stand for Dual-
Identity double-key and Double-Parameter double-key, respectively [6]. The “double-
parameter” means two master public keys, and “single/double-key” indicates the
numbers of user’s secret keys.
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transformation based on a single master public key that converts a stat-id-imp-pa
secure IBI protocol to a stat-id-imp-ca one, there exists an OR-proof security
enhancement transformation based on a single master public key for stat-hid-
imp-pa secure HIBI protocols.

For the summary and comparison, see Table 1.

Table 1. Applicability of Transformations

HIBI [this paper] IBI [6]
adapt-hid stat-hid wshid adapt-id stat-id wsid

DIsk � �
DIdk � � � �
MI � � � �

DPsk � � �
DPdk � � � � � �
mDIdk � � �

2 Definitions

We formally define hierarchical identity-based identification (HIBI) protocols
and their security by following the formal definition of IBI protocols [1].

Hierarchical Identity-Based Identification. Two types of formal defini-
tions for key generation in hierarchical identity-based cryptography have been
proposed. One consists of three algorithms, Root Setup, Lower-level Setup, and
Extraction, as in the Gentry-Silverberg hierarchical identity-based encryption
(HIBE) scheme [9], and the other consists of two algorithms, root-key-generation
algorithm and node-key-generation algorithm, as in the Horwitz-Lynn HIBE
scheme [10]. The two types of definitions are essentially the same. We adopt
the formal definition of HIBI protocols proposed by Chin et al. [3]. Note that
their key generation is the former type, but we here describe it in the latter type.

Let HIBI = (SetUp, KG, P, V) be an HIBI protocol, and κ denote the security
parameter. In HIBI, SetUp is the root-key-generation algorithm that on input 1κ
outputs mpk and msk . To simplify notation, we set sk ID(0) = msk . KG is the node-
key-generation algorithm that on input (mpk , sk ID(k−1) , ID(k)) outputs sk ID(k) , P
is the prover algorithm that takes mpk , ID, and sk ID as inputs and interacts with
V, and V is the verifier algorithm that takes mpk and ID as inputs, interacts with
P, and finally outputs dec ∈ {accept , reject}, where ID(k−1) = (I1, . . ., Ik−1),
ID(k) = (I1, . . ., Ik). Thus, SetUp is used in Setup, KG is used in Extract,
and P and V are used in Identification. Throughout this paper, we denote
pref(ID) as the set of all prefixes of ID, i.e., pref(ID) = {(I1), (I1, I2), . . ., (I1, . . .,
Ik−1), (I1, . . ., Ik)} when ID = (I1, . . ., Ik). Note that pref(ID) includes ID.
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We describe the formal definitions of the security of HIBI based on the follow-
ing experiment Expadapt-hid-imp-atk

HIBI,I (κ) between a challenger and an impersonator
I = (CV, CP), where atk denotes a type of attack such that atk ∈ {pa, ca}.
Experiment Expadapt-hid-imp-atk

HIBI,I (κ):
Setup Phase: The challenger obtains (mpk , msk) ← SetUp(1κ) and ini-

tializes HU , CU , TU , PS ← ∅, where HU , CU , and TU denote the sets
of honest users, corrupted users, and target users, respectively, and PS
denotes the set of provers’ sessions. The impersonator CV is given the
security parameter 1κ and the master public key mpk .

Learning Phase: The CV can ask queries to the Init, Corr, and Conv
oracles when atk = pa and also to Prov when atk = ca. Note that
ID �∈ HU \ TU means that ID is a target identity, a prefix of target
identity, corrupted identity, or non-initiated identity.
– The oracle Init receives input ID(k). If ID(k) ∈ HU ∪CU ∪TU , then

it returns ⊥. Otherwise, it computes k secret keys sk ID(1) , . . . , sk ID(k)

by running sk ID(i) ← KG(mpk , sk ID(i−1) , ID(i)) if all prefixes of ID(k)

are not in HU , adds pref(ID(k)) to HU , and provides the CV with
ID(k). If some prefixes of ID(k) are in HU and if ID(j) is the longest
one in the prefixes, it computes k−j secret keys sk ID(j+1) , . . . , sk ID(k) .

– The oracle Corr receives input ID. If ID �∈ HU \TU , then it returns
⊥. Otherwise, it deletes all ID′s in HU such that ID ∈ pref(ID′), adds
them to CU , and returns sk ID to the CV.

– The oracle Conv receives input ID. If ID �∈ HU , then it returns ⊥.
Otherwise it returns a transcript of a transaction between the prover
with identity ID and a verifier.

– (only when atk = ca) The oracle Prov receives inputs ID, s, and
Min . If ID �∈ HU \ TU , then it returns ⊥. If (ID, s) �∈ PS , then
it adds (ID, s) to PS , selects a random coin ρ, and sets a state of
the prover stP[(ID, s)] ← (mpk , sk ID, ρ). Next, it obtains (Mout ,
stP[(ID, s)]) ← P(Min , stP[(ID, s)]). Finally, it returns Mout . Note
that we require that ID �∈ HU \ TU since we do not consider man-
in-the-middle attacks [8] in this paper.

Challenge Phase: The CV outputs a target identity ID∗ and state infor-
mation stCP. If ID∗ is not in HU , then the challenger outputs reject and
halts. Otherwise, the challenger sets TU ← pref(ID∗) and gives stCP to
CP. CP can ask queries to Init, Corr, and Conv, (and Prov when
atk = ca) as in the learning phase. Finally, the challenger obtains (tr ,
dec)← Run[CP(stCP)

Init,Corr,Conv(,Prov) ↔ V(mpk , ID∗)] and outputs
dec.

In these experiments, the impersonator is allowed to obtain a secret key of an
adaptively chosen (hierarchical) identity and a transcript of a transaction be-
tween the prover of an adaptively chosen (hierarchical) identity and a verifier.
In the case of atk = ca, the Prov oracle allows multiple sessions at the same
time.
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Definition 2.1. Let HIBI = (SetUp, KG, P, V) be an HIBI protocol and I =
(CV, CP) an impersonator. Let κ be a security parameter. The advantage of I
in attacking HIBI is defined by

Advadapt-hid-imp-atk
HIBI,I (κ) := Pr

[
Expadapt-hid-imp-atk

HIBI,I (κ) = accept
]
.

We say that HIBI is secure against impersonation under adaptive hierarchical-
identity and concurrent attacks (adapt-hid-imp-ca secure) if Advadapt-hid-imp-ca

HIBI,I (κ)
is negligible for every polynomial-time I and is secure against impersonation un-
der adaptive hierarchical-identity and passive attacks (adapt-hid-imp-pa secure)
if Advadapt-hid-imp-pa

HIBI,I (κ) is negligible for every polynomial-time I.

Static and Weak Selective Hierarchical-Identity Attack Models. Fol-
lowing Rückert [12] and Yang et al. [14], we describe two other security def-
initions, which are weaker than the adapt-hid-imp-atk security, of HIBI based
on the following experiments, Expstat-hid-imp-atk

HIBI,I (κ) and Expwshid-imp-atk
HIBI,I (κ) (atk ∈

{pa, ca}), between a challenger and impersonator I = (CV, CP).

Experiment Expstat-hid-imp-atk
HIBI,I (κ):

Setup Phase: At the beginning of this phase, the CV on input 1κ issues
a single corrupt query (ID1, . . ., IDt) to the challenger before receiving
the master public key. The challenger is given the security parameter
1κ, obtains (mpk , msk) ← SetUp(1κ), and computes sk IDi

← KG(mpk ,
msk , IDi) (1 ≤ i ≤ t). It sets CU ← {ID1, ID2, . . ., IDt} and then returns
(sk ID1

, . . ., sk IDt
) to the CV. The challenger initializes HU , TU , and

PS ← ∅. The CV is given the master public key mpk .
Learning and Challenge Phases: The learning and challenge phases are

defined the same as those in experiment Expadapt-hid-imp-atk
HIBI,I (κ), except

that impersonator I is not allowed additional queries to Corr during
these phases.

Experiment Expwshid-imp-atk
HIBI,I (κ):

Setup Phase: At the beginning of this phase, the CV on input 1κ issues a
single initialization query (ID1, . . ., IDt) to the challenger before receiving
the master public key. The challenger is given the security parameter 1κ
and obtains (mpk , msk)← SetUp(1κ). It sets HU ← ⋃t

i=1 pref(ID1) and
provides the CV with (ID1, . . ., IDt). The challenger initializes CU , TU ,
and PS ← ∅. The CV is given the master public key mpk .

Learning and Challenge Phases: The learning and challenge phases are
defined the same as those in experimentExpadapt-hid-imp-atk

HIBI,I (κ), except that
I is not allowed additional queries to the Init oracle during these phases.

In the stat-hid-imp-atk experiment, the impersonator has to choose all (hierar-
chical) identities that it wants to corrupt at the beginning of the experiment.
After that, it is allowed to access oracles except for Corr. In the wshid-imp-atk
experiment, the impersonator has to select all (hierarchical) identities that it
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wants to initialize at the beginning of the experiment. Then, it is allowed to
send queries of only the (hierarchical) identities chosen at the beginning,

Let HIBI = (SetUp, KG, P, V) be an HIBI protocol and I = (CV, CP) an
impersonator. Let κ be a security parameter. The advantages of I in attacking
HIBI are defined as

Advstat-hid-imp-atk
HIBI,I (κ) := Pr

[
Expstat-hid-imp-atk

HIBI,I (κ) = accept
]

and

Advwshid-imp-atk
HIBI,I (κ) := Pr

[
Expwshid-imp-atk

HIBI,I (κ) = accept
]
.

We say that HIBI is secure against impersonation under static (resp. weak selec-
tive) hierarchical-identity and concurrent attacks (stat-hid-imp-ca (resp. wshid-

imp-ca) secure) if Advstat-hid-imp-ca
HIBI,I (κ) (resp. Advwshid-imp-ca

HIBI,I (κ)) is negligible for
every polynomial-time I, and is secure against impersonation under static (resp.
weak selective) hierarchical-identity and passive attacks (stat-hid-imp-pa (resp.
wshid-imp-ca) secure) if Advstat-hid-imp-pa

HIBI,I (κ) (resp. Advwshid-imp-pa
HIBI,I (κ)) is negligi-

ble for every polynomial-time I.

Σ+- and Σ∗-Type HIBI Protocols. We define two analogues of Σ-type
IBI-protocols [6] in the context of HIBI protocols. Let HIBI = (SetUp, KG, P, V)
be an HIBI protocol. Suppose that P and V interact by using four probabilistic
polynomial-time algorithms (Σhibi-com, Σhibi-ch, Σhibi-res, Σhibi-vrfy) as follows:

P→ V: P computes (a, st)← Σhibi-com(mpk , ID, sk ID) and sends a to V.
V→ P: V computes c← Σhibi-ch(mpk , ID) and sends c to P.
P→ V: P computes z ← Σhibi-res(mpk , ID, sk ID, a, c, st) and sends z to V.
V: V computes dec ← Σhibi-vrfy(mpk , ID, a, c, z) and outputs dec ∈ {accept ,

reject}.
We call this type of three-move HIBI protocol canonical [2]. We also call an
HIBI protocol HIBI Σ+-type if it is canonical and satisfies the following three
properties: special zero-knowledge, special soundness, and special challenge:

Special Zero-Knowledge: We can obtain an accepting transcript from a chal-
lenge c, mpk , and ID. That is, there is a probabilistic polynomial-time algorithm
Σhibi-sim that takes on input mpk , ID, and c such that c← Σhibi-ch(mpk , ID) and
outputs (a, z) such that accept = Σhibi-vrfy(mpk , ID, a, c, z). The distribution
of transcripts generated by Σhibi-ch and Σhibi-sim is indistinguishable from that of
real transcripts.

Special Soundness: We can compute the user secret key sk ID for an identity
ID from mpk , ID, and two accepting transcripts (a, c, z) and (a, c̃, z̃) such that
c �= c̃. That is, there is a probabilistic polynomial-time algorithm Σhibi-ext that
takes as input mpk , ID, and two transcripts (a, c, z) and (a, c̃, z̃) satisfying
accept = Σhibi-vrfy(mpk , ID, a, c, z) = Σhibi-vrfy(mpk , ID, a, c̃, z̃) and c �= c̃, and
outputs sk ID.

Special Challenge: Σhibi-ch depends only on mpk , not on (mpk , ID), and the
output c is uniformly distributed over a commutative group G. In addition, the
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group operation + is computable in polynomial time, and G is determined only
by mpk , not by (mpk , ID). That is, there is a probabilistic polynomial time
algorithm Σ+

hibi-ch such that it takes as input mpk (without ID) and outputs c,
and c is uniformly distributed over G.

We call an HIBI protocol HIBI Σ∗-type if the special challenge property is
replaced with the following property:

Strongly Special Challenge: Σhibi-ch depends only on 1κ, not on mpk , and
the output c is uniformly distributed over G. In addition, + is computable in
polynomial time, and G is determined only by 1κ, not by mpk . That is, there is
a probabilistic polynomial time algorithm Σ∗

hibi-ch such that it takes as input 1κ

(not mpk) and outputs c, and c is uniformly distributed over G.

3 Security Enhancement Transformations

In this section, we describe three security enhancement transformations, DIdk,
MI, and DPdk, and show that they can enhance the passive security of an
HIBI protocol to the concurrent security in both adaptive and weak selective
hierarchical-identity settings. Next, we present a modified version of the DIdk
transformation (mDIdk) and show that the DPdk and mDIdk transformation
can enhance a stat-hid-imp-pa secure HIBI protocol to a stat-hid-imp-ca secure
one. In addition, we discuss the difficulty in enhancing security in the static
hierarchical-identity models by the DIdk, DIsk, MI, DPsk, or a single key vari-
ant of the mDIdk (mDIsk) transformation.

Let HIBI′ = (SetUp′, KG′, P′, V′) be a Σ+-type (Σ∗-type) HIBI protocol in
which (P′,V′) use four probabilistic polynomial time algorithms Σhibi-com, Σ+

hibi-ch

(Σ∗
hibi-ch), Σhibi-res, and Σhibi-vrfy, and have the special zero-knowledge property

with a probabilistic polynomial time algorithm Σhibi-sim and the special soundness
with a probabilistic polynomial time algorithm Σhibi-ext.

3.1 Dual-Identity Double-Key Transformation

We show a security enhancement transformation based on the OR-proof tech-
nique, applicable to the Σ+-type HIBI protocol. We call this transformation
DIdk transformation.

Let i.ID(k) denote (i||I1, I2, . . ., Ik) when ID(k) = (I1, . . ., Ik). In an HIBI
protocol generated by the DIdk transformation, an entity of an identity ID is
given two secret keys corresponding to imaginary (hierarchical) identities 0.ID
and 1.ID for the underlying HIBI protocol, and shows his/her identity by proving
that the imaginary (hierarchical) identity is either 0.ID or 1.ID.

We describe an HIBI protocol HIBI = (SetUp, KG, P, V) produced by applying
the DIdk transformation to HIBI′ in Fig. 1. Note that in the Extract algorithm
in this figure, we let sk ID(0) = (msk ′, msk ′).

Due to the special challenge property, c is an element in G determined by
mpk ′, so are c0 and c1 since c = c0 + c1 and the operation + is defined in G.
Then, c0 and c1 are possible challenges under mpk ′.
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Setup
SetUp(1κ)

(mpk′,msk′) ← SetUp′(1κ)
output (mpk,msk) = (mpk ′,msk ′)

Extract
KG(mpk, sk

ID(k−1) , ID
(k))

mpk = mpk′

msk = msk ′

sk
ID(k−1) = (sk ′

0.ID(k−1) , sk
′
1.ID(k−1) ) (sk

ID(0) = (msk ′,msk ′))
sk ′

0.ID(k) ← KG′(mpk ′, sk ′
0.ID(k−1) , 0.ID

(k))

sk ′
1.ID(k) ← KG′(mpk ′, sk ′

1.ID(k−1) , 1.ID
(k))

output sk
ID(k) = (sk ′

0.ID(k) , sk
′
1.ID(k) )

Identification
P(mpk , ID, sk ID) V(mpk , ID)

mpk = mpk′ mpk = mpk ′

sk ID = (sk ′
0.ID, sk

′
1.ID)

b ← {0, 1}
(ab, st) ← Σhibi-com(mpk′, b.ID, sk ′

b.ID)

cb̄ ← Σ+
hibi-ch(mpk ′)

(ab̄, zb̄) ← Σhibi-sim(mpk ′, b̄.ID, cb̄) (a0, a1)

−→ c ← Σ+
hibi-ch(mpk′)

c
cb = c − cb̄ ←−

zb ← Σhibi-res(mpk ′, b.ID,
sk ′

b.ID, ab, cb, st) (c0, z0, z1)
−→ c1 = c − c0

dec0 ← Σhibi-vrfy(mpk′, 0.ID, a0, c0, z0)
dec1 ← Σhibi-vrfy(mpk′, 1.ID, a1, c1, z1)
output accept if dec0 = dec1 = accept;

otherwise, output reject

Fig. 1. DIdk Transformation

It is easy to have a variant of the DIdk transformation (DIsk transformation)
such that each entity is given only either secret key of identities 0.ID or 1.ID,
and the entity shows that it has either the secret key of 0.ID or 1.ID. However,
it seems difficult to enhance the passive security of an HIBI protocol in any
hierarchical-identity attack model with this variant.

3.2 Master-Identity Transformation

We show another security enhancement transformation based on the OR-proof
technique, applicable to the Σ+-type HIBI protocol. We call this transformation
MI transformation.

In an HIBI protocol generated by the MI transformation, an entity with an
identity ID is simply given a secret key corresponding to the identity ID for the
underlying HIBI protocol, and the entity of the identity ID proves that his/her
identity is either ID or an (imaginary) master identity.

We describe an HIBI protocol HIBI = (SetUp, KG, P, V) produced by applying
the MI transformation to HIBI′ in Fig. 2. In the Extract algorithm in this figure,
we let sk ID(0) = msk ′.

Due to the special challenge property, c is an element in G determined by
mpk ′, so are c0 and c1 since c = c0 + c1 and the operation + is defined in G.
Then, c0 and c1 are possible challenges under mpk ′.
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Setup
SetUp(1κ)

(mpk′,msk′) ← SetUp′(1κ)
choose a master identity IDmaster from the set of identities of depth 1

output (mpk,msk) = ((mpk ′, IDmaster),msk ′)
Extract

KG(mpk, sk
ID(k−1) , ID

(k))

mpk = (mpk′, IDmaster)

output ⊥ if IDmaster ∈ pref(ID(k))
sk

ID(k−1) = sk ′
ID(k−1) (sk

ID(0) = msk′)
sk ′

ID(k) ← KG′(mpk′, sk ′
ID(k−1) , ID

(k))

output sk
ID(k) = sk ′

ID(k)

Identification
P(mpk, ID, sk ID) V(mpk, ID)

mpk = (mpk′, IDmaster) mpk = (mpk ′, IDmaster)
sk ID = sk ′

ID
(a0, st) ← Σhibi-com(mpk′, ID, sk ′

ID)

c1 ← Σ+
hibi-ch(mpk′)

(a1, z1) ← Σhibi-sim(mpk′, IDmaster , c1) (a0, a1)

−→ c ← Σ+
hibi-ch(mpk′)

c
c0 = c − c1 ←−

z0 ← Σhibi-res(mpk ′, ID, sk ′
ID, a0, c0, st) (c0, z0, z1)

−→ c1 = c − c0
dec0 ← Σhibi-vrfy(mpk′, ID, a0, c0, z0)
dec1 ← Σhibi-vrfy(mpk′, IDmaster , a1, c1, z1)
output accept if dec0 = dec1 = accepts;

otherwise, output reject

Fig. 2. MI Transformation

Here, IDmaster is randomly chosen from the set of identities but does not
coincide with any identities of real entities. It is clear that an impersonator
should not be allowed to obtain the secret key of IDmaster . In the construction
of KG, KG(mpk , sk ID(k−1) , ID(k)) outputs ⊥ if IDmaster ∈ pref(ID(k)). This means
that the space of all possible identities of entities does not include IDmaster .
Note that since IDmaster is randomly chosen from the set of identities, it is a
hierarchical identity of depth 1.

3.3 Double-Parameter Double-Key Transformation

We show the other security enhancement transformation based on the OR-proof
technique, applicable only to the Σ∗-type HIBI protocol, not to the Σ+-type.
We call this transformation DPdk transformation.

In an HIBI protocol generated by the DPdk transformation, an entity of an
identity ID is given secret keys corresponding to the identity based on both
master public keys in the underlying HIBI protocol and proves that his/her
(hierarchical) identity is ID under either master public key.

We describe an HIBI protocol HIBI = (SetUp, KG, P, V) produced by applying
the DIdk transformation to HIBI′ in Fig. 3. In the Extract algorithm in this
figure, we let sk ID(0) = (msk ′

0, msk ′
1).

Due to the strongly special challenge property, c is an element in G determined
only by 1κ, so are c0 and c1 since c = c0+c1 and the operation + is defined in G.
Therefore, c0 and c1 are possible challenges under mpk ′

0 and mpk ′
1, respectively.



Applicability of OR-Proof Techniques to HIBI 179

Setup
SetUp(1κ)

(mpk′
0,msk′

0) ← SetUp′(1κ)
(mpk′

1,msk′
1) ← SetUp′(1κ)

output (mpk,msk) = ((1κ,mpk ′
0,mpk ′

1), (msk ′
0,msk ′

1))

Extract
KG(mpk, sk

ID(k−1) , ID
(k))

mpk = (1κ,mpk ′
0,mpk ′

1)
sk

ID(k−1) = (sk ′
(ID(k−1),0)

, sk ′
(ID(k−1),1)

) (sk
ID(0) = (msk ′

0,msk ′
1))

sk ′
(ID(k),0)

← KG′(mpk′
0, sk

′
(ID(k−1),0)

, ID(k))

sk ′
(ID(k),1)

← KG′(mpk′
1, sk

′
(ID(k−1),1)

, ID(k))

output sk
ID(k) = (sk ′

(ID(k),0)
, sk ′

(ID(k),1)
)

Identification
P(mpk , ID, sk ID) V(mpk , ID)
mpk = (1κ,mpk ′

0,mpk ′
1) mpk = (1κ,mpk ′

0,mpk′
1)

sk ID = (sk ′
(ID,0), sk

′
(ID,1))

b ← {0, 1}
(ab, st) ← Σhibi-com(mpk′

b, ID, sk ′
(ID,b))

cb̄ ← Σ∗
hibi-ch(1

κ)
(ab̄, zb̄) ← Σhibi-sim(mpk ′̄

b
, ID, cb̄) (a0, a1)

−→ c ← Σ∗
hibi-ch(1

κ)
c

cb = c − cb̄ ←−
zb ← Σhibi-res(mpk ′

b, ID,
sk ′

(ID,b), ab, cb, st) (c0, z0, z1)

−→ c1 = c − c0
dec0 ← Σhibi-vrfy(mpk′

0, ID, a0, c0, z0)
dec1 ← Σhibi-vrfy(mpk′

1, ID, a1, c1, z1)
output accept if dec0 = dec1 = accept;

otherwise, output reject

Fig. 3. DPdk Transformation

Although the DPdk transformation requires two master public keys and is less
efficient than the DIdk and MI transformations, the transformation can enhance
the security of a Σ∗-type HIBI protocol even in the static hierarchical-identity
attack model.

It is easy to have a variant of the DPdk transformation (DPsk transformation)
such that each entity is given either a secret key based on mpk ′

0 or mpk ′
1, and the

entity shows that it has either the secret key in mpk ′
0 or mpk ′

1. However, it seems
difficult to enhance the passive security of HIBI protocols in any hierarchical-
identity attack mode with this variant.

3.4 Modified Dual-Identity Double-Key Transformation

We modify the DIdk transformation and call the modified transformation mDIdk
transformation, which is also applicable to the Σ+-type HIBI protocol.

We have seen in the previous subsection that, in the DIdk transformation, a
user of identity ID(k) (= (I1, I2, . . ., Ik)) is given two secret keys corresponding to
imaginary identities 0.ID(k) = (0||I1, I2, . . ., Ik) and 1.ID(k) = (1||I1, I2, . . ., Ik)
in the underlying HIBI protocol. We modify the DIdk transformation in a way
that a user of identity ID(k) is given two secret keys corresponding to imaginary
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identities (0, I1, I2, . . ., Ik) and (1, I1, I2, . . ., Ik) in the underlying HIBI protocol.
We then see that in this mDIdk transformation, if the underlying HIBI protocol
is �-level (i.e., the maximum length of hierarchical identities is �), the resulting
HIBI protocol is (� − 1)-level. We let i ◦ ID(k) denote (i, I1, I2, . . ., Ik) when
ID(k) = (I1, . . ., Ik).

We describe an HIBI protocol, HIBI = (SetUp, KG, P, V) produced by applying
the mDIdk transformation to HIBI′ in Fig. 4. In the Extract algorithm in this
figure, we let sk ID(0) = (sk ′

(0), sk
′
(1)).

Setup
SetUp(1κ)

(mpk′,msk′) ← SetUp′(1κ)
sk ′

(0) ← KG′(mpk′,msk ′, (0))
sk ′

(1) ← KG′(mpk′,msk ′, (1))
output (mpk,msk) = (mpk ′, (sk ′

(0), sk
′
(1)))

Extract
KG(mpk, sk

ID(k−1) , ID
(k))

mpk = mpk′

sk
ID(k−1) = (sk ′

0◦ID(k−1) , sk
′
1◦ID(k−1) ) (sk

ID(0) = (sk ′
(0), sk

′
(1)))

sk ′
0◦ID(k) ← KG′(mpk′, sk ′

0◦ID(k−1) , 0 ◦ ID(k))

sk ′
1◦ID(k) ← KG′(mpk′, sk ′

1◦ID(k−1) , 1 ◦ ID(k))

output sk
ID(k) = (sk ′

0◦ID(k) , sk
′
1◦ID(k) )

Identification
P(mpk , ID, sk ID) V(mpk , ID)

mpk = mpk′ mpk = mpk ′

sk ID = (sk ′
0◦ID, sk

′
1◦ID)

b ← {0, 1}
(ab, st) ← Σhibi-com(mpk′, b ◦ ID, sk ′

b◦ID)
cb̄ ← Σ+

hibi-ch(mpk ′)

(ab̄, zb̄) ← Σhibi-sim(mpk′, b̄ ◦ ID, cb̄) (a0, a1)

−→ c ← Σ+
hibi-ch(mpk ′)

c
cb = c − cb̄ ←−

zb ← Σhibi-res(mpk′, b ◦ ID,
sk ′

b◦ID, ab, cb, st) (c0, z0, z1)
−→ c1 = c − c0

dec0 ← Σhibi-vrfy(mpk′, 0 ◦ ID, a0, c0, z0)
dec1 ← Σhibi-vrfy(mpk′, 1 ◦ ID, a1, c1, z1)
output accept if dec0 = dec1 = accept;

otherwise, output reject

Fig. 4. mDIdk Transformation

Due to the special challenge property, c is an element in G determined by
mpk ′, so are c0 and c1 since c = c0 + c1 and the operation + is defined in G.
Therefore, c0 and c1 are possible challenges under mpk ′.

It is easy to have a variant of the mDIdk transformation (mDIsk transforma-
tion) such that each entity is given only either secret key of identities 0 ◦ ID or
1 ◦ ID, and the entity shows that it has either the secret key of 0 ◦ ID or 1 ◦ ID.
However, it seems difficult to enhance the passive security of HIBI protocols in
any hierarchical-identity attack model with this variant.
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3.5 Security of DIdk, MI, DPdk, and mDIdk Transformations

We prove that the DIdk, MI, DPdk, and mDIdk transformations can convert
an adapt-hid-imp-pa secure HIBI protocol to an adapt-hid-imp-ca secure one. We
construct an adapt-hid-imp-pa impersonator, I ′, from an adapt-hid-imp-ca imper-
sonator, I.

Theorem 3.1. The DIdk transformation converts an adapt-hid-imp-pa secure
Σ+-type HIBI protocol into an adapt-hid-imp-ca secure one.

In the reduction from an adapt-hid-imp-ca experiment to an adapt-hid-imp-pa
experiment, I ′ needs to simulate the Prov oracle. In the DIdk transformation,
I ′ can have either secret key of an (imaginary) identity 0.ID or 1.ID; thus, I ′
can simulate all oracles.

Theorem 3.2. The MI transformation converts an adapt-hid-imp-pa secure Σ+-
type HIBI protocol into an adapt-hid-imp-ca secure one.

We assume two types of impersonators and show that there exist reductions from
each impersonator to I ′. We let Imaster be an impersonator from which I ′ derives
the secret key corresponding to IDmaster , and Iuser be the other impersonator
from which I ′ derives a secret key of a user. In the reduction from Imaster , I ′
can perfectly simulate the Prov oracle by obtaining secret keys of users from
the external Corr oracle. Thus, I ′ can extract a secret key of IDmaster from
Imaster (by using the Reset Lemma), and can impersonate IDmaster . Note that
since IDmaster is randomly chosen from the set of identities, it is a hierarchical
identity of depth 1. In the reduction from Iuser , I ′ can perfectly simulate the
Prov oracle with a secret key of IDmaster obtained from the external Corr
oracle, and extract a secret key of the target identity ID∗ from Iuser (by using
the Reset Lemma). Thus, it can impersonate ID∗.

Theorem 3.3. The DPdk transformation converts an adapt-hid-imp-pa secure
Σ∗-type HIBI protocol into an adapt-hid-imp-ca secure one.

After I ′ receives mpk ′ from the challenger, I ′ internally generates another key
pair (mpk ′

∗,msk ′
∗), and can perfectly simulate all oracles since it obtains the

secret keys of all users with this msk ′
∗. Thus, I ′ can extract from I a secret key

of the target identity ID∗ either for mpk ′ or mpk ′
∗ (by using the Reset Lemma).

If I ′ obtains secret key for ID∗ in mpk ′, it can impersonate ID∗ in mpk ′.

Theorem 3.4. The mDIdk transformation converts an adapt-hid-imp-pa secure
Σ+-type HIBI protocol into an adapt-hid-imp-ca secure one.

This theorem is proved in almost the same way as Theorem 3.1.
We see in the following theorems that the security enhancement transformations
can be also applied to wshid-imp-pa secure HIBI protocols. We construct an
wshid-imp-pa impersonator, I ′, from an wshid-imp-ca impersonator, I.

Theorem 3.5. The DIdk transformation converts a wshid-imp-pa secure Σ+-
type HIBI protocol into a wshid-imp-ca secure one.
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In the Setup phase, I issues (ID1, . . . , IDt) to I ′ acting as the challenger in the
wshid-imp-ca experiment. Then, I ′ issues (0.ID1, 1.ID1, . . ., 0.IDt, 1.IDt) to the
external challenger. After receiving mpk ′, I ′ sends (b∗||I(i)1 ) (1 ≤ i ≤ t) to the
external Corr where b∗ is a random bit and IDi = (I

(i)
1 , . . . , I

(i)
ki

), and receives
the keys sk ′

(b∗||I(i)
1 )

. I ′ can simulate the oracles in the same way as in the proof
of Theorem 3.1.

Theorem 3.6. The MI transformation converts a wshid-imp-pa secure Σ+-type
HIBI protocol into a wshid-imp-ca secure one.

Theorem 3.7. The DPdk transformation converts a wshid-imp-pa secure Σ∗-
type HIBI protocol into a wshid-imp-ca secure one.

Theorem 3.8. The mDIdk transformation converts a wshid-imp-pa secure Σ+-
type HIBI protocol into a wshid-imp-ca secure one.

On the other hand, the DPdk and mDIdk transformations can also convert a pas-
sively secure HIBI protocol to a concurrently secure one in the static hierarchical-
identity attack model. We construct an stat-hid-imp-pa impersonator, I ′, from
an stat-hid-imp-ca impersonator, I.

Theorem 3.9. The DPdk transformation converts a stat-hid-imp-pa secure Σ∗-
type HIBI protocol into a stat-hid-imp-ca secure one.

In the reduction from a stat-hid-imp-ca experiment to a stat-hid-imp-pa experi-
ment, I ′ needs to simulate the Prov oracle. In the DPdk transformation, I ′ can
have either the master secret key of the master public key mpk ′

0 or mpk ′
1, can

generate a secret key of any identity; thus, I ′ can simulate all oracles.

Theorem 3.10. The mDIdk transformation converts a stat-hid-imp-pa secure
Σ+-type HIBI protocol into a stat-hid-imp-ca secure one.

This theorem is proven by a reduction similar to that of Theorem 3.9. At
the beginning of the Setup phase, I ′ randomly chooses b∗ ∈ {0, 1}, sends a
single corrupt query including the 1-level hierarchical identity (b∗) to the external
challenger and obtains a secret key sk ′

(b∗). After this, I ′ can generate secret keys
of the underlying HIBI protocol for any hierarchical identities of the form (b∗, I1,
I2, . . ., Ik) (i.e., any hierarchical identities in which each identity at first level is
b∗) and can simulate the Prov oracle.

3.6 Discussion

The DPdk transformation can convert a stat-hid-imp-pa secure Σ∗-type HIBI
protocol to a stat-hid-imp-ca secure one, and the mDIdk transformation can
convert a stat-hid-imp-pa secure Σ+-type HIBI protocol to a stat-hid-imp-ca
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secure one. On the other hand, the DIdk and MI transformations seem not to
be able to do so. See Table 1 for a summary.

In the DPdk transformation, two master public keys in the underlying HIBI
protocol, mpk ′

0 and mpk ′
1, compose a master public key in the resulting HIBI

protocol, and the secret key of each entity in the resulting HIBI protocol is
computed with either the master secret keys, msk ′

0 or msk ′
1, in the underlying

HIBI protocol. Even in the stat-hid-imp-atk security model, since the simulator
has a master secret key msk ′

b∗ for the master public key mpk ′
b∗ , it can generate

a secret key for any entity and then simulate the Prov oracle.
The mDIdk transformation can be applied only to HIBI protocols with a

hierarchical depth larger than one. That is, it is not applicable to IBI protocols.
Though it is similar to the DIdk transformation, its security proof is similar
to that of the DPdk transformation. In the mDIdk transformation, if we obtain
sk ′

(b∗) (b∗ = 0 or 1), we can compute secret keys for any descendant of the 1-level
identity (b∗) and simulate the Prov oracle, even in the stat-hid-imp-atk security
model.

On the other hand, we face a problem in simulating the Prov oracle in the
DIdk and MI transformations. In the DIdk transformation, the master public key
in the resulting HIBI protocol is set with the master public key in the underlying
HIBI protocol, mpk ′, and a secret key of an entity corresponding to identity ID
in the resulting HIBI protocol is a secret key corresponding to either identity,
0.ID or 1.ID, in the underlying HIBI protocol. The secret key is computed with
the master secret key, msk ′, corresponding to mpk ′. Since the simulator does
not have msk ′ in the proof for the stat-hid-imp-atk security and can no longer
corrupt users in the learning phase, it cannot obtain secret keys for identities
queried to the Prov oracle and fails to simulate it.

In the MI transformation, the master public and secret keys and the secret
keys of entities in the resulting HIBI protocol are the same as those in the under-
lying HIBI protocol. In the proof for the stat-hid-imp-atk security, the simulator
might obtain the secret key for the master identity, IDmaster , at the Setup phase
and simulate the Conv oracle. In the challenge phase, however, if the secret
key extracted from transcripts coincides with the key for IDmaster , the simulator
would not obtain the non-trivial secret key and the impersonation would fail.
We do not know how to address the problem.

We finally observe that the single-key variants may fail to enhance security
because corruption may leak information of a secret key. In an HIBI protocol by
the DIsk transformation, an entity of ID has only either sk ′

0.ID or sk ′
1.ID, which

determines b of its descendants. Precisely speaking, if an impersonator obtains
a secret key sk ′

b.ID′ such that ID ∈ pref(ID′) by issuing a Corr query ID′, it
may know b for sk ′

b.ID′ and then for sk ′
b.ID. A similar discussion with DIsk can

be applied to the mDIsk transformation, Also in the DPsk transformation, an
entity of ID has only either sk ′

(ID,0) or sk ′
(ID,1), and an impersonator may guess

b for sk ′
(ID,b). Thus, in all three cases, from the impersonator that knows b, a

simulator in proof may extract only the trivial secret key corresponding to b,
and constructing their security proofs seems to be difficult.
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Abstract. Security in vehicular networks established itself as a highly active re-
search area in the last few years. However, there are only a few results so far
on assuring security for communication buses inside vehicles. Here we advocate
the use of a protocol based entirely on simple symmetric primitives that takes
advantage of two interesting procedures which we call key splitting and MAC
mixing. Rather than achieving authentication independently for each node, we
split authentication keys between groups of multiple nodes. This leads to a more
efficient progressive authentication that is effective especially in the case when
compromised nodes form only a minority and we believe such an assumption to
be realistic in automotive networks. To gain more security we also account an
interesting construction in which message authentication codes are amalgamated
using systems of linear equations. We study several protocol variants which are
extremely flexible allowing different trade-offs on bus load, computational cost
and security level. Experimental results are presented on state-of-the-art Infineon
TriCore controllers which are contrasted with low end controllers with Freescale
S12X cores, all these devices are wide spread in the automotive industry. Finally,
we discuss a completely backward compatible solution based on CAN+, a recent
improvement of CAN.

1 Motivation and Related Work

Vehicular network security established itself as an intense research topic in the last few
years. Remarkable research papers from Koscher et al. [7] and later Checkoway et al. [4]
showed vehicles to be easy targets for malicious adversaries.

While most of previous research was focused on vehicle to vehicle and vehicle to in-
frastructure communication there seem to be only a few results for assuring security on
communication buses inside vehicles. There are several reasons behind this. First, the
relevance of security inside vehicles was decisively shown only in the last two years [7],
[4]. Second, the design principles used by manufacturers are somewhat out of reach for
the academic community, being hard in this way to understand many assertions behind
protocol design. Third, which is relevant for our research here, intra-vehicle commu-
nication is subject to constraints and specifications that are quite different from other
well studied protocols. Most of the approaches advocate the use of secure gateways
between different ECUs (Electronic Control Unit) or subnetworks [1], [13] and rely on
basic building blocks from cryptography (encryptions, signatures, etc.). However, none
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of these approaches is meant specifically for assuring broadcast authentication on CAN
which is still the most common communication bus in automotives.

In this respect two main results in assuring CAN security can be found so far, one
of them is based on the well known TESLA protocol [6] and the other proposes a new
paradigm which closely follows CAN specifications [12]. Van Herrewege et al. [12] de-
sign their protocol from scratch and clearly note that the constraints of CAN ”eliminate
all the authentication protocols published so far”. We do agree with this conclusion in
the sense that we believe that standard authentication approaches, may cover only some
of the application areas for CAN and new approaches (even non-standard) are needed.

