
S.C. Satapathy et al. (Eds.): Proc. of Int. Conf. on Front. of Intell. Comput., AISC 199, pp. 189–196.
DOI: 10.1007/978-3-642-35314-7_22 © Springer-Verlag Berlin Heidelberg 2013

Automatic Clustering Based on Cluster Nearest Neighbor
Distance (CNND) Algorithm

Arghya Sur1, Aritra Chowdhury1, Jaydeep Ghosh Chowdhury1, and Swagatam Das2

1 Dept. of Electronics and Telecomunication Engg, Jadavpur University, Kolkata 700032, India
2 Electronics and Computer Sciences Unit, Indian Statistical Institute, Kolkata, India

{arghyasur1991,jaydeep197}@gmail.com, arit0001@yahoo.co.in,
swagatam.das@isical.ac.in

Abstract. This article describes a simple and fast algorithm that can
automatically detect any number of well separated clusters, which may be of
any shape e.g. convex and/or non-convex. This is in contrast to most of the
existing clustering algorithms that assume a value for the number of clusters
and/or a particular cluster structure. This algorithm is based on the principle that
there is a definite threshold in the intra-cluster distances between nearest
neighbors in the same cluster. Promising results on both real and artificial
datasets have been included to show the effectiveness of the proposed
technique.

Keywords: Cluster nearest Neighbour, Clustering, Automatic Clustering,
Various shaped clusters.

1 Introduction

Clustering is the process, by which a set of objects are partitioned into a number of
groups, such that the similarity between objects of the same group is maximum and
that between objects belonging to different groups are minimum. This measure of
similarity is defined mathematically and, the objects are assigned to these groups,
known as ‘clusters’ based on this measure. In the past few decades, cluster analysis
has played a central role in diverse domains of science and engineering [1].

An important consideration with clustering algorihms is to determine the
appropriate number of clusters from a given dataset, where the number of groups in
the dataset is unknown apriori. In many clustering algorithms, this number is
specified by the user, and accordingly the algorithms partition the dataset. It is a
challenge to find the optimal number of clusters automatically.

Clustering algorithms can be hierarchical or partitional [2]. Hierarchical clustering
algorithms recursively find nested clusters either in agglomerative mode (starting with
each data point in its own cluster and merging the most similar pair of clusters
successively to form a cluster hierarchy) or in divisive (topdown) mode (starting with
all the data points in one cluster and recursively dividing each cluster into smaller
clusters). Partitional clustering algorithms, on the other hand, attempts to partition the
data set directly into a set of disjoint clusters by trying to optimize certain criteria (e.g.
a squared-error function).

190 A. Sur et al.

Centroid based clustering algorithms are a class of partitional algorithms , such as
K-means and fuzzy c-means. These algorithms attempt to iteratively find cluster
centers and assign points to one of the centers. Even though K-means was first
proposed over 50 years ago, it is still one of the most widely used algorithms for
clustering. They require the number of clusters beforehand and hence are non-
automatic. Also, they only detect spherical and similar sized clusters accurately due to
the “uniform effect” [3].

In this article, we propose a simple and fast algorithm to automatically detect the
appropriate number of clusters from an unlabelled dataset. The algorithm performs
equally well towards both hyper-spherical shaped clusters and shell-type or solid
clusters of any arbitrary shape. This algorithm is based on the principle that there is a
definite threshold in the intra-cluster distances between nearest neighbors in the same
cluster. Using this threshold, we can group together objects in the dataset which have
their cluster nearest neighbor distance less than the threshold.

2 Proposed Algorithm

In this algorithm, we use the Euclidean Distance as distance measure. The basic idea
is that, if a subset of points in the dataset belongs to the same cluster, then, if the
nearest neighbor of that subset in the set of remaining un-clustered data points (points
which have not been assigned to any cluster as yet) is not in that cluster, the cluster
consists only of that subset of points and nothing else. Nearest neighbor of a set S’ in
a set S is defined as the point in S-S’, whose distance from its nearest neighbor in S’
is minimum. When S’ is the current cluster, and S is the set of remaining un-clustered
data points, we call this point as the cluster nearest neighbor (CNN) and the distance
as, cluster nearest neighbor distance (ܿ݊݊_݀݅ݐݏ). This algorithm runs iteratively over
all points in the dataset forming clusters along the way.

First, an initial starting point in a new cluster C is randomly initialized in the set of
remaining un-clustered data points. Let this set be denoted by S_REM. Then the
nearest neighbor of that point in S_REM is calculated using a standard nearest
neighbor search algorithm like k-d tree [4] and kNN search. Here, we have used kNN
search algorithm for this purpose. Thus, the current cluster C consists of these two
points now. Then, iteratively, we find the CNN of C and determine if the CNN should
be in C or not. The cluster completes when either the CNN is found not to belong in
C, or when S_REM becomes empty. The condition to determine if CNN should
belong to C depends on the number of points in C (݈ܿݏݑ_݈݁݊) and a threshold. Let
POP be the set of all points in the dataset and min _݈݁݊ be the minimum number of
elements that must always be present in a cluster. Then the following conditions
determine if CNN of C belongs to C.

