

Studies in Fuzziness and Soft Computing 294

Editor-in-Chief

Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

For further volumes:
http://www.springer.com/series/2941

Patricia Melin and Oscar Castillo (Eds.)

Soft Computing Applications
in Optimization, Control,
and Recognition

ABC

Editors
Prof. Patricia Melin
Tijuana Institute of Technology
Graduate Program of Computer Science
Tijuana
Mexico

Prof. Oscar Castillo
Tijuana Institute of Technology
Graduate Program of Computer Science
Tijuana
Mexico

ISSN 1434-9922 e-ISSN 1860-0808
ISBN 978-3-642-35322-2 e-ISBN 978-3-642-35323-9
DOI 10.1007/978-3-642-35323-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012953383

c© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

We describe in this book the application of soft computing techniques for intelligent
control, pattern recognition, and optimization of complex problems. Soft Comput-
ing (SC) consists of several intelligent computing paradigms, including fuzzy logic,
neural networks, and bio-inspired optimization algorithms, which can be used to
produce powerful hybrid intelligent systems. The book is organized in four main
parts, which contain a group of papers around a similar subject. The first part con-
sists of papers with the main theme of nature-inspired optimization methods and
their applications, which are basically papers that propose new models and concepts,
which can be the basis for achieving intelligent optimization in diverse areas of ap-
plication. The second part contains papers with the main theme of hybrid intelligent
systems for achieving intelligent control, which are basically papers using nature-
inspired techniques, like evolutionary algorithms, fuzzy logic and neural networks,
for the optimal design of intelligent controllers in diverse areas of application. The
third part contains papers with the theme of pattern recognition based on SC tech-
niques, which basically consider the proposal of new methods and their applications
to solve complex pattern recognition problems. The fourth part contains papers that
deal with the application of intelligent optimization techniques in real world prob-
lems. The fifth part contains papers with the theme of new theoretical concepts and
methods in SC, which are papers considering soft computing methods for applica-
tions related to diverse areas, such as natural language processing, clustering and
optimization.

In the part of nature-inspired optimization methods there are 3 papers that
describe different contributions of new algorithms for optimization and their ap-
plication to diverse complex optimization problems. The nature-inspired methods
include the chemical optimization paradigm, and cellular genetic algorithms. In the
part of hybrid intelligent systems for control and robotics there are 3 papers that de-
scribe different contributions that propose new models and concepts, which can be
the considered as the basis for achieving intelligent control and mobile robotics for
real world problems. In the part of hybrid intelligent systems for pattern recognition
there are 3 papers that describe different contributions on achieving efficient pattern
recognition using hybrid intelligent systems based on soft computing techniques.

VI Preface

In the part of new theoretical concepts and methods in SC, there are 4 contributions
that describe the development of new models and algorithms relevant to complex
problems, such as natural language processing, clustering and optimization.

The papers in this book consist of selected and extended versions of papers pre-
sented by advanced doctoral students at the ISCI 2012 meeting held in Tijuana,
Mexico in May of 2012. The papers have been accepted after a strict peer review
process by a review committee of well-known experts in the respective fields. The
committee has selected 13 contributions by the best doctoral students and their
supervisors from various top Mexican universities.

In conclusion, the edited book comprises papers on diverse aspects of nature-
inspired models, soft computing and hybrid intelligent systems for control, mobile
robotics, pattern recognition, and other complex real world problems. There are
covered theoretical aspects as well as applications.

September 28, 2012 Patricia Melin
Tijuana Institute of Technology

Mexico

Oscar Castillo
Tijuana Institute of Technology

Mexico

Contents

Part I: Optimization Methods and Applications

Optimization of Type-2 and Type-1 Fuzzy Tracking Controllers for an
Autonomous Mobile Robot under Perturbed Torques by Means of a
Chemical Optimization Paradigm . 3
Leslie Astudillo, Patricia Melin, Oscar Castillo

A Genetic Algorithm for the Problem of Minimal Brauer Chains
for Large Exponents . 27
Arturo Rodriguez-Cristerna, Jose Torres-Jimenez

Cellular Processing Algorithms . 53
J. David Terán-Villanueva, Héctor Joaquı́n Fraire Huacuja,
Juan Martı́n Carpio Valadez, Rodolfo A. Pazos Rangel,
Héctor José Puga Soberanes, José Antonio Martı́nez Flores

Part II: Soft Computing in Intelligent Control Applications

Hierarchical Genetic Optimization of the Fuzzy Integrator
for Navigation of a Mobile Robot . 77
Abraham Meléndez, Oscar Castillo

Particle Swarm Optimization for Multi-objective Control Design
Using AT2-FLC in FPGA Device . 97
Yazmin Maldonado, Oscar Castillo, Patricia Melin

Genetic Optimization of Modular Type-1 Fuzzy Controllers
for Complex Control Problems . 125
Leticia Cervantes, Oscar Castillo

VIII Contents

Part III: Soft Computing in Pattern Recognition
Applications

Multi-Objective Hierarchical Genetic Algorithm for Modular
Granular Neural Network Optimization . 157
Daniela Sánchez, Patricia Melin

Type-2 Fuzzy Weight Adjustment for Backpropagation in Prediction
Time Series and Pattern Recognition . 187
Fernando Gaxiola, Patricia Melin, Fevrier Valdez

Brain Computer Interface Development Based on Recurrent Neural
Networks and ANFIS Systems . 215
Emanuel Morales-Flores, Juan Manuel Ramı́rez-Cortés, Pilar Gómez-Gil,
Vicente Alarcón-Aquino

Part IV: Soft Computing: Theory and New Models

An Analysis of the Relationship between the Size of the Clusters
and the Principle of Justifiable Granularity in Clustering Algorithms . . . 239
Mauricio A. Sanchez, Oscar Castillo, Juan R. Castro

Type-2 Fuzzy Logic Grammars in Language Evolution 265
Juan Paulo Alvarado-Magaña, Antonio Rodrı́guez-Dı́az, Juan R. Castro,
Oscar Castillo

Methodology of Design: A Novel Generic Approach Applied to the
Course Timetabling Problem . 287
Soria-Alcaraz Jorge A., Carpio Martin, Puga Héctor,
Terashima-Marin Hugo, Cruz Reyes Laura, Sotelo-Figueroa
Marco A.

High-Performance Architecture for the Modified NSGA-II 321
Josué Domı́nguez, Oscar Montiel-Ross, Roberto Sepúlveda

Author Index . 343

Part I

Optimization Methods
and Applications

P. Melin, O. Castillo (Eds.): Soft Computing Appli. in Optimization, STUDFUZZ 294, pp. 3–26.
DOI: 10.1007/978-3-642-35323-9_1 © Springer-Verlag Berlin Heidelberg 2013

Optimization of Type-2 and Type-1 Fuzzy
Tracking Controllers for an Autonomous
Mobile Robot under Perturbed Torques
by Means of a Chemical Optimization Paradigm

Leslie Astudillo, Patricia Melin, and Oscar Castillo

Tijuana Institute of Technology, Tijuana México
{epmelin,ocastillo}@hafsamx.org

Abstract. This paper addresses the tracking problem for the dynamic model of a
unicycle mobile robot. A novel optimization method inspired on the chemical
reactions is applied to solve this motion problem by integrating a kinematic and a
torque controller based on fuzzy logic theory. Computer simulations are presented
confirming that this optimization paradigm is able to outperform other
optimization techniques applied to this particular robot application.

1 Introduction

Optimization is an activity carried out in almost every aspect of our life, from
planning the best route in our way back home from work to more sophisticated
approximations at the stock market, or the parameter optimization for a wave
solder process used in a printed circuit board assembly manufacturer optimization
theory has gained importance over the last decades. From science to applied
engineering (to name a few), there is always something to optimize and of course,
more than one way to do it.

In a generic definition, we may say that optimization aims to find the “best”
available solution among a set of potential solutions in a defined search space. For
almost every problem exists a solution, not necessarily the best, but we can always
find an approximation to the “ideal solution”, and while in some cases or
processes is still common to use our own experience to qualify a process, a part of
the research community have dedicated a considerably amount of time and efforts
to help find robust optimization methods for optima finding in a vast range of
applications.

It has been stated the difficulty to solve different problems by applying the
same methodology, and even the most robust optimization approaches may be
outperformed by other optimization techniques depending on the problem to
solve.

4 L. Astudillo, P. Melin, and O. Castillo

When the complexity and the dimension of the search space make a problem
unsolvable by a deterministic algorithm, probabilistic algorithms deal with this
problem by going through a diverse set of possible solutions or candidate
solutions. Many metaheuristic algorithms can be considered probabilistic, while
they apply probability tools to solve a problem, metaheuristic algorithms seek
good solutions by mimicking natural processes or paradigms. Most of these novel
optimization paradigms inspired by nature were conceived by merely observation
of an existing process and their main characteristics were embodied as
computational algorithms.

The importance of the optimization theory and its application has grown in the
past few decades, from the well known Genetic Algorithm paradigm to PSO,
ACO, Harmonic Search, DNA Computing, among others, they all were introduced
with the expectation of improving the results obtained with the existing strategies.

There’s no doubt that there could be some optimization strategies presented at
some point that were left behind due their complexity and poor performance.
Novel optimization paradigms should be able to perform well in comparison with
another optimization techniques and must be “easily adaptable” to different kinds
of problems.

Optimization based on chemical processes is a growing field that has been
satisfactorily applied to several problems. In [25] A DNA based algorithm was to
solve the small hitting set problem. A catalytic search algorithm was explored in
[30], where some physical laws such as mass and energy conservation were taken
into account. In [19], the potential roles of energy in algorithmic chemistries were
illustrated. An energy framework was introduced, which keeps the molecules
within a reasonable length bounds, allowing the algorithm to behave
thermodynamically and kinetically similar to real chemistry. A chemical reaction
optimization was applied to the grid scheduling problem in [29], where molecules
interact with each other aiming to reach the minimum state of free potential and
kinetic energies. The main difference between these metaheuristics is the
parameter representation, which can be explicit or implicit.

In this paper we introduce an optimization method inspired on the chemical
reactions and its application for the optimization of the tracking controller for the
dynamic model of the unicycle mobile robot.

The importance of applying this chemical optimization algorithm is that
different methods have been applied to solve motion control problems. Kanayama
et al. [13] propose a stable tracking control method for a non-holonomic vehicle
using a Lyapunov function. Lee et al. [15] solved tracking control using
backstepping and in [17] with saturation constraints. Furthermore, most reported
designs rely on intelligent control approaches such as fuzzy logic control
[3][12][16][23][27][28] and neural networks [10][26].

However the majority of the publications mentioned above, have concentrated
on kinematic models of mobile robots, which are controlled by the velocity input,
while less attention has been paid to the control problems of nonholonomic
dynamic systems, where forces and torques are the true inputs: Bloch and
Drakunov [4] and Chwa [8], used a sliding mode control to the tracking control
problem. Fierro and Lewis [9] propose a dynamical extension that makes possible

Optimization of Type-2 and Type-1 Fuzzy Tracking Controllers 5

the integration of kinematics and torque controller for a nonholonomic mobile
robot. Fukao et al. [11], introduced an adaptive tracking controller for the dynamic
model of mobile robot with unknown parameters using backstepping
methodology, which has been recognized as a tool for solving several control
problems [24] [31].Motivated by this, a mamdani fuzzy logic controller is
introduced in order to drive the kinematic model to a desired trajectory in a finite-
time, considering the torque as the real input, a chemical reaction optimization
paradigm is applied and simulations are shown.

Further publications [2][18][6] have applied bio-inspired optimization
techniques to find the parameters of the membership functions for the fuzzy
tracking controller that solves the problem for the dynamic model of a unicycle
mobile robot, using a fuzzy logic controller that provides the required torques to
reach the desired velocity and trajectory inputs.

In this paper, the main contribution is the representation of the fuzzy controller
in the chemical paradigm to search for the optimal parameters. Simulation results
show that the proposed approach outperforms other nature inspired computing
paradigms, such as genetic algorithms, particle swarm and ant colony
optimization.

The rest of this paper is organized as follows. Section 2 illustrates the proposed
methodology. Section 3 describes the problem formulation and control objective.
Section 4 describes the proposed fuzzy logic controller of the robot. Section 5
shows some experimental results of the tracking controller and in section 6 some
conclusions and future work are presented.

2 The Chemical Optimization Paradigm

The proposed chemical reaction algorithm is a metaheuristic strategy that performs a
stochastic search for optimal solutions within a defined search space. In this
optimization strategy, every solution is represented as an element (or compound),
and the fitness or performance of the element is evaluated in accordance with the
objective function. The general flowchart of the algorithm is shown in Figure 1.

The main difference with other optimization techniques [25][30][19][29] is that
no external parameters are taken into account to evaluate the results, while other
algorithms introduce additional parameters (kinetic/potential energies, mass
conservation, thermodynamic characteristics, etc), this is a very straight forward
methodology that takes the characteristics of the chemical reactions (synthesis,
decomposition, substitution and double-substitution) to find for optimal solution.

This approach is a static population-based metaheuristic that applies an
abstraction of the chemical reactions as intensifiers (substitution, double
substitution reactions) and diversifying (synthesis, decomposition reactions)
mechanisms. The elitist reinsertion strategy allows the permanence of the best
elements and thus the average fitness of the entire element pool increases with
every iteration. The algorithm may trigger only one reaction or all of them,
depending on the nature of the problem to solve, in example; we may use only the
decomposition reaction sub-routine to find the minimum value of a mathematical
function.

6 L. Astudillo, P. Melin, and O. Castillo

Fig. 1 General flowchart of the chemical reaction algorithm

The pseudocode for the chemical reaction algorithm is as follows:

Chemical_Reaction _Algorithm
Input: problem_definition, objective_function, dimensions,
1. Assign values to variables: pool_size, Trials, upper_boundary,
lower_boundary, synthesis_rate, decomposition_rate, singlesubstitution_rate,
doublesubstitution_rate.
2. Generate Randomly Initial_Pool in interval [lower_boundary, upper_
boundary]
3. Evaluate Initial_Pool
4. Identify best_solution
5. while (stopping criteria not met) do
6. Perform Synthesis_Procedure; Get Synthesis_vector
7. Perform Decomposition_Procedure; Get Decomposition_vector
8. Perform SingleSubstitution_Procedure; Get SingleSubstitution_vector
9. Perform DoubleSubstitution_Procedure; Get DoubleSubstitution_vector
10. Evaluate Synthesis_vector, Decomposition_vector, SingleSubstitution_
vector, DoubleSubstitution_vector
11. Apply elitist_reinsertion; Get improved_pool
12. Update best_solution
13. end while
Output: best_solution

Every nature inspired paradigm has their own way to encode candidate

solutions. When these parameters are defined, a set of processes or procedures are
applied to lead the population to an optimal result. The main components of this
chemical reaction algorithm are described below.

Optimization of Type-2 and Type-1 Fuzzy Tracking Controllers 7

Elements/Compounds
These are the basic components of the algorithm. Each element or compound
represents a solution within the search space. The initial definition of elements
and/or compounds depends on the problem itself and can be represented as binary
numbers, integer, floating, etc. They interact with each other implicitly; this is, the
definition of the interaction is independent of the real molecular structure; in this
approach the potential and kinetic energies and other molecular characteristics are
not taken into account.

Chemical Reactions
A chemical reaction is a process in which at least one substance changes its
composition and its sets of properties, in this approach, the chemical reactions
behave as intensifiers (substitution, double substitution reactions) and diversifying
(synthesis, decomposition reactions) mechanisms. The 4 chemical reactions
considered in this approach are the synthesis, decomposition, single and double
substitution reactions. The objective of these operators is exploring or exploiting
new possible solutions within a slightly larger hypercube than the original
elements/compounds, but within the previously specified range.

The synthesis and decomposition reactions are used to diversify the resulting
solutions; these procedures showed to be highly effective to rapidly lead the
results to a desired value. They can be described as follows.

Synthesis Reactions
Is a reaction of two reactants to produce one product. By combining two (or more)
elements, this procedure allows to explore higher valued solutions within the
search space. The result can be described as a compound (B+C → BC). The
pseudocode for the synthesis reaction procedure is as follows:

Synthesis_Procedure
Input: selected_elements, synthesis_rate
1. n = size (selected_elements)
2. i = floor (n / 2)
3. for j = 1 to i – 1
4. Synthesis = selected_elementsj + selected_elementsj+1

5. j = j + 2
6. end for
Output: Synthesis_vector

Decomposition Reactions
In this reaction, typically, only one reactant is given, it allows a compound to be
decomposed into smaller instances (BC → B+C). The pseudocode for the
decomposition reaction procedure is as follows:

8 L. Astudillo, P. Melin, and O. Castillo

Decomposition_Procedure
Input: selected_elements, decomposition_rate
1. n = size (selected_elements)
2. Get randval randomly in interval [0, 1]
3. for i = 1 to n
4. Deco1 = selected_elementsi x randval
5. Deco2 = selected_elementsi x (1 – randval)

6. i = i + 1
7. end for
Output: Decomposition_vector (Deco1, Deco2)

The single and double substitution reactions allow the algorithm to search for

optima around a good previously found solution and they’re described as follows.

Single-Substitution Reactions
When a free element reacts with a compound of different elements, the free
element will replace one of the elements in the compound if the free element is
more reactive than the element it replaces. A new compound and a new free
element are produced; during the algorithm, a compound and an element are
selected and a decomposition reaction is applied to the compound; two elements
are generated from this operation. Then, one of the new generated elements is
combined with the non-decomposed selected element (C + AB → AC + B). The
pseudocode for the single-substitution reaction procedure is as follows:

SingleSubstitution_Procedure
Input: selected_elements, singlesubstitution_rate
1. n = size (selected_elements)
2. i = floor (n / 2)
3. a = selected_elements1, selected_elements2, …, selected_elementsi

4. b = selected_elementsi+1, selected_elementsi+2, …, selected_elementsix2
5. Apply Decomposition_Procedure to a; Get Deco1, Deco2
6. Apply Synthesis_Procedure (b + Deco1); Get Synthesis_vector
Output: SingleSubstitution _vector (Synthesis_vector, Deco2)

Double-Substitution Reactions
Double-substitution or double-replacement reactions, also called double-
decomposition reactions or metathesis reactions involve two ionic compounds,
most often in aqueous solution. In this type of reaction, the cations simply swap
anions; during the algorithm, a similar process that in the previous reaction
happens, the difference is that in this reaction both of the selected compounds are
decomposed and the resulting elements are combined between each other (AB +
CD → CB + AD). The pseudocode for the double-substitution reaction procedure
is as follows:

Optimization of Type-2 and Type-1 Fuzzy Tracking Controllers 9

DoubleSubstitution_Procedure
Input: selected_elements, doublesubstitution_rate
1. n = size (selected_elements)
2. i = floor (n / 2)
3. a = selected_elements1, selected_elements2, …, selected_elementsi

4. b = selected_elementsi+1, selected_elementsi+2, …, selected_elementsix2
5. Apply Decomposition_Procedure to a and b; Get (Deco1, Deco2), (Deco1’,

Deco2’)
6. Apply Synthesis_Procedure (Deco1 + Deco1’), (Deco2 + Deco2’) Get

Synthesis_vector1, Synthesis_vector1’
Output: SingleSubstitution _vector (Synthesis_vector1, Synthesis_vector1’)

In this chemical reaction algorithm we may trigger only one reaction or all of

them, depending on the nature of the problem to solve, e.g., we can apply only the
decomposition reaction sub-routine to find the minimum value of a mathematical
function.

Throughout the execution of the algorithm, whenever a new set of
elements/compounds are created, an elitist reinsertion criteria is applied, allowing
the permanence of the best elements and thus the average fitness of the entire
element pool increases through iterations.

In order to have a better picture of the general schema for this proposed
chemical reaction algorithm, a comparison with other nature inspired paradigms is
shown in Table 1.

Table 1 Main elements of several nature inspired paradigms

Paradigm
Parameter

Representation
Basic Operations

GA Genes Crossover, Mutation
ACO Ants Pheromone
PSO Particles Cognitive, Social Coefficients
GP Trees Crossover, Mutation (In some cases)

CRM
Elements,

Compounds
Reactions (Combination, Decomposition,

Substitution, Double-substitution)

3 The Mobile Robot

Mobile robots are non-holonomic systems due to the constraints imposed on their
kinematics. The equations describing the constraints cannot be integrated
symbolically to obtain explicit relationships between robot positions in local and
global coordinate’s frames. Hence, control problems that involve them have
attracted attention in the control community in recent years [14].

The model considered is that of a unicycle mobile robot (see Figure 2) that has
two driving wheels fixed to the axis and one passive orientable wheel that are
placed in front of the axis and normal to it [5].

10 L. Astudillo, P. Melin, and O. Castillo

Fig. 2 Diagram of a wheeled mobile robot

The two fixed wheels are controlled independently by the motors, and the
passive wheel prevents the robot from overturning when moving on a plane.

It is assumed that the motion of the passive wheel can be ignored from the
dynamics of the mobile robot, which is represented by the following set of
equations [9]:

w

v
q

10

0sin

0cos

θ
θ

=

τ=++)(),()(qGvqqVvqM

 (1)

Where Tyxq],,[θ= is the vector of generalized coordinates which describes

the robot position, (x,y) are the Cartesian coordinates, which denote the mobile
center of mass and θ is the angle between the heading direction and the x-axis

(which is taken counterclockwise form); Twvv],[= is the vector of velocities, v

and w are the linear and angular velocities respectively; rR∈τ is the input vector,
nxnRqM ∈)(is a symmetric and positive-definite inertia matrix,

nxnRqqV ∈),(is the centripetal and Coriolis matrix, nRqG ∈)(is the

gravitational vector. Equation (1.a) represents the kinematics or steering system of
a mobile robot.

Notice that the no-slip condition imposed a non holonomic constraint described
by (2), that it means that the mobile robot can only move in the direction normal
to the axis of the driving wheels.

0sincos =− θθ xy (2)

Optimization of Type-2 and Type-1 Fuzzy Tracking Controllers 11

The control objective will be established as follows: Given a desired trajectory
qd(t) and the orientation of the mobile robot we must design a controller that
applies an adequate torque τ such that the measured positions q(t) achieve the
desired reference qd(t) represented as (3):

0)()(lim =−
∞→

tqtqd
t

 (3)

To reach the control objective, the method is based on the procedure of [9], we are
deriving a τ(t) of a specific vc(t) that controls the steering system (1.a) using a
Fuzzy Logic Controller (FLC). A general structure of tracking control system is
presented in Figure 3.

Fig. 3 Tracking control structure

The control is based on the procedure proposed by Kanayama et al. [13] and
Nelson et al. [21] to solve the tracking problem for the kinematic model vc(t).
Suppose that the desired trajectory qd satisfies (4):

d

d
d

d

d w

v
q

10

0sin

0cos

θ
θ

=

 (4)

Using the robot local frame (the moving coordinate system x-y in figure 1), the
error coordinates can be defined as (5):

θθ
θθ
θθ

θ −
−
−

−=−=

d

d

d

y

x

de yy

xx

e

e

e

qqTe

100

0cossin

0sincos

),(

 (5)

And the auxiliary velocity control input that achieves tracking for (1.a) is given by
(6):

12 L. Astudillo, P. Melin, and O. Castillo

θ

θ

ekvekvw

ekev

w

v
vefv

dydd

xd

c

c
dcc sin

cos
),,(

32

1

++
++

==

 (6)

Where k1, k2 and k3 are positive gain constants.
The first part for this work is to apply the proposed method to obtain the values

of ki (i = 1, 2, 3) for achieving the optimal behavior of the controller, and the
second part is to optimize the fuzzy controller.

4 Fuzzy Logic Controller

The purpose of the fuzzy logic controller (FLC) is to find a control input τ such
that the current velocity vector v is able to reach the velocity vector vc and this is
denoted as:

0lim =−
∞→

vvc
t

 (7)

The inputs variables of the FLC correspond to the velocity errors obtained of (10)
(denoted as ev and ew: linear and angular velocity errors respectively), and 2
outputs variables, the driving and rotational input torques τ (denoted by F and N
respectively). The initial membership functions (MF) are defined by 1 triangular
and 2 trapezoidal functions for each variable involved. Figure 4 depicts the MFs in
which N, Z, P represent the fuzzy sets (Negative, Zero and Positive respectively)
associated to each input and output variable.

Fig. 4 Membership functions of the (a) input and , and (b) output variables F and N

The rule set of the FLC contain 9 rules, which govern the input-output
relationship of the FLC and this adopts the Mamdani-style inference engine. We
use the center of gravity method to realize defuzzification procedure. In Table 2,
we present the rule set whose format is established as follows:

Rule i: If ev is G1 and ew is G2 then F is G3 and N is G4

Where G1…G4 are the fuzzy sets associated to each variable and i= 1 ... 9. In this
case, P denotes “Positive”, N denotes “Negative”, and Z denotes “Zero”.

Optimization of Type-2 and Type-1 Fuzzy Tracking Controllers 13

Table 2 Fuzzy rule set

 N Z P

N N/N N/Z N/P

Z Z/N Z/Z Z/P

P P/N P/Z P/P

5 Experimental Results

Several tests of the chemical optimization paradigm were made to test the
performance of the tracking controller. First, we need to find the values of ki (i =
1, 2, 3) showed in equation 6, which shall guarantee convergence of the error e to
zero.

To evaluate the constants obtained by the algorithm, the mobile robot tracking
system, which consists in equations 5 and 6 was modeled using Simulink®. Figure
5 shows the closed loop for the tracking controller.

Fig. 5 Closed loop for the tracking controller system

The conditions to evaluate each result, which correspond to the final position
error, are given by equation 12.

14 L. Astudillo, P. Melin, and O. Castillo

() () ()

=

++
=

n

i

yx

n

ieieie
EP

1

θ (12)

For the first set of experiments only the decomposition reaction mechanism was
triggered and the decomposition factor was varied; this factor is the quantity of
resulting elements after applying a decomposition reaction to a determined
“compound”; the only restriction here is that let x be the selected compound and

ix ' (i=1 2, …, n), the resulting elements; the sum of all values found in the

decomposition must be equal to the value of the original compound. This is shown
in equation 13.

=

=
n

i
i xx

1

' (13)

Each experiment was executed 35 times and the test parameters for each set of
experiments can be observed in Table 3.

The decomposition rate (Dec. Rate) represents the percentage of the pool to be
candidate for the decomposition and the decomposition factor (Dec. Factor) is the
number of elements to be decomposed into.

The selection strategy applied was the stochastic universal sampling, which
uses a single random value to sample all of the solutions by choosing them at
evenly spaced intervals.

In example, for a pool containing 5 initial compounds, the vector length of
decomposed elements when the decomposition factor is 3 and the decomposition
rate is 0.4 will be of 6 elements.

Table 3 Parameters of the Chemical Reaction Optimization

No. Elements Iterations Dec. Factor Dec. Rate
1 2 10 2 0.3
2 5 10 3 0.3
3 2 10 2 0.4
4 2 10 3 0.4
5 5 10 2 0.4
6 5 10 3 0.4
7 5 10 2 0.5
8 10 10 2 0.5

By applying this criterion, the initial pool of elements increased with every

iteration; this is why the initial element pool was set to 10 elements as maximum.
Table 4 shows the results after applying the chemical optimization paradigm.

Optimization of Type-2 and Type-1 Fuzzy Tracking Controllers 15

Table 4 Experimental Results of the proposed method for optimizing the values of the
gains k1, k2, k3

No. Best Error Mean k1 k2 k3
1 0.0086 1.1568 519 46 8
2 4.79e-04 0.1291 205 31 31

3 0.0025 0.5809 36 328 88

4 0.0012 0.5589 2 206 0

5 0.0035 0.0480 185 29 5

6 8.13e-005 0.0299 270 53 15

7 0.0066 0.1440 29 15 0

8 0.0019 0.1625 51 3 0

As it is observed in Table 4, experiment number 6 seems to be the best result

because it reached the smaller final error among all experiments.
Figure 6 shows the final position errors in x, y and theta for experiment no. 6.

Fig. 6 Final position errors in x, y and theta for experiment no. 6

By analyzing the graphical results of several set of exercises, we noticed that
the control obtained for some of them was “smoother” despite the average error
value. This was the case for experiment no. 3, in which the final error value was
significantly higher than the obtained in experiment no. 6. Figure 7 shows the
final position errors in x, y and theta for experiment no. 3.

16 L. Astudillo, P. Melin, and O. Castillo

Fig. 7 Final position errors in x, y and theta for experiment no. 6

Making a comparison between both graphics, we can observe that the average error
obtained for theta is 0.0338 for experiment no. 6 and 0.0315 for experiment no. 3.

This smoother control of the tracking system could make a big difference in the
complete dynamic system of the mobile robot.

In previous work [22], the gain constant values were found by means of genetic
algorithms. In Table 5 we have a comparison of the best results obtained with both
algorithms, we can observe that the result with the chemical optimization
outperforms the GA in finding the best gain values.

Table 5 Comparison of the Best Results

Parameters
Genetic

Algorithm
Chemical Optimization

Algorithm

Individuals 5 2
Iterations 15 10

Crossover Rate 0.8 N/A
Mutation Rate 0.1 N/A
Synthesis Rate N/A 0.2

Decomposition Rate N/A 0.8
Substitution Rate N/A 0.6

Double Substitution Rate N/A 0.6
k1, k2, k3 43, 493, 195 36, 328, 88
Final Error 0.006734 0.0025

Optimization of Type-2 and Type-1 Fuzzy Tracking Controllers 17

Figure 8 shows the result in Simulink for the experiment with the best overall
result, applying GAs as optimization method.

Fig. 8 Position errors in x, y and theta of best result applying GAs

Once we have found optimal values for the gain constants, the next step is to
find the optimal values for the input/output membership functions of the fuzzy
controller. Our goal is that in the simulations, the lineal and angular velocities
reach zero. Table 6 shows the parameters of the simulateons for typ-1 FLC.

Table 6 Parameters of the simulations for Type-1 FLC

Parameters Value

Elements 10

Trials 15

Selection Method Stochastic Universal Sampling

k1 117

k2 226

k3 137

Error 0.077178

Figure 9 shows the behavior of the chemical optimization algorithm throughout

the experiment.

18 L. Astudillo, P. Melin, and O. Castillo

0 5 10 15
-2

-1.5

-1

-0.5

0

0.5

1

Generacion

lo
g1

0(
f(

x)
)

Best Individual = 0.077178

Fig. 9 Best simulation of experiments with the chemical optimization method

Figure 10 shows the resulted input and output membership functions found by
the proposed optimization algorithm.

 (a)

 (b)

Fig. 10 Resulting input membership functions: (a) linear and (b) angular velocities and
output (c) right and (d) left torque

Optimization of Type-2 and Type-1 Fuzzy Tracking Controllers 19

 (c)

 (d)

Fig. 10 (continued)

Figure 11 shows the obtained trajectory when simulating the mobile control
system including the obtained input and output membership functions.

Fig. 11 Obtained trajectory when applying the chemical reaction algorithm

20 L. Astudillo, P. Melin, and O. Castillo

Figure 12 shows the best trajectory reached by the mobile when optimizing the
input and output membership functions using genetic algorithms.

Fig. 12 Obtained trajectory using genetic algorithms

A Type-2 fuzzy logic controller was developed using the parameters of the
membership functions found for the FLC type-1. The parameters searched
with the chemical reaction algorithm were for the footprint of uncertainty
(FOU).

Table 7 shows the parameters used in the simulations and Figure 13 shows
the behavior of the chemical optimization algorithm throughout the experiment.

Table 7 Parameters of the simulations for Type-2 FLC

Parameters Value

Elements 10

Trials 10

Selection Method Stochastic Universal Sampling

k1 117

k2 226

k3 137

Error 2.7736

Optimization of Type-2 and Type-1 Fuzzy Tracking Controllers 21

Fig. 13 Behavior of the algorithm when optimizing the type-2 FLC

Figure 14 shows the resulting type-2 input and output membership functions
found by the proposed optimization algorithm and Figure 15 shows the obtained
trajectory reached by the mobile robot.

Fig. 14 Resulting type-2 input membership functions, from top to bottom: (a) linear and (b)
angular velocities and output (c) right and (d) left torque

22 L. Astudillo, P. Melin, and O. Castillo

Fig. 15 Obtained trajectory for the mobile robot when applying the chemical reaction
algorithm to the type-2 FLC

As observed in Table 7, the final error obtained is not smaller that the final
error found for the type-1 FLC. Despite this, the trajectory obtained and showed in
Figure 15 is acceptable taking into account that the reference trajectory is a
straight line. In Figure 16 we can observe an “unacceptable” trajectory that was
found in the early attempts of optimization for the type-1 FLC applying this
chemical reaction algorithm. Here, we can observe that the parameters found were
not the adequate to make the FLC follow the desired trajectory.

Fig. 16 Unaccepted resulting trajectory in early optimization trials

Optimization of Type-2 and Type-1 Fuzzy Tracking Controllers 23

In order to test the robustness of the type-1 and type-2 FLC, we added an
external signal given by equation (13).

ttFext ××= ωε sin)((13)

This represents an external force applied in a period of 10 seconds to the obtained
trajectory that will make the mobile robot to be out of its path. The idea of adding this
disturbance is to measure the errors obtained with the FLC and to test the behavior of
the mobile robot under perturbed torques. Table 8 shows the parameters for the
simulations and the errors obtained during the run of the simulation.

Table 8 Simulation parameters and errors obtained under disturbed torques

ε Velocity
errors

Type-1
(GA)

Type-1
(CRA)

Type-2
(CRA)

0.05
Final error 4.0997 0.9815 29.5115

Average error 4.1209 1.5823 26.6408

5
Final error 4.1059 0.9729 29.52

Average error 3.1695 1.8679 26.1646

10
Final error 4.1045 0.9745 29.51

Average error 3.0985 1.7438 24.9467

30
Final error 4.0912 0.9783 29.51

Average error 2.2632 1.9481 24.6032

32
Final error 3273 0.9748 29.52

Average error 3.4667e+003 2.8180 24.6465

34
Final error 1.5705e+004 566.8 29.51

Average error 1.1180e+004 215.8198 24.9211

40
Final error 2.534e+004 3.5417e+04 29.51

Average error 186.0611 5.7492e+003 23.8938

41
Final error 8839 3168 685.1

Average error 2.0268e+004 0.0503e+003 16.5257

Figure 17 show the obtained trajectories for the type-1 FLC optimized with

Genetic Algorithms.

Fig. 17 From left to right, trajectory obtained with the type-1 FLC optimized with GA’s. (a)
ε = 30, (b) ε = 32, (c) ε = 34.

24 L. Astudillo, P. Melin, and O. Castillo

Figure 18 shows the obtained trajectories for the type-1 FLC optimized with the
chemical reaction algorithm.

Fig. 18 From left to right, trajectory obtained with the type-1 FLC optimized with CRA. (a)
ε = 30, (b) ε = 32, (c) ε = 34.

Figure 19 shows the obtained trajectories for the type-2 FLC optimized with the
CRA method.

Fig. 19 From left to right, trajectory obtained with the type-2 FLC optimized with CRA. (a)
ε = 30, (b) ε = 32, (c) ε = 34.

When observing Table 8 and Figures 17 to 19 we can observe that the type-2
FLC was able to maintain a more controlled trajectory in despite of the “large”
error found by the algorithm (e=2.7736). For larger epsilon (ε) values, it was
difficult for the type-1 FLC’s to keep in the path and in a determined time, the
controller was not able to return to the reference trajectory.

6 Conclusions

In this paper, we presented simulation results from an optimization method that
mimics chemical reactions applied to the problem of tracking control. The goal
was to find the gain constants involved in the tracking controller for the dynamic
model of a unicycle mobile robot. In the figures of the experiments we are able to
note de behavior of the algorithm and the solutions found through all the
iterations. Simulation results show that the proposed optimization method is able
to outperform the results previously obtained applying a genetic algorithm
optimization technique. The optimal fuzzy logic controller obtained with the

Optimization of Type-2 and Type-1 Fuzzy Tracking Controllers 25

proposed chemical paradigm has been able to reach smaller error values in less
time than genetic algorithms. Also, the type-2 fuzzy controller was able to perform
better under the presence of disturbance for this problem in despite of the “large”
error obtained (e=2.7736). The design of optimal type-2 fuzzy controllers is being
performed at the time.

Acknowledgement. The authors would like to thank CONACYT and Tijuana Institute of
Technology for the facilities and resources granted for the development of this research.

References

[1] Aliev, R.A., Pedrycz, W., Guirimov, B.G., Aliev, R.R., Ilhan, U., Babagil, M., et al.:
Type-2 fuzzy neural networks with fuzzy clustering and differential evolution
optimization. Information Sciences 181(9), 1591–1608 (2011)

[2] Astudillo, L., Castillo, O., Aguilar, L.: Intelligent Control for a Perturbed
Autonomous Wheeled Mobile Robot: a Type-2 Fuzzy Logic Approach. Nonlinear
Studies 14(1) (2007)

[3] Bentalba, S., El Hajjaji, A., Rachid, A.: Fuzzy Control of a Mobile Robot: A New
Approach. In: Proc. IEEE Int. Conf. on Control Applications, Hartford, CT, pp. 69–
72 (October 1997)

[4] Bloch, A.M., Drakunov, S.: Tracking in NonHolonomic Dynamic System Via
Sliding Modes. In: Proc. IEEE Conf. on Decision & Control, Brighton, UK, pp.
1127–1132 (1991)

[5] Campion, G., Bastin, G., D’Andrea-Novel, B.: Structural Properties and
Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots. IEEE
Trans. on Robotics and Automation 12(1) (February 1996)

[6] Lopez, M., Melin, P., Castillo, O.: Comparative Study of Fuzzy Methods for
Response Integration in Ensemble Neural Networks for Pattern Recognition. In:
Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Bio-inspired Hybrid Intelligent Systems
for Image Analysis and Pattern Recognition. SCI, vol. 256, pp. 123–140. Springer,
Heidelberg (2009)

[7] Cazarez-Castro, N.R., Aguilar, L.T., Castillo, O.: Fuzzy logic control with genetic
membership function parameters optimization for the output regulation of a
servomechanism with nonlinear backlash. Expert Systems with Applications 37(6),
4368–4378 (2010)

[8] Chwa, D.: Sliding-Mode Tracking Control of Nonholonomic Wheeled Mobile
Robots in Polar coordinates. IEEE Trans. on Control Syst. Tech. 12(4), 633–644
(2004)

[9] Fierro, R., Lewis, F.L.: Control of a Nonholonomic Mobile Robot: Backstepping
Kinematics into Dynamics. In: Proc. 34th Conf. on Decision & Control, New
Orleans, LA (1995)

[10] Fierro, R., Lewis, F.L.: Control of a Nonholonomic Mobile Robot Using Neural
Networks. IEEE Trans. on Neural Networks 9(4), 589–600 (1998)

[11] Fukao, T., Nakagawa, H., Adachi, N.: Adaptive Tracking Control of a
NonHolonomic Mobile Robot. IEEE Trans. on Robotics and Automation 16(5),
609–615 (2000)

[12] Ishikawa, S.: A Method of Indoor Mobile Robot Navigation by Fuzzy Control. In:
Proc. Int. Conf. Intell. Robot. Syst., Osaka, Japan, pp. 1013–1018 (1991)

26 L. Astudillo, P. Melin, and O. Castillo

[13] Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A Stable Tracking Control
Method For a Non-Holonomic Mobile Robot. In: Proc. IEEE/RSJ Int. Workshop on
Intelligent Robots and Systems, Osaka, Japan, pp. 1236–1241 (1991)

[14] Kolmanovsky, I., McClamroch, N.H.: Developments in NonholonomicNontrol
Problems. IEEE Control Syst. Mag. 15, 20–36 (1995)

[15] Lee, T.-C., Lee, C.H., Teng, C.-C.: Tracking Control of Mobile Robots Using the
Backsteeping Technique. In: Proc. 5th. Int. Conf. Contr., Automat., Robot. Vision,
Singapore, pp. 1715–1719 (December 1998)

[16] Lee, T.H., Leung, F.H.F., Tam, P.K.S.: Position Control for Wheeled Mobile Robot
Using a Fuzzy Controller, pp. 525–528. IEEE (1999)

[17] Lee, T.-C., Tai, K.: Tracking Control of Unicycle-Modeled Mobile robots Using a
Saturation Feedback Controller. IEEE Trans. on Control Systems Technology 9(2),
305–318 (2001)

[18] Martinez, R., Castillo, O., Aguilar, L.: Optimization of type-2 fuzzy logic controllers
for a perturbed autonomous wheeled mobile robot using genetic algorithms.
Information Sciences 179(13), 2158–2174 (2009)

[19] Meyer, T., Yamamoto, L., Banzhaf, W., Tschudin, C.: Elongation Control in an
Algorithmic Chemistry. In: Kampis, G. (ed.) ECAL 2009, Part I. LNCS, vol. 5777,
pp. 273–280. Springer, Heidelberg (2011)

[20] Mohammadi, S.M.A., Gharaveisi, A.A., Mashinchi, M., Vaezi-Nejad, S.M.: An
evolutionary tuning technique for type-2 fuzzy logic controller. Transactions of the
Institute of Measurement and Control 33(2), 223–245 (2011)

[21] Nelson, W., Cox, I.: Local Path Control for an Autonomous Vehicle. In: Proc. IEEE
Conf. on Robotics and Automation, pp. 1504–1510 (1988)

[22] Oh, S., Jang, H., Pedrycz, W.: A comparative experimental study of type-1/type-2
fuzzy cascade controller based on genetic algorithms and particle swarm
optimization. Expert Systems with Applications 38(9), 11217–11229 (2011)

[23] Pawlowski, S., Dutkiewicz, P., Kozlowski, K., Wroblewski, W.: Fuzzy Logic
Implementation in Mobile Robot Control. In: 2nd Workshop on Robot Motion and
Control, pp. 65–70 (October 2001)

[24] Sahab, A.R., Moddabernia, M.R.: Backstepping method for a single-link flexible-
joint manipulator using genetic algorithm. IJICIC 7(7B), 4161–4170 (2011)

[25] Shi, N.-Y., Chu, C.-P.: A molecular solution to the hitting-set problem in DNA-
based supercomputing. Information Sciences 180, 1010–1019 (2010)

[26] Song, K.T., Sheen, L.H.: Heuristic fuzzy-neural Network and its application to
reactive navigation of a mobile robot. Fuzzy Sets Systems 110(3), 331–340 (2000)

[27] Tsai, C.-C., Lin, H.-H., Lin, C.-C.: Trajectory Tracking Control of a Laser-Guided
Wheeled Mobile Robot. In: Proc. IEEE Int. Conf. on Control Applications, Taipei,
Taiwan, pp. 1055–1059 (September 2004)

[28] Ulyanov, S.V., Watanabe, S., Ulyanov, V.S., Yamafuji, K., Litvintseva, L.V.,
Rizzotto, G.G.: Soft Computing for the Intelligent Robust Control of a Robotic
Unicycle with a New Physical Measure for Mechanical Controllability. Soft
Computing 2, 73–88 (1998)

[29] Xu, J., Lam, A.Y.S., Li, V.O.K.: Chemical Reaction Optimization for the Grid
Scheduling Problem. In: IEE Communication Society, ICC 2010, pp. 1–5 (2010)

[30] Yamamoto, L.: Evaluation of a Catalytic Search Algorithm. In: Proc. 4th Int.
Workshop on Nature Inspired Cooperative Strategies for Optimization, NICSO
2010, pp. 75–87 (2010)

[31] Yu, J., Ma, Y., Chen, B., Yu, H., Pan, S.: Adaptive Neural Position Tracking
Control for Induction Motors via Backstepping. IJICIC 7(7B), 4503–4516 (2011)

P. Melin, O. Castillo (Eds.): Soft Computing Appli. in Optimization, STUDFUZZ 294, pp. 27–51.
DOI: 10.1007/978-3-642-35323-9_2 © Springer-Verlag Berlin Heidelberg 2013

A Genetic Algorithm for the Problem of
Minimal Brauer Chains for Large Exponents

Arturo Rodriguez-Cristerna and Jose Torres-Jimenez

Information Technology Laboratory, CINVESTAV-Tamaulipas Km. 5.5 Carretera Cd.
Victoria-Soto la Marina, 87130, Cd. Victoria Tamps., Mexico
arodriguez@tamps.cinvestav.mx, jtj@cinvestav.mx

Abstract. Exponentiation is an important and complex task used in cryptosystems
such RSA. The reduction of the number of multiplications needed during the ex-
ponentiation can significantly improve the execution time of cryptosystems. The
problem of determining the minimal sequence of multiplications required for per-
forming a modular exponentiation can be formulated using the concept of Brauer
Chains.

This paper, shows a new approach to face the problem of getting Brauer Chains
of minimal length by using a Genetic Algorithm (GA). The implementation details
of the GA includes a representation based on the Factorial Number System (FNS),
a mixture of Neighborhood Functions (NF), a mixture of Distribution Functions
(DF) and a fine-tuning process to set the parameter values. We compare the pro-
posed GA approach with another relevant solutions presented in the literature by
using three benchmarks considered difficult to show that it is a viable alternative
to solve the problem of getting shortest Brauer Chains.

Keywords: Addition Chains, Genetic Algorithms.

1 Introduction

Exponentiation is an important and complex task used in cryptosystems such as
RSA. The reduction of the number of multiplications needed during the exponen-
tiation can significantly improve the execution time of cryptosystems [3]. The
problem of determining the minimum operations required for the exponentiation
of xn have been searched with different strategies and a naive solution is to apply
a sequence of n-1 multiplications of x such that xn= x·x·... ·x. For example, if we
want to compute x23 using the naive way we have to apply 22 multiplications.
Another possibility to compute xn is by applying the binary method [14], which is
showed in a recursive description in the Equation 1.

28 A. Rodriguez-Cristerna and J. Torres-Jimenez
 if α = 1· if α is even· otherwise

(1)

For the example of the exponentiation x23, using the binary method we only need
to perform 7 multiplications, as can be seen next:

 = , = , = , = , = , = , =

But it is possible to reduce further the number of multiplications needed for the
exponentiation than those used by the naive way or the binary method, and there
have been reported different strategies to simplify this complex task like the m-ary
method and the window-based method [7,14].

Also, the problem of determining the minimal sequence of multiplications
required to perform an exponentiation can be formulated with the concept of Ad-
dition Chain (AC). The addition chain-based methods for exponentiation use a se-
quence of positive integers such that the first number of the chain is 1 and the last
number is the exponent n. Therefore, the length of an addition chain n is equal to
the corresponding number of multiplications required for the computation of xn.
Thus, the smallest of such multiplications, given by the chain length l(n), makes
the exponentiation task faster.

Given a positive integer n, an AC is a sequence of integers = , , … ,
such that:

= 1 if = 0+ if 0 for some , (2)

The length of the AC is | | = , the chain length l(n) is the minimal length of all
possible ACs for n, and the smaller addition chain is called Minimal Addition
Chain (MAC).

An example of an AC for the exponent 5 with length 4 is the sequence of num-
bers shown in the Figure 1, where can be see how each non root member in the
chain are composed by two previous members and the element r is an integer
equal to n.

In an AC every set of values {j,k} is called step, and according with their prop-
erties along the chain, the steps and the complete chain takes some particular
name. A first instance is if j and k are equal to i-1, it its called "double step".
Another instance is when j is equal to i-1 and k<j, i.e. if one of the addends is the
previous member, then it is called a star step, and "an addition chain that consists
entirely of star steps is called a star chain" [27] or Brauer Chain (BC) [15] in hon-
or of Brauer (1937). We denote l*(n) the minimal BC length for a number n, and
where a BC C has the smallest length r for a number n we can say that C is a Mi-
nimal Brauer Chain (MBC) for n.

A Genetic Algorithm for the Problem of Minimal Brauer Chains for Large Exponents 29

Fig. 1 Example of an AC for the number 5

An example of a BC is (1,2,4,5,9,18,23), which leads to the following scheme
for the computation of x23 using only 6 multiplications:

 = , = , = , = , = , =

A difference between an AC and a BC is the search space, because in an AC the
search space grows in a way at least factorial according to its length but in a BC it
is only grow in a factorial way. In fact, the search space for BCs can be seen as a
tree of r levels (Fig. 2). For that reason the searching process for a MBC for small
numbers like 19 is relatively easy, but for bigger numbers is not because the
search space becomes very large. According to Knuth [17] and Mignotte [19]
another remarkable difference is that l(n) ≤ l*(n). The smallest exponent, taken
from [11], with we can observe the difference lengths of MCAs and MBCs is
12509 (Table 1).

Fig. 2 Search space for Brauer Chains with length 4

Table 1 Example of difference between l(n) and l*(n) with the exponent n=12509

Type Chain r
MAC 1→2→3→6→12→13→24→48→96→192→384→

768→781→1562→3124→6248→12496→12509
17

MBC 1→2→3→6→12→24→48→96→192→384→768→
1536→1560→3120→3126→6252→6254→12508→ 12509

18

In this paper we propose a Genetic Algorithm (GA) to face the problem of get-

ting MBCs, using a representation based on the Factorial Number System (FNS), a
mixture of neighborhood functions and a mixture of distribution functions. The
remaining of this paper is organized as follows. Section 2 gives a brief description

30 A. Rodriguez-Cristerna and J. Torres-Jimenez

of a variety of approaches proposed to find MACs and MBCs, Section 3 describes
our proposed approach, Section 4 shows how the fine-tuning process was done
and the parameter configuration used, Section 5 shows the results obtained and fi-
nally Section 6 gives the reached conclusions.

2 Relevant Related Work

In the last years, it has been shown that metaheuristic strategies find near optimal
solutions for a wide variety of combinatorial problems in a reasonable time. In this
section are described some approaches that have been designed for the problem of
finding MACs and MBCs.

Bleichenbacher and Flammenkamp [3] search for MACs by using Direct Acyc-
lic Graphs (DAG) to represent the chains and a BackTracking (BT) search to con-
struct the graph. Their backtrack approach uses a stage where special cases of
addition chains are replaced with another equivalent ones in order to get smaller
ACs.

Thurber in 1999 [27] proposed a BT algorithm to find MACs, by using a repre-
sentation based on a tree of k levels and branch and bound methods to explore the
tree of a size at least k!.

Nedja and Moruelle in 2002 [20] designed an approach based in the m-ary me-
thod using a parallel implementation to compute MACs by decomposing the ex-
ponent, in its binary representation, in blocks (also called windows) containing
successive digits of ones that results in variable length zero-partitions and one-
partitions. They found ACs with a lower number of elements than the binary me-
thod does.

Nedja and Moruelle in 2003 [23] used large windows inside a genetic algo-
rithm. Their optimal parameter settings found were: 50 individuals; a double-
points crossover; a mutation rate between 0.4 and 0.7; and a mutation degree of
about 1% of the last value in the binary encoding sequence.

Cruz-Cortes et. al in 2005 [7] proposed a GA to solve the problem of finding
MACs with the following features: each solution is represented as a sequence of
integers, where each gene is related to one step of the AC, so each time that their
algorithm apply a crossover operator it have to assure that the resulting sequence
is a valid AC and the fitness is the AC length. The remaining features of their pro-
posed GA are: a "non elitist" survivor selection; a population size of 100; a num-
ber of generations of 300; a mutation rate of 0.5; a selection of parents pairs to be
recombined by a binary tournament; and an one point crossover. Their results
suggest that this kind of algorithm can be a good alternative to solve the problem
of finding MBCs.

Nedja and Moruelle in 2004 [21] and 2006 [22] proposed Ant Colony Systems
(ACS) to obtain MACs that use a bi-dimensional triangular array to store the ACS
global memory. The local memory is divided in two parts: a vector of length n and
the fitness of the path traveled by the ant to construct the AC.

Gelgi and Onus in 2006 [12], proposed some heuristics approaches for the
problem of getting an MBC. They present five approaches: three greedy heuristics
and two dynamic programming approaches. They found empirically, that their

A Genetic Algorithm for the Problem of Minimal Brauer Chains for Large Exponents 31

dynamic heuristic approach has an approximation ratio (obtained length / mini-
mum length) of 1.1 with 0 20000.

Cruz-Cortes et. al in 2008 [6] presented an algorithm using the metaheuristic
approach known as Artificial Immune System (AIS) to tackle the problem of find-
ing short BCs, which uses a cloning operator and a hypermutation operator (the
hypermutation operator is inversely proportional to the clones fitness) over the
best solutions; and an "elitist" selection. The values of the parameter used are: a
population size of 45; a number of best individuals to be cloned of 11; a number
of replaced antibodies of 4 and 25 iterations of the main cycle. Also they combine
their AIS system with a slide-window method to deal with large numbers. They
use a function named fill to search for a valid BC, but its important to say that
they do not mention about how much effort is done inside the fill function either in
terms of time or evaluations.

Osorio-Hernandez et. al in 2009 [24] design a GA to find minimal length Brau-
er Chains. They use a repairing process; local search; and integer representation.
They were able to find short BCs with the following parameters: population size
of 200; maximum number of generations of 300; and binary tournament selection.
However they don't were able to find all minimal length BCs with only one confi-
guration and they had to use two different configurations to find some of them.
Other important aspects of this work are that: the parameter configuration was ob-
tained by trial and error, and there is no mention about how many operations are
used or how much time is used inside the fill function (which is used to search for
a valid BC).

Dominguez-Isidro et. al in 2011 [8,9] designed an algorithm to face the prob-
lem of finding MBCs using an evolutionary programming approach, where muta-
tion is the only variation operator. Each individual k in the current population
generates by mutations t mutants, and the best of them is chosen as k’s offspring.
As parameter values they use: population size of 100; maximum number of gener-
ations of 230; 4 mutants per individual; and a survivor selection based on a tour-
nament of size 10.

Jose-Garcia et. al in 2011 [16] designed an interesting algorithm based on Si-
mulated Annealing (SA) approach for the problem of finding MBCs, although the
name of the work mentions addition chains, which uses a mixture of 4 neighbor-
hood functions and a representation based on a chain in FNS. This algorithm
works only with one solution at a time due to Simulated Annealing specification
and the parameter values were: an initial temperature of 10, a cooling rate of .85
and a length of a Markov chain of 10. Also, with the purpose of reducing consum-
ing time of the experimentation they performed and used a parallel test scenario.

Rodriguez-Cristerna et. al in 2011 [26] reports a Mutation-Selection (MS) algo-
rithm, based on the general scheme of an evolutionary algorithm but without the
recombination stage to find MBCs. This algorithm uses: a representation based on
FNS, which is adequate to apply genetic operators and always generate a valid so-
lution; a fitness function based in the n achieved and the length of the chain; a
"non elitist" survivor selection; 3log2n parents; 7log2n mutated children per each
parent; and 1000 iterations.

32 A. Rodriguez-Cristerna and J. Torres-Jimenez

Clift in 2011 [4], designed a BT strategy based on a graph representation and a
novel prune criterion. This approach was able to find all l(n) with 2 using a
computational time of about a month using 12 processors.

There have been proposed more approaches to find MACs and MBCs, however
here we list some important metaheuristic works. A brief enumeration of the main
features of the presented strategies is showed in the Table 2.

Table 2 Summary of main features for some proposed approaches to find MACs and
MBCs

Approach Repair
process

Use of
past memory

Representation Iterative
operatorss

Parallell Chain
type

BT [3] no no graph no no AC
BT [27] no no graph no no AC

m-ary [20] no no binary no yes AC
GA [23] no no binary no no AC
GA[7] yes no integer no no AC

ACS [21,22] no no integer no no AC
AIS [6] no yes integer yes no BC
GA [24] yes no integer yes no BC
SA [16] no no FNS yes no BC
MS [26] no no FNS yes no BC

3 Proposed Approach

3.1 Genetic Algorithm

In order to present the GA proposed, a brief description of how it works is given.
GA uses one or more points in the search space, called parent-points, to generate
multiple points through recombination and then apply to them a mutation process
(many times implemented as a local search procedure) to the new points. The gen-
erated points are called children-points and are evaluated in search of an optimal
point. When no optimal point is found, the whole process is repeated replacing the
parent-points with some points of the population according to a rule, which is
called survivor selection. This cycle is repeated until an optimal point is found or
certain termination criterion is met.

The algorithm proposed is based on the general scheme of an evolutionary al-
gorithm [10], and its pseudocode is showed in the Algorithm 1.

Algorithm 1. General scheme of the GA algorithm
proposed.
INITIALIZE parents
EVALUATE parents
REPEAT
 SELECT pairs of parents
 RECOMBINE pairs of parents

A Genetic Algorithm for the Problem of Minimal Brauer Chains for Large Exponents 33

 MUTATION through local search with the resulting
offspring
 EVALUATE new candidates
 parents = survivor selection
UNTIL the number of evaluations functions are done

Contextualizing the GA for MBC computation, we have to address the next
points:

− The representation and the search space used by the proposed algorithm
(described in Subsection 3.2).

− The distribution functions used to select a position in a BC (in FNS
representation) and the distribution function used to pickup values for a given
position in the BC (described in Subsection 3.3).

− The survivor selection methods used (described in Subsection 3.4).
− The children-points generated through selection and recombination (detailed in

Subsection 3.5).
− The local search process with children-points using Neighborhood Functions

(detailed in Subsection 3.6).
− The evaluation function used to measure the quality of the potential solutions

and the termination condition (described in Subsection 3.7).

3.2 Representation and Search Space

The representation used is based on the FNS and the search space is r! where r is
the length of the BC. We use a lower bound denoted by φ and an upper bound
denoted by ψ, defined in the Equations 3 and 4 respectively. The lower bound is
defined as the barrier of minimum number of multiplications that are needed if we
could apply only double steps and the upper bound is defined as the maximum
number of multiplications needed by the binary method. φ = log (n) (3)

ψ = 2 · log (n) (4)

In FNS we can describe a BC C with a chain of numbers, that we refer as C', by
taking a value from the set {0,1,...,i-1} for each node of C' with an index position i
greater than 0, because the representation in FNS for the node 0 of C has no value.
We can rebuild the original BC from the chain C' applying the Equation 5. The
Figure 3 shows an example of how to represent a BC C for n=23 using a chain of
numbers C' in the FNS.

It's necessary to mention that the population is initialized only with double
steps nodes, and the chain C' is always translated to a BC until the last node which
its translation is equal or lower than n.

34 A. Rodriguez-Cristerna and J. Torres-Jimenez

Fig. 3 Example of representation of a BC C for n=23 in a chain of numbers C' using the
FNS

() = (1) + () if 01 if = 0 (5)

3.3 Distribution Functions for Selecting a Position in the BC

The distribution functions allows to select an i position in a C' chain, such that 1 , with a non Gaussian distribution in two steps: first is calculated a
random value x with 0 τ (Equation 6) and second is used one of the two
distribution functions in Equation 7 to calculate the selected i position.

The main purpose of the two distribution DF1 and DF2 is the selection of a
point in the BC. DF1 allows to select with more probability the left most positions
while the distribution function DF2 allows to select with more probability the right
most positions. The importance of using DF1 and DF2 is to establish a balance
between exploration and exploitation. DF1 enables exploitation and DF2 enables
exploration. The distribution functions DF1 and DF2 also has the property to select
with a small probability a higher position, but not more than one unit far from the
chain length, which increases the possibility of modifying the chain length.

= (+ 1) (+ 2)2 (6)

= = 1 + 1 + 8(+ 1)2 1
= + 3 1 + 1 + 8(+ 1)2 (7)

Once defined the criteria for selecting a position within the BC, we are able to
define the criterion to choose a valid value for the positions. The steps that follow
a neighborhood function to select a valid value for an i position in a BC are two:
first is selected a random x' such that 0 τ (Equation 8); and second is
used the distribution function DF1. This methodology ensure that the i chain
member has a value from the set {0,1,...,i-1} and also has the property to set in the
i position a double step with high probability. = (+ 1)2 (8)

A Genetic Algorithm for the Problem of Minimal Brauer Chains for Large Exponents 35

3.4 Survivor Selection

It is important to select the best survivor selection type because it allows to
manage the memory of the GA in different ways. For that reason we explore the
use of three types of survivor selection: the first one is called (μ+λ) and takes the
best points from the set of parent-points and the children-points using a random
criterion as a tiebreaker.

The second one is called (μ+λ) with no repetitions, which takes the best points
from whole population but discards the points with the same fitness. In the cases
where the parent-points can not be full filled with different individuals, the
parent-points are completed with the the best remaining individuals.

The third one is called (μ,λ) and takes the best points from the set of the
children-points, in case of ties its used a random selection criterion. The parent-
points are randomly replaced in case that they were fewer children-points than
parent-points.

3.5 Selection and Recombination

The selection of parents pairs to be recombined were explored with the following
strategies: random selection, tournament of size two and tournament of size three.
In the random selection both parents are randomly chosen. For the tournament of
size two, there are selected two groups of two parents points and only the best one
of each group is selected to be recombined. Finally for the tournament of size
three, there are selected groups of three parents points and the best parent point for
each group is selected.

For the recombination, we use a simple recombination of one point scheme. It
means, that if we choose the point t for the recombination, the children-point C''1
is constructed with the first t elements of the parent-point C'1 and the remaining
elements of the parent-point C'2, in complement, the children-point C''2 is
constructed with the first t elements of the parent-point C'2 and the remaining
elements of the parent-point C'1. This process is exemplified in the Figure 4.

Fig. 4 Example of recombination of parents-point C'1 and C'2

36 A. Rodriguez-Cristerna and J. Torres-Jimenez

To pickup the t point, we explore five mixtures of use of the distribution func-
tions DF1 and DF2 which are listed in Table 3.

Table 3 Mixtures of use of the distribution functions DF1 and DF2 inside neighborhood
functions

Mixture no. DF1 DF2
0 0% 100%
1 25% 75%
2 50% 50%
3 75% 25%
4 100% 0%

3.6 Neighborhood Functions and Local Search

Inside of the local search we explore the use of a mixture of four neighborhood
functions, which are described below:

− NF1(s). Select a random index position i from s, and pickup another FNS value
different from the original with the use of DF1, the change is made only if the
resulting BC is better than the original.

− NF2(s). Select a random index position i from s, and pickup a FNS value differ-
ent from the original in i. Then select another different random position j from
s, and pickup a FNS value different from the original in j. The change is applied
only if the resulting BC is better than the original.

− NF3(s). Select a random index position i from s, and pickup the best FNS value.
− NF4(s). Select a random index positions i and j from s, and pickup the best FNS

values.

To select the i and j positions inside the pairs of neighborhood functions NF1- NF3
and NF2- NF4, we test the use of a mixture of distribution functions as in Section
3.5, because the use of different distribution functions modify the behavior of the
neighborhood functions. For example, the use of the distribution function DF1
implies exploitation while the use of the distribution function DF2 implies
exploration. Additionally NF1 and NF2 use the DF1 to pickup a value for the
selected position.

The local search consists in applying iteratively the neighborhood functions. To
explore the behavior of the amount of resources wasted during the local search in
the algorithm, we try five differents limits of iteratively applications of the neigh-
borhood functions: 1, 0.10·r+1, 0.20·r+1, 0.50· r+1, r+1.

Looking for the performance, their probability of use each one of the
neighborhood functions was modeled according to the solution of a Diophantine
Equation (DE) with four variables (Equation 9), where each variable could take a
value of the set {0.1, 0.2, 0.3, ... , 1.0}. + + + = 1.0 (9)

A Genetic Algorithm for the Problem of Minimal Brauer Chains for Large Exponents 37

3.7 Evaluation Function and Termination Condition

The evaluation function ς used in the GA is shown in Equation 10. = | |(+ 1) + (10)

In Equation 10 r represents the length of the BC that is evaluated, n' is the value of
the evaluated chain in its r position and n is the searched value. In this way,
solutions whose n' is near to the n searched, have an evaluation only determined
by its length, but solutions whose difference between n' and n, have an evaluation
determined by its difference multiplied by its length plus its length which mean
that those solutions are penalized, making possible to discriminate between the
quality of chains.

The termination condition is met when certain limit number of evaluation
functions are done. We established the limit of evaluations functions as
log2(n)2*26log2(log2(n)). The evaluation functions are considered according to each
time that is checked the fitness in the chain, thus NF3 and NF4 use a number of
evaluation functions that grows with the position or positions that their are
modifying while NF1 and NF2 only use one evaluation function each time that are
called. This criterion make us able to distinguish the potential of the different
configurations of the full system using the same computational resources.

4 Fine-Tuning Process

The selection of the best configuration parameters is a problem that is addressed in
different ways: by using some parameter configuration taken from the literature,
using a configuration defined by guessing, using a exhaustive search, using Mixed
Covering Array (MCA), among others.

We will get very unlikely the best system configuration with the first two
strategies, because there can be significance differences between problems and
algorithm implementations or our guessing can be wrong. On the other hand we
will be able to find the bet best system configuration with an exhaustive search,
but we need to consider the amount of time that it requires and most of the times
its an infeasible amount because the number of parameter makes the possible
configuration system grow exponentially.Another strategy is to use MCAs, having
the advantage of use fewer test cases than exhaustive search, but still be able to
find good parameter settings and at the same time the test suite is reusable, i.e. the
same MCA could be used for different systems.

The use of MCAs has been reported for fine-tuning process to establish
parameter configurations [13, 16, 25, 26], however the most reported application
of MCAs is in software interaction testing testing [5], which based in the concept
that the software faults are caused by unexpected interactions between
components. Thus to test a system instead of test all possible combinations
between interactions, its used a t-way testing. Some empirical studies have found
that software interaction testing is feasible [1,18].

38 A. Rodriguez-Cristerna and J. Torres-Jimenez

According to Gonzalez-Hernandez et al. [13] a MCA, represented as (; , ,), is an ˙ array where are the cardinalities
for the vectors or alphabets that indicates the values for the i column. The value t
is the interaction degree between parameters covered and is called the strength of
the MCA. The value k is the number of columns or parameters. The rows are the
specific system configurations to be tested and the complete MCA is the test suite.
Also, the MCA has the follow properties:

1. Each column i (0 i) contains only elements from a set (alphabet)
with | | = .

2. The rows of each ˙ sub-array cover all t-tuples from t columns at least
once.

To set the parameters of the GA proposed and get a good performance we use a
Mixed Covering Array (MCA) and the solutions of the Equation 9, relying the
methodology followed to tune the values of the parameters on the study of the
effect over the quality of the solutions generated by tests that cover the t
interaction degree between parameters.

First we choose an MCA that describe the system to be tested, in our case we
select a (32; 2,8, 5 3)1, which has 32 test cases, 8 parameters, 4 of them
with five possible values and the remaining parameters with three possible values.
The MCA used could be see in Table 5a. The strength level is 2, means that the
MCA contains every interaction between pairs of parameters, and therefore if the
best configuration is determined only by pairs of parameters we are able to find it
with t=2.

The mapping between the numbers inside the MCA (Table 5a) and their
corresponding parameter values can be done with the Table 5b where the
parameters selected for the fine tuning are listed in the Table 4.

Table 4 Mixtures of use of the distribution functions DF1 and DF2 inside neighborhood
functions

Parameter Description
P1 Probability of use DF1 and DF2 inside NF1-NF3
P2 Probability of use DF1 and DF2 inside NF2-NF4
P3 Probability of use DF1 and DF2 inside the recombination strategy
P4 Iteration amount of neighborhood function inside the local search
P5 Recombination selection type
P6 Parent points
P7 Children points
P8 Survivor selection type

We use an MCA combined with the solutions of a DE, because we want to

explore the performance of the system using different ratios of use each
neighborhood function. Since was tested each combination of the MCA rows with
all the possible solutions of the DE (Equation 9), the Equation 11 represents the

1 A repository of MCAs is available in [28].

A Genetic Algorithm for the Problem of Minimal Brauer Chains for Large Exponents 39

total of the experiments that we ran during the tuning process, where M represents
the number of rows of the MCA used, D is the number of possible solutions of the
DE (Equation 9), B is the number of times that each M˙D experiment was done to
obtain statistical significance, and I is the number of instances to be tested during
the fine tuning process. Since M=32, D=286, B=31 and I=2 then the total number
of experiments is 32x286x31x2 = 567,424. The fine tuning was done by trying to
obtain the MBC for the numbers 457 and 14143037. = x x x (11)

Table 5 MCA transposed matrix and their corresponding parameter values for parameter
optimization

(a). MCA values for GA algorithm
No P1 P2 P3 P4 P5 P6 P7 P8 (b). Parameter values
1 0 0 2 1 2 0 2 1 Values 0 1 2 3 4
2 0 1 0 2 0 0 1 0 P1 0, 44

14 , 34
24 , 24

14 , 34 0, 44

3 0 2 1 4 1 2 0 2 P2 0, 44
14 , 34

24 , 24
14 , 34 0, 44

4 0 3 3 0 1 0 0 0 P3 0, 44
14 , 34

24 , 24
14 , 34 0, 44

5 1 0 4 3 0 1 1 1 P4 1 .1r+1 .2r+1 .5r+2 r+1
6 1 1 1 1 1 2 0 0 P5 rnd. tourney

size 2
tourney
size3

7 1 2 2 2 2 1 1 0 P6 ⌈log ⌉ ⌈2log ⌉ ⌈3log ⌉
8 1 3 0 1 0 0 2 1 P7 ⌈log ⌉ ⌈2log ⌉ ⌈3log ⌉
9 1 4 3 4 0 2 1 2 P8 (μ,λ) (μ+λ)

diversity
(μ+λ)

10 2 0 1 0 0 1 1 2
11 2 2 3 1 2 1 0 2
12 2 3 4 2 1 0 0 1
13 2 4 0 3 1 2 2 0
14 3 0 0 4 1 1 0 0
15 3 2 4 0 0 2 2 1
16 3 3 2 3 1 2 1 2
17 3 4 1 2 1 0 0 1
18 4 0 3 2 1 2 2 2
19 4 5 5 4 0 1 2 2
20 4 2 0 0 2 0 1 2
21 4 3 1 3 2 1 2 1
22 4 4 2 1 0 0 1 2
23 0 4 4 1 2 1 1 2
24 3 4 1 0 1 2 0 1
25 3 1 3 1 2 1 1 1
26 2 3 2 4 2 2 0 1
27 2 1 4 4 1 0 2 2
28 2 1 4 4 1 0 2 2
29 1 1 2 0 0 0 2 1
30 4 1 4 3 0 0 0 0
31 0 4 4 4 1 2 2 2
32 4 0 1 4 1 2 2 2

40 A. Rodriguez-Cristerna and J. Torres-Jimenez

4.1 Parameters Used

Te best configuration obtained as a result of a fine-tuning process is described in
Table 6.

