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Abstract. This article describes a simple and fast algorithm that can 
automatically detect any number of well separated clusters, which may be of 
any shape e.g. convex and/or non-convex. This is in contrast to most of the 
existing clustering algorithms that assume a value for the number of clusters 
and/or a particular cluster structure. This algorithm is based on the principle that 
there is a definite threshold in the intra-cluster distances between nearest 
neighbors in the same cluster. Promising results on both real and artificial 
datasets have been included to show the effectiveness of the proposed 
technique. 
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1 Introduction 

Clustering is the process, by which a set of objects are partitioned into a number of 
groups, such that the similarity between objects of the same group is maximum and 
that between objects belonging to different groups are minimum. This measure of 
similarity is defined mathematically and, the objects are assigned to these groups, 
known as ‘clusters’ based on this measure. In the past few decades, cluster analysis 
has played a central role in diverse domains of science and engineering [1]. 

An important consideration with clustering algorihms is to determine the 
appropriate number of clusters from a given dataset, where the number of groups in 
the dataset is unknown apriori. In many clustering algorithms, this number is 
specified by the user, and accordingly the algorithms partition the dataset. It is a 
challenge to find the optimal number of clusters automatically. 

Clustering algorithms can be hierarchical or partitional [2]. Hierarchical clustering 
algorithms recursively find nested clusters either in agglomerative mode (starting with 
each data point in its own cluster and merging the most similar pair of clusters 
successively to form a cluster hierarchy) or in divisive (topdown) mode (starting with 
all the data points in one cluster and recursively dividing each cluster into smaller 
clusters). Partitional clustering algorithms, on the other hand, attempts to partition the 
data set directly into a set of disjoint clusters by trying to optimize certain criteria (e.g. 
a squared-error function). 
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Centroid based clustering algorithms are a class of partitional algorithms , such as 
K-means and fuzzy c-means. These algorithms attempt to iteratively find cluster 
centers and assign points to one of the centers. Even though K-means was first 
proposed over 50 years ago, it is still one of the most widely used algorithms for 
clustering. They require the number of clusters beforehand and hence are non-
automatic. Also, they only detect spherical and similar sized clusters accurately due to 
the “uniform effect” [3]. 

In this article, we propose a simple and fast algorithm to automatically detect the 
appropriate number of clusters from an unlabelled dataset. The algorithm performs 
equally well towards both hyper-spherical shaped clusters and shell-type or solid 
clusters of any arbitrary shape. This algorithm is based on the principle that there is a 
definite threshold in the intra-cluster distances between nearest neighbors in the same 
cluster. Using this threshold, we can group together objects in the dataset which have 
their cluster nearest neighbor distance less than the threshold. 

2 Proposed Algorithm 

In this algorithm, we use the Euclidean Distance as distance measure. The basic idea 
is that, if a subset of points in the dataset belongs to the same cluster, then, if the 
nearest neighbor of that subset in the set of remaining un-clustered data points (points 
which have not been assigned to any cluster as yet) is not in that cluster, the cluster 
consists only of that subset of points and nothing else. Nearest neighbor of a set S’ in 
a set S is defined as the point in S-S’, whose distance from its nearest neighbor in S’ 
is minimum. When S’ is the current cluster, and S is the set of remaining un-clustered 
data points, we call this point as the cluster nearest neighbor (CNN) and the distance 
as, cluster nearest neighbor distance (ܿ݊݊_݀݅ݐݏ). This algorithm runs iteratively over 
all points in the dataset forming clusters along the way. 

First, an initial starting point in a new cluster C is randomly initialized in the set of 
remaining un-clustered data points. Let this set be denoted by S_REM. Then the 
nearest neighbor of that point in S_REM is calculated using a standard nearest 
neighbor search algorithm like k-d tree [4] and kNN search. Here, we have used kNN 
search algorithm for this purpose. Thus, the current cluster C consists of these two 
points now. Then, iteratively, we find the CNN of C and determine if the CNN should 
be in C or not. The cluster completes when either the CNN is found not to belong in 
C, or when S_REM becomes empty. The condition to determine if CNN should 
belong to C depends on the number of points in C (݈ܿݏݑ_݈݁݊) and a threshold. Let 
POP be the set of all points in the dataset and min _݈݁݊ be the minimum number of 
elements that must always be present in a cluster. Then the following conditions 
determine if CNN of C belongs to C. 

