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Preface

We describe in this book the application of soft computing techniques for intelligent
control, pattern recognition, and optimization of complex problems. Soft Comput-
ing (SC) consists of several intelligent computing paradigms, including fuzzy logic,
neural networks, and bio-inspired optimization algorithms, which can be used to
produce powerful hybrid intelligent systems. The book is organized in four main
parts, which contain a group of papers around a similar subject. The first part con-
sists of papers with the main theme of nature-inspired optimization methods and
their applications, which are basically papers that propose new models and concepts,
which can be the basis for achieving intelligent optimization in diverse areas of ap-
plication. The second part contains papers with the main theme of hybrid intelligent
systems for achieving intelligent control, which are basically papers using nature-
inspired techniques, like evolutionary algorithms, fuzzy logic and neural networks,
for the optimal design of intelligent controllers in diverse areas of application. The
third part contains papers with the theme of pattern recognition based on SC tech-
niques, which basically consider the proposal of new methods and their applications
to solve complex pattern recognition problems. The fourth part contains papers that
deal with the application of intelligent optimization techniques in real world prob-
lems. The fifth part contains papers with the theme of new theoretical concepts and
methods in SC, which are papers considering soft computing methods for applica-
tions related to diverse areas, such as natural language processing, clustering and
optimization.

In the part of nature-inspired optimization methods there are 3 papers that
describe different contributions of new algorithms for optimization and their ap-
plication to diverse complex optimization problems. The nature-inspired methods
include the chemical optimization paradigm, and cellular genetic algorithms. In the
part of hybrid intelligent systems for control and robotics there are 3 papers that de-
scribe different contributions that propose new models and concepts, which can be
the considered as the basis for achieving intelligent control and mobile robotics for
real world problems. In the part of hybrid intelligent systems for pattern recognition
there are 3 papers that describe different contributions on achieving efficient pattern
recognition using hybrid intelligent systems based on soft computing techniques.



VI Preface

In the part of new theoretical concepts and methods in SC, there are 4 contributions
that describe the development of new models and algorithms relevant to complex
problems, such as natural language processing, clustering and optimization.

The papers in this book consist of selected and extended versions of papers pre-
sented by advanced doctoral students at the ISCI 2012 meeting held in Tijuana,
Mexico in May of 2012. The papers have been accepted after a strict peer review
process by a review committee of well-known experts in the respective fields. The
committee has selected 13 contributions by the best doctoral students and their
supervisors from various top Mexican universities.

In conclusion, the edited book comprises papers on diverse aspects of nature-
inspired models, soft computing and hybrid intelligent systems for control, mobile
robotics, pattern recognition, and other complex real world problems. There are
covered theoretical aspects as well as applications.

September 28, 2012 Patricia Melin
Tijuana Institute of Technology

Mexico

Oscar Castillo
Tijuana Institute of Technology

Mexico
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Part I 

Optimization Methods  
and Applications 



P. Melin, O. Castillo (Eds.): Soft Computing Appli. in Optimization, STUDFUZZ 294, pp. 3–26. 
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Optimization of Type-2 and Type-1 Fuzzy 
Tracking Controllers for an Autonomous 
Mobile Robot under Perturbed Torques  
by Means of a Chemical Optimization Paradigm 

Leslie Astudillo, Patricia Melin, and Oscar Castillo 

Tijuana Institute of Technology, Tijuana México 
{epmelin,ocastillo}@hafsamx.org 

Abstract. This paper addresses the tracking problem for the dynamic model of a 
unicycle mobile robot. A novel optimization method inspired on the chemical 
reactions is applied to solve this motion problem by integrating a kinematic and a 
torque controller based on fuzzy logic theory. Computer simulations are presented 
confirming that this optimization paradigm is able to outperform other 
optimization techniques applied to this particular robot application. 

1 Introduction 

Optimization is an activity carried out in almost every aspect of our life, from 
planning the best route in our way back home from work to more sophisticated 
approximations at the stock market, or the parameter optimization for a wave 
solder process used in a printed circuit board assembly manufacturer optimization 
theory has gained importance over the last decades. From science to applied 
engineering (to name a few), there is always something to optimize and of course, 
more than one way to do it. 

In a generic definition, we may say that optimization aims to find the “best” 
available solution among a set of potential solutions in a defined search space. For 
almost every problem exists a solution, not necessarily the best, but we can always 
find an approximation to the “ideal solution”, and while in some cases or 
processes is still common to use our own experience to qualify a process, a part of 
the research community have dedicated a considerably amount of time and efforts 
to help find robust optimization methods for optima finding in a vast range of 
applications. 

It has been stated the difficulty to solve different problems by applying the 
same methodology, and even the most robust optimization approaches may be 
outperformed by other optimization techniques depending on the problem to 
solve. 
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When the complexity and the dimension of the search space make a problem 
unsolvable by a deterministic algorithm, probabilistic algorithms deal with this 
problem by going through a diverse set of possible solutions or candidate 
solutions. Many metaheuristic algorithms can be considered probabilistic, while 
they apply probability tools to solve a problem, metaheuristic algorithms seek 
good solutions by mimicking natural processes or paradigms. Most of these novel 
optimization paradigms inspired by nature were conceived by merely observation 
of an existing process and their main characteristics were embodied as 
computational algorithms. 

The importance of the optimization theory and its application has grown in the 
past few decades, from the well known Genetic Algorithm paradigm to PSO, 
ACO, Harmonic Search, DNA Computing, among others, they all were introduced 
with the expectation of improving the results obtained with the existing strategies. 

There’s no doubt that there could be some optimization strategies presented at 
some point that were left behind due their complexity and poor performance. 
Novel optimization paradigms should be able to perform well in comparison with 
another optimization techniques and must be “easily adaptable” to different kinds 
of problems. 

Optimization based on chemical processes is a growing field that has been 
satisfactorily applied to several problems. In [25] A DNA based algorithm was to 
solve the small hitting set problem. A catalytic search algorithm was explored in 
[30], where some physical laws such as mass and energy conservation were taken 
into account. In [19], the potential roles of energy in algorithmic chemistries were 
illustrated. An energy framework was introduced, which keeps the molecules 
within a reasonable length bounds, allowing the algorithm to behave 
thermodynamically and kinetically similar to real chemistry. A chemical reaction 
optimization was applied to the grid scheduling problem in [29], where molecules 
interact with each other aiming to reach the minimum state of free potential and 
kinetic energies. The main difference between these metaheuristics is the 
parameter representation, which can be explicit or implicit. 

In this paper we introduce an optimization method inspired on the chemical 
reactions and its application for the optimization of the tracking controller for the 
dynamic model of the unicycle mobile robot. 

The importance of applying this chemical optimization algorithm is that 
different methods have been applied to solve motion control problems. Kanayama 
et al. [13] propose a stable tracking control method for a non-holonomic vehicle 
using a Lyapunov function. Lee et al. [15] solved tracking control using 
backstepping and in [17] with saturation constraints. Furthermore, most reported 
designs rely on intelligent control approaches such as fuzzy logic control 
[3][12][16][23][27][28] and neural networks [10][26]. 

However the majority of the publications mentioned above, have concentrated 
on kinematic models of mobile robots, which are controlled by the velocity input, 
while less attention has been paid to the control problems of nonholonomic 
dynamic systems, where forces and torques are the true inputs: Bloch and 
Drakunov [4] and Chwa [8], used a sliding mode control to the tracking control 
problem. Fierro and Lewis [9] propose a dynamical extension that makes possible 
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the integration of kinematics and torque controller for a nonholonomic mobile 
robot. Fukao et al. [11], introduced an adaptive tracking controller for the dynamic 
model of mobile robot with unknown parameters using backstepping 
methodology, which has been recognized as a tool for solving several control 
problems [24] [31].Motivated by this, a mamdani fuzzy logic controller is 
introduced in order to drive the kinematic model to a desired trajectory in a finite-
time, considering the torque as the real input, a chemical reaction optimization 
paradigm is applied and simulations are shown. 

Further publications [2][18][6] have applied bio-inspired optimization 
techniques to find the parameters of the membership functions for the fuzzy 
tracking controller that solves the problem for the dynamic model of a unicycle 
mobile robot, using a fuzzy logic controller that provides the required torques to 
reach the desired velocity and trajectory inputs. 

In this paper, the main contribution is the representation of the fuzzy controller 
in the chemical paradigm to search for the optimal parameters. Simulation results 
show that the proposed approach outperforms other nature inspired computing 
paradigms, such as genetic algorithms, particle swarm and ant colony 
optimization. 

The rest of this paper is organized as follows. Section 2 illustrates the proposed 
methodology. Section 3 describes the problem formulation and control objective. 
Section 4 describes the proposed fuzzy logic controller of the robot. Section 5 
shows some experimental results of the tracking controller and in section 6 some 
conclusions and future work are presented. 

2   The Chemical Optimization Paradigm 

The proposed chemical reaction algorithm is a metaheuristic strategy that performs a 
stochastic search for optimal solutions within a defined search space. In this 
optimization strategy, every solution is represented as an element (or compound), 
and the fitness or performance of the element is evaluated in accordance with the 
objective function. The general flowchart of the algorithm is shown in Figure 1. 

The main difference with other optimization techniques [25][30][19][29] is that 
no external parameters are taken into account to evaluate the results, while other 
algorithms introduce additional parameters (kinetic/potential energies, mass  
conservation, thermodynamic characteristics, etc), this is a very straight forward 
methodology that takes the characteristics of the chemical reactions (synthesis, 
decomposition, substitution and double-substitution) to find for optimal solution. 

This approach is a static population-based metaheuristic that applies an 
abstraction of the chemical reactions as intensifiers (substitution, double 
substitution reactions) and diversifying (synthesis, decomposition reactions) 
mechanisms. The elitist reinsertion strategy allows the permanence of the best 
elements and thus the average fitness of the entire element pool increases with 
every iteration. The algorithm may trigger only one reaction or all of them, 
depending on the nature of the problem to solve, in example; we may use only the 
decomposition reaction sub-routine to find the minimum value of a mathematical 
function. 
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Fig. 1 General flowchart of the chemical reaction algorithm 

The pseudocode for the chemical reaction algorithm is as follows: 
 

Chemical_Reaction _Algorithm 
Input: problem_definition, objective_function, dimensions,  
1. Assign values to variables: pool_size, Trials, upper_boundary, 
lower_boundary, synthesis_rate, decomposition_rate, singlesubstitution_rate, 
doublesubstitution_rate. 
2. Generate Randomly Initial_Pool in interval [lower_boundary, upper_ 
boundary] 
3. Evaluate Initial_Pool 
4. Identify best_solution 
5. while ( stopping criteria not met ) do 
6. Perform Synthesis_Procedure; Get Synthesis_vector 
7. Perform Decomposition_Procedure; Get Decomposition_vector 
8.  Perform SingleSubstitution_Procedure; Get SingleSubstitution_vector 
9.  Perform DoubleSubstitution_Procedure; Get DoubleSubstitution_vector 
10.  Evaluate Synthesis_vector, Decomposition_vector, SingleSubstitution_ 
vector, DoubleSubstitution_vector 
11.  Apply elitist_reinsertion; Get improved_pool 
12. Update best_solution 
13. end while 
Output: best_solution  

 
Every nature inspired paradigm has their own way to encode candidate 

solutions. When these parameters are defined, a set of processes or procedures are 
applied to lead the population to an optimal result. The main components of this 
chemical reaction algorithm are described below. 
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Elements/Compounds 
These are the basic components of the algorithm. Each element or compound 
represents a solution within the search space. The initial definition of elements 
and/or compounds depends on the problem itself and can be represented as binary 
numbers, integer, floating, etc. They interact with each other implicitly; this is, the 
definition of the interaction is independent of the real molecular structure; in this 
approach the potential and kinetic energies and other molecular characteristics are 
not taken into account. 

 
Chemical Reactions 
A chemical reaction is a process in which at least one substance changes its 
composition and its sets of properties, in this approach, the chemical reactions 
behave as intensifiers (substitution, double substitution reactions) and diversifying 
(synthesis, decomposition reactions) mechanisms. The 4 chemical reactions 
considered in this approach are the synthesis, decomposition, single and double 
substitution reactions. The objective of these operators is exploring or exploiting 
new possible solutions within a slightly larger hypercube than the original 
elements/compounds, but within the previously specified range. 

The synthesis and decomposition reactions are used to diversify the resulting 
solutions; these procedures showed to be highly effective to rapidly lead the 
results to a desired value. They can be described as follows. 

 
Synthesis Reactions 
Is a reaction of two reactants to produce one product. By combining two (or more) 
elements, this procedure allows to explore higher valued solutions within the 
search space. The result can be described as a compound (B+C → BC). The 
pseudocode for the synthesis reaction procedure is as follows: 

 
 

Synthesis_Procedure 
Input: selected_elements, synthesis_rate 
1. n = size ( selected_elements ) 
2. i = floor ( n / 2)  
3. for j = 1 to i – 1 
4.  Synthesis = selected_elementsj + selected_elementsj+1 

5. j = j + 2 
6. end for 
Output: Synthesis_vector 

 
 

Decomposition Reactions 
In this reaction, typically, only one reactant is given, it allows a compound to be 
decomposed into smaller instances (BC → B+C). The pseudocode for the 
decomposition reaction procedure is as follows: 
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Decomposition_Procedure 
Input: selected_elements, decomposition_rate 
1. n = size ( selected_elements ) 
2. Get randval randomly in interval [ 0, 1 ]  
3. for i = 1 to n 
4.  Deco1 = selected_elementsi x randval 
5.  Deco2 = selected_elementsi x ( 1 – randval ) 

6.  i = i + 1 
7. end for 
Output: Decomposition_vector ( Deco1, Deco2 ) 

 
The single and double substitution reactions allow the algorithm to search for 

optima around a good previously found solution and they’re described as follows. 
 

Single-Substitution Reactions 
When a free element reacts with a compound of different elements, the free 
element will replace one of the elements in the compound if the free element is 
more reactive than the element it replaces. A new compound and a new free 
element are produced; during the algorithm, a compound and an element are 
selected and a decomposition reaction is applied to the compound; two elements 
are generated from this operation. Then, one of the new generated elements is 
combined with the non-decomposed selected element (C + AB → AC + B). The 
pseudocode for the single-substitution reaction procedure is as follows: 

 
SingleSubstitution_Procedure 
Input: selected_elements, singlesubstitution_rate 
1. n = size ( selected_elements ) 
2. i = floor ( n / 2)  
3. a = selected_elements1, selected_elements2, …, selected_elementsi 

4. b = selected_elementsi+1, selected_elementsi+2, …, selected_elementsix2 
5. Apply Decomposition_Procedure to a; Get Deco1, Deco2 
6. Apply Synthesis_Procedure ( b + Deco1 ); Get Synthesis_vector 
Output: SingleSubstitution _vector ( Synthesis_vector, Deco2 ) 

 

 
Double-Substitution Reactions 
Double-substitution or double-replacement reactions, also called double-
decomposition reactions or metathesis reactions involve two ionic compounds, 
most often in aqueous solution. In this type of reaction, the cations simply swap 
anions; during the algorithm, a similar process that in the previous reaction 
happens, the difference is that in this reaction both of the selected compounds are 
decomposed and the resulting elements are combined between each other (AB + 
CD → CB + AD). The pseudocode for the double-substitution reaction procedure 
is as follows: 
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DoubleSubstitution_Procedure 
Input: selected_elements, doublesubstitution_rate 
1. n = size ( selected_elements ) 
2. i = floor ( n / 2)  
3. a = selected_elements1, selected_elements2, …, selected_elementsi 

4. b = selected_elementsi+1, selected_elementsi+2, …, selected_elementsix2 
5. Apply Decomposition_Procedure to a and b; Get (Deco1, Deco2), (Deco1’, 

Deco2’) 
6. Apply Synthesis_Procedure (Deco1 + Deco1’), (Deco2 + Deco2’) Get 

Synthesis_vector1, Synthesis_vector1’ 
Output: SingleSubstitution _vector ( Synthesis_vector1, Synthesis_vector1’ ) 

 
In this chemical reaction algorithm we may trigger only one reaction or all of 

them, depending on the nature of the problem to solve, e.g., we can apply only the 
decomposition reaction sub-routine to find the minimum value of a mathematical 
function. 

Throughout the execution of the algorithm, whenever a new set of 
elements/compounds are created, an elitist reinsertion criteria is applied, allowing 
the permanence of the best elements and thus the average fitness of the entire 
element pool increases through iterations. 

In order to have a better picture of the general schema for this proposed 
chemical reaction algorithm, a comparison with other nature inspired paradigms is 
shown in Table 1. 

Table 1 Main elements of several nature inspired paradigms 

Paradigm 
Parameter 

Representation 
Basic Operations 

GA Genes Crossover, Mutation 
ACO Ants Pheromone 
PSO Particles Cognitive, Social Coefficients 
GP Trees Crossover, Mutation (In some cases) 

CRM 
Elements,  

Compounds 
Reactions (Combination, Decomposition, 

Substitution, Double-substitution) 

3   The Mobile Robot 

Mobile robots are non-holonomic systems due to the constraints imposed on their 
kinematics. The equations describing the constraints cannot be integrated 
symbolically to obtain explicit relationships between robot positions in local and 
global coordinate’s frames. Hence, control problems that involve them have 
attracted attention in the control community in recent years [14]. 

The model considered is that of a unicycle mobile robot (see Figure 2) that has 
two driving wheels fixed to the axis and one passive orientable wheel that are 
placed in front of the axis and normal to it [5]. 
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Fig. 2 Diagram of a wheeled mobile robot 

The two fixed wheels are controlled independently by the motors, and the 
passive wheel prevents the robot from overturning when moving on a plane.  

It is assumed that the motion of the passive wheel can be ignored from the 
dynamics of the mobile robot, which is represented by the following set of 
equations [9]: 

w

v
q

10

0sin

0cos

θ
θ

=

 

τ=++ )(),()( qGvqqVvqM   

  (1) 

Where Tyxq ],,[ θ=  is the vector of generalized coordinates which describes 

the robot position, (x,y) are the Cartesian coordinates, which denote the mobile 
center of mass and θ  is the angle between the heading direction and the x-axis 

(which is taken counterclockwise form); Twvv ],[= is the vector of velocities, v 

and w are the linear and angular velocities respectively; rR∈τ is the input vector, 
nxnRqM ∈)(  is a symmetric and positive-definite inertia matrix, 

nxnRqqV ∈),(  is the centripetal and Coriolis matrix, nRqG ∈)( is the 

gravitational vector. Equation (1.a) represents the kinematics or steering system of 
a mobile robot. 

Notice that the no-slip condition imposed a non holonomic constraint described 
by (2), that it means that the mobile robot can only move in the direction normal 
to the axis of the driving wheels. 

0sincos =− θθ xy     (2) 
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The control objective will be established as follows: Given a desired trajectory 
qd(t) and the orientation of the mobile robot we must design a controller that 
applies an adequate torque τ such that the measured positions q(t) achieve the 
desired reference qd(t) represented as (3): 

0)()(lim =−
∞→

tqtqd
t  

 

  (3) 

To reach the control objective, the method is based on the procedure of [9], we are 
deriving a τ(t) of a specific vc(t) that controls the steering system (1.a) using a 
Fuzzy Logic Controller (FLC). A general structure of tracking control system is 
presented in Figure 3. 

 

Fig. 3 Tracking control structure 

The control is based on the procedure proposed by Kanayama et al. [13] and 
Nelson et al. [21] to solve the tracking problem for the kinematic model vc(t). 
Suppose that the desired trajectory qd satisfies (4): 

d

d
d

d

d w

v
q

10

0sin

0cos

θ
θ

=

 

  (4) 

Using the robot local frame (the moving coordinate system x-y in figure 1), the 
error coordinates can be defined as (5): 

θθ
θθ
θθ

θ −
−
−

−=−=

d

d

d

y

x

de yy

xx

e

e

e

qqTe

100

0cossin

0sincos

),(

 

  (5) 

And the auxiliary velocity control input that achieves tracking for (1.a) is given by 
(6): 
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dydd

xd
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dcc sin
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32

1

++
++

==
 

  (6) 

Where k1, k2 and k3 are positive gain constants. 
The first part for this work is to apply the proposed method to obtain the values 

of ki (i = 1, 2, 3) for achieving the optimal behavior of the controller, and the 
second part is to optimize the fuzzy controller. 

4 Fuzzy Logic Controller 

The purpose of the fuzzy logic controller (FLC) is to find a control input τ such 
that the current velocity vector v is able to reach the velocity vector vc and this is 
denoted as: 

0lim =−
∞→

vvc
t

   (7) 

The inputs variables of the FLC correspond to the velocity errors obtained of (10) 
(denoted as ev and ew: linear and angular velocity errors respectively), and 2 
outputs variables, the driving and rotational input torques τ (denoted by F and N 
respectively). The initial membership functions (MF) are defined by 1 triangular 
and 2 trapezoidal functions for each variable involved. Figure 4 depicts the MFs in 
which N, Z, P represent the fuzzy sets (Negative, Zero and Positive respectively) 
associated to each input and output variable. 

 

 

Fig. 4 Membership functions of the (a) input  and , and (b) output variables F and N 

The rule set of the FLC contain 9 rules, which govern the input-output 
relationship of the FLC and this adopts the Mamdani-style inference engine. We 
use the center of gravity method to realize defuzzification procedure. In Table 2, 
we present the rule set whose format is established as follows: 

Rule i: If ev is G1 and ew is G2 then F is G3 and N is G4 

Where G1…G4 are the fuzzy sets associated to each variable and i= 1 ... 9. In this 
case, P denotes “Positive”, N denotes “Negative”, and Z denotes “Zero”. 
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Table 2 Fuzzy rule set 

  N Z P 

N N/N N/Z N/P 

Z Z/N Z/Z Z/P 

P P/N P/Z P/P 

5 Experimental Results 

Several tests of the chemical optimization paradigm were made to test the 
performance of the tracking controller. First, we need to find the values of ki (i = 
1, 2, 3) showed in equation 6, which shall guarantee convergence of the error e to 
zero. 

To evaluate the constants obtained by the algorithm, the mobile robot tracking 
system, which consists in equations 5 and 6 was modeled using Simulink®. Figure 
5 shows the closed loop for the tracking controller. 

 

Fig. 5 Closed loop for the tracking controller system 

The conditions to evaluate each result, which correspond to the final position 
error, are given by equation 12. 



14 L. Astudillo, P. Melin, and O. Castillo
 

( ) ( ) ( )


=

++
=

n

i

yx

n

ieieie
EP

1

θ  (12) 

For the first set of experiments only the decomposition reaction mechanism was 
triggered and the decomposition factor was varied; this factor is the quantity of 
resulting elements after applying a decomposition reaction to a determined 
“compound”; the only restriction here is that let x be the selected compound and 

ix ' (i=1 2, …, n), the resulting elements; the sum of all values found in the 

decomposition must be equal to the value of the original compound. This is shown 
in equation 13. 
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Each experiment was executed 35 times and the test parameters for each set of 
experiments can be observed in Table 3. 

The decomposition rate (Dec. Rate) represents the percentage of the pool to be 
candidate for the decomposition and the decomposition factor (Dec. Factor) is the 
number of elements to be decomposed into. 

The selection strategy applied was the stochastic universal sampling, which 
uses a single random value to sample all of the solutions by choosing them at 
evenly spaced intervals. 

In example, for a pool containing 5 initial compounds, the vector length of 
decomposed elements when the decomposition factor is 3 and the decomposition 
rate is 0.4 will be of 6 elements. 

Table 3 Parameters of the Chemical Reaction Optimization 

No. Elements Iterations Dec. Factor Dec. Rate 
1 2 10 2 0.3 
2 5 10 3 0.3 
3 2 10 2 0.4 
4 2 10 3 0.4 
5 5 10 2 0.4 
6 5 10 3 0.4 
7 5 10 2 0.5 
8 10 10 2 0.5 

 
By applying this criterion, the initial pool of elements increased with every 

iteration; this is why the initial element pool was set to 10 elements as maximum. 
Table 4 shows the results after applying the chemical optimization paradigm. 
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Table 4 Experimental Results of the proposed method for optimizing the values of the 
gains k1, k2, k3 

No. Best Error Mean k1 k2 k3 
1 0.0086 1.1568 519 46 8 
2 4.79e-04 0.1291 205 31 31 

3 0.0025 0.5809 36 328 88 

4 0.0012 0.5589 2 206 0 

5 0.0035 0.0480 185 29 5 

6 8.13e-005 0.0299 270 53 15 

7 0.0066 0.1440 29 15 0 

8 0.0019 0.1625 51 3 0 

 
As it is observed in Table 4, experiment number 6 seems to be the best result 

because it reached the smaller final error among all experiments.  
Figure 6 shows the final position errors in x, y and theta for experiment no. 6. 

 

Fig. 6 Final position errors in x, y and theta for experiment no. 6 

By analyzing the graphical results of several set of exercises, we noticed that 
the control obtained for some of them was “smoother” despite the average error 
value. This was the case for experiment no. 3, in which the final error value was 
significantly higher than the obtained in experiment no. 6.  Figure 7 shows the 
final position errors in x, y and theta for experiment no. 3. 
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Fig. 7 Final position errors in x, y and theta for experiment no. 6 

Making a comparison between both graphics, we can observe that the average error 
obtained for theta is 0.0338 for experiment no. 6 and 0.0315 for experiment no. 3.  

This smoother control of the tracking system could make a big difference in the 
complete dynamic system of the mobile robot. 

In previous work [22], the gain constant values were found by means of genetic 
algorithms. In Table 5 we have a comparison of the best results obtained with both 
algorithms, we can observe that the result with the chemical optimization 
outperforms the GA in finding the best gain values. 

Table 5 Comparison of the Best Results 

Parameters 
Genetic 

Algorithm 
Chemical Optimization 

Algorithm 

Individuals 5 2 
Iterations 15 10 

Crossover Rate 0.8 N/A 
Mutation Rate 0.1 N/A 
Synthesis Rate N/A 0.2 

Decomposition Rate N/A 0.8 
Substitution Rate N/A 0.6 

Double Substitution Rate N/A 0.6 
k1, k2, k3 43, 493, 195 36, 328, 88 
Final Error 0.006734 0.0025 
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Figure 8 shows the result in Simulink for the experiment with the best overall 
result, applying GAs as optimization method.  

 

Fig. 8 Position errors in x, y and theta of best result applying GAs 

Once we have found optimal values for the gain constants, the next step is to 
find the optimal values for the input/output membership functions of the fuzzy 
controller. Our goal is that in the simulations, the lineal and angular velocities 
reach zero. Table 6 shows the parameters of the simulateons for typ-1 FLC. 

Table 6 Parameters of the simulations for Type-1 FLC 

Parameters Value 

Elements 10 

Trials 15 

Selection Method Stochastic Universal Sampling 

k1 117 

k2 226 

k3 137 

Error 0.077178 

 
Figure 9 shows the behavior of the chemical optimization algorithm throughout 

the experiment. 
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Fig. 9 Best simulation of experiments with the chemical optimization method 

Figure 10 shows the resulted input and output membership functions found by 
the proposed optimization algorithm. 

 
  (a) 

 
  (b) 

 

Fig. 10 Resulting input membership functions: (a) linear and (b) angular velocities and 
output (c) right and (d) left torque 
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  (c) 

 
 
  (d) 

 

Fig. 10 (continued) 

Figure 11 shows the obtained trajectory when simulating the mobile control 
system including the obtained input and output membership functions. 

 

Fig. 11 Obtained trajectory when applying the chemical reaction algorithm 
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Figure 12 shows the best trajectory reached by the mobile when optimizing the 
input and output membership functions using genetic algorithms. 

 

Fig. 12 Obtained trajectory using genetic algorithms 

A Type-2 fuzzy logic controller was developed using the parameters of the 
membership functions found for the FLC type-1. The parameters searched  
with the chemical reaction algorithm were for the footprint of uncertainty 
(FOU).  

Table 7 shows the parameters used in the simulations and Figure 13 shows 
the behavior of the chemical optimization algorithm throughout the experiment. 

Table 7 Parameters of the simulations for Type-2 FLC 

Parameters Value 

Elements 10 

Trials 10 

Selection Method Stochastic Universal Sampling 

k1 117 

k2 226 

k3 137 

Error 2.7736 
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Fig. 13 Behavior of the algorithm when optimizing the type-2 FLC 

Figure 14 shows the resulting type-2 input and output membership functions 
found by the proposed optimization algorithm and Figure 15 shows the obtained 
trajectory reached by the mobile robot. 

 

 

Fig. 14 Resulting type-2 input membership functions, from top to bottom: (a) linear and (b) 
angular velocities and output (c) right and (d) left torque 
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Fig. 15 Obtained trajectory for the mobile robot when applying the chemical reaction 
algorithm to the type-2 FLC 

As observed in Table 7, the final error obtained is not smaller that the final 
error found for the type-1 FLC. Despite this, the trajectory obtained and showed in 
Figure 15 is acceptable taking into account that the reference trajectory is a 
straight line. In Figure 16 we can observe an “unacceptable” trajectory that was 
found in the early attempts of optimization for the type-1 FLC applying this 
chemical reaction algorithm. Here, we can observe that the parameters found were 
not the adequate to make the FLC follow the desired trajectory. 

 

Fig. 16 Unaccepted resulting trajectory in early optimization trials 
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In order to test the robustness of the type-1 and type-2 FLC, we added an 
external signal given by equation (13). 

ttFext ××= ωε sin)(  (13)

This represents an external force applied in a period of 10 seconds to the obtained 
trajectory that will make the mobile robot to be out of its path. The idea of adding this 
disturbance is to measure the errors obtained with the FLC and to test the behavior of 
the mobile robot under perturbed torques. Table 8 shows the parameters for the 
simulations and the errors obtained during the run of the simulation. 

Table 8 Simulation parameters and errors obtained under disturbed torques 

ε Velocity 
errors 

Type-1 
(GA) 

Type-1 
(CRA) 

Type-2 
(CRA) 

0.05 
Final error 4.0997 0.9815 29.5115 

Average error 4.1209 1.5823 26.6408 

5 
Final error 4.1059 0.9729 29.52 

Average error 3.1695 1.8679 26.1646 

10 
Final error 4.1045 0.9745 29.51 

Average error 3.0985 1.7438 24.9467 

30 
Final error 4.0912 0.9783 29.51 

Average error 2.2632 1.9481 24.6032 

32 
Final error 3273 0.9748 29.52 

Average error 3.4667e+003 2.8180 24.6465 

34 
Final error 1.5705e+004 566.8 29.51 

Average error 1.1180e+004 215.8198 24.9211 

40 
Final error 2.534e+004 3.5417e+04 29.51 

Average error 186.0611 5.7492e+003 23.8938 

41 
Final error 8839 3168 685.1 

Average error 2.0268e+004 0.0503e+003 16.5257 
 
Figure 17 show the obtained trajectories for the type-1 FLC optimized with 

Genetic Algorithms. 
 

 

Fig. 17 From left to right, trajectory obtained with the type-1 FLC optimized with GA’s. (a) 
ε = 30, (b) ε = 32, (c) ε = 34. 
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Figure 18 shows the obtained trajectories for the type-1 FLC optimized with the 
chemical reaction algorithm. 

 

Fig. 18 From left to right, trajectory obtained with the type-1 FLC optimized with CRA. (a) 
ε = 30, (b) ε = 32, (c) ε = 34. 

Figure 19 shows the obtained trajectories for the type-2 FLC optimized with the 
CRA method. 

 

Fig. 19 From left to right, trajectory obtained with the type-2 FLC optimized with CRA. (a) 
ε = 30, (b) ε = 32, (c) ε = 34. 

When observing Table 8 and Figures 17 to 19 we can observe that the type-2 
FLC was able to maintain a more controlled trajectory in despite of the “large” 
error found by the algorithm (e=2.7736). For larger epsilon (ε) values, it was 
difficult for the type-1 FLC’s to keep in the path and in a determined time, the 
controller was not able to return to the reference trajectory.  

6 Conclusions 

In this paper, we presented simulation results from an optimization method that 
mimics chemical reactions applied to the problem of tracking control. The goal 
was to find the gain constants involved in the tracking controller for the dynamic 
model of a unicycle mobile robot. In the figures of the experiments we are able to 
note de behavior of the algorithm and the solutions found through all the 
iterations. Simulation results show that the proposed optimization method is able 
to outperform the results previously obtained applying a genetic algorithm 
optimization technique. The optimal fuzzy logic controller obtained with the 
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proposed chemical paradigm has been able to reach smaller error values in less 
time than genetic algorithms. Also, the type-2 fuzzy controller was able to perform 
better under the presence of disturbance for this problem in despite of the “large” 
error obtained (e=2.7736). The design of optimal type-2 fuzzy controllers is being 
performed at the time. 

Acknowledgement. The authors would like to thank CONACYT and Tijuana Institute of 
Technology for the facilities and resources granted for the development of this research. 
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Abstract. Exponentiation is an important and complex task used in cryptosystems 
such RSA. The reduction of the number of multiplications needed during the ex-
ponentiation can significantly improve the execution time of cryptosystems. The 
problem of determining the minimal sequence of multiplications required for per-
forming a modular exponentiation can be formulated using the concept of Brauer 
Chains.  

This paper, shows a new approach to face the problem of getting Brauer Chains 
of minimal length by using a Genetic Algorithm (GA). The implementation details 
of the GA includes a representation based on the Factorial Number System (FNS), 
a mixture of Neighborhood Functions (NF), a mixture of Distribution Functions 
(DF) and a fine-tuning process to set the parameter values. We compare the pro-
posed GA approach with another relevant solutions presented in the literature by 
using three benchmarks considered difficult to show that it is a viable alternative 
to solve the problem of getting shortest Brauer Chains. 

Keywords: Addition Chains, Genetic Algorithms. 

1 Introduction 

Exponentiation is an important and complex task used in cryptosystems such as 
RSA. The reduction of the number of multiplications needed during the exponen-
tiation can significantly improve the execution time of cryptosystems [3]. The 
problem of determining the minimum operations required for the exponentiation 
of  xn have been searched with different strategies and a naive solution is to apply 
a sequence of n-1 multiplications of x such that xn= x·x·... ·x. For example, if we 
want to compute x23 using the naive way we have to apply 22 multiplications. 
Another possibility to compute xn is by applying the binary method [14], which is 
showed in a recursive description in the Equation 1. 
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    if α = 1· if α is even· otherwise  

 

(1) 

For the example of the exponentiation x23, using the binary method we only need 
to perform 7 multiplications, as can be seen next: 

 = , = , = , = , = ,  = , =  

But it is possible to reduce further the number of multiplications needed for the 
exponentiation than those used by the naive way or the binary method, and there 
have been reported different strategies to simplify this complex task like the m-ary 
method and the window-based method [7,14]. 

Also, the problem of determining the minimal sequence of multiplications  
required to perform an exponentiation can be formulated with the concept of Ad-
dition Chain (AC). The addition chain-based methods for exponentiation use a se-
quence of positive integers such that the first number of the chain is 1 and the last 
number is the exponent n. Therefore, the length of an addition chain n is equal to 
the corresponding number of multiplications required for the computation of xn. 
Thus, the smallest of such multiplications, given by the chain length l(n), makes 
the exponentiation task faster. 

Given a positive integer n, an AC is a sequence of integers = , , … ,  
such that: 

= 1               if = 0+    if 0 for some ,  (2) 

The length of the AC is | | = , the chain length l(n) is the minimal length of all 
possible ACs for n,  and the smaller addition chain is called Minimal Addition 
Chain (MAC). 

An example of an AC for the exponent 5 with length 4 is the sequence of num-
bers shown in the Figure 1, where can be see how each non root member in the 
chain are composed by two previous members and the element r is an integer 
equal to n. 

In an AC every set of values {j,k} is called step, and according with their prop-
erties along the chain, the steps and the complete chain takes some particular 
name. A first instance is if j and k are equal to i-1, it its called "double step". 
Another instance is when j is equal to i-1 and k<j, i.e. if one of the addends is the 
previous member, then it is called a star step, and  "an addition chain that consists 
entirely of star steps is called a star chain" [27] or Brauer Chain (BC) [15] in hon-
or of Brauer (1937). We denote l*(n) the minimal BC length for a number n, and 
where a BC C has the smallest length r for a number n we can say that C is a Mi-
nimal Brauer Chain (MBC) for n. 
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Fig. 1 Example of an AC for the number 5 

An example of a BC is (1,2,4,5,9,18,23), which leads to the following scheme 
for the computation of x23 using only 6 multiplications: 

 = , = , = , = , = , =  
 

A difference between an AC and a BC is the search space, because in an AC the 
search space grows in a way at least factorial according to its length but in a BC it 
is only grow in a factorial way. In fact, the search space for BCs can be seen as a 
tree of r levels (Fig. 2). For that reason the searching process for a MBC for small 
numbers like 19 is relatively easy, but for bigger numbers is not because the 
search space becomes very large. According to Knuth [17] and Mignotte [19] 
another remarkable difference is that l(n) ≤ l*(n). The smallest exponent, taken 
from [11], with we can observe the difference lengths of MCAs and MBCs is 
12509 (Table 1). 

 

Fig. 2 Search space for Brauer Chains with length 4 

Table 1 Example of difference between l(n) and l*(n) with the exponent n=12509 

Type Chain r 
MAC 1→2→3→6→12→13→24→48→96→192→384→ 

768→781→1562→3124→6248→12496→12509 
17 

MBC 1→2→3→6→12→24→48→96→192→384→768→ 
1536→1560→3120→3126→6252→6254→12508→ 12509 

18 

 
In this paper we propose a Genetic Algorithm (GA) to face the problem of get-

ting MBCs, using a representation based on the Factorial Number System (FNS), a 
mixture of neighborhood functions and a mixture of distribution functions. The 
remaining of this paper is organized as follows. Section 2 gives a brief description 
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of a variety of approaches proposed to find MACs and MBCs, Section 3 describes 
our proposed approach, Section 4 shows how the fine-tuning process was done 
and the parameter configuration used, Section 5 shows the results obtained and fi-
nally Section 6 gives the reached conclusions. 

2 Relevant Related Work 

In the last years, it has been shown that metaheuristic strategies find near optimal 
solutions for a wide variety of combinatorial problems in a reasonable time. In this 
section are described some approaches that have been designed for the problem of 
finding MACs and MBCs. 

Bleichenbacher and Flammenkamp [3] search for MACs by using Direct Acyc-
lic Graphs (DAG) to represent the chains and a BackTracking (BT) search to con-
struct the graph. Their backtrack  approach  uses a stage where special cases of 
addition chains are replaced with another equivalent ones in order to get smaller 
ACs. 

Thurber in 1999 [27] proposed a BT algorithm to find MACs, by using a repre-
sentation based on a tree of k levels and branch and bound methods to explore the 
tree of a size at least k!. 

Nedja and Moruelle in 2002 [20] designed an approach based in the m-ary me-
thod using a parallel implementation to compute MACs by decomposing the ex-
ponent, in its binary representation, in blocks (also called windows) containing 
successive digits of ones that results in variable length zero-partitions and one-
partitions. They found ACs with a lower number of elements than the binary me-
thod does. 

Nedja and Moruelle in 2003 [23] used large windows inside a genetic algo-
rithm. Their optimal parameter settings found were: 50 individuals; a double-
points crossover; a mutation rate between 0.4 and 0.7; and a mutation degree of 
about 1% of the last value in the binary encoding sequence. 

Cruz-Cortes et. al in 2005 [7] proposed a GA to solve the problem of finding 
MACs with the following features: each solution is represented as a sequence of 
integers, where each gene is related to one step of the AC, so each time that their 
algorithm apply a crossover operator it have to assure that the resulting sequence 
is a valid AC and the fitness is the AC length. The remaining features of their pro-
posed GA are: a "non elitist" survivor selection; a population size of 100; a num-
ber of generations of 300; a mutation rate of 0.5; a selection of parents pairs to be 
recombined by a binary tournament; and an one point crossover. Their results 
suggest that this kind of algorithm can be a good alternative to solve the problem 
of finding MBCs. 

Nedja and Moruelle in 2004 [21] and 2006 [22] proposed Ant Colony Systems 
(ACS) to obtain MACs that use a bi-dimensional triangular array to store the ACS 
global memory. The local memory is divided in two parts: a vector of length n and 
the fitness of the path traveled by the ant to construct the AC. 

Gelgi and Onus in 2006 [12], proposed some heuristics approaches for the 
problem of getting an MBC. They present five approaches: three greedy heuristics 
and two dynamic programming approaches. They found empirically, that their  
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dynamic heuristic approach has an approximation ratio (obtained length / mini-
mum length) of 1.1 with 0 20000. 

Cruz-Cortes et. al in 2008 [6] presented an algorithm using the metaheuristic 
approach known as Artificial Immune System (AIS) to tackle the problem of find-
ing short BCs, which uses a cloning operator and a hypermutation operator (the 
hypermutation operator is inversely proportional to the clones fitness) over the 
best solutions; and an "elitist" selection. The values of the parameter used are:  a 
population size of 45; a number of best individuals to be cloned of 11;  a number 
of replaced antibodies of 4 and 25 iterations of the main cycle. Also they combine 
their AIS system with a slide-window method to deal with large numbers. They 
use a function named  fill to search for a valid BC, but its important to say that 
they do not mention about how much effort is done inside the fill function either in 
terms of time or evaluations. 

Osorio-Hernandez et. al in 2009 [24] design a GA to find minimal length Brau-
er Chains. They use a repairing process; local search; and integer representation. 
They were able to find short BCs with the following parameters: population size 
of 200; maximum number of generations of 300; and binary tournament selection. 
However they don't were able to find all minimal length BCs with only one confi-
guration and they had to use two different configurations to find some of them. 
Other important aspects of this work are that: the parameter configuration was ob-
tained by trial and error, and there is no mention about how many operations are 
used or how much time is used inside the fill function (which is used to search for 
a valid BC). 

Dominguez-Isidro et. al in 2011 [8,9] designed an algorithm to face the prob-
lem of finding MBCs using an evolutionary programming approach, where muta-
tion is the only variation operator. Each individual k in the current population  
generates by mutations t mutants, and the best of them is chosen as k’s offspring.  
As parameter values they use: population size of 100; maximum number of gener-
ations of 230; 4 mutants per individual; and a survivor selection based on a tour-
nament of size 10. 

Jose-Garcia et. al in 2011 [16] designed an interesting algorithm based on Si-
mulated Annealing (SA) approach for the problem of finding MBCs, although the 
name of the work mentions addition chains, which uses a mixture of 4 neighbor-
hood functions and a representation based on a chain in FNS. This algorithm 
works only with one solution at a time due to Simulated Annealing specification 
and the parameter values were: an initial temperature of 10, a cooling rate of .85 
and a length of a Markov chain of 10. Also, with the purpose of reducing consum-
ing time of the experimentation they performed and used a parallel test scenario.  

Rodriguez-Cristerna et. al in 2011 [26] reports a Mutation-Selection (MS) algo-
rithm, based on the general scheme of an evolutionary algorithm but without the 
recombination stage to find MBCs. This algorithm uses: a representation based on 
FNS, which is adequate to apply genetic operators and always generate a valid so-
lution; a fitness function based in the n achieved and the length of the chain; a 
"non elitist" survivor selection; 3log2n parents; 7log2n mutated children per each 
parent; and 1000 iterations. 
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Clift in 2011 [4], designed a BT strategy based on a graph representation and a 
novel prune criterion. This approach was able to find all l(n) with 2  using a 
computational time of about a month using 12 processors. 

There have been proposed more approaches to find MACs and MBCs, however 
here we list some important metaheuristic works. A brief enumeration of the main 
features of the presented strategies is showed in the Table 2. 

Table 2 Summary of main features for some proposed approaches to find MACs and 
MBCs 

Approach Repair 
process 

Use of 
past memory 

Representation Iterative 
operatorss 

Parallell Chain 
type 

BT [3] no no graph no no AC 
BT [27] no no graph no no AC 

m-ary [20] no no binary no yes AC 
GA [23] no no binary no no AC 
GA[7] yes no integer no no AC 

ACS [21,22] no no integer no no AC 
AIS [6] no yes integer yes no BC 
GA [24] yes no integer yes no BC 
SA [16] no no FNS yes no BC 
MS [26] no no FNS yes no BC 

3 Proposed Approach 

3.1 Genetic Algorithm 

In order to present the GA proposed, a brief description of how it works is given. 
GA uses one or more points in the search space, called parent-points, to generate 
multiple points through recombination and then apply to them a mutation process 
(many times implemented as a local search procedure) to the new points. The gen-
erated points are called children-points and are evaluated in search of an optimal 
point. When no optimal point is found, the whole process is repeated replacing the 
parent-points with some points of the population according to a rule, which is 
called survivor selection. This cycle is repeated until an optimal point is found or 
certain termination criterion is met. 

The algorithm proposed is based on the general scheme of an evolutionary al-
gorithm [10], and its pseudocode is showed in the Algorithm 1. 

 

Algorithm 1. General scheme of the GA algorithm 
proposed. 
INITIALIZE parents 
EVALUATE parents 
REPEAT  
  SELECT pairs of parents 
  RECOMBINE pairs of parents 
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  MUTATION through local search with the resulting 
offspring 
  EVALUATE new candidates 
  parents =  survivor selection 
UNTIL the number of evaluations functions are done 
 

Contextualizing the GA for MBC computation, we have to address the next 
points: 

− The representation and the search space used by the proposed algorithm 
(described in Subsection 3.2). 

− The distribution functions used to select a position in a BC (in FNS 
representation) and the distribution function used to pickup values for a given 
position in the BC (described in Subsection 3.3). 

− The survivor selection methods used (described in Subsection 3.4). 
− The children-points generated through selection and recombination (detailed in 

Subsection 3.5). 
− The local search process with children-points using Neighborhood Functions 

(detailed in Subsection 3.6). 
− The evaluation function used to measure the quality of the potential solutions 

and the termination condition (described in Subsection 3.7). 

3.2 Representation and Search Space 

The representation used is based on the FNS and the search space is r! where r is 
the length of the BC. We use a lower bound denoted by φ and an upper bound 
denoted by ψ, defined in the Equations 3 and 4 respectively. The lower bound is 
defined as the barrier of minimum number of multiplications that are needed if we 
could apply only double steps and the upper bound is defined as the maximum 
number of multiplications needed by the binary method. φ = log (n)  (3) 

ψ = 2 · log (n)  (4) 

In FNS we can describe a BC C with a chain of numbers, that we refer as C', by 
taking a value from the set {0,1,...,i-1} for each node of C' with an index position i 
greater than 0, because the representation in FNS for the node 0 of C has no value. 
We can rebuild the original BC from the chain C' applying the Equation 5. The 
Figure 3 shows an example of how to represent a BC C for n=23 using a chain of 
numbers C' in the FNS. 

It's necessary to mention that the population is initialized only with double 
steps nodes, and the chain C' is always translated to a BC until the last node which 
its translation is equal or lower than n.  
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Fig. 3 Example of representation of a BC C for n=23 in a chain of numbers C' using the 
FNS 

( ) = ( 1) + ( ) if 01         if = 0  (5) 

3.3 Distribution Functions for Selecting a Position in the BC 

The distribution functions allows to select an i position in a C' chain, such that 1 , with a non Gaussian distribution in two steps:  first is calculated a 
random value x with 0 τ (Equation 6) and second is used one of the two 
distribution functions in Equation 7 to calculate the selected i position.  

The main purpose of the two distribution DF1 and DF2 is the selection of a 
point in the BC. DF1 allows to select with more probability the left most positions 
while the distribution function DF2 allows to select with more probability the right 
most positions. The importance of using  DF1 and DF2 is to establish a balance 
between exploration and exploitation. DF1 enables exploitation and DF2 enables 
exploration. The distribution functions DF1 and DF2 also has the property to select 
with a small probability a higher position,  but not more than one unit far from the 
chain length, which increases the possibility of modifying the chain length. 

= ( + 1) ( + 2)2  (6) 

= = 1 + 1 + 8( + 1)2 1
= + 3 1 + 1 + 8( + 1)2  (7) 

Once defined the criteria for selecting a position within the BC, we are able to 
define the criterion to choose a valid value for the positions. The steps that follow 
a neighborhood function to select a valid value for an i position in a BC are two: 
first is selected a random x' such that 0 τ   (Equation 8); and second is 
used the distribution function DF1. This methodology ensure that the i chain 
member has a value from the set {0,1,...,i-1} and also has the property to set in the 
i position a double step with high probability. = ( + 1)2  (8) 
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3.4 Survivor Selection 

It is important to select the best survivor selection type because it allows to 
manage the memory of the GA in different ways. For that reason we explore the 
use of three types of survivor selection: the first one is called (μ+λ) and takes the 
best points from the set of parent-points and the children-points using a random 
criterion as a tiebreaker. 

The second one is called (μ+λ) with no repetitions, which takes the best points 
from whole population but discards the points with the same fitness. In the cases 
where the parent-points can not be full filled with different individuals, the 
parent-points are completed with the the best  remaining individuals. 

The third one is called (μ,λ) and takes the best points from the set of the 
children-points, in case of ties its used a random selection criterion. The parent-
points are randomly replaced in case that they were fewer children-points than 
parent-points. 

3.5 Selection and Recombination 

The selection of parents pairs to be recombined were explored with the following 
strategies: random selection, tournament of size two and tournament of size three. 
In the random selection both parents are randomly chosen. For the tournament of 
size two, there are selected two groups of two parents points and only the best one 
of each group is selected to be recombined. Finally for  the tournament of size 
three, there are selected groups of three parents points and the best parent point for 
each group is selected. 

For the recombination, we use a simple recombination of one point scheme. It 
means, that if we choose the point t for the recombination,  the children-point C''1 
is constructed with the first t elements of the parent-point C'1 and the remaining 
elements of the parent-point C'2, in complement, the children-point C''2 is 
constructed with the first t elements of the parent-point C'2 and the remaining 
elements of the parent-point C'1. This process is exemplified in the Figure 4. 

 

 

Fig. 4 Example of recombination of  parents-point  C'1 and C'2 
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To pickup the t point, we explore five mixtures of use of the distribution func-
tions DF1 and DF2 which are listed in Table 3. 

Table 3 Mixtures of use of the distribution functions DF1 and DF2 inside neighborhood 
functions 

Mixture no. DF1 DF2 
0 0% 100% 
1 25% 75% 
2 50% 50% 
3 75% 25% 
4 100% 0% 

3.6 Neighborhood Functions and Local Search 

Inside of the local search we explore the use of a mixture of four neighborhood 
functions, which are described below: 

− NF1(s). Select a random index position i from s, and pickup another FNS value 
different from the original with the use of DF1, the change is made only if the 
resulting BC is better than the original. 

− NF2(s). Select a random index position i from s, and pickup a FNS value differ-
ent from the original in i. Then select another different random position j from 
s, and pickup a FNS value different from the original in j. The change is applied 
only if the resulting BC is better than the original. 

− NF3(s). Select a random index position i from s, and pickup the best FNS value. 
− NF4(s). Select a random index positions i and j from s, and pickup the best FNS 

values. 

To select the i and j positions inside the pairs of neighborhood functions  NF1- NF3 
and NF2- NF4, we test the use of a mixture of distribution functions as in Section 
3.5, because the use of different distribution functions modify the behavior of the 
neighborhood functions. For example, the use of the distribution function DF1 
implies exploitation while the use of the distribution function DF2 implies 
exploration. Additionally NF1 and NF2 use the DF1 to pickup a value for the 
selected position. 

The local search consists in applying iteratively the neighborhood functions. To 
explore the behavior of the amount of resources wasted during the local search in 
the algorithm, we try five differents limits of iteratively applications of the neigh-
borhood functions: 1, 0.10·r+1, 0.20·r+1, 0.50· r+1, r+1.  

Looking for the performance, their probability of use each one of the 
neighborhood functions was modeled according to the solution of a Diophantine 
Equation (DE) with four variables (Equation 9), where each variable could take a 
value of the set {0.1, 0.2, 0.3, ... , 1.0}. + + + = 1.0 (9) 
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3.7 Evaluation Function and Termination Condition 

The evaluation function ς used in the GA is shown in Equation 10. = | |( + 1) +  (10) 

In Equation 10 r represents the length of the BC that is evaluated, n' is the value of 
the  evaluated chain in its r position and n is the searched value. In this way, 
solutions whose n' is near to the n searched, have an evaluation only determined 
by its length,  but solutions whose difference between n' and n, have an evaluation 
determined by its difference multiplied by its length plus its length which mean 
that those solutions are penalized, making possible to discriminate between the 
quality of chains.  

The termination condition is met when certain limit number of evaluation 
functions are done. We established the limit of evaluations functions as 
log2(n)2*26log2(log2(n)). The evaluation functions are considered according to each 
time that is checked the fitness in the chain,  thus NF3 and NF4 use a number of 
evaluation functions that grows with the position or positions that their are 
modifying while  NF1 and NF2 only use one evaluation function each time that are 
called. This criterion make us able to distinguish the potential of the different 
configurations of the full system using the same computational resources. 

4 Fine-Tuning Process 

The selection of the best configuration parameters is a problem that is addressed in 
different ways: by using some parameter configuration taken from the literature, 
using a configuration defined by guessing, using a exhaustive search, using Mixed 
Covering Array (MCA), among others. 

We will get very unlikely the best system configuration with the first two 
strategies, because there can be significance differences between problems and 
algorithm implementations or our guessing can be wrong. On the other hand we 
will be able to find the bet best system configuration with an exhaustive search, 
but we need to consider the amount of time that it requires and most of the times 
its an infeasible amount because the number of parameter makes the possible 
configuration system grow exponentially.Another strategy is to use MCAs, having 
the advantage of use fewer test cases than exhaustive search, but still be able to 
find good parameter settings and at the same time the test suite is reusable, i.e. the 
same MCA could be used for different systems. 

The use of MCAs has been reported for fine-tuning process to establish 
parameter configurations [13, 16, 25, 26], however the most reported application 
of MCAs is in software interaction testing testing [5], which based in the concept 
that the software faults are caused by unexpected interactions between 
components. Thus to test a system instead of test all possible combinations 
between interactions, its used a t-way testing. Some empirical studies have found 
that software interaction testing is feasible [1,18]. 
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According to Gonzalez-Hernandez et al. [13] a MCA, represented as  ( ; , , ), is an ˙   array where  are the cardinalities 
for the vectors or alphabets that indicates the values for the i column. The value t 
is the interaction degree between parameters covered and is called the strength of 
the MCA. The value k is the number of columns or parameters. The rows are the 
specific system configurations to be tested and the complete MCA is the test suite. 
Also, the MCA has the follow properties: 

1. Each column i (0 i ) contains only elements from a set (alphabet)  
with | | = . 

2.  The rows of each ˙  sub-array cover all t-tuples from t columns at least 
once. 

To set the parameters of the GA proposed and get a good performance we use a 
Mixed Covering Array (MCA) and the solutions of the Equation 9, relying the 
methodology followed to tune the values of the parameters on the study of the 
effect over the quality of the solutions generated by tests that cover the t 
interaction degree between parameters.  

First we choose an MCA that describe the system to be tested, in our case we 
select a  (32; 2,8, 5 3 )1, which has 32 test cases, 8 parameters, 4 of them 
with five possible values and the remaining parameters with three possible values. 
The MCA used could be see in Table 5a. The strength level is 2, means that the 
MCA contains every interaction between pairs of parameters, and therefore if the 
best configuration is determined only by pairs of parameters we are able to find it 
with t=2.   

The mapping between the numbers inside the MCA (Table 5a) and their 
corresponding parameter values can be done with the Table 5b where the 
parameters selected for the fine tuning are listed in the Table 4. 