Previous proposals. TESLA like protocols proved to be highly effective in sensor net-
works [10], [9] and so far are the most efficient alternative for assuring broadcast au-
thentication with efficient Message Authentication Codes (MAC). However, when it
comes to CAN bus, this protocol family has one drawback that is critical for automo-
tives: delays, which by the nature of TESLA are unavoidable. The main purpose of
the work in [6] is to determine a lower bound on these delays. Delays in the order
of milliseconds or below, as shown to be achievable in [6], are satisfactory for many
scenarios, but such delays do not appear to be small enough for intra-vehicle commu-
nication. There is no obvious way to improve on these delays further. Of course one
alternative is in using a bus with a higher throughput, more computational power and
better electronic components (e.g., oscillators) but this will greatly increase the cost
of components, nullifying in this way the cost effectiveness of CAN. CANAuth [12]
is a protocol that has the merit to follow in great detail the specifications of CAN, its
security is specifically designed to meet the requirements of the CAN bus. In particu-
lar, CANAuth is not intended to achieve source authentication as the authentication is
binded to the message IDs and messages may originate from different sources which
will be impossible to trace. This fits the specification of CAN which has a message
oriented communication. However, a first issue is that the number of CAN IDs is quite
high, in the order of hundreds (11 bits) or even millions in the case of extended frames
(29 bits) and storing a key for each possible ID does not seem to be so practical. For
this purpose, in [12] a clever solution is imagined: the keys are linked with acceptance
codes and masks, which fortunately are not numerous. But still, this leads to some secu-
rity concerns as we discuss next. Traditionally, keys are associated to entities to ensure
that they are not impersonated by adversaries, but the effect of associating keys to mes-
sages is less obvious. For example, any external tool (assume On-Board Diagnostics
(OBD) tools which are wide spread) that is produced by external third parties will have
to embed the keys associated for each ID that it sends over or even just listens on CAN.
It is thus unclear which keys can be shared with different manufacturers and how or
what are the security outcomes for this. Obviously, if a third party device, even an in-
nocuous one designed just as passive receiver, is easier to compromise then all the IDs
which it was allowed to send or just receive are equally compromised.

Our proposal. We take advantage of a progressive authentication mechanism, by which
only a few bits of the MAC are revealed in each packet to each verifier, and each part
of the MAC can be verified by more than one receiver. To achieve this flexible authen-
tication mechanism we base our proposal on two paradigms: key splitting and MAC
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mixing, the later being an optional procedure to increase security by allowing any node
to detect a potential forgery.

Key splitting allows a higher entropy for each mixed MAC that is sent at the cost
of loosing some security for groups that contain malicious nodes. In scenarios with
high number of nodes, an adversarial majority will be required to break the protocol,
while if there are fewer adversarial nodes, the security level is drastically increased.
Consequently, this appears to give a flexible and efficient trade-off. This procedure is not
new, similar techniques were proposed in the past in the context of broadcast encryption.
We could trace this back up to the work of Fiat and Naor [5] but there is a high amount
of papers on this subject. However, the constraints of our application in CAN networks
are entirely different from related work where this procedure was suggested or used
in scenarios such as sensor networks [2], pay-tv [8], etc. The main idea behind such
schemes is that groups of k corrupted receivers cannot learn the secret (in settings with
n > k users).

In addition to this we exhibit a distinct contribution in the construction of Linearly
Mixed MACs which allow us to amalgamate more authentication codes in one via a
system of linear equations. This construction has the advantage that if one of the MACs
is wrong then this will affect all other MACs and thus the mixed MAC will fail to verify
on any of the multiple keys. This increases the chance of a forgery being detected and
ultimately it increases the reliability in front of benign nodes that are in possession of
a wrong key. To best of our knowledge this procedure is new. The closest work that we
could find are the multi-verifier signatures proposed by Roeder et al. [11]. In their work,
linear systems of equations are used as well upon message authentication codes but the
security properties and goals of their construction are different.

These procedures allow us to design a protocol that is more flexible and efficient. For
our setting we assume a reduced number of participants. While indeed ECUs inside cars
come from different manufacturers which may or may not be trustworthy, we believe
that suspicious ECUs should be limited in number, since the potential insertion of a
trapdoor in some component will discredit the public image of the manufacturer too
much and it appears to be little or no benefit for this. More, ECUs coming from the
same manufacturer should be trustworthy with each other and can use the same shared
key (randomly generated at runtime for each (sub)network that they are part of). In
this way the number of actual keys needed to assure broadcast security should be more
limited than it appears to be on a first sight. In our design we try to take advantage
of this assumption, and our approach is more efficient in the case when compromised
nodes form only a minority.

2 The Protocol

We begin with a brief overview of the CAN protocol followed by a description of the
frame structure employed in our protocol. Then we outline the main authentication
scheme which builds upon keys shared between groups of receivers, a procedure which
we call key splitting. Further, we discuss some variations of the main scheme that can
be used for different trade-offs. Subsequently we introduce a construction which we
call Linearly Mixed MAC (LM-MAC) which gives additional security benefits.
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2.1 Overview of the CAN Protocol

Controller Area Network (CAN) is a broadcast serial bus. The typical topology consists
of a differential bus which connects multiple nodes by two wires (called CAN-H and
CAN-L). This is also suggested in Figure 3 which is related to the main version of
our protocol. To avoid collisions an arbitration based on message identifiers (29 bits in
extended frames and 11 bits in standard frames) is used. Each CAN frame begins with a
start bit and is followed by the arbitration field, a control field (6 bits), data bits (0-64),
CRC sequence (15 bits), a 2 bit acknowledgment and 7 bits that mark the end of the
frame. Additional stuffing bits (distinct in value to the previous bit) are added after each
6 consecutive bits of identical value. This structure is suggested in Figure 1.

Start of Frame

Arbitration

Control

Data Field
(at most 64 bits)

End of Frame

ACK

CRC

IFS IFS

CAN Frame

Fig. 1. Structure of a CAN frame

2.2 Frame Structure

As a general procedure, we separate between frames that carry messages and frames that
carry authentication tags. This seems to be a correct option due to a widely employed
CAN mechanism which is ID filtering that is used to restrict certain frames to arrive to
a particular node. While we do want to keep this feature, we want the node to be able
to carry additional authentication tasks, e.g., in the case of the two-stage authentication
discussed further, a reason for which we intend for the authentication frames to be able
to reach the node and thus they may need to have a different ID than the message frame.
The last bit of the identifier field specifies whether a frame carries an authentication tag
or message. This procedure is employed in our experimental setup while in section
4 we discuss a backward compatible solution which can embed all the authentication
information inside the message.

Larger data blocks or authentication tags can be split across multiple frames with the
same ID field and counter. Other adjustments can be done at the implementation level.
For example, since the ID field is quite short, both the node and window identifiers
(which denote the source and the number of the authentication frame) can be moved in
the data field. We preferred to place these identifiers in the ID field since it is a frequent
choice of developers to place a unique ID for each node in the CAN ID field. But indeed,
such an option can affect real-time requirements and for this purpose placing these IDs
in the data field is safer. The size of the counter c could be roughly around 20–40 bits
but this greatly depends on the bus speed (which determines the number of packets
released each second).
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stag1tag

ID Field (11 or 29 bit)

mesid nodeid winid c mData Frame

Authentication Frame

Data Field (at most 64 bits)

Data Field (at most 64 bits)ID Field (11 or 29 bit)

mesid nodeid winid c

1

0

Fig. 2. Data frames and authentication frames

2.3 The Main Scheme: Centralized Authentication

A master oriented communication makes sense since it is practical to have one node
with higher computational power that can take care of the most intensive part of the
authentication. Figure 3 shows the master node and the slave nodes connected to the
bus, it also outlines the keys that are shared between nodes. For the key sharing pro-
cedure, all slaves register to the master which distributes the keys.In practice asso-
ciating nodes to a group and sharing the keys is done by standard techniques, e.g.,
key-exchange protocols, we do not insist on this since such issues are straight-forward
to solve.
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Fig. 3. Master and slave microcontrollers (μC) in a setting for centralized authentication

In the main scheme we make use of Mixed Message Authentication Codes (M-MAC)
which amalgamate more MACs into one. Here we give an abstract definition for this
construction while in a forthcoming section we provide a more elaborate instance with
additional security properties. Indeed, the easiest way to build an M-MAC is simply
by concatenating multiple tags, such a construction is fine for our protocol and can
be safely embodied in the main scheme (still, we can achieve more security with the
LM-MAC introduced in an upcoming section).

Construction 1. (Mixed Message Authentication Code) A mixed message authentication
code M-MAC is a tuple (Gen,Tag,Ver) of probabilistic polynomial-time algorithms
such that:
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1. K ← Gen(1	, s) is the key generation algorithm which takes as input the security
parameter � and set size s then outputs a key set K = {k0, k1, ..., ks} of s keys,
2. τ ← Tag(K,M) is the MAC generation algorithm which takes as input the key set K
and message tuple M = (m0,m1, ...,ms) where each mi ∈ {0, 1}∗ then outputs a tag
τ (whenever needed, to avoid ambiguities on the message and key, we use the notation
M-MACK(M) to depict this tag),
3. v ← Ver(k ,m, τ) is the verification algorithm which takes as input a key k ∈ K, a
message m ∈ {0, 1}∗ and a tag τ and outputs a bit v which is 1 if and only if the tag is
valid with respect to the key k , otherwise the bit v is 0. For correctness we require that
if k ∈ K and m ∈M then 1← Ver(k ,m,Tag(K,M)).

The centralized scheme is summarized by the next construction. For simplicity of the
exposition, since the main scheme is used to authenticate the same message to all
nodes (rather than authenticate a tuple of messages as in the cummulative authentication
scheme), we replace M with a simple array that points out the values that are authenti-
cated, e.g., idnode , idwin , c,m, etc. Obviously in this case the M-MAC receives as input
a message tuple of s identical messages.

Construction 2. (Centralized Authentication) Given a mixed message authentication
code algorithm M-MAC for some security parameter �, size s and a group of n nodes,
we define protocol CN-CAN-LiBrAM,S∗(M-MAC, �, s, n, b, w) as the following set of
actions for the masterM:

1. Setup(�, n, s) on which master M generates all subsets of s slaves out of n slaves,
let t =

(
n
s

)
be the number of subsets, and randomly picks t keys, each of � bits, then

places them in the keyset KM = {k1, k2, ..., kt}. Subsequently masterM uses a secure
channel to send each node the corresponding keys (alternatively these keys can be dis-
tributed in an off-line manner). Let Ki

S = {k1, k2, ..., kt′} with t′ =
(
n−1
s−1

)
denote the

key set received by each slave S.
2. RecMes(idnode , idwin , c,m) on which master M receives a data frame containing
message m from slave S checks if the counter is up-to-date then stores the packet in a
queue of messages to be authenticated.
3. RecTag(idnode , idwin , c,M-MACK

i
S
(idnode , idwin , c,m)) on which master M re-

ceives an authentication frame containing tag M-MACK
i
S
(idnode , idwin , c,m) from

slave S. Further, he retrieves the packet matching the identifiers and counter from the
queue and if the message proves to be authentic, i.e., 1← Ver((idnode , idwin , c,m), k ,
M-MACK

i
S
(idnode , idwin , c,m)), ∀k ∈ Ki

S , he proceeds to authenticating the tag to

other nodes with SendTag(idnode , idwin ,m,Ki). If the message is not available in the
queue then the tag is discarded (subsequently an error message can be sent).
4. SendTag(idnode , idwin ,m,Ki) on which master M after receiving a message and
its valid tag, groups all the remaining keys KM \ Ki

S in sets of size v then for each
such set K̃j

S computes M-MAC
K̃

j
S
(idnode , j,m) and broadcasts it in authentication

frames with node identifier idnode and window identifier set to j (obviously there are
|KM \Ki

S |/v windows).
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and for each of the slaves S∗:

1. Setup(�, n, s) on which slave Si obtains its key set Ki
S = {k1, k2, ..., kt′} with t′ =(

n−1
s−1

)
from masterM (either offline or via a secure channel).

2. RecMes(idnode , idwin , c,m) on which slave S receives a data frame containing
message m from another slave Sj and proceeds similarly to master M by storing it
in a queue of messages to be authenticated.
3. RecTag(idnode , idwin , c,M-MAC

K
j
S
(idnode , idwin , c,m)) on which Si receives an

authentication frame containing tag M-MAC
K

i
S
(idnode , idwin , c,m)) from the master

M or another slave Sj and verifies for all keys k ∈ Ki ∩Kj if the tag is correct. If for
all keys in its keyset a correct tag was received
then message m is deemed authentic.
4. SendMes(m,Ki) on which slave Si whenever wants to broadcast a message m in-
crements its local counter, computes the tag M-MACK

i
S
(idnode , 0, c,m) with its keyset

Ki and sends the data frame containing m and an authentication frame containing the
tag on the bus (note that in the case of slaves idwin is set to 0).

Example 1. The key allocation done by the Setup procedure allows the keys to be
split between groups of n slaves. Here we clarify our intentions with the key splitting
procedure by giving an example. Table 1 shows the groups that can be formed in the
case of 4 nodes. If we consider groups formed by exactly 2 nodes we have

(
4
2

)
= 6

groups and each two nodes share exactly
(
2
0

)
= 1 group. Table 1 outlines the groups

shared by S1, i.e., G9, G10, G12, and those shared by S2, i.e., G5, G6, G12. Note that
they intersect in one group G12. In Table 2 the case of n = 4 and n = 8 nodes are
explored, with complete groups of all sizes k and any number of corrupted nodes l. The
total number of groups and the subgroup shared by each node as well as the percentage
of secure bits, i.e., bits that cannot be forged by an adversary, from each M-MAC are
outlined. Indeed, the percent of authenticated bits from each tag is higher and decreases
significantly with the number of corrupted nodes.

Table 1. Possible groups with 4 nodes, groups of size 2 outlined in gray

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15

S1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
S2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
S3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
S4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

2.4 Variations of the Main Scheme: Two-Stage and Cumulative Authentication

For practical reasons we discuss two variations of the main scheme. In the experimental
results section, the first variation is shown to have certain advantages in front of the
main scheme for scenarios when nodes have equal computational power.
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Table 2. Authentication rate in the case of n = 4, 8 participants, groups of size k and l corrupted
nodes

Authentication bits from one M-MAC (%)
n k groups sub-groups l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7

4 1 4 1 25 25 25 25 - - - -
4 2 6 3 50 33 33 16 - - - -
4 3 3 75 25 0 0 - - - -
8 1 8 1 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
8 2 28 7 25 21 17 14 10 7 3.5 0
8 3 56 21 37.5 26 17 10 5 1.7 0 0
8 4 70 35 50 28 14 5 1.4 0 0 0
8 5 56 35 62 26 8.9 1.7 0 0 0 0
8 6 28 21 75 21 3.5 0 0 0 0 0
8 7 8 7 87 12.5 0 0 0 0 0 0

In the case of two-stage authentication we assume a scenario in which only slave
nodes are present, i.e., nodes with equal computational power. In this case each node
can start broadcasting by sending a tag which includes only a part of the keys for the
subgroups that he is part of and a second slave (pointed out by some flag, or predefined
in protocol actions) continues with the authentication. The procedure is repeated until
the desired number of authentication frames is reached. Various ways for tag allocation
can be imagined. Consider the case of 8 nodes in subgroups of size 3 and 4 authenti-
cation frames (codenamed TS-8S3F4). If M-MACs are used then these can be set up
to work in GF (216) or GF (232). Subsequently each node sends an M-MAC with keys
for 4 of the nodes (or 2 in case GF (232)) and the nodes reply in a round-robin fashion
(note that a frame carries at most 64 bits). To save some computational power and have
even more flexibility in tag allocation it is also possible to skip the use of the M-MAC.
In Table 3 we give an example for this case. Each row corresponds to one of the 8 slaves
and each column to one of the 56 groups that are formed with 3 slaves, × is used as
placeholder to denote that a node is part of a group. Here f i

j denotes the j-th part of
frame i and the authentication is started by slave S1 with frame f1

∗ followed by S2 with
f2
∗ then again S1 with f3

∗ but this time followed by S3 with f4
∗ (here ∗ is a placeholder

for any of the frame components). We can set the size of each tag in f2
∗ and f2

∗ to 16
bits and for f1

∗ and f3
∗ use around 5-7 bits for each tag. This will result in a security

level of around 64 bits for each node.
Since in some scenarios small delays may be acceptable, we can take benefit of

them and increase the efficiency of the main scheme. In the cumulative authentication
scheme a timer can be used and all messages are accumulated by the master over a
predefined period δ then authenticated at once (this procedure can be employed in the
slave-only settings as well). While this introduces an additional delay δ, similar to the
case of the TESLA protocol, this delay can be chosen as small as needed to cover appli-
cation requirements. Different to the case of the delay from TESLA like protocols, this
delay is not strongly constrained by external parameters (such as oscillator precision,
synchronization error, bus speed, etc.).
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Table 3. Example of tag scheduling with two-stage authentication TS-8S2F4 (8 nodes with
groups of size 3)

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10G11G12G13G14G15G16G17G18G19G20G21G22G23G24G25G26G27G28
S1 f1

1 f1
2 f1

3 f1
4 f1

5 f1
6 f1

7 f1
8 f1

9 f1
10 f3

1 f3
2 f3

3 f3
4 f3

5 f3
6 f3

7 f3
8 f3

9 f3
10 f3

11
S2 × × × × × × f2

1 f2
2 f2

3 f2
4 × × ×

S3 × × × × × × × × × × ×
S4 × × × × × × × × ×
S5 × × × × × × × ×
S6 × × × × × × × ×
S7 × × × × × × ×
S8 × × × × × × ×

G29G30G31G32G33G34G35G36G37G38G39G40G41G42G43G44G45G46G47G48G49G50G51G52G53G54G55G56
S1
S2 × × × × × × × ×
S3 f4

1 f4
2 f4

3 f4
4 × × × × × ×

S4 × × × × × × × × × × × ×
S5 × × × × × × × × × × × × ×
S6 × × × × × × × × × × × × ×
S7 × × × × × × × × × × × × × ×
S8 × × × × × × × × × × × × × × ×

2.5 Increasing Security with LM-MACs (Linearly Mixed MACs)

As outlined in our abstract description, M-MACs use an array of keys to build a tag
which is verifiable by any of the keys. The first security property which we require
for an M-MAC is unforgeability and is a standard property for any MAC code, thus it
merely derives from the main building block. We do develop on this by requiring a new
property which we call strong non-malleability and which we show to be achievable by
our more advanced LM-MAC construction.

Construction 3. (Linearly Mixed MAC) We define the LM-MAC as the tuple of proba-
bilistic polynomial-time algorithms (Gen,Tag,Ver) that work as follow:

1. K ← Gen(1	, s) is the key generation algorithm which flips coins and returns a key
set K = {k0, k1, ..., ks} where each key has � bits (� is the security parameter of the
scheme),
2. τ ← Tag(K,M) is the mac generation algorithm which returns a tag τ = {x1, x2,
..., xs} where each xi is the solution of the following linear system in GF (2b):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
KD1(k1,m1) · x1 + KD2(k1,m1) · x2 + ...+ KDs(k1,m1) · xs ≡ MACk1(m1)

KD1(k2,m2) · x1 + KD2(k2,m2) · x2 + ...+ KDs(k2,m2) · xs ≡ MACk2(m2)

...

KD1(ks,ms) · x1 + KD2(ks,ms) · x2 + ...+ KDs(ks,ms) · xs ≡ MACks(ms)

Here b is polynomial in the security parameter � and KD stands for a key deriva-
tion process. If such a solution does not exist, then the M-MAC algorithm fails and
returns ⊥.
3. v ← Ver(k ,m, τ) is the verification algorithm which returns 1 if and only if having
τ ′ = MACk (m) it holds τ ′ ≡ KD1(k ,m) ·x1 +KD2(k ,m) ·x2 + ...+KDs(k ,m) ·xs.
Otherwise it returns 0.
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Let us emphasize that the probability that the M-MAC fails to return a solution is
negligible in the security parameter (if proper b and s are chosen). As shown in [3] the
probability that an n by n matrix with random elements from GF (q) is non-singular
converges to

∏∞
i=1(1 − 1/qi) as n → ∞. For example in case when s = 4 we have a

chance of around 10−5 for b = 16 and 10−10 for b = 32 for the M-MAC to fail.

Example 2. We want to clarify here our intentions on M-MACs with respect to the pro-
tocol design. Consider a case when master M broadcasts messages m1 and m2 to slaves
S1, S2 along with the authentication tag. To increase efficiency of our protocol we want
to authenticate both messages with the same mixed MAC and more, since only a portion
of each tag is disclosed (reducing the bus overhead but also the security level), we want
one of the slaves to be able to carry out the authentication further with a new part of
a valid tag (note that this is what happens in the case of the two-stage authentication).
Consider that the following packets arrive on the bus: message m1, message m2 and the
mixed tag obtained by simply concatenating the two tags MACk1(m1)||MACk2(m2).
However, due to the message filtering of the CAN bus it may be that the two messages
do not reach both slaves. Assume message m1 reaches S1 and m2 reaches S2. Now nei-
ther S1 or S2 can carry the authentication further, even in the case when they both have
k1 and k2 they are not in possession of the message that reached the other slave and
thus they can not validate the other part of the tag. More relevant, note that the nodes
are unable to detect if the other part of the tag is compromised. Now consider the case
of the LM-MAC. In this case the tag is obtained by mixing the two tags via the linear
equation system, e.g., the two components of the tag x1, x2 verify a relation of the form
α1x1 + α2x2 = MACk1(m1) and β1x1 + β2x2 = MACk2(m2) (here α’s and β’s are
derived from the secret keys k1, k2). If an adversary compromises any part of the tag,
i.e., either x1 or x2, then both equations will fail to verify and any of the receivers can
detect this (indeed, we assume that the adversary is not in possession of the secret keys
k1 and k2 since in such case he can compute correct LM-MACs anyway). Consequently,
with the LM-MACs any of them can check the tag for correctness and this validation
will also hold for the other receiver, this is inherited from the strong non-malleability
property for M-MACs.

We now sketch a more formal account of the properties that we require for our
building blocks. These are mediated by two attack games against unforgeability, i.e.,
GameUFM-MAC, and strong non-malleability, i.e., GameSNM

M-MAC. Both games are defined
for a generic M-MAC construction and in particular the LM-MAC can be proved to re-
sist such attacks. The attack game on strong non-malleability GameSNM

M-MAC against an
M-MAC requires an adversary to be able to construct an M-MAC in such way that ver-
ification fails with at least one of the keys but succeeds with another. An M-MAC that
is resilient to such an attack is called strongly non-malleable.

Definition 1. (Unforgeability Attack Game) We define the M-MAC unforgeability game
GameUFM-MAC as the following five stage game between challenger C and adversary Adv :

1. Challenger C runs the key generation algorithm Gen(1	, s) to get a key set K =
{k0, k1, ..., ks}.
2. AdversaryAdv is allowed to requestsC any subset of the keysetK′={kj0 , kj1 , ..., kjt},
t < s where ∀ji ∈ [1..s]. That is, the adversary is always missing at least 1 of the keys.
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3. AdversaryAdv is allowed to make queries to the MAC generation oracleOTag(K,M)
for any message tuple M to obtain the corresponding tag τ ← Tag(K,M) and to the
verification oracle OVer(i, τ,m) with any key index i, tag τ and message m and the
oracle will return 1 if and only if τ is a correct tag under key ki for message m.
4. Eventually, the adversary outputs the tuple (m♦, τ♦, i) for some index i such that he
is not in possession of ki.
5. The game output is 1 if the following two conditions hold: Ver outputs 1 on (τ,m, ki)
and the adversary never queried m to the Tag oracle. Otherwise the game output is 0.

Definition 2. (Unforgeability) We say that a mixed message authentication codeM-MAC

is unforgeable if: Pr
[
GameUFM-MAC(1

	, s) = 1
]
< negl(�).

Definition 3. (Strong Non-malleability Attack Game) We define the M-MAC strong non-
malleability game GameSNM

M-MAC as the following five stage game between challenger C
and adversary Adv :

1. Challenger C runs the key generation algorithm Gen(1	, s) to get a key set K =
{k0, k1, ..., ks}.
2. AdversaryAdv is allowed to requestsC any subset of the keysetK′={kj0 , kj1 , ..., kjt},
t < s− 1 where ∀ji ∈ [1..s]. That is, the adversary is always missing at least 2 of the
keys.
3. AdversaryAdv is allowed to make queries to the MAC generation oracleOTag(K,M)
for any message tuple M to obtain the corresponding tag τ ← Tag(K,M) and to the
verification oracle OVer(i, τ,m) with any key index i, tag τ and message m and the
oracle will return 1 if and only if τ is correct tag under key ki for message m.
4. Eventually, the adversary outputs the pair (m♦, τ♦).
5. The game output is 1 if there are at least two keys k , k ′ ∈ K such that the following
two conditions hold: Ver outputs 1 on (τ,m, k) but outputs 0 on (τ,m, k ′) and the keys
k , k ′ are not part of the adversary keyset K′. Otherwise the game output is 0.

Definition 4. (Strong Non-malleability) We say that a mixed message authentication

code M-MAC is strongly non-malleable if: Pr
[
GameSNM

M-MAC(1
	, s) = 1

]
< negl(�).

Theorem 1. The LM-MAC construction is unforgeable if the underlying MAC is un-
forgeable and is strongly non-malleable in the random oracle model.

Due to space limitations, a proof of this theorem in the random oracle model is deferred
for the extended version of this work.

3 Experimental Results

To evaluate the performance of the proposed protocol suite, we used several setups
with different hardware components to determine the minimum authentication delay.
Automotive grade embedded devices from Freescale and Infineon as well as a notebook
equipped with an adapter for CAN communication from Vector were employed to build
the nodes of our experimental CAN network. The embedded platforms that we used are
representatives for industry’s low-end and high-end edges.
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3.1 Test Beds

Using the aforementioned components we built several test beds. First, the case of a
system using the centralized authentication approach with one master node and 4 slave
nodes was considered:

• Testbed 1: S12+4×S12 . Both master and slave nodes are built on identical S12
development boards with CAN communication speed set to 125kbps.
• Testbed 2: TC1782+4×TC1797 . Master and slave nodes are built on similar Tri-
Core development boards having the same computational and communication capabil-
ities. CAN communication speed is set to 1Mbps.
• Testbed 3: Intel T7700+4×S12 . The master node is implemented on a PC (Intel
Core2Duo CPU T7700@2.4GHz) while slave nodes are built on the S12 boards. The
master-slave CAN communication is done through the CANcardXL using a low speed
CANcab for 125kbps.
• Testbed 4: Intel T7700+4×TC1797 . The master node is implemented on the
same PC as in the previous case while slave nodes are built on the TriCore platform.
This time a high speed CANcab is used with the CANcardXL to enable a 1Mbps com-
munication speed.

A different testbed was set up to compare the different variants of the key splitting
protocol on a system with 8 slaves based on S12X nodes. Two variants were considered
as we further discus: centralized authentication (in this case one extra node was added
to act as the master) and two-stage authentication.

3.2 Protocol Performance

Centralized authentication was implemented on the four testbeds prepared for this pur-
pose. Our implementation considers 6 groups of two nodes each formed by combining
the four available nodes. Messages and authentication tags are always sent as separate
frames and the message size is always 8 bits. The MAC size for each group is set to 21
bits so that 3 authentication tags fit a single 64 bit CAN frame. The MAC is computed
using the MD5 hash function over an input formed by concatenating the group key
to the message. The resulting hash is then truncated to the desired size. Table 4 holds
the timings and bus loads for each test bed. Here δ is the authentication delay, i.e., the
time needed by a node to authenticate the message once it receives it. For the bus load
we considered the fraction of traffic caused by the authentication tags over the entire
bandwidth.

As expected, scenarios in which high end devices played the role of master nodes
(PC, TriCore) showed better performance than in the case of low end master nodes.
The case of a PC master with TriCore slaves does not perform better, despite the
considerable difference in computational power between master nodes (TriCore vs.
Intel Core2Duo) due to limitations of CAN adapters. Because of their internal hard-
ware/software design, these adapters introduce some limitations, e.g., the average re-
sponse time specified by Vector for the CANcardXL is 100μs.

To evaluate the protocol behavior when using different trade-offs we implemented
different variants of the key splitting authentication protocol on a system with 8 slaves
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built on S12X nodes. By grouping the eight nodes two by two we obtain a total of 28
groups. The size of the authentication tags and the truncated MAC size differ in each
variant. We set up the implementations as follows:

• Centralized: The message sending node computes and sends one MAC for each
group that he is part of. The master computes and sends one MAC for each of the other
21 groups (if groups of size 2 are used). If the master is to perform the authentication in
only 2 frames then each MAC can be truncated to 5 bits and this will lead to a total of
35 security bits for each node. But if we increase the number of authentication frames
from the master to 3, then each MAC can be truncated to 9 bits giving a total of 63
authentication bits for each node which is a reasonable level for real-time security.
• Two-stage: The master node is missing in this implementation, therefore we use
two helper nodes for computing and sending the complete authentication tag. In the
two-stage variant, the sender node will first put one authentication tag on the bus which
contains the full 36 authentication bits for one of the helper nodes, 20 bits for the second
one and 8 extra bits for another node. This first tag is followed by a second tag generated
by the first helper node which contains the remaining 16 authentication bits for the
second helper node and 48 bits equally distributed for three of the remaining nodes. To
complete the 36 authentication bits for each of the remaining nodes, the sender node
and the second helper node will each put an authentication tag on the bus. As discussed
previously, the security level can be raised to around 64 bits by using groups of size 3
and the described tag allocation procedure.

Table 5 holds the results achieved with these two implementations. The worst performer
in terms of authentication delay is the implementation of the centralized authentication
variant as it involves computing MACs for each of the 28 groups in a sequential manner.
In the other implementation, a smaller number of MACs are computed some of which
are done by different nodes in parallel. A smaller authentication delay is obtained when
using the two-stage implementation at the cost of an increased CPU load on the sender
side. However, this cost is somewhat compensated by the higher level of security offered
by the fact that the sender node offers more authentication bits.

3.3 Computational Performance with Linearly Mixed Tags

The results from Tables 4 and 5 use the simple concatenation of individual MACs com-
puted with MD5 as the underlying hash function. We now take a brief account of the
impact of mixing tags using linear systems of equations, complete experimental results
on this will be available in the extended version of our work, here we make an accurate
estimation of the computational costs. To begin with, in Table 6 we give an overview on
the computational timings for various hash functions and input sizes on both of the em-
ployed platforms. For the Linearly Mixed MACs, in addition to the computation of the
MACs, two supplemental computational tasks are required: solving the linear system of
equations on the sender side (a task which should be usually done by the master which
has higher computational power) and reconstructing the MAC on the receiver side. Our
experimental results obtained on the communication master equipped with the Intel
2.4GHz core with the well known NTL library (http://www.shoup.net/ntl/) showed that
the computational cost of solving the system for 2 nodes in GF (28) up to GF (232) are
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Table 4. Centralized authentication with 4
nodes

Master Slave δ Bitrate Bus load

S12X 4xS12X 2.54 ms 125 kbps 53.84%
PC 4xS12X 1.848 ms 125 kbps 72.22%
TriCore 4xTriCore 267 μs 1 Mbps 54.31%
PC 4xTriCore 378 μs 1 Mbps 42.54%

Table 5. Centralized & Cascade with 8
nodes

Variant Master Slave δ Bus load

Centralized S12X 8xS12X 22.624 ms 11.27%
Two-stage - 8xS12X 6.806 ms 46.21%

around 3–6 times more intensive than an MD5 computation and this increases to 10–20
times the MD5 computation in the case of 4 nodes. Since this task should be done by
the master node it shouldn’t raise computational issues. The reconstruction of the MAC
was around 10 times cheaper compared to the linear mixing procedure and compared to
MD5 it was in the range of 0.5–5 times more intensive, the later in the case of 8 nodes
and GF (232). All these are reasonable amounts of computations and we believe that
they can be significantly improved with platform dependent tweaks.

Table 6. Computational performance of employed embedded platforms

Hash function
Input size (bytes)

S12 TriCore
0 16 64 0 16 64

MD5 371μs 374μs 1414μs 10.16μs 11.00μs 18.34μs

SHA1 1.144ms 1.148ms 4.510ms 14.64μs 15.10μs 27.60μs

SHA256 2.755ms 2.755ms 5.440ms 41.70μs 42.35μs 80.80μs

4 Backward Compatibility with CAN+

There are two main drawbacks to the LiBrA-CAN protocol. First of all, depending on
the setup, it can require quite a lot of the CAN bus’ bandwidth, and second, all nodes in
the system need to be aware of the LiBrA-CAN protocol for it to work. In this section,
we show a method of eliminating both of these drawbacks using an unofficial extension
of the CAN protocol, called CAN+ [14].

The CAN+ protocol allows transmission of extra data along with a CAN packet on
an out-of-band channel. It does this by transmitting data at an increased rate in between
CAN sample points. At least 225 extra bits can be transmitted with the CAN+ protocol
alongside a CAN message.

Using the CAN+ protocol for LiBrA-CAN data transmission helps in two ways.
First of all, the required bandwidth drops. For LiBrA-CAN schemes whereby a single
node never needs to transmit more than � 22564 � = 3 authentication tags, all LiBrA-CAN
data can be transmitted as CAN+ data. This reduces the LiBrA-CAN overhead for those
schemes to 0%. Nodes that need to transmit just a tag, can do so by transmitting a 0-byte
CAN message and embedding the tag as CAN+ data, thereby reducing the time they use
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the bus from 108 bit lengths (for an 8-byte message) to 44 bit lengths in non-extended
CAN mode, which is a 60% decrease.

Second, if LiBrA-CAN authentication data is only transmitted as CAN+ data, then
nodes that do not support CAN+ will not even see the LiBrA-CAN data. Thus, a system
can be setup whereby important nodes are outfitted with a CAN+ transceiver, while non-
important nodes aren’t. This makes the LiBrA-CAN protocol completely backwards
compatible with existing CAN networks: nodes supporting CAN+ could be dropped
into the network at will and start authentication messages with LiBrA-CAN, while ex-
isting CAN nodes will be completely oblivious as to what is going on and continue
functioning as before. An added bonus is that this also drastically reduces roll-out cost.

5 Discussion and Conclusions

The proposed protocol is efficient when the number of nodes is low. We expect this to
be the case in many automotive scenarios where, although the number of ECUs may be
high, the numbers of manufacturers from which they come may not be high and dis-
tributing trust between several groups is an acceptable solution. If the number of nodes
is too high we see only two resolutions: public key cryptography (with the drawback of
high computational requirements, at least 2 orders of magnitude) or TESLA like proto-
cols (with the drawback of authentication delays as shown in [6]). CANAuth [12] is also
a solution for high number of nodes if one considers that source authentication is not
relevant and associating keys to message groups is sound from a security perspective.
While a decision on what protocol should be used for in-vehicle authentication can be
taken only by manufacturers and by means of consortium, we believe that this proposal
should be considered as an interesting alternative. The use of MAC mixing, key split-
ting and the features of the CAN arbitration seems to give an efficient management for
source authentication.
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Abstract. We consider generic secure computation in the setting where
a semi-honest server assists malicious clients in performing multiple se-
cure two-party evaluations (SFE).

We present practical schemes secure in the above model. The main
technical difficulty that we address is efficiently ensuring input consis-
tency of the malicious players across multiple executions. That is, we
show how any player can prove he is using the same input he had used
in another execution. We discuss applications of our solution, such as
online profile matching.

1 Introduction

Secure multiparty computation allows players to compute the value of a multi-
variate function on their inputs while keeping the inputs private. Generically, the
problem of secure computation has been solved [41,12,7], for both semi-honest
and malicious players. Since then, extensive body of work concentrated on op-
timizing these approaches so that they can be used in practice with acceptable
overhead.

In this work, we consider a setting where the malicious players wish to se-
curely compute on their inputs and are assisted by a semi-honest server to do
so. This setting, although not fully general, is gaining prominence, due to the
increasing success of collaborative platforms and online social networks. These
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platforms offer (and depend upon) a wide variety of applications that would
benefit from privacy protection for their users. One such functionality is online
profile matching (or match ratio computation). On dating sites, users search for
other users whose characteristics/profile match their desiderata, while online job
portals connect companies and job seekers who best match job openings. Typical
applications considered for general SFE, such as auctions, payments, etc., are of
interest also in our setting, with the added advantage of possible efficiency gain
due to the opportunity to engage the help of the server.

As mentioned, these and other scenarios naturally introduce a third-party,
the server, who is in the position to assist the users with their computation,
and who can also protect users’ identities. Asking the server to perform the
computation himself implies revealing private data, which is often sensitive and
needs protection. At the same time, the server is an established business and
often can be trusted not to deviate from the prescribed protocol. It is therefore
reasonable to assume that the server is semi-honest.

In our approach, we will use Yao’s Garbled Circuit (GC) [41] as the basic tool.
See Section 3.1 for the description of the technique. Having access to the semi-
honest server resolves the problem of malicious circuit generation. We also rely
on Oblivious Transfer (OT) secure against malicious receiver and semi-honest
sender. Combination of the two gives us a natural solution for our setting (see
Section 2 for more details). This solution is complete for the standard standalone
executions, usually considered in SFE research.

1.1 Input Consistency Verification

In this work we consider multiple SFE executions. One issue that arises here, and
which is not addressed by the standard SFE model is that of input consistency
between executions.

The Need for Input Consistency. We first argue the importance of input
consistency verification. We consider several motivating examples first.

Consider profile matching and match ratio computation, also considered, e.g.,
in [38]. These are the underlying functionalities in online dating, resume/job
matching, profiling for advertisement and other services, etc. In many of these
applications, it is critical to the business model that users cannot manipulate
their inputs to extract maximum benefit, but, rather, that user’s inputs are
consistent among executions.

Consider, for example, the online dating application, where Alice and Bob
evaluate their compatibility by creating (and sometimes modifying) their profiles
and matching them to their preferences. This process may be interactive, and
the functions of interest may be adaptively selected. It may be important that
the corresponding inputs provided in these functions, are chosen consistently.
For example, if Bob’s private profile indicates that he is working on Ph.D. in
cryptography, and he later finds out that Alice likes kittens, he should not be
able to later claim a veterinary or firefighting degree.
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Similarly, if one system user, a corporation, is running a promotion campaign
targeting a certain demographic, other users should not be able to improperly
adjust their profiles to take advantage of the promotion.

High-Level Approach. One natural approach to this issue is to have the server
certify the players’ profiles by issuing a certificate. This works well in limited
circumstances, but not always. There are several problems with this approach.
Firstly, certification is often understood as involving verification and approval.
While certifying profile characteristics, such as Age is reasonable, certifying fa-
vorite color may look unusual. Further, some characteristics, such as favorite
color are dynamic, and may change during the lifetime of the system. Finally,
sometimes a need arises in considering a personal feature which was not ex-
pected to be in the profile, as its usefulness may have been discovered during
the interactive profile matching.

We consider a more light-weight approach, where no inputs are certified by
anybody. However, once a certain input had been used by Alice in communi-
cation with Bob, Bob can always ask her to supply the same input in future
communication, and vice versa. In our previous example, once Bob supplied
the profile that indicated he studies cryptography, Alice will be able to ensure
that in all future SFE where the field of studies is involved, Bob will input
cryptography.

