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Abstract. In this paper a method to design modular type-1 fuzzy controllers using 
genetic optimization is presented. The method is tested with a problem that re-
quires five individual controllers. Simulation results with a genetic algorithm for 
optimizing the membership functions of the five individual controllers are pre-
sented. Simulation results show that the proposed modular control approach offers 
advantages over existing control methods. 

1 Introduction 

This paper focuses on the field of fuzzy logic and control area, these areas can 
work together to solve various control problems. The problem of water level con-
trol for a three tank system is illustrated. This control is carried out by controlling 
five valves whose outputs are the inputs to the three tanks. The main idea in this 
paper is to apply a genetic algorithm to optimize the membership functions of the 
five controllers. Each controller has to open and close one of the valves. To con-
trol each of the valves we have five type-1 fuzzy systems and each fuzzy system 
has to control one valve of the three tanks. After that, the simulation is carried out 
using type-1 fuzzy systems, and then genetic algorithms are used to optimize the 
five controllers. Finally results are presented and compared. 

The rest of the paper is organized as follows: In section 2 some basic concepts 
to understand the work are presented, Section 3 shows a case study, problem de-
scription and results are presented and finally in Section 4 conclusion is shown. 

2 Background and Basic Concepts 

In this section some basic concepts needed for this work are presented. 

2.1 Genetic Algorithm 

Genetic algorithms (GAs) were proposed by John Holland in the 1960s and were 
developed by Holland and his students and colleagues at the University of  
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Michigan in the 1960s and the 1970s [2][3]. In contrast with evolution strategies 
and evolutionary programming, Holland's original goal was not to design algo-
rithms to solve specific problems, but rather to formally study the phenomenon of 
adaptation as it occurs in nature and to develop ways in which the mechanisms of 
natural adaptation might be imported into computer systems [15][19]. Holland's 
1975 book Adaptation in Natural and Artificial Systems presented the genetic al-
gorithm as an abstraction of biological evolution and gave a theoretical framework 
for adaptation under the GA [4][5]. A GA allows a population composed of many 
individuals to evolve under specified selection rules to a state that maximizes the 
“fitness” [17]. Holland's GA is a method for moving from one population of 
"chromosomes" (e.g., strings of ones and zeros, or "bits") to a new population by 
using a kind of "natural selection" together with the genetics inspired operators of 
crossover, mutation, and inversion [18]. Each chromosome consists of "genes" 
(e.g., bits), each gene being an instance of a particular "allele" (e.g., 0 or 1) 
[14][10]. The selection operator chooses those chromosomes in the population that 
will be allowed to reproduce, and on average the fitter chromosomes produce 
more offspring than the less fit ones [28]. Crossover exchanges subparts of two 
chromosomes, roughly mimicking biological recombination between two single 
chromosome ("haploid") organisms; mutation randomly changes the allele values 
of some locations in the chromosome; and inversion reverses the order of a conti-
guous section of the chromosome, thus rearranging the order in which genes are 
arrayed. (Here, as in most of the GA literature, "crossover" and "recombination" 
will mean the same thing.) [7][16]. Some of the advantages of a GA include: Op-
timizes with continuous or discrete variables, doesn’t require derivative informa-
tion, simultaneously searches from a wide sampling of the cost surface, deals with 
a large number of variables [13][29]. 

A typical algorithm might consist of the following: 

1. Start with a randomly generated population of n l−bit chromosomes (candi-
date solutions to a problem). 

2. Calculate the fitness ƒ(x) of each chromosome x in the population. 
3. Repeat the following steps until n offspring have been created: 

• Select a pair of parent chromosomes from the current population, the 
probability of selection being an increasing function of fitness. Selection 
is done "with replacement," meaning that the same chromosome can be 
selected more than once to become a parent. 

• With probability Pc (the "crossover probability" or "crossover rate"), 
cross over the pair at a randomly chosen point (chosen with uniform 
probability) to form two offspring. If no crossover takes place, form two 
offspring that are exact copies of their respective parents. (Note that here 
the crossover rate is defined to be the probability that two parents will 
cross over in a single point. There are also "multipoint crossover" ver-
sions of the GA in which the crossover rate for a pair of parents is the 
number of points at which a crossover takes place.) 