Table 4 Mixtures of use of the distribution functions DF1 and DF2 inside neighborhood 
functions 

Parameter Description 
P1 Probability of use DF1 and DF2 inside NF1-NF3 
P2 Probability of use DF1 and DF2 inside NF2-NF4 
P3 Probability of use DF1 and DF2 inside the recombination strategy 
P4 Iteration amount of neighborhood function inside the local search 
P5 Recombination selection type 
P6 Parent points 
P7 Children points 
P8 Survivor selection type 

 
We use an MCA combined with the solutions of a DE, because we want to 

explore the performance of the system using different ratios of use each 
neighborhood function. Since was tested each combination of the MCA rows with 
all the possible solutions of the DE (Equation 9), the Equation 11 represents the 

                                                           
1 A repository of MCAs is available in [28]. 
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total of the experiments that we ran during the tuning process, where M represents 
the number of rows of the MCA used, D is the number of possible solutions of the 
DE (Equation 9), B is the number of times that each M˙D experiment was done to 
obtain statistical significance, and I is the number of instances to be tested during 
the fine tuning process. Since M=32, D=286, B=31 and I=2 then the total number 
of experiments is 32x286x31x2 = 567,424.  The fine tuning was done by trying to 
obtain the MBC for the numbers 457 and 14143037. = x x x  (11) 

Table 5 MCA transposed matrix and their corresponding parameter values for parameter 
optimization 

(a). MCA values for GA algorithm 
No P1 P2 P3 P4 P5 P6 P7 P8 (b). Parameter values 
1 0 0 2 1 2 0 2 1 Values 0 1 2 3 4 
2 0 1 0 2 0 0 1 0 P1 0, 44 

14 , 34 
24 , 24 

14 , 34 0, 44 

3 0 2 1 4 1 2 0 2 P2 0, 44 
14 , 34 

24 , 24 
14 , 34 0, 44 

4 0 3 3 0 1 0 0 0 P3 0, 44 
14 , 34 

24 , 24 
14 , 34 0, 44 

5 1 0 4 3 0 1 1 1 P4 1  .1r+1           .2r+1      .5r+2   r+1 
6 1 1 1 1 1 2 0 0 P5 rnd. tourney 

size 2 
tourney 
size3 

  

7 1 2 2 2 2 1 1 0 P6 ⌈log ⌉ ⌈2log ⌉ ⌈3log ⌉   
8 1 3 0 1 0 0 2 1 P7 ⌈log ⌉ ⌈2log ⌉ ⌈3log ⌉   
9 1 4 3 4 0 2 1 2 P8 (μ,λ) (μ+λ) 

diversity 
(μ+λ) 

 
  

10 2 0 1 0 0 1 1 2       
11 2 2 3 1 2 1 0 2       
12 2 3 4 2 1 0 0 1       
13 2 4 0 3 1 2 2 0       
14 3 0 0 4 1 1 0 0       
15 3 2 4 0 0 2 2 1       
16 3 3 2 3 1 2 1 2       
17 3 4 1 2 1 0 0 1       
18 4 0 3 2 1 2 2 2       
19 4 5 5 4 0 1 2 2       
20 4 2 0 0 2 0 1 2       
21 4 3 1 3 2 1 2 1       
22 4 4 2 1 0 0 1 2       
23 0 4 4 1 2 1 1 2       
24 3 4 1 0 1 2 0 1       
25 3 1 3 1 2 1 1 1       
26 2 3 2 4 2 2 0 1       
27 2 1 4 4 1 0 2 2       
28 2 1 4 4 1 0 2 2       
29 1 1 2 0 0 0 2 1       
30 4 1 4 3 0 0 0 0       
31 0 4 4 4 1 2 2 2       
32 4 0 1 4 1 2 2 2       
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4.1 Parameters Used 

Te best configuration obtained as a result of a fine-tuning process is described in 
Table 6. 

Table 6 Parameter configuration obtained during the fine-tuning process 

Parameter Configuration 
P1 0% of use DF1 and 100% of use DF2 inside NF1-NF3. 
P2 100% of use DF2 and 0% of use DF2 inside NF1-NF3 
P3 25% of use DF2 and 75% of use DF2 inside of the recombination 

strategy 
P4 r+1 iterations of neighborhood functions during the local search. 
P5 Random parent-point selection for the recombination strategy 
P6 ⌈3log_2 n⌉  parent-points and children-points 
P7 20% of use of NF3 and 80% of use  of DF4 
P8 Survivor selection type (μ+λ) 

4.2 Implementation Note 

The proposed GA was coded using C language and compiled with GCC 4.3.5 with 
-O3 optimization flag. The algorithm has been run on a single core of a cluster 
with 4 processor six-core  AMD® 8435 (2.6 Ghz), 32 GB RAM, and Operating 
System Red Hat Linux Enterprise 4. 

5 Results 

In order to measure the performance of the GA proposed, the first experiment was 
to search the MBC  for a benchmark made of 27 different numbers n that satisfy 
the restriction of be c(r), available in [11] along a database of many l(n) values 
computed by Neill Clift [4],  and to get statistical significance each experiment 
was tested 31 times with different random seeds. c(r) is the smallest number which 
have an addition chain of lenght r, and the set of numbers that accomplish the c(r) 
property are a special class of numbers. 

The main results of the first experiment are shown in Table 7, where we can see 
the set of n's tried; the minimal, average and maximum length obtained; the 
average and standard deviation of the time to conclude each experiment; and  the 
hits (times that a MBC was found). It can be seen that for the first experiment 
(Table 7) all the MBC was obtained and the average length and the standard 
deviation obtained indicates the reliability of the GA. The behavior of the 
proposed GA for the first experiment also can be seen in the Figure 4 that shows 
the difference between minimum, average and maximum length with their 
respective standard deviation versus optimal lengths, where is evident that our 
approach can get easily most of the Brauer Chains with l*(n)<22 and for the other 
cases the average length obtained are not too far from the optimal. Table 9 shows 
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Table 7 Summary of results to compute MBC for some n for which is hard to find their 
MBC (part 1) 

id n Min. 
r 

Average 
r 

Max. 
r 

Std.  
Dev. 

r 

Average 
time (s) 

Std.  
Dev. 

time (s) 

hits 

1 7 4 4 4 0 0 0 31 
2 11 5 5 5 0 0.0003 0 31 
3 19 6 6 6 0 0.0010 0 31 
4 29 7 7 7 0 0.0023 0 31 
5 47 8 8 8 0 0.0055 0 31 
6 71 9 9 9 0 0.0107 0.0001 31 
7 127 10 10 10 0 0.0259 0.0021 31 
8 191 11 11 11 0 0.0442 0.0006 31 
9 379 12 12 12 0 0.1031 0.0007 31 

10 607 13 13 13 0 0.1760 0.0017 31 
11 1087 14 14 14 0 0.3241 0.0076 31 
12 1903 15 15 15 0 0.5503 0.0034 31 
13 3583 16 16.0323 17 0.1767 0.1767 0.0075 30 
14 6271 17 17 17 0 1.5671 0.0117 31 
15 11231 18 18 18 0 2.4806 0.0176 31 
16 18287 19 19 19 0 3.5497 0.0250 31 
17 34303 20 20.1613 21 0.3678 5.5663 0.0553 26 
18 65131 21 21 21 0 8.5120 0.1364 31 
19 110591 22 22.2903 23 0.4539 11.9941 0.1586 22 
20 196591 23 23.0323 24 0.1767 17.0883 0.2624 30 
21 357887 24 24.1613 26 0.4470 24.0470 0.3448 27 
22 685951 25 25.6129 27 0.5493 34.3607 0.6828 13 
23 1176431 26 27.0645 29 0.6689 46.5622 1.0647 5 
24 2211837 27 27.9677 30 0.6949 63.2554 0.8555 7 
25 4169527 28 28.3226 29 0.4675 86.3890 2.1981 21 
26 7624319 29 30.0968 34 1.1175 114.9951 2.2392 11 
27 14143037 30 30.9677 32 0.6949 152.4645 2.2392 8 

 
 

the MBCs found for  n ∈ {2211837, 4169527, 7624319, 14143037} where can be 
verified the restriction of the BC's. 

A second benchmark, taken from [18], is composed by 20 different numbers 
hard to optimize, because its minimal addition chains currently has not been 
generated by deterministic methods (i.e. binary method or window-based) or  
some other non deterministic methods. For the second benchmark, every instance 
was tried 31 times with different random seeds and the results are showed in Table 
8 where can be seen the set of n's tried; the minimal, average and maximum length 
obtained; the average and standard deviation time to finish the tests; and  the hits. 
In the second benchmark only for one instance was not obtained its MBC 
(3926651), however the minimum size found is not to far from the optimal, in fact 
it is only at one unit of distance. Additionally, with the complete results we 
observe that the worst cases and the average cases are not far from the optimal 
solution, getting in the worst case BC's only three units far from the optimal and in 
average at 1.4 units plus the optimal length.  One of the MBCs found for the 
numbers  3459835, 3493799, 3704431 and 3922763.  are presented  in Table 10. 
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Table 8 Summary of results to compute MBC for some n for which is hard to find their 
MBC (part 2) 

id n Min. 
r 

Average 
r 

Max. 
r 

Std. 
Dev. 

r 

Average 
time (s) 

Std. 
Dev. 

time (s) 

hits 

1 2948207 27 28.2258 30 0.5512 73.3253 0.9955 1 
2 3093839 27 28.2903 30 0.6812 75.2953 0.9979 3 
3 3167711 27 27.9355 30 0.7155 74.5330 1.0593 7 
4 3182555 27 27.7419 28 0.4376 75.1344 0.7311 8 
5 3190511 27 27.9355 29 0.5643 74.7987 1.0623 6 
6 3230591 27 27.9677 29 0.3094 75.5409 0.7089 2 
7 3234263 27 27.3548 29 0.5983 75.3779 0.7897 22 
8 3235007 27 28.0645 30 0.6188 75.8259 0.9108 2 
9 3243679 27 28.0000 29 0.5080 75.8844 0.8510 4 

10 3243931 27 28.0000 29 0.5680 75.7768 0.8483 5 
11 3266239 27 28.3548 30 0.6500 76.5093 1.1414 1 
12 3287999 27 28.1935 30 0.6435 76.5596 1.0754 3 
13 3325439 27 28.3871 30 0.6052 77.0552 1.0106 1 
14 3352927 27 27.6774 29 0.5895 76.5714 0.9955 12 
15 3440623 27 28.0968 30 0.7769 78.6647 0.9695 7 
16 3459835 27 28.0968 29 0.3898 78.6540 0.8115 1 
17 3493799 27 28.0968 29 0.5301 79.6454 0.9094 3 
18 3704431 27 27.9355 30 0.5643 81.2270 1.3532 5 
19 3922763 27 28.4839 30 0.6154 84.6750 1.3315 1 
20 3926651 28 28.3548 29 0.4785 84.2965 1.4677 0 

Table 9 Some MBCs found (part 1) 

n MBC found l*(n) 
2211837 1→2→4→8→16→32→33→65→130→260→520→ 

1040→1073→2146→4292→8584→8617→17234→34468→ 
68936→137872→137937→275809→551618→ 

552691→1105382→1106455→2211837 

27 

4169527 1→2→3→6→7→14→28→56→112→113→226→ 
452→904→1808→3616→7232→7238→14476→28952→ 

28955→57910→115820→231640→260595→ 
521190→1042380 →2084760→4169520→4169527 

28 

7624319 1→2→4→6→7→14→28→30→58→116→232→464→ 
928→1856→3712→7424→14848→29696→29724→ 

59448→118896→237792→475584→951168→953024→ 
1906048→1906078→3812156→7624312→7624319 

29 

14143037 1→2→3→5→10→13→26→52→104→208→ 
416→832→858→1716→1726→3452→6904→ 

13808→27616→55232→110464→220928→441856→ 
883712→1767424→3534848→3535706→3535758→7071516→ 

14143032→14143037 

30 

 
 
In order to contrast the obtained results, Table 11 presents a comparison 

between the obtained results of our proposed approach in the first experiment and 
other five approaches reported in the literature:  BackTracking  [3],  Genetic 
Algorithm [7], Artificial Inmune System  [6], Mutation Selection [26] and 
Simulated Annealing [16]. The comparison is made using the minimum length 
obtained, the average time (in seconds) and the average hits, where the symbol ⊕ 
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means that it is a worse result than the one given by our approach in both time 
and/or number of hits. It can be observed that our results have the same or better 
quality than the procedures presented in the state of the art. It could be useful a 
more detailed comparison against one of the best reported works [6], however 
they don't report time spent; number of evaluation functions; or number of hits for 
each case. 

 

 

Fig. 5 Comparison of box-and-whisker plot results for the first experiment versus optimal 
lengths  for some n's for which is hard to find their MBC (part 1) 

Table 10 Some MBCs found (part 2) 

n MBC found l*(n) 
3459835 1→2→4→8→16→32→33→66→99→ 

198→396→792→1584→1683→1691→3374→6748→ 
13496→26992→53984→107968→215936→216332→432268→ 

864536→1729072→3458144→3459835 

27 

3493799 1→2→3→5→8→13→26→27→53→106→ 
212→424→848→1696→3392→6784→13568→27136→ 

54272→108544→217088→434176→868352→868365→875149→ 
1309325→2184474→3493799 

27 

3704431 1→2→4→6→12→13→25→50→63→113→ 
226→452→904→1808→3616→7232→14464→28928→ 

28940→57880→115760→231520→463040→463052→926092→ 
1852184→3704368→3704431→ 

27 

3922763 1→2→4→8→9→17→34→68→136→272→ 
281→349→698→1396→1532→3064→6128→12256→ 

24512→49024→98048→196096→392192→784384→784665→ 
1569049→2353714→3922763 

27 
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Table 11 Comparison of results to compute hard MBC 

id n l(n) 
 

BT 
[2] 

GA 
[5] 

AIS 
[4] 

MS [19] 
(time s.) (hits) 

SA [13] 
(hits) 

GA proposed 
hits 

(time s.) 
(hits) 

3 19 6 6 6 6 ⊕6 (9.629s) 
(20) 

6 (32) 6 (0.001s) (31) 

4 29 7 7 7 7 ⊕7 (7.470s) 
(27) 

 7 (32) 7 (0.002s) (31) 

5 47 8 8 8 8 ⊕8 (9.477s) 
(10) 

 8 (32) 8 (0.005s) (31) 

6 71 9 9 9 9 ⊕9 (13.408s) 
(8) 

9 (32) 9 (0.01s) (31) 

7 127 10 10 10 10 ⊕10 
(12.282s) (4) 

⊕10 
(30) 

10 (0.025s) 
(31) 

8 191 11 11 11 11 ⊕11 
(14.816s) (2) 

⊕11 
(30) 

11 (0.044s) 
(31) 

9 379 12 12 12 12 ⊕12 
(14.057s) (29) 

⊕12 
(30) 

12 (0.103s) 
(31) 

10 607 13 13 13 13 ⊕13 
(21.635s) (21) 

⊕13 
(28) 

13 (0.176s) 
(31) 

11 1087 14 14 14 14 ⊕14 
(26.326s) (8) 

⊕14 
(13) 

14 (0.324s) 
(31) 

12 1903 15 15 15 15 ⊕15 
(18.538s) (26) 

⊕15 
(6) 

15 (0.550s) 
(31) 

13 3583 16 16 17 16 - ⊕16 
(1) 

16 (0.973s) 
(30) 

14 6271 17 17 17 17 ⊕17 
(23.032s) (9) 

⊕17 
(1) 

17 (1.567s) 
(31) 

15 11231 18 18 18 18 ⊕18 
(30.650s) (20) 

⊕18 
(1) 

18 (2.480s) 
(31) 

16 18287 19 19 19 19 ⊕19 
(28.136s) (4) 

⊕19 
(2) 

19 (3.549s) 
(31) 

17 34303 20 20 20 20 ⊕20 
(29.623s) (0) 

⊕20 
(1) 

20 (5.566s) 
(26) 

18 65131 21 21 21 21 ⊕21 
(32.396s) (3) 

⊕21 
(2) 

21 (8.512s) 
(31) 

19 110591 22 22 22 22 - ⊕22 
(2) 

22 (11.994s) 
(22) 

20 196591 23 23 23 23 - ⊕23 
(2) 

23 (17.088s) 
(30) 

21 357887 24 24 24 24 - ⊕24 
(1) 

24 (24.047s) 
(27) 

22 685951 25 25 25 25 ⊕25 
(37.696s) (2) 

⊕26 
(0) 

25 (34.360s) 
(13) 

23 1176431 26 26 ⊕27 26 ⊕27 
(46.717s) (0) 

⊕26  
(1) 

26 (46.562s) 
(5) 

24 2211837 27 27 ⊕28 27 - ⊕27 
(2) 

27 (63.255s) 
(7) 

25 4169527 28 - ⊕29 28 28 (33.291s) 
(1) 

⊕28 
(1) 

28 (86.3890s) 
(21) 

26 7624319 29 - ⊕30 29 29 (42.237s) 
(1) 

⊕30 
(0) 

29 (114.9951s) 
(11) 

27 14143037 30 - ⊕31 30 30 (64.844s) 
(1) 

⊕30 
(2) 

30 (152.4645s) 
(8) 
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A third experiment, consisted in calculate the accumulated addition chain 
length for the range of exponents [1,Z] for Z ∈ {512, 1000, 1024, 2000, 2048, 
4096}, where each exponent was tested 31 times with different random seeds. The 
best results are calculated according to Equation 12  and the worst case according 
to Equation 13, where GA is a function that receives an integer number and 
returns a BC generated through our proposed approach. The average results are 
computed according to Equation 14 and the standard deviation is based on the 
Equation 15. CV is the coefficient of variation calculated as CV=stddev/average 
and δ is the difference between the best case and the optimal case. 

min ( )|0 30  (12) 

max ( )|0 30  (13) 

= ( )min |0 30  (14) 

= ( )min |0 30  (15) 

Table 12 and 13 presents the results of the third experiment where it is observed 
the optimal case calculated using the public database of addition chains of Achim 
Flammenkamp [11]; the best case; the worst case; the average case; and the 
standard deviation. Additionally it is presented the accumulated time spent for all 
the cases together with the standard deviation and the difference between the 
optimal case and our best case (δ). Our results for Z ∈ {512, 1000, 1024} exhibits 
a δ=0, meaning that all the Minimal Brauer Chains were constructed, but δ is 
greater than 0 for Z ∈ {2000, 2048, 4096} where the list of numbers (with their 
corresponding l(n)) for which the GA was not able to construct their MBC were: 
(1063,13), (1143,13), (1387,13), (2011,14), (2087,14), (2091,14), (2135,14), 
(2151,14), (2251,14), (2285,14), (2507,14), (2617,14), (2647,14), (2774,14), 
(2957,14), (3199,15), (3559,15), (3707,15), (3801,15), (3803,15), (3819,15),  
(3829,15), (4051,15) and (4070,15). However this does not mean that our 
approach with different configurations cannot reach that MBCs. Also is visible in 
Table 12 that the best case is very close or equal to optimum case, the average 
case is also competitive and the coefficient of variation is small which means that 
our results have a high degree of confidence and are not  dependent on the random 
seeds. 

Table 14 allows to see a comparison between classic approaches ([2])  and the 
GA proposed for the calculation of the accumulated addition chains where n is in 
the range [1,1000]. There is a remarkable difference between the accumulated 
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addition chain computed by the binary and dichotomic method versus the optimal 
accumulated sum, however both are fast options to compute addition chains since 
they are deterministic approaches that do not imply any heuristic search or 
backtrack. 

A comparison between the GA proposed and the more recently metaheuristics 
are presented in Table 15 and it is done using the best results for an accumulated 
addition chain in the range [1,Z] for Z ∈ {512, 1000, 1024, 2000, 2048, 4096}, 
where Δ is the difference between the best reported results and our best result. The 
metaheuristics chosen for the comparatison, that are part of the best strategies to 
construct Minimal Addition Chains or Minimal Brauer Chains, are:  AIS [6], SA 
[16], EP [8,9], GA [7] and GA [24]. 

Table 12 Accumulated addition chain length and time obtained with the GA proposed for n 
in the ranges [1,512], [1,1000],  [1,1024], [1,2000],  [1,2048] and [1,4096] 

n ∈ [1,512] [1,1000] [1,1024] [1,2000] [1,2048] [1,4096] 
AS       

Optimal 4924 10808 11115 24063 24731 54408 
δ 0 0 0 3 4 24 

Best 4924 10808 11115 24066 24735 54432 
Average 4926.2581 10817.0645 11124.3226 24106.2581 24777.6129 54572.5791 
Worst 4932 10838 11147 24185 24860 54807 

Std. Dev. 1.1062 1.9333 1.8384 3.8266 4.1557 11.5808 
CV 0.000224 0.000178 0.000158 0.000158 0.000167 0.000212 

Time (s)       
Best 33.4870 138.9694 146.0097 567.8268 595.2965 2291.0749 

Average 34.4035 141.9297 149.0738 577.4052 605.2810 2326.0918 
Worst 39.0730 153.831 161.2811 602.2832 630.98 2338.8750 

Std. Dev. 0.1024 0.3386 0.3412 0.8298 0.8331 2.1918 
CV 0.002976 0.002385 0.002288 0.001437 0.001376 0.000942 

Table 13 Accumulated addition chain length and time obtained with the GA proposed for n 
in the ranges [1,8192], [1,16384],  [1,32768] and [1,65536] 

n ∈ [1, 8192] [1, 16384] [1, 32768] [1, 1180974] 
AS     

Optimal 118624 256723 552119 24063 
δ 86 296 1002 2992 

Best 118710 257019 553121 1183966 
Average 119166.1290 258315.1613 556553.7742 1192822.2258 
Worst 119946 260417 561994 1206321 

Std. Dev. 14.0339 14.4827 25.8029 57.0001 
CV 0.000117 0.000056 0.000046 0.000047 

Time (s)     
Best 8397.2797 29423.2867 99413.2074 323831.4285 

Average 8525.8082 29879.2562 101004.4887 329262.0376 
Worst 8704.8499 30449.9889 102897.8341 335349.5347 

Std. Dev. 6.3230 15.76311 37.8138 98.9806 
CV 0.000741 0.000547 0.000374 0.000300 
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Table 14 Comparison between classics approaches and the GA proposed for accumulated 
addition chains in the range [1,1000] 

Strategy Total 
length 

Difference with 
l(n) 

Binary [1] 11925 1117 
Factor [1] 11088 280 

Dichotomy [1] 11064 256 
Fermat [1] 10927 119 
Dyadic [1] 10837 29 
Total [1] 10821 13 

Proposed GA 10808 0 
Optimal 10808 - 

Table 15 Comparison of the best results of accumulated addition chains lengths 

n ∈ optimal AIS 
[4] 

SA  
[13] 

EP  
[6,7] 

GA 
[5] 

GA 
[18] 

Proposed Δ 

[1,512] 4924 4924 - 4924 4925 4924 4924 0 
[1,1000] 10808 10808 10823⊕ 10808 - 10809⊕ 10808 0 
[1,1024] 11115 11120⊕ - 11115 - - 11115 0 
[1,2000] 24063 24108⊕ - 24070⊕ 24124⊕ 24076⊕ 24066 4 
[1,2048] 24731 4778⊕ - 24737⊕ - 24748⊕ 24735 2 
[1,4096] 54408 54617⊕ - 54487⊕ 54648⊕ 54487⊕ 54432 55 
total Δ        61 

 
In Table 15 we can see with the symbol ⊕ when the difference between the 

accumulated addition chain and the results of other strategy is positive, meaning 
that  our result is better. It can be seen that the quality of our result are better than 
the best reported in the state of art, however it is not possible to conclude that our 
approach have a better efficiency than the approaches used for the comparison due 
to lack of necessary information. Here it's necessary to remark the difference that 
we only use one configuration for the reported results, and the complexity of the 
system as the number of times that is checked the fitness of a BC, taken as as 
evaluation function or the test of how long is the chain and what is the obtained 
number in the r position, is limited to log2(n)2*26log2(log2(n)). A more detailed 
comparison can be done between our approach and other approaches, but they do 
not report accumulated time or how many operations are done inside the working 
chain or chains. It is need to say that: AIS [6], EP [8,9] and GA [24] do not report 
evaluations functions used, however in [8,9] are used 92000 comparison between 
individuals and in GA [24] are used 300000 comparisons. 

But it is not only important the best results, it is also is important how much 
confidence we can have in the average case, taken as the coefficient of variation. 
For this reason we have made a comparison using the coefficient of variation 
between the GA proposed and the metaheuristics compared in Table 15. The 
comparisons of coefficients of variation for the accumulated addition chains 
lengths is presented in Table 16, where can be observed that all approaches have a 
high degree of confidence, and the one with the highest confidence is EP [8,9]. 
Also, with ⊕ are marked the coefficients of variation that have less confidence 
than our results. 
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Table 16 Comparison of coefficient of variation (CV=stddev/average) of the of accumu-
lated addition chains lengths 

n ∈ AIS 
[4] 

SA  
[13] 

EP  
[6,7] 

GA 
[5] 

GA 
[18] 

Proposed 

[1,512] 0.0001 - 0 0.0009⊕ 0 0.0002 
[1,1000] 0.0002⊕ 0.0002⊕ 0 - 0.0001 0.0001 
[1,1024] 0.0002⊕ - 0 - - 0.0001 
[1,2000] 0.0002⊕ - 0 0.0002⊕ 0.0001 0.0001 
[1,2048] 0.0002⊕ - 0 - 0.0001 0.0001 
[1,4096] 0.0002 - 0 0.0002⊕ 0.0001 0.0002 

6 Conclusions 

In this paper, we have presented a novel approach to find Minimum Brauer Chains 
based on a GA with the following features: a representation based in FNS which 
has proven to be well suited to the problem of addition chains [16,26]; the use of 
distribution functions used by the neighborhood functions to focus their behavior; 
and a limit of evaluation functions according to the BC searched. 

The use of a representation based on the FNS allows the implementation of 
neighborhood functions and recombination without a repairing process, giving the 
advantage to construct hard MBCs in a fast way, without modifying the search 
space. This properties allow to preserve the characteristics of individuals inside 
the recombination strategy and the local search. In this sense, the use of FNS open 
the possibilities of using other neighborhood functions or recombination 
strategies, like recombination of two points or uniform crossover. 

Each one of the neighborhood functions used have distinct properties: NF1 and 
NF2 can be named as exploration functions while NF3 and NF4 can be seen as 
exploitation functions. Also NF1 and  NF3 produce less dramatic changes than NF2 
or NF4. 

The problem of how to distribute the use of each neighborhood function inside 
the local search was delegated to a solution of the Diophantine equation 9, where 
the variable  with 1 4 represents the probability of use of the i 
neighborhood function. The use of mixture of neighborhood functions, allows to 
explore a wide range of behaviors of the algorithm and turned out to conclude that 
is better the use of a mixture of neighborhood functions than the use of a single 
neighborhood function. 

The use of distribution functions allowed to focus the section of the chain 
where its necessary to make a change with more probability. For this reason we 
used a mixture of distribution functions inside the recombination strategy and 
neighborhood functions. In the case of the single point recombination, the position 
of point used could determine if it is going to be an exploration or an exploitation 
so the use of a distribution functions let center the main work that need to be done 
by the crossover. 

In the case of the neighborhood functions, the use of a distribution functions to 
choose the i and j members of the chain allows to focus even more the goal of 
each neighborhood function. For the NF1 and NF2, the results allowed us to 
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conclude that the use of the DF1 to set the random value of the chosen member in 
the chain is better than the use of a Gaussian distribution. 

The setting of the optimal parameter values is a complex problem in the 
algorithm design task, that use to consume a lot of the development time.  For 
example, the  use of an exhaustive search need 54x34x286x31x2 tests, where 54x34 
are all the possible combination between parameters, 286 the number of solutions 
of the Diophantine equation 9, 31 the number of times that each experiment 
should be repeated to get statistical significance and 2 the number of instances to 
be tested. 

However the use of a fine tuning based on MCAs, relies to tune the values of 
the parameters on the study of the effect over the quality of the solution by the 
interaction between parameters, where the degree of interaction between 
parameters and the number of parameter values determine the number of 
experiment. In our case, the number of test using MCAS and the solution of a DE 
resulted in 32x286x31x2 number of experiments, which are fewer than the number 
of test in an exhaustive search. Another advantage of the use of MCAs is that the 
behavior of the algorithm is searched by the interaction between parameters and 
not just by guessing or feelings. For this reasons we recommend a fine-tuning 
process with the use of MCAs and DEs. In our case, as others [13,16,25,26], their 
use gave the possibility to discover excellent parameter values in an easy way, for 
that reason we suggest their use in order to save time and effort in the search of 
good parameters values. 

The experimental results of the three benchmarks used  demonstrated the 
strength of the GA proposed, in terms of the quality of the solutions. For the first 
benchmark consisting of 27 hard instances (that meet the requirement to be c(r)), 
we  obtained the same or better results in all the instances as others  competitive 
approaches reported in the literature, in fact all l(n) was reached. 

For the second experiment which consisted on 20 instances hard to optimize, 
we could reach 19 chains with length equal to l(n). 

For the third experiment which was done through calculating the accumulated 
addition chain length for a sequence of number in the range [1,Z] for Z ∈ {512, 
1000, 1024, 2000, 2048, 4096}, our proposed approach gives a competitive 
solution against the classics approaches: binary, factor, dichotomic, fermat, dyadic 
and total  [2]. Additionally our approach is strong versus new metaheuristic 
strategies, achieving better quality results than:  BackTracking  [3],  Genetic 
Algorithm [7], Artificial Inmune System  [6], Mutation Selection [26] and 
Simulated Annealing [16]. 

Due to overall results in the three benchmarks, we can conclude that the 
proposed approach is a feasible solution to get MBC, however the search of 
efficient strategies to get MACs and MBCs is not finished and need more research 
and that the practitioners of cryptosystems use MBC in a more thoroughly way. 

Acknowledgments. The authors acknowledge the support of access to the infrastructure of 
high performance computing of the Laboratory of Information Technologies Unit (Hidra) at  
CINVESTAV-Tamaulipas and to the hybrid cluster for supercomputing (Xiuhcoatl) at 
CINVESTAV. 



50 A. Rodriguez-Cristerna and J. Torres-Jimenez
 
This research was partially funded by the following projects: CONACyT 58554 - 

Cálculo de Covering Arrays, 51623 - Fondo Mixto CONACyT y Gobierno del Estado de 
Tamaulipas. 

References 

1. Bell, K.: Optimizing effectiveness and efficiency of software testing: A hybrid ap-
proach. Ph.D. thesis, North Carolina State University (2006) 

2. Bergeron, F., Berstel, J., Brlek, S.: Efficient computation of addition chains. Journal 
de Théorie des Nombres de Bordeaux 6(1), 21–38 (1994) 

3. Bleichenbacher, D., Flammenkamp, A.: An efficient algorithm for computing shortest 
addition chains. SIAM Journal of Discrete Mathematics 10(1), 15–17 (1997) 

4. Clift, N.: Calculating optimal addition chains. Computing 91, 265–284 (2011) 
10.1007/ s00607-010-0118-8, http://dx.doi.org/10.1007/s00607-010-
0118-8 

5. Cohen, M., Gibbons, P., Mugridge, W., Colbourn, C.: Constructing test suites for inte-
raction testing. In: Proceedings of the 25th International Conference on Software En-
gineering, Portland, Oregon, USA, pp. 38–48 (May 2003) 

6. Cruz-Cortés, N., Rodríguez-Henríquez, F., Coello Coello, C.A.: An artificial immune 
system heuristic for generating short addition chains. IEEE Transactions on Evolutio-
nary Computation 12(1), 1–24 (2008) 

7. Cruz-Cortés, N., Rodríguez-Henríquez, F., Juárez-Morales, R., Coello Coello, C.A.: 
Finding Optimal Addition Chains Using a Genetic Algorithm Approach. In: Hao, Y., 
Liu, J., Wang, Y.-P., Cheung, Y.-M., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 
2005, Part I. LNCS (LNAI), vol. 3801, pp. 208–215. Springer, Heidelberg (2005) 

8. Domínguez-Isidro, S., Mezura-Montes, E., Osorio-Hernández, L.: Addition chain 
length minimization with evolutionary programming. In: Proceedings of the I Congre-
so Internacional de Electrónica, Instrumentación y Computación, Minatitlan, Vera-
cruz, México (2011) 

9. Domínguez-Isidro, S., Efren, M.M.: Addition chain length minimization with evolu-
tionary programming. In: Proceedings of the 13th Annual Conference Companion on 
Genetic and Evolutionary Computation, Dublin, Ireland, pp. 59–60. ACM (2011) 

10. Eiben, A., Smith, J.: Introduction to evolutionary computing. Springer (2003) 
11. Flammenkamp, A.: Shortest addition chains repository (June 2012), 

http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 
12. Gelgi, F., Onus, M.: Heuristics for Minimum Brauer Chain Problem. In: Levi, A., 

Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, 
pp. 47–54. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/ 

13. Gonzalez-Hernandez, L., Torres-Jimenez, J.: MiTS: A New Approach of Tabu Search 
for Constructing Mixed Covering Arrays. In: Sidorov, G., Hernández Aguirre, A., Reyes 
García, C.A. (eds.) MICAI 2010, Part II. LNCS, vol. 6438, pp. 382–393. Springer, Hei-
delberg (2010), http://dx.doi.org/10.1007/978-3-642-16773-7_33 

14. Gordon, D.M.: A survey of fast exponentiation methods. Journal of Algorithms 27(1), 
129–146 (1998), 
http://www.sciencedirect.com/science/article/pii/S01966774
97909135 

15. Guy, R.: Unsolved problems in number theory, 3rd edn., vol. 1. Springer (2004) 
 
 
 



A Genetic Algorithm for the Problem of Minimal Brauer Chains for Large Exponents 51
 

16. Jose-Garcia, A., Romero-Monsivais, H., Hernandez-Morales, C.G., Rodriguez-
Cristerna, A., Rivera-Islas, I., Torres-Jimenez, J.: A Simulated Annealing Algorithm 
for the Problem of Minimal Addition Chains. In: Antunes, L., Pinto, H.S. (eds.) EPIA 
2011. LNCS (LNAI), vol. 7026, pp. 311–325. Springer, Heidelberg (2011), 
http://dx.doi.org/10.1007/978-3-642-24769-9_23 

17. Knuth, D.: The Art of Computer Programming. Seminumerical Algorithms, vol. 2. 
Addison-Wesley (1997) 

18. Kuhn, D., Wallace, D., Gallo Jr., A.: Software fault interactions and implications for 
software testing. IEEE Transactions on Software Engineering 30(6), 418–421 (2004) 

19. Mignotte, M., Tall, A.: A note on addition chains. International Journal of Alge-
bra 5(6), 269–274 (2011) 

20. Nedjah, N., de Macedo Mourelle, L.: Efficient Parallel Modular Exponentiation Algo-
rithm. In: Yakhno, T. (ed.) ADVIS 2002. LNCS, vol. 2457, pp. 405–414. Springer, 
Heidelberg (2002), http://dx.doi.org/10.1007/3-540-36077-8_43 

21. Nedjah, N., de Macedo Mourelle, L.: Finding Minimal Addition Chains Using Ant 
Colony. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, 
pp. 642–647. Springer, Heidelberg (2004), 
http://dx.doi.org/10.1007/978-3-540-28651-6_94 

22. Nedjah, N., de Macedo Mourelle, L.: Towards minimal addition chains using ant co-
lony optimization. Journal of Mathematical Modelling and Algorithms 5, 525–543 
(2006), http://dx.doi.org/10.1007/s10852-005-9024-z 

23. Nedjah, N., Mourelle, L.: Efficient Pre-Processing for Large Window-Based Modular 
Exponentiation Using Genetic Algorithms. In: Chung, P.W.H., Hinde, C.J., Ali, M. 
(eds.) IEA/AIE 2003. LNCS, vol. 2718, pp. 165–194. Springer, Heidelberg (2003), 
http://dx.doi.org/10.1007/3-540-45034-3_63 

24. Osorio-Hernandez, L., Mezura-Montes, E., Cruz-Cortes, N., Rodriguez-Henriquez, F.: 
A genetic algorithm with repair and local search mechanisms able to find minimal 
length addition chains for small exponents. In: IEEE Congress on Evolutionary Com-
putation, CEC 2009, pp. 1422–1429 (May 2009) 

25. Rangel-Valdez, N., Torres-Jiménez, J., Bracho-Ríos, J., Quiz-Ramos, P.: Problem and 
algorithm fine-tuning - a case of study using bridge club and simulated annealing. In: 
Dourado, A., Rosa, A.C., Madani, K. (eds.) IJCCI, pp. 302–305. INSTICC Press 
(2009) 

26. Rodriguez-Cristerna, A., Torres-Jiménez, J., Rivera-Islas, I., Hernandez-Morales, 
C.G., Romero-Monsivais, H., Jose-Garcia, A.: A Mutation-Selection Algorithm for the 
Problem of Minimum Brauer Chains. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 
2011, Part II. LNCS, vol. 7095, pp. 107–118. Springer, Heidelberg (2011), 
http://dx.doi.org/10.1007/ 

27. Thurber, E.: Efficient generation of minimal length addition chains. SIAM Journal on 
Computing 28(4), 1247–1263 (1999) 

28. Torres-Jimenez, J.: Covering array repository (June 2012), 
http://www.tamps.cinvestav.mx/~jtj/ 



 
 

P. Melin, O. Castillo (Eds.): Soft Computing Appli. in Optimization, STUDFUZZ 294, pp. 53–74. 
DOI: 10.1007/978-3-642-35323-9_3                             © Springer-Verlag Berlin Heidelberg 2013 

Cellular Processing Algorithms 

J. David Terán-Villanueva1, Héctor Joaquín Fraire Huacuja2,  
Juan Martín Carpio Valadez1, Rodolfo A. Pazos Rangel2,  
Héctor José Puga Soberanes1, and José Antonio Martínez Flores2 

1 Instituto Tecnológico de León (ITL), Avenida Tecnológico s/No,  
  C.P. 37290, León, Gto. Mexico  
 david_teran01@yahoo.com.mx, jmcarpio61@hotmail.com,  
 pugahector@yahoo.com 
2 Instituto Tecnológico de Ciudad Madero (ITCM), Av. 1o. de Mayo s/No esq. Sor Juana  
  Inés de la Cruz, C.P. 89440, Cd. Madero, Tam. Mexico 
 {automatas2002,r_pazos_r}@yahoo.com.mx,  
 jose.mtz@itcm.edu.mx 

Abstract. In this chapter we propose a new class of cellular algorithms. There ex-
ists a variety of cellular algorithm approaches but most of them do not structure 
the search process. In this work we propose a cellular processing approach to 
solve optimization problems. The main components of these algorithms are: the 
processing cells (PCells), the communication between PCells, and the global and 
local stagnation detection. The great flexibility and simplicity of this approach 
permits pseudo-parallelization of one or several different metaheuristics. To vali-
date our approach, the linear ordering problem with cumulative costs (LOPCC) 
was used to describe two cellular processing algorithms, whose performance was 
tested with standard instances. The experimental results show that the cellular 
processing algorithms increase solution quality up to 3.6% and reduce time con-
sumption up to 20% versus the monolithic approach. Also the performance of 
these algorithms is statistically similar to those of the state-of-the-art solutions, 
and they were able to find 38 new best-known solutions (i.e., not previously found 
by other algorithms) for the instances used. Finally, it is important to point out that 
these encouraging results indicate that the field of cellular processing algorithms is 
a new and rich research area. 

1   Introduction 

The goal of cellular computing is providing new means for doing computation 
more efficient [20]. The main characteristics of this approach are: simplicity, vast 
parallelism and locality. Simplicity means that processing is carried out by a set of 
simple structured cells. The massive parallelism indicates that a high number of 
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cells are used. And locality implies that each cell can communicate with a few 
cells, commonly close to it.  

Recently several cellular algorithm approaches to solve optimization problems 
have been proposed. This research area could be called cellular optimization, 
which includes cellular genetic algorithms, co-evolutionary algorithms, island 
evolutionary algorithms, and ant colony algorithms.  

Cellular genetic algorithms use a cell structured population which allows com-
munication among the locally near cells, aiming at exploring different sections of 
the search space with an appropriate exploration and exploitation balance [10] [1] 
[12]. The main limitation of this approach is that the search process is carried out 
based on a single heuristic strategy.  

In other hand, co-evolutionary algorithms divide a solution in species, where a 
complete solution is composed from one element of each species. Where the term 
co-evolutionary refers to simultaneous evolution of several species, and usually 
the fitness of a specific species depends on the evolution of other species. Co-
evolutionary algorithms can be cooperative or competitive, where the cooperative 
ones reward or punish the interaction among the different species, and the compet-
itive ones reward or punish each element inside one species without considering 
their interaction with other species [19] [14] [23]. As we can see, in this case the al-
gorithm evolves multiple populations which are constituted by sub-parts of the solu-
tions. The application of this approach is limited to a single population heuristics.  

Sipper [20] states that the ants in an ant colony system [4] are like processing 
cells; where each cell (ant) builds a solution, and they all share knowledge through 
a global memory structure. However, this approach is limited to a specific con-
structive population algorithm. 

As we can see, the cellular genetic and the co-evolutionary algorithms use cell 
structured populations and a single search space process. In another hand, the ant 
colony system uses an unstructured population and multiple processing cells, but it 
has low flexibility to adapt to other metaheuristics.  

In this work we propose a new class of cellular processing algorithms; which 
include multiple processing cells that explore different regions of the search space. 
Each processing cell can be implemented using population or search based heuris-
tics or a mixture of them. The linear ordering problem with cumulative costs 
(LOPCC) will be solved for exemplifying this new class of algorithms. 

This chapter is organized as follows. In Section 2 the linear ordering problem 
with cumulative costs is reviewed. The proposed new class of cellular algorithms 
is described in Section 3. Section 4 contains a review on two metaheuristics used 
to implement the cellular processing algorithms. Sections 5 and 6 describe the two 
cellular processing algorithms used to validate the new cellular processing propos-
al. Finally, Sections 7 and 8 contain the experimental results and the conclusions 
of this work respectively. 

2   The Linear Ordering Problem with Cumulative Costs  
(LOPCC) 

The linear ordering problem with cumulative costs (LOPCC) is originated in wire-
less communications. In this context, the wireless devices have to communicate to 
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a base station in order to be identified. To this end, the Universal Mobile Tele-
communication Standard (UMTS) adopted the code division multiple access tech-
nique where each device has a specific code.  

However, due to simultaneous communication and radio propagation, a distor-
tion is induced on all the wireless devices. Then, each device produces distortion 
on the rest of the devices in different proportions. And so the need arises to keep 
the distortion as low as possible, while ensuring reception for each wireless  
device.  

There is a technique designed to keep a low level distortion called successive 
interference cancellation (SIC). This technique detects one device at a time and 
then its interference is removed, so the rest of the devices would have less interfe-
rence [3]. 

Then the problem arises of finding the order of detection for the devices that 
produces the minimal overall interference, while keeping a desirable level of re-
ception for each device. This problem is addressed as a joint power-control and 
receiver optimization (JOPCO), which is equivalent to the NP-hard linear ordering 
problem with cumulative costs (LOPCC) [2][3]. Formally LOPCC is defined as: 

Given a complete digraph = ( , ) with no negative arc costs  and 

nodes with no negative costs , the problem is to find a permutation =(1, 2, , 1, ) that minimizes: ( ) =   

where =  + ∑ +   for   = , 1, 2, ,1 

With respect to the wireless devices application,   represents the interference 

of device  on device , and  represents the power of the signal emitted by 
device . In [3] is proved that this problem is NP-hard. 

3   Cellular Processing Approach 

The main idea in the cellular processing approach is to split a sequential algorithm 
into several pseudo-parallel processing modules. The pseudo-parallel execution 
permits exploring different regions of the solution space. Also the continuous veri-
fication of the stagnation conditions avoids wasting time on unnecessary tasks.  

The main components of a cellular processing algorithm are: processing cells 
(PCells), the communication between PCells, and the global and local stagnation 
detection. 

Cellular processing algorithms simulate a parallel execution of a set of PCells 
that explore different regions of the solution space. A cellular algorithm can be 
homogeneous or heterogeneous, depending on the kind of processing cells that 
compose it. We say that it is homogeneous if all the PCells are implemented using 
the same heuristics, and heterogeneous otherwise.  
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Also the computational effort of the processing cells can be balanced or unba-
lanced. In order to induce diversification through the communication between 
processing cells, an unbalanced configuration might be used. Each processing cell 
improves its own solution or set of solutions, and its execution is stopped once a 
stagnation condition is reached.  

At a certain point the processing cells will communicate with each other. If the 
communication is carried out during the execution of the processing cells, we will 
call it on-line. And, if the communication is executed once all processing cells 
have reached a stagnation condition, then we will call it off-line. The communica-
tion could help to increase intensification or diversification in the search process. 

There are several decisions to make in order to implement a cellular processing 
algorithm. The first issue is the selection of the heuristics to be used as processing 
cells (PCell) and if the PCells will be homogeneous or heterogeneous.  

An advantage of our approach is the freedom of choosing any kind of heuristics 
as a PCell, whether a population type or search based type. Also we need to define 
the size of the processing cell and if the PCells are to be balanced or unbalanced. 
The size of the PCell can be defined taking into account the number of iterations, 
processed solutions, executions of local searches, execution time, etc. 

Communication is another main component of cellular processing algorithms. 
Here we can choose to make the communication on-line or off-line. The on-line 
communication can be implemented using shared solutions, or other mechanisms 
of shared memory. The off-line communication can be implemented through cros-
sover operators, path-relinking, combinations, etc. It is necessary to define the 
time in which the communication is to be carried out for both alternatives, as well 
as the purpose of the communication: intensification or diversification. 

The last issue is local and global stagnation detection, which has two purposes 
in two different levels. To avoid the waste of time, local stagnation detection stops 
the PCells once they do not produce improvement in the local solution or popula-
tion. Once a PCell reaches a stagnation condition, it is ignored by the algorithm 
until every PCell is stagnated. At this point a processing cell communication 
might occur and every PCell must be restarted. Similarly global stagnation detec-
tion has the purpose of monitoring the global algorithm contribution to the im-
provement of the global solution. Stagnation detection can be implemented 
through: number of consecutive iterations without improvement in the quality of 
the best (local or global) solution, number of generations without improvement in 
the population quality, time limit, etc. 

The general structure of the cellular processing algorithm is shown in Algo-
rithm 1. As we can see, in lines 1 to 3 all the PCells must be started. Line 5 con-
trols the global search and stops it when the stagnation condition is reached. Line 
6 verifies if any cell is not locally stagnated, so this loop will continue until every 
PCell is stagnated. Line 7 to 11 implements a pseudo-parallel execution of each 
non-stagnated PCell. Lines 12 and 14 show the place where the communication 
might be carried out. Finally line 15 restarts each PCell so that the global search 
continues. 
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 Algorithm 1: Cellular processing algorithm 

1. For {i = 1 to numberOfPCells} 
2.  Start(PCelli()) 
3. EndFor 
4. 
5. While(GlobalSearchNotStagnated()) 
6.  While(AnyCellNotStagnated()) 
7.   For {i = 1 to numberOfPCells} 
8.    If {IsNotStagnated(PCelli())} 
9.     PCelli() 
10.    EndIf 
11.   EndFor 
12.   PCellCommunicationOnLine() 
13.  EndWhile  //Local search 
14.  PCellCommunicationOffLine() 
15.  ReStartPCells() 
16. EndWhile   //Global search 

 
We want to emphasize that the pseudo-parallel execution of the PCells permits 

exploring different regions of the solution space. And the continuous verification 
of the stagnation conditions avoids wasting time on unnecessary tasks, helping 
produce high performance algorithms. The PCells can be implemented using any 
heuristic strategy, which provides more flexibility than other cellular approaches. 

4   Scatter Search and GRASP  

In this section the metaheuristics used in the cellular processing algorithms pro-
posed are described. 

4.1   Scatter Search 

The scatter search heuristics was first proposed by Fred Glover in [11]. This is a 
procedure that tries to evolve and improve a reference set through several methods 
and uses a small amount of randomness in order to find global optimal solutions. 

Our motivation to use a scatter search algorithm is that it is a population algo-
rithm that has several customizable functions. Also its reference set RefSet is con-
stituted by quality and diversity solutions. This property permits having better 
control over the intensification-diversification balance. The scatter search algo-
rithm uses a reference set, which can be constructed using quality and diverse 
elements. 

Also, instead of using a genetic algorithm, as an alternative we choose the scat-
ter search approach, because of its multiple configurable methods, which permits 
fully customizing the algorithm. 



58 J.D. Terán-Villanueva et al.
 

The methods used in the scatter search algorithm implementation are described 
in the following sections. 

4.1.1   Diversification Generation Method 

A reactive greedy construction was implemented for the diversification generation 
method [17][15]. Further detail can be found in Section 4.2. 

4.1.2   Improvement Methods 

For the improvement methods in our cellular processing scatter search, three local 
searches were used: a percentage-of-critical-elements local search (PCLS), a stag-
nation local search (SLS) and an optimal local search (LOS). These local search 
algorithms work together to form two different configurations of composite local 
search, each one of them with a particular purpose [22]. 

The percentage-of-critical-elements local search (PCLS) builds a set  of criti-
cal elements of the current permutation ordered according to the α values  
considered to determine their objective values. The most critical element ∈  is 
selected, inserted in a position that improves the objective value of the permuta-
tion and removed from . This process continues until a certain percentage of  
critical elements are removed from , which we set at 30%. 

The stagnation local search (SLS) selects a random element of the current per-
mutation in order to be inserted in a position that improves the objective value of 
the permutation. This process is carried out until a given number of iterations 
without improvement is reached. We define 10% of the instance size as the limit 
of iterations without improvement. 

The local optimal search (LOS) builds a set  of critical elements of the current 
permutation, based on the α values considered to determine their objective values. 
The most critical element ∈  is selected, inserted in a position that improves 
the objective value of the permutation and removed from . Once  is empty, it is 
rebuilt if any improvement was achieved during the search process, otherwise the 
local optimal search ends. 

The Improvement1 method is carried out after the Diversification Generation 
method and is applied to all the solutions in the pool of solutions. This improve-
ment method is formed by a composite local search of PCLS and SLS. The pur-
pose of this improvement method is to apply a fast and diverse improvement 
(PCLS and SLS respectively) in order to obtain diverse good solutions for the pool 
of solutions. 

Improvement2 is carried out after the Solution Combination method and the In-
teraction method, and it is applied to all the solutions that result from both me-
thods. Improvement2 is formed by a composite local search: a composition of 
PCLS, SLS and LOS. The purpose of this improvement method is to apply a fast, 
diverse and local optimal search (PCLS, SLS and LOS respectively) in order to 
obtain a variety of local optimal solutions. 
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4.1.3   RefSet Update1 Method 

It initially builds a set Q with the best quality solutions in the pool. A local optim-
al search (LOS) is applied to these solutions when they are incorporated to the ref-
erence set. This local search was not carried out during the creation of the pool of 
solutions in order to produce diverse solutions. Once the elements in Q are se-
lected, RefSet Update1 proceeds to build a set D of diverse solutions, including the 
elements of the pool with the highest average distance to set Q. The distance be-
tween permutations ∈  and ∈  is defined as follows: 

 ( ( , ) ( , )) 

 

where Pos(i, p) is the position of element i in permutation p. 

4.1.4   Stagnation Condition 

This condition detects if   has been modified with new solutions, so if 
no new solution has been added to , then we consider   to be stagnated. 

4.1.5   Subset Generation Method 

This method chooses for combination all the pairs of solutions in  plus all the 
pairs ( , ) such that ∈  and ∈ . 

4.1.6   Combination Method 

In order to describe how the permutations are combined, consider two permuta-
tions  and , an index  for the position of each element in , and the set 
of differences =   | =    for = 1, , . Now element =  ( ) is selected, meaning that and have the largest 

difference. Therefore, the best improvement will be reached if element  is 
placed in position . A new solution  is built inserting the element placed in 

position  of permutation , in position , and  is eliminated from 

. This process continues until we have taken 15% from  and subsequently 
an Improvement2 method is carried out. 

4.1.7   RefSet Update2 Method 

It includes new solutions in  if they have better quality than the worst solution in 
, if so then the solutions to be replaced in  might be included in . Also if the 

new solution is not better than the worst solution in , then it might be included 
into  if it has a higher average distance to set  (See Section 4.1.3). 
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4.2   GRASP 

Feo and Resende propose the GRASP methodology in [7] and [8], and the 
acronym was coined in [9]. GRASP is a multi-start algorithm which consists basi-
cally by a construction phase and a local search, see Algorithm 2. 
 

Algorithm 2: General GRASP structure 

 bestSol = Huge_Value 
 For(MaxIterations) 
  sol = GraspConstruction() 
  sol = LocalSearch(sol) 
  if (cost(sol) < bestSol) 
   bestSol = cost(sol) 
  endif 
 EndFor 

4.2.1   GRASP Construction 

The GRASP construction is one of the main parts of a GRASP algorithm. For 
LOPCC an initial construction consists of a permutation that is built from the last 
position to the first, in order to evaluate part of the objective function value due to 
its cumulative costs. There are several ways to create a GraspConstruction, for 
this work particularly we use a reactive GRASP. 

Resende in [17] and Paris in [15] propose a reactive GRASP, whose general 
structure is next described. The first element (last position in the permutation) is 
selected randomly. And for each remaining position, the next process is carried 
out. Each permutation element is evaluated using a GRASP function, and a re-
stricted candidate list is generated with the elements that surpass a 
shold = +  β( ). Then a random element from 
the restricted candidate list is selected to be placed at the current position of the 
construction, and the same process is repeated for the next position until the solu-
tion construction is completed. 

A GRASP is called reactive when it chooses the β value using statistical infor-
mation of the performance of previous solutions obtained with each β value. The 
general structure of the greedy construction is shown in Algorithm 3. 

Algorithm 3: Reactive greedy construction 

 Output π 
1 cost = 0 
 InsertElement(Random, π) 
3 cost += CalculateCostOfInsertion() 
 While {notFinished(π)} 
5  β = SelectBeta() 
  RCL = CreateCandidateList(β) 
7  nextElement = SelectRandomElement(RCL) 
  InsertElement(nextElement, π) 
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9  cost += CalculateCostOfInsertion() 
  cost += TryToImproveSolutionSoFar() 
11  UpdateBeta() 
 EndWhile 

 
   The selection and update of the β values are performed in lines 5 and 11 respec-
tively; the probabilities associated with the choice of selecting one of the possible 
m values of β are:  =  1⁄ , for  =  1, … , . Now, let  be the objective func-
tion value of a new solution and  be the average of the objective function value 
of all the solutions found using β , for = 1, … , . The selection probabilities are 
periodically reevaluated to = ∑⁄ , where = ⁄  for = 1, … , . 
And so the value of  will be larger for those values of  that yields to the best 
solutions. The CreateCandidateList() method creates the candidate list using the  
values produced by the previous process. The SelectRandomElement() method 
chooses the next element randomly from the restricted candidate list (RCL) in the 
construction of the solution. The InsertElement() function in line 8, inserts  
NextElement in the next position to be included in permutation π, it is important to 
remember that permutation π is constructed in reverse order due to the cumulative 
costs. The TryToImproveSolutionSoFar() method is a partial local search that tries 
to find a better partial solution by trying to insert the new element in other  
position. 

5   Homogeneous Cellular Processing Algorithm 

In this section a homogeneous cellular processing algorithm is described. It uses 
PCells based on the scatter search metaheuristic. And it was motivated for reduc-
ing the time consumption of a sequential scatter search algorithm, when used to 
solve large scale instances of LOPCC. The homogeneous algorithm executes mul-
tiple small scatter search PCells by reducing the size of their reference sets. 

For this particular homogeneous algorithm the next configuration was used. In 
each iteration of the algorithm, every PCell is executed as long as it is not stag-
nated. The PCells are homogeneous because they all use a scatter search heuris-
tics, and their computational effort is balanced. Each PCell evolves a different set 
of solutions, which must be initialized before its execution. The communication is 
carried out off-line, so it will be executed once every PCell has stagnated. Several 
stagnation detection strategies where applied for testing. 

Algorithms 4, 5, 6 and 7 show the detailed description of the main methods 
used: processing cell starter, processing cell, and cellular communication.  

Algorithm 4: PCell starter 

 Output Pool 
 For {i=0 to poolSize} 
  newSol = DiversificationGeneration() 
  Pool += Improvement1(newSol) 
 EndFor 
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Algorithm 5: PCell processing 

 Input i 
 PCellSoli=SubSetGeneration(i) 
 NPCellSi=SolCombination(PCellSoli) 
 ImprovedPCellSoli=Improvement2(NPCellSi) 
 RefSetUpdate(ImprovedPCellSoli,i) 

Algorithm 6: PCell off-line communication 
 Repeat 
  For {i=0 to numberOfPCells} 
   For {j=0 to numberOfPCells} 
    If {i  j} 
     NewSol = Communication(i,j) 
     UpdateWorstCell(i,j,NewSol) 
    EndIf 
   EndFor 
  EndFor 
 Until {NoBetterSolFound()} 
 

The communication process receives the identifiers (i, j) of the PCells to com-
municate. Once the PCells are identified the best solutions obtained for each one 
(π , π ) are combined to produce a new solution . If ( )  ( ( π ) , ( π ) ), then  will replace the worst solution in {π , π }. 
In this process the combination of solutions is carried out using a truncated path-
relinking. In this process parameter  determines the truncation level of the path 
between π   π ,  which in our algorithm is set to 10% [17]. 

The PCells are executed in each iteration on a fixed order from 1 to , until 
every PCell stagnates. The individual stagnation technique has the advantage of 
low time consumption, because, once  PCells have stagnated, the rest of the 
process continues without wasting time on those  PCells. 