Similarly, if Alice communicated with corporation CoffeeCorp, and Alice’s
profile indicated she has graduated, she will not be able to participate in
CoffeeCorp’s promotion for free coffee for college students.

We note that the fact that some inputs may change over the course of time
will not break the fundamentals of our approach. The user with changed pro-
file attribute might simply inform the other user, if needed, that a particular
attribute was updated. The computation will go through, and other user will
simply be additionally informed of the changed input.

1.2 Our Setting

We summarize our setting, which we motivated in the previous section.
Two parties, Alice and Bob want to evaluate a function, without disclosing

their inputs to each other. Either of the parties can be maliciously corrupted.
They are assisted by a semi-honest server S who does not collude with any of
the other players. S has no input, and he obtains no output in the computation.
We allow both Alice and Bob to verify, with the help of the server, that, for two
SFE evaluations, a particular input wire is set to the same plaintext value.

We do not discuss which input wires are allowed to be checked, and how Alice
and Bob agree on which wires they are checking. We assume that this agreement
is reached over an insecure channel, and disagreement in this matter will simply
result in non-participation in the SFE and/or input verification protocols.

In particular, importantly, we will not allow a player to verify consistency of
two inputs of the other player without the other player’s consent.
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1.3 Related Work

We consider SFE with malicious players, who use the help of a semi-honest
server. Most relevant to us is a comparatively small body of work that provides
improvements in settings similar to ours. We mention, but do not discuss in
detail here the works that specifically concentrate on the malicious setting, such
as [27,21,35,29,37,34,5,8]. This is because malicious-secure protocols are much
more costly than the protocols we are considering.

The issue of input consistency comes up in secure two-party computation.
Cut-and-choose, a very popular technique, requires evaluation of a security-
parameter number of circuits, and a consistency check among all the inputs
of all the evaluated circuits [31,27,37,29]. This requires a quadratic-complexity
solution1 [31,27] and solves a harder problem than ours, since we have the help
of the semi-honest server.

This server-assisted computation model has been considered as early as [11],
where the authors consider players A and B who wish to let a third party C
learn the output of their computation. The helping oblivious server has often
been appealed to in circumstances where such a player is natural, and where
regular two- or multi-party SFE would have been too costly. One example is
that of auctions [33], where secure computation is achieved with the help of
two non-colluding servers. Here one (semi-honest) server creates garbled circuit
implementing the auction, and the other (malicious) server evaluates it based
on the inputs of the clients, which were submitted through a proxy Oblivious
Transfer protocol. Several protocols have also been developed for the special case
of secure auctions using only one server [17,6,9,10]. More recently, [15] argues that
the server model is well-suited for the web (where clients connect and interact
only once with servers, and simultaneous availability of all clients is not possible)
and present several protocols for a number of functions of interest. Other recent
works [23,30,3] also consider secure computation in the server-assisted model but
allow the server to be malicious. As mentioned earlier, protocols secure against
malicious parties are much more expensive than the protocols we are considering.
[22] similarly uses the helping server to overcome the non-simultaneous nature
of survey submissions in survey processing. This work is incomparable to ours
because, firstly, most of it concentrates on specific functions of interest (e.g.,
auctions). More importantly, our distinguishing feature is the input consistency
verification across several executions, which is not considered in these works.

Input consistency checking is recognized in security literature as an impor-
tant ingredient in system building. Zero-knowledge proofs on commitments and
related techniques are often used in consistency checking. For example, [16] con-
sider privacy-preserving data mining and identify the need for input consistency
checking in computing specific functions of interest. They further propose to solve
it by involving expensive public key techniques. This body of work is incompa-
rable to ours, because, firstly, they consider specific problems, their solutions
are often informal and presented without proofs (e.g. that of [16]), and further

1 An expander-graph-based linear-complexity solution [40] is also available, but it is
more costly for practical parameters.
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rely on expensive public-key tools. Some of their ideas (e.g., [16] using same
randomness in encrypting same inputs), however, are related to our approach.

Finally, input consistency can be achieved via Certificate Authority (CA)
issuing credentials for players’ inputs. However, as we discussed in Introduction,
this approach is not sufficiently general, and is more costly than our proposed
approach.

In contrast with all of the above approaches, we show how to ensure input
consistency across several executions while only relying on a small number of
symmetric-key primitives, and minimal additional storage by the players only
(one bit per input to be cross-referenced), and no additional storage by the server
other than one master secret of security-parameter length.

1.4 Our Contributions and Outline of the Work

We propose a quite general solution to the reactive SFE among two malicious
players and the helping non-colluding semi-honest server. Our main technical
contribution is a technique to ensure input consistency among several executions.
Our solution is very efficient and is comparable to that of Yao’s Garbled Circuit
(GC) in the semi-honest model.

We start our presentation with a high-level description of our technical idea
in Section 2. We then provide the overview of the preliminaries in Section 3,
before presenting the detailed protocol and proof in Section 4. We discuss several
natural extensions in Section 5.

2 Overview of Our Approach

We base our solution on Yao’s GC [41] (and its state-of-the-art optimizations
such as garbled row reduction [36], free-XOR [25]). GC is secure against malicious
circuit evaluator and semi-honest circuit constructor, therefore we will have the
semi-honest server S generate the garbled circuit for the chosen function (as
communicated to S by both clients). As for inputs, we will use OT extension [20]
secure against malicious receivers and semi-honest server [18]. Each player runs
above OT with the server to obtain wire secrets corresponding to their input.
Then they send these wire secrets to the other player (and receive the other
player’s input secrets). The computed GC is then sent by S to both players for
evaluation (it is important to send the GC after the inputs have been delivered
so that, e.g., players cannot abort based on the output of SFE). At this point,
each player can complete GC evaluation and compute their output.

The above is a complete solution with the exception of the input consistency
verification.

Our main contribution is precisely the method for input consistency verifica-
tion. Our main idea is as follows. The input wire secrets in the constructed (by
S) garbled circuit will encode their corresponding plaintext values according to
a secret stored by S. This can be done, for example, by S choosing and storing a
random bit bi and setting the last bit of the 0-secret of wire i to bi and the last
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bit of 1-secret to be ¬bi. Now, when, say, Bob, receives Alice’s wire secret from
Alice, he will store the last bit of the wire of interest. Note that effectively the
plaintext value of this wire is shared between S and Bob. Now, when Bob wishes
to confirm that plaintext values of two of Alice’s wires across two executions are
the same, he simply needs to compare the XOR of the two values he stored with
the XOR of the corresponding values stored by S. If the XOR values are the
same, then Alice supplied the same input. Indeed, in both good-behavior cases
(Alice supplying either 0, 0 or 1, 1 in the two executions), Bob’s stored bits will
XOR to the XOR of the two stored bits of S. We stress that this check can be
done “in plaintext”, i.e., simply by S sending the corresponding XOR value to
Bob. This approach is symmetrically applied to both players.

Finally, we note that the server generates the encoding bits bi using a PRFG,
so he does not need to store any of the plaintext encoding bits, as he can always
regenerate them from his master secret, client ids and SFE id. We note that
including client ids into the circuit generation seed derivation is important. If
not included, two malicious players P1, P2 might open an honest Alice’s input of
execution Ci by pretending that Ci was their prior execution.

We now make several observations regarding our presentation and the result.

Observation 1. We stress that since we encode the wire-secret to wire-key cor-
respondence in a single bit of the wire key, it is important that this correspon-
dence can not be violated by a malicious player. For example, a semantically
secure encryption may ignore the last bit of the key. If such an encryption were
used in GC, a malicious player could flip the last bit and later falsely convince
the verifier of input consistency. To prevent this, we ensure that players cannot
malleate the received wire keys by having the server S send hashes of all wire
keys to both players.

Observation 2. In our formal presentation, we will consider functions F that
output the same value to both Alice and Bob. Our theorems and protocols can be
naturally extended to cover the general case of the multi-output functionalities.

Observation 3. While we concentrate our discussion on input consistency, we
can verify consistency of any wires of the evaluated circuits using a natural gen-
eralization of our approach.

Observation 4. The server will aid in consistency verification only if it is ap-
proved by both players by correspondingly conveying their consent to S. We do
not discuss how players know which wires are to be checked, we assume this is
given to players as an additional and insecure input.

Observation 5. The server will aid in SFE only if the evaluated circuit is ap-
proved by both players by correspondingly sending the (identical to each other)
circuit description S. We do not discuss how players know which function they
wish to compute; we assume this is given to players as an additional and insecure
input.
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Observation 6. Our protocols achieve fairness with respect to both clients. Re-
call, fairness requires that both participants of SFE learn the output simulta-
neously. In other words, players are not allowed to abort early after learning
the output. Full, and even partial fairness is quite expensive to achieve (see
e.g., [13,14]) in the standard two-party setting, and full fairness comes “for free”
in our setting.

Observation 7. Each player only needs to remember the bit corresponding to
a single instance of a specific semantic input (say the first one) to achieve com-
parison. For example, Alice will need to remember only one instance of bits cor-
responding to Bob’s age. Indeed, all future uses of a particular semantic input
can be compared to its first use.

3 Preliminaries and Notation

3.1 Garbled Circuits (GC)

Yao’s Garbled Circuit approach [41], excellently presented in [28], is the most
efficient method for one-round secure evaluation of a boolean circuit C. We
summarize its ideas in the following. The circuit constructor S creates a garbled
circuit C̃: for each wire wi of the circuit, he randomly chooses two garblings
w̃0

i , w̃
1
i , where w̃

j
i is the garbled value of wi’s value j. (Note: w̃

j
i does not reveal j.)

Further, for each gateGi, S creates a garbled table T̃i with the following property:
given a set of garbled values of Gi’s inputs, T̃i allows to recover the garbled value
of the corresponding Gi’s output, but nothing else. S sends these garbled tables,
called garbled circuit C̃ to the evaluator C. Additionally, C obliviously obtains
the garbled inputs w̃i corresponding to inputs of both parties: the garbled inputs
x̃ corresponding to the inputs x of S are sent directly and ỹ are obtained with a
parallel 1-out-of-2 oblivious transfer (OT) protocol [32,2,28]. Now, C can evaluate

the garbled circuit C̃ on the garbled inputs to obtain the garbled outputs by
evaluating C̃ gate by gate, using the garbled tables T̃i. Finally, C determines
the plain values corresponding to the obtained garbled output values using an
output translation table received from S. Correctness of GC follows from the
way garbled tables T̃i are constructed.

We note that GC evaluator cannot deviate from the prescribed protocol, and
GC is therefore secure against malicious GC evaluator, given an appropriate
malicious-secure OT protocol.

3.2 Notation

Let κ be the computational security parameter. The server S assists parties P1

and P2 to secure evaluate arbitrary functions over their inputs multiple times.
In each iteration, S will be provided circuit Ci that party P1 with client id id1,
and input xi, and party P2 with client id id2, and input yi, wish to evaluate.
We let xi,j (resp. yi,j) denote the j-th bit of xi (resp. yi). We assume that xi
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(resp. yi) is of length m (resp. n), and that I1 (resp. I2) represents the set of
P1’s (resp. P2’s) input wires in Ci.

Server S maintains a master secret – a state, denoted by σ, across
executions. Given a circuit Ci, and state σ, the server uses algorithm
GarbGen(i, Ci, id1, id2, σ) to generate a garbled version of Ci which we denote

by C̃i.
In circuit Ci, we let ui,j (resp. vi,j) denote the j-th input wire belonging to

party P1 (resp. P2). For a wire ui,j (resp. vi,j), we refer to the garbled values cor-
responding to 0 and 1 by ũ0

i,j , ũ
1
i,j (resp. ṽ

0
i,j , ṽ

1
i,j ) respectively. While evaluating

the garbled circuit, the evaluator will possess only one of two garbled values for
each wire in the circuit. We let w̃′

i,j denote the garbled value on wire wi,j that
is possessed by the evaluator.

Our protocols are designed in the random oracle model. In our protocolsH,E,
and H ′ represent hash functions that are modeled as non-programmable random
oracles.

4 Input Consistency Verification in Server-Assisted SFE

We start this section with the definition of security. Then, in Section 4.2, we
present a simple protocol for server-assisted SFE secure against malicious play-
ers. This is the natural protocol based on GC. Finally, in Section 4.3, we show
how to allow to perform input consistency checks.

4.1 Definitions

We provide a formal definition of the SFE functionality we will realize. We want
P1 and P2 to securely compute with the help of the server, and, in addition, to
be able to check each other’s inputs for consistency. Our functionality provides
two interfaces, evaluate and check, which, respectively, evaluate the given circuit,
and checks two inputs for consistency. It is easy to see that such a functionality
provides the utility we desire, i.e., allows P1 to ensure consistency of P2’s inputs,
and vice versa.

Definition 1. The consistency checking functionality Fcc is a reactive func-
tionality that interacts with a server S and parties P1 and P2 in the following
way.

– If it receives an evaluate request from both parties, then Fcc obtains (i, Ci, xi)
from P1, and (i, Ci, yi) from P2. If the values i, Ci, provided by P1 and P2

differ, then Fcc returns ⊥ to S. Fcc records (i, xi, yi). Then Fcc returns
(i, zi = Ci(xi, yi)) to both P1 and P2. Finally, Fcc returns (i, Ci) to S.

– If it receives a check request from both parties, then Fcc obtains the same
string (i1, j1, i2, j2) from both parties. Fcc returns (i1, j1, i2, j2) to S. Let wi,j

denote the plaintext value carried on j-th wire in circuit Ci when evaluated
using inputs xi and yi. Fcc checks if wi1,j1 = wi2,j2 , and returns pass to both
parties if the check passed, else it returns fail to both parties.
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We say that a stateful protocol π is a server-assisted secure computation protocol
that allows consistency checking across multiple sequential executions if it securely
realizes Fcc in the presence of an adversary A.
Remark: Note that the above definition reveals each circuit Ci as well as each
check request (i1, j1, i2, j2) to the semi-honest server. This is allowed in our
model, and is consistent with the standard definitions of SFE security. However,
even this information can be hidden, and we discuss natural ways to do so in
Section 5.

4.2 Server-Assisted Secure Computation

In this section, we describe a simple protocol for secure computation that sup-
ports multiple executions in the server-assisted setting. Our protocol is a natural
adjustment of the secure computation protocols based on garbling schemes [41,4].
The main idea of the protocol of this section is that the semi-honest server will
generate the GC and distribute it to both players, after running the OT proto-
col. We note that we do not yet address input consistency in this section, and
the following protocol is simply a building block. We will use the protocol of this
section as a subprotocol in the scheme presented in Section 4.3.

In this protocol, C̃i used by S is constructed as described in Section 3.1.
Let input keys for P1 be {ũ0

i,j, ũ
1
i,j}j∈I1 , and those corresponding to P2 be

{ṽ0i,j , ṽ1i,j}j∈I2 . We describe our protocol below.

Protocol 1

1. S and P1 participate in m OT instances in the following way. In the j-th
instance:
– S acts as sender with input (ũ0

i,j , ũ
1
i,j).

– P1 acts as receiver with input xi,j .
– P1 obtains ũ′

i,j as output.
2. S and P2 participate in n OT instances in the following way. In the j-th

instance:
– S acts as sender with input (ṽ0i,j , ṽ

1
i,j).

– P2 acts as receiver with input yi,j .
– P2 obtains ṽ′i,j as output.

3. For each j ∈ I2, S sends H(ṽ0i,j), H(ṽ1i,j) in random order to P1. Let P1

receive these as {gi,j, g′i,j}j∈I2 .

4. For each j ∈ I1, S sends H(ũ0
i,j), H(ũ1

i,j) in random order to P2. Let P2

receive these as {hi,j, h
′
i,j}j∈I1 .

5. P1 sends {ũ′
i,j}j∈I1 to P2.

6. P2 sends {ṽ′i,j}j∈I2 to P1.
7. P1 aborts the protocol if for some j ∈ I2, H(ṽ′i,j) �∈ {gi,j, g′i,j} holds.
8. P2 aborts the protocol if for some j ∈ I1, H(ũ′

i,j) �∈ {hi,j, h
′
i,j} holds.

9. S sends the garbled circuit C̃i to both P1 and P2.
10. Using keys {ṽ′i,j}j∈I2 and {ũ′

i,j}j∈I1 , P1 and P2 evaluate C̃i to obtain
output zi.
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Intuition for Security. (A formal proof is included in the proof of Theorem 1.)
We informally argue that Protocol 1 allows for multiple secure evaluations in the
presence of an adversary that either passively corrupts S, or actively corrupts
one of P1, P2.

Security against semi-honest S. Note that the server does not learn what keys
are sent by P1 to P2 and vice versa. Furthermore, by receiver-security of OT, the
keys selected by P1 and P2 (in their respective OT executions) is computationally
hidden from the server. This is enough to guarantee security against a semi-
honest S.
Security against malicious P1. The simulator extracts P1’s inputs by using the
simulator of the secure OT protocol. It then checks whether the keys {ũ′

i,j}j∈I1

correspond to the extracted input. If not, the simulator aborts the simulation
at this stage, and outputs whatever P1 outputs. If the checks pass, then the
simulator sends the extracted input to the trusted party. Upon receiving the
output back from the trusted party, the simulator “fakes” the garbled circuit, and
provides the appropriate output translation tables. This completes an informal
description of the simulation. Indistinguishability of simulation follows from the
fact thatH is a random oracle, and the encryption scheme (used to create garbled
tables) is semantically secure, and the security of OT protocol.

Security against malicious P2 follows by an argument similar to the above.
We will use Protocol 1 as a subprotocol to construct our main protocol that

also enables consistency verification in addition to secure computation.

4.3 Verifying Consistency across Multiple Executions

Our main technical contribution is a design of a new garbling scheme that will al-
low efficient consistency verification in our setting. Recall that Yao’s garbled cir-
cuit is constructed by choosing for each wire wi,j , garblings w̃

0
i,j , w̃

1
i,j at random

from {0, 1}κ, and creating the garbled tables T̃i,j using any semantically-secure
encryption scheme.

GC Encryption. In our GC garbling schemes, we employ the following encryp-
tion. For simplicity of presentation, we work in the random oracle model.

Let E : {0, 1}∗→{0, 1}κ be a random oracle. For encrypting the value x in the
truth table of the �-th gate in the i-th execution, we use the following encryption
scheme that takes two keys ka, kb as follows:

Encka,kb
(x, i, �) = E(ka‖kb‖i‖�)⊕ x

Before presenting our main protocol, we describe our main amendment to the
traditional Yao GC-based garbling scheme (and their benefits) that we take
advantage of.

Correlating the Keys across Multiple Executions. We achieve verifiable
consistency across multiple executions by correlating the keys at the input level.
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More precisely, the server S chooses at random his master secret σ ∈ {0, 1}κ,
permanently stores it, and uses it in the following way to covertly “mark” each
input wire with its plaintext label. Let P1’s (resp. P2) id be id1 (resp. id2),
and H ′ : {0, 1}∗ → {0, 1} be a one-bit RO. For wi,j that is the input wire
of either P1 or P2: (1) the first κ − 1 bits of w̃0

i,j , w̃
1
i,j are picked at random,

and (2) the last bit of w̃0
i,j is set to H ′(i‖j‖id1‖id2‖σ), while the last bit of

w̃1
i,j is set to w̃0

i,j ’s complement 1⊕H ′(i‖j‖id1‖id2‖σ). As we will formally show
below, correlating the keys in the manner described above will allow for effi-
cient consistency verification. We stress that the remaining keys (i.e., those that
do not correspond to input or output wires of Ci) are still picked at random
from {0, 1}κ.

We are now ready to formalize the above discussion and to describe GarbGen
which is the algorithm S uses to create the garbled circuit for the i-th execution.
The algorithm GarbGen takes the execution index i, the circuit Ci, and the
server’s state (master secret) σ to produce garbled circuit C̃i.

In GarbGen, we generate the wires garblings at random. We note that in
practice, we would probably use a PRFG such as AES.

Algorithm GarbGen(i, Ci, id1, id2, σ).
In Ci, let ui,j and vi,j represent the input wires corresponding to P1 whose client
id is id1 and P2 whose client id is id2 respectively.

– For every wi,j that is an input wire of either P1 or P2, do the following:
1. Set ŵi,j := H ′(i‖j‖id1‖id2‖σ). (Recall, H ′’s output is one-bit.)
2. Choose r0, r1←{0, 1}κ−1 at random.
3. Set w̃0

ij := r0‖ŵi,j .

4. Set w̃1
ij := r1‖(1⊕ŵi,j).

– For every internal wire wi,j of Ci, choose w̃0
i,j , w̃

1
i,j←{0, 1}κ.

– For each gate G in Ci do the following: Let the gate index of G be �. Suppose
w1 and w2 represent input wires, and w3 represent the output wires of gate
G. For j ∈ {1, 2, 3}, let w̃0

j , w̃
1
j represent the garblings corresponding to 0

and 1 respectively. Given this, the garbled table T̃ , corresponding to gate
G with gate function g, in C̃i consists of a random permutation of the set

{E(w̃b1
1 ‖w̃b2

2 ‖i‖�)⊕w̃g(b1,b2)
3 }b1,b2∈{0,1}. (Recall E is a random oracle.)

We are now ready to describe our final protocol that enables efficient verifica-
tion of consistency across multiple executions. We refer the reader to technical
overview of the protocol and its intuition presented in Section 2.

Protocol 2

Setup: S chooses random seed σ←{0, 1}κ.
Evaluation: In the i-th execution:

– P1 and P2 provide Ci to S. If submissions of P1 and P2 differ, the server
aborts.

– S creates C̃i←GarbGen(i, Ci, id1, id2, σ).
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– S uses C̃i as the garbled circuit, and participates in Protocol 1 with P1 and
P2. At the end of the protocol, P1 and P2 obtain their respective outputs of
the execution.

– For wi,j that represents the input wire of either P1 or P2, both P1 and P2

do the following.
• Set ŵ′

i,j to the last bit of w̃′
i,j .

• Add ŵ′
i,j to the local state.

Consistency Verification:

– Both P1 and P2 specify (i1, j1, i2, j2) to S. If submissions of P1 and P2 differ,
the server aborts.

– S retrieves ŵi1,j1←H ′(i1‖j1‖id1‖id2‖σ), and ŵi2,j2←H ′(i2‖j2‖id1‖id2‖σ). S
sends the bit (ŵi1,j1⊕ŵi2,j2) to both P1 and P2. Denote the bit received by
P1 and P2 as c.

– P1 and P2 retrieve ŵ′
i1,j1 and ŵ′

i2,j2 from their local state, and check if

c
?
= ŵ′

i1,j1⊕ŵ′
i2,j2 . If the check fails then the execution is aborted.

This completes the description of our protocol. We stress that unlike P1 and P2,
the server S does not store any local state other than the master secret σ. We
now provide the proof of security.

Theorem 8. Let A be an adversary that either passively corrupts S or actively
corrupts one of P1, P2. Then, Protocol 2 securely realizes Fcc in the presence
of A.
Proof. (sketch) Security against Semi-honest S. We start with showing that
the protocol is secure against the semi-honest server S. The information received
by S are transcripts of the underlying OTs. This does not leak information,
because OTs are secure against semi-honest S. Given this, the simulator SimS
follows naturally.

Secure against Malicious P ∗
1 . We present the simulator Sim1 of a malicious

P ∗
1 , and argue that it produces a good simulation.
Sim1 chooses random seed σ←{0, 1}κ. Sim1 does the following in each

iteration i.
Sim1 first obtains C̃i by running GarbGen(i, Ci, σ). Then, Sim1 starts P ∗

1 and
interacts with it, sending it messages it expects to receive, and playing the role
of the trusted party for the OT oracle calls that P ∗

1 makes, in which P ∗
1 plays

the role of the receiver.
Sim1 plays OT trusted party m times, where P ∗

1 is the receiver; as such, Sim1

receives allm OT selection bits (which are supposed to correspond to P ∗
1 ’s input)

from P ∗
1 and each time, for concreteness say j, uses {ũ0

i,j , ũ
1
i,j} (which are P1’s

input keys specified by GarbGen) to hand to P ∗
1 as his OT output. Let us denote

this output by ũi,j . If any of the underlying OTs abort, then Sim1 sends abort
to the trusted party and halts, outputting whatever P ∗

1 outputs.
Acting as S, the simulator Sim1 chooses random κ-bit string rj , and sends

rj , H(ṽ0i,j) in random order. Then, acting as P2, Sim1 receives {ũ′
i,j}j∈I1 from
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P ∗
1 , and sends {ṽ0i,j}j∈I2 to P ∗

1 . Next, Sim1 checks if for every j ∈ I1, it holds
that ũ′

i,j = ũi,j . If any of the checks fail, then the simulator sends abort to the
trusted party, and terminates outputting whatever P ∗

1 outputs. Otherwise, Sim1

forms x∗
i in the following way. For each j ∈ I1, if ũi,j = ũ0

i,j , then x∗
i,j is set to

0; else it is set to 1. Then, Sim1 feeds x∗
i as its input to the trusted party. Sim1

gets back the output zi from the trusted party.
Sim1 creates a “fake” garbled circuit C̃

′
i which is exactly the same as an honestly

generated garbled circuit C̃i (created using GarbGen) except with the following
modification. LetGdenote an output gatewith inputwiresw1 , w2, and outputwire
w3. LetG’s gate index be �. Recall Sim1 obtained output zi from the trusted party,
so it knows the actual value b that is carried on the outputwirew3. Sim1 creates gar-
bled gate T̃ as a random permutation of the set {E(w̃b1

1 ‖w̃b2
2 ‖i‖�)⊕w̃b

3}b1,b2∈{0,1}.
That is, the “fake” garbled circuit, upon evaluation, will always yield the correct
output zi. Sim1 sends the fake garbled circuit C̃

′
i toP

∗
1 . This completes the descrip-

tion of the simulation of the evaluation phase.
We now describe the simulation of the consistency verification stage. Acting

as S, the simulator Sim1 receives query (i1, j1, i2, j2) from P ∗
1 . Sim1 checks if this

is a valid query, and if not, it aborts the protocol, and terminates the simulation
outputting whatever P ∗

1 outputs. Otherwise, Sim1 returns H(i1‖j1‖id1‖id2‖σ)⊕
H(i2‖j2‖id1‖id2‖σ) to both parties.

We now argue that Sim1 produces a view indistinguishable from the real
execution in both the evaluation and verification stages. We first note that Sim1’s
interaction with P ∗

1 is indistinguishable from that of honest S and P2. Indeed, OT
secrets delivered to P ∗

1 are distributed identically to real execution. Further, since
non-selected OT secrets remain hidden, P ∗

1 knows the value of exactly one key in
{ũ0

i,j, ũ
1
i,j} for each of his input wires j ∈ I1. Thus, if the execution is not aborted,

then P ∗
1 must have sent the key that he obtained via OT with Sim1 (acting as S).

Also, the fake garbled circuit sent to P ∗
1 from Sim1 is indistinguishable from real,

since the underlying encryption scheme is based on RO and produces uniform
and independent ciphertexts.

Now we argue that the simulation of the consistency verification stage is
indistinguishable from the real execution. Let (i1, j1, i2, j2) represent the query
that was sent by P1. First, we consider the case when wires j1 and j2 carry P2’s
inputs. Since valid queries over (honest) P2’s inputs are actually consistent in
the real execution, and since Sim1 generates keys honestly according to GarbGen,
we conclude that Sim1’s answer is indistinguishable from S’s answer in the real
execution. Now suppose wires j1 and j2 carry P1’s inputs. Since an RO collision
happens with negligible probability, we are guaranteed that the key ũ′

i,j that P1

sent to P2 is exactly the one that P1 retrieved via OT. Indistinguishability of
the simulation follows from the fact that Sim1 answers the query honestly based
on keys generated via GarbGen. This completes the proof of correctness of the
simulation when P ∗

1 is malicious.
The case when P2 is malicious is symmetric and is skipped. �



214 V. Kolesnikov, R. Kumaresan, and A. Shikfa

5 Extensions

As observed earlier, our definition of Fcc functionality reveals information about
the verification queries and the circuit Ci to the server S. While, as we discussed,
this is not a security violation, in some use cases, it is desired to hide this
information as well. In this section, we discuss natural approaches to hiding this
information.

Private Verification Queries. We provide a simple solution for preserving
privacy of verification queries. Recall that in order to verify input consistency,
parties need to retrieve the XOR of the least significant bits of the wire keys
corresponding to wires specified in their queries. Note that these least significant
bits can be obtained directly from the private state σ (i.e. the master secret)
of S. This motivates the following solution that preserves privacy of verification
queries. Consider a circuit C′ which takes as input queries q1, q2 from parties
P1 and P2, and the private state σ of S, and computes the desired output (i.e.,
XOR of the least significant bits of the keys specified by the queries). Clearly,
if C′ is evaluated securely, i.e., while keeping queries q1, q2 private from S, and
private state σ hidden from P1 and P2, then our problem is solved. We propose
the following efficient solution to securely evaluate C′ using garbled circuits.

We model H ′ as a PRF (as opposed to RO) in order to allow C′ to internally
generate the keys from σ. (We stress that modeling H ′ as a PRF does not violate
the security of our construction in any way.) We also require C′ to check if q1 = q2
holds, and produce output only when this check passes. This is necessary in order
to guarantee that the malicious party does not obtain information other than
what the output of the honest query reveals.

Now, without loss of generality, suppose party P1 wishes to verify input con-
sistency. Parties simply securely evaluate C′ on corresponding inputs, and use
the output of this computation as discussed in consistency verification subproto-
col of Protocol 2 described in Section 4.3. Clearly, S will not know which wires
are being verified. We note that two colluding players P1 and P2 will not obtain
output related to a third player, since H ′ used for evaluation of the marker bits
is evaluated on inputs which include both client ids.

We stress that the above solution is very efficient2; in particular its complexity
is independent of the number of past executions between P1 and P2.

Function Privacy. We employ standard techniques such as universal cir-
cuits [39,1,26,24] to preserve function privacy. Our application is mildly com-
plicated by the fact that we need to ensure that both parties provide the same
function descriptors as input to the universal circuit. This is done to prevent a
malicious party from evaluating an arbitrary function over the honest party’s
inputs. We resolve this issue using techniques similar to the ones we employed
when privacy of queries needed to be preserved.

In more detail, let U ′ denote a circuit that takes as input two function de-
scriptors f1, f2, and two inputs x and y. Circuit U ′ checks if f1 = f2, and if

2 See [19] for the concrete cost of securely evaluating AES.
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so, evaluates a universal circuit U on input f1, x, y to produce output f1(x, y).
Clearly, if U ′ is evaluated securely, i.e., while keeping function descriptors f1, f2
private from S, then our problem is solved. Secure evaluation of U ′ is performed
in the same way as described in the setting where privacy of queries needed to
be preserved.
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Abstract. In many everyday scenarios, sensitive information must be
shared between parties without complete mutual trust. Private set op-
erations are particularly useful to enable sharing information with pri-
vacy, as they allow two or more parties to jointly compute operations
on their sets (e.g., intersection, union, etc.), such that only the mini-
mum required amount of information is disclosed. In the last few years,
the research community has proposed a number of secure and efficient
techniques for Private Set Intersection (PSI), however, somewhat less
explored is the problem of computing the magnitude, rather than the
contents, of the intersection – we denote this problem as Private Set
Intersection Cardinality (PSI-CA). This paper explores a few PSI-CA
variations and constructs several protocols that are more efficient than
the state-of-the-art.

1 Introduction

Proliferation of, and growing reliance on, electronic information generate an
increasing amount of sensitive data stored and processed in the cyberspace.
Consequently, there is a compelling need for efficient cryptographic techniques
that allow sharing information while protecting privacy. Among these, Private
Set Intersection (PSI) [14,28,17,25,18,26,11,10,21], and Private Set Union (PSU)
[28,18,20,15,35] have recently attracted a lot of attention from the research com-
munity. In particular, PSI allows one party (client) to compute the intersection
of its set with that of another party (server), such that: (i) server does not learn
client input, and (ii) client learns no information about server input, beyond the
intersection. Efficient PSI protocols have been used as building blocks for many
privacy-oriented applications, e.g., collaborative botnet detection [31], denial-of-
service identification [2], on-line gaming [7], intelligence-community systems [23],
location sharing [32], just to cite a few.

Nonetheless, in certain information-sharing settings, PSI and PSU functional-
ities offer very limited privacy to server. Consider the following scenario where,
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after running PSI, the set intersection learned by client corresponds to entire
server input: server privacy is actually non-existent, while client’s is fully pre-
served. This illustrates the need for server to enforce a policy, based on the
cardinality of set intersection/union, that governs whether it is willing to take
part in PSI or PSU protocols. (We explore this intuition in Section 6.)

This paper investigates Private Set Intersection Cardinality (PSI-CA) and
Private Set Union Cardinality (PSU-CA). These functionalities are appealing
in scenarios where client is only allowed to learn the magnitude – rather than
the content – of set intersection/union. For instance, PSI-CA is useful in social
networking, e.g., when two parties want to privately determine the number of
common connections (or interests) in order to decide whether or not to become
friends. Moreover, PSI-CA is useful to privately compare equal-size low-entropy
vectors, e.g., to realize private computation of Hamming Distance between two
strings on an arbitrarily large alphabet: two parties may use PSI-CA, by treating
each symbol, together with its position in the string, as a unique set element,
such that client privately learns the number of elements (symbols) in common
(thereby also obtaining the Hamming Distance). Other relevant applications
of PSI-CA include role-based association rule mining [27], affiliation-hiding au-
thentication [3], as well as to estimating the similarity of sample sets [6]. Finally,
efficient PSI-CA protocols are becoming instrumental to privacy-preserving ge-
nomic tests, as recently showed in [4].

1.1 Contributions

This paper focuses on PSI-CA – a cryptographic primitive, involving server (on
input of a private set S) and client (on input of a private set C), that results in
client outputting |S ∩C|. Computation of PSI-CA naturally implies that of PSU-
CA, since |S|, |C| are always mutually disclosed and |S ∪ C| = |S|+ |C| − |S ∩ C|.

Although prior work has yielded some PSI-CA techniques (see Section 2), a
number of open problems still remain to be addressed. This paper presents the
following contributions:

1. We present a very efficient PSI-CA protocol that incurs computational and
communication complexities linear in the set sizes. Our protocol is secure
under the DDH assumption in the Random Oracle Model (ROM) against
semi-honest adversaries. This protocol is a very close variant of the protocol
of Agrawal, Evfimievski, and Srikant [1], and our merit is really a security
analysis of this modification rather than the protocol itself.

2. We introduce the concept of Authorized PSI-CA (APSI-CA), whereby client
input must be pre-authorized by an off-line mutually-trusted authority, and
present an appropriate protocol extension with linear complexities (as op-
posed to quadratic in related prior techniques).

3. We show how to combine PSI-CA with PSI such that server can decide
whether to allow client to obtain the set intersection according to its policy,
based on the size of the intersection itself (privately obtained using PSI-
CA). This first-of-a-kind approach is very efficient, as it requires only one
additional message on top of PSI-CA protocol.
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Paper Organization. Next section reviews related work. After preliminaries in
Section 3, Section 4 presents our PSI-CA protocol. Then, Section 5 constructs a
variant for APSI-CA, and finally, Section 6 sketches a three-round policy-based
PSI variant. The paper concludes in Section 7.

2 Related Work

2.1 (Authorized) Private Set Intersection and Union

Agrawal, Evfimievski, and Srikant [1] introduce a Private Set Intersection (PSI)
construction based on commutative encryption.1 The protocol has linear com-
plexity – that is, assuming that server and client sets contain w and v items,
respectively, computation and communication complexity amounts to O(w+ v).
[1] also presents a variant that only discloses the size of the intersection – we
review it in Section 2.2 below.

The work in [14] propose a few protocols for Private Set Intersection (PSI)
based on Oblivious Polynomial Evaluations (OPE-s) and additively homomor-
phic encryption (e.g., Paillier [33]). The intuition is to represent a set as a polyno-
mial and its elements – as the polynomial’s roots. Client encrypts the coefficients,
that are then evaluated homomorphically by server. As a result, client learns
the intersection and nothing else. Client’s computation complexity amounts to
O(w + v), and server’s to O(wv) exponentiations. [14] proposes techniques to
asymptotically reduce server workload to O(w log log v), by using Horner’s rule
and balanced bucket allocation. [18] obtains similar complexities while also offer-
ing PSU techniques. Whereas, [28] extends OPE-s to more than two players, all
learning the intersection/union, with quadratic computational and linear com-
munication complexities. Additional PSU constructs appear in [20,15,35].

Other PSI constructs, such as [17,25], rely on Oblivious Pseudo-Random Func-
tions (OPRF-s) and reduce computation overhead to a linear number of expo-
nentiations. Recent results in the Random Oracle Model (ROM) have led to very
efficient PSI protocols, also with linear complexities, while using much more effi-
cient cryptographic tools. They replace OPRFs with unpredictable functions [26]
and blind signatures [11], with security under One-More-DH and One-More-
RSA assumptions [5], respectively. Finally, [10] achieves linear communication
and computational complexities, using short exponents, with security in the ma-
licious model, while [21] shows a construction in the semi-honest model based
on garbled circuits [38] which, leveraging so-called Oblivious Transfer Exten-
sion [24], scales relatively gracefully for very large security parameters.

Authorization of client input in PSI has been first investigated in [8] and [9].
Authorized Private Set Intersection (APSI) is later formalized in [11] and [10]
that construct efficient techniques with linear complexity in the presence of,

1 It is quite interesting to observe that several PSI papers (e.g., [14,26]) erroneously
cite the work by Evfimievski, Gerke, and Srikant [12] as the work introducing
commutative-encryption based PSI, which is, in fact, [1]. Also, observe that pro-
tocols in [1] are essentially the same as those sketched earlier, in [22], although the
latter provided no security analysis.
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respectively, semi-honest and malicious adversaries. Finally, [36] proposes Policy-
Enhanced PSI, allowing two parties to privately share information while enforc-
ing complex policies. In this model, both parties’ sets must be authorized, and
both parties obtain the intersection.

2.2 Private Set Intersection Cardinality

Prior work yielded several PSI-CA protocols:

• Agrawal, Evfimievski, and Srikant [1] present an adaptation of their PSI
protocol to PSI-CA, also secure under the DDH assumption in the presence
of semi-honest adversaries. Their construction is actually similar to ours
(presented in Figure 1), although we also present two extensions.

• The PSI protocol by Freedman, Nissim, and Pinkas [14] can be extended
to PSI-CA with the same complexity, i.e., O(w log log v) computation and
O(w + v) communication.

• Hohenberger andWeis [19] present a PSI-CA construction, also based on [14],
and with similar (sub-quadratic) complexities.

• Kissner and Song [28] proposes a PSI-CA protocol for multiple (n ≥ 2) par-
ties, incurring O(n2 · v) communication and O(v2) computational overhead.