• Mutate the two offspring at each locus with probability Pm (the mutation 
probability or mutation rate), and place the resulting chromosomes in the 
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new population. If n is odd, one new population member can be discarded 
at random. 

• Replace the current population with the new population. 

Go to step 2 [30][31]. 

2.2 Fuzzy Systems 

The idea of fuzzy systems appeared very early in the literature of fuzzy sets; it was 
originated by Zadeh (1965). The concept of a fuzzy system is intimately related to 
that of a fuzzy set. En order to make our discussion self-contained, it will be help-
ful to begin with a brief summary of some of the basic definitions pertaining to 
such sets. Research on fuzzy systems seems to have developed in two main direc-
tions. The first is rather formal and considers fuzzy systems as a generalization of 
nondeterministic systems. These have been studied within the same conceptual 
framework as classical systems. This approach has given birth to a body of ab-
stract results in such fields as minimal realization theory and formal automata 
theory, sometimes expressed in the setting of category theory. The system is con-
sidered over a given period during which inputs, outputs, and relations may 
change [28][13].  

A system will be called fuzzy as soon as inputs or outputs are modeled as fuzzy 
sets or their interactions are represented by fuzzy relations. Usually, a system is 
also described in terms of state variables. In a fuzzy system a state can be a fuzzy 
set. However, the notion of a fuzzy state is quite ambiguous and needs to be clari-
fied. Note that generally a fuzzy system is an approximate representation of a 
complex process that is not itself necessarily fuzzy [20][21]. According to Zadeh, 
the human ability to perceive complex phenomena stems from the use of names of 
fuzzy sets to summarize information [22]. The notion of probabilistic system cor-
responds to a different point of view: all the available information at any time is 
modeled by probability distributions, built from repeated experiments. A fuzzy 
system can be described either as a set of fuzzy logical rules or as a set of fuzzy 
equations [23][24]. Fuzzy logical rules must be understood as propositions asso-
ciated with possibility distributions. For instance, “if last input is small, then if last 
output is large, then current output is medium”, where “small” is a fuzzy set on the 
universe of inputs, and “medium” and “large” are fuzzy sets on the universe of 
outputs [25][26] . Let ut , yt, and st denote respectively the input, output, and state 
of a system S at time t. U, Y, S are respectively the set of possible inputs, outputs, 
and states [27][32].  Such a system is said to be deterministic if it is characterized 
by state equations of the form: 

 

                               
(1) 

 

s0  is called the initial state;  and Ω are functions from U X S and from S to S 

and Y, respectively. S is said to be nondeterministic if  St+1 and / or Yt, are not uni-
quely determined by Ut  and St  [33][1]. Let St+1 and Yt be the sets of possible val-
ues of St+1 and Yt, respectively, given Ut, and St. St+1 and Yt, may be understood as 
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binary possibility distributions over S and Y, respectively. In some cases a fuzzy 
system is used to control complex problem to obtain better results [8][9][6]. 

2.3 Fuzzy Control Systems 

Control systems theory, or what is called modern control systems theory today, 
can be traced back to the age of World War II, or even earlier, when the design, 
analysis, and synthesis of servomechanisms were essential in the manufacturing  
of electromechanical systems. The development of control systems theory has 
since gone through an evolutionary process, starting from some basic, simplistic, 
frequency-domain analysis for single-input single output (SISO) linear control 
systems, and generalized to a mathematically sophisticated modern theory of mul-
ti-input multi-output (MIMO) linear or nonlinear systems described by differential 
and/or difference equations. 