Cond1: If ݈݁݊݃ݐℎሺܥሻ ൏ൌ ݉݅݊_݈݁݊,
CNN should belong to C, if nearest neighbor distance of C in POP-C is equal
to ܿ݊݊_݀݅ݐݏ. Else, get the cluster C’, which contains the nearest neighbor of
C in POP-C.

Automatic Clustering Based on Cluster Nearest Neighbor Distance (CNND) Algorithm 191

Cond2: Else,
CNN should belong to C, if ܿ݊݊_݀݅ݐݏ ൏ൌ ݈݀݋ℎݏ݁ݎℎݐ כ ݉݁ܽ݊ሺܦሻ, where D
is the set of ܿ݊݊_݀݅ݐݏ of all previous points in the current cluster and
threshold is a parameter initialized externally. For our experiments, we have
initialized ݐℎݏ݁ݎℎ݈݀݋ ൌ 1.2.

The complete algorithm is as follows:

1. Initialize ݉݅݊_݈݁݊=݈ܿ݁݅(1% ݐ݈݃݊݁ ݂݋ℎ(݌݋݌)) where, ݈݁݊݃ݐℎሺܵሻ is the number of
elements in set S. Ceil function gives the smallest integer greater than or equal to
the argument.

2. Initialize ݅ ൌ 1.
3. Initialize a starting point for the ݅௧௛ cluster ܥ௜. This can be done randomly from

S_REM. Initialize ܦ ൌ .׎
4. Remove that point from S_REM.
5. If S_REM not equal to ׎, Find CNN and ܿ݊݊_݀݅ݐݏ of ܥ௜. Else, stop.
6. Take ܥ ൌ ௜ and determine if CNN of C should belong to C according toܥ

conditions Cond1 and Cond2.
7. If ݈݁݊݃ݐℎሺܥሻ ൏ൌ ݉݅݊_݈݁݊ and CNN shouldn’t belong to C, merge C’ and C and

let the merged cluster be C. This is to ensure that no fewer than ݉݅݊_݈݁݊ elements
exist in a cluster.

8. If CNN shouldn’t belong to C, set ݉݅݊_݈݁݊ ൌ ݈ܿ݁݅ሺ1% ݐ݈݃݊݁ ݂݋ℎሺܥሻሻ. Go to step
9. Else, set ܥ ൌ ܥ ׫ ሼܰܰܥሽ. Set ܥ௜ ൌ .Go to step 5 .ܥ

9. Set ݅ ൌ ݅ ൅ 1. Adapt threshold by the formula ݐℎݏ݁ݎℎ݈݀݋௜ ൌ ݉݁ܽ݊ሺܶ, ,ሻݐݏ݅݀_݊݊ܿ
where T is the set of ݐℎݏ݁ݎℎ݈݋ ௝݀, ݆ ൌ ݅ ݋ݐ 1 െ 1. If ݈݁݊݃ݐℎሺܵ_ܴܯܧሻ ൐ 0 , go to
step 3. Else, go to step 5.

3 Experimental Results

3.1 Datasets

• Artificial Datasets:
i. Dataset1: This dataset consists of 788 points as represented Fig. 1(a). There

are a total of 7 groups in the population of varying shapes and size.
ii. Dataset2: This spiral dataset consists of 312 points as represented Fig. 1(b).

There are 3 groups in the population.
iii. Dataset3: This is a dataset consisting of 240 points spread over two groups

as shown in Fig. 1(c).
iv. Dataset4: This is a dataset with 1000 points with two clusters- an ellipse and

a circle of different radii. This is shown in Fig. 1(d).
v. Dataset5: This is a 3-d dataset with 500 points. There are two groups, one, a

shell-shaped cluster and another, a vertical ellipsoid. The 3d representation is
shown in Fig. 1(e).

192 A. Sur et al.

• Real life Datasets: These 3 real-life datasets are obtained from [5].
i. Wine Dataset: The Wine recognition dataset consists of 178 instances having

13 features obtained from a chemical analysis of wines. The wines were
grown in the same region in Italy but were derived from three different
cultivars. The analysis determined the quantities of 13 constituents found in
each of the three types of wines.

ii. Iris Dataset: This dataset consists of 150 points equally distributed over 3
groups, viz. Setosa, Versicolor and Virginica. It is represented by 4 feature
values. Versicolor and Virginica overlap while Setosa can be linearly
separated.

iii. LiverDisorder: This dataset consists of 345 instances with each having six
features. There are 2 groups in the dataset.

The artificial datasets are shown in figure 1(a) to (e). Datasets 1-4 are 2-d while
Dataset5 is a 3-d dataset.