• Vaidya and Clifton [37] construct a multi-party PSI-CA protocol, based
on commutative one-way hash functions [30] and Pohlig-Hellman encryp-
tion [34]. It incurs n rounds, and involves O(n2 · v) communication and
O(vn) computational overhead.

• Camenisch and Zaverucha [8] present an APSI variant (private intersection
of certified sets) that computes the cardinality of (certified) set intersection
and incurs quadratic communication and computation complexity.

3 Preliminaries

This section defines PSI-CA/PSU-CA functionalities, along with their privacy
requirements, and introduces computational assumptions.

DDH Assumption. Let G be a cyclic group and g be its generator. We assume
that bit-length of group size is l. The DDH problem is hard in G if, for every
efficient algorithm A, the following probability is a negligible function of κ:
∣
∣
∣Pr[x, y ← {0, 1}l : A(g, gx, gy, gxy) = 1]− Pr[x, y, z ← {0, 1}l : A(g, gx, gy, gz) = 1]

∣
∣
∣

Definition 1 (Private Set Union Cardinality (PSU-CA)). A protocol in-
volving server, on input a set of w items S = {s1, . . . , sw}, and client, on input
a set of v items C = {c1, · · · , cv}. It results in the latter outputting |U|, where:
U = S ∪ C.
Definition 2 (Private Set Intersection Cardinality (PSI-CA)). A proto-
col involving server, on input a set of w items S = {s1, . . . , sw}, and client, on
input a set of v items C = {c1, · · · , cv}. It results in the latter outputting |I|,
where: I = S ∩ C.
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Client, on input Server, on input

C = {c1, . . . , cv} S = {s1, . . . , sw}

Rc ← Zq (ŝ1, . . . , ŝw) ← Π(S)
∀i 1 ≤ i ≤ v : ∀j 1 ≤ j ≤ w : hsj = H(ŝj)
hci = H(ci);

ai = (hci)
Rc

{a1, . . . , av}
��
Rs ← Zq

∀i 1 ≤ i ≤ v : a′
i = (ai)

Rs

(a′
�1
, . . . , a′

�v ) = Π ′(a′
1, . . . , a

′
v)

∀j 1 ≤ j ≤ w : bsj = (hsj)
Rs

∀j 1 ≤ j ≤ w : tsj = H ′(bsj)∀i 1 ≤ i ≤ v:
{ts1, . . . , tsw}

{a′
�1
, . . . , a′

�v}��

bci = (a′
�i
)1/Rc mod q

∀i 1 ≤ i ≤ v:

tci = H ′(bci)

Output: |{ts1, . . . , tsw} ∩ {tc1, . . . , tcv}|

Fig. 1. Proposed PSI-CA Protocol. All computation is mod p. Π and Π ′ are random
permutations

Informally, both PSI-CA and PSU-CA entail the following privacy requirements:

• Server Privacy. Client learns no information beyond: (1) cardinality of set
intersection/union and (2) upper bound on the size of S.

• Client Privacy. No information is leaked about client set C, except an upper
bound on its size.

• Unlinkability. Neither party can determine if any two instances of the pro-
tocol are related, i.e., executed on the same input by client or server, unless
this can be inferred from the actual protocol output.

Remark: As mentioned earlier in the paper, for any C and S, the size of C ∪ S
can be computed as |C|+ |S| − |C ∩ S|. Thus, privately computing cardinality of
the intersection of C and S allows one to privately compute the cardinality of
their union as well. Consequently, the rest of the paper only focuses on PSI-CA.

4 New PSI-CA and PSU-CA

This section presents our PSI-CA construction, secure in the presence of semi-
honest adversaries in the Random Oracle Model (ROM). We outline it in Figure
1. Protocol executes on common input of two primes p, q (where q|p − 1), a
generator g of a subgroup of size q, and two hash functions (modeled as ran-
dom oracles), H : {0, 1}∗ → Z∗

p and H ′ : {0, 1}∗ → {0, 1}κ, given the security
parameter κ. (Notation a ← A denotes that a is chosen uniformly at random
from A).
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Intuition. First, client masks its set items (ci-s) with a random exponent (Rc)
and sends resulting values (ai-s) to server, which “blindly” exponentiates them
with its own random value Rs. Server shuffles the resulting values (a′i-s) and
sends them to client. Then, server sends client the output of a one-way function,
H ′(·), computed over the exponentiations of server’s items (sj-s) to randomness
Rs. Finally, client tries to match one-way function outputs received from server
with one-way function outputs computed over the shuffled (a′i-s) values, stripped
of the initial randomness Rc. Client learns the set intersection cardinality (and
nothing else) by counting the number of such matches. As showed below, unless
they correspond to items in the intersection, one-way function outputs received
from server cannot be used by client to learn related items in server’s set (un-
der the DDH assumption). Also, client does not learn which items are in the
intersection as the matching occurs using shuffled a′i values.

Complexity. Protocol complexity is linear in the sizes of the two sets. Let |S| =
w and |C| = v. Client performs 2(v + 1) exponentiations with short, i.e., |q|-bit,
exponents modulo |p|-bit and v modular multiplications. Server computes (v+w)
modular exponentiations with short exponents and w modular multiplications.
In practice, one can select |p| = 1024 or |p| = 2048, and |q| = 160 or |q| = 224.
Communication overhead amounts to 2(v + 1) |p|-bit and w κ-bit values.

Semi-Honest Participants. We start with security in the semi-honest model.
Note that the term adversary refers to insiders, i.e., protocol participants. Out-
side adversaries are not considered, since their actions can be mitigated via
standard network security techniques.

Definition 3 (Correctness). If both parties are honest, at the end of the pro-
tocol, executed on inputs ((S, v), (C, w)), server outputs ⊥, and client outputs
(|S ∩ C|).

The following client and server privacy definitions follow from those in related
work [14,13,17]. In particular, as formalized in [16] (Sec. 7.2.2), in case of semi-
honest parties, the traditional “real-versus-ideal” definition framework is equiva-
lent to a much simpler framework that extends the formulation of honest-verifier
zero-knowledge. Informally, a protocol privately computes certain functionality
if whatever can be obtained from one party’s view of a protocol execution can
be obtained from input and output of that party. In other words, the view of a
semi-honest party (including C or S, all messages received during execution, and
the outcome of that party’s internal coin tosses), on each possible input (C,S),
can be efficiently simulated considering only that party’s own input and output.

Definition 4 (Client Privacy). Let ViewS(C,S) be a random variable repre-
senting server’s view during execution of PSI-CA with inputs C,S. There exists
a PPT algorithm S∗ such that:

{S∗(S, |S ∩ C|)}(C,S)

c≡ {ViewS(C,S)}(C,S)



224 E. De Cristofaro, P. Gasti, and G. Tsudik

Definition 5 (Server Privacy). Let ViewC(C,S) be a random variable repre-
senting client’s view during execution of PSI-CA with inputs C,S. There exists
a PPT algorithm C∗ such that:

{C∗(C, |S ∩ C|)}(C,S)

c≡ {ViewC(C,S)}(C,S)

In other words, on each possible pair of inputs (C,S), client’s view can be effi-
ciently simulated by C∗ on input: C and |S ∩C| (as well as v, w). Thus, as in [16],
we claim that the two distributions implicitly defined above are computationally

indistinguishable. (Notation “
c≡” indicates computational indistinguishability.)

We claim that the protocol in Figure 1 is correct under Definition 3 and secure
under Definitions 4 and 5 above. Proof of such claims is provided next.

4.1 Proofs

Correctness. For any ci held by client and sj held by server, if ci = sj , hence,
hci = hsj , we obtain:

tc	i = H ′(bc	i) = H ′(a	i
(1/Rc)) = H ′(hciRs) = H ′(hsjRs) = H ′(bsj) = tsj

Hence, client learns set intersection cardinality by counting the number of match-
ing pairs (tc	i , tsj). �

Client Privacy. We claim that the views of server – i.e., S and ai = H(ci)
Rc for

i = 1, . . . , v where H is modeled as a random oracle – is indistinguishable from
r1, . . . , rv with ri ← Zp. Therefore it is possible to construct a PPT algorithm

S∗ such that {S∗(S, |S ∩ C|)}(C,S)

c≡ {ViewS(C,S)}(C,S).

When v = 1, for any hc1 = H(c1) there exists Rc1 such that a1 = hc
Rc1
1 .

Therefore, a1 is uniformly distributed – i.e., distributed identically to r1.
For v ≥ 2, elements a1, . . . , av are indistinguishable from r1, . . . , rv assuming

the hardness of DDH. In particular, the existence of an efficient distinguisher
D that outputs 0 when presented with r1, . . . , rv and outputs 1 when it ob-
serves a1, . . . , av allows us to construct a simulator SIMs that violates the DDH
assumption, as follows.

Upon receiving a DDH challenge (ḡ, ḡx, ḡy, ḡz), SIMs:

– Selects random set C composed of v elements C = {c1, . . . , cv}, v− 2 random
values d1, . . . , dv−2 from Zq and Rc at random from Zq.

– Sends {a1, . . . , av} = {ḡy, ḡz, (ḡy)d1 , . . . , (ḡy)dv−2} to D.
– Answers queries for H as follows: H(c1) = ḡ; H(c2) = ḡx; H(ci) = ḡdi−2 for

3 ≤ i ≤ v and with a random value otherwise. Queries and responses to H
are stored by SIMS for consistency.

Note that if (ḡ, ḡx, ḡy, ḡz) is a Diffie-Hellman tuple, i.e. z = xy, then a1, . . . , av is
distributed like a1, . . . , av; thus, D must output 1. If (ḡ, ḡx, ḡy, ḡz) is not a Diffie-
Hellman tuple, then a1, . . . , av is not properly distributed (since a2 �= (H(c2))

y)
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and therefore D must output 0. As a result, SIMs can use D’s output to respond
to the DDH challenge correctly iff D’s output is correct. Therefore, D can only
answer correctly with negligible advantage over random guessing. �

Server Privacy. We show that client’s view can be efficiently simulated by a

PPT algorithm SIMC , i.e., {SIMC(C, |S ∩ C|)}(C,S)

c≡ {ViewC(C,S)}(C,S). The
simulator is constructed as follows:

1. SIMC builds two tables T1 = (u, h) and T2 = (u′, h′) to answer the H and
H ′ queries respectively. SIMC responds to a query u (resp. u′) with a value
in h ← Zp for H (resp. h′ ← Zp for H ′), and stores (u, h) in T1 ((u′, h′) in
T2 resp.). SIMC uses T1, T2 to respond consistently to queries from client.

2. SIMC constructs a set TS = {ts1, . . . , tsw}, where tsi ← {0, 1}κ, and a
random subset TS′ = {ts′1, . . . , ts′|S∩C|} ⊆ TS, such that |TS′| = |S ∩ C|.

3. Then, SIMC adds |S ∩ C| distinct pairs (H(ci)
Rs , ts′i ∈ TS′) to T2 and con-

tinues to answer queries to H and H ′ consistently using T1 and T2 as defined
in Step 1.

4. Upon receiving {a1, . . . , av} from client, SIMC picks Rs ← Zq and computes

a′i = aRs

i . Finally SIMC sends Π ′(a′i, . . . , a
′
v) and {ts1, . . . , tsw} to client.

Any efficient semi-honest client C∗ cannot distinguish between an interaction
with an honest server with input S = {s1, . . . , sw} and SIMC .

By construction, C∗’s view differs from the interaction with an honest server
only in the way elements {ts1, . . . , tsw} are constructed. Let distinguisher D be
an algorithm that outputs 0 on input an element from distribution:

D0 ={(H(s1), . . . , H(sw)), Π(ts1 = H ′(H(s1)
Rs), . . . , tsw = H ′(H(sw)

Rs)),

(a1 = H(c1)
Rc , . . . , av = H(cv)

Rc), Π ′(a′1 = H(c1)
RcRs , . . . ,

a′v = H(cv)
RcRs)}hsi

and 1 on input an element from:

D1 =
{
(hs1, . . . , hsw), Π

(
ts1 = H ′(H(c1)

Rs), . . . , ts|S∩C| = H ′(H(c|S∩C|)Rs),

ts|S∩C|+1 = H ′(r|S∩C|+1), . . . , tsw = H ′(rw)
)
,

(a1 = H(c1)
Rc , . . . , av = H(cv)

Rc),

Π ′(a′1 = H(c1)
RcRs , . . . , a′v = H(cv)

RcRs)}hsi
with r|S∩C|+1, . . . , rw random elements from Zp and where D is allowed to select
the elements in sets C = {c1, . . . , cv} and S = {s1, . . . , sv}. The existence of D
violates the hardness assumption of DDH: Let (g, gx, gy, gz) be a DDH challenge
for simulator SIM, which interacts with D as follows: SIM responds to H(x)
queries from D with grhi for a random rhi ∈ Zq, and stores (x, grhi) in table TH

for consistency and to queries H ′(x) with a random string, using TH′ to store
queries-response for consistency.
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Client, on input Server, on input

C = {(c1, σ1), . . . , (cv, σv)} S = {s1, . . . , sw}
(∀i, 1 ≤ i ≤ v : σi

e = hci)

Rc ← ZN/2

∀i, 1 ≤ i ≤ v :

ai = (σi)
2Rc

{a1, . . . , av}
��

Rs ← ZN/2

∀i, 1 ≤ i ≤ v, tci = H ′((ai)
eRs )

(tc�1 , . . . , tc�v ) = Π(tc1, . . . , tcv)

∀j, 1 ≤ j ≤ w, bsj = (hsj)
Rs∀i, 1 ≤ j ≤ w :

tsj = H ′((bsj)2Rc)

{bs1, . . . , bsw}
{tc�1 , . . . , tc�v}��

Output: |{tc�1 , . . . , tc�v} ∩ {ts1, . . . , tsw}|

Fig. 2. Authorized PSI-CA. All computation is mod N

W.l.o.g., let H(ci) = grhi; SIM computes a′i = (gy)rhi·Rc and constructs ch =
((g, gx, gr3 , . . . , grw), Π(ts1 = H ′(gy), ts2 = H ′(gz), ts3 = H ′((gy)r3), . . . , tsw =
H ′((gy)rw)), (a1, . . . , av), (a′1, . . . , a′v)) with r3, . . . , rw random elements in Zp.
Note that ch belongs to distribution D0 iff (g, gx, gy, gz) is a proper Diffie-
Hellman tuple, i.e., z = xy and to D1 otherwise. Moreover, while D can test
for which elements H ′(a′i) = tsj , pairs i, j are distributed as expected because of
the permutationΠ ′. Therefore,D has only negligible advantage in distinguishing
the two distributions. �

5 Fast Authorized PSI-CA

We now introduce the concept of Authorized PSI-CA (APSI-CA). It extends
“plain” PSI-CA to enforce (pre-)authorization of client input. Similar to APSI
[11] (reviewed in Section 2), APSI-CA involves an offline trusted third party
– Certification Authority (CA) – that provides client with authorizations (in
practice, signatures) to input into the set intersection cardinality computation.

Definition 6 (Authorized PSI-CA (APSI-CA)). A protocol involving a
server, on input of a set of w items: S = {s1, · · · , sw}, and a client, on in-
put of a set of v items with associated authorizations (i.e., signatures), C =
{(c1, σi) · · · , (cv, σv)}. It results in client outputting |I∗|, where:

I∗ = {sj ∈ S | ∃(ci, σi) ∈ C s.t. ci = sj ∧ Verify(σi, ci) = 1}.
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APSI-CA entails the following informal privacy requirements:

• Server Privacy (APSI-CA). The client learns no information beyond what
can be inferred from the protocol output, i.e., (1) cardinality of set intersec-
tion on authorized items and (2) upper bound on the size of S (the server
could conceivably add “dummies” to its input; such dummies do not alter
the output of the protocol, but conceal the exact number of elements in the
server’s set).

• Client Privacy (APSI-CA). No information is leaked about items or autho-
rizations in client set (except an upper bound on their number).

• Unlinkability. Similar to PSI-CA, we require that neither server nor client
can determine if any two instances of the protocol are related, i.e., executed
on the same input by client or server.

We illustrate our APSI-CA protocol in Figure 2. Observe that the CA is respon-
sible for generating all public parameters: on input the security parameter κ,
it executes (N, e, d, g) ← RSA.KGen(κ), where g is a generator of QRN , and
selects H : {0, 1}∗ → ZN

∗ (Full-Domain Hash) and H ′ : {0, 1}∗ → {0, 1}κ (ran-
dom oracles). The CA authorizes client input ci by issuing σi = H(ci)

d mod N
(i.e., an RSA signature). The protocol is executed between client and server,
on common input (N, e,H,H ′). We assume that server’s input (S) is randomly
permuted before protocol execution to mask any ordering of the items contained
in it. Finally, hci and hsj denote, respectively, H(ci) and H(sj).

Similar to its PSI-CA counterpart, this APSI-CA has the following properties:

• Correctness. For any (σi, ci) held by client and sj held by server, if: (1)
σi is a genuine CA signature on ci, and (2) ci = sj , hence, hci = hsj , we
obtain: tc	i = H ′((σi)

2eRcRs) = H ′((hci)2RcRs) = tsj .

• Privacy. In this version of the paper, we only provide some intuition for our
security arguments, and defer to future work formal proofs. Client privacy
is based on its input being statistically indistinguishable from a random dis-
tribution in QRN . Arguments regarding server privacy are similar to those
for PSI-CA, thus, we do not repeat them here. We argue that if one could
violate APSI-CA server privacy, then the one would also violate server pri-
vacy of the APSI construct in Figure 1 of [10], proven secure under the RSA
and DDH assumptions. Finally, note that the protocol is unlinkable, given
that random values, Rc, Rs, are selected fresh for each protocol execution.

• Efficiency. This APSI-CA protocol incurs linear computation (for both
parties) and communication complexity. Specifically, client and server per-
form respectively O(w) and O(w + v) modular exponentiations. However,
exponents are now taken in the RSA settings, while in PSI-CA can be taken
from a smaller group, thus, be much shorter (e.g., 160-bit vs 1024-bit long).
Communication complexity amounts to O(w + v). Note that this is signifi-
cantly lower than related work, i.e., [8], which incurs quadratic overhead (see
Section 2.2).
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6 Combining PSI-CA and PSI

As mentioned in Section 1, it is often desirable to privately assess the magnitude
of the set intersection before engaging in an actual (private) set intersection
computation. We are motivated by potential concerns with respect to server
privacy, arising in PSI executions where the intersection obtained by client is
close to the entire server set (i.e., |S ∩ C| ≈ |S|).

We now show how to combine our proposed PSI-CA construct with with
PSI functionality, in order to address such concerns. Specifically, rather than
engaging in PSI, parties first run the PSI-CA protocol with their client/server
roles reversed. This way, server learns (only) the intersection cardinality and
the size of the parties’ inputs, and uses this information to decide whether to
proceed with PSI. In case it decides to proceed, client only needs to receive one
more message from server to compute the intersection. In other words, server
defines a policy – based on the size of (i) the two sets and (ii) the intersection
– and only if the policy is satisfied, server engages in PSI protocol (thus, client
privately obtains the set intersection).

The resulting protocol is presented in Figure 3. In the first two rounds, server
and client run PSI-CA with their roles reversed (i.e., server learns the cardinality
of the intersection), and, assuming server’s policy is satisfied, the last round
allows client to learn the set intersection. The same approach can be used for
other private set operations, such as PSU [18]. Indeed, similar concerns about
server privacy occur in a scenario where |C ∪ S| ≈ |C| + |S|, and can again
be addressed by running PSI-CA with roles reversed. Observe that protocol in
Figure 3 incurs complexities comparable to the underlying PSI-CA (illustrated
in Figure 1): only one additional message must be sent to realize policy-based
PSI.

The security of this protocol, in presence of semi-honest adversaries, trivially
stems from that of the underlying PSI-CA. Nonetheless, we defer to future work
extending our constructions to malicious security. In fact, there is no guarantee
that malicious parties maintain the same input over multiple interactions or do
not abort execution prematurely. This constitutes an interesting open challenge
that we defer to future work.

Remark: Our technique in Figure 3 is not to be confused with the concept of
Policy-Enhanced PSI, recently proposed by [36]. Using the latter, two parties
privately obtain the intersection of their sets, while enforcing policies pertaining
what/how to share, based on policies and authorizations related to single items.
Whereas, policy enforced by server in our protocol is much simpler – it is based
on the cardinality of set intersection: depending on this (and on its relationship
to set size), server decides whether or not to disclose set intersection’s content to
client. A vaguely comparable approach is so-called Knowledge-oriented Multi-
party Secure Computation [29], where each participating party is able to reason
about the increase in knowledge that other parties could gain as a result of the
secure computation, and may choose not to participate to restrict that gain.
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Server, on input: Client, on input:

S = {s1, . . . , sw} C = {c1, . . . , cv}

Rs ← Zq (ĉ1, . . . , ĉv) ← Π(C), with Π
random permutation

∀i 1 ≤ i ≤ v : ∀i 1 ≤ i ≤ v : hci = H(ĉi)
ai = (hsi)

Rs Rc ← Zq{a1, . . . , aw}
�� ∀i 1 ≤ i ≤ w : a′

i = (ai)
Rc

(a′
�1
, . . . , a′

�w) = Π ′(a′
1, . . . , a

′
w)

∀j 1 ≤ j ≤ v : bcj = hcj
Rc

∀j 1 ≤ j ≤ v : tcj = H ′(bcj)∀i 1 ≤ i ≤ w :
{tc1, . . . , tcv}

{a′
�1
, . . . , a′

�w}��
bsi = (a′

�i
)1/Rs

∀i 1 ≤ i ≤ w, tsi = H ′(bsi)

T ∗ = {tc1, . . . , tcv} ∩ {ts1, . . . , tsw}
If Policy.isSatisfied(w, v,|T ∗|):

T ∗
�� ∀ tcj ∈ T ∗: Output cj ∈ S ∩ C

Fig. 3. Combining PSI-CA and PSI for a three-round policy-based Private Set Inter-
section protocol. (All computation is mod p).

7 Conclusion

This paper presented a protocol for PSI-CA, with linear computational and
communication complexities. It can be used to compute PSU-CA, without in-
troducing any additional overhead.

Next, we presented two novel extensions. We introduced Authorized PSI-CA,
or APSI-CA, that is useful in settings where client input must be authorized by
a certification authority. Then, we showed how PSI-CA can be used to realize a
PSI protocol where server determines (in privacy-preserving manner) cardinality
of set intersection before deciding whether or not to engage in a PSI interaction
with client. Such an approach is very efficient, as it requires only one additional
message on top of our PSI-CA protocol.

We will release an optimized implementation of all protocols presented in
this paper along with the final version of the paper. As part of future work, we
plan to investigate extensions to guarantee security in the presence of malicious
adversaries and in the UC framework.

Acknowledgments. We wish to thank Stanislaw Jarecki and Jens Groth for
their valuable feedback.
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Abstract. In this work we analyze five previously published respectively
trivial approaches and two new hybrid variants for the task of finding
the roots of the error locator polynomial during the decryption oper-
ation of code-based encryption schemes. We compare the performance
of these algorithms and show that optimizations concerning finite field
element representations play a key role for the speed of software im-
plementations. Furthermore, we point out a number of timing attack
vulnerabilities that can arise in root-finding algorithms, some aimed at
recovering the message, others at the secret support. We give experimen-
tal results of software implementations showing that manifestations of
these vulnerabilities are present in straightforward implementations of
most of the root-finding variants presented in this work. As a result, we
find that one of the variants provides security with respect to all vul-
nerabilities as well as competitive computation time for code parameters
that minimize the public key size.

Keywords: side channel attack, timing attack, implementation, code-
based cryptography.

1 Introduction

Implementations of code-based cryptosystems like the McEliece [1] and Nieder-
reiter [2] schemes have received growing interested from researchers in the past
years and been analyzed with respect to efficiency on various platforms [3–7].
Furthermore, a growing number of works has investigated the side-channel se-
curity of code-based cryptosystems [8–12].

In this work, we will turn to an algorithmic task that arises in the decryption
operation of both Niederreiter and McEliece cryptosystems. This is the root-
finding algorithm. It deserves attention for two reasons: first of all, as addressed
already in previous work, it is in general the most time-consuming part of the
decoding algorithm [3, 5]. The second aspect is that of side-channel security of the
root-finding and has so far, to the best of our knowledge, only been considered in
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[13]. We point out basically two types of timing side-channel vulnerabilities that
can arise in the root-finding procedure. One is aimed at recovering the message
to a given ciphertext, the other at finding the support that is part of code-based
private keys.

Based on these considerations, we chose a number of different root-finding
algorithms, which we describe in Sec. 4 after providing some elementary prelim-
inaries about code-based cryptosystems in Sec. 2 and 3. In Sec. 5, we perform
a timing side-channel analysis of these algorithms including theoretical discus-
sions and experimental results. Afterwards, in Sec. 6, we give the results of a
performance evaluation of the chosen algorithms on modern x86 architectures.

As the main result from our work, we find that the root-finding variant ac-
cording to [14], which to the best of our knowledge has not been taken into
consideration for code-based cryptosystems so far, achieves both competitive
running time and security with respect to all potential timing side-channel vul-
nerabilities in the root-finding. But we wish to stress that it is not the aim of
this work to give a definitive answer to the question which root-finding variant
is the best to use in a code-based cryptosystem. This is mainly for the reason
that the we are considering pure software implementations here, and the use of
crypto coprocessors might change the picture. We will come back to this in the
Conclusion in Sec. 7.

As the starting point for the implementation that the experimental results of
this work are based on, we used the HyMES open source implementation [15] of
the McEliece scheme presented in [3]. We added the countermeasure previously
proposed in [11], and removed some fault attack vulnerabilities, the latter is
addressed in App. B. Furthermore, we adopted the root-finding algorithm variant
given by the Berlekamp Trace Algorithm [16], as it is found in HyMES. However,
we performed some straightforward optimizations in the implementation of this
algorithm which are mentioned in Sec. 4.2, We added the remaining root-finding
variants that are presented in Sec. 4. In this context, we want to emphasize that
we do not take any credit for the choice of the Berlekamp Trace Algorithm for
the purposes of root-finding in code-based cryptosystems, the implementation
of this algorithm used for the results in this work, and its description as given
in this work, since all of this is adopted from [3] resp. [15].

2 Preliminaries

In the following, we describe those aspects of the encryption and decryption
of code-based cryptosystems as McEliece [1] and Niederreiter [2] schemes that
are relevant for the topics of this work. As these only depend on properties
common to both types of cryptosystems, it is possible for us to basically omit
any distinction between them.

Code-based cryptosystems build on error correcting codes. Specifically, the
only codes known to be secure for this use are Goppa Codes [17]. The parameters
of such a code are its length n, which is the length of the code words, n � 2m;
the dimension k (with k < n), which is the length of the message words; and
the error correcting capability t (all lengths refer to the binary representation).
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For such a code, if a message word is encoded into a code word, up to t bit flip
errors in the code word may be corrected by a corresponding error correction
algorithm, thus allowing to recover the message word. In the following, we will
also make use of the expression of “adding errors” to the code word, by which
we mean carrying out the “exclusive or” (XOR) operation with the code word
c and the error vector e, i.e. c⊕ e.

In both McEliece and Niederreiter schemes, the encryption involves the cre-
ation of an error vector e, whose Hamming weight wt (e) is equal to the error
correcting capability t of the employed code. The concrete realization of the en-
cryption is different in both schemes, but in either case, it is vital for the privacy
of the encrypted message that e remains secret.

In the McEliece and Niederreiter cryptosystems, syndrome decoding through
Patterson’s Algorithm [18] plays a key role. As the details of this algorithm are
irrelevant for purposes of understanding the topics of this work, we give only a
brief outline of this algorithm. In the McEliece cryptosystem, the syndrome is
computed from the ciphertext by multiplying the ciphertext with the so called
parity check matrix, in the Niederreiter scheme, the syndrome is the ciphertext
itself. The Patterson decoding algorithm takes as input the so called syndrome
vector s and outputs the error vector e that was added to the code word.

As already mentioned, this work deals with one part of the Patterson Algo-
rithm, this is the finding of the roots, i.e. zeros of the so called error locator
polynomial σ(Y ) ∈ F2m [Y ] which is computed in the course of the Patterson
Algorithm. In case of w = wt (e) � t it holds that

σ(Y ) = Πw
i=1(αEi − Y ), (1)

where the ordered set Γ = (α0, α1, . . . , αn−1), is the so called support formed
by pairwise distinct elements of F2m and Ei, i = 1, . . . , w denote the indexes of
bits having value one in e in arbitrary ordering. A lookup table representing the
support is part of the code-based private key. If it becomes known, the whole
key is compromised [12]. From the determination of the roots of σ(Y ), the error
positions, i.e. those bits in e that have value one, are found: if αEi is a root of
σ(Y ), then eEi = 1. If w > t, then σ(Y ) will have degree less or equal than t,
where the probability for the latter is very high, but it will not be of the form
given in Eq. (1). In Sec. 4, we will present a number of concrete algorithms for
the task of finding the roots of the error locator polynomial σ(Y ).

3 Remarks about the F2m Operations

Before we start with the descriptions of the root-finding algorithms we compare
in this work, we want to point out some details concerning the costs of the basic
F2m operations that are involved, i.e. addition and multiplication.

While Cgf add, the cost of an addition in F2m , is given by a simple XOR
operation, the multiplication in F2m is much more complex and has a number
of variants. An efficient software implementation of finite field arithmetics with
characteristic 2 and small extension degrees is realized by the use of one lookup
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table for the logarithm of each non-zero element to the base of some primitive
element, and the corresponding anti-logarithm table.

The standard multiplication, as it is for instance implemented by the “C”
macro gf_mul() in HyMES [15], which is used throughout their code, takes
arguments in the normal representation and outputs the result in normal rep-
resentation. This type of multiplication, we refer to as mul nnn . Its cost is
two conditional branches to check whether the arguments are zero, three ta-
ble lookups, one arithmetic ADD, and reduction of the result modulo the fields
multiplicative order, which in turn consists of several instructions. In the general
case, this multiplication is needed, as in most places in the algorithms involved in
the decoding with the Patterson Algorithm, multiplication and addition in F2m

are intermixed, and moreover, operands having value zero cannot be excluded.
However, when operands are known to be non-zero, and multiplications are

carried out subsequently, other forms of the multiplication, which have results (
a in the algorithm description mul abc ) or operands (b and c ) in the logarithmic
representation, are more efficient:

– mul lll consists only of one arithmetic ADD (a certain number of these mul-
tiplications can be carried out before a reduction modulo the multiplicative
order becomes necessary to avoid overflowing the register )

– mul nln saves one conditional branch and one table lookup compared with
mul nnn

This rough review of the finite field arithmetic implementations in software
makes it obvious that it is not sufficient to simply count the instances of multi-
plication in F2m , but it has to be considered how the multiplication is embedded
into the algorithm and what variant of the multiplication can be used.

4 Variants of Root Finding

In the following subsections we give brief descriptions of the root-finding algo-
rithm variants analyzed in this work.

4.1 Exhaustive Evaluation with and without Division

The most straightforward implementation of the root finding is to simply eval-
uate the polynomial σ(Y ) for each element of the code.

The complexity of this algorithm is given as

Ceval−rf = nt(Cgf add + Cmul nln)

Remember that n is the code length and t is the error correcting capability.
Taking a look at the Horner Scheme evaluation used here, we see that when
evaluating σ(Y ), we can transform x �= 0 to the logarithmic representation,
avoiding some unnecessary table lookups, i.e. make use of mul nln .

The algorithm can be sped up by dividing the polynomial σ(Y ) by each root
found. Such a division has basically the same complexity as the evaluation of
the polynomial for one single element of F2m . In the following, we will call these
two variants eval-rf and eval-div-rf.
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4.2 Berlekamp Trace Algorithm

As stated in the introduction, our implementation is based on the HyMES imple-
mentation [3, 15]. There, the root finding is achieved by the so called Berlekamp
Trace Algorithm [16]. For completeness, we provide the description of this algo-
rithm as originally given in [3] in Alg. 1. The initial call to this recursive algorithm
is given as BTA(σ(Y ), 1), which we will refer to as BTA-rf for the remainder of

this work. The trace function is defined as Tr(Y ) = Y +Y 2+Y 22 + . . .+Y 2m−1

,
and {β1, β2, . . . , βm} is a standard basis of F2m .

Algorithm 1. The recursive Berlekamp Trace Algorithm BTA(σ(Y ), i).

Require: the error locator polynomial σ(Y )
Ensure: the set of roots of σ(Y )
1: if deg (σ(Y ) � 1) then
2: return root of σ(Y )
3: end if
4: σ0(Y ) ← gcd(σ(Y ),Tr(βi, Y ))
5: σ1(Y ) ← gcd(σ(Y ), 1 + Tr(βi, Y ))
6: return BTA(σ0(Y ), i+ 1)∪BTA(σ1(Y ), i+ 1)

In [19], the complexity of the BTA is given as O(mt2). In order to make
fair comparison of the various root-finding variants in terms of performance, we
optimized the existing implementation of the algorithm by applying the more
cost-efficient versions of multiplication in F2m as discussed in Sec. 3 where pos-
sible. As a result, the running time was reduced by about 10%.

Furthermore, BTA-rf can be sped up by using specific root finding algorithms
for polynomials of low degree [19]. We only implemented the variant where the
roots of polynomials of degree two are determined through the use of a lookup
table of size 2n bytes (supporting m = 15 at most) presented in the referenced
work. Then, in the recursion, this algorithm is invoked instead of Alg. 1 whenever
the degree of σ(Y ) is two. In the following, we refer to this algorithm by BTZ2-rf.

4.3 Root Finding with Linearized Polynomials

In this section, we explain a root-finding method based on decomposing a poly-
nomial in F2m [Y ] into linearized polynomials [14]. The idea of this approach is
based on the fact that the exhaustive evaluation of a linearized polynomial can
be done with much less computational complexity than for general polynomials.

Definition 1. A polynomial L(Y ) over F2m is called a linearized polynomial if

L(Y ) =
∑

i LiY
2i , where Li ∈ F2m .

As shown in [14], an affine polynomial of the form A(Y ) = L(Y ) + β with
β ∈ F2m can be evaluated for the value Y = xi as

A(xi) = A(xi−1) + L(Δi), Δi = xi − xi−1 = αδ(xi,xi−1), (2)
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where {α0, α1, . . . , αm−1} is a standard basis of F2m and wt (xi ⊕ xi−1) = 1, i.e.
their Hamming distance is 1. A generic decomposition of a polynomial f(Y ) =∑t

i=0 fiY
i, also given in [14], is

f(Y ) = f3Y
3 +

�(t−4)/5�∑
i=0

Y 5iAi(Y ), (3)

where

Ai(Y ) = f5i +
3∑

j=0

f5i+2jY
2j . (4)

The evaluation of each Ai(xi) is done efficiently according to Eq. (2). To this
end, the exhaustive evaluation of Eq. (3) is done with the xi being in Gray-Code
ordering, i.e. for all i we have that xi and xi+1 differ only in one single bit.
Specifically, we use the Gray Code generated by xi = (i >> 1)⊕ i, where “>>”
denotes logical right shift. The actual computation cost is given by the sum of
the precomputations, i.e. the computation of the Ai(Y ). This cost is given in
[14], it is however negligible for secure code parameters. The dominating cost is
that of computing f(Y ) for all n code elements:

Cdcmp−rf = (n− 1)(Cgf log + Csqu ll + 2Cmul lll + Cmul nll+

�(t+ 1)/5� (2Cgf add + Cmul lll + Cmul nln))

where Cgf log refers to the cost of converting a F2m element from normal to
logarithmic representation and Csqu ll is the cost for squaring in the logarithmic
representation.

4.4 New Hybrid Variants

We also implemented two new hybrid variants. The first we label dcmp-div-
rf(a,b). It is given simply by restarting the whole dcmp-rf after through divisions
by found roots the degree of sigma σ(Y ) has been reduced by at least 5a to 5k+4
for some positive integer k, and where once deg (σ(Y )) = b no more divisions
are performed and standard dcmp-rf is used henceforth.

A furhter variation of this is given through dcmp-div-BTZ2-rf(a,b). It is equal
to dcmp-div-rf(a,b) until deg (σ(Y )) = b. Then, when σ(Y ) has degree b, BTZ2-rf
is invoked to find the remaining roots.

5 Security Aspects of the Root Finding in Code-Based
Cryptosystems

In this section, we show that a dependency of the root finding algorithm’s run-
ning time on the number of the roots of the Error Locator Polynomial σ(Y )
introduces vulnerabilities to timing attacks against the cleartext, and that other
effects threaten the secrecy of the secret support Γ .
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In order to be able to judge the relevance of the timing results provided in this
section, it is important to know that the syndrome decoding with the Patterson
Algorithm, which we consider to include the root-finding, is at least for the
McEliece cryptosystem the only source of variable running time, under some
assumptions: multiplication of the ciphertext with the parity check matrix is
either constant time of linear in the ciphertext’s Hamming weight (these are the
straightforward implementation choices) and the CCA2 conversion (necessary
for both the McEliece and the Niederreiter cryptosystem, see for instance [20])
is constant time (see for instance [21]).

In this security analysis, for the sake of brevity, we restrict ourselves to the
main variants eval-rf , eval-div-rf , BTA-rf , and dcmp-rf . The side channel prob-
lems found for these algorithms naturally extend to the other hybrid variants.

5.1 Security against Message-Aimed Attacks

The first important fact to know is that σ(Y ) output by Patterson’s Algorithm
has wt (e) roots in case wt (e) � t, and only a fraction of t roots if wt (e) > t
(refer to Eq. (1)). For instance, for n = 2048 and t = 50, σ(Y ) typically has less
than five roots in the latter case.

A dependence of the running time on the number of roots thus potentially
creates the following problem: if the case w > t can be inferred from the running
time, an attack similar to that described in [9] is possible. In such an attack, the
attacker flips a bit in ciphertext he wishes to decrypt, observes the decryption,
and from the running time tries to guess whether t + 1 or t − 1 errors resulted
from his bit flip. This clearly gives him information about the error positions
piece by piece.

Note that the case of w < t is covered by the countermeasures proposed in
[11]. In the presence of these countermeasures, the decryption of a ciphertext
with wt (e) < t also results in σ(Y ) with degree t and very few roots. But it
is important to be aware that even if w < t and w > t are not distinguishable
based on the timings, but w = t can be distinguished from w �= t, an attack is
still possible: by flipping two bits in a ciphertext and trying to find those cases
where w = t, the attacker will learn whenever he flipped one non-error and one
error position.

In the Patterson Algorithm of our implementation, the countermeasure pro-
posed in [11] is included, so that for w < t we still have deg (σ(Y )) = t, but the
number of roots of σ(Y ) is much less than t, as already mentioned. This happens
automatically for w > t in Patterson’s Algorithm, so that we can expect to find
major differences in the running time of the root-finding algorithm only for the
cases w �= t and w = t.

