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Abstract. The aim of this paper is to provide a new class of Petri
nets called parameterised fuzzy Petri nets. The new class extends the
generalised fuzzy Petri nets by introducing two parameterised families of
sums and products, which are supposed to function as substitute for the
t-norms and s-norms. The power and the usefulness of this model on the
base of parameterised fuzzy Petri nets application in the domain of train
traffic control are presented. The new model is more flexible than the
generalised one as in the former class the user has the chance to define
the parameterised input/output operators. The proposed model can be
used for knowledge representation and approximate reasoning in decision
support systems.

Keywords: parameterised fuzzy Petri nets, knowledge representation,
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1 Introduction

Petri nets serve as a graphical and mathematical modelling tool applicable to
many systems. The concept of a Petri net has its origin in C.A. Petri’s dis-
sertation [14]. In literature several extensions of Petri nets have been proposed
[6],[10]. Currently, Petri nets are gaining a growing interest among people both
in Artificial Intelligence due to its adequacy to represent the approximate rea-
soning process as a dynamic discrete event system [1]-[4],[9],[11]-[13],[15]-[17] as
well as in Molecular Biology as a modeling tool to describe complex processes
in developmental biology [5],[7].

In the paper [15], "Generalised Fuzzy P etri Nets (GFPNs)" for knowledge
representation and approximate reasoning have been proposed. This model is a
natural extension of fuzzy Petri nets introduced by C.G. Looney [9]. What is the
main modification of this approach is that t-norms and s-norms are introduced
to the model as substitutes of min and max operators. The latter ones generalise
naturally AND and OR logical operators with the Boolean values 0 and 1.

The aim of this paper is to further improve the generalised fuzzy Petri net
model. We propose a new class of Petri nets called "Parameterised Fuzzy P etri
Nets (PFPNs)". The main difference between GFPN model and the model
proposed here is that PFPN model accepts two parameterised families of sums
and products, which are supposed to function as substitute for the t-norms and
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s-norms. The new model is more flexible than the GFPN one as in the former
class the user has the chance to define the parameterised input/output operators.
There has been intensive research in the field of logical operators carried out for
the last three decades, which involves the development of parameterised families
of sums and products [8]. The preliminary results of real-life data experiments
using the proposed model are promising. In order to demonstrate the power and
the usefulness of this model, an application of parameterised fuzzy Petri nets in
the domain of train traffic control is presented.

The structure of this paper is as follows. Sect. 2 gives a brief introduction to
generalised fuzzy Petri nets. In Sect. 3 parameterised fuzzy Petri nets formalism
is presented. Sect. 4 describes an application of PFPN model in the domain of
train traffic control. In Sect. 5 conclusions are made.

2 Preliminaries

In this section, a definition of generalised fuzzy Petri nets [15] and basic notions
related to them are recalled.

Let [0, 1] be the closed interval of all real numbers from 0 to 1 (0 and 1 are
included).

A t-norm is defined as t : [0, 1]×[0, 1] → [0, 1] such that, for each a, b, c ∈ [0, 1]:
(1) it has 1 as the unit element, i.e., t(a, 1) = a; (2) it is monotone, i.e., if
a ≤ b then t(a, c) ≤ t(b, c); (3) it is commutative, i.e., t(a, b) = t(b, a); (4) it is
associative, i.e., t(t(a, b), c) = t(a, t(b, c)).

More relevant examples of t-norms are: the minimum t(a, b) = min(a, b) which
is the most widely used, the algebraic product t(a, b) = a ∗ b, the Łukasiewicz
t-norm t(a, b) = max(0, a + b − 1).

An s-norm (or a t-conorm) is defined as s : [0, 1] × [0, 1] → [0, 1] such that,
for each a, b, c ∈ [0, 1]: (1) it has 0 as the unit element, i.e., s(a, 0) = a, (2)
it is monotone, i.e., if a ≤ b then s(a, c) ≤ s(b, c), (3) it is commutative, i.e.,
s(a, b) = s(b, a), and (4) it is associative, i.e., s(s(a, b), c) = s(a, s(b, c)).

More relevant examples of s-norms are: the maximum s(a, b) = max(a, b)
which is the most widely used, the probabilistic sum s(a, b) = a + b − a ∗ b, the
Łukasiewicz s-norm s(a, b) = min(a + b, 1).