It is believed that the advances of space technology in the 1950s completely 
changed the spirit and orientation of the classical control systems theory: the chal-
lenges posed by the high accuracy and extreme complexity of the space systems, 
such as space vehicles and structures, stimulated and promoted the existing control 
theory very strongly, developing it to such a high mathematical level that can use 
many new concepts like state-space and optimal controls. The theory is still rapid-
ly growing today; it employs many advanced mathematics such as differential 
geometry, operation theory, and functional analysis, and connects to many theoret-
ical and applied sciences like artificial intelligence, computer science, and various 
types of engineering. This modern control systems theory, referred to as conven-
tional or classical control systems theory, has been extensively developed. The 
theory is now relatively complete for linear control systems, and has taken the lead 
in modern technology and industrial applications where control and automation 
are fundamental.  Basically, the aim of fuzzy control systems theory is to extend 
the existing successful conventional control systems techniques and methods as 
much as possible, and to develop many new and special-purposed ones, for a 
much larger class of complex, complicated, and ill-modeled systems – fuzzy sys-
tems. This theory is developed for solving real-world problems [11]. 

Fuzzy controllers have been well accepted in control engineering practice. The 
major advantages in all these fuzzy-based control schemes are that the developed 
controllers can be employed to deal with increasingly complex systems to imple-
ment the controller without any precise knowledge of the structure of entire  
dynamic model. As a knowledge-based approach, the fuzzy controller usually de-
pends on linguistics-based reasoning in design. However, even though a system is 
well defined mathematically, the fuzzy controller is still preferred by control engi-
neers since it is relatively more understandable whereas expert knowledge can be 
incorporated conveniently. Recently, the fuzzy controller of nonlinear systems 
was studied by many authors and has also been extensively adopted in adaptive 
control of robot manipulators. It has been proven that adaptive fuzzy control is a 
powerful technique and being increasingly applied in the discipline of systems 
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control, especially when the controlled system has uncertainties and highly nonli-
nearities [12]. 

3 Case Study 

In this Section the problem description is presented and results are shown. 

3.1 Problem Description 

In this work the case study considers the problem of water level control for a 3 
tanks system where the 3 tanks include valves that are opened or closed, these 
valves must be well controlled to give the desired level of water in each of the 
three tanks. The end tanks have a valve that fills and in the middle of the 3 tanks 
there are two valves that control the water level between tanks 1 and 2, and tanks 
2 and 3. The water tank 3 has a valve to output more water flow, the case study 
model is made in Simulink and has three inputs (tank 1, tank2 and tank3), and 
these inputs correspond to the existing water levels in tank 1, tank2 and tank3. The 
outputs of the model made in Simulink has five valves, which provide water (v1 
and v2) valves that are interconnected tanks (v13 and v32) and finally the output 
valve is responsible for the drainage of the three tanks (v20).  The problem is 
shown in Figure 1. 

 

Fig. 1 Water control of 3 tanks 

3.2 Type-1 Fuzzy System 

For this case study it was necessary to use fuzzy systems to realize the simulation, 
each fuzzy system has one or two inputs depend on the valve. The Valves that are 
between 2 tanks are using 2 inputs (tank1 and tank2 or tank2 and tank3). The out-
puts are the valves, in total 5 fuzzy systems were used in this problem. The fuzzy 
systems are shown in Figures 2 to 6. 

V1 

V13 V32

V2 

V20 
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Fig. 2 Fuzzy system to control valve 1 

 

Fig. 3 Fuzzy system to control valve 13 



Genetic Optimization of Modular Type-1 Fuzzy Controllers 131
 

 

Fig. 4 Fuzzy system to control valve 32 

 

Fig. 5 Fuzzy system to control valve 2 
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Fig. 6 Fuzzy system to control valve 20 

 

Fig. 7 Simulation plant 



Genetic Optimization of Modular Type-1 Fuzzy Controllers 133
 

 
Fig. 8 Simulation plant showing inputs and outputs 

 

Fig. 9 Tank water simulation plant 
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Fig. 10 Data block of the simulation plant 

Having created the previous fuzzy systems, the simulation was performed  
using the Matlab language. The simulation plant is shown in Figures 7 
to 10. 

The simulation was carried out using the fuzzy systems shown before, the 
membership functions used in this case were triangular, Gaussian and trapezoidal, 
and the fuzzy systems with the different types of membership functions used in 
this case of study are shown in Figures 11 to 16.  

All the valves in the inputs and outputs have 3 membership functions, all the 
membership functions in each input or output have the same position initially and 
this is because a genetic algorithm is applied to optimize each membership  
function.  