Table 6 Parameter configuration obtained during the fine-tuning process

Parameter Configuration
P1 0% of use DF1 and 100% of use DF2 inside NF1-NF3.
P2 100% of use DF2 and 0% of use DF2 inside NF1-NF3
P3 25% of use DF2 and 75% of use DF2 inside of the recombination

strategy
P4 r+1 iterations of neighborhood functions during the local search.
P5 Random parent-point selection for the recombination strategy
P6 ⌈3log_2 n⌉ parent-points and children-points
P7 20% of use of NF3 and 80% of use of DF4
P8 Survivor selection type (μ+λ)

4.2 Implementation Note

The proposed GA was coded using C language and compiled with GCC 4.3.5 with
-O3 optimization flag. The algorithm has been run on a single core of a cluster
with 4 processor six-core AMD® 8435 (2.6 Ghz), 32 GB RAM, and Operating
System Red Hat Linux Enterprise 4.

5 Results

In order to measure the performance of the GA proposed, the first experiment was
to search the MBC for a benchmark made of 27 different numbers n that satisfy
the restriction of be c(r), available in [11] along a database of many l(n) values
computed by Neill Clift [4], and to get statistical significance each experiment
was tested 31 times with different random seeds. c(r) is the smallest number which
have an addition chain of lenght r, and the set of numbers that accomplish the c(r)
property are a special class of numbers.

The main results of the first experiment are shown in Table 7, where we can see
the set of n's tried; the minimal, average and maximum length obtained; the
average and standard deviation of the time to conclude each experiment; and the
hits (times that a MBC was found). It can be seen that for the first experiment
(Table 7) all the MBC was obtained and the average length and the standard
deviation obtained indicates the reliability of the GA. The behavior of the
proposed GA for the first experiment also can be seen in the Figure 4 that shows
the difference between minimum, average and maximum length with their
respective standard deviation versus optimal lengths, where is evident that our
approach can get easily most of the Brauer Chains with l*(n)<22 and for the other
cases the average length obtained are not too far from the optimal. Table 9 shows

A Genetic Algorithm for the Problem of Minimal Brauer Chains for Large Exponents 41

Table 7 Summary of results to compute MBC for some n for which is hard to find their
MBC (part 1)

id n Min.
r

Average
r

Max.
r

Std.
Dev.

r

Average
time (s)

Std.
Dev.

time (s)

hits

1 7 4 4 4 0 0 0 31
2 11 5 5 5 0 0.0003 0 31
3 19 6 6 6 0 0.0010 0 31
4 29 7 7 7 0 0.0023 0 31
5 47 8 8 8 0 0.0055 0 31
6 71 9 9 9 0 0.0107 0.0001 31
7 127 10 10 10 0 0.0259 0.0021 31
8 191 11 11 11 0 0.0442 0.0006 31
9 379 12 12 12 0 0.1031 0.0007 31

10 607 13 13 13 0 0.1760 0.0017 31
11 1087 14 14 14 0 0.3241 0.0076 31
12 1903 15 15 15 0 0.5503 0.0034 31
13 3583 16 16.0323 17 0.1767 0.1767 0.0075 30
14 6271 17 17 17 0 1.5671 0.0117 31
15 11231 18 18 18 0 2.4806 0.0176 31
16 18287 19 19 19 0 3.5497 0.0250 31
17 34303 20 20.1613 21 0.3678 5.5663 0.0553 26
18 65131 21 21 21 0 8.5120 0.1364 31
19 110591 22 22.2903 23 0.4539 11.9941 0.1586 22
20 196591 23 23.0323 24 0.1767 17.0883 0.2624 30
21 357887 24 24.1613 26 0.4470 24.0470 0.3448 27
22 685951 25 25.6129 27 0.5493 34.3607 0.6828 13
23 1176431 26 27.0645 29 0.6689 46.5622 1.0647 5
24 2211837 27 27.9677 30 0.6949 63.2554 0.8555 7
25 4169527 28 28.3226 29 0.4675 86.3890 2.1981 21
26 7624319 29 30.0968 34 1.1175 114.9951 2.2392 11
27 14143037 30 30.9677 32 0.6949 152.4645 2.2392 8

the MBCs found for n ∈ {2211837, 4169527, 7624319, 14143037} where can be
verified the restriction of the BC's.

A second benchmark, taken from [18], is composed by 20 different numbers
hard to optimize, because its minimal addition chains currently has not been
generated by deterministic methods (i.e. binary method or window-based) or
some other non deterministic methods. For the second benchmark, every instance
was tried 31 times with different random seeds and the results are showed in Table
8 where can be seen the set of n's tried; the minimal, average and maximum length
obtained; the average and standard deviation time to finish the tests; and the hits.
In the second benchmark only for one instance was not obtained its MBC
(3926651), however the minimum size found is not to far from the optimal, in fact
it is only at one unit of distance. Additionally, with the complete results we
observe that the worst cases and the average cases are not far from the optimal
solution, getting in the worst case BC's only three units far from the optimal and in
average at 1.4 units plus the optimal length. One of the MBCs found for the
numbers 3459835, 3493799, 3704431 and 3922763. are presented in Table 10.

42 A. Rodriguez-Cristerna and J. Torres-Jimenez

Table 8 Summary of results to compute MBC for some n for which is hard to find their
MBC (part 2)

id n Min.
r

Average
r

Max.
r

Std.
Dev.

r

Average
time (s)

Std.
Dev.

time (s)

hits

1 2948207 27 28.2258 30 0.5512 73.3253 0.9955 1
2 3093839 27 28.2903 30 0.6812 75.2953 0.9979 3
3 3167711 27 27.9355 30 0.7155 74.5330 1.0593 7
4 3182555 27 27.7419 28 0.4376 75.1344 0.7311 8
5 3190511 27 27.9355 29 0.5643 74.7987 1.0623 6
6 3230591 27 27.9677 29 0.3094 75.5409 0.7089 2
7 3234263 27 27.3548 29 0.5983 75.3779 0.7897 22
8 3235007 27 28.0645 30 0.6188 75.8259 0.9108 2
9 3243679 27 28.0000 29 0.5080 75.8844 0.8510 4

10 3243931 27 28.0000 29 0.5680 75.7768 0.8483 5
11 3266239 27 28.3548 30 0.6500 76.5093 1.1414 1
12 3287999 27 28.1935 30 0.6435 76.5596 1.0754 3
13 3325439 27 28.3871 30 0.6052 77.0552 1.0106 1
14 3352927 27 27.6774 29 0.5895 76.5714 0.9955 12
15 3440623 27 28.0968 30 0.7769 78.6647 0.9695 7
16 3459835 27 28.0968 29 0.3898 78.6540 0.8115 1
17 3493799 27 28.0968 29 0.5301 79.6454 0.9094 3
18 3704431 27 27.9355 30 0.5643 81.2270 1.3532 5
19 3922763 27 28.4839 30 0.6154 84.6750 1.3315 1
20 3926651 28 28.3548 29 0.4785 84.2965 1.4677 0

Table 9 Some MBCs found (part 1)

n MBC found l*(n)
2211837 1→2→4→8→16→32→33→65→130→260→520→

1040→1073→2146→4292→8584→8617→17234→34468→
68936→137872→137937→275809→551618→

552691→1105382→1106455→2211837

27

4169527 1→2→3→6→7→14→28→56→112→113→226→
452→904→1808→3616→7232→7238→14476→28952→

28955→57910→115820→231640→260595→
521190→1042380 →2084760→4169520→4169527

28

7624319 1→2→4→6→7→14→28→30→58→116→232→464→
928→1856→3712→7424→14848→29696→29724→

59448→118896→237792→475584→951168→953024→
1906048→1906078→3812156→7624312→7624319

29

14143037 1→2→3→5→10→13→26→52→104→208→
416→832→858→1716→1726→3452→6904→

13808→27616→55232→110464→220928→441856→
883712→1767424→3534848→3535706→3535758→7071516→

14143032→14143037

30

In order to contrast the obtained results, Table 11 presents a comparison

between the obtained results of our proposed approach in the first experiment and
other five approaches reported in the literature: BackTracking [3], Genetic
Algorithm [7], Artificial Inmune System [6], Mutation Selection [26] and
Simulated Annealing [16]. The comparison is made using the minimum length
obtained, the average time (in seconds) and the average hits, where the symbol ⊕

A Genetic Algorithm for the Problem of Minimal Brauer Chains for Large Exponents 43

means that it is a worse result than the one given by our approach in both time
and/or number of hits. It can be observed that our results have the same or better
quality than the procedures presented in the state of the art. It could be useful a
more detailed comparison against one of the best reported works [6], however
they don't report time spent; number of evaluation functions; or number of hits for
each case.

Fig. 5 Comparison of box-and-whisker plot results for the first experiment versus optimal
lengths for some n's for which is hard to find their MBC (part 1)

Table 10 Some MBCs found (part 2)

n MBC found l*(n)
3459835 1→2→4→8→16→32→33→66→99→

198→396→792→1584→1683→1691→3374→6748→
13496→26992→53984→107968→215936→216332→432268→

864536→1729072→3458144→3459835

27

3493799 1→2→3→5→8→13→26→27→53→106→
212→424→848→1696→3392→6784→13568→27136→

54272→108544→217088→434176→868352→868365→875149→
1309325→2184474→3493799

27

3704431 1→2→4→6→12→13→25→50→63→113→
226→452→904→1808→3616→7232→14464→28928→

28940→57880→115760→231520→463040→463052→926092→
1852184→3704368→3704431→

27

3922763 1→2→4→8→9→17→34→68→136→272→
281→349→698→1396→1532→3064→6128→12256→

24512→49024→98048→196096→392192→784384→784665→
1569049→2353714→3922763

27

44 A. Rodriguez-Cristerna and J. Torres-Jimenez

Table 11 Comparison of results to compute hard MBC

id n l(n)

BT
[2]

GA
[5]

AIS
[4]

MS [19]
(time s.) (hits)

SA [13]
(hits)

GA proposed
hits

(time s.)
(hits)

3 19 6 6 6 6 ⊕6 (9.629s)
(20)

6 (32) 6 (0.001s) (31)

4 29 7 7 7 7 ⊕7 (7.470s)
(27)

 7 (32) 7 (0.002s) (31)

5 47 8 8 8 8 ⊕8 (9.477s)
(10)

 8 (32) 8 (0.005s) (31)

6 71 9 9 9 9 ⊕9 (13.408s)
(8)

9 (32) 9 (0.01s) (31)

7 127 10 10 10 10 ⊕10
(12.282s) (4)

⊕10
(30)

10 (0.025s)
(31)

8 191 11 11 11 11 ⊕11
(14.816s) (2)

⊕11
(30)

11 (0.044s)
(31)

9 379 12 12 12 12 ⊕12
(14.057s) (29)

⊕12
(30)

12 (0.103s)
(31)

10 607 13 13 13 13 ⊕13
(21.635s) (21)

⊕13
(28)

13 (0.176s)
(31)

11 1087 14 14 14 14 ⊕14
(26.326s) (8)

⊕14
(13)

14 (0.324s)
(31)

12 1903 15 15 15 15 ⊕15
(18.538s) (26)

⊕15
(6)

15 (0.550s)
(31)

13 3583 16 16 17 16 - ⊕16
(1)

16 (0.973s)
(30)

14 6271 17 17 17 17 ⊕17
(23.032s) (9)

⊕17
(1)

17 (1.567s)
(31)

15 11231 18 18 18 18 ⊕18
(30.650s) (20)

⊕18
(1)

18 (2.480s)
(31)

16 18287 19 19 19 19 ⊕19
(28.136s) (4)

⊕19
(2)

19 (3.549s)
(31)

17 34303 20 20 20 20 ⊕20
(29.623s) (0)

⊕20
(1)

20 (5.566s)
(26)

18 65131 21 21 21 21 ⊕21
(32.396s) (3)

⊕21
(2)

21 (8.512s)
(31)

19 110591 22 22 22 22 - ⊕22
(2)

22 (11.994s)
(22)

20 196591 23 23 23 23 - ⊕23
(2)

23 (17.088s)
(30)

21 357887 24 24 24 24 - ⊕24
(1)

24 (24.047s)
(27)

22 685951 25 25 25 25 ⊕25
(37.696s) (2)

⊕26
(0)

25 (34.360s)
(13)

23 1176431 26 26 ⊕27 26 ⊕27
(46.717s) (0)

⊕26
(1)

26 (46.562s)
(5)

24 2211837 27 27 ⊕28 27 - ⊕27
(2)

27 (63.255s)
(7)

25 4169527 28 - ⊕29 28 28 (33.291s)
(1)

⊕28
(1)

28 (86.3890s)
(21)

26 7624319 29 - ⊕30 29 29 (42.237s)
(1)

⊕30
(0)

29 (114.9951s)
(11)

27 14143037 30 - ⊕31 30 30 (64.844s)
(1)

⊕30
(2)

30 (152.4645s)
(8)

A Genetic Algorithm for the Problem of Minimal Brauer Chains for Large Exponents 45

A third experiment, consisted in calculate the accumulated addition chain
length for the range of exponents [1,Z] for Z ∈ {512, 1000, 1024, 2000, 2048,
4096}, where each exponent was tested 31 times with different random seeds. The
best results are calculated according to Equation 12 and the worst case according
to Equation 13, where GA is a function that receives an integer number and
returns a BC generated through our proposed approach. The average results are
computed according to Equation 14 and the standard deviation is based on the
Equation 15. CV is the coefficient of variation calculated as CV=stddev/average
and δ is the difference between the best case and the optimal case.

min ()|0 30 (12)

max ()|0 30 (13)

= ()min |0 30 (14)

= ()min |0 30 (15)

Table 12 and 13 presents the results of the third experiment where it is observed
the optimal case calculated using the public database of addition chains of Achim
Flammenkamp [11]; the best case; the worst case; the average case; and the
standard deviation. Additionally it is presented the accumulated time spent for all
the cases together with the standard deviation and the difference between the
optimal case and our best case (δ). Our results for Z ∈ {512, 1000, 1024} exhibits
a δ=0, meaning that all the Minimal Brauer Chains were constructed, but δ is
greater than 0 for Z ∈ {2000, 2048, 4096} where the list of numbers (with their
corresponding l(n)) for which the GA was not able to construct their MBC were:
(1063,13), (1143,13), (1387,13), (2011,14), (2087,14), (2091,14), (2135,14),
(2151,14), (2251,14), (2285,14), (2507,14), (2617,14), (2647,14), (2774,14),
(2957,14), (3199,15), (3559,15), (3707,15), (3801,15), (3803,15), (3819,15),
(3829,15), (4051,15) and (4070,15). However this does not mean that our
approach with different configurations cannot reach that MBCs. Also is visible in
Table 12 that the best case is very close or equal to optimum case, the average
case is also competitive and the coefficient of variation is small which means that
our results have a high degree of confidence and are not dependent on the random
seeds.

Table 14 allows to see a comparison between classic approaches ([2]) and the
GA proposed for the calculation of the accumulated addition chains where n is in
the range [1,1000]. There is a remarkable difference between the accumulated

46 A. Rodriguez-Cristerna and J. Torres-Jimenez

addition chain computed by the binary and dichotomic method versus the optimal
accumulated sum, however both are fast options to compute addition chains since
they are deterministic approaches that do not imply any heuristic search or
backtrack.

A comparison between the GA proposed and the more recently metaheuristics
are presented in Table 15 and it is done using the best results for an accumulated
addition chain in the range [1,Z] for Z ∈ {512, 1000, 1024, 2000, 2048, 4096},
where Δ is the difference between the best reported results and our best result. The
metaheuristics chosen for the comparatison, that are part of the best strategies to
construct Minimal Addition Chains or Minimal Brauer Chains, are: AIS [6], SA
[16], EP [8,9], GA [7] and GA [24].

Table 12 Accumulated addition chain length and time obtained with the GA proposed for n
in the ranges [1,512], [1,1000], [1,1024], [1,2000], [1,2048] and [1,4096]

n ∈ [1,512] [1,1000] [1,1024] [1,2000] [1,2048] [1,4096]
AS

Optimal 4924 10808 11115 24063 24731 54408
δ 0 0 0 3 4 24

Best 4924 10808 11115 24066 24735 54432
Average 4926.2581 10817.0645 11124.3226 24106.2581 24777.6129 54572.5791
Worst 4932 10838 11147 24185 24860 54807

Std. Dev. 1.1062 1.9333 1.8384 3.8266 4.1557 11.5808
CV 0.000224 0.000178 0.000158 0.000158 0.000167 0.000212

Time (s)
Best 33.4870 138.9694 146.0097 567.8268 595.2965 2291.0749

Average 34.4035 141.9297 149.0738 577.4052 605.2810 2326.0918
Worst 39.0730 153.831 161.2811 602.2832 630.98 2338.8750

Std. Dev. 0.1024 0.3386 0.3412 0.8298 0.8331 2.1918
CV 0.002976 0.002385 0.002288 0.001437 0.001376 0.000942

Table 13 Accumulated addition chain length and time obtained with the GA proposed for n
in the ranges [1,8192], [1,16384], [1,32768] and [1,65536]

n ∈ [1, 8192] [1, 16384] [1, 32768] [1, 1180974]
AS

Optimal 118624 256723 552119 24063
δ 86 296 1002 2992

Best 118710 257019 553121 1183966
Average 119166.1290 258315.1613 556553.7742 1192822.2258
Worst 119946 260417 561994 1206321

Std. Dev. 14.0339 14.4827 25.8029 57.0001
CV 0.000117 0.000056 0.000046 0.000047

Time (s)
Best 8397.2797 29423.2867 99413.2074 323831.4285

Average 8525.8082 29879.2562 101004.4887 329262.0376
Worst 8704.8499 30449.9889 102897.8341 335349.5347

Std. Dev. 6.3230 15.76311 37.8138 98.9806
CV 0.000741 0.000547 0.000374 0.000300

A Genetic Algorithm for the Problem of Minimal Brauer Chains for Large Exponents 47

Table 14 Comparison between classics approaches and the GA proposed for accumulated
addition chains in the range [1,1000]

Strategy Total
length

Difference with
l(n)

Binary [1] 11925 1117
Factor [1] 11088 280

Dichotomy [1] 11064 256
Fermat [1] 10927 119
Dyadic [1] 10837 29
Total [1] 10821 13

Proposed GA 10808 0
Optimal 10808 -

Table 15 Comparison of the best results of accumulated addition chains lengths

n ∈ optimal AIS
[4]

SA
[13]

EP
[6,7]

GA
[5]

GA
[18]

Proposed Δ

[1,512] 4924 4924 - 4924 4925 4924 4924 0
[1,1000] 10808 10808 10823⊕ 10808 - 10809⊕ 10808 0
[1,1024] 11115 11120⊕ - 11115 - - 11115 0
[1,2000] 24063 24108⊕ - 24070⊕ 24124⊕ 24076⊕ 24066 4
[1,2048] 24731 4778⊕ - 24737⊕ - 24748⊕ 24735 2
[1,4096] 54408 54617⊕ - 54487⊕ 54648⊕ 54487⊕ 54432 55
total Δ 61

In Table 15 we can see with the symbol ⊕ when the difference between the

accumulated addition chain and the results of other strategy is positive, meaning
that our result is better. It can be seen that the quality of our result are better than
the best reported in the state of art, however it is not possible to conclude that our
approach have a better efficiency than the approaches used for the comparison due
to lack of necessary information. Here it's necessary to remark the difference that
we only use one configuration for the reported results, and the complexity of the
system as the number of times that is checked the fitness of a BC, taken as as
evaluation function or the test of how long is the chain and what is the obtained
number in the r position, is limited to log2(n)2*26log2(log2(n)). A more detailed
comparison can be done between our approach and other approaches, but they do
not report accumulated time or how many operations are done inside the working
chain or chains. It is need to say that: AIS [6], EP [8,9] and GA [24] do not report
evaluations functions used, however in [8,9] are used 92000 comparison between
individuals and in GA [24] are used 300000 comparisons.

But it is not only important the best results, it is also is important how much
confidence we can have in the average case, taken as the coefficient of variation.
For this reason we have made a comparison using the coefficient of variation
between the GA proposed and the metaheuristics compared in Table 15. The
comparisons of coefficients of variation for the accumulated addition chains
lengths is presented in Table 16, where can be observed that all approaches have a
high degree of confidence, and the one with the highest confidence is EP [8,9].
Also, with ⊕ are marked the coefficients of variation that have less confidence
than our results.

48 A. Rodriguez-Cristerna and J. Torres-Jimenez

Table 16 Comparison of coefficient of variation (CV=stddev/average) of the of accumu-
lated addition chains lengths

n ∈ AIS
[4]

SA
[13]

EP
[6,7]

GA
[5]

GA
[18]

Proposed

[1,512] 0.0001 - 0 0.0009⊕ 0 0.0002
[1,1000] 0.0002⊕ 0.0002⊕ 0 - 0.0001 0.0001
[1,1024] 0.0002⊕ - 0 - - 0.0001
[1,2000] 0.0002⊕ - 0 0.0002⊕ 0.0001 0.0001
[1,2048] 0.0002⊕ - 0 - 0.0001 0.0001
[1,4096] 0.0002 - 0 0.0002⊕ 0.0001 0.0002

6 Conclusions

In this paper, we have presented a novel approach to find Minimum Brauer Chains
based on a GA with the following features: a representation based in FNS which
has proven to be well suited to the problem of addition chains [16,26]; the use of
distribution functions used by the neighborhood functions to focus their behavior;
and a limit of evaluation functions according to the BC searched.

The use of a representation based on the FNS allows the implementation of
neighborhood functions and recombination without a repairing process, giving the
advantage to construct hard MBCs in a fast way, without modifying the search
space. This properties allow to preserve the characteristics of individuals inside
the recombination strategy and the local search. In this sense, the use of FNS open
the possibilities of using other neighborhood functions or recombination
strategies, like recombination of two points or uniform crossover.

Each one of the neighborhood functions used have distinct properties: NF1 and
NF2 can be named as exploration functions while NF3 and NF4 can be seen as
exploitation functions. Also NF1 and NF3 produce less dramatic changes than NF2
or NF4.

The problem of how to distribute the use of each neighborhood function inside
the local search was delegated to a solution of the Diophantine equation 9, where
the variable with 1 4 represents the probability of use of the i
neighborhood function. The use of mixture of neighborhood functions, allows to
explore a wide range of behaviors of the algorithm and turned out to conclude that
is better the use of a mixture of neighborhood functions than the use of a single
neighborhood function.

The use of distribution functions allowed to focus the section of the chain
where its necessary to make a change with more probability. For this reason we
used a mixture of distribution functions inside the recombination strategy and
neighborhood functions. In the case of the single point recombination, the position
of point used could determine if it is going to be an exploration or an exploitation
so the use of a distribution functions let center the main work that need to be done
by the crossover.

In the case of the neighborhood functions, the use of a distribution functions to
choose the i and j members of the chain allows to focus even more the goal of
each neighborhood function. For the NF1 and NF2, the results allowed us to

A Genetic Algorithm for the Problem of Minimal Brauer Chains for Large Exponents 49

conclude that the use of the DF1 to set the random value of the chosen member in
the chain is better than the use of a Gaussian distribution.

The setting of the optimal parameter values is a complex problem in the
algorithm design task, that use to consume a lot of the development time. For
example, the use of an exhaustive search need 54x34x286x31x2 tests, where 54x34
are all the possible combination between parameters, 286 the number of solutions
of the Diophantine equation 9, 31 the number of times that each experiment
should be repeated to get statistical significance and 2 the number of instances to
be tested.

However the use of a fine tuning based on MCAs, relies to tune the values of
the parameters on the study of the effect over the quality of the solution by the
interaction between parameters, where the degree of interaction between
parameters and the number of parameter values determine the number of
experiment. In our case, the number of test using MCAS and the solution of a DE
resulted in 32x286x31x2 number of experiments, which are fewer than the number
of test in an exhaustive search. Another advantage of the use of MCAs is that the
behavior of the algorithm is searched by the interaction between parameters and
not just by guessing or feelings. For this reasons we recommend a fine-tuning
process with the use of MCAs and DEs. In our case, as others [13,16,25,26], their
use gave the possibility to discover excellent parameter values in an easy way, for
that reason we suggest their use in order to save time and effort in the search of
good parameters values.

The experimental results of the three benchmarks used demonstrated the
strength of the GA proposed, in terms of the quality of the solutions. For the first
benchmark consisting of 27 hard instances (that meet the requirement to be c(r)),
we obtained the same or better results in all the instances as others competitive
approaches reported in the literature, in fact all l(n) was reached.

For the second experiment which consisted on 20 instances hard to optimize,
we could reach 19 chains with length equal to l(n).

For the third experiment which was done through calculating the accumulated
addition chain length for a sequence of number in the range [1,Z] for Z ∈ {512,
1000, 1024, 2000, 2048, 4096}, our proposed approach gives a competitive
solution against the classics approaches: binary, factor, dichotomic, fermat, dyadic
and total [2]. Additionally our approach is strong versus new metaheuristic
strategies, achieving better quality results than: BackTracking [3], Genetic
Algorithm [7], Artificial Inmune System [6], Mutation Selection [26] and
Simulated Annealing [16].

Due to overall results in the three benchmarks, we can conclude that the
proposed approach is a feasible solution to get MBC, however the search of
efficient strategies to get MACs and MBCs is not finished and need more research
and that the practitioners of cryptosystems use MBC in a more thoroughly way.

Acknowledgments. The authors acknowledge the support of access to the infrastructure of
high performance computing of the Laboratory of Information Technologies Unit (Hidra) at
CINVESTAV-Tamaulipas and to the hybrid cluster for supercomputing (Xiuhcoatl) at
CINVESTAV.

50 A. Rodriguez-Cristerna and J. Torres-Jimenez

This research was partially funded by the following projects: CONACyT 58554 -

Cálculo de Covering Arrays, 51623 - Fondo Mixto CONACyT y Gobierno del Estado de
Tamaulipas.

References

1. Bell, K.: Optimizing effectiveness and efficiency of software testing: A hybrid ap-
proach. Ph.D. thesis, North Carolina State University (2006)

2. Bergeron, F., Berstel, J., Brlek, S.: Efficient computation of addition chains. Journal
de Théorie des Nombres de Bordeaux 6(1), 21–38 (1994)

3. Bleichenbacher, D., Flammenkamp, A.: An efficient algorithm for computing shortest
addition chains. SIAM Journal of Discrete Mathematics 10(1), 15–17 (1997)

4. Clift, N.: Calculating optimal addition chains. Computing 91, 265–284 (2011)
10.1007/ s00607-010-0118-8, http://dx.doi.org/10.1007/s00607-010-
0118-8

5. Cohen, M., Gibbons, P., Mugridge, W., Colbourn, C.: Constructing test suites for inte-
raction testing. In: Proceedings of the 25th International Conference on Software En-
gineering, Portland, Oregon, USA, pp. 38–48 (May 2003)

6. Cruz-Cortés, N., Rodríguez-Henríquez, F., Coello Coello, C.A.: An artificial immune
system heuristic for generating short addition chains. IEEE Transactions on Evolutio-
nary Computation 12(1), 1–24 (2008)

7. Cruz-Cortés, N., Rodríguez-Henríquez, F., Juárez-Morales, R., Coello Coello, C.A.:
Finding Optimal Addition Chains Using a Genetic Algorithm Approach. In: Hao, Y.,
Liu, J., Wang, Y.-P., Cheung, Y.-M., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS
2005, Part I. LNCS (LNAI), vol. 3801, pp. 208–215. Springer, Heidelberg (2005)

8. Domínguez-Isidro, S., Mezura-Montes, E., Osorio-Hernández, L.: Addition chain
length minimization with evolutionary programming. In: Proceedings of the I Congre-
so Internacional de Electrónica, Instrumentación y Computación, Minatitlan, Vera-
cruz, México (2011)

9. Domínguez-Isidro, S., Efren, M.M.: Addition chain length minimization with evolu-
tionary programming. In: Proceedings of the 13th Annual Conference Companion on
Genetic and Evolutionary Computation, Dublin, Ireland, pp. 59–60. ACM (2011)

10. Eiben, A., Smith, J.: Introduction to evolutionary computing. Springer (2003)
11. Flammenkamp, A.: Shortest addition chains repository (June 2012),

http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
12. Gelgi, F., Onus, M.: Heuristics for Minimum Brauer Chain Problem. In: Levi, A.,

Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263,
pp. 47–54. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/

13. Gonzalez-Hernandez, L., Torres-Jimenez, J.: MiTS: A New Approach of Tabu Search
for Constructing Mixed Covering Arrays. In: Sidorov, G., Hernández Aguirre, A., Reyes
García, C.A. (eds.) MICAI 2010, Part II. LNCS, vol. 6438, pp. 382–393. Springer, Hei-
delberg (2010), http://dx.doi.org/10.1007/978-3-642-16773-7_33

14. Gordon, D.M.: A survey of fast exponentiation methods. Journal of Algorithms 27(1),
129–146 (1998),
http://www.sciencedirect.com/science/article/pii/S01966774
97909135

15. Guy, R.: Unsolved problems in number theory, 3rd edn., vol. 1. Springer (2004)

A Genetic Algorithm for the Problem of Minimal Brauer Chains for Large Exponents 51

16. Jose-Garcia, A., Romero-Monsivais, H., Hernandez-Morales, C.G., Rodriguez-
Cristerna, A., Rivera-Islas, I., Torres-Jimenez, J.: A Simulated Annealing Algorithm
for the Problem of Minimal Addition Chains. In: Antunes, L., Pinto, H.S. (eds.) EPIA
2011. LNCS (LNAI), vol. 7026, pp. 311–325. Springer, Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-24769-9_23

17. Knuth, D.: The Art of Computer Programming. Seminumerical Algorithms, vol. 2.
Addison-Wesley (1997)

18. Kuhn, D., Wallace, D., Gallo Jr., A.: Software fault interactions and implications for
software testing. IEEE Transactions on Software Engineering 30(6), 418–421 (2004)

19. Mignotte, M., Tall, A.: A note on addition chains. International Journal of Alge-
bra 5(6), 269–274 (2011)

20. Nedjah, N., de Macedo Mourelle, L.: Efficient Parallel Modular Exponentiation Algo-
rithm. In: Yakhno, T. (ed.) ADVIS 2002. LNCS, vol. 2457, pp. 405–414. Springer,
Heidelberg (2002), http://dx.doi.org/10.1007/3-540-36077-8_43

21. Nedjah, N., de Macedo Mourelle, L.: Finding Minimal Addition Chains Using Ant
Colony. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177,
pp. 642–647. Springer, Heidelberg (2004),
http://dx.doi.org/10.1007/978-3-540-28651-6_94

22. Nedjah, N., de Macedo Mourelle, L.: Towards minimal addition chains using ant co-
lony optimization. Journal of Mathematical Modelling and Algorithms 5, 525–543
(2006), http://dx.doi.org/10.1007/s10852-005-9024-z

23. Nedjah, N., Mourelle, L.: Efficient Pre-Processing for Large Window-Based Modular
Exponentiation Using Genetic Algorithms. In: Chung, P.W.H., Hinde, C.J., Ali, M.
(eds.) IEA/AIE 2003. LNCS, vol. 2718, pp. 165–194. Springer, Heidelberg (2003),
http://dx.doi.org/10.1007/3-540-45034-3_63

24. Osorio-Hernandez, L., Mezura-Montes, E., Cruz-Cortes, N., Rodriguez-Henriquez, F.:
A genetic algorithm with repair and local search mechanisms able to find minimal
length addition chains for small exponents. In: IEEE Congress on Evolutionary Com-
putation, CEC 2009, pp. 1422–1429 (May 2009)

25. Rangel-Valdez, N., Torres-Jiménez, J., Bracho-Ríos, J., Quiz-Ramos, P.: Problem and
algorithm fine-tuning - a case of study using bridge club and simulated annealing. In:
Dourado, A., Rosa, A.C., Madani, K. (eds.) IJCCI, pp. 302–305. INSTICC Press
(2009)

26. Rodriguez-Cristerna, A., Torres-Jiménez, J., Rivera-Islas, I., Hernandez-Morales,
C.G., Romero-Monsivais, H., Jose-Garcia, A.: A Mutation-Selection Algorithm for the
Problem of Minimum Brauer Chains. In: Batyrshin, I., Sidorov, G. (eds.) MICAI
2011, Part II. LNCS, vol. 7095, pp. 107–118. Springer, Heidelberg (2011),
http://dx.doi.org/10.1007/

27. Thurber, E.: Efficient generation of minimal length addition chains. SIAM Journal on
Computing 28(4), 1247–1263 (1999)

28. Torres-Jimenez, J.: Covering array repository (June 2012),
http://www.tamps.cinvestav.mx/~jtj/

P. Melin, O. Castillo (Eds.): Soft Computing Appli. in Optimization, STUDFUZZ 294, pp. 53–74.
DOI: 10.1007/978-3-642-35323-9_3 © Springer-Verlag Berlin Heidelberg 2013

Cellular Processing Algorithms

J. David Terán-Villanueva1, Héctor Joaquín Fraire Huacuja2,
Juan Martín Carpio Valadez1, Rodolfo A. Pazos Rangel2,
Héctor José Puga Soberanes1, and José Antonio Martínez Flores2

1 Instituto Tecnológico de León (ITL), Avenida Tecnológico s/No,
 C.P. 37290, León, Gto. Mexico
 david_teran01@yahoo.com.mx, jmcarpio61@hotmail.com,
 pugahector@yahoo.com
2 Instituto Tecnológico de Ciudad Madero (ITCM), Av. 1o. de Mayo s/No esq. Sor Juana
 Inés de la Cruz, C.P. 89440, Cd. Madero, Tam. Mexico
 {automatas2002,r_pazos_r}@yahoo.com.mx,
 jose.mtz@itcm.edu.mx

Abstract. In this chapter we propose a new class of cellular algorithms. There ex-
ists a variety of cellular algorithm approaches but most of them do not structure
the search process. In this work we propose a cellular processing approach to
solve optimization problems. The main components of these algorithms are: the
processing cells (PCells), the communication between PCells, and the global and
local stagnation detection. The great flexibility and simplicity of this approach
permits pseudo-parallelization of one or several different metaheuristics. To vali-
date our approach, the linear ordering problem with cumulative costs (LOPCC)
was used to describe two cellular processing algorithms, whose performance was
tested with standard instances. The experimental results show that the cellular
processing algorithms increase solution quality up to 3.6% and reduce time con-
sumption up to 20% versus the monolithic approach. Also the performance of
these algorithms is statistically similar to those of the state-of-the-art solutions,
and they were able to find 38 new best-known solutions (i.e., not previously found
by other algorithms) for the instances used. Finally, it is important to point out that
these encouraging results indicate that the field of cellular processing algorithms is
a new and rich research area.

1 Introduction

The goal of cellular computing is providing new means for doing computation
more efficient [20]. The main characteristics of this approach are: simplicity, vast
parallelism and locality. Simplicity means that processing is carried out by a set of
simple structured cells. The massive parallelism indicates that a high number of

54 J.D. Terán-Villanueva et al.

cells are used. And locality implies that each cell can communicate with a few
cells, commonly close to it.

Recently several cellular algorithm approaches to solve optimization problems
have been proposed. This research area could be called cellular optimization,
which includes cellular genetic algorithms, co-evolutionary algorithms, island
evolutionary algorithms, and ant colony algorithms.

Cellular genetic algorithms use a cell structured population which allows com-
munication among the locally near cells, aiming at exploring different sections of
the search space with an appropriate exploration and exploitation balance [10] [1]
[12]. The main limitation of this approach is that the search process is carried out
based on a single heuristic strategy.

In other hand, co-evolutionary algorithms divide a solution in species, where a
complete solution is composed from one element of each species. Where the term
co-evolutionary refers to simultaneous evolution of several species, and usually
the fitness of a specific species depends on the evolution of other species. Co-
evolutionary algorithms can be cooperative or competitive, where the cooperative
ones reward or punish the interaction among the different species, and the compet-
itive ones reward or punish each element inside one species without considering
their interaction with other species [19] [14] [23]. As we can see, in this case the al-
gorithm evolves multiple populations which are constituted by sub-parts of the solu-
tions. The application of this approach is limited to a single population heuristics.

Sipper [20] states that the ants in an ant colony system [4] are like processing
cells; where each cell (ant) builds a solution, and they all share knowledge through
a global memory structure. However, this approach is limited to a specific con-
structive population algorithm.

As we can see, the cellular genetic and the co-evolutionary algorithms use cell
structured populations and a single search space process. In another hand, the ant
colony system uses an unstructured population and multiple processing cells, but it
has low flexibility to adapt to other metaheuristics.

In this work we propose a new class of cellular processing algorithms; which
include multiple processing cells that explore different regions of the search space.
Each processing cell can be implemented using population or search based heuris-
tics or a mixture of them. The linear ordering problem with cumulative costs
(LOPCC) will be solved for exemplifying this new class of algorithms.

This chapter is organized as follows. In Section 2 the linear ordering problem
with cumulative costs is reviewed. The proposed new class of cellular algorithms
is described in Section 3. Section 4 contains a review on two metaheuristics used
to implement the cellular processing algorithms. Sections 5 and 6 describe the two
cellular processing algorithms used to validate the new cellular processing propos-
al. Finally, Sections 7 and 8 contain the experimental results and the conclusions
of this work respectively.

2 The Linear Ordering Problem with Cumulative Costs
(LOPCC)

The linear ordering problem with cumulative costs (LOPCC) is originated in wire-
less communications. In this context, the wireless devices have to communicate to

Cellular Processing Algorithms 55

a base station in order to be identified. To this end, the Universal Mobile Tele-
communication Standard (UMTS) adopted the code division multiple access tech-
nique where each device has a specific code.

However, due to simultaneous communication and radio propagation, a distor-
tion is induced on all the wireless devices. Then, each device produces distortion
on the rest of the devices in different proportions. And so the need arises to keep
the distortion as low as possible, while ensuring reception for each wireless
device.

There is a technique designed to keep a low level distortion called successive
interference cancellation (SIC). This technique detects one device at a time and
then its interference is removed, so the rest of the devices would have less interfe-
rence [3].

Then the problem arises of finding the order of detection for the devices that
produces the minimal overall interference, while keeping a desirable level of re-
ception for each device. This problem is addressed as a joint power-control and
receiver optimization (JOPCO), which is equivalent to the NP-hard linear ordering
problem with cumulative costs (LOPCC) [2][3]. Formally LOPCC is defined as:

Given a complete digraph = (,) with no negative arc costs and

nodes with no negative costs , the problem is to find a permutation =(1, 2, , 1,) that minimizes: () =

where = + ∑ + for = , 1, 2, ,1

With respect to the wireless devices application, represents the interference

of device on device , and represents the power of the signal emitted by
device . In [3] is proved that this problem is NP-hard.

3 Cellular Processing Approach

The main idea in the cellular processing approach is to split a sequential algorithm
into several pseudo-parallel processing modules. The pseudo-parallel execution
permits exploring different regions of the solution space. Also the continuous veri-
fication of the stagnation conditions avoids wasting time on unnecessary tasks.

The main components of a cellular processing algorithm are: processing cells
(PCells), the communication between PCells, and the global and local stagnation
detection.

Cellular processing algorithms simulate a parallel execution of a set of PCells
that explore different regions of the solution space. A cellular algorithm can be
homogeneous or heterogeneous, depending on the kind of processing cells that
compose it. We say that it is homogeneous if all the PCells are implemented using
the same heuristics, and heterogeneous otherwise.

56 J.D. Terán-Villanueva et al.

Also the computational effort of the processing cells can be balanced or unba-
lanced. In order to induce diversification through the communication between
processing cells, an unbalanced configuration might be used. Each processing cell
improves its own solution or set of solutions, and its execution is stopped once a
stagnation condition is reached.

At a certain point the processing cells will communicate with each other. If the
communication is carried out during the execution of the processing cells, we will
call it on-line. And, if the communication is executed once all processing cells
have reached a stagnation condition, then we will call it off-line. The communica-
tion could help to increase intensification or diversification in the search process.

There are several decisions to make in order to implement a cellular processing
algorithm. The first issue is the selection of the heuristics to be used as processing
cells (PCell) and if the PCells will be homogeneous or heterogeneous.

An advantage of our approach is the freedom of choosing any kind of heuristics
as a PCell, whether a population type or search based type. Also we need to define
the size of the processing cell and if the PCells are to be balanced or unbalanced.
The size of the PCell can be defined taking into account the number of iterations,
processed solutions, executions of local searches, execution time, etc.

Communication is another main component of cellular processing algorithms.
Here we can choose to make the communication on-line or off-line. The on-line
communication can be implemented using shared solutions, or other mechanisms
of shared memory. The off-line communication can be implemented through cros-
sover operators, path-relinking, combinations, etc. It is necessary to define the
time in which the communication is to be carried out for both alternatives, as well
as the purpose of the communication: intensification or diversification.

The last issue is local and global stagnation detection, which has two purposes
in two different levels. To avoid the waste of time, local stagnation detection stops
the PCells once they do not produce improvement in the local solution or popula-
tion. Once a PCell reaches a stagnation condition, it is ignored by the algorithm
until every PCell is stagnated. At this point a processing cell communication
might occur and every PCell must be restarted. Similarly global stagnation detec-
tion has the purpose of monitoring the global algorithm contribution to the im-
provement of the global solution. Stagnation detection can be implemented
through: number of consecutive iterations without improvement in the quality of
the best (local or global) solution, number of generations without improvement in
the population quality, time limit, etc.

The general structure of the cellular processing algorithm is shown in Algo-
rithm 1. As we can see, in lines 1 to 3 all the PCells must be started. Line 5 con-
trols the global search and stops it when the stagnation condition is reached. Line
6 verifies if any cell is not locally stagnated, so this loop will continue until every
PCell is stagnated. Line 7 to 11 implements a pseudo-parallel execution of each
non-stagnated PCell. Lines 12 and 14 show the place where the communication
might be carried out. Finally line 15 restarts each PCell so that the global search
continues.

Cellular Processing Algorithms 57

 Algorithm 1: Cellular processing algorithm

1. For {i = 1 to numberOfPCells}
2. Start(PCelli())
3. EndFor
4.
5. While(GlobalSearchNotStagnated())
6. While(AnyCellNotStagnated())
7. For {i = 1 to numberOfPCells}
8. If {IsNotStagnated(PCelli())}
9. PCelli()
10. EndIf
11. EndFor
12. PCellCommunicationOnLine()
13. EndWhile //Local search
14. PCellCommunicationOffLine()
15. ReStartPCells()
16. EndWhile //Global search

We want to emphasize that the pseudo-parallel execution of the PCells permits

exploring different regions of the solution space. And the continuous verification
of the stagnation conditions avoids wasting time on unnecessary tasks, helping
produce high performance algorithms. The PCells can be implemented using any
heuristic strategy, which provides more flexibility than other cellular approaches.

4 Scatter Search and GRASP

In this section the metaheuristics used in the cellular processing algorithms pro-
posed are described.

4.1 Scatter Search

The scatter search heuristics was first proposed by Fred Glover in [11]. This is a
procedure that tries to evolve and improve a reference set through several methods
and uses a small amount of randomness in order to find global optimal solutions.

Our motivation to use a scatter search algorithm is that it is a population algo-
rithm that has several customizable functions. Also its reference set RefSet is con-
stituted by quality and diversity solutions. This property permits having better
control over the intensification-diversification balance. The scatter search algo-
rithm uses a reference set, which can be constructed using quality and diverse
elements.

Also, instead of using a genetic algorithm, as an alternative we choose the scat-
ter search approach, because of its multiple configurable methods, which permits
fully customizing the algorithm.

58 J.D. Terán-Villanueva et al.

The methods used in the scatter search algorithm implementation are described
in the following sections.

4.1.1 Diversification Generation Method

A reactive greedy construction was implemented for the diversification generation
method [17][15]. Further detail can be found in Section 4.2.

4.1.2 Improvement Methods

For the improvement methods in our cellular processing scatter search, three local
searches were used: a percentage-of-critical-elements local search (PCLS), a stag-
nation local search (SLS) and an optimal local search (LOS). These local search
algorithms work together to form two different configurations of composite local
search, each one of them with a particular purpose [22].

The percentage-of-critical-elements local search (PCLS) builds a set of criti-
cal elements of the current permutation ordered according to the α values
considered to determine their objective values. The most critical element ∈ is
selected, inserted in a position that improves the objective value of the permuta-
tion and removed from . This process continues until a certain percentage of
critical elements are removed from , which we set at 30%.

The stagnation local search (SLS) selects a random element of the current per-
mutation in order to be inserted in a position that improves the objective value of
the permutation. This process is carried out until a given number of iterations
without improvement is reached. We define 10% of the instance size as the limit
of iterations without improvement.

The local optimal search (LOS) builds a set of critical elements of the current
permutation, based on the α values considered to determine their objective values.
The most critical element ∈ is selected, inserted in a position that improves
the objective value of the permutation and removed from . Once is empty, it is
rebuilt if any improvement was achieved during the search process, otherwise the
local optimal search ends.

The Improvement1 method is carried out after the Diversification Generation
method and is applied to all the solutions in the pool of solutions. This improve-
ment method is formed by a composite local search of PCLS and SLS. The pur-
pose of this improvement method is to apply a fast and diverse improvement
(PCLS and SLS respectively) in order to obtain diverse good solutions for the pool
of solutions.

Improvement2 is carried out after the Solution Combination method and the In-
teraction method, and it is applied to all the solutions that result from both me-
thods. Improvement2 is formed by a composite local search: a composition of
PCLS, SLS and LOS. The purpose of this improvement method is to apply a fast,
diverse and local optimal search (PCLS, SLS and LOS respectively) in order to
obtain a variety of local optimal solutions.

Cellular Processing Algorithms 59

4.1.3 RefSet Update1 Method

It initially builds a set Q with the best quality solutions in the pool. A local optim-
al search (LOS) is applied to these solutions when they are incorporated to the ref-
erence set. This local search was not carried out during the creation of the pool of
solutions in order to produce diverse solutions. Once the elements in Q are se-
lected, RefSet Update1 proceeds to build a set D of diverse solutions, including the
elements of the pool with the highest average distance to set Q. The distance be-
tween permutations ∈ and ∈ is defined as follows:

 ((,) (,))

where Pos(i, p) is the position of element i in permutation p.

4.1.4 Stagnation Condition

This condition detects if has been modified with new solutions, so if
no new solution has been added to , then we consider to be stagnated.

4.1.5 Subset Generation Method

This method chooses for combination all the pairs of solutions in plus all the
pairs (,) such that ∈ and ∈ .

4.1.6 Combination Method

In order to describe how the permutations are combined, consider two permuta-
tions and , an index for the position of each element in , and the set
of differences = | = for = 1, , . Now element = () is selected, meaning that and have the largest

difference. Therefore, the best improvement will be reached if element is
placed in position . A new solution is built inserting the element placed in

position of permutation , in position , and is eliminated from

. This process continues until we have taken 15% from and subsequently
an Improvement2 method is carried out.

4.1.7 RefSet Update2 Method

It includes new solutions in if they have better quality than the worst solution in
, if so then the solutions to be replaced in might be included in . Also if the

new solution is not better than the worst solution in , then it might be included
into if it has a higher average distance to set (See Section 4.1.3).

60 J.D. Terán-Villanueva et al.

4.2 GRASP

Feo and Resende propose the GRASP methodology in [7] and [8], and the
acronym was coined in [9]. GRASP is a multi-start algorithm which consists basi-
cally by a construction phase and a local search, see Algorithm 2.

Algorithm 2: General GRASP structure

 bestSol = Huge_Value
 For(MaxIterations)
 sol = GraspConstruction()
 sol = LocalSearch(sol)
 if (cost(sol) < bestSol)
 bestSol = cost(sol)
 endif
 EndFor

4.2.1 GRASP Construction

The GRASP construction is one of the main parts of a GRASP algorithm. For
LOPCC an initial construction consists of a permutation that is built from the last
position to the first, in order to evaluate part of the objective function value due to
its cumulative costs. There are several ways to create a GraspConstruction, for
this work particularly we use a reactive GRASP.

Resende in [17] and Paris in [15] propose a reactive GRASP, whose general
structure is next described. The first element (last position in the permutation) is
selected randomly. And for each remaining position, the next process is carried
out. Each permutation element is evaluated using a GRASP function, and a re-
stricted candidate list is generated with the elements that surpass a
shold = + β(). Then a random element from
the restricted candidate list is selected to be placed at the current position of the
construction, and the same process is repeated for the next position until the solu-
tion construction is completed.

A GRASP is called reactive when it chooses the β value using statistical infor-
mation of the performance of previous solutions obtained with each β value. The
general structure of the greedy construction is shown in Algorithm 3.

Algorithm 3: Reactive greedy construction

 Output π
1 cost = 0
 InsertElement(Random, π)
3 cost += CalculateCostOfInsertion()
 While {notFinished(π)}
5 β = SelectBeta()
 RCL = CreateCandidateList(β)
7 nextElement = SelectRandomElement(RCL)
 InsertElement(nextElement, π)

Cellular Processing Algorithms 61

9 cost += CalculateCostOfInsertion()
 cost += TryToImproveSolutionSoFar()
11 UpdateBeta()
 EndWhile

 The selection and update of the β values are performed in lines 5 and 11 respec-
tively; the probabilities associated with the choice of selecting one of the possible
m values of β are: = 1⁄ , for = 1, … , . Now, let be the objective func-
tion value of a new solution and be the average of the objective function value
of all the solutions found using β , for = 1, … , . The selection probabilities are
periodically reevaluated to = ∑⁄ , where = ⁄ for = 1, … , .
And so the value of will be larger for those values of that yields to the best
solutions. The CreateCandidateList() method creates the candidate list using the
values produced by the previous process. The SelectRandomElement() method
chooses the next element randomly from the restricted candidate list (RCL) in the
construction of the solution. The InsertElement() function in line 8, inserts
NextElement in the next position to be included in permutation π, it is important to
remember that permutation π is constructed in reverse order due to the cumulative
costs. The TryToImproveSolutionSoFar() method is a partial local search that tries
to find a better partial solution by trying to insert the new element in other
position.

5 Homogeneous Cellular Processing Algorithm

In this section a homogeneous cellular processing algorithm is described. It uses
PCells based on the scatter search metaheuristic. And it was motivated for reduc-
ing the time consumption of a sequential scatter search algorithm, when used to
solve large scale instances of LOPCC. The homogeneous algorithm executes mul-
tiple small scatter search PCells by reducing the size of their reference sets.

For this particular homogeneous algorithm the next configuration was used. In
each iteration of the algorithm, every PCell is executed as long as it is not stag-
nated. The PCells are homogeneous because they all use a scatter search heuris-
tics, and their computational effort is balanced. Each PCell evolves a different set
of solutions, which must be initialized before its execution. The communication is
carried out off-line, so it will be executed once every PCell has stagnated. Several
stagnation detection strategies where applied for testing.

Algorithms 4, 5, 6 and 7 show the detailed description of the main methods
used: processing cell starter, processing cell, and cellular communication.

Algorithm 4: PCell starter

 Output Pool
 For {i=0 to poolSize}
 newSol = DiversificationGeneration()
 Pool += Improvement1(newSol)
 EndFor

62 J.D. Terán-Villanueva et al.

Algorithm 5: PCell processing

 Input i
 PCellSoli=SubSetGeneration(i)
 NPCellSi=SolCombination(PCellSoli)
 ImprovedPCellSoli=Improvement2(NPCellSi)
 RefSetUpdate(ImprovedPCellSoli,i)

Algorithm 6: PCell off-line communication
 Repeat
 For {i=0 to numberOfPCells}
 For {j=0 to numberOfPCells}
 If {i j}
 NewSol = Communication(i,j)
 UpdateWorstCell(i,j,NewSol)
 EndIf
 EndFor
 EndFor
 Until {NoBetterSolFound()}

The communication process receives the identifiers (i, j) of the PCells to com-
municate. Once the PCells are identified the best solutions obtained for each one
(π , π) are combined to produce a new solution . If () ((π) , (π)), then will replace the worst solution in {π , π }.
In this process the combination of solutions is carried out using a truncated path-
relinking. In this process parameter determines the truncation level of the path
between π π , which in our algorithm is set to 10% [17].

The PCells are executed in each iteration on a fixed order from 1 to , until
every PCell stagnates. The individual stagnation technique has the advantage of
low time consumption, because, once PCells have stagnated, the rest of the
process continues without wasting time on those PCells.

Algorithm 7: Communication (truncated path-relinking)

 Input {i, j}
 Output π
 Let: Ind(π,k) be a function that returns
the position of element k in solution π
 D =
 For {k = 1 \to n}
 If {Ind(π ,k) Ind(π ,k)}
 dk= π Ind(,k) - π Ind(,k)
 D = D ∪ dk
 EndIf
 EndFor
 For {m = 1 \to n* } where 0 1
 dk* = argmin(D)

Cellular Processing Algorithms 63

 π = InsertMove(π ,Ind(π ,k*),Ind(π ,k*)
 D = D {dk*}
 EndFor
 π = Improvement2(π)

The communication process is carried out once all the PCells have reached a

stagnation condition. The communication between PCells is carried out by updat-
ing the reference set of each cell with new solutions. These new solutions are gen-
erated using a truncated path-relinking among the best elements of each PCell.
Once the communication has ended and if the stop condition is not reached, a res-
tart of the reference set for each PCell is carried out. This Re-start method is used
to produce a new reference set of solutions for each processing cell. The new solu-
tions are produced with the Solution Combination method of the scatter search,
but in this case all the new solutions substitute the old ones except for the best so-
lution of each processing cell.

The general structure of the cellular processing scatter search algorithm is
shown in Figure 1.

Fig. 1 Structure of the cellular processing scatter search

6 Heterogeneous Cellular Processing Algorithm

In this section a heterogeneous cellular processing algorithm is described. It uses
PCells based on both the scatter search and GRASP metaheuristics. We configure
it as an unbalanced algorithm, and so the GRASP processing cells (GRASP
PCells) will iterate 50% more than the scatter search processing cells (SS PCells).
Also as in the previous algorithm the communication is an off-line process, using
the same combination technique as in the homogeneous algorithm. The stagnation
detection for the GRASP PCells is determined according to a number of iterations
without improvement; while for the SS PCells the local stagnation condition is

64 J.D. Terán-Villanueva et al.

reached when in one execution of the processing cell the local best is not
improved.

The SS PCells are the same as the ones used in our previous algorithm and the
GRASP PCells were designed as shown in Algorithm 8.

Algorithm 8: GRASP PCell

1. Input {i}
2. Output {bestValue}
3. If (GenerateNewi == true)
4. GRASPSoli = GRASPConstruction()
5. EndIf
6. IterStag = 0.3 * SolSize
7. For {k = 1 To maxIter And j < IterStag}
8. j++
9. GRASPSoli = Perturbation(GRASPSoli)
10. GRASPSoli = Improvement2(GRASPSoli)
11. GRBesti = Best(GRASPSoli, GRBesti)
12. If (Improvement)
13. j = 0
14. EndIf
15. EndFor
16. If (j==IterStag && NoBetterSolution(i))
17. Stagnatedi = true
18. Else
19. Stagnatedi = false

 20. EndIf

In line 3 of this algorithm we evaluate if a new construction is needed; and if

that condition is true, a reactive greedy construction is carried out as shown in Al-
gorithm 3. Then the loop in line 7 is carried out a number of iterations, or until a
certain number of consecutive iterations without improvement occur. Inside this
loop a perturbation followed by an improvement2 (see section 4.1.2) are carried
out, lines 9 an 10. The perturbation moves 20% of the elements of the solution i to
random positions. Then an update of the best solution is calculated (line 11). Lines
from 12 to 14 check if there is an improvement for reseting j. Once the loop ends,
a stagnation detection of the GRASP processing cell is carried out. The algorithm
considers that the GRASP PCell is stagnated if j has reached IterStag and if
NoBetterSolution has been found in the last entire execution of the GRASP PCell.

7 Experimental Results

In this section we describe: the experimental settings, the preliminary experimen-
tation, and the evaluation of the performance of the homogeneous and heterogene-
ous cellular processing algorithms.

Cellular Processing Algorithms 65

7.1 Experimentation Settings

The algorithms were implemented in C, and two different sets of experiments
were carried out. One set was designed to study the impact of the different para-
meters of the homogeneous cellular processing proposal. The other set was
designed to compare the performance of the homogeneous cellular processing al-
gorithm (HoCPA) and the heterogeneous cellular processing algorithm (HeCPA)
with respect to the state-of-the-art algorithms to solve LOPCC.

For the first set of experiments a computer with a Phenom X4 955 3.2 GHz
processor with 2 GB of RAM was used. And for the second one a computer with
dual Xeon processors at 3.06 GHz and with 4 GB of RAM was used.

The instances used for the experiments are:

• UMTS. These are instances from the group of telecommunications of the en-
gineering school from the University of Padua, related with the order of detec-
tion for UMTS networks [3]. These instances consist of four sets of size 16,
the characteristics for each set of instances are: synchronous and asynchron-
ous, with and without scramble; and their optimal values are known.

• Random. Instances generated randomly with a uniform distribution proposed
by Reinelt [16]. There are three sets of random instances, each one of size 35,
100 and 150 respectively; their optimal values are unknown.

• LOLIB. These instances come from input-output tables from the European
economy [13] and are a well-known set of LOP instances. We use 48 instances
of sizes 44 to 60, 30 of size 44, 4 of size 50, 11 of size 56, and 3 of size 60;
their optimal values are unknown.

7.2 Impact of Different Parameters, in the Performance of the
Cellular Processing Algorithms

A preliminary experimentation was conducted in order to identify the impact of a
set of parameters on the performance of the cellular processing algorithms. In this
preliminary experimentation a set of 49 LOLIB instances was used. The parame-
ters analyzed in these experiments were: the number of processing cells (nc), the
processing cell size (cs) (the running time of each processing cell) and the stagna-
tion detection (sd) for the processing cells.

The number of processing cells (nc) test is carried out in order to observe the
performance produced with different numbers of processing cells.

The processing cell size (cs) test is designed to determine the performance pro-
duced with different processing cell sizes. The processing cell size is related with
the number of combinations of Table 1. For example, a number of combinations
equal to 60 (experiments from 1 to 5) means that, in one processing cell execution,
60 combinations are produced. And therefore, we are taking this value as the size
of the processing cell.

The stagnation detection for the processing cells (sd) test considers two main
factors: the percentage of improvement and the amount of new solutions
produced. The percentage of improvement tries to identify stagnation if no better

66 J.D. Terán-Villanueva et al.

solution has been produced with at least a certain percentage of improvement. And
the amount of new solutions produced aims at detecting stagnation when a certain
amount of new better solutions has not been produced.

Table 1 shows the configurations used for the three parameters in the prelimi-
nary experimentation. The first column indicates the number of experiment, the
second column shows the amount of processing cells used for the experiment,
while the third and forth columns show the quantity of quality and diversity solu-
tions in each processing cell. The fifth column contains the overall number of
combinations (((1) +)), the sixth one indicates the
overall number of solutions used (+), and the seventh column
shows the stagnation detection criterion used by each processing cell.

For the stagnation detection column, 1Q and 2Q mean finding at least one or
two solutions respectively that replace a quality element in the processing cell.
The values 0.1%, 0.01% and 0.001% Improvement means finding a solution that
is at least 0.1%, 0.01% and 0.001% better than any quality solution. If these crite-
ria are met then we state that the processing cell is not stagnated.

Table 1 Configurations used in the experiments: number of processing cells (nc),
processing cell size (cs) and stagnation detection for the processing cells (sd)

Experiment No. PCells Q D
Total of Combi-

nations
Total of

Solutions
Stagnation
Detection

1 1 6 5 60 11 1Q

2 2 5 2 60 14 1Q

3 3 4 2 60 18 1Q

4 4 3 3 60 24 1Q

5 5 3 2 60 25 1Q

6 8 3 3 120 48 1Q

7 10 3 2 120 50 1Q

8 10 3 2 90 50 1Q

9 10 4 2 200 60 1Q

10 10 4 2 140 60 1Q

11 10 4 3 240 70 1Q

12 10 4 3 180 70 1Q

13 10 4 2 200 50
0.1% Im-

provement

14 10 4 2 200 50
0.01% Im-
provement

15 10 4 2 200 60
0.001% Im-
provement

16 10 4 2 200 60 2Q

Cellular Processing Algorithms 67

Table 2 shows the results obtained for the experiments 1 to 7 of Table 1, where
we study the impact of the number of processing cells (nc). The first column indi-
cates the experiment number, the second one shows the average percentage error
with respect to the best-known solutions reported in [6], the third column presents
the number of best-known solutions found, and the last one shows the average
time for instance solution in CPU seconds.

In this table we can see that experiments 5, 6 and 7 are the ones with the best
average error. The experiments with the best times are 3 and 5. However, it is
important to remember that experiments from 1 to 5 are experiments with 60
combinations, and in this group experiment 1 (one processing cell) obtains 23
best-known solutions, while experiment 5 finds 22 best-known solutions in almost
half the time used in experiment 1. Furthermore, experiment 7 obtains a better
average error and 23 best-known solutions and uses less time than experiment 1,
despite producing 120 combinations in comparison with the 60 combinations of
experiment 1. So in this experiment we can see the advantage of using a cellular
processing approach instead of a monolithic approach.

Table 2 Quality and efficiency observed in the number of processing cells (nc) experiments

Experiment
No.

Avg. Err.
of Best-Known

Solutions
CPU. Sec.

1 0.656 23 29.17

2 0.656 21 15.451

3 1.1 21 14.743

4 0.654 22 15.413

5 0.633 22 14.921

6 0.632 23 25.034

7 0.634 23 23.172

As we can see in experiments 6 and 7 the cellular processing approach increas-

es solution quality by 3.6% and 3.3% respectively with respect to the monolithic
approach (experiment 1). In another hand our approach reduces time consumption
by 14% and 20% respectively.

Table 3 shows the results obtained for experiments 7 to 12 of Table 1, where
we study the impact of the processing cell size (cs). The first column indicates the
experiment number, the second one shows the average percentage error with re-
spect to the best-known solutions reported in [6], the third column presents the
number of best-known solutions found, and the last one shows the average time
for instance solution in CPU seconds.

The experiments are compared pairwise because each pair has the same number
of solutions and a different number of combinations. As we can see, there is an
average reduction of time of 1.5 seconds comparing experiment 7 versus 8, 9 ver-
sus 10, and 11 versus 12. Also the best average error is found with experiment 11,

68 J.D. Terán-Villanueva et al.

which is the experiment with the largest number of combinations (240). However,
experiment 12 is the one that finds the largest number of best-known solutions
(24). Still, this behavior seems to be a fluke, because if we compare all the pre-
vious pairs of experiments (7,8) (9,10), they tend to reduce the number of best-
known solutions found, from 23 to 21 or 22. According to these results there is a
small time saving for the three comparisons.

Table 3 Quality and efficiency observed in the processing cell size (cs) experiments

Experiment
No.

Avg. Err.
of Best-Known

Solutions
CPU. Sec.

7 0.634 23 23.172

8 0.638 21 22.428

9 0.632 23 25.262

10 0.657 22 23.553

11 0.043 23 28.434

12 0.632 24 26.276

Table 4 shows the results obtained for experiments 9 and 13 to 16 of Table 1,

where we study the impact of the stagnation detection for the processing cells
(sd). The experiments selected for this study contain the same amount of quality
and diversity solutions as well as the number of combinations, the only variable is
their stagnation detection criterion. Here we can see that there is not really a ten-
dency for these experiments. We expected there should be an increasing average
error, a decreasing number of best-known solutions and a decreasing CPU time.
But the only tendency observed was the decreasing number of best-known solu-
tions of experiment 16 and also a slight decrease in CPU time.

According to these results, there is not an important reduction of CPU seconds
and so we will use the configuration of the experiment 9, for one of the cellular
processing algorithms.

Table 4 Quality and efficiency observed in the stagnation detection (sd) experiments

Experiment
No.

Avg. Err.
of Best-Known

Solutions
CPU. Sec.

9 0.632 23 25.262

13 0.632 23 25.272

14 0.632 23 25.294

15 0.632 23 25.279

16 0.634 22 24.522

Cellular Processing Algorithms 69

7.3 Cellular Processing Algorithms Performance

Table 5 shows the comparative average performance of the homogeneous and he-
terogeneous cellular processing algorithms (HoCPA and HeCPA) versus a hypo-
thetical algorithm (HA) capable of obtaining all the best-known solutions reported
in [6]. This table contains the average percentage error, the number of best-known
solutions found, the number of new best-known solutions produced, and the
average time for instance solution in CPU seconds. The time comparison was per-
formed against the EvPR algorithm, which is the best performance algorithm re-
ported in [6]. We make comparisons versus the HA algorithm, because the results
in [6] do not include the objective values obtained by EvPR for each instance.

Table 5 Comparative average performance of cellular processing algorithms (HoCPA,
HeCPA) versus the HA algorithm

Algorithm Avg. Err.
Best-Known

or Optimal
Solutions

New Best-
Known Solu-

tions
CPU Sec.

UMTS

HoCPA 0 100 - 0.863

HeCPA 0 100 - 0.822

HA 0 100 - 1.62 (EvPR)

LOLIB

HoCPA 0.01 43 16 33.41

HeCPA 0.01 42 16 33.13

HA 382057.38 33 - 32.34 (EvPR)

Rnd 35

HoCPA 0.37 22 0 4.66

HeCPA 0.39 21 0 3.59

HA 0 25 - 3.75 (EvPR)

Rnd 100

HoCPA 1.78 10 10 431.95

HeCPA 1.97 11 11 360.29

HA 1.49 14 - 351.38 (EvPR)

Rnd 150

HoCPA 4.75 11 11 1628.75

HeCPA 5.61 8 8 1074.24

HA 3.26 14 - 1127.24 (EvPR)

70 J.D. Terán-Villanueva et al.

As we can see, for the UMTS instances our algorithms were able to find 100
optimal solutions out of 100. Also the time spent on these instances was almost
halved for the cellular processing algorithms.

For the LOLIB instances, the HoCPA and HeCPA algorithms have lower aver-
age error than the hypothetical algorithm and find 43 and 42 best-known solutions
respectively. Also both cellular processing algorithms find 16 new best-known so-
lutions. However, they use about one second more than EvPR.

The Random instances of size 35 are the only scenario where the cellular
processing algorithms were not able to find new best-known solutions. HoCPA
and HaCPA find 22 and 21 best-known solutions respectively.

For the Random instances of size 100, HoCPA finds 10 new best-known solu-
tions while HeCPA finds 11 new best-known solutions, and it uses 70 seconds less
than HoCPA, but still uses 9 seconds more than EvPR.

On the Random 150 instances, HoCPA finds 11 new best-known solutions and
HeCPA finds 8. In this scenario HoCPa uses 501 seconds more than EvPR but
HeCPA uses 53 less seconds than EvPR. Table 7 and 8, at the end of this chapter,
show an update of the best known solutions for the LOLIB and Random sets of in-
stances respectively.

Now for the Wilcoxon test we compared HoCPA (excluding HeCPA) versus
HA, because HoCPA obtains more best-known solutions than HeCPA. Table 6
shows the Wilcoxon test results when HoCPA and HA are compared for all the
sets of instances.

As we can see all the tests are statistically equivalent, because the sum of ranks
is not equal to or greater than the reference value for any algorithm. These results
indicate that the performance of both algorithms is statistically equivalent.

Table 6 Wilcoxon test to compare the performance of the Homogeneus Cellular Processing
Algorithm (HoCPA) versus the Hypothetical Algorithm (HA)

Instances Algorithm
Sum of
ranks

Reference Value
(Significance 10%)

LOLIB
HoCPA 99

101
HA 37

Rnd 35
HoCPA 0

–
HA 6

Rnd 100
HoCPA 132

225
HA 193

Rnd 150
HoCPA 121

225
HA 204

Cellular Processing Algorithms 71

8 Conclusions and Future Work

In this work we propose a new class of cellular algorithms. There are several cel-
lular algorithms in the literature, but they are bound to their heuristics, and in most
cases the cellularization is in the structure of the population and not in the process.
The ant colony system does cellularize the process, but due to its low flexibility, it
is difficult to adapt it to other metaheuristics.

Our cellular approach, cellularizes the process of the metaheuristic method or
metaheuristic methods, in order to: explore different solution spaces looking for
local optima and save time through stagnation detection for each processing cell.

To validate our approach two cellular processing algorithms were built to solve
the linear ordering problem with cumulative costs (LOPCC). A homogeneous and
a heterogeneous cellular processing algorithms were tested to assess their perfor-
mance. Three sets of standard instances were used to this purpose (UMTS, LOLIB
and Random).

The experimental results show that the performance of these algorithms is sta-
tistically similar to the state-of-the-art solutions. It is important to point to that the
homogeneous cellular processing algorithm (HoCPA) was able to find 37 new
best-known solutions, and the heterogeneous cellular processing algorithm (HeC-
PA) finds 35 new best-known solutions. However, it is important to notice that the
HeCPA obtains only two new best-known solutions less than HoCPA. But in gen-
eral it uses about 627 seconds less, in all the tests, than HoCPA.

As the experimental results show, the cellular processing approach was able to
increase the solution quality up to 3.6% and reduce the time consumption up to
20% versus the monolithic counterpart.

