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Abstract. A gene is treated as a unit of heredity in a living organism. It
resides on a stretch of DNA. Gene Regulatory Network (GRN) is a net-
work of transcription dependency among genes of an organism. A GRN
can be inferred from microarray data either by unsupervised or by su-
pervised approach. It has been observed that supervised methods yields
more accurate result as compared to unsupervised methods. Supervised
methods require both positive and negative data for training. In Biolog-
ical literature only positive example is available as Biologist are unable
to state whether two genes are not interacting. A common adopted so-
lution is to consider a random subset of unlabeled example as negative.
Random selection may degrade the performance of the classifier. It is
usually expected that, when labeled data are limited, the learning per-
formance can be improved by exploiting unlabeled data. In this paper
we propose a novel approach to filter out reliable and strong negative
data from unlabeled data, so that a supervised model can be trained
properly. We tested this method for predicting regulation in E. Coli and
observed better result as compared to other unsupervised and supervised
methods. This method is based on the principle of dividing the whole
domain into gene clusters and then finds the best informative cluster for
further classification.

Keywords: Gene, Gene Regulatory Network, Unlabeled data, SVM,
K Means, Cluster, Transcription Factor.

1 Introduction

A gene is a unit of heredity of a living organism which resides on a stretch
of DNA. All living organism depend on genes, as they specify all proteins and
functional RNA chains. In other way a gene is ”a locatable region of genomic
sequence, corresponding to a unit of inheritance, which is associated with regu-
latory regions, transcribed regions, and other functional sequence regions”. Gene
regulatory networks (GRN) [1] explicitly represent the causality of developmen-
tal processes. They explain exactly how genomic sequence encodes the regulation
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of expression of the sets of genes that progressively generate developmental pat-
terns and execute the construction of multiple states of differentiation. These
are inhomogeneous compositions of different kinds of sub circuits, each perform-
ing a specific kind of function. This concept is important, because it holds the
key to network design principles. Better understanding of the complexity of in-
terdependencies among gene up and down regulation helps in inferring GRN.
Different model architectures to reverse engineer gene regulatory networks from
gene expression data have been proposed in literature [2]. These models repre-
sent biological regulations as a network genes, proteins etc and edges represents
the presence of interaction activities between such network components. Four
main network models based on unsupervised method can be distinguished: such
as information theory models, Boolean network models, Differential and differ-
ence equation model and Bayesian models. Information theory model correlates
two genes by means of a correlation coefficient and a threshold. Two genes are
predicted to interact if the correlation coefficient of their expression levels is
above a threshold. For example, TD-ARACNE [3], ARACNE [4] etc. infer the
network structure. Boolean network model uses a binary variable to represent
the state of a gene activity and a directed graph; here edges are represented by
boolean functions to represent the interactions between genes. For example RE-
VEAL [5] infers boolean network model from gene expression data. Differential
and difference equation [6] describes gene expression changes as a function of
the expression level of other genes. Bayesian model makes use of Bayes rules and
consider gene expressions as random variables. The major advantage is that the
Bayesian framework allows combining different types of data and prior knowledge
in gene networks inference [7]. Just like unsupervised method, recently different
supervised methods are also used to find the gene regulatory network. But in this
approach unlike unsupervised method, it requires not only gene expression data
but also a list of known regulation relationship. The following table lists some
of the supervised and unsupervised methods. The basic principle to predict new
regulations is: if a gene X having expression profile ep(X) is known to regulate
a gene Y with expression profile ep(Y), then all other couples of genes A and
B, having respectively expression profiles similar to ep(X) and ep(Y) are likely
to interact. Expression profiles are taken as the feature vectors in the machine
learning algorithm, while the result is a binary variable representing whether
two genes interact or not.

Table 1. Methods under Unsupervised and Supervised approach

Unsupervised Approach Supervised Approach

Information Theory Model Decision Tree

Boolean Networks SVM

Ordinary Differential Equation Neural Network
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It has been observed that supervised method give more accurate result as
compared to unsupervised methods. Supervised methods require both genes and
their complete linkage for their training. But in Biology literature only posi-
tive data is available as Biologist only able to tell which are interacting, i.e.
Biological databases lists only interacting genes, it does not provide any genes
information regarding non-interacting genes, which is a great challenge in finding
gene regulatory network through supervised approach.

2 Related Work

2.1 Gene Regulatory Networks

Selection of Reliable Negatives: In [8] the authors tried to predict non-
coding RNA genes, where the first set of negative examples is built by maximiz-
ing the distances of negative sample points to the known positive sample points
by using a distance metric built upon the RNA sequence. Such a negative set
is iteratively refined by using a binary classifier based on current positive and
negative examples until no further additional negative examples can be found.
In [9] they proposed a method applied to gene regulatory network, which selects
a reliable set of negatives by exploiting the known network topology.

Probability Estimate Correction: PosOnly method: In paper [10], the con-
ditional probabilities produced by a model trained on the labeled and unlabeled
examples differ by only a constant factor from the conditional probabilities pro-
duced by a model trained on fully labeled positive and negative examples. Such
result can be used to learn a probabilistic binary classifier, such as SVM (Sup-
port Vector Machine) with Platt scaling [11], using only positive and unlabeled
data.