When the genetic algorithm is used the membership functions start to move 
within the specified range. Later in section 3.3 the fuzzy system with genetic al-
gorithm is presented where it shows new positions in all de membership func-
tions. Figures 11 to 16 show the membership functions in the inputs and outputs 
of all fuzzy systems. The fuzzy systems that have one input are presented in 
Figures 11 to 13, and the fuzzy systems that have 2 inputs are presented in  
Figures 14 to 16. 
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Fig. 11 Triangular membership functions use in valve 1, valve 2 and valve 20 

 

 

Fig. 12 Gaussian membership functions use in valve 1,valve 2 and valve 20  
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Fig. 13 Trapezoidal membership functions use in valve 1,valve 2 and valve 20 

 

 

Fig. 14 Triangular membership functions use in valve 13 and valve 32 
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Fig. 15 Gaussian membership functions use in valve 13 and valve 32 

 

 

Fig. 16 Trapezoidal membership functions use in valve 13 and valve 32  
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Table 1 Results for the simulation plant using triangular membership functions 

Using Triangular 
Membership Function

Error 

valve 1 0.9246 

valve 13 0.9278 

valve 2 0.9278 

valve 20 0.9279 

valve 32 0.8341 

Table 2 Results for the simulation plant using Gaussian membership functions 

Using Gaussian  
Membership Function

Error 

valve 1 0.898 

valve 13 0.8994 

valve 2 0.8994 

valve 20 0.8995 

valve 32 0.8463 
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Fig. 18 Error of Valve 13 wi

Fig. 19 Error of Valve 2 with
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Fig. 20 Error of Valve 20 wi

Fig. 21 Error of Valve 20 wi
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Fig. 22 Rules of the 5 type-1 fuzzy systems 

The rules used to control in the case of the three tanks are shown in Figure 22. 
The set of rules shown above rules are for the five fuzzy systems used to con-

trol the open and closed valves from the three tanks. 
The first three rules are the controller number 1, the 9 following rules are con-

troller 2, the third set of rules are the controller 3, the fourth set of 3 rules are the 
controller 4 and the last 9  rules are controller  number 5.  

The difference in the number of rules of each controller is because depending 
on the number of inputs, outputs and membership functions of fuzzy system will 
have a number of rules to be had. For example to control valve number one has 
only one input which is the tank 1, one output and has  3 membership functions  
therefore the number of rules are 3. The valves between 2 tanks need 2 inputs 
(tank1 and tank2 or tank 2 and tank3), these valves have one output and three 
membership functions therefore need 9 rules for fuzzy systems.  

 



Genetic Optimization of Mo
 

3.3 Genetic Algorith

After obtaining the prev
was performed. The gene
tions of each fuzzy system

In the genetic algorith
optimized. 

In the algorithm the er
each controller were adde
controllers. The fitness fu

        
Where YREF is the referen
ber of point used in comp
the number of the controll

The parameters used in

Fig. 23 Parameters of the gen

f(y) = 

dular Type-1 Fuzzy Controllers 14

hm 

vious mentioned results, genetic algorithm optimizatio
etic algorithm is used to optimize the membership fun
m (inputs and outputs).  
hm the membership functions of the 5 controllers wer

rror of each controller is taken and finally the results o
ed, and the final result is divided between the number o

unction is shown in next equation: 
 

 

  (2

nce, YFS is the output of the controller and n is the num
parison. Error C1 is the error of control 1 to N, and N 
lers. 
n the GA are shown in Figure 23. 

 

netic algorithm 

43

on 
c-

re  

of 
of 

2)

 
m-
in 



144 L. Cervantes and O. Castillo
 
After the use of the genetic algorithm the results obtained in the simulation are 

shown in Table 4. 