In Figures 1(b), 1(a), 1(c) and 1(d), we give plots of the running time of
the root-finding for the four different algorithms. The timings were taken on
an Atmel ATMega1284P Microcontroller. We chose this platform, as it provides
far more deterministic cycle counts than a modern x86 CPU, and thus is more
suited to identify possible timing vulnerabilities. We used a Goppa Code with
parameters n = 512 and t = 33 for the syndrome decoding performed on the
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microcontroller and created 30 different syndromes for each value of w between
20 and 40. The cycle counts apply to the running time of the respective root-
finding algorithm. For each value of w the center mark indicates the mean of the
set of the 30 different syndromes, and the bar shows the minimal and maximal
values from this set.

The eval-rf algorithm’s running time, depicted in Fig. 1(a), shows the mean
running time of w = t in line with the those of w �= t. However, there seem to
be cases of w = t with considerably lower running time than for w �= t, as can
be seen by the depicted minimal value. Neither did we find the reason for this,
nor did we analyze whether this effect can be used for actual attacks. We justify
these omissions by the fact that, as already apparent from the results given in
this section, eval-rf is not a competitive candidate for root-finding in code-based
cryptosystems.

Fig. 1(b) shows clearly the speedup by a factor of two by eval-div-rf compared
to eval-rf . However, also the inherent timing vulnerability [13] of this algorithm
cannot be overlooked: the case w = t, where the benefit of the divisions has its
real impact, is almost twice as fast as for w �= t. This renders it an insecure
choice.

The timing results of BTA-rf , as implemented in HyMES, are shown in Fig.
1(c). Here, we can realize that already the mean of the running times for w = t
is below most of the minimal values of sets for w �= t, clearly indicating a
vulnerability. Obviously, the recursive algorithm behaves different when σ(Y )
has considerably fewer than t roots.

Finally, Fig. 1(d) shows the results for dcmp-rf . There is no apparent differ-
ence between the cases w = t and w �= t.

5.2 Security with Respect to Attacks Aiming at the Secret Support

We now show that other vulnerabilities can arise in the root-finding algorithm,
which allow attacks against the secret support of the code-based scheme. This
is for instance the case, when the running time of the root-finding algorithm de-
pends on the values of the roots found. To understand that this is a vulnerability
one has to consider that an attacker can create ciphertexts with e known to him.
Then, according to Eq. (1) any information about the roots is information about
the support Γ .

One possible vulnerability arises if in eval-div-rf , the evaluation of σ(Y ) is
done with Y being substituted in lexicographical order; in this case the found
roots are later mapped to the corresponding Ei values by using a table for Γ−1:
Fig. 2(a) and 2(b) given in App. A show running times on the AVR platform of
the syndrome decoding with eval-div-rf for n−(t−1) error vectors created in the
following way: a random error pattern of weight t−1 was fixed, and the position
of the last error, Et was varied over the remaining free positions, resulting in
error vectors with Hamming weight t. On the x-axis, Et is shown. We will refer
to this type of plot as “support scan” henceforth. The result is a relatively clear
linear ascend, which is not surprising when considering the eval-div-rf algorithm:
Starting evaluation at Y = 0, the earlier a root is found, the more beneficial is
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Fig. 1. Cycle counts taken on an ATMega1284P for the various root-finding algorithm
variants with parameters n = 512 and t = 33.

the reduction of the degree of σ(Y ) by one through the subsequent division.
Thus, the task for an attacker amounts to bringing the measured timings into
an ascending ordering, giving him Γ . Obviously, there is some distortion of this
ordering in Fig. 2(a), which stems from other operations of variable duration in
the syndrome decoding. We leave it open whether in this manner the support Γ
becomes known to the attacker in its entirety, it is however clearly obvious, that
a large amount of information about Γ becomes available.

This vulnerability can be avoided by performing the evaluation of σ(Y ) with
Y being substituted in the order α0, α1, . . . , αn−1. Note however that the
vulnerable version is slightly faster, since there only t table lookups in Γ−1

for the found roots are done, whereas in the secure version n such lookups in Γ
are necessary. Thus the described problem is realistic.

We also wish to point out that an attack exploiting this vulnerability, in con-
trast to other previously published timing attacks [10, 11], cannot be detected:
The ciphertext carries t errors and will pass the CCA2 integrity test. (Note that
a CCA2 conversion is necessary for any Niederreiter or McEliece like code-based
encryption scheme, see for instance [20].) This is important, because the other
attacks, which cannot be carried out in a clandestine manner in this sense, can
be thwarted by countermeasures which detect the irregularity of the ciphertext,
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and for instance add an enormous delay or enforce constant running time if pos-
sible on the respective platform. In the presence of the threat of power analysis
attacks, however, such countermeasures would in most cases not suffice as adding
delays after the actual computation will most likely be detectable in the power
trace.

We also analyzed the dcmp-rf and BTA-rf algorithms with respect to these
vulnerabilities. As one should expect from an algorithm that performs an ex-
haustive search, dcmp-rf does not exhibit any dependency of the running time
on the root values, except for a single pitfall that has to be avoided. This is dis-
cussed in some detail in App. A. Though for BTA-rf no concrete attack could be
derived, the question of its security with respect to key-aimed attacks remains
unclear, we give the analysis also in App. A.

6 Performance of the Root-Finding Variants

In this section, we give a comparison of the performance of the root-finding
algorithms given in Sec. 4. The code was compiled with GCC version 4.5.2 with
the optimization options

-finline-functions -O3 -fomit-frame-pointer -march=i686 -mtune=i686

and run on a Intel(R) Core(TM)2 Duo CPU U7600 CPU.
In the following we give results for two parameter sets based on the proposi-

tions given in [22] for 128 and 256 bit security, which are based on code parameter
choices aiming at the minimization of the public key size, which is known to be
the most problematic feature of code-based cryptosystems. The only deviation
of our parameter choices are with respect to the number of errors added during
encryption: in [22], List Decoding [23] which allows for the correction of more
than t errors is assumed during decryption. For the smaller parameter set, they
choose t+1 errors and for the larger t+2 errors. The reduction of security of the
smaller parameter set in our implementation using only t errors, however, can
easily be bounded by understanding that an attacker can get from a ciphertext
with t+ 1 errors to t errors by guessing one error position correctly, the success
probability of which is (t+1)/n = 0.02. Accordingly, the security of the scheme
with t errors cannot be smaller than 128− log2(1/0.02) > 122 bits. An according
calculation for the larger parameter set gives a lower bound of 244 bits.

It is noteworthy that these parameter sets optimized for minimal public key
size for a given security level use codes with n < 2m, and that this has different
effects for our four candidate algorithms. eval-rf and eval-div-rf both are faster
for n < 2m in contrast to n = 2m, however for the latter the speedup is less
than for the former, as there the roots found at the end of the support cause
less effort. dcmp-rf also benefits from n < 2m, since also then support can be
build from a Gray Code. BTA-rf however has the same running time no matter
whether n < 2m or n = 2m.

Tab. 1 gives the results for the mentioned parameters. We clearly see that
BTZ2-rf and dcmp-rf are almost equally fast and that dcmp-div-rf , the param-
eters of which were experimentally optimized for the given code parameters, has
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Table 1. Comparison of the average root-finding algorithm performance on an x86
Intel Intel(R) Core(TM)2 Duo CPU U7600 for code parameters as suggested in [22].
All given values are the average of 50 decryptions.

parameters security level root-finding algorithm running time / 105 cycles

n = 2960, t = 56 > 122 bit

eval-rf 21.16
eval-div-rf 16.26
BTA-rf 8.89
BTZ2-rf 6.33
dcmp-rf 6.45

dcmp-div-rf(1,19) 5.42
dcmp-div-BTZ2-rf(1,19) 5.12

n = 6624, t = 115 > 244 bit

eval-rf 141.86
eval-div-rf 71.48
BTA-rf 32.59
BTZ2-rf 26.10
dcmp-rf 25.55

dcmp-div-rf(3,19) 18.38

even better performance. For the smaller parameter set, dcmp-div-BTZ2-rf has
a small edge on dcmp-div-rf , for the larger code parameter set no parameters of
dcmp-div-BTZ2-rf allowing an improvement over dcmp-div-rf were found.

7 Conclusion and Outlook

In this work we have evaluated a number of different root-finding algorithms
with respect to their performance and timing side-channel security in code-based
cryptosystems. We have shown that timing vulnerabilities can be present in
all of these variants. The variant eval-rf and eval-div-rf can be ruled out as
they are both not competitive in terms of computation speed. The latter, which
has at least considerable performance advantages over the former, exhibits a
timing side-channel vulnerability with respect to message-aimed attacks, which
is difficult to prevent.

Considering the remaining two candidates, we find that for code parameters
that minimize the public key size, dcmp-rf is clearly faster than the BTA-rf ,
however the latter can achieve much faster results for code parameters with
small t resulting in large public keys. Since timing side-channel security of BTA-
rf is problematic at least with respect to message-aimed attacks, and the fact
that the public key size is the much greater challenge in code-based encryption
schemes than the computation times, dcmp-rf could be seen as the winner of this
evaluation, because dcmp-div-rf suffers from the same problems as eval-div-rf .

But as we stated in the introduction, we do not want to postulate this as
the definitive answer concerning the choice of root-finding algorithms in code-
based cryptosystems. If one would achieve a timing side-channel secure variant of
the BTA-rf , running time advantages could be achieved at the expense of pub-
lic key size, which might be desirable in certain applications. Furthermore, the
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most important task certainly is the implementation of code-based cryptosys-
tems on smart cards and related platforms. To achieve competitive performance
on such resource constrained platforms, hardware support certainly would have
to be present, as it is the case for RSA and elliptic curve based algorithms
today. Thus, the real question is that of an optimal choice of algorithms and
hardware support, achieving both good performance and side-channel security
on these platforms. In this context, among other aspects, it will become rele-
vant how easily an algorithm can be parallelized. Note that eval-rf , eval-div-rf ,
and dcmp-rf can easily be parallelized by starting independent evaluations at 2x

different equally distant offsets into F2m (in the Gray-Code order for dcmp-rf ).
However, the circuitry for any single instance of an eval-rf evaluator would be
considerably simpler than for dcmp-rf . The parallelization of BTA-rf seems the
most complicated, it would have to be applied to the recursive structure of the
algorithm. In view of these open questions we encourage future research investi-
gating implementations with efficient hardware support on resource constrained
platforms. Pure software implementations on embedded systems, however, would
in the case of a widespread adoption of code-based encryption schemes also re-
main of great importance, as it is the case for RSA today. Thus the results of
this work clearly suggest the superiority of dcmp-rf at least in this context.
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A Further Results to the Running Time Dependencies
on the Root Values

Fig. 2 shows the plots of the dependencies of the running time of the root-finding
on the position of a single error bit. See Sec. 5.2 for the discussion of the results
for eval-div-rf .
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For BTA-rf , we see some “clouding” effect in the running times, which is also
apparent for timings of the whole syndrome decoding, as shown in Fig. 2(c).
It is obvious, that these running times are neither constant nor random. There
seems to be a tendency to build “clouds”; by which we mean that it seems that
an attacker should be able to build hypotheses that if for two different values of
E1 and E2 the timings are close to each other, then also αE1 and αE2 have close
values in their lexicographical interpretation as numbers.

Note for instance the values of Et below 100 in 2(c), which have consequently
lower timings than 3.04 · 106. Though such a dramatic effect was not obvious in
all support scans we conducted, it corroborates the notion of “clouding” effects
in the timings for BTA-rf . Thus we strongly suggest that the running time
properties of the BTA-rf be subject to thorough analysis before considering its
use in real world implementations of code-based schemes.
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Fig. 2. Running times of eval-div-rf and BTA-rf for n−(t−1) ciphertexts, where t−1
error positions are fixed and the t− th position varies, with code parameters n = 512
and t = 33.

The pitfall concerning the implementation of dcmp-rf mentioned in Sec. 5.2 is
given through the multiplication by f3, i.e. σ3, in Eq. (3). In our implementation,
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we precompute the logarithmic representation of σ3 to subsequently use mul nll
for the computation σ3Y

3. In the unprotected variant of our implementation we
cover the case σ3 = 0 by a conditional branch that bypasses this multiplication.
However, as experimental results showed, in this case, the timings clearly allow
identification of a syndrome decoding where σ3 = 0. The information gained by
such an observation is, according to Eq. (1):

0 = σ3 = αE1αE2 . . . αEw−3 ⊕ αE1αE2 . . . αEw−4αEw ⊕ . . . ,

i.e. the sum of products of all possible combinations of w − 3 different support
elements associated with the respective error positions, where w is the error
vector’s Hamming Weight, usually w = t. It is certainly not trivial to exploit
this information, however, in combination with other vulnerabilities it might be
useful to provide a means of verifying guesses for Γ . The countermeasure to
protect against this vulnerability is trivial and comes at a low computational
cost, it is described in the following.

The countermeasure is realized by assigning the precomputed value of the
logarithm of σ3 a dummy value during the initialization phase of dcmp-rf if σ3 =
0, and carrying out the multiplication Y 3σ3 with both operands in logarithmic
representation regardless of the value of σ3. Afterwards, a logical AND operation
is performed on the result with a mask having all bits set in case of σ3 �= 0 and
having value 0 otherwise.

B Further Vulnerabilities in HyMES Syndrome Decoding
Implementation

While working with the HyMES implementation [15], we encountered a number
of vulnerabilities, potentially enabling both timing and fault attacks. We list
them here, because this is good example showing what problems can arise when
the syndrome decoding is implemented without implementation security in mind
(which was not in the scope of that work).

All code relevant to the syndrome decoding in HyMES is found in the file
decrypt.c, all line numbers given in the following refer to this file. In line 270,
when deg (σ(Y )) �= t, decryption is aborted with an error. This is only a problem
if the countermeasures proposed in [11] are not implemented, in this case it allows
message-aimed fault-attacks of the type explained in Sec. 5.1 (highly likely that
w > t leads to deg (σ(Y )) = t, and always that w < t leads to deg (σ(Y )) = w).

In line 276, if the root-finding did not return t roots decryption is also aborted
with an error. This is clearly allowing message-aimed fault attacks with the two-
bit-flip attack described earlier in Sec. 5.1, such a check must not be present in
a secure implementation.

In line 285, a Quick Sort algorithm is applied to the set of roots to sort the
array. Though we did not seek for attacks against this algorithm, it is certainly
clear that the running time of Quick Sort depends on the number of roots, and
in general also on their positions.
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Abstract. The Vaudenay model for RFID privacy from Asiacrypt 2007 suffers
from the impossibility to address strong privacy. It has however been shown by
Ng et al. at ESORICS 2008 that the impossibility result leads to no practical
threat, so that the definition from 2007 may be unnecessarily strong. This paper
proposes a slight change in the definition of privacy from the Vaudenay model
(Asiacrypt 2007). Then, we show that by adding a plaintext-aware assumption
on the public-key cryptosystem, the proposed protocol always achieves strong
privacy with our new definitions.

1 Introduction

An RFID system consists of 3 components: a back-end database, a number of read-
ers and tags. Tags communicate with readers through a wireless link to authenticate
themselves. While tags can only maintain one session, readers can communicate with
several tags in parallel. Without loss of generality, we assume that the RFID system has
only one reader. So, during the authentication process, the reader queries the back-end
database through a secure link. Clearly, RFID tags face two contradictory requirements:
on the one hand, they must securely identify to a reader; on the other hand, they must
hide any traceable information to observers or adversaries.

RFID tags are identified by a unique ID. Cheap tags may be corruptible: it may be
possible to open them and read the content of their non-volatile memory. Additionally,
they have no internal clock. Such a tag has limited memory and computational power. It
can perform symmetric-key based operations: pseudo-random generation, hash compu-
tations [10], symmetric-key encryption [9,19] and message authentication codes [33].
However, these limitations vary depending on the application and the allocated budget.
Best scenarios allow the tag to use elliptic-curve cryptography [21].

Privacy Models. Several efforts were put in transposing the notion of privacy for RFID,
which resulted in several models [3,28,2,25,30,34,15,16,17,11,27,13,31].

Arguably, the definition given by Vaudenay [34] is the most general one. It considers
concurrence, tampering (i.e., getting the internal state of an anonymous tag), and the
return channel from the reader (i.e., whether a protocol session on the reader side is ac-
cepting or not). Contrarily to several other models, it allows adversaries to interact with
many concurrent anonymous tags sampled with arbitrary distributions. One difficulty
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is to identify non-trivial leakage. For instance, let us assume an adversary interacting
concurrently with four different anonymous tags. The first three are known to be thrown
in a set of three tags numbered 1, 2, and 3, and the last anonymous tag is known to be
thrown among a pair of tags numbered 1 and 4. In this case, the adversary trivially infers
that this last anonymous tag must be the tag numbered 4. Following simulation-based
notions, an information is trivial if the same one could be obtained when the protocol
messages are simulated by an additional process called a blinder. The blinder is separate
from the adversary and the system. It has therefore neither secrets. However, it knows
all interactions.

In [34], Vaudenay shows that Strong privacy (i.e., privacy when adversaries can cor-
rupt any anonymous tags and read the return channel) cannot be achieved. Intuitively, if
an adversary creates a legitimate tag then corrupts it, he can then simulate either this tag
or an illegitimate one to a reader and the return channel will tell them apart. However,
no blinder should be able to do it (otherwise, we would define another adversary from
it). So, it may be considered as some non-trivial information. This was quite puzzling
since this adversary would by no mean be any threat in practice. Indeed, this example
heavily relies on the adversary knowing the expected behavior of the environment and
the impossibility to simulate it without guessing what the adversary expects. For this
reason, several papers were dedicated to fixing the shortcomings of this model.

At first, Ng et al. [29] proposed at ESORICS 2008 the notion of a “wise adver-
sary”, modeling adversaries who cannot guess the behavior of the environment. This
fix consists of not allowing adversaries to ask questions for which they know the an-
swer. Canard et al. [12] imposed a different restriction on the adversary called “future-
untraceability”. This requires, for every adversary, the existence of a simulator for
which the output of the adversary is unaffected.

At ESORICS 2011, Hermans et al. [22] proposed a simpler reformulation of Vau-
denay’s privacy definition that would allow Strong privacy from being achievable by
getting rid of the simulation-based approach.

Vaudenay’s privacy model was also extended to the case of mutual authentication in
a work by Paise and Vaudenay [32]. However, some results were flawed, as discussed
by Armknecht et al. [1]. Actually, they show that no RFID protocol with mutual authen-
tication can achieve strong privacy and security at the same time for reasons which are
essentially similar to the ones in [34].

In this paper, we use knowledge extractors from plaintext-aware encryption
schemes [4,5,6]. Loosely speaking, plaintext-aware encryption schemes are public-key
cryptosystems in which the only way for an adversary to produce a valid ciphertext is
to choose a plaintext and to encrypt it. So, by reading the adversary’s mind, one could
extract the corresponding plaintext.

Our contributions. We propose to update the Vaudenay model by changing the defini-
tion of the blinder. In short, we allow the blinder to access the random coins used by
the adversary so that he could “read his mind” and predict the behavior of the environ-
ment as well. This could fix the impossibility result from [34] and [1]. Then, we show
by using plaintext aware encryption techniques that Strong privacy can be achieved in
our model with the simple protocol (called PKC protocol herein) of [34]. Our result
provides strong confidence in the privacy protection deployed by the PKC protocol.
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In Appendix, we further show that IND-CCA security is not enough for the PKC pro-
tocol to reach strong privacy in the sense that the system may leak some non-simulatable
information. To show this, we construct a cryptosystem which is IND-CCA secure but
not plaintext-aware.

2 Preliminaries

A function f (k) is said to be polynomial if there exists a constant n ∈ N such that f (k)
is O(kn). Similarly, f (k) = negl(k) if, for every n ∈ N, f (k) is O(k−n).

For an algorithm A , A(y;r)→ x represents the output after running A on input y with
coins r. The view of A , denoted viewA , is defined to include all the inputs and random
coins of A along with the list of the messages A received. The ability of an algorithm
to query an oracle O is denoted AO .

Given two algorithms A0 and A1 of same input/output domains, we define a proba-
bilistic polynomial-time algorithm D and its advantage

Adv
A0,A1
D (k) =

∣∣∣Pr[DA0(1k)→ 1]−Pr[DA1(1k)→ 1]
∣∣∣ ,

with the probability being taken over the random tape of all the algorithms. A0 and A1

are said to be computationally indistinguishable, if for every distinguisher D, we have
Adv

A0,A1
D (k) = negl(k).

Sampling Algorithms. An efficient sampling algorithm for a probability distribution p
is a polynomial-time probabilistic algorithm, in k, denoted Samp, that, on input random
coins ρ∈ {0,1}�(k), with �(·) being a polynomial function, outputs vector elements from
X such that |Prρ[Samp(ρ) = x]− p(x)| = negl(k). We say that a sampling algorithm
Samp is inverse-samplable if it is invertible and some conditions on the distributions
are fulfilled.

Definition 1 (Inverse-Sampling Algorithm [23]). We say that an efficient sampling
algorithm Samp is inverse-samplable if there exists a polynomial-time inverter algo-
rithm Samp−1 such that (ρ,Samp(ρ)) and (Samp−1(x),x)|x = Samp(ρ) are indistin-
guishable

Public-Key Encryption Schemes. A public-key encryption scheme consists of three
polynomial-time probabilistic algorithms denoted KeyGen, Enc, and Dec such that for
all k ∈ N, Pr[Decsk(Encpk(m)) = m|KeyGen(1k)→ (sk, pk)] = 1. The decryption algo-
rithm may output⊥ if it could not decrypt a ciphertext c. We use the standard notions of
IND-CPA and IND-CCA security. In the security game, the advantage of the adversary
is denoted AdvIND-CPA resp. AdvIND-CCA.

3 A Model for RFID Security and Privacy

Throughout this section, we recall the definitions in the Vaudenay model and our pro-
posed updates. Most of what follows is taken from [34].
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An RFID system is defined by a pair of two probabilistic polynomial-time algo-
rithms and one two-party protocol to be executed between the reader and a tag. A first
algorithm SetupReader is used to initialize the reader. It creates a pair of secret/public
key (sk, pk) (typically, no public-key cryptography is used and pk =⊥). The second
algorithm is for the creation of the tags and is SetupTagpk(ID)→ (KID,SID), where ID
refers to the identifier of the new tag. When the tag is legitimate, the tag secret KID is
stored along with ID in the database; while the tag’s initial state SID is always put in-
side the tag. An illegitimate tag has no entry in the database. Finally, a polynomial-time
interactive protocol between the reader and a tag ID in which the reader ends up with
a tape Output and the tag ends up with a tape OutputID completes the definition of
an RFID system. By convention, if the protocol fails from the reader’s perspective, we
set Output =⊥. When the protocol does not feature reader authentication, OutputID
is void.

Simple RFID Protocols. We focus on a relevant class of RFID schemes called simple.
These are 2-path protocols in which the reader sends a challenge and receives an answer.
Then, it looks for a (ID,KID) database entry satisfying a predicate Ψ. The found pair
identifies the tag and may be updated.

Definition 2 (Simple RFID Scheme). An RFID scheme is said to be simple if the fol-
lowing conditions are fulfilled:

– The reader sends a query to the database with its secret key sk and the (possibly
partial) transcript τp obtained from a protocol session.

– There exists a predicate Ψ, i.e., a deterministic polynomial-time algorithm that
outputs a single bit, that takes as input sk, τp, and a database entry (ID,KID) such
that the response from the database is computed by returning a database entry,
picked uniformly, that satisfies the predicate.

– Once a tag ID has been identified in the database, its corresponding secret in the
database, KID, may be updated to a new value. When it takes place, this procedure
is carried out by an algorithm Update taking as input sk, ID, KID, and the full
transcript of the protocol instance τ. This algorithm outputs a new KID and the
database entry (ID,KID) is updated.

It is straightforward to check that simple RFID schemes following Def. 2 satisfy the
more general definition from [34].

Fig. 1 represents a simple RFID scheme from [34] which is based on a public-key
cryptosystem. In what follows we call it the PKC protocol. In this scheme, the state
of the tags is composed of their ID and a uniformly distributed κ-bit string KID. Upon
reception of an α-bit string challenge a, a tag sends the encryption of ID‖KID‖a under
the public key pk to the reader. The latter decrypts the received ciphertext using its
secret key sk and checks that it is well formed, that a is correctly recovered and that
(ID,K) exists in the database.

Adversaries. Adversaries can request the creation of legitimate and illegitimate RFID
tags. Furthermore, adversaries have the ability to draw one or more anonymous RFID
tags, according to a chosen probability distribution. All interactions with the reader
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Tag System
State: pk, ID,KID Secret key: sk

DB: {. . . ,(ID,KID), . . .}
a←−−−−−−−−−− Choose a ∈R {0,1}α

c = Encpk(ID‖ KID‖a) c−−−−−−−−−−→ Search (ID,KID) ∈DB : Decsk(c) = ID‖KID‖a
Output: ID or ⊥

Fig. 1. PKC Protocol: an RFID scheme based on a public-key cryptosystem

and the drawn tags is controlled by the adversary. Moreover, the adversary has also the
ability to tamper with any drawn tag and to retrieve its internal state. After a while, the
adversary has also the possibility to release the tag so that it can be drawn again.

Definition 3 (Adversary [34]). An adversary is a probabilistic polynomial-time algo-
rithm. It takes a public key pk as input and has access to the following interfaces:

– CREATETAGb(ID): create a tag with unique identifier ID. Depending on the bit
b submitted by the adversary, the tag may be legitimate, when b = 1, or illegiti-
mate, when b = 0. After calling upon SetupTagpk(ID)→ (KID,SID) for both type of
tags, the pair (ID,KID) is inserted into the database if the adversary queried for a
legitimate tag.

– DRAWTAG(Samp)→ ((vtag1,b1), . . . ,(vtagn,bn)): select a vector of tags follow-
ing a polynomial-time sampling algorithm Samp. During the period in which a tag
is drawn, the adversary has complete control over its interactions. Along vtag, a
bit b, set to 1 whenever the drawn tag is legitimate and to 0 otherwise, is returned.
When a tag is drawn, it is designated by a unique virtual fresh identifier vtag.
Drawing a tag that was already drawn makes the oracle output ⊥.1 Additionally,
this interface keeps a private table T that keeps track of the real identifier of each
drawn tag, i.e., it is such that T (vtag) is the real identifier of the virtual tag vtag.

– FREE(vtag): release the RFID tag vtag. Once vtag is released, the adversary can
no longer communicate with it (except under another pseudonym if it may be drawn
again). Furthermore, its temporary memory is cleared to prevent a protocol session
to span under several vtag pseudonyms.2

– LAUNCH → π: make the reader launch a new protocol instance π. The returned π
is a session identifier which can be assumed to be based on a counter.

– SENDREADER(m,π) → m′: send a message m to a protocol instance π for the
reader.

– SENDTAG(m,vtag)→ m′: send a message m for the drawn tag vtag and receive
the answer m′.

– RESULT(π)→ x: return the result of the completed protocol instance π. Namely, it
yields 0 when Output=⊥ and 1 otherwise.

1 Definition 3 only differs from the original one in [34] in the introduction of the sampling
algorithm Samp in DRAWTAG queries. Vaudenay [34] uses the term of “distribution” for the
input of DRAWTAG although its representation may have exponential length.

2 The clearance of the temporary memory upon a FREE call was introduced in Paise-
Vaudenay [32]. It also meets the notion of “clean tag” by Deng et al. [17].
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– CORRUPT(vtag)→ S: return the current state S of the tag T (vtag). It does not
return the content of the temporary memory of the tag.

We consider several classes of adversaries. Weak adversaries do not use the CORRUPT

interface. Forward adversaries can only use the CORRUPT interface at the end. Namely,
no other interface can be used after the CORRUPT one. All other adversaries are Strong
adversaries. We clearly have Weak ⊆ Forward⊆ Strong. Adversaries that do not have
access to the side channel information on the output of the protocol, i.e. to the RE-
SULT oracle, are called NARROW. For any class P of adversaries, we define its Narrow
counterpart for which we clearly have Narrow-P⊆ P.

In the sequel, we restrict to adversaries who use distributions to the DRAWTAG such
that, at any step, the table T can be successfully simulated by an algorithm that is only
given the view of the adversary as input. That is, we require adversaries to only submit
sampling algorithms that are inverse-samplable and allow them to compute a plausible
guess for the identity of drawn tags in polynomial-time. For this we introduce a new
notion: simulatable adversaries.

Definition 4 (Simulatable adversary). Let A be an adversary interacting with an
RFID system. Let viewt

A be the view of A at its t-th step and let T t denote the table T of
the DRAWTAG oracle at step t of A . We say that the adversary A is simulatable if all her
sampling algorithms submitted to DRAWTAG are inverse-samplable and, for all t, there
exists a polynomial-time algorithm A ′, such that (viewt

A ,T
t) and (viewt

A ,A
′(viewt

A))
are indistinguishable.

We note that when the adversary only draws one tag at the time (or in general, a vec-
tor of logarithmic length), then our restrictions do not affect the original definition as
any sampling algorithm over such a set is inverse-samplable. So, we believe that our
restriction to simulatable adversaries is harmless.

Correctness. Basically, correctness formalizes the fact that whenever the reader and a
tag ID participate in an undisturbed protocol session, the reader authenticates the tag,
that is, it ends up with Output = ID, except with a small negligible probability. We
include all malicious behaviors as it was done in [17].

Definition 5 (Correctness). A scheme is correct if for any Strong adversary A , when-
ever there is a matching conversation between a tag of identity ID produced by
DRAWTAG → (vtag,b) and a reader instance π, except with negligible probability,
π ends up with output⊥ if b = 0 and ID if b = 1.

Clearly, the PKC protocol is correct.

Security. Security formalizes the fact that no adversary should be able to make the
reader accept on a protocol session in which the adversary has been actively involved.
Roughly, an RFID scheme is said to be secure if no adversary is able to make a reader
protocol instance recognize an uncorrupted tag ID even if she corrupts all the other tags,
unless π and the tag have a matching conversation.

It has been shown in [34] that, for the case of a simple RFID scheme, the notion of
security reduces to an adversary playing the following game: create (and draw) a single
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tag ID; use LAUNCH, SENDREADER, SENDTAG; use an oracle who checks the predi-
cate Ψ(sk, ·, ·, ·) on inputs different from ID; end on a final SEND command to complete
the instance for the reader and the tag. The adversary wins the simple security game if
one protocol instance on the reader identified tag ID but had no matching conversation.
If the success probability of any adversary in wining the security experiment is negli-
gible, then the scheme is simply secure. For simple schemes, simple security implies
security.

It was shown in [34] that the PKC protocol is secure when the cryptosystem is IND-
CCA secure.

When the protocol includes reader authentication, a security notion for the reader, in
which the adversary’s goal is to make the tag accept the reader, also needs to be defined.
This was done in [32].

Privacy. An RFID scheme is private if no adversary can learn any information about
the identity of drawn tags which is non-trivial. The information is trivial if the protocol
messages could be simulated without interacting with the tags or reader and without
affecting the output of the adversary. The simulation is performed by a process called a
blinder.

Definition 6 (Blinder). A blinder B for an adversary A is a polynomial-time algorithm
which sees the same view as A (i.e, all the incoming messages and used coins), records
all the adversary’s Oracle queries and simulates all the LAUNCH, SENDREADER,
SENDTAG, RESULT oracles to A . A blinded adversary AB is an adversary who does
not produce any LAUNCH, SENDREADER, SENDTAG, RESULT oracles query but have
them simulated by B.

This definition changes from [34] by letting the blinder see the random tape of the
adversary. This is a crucial change as the impossibility result in the Vaudenay model
came from that adversaries could ask questions to the system for which they knew the
answer but such that it could not be simulated. Providing used coins to the blinder
allows it to “read the adversary’s mind” and simulate the answer from the system.

Definition 7 (Privacy). We consider simulatable adversaries who start with an attack
phase consisting of only oracle queries and some computations then pursuing an anal-
ysis phase with no oracle query. In between phases, the adversary receives the hidden
table T of the DRAWTAG oracle then outputs true or false. The adversary wins if the
output is true. We say that the RFID scheme is P-private if for such adversary A which
belongs to class P there exists a blinder B for which we have |Pr[A wins]−Pr[AB wins]|
is negligible.

Again, we only introduced that adversaries must be simulatable in this definition.
Clearly, all positive results from [34] hold with these new definitions since privacy is
defined by some property of form ∀A ∃B , our new adversaries are compatible with the
old definition, and old blinders are compatible with the new definition. Namely:

– Weak privacy can be achieved using pseudo-random functions;
– The PKC protocol with IND-CCA encryption is Forward private;
– The randomized OSK protocol is Narrow-Forward private in ROM.
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However, the impossibility of strong privacy may not hold anymore since it is a property
of form ∃A ∀B . Actually, we will show that it no longer holds. This is similarly the
case for the impossibility result by Armknecht et al. [1] for Narrow-Strong privacy and
reader authentication, when mutual authentication is considered.

4 Plaintext-Awareness

Plaintext-awareness states that if an adversary is able to produce a valid ciphertext, then
she should know the corresponding plaintext. Formalizing this notion has proven to be
a non-trivial task [4,5,6,8,18]. In the end, several notions of plaintext-awareness were
defined, such as, PA1, PA2, PA1+, and PA2+.

The difference between PA1 and PA2 lies in the attacker’s ability to get ciphertexts
from external sources. In the settings of PA2, there is an oracle P (aux), called plain-
text creator and such that, on each query, it picks a message at random (or possibly
according to a distribution partially defined by its input aux). The adversary can query
Encpk(P (aux)). Any ciphertext obtained through this oracle is added to a list CList, the
list of ciphertexts for which the adversary does not know the corresponding plaintexts.
The essence of plaintext-awareness is the existence of a polynomial-time algorithm A�

(which construction may depend on A), called plaintext extractor that successfully de-
crypts any ciphertext given by the adversary that was not returned by Encpk(P (aux)).
To carry out the extraction, A� is given the view of A (which includes CList and the
random coins of A) and the target ciphertext c to be decrypted for c �∈ CList.

To formalize information coming from external sources, Dent [18] extended PA1
to PA1+ for adversaries who can get hold of uniformly distributed bits from an exter-
nal source. Later, Birkett and Dent [8] introduced the analog notion of PA2+ for PA2
plaintext-awareness. These last two notions were proven to be equivalent under the con-
dition that the encryption scheme is IND-CPA [8]. PA1+ was also shown to imply PA2+
for simulatable encryption schemes [7]. We extend them to PA1++ and PA2++ when
using any inverse-simulatable source.

Definition 8 (PA encryption). Let O1 denote an oracle that returns a single uniformly
distributed bit. Let OS be an oracle who takes as input an inverse-sampling algorithm
and executes it using his own random tape. Given ∗∈ {PA1,PA1+,PA1++,PA2,PA2+,
PA2++}, we say that a public key cryptosystem (KeyGen, Enc, Dec) is ∗-plaintext-
aware if ∀A , ∃A�, ∀P , all probabilistic polynomial-time, (pk,AO∗(Decsk(P (·)))(pk)) and
(pk,AO∗(A�(pk,·,viewA ))(pk)) are indistinguishable, where

OPA1(o) = (o) OPA2(o) = (Encpk(P (·)),o)
OPA1+(o) = (O1,o) OPA2+(o) = (Encpk(P (·)),O1,o)

OPA1++(o) = (OS,o) OPA2++(o) = (Encpk(P (·)),OS,o)

Note that PA1++ (resp. PA2++) plaintext-awareness trivially implies PA1+ (resp. PA2+).
Actually, we can even show equivalence.

Theorem 9. PA1+ and PA1++ (resp. PA2+ and PA2++) are equivalent.
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Proof. We prove the theorem for the case of PA1++. It can be easily modified so that
it applies to PA2++. We thus assume PA1+ plaintext awareness. Let A be a PA1++
ciphertext creator. We want to construct a plaintext extractor A�.

We construct a PA1+ ciphertext creator B as follows: B takes input pk and simulates
A , forwarding all its decryption queries to the decryption oracle. In order to answer A’s
queries to the randomness oracle, B runs the provided sampling algorithm and query its
randomness oracle, that we denote O1, every time a new random bit is asked for. Clearly,
B terminates in polynomial-time if all samplings can be performed in polynomial-
time. Remark that B does not use any internal randomness besides the one used to
initialize A .

Since B is a valid PA1+ ciphertext creator, we can assert the existence of a plain-
text extractor B� indistinguishable from a decryption oracle. We use B� to construct a
plaintext extractor A� for A . In the following, we assume that A� maintains a state view′
initialized to viewA that will be used to simulate B’s view. To answer A’s decryption
queries, A� proceeds as follow:

1. If A queried the randomness oracle with an inverse-sampling algorithm Samp and
received x since the last invocation of A�, then A� computes ρS ← Samp−1(x).
After that, A� updates the simulated view of B to include the random bits ρS,
i.e., it sets view′ ← view′‖ρS. Due to the property of inverse-sampling algorithms,
(ρS,viewA) is indistinguishable from (ρ,viewA ), where ρ is the random string re-
turned by OS for the sampling request. Thus, by induction we show that viewB
and view′ are indistinguishable. This procedure is repeated for every new sampling
query.

2. A� then calls upon B�(pk,c,view′) and forwards its output to A .

Since viewA is included in view′ which is indistinguishable from viewB ,∣∣∣Pr[DAB�(pk,·,view′),OS (pk)(1k)→ 1]−Pr[DAB�(pk,·,viewB ),OS (pk)(1k)→]
∣∣∣= negl(k).

Recalling that B�(pk, ·,viewB) is indistinguishable from a decryption oracle to A , we
deduce that A� is a valid plaintext extractor. In other words,∣∣∣Pr[DAB�(pk,·,view′),OS (pk)(1k)→ 1]−Pr[DADecsk(·),OS (pk)(1k)→ 1]

∣∣∣= negl(k).

This concludes the proof. ��
The following corollary results from the combination of Theorem 9 with the equiva-
lence result between PA2+ and PA2 [7], under the assumption that the scheme is IND-
CPA secure.

Corollary 10. If an encryption scheme is IND-CPA and PA2 plaintext-aware, then it is
PA1++ plaintext-aware.

5 Strong Privacy Is Possible

In this section, we show that using the new definition of blinders, we can achieve Strong
privacy using plaintext-aware encryption schemes.
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We consider the PKC protocol in Fig. 1. It has already been used by Vaudenay [34]
to achieve Narrow-Strong privacy under the assumption that the underlying encryp-
tion scheme is IND-CPA secure, our result requires PA1+ plaintext-awareness from
the encryption scheme. Naturally, since our definition of security is unchanged from
the original model, IND-CCA security for the encryption scheme is sufficient to prove
security [34].

Theorem 11 (PKC protocol achieves strong Privacy). Assume a cryptosystem which
is correct, PA1+ plaintext-aware, and IND-CCA secure. If 2−κ and 2−α are negligible,
then the PKC protocol is correct, secure, and Strong private.

In Section A, we have shown that IND-CCA security alone is insufficient to prove this
kind of result.

Note that in light of Corollary 10, we can implement the encryption scheme by a sim-
ulatable, PA1+ plaintext-aware, and IND-CPA secure public-key encryption scheme.
Since the Cramer-Shoup [14] and Kurosawa-Desmedt [26] encryption schemes satisfy
all these notions [7,24] (under certain extractor-based assumptions), any of these two
schemes can be used.