The main components of these algorithms are: the processing cells (PCells), the
communication between PCells, and the global and local stagnation detection. Yet
even if the main components are already determined, there are still several ques-
tions that need an answer. For example: which combination of metaheuristics
would produce a good combination of PCells?; which is the right balance between
search-based and population-based PCells?; is balanced or unbalanced the best
choice for a homogeneous cellular processing algorithm?; which kind of commu-
nication is better, on-line or off-line?; is it a good idea to implement both commu-
nication types in the same algorithm? In this work we use path-relinking as
communication method, but is it a better communication technique the combina-
tion or crossover operators? Which is the appropriate stagnation criterion for
detecting local and global stagnations? Should the local and global stagnations be
similar or unbalanced?

As we can see the field of cellular processing algorithms is a new and rich re-
search area. And it’s great flexibility and simplicity permits that almost any meta-
heuristic can be transformed into a cellular processing algorithm.

72 J.D. Terán-Villanueva et al.

Table 7 Update to the best-known solutions for the LOLIB instances

be75eec 5.085 t65n11xx 0.319 t75i11xx 4454.913

be75np 16543405.76 t65w11xx 19.258 t75k11xx 1.323

be75oi 2.788 t69r11xx 14.036 t75n11xx 9.896

be75tot 297138.268 t70b11xx 93.671 t75u11xxa 0.326

stabu70 13.284 t70d11xx 79.742 tiw56n54 2.645

stabu74 14.029 t70d11xxb 4.435 tiw56n58 3.62

stabu75 9.412 t70f11xx 1.267 tiw56n62 3.024

t59b11xx 76261.813 t70i11xx 115233.4 tiw56n66 2.687

t59d11xx 4086.303 t70k11xx 0.492 tiw56n67 1.877

t59f11xx 61.618 t70l11xx 798.919 tiw56n72 1.567

t59i11xx 7917.489 t70n11xx 0.054 tiw56r54 2.626

t59n11xx 1618.897 t70u11xx 42148.82 tiw56r58 3.602

t65b11xx 28230.381 t70w11xx 0.045 tiw56r66 2.189

t65d11xx 3898.568 t70x11xx 0.231 tiw56r67 1.541

t65f11xx 1.245 t74d11xx 4.756 tiw56r72 1.349

t65i11xx 473730.893 t75d11xx 5.059

t65l11xx 2657.725 t75e11xx 2062.246

Table 8 Update to the best-known solutions for the Random instances

t1d35.1 0.923 t1d100.1 253.988 t1d150.1 8588.289

t1d35.2 0.167 t1d100.2 288.372 t1d150.2 166482.377

t1d35.3 0.154 t1d100.3 1307.432 t1d150.3 574943.633

t1d35.4 0.196 t1d100.4 7293.311 t1d150.4 74063.165

t1d35.5 1.394 t1d100.5 165.963 t1d150.5 79069.363

t1d35.6 0.2 t1d100.6 395.035 t1d150.6 46829.985

t1d35.7 0.12 t1d100.7 5656.723 t1d150.7 161149.153

t1d35.8 0.226 t1d100.8 2760.619 t1d150.8 251940.422

t1d35.9 0.436 t1d100.9 62.69 t1d150.9 364320.25

t1d35.10 0.205 t1d100.10 156.018 t1d150.10 121446.49

t1d35.11 0.369 t1d100.11 233.586 t1d150.11 13054.614

t1d35.12 0.234 t1d100.12 236.696 t1d150.12 65717.265

t1d35.13 0.196 t1d100.13 577.453 t1d150.13 104975.277

t1d35.14 0.138 t1d100.14 246.03 t1d150.14 74854.867

t1d35.15 1.376 t1d100.15 406.478 t1d150.15 329110.316

Cellular Processing Algorithms 73

Table 8 (continued)

t1d35.16 0.286 t1d100.16 707.413 t1d150.16 16651299

t1d35.17 0.199 t1d100.17 725.79 t1d150.17 71190.802

t1d35.18 0.381 t1d100.18 622.942 t1d150.18 711011.245

t1d35.19 0.236 t1d100.19 228.486 t1d150.19 59594.204

t1d35.20 0.068 t1d100.20 241.283 t1d150.20 1886041.88

t1d35.21 0.202 t1d100.21 228.59 t1d150.21 41453.911

t1d35.22 0.177 t1d100.22 153.388 t1d150.22 695751.688

t1d35.23 0.345 t1d100.23 1588.314 t1d150.23 22203891.8

t1d35.24 0.132 t1d100.24 469.658 t1d150.24 100543.43

t1d35.25 0.143 t1d100.25 644.782 t1d150.25 462316.511

References

1. Alba, E., Dorronsoro, B., Alfonso, H.: Cellular memetic algorithms. Journal of Com-
puter Science and Technology 5(4), 257–263 (2005)

2. Benvenuto, N., Carnevale, G., Tomasin, S.: Optimum power control and ordering in
SIC receivers for uplink CDMA systems. In: IEEE-ICC 2005 (2005)

3. Bertacco, L., Brunetta, L., Fischetti, M.: The linear ordering problem with cumulative
costs. Eur. J. Oper. Res. 189(3), 1345–1357 (2008)

4. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach
to the traveling salesman problem. IEEE Transactions on Evolutionary Computa-
tion 1(1), 53–66 (1997), doi:10.1109/4235.585892

5. Duarte, A., Laguna, M., Marti, R.: Tabu search for the linear ordering problem with
cumulative costs. Computational Optimization and Applications 48, 697–715 (2011)

6. Duarte, A., Marti, R., Alvarez, A., Angel Bello, F.: Metaheuristics for the linear or-
dering problem with cumulative costs. European Journal of Operational Re-
search 216(2), 270–277 (2012)

7. Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set cov-
ering problem. Operations Research Letters 8(2), 67–71 (1989)

8. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of
Global Optimization 6(2), 109–133 (1995)

9. Feo, T., Resende, M., Smith, S.: A greedy randomized adaptive search procedure for
maximum independent set. Operations Research 42(5), 860–878 (1994)

10. Folino, G., Pizzuti, C., Spezzano, G., Spezzano, O.: Combining cellular genetic algo-
rithms and local search for solving satisfiability problems. In: Proceedings of Tenth
IEEE International Conference on Tools with Artificial Intelligence, pp. 192–198
(1998)

11. Glover, F.: Heuristics for integer programming using surrogate constraints. Decis.
Sci. 8, 156–166 (1977)

12. Huy, N.Q., Soon, O.Y., Hiot, L.M., Krasnogor, N.: Adaptive cellular memetic algo-
rithms. Evolutionary Computation 17(2), 231–256 (2009) ISSN:1063-6560

13. Laguna, M., Marti, R., Campos, V.: Intensification and diversification with elite tabu
search solutions for the linear ordering problem. Computers & Operations Re-
search 26(12), 1217–1230 (1999), doi: 10.1016/s0305- 0548(98)00104-x

74 J.D. Terán-Villanueva et al.

14. Li, B., Zhao, X.-F., Z.Q.s.T.S.h: Differentiate coevolutionary algorithms. Journal of
Convergence Information Technology 6(4), 3247–3259 (2011)

15. Prais, M., Ribeiro, C.: Parameter variation in GRASP procedures. Investigacion Ope-
rativa 9, 1–20 (2000)

16. Reinelt, G.: The linear ordering problem: Algorithms and applications. Mathematical
Social Sciences 14(2), 199–200 (1985)

17. Resende, M., Riberio, C.: Greedy Randomized Adaptive Search Procedures: Ad-
vances, Hybridizations, and Applications. In: Handbook of Metaheurictics, vol. 146,
pp. 283–319. Springer (2010)

18. Righini, G.: A branch-and-bound algorithm for the linear ordering problem with cu-
mulative costs. European Journal of Operational Research 186, 965–971 (2008)

19. Seredynski, F., Zomaya, A., Bouvry, P.: Function optimization with coevolutionary
algorithms. In: International Intelligent Information Processing and Web Mining Con-
ference, Zakopane, Poland (June 2003)

20. Sipper, M.: The emergence of cellular computing. IEEE Computer 32(7), 18–26
(1999)

21. Teran-Villanueva, J., Fraire-Huacuja, H., Duarte, A., Pazos-Rangel, R., Carpio Vala-
dez, J., Puga-Soberanes, H.: Improving Iterated Local Search Solution for the Linear
Ordering Problem with Cumulative Costs (LOPCC). In: Setchi, R., Jordanov, I., How-
lett, R.J., Jain, L.C. (eds.) KES 2010, Part II. LNCS, vol. 6277, pp. 183–192. Sprin-
ger, Heidelberg (2010)

22. Teran-Villanueva, J., Pazos-Rangel, R., Martinez, J.A., Lopez-Loces, M.C., Zamar-
ron-Escobar, D., Pineda, A.: Hybrid GRASP with composite local search and path-
relinking for the linear ordering problem with cumulative costs. International Journal
of Combinatorial Optimization Problems and Informatics 3(1), 21–30 (2012)

23. Wiegand, R.P.: An analysis of cooperative coevolutionary algorithms. Ph.D. thesis,
Fairfax, VA, USA (2004)

Part II

Soft Computing in Intelligent Control
Applications

P. Melin, O. Castillo (Eds.): Soft Computing Appli. in Optimization, STUDFUZZ 294, pp. 77–96.
DOI: 10.1007/978-3-642-35323-9_4 © Springer-Verlag Berlin Heidelberg 2013

Hierarchical Genetic Optimization of the Fuzzy
Integrator for Navigation of a Mobile Robot

Abraham Meléndez and Oscar Castillo

Tijuana Institute of Technology, Tijuana México
abraham.ms@gmail.com, ocastillo@tectijuana.mx

Abstract. This paper describes the optimization of an Integrator control block
within the proposed navigation control system for a mobile robot. The control
blocks that the integrator will combine are two Fuzzy Inference Systems (FIS) in
charge of tracking and reaction respectively. The integrator block is call Weighted
Fussy Inference System (WFIS), and assigns weights to the responses on each be-
havior block, to combine them into a single response.

1 Introduction

The use of mobile robots has increased over the last decades in many areas from
industrial work to research and household and one reason for this is that they have
proved useful in each of these areas from doing very specific task to ongoing
monotonous shores, they help their human counterpart be more productive and ef-
ficient. Also as hardware technology is moving forward and developing more ca-
pable robots at lower cost, this is another reason for this increase and why we are
seeing them in more common places.

The mobile robot, needs to move around its environment and this is why a great
deal of research has been invested on testing them with control systems that allow
the robots to navigate on their own, and different methodologies have been ap-
plied from traditional control such as PD, PID [4, 9] to soft computing methods
like Fuzzy Logic [10, 25, 13, 17, 15, 18, 12, 11, 21, 5, 19, 20], Neural Networks
[11] and hybrid ones also [6,23,24].

In this paper, the navigation control system has been designed to combine two
key behaviors that are considered to be required for any navigation control system
of a mobile robot. The first one is a tracking controller, this is an obvious one
since there is no point of having a navigation system on a robot, that can´t go to a
desired location, the second one is a reactive controller and here we considered
this one to be off great importance also, since the tracking controller can get the
robot to the destination, but that will be on an ideal situation where there are no
obstacles present on the robots path.

78 A. Meléndez and O. Castillo

The reactive controller is for those cases where an obstacle free path cannot be
guaranteed; this is where the reactive controller will do its work providing a beha-
vior that will make the robot react to any type of obstacle so that the robot can
continue on its journey. In this paper we describe the integration method for these
two controls as part of the complete Navigation Control System, the control
blocks are fuzzy inference systems of type-1 and type-2, and a general GA (Genet-
ic Algorithm) is applied to the optimization of each of the controller blocks with a
specific fitness function for each part that will evaluate the corresponding individ-
ual performance.

As related work, we can find that of Cupertino et al [8] developed a Fuzzy con-
troller of a mobile robot, based on 3 FLCs (Fuzzy Logic Controller) and one
Fuzzy Supervisor that was in charge of determining which FLC behavior will be
active, there the FLCs are of Type-1 and the Fuzzy Supervisor mainly acts as a
switch. In our proposed method the fuzzy integrator acts more like a fusion block.
S. Coupland et al [7] proposed a Type-2 Fuzzy Control of a Mobile Robot, which
is based on W Payton et al [22] Command Fusion, where the idea is that a beha-
vior should work with others to find a mutually beneficent solutions, where each
behavior takes into consideration every possible output with its corresponding ac-
tivation value (positive or negative), and a winner takes all network is use to select
the winning responses for each behavior. Coupland suggests using two FISs one
for goal seeking and another for obstacle avoidance. The activation value for each
of the FIS output will be a Fuzzy set that will be passed to the command fusion
block to later be defuzzifed and that crisp value pass to the Actuator block, being a
difference with our proposed control the integration method of the two behaviors.
The control navigation of a mobile robot is a topic that has been extensively inves-
tigated over the years, the method proposed in this paper is based on the idea that
separation and the cooperation between key behaviors produces a better result
than the use of a single behavior and it differs from previous approaches from the
integration perspective done by a FIS that is in charge of the weighted system, that
will assign a weight to each response from each controller by each control step
that is combined to obtain a unified single response to the robot.

This paper is organized as follows: In section 2 we describe the mobile robot
used in these experiments, section 3 describes the development of the evolutionary
method. Section 4 shows the simulation results. Finally, section 5 shows the Con-
clusions.

2 Mobile Robot

The particular mobile robot considered in this work. The robot is based on the de-
scription of the Simulation toolbox for mobile robots [26], which assumes a
wheeled mobile robot consisting of one conventional, steered, unactuated and not-
sensed wheel, and two conventional, actuated, and sensed wheels (conventional
wheel chair model). This type of chassis provides two DOF (degrees of freedom)
locomotion by two actuated conventional non-steered wheels and one unactuated
steered wheels. The Robot has two degrees of freedom (DOFs): y-translation and
either x-translation or z-rotation [26]. Fig. 1 shows the robot’s configuration, it has

Hierarchical Genetic Optimization of the Fuzzy Integrator 79

Fig. 1 Kinematic coordinate system assignments[26]

2 independent motors located on each side of the robot and one castor wheel for
support located at the front of the robot.

The kinematic equations of the mobile robot are as follows:
Eq. 1: The sensed forward velocity solution [26]

= 2 1 1 (1)

Eq. 2: The Actuated Inverse Velocity Solution [26]

= 1(+ 1) 11 (2)

Under the Metric system are define as:

, Translational velocities [],

Robot z-rotational velocity [],

, Wheel rotational velocities [],

 Actuated wheel radius[m], , Distances of wheels from robot's axes [m].

3 Navigation Control System

The proposed control system consists of three main fuzzy blocks, two are behavior
based and the other one is in charge of the response integration, the behaviors are
the reactive and tracking blocks, and each one will provide its specific behavior
that will be combined into one response by the integration block.

Each behavior block is in charge of its own task, the problem is that they seem
to be in conflict with each other when an unexpected obstacle arises, because if at
the time of planning the route the obstacles are present then the route can be de-
signed to avoid them, but when there are obstacles that we where un aware off, the

80

two behaviors enter in co
other to keep the robot on

The most common so
need it, however, this app
the two blocks have of ea
the collision but it may r
point where the tracking
ence, or the tracking contr
reactive control is not act
tion is to always have bo
generate the movement o
block call WFIS[15] (W
does is to assign response

The inputs are gathered
(sensors) or the environm
create the knowledge rule
want to take the lead on th
ing (if Front_Sensor_Dis
ReactiveWeight is Medium
speed and we combine ea
2 shows the proposed nav

Fig. 2 Navigation Control Sy

4 Genetic Algorithm

The Genetic Algorithm (G
ing the best fuzzy reactiv
only focus on the WFIS c

A. Meléndez and O. Castil

ontradiction one is designed to avoid the object and th
n its track.
olution will be to just switch between controllers whe
proach is not very efficient due to the lack of awarene
ch other, the reactive will effectively keep the robot fro
redirect the robot farther away from its destination to
controller can no longer find its way back to the refe
roller can guide the robot straight into the obstacle if th
tivated on time. The proposed referral for control navig
oth controls active and their responses are combined an
of the robot, the integration is done with another fuzz
eight-Fuzzy Inference System) and what this controlle

e weights to each of the controllers crisp response value.
d from the information that we can collect from the rob

ment by other means (cameras) and from this we need t
e base to give higher activation values to the response w
he robot movement one example of the rule is the follow
stance is Close Then TranckingWeight is Medium an
m), both off our controls provide the right and left moto
ach one with the weight given by the WFIS block. Figur
vigation control.

ystem [15]

ms

GA) was applied to each of the design problems, of find
ve and tracking controllers [16]; however this paper wi
ontroller.

llo

he

en
ss
m
a

er-
he
a-
nd
zy
er

ot
to

we
w-
nd
or
re

d-
ill

Hierarchical Genetic Optimization of the Fuzzy Integrator 81

The purpose of using an evolutionary method is to find the best possible con-
trollers of each type and this can be obtained using the GA, as it searches along
the solution space, combining the attributes from the best controllers in generating
new ones, this concept taken from the building blocks theory.

The idea was to optimize the parameters in the Membership Functions, but also
the number of Membership functions and this means to also optimize the number
of rules making this a multi objective problem. For this we will take advantage of
the HGA (Hierarchical Genetic Algorithm) intrinsic characteristic to solve multi
objective problems.

The work of the GA was divided in two main modules, one that handles all the
operations related to the selection and chromosome manipulation, which we use
for all our controllers that we work on, the other module is the one where we eva-
luated the performance of each chromosome and this part is different on each case.
With this approach we utilize the generality of the GA and just have a specific
evaluation method for each controller. Figure 3 shows the 2 main modules.

Fig. 3 Genetic Algorithm process

The GA module is in charge of initializing the population, selecting the chro-
mosomes that will be used for the genetic operations and letting the Evaluation
Module know which chromosomes are ready to be evaluated and reinserting them
to the population pool.

4.1 Chromosome Encoding

Each individual on the population will represent a FIS controller, each of which
will be encoded on a vectorial structure that will have “n” main sections, one for
each variable (input and output). Each main section will contain 2 subsections
(control genes, Connection genes). The section and subsection sizes depend on the
controller that they represent.

82 A. Meléndez and O. Castillo

4.2 Reactive Controller

The function of the reactive control is to give the same ability that we apply when
we are driving, that is to react to unexpected situations, traffic jams, stop lights,
etc, but in a more basic concept and ability, to the problem that is the navigation of
the robot. A forward moving behavior response out off the control is desired. The
objective is to guide the robot through the maze avoiding any collision. It’s not
our objective to optimize the robot to find the maze exit, we use a maze to optim-
ize the reactive control because of the characteristic it offers to the simulation, i.e.
it is a closed space where the robot cannot easily wonder off and each wall is con-
sidered an obstacle to the robot that it must avoid while it moves around. The
FIS´s are interval Mamdani type-1 fuzzy system [26], each consisting of 3 inputs
that are the distances obtained by the robots sensors described on section 2, and 2
outputs that control the velocity of the servo motors on the robot, all this informa-
tion is encoded into each chromosome.

4.3 Tracking Controller

The tracking controller has the responsibility of keeping the robot on the correct
path, this is when a reference is provided, it will move the robot to the reference
and keep it on track and this is will allow the robot to move from point A to B,
with in a obstacle free environment is possible.

The controller will work by keeping the error (Δ℮p, Δθ) to minimum values,
which represents the error relative to the position and the error relative to the
orientation of the front of the robot to a minimum value, the fuzzy system is a
Mamdani type-1 FIS and consists of 2 inputs that are (Δ℮p, Δθ) and 2 outputs that
control the velocity of the servo motors on the robot, see Figure 4.

Fig. 4 Fuzzy controller inputs ℮p, ℮θ

4.4 WFIS Controller

The function of the WFIS control is to correctly combine the 2 behaviors of track-
ing and reaction and obtain a new global behavior that resembles the same ability
that we apply when we are driving, that is to react to unexpected objects, but in a

Hierarchical Genetic Optimization of the Fuzzy Integrator 83

more basic concept and ability, to the problem that is the navigation of the robot.
A forward moving behavior response out off the global control is desired. The ob-
jective is to guide the robot through the reference avoiding any collision with any
obstacle present. It’s not our objective to optimize the robot to find the maze exit,
we use a closed space where the robot cannot easily wonder off and each wall is
considered an obstacle to the robot that it must avoid while it moves around. The
FISs are Mamdani type-1 fuzzy systems [14], each consisting of 3 inputs, which
are the distances obtained by the robots sensors described on section 2, and 2 out-
puts that are the weights that will be used to integrate the responses of the other 2
controllers, all this information is encoded into each chromosome.

4.5 Type-1 Fuzzy Weight Controller Chromosome Architecture

The control genes consist of 5 bit vectors, this will indicate which fuzzy member-
ship is or not active, the connection genes are divided in 5 subsections, 5 is the
maximum number of membership functions that are allowed per variable, each of
which can be trapezoidal or triangular membership function, and each of these
subsection is divided into 2 sections one that indicates the type of the membership
function and the other the parameters for the function, see Figure 5.

Fig. 5 Type-1 WFIS Controller Chromosome Architecture

4.6 Fuzzy Rules

The rules population is a different and separated population for each controller
with respect to the control population, this is because the optimization procedure
is totally different, but they are tightly related because the number of active rules
depends on the number of active membership functions. In order to optimize
the fuzzy rules we have a population off all the possible subsets keeping one

84 A. Meléndez and O. Castillo

restriction that the number of active membership functions must be the same. With
equation 3 we obtain the size of the fuzzy rules population, where m,n,p represent
the maximum number of membership functions we allow for the input variables,
and k is the maximum number of membership function for the output variables, in
our case (m=n=p=k=5) Equation 3 gives a total of 625 fuzzy rules subsets. rp=m*n*p*k (3)

In this case, we will only have one active subset that can match the fuzzy control-
ler that has the following membership functions active, Sa,b,c,d,e, Where a, b, c
are the number of active membership functions for the input variables and d,e for
the output variable, and we use an index table for each of the fuzzy subsets, see
Table 1.

Table 1 Rules Index Table

S1,3,2,2,2=

Input

01

Input

02

Input

03

Output

01

Output

02

1 1 1 1 1

1 1 2 1 1

1 2 1 1 1

1 2 2 2 1

1 3 1 1 2

1 3 2 2 1

A Special mutation operator is applied (Equation 4) to find the optimal fuzzy

rule set for the reactive controller, the shift operation that is used, changes the con-
sequent part of the rule. h(i,j,q,r,s)=h(i,j,q,(r+∆r),(s+∆s)) (4)

Where h(i,j,q,r,s) is the consequent of the rule that has i, j, q, r, s. active member-
ship functions, ∆r, ∆s represent our shift operator, with a probability of 0.01.

4.7 Objective Function

The GA will be generating individuals that will need to be evaluated and assigned
a crisp value that will represent the controller performance on each of the criteria
that we want to improve. For this, we need to provide the GA with a good evalua-
tion scheme that will penalize unwanted behaviors and reward with higher fitness

Hierarchical Genetic Optimization of the Fuzzy Integrator 85

values those individuals that provide the performance we are looking for in our
controller; if we fail to provide a proper evaluation method we can guide the popu-
lation to suboptimal solutions or non solution at all.

4.7.1 Reactive Controller Objective Function

The criteria used to measure the Reactive controller performance takes into are the
following

o Covered Distance
o Time used to cover the distance
o Battery life.

A Fitness FIS will provide the desired fitness value, adding very basic rules that
reward the controller that provided the longer trajectories and smaller times and
higher battery life. This seems like a good strategy that will guide the control pop-
ulation into evolving and provide the optimal control, but this strategy on its own
it´s not capable of doing just that, it needs to have a supervisor on the robots tra-
jectory to make sure is a forward moving trajectory and that they don´t contain
looping parts, For this, a Neural Network (NN), is used to detect cycle trajectories
that don’t have the desired forward moving behavior by giving low activation val-
ue and higher activation values for the ones that are cycle free. The NN has two
inputs and one output, and 2 hidden layers, see Figure 6.

Fig. 6 Fitness Function for The Reactive Controller

The evaluation method for the reactive controller has integrated both parts the
FIS and the NN where the fitness value for each individual is calculated with Equ-
ation 5, based on the response off the NN the peak activation value is set to 0.35,
this meaning that any activation lower than 0.35 will penalize the fitness given by
the FIS.

86

() =
Where: fi Fitness value of the i-thfv Crisp value out of the fnnv Looping trajectory ac

4.7.2 Tracking Control

The Tracking controller
reference and the robots tr
age, on each of the three t
but its ensure that on one
on another test is below it,
case the robot may need it

Fig. 7 Fitness Function for th

4.7.3 WFIS Controller

The WFIS controller perf
ence and the robots trajec
on each of the three tests
but we ensure that on on
and on another test is bel
for any case the robot may

A. Meléndez and O. Castil

, 0.35, 0.35
(5

h individual,
fitness FIS,
ctivation value.

ller Objective Function

performance is measure with the RMSE between th
rajectory, we apply the test three times and take the ave
test the robot and the reference vertical position is random
test the robots vertical position is above the reference an
, we do this to ensure the controller works properly for an
when it´s above or below (Figure 7).

he Reactive Controller

Objective Function

formance is measured with the RMSE between the refe
ctory. We apply the test three times and take the averag
s the robot and the reference vertical position is random
ne test the robots vertical position is above the referenc
ow it, we do this to ensure the controller works properl
y need it when it´s above or below (Figure 8).

llo

5)

he
er-
m,
nd
ny

er-
ge,
m,
ce
ly

Hierarchical Genetic Optimi

Fig. 8 Fitness Functions for t

4.8 Optimization GU

The GUI, is designed to o
tomize the number of inp
of Fuzzy memberships al
such as number of gener
rate and the type of select

Fig. 9 Parameter selection w

As the GA is running
found and a display area w

zation of the Fuzzy Integrator 8

the WFIS Controller

UI

optimize Type-1 and Type-2 FIS controllers, you can cu
uts and outputs and the maximum and minimum numbe
llow, and the basic parameters of the Genetic Algorith
rations, population replacement mutation and crossove
tion, see Figure 9.

with the GUI

g a generation graph is plotted with the best individu
with all the population data, see Figure 10.

87

us-
er
m
er

ual

88 A. Meléndez and O. Castillo

Fig. 10 Plot showing the execution of the GA

5 Simulation Results

For the simulation experiment the GA and the evaluation process were separated
into two different parts, the generic GA process was developed on the C# lan-
guage with .net 4, where a GA and Fuzzy System library where created with a
GUI to setup the GA parameters, there the GA operations and cycle are run and
the FIS are created. When a chromosome is ready to be evaluated it lets Matlab
know and a modified version of the Simulation toolbox for mobile robots [26] is
used to run each test, where the performance is measured and a Fitness value is re-
turned to the GA process, and the communication between both process is done
using a SQL server queue table.

5.1 Reactive Controller

For the type-1 reactive controller, a GA was setup with high number of genera-
tions and a low number of population size, this because of the large solution space
the reasoning behind this is that with a relative small group of individuals it will
cover focused sections of the solution and can move around the space, A constrain
for inputs and outputs of maximum 10 and minimum 2 FM was set, on the outputs
another constrain was set and it’s that the outputs had to be the same, the evalua-
tion as describe on section 4 is based upon each individual performance on the
particular maze problem.

Table 2 shows the GA configuration and the top 9 Results, where we have the
fitness value and the number of membership functions of each input and output,
where the S represents the inputs and indicate the sensor number and M the out-
puts and indicate the Motor number, and the total rules that are active on each con-
troller. Figure 11 shows the reactive controller results.

Hierarchical Genetic Optimization of the Fuzzy Integrator 89

Table 2 Summary of Type-1 Reactive Controls Results

 Membership Chromosome
Fuzzy Rule

Chromosome Control
Genes

Connections
Genes

Representation Binary Real Number Integer
Population Size 20

No. of
Offspring

5

Crossover One Point One Point
Crossover Rate 1.0 1.0

Mutation Bit Muta-
tion

Random Mu-
tation

Shift index
operation Mutation Rate 0.02 0.02

GA Parameters
Generation 8000
Selection Roulette Wheel with Ranking

Results
Rank Fitness Active FM’s

(S1+S2+S3+M1+M2)
Active Rules

1 0.4895 (4+3+2+3+3)=15 24
2 0.4895 (4+3+2+3+3)=15 24
3 0.4895 (4+3+2+3+3)=15 24
4 0.4895 (4+3+2+3+3)=15 24
5 0.4895 (4+3+2+3+3)=15 24
6 0.4895 (4+3+2+3+3)=15 24
7 0.4895 (4+3+2+3+3)=15 24
8 0.4895 (4+3+2+3+3)=15 24
9 0.4895 (4+3+2+3+3)=15 24

90 A. Meléndez and O. Castillo

Fig. 11 Reactive Controller Results

Hierarchical Genetic Optimization of the Fuzzy Integrator 91

5.2 Tracking Controller

Table 3 shows the GA configuration and the top 9 Results, where we have the fit-
ness value and the number of membership functions of each input and output,
where the ℮p and Δθ represent the inputs and indicate the error on the position and
orientation respectively, and M are the outputs and indicate the Motor number,
and the total rules that are active on each controller. Figure 12 shows the tracking
controller results.

Table 3 Summary of Type-1 Tracking Results

Membership Chromosome

Fuzzy Rule
Chromosome Control

Genes
Connections
Genes

Representation Binary Real Number Integer
Population Size 20

No. of
Offspring

2

Crossover One Point One Point
Crossover Rate 1.0 1.0

Mutation Bit Muta-
tion

Random Mu-
tation

Shift index
operation Mutation Rate 0.02 0.02

GA Parameters
Generation 4000
Selection Roulette Wheel with

Ranking

Results
Rank Fitness Active FM’s

(℮p+ eθ
+M1+M2)

Active Rules

1 0.1907 5+4+4+3=16 20
2 0.2021 5+4+4+3=16 20
3 0.2023 5+4+4+3=16 20
4 0.2091 5+4+4+3=16 20
5 0.2124 7+2+4+5=18 14
6 0.2125 5+4+4+3=16 20
7 0.2182 6+2+5+2=15 12
8 0.2199 5+4+4+3=16 20
9 0.225 5+4+4+3=16 20

92 A. Meléndez and O. Castillo

Fig. 12 Tracking Controller Results

Hierarchical Genetic Optimization of the Fuzzy Integrator 93

5.3 WFIS Controller

For the type-1 WFIS controller, a GA was setup with high number of generations
and a low value of population size, this because of the large solution space. The
reasoning behind this is that with a relative small group of individuals it will cover
focused sections of the solution and can move around the space, A constrain for
inputs and outputs of maximum 10 and minimum 2 FMS was set, on the outputs,
the evaluation as described on section 4 is based upon each individual perfor-
mance on the particular maze problem.

Table 4 Summary of Type-1 WFIS Results

Membership Chromosome
Fuzzy Rule

Chromosome Control
Genes

Connections
Genes

Representation Binary Real Number Integer
Population Size 10

No. of
Offspring

3

Crossover One Point One Point
Crossover Rate 1.0 1.0

Mutation Bit Mutation
Random Mu-

tation
Shift index
operation Mutation Rate 0.02 0.02

GA Parameters
Generation 1500
Selection Roulette Wheel with Ranking

Results

Rank Fitness
Active FM’s

(S1+S2+S3+W1+W2)
Active Rules

1 0.2746 3+5+2+2=12 15
2 0.4170 2+4+3+2=11 8
3 0.4553 3+5+2+2=12 15
4 0.4740 3+5+2+2=12 15
5 0.4856 2+4+2+2=10 8
6 0.5043 2+4+2+2=10 8
7 0.5197 2+4+2+2=10 8
8 0.5233 2+4+2+2=10 8
9 0.5277 2+4+2+2=10 8

Table 4 shows the GA configuration and the top 9 Results, where we have

the fitness value and the number of membership functions of each input and output,
where the S represents the inputs and indicate the sensor number and W the outputs
and indicate the Weight number, and the total rules that are active on each
controller.

94 A. Meléndez and O. Castillo

Figure 13 shows the 3 tests during the evaluation process of the GA, where the
red line is the reference, the blue dotted line is robot path on each run and the gray
squares are obstacle located around the reference path.

Fig. 13 Type-1 WFIS Controller Results

Hierarchical Genetic Optimization of the Fuzzy Integrator 95

6 Conclusions

In this paper we have been able to optimize the Type-1 Reactive, Tracking and the
WFIS controllers, and developed a GUI to optimize the Fuzzy Inference System,
the results obtained on the proposed control system, show good performance on
integrating the 2 behavior into a single response that was able to take the robot to
the reference and avoid any collisions with the obstacles present on the map. Fu-
ture work will consist in the Optimization of the WFIS based on a Type-2 fuzzy
system.

Acknowledgment. We would like to express our gratitude to CONACYT, and Tijuana In-
stitute of Technology for the facilities and resources granted for the development of this
research.

References

[1] Aceves, A., Aguilar, J.: A Simplified Version of Mamdani’s Fuzzy Controller the
Natural Logic Controller. IEEE Transactions on Fuzzy Systems 14(1), 16–30 (2006)

[2] Aguilar, L., Melin, P., Castillo, O.: Intelligent Control of a stepping motor drive us-
ing a hybrid neuro-fuzzy ANFIS approach. Applied Soft Computing 3(3), 209–219
(2003)

[3] Astudillo, L., Castillo, O., Aguilar, L.: Intelligent Control of an Autonomous Mobile
Robot Using Type-2 Fuzzy Logic. Engineering Letters 13(2), 93–97 (2006)

[4] Bell, M., Toriu, T., Nakajima, S.: Image-Based Robot Map Building and Path Plan-
ning with an Omnidirectional Camera Using Self-Organising Maps. International
Journal of Innovative Computing, Information and Control, 3845–3852 (2011)

[5] Castillo, O., Melin, P.: New fuzzy-fractal-genetic method for automated mathemati-
cal Modeling and Simulation of Robotic Dynamic Systems. In: IEEE, International
Conference on Fuzzy Systems, vol. 2, pp. 1182–1118 (1998)

[6] Castillo, O., Melin, P.: New fuzzy-fractal-genetic method for automated mathemati-
cal Modeling and Simulation of Robotic Dynamic Systems. In: IEEE, International
Conference on Fuzzy Systems, vol. 2, pp. 1182–1118 (1998)

[7] Coupland, S.: Type-2 Fuzzy Control of a Mobile Robot, PhD Transfer Report, De
Montfort University, UK (2003)

[8] Cupertino, F., Giordano, V., Naso, D., Delfine, L.: Fuzzy control of a mobile robot.
IEEE Robotics & Automation Magazine, 74–81 (2006)

[9] Fate, M.: Robust Voltage Control of Electrical Manipulators in Task-Space. Interna-
tional Journal of Innovative Computing, Information and Control, 2691–2700
(2010)

[10] Ishikawa, S.: A Method of Indoor Mobile Robot Navigation by Fuzzy Control. In:
Proc. Int. Conf. Intell. Robot. Syst., Osaka, Japan, pp. 1013–1018 (1991)

[11] Klir, J., Yuan, G.: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by
Lotfi A. Zadeh. In: Advances in Fuzzy Systems: Application and Theory, vol. 6.
World Scientific Publishing Company (1996)

[12] Kim, C., Lee, K.: Robust Control of Robot Manipulators Using Dynamic Compen-
sators under Parametric Uncertainty. International Journal of Innovative Computing,
Information and Control, 4129–4137 (2011)

96 A. Meléndez and O. Castillo

[13] Leyden, M., Toal, D., Flanagan, C.: A Fuzzy Logic Based Navigation System for a
Mobile Robot. In: Proceedings of Automatisierungs Symposium (1999)

[14] Mamdani, E.: Applications of fuzzy logic to approximate reasoning using linguistic
synthesis. In: Proc. 6th Int. Symp. on Multiple Value Logic, Utah State University,
pp. 196–202 (1976)

[15] Melendez, A., Castillo, O., Soria, J.: Reactive and Tracking Control of a Mobile
Robot in a Distributed Environment Using Fuzzy Logic. In: FUZZ, IEEE Interna-
tional Conference, pp. 1–5 (2010)

[16] Melendez, A., Castillo, O., Melin, P.: Evolutionary Optimization of the Fuzzy Con-
trollers in a Navigation System for a Mobile Robot. International Journal of Innova-
tive Computing, Information and Control (in press)

[17] Meléndez, A., Castillo, O., Soria, J.: Reactive Control of a Mobile Robot in a Dis-
tributed Environment Using Fuzzy Logic. In: Annual Meeting of the North Ameri-
can Fuzzy Information Processing Society, NAFIPS 2008, May 19-22, pp. 1–5
(2008)

[18] Melin, P., Castillo, O.: Intelligent Systems with Interval Type-2 Fuzzy Logic. Inter-
national Journal of Innovative Computing, Information and Control, 771–784
(2008)

[19] Melin, P., Castillo, O.: Intelligent control of aircraft dynamic systems with a new
hybrid neuro-fuzzy fractal approach. Information Sciences 142(1-4), 161–175
(2002)

[20] Melin, P., Castillo, O.: Adaptive Intelligent control of aircraft systems with a hybrid
approach combining neural networks, fuzzy logic and fractal theory. Applied Soft
Computing 3(4), 353–362 (2003)

[21] Pishkenari, H.N., Mahboobi, S.H., Meghdari, A.: On the Optimum Design of Fuzzy
Logic Controller for Trajectory Tracking Using Evolutionary Algorithms. In: 2004
IEEE Conference on Publication Date Cybernetics and Intelligent Systems, vol. 1(1-
3), pp. 660–665 (2004)

[22] Payton, D.W., Rosenblatt, J.K., Keirsey, D.M.: Plan guided reaction. IEEE Transac-
tions on Systems, Man and Cybernetics 20(6), 1370–1382 (1990)

[23] Shafiei, S., Soltanpour, M.: Neural Network Sliding-Mode-PID Controller Design
for Electrically Driven Robot Manipulators. International Journal of Innovative
Computing, Information and Control, 511–524 (2011)

[24] Shafiei, S., Soltanpour, M.: Robust Task-Space Control of Robot Manipulators un-
der Imperfect Transformation of Control Space. International Journal of Innovative
Computing, Information and Control, 3949–3960 (2009)

[25] Thomson, A., Baltes, J.: A path following system for autonomous robots with mi-
nimal computing power. University of Auckland, Private Bag 92019, Auckland,
New Zealand, Technical Report (2001)

[26] Mobile robotics toolbox for Matlab 5 (2001),
http://www.uamt.feec.vutbr.cz/robotics/simulations/
amrt/simrobot_en.html

P. Melin, O. Castillo (Eds.): Soft Computing Appli. in Optimization, STUDFUZZ 294, pp. 97–124.
DOI: 10.1007/978-3-642-35323-9_5 © Springer-Verlag Berlin Heidelberg 2013

Particle Swarm Optimization for
Multi-objective Control Design Using
AT2-FLC in FPGA Device

Yazmin Maldonado, Oscar Castillo, and Patricia Melin

Tijuana Institute of Technology, Calzada Tecnológico S/N, Tijuana, México
ocastillo@hafsamx.org

Abstract. This research proposes the design, simulation and implementation of
the optimization of type-2 membership functions for the Average Approximation
of an Interval of Type-2 Fuzzy Logic Controller (AT2-FLC) using bio-inspired
algorithms, such as Particle Swarm Optimization (PSO). The optimization only
considers certain points of the membership functions, the fuzzy rules are not mod-
ified, so that the algorithm minimizes the runtime. Based on the concept of swarm
intelligence, PSO is applied to membership functions parameter optimization of
the AT2-FLC. Implementations and simulations are carried out on the FPGA de-
vice using the Xilinx System Generator. The optimization method was coded in
Matlab. Comparisons were made between simulation and implementation of the
AT2-FLC, to regulate the velocity of a DC motor. We compared the results of the
AT2-FLC under uncertainty and the results are discussed. Experiments were per-
formed by changing the number of bits for encoding the AT2-FLC in VHDL.

The main contribution of this research is the design, simulation and implemen-
tation of PSO of the AT2-FLC for real applications in FPGA. The AT2-FLC is
targeted to a Xilinx Spartan 3AN XC3S700A device using Xilinx Foundation
Environment.

Keywords: AT2-FIS, AT2-FLC, PSO, VHDL, FPGA, ReSDCM.

1 Introduction

Nowadays the use of fuzzy logic controllers is more common, because of the way
of processing information, primarily in type-2 fuzzy logic controllers because they
manage uncertainty and they are considered to be robust when compared with
others [1].

98 Y. Maldonado, O. Castillo, and P. Melin

The use of optimization strategies applied to type-2 fuzzy logic controllers,
such as genetic algorithms, particle swarm optimization, among others, make them
more attractive [4].

With the optimization of the type-2 fuzzy systems arises the problem of
processing time, which can be solved by processing in parallel, but in a physical
implementation in particular this problem is not solved. For this reason we pro-
pose the optimization of type-2 fuzzy systems with bio-inspired or genetic algo-
rithms for applications in FPGAs, the latter processed in parallel and speed is
higher when compared to other electronic devices.

Fuzzy inference systems are based on rules, these rules incorporate linguistic
variables, linguistic terms and fuzzy rules. The acquisition of rules is not an easy
task for the expert and is of vital importance in the operation of the controller. The
process of adjusting these linguistic terms and rules is usually done by trial and er-
ror, which implies a difficult task, and for this reason there have been methods
proposed to optimize those elements that over time have taken importance, such as
particle swarm optimization [5].

Most of the fuzzy logic applications with physical systems require a real time
operation, the simple way to implement these systems is to realize them as soft-
ware programs on a personal computer or higher density programmable logic de-
vices, such as the field programmable gate array (FPGA).

The research of different optimization techniques for type-2 fuzzy systems have
increased, however there is the problem of runtime, and the runtime decreases
when the implementation is processed in parallel, as in the FPGA. There are some
works related to the optimization of a particular problem [13][14].

This paper explains the design of T2-MFs optimization of the AT2-FLC for
regulation speed of a DC motor (ReSDCM) in FPGA, based on an a-verage ap-
proximation of interval type-2 fuzzy systems method [9]. The main goal of this
paper is to compare the results (average errors, runtime and resolution for number
of bits) of the AT2-FLC optimized with PSO.

The proposed methodology is to synthesize the AT2-FLC in FPGA. The opti-
mization of the T2-MFs takes place outside the FPGA, i.e. on a PC via serial port,
the optimized parameters of the T2-MFs are sent to the FPGA, this with the idea
that once the AT2-FLC was optimized, the optimization process is disconnected
from the PC and the AT2-FLC is ready for use.

Figure 1 shows the methodology diagram used for the optimization of the T2-
MFs for the AT2-FIS in the FPGA.

This paper is organized as follows. In section 2 we present an introduction to
type-2 FISs, FPGA and the PSO method, in section 3 we present the description of
the problem, in this case regulation of speed of the DC motor in VHDL for FPGA.
The AT2-FIS in VHDL code is present in section 4. The design of the PSO me-
thod for the AT2-FLC for ReSDCM in shown in section 5, the T2-MFs optimiza-
tion results for AT2-FLC in XSG versus T2- MFs optimization results for
AT2-FLC in FPGA device are shown in section 6, and finally section 7 offers
conclusions about this work.

PSO for Multi-objective Control Design Using AT2-FLC in FPGA Device 99

Fig. 1 Methodology used for PSO of the AT2-FLC for ReSDCM

2 Type-2 Fuzzy Inference Systems and Optimization Method

Fuzzy systems are being used more frequently, because they tolerate imprecise in-
formation and can be used to model nonlinear functions of arbitrary complexity
[1-3]. T1-FIS have exact membership functions, while interval type-2 fuzzy sys-
tems (IT2-FIS) are described by membership functions with uncertainty [8][11].
The uncertainty in a fuzzy system can occur when:

• There is uncertainty in the words that are used in the rules.
• Uncertainty about the consequent to be used with a rule.
• Uncertainty about the measurements that activate a fuzzy system.
• Uncertainty about the data that are used to tune the parameters of a fuzzy

system.

For example, the knowledge that is often used to create fuzzy rules is uncertain,
this uncertainty leads to rules whose antecedents or consequents are uncertain,
which translates into uncertainty in the membership functions.

The interval type-2 fuzzy inference systems (IT2-FIS) consist of four stages:
Fuzzification, Inference, Type Reduction and Defuzzification.

The fuzzification stage maps a numeric value XXXX p
T

p ≡××∈××=× ...)...(211
,

into a type-2 fuzzy set
xA~ in X, where

xA~ is a singleton fuzzy set, if 1/1)(~ =×
xAμ for

'×=× and 0/1)(~ =×
xAμ for all others '×≠× [12].

The inference stage consists of two blocks, the rules and the inference engine; it
works the same way as for type-1 fuzzy systems, except the antecedent fuzzy sets
and the consequent are represented by type-2 fuzzy sets. The process consists of

100 Y. Maldonado, O. Castillo, and P. Melin

combining the rules and maps the input to the output (interval type-2 fuzzy sets),
using the Join and Meet operations [11]. For an IT2-FIS with p inputs

pp XxXxXx ∈∈∈ ,...,, 2211
 and one output Yy∈ , it is assumed that there are M rules, the

lth rule in an IT2-FIS and can be written as:

R1: If x1 is and lF1
~ and…and xp is l

pF~ , Then y is lG~ (1)

where l=1,…,M. Once we have the rules, it is necessary to calculate the operations
Join(ц) and Meet(п) as well as sup-star composition ()[12].

The type reductor stage is used to convert all type- 2 fuzzy sets to type-1 fuzzy
intervals on the output. There are several methods to calculate the reduced set,
such as the joint center, center of sums, height, among others.

The Defuzzification stage consists in obtaining a numeric value for the output.
Using the COS type reductor, the defuzzification is an average value since the
range is given by [yl,yr] [12].

Fig. 2 T2-MFs using AT2-FIS method

PSO for Multi-objective Control Design Using AT2-FLC in FPGA Device 101

In the method of average approximation of an interval type-2 fuzzy system
(AT2-FIS), the AT2-FIS is replaced by a type-2 fuzzy system using the average of
two T1-FIS, this method [14] is performed as follows:

1. Replace each T2-MF with two T1-MFs using different degrees of
membership in order to obtain the footprint of uncertainty. Figure 2 shows this
process.

2. To replace the type-2 inference stage, the inference from each T1-FIS must
be obtained.

3. To replace the type-reduction system and defuzzification stage of the IT2-
FIS, we obtain the defuzzification of each T1-FIS and the results of the two
systems are averaged.

An IT2-FIS and AT2-FIS can be implemented on a general purpose computer, or
by a specific use of a microelectronics realization such as the FPGA. In this work
we use the AT2-FIS for FPGA synthesis. Figure 3 shows the block diagram of the
AT2-FIS.

Fig. 3 Average approximation of an interval type-2 fuzzy system

A FPGA is a semiconductor device that contains in its interior components such
as gates, multiplexers, etc. These are interconnected with each other, according to
a given particular design. These devices use the VHDL programming language,
which is an acronym that represents the combination of VHSIC (Very High Speed
Integrated Circuit) and HDL (Hardware Description Language).

102 Y. Maldonado, O. Castillo, and P. Melin

The design of a FPGA implementation is done by specifying the logic function
to develop, either by a CAD (computer aided design) or through a hardware de-
scription language. Having defined the function to perform, the design is trans-
ferred to the FPGA.

This process consists in programming the configurable logic blocks (CLBs) to
perform a specific function (there are thousands of configurable logic blocks in the
FPGA). The configuration of these blocks and their interconnections are the
reasons why it can achieve very complex designs. The interconnections enable
connecting the CLBs. Finally, it has configuration memory cells (CMC, Configura-
tion Memory Cell) distributed throughout the chip, which store all information ne-
cessary for programming of the programmable elements mentioned. These cells
usually consist of a configuration RAM and are initialized in the process of loading
of the configuration. The programmable elements of an FPGA are: Configurable
Logic Blocks (CLBs), In/Out Blocks (IOBs) and Programmable Interconnection
(by fuse technology and be of OTP and by antifuses or by type SRAM cells).

Figure 4 shows the basic elements of a FPGA.

Fig. 4 FPGA basic elements

The FPGAs can be used to implement specific architectures to accelerate a par-
ticular algorithm. Applications that require a great number of simple operations
are suitable for implementation on FPGAs.

PSO for Multi-objective Control Design Using AT2-FLC in FPGA Device 103

FPGAs have been increasingly applied to high performance embedded systems

because FPGAs are configured after fabrication and they also can be reconfigured.
This is done with HDL, which is compiled to a bit stream and download to the
FPGA device.

A processing element can be designed to perform this operation and several in-
stances of it can be used to perform parallel processing [6][10].

The easiest way to get a design of a type-2 fuzzy system is to use software, the
problem arises when you have a particular application and the response is not the
best, this is when there is the need to optimize the original design. There are many
optimization methods [5][9], such as particle swarm optimization.

Particle Swarm Optimization (PSO) is a bio-inspired optimization method. PSO
finds the optimal solution by simulating social behavior. PSO is developed
through simulation of birds that come in two-dimensional space, each particle has
position and speed.

A PSO algorithm maintains a swarm of particles, where each particle represents
a possible solution. In analogy with the paradigms of evolutionary computation,
the particles are transported through a multidimensional search space, where the
position of each particle is adjusted according to their experience and of their
neighbors, xi (t) represents the position of particle i in the search space at time t, t
denotes the discrete time. The position of the particle is modified by the addition
of a velocity vi(t), i.e. the current position [5], Equation 2 shows the position of the
particle.

)1()()1(++=+ tvtxtx iii (2)

where xi(0) ~ U(xmin, xmax). The velocity vector reflects both the experimental
knowledge of the particle and the exchanged social information. The experimental
knowledge of a particle is often referred to as the cognitive component, which is
proportional to the distance of the particle from its best position (referred to as the
best personal position of the particle) found from the beginning.

PSO can be described as follows, each swarm knows the best position of the
particle (Plbest) and the best global position of the swarm (Pgbest). The speed of
each particle can be calculated using the Equation 3 [5].

where vij (t) is the velocity of the particle i from j = 1, ..., nx at time t, xij (t) is the
position of particle i in dimension j at time t, c1 and c2 are the positives constants
acceleration used for cognitive and social components respectively, r1j(t), r2j(t) ~
U(0,1), which are random values in the range [0,1]. These random values in the
algorithm introduce stochastic elements. yij is the Plbest, is associated with the
particle i, is the best position of the particle, is the best global position of the par-
ticle swarm Pgbest.

3 Description of the Problem

This paper proposes the T2-MF optimization with the PSO method for the AT2-
FIS codified to VHDL for FPGA. To validate the optimized AT2-FIS we applied

[] [])()(ˆ)()()()()()1(2211 txtytrctxtytrctvtv ijjjijijjijij −+−+=+ (3)

104 Y. Maldonado, O. Castillo, and P. Melin

Fig. 5 AT2-FLC for ReSDCM

the proposed approach to a real problem, which is the regulation of speed of a DC
motor (ReSDCM). Figure 5 shows the AT2-FLC for ReSDCM.

In Figure 3 the AT2-FLC [7] has the following inputs, error (e(t)) and change of
error (e'(t)), and the output is the control signal (y(t)), the control objective AT2-
FLC is:

0lim)()(=−
∞→ tt

t
ry (4)

where t is the sampling time.
The inputs are calculated as follows:

e(t)= r(t) – y(t) (5)

e’(t)= e(t) – e(t-1) (6)

The reference signal r(t), is given by [0,70] revolutions per minute (rpm).
The uncertainty block represents an external perturbation, the goal is to disrupt

the AT2-FLC and then the AT2-FLC is expected to retrieve its desired path. The
uncertainty block is represented by:

randnxyy tt *ˆ)()(+= (7)

where x is the uncertainty level factor [0,1].

4 AT2-FIS Design in VHDL Code

For the design for AT2-FIS in VHDL the average approximation for interval
type-2 fuzzy systems was used [14]. The AT2-FIS has four stages, which are fuz-
zification, inference, defuzzification and average. Figure 6 shows the AT2-FIS
implementation.

PSO for Multi-objective Control Design Using AT2-FLC in FPGA Device 105

Fig. 6 AT2-FIS diagram for FPGA

106 Y. Maldonado, O. Castillo, and P. Melin

The AT2-FIS has three common inputs for each stage (ce, clk and rst).
The clock enable (ce) input, to simulate VHDL code in XSG, all blocks should
have this input. Clk input is a clock for FPGA, we used Spartan 3AN with clock
chip is 50 MHz. Reset (rst) input is a reset for all stages of the AT2-FIS. Below
the explanation of the stages of AT2-FIS is given.

4.1 Fuzzification

We present an algorithm that works with the calculation of the slopes of the trian-
gular and trapezoidal MFs. The main advantages of this algorithm is that it works
for symmetrical and non symmetrical T2-MFs, the value of the slope is calculated
on line, therefore it is possible to optimize the T2-MF using this method because
most of the time in the optimization of membership functions not symmetrical T2-
MFs are obtained. A disadvantage of our algorithm is that it only considers mem-
bership functions of triangular and trapezoidal form.

The procedure of the algorithm is summarized in three steps: calculate the slope
values, calculate the degree values of the membership functions and send to the
inference stage the membership degrees and the linguistic terms.

The fuzzification stage algorithm calculates the value of the membership de-
gree with the equation of the line y = mx + b, where m is the slope of the line and b
is the y intercept of the graph of the line.

The fuzzification stage is discretized in bits selected by the user, i.e. the number
of bits is adjustable to the characteristics required by the problem to solve.

For the AT1-FIS, the fuzzification stage has inputs such as error (e = x1) and
change of error (de = x2), each with three membership functions (Negative Big
(NB=”01”), Zero (Z=”10”), Positive Big (PB=”11”)), two trapezoidal MFs and
one triangular MF.

The universe of discourse as the degree of membership are designed for 8 bits,
however, simply change one variable in the VHDL code to increase or decrease
the number of bits.

The Fuzzification stage has outputs such as degree and linguistic terms for the
error input (g e1, g e2, g e3, e1, e2, e3) and the change of error input (g de1, g de2,
g de3, de1, de2, de3).

The Fuzzification stage has two outputs, μx is the membership degree and Lx is
the linguistic tag, these outputs are sent to directly to the inference stage.

4.2 Inference

The inference stage receives the data sent from the fuzzification stage, which are
labels and the membership degrees of each input are: g_e1, g_e2, g_e3, e1, e2, e3,
g_de1, g_de2, g_de3, de1, de2, de3, so that multiplexes labels and evaluates the
rule base and this is illustrated in Table 1.

An example of rules using this codification is: If e is “PB” and de is “Z” then C
(consequent) is BI. For each of these rules the max-min operation is calculated of
labels (c1, c2, c3, c4, c5, c6, c7, c8, c9) and the firing forces (gc1, gc2, gc3, gc4,
gc5, gc6, gc7, gc8, gc9) are sent to the defuzzification stage.

PSO for Multi-objective Control Design Using AT2-FLC in FPGA Device 107

Table 1 Rule Matriz

We have nine labels (c1, c2, c3, c4, c5, c6, c7, c8, c9) and nine firing forces
(gc1, gc2, gc3, gc4, gc5, gc6, gc7, gc8, gc9) because we have three T1-MFs for
each input and output. Figure 7 shows the inference stage process.

4.3 Defuzzification

The Defuzzification stage is calculated using the Height´s method as shown in
Equation 8 [16].

 (8)

where C is the consequent (firing forces) and o is the consequent tags (labels).
Once the consequent is calculated using Equation 8 the defuzzification stage sends
the crisp value to the output.

4.4 Average

The average stage receives the interval defined by yl and yr, later to calculate the
crisp value with an average. Equation 9 computes the crisp value.

2)(
rl

x

yy
y

+= (9)

Figure 7 shows the AT2-FIS architecture in VHDL for FPGA.
In our algorithm for the fuzzification stage, y is the degree of membership (μx),

Count is a counter, which identifies the linguistic tag (Lx, which is stored in a reg-
ister) and the slope (m), if the account number is pair then the slope is negative, if
the account number is odd then the slope is positive.

The inference stages receive the membership degrees (ge and gde) and linguis-
tic labels (e and de) and using the min operation calculates the for-ces firing (gc)
and consequents (c).

=

==
n

m
m

n

m
mm

x

o

oC

y

1

1
)(

108 Y. Maldonado, O. Castillo, and P. Melin

Fig. 7 AT2-FIS architecture in VHDL for FPGA

The four stages are targeted on a FPGA Xilinx Spartan 3AN XC3S700A de-
vice. Table 2 shows the device utilization summary for these stage, and we can see
that after having synthesized in VHDL the AT2-FIS there is space that is available
on the FPGA.

Table 2 Device utilization summary for the Fuzzification (F), Inference (I) and Defuzzifi-
cation (D) stages

Logic
Utilization

 Used Available Utilization (%)

 F I D F I D F I D
No. of 4 In-
put LUTs

5234 181 104 15360 15360 15360 34 1 0

No. of
Bonded IOBs

155 153 2057 173 173 15360 99 88 13

5 Particle Swarm Optimization for T2-MFs of the Average
Approximation of an Interval Type-2 Fuzzy Inference System

We optimized the type-2 membership functions (T2-MFs) of the AT2-FIS with
PSO. Figure 8 shows the triangular and trapezoidal T2-MFs that are used.

)(xμ

x
ua0

1a
2a

ua3

la0 la3

ub0

1b

ub2

)(xμ

xlb0 lb2

a) b)

Fig. 8 Triangular and trapezoidal T2-MFs parameters

PSO for Multi-objective Control Design Using AT2-FLC in FPGA Device 109

Fig. 9 Inputs and output of the AT2-FIS design

The design of the AT2-FIS only considers triangular and trapezoidal T2-MFs
for each input and output, and Figure 9 shows the inputs and output design.

Figure 9 shows the design of the inputs and output T2-MFs of the AT2-FLC
with fixed and variable parameters, where the universe of discourse and the degree
of membership are divided into 8 bits (for example, as already mentioned this
number may be changed, if n is 8 bits). The blue points are fixed, the red dots
represent the parameter a2, the green dots are fixed (b1) and the yellow dots
represent the parameter a1.

The T2-MFs parameters for each and output are moved by the optimization me-
thod according to Table 3.

In Table 3, U corresponds to the ranges of the upper T2-MF and L correspond
to the ranges of the lower T2-MF. The conditions of the T2-MF lower boundary
are very important because if we are not cautions about the T2-MF low boundary
it can be converted to the T2-MF high boundary and vice versa.

For example, if n=8 bits, the a2U parameter should be within the range of 0 −
128, if we consider that is 100, then the a2L parameter must be greater than 100
and less than 128, these conditions are necessary to achieve the upper and lower
values of the T2-MF.

Table 3 Boundary T2-MFs parameters

 Input 1 Input 2 Output

Upper T2-MFs
Parameters

First T2-FM

a0U = a1U = 0
0 < a2U < n/2

a3U = n/2

First T2-FM

a0U = a1U = 0
0 < a2U < n/2

a3U = n/2

First T2-FM

a0U = a1U = 0
0 < a2U < n/2

a3U = n/2
Second T2-MF

0 < b0U < n/2
b1U = n/2

n/2 < b2U < n

Second T2-MF
0 < b0U < n/2

b1U = n/2
n/2 < b2U < n

Second T2-MF
0 < b0U < n/2

b1U = n/2
n/2 < b2U < n

Third T2-MF
a0U = n/2

n/2< a1U < n
a2U = a3U = n

Third T2-MF
a0U = n/2

n/2< a1U < n
a2U = a3U = n

Third T2-MF
a0U = n/2

n/2< a1U < n
a2U = a3U = n

110 Y. Maldonado, O. Castillo, and P. Melin

Table 3 (continued)

Lower T2-MFs
Parameters

First T2-FM
a0L = a1L =0

a2U < a2L < n/2
a3L = n/2

First T2-FM
a0L = a1L =0

a2U < a2L < n/2
a3L = n/2

First T2-FM
a0L = a1L =0

a2U < a2L < n/2
a3L = n/2

Second T2-FM
b0U < b0L < n/2

b1L = n/2

b2U > b2L < n

Second T2-FM
b0U < b0L < n/2

b1L = n/2

b2U > b2L < n

Second T2-FM
b0U < b0L < n/2

b1L = n/2

b2U > b2L < n
Third T2-FM

a0L = n/2
a1U < a1L < n
a2L = a3L = n

Third T2-FM
a0L = n/2

a1U < a1L < n
a2L = a3L = n

Third T2-FM
a0L = n/2

a1U < a1L < n
a2L = a3L = n

The PSO design only moves 24 parameters of the 66 parameters to optimize, of
which 8 parameters are for each input and output (a2U, a2L, b0U, b0L, b2U, b2L, a1U
and a1L) the remaining 42 parameters are fixed and therefore these are not consi-
dered for the particle design.

In reaching this conclusion we conducted several experiments to test that with
only the optimization of 24 points it was sufficient for a better response in the
AT2-FLC in a lesser runtime.

After designing the AT2-FLC and taking into account their characteristics we
arrived to the conclusion that the PSO algorithm is of a multiobjective type [9],
because they are based on evaluating three characteristics, minimum steady state
error, minimum overshoot and minimum undershoot, and these three characteris-
tics help us to determine the best AT2-FLC solution.

The minimum overshoot is given by Equation 10.

 (10)

The minimum undershoot is given by Equation 11.

(11)

The minimum output of steady state error (sse) is given by Equation 12.

(12)

where y(t) is the output of the system and r(t) is reference. The three objective func-
tions are evaluated for fitness evaluation.

For the optimization of the T2-MFs using PSO, we need to define the number
of particles in the swarm, the calculation of the position and the initial and final
velocity, given by Equations 2 and 3. The PSO process starts by generating the
initial swarm with 10 particles, and these particles are evaluated once for initial

)()(1)()()min(tttt ryoryif −=→>

)()(2)min(tt ryo −=

=

−=
1000

201
)()(

t
tt rysse

PSO for Multi-objective Control Design Using AT2-FLC in FPGA Device 111

selection of the best global particle (Pgbest) and best local particle (Plbest). If a
better particle is found, the T2-MF parameters are sent to the AT2-FLC into the
FPGA, if a better particle is not found then each one is again updated by equations
for the position and velocity of the particle. Then the T2-MF parameters are down-
loaded to AT2-FLC in the FPGA, if it meets the convergence criteria (iterations
number) then the cycle ends, if the optimization cycle is not fulfilled the particle
swarm is evaluated by selecting the Pgbest and Plbest until the of end the cycle of
optimization.

Figure 10 shows the PSO process for the AT2-FLC.

Fig. 10 T2-MFs optimization with PSO for the AT2-FLC for ReSDCM

The initial particles are created randomly respecting the ranges of the T2-MFs
in Table 3. The particle swarm optimization fits the parameters of the T2-MFs in
order to find the best AT2-FLC for ReSDCM using Equation 8, Equation 9 and
Equation 10, which are evaluated in the simulation/implementation of the FPGA
block of Figure 10, and for all experiments 10 particles are used.

112 Y. Maldonado, O. Castillo, and P. Melin

6 Results of Average Approximation of the Interval Type-2
Fuzzy Logic Controller for FPGA and Their Optimization

To demonstrate the performance of the T2-MFs optimization for the AT2-FLC for
ReSDCM in FPGA implementation, we considered two main experiments: T2-
MFs with PSO for the AT2-FLC for ReSDCM using XSG, and T2-MFs with PSO
for the AT2-FLC for ReSDCM in the FPGA device.

Several experiments were performed to find the best AT2-FLC optimized with
PSO. The main idea is to achieve a comparison of the results obtained with PSO
using XSG and PSO using FPGA device for the T2-MFs in an AT2-FLC for
ReSDCM.

6.1 Results for T2-MFs Parameters with PSO for AT2-FLC
Using XSG

Experiments were conducted for the T2-MFs with PSO using an AT2-FLC for
ReSDCM in simulation environment using Simulink and XSG, the latter to simu-
late the AT2-FIS synthesizable VHDL code for FPGA.

Table 4 shows some results obtained for the T2-MFs with PSO, each experi-
ment is an AT2-FLC with different T2-MFs parameters. Based on previous
experience we changed the c1 and c2 parameters, which are used to calculate the
velocity of each particle of the swarm, the number of iterations varies between 30
and 40, the calculated error is the average error, the time shown is the runtime of
the optimization, and each of the experiments was carried out with 10 particles.

Table 4 Results for the T2-MFs with PSO for AT2-FLC using XSG

No. Iteration
Number

C1 C2 Average
Error

Time(min)

1 30 0.3 0.2 0.2175 26.5080

2 35 0.3 0.2 0.1947 30.1500

3 30 0.3 0.3 0.1785 26.8491

4 30 0.3 0.3 0.1785 37.3229

5 30 0.3 0.2 0.1684 35.3005

6 30 0.3 0.15 0.1598 28.0082

7 30 0.3 0.2 0.1684 18.4350

8 40 0.3 0.25 0.1570 18.9340

9 40 0.3 0.25 0.2015 22.6246

10 32 0.3 0.25 0.0872 28.4346

11 30 0.3 0.25 0.2034 22.3819
12 30 0.5 0.3 0.2015 10.1622

13 30 0.4 0.3 0.1560 18.7199

PSO for Multi-objective Control Design Using AT2-FLC in FPGA Device 113

Table 4 (continued)

14 30 0.25 0.2 0.2175 26.3258
15 30 0.3 0.25 0.0742 16.9798

16 30 0.3 0.25 0.1161 16.8035
17 30 0.29 0.25 0.0912 17.5950
18 40 0.305 0.25 0.0390 21.7936

19 30 0.28 0.25 0.0921 17.7113

For this set of experiments the best AT2-FLC was obtained the experiment

No.18, because it has a lower average error.
Figure 11 shows the T2-MFs of the error input for experiment No. 18.

Fig. 11 T2-MFs for error input of the AT2-FIS for ReSDCM for experiment No. 18 using
XSG

Figure 12 shows the T2-MFs of the change of error input for experiment No. 18.

Fig. 12 T2-MFs for change of error input of the AT2-FIS for ReSDCM for experiment No.
18 using XSG

114 Y. Maldonado, O. Castillo, and P. Melin

Figure 13 shows the T2-MFs of the output for experiment No. 18.

Fig. 13 T2-MFs for output of the AT2-FIS for ReSDCM for experiment No. 18 using XSG

Figure 14 shows the speed of the DC motor at 30 rpm for experiment No. 18.

Fig. 14 Speed of the DC motor at 30 rpm for experiment No. 18 using XSG

PSO for Multi-objective Control Design Using AT2-FLC in FPGA Device 115

Figure 15 shows the convergence error of the PSO for experiment No. 18.

Fig. 15 Convergence error of the PSO for experiment No. 18 using XSG

The average error for the AT2-FLC in XSG with PSO is 0.39 and the runtime is
21.79 minutes.

Table 5 shows the comparison of results for the AT2-FLC (Experiment No.3)
adding different levels of uncertainty.

Table 5 AT2-FLC in XSG optimized with PSO with some level of uncertainty

No. Uncertainty level
(x)

Average
Error

1 0 0.0390

2 0.001 0.0366

3 0.005 0.0314

4 0.008 0.0314

5 0.05 0.0930

6 0.08 0.0924

7 0.1 0.1044

8 0.5 0.9946

9 0.8 1.1742

The idea of applying uncertainty to the AT2-FLC is to check its robustness of
this controller. Figure 16 shows the speed of DC motor for AT2-FLC optimized
with PSO for some level of uncertainty (x=0.001).

116 Y. Maldonado, O. Castillo, and P. Melin

Fig. 16 AT2-FLC optimized with PSO at 30 rpm for some level of uncertainty

In the next section, the comparisons of results between XSG and FPGA device
are shown.

6.2 Results for T2-MFs Parameters with PSO for AT2-FLC
Using the FPGA Device

Different experiments were performed for the T2-MFs with PSO for the AT2-FLC
using the FPGA device.

Table 6 shows the different results, each with different characteristics for the C1
and C2 constants and it shows the average error and runtime of the PSO.

Table 6 Results for the T2-MF with PSO for AT2-FLC using FPGA device

No. Iteration
Number

C1 C2 Average
Error

Time(min)

1 30 0.19 0.19 0.6744 94.6352

2 30 0.15 0.15 1.1352 171.9780

3 30 0.2 0.2 0.5955 92.3928

4 30 0.2 0.2 1.8481 100.2600

5 30 0.21 0.21 0.8050 92.3712

6 30 0.25 0.2 1.1345 92.5114

7 30 0.25 0.25 1.5162 100.1839

8 30 0.2 0.19 0.6786 92.2988

9 30 0.2 0.19 1.1669 92.5059

10 30 0.1 0.1 1.0780 72.7945

PSO for Multi-objective Control Design Using AT2-FLC in FPGA Device 117

Table 6 (continued)

11 30 0.1 0.1 1.0224 173.1366
12 30 0.2 0.3 1.5601 98.2220

13 30 0.1 0.09 1.3637 104.2218
14 30 0.1 0.09 0.9950 161.7849
15 30 0.1 0.09 1.1246 88.7282

16 30 0.1 0.08 0.9102 104.0216
17 30 0.09 0.09 0.6164 115.9914
18 30 0.09 0.09 1.3634 172.9863

19 30 0.09 0.08 1.2134 132.1412

For this set of experiments the best AT2-FLC was obtained for experiment No.

3, because it has a lower average error.
Figure 17 shows the T2-MFs of the error input for experiment No. 3.

Fig. 17 T2-MFs for error input of the AT2-FIS for ReSDCM for experiment No. 3 using
FPGA device

Figure 18 shows the T2-MFs of the change of error input for experiment No. 3.

Fig. 18 T2-MFs for change of error input of the AT2-FIS for ReSDCM for experiment No.
3 using FPGA device

118 Y. Maldonado, O. Castillo, and P. Melin

Figure 19 shows the T2-MFs of the output for experiment No. 3.

Fig. 19 T2-MFs for output of the AT2-FIS for ReSDCM for experiment No. 3 using the
FPGA device

Figure 20 shows the speed of the DC motor (30 rpm) for the AT2-FLC of ex-
periment No. 3.

Fig. 20 Speed of the DC motor at 40 rpm for experiment No.3

PSO for Multi-objective Control Design Using AT2-FLC in FPGA Device 119

Figure 21 shows the convergence error of the PSO for experiment No. 3.