PSEUDO-RANDOM Method: In paper [9], a gene interaction network is
modeled as a directed graph < G,E > where G represents the genes, and E
represents the set of directed interactions between genes. Let P be the known
gene-gene interactions in E, then Q = E - P the unknown regulatory links, and
N=Complement(E) the edges not contained in E. The unknown gene regulatory
connections Q can be inferred by a machine learning scheme trained with the
set of known regulatory connections. Precisely, P is the set of known positive
examples, N is the set of all unknown negative examples and Q is the set of
unknown positive examples. A selection of reliable negatives approach selects,
from the unlabeled setN∪S of unknown connections, a subset of reliable negative
examples S ∼= N and S ∩ Q which should be as much as possible composed of
negative examples, i.e. and . Such negative examples are used to improve the
training phase of a classifier. The PSEUDO-RANDOM method is built over the
assumption that a regulatory network has no or few cycles and that it has a tree
like structure. For complex eukaryote organisms such an assumption may not be
true as many complex cell functions are based on homeostasis and feedback loops.
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In contrast, for simpler including Escherichia coli and Saccharomyces cerevisiae,
such an assumption may be correct: there are unsupervised approaches, such as
ARACNE, that prune the final network by removing 3-arc cycles [3]. This leads
to an heuristic that selects as candidate negatives those given by the union of
the transitive closure of the known network and its transpose.
S = TC(P) ∪ Transpose (TC(P)) ∪ Transpose(P)

SIRENE: SIRENE (Supervised Inference of Regulatory Networks) [12] is a
method to infer gene regulatory networks on a genome scale from a compendium
of gene expression data. SIRENE differs from other approaches in that it requires
not only gene expression data, but also a list of known regulation relationships
both interacting and non-interacting. The authors used Support Vector Machine
algorithm for predicting gene regulatory network.

2.2 Text Mining

In traditional text classification, a classifier is built using labeled training docu-
ments of every class. In paper [13], Given a set P of documents of a particular
class (called positive class) and a set U of unlabeled documents that contains
documents from class P and also other types of documents , called negative class
documents, the authors build a classifier to classify the documents in U into doc-
uments from P and documents not from P. The key feature of the problem is
that there is no labeled negative document, which makes traditional text classi-
fication techniques inapplicable. In this paper, the author proposed an effective
technique to solve the problem. It combines the Rocchio method and the SVM
technique for classifier building. Experimental results show that this method
outperforms existing methods significantly.

3 Proposed Model

This is a general method for extracting strong reliable negative data for training
the supervised model. As it has been already discussed that, GRN can be inferred
from microarray data either by unsupervised or by supervised approach. It has
been observed that supervised methods yields more accurate result as compared
to unsupervised methods. Supervised methods require both positive and negative
data for training. In Biological literature only positive example is available as
Biologist are unable to state whether two genes are not interacting. A common
adopted solution is to consider a random subset of unlabeled example as negative.
Random selection may degrade the performance of the classifier. It is usually
expected that, when labeled data are limited, the learning performance can be
improved by exploiting unlabeled data. As shown in figure 2, p is the set of
known interactions and U is unknown (both interacting and non-interacting).
Traditionally, while training a supervised model, a random subset of U is taken
for negative data, which used to degrade the performance of the classifier as
while doing random selection some positive example from Q might be taken as
negative.
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3.1 Data

Fig. 1.

In our experiment, we used the expression and regulation data of E. Coli,
which is publicly available in [14]. The expression data consist of a compendium
of 445 E.coli microarray expressions profiles for 4345 genes. The microarrays
were collected under different experimental conditions such as growth phases,
antibiotics, different media, numerous genetic perturbations and varying oxygen
concentrations. The regulation data consist of 3293 experimentally confirmed
regulations between 154 TF and 1164 genes, extracted from the RegulonDB
database [15].

3.2 Algorithm

Step 1 Consider the available interacting genes as true positive (P ) and unlabeled
genes as U
Step 2 Apply K-Means on U to build k number of clusters (C1, C2, ...Ck)
Step 3 for i = 1 to k do
Step 3.1 Train model Mi with P and Ci

Step 3.2 Classify Ci itself with model Mi
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Step 3.3 P=Performance of Mi

Step 3.4 Delete Positive examples from Ci if any
Step 3.5 Train classifier Mi* with P and the remaining instances of Ci i.e. Ci*
Step 3.6 P*=Performance of Mi*
Step 3.7 Compare P and P*

Fig. 2.

3.3 Experimental Result

The experiment is performed on those Transcription Factors (TF) having more
than 50 interactions, such as crp (900), fis (1166), fnr (1218), himD (1451),
rpoD (2307) etc. where each TF is associated with an unique number. We run
the algorithm for each TF and observed that the performance of the classifier
after removing the supposed to be positive example is better than the classifier
taken earlier. It has been observed that irrespective of the number of cluster in K-
means , the correct rate of almost all cluster (after removing the +ve instances)
are better than the earlier model which has been shown in figure 3a. Figure 3b
shows the classifiers in the ROC space. The classifiers performances are measured
for both k=10 and k=15. And it has been observed that the performance is good
irrespective of the number of cluster. But we have shown the results only for
k=10. We have taken SVM [16] as the classifier for each cluster. The correct rate
of different TF is shown in Figure 4. a and b.

Fig. 3. a,b
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Fig. 4. a, b

4 Conclusion

Supervised methods always need a complete set of known regulatory networks i.e.
gene expression data and list of known regulation relationship both interacting
and non-interacting. But In Biology literature only positive examples are avail-
able, as Biologists do not have idea about the genes which are not interacting.
That means only positive examples are available. So a common adopted solution
is to consider all or a random subset of unlabeled example as negative, for the
training of a supervised model. But the random selection of false negatives could
affect the performance of the classifier, as it learns wrongly potentially positive
examples as negatives. Hence learning from positive and unlabeled data is a hot
topic. So instead of selecting a random subset from unlabeled data, the subset
of instances can be further processed to delete the potentially positive example
through clustering and classification. The instances left behind in the clusters
are the strong and reliable negative instances, which can be used for training a
supervised model. As supervised approach yields better result and can help in
finding the functions of unknown genes, identifying pathways, finding potential
target and managing patient’s health based on genomic sequence.
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