Cond1: If ݈݁݊݃ݐℎሺܥሻ ൏ൌ ݉݅݊_݈݁݊, 
CNN should belong to C, if nearest neighbor distance of C in POP-C is equal 
to ܿ݊݊_݀݅ݐݏ. Else, get the cluster C’, which contains the nearest neighbor of 
C in POP-C. 
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Cond2: Else,  
CNN should belong to C, if ܿ݊݊_݀݅ݐݏ ൏ൌ ݈݀݋ℎݏ݁ݎℎݐ כ ݉݁ܽ݊ሺܦሻ, where D 
is the set of ܿ݊݊_݀݅ݐݏ of all previous points in the current cluster and 
threshold is a parameter initialized externally. For our experiments, we have 
initialized ݐℎݏ݁ݎℎ݈݀݋ ൌ 1.2. 

The complete algorithm is as follows: 

1. Initialize ݉݅݊_݈݁݊=݈ܿ݁݅(1% ݐ݈݃݊݁ ݂݋ℎ(݌݋݌)) where, ݈݁݊݃ݐℎሺܵሻ is the number of 
elements in set S. Ceil function gives the smallest integer greater than or equal to 
the argument. 

2. Initialize ݅ ൌ 1. 
3. Initialize a starting point for the ݅௧௛  cluster ܥ௜. This can be done randomly from 

S_REM. Initialize ܦ ൌ  .׎
4. Remove that point from S_REM. 
5. If S_REM not equal to ׎, Find CNN and ܿ݊݊_݀݅ݐݏ of ܥ௜. Else, stop. 
6. Take ܥ ൌ  ௜ and determine if CNN of C should belong to C according toܥ

conditions Cond1 and Cond2. 
7. If ݈݁݊݃ݐℎሺܥሻ ൏ൌ ݉݅݊_݈݁݊ and CNN shouldn’t belong to C, merge C’ and C and 

let the merged cluster be C. This is to ensure that no fewer than ݉݅݊_݈݁݊ elements 
exist in a cluster.  

8. If CNN shouldn’t belong to C, set ݉݅݊_݈݁݊ ൌ ݈ܿ݁݅ሺ1% ݐ݈݃݊݁ ݂݋ℎሺܥሻሻ. Go to step 
9. Else, set ܥ ൌ ܥ ׫ ሼܰܰܥሽ. Set ܥ௜ ൌ  .Go to step 5 .ܥ

9. Set ݅ ൌ ݅ ൅ 1. Adapt threshold by the formula ݐℎݏ݁ݎℎ݈݀݋௜ ൌ ݉݁ܽ݊ሺܶ,  ,ሻݐݏ݅݀_݊݊ܿ
where T is the set of ݐℎݏ݁ݎℎ݈݋ ௝݀, ݆ ൌ ݅ ݋ݐ 1 െ 1. If ݈݁݊݃ݐℎሺܵ_ܴܯܧሻ ൐ 0 , go to 
step 3. Else, go to step 5. 

3 Experimental Results 

3.1 Datasets 

• Artificial Datasets: 
i. Dataset1: This dataset consists of 788 points as represented Fig. 1(a). There 

are a total of 7 groups in the population of varying shapes and size. 
ii. Dataset2: This spiral dataset consists of 312 points as represented Fig. 1(b). 

There are 3 groups in the population.  
iii. Dataset3: This is a dataset consisting of 240 points spread over two groups 

as shown in Fig. 1(c). 
iv. Dataset4: This is a dataset with 1000 points with two clusters- an ellipse and 

a circle of different radii. This is shown in Fig. 1(d). 
v. Dataset5: This is a 3-d dataset with 500 points. There are two groups, one, a 

shell-shaped cluster and another, a vertical ellipsoid. The 3d representation is 
shown in Fig. 1(e). 
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• Real life Datasets: These 3 real-life datasets are obtained from [5]. 
i. Wine Dataset: The Wine recognition dataset consists of 178 instances having 

13 features obtained from a chemical analysis of wines. The wines were 
grown in the same region in Italy but were derived from three different 
cultivars. The analysis determined the quantities of 13 constituents found in 
each of the three types of wines. 

ii. Iris Dataset: This dataset consists of 150 points equally distributed over 3 
groups, viz. Setosa, Versicolor and Virginica. It is represented by 4 feature 
values. Versicolor and Virginica overlap while Setosa can be linearly 
separated. 

iii. LiverDisorder: This dataset consists of 345 instances with each having six 
features. There are 2 groups in the dataset. 