Definition 1. A generalised fuzzy Petri net (GFP-net) is a tuple N = (P, T, S,
I, O, α, β, γ, Op, δ, M0), where: (1) P = {p1, p2, . . . , pn} is a finite set of places,
n > 0; (2) T = {t1, t2, . . . , tm} is a finite set of transitions, m > 0; (3) S =
{s1, s2, . . . , sn} is a finite set of statements; the sets P , T , S are pairwise disjoint,
i.e., P ∩ T = P ∩ S = T ∩ S = ∅ and card(P ) = card(S); (4) I : T → 2P is
the input function; (5) O : T → 2P is the output function; (6) α : P → S is
the statement binding function; (7) β : T → [0, 1] is the truth degree function;
(8) γ : T → [0, 1] is the threshold function; (9) Op is a finite set of t-norms and
s-norms called the set of operators; (10) δ : T → Op × Op × Op is the operator
binding function; (11) M0 : P → [0, 1] is the initial marking, and 2P denotes a
family of all subsets of the set P .
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As for the graphical interpretation, places are denoted by circles and transitions
by rectangles. The places are the nodes describing states (a place is a partial
state) and the transitions depict the state changes. The function I describes the
oriented arcs connecting places with transitions. It represents, for each transition
t, fragments of the state in which the system has to be, before the state change
corresponding to t can occur. The function O describes the oriented arcs con-
necting transitions with places. It represents, for each transition t, the fragments
of the state in which the system will be after the occurrence of the state change
corresponding to t. If I(t) = {p} then a place p is called an input place of a
transition t. Moreover, if O(t) = {p′}, then a place p′ is called an output place of
t. The initial marking M0 is an initial distribution of tokens in the places. It can
be represented by a vector of dimension n of real numbers from [0, 1]. For p ∈ P ,
M0(p) is the token load of place p and represents a partial state of the system
described by a generalised fuzzy Petri net. This value can be interpreted as a
truth value of a statement s bound with a given place p by means of the binding
function α, i.e., α(p) = s. Pictorially, the tokens are represented by means of
the suitable real numbers placed inside the circles corresponding to appropriate
places. We assume that if a truth value of a statement attached to a given place
is equal to 0 then the token does not exist in the place. The number β(t) is
placed in a net picture over a transition t. Usually, this number is interpreted as
a truth degree of an implication corresponding to a given transition t [2],[3]. The
meaning of the threshold function γ is explained below. The operator binding
function δ connects transitions with triples of operators (opIn, opOut1, opOut2).
The first operator appearing in this triple is called the input operator, and two
remaining ones are called the output operators. The input operator opIn be-
longs to one of the classes: t-norms or s-norms. It concerns the way in which all
input places are connected to a given transition t (more precisely, statements
corresponding to those places). Moreover, the output operator: opOut1 belongs
to the class of t-norms and opOut2 belongs to the class of s-norms. Both of them
concern the way in which the marking is computed after firing the transition t.
This issue is explained more precisely below.

The generalised fuzzy Petri net dynamics defines how new markings are com-
puted from the current marking when transitions are fired (the corresponding
state change occurs). It describes the state changes of the decision support sys-
tem modelled by the generalised fuzzy Petri net.

Let N be a GFP -net. A marking of N is a function M : P → [0, 1].
Let N = (P, T, S, I, O, α, β, γ, Op, δ, M0) be a GFP -net, t ∈ T , I(t) =

{pi1, pi2, . . . , pik} be a set of input places for a transition t, β(t) be a value
of the truth degree function β corresponding to t and β(t) ∈ (0, 1] (0 is not
included), γ(t) be a value of threshold function γ corresponding to t, and M be
a marking of N . Moreover, let opIn be an input operator and opOut1, opOut2 be
output operators for the transition t.

A transition t ∈ T is enabled for marking M , if the value of input operator
opIn for the transition t is positive and greater than or equal to the value of
threshold function γ corresponding to t, i.e.,
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opIn(M(pi1), M(pi2), . . . , M(pik)) ≥ γ(t) > 0 for pij ∈ I(t), j = 1, . . . , k.

(Mode 1 ) If M is a marking of N enabling the transition t and M ′ the marking
derived from M by firing t, then for each p ∈ P :

M ′(p) =

⎧
⎪⎨

⎪⎩

0 if p ∈ I(t),
opOut2(opOut1(opIn(M(pi1), M(pi2), . . . , M(pik)), β(t)), M(p))
if p ∈ O(t),
M(p) otherwise.