Algorithm 7: Communication (truncated path-relinking) 

 Input {i, j} 
 Output π  
 Let: Ind(π,k) be a function that returns 
the position of element k in solution π 
 D =  
 For {k = 1 \to n} 
  If {Ind(π ,k)  Ind(π ,k)} 
   dk= π Ind( ,k) - π Ind( ,k) 
   D = D ∪ dk 
  EndIf 
 EndFor 
 For {m = 1 \to n* }  where 0 1 
  dk* = argmin(D) 
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  π = InsertMove(π ,Ind(π ,k*),Ind(π ,k*) 
  D = D  {dk*} 
 EndFor 
 π  = Improvement2(π ) 

 
The communication process is carried out once all the PCells have reached a 

stagnation condition. The communication between PCells is carried out by updat-
ing the reference set of each cell with new solutions. These new solutions are gen-
erated using a truncated path-relinking among the best elements of each PCell. 
Once the communication has ended and if the stop condition is not reached, a res-
tart of the reference set for each PCell is carried out. This Re-start method is used 
to produce a new reference set of solutions for each processing cell. The new solu-
tions are produced with the Solution Combination method of the scatter search, 
but in this case all the new solutions substitute the old ones except for the best so-
lution of each processing cell. 

The general structure of the cellular processing scatter search algorithm is 
shown in Figure 1. 

 

Fig. 1 Structure of the cellular processing scatter search 

6   Heterogeneous Cellular Processing Algorithm 

In this section a heterogeneous cellular processing algorithm is described. It uses 
PCells based on both the scatter search and GRASP metaheuristics. We configure 
it as an unbalanced algorithm, and so the GRASP processing cells (GRASP 
PCells) will iterate 50% more than the scatter search processing cells (SS PCells). 
Also as in the previous algorithm the communication is an off-line process, using 
the same combination technique as in the homogeneous algorithm. The stagnation 
detection for the GRASP PCells is determined according to a number of iterations 
without improvement; while for the SS PCells the local stagnation condition is 
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reached when in one execution of the processing cell the local best is not  
improved. 

The SS PCells are the same as the ones used in our previous algorithm and the 
GRASP PCells were designed as shown in Algorithm 8.  

Algorithm 8: GRASP PCell 

1. Input {i} 
2. Output {bestValue} 
3. If (GenerateNewi == true) 
4.  GRASPSoli = GRASPConstruction() 
5. EndIf 
6. IterStag = 0.3 * SolSize 
7. For {k = 1 To maxIter And j < IterStag} 
8.  j++ 
9.  GRASPSoli = Perturbation(GRASPSoli) 
10.  GRASPSoli = Improvement2(GRASPSoli) 
11.  GRBesti = Best(GRASPSoli, GRBesti) 
12.  If (Improvement) 
13.   j = 0 
14.  EndIf 
15. EndFor 
16. If (j==IterStag && NoBetterSolution(i)) 
17.  Stagnatedi = true 
18. Else 
19.  Stagnatedi = false 

  20. EndIf 

 
In line 3 of this algorithm we evaluate if a new construction is needed; and if 

that condition is true, a reactive greedy construction is carried out as shown in Al-
gorithm 3. Then the loop in line 7 is carried out a number of iterations, or until a 
certain number of consecutive iterations without improvement occur. Inside this 
loop a perturbation followed by an improvement2 (see section 4.1.2) are carried 
out, lines 9 an 10. The perturbation moves 20% of the elements of the solution i to 
random positions. Then an update of the best solution is calculated (line 11). Lines 
from 12 to 14 check if there is an improvement for reseting j. Once the loop ends, 
a stagnation detection of the GRASP processing cell is carried out. The algorithm 
considers that the GRASP PCell is stagnated if j has reached IterStag and if  
NoBetterSolution has been found in the last entire execution of the GRASP PCell. 

7   Experimental Results 

In this section we describe: the experimental settings, the preliminary experimen-
tation, and the evaluation of the performance of the homogeneous and heterogene-
ous cellular processing algorithms. 
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7.1   Experimentation Settings 

The algorithms were implemented in C, and two different sets of experiments 
were carried out. One set was designed to study the impact of the different para-
meters of the homogeneous cellular processing proposal. The other set was  
designed to compare the performance of the homogeneous cellular processing al-
gorithm (HoCPA) and the heterogeneous cellular processing algorithm (HeCPA) 
with respect to the state-of-the-art algorithms to solve LOPCC. 

For the first set of experiments a computer with a Phenom X4 955 3.2 GHz 
processor with 2 GB of RAM was used. And for the second one a computer with 
dual Xeon processors at 3.06 GHz and with 4 GB of RAM was used. 

The instances used for the experiments are: 

• UMTS. These are instances from the group of telecommunications of the en-
gineering school from the University of Padua, related with the order of detec-
tion for UMTS networks [3]. These instances consist of four sets of size 16, 
the characteristics for each set of instances are: synchronous and asynchron-
ous, with and without scramble; and their optimal values are known. 

• Random. Instances generated randomly with a uniform distribution proposed 
by Reinelt [16]. There are three sets of random instances, each one of size 35, 
100 and 150 respectively; their optimal values are unknown. 

• LOLIB. These instances come from input-output tables from the European 
economy [13] and are a well-known set of LOP instances. We use 48 instances 
of sizes 44 to 60, 30 of size 44, 4 of size 50, 11 of size 56, and 3 of size 60; 
their optimal values are unknown. 

7.2   Impact of Different Parameters, in the Performance of the 
Cellular Processing Algorithms 

A preliminary experimentation was conducted in order to identify the impact of a 
set of parameters on the performance of the cellular processing algorithms. In this 
preliminary experimentation a set of 49 LOLIB  instances was used. The parame-
ters analyzed in these experiments were: the number of processing cells (nc), the 
processing cell size (cs) (the running time of each processing cell) and the stagna-
tion detection (sd) for the processing cells. 

The number of processing cells (nc) test is carried out in order to observe the 
performance produced with different numbers of processing cells. 

The processing cell size (cs) test is designed to determine the performance pro-
duced with different processing cell sizes. The processing cell size is related with 
the number of combinations of Table 1. For example, a number of combinations 
equal to 60 (experiments from 1 to 5) means that, in one processing cell execution, 
60 combinations are produced. And therefore, we are taking this value as the size 
of the processing cell. 

The stagnation detection for the processing cells (sd) test considers two main 
factors: the percentage of improvement and the amount of new solutions  
produced. The percentage of improvement tries to identify stagnation if no better 
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solution has been produced with at least a certain percentage of improvement. And 
the amount of new solutions produced aims at detecting stagnation when a certain 
amount of new better solutions has not been produced. 

Table 1 shows the configurations used for the three parameters in the prelimi-
nary experimentation. The first column indicates the number of experiment, the 
second column shows the amount of processing cells used for the experiment, 
while the third and forth columns show the quantity of quality and diversity solu-
tions in each processing cell. The fifth column contains the overall number of 
combinations (   (   (   1)  +    )), the sixth one indicates the 
overall number of solutions used (    +  ), and the seventh column 
shows the stagnation detection criterion used by each processing cell. 

For the stagnation detection column, 1Q and 2Q mean finding at least one or 
two solutions respectively that replace a quality element in the processing cell. 
The values 0.1%, 0.01% and 0.001% Improvement means finding a solution that 
is at least 0.1%, 0.01% and 0.001% better than any quality solution. If these crite-
ria are met then we state that the processing cell is not stagnated. 

Table 1 Configurations used in the experiments: number of processing cells (nc), 
processing cell size (cs) and stagnation detection for the processing cells (sd) 

Experiment No. PCells Q D
Total of Combi-

nations 
Total of 

Solutions 
Stagnation 
Detection 

1 1 6 5 60 11 1Q 

2 2 5 2 60 14 1Q 

3 3 4 2 60 18 1Q 

4 4 3 3 60 24 1Q 

5 5 3 2 60 25 1Q 

6 8 3 3 120 48 1Q 

7 10 3 2 120 50 1Q 

8 10 3 2 90 50 1Q 

9 10 4 2 200 60 1Q 

10 10 4 2 140 60 1Q 

11 10 4 3 240 70 1Q 

12 10 4 3 180 70 1Q 

13 10 4 2 200 50 
0.1% Im-

provement 

14 10 4 2 200 50 
0.01% Im-
provement 

15 10 4 2 200 60 
0.001% Im-
provement 

16 10 4 2 200 60 2Q 
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Table 2 shows the results obtained for the experiments 1 to 7 of Table 1, where 
we study the impact of the number of processing cells (nc). The first column indi-
cates the experiment number, the second one shows the average percentage error 
with respect to the best-known solutions reported in [6], the third column presents 
the number of best-known solutions found, and the last one shows the average 
time for instance solution in CPU seconds. 

In this table we can see that experiments 5, 6 and 7 are the ones with the best 
average error. The experiments with the best times are 3 and 5. However, it is  
important to remember that experiments from 1 to 5 are experiments with 60 
combinations, and in this group experiment 1 (one processing cell) obtains 23 
best-known solutions, while experiment 5 finds 22 best-known solutions in almost 
half the time used in experiment 1. Furthermore, experiment 7 obtains a better  
average error and 23 best-known solutions and uses less time than experiment 1, 
despite producing 120 combinations in comparison with the 60 combinations of 
experiment 1. So in this experiment we can see the advantage of using a cellular 
processing approach instead of a monolithic approach. 

Table 2 Quality and efficiency observed in the number of processing cells (nc) experiments 

Experiment 
No. 

Avg. Err. 
# of Best-Known  

Solutions 
CPU. Sec. 

1 0.656 23 29.17 

2 0.656 21 15.451 

3 1.1 21 14.743 

4 0.654 22 15.413 

5 0.633 22 14.921 

6 0.632 23 25.034 

7 0.634 23 23.172 

 
As we can see in experiments 6 and 7 the cellular processing approach increas-

es solution quality by 3.6% and 3.3% respectively with respect to the monolithic 
approach (experiment 1). In another hand our approach reduces time consumption 
by 14% and 20% respectively.   

Table 3 shows the results obtained for experiments 7 to 12 of Table 1, where 
we study the impact of the processing cell size (cs). The first column indicates the 
experiment number, the second one shows the average percentage error with re-
spect to the best-known solutions reported in [6], the third column presents the 
number of best-known solutions found, and the last one shows the average time 
for instance solution in CPU seconds. 

The experiments are compared pairwise because each pair has the same number 
of solutions and a different number of combinations. As we can see, there is an 
average reduction of time of 1.5 seconds comparing experiment 7 versus 8, 9 ver-
sus 10, and 11 versus 12. Also the best average error is found with experiment 11, 
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which is the experiment with the largest number of combinations (240). However, 
experiment 12 is the one that finds the largest number of best-known solutions 
(24). Still, this behavior seems to be a fluke, because if we compare all the pre-
vious pairs of experiments (7,8) (9,10), they tend to reduce the number of best-
known solutions found, from 23 to 21 or 22. According to these results there is a 
small time saving for the three comparisons. 

Table 3 Quality and efficiency observed in the processing cell size (cs) experiments 

Experiment 
No. 

Avg. Err. 
# of Best-Known  

Solutions 
CPU. Sec. 

7 0.634 23 23.172 

8 0.638 21 22.428 

9 0.632 23 25.262 

10 0.657 22 23.553 

11 0.043 23 28.434 

12 0.632 24 26.276 

 
Table 4 shows the results obtained for experiments 9 and 13 to 16 of Table 1, 

where we study the impact of the stagnation detection for the processing cells 
(sd). The experiments selected for this study contain the same amount of quality 
and diversity solutions as well as the number of combinations, the only variable is 
their stagnation detection criterion. Here we can see that there is not really a ten-
dency for these experiments. We expected there should be an increasing average 
error, a decreasing number of best-known solutions and a decreasing CPU time. 
But the only tendency observed was the decreasing number of best-known solu-
tions of experiment 16 and also a slight decrease in CPU time. 

According to these results, there is not an important reduction of CPU seconds 
and so we will use the configuration of the experiment 9, for one of the cellular 
processing algorithms.  

Table 4 Quality and efficiency observed in the stagnation detection (sd) experiments 

Experiment 
No. 

Avg. Err. 
# of Best-Known  

Solutions 
CPU. Sec. 

9 0.632 23 25.262 

13 0.632 23 25.272 

14 0.632 23 25.294 

15 0.632 23 25.279 

16 0.634 22 24.522 
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7.3   Cellular Processing Algorithms Performance 

Table 5 shows the comparative average performance of the homogeneous and he-
terogeneous cellular processing algorithms (HoCPA and HeCPA)  versus a hypo-
thetical algorithm (HA) capable of obtaining all the best-known solutions reported 
in [6]. This table contains the average percentage error, the number of best-known 
solutions found, the number of new best-known solutions produced, and the  
average time for instance solution in CPU seconds. The time comparison was per-
formed against the EvPR algorithm, which is the best performance algorithm re-
ported in [6]. We make comparisons versus the HA algorithm, because the results 
in [6] do not include the objective values obtained by EvPR for each instance. 

Table 5 Comparative average performance of cellular processing algorithms (HoCPA, 
HeCPA) versus the HA algorithm 

Algorithm Avg. Err. 
# Best-Known 

or Optimal  
Solutions 

New Best-
Known Solu-

tions 
CPU Sec. 

UMTS 

HoCPA 0 100 - 0.863 

HeCPA 0 100 - 0.822 

HA 0 100 - 1.62 (EvPR) 

LOLIB 

HoCPA 0.01 43 16 33.41 

HeCPA 0.01 42 16 33.13 

HA 382057.38 33 - 32.34 (EvPR) 

Rnd 35 

HoCPA 0.37 22 0 4.66 

HeCPA 0.39 21 0 3.59 

HA 0 25 - 3.75 (EvPR) 

Rnd 100 

HoCPA 1.78 10 10 431.95 

HeCPA 1.97 11 11 360.29 

HA 1.49 14 - 351.38 (EvPR) 

Rnd 150 

HoCPA 4.75 11 11 1628.75 

HeCPA 5.61 8 8 1074.24 

HA 3.26 14 - 1127.24 (EvPR) 
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As we can see, for the UMTS instances our algorithms were able to find 100 
optimal solutions out of 100. Also the time spent on these instances was almost 
halved for the cellular processing algorithms. 

For the LOLIB instances, the HoCPA and HeCPA algorithms have lower aver-
age error than the hypothetical algorithm and find 43 and 42 best-known solutions 
respectively. Also both cellular processing algorithms find 16 new best-known so-
lutions. However, they use about one second more than EvPR. 

The Random instances of size 35 are the only scenario where the cellular 
processing algorithms were not able to find new best-known solutions. HoCPA 
and HaCPA find 22 and 21 best-known solutions respectively. 

For the Random instances of size 100, HoCPA finds 10 new best-known solu-
tions while HeCPA finds 11 new best-known solutions, and it uses 70 seconds less 
than HoCPA, but still uses 9 seconds more than EvPR.  

On the Random 150 instances, HoCPA finds 11 new best-known solutions and 
HeCPA finds 8. In this scenario HoCPa uses 501 seconds more than EvPR but 
HeCPA uses 53 less seconds than EvPR. Table 7 and 8, at the end of this chapter, 
show an update of the best known solutions for the LOLIB and Random sets of in-
stances respectively. 

Now for the Wilcoxon test we compared HoCPA (excluding HeCPA) versus 
HA, because HoCPA obtains more best-known solutions than HeCPA. Table 6 
shows the Wilcoxon test results when HoCPA and HA are compared for all the 
sets of instances.  

As we can see all the tests are statistically equivalent, because the sum of ranks 
is not equal to or greater than the reference value for any algorithm. These results 
indicate that the performance of both algorithms is statistically equivalent. 

Table 6 Wilcoxon test to compare the performance of the Homogeneus Cellular Processing 
Algorithm (HoCPA) versus the Hypothetical Algorithm (HA) 

Instances Algorithm 
Sum of 
ranks 

Reference Value  
(Significance 10%) 

LOLIB 
HoCPA 99 

101 
HA 37 

Rnd 35 
HoCPA 0 

– 
HA 6 

Rnd 100 
HoCPA 132 

225 
HA 193 

Rnd 150 
HoCPA 121 

225 
HA 204 
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8   Conclusions and Future Work 

In this work we propose a new class of cellular algorithms. There are several cel-
lular algorithms in the literature, but they are bound to their heuristics, and in most 
cases the cellularization is in the structure of the population and not in the process. 
The ant colony system does cellularize the process, but due to its low flexibility, it 
is difficult to adapt it to other metaheuristics. 

Our cellular approach, cellularizes the process of the metaheuristic method or 
metaheuristic methods, in order to: explore different solution spaces looking for 
local optima and save time through stagnation detection for each processing cell. 

To validate our approach two cellular processing algorithms were built to solve 
the linear ordering problem with cumulative costs (LOPCC). A homogeneous and 
a heterogeneous cellular processing algorithms were tested to assess their perfor-
mance. Three sets of standard instances were used to this purpose (UMTS, LOLIB 
and Random). 

The experimental results show that the performance of these algorithms is sta-
tistically similar to the state-of-the-art solutions. It is important to point to that the 
homogeneous cellular processing algorithm (HoCPA) was able to find 37 new 
best-known solutions, and the heterogeneous cellular processing algorithm (HeC-
PA) finds 35 new best-known solutions. However, it is important to notice that the 
HeCPA obtains only two new best-known solutions less than HoCPA. But in gen-
eral it uses about 627 seconds less, in all the tests, than HoCPA.  

As the experimental results show, the cellular processing approach was able to 
increase the solution quality up to 3.6% and reduce the time consumption up to 
20% versus the monolithic counterpart.  

The main components of these algorithms are: the processing cells (PCells), the 
communication between PCells, and the global and local stagnation detection. Yet 
even if the main components are already determined, there are still several ques-
tions that need an answer. For example: which combination of metaheuristics 
would produce a good combination of PCells?; which is the right balance between 
search-based and population-based PCells?; is balanced or unbalanced the best 
choice for a homogeneous cellular processing algorithm?; which kind of commu-
nication is better, on-line or off-line?; is it a good idea to implement both commu-
nication types in the same algorithm? In this work we use path-relinking as  
communication method, but is it a better communication technique the combina-
tion or crossover operators? Which is the appropriate stagnation criterion for  
detecting local and global stagnations? Should the local and global stagnations be 
similar or unbalanced? 

As we can see the field of cellular processing algorithms is a new and rich re-
search area. And it’s great flexibility and simplicity permits that almost any meta-
heuristic can be transformed into a cellular processing algorithm. 
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Table 7 Update to the best-known solutions for the LOLIB instances 

be75eec 5.085 t65n11xx 0.319 t75i11xx 4454.913 

be75np 16543405.76 t65w11xx 19.258 t75k11xx 1.323 

be75oi  2.788 t69r11xx  14.036 t75n11xx  9.896 

be75tot  297138.268 t70b11xx  93.671 t75u11xxa  0.326 

stabu70  13.284 t70d11xx  79.742 tiw56n54  2.645 

stabu74  14.029 t70d11xxb 4.435 tiw56n58  3.62 

stabu75  9.412 t70f11xx  1.267 tiw56n62  3.024 

t59b11xx  76261.813 t70i11xx  115233.4 tiw56n66  2.687 

t59d11xx  4086.303 t70k11xx  0.492 tiw56n67  1.877 

t59f11xx  61.618 t70l11xx  798.919 tiw56n72  1.567 

t59i11xx  7917.489 t70n11xx  0.054 tiw56r54  2.626 

t59n11xx  1618.897 t70u11xx  42148.82 tiw56r58  3.602 

t65b11xx  28230.381 t70w11xx  0.045 tiw56r66  2.189 

t65d11xx  3898.568 t70x11xx  0.231 tiw56r67  1.541 

t65f11xx  1.245 t74d11xx  4.756 tiw56r72  1.349 

t65i11xx  473730.893 t75d11xx  5.059     

t65l11xx  2657.725 t75e11xx  2062.246     

Table 8 Update to the best-known solutions for the Random instances 

t1d35.1  0.923 t1d100.1  253.988 t1d150.1  8588.289 

t1d35.2  0.167 t1d100.2  288.372 t1d150.2  166482.377 

t1d35.3  0.154 t1d100.3  1307.432 t1d150.3  574943.633 

t1d35.4  0.196 t1d100.4  7293.311 t1d150.4  74063.165 

t1d35.5  1.394 t1d100.5  165.963 t1d150.5  79069.363 

t1d35.6  0.2 t1d100.6  395.035 t1d150.6  46829.985 

t1d35.7  0.12 t1d100.7  5656.723 t1d150.7  161149.153 

t1d35.8  0.226 t1d100.8  2760.619 t1d150.8  251940.422 

t1d35.9  0.436 t1d100.9  62.69 t1d150.9  364320.25 

t1d35.10 0.205 t1d100.10  156.018 t1d150.10  121446.49 

t1d35.11  0.369 t1d100.11  233.586 t1d150.11  13054.614 

t1d35.12  0.234 t1d100.12  236.696 t1d150.12  65717.265 

t1d35.13  0.196 t1d100.13  577.453 t1d150.13  104975.277 

t1d35.14  0.138 t1d100.14  246.03 t1d150.14  74854.867 

t1d35.15  1.376 t1d100.15  406.478 t1d150.15  329110.316 
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Table 8 (continued) 

t1d35.16  0.286 t1d100.16  707.413 t1d150.16  16651299 

t1d35.17  0.199 t1d100.17  725.79 t1d150.17  71190.802 

t1d35.18  0.381 t1d100.18  622.942 t1d150.18  711011.245 

t1d35.19  0.236 t1d100.19  228.486 t1d150.19  59594.204 

t1d35.20  0.068 t1d100.20  241.283 t1d150.20  1886041.88 

t1d35.21  0.202 t1d100.21  228.59 t1d150.21  41453.911 

t1d35.22  0.177 t1d100.22  153.388 t1d150.22  695751.688 

t1d35.23  0.345 t1d100.23  1588.314 t1d150.23  22203891.8 

t1d35.24  0.132 t1d100.24  469.658 t1d150.24  100543.43 

t1d35.25  0.143 t1d100.25  644.782 t1d150.25  462316.511 

References 

1. Alba, E., Dorronsoro, B., Alfonso, H.: Cellular memetic algorithms. Journal of Com-
puter Science and Technology 5(4), 257–263 (2005) 

2. Benvenuto, N., Carnevale, G., Tomasin, S.: Optimum power control and ordering in 
SIC receivers for uplink CDMA systems. In: IEEE-ICC 2005 (2005) 

3. Bertacco, L., Brunetta, L., Fischetti, M.: The linear ordering problem with cumulative 
costs. Eur. J. Oper. Res. 189(3), 1345–1357 (2008) 

4. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach 
to the traveling salesman problem. IEEE Transactions on Evolutionary Computa-
tion 1(1), 53–66 (1997), doi:10.1109/4235.585892 

5. Duarte, A., Laguna, M., Marti, R.: Tabu search for the linear ordering problem with 
cumulative costs. Computational Optimization and Applications 48, 697–715 (2011) 

6. Duarte, A., Marti, R., Alvarez, A., Angel Bello, F.: Metaheuristics for the linear or-
dering problem with cumulative costs. European Journal of Operational Re-
search 216(2), 270–277 (2012) 

7. Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set cov-
ering problem. Operations Research Letters 8(2), 67–71 (1989) 

8. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of 
Global Optimization 6(2), 109–133 (1995) 

9. Feo, T., Resende, M., Smith, S.: A greedy randomized adaptive search procedure for 
maximum independent set. Operations Research 42(5), 860–878 (1994) 

10. Folino, G., Pizzuti, C., Spezzano, G., Spezzano, O.: Combining cellular genetic algo-
rithms and local search for solving satisfiability problems. In: Proceedings of Tenth 
IEEE International Conference on Tools with Artificial Intelligence, pp. 192–198 
(1998) 

11. Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. 
Sci. 8, 156–166 (1977) 

12. Huy, N.Q., Soon, O.Y., Hiot, L.M., Krasnogor, N.: Adaptive cellular memetic algo-
rithms. Evolutionary Computation 17(2), 231–256 (2009) ISSN:1063-6560 

13. Laguna, M., Marti, R., Campos, V.: Intensification and diversification with elite tabu 
search solutions for the linear ordering problem. Computers & Operations Re-
search 26(12), 1217–1230 (1999), doi: 10.1016/s0305- 0548(98)00104-x 



74 J.D. Terán-Villanueva et al.
 

14. Li, B., Zhao, X.-F., Z.Q.s.T.S.h: Differentiate coevolutionary algorithms. Journal of 
Convergence Information Technology 6(4), 3247–3259 (2011) 

15. Prais, M., Ribeiro, C.: Parameter variation in GRASP procedures. Investigacion Ope-
rativa 9, 1–20 (2000) 

16. Reinelt, G.: The linear ordering problem: Algorithms and applications. Mathematical 
Social Sciences 14(2), 199–200 (1985) 

17. Resende, M., Riberio, C.: Greedy Randomized Adaptive Search Procedures: Ad-
vances, Hybridizations, and Applications. In: Handbook of Metaheurictics, vol. 146, 
pp. 283–319. Springer (2010) 

18. Righini, G.: A branch-and-bound algorithm for the linear ordering problem with cu-
mulative costs. European Journal of Operational Research 186, 965–971 (2008) 

19. Seredynski, F., Zomaya, A., Bouvry, P.: Function optimization with coevolutionary 
algorithms. In: International Intelligent Information Processing and Web Mining Con-
ference, Zakopane, Poland (June 2003) 

20. Sipper, M.: The emergence of cellular computing. IEEE Computer 32(7), 18–26 
(1999) 

21. Teran-Villanueva, J., Fraire-Huacuja, H., Duarte, A., Pazos-Rangel, R., Carpio Vala-
dez, J., Puga-Soberanes, H.: Improving Iterated Local Search Solution for the Linear 
Ordering Problem with Cumulative Costs (LOPCC). In: Setchi, R., Jordanov, I., How-
lett, R.J., Jain, L.C. (eds.) KES 2010, Part II. LNCS, vol. 6277, pp. 183–192. Sprin-
ger, Heidelberg (2010) 

22. Teran-Villanueva, J., Pazos-Rangel, R., Martinez, J.A., Lopez-Loces, M.C., Zamar-
ron-Escobar, D., Pineda, A.: Hybrid GRASP with composite local search and path-
relinking for the linear ordering problem with cumulative costs. International Journal 
of Combinatorial Optimization Problems and Informatics 3(1), 21–30 (2012) 

23. Wiegand, R.P.: An analysis of cooperative coevolutionary algorithms. Ph.D. thesis, 
Fairfax, VA, USA (2004) 



 

 

 

 

 

 

 

 

Part II 

Soft Computing in Intelligent Control 
Applications 



P. Melin, O. Castillo (Eds.): Soft Computing Appli. in Optimization, STUDFUZZ 294, pp. 77–96. 
DOI: 10.1007/978-3-642-35323-9_4                             © Springer-Verlag Berlin Heidelberg 2013 

Hierarchical Genetic Optimization of the Fuzzy 
Integrator for Navigation of a Mobile Robot 

Abraham Meléndez and Oscar Castillo 

Tijuana Institute of Technology, Tijuana México 
abraham.ms@gmail.com, ocastillo@tectijuana.mx 

Abstract. This paper describes the optimization of an Integrator control block 
within the proposed navigation control system for a mobile robot. The control 
blocks that the integrator will combine are two Fuzzy Inference Systems (FIS) in 
charge of tracking and reaction respectively. The integrator block is call Weighted 
Fussy Inference System (WFIS), and assigns weights to the responses on each be-
havior block, to combine them into a single response. 

1   Introduction 

The use of mobile robots has increased over the last decades in many areas from 
industrial work to research and household and one reason for this is that they have 
proved useful in each of these areas from doing very specific task to ongoing  
monotonous shores, they help their human counterpart be more productive and ef-
ficient. Also as hardware technology is moving forward and developing more ca-
pable robots at lower cost, this is another reason for this increase and why we are 
seeing them in more common places.  

The mobile robot, needs to move around its environment and this is why a great 
deal of research has been invested on testing them with control systems that allow 
the robots to navigate on their own, and different methodologies have been ap-
plied from traditional control such as PD, PID [4, 9] to soft computing methods 
like Fuzzy Logic [10, 25, 13, 17, 15, 18, 12, 11, 21, 5, 19, 20], Neural Networks 
[11] and hybrid ones also [6,23,24].  

In this paper, the navigation control system has been designed to combine two 
key behaviors that are considered to be required for any navigation control system 
of a mobile robot. The first one is a tracking controller, this is an obvious one 
since there is no point of having a navigation system on a robot, that can´t go to a 
desired location, the second one is a reactive controller and here we considered 
this one to be off great importance also, since the tracking controller can get the 
robot to the destination, but that will be on an ideal situation where there are no 
obstacles present on the robots path. 
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The reactive controller is for those cases where an obstacle free path cannot be 
guaranteed; this is where the reactive controller will do its work providing a beha-
vior that will make the robot react to any type of obstacle so that the robot can 
continue on its journey. In this paper we describe the integration method for these 
two controls as part of the complete Navigation Control System, the control 
blocks are fuzzy inference systems of type-1 and type-2, and a general GA (Genet-
ic Algorithm) is applied to the optimization of each of the controller blocks with a 
specific fitness function for each part that will evaluate the corresponding individ-
ual performance. 

As related work, we can find that of Cupertino et al [8] developed a Fuzzy con-
troller of a mobile robot, based on 3 FLCs (Fuzzy Logic Controller) and one 
Fuzzy Supervisor that was in charge of determining which FLC behavior will be 
active, there the FLCs are of Type-1 and the Fuzzy Supervisor mainly acts as a 
switch. In our proposed method the fuzzy integrator acts more like a fusion block. 
S. Coupland et al [7] proposed a Type-2 Fuzzy Control of a Mobile Robot, which 
is based on W Payton et al [22] Command Fusion, where the idea is that a beha-
vior should work with others to find a mutually beneficent solutions, where each 
behavior takes into consideration every possible output with its corresponding ac-
tivation value (positive or negative), and a winner takes all network is use to select 
the winning responses for each behavior. Coupland suggests using two FISs one 
for goal seeking and another for obstacle avoidance. The activation value for each 
of the FIS output will be a Fuzzy set that will be passed to the command fusion 
block to later be defuzzifed and that crisp value pass to the Actuator block, being a 
difference with our proposed control the integration method of the two behaviors. 
The control navigation of a mobile robot is a topic that has been extensively inves-
tigated over the years, the method proposed in this paper is based on the idea that 
separation and the cooperation between key behaviors produces a better result 
than the use of a single behavior and it differs from previous approaches from the 
integration perspective done by a FIS that is in charge of the weighted system, that 
will assign a weight to each response from each controller by each control step 
that is combined to obtain a unified single response to the robot. 

This paper is organized as follows: In section 2 we describe the mobile robot 
used in these experiments, section 3 describes the development of the evolutionary 
method. Section 4 shows the simulation results. Finally, section 5 shows the Con-
clusions. 

2   Mobile Robot 

The particular mobile robot considered in this work. The robot is based on the de-
scription of the Simulation toolbox for mobile robots [26], which assumes a 
wheeled mobile robot consisting of one conventional, steered, unactuated and not-
sensed wheel, and two conventional, actuated, and sensed wheels (conventional 
wheel chair model). This type of chassis provides two DOF (degrees of freedom) 
locomotion by two actuated conventional non-steered wheels and one unactuated 
steered wheels. The Robot has two degrees of freedom (DOFs): y-translation and 
either x-translation or z-rotation [26]. Fig. 1 shows the robot’s configuration, it has 
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Fig. 1 Kinematic coordinate system assignments[26] 

2 independent motors located on each side of the robot and one castor wheel for 
support located at the front of the robot. 

The kinematic equations of the mobile robot are as follows: 
Eq. 1: The sensed forward velocity solution [26] 

= 2 1 1  (1) 

Eq. 2: The Actuated Inverse Velocity Solution [26] 

= 1( + 1) 11  (2) 

Under the Metric system are define as: 
 

, Translational velocities [ ], 

Robot z-rotational velocity [ ], 

, Wheel rotational velocities [ ], 

 Actuated wheel radius[m],  , Distances of wheels from robot's axes [m]. 

3   Navigation Control System 

The proposed control system consists of three main fuzzy blocks, two are behavior 
based and the other one is in charge of the response integration, the behaviors are 
the reactive and tracking blocks, and each one will provide its specific behavior 
that will be combined into one response by the integration block. 

Each behavior block is in charge of its own task, the problem is that they seem 
to be in conflict with each other when an unexpected obstacle arises, because if at 
the time of planning the route the obstacles are present then the route can be de-
signed to avoid them, but when there are obstacles that we where un aware off, the 
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The purpose of using an evolutionary method is to find the best possible con-
trollers of each type and this can be obtained using the GA, as it searches along 
the solution space, combining the attributes from the best controllers in generating 
new ones, this concept taken from the building blocks theory.  

The idea was to optimize the parameters in the Membership Functions, but also 
the number of Membership functions and this means to also optimize the number 
of rules making this a multi objective problem. For this we will take advantage of 
the HGA (Hierarchical Genetic Algorithm) intrinsic characteristic to solve multi 
objective problems.  

The work of the GA was divided in two main modules, one that handles all the 
operations related to the selection and chromosome manipulation, which we use 
for all our controllers that we work on, the other module is the one where we eva-
luated the performance of each chromosome and this part is different on each case. 
With this approach we utilize the generality of the GA and just have a specific 
evaluation method for each controller. Figure 3 shows the 2 main modules. 

 

 

Fig. 3 Genetic Algorithm process 

The GA module is in charge of initializing the population, selecting the chro-
mosomes that will be used for the genetic operations and letting the Evaluation 
Module know which chromosomes are ready to be evaluated and reinserting them 
to the population pool. 

4.1   Chromosome Encoding 

Each individual on the population will represent a FIS controller, each of which 
will be encoded on a vectorial structure that will have “n” main sections, one for 
each variable (input and output). Each main section will contain 2 subsections 
(control genes, Connection genes). The section and subsection sizes depend on the 
controller that they represent. 
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4.2   Reactive Controller 

The function of the reactive control is to give the same ability that we apply when 
we are driving, that is to react to unexpected situations, traffic jams, stop lights, 
etc, but in a more basic concept and ability, to the problem that is the navigation of 
the robot. A forward moving behavior response out off the control is desired. The 
objective is to guide the robot through the maze avoiding any collision. It’s not 
our objective to optimize the robot to find the maze exit, we use a maze to optim-
ize the reactive control because of the characteristic it offers to the simulation, i.e. 
it is a closed space where the robot cannot easily wonder off and each wall is con-
sidered an obstacle to the robot that it must avoid while it moves around. The 
FIS´s are interval Mamdani type-1 fuzzy system [26], each consisting of 3 inputs 
that are the distances obtained by the robots sensors described on section 2, and 2 
outputs that control the velocity of the servo motors on the robot, all this informa-
tion is encoded into each chromosome. 

4.3   Tracking Controller 

The tracking controller has the responsibility of keeping the robot on the correct 
path, this is when a reference is provided, it will move the robot to the reference 
and keep it on track and this is will allow the robot to move from point A to B, 
with in a obstacle free environment is possible. 

The controller will work by keeping the error (Δ℮p, Δθ) to minimum values, 
which represents the error relative to the position and the error relative to the 
orientation of the front of the robot to a minimum value, the fuzzy system is a 
Mamdani type-1 FIS and consists of 2 inputs that are (Δ℮p, Δθ) and 2 outputs that 
control the velocity of the servo motors on the robot, see Figure 4. 

 

 

Fig. 4 Fuzzy controller inputs ℮p, ℮θ 

4.4   WFIS Controller 

The function of the WFIS control is to correctly combine the 2 behaviors of track-
ing and reaction and obtain a new global behavior that resembles the same ability 
that we apply when we are driving, that is to react to unexpected objects, but in a 
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more basic concept and ability, to the problem that is the navigation of the robot. 
A forward moving behavior response out off the global control is desired. The ob-
jective is to guide the robot through the reference avoiding any collision with any 
obstacle present. It’s not our objective to optimize the robot to find the maze exit, 
we use a closed space where the robot cannot easily wonder off and each wall is 
considered an obstacle to the robot that it must avoid while it moves around. The 
FISs are Mamdani type-1 fuzzy systems [14], each consisting of 3 inputs, which 
are the distances obtained by the robots sensors described on section 2, and 2 out-
puts that are the weights that will be used to integrate the responses of the other 2 
controllers, all this information is encoded into each chromosome.   

4.5   Type-1 Fuzzy Weight Controller Chromosome Architecture  

The control genes consist of 5 bit vectors, this will indicate which fuzzy member-
ship is or not active, the connection genes are divided in 5 subsections, 5 is the 
maximum number of membership functions that are allowed per variable, each of 
which can be trapezoidal or triangular membership function, and each of these 
subsection is divided into 2 sections one that indicates the type of the membership 
function and the other the parameters for the function, see Figure 5. 

 

 

Fig. 5 Type-1 WFIS Controller Chromosome Architecture 

4.6   Fuzzy Rules 

The rules population is a different and separated population for each controller 
with respect to the control population, this is because the optimization procedure 
is totally different, but they are tightly related because the number of active rules 
depends on the number of active membership functions. In order to optimize  
the fuzzy rules we have a population off all the possible subsets keeping one  
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restriction that the number of active membership functions must be the same. With 
equation 3 we obtain the size of the fuzzy rules population, where m,n,p represent 
the maximum number of membership functions we allow for the input variables, 
and k is the maximum number of membership function for the output variables, in 
our case (m=n=p=k=5) Equation 3 gives a total of 625 fuzzy rules subsets. rp=m*n*p*k (3) 

In this case, we will only have one active subset that can match the fuzzy control-
ler that has the following membership functions active, Sa,b,c,d,e, Where a, b, c 
are the number of active membership functions for the input variables and d,e for 
the output variable, and we use an index table for each of the fuzzy subsets, see 
Table 1. 

Table 1 Rules Index Table 

S1,3,2,2,2= 

Input

01 

Input

02 

Input

03 

Output

01 

Output

02 

1 1 1 1 1 

1 1 2 1 1 

1 2 1 1 1 

1 2 2 2 1 

1 3 1 1 2 

1 3 2 2 1 

 
A Special mutation operator is applied (Equation 4) to find the optimal fuzzy 

rule set for the reactive controller, the shift operation that is used, changes the con-
sequent part of the rule. h(i,j,q,r,s)=h(i,j,q,(r+∆r),(s+∆s)) (4) 

 

Where h(i,j,q,r,s) is the consequent of the rule that has i, j, q, r, s. active member-
ship functions, ∆r, ∆s represent our shift operator, with a probability of  0.01.  

4.7   Objective Function 

The GA will be generating individuals that will need to be evaluated and assigned 
a crisp value that will represent the controller performance on each of the criteria 
that we want to improve. For this, we need to provide the GA with a good evalua-
tion scheme that will penalize unwanted behaviors and reward with higher fitness  
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values those individuals that provide the performance we are looking for in our 
controller; if we fail to provide a proper evaluation method we can guide the popu-
lation to suboptimal solutions or non solution at all.  

4.7.1   Reactive Controller Objective Function 

The criteria used to measure the Reactive controller performance takes into are the 
following 

 

o   Covered Distance 
o   Time used to cover the distance 
o   Battery life. 
 
A Fitness FIS will provide the desired fitness value, adding very basic rules that 
reward the controller that provided the longer trajectories and smaller times and 
higher battery life. This seems like a good strategy that will guide the control pop-
ulation into evolving and provide the optimal control, but this strategy on its own 
it´s not capable of doing just that, it needs to have a supervisor on the robots tra-
jectory to make sure is a forward moving trajectory  and that they don´t contain  
looping parts, For this, a Neural Network (NN), is used to detect cycle trajectories 
that don’t have the desired forward moving behavior by giving low activation val-
ue and higher activation values for the ones that are cycle free. The NN has two 
inputs and one output, and 2 hidden layers, see Figure 6. 

 

Fig. 6 Fitness Function for The Reactive Controller 

The evaluation method for the reactive controller has integrated both parts the 
FIS and the NN where the fitness value for each individual is calculated with Equ-
ation 5, based on the response off the NN the peak activation value is set to 0.35, 
this meaning that any activation lower than 0.35 will penalize the fitness given by 
the FIS. 
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Fig. 10 Plot showing the execution of the GA 

5   Simulation Results 

For the simulation experiment the GA and the evaluation process were separated 
into two different parts, the generic GA process was developed on the C# lan-
guage with .net 4, where a GA and Fuzzy System library where created with a 
GUI to setup the GA parameters, there the GA operations and cycle are run and 
the FIS are created. When a chromosome is ready to be evaluated it lets Matlab 
know and a modified version of the Simulation toolbox for mobile robots [26] is 
used to run each test, where the performance is measured and a Fitness value is re-
turned to the GA process, and the communication between both process is done 
using a SQL server queue table. 

5.1   Reactive Controller 

For the type-1 reactive controller, a GA was setup with high number of genera-
tions and a low number of population size, this because of the large solution space 
the reasoning behind this is that with a relative small group of individuals it will 
cover focused sections of the solution and can move around the space, A constrain 
for inputs and outputs of maximum 10 and minimum 2 FM was set, on the outputs 
another constrain was set and it’s that the outputs had to be the same, the evalua-
tion as describe on section 4 is based upon each individual performance on the 
particular maze problem.  

Table 2 shows the GA configuration and the top 9 Results, where we have the 
fitness value and the number of membership functions of each input and output, 
where the S represents the inputs and indicate the sensor number and M the out-
puts and indicate the Motor number, and the total rules that are active on each con-
troller. Figure 11 shows the reactive controller results. 
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Table 2 Summary of Type-1 Reactive Controls Results 

 Membership Chromosome 
Fuzzy Rule 

Chromosome Control 
Genes 

Connections 
Genes 

Representation Binary Real Number Integer 
Population Size 20  

No. of 
Offspring 

5  

Crossover One Point One Point  
Crossover Rate 1.0 1.0  

Mutation Bit Muta-
tion 

Random Mu-
tation 

Shift index 
operation Mutation Rate 0.02 0.02 

GA Parameters 
Generation 8000   
Selection Roulette Wheel with Ranking   

Results 
Rank Fitness Active FM’s 

(S1+S2+S3+M1+M2) 
Active Rules 

1  0.4895 (4+3+2+3+3)=15 24 
2  0.4895 (4+3+2+3+3)=15 24 
3  0.4895 (4+3+2+3+3)=15 24 
4  0.4895 (4+3+2+3+3)=15 24 
5  0.4895 (4+3+2+3+3)=15 24 
6  0.4895 (4+3+2+3+3)=15 24 
7  0.4895 (4+3+2+3+3)=15 24 
8  0.4895 (4+3+2+3+3)=15 24 
9  0.4895 (4+3+2+3+3)=15 24 
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Fig. 11 Reactive Controller Results 
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5.2   Tracking Controller 

Table 3 shows the GA configuration and the top 9 Results, where we have the fit-
ness value and the number of membership functions of each input and output, 
where the ℮p and Δθ represent the inputs and indicate the error on the position and 
orientation respectively, and M are the outputs and indicate the Motor number, 
and the total rules that are active on each controller. Figure 12 shows the tracking 
controller results. 

Table 3 Summary of Type-1 Tracking Results 

 
Membership Chromosome 

Fuzzy Rule 
Chromosome Control 

Genes 
Connections 
Genes 

Representation Binary Real Number Integer 
Population Size 20  

No. of 
Offspring 

2  

Crossover One Point One Point  
Crossover Rate 1.0 1.0  

Mutation Bit Muta-
tion 

Random Mu-
tation 

Shift index 
operation Mutation Rate 0.02 0.02 

GA Parameters 
Generation 4000   
Selection Roulette Wheel with 

Ranking 
  

Results 
Rank Fitness Active FM’s 

(℮p+ eθ 
+M1+M2) 

Active Rules 

1 0.1907 5+4+4+3=16 20 
2 0.2021 5+4+4+3=16 20 
3 0.2023 5+4+4+3=16 20 
4 0.2091 5+4+4+3=16 20 
5 0.2124 7+2+4+5=18 14 
6 0.2125 5+4+4+3=16 20 
7 0.2182 6+2+5+2=15 12 
8 0.2199 5+4+4+3=16 20 
9 0.225 5+4+4+3=16 20 
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Fig. 12 Tracking Controller Results 
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5.3   WFIS Controller 

For the type-1 WFIS controller, a GA was setup with high number of generations 
and a low value of population size, this because of the large solution space. The 
reasoning behind this is that with a relative small group of individuals it will cover 
focused sections of the solution and can move around the space, A constrain for 
inputs and outputs of maximum 10 and minimum 2 FMS was set, on the outputs, 
the evaluation as described on section 4 is based upon each individual perfor-
mance on the particular maze problem.  

Table 4 Summary of Type-1 WFIS Results 

 

Membership Chromosome 
Fuzzy Rule 

Chromosome Control 
Genes 

Connections 
Genes 

Representation Binary Real Number Integer 
Population Size 10 

No. of 
Offspring 

3 
 

Crossover One Point One Point  
Crossover Rate 1.0 1.0 

Mutation Bit Mutation 
Random Mu-

tation 
Shift index 
operation Mutation Rate 0.02 0.02 

GA Parameters 
Generation 1500 
Selection Roulette Wheel with Ranking 

Results 

Rank Fitness 
Active FM’s 

(S1+S2+S3+W1+W2) 
Active Rules 

1 0.2746 3+5+2+2=12 15 
2 0.4170 2+4+3+2=11 8 
3 0.4553 3+5+2+2=12 15 
4 0.4740 3+5+2+2=12 15 
5 0.4856 2+4+2+2=10 8 
6 0.5043 2+4+2+2=10 8 
7 0.5197 2+4+2+2=10 8 
8 0.5233 2+4+2+2=10 8 
9 0.5277 2+4+2+2=10 8 

 
Table 4 shows the GA configuration and the top 9 Results, where we have  

the fitness value and the number of membership functions of each input and output, 
where the S represents the inputs and indicate the sensor number and W the outputs 
and indicate the Weight number, and the total rules that are active on each  
controller.  
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Figure 13 shows the 3 tests during the evaluation process of the GA, where the 
red line is the reference, the blue dotted line is robot path on each run and the gray 
squares are obstacle located around the reference path. 

 

 
Fig. 13 Type-1 WFIS Controller Results 
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6   Conclusions 

In this paper we have been able to optimize the Type-1 Reactive, Tracking and the 
WFIS controllers, and developed a GUI to optimize the Fuzzy Inference System, 
the results obtained on the proposed control system, show good performance on 
integrating the 2 behavior into a single response that was able to take the robot to 
the reference and avoid any collisions with the obstacles present on the map. Fu-
ture work will consist in the Optimization of the WFIS based on a Type-2 fuzzy 
system. 

Acknowledgment. We would like to express our gratitude to CONACYT, and Tijuana In-
stitute of Technology for the facilities and resources granted for the development of this  
research.  
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Abstract. This research proposes the design, simulation and implementation of 
the optimization of type-2 membership functions for the Average Approximation 
of an Interval of Type-2 Fuzzy Logic Controller (AT2-FLC) using bio-inspired  
algorithms, such as Particle Swarm Optimization (PSO). The optimization only 
considers certain points of the membership functions, the fuzzy rules are not mod-
ified, so that the algorithm minimizes the runtime. Based on the concept of swarm 
intelligence, PSO is applied to membership functions parameter optimization of 
the AT2-FLC. Implementations and simulations are carried out on the FPGA de-
vice using the Xilinx System Generator. The optimization method was coded in 
Matlab. Comparisons were made between simulation and implementation of the 
AT2-FLC, to regulate the velocity of a DC motor. We compared the results of the 
AT2-FLC under uncertainty and the results are discussed. Experiments were per-
formed by changing the number of bits for encoding the AT2-FLC in VHDL. 

The main contribution of this research is the design, simulation and implemen-
tation of PSO of the AT2-FLC for real applications in FPGA. The AT2-FLC is 
targeted to a Xilinx Spartan 3AN XC3S700A device using Xilinx Foundation  
Environment. 

Keywords: AT2-FIS, AT2-FLC, PSO, VHDL, FPGA, ReSDCM. 

1   Introduction 

Nowadays the use of fuzzy logic controllers is more common, because of the way 
of processing information, primarily in type-2 fuzzy logic controllers because they 
manage uncertainty and they are considered to be robust when compared with  
others [1]. 
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The use of optimization strategies applied to type-2 fuzzy logic controllers, 
such as genetic algorithms, particle swarm optimization, among others, make them 
more attractive [4]. 

With the optimization of the type-2 fuzzy systems arises the problem of 
processing time, which can be solved by processing in parallel, but in a physical 
implementation in particular this problem is not solved. For this reason we pro-
pose the optimization of type-2 fuzzy systems with bio-inspired or genetic algo-
rithms for applications in FPGAs, the latter processed in parallel and speed is 
higher when compared to other electronic devices. 

Fuzzy inference systems are based on rules, these rules incorporate linguistic 
variables, linguistic terms and fuzzy rules. The acquisition of rules is not an easy 
task for the expert and is of vital importance in the operation of the controller. The 
process of adjusting these linguistic terms and rules is usually done by trial and er-
ror, which implies a difficult task, and for this reason there have been methods 
proposed to optimize those elements that over time have taken importance, such as 
particle swarm optimization [5]. 

Most of the fuzzy logic applications with physical systems require a real time 
operation, the simple way to implement these systems is to realize them as soft-
ware programs on a personal computer or higher density programmable logic de-
vices, such as the field programmable gate array (FPGA). 

The research of different optimization techniques for type-2 fuzzy systems have 
increased, however there is the problem of runtime, and the runtime decreases 
when the implementation is processed in parallel, as in the FPGA. There are some 
works related to the optimization of a particular problem [13][14]. 

This paper explains the design of T2-MFs optimization of the AT2-FLC for 
regulation speed of a DC motor (ReSDCM) in FPGA, based on an a-verage ap-
proximation of interval type-2 fuzzy systems method [9]. The main goal of this 
paper is to compare the results (average errors, runtime and resolution for number 
of bits) of the AT2-FLC optimized with PSO. 

The proposed methodology is to synthesize the AT2-FLC in FPGA. The opti-
mization of the T2-MFs takes place outside the FPGA, i.e. on a PC via serial port, 
the optimized parameters of the T2-MFs are sent to the FPGA, this with the idea 
that once the AT2-FLC was optimized, the optimization process is disconnected 
from the PC and the AT2-FLC is ready for use.  

Figure 1 shows the methodology diagram used for the optimization of the T2-
MFs for the AT2-FIS in the FPGA. 

This paper is organized as follows. In section 2 we present an introduction to 
type-2 FISs, FPGA and the PSO method, in section 3 we present the description of 
the problem, in this case regulation of speed of the DC motor in VHDL for FPGA. 
The AT2-FIS in VHDL code is present in section 4. The design of the PSO me-
thod for the AT2-FLC for ReSDCM in shown in section 5, the T2-MFs optimiza-
tion results for AT2-FLC in XSG versus T2- MFs optimization results for  
AT2-FLC in FPGA device are shown in section 6, and finally section 7 offers 
conclusions about this work. 
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Fig. 1 Methodology used for PSO of the AT2-FLC for ReSDCM 

2   Type-2 Fuzzy Inference Systems and Optimization Method 

Fuzzy systems are being used more frequently, because they tolerate imprecise in-
formation and can be used to model nonlinear functions of arbitrary complexity 
[1-3]. T1-FIS have exact membership functions, while interval type-2 fuzzy sys-
tems (IT2-FIS) are described by membership functions with uncertainty [8][11]. 
The uncertainty in a fuzzy system can occur when: 

• There is uncertainty in the words that are used in the rules. 
• Uncertainty about the consequent to be used with a rule. 
• Uncertainty about the measurements that activate a fuzzy system. 
• Uncertainty about the data that are used to tune the parameters of a fuzzy  

system. 

For example, the knowledge that is often used to create fuzzy rules is uncertain, 
this uncertainty leads to rules whose antecedents or consequents are uncertain, 
which translates into uncertainty in the membership functions. 

The interval type-2 fuzzy inference systems (IT2-FIS) consist of four stages: 
Fuzzification, Inference, Type Reduction and Defuzzification.  

The fuzzification stage maps a numeric value XXXX p
T

p ≡××∈××=× ...)...( 211
, 

into a type-2 fuzzy set
xA~ in X, where

xA~ is a singleton fuzzy set, if 1/1)(~ =×
xAμ  for 

'×=×  and 0/1)(~ =×
xAμ  for all others '×≠×  [12]. 

The inference stage consists of two blocks, the rules and the inference engine; it 
works the same way as for type-1 fuzzy systems, except the antecedent fuzzy sets 
and the consequent are represented by type-2 fuzzy sets. The process consists of 
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combining the rules and maps the input to the output (interval type-2 fuzzy sets), 
using the Join and Meet operations [11]. For an IT2-FIS with p inputs 

pp XxXxXx ∈∈∈ ,...,, 2211
 and one output Yy∈ , it is assumed that there are M rules, the 

lth rule in an IT2-FIS and can be written as: 

R1: If x1 is  and lF1
~  and…and xp is l

pF~  , Then y is lG~  (1) 

where l=1,…,M. Once we have the rules, it is necessary to calculate the operations 
Join(ц) and Meet(п) as well as sup-star composition ()[12]. 

The type reductor stage is used to convert all type- 2 fuzzy sets to type-1 fuzzy 
intervals on the output. There are several methods to calculate the reduced set, 
such as the joint center, center of sums, height, among others.  

The Defuzzification stage consists in obtaining a numeric value for the output. 
Using the COS type reductor, the defuzzification is an average value since the 
range is given by [yl,yr] [12]. 

 
Fig. 2 T2-MFs using AT2-FIS method 
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In the method of average approximation of an interval type-2 fuzzy system 
(AT2-FIS), the AT2-FIS is replaced by a type-2 fuzzy system using the average of 
two T1-FIS, this method [14] is performed as follows:  

 

1. Replace each T2-MF with two T1-MFs using different degrees of 
membership in order to obtain the footprint of uncertainty. Figure 2 shows this 
process. 

2. To replace the type-2 inference stage, the inference from each T1-FIS must 
be obtained.  

3. To replace the type-reduction system and defuzzification stage of the IT2-
FIS, we obtain the defuzzification of each T1-FIS and the results of the two 
systems are averaged.  

An IT2-FIS and AT2-FIS can be implemented on a general purpose computer, or 
by a specific use of a microelectronics realization such as the FPGA. In this work 
we use the AT2-FIS for FPGA synthesis. Figure 3 shows the block diagram of the 
AT2-FIS. 

 

Fig. 3 Average approximation of an interval type-2 fuzzy system 

A FPGA is a semiconductor device that contains in its interior components such 
as gates, multiplexers, etc. These are interconnected with each other, according to 
a given particular design. These devices use the VHDL programming language, 
which is an acronym that represents the combination of VHSIC (Very High Speed 
Integrated Circuit) and HDL (Hardware Description Language). 
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The design of a FPGA implementation is done by specifying the logic function 
to develop, either by a CAD (computer aided design) or through a hardware de-
scription language. Having defined the function to perform, the design is trans-
ferred to the FPGA. 

This process consists in programming the configurable logic blocks (CLBs) to 
perform a specific function (there are thousands of configurable logic blocks in the 
FPGA). The configuration of these blocks and their interconnections are the  
reasons why it can achieve very complex designs. The interconnections enable 
connecting the CLBs. Finally, it has configuration memory cells (CMC, Configura-
tion Memory Cell) distributed throughout the chip, which store all information ne-
cessary for programming of the programmable elements mentioned. These cells 
usually consist of a configuration RAM and are initialized in the process of loading 
of the configuration. The programmable elements of an FPGA are: Configurable 
Logic Blocks (CLBs), In/Out Blocks (IOBs) and Programmable Interconnection 
(by fuse technology and be of OTP and by antifuses or by type SRAM cells). 

Figure 4 shows the basic elements of a FPGA. 

 

Fig. 4 FPGA basic elements 

The FPGAs can be used to implement specific architectures to accelerate a par-
ticular algorithm. Applications that require a great number of simple operations 
are suitable for implementation on FPGAs.  
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FPGAs have been increasingly applied to high performance embedded systems 

because FPGAs are configured after fabrication and they also can be reconfigured. 
This is done with HDL, which is compiled to a bit stream and download to the 
FPGA device.  

A processing element can be designed to perform this operation and several in-
stances of it can be used to perform parallel processing [6][10]. 

The easiest way to get a design of a type-2 fuzzy system is to use software, the 
problem arises when you have a particular application and the response is not the 
best, this is when there is the need to optimize the original design. There are many 
optimization methods [5][9], such as particle swarm optimization. 

Particle Swarm Optimization (PSO) is a bio-inspired optimization method. PSO 
finds the optimal solution by simulating social behavior. PSO is developed 
through simulation of birds that come in two-dimensional space, each particle has 
position and speed.  

A PSO algorithm maintains a swarm of particles, where each particle represents 
a possible solution. In analogy with the paradigms of evolutionary computation, 
the particles are transported through a multidimensional search space, where the 
position of each particle is adjusted according to their experience and of their 
neighbors, xi (t) represents the position of particle i in the search space at time t, t 
denotes the discrete time. The position of the particle is modified by the addition 
of a velocity vi(t), i.e. the current position [5], Equation 2 shows the position of the 
particle. 