Proof. First note that by Theorem 9, the encryption scheme is PA1++ plaintext-aware.
Correctness is trivially induced by the correctness of the encryption scheme while se-
curity follows from IND-CCA security and [34, Theorem 19].

Therefore, we only need to prove privacy. To conduct the proof, we consider a Strong
adversary A and construct a blinder iteratively. That is, we construct a sequence of
partial blinders B1, . . . ,B5 and let Ai = ABi

i−1 with A0 = A . The final blinder for A is
B = B1 ◦ · · · ◦ B5. By showing that the outcome of Ai and Ai+1 are computationally
indistinguishable, we deduce that B is indeed a full blinder for A . So, the scheme is
Strong private.

Game 0. Let Game 0 be the privacy game played by the adversary A0.

Game 1. We let Game 1 denote the privacy game performed by an adversary who
simulates every RESULT on a session π with a transcript (a,c), such that c that has
been obtained by a previous c′ = SENDTAG(vtag,a′) query. If a �= a′, for sure c does
not decrypt to something containing a, so the answer to RESULT(π) must be 0. The
simulation is easy and perfect. In the other case, that is, if a = a′, the decryption of
c will be parsed to a matching challenge a and some entry ID‖KID which is in the
database if and only if vtag is legitimate. Fortunately, the blinder has access to this
latter information as it is returned in the response of the DRAWTAG oracle query draw-
ing vtag. Again, the simulation is easy and perfect. This fully defines B1 and we de-
duce that Pr[A0 wins] = Pr[AB1

0 wins]. We can thus define the adversary A1 that never
queries RESULT on an instance π in which the response c was produced by a previous
SENDTAG query.

Game 2. In this game, we make all SENDTAG queries being simulated by a partial blin-
der B2. To achieve this, we let r be number of SENDTAG queries and make a sequence
of hybrid blinders B0

2, . . . ,B
r
2 in which Bi

2 simulates the i first SENDTAG queries. Note

that B0
2 does not make any simulation so AB0

2
1 is exactly A1 and that Br

2 is a partial blinder
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for all SENDTAG queries. We define the hybrid Bi
2 by simulating the i first encountered

SENDTAG queries by encrypting random strings of same length as ID‖KID‖a.

To prove that ABi−1
2

1 and ABi
2

1 have computationally indistinguishable distributions,
we construct an adversary C playing the IND-CCA game. Adversary C receives the

public key and runs ABi−1
2

1 or ABi
2

1 , depending on the bit of the indistinguishability
game, while simulating the RFID system, except the i-th SENDTAG query. For that,

C must simulate the environment for ABi−1
2

1 /ABi
2

1 . Since all algorithms and oracles of
the scheme, except for RESULT, do not require the secret key, C can easily perform the
simulation by itself. Regarding the RESULT interface, C just queries a decryption oracle
and checks whether the decrypted message matches.

The first i− 1 SENDTAG queries are made to the IND-CCA challenger in a real-or-
random version. The challenge ciphertext c in the IND-CCA game is the answer from

the challenger. It is either a real answer (as in the ABi−1
2

1 simulation) or a simulated one

(as in the ABi
2

1 simulation). Note that no RESULT query is made on the session in which
the adversary sent c (this case has been taken care of in Game 1). So, C perfectly simu-

lates either the game for ABi−1
2

1 or the game for ABi
2

1 and is an IND-CCA adversary. Since

C produces the output of ABi−1
2

1 /ABi
2

1 , we obtain that

∣∣∣∣Pr[ABi
2

1 wins]−Pr[ABi+1
2

1 wins]

∣∣∣∣≤
AdvIND-CCA(k), and it results that

∣∣∣Pr[A1 wins]−Pr[AB2
1 wins]

∣∣∣ ≤ r ·AdvIND-CCA(k),

which is negligible as r is polynomially bounded and the scheme is IND-CCA secure.
At this point, we can legitimately consider an adversary A2 who makes no SENDTAG

queries.

Game 3. We now simulate all remaining RESULT queries. To do so, we construct an
adversary E playing the PA1++ game. The way B3 simulates RESULT will come from
the E construction.

E takes the public key then simulates A2 interacting with the RFID system. Recall
that, like in Game 2, the algorithms and oracles of the scheme do not depend on the se-
cret key, except for the RESULT queries that will be treated hereafter. We let E simulate
the RFID system to A2, handling her queries as follow:

– Assuming w.l.o.g. that session identifiers are based on a counter, LAUNCH is deter-
ministically computed by E .

– Upon a CREATETAG(ID) query from A2, E inserts (ID,−) in a table DB1 if the
query asks for a legitimate tag. Otherwise, it inserts (ID,−) in a table DB0. This is
deterministic.

– E simulates SENDREADER → a queries by asking the oracle OS to sample from
the uniform distribution over {0,1}α. It then forwards the received answer a to A2.
This is non-deterministic but only requires uniformly distributed independent bits.

– DRAWTAG(Samp) queries are handled by asking the randomness oracle OS to sam-
ple from the distribution specified by Samp to get one or more random ID. If any
of the returned identifiers corresponds to a drawn tag, E outputs ⊥. Otherwise,
it generates, deterministically and for each returned IDi, a fresh vtagi and inserts
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the pair (vtagi, IDi) in the table T . After that, it sets the bit bi to 1 if IDi is legitimate,
or to 0 otherwise. At last, it returns (vtag1,b1, . . . ,vtagn,bn) to A2. This is non-
deterministic but requires inverse samplable distributions.

– CORRUPT(vtag) makes E reveal ID = T (vtag). Moreover, E looks for the entry
(ID,KID) in DB0 and DB1. If that corresponding entry contains a KID different from
′−′, then it returns it. Otherwise, it queries OS to sample from the uniform distribu-
tion over {0,1}κ and assigns the answer to KID. It subsequently updates the entry
(ID,−) to (ID,KID) and returns this last pair as its answer. We further assume that
whenever the tag ID is a legitimate one, E inserts the entry (ID,KT (vtag)) in a table
TE . This is non-deterministic but only requires uniformly distributed independent
bits. Note that non-corrupted tags have no preset KID key.

– To simulate the RESULT(π) oracle for a reader instance π with transcript (a,c), E
sends c to the decryption oracle, checks that the recovered plaintext is of the form
ID‖KID‖a, that it matches a ID‖KID ∈ DB1. (Note that this implies that tag ID, has
been corrupted, and has key KID.) If this is the case, the answer to RESULT must be
1, otherwise, the simulated answer is 0. Note that when the output of the E regard-
ing a RESULT query is 1, the genuine RESULT query would also have answered
1. So, this simulation is correct. Errors in the simulation only occur when E pre-
dicts 0 and the genuine RESULT query would also have outputted 1 in a session
without matching conversation. Clearly, the failure of one of E’s simulations cor-
responds to the happening of the event that there is a legitimate and uncorrupted tag
which was identified by a session π which received a c which was not produced by
any SENDTAG query. This implies that the event E that A2 wins the security game
holds. In other words,

∣∣Pr [A2 wins]−Pr
[
AE

2 wins
]∣∣ ≤ Pr[E]. Since it was shown

that the PKC protocol is secure, this is negligible.

Since we assumed the encryption scheme to be PA1++ plaintext-aware, we can use
the plaintext extractor E� of E to replace the decryption oracle without significantly
altering the outcome distribution. However, E� requires the view of E instead of the
view of A2, so we cannot use it as an extractor for A2. Fortunately, it is possible to
reconstruct that view given the adversary’s random tape and its queries. At first, we note
that E’s random coins are only used to initialize A2. Furthermore, all the randomness E
obtains from OS to process CORRUPT queries is revealed to A2. Moreover, since A2 is
simulatable, we can use the algorithm A ′

2, induced by Definition 4, to reconstruct, from
A2’s view, a table T ′ indistinguishable from T . Since this table lists all the mappings
between real and virtual identifiers, it is straightforward to reconstruct a randomness
for E that she received to process the DRAWTAG queries using the Samp−1 algorithms
corresponding to the sampling queries of A2. We let this whole operation be carried
by a polynomial-time algorithm V that takes as input the view of A2 and uses A ′

2 to
reconstruct a view of E , i.e., it is such that V (viewA2) and viewE are indistinguishable.
It follows that E�(pk, ·,V (viewA2)) and E�(pk, ·,viewE ) are indistinguishable.

At this point, we are able to define B3, the partial blinder for RESULT queries. Sim-
ilarly to E , we assume that B3 maintains a table TB3 containing a list of pairs (ID,KID)
for corrupted legitimate tags. In order to simulate a RESULT query on an instance π of
transcript (a,c), the blinder proceed as follow.
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1. First, the blinder calls E�(pk,c,V (viewA2)) to get Decsk(c) = ID‖KID‖a′.
2. Then it verifies that a = a′ and outputs 0 in case of failure. Otherwise, it continues.
3. At last, it outputs 1 if the pair ID‖KID is listed in TB3 , and 0 otherwise.

The probability that Step 1 fails can be expressed as a distinguisher advantage of the
PA1++ game or between V (viewA2) and viewE , so∣∣∣Pr

[
AB3

2 wins
]
−Pr

[
AE

2 wins
]∣∣∣≤ AdvPA1++(k)+negl(k).

At the same time, Step 3 fails when the event E occurs, so using triangle inequalities
we conclude that∣∣∣Pr [A2 wins]−Pr

[
AB3

2 wins
]∣∣∣≤ AdvPA1++(k)+Pr[E]+negl(k).

Recalling that E occurs with negligible probability and that the scheme is PA1++
plaintext-aware, the quantity above becomes negligible. Hence, B3 describes a success-
ful blinder for the RESULT oracle.

Game 4. In this game, we get rid of SENDREADER(π)→ a queries. This can easily
be achieved by constructing a blinder B4 that returns uniformly distributed values from
the set {0,1}α. We further get rid of the SENDREADER(π,c) queries in a trivial way as
they return nothing and are not followed by any RESULT(π) query. Clearly, simulation
is perfect as both distributions are perfectly indistinguishable. Hence, Pr [A3 wins] =
Pr[AB4

3 wins].

Game 5. Finally, we have an adversary A4 who only produces LAUNCH queries. We
can trivially simulate the Them. It follows that Pr [A4 wins] = Pr[AB5

4 wins]. In the end,
we have obtained an adversary A5 = AB, with B = B1 ◦ · · · ◦B5, who does not produce
any oracle query that is such that

∣∣Pr[A wins]−Pr[AB wins]
∣∣= negl(k). The scheme is

thus Strong private. ��

6 Conclusion

We updated the Vaudenay model for RFID privacy. Our model now makes it possible
to achieve strong privacy. Actually, we proved that the regular PKC protocol with an
IND-CCA and PA1+ secure cryptosystem achieves it. We have further shown that IND-
CCA security alone could fail to reach this level of privacy. This shows a separation
between our privacy model and the one from [22]. However, the question whether this
separation is significant remains open.

Acknowledgement. The authors would like to than Sherman Chow for his valuable
help in the final version of this paper.
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A IND-CCA Security Is Not Sufficient for Strong Privacy

We define (KeyGen1, Enc1, Dec1), a variant of the Goldwasser-Micali cryptosystem [20]
as follows.

– KeyGen1(1k). Pick an RSA modulus N = pq, i.e, s.t. p and q are primes, and y,z ∈
Z�

N such that
( y

N

)
= +1,

(
y
p

)
= −1, and

(
z
N

)
= +1. The scheme’s key pair is

pk1 = (N,y,z) and sk1 = p.
– Enc1

pk1(b) = ybr2 mod N where b ∈ {0,1} and r ∈R Z�
N .

– Dec1
sk1(c) = b such that (−1)b =

(
c
p

)
.

Note that z in the public key is unused. Further note that z · Enc1pk1(b) mod N is a

valid encryption of either b or b̄ = 1− b depending on
(

z
p

)
which is unknown for

someone holding the public key. Let (KeyGen0, Enc0, Dec0) denote an IND-CCA secure
encryption scheme, we define (KeyGen, Enc, Dec) as follows.
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– KeyGen. Run (sk0, pk0) ← KeyGen0(1k) and (sk1, pk1) ← KeyGen1(1k). The
scheme’s key pair is pk = (pk0, pk1) and sk = (sk0,sk1).

– Encrypt. To encrypt, set Encpk(x) = Enc0
pk0

(
Enc1

pk1(x1), . . . ,Enc
1
pk1(xn)

)
where

x1, . . . ,xn is the binary decomposition of x.
– Decrypt. To decrypt, compute Decsk(c) = Dec1

sk1(t1), . . . ,Dec
1
sk1(tn) where

t1, . . . , tn = Dec0
sk0(c).

We can easily see that (KeyGen, Enc, Dec) is IND-CCA secure. It is not plaintext-

aware since Enc0
pk0

(
z ·Enc1

pk1(x0) mod N, . . . ,z ·Enc1
pk1(xn−1) mod N

)
is a valid en-

cryption of either x0, . . . ,xn−1 or x0, . . . ,xn−1 depending on
(

z
p

)
. To figure out whether

this encrypts x or x̄ would require to solve the quadratic residuosity problem, which is
supposedly a hard problem.

Consider the PKC protocol of Fig. 1 using the above IND-CCA secure public-key
encryption scheme.

Finally, the following Strong adversary defeats privacy.

1: CREATETAG(ID)
2: v← DRAWTAG(ID)
3: SID← CORRUPT(v)
4: π← LAUNCH

5: a← SENDREADER( /0,π)
6: Set x = SID‖a = x1, . . . ,xn

7: s = z ·Enc1
pk1(x1), . . . ,z ·Enc1

pk1(xn)

8: c← Enc0
pk(s)

9: SENDREADER(c,π)
10: b← RESULT(π)
11: Output b

Clearly, an adversary outputs 1 if and only if
(

z
p

)
= +1. Therefore, a blinder that

follows the same distribution would break the quadratic residuosity problem, i.e., the
problem of distinguishing quadratic residues from non-quadratic residues. So, the PKC
protocol based on this cryptosystem is strong-private in the model from [22] but is not
in our model, assuming that quadratic residuosity is a hard problem. This proves the
separation between privacy from [22] and our strong privacy. Indeed, we have shown
that the PKC protocol based on an IND-CCA cryptosystem may still leak some non-
simulatable information although it is strong private in the sense of [22].
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Abstract. Scalar multiplication, which computes dP for a given point
P and a scalar d, is the dominant computation part of Elliptic Curve
Cryptosystems (ECC). Recently, Side Channel Attacks (SCA) on scalar
multiplication have become real threats. This is why secure and efficient
scalar multiplication is important for ECC, and many countermeasures
have been proposed so far. The Montgomery Ladder and the Regular
right-to-left algorithm are the simplest and the most elegant algorithms.
However, they are vulnerable to an SCA on the Least Significant Bit
(LSB). In this paper, we investigate how to enhance the LSB security
without spoiling the original features of simplicity. Our elegant tech-
niques make the previous schemes secure against the SCA on LSB, while
maintaining original performances.

Keywords: Elliptic Curve Cryptography, Scalar Multiplication, Side
Channel Attack.

1 Introduction

The Elliptic Curve Cryptosystem (ECC), which uses a group of rational points
of an elliptic curve over a finite field, was independently proposed by Miller
and Koblitz in the mid 1980s. The security of ECC is based on the Elliptic
Curve Discrete Logarithm Problem (ECDLP) and the scalar multiplication,

which computes dP for a given point P and a scalar d =
∑	−1

i=0 di2
i(d > 0),

is the dominant computation part of ECC. The simplest scalar multiplication
is the so-called binary algorithm. The ECC has been attracting the attention
of various applications on small devices because the ECC yield security with a
compact memory and little computational cost. Especially, for the use of smart
card, the ECC needs to be resistant to side channel attacks on scalar multipli-
cation, such as Simple Power Analysis (SPA)[16], Differential Power Analysis
(DPA)[16], Zero-value Point Attack (ZPA)[1], Refined Power Analysis (RPA)[7],
Safe-Error Attack (SEA)[25], and etc.; and must still work with a compact mem-
ory and little computational cost. To address these two issues, many scalar
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multiplications have been proposed so far. However, there is still room for im-
provement from the viewpoint of security, memory amount, and computational
cost.

Let us review some previous results on right-to-left algorithms. The regular
right-to-left algorithm [12] is secure against both SPA and SEA, while it works
without extra computation and just repeats both doubling and additions. This
is a simple and elegant algorithm. However, it unfortunately does not work
regularly for an arbitrary scalar, and needs a special treatment to force the
parity of d, that is, d0 to be an odd number. In fact, not only the right-to-left
algorithm but also other right-to-left algorithms (Algorithms 1 and 3 in [11])
do not work regularly for an arbitrary scalar. Two other right-to-left algorithms
(Algorithms 1′ and 2 in [11]) work for an arbitrary d, but they are vulnerable
to SEA. In a sense, those right-to-left algorithms fail to achieve the security on
the Least Significant Bit (LSB), which is called LSB security in this paper. The
typical special treatments are: computing (d−d0+1)P and subtracting P at the
end; or adding an appropriate multiple of ord(P ) to d. The former method needs
one additional subtraction at the end, and the latter method is useful for only
scalars d
 ord(P ). Those special treatments seem to be rather exaggerated and
spoil the simplicity of regular right-to-left algorithm. The problem is just on the
LSB security, but is nevertheless unavoidable to execute any d.

On the other hand, from the viewpoint of countermeasure to ZPA, a Random-
Initial-Point algorithm (RIP), which works regularly in the right-to-left way, was
proposed in [10]. It is called IIT-RIP in this paper. RIP in the left-to-right way
was proposed in [19], which is called MMM-RIP in this paper. Both algorithms
enhance the security by just repeating both doubling and additions, without
extra computation. In a sense, both IIT-RIP and MMM-RIP are also elegant
and simple. Compared with MMM-RIP resistant to both SEA and ZPA, IIT-
RIP, however, is vulnerable to SEA and needs one more register of points than
MMM-RIP, although it is secure against ZPA. In order to enhance the security
to SEA, error detection steps are introduced in [2,13]. These, however, need
additional steps, and, thus, spoils the original simplicity.

Next, let us review some previous results on left-to-right algorithms. The
Montgomery Ladder [23] works regularly in the right-to-left way with only 2
registers of points. However, it is vulnerable to SEA, and leaks LSB (See Alg. 7
in Section 2.5). The signed-digit algorithm proposed in [9] can also work regu-
larly in the left-and-right way with only 2 registers of points in the same way as
the Montgomery Ladder. The signed-digit algorithm is secure against SEA, but
it is not available for even d. There is room for improvement for both the Mont-
gomery Ladder and the signed-digit algorithm from the viewpoint of security
and availability.

In this paper, we improve the right-to-left and left-to-right algorithms from
the viewpoint of security, memory amount, computational cost, and availabil-
ity. First, we improve Joye’s regular right-to-left algorithm to work for an ar-
bitrary scalar d, while maintaining the same memory amount as the original.
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In this paper, our improved algorithm is called the subtracting-doubling algo-
rithm. Next, we improve the IIT-RIP from the viewpoint of security and memory
amount. Our improved algorithm can reduce one register of points from the IIT-
RIP, and security is further enhanced. Then, we improve the Montgomery Ladder
to be secure against SEA for an arbitrary scalar d, while maintaining the same
memory amount as the original algorithm. Finally, we improve the signed-digit
algorithm to work for an arbitrary scalar d with only 2 registers of points in the
same way as the original.

This paper consists of 6 sections. Section 2 describes some known side chan-
nel attacks and the previous right-to-left and left-to-right algorithms. Section
3 presents two new right-to-left algorithms, which improve the IIT-RIP or
Joye’s regular right-to-left algorithms. Section 4 presents two new left-to-right
algorithms, which improve the Montgomery Ladder or the signed-digit algo-
rithm. Section 5 compares our proposed algorithms with the previous algorithms
[10,12,23,9]. Section 6 concludes this paper.

2 Previous Results

2.1 Elliptic Curve, Coordinate System, and Scalar Multiplication

We can use several different coordinate systems to represent an elliptic curve. In
this work, we assume that an elliptic curve E is defined over Fp with p > 3, and
choose the Jacobian coordinate. Then, an elliptic curve is given by E : y2 = x3+
ax+ b (a, b ∈ Fp). The Jacobian coordinate and its variants are described in [5],
whose doubling and addition can be slightly improved by changing multiplication
to square such as 2Z1Z2 = (Z1+Z2)

2−Z2
1−Z2

2 . The latest addition and doubling
formulae are available from [5], and the latest iterated doubling formulae are
presented in [22]. The co-Z addition, ZADDU, deals with points having the same
Z-coordinate [21], where (R,P ) ← ZADDU(P,Q) is defined as: R ← P +Q =
(X3 : Y3 : Z3) and P ← (λ2X1 : λ3Y1 : Z3) with Z3 = λZ1 for input of
P ← (X1 : Y1 : Z) and Q ← (X2 : Y2 : Z). The conjugate addition, which
outputs (P + Q,P − Q) from P and Q [18], is further improved to ZADDC
by combining the co-Z [8], where (R,S) ← ZADDC(P,Q) is defined as R ←
P + Q = (X3 : Y3 : Z3) and S ← (X3 : Y3 : Z3) for input of P ← (X1 : Y1 : Z)
and Q← (X2 : Y2 : Z).

Let us summarize the computational cost of the formulae. Here we denote the
computational cost of multiplication, square, and inversion over a definition field
by M,S and I. Then, the costs of the EC point addition, doubling, k-iterated
doublings, and conjugate addition in Jacobian coordinate are 11M+5S, 2M+8S,
(3k−1)M+(5k+3)S and 12M+6S, respectively. Note that k-iterated doublings
are used in right-to-left algorithms, and the conjugate addition is used in both
right-to-left and left-to-right algorithms. We also give the left-to-right and the
right-to-left binary algorithms.
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Addition formula (Jacobian coord.)

U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1

H = U2 − U1, I = (2H)2, J = HI,
R = 2(S2 − S1), V = U1I
X3 = R2 − J − 2V , Y3 = R(V − X3) − 2S1J,
Z3 = ((Z1 + Z2)

2 − Z2
1 − Z2

2 )H

Doubling formula (Jacobian coord.)

S = 2((X1 + Y 2
1 )2 − X2

1 − Y 4
1 ),

M = 3X2
1 + aZ4

1 ,
X3 = M2 − 2S,
Y3 = M(S − X3) − 8Y 4

1 ,
Z3 = (Y1 + Z1)

2 − Y 2
1 − Z2

1

Iterated Doubling Formulae to compute 2kP in Jacobian Coordinate

Y ′
0 = 2Y0,W0 = aZ4

0 , T0 = Y ′4
0 , S = ((X0 + Y ′2

0 )2 −X2
0 − T0), M = 3X2

0 +W0

X1 = M2 − 2S, Y ′
1 = 2M(S −X1)− T0, Z1 = ((Y ′

0 + Z0)
2 − Y ′2

0 − Z2
0 )/2

For i = 1 to k − 1 : {
Wi = Wi−1Ti−1, Ti = Y ′4

i , S = ((Xi + Y ′2
i )2 −X2

i − Ti),M = 3X2
i +Wi

Xi+1 = M2 − 2S, Y ′
i+1 = 2M(S −Xi+1)− Ti, Zi+1 = Y ′

i Zi

}
Yk = Y ′

k/2

Conjugate Addition Formulae in Jacobian Coordinate

P = (X1, Y1, Z1), Q = (X2, Y2, Z2), P + Q = (X3, Y3, Z3), P − Q = (X4, Y4, Z4)
X3 = A2 − (4B3 + 8Z2

2X1B
2), Y3 = A(Z2

2X1B
2 − X3) − Z3

2Y1B
3, Z3 = DB

X4 = C2 − (4B2 + 8Z2
2X1B

2), Y4 = C(Z2
2X1B

2 − X4) − Z3
2Y1B

3, Z4 = Z3

A = 2(Z3
1Y2 − Z3

2Y1), B = Z2
1X2 − Z2

2X1, C = −2(Z3
1Y2 + Z3

2Y1), D = (Z1 + Z2)
2 − Z2

1 − Z2
2

Algorithm 1. Left-to-Right Binary Alg.

Input: P and d =
∑�−1

i=0 di2
i =

d�−1d�−2 . . . d0
Output: dP

1: R[0] ← O, R[1] ← P
2: for i = �− 1 to 0 do
3: R[0] ← 2R[0]
4: if di = 1 then
5: R[0] ← R[0] +R[1]
6: end if
7: end for
8: return R[0]

Algorithm 2. Right-to-Left Binary Alg.

Input: P and d =
∑�−1

i=0 di2
i =

d�−1d�−2 . . . d0
Output: dP

1: R[0] ← O, R[1] ← P
2: for i = 0 to �− 1 do
3: if di = 1 then
4: R[0] ← R[0] +R[1]
5: end if
6: R[1] ← 2R[1]
7: end for
8: return R[0]

2.2 Side Channel Attacks

Side Channel Attacks (SCA) are a type of attack which uses information taken
from the physical implementation, such as Timing Analysis Attack [15], Simple
Power Analysis (SPA) [16] and Differential Power Analysis (DPA) [16]. These
are explained in [4]. Here, we summarize SPA and DPA. SPA observes a suitable
side channel, such as the power consumption or electromagnetic emanations, and
recovers secret information from the leaked information. In DPA, an attacker
not only observes but also statistically analyzes the power consumption of a
cryptosystem.

In addition to these attacks, the Doubling Attack, which works only in left-
to-right algorithms, is proposed in [24], called DblA in this paper. This is because
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left-to-right algorithms usually execute in such a way that a return value is
doubled and added P when di = 1, where d =

∑	
i=0 2

idi is represented by
d	−1d	−2 . . . d0, and di is the current bit. Right-to-left algorithms usually execute
in such a way that 2iP is added to a return value when di = 1. Here, let us explain
how DblA works in left-to-right algorithms. DblA computes dP and d(2P ). If
di = 0, then the ith-round R[0] in the computation of dP is the same as the
(i − 1)th-round R[0] in the computation of d(2P ). In the (i + 1)th round of dP
and ith round of d(2P ), each round executes a doubling. It is possible for an
attacker to check whether result values of two doubling operations are the same.

Safe-Error Attack (SEA) timely induces a fault during the execution of an
instruction [25], and, deduces whether a target instruction is dummy or not,
because an induced error will be a safe-error when the corresponding operation
is dummy. Let us explain SEA by taking the double-and-add always algorithm
(Algorithm 3) as an example. Suppose that R[1] in Step 4 for i = i0 (� − 1 ≤
i0 ≤ 1) is attacked. Let (R[0], R[1], R[2]) = (a, b, c) in the beginning of Step i0.
In the case of (di0 , di0−1) = (0, ∗), Algorithm 3 works as Table 1, where N/A
means that the value is wrong: R[1] has an error in i = i0, while there is no error
in either R[0] or R[2]. However, the error in R[1] will disappear in Step 4 for
i = i0−1 by inputting R[1]← R[0]+R[2]. This is why the error of R[1] for i = i0
is a safe-error. In the case of (di0 , di0−1) = (1, ∗), Algorithm 3 works as Table 2:
R[1] has an error, where the error in R[1] is copied into R[0] by R[0] ← R[1]
in Step 5 for i = i0; and, finally, both R[0] and R[1] have errors in Step 4 for
i = i0 − 1. This is why the error of R[1] for i = i0 is a real-error. Thus, we can
detect di0 = 0 or 1 (� − 1 ≥ i0 ≥ 1) by using the fact of whether the output
value is correct.

Table 1. Safe-Error

(i, Step) Instruction Value

(i0, 3) R[0] ← 2R[0] R[0] = 2a
(i0, 4) R[1] ← R[0] +R[2] R[1] = N/A
(i0, 5) R[0] ← R[0] R[0] = 2a

(i0 − 1, 3) R[0] ← 2R[0] R[0] = 4a
(i0 − 1, 4) R[1] ← R[0] +R[2] R[1] = 4a+ c
(i0 − 1, 5) R[∗] ← R[1] R[0] = 4a or 4a+ c

Table 2. Real-Error

(i, Step) Instruction Value

(i0, 3) R[0] ← 2R[0] R[0] = 2a
(i0, 4) R[1] ← R[0] +R[2] R[1] = N/A
(i0, 5) R[0] ← R[1] R[0] = N/A

(i0 − 1, 3) R[0] ← 2R[0] R[0] = N/A
(i0 − 1, 4) R[1] ← R[0] +R[2] R[1] = N/A
(i0 − 1, 5) R[∗] ← R[1] R[0] = N/A

2.3 Highly Regular Right-to-Left Scalar Multiplication Algorithm

Joye proposed a highly regular powering ladder [12], whose idea is to use a
representation of d − 1 instead of d. The representation of d − 1 for the binary
expansion of d =

∑	−1
i=0 di2

i(d	−1 = 1) is given as follows: d−1 =
∑	−2

i=0(di+1)2i.
This follows easily by regarding −1 as 1̄11 . . . 11︸ ︷︷ ︸

l

. Algorithm 4 shows his regular

right-to-left scalar multiplication algorithm.
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Algorithm 3. DBL-and-ADD always
alg. (L-R)[6]

Input: P and d =
∑�−1

i=0 di2
i(d > 0)

Output: dP

1: R[0] ← P,R[2] ← P
2: for i = �− 1 to 0 do
3: R[0] ← 2R[0]
4: R[1] ← R[0] +R[2]
5: R[0] ← R[di]
6: end for
7: return R[0]

Algorithm 4. Regular Right-to-Left alg.
[12]

Input: P and d =
∑�−1

i=0 di2
i(d > 1)

Output: dP

1: R[1] ← d0P,R[2] ← P,R[0] ← R[2]
2: for i = 1 to �− 2 do
3: R[0] ← 2R[0]
4: R[1 + di] ← R[1 + di] +R[0]
5: end for
6: R[0] ← R[1] + 2R[2]
7: return R[0]

We should note that if d0 = 0, this algorithm induces an addition to O in the
first i ≥ 1 with di = 0: R[1] ← O + R[0] in Step 4, since R[1] = O until the
i. Thus, Algorithm 4 itself can securely execute only for an odd d. In order to
enhance the LSB security of d, some special treatment, as described in [12,11],
is needed to force the parity of d to 1 such as: computing (d − d0 + 1)P and
subtracting P at the end; or adding an appropriate multiple of ord(P ) to d.
The former method needs one additional subtraction at the end, and the latter
method is useful for only scalars d 
 ord(P ). Those special treatments seem
to be rather exaggerated and spoil the simplicity of Algorithm 4. The problem
exists only in the LSB, but it is nevertheless unavoidable to execute any d. We’ll
propose a simple method to enhance the LSB security, which does not need any
additional computation, and works for any ord(P ).

Here, we investigate the LSB security of previous right-to-left scalar multipli-
cation algorithms in [12,11]. Not only Algorithms 4, but also other right-to-left
scalar multiplication algorithms (Algorithms 1 and 3 in [11]) have an initial value
of O in spite of d0 = 0 or 1. As a result, these algorithms also need a special
treatment in order to work on an arbitrary d. Two other right-to-left algorithms
(Algorithms 1′ and 2 in [11]) work for both even and odd d, since they have no
initial value with O. They are, however, vulnerable to SEA in the last step: if
k0 = 1, then an error induced on R[b]← R[b]−P will be a safe error, because a
return value is R[0], and the error is in R[1]. Therefore, those previous right-to-
left algorithms in [12,11] leak LSB of the scalar, need a special treatment for an
arbitrary d, or are vulnerable to SEA.

2.4 Left-to-Right and Right-to-Left RIP Algorithms

There are several countermeasures against DPA attacks, such as the Random-
ized Projective coordinate method (RPC)[6], the Randomized Curve method
(RC) [14], the Exponent Splitting method (ES)[3] and the Random Initial Point
method (RIP)[19,10]. Both RPC and RC are vulnerable to both the Refined
Power Analysis (RPA) and the Zero-value Point Attack (ZPA). ES and RIP are
resistant to both RPA and ZPA. There are two algorithms of RIP. Algorithm 5
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is the left-to-right RIP [19], called MMM-RIP in this paper, although it is called
BRIP in the original paper. Algorithm 6 is the right-to-left RIP algorithm [10],
called IIT-RIP, although it is called ADA and RIP in the original paper.

Algorithm 5. MMM-RIP[19,20]

Input: P and d =
∑�−1

i=0 di2
i(d > 1)

Output: dP

1: R ← randompoint()
2: R[0] ← R; R[1] ← −R[0]
3: R[2] ← P −R[0]
4: for i = �− 1 to 0 do
5: R[0] ← 2R[0] +R[1 + di]
6: end for
7: R[0] ← R[0] +R[1]
8: return R[0]

Algorithm 6. IIT-RIP[10]

Input: P and d =
∑�−1

i=0 di2
i(d > 1)

Output: dP

1: R = randompoint()
2: R[0] ← R; R[2] ← P ; R[3] ← R[0]
3: for i = 0 up to �− 1 do
4: R[1] ← R[0] +R[2]
5: R[2] ← 2R[2]; R[0] ← R[di]
6: end for
7: R[0] ← R[0]−R[3]
8: return R[0]

Let us investigate differences between Algorithms 5 and 6 from the view-
point of security, computational cost and memory amount. As for security, Al-
gorithm 6 is vulnerable to SEA: an error in step 4 will be a safe error when
di = 0. It, however, is secure against SPA, DPA, RPA, ZPA, and DblA de-
scribed in Section 2.2. On the other hand, Algorithm 5 is secure against SEA,
SPA, DPA, RPA, ZPA, and DblA. As for the computational cost, we assume
the Jacobian coordinate. Algorithm 6 can use the iterated doubling formulae
presented in Section 2.1 in the same way as other right-to-left algorithms, which
can reduce the computational cost of each 2iP . The computational cost for
� doublings, 2�M + 8�S, is reduced to (3� − 1)M + (5� + 3)S in total. How-
ever, it needs to keep an intermediate point (Xi, Y

′
i , Zi) for the next compu-

tation, as well as outputs (Xi, Yi, Zi) in each round 1 � i � � − 1. On the
other hand, Algorithm 5 cannot use the iterated doubling formulae but the dou-
bling add algorithm [17], which can compute directly both double and add with
a cost of 14M + 9S. The doubling add algorithm reduces the computational
cost of ordinary computations of double and add (13M + 13S) by 4S − M ,
but increases the memory amount by 2 more registers. So, there is no differ-
ence in the computational cost between Algorithms 5 and 6, under the ordi-
nary addition formulae without increasing memory amount. As for the mem-
ory amount, Algorithm 5 needs 3-point registers, while Algorithm 6 needs one
more register to keep R until Step 8, and thus, it needs 4-point registers in
total.

In summary, Algorithm 5 can execute with a smaller memory amount and is
secure against SEA, SPA, DPA, RPA, ZPA, and DblA, while Algorithm 6 needs
more registers and is not secure against SEA. Section 3 will present an elegant
technique to improve Algorithm 6.
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2.5 Highly Regular Left-to-Right Scalar Multiplication

Montgomery Ladder
The Montgomery Ladder [23] is described in Algorithm 7. In order to reduce the
computational cost, the co-Z coordinate can be applied in Algorithm 8, where
(R,P ) ← DBLU(P ) in Step 1 is defined as: R ← 2P = (X2 : Y2 : Z2) and
P ← (λ2X1 : λ3Y1 : λ) with λ = Z2 [9]; and ZACAU(R[di], R[1− di]), that is a
combination of ZADDC and ZADDU, and can work in 9M + 7S with an extra
register of C = (X1 − X2)

2 in addition to two points R[di] = (X1, Y1, Z) and
R[1− di] = (X2, Y2, Z).

The Montgomery Ladder can work regularly in the left-and-right way with
only 2 registers of points. However, we notice that an operation onR[1] of for-loop
for the last round, i.e. i = 0, becomes a dummy operation because both R[0] and
R[1] are executed in the last round, but only R[0] is returned at Step 6. This is
why the Montgomery Ladder is vulnerable to SEA, and leaks LSB. One possible
countermeasure is to check the coherency between R[0] and R[1] to detect some
fault attack. However, it is rather exaggerated and spoils the simplicity of the
Montgomery Ladder. We will present a simple method to enhance the LSB
security in Section 4.1.

Algorithm 7. Montgomery Ladder[23]

Input: P, d =
∑�−1

i=0 di2
i(d > 0)

Output: dP

1: R[0] ← P ;R[1] ← 2P
2: for i = �− 2 to 0 do
3: R[1− di] ← R[0] +R[1]
4: R[di] ← 2R[di]
5: end for
6: return R[0]

Algorithm 8. Montgomery Ladder (co-Z)[8]

Input: P, d =
∑�−1

i=0 di2
i(d > 0)

Output: dP

1: (R[1], R[0]) ←DBLU(P )
2: for i = �− 2 to 0 do
3: (R[di], R[1− di]) ← ZACAU(R[di], R[1−

di])

4: end for
5: return R[0]

Signed-Digit Algorithm
Signed-digit algorithms, both left-to-right and right-to-left, are proposed in [9] by
using the fact that any w-bit binary expansion 00 · · ·01 is equal to a w-bit signed-
digit expansion 11̄ · · · 1̄1̄. Here 1̄ means −1. In fact, any odd binary-expansion
number d =

∑	−1
i=0 di2

i (d	−1, d0 = 1) can be written in a non-zero form, called

ZSD expansion, as d =
∑	−1

i=0 δi2
i, where δi = (−1)1+di+1(0 � i � � − 2) and

δ	−1 = 1. Here, we focus on only the left-to-right algorithm, which is presented
in Algorithm 9. Remarkably, the ZSD expansion can be obtained on the fly, as
we will see in Algorithm 9. In order to reduce the computational cost, the co-Z
coordinate can be applied in Algorithm 10, where (R,P ) ←TPLU(P ) in Step
1 is defined as: R ← 3P = (X3 : Y3 : Z3) and P ← (λ2X1 : λ3Y1 : λ) with
λ = Z3 [9]; and ZDAU(R[0], (−1)1+diR[1]) is a direct computation of ZADDU
and ZADDC, which can work in 9M + 7S.

Note that, in the same way as the Montgomery Ladder, the signed-digit algo-
rithm can work regularly in the left-and-right way with only 2 registers of points
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and is secure against SEA. However, it works for only odd d. Section 4.2 will
present an elegant method to let the signed-digit algorithm work for any d.

Algorithm 9. Signed-digit Alg. [9]

Input: P, d =
∑�−1

i=0 di2
i (d0 = 1)

Output: dP

1: R[0] ← P ;R[1] ← P
2: for i = �− 1 to 1 do
3: R[0] ← 2R[0] + (−1)1+diR[1]
4: end for
5: return R[0]

Algorithm 10. Signed-digit Alg. (co-Z)[9]

Input: P, d =
∑�−1

i=0 di2
i (d0 = 1, d ≥ 3)

Output: dP

1: (R[0], R[1]) ← TPLU(P )
2: for i = �− 2 to 1 do
3: (R[0], R[1]) ← ZDAU(R[0], (−1)1+diR[1])

4: R[1] ← (−1)1+diR[1]
5: end for
6: return R[0]

3 Enhance the LSB Security of Right-to-Left Algorithms

First, we improve Algorithm 4 to Algorithm 11, which works for any scalar d and
is resistant to SEA and SPA, while maintaining the performance of Algorithm
4. Next, we improve Algorithm 6 from the point of view of security and memory
amount, which is presented in Algorithm 12.