In this mode, a procedure for computing the marking M ′ is as follows: (1) Tokens
from all input places of the transition t are removed (the first condition from M ′

definition). (2) Tokens in all output places of t are modified in the following way:
at first the value of input operator opIn for all input places of t is computed,
then the value of output operator opOut1 for the value of input operator opIn

and the value of truth degree function β(t) is determined, and finally, a value
corresponding to M ′(p) for each p ∈ O(p) is obtained as a result of output
operator opOut2 for the value of output operator opOut1 and the current marking
M(p) (the second condition from M ′ definition). (3) Tokens in the remaining
places of net N are not changed (the third condition from M ′ definition).
(Mode 2 ) If M is a marking of N enabling the transition t and M ′ the marking
derived from M by firing t, then for each p ∈ P :

M ′(p) =

⎧
⎨

⎩

opOut2(opOut1(opIn(M(pi1), M(pi2), . . . , M(pik)), β(t)), M(p)),
if p ∈ O(t),
M(p) otherwise.

The main difference in the definition of the marking M ′ presented above (Mode
2 ) concerns input places of the fired transition t. In Mode 1 tokens from all input
places of the fired transition t are removed (cf. the first definition condition of
Mode 1 ), whereas in Mode 2 all tokens from input places of the fired transition
t are copied (the second definition condition of Mode 2 ).

Example 1. Consider a generalised fuzzy Petri net in Figure 1. For the net we
have: the set of places P = {p1, p2, p3, p4, p5}, the set of transitions T = {t1, t2},
the set of statements S = {s1, s2, s3, s4, s5}, the input function I and the out-
put function O in the form: I(t1) = {p1, p2}, I(t2) = {p2, p3}, O(t1) = {p4},
O(t2) = {p5}. Moreover, there are: the statement binding function α : α(p1) =
s1, α(p2) = s2, α(p3) = s3, α(p4) = s4, α(p5) = s5, the truth degree function β:
β(t1) = 0.7, β(t2) = 0.8, the threshold function γ: γ(t1) = 0.4, γ(t2) = 0.3,
the set of operators Op = {max, min, ∗}, the operator binding function δ:
δ(t1) = (max, ∗, max), δ(t2) = (min, ∗, max), and the initial marking M0 =
(0.6, 0.4, 0.7, 0, 0).

Transitions t1 and t2 are enabled by the initial marking M0. Firing transition
t1 by the marking M0 according to Mode 1 transforms M0 to the marking M

′
=

(0, 0, 0.7, 0.42, 0) (Figure 2(a)), and firing transition t2 by the initial marking M0
according to Mode 2 results in the marking M” = (0.6, 0.4, 0.7, 0, 0.32) (Figure
2(b)).
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Fig. 1. A generalised fuzzy Petri net with the initial marking before firing the enabled
transitions t1 and t2

(a) (b)

Fig. 2. An illustration of a firing rule: (a) the marking after firing t1, where t2 is
disabled (Mode 1 ), (b) the marking after firing t2, where t1 and t2 are enabled (Mode
2 )

For more detailed information about GFPNs the reader is referred to [15] and
[16].

3 Parameterised Fuzzy Petri Nets

Now we are ready to define a new class of Petri net model called parameterised
fuzzy Petri nets. This model combines positive features of generalised fuzzy Petri
nets and additional possibilities of parameterised families of sums and products
[8]. This section presents the main contribution to the paper.

In Table 1 an exemplary list of parameterised families of sums and products
is presented. For more details one shall refer to [8].

It is easy to observe that the first pair of parameterised families of sums
S(a, b, v) and products T (a, b, v) from Table 1 for the parameter v = 1 correspond
to the probabilistic sum s(a, b) = a+ b−a∗ b and the algebraic product t(a, b) =
a ∗ b, respectively.
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Table 1. An exemplary list of parameterised families of sums and products

Sum S(a,b,v) Product T(a,b,v) Range v
a+b−(2−v)∗a∗b
1−(1−v)∗a∗b

a∗b
v+(1−v)∗(a+b−a∗b)

(0,∞)

1 − [max(0, (1 − a)−v + (1 − b)−v − 1)]
−1
v [max(0, a−v + b−v − 1)]

−1
v (−∞,∞)

a+b−a∗b−min(a,b,1−v)
max(1−a,1−b,v)

a∗b
max(a,b,v)

(0, 1)