Fig. 21 Convergence error of the PSO for experiment No. 3 using FPGA device

Table 6 shows that the best AT2-FLC was that of experiment No.3 with 30
generations in 92.3928 minutes with 0.5955 of average error.

The best AT2- FLC optimized with PSO (Experiment No.3) was presented. The
main objective is to apply uncertainty (Equation 7) to AT2-FLC for ReSDCM, in
this case we are making comparisons for a desired speed of 40 rpm.

Table 7 shows the comparison of the AT2-FLC (Experiment No.3) adding dif-
ferent levels of uncertainty.

Table 7 Comparison with different levels of uncertainty of the best AT2-FLC in FPGA
optimized with PSO

No. Uncertainty level
(x)

Average
Error

1 0 0.5955

2 0.001 0.6940
3 0.005 0.7905

4 0.008 0.8386

5 0.05 0.7785
6 0.08 0.7972

7 0.1 0.9673

8 0.5 1.1724

9 0.8 1.3158

10 1 1.6142

120 Y. Maldonado, O. Castillo, and P. Melin

The idea of applying uncertainty to the AT2-FLC is to check its robustness of
this controller. Figure 22 shows the speed of DC motor for AT2-FLC optimized
with PSO for different levels of uncertainty.

Fig. 22 AT2-FLC optimized with PSO at 40 rpm for different levels of uncertainty

Figure 23 shows a graphical comparison of the average errors of the AT2-FLC
(in the FPGA device) optimization using the PSO in 19 different experiments.

Fig. 23 Average errors for the PSO method for AT2-FLC

In Figure 23, we calculated the mean of average error for all experiments; in
this case, the PSO method has an average error of 1.0948.

PSO for Multi-objective Control Design Using AT2-FLC in FPGA Device 121

Figure 24 shows a graphical comparison of the runtime of the AT2-FLC (in
FPGA device) optimization using the PSO in 19 different experiments.

Fig. 24 Runtime for the PSO method for AT2-FLC

Of the runtime of the PSO obtained in Figure 24, we calculated the mean of the
runtime; in this case, the PSO method has a runtime of 113.3244 min.

Now the results obtained for different codifications (number of bits) of the
AT2-FLC in FPGA device are also shown. The idea is to compare the results ob-
tained by changing the number of bits for encoding the AT2-FLC in VHDL code
for FPGA device.

Experiments were conducted with different resolutions of the VHDL codifica-
tion for AT2-FLC with PSO optimization, in this case we use 8, 10, 14, 16, 20 and
24 bits.

Experiments were conducted with different resolutions of the VHDL codifica-
tion for AT2-FLC optimized with PSO, in this case we use 8, 10, 14, 16, 20 and
24 bits. Table 8 shows the results obtained of the AT2-FLC (in FPGA device)
with PSO for ReSDCM at 30 rpm for different number of bits.

Table 8 Comparison of the best AT2-FLC optimized with PSO for different number of bits

Resolution (Bits) Average Error
8 0.5955

10 0.3976
14 0.1917
16 0.1917
20 0.1917
24 0.1917

122 Y. Maldonado, O. Castillo, and P. Melin

In Table 8 we can notice that after 14 bits, the average error does not change,
this is because the AT2-FLC performed operations with floating point and it is
likely that after a certain number of bits some data can not be considered.

Figure 25 shows the comparison of the speed of the DC motor for different
numbers of bits.

Fig. 25 Comparison of the speed DC motor for different number of bits

Figure 26(a) and Figure 26(b) show a zoom to observe the difference between
speeds DC motor with different resolution for AT2-FLC at 30 rpm. In Figure
26(b), we notice the speed DC motor for 8 bits and 24 bits, other speeds are not
appreciated because they have that the same average error as the speed of the DC
motor for 24 bits.

(a) (b)

Fig. 26 Comparison of the speed DC motor for different number of bits

PSO for Multi-objective Control Design Using AT2-FLC in FPGA Device 123

In Figure 26(b) we have a close-up to get a better view of the behavior of the
speeds, we note that the speed of the DC motor for 8 bits has a lower time delay
compared to the others, however the others speeds of the DC motor have a lower
average.

7 Conclusions

In this paper, an average approximation of an interval type-2 fuzzy system was
designed and the hardware implementation was proposed, in this case to be
implemented into a FPGA.

The T2-MFs parameters were optimized with PSO, the optimization takes place
outside the FPGA, because once the AT2-FLC for ReSDCM was optimized, it not
needed to re-optimize it, unless this one fails in the system or change the initial
conditions. The objective function of the PSO considers three characteristics:
overshoot, undershoot and steady state error.

Our goal is to achieve an optimized AT2-FLC in a small runtime, and for this
reason the fuzzy rules are not changed and we propose an optimization for T2-
MFs where only some of these parameters are modified.

Due to the fact that our AT2-FLC has the feature that the user selects the num-
ber of bits which encode the controllers, various experiments were conducted de-
monstrating that an 8 bits parallel implementation of the algorithm is capable of
provide real time operation for this hardware platform. However we make com-
parisons for different number of bits for VHDL, reaching the conclusion for our
particular application, which is the regulation speed of the DC motor, the use of 14
bits is the best option because the error decreases in a 32.19 percentage compared
with the 8 bits initially used in the implementation. For all experiments, it was
considered the common goal of controlling the speed of the DC motor in a FPGA.

An AT2-FLC implementation based on a Xilinx Spartan 3AN FPGA was pro-
posed. We have shown the device utilization for FPGA, these results are encour-
aging because they allows us to introduce more T2-MFs and fuzzy rules, in other
words, a more complex AT2-FLC to obtain a better result, but this would increase
the runtime.

References

[1] Castillo, O.: Interval Type-2 Fuzzy Logic for Control Applications. In: IEEE Inter-
national Conference on Granular Computing, pp. 79–84 (2010)

[2] Castillo, O.: Interval Type-2 Mamdani Fuzzy Systems for Intelligent Control. In:
Trillas, E., Bonissone, P.P., Magdalena, L., Kacprzyk, J. (eds.) Combining Experi-
mentation and Theory. STUDFUZZ, vol. 271, pp. 163–178. Springer, Heidelberg
(2011)

[3] Castillo, O.: Type-2 Fuzzy Logic in Intelligent Control Applications. STUDFUZZ,
vol. 272. Springer, Heidelberg (2012)

[4] Castillo, O., Melin, P.: Optimization of Type-2 Fuzzy Systems Based on Bio-
Inspired Methods: A Concise Review. Information Sciences 205(1), 1–19 (2012)

124 Y. Maldonado, O. Castillo, and P. Melin

[5] Clerk, M.: Particle Swarm Optimization. ISTE Ltd. (2006)
[6] Gutierrez-Rios, J., Brox, P., Fernandez-Hernandez, F., Baturone, I., Sanchez-

Solano, A.: Fuzzy Motion Adaptive Algorithm and its Hardware Implementation for
Video de-interlacing. Applied Soft Computing 11, 3311–3320 (2011)

[7] Jantzen, J.: Tunning of Fuzzy PID Controllers, Technical University of Denmark,
Department of Automation, pp. 1–22 (1998)

[8] Klir, G.J., Mark, J.W.: Uncertainty Based Information: Elements of Generalized
Information Theory. Physica-Verlag (1999)

[9] Man, K.F., Tang, K.S., Kwong, S.: Genetic algorithms. Springer (2000)
[10] Maldonado, Y., Castillo, O., Melin, P.: Design of a Type-2 Fuzzy Controller and its

Comparison with Type-1 Fuzzy and PID Controllers for Velocity Regulation in a
DC Motor. In: Proceedings of the World Conference on Soft Computing, pp. 1–6
(2011)

[11] Mendel, J.M.: Uncertainty Rule Based Fuzzy Logic Systems: Introduction and New
Directions. Prentice-Hall, Upper-Saddle River (2001)

[12] Mendel, J.M.: Type-2 Fuzzy Sets and Systems: an Overview. IEEE Computational
Intelligence Magazine 2, 20–29 (2007)

[13] Montiel, O., Sepúlveda, R., Maldonado, Y., Castillo, O.: Design and Simulation of
the Type-2 Fuzzification Stage: Using Active Membership Functions. In: Castillo,
O., Pedrycz, W., Kacprzyk, J. (eds.) Evolutionary Design of Intelligent Systems.
SCI, vol. 257, pp. 273–293. Springer, Heidelberg (2009)

[14] Sepulveda, R., Castillo, O., Melin, P., Montiel, O.: An Efficient Computational
Method to Implement Type-2 Fuzzy Logic in Control Applications. In: Melin, P.,
Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds.) Anal. and Des. of Intel.
Sys. using SC Tech. ASC, vol. 41, pp. 45–52. Springer, Heidelberg (2007)

[15] Sepúlveda, R., Montiel, O., Olivas, J., Castillo, O.: Methodology to Test and
Validate a VHDL Inference Engine of a Type-2 FIS, through the Xilinx System
Generator. In: Castillo, O., Pedrycz, W., Kacprzyk, J. (eds.) Evolutionary Design of
Intelligent Systems. SCI, vol. 257, pp. 295–308. Springer, Heidelberg (2009)

[16] Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

P. Melin, O. Castillo (Eds.): Soft Computing Appli. in Optimization, STUDFUZZ 294, pp. 125–154.
DOI: 10.1007/978-3-642-35323-9_6 © Springer-Verlag Berlin Heidelberg 2013

Genetic Optimization of Modular Type-1 Fuzzy
Controllers for Complex Control Problems

Leticia Cervantes and Oscar Castillo

Tijuana Institute of Technology,
Tijuana, Mexico
ocastillo@tectijuana.mx

Abstract. In this paper a method to design modular type-1 fuzzy controllers using
genetic optimization is presented. The method is tested with a problem that re-
quires five individual controllers. Simulation results with a genetic algorithm for
optimizing the membership functions of the five individual controllers are pre-
sented. Simulation results show that the proposed modular control approach offers
advantages over existing control methods.

1 Introduction

This paper focuses on the field of fuzzy logic and control area, these areas can
work together to solve various control problems. The problem of water level con-
trol for a three tank system is illustrated. This control is carried out by controlling
five valves whose outputs are the inputs to the three tanks. The main idea in this
paper is to apply a genetic algorithm to optimize the membership functions of the
five controllers. Each controller has to open and close one of the valves. To con-
trol each of the valves we have five type-1 fuzzy systems and each fuzzy system
has to control one valve of the three tanks. After that, the simulation is carried out
using type-1 fuzzy systems, and then genetic algorithms are used to optimize the
five controllers. Finally results are presented and compared.

The rest of the paper is organized as follows: In section 2 some basic concepts
to understand the work are presented, Section 3 shows a case study, problem de-
scription and results are presented and finally in Section 4 conclusion is shown.

2 Background and Basic Concepts

In this section some basic concepts needed for this work are presented.

2.1 Genetic Algorithm

Genetic algorithms (GAs) were proposed by John Holland in the 1960s and were
developed by Holland and his students and colleagues at the University of

126 L. Cervantes and O. Castillo

Michigan in the 1960s and the 1970s [2][3]. In contrast with evolution strategies
and evolutionary programming, Holland's original goal was not to design algo-
rithms to solve specific problems, but rather to formally study the phenomenon of
adaptation as it occurs in nature and to develop ways in which the mechanisms of
natural adaptation might be imported into computer systems [15][19]. Holland's
1975 book Adaptation in Natural and Artificial Systems presented the genetic al-
gorithm as an abstraction of biological evolution and gave a theoretical framework
for adaptation under the GA [4][5]. A GA allows a population composed of many
individuals to evolve under specified selection rules to a state that maximizes the
“fitness” [17]. Holland's GA is a method for moving from one population of
"chromosomes" (e.g., strings of ones and zeros, or "bits") to a new population by
using a kind of "natural selection" together with the genetics inspired operators of
crossover, mutation, and inversion [18]. Each chromosome consists of "genes"
(e.g., bits), each gene being an instance of a particular "allele" (e.g., 0 or 1)
[14][10]. The selection operator chooses those chromosomes in the population that
will be allowed to reproduce, and on average the fitter chromosomes produce
more offspring than the less fit ones [28]. Crossover exchanges subparts of two
chromosomes, roughly mimicking biological recombination between two single
chromosome ("haploid") organisms; mutation randomly changes the allele values
of some locations in the chromosome; and inversion reverses the order of a conti-
guous section of the chromosome, thus rearranging the order in which genes are
arrayed. (Here, as in most of the GA literature, "crossover" and "recombination"
will mean the same thing.) [7][16]. Some of the advantages of a GA include: Op-
timizes with continuous or discrete variables, doesn’t require derivative informa-
tion, simultaneously searches from a wide sampling of the cost surface, deals with
a large number of variables [13][29].

A typical algorithm might consist of the following:

1. Start with a randomly generated population of n l−bit chromosomes (candi-
date solutions to a problem).

2. Calculate the fitness ƒ(x) of each chromosome x in the population.
3. Repeat the following steps until n offspring have been created:

• Select a pair of parent chromosomes from the current population, the
probability of selection being an increasing function of fitness. Selection
is done "with replacement," meaning that the same chromosome can be
selected more than once to become a parent.

• With probability Pc (the "crossover probability" or "crossover rate"),
cross over the pair at a randomly chosen point (chosen with uniform
probability) to form two offspring. If no crossover takes place, form two
offspring that are exact copies of their respective parents. (Note that here
the crossover rate is defined to be the probability that two parents will
cross over in a single point. There are also "multipoint crossover" ver-
sions of the GA in which the crossover rate for a pair of parents is the
number of points at which a crossover takes place.)

• Mutate the two offspring at each locus with probability Pm (the mutation
probability or mutation rate), and place the resulting chromosomes in the

Genetic Optimization of Modular Type-1 Fuzzy Controllers 127

new population. If n is odd, one new population member can be discarded
at random.

• Replace the current population with the new population.

Go to step 2 [30][31].

2.2 Fuzzy Systems

The idea of fuzzy systems appeared very early in the literature of fuzzy sets; it was
originated by Zadeh (1965). The concept of a fuzzy system is intimately related to
that of a fuzzy set. En order to make our discussion self-contained, it will be help-
ful to begin with a brief summary of some of the basic definitions pertaining to
such sets. Research on fuzzy systems seems to have developed in two main direc-
tions. The first is rather formal and considers fuzzy systems as a generalization of
nondeterministic systems. These have been studied within the same conceptual
framework as classical systems. This approach has given birth to a body of ab-
stract results in such fields as minimal realization theory and formal automata
theory, sometimes expressed in the setting of category theory. The system is con-
sidered over a given period during which inputs, outputs, and relations may
change [28][13].

A system will be called fuzzy as soon as inputs or outputs are modeled as fuzzy
sets or their interactions are represented by fuzzy relations. Usually, a system is
also described in terms of state variables. In a fuzzy system a state can be a fuzzy
set. However, the notion of a fuzzy state is quite ambiguous and needs to be clari-
fied. Note that generally a fuzzy system is an approximate representation of a
complex process that is not itself necessarily fuzzy [20][21]. According to Zadeh,
the human ability to perceive complex phenomena stems from the use of names of
fuzzy sets to summarize information [22]. The notion of probabilistic system cor-
responds to a different point of view: all the available information at any time is
modeled by probability distributions, built from repeated experiments. A fuzzy
system can be described either as a set of fuzzy logical rules or as a set of fuzzy
equations [23][24]. Fuzzy logical rules must be understood as propositions asso-
ciated with possibility distributions. For instance, “if last input is small, then if last
output is large, then current output is medium”, where “small” is a fuzzy set on the
universe of inputs, and “medium” and “large” are fuzzy sets on the universe of
outputs [25][26] . Let ut , yt, and st denote respectively the input, output, and state
of a system S at time t. U, Y, S are respectively the set of possible inputs, outputs,
and states [27][32]. Such a system is said to be deterministic if it is characterized
by state equations of the form:

(1)

s0 is called the initial state; and Ω are functions from U X S and from S to S

and Y, respectively. S is said to be nondeterministic if St+1 and / or Yt, are not uni-
quely determined by Ut and St [33][1]. Let St+1 and Yt be the sets of possible val-
ues of St+1 and Yt, respectively, given Ut, and St. St+1 and Yt, may be understood as

128 L. Cervantes and O. Castillo

binary possibility distributions over S and Y, respectively. In some cases a fuzzy
system is used to control complex problem to obtain better results [8][9][6].

2.3 Fuzzy Control Systems

Control systems theory, or what is called modern control systems theory today,
can be traced back to the age of World War II, or even earlier, when the design,
analysis, and synthesis of servomechanisms were essential in the manufacturing
of electromechanical systems. The development of control systems theory has
since gone through an evolutionary process, starting from some basic, simplistic,
frequency-domain analysis for single-input single output (SISO) linear control
systems, and generalized to a mathematically sophisticated modern theory of mul-
ti-input multi-output (MIMO) linear or nonlinear systems described by differential
and/or difference equations.

It is believed that the advances of space technology in the 1950s completely
changed the spirit and orientation of the classical control systems theory: the chal-
lenges posed by the high accuracy and extreme complexity of the space systems,
such as space vehicles and structures, stimulated and promoted the existing control
theory very strongly, developing it to such a high mathematical level that can use
many new concepts like state-space and optimal controls. The theory is still rapid-
ly growing today; it employs many advanced mathematics such as differential
geometry, operation theory, and functional analysis, and connects to many theoret-
ical and applied sciences like artificial intelligence, computer science, and various
types of engineering. This modern control systems theory, referred to as conven-
tional or classical control systems theory, has been extensively developed. The
theory is now relatively complete for linear control systems, and has taken the lead
in modern technology and industrial applications where control and automation
are fundamental. Basically, the aim of fuzzy control systems theory is to extend
the existing successful conventional control systems techniques and methods as
much as possible, and to develop many new and special-purposed ones, for a
much larger class of complex, complicated, and ill-modeled systems – fuzzy sys-
tems. This theory is developed for solving real-world problems [11].

Fuzzy controllers have been well accepted in control engineering practice. The
major advantages in all these fuzzy-based control schemes are that the developed
controllers can be employed to deal with increasingly complex systems to imple-
ment the controller without any precise knowledge of the structure of entire
dynamic model. As a knowledge-based approach, the fuzzy controller usually de-
pends on linguistics-based reasoning in design. However, even though a system is
well defined mathematically, the fuzzy controller is still preferred by control engi-
neers since it is relatively more understandable whereas expert knowledge can be
incorporated conveniently. Recently, the fuzzy controller of nonlinear systems
was studied by many authors and has also been extensively adopted in adaptive
control of robot manipulators. It has been proven that adaptive fuzzy control is a
powerful technique and being increasingly applied in the discipline of systems

Genetic Optimization of Modular Type-1 Fuzzy Controllers 129

control, especially when the controlled system has uncertainties and highly nonli-
nearities [12].

3 Case Study

In this Section the problem description is presented and results are shown.

3.1 Problem Description

In this work the case study considers the problem of water level control for a 3
tanks system where the 3 tanks include valves that are opened or closed, these
valves must be well controlled to give the desired level of water in each of the
three tanks. The end tanks have a valve that fills and in the middle of the 3 tanks
there are two valves that control the water level between tanks 1 and 2, and tanks
2 and 3. The water tank 3 has a valve to output more water flow, the case study
model is made in Simulink and has three inputs (tank 1, tank2 and tank3), and
these inputs correspond to the existing water levels in tank 1, tank2 and tank3. The
outputs of the model made in Simulink has five valves, which provide water (v1
and v2) valves that are interconnected tanks (v13 and v32) and finally the output
valve is responsible for the drainage of the three tanks (v20). The problem is
shown in Figure 1.

Fig. 1 Water control of 3 tanks

3.2 Type-1 Fuzzy System

For this case study it was necessary to use fuzzy systems to realize the simulation,
each fuzzy system has one or two inputs depend on the valve. The Valves that are
between 2 tanks are using 2 inputs (tank1 and tank2 or tank2 and tank3). The out-
puts are the valves, in total 5 fuzzy systems were used in this problem. The fuzzy
systems are shown in Figures 2 to 6.

V1

V13 V32

V2

V20

130 L. Cervantes and O. Castillo

Fig. 2 Fuzzy system to control valve 1

Fig. 3 Fuzzy system to control valve 13

Genetic Optimization of Modular Type-1 Fuzzy Controllers 131

Fig. 4 Fuzzy system to control valve 32

Fig. 5 Fuzzy system to control valve 2

132 L. Cervantes and O. Castillo

Fig. 6 Fuzzy system to control valve 20

Fig. 7 Simulation plant

Genetic Optimization of Modular Type-1 Fuzzy Controllers 133

Fig. 8 Simulation plant showing inputs and outputs

Fig. 9 Tank water simulation plant

134 L. Cervantes and O. Castillo

Fig. 10 Data block of the simulation plant

Having created the previous fuzzy systems, the simulation was performed
using the Matlab language. The simulation plant is shown in Figures 7
to 10.

The simulation was carried out using the fuzzy systems shown before, the
membership functions used in this case were triangular, Gaussian and trapezoidal,
and the fuzzy systems with the different types of membership functions used in
this case of study are shown in Figures 11 to 16.

All the valves in the inputs and outputs have 3 membership functions, all the
membership functions in each input or output have the same position initially and
this is because a genetic algorithm is applied to optimize each membership
function.

When the genetic algorithm is used the membership functions start to move
within the specified range. Later in section 3.3 the fuzzy system with genetic al-
gorithm is presented where it shows new positions in all de membership func-
tions. Figures 11 to 16 show the membership functions in the inputs and outputs
of all fuzzy systems. The fuzzy systems that have one input are presented in
Figures 11 to 13, and the fuzzy systems that have 2 inputs are presented in
Figures 14 to 16.

Genetic Optimization of Modular Type-1 Fuzzy Controllers 135

Fig. 11 Triangular membership functions use in valve 1, valve 2 and valve 20

Fig. 12 Gaussian membership functions use in valve 1,valve 2 and valve 20

136 L. Cervantes and O. Castillo

Fig. 13 Trapezoidal membership functions use in valve 1,valve 2 and valve 20

Fig. 14 Triangular membership functions use in valve 13 and valve 32

Genetic Optimization of Modular Type-1 Fuzzy Controllers 137

Fig. 15 Gaussian membership functions use in valve 13 and valve 32

Fig. 16 Trapezoidal membership functions use in valve 13 and valve 32

138 L. Cervantes and O. Castillo

Table 1 Results for the simulation plant using triangular membership functions

Using Triangular
Membership Function

Error

valve 1 0.9246

valve 13 0.9278

valve 2 0.9278

valve 20 0.9279

valve 32 0.8341

Table 2 Results for the simulation plant using Gaussian membership functions

Using Gaussian
Membership Function

Error

valve 1 0.898

valve 13 0.8994

valve 2 0.8994

valve 20 0.8995

valve 32 0.8463

Genetic Optimization of Mo

Table 3 Results for the simu

Using
Membe

The results with type-1
In the previous Tables t

of membership functions.
used is different as in trape
membership functions bec
the problem to control som
membership function for t
er type, but is important t
shown of each valve with

Fig. 17 Error of Valve 1 with

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Triangula

dular Type-1 Fuzzy Controllers 13

ulation plant using trapezoidal membership functions

g Trapezoidal
rship Function Error

valve 1 0.9522

valve 13 0.9551

valve 2 0.9504

valve 20 0.9551

valve 32 0.8233

1 fuzzy systems are presented in Tables 1 to 3.
the error of each valve was presented using different type
. The error when triangular membership functions wer
ezoidal and Gaussian. Is important to use different types o
cause the error can be vary and depends how complex
metimes the case of the study can be better using Gaussia
the soft behavior or in other case can be better using anoth
to consider other types. In Figures 17 to 21 graphics ar
the 3 types of membership functions used in this case.

h 3 types of membership functions

ar Gaussian Trapezoidal

Valve 1

39

es
re
of
is

an
h-
re

140

Fig. 18 Error of Valve 13 wi

Fig. 19 Error of Valve 2 with

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Triangular

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Triangular

L. Cervantes and O. Castil

ith 3 types of membership functions

h 3 types of membership functions

r Gaussian Trapezoidal

Valve 13

Gaussian Trapezoidal

Valve 2

llo

Genetic Optimization of Mo

Fig. 20 Error of Valve 20 wi

Fig. 21 Error of Valve 20 wi

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Triangular

0.81

0.815

0.82

0.825

0.83

0.835

0.84

0.845

0.85

Triangular

dular Type-1 Fuzzy Controllers 14

ith 3 types of membership functions

ith 3 types of membership functions

r Gaussian Trapezoidal

Valve 20

r Gaussian Trapezoidal

Valve 32

41

142 L. Cervantes and O. Castillo

Fig. 22 Rules of the 5 type-1 fuzzy systems

The rules used to control in the case of the three tanks are shown in Figure 22.
The set of rules shown above rules are for the five fuzzy systems used to con-

trol the open and closed valves from the three tanks.
The first three rules are the controller number 1, the 9 following rules are con-

troller 2, the third set of rules are the controller 3, the fourth set of 3 rules are the
controller 4 and the last 9 rules are controller number 5.

The difference in the number of rules of each controller is because depending
on the number of inputs, outputs and membership functions of fuzzy system will
have a number of rules to be had. For example to control valve number one has
only one input which is the tank 1, one output and has 3 membership functions
therefore the number of rules are 3. The valves between 2 tanks need 2 inputs
(tank1 and tank2 or tank 2 and tank3), these valves have one output and three
membership functions therefore need 9 rules for fuzzy systems.

Genetic Optimization of Mo

3.3 Genetic Algorith

After obtaining the prev
was performed. The gene
tions of each fuzzy system

In the genetic algorith
optimized.

In the algorithm the er
each controller were adde
controllers. The fitness fu

Where YREF is the referen
ber of point used in comp
the number of the controll

The parameters used in

Fig. 23 Parameters of the gen

f(y) =

dular Type-1 Fuzzy Controllers 14

hm

vious mentioned results, genetic algorithm optimizatio
etic algorithm is used to optimize the membership fun
m (inputs and outputs).
hm the membership functions of the 5 controllers wer

rror of each controller is taken and finally the results o
ed, and the final result is divided between the number o

unction is shown in next equation:

 (2

nce, YFS is the output of the controller and n is the num
parison. Error C1 is the error of control 1 to N, and N
lers.
n the GA are shown in Figure 23.

netic algorithm

43

on
c-

re

of
of

2)

m-
in

144 L. Cervantes and O. Castillo

After the use of the genetic algorithm the results obtained in the simulation are

shown in Table 4.

Table 4 Results for the simulation plant using triangular membership functions and genetic
algorithm

Error using triangular membership functions and genet-
ic algorithm

Valve 13 Valve 1 Valve 20 Valve 2 Valve 32

0.109 0.1146 0.0939 0.2077 0.218

0.131 0.1228 0.1329 0.1861 0

0.119 0.1275 0.111 0.239 0

0.115 0.1116 0.1092 0.2216 0

0.109 0.0908 0.1191 0.214 0

0.109 0.1132 0.0954 0.1922 0

0.117 0.1225 0.1003 0.1853 0

0.107 0.1102 0.1146 0.1938 0

0.105 0.0993 0.0851 0.2428 0

0.125 0.1196 0.113 0.1433 0

0.123 0.1191 0.1394 0.246 0

0.115 0.1114 0.091 0.1539 0

0.117 0.1231 0.101 0.1818 0

0.107 0.1444 0.0661 0.1366 0

0.117 0.1225 0.1003 0.1853 0

The above table shows a lower error in comparison with only using a type-1

fuzzy system. In the last table a genetic algorithm was used with triangular mem-
bership functions, the error is different in each valve even though the parameters
are the same in all the tests. Some Graphics are shown in Figures 24 to 29 to
present the behavior of each valve. In the last graphic the behavior of all valves is
shown to observe all the behaviors.

Genetic Optimization of Mo

Fig. 24 Error of Valve 13 us

Fig. 25 Error of Valve 1 usin

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3

Er
ro

r

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3

Er
ro

r

dular Type-1 Fuzzy Controllers 14

ing a genetic algorithm

ng a genetic algorithm

4 5 6 7 8 9 10 11 12 13 14 15

Evolution

Valve 13

4 5 6 7 8 9 10 11 12 13 14 15

Evolution

Valve 1

45

146

Fig. 26 Error of Valve 20 us

Fig. 27 Error of Valve 2 usin

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3

Er
ro

r

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3

Er
ro

r

L. Cervantes and O. Castil

ing a genetic algorithm

ng a genetic algorithm

4 5 6 7 8 9 10 11 12 13 14 15

Evolution

Valve 20

4 5 6 7 8 9 10 11 12 13 14 15

Evolution

Valve 2

llo

Genetic Optimization of Mo

Fig. 28 Error of Valve 32 us

Fig. 29 Behavior of each val

0

0.05

0.1

0.15

0.2

0.25

1 2 3

Er
ro

r

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3

Er
ro

r

dular Type-1 Fuzzy Controllers 14

ing a genetic algorithm

lve using a genetic algorithm

4 5 6 7 8 9 10 11 12 13 14 15

Evolution

Valve 32

4 5 6 7 8 9 10 11 12 13 14 15

Evolution

Valve 13

Valve 1

Valve 20

Valve 2

Valve 32

47

148 L. Cervantes and O. Castillo

Fig. 30 Best Fuzzy system of valve 1 using genetic algorithm

Applying the genetic algorithm to a type-1 fuzzy system of each valve it was
obtain the best fuzzy system of each valve as shown in Figures 30 to 34.

Last figure represents the best fuzzy system of valve 1 and its membership
function of the input and the output. Yellow box is the input of the fuzzy system
and the blue box is the output of the fuzzy system. In next fuzzy systems all the
inputs of each are the yellow boxes and the outputs are the blue boxes.

All the fuzzy systems have 3 membership functions in the inputs and the out-
puts of each valve. When the genetic algorithm was implemented, more than 1
fuzzy systems were obtained, but in this case the best of the 15 evolutions is
presented.

Genetic Optimization of Modular Type-1 Fuzzy Controllers 149

Fig. 31 Best Fuzzy system of valve 13 using genetic algorithm

150 L. Cervantes and O. Castillo

Fig. 32 Best Fuzzy system of valve 32 using genetic algorithm

Recall that this fuzzy system has two inputs because the valve 13 that is con-
trolled is fed by two tanks (Tank 1 and Tank2).

This case is the same as that of the last fuzzy system, it needs two inputs to
control the valve 32 because this valve is fed by two tanks (Tank 2 and Tank3).
Valve 32 and valve 13 are the only ones needs two inputs, the reason is because as
was explain those valves are between two tanks.

Genetic Optimization of Modular Type-1 Fuzzy Controllers 151

Fig. 33 Best Fuzzy system of valve 2 using genetic algorithm

Fuzzy systems have become a tool that can be useful to try and model the com-
plex and nonlinear systems. And these fuzzy systems in this case study helps im-
prove control valves. Membership functions can be varied to get more results.
These fuzzy systems use three membership functions to establish the level of open
or closed for the valves, the level of each membership function in the valves are
open completely, half open and close.

The granulation of fuzzy systems may be increased and instead of using three
membership functions it can be used 5 or another option, which could consider the
valve as open medium, open, closed, half closed, fully closed. This depends on
how you want to study the problem.

152 L. Cervantes and O. Castillo

Fig. 34 Best Fuzzy system of valve 20 using genetic algorithm

4 Conclusions

A benchmark problem was used to test the proposed approach and based on the
obtained results we can say that to achieve control of the present problem, a genet-
ic algorithm is a good alternative to obtain a good fuzzy controller.

When a complex control problem is at hand, we start working on the case
study, and once results are obtained with type-1 fuzzy systems it is a good choice
to use a genetic algorithm for optimizing membership functions of the inputs and
outputs of the controllers and to obtain better control, as was the case in this con-
trol problem. In the moment when genetic algorithm was used, results were better
than with an initial type-1 fuzzy system, this is possible because in the moment

Genetic Optimization of Modular Type-1 Fuzzy Controllers 153

that genetic algorithm is applied, it moves the parameters of the membership
functions and the system has more options to control de valves and the genetic al-
gorithm is evaluated to obtain the best fuzzy system to control the open and close
valves and this is why better results are obtained by optimizing the membership
functions.

References

1. Castillo, O.: Type-2 Fuzzy Logic in Intelligent Control Applications. STUDFUZZ,
vol. 272. Springer, Heidelberg (2012)

2. Castillo, O., Martinez-Marroquin, R., Melin, P., Valdez, F., Soria, J.: Comparative
study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy
controllers for an autonomous mobile robot. Inf. Sci. 192, 19–38 (2012)

3. Castillo, O., Melin, P.: A review on the design and optimization of interval type-2
fuzzy controllers. Appl. Soft Comput. 12(4), 1267–1278 (2012)

4. Castillo, O., Melin, P.: New fuzzy-fractal-genetic method for automated Mathematical
Modelling and Simulation of Robotic Dynamic Systems. In: IEEE International Con-
ference on Fuzzy Systems, vol. 2, pp. 1182–1187 (1998)

5. Castillo, O., Melin, P., Montiel, O., Sepúlveda, R.: Optimization of interval type-2
fuzzy logic controllers using evolutionary algorithms. Soft Comput. 15(6), 1145–1160
(2011)

6. Castillo, O., Kacprzyk, J., Pedrycz, W.: Soft Computing for Intelligent Control and
Mobile Robotics. Springer (2011)

7. Cázarez, N., Aguilar, L., Castillo, O.: Fuzzy logic control with genetic membership
function parameters optimization for the output regulation of a servomechanism with
nonlinear backlash. Expert System Appl. 37(6), 4368–4378 (2010)

8. Cervantes, L., Castillo, O.: Design of a fuzzy system for the longitudinal control of an
F-14 airplane. In: Castillo, O., Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for In-
telligent Control and Mobile Robotics. SCI, vol. 318, pp. 213–224. Springer, Heidel-
berg (2010)

9. Cervantes, L., Castillo, O., Melin, P.: Intelligent Control of Nonlinear Dynamic Plants
Using a Hierarchical Modular Approach and Type-2 Fuzzy Logic. In: Batyrshin, I.,
Sidorov, G. (eds.) MICAI 2011, Part II. LNCS, vol. 7095, pp. 1–12. Springer, Heidel-
berg (2011)

10. Coley, A.: An Introduction to Genetic Algorithms for Scientists and Engineers. World
Scientific (1999)

11. Chen, G., Pham, T.: Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control
Systems (2001)

12. Dadios, E.: Fuzzy Logic-Controls, Concepts, Theories and Applications (2012)
13. Dubois, D., Prade, H.: Fuzzy sets and Systems: Theory and Applications (1980)
14. Gibbens, P., Boyle, D.: Introductory Flight Mechanics and Performance. University of

Sydney, Australia (1999)
15. Haupt, R., Haupt, S.: Practical Genetic Algorithm. Wiley Interscience (2004)
16. Hidalgo, D., Melin, P., Castillo, O.: An optimization method for designing type-2

fuzzy inference systems based on the footprint of uncertainty using genetic algorithms.
Expert Syst. Appl. 39(4), 4590–4598 (2012)

154 L. Cervantes and O. Castillo

17. Martinez-Soto, R., Castillo, O., Aguilar, L.: Optimization of interval type-2 fuzzy
logic controllers for a perturbed autonomous wheeled mobile robot using genetic algo-
rithms. Inf. Sci. 179(13), 2158–2174 (2009)

18. Melin, P., Castillo, O.: A new method for adaptive model-based control of non-linear
plants using type-2 fuzzy logic and neural networks. In: IEEE International Confe-
rence on Fuzzy Systems, vol. 1, pp. 420–425 (2003)

19. Mitchell, M.: An Introduction to Genetic Algorithms. Massachusetts Institute of Tech-
nology (1999)

20. Rachman, E., Jaam, J., Hasnah, A.: Non-linear simulation of controller for longitudin-
al control augmentation system of F-16 using numerical approach. Information
Sciences Journal 164(1-4), 47–60 (2004)

21. Reiner, J., Balas, G., Garrard, W.: Flight control design using robust dynamic inver-
sion and time- scale separation. Automatic Journal 32(11), 1493–1504 (1996)

22. Sanchez, E., Becerra, H., Velez, C.: Combining fuzzy, PID and regulation control for
an autonomous mini-helicopter. Journal of Information Sciences 177(10), 1999–2022
(2007)

23. Sefer, K., Omer, C., Okyay, K.: Adaptive neuro-fuzzy inference system based auto-
nomous flight control of unmanned air vehicles. Expert Systems with Applications
Journal 37(2), 1229–1234 (2010)

24. Song, Y., Wang, H.: Design of Flight Control System for a Small Unmanned Tilt
Rotor Aircraft. Chinese Journal of Aeronautics 22(3), 250–256 (2009)

25. Walker, D.J.: Multivariable control of the longitudinal and lateral dynamics of a fly by
wire helicopter. Control Engineering Practice 11(7), 781–795 (2003)

26. Wu, D.: A Brief Tutorial on Interval Type-2 Fuzzy Sets and Systems (July 22, 2010)
27. Wu, D., Mendel, J.: On the Continuity of Type-1 and Interval Type-2 Fuzzy Logic

Systems. IEEE T. Fuzzy Systems 19(1), 179–192 (2011)
28. Zadeh, L.: Fuzzy Sets and Fuzzy Information Granulation Theory. Beijing Normal

University Press, Baijing (2000)
29. Zadeh, L.: Fuzzy Sets, Information and Control, vol. 8(3), pp. 338–353 (1965)
30. Zadeh, L.: Shadows of Fuzzy Sets. Probl. Peredachi Inf. 2(1), 37–44 (1966)
31. Zadeh, L.: Fuzzy Logic. Neural Networks and Soft Computing Commun. ACM 37(3),

77–84 (1994)
32. Zadeh, L.A.: Some reflections on soft computing, granular computing and their roles

in the conception, design and utilization of information/intelligent systems. Soft Com-
putting 2, 23–25 (1998)

33. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and deci-
sion processes. IEEE Trans. Syst. Man Cybern. SMC-3, 28–44 (1973)

Part III

Soft Computing in Pattern
Recognition Applications

P. Melin, O. Castillo (Eds.): Soft Computing Appli. in Optimization, STUDFUZZ 294, pp. 157–185.
DOI: 10.1007/978-3-642-35323-9_7 © Springer-Verlag Berlin Heidelberg 2013

Multi-Objective Hierarchical Genetic Algorithm
for Modular Granular Neural Network
Optimization

Daniela Sánchez and Patricia Melin

Tijuana Institute of Technology,
Tijuana, Mexico
pmelin@tectijuana.mx

Abstract. In this paper we propose a multi-objective hierarchical genetic algo-
rithm (MOHGA) for modular neural network optimization. A granular approach is
used due to the fact that the dataset is divided into granules or sub modules. The
main objective of this method is to know the optimal number of sub modules or
granules, but also allow the optimization of the number of hidden layers, number
of neurons per hidden layer, error goal and learning algorithms per module. The
proposed MOHGA is based on the Micro genetic algorithm and was tested for a
pattern recognition application. Simulation results show that the proposed modular
neural network approach offers advantages over existing neural network models.
Finally the modular neural networks are joined using type-2 fuzzy integration,
which allows having a system with a better behavior and results.

1 Introduction

Hybrid intelligent systems are computational systems that integrate different intel-
ligent techniques. Examples of these techniques are modular neural networks
(MNN) and genetic algorithms (GA). Hybrid intelligent systems are now being
used to support complex problem solving and decision making in a wide variety of
tasks. Hybrid intelligent systems allow the representation and manipulation of dif-
ferent types and forms of data and knowledge, which may come from various
sources. In this paper these techniques are combined using a granular approach. It
was decided to apply the proposed method to pattern recognition to test the ap-
proach with complex problems.

Biometrics plays an important role in public security and information security
domains. Using various physiological characteristics of the human, such as face,
facial thermo grams, fingerprint, iris, retina, hand geometry etc., biometrics accu-
rately identifies each individual and distinguishes one from another [1].

The recognition of people is of great importance, since it allows us to have a
greater control about when a person has access to certain information, area, or
simply to identify if the person is the one who claims to be.

The achieved results indicate that biometric techniques are much more precise
and accurate than the traditional techniques. Other than precision, there have

158 D. Sánchez and P. Melin

always been certain problems which remain associated with the existing tradition-
al techniques. As an example consider possession and knowledge. Both can be
shared, stolen, for-gotten, duplicated, misplaced or taken away. However the dan-
ger is minimized in case of biometric means [37].

There are many works that combine different techniques and they have demon-
strated that the integration of different intelligent techniques provide good results,
such as in [19][29][30][31][32][34][35][42].

This paper is organized as follows: Section 2 contains the basic concepts used
in this research work, section 3 contains the general architecture of the proposed
method, section 4 presents experimental results and in section 5, the conclusions
of this work are presented.

2 Basic Concepts

In this section we present a brief overview of the basic concepts used in this re-
search work.

2.1 Modular Neural Networks

An artificial neuron is a computational model inspired in the natural neurons.
Natural neurons receive signals through synapses located on the dendrites or
membrane of the neuron. When the signals received are strong enough (surpass a
certain threshold), the neuron is activated and emits a signal though the axon. This
signal might be sent to another synapse, and might activate other neurons. The
complexity of real neurons is highly abstracted when modeling artificial neurons.
These basically consist of inputs (like synapses), which are multiplied by weights
(strength of the respective signals), and then computed by a mathematical function
which determines the activation of the neuron. Another function (which may be
the identity) computes the output of the artificial neuron (sometimes in depen-
dence of a certain threshold). ANNs combine artificial neurons in order to process
information [5].

Neural networks (NNs) can be used to extract patterns and detect trends that are
too complex to be noticed by either humans or other computer techniques [24].
The modular neural networks (MNNs) are comprised of modules. The idea on
which this kind of learning structure is based on the divide-and-conquer paradigm:
the problem should be divided into smaller sub problems that are solved by ex-
perts (modules) and their partial solutions should be integrated to produce a final
solution [4][26][43]. A module can be a sub-structure or a learning sub procedure
of the whole network [3].

The results of the different applications involving Modular Neural Networks
(MNNs) lead to the general evidence that the use of modular neural networks im-
plies a significant learning improvement comparatively to a single NN and espe-
cially to the backpropagation NN. Each neural network works independently in its
own domain. Each of the neural networks is build and trained for a specific task
[28].

Multi-Objective Hierarchical Genetic Algorithm 159

2.2 Type-2 Fuzzy Logic

Fuzzy logic is a useful tool for modeling complex systems and deriving useful
fuzzy relations or rules [39]. However, it is often difficult for human experts to de-
fine the fuzzy sets and fuzzy rules used by these systems [47]. The basic structure
of a fuzzy inference system consists of three conceptual components: a rule base,
which contains a selection of fuzzy rules, a database (or dictionary) which defines
the membership functions used in the rules, and a reasoning mechanism that per-
forms the inference procedure [7] [25] [56].

The concept of a type-2 fuzzy set, was introduced by Zadeh (1975) as an exten-
sion of the concept of an ordinary fuzzy set (henceforth called a “type-1 fuzzy
set”). A type-2 fuzzy set is characterized by a fuzzy membership function, i.e., the
membership grade for each element of this set is a fuzzy set in [0,1], unlike a type-
1 set where the membership grade is a crisp number in [0,1]. Such sets can be used
in situations where there is uncertainty about the membership grades themselves,
e.g., an uncertainty in the shape of the membership function or in some of its pa-
rameters. Consider the transition from ordinary sets to fuzzy sets. When we cannot
determine the membership of an element in a set as 0 or 1, we use fuzzy sets of
type-1. Similarly, when the situation is so fuzzy that we have trouble determining
the membership grade even as a crisp number in [0,1], we use fuzzy sets of type-2
[20][21][22][42].

Uncertainty in the primary memberships of a type-2 fuzzy set, Ã, consists of a
bounded region that we call the “footprint of uncertainty” (FOU). Mathematically,
it is the union of all primary membership functions [9][10][33].

A type-2 fuzzy set Ã, is characterized by the membership function (see expres-
sion 1):

Ã= {((x,u), μÃ (x,u)) | ∀x ∈ X, ∀u ∈ Jx ⊆ [0,1] } (1)

where x means the input variable, u means a type-1 membership function, Jx
means an interval ⊆ [0,1], and μÃ means a type-2 membership function. Another
expression (2) for A is,

Ã= ∫x∈X∫u∈Jx μÃ (x,u)/ (x,u) Jx ⊆ [0,1] (2)

The distinction between type-1 and type-2 is associated with the nature of the
membership functions, which is not important when forming the rules. The struc-
ture of the rules remains exactly the same in the type-2 case, but now some or all
of the sets involved are type-2.

Consider a type-2 FLS having r inputs x1 ∈ X1, …, xr ∈ Xr and one output y ∈
Y. As in the type-1 case, we can assume that there are M rules; but, in the type-2
case the lth rule has the form

R1 : IF x1 is Ã1
1 and … xp is Ã1

p , THEN y is Y1 1=1,…,M

This rule represents a type-2 fuzzy relation between the input space X1 × …×
Xr, and the output space, Y, of the type-2 fuzzy system.

160 D. Sánchez and P. Melin

If we considered two fuzzy sets (type-2) named Ã1 and Ã2 their union is anoth-
er type-2 fuzzy set, just as the union of type-1 fuzzy sets A1 and A2 is another
type-1 fuzzy set. More formally, we have the following expression (3)

Ã1 ∪ Ã2 = ∫x∈X μÃ1∪Ã2 (x)/ x (3)

The intersection of Ã1 and Ã2 is another type-2 fuzzy set, just as the intersection of
type-1 fuzzy sets A1 and A2 is another type-1 fuzzy set. More formally, we have
the following expression (4)

Ã1 ∩ Ã2 = ∫x∈X μÃ1∩Ã2 (x)/ x (4)

The complement of set Ã is another type-2 fuzzy set, just as the complement of
type-1fuzzy set A is another type-1 fuzzy set. More formally we have the follow-
ing expression (5)

Ã’ = ∫x μÃ’1 (x)/ x (5)

The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets, and in
general will not change for type-n. A higher type number just indicates a higher
degree of fuzziness [8].

2.3 Multi-Objective Hierarchical Genetic Algorithm

A Genetic algorithm (GA) is an optimization and search technique based on the
principles of genetics and natural selection [18][36][44]. GAs are nondeterministic
methods that employ crossover and mutation operators for deriving offspring.
GAs work by maintaining a constant-sized population of candidate solutions
known as individuals (chromosomes) [13][24][38].

Introduced in [45], a Hierarchical genetic algorithm (HGA) is a type of genetic
algorithm. Its structure is more flexible than the conventional GA. The basic idea
under hierarchical genetic algorithm is that for some complex systems, which can-
not be easily represented, this type of GA can be a better choice. The complicated
chromosomes may provide a good new way to solve the problem [46][48].

Multi-objective optimization (MO) seeks to optimize the components of a vec-
tor-valued cost function. Unlike single objective optimization, the solution to this
problem is not a single point, but a family of points known as the Pareto-optimal
set. Each point in this surface is optimal in the sense that no improvement can be
achieved in one cost vector component that does not lead to degradation in at least
one of the remaining components [15].

There are three general approaches to multi-objective optimization. The first is
to combine the individual objective functions into a single composite function
(Aggregating functions). The second is to use Population-based approaches and
the third is to use Pareto-based approaches. A Pareto optimal set is a set of solu-
tions that are non-dominated with respect to each other. Pareto optimal sets can be
of varied sizes, but the size of the Pareto set increases with the increase in the
number of objectives [2].

Multi-Objective Hierarchical Genetic Algorithm 161

In this work the multi-objective genetic algorithm is based on a Micro genetic
algorithm, proposed in [11][12]. Two main characteristics of this kind of genetic
algorithm are that it works with a small population and has a re initialization
process.

2.4 Granular Computing

Granular computing (GrC), as a general computing paradigm of problem solving,
has been received much attentions recently, although its basic ideas and principles
have been studied extensively in various research communities and application
domains for a long time in explicit or implicit fashions. Zadeh [57] first introduced
the notion of information granulation in 1979 and suggested that fuzzy set theory
may find potential applications in this respect, which pioneers the explicit study of
granular computing. With the concept of his information granulation, Zadeh fur-
ther presented granular mathematics [58]. Pawlak proposed the rough set theory to
deal with inexact information by using rough sets to approximate a crisp set in
1982 [41], and investigated the granularity of knowledge from the point of view of
rough set theory [40]. Hobbes [23] presented a theory of granularity as the base of
knowledge representation, abstraction, heuristic search, and reasoning in 1985. In
his theory the problem world is represented as various grains and only interesting
ones are abstracted to learn concepts.

The conceptualization of the world can be performed at different granularities
and switched between granularities. In 1992, Giunchigalia and Walsh presented a
theory of abstraction to improve the conceptualization of granularities [16]. Lin
suggested the term “granular computing” to label this growing research field in
1997 [27]. Yao investigated the trinity model of granular computing from three
perspectives: philosophy, methodology, and computation [54][17].

Granular computing is often defined as an umbrella term to cover many theo-
ries, methodologies, techniques, and tools that make use of granules in complex
problem solving. Granular computing is a new term for the problem solving para-
digm and may be viewed more on a philosophical rather than technical level
[49][50][51][52].

Granular computing has begun to play important roles in bioinformatics, e-
Business, security, machine learning, data mining, high-performance computing
and wireless mobile computing in terms of efficiency, effectiveness, robustness
and uncertainty [6][54][55].

A granule may be interpreted as one of the numerous small particles forming a
larger unit. The philosophy of thinking in terms of levels of granularity, and its
implementation in more concrete models, would result in disciplined procedures
that help to avoid errors and to save time for solving a wide range of complex
problems. At least three basic properties of granules are needed: internal proper-
ties reflecting the interaction of elements inside a granule, external properties re-
vealing its interaction with other granules and, contextual properties showing the
relative existence of a granule in a particular environment [53].

162 D. Sánchez and P. Melin

3 General Architecture of the Proposed Method

The proposed method combines modular neural networks (MNN) and fuzzy logic
as response integrators. In particular, it can be used for pattern recognition. This
proposed method is able to use some data sets, for example to use "N" biometric
measures to identify someone and the data of each biometric measure would be
divided into different numbers of sub modules. The general architecture of the
proposed method is shown in Figure 1. For joining the different responses of each
biometric measure fuzzy integration is used. The proposed method also performs
the optimization of the modular neural networks (as number of layers, goal error,
number of neurons, etc.) and the different parameters of the fuzzy integrator.

Fig. 1 The general architecture of the proposed method

3.1 General Architecture of the Proposed Method for the
Modular Neural Network

The proposed method for MNN consists in changing the number of modules and
the data per module, for example in the case of human recognition, it means that
there will be different number of persons in each sub module. The number of sub

Multi-Objective Hierarchical Genetic Algorithm 163

modules can be established by a genetic algorithm, but at this moment the number
is established randomly. The architecture of the proposed method for the modular
neural network is shown in Figure 2.

This method also chooses randomly which images will be used for training, but
first the percentage of images for training is established (at this moment that per-
centage is defined randomly).

Fig. 2 The architecture of proposed method for the modular neural network

3.2 Description of the Multi-Objective Hierarchical Genetic
Algorithm for MNN Optimization

With the purpose of knowing the optimal number of modules and the percentage
of data for training, it is proposed the use of a genetic algorithm that allows the
optimization of these parameters and others as the number of hidden layers, num-
ber of neurons per hidden layer, error goal and learning algorithms per module.

Figure 3 shows the chromosome, which was proposed for optimization of the
neural networks.

The way in which the multi-objective hierarchical genetic algorithm works is il-
lustrated in Figure 4 and described in more detail below.

First, a random population is generated. This random population is divided in
two parts: a non-replaceable and replaceable portion. The non-replaceable portion
never changes during the evolution, this helps to provide diversity. The replacea-
ble portion experiences changes after certain condition is satisfied, this condition
is called nominal convergence.

164 D. Sánchez and P. Melin

Fig. 3 The chromosome of the multi-objective hierarchical genetic algorithm for the MNN

The working population at the beginning is taken (with a certain probability)
from both portions of the main population. During each cycle, the MOHGA uses
conventional genetic operators.

The external memory is initially empty, in each cycle the non-dominated vec-
tors found are saved in that memory, logically a comparison is performed between
the new vectors found and vectors already stored.

The MOHGA has two kinds of convergence. The first is the usually used (for
example when it has the maximum number of cycle or generations, or when the
value desired of one objective function is obtained). The second is called Nominal
Convergence, in this case is established each 5 generations, here two non domi-
nated vectors are taken of the external memory and these are compared with two
vectors of the Replaceable portion, if the two vectors taken of the replaceable por-
tion are dominated by the others, those vector are replaceable for the two vectors
of the external memory, then the working population is reinitialized.

3.3 Objective Functions

In order to not only get the network that provides us with the lowest error of rec-
ognition another objective function is set, and so not only obtain the best network
with the lowest error of recognition , but also obtain a modular neural network that
uses the lowest percentage of data for the training phase. The objective functions
are defined below:

Multi-Objective Hierarchical Genetic Algorithm 165

Fig. 4 Diagram that illustrates the way in which the multi-objective hierarchical genetic al-
gorithm works

 (2)

 (3)

3.4 Type-2 Fuzzy Integration

The proposed method uses type-2 fuzzy logic for combining the response of each
modular neural network. Four non-optimized fuzzy integrator were used to

166 D. Sánchez and P. Melin

perform tests in Figure 5 an example is shown. In the method, the number of in-
puts of each fuzzy integrator depends on how many modular neural networks will
be needed, in this work 2 inputs are needed, because this method is tested for hu-
man recognition based on ear and voice biometrics.

Fig. 5 Example of fuzzy integrator

In Figure 6, the fuzzy integrator #1 is presented, this fuzzy integrator uses
trapezoidal membership functions, in this case, 3 membership functions in each
input and output are used. The rules for this fuzzy integrator are shown in
Figure 8.

Fig. 6 Fuzzy Integrator #1

Multi-Objective Hierarchical Genetic Algorithm 167

Fig. 7 Fuzzy Integrator #2

Fig. 8 Rules of the fuzzy Integrator #1

Fig. 9 Rules of the fuzzy Integrator #2 to #4

168 D. Sánchez and P. Melin

Fig. 10 Fuzzy Integrator #3

Fig. 11 Fuzzy Integrator #4

In Figure 7, the fuzzy integrator #2 is presented, this fuzzy integrator uses trape-
zoidal membership functions, in this case 4 membership functions in each input and
output are used. The rules for the fuzzy integrator #2 to #4 are shown in Figure 9.

Multi-Objective Hierarchical Genetic Algorithm 169

In Figure 10, the fuzzy integrator #3 is presented, this fuzzy integrator uses

gBell membership functions, in this case 4 membership functions in each input
and output are used.

In Figure 11, the fuzzy integrator #4 is presented, this fuzzy integrator uses tra-
pezoidal and gBell membership functions, in this case 4 membership functions in
each input and the output are used.

3.5 Databases

The databases used in this work are described below in more detail.

3.5.1 Ear Database

We used a database of the University of Science and Technology of Beijing [14].
The database consists of 77 people, which contain 4 images per person (one ear),
the image dimensions are 300 x 400 pixels, the format is BMP. A sample of ear
images is shown in Figure 12.

Fig. 12 Sample of ear database

The persons are students and teachers from the department of Information Engi-
neering. Two images with angle variation and one with illumination variation are used.
Figure 13 shows an example of the pre-processing applied to each image in the ear.

Fig. 13 Sample pre-processing done to the images of ear

170 D. Sánchez and P. Melin

3.5.2 Voice Database

In the case of voice, the database consists of 10 voice samples (of 77 persons),
WAV format. The persons are students from the Tijuana Institute of Technology.
The word that they said in Spanish was "ACCESAR". To preprocess the voice the
Mel Frequency Cepstral Coefficients were used.

4 Experimental Results

In this section the results obtained in this work are presented. It was decided to use
the database already described above. For the integration of responses the winner
takes all method was used.

4.1 Non Optimized

In this test the images percentage and the images, which would be used for train-
ing, were established randomly. The non optimized results of the modular neural
network are shown below.

4.1.1 Non Optimized Results of Ear

In this section, the non optimized results of ear are shown. Two tests are pre-
sented, in the first test, 3 modules are used, and in the second test, the number of
modules is random.

4.1.1.1 Non Optimized Results of Ear with 3 Modules
In this test, it is established that 3 was the number of modules, the variables that
were established randomly were the percentage of images used and the images,
which would be used for training.

The best 5 results for the ear are shown in Table 1. In this test, it can be noticed
that when the number of data per module is varied the rate of recognition varies.

It can be noticed that in the training # 4, that when the images 2, 3, and 4 are
used a rate of recognition of 100% is obtained.

4.1.1.2 Non Optimized Results of Ear with Different Number of Modules
In this test, the number of modules, the percentage of images and the images,
which would be used for training were established randomly. The 6 best results for
the ear with different number of modules are shown in Table 2. In this test, it can
notice that when the number of data per module and the number of sub modules
are varied the rate of recognition varies.

It can be noticed that in the training # 1, that when the images 1, 2, and 3 are
used a rate of recognition of 100% is obtained.

Multi-Objective Hierarchical Genetic Algorithm 171

Table 1 The best results for the ear (Non Optimized)

Training Images
for training

Persons
per module

Recognition
Rate

T1O1 (1,3 and 4)
Module # 1 (1 to 6)

Module # 2 (7 to 14)
Module # 3 (15 to 77)

67.53%
(52/77)

T1O2 (2 and 4)
Module # 1 (1 to 38)
Module # 2 (39 to 70)
Module # 3 (71 to 77)

77.92%
(120/154)

T1O3 (1 and3)
Module # 1 (1 to 9)

Module # 2 (10 to 44)
Module # 3 (45 to 77)

83.11%
(128/154)

T1O4
(2, 3 and

4)

Module # 1 (1 to 40)
Module # 2 (41 to 50)
Module # 3 (51 to 77)

100% (77/77)

T1O5 (2 and 3)
Module # 1 (1 to 23)
Module # 2 (24 to 47)
Module # 3 (48 to 77)

93.50%
(144/154)

Table 2 The best results for the ear (Non Optimized)

Training Images
for training

Persons
per module

Recognition
Rate

T2O1 (1,2 and 3)

Mod. 1 (1 to 2)
Mod. 2 (3 to 11)
Mod. 3 (12 to 25)
Mod. 4 (26 to 36)
Mod. 5 (37 to 43)
Mod. 6 (44 to 58)
Mod. 7 (59 to 62)
Mod. 8 (63 to 77)

100%
(77/77)

T2O2 (2 and 3)

Mod. 1 (1 to 5)
Mod. 2 (6 to 13)
Mod. 3 (14 to 49)
Mod. 4 (50 to 52)
Mod. 5 (53 to 77)

89.61%
(138/154)

T2O3 (2 and 4)
Mod. 1 (1 to 11)
Mod. 2 (12 to 51)
Mod. 3 (52 to 77)

81.16%
(125/154)

T2O4 (2 and 4)

Mod. 1 (1 to 18)
Mod. 2 (19 to 30)
Mod. 3 (31 to 45)
Mod. 4 (46 to 51)
Mod. 5 (52 to 59)
Mod. 6 (60 to 77)

83.11%
(128/154)

T2O5 (3 and 4)

Mod. 1 (1 to 6)
Mod. 2 (7 to 14)
Mod. 3 (15 to 18)
Mod. 4 (19 to 26)
Mod. 5 (27 to 42)
Mod. 6 (43 to 51)
Mod. 7 (52 to 58)
Mod. 8 (59 to 65)
Mod. 9 (66 to 77)

87.01%
(134/154)

172 D. Sánchez and P. Melin

4.1.2 Non Optimized Results of Voice

In this section, the non optimized results of ear are shown. Two tests are pre-
sented, in the first test, 3 modules are used, and in the second test, the number of
modules is random.

4.1.2.1 Non Optimized Results of Voice with 3 Modules
In this test, it is established that 3 was the number of modules, the variables that
were established randomly were the percentage of images used and the images,
which would be used for training. The 6 best results for the ear with 3 modules are
shown in Table 3.

It can be noticed that in the training # 3, that when the voices 1, 3, 5, 7, 8 and
10 are used, a rate of recognition of 96.75% using 8 sub modules is obtained.

Table 3 The best results for voice (Non Optimized)

Training Voices
for training

Persons
per module

Recognition
Rate

T1V1
53%

(1,3,6,7 and 9)

Module # 1 (1 to 22)
Module # 2 (23 to 57)
Module # 3 (58 to 77)

278/385
72.20%

T1V2
48%

 (1,2,5,6 and 7)

Module # 1 (1 to 39)
Module # 2 (40 to 68)
Module # 3 (69 to 77)

260/385
67.53%

T1V3
35%

(2,5,8 and 9)

Module # 1 (1 to 36)
Module # 2 (37 to 68)
Module # 3 (69 to 77)

401/462
86.79%

T1V4
46%

(3,5,6,7 and 10)

Module # 1 (1 to 40)
Module # 2 (41 to 67)
Module # 3 (68 to 77)

347/385
90.12%

T1V5 59%

(1,3,5,7,8 and 10)
Module # 1 (1 to 7)

Module # 2 (8 to 39)
Module # 3 (40 to 77)

298/308
96.75%

4.1.2.2 Non Optimized Results of Voice with Different Number of Modules
In this test, the number of modules, the percentage of images and the images,
which would be used for training were established randomly.

The best 5 results for the voice are shown in Table 4. In this test, we can no-
tice that when the number of data per module is varied the rate of recognition
varies.

It can be noticed that in the training # 3, that when the voices 1, 3, 5, 7, 8
and 10 are used, a rate of recognition of 96.75% using 8 sub modules is
obtained.

Multi-Objective Hierarchical Genetic Algorithm 173

Table 4 The best results for voice (Non Optimized)

Training Voices
for training

Persons
per module

Recognition
Rate

T2V1
53%

(4,5,7,9,10)

Mod. # 1 (1 a 14)
Mod. # 2 (15 a 26)
Mod. # 3 (27 a 38)
Mod. # 4 (39 a 41)
Mod. # 5 (42 a 45)
Mod. # 6 (46 a 62)
Mod. # 7 (63 a 77)

360/385
93.50%

T2V2
81%

(1,2,3,4,5,6,8,10)

Mod. # 1 (1 a 11)
Mod. # 2 (12 a 40)
Mod. # 3 (41 a 77)

112/154
72.72%

T2V3
9%
(4)

Mod. # 1 (1 a 16)
Mod. # 2 (17 a 32)
Mod. # 3 (33 a 45)
Mod. # 4 (46 a 64)
Mod. # 5 (65 a 77)

534/693
77.05%

T2V4
71%

(1,2,3,4,5,6,8)

Mod. # 1 (1 a 15)
Mod. # 2 (16 a 36)
Mod. # 3 (37 a 53)
Mod. # 4 (54 a 58)
Mod. # 5 (59 a 63)
Mod. # 6 (64 a 77)

201/231
87.01%

T2V5
65%

(1,3,4,7,8,9,10)

Mod. # 1 (1 a 3)
Mod. # 2 (4 a 17)

Mod. # 3 (18 a 19)
Mod. # 4 (20 a 28)
Mod. # 5 (29 a 33)
Mod. # 6 (34 a 53)
Mod. # 7 (54 a 60)
Mod. # 8 (61 a 77)

226/231
97.83%

4.2 Optimized Results

These tests make use of the multi-objective hierarchical genetic algorithm, this
MOHGA allows the optimization of parameters of the modular neural network,
such as number of sub modules, percentage of data for training, number of hid-
den layers, number of neurons per hidden layer, error goal and learning algo-
rithms per module. The solutions that have a recognition rate greater than 97%
are taken, and of the resulting set, the solution with lower percentage of data is
the best for us.

174 D. Sánchez and P. Melin

4.2.1 Optimized Results of the Ear

The main parameters used in this evolution are shown in Table 5 and the Pareto
optimal set found for the ear are shown in Figure 14.

Table 5 Main parameters of the MOHGA

Memory
Size

Non-Replaceable
Memory

Replaceable
Memory

Working
Memory

Pareto
Optimal

Duration

50 25 25 5 7 12:48:08

Fig. 14 Pareto optimal set for the evolution of the ear

The solutions found in the Pareto optimal set are shown in Table 6.

Table 6 The best results for the ear (Pareto optimal set)

Solution Num. of
Modules

%
Of data

Total rec. Error

SO1 5 69% 100% 0

SO2 6 68% 97.40% 0.0260

SO3 5 39% 94.80% 0.0519

SO4 5 25% 75.75% 0.2424

SO5 9 17% 74.02% 0.2597

SO6 9 17% 74.02% 0.2597

SO7 5 10% 59.30% 0.4069

Multi-Objective Hierarchical Genetic Algorithm 175

The different architectures found by the proposed MOHGA are shown in
Table 7.

Table 7 The best result of the ear (Optimized)

Solu-
tion

% and
images

Num. Hidden layers
and Num. of neurons

Persons
per module

Rec.
Rate

Error

SO1
69%

(2,3 and
4)

3(173,135,44)
2(153,120)

4(72,184,96,116)
2(197,166)

3(164,22,94)

Module # 1 (1 to 6)
Module # 2 (7 to 13)

Module # 3 (14 to 27)
Module # 4 (28 to 53)
Module # 5(54 to 77)

77/77
100%

0

SO2
68% (1,2

and 3)

2(41,23)
3(129,181,30)

5(82,93,68,140,33)
4(109,113,131,178)

1(27)
1(90)

Module # 1 (1 a 19)
Module # 2 (20 a 21)
Module # 3 (22 a 42)
Module # 4 (43 a 60)
Module # 5 (61 a 68)
Module # 6 (69 a 77)

75/77
97.40%

0.0260

SO3
39%

(2 and 3)

4(137,117,163,30)
4(198,94,151,100)
4(59,198,102,133)

3(170,140,173)
3(113,140,56)

Module # 1 (1 a 18)
Module # 2 (19 a 39)
Module # 3 (40 a 57)
Module # 4 (58 a 64)
Module # 5 (65 a 77)

146/154
94.80%

0.0519

SO4
25%
(1)

3(61,133,146)
1(114)

4(82,169,30,123)
2(64,184)

2(129,150)

Module # 1 (1 a 17)
Module # 2 (18 a 32)
Module # 3 (33 a 48)
Module # 4 (49 a 60)
Module # 5 (61 a 77)

175/231
75.75%

0.2424

SO5
17%
(1)

2(76,169)
1(59)

5(135,103,176,146,198)
3(175,133,77)

4(128,177,123,167)
2(167,111)
2(180,171)

4(148,148,22,58)
4(37,82,86,109)

Module # 1 (1 a 12)
Module # 2 (13 a 20)
Module # 3 (21 a 25)
Module # 4 (26 a 29)
Module # 5 (30 a 33)
Module # 6 (34 a 48)
Module # 7 (49 a 58)
Module # 8 (59 a 62)
Module # 9 (63 a 77)

171/231
74.02%

0.2597

SO6
17%
(4)

2(76,169)
1(59)

5(135,103,176,146,198)
3(175,133,77)

2(128,177)
4(167,111,88,81)

2(180,171)
3(148,148,22)

2(37,82)

Module # 1 (1 a 10)
Module # 2 (11 a 18)
Module # 3 (19 a 23)
Module # 4 (24 a 26)
Module # 5 (27 a 35)
Module # 6 (36 a 41)
Module # 7 (42 a 57)
Module # 8 (58 a 62)
Module # 9 (63 a 77)

171/231
74.02%

0.2597

176 D. Sánchez and P. Melin

Table 7 (continued)

SO7
10%
(4)

2(146,190)
2(80,60)

3(129,170,72)
3(46,36,181)

1(112)

Module # 1 (1 a 25)
Module # 2 (26 a 42)
Module # 3 (43 a 65)
Module # 4 (66 a 68)
Module # 5 (69 a 77)

137/231
59.30%

0.4069

4.2.2 Optimized Results of the Voice

The main parameters used in this evolution are shown in Table 8 and the Pareto
Optimal set found for the voice are shown in Figure 15.

Fig. 15 Pareto optimal set of the evolution of voice

Table 8 Main parameters of the MOHGA

Memory
Size

Non-Replaceable
Memory

Replaceable
Memory

Working
Memory

Pareto
Optimal

Duration

50 25 25 5 9 01:51:12

The solutions found in the Pareto optimal set are shown in Table 9.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

70

80

Objective 1.- Error

O
bj

ec
tiv

e
2.

-
P

er
ce

nt
ag

e
of

 D
at

a

Multi-Objective Hierarchical Genetic Algorithm 177

Table 9 The best results for voice (Pareto Optimal)

Solution Num. of
Modules

%
Of data

Total rec. Error

SV1 5 79% 98.05% 0.0195
SV2 9 49% 97.40% 0.0260
SV3 9 44% 96.96% 0.0303

SV4 5 38% 95.88% 0.0411
SV5 10 19% 89.44% 0.1055

SV6 10 19% 89.44% 0.1055
SV7 7 17% 83.76% 0.1623

SV8 7 7% 74.45% 0.2554
SV9 6 4% 73.73% 0.2626

The different architectures found by the proposed MOHGA are shown in Table 10.