3.1 Subtract-Doubling Algorithm

Let us explain Algorithm 1 in detail. To enhance the LSB security, Algorithm 11
transforms an �-bit binary-expansion d =

∑	−1
i=0 di2

i into an �-bit {1̄, 2̄}-expansion
with MSB equal to 3 = d	−1 + 2 by changing d to d + 2 on the fly, and, then
computes (d+ 2)P − 2P by regarding 2 as 22̄2̄ . . . 2̄2̄ for 2̄ = −2. The idea is an
extension of Joye’s algorithm that regards −1 as 1̄11 . . . 11 for 1̄ = −1. Thus,
Algorithm 11 naturally changes d0 to “− 2” and “− 1”, and repeats subtraction
and doubling. This is why Algorithm 11 is called the subtract-doubling algo-
rithm. To further enhance the security of d1 (next to LSB), Algorithm 11 treats
d1 separately from a for-loop. Theorem 1 proves the correctness of Algorithm 11
and also shows that the final subtraction of 2P is executed naturally by setting
R[2] = d0P − 2P in Step 1.

Theorem 1. Algorithm 11 computes dP correctly.

Proof: The initial values of (R[0], R[1], R[2]) in Step 1 are: (R[0], R[1], R[2]) =
(2P,−P, d0P − 2P ). Thus, the final subtraction of 2P , that is, (d + 2)P − 2P
is implemented in the beginning. From the simple discussion, the values of
R[0], R[1], R[2] right after the for-loop satisfies the equations: R[0] = 2	−1P ,

and 2R[1] + R[2] =
∑	−2

i=0 (di − 2)2iP − 2P . Thus, dP is correctly returned as
follow:

R[0] + 2(R[0] +R[1]) +R[2] = (d	−1 + 2)2	−1P +

	−2∑
i=0

(di − 2)2iP − 2P = dP.
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As for security, Algorithm 11 works in a highly-regular right-to-left way, and
executes the same operations in each iteration of for-loop without any dummy
operation. This is why Algorithm 11 is resistant to SPA, DblA, and SEA.

3.2 Modified IIT-RIP

Algorithm 6 uses a register of R[3] to store a random initial point R which is used
only in Steps 2 and 8. Our algorithm 12 can execute without this register (See in
Steps 2 and 10 of algorithm 12). Let us explain in detail. Algorithm 12 embeds a
random initial point 2R into Algorithm 4 elegantly, where Algorithm 4 computes
(d−1)P+P by setting (R[0], R[1], R[2]) = (P, d0P, P ) in the beginning, repeating
doubling and addition, and finally returning R[1] + 2R[2], which includes the
final addition to P in (d − 1)P + P implicitly. We apply this idea to compute
((d−1)P+2R)+(P−2R) as follows: set (R[0], R[1], R[2]) = (P, d0P+2R,P−R)
in the beginning, repeat doubling and addition, and finally return R[1] + 2R[2],
which includes the addition to P − 2R in ((d− 1)P +2R)+ (P − 2R) implicitly.
Furthermore, the register R[0] is well re-used in the initialization, which avoids
increasing one more register. By using these elegant ideas, no extra register is
needed to store the random initial point. Note that the conjugate addition in
Section 2 can be applied to Step 3, which can reduce the computational cost.
The correctness of Algorithm 12 will be shown in Theorem 2.

As for security, Algorithm 12 works in a highly-regular right-to-left way, ex-
ecutes the same operations in each iteration of for-loop without any dummy
operation, and applies the RIP countermeasure at the same time. This is why
Algorithm 12 is resistant to SPA, DblA, SEA, RPA, ZPA and DPA.

Algorithm 11. Subtract-Doubling Alg.

Input: P and d =
∑�−1

i=0 di2
i(d > 3)

Output: dP

1: R[0] ← 2P ; R[1] ← −P
2: R[2] ← (−1)d0+1R[d0]
3: R[1 + d1&d0] ← (−1)d1&d0R[1] − R[0]

4: R[0] ← 2R[0]

5: R[2] ← (−1)d1&d0R[1 + (−1)d1&d0 ]
6: for i = 2 to �− 2 do
7: R[di + 1] ← R[di + 1]−R[0]
8: R[0] ← 2R[0]
9: end for
10: R[0] ← R[0] + 2(R[0] +R[1]) +R[2]
11: return R[0]

(d0 means the complement of d0.)

Algorithm 12. Modified IIT-RIP

Input: P and d =
∑�−1

i=0 di2
i(d > 1)

Output: dP

1: R = RandomPoint()
2: R[0] ← R; R[2] ← P
3: R[1] ← R[2] +R[0]
4: R[2] ← R[2]−R[0]
5: R[1] ← R[1] + (−1)1+d0R[1− (−1)1+d0 ]

6: R[0] ← R[0] +R[2]
7: for i = 1 to �− 2 do
8: R[0] ← 2R[0]
9: R[1 + di] ← R[1 + di] +R[0]
10: end for
11: R[0] ← R[1] + 2R[2]
12: return R[0]
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Theorem 2. Algorithm 12 computes dP correctly.

Proof:
Values of (R[0], R[1], R[2]) before Step 6 are1: (R[0], R[1], R[2]) = (P, d0P +
2R,P −R). From the simple discussion, the values of (R[1], R[2]) right after the

for-loop are: R[2] = P − R +
∑	−2

i=1 di2
iP and R[1] = d0P + 2R +

∑	−2
i=1 di2

iP ,
where di means the complement of di. Thus, dP is correctly returned as follows:

2R[2]+R[1] =

	−2∑
i=0

(di+1)2iP+P = (d−1)P+P = dP.

4 Enhance the LSB Security of Left-to-Right Algorithms

First, we improve the Montgomery Ladder (Algorithms 7 and 8) such that it is
resistant to SEA. It is called the Modified Montgomery Ladder (Algorithms 13
and 14). We also improve the signed-digit algorithm such that it is available for
any scalar. It is called the extended signed-digit algorithm (Algorithms 15 and 16).

4.1 Modified Montgomery Ladder

An operation on R[1] in i = 0 of the for-loop in Algorithm 7 is a dummy
operation, mentioned in Section 2.5. Let us explain steps in i = 0 of the for-loop
and Step 6 of Algorithm 7 in detail. A returned value R[0] in Step 6 can be
represented by using (r0, r1) = (R[0], R[1]) in i = 1 of the for-loop:

R[0] =

{
2r0 if d0 = 0,

r0 + r1 if d0 = 1.

We modify steps in i = 0 of the for-loop to use both registers by changing to:
compute R[d0] = 2r0+r1 and R[d0] = R[d0]−R[1−d0], and return R[d0]. Then,
the returned value is the same as Algorithm 7, seen below:

R[d0] =

{
2r0 if d0 = 0,
r0 + r1 if d0 = 1.

Our Algorithm 13 actually uses both two registers until Step 8. Thus, our algo-
rithm is resistant to SEA. Furthermore, Algorithm 13 executes the same opera-
tions in each iteration of the for-loop, and, thus is resistant to SPA in the same
way as Algorithm 7. As for the memory amount, it uses registers of 2 points,
which is the same as in the case of Algorithm 7.

As for the computational cost, Algorithm 13 has the same for-loop as Algo-
rithm 7. The difference exists only in steps for i = 0, where it is in the for-loop
in Algorithm 7, while it is out of the for-loop in Algorithm 13. For a further

1 To avoid an addition to O, Algorithm 12 does not compute R[1] = d0P+2R directly
but sets R[1] = P + 2R or 2R for an odd or even d, respectively.
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reduction of the computational cost, the co-Z coordinate can be applied in the
same way as Algorithm 7, which is described in Algorithm 14. The difference is
that ZACAU in i = 0 of the for-loop in Algorithm 8 is changed to ZDAU and
ZADDU in Steps 5 and 6 in Algorithm 14.

Algorithm 13. Modified Mont-
gomery Ladder

Input: P, d =
∑�−1

i=0 di2
i(d > 0)

Output: dP

1: R[0] ← P ;R[1] ← 2P
2: for i = �− 2 to 1 do
3: R[1 − di] ← R[0] + R[1]

4: R[di] ← 2R[di]

5: end for
6: R[d0] ← 2R[0] +R[1]
7: R[d0] ← R[d0]−R[1− d0]
8: return R[d0]

Algorithm 14. Modified Montgomery Ladder (co-
Z)

Input: P, d =
∑�−1

i=0 di2
i(d > 0)

Output: dP

1: (R[1], R[0]) ← DBLU(P )
2: for i = �− 2 to 1 do
3: (R[di], R[1 − di]) ← ZACAU(R[di], R[1 − di])

4: end for
5: (R[d0], R[1 − d0]) ← ZDAU(R[0], R[1])

6: (R[d0], R[1 − d0]) ← ZADDU(−R[1 − d0], R[d0])

7: return R[d0]

4.2 Extended Signed-Digit Algorithm

Algorithm 9 is only available for an odd scalar, as mentioned in Section 2.5, while
Algorithm 7 can work for any d although it reveals LSB. Both algorithms 7 and
9 have an important similarity such that both work with two registers of points.
We will change the last steps of Algorithm 9 in the same way as Algorithm 7 to
work for any d.

Let us compare these two algorithms. Let (R[0]i, R[1]i) be values of (R[0], R[1])
at the end of the for-loop for 1 < i < � − 2. Then, by using the feature that
R[1]−R[0] = P holds in Algorithm 7, the next equations hold.

R[1− di]i = R[0]i+1 +R[1]i+1 = 2R[0]i+1 + P = 2R[1]i+1 − P (Step 3, Alg. 7), (1)

R[di]i = 2R[di]i+1 = R[1− di]i + (−1)1+diP (Step 4, Alg. 7), (2)

where Eq. (1) is represented by using di+1 as follows:

R[1− di]i = 2R[1− di+1]i+1 + (−1)1+di+1P (Step 3, Algorithm 7). (3)

This is easily derived from: R[1 − di]i = 2R[0]i+1 + P = 2R[1 − di+1]i+1 +
(−1)1+di+1P if di+1 = 1, and R[1 − di]i = 2R[1]i+1 − P = 2R[1 − di+1]i+1 +
(−1)1+di+1P if di+1 = 0. On the other hand,

R[0]i = 2R[0]i+1 + (−1)1+diP (Step 3, Algorithm 9). (4)

Then, the following theorem holds.

Theorem 3. Let (R[0]i, R[1]i) be values of (R[0], R[1]) at the end of the for-loop
for 1 < i < � − 2 in each Algorithms 7 and 9. Then, for the same scalar d and
�− 2 > i > 1,



How to Enhance the Security on the Least Significant Bit 275

R[1− di]i(Alg. 7) = R[0]i+1(Alg. 9).

Proof: The statement follows by induction on i. When i = �− 2,

R[1− d	−2]	−2 = 2R[1− d	−1]	−1 + (−1)1+d�−1P = 2R[0] + P = 3P (Alg. 7),

R[0]	−1 = 2R[0]	 + (−1)1+d�−1P = 2P + P = 3P (Alg. 9),

follows. Assume that R[1− di]i(Alg. 7) = R[0]i+1(Alg. 9) holds for i. Then,

R[1− di−1]i−1 = 2R[1− di]i + (−1)1+diP (Alg. 7),

R[0]i = 2R[0]i+1 + (−1)1+diP (Alg. 9),

holds for i− 1, and, thus statements follows.

A simple example between Algorithms 7 and 9 in Table 3 makes Theorem 3
more clear, where underlined points show the relation.

Table 3. Transit of (R[0], R[1]) in Alg. 7 and 9 (d = 45 = (101101)2)

Algorithm Initial Value i = 5 4 3 2 1 0 Return

Alg. 7 R[0] P - 2P 5P 11P 22P 45P 45P
R[1] 2P - 3P 6P 12P 23P 46P

Alg. 9 R[0] P 3P 5P 11P 23P 45P - 45P
R[1] P P P P P P -

Our algorithm is presented in Algorithm 15: for-loop is the same as that of
Algorithm 9; and Step 6 changes (R[0], R[1]) to those in i = 1 of for-loop of
Algorithm 7; and Steps 7 and 8 are the same as Steps 6 and 7 in Algorithm 13
in order to be secure against SEA on LSB. Tables 4, 5, 6, and 7 describe all
patterns in Algorithm 15.

Algorithm 15. Extended Signed-
digit Alg.

Input: P, d =
∑�−1

i=0 di2
i with d > 1

Output: dP

1: R[1] ← P ;R[0] ← P
2: for i = �− 1 to 2 do
3: R[0] ← 2R[0] + (−1)1+diR[1]

4: end for

� Finalization

5: b = d1 ⊕ d0
6: R[1] = R[0] + (−1)1+d1R[1]
7: R[b] = 2R[1− d1] +R[d1]
8: R[b] = R[b]−R[1− b]
9: return R[b]

Algorithm 16. Extended Signed-digit Alg. (co-
Z)

Input: P, d =
∑�−1

i=0 di2
i with d0 = 1 and d ≥ 3

Output: dP

1: (R[0], R[1]) ← TPLU(P )
2: for i = �− 2 to 2 do
3: (R[0], R[1]) ← ZDAU(R[0], (−1)1+diR[1])

4: R[1] ← (−1)1+diR[1]
5: end for

� Finalization

6: b = d1 ⊕ d0
7: (R[1], R[0]) ← ZADDU(R[0], (−1)1+d1R[1])

8: (R[b], R[1 − b]) ← ZDAU(R[1 − d1], R[d1])

9: (R[b], R[1 − b]) ← ZADDU(R[b],−R[1 − b])

10: return R[b]
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Table 4. Transit of (R[0], R[1]) in Alg. 15 (d = 44 = (101100)2)

Initial Value For-loop (5 � i � 2) Finalization Return
5 4 3 2 Step 6 Step 7 Step 8

R[0] P 3P 5P 11P 23P 23P 23P 23P

R[1] P P P P P 22P 67P 44P 44P

Table 5. Transit of (R[0], R[1]) in Alg. 15 (d = 45 = (101101)2)

Initial Value For-loop (5 � i � 2) Finalization Return
5 4 3 2 Step 6 Step 7 Step 8

R[0] P 3P 5P 11P 23P 23P 67P 45P 45P

R[1] P P P P P 22P 22P 22P

Table 6. Transit of (R[0], R[1]) in Alg. 15 (d = 46 = (101110)2)

Initial Value For-loop (5 � i � 2) Finalization Return
5 4 3 2 Step 6 Step 7 Step 8

R[0] P 3P 5P 11P 23P 23P 70P 46P 46P

R[1] P P P P P 24P 24P 24P

Table 7. Transit of (R[0], R[1]) in Alg. 15 (d = 47 = (101111)2)

Initial Value For-loop (5 � i � 2) Finalization Return
5 4 3 2 Step 6 Step 7 Step 8

R[0] P 3P 5P 11P 23P 23P 23P 23P

R[1] P P P P P 24P 70P 47P 47P

Thus, our Algorithm 15 can work for any d. As for security, Algorithm 15
executes the same operations in each iteration of the for-loop, and is thus secure
against SPA. Algorithm 15 is also secure against SEA without revealing LSB us-
ing the same idea as in Algorithm 13. As for the memory amount, it uses registers
of 2 points, which is the same as that of Algorithm 9. As for the computational
cost, Algorithm 15 has the same for-loop as Algorithm 9. The differences exist
only in steps for i = 1, where it is in the for-loop in Algorithm 9, while it is out
of the for-loop in Algorithm 15. For a further reduction of the computational
cost, the co-Z coordinate can be applied in the same way as Algorithm 9, which
is described in Algorithm 16. The differences are that ZDAU in i = 1 of the
for-loop in Algorithm 16 is changed to ZADDU, ZDAU and ZADDU in Steps 7
to 9 in Algorithm 16.

5 Comparison

Table 8 shows comparisons of security, which omit the security with the co-
Z coordinate because they are the same as that without the co-Z coordinate.
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Table 8. Comparisons of security

Alg. SEA SPA DPA RPA ZPA DblA

Right-to-left algorithms:
Alg. 4 [12] S LW W W W S
Alg. 11 S S W W W S

Alg. 6 [10] W S S S S S
Alg. 12 S S S S S S

Left-to-right algorithms:
Alg. 7 [23] LW S W W W S
Alg. 13 S S W W W S

Alg. 9 [9] S S W W W S
Alg. 15 S S W W W S

S: Secure, W: Weak, LW: LSB Weak

Table 9. Comparisons of computational cost and memory amount

Alg. Computational Memory Memory Work for
cost(per bit) amount(# regs.) amount(# points.) ∀d

Right-to-left algorithms:
Alg. 4 [12] 13M + 13S 14 R[0], R[1], R[2] odd d
Alg. 11 13M + 13S 14 R[0], R[1], R[2] ∀d
Alg. 6 [10] 13M + 13S 17 R[0], R[1], R[2], R[3] ∀d
Alg. 12 13M + 13S 14 R[0], R[1], R[2] ∀d
Left-to-right algorithms:
Alg. 7 [23] 13M + 13S 11 R[0], R[1] ∀d
Alg. 8 (co-Z) [8] 9M + 7S 8 R[0], R[1] ∀d
Alg. 13 13M + 13S 11 R[0], R[1] ∀d
Alg. 14 (co-Z) 9M + 7S 8 R[0], R[1] ∀d
Alg. 9 [9] 13M + 13S 11 R[0], R[1] odd d
Alg. 10 (co-Z) [9] 9M + 7S 8 R[0], R[1] odd d
Alg. 15 13M + 13S 11 R[0], R[1] ∀d
Alg. 16 (co-Z) 9M + 7S 8 R[0], R[1] ∀d

Table 9 shows comparisons of computational cost and memory amount. Let �
represent the length of a scalar d. The computational cost assumes Jacobian
coordinates described in Section 2.1. The memory amount is described in two
ways: the first indicates the number of points necessary to implement each al-
gorithm; and the other indicates the precise number of registers necessary to
implement, which includes registers of points.

Let us compare the right-to-left algorithms: our Algorithms 11 (resp. 12) with
Algorithms 4 (resp. 6) from the viewpoint of security, computational cost, and
memory amount. Compared with Algorithm 4, our Algorithm 11 enhances the
LSB security for SPA, while maintaining the performances such as computational
cost per bit and memory amount. Algorithm 4 needs a special treatment in order
to be secure against SPA for an arbitrary scalar. On the other hand, Algorithm 12
also enhances security for SEA, although Algorithm 6 is vulnerable to SEA.
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In addition, Algorithm 12 can work with 3 points of R[0], R[1], R[2], and thus,
it can reduce memory amount. To reduce the computational cost, all right-to-
left algorithms, Algorithms 6, 4, 11, and 12, can use iterated doubling formulae,
although this technique increases memory amount.

Let us compare left-to-right algorithms from the viewpoint of security, compu-
tational cost, and memory amount. Compared with Algorithm 7, Algorithm 13
enhances the LSB security for SEA, while maintaining the performances such
as computational cost per bit and memory amount. Algorithm 7 leaks LSB by
SEA. On the other hand, Algorithm 15 enhances the availability of Algorithm
9 that works only for odd d. Algorithm 15 is secure against SEA, SPA, and
DblA in the same way as Algorithm 9, and also keeps the performances such as
computational cost per bit and memory amount.

6 Conclusion

We have revisited regular right-to-left and left-to-right algorithms, IIT-RIP (Al-
gorithm 6), Joye’s regular right-to-left algorithm (Algorithm 4), the Montgomery
Ladder (Algorithm 7), and the signed-digit algorithm (Algorithm 9), and we
modified them to Algorithm 12, Algorithm 11, Algorithm 13, and Algorithm 15,
respectively. Those modified algorithms enhance each LSB security using ele-
gant techniques while maintaining performances such as memory amount and
computational cost per bit.
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Abstract. In this paper we present a Walsh spectrum based method
derived from the genetic hill climbing algorithm to improve the non-
linearity of functions belonging to Carlet-Feng infinite class of Boolean
functions, without degrading other cryptographic properties they pos-
sess. We implement our modified algorithms to verify the results and
also present a comparison of the resultant cryptographic properties with
the original functions.

Keywords: Boolean functions, Symmetric cipher, Non-linearity, Alge-
braic degree, Algebraic immunity, Optimal algebraic immunity.

1 Introduction

With the introduction of Algebraic and Fast Algebraic attacks on stream ciphers
with linear feedback in [1, 2] by N. Courtois and W. Meier and their improved
variants [3–7], optimal algebraic immunity is amongst the important crypto-
graphic properties for Boolean functions utilized in symmetric ciphers. In [14],
C. Carlet and K. Feng proposed an infinite class of Boolean functions that pos-
sessed balanced-ness, high algebraic degree, optimal algebraic immunity, high
non-linearity compared and good immunity to fast algebraic attacks. The pro-
posed construction in [14] is based on selecting a primitive element α εFn

2 and
selecting its consecutive powers from 1 to (2n−1 − 2), along with “0” and “1”
vector in the support set of the function. Subsequently in [19], X.Zeng, C.Carlet,
J.Shan, L.Hu presented three more constructions, achieving either the same or
in some cases, even higher non-linearities, while maintaining the degree and
algebraic immunity as in [14]. These construction methods also utilized a prim-
itive element α εFn

2 and selecting its powers in the support set of the function.
However, the powers selected in this case were not consecutive, rather based on
some pre-defined sets. The constructions proposed in [14] and [19] clearly demon-
strated, and also proved mathematically, that selecting different powers of the
primitive elements affected the non-linearity of the functions, along with their
algebraic degree and algebraic immunity. We have devised two fairly simple al-
gorithms by modifying the genetic hill climbing algorithm [20] for improvement
in the non-linearity of functions constructed using the infinite class proposed
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in [14] for number of variables n ≥ 8 (Note: [19] describes a different criteria for
selecting the powers of the primitive element α εFn

2 as compared to [14]). The
improved functions not only possess higher non-linearity than the original func-
tions in [14], but also maintain the high algebraic degree and optimal algebraic
immunity. The improvement algorithms have been verified by constructing all
Boolean functions for 8 ≤ n ≤ 11 and improving their non-linearity. The rest
of this paper is organized as follows. In section II, some preliminary founda-
tions are presented related to Boolean functions along with the starting point
for improvement, which is construction of functions based on the infinite class
presented in [14]. The Walsh spectrum based algorithms derived from genetic hill
climbing approach for improvement in non-linearity of the constructed functions
are presented in section III. The various advantages obtained by the algorithms
are described and demonstrated via practical results in section IV. Finally, sec-
tion V summarizes computer investigation results for 8 ≤ n ≤ 11 and their
comparison with those in [14].

2 Preliminaries

2.1 Boolean Function Basics

Let F2 define the binary field. Consequently Fn
2 can be interpreted as an n-

dimensional vector space over F2. Then any Boolean function f on n-variables
can is a mapping from Fn

2 to F2. Let Bn denote the set of all Boolean functions
from Fn

2 into F2. The Boolean function f (x1, ..., xn) can be represented as a
binary string of length 2n with each representing the output of the function
with respect to the ordered pair (x1, ..., xn) as the input

f = {f(0, 0, , ..., 0), f(0, 0, ..., 1), ..., f(1, 1, ..., 1)} (1)

The above representation is known as the truth table of f. The sequence of f
denoted by Seq(f ) is a (1,−1) valued mapping of the truth table obtained by
Seq(f ) = 1 − 2f. The weight or Hamming Weight of a Boolean function wt(f )
is the number of 1s in its truth table representation. The support of f , supp(f )
is defined as

supp(f) = {∀x | f(x) = 1} (2)

An n-variable Boolean function is called balanced if wt (f ) = 2(n−1), i.e. it
has 2(n−1) element in its support set. Now for α = (α1, α2, ..., αn) and ω =
(ω1, ω2, ..., ωn), defineα·ω as the usual inner productα·ω = (α1ω1, α2ω2, ..., αnωn).
Then the Wash transform of f, Wf is calculated as

Wf (α) =
∑
ωεFn

2

(−1)f(ω)+α.ω (3)

It is evident that each coefficient in the Walsh spectrum has values between 2n

and −2n. The non-linearity nl(f ) of f, is given by
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nl(f) = 2(n−1) − 1

2
max
αεFn

2

|Wf (α)| (4)

The annihilator of f , AN(f ) is defined as the minimum degree of a Boolean
function g such that f ∗ g = 0, where f ∗ g is the usual product of functions
f ∗ g = f(x).g(x) . The algebraic immunity of f, AI(f ) is the minimum degree
non-zero annihilator of f

AI(f) = min { deg(g) | ∀ g εBn st f(x).g(x) = 0, ∀x εFn
2} (5)

A Boolean function is k-resilient if it is balanced (Wf (0) = 0) and has correlation
immunity = k, while correlation immunity = k implies that Wf (α) = 0 for all α
with 1 ≤ wt(α) ≤ k. A Boolean function to be employed in a symmetric cipher
must be of high algebraic degree, high non-linearity and optimal algebraic immu-
nity. High algebraic degree offers resistance to the Berlekamp-Massey attack [21],
high non-linearity resists fast correlation attacks [22, 23], while high algebraic
immunity is a necessary but not sufficient condition to counter algebraic and fast
algebraic attacks [1–7]. Therefore obtaining functions with maximum algebraic
degree (n− 1) for a balanced boolean function, optimal algebraic immunity �n2 �
and highest possible non-linearity is essential.

2.2 The Carlet-Feng Infinite Class of Boolean Functions

We now describe the infinite class of balanced Boolean functions with high al-
gebraic degree, optimal algebraic immunity, good immunity to fast algebraic
attacks and good nonlinearity as proposed in [14] by C. Carlet and K. Feng. Let
α εFn

2 be the primitive element of Fn
2 . Then Boolean function f from Fn

2 to F2 for

number of variables n whose support set is supp(f) =
{
0, 1, α, α2, ..., α2(n−1)−2

}
has optimal algebraic immunity i.e.�n2 �. The algebraic degree of f is (n− 1) and
it is balanced. Furthermore the non-linearity of f is given by

nl(f) = 2(n−1) +
2

n
2 + 1

π
ln

(
π

4(2n − 1)

)
− 1 ≈ 2(n−1) − 2 ln 2

π
n2

n
2 (6)

The mathematical proofs of the above are presented in [14]. It is mentioned that
these functions, owing to their high algebraic degree, optimal algebraic immunity
and good non-linearity, behave well against fast correlation attacks [22, 23], alge-
braic attacks, fast algebraic attacks [1–7] and Berlekamp-Massey attack [21]. It
is also highlighted that before this construction [14], no infinite class of Boolean
functions with high algebraic degree, good algebraic immunity and good non-
linearity was presented. In [19], three more classes of Boolean functions were
proposed by X.Zeng, C.Carlet, J.Shan, L.Hu. In this case the powers of the
primitive element α εFn

2 to be included in the support of the function f were
chosen based on some pre-defined sets. While the method improved the Non-
Linearity of some constructed functions, the rest had the same Non-Linearity



Improvement in Non-linearity of Carlet-Feng Infinite Class 283

as in [14]. Hence these constructions did not guarantee a higher Non-Linearity
than [14] for all functions. Later in [15–18] more constructions were presented
to achieve Optimal Algebraic Immunity, good Non-Linearity and in some cases
1-resiliency. However, none of these attained significant increase in the non-
linearity of functions as compared to [14]. Since construction in [19] employs a
different criterion for selection of powers of the primitive element α εFn

2 than [14]
and achieves some functions with better non-linearity, we studied the behavior
of functions in detail. While [14] presents an easy selection criteria, the one used
in [19] is comparatively intricate. Subsequently, our focus was directed to using
the construction in [14] as the starting point and then changing the powers of
in the support set based on the affect on Walsh spectrum of the functions. This
led to the development of a relatively simple algorithm derived from the hill
climbing approach [20], based on the behavior of the Walsh spectrum of Boolean
functions. The algorithm improves in the non-linearity of functions while pre-
serving the algebraic degree and algebraic immunity. The non-linearity of most
of the functions constructed by [14] was improved using this algorithm, while
some could not be improved. Subsequently, a second algorithm was developed by
modifying the first one to improve the non-linearity of the remaining functions
as well. Therefore as compared to [19], which improves the non-linearity in case
of some functions as compared to [14], we achieve better non-linearity for all
functions.

3 Algorithms for Improving Non-linearity

3.1 The Behavior of Walsh Spectrum

Before we describe the algorithms developed, we first review the behavior of
the Walsh spectrum of a Boolean function and the effects caused by changes in
the truth table of a function. Recall that the Sylvester-Hadamard matrix, also
known as the Walsh-Hadamard matrix, is defined as follows

H0 = 1, H1 =

[
1 1
1 −1

]

Hn = Hn−1 ⊗H1 = Hn−1 ⊗
[
1 1
1 −1

]
=

[
Hn−1 Hn−1

Hn−1 −Hn−1

]
(7)

The symbol ⊗ denotes the usual Kronecker product. It is clear that Hn is a
matrix of order 2n. Using this matrix, the Walsh Transform of a function, also
called the Walsh-Hadamard transform, can be easily calculated [24]. Given the
sequence of a Boolean function Seq(f) = (y0, y1, , y2n−1), the Walsh spectrum
can be computed as

Hf = Hnx[y0, y1, , y2n−1] = Hn[y0, y1, , y2n−1]
T
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= Hn

⎡
⎢⎢⎢⎢⎢⎢⎣

y0
y1
.
.
.

y2n−1

⎤
⎥⎥⎥⎥⎥⎥⎦
=

[
A + B
A − B

]
(8)

where A =

⎡
⎢⎢⎢⎢⎢⎢⎣

y0
y1
.
.
.

y2n−1−1

⎤
⎥⎥⎥⎥⎥⎥⎦
and B =

⎡
⎢⎢⎢⎢⎢⎢⎣

y2n−1

y2n

.

.

.
y2n−1

⎤
⎥⎥⎥⎥⎥⎥⎦

Hence the Walsh spectrum can be calculated recursively by using Eqn.7. Let us
demonstrate the process by an example

Example 1. Let f be a 3-variable Boolean function with the truth table
f(x1, ..., x3) = (0, 1, 1, 1, 1, 0, 0, 0)T . Using the recursion described in Eqn.7, the
Walsh spectrum computation can be performed as follows

Seq(f) = (1, 1, 1, 1, 1, 1, 1, 1)T

Wf = H3

[
1 −1 −1 −1 −1 1 1 1

]T

Wf = H3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
−1
−1
−1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
A + B
A − B

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H2

⎡
⎢⎢⎣

1
−1
−1
−1

⎤
⎥⎥⎦ + H2

⎡
⎢⎢⎣
−1
1
1
1

⎤
⎥⎥⎦

H2

⎡
⎢⎢⎣

1
−1
−1
−1

⎤
⎥⎥⎦ − H2

⎡
⎢⎢⎣
−1
1
1
1

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣
H1

[
1
−1

]
+ H1

[−1
−1

]

H1

[
1
−1

]
− H1

[−1
−1

]
⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
H1

[−1
1

]
+ H1

[
1
1

]

H1

[−1
1

]
− H1

[
1
1

]
⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
H1

[
1
−1

]
+ H1

[−1
−1

]

H1

[
1
−1

]
− H1

[−1
−1

]
⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣
H1

[−1
1

]
+ H1

[
1
1

]

H1

[−1
1

]
− H1

[
1
1

]
⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

[
0
2

]
+

[−2
0

]
[
0
2

]
−

[−2
0

]
⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

[
0

−2
]
+

[
2
0

]
[

0
−2

]
−

[
2
0

]
⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

[
0
2

]
+

[−2
0

]
[
0
2

]
−

[−2
0

]
⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

[
0

−2
]
+

[
2
0

]
[

0
−2

]
−

[
2
0

]
⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣
−2
2
2
2

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

2
−2
−2
−2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
−2
2
2
2

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

2
−2
−2
−2

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
−4
4
4
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now, we observe that a single bit change in the truth table of the function f
changes the Seq(f ) either from 1 to 1 or vice versa. Hence the Walsh spectrum
values will either be unaffected or would increase/decrease by a value of 2. This
affect is independent to the number of values since for larger variables, only the
number of Walsh spectrum values changed would differ, but the deviation would
always by ±2. Hence according to Eqn.4, the non-linearity of the function is
increased or decreased by a value 1 with a single bit change in the truth table.
Therefore, if suitable element of support set of the function is interchanged with
the set of roots, that is, two suitable values in the truth table are swapped; the
maximum coefficients in the Walsh spectrum is reduced by 4. Resultantly, the
non-linearity of the function can be increased by a value of 2.

3.2 Algorithm 1

Let us fix some notations before presenting the algorithms. The array TT() holds
the truth table of the Boolean Function constructed using [14]. ITT() holds the
truth table of the improved function. Walsh() refers to the routine that calculates
the Walsh spectrum of the Boolean function from its truth table representation.
The algorithm is presented below

Walsh(TT())
maxWalsh = max |Walsh(TT ()) |
copy TT() → ITT()
LastCount = 0
ReRun:
Count = LastCount + 1
If Count < (2n − 1) then {

For i = αcount to α2(n−1)−2{
ITT(i) = 0
LastCount = i
Walsh(ITT())
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maxWalsh2 = max |Walsh(ITT ()) |
If maxWalsh2 < maxWalsh then exit For
Else ITT(i) = TT(i)

Next i
}
If maxWalsh2 ≥ maxWalsh then GoTo Skipj:

For j = 2(n−1)−1to2
n−2{

ITT(j) = 1
Walsh(ITT())
maxWalsh3 = max |Walsh(ITT ()) |

If maxWalsh3 < maxWalsh2 then exit For
Else ITT(j) = TT(j)

Next j
}
If maxWalsh 3 = maxWalsh - 4 then output ”Function Improved”
Else GoTo ReRun:

Skipj:
}
If maxWalsh2 ≥ maxWalsh or maxWalsh3 > maxWalsh - 4 then output
”Function could not be improved” and exit

It is worth mentioning here that in case of hill climbing algorithm [20], pairs of
truth table values are swapped. In contrast, Algorithm 1 changes an element of
the support set to a root and determines its suitability based on change in the
Walsh spectrum instead of searching all possible pair swaps. If the maximum
Walsh value is reduced, it keeps this change and looks for a suitable change
of a root to the support set. Once the suitable root to support swap is found,
the maximum Walsh value is reduced by 4 and the non-linearity of the function
improves by 2. This reduces the number of steps since the swap occurs only if the
first change is suitable to increase the non-linearity. The support to root swap
is handled in the loop for variable “i” and the loop for “j” handles the root to
support swap to complete the improvement in non-linearity. In case improvement
is not achieved once a support to root swap is selected, the algorithm is re-run
by incrementing the “LastCount” variable within the for loop for “i” so that the
next suitable support to root swap is selected.

3.3 Algorithm 2

Algorithm 2 is an iterative application of Algorithm 1. However, its also different
to Algorithm 1 in the sense that it accepts a change in the truth table even if
the maximum value of Walsh spectrum is not decreased, but the number of
maximum Walsh values is decreased in the intermediate steps. The maximum
Walsh value is ultimately decreased in the final iteration (the non-linearity of
the function was improved in at the most 4 iterations in all cases) increasing
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the non-linearity of the function by 2 in similar manner as explained in case of
Algorith 1 in the preceeding paragraph. The algorithm is presented below

Walsh(TT())
maxWalsh = max |Walsh(TT ()) |
nmaxWalsh = # maxWalsh
copy TT() → ITT()
LastCount = 0
Count2 = 1

ReRun:
Count = LastCount + 1
If Count < (2n − 1) then{

While Count2 ≤ 3{

For i = αcount to α2(n−1)−2{
ITT(i) = 0
LastCount = i
Walsh(ITT())
maxWalsh2 = max |Walsh(ITT ()) |
nmaxWalsh2 = # maxWalsh2

If maxWalsh2<maxWalsh or nmaxWalsh2 < nmaxWalsh then
Count2 +=1 and exit For
Else ITT(i) = TT(i)

Next i
}
If maxWalsh2 ≥ maxWalsh then GoTo Skipj:

For j = 2(n−1)−1to2
n−2 {

ITT(j) = 1
Walsh(ITT())
maxWalsh3 = max |Walsh(ITT ()) |
nmaxWalsh3 = # maxWalsh3

If maxWalsh3 < maxWalsh2 or nmaxWalsh3 < nmaxWalsh2 then
Count2 +=1 and exit For
Else ITT(j) = TT(j)

Next j
}
If maxWalsh 3 = maxWalsh - 4 then output ”Function Improved”
Else GoTo ReRun:

Skipj:
}
If maxWalsh2 ≥ maxWalsh or maxWalsh3 > maxWalsh - 4 then output
”Function could not be improved” and exit
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4 Advantages Obtained

By employing Algorithms 1 and 2, the non-linearity of all the functions con-
structed using Carlet-Feng infinite class of Boolean functions [14] can be im-
proved by at least 2 for number of variables n ≥ 8. Additionally the algorithms
preserve the balanced-ness, maximal algebraic degree and optimal algebraic im-
munity of the functions. Table 1 and 2 list some selected results for n = 8 to
demonstrate the improvement in non-linearity for Algorithm 1 and 2 respectively,
although all defining polynomials and primitive elements have been practically
verified for 8 ≤ n ≤ 11. Some results for n = 9, 10 and 11 are included in
Appendix A, B and C respectively for reference.

Another significant advantage of the method is that the swapping of support
set element with the root resulting in improvement in non-linearity of the func-
tions is not unique, i.e more than one such pairs exist. Resultantly, whilst there
exists only one function for a fixed defining polynomial and a fixed primitive el-
ement in the infinite class [14], more than one function with higher non-linearity
can be obtained using algorithm 1 or 2 by just changing the value of variable
“LastCount”. Same is demonstrated by some examples presented in Table 3 for
n = 8, although it has been practically verified for all values.