 (a) (b)

 (c) (d)

Fig. 1. (a)Dataset1 (b)Dataset2 (c)Dataset3 (d)Dataset4 (e)Dataset5

Automatic Clustering Based on Cluster Nearest Neighbor Distance (CNND) Algorithm 193

(e)

Fig. 1. (continued)

3.2 Results

This section compares the performance of the proposed clustering algorithm with a
few standard clustering algorithms like k-means [6], fuzzy C-means [7] and
Hierarchical Agglomerative Clustering. The contestant algorithms were mostly non-
automatic. K-means and fuzzy c-means require the number of clusters beforehand
while hierarchical clustering requires the maximum number of possible clusters. The
figures 2(a)-(e) are the clustered representations of the figures 1(a)-(e) obtained by
CNND clustering algorithm. These sets of data are used in order to represent all kinds
of data adequately.

(a) (b)

Fig. 2. (a) Clustered Representation of Dataset1 (b) Clustered Representation of Dataset2 (c)
Clustered Representation of Dataset3 (d) Clustered Representation of Dataset4 (e) Clustered
Representation of Dataset5

194 A. Sur et al.

 (c) (d)

(e)

Fig. 2. (continued)

3.3 Minkowski Score

If T is the “true” solution and S is the solution obtained experimentally, then the
Minkowski score [8] is defined as,

,ሺܶܵܯ ܵሻ ൌ ට௡బభା௡భబ௡భభା௡భబ , (1)

where, n01 represents the number of pairs of elements that are in the same cluster only
in S, n10 represents the number of pairs of elements that are in the same cluster only in
T and n11 represents the number of pairs of elements that are in the same cluster in
both S and T.

The minkowski scores of the datasets obtained for four algorithms are shown in
Table 1. The actual no. of clusters (AC) versus the obtained number of clusters (OC)
in CNND algorithm is shown in Table 2. All other algorithms, being non-automatic,
AC and OC are same trivially.

Automatic Clustering Based on Cluster Nearest Neighbor Distance (CNND) Algorithm 195

Table 1. Minkowski Scores of all the experimental datasets

Data Set
CNND

clustering
K-means

Fuzzy C-
means

Hiererchical

Dataset1 0.3567 0.6561 0.6129 0.5859
Dataset2 0 1.16 1.16 0
Dataset3 0 0.7142 0.6913 0.9259
Dataset4 0 0.218 0.2512 1
Dataset5 0 1 1 0

Wine Dataset 0.5844 0.9124 0.9255 1.373
Iris Dataset 0.5309 0.6047 0.6047 0.8241

Liver
Disorder

0.9786 0.9846 0.9891 0.9786

Table 2. Number of actual clusters(AC) vs Number of obtained Clusters(OC) for CNND
Algorithm

Data Set AC OC

Dataset1 7 8
Dataset2 3 3
Dataset3 2 2
Dataset4 2 2
Dataset5 2 2

Wine Dataset 3 3
Iris Dataset 3 4

Liver Disorder 2 2

4 Conclusion

From Table 1, we can see that CNND algorithm beats all the other clustering
algorithms in terms of minkowski score. Also, Minkowski score of 0 obtained in 4 out
of 5 artificial datasets clearly show that this algorithm is robust towards different
cluster shapes and sizes, whereas k-means and fuzzy c-means give good results only
in case of spherical clusters of nearly equal sizes. Hierarchical clustering is also
robust towards different shaped clusters but in closely spaced or semi-overlapping
clusters, it fails to give good clustering results. In this area too, however, our CNND
algorithm shows quite promising results. Table 2 shows that it also finds the
appropriate number of clusters in a dataset with a good accuracy. However in
completely overlapped clusters, this algorithm will fail to give accurate results
because it depends on finding the boundary between two clusters.

196 A. Sur et al.

References

[1] Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs
(1988)

[2] Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing
Surveys 31(3), 264–323 (1999)

[3] Xiong, H., Wu, J.J., Chen, J.: K-means clustering versus validation measures: A data-
distribution perspective. IEEE Trans. Systems, Man, and Cybernetics-Part B:
Cybernetics 39(2), 318–331 (2009)

[4] Saha, S., Bandyopadhyay, S.: A symmetry based multiobjective clustering technique for
automatic evolution of clusters. Pattern Recognition 43, 738–751 (2010)

[5] Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California,
School of Information and Computer Science, Irvine, CA (2010),
http://archive.ics.uci.edu/ml

[6] Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognition Lett. (2009),
doi:10.1016/j.patrec.2009.09.011

[7] Cannon, R.L., Dave, J.V., Bezdek, J.C.: Efficient implementation of the fuzzy c-means
clustering algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence PAMI-8,
248–255 (1986)

[8] Ben-Hur, A., Guyon, I.: Detecting Stable Clusters Using Principal Component Analysis in
Methods of Molecular Biology. Humana Press (2003)

	Automatic Clustering Based on Cluster Nearest Neighbor
Distance (CNND) Algorithm
	Introduction
	Proposed Algorithm
	Experimental Results
	Conclusion
	References