Table 10 The best result of the voice (Optimized)

Solu-
tion

% and
images

Num. Hidden layers
and Num. of neurons

Persons
per module

Rec.
Rate

Error

SV1

79%
(1,2,4,5,
6,8,9
and 10)

3(171,47,23)
1(196)

4(131,197,60,38)
3(149,102,124)

2(154,93)

Module # 1 (1 a 19)
Module # 2 (20 a 46)
Module # 3 (47 a 59)
Module # 4 (60 a 73)
Module # 5 (74 a 77)

151/154
98.05%

0.0195

SV2
49%

(1,3,8,9
and 10)

4 (57,144,128,83)
4 (156,189,158,193)

5(123,105,169,110,105)
1(89)

3(78,143,62)
2(101,38)

4(22,60,91,173)
4(81,128,139,118)
4(145,28,187,32)

Module # 1(1 a 14)
Module # 2(15 a 35)
Module # 3(36 a 46)
Module # 4(47 a 50)
Module # 5(51 a 53)
Module # 6(54 a 55)
Module # 7(56 a 64)
Module # 8(65 a 72)
Module # 9(73 a 77)

375/385
97.40%

0.0260

SV3
44%

(2,5,9
and 10)

4 (36,178,109,162)
4 (165,106,128,83)

3 (83,94,118)
2 (139,60)

3 (68,195,127)
4 (68,61,103,181)
4 (61,137,59,187)

3 (46,87,76)
5 (82,47,189,32,129)

Module # 1(1 a 8)
Module # 2(9 a 19)

Module # 3(20 a 26)
Module # 4(27 a 34)
Module # 5(35 a 43)
Module # 6(44 a 54)
Module # 7(55 a 57)
Module # 8(58 a 66)
Module # 9(67 a 77)

448/462
96.96%

0.0303

178 D. Sánchez and P. Melin

Table 10 (continued)

SV4
38%

(2,3,8
and 10)

1 (92)
3 (183,52,119)

1 (21)
3 (192,92,93)
3 (184,147,61)

Module # 1(1 a 16)
Module # 2(17 a 36)
Module # 3(37 a 38)
Module # 4(39 a 59)
Module # 5(60 a 77)

443/462
95.88%

0.0411

SV5
19%

(1 and
9)

3(139,117,143)
5(112,23,178,55,59)

3(104,130,81)
2(130,191)

3(194,80,132)
3(138,87,141)

3(106,113,162)
3(176,145,108)

4(132,67,69,116)
3(98,132,179)

Module # 1(1 a 9)
Module # 2(10 a 11)
Module # 3(12 a 13)
Module # 4(14 a 17)
Module # 5(18 a 35)
Module # 6(36 a 43)
Module # 7(44 a 60)
Module # 8(61 a 67)
Module # 9(68 a 74)

Module # 10(75 a 77)

551/616
89.44%

0.1055

SV6
19%

(2 and
8)

2(36,178)
1(165)

3(83,94,118)
2(139,60)

4(68,195,127,186)
2(68,61)

4(61,137,59,187)
2(46,87)
2(82,47)

4(109,81,68,61)

Module # 1(1 a 3)
Module # 2(4 a 10)

Module # 3(11 a 26)
Module # 4(27 a 29)
Module # 5(30 a 34)
Module # 6(35 a 48)
Module # 7(49 a 59)
Module # 8(60 a 71)
Module # 9(72 a 73)

Module # 10(74 a 77)

551/616
89.44%

0.1055

SV7
17%

 (1 and
5)

4(117,141,110,127)
3(171,149,189)

3(44,48,62)
3(148,158,158)

5(109,130,134,129,150)
2(54,176)

3(95,77,152)

Module # 1(1 a 8)
Module # 2(9 a 15)

Module # 3(16 a 34)
Module # 4(35 a 44)
Module # 5(45 a 55)
Module # 6(56 a 58)
Module # 7(59 a 77)

516/616
83.76%

0.1623

SV8
7%
(2)

4(107,74,187,179)
4(39,79,134,133)
4(68,177,98,52)

2(97,127)
1(90)

4(180,59,175,182)
4(149,158,93,199)

Module # 1(1 a 20)
Module # 2(21 a 38)
Module # 3(39 a 47)
Module # 4(48 a 50)
Module # 5(51 a 53)
Module # 6(54 a 68)
Module # 7(69 a 77)

516/693
74.45%

0.2554

SV9
4%
(7)

1(136)
2(87,88)

5(105,73,144,67,87)
1(183)

3(37,124,97)
2(47,82)

Module # 1(1 a 17)
Module # 2(18 a 19)
Module # 3(20 a 44)
Module # 4(45 a 47)
Module # 5(48 a 67)
Module # 6(68 a 77)

511/693
73.73%

0.2626

Multi-Objective Hierarchical Genetic Algorithm 179

4.3 Comparison among Non-optimized and Optimized Results

In this section, a comparison among the different results is performed. The best re-
sults of each test are presented in order to better analyze the results.

4.3.1 Comparison among Non-optimized and Optimized Results of Ear

The best results of ear in the different tests don't vary, a recognition rate of 100%
is obtained in each test, these results, using 3 images for the training phase, it
means, only using 1 image for the testing phase. The best results of each test are
presented in Table 11 to 13.

Table 11 The best results for the ear (Non Optimized)

Training Images
for training

Persons
per module

Recognition
Rate

T1O4 (2, 3 and 4)
Module # 1 (1 to 40)

Module # 2 (41 to 50)
Module # 3 (51 to 77)

100%
(77/77)

Table 12 The best results for the ear (Non Optimized)

Training Images
for training

Persons
per module

Recognition
Rate

T2O1 (1,2 and 3)

Mod. 1 (1 to 2)
Mod. 2 (3 to 11)
Mod. 3 (12 to 25)
Mod. 4 (26 to 36)
Mod. 5 (37 to 43)
Mod. 6 (44 to 58)
Mod. 7 (59 to 62)
Mod. 8 (63 to 77)

100%
(77/77)

Table 13 The best result of the ear (Optimized)

Num.
of

Mod.

% and
images

Num. Hidden lay-
ers and Num. of

neurons

Persons
per module

Rec.
Rate

Error

SO5
69%
(2,3

and 4)

3(173,135,44)
2(153,120)

4(72,184,96,116)
2(197,166)

3(164,22,94)

Module # 1 (1 to 6)
Module # 2 (7 to 13)

Module # 3 (14 to 27)
Module # 4 (28 to 53)
Module # 5(54 to 77)

77/77
100%

0

4.3.2 Comparison among Non-optimized and Optimized Results of Voice

The best results of each test are presented in Table 14 to 16. The best result for us
is presented in Table 16, this is the best result for us, because a recognition rate of

180 D. Sánchez and P. Melin

97.40% is obtained using only 5 samples of voice, less images than the best result
presented in Table 15.

Table 14 The best results for voice (Non Optimized)

Training Voices
for training

Persons
per module

Recognition
Rate

T1V5
59%

(1,3,5,7,8 and 10)

Module # 1 (1 to 7)
Module # 2 (8 to 39)

Module # 3 (40 to 77)

298/308
96.75%

Table 15 The best results for voice (Non Optimized)

Training Voices
for training

Persons
per module

Recognition
Rate

T2V5
65%

(1,3,4,7,8,9,10)

Mod. # 1 (1 a 3)
Mod. # 2 (4 a 17)

Mod. # 3 (18 a 19)
Mod. # 4 (20 a 28)
Mod. # 5 (29 a 33)
Mod. # 6 (34 a 53)
Mod. # 7 (54 a 60)
Mod. # 8 (61 a 77)

226/231
97.83%

Table 16 The best result of the voice (Optimized)

Num.
of

Mod.

% and
voices

Num. Hidden layers
and Num. of neu-

rons

Persons
per module

Rec.
Rate

Error

SV9
49%

(1,3,8,9
and 10)

4 (57,144,128,83)
4 (156,189,158,193)
5(123,105,169,110,

105)
1(89)

3(78,143,62)
2(101,38)

4(22,60,91,173)
4(81,128,139,118)
4(145,28,187,32)

Module # 1(1 to 14)
Module # 2(15 to 35)
Module # 3(36 to 46)
Module # 4(47 to 50)
Module # 5(51 to 53)
Module # 6(54 to 55)
Module # 7(56 to 64)
Module # 8(65 to 72)
Module # 9(73 to 77)

375/385
97.40%

0.0260

4.4 Fuzzy Integration

Seven cases were established for combining different training of ear and voice, for
non-optimized and optimized results. In column 2 and 3 are shown how the train-
ings were combined each other. The different results obtained with the different
fuzzy integrator already described are shown in Table 17.

Multi-Objective Hierarchical Genetic Algorithm 181

Table 17 Comparison among the Fuzzy Integrator #1 to #4

Case Ear Voice Fuzzy in-
tegrator #1

Fuzzy in-
tegrator #2

Fuzzy in-
tegrator #3

Fuzzy in-
tegrator #4

1 T2O4
83.11%

SV4
95.88%

446/462
97.61%

445/462
96.32%

446/462
96.53%

445/462
96.32%

2 SO1
100%

T2V5
97.835

229/231
99.13%

230/231
99.56%

230/231
99.56%

230/231
99.56%

3 SO7
59.30%

T2V2
67.53%

299/385
77.66%

305/385
79.22%

304/385
78.96%

307/385
79.74%

4 T2O3
81.16%

SV9
73.73%

620/693
89.46%

622/693
89.75%

621/693
89.61%

620/693
89.46%

5 T1O1
67.53%

SV2
97.40%

374/385
97.14%

373/385
96.88%

373/385
96.88%

373/385
96.88%

6 T1O5
93.50%

T1V4
90.12%

374/385
97.14%

373/385
96.88%

374/385
97.14%

374/385
97.14%

7 SO7
97.40

SV8
74.45%

661/693
95.38%

671/693
96.82%

669/693
96.53%

671/693
96.82%

Different results are obtained with the fuzzy integrators, these results are consi-

dered good results because the fuzzy integrator provides good results even when
the modular neural networks (ear and voice) are not the best trainings o evolu-
tions. These results can be improved when a hierarchical genetic algorithm will be
developed.

5 Conclusions

A new method for combining modular neural networks with a granular approach
was proposed. The main goal of this work was providing the modular neural net-
works with the following characteristics: allow changing the number of modules,
data per module, and percentage of data for training, all of that with the goal of
obtaining a better rate of recognition.

A multi-objective hierarchical genetic algorithm was developed for optimiza-
tion of some parameters of this model of modular neural networks, those parame-
ters are the number of modules, percentage of data for training, goal error per
module, number of hidden layers per module and their respective neurons. This
MOHGA is able to obtain the best modular neural network with the lowest error
of recognition and that uses the lowest percentage of data for the training phase.

In this work when the tests with the ear are compared, a significant difference
does not exist, because the database has few images per person, but when a com-
parison is performed among the non-optimized and optimized results in the case of
the voice, a better recognition rate is obtained using less data in the training phase.

182 D. Sánchez and P. Melin

Finally, fuzzy integrators were used for combining the responses of the
modular neural networks. In this work, four non-optimized fuzzy integrators were
proposed to perform this part of the proposed method. Each fuzzy integrator has
different parameters such as number of rules, number, type and parameters of
membership functions, because the behavior of each integrator wanted to be ob-
served. Good results were obtained, even when the results of both modular neural
networks (ear and voice) were not the best. The results in the integration phase can
be improved if a hierarchical genetic algorithm is developed (as we presented in
the general architecture).

References

1. Abiyev, R., Altunkaya, K.: Personal Iris Recognition Using Neural Network. Near
East University, Department of Computer Engineering, Lefkosa, North Cyprus (April
2008)

2. Abraham, A., Jain, L., Goldberg, R.: Evolutionary Multiobjective Optimization, 1st
edn. Springer (2005); Softcover reprint of hardcover

3. Auda, G., Kamel, M.S.: Modular Neural Networks a Survey. Int. J. Neural Syst. 9(2),
129–151 (1999)

4. Azamm, F.: Biologically Inspired Modular Neural Networks. PhD thesis, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia (2000)

5. Bajpai, S., Jain, K., Jain, N.: Artificial Neural Networks. International Journal of Soft
Computing and Engineering (IJSCE) 1(NCAI 2011), 2231–2307 (2011) ISSN: 2231-
2307

6. Bargiela, A., Pedrycz, W.: The roots of granular computing. In: IEEE International
Conference on Granular Computing (GrC), pp. 806–809 (2006)

7. Castillo, O., Melin, P.: Soft Computing for Control of Non-Linear Dynamical Sys-
tems. Springer, Heidelberg (2001)

8. Castillo, O., Melin, P.: Type-2 Fuzzy Logic Theory and Applications, pp. 29–43.
Springer, Berlin (2008)

9. Castro, J.R., Castillo, O., Melin, P.: An Interval Type-2 Fuzzy Logic Toolbox for Con-
trol Applications. In: FUZZ-IEEE 2007, pp. 1–6 (2007)

10. Castro, J.R., Castillo, O., Melin, P., Rodriguez-Diaz, A.: Building Fuzzy Inference
Systems with a New Interval Type-2 Fuzzy Logic Toolbox. Transactions on Computa-
tional Science 1, 104–114 (2008)

11. Coello Coello, C.A., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algorithms
for Solving Multi-Objective Problems, 2nd edn. Springer (2007)

12. Coello Coello, C.A., Toscano Pulido, G.: A Micro-Genetic Algorithm for Multiobjec-
tive Optimization. In: EMO, pp. 126–140 (2001)

13. Coley, A.: An Introduction to Genetic Algorithms for Scientists and Engineers. Wspc
(Har/Dskt edition) (1999)

14. Database Ear Recognition Laboratory from the University of Science & Technology
Beijing (USTB). Found on the Web page: http://www.ustb.edu.cn/resb/
en/index.htm (accessed September 21, 2009)

15. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization:
Formulation, Discussion and Generalization. In: ICGA 1993, pp. 416–423 (1993)

Multi-Objective Hierarchical Genetic Algorithm 183

16. Giunchglia, F., Walsh, T.: A theory of abstraction. Artificial Intelligence 56, 323–390
(1992)

17. Han, J., Dong, J.: Perspectives of Granular Computing in Software Engineering. In:
GrC 2007, pp. 66–71 (2007)

18. Haupt, R., Haupt, S.: Practical Genetic Algorithms, 2nd edn., pp. 42–43. Wiley-
Interscience (2004)

19. Hidalgo, D., Castillo, O., Melin, P.: Type-1 and type-2 fuzzy inference systems as in-
tegration methods in modular neural networks for multimodal biometry and its optimi-
zation with genetic algorithms. Inf. Sci. 179(13), 2123–2145 (2009)

20. Hidalgo, D., Castillo, O., Melin, P.: Optimization with genetic algorithms of modular
neural networks using interval type-2 fuzzy logic for response integration: The case of
multimodal biometry. In: IJCNN 2008, pp. 738–745 (2008)

21. Hidalgo, D., Castillo, O., Melin, P.: Type-1 and Type-2 Fuzzy Inference Systems as
Integration Methods in Modular Neural Networks for Multimodal Biometry and Its
Optimization with Genetic Algorithms. Soft Computing for Hybrid Intelligent Sys-
tems, 89–114 (2008)

22. Hidalgo, D., Melin, P., Licea, G., Castillo, O.: Optimization of Type-2 Fuzzy Integra-
tion in Modular Neural Networks Using an Evolutionary Method with Applications in
Multimodal Biometry. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds.) MICAI
2009. LNCS, vol. 5845, pp. 454–465. Springer, Heidelberg (2009)

23. Hobbs, J.: Granularity. In: Proc. of IJCAI, pp. 432–435 (1985)
24. Huang, J., Wechsler, H.: Eye Location Using Genetic Algorithm. In: Second Interna-

tional Conference on Audio and Video-Based Biometric Person Authentication, pp.
130–135 (1999)

25. Jang, J., Sun, C., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice Hall, New
Jersey (1997)

26. Khan, A., Bandopadhyaya, T., Sharma, S.: Classification of Stocks Using Self Orga-
nizing Map. International Journal of Soft Computing Applications 4, 19–24 (2009)

27. Lin, T.Y., Granular computing, announcement of the BISC Special Interest Group on
Granular Computing (1997)

28. Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition Using Soft
Computing: An Evolutionary Approach for Neural Networks and Fuzzy Systems, 1st
edn., pp. 119–122. Springer (2005)

29. Melin, P., Kacprzyk, J., Pedrycz, W. (eds.): Bio-inspired Hybrid Intelligent Systems
for Image Analysis and Pattern Recognition. SCI, vol. 256. Springer, Heidelberg
(2009)

30. Melin, P., Mendoza, O., Castillo, O.: An improved method for edge detection based on
interval type-2 fuzzy logic. Expert Syst. Appl. 37(12), 8527–8535 (2010)

31. Melin, P., Mendoza, O., Castillo, O.: Face Recognition with an Improved Interval
Type-2 Fuzzy Logic Sugeno Integral and Modular Neural Networks. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part A 41(5), 1001–1012 (2011)

32. Melin, P., Sánchez, D., Castillo, O.: Genetic optimization of modular neural networks
with fuzzy response integration for human recognition. Information Sciences 197, 1–
19 (2012)

33. Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Direc-
tions. Prentice-Hall, Upper Saddle River (2001)

34. Mendoza, O., Melin, P., Castillo, O.: Interval type-2 fuzzy logic and modular neural
networks for face recognition applications. Appl. Soft Comput. 9(4), 1377–1387 (2009)

184 D. Sánchez and P. Melin

35. Mendoza, O., Melin, P., Licea, G.: A hybrid approach for image recognition combin-
ing type-2 fuzzy logic, modular neural networks and the Sugeno integral. Inf.
Sci. 179(13), 2078–2101 (2009)

36. Mitchell, M.: An Introduction to Genetic Algorithms, 3rd edn. A Bradford Book
(1998)

37. Moreno, B., Sanchez, A., Velez, J.F.: On the Use of Outer Ear Images for Personal
Identification in Security Applications. In: IEEE 33rd Annual International Carnahan
Conference on Security Technology, pp. 469–476 (1999)

38. Nawa, N., Takeshi, F., Hashiyama, T., Uchikawa, Y.: A study on the discovery of re-
levant fuzzy rules using pseudobacterial genetic algorithm. IEEE Transactions on In-
dustrial Electronics 46(6), 1080–1089 (1999)

39. Okamura, M., Kikuchi, H., Yager, R., Nakanishi, S.: Character diagnosis of fuzzy sys-
tems by genetic algorithm and fuzzy inference. In: Proceedings of the Vietnam-Japan
Bilateral Symposium on Fuzzy Systems and Applications, Halong Bay, Vietnam, pp.
468–473 (1998)

40. Pawlak, Z.: Granularity of knowledge, indiscernibility and rough sets. In: Proceedings
of IEEE International Conference on Fuzzy Systems, pp. 106–110 (1998)

41. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences
11, 341–356 (1982)

42. Sánchez, D., Melin, P.: Modular Neural Network with Fuzzy Integration and Its Opti-
mization Using Genetic Algorithms for Human Recognition Based on Iris, Ear and
Voice Biometrics. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for
Recognition Based on Biometrics. SCI, vol. 312, pp. 85–102. Springer, Heidelberg
(2010)

43. Santos, J.M., Alexandre, L.A., Marques de Sá, J.: Modular Neural Network Task De-
composition Via Entropic Clustering. In: ISDA (1), pp. 62–67 (2006)

44. Segovia, J., Szczepaniak, P.S., Niedzwiedzinski, M.: E-Commerce and Intelligent Me-
thods, 1st edn., p. 181. Physica-Verlag (2002)

45. Tang, K.S., Man, K.F., Kwong, S., Liu, Z.F.: Minimal Fuzzy Memberships and Rule
Using Hierarchical Genetic Algorithms. IEEE Trans. Ind. Electron. 45(1), 162–169
(1998)

46. Wang, C., Soh, Y.C., Wang, H., Wang, H.: A Hierarchical Genetic Algorithm for Path
Planning in a Static Environment with Obstacles. In: IEEE CCECE 2002 Canadian
Conference on Electrical and Computer Engineering, vol. 3, pp. 1652–1657 (2002)

47. Wang, W., Bridges, S.: Genetic Algorithm Optimization of Membership Functions for
Mining Fuzzy Association Rules. Department of Computer Science Mississippi State
University (March 2, 2000)

48. Worapradya, K., Pratishthananda, S.: Fuzzy supervisory PI controller using hierar-
chical genetic algorithms. In: 5th Asian Control Conference, vol. 3, pp. 1523–1528
(2004)

49. Yao, J.T.: A ten-year review of granular computing. In: Proceedings of the 3rd IEEE
International Conference on Granular Computing (GrC), pp. 734–739 (2007)

50. Yao, J.T.: Information granulation and granular relationships. In: Proceedings of 2005
IEEE Conference on Granular Computing (GrC), pp. 326–329 (2005)

51. Yao, Y.Y.: A Partition Model of Granular Computing. In: Peters, J.F., Skowron, A.,
Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transac-
tions on Rough Sets I. LNCS, vol. 3100, pp. 232–253. Springer, Heidelberg (2004)

52. Yao, Y.Y.: Granular computing: basic issues and possible solutions. In: Proceedings
of the 5th Joint Conferences on Information Sciences, pp. 186–189 (2000)

Multi-Objective Hierarchical Genetic Algorithm 185

53. Yao, Y.Y.: On Modeling Data Mining with Granular Computing. In: 25th Internation-
al Computer Software and Applications Conference (COMPSAC), pp. 638–649
(2001)

54. Yao, Y.Y.: Perspectives of granular computing. In: IEEE International Conference on
Granular Computing (GrC), pp. 85–90 (2005)

55. Yu, F., Pedrycz, W.: The design of fuzzy information granules: Tradeoffs between
specificity and experimental evidence. Applied Soft Computing 9(1), 264–273 (2009)

56. Zadeh, L.A.: Fuzzy Sets. Journal of Information and Control 8, 338–353 (1965); Jang,
J., Sun, C., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice Hall, New Jersey
(1997)

57. Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R., Ya-
ger, R. (eds.) Advances in Fuzzy Set Theory amd Applications, pp. 3–18. North-
Holland Publishing Co. (1979)

58. Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in
human reasoning and fuzzy logic. Fuzzy Sets and Systems 19, 111–127 (1997)

P. Melin, O. Castillo (Eds.): Soft Computing Appli. in Optimization, STUDFUZZ 294, pp. 187–213.
DOI: 10.1007/978-3-642-35323-9_8 © Springer-Verlag Berlin Heidelberg 2013

Type-2 Fuzzy Weight Adjustment
for Backpropagation in Prediction Time Series
and Pattern Recognition

Fernando Gaxiola, Patricia Melin, and Fevrier Valdez

Tijuana Institute of Technology, Tijuana México
fergaor_29@hotmail.com, pmelin@tectijuana.mx,
fevrier@tectijuana.edu.mx

Abstract. In this paper a genetic algorithm is used to optimize the three neural
networks in an ensemble model. Genetic algorithms are also used to optimize the
two type-2 fuzzy systems that work in the backpropagation learning method with
type-2 fuzzy weight adjustment. The mathematical analysis of the proposed
learning method architecture and the adaptation of type-2 fuzzy weights are
presented. The proposed method is based on recent methods that handle weight
adaptation and especially fuzzy weights. In this work an ensemble neural network
of three neural networks and average integration to obtain the final result is
presented. The proposed approach is applied to a case of time series prediction and
to pattern recognition.

1 Introduction

This paper is focused on the optimization of a neural network ensemble with type-
2 fuzzy weights. The optimization is performed in the number of neurons in the
hidden layer and in the type-2 fuzzy inference systems used in the hidden and
output layer to obtain the type-2 fuzzy weights of each neural network forming the
ensemble.

The proposed approach is applied to time series prediction for the Mackey-
Glass series. The objective is obtaining the minimum prediction error for the
data of the time series. The approach is also applied to a problem of pattern
recognition.

We used a supervised neural network, because this type of network is the most
commonly used in the areas of time series prediction and pattern recognition.

This neural network is based on supervised learning, where the network
operates by having both the correct input and output, and the network adjusts its
weights to try in minimize the error of the calculated output.

The research is based in working with the weights of a neural network in a
different way to the traditional approach, which is important because this affects
the performance of the learning process of the neural network.

188 F. Gaxiola, P. Melin, and F. Valdez

This conclusion is based on the use of neural networks of this type, where some
research works have shown that the training of neural networks for the same
problem initialized with different weights or its adjustment in a different way, but
at the end is possible to reach a similar result.

The next section presents a background about modifications of the
backpropagation algorithm and different management strategies of weights in
neural networks, and basic concepts of neural networks. Section 3 explains the
proposed method and the problem description. Section 4 describes the
optimization of the ensemble neural network with type-2 fuzzy weights proposed
in this paper. Section 5 presents the simulation results for the proposed method.
Finally, in section 6, some conclusions are presented.

2 Background and Basic Concepts

In this section a brief review of basic concepts is presented.

2.1 Neural Network

An artificial neural network (ANN) is a distributed computing scheme based on
the structure of the nervous system of humans. The architecture of a neural
network is formed by connecting multiple elementary processors, this being an
adaptive system that has an algorithm to adjust their weights (free parameters) to
achieve the performance requirements of the problem based on representative
samples [8][22].

The most important property of artificial neural networks is their ability to learn
from a training set of patterns, i.e. they are able to find a model that fits the data
[9][31].

The artificial neuron consists of several parts (see Fig. 1). On one side are the
inputs, weights, the summation, and finally the transfer function. The input values
are multiplied by the weights and added: ∑ . This function is completed with
the addition of a threshold amount i. This threshold has the same effect as an input
with value -1. It serves so that the sum can be shifted left or right of the origin.
After addition, we have the function f applied to the sum, resulting on the final
value of the output, also called [28], obtaining the following equation: =
Where f may be a nonlinear function with a binary output + -1, a linear function f
(z) = z, or as sigmoidal logistic function:

 () = . (2)

(1)

Type-2 Fuzzy Weight Adjustment for Backpropagation 189

Fig. 1 Schematics of an artificial neuron

2.2 Overview of Related Works

The backpropagation algorithm and its variations are the most useful basic
training methods in the area of neural networks. However, these algorithms are
usually too slow for practical applications.

When applying the basic backpropagation algorithm to practical problems, the
training time can be very high. In the literature we can find that several methods
have been proposed to accelerate the convergence of the algorithm.

There exists many works about adjustment or managing of weights but only the
most important and relevant for this research will be considered here [4] [10] [35]:

Momentum Method.- Rumelhart, Hinton and Williams suggested adding in the
increased weights expression a momentum term β, to filter the oscillations that can
be formed at a higher learning rate that lead to great change in the weights [28]
[14].

Adaptive Learning Rate.- Works by calculating the initial output of the network
and the initial error. Later for each epoch new weights and bias are calculated
using the current learning rate, and new outputs and errors are calculated.

To perform the new calculations, if the new error is greater than previous error
more than a reason predefined, the new weights and bias are discarded and the
learning rate decreases (multiplied for a decrement constant), otherwise the
weights and biases remain. Moreover if the new error is less than the previous
error, the learning rate increases (multiplied by an increment constant).

190 F. Gaxiola, P. Melin, and F. Valdez

Conjugate Gradient Algorithm.- This is a search for weight adjustments along
conjugate directions. Versions of the conjugate gradient algorithm differ in the
way in which a constant βk is calculated.

• Fletcher-Reeves update [12]: the constant βk is calculated using the equation:

 (3)

That is the reason of the norm for the square of the current gradient at the
norm of the square of the previous gradient.

• Polak-Ribiere updated [12]: the constant βk is calculated using the equation:

 (4)

This is the internal product of the previous changes in the gradient with the
current gradient divided for the square of the norm of the previous gradient.

• Powell-Beale Restart [3] [29]: the restart is performed if it has very little
orthogonality between the current gradient and the previous gradient. This is
tested with the following inequality:

 (5)

If the condition is validated, the search address is restarting at the negative of
the gradient.

• Scaled Conjugate Gradient [25]: this method decreases the search time line,

combines the approach of reliability model region with the approach of the
conjugate gradient.

Gedeon T. [13], performed the weights adjustment with a discrete selection
following the Hebbian paradigm: the force of the connection wij is proportional at
the correlation of the activity of the neurons I and j.

Monirul and Murase [26], used a temporal frozen of the weights when the
output does not change in a few epochs of successive trainings.

Meltser at al. [24], performed a weights adjustment of the network through
BFGS Quasi-Newton method (Broyden-Fletcher-Goldfarn-Shanno), which is a
convergent quadratic method that used the Quasi-Newton method to calculate an
approximation of the Hebbian matrix.

Barbouinis et al. [2], performed the weights updating using the identification of
recursive error prediction (RPE), which allows that the vector of estimated
weights is continuously found in each epoch using recursive calculates.

Type-2 Fuzzy Weight Adjustment for Backpropagation 191

Yeung et al. [36], proposed a new training objective function for a network
with radial basis functions, which is used to adjust the weights.

Kamarthi and Pittner [20], focused in obtaining a weight prediction of the
network at a future epoch using extrapolation.

Neville et al. [27], worked with sigma-pi networks which are transformed for
performing a second task of assignation for which they were initially trained,
which scales the first assignment.

Casasent et al. [4], presented a new classificatory neural network for pattern
recognition (PQNN) that used weights with complex values and the non linear
square law.

De Wilde [9], work performed assuming a non zero diagonal in the weight
matrix instead of the zero diagonal that the most researchers assume for the neural
networks completely connected.

Yam et al. [35], developed an algorithm to find the initial optimal weights of
feedforward neural networks based on the Cauchy inequality and a linear
algebraic method.

Draghici [10], Calculates a range of weights for a category of given problems
and ensures that the network has the capacity to solve the given problems with
integer weights in that range.

Ishibuchi et al. [17], proposed a fuzzy network where the weights are given as
trapezoidal fuzzy numbers, denoted as four trapezoidal fuzzy numbers for the four
parameters of trapezoidal membership functions.

Ishibuchi et al. [18], proposed a fuzzy neural network architecture with
symmetrical fuzzy triangular numbers for the fuzzy weights and biases, denoted
by the lower, middle and upper limit of the fuzzy triangular numbers.

Feuring [11], based on the work by Ishibuchi, where triangular fuzzy weights
are used, developed a learning algorithm in which the backpropagation algorithm
is used to compute the new lower and upper limits of weights. The modal value of
the new fuzzy weight is calculated as the average of the new computed limits.

Castro et al. [6], use interval type-2 fuzzy neurons for the antecedents and
interval of type-1 fuzzy neurons for the consequents of the rules. This approach
handles the weights as numerical values to determine the inputs of the fuzzy
neurons, as the scalar product of the weights for the input vector.

Recent works on type-2 fuzzy logic have been developed in time series
prediction, like that of Castro et al. [7], and other researchers [1][21].

Recent research on genetic algorithm optimization have been developed in
neural networks and fuzzy logic, like that of Sanchez et al. [32], and other
researchers [30][34].

3 Proposed Method and Problem Description

The focus of this work is to generalize the backpropagation algorithm using type-2
fuzzy sets to allow the neural network to handle data with uncertainty. At the same
time, it will be necessary to optimize type-2 fuzzy sets for the corresponding
applications and this will require a method to automatically vary the footprint of
uncertainty (FOU) of the membership functions.

192 F. Gaxiola, P. Melin, and F. Valdez

The initial weight selection will be done differently to the traditional random

initialization of weights performed with the backpropagation algorithm (Fig. 2);
the proposed method will work with type-2 fuzzy weights, taking into account the
possible change in the way we work internally in the neuron and the adaptation of
the weights given in this way (Fig. 3) [26].

Fig. 2 Scheme of current management of numerical weights (type-0) for the inputs of each
neuron

Fig. 3 Schematic of the proposed management of type-2 fuzzy weights for the inputs of
each neuron

Type-2 Fuzzy Weight Adjustment for Backpropagation 193

We considered modifying the current methods of adjusting weights that allow
convergence to the correct weights for the problem. We developed a method for
adjusting weights to achieve the desired result, searching for the optimal way to
work with type-2 fuzzy weights [19].

We used a genetic algorithm for obtaining the optimal type-2 fuzzy weights of
the neural network; because in the literature it can be found that it has been very
difficult and exhaustive to manually find optimal values for a problem [16].

To define the activation function f (-) to use, the linear and sigmoidal functions
were tested, because these functions have been used in similar approaches.

4 Optimization of the Ensemble Neural Network Architecture
with Type-2 Fuzzy Weights

The proposed ensemble neural network architecture with type-2 fuzzy weights
(see Fig. 4) is described as follows:
Layer 0: Inputs.

 = [, , ,] (6)

Layer 1: Interval type-2 fuzzy weights for the hidden layer of each neural network.

 = , (7)

Where , are the weights of the consequents of each rule of the type-2 fuzzy
system with inputs (current fuzzy weight, change of weight) and output (new
fuzzy weight).

Layer 2: Hidden neuron with interval type-2 fuzzy weights. = (8)
Layer 3: Output neuron with interval type-2 fuzzy weights. = (9)

Layer 4: Obtain a single output of each one of the three neural networks.
Layer 5: Obtain a final output with the average integration.
The first experiment was performed in time-series prediction, specifically for

the Mackey-Glass time series (for τ=17).
We considered three neural networks in the ensemble: the first network with 25

neurons in the hidden layer and 1 neuron in the output layer; the second network
with 28 neurons in the hidden layer and 1 neuron in the output layer; and the third
network with 38 neurons in the hidden layer and 1 neuron in the output layer (see
Fig. 4). This ensemble neural network handles type-2 fuzzy weights in each one of
its hidden layers and output layer. In each hidden layer and output of each network
we are working with a type-2 fuzzy inference system to obtain new weights in
each epoch of the network [5][23][15][33].

194 F. Gaxiola, P. Melin, and F. Valdez

The combination of responses of the ensemble neural network is performed by
average integration.

Fig. 4 Ensemble neural network architecture with type-2 fuzzy weights

We used 2 similar type-2 fuzzy systems in each neural network.
The first type-2 fuzzy system consists of two inputs: the weight in the current

epoch and the change of the weight for the next epoch, and one output: the new
weight for the next epoch (see Fig. 5).

Fig. 5 Structure of the used type-2 fuzzy inference system in the hidden layer

Type-2 Fuzzy Weight Adjustment for Backpropagation 195

The input of the current weight consists of two triangular membership functions
with range of -1 to 1. The input of change of the weight consists of two triangular
membership functions with range of -0.1 to 0.1. The output of the new weight
consists of two triangular membership functions with range of -1 to 1 (see Fig. 6).

Fig. 6 Inputs and outputs of the type-2 fuzzy inference system for the hidden layer

We used six rules for the type-2 fuzzy inference system of the hidden layer, the
four combinations of two membership functions and we added two rules when the
change of weight is null (see Fig. 7).

Fig. 7 Rules of the type-2 fuzzy inference systems used in the hidden layer

The second type-2 fuzzy system consists of two inputs: the weight in the
current epoch and the change of the weight for the next epoch, and one output: the
new weight for the next epoch (see Fig. 8).

196 F. Gaxiola, P. Melin, and F. Valdez

Fig. 8 Structure of the used type-2 fu zzy inference system in the output layer

The input of the current weight consists of two triangular membership functions
with range of -0.01 to 0.01. The input of change of the weight consists of two
triangular membership functions with range of -0.1 to 0.1. The output of the new
weight consists of two triangular membership functions with range of -0.01 to
0.01 (see Fig. 9).

Fig. 9 Inputs and outputs of the type-2 fuzzy inference system for the output layer

Type-2 Fuzzy Weight Adjustment for Backpropagation 197

We used six rules for the type-2 fuzzy inference system for the output layer, the
four combination of two membership functions and we added two rules for the
case when the change of weight is null (see Fig. 10).

Fig. 10 Rules of the type-2 fuzzy inference systems used in the output layer

The optimization was performed for the numbers of neurons in the hidden layer
of each neural network, and for the weights of the hidden layer and output layer,
in Fig. 11 this is described:

Fig. 11 Proposed optimization of the ensemble neural network architecture with type-2
fuzzy weights

198 F. Gaxiola, P. Melin, and F. Valdez

The second experiment was performed in a pattern recognition application,
specifically for the human iris biometric measure.

We used a database of human Iris from the Institute of Automation of the
Chinese Academy of Sciences (CASIA) (see Fig. 12). It consists of 9 images per
person, for a total of 10 individuals, giving a total of 90 images. The image
dimensions are 320 x 280, JPEG format.

Fig. 12 Examples of the human iris images from the CASIA database

The images of the human iris introduced to the two neural networks were
preprocessed as follows:

• Obtain the coordinates and radius of the iris and pupil.
• Making the cut in the Iris.
• Resize the cut of the Iris to 21-21 pixels.
• Convert images from vector to matrix.
• Normalize the images.

Obtain Coordinates of the Center and Radius of the Iris-Pupil: To obtain the
coordinates of the center and radius of the iris and pupil of images in the CASIA
database, we used a method that involves applying a series of filters and
mathematical calculations to achieve the desired gain.

First, we apply edge detection with the Canny method (see Fig. 13 (a)), then the
process continues using a gamma adjustment of the image (see Fig 13 (b)), to
the resulting image obtained above no maximum suppression is applied (see
Fig. 13 (c)), and subsequently we applied to the image a threshold method (see
Fig. 13 (d)).

Type-2 Fuzzy Weight Adjustment for Backpropagation 199

Fig. 13 (a) Edge detection with Canny’s method (b) Image Adjust Gamma (c) No Maxima
Suppression (d) Threshold

Finally, we apply the Hough transform to find the maximum in the Hough
space and, therefore, the circle parameters (row and column at the center of the iris
and the radius).

To obtain the coordinates of the center and radius of the pupil, the same process
indicated above is used, but now taking into account at the end of the center
coordinates and radius of the iris to identify the pupil.

Cut out the Iris: After obtaining the coordinates of the Iris, the upper right and
lower left points are calculated to make the cut (see Fig. 14).

RowUpLeft = RowIris – RadiusIris;
RowLowRight = (RowIris + RadiusIris) - RowUpLeft;
ColUpLeft = ColumnIris - RadiusIris;
ColLowRight = (ColumnIris + RadiusIris) - ColUpLeft;

Fig. 14 Cut of iris

200 F. Gaxiola, P. Melin, and F. Valdez

The proposed architecture with two neural networks with type-2 fuzzy weights
consists of 120 neurons in the hidden layer and 10 neurons in the output layer, the
inputs are the preprocessed iris images with a total of 10 persons (60 for training –
60 for test in total) (see Fig. 15). The inputs vary in ±5 percent between the two
networks.

We considered two neural networks managing type-2 fuzzy weights in each
hidden layer and output layer. In each hidden layer and output layer a type-2 fuzzy
inference system was used to obtain the new weights in each epoch of the
network.

The two neural networks used the learning method that updates weight and bias
values according to the resilient backpropagation algorithm. The update weights
are adapted for manage type-2 fuzzy weights.

Fig. 15 Proposed neural networks with type-2 fuzzy weights architecture for pattern
recognition of human iris biometric measure

We used four type-2 fuzzy inference systems to obtain the new weights, one for
the hidden layer in the one network and the second network, and one for the
output layer in the first network and the second network. The four type-2 fuzzy
inference system consists of two inputs (actual weight and change of weight) and
one output (new weight) (see Fig. 16).

The integration of the two networks is realized with average integration.

Type-2 Fuzzy Weight Adjustment for Backpropagation 201

Fig. 16 Structure for the four type-2 fuzzy integration system

The input of the current weight for the type-2 inference system for the hidden
layer in the first neural network consists of two triangular membership functions
with range of -3500 to 1000. The input of change of the weight consists of two
triangular membership functions with range of -60 to 60. The output of the new
weight consists of two triangular membership functions with range of -3500 to
1000 (see Fig. 17).

Fig. 17 Inputs and Output for the type-2 fuzzy inference system for the hidden layer in the
first network

The input of the current weight for the type-2 inference system for the output
layer in the first neural network consists of two triangular membership functions
with range of -2 to 2. The input of change of the weight consists of two triangular
membership functions with range of -1 to 1. The output of the new weight consists
of two triangular membership functions with a range of -2 to 2 (see Fig. 18).

202 F. Gaxiola, P. Melin, and F. Valdez

Fig. 18 Inputs and Output for the type-2 fuzzy inference system for the output layer in the
first network

We used six rules for the type-2 fuzzy inference system for the hidden and
output layer in the first neural network, the four combinations of two membership
functions and we added two rules when the change of weight is null (see Fig. 19).

Fig. 19 Rules for the four type-2 fuzzy inference system

The input of the current weight for the type-2 inference system for the hidden
layer in the second neural network consists of two triangular membership
functions with range of -2 to 2. The input of change of the weight consists of two
triangular membership functions with a range of -1 to 1. The output of the new
weight consists of two triangular membership functions with a range of -2 to 2
(see Fig. 20).

Type-2 Fuzzy Weight Adjustment for Backpropagation 203

Fig. 20 Inputs and Output for the type-2 fuzzy inference system for the hidden layer in the
second network

Fig. 21 Inputs and Output for the type-2 fuzzy inference system for the output layer in the
second network

204 F. Gaxiola, P. Melin, and F. Valdez

The input of the current weight for the type-2 inference system for the hidden
layer in the second neural network consists of two triangular membership
functions with range of -1.5 to 1.5. The input of change of the weight consists of
two triangular membership functions with a range of -1 to 1. The output of the
new weight consists of two triangular membership functions with a range of -1.5
to 1.5 (see Fig. 21).

We used six rules for the type-2 fuzzy inference system for the output layer, for
the four combinations of two membership functions and we added two rules for
when the change of weight is null (see Fig. 22).

Fig. 22 Rules for the type-2 fuzzy inference system used in hidden and output layer for the
first and second neural network

5 Simulation Results

The obtained results for the first experiment without optimizing the neural
network and type-2 fuzzy systems are shown on Table 1 and Fig. 23, which means
that all parameters of the neural network and type-2 fuzzy systems are established
empirically. The best prediction error is of 0.0788.

Table 1 Results for the ensemble neural network for series Mackey-Glass

No. Epoch Network error Time Prediction error

E1 100 0.000000001 00:01:09 0.0788

E2 100 0.000000001 00:02:11 0.0905

E3 100 0.000000001 00:02:12 0.0879

E4 100 0.000000001 00:01:14 0.0822

E5 100 0.000000001 00:01:13 0.0924

E6 100 0.000000001 00:02:13 0.0925

E7 100 0.000000001 00:01:08 0.0822

E8 100 0.000000001 00:01:09 0.0924

E9 100 0.000000001 00:01:07 0.0826

E10 100 0.000000001 00:01:07 0.0879

Type-2 Fuzzy Weight Adjustment for Backpropagation 205

Fig. 23 Plot of real data against prediction data of the Mackey-Glass time series for the
ensemble neural network with type-2 fuzzy weights

The population of the genetic algorithm (GA) consists of forty individuals to
perform the search. The individuals used in the GA are of binary type and with a
size of 81 gens. The estimated number of generations used for the GA to obtain a
good optimization is of 20 generations, in which the GA performed operations to
change the gens of the individuals and obtain different results in each generation.

To assign a fitness to the individuals of the GA we used ranking and stochastic
universal sampling selection to find the individuals to which the evolutionary
operations are applied to obtain new individuals for the next generation.

The evolutionary operations consist of single point crossover, and 0.0086 of
mutation that are applied in the selected individuals for evolve in a new individual.

The parameters used to optimize the ensemble neural network are described in
Table 2:

Table 2 Parameters of the genetic algorithm used for optimization of the ensemble neural
network

Individuals 40

Gens 81 (binary)

Generations 20

Assign Fitness Ranking

Selection Stochastic Universal Sampling

Crossover Single-Point

Mutation 0.0086

Individuals 40

206 F. Gaxiola, P. Melin, and F. Valdez

The individual for this genetic algorithm is binary with a size of 81 gens.
Each individual considered in the genetic algorithm describes the membership

functions for the inputs and outputs of the type-2 fuzzy inference system used in
the hidden and output layer of the neural network. Also, each individual describes
the numbers of neurons in the hidden layer for each neural network of the
ensemble.

The objective function used obtains the fitness for each individual (ObjVal) in
the genetic algorithm as the sum of the prediction error (errProm) divided by total
of data of Mackey-Glass time series (Total) used in this experiment for test (297 in
this experiment).
 = (10)

The ensemble neural network architecture obtained with the genetic algorithm
consists of the following: the first network with 27 neurons in the hidden layer and
1 neuron in the output layer; the second network with 31 neurons in the hidden
layer and 1 neuron in the output layer; and the third network with 30 neurons in
the hidden layer and 1 neuron in the output layer (see Fig. 24).

Fig. 24 Ensemble neural network architecture with type-2 fuzzy weights obtained with the
genetic algorithm

Type-2 Fuzzy Weight Adjustment for Backpropagation 207

The obtained results of the GA optimizing the ensemble neural network are
shown on Table 3 and Fig. 25. The best error is of 0.0518 optimizing the numbers
of neurons and type-2 fuzzy systems.

Table 3 Results for the optimized ensemble neural network for the Mackey-Glass time
series

No. Prediction error

E1 0.0518

E2 0.0611

E3 0.0787

E4 0.0715

E5 0.0655

E6 0.0614

E7 0.0724

E8 0.0712

E9 0.0724

Fig. 25 Plot of real data against prediction data of the Mackey-Glass time series for the
ensemble neural network with optimized type-2 fuzzy weights

We obtained 2 similar type-2 fuzzy systems in each neural network.
The first type-2 fuzzy system obtained consist of two inputs: the weight in the

current epoch and the change of the weight for the next epoch, and one output: the
new weight for the next epoch (see Fig. 26).

208 F. Gaxiola, P. Melin, and F. Valdez

Fig. 26 Structure of the type-2 fuzzy inference system obtained in the hidden layer

The input of the current weight consists of two triangular membership functions
with range of -1 to 1. The input of change of the weight consists of two triangular
membership functions with range of -0.1 to 0.1. The output of the new weight
consists of two triangular membership functions with range of -1 to 1 (see
Fig. 27).

Fig. 27 Inputs and outputs of the type-2 fuzzy inference system for the hidden layer

We used six rules for the type-2 fuzzy inference system for the hidden layer,
the four combination of two membership functions and we added two rules when
the change of weight is null (see Fig. 28).

Type-2 Fuzzy Weight Adjustment for Backpropagation 209

Fig. 28 Structure of the used type-2 fuzzy inference system in the hidden layer

The second type-2 fuzzy system obtained consist of two inputs: the weight in
the current epoch and the change of the weight for the next epoch, and one output:
the new weight for the next epoch (see Fig. 29).

Fig. 29 Structure of the type-2 fuzzy inference system obtained in the output layer

The input of the current weight consists of two triangular membership functions
with range of -0.01 to 0.01. The input of change of the weight consists of two
triangular membership functions with range of -0.1 to 0.1. The output of the new
weight consists of two triangular membership functions with range of -0.01 to
0.01 (see Fig. 30).

210 F. Gaxiola, P. Melin, and F. Valdez

Fig. 30 Inputs and outputs of the type-2 fuzzy inference system for the output layer

We used six rules for the type-2 fuzzy inference system for the output layer, the
four combination of two membership functions and we added two rules when the
change of weight is null (see Fig. 31).

Fig. 31 Rules of the type-2 fuzzy inference systems used in the output layer

The obtained results for the second experiment 5 tests were performed with the
proposed modular neural network under the same conditions and the same
database of the iris; in Table 4 we show the obtained results:

Type-2 Fuzzy Weight Adjustment for Backpropagation 211

Table 4 Parameters of the genetic algorithm used for optimization the ensemble neural
network

Experiment Epoch Error Time Total Recognition

T1 12 0.01 72 min. 76.66 % (23/30)

T2 12 0.01 72 min. 70 % (21/30)

T3 12 0.01 72 min. 73.33 % (23/30)

T4 12 0.01 72 min. 83.33 % (25/30)

T5 12 0.01 71 min. 70 % (21/30)

The best result is a total recognition of 25 out of 30 images of iris of 10

persons; giving a recognition rate of 83.33 %.
The architecture neural network works with 12 epoch of iteration and 0.01 error

of network and training algorithm of that updates weights and bias values
according to the resilient backpropagation algorithm (trainrp), with this parameters
the time of execution for the neural networks was of 72 minutes

The average of the 5 tests is a percentage of recognition of 74.66.

6 Conclusions

In the first experiment an ensemble neural network learning method with type-2
fuzzy weights was optimized with a genetic algorithm. The result with the
ensemble neural network with type-2 fuzzy weights optimized for the Mackey-
Glass time series is a prediction error of 0.0518. The architecture for the
optimized ensemble neural network is: the first network with 30 neurons in the
hidden layer and 1 neuron in the output layer; the second network with 29 neurons
in the hidden layer and 1 neuron in the output layer; and the third network with 26
neurons in the hidden layer and 1 neuron in the output layer.

The result of prediction error of 0.0518 for the Mackey-Glass time series is
good considering that the number of GA generations was relatively small.

In the second experiment we used two neural networks with type-2 fuzzy
weight. The result with the neural network with type-2 fuzzy weights for the
human iris biometrics measure is a percentage of recognition of 83.33 %. The
architecture for the two neural networks: the first network with 120 neurons in the
hidden layer and 10 neuron in the output layer, and the second network with 120
neurons in the hidden layer and 10 neuron in the output layer.

The results obtained in these experiments showed that the type-2 fuzzy weights
worked good in the two areas of research: prediction time series and pattern
recognition.

References

1. Abiyev, R.H.: A Type-2 Fuzzy Wavelet Neural Network for Time Series Prediction.
In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE
2010, Part III. LNCS, vol. 6098, pp. 518–527. Springer, Heidelberg (2010)

212 F. Gaxiola, P. Melin, and F. Valdez

2. Barbounis, T.G., Theocharis, J.B.: Locally Recurrent Neural Networks for Wind
Speed Prediction using Spatial Correlation. Information Sciences 177(24), 5775–5797
(2007)

3. Beale, E.M.L.: A Derivation of Conjugate Gradients. In: Lootsma, F.A. (ed.)
Numerical Methods for Nonlinear Optimization, pp. 39–43. Academic Press, London
(1972)

4. Casasent, D., Natarajan, S.: A Classifier Neural Net with Complex-Valued Weights
and Square-Law Nonlinearities. Neural Networks 8(6), 989–998 (1995)

5. Castillo, O., Melin, P.: A review on the design and optimization of interval type-2
fuzzy controllers. Applied Soft Computing 12(4), 1267–1278 (2012)

6. Castro, J., Castillo, O., Melin, P., Rodríguez-Díaz, A.: A Hybrid Learning Algorithm
for a Class of Interval Type-2 Fuzzy Neural Networks. Information Sciences 179(13),
2175–2193 (2009)

7. Castro, J.R., Castillo, O., Melin, P., Mendoza, O., Rodríguez-Díaz, A.: An Interval
Type-2 Fuzzy Neural Network for Chaotic Time Series Prediction with Cross-
Validation and Akaike Test. In: Castillo, O., Kacprzyk, J., Pedrycz, W. (eds.) Soft
Computing for Intell. Control and Mob. Robot. SCI, vol. 318, pp. 269–285. Springer,
Heidelberg (2010)

8. Cazorla, M., Escolano, F.: Two Bayesian Methods for Junction Detection. IEEE
Transaction on Image Processing 12(3), 317–327 (2003)

9. De Wilde, O.: The Magnitude of the Diagonal Elements in Neural Networks. Neural
Networks 10(3), 499–504 (1997)

10. Draghici, S.: On the Capabilities of Neural Networks using Limited Precision
Weights. Neural Networks 15(3), 395–414 (2002)

11. Feuring, T.: Learning in Fuzzy Neural Networks. In: IEEE International Conference
on Neural Networks, vol. 2, pp. 1061–1066 (1996)

12. Fletcher, R., Reeves, C.M.: Function Minimization by Conjugate Gradients. Computer
Journal 7, 149–154 (1964)

13. Gedeon, T.: Additive Neural Networks and Periodic Patterns. Neural Networks 12(4-
5), 617–626 (1999)

14. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design, p. 736. PWS
Publishing, Boston (1996)

15. Hagras, H.: Type-2 Fuzzy Logic Controllers: A Way Forward for Fuzzy Systems in
Real World Environments. In: IEEE World Congress on Computational Intelligence,
pp. 181–200 (2008)

16. Haupt, R., Haupt, S.: Practical Genetic Algorithms, p. 272. John Wiley and Sons, Inc.,
Hoboken (2004)

17. Ishibuchi, H., Morioka, K., Tanaka, H.: A Fuzzy Neural Network with Trapezoid
Fuzzy Weights, Fuzzy Systems. In: IEEE World Congress on Computational
Intelligence, vol. 1, pp. 228–233 (1994)

18. Ishibuchi, H., Tanaka, H., Okada, H.: Fuzzy Neural Networks with Fuzzy Weights and
Fuzzy Biases. In: IEEE International Conference on Neural Networks, vol. 3, pp.
1650–1655 (1993)

19. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: a
Computational Approach to Learning and Machine Intelligence, p. 614. Prentice Hall
(1997)

20. Kamarthi, S., Pittner, S.: Accelerating Neural Network Training using Weight
Extrapolations. Neural Networks 12(9), 1285–1299 (1999)

Type-2 Fuzzy Weight Adjustment for Backpropagation 213

21. Karnik, N., Mendel, J.: Applications of Type-2 Fuzzy Logic Systems to Forecasting of
Time-Series. Information Sciences 120(1-4), 89–111 (1999)

22. Martinez, G., Melin, P., Bravo, D., Gonzalez, F., Gonzalez, M.: Modular Neural
Networks and Fuzzy Sugeno Integral for Face and Fingerprint Recognition. In:
Abraham, A., de Baets, B., Köppen, M., Nickolay, B. (eds.) Applied Soft Computing
Technologies: The Challenge of Complexity. ASC, vol. 34, pp. 603–618. Springer,
Heidelberg (2006)

23. Melin, P.: Modular Neural Networks and Type-2 Fuzzy Systems for Pattern
Recognition, pp. 1–204. Springer (2012)

24. Meltser, M., Shoham, M., Manevitz, L.: Approximating Functions by Neural
Networks: A Constructive Solution in the Uniform Norm. Neural Networks 9(6), 965–
978 (1996)

25. Moller, M.F.: A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning.
Neural Networks 6, 525–533 (1993)

26. Monirul Islam, M.D., Murase, K.: A New Algorithm to Design Compact Two-Hidden-
Layer Artificial Neural Networks. Neural Networks 14(9), 1265–1278 (2001)

27. Neville, R.S., Eldridge, S.: Transformations of Sigma–Pi Nets: Obtaining Reflected
Functions by Reflecting Weight Matrices. Neural Networks 15(3), 375–393 (2002)

28. Phansalkar, V.V., Sastry, P.S.: Analysis of the Back-Propagation Algorithm with
Momentum. IEEE Transactions on Neural Networks 5(3), 505–506 (1994)

29. Powell, M.J.D.: Restart Procedures for the Conjugate Gradient Method. Mathematical
Programming 12, 241–254 (1977)

30. Pulido, M., Melin, P., Castillo, O.: Genetic Optimization of Ensemble Neural
Networks for Complex Time Series Prediction. IJCNN, 202–206 (2011)

31. Salazar, P.A., Melin, P., Castillo, O.: A New Biometric Recognition Technique Based
on Hand Geometry and Voice Using Neural Networks and Fuzzy Logic. In: Castillo,
O., Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for Hybrid Intel.
Systems. SCI, vol. 154, pp. 171–186. Springer, Heidelberg (2008)

32. Sánchez, D., Melin, P.: Modular Neural Network with Fuzzy Integration and Its
Optimization Using Genetic Algorithms for Human Recognition Based on Iris, Ear
and Voice Biometrics. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Soft Comp. for
Recogn. Based on Biometrics. SCI, vol. 312, pp. 85–102. Springer, Heidelberg (2010)

33. Sepúlveda, R., Castillo, O., Melin, P., Montiel, O.: An Efficient Computational
Method to Implement Type-2 Fuzzy Logic in Control Applications. In: Melin, P.,
Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds.) Anal. and Des. of Intel.
Sys. using SC Tech. ASC, vol. 41, pp. 45–52. Springer, Heidelberg (2007)

34. Valdez, F., Melin, P., Parra, H.: Parallel Genetic Algorithms for Optimization of
Modular Neural Networks in Pattern Recognition. In: IJCNN, pp. 314–319 (2011)

35. Yam, J., Chow, T.: A Weight Initialization Method for Improving Training Speed in
Feedforward Neural Network. Neurocomputing 30(1-4), 219–232 (2000)

36. Yeung, D., Chan, P., Ng, W.: Radial Basis Function Network Learning using
Localized Generalization Error Bound. Information Sciences 179(19), 3199–3217
(2009)

P. Melin, O. Castillo (Eds.): Soft Computing Appli. in Optimization, STUDFUZZ 294, pp. 215–236.
DOI: 10.1007/978-3-642-35323-9_9 © Springer-Verlag Berlin Heidelberg 2013

Brain Computer Interface Development
Based on Recurrent Neural Networks
and ANFIS Systems

Emanuel Morales-Flores1, Juan Manuel Ramírez-Cortés1, Pilar Gómez-Gil2,
and Vicente Alarcón-Aquino3

1 Department of Electronics, National Institute of Astrophysics,
Optics and Electronics, Tonantzintla, Puebla, Mexico

2 Department of Computer Science, National Institute of Astrophysics,
Optics and Electronics, Tonantzintla, Puebla, Mexico

3 Department of Electronics, University of the Americas, Cholula, Puebla, Mexico

Abstract. Brain Computer Interfaces (BCI) is the generic denomination of
systems aiming to establish communication between a human being and an
automated system, based on the electric brain signals detected through a variety of
modalities. Among these, electroencephalographic signals (EEG) have received
considerable attention due to several factors arising on practical scenarios, such as
noninvasiveness, portability, and relative cost, without lost on accuracy and
generalization. In this chapter we discuss the characteristics of a typical
phenomenon associated to motor imagery and mental tasks experiments, known as
event related synchronization and desynchronization (ERD/ERS), as well as its
energy distribution in the time-frequency space. The typical behavior of ERD/ERS
phenomenon has led proposal of different approaches oriented to the solution of
the identification problem. In this work, an architecture based on adaptive neuro-
fuzzy inference systems (ANFIS) assembled to a recurrent neural network, applied
to the problem of mental tasks temporal classification, is presented. The
electroencephalographic signals (EEG) are pre-processed through band-pass
filtering in order to separate the set of energy signals in alpha and beta bands. The
energy in each band is represented by fuzzy sets obtained through an ANFIS
system, and the temporal sequence corresponding to the combination to be
detected, associated to the specific mental task, is entered into a recurrent neural
network. Experimentation using EEG signals corresponding to mental tasks
exercises, obtained from a database available to the international community for
research purposes, is reported. Two recurrent neural networks are used for
comparison purposes: Elman network, and a fully connected recurrent neural
network (FCRNN) trained by RTRL-EKF (real time recurrent learning – extended
Kalman filter). A classification rate of 88.12 % in average was obtained through
the FCRNN during the generalization stage.

216 E. Morales-Flores et al.

1 Introduction

Brain Computer Interfaces are systems aiming to translate the electrical brain
signals generated by a human being as a results of some thoughts, in commands
able to perform some control actions in computerized mechanisms. In other words
BCIs measure brain activity, process it, and produce control signals that reflect the
user’s intent. Brain activity produces several physical phenomena which can be
measured using a variety of sensing equipment. Among these phenomena, which
can be of significant relevance for BCI development, are electrical potentials and
hemodynamic measurements. Electrical potential measurements include action
and field potentials which can be sensed through invasive methods, such as
electro-corticography, and non-invasive, such as electroencephalography and
magneto-encephalography techniques. Hemodynamic measurements include
functional magnetic resonance imaging (fMRI), positron emission tomography
(PET), and functional near-infrared brain monitoring (fNIRS). Among these,
electroencephalographic signals (EEG) have received considerable attention due
to several factors arising on practical scenarios, such as noninvasiveness, cost
effectiveness, portability, ease of acquisition, and time resolution, which are ideal
attributes for the development of practical brain computer interface applications.
There are three main stages which can be distinguished in a BCI system: detection
of the neural signals from the brain, an algorithm for decoding these signals, and a
methodology for mapping decoded signals into some predefined activities. The
general scheme of a BCI is shown in Fig. 1.

In recent years, there has been a growing interest in the research community on
signal processing techniques oriented to solve the multiple challenges involved in
BCI applications [1-3]. An important motivation to develop BCI systems, among

Fig. 1 General scheme of a Brain Computer Interface system

Brain Computer Interface Development Based on Recurrent Neural Networks 217

some others, would be to allow an individual with motor disabilities to have
control over specialized devices such as computers, speech synthesizers, assistive
appliances or neural prostheses.

A dramatic relevance arises when thinking about patients with severe motor
disabilities such as locked-in syndrome, which can be caused by amyotrophic
lateral sclerosis, high-level spinal cord injury or brain stem stroke. BCIs would
increase an individual’s independence, leading to an improved quality of life and
reduced social costs. Electroencephalography (EEG) refers to recording electrical
activity from the scalp with electrodes. A BCI based on EEG analyzes ongoing
electric brain activity for brain patterns that originate from specific brain areas. To
get consistent recordings from specific regions of the head, scientists rely on a
standard system for accurately placing electrodes, which is called the International
10–20 System [4], generally used in clinical EEG recording and EEG research as
well as BCI field. The name 10–20 indicates that the most commonly used
electrodes are positioned 10, 20, 20, 20, 20, and 10% of the total naison-inion
distance. Fig. 2 shows the electrode positions and denominations used in the
international 10-20 system.

Measuring brain activity effectively is a critical step for brain–computer
communication. However, measuring activity is not enough, because a BCI can
only detect and classify specific patterns of activity in the ongoing brain signals
that are associated with specific events. What the BCI user makes to produce these
patterns is determined by the neurological mechanisms or processes that BCI
system employs.

Fig. 2 EEG electrodes international 10-20 system

Current research on BCI systems distinguishes seven main categories according
to the neurological mechanisms or processes involved: sensorimotor activity [5,6],
P300 [7,8], visual evoked potentials [9,10], slow cortical potentials [11], activity
of neural cell and response to mental tasks [12], as well as multiple neuro-
mechanisms, which use a combination of two or more of the previous (see [2] for

218 E. Morales-Flores et al.

a review). Each category constitutes a paradigm which can be used for developing
BCI systems in practical scenarios. P300 evoked potentials occur with latency
around 300 milliseconds in response to target stimuli that occur unexpectedly. In a
P300 controlled experiment, subjects are usually instructed to respond in a specific
way to some stimuli, which can be auditory, visual, or somatosensory. P300
signals come from the central-parietal region of the brain and can be found more
or less throughout the EEG on a number of channels. The P300 is an important
signature of cognitive processes such as attention and working memory and an
important clue in the field of neurology to study mental disorders and other
psychological dysfunctions [8]. Another neurological mechanism widely studied
for developing BCI systems is motor imagery (MI), which is obtained from the
sensory motor brain activity. In general, two types of patterns are usually present
in this mechanism: event related potentials (ERP), detected as energy changes in α
(8-13 Hz), and β (14-20 Hz) bands generated when a voluntary movement is
performed, and movement related potentials (MRP), which are low frequency
patterns that initially appear between 1–1.5 s before the corresponding movement.
In the first case, the event related potentials consist, in general terms, in
decrements or increments of the energy on the ongoing EEG signal at certain
frequency bands, which are described in the literature as the ERD/ERS
phenomenon (Event Related Desynchronization and Synchronization) [13,14]. A
crucial issue is to successfully estimate and translate the ERD/ERS phenomenon
into a meaningful feature vector which can be used as input to some pattern
recognition scheme. The analysis should be able to capture the spectral dynamic
of the signal contained in the temporal evolution of the involved spectral bands.
Several feature extraction techniques have been used for that purposes, such as:
amplitude values of EEG [15], band power [16], power spectral density [17,18],
auto-regressive (AR) and adaptive auto-regressive models (AAR) [19], windowed
Fourier analysis, cross correlation, and some others. As these ERPs are locked in
time but not in phase and they are highly non-stationary [20], the detection of
these patterns turns into a difficult task in which some approaches oriented to
follow the time evolution of the signals, such as time series prediction, and
recurrent neural networks, could provide adequate results.

Another neurological mechanism in which ERD/ERS phenomenon is also
present is the neural activity obtained in response to mental tasks. Mental task-
based BCI systems have captured the attention of the research community, in part
due to their independence of additional interfaces such as the screen of
alphanumeric characters used in VEP, or the arrows and symbols used in motor
imagery experiments, as well as the relative flexibility of the user to carry out
some mental tasks at his /her own will. Several feature extraction methods for
mental task-based BCI design have been reported, most of them based on
parametric, such as autoregressive or adaptive models [21], non-parametric
models based on several schemes of spectral analysis such as Wavelet transform
or Stockwell transform [22,23], or fuzzy sets [24]. In this sense, it has been shown
that information contained in spectral bands α (8-13 Hz), β (14-20 Hz), γ (24-37
Hz), or even in higher frequencies [25], can be used to detect neural activity
directly related to specific mental tasks. Time-frequency analysis can be carried

Brain Computer Interface Development Based on Recurrent Neural Networks 219

out using different approaches such as Wavelet analysis [22], filter bank [26],
empirical mode decomposition [27], and others. Those approaches reflect only the
estimated power across a range of frequencies. In a number of reported works,
non-linear classifiers such as neural network and support vector machine
algorithms are used [28]. Recently, there have been several studies oriented to
capture temporal behavior through predictive schemes and recurrent neural
networks with good results, which encourage further research in that direction
[29-30].

To achieve the goal of translating brain activity into commands for computers
there are two main approximations: regression and classification algorithms.
Using classification algorithms is the most popular approach to identify patterns of
brain activity. Most brain patterns used to control BCI are related to time
variations of EEG in specific frequency bands. The time course of EEG signals
has to be taken into account during feature extraction and one alternative is using a
dynamical classifier. To obtain temporal information it is necessary to extract
features from several time segments in order to build a temporal sequence. In this
work we present a temporal classification approach on a two-state mental task
experiment applying, for comparison purposes, two recurrent neural networks:
Elman and Fully Connected Recurrent Neural Network (FCRNN). The proposed
scheme performs the feature extraction based on an Adaptive Neuro-fuzzy
Inference System (ANFIS), previous to the temporal classification stage.

The rest of the chapter is organized as follows: Section 2 describes theory
related to ANFIS. Section 3 presents mathematical background associated to
recurrent neural networks. Section 4 describes the proposed methodology on
temporal classification of the mental task experiment. Section 5 presents and
analyzes the obtained results. Section 6 presents some concluding remarks,
perspectives, and future direction of this research oriented to the implementation
of a BCI system.

2 Adaptive Neuro-Fuzzy Inference System (ANFIS)

Adaptive Neuro Fuzzy Inference Systems (ANFIS) combine the learning
capabilities of neural networks with the approximate reasoning of fuzzy inference
algorithms. Embedding a fuzzy inference system in the structure of a neural
network has the benefit of using known training methods to find the parameters of
a fuzzy system. Specifically, ANFIS uses a hybrid learning algorithm to identify
the membership function parameters of Takagi-Sugeno type fuzzy inference
systems. The task of the learning algorithm for this architecture is to tune all the
modifiable parameters defining the fuzzy partitions and making the ANFIS output
match the training data. In this work, the ANFIS model included in the MATLAB
toolbox has been used for experimentation purposes. A combination of least-
squares and backpropagation gradient descent methods is used for training the FIS
membership function parameters to model a given set of input/output data through
a multilayer neural network. ANFIS systems have been recently used for
optimization, modeling, prediction, and signal detection, among others [31,32].
The ANFIS architecture (type-3 ANFIS) is shown in Fig. 3.

220 E. Morales-Flores et al.

Fig. 3 ANFIS architecture

In this figure x and y are inputs to the node i in layer 1. iA and iB are

linguistic labels e.g. (small, medium, large, etc.). In other words, the output of

each node is the membership function of iA

and iB , and specifies the degree to

which the given x or y satisfies the quantifier iA and iB respectively. The output

of each node in this layer is described as follows:

1 ()
ii AO xμ=

Every node in layer 2 is a circle node labeled which multiplies the incoming
signals and sends the product out.

() ()
i ii A Bx xω μ μ= ×

In layer 3 each node is a circle node labeled N. The ith node calculates the ratio of
the ith rule’s firing strength to the sum of all rules’ firing strengths:

1 2

, 1, 2i i
ωω

ω ω
= =

+

Every node in layer 4 is a square node that performs the following function:

4 ()i i i i i i iO f p x q y rω ω= = + +
 ,

where { , , }i i ip q r is the parameter set.

The single node in the 5 layer is a circle node labeled that computes the
overall output as the summation of all incoming signals

1 i ii
i i i

i ii

f
O f

ω
ω

ω
= =

Brain Computer Interface Development Based on Recurrent Neural Networks 221

The architecture presented is functionally equivalent to a type-3 fuzzy inference
system. For detailed information see reference [33].

3 Neural Network Classifiers

Nowadays, artificial neural networks are a popular tool to tackle complex
classification problems. Specifically, the ability of recurrent neural networks
(RNN) to model nonlinear dynamical systems has been widely proved [34].
Therefore, it is fairly common to use RNN for several kinds of temporal
information processing, as in prediction, control systems and temporal
classification systems [35].

Next, we present a brief description of the problem of temporal classification
and the solution applied in this research using two architectures of RNN to build
the temporal classifier required for mental task-based BCI systems.

3.1 Temporal Classification

Temporal classification refers to the assignation of a class, based on features
obtained in different time periods. Such features are represented as vectors
forming a temporal sequence of components. Temporal classification is a difficult
task because, in order to obtain the correct class, it is mandatory to consider not
only the values of the features but also the order in which they appear in a specific
time period. The definition of the size of time that must be considered in order to
get the right classification is also a challenge. Fig. 4 illustrates a simple temporal
classification problem. Suppose that we want to identify if the sequence {1,2} is
sensed in input A when the sequence {2,1} is sensed in input B. If so, the expected
classification outcome is "yes", otherwise it is "No". The table therein Fig. 4
illustrates the desired outputs of such classifier in the first 10 time periods.

time 1 2 3 4 5 6 7 8 9 10
Input A 1 1 2 2 1 2 1 1 2 1
Input B 1 2 1 2 2 2 1 2 1 2
Output No No Yes No No No No No Yes No

Fig. 4 A simple temporal classification problem

In this example, the classifier must be able to "remember" the last two inputs, in
order to identify the sequences correctly. Looking this table, it is fairly easy to
figure out that the sequences defining the involved classes have a size of two.

Temporal
Classifier

A

B

Output

222 E. Morales-Flores et al.

However, this is not the case for more complicated problems as the one presented
in this research, in which a human mental state has to be identified by a sequence
of features occurring in a EEG. For such cases the classifier would have to
automatically model a dynamics memorizing the feature sequences using the right
size of past events. In other words, time has to be implicitly represented in
the model. In this research a temporal classifier is used as the last component of
the system classifying mental tasks (see Fig. 6). The classifier has to find out if the
involved mental task occurs or it does not, that is, it works as a binary classifier.