Table 1. Comparison of non-linearities of Carlet-Feng infinite class functions and our
improved functions for n = 8 by Algorithm 1

Defining
Polynomial
(Integer
value)

Primitive
element
(Integer
value)

Non-
linearity
of function
in [14]

Elements
swapped
(root↔support)

Non-linearity
of improved
function

285 2 112 α104 ↔ α230 114

299 128 112 α66 ↔ α147 114

301 57 112 α101 ↔ α233 114

333 16 112 α87 ↔ α241 114

351 4 112 α1 ↔ α238 114

355 26 112 α94 ↔ α221 114

357 101 112 α74 ↔ α145 114

361 119 112 α21 ↔ α200 114

369 47 112 α20 ↔ α228 114

391 61 112 α109 ↔ α241 114

397 5 112 α17 ↔ α143 114

425 185 112 α105 ↔ α181 114

451 220 112 α32 ↔ α160 114

463 97 112 α54 ↔ α253 114

487 187 112 α65 ↔ α198 114

501 10 112 α46 ↔ α137 114
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Table 2. Comparison of non-linearities of Carlet-Feng infinite class functions and our
improved functions for n = 8 by Algorithm 2

Defining
Polynomial
(Integer
value)

Primitive
element
(Integer
value)

Non-
linearity
of function
in [14]

Iterations
(root↔support)

Non-linearity
of improved
function

301 2 108 1st α54 ↔ α226 114

2nd α108 ↔ α245

3rd α75 ↔ α251

4th α33 ↔ α202

357 2 112 1st α17 ↔ α253 114

2nd α16 ↔ α165

425 2 112 1st α81 ↔ α241 114

2nd α82 ↔ α210

3rd α83 ↔ α250

Table 3. Different improved functions by our method from the same parent function
in [14]

Defining
Polynomial
(Integer
value)

Primitive
element
(Integer
value)

Non-
linearity
of function
in [14]

Different options
for swapping ele-
ments

Non-linearity
of improved
function

285 2 112 (i) α104 ↔ α230 114

(ii) α36 ↔ α247 114

(iii) α106 ↔ α153 114

351 4 112 (i) α32 ↔ α160 114

(ii) α107 ↔ α238 114

(iii) α54 ↔ α234 114

369 47 112 (i) α20 ↔ α228 114

(ii) α5 ↔ α220 114

(iii) α31 ↔ α228 114

451 220 112 (i) α20 ↔ α228 114

(ii) α101 ↔ α233 114

(iii) α126 ↔ α235 114

501 10 112 (i) α46 ↔ α137 114

(ii) α51 ↔ α254 114

(iii) α58 ↔ α136 114
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5 Summarized Results

The devised algorithms were implemented in MAGMA computational algebra
system for 8 ≤ n ≤ 11 and all the functions belonging to Carlet-Feng infinite
class of Boolean functions [14] were improved using these. Majority of functions
were improved using Algorithm 1 by a single pair swap (an element from the
support set with a root). The functions that could not be improved by Algorithm
1 were improved by Algorithm 2 within at the most four pair swaps. Table 4
demonstrates a comparison of non-linearities of the improved functions with
their parent functions in [14] for 8 ≤ n ≤ 11.

Table 4. Comparison of properties of functions in [14] and our improved functions

n Degree
fCarlet−Feng

AI
fCarlet−Feng

Non-
linearity
fCarlet−Feng

Degree
fImproved

AI
fImproved

Non-
linearity
fImproved

8 7 4 112 7 4 114

9 8 5 232 8 5 234

10 9 5 478 9 5 480

11 10 6 980 10 6 982

Note: The values of fCarlet−Feng have been taken from [14]. The non-linearity
values are average, nl(fImproved) = (nl(fCarlet−Feng) + 2) in all cases.

It was mentioned in [14], the product of the constructed functions with any
linear functions (f ∗ l) reduces the degree of the resultant functions to at most
n − 2 in case of even number of variables “n” and at most n − 1 in case of
odd “n”. Hence the functions do not fall in the worst case or next to worst
case resistance to algebraic and fast algebraic attacks [25]. Similar analysis was
performed on the functions improved by Algorithm 1 and 2 for 8 ≤ n ≤ 10
and it was ascertained that the improved functions offer identical behavior to
the parent functions when the product with the set of all linear functions was
obtained. Results of the analysis are presented in Table 5.

Table 5. Comparison of properties of functions in [14] and our improved functions

n Degree
fImproved

Degree
fImproved ∗ l

8 7 ≥6

9 8 ≥8

10 9 ≥8
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6 Conclusion

An effective and efficient method of improving non-linearity of Carlet-Feng infi-
nite class of Boolean functions has been developed. The two algorithms devised
have been derived from genetic hill climbing algorithm. Not only do these in-
crease the non-linearity of the parent functions but also preserve other crypto-
graphic properties including maximal algebraic degree for balanced functions,
optimal algebraic immunity and good resistance to algebraic and fast algebraic
attacks as shown in practical results presented. Moreover, the method also in-
creases the total number of functions that can be obtained for each number of
variables, whilst a particular defining polynomial and primitive element is fixed.
The algorithms have been implemented practically using MAGMA and results
presented verify the efficacy of proposed method.

Acknowledgements. We sincerely thank all the anonymous reviewers for their
valuable feedback that resulted in overall improvement of this research work.
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Appendix A: Some Results for n = 9

Table 6. Comparison of non-linearities of Carlet-Feng infinite class functions and our
improved functions

Defining
Polynomial
(Integer
value)

Primitive
element
(Integer
value)

Non-
linearity
of function
in [14]

Elements
swapped
(root↔support)

Non-linearity
of improved
function

529 23 232 α1 ↔ α470 234

539 10 234 α96 ↔ α355 236

647 2 234 α220 ↔ α417 236

661 17 234 α152 ↔ α335 236

731 64 232 α254 ↔ α505 234

847 32 234 α27 ↔ α494 236

859 197 232 α182 ↔ α441 234

949 219 232 α5 ↔ α260 234

Table 7. Different improved functions by our method from the same parent function
in [14]

Defining
Polynomial
(Integer
value)

Primitive
element
(Integer
value)

Non-
linearity
of function
in [14]

Different options
for swapping ele-
ments

Non-linearity
of improved
function

529 3 232 (i) α1 ↔ α470 234

(ii) α201 ↔ α343 234

(iii) α5 ↔ α470 234

731 64 232 (i) α254 ↔ α505 234

(ii) α184 ↔ α506 234

(iii) α249 ↔ α506 234

901 386 232 (i) α241 ↔ α261 234

(ii) α254 ↔ α259 234

(iii) α144 ↔ α325 234
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Appendix B: Some Results for n = 10

Table 8. Comparison of non-linearities of Carlet-Feng infinite class functions and our
improved functions

Defining
Polynomial
(Integer
value)

Primitive
element
(Integer
value)

Non-
linearity
of function
in [14]

Elements
swapped
(root↔support)

Non-linearity
of improved
function

1033 2 478 α3 ↔ α571 480

1051 16 480 α12 ↔ α856 482

1163 399 480 α367 ↔ α1007 482

1239 2 478 α92 ↔ α945 480

1305 903 478 α72 ↔ α815 480

1347 32 478 α205 ↔ α863 480

1431 4 478 α392 ↔ α582 480

2011 16 482 α1 ↔ α630 484

Table 9. Different improved functions by our method from the same parent function
in [14]

Defining
Polynomial
(Integer
value)

Primitive
element
(Integer
value)

Non-
linearity
of function
in [14]

Different options
for swapping ele-
ments

Non-linearity
of improved
function

1033 2 478 (i) α3 ↔ α571 480

(ii) α5 ↔ α761 480

(iii) α6 ↔ α853 480

1305 903 478 (i) α72 ↔ α815 480

(ii) α170 ↔ α793 480

(iii) α202 ↔ α642 480

1431 4 478 (i) α392 ↔ α582 480

(ii) α501 ↔ α749 480

(iii) α27 ↔ α590 480
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Appendix C: Some Results for n = 11

Table 10. Comparison of non-linearities of Carlet-Feng infinite class functions and our
improved functions

Defining
Polynomial
(Integer
value)

Primitive
element
(Integer
value)

Non-
linearity
of function
in [14]

Elements
swapped
(root↔support)

Non-linearity
of improved
function

2053 6 982 α631 ↔ α1584 984

2071 2044 982 α467 ↔ α1886 984

2119 7 980 α545 ↔ α1352 982

2147 16 982 α430 ↔ α1531 984

2421 2 982 α1 ↔ α1122 984

2955 7 986 α529 ↔ α1375 988

3573 596 986 α141 ↔ α1388 988

3851 746 982 α473 ↔ α1057 984

Table 11. Different improved functions by our method from the same parent function
in [14]

Defining
Polynomial
(Integer
value)

Primitive
element
(Integer
value)

Non-
linearity
of function
in [14]

Different options
for swapping ele-
ments

Non-linearity
of improved
function

2119 7 980 (i) α545 ↔ α1352 982

(ii) α316 ↔ α1764 982

(iii) α162 ↔ α1862 982

2421 2 982 (i) α1 ↔ α1122 984

(ii) α501 ↔ α1025 984

(iii) α985 ↔ α1253 984

3851 746 982 (i) α473 ↔ α1057 984

(ii) α650 ↔ α1677 984

(iii) α857 ↔ α2012 984
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Abstract. Substitution Box (S-box) is usually the most complex module in some
block ciphers. Some prominent ciphers such as AES and Camellia use S-boxes,
which are affine equivalents of a multiplicative inverse in small finite fields. This
manuscript describes mathematical representations of the Camellia S-box by us-
ing composite fields such as polynomial, normal or mixed. An optimized hard-
ware implementation typically aims to reduce the number of gates to be used. Our
theoretical design with composite normal bases allows saving gates in the critical
path by using 19 XOR gates, 4 AND gates and 2 NOT gates. With composite
mixed bases, the critical path has 2 XOR gates more than the representation with
composite normal bases. Redundancies found in the affine transformation matrix
that form the composite fields were eliminated. For mixed bases, new Algebraic
Normal Form identities were obtained to compute the inner composite multi-
plicative inverse, reducing the critical path of the complete implementation of the
Camellia S-box. These constructions were translated into transistor-gate architec-
tures for hardware representations by using Electric VLSI [29] under MOSIS C5
process [17], [18], thus obtaining the corresponding schematic models.

Keywords: S-box, composite fields, number of gates, critical path.

1 Introduction

Nowadays, there is sensitive information that might be conveyed through different
unreliable environments. Then, it is desirable to protect such information against eaves-
dropping or impersonation. Cryptography has become in an invaluable tool to counter-
act these issues. Nevertheless, several hardware implementations of ciphers generate a
huge area usage, power consumption and processing time. These aspects describe the
basic footprint of a VLSI implementation. Techniques such as Look-Up Tables (LUTs)
or the use of public key cryptography are not possible in environments where a small
footprint is mandatory (wireless, near field communication, RFID). Thus, a solution is
to use block ciphers. However, some block ciphers have a footprint that cannot be fitted
in constrained environments [7]. Therefore, to find mathematical representations of the
ciphers that help saving footprint is needed. These representations lead to have different
ways of implementing a component of the VLSI architecture. Some representations can
be more feasible than others depending on the area usage and processing time. For ins-
tance, a particular aspect to consider is the critical path (the largest number of gates

J. Pieprzyk, A.-R. Sadeghi, and M. Manulis (Eds.): CANS 2012, LNCS 7712, pp. 296–309, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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that an input signal travels from the input to the output of a circuit [8]); if an imple-
mentation has a large critical path, it will have a negative impact on the processing time
even though such implementation contains the best area usage. Thus, a good trade-off
should be found among all aspects that form the footprint of a VLSI implementation in
a particular environment.

This manuscript is formed by the following sections. In Sect. 2, composite bases are
described. In Sect. 3, previous work with composite fields is treated. In Sect. 4, a brief
description of the Camellia S-box is given [1]. In Sect. 5, results and comparison tables
that show the number of gates used to implement the Camellia S-box are presented. In
Sect. 6, the conclusions of this work are summarized.

2 Mathematical Background

An octet can be represented as a vector of bits b = [b0 b1 b2 b3 b4 b5 b6 b7],
bi ∈ GF (2), i ∈ {0, ..., 7} (See notation used by Canright [4] and Nogami et al. [34]).
A way of representingb in the composite fieldGF (((22)2)2) can be by using composite
polynomial bases as b = b(x, y, w), where b(x, y, w) = [(b0 + b1w) + (b2 + b3w)y] +
[(b4 + b5w) + (b6 + b7w)y]; or by using composite normal bases as b = b(X,Y,W ),
where b(X,Y,W ) = [(b0W +b1W

2)Y +(b2W +b3W
2)Y 4]X+[(b4W +b5W

2)Y +
(b6W + b7W )Y 4]X16. An example with mixed bases can be written as b(X,Y,w) =
[(b0 + b1w)Y + (b2 + b3w)Y

4]X + [(b4 + b5w)Y + (b6 + b7w)Y
4]X16. Lowercase

and uppercase letters represent composite polynomial and normal bases, respectively.
We use the fields {1 + x,X +X16} ∈ GF (((22)2)2), {1 + y, Y + Y 4} ∈ GF ((22)2)
and {1 + w,W + W 2} ∈ GF (22). With these bases, there are eight possible repre-
sentations: PPP, PPN, PNP, PNN, NPP, NPN, NNP, NNN, P meaning polynomial basis
and N meaning normal basis. The order of the acronyms indicates how a composite
field is formed. For instance, PPP refers to b(x, y, w), NNN refers to b(X,Y,W ) and
b(X,Y,w) refers to NNP. Nevertheless, there are 432 different composite field repre-
sentations [4]. For instance, X16 +1 instead of X16+X , Y 8 + Y 2 instead of Y 4 + Y .
Being f(z) defined in GF (28), a Boolean matrix of dimension 8x8 is generated by a
root β = b that nulls f(z). Thus

M = [bT
0 bT

1 bT
2 bT

3 bT
4 bT

5 bT
6 bT

7 ] (1)

Moreover, there are Mj , j ∈ {0, ..., 7} different Boolean matrix transformations, be-
cause f(z) has eight different roots according to the Fundamental Algebra Theorem
[23], [16]. The reader should take care of the composite field where the root is repre-
sented, because the octet representations change. Additionally, let h and l the subindexes
that indicate the most significant and the least significant component of the composite
field, respectively; τ , ν, Δ, αh, αl, bh, bl ∈ GF ((22)2). The multiplicative inverse can
be computed as [4]

– Polynomial bases representation

Δ = (αh)
2ν + (αhτ + αl)αl (2)

bl = (αhτ + αl)Δ
−1 (3)

bh = αhΔ
−1 (4)
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– Normal bases representation

Δ = αhαlτ
2 + (αh + αl)

2ν (5)

bl = αhΔ
−1 (6)

bh = αlΔ
−1 (7)

Then, the complete operation can be represented as

α = Ma (8)

γ = α−1 (9)

b = M−1γ (10)

where the Boolean inverse matrix M−1 is applied to reverse the transformation.
Some S-boxes are constructed by using the multiplicative inverse on finite fields

and then included in block ciphers [15]. However, this operation is complex for hard-
ware. A solution to minimize its complexity is by using composite fields, where the
multiplicative inverse can be split into different small and simultaneous operations as
shown in (2-4) and (5-7). Each operation can be expressed recursively until the sim-
plest field GF (22). It is important to highlight that the rules given above can also be
applied to GF ((24)2), but now the simplest field is GF (24). Additionally, there are
only two levels instead of three levels. For instance, b can be represented as b(x, y) =
[b0+ b1y+ b2y

2+ b3y
3]+ [b4+ b5y+(b6y

2+ b7y
3]x (PP representation) or b(X, y) =

[b0 + b1y + b2y
2 + b3y

3]X + [b4 + b5y + (b6y
2 + b7y

3]X16 (NP representation).
On the other hand, the recursive versions of the operations for composite fields can

be combined when composite mixed bases are used. Nevertheless, the properties for
each base should be preserved when they are applied on each level.

3 Related Studies

Mastrovito provided several hardware architectures for optimization purposes [14]. Paar
proposed the use of composite fields to minimize the complexity of operations in a finite
field. Paar found optimization algorithms for eliminating redundancy in isomorphic ma-
trix transformations [23]. Oloffson generalized Paar’s and Mastrovito’s studies related
to optimization of the multiplicative inverse [22]. Boyar et al. presented a new technique
and additional representations of AES S-box [3]. That technique is based on minimizing
Hamming Boolean distance among a set of Boolean functions, thus obtaining the most
compact representation of AES S-box known in the open literature. However, the criti-
cal path is increased. Hence, Boyar et al. provided a modification of Paar’s technique to
maintain an acceptable trade-off between the number of gates and the critical path [10].
Such technique is denoted as Low-Deep-Greedy (LDG) technique. On the other hand,
different algorithms have been proposed to look for roots on irreducible polynomials
because Paar’s technique is only applicable to primitive polynomials [26], [36].

Rijmen, one of the designers of Rijndael (now AES), suggested the use of composite
fields for optimization purposes [25]. This paradigm was used by Satoh et al. on AES
by mapping GF (28) )→ GF (((22)2)2) [28] and Camellia by mapping GF (28) )→
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GF ((24)2) [27]. At least for the knowledge of the authors, this is the unique available
reference that describes a way to use the S-box of Camellia by using composite fields.
Some examples of this claim can be found in [32], [33] and [9]. Barkan et al. gave other
ways to represent AES S-box by using dual bases and also by using different irreducible
polynomials [2]. Similar efforts were performed by Lu [12], Lyu [13] and Chen et al.
[11]. Wolkerstorfer et al. provided additional ways to construct AES S-box by mapping
GF (28) )→ GF ((24)2). They simplified the expressions for Δ−1 by using Algebraic
Normal Forms (ANFs) [30]. Additional representations for Δ−1 were also performed
by Zhang et al. [35], [36] and Wong et al. [31].

Mentens et al. exploited the eight roots on the irreducible polynomial of AES by
mapping GF (28) )→ GF (((22)2)2), where the authors chose those matrices with low
Hamming weight [16]. Canright published a comprehensive and detailed study on the
S-box of AES. He did his studies by using all possible available bases: polynomial,
normal and mixed by mapping GF (28) )→ GF (((22)2)2). He proved that the complete
number of available combinations among composite bases representations is 432, being
the best case those represented by normal bases for all levels [6,5,4]. Nikova et al.
showed a way to extend Canright’s work by mappingGF (28) )→ GF ((24)2) on normal
bases. The authors described the ways to represent Δ−1 in GF (24) by using ANFs and
implementing these ways in MOSIS technologies [20]. Nogami et al. looked for the best
isomorphic representation under mixture bases, with low Hamming weight and small
critical path. These constructions can be achieved by mixing polynomial and normal
operation properties at the same composite field level [21], [34]. Nogami et al.’s way of
representing composite field operations is different than the ones reported by Canright.

4 Mathematical Representation of the S-Box of Camellia

Camellia has 4 different S-boxes [1], but the last 3 S-boxes are derived from the first
S-box as shown in the identities listed in (11-14). Letting a and b the input and output
of the Camellia S-box, then

b = S1(a) (11)

S2(a) = [b7 b0 b1 b2 b3 b4 b5 b6] (12)

S3(a) = [b1 b2 b3 b4 b5 b6 b7 b0] (13)

S4(a) = S1([a7 a0 a1 a2 a3 a4 a5 a6]) (14)

Each S-box is formed by 4 components (see Fig.1): a Boolean addition with ci; a
transformation by F; a composite inverse operation and a transformation by H plus
a Boolean addition with co.

Camellia primitive polynomial is f(z) = z8 + z6 + z5 + z3 + 1 and the composite
polynomial is q(w) = w4 + w + 1 [1]. Satoh et al. specified the composite polynomial
p(x) = x2 + τw + ν and their corresponding values for τ, ν ∈ GF (24) [27].
They found that the corresponding values for each constant is τ = 1 = [1 0 0 0] and
ν = 1 + w3 = [1 0 0 1]. F and H contain the isomorphic matrix M and its inverse
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aa = a+ ci ac = g{ab}ab = Faa b = Hac + co ba

Fig. 1. Simplified S-box architecture of Camellia

M−1, respectively. M and M−1 were obtained by using p(x), q(w) and the constants
τ and ν. The S-box can be described as

b = H[compositeinverse(F(a+ ci))] + co ∈ GF ((24)2) (15)

where the values of the constants are ci = [1 0 1 0 0 0 1 1] and co = [0 1 1 1 0 1 1 0].
It is needed to obtain equivalent matrices Ho and Fo in GF (28). The equations to
obtain F and H are F = MFo and H = HoM

−1. Thus, Ho and Fo can be
computed as

Fo = M−1F (16)

Ho = HM (17)

Descriptions given for Fo and Ho were tested to obtain the first and the fourth S-boxes
of Camellia, as shown in (16-17). The second and the third S-boxes of Camellia are
trivial to be obtained. Therefore, these S-boxes were omitted when experiments were
carried out to obtain new matrices F and H by using Ho and Fo.

5 Results and Comparisons

Paar’s matrix generation algorithm [23] and concepts given in Sect. 2 were applied to
compute new representations of F and H. Those matrices with the fewer number of
ones were chosen (see Table 1) by using the criterion wt(F) + wt(H), where wt is
the Hamming weight . Variables τ, ν, T, N are represented in their decimal repre-
sentation, obtained from their binary representation. In similar ways to previous works
available in the literature, identities τ = 1, T = 1 were considered for normal and
mixed bases. For PPP representation, T �= 1, N = 1 were considered because an ac-
ceptable result is obtained. The same consideration was applied to PP representation for
τ = 2, ν = 2. Case based on Satoh et al. parameters is also included in the table. In
this work, S1(a) was optimized.

The results shown in Table 2 were obtained from each composite field. LDG tech-
nique provided the number of XOR gates and the critical path for F and H. The critical
path (cp) is computed by cp(U) = log2� (#ones(ui))�, where ui is the i-th row of
matrix U with the largest number of non-zero elements. This operation is applied to F
and H. For instance, cases 1 and 2 have only one row with 3 ones, so the longest criti-
cal path is � log2(3)� = 2. This value is consistent with values given in Table 2. LDG
technique provided automatically how many XOR gates are needed to implement F
and H. As an example, reductions for case 6 are shown in Appendix C. The best cases
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Table 1. Hamming weight of F and H

Case Field wt(F) wt(H) wt(F) + wt(H)

1 PP(β = 16, τ = 1, ν = 9), (Satoh et al. [27]) 17 17 34
2 PP(β = 144, τ = 2, ν = 2) 15 19 34
3 PPP(β = 17, τ = 1, ν = 5, T = 3, N = 1) 28 24 52
4 PPP(β = 16, τ = 1, ν = 8, T = 1, N = 3) 24 30 54
5 PPP(β = 17, τ = 1, ν = 15, T = 1, N = 2) 30 23 53
6 NNN(β = 60, τ = 15, ν = 14, T = 3, N = 2) 24 28 52
7 NNN(β = 195, τ = 15, ν = 14, T = 3, N = 2) 24 28 52
8 PNP(β = 86, τ = 5, ν = 2, T = 1, N = 2) 26 25 51
9 PNP(β = 89, τ = 5, ν = 8, T = 1, N = 2) 26 25 51
10 NPP(β = 1, τ = 1, ν = 8, T = 1, N = 3) 28 23 51
11 NPP(β = 16, τ = 1, ν = 8, T = 1, N = 3) 28 23 51
12 NP(β = 1, τ = 1, ν = 9) 23 17 40
13 NP(β = 16, τ = 1, ν = 9) 23 17 40

for mixed bases were found with (1 + x), (Y + Y 4), (1 + z) (PNP) and (X +X16),
(1 + y), (1 + z) (NPP). For all the tables shown in this manuscript, X means XOR, No
means NOT, A means AND, N means Normal and P means polynomial. Additionally,
XOR means to have two-input XOR gate, AND means to have two-input AND gate.

Table 2. Number of gates obtained by applying LDG technique

Case 1 2 3 4 5 6 7 8 9 10 11 12 13
# X F 8 7 13 11 13 13 13 11 11 13 13 12 12
cp(F) 2 1 3 3 3 2 2 3 3 3 3 2 2
# X H 8 9 12 12 12 13 13 12 12 11 11 9 9
cp(H) 2 2 3 3 3 3 3 3 3 3 3 2 2

For computing Δ−1, Wong et al. [31], and Wolkerstorfer et al. [30] identities were
considered. Wolkerstorfer et al.’s identities were applied to GF ((24)2) and such repre-
sentation is simplified in a straightforward way. Wong et al.’s identities were applied to
GF (((22)2)2). Nevertheless, we perform our own reductions. These identities can be
applied to NPP and PPP. Nevertheless, for PNP the ANF representations of Δ−1 are
expressed as shown in (18-21). Such identities can be implemented by using 12 XOR
and 8 AND gates.

x−1
0 = x2 + x1x3 + x0x2x3 + x1x2x3 (18)

x−1
1 = x2 + x0x2 + x1x2 + x3 + x1x2x3 (19)

x−1
2 = x0 + x0x1x2 + x1x3 + x0x1x3 (20)

x−1
3 = x0 + x1 + x0x2 + x0x3 + x0x1x3 (21)



302 A.F. Martı́nez-Herrera, J.C. Mex-Perera, and J.A. Nolazco-Flores

Identities listed in (18-21) were obtained by applying ANF transformation [24]

A0 = [1] (22)

An =

(
An−1 0
An−1 An−1

)
(23)

fj(x0, x1, x2, x3) = A4fj (24)

where fj , j ∈ {0, 1, 2, 3} is the truth table for each one of the outputs in Δ−1, A4 is a
16x16 matrix and fj(x0, x1, x2, x3), j ∈ {0, 1, 2, 3} is the ANF representation of the
Boolean function. Table 3 shows the number of gates and critical path to be used for
each representation of Δ−1. These results were obtained by looking for redundancies
on each ANF expression. For the purposes of this manuscript, our results were utilized
for implementing Δ−1. An example of the reduction of gates for Δ−1 is shown in
Appendix B.

Table 3. Comparison of the number of gates and critical path for Δ−1

Δ−1 Wong et al. Ours cp Wong et al. Ours
P - 18 X/10 A - 3 X/2 A

PP (T = 1, N = 2) 15 X/8 A 13 X/8 A 4 X/2 A 4 X/2 A
PP (T = 1, N = 3) 14 X/8 A 13 X/8 A 3 X/2 A 4 X/2 A
PP (T = 3, N = 1) 15 X/8 A 15 X/8 A 3 X/2 A 4 X/2 A
NN (T = 3, N = 2) 13 X/8 A 12 X/8 A 3 X/1 A 3 X/2 A
NP (T = 1, N = 2) - 12 X/8 A - 3 X/2 A

To obtain the complete quantity of gates, ci and co constants must be considered.
There are 4 non-zero elements in ci and 5 non-zero elements in co. Thus, there are 9
NOT gates. The total amount of gates and the complete critical path are shown in Table 4,

Table 4. Total amount of gates and cp for each case of the Camellia S-box

Case #Gates(F,ac,H) cp (F,ac,H)
1 89 X/58 A/9 No 2 X/1 No+ 11 X/4 A+2 X = 15 X/4 A/1 No
2 91 X/58 A/9 No 1 X/1 No+ 12 X/4 A+2 X/1 No = 15 X/4 A/2 No
3 108 X/56 A/9 No 3 X/1 No+ 14 X/4 A+3 X/1 No = 20 X/4 A/2 No
4 104 X/56 A/9 No 3 X/1 No+ 14 X/4 A+3 X/1 No = 20 X/4 A/2 No
5 107 X/56 A/9 No 3 X/1 No+ 14 X/4 A+3 X/1 No = 20 X/4 A/2 No
6 113 X/35 A/9 No 2 X/1 No+ 14 X/4 A+3 X/1 No = 19 X/4 A/2 No
7 113 X/35 A/9 No 2 X/1 No+ 14 X/4 A+3 X/1 N = 19 X/4 A/2 No
8 100 X/44 A/9 No 3 X/1 No+ 15 X/4 A+3 X/1 No = 21 X/4 A/2 No
9 100 X/44 A/9 No 3 X/1 No+ 15 X/4 A+3 X/1 No = 21 X/4 A/2 No

10 105 X/56 A/9 No 3 X/1 No+ 13 X/4 A+3 X/1 No = 19 X/4 A/2 No
11 105 X/56 A/9 No 3 X/1 No+ 13 X/4 A+3 X/1 No = 19 X/4 A/2 No
12 94 X/58 A/9 No 2 X/1 No+ 10 X/4 A+2 X/1 No = 14 X/4 A/2 No
13 94 X/58 A/9 No 2 X/1 No+ 10 X/4 A+2 X/1 No = 14 X/4 A/2 No
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where ac represents the composite inverse (see Fig. 1). An example of the method to
reduce gates on ac is shown in Appendix A.

For validation purposes, it is needed to provide an implementation by using a model
of transistor gates. Ahmad et al.’s 6T XOR gate model [19] was implemented on Electric
VLSI [29]. Ahmad et al.’s model is based on concatenated inverters with a feedback
stage. In addition, canonical 6T AND CMOS gate was also implemented [8]. MOSIS
C5 process was used with Vdd = 3.0V [18], [17]. Each 6T XOR gate has 3 PMOS and
3 NMOS transistors, each NOT gate has 1 PMOS and 1 NMOS transistors, and each 6T
AND gate has 3 PMOS and 3 NMOS transistors. Table 5 shows the number of PMOS
and NMOS transistors used for each case. For instance, case 1 uses 450 PMOS and 450
NMOS transistors.

Table 5. Number of transistors used for each Camellia S-box construction

Case 1 2 3 4 5 6-7 8-9 10-11 12-13
PMOS 450 456 501 489 498 453 441 492 465
NMOS 450 456 501 489 498 453 441 492 465

6 Conclusions

As seen in Table 4, Satoh et al.’s case uses fewer XOR gates (113 XOR-89 XOR=24
XOR) than cases 6 and 7, but cases 6 and 7 utilize fewer AND gates than Satoh et al.’s
case (58 AND - 35 AND = 23 AND). On the other hand, Satoh et al.’s case uses 15
XOR/4 AND /1 NOT gates in its critical path, while cases 6 and 7 utilize 19 XOR/4
AND /2 NOT gates. Cases 8 and 9 utilize 100 XOR/44 AND gates and 21 XOR/4
AND /2 NOT as the critical path. For three levels, the representation with all composite
normal bases is the nearest best case to Satoh et al.’s solution for the critical path with a
difference of 4 XOR/1 NOT gates, reducing the number of AND gates (23 AND gates
less) but increasing the number of XOR gates (24 XOR gates more). The best critical
path is achieved by the combination NP, with 14 XOR gates, 4 and gates and 2 NOT
gates. Compared to Satoh et al.’s case, this means to have 2 less equivalent NOT gates
(inverters) in the critical path. Considering the number of transistors to be used, cases 8
and 9 use the fewer number of transistors, with 441 PMOS and 441 NMOS transistors.

Satoh et al. wrote that the four S-boxes of Camellia can be implemented by using
256 equivalent NAND gates. They implemented Δ−1 by generating its corresponding
Sum-Of-Product representation [27]. For comparison purposes, here the ANF represen-
tation is considered for all the cases. Further optimization can be achieved by obtaining
AND gate factorization for non-linear terms. In addition, multiplication operation for
composite finite fields under normal and polynomial bases representation can be im-
proved to obtain fewer XOR and AND gates. The use of normal bases at the higher
level of the composite field representation reduces 1 XOR gate in the critical path, as it
can be seen for cases 3, 4, 5 against cases 10 and 11. In this work, S1(a) was optimized.
Each case shown in Table 4 was simulated in VHDL language to test the feasibility for
each construction. In addition, each construction was carried out on Electric VLSI un-
der MOSIS C5 process [18], [17]. As future work, the authors will work on the merge
of some block ciphers with S-boxes based on multiplicative inverse.
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sity, Linköping, Sweden (2002)

23. Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Galois Fields. Disser-
tation, Institute for Experimental Mathematics. Universität Essen, Essen (June1994)

24. Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts, R., Vandewalle, J.: Propagation
Characteristics of Boolean Functions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS,
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A Number of Logical Gates for ac

This Appendix describes the way to compute the number of gates and critical path for
each component with respect to ac in Fig. 1. Not considered means that such component
is not included in the critical path and twice means that the component appears twice in
the critical path, ssν means square-and-scale with ν and sτ means scale with τ .

For GF ((24)2), Table 6 summarizes how many XOR/AND gates and critical path
are needed for each component. Each sub-operation is given at GF (24). Our imple-
mentation of Δ−1 from Wolkerstorfer et al.’s identities [30] utilize 18 X/10 A gates and
3 X/2 A in the critical path. Multiplication operation MULT has the largest critical
path, so such component is considered for obtaining the complete critical path of the
system. For case 2, sτ (scale with τ ) is also considered in the critical path. For cases NP
12 and 13, the same sub-operations are applied. Nevertheless, only MULT and ADD
are considered in the critical path, as shown in (2-4).

For GF (((22)2)2), Table 7 summarizes how many XOR/AND gates and critical path
are needed for each component related to cases 3, 4, 5 , 6, 7, 10 and 11. mult, add and
scale are in GF (22), MULT , ssν , ADD, Δ−1 and inv are in GF ((22)2). ac is in
GF (((22)2)2). For polynomial bases, Δ−1 is implemented with 15 X/8 A gates and 4
X/2 A in the critical path. For normal bases, Δ−1 is implemented with 12 X/8 A gates
and 4 X/2 A in the critical path. Additionally in normal bases, swap means to exchange
the inputs, so it is a costless operation. Each operation can be deducted from (2-4)
and (5-7).

Table 6. Number of gates and cp for each operation in GF ((24)2)

Cases Operation # Components cp
1, 2, 12, 13 MULT 15 X/16 A 3 X/1 A
1, 12, 13 ssν 2 X/0 A 1 X/0 A (Not considered)

2 ssν 3 X/0 A 2 X/0 A (Not considered)
2 sτ 1 X/0 A 1 X/0 A

1, 2 ADD 4 X/0 A 1 X/0 A (Twice)
12, 13 ADD 4 X/0 A 1 X/0 A

1, 2, 12, 13 Δ−1 18 X/10 A 3 X/2 A
1 inv 43 X/26 A 8 X/3 A
2 inv 45 X/26 A 9 X/3 A

12, 13 inv 43 X/26 A 7 X/3 A
1 ac 73 X/58 A 11 X/4 A
2 ac 75 X/58 A 12 X/4 A

12, 13 ac 73 X/58 A 10 X/4 A
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Table 7. Number of gates and cp for each operation in GF (((22)2)2)

Cases Operation #Components cp
3, 4, 5, 10, 11 mult 3 X/4 A 2 X/1 A
3, 4, 5, 10, 11 scale 1 X/0 A 1 X/0 A (Not considered)
3, 4, 5, 10, 11 add 2 X/0 A 1 X/0 A (Twice)
3, 4, 5, 10, 11 MULT 19 X/16 A 4 X/1 A
3, 4, 10, 11 ssν 3 X/0 A 2 X/0 A (Not Considered)

5 ssν 4 X/0 A 2 X/0 A (Not Considered)
3, 4, 5 ADD 4 X/0 A 1 X/0 A (Twice)
10, 11 ADD 4 X/0 A 1 X/0 A

3 Δ−1 15 X/8 A 4 X/2 A
4, 5, 10, 11 Δ−1 13 X/8 A 4 X/2 A

3 inv 45 X/24 A 10 X/3 A
4 inv 43 X/24 A 10 X/3 A
5 inv 44 X/24 A 10 X/3 A

10, 11 inv 43 X/24 A 9 X/3 A
3 ac 83 X/56 A 14 X/4 A
4 ac 81 X/56 A 14 X/4 A
5 ac 82 X/56 A 14 X/4 A

10, 11 ac 81 X/56 A 13 X/4 A

6, 7 mult 4 X/3 A 2 X/1 A
6, 7 scale 1 X/0 A 1 X/0 A
6, 7 add 2 X/0 A 1 X/0 A (twice)
6, 7 swap 0 X/0 A 0 X/0 A
6, 7 ADD 4 X/0 A 1 X/0 A
6, 7 MULT 21 X/9 A 5 X/1 A
6, 7 ssν 4 X/0 A 2 X/0 A (Not considered)
6, 7 1Δ−1 12 X/8 A 3 X/2 A
6, 7 inv 45 X/17 A 9 X/3 A
6, 7 ac 87 X/35 A 14 X/4 A

Table 8. Number of gates and cp, cases 8 and 9

Cases Operation #Gates cp
8, 9 mult 3 X/4 A 2 X/1 A
8, 9 scale 1 X/0 A 1 X/0 A
8, 9 add 2 X/0 A 1 X/0 A (Twice)
8, 9 MULT 18 X/12 A 5 X/1 A
8, 9 ssν 3 X/0 A 2 X/0 A (Not considered)
8, 9 ADD 4 X/0 A 1 X/0 A (Twice)
8, 9 Δ−1 12 X/8 A 3 X/2 A
8, 9 inv 41 X/20 A 10 A/3 A
8, 9 ac 77 X/44 A 15 X/4 A
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For cases 8 and 9, (2-4) are considered, but normal operation properties are applied
in the second level and polynomial operations are applied at the lowest level. The cor-
responding results are summarized in Table 8.

B Number of Gates for Δ−1 in GF (((22)2)2) Normal Bases, with
T = 3, N = 2

The original equations are ([31])

x−1
0 = x2 + x0x3 + x1x3 + x0x2 + x1x2x3 (25)

x−1
1 = x2 + x3 + x0x3 + x1x3 + x0x2x3 (26)

x−1
2 = x0 + x1x2 + x1x3 + x0x2 + x0x1x3 (27)

x−1
3 = x0 + x1 + x1x2 + x1x3 + x0x1x2 (28)

Each term is considered as a single element. For each bit product, 8 AND gates are ob-
tained. The critical path for AND is equal to 2, because of the ternary terms. Equations
(25-28) can be written as

xa = (x2 + (x0x3 + x1x3)) (29)

xb = (x0 + (x1x2 + x1x3)) (30)

x−1
0 = xa + (x0x2 + x1x2x3) (31)

x−1
1 = xa + (x3 + x0x2x3) (32)

x−1
2 = xb + (x0x2 + x0x1x3) (33)

x−1
3 = xb + (x1 + x0x1x2) (34)

Counting the number of + in (29-34), 12 XOR gates are obtained. Each output contains
the same critical path, which is equal to 3 XOR gates.

C LDG Applied to F

Case 6: Normal GF ((22)2)2, β = 60, τ = 15, ν = 14, T = 3, N = 2

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 0 0 0 1
0 0 0 1 0 1 1 0
1 0 0 0 1 1 1 0
0 1 1 0 0 0 1 0
1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 0 1 0 1 0
1 0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 1 0 0 0
1 0 0 1 0 1 1 1
1 1 0 0 1 0 0 1
1 1 1 0 0 1 0 1
1 1 1 0 0 0 0 1
1 1 1 0 1 0 0 1
1 0 1 0 0 1 0 0
1 0 0 1 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(35)
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t8 = x2 + x5 = y5 (36)

t9 = x4 + x6 = y6 (37)

t10 = x0 + x5 (38)

t11 = x2 + x6 (39)

t12 = x0 + x1 (40)

t13 = x3 + x5 (41)

t14 = x3 + x7 (42)

t15 = x0 + t11 = (x0 + (x2 + x6)) = y4 (43)

t16 = x1 + t11 = (x1 + (x2 + x6)) = y3 (44)

t17 = x6 + t13 = (x6 + (x3 + x5)) = y1 (45)

t18 = x7 + t10 = (x7 + (x0 + x5)) = y7 (46)

t19 = t9 + t10 = (x4 + x6) + (x0 + x5) = y2 (47)

t20 = t12 + t14 = (x0 + x1) + (x3 + x7) = y0 (48)

cp(F) = � log2(4)� = 2, number of XOR gates for F is equal to 13.
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