)1()()1( ++=+ tvtxtx iii  (2) 

where xi(0) ~ U(xmin, xmax). The velocity vector reflects both the experimental 
knowledge of the particle and the exchanged social information. The experimental 
knowledge of a particle is often referred to as the cognitive component, which is 
proportional to the distance of the particle from its best position (referred to as the 
best personal position of the particle) found from the beginning. 

PSO can be described as follows, each swarm knows the best position of the 
particle (Plbest) and the best global position of the swarm (Pgbest). The speed of 
each particle can be calculated using the Equation 3 [5]. 

where vij (t) is the velocity of the particle i from j = 1, ..., nx at time t, xij (t) is the 
position of particle i in dimension j at time t, c1 and c2 are the  positives constants 
acceleration used for cognitive and social components respectively, r1j(t), r2j(t) ~ 
U(0,1), which are random values in the range [0,1]. These random values in the 
algorithm introduce stochastic elements. yij is the Plbest, is associated with the 
particle i, is the best position of the particle, is the best global position of the par-
ticle swarm Pgbest.  

3   Description of the Problem 

This paper proposes the T2-MF optimization with the PSO method for the AT2-
FIS codified to VHDL for FPGA. To validate the optimized AT2-FIS we applied 
 
 

[ ] [ ])()(ˆ)()()()()()1( 2211 txtytrctxtytrctvtv ijjjijijjijij −+−+=+  (3) 
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Fig. 5 AT2-FLC for ReSDCM 

the proposed approach to a real problem, which is the regulation of speed of a DC 
motor (ReSDCM). Figure 5 shows the AT2-FLC for ReSDCM. 

In Figure 3 the AT2-FLC [7] has the following inputs, error (e(t)) and change of 
error  (e'(t)), and the output is the control signal (y(t)), the control objective AT2-
FLC is: 

0lim )()( =−
∞→ tt

t
ry  (4) 

where t is the sampling time. 
The inputs are calculated as follows: 

e(t)= r(t) – y(t)  (5) 

e’(t)= e(t) – e(t-1)  (6) 

The reference signal r(t), is given by [0,70] revolutions per minute (rpm).  
The uncertainty block represents an external perturbation, the goal is to disrupt 

the AT2-FLC and then the AT2-FLC is expected to retrieve its desired path. The 
uncertainty block is represented by: 

randnxyy tt *ˆ )()( +=     (7) 

where x is the uncertainty level factor [0,1]. 

4   AT2-FIS Design in VHDL Code 

For the design for AT2-FIS in VHDL the average approximation for interval  
type-2 fuzzy systems was used [14]. The AT2-FIS has four stages, which are fuz-
zification, inference, defuzzification and average. Figure 6 shows the AT2-FIS 
implementation.  
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Fig. 6 AT2-FIS diagram for FPGA 
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The AT2-FIS has three common inputs for each stage (ce, clk and rst). 
The clock enable (ce) input, to simulate VHDL code in XSG, all blocks should 
have this input. Clk input is a clock for FPGA, we used Spartan 3AN with clock 
chip is 50 MHz. Reset (rst) input is a reset for all stages of the AT2-FIS. Below 
the explanation of the stages of AT2-FIS is given. 

4.1   Fuzzification 

We present an algorithm that works with the calculation of the slopes of the trian-
gular and trapezoidal MFs. The main advantages of this algorithm is that it works 
for symmetrical and non symmetrical T2-MFs, the value of the slope is calculated 
on line, therefore it is possible to optimize the T2-MF using this method because 
most of the time in the optimization of membership functions not symmetrical T2-
MFs are obtained. A disadvantage of our algorithm is that it only considers mem-
bership functions of triangular and trapezoidal form. 

The procedure of the algorithm is summarized in three steps: calculate the slope 
values, calculate the degree values of the membership functions and send to the 
inference stage the membership degrees and the linguistic terms.  

The fuzzification stage algorithm calculates the value of the membership de-
gree with the equation of the line y = mx + b, where m is the slope of the line and b 
is the y intercept of the graph of the line. 

The fuzzification stage is discretized in bits selected by the user, i.e. the number 
of bits is adjustable to the characteristics required by the problem to solve.  

For the AT1-FIS, the fuzzification stage has inputs such as error (e = x1) and 
change of error (de = x2), each with three membership functions (Negative Big 
(NB=”01”), Zero (Z=”10”), Positive Big (PB=”11”)), two trapezoidal MFs and 
one triangular MF. 

The universe of discourse as the degree of membership are designed for 8 bits, 
however, simply change one variable in the VHDL code to increase or decrease 
the number of bits. 

The Fuzzification stage has outputs such as degree and linguistic terms for the 
error input (g e1, g e2, g e3, e1, e2, e3) and the change of error input (g de1, g de2, 
g de3, de1, de2, de3). 

The Fuzzification stage has two outputs, μx is the membership degree and Lx is 
the linguistic tag, these outputs are sent to directly to the inference stage. 

4.2   Inference 

The inference stage receives the data sent from the fuzzification stage, which are 
labels and the membership degrees of each input are: g_e1, g_e2, g_e3, e1, e2, e3, 
g_de1, g_de2, g_de3, de1, de2, de3, so that multiplexes labels and evaluates the 
rule base and this is illustrated in Table 1. 

An example of rules using this codification is: If e is “PB” and de is “Z” then C 
(consequent) is BI. For each of these rules the max-min operation is calculated of 
labels (c1, c2, c3, c4, c5, c6, c7, c8, c9) and the firing forces (gc1, gc2, gc3, gc4, 
gc5, gc6, gc7, gc8, gc9) are sent to the defuzzification stage.  
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Table 1 Rule Matriz 

 

We have nine labels (c1, c2, c3, c4, c5, c6, c7, c8, c9) and nine firing forces 
(gc1, gc2, gc3, gc4, gc5, gc6, gc7, gc8, gc9) because we have three T1-MFs for 
each input and output. Figure 7 shows the inference stage process. 

4.3   Defuzzification 

The Defuzzification stage is calculated using the Height´s method as shown in 
Equation 8 [16]. 

 

   (8) 

 
where C is the consequent (firing forces) and o is the consequent tags (labels). 
Once the consequent is calculated using Equation 8 the defuzzification stage sends 
the crisp value to the output. 

4.4   Average 

The average stage receives the interval defined by yl and yr, later to calculate the 
crisp value with an average. Equation 9 computes the crisp value. 

2)(
rl

x

yy
y

+=     (9) 

Figure 7 shows the AT2-FIS architecture in VHDL for FPGA. 
In our algorithm for the fuzzification stage, y is the degree of membership (μx), 

Count is a counter, which identifies the linguistic tag (Lx, which is stored in a reg-
ister) and the slope (m), if the account number is pair then the slope is negative, if 
the account number is odd then the slope is positive.  

The inference stages receive the membership degrees (ge and gde) and linguis-
tic labels (e and de) and using the min operation calculates the for-ces firing (gc) 
and consequents (c). 
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Fig. 7 AT2-FIS architecture in VHDL for FPGA 

The four stages are targeted on a FPGA Xilinx Spartan 3AN XC3S700A de-
vice. Table 2 shows the device utilization summary for these stage, and we can see 
that after having synthesized in VHDL the AT2-FIS there is space that is available 
on the FPGA.  

Table 2 Device utilization summary for the Fuzzification (F), Inference (I) and Defuzzifi-
cation (D) stages 

Logic  
Utilization

 Used   Available   Utilization (%) 

 F I D F I D F I D 
No. of 4 In-
put LUTs 

5234 181 104 15360 15360 15360 34 1 0 

No. of 
Bonded IOBs 

155 153 2057 173 173 15360 99 88 13 

5   Particle Swarm Optimization for T2-MFs of the Average 
Approximation of an Interval Type-2 Fuzzy Inference System 

We optimized the type-2 membership functions (T2-MFs) of the AT2-FIS with 
PSO. Figure 8 shows the triangular and trapezoidal T2-MFs that are used. 
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Fig. 8 Triangular and trapezoidal T2-MFs parameters 
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Fig. 9 Inputs and output of the AT2-FIS design 

The design of the AT2-FIS only considers triangular and trapezoidal T2-MFs 
for each input and output, and Figure 9 shows the inputs and output design. 

Figure 9 shows the design of the inputs and output T2-MFs of the AT2-FLC 
with fixed and variable parameters, where the universe of discourse and the degree 
of membership are divided into 8 bits (for example, as already mentioned this 
number may be changed, if n is 8 bits). The blue points are fixed, the red dots 
represent the parameter a2, the green dots are fixed (b1) and the yellow dots 
represent the parameter a1. 

The T2-MFs parameters for each and output are moved by the optimization me-
thod according to Table 3. 

In Table 3, U corresponds to the ranges of the upper T2-MF and L correspond 
to the ranges of the lower T2-MF. The conditions of the T2-MF lower boundary 
are very important because if we are not cautions about the T2-MF low boundary 
it can be converted to the T2-MF high boundary and vice versa. 

For example, if n=8 bits, the a2U parameter should be within the range of 0 − 
128, if we consider that is 100, then the a2L parameter must be greater than 100 
and less than 128, these conditions are necessary to achieve the upper and lower 
values of the T2-MF. 

Table 3 Boundary T2-MFs parameters  

 Input 1 Input 2 Output 
 

 

 

 

Upper T2-MFs 
Parameters 

First T2-FM 

a0U = a1U = 0 
0 < a2U < n/2 

a3U = n/2 

First T2-FM 

a0U = a1U = 0 
0 < a2U < n/2  

a3U = n/2 

First T2-FM 

a0U = a1U = 0 
0 < a2U < n/2  

a3U = n/2 
Second T2-MF 

0 < b0U < n/2 
b1U = n/2 

n/2 < b2U < n

Second T2-MF 
0 < b0U < n/2 

b1U = n/2 
n/2 < b2U < n 

Second T2-MF 
0 < b0U < n/2 

b1U = n/2 
n/2 < b2U < n 

Third T2-MF 
a0U = n/2 

n/2< a1U < n 
a2U = a3U = n 

Third T2-MF 
a0U = n/2 

n/2< a1U < n 
a2U = a3U = n 

Third T2-MF 
a0U = n/2 

n/2< a1U < n 
a2U = a3U = n 
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Table 3 (continued) 

 

 

 

 

Lower T2-MFs 
Parameters 

First T2-FM 
a0L = a1L =0 

a2U < a2L < n/2 
a3L = n/2 

First T2-FM 
a0L = a1L =0 

a2U < a2L < n/2 
a3L = n/2 

First T2-FM 
a0L = a1L =0 

a2U < a2L < n/2 
a3L = n/2 

Second T2-FM 
b0U < b0L < n/2 

b1L = n/2 

b2U > b2L < n 

Second T2-FM 
b0U < b0L < n/2 

b1L = n/2 

b2U > b2L < n 

Second T2-FM 
b0U < b0L < n/2 

b1L = n/2 

b2U > b2L < n 
Third T2-FM 

a0L = n/2 
a1U < a1L < n 
a2L = a3L = n 

Third T2-FM 
a0L = n/2 

a1U < a1L < n 
a2L = a3L = n 

Third T2-FM 
a0L = n/2 

a1U < a1L < n 
a2L = a3L = n 

 
 

The PSO design only moves 24 parameters of the 66 parameters to optimize, of 
which 8 parameters are for each input and output (a2U, a2L, b0U, b0L, b2U, b2L, a1U 
and a1L) the remaining 42 parameters are fixed and therefore these are not consi-
dered for the particle design. 

In reaching this conclusion we conducted several experiments to test that with 
only the optimization of 24 points it was sufficient for a better response in the 
AT2-FLC in a lesser runtime. 

After designing the AT2-FLC and taking into account their characteristics we 
arrived to the conclusion that the PSO algorithm is of a multiobjective type [9], 
because they are based on evaluating three characteristics, minimum steady state 
error, minimum overshoot and minimum undershoot, and these three characteris-
tics help us to determine the best AT2-FLC solution. 

The minimum overshoot is given by Equation 10. 
 

 (10) 

The minimum undershoot is given by Equation 11. 

 
(11) 

The minimum output of steady state error (sse) is given by Equation 12. 

 
(12) 

where y(t) is the output of the system and r(t) is reference. The three objective func-
tions are evaluated for fitness evaluation. 

For the optimization of the T2-MFs using PSO, we need to define the number 
of particles in the swarm, the calculation of the position and the initial and final 
velocity, given by Equations 2 and 3. The PSO process starts by generating the 
initial swarm with 10 particles, and these particles are evaluated once for initial  
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selection of the best global particle (Pgbest) and best local particle (Plbest). If a 
better particle is found, the T2-MF parameters are sent to the AT2-FLC into the 
FPGA, if a better particle is not found then each one is again updated by equations 
for the position and velocity of the particle. Then the T2-MF parameters are down-
loaded to AT2-FLC in the FPGA, if it meets the convergence criteria (iterations 
number) then the cycle ends, if the optimization cycle is not fulfilled the particle 
swarm is evaluated by selecting the Pgbest and Plbest until the of end the cycle of 
optimization. 

Figure 10 shows the PSO process for the AT2-FLC. 

 

Fig. 10 T2-MFs optimization with PSO for the AT2-FLC for ReSDCM 

The initial particles are created randomly respecting the ranges of the T2-MFs 
in Table 3. The particle swarm optimization fits the parameters of the T2-MFs in 
order to find the best AT2-FLC for ReSDCM using Equation 8, Equation 9 and 
Equation 10, which are evaluated in the simulation/implementation of the FPGA 
block of Figure 10, and for all experiments 10 particles are used. 
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6   Results of Average Approximation of the Interval Type-2 
Fuzzy Logic Controller for FPGA and Their Optimization 

To demonstrate the performance of the T2-MFs optimization for the AT2-FLC for 
ReSDCM in FPGA implementation, we considered two main experiments: T2-
MFs with PSO for the AT2-FLC for ReSDCM using XSG, and T2-MFs with PSO 
for the AT2-FLC for ReSDCM in the FPGA device. 

Several experiments were performed to find the best AT2-FLC optimized with 
PSO. The main idea is to achieve a comparison of the results obtained with PSO 
using XSG and PSO using FPGA device for the T2-MFs in an AT2-FLC for 
ReSDCM. 

6.1   Results for T2-MFs Parameters with PSO for AT2-FLC 
Using XSG 

Experiments were conducted for the T2-MFs with PSO using an AT2-FLC for 
ReSDCM in simulation environment using Simulink and XSG, the latter to simu-
late the AT2-FIS synthesizable VHDL code for FPGA.   

Table 4 shows some results obtained for the T2-MFs with PSO, each experi-
ment is an AT2-FLC with different T2-MFs parameters. Based on previous  
experience we changed the c1 and c2 parameters, which are used to calculate the 
velocity of each particle of the swarm, the number of iterations varies between 30 
and 40, the calculated error is the average error, the time shown is the runtime of 
the optimization, and each of the experiments was carried out with 10 particles. 

Table 4 Results for the T2-MFs with PSO for AT2-FLC using XSG 

No. Iteration 
Number 

C1 C2 Average 
Error

Time(min) 

1 30 0.3 0.2 0.2175 26.5080 

2 35 0.3 0.2 0.1947 30.1500 

3 30 0.3 0.3 0.1785 26.8491 

4 30 0.3 0.3 0.1785 37.3229 

5 30 0.3 0.2 0.1684 35.3005 

6 30 0.3 0.15 0.1598 28.0082 

7 30 0.3 0.2 0.1684 18.4350 

8 40 0.3 0.25 0.1570 18.9340 

9 40 0.3 0.25 0.2015 22.6246 

10 32 0.3 0.25 0.0872 28.4346 

11 30 0.3 0.25 0.2034 22.3819 
12 30 0.5 0.3 0.2015 10.1622 

13 30 0.4 0.3 0.1560 18.7199 
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Table 4 (continued) 

14 30 0.25 0.2 0.2175 26.3258 
15 30 0.3 0.25 0.0742 16.9798 

16 30 0.3 0.25 0.1161 16.8035 
17 30 0.29 0.25 0.0912 17.5950 
18 40 0.305 0.25 0.0390 21.7936 

19 30 0.28 0.25 0.0921 17.7113 

 
For this set of experiments the best AT2-FLC was obtained the experiment 

No.18, because it has a lower average error. 
Figure 11 shows the T2-MFs of the error input for experiment No. 18. 

 
Fig. 11 T2-MFs for error input of the AT2-FIS for ReSDCM for experiment No. 18 using 
XSG 

Figure 12 shows the T2-MFs of the change of error input for experiment No. 18. 

 
Fig. 12 T2-MFs for change of error input of the AT2-FIS for ReSDCM for experiment No. 
18 using XSG 
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Figure 13 shows the T2-MFs of the output for experiment No. 18. 

 
Fig. 13 T2-MFs for output of the AT2-FIS for ReSDCM for experiment No. 18 using XSG 

Figure 14 shows the speed of the DC motor at 30 rpm for experiment No. 18. 

 
Fig. 14 Speed of the DC motor at 30 rpm for experiment No. 18 using XSG 
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Figure 15 shows the convergence error of the PSO for experiment No. 18. 

 

Fig. 15 Convergence error of the PSO for experiment No. 18 using XSG 

The average error for the AT2-FLC in XSG with PSO is 0.39 and the runtime is 
21.79 minutes. 

Table 5 shows the comparison of results for the AT2-FLC (Experiment No.3) 
adding different levels of uncertainty. 

Table 5 AT2-FLC in XSG optimized with PSO with some level of uncertainty  

No. Uncertainty level 
(x) 

Average  
Error 

1 0 0.0390 

2 0.001 0.0366 

3 0.005 0.0314 

4 0.008 0.0314 

5 0.05 0.0930 

6 0.08 0.0924 

7 0.1 0.1044 

8 0.5 0.9946 

9 0.8 1.1742 

The idea of applying uncertainty to the AT2-FLC is to check its robustness of 
this controller. Figure 16 shows the speed of DC motor for AT2-FLC optimized 
with PSO for some level of uncertainty (x=0.001). 
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Fig. 16 AT2-FLC optimized with PSO at 30 rpm for some level of uncertainty 

In the next section, the comparisons of results between XSG and FPGA device 
are shown. 

6.2   Results for T2-MFs Parameters with PSO for AT2-FLC 
Using the FPGA Device 

Different experiments were performed for the T2-MFs with PSO for the AT2-FLC 
using the FPGA device. 

Table 6 shows the different results, each with different characteristics for the C1 
and C2 constants and it shows the average error and runtime of the PSO. 

Table 6 Results for the T2-MF with PSO for AT2-FLC using FPGA device 

No. Iteration 
Number 

C1 C2 Average 
Error

Time(min) 

1 30 0.19 0.19 0.6744 94.6352 

2 30 0.15 0.15 1.1352 171.9780 

3 30 0.2 0.2 0.5955 92.3928 

4 30 0.2 0.2 1.8481 100.2600 

5 30 0.21 0.21 0.8050 92.3712 

6 30 0.25 0.2 1.1345 92.5114 

7 30 0.25 0.25 1.5162 100.1839 

8 30 0.2 0.19 0.6786 92.2988 

9 30 0.2 0.19 1.1669 92.5059 

10 30 0.1 0.1 1.0780 72.7945 
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Table 6 (continued) 

11 30 0.1 0.1 1.0224 173.1366 
12 30 0.2 0.3 1.5601 98.2220 

13 30 0.1 0.09 1.3637 104.2218 
14 30 0.1 0.09 0.9950 161.7849 
15 30 0.1 0.09 1.1246 88.7282 

16 30 0.1 0.08 0.9102 104.0216 
17 30 0.09 0.09 0.6164 115.9914 
18 30 0.09 0.09 1.3634 172.9863 

19 30 0.09 0.08 1.2134 132.1412 

 
For this set of experiments the best AT2-FLC was obtained for experiment No. 

3, because it has a lower average error.  
Figure 17 shows the T2-MFs of the error input for experiment No. 3. 

 
Fig. 17 T2-MFs for error input of the AT2-FIS for ReSDCM for experiment No. 3 using 
FPGA device 

Figure 18 shows the T2-MFs of the change of error input for experiment No. 3. 

 
Fig. 18 T2-MFs for change of error input of the AT2-FIS for ReSDCM for experiment No. 
3 using FPGA device 
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Figure 19 shows the T2-MFs of the output for experiment No. 3. 

 

Fig. 19 T2-MFs for output of the AT2-FIS for ReSDCM for experiment No. 3 using the 
FPGA device 

Figure 20 shows the speed of the DC motor (30 rpm) for the AT2-FLC of ex-
periment No. 3. 

 

Fig. 20 Speed of the DC motor at 40 rpm for experiment No.3 
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Figure 21 shows the convergence error of the PSO for experiment No. 3. 

 

Fig. 21 Convergence error of the PSO for experiment No. 3 using FPGA device 

Table 6 shows that the best AT2-FLC was that of experiment No.3 with 30 
generations in 92.3928 minutes with 0.5955 of average error. 

The best AT2- FLC optimized with PSO (Experiment No.3) was presented. The 
main objective is to apply uncertainty (Equation 7) to AT2-FLC for ReSDCM, in 
this case we are making comparisons for a desired speed of 40 rpm. 

Table 7 shows the comparison of the AT2-FLC (Experiment No.3) adding dif-
ferent levels of uncertainty. 

Table 7 Comparison with different levels of uncertainty of the best AT2-FLC in FPGA  
optimized with PSO  

No. Uncertainty level 
(x) 

Average 
Error 

1 0 0.5955 

2 0.001 0.6940 
3 0.005 0.7905 

4 0.008 0.8386 

5 0.05 0.7785 
6 0.08 0.7972 

7 0.1 0.9673 

8 0.5 1.1724 

9 0.8 1.3158 

10 1 1.6142 
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The idea of applying uncertainty to the AT2-FLC is to check its robustness of 
this controller. Figure 22 shows the speed of DC motor for AT2-FLC optimized 
with PSO for different levels of uncertainty. 

 

Fig. 22 AT2-FLC optimized with PSO at 40 rpm for different levels of uncertainty 

Figure 23 shows a graphical comparison of the average errors of the AT2-FLC 
(in the FPGA device) optimization using the PSO in 19 different experiments. 

 

Fig. 23 Average errors for the PSO method for AT2-FLC 

In Figure 23, we calculated the mean of average error for all experiments; in 
this case, the PSO method has an average error of 1.0948. 
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Figure 24 shows a graphical comparison of the runtime of the AT2-FLC (in 
FPGA device) optimization using the PSO in 19 different experiments. 

 

Fig. 24 Runtime for the PSO method for AT2-FLC 

Of the runtime of the PSO obtained in Figure 24, we calculated the mean of the 
runtime; in this case, the PSO method has a runtime of 113.3244 min. 

Now the results obtained for different codifications (number of bits) of the 
AT2-FLC in FPGA device are also shown. The idea is to compare the results ob-
tained by changing the number of bits for encoding the AT2-FLC in VHDL code 
for FPGA device. 

Experiments were conducted with different resolutions of the VHDL codifica-
tion for AT2-FLC with PSO optimization, in this case we use 8, 10, 14, 16, 20 and 
24 bits. 

Experiments were conducted with different resolutions of the VHDL codifica-
tion for AT2-FLC optimized with PSO, in this case we use 8, 10, 14, 16, 20 and 
24 bits. Table 8 shows the results obtained of the AT2-FLC (in FPGA device) 
with PSO for ReSDCM at 30 rpm for different number of bits.  

Table 8 Comparison of the best AT2-FLC optimized with PSO for different number of bits 

Resolution (Bits) Average Error 
8 0.5955 

10 0.3976 
14 0.1917 
16 0.1917 
20 0.1917 
24 0.1917 
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In Table 8 we can notice that after 14 bits, the average error does not change, 
this is because the AT2-FLC performed operations with floating point and it is 
likely that after a certain number of bits some data can not be considered. 

Figure 25 shows the comparison of the speed of the DC motor for different 
numbers of bits. 

 

Fig. 25 Comparison of the speed DC motor for different number of bits 

Figure 26(a) and Figure 26(b) show a zoom to observe the difference between 
speeds DC motor with different resolution for AT2-FLC at 30 rpm. In Figure 
26(b), we notice the speed DC motor for 8 bits and 24 bits, other speeds are not 
appreciated because they have that the same average error as the speed of the DC 
motor for 24 bits. 

 
(a) (b) 

Fig. 26 Comparison of the speed DC motor for different number of bits 
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In Figure 26(b) we have a close-up to get a better view of the behavior of the 
speeds, we note that the speed of the DC motor for 8 bits has a lower time delay 
compared to the others, however the others speeds of the DC motor have a lower 
average. 

7   Conclusions 

In this paper, an average approximation of an interval type-2 fuzzy system was 
designed and the hardware implementation was proposed, in this case to be 
implemented into a FPGA.  

The T2-MFs parameters were optimized with PSO, the optimization takes place 
outside the FPGA, because once the AT2-FLC for ReSDCM was optimized, it not 
needed to re-optimize it, unless this one fails in the system or change the initial 
conditions. The objective function of the PSO considers three characteristics: 
overshoot, undershoot and steady state error. 

Our goal is to achieve an optimized AT2-FLC in a small runtime, and for this 
reason the fuzzy rules are not changed and we propose an optimization for T2-
MFs where only some of these parameters are modified. 

Due to the fact that our AT2-FLC has the feature that the user selects the num-
ber of bits which encode the controllers, various experiments were conducted de-
monstrating that an 8 bits parallel implementation of the algorithm is capable of 
provide real time operation for this hardware platform. However we make com-
parisons for different number of bits for VHDL, reaching the conclusion for our 
particular application, which is the regulation speed of the DC motor, the use of 14 
bits is the best option because the error decreases in a 32.19 percentage compared 
with the 8 bits initially used in the implementation. For all experiments, it was 
considered the common goal of controlling the speed of the DC motor in a FPGA.  

An AT2-FLC implementation based on a Xilinx Spartan 3AN FPGA was pro-
posed. We have shown the device utilization for FPGA, these results are encour-
aging because they allows us to introduce more T2-MFs and fuzzy rules, in other 
words, a more complex AT2-FLC to obtain a better result, but this would increase 
the runtime.  
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Abstract. In this paper a method to design modular type-1 fuzzy controllers using 
genetic optimization is presented. The method is tested with a problem that re-
quires five individual controllers. Simulation results with a genetic algorithm for 
optimizing the membership functions of the five individual controllers are pre-
sented. Simulation results show that the proposed modular control approach offers 
advantages over existing control methods. 

1 Introduction 

This paper focuses on the field of fuzzy logic and control area, these areas can 
work together to solve various control problems. The problem of water level con-
trol for a three tank system is illustrated. This control is carried out by controlling 
five valves whose outputs are the inputs to the three tanks. The main idea in this 
paper is to apply a genetic algorithm to optimize the membership functions of the 
five controllers. Each controller has to open and close one of the valves. To con-
trol each of the valves we have five type-1 fuzzy systems and each fuzzy system 
has to control one valve of the three tanks. After that, the simulation is carried out 
using type-1 fuzzy systems, and then genetic algorithms are used to optimize the 
five controllers. Finally results are presented and compared. 

The rest of the paper is organized as follows: In section 2 some basic concepts 
to understand the work are presented, Section 3 shows a case study, problem de-
scription and results are presented and finally in Section 4 conclusion is shown. 

2 Background and Basic Concepts 

In this section some basic concepts needed for this work are presented. 

2.1 Genetic Algorithm 

Genetic algorithms (GAs) were proposed by John Holland in the 1960s and were 
developed by Holland and his students and colleagues at the University of  
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Michigan in the 1960s and the 1970s [2][3]. In contrast with evolution strategies 
and evolutionary programming, Holland's original goal was not to design algo-
rithms to solve specific problems, but rather to formally study the phenomenon of 
adaptation as it occurs in nature and to develop ways in which the mechanisms of 
natural adaptation might be imported into computer systems [15][19]. Holland's 
1975 book Adaptation in Natural and Artificial Systems presented the genetic al-
gorithm as an abstraction of biological evolution and gave a theoretical framework 
for adaptation under the GA [4][5]. A GA allows a population composed of many 
individuals to evolve under specified selection rules to a state that maximizes the 
“fitness” [17]. Holland's GA is a method for moving from one population of 
"chromosomes" (e.g., strings of ones and zeros, or "bits") to a new population by 
using a kind of "natural selection" together with the genetics inspired operators of 
crossover, mutation, and inversion [18]. Each chromosome consists of "genes" 
(e.g., bits), each gene being an instance of a particular "allele" (e.g., 0 or 1) 
[14][10]. The selection operator chooses those chromosomes in the population that 
will be allowed to reproduce, and on average the fitter chromosomes produce 
more offspring than the less fit ones [28]. Crossover exchanges subparts of two 
chromosomes, roughly mimicking biological recombination between two single 
chromosome ("haploid") organisms; mutation randomly changes the allele values 
of some locations in the chromosome; and inversion reverses the order of a conti-
guous section of the chromosome, thus rearranging the order in which genes are 
arrayed. (Here, as in most of the GA literature, "crossover" and "recombination" 
will mean the same thing.) [7][16]. Some of the advantages of a GA include: Op-
timizes with continuous or discrete variables, doesn’t require derivative informa-
tion, simultaneously searches from a wide sampling of the cost surface, deals with 
a large number of variables [13][29]. 

A typical algorithm might consist of the following: 

1. Start with a randomly generated population of n l−bit chromosomes (candi-
date solutions to a problem). 

2. Calculate the fitness ƒ(x) of each chromosome x in the population. 
3. Repeat the following steps until n offspring have been created: 

• Select a pair of parent chromosomes from the current population, the 
probability of selection being an increasing function of fitness. Selection 
is done "with replacement," meaning that the same chromosome can be 
selected more than once to become a parent. 

• With probability Pc (the "crossover probability" or "crossover rate"), 
cross over the pair at a randomly chosen point (chosen with uniform 
probability) to form two offspring. If no crossover takes place, form two 
offspring that are exact copies of their respective parents. (Note that here 
the crossover rate is defined to be the probability that two parents will 
cross over in a single point. There are also "multipoint crossover" ver-
sions of the GA in which the crossover rate for a pair of parents is the 
number of points at which a crossover takes place.) 

• Mutate the two offspring at each locus with probability Pm (the mutation 
probability or mutation rate), and place the resulting chromosomes in the 
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new population. If n is odd, one new population member can be discarded 
at random. 

• Replace the current population with the new population. 

Go to step 2 [30][31]. 

2.2 Fuzzy Systems 

The idea of fuzzy systems appeared very early in the literature of fuzzy sets; it was 
originated by Zadeh (1965). The concept of a fuzzy system is intimately related to 
that of a fuzzy set. En order to make our discussion self-contained, it will be help-
ful to begin with a brief summary of some of the basic definitions pertaining to 
such sets. Research on fuzzy systems seems to have developed in two main direc-
tions. The first is rather formal and considers fuzzy systems as a generalization of 
nondeterministic systems. These have been studied within the same conceptual 
framework as classical systems. This approach has given birth to a body of ab-
stract results in such fields as minimal realization theory and formal automata 
theory, sometimes expressed in the setting of category theory. The system is con-
sidered over a given period during which inputs, outputs, and relations may 
change [28][13].  

A system will be called fuzzy as soon as inputs or outputs are modeled as fuzzy 
sets or their interactions are represented by fuzzy relations. Usually, a system is 
also described in terms of state variables. In a fuzzy system a state can be a fuzzy 
set. However, the notion of a fuzzy state is quite ambiguous and needs to be clari-
fied. Note that generally a fuzzy system is an approximate representation of a 
complex process that is not itself necessarily fuzzy [20][21]. According to Zadeh, 
the human ability to perceive complex phenomena stems from the use of names of 
fuzzy sets to summarize information [22]. The notion of probabilistic system cor-
responds to a different point of view: all the available information at any time is 
modeled by probability distributions, built from repeated experiments. A fuzzy 
system can be described either as a set of fuzzy logical rules or as a set of fuzzy 
equations [23][24]. Fuzzy logical rules must be understood as propositions asso-
ciated with possibility distributions. For instance, “if last input is small, then if last 
output is large, then current output is medium”, where “small” is a fuzzy set on the 
universe of inputs, and “medium” and “large” are fuzzy sets on the universe of 
outputs [25][26] . Let ut , yt, and st denote respectively the input, output, and state 
of a system S at time t. U, Y, S are respectively the set of possible inputs, outputs, 
and states [27][32].  Such a system is said to be deterministic if it is characterized 
by state equations of the form: 

 

                               
(1) 

 

s0  is called the initial state;  and Ω are functions from U X S and from S to S 

and Y, respectively. S is said to be nondeterministic if  St+1 and / or Yt, are not uni-
quely determined by Ut  and St  [33][1]. Let St+1 and Yt be the sets of possible val-
ues of St+1 and Yt, respectively, given Ut, and St. St+1 and Yt, may be understood as 
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binary possibility distributions over S and Y, respectively. In some cases a fuzzy 
system is used to control complex problem to obtain better results [8][9][6]. 

2.3 Fuzzy Control Systems 

Control systems theory, or what is called modern control systems theory today, 
can be traced back to the age of World War II, or even earlier, when the design, 
analysis, and synthesis of servomechanisms were essential in the manufacturing  
of electromechanical systems. The development of control systems theory has 
since gone through an evolutionary process, starting from some basic, simplistic, 
frequency-domain analysis for single-input single output (SISO) linear control 
systems, and generalized to a mathematically sophisticated modern theory of mul-
ti-input multi-output (MIMO) linear or nonlinear systems described by differential 
and/or difference equations. 

It is believed that the advances of space technology in the 1950s completely 
changed the spirit and orientation of the classical control systems theory: the chal-
lenges posed by the high accuracy and extreme complexity of the space systems, 
such as space vehicles and structures, stimulated and promoted the existing control 
theory very strongly, developing it to such a high mathematical level that can use 
many new concepts like state-space and optimal controls. The theory is still rapid-
ly growing today; it employs many advanced mathematics such as differential 
geometry, operation theory, and functional analysis, and connects to many theoret-
ical and applied sciences like artificial intelligence, computer science, and various 
types of engineering. This modern control systems theory, referred to as conven-
tional or classical control systems theory, has been extensively developed. The 
theory is now relatively complete for linear control systems, and has taken the lead 
in modern technology and industrial applications where control and automation 
are fundamental.  Basically, the aim of fuzzy control systems theory is to extend 
the existing successful conventional control systems techniques and methods as 
much as possible, and to develop many new and special-purposed ones, for a 
much larger class of complex, complicated, and ill-modeled systems – fuzzy sys-
tems. This theory is developed for solving real-world problems [11]. 

Fuzzy controllers have been well accepted in control engineering practice. The 
major advantages in all these fuzzy-based control schemes are that the developed 
controllers can be employed to deal with increasingly complex systems to imple-
ment the controller without any precise knowledge of the structure of entire  
dynamic model. As a knowledge-based approach, the fuzzy controller usually de-
pends on linguistics-based reasoning in design. However, even though a system is 
well defined mathematically, the fuzzy controller is still preferred by control engi-
neers since it is relatively more understandable whereas expert knowledge can be 
incorporated conveniently. Recently, the fuzzy controller of nonlinear systems 
was studied by many authors and has also been extensively adopted in adaptive 
control of robot manipulators. It has been proven that adaptive fuzzy control is a 
powerful technique and being increasingly applied in the discipline of systems 
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control, especially when the controlled system has uncertainties and highly nonli-
nearities [12]. 

3 Case Study 

In this Section the problem description is presented and results are shown. 

3.1 Problem Description 

In this work the case study considers the problem of water level control for a 3 
tanks system where the 3 tanks include valves that are opened or closed, these 
valves must be well controlled to give the desired level of water in each of the 
three tanks. The end tanks have a valve that fills and in the middle of the 3 tanks 
there are two valves that control the water level between tanks 1 and 2, and tanks 
2 and 3. The water tank 3 has a valve to output more water flow, the case study 
model is made in Simulink and has three inputs (tank 1, tank2 and tank3), and 
these inputs correspond to the existing water levels in tank 1, tank2 and tank3. The 
outputs of the model made in Simulink has five valves, which provide water (v1 
and v2) valves that are interconnected tanks (v13 and v32) and finally the output 
valve is responsible for the drainage of the three tanks (v20).  The problem is 
shown in Figure 1. 

 

Fig. 1 Water control of 3 tanks 

3.2 Type-1 Fuzzy System 

For this case study it was necessary to use fuzzy systems to realize the simulation, 
each fuzzy system has one or two inputs depend on the valve. The Valves that are 
between 2 tanks are using 2 inputs (tank1 and tank2 or tank2 and tank3). The out-
puts are the valves, in total 5 fuzzy systems were used in this problem. The fuzzy 
systems are shown in Figures 2 to 6. 

V1 

V13 V32

V2 

V20 
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Fig. 2 Fuzzy system to control valve 1 

 

Fig. 3 Fuzzy system to control valve 13 
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Fig. 4 Fuzzy system to control valve 32 

 

Fig. 5 Fuzzy system to control valve 2 
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Fig. 6 Fuzzy system to control valve 20 

 

Fig. 7 Simulation plant 
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Fig. 8 Simulation plant showing inputs and outputs 

 

Fig. 9 Tank water simulation plant 
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Fig. 10 Data block of the simulation plant 

Having created the previous fuzzy systems, the simulation was performed  
using the Matlab language. The simulation plant is shown in Figures 7 
to 10. 

The simulation was carried out using the fuzzy systems shown before, the 
membership functions used in this case were triangular, Gaussian and trapezoidal, 
and the fuzzy systems with the different types of membership functions used in 
this case of study are shown in Figures 11 to 16.  

All the valves in the inputs and outputs have 3 membership functions, all the 
membership functions in each input or output have the same position initially and 
this is because a genetic algorithm is applied to optimize each membership  
function.  

When the genetic algorithm is used the membership functions start to move 
within the specified range. Later in section 3.3 the fuzzy system with genetic al-
gorithm is presented where it shows new positions in all de membership func-
tions. Figures 11 to 16 show the membership functions in the inputs and outputs 
of all fuzzy systems. The fuzzy systems that have one input are presented in 
Figures 11 to 13, and the fuzzy systems that have 2 inputs are presented in  
Figures 14 to 16. 
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Fig. 11 Triangular membership functions use in valve 1, valve 2 and valve 20 

 

 

Fig. 12 Gaussian membership functions use in valve 1,valve 2 and valve 20  
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Fig. 13 Trapezoidal membership functions use in valve 1,valve 2 and valve 20 

 

 

Fig. 14 Triangular membership functions use in valve 13 and valve 32 
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Fig. 15 Gaussian membership functions use in valve 13 and valve 32 

 

 

Fig. 16 Trapezoidal membership functions use in valve 13 and valve 32  
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Table 1 Results for the simulation plant using triangular membership functions 

Using Triangular 
Membership Function

Error 

valve 1 0.9246 

valve 13 0.9278 

valve 2 0.9278 

valve 20 0.9279 

valve 32 0.8341 

Table 2 Results for the simulation plant using Gaussian membership functions 

Using Gaussian  
Membership Function

Error 

valve 1 0.898 

valve 13 0.8994 

valve 2 0.8994 

valve 20 0.8995 

valve 32 0.8463 
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Fig. 18 Error of Valve 13 wi

Fig. 19 Error of Valve 2 with
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Fig. 20 Error of Valve 20 wi

Fig. 21 Error of Valve 20 wi
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Fig. 22 Rules of the 5 type-1 fuzzy systems 

The rules used to control in the case of the three tanks are shown in Figure 22. 
The set of rules shown above rules are for the five fuzzy systems used to con-

trol the open and closed valves from the three tanks. 
The first three rules are the controller number 1, the 9 following rules are con-

troller 2, the third set of rules are the controller 3, the fourth set of 3 rules are the 
controller 4 and the last 9  rules are controller  number 5.  

The difference in the number of rules of each controller is because depending 
on the number of inputs, outputs and membership functions of fuzzy system will 
have a number of rules to be had. For example to control valve number one has 
only one input which is the tank 1, one output and has  3 membership functions  
therefore the number of rules are 3. The valves between 2 tanks need 2 inputs 
(tank1 and tank2 or tank 2 and tank3), these valves have one output and three 
membership functions therefore need 9 rules for fuzzy systems.  
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After the use of the genetic algorithm the results obtained in the simulation are 

shown in Table 4. 

Table 4 Results for the simulation plant using triangular membership functions and genetic 
algorithm 

Error using triangular membership functions and genet-
ic algorithm 

Valve 13 Valve 1 Valve 20 Valve 2 Valve 32 

0.109 0.1146 0.0939 0.2077 0.218 

0.131 0.1228 0.1329 0.1861 0 

0.119 0.1275 0.111 0.239 0 

0.115 0.1116 0.1092 0.2216 0 

0.109 0.0908 0.1191 0.214 0 

0.109 0.1132 0.0954 0.1922 0 

0.117 0.1225 0.1003 0.1853 0 

0.107 0.1102 0.1146 0.1938 0 

0.105 0.0993 0.0851 0.2428 0 

0.125 0.1196 0.113 0.1433 0 

0.123 0.1191 0.1394 0.246 0 

0.115 0.1114 0.091 0.1539 0 

0.117 0.1231 0.101 0.1818 0 

0.107 0.1444 0.0661 0.1366 0 

0.117 0.1225 0.1003 0.1853 0 

  
The above table shows a lower error in comparison with only using a type-1 

fuzzy system. In the last table a genetic algorithm was used with triangular mem-
bership functions, the error is different in each valve even though the parameters 
are the same in all the tests. Some Graphics are shown in Figures 24 to 29 to 
present the behavior of each valve. In the last graphic the behavior of all valves is 
shown to observe all the behaviors. 
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Fig. 24 Error of Valve 13 us
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Fig. 26 Error of Valve 20 us

Fig. 27 Error of Valve 2 usin
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Fig. 28 Error of Valve 32 us

Fig. 29 Behavior of each val
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Fig. 30 Best Fuzzy system of valve 1 using genetic algorithm 

Applying the genetic algorithm to a type-1 fuzzy system of each valve it was 
obtain the best fuzzy system of each valve as shown in Figures 30 to 34. 

Last figure represents the best fuzzy system of valve 1 and its membership 
function of the input and the output. Yellow box is the input of the fuzzy system 
and the blue box is the output of the fuzzy system. In next fuzzy systems all the 
inputs of each are the yellow boxes and the outputs are the blue boxes.  

All the fuzzy systems have 3 membership functions in the inputs and the out-
puts of each valve. When the genetic algorithm was implemented, more than 1 
fuzzy systems were obtained, but in this case the best of the 15 evolutions is  
presented. 



Genetic Optimization of Modular Type-1 Fuzzy Controllers 149
 

 

 

 

Fig. 31 Best Fuzzy system of valve 13 using genetic algorithm 
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Fig. 32 Best Fuzzy system of valve 32 using genetic algorithm 

Recall that this fuzzy system has two inputs because the valve 13 that is con-
trolled is fed by two tanks (Tank 1 and Tank2).  

This case is the same as that of the last fuzzy system, it needs two inputs to 
control the valve 32 because this valve is fed by two tanks (Tank 2 and Tank3). 
Valve 32 and valve 13 are the only ones needs two inputs, the reason is because as 
was explain those valves are between two tanks. 
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Fig. 33 Best Fuzzy system of valve 2 using genetic algorithm 

Fuzzy systems have become a tool that can be useful to try and model the com-
plex and nonlinear systems. And these fuzzy systems in this case study helps im-
prove control valves. Membership functions can be varied to get more results. 
These fuzzy systems use three membership functions to establish the level of open 
or closed for the valves, the level of each membership function in the valves are 
open completely, half open and close. 

The granulation of fuzzy systems may be increased and instead of using three 
membership functions it can be used 5 or another option, which could consider the 
valve as open medium, open, closed, half closed, fully closed. This depends on 
how you want to study the problem. 
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Fig. 34 Best Fuzzy system of valve 20 using genetic algorithm 

4 Conclusions 

A benchmark problem was used to test the proposed approach and based on the 
obtained results we can say that to achieve control of the present problem, a genet-
ic algorithm is a good alternative to obtain a good fuzzy controller.  

When a complex control problem is at hand, we start working on the case 
study, and once results are obtained with type-1 fuzzy systems it is a good choice 
to use a genetic algorithm for optimizing membership functions of the inputs and 
outputs of the controllers and to obtain better control, as was the case in this con-
trol problem. In the moment when genetic algorithm was used, results were better 
than with an initial type-1 fuzzy system, this is possible because in the moment 
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that genetic algorithm is applied, it moves the parameters of the membership  
functions and the system has more options to control de valves and the genetic al-
gorithm is evaluated to obtain the best fuzzy system to control the open and close 
valves and this is why better results are obtained by optimizing the membership 
functions. 
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Abstract. In this paper we propose a multi-objective hierarchical genetic algo-
rithm (MOHGA) for modular neural network optimization. A granular approach is 
used due to the fact that the dataset is divided into granules or sub modules. The 
main objective of this method is to know the optimal number of sub modules or 
granules, but also allow the optimization of the number of hidden layers, number 
of neurons per hidden layer, error goal and learning algorithms per module. The 
proposed MOHGA is based on the Micro genetic algorithm and was tested for a 
pattern recognition application. Simulation results show that the proposed modular 
neural network approach offers advantages over existing neural network models. 
Finally the modular neural networks are joined using type-2 fuzzy integration, 
which allows having a system with a better behavior and results. 

1 Introduction 

Hybrid intelligent systems are computational systems that integrate different intel-
ligent techniques. Examples of these techniques are modular neural networks 
(MNN) and genetic algorithms (GA). Hybrid intelligent systems are now being 
used to support complex problem solving and decision making in a wide variety of 
tasks. Hybrid intelligent systems allow the representation and manipulation of dif-
ferent types and forms of data and knowledge, which may come from various 
sources. In this paper these techniques are combined using a granular approach. It 
was decided to apply the proposed method to pattern recognition to test the ap-
proach with complex problems. 

Biometrics plays an important role in public security and information security 
domains. Using various physiological characteristics of the human, such as face, 
facial thermo grams, fingerprint, iris, retina, hand geometry etc., biometrics accu-
rately identifies each individual and distinguishes one from another [1]. 

The recognition of people is of great importance, since it allows us to have a 
greater control about when a person has access to certain information, area, or 
simply to identify if the person is the one who claims to be.  

The achieved results indicate that biometric techniques are much more precise 
and accurate than the traditional techniques. Other than precision, there have  
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always been certain problems which remain associated with the existing tradition-
al techniques. As an example consider possession and knowledge. Both can be 
shared, stolen, for-gotten, duplicated, misplaced or taken away. However the dan-
ger is minimized in case of biometric means [37]. 

There are many works that combine different techniques and they have demon-
strated that the integration of different intelligent techniques provide good results, 
such as in [19][29][30][31][32][34][35][42]. 

This paper is organized as follows: Section 2 contains the basic concepts used 
in this research work, section 3 contains the general architecture of the proposed 
method, section 4 presents experimental results and in section 5, the conclusions 
of this work are presented. 

2 Basic Concepts 

In this section we present a brief overview of the basic concepts used in this re-
search work. 

2.1 Modular Neural Networks 

An artificial neuron is a computational model inspired in the natural neurons.  
Natural neurons receive signals through synapses located on the dendrites or 
membrane of the neuron. When the signals received are strong enough (surpass a 
certain threshold), the neuron is activated and emits a signal though the axon. This 
signal might be sent to another synapse, and might activate other neurons. The 
complexity of real neurons is highly abstracted when modeling artificial neurons. 
These basically consist of inputs (like synapses), which are multiplied by weights 
(strength of the respective signals), and then computed by a mathematical function 
which determines the activation of the neuron. Another function (which may be 
the identity) computes the output of the artificial neuron (sometimes in depen-
dence of a certain threshold). ANNs combine artificial neurons in order to process 
information [5]. 

Neural networks (NNs) can be used to extract patterns and detect trends that are 
too complex to be noticed by either humans or other computer techniques [24]. 
The modular neural networks (MNNs) are comprised of modules. The idea on 
which this kind of learning structure is based on the divide-and-conquer paradigm: 
the problem should be divided into smaller sub problems that are solved by ex-
perts (modules) and their partial solutions should be integrated to produce a final 
solution [4][26][43]. A module can be a sub-structure or a learning sub procedure 
of the whole network [3]. 

The results of the different applications involving Modular Neural Networks 
(MNNs) lead to the general evidence that the use of modular neural networks im-
plies a significant learning improvement comparatively to a single NN and espe-
cially to the backpropagation NN. Each neural network works independently in its 
own domain. Each of the neural networks is build and trained for a specific task 
[28]. 
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2.2 Type-2 Fuzzy Logic 

Fuzzy logic is a useful tool for modeling complex systems and deriving useful 
fuzzy relations or rules [39]. However, it is often difficult for human experts to de-
fine the fuzzy sets and fuzzy rules used by these systems [47]. The basic structure 
of a fuzzy inference system consists of three conceptual components: a rule base, 
which contains a selection of fuzzy rules, a database (or dictionary) which defines 
the membership functions used in the rules, and a reasoning mechanism that per-
forms the inference procedure [7] [25] [56]. 

The concept of a type-2 fuzzy set, was introduced by Zadeh (1975) as an exten-
sion of the concept of an ordinary fuzzy set (henceforth called a “type-1 fuzzy 
set”). A type-2 fuzzy set is characterized by a fuzzy membership function, i.e., the 
membership grade for each element of this set is a fuzzy set in [0,1], unlike a type-
1 set where the membership grade is a crisp number in [0,1]. Such sets can be used 
in situations where there is uncertainty about the membership grades themselves, 
e.g., an uncertainty in the shape of the membership function or in some of its pa-
rameters. Consider the transition from ordinary sets to fuzzy sets. When we cannot 
determine the membership of an element in a set as 0 or 1, we use fuzzy sets of 
type-1. Similarly, when the situation is so fuzzy that we have trouble determining 
the membership grade even as a crisp number in [0,1], we use fuzzy sets of type-2 
[20][21][22][42]. 

Uncertainty in the primary memberships of a type-2 fuzzy set, Ã, consists of a 
bounded region that we call the “footprint of uncertainty” (FOU). Mathematically, 
it is the union of all primary membership functions [9][10][33]. 

A type-2 fuzzy set Ã, is characterized by the membership function (see expres-
sion 1): 

Ã= {((x,u), μÃ  (x,u)) | ∀x ∈  X, ∀u ∈  Jx ⊆ [0,1] } (1) 

where x means the input variable, u means a type-1 membership function, Jx 
means an interval ⊆ [0,1], and μÃ means a type-2 membership function. Another 
expression (2) for A is, 

Ã= ∫x∈X∫u∈Jx μÃ (x,u)/ (x,u)  Jx ⊆ [0,1]   (2) 

The distinction between type-1 and type-2 is associated with the nature of the 
membership functions, which is not important when forming the rules. The struc-
ture of the rules remains exactly the same in the type-2 case, but now some or all 
of the sets involved are type-2.  

Consider a type-2 FLS having r inputs x1 ∈ X1, …, xr ∈ Xr and one output y ∈ 
Y. As in the type-1 case, we can assume that there are M rules; but, in the type-2 
case the lth rule has the form 

R1 : IF x1 is  Ã1
1 and … xp is  Ã1

p , THEN y is Y1  1=1,…,M  

This rule represents a type-2 fuzzy relation between the input space X1 × …×  
Xr, and the output space, Y, of the type-2 fuzzy system. 
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If we considered two fuzzy sets (type-2) named Ã1 and Ã2 their union is anoth-
er type-2 fuzzy set, just as the union of type-1 fuzzy sets A1 and A2 is another 
type-1 fuzzy set. More formally, we have the following expression (3) 

Ã1 ∪ Ã2 = ∫x∈X μÃ1∪Ã2 (x)/ x (3) 

The intersection of Ã1 and Ã2 is another type-2 fuzzy set, just as the intersection of 
type-1 fuzzy sets A1 and A2 is another type-1 fuzzy set. More formally, we have 
the following expression (4) 

Ã1 ∩ Ã2 = ∫x∈X μÃ1∩Ã2 (x)/ x    (4) 

The complement of set Ã is another type-2 fuzzy set, just as the complement of 
type-1fuzzy set A is another type-1 fuzzy set. More formally we have the follow-
ing expression (5) 

Ã’ = ∫x μÃ’1 (x)/ x (5) 

The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets, and in 
general will not change for type-n. A higher type number just indicates a higher 
degree of fuzziness [8].  

2.3 Multi-Objective Hierarchical Genetic Algorithm 

A Genetic algorithm (GA) is an optimization and search technique based on the 
principles of genetics and natural selection [18][36][44]. GAs are nondeterministic 
methods that employ crossover and mutation operators for deriving offspring. 
GAs work by maintaining a constant-sized population of candidate solutions 
known as individuals (chromosomes) [13][24][38]. 

Introduced in [45], a Hierarchical genetic algorithm (HGA) is a type of genetic 
algorithm. Its structure is more flexible than the conventional GA. The basic idea 
under hierarchical genetic algorithm is that for some complex systems, which can-
not be easily represented, this type of GA can be a better choice. The complicated 
chromosomes may provide a good new way to solve the problem [46][48]. 

Multi-objective optimization (MO) seeks to optimize the components of a vec-
tor-valued cost function. Unlike single objective optimization, the solution to this 
problem is not a single point, but a family of points known as the Pareto-optimal 
set. Each point in this surface is optimal in the sense that no improvement can be 
achieved in one cost vector component that does not lead to degradation in at least 
one of the remaining components [15]. 

There are three general approaches to multi-objective optimization. The first is 
to combine the individual objective functions into a single composite function 
(Aggregating functions). The second is to use Population-based approaches and 
the third is to use Pareto-based approaches. A Pareto optimal set is a set of solu-
tions that are non-dominated with respect to each other. Pareto optimal sets can be 
of varied sizes, but the size of the Pareto set increases with the increase in the 
number of objectives [2]. 
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In this work the multi-objective genetic algorithm is based on a Micro genetic 
algorithm, proposed in [11][12]. Two main characteristics of this kind of genetic 
algorithm are that it works with a small population and has a re initialization 
process. 

2.4 Granular Computing 

Granular computing (GrC), as a general computing paradigm of problem solving, 
has been received much attentions recently, although its basic ideas and principles 
have been studied extensively in various research communities and application 
domains for a long time in explicit or implicit fashions. Zadeh [57] first introduced 
the notion of information granulation in 1979 and suggested that fuzzy set theory 
may find potential applications in this respect, which pioneers the explicit study of 
granular computing. With the concept of his information granulation, Zadeh fur-
ther presented granular mathematics [58]. Pawlak proposed the rough set theory to 
deal with inexact information by using rough sets to approximate a crisp set in 
1982 [41], and investigated the granularity of knowledge from the point of view of 
rough set theory [40]. Hobbes [23] presented a theory of granularity as the base of 
knowledge representation, abstraction, heuristic search, and reasoning in 1985. In 
his theory the problem world is represented as various grains and only interesting 
ones are abstracted to learn concepts. 

The conceptualization of the world can be performed at different granularities 
and switched between granularities. In 1992, Giunchigalia and Walsh presented a 
theory of abstraction to improve the conceptualization of granularities [16]. Lin 
suggested the term “granular computing” to label this growing research field in 
1997 [27]. Yao investigated the trinity model of granular computing from three 
perspectives: philosophy, methodology, and computation [54][17]. 

Granular computing is often defined as an umbrella term to cover many theo-
ries, methodologies, techniques, and tools that make use of granules in complex 
problem solving. Granular computing is a new term for the problem solving para-
digm and may be viewed more on a philosophical rather than technical level 
[49][50][51][52]. 

Granular computing has begun to play important roles in bioinformatics, e-
Business, security, machine learning, data mining, high-performance computing 
and wireless mobile computing in terms of efficiency, effectiveness, robustness 
and uncertainty [6][54][55]. 

A granule may be interpreted as one of the numerous small particles forming a 
larger unit. The philosophy of thinking in terms of levels of granularity, and its 
implementation in more concrete models, would result in disciplined procedures 
that help to avoid errors and to save time for solving a wide range of complex 
problems. At least three basic properties of granules are needed: internal proper-
ties reflecting the interaction of elements inside a granule, external properties re-
vealing its interaction with other granules and, contextual properties showing the 
relative existence of a granule in a particular environment [53]. 
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3   General Architecture of the Proposed Method 

The proposed method combines modular neural networks (MNN) and fuzzy logic 
as response integrators. In particular, it can be used for pattern recognition. This 
proposed method is able to use some data sets, for example to use "N" biometric 
measures to identify someone and the data of each biometric measure would be 
divided into different numbers of sub modules. The general architecture of the 
proposed method is shown in Figure 1. For joining the different responses of each 
biometric measure fuzzy integration is used. The proposed method also performs 
the optimization of the modular neural networks (as number of layers, goal error, 
number of neurons, etc.) and the different parameters of the fuzzy integrator.  