The artificial datasets are shown in figure 1(a) to (e). Datasets 1-4 are 2-d while 
Dataset5 is a 3-d dataset. 

  

                 (a)             (b)  

  

                               (c)                                    (d)  

Fig. 1. (a)Dataset1 (b)Dataset2 (c)Dataset3 (d)Dataset4 (e)Dataset5 

 



Automatic Clustering Based on Cluster Nearest Neighbor Distance (CNND) Algorithm 193 

 

(e)  

Fig. 1. (continued) 

3.2 Results 

This section compares the performance of the proposed clustering algorithm with a 
few standard clustering algorithms like k-means [6], fuzzy C-means [7] and 
Hierarchical Agglomerative Clustering. The contestant algorithms were mostly non-
automatic. K-means and fuzzy c-means require the number of clusters beforehand 
while hierarchical clustering requires the maximum number of possible clusters. The 
figures 2(a)-(e) are the clustered representations of the figures 1(a)-(e) obtained by 
CNND clustering algorithm. These sets of data are used in order to represent all kinds 
of data adequately. 

               

(a)                                                                    (b) 

Fig. 2. (a) Clustered Representation of Dataset1 (b) Clustered Representation of Dataset2 (c) 
Clustered Representation of Dataset3 (d) Clustered Representation of Dataset4 (e) Clustered 
Representation of Dataset5 
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 (c)             (d)  

 

(e)  

Fig. 2. (continued) 

3.3 Minkowski Score 

If T is the “true” solution and S is the solution obtained experimentally, then the 
Minkowski score [8] is defined as,  

,ሺܶܵܯ  ܵሻ ൌ ට௡బభା௡భబ௡భభା௡భబ , (1) 

where, n01 represents the number of pairs of elements that are in the same cluster only 
in S, n10 represents the number of pairs of elements that are in the same cluster only in 
T and n11 represents the number of pairs of elements that are in the same cluster in 
both S and T. 

The minkowski scores of the datasets obtained for four algorithms are shown in 
Table 1. The actual no. of clusters (AC) versus the obtained number of clusters (OC) 
in CNND algorithm is shown in Table 2. All other algorithms, being non-automatic, 
AC and OC are same trivially. 
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Table 1. Minkowski Scores of all the experimental datasets 

Data Set 
CNND 

clustering 
K-means 

Fuzzy C-
means 

Hiererchical 

Dataset1 0.3567 0.6561 0.6129 0.5859 
Dataset2 0 1.16 1.16 0 
Dataset3 0 0.7142 0.6913 0.9259 
Dataset4 0 0.218 0.2512 1 
Dataset5 0 1 1 0 

Wine Dataset 0.5844 0.9124 0.9255 1.373 
Iris Dataset 0.5309 0.6047 0.6047 0.8241 

Liver 
Disorder 

0.9786 0.9846 0.9891 0.9786 

Table 2. Number of actual clusters(AC) vs Number of obtained Clusters(OC) for CNND 
Algorithm 

Data Set AC OC  

Dataset1 7 8 
Dataset2 3 3 
Dataset3 2 2 
Dataset4 2 2 
Dataset5 2 2 

Wine Dataset 3 3 
Iris Dataset 3 4 

Liver Disorder 2 2 

4 Conclusion 

From Table 1, we can see that CNND algorithm beats all the other clustering 
algorithms in terms of minkowski score. Also, Minkowski score of 0 obtained in 4 out 
of 5 artificial datasets clearly show that this algorithm is robust towards different 
cluster shapes and sizes, whereas k-means and fuzzy c-means give good results only 
in case of spherical clusters of nearly equal sizes. Hierarchical clustering is also 
robust towards different shaped clusters but in closely spaced or semi-overlapping 
clusters, it fails to give good clustering results. In this area too, however, our CNND 
algorithm shows quite promising results. Table 2 shows that it also finds the 
appropriate number of clusters in a dataset with a good accuracy. However in 
completely overlapped clusters, this algorithm will fail to give accurate results 
because it depends on finding the boundary between two clusters.  
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