Table 4 Results for the simulation plant using triangular membership functions and genetic 
algorithm 

Error using triangular membership functions and genet-
ic algorithm 

Valve 13 Valve 1 Valve 20 Valve 2 Valve 32 

0.109 0.1146 0.0939 0.2077 0.218 

0.131 0.1228 0.1329 0.1861 0 

0.119 0.1275 0.111 0.239 0 

0.115 0.1116 0.1092 0.2216 0 

0.109 0.0908 0.1191 0.214 0 

0.109 0.1132 0.0954 0.1922 0 

0.117 0.1225 0.1003 0.1853 0 

0.107 0.1102 0.1146 0.1938 0 

0.105 0.0993 0.0851 0.2428 0 

0.125 0.1196 0.113 0.1433 0 

0.123 0.1191 0.1394 0.246 0 

0.115 0.1114 0.091 0.1539 0 

0.117 0.1231 0.101 0.1818 0 

0.107 0.1444 0.0661 0.1366 0 

0.117 0.1225 0.1003 0.1853 0 

  
The above table shows a lower error in comparison with only using a type-1 

fuzzy system. In the last table a genetic algorithm was used with triangular mem-
bership functions, the error is different in each valve even though the parameters 
are the same in all the tests. Some Graphics are shown in Figures 24 to 29 to 
present the behavior of each valve. In the last graphic the behavior of all valves is 
shown to observe all the behaviors. 
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Fig. 24 Error of Valve 13 us
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Fig. 26 Error of Valve 20 us

Fig. 27 Error of Valve 2 usin
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Fig. 28 Error of Valve 32 us

Fig. 29 Behavior of each val
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Fig. 30 Best Fuzzy system of valve 1 using genetic algorithm 

Applying the genetic algorithm to a type-1 fuzzy system of each valve it was 
obtain the best fuzzy system of each valve as shown in Figures 30 to 34. 

Last figure represents the best fuzzy system of valve 1 and its membership 
function of the input and the output. Yellow box is the input of the fuzzy system 
and the blue box is the output of the fuzzy system. In next fuzzy systems all the 
inputs of each are the yellow boxes and the outputs are the blue boxes.  

All the fuzzy systems have 3 membership functions in the inputs and the out-
puts of each valve. When the genetic algorithm was implemented, more than 1 
fuzzy systems were obtained, but in this case the best of the 15 evolutions is  
presented. 
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Fig. 31 Best Fuzzy system of valve 13 using genetic algorithm 
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Fig. 32 Best Fuzzy system of valve 32 using genetic algorithm 

Recall that this fuzzy system has two inputs because the valve 13 that is con-
trolled is fed by two tanks (Tank 1 and Tank2).  

This case is the same as that of the last fuzzy system, it needs two inputs to 
control the valve 32 because this valve is fed by two tanks (Tank 2 and Tank3). 
Valve 32 and valve 13 are the only ones needs two inputs, the reason is because as 
was explain those valves are between two tanks. 
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Fig. 33 Best Fuzzy system of valve 2 using genetic algorithm 

Fuzzy systems have become a tool that can be useful to try and model the com-
plex and nonlinear systems. And these fuzzy systems in this case study helps im-
prove control valves. Membership functions can be varied to get more results. 
These fuzzy systems use three membership functions to establish the level of open 
or closed for the valves, the level of each membership function in the valves are 
open completely, half open and close. 

The granulation of fuzzy systems may be increased and instead of using three 
membership functions it can be used 5 or another option, which could consider the 
valve as open medium, open, closed, half closed, fully closed. This depends on 
how you want to study the problem. 
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Fig. 34 Best Fuzzy system of valve 20 using genetic algorithm 

4 Conclusions 

A benchmark problem was used to test the proposed approach and based on the 
obtained results we can say that to achieve control of the present problem, a genet-
ic algorithm is a good alternative to obtain a good fuzzy controller.  

When a complex control problem is at hand, we start working on the case 
study, and once results are obtained with type-1 fuzzy systems it is a good choice 
to use a genetic algorithm for optimizing membership functions of the inputs and 
outputs of the controllers and to obtain better control, as was the case in this con-
trol problem. In the moment when genetic algorithm was used, results were better 
than with an initial type-1 fuzzy system, this is possible because in the moment 
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that genetic algorithm is applied, it moves the parameters of the membership  
functions and the system has more options to control de valves and the genetic al-
gorithm is evaluated to obtain the best fuzzy system to control the open and close 
valves and this is why better results are obtained by optimizing the membership 
functions. 
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