 

Fig. 1 The general architecture of the proposed method 

3.1 General Architecture of the Proposed Method for the 
Modular Neural Network 

The proposed method for MNN consists in changing the number of modules and 
the data per module, for example in the case of human recognition, it means that 
there will be different number of persons in each sub module. The number of sub 
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modules can be established by a genetic algorithm, but at this moment the number 
is established randomly. The architecture of the proposed method for the modular 
neural network is shown in Figure 2. 

This method also chooses randomly which images will be used for training, but 
first the percentage of images for training is established (at this moment that per-
centage is defined randomly). 

 
Fig. 2 The architecture of proposed method for the modular neural network 

3.2 Description of the Multi-Objective Hierarchical Genetic 
Algorithm for MNN Optimization 

With the purpose of knowing the optimal number of modules and the percentage 
of data for training, it is proposed the use of a genetic algorithm that allows the 
optimization of these parameters and others as the number of hidden layers, num-
ber of neurons per hidden layer, error goal and learning algorithms per module.  

Figure 3 shows the chromosome, which was proposed for optimization of the 
neural networks. 

The way in which the multi-objective hierarchical genetic algorithm works is il-
lustrated in Figure 4 and described in more detail below.  

First, a random population is generated. This random population is divided in 
two parts: a non-replaceable and replaceable portion. The non-replaceable portion 
never changes during the evolution, this helps to provide diversity. The replacea-
ble portion experiences changes after certain condition is satisfied, this condition 
is called nominal convergence. 
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Fig. 3 The chromosome of the multi-objective hierarchical genetic algorithm for the MNN 

The working population at the beginning is taken (with a certain probability) 
from both portions of the main population.  During each cycle, the MOHGA uses 
conventional genetic operators. 

The external memory is initially empty, in each cycle the non-dominated vec-
tors found are saved in that memory, logically a comparison is performed between 
the new vectors found and vectors already stored. 

The MOHGA has two kinds of convergence. The first is the usually used (for 
example when it has the maximum number of cycle or generations, or when the 
value desired of one objective function is obtained). The second is called Nominal 
Convergence, in this case is established each 5 generations, here two non domi-
nated vectors are taken of the external memory and these are compared with two 
vectors of the Replaceable portion, if the two vectors taken of the replaceable por-
tion are dominated by the others, those vector are replaceable for the two vectors 
of the external memory, then the working population is reinitialized. 

3.3 Objective Functions 

In order to not only get the network that provides us with the lowest error of rec-
ognition another objective function is set, and so not only obtain the best network 
with the lowest error of recognition , but also obtain a modular neural network that 
uses the lowest percentage of data for the training phase. The objective functions 
are defined below: 
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Fig. 4 Diagram that illustrates the way in which the multi-objective hierarchical genetic al-
gorithm works 

 
      (2) 

 
      (3) 

3.4 Type-2 Fuzzy Integration 

The proposed method uses type-2 fuzzy logic for combining the response of each 
modular neural network. Four non-optimized fuzzy integrator were used to  
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perform tests in Figure 5 an example is shown. In the method, the number of in-
puts of each fuzzy integrator depends on how many modular neural networks will 
be needed, in this work 2 inputs are needed, because this method is tested for hu-
man recognition based on ear and voice biometrics. 

 

Fig. 5 Example of fuzzy integrator 

In Figure 6, the fuzzy integrator #1 is presented, this fuzzy integrator uses 
trapezoidal membership functions, in this case, 3 membership functions in each 
input and output are used. The rules for this fuzzy integrator are shown in  
Figure 8. 

 

Fig. 6 Fuzzy Integrator #1 
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Fig. 7 Fuzzy Integrator #2 

 

Fig. 8 Rules of the fuzzy Integrator #1 

 
Fig. 9 Rules of the fuzzy Integrator #2 to #4 
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Fig. 10 Fuzzy Integrator #3 

 

Fig. 11 Fuzzy Integrator #4 

In Figure 7, the fuzzy integrator #2 is presented, this fuzzy integrator uses trape-
zoidal membership functions, in this case 4 membership functions in each input and 
output are used. The rules for the fuzzy integrator #2 to #4 are shown in Figure 9. 
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In Figure 10, the fuzzy integrator #3 is presented, this fuzzy integrator uses 

gBell membership functions, in this case 4 membership functions in each input 
and output are used. 

In Figure 11, the fuzzy integrator #4 is presented, this fuzzy integrator uses tra-
pezoidal and gBell membership functions, in this case 4 membership functions in 
each input and the output are used. 

3.5 Databases 

The databases used in this work are described below in more detail. 

3.5.1 Ear Database 

We used a database of the University of Science and Technology of Beijing [14]. 
The database consists of 77 people, which contain 4 images per person (one ear), 
the image dimensions are 300 x 400 pixels, the format is BMP. A sample of ear 
images is shown in Figure 12.  

 

Fig. 12 Sample of ear database 

The persons are students and teachers from the department of Information Engi-
neering. Two images with angle variation and one with illumination variation are used. 
Figure 13 shows an example of the pre-processing applied to each image in the ear. 

 

Fig. 13 Sample pre-processing done to the images of ear 
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3.5.2 Voice Database 

In the case of voice, the database consists of 10 voice samples (of 77 persons), 
WAV format. The persons are students from the Tijuana Institute of Technology. 
The word that they said in Spanish was "ACCESAR". To preprocess the voice the 
Mel Frequency Cepstral Coefficients were used. 

4 Experimental Results 

In this section the results obtained in this work are presented. It was decided to use 
the database already described above. For the integration of responses the winner 
takes all method was used.  

4.1 Non Optimized 

In this test the images percentage and the images, which would be used for train-
ing, were established randomly. The non optimized results of the modular neural 
network are shown below. 

4.1.1 Non Optimized Results of Ear 

In this section, the non optimized results of ear are shown. Two tests are pre-
sented, in the first test, 3 modules are used, and in the second test, the number of 
modules is random. 

4.1.1.1 Non Optimized Results of Ear with 3 Modules 
In this test, it is established that 3 was the number of modules, the variables that 
were established randomly were the percentage of images used and the images, 
which would be used for training.  

The best 5 results for the ear are shown in Table 1. In this test, it can be noticed 
that when the number of data per module is varied the rate of recognition varies. 

It can be noticed that in the training # 4, that when the images 2, 3, and 4 are 
used a rate of recognition of 100% is obtained. 

4.1.1.2 Non Optimized Results of Ear with Different Number of Modules 
In this test, the number of modules, the percentage of images and the images, 
which would be used for training were established randomly. The 6 best results for 
the ear with different number of modules are shown in Table 2. In this test, it can 
notice that when the number of data per module and the number of sub modules 
are varied the rate of recognition varies. 

It can be noticed that in the training # 1, that when the images 1, 2, and 3 are 
used a rate of recognition of 100% is obtained. 
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Table 1 The best results for the ear (Non Optimized) 

Training Images 
for training 

Persons 
per module 

Recognition 
Rate 

T1O1  (1,3 and 4) 
Module # 1 (1 to 6)  

Module # 2 (7 to 14)  
Module # 3 (15 to 77)  

67.53% 
(52/77)  

T1O2  (2 and 4)  
Module # 1 (1 to 38)  
Module # 2 (39 to 70)  
Module # 3 (71 to 77)  

77.92% 
(120/154)  

T1O3  (1 and3)  
Module # 1 (1 to 9)  

Module # 2 (10 to 44)  
Module # 3 (45 to 77)  

83.11% 
(128/154)  

T1O4  
(2, 3 and  

4)  

Module # 1 (1 to 40)  
Module # 2 (41 to 50)  
Module # 3 (51 to 77)  

100% (77/77)  

T1O5  (2 and 3)  
Module # 1 (1 to 23)  
Module # 2 (24 to 47)  
Module # 3 (48 to 77)  

93.50% 
(144/154)  

Table 2 The best results for the ear (Non Optimized) 

Training Images 
for training 

Persons 
per module 

Recognition 
Rate 

T2O1  (1,2 and 3) 

Mod. 1  (1 to 2) 
Mod. 2 (3 to 11) 
Mod. 3 (12 to 25) 
Mod. 4 (26 to 36) 
Mod. 5 (37 to 43) 
Mod. 6 (44 to 58) 
Mod. 7 (59 to 62) 
Mod. 8 (63 to 77) 

100% 
(77/77) 

T2O2  (2 and 3) 

Mod. 1 (1 to 5) 
Mod. 2 (6 to 13) 
Mod. 3 (14 to 49) 
Mod. 4 (50 to 52) 
Mod. 5 (53 to 77) 

89.61% 
(138/154) 

T2O3  (2 and 4) 
Mod. 1 (1 to 11) 
Mod. 2 (12 to 51) 
Mod. 3 (52 to 77) 

81.16% 
(125/154) 

T2O4  (2 and 4) 

Mod. 1 (1 to 18) 
Mod. 2 (19 to 30) 
Mod. 3 (31 to 45) 
Mod. 4 (46 to 51) 
Mod. 5 (52 to 59) 
Mod. 6 (60 to 77) 

83.11% 
(128/154) 

T2O5 (3 and 4) 

Mod. 1 (1 to 6) 
Mod. 2 (7 to 14) 
Mod. 3 (15 to 18) 
Mod. 4 (19 to 26) 
Mod. 5 (27 to 42) 
Mod. 6 (43 to 51) 
Mod. 7 (52 to 58) 
Mod. 8 (59 to 65) 
Mod. 9 (66 to 77) 

87.01% 
(134/154) 
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4.1.2 Non Optimized Results of Voice 

In this section, the non optimized results of ear are shown. Two tests are pre-
sented, in the first test, 3 modules are used, and in the second test, the number of 
modules is random. 

4.1.2.1 Non Optimized Results of Voice with 3 Modules 
In this test, it is established that 3 was the number of modules, the variables that 
were established randomly were the percentage of images used and the images, 
which would be used for training. The 6 best results for the ear with 3 modules are 
shown in Table 3.   

It can be noticed that in the training # 3, that when the voices 1, 3, 5, 7, 8 and 
10 are used, a rate of recognition of  96.75% using 8 sub modules is obtained.  

Table 3 The best results for voice (Non Optimized) 

Training Voices 
for training 

Persons 
per module 

Recognition 
Rate 

T1V1 
53% 

(1,3,6,7 and 9) 

Module # 1 (1 to 22) 
Module # 2 (23 to 57) 
Module # 3 (58 to 77) 

278/385 
72.20% 

 

T1V2 
48% 

 (1,2,5,6 and 7) 

Module # 1 (1 to 39) 
Module # 2 (40 to 68) 
Module # 3 (69 to 77) 

260/385 
67.53% 

 

T1V3 
35% 

(2,5,8 and 9) 

Module # 1 (1 to 36) 
Module # 2 (37 to 68) 
Module # 3 (69 to 77) 

401/462 
86.79% 

T1V4 
46% 

(3,5,6,7 and 10) 

Module # 1 (1 to 40) 
Module # 2 (41 to 67) 
Module # 3 (68 to 77) 

347/385 
90.12% 

 
T1V5 59% 

(1,3,5,7,8 and 10)
Module # 1 (1 to 7) 

Module # 2 (8 to 39) 
Module # 3 (40 to 77) 

298/308 
96.75% 

 
4.1.2.2 Non Optimized Results of Voice with Different Number of Modules 
In this test, the number of modules, the percentage of images and the images, 
which would be used for training were established randomly.  

The best 5 results for the voice are shown in Table 4. In this test, we can no-
tice that when the number of data per module is varied the rate of recognition 
varies. 

It can be noticed that in the training # 3, that when the voices 1, 3, 5, 7, 8 
and 10 are used, a rate of recognition of  96.75% using 8 sub modules is  
obtained.  
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Table 4 The best results for voice (Non Optimized)  

Training Voices 
for training 

Persons 
per module 

Recognition 
Rate 

T2V1 
53% 

(4,5,7,9,10) 

Mod. # 1 (1 a 14) 
Mod. # 2 (15 a 26) 
Mod. # 3 (27 a 38) 
Mod. # 4 (39 a 41) 
Mod. # 5 (42 a 45) 
Mod. # 6 (46 a 62) 
Mod. # 7 (63 a 77) 

360/385 
93.50% 

 
 

T2V2 
81% 

(1,2,3,4,5,6,8,10) 

Mod. # 1 (1 a 11) 
Mod. # 2 (12 a 40) 
Mod. # 3 (41 a 77) 

112/154 
72.72% 

 
 

T2V3 
9% 
(4) 

Mod. # 1 (1 a 16) 
Mod. # 2 (17 a 32) 
Mod. # 3 (33 a 45) 
Mod. # 4 (46 a 64) 
Mod. # 5 (65 a 77) 

534/693 
77.05% 

 
 

T2V4 
71% 

(1,2,3,4,5,6,8) 

Mod. # 1 (1 a 15) 
Mod. # 2 (16 a 36) 
Mod. # 3 (37 a 53) 
Mod. # 4 (54 a 58) 
Mod. # 5 (59 a 63) 
Mod. # 6 (64 a 77) 

201/231 
87.01% 

 
 

T2V5 
65% 

(1,3,4,7,8,9,10) 

Mod. # 1 (1 a 3) 
Mod. # 2 (4 a 17) 

Mod. # 3 (18 a 19) 
Mod. # 4 (20 a 28) 
Mod. # 5 (29 a 33) 
Mod. # 6 (34 a 53) 
Mod. # 7 (54 a 60) 
Mod. # 8 (61 a 77) 

226/231 
97.83% 

 
 

 

4.2 Optimized Results 

These tests make use of the multi-objective hierarchical genetic algorithm, this 
MOHGA allows the optimization of parameters of the modular neural network, 
such as number of sub modules, percentage of data for training, number of hid-
den layers, number of neurons per hidden layer, error goal and learning algo-
rithms per module. The solutions that have a recognition rate greater than 97% 
are taken, and of the resulting set, the solution with lower percentage of data is 
the best for us. 
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4.2.1 Optimized Results of the Ear 

The main parameters used in this evolution are shown in Table 5 and the Pareto 
optimal set found for the ear are shown in Figure 14. 

Table 5 Main parameters of the MOHGA 

Memory 
Size  

Non-Replaceable 
Memory  

Replaceable 
Memory 

Working 
Memory  

Pareto 
Optimal 

Duration  

50  25  25  5  7  12:48:08  

 

Fig. 14 Pareto optimal set for the evolution of the ear 

The solutions found in the Pareto optimal set are shown in Table 6. 

Table 6 The best results for the ear (Pareto optimal set) 

Solution  Num. of 
Modules 

%  
Of data  

Total rec.  Error  

SO1 5 69% 100% 0 

SO2 6 68% 97.40% 0.0260 

SO3 5 39% 94.80% 0.0519 

SO4 5 25% 75.75% 0.2424 

SO5 9 17% 74.02% 0.2597 

SO6 9 17% 74.02% 0.2597 

SO7 5 10% 59.30% 0.4069 
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The different architectures found by the proposed MOHGA are shown in  
Table 7. 

Table 7 The best result of the ear (Optimized) 

Solu-
tion 

% and 
images 

Num. Hidden layers 
and Num. of neurons

Persons 
per module 

Rec. 
Rate 

Error 

SO1  
69% 

(2,3 and 
4) 

3(173,135,44) 
2(153,120) 

4(72,184,96,116) 
2(197,166) 

3(164,22,94) 

Module # 1 (1 to 6) 
Module # 2 (7 to 13) 

Module # 3 (14 to 27) 
Module # 4 (28 to 53) 
Module # 5(54 to 77) 

77/77 
100% 

0 

SO2 
68% (1,2 

and 3) 

2(41,23) 
3(129,181,30) 

5(82,93,68,140,33) 
4(109,113,131,178) 

1(27) 
1(90) 

Module # 1 (1 a 19) 
Module # 2 (20 a 21) 
Module # 3 (22 a 42) 
Module # 4 (43 a 60) 
Module # 5 (61 a 68) 
Module # 6 (69 a 77) 

75/77 
97.40% 

0.0260 

SO3 
39% 

(2 and 3) 

4(137,117,163,30) 
4(198,94,151,100) 
4(59,198,102,133) 

3(170,140,173) 
3(113,140,56) 

Module # 1 (1 a 18) 
Module # 2 (19 a 39) 
Module # 3 (40 a 57) 
Module # 4 (58 a 64) 
Module # 5 (65 a 77) 

146/154 
94.80% 

0.0519 

SO4 
25%  
(1) 

3(61,133,146) 
1(114) 

4(82,169,30,123) 
2(64,184) 

2(129,150) 

Module # 1 (1 a 17) 
Module # 2 (18 a 32) 
Module # 3 (33 a 48) 
Module # 4 (49 a 60) 
Module # 5 (61 a 77) 

175/231 
75.75% 

0.2424 

SO5 
17% 
(1) 

2(76,169) 
1(59) 

5(135,103,176,146,198) 
3(175,133,77) 

4(128,177,123,167) 
2(167,111) 
2(180,171) 

4(148,148,22,58) 
4(37,82,86,109) 

Module # 1 (1 a 12) 
Module # 2 (13 a 20) 
Module # 3 (21 a 25) 
Module # 4 (26 a 29) 
Module # 5 (30 a 33) 
Module # 6 (34 a 48) 
Module # 7 (49 a 58) 
Module # 8 (59 a 62) 
Module # 9 (63 a 77) 

171/231 
74.02% 

0.2597 

SO6 
17%  
(4) 

2(76,169) 
1(59) 

5(135,103,176,146,198) 
3(175,133,77) 

2(128,177) 
4(167,111,88,81) 

2(180,171) 
3(148,148,22) 

2(37,82) 

Module # 1 (1 a 10) 
Module # 2 (11 a 18) 
Module # 3 (19 a 23) 
Module # 4 (24 a 26) 
Module # 5 (27 a 35) 
Module # 6 (36 a 41) 
Module # 7 (42 a 57) 
Module # 8 (58 a 62) 
Module # 9 (63 a 77) 

171/231 
74.02% 

0.2597 
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Table 7 (continued) 

SO7 
10% 
(4) 

2(146,190) 
2(80,60) 

3(129,170,72) 
3(46,36,181) 

1(112) 

Module # 1 (1 a 25) 
Module # 2 (26 a 42) 
Module # 3 (43 a 65) 
Module # 4 (66 a 68) 
Module # 5 (69 a 77) 

137/231 
59.30% 

0.4069 

4.2.2 Optimized Results of the Voice 

The main parameters used in this evolution are shown in Table 8 and the Pareto 
Optimal set found for the voice are shown in Figure 15. 

 

Fig. 15 Pareto optimal set of the evolution of voice 

Table 8 Main parameters of the MOHGA 

Memory 
Size  

Non-Replaceable 
Memory  

Replaceable 
Memory 

Working 
Memory  

Pareto 
Optimal 

Duration  

50  25  25  5  9 01:51:12  

 
The solutions found in the Pareto optimal set are shown in Table 9. 
 
 
 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

70

80

Objective 1.- Error

O
bj

ec
tiv

e 
2.

- 
P

er
ce

nt
ag

e 
of

 D
at

a



Multi-Objective Hierarchical Genetic Algorithm 177
 

Table 9 The best results for voice (Pareto Optimal) 

Solution Num. of 
Modules 

%  
Of data 

Total rec. Error 

SV1 5 79% 98.05% 0.0195 
SV2 9 49% 97.40% 0.0260 
SV3 9 44% 96.96% 0.0303 

SV4 5 38% 95.88% 0.0411 
SV5 10 19% 89.44% 0.1055 

SV6 10 19% 89.44% 0.1055 
SV7 7 17% 83.76% 0.1623 

SV8 7 7% 74.45% 0.2554 
SV9 6 4% 73.73% 0.2626 

 
The different architectures found by the proposed MOHGA are shown in Table 10. 

Table 10 The best result of the voice (Optimized) 

Solu-
tion 

% and 
images

Num. Hidden layers 
and Num. of neurons 

Persons 
per module 

Rec. 
Rate 

Error 

SV1  

79%  
(1,2,4,5,
6,8,9 
and 10) 

3(171,47,23) 
1(196) 

4(131,197,60,38) 
3(149,102,124) 

2(154,93) 

Module # 1 (1 a 19) 
Module # 2 (20 a 46) 
Module # 3 (47 a 59) 
Module # 4 (60 a 73) 
Module # 5 (74 a 77) 

151/154
98.05% 

0.0195 

SV2 
49% 

(1,3,8,9 
and 10) 

4 (57,144,128,83) 
4 (156,189,158,193) 

5(123,105,169,110,105) 
1(89) 

3(78,143,62) 
2(101,38) 

4(22,60,91,173) 
4(81,128,139,118) 
4(145,28,187,32) 

Module # 1(1 a 14) 
Module # 2(15 a 35) 
Module # 3(36 a 46) 
Module # 4(47 a 50) 
Module # 5(51 a 53) 
Module # 6(54 a 55) 
Module # 7(56 a 64) 
Module # 8(65 a 72) 
Module # 9(73 a 77) 

375/385
97.40% 

0.0260 

SV3 
44%  

(2,5,9 
and 10) 

4 (36,178,109,162) 
4 (165,106,128,83) 

3 (83,94,118) 
2 (139,60) 

3 (68,195,127) 
4 (68,61,103,181) 
4 (61,137,59,187) 

3 (46,87,76) 
5 (82,47,189,32,129) 

Module # 1(1 a 8) 
Module # 2(9 a 19) 

Module # 3(20 a 26) 
Module # 4(27 a 34) 
Module # 5(35 a 43) 
Module # 6(44 a 54) 
Module # 7(55 a 57) 
Module # 8(58 a 66) 
Module # 9(67 a 77) 

448/462
96.96% 

0.0303 
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Table 10 (continued) 

SV4 
38%  

(2,3,8 
and 10) 

1 (92) 
3 (183,52,119) 

1 (21) 
3 (192,92,93) 
3 (184,147,61) 

Module # 1(1 a 16) 
Module # 2(17 a 36) 
Module # 3(37 a 38) 
Module # 4(39 a 59) 
Module # 5(60 a 77) 

443/462
95.88% 

0.0411 

SV5 
19% 

(1 and 
9) 

3(139,117,143) 
5(112,23,178,55,59) 

3(104,130,81) 
2(130,191) 

3(194,80,132) 
3(138,87,141) 

3(106,113,162) 
3(176,145,108) 

4(132,67,69,116) 
3(98,132,179) 

Module # 1(1 a 9) 
Module # 2(10 a 11) 
Module # 3(12 a 13) 
Module # 4(14 a 17) 
Module # 5(18 a 35) 
Module # 6(36 a 43) 
Module # 7(44 a 60) 
Module # 8(61 a 67) 
Module # 9(68 a 74) 

Module # 10(75 a 77) 

551/616
89.44% 

0.1055 

SV6 
19%  

(2 and 
8) 

2(36,178) 
1(165) 

3(83,94,118) 
2(139,60) 

4(68,195,127,186) 
2(68,61) 

4(61,137,59,187) 
2(46,87) 
2(82,47) 

4(109,81,68,61) 

Module # 1(1 a 3) 
Module # 2(4 a 10) 

Module # 3(11 a 26) 
Module # 4(27 a 29) 
Module # 5(30 a 34) 
Module # 6(35 a 48) 
Module # 7(49 a 59) 
Module # 8(60 a 71) 
Module # 9(72 a 73) 

Module # 10(74 a 77) 

551/616
89.44% 

0.1055 

SV7 
17% 

 (1 and 
5) 

4(117,141,110,127) 
3(171,149,189) 

3(44,48,62) 
3(148,158,158) 

5(109,130,134,129,150) 
2(54,176) 

3(95,77,152) 

Module # 1(1 a 8) 
Module # 2(9 a 15) 

Module # 3(16 a 34) 
Module # 4(35 a 44) 
Module # 5(45 a 55) 
Module # 6(56 a 58) 
Module # 7(59 a 77) 

516/616
83.76% 

0.1623 

SV8 
7% 
(2) 

4(107,74,187,179) 
4(39,79,134,133) 
4(68,177,98,52) 

2(97,127) 
1(90) 

4(180,59,175,182) 
4(149,158,93,199) 

Module # 1(1 a 20) 
Module # 2(21 a 38) 
Module # 3(39 a 47) 
Module # 4(48 a 50) 
Module # 5(51 a 53) 
Module # 6(54 a 68) 
Module # 7(69 a 77) 

516/693
74.45% 

0.2554 

SV9 
4% 
(7) 

1(136) 
2(87,88) 

5(105,73,144,67,87) 
1(183) 

3(37,124,97) 
2(47,82) 

Module # 1(1 a 17) 
Module # 2(18 a 19) 
Module # 3(20 a 44) 
Module # 4(45 a 47) 
Module # 5(48 a 67) 
Module # 6(68 a 77) 

511/693
73.73% 

0.2626 
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4.3   Comparison among Non-optimized and Optimized Results 

In this section, a comparison among the different results is performed. The best re-
sults of each test are presented in order to better analyze the results. 

4.3.1   Comparison among Non-optimized and Optimized Results of Ear 

The best results of ear in the different tests don't vary, a recognition rate of 100% 
is obtained in each test, these results, using 3 images for the training phase, it 
means, only using 1 image for the testing phase. The best results of each test are 
presented in Table 11 to 13. 

Table 11 The best results for the ear (Non Optimized) 

Training Images 
for training 

Persons 
per module 

Recognition 
Rate 

T1O4  (2, 3 and 4)  
Module # 1 (1 to 40)  

Module # 2 (41 to 50)  
Module # 3 (51 to 77)  

100% 
(77/77)  

Table 12 The best results for the ear (Non Optimized) 

Training Images 
for training 

Persons 
per module 

Recognition 
Rate 

T2O1  (1,2 and 3) 

Mod. 1  (1 to 2) 
Mod. 2 (3 to 11) 
Mod. 3 (12 to 25) 
Mod. 4 (26 to 36) 
Mod. 5 (37 to 43) 
Mod. 6 (44 to 58) 
Mod. 7 (59 to 62) 
Mod. 8 (63 to 77) 

100% 
(77/77) 

Table 13 The best result of the ear (Optimized) 

Num. 
of 

Mod. 

% and 
images 

Num. Hidden lay-
ers and Num. of 

neurons 

Persons 
per module 

Rec. 
Rate 

Error 

SO5  
69% 
(2,3 

and 4) 

3(173,135,44) 
2(153,120) 

4(72,184,96,116) 
2(197,166) 

3(164,22,94) 

Module # 1 (1 to 6) 
Module # 2 (7 to 13) 

Module # 3 (14 to 27) 
Module # 4 (28 to 53) 
Module # 5(54 to 77) 

77/77 
100% 

0 

4.3.2 Comparison among Non-optimized and Optimized Results of Voice 

The best results of each test are presented in Table 14 to 16. The best result for us 
is presented in Table 16, this is the best result for us, because a recognition rate of 
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97.40% is obtained using only 5 samples of voice, less images than the best result 
presented in Table 15. 

Table 14 The best results for voice (Non Optimized) 

Training Voices 
for training 

Persons 
per module 

Recognition 
Rate 

T1V5 
59% 

(1,3,5,7,8 and 10) 

Module # 1 (1 to 7) 
Module # 2 (8 to 39) 

Module # 3 (40 to 77) 

298/308 
96.75% 

Table 15 The best results for voice (Non Optimized) 

Training Voices 
for training 

Persons 
per module 

Recognition 
Rate 

T2V5 
65% 

(1,3,4,7,8,9,10) 

Mod. # 1 (1 a 3) 
Mod. # 2 (4 a 17) 

Mod. # 3 (18 a 19) 
Mod. # 4 (20 a 28) 
Mod. # 5 (29 a 33) 
Mod. # 6 (34 a 53) 
Mod. # 7 (54 a 60) 
Mod. # 8 (61 a 77) 

226/231 
97.83% 

 
 

Table 16 The best result of the voice (Optimized) 

Num. 
of 

Mod. 

% and 
voices 

Num. Hidden layers 
and Num. of neu-

rons 

Persons 
per module 

Rec. 
Rate 

Error 

SV9 
49% 

(1,3,8,9 
and 10) 

4 (57,144,128,83) 
4 (156,189,158,193)
5(123,105,169,110,

105) 
1(89) 

3(78,143,62) 
2(101,38) 

4(22,60,91,173) 
4(81,128,139,118) 
4(145,28,187,32) 

Module # 1(1 to 14) 
Module # 2(15 to 35) 
Module # 3(36 to 46) 
Module # 4(47 to 50) 
Module # 5(51 to 53) 
Module # 6(54 to 55) 
Module # 7(56 to 64) 
Module # 8(65 to 72) 
Module # 9(73 to 77) 

375/385 
97.40% 

0.0260 

4.4 Fuzzy Integration 

Seven cases were established for combining different training of ear and voice, for 
non-optimized and optimized results. In column 2 and 3 are shown how the train-
ings were combined each other. The different results obtained with the different 
fuzzy integrator already described are shown in Table 17. 
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Table 17 Comparison among the Fuzzy Integrator #1 to #4 

Case Ear Voice Fuzzy in-
tegrator #1

Fuzzy in-
tegrator #2

Fuzzy in-
tegrator #3

Fuzzy in-
tegrator #4 

1 T2O4 
83.11% 

SV4 
95.88% 

446/462 
97.61% 

445/462 
96.32% 

446/462 
96.53% 

445/462 
96.32% 

2 SO1 
100% 

T2V5 
97.835 

229/231 
99.13% 

230/231 
99.56% 

230/231 
99.56% 

230/231 
99.56% 

3 SO7 
59.30% 

T2V2 
67.53% 

299/385 
77.66% 

305/385 
79.22% 

304/385 
78.96% 

307/385 
79.74% 

4 T2O3 
81.16% 

SV9 
73.73% 

620/693 
89.46% 

622/693 
89.75% 

621/693 
89.61% 

620/693 
89.46% 

5 T1O1 
67.53% 

SV2 
97.40% 

374/385 
97.14% 

373/385 
96.88% 

373/385 
96.88% 

373/385 
96.88% 

6 T1O5 
93.50% 

T1V4 
90.12% 

374/385 
97.14% 

373/385 
96.88% 

374/385 
97.14% 

374/385 
97.14% 

7 SO7 
97.40 

SV8 
74.45% 

661/693 
95.38% 

671/693 
96.82% 

669/693 
96.53% 

671/693 
96.82% 

 
Different results are obtained with the fuzzy integrators, these results are consi-

dered good results because the fuzzy integrator provides good results even when 
the modular neural networks (ear and voice) are not the best trainings o evolu-
tions. These results can be improved when a hierarchical genetic algorithm will be 
developed. 

5 Conclusions 

A new method for combining modular neural networks with a granular approach 
was proposed. The main goal of this work was providing the modular neural net-
works with the following characteristics: allow changing the number of modules, 
data per module, and percentage of data for training, all of that with the goal of 
obtaining a better rate of recognition.  

A multi-objective hierarchical genetic algorithm was developed for optimiza-
tion of some parameters of this model of modular neural networks, those parame-
ters are the number of modules, percentage of data for training, goal error per 
module, number of hidden layers per module and their respective neurons. This 
MOHGA is able to obtain the best modular neural network with the lowest error 
of recognition and that uses the lowest percentage of data for the training phase. 

In this work when the tests with the ear are compared, a significant difference 
does not exist, because the database has few images per person, but when a com-
parison is performed among the non-optimized and optimized results in the case of 
the voice, a better recognition rate is obtained using less data in the training phase. 
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Finally, fuzzy integrators were used for combining the responses of the  
modular neural networks. In this work, four non-optimized fuzzy integrators were 
proposed to perform this part of the proposed method. Each fuzzy integrator has 
different parameters such as number of rules, number, type and parameters of 
membership functions, because the behavior of each integrator wanted to be ob-
served. Good results were obtained, even when the results of both modular neural 
networks (ear and voice) were not the best. The results in the integration phase can 
be improved if a hierarchical genetic algorithm is developed (as we presented in 
the general architecture). 
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Abstract. In this paper a genetic algorithm is used to optimize the three neural 
networks in an ensemble model. Genetic algorithms are also used to optimize the 
two type-2 fuzzy systems that work in the backpropagation learning method with 
type-2 fuzzy weight adjustment. The mathematical analysis of the proposed 
learning method architecture and the adaptation of type-2 fuzzy weights are 
presented. The proposed method is based on recent methods that handle weight 
adaptation and especially fuzzy weights. In this work an ensemble neural network 
of three neural networks and average integration to obtain the final result is 
presented. The proposed approach is applied to a case of time series prediction and 
to pattern recognition. 

1 Introduction 

This paper is focused on the optimization of a neural network ensemble with type-
2 fuzzy weights. The optimization is performed in the number of neurons in the 
hidden layer and in the type-2 fuzzy inference systems used in the hidden and 
output layer to obtain the type-2 fuzzy weights of each neural network forming the 
ensemble.  

The proposed approach is applied to time series prediction for the Mackey-
Glass series. The objective is obtaining the minimum prediction error for the  
data of the time series. The approach is also applied to a problem of pattern 
recognition. 

We used a supervised neural network, because this type of network is the most 
commonly used in the areas of time series prediction and pattern recognition. 

This neural network is based on supervised learning, where the network 
operates by having both the correct input and output, and the network adjusts its 
weights to try in minimize the error of the calculated output. 

The research is based in working with the weights of a neural network in a 
different way to the traditional approach, which is important because this affects 
the performance of the learning process of the neural network. 
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This conclusion is based on the use of neural networks of this type, where some 
research works have shown that the training of neural networks for the same 
problem initialized with different weights or its adjustment in a different way, but 
at the end is possible to reach a similar result. 

The next section presents a background about modifications of the 
backpropagation algorithm and different management strategies of weights in 
neural networks, and basic concepts of neural networks. Section 3 explains the 
proposed method and the problem description. Section 4 describes the 
optimization of the ensemble neural network with type-2 fuzzy weights proposed 
in this paper. Section 5 presents the simulation results for the proposed method. 
Finally, in section 6, some conclusions are presented. 

2 Background and Basic Concepts 

In this section a brief review of basic concepts is presented. 

2.1 Neural Network 

An artificial neural network (ANN) is a distributed computing scheme based on 
the structure of the nervous system of humans. The architecture of a neural 
network is formed by connecting multiple elementary processors, this being an 
adaptive system that has an algorithm to adjust their weights (free parameters) to 
achieve the performance requirements of the problem based on representative 
samples [8][22]. 

The most important property of artificial neural networks is their ability to learn 
from a training set of patterns, i.e. they are able to find a model that fits the data 
[9][31]. 

The artificial neuron consists of several parts (see Fig. 1). On one side are the 
inputs, weights, the summation, and finally the transfer function. The input values 
are multiplied by the weights and added: ∑ . This function is completed with 
the addition of a threshold amount i. This threshold has the same effect as an input 
with value -1. It serves so that the sum can be shifted left or right of the origin. 
After addition, we have the function f applied to the sum, resulting on the final 
value of the output, also called  [28], obtaining the following equation:   =    
Where f may be a nonlinear function with a binary output + -1, a linear function f 
(z) = z, or as sigmoidal logistic function: 

 

  ( ) = .                                                   (2) 

(1) 
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Fig. 1 Schematics of an artificial neuron 

2.2 Overview of Related Works 

The backpropagation algorithm and its variations are the most useful basic 
training methods in the area of neural networks. However, these algorithms are 
usually too slow for practical applications. 

When applying the basic backpropagation algorithm to practical problems, the 
training time can be very high. In the literature we can find that several methods 
have been proposed to accelerate the convergence of the algorithm.  

There exists many works about adjustment or managing of weights but only the 
most important and relevant for this research will be considered here [4] [10] [35]: 

 
Momentum Method.- Rumelhart, Hinton and Williams suggested adding in the 
increased weights expression a momentum term β, to filter the oscillations that can 
be formed at a higher learning rate that lead to great change in the weights [28] 
[14]. 

 
Adaptive Learning Rate.- Works by calculating the initial output of the network 
and the initial error. Later for each epoch new weights and bias are calculated 
using the current learning rate, and new outputs and errors are calculated. 
 
To perform the new calculations, if the new error is greater than previous error 
more than a reason predefined, the new weights and bias are discarded and the 
learning rate decreases (multiplied for a decrement constant), otherwise the 
weights and biases remain.  Moreover if the new error is less than the previous 
error, the learning rate increases (multiplied by an increment constant). 
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Conjugate Gradient Algorithm.- This is a search for weight adjustments along 
conjugate directions. Versions of the conjugate gradient algorithm differ in the 
way in which a constant βk is calculated. 

 

•  Fletcher-Reeves update [12]: the constant βk is calculated using the equation: 

                                                                                     (3) 

That is the reason of the norm for the square of the current gradient at the 
norm of the square of the previous gradient. 

 

•  Polak-Ribiere updated [12]: the constant βk is calculated using the equation: 

                                                                                    (4) 

This is the internal product of the previous changes in the gradient with the 
current gradient divided for the square of the norm of the previous gradient. 

 

• Powell-Beale Restart [3] [29]: the restart is performed if it has very little 
orthogonality between the current gradient and the previous gradient. This is 
tested with the following inequality: 

 

                                                                                    (5) 

 
If the condition is validated, the search address is restarting at the negative of 
the gradient. 

 
• Scaled Conjugate Gradient [25]: this method decreases the search time line, 

combines the approach of reliability model region with the approach of the 
conjugate gradient. 

 
Gedeon T. [13], performed the weights adjustment with a discrete selection 
following the Hebbian paradigm: the force of the connection wij is proportional at 
the correlation of the activity of the neurons I and j. 

Monirul and Murase [26], used a temporal frozen of the weights when the 
output does not change in a few epochs of successive trainings.  

Meltser at al. [24], performed a weights adjustment of the network through 
BFGS Quasi-Newton method (Broyden-Fletcher-Goldfarn-Shanno), which is a 
convergent quadratic method that used the Quasi-Newton method to calculate an 
approximation of the Hebbian matrix. 

Barbouinis et al. [2], performed the weights updating using the identification of 
recursive error prediction (RPE), which allows that the vector of estimated 
weights is continuously found in each epoch using recursive calculates. 
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Yeung et al. [36], proposed a new training objective function for a network 
with radial basis functions, which is used to adjust the weights.  

Kamarthi and Pittner [20], focused in obtaining a weight prediction of the 
network at a future epoch using extrapolation. 

Neville et al. [27], worked with sigma-pi networks which are transformed for 
performing a second task of assignation for which they were initially trained, 
which scales the first assignment. 

Casasent et al. [4], presented a new classificatory neural network for pattern 
recognition (PQNN) that used weights with complex values and the non linear 
square law. 

De Wilde [9], work performed assuming a non zero diagonal in the weight 
matrix instead of the zero diagonal that the most researchers assume for the neural 
networks completely connected.    

Yam et al. [35], developed an algorithm to find the initial optimal weights of 
feedforward neural networks based on the Cauchy inequality and a linear 
algebraic method.  

Draghici [10], Calculates a range of weights for a category of given problems 
and ensures that the network has the capacity to solve the given problems with 
integer weights in that range. 

Ishibuchi et al. [17], proposed a fuzzy network where the weights are given as 
trapezoidal fuzzy numbers, denoted as four trapezoidal fuzzy numbers for the four 
parameters of trapezoidal membership functions. 

Ishibuchi et al. [18], proposed a fuzzy neural network architecture with 
symmetrical fuzzy triangular numbers for the fuzzy weights and biases, denoted 
by the lower, middle and upper limit of the fuzzy triangular numbers. 

Feuring [11], based on the work by Ishibuchi, where triangular fuzzy weights 
are used, developed a learning algorithm in which the backpropagation algorithm 
is used to compute the new lower and upper limits of weights. The modal value of 
the new fuzzy weight is calculated as the average of the new computed limits. 

Castro et al. [6], use interval type-2 fuzzy neurons for the antecedents and 
interval of type-1 fuzzy neurons for the consequents of the rules. This approach 
handles the weights as numerical values to determine the inputs of the fuzzy 
neurons, as the scalar product of the weights for the input vector.  

Recent works on type-2 fuzzy logic have been developed in time series 
prediction, like that of Castro et al. [7], and other researchers [1][21]. 

Recent research on genetic algorithm optimization have been developed in 
neural networks and fuzzy logic, like that of Sanchez et al. [32], and other 
researchers [30][34]. 

3 Proposed Method and Problem Description 

The focus of this work is to generalize the backpropagation algorithm using type-2 
fuzzy sets to allow the neural network to handle data with uncertainty. At the same 
time, it will be necessary to optimize type-2 fuzzy sets for the corresponding 
applications and this will require a method to automatically vary the footprint of 
uncertainty (FOU) of the membership functions. 
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The initial weight selection will be done differently to the traditional random 

initialization of weights performed with the backpropagation algorithm (Fig. 2); 
the proposed method will work with type-2 fuzzy weights, taking into account the 
possible change in the way we work internally in the neuron and the adaptation of 
the weights given in this way (Fig.  3) [26]. 

 

Fig. 2 Scheme of current management of numerical weights (type-0) for the inputs of each 
neuron 

 

Fig. 3 Schematic of the proposed management of type-2 fuzzy weights for the inputs of 
each neuron 
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We considered modifying the current methods of adjusting weights that allow 
convergence to the correct weights for the problem. We developed a method for 
adjusting weights to achieve the desired result, searching for the optimal way to 
work with type-2 fuzzy weights [19]. 

We used a genetic algorithm for obtaining the optimal type-2 fuzzy weights of 
the neural network; because in the literature it can be found that it has been very 
difficult and exhaustive to manually find optimal values for a problem [16]. 

To define the activation function f (-) to use, the linear and sigmoidal functions 
were tested, because these functions have been used in similar approaches. 

4 Optimization of the Ensemble Neural Network Architecture 
with Type-2 Fuzzy Weights    

The proposed ensemble neural network architecture with type-2 fuzzy weights  
(see Fig. 4) is described as follows: 
Layer 0: Inputs. 

                                     = [ , , , ]                                            (6) 

Layer 1: Interval type-2 fuzzy weights for the hidden layer of each neural network. 

                                           = ,                                                   (7) 

Where ,  are the weights of the consequents of each rule of the type-2 fuzzy 
system with inputs (current fuzzy weight, change of weight) and output (new 
fuzzy weight). 

Layer 2: Hidden neuron with interval type-2 fuzzy weights. =                                                    (8)  
Layer 3: Output neuron with interval type-2 fuzzy weights. =                                                     (9) 

Layer 4: Obtain a single output of each one of the three neural networks. 
Layer 5: Obtain a final output with the average integration. 
The first experiment was performed in time-series prediction, specifically for 

the Mackey-Glass time series (for τ=17).  
We considered three neural networks in the ensemble: the first network with 25 

neurons in the hidden layer and 1 neuron in the output layer; the second network 
with 28 neurons in the hidden layer and 1 neuron in the output layer; and the third 
network with 38 neurons in the hidden layer and 1 neuron in the output layer (see 
Fig. 4). This ensemble neural network handles type-2 fuzzy weights in each one of 
its hidden layers and output layer. In each hidden layer and output of each network 
we are working with a type-2 fuzzy inference system to obtain new weights in 
each epoch of the network [5][23][15][33].  
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The combination of responses of the ensemble neural network is performed by 
average integration. 

 

Fig. 4 Ensemble neural network architecture with type-2 fuzzy weights 

We used 2 similar type-2 fuzzy systems in each neural network.  
The first type-2 fuzzy system consists of two inputs: the weight in the current 

epoch and the change of the weight for the next epoch, and one output: the new 
weight for the next epoch (see Fig. 5). 

 

 

Fig. 5 Structure of the used type-2 fuzzy inference system in the hidden layer 
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The input of the current weight consists of two triangular membership functions 
with range of -1 to 1. The input of change of the weight consists of two triangular 
membership functions with range of -0.1 to 0.1. The output of the new weight 
consists of two triangular membership functions with range of -1 to 1 (see Fig. 6). 

 

Fig. 6 Inputs and outputs of the type-2 fuzzy inference system for the hidden layer 

We used six rules for the type-2 fuzzy inference system of the hidden layer, the 
four combinations of two membership functions and we added two rules when the 
change of weight is null (see Fig. 7). 

 

 

Fig. 7 Rules of the type-2 fuzzy inference systems used in the hidden layer 

The second type-2 fuzzy system consists of two inputs: the weight in the 
current epoch and the change of the weight for the next epoch, and one output: the 
new weight for the next epoch (see Fig. 8). 
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Fig. 8 Structure of the used type-2 fu zzy inference system in the output layer 

The input of the current weight consists of two triangular membership functions 
with range of -0.01 to 0.01. The input of change of the weight consists of two 
triangular membership functions with range of -0.1 to 0.1. The output of the new 
weight consists of two triangular membership functions with range of -0.01 to 
0.01 (see Fig. 9). 

 

Fig. 9 Inputs and outputs of the type-2 fuzzy inference system for the output layer 
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We used six rules for the type-2 fuzzy inference system for the output layer, the 
four combination of two membership functions and we added two rules for the 
case when the change of weight is null (see Fig. 10). 

 

Fig. 10 Rules of the type-2 fuzzy inference systems used in the output layer 

The optimization was performed for the numbers of neurons in the hidden layer 
of each neural network, and for the weights of the hidden layer and output layer, 
in Fig. 11 this is described:  

 

 

Fig. 11 Proposed optimization of the ensemble neural network architecture with type-2 
fuzzy weights 
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The second experiment was performed in a pattern recognition application, 
specifically for the human iris biometric measure.  

We used a database of human Iris from the Institute of Automation of the 
Chinese Academy of Sciences (CASIA) (see Fig. 12). It consists of 9 images per 
person, for a total of 10 individuals, giving a total of 90 images. The image 
dimensions are 320 x 280, JPEG format. 

 

Fig. 12 Examples of the human iris images from the CASIA database 

The images of the human iris introduced to the two neural networks were 
preprocessed as follows: 

• Obtain the coordinates and radius of the iris and pupil. 
• Making the cut in the Iris. 
• Resize the cut of the Iris to 21-21 pixels. 
• Convert images from vector to matrix. 
• Normalize the images. 
 
Obtain Coordinates of the Center and Radius of the Iris-Pupil: To obtain the 
coordinates of the center and radius of the iris and pupil of images in the CASIA 
database, we used a method that involves applying a series of filters and 
mathematical calculations to achieve the desired gain. 

First, we apply edge detection with the Canny method (see Fig. 13 (a)), then the 
process continues using a gamma adjustment of the image (see Fig 13 (b)), to  
the resulting image obtained above no maximum suppression is applied (see  
Fig. 13 (c)), and subsequently we applied to the image a threshold method (see 
Fig. 13 (d)). 
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Fig. 13 (a) Edge detection with Canny’s method (b) Image Adjust Gamma (c) No Maxima 
Suppression (d) Threshold 

Finally, we apply the Hough transform to find the maximum in the Hough 
space and, therefore, the circle parameters (row and column at the center of the iris 
and the radius). 

To obtain the coordinates of the center and radius of the pupil, the same process 
indicated above is used, but now taking into account at the end of the center 
coordinates and radius of the iris to identify the pupil. 
 

Cut out the Iris: After obtaining the coordinates of the Iris, the upper right and 
lower left points are calculated to make the cut (see Fig. 14). 
 

RowUpLeft = RowIris – RadiusIris; 
RowLowRight = (RowIris + RadiusIris) - RowUpLeft; 
ColUpLeft = ColumnIris - RadiusIris; 
ColLowRight = (ColumnIris + RadiusIris) - ColUpLeft; 

 

Fig. 14 Cut of iris 
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The proposed architecture with two neural networks with type-2 fuzzy weights   
consists of 120 neurons in the hidden layer and 10 neurons in the output layer, the 
inputs are the preprocessed iris images with a total of 10 persons (60 for training – 
60 for test in total) (see Fig. 15).  The inputs vary in ±5 percent between the two 
networks. 

We considered two neural networks managing type-2 fuzzy weights in each 
hidden layer and output layer. In each hidden layer and output layer a type-2 fuzzy 
inference system was used to obtain the new weights in each epoch of the 
network. 

The two neural networks used the learning method that updates weight and bias 
values according to the resilient backpropagation algorithm. The update weights 
are adapted for manage type-2 fuzzy weights. 

 

 

Fig. 15 Proposed neural networks with type-2 fuzzy weights architecture for pattern 
recognition of human iris biometric measure  

We used four type-2 fuzzy inference systems to obtain the new weights, one for 
the hidden layer in the one network and the second network, and one for the 
output layer in the first network and the second network. The four type-2 fuzzy 
inference system consists of two inputs (actual weight and change of weight) and 
one output (new weight) (see Fig. 16). 

The integration of the two networks is realized with average integration. 
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Fig. 16 Structure for the four type-2 fuzzy integration system 

The input of the current weight for the type-2 inference system for the hidden 
layer in the first neural network consists of two triangular membership functions 
with range of -3500 to 1000. The input of change of the weight consists of two 
triangular membership functions with range of -60 to 60. The output of the new 
weight consists of two triangular membership functions with range of -3500 to 
1000 (see Fig. 17). 

 

Fig. 17 Inputs and Output for the type-2 fuzzy inference system for the hidden layer in the 
first network 

The input of the current weight for the type-2 inference system for the output 
layer in the first neural network consists of two triangular membership functions 
with range of -2 to 2. The input of change of the weight consists of two triangular 
membership functions with range of -1 to 1. The output of the new weight consists 
of two triangular membership functions with a range of -2 to 2 (see Fig. 18). 
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Fig. 18 Inputs and Output for the type-2 fuzzy inference system for the output layer in the 
first network 

We used six rules for the type-2 fuzzy inference system for the hidden and 
output layer in the first neural network, the four combinations of two membership 
functions and we added two rules when the change of weight is null (see Fig. 19). 

 

 

Fig. 19 Rules for the four type-2 fuzzy inference system 

The input of the current weight for the type-2 inference system for the hidden 
layer in the second neural network consists of two triangular membership 
functions with range of -2 to 2. The input of change of the weight consists of two 
triangular membership functions with a range of -1 to 1. The output of the new 
weight consists of two triangular membership functions with a range of -2 to 2 
(see Fig. 20). 
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Fig. 20 Inputs and Output for the type-2 fuzzy inference system for the hidden layer in the 
second network 

 

Fig. 21 Inputs and Output for the type-2 fuzzy inference system for the output layer in the 
second network 
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The input of the current weight for the type-2 inference system for the hidden 
layer in the second neural network consists of two triangular membership 
functions with range of -1.5 to 1.5. The input of change of the weight consists of 
two triangular membership functions with a range of -1 to 1. The output of the 
new weight consists of two triangular membership functions with a range of -1.5 
to 1.5 (see Fig. 21). 

We used six rules for the type-2 fuzzy inference system for the output layer, for 
the four combinations of two membership functions and we added two rules for 
when the change of weight is null (see Fig. 22). 

 

Fig. 22 Rules for the type-2 fuzzy inference system used in hidden and output layer for the 
first and second neural network 

5 Simulation Results    

The obtained results for the first experiment without optimizing the neural 
network and type-2 fuzzy systems are shown on Table 1 and Fig. 23, which means 
that all parameters of the neural network and type-2 fuzzy systems are established 
empirically. The best prediction error is of 0.0788. 

Table 1 Results for the ensemble neural network for series Mackey-Glass 

No. Epoch Network error Time Prediction error 

E1 100  0.000000001 00:01:09 0.0788 

E2  100  0.000000001 00:02:11  0.0905  

E3  100  0.000000001 00:02:12  0.0879  

E4  100  0.000000001 00:01:14  0.0822  

E5  100  0.000000001 00:01:13 0.0924  

E6 100 0.000000001 00:02:13 0.0925 

E7 100 0.000000001 00:01:08 0.0822 

E8 100 0.000000001 00:01:09 0.0924 

E9 100 0.000000001 00:01:07 0.0826 

E10 100 0.000000001 00:01:07 0.0879 
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Fig. 23 Plot of real data against prediction data of the Mackey-Glass time series for the 
ensemble neural network with type-2 fuzzy weights 

The population of the genetic algorithm (GA) consists of forty individuals to 
perform the search. The individuals used in the GA are of binary type and with a 
size of 81 gens. The estimated number of generations used for the GA to obtain a 
good optimization is of 20 generations, in which the GA performed operations to 
change the gens of the individuals and obtain different results in each generation. 

To assign a fitness to the individuals of the GA we used ranking and stochastic 
universal sampling selection to find the individuals to which the evolutionary 
operations are applied to obtain new individuals for the next generation. 

The evolutionary operations consist of single point crossover, and 0.0086 of 
mutation that are applied in the selected individuals for evolve in a new individual.   

The parameters used to optimize the ensemble neural network are described in 
Table 2: 

Table 2 Parameters of the genetic algorithm used for optimization of the ensemble neural 
network 

Individuals  40  

Gens  81 (binary)  

Generations  20  

Assign Fitness  Ranking  

Selection  Stochastic Universal Sampling  

Crossover  Single-Point 

Mutation  0.0086  

Individuals  40  
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The individual for this genetic algorithm is binary with a size of 81 gens. 
Each individual considered in the genetic algorithm describes the membership 

functions for the inputs and outputs of the type-2 fuzzy inference system used in 
the hidden and output layer of the neural network. Also, each individual describes 
the numbers of neurons in the hidden layer for each neural network of the 
ensemble. 

The objective function used obtains the fitness for each individual (ObjVal) in 
the genetic algorithm as the sum of the prediction error (errProm) divided by total 
of data of Mackey-Glass time series (Total) used in this experiment for test (297 in 
this experiment). 
 =                                          (10) 

 
The ensemble neural network architecture obtained with the genetic algorithm 
consists of the following: the first network with 27 neurons in the hidden layer and 
1 neuron in the output layer; the second network with 31 neurons in the hidden 
layer and 1 neuron in the output layer; and the third network with 30 neurons in 
the hidden layer and 1 neuron in the output layer (see Fig. 24). 

 

 

Fig. 24 Ensemble neural network architecture with type-2 fuzzy weights obtained with the 
genetic algorithm 
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The obtained results of the GA optimizing the ensemble neural network are 
shown on Table 3 and Fig. 25. The best error is of 0.0518 optimizing the numbers 
of neurons and type-2 fuzzy systems. 

Table 3 Results for the optimized ensemble neural network for the Mackey-Glass time 
series 

No. Prediction error 

E1 0.0518  

E2  0.0611 

E3  0.0787 

E4  0.0715 

E5  0.0655 

E6 0.0614  

E7 0.0724  

E8 0.0712  

E9 0.0724  

 
 

 

Fig. 25 Plot of real data against prediction data of the Mackey-Glass time series for the 
ensemble neural network with optimized type-2 fuzzy weights 

We obtained 2 similar type-2 fuzzy systems in each neural network.  
The first type-2 fuzzy system obtained consist of two inputs: the weight in the 

current epoch and the change of the weight for the next epoch, and one output: the 
new weight for the next epoch (see Fig. 26). 
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Fig. 26 Structure of the type-2 fuzzy inference system obtained in the hidden layer 

The input of the current weight consists of two triangular membership functions 
with range of -1 to 1. The input of change of the weight consists of two triangular 
membership functions with range of -0.1 to 0.1. The output of the new weight 
consists of two triangular membership functions with range of -1 to 1 (see  
Fig. 27). 

 

 

Fig. 27 Inputs and outputs of the type-2 fuzzy inference system for the hidden layer 

We used six rules for the type-2 fuzzy inference system for the hidden layer, 
the four combination of two membership functions and we added two rules when 
the change of weight is null (see Fig. 28). 
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Fig. 28 Structure of the used type-2 fuzzy inference system in the hidden layer 

The second type-2 fuzzy system obtained consist of two inputs: the weight in 
the current epoch and the change of the weight for the next epoch, and one output: 
the new weight for the next epoch (see Fig. 29). 

 

 

Fig. 29 Structure of the type-2 fuzzy inference system obtained in the output layer 

The input of the current weight consists of two triangular membership functions 
with range of -0.01 to 0.01. The input of change of the weight consists of two 
triangular membership functions with range of -0.1 to 0.1. The output of the new 
weight consists of two triangular membership functions with range of -0.01 to 
0.01 (see Fig. 30). 



210 F. Gaxiola, P. Melin, and F. Valdez
 

 

Fig. 30 Inputs and outputs of the type-2 fuzzy inference system for the output layer 

We used six rules for the type-2 fuzzy inference system for the output layer, the 
four combination of two membership functions and we added two rules when the 
change of weight is null (see Fig. 31). 

 

 

Fig. 31 Rules of the type-2 fuzzy inference systems used in the output layer 

The obtained results for the second experiment 5 tests were performed with the 
proposed modular neural network under the same conditions and the same 
database of the iris; in Table 4 we show the obtained results: 
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Table 4 Parameters of the genetic algorithm used for optimization the ensemble neural 
network 

Experiment  Epoch  Error Time Total Recognition 

T1  12  0.01 72 min. 76.66 % (23/30) 

T2  12  0.01 72 min. 70 % (21/30) 

T3  12  0.01 72 min. 73.33 % (23/30) 

T4  12  0.01 72 min. 83.33 % (25/30) 

T5  12 0.01 71 min. 70 % (21/30) 

 
The best result is a total recognition of 25 out of 30 images of iris of 10 

persons; giving a recognition rate of 83.33 %.  
The architecture neural network works with 12 epoch of iteration and 0.01 error 

of network and training algorithm of that updates weights and bias values 
according to the resilient backpropagation algorithm (trainrp), with this parameters 
the time of execution for the neural networks was of 72 minutes 

The average of the 5 tests is a percentage of recognition of 74.66. 