1 − logv[1 + (v1−a−1)(v1−b−1)
v−1

logv[1 + (va−1)(vb−1)
v−1

(0,∞)

min[1, (av + bv)
1
v 1 − min[1, ((1 − a)v + (1 − b)v)

1
v ] (0,∞)

1

1+[( 1
a
−1)−v+( 1

b
−1)−v ]

−1
v

1

1+[( 1
a
−1)v+( 1

b
−1)v ]

1
v

(0,∞)

Definition 2. A parameterised fuzzy Petri net (PFP-net) is a tuple N ′ = (P, T ,
S, I, O, α, β, γ, Op, δ, M0), where (1) P, T, S, I, O, α, β, γ, δ, M0 have the same
meaning as in Definition 1, and (2) Op is a finite set of parameterised families
of sums and products called the set of parameterised operators.

The behaviour of parameterised fuzzy Petri nets is defined in an analogous way
as for the case of generalised fuzzy Petri nets. The main difference between these
two models is that for a parameterised fuzzy Petri net instead of a concrete t-
norm and s-norm we take a suitable pair of parameterised families of sums and
products.

Let N ′ be a PFP -net. A marking of N ′ is a function M : P → [0, 1].
Let N ′ = (P, T, S, I, O, α, β, γ, Op, δ, M0) be a PFP -net, t ∈ T , I(t) =

{pi1, pi2, . . . , pik} be a set of input places for a transition t, β(t) be a value
of the truth degree function β corresponding to t and β(t) ∈ (0, 1], γ(t) be a
value of threshold function γ corresponding to t, M be a marking of N ′, and v
be a parameter value for a parameterised family of sums and products. More-
over, let opv

In be an input parameterised operator and opv
Out1, opv

Out2 be output
parameterised operators with a parameter value v corresponding to t.

A transition t ∈ T is enabled for marking M and a parameter value v, if the
value of input parameterised operator opv

In for the transition t is positive and
greater than or equal to the value of threshold function γ corresponding to t and
the parameter value v, i.e.,

opv
In(M(pi1), M(pi2), . . . , M(pik)) ≥ γ(t) > 0 for pij ∈ I(t), j = 1, . . . , k.

(Mode 1 ) If M with a parameter value v is a marking of N ′ enabling a transition
t and M

′
v the marking derived from M with v by firing t, then for each p ∈ P :

M
′
v(p) =

⎧
⎪⎨

⎪⎩

0 if p ∈ I(t),
opv

Out2(op
v
Out1(op

v
In(M(pi1), M(pi2), . . . , M(pik)), β(t)), M(p))

if p ∈ O(t),
M(p) otherwise.

In this mode, a procedure for computing the marking M
′
v is similar to appropriate

procedure corresponding to generalised fuzzy Petri nets and Mode 1 presented
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above. The difference is that present procedure needs to set a parameter value
v at first. Remaining stages of the procedure are analogous to the previous
procedure concerning Mode 1.
(Mode 2 ) If M with a parameter value v is a marking of N ′ enabling transition
t and M

′
v the marking derived from M with v by firing t, then for each p ∈ P :

M
′
v(p) =

⎧
⎨

⎩

opv
Out2(op

v
Out1(op

v
In(M(pi1), M(pi2), . . . , M(pik)), β(t)), M(p))

if p ∈ O(t),
M(p) otherwise.

The difference in the definitions of the marking M
′
v presented above (Mode 2 )

and Mode 1 is analogous to the case of generalised fuzzy Petri nets.
Example 2. Consider a parameterised fuzzy Petri net in Figure 3(a). For the
net we have: the set of places P , the set of transitions T , the input function
I, the output function O, the set of statements S, the binding function α, the
truth degree function β, the threshold function γ and the initial marking M0
described analogously to Example 1. Moreover, there are: the set of operators
Op = {S(.), T (.)} and the operator binding function δ defined as follows: δ(t1)
= (S(.), T (.), S(.)), δ(t2) = (T (.), T (.), S(.)) with a relevant parameter value v.

(a) (b)

Fig. 3. (a) A parameterised fuzzy Petri net with the initial marking before firing the
enabled transitions t1 and t2. (b) An illustration of a firing rule: the marking after
firing t1, where t2 is disabled (Mode 1 ).