3.2 Adaptive Temporal Classifiers

The building of a classifier able to label sequences requires several steps. The
most important decisions to resolve during its design are: the definition of
the structure of a feature vector representing the information of the sequence, the
mathematical model used for the classifier and the training strategy used in such
model. Section 4 describes how the structure of the feature vector for the classifier
of mental tasks was built in this research. With respect to the mathematical model
of the classifier, we chose to use RNN for two reasons: first, RNN are able to
build internal representations involving time and second, most recurrent neural
architectures are able to model chaos [36]. This last reason refers to the fact that
the dynamics in an EEG is chaotic, according to several authors (for example
see [37]).

Regarding to the selection of a right RNN and training algorithm, there are
many choices when they are used for building temporal classifiers. The most
versatile models are the ones proposed by Jordan [38], Elman [39], Werbos [40]
and Williams and Zipser [41]. Other works have used more sophisticated
structures, for example [42].

For the results presented here, we built and tested the performance of two
classifiers using two types of recurrent neural networks: a Simple Recurrent
Network (SRN), also known as “Elman network” [39] and a fully connected
recurrent neural network (FCRNN) with external inputs, similar to the one
described in [40,47]. SRN was trained using the algorithm “Back Propagation
through time” (BPTT) [40] and FCRNN was trained with the algorithm “Real
Time Recurrent Learning – Extended Kalman filter” (RTRL-EKF) [43,44] using
the implementation proposed in [48]. These architectures and algorithms are
briefly described next.

3.3 Simple Recurrent Network (SRN or Elman Network)

Time can be represented in several ways in recurrent neural networks. In a SRN,
time is implicitly represented using a context layer. This model was introduced by
Elman [39], which in spite of being rather simple, is able to memorize previous
states of a sequence. SRN architecture has 4 layers: an input layer, a hidden layer,
an output layer and a context layer. (see Fig. 5). The representation of past events
is achieved because nodes in the context layer memorize the outputs of nodes in

Brain Computer Interface Development Based on Recurrent Neural Networks 223

hidden layer coming from a previous time. This context layer is able to create a
map of some temporal properties of the system.

In general, the state-space model of a RNN can be described by the following
equations [44]:

),(nn1n uxax =+ (1)

nBxy =n (2)

where:

ny represents the output of the system (all neurons

 in the network),

 }...,{ 11 +−−= qnnnn uuuu is a vector of the exogenous inputs

 in different steps,

nx is the output of a bank of q unit-time delays, q being the

 number of nodes in the input layer.
) , (⋅⋅a is a nonlinear function characterizing the hidden layer.

 B is the matrix of synaptic weights characterizing the output
 layer.

Fig. 5 The Simple Recurrent Network [39]

Notice that in this model, the hidden layer is non-linear (equation 1) and the
output layer is linear (equation 2). A SRN is a special case of this model, where
the connection weights and the output layer may also be non-linear. In the results
reported here, a hyperbolic tangent sigmoid transfer function was used for the
nodes in hidden layer (‘tansig’ Matlab function) and a logarithmic sigmoid
transfer function (‘logsig’ Matlab function) was used for the output layers.

SRN may be trained in different ways. For the experiments reported in this
chapter, we used a gradient descent back propagation algorithm with adaptive
learning rate. Function ‘calcgbtt’, provided by the neural network toolbox of
Matlab V6.0. was used as the gradient function, which calculates the bias and

224 E. Morales-Flores et al.

weight performance gradients using the back-propagation through time algorithm
(BPTT) [40]. BPTT is a supervised learning algorithm originally proposed by
Werbos [46] and independently discover by Rumelhart and collaborators [47], that
attempts to minimize the output error of the network obtained over a period of
time. This error is calculated as:

1

,,
=

−=
T

t
tt

2
nn)y(DE

 (3)

where nD ,t is the desired output of the neurons in the network where an output is

required at time t, and T is the size of the sequence being used to train the
network. The core of back-propagation is a efficient method for the calculation of
derivatives that allow to minimize the error described in equation 3. BPTT
constructs a feed-forward network with identical behavior over a particular time
interval that the involved RNN. The main drawback of BPTT is that it requires to
use the complete training sequence for each training epoch in order to calculate
the gradient. For a detailed explanation of BPTT see [44].

3.4 Fully-Connected Recurrent Neural Network

A fully-connected recurrent neural network with one input layer, one hidden layer
and one output layer was also used in this work to build a temporal classifier. The
term "fully connected" means that all neurons in the network are connected each
other. The input layer is formed by neurons receiving an external input; the output
layer is formed by nodes whose outputs are considered the output of the system;
the training sequence contains the desired values for such outputs (corresponding
class). As occurring with other layered neural network architectures, the number
of neurons in the hidden layer depends upon the complexity of the problem and
the appropriate number of them requires to be defined by experimentation.

As we explained before, there are several algorithms to train recurrent neural
networks. BPTT has been very popular during many years, but currently it is
known that very useful algorithms for training recurrent neural networks are based
on Kalman Filtering (KF) [48]. KF is a common method to estimate unknown
variables of a system based on the observations of measurements across time. KF
is based on the idea that the involved dynamical system of the problem is hidden
and can only be observed or measured through some time series (sequences). In
KF the dependency among two consecutive states, measurements and the state
process is assumed linear [49]. Therefore, an Extended Kalman Filtering (EKF) is
required when nonlinear systems are involved, as in the case of recurrent neural
networks. In EKF, a linearization around the current working point is applied
before that standard KF is performed. EKF has been widely studied and applied
using different strategies to train RNN, for example in [49-51]. It also has been
combined with other algorithms, for example with “back-truncated propagation
through time” [51] and with RTRL [43].

Brain Computer Interface Development Based on Recurrent Neural Networks 225

For the experiments presented in this research, we used a combination of the
RTRL and KF proposed by [43]. The training algorithm RTRL contains two main
steps (see [44,52]): gradient calculation and weights adjustments. RTRL is used to
calculate the derivatives of the gradients and EKF is used for modifying the
weights. According to [44], the state-space model of this network, when training,
is defined by two models:

1) The system model, described by:

nnn ω+=+ ww 1 , (4)

where:

 nw is the weight (state) vector

 nω is a white Gaussian noise.

2) The measurement model, described by:

 nnnnn νuvwbd +=),,(, (5)

where:

 nd is the desirable response o the system, playing the role

 of the “observable”,

 nν represents the recurrent node activities inside the

 network,

 nu denotes the input signal to the network and

 nν is a vector denoting measurement noise corrupting nd .

EKF allows the estimation of the value of the correction in the state space model,
updating weights as follows:

nnnn αGww += −1ˆˆ (6)

),,ˆ(1 nnnnn uvwbdα −−= , (7)

where:

 nG is the Kalman gain, calculated using:

 1
,11][−

−− += n
T
nnn

T
nnn νQBPBBPG (7)

 nnnnnn ,11 ωQPBGPP +−= −− (8)

 nB is the Jacobian of the partial derivatives

 with respect to the state, that is, the weights, which is
 calculated using RTRL algorithm.

226 E. Morales-Flores et al.

 n,ωQ is the covariance matrix of the dynamic noise nω ,

 nP is the prediction error covariance matrix, and

 n,νQ is the covariance matrix of the measurement noise nν .

The calculation of partial derivatives nB is defined as:

=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

m

qpp

m

m

w

y

w

y

w

y

w
y

w
y

w
y

w
y

w
y

w
y

n

...

.

...

...

21

2

2

2

1

2

1

2

1

1

1

B , (9)

where q is the total number of neurons in the networks and m is the total number

of weights. Using RTRL, derivatives in nB are calculated as [53]:

+′=

=
∂

∂
∂

+∂)())((
1

)()1(nzwnx lik

m

j
w

ny

ijiw
ny

kl

j

kl

i δσ (10)

)(⋅′σ is the derivative of the neuron transfer function)(⋅σ ;

=

=
m

j
jiji nzwnx

1

)()(is the input to each neuron, ikδ is the Kronocker delta. For

further details, see [44,52,53].
For the experiments showed here we used an implementation of RTRL-EKF

created by [52], which is itself based on the Matlab functions created by [45]. A
very good description of the data structures used in such software is given by [48].
In that reference, the interested lector can find a very good algorithm to implement
RTRL-EKF using GPA architecture.

4 Proposed Methodology

A block diagram of the proposed scheme is represented in Fig. 6. The algorithm is
described as follows: preprocessing of the EEG signals obtained from P4 electrode
includes a blind source separation through Independent Component Analysis
(ICA) in order to remove eye blink and other artifacts. The signal is then filtered
in order to obtain the alpha and beta bands, and the power signal for each band is
computed. The power signal in each band is partitioned into 5 windows with a 50
% overlapping as a feature reduction process. The signal is passed through an

Brain Computer Interface Development Based on Recurrent Neural Networks 227

ANFIS system in order to obtain a representation in fuzzy sets corresponding to
the evolution in time of the estimated power across both spectral bands alpha and
beta. Temporal sequences corresponding to the combination of energy bands for
each mental task are input into a recurrent neural network, which is trained to
deliver a classification decision on the corresponding mental task.

Fig. 6 Block diagram of the proposed architecture for mental tasks classification

Preprocessing EEG data in order to eliminate the artifacts added during the
recording sessions is an essential task to facilitate accurate classification. The most
corruptive of the artifacts is due to eye blinks because it produces a high amplitude
signal called electrooculogram (EOG) that can be many times greater than the
EEG signals of interest.

The use of ICA for blind source separation of EEG data is based on an
assumption that EEG data recorded from multiple scalp sensors are linear sums of
temporally independent components arising from spatially fixed, distinct or
overlapping brain networks [54]. The goal of ICA is to recover statistically
independent sources given only sensor observations that are unknown linear
mixtures of the unobserved independent source signals. ICA reduces the statistical
dependencies of the signals, attempting to make the signals as independent as
possible which make ICA capable of separating artifact components from EEG
data since they are usually independent of each other [55].

As mentioned before,)(txi are assumed to be the result of linear combinations

of the independent sources, as expressed in:

1 2 2() () () ()i i i i in nx t a s t a s t a s t= + + +

Or in matrix form:

x = As
where:

 A is a matrix containing mixing parameters and
 s is the source signals.

The goal of ICA is to calculate the original source signals from the mixture by
estimating a de-mixing matrix U that gives:

228 E. Morales-Flores et al.

ˆ =s Ux

Both the mixing matrix A and the matrix containing the sources S are unknown.
The non mixing matrix U is found by optimizing a cost function. Several different
cost functions can be used for performing ICA, e.g. kurtosis, negentropy, etc.,
therefore, different methods exist to estimate U. For that purpose the source
signals are assumed to be non-Gaussian and statistically independent. The
requirement of non-Gaussianity stems from the fact that ICA relies on higher
order statistics to separate the variables, and higher order statistics of Gaussian
signals are zero. In this way, ICA is applied to EEG signal from P4 electrode in
order to remove eye blink artifacts. For additional information see [54]. The result
of preprocessing EEG data is shown in Fig. 7.

0 1 2 3 4 5 6 7 8 9 10

t [sec]

P
4

0 1 2 3 4 5 6 7 8 9 10

P
4

t [sec]

Fig. 7 EEG data before and after preprocessing

Elliptic filters of five order were used in order to obtain the alpha and beta
bands. After filtering EEG data, the power for each band is computed squaring the
amplitude of samples; then, the power signal in each band is partitioned into 5
windows with a 50 % overlapping as a feature reduction process. The signal is
passed through an ANFIS system in order to obtain a representation in fuzzy sets
corresponding to the evolution in time of the estimated power across both spectral
bands alpha and beta. Temporal sequences corresponding to the combination of
energy bands for each mental task are input into a recurrent neural network, which
is trained to deliver a classification decision on the corresponding mental task.

Brain Computer Interface Development Based on Recurrent Neural Networks 229

5 Experimental Results

EEG data were obtained previously by Keirn and Aunon [56] and are available on
line for research purposes. Ten trials for each mental task resulted in a total of 20
patterns. Details of the procedure followed to detect the signals can be consulted
in the cited reference. A brief description is as follows: an Electro-Cap elastic
electrode cap was used to record data from positions C3, C4, P3, P4, O1, and O2
defined by the 10-20 system of electrode placement. In the original data set, there
were seven subjects performing five different mental tasks and one subject
performing two different mental tasks. Signals were recorded for ten seconds
during the task at a sampling frequency of 250 Hertz, and each task was repeated
five times per session. Subjects attended two sessions recorded on different weeks,
resulting in a total of ten trials for each task. The two mental tasks are described as
follows. In the task described as mental letter composing, the subjects were
instructed to mentally compose a letter to a friend or relative without vocalizing.
The second mental task described as visual counting, was constructed by asking
the subjects to imagine numbers being written sequentially on a blackboard,
with the previous number erased before the next number was written. Experiments
were executed using MATLAB version 7.6 in a personal computer with a 2.0 GHz
AMD Turion processor and 3GB RAM. Figure 8 shows an example of the
normalized power signal corresponding to alpha and beta bands for each mental
task.

According to the proposed procedure previously described, feature extraction is
performed on the power signals by a window-averaging with a 50% window
overlap. Fig. 9 shows an example of the feature vectors obtained through the

0 2 4 6 8 10
0

0.5

1

t [sec]

P
x

Letter composition

0 2 4 6 8 10
0

0.5

1

t [sec]

P
x

Counting

Alpha band

Beta band

Alpha band

Beta band

Fig. 8 Alpha and beta band power for letter composition and counting task

230 E. Morales-Flores et al.

described procedure, corresponding to the referred mental tasks. As Fig. 9
illustrates, the power representation of alpha and beta bands presents variations
associated to temporal evolution of power bands following each mental task. Since
the power in bands shows variations for each subject and trial, we propose the use
of an adaptive system allowing the assignment of membership functions in an
automatic way in order to represent the configuration of bands through fuzzy sets,
translating each experiment into a simple sequence that preserve the temporal
evolution of the performed mental task. Fig. 10 shows an example of the state
assignment corresponding to the case of letter composition task.

1 2 3 4 5
0.2

0.4

0.6

0.8

1

samples

P
' x

Letter composition task

1 2 3 4 5
0.2

0.4

0.6

0.8

1

samples

P
' x

Counting task

Alpha band

Beta band

Alfa band

Beta band

Fig. 9 Result of feature extraction process for two different mental tasks

The feature extraction process is then applied to each trial in the mental tasks
database, obtaining some sequences representing the state transitions of power
band configurations and corresponding to each mental task. The ANFIS system
was trained with the features extracted over all trials, considering an input
representation with eight membership functions. Fig. 11 shows an example of the
results obtained from the ANFIS training for the two mental tasks. Temporal
classification of the obtained feature vectors representing each mental task was
performed using a recurrent neural network. In this paper we compare the
performance of two models previously described: a simple recurrent neural
network or Elman network and a Full Connected Recurrent Neural Network
FCRNN. In both cases, the architecture of the recurrent neural networks was: 1
node in the input layer, 10 nodes in the hidden layer and 1 node in the output
layer. The architecture was determined by experimentation, with the best results
obtained using the described configuration.

Brain Computer Interface Development Based on Recurrent Neural Networks 231

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

samples

P
' x

Letter composition task

Alpha band

Beta band

state 5

state 1

state 2

state 3
state 4

Fig. 10 State assignment for letter composition task

0 20 40 60 80 100

-9

-7

-5

-3

-1

1

3

5

7

9

Samples

R
ep

re
se

nt
at

iv
e

st
at

e

ANFIS output

Ideal Output

Fig. 11 Result of ANFIS training

Temporal classification results are reported based on a leave-one-out (LOO-
CV) cross-validation. LOO-CV is typically used in the analysis of small datasets,
where the relatively high variance of the estimator is offset by the stability
resulting from the greater size of the training partition than is possible using
conventional k-fold cross-validation [57].

232 E. Morales-Flores et al.

Ten trials for each mental task result in a total of 20 patterns. The dataset was
partitioned in 5 folds with 4 trials each one. LOO-CV was performed using four
folds for training and the remaining one for testing. Table 1 summarizes the
temporal classification results obtained in average from both, training and testing
cases, with the two recurrent neural networks previously described.

Table 1 Results on temporal classification; training and testing

RNN Training 500 epochs Testing

 MSE Performance time MSE Performance

Elman 0.0328 91.75% 3’49’’ 0.0401 90.16%

FCRNN 0.0121 94.61% 1’ 12’’ 0.0528 88.12%.

6 Conclusions

In this chapter, an architecture based on adaptive neuro-fuzzy inference systems
(ANFIS) assembled to recurrent neural networks, applied to the problem of mental
tasks temporal classification, has been presented. Information on power signal
obtained from Alpha and Beta bands constituted a good descriptor with an
adequate separability, providing a good balance between complexity and
classification rate. The feature vectors representing each mental task following a
fuzzy-set paradigm, provided a good description about the temporal evolution of
the power signal. A classification rate in training of 94.61 % in average was
obtained through the FCRNN, with an 88.12 % of classification using leave-on-
out cross validation in the testing stage. A comparison with the Elman Network
indicates a better performance of the FCRNN during the training stage, with a
slightly better performance of the Elman network on generalization. In both cases,
an architecture of the neural network with 10 nodes in the hidden layer provided
the better results. Further experimentation oriented to the construction of a
database for BCI applications is currently in progress.

Acknowledgments. The first author acknowledges the financial support from the Mexican
National Council for Science and Technology (CONACYT), scholarship No. 224304. This
research has been partially supported by CONACYT Grant No. CB-2010-155250.

References

[1] Brunner, P., Bianchi, L., Guger, C., Cincotti, F., Schalk, G.: Current trends in
hardware and software for brain–computer interfaces (BCIs). Journal of Neural
Engineering 8, 025001 (2011)

Brain Computer Interface Development Based on Recurrent Neural Networks 233

[2] Bashashati, M., Fatourechi, R., Ward, K., Birch, G.E.: A survey of signal processing
algorithms in brain-computer interfaces based on electrical brain signals. Journal of
Neural Engineering 4(2), R32–R57 (2007)

[3] Berger, T.W., Chapin, J.K., Gerhardt, G.A., McFarland, D.J., Principe, J.C.,
Soussou, W.V., Taylor, D.M., Tresco, P.A.: WTEC Panel Report on International
Assessment of Research and Development in Brain-Computer Interfaces. World
Technology Evaluation Center, Inc. (2007), http://www.wtec.org/bci/
BCI-finalreport-26Aug2008-lowres.pdf

[4] Hosni, S.M., Gadallah, M.E., Bahgat, S.F., AbdelWahab, M.S.: Classification of
EEG signals using different feature extraction techniques for mental-task BCI. In:
2007 International Conference on Computer Engineering Systems, pp. 220–226
(2007)

[5] Neuper, C., Scherer, R., Wriessnegger, S., Pfurtscheller, G.: Motor imagery and
action observation: Modulation of sensorimotor brain rhythms during mental control
of a brain–computer interface. Clinical Neurophysiology 120(2), 239–247 (2009)

[6] Solis-Escalante, T., Muller-Putz, G., Brunner, C., Kaiser, V., Pfurtscheller, G.:
Analysis of sensorimotor rhythms for the implementation of a brain switch for
healthy subjects. Biomedical Signal Processing and Control 5(1), 15–20 (2010)

[7] McFarland, D.J., Sarnacki, W.A., Townsend, G., Vaughan, T., Wolpaw, J.R.: The
P-300-based brain–computer interface (BCI): Effects of stimulus rate. Clinical
Neurophysiology 122(4), 731–737 (2011)

[8] Ramirez-Cortes, J.M., Alarcon-Aquino, V., Rosas-Cholula, G., Gomez-Gil, P.,
Escamilla-Ambrosio, J.: Anfis-Based P300 Rhythm Detection Using Wavelet
Feature Extraction on Blind Source Separated EEG Signals. In: Ao, S., Amouzegar,
M., Rieger, B.B. (eds.) Intelligent Automation and Systems Engineering, ch. 27.
LNEE, vol. 103, pp. 353–365. Springer, New York (2011)

[9] Shyu, K.K., Lee, P.L., Liu, Y.J., Sie, J.J.: Dual-frequency steady-state visual evoked
potential for brain computer interface. Neuroscience Letters 483(1), 28–31 (2010)

[10] Horki, P., Solis-Escalante, T., Neuper, C., Muller-Putz, G.R.: Hybrid Motor
Imagery and Steady-state Visual Evoked Potential Based BCI for Artificial Arm
Control. In: Proceedings of the First Tools for Brain Computer Interaction
Workshop, Graz, Austria, p. 46 (2010)

[11] Wang, H., Li, C.S., Li, Y.G.: Brain-computer interface design based on slow
cortical potentials using Matlab/Simulink. In: Proceedings of the International
Conference on Mechatronics and Automation, Changchun, China, pp. 1044–1048
(2009)

[12] Khare, V., Santhosh, J., Anand, S., Bhatia, M.: Performance comparison of three
artificial neural network methods for classification of electroencephalograph signals
of five mental tasks. J. Biomedical Science and Engineering 3, 200–205 (2010)

[13] Pfurtscheller, G.: Spatiotemporal ERD/ERS patterns during voluntary movement
and motor imagery. Supplements to Clinical Neurophysiology 53, 196–198 (2000)

[14] Chiappa, S., Bengio, S.: HMM and IOHMM modeling of EEG rhythms for
asynchronous BCI systems. In: European Symposium on Artificial Neural
Networks, ESANN (2004)

[15] Millan, J.R., Mouriño, J.: Asynchronous BCI and local neural classifiers: an
overview of the adaptive brain interface project. IEEE Transactions on Neural
Systems and Rehabilitation Engineering 11, 159–161 (2003)

234 E. Morales-Flores et al.

[16] Pfurtscheller, G., Neuper, C., Schlogl, A., Lugger, K.: Separability of EEG signals
recorded during right and left motor imagery using adaptive autoregressive
parameters. IEEE Trans. Rehabil. Eng. 6, 316–325 (1998)

[17] Pfurtscheller, G., Neuper, C., Flotzinger, D., Pregenzer, M.: EEG-based
discrimination between imagination of right and left hand movement. Electro-
enceph. Clin. Neurophysiology 103, 642–651 (1997)

[18] Wang, T., He, B.: An efficient rhythmic component expression and weighting
synthesis strategy for classifying motor imagery EEG in a brain–computer interface.
J. Neural Eng. 1, 1–7 (2004)

[19] Wang, T., Denga, J., He, B.: Classifying EEG-based motor imagery tasks by means
of time-frequency synthesized spatial patterns. Clinical Neurophysiology 115,
2744–2753 (2004)

[20] Durka, P.: Matching Pursuit and Unification in EEG Analysis. Artech House, Inc.,
Norwood (2007)

[21] Wang, J., Xu, G., Wang, L., Zhang, H.: Feature extraction of brain-computer
interface based on improved multivariate adaptive autoregressive models. In:
Proceedings of the 3rd International Conference on Biomedical Engineering and
Informatics (BMEI), Yantai, China, pp. 895–898 (2010)

[22] Kołodziej, M., Majkowski, A., Rak, R.J.: A New Method of EEG Classification for
BCI with Feature Extraction Based on Higher Order Statistics of Wavelet
Components and Selection with Genetic Algorithms. In: Dobnikar, A., Lotrič, U.,
Šter, B. (eds.) ICANNGA 2011, Part I. LNCS, vol. 6593, pp. 280–289. Springer,
Heidelberg (2011)

[23] Vijean, V., Hariharan, M., Saidatul, A., Yaacob, S.: Mental tasks classifications
using S-transform for BCI applications. In: Proceedings of the IEEE Conference on
Sustainable Utilization and Development in Engineering and Technology,
Semenyih, Malaysia, pp. 69–73 (2011)

[24] Lotte, F.: The use of fuzzy inference systems for classification in EEG-based brain-
computer interfaces. In: Proceedings of the 3rd International Brain-Computer
Interfaces Workshop and Training Course, Graz, Austria (2006)

[25] Zhang, L., He, W., He, C., Wang, P.: Improving mental task classification by
adding high frequency band information. Journal of Medical Systems 34(1), 51–60
(2010)

[26] Palaniappan, R.: Utilizing Gamma band to improve mental task based brain-
computer interface design. IEEE Transactions on Neural Systems and Rehabilitation
Engineering 14(3), 299–303 (2006)

[27] Park, C., Looney, D., Kidmose, P., Ungstrup, M., Mandic, D.P.: Time-frequency
analysis of EEG asymmetry using bivariate Empirical Mode Decomposition. IEEE
Transactions on Neural Systems and Rehabilitation Engineering 19(4), 366–373
(2011)

[28] Kousarrizi, M.R.N., Ghanbari, A.A., Teshnehlab, M., Shorehdeli, M.A., Gharaviri,
A.: Feature extraction and classification of EEG signals using Wavelet Transform,
SVM and artificial neural networks for brain computer interfaces. In: Proceedings
of the International Joint Conference on Bioinformatics, Systems Biology and
Intelligent Computing, Shanghai, China, pp. 352–355 (2009)

[29] Forney, E.M., Anderson, C.W.: Classification of EEG during imagined mental tasks
by forecasting with Elman recurrent neural networks. In: Proceedings of the
International Joint Conference on Neural Networks, San Jose, California, USA, pp.
2749–2755 (2011)

Brain Computer Interface Development Based on Recurrent Neural Networks 235

[30] Coyle, D., McGinnity, T.M., Prasad, G.: Improving the separability of multiple
EEG features for a BCI by neural-time-series-prediction-preprocessing. Biomedical
Signal Processing and Control 5(3), 196–204 (2010)

[31] Chang, F., Chang, Y.: Adaptive neuro-fuzzy inference system for prediction of
water level in reservoir. Advances in Water Resources 29(1), 1–10 (2006)

[32] Subasi, A.: Application of adaptive neuro-fuzzy inference system for epileptic
seizure detection using wavelet feature extraction. Computers in Biology and
Medicine 37(2), 227–244 (2007)

[33] Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE
Transactions on Systems Man and Cybernetics 23(3), 665–685 (1993)

[34] Mandic, D., Chambers, J.: Recurrent neural networks for prediction. John Wiley &
Sons, Chinchester (2001)

[35] Fuchs, E., Gruber, C., Reitmaier, T., Sick, B.: Processing short-term and long-term
information with a combination of polynomial approximation techniques and time-
delay neural networks. IEEE Transactions on Neural Networks 20(9), 1450–1462
(2009)

[36] Gomez-Gil, P.: Long term prediction, chaos and artificial neural networks. Where is
the meeting point? Engineering Letters 15(1), 1–5 (2007)

[37] Skarda, C., Freeman, W.: How brains make chaos in order to make sense of the
world. Behavioral and Brain Sciences 10, 161–195 (1987)

[38] Jordan, M.: Serial order: a parallel distributed processing approach. Technical
Report TR-8604. UC San Diego Institute for Cognitive Science, San Diego (1986)

[39] Elman, J.: Finding structure in time. Cognitive Science 14, 179–211 (1990)
[40] Werbos, P.: Backpropagation through time: what it does and how to do it.

Proceedings IEEE 74(10), 1550–1560 (1990)
[41] Williams, R., Zipser, D.: A learning algorithm for continually running fully

recurrent neural networks. Neural Computation 1, 270–280 (1989)
[42] Graves, A., Fernandez, S., Gomez, F., Schmidhuber, J.: Connectionist temporal

classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd International Conference on Machine Learning, pp.
369–376. ACM, Pittsburgh (2006), doi:10.1145/1143844.1143891

[43] Williams, R.: Some observations on the use of the extended Kalman Filter as a
recurrent network learning algorithm. Technical Report NU-CCS-92-1, North-
eastern University, Boston, MA (1992)

[44] Haykin, S.: Neural Networks, 2nd edn. Prentice Hall, Upper Saddle River (1999)
[45] Cernansky, M.: Matlab functions for training recurrent neural networks RTRL-EKF

(2008), http://www2.fiit.stuba.sk/~cernans/
main/download.html (accessed January 2009)

[46] Werbos, P.: Beyond regression: new tools for prediction and analysis of the
behavioral sciences. PhD Thesis, Cambridge, MA (1974)

[47] Rumelhart, D., Hinton, E., Williams, R.: Learning internal representations by error
propagation. In: Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, vol. I. Bradford Books, Cambridge (1986)

[48] Čerňanský, M.: Training Recurrent Neural Network Using Multistream Extended
Kalman Filter on Multicore Processor and Cuda Enabled Graphic Processor Unit.
In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part
I. LNCS, vol. 5768, pp. 381–390. Springer, Heidelberg (2009)

236 E. Morales-Flores et al.

[49] Ralaivola, L., d’Alché-Buc, F.: Nonlinear Time Series Filtering, Smoothing and
Learning using the Kernel Kalman Filter. Technical Report, Universite Pierre et
Marie Curie, Paris France (2004)

[50] Alanis, A., Sanchez, E., Loukianov, A.: Discrete-time adaptive backstepping
nonlinear control via high-order neural networks. IEEE Transactions on Neural
Networks 18(4), 1185–1195 (2007)

[51] Prokhorov, D.: Toyota prius hev neurocontrol and diagnostics. Neural Networks 21,
458–465 (2008)

[52] García-Pedrero, A.: Arquitectura neuronal apoyada en señales reconstruidas con
wavelets para predicción de series de tiempo caóticas, M. Sc. Thesis, INAOE,
Tonantzintla, Puebla (2009) (in spanish)

[53] Doka, K.: Handbook of brain theory and neural networks, 2nd edn. MIT Press,
Cambridge (2002)

[54] Kachenoura, A., Albera, L., Senhadji, L., Comon, P.: ICA: A Potential Tool for BCI
Systems. IEEE Signal Processing Magazine, 57–68 (January 2008)

[55] Keralapura, M., Pourfathi, M., Sirkeci-Mergen, B.: Impact of Contrast Functions in
Fast-ICA on Twin ECG Separation. IAENG International Journal of Computer
Science 38(1), 38–47 (2011)

[56] Keirn, Z.A., Aunon, J.I.: A new mode of communication between man and his
surroundings. IEEE Trans. Biomed. Eng. 37(12), 1209–1214 (1990)

[57] Cawley, G.C.: Leave-One-Out Cross-Validation Based Model Selection Criteria for
Weighted LS-SVMs. In: Proceedings of the International Joint Conference on
Neural Networks, Vancouver, Canada, pp. 1661–1668 (2006)

Part IV

Soft Computing: Theory and New
Models

P. Melin, O. Castillo (Eds.): Soft Computing Appli. in Optimization, STUDFUZZ 294, pp. 239–263.
DOI: 10.1007/978-3-642-35323-9_10 © Springer-Verlag Berlin Heidelberg 2013

An Analysis of the Relationship between the Size
of the Clusters and the Principle of Justifiable
Granularity in Clustering Algorithms

Mauricio A. Sanchez1, Oscar Castillo2, and Juan R. Castro1

1 Universidad Autonoma de Baja California, Tijuana, Mexico
 {mauricio.sanchez,jrcastro}@uabc.edu.mx
2 Instituto Tecnologico de Tijuana, Tijuana, Mexico
 ocastillo@hafsa.mx

Abstract. The initial process for the granulation of information is the clustering of
data, once the relationships between this data have been found these become
clusters, each cluster represents a coarse granule, whereas each data point
represents a fine granule. All clustering algorithms find these relationships by
different means, yet the notion of the principle of justifiable granularity is not
considered by any of them, since it is a recent idea in the area of Granular
Computing. This paper describes a first approach in the analysis of the
relationship between the size of the clusters found and their intrinsic
implementation of the principle of justifiable granularity. An analysis is done with
two datasets, simplefit and iris, and two clustering algorithms, subtractive and
granular gravitational.

Keywords: justifiable granularity, clustering algorithm, subtractive, granular
gravitational.

1 Introduction

Granular computing is an area which has been gaining support since its initial
conception[1],[2],[3],[4],[5],[6]. Focusing on how information is treated and
represented, it describes how information should efficiently relate to each other,
defining the size of each granule and confining the cardinality of data into a mea-
ningful information granule[3]. This area has expanded into different interpreta-
tions, since it is more of a theory in general than a defined methodology of treating
information, yet they all share the same objective, to obtain meaningful granules.
Information granules can also be represented in a number of forms, fuzzy
logic[7][8], rough sets[9][10], etc[11][12][13][14].

240 M.A. Sanchez, O. Castillo, and J.R. Castro

The process of obtaining information granules is first preceded by the action of
finding relations between all data; this process is usually done by a clustering al-
gorithm. Clustering algorithms are defined as algorithms which find relationships
between data, there are multiple methodologies in which such relationships are
found, there are categorized as centroid based[15], density based[16], hierarchical
based[17], among others[18][19]. Each one of these obtaining similar results, yet
at the same time, finding different results, this is, there is a difference in perfor-
mance on each type of algorithm. The end result of such algorithms are usually
cluster centers as well as areas of influence, in the specifics of centroid based clus-
tering algorithms, they find cluster centers between the universe of data and radial
areas of influence, which can be easily mapped into fuzzy Gaussian membership
functions[20]. This paper focuses on this type of clustering algorithms.

Although clustering algorithms obtain acceptable results in the relationships
found[21], they do so in a manner that does not take into account if they adhere to
the basic theory of granular computing or not, since many algorithms precede the
existence of the area of granular computing. Yet clustering algorithms and granu-
lar computing are intertwined in such a way that you cannot remove one from the
other, because finding relationships in data is essential to obtaining information
granules.

One step in the correct direction of uniting clustering algorithms and granular
computing is the implementation of the principle of justifiable granularity[22]; this
principle is a first attempt to describe, in more detail, how an information granule
is in fact meaningful, and not redundant or too specific. Most, if not all, clustering
algorithms do not take into account if they create meaningful granules or not, they
only concentrate on the end result, and not if the chosen granules are optimized
and/or meaningful.

This paper is organized into multiple chapters which introduce concepts on
clustering algorithms which then briefly describes two such algorithms, subtrac-
tive and granular gravitational. Afterwards, a description and discussion on the
concept of the principle of justifiable granularity, and finally a discussion is given
into how both clustering algorithms, which were previously described, intrinsical-
ly implement such principle.

2 Clustering Algorithms

Clustering algorithms have the main objective of finding hidden relationships be-
tween the data inside of a specific information universe. In the following sections
two clustering algorithms will be described, only until how granules are found,
since some continue onto the process of creating a fuzzy system from the clusters
which are found, this is to focus on the discussion and analysis on how the intrin-
sically impellent the principle of justifiable granularity.

An Analysis of the Relationship between the Size of the Clusters 241

2.1 Subtractive Algorithm

This algorithm is density based, which means that its end results are calculated by
analyzing the density of data points inside a given radius, this is done iteratively
point by point until an objective function is within a specified tolerance[23].

The following, describes the main calculations done by this algorithm:

1. A measure of the potential (1) of each data point is first calculated, taking into
account the value of the given radius (2).

= (1)

= 4
 (2)

2. The highest potential is selected (2) and accordingly reduces the potential on
the rest of the point, calculated with the support of the given radius (4)

 (3)

= 4
 (4)

3. This is repeated until the finalization condition (5) is met

(5)

4. All sigmas, or radial area of influence, are then calculated (6) = max () min ()√8 (6)

Due to the nature of this algorithm, and the need to know the cardinality of each
found cluster in respect to the information universe, as to apply the principle of
justifiable granularity, a manner to find such cardinality (7) was implemented into
the algorithm, this was done by calculating the distances between each found clus-
ter and all data points, and the closest data points to each clusters were added to
their respected cardinality (8), where the distance is calculated with the Euclidean
distance measurement (9). ∈ (7) = data points closer to c (8) = ; ! = (9)

242 M.A. Sanchez, O. Castillo, and J.R. Castro

2.2 Granular Gravitational Algorithm

This is a hybrid centroid-density based algorithm, meaning all the calculations are
done based on point density and point distance, this is considering that Newton´s
Law of Universal Gravitation[24] is utilized to carry out the main cluster calcula-
tions[25].

The following describes the main calculations done by this algorithm:

1. All gravitational forces (10) in the system are calculated = , (10)

2. The sum force (11) for all data points is then sorted in descending order = (11)

3. All points with strong gravitational force and within a given radius are joined
(12), joining the point with lesser mass to the point with more mass ∪ ; ∪ (12)

4. This is repeated until a balance in the gravitational forces in the system is
achieved

5. All sigmas are then calculated based on the strongest force exerted by any
found cluster unto the rest of the information universe

3 Principle of Justifiable Granularity

This principle is “concerned with the formation of a meaningful information gra-
nule based on available experimental evidence”[22], meaning that finding clusters
and assigning sigmas that give acceptable results is no longer relevant, and the
correct size and cardinality of each cluster is.

3.1 Basic Theory

The principle of justifiable granularity is concerned with obtaining the adequate
size of each information granule which was found for that specific information un-
iverse. In this theory, there are two main rules that must be followed:

1. The numeric evidence of a specific information granule must be as high as
possible, this means that the cardinality of information within a granule must
be high

2. The information granule should be as specific as possible, meaning that vague-
ness is reduced, relying only on a very strict cardinality

An Analysis of the Relations

This completely contradic
elevate the cardinality yet
lem in the final implemen
rules.

Fig. 1 Visual difference betw
ty, and b) Low numerical evi

Considering that the siz
two segments, segment a
left side of the granule an
data points, Med(D), may
necessarily be normalized
most of the time not be th

Fig. 2 Granule showing the
Median of the data points

The cardinality of each
for finding the lengths req

This cardinality is separa
calculation of the length f
(14) would only be define

Considering the contradic
granularity, to obtain the b
to find the best possible
function (15), with refere
between both rules. Vary
granule can become. (
This optimization is done
from Med(D) to all protot
the user criterion for spec

ship between the Size of the Clusters 24

cts itself, as shown in Fig.1, since in one side you mu
t on the other side you must reduce it. This is not a prob
ntation, since a balance is found which conforms to bot

ween both rules: a) High numerical evidence with low specific
idence with high specificity

ze of the granule is to be found, this size is separated int
a and segment b, as shown in Fig. 2, in other words, th
nd the right side of the granule, since the Median of th
y not always be in the center and the data points may no
d in a symmetric position, the lengths of both a and b wi
he same.

difference between the lengths of a and b, both starting at th

h information granule (1) is important, since it is the bas
quired to obtain a meaningful granule. ∈ (13

ated into two distinct sets, which conform to the specif
for both a and b. Whereas the cardinality for calculating
ed by the data points larger than Med(D). ∈ , () (14

cting nature of the two rules of the principle of justifiab
best balance between both, an optimization must be don
solution. This is obtained by maximizing an objectiv

ence to a user criterion α (16) which controls the balanc
ying this user criterion affects how specific, or general,

) = ()[V(b)] (15∈ [0,] (16

e with an integration of the probability density functio
types of b, multiplied by a scaling factor which integrate
ificity (17).

43

ust
b-
th

ci-

to
he
he
ot
ill

he

sis

3)

fic
 b

4)

ble
ne
ve
ce
 a

5)

6)

on
es

244
 () =

The behavior of V(b) is sh
show how V(b) behaves w
0.1 to 0.5 in increments of

Fig. 3 Behavior of V(b) in re

How this behavior of
Fig. 4, in this example, th
located, this is, where bo
this special case of α=0,
reached, this is, the farthe
dition suggests that all nu
be as non-specific as poss

Continuing with the di
of the granule, Fig. 5 sho
not too specific yet with
where the optimization´s
length of each side of the

M.A. Sanchez, O. Castillo, and J.R. Cast

(| ()|) () d() (17

hown in Fig. 3, these plots are of an arbitrary example t
with different values of α, which in this case range fro
f 0.1, the smallest value of α being the topmost plot.

espect to b, with different values of α

V(b) affects the final length of each granule is shown i
he value of α equals zero and is shown where Med(D)
oth plots of the optimization V(*) start, or V(a|b) = 0; i
the maximization of V(*) is achieved until bmax or amin
est point in the cardinality of the granule. Since this con
umerical evidence must be utilized and the granule mu
sible.
irect effect of V(a) and V(b) in regards to the final lengt
ows how an α=2, which suggests granule length which

not too much numerical evidence. This figure identifie
s maximum is located and how it directly affects th
granule.

tro

7)

to
m

in
is
in
is
n-

ust

th
is
es
he

An Analysis of the Relationship between the Size of the Clusters 245

Fig. 4 Effect of the behavior of V(a) and V(b) on the final length of the granule, when the
value of α is equal to zero

Fig. 5 Effect of V(a) and V(b) on the final length of the granule, when α=2

246

3.2 The Specificity C

As briefly described in th
or general the information
between both rules, which

As a simple implemen
most general possible gra
value α can take as to hav

A form to find an app
best described in Fig. 6, w
αmax, is an approximate va
the increment of value, ho
mation granule is negligen

Fig. 6 Behavior of α in relati

This behavior changes
each granule’s cardinality
behavior here described
above graph shows a very
ue of α, while the second
first one, the first differen
value of α, which is slowe
graph; and the second not

M.A. Sanchez, O. Castillo, and J.R. Cast

Criterion

he previous section, this α criterion controls how specif
n granule will become, while still maintaining a balanc
h, in nature, contradict each other.
ntation it is easy to start the value at 0 to represent th
anule, yet it is somewhat trivial to know the maximum

ve a very specific granule.
proximate optimum maximum value for the criterion
where its behavior is of an inverse natural logarithm plo
alue at best, since after a threshold is surpassed, no matte
ow it affects the scaling factor of the length of the info
nt.

ion to the generality of the information granule

s with each granule, as it is influenced by the values i
y. In Fig.7, an example of two different granules and th
is shown, where two distinct behaviors are seen. Th

y pronounced descent as the length is affected by the va
d graph shows two distinct behaviors that differ from th
nce is the speed of descent of the length in relation to th
er to reach a lower value in comparison with the previou
ticeable difference, is that the initial values in the topmo

tro

fic
ce

he
m

is
ot.
er

or-

in
he
he
al-
he
he
us

ost

An Analysis of the Relations

part of each plot descend
is immediate as the valu
graph starts in a stable pl
in the length as no chang
meaning that while the va

Fig. 7 Behavior of two dif
length of the granule

ship between the Size of the Clusters 24

at different moment, where in the first graph, the descen
es of α start to increase, while the value of the secon
lateau before starting to descend, this plateau is reflecte
e to the maximum coverage or generality of the granul

alue of α changes, the length does not.

fferent granules which shows the relation between α and th

47

nt
nd
ed
le,

he

248 M.A. Sanchez, O. Castillo, and J.R. Castro

The approximate value of αmax is somewhere in the area where the behavior plot
stops to descend fast and starts to stabilize, as shown in Fig. 8.

Fig. 8 Interval where the approximate value of αmax is found

A heuristic is offered which can find this approximate value of αmax, which is
described as the natural logarithm of the cardinality of the chosen side (18) to find
its length divided by the length of the closest point (x1) to Med(D) (19). = (∈ ()) (18)

= log ()| () | (19)

On other terms of application, and considering that choosing an α close to 0 will
scale the information granule to a non specific granule, with a length near 0, the
middle point between [0, αmax] or αmax/2, will not necessarily impose a length of
exactly half the size, since the behavior, as already shown, is non-linear, and it
will greatly vary from the numerical evidence contained within each specific in-
formation granule. In Fig. 9, a clear example is shown of the difference between
α=0 and α=αmax.

An Analysis of the Relations

Fig. 9 Visual difference betw
α=0, and the lower graph sho

An apparent difficulty
granule, you must specify
defined by multiple input
better understand this, sup

ship between the Size of the Clusters 24

ween utilizing zero and αmax. The upper graph shows a usage
ows the result of using α=αmax.

with utilizing this criterion is that for each informatio
y two values for α, and considering that most datasets ar
ts, each granule for each input must have two values. T
ppose a dataset with 4 inputs where 10 granules are foun

49

of

on
re

To
nd

250 M.A. Sanchez, O. Castillo, and J.R. Castro

after processing all information, to apply the principle of justifiable granularity
one must consider that for every input there exists 10 granules, meaning 40 gra-
nules in total, and since each granule must specify two values for α, the user must
input a total of 80 different values for α, which is not a very user friendly number
in itself.

Considering this difficulty in applying this principle, there are multiple ways to
address a solution. First, all values of α are set to the same value, although this
would definitely reduce everything to a single number, it will purposely defeat the
objective of applying the principle of justifiable granularity, this is considering
that αmax varies from granule to granule, meaning this method is not viable unless
the value is ultimately set to zero. Another method, similar to the previous one, is
to use a scaling factor, since a heuristic has been proposed in this paper, it could
be used to scale from its maximum value down to zero, α= αmax x αscale where 0≤
αscale≤1, and apply it homogeneously to all values of α, this can be visualized in
Fig. 10.

Fig. 10 Example of applying a global scaling to all lengths (a and b) for all granules, with a
scaling factor set to 0.25

Another possible solution could be to apply a scaling factor, but instead of glo-
bally, apply it locally to each input, this could be used in cases where certain in-
puts variables can be relaxed in the values which it can receive or on the other
hand, only accept values high where precision is required, an example is shown in
Fig. 11 where two distinct inputs with two granules each implement this solution;
this type of solutions could be seen in a control application, where inputs are from
various sensors where some require higher precision and other lower precision.

An Analysis of the Relations

Fig. 11 Example of a hypoth
put shares a global alpha in
0.1 and the second input hav

These possible solution
lem of having to give an u

4 Algorithm Analy

The analysis which will b
is how the principle of ju
each sigma in respect to t
ty, considering the user
different values, only to d

ship between the Size of the Clusters 25

hetical set of granules from two distinct inputs, where each i
both lengths (a and b), the first input having a scaling value

ving a global scaling value of 0.2

ns are a few of many ideas which could address the prob
unrealistic amount of α values to the system.

sis

be shown is of a comparison on the variable level, whic
ustifiable granularity is applied. Comparing the length o
the lengths found by the principle of justifiable granular
criterion which varies the end results, they will be o

demonstrate how they vary with each specific cardinalit

51

n-
of

b-

ch
of
ri-
of
ty.

252

Another consideration in
ferent values for their resp
another difference in how
diversified depending on t

Originally, the value o
contained within each info
existing clustering algori
case, represent the value o
altering the results given
will be obtained directly f

The sigmas which are
calculated lengths by the p

For a more equal anal
lyzed will be done using t
sets.

4.1 Simplefit Datase

This dataset is a very simp
this dataset can be seen in

Fig. 12 Visual representation

M.A. Sanchez, O. Castillo, and J.R. Cast

the results is that both lengths a and b should have di
pective α, yet the same value was chosen to demonstra

w the lengths are different even if on the same granule, y
the cardinality of the left or right side of the Med(D).
of Med(D) should be calculated depending on the da

formation granule, but since the comparison is done usin
thms, they already obtain cluster centers, which in th
of Med(D), and for the sake of a fair comparison, withou
by these algorithms, Med(D) will not be calculated an

from these algorithms, taken from their found centers.
e obtained by these algorithms will be compared to th
principle of justifiable granularity.
ysis of both algorithms, their results which will be an
their obtained clusters when they identify 100% the dat

et

ple data fitting benchmark with one input and one outpu
n Fig. 12.

n of the simplefit dataset with one input and one output

tro

if-
ate
yet

ata
ng
his
ut
nd

he

a-
a-

ut,

An Analysis of the Relationship between the Size of the Clusters 253

Both algorithms which are being analyzed will be compared utilizing α=0 and
α=2 on both lengths of the granule, a and b. Fig. 13 shows the subtractive algo-
rithm´s sigmas, represented by straight lines, against the lengths found by the
principle of justifiable in this case, the granule is none-specific and completely
generalized, which has α=0, yet in comparison with the sigmas from the subtrac-
tive algorithm, half reach far beyond the cardinality of each granule.

Fig. 13 Results for subtractive algorithm of the simplefit dataset under, comparing the sig-
mas (lines) found by the algorithm against the lengths suggested by the principle of justifi-
able granularity (shaded area), with α=0

In Fig. 14, the same granules are shown but with α=2, where it can be noted
that all lengths vary widely since each granule’s cardinality is different in nature.
This example shows that the original length found by the subtractive algorithm
cannot compare with the varying values of α, since such algorithm does not con-
sider how specific a granule can be.

The granular gravitational algorithm, shown in Fig. 15, shows a very different
behavior in its sigmas, compared to the subtractive algorithm´s sigmas, since they
adapt much more to the cardinality of each granule, but in comparison with the
lengths given by the principle of justifiable granularity, with α=0, they are still
very generalized and reach beyond the its cardinality in the same way the subtrac-
tive algorithm does.

254 M.A. Sanchez, O. Castillo, and J.R. Castro

Fig. 14 Results for subtractive algorithm of the simplefit dataset under, comparing the sig-
mas (lines) found by the algorithm against the lengths suggested by the principle of justifi-
able granularity (shaded area), with α=2.

Fig. 15 Results for granular gravitational algorithm of the simplefit dataset, comparing the
sigmas (lines) found by the algorithm against the lengths suggested by the principle of justi-
fiable granularity (shaded area), utilizing α=0

An Analysis of the Relationship between the Size of the Clusters 255

In Fig. 16, the value set by the specificity criterion was set to 2, which much
how the subtractive algorithm with the same value for α compares against the ap-
plication of a variables specificity criterion, it cannot compare since the granular
gravitational algorithm also does not contemplate how specific a granule can be.

Fig. 16 Results for granular gravitational algorithm of the simplefit dataset, comparing the
sigmas (lines) found by the algorithm against the lengths suggested by the principle of justi-
fiable granularity (shaded area), utilizing α=2

4.2 Iris Dataset

The iris dataset is a benchmark dataset in remarks to clustering and classification,
with four inputs and three classes, and a non-linear solution, this makes for a very
interesting dataset to test.

First to be analyzed, is the comparison for the subtractive algorithm, specifical-
ly for the input variable of the petal length and sepal width, comparing the sigmas
obtained by the clustering algorithm against the lengths obtained by applying the
principle of justifiable granularity with an α=0 and α=5. As shown in Fig. 17, the
calculated sigmas by the subtractive algorithm still overreach, in most cases, far
beyond the cardinality of each cluster, yet in some cases some data points are not
inside that area of influence. For the lengths found by the principle of justifiable
granularity, since the criterions which was chosen is zero, this shows the maxi-
mum length which should be used in order to generalize the granule, in some cas-
es with this example, the lengths are almost identical, yet in others they are either
too short or too long, giving mixed results.

256

Fig. 17 Clusters found by
´sepal width´, comparing th
lengths found by the principl

The same example of g
α of 5, to show how the l
in respect to the user crit
criterion is to have length
more on having a higher
more generalized granule.

M.A. Sanchez, O. Castillo, and J.R. Cast

the subtractive algorithm for the variables ´petal length´ an

he sigmas found by the algorithm (straight lines), against th
le of justifiable granularity (shaded areas), with a global α=0

granules and inputs is now shown in Fig. 18, but with a
lengths of the granules adapt to each granules cardinalit
erion. The general behavior with the selected specificit
hs which are shorter, hence having granules which rel
r precision in such inputs in comparison with having
.

tro

nd
he

an
ty
ty
ly
a

An Analysis of the Relations

Fig. 18 Clusters found by
´sepal width´, comparing th
lengths found by the principl

As for the granular g
chosen with the same val
sigmas found by the clus
adaptation is not very no

ship between the Size of the Clusters 25

the subtractive algorithm for the variables ´petal length´ an

he sigmas found by the algorithm (straight lines), against th
le of justifiable granularity (shaded areas), with a global α=5

gravitational algorithm´s results, the same variable wa
lue for the specificity criterion. As shown in Fig. 19, th
stering algorithm adapt more to the cardinality, yet th
ticeable. Comparing with the lengths found by applyin

57

nd
he

as
he
his
ng

258

the principle of justifiabl
are similar to those of the
that the lengths of a and b
graph.

Fig. 19 Clusters found by th
and ´sepal width´, comparing
lengths found by the principl

M.A. Sanchez, O. Castillo, and J.R. Cast

e granularity, with an α of 0, the length of the granule
e granular gravitational algorithm, yet differ in the sens
b are shorter in general, this is more notable on the lowe

e granular gravitational algorithm for the variable ´petal lengt
g the sigmas found by the algorithm (straight lines), against th
le of justifiable granularity (shaded areas) , with a global α=0

tro

es
se
er

th´
he

An Analysis of the Relations

In the next example, th

different value for the us
equally compare with the
the same result as with t
cannot compare since bot
do not consider how speci

Fig. 20 Clusters found by th
and ´sepal width´, comparing
lengths found by the principl

ship between the Size of the Clusters 25

he same inputs and granules as before are used, but with
ser criterion for specificity, in this case, 5 was used t
e previous algorithm (subtractive). As shown in Fig. 2
the subtractive algorithm is obtained in the sense that
th the granular gravitational and the subtractive algorith
ific or generalized a granule can be.

e granular gravitational algorithm for the variable ´petal lengt
g the sigmas found by the algorithm (straight lines), against th
le of justifiable granularity (shaded areas) , with a global α=5

59

h a
to
0,
it
m

th´
he

260 M.A. Sanchez, O. Castillo, and J.R. Castro

In the next section, a much more detailed analysis regarding the cardinality,
sigmas and results obtained by applying of the principle of justifiable granularity
will be given.

4.3 Discussion

First of all, comparing both algorithm´s general performance, they obtain exactly
the same number of clusters when they 100% identify these datasets, meaning
their performance is very similar. The main difference in their results is that the
subtractive algorithm´s sigmas are constraint to the same length of each cluster on
the variable level, and the granular gravitational algorithm adapts its sigmas to
global cardinality, meaning that the clusters at the variable level will not always be
optimal.

Discussing now the intrinsic application of the principle of justifiable granulari-
ty in both algorithms, we first analyze the results obtained with the simplefit data-
set. Since this comparison was done with a specificity criterion of 0 and 2. With
zero, a full coverage of the lengths were expected, the subtractive algorithm had
mixed results in this case, since some of its clusters were perfectly represented yet
other clusters were very over-represented, having their length reach far beyond the
cardinality; and the granular gravitational, in this case, did adapt more the cardi-
nality of each cluster, in some cases ignoring isolated data points inside its own
cardinality, yet in other cases its reach went far beyond its data limits. With the
criterion set to 2, the change of coverage by each granule is very noticeable, but in
this specific case, there is no direct comparison available with both algorithms,
since they do not take into consideration how specific or not a granule can be.

Analyzing these results, we can assume that, in general, the subtractive algo-
rithm obtains sigmas that are more specific in nature and the granular gravitational
algorithm obtains sigmas that are less specific. Even with these differences, they
both have very mixed results in the specificity length of their sigmas. This is con-
sidering that both algorithms generally give lengths of granules that are too long in
direct comparison with the most generalized length given by applying the prin-
ciple of justifiable granularity.

Directing attention to the iris dataset, these results show a different facet of the
justifiability of granules, since the criterion which was chosen is 0 and 5, compar-
ing the most generalized granule size, α=0, and a granule size which is not very
specific nor very general, α=5, in fact, since αmax was not considered in this case,
it is unknown if the value of 5 is the exact balance between specificity and numer-
ical evidence of each granule, and considering that the cardinality of each granule
affects the non-linear behavior of αmax, this value was simply chosen to demon-
strate a higher value of specificity as to show how it affects the length of the
granule.

Comparing both algorithms results, for the variables of the petal length and
sepal width, in contrast to the length obtained after applying the principle of justi-
fiable granularity, we can see that in both cases, the lengths of the sigmas obtained
by the algorithms are similar in size, yet in some cases the granular gravitational
sigmas adapt more to the cardinality of each cluster. With an α of zero, the

An Analysis of the Relationship between the Size of the Clusters 261

subtractive algorithm as well as the granular gravitational algorithm adjust similar-
ly to the lengths given by applying the principle of justifiable granularity, but only
in one of the inputs, petal length to be precise, yet the other input, sepal width,
does not behave in this same manner, this could be explained by the form in how
the cardinality is calculated, where both algorithms calculate them globally and
not by input. The calculated length with a criterion of 5, in both cases, are similar
in size for most clusters, and considering that both algorithms have a similar per-
formance, we can assume that in this case, this similarity in obtained lengths by
applying the principle of justifiable granularity is to be expected.

Reducing this discussion to fewer words, both algorithms have a very similar
general performance with these datasets. The subtractive algorithm finds sigmas
of the same length on the variable level and has mixed results with the specificity
of each found cluster, while the granular gravitational algorithm finds sigmas that
adapt more to the cardinality of each granule, but since this is done globally on
each data point, it also has mixed results in respect to the cardinality of each clus-
ter on the variable level, and its sigmas tend to be less specific that the sigmas
found by the subtractive algorithm. And as already stated, both algorithms do not
adapt nor consider how specific a granule should be.

5 Conclusion

5.1 Conclusions

In general, this analysis has given some insight into how, and possibly a why,
these clustering algorithms obtain such acceptable results, when compared to the
most generalized length given after applying the principle of justifiable granulari-
ty. Another finding is that they both obtain sigmas which are normally too genera-
lized in respect to the cardinality of each information granule, resulting in the
question of how would the final evaluation of identifications of the datasets would
be affected if the lengths of each information granule was reduced according to
the principle of justifiable granularity.

Both algorithms have mixed results when it comes to the intrinsic implementa-
tion of the principle of justifiable granulation, yet in general, they both find sigmas
that are less specific that the most generalized possible length which can be found
by applying this principle.

Considering the non-linear behavior of the specificity criterion, and how there
is a fuzzy interval where its optimum value is found, an approximate heuristic has
been proposed which finds such value, as well as multiple suggestions as to how
generalize this value to limit the amount of user criterion values which must be
given to each system of granules.

5.2 Future Work

Regarding the principle of justifiable granularity, a global specificity criterion
could make it much easier to implement this theory, since having to choose this

262 M.A. Sanchez, O. Castillo, and J.R. Castro

value for two lengths, for every granule, and for every variable, is a non-realistic
implementation.

Having obtained acceptable results with the application of the principle of justi-
fiable granularity, integrating this into current clustering algorithms would greatly
aid in the advancement of the general theory of granular computing, since the gra-
nules would now be meaningful and more specific to the needs of the problem to
be solved.
Since a key component of the process of adjusting the lengths by applying the
principle of justifiable granularity is a meaningful cardinality which properly re-
flects each input, a modification to current clustering algorithms to reflect this
could greatly aid the end result of this principle.
More clustering algorithms can be tested in the same way the subtractive and gra-
nular gravitational algorithms were, as to measure more algorithms and asses their
performance and creation of meaningful information granules.

Acknowledgement. We thank the MyDCI program of the Division of Graduate
Studies and Research, UABC, and the financial support provided by our sponsor
CONACYT contract grant number: 314258.

References

1. Pedrycz, W.: Granular Computing - The Emerging Paradigm. Journal of Uncertain
Systems 1, 38–61 (2007)

2. Castillo, O., Melin, P., Pedrycz, W.: Design of interval type-2 fuzzy mod-els through
optimal granularity allocation. Applied Soft Computing 11, 5590–5601 (2011)

3. Bargiela, A., Pedrycz, W.: Toward a Theory of Granular Computing for Human-
Centered Information Processing. IEEE Transactions on Fuzzy Systems 16, 320–330
(2008)

4. Han, J.H.J.: Approximation spaces in granular computing (2009)
5. Dai, J.D.J.: Algebraic method for granular computing (2008)
6. Yao, Y.: A Partition Model of Granular Computing. In: Peters, J.F., Skowron, A.,

Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transac-
tions on Rough Sets I. LNCS, vol. 3100, pp. 232–253. Springer, Heidelberg (2004)

7. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)
8. Zhang, Y.Z.Y., Zhu, X.Z.X., Huang, Z.H.Z.: Fuzzy Sets Based Granular Logics for

Granular Computing (2009)
9. Pawlak, Z.: Rough sets. International Journal of Computer & Information Sciences 11,

341–356 (1982)
10. Sai, Y.S.Y., Nie, P.N.P., Chu, D.C.D.: A model of granular computing based on rough

set theory (2005)
11. Yao, Y., Zhong, N.: Granular computing using information tables. In: Mining Rough

Sets and Granular Computing 1997, pp. 1–23 (2002)
12. Zhang, L.Z.L., Zhang, B.Z.B.: Quotient space based multi-granular computing (2005)
13. Chen, Z., Lin, T.Y., Xie, G.: Matrix theory for Binary Granular Computing. IEEE

(2011)
14. Chen, G.C.G., Zhong, N.Z.N., Yao, Y.Y.Y.: A hypergraph model of granular compu-

ting (2008)

An Analysis of the Relationship between the Size of the Clusters 263

15. Linda, O., Manic, M.: General Type-2 Fuzzy C-Means Algorithm for Uncertain Fuzzy
Clustering. IEEE Transactions on Fuzzy Systems, 1 (2012)

16. Ester, M., Kriegel, H., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. Computer, 226–231 (1996)

17. Sibson, R.: SLINK: An optimally efficient algorithm for the single-link cluster
method. The Computer Journal 16, 30–34 (1973)

18. Maroosi, A., Amiri, B.: A new clustering algorithm based on hybrid global optimiza-
tion based on a dynamical systems approach algorithm. Expert Systems with Applica-
tions 37, 5645–5652 (2010)

19. Liu, X., Fu, H.: An Effective Clustering Algorithm With Ant Colony. Journal of
Computers 5, 598–605 (2010)

20. Nock, R., Nielsen, F.: On weighting clustering. IEEE Transactions on Pattern Analysis
and Machine Intelligence 28, 1223–1235 (2006)

21. Zaït, M., Messatfa, H.: A comparative study of clustering methods. Future Generation
Computer Systems 13, 149–159 (1997)

22. Pedrycz, W.: The Principle of Justifiable Granularity and an Optimization of Informa-
tion Granularity Allocation as Fundamentals of Granular Computing. Journal of
Information Processing Systems 7, 397–412 (2011)

23. Chiu, S.L.: Fuzzy model identification based on cluster estimation. Journal of Intelli-
gent and Fuzzy Systems 2, 267–278 (1994)

24. Newton, I.: Philosophiae Naturalis Principia Mathematica (1687)
25. Sanchez, M.A., Castillo, O., Castro, J.R., Rodríguez-Díaz, A.: Fuzzy granular gravita-

tional clustering algorithm. In: North American Fuzzy Information Processing Society
2012 (2012)

P. Melin, O. Castillo (Eds.): Soft Computing Appli. in Optimization, STUDFUZZ 294, pp. 265–286.
DOI: 10.1007/978-3-642-35323-9_11 © Springer-Verlag Berlin Heidelberg 2013

Type-2 Fuzzy Logic Grammars in Language
Evolution

Juan Paulo Alvarado-Magaña1, Antonio Rodríguez-Díaz1, Juan R. Castro1,
and Oscar Castillo2

1 Autonomous University of Baja California,
Faculty of Chemical Sciences and Engineering, Tijuana, Baja California, Mexico

2 Tijuana Institute of Technology, Tijuana, Baja California, Mexico
 ardiaz@uabc.edu.mx

Abstract. This paper proposes a new approach to simulating language evolution;
it expands on the original work done by Lee and Zadeh on Fuzzy Grammars and
introduces a Type-2 Fuzzy Grammar. Ants in an Ant Colony Optimization algo-
rithm are given the ability of embedding a message on the pheromone using a
Type-2 Fuzzy Grammar. These ants are able to gradually adopt a foreign language
by adjusting the grades of membership of their grammar. Results that show the
effect of uncertainty in a language are given.

Keywords: ACO, Language Evolution, Type-2 Fuzzy Grammar.

1 Introduction

How humans developed language can be explain from two different perspectives.
Some researchers believe that human linguistic abilities are innate ([7], [22], [23],
[24]), this is what is called the Nativist point of view, which sustains that language
is rooted in the brain's biology, in other words, the brain has an organ dedicated to
language. The second point of view is known as Non-nativist, which claims that
language is a byproduct of general intellectual abilities ([9], [26], [27]), this point
of view doesn’t assume the existence of certain characteristics in human biology
but claims that language is an emergent response to evolutionary pressure applied
to human ancestors.

Having these two points of view has created the Nativist versus Non-nativist
divide. One example that supports Nativist is the existence of a critical period
where children can learn a language; if a child is exposed to a language before the
age of six he is able to learn it fluently regardless of intellectual and environmental
circumstances, while an adult requires a greater amount of effort to learn a foreign
language [21].

The origin of the Nicaragua Sign Language is another example of language na-
tivism. The first school for deaf children in Nicaragua was opened in 1977, before
then deaf people lived isolated with their immediate family and communicated us-
ing signs specific to their home. It wasn't until they opened these schools that

266 J.P. Alvarado-Magaña et al.

children had the opportunity to socialize with others with similar abilities.
Through this interaction they took each other's dialects and formed a more com-
prehensive vocabulary by which all children could communicate. Researchers
noted that younger children could conjugate verbs in ways that older children
could not and they also found that younger children were introducing new struc-
tures to the grammar as they were learning it ([17], [18], and [25]).

In [12] researchers found that in order to enhance a child's ability to learn adults
adjust their language level when talking to them by using simpler grammatical
forms and vocabulary, which suggest that humans are instinctively good at teach-
ing language, which is a Non-nativist method of transmitting language.

To close the Nativist vs. Non-nativist division simulations of language evolution
can be applied. As explained in [21] simulations should explore three different as-
pects: the Nativist vs. Non-Nativist perspectives, syntax evolution and finally the
evolution of communication (usage of words as symbols).

There have been many attempts to simulate this phenomenon which have
shown good results in formal languages ([2], [3], [13], [14], [15]); most common
are those that use genetic algorithms ([3], [13], [15]) and neural networks ([14]),
which will be further explain in later sections.

This paper explores grammar evolution and language acquisition using a Type-
2 Fuzzy Grammar, which is an extension of Lee and Zadeh's original work in [19]
on Fuzzy Grammars. A modified Ant Colony Optimization algorithm is used to
simulate the social interactions required in a communicating society and results
that support the validity of this approach are given, as well as a detailed explana-
tion of how the simulation operates.

This paper has four sections organized as follows: section two is a collection of
previous work. Section three is an explanation of the simulation itself; it includes a
formal definition for Fuzzy Grammars as well as the modified ACO algorithm.
Results are presented in section four and finally conclusions are shared in section
five.

2 Previous Work

2.1 Emergent Vocal System in an Agent Society

This is an example of a Non-nativist simulation in which a language changes due
to the constant interaction between participating agents. In [2], de Boer simulates a
sound system organization using imitation games. To achieve this he proposes an
experiment in which agents are added or removed from a population, each having
a device that synthesizes sounds similar to the human voice and another device
that receives and decodes sounds in real time.

During a game, an agent randomly generates a sound that is added to its lex-
icon, a second agent perceives this sound and tries to decode it and reproduce it, if
the first agent finds that the imitation is sufficiently similar it gives positive feed-
back to the second agent. If however the sound is very different, the second agent
tries to modify it to better match the original.

Type-2 Fuzzy Logic Grammars in Language Evolution 267

Using this method de Boer shows that a system of shared sounds can emerge
through adaptive imitation games.

2.2 Development of Shared Symbols

Another case in which the simulation takes a Non-nativist approach is as follows.
Hutchins and Hazelhurst in [14] tried to weaken the assumption that a lexicon
used by agents must be provided externally by the researcher. They started with
agents with no innate knowledge of a lexicon and prepared them with a finite set
of situations they may experience. In order to identify them, each agent has a net-
work that represents a situation as an activation of nodes (the network's connection
weights are initialized at random).

Agents take turns performing roles as emitters and receivers. Both are pre-
sented with the same situation, and a pattern is formed within each network, the
emitter then transmits its pattern to the receiver, and since both perceive the same
situation the receiver can use the emitter's pattern as an additional input in order to
adjust its own network.

After a certain number of iterations agents converge on a shared vocabulary,
which means that when agents perceive the same situation the patterns produced
by the network are equal for all agents.

2.3 The Bioprogram Hypothesis and the Baldwin Effect

Using a multi-agent system Briscoe simulated the propagation of language using
genetic algorithms [3], this is an example of a simulation taking the Nativist point
of view in consideration. Agents are created with a grammar capable of analyzing
a sequence of categories or statements. The grammar is partly innate and contains
categories with some of the ways they can be combined.

One agent generates a sequence and another tries to interpret it using its internal
grammar, if a derivation tree can be generated then the interaction is successful.

The genetic part of the algorithm comes into play when agents are selected for
reproduction. Each agent has a degree of fitness that depends on its success in in-
teractions, the expressibility of the language and the amount of memory used to
make derivations.

When an agent is unsuccessful in its interaction it can modify its grammar. The
fittest agents are chosen for reproduction, the o spring's grammar is formed by
both parents' grammar.

This method proves that through genetic assimilation one grammar will even-
tually dominate over an entire population.

2.4 Grammar Emergence in Communication Agents

Ikegami and Hashimoto demonstrated that a grammar can increase complexity,
and therefore be more expressive, using an evolutionary method [13].

268 J.P. Alvarado-Magaña et al.

In this method, agents have an internal grammar they use to generate a string of
ones and zeros that is then transmitted to other agents. Agents who receive the
string try to use their internal grammar to replicate it, each agent keeps track of
how many steps it needs to derive the string from its grammatical rules.

For selection, agents that interpret long chains in fewer steps randomly change
their grammatical rules and are allowed to reproduce. Agents that fail to derive the
string are removed from the population and since only the most successful agents
are kept in the population this could be seen as another example of a Nativist si-
mulation.

Through this process a regular grammar eventually transforms into a context-
free grammar. It is known that a context-free grammar can generate more words
than a regular grammar.

2.5 Evolution of Communication Agents in the Predator-Prey
Pursuit game

Jim and Giles in [15] use the Predator-Prey pursuit game as a case study. During a
game, agents communicate with each other by writing a string of ones and zeros to
a message board. Once all messages have been posted, each agent reads all the
strings and concatenates them into a single input that is passed to a finite state ma-
chine to determine the next move.