6 Conclusions 

In the first experiment an ensemble neural network learning method with type-2 
fuzzy weights was optimized with a genetic algorithm. The result with the 
ensemble neural network with type-2 fuzzy weights optimized for the Mackey-
Glass time series is a prediction error of 0.0518.  The architecture for the 
optimized ensemble neural network is: the first network with 30 neurons in the 
hidden layer and 1 neuron in the output layer; the second network with 29 neurons 
in the hidden layer and 1 neuron in the output layer; and the third network with 26 
neurons in the hidden layer and 1 neuron in the output layer. 

The result of prediction error of 0.0518 for the Mackey-Glass time series is 
good considering that the number of GA generations was relatively small. 

In the second experiment we used two neural networks with type-2 fuzzy 
weight. The result with the neural network with type-2 fuzzy weights for the 
human iris biometrics measure is a percentage of recognition of 83.33 %.  The 
architecture for the two neural networks: the first network with 120 neurons in the 
hidden layer and 10 neuron in the output layer, and the second network with 120 
neurons in the hidden layer and 10 neuron in the output layer. 

The results obtained in these experiments showed that the type-2 fuzzy weights 
worked good in the two areas of research: prediction time series and pattern 
recognition. 
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Abstract. Brain Computer Interfaces (BCI) is the generic denomination of 
systems aiming to establish communication between a human being and an 
automated system, based on the electric brain signals detected through a variety of 
modalities. Among these, electroencephalographic signals (EEG) have received 
considerable attention due to several factors arising on practical scenarios, such as 
noninvasiveness, portability, and relative cost, without lost on accuracy and 
generalization. In this chapter we discuss the characteristics of a typical 
phenomenon associated to motor imagery and mental tasks experiments, known as 
event related synchronization and desynchronization (ERD/ERS), as well as its 
energy distribution in the time-frequency space. The typical behavior of ERD/ERS 
phenomenon has led proposal of different approaches oriented to the solution of 
the identification problem. In this work, an architecture based on adaptive neuro-
fuzzy inference systems (ANFIS) assembled to a recurrent neural network, applied 
to the problem of mental tasks temporal classification, is presented. The 
electroencephalographic signals (EEG) are pre-processed through band-pass 
filtering in order to separate the set of energy signals in alpha and beta bands. The 
energy in each band is represented by fuzzy sets obtained through an ANFIS 
system, and the temporal sequence corresponding to the combination to be 
detected, associated to the specific mental task, is entered into a recurrent neural 
network. Experimentation using EEG signals corresponding to mental tasks 
exercises, obtained from a database available to the international community for 
research purposes, is reported. Two recurrent neural networks are used for 
comparison purposes: Elman network, and a fully connected recurrent neural 
network (FCRNN) trained by RTRL-EKF (real time recurrent learning – extended 
Kalman filter). A classification rate of 88.12 % in average was obtained through 
the FCRNN during the generalization stage. 
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1   Introduction 

Brain Computer Interfaces are systems aiming to translate the electrical brain 
signals generated by a human being as a results of some thoughts, in commands 
able to perform some control actions in computerized mechanisms. In other words 
BCIs measure brain activity, process it, and produce control signals that reflect the 
user’s intent.  Brain activity produces several physical phenomena which can be 
measured using a variety of sensing equipment. Among these phenomena, which 
can be of significant relevance for BCI development, are electrical potentials and 
hemodynamic measurements. Electrical potential measurements include action 
and field potentials which can be sensed through invasive methods, such as 
electro-corticography, and non-invasive, such as electroencephalography and 
magneto-encephalography techniques. Hemodynamic measurements include 
functional magnetic resonance imaging (fMRI), positron emission tomography 
(PET), and functional near-infrared brain monitoring (fNIRS). Among these, 
electroencephalographic signals (EEG) have received considerable attention due 
to several factors arising on practical scenarios, such as noninvasiveness, cost 
effectiveness, portability, ease of acquisition, and time resolution, which are ideal 
attributes for the development of practical brain computer interface applications. 
There are three main stages which can be distinguished in a BCI system: detection 
of the neural signals from the brain, an algorithm for decoding these signals, and a 
methodology for mapping decoded signals into some predefined activities. The 
general scheme of a BCI is shown in Fig. 1.  

In recent years, there has been a growing interest in the research community on 
signal processing techniques oriented to solve the multiple challenges involved in 
BCI applications [1-3]. An important motivation to develop BCI systems, among  
 

 

Fig. 1 General scheme of a Brain Computer Interface system 
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some others, would be to allow an individual with motor disabilities to have 
control over specialized devices such as computers, speech synthesizers, assistive 
appliances or neural prostheses. 

A dramatic relevance arises when thinking about patients with severe motor 
disabilities such as locked-in syndrome, which can be caused by amyotrophic 
lateral sclerosis, high-level spinal cord injury or brain stem stroke. BCIs would 
increase an individual’s independence, leading to an improved quality of life and 
reduced social costs. Electroencephalography (EEG) refers to recording electrical 
activity from the scalp with electrodes. A BCI based on EEG analyzes ongoing 
electric brain activity for brain patterns that originate from specific brain areas. To 
get consistent recordings from specific regions of the head, scientists rely on a 
standard system for accurately placing electrodes, which is called the International 
10–20 System [4], generally used in clinical EEG recording and EEG research as 
well as BCI field. The name 10–20 indicates that the most commonly used 
electrodes are positioned 10, 20, 20, 20, 20, and 10% of the total naison-inion 
distance. Fig. 2 shows the electrode positions and denominations used in the 
international 10-20 system.  

Measuring brain activity effectively is a critical step for brain–computer 
communication. However, measuring activity is not enough, because a BCI can 
only detect and classify specific patterns of activity in the ongoing brain signals 
that are associated with specific events. What the BCI user makes to produce these 
patterns is determined by the neurological mechanisms or processes that BCI 
system employs.  

 

Fig. 2 EEG electrodes international 10-20 system 

Current research on BCI systems distinguishes seven main categories according 
to the neurological mechanisms or processes involved: sensorimotor activity [5,6], 
P300 [7,8], visual evoked potentials [9,10], slow cortical potentials [11], activity 
of neural cell and response to mental tasks [12], as well as multiple neuro-
mechanisms, which use a combination of two or more of the previous (see [2] for 
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a review). Each category constitutes a paradigm which can be used for developing 
BCI systems in practical scenarios. P300 evoked potentials occur with latency 
around 300 milliseconds in response to target stimuli that occur unexpectedly. In a 
P300 controlled experiment, subjects are usually instructed to respond in a specific 
way to some stimuli, which can be auditory, visual, or somatosensory. P300 
signals come from the central-parietal region of the brain and can be found more 
or less throughout the EEG on a number of channels. The P300 is an important 
signature of cognitive processes such as attention and working memory and an 
important clue in the field of neurology to study mental disorders and other 
psychological dysfunctions [8]. Another neurological mechanism widely studied 
for developing BCI systems is motor imagery (MI), which is obtained from the 
sensory motor  brain activity. In general, two types of patterns are usually present 
in this mechanism: event related potentials (ERP), detected as energy changes in α 
(8-13 Hz), and β (14-20 Hz) bands generated when a voluntary movement is 
performed, and movement related potentials (MRP), which are low frequency 
patterns that initially appear between 1–1.5 s before the corresponding movement. 
In the first case, the event related potentials consist, in general terms, in 
decrements or increments of the energy on the ongoing EEG signal at certain 
frequency bands, which are described in the literature as the ERD/ERS 
phenomenon (Event Related Desynchronization and Synchronization) [13,14]. A 
crucial issue is to successfully estimate and translate the ERD/ERS phenomenon 
into a meaningful feature vector which can be used as input to some pattern 
recognition scheme. The analysis should be able to capture the spectral dynamic 
of the signal contained in the temporal evolution of the involved spectral bands.   
Several feature extraction techniques have been used for that purposes, such as: 
amplitude values of EEG [15], band power [16], power spectral density [17,18], 
auto-regressive (AR) and adaptive auto-regressive models (AAR) [19], windowed 
Fourier analysis, cross correlation, and some others. As these ERPs are locked in 
time but not in phase and they are highly non-stationary [20], the detection of 
these patterns turns into a difficult task in which some approaches oriented to 
follow the time evolution of the signals, such as time series prediction, and 
recurrent neural networks, could provide adequate results.  

Another neurological mechanism in which ERD/ERS phenomenon is also 
present is the neural activity obtained in response to mental tasks. Mental task-
based BCI systems have captured the attention of the research community, in part 
due to their independence of additional interfaces such as the screen of 
alphanumeric characters used in VEP, or the arrows and symbols used in motor 
imagery experiments, as well as the relative flexibility of the user to carry out 
some mental tasks at his /her own will. Several feature extraction methods for 
mental task-based BCI design have been reported, most of them based on 
parametric, such as autoregressive or adaptive models [21], non-parametric 
models based on several schemes of spectral analysis such as Wavelet transform 
or Stockwell transform [22,23], or fuzzy sets [24]. In this sense, it has been shown 
that information contained in spectral bands α (8-13 Hz), β (14-20 Hz), γ (24-37 
Hz), or even in higher frequencies [25], can be used to detect neural activity 
directly related to specific mental tasks. Time-frequency analysis can be carried 
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out using different approaches such as Wavelet analysis [22], filter bank [26], 
empirical mode decomposition [27], and others. Those approaches reflect only the 
estimated power across a range of frequencies. In a number of reported works, 
non-linear classifiers such as neural network and support vector machine 
algorithms are used [28]. Recently, there have been several studies oriented to 
capture temporal behavior through predictive schemes and recurrent neural 
networks with good results, which encourage further research in that direction  
[29-30].  

To achieve the goal of translating brain activity into commands for computers 
there are two main approximations: regression and classification algorithms. 
Using classification algorithms is the most popular approach to identify patterns of 
brain activity.  Most brain patterns used to control BCI are related to time 
variations of EEG in specific frequency bands. The time course of EEG signals 
has to be taken into account during feature extraction and one alternative is using a 
dynamical classifier. To obtain temporal information it is necessary to extract 
features from several time segments in order to build a temporal sequence. In this 
work we present a temporal classification approach on a two-state mental task 
experiment applying, for comparison purposes, two recurrent neural networks: 
Elman and Fully Connected Recurrent Neural Network (FCRNN). The proposed 
scheme performs the feature extraction based on an Adaptive Neuro-fuzzy 
Inference System (ANFIS), previous to the temporal classification stage.  

The rest of the chapter is organized as follows: Section 2 describes theory 
related to ANFIS. Section 3 presents mathematical background associated to 
recurrent neural networks. Section 4 describes the proposed methodology on 
temporal classification of the mental task experiment. Section 5 presents and 
analyzes the obtained results. Section 6 presents some concluding remarks, 
perspectives, and future direction of this research oriented to the implementation 
of a BCI system.  

2   Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Adaptive Neuro Fuzzy Inference Systems (ANFIS) combine the learning 
capabilities of neural networks with the approximate reasoning of fuzzy inference 
algorithms. Embedding a fuzzy inference system in the structure of a neural 
network has the benefit of using known training methods to find the parameters of 
a fuzzy system. Specifically, ANFIS uses a hybrid learning algorithm to identify 
the membership function parameters of Takagi-Sugeno type fuzzy inference 
systems. The task of the learning algorithm for this architecture is to tune all the 
modifiable parameters defining the fuzzy partitions and making the ANFIS output 
match the training data. In this work, the ANFIS model included in the MATLAB 
toolbox has been used for experimentation purposes. A combination of least-
squares and backpropagation gradient descent methods is used for training the FIS 
membership function parameters to model a given set of input/output data through 
a multilayer neural network. ANFIS systems have been recently used for 
optimization, modeling, prediction, and signal detection, among others [31,32]. 
The ANFIS architecture (type-3 ANFIS) is shown in Fig. 3. 
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Fig. 3 ANFIS architecture 

In this figure  x  and y  are inputs to the node i in layer 1. iA  and iB  are 

linguistic labels e.g. (small, medium, large, etc.). In other words, the output of 

each node is the membership function of iA
 
and iB , and specifies the degree to 

which the given x or y satisfies the quantifier  iA and iB respectively. The output 

of each node in this layer is described as follows: 

1 ( )
ii AO xμ=

 

Every node in layer 2 is a circle node labeled which multiplies the incoming 
signals and sends the product out.  

( ) ( )
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In layer 3 each node is a circle node labeled N. The ith node calculates the ratio of 
the ith rule’s firing strength to the sum of all rules’ firing strengths: 
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Every node in layer 4 is a square node that performs the following function: 
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where { , , }i i ip q r  is the parameter set.  

The single node in the 5 layer is a circle node labeled   that computes the 
overall output as the summation of all incoming signals 
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The architecture presented is functionally equivalent to a type-3 fuzzy inference 
system. For detailed information see reference [33]. 

3   Neural Network Classifiers 

Nowadays, artificial neural networks are a popular tool to tackle complex 
classification problems. Specifically, the ability of recurrent neural networks 
(RNN) to model nonlinear dynamical systems has been widely proved [34]. 
Therefore, it is fairly common to use RNN for several kinds of temporal 
information processing, as in prediction, control systems and temporal 
classification systems [35]. 

Next, we present a brief description of the problem of temporal classification 
and the solution applied in this research using two architectures of RNN to build 
the temporal classifier required for mental task-based BCI systems. 

3.1   Temporal Classification 

Temporal classification refers to the assignation of a class, based on features 
obtained in different time periods. Such features are represented as vectors 
forming a temporal sequence of components. Temporal classification is a difficult 
task because, in order to obtain the correct class, it is mandatory to consider not 
only the values of the features but also the order in which they appear in a specific 
time period.  The definition of the size of time that must be considered in order to 
get the right classification is also a challenge.  Fig. 4 illustrates a simple temporal 
classification problem. Suppose that we want to identify if the sequence {1,2} is 
sensed in input A when the sequence {2,1} is sensed in input B. If so, the expected 
classification outcome is "yes", otherwise it is "No". The table therein Fig. 4 
illustrates the desired outputs of such classifier in the first 10 time periods.  

 
 
 
 
 
 
 

time 1 2 3 4 5 6 7 8 9 10 
Input A 1 1 2 2 1 2 1 1 2 1 
Input B 1 2 1 2 2 2 1 2 1 2 
Output No No Yes No No No No No Yes No 

Fig. 4 A simple temporal classification problem 

In this example, the classifier must be able to "remember" the last two inputs, in 
order to identify the sequences correctly. Looking this table, it is fairly easy to 
figure out that the sequences defining the involved classes have a size of two. 

Temporal 
Classifier 

A 
 
B 

Output 
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However, this is not the case for more complicated problems as the one presented 
in this research, in which a human mental state has to be identified by a sequence 
of features occurring in a EEG. For such cases the classifier would have to 
automatically model a dynamics memorizing the feature sequences using the right 
size of past events. In other words, time has to be implicitly represented in  
the model. In this research a temporal classifier is used as the last component of 
the system classifying mental tasks (see Fig. 6). The classifier has to find out if the 
involved mental task occurs or it does not, that is, it works as a binary classifier. 

3.2   Adaptive Temporal Classifiers 

The building of a classifier able to label sequences requires several steps. The 
most important decisions to resolve during its design are: the definition of  
the structure of a feature vector representing the information of the sequence, the 
mathematical model used for the classifier and the training strategy used in such 
model. Section 4 describes how the structure of the feature vector for the classifier 
of mental tasks was built in this research. With respect to the mathematical model 
of the classifier, we chose to use RNN for two reasons: first, RNN are able to 
build internal representations involving time and second, most recurrent neural 
architectures are able to model chaos [36]. This last reason refers to the fact that 
the dynamics in an EEG is chaotic, according to several authors (for example  
see [37]). 

Regarding to the selection of a right RNN and training algorithm, there are 
many choices when they are used for building temporal classifiers. The most 
versatile models are the ones proposed by Jordan [38], Elman [39], Werbos [40] 
and Williams and Zipser [41]. Other works have used more sophisticated 
structures, for example [42].  

For the results presented here, we built and tested the performance of two 
classifiers using two types of recurrent neural networks: a Simple Recurrent 
Network (SRN), also known as “Elman network” [39] and a fully connected 
recurrent neural network (FCRNN) with external inputs, similar to the one 
described in [40,47]. SRN was trained using the algorithm “Back Propagation 
through time” (BPTT) [40] and FCRNN was trained with the algorithm “Real 
Time Recurrent Learning – Extended Kalman filter” (RTRL-EKF) [43,44] using 
the implementation proposed in [48]. These architectures and algorithms are 
briefly described next.  

3.3   Simple Recurrent Network (SRN or Elman Network) 

Time can be represented in several ways in recurrent neural networks. In a SRN, 
time is implicitly represented using a context layer. This model was introduced by 
Elman [39], which in spite of being rather simple, is able to memorize previous 
states of a sequence. SRN architecture has 4 layers: an input layer, a hidden layer, 
an output layer and a context layer. (see Fig. 5). The representation of past events 
is achieved because nodes in the context layer memorize the outputs of nodes in 
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hidden layer coming from a previous time. This context layer is able to create a 
map of some temporal properties of the system.  

In general, the state-space model of a RNN can be described by the following 
equations [44]: 

),( nn1n uxax =+                                                (1) 

nBxy =n                                                         (2) 

where: 

ny               represents the output of the system (all neurons 

  in the network),  

  }...,{ 11 +−−= qnnnn uuuu  is a vector of the exogenous inputs 

  in different steps, 

nx    is the output of a bank of q unit-time delays, q being the 

  number of nodes in the input layer.  
 ) , ( ⋅⋅a   is a nonlinear function characterizing the hidden layer. 

  B   is the matrix of synaptic weights characterizing the output 
   layer.   
 

 

Fig. 5 The Simple Recurrent Network [39] 

Notice that in this model, the hidden layer is non-linear (equation 1) and the 
output layer is linear (equation 2).  A SRN is a special case of this model, where 
the connection weights and the output layer may also be non-linear. In the results 
reported here, a hyperbolic tangent sigmoid transfer function was used for the 
nodes in hidden layer (‘tansig’ Matlab function) and a logarithmic sigmoid 
transfer function (‘logsig’ Matlab function) was used for the output layers.  

SRN may be trained in different ways. For the experiments reported in this 
chapter, we used a gradient descent back propagation algorithm with adaptive 
learning rate.  Function ‘calcgbtt’, provided by the neural network toolbox of 
Matlab V6.0. was used as the gradient function, which calculates the bias and 
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weight performance gradients using the back-propagation through time algorithm 
(BPTT) [40]. BPTT is a supervised learning algorithm originally proposed by 
Werbos [46] and independently discover by Rumelhart and collaborators [47], that 
attempts to minimize the output error of the network obtained over a period of 
time. This error is calculated as:  

 
1

,,
=

−=
T

t
tt

2
nn )y(DE

                                            (3) 

where nD ,t  is the desired output of the neurons in the network where an output is 

required at time t, and T is the size of the sequence being used to train the 
network. The core of back-propagation is a efficient method for the calculation of 
derivatives that allow to minimize the error described in equation 3. BPTT 
constructs a feed-forward network with identical behavior over a particular time 
interval that the involved RNN.  The main drawback of BPTT is that it requires to 
use the complete training sequence for each training epoch in order to calculate 
the gradient.  For a detailed explanation of BPTT see [44]. 

3.4   Fully-Connected Recurrent Neural Network 

A fully-connected recurrent neural network with one input layer, one hidden layer 
and one output layer was also used in this work to build a temporal classifier. The 
term "fully connected" means that all neurons in the network are connected each 
other. The input layer is formed by neurons receiving an external input; the output 
layer is formed by nodes whose outputs are considered the output of the system; 
the training sequence contains the desired values for such outputs (corresponding 
class). As occurring with other layered neural network architectures, the number 
of neurons in the hidden layer depends upon the complexity of the problem and 
the appropriate number of them requires to be defined by experimentation.   

As we explained before, there are several algorithms to train recurrent neural 
networks. BPTT has been very popular during many years, but currently it is 
known that very useful algorithms for training recurrent neural networks are based 
on Kalman Filtering (KF) [48].  KF is a common method to estimate unknown 
variables of a system based on the observations of measurements across time. KF 
is based on the idea that the involved dynamical system of the problem is hidden 
and can only be observed or measured through some time series (sequences). In 
KF the dependency among two consecutive states, measurements and the state 
process is assumed linear [49]. Therefore, an Extended Kalman Filtering (EKF) is 
required when nonlinear systems are involved, as in the case of recurrent neural 
networks. In EKF, a linearization around the current working point is applied 
before that standard KF is performed. EKF has been widely studied and applied 
using different strategies to train RNN, for example in [49-51]. It also has been 
combined with other algorithms, for example with “back-truncated propagation 
through time” [51] and with RTRL [43]. 
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For the experiments presented in this research, we used a combination of the 
RTRL and KF proposed by [43]. The training algorithm RTRL contains two main 
steps (see [44,52]): gradient calculation and weights adjustments. RTRL is used to 
calculate the derivatives of the gradients and EKF is used for modifying the 
weights. According to [44], the state-space model of this network, when training, 
is defined by two models: 

 
1) The system model, described by: 

nnn ω+=+ ww 1     ,                                             (4) 

where: 

 nw  is the weight (state) vector  

 nω  is a white Gaussian noise. 

2) The measurement model, described by: 

   nnnnn νuvwbd += ),,(     ,                                    (5) 

where:  

 nd  is the desirable response o the system, playing the role  

  of the “observable”, 

 nν  represents the recurrent node activities inside the  

  network,  

 nu  denotes the input signal to the network and  

 nν  is a vector denoting measurement noise corrupting nd . 

 
EKF allows the estimation of the value of the correction in the state space model, 
updating weights as follows:  

nnnn αGww += −1ˆˆ                        (6) 

),,ˆ( 1 nnnnn uvwbdα −−=   ,                              (7) 

where: 

 nG  is the Kalman gain, calculated using: 

 1
,11 ][ −

−− += n
T
nnn

T
nnn νQBPBBPG            (7) 

 nnnnnn ,11 ωQPBGPP +−= −−           (8) 

 nB   is the Jacobian of the partial derivatives  

  with respect to the state, that is, the weights, which is  
  calculated using RTRL algorithm.  
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 n,ωQ  is the covariance matrix of the dynamic noise nω ,  

 nP  is the prediction error covariance matrix, and  

 n,νQ  is the covariance matrix of the measurement noise nν .  

 

The calculation of partial derivatives nB  is defined as: 
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where q is the total number of neurons in the networks and m is the total number 

of weights. Using RTRL, derivatives in nB are calculated as [53]: 
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)(⋅′σ is the derivative of the neuron transfer function )(⋅σ ; 


=

=
m

j
jiji nzwnx

1

)()( is the input to each neuron, ikδ is the Kronocker delta. For 

further details, see [44,52,53].  
For the experiments showed here we used an implementation of RTRL-EKF 

created by [52], which is itself based on the Matlab functions created by [45]. A 
very good description of the data structures used in such software is given by [48]. 
In that reference, the interested lector can find a very good algorithm to implement 
RTRL-EKF using GPA architecture. 

4   Proposed Methodology 

A block diagram of the proposed scheme is represented in Fig. 6. The algorithm is 
described as follows: preprocessing of the EEG signals obtained from P4 electrode 
includes a blind source separation through Independent Component Analysis 
(ICA) in order to remove eye blink and other artifacts. The signal is then filtered 
in order to obtain the alpha and beta bands, and the power signal for each band is 
computed. The power signal in each band is partitioned into 5 windows with a 50 
% overlapping as a feature reduction process. The signal is passed through an  
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ANFIS system in order to obtain a representation in fuzzy sets corresponding to 
the evolution in time of the estimated power across both spectral bands alpha and 
beta. Temporal sequences corresponding to the combination of energy bands for 
each mental task are input into a recurrent neural network, which is trained to 
deliver a classification decision on the corresponding mental task. 

 

 

Fig. 6 Block diagram of the proposed architecture for mental tasks classification 

Preprocessing EEG data in order to eliminate the artifacts added during the 
recording sessions is an essential task to facilitate accurate classification. The most 
corruptive of the artifacts is due to eye blinks because it produces a high amplitude 
signal called electrooculogram (EOG) that can be many times greater than the 
EEG signals of interest. 

The use of ICA for blind source separation of EEG data is based on an 
assumption that EEG data recorded from multiple scalp sensors are linear sums of 
temporally independent components arising from spatially fixed, distinct or 
overlapping brain networks [54]. The goal of ICA is to recover statistically 
independent sources given only sensor observations that are unknown linear 
mixtures of the unobserved independent source signals. ICA reduces the statistical 
dependencies of the signals, attempting to make the signals as independent as 
possible which make ICA capable of separating artifact components from EEG 
data since they are usually independent of each other [55].  

As mentioned before, )(txi  are assumed to be the result of linear combinations 

of the independent sources, as expressed in: 
 

1 2 2( ) ( ) ( ) ( )i i i i in nx t a s t a s t a s t= + + +  
 

Or in matrix form: 

x = As  
where: 

 A is a matrix containing mixing parameters and  
 s  is the source signals.  
 

The goal of ICA is to calculate the original source signals from the mixture by 
estimating a de-mixing matrix U that gives: 
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ˆ =s Ux  

Both the mixing matrix A and the matrix containing the sources S are unknown. 
The non mixing matrix U is found by optimizing a cost function. Several different 
cost functions can be used for performing ICA, e.g. kurtosis, negentropy, etc., 
therefore, different methods exist to estimate U. For that purpose the source 
signals are assumed to be non-Gaussian and statistically independent. The 
requirement of non-Gaussianity stems from the fact that ICA relies on higher 
order statistics to separate the variables, and higher order statistics of Gaussian 
signals are zero. In this way, ICA is applied to EEG signal from P4 electrode in 
order to remove eye blink artifacts. For additional information see [54]. The result 
of preprocessing EEG data is shown in Fig. 7. 
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Fig. 7 EEG data before and after preprocessing 

Elliptic filters of five order were used in order to obtain the alpha and beta 
bands. After filtering EEG data, the power for each band is computed squaring the 
amplitude of samples; then, the power signal in each band is partitioned into 5 
windows with a 50 % overlapping as a feature reduction process. The signal is 
passed through an ANFIS system in order to obtain a representation in fuzzy sets 
corresponding to the evolution in time of the estimated power across both spectral 
bands alpha and beta. Temporal sequences corresponding to the combination of 
energy bands for each mental task are input into a recurrent neural network, which 
is trained to deliver a classification decision on the corresponding mental task. 
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5   Experimental Results 

EEG data were obtained previously by Keirn and Aunon [56] and are available on 
line for research purposes. Ten trials for each mental task resulted in a total of 20 
patterns. Details of the procedure followed to detect the signals can be consulted 
in the cited reference. A brief description is as follows: an Electro-Cap elastic 
electrode cap was used to record data from positions C3, C4, P3, P4, O1, and O2  
defined by the 10-20 system of electrode placement. In the original data set, there 
were seven subjects performing five different mental tasks and one subject 
performing two different mental tasks. Signals were recorded for ten seconds 
during the task at a sampling frequency of 250 Hertz, and each task was repeated 
five times per session. Subjects attended two sessions recorded on different weeks, 
resulting in a total of ten trials for each task. The two mental tasks are described as 
follows. In the task described as mental letter composing, the subjects were 
instructed to mentally compose a letter to a friend or relative without vocalizing. 
The second mental task described as visual counting, was constructed by asking 
the subjects to imagine numbers being written sequentially on a blackboard,  
with the previous number erased before the next number was written. Experiments 
were executed using MATLAB version 7.6 in a personal computer with a 2.0 GHz 
AMD Turion processor and 3GB RAM. Figure 8 shows an example of the 
normalized power signal corresponding to alpha and beta bands for each mental 
task. 

According to the proposed procedure previously described, feature extraction is 
performed on the power signals by a window-averaging with a 50% window 
overlap. Fig. 9 shows an example of the feature vectors obtained through the 
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Fig. 8 Alpha and beta band power for letter composition and counting task 
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described procedure, corresponding to the referred mental tasks. As Fig. 9 
illustrates, the power representation of alpha and beta bands presents variations 
associated to temporal evolution of power bands following each mental task. Since 
the power in bands shows variations for each subject and trial, we propose the use 
of an adaptive system allowing the assignment of membership functions in an 
automatic way in order to represent the configuration of bands through fuzzy sets, 
translating each experiment into a simple sequence that preserve the temporal 
evolution of the performed mental task. Fig. 10 shows an example of the state 
assignment corresponding to the case of letter composition task. 
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Fig. 9 Result of feature extraction process for two different mental tasks 

The feature extraction process is then applied to each trial in the mental tasks 
database, obtaining some sequences representing the state transitions of power 
band configurations and corresponding to each mental task. The ANFIS system 
was trained with the features extracted over all trials, considering an input 
representation with eight membership functions. Fig. 11 shows an example of the 
results obtained from the ANFIS training for the two mental tasks. Temporal 
classification of the obtained feature vectors representing each mental task was 
performed using a recurrent neural network. In this paper we compare the 
performance of two models previously described: a simple recurrent neural 
network or Elman network and a Full Connected Recurrent Neural Network 
FCRNN. In both cases, the architecture of the recurrent neural networks was: 1 
node in the input layer, 10 nodes in the hidden layer and 1 node in the output 
layer. The architecture was determined by experimentation, with the best results 
obtained using the described configuration.  
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Fig. 10 State assignment for letter composition task 
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Fig. 11 Result of ANFIS training 

Temporal classification results are reported based on a leave-one-out (LOO-
CV) cross-validation. LOO-CV is typically used in the analysis of small datasets, 
where the relatively high variance of the estimator is offset by the stability 
resulting from the greater size of the training partition than is possible using 
conventional k-fold cross-validation [57]. 
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Ten trials for each mental task result in a total of 20 patterns. The dataset was 
partitioned in 5 folds with 4 trials each one.  LOO-CV was performed using four 
folds for training and the remaining one for testing. Table 1 summarizes the 
temporal classification results obtained in average from both, training and testing 
cases, with the two recurrent neural networks previously described. 

Table 1 Results on temporal classification; training and testing  

RNN Training  500 epochs Testing 

 MSE Performance time MSE Performance 

Elman 0.0328 91.75% 3’49’’ 0.0401 90.16% 

FCRNN 0.0121 94.61% 1’ 12’’ 0.0528 88.12%. 

6   Conclusions 

In this chapter, an architecture based on adaptive neuro-fuzzy inference systems 
(ANFIS) assembled to recurrent neural networks, applied to the problem of mental 
tasks temporal classification, has been presented. Information on power signal 
obtained from Alpha and Beta bands constituted a good descriptor with an 
adequate separability, providing a good balance between complexity and 
classification rate. The feature vectors representing each mental task following a 
fuzzy-set paradigm, provided a good description about the temporal evolution of 
the power signal. A classification rate in training of 94.61 % in average was 
obtained through the FCRNN, with an 88.12 % of classification using leave-on-
out cross validation in the testing stage. A comparison with the Elman Network 
indicates a better performance of the FCRNN during the training stage, with a 
slightly better performance of the Elman network on generalization. In both cases, 
an architecture of the neural network with 10 nodes in the hidden layer provided 
the better results. Further experimentation oriented to the construction of a 
database for BCI applications is currently in progress.  
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Abstract. The initial process for the granulation of information is the clustering of 
data, once the relationships between this data have been found these become 
clusters, each cluster represents a coarse granule, whereas each data point 
represents a fine granule. All clustering algorithms find these relationships by 
different means, yet the notion of the principle of justifiable granularity is not 
considered by any of them, since it is a recent idea in the area of Granular 
Computing. This paper describes a first approach in the analysis of the 
relationship between the size of the clusters found and their intrinsic 
implementation of the principle of justifiable granularity. An analysis is done with 
two datasets, simplefit and iris, and two clustering algorithms, subtractive and 
granular gravitational. 

Keywords: justifiable granularity, clustering algorithm, subtractive, granular  
gravitational. 

1   Introduction 

Granular computing is an area which has been gaining support since its initial 
conception[1],[2],[3],[4],[5],[6]. Focusing on how information is treated and 
represented, it describes how information should efficiently relate to each other, 
defining the size of each granule and confining the cardinality of data into a mea-
ningful information granule[3]. This area has expanded into different interpreta-
tions, since it is more of a theory in general than a defined methodology of treating 
information, yet they all share the same objective, to obtain meaningful granules. 
Information granules can also be represented in a number of forms, fuzzy 
logic[7][8], rough sets[9][10], etc[11][12][13][14]. 



240 M.A. Sanchez, O. Castillo, and J.R. Castro
 

The process of obtaining information granules is first preceded by the action of 
finding relations between all data; this process is usually done by a clustering al-
gorithm. Clustering algorithms are defined as algorithms which find relationships 
between data, there are multiple methodologies in which such relationships are 
found, there are categorized as centroid based[15], density based[16], hierarchical 
based[17], among others[18][19]. Each one of these obtaining similar results, yet 
at the same time, finding different results, this is, there is a difference in perfor-
mance on each type of algorithm. The end result of such algorithms are usually 
cluster centers as well as areas of influence, in the specifics of centroid based clus-
tering algorithms, they find cluster centers between the universe of data and radial 
areas of influence, which can be easily mapped into fuzzy Gaussian membership 
functions[20]. This paper focuses on this type of clustering algorithms. 

Although clustering algorithms obtain acceptable results in the relationships 
found[21], they do so in a manner that does not take into account if they adhere to 
the basic theory of granular computing or not, since many algorithms precede the 
existence of the area of granular computing. Yet clustering algorithms and granu-
lar computing are intertwined in such a way that you cannot remove one from the 
other, because finding relationships in data is essential to obtaining information 
granules. 

One step in the correct direction of uniting clustering algorithms and granular 
computing is the implementation of the principle of justifiable granularity[22]; this 
principle is a first attempt to describe, in more detail, how an information granule 
is in fact meaningful, and not redundant or too specific. Most, if not all, clustering 
algorithms do not take into account if they create meaningful granules or not, they 
only concentrate on the end result, and not if the chosen granules are optimized 
and/or meaningful. 

This paper is organized into multiple chapters which introduce concepts on 
clustering algorithms which then briefly describes two such algorithms, subtrac-
tive and granular gravitational. Afterwards, a description and discussion on the 
concept of the principle of justifiable granularity, and finally a discussion is given 
into how both clustering algorithms, which were previously described, intrinsical-
ly implement such principle. 

2   Clustering Algorithms 

Clustering algorithms have the main objective of finding hidden relationships be-
tween the data inside of a specific information universe. In the following sections 
two clustering algorithms will be described, only until how granules are found, 
since some continue onto the process of creating a fuzzy system from the clusters 
which are found, this is to focus on the discussion and analysis on how the intrin-
sically impellent the principle of justifiable granularity. 
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2.1   Subtractive Algorithm 

This algorithm is density based, which means that its end results are calculated by 
analyzing the density of data points inside a given radius, this is done iteratively 
point by point until an objective function is within a specified tolerance[23]. 

The following, describes the main calculations done by this algorithm: 

1. A measure of the potential (1) of each data point is first calculated, taking into 
account the value of the given radius (2). 

=  (1) 

= 4
 (2) 

2. The highest potential is selected (2) and accordingly reduces the potential on 
the rest of the point, calculated with the support of the given radius (4) 

 (3) 

= 4
 (4) 

3. This is repeated until the finalization condition (5) is met 

 
(5) 

4. All sigmas, or radial area of influence, are then calculated (6) = max ( ) min ( )√8  (6) 

Due to the nature of this algorithm, and the need to know the cardinality of each 
found cluster in respect to the information universe, as to apply the principle of 
justifiable granularity, a manner to find such cardinality (7) was implemented into 
the algorithm, this was done by calculating the distances between each found clus-
ter and all data points, and the closest data points to each clusters were added to 
their respected cardinality (8), where the distance is calculated with the Euclidean 
distance measurement (9). ∈  (7) = data points closer to c  (8) = ; ! =  (9) 



242 M.A. Sanchez, O. Castillo, and J.R. Castro
 

2.2   Granular Gravitational Algorithm 

This is a hybrid centroid-density based algorithm, meaning all the calculations are 
done based on point density and point distance, this is considering that Newton´s 
Law of Universal Gravitation[24] is utilized to carry out the main cluster calcula-
tions[25]. 

The following describes the main calculations done by this algorithm: 

1. All gravitational forces (10) in the system are calculated = ,  (10) 

2. The sum force (11) for all data points is then sorted in descending order =  (11) 

3. All points with strong gravitational force and within a given radius are joined 
(12), joining the point with lesser mass to the point with more mass ∪ ; ∪  (12) 

4. This is repeated until a balance in the gravitational forces in the system is 
achieved 

5. All sigmas are then calculated based on the strongest force exerted by any 
found cluster unto the rest of the information universe 

3   Principle of Justifiable Granularity 

This principle is “concerned with the formation of a meaningful information gra-
nule based on available experimental evidence”[22], meaning that finding clusters 
and assigning sigmas that give acceptable results is no longer relevant, and the 
correct size and cardinality of each cluster is. 

3.1   Basic Theory 

The principle of justifiable granularity is concerned with obtaining the adequate 
size of each information granule which was found for that specific information un-
iverse. In this theory, there are two main rules that must be followed: 

1. The numeric evidence of a specific information granule must be as high as 
possible, this means that the cardinality of information within a granule  must 
be high 

2. The information granule should be as specific as possible, meaning that vague-
ness is reduced, relying only on a very strict cardinality 
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Fig. 4 Effect of the behavior of V(a) and V(b) on the final length of the granule, when the 
value of α is equal to zero 

 

Fig. 5 Effect of V(a) and V(b) on the final length of the granule, when α=2 
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The approximate value of αmax is somewhere in the area where the behavior plot 
stops to descend fast and starts to stabilize, as shown in Fig. 8. 

 

Fig. 8 Interval where the approximate value of αmax is found 

A heuristic is offered which can find this approximate value of αmax, which is 
described as the natural logarithm of the cardinality of the chosen side (18) to find 
its length divided by the length of the closest point (x1) to Med(D) (19). =  ( ∈ ( ) ) (18) 

= log ( )| ( ) | (19) 

On other terms of application, and considering that choosing an α close to 0 will 
scale the information granule to a non specific granule, with a length near 0, the 
middle point between [0, αmax] or αmax/2, will not necessarily impose a length of 
exactly half the size, since the behavior, as already shown, is non-linear, and it 
will greatly vary from the numerical evidence contained within each specific in-
formation granule. In Fig. 9, a clear example is shown of the difference between 
α=0 and α=αmax. 
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after processing all information, to apply the principle of justifiable granularity 
one must consider that for every input there exists 10 granules, meaning 40 gra-
nules in total, and since each granule must specify two values for α, the user must 
input a total of 80 different values for α, which is not a very user friendly number 
in itself. 

Considering this difficulty in applying this principle, there are multiple ways to 
address a solution. First, all values of α are set to the same value, although this 
would definitely reduce everything to a single number, it will purposely defeat the 
objective of applying the principle of justifiable granularity, this is considering 
that αmax varies from granule to granule, meaning this method is not viable unless 
the value is ultimately set to zero. Another method, similar to the previous one, is 
to use a scaling factor, since a heuristic has been proposed in this paper, it could 
be used to scale from its maximum value down to zero, α= αmax x αscale where 0≤ 
αscale≤1, and apply it homogeneously to all values of α, this can be visualized in 
Fig. 10.  

 

Fig. 10 Example of applying a global scaling to all lengths (a and b) for all granules, with a 
scaling factor set to 0.25 

Another possible solution could be to apply a scaling factor, but instead of glo-
bally, apply it locally to each input, this could be used in cases where certain in-
puts variables can be relaxed in the values which it can receive or on the other 
hand, only accept values high where precision is required, an example is shown in 
Fig. 11 where two distinct inputs with two granules each implement this solution; 
this type of solutions could be seen in a control application, where inputs are from 
various sensors where some require higher precision and other lower precision. 
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Both algorithms which are being analyzed will be compared utilizing α=0 and 
α=2 on both lengths of the granule, a and b. Fig. 13 shows the subtractive algo-
rithm´s sigmas, represented by straight lines, against the lengths found by the 
principle of justifiable in this case, the granule is none-specific and completely 
generalized, which has α=0, yet in comparison with the sigmas from the subtrac-
tive algorithm, half reach far beyond the cardinality of each granule. 

 

Fig. 13 Results for subtractive algorithm of the simplefit dataset under, comparing the sig-
mas (lines) found by the algorithm against the lengths suggested by the principle of justifi-
able granularity (shaded area), with α=0 

In Fig. 14, the same granules are shown but with α=2, where it can be noted 
that all lengths vary widely since each granule’s cardinality is different in nature. 
This example shows that the original length found by the subtractive algorithm 
cannot compare with the varying values of α, since such algorithm does not con-
sider how specific a granule can be. 

The granular gravitational algorithm, shown in Fig. 15, shows a very different 
behavior in its sigmas, compared to the subtractive algorithm´s sigmas, since they 
adapt much more to the cardinality of each granule, but in comparison with the 
lengths given by the principle of justifiable granularity, with α=0, they are still 
very generalized and reach beyond the its cardinality in the same way the subtrac-
tive algorithm does. 
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Fig. 14 Results for subtractive algorithm of the simplefit dataset under, comparing the sig-
mas (lines) found by the algorithm against the lengths suggested by the principle of justifi-
able granularity (shaded area), with α=2. 

 
Fig. 15 Results for granular gravitational algorithm of the simplefit dataset, comparing the 
sigmas (lines) found by the algorithm against the lengths suggested by the principle of justi-
fiable granularity (shaded area), utilizing α=0 
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In Fig. 16, the value set by the specificity criterion was set to 2, which much 
how the subtractive algorithm with the same value for α compares against the ap-
plication of a variables specificity criterion, it cannot compare since the granular 
gravitational algorithm also does not contemplate how specific a granule can be. 

 

Fig. 16 Results for granular gravitational algorithm of the simplefit dataset, comparing the 
sigmas (lines) found by the algorithm against the lengths suggested by the principle of justi-
fiable granularity (shaded area), utilizing α=2 

4.2   Iris Dataset 

The iris dataset is a benchmark dataset in remarks to clustering and classification, 
with four inputs and three classes, and a non-linear solution, this makes for a very 
interesting dataset to test. 

First to be analyzed, is the comparison for the subtractive algorithm, specifical-
ly for the input variable of the petal length and sepal width, comparing the sigmas 
obtained  by the clustering algorithm against the lengths obtained by applying the 
principle of justifiable granularity with an α=0 and α=5. As shown in Fig. 17, the 
calculated sigmas by the subtractive algorithm still overreach, in most cases, far 
beyond the cardinality of each cluster, yet in some cases some data points are not 
inside that area of influence. For the lengths found by the principle of justifiable 
granularity, since the criterions which was chosen is zero, this shows the maxi-
mum length which should be used in order to generalize the granule, in some cas-
es with this example, the lengths are almost identical, yet in others they are either 
too short or too long, giving mixed results. 
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In the next section, a much more detailed analysis regarding the cardinality, 
sigmas and results obtained by applying of the principle of justifiable granularity 
will be given. 

4.3 Discussion 

First of all, comparing both algorithm´s general performance, they obtain exactly 
the same number of clusters when they 100% identify these datasets, meaning 
their performance is very similar. The main difference in their results is that the 
subtractive algorithm´s sigmas are constraint to the same length of each cluster on 
the variable level, and the granular gravitational algorithm adapts its sigmas to 
global cardinality, meaning that the clusters at the variable level will not always be 
optimal. 

Discussing now the intrinsic application of the principle of justifiable granulari-
ty in both algorithms, we first analyze the results obtained with the simplefit data-
set. Since this comparison was done with a specificity criterion of 0 and 2. With 
zero, a full coverage of the lengths were expected, the subtractive algorithm had 
mixed results in this case, since some of its clusters were perfectly represented yet 
other clusters were very over-represented, having their length reach far beyond the 
cardinality; and the granular gravitational, in this case, did adapt more the cardi-
nality of each cluster, in some cases ignoring isolated data points inside its own 
cardinality, yet in other cases its reach went far beyond its data limits. With the 
criterion set to 2, the change of coverage by each granule is very noticeable, but in 
this specific case, there is no direct comparison available with both algorithms, 
since they do not take into consideration how specific or not a granule can be. 

Analyzing these results, we can assume that, in general, the subtractive algo-
rithm obtains sigmas that are more specific in nature and the granular gravitational 
algorithm obtains sigmas that are less specific. Even with these differences, they 
both have very mixed results in the specificity length of their sigmas. This is con-
sidering that both algorithms generally give lengths of granules that are too long in 
direct comparison with the most generalized length given by applying the prin-
ciple of justifiable granularity. 

Directing attention to the iris dataset, these results show a different facet of the 
justifiability of granules, since the criterion which was chosen is 0 and 5, compar-
ing the most generalized granule size, α=0, and a granule size which is not very 
specific nor very general, α=5, in fact, since αmax was not considered in this case, 
it is unknown if the value of 5 is the exact balance between specificity and numer-
ical evidence of each granule, and considering that the cardinality of each granule 
affects the non-linear behavior of αmax, this value was simply chosen to demon-
strate a higher value of specificity as to show how it affects the length of the  
granule. 

Comparing both algorithms results, for the variables of the petal length and 
sepal width, in contrast to the length obtained after applying the principle of justi-
fiable granularity, we can see that in both cases, the lengths of the sigmas obtained 
by the algorithms are similar in size, yet in some cases the granular gravitational 
sigmas adapt more to the cardinality of each cluster. With an α of zero, the  
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subtractive algorithm as well as the granular gravitational algorithm adjust similar-
ly to the lengths given by applying the principle of justifiable granularity, but only 
in one of the inputs, petal length to be precise, yet the other input, sepal width, 
does not behave in this same manner, this could be explained by the form in how 
the cardinality is calculated, where both algorithms calculate them globally and 
not by input. The calculated length with a criterion of 5, in both cases, are similar 
in size for most clusters, and considering that both algorithms have a similar per-
formance, we can assume that in this case, this similarity in obtained lengths by 
applying the principle of justifiable granularity is to be expected. 

Reducing this discussion to fewer words, both algorithms have a very similar 
general performance with these datasets. The subtractive algorithm finds sigmas 
of the same length on the variable level and has mixed results with the specificity 
of each found cluster, while the granular gravitational algorithm finds sigmas that 
adapt more to the cardinality of each granule, but since this is done globally on 
each data point, it also has mixed results in respect to the cardinality of each clus-
ter on the variable level, and its sigmas tend to be less specific that the sigmas 
found by the subtractive algorithm. And as already stated, both algorithms do not 
adapt nor consider how specific a granule should be. 

5   Conclusion 

5.1   Conclusions 

In general, this analysis has given some insight into how, and possibly a why, 
these clustering algorithms obtain such acceptable results, when compared to the 
most generalized length given after applying the principle of justifiable granulari-
ty. Another finding is that they both obtain sigmas which are normally too genera-
lized in respect to the cardinality of each information granule, resulting in the 
question of how would the final evaluation of identifications of the datasets would 
be affected if the lengths of each information granule was reduced according to 
the principle of justifiable granularity. 

Both algorithms have mixed results when it comes to the intrinsic implementa-
tion of the principle of justifiable granulation, yet in general, they both find sigmas 
that are less specific that the most generalized possible length which can be found 
by applying this principle. 

Considering the non-linear behavior of the specificity criterion, and how there 
is a fuzzy interval where its optimum value is found, an approximate heuristic has 
been proposed which finds such value, as well as multiple suggestions as to how 
generalize this value to limit the amount of user criterion values which must be 
given to each system of granules. 

5.2   Future Work 

Regarding the principle of justifiable granularity, a global specificity criterion 
could make it much easier to implement this theory, since having to choose this 
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value for two lengths, for every granule, and for every variable, is a non-realistic 
implementation. 

Having obtained acceptable results with the application of the principle of justi-
fiable granularity, integrating this into current clustering algorithms would greatly 
aid in the advancement of the general theory of granular computing, since the gra-
nules would now be meaningful and more specific to the needs of the problem to 
be solved. 
Since a key component of the process of adjusting the lengths by applying the 
principle of justifiable granularity is a meaningful cardinality which properly re-
flects each input, a modification to current clustering algorithms to reflect this 
could greatly aid the end result of this principle. 
More clustering algorithms can be tested in the same way the subtractive and gra-
nular gravitational algorithms were, as to measure more algorithms and asses their 
performance and creation of meaningful information granules. 
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Abstract. This paper proposes a new approach to simulating language evolution; 
it expands on the original work done by Lee and Zadeh on Fuzzy Grammars and 
introduces a Type-2 Fuzzy Grammar. Ants in an Ant Colony Optimization algo-
rithm are given the ability of embedding a message on the pheromone using a 
Type-2 Fuzzy Grammar. These ants are able to gradually adopt a foreign language 
by adjusting the grades of membership of their grammar. Results that show the  
effect of uncertainty in a language are given.  

Keywords: ACO, Language Evolution, Type-2 Fuzzy Grammar.  

1   Introduction 

How humans developed language can be explain from two different perspectives. 
Some researchers believe that human linguistic abilities are innate ([7], [22], [23], 
[24]), this is what is called the Nativist point of view, which sustains that language 
is rooted in the brain's biology, in other words, the brain has an organ dedicated to 
language. The second point of view is known as Non-nativist, which claims that 
language is a byproduct of general intellectual abilities ([9], [26], [27]), this point 
of view doesn’t assume the existence of certain characteristics in human biology 
but claims that language is an emergent response to evolutionary pressure applied 
to human ancestors. 

Having these two points of view has created the Nativist versus Non-nativist 
divide. One example that supports Nativist is the existence of a critical period 
where children can learn a language; if a child is exposed to a language before the 
age of six he is able to learn it fluently regardless of intellectual and environmental 
circumstances, while an adult requires a greater amount of effort to learn a foreign 
language [21]. 

The origin of the Nicaragua Sign Language is another example of language na-
tivism. The first school for deaf children in Nicaragua was opened in 1977, before 
then deaf people lived isolated with their immediate family and communicated us-
ing signs specific to their home. It wasn't until they opened these schools that 
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children had the opportunity to socialize with others with similar abilities. 
Through this interaction they took each other's dialects and formed a more com-
prehensive vocabulary by which all children could communicate. Researchers 
noted that younger children could conjugate verbs in ways that older children 
could not and they also found that younger children were introducing new struc-
tures to the grammar as they were learning it ([17], [18], and [25]). 

In [12] researchers found that in order to enhance a child's ability to learn adults 
adjust their language level when talking to them by using simpler grammatical 
forms and vocabulary, which suggest that humans are instinctively good at teach-
ing language, which is a Non-nativist method of transmitting language. 

To close the Nativist vs. Non-nativist division simulations of language evolution 
can be applied. As explained in [21] simulations should explore three different as-
pects: the Nativist vs. Non-Nativist perspectives, syntax evolution and finally the 
evolution of communication (usage of words as symbols). 

There have been many attempts to simulate this phenomenon which have 
shown good results in formal languages ([2], [3], [13], [14], [15]); most common 
are those that use genetic algorithms ([3], [13], [15]) and neural networks ([14]), 
which will be further explain in later sections. 

This paper explores grammar evolution and language acquisition using a Type-
2 Fuzzy Grammar, which is an extension of Lee and Zadeh's original work in [19] 
on Fuzzy Grammars. A modified Ant Colony Optimization algorithm is used to 
simulate the social interactions required in a communicating society and results 
that support the validity of this approach are given, as well as a detailed explana-
tion of how the simulation operates. 

This paper has four sections organized as follows: section two is a collection of 
previous work. Section three is an explanation of the simulation itself; it includes a 
formal definition for Fuzzy Grammars as well as the modified ACO algorithm. 
Results are presented in section four and finally conclusions are shared in section 
five. 

2   Previous Work 

2.1   Emergent Vocal System in an Agent Society 

This is an example of a Non-nativist simulation in which a language changes due 
to the constant interaction between participating agents. In [2], de Boer simulates a 
sound system organization using imitation games. To achieve this he proposes an 
experiment in which agents are added or removed from a population, each having 
a device that synthesizes sounds similar to the human voice and another device 
that receives and decodes sounds in real time. 

During a game, an agent randomly generates a sound that is added to its lex-
icon, a second agent perceives this sound and tries to decode it and reproduce it, if 
the first agent finds that the imitation is sufficiently similar it gives positive feed-
back to the second agent. If however the sound is very different, the second agent 
tries to modify it to better match the original. 
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Using this method de Boer shows that a system of shared sounds can emerge 
through adaptive imitation games. 

2.2   Development of Shared Symbols 

Another case in which the simulation takes a Non-nativist approach is as follows. 
Hutchins and Hazelhurst in [14] tried to weaken the assumption that a lexicon 
used by agents must be provided externally by the researcher. They started with 
agents with no innate knowledge of a lexicon and prepared them with a finite set 
of situations they may experience. In order to identify them, each agent has a net-
work that represents a situation as an activation of nodes (the network's connection 
weights are initialized at random). 

Agents take turns performing roles as emitters and receivers. Both are pre-
sented with the same situation, and a pattern is formed within each network, the 
emitter then transmits its pattern to the receiver, and since both perceive the same 
situation the receiver can use the emitter's pattern as an additional input in order to 
adjust its own network. 

After a certain number of iterations agents converge on a shared vocabulary, 
which means that when agents perceive the same situation the patterns produced 
by the network are equal for all agents. 

2.3   The Bioprogram Hypothesis and the Baldwin Effect 

Using a multi-agent system Briscoe simulated the propagation of language using 
genetic algorithms [3], this is an example of a simulation taking the Nativist point 
of view in consideration. Agents are created with a grammar capable of analyzing 
a sequence of categories or statements. The grammar is partly innate and contains 
categories with some of the ways they can be combined. 

One agent generates a sequence and another tries to interpret it using its internal 
grammar, if a derivation tree can be generated then the interaction is successful. 

The genetic part of the algorithm comes into play when agents are selected for 
reproduction. Each agent has a degree of fitness that depends on its success in in-
teractions, the expressibility of the language and the amount of memory used to 
make derivations. 

When an agent is unsuccessful in its interaction it can modify its grammar. The 
fittest agents are chosen for reproduction, the o spring's grammar is formed by 
both parents' grammar. 

This method proves that through genetic assimilation one grammar will even-
tually dominate over an entire population. 

2.4   Grammar Emergence in Communication Agents 

Ikegami and Hashimoto demonstrated that a grammar can increase complexity, 
and therefore be more expressive, using an evolutionary method [13]. 
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In this method, agents have an internal grammar they use to generate a string of 
ones and zeros that is then transmitted to other agents. Agents who receive the 
string try to use their internal grammar to replicate it, each agent keeps track of 
how many steps it needs to derive the string from its grammatical rules. 

For selection, agents that interpret long chains in fewer steps randomly change 
their grammatical rules and are allowed to reproduce. Agents that fail to derive the 
string are removed from the population and since only the most successful agents 
are kept in the population this could be seen as another example of a Nativist si-
mulation. 

Through this process a regular grammar eventually transforms into a context-
free grammar. It is known that a context-free grammar can generate more words 
than a regular grammar. 

2.5   Evolution of Communication Agents in the Predator-Prey 
Pursuit game  

Jim and Giles in [15] use the Predator-Prey pursuit game as a case study. During a 
game, agents communicate with each other by writing a string of ones and zeros to 
a message board. Once all messages have been posted, each agent reads all the 
strings and concatenates them into a single input that is passed to a finite state ma-
chine to determine the next move. 

In order to evolve the language each predator is encoded in a chromosome. The 
initial generation usually doesn't capture the prey, but as generations advance the 
lengths of the strings grow and improve agent performance. 

Jim and Giles find that there must be a minimum size language to solve such 
problems. 

2.6   Comparison with Previous Work 

As noted in [19], Fuzzy Grammars are a midway point between the precision of 
formal languages and the ambiguity of natural languages but the literature studied 
has presented simulations that only make use of traditional grammars. This is an 
opportunity to offer a new perspective to researchers by making use of Fuzzy 
Grammars. 

Fuzzy Grammars provide much flexibility when defining a language. Produc-
tion rules can be strengthen or weaken as necessary by raising or lowering their 
grades of membership in the grammar, making it easy to integrate new experimen-
tal rules without disturbing the established ones and also maintain seldom used 
rules without completely eliminating them. Rules with a high degree of member-
ship are those that are endemic to the language, while those with a low degree of 
membership could be either new additions to the language or even part of the lan-
guage that is going out of use. 

Fuzzy Grammars could also model the acquisition of a foreign language by an 
individual. As the individual learns a new language he can add fuzzy production 
rules to his existing grammar and raise the grades of membership as he becomes 
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more skilled in the language. This characteristic can be further explored by using 
Type-2 Fuzzy Grammars. 

