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2 Dipartimento di Ingegneria dell’Impresa, Università di Roma “Tor Vergata”, Italy
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Abstract. A network creation game simulates a decentralized and non-
cooperative building of a communication network. Informally, there are
n players sitting on the network nodes, which attempt to establish a
reciprocal communication by activating, incurring a certain cost, any
of their incident links. The goal of each player is to have all the other
nodes as close as possible in the resulting network, while buying as few
links as possible. According to this intuition, any model of the game
must then appropriately address a balance between these two conflicting
objectives. Motivated by the fact that a player might have a strong re-
quirement about its centrality in the network, in this paper we introduce
a new setting in which if a player maintains its (either maximum or av-
erage) distance to the other nodes within a given bound, then its cost is
simply equal to the number of activated edges, otherwise its cost is un-
bounded. We study the problem of understanding the structure of pure
Nash equilibria of the resulting games, that we call MaxBD and SumBD,
respectively. For both games, we show that when distance bounds asso-
ciated with players are non-uniform, then equilibria can be arbitrarily
bad. On the other hand, for MaxBD, we show that when nodes have a
uniform bound R on the maximum distance, then the Price of Anarchy

(PoA) is lower and upper bounded by 2 and O
(
n

1
�log3 R�+1

)
for R ≥ 3

(i.e., the PoA is constant as soon as R is Ω(nε), for some ε > 0), while for
the interesting case R = 2, we are able to prove that the PoA is Ω(

√
n)

and O(
√
n log n). For the uniform SumBD we obtain similar (asymptot-

ically) results, and moreover we show that the PoA becomes constant as

soon as the bound on the average distance is 2ω
(√

logn
)
.

1 Introduction

Communication networks are rapidly evolving towards a model in which the
constituting components (e.g., routers and links) are activated and maintained
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by different owners, which one can imagine as players sitting on the network
nodes. When these players act in a selfish way with the final intent of creating a
connected network, the challenge is exactly to understand whether the pursuit
of individual profit is compatible with the attainment of an equilibrium status
for the system (i.e., a status in which players are not willing to move from), and
how the social utility for the system as a whole is affected by the selfish behavior
of the players. While the former question is inherently game-theoretic and has
been originally addressed in [10] by the economists (for further references see
also Chapter 6 in [11]), the latter one involves also computational issues, since it
can be regarded as a comparison between the performances of an uncoordinated
distributed system as opposed to a centralized system which can optimally design
a solution. Not surprisingly then, this class of games, which we refer to as network
creation games (NCGs), received a significative attention also from the computer
science community, starting from the paper of Fabrikant et al. [9], where the main
computational aspects of a NCG have been initially formalized and investigated.
More precisely, in [9] the authors focused on an Internet-oriented NCG, defined
as follows: We are given a set of n players, say V , where the strategy space
of player v ∈ V is the power set 2V \{v}. Given a combination of strategies
S = (Sv)v∈V , let G(S) denote the underlying undirected graph whose node set
is V , and whose edge set is E(S) =

{
(v, v′) | v ∈ V ∧ v′ ∈ Sv

}
. Then, the cost

incurred by player v under S is

costv(S) = α · |Sv|+
∑

u∈V

dG(S)(u, v) (1)

where dG(S)(u, v) is the distance between nodes u and v in G(S). Thus, the cost
function implements the inherently antagonistic goals of a player, which on the
one hand attempts to buy as little edges as possible, and on the other hand aims
to be as close as possible to the other nodes in the outcoming network. These
two criteria are suitably balanced in (1) by making use of the parameter α ≥ 0.
Consequently, the Nash Equilibria1 (NE) space of the game is heavily influenced
by α, and the corresponding characterization must be given as a function of it.
The state-of-the-art for the Price of Anarchy (PoA) of the game, that we will call
henceforth SumNCG, is summarized in [15], where the most recent progresses
on the problem have been reported.

Further NCG models. A first natural variant of SumNCG was introduced in [7],
where the authors redefined the player cost function as follows

costv(S) = α · |Sv|+max{dG(S)(u, v) : u ∈ V }. (2)

This variant, named MaxNCG, received further attention in [15], where the au-
thors improved the PoA of the game on the whole range of values of α. However,
a criticism made to both the aforementioned models is that usage and building
cost are summed up together in the player’s cost, and this mixing is reflected

1 In this paper, we only focus on pure strategies Nash equilibria.
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in the social cost of the resulting network. As a consequence, we have that in
this game the PoA alone does not say so much about the structural properties
of the network, such as density, diameter, or routing cost. Moreover, they both
incorporate in the cost function the parameter α, which is in a sense artificially
introduced in order to suitably balance usage and building cost.