In order to evolve the language each predator is encoded in a chromosome. The
initial generation usually doesn't capture the prey, but as generations advance the
lengths of the strings grow and improve agent performance.

Jim and Giles find that there must be a minimum size language to solve such
problems.

2.6 Comparison with Previous Work

As noted in [19], Fuzzy Grammars are a midway point between the precision of
formal languages and the ambiguity of natural languages but the literature studied
has presented simulations that only make use of traditional grammars. This is an
opportunity to offer a new perspective to researchers by making use of Fuzzy
Grammars.

Fuzzy Grammars provide much flexibility when defining a language. Produc-
tion rules can be strengthen or weaken as necessary by raising or lowering their
grades of membership in the grammar, making it easy to integrate new experimen-
tal rules without disturbing the established ones and also maintain seldom used
rules without completely eliminating them. Rules with a high degree of member-
ship are those that are endemic to the language, while those with a low degree of
membership could be either new additions to the language or even part of the lan-
guage that is going out of use.

Fuzzy Grammars could also model the acquisition of a foreign language by an
individual. As the individual learns a new language he can add fuzzy production
rules to his existing grammar and raise the grades of membership as he becomes

Type-2 Fuzzy Logic Grammars in Language Evolution 269

more skilled in the language. This characteristic can be further explored by using
Type-2 Fuzzy Grammars.

Type-2 Fuzzy Grammars provide a degree of uncertainty that in this case will
model an individual’s mastery level of a new language. The production rules of an
individual with little experience in a foreign language will have a high degree of
uncertainty, while those individuals that are fluent in a language will have almost
no uncertainty.

The proposed method is a new approach to the study of language evolution; it
differs from those discussed earlier in that it doesn't use traditional crisp grammars
but instead opts to use Type-2 Fuzzy Grammars. It also differs from previous
experiments [1] in that Fuzzy Grammars are extended into a Type-2 Fuzzy
Grammar.

3 Simulation

3.1 Ant Colony Optimization

To test the performance of Fuzzy Grammars a simulation in which communication
is essential for success is needed; as such Dorigo's Ant Colony Optimization [10],
also known as ACO, was selected as a case study.

ACO is a meta-heuristic inspired by the foraging habits of ants where social in-
teraction is one of the most important aspects of ant survival; this interaction is
modeled by Dorigo in the Ant Colony Optimization algorithm.

In ACO, individual ants leave a pheromone deposit to mark a solution in a
problem space, doing so allows other ants to follow the pheromone trace and ar-
rive at similar solutions. Pheromone intensity is either reinforced as more ants vis-
it the same solution or it evaporates as bad solutions get discarded. Eventually the
highest concentration is found around the best solutions. This experiment takes
advantage of this feature by providing ants with a Fuzzy Grammar and allowing
them to embed a message on the pheromone that other ants can understand.

The classic ACO algorithm uses a homogeneous colony to find a solution,
which means that the colony is composed by only one type of ant (all ants are the
same). The algorithm is extended in this experiment by including more than one
group of ants who are segregated by a different Fuzzy Grammar; this allows mul-
tiple groups of ants to work on the same problem space to find multiple solutions.

During the simulation the colony will attempt to minimize De Jong's function,
which has one global minimum.

If multiple groups of ants are placed on the same problem space to find De
Jong’s function’s global minimum, then only one group will arrive at the solution
because that group’s pheromone will dominate the area in which the solution is
located while other groups will reach solutions close to the global minimum, but
since they can’t follow the trace of the group at the solution due to differences in
the Fuzzy Grammar, they will never reach the solution (figure 1). If however, all
groups are able to assimilate each other’s language through the use of Fuzzy
Grammars, then all groups will eventually reach the global minimum.

270 J.P. Alvarado-Magaña et al.

The experiments show how two or more groups of ants are able to find the
same solution to a problem by acquiring each other's language through the use of
Fuzzy Grammars.

Fig. 1 The black pheromone dominates where the solution is located, the ants with the gray
pheromone can’t reach it

3.2 Type-2 Fuzzy Grammar

In 1975 Zadeh introduced a concept called Type-2 Fuzzy sets [30], which is an ex-
tension that permits the inclusion of uncertainty about the membership functions
of traditional fuzzy sets. Ever since then there have been many contributions that
use this concept, for example in Fuzzy Logic [5][20] and machine learning [4].

Lee and Zadeh's original definition for Fuzzy Grammars [19] is extended into a
Type-2 Fuzzy Grammar by implementing the concept of a Type-2 fuzzy set as fol-
lows:

Definition 1. A Type-2 Fuzzy Grammar is a quadruple G = (VN; VT; P’; S) in
which VT is a set of terminals, VN is a set of non-terminals, P’ is a set of fuzzy pro-
ductions and S ε VT is the set of starting variables

The elements of P’ are all productions in the form

 (1)

Where α → β expresses a re-writing rule, and are in (VN U VT) and ω′ is the grade
of membership given in an interval [0, 1] of β given α. A fuzzy production where
ω = [0, 0] is assumed to not be in P’.

A string of terminals x is said to be in the fuzzy language L(G) if and only if x
is derivable from the starting variable S. The grade of membership of x in L(G) is
given by

Type-2 Fuzzy Logic Grammars in Language Evolution 271

 (2)

The uncertainty of a string of terminals x is given by ∆(x)

 (3)

The following is a sample of a Type-2 Fuzzy:
Let G be grammar G = (VN; VT; P’; S) where:

 VN = {A, B, C}
VT = {a, b, c}
S= {A}

The productions in P’ are:

 μ(A AB) = [0.75, 0.8]
μ(B BC) = [0.6, 0.7]
μ(A a) = [0.8, 0.9]
μ(B b) = [0.7, 0.9]
μ(C c) = [0.85, 0.95]

The derivation of the string of terminals “abc” is as follows:

1. After applying the rule “A AB” the resulting string is “AB” and
μ(A AB) = [0.75, 0.8]

2. After applying the rule “B BC” the resulting string is “ABC” and
μ(B BC) = [0.6, 0.7]

3. After applying the rule “A a” the resulting string is “aBC” and
μ(A a) = [0.8, 0.9]

4. After applying the rule “B b” the resulting string is “abC” and
μ(B b) = [0.7, 0.9]

5. After applying the rule “C c” the resulting string is “abc” and
μ(C c) = [0.85, 0.95]

Thus according to 2 μG(abc) is:

μG(abc) = [supmin(0.75, 0.6, 0.8, 0.7, 0.85),
 supmin(0.8, 0.7, 0.9, 0.9, 0.95)]
= [0.6, 0.7]

And according to 3 ∆(abc) is:

∆(abc) = 0.7 – 0.6 = 0.1

272 J.P. Alvarado-Magaña et al.

3.3 The Algorithm

The simulation has two groups of ten ants (twenty in total, at the beginning ants
share the same Fuzzy Grammar with members of their group (these grammars are
given in Chomsky Normal Form). Both groups will attempt to minimize De Jong's
function which is as follows:

 (4)

In this case ants will find the point in which equation 4 evaluates to zero in a two
dimensional space, so n = 2.

The problem space is discretized and represented as a grid in order to allow
ants to take steps in controlled increments (figure 2). In other words, ants walk
across a plane such that each coordinate pair is used as input in De Jong's function.
At the beginning of the simulation each ant is placed randomly on the grid to be-
gin the search.

Fig. 2 Two groups of ants in a grid

As ants explore the problem space they will evaluate De Jong's function look-
ing for the global minimum, finding it means they have found a food source and
thanks to ACO other ants will be able to follow the pheromone trace to it.

When an ant leaves a pheromone deposit it also leaves a message generated by
its Fuzzy Grammar. Each point in the problem space is a deposit that holds phe-
romones. Since many ants can pass over the same deposit, different pheromone
levels are tracked. Before an ant can decide on a new position the dominant phe-
romone is determined, the pheromone with the highest intensity is the dominant
one. Ants of either group will try to follow the dominant pheromone but only if

Type-2 Fuzzy Logic Grammars in Language Evolution 273

they understand the message embedded in it, in other words, if they were able to
parse it using their Fuzzy Grammar.

As shown in Figure 3, ants will typically follow the trace of messages they under-
stand. This characteristic causes some ants to reach the global minimum while others
are kept at the edges. It is expected that after some iterations the number of ants that
find the food source will increase as the language between both groups converges.

Fig. 3 Example of the pheromone trace of two different groups of ants

Fig. 4 Diagram of the simulation’s steps

274 J.P. Alvarado-Magaña et al.

The simulation is divided into epochs, during each epoch ants must choose a
route based on the dominant pheromone left behind during the previous epoch,
they must also evolve their grammar and write messages to the deposits. Figure 4
is a chart of the steps made during each epoch, these steps are further explained in
later paragraphs.

The pseudo code for the main body of the simulation is as follows.

1: ant[n] is an array of n ants

2: Each ant is assign one of two grammars giv-
en in Chomsky Normal Form

3: Each ant is placed randomly in the two di-
mensional plane

4: for epoch = 0 to maximum number of epochs
do

5: for i = 0 to n do

6: ant[i] chooses a route

7: end for

8: update pheromone intensity

9: update messages in the pheromone

10: end for

An ant forms a route incrementally by stepping into a new deposit and then select-
ing from the eight possible adjacent spaces. The ant takes into account each depo-
sit’s pheromone intensity and its embedded message, in order to select the deposit
the ant must be able to parse the message. Figure 5 gives an example of this selec-
tion. The circle in the middle of the grid is an ant, and it must choose which of the
eight adjacent spaces to include in its route. Each space has a number representing
the intensity of the pheromone. Spaces are marked with different colors to
represent that the message in them are originated from different Fuzzy Grammars.
A route is completed once it reaches a maximum number of allowed movements.
Thus the probability of choosing deposit i is:

 (5)

where τ(i) is the pheromone intensity at deposit i and ∆ is the uncertainty of the
message in i as given by 3.

Type-2 Fuzzy Logic Grammars in Language Evolution 275

Fig. 5 Eight deposits with intensity

The following pseudo-code illustrates how a route is generated.

1: route[n] is an array of deposits of size n

2: best is the best solution found so far for
De Jong's function

3: Set route[0] = best

4: for j = 1 to n do

5: position[8] is an array of eight possible
positions an ant can choose as its next step

6: Set position with the message and intensity
of the dominant pheromone

7: for i = 0 to 8 do

8: Set route[j] = position[i] with probability
given by equation 5

9: end for

10: if route[j] is a better solution then best
when evaluated under De Jong then

11: Set best = route[j]

12: end if

13: end for

276 J.P. Alvarado-Magaña et al.

In order to parse the embedded message an algorithm given by Cocke [6], Young-
er [26] and Kasami [14], also known as the CYK algorithm, is used. One common
implementation of the CYK algorithm uses a three dimensional boolean matrix to
store true or false values as the parsing tree is built. In order to calculate G(x) as
given in 2 a modification that allows storage of grades of membership of each
production rule is made to the CYK algorithm.

1: S = a1a2...an is the message to parse of
length n

2: G(S) is the grade of membership of S in the
fuzzy grammar

3: The fuzzy grammar contains r non terminal
variables

4: P[n, n, r] is a three dimensional matrix
with real values, each position stores both the lower
and upper grades of membership of a production rule

5: for i = 0 to n do

6: for all unit productions Rj ai do

7: P[0, i, j] = μ(Rj ai)

8: end for

9: end for

10: for i = 1 to n do

11: for j = 0 to n - i do

12: for k = 0 to i do

13: for all productions RA RBRC do

14: if P[k, j, B] > 0 and P[i-k-1, j+k+1;
C] > 0 then

15: P[i, j, A] = min(μ(RA RBRC), P[k,
j, B], P[i-k-1, j+k+1, C])

16: end if

17: end for

18: end for

19: end for

20: end for

21: G(S) = P [n 1; 0; 0]

Type-2 Fuzzy Logic Grammars in Language Evolution 277

Grades of membership for the fuzzy production rules have to be adjusted after the
route has been selected. The grammar rules that were used are reinforced by rais-
ing their grade of membership, while those that weren't are lowered. As epochs
pass the rules most often used will have a higher grade of membership while the
least used will eventually cease to be part of the grammar.

1: P [n] is an array of production rules of
size n

2: μ(P[i]) is the grade of membership of pro-
duction P[i]

3: α is the degree by which μ(P[i]) is lowered
or increased

4: set α = 0.01
5: for i = 0 to n do

6: if Production P[i] was used during parsing
then

7: Set µ(P[i]) = µ(P[i]) + (µ(P[i]) * α)
8: Set µ (P[i]) = µ (P[i]) + (µ (P[i]) * α)
9: else

10: Set µ(P[i]) = µ(P[i]) - (µ(P[i]) * α)

11: Set µ (P[i]) = µ (P[i]) + (µ (P[i]) * α)
12: end if

13: end for

Each ant is equipped with a method for deducing the grammar rules corresponding
to a message it could not understand. This allows the ant to follow a pheromone
trace of a different group, the advantage being that if a different group is more
successful in finding food then the ant will eventually integrate itself into that
group by adopting their language. The method is based on the CYK algorithm and
is the same as described in [1] but the grade of membership for the new rules are
given in an interval. The pseudo code is:

1: S = a1a2...an is the message to parse of
length n

2: The fuzzy grammar contains r non terminal
variables

278 J.P. Alvarado-Magaña et al.

3: P[n, n, r] is a three dimensional matrix
with real values, each position stores both the lower
and upper grades of membership of a production rule

4: for i = 0 to n do

5: if the unit productions Rj ai doesn't
exist then

6: add µ(Rj ai) = 0.01 to the fuzzy gram-
mar

7: Set P[0, I, j] = 0.01

8: end if

9: end for

10: for i = 1 to n do

11: for j = 0 to n i do

12: for k = 0 to i do

13: if There doesn't exists a production RA
 RBRC such that P[k, j, B] > 0 and P[i-k-1; j+k+1;
C] > 0 then

14: add µ(RA RBRC) = 0.01 to the fuzzy
grammar

15: add µ (RA RBRC) = 0.0075 to the fuzzy

grammar

16: Set P[i, j, A] = [0.0075; 0.01]

17: end if

18: end for

19: end for

20: end for

The last step of each epoch updates the pheromone intensity in all deposits, the
following equation is used:

 (6)

Where τ(i) is the current pheromone intensity in deposit i, ρ is the forgetting fac-
tor, the constant Q is a value in the same order as f(j) and f(j) is the result of
evaluating De Jong's function with the best solution found so far by ant j.

Type-2 Fuzzy Logic Grammars in Language Evolution 279

The pseudo code for updating the pheromone intensity is:

1: ant[n] is an array of n ants

2: deposits[m] is an array of pheromone depo-
sits of size m

3: for i = 0 to n do

4: for j = 0 to m do

5: if ant[j] visited deposit[j] then

6: Use equation 6 to set depo-
sit[j].intensity

7: Set deposit[j].message =
ant[i].getMessage

8: end if

9: end for

10: end for

4 Experiments and Results

4.1 Experiment 1

The first experiment was the control case, it consisted of two groups of ten ants
each, each group's grammar had ∆(G) = 0, in other words, the uncertainty in the
language was eliminated. This simulation ran for fifty epochs with no evolution,
the results are given in table 1. The first group minimized the function before the
twentieth epoch, while the second group couldn't explore the problem space be-
cause the dominant pheromone wasn't understood. This experiment illustrates how
a group of ants can quickly reach a solution if there's no uncertainty in the lan-
guage and it also shows how a group that doesn’t understand the dominant lan-
guage is kept away from the solution.

Table 1 Two groups of ants over 50 epochs with no language evolution and ∆() = 0

Epoch Group 1 Group 2
5 7.152 17.704
10 1.1 17.704
15 0.288 17.704
20 0 17.704
25 0 17.704
30 0 17.704
35 0 17.704
40 0 17.704
45 0 17.704
50 0 17.704

280 J.P. Alvarado-Magaña et al.

4.2 Experiment 2

During the second experiment each group of ants had a grammar G with ∆(G) =
0.3. In this case, language evolution was introduced to study its effects. As is
shown in table 2, due to the level of uncertainty the first group managed to minim-
ize the function on the fortieth epoch (instead of the twentieth as before), while the
second group reached a lower solution than before but still didn't reach the global
minimum. This simulation experienced a slowdown in the search due to the intro-
duction of uncertainty.

Table 2 Two groups of ants over 50 epochs with language evolution and ∆(G) = 0.3

Epoch Group 1 Group 2
5 6.716 14.416
10 3.204 8.364
15 0.9 5.428
20 0.376 4.3
25 0.188 1.436
30 0.072 1.084
35 0.004 0.852
40 0 0.296
45 0 0.084
50 0 0.008

4.3 Experiment 3

In the third experiment the level of uncertainty is reduced to ∆(G) = 0.2 in order to
view the impact this would have on the results. Table 3 shows how it only took
group one thirty epochs to reach a solution, but the level of uncertainty is still high
enough that the second group couldn't reach it also. It’s possible that with more
epochs both groups would be able to find the solution.

Table 3 Two groups of ants over 50 epochs with language evolution and ∆ (G) = 0.2

Epoch Group 1 Group 2
5 8.712 14.356
10 4.228 8.836
15 2.944 5.372
20 2.456 1.98
25 1.416 1.036
30 0 0.444
35 0 0.208
40 0 0.208
45 0 0.036
50 0 0.036

Type-2 Fuzzy Logic Grammars in Language Evolution 281

4.4 Experiment 4

For the fourth experiment ∆(G) was reduced even further to ∆(G) = 0.1. The re-
sults in table 4 show both groups of ants reaching the same solution in fewer
epochs than in previous experiments, the level of uncertainty was low enough to
allow this and both groups converged on compatible languages.

Table 4 Two groups of ants over 50 epochs with language evolution and ∆(G) = 0.1

Epoch Group 1 Group 2
5 8.304 9.556
10 3.908 4.104
15 0.872 2.776
20 0.096 2.436
25 0.088 0.432
30 0 0.164
35 0 0
40 0 0
45 0 0
50 0 0

4.5 Experiment 5

In order to test the effect of a third language, the fifth experiment was carried out,
it consisted of adding a third group to the simulation and ∆(G) for all three lan-
guages was maintained at 0.1. The results in table 5 show how all three groups
where constantly reducing De Jong’s function but weren’t able to reach the global
minimum. It is possible that adding a third language slowed down the conver-
gence for all groups. In the following experiment the simulation was executed
over more epochs to visualize when all languages converge on one.

Table 5 Three groups of ants over 50 epochs with ∆(G) = 0.1

Epoch Group 1 Group 2 Group 3
5 14.064 12.24 10.612
10 11.488 11.428 8.876
15 7.74 8.656 7.088
20 5.432 5.892 4.548
25 3.748 2.552 2.996
30 2.608 1.96 2.42
35 1.336 1.624 2.252
40 0.664 1.504 1.496
45 0.428 1.216 0.52
50 0.236 1.08 0.352

282 J.P. Alvarado-Magaña et al.

4.6 Experiment 6

The sixth experiment is similar to the fifth but the number of epochs was increased
to two hundred. As expected, by allowing more time for the languages to converge
the groups managed to reach the global minimum in 95 epochs.

Table 6 Three groups of ants over 200 epochs with ∆(G) = 0.1

Epoch Group 1 Group 2 Group 3
5 10.08 17.12 14.82
10 6.116 14.124 10.784
15 4.236 11.348 7.408
20 2.556 7.42 5.468
25 1.724 5.38 3.58
30 1.288 3.02 1.82
35 0.836 2.668 1.296
40 0.136 1.612 0.804
45 0.06 0.728 0.352
50 0.032 0.42 0.304
55 0.024 0.24 0.212
60 0.016 0.06 0.2
65 0.016 0.028 0.136
70 0 0.012 0.052
75 0 0.008 0.052
80 0 0.008 0.004
85 0 0.004 0.004
90 0 0.004 0
95 0 0 0

4.7 Experiment 7

In the seventh experiment an additional group was added and ∆(G) was main-
tained at 0.1, this was done to see if by adding a fourth language the behavior

Table 7 Four groups of ants over 50 epochs with ∆(G) = 0.1

Epoch Group 1 Group 2 Group 3 Group 4
5 14.6 11.256 13.884 13.884
10 12.284 9.48 11.94 12.472
15 9.64 8.172 9.592 10.596
20 6.58 7.848 7.28 9.516
25 5.576 6.06 6.028 8.176
30 4.584 4.268 5.208 6.72
35 4.236 3.66 3.804 6.204
40 3.288 3.352 3.544 4.816
45 2.156 2.808 2.404 4.052
50 2.056 2.292 1.948 3.104

Type-2 Fuzzy Logic Grammars in Language Evolution 283

experience so far would still manifest. This experiment behaved similarly to expe-
riment 5, note that the solutions on the final epoch (Table 7) are worse in this ex-
periment than in experiment 5, it is possible that by adding the fourth group the
convergence once again slowed down.

4.8 Experiment 8

The final experiment had the same conditions as the previous experiment but ran
for two hundred epochs. In this case, two groups converged on the global
minimum before the one hundredth epoch while the other two found the minimum
before the one hundred and fiftieth epoch. As was expected, more epochs were re-
quired to allow all languages to converge.

Table 8 Four groups of ants over 200 epochs with ∆(G) = 0.1

Epoch Group 1 Group 2 Group 3 Group 4
5 12.928 20.108 14.4 14.22
10 11.352 18.828 11.92 12
15 10.276 14.944 10.972 10.576
20 7.348 11.792 8.584 8.824
25 5.672 6.916 6.308 7.02
30 4.204 5.148 5.44 6.192
35 3.08 4.42 4.472 4.936
40 2.86 2.54 4.368 3.476
45 2.588 2.264 3.996 2.596
50 1.952 1.092 3.672 2.028
55 1.036 0.288 2.928 1.716
60 0.728 0.252 2.352 1.508
65 0.532 0.156 1.788 0.936
70 0.224 0 1.688 0.764
75 0.116 0 1.608 0.624
80 0.116 0 1.608 0.58
85 0.056 0 1.1 0.376
90 0.02 0 1.052 0.256
95 0 0 1.052 0.1
100 0 0 1.02 0.1
105 0 0 0.7 0.1
110 0 0 0.604 0.1
115 0 0 0.596 0.1
120 0 0 0.452 0.1
125 0 0 0.288 0.064
130 0 0 0.288 0.064
135 0 0 0.2 0.04
140 0 0 0.2 0.008
145 0 0 0.2 0.004
150 0 0 0.08 0
155 0 0 0 0

284 J.P. Alvarado-Magaña et al.

5 Conclusions

The available literature was researched and it was found that Fuzzy Grammars ha-
ven’t been explored as a means to study Language Evolution. Since there’s a di-
vide between Nativist and Non-Nativist scientist regarding the origin of human
language, there are plenty of opportunities to provide them with the tools they
need, such as Fuzzy Grammars, to expand their research.

By formally defining Type-2 Fuzzy Grammars the work done in [1] and [19]
was expanded in order to simulate the uncertainty experienced by an individual
learning a new language.

In order to test the feasibility of Type-2 Fuzzy Grammars, ACO was modified
in several ways, first each ant was equipped with a Type-2 Fuzzy Grammar that
allows it to parse and create messages. Second, the pheromone was modified to
carry a message, thus an ant must be able to parse the message with a low uncer-
tainty in order to follow the trace. Different grammars where used as a way to dis-
tinguish between multiple groups of ants exploring the same problem space.

The experiments show that if multiple groups of ants attempt to solve the same
problem and they are unable to understand the each other's language, only one will
reach the solution; but if all groups are able to assimilate each other's language
then both will converge on the solution. Also, uncertainty plays an important role
in finding a solution; experiments show that a large enough uncertainty will slow
down the search.

The experiments presented here can be divided into two groups. In the first
group of experiments gradually uncertainty was introduced to illustrate its impact
in finding a solution. The first experiment had no uncertainty and no language
evolution and the results show a fast solution by one group. Language evolution
and uncertainty were then introduced to the ant population (experiments two, three
and four) and it was shown that the higher the uncertainty the longer it takes for
ants to reach the global minimum in De Jong’s function.

The second group of experiments demonstrate how a search for a solution is
furthered delayed by adding even more languages to the ant population, but how
given enough time all ants will reach the solution and converge on a compatible
language.

This leads to conclude that Type-2 Fuzzy Grammars are a viable tool in lan-
guage evolution research.

6 Future Work

The question of language origin is a divisive one, and even though it may never be
known for certain how humans developed language, there is a modern example of
language emergence in the case of the Nicaragua Sign Language ([17], [18] and
[25]). This example can be the foundation of future experiments in which Fuzzy
Grammars can be employed to simulate emergence. Also, it can be used to study
the use of words (evolution of syntax) and the use of symbols (evolution of com-
munication).

Type-2 Fuzzy Logic Grammars in Language Evolution 285

The experiments presented here are only an abstraction of problem solving in a
social environment, but real world social and economical phenomenon can be
modeled as well, such as migration and social integration where language profi-
ciency can be linked to higher wages and better work positions ([6], [11] and
[28]).

In [11] it’s suggested that proficiency in English is associated with eighteen to
twenty percent higher earnings in the UK and that language proficiency is an im-
portant factor in determining probability of employment.

Chiswik and Miller in [6] found that an immigrant’s socioeconomic status and
integration into the culture of a host country is influenced by the languages an
immigrant can speak and the level of proficiency of the destination language. In
other words, the value of a worker with language and profession skills is greater
than a worker of similar professional skills but with a language deficiency. The
extent to which an immigrant practices the host language is determined by factors
such as age of migration, educational attainment and duration of residence (per-
sons that migrated on a younger age are more likely to speak the host language).
They also found that immigrants in areas with a large concentration of people that
speak their language of origin are less likely to speak the host language.

Modeling these social interactions with Fuzzy Grammars could give new in-
sight as well as provide knowledge that could guide future policies regarding im-
migrant groups.

Acknowledgements. We would like to express our gratitude to the Masters and PhD in
Science and Engineering program (MyDCI) of the Division of Graduate Studies and
Research of the Autonomous University of Baja California, Mexico and the Computational
Intelligence group in the Faculty of Chemical Sciences and Engineering at the UABC cam-
pus in Tijuana.

We would also like to thank our colleagues at the Tijuana Institute of Technology.
Finally, we are very grateful for the financial support provided by our sponsors in the

National Council for Science and Technology of Mexico (CONACYT).

References

1. Alvarado-Magaña, J.P., Rodríguez-Díaz, A., Castro, J.R., Castillo, O.: Simulation of
Language Evolution using Fuzzy Grammars. In: 31st Annual NAFIPS Meeting (2012)

2. De Boer, B.: Emergent Vowel Systems in a Population of Agents. In: Proceedings of
ECAL 1997 (1997)

3. Briscoe, T.: Language Acquisition: The Bioprogram Hypothesis and the Baldwin Ef-
fect. MS, Computer Laboratory, University of Cambridge (1997)

4. Castro, J.R., Castillo, O., Melin, P., Rodríguez-Díaz, A.: A hybrid learning algorithm
for a class of interval type-2 fuzzy neural networks. Inf. Sci. 179(13), 2175–2193
(2009)

5. Castillo, O., Melin, P., Pedrycz, W.: Design of interval type-2 fuzzy models through
optimal granularity allocation. Appl. Soft Comput. 11(8), 5590–5601 (2011)

6. Chiswick, B.R., Miller, P.W.: A Model of Destination-Language Acquisition: Appli-
cation to Male Immigrants in Canada. Demography 38(3) (2001)

7. Chomsky, N.: Government and Binding, Foris, Dordrech (1981)

286 J.P. Alvarado-Magaña et al.

8. Cocke, J., Schwartz, J.T.: Programming Languages and Their Compilers. Courant In-
stitute of Mathematical Sciences, New York (1970)

9. Deacon, T.: The Symbolic Species. Penguin, London (1997)
10. Dorigo, M., Di Caro, G.: The Ant Colony Optimization Meta-Heuristic. In: New Ideas

in Optimization. McGraw-Hill (1999)
11. Dustmann, C., Fabbri, F.: Language Proficiency and Labour Market Performance of

Immigrants in the UK. The Economic Journal 113(489) (2003)
12. Fernald, A., Simon, T.: Expanded intonation contours in mother’s speech to newborns.

Developmental Psychology 20, 104–113 (1984)
13. Hashimoto, T., Ikegami, T.: Emergence of net-grammar in communicating agents.

BioSystems 38, 1–14 (1998)
14. Hutchins, E., Hazelhurst, B.: How to invent a lexicon. The development of shared

symbols in interaction. In: Artificial Societies: The Computer Simulation of Social
Life. UCL Press, London

15. Jim, K.-C., Lee Giles, C.: Talking Helps: Evolving Communicating Agents for the
Predator-Prey Pursuit Problem. Artificial Life 6(3), 237–254 (2000)

16. Kasami, T.: An efficient recognition and syntax analysis algorithm for context-free
languages. Technical Report AFCRL-65-758, Air Force Cambridge Research Labora-
tory, Bedford, Massachusetts (1965)

17. Kegl, J.: Conference Report: Linguistic Society of America Meeting. Signpost 7(1)
(1994)

18. Kegl, J.: The Nicaraguan Sign Language Project: An Overview. Signpost 7(1) (1994)
19. Lee, E.T., Zadeh, L.A.: Note on fuzzy languages. Information Sciences 1, 421–434

(1969)
20. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New

Directions. Prentice-Hall, Upper Saddle River (2001)
21. Perfors, A.: Simulated Evolution of Language. Journal of Artificial Societies and

Social Simulation 5(2) (2000)
22. Pinker, S., Bloom, P.: Natural language and natural selection. Behavioural and Brain

Sciences 13, 707–784 (1990)
23. Pinker, S.: The Language Instinct. William Morrow and Company (1994)
24. Pinker, S.: Why the child holded the baby rabbits: A case study in language acquisi-

tion. In: Language: An invitation to Cognitive Science, 2nd edn., vol. 1, pp. 107–133.
MIT Press, Cambridge (1995)

25. Senghas, A.: The Development of Nicaraguan Sign Language via the Language Ac-
quisition Process. In: BUCLD 19: Proceedings of the 19th Annual Boston University
Conference on Language Development. Boston Cascadilla Press (1995)

26. Shipley, E., Kuhn, I.: A constraint on comparisons: equally detailed alternatives. Jour-
nal of Experimental Child Psychology 35, 195–222 (1983)

27. Tomasello, M.: First words: A case study of early grammatical development. Cam-
bridge University Press, Cambridge (1992)

28. Veglery, A.: Differential Social Integration among First Generation Greeks in New
York. International Migration Review 22(4) (1988)

29. Younger, D.H.: Recognition and parsing of context-free languages in time n3. Infor-
mation and Control 10(2), 372–375 (1967)

30. Zadeh, L.A.: The Concept of a Linguistic Variable and Its Application to Approximate
Reasoning. Information Sciences 8, 199–249 (1975)

P. Melin, O. Castillo (Eds.): Soft Computing Appli. in Optimization, STUDFUZZ 294, pp. 287–319.
DOI: 10.1007/978-3-642-35323-9_12 © Springer-Verlag Berlin Heidelberg 2013

Methodology of Design: A Novel Generic
Approach Applied to the Course Timetabling
Problem

Soria-Alcaraz Jorge A., Carpio Martin, Puga Héctor, Terashima-Marin Hugo,
Cruz Reyes Laura, and Sotelo-Figueroa Marco A.

División de Estudios de Posgrado e Investigación, Instituto Tecnológico de León,
León Guanajuato, México
{Soajorgea,masotelof}@gmail.com, jmcarpio61@hotmail.com,
pugahector@yahoo.com

Abstract. The Course Timetabling problem is one of the most difficult and com-
mon problems inside a university. The main objective of this problem is to obtain
a timetabling with the minimum student conflicts between assigned activities. A
Methodology of design is a framework of solution applied to a heuristic algorithm
for timetabling problem. This strategy has recently emerged and aims to improve
the obtained results as well as provide a context-independent layer to different
versions of the timetabling problem. This methodology offers the researcher the
advantage of solving different set instances with a single algorithm; which it is a
new paradigm in the timetabling problem state of art. In this chapter the proposed
methodology is described and tested with several metaheuristic algorithms over
some well-known set instances, Patat 2002 and 2007. The main objectives in this
chapter are: to show the construction of a two-phase algorithm based in a novel
generic approach called design methodology and to find which metaheuristic algo-
rithm shows a better performance in terms of quality. The design methodology
generates set of generic structures: MMA, LPH, LPA and LPS. These structures
build an independent context layer, so the two-phase algorithm only needs to solve
the problem coded into them. No further specification or explicit codification of
any problem-dependent constraint is needed inside the algorithm. This guarantee
that in order to solve other instance of the Course timetabling problem, only it is
needed the translation of the incoming instance into the proposed structures. With
these structures the proposed methodology searches, in the first phase, for at least
one feasible solution (a solution that has no conflict in the hard constraints). In a
second phase the methodology utilizes this feasible solution in order to intensify
the search around it, looking for the perfect solution (a solution with no conflict in
any constraint hard or soft). Precisely for this two phases it is necessary the use of
metaheuristic algorithms. This kind of algorithms does not guarantee to obtain the

288 J.A. Soria-Alcaraz et al.

global optima but offers an opportunity to obtain a good solution in a reasonable
time. The algorithms chosen to be tested along with the design methodology are
from the area of evolutionary computation, Cellular algorithms and Swarm Intelli-
gence. It is important to say that there exist several previous implementations of
these metaheuristic algorithms over CTTP problems but this is the first time that
these algorithms will be evaluated under a generic approach like the Methodology
of design. Finally our experiments use some non-parametric statistical tests like
Sing test, Kruskal-Wallis test and Wilcoxon signed rank test in order to identify
the metaheuristic algorithm with the best performance over the course timetabling
problem using the Methodology of Design.

1 Introduction

The timetabling problem is one of the most difficult, common and diverse
problems inside the industry. This problem tries to assign several activities into a
Timelsots making a Timetabling. The main objective of this problem is to obtain a
timetabling with the minimum conflicts between assigned activities [21].

The timetabling problem is a wide problem that can be seen on different places
for example: airports, train stations, delivery companies…etc. in this chapter the
timetabling problem is seen from the point of view of an superior educational
institution or university.

There are diverse timetabling problems inside an university as the ones
described by Adriaen et.al [1]:

A) Faculty Timetabling: This timetabling problem assigns teachers to a set of
specific subjects or topics.
B) Class-teacher Timetabling: This timetabling problem assigns subjects to a
fixed and specific group of students.
C) Classroom-assigment: This timetabling problem ensures that every pair
teacher-subject has an assigned classroom.
D) Examination Timetabling: This timetabling problem assigns one-time
events like final exams or especial lectures to individual students.
E) Course Timetabling: This timetabling problem assigns subjects to
individual students.

This paper focus on the Course timetabling problem (CTTP). In this problem is
assigned a set of subjects to individual students looking for minimum conflicts,
usually time-conflicts, between the events.

Like most timetabling problems, the Course timetablinghas been reported as a
NP-Complete problem [13] [31]. This is commonly attributed to the huge
combinatorial explosion of possible events assigned into timeslots as well as the
constraints that each university uses in the course timetabling creation. Due to this
complexity and the fact that, even now many of these course timetabling
constructions are making by hand; It is necessary to automate the timetabling
construction process this also will improve the performance of the solutions
reached by the human expert [21].

Methodology of Design: A Novel Generic Approach 289

If we consider that every university usually needs to implement a new course
timetabling algorithm in order to achieve a good solution (basically due its internal
policies) then it exists an important obstacle; for example an algorithm that solves
the problem in a university may not be able to provide at least a feasible solution
for another university.

We called to this situation: a high dependency between the problem instance
and the solution algorithm. This is not a new problem; it has been documented by
Shaerf [23]. This situation means that there exist a big dependency between a
problem instance and an algorithm highly specialized and adapted to solve it. The
main problem is that, if it is necessary to change something in the original prob-
lem instance (due university policies) or if it is necessary to solve another univer-
sity, then is highly probably that the specialized algorithm cannot obtain a good
solution or in the worst case that algorithm cannot been at least executed in that
new environment.

In the worst case the researcher usually needs: to code a new algorithm, to
make more experiments in order to find the useful strategies and finally to solve
his new instance. Basically that means for the researcher the return to the design
table to build and test a new solver.

In this context a new methodology of solution has emerged, the methodology of
design [25] [26] [27] [28]. Thismethodology of design builds a layer where the
university policies from the original course timetabling input are traslatedto a set
of generic structures for its treatment by means of metaheuristic algorithms. This
design provides a context-independent layer allowing metaheuristic algorithms to
work and solve several course timetabling problems without using any explicit
constraints.

The main advantage of this approach is that if exist a change in the original
course timetabling instance it is only necessary to translate this new instance to the
set of generic structures in order to solve it. This means that the researcher do not
need to utilize time and efford to construct a new solution algorithm. he only
needs to apply the generic approach to obtain a solution with reasonable quality.

Other advantage of this approach is that it can be used as an benchmarking
framework. In the state of art of the course timetabling problem commonly
appears the problem of how to compare two algorithms that solve CTTP. This is
an important problembecause the compared algorithms usually are higly
dependent to its own different instances, so is too hard to find a way to identify the
best algorithm for an specific objetive. This problem can be relaxed by the
application of the design methodology; since this approach offers a generic
framework of solution, two algorithms that utilizes the same independent layer
could be easily compare in order to determine which is better in terms of student
conflicts.

The design methodology uses metaheuristics in order to find at least a feasible
solution, this kind of solution means that it does not have violations in any hard
constraints. Once this feasible solution is achieved it is necessary to intensify the
search around it, in order to obtain a perfect solution. The perfect solution means a
solution that does not have any violation in all the constraints hard or soft. This

290 J.A. Soria-Alcaraz et al.

methodology of solution is called Two-phase algorithm. The present work is only
focused in the feasibility phase, leaving for future work the application of a second
phase.

The two phase algorithms has been utilized in previous works [12][15][33]
these algorithms have several advantages and disadvantages shown by Lewis [21].
The main advantages are:

A) In early stages of the solution process the algorithm can detect if exist some
constraints in conflict. So it is posible to identify if the problem do not have a
solution due a fail in the constraint design.

B) Once the feasible solution is achieved this solution can be applied to the real
work at any moment, it is not necesary to finish the algorithm execution to ensure
to have at least an applicable solution.

On another hand the main disadvantage of this kind of algorithms is that this kind
of algorithm needs a way to ensure the modification of a feasible solution without
produce any violation in the previously solved constraints. The methodology of
design offers a way to deal with this disadvantage: due the usage of generic struc-
tures the algorithm will never produce an unfeasible solution. The main effort of
the design methodology is to find the perfect solution inside the bounds of feasi-
bility provided by the generic structures. These generic structures will be ex-
plained on the next section but can be summarized as:

A) MMA: Generic structure that shows the possible number of conflicts be-
tween two events if these two events are assigned into the same timeslot.

B) LPH: Generic structure that represents the time domain of each subject, this
structure shows the possible time-related assignations that every subject needs to
satisfy.

C) LPA: Generic structure that represents the space domain of each subject,
this structure shows the possible space-related assignations that every subject
needs to satisfy.

D) LPS: Generic structure that represent the demands for every student, in the
practice this structure shows the usage of time proposed by the student itself.

The first 3 structures represent the hard constraints and the LPS structure
represents the soft constraints. A complete CTTP assignation is obtained when the
proposed methodology achieve a solution that satisfy all the structures. In order to
search inside these structures a metaheuristic algorithm is used, The
metaheuristics algorithms has been characterized for offer good results in a
reasonable time. There exist a huge variety of metaheuristics applicable to a wide
range of problems, but the no-free lunch theorem [32] indicate us that there no
exist such a metaheuristic capable to give a good solution for every possible
problem. The selection of the best metaheuristic algorithm has then a great
importance over the final performance for the generic proposed approach. This
paper shows besides the generic design methodology, a comparative study
between several different metaheuristics and its performance over a generic
approach for the CTTP.

Methodology of Design: A Novel Generic Approach 291

The algorithms chosen to be tested along with the design methodology are:
Classic Genetic Algorithm (sGA), a novel Frequency Genetic Algorithm (fGA),
Eclectic Genetic Algorithm (eGA), Cellular Genetic Algorithm (cGA), Differen-
tial Evolution (DE/rand/1) , Particle Swarm Optimization (PSO) and Great
Deluge Algorithm (GDA).It is important to say that there exist several previous
implementations of these metaheuristic algorithms over the CTTP prob-
lem[24][27][15][26][7] but this is the first time that these algorithms will be
evaluated under a generic approach like the Methodology of design.

All the experiments will be realized over a set of well-known and referenced
instances: PATAT 2002 and PATAT 2007. The chapter is organized as follows.
Section 2 presents the design methodology for the course timetabling, The
metaheuristics chosen for comparison and its justification. Section 3 contains the
experimental setup, results, analysis and discussion. Finally Section 4 include
some conclusions and future work.

2 Methodology of Design

In the literature it can see that there is a problem with the diversity of course time-
tabling instances due different policies. This situation directly impacts in the
reproducibility and comparison of timetabling algorithms [23]. The state of art in-
dicates some strategies to solve this problem. For example, more formal problem-
formulations as well as the construction of benchmark instances [21] are methods
constantly used. These schemes are useful for a deeper understanding of the uni-
versity timetabling complexity, but the portability and the reproducibility of a
timetabling solver in another educational institution is still in discussion [23]. In
this context, it is proposed a new context-independent layer to the course timetabl-
ing resolution process. This new layer integrates timetabling constraints into four
basic structures MMA matrix, LPH list and LPA list and LPS list (explained in
subsequent sections). This approach has been applied together to Genetic Algo-
rithms with direct representation [26] and Hyperheuristics [27] with encouraging
results over real university instances at Leon Institute of Technology, but so far it
has not been applied to a 2-phase algorithm or an international testing benchmark
like ITC 2002 and ITC 2007 provided by PATAT. The 2-phase algorithm is a kind
of timetabling solver[21]. This solver works with the timetabling problem in two
phases. The first one tries to solve only the Hard constraints i.e. Constraints that
cannot be violated or the solution simply could not be applied to reality. Once the
feasible solution is achieved the algorithm enhances it usually by means of a heu-
ristic local search in order to obtain a Perfect Solution i.e. A Solution that solves
both Hard and Soft constraints. In this research it is used a two-phase algorithm
with several Metaheuristics as well as a generic approach in order to apply the first
phase to both ITC 2002 and ITC 2007.

These set of instances ITC 2002 and ITC 2007 belongs to the first and second
timetabling competition sponsored by WATT and PATAT (Practice and Theory of

292 J.A. Soria-Alcaraz et al.

Automated Timetabling). ITC 2002 as well as ITC 2007 has been recognized as
some of the most important course timetabling instances in the world.

2.1 Problem Definition

A clear and concise definition of the CTTP is given by Conant-Pablos [12]: A set

of events(courses or subjects) neeeE ,,,= 21 is the basic element of a CTTP.

Also there are a set of periods of time or timeslots stttT ,,,= 21 , a set of places

(classrooms) mpppP ,,,= 21 , and a set of agents (students registered in the

courses) oaaaA ,,,= 21 . Each member Ee∈ is a unique event that requires

the assignment of a period of time Tt ∈ , a place Pp∈ and a set of students

AS ⊆ , so an assignment is a quadruple),,,(Spte . A timetabling solution is a

complete set of n assignments, one for each event. It is important to notice that
each assignation must satisfy a set of = , , , … constraits usually
defined by each university. In the practice the constraint set is divided into hard
constraints and soft constraints. The hard constraits must be satisfy and the soft
constraits are prefered to be satisfy. This problem has been documented to be at
least NP-complete problem [13] [31].

As the reader can see, the construction of the constraint set is arbitrary and
depends exclusively for each university itself. The high number of possible
constraints makes very difficult to design an algorithm capable to solve all the
posibilities. Fortunately Corne et.al[11] groups the mayority of these constraints
into 5 classes, so the proposed methodology of design utilizes this classificacion in
order to reach a high rate of generalization. The five classes are:

A) Unary Constraints: These constraints involves only one variable. event
must be assigned into timeslot .

B) Binary Constraints: These constraints involves two variables. Event
must be asigned into an timeslot before/after that the timeslot assigned by
the event

C) Capacity Constraints: These constraints involves the space-domain of each
variable. The classroom only can use by 20 students at the same timeslot.

D) Event Spread Constraints: These are constraints that concern
requierements such as the “spreading-out” or “clumping-together” of events
within the timetable in order to ease student/teacher worload, and/or agree
with university’s timetabling policity (usually soft constraints).

E) Agent constraint: These are constraints that are imposed in order to
promote the preferences of people who will use the timetables.(it can be soft
or hard).

It is considered that these main five classes represents a wide range of CTTP
instances, so the generic approach is based in this five classes in order to offer a
good rate of generalization.

Methodology of Design: A Novel Generic Approach 293

2.2 Methodology of Design for the Course Timetabling Problem

As seen on previous section 2.1 there exist several different types of constraints
inside a CTTP problem. This situation makes difficult to apply a previously
adapted algorithm to a new CTTP instance. This work propose the usage of a
context-independent layer that transforms the original inputs/constraints into a set
of generic structures, so theoretically; it does not matter the configuration of the
original CTTP instance, because once translated a generic algorithm can solve the
instance using generic structures.

This layer of context-independency is named “Methodology of design”[27][28]
and its principal objetive is to solve bydesign the mayor number of constraints in
order to build a search space only with feasible solutions, where a heuristic
strategy can search for a solution working only with a minimun number of
variables.

The expression “by design” means that by the use of generic structures it is
posible to build a search space where all the constraints appears in an implicit way
and all the posible solutions in that space were feasible to most of the original
constraints. The main effort of this approach is to search inside this space of
feasibility in order to find the optimal solution, where all the constraints are
satisfied.

 (a) Original CTTP (b) Generic Structures CTTP

Fig. 1 In the original CTTP problem the feasible reagions are spread over the search space,
solver needs to manage unfeasible solutions in order to travel between feasible regions. In
the Generic structures space the feasible region is only one, so at any moment the algorithm
have a feasible solution.

In order to reach a feasible space like the shown on Fig 1, several generic
structures are needed, The structures are MMA matrix, LPH list, LPA list and LPS
list. The first 3 represents the hard constraints and the last one represent the soft
constraints. The definition of these structures are:

294 J.A. Soria-Alcaraz et al.

MMA Matrix: This matrix contains the number of students in conflict between
subjects i.e. the number of conflicts if two subjects are assigned in the same
timeslots. This matrix shows the number of students that demands simultanously
the row subject and the column subject. An example of this matrix can be seen on
the Figure 2 and the algorithm utilized for its construction on Algorithm
1.[25][26]

Fig. 2 MMA matrix

Algorithm 1. MMA Construction
Require: int N= Students, int[][] LD= Students Demands
1: fori=0to N do
2: Starr = LD[i]
3: forj=0tosize(Starr)do
4: fork=j+1tosize(Starr)do
5: MMA[Starr[j]][Starr[k]]+=1
6: MMA[Starr[k]][Starr[j]]+=1
7: end for
8: end for
9: end for
10: ReturnMMA

The MMA matrix is used in order to determine the quality of solutions reached

by the two-phase algorithm, in the practice this matrix is useful to evaluate the
number of student conflicts in a complete timetabling, the task of the two-phase
algorithm is to find a timetabling with a zero student conflict.

The MMA matrix is the main structure because is directly used by the fitness
function, so every heuristic strategy applied to the Design methodology needs it. Its
construction detailed in algorithm 1 requires the student demands, that demands are
the enrolled subjects that each student must take on the timetabling period.

LPH List: This structure shows the feasible time-domain of each variable. This
domain is obtained by the application of node and arc consitancy algorithms in
the original CTTP inputs. This structure informs the correct search space of each

Methodology of Design: A Novel Generic Approach 295

variable. The LPH list shows in its rows all events and in its colums all the days
each cell shows the possible assignation for an specific event into an specific
day.An example of this structure can be seen on table 1.[27]

Table 1 LPH List

 Day 1 Day 2 … Day p

1e >< 3t >< 2t …
2< t or >1t

2e >< 2t 2< t or >1t …
2< t or >1t

…

…

…

…

…

ne >< 2t 2< t or >1t …
2< t or >1t

The LPH list contains the time-domain of each event for the CTTP that means

the heuristic algorithm only needs to search inside these valid options for each
variable to ensure feasibility. This is an advantage against non-generic approaches,
because these approaches need to work with non feasible solutions waiting to
reach a feasible zone. The LPH list optimizes the cpu usage only searching in
feasible spaces.

The LPH list also provides a generic layer because the algorithm do not need to
have an explicit codification of the problem constraints. It is enough to search inside
the LPH list to ensure a non-violation of the time space domain. The construction of
this LPH list needs the application of consistancy algorithms as well as the
application of agents constraints because this list offers the possible timeslots for
each event or subject in the CTTP problem. node and Arc consistancy algorithms are
algorithms designed to stablish a feasible region of the search space in order to
search around it, the node consistancy[21] in the CTTP instance is use to, for
example; if an specific subjects needs to be taken by 30 student then no classroom
with capacity under 30 is allowed to be assigned to thisspecific subject. This simple
exercise reduce the search space. The Arc consistancy algorithm searches the valid
domains for chains of variables, for example in the CTTP problem, if event i must
be assigned in the 4th timeslot and there exist an order constraint that stablish the
assignation of event j after event i, then we know that the possible time-domain for
the event j must be from the 4th timeslot.

This structure is important because it establish the feasible search space in
terms of time constraints. Time constraints implicity allows the heuristic strategies
to focus in the search of the best possible solution.

LPA List: This list contains the feasible space domain for each event. This
domain is obtained by the application of node consitancy algorithms between all
the posible rooms and the features-demands of each event. The LPA list shows in
its rows each event and in its columns the valids classrooms for each event. An
example of this LPA list as well as the construction algorithm is detailed on table
2 and algoritm 2.

296 J.A. Soria-Alcaraz et al.

Table 2 LPA list

event Classrooms

1e >,,< 214 cl ppp

2e >,< 2clab pp

3e >,,,< 4326 bbb pppp

4e >,< 2llab pp

ne >< 7dp

Algorithm 2. LPA Construction
Require: int Nm= Subjects, int[][] CA= Room Features, int[][] DA= Subjects
Demands, int[] Rms = Room List.
1: fori=0to Nm do
2: forj=0tosize(CA)do
3: fork=0tosize(CA[j])do
4: if DA[i] <=CA[j][k] then
5: LPA[i].add(Rms[k])
6: end if
7: end for
8: end for
9: end for
10: ReturnLPA

The LPA list constructs the feasible domain in terms of space related

constraints. This structure allows the algorithm to only search in the possible valid
space values for each event. Like the LPH list this structure represents implicity
all the space constraints, this means that the usage of this list ensures the
satisfaction of these constraints, so the heuristic strategy only needs to search
inside all the possible assignations represented by the LPA list.

This list is constructed by the application of node and arc consistancy
algorithms as well as algorithm 2. This algorithm needs the features from each
room and the demands for each subjects, with this information the node
consistancy algorithm stablish a feasible domain for all the events.

LPS List: This structure represents the point of view of the student in the CTTP
instance commonly this list is used as a set of soft constraints. The LPS list is
constructed by taken directly from the students (agent constraint) their proposed
usage of time, the task for the heuristic search is to satify most students as
possible, but of course any violations in MMA, LPH and LPA are not allowed. An
example of this structure is shown in table 3.

Methodology of Design: A Novel Generic Approach 297

Table 3 LPS List

Student Max Min Csc Timetable
S1 5 2 2 <t2,t4,t6,>
S2 5 1 3 <t4,>
S3 3 2 2 <t2,t4>

...

...

...

...

...

Sp 4 0 2 <t2,t4,t6,t9,t5>

The LPS structure constraints several columns for each student, the first one the

Max column specify the maximun number of desired subjects by the student for
each day. The Min column shows the minimun number of desired subject by the
student for each day, the Csc columns shows the number of desired subjects in a
consecutive way, for example; the student S3 prefers to have a timetabling with 2
or less subjects in consecutive timeslots, so it is a violation (only for this student)
to assign him 3 or more subjects in a row. Finally the Timetable column shows
the preference of usage of time for each student, for example student Sp prefers his
subjects into the t2,t4,t6,t9 and t5 timeslots.

As it can be seen these structures represent most of the CTTP constraints from
the five main clases by Corne et. al[11]. The first 3 structures provides a feasible
search space and the LPS list provides the soft constraint search space. Each
structure provides a generalization layer so the search heuristic do no need to have
any code for the constraints in an explicit way. This allows to solve diferrent
CTTP instances once translated to the generic structures.

One important point in the construction of these structues is their simplicity.
This simplicity means that is relatively easy to obtain the proposed structures from
a real CTTP instance and therefor is easy to upgrade them if a change happens in
the real instance.[27]

Other advantage of the usage of these structures can be seen if for example the
researcher found that the LPH list cannot be constructed or an specific event
simply do no have any feasible timeslot or classroom, then this means that the
problem have constraints in conflict so it is not possible to find at least a feasible
solution. The researcher does not need to run a complex algorithm, simply by
looking in the structures he knows that the instance have no solution.

Finally it is time to talk about the most important element in the design
methodology: the concept of vector. This vector is a binary representation of an

event.[17][16] It can be constructed as seen on table 4a where each iv is a vector

that represents an event ie .

The vectors can be easily added and subtracted in order to construct sets . the

symbols used for these vectors sets are NBA VVV ,, . One characteristic is that

the number of vectors sets is always related with the number of timeslots offered
by the current timetabling. The main idea about vectors is to have a space where it

298 J.A. Soria-Alcaraz et al.

can be worked with events without assigned them yet to a fixed timeslot. This
independent layer of context generalizes even more the solution process of the
CTTP problem. One example of the Vector Set construction can be seen on Table
4b. It is important to see that the number of the vector sets is the same that the
timeslots offered in the current timetabling, that is: = | |. Finally these vector
sets have the next properties =∈ and ∈ = .

The main problem is now how to construct a fixed number of vectors sets
(usually the cardinality of timeslots set) in order to obtain zero conflict on MMA,
LPH and LPA. It is precisely for the vector sets construction that it is needed a
heuristic algorithm, but if any other CTTP problem can be expressed by means of
the Methodology of design’s generic structures then the same algorithm can be
applied without any modification in order to solve it.[25][26][27][28]

Table 4a Vector Construction

 Events
1e 2e

1−ne ne

1v 1 0 0 0

2v 0 1 0 0

1−nv 0 0 1 0

nv 0 0 0 1

The Methodology of design have only one explicit variable that is necesary to

be solved in order to make a complete solution, this variable is represented in the
MMA structure as the student conflict. The main task now is how to deal with
students conflicts only (MMA Matrix). The heuristic algorithm works with these
conflicts by means of the next minimization function[25][27]:

iV

k

i

FAFAmin
=1

=)((1)

()lsjsj

s
iVM

l

jVM

s
jV AAFA +

−−

∧ ,,
1=

1)(

1=

= (2)

Where: FA = Student conflicts of current timetabling. iV = Student conflicts from

''Vector Set'' i of the current Timetabling. lsjsj AA +∧ ,, = students that

simultaneously demand subjects s and 1+s inside the ''Vector set'' j .

A is a student that demands subject s in a timetabling j .

Methodology of Design: A Novel Generic Approach 299

Table 4b Vector set Construction

Events
1e 2e 3e 4e 5e 6e

1−ne ne

Vectors
1v 2v

3v 4v
5v 6v

1−nv nv

Vector
Set

VA VB VI VN

2.3 Metaheuristics Adapted to the Methodology of Design

As we can see from section 2.2 it is necesary to construct a particular vector set
where the number of student conflicts between the assigned subjects be the
minimum. The construction of this set can be seen as a combinatorial problem,
despite of the wide variety of metaheuristics that can be applied to this kind of
problem, we only chose metaheuristics that have been tested over similar
problems with a good reported performance over its respective instances. It is
important to say that this is the first time that these algorithms will be tested with
an generic approach like the Methodology of Design, and by the No-free lunch
theorem [32] the fact that these algorithms had shown a good performance in its
particular approaches does not mean that it can be expected a similar good
behaviour for all metaheuristics in the proposed generic methodology.

The main effort of the implemented metaheuristic will be to find a solution with
0 conflicts in accordance the MMA matrix, at the same time that it searches
inside LPH and LPA list. Once a strategy achieves 0 or a minimun conflict in the
MMA matrix a second phase will be executed, in this phase the best obtained
solution will be intensified in order to satisfy most soft constraint displayed by the
LPS list.

In this sectioneach metaheuristic implemented will be detailed. The set of
proposed metaheuristic had been used in previous work with encouraging results
over diferrent CTTP instances. This work will test these metaheuristics with the
objective to find which metaheuristic shown a better performance over the
methodology of design.

The selected metaheuristic are: Classic Genetic Algorithm (sGA), a novel
Frecuency Genetic Algorithm (fGA), Eclectic Genetic Algoritm (eGA), Cellular
Genetic Algorithm (cGA), Diferential Evolution (DE/rand/1) , Particle Swarm Op-
timization (PSO) and Great Deluge Algorithm (GDA).

Genetic Algorithm (sGA): As seen on the work of Xin-She [34] Genetic algo-
rithms are probably the most popular evolutionary algorithms in terms of diversity
and applications. This heuristic solver paradigm was developed by John Holland,
whose book adaptation in natural and artificial systems (1975) was instrumental
in creating a new breach of heuristic optimization: evolutionary computation,
As the name can express this heuristic solver is highly based in Darwin’s

300 J.A. Soria-Alcaraz et al.

Evolutionary theory in the sense that individuals with a better adaptation to the
environment have bigger chances to past its genes to a new generation. This is in-
deed the basic idea of GAs.In the Course timetabling state of art this algorithm has
reported a good results for early works like [35] [15] and [10]. The legacy of this
algorithm and its ease of implementation allows us to selected it as the first
metaheuristic tool for our generic approach.

The essence of genetic algorithms involves the encoding of an optimization
solution as arrays of bits or character strings to represent chromosomes, the opera-
tors applied then to the chromosomes tries to mix the genetic material (characteris-
tic of each timetable for the CTTP) in order to produce decedents, the comparison
of these new individuals by a selection operator according the fitness function
provides a way to identify the best solutions. The basic pseudo code for a generic
GA can be seen on algorithm 3 taken from Xin-She [34].

Algorithm 3. Simple Genetic Algorithm
Require: Objetive Function f(x),x=(x1,….,xn)

T
1: Encode the solution into Chromosomes (binary strings)
2: Define fitness F (usually f(x))
3: Generate initial population
4: Initial probabilities of crossover (Pc)and mutation (Pm)
5: while(t < Max number of generations)
6: Generate new solution by crossover and mutation
7: if Pc>rand, Crossover; end if
8: ifPm>rand, Mutate; end if
9: Accept the new solution if its fitness increases
10: Select the current best for the next generation (elitism)
11: end while
12: ReturnBest Solution from Population

As seen on Algorithm 3 the GA needs some parameters, these parameters

usually are : Population number, Generation number, Crossover probability,
Mutation probability and Elistism Percentage.Population number means the
number of desired chromosomes in each iteration of the GA, this number ussually
depends to the problem itself. Generation number means the number of iterations
executed by the GA, the value in this parameter is ussually in emphirical way.
Crossover Probability or (Pc) means the propability that a chromosome will be
reproduce with another chromosome. This parameter is commonly set between 0.7
or 0.99. Mutation Probability (Pm) means the propability to the chromosome to be
changed arbitrary at the end of a generation, this parameter is ussually set in low
values (0.01 to 0.15) . Elitism Percentage means the percentage of the best
chromosomes that will pass to the next generation without any change. This
parameter is ussually considered like the memory of the GA and its values are set
emphirically.

Methodology of Design: A Novel Generic Approach 301

Basically the GA is an simple metahueristic that needs only a fitness function
and a adequate representation in its solution. In terms of the current CTTP the GA
uses a direct representation previously reported by Soria et al [27] where each
gene represents an event to be assigned into a timeslot or vector. A more detailed
explaination of each adaptation is shown next:

A) Fitness Funtion: Taken form equation 1 and 2.
B) Solution Representation: The representation is direct where each gene

represent and integer that indicates the pair of the timeslot (reported by
LPH) and classroom (reported in the LPA structure). An example of this
representation is shown on table 5.

Table 5 sGA representation

Events Value
e1 3 (timeslot 2, classroom 4)
e2 12 (timeslot 1, classroom 12)
e3 7 (timeslot 4, classroom 1)

. .

en 9 (timeslot 2, classroom 4)

C) Selection Operator: The CTTP problem seen from the point of view of the

Methodology of Design is a minimization Problem, in order to assign a
bigger probability of selection to the chromosomes/individuals with less
value in its fitness the next equation is proposed.

= 1 ∑ 1
(3)

Where means the probability to select event . means fitness value of
the event . means the number of events in the current timetabling. This
ecuation is proposed as a minimization Roulette and its objetive is to give
more probability to less fitness values, bigger values means that by the
equation 3 the chromosome will be less propable to be selected .

D) Crossover Operator: As seen on the proposed representation there is no
problem in the repetition of values inside the chromosome, so for the
crossover the Single point crossover will be use.

This operator simple selects uniformly a random point inside the
chromosome and then from this point the genetic material is interchanged
between two chromosomes, the random point is changed at each iteration.

F) Mutation Operator: The mutation operator simply selects randomly a
variable, then changes the value of this gen in the chromosome in a
uniformly random way. In each mutation a new gen is selected and a new
value is assigned. It is important to say that at maximun one mutation is
performed in every iteration.

302 J.A. Soria-Alcaraz et al.

Frecuency Genetic Algorithm (fGA): This kind of GA was developed during
this invetigation, this GA uses the concept of execution by frecuency. The
frecuency in the CTTP means the number of events that have the same cardinality
in its LPH list. An example of this frecuency value can be seen of table 6

Table 6 Example of selection by frecuency

LPH Day 1 Day 2 Day3 Day 4

1e >< 1t >< 2t <>
2< t or >1t

2e >< 3t 2< t , >4t >< 2t 2< t or >1t

3e
>< 2t 2< t > <>

2< t >

4e >< 2t 2< t or >1t >< 2t 2< t or >1t

Frecuency Events

1 3e

2 1e , 4e

3

4 2e

From table 6 it can be noticed that the frecuency of events 1 and 4 is 2 so it is

easy for the GA to work with these 2 events in the same iteration (the
representation for both events have the same number of posibilities: 2 integer
values). The main diference between sGA and fGA is that the fGA algorithm have
a dynamic chromosome length , so in the firsts iterations the chromosome length
will be thel events that have the same frecuency or number of posibles timeslots in
the LPH list, A proposed way to select the quantity of this l events is equation 4.

 =
12 (0.33)13 (0.33) (0.66)14 (0.66) (4)

Where Fr means the number of frecuencies to solve in the iteration i.n means the
number of total frecuencies in the CTTP (taken from the LPH list). Gt represents
the parameter generations in the fGA. As it can be seen from the equation 4 the
sucession of the selected frecuencies is nothing more than the armonic succession
divided between k execution groups, in this work the number of execution groups
was set in 3.

Methodology of Design: A Novel Generic Approach 303

The main idea of this fGA algorithm is to optimize the usage of cpu working
only with new events each k iteration groups. From figure 3 it can be seen the per-
formance of sGA in the CTTP with Methodology of Design and on figure 4 the
performance of fGA in similar conditions.

Fig. 3 sGA Performance over CTTP with Design Methodology

Fig. 4 fGA performance over CTTP with Design Methodology

The fGA algorithm was designed to achieve at least the same value of fitness
than sGA with less iterations and execution time. The operators used in this fGA
algorithm besides the frequency selection are exactly the same described in the
previous sGA section.

304 J.A. Soria-Alcaraz et al.

Eclectic Genetic Algorithm (eGA): Genetic Algorithm with Vasconcelos selection
and auto-adaptation in its parameters. This Genetic algorithm was developed by
Angel Kuri [20], and has shown a good performance over high-constrained
problems. The auto-tunning allows this algorithm to escape from local optima by
itself. This main chracteristic incorporated in this GA are Kuri[19][20]:

A) Full elitism over a set of n size of the last population. Given that it has
been tested nk individuals by generation k, the population consist of the
best n up to that point.

B) A deterministic selection scheme (opposed to the traditional stochastic se-
lection methods). The main idea is to emphasize genetic variety by impos-
ing a strategy which enforces crossover of predefined individuals. In this
scheme, the j-th individual is crossed with the (n-i+1)-thindividual (Vaz-
conselos strategy).

C) Annular crossover
D) Population self-adaptation of the following parameters: The number of the

Offspring, Crossover probability and mutation Probability.

These considerations were adapted to the CTTP problem with Design Methodolo-
gy. The chromosome codification was the same used in the previous sGA and fGA
algorithms so the chromosome is a simple integer chain with the length of the
number of events. For the selection operator, the Vazconselos strategy was im-
plemented, that strategy sorts al the chromosomes from the best fitness to the
worse, then the crossover operator is applied to every pair (i,n-i) where n is the
number of current population. On the figure 5 it can be seen an example of this
strategy.

Fig. 5 Vazconselos selection strategy.

The crossover operation is the annular crossover; this operator considers two
chromosomes as annular chains, this operator selects two arbitrary points inside
the chromosomes and then interchanges its genetic material, this operator works as
seen on figure 6.

Methodology of Design: A Novel Generic Approach 305

Fig. 6 Annular Crossover

The Crossover and mutation probability parameters are included in each chro-
mosome, so essentially each individual carries on with its own crossover and mu-
tation probabilities, in order to fix these parameters values at the beginning of the
generation, the next equations are applied.

() = 1 () (5)

Where () meanshe probability of mutation in the k-th iteration, () means the
probability of mutation coded in the i-th chromosome and n means the total
number of chromosomes in teh current iteration.

() = 1 () (6)

In a similar way the equation 6 details the probability of crossover for the k-th ite-
ration;Where () meanshe probability of crossover in the k-th iteration, () means the probability of crossover coded in the i-th chromosome and n
means the total number of chromosomes in the current iteration.

Finally, both; the fitness function and the offspring selection are the same as
sGA and FGA algorithm.

Cellular Genetic Algorithm (cGA): Genetic Algorithm with high parallelism
developed by Alba et.al [2] [3]. This GA limits each individual to a specific
neighbourhood (NEWS neighbourhood in this work), also each individual is placed in
a toroidal grid. This kind of algorithm admits sub-populations that work at the same
time in different regions of the search space, but gathers information with a migration
operator. Several adaptations of common GA operators are made in order to use them
in this cGA, For example the selection operator only selects neighbours for each
individual/cell. The Elitism operator is changed as well, making only possible to
choose the best individual for each subpopulation, i.e in each subpopulation the best
cell cannot be modify ,but this cell can modify (cross-over) others.

The cGA model simulates the natural evolution from the point of view of the
individual. The essential idea of this model is to provide the population of a
special structure defined as a connected graph, where each vertex is a common
GA chromosome or Cell that is only allowed to communicate with its nearest

306 J.A. Soria-Alcaraz et al.

neighbours. Particularly, individuals are conceptually fixed in a toroidal mesh and
are only allowed to recombine with close individuals.[5] An example of this type
of interaction can be seen on the figure 7.

Fig. 7 Simple NEWS toroidal grid interaction.

A pseudo-code of the canonical version of cGA proposed by Alba et al[3] can
be seen on Algorithm.

Algorithm 4. Canonical Cellular Genetic Algorithm
Require: Fitness Function f(x),x=(x1,….,xn)

T
1: Encode the solution into Chromosomes (binary strings)
2: Define fitness F (usually f(x))
3: Generate initial population
4: Initial probabilities of crossover (Pc)and mutation (Pm)
5: while(t < Max number of generations)
6: fori to population size (total cells) do
7: Define Neigborhood for Cell i.
8: Selects a Neighbor for Cell i.
9: TempCell = recombitation(Cell i, Selected Neighbor)
10: Update Cell I with TempCell
11: end for
12: Mutate (Grid)
12: ReturnBest Solution from Grid

Further cGA adaptations applied in order to work over the CTTP with Design

Methodology are:

A) Each Cell in the toroidal grid represents a complete timetable as an integ-
er chain of all the events. Each integer is a value that coded a pair (time-
slot-classroom).

B) The neighborhood model used is the NEWS model (as seen on figure 7),
in order to select a neighbor to execute the crossover the minimization
roulette is applied around each cell (equation 3)

C) The crossover operator applied is the single point crossover (the same
that sGA).

Methodology of Design: A Novel Generic Approach 307

D) The mutation operator is the same applied in sGA. A simple arbitrary
change in an event over a single cell in the grid.

E) The elitism operator is applied every iteration and this operator simply
locks the best cell to any change. It is necessary to say that this kind of
lock only denied any change in the cell itself, but this cell can modify its
neighbors.

F) The grid used is 4x4
G) The fitness function is the same seen on equation 1 and 2.

The use of an elitism operator do not appears in the original cGA algorithm, in this
work this elitism is a proposed strategy to construct a cGA with memory, this
memory has the objective to stop any non-desired change or a situation when the
best cell updates with a worse genetic material.

Finally, this algorithms admits the usage of Sub-populations, this subpopulation
usage means the execution of two or more similar grids at the same time. The gr-
ids interchange information every k iterations, where k is a parameter usually
defined by the user. In this work, 2 grids both of 4 x 4 with similar configuration,
interchanges information every 250 function points.

Differential Evolution (DE): The Differential Evolution (DE) is a evolutionary
strategy designed for problems of continuous nature. This algorithm has been
reported [22] [29] as a good algorithm capable to work with high constrained
problems in a small time. Developed by Storn and Price, It is a vector-based
algorithm and can be considered as a further development to GA. This stochastic
search algorithm with self-organizing tendency do not uses information of
derivatives (as a GA). Unlike GA, DE carries out operations over each component
of the vector (in our case each variable is coded inside the chromosome). This
kind of operators can be expected to be more efficient when the optimal solution is
near to the current point coded in an chromosome/individual [34]. Despite of
the discrete nature of the CTTP instance, the DE can work over a discrete
representation like the proposed GA chromosome where each component is
an CTTP event whit a well-defined pool of timeslot choices(LPH). So the
representation used is, as well as previous GA’s, a chain with integer
values.Despite of the fraccionary nature of DE, each value produced by a DE
operation will be rounded to the nearest integer that coded a LPH-LPA value.