Type-2 Fuzzy Grammars provide a degree of uncertainty that in this case will 
model an individual’s mastery level of a new language. The production rules of an 
individual with little experience in a foreign language will have a high degree of 
uncertainty, while those individuals that are fluent in a language will have almost 
no uncertainty. 

The proposed method is a new approach to the study of language evolution; it 
differs from those discussed earlier in that it doesn't use traditional crisp grammars 
but instead opts to use Type-2 Fuzzy Grammars. It also differs from previous  
experiments [1] in that Fuzzy Grammars are extended into a Type-2 Fuzzy  
Grammar. 

3   Simulation 

3.1   Ant Colony Optimization 

To test the performance of Fuzzy Grammars a simulation in which communication 
is essential for success is needed; as such Dorigo's Ant Colony Optimization [10], 
also known as ACO, was selected as a case study. 

ACO is a meta-heuristic inspired by the foraging habits of ants where social in-
teraction is one of the most important aspects of ant survival; this interaction is 
modeled by Dorigo in the Ant Colony Optimization algorithm. 

In ACO, individual ants leave a pheromone deposit to mark a solution in a 
problem space, doing so allows other ants to follow the pheromone trace and ar-
rive at similar solutions. Pheromone intensity is either reinforced as more ants vis-
it the same solution or it evaporates as bad solutions get discarded. Eventually the 
highest concentration is found around the best solutions. This experiment takes 
advantage of this feature by providing ants with a Fuzzy Grammar and allowing 
them to embed a message on the pheromone that other ants can understand. 

The classic ACO algorithm uses a homogeneous colony to find a solution, 
which means that the colony is composed by only one type of ant (all ants are the 
same). The algorithm is extended in this experiment by including more than one 
group of ants who are segregated by a different Fuzzy Grammar; this allows mul-
tiple groups of ants to work on the same problem space to find multiple solutions. 

During the simulation the colony will attempt to minimize De Jong's function, 
which has one global minimum. 

If multiple groups of ants are placed on the same problem space to find De 
Jong’s function’s global minimum, then only one group will arrive at the solution 
because that group’s pheromone will dominate the area in which the solution is 
located while other groups will reach solutions close to the global minimum, but 
since they can’t follow the trace of the group at the solution due to differences in 
the Fuzzy Grammar, they will never reach the solution (figure 1). If however, all 
groups are able to assimilate each other’s language through the use of Fuzzy 
Grammars, then all groups will eventually reach the global minimum. 
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The experiments show how two or more groups of ants are able to find the 
same solution to a problem by acquiring each other's language through the use of 
Fuzzy Grammars. 

 

Fig. 1 The black pheromone dominates where the solution is located, the ants with the gray 
pheromone can’t reach it 

3.2   Type-2 Fuzzy Grammar 

In 1975 Zadeh introduced a concept called Type-2 Fuzzy sets [30], which is an ex-
tension that permits the inclusion of uncertainty about the membership functions 
of traditional fuzzy sets. Ever since then there have been many contributions that 
use this concept, for example in Fuzzy Logic [5][20] and machine learning [4]. 

Lee and Zadeh's original definition for Fuzzy Grammars [19] is extended into a 
Type-2 Fuzzy Grammar by implementing the concept of a Type-2 fuzzy set as fol-
lows: 

Definition 1. A Type-2 Fuzzy Grammar is a quadruple G = (VN; VT; P’; S) in 
which VT is a set of terminals, VN is a set of non-terminals, P’ is a set of fuzzy pro-
ductions and S ε VT is the set of starting variables 

The elements of P’ are all productions in the form  

                                   (1) 

Where α → β expresses a re-writing rule, and are in (VN U VT) and ω′ is the grade 
of membership given in an interval [0, 1] of β given α. A fuzzy production where 
ω = [0, 0] is assumed to not be in P’. 

A string of terminals x is said to be in the fuzzy language L(G) if and only if x 
is derivable from the starting variable S. The grade of membership of x in L(G) is 
given by  
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 (2) 

The uncertainty of a string of terminals x is given by ∆(x) 

                                    (3) 

The following is a sample of a Type-2 Fuzzy: 
Let G be grammar G = (VN; VT; P’; S) where: 

 VN = {A, B, C}  
VT = {a, b, c}   
S= {A} 

The productions in P’ are: 

 μ(A AB) = [0.75, 0.8] 
μ(B BC) = [0.6, 0.7] 
μ(A  a) = [0.8, 0.9] 
μ(B  b) = [0.7, 0.9] 
μ(C  c) = [0.85, 0.95] 

 
The derivation of the string of terminals “abc” is as follows: 

1. After applying the rule “A AB” the resulting string is “AB” and 
μ(A AB) = [0.75, 0.8] 

2. After applying the rule “B BC” the resulting string is “ABC” and 
μ(B BC) = [0.6, 0.7] 

3. After applying the rule “A  a” the resulting string is “aBC” and 
μ(A  a) = [0.8, 0.9] 

4. After applying the rule “B  b” the resulting string is “abC” and 
μ(B  b) = [0.7, 0.9] 

5. After applying the rule “C  c” the resulting string is “abc” and 
μ(C  c) = [0.85, 0.95] 

Thus according to 2 μG(abc) is: 

μG(abc) = [supmin(0.75, 0.6, 0.8, 0.7, 0.85), 
    supmin(0.8, 0.7, 0.9, 0.9, 0.95)] 
= [0.6, 0.7] 

And according to 3 ∆(abc) is: 

∆(abc) = 0.7 – 0.6 = 0.1 
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3.3   The Algorithm 

The simulation has two groups of ten ants (twenty in total, at the beginning ants 
share the same Fuzzy Grammar with members of their group (these grammars are 
given in Chomsky Normal Form). Both groups will attempt to minimize De Jong's 
function which is as follows: 

                                                (4) 

In this case ants will find the point in which equation 4 evaluates to zero in a two 
dimensional space, so n = 2. 

The problem space is discretized and represented as a grid in order to allow 
ants to take steps in controlled increments (figure 2). In other words, ants walk 
across a plane such that each coordinate pair is used as input in De Jong's function. 
At the beginning of the simulation each ant is placed randomly on the grid to be-
gin the search.  

 

Fig. 2 Two groups of ants in a grid 

As ants explore the problem space they will evaluate De Jong's function look-
ing for the global minimum, finding it means they have found a food source and 
thanks to ACO other ants will be able to follow the pheromone trace to it. 

When an ant leaves a pheromone deposit it also leaves a message generated by 
its Fuzzy Grammar. Each point in the problem space is a deposit that holds phe-
romones. Since many ants can pass over the same deposit, different pheromone 
levels are tracked. Before an ant can decide on a new position the dominant phe-
romone is determined, the pheromone with the highest intensity is the dominant 
one. Ants of either group will try to follow the dominant pheromone but only if 
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they understand the message embedded in it, in other words, if they were able to 
parse it using their Fuzzy Grammar. 

As shown in Figure 3, ants will typically follow the trace of messages they under-
stand. This characteristic causes some ants to reach the global minimum while others 
are kept at the edges. It is expected that after some iterations the number of ants that 
find the food source will increase as the language between both groups converges.  

 

Fig. 3 Example of the pheromone trace of two different groups of ants 

 

Fig. 4 Diagram of the simulation’s steps 
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The simulation is divided into epochs, during each epoch ants must choose a 
route based on the dominant pheromone left behind during the previous epoch, 
they must also evolve their grammar and write messages to the deposits. Figure 4 
is a chart of the steps made during each epoch, these steps are further explained in 
later paragraphs.  

The pseudo code for the main body of the simulation is as follows. 

1: ant[n] is an array of n ants  

2: Each ant is assign one of two grammars giv-
en in Chomsky Normal Form 

3: Each ant is placed randomly in the two di-
mensional plane 

4: for epoch = 0 to maximum number of epochs 
do  

5: for i = 0 to n do 

6: ant[i] chooses a route  

7: end for  

8: update pheromone intensity 

9: update messages in the pheromone  

10: end for  

An ant forms a route incrementally by stepping into a new deposit and then select-
ing from the eight possible adjacent spaces. The ant takes into account each depo-
sit’s pheromone intensity and its embedded message, in order to select the deposit 
the ant must be able to parse the message. Figure 5 gives an example of this selec-
tion. The circle in the middle of the grid is an ant, and it must choose which of the 
eight adjacent spaces to include in its route. Each space has a number representing 
the intensity of the pheromone. Spaces are marked with different colors to 
represent that the message in them are originated from different Fuzzy Grammars. 
A route is completed once it reaches a maximum number of allowed movements. 
Thus the probability of choosing deposit i is: 

                                 (5) 

where τ(i) is the pheromone intensity at deposit i and ∆ is the uncertainty of the 
message in i as given by 3. 
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Fig. 5 Eight deposits with intensity 

The following pseudo-code illustrates how a route is generated. 

1: route[n] is an array of deposits of size n 

2: best is the best solution found so far for 
De Jong's function 

3: Set route[0] = best  

4: for j = 1 to n do  

5: position[8] is an array of eight possible 
positions an ant can choose as its next step  

6: Set position with the message and intensity 
of the dominant pheromone  

7: for i = 0 to 8 do  

8: Set route[j] = position[i] with probability 
given by equation 5  

9: end for 

10: if route[j] is a better solution then best 
when evaluated under De Jong then  

11: Set best = route[j]  

12: end if  

13: end for  
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In order to parse the embedded message an algorithm given by Cocke [6], Young-
er [26] and Kasami [14], also known as the CYK algorithm, is used. One common 
implementation of the CYK algorithm uses a three dimensional boolean matrix to 
store true or false values as the parsing tree is built. In order to calculate G(x) as 
given in 2 a modification that allows storage of grades of membership of each 
production rule is made to the CYK algorithm. 

 

1: S = a1a2...an is the message to parse of 
length n  

2: G(S) is the grade of membership of S in the 
fuzzy grammar 

3: The fuzzy grammar contains r non terminal 
variables  

4: P[n, n, r] is a three dimensional matrix 
with real values, each position stores both the lower 
and upper grades of membership of a production rule  

5: for i = 0 to n do  

6:  for all unit productions Rj ai do  

7:   P[0, i, j] = μ(Rj  ai)  

8:  end for  

9: end for  

10: for i = 1 to n do  

11:  for j = 0 to n - i do  

12:   for k = 0 to i do  

13:    for all productions RA  RBRC do 

14:     if P[k, j, B] > 0 and P[i-k-1, j+k+1; 
C] > 0 then 

15:      P[i, j, A] = min(μ(RA  RBRC), P[k, 
j, B], P[i-k-1, j+k+1, C])  

16:     end if  

17:    end for  

18:   end for  

19:  end for  

20: end for  

21: G(S) = P [n    1; 0; 0] 
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Grades of membership for the fuzzy production rules have to be adjusted after the 
route has been selected. The grammar rules that were used are reinforced by rais-
ing their grade of membership, while those that weren't are lowered. As epochs 
pass the rules most often used will have a higher grade of membership while the 
least used will eventually cease to be part of the grammar. 

 

1: P [n] is an array of production rules of 
size n 

2: μ(P[i]) is the grade of membership of pro-
duction P[i] 

3: α is the degree by which μ(P[i]) is lowered 
or increased 

4: set α = 0.01 
5: for i = 0 to n do 

6:  if Production P[i] was used during parsing 
then 

7:   Set µ(P[i]) = µ(P[i]) + (µ(P[i]) * α) 
8:   Set µ (P[i]) = µ (P[i]) + ( µ (P[i]) * α) 
9:  else  

10:   Set µ(P[i]) = µ(P[i]) - (µ(P[i]) * α) 

11:   Set µ (P[i]) = µ (P[i]) + ( µ (P[i]) * α) 
12:  end if  

13: end for  

Each ant is equipped with a method for deducing the grammar rules corresponding 
to a message it could not understand. This allows the ant to follow a pheromone 
trace of a different group, the advantage being that if a different group is more 
successful in finding food then the ant will eventually integrate itself into that 
group by adopting their language. The method is based on the CYK algorithm and 
is the same as described in [1] but the grade of membership for the new rules are 
given in an interval. The pseudo code is: 

 

1: S = a1a2...an is the message to parse of 
length n 

2: The fuzzy grammar contains r non terminal 
variables  
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3: P[n, n, r] is a three dimensional matrix 
with real values, each position stores both the lower 
and upper grades of membership of a production rule  

4: for i = 0 to n do  

5:  if the unit productions Rj  ai doesn't 
exist then  

6:   add µ(Rj  ai) = 0.01 to the fuzzy gram-
mar  

7:   Set P[0, I, j] = 0.01 

8:  end if  

9: end for  

10: for i = 1 to n do  

11:  for j = 0 to n i do  

12:   for k = 0 to i do  

13:    if There doesn't exists a production RA 
 RBRC such that P[k, j, B] > 0 and P[i-k-1; j+k+1; 
C] > 0 then  

14:     add µ(RA  RBRC) = 0.01 to the fuzzy 
grammar  

15:     add µ (RA RBRC) = 0.0075 to the fuzzy 

grammar  

16:     Set P[i, j, A] = [0.0075; 0.01]  

17:    end if  

18:   end for  

19:  end for  

20: end for  

 
The last step of each epoch updates the pheromone intensity in all deposits, the 
following equation is used: 

                                    (6) 

Where τ(i) is the current pheromone intensity in deposit i, ρ is the forgetting fac-
tor, the constant Q is a value in the same order as f(j) and f(j) is the result of  
evaluating De Jong's function with the best solution found so far by ant j.  
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The pseudo code for updating the pheromone intensity is: 

1: ant[n] is an array of n ants 

2: deposits[m] is an array of pheromone depo-
sits of size m  

3: for i = 0 to n do  

4:  for j = 0 to m do  

5:   if ant[j] visited deposit[j] then  

6:    Use equation 6 to set depo-
sit[j].intensity  

7:    Set deposit[j].message = 
ant[i].getMessage  

8:   end if  

9:  end for  

10: end for 

4   Experiments and Results 

4.1   Experiment 1 

The first experiment was the control case, it consisted of two groups of ten ants 
each, each group's grammar had ∆(G) = 0, in other words, the uncertainty in the 
language was eliminated. This simulation ran for fifty epochs with no evolution, 
the results are given in table 1. The first group minimized the function before the 
twentieth epoch, while the second group couldn't explore the problem space be-
cause the dominant pheromone wasn't understood. This experiment illustrates how 
a group of ants can quickly reach a solution if there's no uncertainty in the lan-
guage and it also shows how a group that doesn’t understand the dominant lan-
guage is kept away from the solution. 

Table 1 Two groups of ants over 50 epochs with no language evolution and ∆() = 0 

Epoch Group 1 Group 2 
5 7.152 17.704 
10 1.1 17.704 
15 0.288 17.704 
20 0 17.704 
25 0 17.704 
30 0 17.704 
35 0 17.704 
40 0 17.704 
45 0 17.704 
50 0 17.704 
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4.2   Experiment 2 

During the second experiment each group of ants had a grammar G with ∆(G) = 
0.3. In this case, language evolution was introduced to study its effects. As is 
shown in table 2, due to the level of uncertainty the first group managed to minim-
ize the function on the fortieth epoch (instead of the twentieth as before), while the 
second group reached a lower solution than before but still didn't reach the global 
minimum. This simulation experienced a slowdown in the search due to the intro-
duction of uncertainty. 

Table 2 Two groups of ants over 50 epochs with language evolution and ∆(G) = 0.3 

Epoch Group 1 Group 2 
5 6.716 14.416 
10 3.204 8.364 
15 0.9 5.428 
20 0.376 4.3 
25 0.188 1.436 
30 0.072 1.084 
35 0.004 0.852 
40 0 0.296 
45 0 0.084 
50 0 0.008 

4.3   Experiment 3 

In the third experiment the level of uncertainty is reduced to ∆(G) = 0.2 in order to 
view the impact this would have on the results. Table 3 shows how it only took 
group one thirty epochs to reach a solution, but the level of uncertainty is still high 
enough that the second group couldn't reach it also. It’s possible that with more 
epochs both groups would be able to find the solution. 

Table 3 Two groups of ants over 50 epochs with language evolution and ∆ (G) = 0.2 

Epoch Group 1 Group 2 
5 8.712 14.356 
10 4.228 8.836 
15 2.944 5.372 
20 2.456 1.98 
25 1.416 1.036 
30 0 0.444 
35 0 0.208 
40 0 0.208 
45 0 0.036 
50 0 0.036 
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4.4   Experiment 4 

For the fourth experiment ∆(G) was reduced even further to ∆(G) = 0.1. The re-
sults in table 4 show both groups of ants reaching the same solution in fewer 
epochs than in previous experiments, the level of uncertainty was low enough to 
allow this and both groups converged on compatible languages. 

Table 4 Two groups of ants over 50 epochs with language evolution and ∆(G) = 0.1 

Epoch Group 1 Group 2 
5 8.304 9.556 
10 3.908 4.104 
15 0.872 2.776 
20 0.096 2.436 
25 0.088 0.432 
30 0 0.164 
35 0 0 
40 0 0 
45 0 0 
50 0 0 

4.5   Experiment 5 

In order to test the effect of a third language, the fifth experiment was carried out, 
it consisted of adding a third group to the simulation and ∆(G) for all three lan-
guages was maintained at 0.1. The results in table 5 show how all three groups 
where constantly reducing De Jong’s function but weren’t able to reach the global 
minimum. It is possible that adding a third language slowed down the conver-
gence for all groups. In the following experiment the simulation was executed 
over more epochs to visualize when all languages converge on one. 

Table 5 Three groups of ants over 50 epochs with ∆(G) = 0.1 

Epoch Group 1 Group 2 Group 3 
5 14.064 12.24 10.612 
10 11.488 11.428 8.876 
15 7.74 8.656 7.088 
20 5.432 5.892 4.548 
25 3.748 2.552 2.996 
30 2.608 1.96 2.42 
35 1.336 1.624 2.252 
40 0.664 1.504 1.496 
45 0.428 1.216 0.52 
50 0.236 1.08 0.352 
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4.6   Experiment 6 

The sixth experiment is similar to the fifth but the number of epochs was increased 
to two hundred. As expected, by allowing more time for the languages to converge 
the groups managed to reach the global minimum in 95 epochs. 

Table 6 Three groups of ants over 200 epochs with ∆(G) = 0.1 

Epoch Group 1 Group 2 Group 3 
5 10.08 17.12 14.82 
10 6.116 14.124 10.784 
15 4.236 11.348 7.408 
20 2.556 7.42 5.468 
25 1.724 5.38 3.58 
30 1.288 3.02 1.82 
35 0.836 2.668 1.296 
40 0.136 1.612 0.804 
45 0.06 0.728 0.352 
50 0.032 0.42 0.304 
55 0.024 0.24 0.212 
60 0.016 0.06 0.2 
65 0.016 0.028 0.136 
70 0 0.012 0.052 
75 0 0.008 0.052 
80 0 0.008 0.004 
85 0 0.004 0.004 
90 0 0.004 0 
95 0 0 0 

4.7   Experiment 7 

In the seventh experiment an additional group was added and ∆(G) was main-
tained at 0.1, this was done to see if by adding a fourth language the behavior  
 

Table 7 Four groups of ants over 50 epochs with ∆(G) = 0.1 

Epoch Group 1 Group 2 Group 3 Group 4 
5 14.6 11.256 13.884 13.884 
10 12.284 9.48 11.94 12.472 
15 9.64 8.172 9.592 10.596 
20 6.58 7.848 7.28 9.516 
25 5.576 6.06 6.028 8.176 
30 4.584 4.268 5.208 6.72 
35 4.236 3.66 3.804 6.204 
40 3.288 3.352 3.544 4.816 
45 2.156 2.808 2.404 4.052 
50 2.056 2.292 1.948 3.104 
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experience so far would still manifest. This experiment behaved similarly to expe-
riment 5, note that the solutions on the final epoch (Table 7) are worse in this ex-
periment than in experiment 5, it is possible that by adding the fourth group the 
convergence once again slowed down. 

4.8   Experiment 8 

The final experiment had the same conditions as the previous experiment but ran 
for two hundred epochs. In this case, two groups converged on the global  
minimum before the one hundredth epoch while the other two found the minimum 
before the one hundred and fiftieth epoch. As was expected, more epochs were re-
quired to allow all languages to converge. 

Table 8 Four groups of ants over 200 epochs with ∆(G) = 0.1 

Epoch Group 1 Group 2 Group 3 Group 4 
5 12.928 20.108 14.4 14.22 
10 11.352 18.828 11.92 12 
15 10.276 14.944 10.972 10.576 
20 7.348 11.792 8.584 8.824 
25 5.672 6.916 6.308 7.02 
30 4.204 5.148 5.44 6.192 
35 3.08 4.42 4.472 4.936 
40 2.86 2.54 4.368 3.476 
45 2.588 2.264 3.996 2.596 
50 1.952 1.092 3.672 2.028 
55 1.036 0.288 2.928 1.716 
60 0.728 0.252 2.352 1.508 
65 0.532 0.156 1.788 0.936 
70 0.224 0 1.688 0.764 
75 0.116 0 1.608 0.624 
80 0.116 0 1.608 0.58 
85 0.056 0 1.1 0.376 
90 0.02 0 1.052 0.256 
95 0 0 1.052 0.1 
100 0 0 1.02 0.1 
105 0 0 0.7 0.1 
110 0 0 0.604 0.1 
115 0 0 0.596 0.1 
120 0 0 0.452 0.1 
125 0 0 0.288 0.064 
130 0 0 0.288 0.064 
135 0 0 0.2 0.04 
140 0 0 0.2 0.008 
145 0 0 0.2 0.004 
150 0 0 0.08 0 
155 0 0 0 0 
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5   Conclusions 

The available literature was researched and it was found that Fuzzy Grammars ha-
ven’t been explored as a means to study Language Evolution. Since there’s a di-
vide between Nativist and Non-Nativist scientist regarding the origin of human 
language, there are plenty of opportunities to provide them with the tools they 
need, such as Fuzzy Grammars, to expand their research. 

By formally defining Type-2 Fuzzy Grammars the work done in [1] and [19] 
was expanded in order to simulate the uncertainty experienced by an individual 
learning a new language. 

In order to test the feasibility of Type-2 Fuzzy Grammars, ACO was modified 
in several ways, first each ant was equipped with a Type-2 Fuzzy Grammar that 
allows it to parse and create messages. Second, the pheromone was modified to 
carry a message, thus an ant must be able to parse the message with a low uncer-
tainty in order to follow the trace. Different grammars where used as a way to dis-
tinguish between multiple groups of ants exploring the same problem space. 

The experiments show that if multiple groups of ants attempt to solve the same 
problem and they are unable to understand the each other's language, only one will 
reach the solution; but if all groups are able to assimilate each other's language 
then both will converge on the solution. Also, uncertainty plays an important role 
in finding a solution; experiments show that a large enough uncertainty will slow 
down the search. 

The experiments presented here can be divided into two groups. In the first 
group of experiments gradually uncertainty was introduced to illustrate its impact 
in finding a solution. The first experiment had no uncertainty and no language 
evolution and the results show a fast solution by one group. Language evolution 
and uncertainty were then introduced to the ant population (experiments two, three 
and four) and it was shown that the higher the uncertainty the longer it takes for 
ants to reach the global minimum in De Jong’s function. 

The second group of experiments demonstrate how a search for a solution is 
furthered delayed by adding even more languages to the ant population, but how 
given enough time all ants will reach the solution and converge on a compatible 
language. 

This leads to conclude that Type-2 Fuzzy Grammars are a viable tool in lan-
guage evolution research. 

6   Future Work 

The question of language origin is a divisive one, and even though it may never be 
known for certain how humans developed language, there is a modern example of 
language emergence in the case of the Nicaragua Sign Language ([17], [18] and 
[25]). This example can be the foundation of future experiments in which Fuzzy 
Grammars can be employed to simulate emergence. Also, it can be used to study 
the use of words (evolution of syntax) and the use of symbols (evolution of com-
munication).  
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The experiments presented here are only an abstraction of problem solving in a 
social environment, but real world social and economical phenomenon can be 
modeled as well, such as migration and social integration where language profi-
ciency can be linked to higher wages and better work positions ([6], [11] and 
[28]). 

In [11] it’s suggested that proficiency in English is associated with eighteen to 
twenty percent higher earnings in the UK and that language proficiency is an im-
portant factor in determining probability of employment. 

Chiswik and Miller in [6] found that an immigrant’s socioeconomic status and 
integration into the culture of a host country is influenced by the languages an 
immigrant can speak and the level of proficiency of the destination language. In 
other words, the value of a worker with language and profession skills is greater 
than a worker of similar professional skills but with a language deficiency. The 
extent to which an immigrant practices the host language is determined by factors 
such as age of migration, educational attainment and duration of residence (per-
sons that migrated on a younger age are more likely to speak the host language). 
They also found that immigrants in areas with a large concentration of people that 
speak their language of origin are less likely to speak the host language. 

Modeling these social interactions with Fuzzy Grammars could give new in-
sight as well as provide knowledge that could guide future policies regarding im-
migrant groups. 
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Abstract. The Course Timetabling problem is one of the most difficult and com-
mon problems inside a university. The main objective of this problem is to obtain 
a timetabling with the minimum student conflicts between assigned activities. A 
Methodology of design is a framework of solution applied to a heuristic algorithm 
for timetabling problem. This strategy has recently emerged and aims to improve 
the obtained results as well as provide a context-independent layer to different 
versions of the timetabling problem. This methodology offers the researcher the 
advantage of solving different set instances with a single algorithm; which it is a 
new paradigm in the timetabling problem state of art. In this chapter the proposed 
methodology is described and tested with several metaheuristic algorithms over 
some well-known set instances, Patat 2002 and 2007. The main objectives in this 
chapter are: to show the construction of a two-phase algorithm based in a novel 
generic approach called design methodology and to find which metaheuristic algo-
rithm shows a better performance in terms of quality. The design methodology 
generates set of generic structures: MMA, LPH, LPA and LPS. These structures 
build an independent context layer, so the two-phase algorithm only needs to solve 
the problem coded into them. No further specification or explicit codification of 
any problem-dependent constraint is needed inside the algorithm. This guarantee 
that in order to solve other instance of the Course timetabling problem, only it is 
needed the translation of the incoming instance into the proposed structures. With 
these structures the proposed methodology searches, in the first phase, for at least 
one feasible solution (a solution that has no conflict in the hard constraints). In a 
second phase the methodology utilizes this feasible solution in order to intensify 
the search around it, looking for the perfect solution (a solution with no conflict in 
any constraint hard or soft). Precisely for this two phases it is necessary the use of 
metaheuristic algorithms. This kind of algorithms does not guarantee to obtain the 
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global optima but offers an opportunity to obtain a good solution in a reasonable 
time. The algorithms chosen to be tested along with the design methodology are 
from the area of evolutionary computation, Cellular algorithms and Swarm Intelli-
gence. It is important to say that there exist several previous implementations of 
these metaheuristic algorithms over CTTP problems but this is the first time that 
these algorithms will be evaluated under a generic approach like the Methodology 
of design. Finally our experiments use some non-parametric statistical tests like 
Sing test, Kruskal-Wallis test and Wilcoxon signed rank test in order to identify 
the metaheuristic algorithm with the best performance over the course timetabling 
problem using the Methodology of Design. 

1   Introduction 

The timetabling problem is one of the most difficult, common and diverse 
problems inside the industry. This problem tries to assign several activities into a 
Timelsots making a Timetabling. The main objective of this problem is to obtain a 
timetabling with the minimum conflicts between assigned activities [21].  

The timetabling problem is a wide problem that can be seen on different places 
for example: airports, train stations, delivery companies…etc. in this chapter the 
timetabling problem is seen from the point of view of an superior educational 
institution or university. 

There are diverse timetabling problems inside an university as the ones 
described by Adriaen et.al [1]: 

A) Faculty Timetabling: This timetabling problem assigns teachers to a set of 
specific subjects or topics. 
B) Class-teacher Timetabling:  This timetabling problem assigns subjects to a 
fixed and specific group of students. 
C) Classroom-assigment: This timetabling problem ensures that every pair 
teacher-subject has an assigned classroom. 
D) Examination Timetabling: This timetabling problem assigns one-time 
events like final exams or especial lectures to individual students. 
E) Course Timetabling: This timetabling problem assigns subjects to 
individual students. 

This paper focus on the Course timetabling problem (CTTP). In this problem is 
assigned a set of subjects to individual students looking for minimum conflicts, 
usually time-conflicts, between the events.  

Like most timetabling problems, the Course timetablinghas been reported as a 
NP-Complete problem [13] [31]. This is commonly attributed to the huge 
combinatorial explosion of possible events assigned into timeslots as well as the 
constraints that each university uses in the course timetabling creation. Due to this 
complexity and the fact that, even now many of these course timetabling 
constructions are making by hand; It is necessary to automate the timetabling 
construction process this also will improve the performance of the solutions 
reached by the human expert [21].  
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If we consider that every university usually needs to implement a new course 
timetabling algorithm in order to achieve a good solution (basically due its internal 
policies) then it exists an important obstacle; for example an algorithm that solves 
the problem in a university may not be able to provide at least a feasible solution 
for another university. 

We called to this situation: a high dependency between the problem instance 
and the solution algorithm. This is not a new problem; it has been documented by 
Shaerf [23]. This situation means that there exist a big dependency between a 
problem instance and an algorithm highly specialized and adapted to solve it. The 
main problem is that, if it is necessary to change something in the original prob-
lem instance (due university policies) or if it is necessary to solve another univer-
sity, then is highly probably that the specialized algorithm cannot obtain a good 
solution or in the worst case that algorithm cannot been at least executed in that 
new environment. 

In the worst case the researcher usually needs: to code a new algorithm, to 
make more experiments in order to find the useful strategies and finally to solve 
his new instance. Basically that means for the researcher the return to the design 
table to build and test a new solver. 

In this context a new methodology of solution has emerged, the methodology of 
design [25] [26] [27] [28]. Thismethodology of design builds a layer where the 
university policies from the original course timetabling input are traslatedto a set 
of generic structures for its treatment by means of metaheuristic algorithms. This 
design provides a context-independent layer allowing metaheuristic algorithms to 
work and solve several course timetabling problems without using any explicit 
constraints. 

The main advantage of this approach is that if exist a change in the original 
course timetabling instance it is only necessary to translate this new instance to the 
set of generic structures in order to solve it. This means that the researcher do not 
need to utilize time and efford to construct a new solution algorithm. he only 
needs to apply the generic approach to obtain a solution with reasonable quality. 

Other advantage of this approach is that it can be used as an benchmarking 
framework. In the state of art of the course timetabling problem commonly 
appears the problem of how to compare two algorithms that solve CTTP. This is 
an important problembecause the compared algorithms usually are higly 
dependent to its own different instances, so is too hard to find a way to identify the 
best algorithm for an specific objetive. This problem can be relaxed by the 
application of the design methodology; since this approach offers a generic 
framework of solution, two algorithms that utilizes the same independent layer 
could be easily compare in order to determine which is better in terms of student 
conflicts. 

The design methodology uses metaheuristics in order to find at least a feasible 
solution, this kind of solution means that it does not have violations in any hard 
constraints. Once this feasible solution is achieved it is necessary to intensify the 
search around it, in order to obtain a perfect solution. The perfect solution means a 
solution that does not have any violation in all the constraints hard or soft. This  
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methodology of solution is called Two-phase algorithm. The present work is only 
focused in the feasibility phase, leaving for future work the application of a second 
phase. 

The two phase algorithms has been utilized in previous works [12][15][33] 
these algorithms have several advantages and disadvantages shown by Lewis [21]. 
The main advantages are: 

A) In early stages of the solution process the algorithm can detect if exist some 
constraints in conflict. So it is posible to identify if the problem do not have a 
solution due a fail in the constraint design. 

B) Once the feasible solution is achieved this solution can be applied to the real 
work at any moment, it is not necesary to finish the algorithm execution to ensure 
to have at least an applicable solution. 

On another hand the main disadvantage of this kind of algorithms is that this kind 
of algorithm needs a way to ensure the modification of a feasible solution without 
produce any violation in the previously solved constraints. The methodology of 
design offers a way to deal with this disadvantage: due the usage of generic struc-
tures the algorithm will never produce an unfeasible solution. The main effort of 
the design methodology is to find the perfect solution inside the bounds of feasi-
bility provided by the generic structures. These generic structures will be ex-
plained on the next section but can be summarized as: 

A) MMA: Generic structure that shows the possible number of conflicts be-
tween two events if these two events are assigned into the same timeslot. 

B) LPH: Generic structure that represents the time domain of each subject, this 
structure shows the possible time-related assignations that every subject needs to 
satisfy.  

C) LPA: Generic structure that represents the space domain of each subject, 
this structure shows the possible space-related assignations that every subject 
needs to satisfy. 

D) LPS: Generic structure that represent the demands for every student, in the 
practice this structure shows the usage of time proposed by the student itself. 

The first 3 structures represent the hard constraints and the LPS structure 
represents the soft constraints. A complete CTTP assignation is obtained when the 
proposed methodology achieve a solution that satisfy all the structures. In order to 
search inside these structures a metaheuristic algorithm is used, The 
metaheuristics algorithms has been characterized for offer good results in a 
reasonable time. There exist a huge variety of metaheuristics applicable to a wide 
range of problems, but the no-free lunch theorem [32] indicate us that there no 
exist such a metaheuristic capable to give a good solution for every possible 
problem. The selection of the best metaheuristic algorithm has then a great 
importance over the final performance for the generic proposed approach. This 
paper shows besides the generic design methodology, a comparative study 
between several different metaheuristics and its performance over a generic 
approach for the CTTP. 
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The algorithms chosen to be tested along with the design methodology are: 
Classic Genetic Algorithm (sGA), a novel Frequency Genetic Algorithm (fGA), 
Eclectic Genetic Algorithm (eGA), Cellular Genetic Algorithm (cGA), Differen-
tial Evolution (DE/rand/1) , Particle Swarm Optimization (PSO) and Great  
Deluge Algorithm (GDA).It is important to say that there exist several previous 
implementations of these metaheuristic algorithms over the CTTP prob-
lem[24][27][15][26][7] but this is the first time that these algorithms will be  
evaluated under a generic approach like the Methodology of design. 

All the experiments will be realized over a set of well-known and referenced 
instances: PATAT 2002 and PATAT 2007. The chapter is organized as follows. 
Section 2 presents the design methodology for the course timetabling, The 
metaheuristics chosen for comparison and its justification. Section 3 contains the 
experimental setup, results, analysis and discussion. Finally Section 4 include 
some conclusions and future work. 

2   Methodology of Design 

In the literature it can see that there is a problem with the diversity of course time-
tabling instances due different policies. This situation directly impacts in the  
reproducibility and comparison of timetabling algorithms [23]. The state of art in-
dicates some strategies to solve this problem. For example, more formal problem-
formulations as well as the construction of benchmark instances [21] are methods 
constantly used. These schemes are useful for a deeper understanding of the uni-
versity timetabling complexity, but the portability and the reproducibility of a 
timetabling solver in another educational institution is still in discussion [23]. In 
this context, it is proposed a new context-independent layer to the course timetabl-
ing resolution process. This new layer integrates timetabling constraints into four 
basic structures MMA matrix, LPH list and LPA list and LPS list (explained in 
subsequent sections). This approach has been applied together to Genetic Algo-
rithms with direct representation [26] and Hyperheuristics [27] with encouraging 
results over real university instances at Leon Institute of Technology, but so far it 
has not been applied to a 2-phase algorithm or an international testing benchmark 
like ITC 2002 and ITC 2007 provided by PATAT. The 2-phase algorithm is a kind 
of timetabling solver[21]. This solver works with the timetabling problem in two 
phases. The first one tries to solve only the Hard constraints i.e. Constraints that 
cannot be violated or the solution simply could not be applied to reality. Once the 
feasible solution is achieved the algorithm enhances it usually by means of a heu-
ristic local search in order to obtain a Perfect Solution i.e. A Solution that solves 
both Hard and Soft constraints. In this research it is used a two-phase algorithm 
with several Metaheuristics as well as a generic approach in order to apply the first 
phase to both ITC 2002 and ITC 2007. 

These set of instances ITC 2002 and ITC 2007 belongs to the first and second 
timetabling competition sponsored by WATT and PATAT (Practice and Theory of 
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Automated Timetabling). ITC 2002 as well as ITC 2007 has been recognized as 
some of the most important course timetabling instances in the world. 

2.1   Problem Definition 

A clear and concise definition of the CTTP is given by Conant-Pablos [12]: A set 

of events(courses or subjects) neeeE ,,,= 21   is the basic element of a CTTP. 

Also there are a set of periods of time or timeslots stttT ,,,= 21  , a set of places 

(classrooms) mpppP ,,,= 21  , and a set of agents (students registered in the 

courses) oaaaA ,,,= 21  . Each member Ee∈  is a unique event that requires 

the assignment of a period of time Tt ∈ , a place Pp∈  and a set of students 

AS ⊆ , so an assignment is a quadruple ),,,( Spte . A timetabling solution is a 

complete set of n  assignments, one for each event. It is important to notice that 
each assignation must satisfy a set of = , , , …  constraits usually 
defined by each university. In the practice the constraint set is divided into hard 
constraints and soft constraints. The hard constraits must be satisfy and the soft 
constraits are prefered to be satisfy. This problem has been documented to be at 
least NP-complete problem [13] [31].  

As the reader can see, the construction of the constraint set is arbitrary and 
depends exclusively for each university itself. The high number of possible 
constraints makes very difficult to design an algorithm capable to solve all the 
posibilities. Fortunately Corne et.al[11] groups the mayority of these constraints 
into 5 classes, so the proposed methodology of design utilizes this classificacion in 
order to reach a high rate of generalization. The five classes are: 

A) Unary Constraints:  These constraints involves only one variable. event  
must be assigned into timeslot . 

B) Binary Constraints: These constraints involves two variables. Event  
must be asigned into an timeslot before/after that the timeslot assigned by 
the event  

C) Capacity Constraints: These constraints involves the space-domain of each 
variable. The classroom only can use by 20 students at the same timeslot. 

D) Event Spread Constraints: These are constraints that concern 
requierements such as the “spreading-out” or “clumping-together” of events 
within the timetable in order to ease student/teacher worload, and/or agree 
with university’s timetabling policity (usually soft constraints ). 

E) Agent constraint: These are constraints that are imposed in order to 
promote the preferences of people who will use the timetables.(it can be soft 
or hard). 

It is considered that these main five classes represents a wide range of CTTP 
instances, so the generic approach is based in this five classes in order to offer a 
good rate of generalization. 
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2.2   Methodology of Design for the Course Timetabling Problem 

As seen on previous section 2.1 there exist several different types of constraints 
inside a CTTP problem. This situation makes difficult to apply a previously 
adapted algorithm to a new CTTP instance. This work propose the usage of a 
context-independent layer that transforms the original inputs/constraints into a set 
of generic structures, so theoretically; it does not matter the configuration of the 
original CTTP instance, because once translated a generic algorithm can solve the 
instance using generic structures. 

This layer of context-independency is named “Methodology of design”[27][28] 
and its principal objetive is to solve bydesign the mayor number of  constraints in 
order to build a search space only with feasible solutions, where a heuristic 
strategy can search for a solution working only with a minimun number of 
variables. 

The expression “by design” means that by the use of generic structures it is 
posible to build a search space where all the constraints appears in an implicit way 
and all the posible solutions in that space were feasible to most of the original 
constraints. The main effort of this approach is to search inside this space of 
feasibility in order to find the optimal solution, where all the constraints are 
satisfied. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  (a) Original CTTP                                 (b)  Generic Structures CTTP 

Fig. 1 In the original CTTP problem the feasible reagions are spread over the search space, 
solver needs to manage unfeasible solutions in order to travel between feasible regions. In 
the Generic structures space the feasible region is only one, so at any moment the algorithm 
have a feasible solution. 

In order to reach a feasible space like the shown on Fig 1, several generic 
structures are needed, The structures are MMA matrix, LPH list, LPA list and LPS 
list. The first 3 represents the hard constraints and the last one represent the soft 
constraints. The definition of these structures are: 
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MMA Matrix: This matrix contains the number of students in conflict between 
subjects i.e. the number of conflicts if two subjects are assigned in the same 
timeslots. This matrix shows the number of students that demands simultanously 
the row subject and the column subject. An example of this matrix can be seen on 
the Figure 2 and the algorithm utilized for its construction on Algorithm 
1.[25][26] 

 

 

Fig. 2 MMA matrix 

Algorithm 1. MMA Construction 
Require: int N= Students, int[][] LD= Students Demands 
1: fori=0to N do 
2:    Starr = LD[i] 
3:    forj=0tosize(Starr)do 
4:       fork=j+1tosize(Starr)do 
5:          MMA[Starr[j]][Starr[k]]+=1 
6:          MMA[Starr[k]][Starr[j]]+=1 
7:       end for 
8:    end for 
9:   end for 
10: ReturnMMA 

 
The MMA matrix is used in order to determine the quality of solutions reached 

by the two-phase algorithm, in the practice this matrix is useful to evaluate the 
number of student conflicts in a complete timetabling, the task of the two-phase 
algorithm is to find a timetabling with a zero student conflict. 

The MMA matrix is the main structure because is directly used by the fitness 
function, so every heuristic strategy applied to the Design methodology needs it. Its 
construction detailed in algorithm 1 requires the student demands, that demands are 
the enrolled subjects that each student must take on the timetabling period. 

LPH List: This structure shows the feasible time-domain of each variable. This 
domain is obtained by the application of node and arc consitancy algorithms in 
the original CTTP inputs. This structure informs the correct search space of each  
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variable. The LPH list shows in its rows all events and in its colums all the days 
each cell shows the possible assignation for an specific event into an specific 
day.An example of this structure can be seen on table 1.[27] 

Table 1 LPH List 

 Day 1  Day 2  … Day p 

1e  >< 3t  >< 2t  … 
2< t  or >1t  

2e  >< 2t  2< t  or >1t  … 
2< t  or >1t  

…
 

…
 

…
 

…
 

…
 

ne  >< 2t  2< t  or >1t  … 
2< t  or >1t  

 
The LPH list contains the time-domain of each event for the CTTP that means 

the heuristic algorithm only needs to search inside these valid options for each 
variable to ensure feasibility. This is an advantage against non-generic approaches, 
because these approaches need to work with non feasible solutions waiting to 
reach a feasible zone. The  LPH list optimizes the cpu usage only searching in 
feasible spaces. 

The LPH list also provides a generic layer because the algorithm do not need to 
have an explicit codification of the problem constraints. It is enough to search inside 
the LPH list to ensure a non-violation of the time space domain. The construction of 
this LPH list needs the application of consistancy algorithms as well as the 
application of agents constraints because this list offers the possible timeslots for 
each event or subject in the CTTP problem. node and Arc consistancy algorithms are 
algorithms designed to stablish a feasible region of the search space in order to 
search around it,  the node consistancy[21] in the CTTP instance is use to, for 
example; if an specific subjects needs to be taken by 30 student then no classroom 
with capacity under 30 is allowed to be assigned to thisspecific subject. This simple 
exercise reduce the search space. The Arc consistancy algorithm searches the valid 
domains for chains of variables, for example in the CTTP problem, if  event i must 
be assigned in the 4th timeslot and there exist an order constraint that stablish the 
assignation of event j after event i, then we know that the possible time-domain for 
the event j must be from the 4th timeslot.   

This structure is important because it establish the feasible search space in 
terms of time constraints. Time constraints implicity allows the heuristic strategies 
to focus in the search of the best possible solution. 

LPA List: This list contains the feasible space domain for each event. This 
domain is obtained by the application of node consitancy algorithms between all 
the posible rooms and the features-demands of each event. The LPA list shows in 
its rows each  event and in its columns the valids classrooms for each event. An 
example of this LPA list as well as the construction algorithm is detailed on table 
2 and algoritm 2. 
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Table 2 LPA list 

event  Classrooms  

1e  >,,< 214 cl ppp  

2e  >,< 2clab pp  

3e  >,,,< 4326 bbb pppp  

4e  >,< 2llab pp  

    

ne  >< 7dp  

 
 
Algorithm 2. LPA Construction 
Require: int Nm= Subjects, int[][] CA= Room Features, int[][] DA= Subjects 
Demands, int[] Rms = Room List. 
1: fori=0to Nm do 
2:    forj=0tosize(CA)do 
3:       fork=0tosize(CA[j])do 
4:          if DA[i] <=CA[j][k] then 
5:              LPA[i].add(Rms[k])  
6:         end if 
7:       end for 
8:   end for 
9:  end for 
10: ReturnLPA 

 
The LPA list constructs the feasible domain in terms of space related 

constraints. This structure allows the algorithm to only search in the possible valid 
space values for each event. Like the LPH list this structure represents implicity 
all the space constraints, this means that the usage of this list ensures the 
satisfaction of these constraints, so the heuristic strategy only needs to search 
inside all the possible assignations represented by the LPA list. 

This list is constructed by the application of node and arc consistancy 
algorithms as well as algorithm 2. This algorithm needs the features from each 
room and the demands for each subjects, with this information the node 
consistancy algorithm stablish a feasible domain for all the events. 
 
LPS List: This structure represents the point of view of the student in the CTTP 
instance commonly this list is used as a set of soft constraints. The LPS list is 
constructed by taken directly from the students (agent constraint) their proposed 
usage of time, the task for the heuristic search is to satify most students as 
possible, but of course any violations in MMA, LPH and LPA are not allowed. An 
example of this structure is shown in table 3. 
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Table 3 LPS List 

Student Max Min Csc Timetable 
S1 5 2 2 <t2,t4,t6,> 
S2 5 1 3 <t4,> 
S3 3 2 2 <t2,t4> 

... 

... 

... 

... 

... 

Sp 4 0 2 <t2,t4,t6,t9,t5> 

 
The LPS structure constraints several columns for each student, the first one the 

Max column specify the maximun number of desired subjects by the student for 
each day. The Min column shows the minimun number of desired subject by the 
student for each day, the Csc columns shows the number of desired subjects in a 
consecutive way, for example; the student S3 prefers to have a timetabling with 2 
or less subjects in consecutive timeslots, so it is a violation (only for this student) 
to assign him 3 or more subjects in a row. Finally the Timetable column shows 
the preference of usage of time for each student, for example student Sp prefers his 
subjects into the t2,t4,t6,t9 and t5 timeslots. 

As it can be seen these structures represent most of the CTTP constraints from 
the five main clases by Corne et. al[11]. The first 3 structures provides a feasible 
search space and the LPS list provides the soft constraint search space. Each 
structure provides a generalization layer so the search heuristic do no need to have 
any code for the constraints in an explicit way. This allows to solve diferrent 
CTTP instances once translated to the generic structures. 

One important point in the construction of these structues is their simplicity. 
This simplicity means that is relatively easy to obtain the proposed structures from 
a real CTTP instance and therefor is easy to upgrade them if a change happens in 
the real instance.[27] 

Other advantage of the usage of these structures can be seen if for example the 
researcher found that the LPH list cannot be constructed or an specific event 
simply do no have any feasible timeslot or classroom, then this means that the 
problem have constraints in conflict so it is not possible to find at least a feasible 
solution. The researcher does not need to run a complex algorithm, simply by 
looking in the structures he knows that the instance have no solution. 

Finally it is time to talk about the most important element in the design 
methodology: the concept of vector. This vector is a binary representation of an 

event.[17][16] It can be constructed as seen on table 4a where each iv  is a vector 

that represents an event ie .  

The vectors can be easily added and subtracted in order to construct sets . the 

symbols used for these vectors sets are NBA VVV ,, . One characteristic is that 

the number of vectors sets is always related with the number of timeslots offered 
by the current timetabling. The main idea about vectors is to have a space where it 
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can be worked with events without assigned them yet to a fixed timeslot. This 
independent layer of context generalizes even more the solution process of the 
CTTP problem. One example of the Vector Set construction can be seen on Table 
4b. It is important to see that the number of the vector sets is the same that the 
timeslots offered in the current timetabling, that is: = | |. Finally these vector 
sets have the next properties =∈  and ∈ = . 

The main problem is now how to construct a fixed number of vectors sets 
(usually the cardinality of timeslots set) in order to obtain zero conflict on MMA, 
LPH and LPA. It is precisely for the vector sets construction that it is needed a 
heuristic algorithm, but if  any other CTTP problem can be expressed by means of 
the Methodology of design’s generic structures then the same algorithm can be 
applied without any modification in order to solve it.[25][26][27][28] 

Table 4a Vector Construction 

  Events 
1e  2e  

1−ne  ne  

1v   1   0    0   0  

2v   0   1    0   0  

           

1−nv   0   0    1   0  

nv   0   0    0   1  

 
The Methodology of design have only one explicit variable that is necesary to 

be solved in order to make a complete solution, this variable is represented in the 
MMA structure as the student conflict. The main task now is how to deal with 
students conflicts only (MMA Matrix). The heuristic algorithm works with these 
conflicts by means of the next minimization function[25][27]:  

iV

k

i

FAFAmin 
=1

=)(  (1)

( )lsjsj

s
iVM

l

jVM

s
jV AAFA +

−−

∧ ,,
1=

1)(

1=

=  (2)

Where: FA = Student conflicts of current timetabling. iV = Student conflicts from 

''Vector Set'' i  of the current Timetabling. lsjsj AA +∧ ,, = students that 

simultaneously demand subjects s  and 1+s  inside the ''Vector set'' j .  

A  is a student that demands subject s  in a timetabling j .  
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Table 4b Vector set Construction 

Events 
1e  2e  3e  4e  5e  6e  

1−ne  ne  

Vectors
1v  2v  

3v  4v  
5v  6v  

1−nv  nv  

          
Vector 
Set 

VA VB VI  VN 

2.3   Metaheuristics Adapted to the Methodology of Design 

As we can see from section 2.2 it is necesary to construct a particular vector set 
where the number of student conflicts between the assigned subjects be the 
minimum. The construction of this set can be seen as a combinatorial problem, 
despite of the wide variety of metaheuristics that can be applied to this kind of 
problem, we only chose metaheuristics that have been tested over similar 
problems with a good reported performance over its respective instances. It is 
important to say that this is the first time that these algorithms will be tested with 
an generic approach like the Methodology of Design, and by the No-free lunch 
theorem [32] the fact that these algorithms had shown a good performance in its 
particular approaches does not mean that it can be expected a similar good 
behaviour for all metaheuristics in the proposed generic methodology. 

The main effort of the implemented metaheuristic will be to find a solution with 
0 conflicts in accordance the MMA matrix, at the same time that it searches  
inside LPH and LPA list. Once a strategy achieves 0 or a minimun conflict in the 
MMA matrix a second phase will be executed, in this phase the best obtained 
solution will be intensified in order to satisfy most soft constraint displayed by the 
LPS list. 

In this sectioneach metaheuristic implemented will be detailed. The set of 
proposed metaheuristic had been used in previous work with encouraging results 
over diferrent CTTP instances. This work will test these metaheuristics with the 
objective to find which metaheuristic shown a better performance over the 
methodology of design. 

The selected metaheuristic are: Classic Genetic Algorithm (sGA), a novel  
Frecuency Genetic Algorithm (fGA), Eclectic Genetic Algoritm (eGA), Cellular 
Genetic Algorithm (cGA), Diferential Evolution (DE/rand/1) , Particle Swarm Op-
timization (PSO) and Great Deluge Algorithm (GDA).  
 
Genetic Algorithm (sGA): As seen on the work of Xin-She [34] Genetic algo-
rithms are probably the most popular evolutionary algorithms in terms of diversity 
and applications. This heuristic solver paradigm was developed by John Holland, 
whose book adaptation in natural and artificial systems (1975) was instrumental 
in creating a new breach of heuristic optimization: evolutionary computation,  
As the name can express this heuristic solver is highly based in Darwin’s  
 



300 J.A. Soria-Alcaraz et al.
 

Evolutionary theory in the sense that individuals with a better adaptation to the 
environment have bigger chances to past its genes to a new generation. This is in-
deed the basic idea of GAs.In the Course timetabling state of art this algorithm has 
reported a good results for early works like [35] [15] and [10]. The legacy of this 
algorithm and its ease of implementation allows us to selected it as the first 
metaheuristic tool for our generic approach.  

The essence of genetic algorithms involves the encoding of an optimization  
solution as arrays of bits or character strings to represent chromosomes, the opera-
tors applied then to the chromosomes tries to mix the genetic material (characteris-
tic of each timetable for the CTTP) in order to produce decedents, the comparison 
of these new individuals by a selection operator according the fitness function 
provides a way to identify the best solutions. The basic pseudo code for a generic 
GA can be seen on algorithm 3 taken from Xin-She [34].  

 
Algorithm 3. Simple Genetic Algorithm 
Require: Objetive Function f(x),x=(x1,….,xn)

T 
1: Encode the solution into Chromosomes (binary strings) 
2: Define fitness F (usually f(x)) 
3: Generate initial population 
4: Initial probabilities of crossover (Pc )and mutation (Pm ) 
5: while(t < Max number of generations) 
6:     Generate new solution by crossover and mutation 
7:      if Pc>rand, Crossover; end if 
8:  ifPm>rand, Mutate; end if 
9:      Accept the new solution if its fitness increases 
10:    Select the current best for the next generation (elitism) 
11:  end while 
12: ReturnBest Solution from Population 

 
As seen on Algorithm 3 the GA needs some parameters, these parameters 

usually are : Population number, Generation number, Crossover probability, 
Mutation probability and Elistism Percentage.Population number means the 
number of desired chromosomes in each iteration of the GA, this number ussually 
depends to the problem itself. Generation number means the number of iterations 
executed by the GA, the value in this parameter is ussually in emphirical way. 
Crossover Probability or (Pc) means the propability that a chromosome will be 
reproduce with another chromosome. This parameter is commonly set between 0.7 
or 0.99. Mutation Probability (Pm) means the propability to the chromosome to be 
changed arbitrary at the end of a generation, this parameter is ussually set in low 
values (0.01 to 0.15) . Elitism Percentage means the percentage of the best 
chromosomes that will pass to the next generation without any change. This 
parameter is ussually considered like the memory of the GA and its values are set 
emphirically. 
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Basically the GA is an simple metahueristic that needs only a fitness function 
and a adequate representation in its solution. In terms of the current CTTP the GA 
uses a direct representation previously reported by Soria et al [27] where each 
gene represents an event to be assigned into a timeslot or vector. A more detailed 
explaination of each adaptation is shown next: 

A)  Fitness Funtion: Taken form equation 1 and 2. 
B) Solution Representation: The representation is direct where each gene 

represent and integer that indicates the pair of the timeslot (reported by 
LPH) and classroom (reported in the LPA structure). An example of this 
representation is shown on table 5. 

Table 5 sGA representation 

Events Value 
e1 3 (timeslot 2, classroom 4) 
e2 12 (timeslot 1, classroom 12) 
e3 7 (timeslot 4, classroom 1) 

. .

en 9 (timeslot 2, classroom 4) 

 
C) Selection Operator: The CTTP problem seen from the point of view of the 

Methodology of Design is a minimization Problem, in order to assign a 
bigger probability of selection to the chromosomes/individuals with less 
value in its fitness the next equation is proposed. 

= 1 ∑ 1  
(3)

Where means the probability to select event . means fitness value of 
the event .  means the number of events in the current timetabling. This 
ecuation is proposed as a minimization Roulette and its objetive is to give 
more probability to less fitness values, bigger values means that by the 
equation 3 the chromosome will be less propable to be selected . 

D) Crossover Operator:  As seen on the proposed representation there is no 
problem in the repetition of values inside the chromosome, so for the 
crossover the Single point crossover will be use. 

This operator simple selects uniformly a random point inside the 
chromosome and then from this point the genetic material is interchanged 
between two chromosomes, the random point is changed at each iteration. 

F) Mutation Operator: The mutation operator simply selects randomly a 
variable, then changes the value of this gen in the chromosome in a 
uniformly random way. In each mutation a new gen is selected and a new 
value is assigned. It is important to say that at maximun one mutation is 
performed in every iteration. 
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Frecuency Genetic Algorithm (fGA): This kind of GA was developed during 
this invetigation, this GA uses the concept of execution by frecuency. The 
frecuency  in the CTTP means the number of events that have the same cardinality 
in its LPH list. An example of this frecuency value can be seen of table 6 

Table 6 Example of selection by frecuency 

LPH  Day 1  Day 2  Day3 Day 4 

1e  >< 1t  >< 2t  <> 
2< t  or >1t  

2e  >< 3t  2< t , >4t  >< 2t 2< t  or >1t  

3e  
>< 2t  2< t > <> 

2< t > 

4e  >< 2t  2< t  or >1t  >< 2t  2< t  or >1t  

 
Frecuency Events 

1 3e  

2 1e , 4e  

3  

4 2e  

 
From table 6 it can be noticed that the frecuency of events 1 and 4 is 2 so it is 

easy for the GA to work with these 2 events in the same iteration (the 
representation for both events have the same number of posibilities: 2 integer 
values). The main diference between sGA and fGA is that the fGA algorithm have 
a dynamic chromosome length , so in the firsts iterations the chromosome length 
will be thel events that have the same frecuency or number of posibles timeslots in 
the LPH list, A proposed way to select the quantity of this l events is equation 4. 