If we take, for instance, the first pair of parameterised families of sums S(a, b, v)
and products T (a, b, v) from Table 1 and a parameter value v = 1, then S(a, b, 1) =
a+b−a∗b and T (a, b, 1) = a∗b. For the transition t1 we have S(0.6, 0.4, 1) = 0.6+
0.4−0.24 = 0.76 and T (0.76, 0.7, 1) = 0.76∗0.7 = 0.532 by the initial marking M0
and v = 1. Because the global value for all input places of t1 and v = 1 equals 0.76,
hence it is positive and greater than γ(t1) = 0.4. Thus, the transition t1 is enabled
by M0 and v = 1. Firing transition t1 by the marking M0 and v = 1 according to
Mode 1 transforms M0 to the marking M

′
1 = (0, 0, 0.7, 0.53, 0) (Figure 3(b)). It

is easy to check that by the initial marking M0 and v = 1 the transition t2 is not
enabled.
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4 Illustrating Example

In this section we present an application of PFPN in the domain of train traffic
control [15].

The considered example is based on a simplified version of the real-life prob-
lem. We assume the following situation: a train B waits at a certain station for
a train A to arrive in order to allow some passengers to change train A to train
B. Now a conflict arises when the train A is late. In this situation, the following
alternatives can be taken into consideration:

– Train B waits for train A to arrive. In this case, train B will depart with
delay.

– Train B departs in time. In this case, passengers disembarking train A have
to wait for a later train.

– Train B departs in time, and an additional train is employed for late train
A′s passengers.

(a) (b)

Fig. 4. (a) An example of PFPN model of train traffic control. (b) An illustration of
a firing rule: the marking after firing a sequence of transitions t1t2 (Mode 1 )

To make a decision, several inner conditions have to be taken into account, for
example: the delay period, the number of passengers changing trains, etc. The
discussion regarding an optimal solution to the problem of divergent aims such
as: minimization of delays throughout the traffic network, warranty of connec-
tions for the customer satisfaction, efficient use of expensive resources, etc. is
disregarded at this point.
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In order to describe the traffic conflict, we propose to consider the following
three rules: (1) IF s2 OR s3 THEN s6; (2) IF s1 AND s4 AND s6 THEN s7; (3)
IF s4 AND s5 THEN s8, where s1: ’Train B is the last train in this direction
today’; s2: ’The delay of train A is huge’; s3: ’There is an urgent need for the
track of train B’; s4: ’Many passengers would like to change for train B’; s5:
’The delay of train A is short’; s6: ’(Let) train B depart according to schedule’;
s7: ’Employ an additional train C (in the same direction as train B)’; s8: ’Let
train B wait for train A’.

In Figure 4(a) the PFPN model corresponding to these rules, where the log-
ical operators OR, AND are interpreted as the probabilistic sum S(·) and the
algebraic product T (·), respectively, is shown. Note that the places p1, p2, p3

and p4 include the fuzzy values 0.9, 0.4, 0.7 and 0.8 corresponding to the state-
ments s1, s2, s3 and s4, respectively. In this example, the statement s5 attached
to the place p5 is the only crisp and its value is equal to 1. By means of eval-
uation of the statements attached to the places from p1 up to p5, we observe
that the transitions t1 and t3 can be fired. Firing these transitions according to
the firing rules for the PFPN model allows the computation of the support for
the alternatives in question. In this way, the possible alternatives are ordered
with regard to the preference they achieve from the knowledge base. This order
forms the basis for further examinations and simulations and, in the end, for
the dispatching proposal. If one chooses a sequence of transitions t1t2 then they
obtain the final value, corresponding to the statement s7, equal to 0.33 (Figure
4(b)). In the second possible case (i.e., for the transition t3 only), the final value,
corresponding now to the statement s8, equals 0.72.

5 Conclusions

In the paper a PFPN model has been proposed. This model combines the posi-
tive features of generalised fuzzy Petri nets and the additional possibilities of pa-
rameterised families of sums and products. Moreover, a PFPN formalism allows
to handle complex and parameterised fuzzy rule bases. Using a simple real-life
example suitability and usefulness of the proposed approach for the design and
implementation of decision support systems have been shown. Success of the
elaborated approach looks promising with regard to alike application problems
that could be solved similarly.

One of the most important considerations in designing practical systems is the
time representation, particularly in time-critical systems. Various approaches re-
lated to time within the context of Petri nets have been developed [1],[6],[10],[17].
In our further research we would like to consider a time factor together with the
proposed net model and elaborate timed Petri net analysis methods.

Acknowledgment. The author is grateful to the anonymous referees for their
critical comments and suggestions on the paper.
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