Diferential evolution consist of three main steps: mutation, crossover and
selection. Mutation is executed by an mutation scheme. For each variable xiat any
time or generation/iteration t , first it is randomly selected three distincs
chromosomes xp, xq and xr, an then it is generated a donor vector by the equation 7
Where = [0,2] is a parameter refered as diferential weight. = + () (7)

The crossover operator is controlled by a crossover probability = [0,1] and
the actual crossover is executed in this work as a binomial scheme. The binomial
scheme performs crossover on each of the d components (events or variables). By
generating a uniformly distributed random number = [0,1], the j-th component
of vi is manipulated as seen on equation 8.

308 J.A. Soria-Alcaraz et al.

, = , , , = 1,2, … , (8)

This way, each component can be decided randomly whether to exchange with
donor vector.

Selection is essentially the same as that used in the previous GA’s seen on
equation 3. Therefore the update of each component is executed by the equation 9. = () () (9)

These operator can be seen in the next DE pseudocode taken from Xin-She[34].

Algorithm 5. Canonical Differential Evolution
Require: Fitness Function f(x),x=(x1,….,xn)

T
1: Initialize the population x with randomly generated solutions
2: while(stopping criterion)
3: fori= 1 to n do
4: for each xi, randomly choose 3 distinct vectors xp, xq and xr
5: Generate a new vector v by equation 7
6: Generate a random index = [1,2, … ,] by permutation
7: Generate a randomly distributed number = [0,1]
8: for j=1 to d do
9: for each component vj,i update
10:

, = , =, , = 1,2, … ,

11: end for
12: Select and update the solution by equation 9
13: end for
14: Update the counters such as t=t+1
15: end while
16: ReturnBest Solution

Particle Swarm Optimization (PSO): Particle Swam Optimization is based on the
swarm behaviour was developed by Kennedy and Eberhart(1995) [17]. Since then
the PSO has been applied to almost every area in optimization, computational
intelligence and design/scheduling applications [16][24]. This algorithm searches the
space of an objective function by adjusting the trajectories coded inside each particle
(in our case the time values of each variable/event) in a quasi-stochastic manner.
Each particle is attracted toward the position of the current global best g* and its
best location x*i in history, while at the same time it has a tendency to move
randomly. This algorithm can be adapted to CTTP instances with the same
considerations seen on the DE algorithm. This means that the PSO will manage an
vector represented by a integer chain where every component is a CTTP event and
every operation will be rounded to the nearest integer that coded a LPH-LPA value.

Methodology of Design: A Novel Generic Approach 309

The essential steps of the PSO algorithm can be summarized as the pseudo-
code taken from Xin-She[34] and showned on algorithm 6. Let xi and vibe the
position vector (CTTP complete assignation) and the velocity for particle i
(Solution). The new velocity vector is detrmined by the following formula = + [] + [] (10)

Where and are two random vectors, and each entry taking the values
between 0 and 1. The hadaman product od two matrices is defined as the
entrywise product, that is [] = . The parameters and are the
learning parameters or acceleration constants, which can typically taken as 2.

The initial locations of all particles should distributed uniformly so that can
sample over most regions. The initial velocity of a particle can be taken as 0, that
is = 0, The new position can be update by equation 11. = + (11)

Algorithm 6. Canonical Particle Swarm Optimization
Require: Fitness Function f(x),x=(x1,….,xn)

T
1: Initialize locations xi and velocity vi of n particles
2: Find g* from min{f(x1),…, f(xn)}
3: while (stopping criterion)
4: t=t+1
5: for j=1 to n (Particles)
6: Generate a new velocity using equation 10
7: Calculate new locations usign equation 11
8: Evaluate fitness funtion at new locations
9: Find the current best for each particle
10: end for
11: Find the current global best g*
12: end while
13: Returng* Solution

Great Deluge Algorithm (GDA): The Great Deluge Algorithm was developed by
Dueck, 1993 [14] based on simulated annealing. This algorithm uses only one
parameter time execution. It has been observed [7] that a enough big execution time
impacts positively in the final solution granted by this algorithm. The GDA strategy
works with an quasi-stochastic search, looking for the best possible solution in the
fitness landscape but its constrained to: Do not chose a worse solution and Do not
take a solution with a fitness value smaller that the remain time execution units. This
strategy ensures for example that if GDA has 100 remain execution units(time) no
solution with a fitness bigger that 100 will be accepted. This algorithm have been
tested over CTTP instances with good results.[33]

310 J.A. Soria-Alcaraz et al.

The GDA algorithm uses the concept of Neighbourhood. That concept is
applied to the current solution making smaller changes into in in order to achieve a
new solution with the best characteristic of the previous one.

In order to make a change to a prevous solution the algorithm selects randomly
a single variable to change (CTTP event) inside the integer chain representation
once selected,several heuristics are proposed to update its value:

A) Sequential Selection: It selects the next pair (LPH-LPA) from the order
constructed by its Cartesian Product that defined the variable’s domains.

B) Min-conflict in Soft Constraints: Chooses the pair (LPH-LPA) that
participates in the least number of conflicts with constraints.

C) Random Selection: Chooses (LPH-LPA) values in a random way.

These heuristics are usefull to make minor changes in the current solution willing
for a possible positive change but without having a big lost in terms of the current
quality of the solution.Also, these heuristic were taken from previous works with
the CTTP [12] where it have shown encouraging results. The GDA algorithm
adapted to Methodology of Design can be seen on the algorithm 7.

Algorithm 7. Great Deluge for CTTP with Design Methodology
Require: Fitness Function f(x),x=(x1,….,xn)

T
1:Set parameter ExecutionTime(miliseconds)
2: Construct initial solution s Randomly
3: Calculate initial fitness funtion from solution s f(s)
4: Set initial Boundary level B=B0= f(s)
5: Set initial decay rate *B =0
6: Set ti = current time (miliseconds)
7: while (B>0)
8: Create Neighbor *s from the random application of heuristics to s
9: Calculate f(*s)
10: if f(*s) <= f(s) or (f(*s)<=B)then
11: Update s=*s
12: end if
13;Set tf = current time (miliseconds)
14: Update *B.
15: lower Boundary B = B0-*B
16: end while
17: ReturnSolution s

The most important line in the algorithm 7 is line 14, where the decay rate is

updated. This parameter is usually set indirectly by the user during the assignation
of execution time units. The proposed linear equation used to update the parameter
*B can be seen on equation 12.

*B= (+) (12)

The equation 12 supposes that the desired limit at the end of Executiontimeis 0,
this means that the theorically boundary in the last executions will be closer to an

Methodology of Design: A Novel Generic Approach 311

optimal solution. The GDA algorithm behaves at early stages of execution as a
simulated annealing algorithm accepting a wide range of solutions. In late
executions the GDA intesifyits current solution. Finally this algorithm can be
easily adapted to any constrained problem where it will possible the creation of a
neighbor solution.

2.4 Test Instances

The methodology of design allows to solve several different set instances as long
as these instances can be expressed in terms of the generic structures (MMA,
LPH, LPA and LPS), That is the principal advantage of this generic approach.
Two well know and referenced set instances are taken to make the comparison
experiment over our generic approach, these set instances PATAT 2002 and
PATAT 2007 were made for the first and second International Timetabling
Competition respectively.

There are 20 test instances for Patat 2002 and 24 for Patat 2007, the main
characteristics are share between these sets like the main data as well as some
constraints. The last two hard constraints marked by (*) are only utilized in ITC 2007.

Patat 2002 and Patat 2007
These instances consist in:

• A set of n events that are to be schedule into 45 timeslots.
• A set of r rooms, each which has a specific seating capacity.
• A set features that are satisfied by rooms and required by events.
• A set of s students who attend various different combination of events.

The hard constraints are:

• No student should be required to attend more that one event at the same time
• Each case the room should be big enough for all the attending students
• Only one event is put into each room in any timeslot.
• Events should only be assigned to timeslots that are pre-defined as available *
• Where specified, events should be scheduled to occur in the correct order. *

The Soft constraints are:

• Students should not attend an event in the last timeslot of a day.
• Students should not have to attend three or more events in successive timeslots.
• Student should not be required to attend only one event in particular day.

3 Experiment Design

The comparison between the selected metaheuristics was made with PATAT 2002
an 2007. Basically once each metaheuristic is adapted to the proposed generic
approach, that adaptation is used to solve both test instances. It should be noted

312 J.A. Soria-Alcaraz et al.

that exists previous works [9] [18] where some metaheuristics were tested for
patat 2002 or patat 2007, however this is the first time where a single generic
algorithm is capable to solve both instance sets with no special adaptation for each
case. For the present comparison each metaheuristic execute 100 independent
experiments in order to assume statistical normality as well as 1000 functions
points per independent run. A xGA generation containts x funtion points where x
is equal to the population parameter. The parameters used for each metaheuristic
can be seen on table 7. These parameters were taken from the literature and
empirical evidence obtained in this paper.

Table 7 Parameters for each metaheuristic

Algorithm Parameter Value

sGA Elitism 0.3
 Cross-over 0.85
 Mutation 0.15
 Population 256
fGA Elitism 0.3
 Cross-over 0.95
 Mutation 0.1
 Selection Harmonic
 Population 256
eGA Elitism 0.3
 Cross-over Auto adaptable
 Mutation Auto adaptable
 Population 256
cGA Elitism 1 per sub-population
 Cross-over 0.937
 Mutation 0.1
 sub-populations 16
 individuals 256
 Neighborhood NEWS
DE f 0.9
 Cr 0.5
 Population 256
PSO gBest 0.8
 lBest 0.4
 Inertia 0.95
 Population 256
GDA Time Until 1000 F.points

3.1 Results

The results achieved for each metaheuristic can be seen on table 8 and 9.

Methodology of Design: A Novel Generic Approach 313

Table 8 Results for PATAT 2002 instances

Instance Results sGA fGA eGA cGA DE PSO GDA
2002-1 Mean Fitness 324 305 308 188 303 288 279

 Std deviation 18.8 19.8 20.4 14.9 12.2 19.6 15.5
 2002-2 Mean Fitness 305.5 215 260 179 184 252 204

 Std deviation 18.2 15.5 19.9 14 13.5 17.6 18.4
2002-3 Mean Fitness 330.4 278.58 248.04 202.7 295.9 239.6 252.5

 Std deviation 15.3 16.8 15.6 13 12.5 16.8 18.4
 2002-4 Mean Fitness 485.5 451.2 397.2 304 438.2 349.8 390.5

 Std deviation 23.9 24 22.8 22.9 19.5 26.5 28.4
 2002-5 Mean Fitness 480.18 360 423.6 293.3 348.6 440 310.2

 Std deviation 26.57 25.5 28.5 21.4 23.3 22.4 21.9
 2002-6 Mean Fitness 481.8 374.8 416.5 294.8 280.5 439.1 402.7

 Std deviation 26.56 25.4 26.85 21.06 25.4 30 27.87
 2002-7 Mean Fitness 503.4 371.2 282.3 287.9 268.5 400.1 339.9

 Std deviation 30.55 29.3 27.6 24.9 12.45 18.66 24.4
 2002-8 Mean Fitness 371.94 228.6 316.5 210.2 180.6 350.2 237.6

 Std deviation 25.14 28.4 22.65 18.65 17.8 28.1 24.6
 2002-9 Mean Fitness 346.8 254.1 288.6 207.9 274.5 266.5 281.5

 Std deviation 20.54 19.5 17.65 16.56 12.45 16.4 20.2
 2002-10 Mean Fitness 335.15 277.9 202.5 201.9 213.7 271.1 218.5

 Std deviation 21.24 19.8 16.5 14.2 10.4 17.4 15.4
 2002-11 Mean Fitness 350.4 277.6 223.5 208.2 233.1 255.4 330.5

 Std deviation 19.4 18.8 17.8 14.56 12.45 13.66 14.56
 2002-12 Mean Fitness 312.1 200.7 256.6 188.5 215.8 298 176.8

 Std deviation 19.15 18.5 16.5 14.25 13.6 12.5 15.4
 2002-13 Mean Fitness 396.44 261.2 249.5 231.6 290.6 337.4 265.5

 Std deviation 24.26 19.6 15.5 19.54 16.6 19.5 20.8
 2002-14 Mean Fitness 520.14 349.6 401.2 313.3 313.9 308.6 319.4

 Std deviation 28.17 28.6 25.6 23.2 20.15 26.5 29.9
 2002-15 Mean Fitness 449.5 378.8 281.5 261.4 329.4 366.6 275.2

 Std deviation 28.65 24.5 26.6 22.44 18.6 23.5 29
 2002-16 Mean Fitness 369.67 278.5 266.9 223.6 254.8 277.8 305.4

 Std deviation 20.44 17.6 18.6 18.22 13.36 17.4 21.1
 2002-17 Mean Fitness 468.9 266.9 399.9 289.4 289.8 281.5 336.5

 Std deviation 29.22 28.9 26.6 22.19 19.6 23.6 27.5
 2002-18 Mean Fitness 307.14 256.9 213.6 181.5 210 236.3 200.5

 Std deviation 20.3 17.5 19.9 14.98 12.32 19.5 14.5
 2002-19 Mean Fitness 497.1 439.6 426.3 297.7 356 271.3 402.1

 Std deviation 28.95 16.7 29.5 23 19.5 22.5 27.6
 2002-20 Mean Fitness 449.14 375 299.6 266 311.3 336.5 361.5

 Std deviation 26.35 24.6 28.9 21.54 18.56 20.3 26.3

314 J.A. Soria-Alcaraz et al.

Fig. 8 Performance over Patat 2002 Instances

Table 9 Results for Patat 2007 instaces

Instance Result sGA fGA eGA cGA DE PSO GDA
2007-1 M.Fit 1362.50 1315.60 1160.20 975.30 1064.15 1281.45 1279.50

 Std dev. 55.00 52.73 47.10 45.96 54.76 54.59 47.93
2007-2 M. Fit 1388.50 1123.23 1189.30 999.00 1068.32 1315.20 986.23

 Std dev. 56.87 48.38 47.84 42.78 55.28 44.00 50.08
2007-3 M. Fit 556.80 445.30 378.60 286.75 336.80 366.50 359.20

 Std dev. 57.80 57.58 38.89 27.00 26.45 39.43 27.84
2007-4 M. Fit 619.20 488.30 334.50 342.80 426.30 329.50 567.20

 Std dev. 44.00 36.18 42.99 30.55 41.72 39.23 39.82
2007-5 M. Fit 805.30 697.50 689.23 564.4 520.51 576.30 650.04

 Std dev. 35.70 34.39 35.52 32.28 34.61 33.78 33.54
2007-6 M. Fit 794.81 623.50 666.56 552.18 550.36 526.30 713.20

 Std dev. 36.72 33.91 35.54 33.15 34.77 36.63 35.03
2007-7 M. Fit 334.90 284.50 200.69 187.8 272.27 196.52 230.13

 Std dev. 28.96 17.56 17.15 15.5 27.48 20.13 21.14
2007-8 M. Fit 375.00 284.50 280.42 196.30 320.40 316.50 220.50

 Std dev. 36.14 18.86 21.23 18.72 29.50 27.28 21.30
2007-9 M. Fit 1403.10 1206.50 1163.20 979.23 1488.50 1154.30 994.50

 Std dev. 69.77 67.04 58.40 52.67 57.95 67.15 62.59
2007-10 M. Fit 1400.30 1305.60 1068.20 1011.60 1159.50 1235.40 1056.20

 Std dev. 53.58 51.12 50.59 47.38 56.50 47.95 50.61
2007-11 M. Fit 612.84 425.20 343.50 319.21 325.12 328.50 309.20

 Std dev. 58.64 36.51 45.06 32.2 30.40 49.96 49.88
2007-12 M. Fit 588.11 375.20 426.50 317.74 402.92 394.50 370.50

 Std dev. 65.15 59.91 60.47 28.55 33.43 41.32 50.84
2007-13 M. Fit 843.75 680.50 601.50 590.17 706.50 716.50 748.20

 Std dev. 34.24 34.03 34.07 31.19 31.68 34.18 33.78
2007-14 M. Fit 813.11 729.50 648.20 572.86 565.76 723.50 646.80

 Std dev. 36.41 35.86 30.03 26.77 29.50 29.18 30.74
2007-15 M. Fit 396 173.73 171.12 154 204.56 249.50 246.50

 Std dev. 30.23 12.52 29.06 12.20 15.34 17.96 21.03

Methodology of Design: A Novel Generic Approach 315

Table 9 (continued)

2007-16 M. Fit 326.85 165.05 168.23 167.21 236.04 198.50 261.20
 Std dev. 34.47 24.68 29.90 16.82 26.13 27.74 20.98

2007-17 M.Fit 432.15 268.50 309.5 160.15 243.85 98.60 204.50
 Std dev. 69.81 51.63 66.95 35.05 56.32 45.74 45.05

2007-18 M. Fit 1000.59 736.50 894.50 635.15 560.50 636.15 623.50
 Std dev. 56.14 50.23 55.58 38.87 40.85 50.65 55.46

2007-19 M. Fit 814.96 682.45 571.23 482.50 713.62 703.54 576.20
 Std dev. 58.10 53.79 54.50 32.52 41.70 48.69 32.55

2007-20 M. Fit 879.07 501.12 774.23 497.52 613.50 643.15 570.12
 Std dev. 59.34 58.66 44.92 38.96 55.69 50.69 53.32

2007-21 M.Fit 847.17 688.95 668.20 614.27 561.23 679.23 576.20
 Std dev. 28.99 28.80 28.50 26.82 27.02 27.11 28.55

2007-22 M. Fit 1556.15 1305.20 1245.10 1185.74 1284.20 1445.20 1251.20
 Std dev. 59.93 68.32 70.65 75.48 66.07 62.28 65.05

2007-23 M. Fit 2882.60 2365.20 2078.20 2137.85 2019.30 2643.20 2347.20
 Std dev. 114.88 98.73 102.86 88.12 105.59 112.15 110.42

2007-24 M. Fit 886.48 562.80 580.20 527.90 620.50 670.20 636.26
 Std dev. 52.31 35.82 45.80 35.2 41.24 37.06 50.86

Fig. 9 Performance over Patat 2007 instances

3.2 Discussion

Once obtained the results shown in table 5 and 6 the non-parametric Kruskal-
Wallis test is applied. This test is a method for testing whether samples originate
from the same distribution. It is used for comparing more than two samples that
are independent, or not related. The factual null hypothesis is that the populations
from which the samples originate have the same median (in our case this means
that each metahuristic have the same median performance). When the Kruskal-
Wallis test leads to significant results, then at least one of the samples is different

316 J.A. Soria-Alcaraz et al.

from the other samples. The test does not identify where the differences occur or
how many differences actually occur.

The Kruskal-Wallis test rejects the null hypothesis and accept the alternative
hypothesis: at least one of the distributions have different mean. This means that at
least one of the algorithms have a different performance with the generic approach
over the test instances. it can be seen some evidence that reinforces this result on
figures 3 and 4, the figures shows different performance between the proposed
algorithms.

Once it is known that the algorithms present different performance, it is needed to
identify which metaheuristic present the best performance (Minimum conflicts), in
order to do that Wilcoxon signed rank test is applied to every possible pair or
metaheuristics. The Wilcoxon signed-rank test is a non-parametric statistical
hypothesis test used when comparing two related samples, matched samples, or
repeated measurements on a single sample to assess whether their population mean
ranks differ. In this the wilcoxon signed rank test is applied in order to evaluate
which metahuristic has the best performance in terms of minimun conflicts.

By means of Wilcoxon signed rank test the cGA algorithm has shown a better
performance in term of quality solution (conflicts) over our of test instances. The
second best algorithm was the ED/Rand/1 also, this algorithm was also the fastest
in execution. The second fastest algorithm was PSO however, this algorithm has
not shown a good performance in terms of quality over the test instances. On the
figures 3 and 4 it can be seen that the cGA algorithm has the best performance,
this evidence support the results with Wilconxon Signed Rank test.

A simple sign test is realized on the cGA algorithm on table10 for patat 2002 and
11 for patat 2007. In this test the overall wins over every pair cGA-X algorithm
areanalized in order to find enough statistical data about the cGA results.

This sign test considers the number of wins as a binomial distribution; for a
greater number of cases, the number of wins is under the null hypothesis
distributed according to n (n/2, √ /2), which allows for the use of the z-test; if the
number of wins is at least n/2+1.96 · √ /2, then the algorithm is significantly
better with p < 0.05.

Table 10 Sign test for pairwise comparisons over PATAT 2002. In each test cGA shows
significant imrpovement over the other algorithms with a level of significance α=0.5.

cGA sGA fGA eGA DE PSO GDA
Wins(+) 20 20 19 19 20 20
Loses(-) 0 0 1 1 0 0
 α=0.5 α=0.5 α=0.5 α=0.5 α=0.5 α=0.5

Table 11 Sign test for pairwise comparisons over PATAT 2007. In each test cGA shows
significant imrpovement over the other algorithms with a level of significance α=0.5.

cGA sGA fGA eGA DE PSO GDA
Wins(+) 25 25 23 21 25 25
Loses(-) 0 0 2 4 0 0
 α=0.5 α=0.5 α=0.5 α=0.5 α=0.5 α=0.5

Methodology of Design: A Novel Generic Approach 317

4 Conclusions and Future Work

This chapter has shown a comparison between several different meta heuristics
over an generic approach for the course timetabling problem. This generic
approach has been use to solve both well known an referenced international test
instances PATAT 2002 and PATAT 2007. The Design methodology was capable
to solve both set of instances with a single algorithm.

This chapter has gathered evidence about the good performance of the cGA
algorithm as an metaheuristic tool to solve the CTT problem by means of a
generic approach. The cGA algorithm uses an overlapped neighbourhood as well
as a fixed toroidal structure, these concepts allows the cGA algorithm to diversify
the genetic material in its individuals and preserve the best traits and
characteristics of the best solutions founded. The cGA algorithm also utilizes a
parallel scheme that accelerates the time needed to achive a solution. this
algorithm uses a sub-population approach in order to search in different areas of
the fitness landscape at the same time. This parallelism and sub-population
techniques have shown a positive impact in the solution of CTT problem over an
generic approach like the Design methodology.

For future work is proposed to analyse the performance of the cGA algorithm
over a different set of instances like UNITIME.org with the same generic
approach, also to make more test over different neighbourhood schemes for the
cGA. The integration of the migration concept could be benefit for the cGA since
this operator can be implemented in a parallel scheme, more test over this idea are
suggested.

Acknowledgment. The authors thanks Consejo Nacional de Ciencia y Tecnologia (CONACYT)
for the obtained support for this research.

References

1. Adriaen, M., Causmaecker, P., Demeester, P.: Tackling the university course timetabl-
ing problem with an aggregation approach. In: Burke, K., Rudova, H. (eds.) Proceed-
ings PATAT 2006, pp. 330–335 (2006)

2. Alba, E., Dorronsoro, B.: Introduction to Cellular Genetic Algorithms. Cellular Genet-
ic Algorithms, 3–20 (2008)

3. Alba, E., Dorronsoro, B.: The State of the Art in Cellular EvolitionaryAlgorithms.
Cellular Genetic Algorithms 1, 21–34 (2008)

4. Alba, E., Troya, J.M.: A survey of parallel distributed genetic algorithms, complexity,
vol. 4(4), pp. 31–52 (1999)

5. Alba, E., Troya, J.M.: Cellular Evolutionary Algorithms: Evaluating the Influence of
Ratio. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel,
H.-P., Yao, X., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 29–38. Springer, Hei-
delberg (2000)

6. Alba, E., Troya, J.M.: Improving flexibility and efficiancy by adding parallelism to
genetic algorithms. Statistics and Computing 12(2), 91–114 (2002)

318 J.A. Soria-Alcaraz et al.

7. Burke, E., Bykov, Y.,Newall, J., Petrovic, S.: A time-predefined local search approach
to exam timetabling problems. Computer Science TEchnical Report No. NOTTCS-
TR-2001-6, 1 (2001)

8. Martín, C., Jorge A., S.-A., Héctor J., P., Rosario, B., Manuel, O., Ernesto, M.L.: Va-
riable Length Number Chains Generation without Repetitions. In: Melin, P.,
Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for Recognition Based on Biome-
trics. SCI, vol. 312, pp. 349–364. Springer, Heidelberg (2010)

9. Cambazard, H., Hebrard, E., O’Sullivan, B., Papadopoulos, A.: Submission to ICT:
Track 2. International Timetabling Compertition 2007 (2008)

10. Colorni, A., Dorigo, M., Maniezzo, V.: Genetic Algorithms and Highly Constrained
Problems: The Time-Table Case. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990.
LNCS, vol. 496, Springer, Heidelberg (1991)

11. Corne, D., Ross, P., Fang, H.: Fast Practical Evolutionary Timetabling. In: Fogarty,
T.C. (ed.) AISB-WS 1994. LNCS, vol. 865, pp. 251–263. Springer, Heidelberg (1994)

12. Conant-Pablos, S.E., Magaña-Lozano, D.J., Terashima-Marín, H.: Pipelining Memetic
Algorithms, Constraint Satisfaction, and Local Search for Course Timetabling. In:
Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds.) MICAI 2009. LNCS, vol. 5845, pp.
408–419. Springer, Heidelberg (2009)

13. Cooper Tim, B., Kingston, J.H.: The Compexity of Timetable Construction Problems.
PhD thesis, The University of Sydney, 1995.

14. Dueck, G.: New Optimization Heuristics: The Great Deluge Algorithm and the
Record-to-Record Travel. Journal of Computational Physics 104, 86–92 (1993)

15. Erben, W.: A Grouping Genetic Algorithm for Graph Colouring and Exam Timetabl-
ing. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, p. 132. Springer,
Heidelberg (2001)

16. Sheau, H., Deri, F.: University course timetable planning using hybrid particle swarm
optimization. In: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evo-
lutionary Computation, pp. 239–246 (2009)

17. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proccedings of IEEE In-
ternational Conference on Neural Networks, vol. 1, pp. 1942–1948 (1995)

18. Kostuch. P.: Timetabling Competition-SA-based Heuristic. Metaheuristics Network
(2003)

19. Angel, K.M.: A solution to the prisioner’s dilemma using an eclectic genetic algo-
rithm. IPN 1 (2000)

20. Angel, K.M., Quezada, C.V.: A universal Eclectic Genetic Algorithm for constrained
optimization. ITAM 1 (1998)

21. Lewis, R.: Metaheuristics for University Course Timetabling. PhD thesis, University
of Notthingham (August 2006)

22. Price, K., Storn, R., Lampinen: Differential Evolution: A pratical approach to global
optimization. Springer (2005)

23. Andrea, S., Di Gaspero, L.: Measurability and Reproducibility in University Timetabl-
ing Research: Discussion and Proposals. In: Burke, E.K., Rudová, H. (eds.) PATAT
2007. LNCS, vol. 3867, pp. 40–49. Springer, Heidelberg (2007)

24. Sheau, F., Safaai, D., Hashim, S.: A study on PSO-Based University Course Timetabl-
ing Problem. In: International Conference on Advanced Computer Control, ICACC
2009, pp. 648–651 (2009)

25. Jorge. A., S.-A.: Diseño de horarios con respecto al alumno mediante técnicas de
cómputo evolutivo. Master’s thesis, Instituto Tecnologico de León, 2010.

Methodology of Design: A Novel Generic Approach 319

26. Jorge. A., S.-A., Carpio, M., Puga, H.: Diseño de Horarios mediante algoritmos géne-
ticos. Décima Primera Reunión de Otoño de Potencia. In: Electrónica y Computación
del IEEE, XI ROPEC, Morelia, vol. 1, pp. 24–35 (2009)

27. Jorge. A., S.-A., Terashima-Marin, H., Carpio, M.: Academic Timetabling Design us-
ing Hyper-heuristics. In: Advances in Soft Computing, ITT, vol. 1, pp. 158–164
(2010)

28. Jorge. A., S.-A., Martin, C., Terashima-Marin, H.: Several Strategies to Improve the
Performance of Hyperheuristics for Academic Timetabling Design Problem. In: EEE
Electronics, Robotics and Automative Mechanics Conference 2010. IEEE Computer
Society, México (2010) ISBN: 978-0-7695-4204-1

29. Storn, R.: On the usage of differential evolution for function optimization. In: Biennial
Conference of the North America Fuzzy Information Processing Society (NAFIPS),
pp. 519–523 (1996)

30. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for gobal
optimization over continuous spaces. Journal of Global Optimization 11, 341–359
(1997)

31. Willemen Robertus, J.: School Timetable Constructrion: Algorithms and complexity.
PhD thesis, Institute for Programming research and Algorithms (2002)

32. Wolpert, H., Macready, G.: No free lunch Theorems for Search. Technical report The
Santa Fe Institute, 1 (1996)

33. Yang, Y., Petrovic, S.: A Novel Similarity for Heuristic Selection in Examination
Timetabling. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, p. 1.
Springer, Heidelberg (2007)

34. Xin-She, Y.: Nature-Inspired Metaheuristics Algorithms, 2nd edn. Luniver Press
(2010)

35. Yu, E., Sung, K.S.: A Genetic Algorithm for a University Wekly Courses Timetabling
Problem. International Transactions in Operational Research 9, 703–717 (2002)

P. Melin, O. Castillo (Eds.): Soft Computing Appli. in Optimization, STUDFUZZ 294, pp. 321–341.
DOI: 10.1007/978-3-642-35323-9_13 © Springer-Verlag Berlin Heidelberg 2013

High-Performance Architecture
for the Modified NSGA-II

Josué Domínguez, Oscar Montiel-Ross, and Roberto Sepúlveda

Instituto Politécnico Nacional - CITEDI. Av. del Parque 1310,
Tijuana, B., C., México
jdominguez@citedi.mx, {o.montiel,r.sepulveda}@ieee.org

Abstract. NSGA-II is one of the most popular algorithms for solving Multi-
objective Optimization Problems. It has been used to solve different real-world
optimization problems; however, NSGA-II has been criticized for its high
computational cost and bad performance on applications with more than two
objective functions. In this paper, we propose a high-performance architecture for
the NSGA-II using parallel computing, for evaluation functions and genetic
operators. In the proposed architecture, the Mishra Fast Algorithm for finding the
Non Dominated Set was used. In this paper, we propose a modification in the
sorting process for the NSGA-II that improves the distribution of the solutions in
the Pareto front. Results for five different test functions using distinct crossover
and mutation operators to test performance are presented.

Keywords: Genetic Algorithm, Multi-Objective Optimization, Pareto Optimal,
NSGA – II.

1 Introduction

Optimization refers to obtain the values of decision variables, which correspond to
the maximum or minimum of one or more objective functions [1]. Many
applications consider only one objective function, probably due to the available
computational resources; however, most real problems involve one or more
objectives, which are very difficult to solve because of its high computational cost.
The way of finding optimal solutions of such a problem is known as
multiobjective optimization (MOO).

In single-objective optimization, the search space is often well defined; when
we try to optimize several objectives at the same time, the search space also
becomes partially ordered. A multiobjective optimization problem could be

written in the form minimize)](),...,(),([21 xfxfxf k for k objective functions

ℜ→ℜn
if : subject to some equality and inequality constraints. For =[, , … ,] , the vector of decision variables, our task is to determine the set

322 J. Domínguez, O. Montiel-Ross, and R. Sepúlveda

of all vectors which satisfy all the constraints, the particular set of values =[, , … ,] , and also yields the optimum values for all the objective functions
[2].

If all objective functions are for minimization, a feasible solution is said to
dominate another feasible solution (), if and only if, () () for = 1, … , , where is the number of objective functions, and () ()) for
at least one objective function [3]. One general approach in MOO is to
determine an entire Pareto Optimal solution set or a representative subset. A
Pareto optimal set is a set of solutions that are non-dominated with respect to each
other, as shown in Fig. 1.

Fig. 1 Decision variable and objective space relationship

The main purpose of a multiobjective optimization algorithm is to identify
solutions in the Pareto optimal set. There are three principal methods of dealing
with multiple objectives:

1. Combine all the objectives into a single scalar value, typically as a weighted
sum, and optimize the scalar value.

2. Solve for the objectives hierarchically, optimizing for a first objective, if there
is more than one solution, optimize these solutions for a second objective, and
repeat for a third, etc., if it is appropriate.

3. Obtain a set of alternative, non - dominated solutions, each of which must be
considered equivalent in the absence of further information regarding the
relative importance of each of the objectives.

Generating the Pareto set can be computationally expensive and is often infeasible
because the complexity of the application prevents exact methods from being
applied. For this reason, a number of stochastic search strategies such as
evolutionary algorithms, tabu search, Ant Colony Optimization, and others have
been developed, and they usually find a good approximation, i.e., a set of solutions
whose objective vectors are not too far away from the optimal objective vectors.

High-Performance Architecture for the Modified NSGA-II 323

2 Pareto-Optimality

Definition 1. Domination: A decision vector, dominates a decision vector

(denoted by), if and only if

• is not worse than in all objectives, i.e. () (), ∀ = 1,2, … , , and.
• is strictly better than in at least one objective, i.e., () (), ∀ =1,2, … , . The concept of dominance is illustrated in Fig. 2.

Fig. 2 Dominance concept. Point (f1(x),f2(x)) dominates all other points.

Definition 2. Pareto-optimal: A decision vector ∈ Ω is Pareto - optimal if
there, does not exist a decision vector ∈ Ω that dominates it. An objective
vector, () , is Pareto-optimal if is Pareto-optimal.

3 Genetic Algorithms

Holland and his colleagues proposed the concept of Genetic Algorithms (GA) in
the 1960s and 1970s [4]. GA is inspired by the evolutionist theory explaining the
origin of species. In nature, weak and unfit species within their environment are
faced with extinction by natural selection. The strong ones have greater
opportunity to pass their genes to future generations via reproduction. In the long
run, species carrying the correct combination in their genes become dominant in
their population. Sometimes, during the slow process of evolution, random
changes may occur in genes. If these changes provide additional advantages in the
challenge for survival, new species evolve from the old ones. Unsuccessful
changes are eliminated by natural selection.

324 J. Domínguez, O. Montiel-Ross, and R. Sepúlveda

A solution vector ∈ Ω is called an individual or a chromosome.
Chromosomes are made of discrete units called genes and each gene controls one
or more features of the chromosome [5]; genes are assumed to be binary bits. The
population is a collection of N chromosomes, and it is normally randomly
initialized.

3.1 Operators to Genereate New Individuals

GA uses two operators to generate new solutions from existing ones: crossover
and mutation. In crossover, generally two chromosomes, called parents, are
combined to form different chromosomes, called offspring. The parents are
selected among existing chromosomes in the population with preference towards
fitness so that offspring is expected to inherit good genes, which make the parents
fitter. By iteratively applying the crossover operator, genes of selected chromosomes
are expected to appear more frequently in the population, eventually leading to
convergence to an overall good solution, which is illustrated in Figure 3.

Fig. 3 Illustration of crossover and mutation operator process

The mutation operator introduces random changes into characteristics of
chromosomes. A mutation is generally applied at the gene level, in typical GA
implementations the mutation rate (probability of changing the properties of a
gene) is very small and depends on the length of the chromosome. Therefore, the
new chromosome produced by mutation will not be very different from the
original one. Reproduction involves selection of chromosomes for the next
generation; the fitness of an individual determines the probability of its survival
for the future generation. There are different selection procedures in GA, such as
proportional selection, ranking and tournament selection that are the most popular
procedures. In the following subsections, we describe some crossover and
mutation operators that are used in this work.

The general procedure for GA given in Algorithm 1 summarizes a general GA.

High-Performance Architect

3.1.1 Crossover Oper

Linear Crossover (LX)
AGCR was linear crossov

are chosen randomly, i.e.

which you build a soluti
shown in (1)

and the two others that are

y

Depending on the separat
proposes to eliminate the
only two children [6], but
Figure 4.

xi
(L)

yi
(2)

Fig. 4 Distribution of the off

Heuristic Crossover (HX

offspring)1(y from two p

y

ture for the Modified NSGA-II 32

rators

. One of the first crossover operators implemented t
ver operator proposed by Wright [6]. Where two paren

,),...,,(21
)1(

nxxxx = and),...,,(21
)2(

nxxxx = fro

ion that is in the middle of the two parents, such it

)(5.0)2()1()1(xxy += (1

e displaced to the extremes using (2) and (3).

)2()1()2(5.05.1 xxy −= (2

)2()1()3(5.15.0 xxy +−= (3

tion of parents, offspring will also end separated. Wrigh
e worst offspring of the two extremes and thus genera
t also it is possible to keep all three and this is shown i

xi
(2)xi

(1) xi
(U)

yi
(1) yi

(3)

fspring in the linear crossover operator

X) [7]. The heuristic crossover operator generates only on

parents
)1(x and

)2(x using the rule of the equation (4).

)2()1()2()1()(xxxry +−= (4

25

to
nts

m

is

1)

2)

3)

ht
ate
in

ne

4)

326 J. Domínguez, O. Montiel-Ross, and R. Sepúlveda

Where r is a random number uniformly distributed between 0 and 1, the parent
)2(x should not be worse than)1(x in terms of this objective function; this is

done to keep the search in the right direction.

Blend Crossover. The BLX-α crossover was suggested by Eshelman and Schaffer

[8]. From two parents
)1(x and

)2(x (assuming that
)1(x is better than

)2(x) the
BLX operator randomly generates a solution in the interval

)](),([)1()2()2()1()2()1(
iiiii xxxxxx −+−− αα , this new solution is calculated

using (5).

)2()1()1()1(iiii xxy γγ +−= (5)

where ααγ −−= ii u)21(, and iu is a random number between 0 and 1.

According to Deb [10], the best performance of this operator is when 5=α ; if the
difference between parents is small, the difference between the child and parents
would also be small. This property is an adaptive search, which is illustrated in
Figure 5.

Fig. 5 Probability distribution of the offspring in the BLX-α operator

Simulated Binary Crossover. Deb and his students developed the algorithm SBX
[9], which creates two offspring from two parent solutions. As it name suggests
simulates the working principle with the operator of single-point crossover in
binary strings. With this operator, from two parents, two solutions are calculated
as it is shown in equations (6), (7) and (8).

])1()1[(5.0)2()1()1(
iqiiqi xxy ββ −++= (6)

])1()1[(5.0)2()1()2(
iqiiqi xxy ββ ++−= (7)

where,

High-Performance Architecture for the Modified NSGA-II 327

−

≤
= +

+

others
u

uu
c

c

n

i

i
n

i

qi ,
)1(2

1

5.0,)2(
)1/(1

)1/(1

β (8)

iu is a random number between 0 and 1, cn is a parameter chosen by the user

who is dependent on the probability that a child is created by the father; the

recommended value for cn is any between 0 and 10, and this is shown in Figure 6.

Fig. 6 Probability distribution for creating children solutions of continuous variables [10]

Laplace Crossover. This operator was proposed by Deep and Thakurn [11], it is
also known as LX operator, which produces two children from two parents using
equations (9), (10) and (11).

||)2()1()1()1(
iii xxxy −+= β (9)

||)2()1()2()1(
iii xxxy −+= β (10)

>+
≤−

=
5.0),ln(

5.0),ln(

uuba

uuba
β (11)

where β is a function between 0 and 1, and iu is a random number uniformly

distributed. β is obtained by inverting the Laplace distribution function. The

parameters Ra ∈ and 0≠b are called location parameters, usually taken a = 0

328 J. Domínguez, O. Montiel-Ross, and R. Sepúlveda

and b> 0 are known as scaling parameters. Deep [11], experimented using values
b = 0, 5 and b = 1, which is indicated in Figure 7.

Fig. 7 Density function of Laplace distribution (a = 0, b = 0.5 and b = 1)

3.1.2 Mutation Operators

Uniform mutation (UM) [12]. It is the simplest mutation operator for real coding
given by (12), it creates a random solution throughout the search space,

)()()()1(L
i

U
ii xxry −= (12)

where ir is a random number in [0, 1],)(L
ix is the lower limit of the variable ix

and)(U
ix is the upper limit. This operator is independent of parents and is

equivalent to a random initialization of the population. If the objective is to
modify a parent using this operator, it can be performed with the equation (13),

iii rxy Δ−+=)5.0()1()1((13)

where iΔ is the maximum perturbation defined by the user. Special care must be

taken that this disturbance does not produce solutions beyond the limits, which is
illustrated in Figure 8.

Fig. 8 Spread of the new solution with UM operator

High-Performance Architecture for the Modified NSGA-II 329

Non Uniform Mutation (NUM). This operator was proposed by Michalewicz
[12]. Here, the probability of creating a solution near the father is greater than the
probability of creating an offspring away. The probability of create a solution
close to the parent increases in each generation (t),

)1)(()/1()()()1()1(max
btt

i
L

i
U

ii rxxxy −−−+= τ (14)

In (14) τ can take the -1 or 1 value, each one with a probability of 0.5. The

parameter maxt is the allowed maximum number of generations, b is a user

defined parameter, in [12] the value 2=b was used.

Mäkinen, Periaux and Toivanen Mutation. This operator is also known as

MPTM [13] is generated from points),...,(21
)1(

nxxxx + and point

),...,(21
)1(

nyyyy + , which is created using (15) to (17), where ir is a

uniformly distributed random number where]1,0[∈ir . Then the mutation is given

using (15).

)ˆ)ˆ1()()()1(U
i

L
i xtxty +−= (15)

where

>
−
−−+

=

<−−

=

tr
t

tr
tt

trt

tr
t

rt
tt

t
b

b

,)
1

)(1(

,

,)(

ˆ (16)

and

)1()(

)()1(

i
U

i

L
ii

xx

xx
t

−
−= (17)

The parameter b defined by the distribution of the mutation is also called the
exponent of mutation. If 1=b , is a uniform mutation.

4 NSGA-II

The NSGA-II, Non Dominated Sorting Genetic Algorithm, is an improved version
of the algorithm NSGA proposed by Srinivas and Deb [14]. This is a scheme for
solving multiobjective optimization problems using the concept of non-dominance
introduced by Goldberg [15], and a genetic algorithm to produce new solutions.

330

The schematic of this
randomly generates a pop
Rt set of offspring solution
The parents and offspring
non-dominated sorting is
obtained, so in each sol
population is formed from
the last frontier choosi
pseudocode for the NSGA

Fig. 9 Illustration of the NSG

The fast non-domina
different fronts according

J. Domínguez, O. Montiel-Ross, and R. Sepúlved

algorithm is shown in Fig 9, which shows that the fir
pulation Pt with N individuals and from them creates a
ns using the genetic operators of crossover and mutatio
g generated are added to a new set called Rt, in this set
s made and then different fronts of non-dominated ar
lution a crowding distance is assigned. A new paren
m the fronts with the better range of non-dominance an
ing solutions with the best crowding distance. Th
A-II is given in the algorithm 2:

GA-II process

ated sorting procedure separates the population int
to their level of dominance, see algorithm 3.

da

rst
an
n.

t a
re
nt
nd
he

to

High-Performance Architecture for the Modified NSGA-II 331

This algorithm is used to maintain diversity of the population in each non-

dominated frontier; for each individual, a density estimator named Crowding
distance is applied. It is an average separation between two contiguous
individuals; the extreme points of each front are assigned with an infinite distance.
The pseudocode for this procedure is shown in algorithm 4.

332 J. Domínguez, O. Montiel-Ross, and R. Sepúlveda

5 MNSGA-II

The MNSGA-II is an algorithm based in the NSGA-II structure with different
sorting procedure, elite mechanism and genetic operators. The first step is to
initialize a population of size 2N where N is the population size. Each individual is
an array of real numbers of size k+m+2 as it is shown in Fig. 10; where k is the
number of variables, m is the objective function and other two places for Pareto
Rank (R), and Crowding Distance (d). The calculation of their objective values is
realized in parallel form.

The next step is to assign Pareto rank to each individual using the parallel
sorting procedure executing the following steps.

• Step 1. Sort all the solutions R in decreasing order of their first objective

function (Si).
• Step 2. Divide the population R in equal number of the parallel workers R1,

R2…, RW.
• Step 3. For each parallel worker, assign Pareto Rank to RW and return the

subpopulation PW.
• Step 4. Synchronize the workers and join the population P.

Fig. 10 Encoding of individuals in a population

The process of assigning the Pareto Rank is different from the NSGA-II, rather
than separate the population in non-dominated fronts, each individual is assigned a
Pareto Rank equal to their non-dominated fronts. In the MNSGA-II, the Pareto
Rank is assigned separately to each subpopulation RW. The first step is to find the
non-dominated set of RW using the Mishra fast algorithm, assigns Pareto Rank 1 to
its set, add them to the new set PW and delete them from RW. For the new
population RW, find the non-dominated set, assign Pareto Rank 2 to each
individual of the non-dominated set, add this set to PW and delete it from RW; this
process continues until RW is an empty set.

High-Performance Architecture for the Modified NSGA-II 333

In this algorithm, one of two strategies to archive truncation is applied. The first
one choose the solutions with the best Pareto Rank; for these strategies, the first
step is to sort P in ascendant order of their Rank, if any solutions of the first N has
Pareto Rank greater than 1, delete the last N individual and assign the crowding
distance. If this conditional is not satisfied, then preserve only the solutions with
Rank 1 and compute the crowding distance.

If the size of the population P is bigger than N, the second archive truncation
strategy is applied. For this strategy, a crowding distance is assigned to each
individual; then, sort P in decreasing order of their crowding distance and preserve
only the best N solutions. This elitism strategy causes that if already found the N
non-dominated set, and the algorithm is still running even more generations do not
converge to a single point only generate more solutions along the Pareto frontier.

For computing the crowding distance to the population P, each solution of
Rank i, is moved to a new subset Fi. Sort each Fi in ascendant order of their first
objective function, and assign infinite distance to the first and the last solutions.
For the other solutions compute the average between adjacent solutions,

m
j

m
j

m
j

m
j FFdd 11 −+ −+= ; this process is iterative for each objective function.

Applying the elitism strategy, we have N Parents P with the best Rank and/or
crowding distance. With the crowding comparator, we choose the best solutions
and move to the mating pool to generate new offspring solutions.

The crowding comparator is a binary tournament that compares two solutions
randomly selected from P, and the winner has the better Rank. If the Rank is
equal, the winner has the biggest crowding distance and move it to the mating
pool B, this process continues until B have N solutions.

To create new solutions, the crossover and mutation operators are executed in a
parallel form with W workers at the same time. For this process, the mating pool B
is a global memory, and each worker generates N=W offspring, and after this, they
are synchronized to the offspring population Q.

Each worker chooses two random solutions from B, after generate two random
numbers c (crossover probability) and m (mutation probability), if p is bigger than
the selected crossover probability the worker chooses other parents, else apply the
crossover operator. If m is bigger than the mutation probability the new solution is
added to the offspring population Q; else, the mutation operator is applied, and the
new solution is added to the offspring population Q, this process continues until
have N/W offspring. If some offspring is out of the variable boundaries, it is
replaced for some parents.

6 Results

The MNSGA-II algorithm was tested with five functions; the first two were
proposed by Schaffer SCH1, SCH 2 [16], equations (18) and (19). The other three
functions were proposed by Zitzler [17]; they are known as ZDT1, ZDT2 and
ZDT3 functions and defined by equations (20) to (22).

334 J. Domínguez, O. Montiel-Ross, and R. Sepúlveda

All these functions have two objectives to be minimized, and its borders are
known as Pareto optimal.

−=

=
2

1

2
1

)2()(

)(
1

xxf

xxf
SCH (18)

−=

>−
≤≤−
≤≤−

≤−

=

2
2

1

)5()(

4,4

43,4

31,2

1,

)(
2

xxf

xx

xx

xx

xx

xf
SCH (19)

=

−=
+

+=

=
n

i
ix

gxf

n
g

xf

ZDT
2

11

11

)(

/1

1
9

11
 (20)

=

−=
+

+=

=
n

i
ix

gxf

n
g

xf

ZDT
2

2
11

11

)(

)/(1

1
9

12
 (21)

−−=
+

+=

=

=

)10sin()/(/1

(
1

9
13

111

2

11

i

n

i
i

xgxgxf

x
n

g

xf

ZDT

π

 (22)

Table 1 shows the results obtained by the algorithm MNSGA-II for the SCH1
function using a population of 100 individuals and 10 generations. For all tests, we
used the non-uniform mutation operator combined with different crossover
operators (BLX-α, SBX, LX and LinX). The table shows the average of all
individuals in the decision variable (x1), the minimum, maximum and average
crowding distance.

High-Performance Architecture for the Modified NSGA-II 335

Table 1 Results of the algorithm MNSGA-II for function SCH1

x1

BLX SBX LX LINX

NUM

Mean 1.02367404 1.01508669 0.99508727 1.03645464

Min -0.00069813 0.0093411 0.00771846 0

Max 2.00827094 1.99994377 1.99943546 1.996125

Crowding 0.12089923 0.12632004 0.12329614 0.12664984

For function SCH1, the Pareto optimality is in the interval ∈ [0,2]; Table 1,

shows that any operator recombination, used in all the obtained solutions, are
within this range, the crowding distance shows that all tests have similar
distribution in the Pareto front.

Table 2 shows the results obtained for different operators for the SCH2
function, and the NUM, RM and MPTM mutation operator, considering that
crossover operator BLX-α was used, a population of 100 individuals and 10
generations. Pareto optimality is in]5,4[]2,1[∈x ; for all the experiments, the
results are within this range, and the separations of the solutions are similar. Fig.
11 shows the non-dominated set obtained after 10 generations using BLX-α and
non-uniform mutation operators. MNSGA-II algorithm for functions SCH1 and
SCH2 have rapid convergence, and the resulting solutions are close to Pareto
optimality.

Table 2 Results of the algorithm MNSGA-II for function SCH2

x1

NUM RM MPTM

BLX-α

Mean 2.044492032 2.154450159 2.043589034

Min 0.998364469 0.998663251 1.001569329

Max 4.982431601 4.999366373 4.995915783

Crowding 0.329002044 0.322671774 0.327572686

Table 3 shows the results obtained with the algorithm MNSGA-II for ZDT1

problem using a population of 100 individuals, as this problem is more complex than
the two discussed above algorithm, it was run for 200 generations. The Pareto optimal

for this function occurs when ∈ [1,2] and 0* =ix for i=2,3,..,30, to analyze the

results, variables x2 to x30 are shown in the same column; in each row, the average of
all the minimum values, maximum and average crowding distance are shown.

For this function using the BLX-0.5, combined with any of the three mutation
operators, solutions close to the true Pareto optimal were obtained. With the SBX
operator, only in combination with the non-uniform mutation operator (NUM)
good results were obtained. For the Laplace crossover operator (LX), using it with

336 J. Domínguez, O. Montiel-Ross, and R. Sepúlveda

random mutation operators (RM) and Mäkinen, Periaux and Toivanen (MPTM),
were not obtained good results. With linear crossover operator (LinX) and all
mutation operators, good results were obtained. Fig. 12 shows that using the
Laplace crossover operator and non-uniform mutation operator the best result was
obtained. The worst result was achieved using the Laplace operator with the RM.

Fig. 11 Solution of the problem SCH2 using BLX-0.5 and NUM operators

Fig. 12 Best and worst solutions of the problem ZDT1 using MNSGA-II algorithm

The analysis of the results obtained for the ZDT2 problem is shown in Table 4,
the format presented is the same as for ZDT2 function. The Pareto optimal for this
not convex function is ∈ [1,2] and 0* =ix for i=2,3,..,30. The algorithm was

run for each experiment 200 generations with a population of 100 individuals.

High-Performance Architecture for the Modified NSGA-II 337

Table 3 Results of the algorithm MNSGA-II for function ZDT1

NUM RM MPTM

X1 X2-30 X1 X2-30 X1 X2-30

BLX

Mean 0.4339473 0.00690591 0.42883798 0.01570027 0.42200358 0.00735316

Min 7.8297E-06 0.00113467 0 0.00099613 1.7811E-05 0.00101034

Max 0.99897266 0.02097337 0.99316471 0.46624688 0.99964575 0.02511185

Crowding 0.03042085 0 0.03173915 0 0.03088147 0

SBX

Mean 0.50126557 0.00874785 0.45659 0.23042746 0.4802173 0.33604821

Min 0 0 0 0.00539689 0 0.09194388

Max 0.99999376 0.04601851 0.99969187 0.84533201 0.99959848 0.69220241

Crowding 0.03686594 0 0.02695703 0 0.02325005 0

LX

Mean 0.41278814 0.00101626 0.46800612 0.4064682 0.49739841 0.38528937

Min 0 0 0 0.02727913 4.0914E-06 0.14511811

Max 0.99959856 0.00493435 0.99506886 0.9248732 0.99594635 0.78231683

Crowding 0.0335355 0 0.02726643 0 0.02549761 0

LX

Mean 0.39255204 0.00106852 0.4165725 0.00134428 0.42498091 0.00120388
Min 0 0 0 0 0 0

Max 0.9936501 0.01089806 0.99999953 0.01006621 0.99982034 0.013028

Crowding 0.03114298 0 0.03151869 0 0.03167497 0

Fig. 13 Best and worst solutions of the problem ZDT2 using MNSGA-II algorithm

The best result for the problem ZDT2 is achieved using linear crossover
operator and non uniform mutation. Laplace operator combined with random
mutation is the worst, see Fig.13. For this problem, the best results were obtained

338 J. Domínguez, O. Montiel-Ross, and R. Sepúlveda

Table 4 Results of the algorithm MNSGA-II for function ZDT2

NUM RM MPTM

X1 X2-30 X1 X2-30 X1 X2-30

BLX

Mean 0.5981419 0.00392449 0.57187174 0.01209529 0.55150488 0.00990163

Min 0.00016666 0.00024646 0 0.00045374 0 0.00056134

Max 0.99935171 0.01411728 0.99848268 0.51312742 0.9942452 0.35321205

Crowding 0.02975808 0 0.03054849 0 0.02996389 0

SBX

Mean 0.54964984 0.16408595 0.54773128 0.25473612 0.5236946 0.26904922

Min 0.00022273 0.08708248 0.00012835 0.0818626 7.5804E-06 0.16226497

Max 0.99959916 0.25942415 0.99908381 0.53855168 0.99952305 0.43568235

Crowding 0.01869885 0 0.01850633 0 0.01730054 0

LX

Mean 0.51527241 0.24490449 0.486541 0.40772558 0.50735896 0.28952409

Min 0 0.15979978 0 0.05219498 0.00011129 0.15755669

Max 0.99812493 0.66417564 0.99879269 0.88404645 0.99466544 0.69930188

Crowding 0.01884936 0 0.0203338 0 0.01926876 0

LINX

Mean 0.55578411 0.00083943 0.59212062 0.0045958 0.57124406 0.00458354

Min 0 0 0 0 0 0

Max 0.9991459 0.00478766 0.99827288 0.39116457 0.99996375 0.22249817

Crowding 0.03111558 0 0.03105473 0 0.03238907 0

with the combination of the BLX operator with any of the three mutation
operators. With the simulated crossover binary and Laplace mutation operators,
results were far from the true Pareto optimal.

For the multi-objective optimization problem ZDT3, the results are shown in
Table 5; this function has the Pareto optimal 0* =ix for i=2,3,..,30 and some

values in the range 00 *
1 ≤≤ x which causes a discontinuous Pareto optimal

region. This discontinuity causes that the convergence to the optimal is difficult;
for this reason, each experiment was run for 300 iterations with 100 individuals in
the population. For this function, the best results were obtained with the linear
crossing operator and closer to the Pareto optimal frontier was combined with
non-uniform mutation, see Fig 14. With the BLX, we obtained good results using
any of the three mutation carriers. With the Laplace and simulated binary
crossover operators, results were far from the Pareto optimal frontier.

High-Performance Architecture for the Modified NSGA-II 339

Fig. 14 Best and worst solutions of the problem ZDT3 using MNSGA-II algorithm

Table 5 Results of the algorithm MNSGA-II for function ZDT2

NUM RM MPTM

X1 X2-30 X1 X2-30 X1 X2-30

BLX

Mean 0.42570259 0.01228299 0.40358189 0.02659435 0.39185833 0.01808241

Min 3.1506E-05 0.00206034 0 0.00691783 0 0.00119918

Max 0.85452111 0.04154692 0.85230299 0.6657291 0.8531614 0.43645557

Crowding 0.04619395 0 0.04565728 0 0.04625058 0

SBX

Mean 0.35315376 0.25562093 0.34343446 0.33213008 0.34237021 0.29840395

Min 8.4748E-06 0.03394595 0 0.06226514 5.7935E-05 0.11630487

Max 0.851223 0.65050606 0.8497918 0.81487461 0.85213701 0.52063588

Crowding 0.02803276 0 0.02681256 0 0.02732888 0

LX

Mean 0.34810305 0.25239654 0.36111901 0.35738852 0.37908293 0.3742102

Min 0 0.19787363 0 0.27278216 2.3712E-06 0.06594863

Max 0.84875631 0.64973904 0.85324118 0.69013451 0.85176722 0.81087185

Crowding 0.03066285 0 0.02837957 0 0.02859414 0

LINX

Mean 0.3956875 0.00170911 0.41892444 0.00185217 0.41556922 0.00236408

Min 0 0 0 0 0 0

Max 0.8527739 0.01171929 0.85189492 0.01567379 0.85211903 0.0235468

Crowding 0.0482462 0 0.04695875 0 0.04802958 0

340 J. Domínguez, O. Montiel-Ross, and R. Sepúlveda

7 Conclusions

The MNSGA-II is an improved version of the NSGA-II because it handles elitism
in two different ways. The first way is selecting the best Pareto ranks, from which
a mating pool is generated to obtain the parents using tournament selection to
generate the offsprings. The second way applies when we have N non-dominated
individuals, for which we select the individuals with the best crowding distance.

The used elitism strategy is an improvement to the algorithm NSGA-II, because
the area of MOOEA has been given great importance to the spread of solutions in
the Pareto optimal front. Being the only stop criterion the number of generations;
if the algorithm is iterated for more generations needed to reach the Pareto
frontier, the only thing that will occur is an improvement of the spread.

The proposed scheme for applying genetic operators in parallel can be used for
any genetic algorithm, the suggestion to use shared memory allows maintaining
the diversity of the population, but this strategy only works if parallelization is
used for large granularity.

In this work we have presented a comparative analysis of the MNSGA-II using
different crossover and mutation operator. The successful of the different
combinations depends on the problem; therefore, all the operators can work for the
MNSGA-II being difficult to choose one for a big diversity of applications.

Acknowledgment. The authors would like to thank the Instituto Politécnico Nacional
(IPN), Comisión de Operación y Fomento de Actividades Académicas (COFAA), and the
Mexican Consejo Nacional de Ciencia y Tecnología (CONACYT) for supporting our
research activities.

References

1. Rangaiah, G.P.: Multi-Objective Optimization: Techniques and Applications in
Chemical Engineering. World Scientific Publishing CO. Pthe. Ltd. (2009)

2. Abraham, A., Jain, L.C., Goldberg, R.: Evolutionary Multiobjective Optimization:
Theoretical Advances And Applications. Springer (2005)

3. Konak, A., Coit, D.W., Smith, A.E.: Multi - objective optimization using genetic
algorithms: A tutorial. Reliability Engineering and System Safety 91 (2006)

4. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor (1975)

5. Mitchell, M.: An introduction to Genetic Algorithms. MIT Press, Cambridge (1998)
6. Wright, A.H.: Genetic algorithms for real parameter optimization. In: Foundations of

Genetic Algorithms, pp. 205–218. Morgan Kaufmann (1991)
7. Michalewicz, Z., Logan, T.: Evolutionary operators for continuous convex parameter

space. In: Sebald, L.A.V. (ed.) Proceeding of 3rd Annual Conference on Evolutionary
Programming, p. 8497. World Scientific (1994)

8. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata.
In: Whitley, D.L. (ed.) Foundation of Genetic Algorithms 2, pp. 187–202. Morgan
Kaufmann, San Mateo (1993)

9. Agrawal, R.B., Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous
search space. Tech. Rep. (1994)

High-Performance Architecture for the Modified NSGA-II 341

10. Deb, K., Georg Beyer, H.: Self-adaptive genetic algorithms with simulated binary
crossover. Complex Systems 9, 431–454 (1999)

11. Deep, K., Thakur, M.: A new crossover operator for real coded genetic algorithms.
Applied Mathematics and Computation 188(1), 895–911 (2007)

12. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 3rd edn.
Springer, London (1996)

13. Makinen, R.A., Toivanen, J., Toivanen, M.J., Periaux, J.: Multidisciplinary shape
optimization in aerodynamics and electromagnetics using genetic algorithms

14. Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting in
Genetic Algorithms. Evolutionary Computation (1994)

15. Goldberg, D.E.: Genetic Algorithms in Search. In: Optimization and Machine
Learning, Addison-Wesley Longman Publishing Co., Inc. (1989)

16. Schaffer, J.D.: Some experiments in machine learning using vector evaluated genetic
algorithms (artificial intelligence, optimization, adaptation, pattern recognition),
Vanderbilt University (1984)

17. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications (1999)

18. Deb, K., Pratap, A., Agarwal, S.R., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation (2002)

19. Deb, K., Pratap, A., Agarwal, S.R., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation (2002)

20. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J., Martin, J.: PESA-II: Region-
based Selection in Evolutionary Multiobjective Optimization. In: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2001 (2001)

21. Li, M., Liu, L., Lin, D.: A fast steady-state epsilon-dominance multi-objective
evolutionary algorithm. Comput. Optim. Appl. (2011)

22. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley (2001)
23. Coello, C.A.: Evolutionary Algorithms for Solving Multi-Objective Problems.

Springer (2007)
24. Abido, M.A.: Multiobjective evolutionary algorithms for electric power dispatch

problem. IEEE Trans. Evolutionary Computation (2006)
25. Formiga, K.T.M., Chaudhry, F.H., Cheung, P.B., Reis, L.F.R.: Optimal Design of

Water Distribution System by Multiobjective Evolutionary Methods. In: Fonseca,
C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS,
vol. 2632, pp. 677–691. Springer, Heidelberg (2003)

26. Ahmed, F., Deb, K.: Multi-objective path planning using spline representation. In:
ROBIO (2011)

27. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata.
In: Foundation of Genetic Algorithms, vol. 2, pp. 187–182 (1993)

Author Index

Alarcón-Aquino, Vicente 215
Alvarado-Magaña, Juan Paulo 265
Astudillo, Leslie 3

Castillo, Oscar 3, 77, 97, 125, 239, 265
Castro, Juan R. 239, 265
Cervantes, Leticia 125

Domı́nguez, Josué 321

Flores, José Antonio Martı́nez 53

Gaxiola, Fernando 187
Gómez-Gil, Pilar 215

Héctor, Puga 287
Huacuja, Héctor Joaquı́n Fraire 53
Hugo, Terashima-Marin 287

Jorge A., Soria-Alcaraz 287

Laura, Cruz Reyes 287

Maldonado, Yazmin 97
Marco A., Sotelo-Figueroa 287

Martin, Carpio 287
Meléndez, Abraham 77
Melin, Patricia 3, 97, 157, 187
Montiel-Ross, Oscar 321
Morales-Flores, Emanuel 215

Pazos Rangel, Rodolfo A. 53

Ramı́rez-Cortés, Juan Manuel 215
Rodriguez-Cristerna, Arturo 27
Rodrı́guez-Dı́az, Antonio 265

Sánchez, Daniela 157
Sanchez, Mauricio A. 239
Sepúlveda, Roberto 321
Soberanes, Héctor José Puga 53

Terán-Villanueva, J. David 53
Torres-Jimenez, Jose 27

Valadez, Juan Martı́n Carpio 53
Valdez, Fevrier 187

	Title
	Preface
	Contents
	Part I: Optimization Methods and Applications
	Optimization of Type-2 and Type-1 Fuzzy Tracking Controllers for an Autonomous Mobile Robot under Perturbed Torques by Means of a Chemical Optimization Paradigm
	Introduction
	The Chemical Optimization Paradigm
	The Mobile Robot
	Fuzzy Logic Controller
	Experimental Results
	Conclusions
	References

	A Genetic Algorithm for the Problem of Minimal Brauer Chains for Large Exponents
	Introduction
	Relevant Related Work
	Proposed Approach
	Genetic Algorithm
	Representation and Search Space
	Distribution Functions for Selecting a Position in the BC
	Survivor Selection
	Selection and Recombination
	Neighborhood Functions and Local Search
	Evaluation Function and Termination Condition

	Fine-Tuning Process
	Parameters Used
	Implementation Note

	Results
	Conclusions
	References

	Cellular Processing Algorithms
	Introduction
	The Linear Ordering Problem with Cumulative Costs (LOPCC)
	Cellular Processing Approach
	Scatter Search and GRASP
	Scatter Search
	GRASP

	Homogeneous Cellular Processing Algorithm
	Heterogeneous Cellular Processing Algorithm
	Experimental Results
	Experimentation Settings
	Impact of Different Parameters, in the Performance of the Cellular Processing Algorithms
	Cellular Processing Algorithms Performance

	Conclusions and Future Work
	References

	Part II: Soft Computing in Intelligent Control Applications
	Hierarchical Genetic Optimization of the Fuzzy Integrator for Navigation of a Mobile Robot
	Introduction
	Mobile Robot
	Navigation Control System
	Genetic ms Algorithm
	Chromosome Encoding
	Reactive Controller
	Tracking Controller
	WFIS Controller
	Type-1 Fuzzy Weight Controller Chromosome Architecture
	Fuzzy Rules
	Objective Function
	Optimization GU UI

	Simulation Results
	Reactive Controller
	Tracking Controller
	WFIS Controller

	Conclusions
	References

	Particle Swarm Optimization for Multi-objective Control Design Using AT2-FLC in FPGA Device
	Introduction
	Type-2 Fuzzy Inference Systems and Optimization Method
	Description of the Problem
	AT2-FIS Design in VHDL Code
	Fuzzification
	Inference
	Defuzzification
	Average

	Particle Swarm Optimization for T2-MFs of the Average Approximation of an Interval Type-2 Fuzzy Inference System
	Results of Average Approximation of the Interval Type-2 Fuzzy Logic Controller for FPGA and Their Optimization
	Results for T2-MFs Parameters with PSO for AT2-FLC Using XSG
	Results for T2-MFs Parameters with PSO for AT2-FLC Using the FPGA Device

	Conclusions
	References

	Genetic Optimization of Modular Type-1 Fuzzy Controllers for Complex Control Problems
	Introduction
	Background and Basic Concepts
	Genetic Algorithm
	Fuzzy Systems
	Fuzzy Control Systems

	Case Study
	Problem Description
	Type-1 Fuzzy System
	Genetic Algorith hm

	Conclusions
	References

	Part III: Soft Computing in Pattern Recognition Applications
	Multi-Objective Hierarchical Genetic Algorithm for Modular Granular Neural Network Optimization
	Introduction
	Basic Concepts
	Modular Neural Networks
	Type-2 Fuzzy Logic
	Multi-Objective Hierarchical Genetic Algorithm
	Granular Computing

	General Architecture of the Proposed Method
	General Architecture of the Proposed Method for the Modular Neural Network
	Description of the Multi-Objective Hierarchical Genetic Algorithm for MNN Optimization
	Objective Functions
	Type-2 Fuzzy Integration
	Databases

	Experimental Results
	Non Optimized
	Optimized Results
	Comparison among Non-optimized and Optimized Results
	Fuzzy Integration

	Conclusions
	References

	Type-2 Fuzzy Weight Adjustment for Backpropagation in Prediction Time Series and Pattern Recognition
	Introduction
	Background and Basic Concepts
	Neural Network
	Overview of Related Works

	Proposed Method and Problem Description
	Optimization of the Ensemble Neural Network Architecture with Type-2 Fuzzy Weights
	Simulation Results
	Conclusions
	References

	Brain Computer Interface Development Based on Recurrent Neural Networks and ANFIS Systems
	Introduction
	Adaptive Neuro-Fuzzy Inference System (ANFIS)
	Neural Network Classifiers
	Temporal Classification
	Adaptive Temporal Classifiers
	Simple Recurrent Network (SRN or Elman Network)
	Fully-Connected Recurrent Neural Network

	Proposed Methodology
	Experimental Results
	Conclusions

	Part IV: Soft Computing: Theory and New Models
	An Analysis of the Relationship between the Size of the Clusters and the Principle of Justifiable Granularity in Clustering Algorithms
	Introduction
	Clustering Algorithms
	Subtractive Algorithm
	Granular Gravitational Algorithm

	Principle of Justifiable Granularity
	Basic Theory
	The Specificity C Criterion

	Algorithm Analy sis
	Simplefit et Datase
	Iris Dataset
	Discussion

	Conclusion
	Conclusions
	Future Work

	References

	Type-2 Fuzzy Logic Grammars in Language Evolution
	Introduction
	Previous Work
	Emergent Vocal System in an Agent Society
	Development of Shared Symbols
	The Bioprogram Hypothesis and the Baldwin Effect
	Grammar Emergence in Communication Agents
	Evolution of Communication Agents in the Predator-Prey Pursuit game
	Comparison with Previous Work

	Simulation
	Ant Colony Optimization
	Type-2 Fuzzy Grammar
	The Algorithm

	Experiments and Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6
	Experiment 7
	Experiment 8

	Conclusions
	Future Work
	References

	Methodology of Design: A Novel Generic Approach Applied to the Course Timetabling Problem
	Introduction
	Methodology of Design
	Problem Definition
	Methodology of Design for the Course Timetabling Problem
	Metaheuristics Adapted to the Methodology of Design
	Test Instances

	Experiment Design
	Results
	Discussion

	Conclusions and Future Work
	References

	High-Performance Architecture for the Modified NSGA-II
	Introduction
	Pareto-Optimality
	Genetic Algorithms
	Operators to Genereate New Individuals

	NSGA-II
	MNSGA-II
	Results
	Conclusions
	References

	Author Index