 =
12 ( 0.33)13 ( 0.33) ( 0.66)14 ( 0.66)  (4)

Where Fr means the number of frecuencies to solve in the iteration i.n means the 
number of total frecuencies in the CTTP (taken from the LPH list). Gt represents 
the parameter generations  in the fGA. As it can be seen from the equation 4 the 
sucession of the selected frecuencies  is nothing more than the armonic succession 
divided between k execution groups, in this work the number of execution groups 
was set in 3. 
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The main idea of this fGA algorithm is to optimize the usage of cpu working 
only with new events each k iteration groups. From figure 3 it can be seen the per-
formance of sGA in the CTTP with Methodology of Design and on figure 4 the 
performance of fGA in similar conditions.  

 

Fig. 3 sGA Performance over CTTP with Design Methodology 

 

Fig. 4 fGA performance over CTTP with Design Methodology 

The fGA algorithm was designed to achieve at least the same value of fitness 
than sGA with less iterations and execution time. The operators used in this fGA 
algorithm besides the frequency selection are exactly the same described in the 
previous sGA section. 
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Eclectic Genetic Algorithm (eGA): Genetic Algorithm with Vasconcelos selection 
and auto-adaptation in its parameters. This Genetic algorithm was developed by 
Angel Kuri [20], and has shown a good performance over high-constrained 
problems. The auto-tunning allows this algorithm to escape from local optima by 
itself. This main chracteristic incorporated in this GA are Kuri[19][20]: 

A) Full elitism over a set of n size of the last population. Given that it has 
been tested  nk individuals by generation k, the population consist of the 
best n up to that point. 

B) A deterministic selection scheme (opposed to the traditional stochastic se-
lection methods). The main idea is to emphasize genetic variety by impos-
ing a strategy which enforces crossover of predefined individuals. In this 
scheme, the j-th individual is crossed with the (n-i+1)-thindividual (Vaz-
conselos strategy). 

C) Annular crossover  
D) Population self-adaptation of the following parameters: The number of the 

Offspring, Crossover probability and mutation Probability. 

These considerations were adapted to the CTTP problem with Design Methodolo-
gy. The chromosome codification was the same used in the previous sGA and fGA 
algorithms so the chromosome is a simple integer chain with the length of the 
number of events. For the selection operator, the Vazconselos strategy was im-
plemented, that strategy sorts al the chromosomes from the best fitness to the 
worse, then the crossover operator is applied to every pair (i,n-i) where n is the 
number of current population. On the figure 5 it can be seen an example of this 
strategy. 

 

 

Fig. 5 Vazconselos selection strategy. 

The crossover operation is the annular crossover; this operator considers two 
chromosomes as annular chains, this operator selects two arbitrary points inside 
the chromosomes and then interchanges its genetic material, this operator works as 
seen on figure 6. 
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Fig. 6 Annular Crossover 

The Crossover and mutation probability parameters are included in each chro-
mosome, so essentially each individual carries on with its own crossover and mu-
tation probabilities, in order to fix these parameters values at the beginning of the 
generation, the next equations are applied.  

( ) = 1 ( )  (5)

Where ( ) meanshe probability of mutation in the k-th iteration, ( ) means the 
probability of mutation coded in the i-th chromosome and n means the total 
number of chromosomes in teh current iteration. 

( ) = 1 ( ) (6)

In a similar way the equation 6 details the probability of crossover for the k-th ite-
ration;Where ( ) meanshe probability of crossover in the k-th iteration, ( ) means the probability of crossover coded in the i-th chromosome and n 
means the total number of chromosomes in the current iteration. 

Finally, both; the fitness function and the offspring selection are the same as 
sGA and FGA algorithm. 
 
Cellular Genetic Algorithm (cGA): Genetic Algorithm with high parallelism 
developed by Alba et.al [2] [3]. This GA limits each individual to a specific 
neighbourhood (NEWS neighbourhood in this work), also each individual is placed in 
a toroidal grid. This kind of algorithm admits sub-populations that work at the same 
time in different regions of the search space, but gathers information with a migration 
operator. Several adaptations of common GA operators are made in order to use them 
in this cGA, For example the selection operator only selects neighbours for each 
individual/cell. The Elitism operator is changed as well, making only possible to 
choose the best individual for each subpopulation, i.e in each subpopulation the best 
cell cannot be modify ,but this cell can modify (cross-over) others. 

The cGA model simulates the natural evolution from the point of view of the 
individual. The essential idea of this model is to provide the population of a 
special structure defined as a connected graph, where each vertex is a common 
GA chromosome or Cell that is only allowed to communicate with its nearest 
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neighbours. Particularly, individuals are conceptually fixed in a toroidal mesh and 
are only allowed to recombine with close individuals.[5] An example of this type 
of interaction can be seen on the figure 7. 

 

Fig. 7 Simple NEWS toroidal grid interaction. 

A pseudo-code of the canonical version of cGA proposed by Alba et al[3] can 
be seen on Algorithm. 

 
Algorithm 4. Canonical Cellular Genetic Algorithm 
Require: Fitness Function f(x),x=(x1,….,xn)

T 
1: Encode the solution into Chromosomes (binary strings) 
2: Define fitness F (usually f(x)) 
3: Generate initial population 
4: Initial probabilities of crossover (Pc )and mutation (Pm ) 
5: while(t < Max number of generations) 
6:     fori to population size (total cells) do 
7:      Define Neigborhood for Cell i.  
8:  Selects a Neighbor for Cell i. 
9:      TempCell = recombitation(Cell i, Selected Neighbor) 
10:    Update Cell I with TempCell 
11:   end for 
12:   Mutate (Grid) 
12: ReturnBest Solution from Grid 

 
Further cGA adaptations applied in order to work over the CTTP with Design 

Methodology are: 

A) Each Cell in the toroidal grid represents a complete timetable as an integ-
er chain of all the events. Each integer is a value that coded a pair (time-
slot-classroom). 

B) The neighborhood model used is the NEWS model (as seen on figure 7), 
in order to select a neighbor to execute the crossover the minimization 
roulette  is applied around each cell (equation 3) 

C) The crossover operator applied is the single point crossover (the same 
that sGA). 
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D) The mutation operator is the same applied in sGA. A simple arbitrary 
change in an event over a single cell in the grid. 

E) The elitism operator is applied every iteration and this operator simply 
locks the best cell to any change. It is necessary to say that this kind of 
lock only denied any change in the cell itself, but this cell can modify its 
neighbors.  

F) The grid used is 4x4 
G) The fitness function is the same seen on equation 1 and 2. 

The use of an elitism operator do not appears in the original cGA algorithm, in this 
work this elitism is a proposed strategy to construct a cGA with memory, this 
memory has the objective to stop any non-desired change or a situation when the 
best cell updates with a worse genetic material. 

Finally, this algorithms admits the usage of Sub-populations, this subpopulation 
usage means the execution of two or more similar grids at the same time. The gr-
ids interchange information every k iterations, where k is a parameter usually  
defined by the user. In this work, 2 grids both of 4 x 4 with similar configuration, 
interchanges information every 250 function points. 
 
Differential Evolution (DE): The Differential Evolution (DE) is a evolutionary 
strategy designed for problems of continuous nature. This algorithm has been 
reported [22] [29] as a good algorithm capable to work with high constrained 
problems in a small time. Developed by Storn and Price, It is a vector-based 
algorithm and can be considered as a further development to GA. This stochastic 
search algorithm with self-organizing tendency do not uses information of 
derivatives (as a GA). Unlike GA, DE carries out operations over each component 
of the vector (in our case each variable is coded inside the chromosome). This  
kind of operators can be expected to be more efficient when the optimal solution is 
near to the current point coded in an chromosome/individual [34]. Despite of  
the discrete nature of the CTTP instance, the DE can work over a discrete 
representation like the proposed GA chromosome where each component is  
an CTTP event whit a well-defined pool of timeslot choices(LPH). So the 
representation used is, as well as previous GA’s, a chain with integer 
values.Despite of the fraccionary nature of  DE, each value produced by a DE 
operation will be rounded to the nearest integer that coded a LPH-LPA value. 

Diferential evolution consist of three main steps: mutation, crossover and 
selection. Mutation is executed by an mutation scheme. For each variable xiat any 
time or generation/iteration t , first it is randomly selected three distincs 
chromosomes  xp, xq and xr, an then it is generated a donor vector by the equation 7 
Where = [0,2] is a parameter refered as diferential weight. = + ( ) (7)

The crossover operator is controlled by a crossover probability = [0,1] and 
the actual crossover is executed in this work as a binomial scheme. The binomial 
scheme performs crossover on each of the d components (events or variables). By 
generating a uniformly distributed random number = [0,1], the j-th component 
of vi is manipulated as seen on equation 8. 
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, = ,    ,    , = 1,2, … ,  (8) 

This way, each component can be decided randomly whether to exchange with 
donor vector. 

Selection is essentially the same as that used in the previous GA’s seen on 
equation 3. Therefore the update of each component is executed by the equation 9. = ( ) ( )   (9)

These operator can be seen in the next DE pseudocode taken from Xin-She[34]. 
 

Algorithm 5. Canonical Differential Evolution 
Require: Fitness Function f(x),x=(x1,….,xn)

T 
1: Initialize the population x with randomly generated solutions 
2: while(stopping criterion) 
3:    fori= 1 to n do 
4:      for each xi, randomly choose 3 distinct vectors xp, xq and xr 
5:     Generate a new vector v by equation 7 
6:     Generate a random index = [1,2, … , ] by permutation 
7:     Generate a randomly distributed number = [0,1] 
8:  for j=1 to d do 
9:      for each component vj,i update 
10:    

, = ,    =,     , = 1,2, … ,  

11:  end for 
12:    Select and update the solution by equation 9 
13:    end for 
14: Update the counters such as t=t+1 
15: end while 
16: ReturnBest Solution  

 
Particle Swarm Optimization (PSO): Particle Swam Optimization is based on the 
swarm behaviour was developed by Kennedy and Eberhart(1995) [17]. Since then 
the PSO has been applied to almost every area in optimization, computational 
intelligence and design/scheduling applications [16][24]. This algorithm searches the 
space of an objective function by adjusting the trajectories coded inside each particle 
(in our case the time values of each variable/event) in a quasi-stochastic manner. 
Each particle is attracted toward the position of the current global best g* and its 
best location  x*i in history, while at the same time it has a tendency to move 
randomly. This algorithm can be adapted to CTTP instances with the same 
considerations seen on the DE algorithm. This means that the PSO will manage an 
vector represented by a integer chain where every component is a CTTP event and 
every operation will be rounded to the nearest integer that coded a LPH-LPA value. 
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The essential steps of the PSO algorithm can be summarized as the pseudo-
code taken from Xin-She[34] and showned on algorithm 6. Let xi and vibe the 
position vector (CTTP complete assignation) and the velocity for particle i 
(Solution). The new velocity vector is detrmined by the following formula = + [ ] + [ ] (10)

Where  and  are two random vectors, and each entry taking the values 
between 0 and 1. The hadaman product od two matrices  is defined as the 
entrywise product, that is [ ] = . The parameters  and  are the 
learning parameters or acceleration constants, which can typically taken as 2. 

The initial locations of all particles should distributed uniformly so that can 
sample over most regions. The initial velocity of a particle can be taken as 0, that 
is = 0, The new position can be update by equation 11. = +  (11)

 
Algorithm 6. Canonical Particle Swarm Optimization 
Require: Fitness Function f(x),x=(x1,….,xn)

T 
1: Initialize locations xi and velocity vi of n particles 
2: Find g* from min{f(x1),…, f(xn)}  
3:  while (stopping criterion) 
4:      t=t+1 
5:     for j=1 to n (Particles) 
6:     Generate a new velocity using equation 10 
7:     Calculate new locations usign equation 11 
8:     Evaluate fitness funtion at new locations  
9:     Find the current best for each particle  
10:   end for 
11:  Find the current global best g* 
12:  end while 
13: Returng* Solution  

 
Great Deluge Algorithm (GDA): The Great Deluge Algorithm was developed by 
Dueck, 1993 [14] based on simulated annealing. This algorithm uses only one 
parameter time execution. It has been observed [7] that a enough big execution time 
impacts positively in the final solution granted by this algorithm. The GDA strategy 
works with an quasi-stochastic search, looking for the best possible solution in the 
fitness landscape but its constrained to: Do not chose a worse solution  and Do not 
take a solution with a fitness value smaller that the remain time execution units. This 
strategy ensures for example that if GDA has 100 remain execution units(time) no 
solution with a fitness bigger that 100 will be accepted. This algorithm have been 
tested over CTTP instances with good results.[33] 
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The GDA algorithm uses the concept of Neighbourhood. That concept is 
applied to the current solution making smaller changes into in in order to achieve a 
new solution with the best characteristic of the previous one. 

In order to make a change to a prevous solution the algorithm selects randomly 
a single variable to change (CTTP event) inside the integer chain representation 
once selected,several heuristics are proposed to update its value:  

A) Sequential Selection: It selects the next pair (LPH-LPA) from the order 
constructed by its Cartesian Product that defined the variable’s domains. 

B) Min-conflict in Soft Constraints: Chooses the pair (LPH-LPA) that 
participates in the least number of conflicts with constraints. 

C) Random Selection: Chooses (LPH-LPA) values in a random way. 

These heuristics are usefull to make minor changes in the current solution willing 
for a possible positive change but without having a big lost in terms of the current 
quality of the solution.Also, these heuristic were taken from previous works with 
the CTTP [12] where it have shown encouraging results. The GDA algorithm 
adapted to Methodology of Design can be seen on the algorithm 7. 

 
Algorithm 7. Great Deluge for CTTP with Design Methodology 
Require: Fitness Function f(x),x=(x1,….,xn)

T 
1:Set parameter ExecutionTime(miliseconds) 
2: Construct initial solution s Randomly 
3: Calculate initial fitness funtion from solution s  f(s)  
4: Set initial Boundary level B=B0= f(s) 
5: Set initial decay rate *B =0 
6: Set ti = current time (miliseconds) 
7:     while (B>0) 
8:       Create Neighbor *s from the random application of heuristics to s 
9:       Calculate f(*s) 
10:     if f(*s) <= f(s) or (f(*s)<=B)then 
11:       Update s=*s 
12:     end if 
13;Set tf = current time (miliseconds) 
14:     Update *B. 
15:     lower Boundary B = B0-*B 
16: end while 
17: ReturnSolution s 

 
The most important line in the algorithm 7 is line 14, where the decay rate is 

updated. This parameter is usually set indirectly by the user during the assignation 
of execution time units. The proposed linear equation used to update the parameter 
*B can be seen on equation 12. 

*B= ( + )  (12)

The equation 12 supposes that the desired limit at the end of Executiontimeis 0, 
this means that the theorically boundary in the last executions will be closer to an 
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optimal solution. The GDA algorithm behaves at early stages of execution as a  
simulated annealing algorithm accepting a wide range of solutions. In late 
executions the GDA intesifyits current solution. Finally this algorithm can be 
easily adapted to any constrained problem where it will possible the creation of a  
neighbor solution. 

2.4   Test Instances 

The methodology of design allows to solve several different set instances as long 
as these instances can be expressed in terms of the generic structures (MMA, 
LPH, LPA and LPS), That is the principal advantage of this generic approach. 
Two well know and referenced set instances are taken to make the comparison 
experiment over our generic approach, these set instances PATAT 2002 and 
PATAT 2007 were made for the first and second International Timetabling 
Competition respectively.  

There are 20 test instances for Patat 2002 and 24 for Patat 2007, the main 
characteristics are share between these sets like the main data as well as some 
constraints. The last two hard constraints marked by (*) are only utilized in ITC 2007.  

 
Patat 2002 and Patat 2007 
These instances consist in:   

• A set of n  events that are to be schedule into 45 timeslots.  
• A set of r  rooms, each which has a specific seating capacity.  
• A set features that are satisfied by rooms and required by events.  
• A set of s  students who attend various different combination of events.  

The hard constraints are:   

• No student should be required to attend more that one event at the same time  
• Each case the room should be big enough for all the attending students  
• Only one event is put into each room in any timeslot. 
• Events should only be assigned to timeslots that are pre-defined as available *             
• Where specified, events should be scheduled to occur in the correct order. *          

The Soft constraints are:   

• Students should not attend an event in the last timeslot of a day.  
• Students should not have to attend three or more events in successive timeslots.  
• Student should not be required to attend only one event in particular day.  

3   Experiment Design 

The comparison between the selected metaheuristics was made with PATAT 2002 
an 2007. Basically once each metaheuristic is adapted to the proposed generic 
approach, that adaptation is used to solve both test instances. It should be noted 
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that exists previous works [9] [18] where some metaheuristics were tested for 
patat 2002 or patat 2007, however this is the first time where a single generic 
algorithm is capable to solve both instance sets with no special adaptation for each 
case. For the present comparison each metaheuristic execute 100 independent 
experiments in order to assume statistical normality as well as 1000 functions 
points per independent run. A xGA generation containts x funtion points where x  
is equal to the population parameter. The parameters used for each metaheuristic 
can be seen on table 7. These parameters were taken from the literature and 
empirical evidence obtained in this paper. 

Table 7 Parameters for each metaheuristic 

Algorithm   Parameter   Value  

sGA  Elitism   0.3 
  Cross-over   0.85  
  Mutation   0.15  
  Population   256  
fGA  Elitism   0.3  
  Cross-over   0.95  
  Mutation   0.1  
  Selection   Harmonic  
  Population   256  
eGA  Elitism   0.3  
  Cross-over   Auto adaptable  
  Mutation   Auto adaptable  
  Population   256  
cGA  Elitism  1 per sub-population  
  Cross-over   0.937  
  Mutation   0.1  
  sub-populations   16  
  individuals  256  
 Neighborhood NEWS  
DE   f   0.9  
  Cr   0.5  
  Population   256  
PSO  gBest  0.8  
 lBest  0.4  
  Inertia   0.95  
  Population   256  
GDA   Time   Until 1000 F.points 

3.1   Results 

The results achieved for each metaheuristic can be seen on table 8 and 9.  
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Table 8 Results for PATAT 2002 instances 

Instance  Results sGA fGA eGA cGA  DE   PSO  GDA  
2002-1  Mean Fitness  324 305 308 188 303 288 279  

 Std deviation  18.8 19.8 20.4 14.9 12.2 19.6 15.5  
 2002-2  Mean Fitness  305.5 215 260 179 184 252 204  

 Std deviation  18.2 15.5 19.9 14 13.5 17.6 18.4  
2002-3  Mean Fitness  330.4 278.58 248.04 202.7 295.9 239.6 252.5  

 Std deviation  15.3 16.8 15.6 13 12.5 16.8 18.4  
 2002-4   Mean Fitness  485.5 451.2 397.2 304 438.2 349.8 390.5  

 Std deviation  23.9 24 22.8 22.9 19.5 26.5 28.4  
 2002-5   Mean Fitness  480.18 360 423.6 293.3 348.6 440 310.2  

 Std deviation  26.57 25.5 28.5 21.4 23.3 22.4 21.9  
 2002-6   Mean Fitness  481.8 374.8 416.5 294.8 280.5 439.1 402.7  

 Std deviation  26.56 25.4 26.85 21.06 25.4 30 27.87  
 2002-7   Mean Fitness  503.4 371.2 282.3 287.9 268.5 400.1 339.9  

 Std deviation  30.55 29.3 27.6 24.9 12.45 18.66 24.4  
 2002-8   Mean Fitness  371.94 228.6 316.5 210.2 180.6 350.2 237.6  

 Std deviation  25.14 28.4 22.65 18.65 17.8 28.1 24.6  
 2002-9   Mean Fitness  346.8 254.1 288.6 207.9 274.5 266.5 281.5  

 Std deviation  20.54 19.5 17.65 16.56 12.45 16.4 20.2  
 2002-10   Mean Fitness  335.15 277.9 202.5 201.9 213.7 271.1 218.5 

 Std deviation  21.24 19.8 16.5 14.2 10.4 17.4 15.4  
 2002-11  Mean Fitness  350.4 277.6 223.5 208.2 233.1 255.4 330.5 

 Std deviation  19.4 18.8 17.8 14.56 12.45 13.66 14.56 
 2002-12  Mean Fitness  312.1 200.7 256.6 188.5 215.8 298 176.8 

 Std deviation  19.15 18.5 16.5 14.25 13.6 12.5 15.4 
 2002-13  Mean Fitness  396.44 261.2 249.5 231.6 290.6 337.4 265.5 

 Std deviation  24.26 19.6 15.5 19.54 16.6 19.5 20.8 
 2002-14  Mean Fitness  520.14 349.6 401.2 313.3 313.9 308.6 319.4 

 Std deviation  28.17 28.6 25.6 23.2 20.15 26.5 29.9 
 2002-15  Mean Fitness  449.5 378.8 281.5 261.4 329.4 366.6 275.2 

 Std deviation  28.65 24.5 26.6 22.44 18.6 23.5 29 
 2002-16  Mean Fitness  369.67 278.5 266.9 223.6 254.8 277.8 305.4 

 Std deviation  20.44 17.6 18.6 18.22 13.36 17.4 21.1 
 2002-17  Mean Fitness  468.9 266.9 399.9 289.4 289.8 281.5 336.5 

 Std deviation  29.22 28.9 26.6 22.19 19.6 23.6 27.5 
 2002-18  Mean Fitness  307.14 256.9 213.6 181.5 210 236.3 200.5 

 Std deviation  20.3 17.5 19.9 14.98 12.32 19.5 14.5 
 2002-19  Mean Fitness  497.1 439.6 426.3 297.7 356 271.3 402.1 

 Std deviation  28.95 16.7 29.5 23 19.5 22.5 27.6 
 2002-20  Mean Fitness  449.14 375 299.6 266 311.3 336.5 361.5 

 Std deviation  26.35 24.6 28.9 21.54 18.56 20.3 26.3 
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Fig. 8 Performance over Patat 2002 Instances 

Table 9 Results for Patat 2007 instaces 

Instance  Result  sGA fGA eGA cGA  DE   PSO   GDA  
2007-1  M.Fit 1362.50 1315.60 1160.20 975.30 1064.15 1281.45 1279.50  

 Std dev. 55.00 52.73 47.10 45.96 54.76 54.59 47.93  
2007-2  M. Fit 1388.50 1123.23 1189.30 999.00 1068.32 1315.20 986.23  

 Std dev. 56.87 48.38 47.84 42.78 55.28 44.00 50.08  
2007-3  M. Fit 556.80 445.30 378.60 286.75 336.80 366.50 359.20  

 Std dev. 57.80 57.58 38.89 27.00 26.45 39.43 27.84  
2007-4  M. Fit 619.20 488.30 334.50 342.80 426.30 329.50 567.20  

 Std dev. 44.00 36.18 42.99 30.55 41.72 39.23 39.82 
2007-5  M. Fit 805.30 697.50 689.23 564.4 520.51 576.30 650.04  

 Std dev. 35.70 34.39 35.52 32.28 34.61 33.78 33.54  
2007-6  M. Fit 794.81 623.50 666.56 552.18 550.36 526.30 713.20  

 Std dev. 36.72 33.91 35.54 33.15 34.77 36.63 35.03  
2007-7  M. Fit 334.90 284.50 200.69 187.8 272.27 196.52 230.13  

 Std dev. 28.96 17.56 17.15 15.5 27.48 20.13 21.14  
2007-8  M. Fit 375.00 284.50 280.42 196.30 320.40 316.50 220.50  

 Std dev. 36.14 18.86 21.23 18.72 29.50 27.28 21.30  
2007-9  M. Fit 1403.10 1206.50 1163.20 979.23 1488.50 1154.30 994.50  

 Std dev. 69.77 67.04 58.40 52.67 57.95 67.15 62.59  
2007-10  M. Fit 1400.30 1305.60 1068.20 1011.60 1159.50 1235.40 1056.20 

 Std dev. 53.58 51.12 50.59 47.38 56.50 47.95 50.61  
2007-11 M. Fit 612.84 425.20 343.50 319.21 325.12 328.50 309.20 

 Std dev. 58.64 36.51 45.06 32.2 30.40 49.96 49.88 
2007-12 M. Fit 588.11 375.20 426.50 317.74 402.92 394.50 370.50 

 Std dev. 65.15 59.91 60.47 28.55 33.43 41.32 50.84 
2007-13 M. Fit 843.75 680.50 601.50 590.17 706.50 716.50 748.20 

 Std dev. 34.24 34.03 34.07 31.19 31.68 34.18 33.78 
2007-14 M. Fit 813.11 729.50 648.20 572.86 565.76 723.50 646.80 

 Std dev. 36.41 35.86 30.03 26.77 29.50 29.18 30.74 
2007-15 M. Fit 396 173.73 171.12 154 204.56 249.50 246.50 

 Std dev. 30.23 12.52 29.06 12.20 15.34 17.96 21.03 
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Table 9 (continued) 

2007-16 M. Fit 326.85 165.05 168.23 167.21 236.04 198.50 261.20 
 Std dev. 34.47 24.68 29.90 16.82 26.13 27.74 20.98 

2007-17 M.Fit 432.15 268.50 309.5 160.15 243.85 98.60 204.50 
 Std dev. 69.81 51.63 66.95 35.05 56.32 45.74 45.05 

2007-18 M. Fit 1000.59 736.50 894.50 635.15 560.50 636.15 623.50 
 Std dev. 56.14 50.23 55.58 38.87 40.85 50.65 55.46 

2007-19 M. Fit 814.96 682.45 571.23 482.50 713.62 703.54 576.20 
 Std dev. 58.10 53.79 54.50 32.52 41.70 48.69 32.55 

2007-20 M. Fit 879.07 501.12 774.23 497.52 613.50 643.15 570.12 
 Std dev. 59.34 58.66 44.92 38.96 55.69 50.69 53.32 

2007-21 M.Fit 847.17 688.95 668.20 614.27 561.23 679.23 576.20 
 Std dev. 28.99 28.80 28.50 26.82 27.02 27.11 28.55 

2007-22 M. Fit 1556.15 1305.20 1245.10 1185.74 1284.20 1445.20 1251.20 
 Std dev. 59.93 68.32 70.65 75.48 66.07 62.28 65.05 

2007-23 M. Fit 2882.60 2365.20 2078.20 2137.85 2019.30 2643.20 2347.20 
 Std dev. 114.88 98.73 102.86 88.12 105.59 112.15 110.42 

2007-24 M. Fit 886.48 562.80 580.20 527.90 620.50 670.20 636.26 
 Std dev. 52.31 35.82 45.80 35.2 41.24 37.06 50.86 

 

 

Fig. 9 Performance over Patat 2007 instances 

3.2  Discussion 

Once obtained the results shown in table 5 and 6 the non-parametric Kruskal-
Wallis test is applied. This test is a method for testing whether samples originate 
from the same distribution. It is used for comparing more than two samples that 
are independent, or not related. The factual null hypothesis is that the populations 
from which the samples originate have the same median (in our case this means 
that each metahuristic have the same median performance). When the Kruskal-
Wallis test leads to significant results, then at least one of the samples is different 
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from the other samples. The test does not identify where the differences occur or 
how many differences actually occur.  

The Kruskal-Wallis test rejects the null hypothesis and accept the alternative 
hypothesis: at least one of the distributions have different mean. This means that at 
least one of the algorithms have a different performance with the generic approach 
over the test instances. it can be seen some evidence that reinforces this result on 
figures 3 and 4, the figures shows different performance between the proposed 
algorithms.  

Once it is known that the algorithms present different performance, it is needed to 
identify which metaheuristic present the best performance (Minimum conflicts), in 
order to do that Wilcoxon signed rank test is applied to every possible pair or 
metaheuristics. The Wilcoxon signed-rank test is a non-parametric statistical 
hypothesis test used when comparing two related samples, matched samples, or 
repeated measurements on a single sample to assess whether their population mean 
ranks differ. In this  the wilcoxon signed rank test is applied in order to evaluate 
which metahuristic has the best performance in terms of minimun conflicts.  

By means of Wilcoxon signed rank test the cGA algorithm has shown a better 
performance in term of quality solution (conflicts) over our of test instances. The 
second best algorithm was the ED/Rand/1 also, this algorithm was also the fastest 
in execution. The second fastest algorithm was PSO however, this algorithm has 
not shown a good performance in terms of quality over the test instances. On the 
figures 3 and 4 it can be seen that the cGA algorithm has the best performance, 
this evidence support the results with Wilconxon Signed Rank test. 

A simple sign test is realized on the cGA algorithm on table10 for patat 2002 and 
11 for patat 2007. In this test the overall wins over every pair cGA-X algorithm 
areanalized in order to find enough statistical data about the cGA results. 

This sign test considers the number of wins as a binomial distribution; for a 
greater number of cases, the number of wins is under the null hypothesis 
distributed according to n (n/2, √ /2), which allows for the use of the z-test; if the 
number of wins is at least n/2+1.96 · √ /2, then the algorithm is significantly 
better with p < 0.05. 

Table 10 Sign test for pairwise comparisons over PATAT 2002. In each test cGA shows 
significant imrpovement over the other algorithms with a level of significance α=0.5. 

cGA sGA fGA  eGA DE PSO GDA 
Wins(+) 20 20 19 19 20 20 
Loses(-) 0 0 1 1 0 0 
 α=0.5 α=0.5 α=0.5 α=0.5 α=0.5 α=0.5 

Table 11 Sign test for pairwise comparisons over PATAT 2007. In each test cGA shows 
significant imrpovement over the other algorithms with a level of significance α=0.5. 

cGA sGA fGA  eGA DE PSO GDA 
Wins(+) 25 25 23 21 25 25 
Loses(-) 0 0 2 4 0 0 
 α=0.5 α=0.5 α=0.5 α=0.5 α=0.5 α=0.5 
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4   Conclusions and Future Work 

This chapter has shown a comparison between several different meta heuristics 
over an generic approach for the course timetabling problem. This generic 
approach has been use to solve both well known an referenced international test 
instances PATAT 2002 and PATAT 2007. The Design methodology was capable 
to solve both set of instances with a single algorithm.  

This chapter has gathered evidence about the good performance of the cGA 
algorithm as an metaheuristic tool to solve the CTT problem by means of a 
generic approach. The cGA algorithm uses an overlapped neighbourhood as well 
as a fixed toroidal structure, these concepts allows the cGA algorithm to diversify 
the genetic material in its individuals and preserve the best traits and 
characteristics of the best solutions founded. The cGA algorithm also utilizes a 
parallel scheme that accelerates the time needed to achive a solution. this 
algorithm uses a sub-population approach in order to search in different areas of 
the fitness landscape at the same time. This parallelism and sub-population 
techniques have shown a positive impact in the solution of CTT problem over an 
generic approach like the Design methodology.  

For future work is proposed to analyse the performance of the cGA algorithm 
over a different set of instances like UNITIME.org with the same generic 
approach, also to make more test over different neighbourhood schemes for the 
cGA. The integration of the migration concept could be benefit for the cGA since 
this operator can be implemented in a parallel scheme, more test over this idea are 
suggested. 

Acknowledgment. The authors thanks Consejo Nacional de Ciencia y Tecnologia (CONACYT) 
for the obtained support for this research. 
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Abstract. NSGA-II is one of the most popular algorithms for solving Multi-
objective Optimization Problems. It has been used to solve different real-world 
optimization problems; however, NSGA-II has been criticized for its high 
computational cost and bad performance on applications with more than two 
objective functions. In this paper, we propose a high-performance architecture for 
the NSGA-II using parallel computing, for evaluation functions and genetic 
operators. In the proposed architecture, the Mishra Fast Algorithm for finding the 
Non Dominated Set was used. In this paper, we propose a modification in the 
sorting process for the NSGA-II that improves the distribution of the solutions in 
the Pareto front.  Results for five different test functions using distinct crossover 
and mutation operators to test performance are presented. 

Keywords: Genetic Algorithm, Multi-Objective Optimization, Pareto Optimal, 
NSGA – II. 

1 Introduction 

Optimization refers to obtain the values of decision variables, which correspond to 
the maximum or minimum of one or more objective functions [1]. Many 
applications consider only one objective function, probably due to the available 
computational resources; however, most real problems involve one or more 
objectives, which are very difficult to solve because of its high computational cost. 
The way of finding optimal solutions of such a problem is known as 
multiobjective optimization (MOO). 

In single-objective optimization, the search space is often well defined; when 
we try to optimize several objectives at the same time, the search space also 
becomes partially ordered. A multiobjective optimization problem could be 

written in the form minimize )](),...,(),([ 21 xfxfxf k   for k objective functions 

ℜ→ℜn
if : subject to some equality and inequality constraints. For =[ , , … , ] , the vector of decision variables, our task is to determine the set  
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of all vectors which satisfy all the constraints, the particular set of values =[ , , … , ] ,  and also yields the optimum values for all the objective functions 
[2]. 

If all objective functions are for minimization, a feasible solution  is said to 
dominate another feasible solution  ( ), if and only if, ( ) ( )    for  =  1, … , , where  is the number of objective functions, and ( ) ( )) for 
at least one objective function   [3]. One general approach in MOO is to 
determine an entire Pareto Optimal solution set or a representative subset. A 
Pareto optimal set is a set of solutions that are non-dominated with respect to each 
other, as shown in Fig. 1. 

 

Fig. 1 Decision variable and objective space relationship 

The main purpose of a multiobjective optimization algorithm is to identify 
solutions in the Pareto optimal set. There are three principal methods of dealing 
with multiple objectives: 

1.  Combine all the objectives into a single scalar value, typically as a weighted 
sum, and optimize the scalar value. 

2.  Solve for the objectives hierarchically, optimizing for a first objective, if there 
is more than one solution, optimize these solutions for a second objective, and 
repeat for a third, etc., if it is appropriate. 

3.  Obtain a set of alternative, non - dominated solutions, each of which must be 
considered equivalent in the absence of further information regarding the 
relative importance of each of the objectives. 
 

Generating the Pareto set can be computationally expensive and is often infeasible 
because the complexity of the application prevents exact methods from being 
applied. For this reason, a number of stochastic search strategies such as 
evolutionary algorithms, tabu search, Ant Colony Optimization, and others have 
been developed, and they usually find a good approximation, i.e., a set of solutions 
whose objective vectors are not too far away from the optimal objective vectors. 
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2 Pareto-Optimality 

Definition 1. Domination: A decision vector,  dominates a decision vector  

(denoted by ), if and only if 

•  is not worse than  in all objectives, i.e. ( ) ( ), ∀ = 1,2, … , , and. 
•  is strictly better than  in at least one objective, i.e., ( ) ( ), ∀ =1,2, … , . The concept of dominance is illustrated in Fig. 2. 

 

 

Fig. 2 Dominance concept. Point (f1(x),f2(x)) dominates all other points. 

Definition 2. Pareto-optimal: A decision vector ∈ Ω  is Pareto - optimal if 
there, does not exist a decision vector ∈ Ω  that dominates it. An objective 
vector, ( ) , is Pareto-optimal if  is Pareto-optimal. 

3 Genetic Algorithms 

Holland and his colleagues proposed the concept of Genetic Algorithms (GA) in 
the 1960s and 1970s [4]. GA is inspired by the evolutionist theory explaining the 
origin of species. In nature, weak and unfit species within their environment are 
faced with extinction by natural selection. The strong ones have greater 
opportunity to pass their genes to future generations via reproduction. In the long 
run, species carrying the correct combination in their genes become dominant in 
their population. Sometimes, during the slow process of evolution, random 
changes may occur in genes. If these changes provide additional advantages in the 
challenge for survival, new species evolve from the old ones. Unsuccessful 
changes are eliminated by natural selection. 
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A solution vector ∈ Ω is called an individual or a chromosome. 
Chromosomes are made of discrete units called genes and each gene controls one 
or more features of the chromosome [5]; genes are assumed to be binary bits. The 
population is a collection of N chromosomes, and it is normally randomly 
initialized. 

3.1 Operators to Genereate New Individuals 

GA uses two operators to generate new solutions from existing ones: crossover 
and mutation. In crossover, generally two chromosomes, called parents, are 
combined to form different chromosomes, called offspring. The parents are 
selected among existing chromosomes in the population with preference towards 
fitness so that offspring is expected to inherit good genes, which make the parents 
fitter. By iteratively applying the crossover operator, genes of selected chromosomes 
are expected to appear more frequently in the population, eventually leading to 
convergence to an overall good solution, which is illustrated in Figure 3. 

 

Fig. 3 Illustration of crossover and mutation operator process 

The mutation operator introduces random changes into characteristics of 
chromosomes. A mutation is generally applied at the gene level, in typical GA 
implementations the mutation rate (probability of changing the properties of a 
gene) is very small and depends on the length of the chromosome. Therefore, the 
new chromosome produced by mutation will not be very different from the 
original one. Reproduction involves selection of chromosomes for the next 
generation; the fitness of an individual determines the probability of its survival 
for the future generation. There are different selection procedures in GA, such as 
proportional selection, ranking and tournament selection that are the most popular 
procedures. In the following subsections, we describe some crossover and 
mutation operators that are used in this work. 

The general procedure for GA given in Algorithm 1 summarizes a general GA. 
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Where r is a random number uniformly distributed between 0 and 1, the parent 
)2(x  should not be worse than )1(x  in terms of this objective function; this is 

done to keep the search in the right direction. 
 

Blend Crossover. The BLX-α crossover was suggested by Eshelman and Schaffer 

[8]. From two parents 
)1(x  and 

)2(x (assuming that  
)1(x  is better than

)2(x ) the 
BLX operator randomly generates a solution in the interval 

)](),([ )1()2()2()1()2()1(
iiiii xxxxxx −+−− αα , this new solution is calculated 

using (5). 

)2()1()1( )1( iiii xxy γγ +−=     (5) 

where ααγ −−= ii u)21( , and iu is a random number between 0 and 1. 

According to Deb [10], the best performance of this operator is when 5=α ; if the 
difference between parents is small, the difference between the child and parents 
would also be small. This property is an adaptive search, which is illustrated in 
Figure 5. 
 

 

Fig. 5 Probability distribution of the offspring in the BLX-α operator 

Simulated Binary Crossover. Deb and his students developed the algorithm SBX 
[9], which creates two offspring from two parent solutions. As it name suggests 
simulates the working principle with the operator of single-point crossover in 
binary strings. With this operator, from two parents, two solutions are calculated 
as it is shown in equations (6), (7) and (8). 

])1()1[(5.0 )2()1()1(
iqiiqi xxy ββ −++=     (6) 

])1()1[(5.0 )2()1()2(
iqiiqi xxy ββ ++−=     (7) 

where, 
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iu  is a random number between 0 and 1, cn  is a parameter chosen by the user 

who is dependent on the probability that a child is created by the father; the 

recommended value for cn  is any between 0 and 10, and this is shown in Figure 6. 

 

Fig. 6 Probability distribution for creating children solutions of continuous variables [10] 

 
Laplace Crossover. This operator was proposed by Deep and Thakurn [11], it is 
also known as LX operator, which produces two children from two parents using 
equations (9), (10) and (11). 

|| )2()1()1()1(
iii xxxy −+= β     (9) 

|| )2()1()2()1(
iii xxxy −+= β   (10) 





>+
≤−

=
5.0),ln(

5.0),ln(

uuba

uuba
β    (11) 

where β  is a function between 0 and 1, and iu  is a random number uniformly 

distributed. β  is obtained by inverting the Laplace distribution function. The 

parameters Ra ∈  and 0≠b  are called location parameters, usually taken a = 0 
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and b> 0 are known as scaling parameters. Deep [11], experimented using values 
b = 0, 5 and b = 1, which is indicated in Figure 7. 
 

 

Fig. 7 Density function of Laplace distribution (a = 0, b = 0.5 and b = 1) 

3.1.2   Mutation Operators 

Uniform mutation (UM) [12]. It is the simplest mutation operator for real coding 
given by (12), it creates a random solution throughout the search space, 

)( )()()1( L
i

U
ii xxry −=   (12) 

where ir  is a random number in [0, 1], )(L
ix is the lower limit of the variable ix  

and )(U
ix is the upper limit. This operator is independent of parents and is 

equivalent to a random initialization of the population. If the objective is to 
modify a parent using this operator, it can be performed with the equation (13), 

iii rxy Δ−+= )5.0()1()1(   (13) 

where iΔ  is the maximum perturbation defined by the user. Special care must be 

taken that this disturbance does not produce solutions beyond the limits, which is 
illustrated in Figure 8. 

 

Fig. 8 Spread of the new solution with UM operator 
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Non Uniform Mutation (NUM). This operator was proposed by Michalewicz 
[12]. Here, the probability of creating a solution near the father is greater than the 
probability of creating an offspring away. The probability of create a solution 
close to the parent increases in each generation (t), 

)1)(( )/1()()()1()1( max
btt

i
L

i
U

ii rxxxy −−−+= τ  (14) 

In (14) τ  can take the -1 or 1 value, each one with a probability of 0.5. The 

parameter maxt is the allowed maximum number of generations, b  is a user 

defined parameter, in [12] the value 2=b  was used. 
 

Mäkinen, Periaux and Toivanen Mutation. This operator is also known as 

MPTM [13] is generated from points ),...,( 21
)1(

nxxxx +  and point  

),...,( 21
)1(

nyyyy + , which is created using (15) to (17), where ir  is a 

uniformly distributed random number where ]1,0[∈ir . Then the mutation is given 

using (15). 
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The parameter b  defined by the distribution of the mutation is also called the 
exponent of mutation. If 1=b , is a uniform mutation. 

4 NSGA-II 

The NSGA-II, Non Dominated Sorting Genetic Algorithm, is an improved version 
of the algorithm NSGA proposed by Srinivas and Deb [14]. This is a scheme for 
solving multiobjective optimization problems using the concept of non-dominance 
introduced by Goldberg [15], and a genetic algorithm to produce new solutions. 
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This algorithm is used to maintain diversity of the population in each non-

dominated frontier; for each individual, a density estimator named Crowding 
distance is applied. It is an average separation between two contiguous 
individuals; the extreme points of each front are assigned with an infinite distance. 
The pseudocode for this procedure is shown in algorithm 4. 
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5 MNSGA-II 

The MNSGA-II is an algorithm based in the NSGA-II structure with different 
sorting procedure, elite mechanism and genetic operators. The first step is to 
initialize a population of size 2N where N is the population size. Each individual is 
an array of real numbers of size k+m+2 as it is shown in Fig. 10; where k is the 
number of variables, m is the objective function and other two places for Pareto 
Rank (R), and Crowding Distance (d). The calculation of their objective values is 
realized in parallel form. 

The next step is to assign Pareto rank to each individual using the parallel 
sorting procedure executing the following steps. 

 
• Step 1. Sort all the solutions R in decreasing order of their first objective 

function (Si). 
• Step 2. Divide the population R in equal number of the parallel workers R1, 

R2…, RW. 
• Step 3. For each parallel worker, assign Pareto Rank to RW and return the 

subpopulation PW. 
• Step 4. Synchronize the workers and join the population P. 

 

Fig. 10 Encoding of individuals in a population 

The process of assigning the Pareto Rank is different from the NSGA-II, rather 
than separate the population in non-dominated fronts, each individual is assigned a 
Pareto Rank equal to their non-dominated fronts. In the MNSGA-II, the Pareto 
Rank is assigned separately to each subpopulation RW. The first step is to find the 
non-dominated set of RW using the Mishra fast algorithm, assigns Pareto Rank 1 to 
its set, add them to the new set PW and delete them from RW. For the new 
population RW, find the non-dominated set, assign Pareto Rank 2 to each 
individual of the non-dominated set, add this set to PW and delete it from RW;  this 
process continues until RW is an empty set.  
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In this algorithm, one of two strategies to archive truncation is applied. The first 
one choose the solutions with the best Pareto Rank; for these strategies, the first 
step is to sort P in ascendant order of their Rank, if any solutions of the first N has 
Pareto Rank greater than 1, delete the last N individual and assign the crowding 
distance. If this conditional is not satisfied, then preserve only the solutions with 
Rank 1 and compute the crowding distance. 

If the size of the population P is bigger than N, the second archive truncation 
strategy is applied. For this strategy, a crowding distance is assigned to each 
individual; then, sort P in decreasing order of their crowding distance and preserve 
only the best N solutions. This elitism strategy causes that if already found the N 
non-dominated set, and the algorithm is still running even more generations do not 
converge to a single point only generate more solutions along the Pareto frontier. 

For computing the crowding distance to the population P, each solution of 
Rank i, is moved to a new subset Fi. Sort each Fi in ascendant order of their first 
objective function, and assign infinite distance to the first and the last solutions.   
For the other solutions compute the average between adjacent solutions, 

m
j

m
j

m
j

m
j FFdd 11 −+ −+= ;  this process is iterative for each objective function. 

Applying the elitism strategy, we have N Parents P with the best Rank and/or 
crowding distance. With the crowding comparator, we choose the best solutions 
and move to the mating pool to generate new offspring solutions. 

The crowding comparator is a binary tournament that compares two solutions 
randomly selected from P, and the winner has the better Rank.  If the Rank is 
equal, the winner has the biggest crowding distance and move it to the mating 
pool B, this process continues until B have N solutions. 

To create new solutions, the crossover and mutation operators are executed in a 
parallel form with W workers at the same time. For this process, the mating pool B 
is a global memory, and each worker generates N=W offspring, and after this, they 
are synchronized to the offspring population Q. 

Each worker chooses two random solutions from B, after generate two random 
numbers c (crossover probability) and m (mutation probability), if p is bigger than 
the selected crossover probability the worker chooses other parents, else apply the 
crossover operator. If m is bigger than the mutation probability the new solution is 
added to the offspring population Q; else, the mutation operator is applied, and the 
new solution is added to the offspring population Q, this process continues until 
have N/W offspring. If some offspring is out of the variable boundaries, it is 
replaced for some parents. 

6 Results 

The MNSGA-II algorithm was tested with five functions; the first two were 
proposed by Schaffer SCH1, SCH 2 [16], equations (18) and (19). The other three 
functions were proposed by Zitzler [17]; they are known as ZDT1, ZDT2 and 
ZDT3 functions and defined by equations (20) to (22).  
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All these functions have two objectives to be minimized, and its borders are 
known as Pareto optimal.  
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Table 1 shows the results obtained by the algorithm MNSGA-II for the SCH1 
function using a population of 100 individuals and 10 generations. For all tests, we 
used the non-uniform mutation operator combined with different crossover 
operators (BLX-α, SBX, LX and LinX). The table shows the average of all 
individuals in the decision variable (x1), the minimum, maximum and average 
crowding distance. 
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Table 1 Results of the algorithm MNSGA-II for function SCH1 

  

x1 

BLX SBX LX LINX 

NUM 

Mean 1.02367404 1.01508669 0.99508727 1.03645464

Min -0.00069813 0.0093411 0.00771846 0

Max 2.00827094 1.99994377 1.99943546 1.996125

Crowding 0.12089923 0.12632004 0.12329614 0.12664984

 
For function SCH1, the Pareto optimality is in the interval ∈ [0,2]; Table 1,  

shows that any operator recombination, used in all the obtained solutions, are 
within this range, the crowding distance shows that all tests have similar 
distribution in the Pareto front. 

Table 2 shows the results obtained for different operators for the SCH2 
function,  and the NUM, RM and MPTM  mutation operator, considering that 
crossover operator BLX-α was used, a population of 100 individuals and 10 
generations. Pareto optimality is in ]5,4[]2,1[ ∈x ; for all the experiments, the  
results are within this range, and the separations of the solutions are similar.  Fig. 
11 shows the non-dominated set obtained after 10 generations using BLX-α and 
non-uniform mutation operators. MNSGA-II algorithm for functions SCH1 and 
SCH2 have rapid convergence, and the resulting solutions are close to Pareto 
optimality. 

Table 2 Results of the algorithm MNSGA-II for function SCH2 

  

x1 

NUM RM MPTM 

BLX-α 

Mean 2.044492032  2.154450159  2.043589034 

Min 0.998364469 0.998663251 1.001569329 

Max 4.982431601 4.999366373 4.995915783 

Crowding 0.329002044 0.322671774 0.327572686 

 
Table 3 shows the results obtained with the algorithm MNSGA-II for ZDT1 

problem using a population of 100 individuals, as this problem is more complex than 
the two discussed above algorithm, it was run for 200 generations. The Pareto optimal 

for this function occurs when ∈ [1,2] and 0* =ix  for i=2,3,..,30, to analyze the 

results, variables x2 to x30 are shown in the same column; in each row, the average of 
all the minimum values, maximum and average crowding distance are shown. 

For this function using the BLX-0.5, combined with any of the three mutation 
operators, solutions close to the true Pareto optimal were obtained. With the SBX 
operator, only in combination with the non-uniform mutation operator (NUM) 
good results were obtained. For the Laplace crossover operator (LX), using it with 
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random mutation operators (RM) and Mäkinen, Periaux and Toivanen (MPTM), 
were not obtained good results. With linear crossover operator (LinX) and all 
mutation operators, good results were obtained. Fig. 12 shows that using the 
Laplace crossover operator and non-uniform mutation operator the best result was 
obtained. The worst result was achieved using the Laplace operator with the RM. 

 

Fig. 11 Solution of the problem SCH2 using BLX-0.5 and NUM operators 

 

Fig. 12 Best and worst solutions of the problem ZDT1 using MNSGA-II algorithm 

The analysis of the results obtained for the ZDT2 problem is shown in Table 4, 
the format presented is the same as for ZDT2 function. The Pareto optimal for this 
not convex function is ∈ [1,2]  and 0* =ix  for i=2,3,..,30. The algorithm was 

run for each experiment 200 generations with a population of 100 individuals. 
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Table 3 Results of the algorithm MNSGA-II for function ZDT1 

  

NUM RM MPTM 

X1 X2-30 X1 X2-30 X1 X2-30 

BLX 

Mean 0.4339473 0.00690591 0.42883798 0.01570027 0.42200358 0.00735316

Min 7.8297E-06 0.00113467 0 0.00099613 1.7811E-05 0.00101034

Max 0.99897266 0.02097337 0.99316471 0.46624688 0.99964575 0.02511185

Crowding 0.03042085 0 0.03173915 0 0.03088147 0
                

SBX 

Mean 0.50126557 0.00874785 0.45659 0.23042746 0.4802173 0.33604821

Min 0 0 0 0.00539689 0 0.09194388

Max 0.99999376 0.04601851 0.99969187 0.84533201 0.99959848 0.69220241

Crowding 0.03686594 0 0.02695703 0 0.02325005 0
                

LX 

Mean 0.41278814 0.00101626 0.46800612 0.4064682 0.49739841 0.38528937

Min 0 0 0 0.02727913 4.0914E-06 0.14511811

Max 0.99959856 0.00493435 0.99506886 0.9248732 0.99594635 0.78231683

Crowding 0.0335355 0 0.02726643 0 0.02549761 0
                

LX 

Mean 0.39255204 0.00106852 0.4165725 0.00134428 0.42498091 0.00120388
Min 0 0 0 0 0 0

Max 0.9936501 0.01089806 0.99999953 0.01006621 0.99982034 0.013028

Crowding 0.03114298 0 0.03151869 0 0.03167497 0

 

Fig. 13 Best and worst solutions of the problem ZDT2 using MNSGA-II algorithm 

The best result for the problem ZDT2 is achieved using linear crossover 
operator and non uniform mutation. Laplace operator combined with random 
mutation is the worst, see Fig.13. For this problem, the best results were obtained  
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Table 4 Results of the algorithm MNSGA-II for function ZDT2 

  

NUM RM MPTM 

X1 X2-30 X1 X2-30 X1 X2-30 

BLX 

Mean 0.5981419 0.00392449 0.57187174 0.01209529 0.55150488 0.00990163 

Min 0.00016666 0.00024646 0 0.00045374 0 0.00056134 

Max 0.99935171 0.01411728 0.99848268 0.51312742 0.9942452 0.35321205 

Crowding 0.02975808 0 0.03054849 0 0.02996389 0 

                

SBX 

Mean 0.54964984 0.16408595 0.54773128 0.25473612 0.5236946 0.26904922 

Min 0.00022273 0.08708248 0.00012835 0.0818626 7.5804E-06 0.16226497 

Max 0.99959916 0.25942415 0.99908381 0.53855168 0.99952305 0.43568235 

Crowding 0.01869885 0 0.01850633 0 0.01730054 0 

                

LX 

Mean 0.51527241 0.24490449 0.486541 0.40772558 0.50735896 0.28952409 

Min 0 0.15979978 0 0.05219498 0.00011129 0.15755669 

Max 0.99812493 0.66417564 0.99879269 0.88404645 0.99466544 0.69930188 

Crowding 0.01884936 0 0.0203338 0 0.01926876 0 

                

LINX 

Mean 0.55578411 0.00083943 0.59212062 0.0045958 0.57124406 0.00458354 

Min 0 0 0 0 0 0 

Max 0.9991459 0.00478766 0.99827288 0.39116457 0.99996375 0.22249817 

Crowding 0.03111558 0 0.03105473 0 0.03238907 0 

 
with the combination of the BLX operator with any of the three mutation 
operators. With the simulated crossover binary and Laplace mutation operators, 
results were far from the true Pareto optimal. 

For the multi-objective optimization problem ZDT3, the results are shown in 
Table 5; this function has the Pareto optimal 0* =ix  for i=2,3,..,30 and some 

values in the range 00 *
1 ≤≤ x  which causes a discontinuous Pareto optimal 

region. This discontinuity causes that the convergence to the optimal is difficult; 
for this reason, each experiment was run for 300 iterations with 100 individuals in 
the population. For this function, the best results were obtained with the linear 
crossing operator and closer to the Pareto optimal frontier was combined with 
non-uniform mutation, see Fig 14. With the BLX, we obtained good results using 
any of the three mutation carriers. With the Laplace and simulated binary 
crossover operators, results were far from the Pareto optimal frontier. 
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Fig. 14 Best and worst solutions of the problem ZDT3 using MNSGA-II algorithm 

Table 5 Results of the algorithm MNSGA-II for function ZDT2 

  

NUM RM MPTM 

X1 X2-30 X1 X2-30 X1 X2-30 

BLX 

Mean 0.42570259 0.01228299 0.40358189 0.02659435 0.39185833 0.01808241 

Min 3.1506E-05 0.00206034 0 0.00691783 0 0.00119918 

Max 0.85452111 0.04154692 0.85230299 0.6657291 0.8531614 0.43645557 

Crowding 0.04619395 0 0.04565728 0 0.04625058 0 

                

SBX 

Mean 0.35315376 0.25562093 0.34343446 0.33213008 0.34237021 0.29840395 

Min 8.4748E-06 0.03394595 0 0.06226514 5.7935E-05 0.11630487 

Max 0.851223 0.65050606 0.8497918 0.81487461 0.85213701 0.52063588 

Crowding 0.02803276 0 0.02681256 0 0.02732888 0 

                

LX 

Mean 0.34810305 0.25239654 0.36111901 0.35738852 0.37908293 0.3742102 

Min 0 0.19787363 0 0.27278216 2.3712E-06 0.06594863 

Max 0.84875631 0.64973904 0.85324118 0.69013451 0.85176722 0.81087185 

Crowding 0.03066285 0 0.02837957 0 0.02859414 0 

                

LINX 

Mean 0.3956875 0.00170911 0.41892444 0.00185217 0.41556922 0.00236408 

Min 0 0 0 0 0 0 

Max 0.8527739 0.01171929 0.85189492 0.01567379 0.85211903 0.0235468 

Crowding 0.0482462 0 0.04695875 0 0.04802958 0 



340 J. Domínguez, O. Montiel-Ross, and R. Sepúlveda
 

7 Conclusions 

The MNSGA-II is an improved version of the NSGA-II because it handles elitism 
in two different ways. The first way is selecting the best Pareto ranks, from which 
a mating pool is generated to obtain the parents using tournament selection to 
generate the offsprings. The second way applies when we have N non-dominated 
individuals, for which we select the individuals with the best crowding distance. 

The used elitism strategy is an improvement to the algorithm NSGA-II, because 
the area of MOOEA has been given great importance to the spread of solutions in 
the Pareto optimal front. Being the only stop criterion the number of generations; 
if the algorithm is iterated for more generations needed to reach the Pareto 
frontier, the only thing that will occur is an improvement of the spread. 

The proposed scheme for applying genetic operators in parallel can be used for 
any genetic algorithm, the suggestion to use shared memory allows maintaining 
the diversity of the population, but this strategy only works if parallelization is 
used for large granularity. 

In this work we have presented a comparative analysis of the MNSGA-II using 
different crossover and mutation operator. The successful of the different 
combinations depends on the problem; therefore, all the operators can work for the 
MNSGA-II being difficult to choose one for a big diversity of applications. 
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