Thus, in an effort of addressing these critical issues, in [14] the authors pro-
posed an interesting variant in which a player v, when forming the network, has
a limited budget bv to establish links to other players. This way, the player cost
function restricts to the usage cost, namely either the maximum or the total dis-
tance to other nodes. For these bounded-budget versions of the game, that we call
MaxBB and SumBB, respectively, the authors in [14] showed that determining
the existence of a NE is NP-hard. On a positive side, they proved that for uniform
budgets, say k, both variants always admit a NE, and that its Price of Stability

(PoS) is Θ(1). Finally, they proved that the PoA of MaxBB is Ω
(

n
k logk n

)
and

O
(

n
logk n

)
, while the PoA of SumBB is Ω

(√
n

k logk n

)
, O

(√
n

logk n

)
. Notice that

in both MaxBB and SumBB, links are seen as directed. Thus, a natural exten-
sion of the model was given in [8], were the undirected case was considered. For
this, it was proven that both MaxBB and SumBB always admit a NE. More-
over, the authors showed that the PoA for MaxBB and SumBB is Ω(

√
logn)

and O(
√
n), respectively, while in the special case in which the budget is equal

to 1 for all the players, the PoA is O(1) for both versions of the game.
In all the above models it must be noticed that, as stated in [9], for a player

it is NP-hard to find a best response once that the other players’ strategies
are fixed. To circumvent this problem, in [4] the authors proposed a further
variant, called basic NCG (BNCG), in which given some existing network, the
only improving transformations allowed are edge swaps, i.e., a player can only
modify a single incident edge, by either replacing it with a new incident edge,
or by removing it. This naturally induces a weaker concept of equilibrium for
which a best response of a player can be computed in polynomial time. In this
setting, the authors were able to give, among other results, an upper bound of
2O(

√
logn) for the PoA of SumBNCG, and a lower bound of Ω(

√
n) for the PoA

of MaxBNCG. However, as pointed out in [15], the fact that now an edge has
not a specific owner, prevents the possibility to establish any implications on
the PoA of the classic NCG, since a NE in a BNCG is not necessarily a NE of
a NCG. Finally, another NCG model which is barely related to the NCG model
we study in this paper has been addressed in [6].

Our results. In this paper, we propose a new NCG variant that complements
the model proposed in [8]. More precisely, we assume that the cost function of
each player only consists of the number of bought edges (without any budget on
them), but with the additional constraint that each player v needs to stay within
a given (either maximum or average) distance, say (either Rv or Dv), from the
other players.

For this bounded-distance version of the NCG, we address the problem of
understanding the structure of the NE associated with the two variants of the
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game, that we denote by MaxBD and SumBD. In this respect, we first show
that both games can have an unbounded PoA as soon as players hold at least two
different distance bounds. Moreover, in both games, computing a best response
for a player is NP-hard. These bad news are counterbalanced by the positive
results we get for uniform distance bounds. In this case, first of all, the PoS for
MaxBD is equal to 1, while for SumBD it is at most 2. Then, as far as the PoA
is concerned, let R and D denote the uniform bound on the maximum and the
average distance, respectively. We show that

(i) for MaxBD, the PoA is lower and upper bounded by 2 and O
(
n

1
�log3 R�+1

)

for R ≥ 3, respectively, while for R = 2 is Ω(
√
n) and O(

√
n logn);

(ii) for SumBD, the PoA is lower bounded by 2 − ε, for any ε > 0, as soon as
D ≥ 2− 3/n, while it is upper bounded as reported in Table 1.

Table 1. Obtained PoA upper bounds for uniform SumBD

D ∈ [2, 3) ≥ 3 and O(1) ω(1) ∩ O
(
3
√

log n
)

ω
(
3
√

log n
)
∩ 2O

(√
log n

)
2ω

(√
log n

)

PoA O
(√

n logn
)
O

(
n

1
�log3 D/4�+2

)
2O(

√
log n) O

(
n

1
�log3 D/4�+2

)
O(1)

Motivations and significance of the new model. Our model was originally moti-
vated by the observation that, in a realistic scenario, a player might have a strong
objective/requirement about its centrality in the under-costruction network. In
fact, in daily life, people actively participate to the autonomous formation of
(social) networks. In our experience, a user downplays any concerns about the
number/cost of activated links. Rather, he initially pays attention only to the
fact of remaining as close as possible to (a subset of) the other users, and only
later on he tries to minimize his outdegree accordingly. Our model aims to (par-
tially) address this dynamics. Actually, at this initial stage, we have relaxed this
quite complicate setting, by associating with each user just a (uniform) single
distance bound w.r.t. all the other users. Nevertheless, even in this simplified
scenario, we can get some new insights as opposed to previous NCG models. In-
deed, a closer inspection of our provided results suggests that the PoA becomes
constant as soon as the maximum/average distance bound is Ω(nε), for some
ε > 0. This is quite interesting, since it implies that the autonomous network
tends to be sparser as soon as the distance bounds grow. Notice that in the Fab-
rikant’s model (and its variants), we cannot directly infer any information about
network sparseness by just knowing that the PoA is constant. Furthermore, our
model, as for those proposed in [14,8,4], does not rely on the α parameter, and
this makes the proofs of the various bounds intimately related with some graph-
theoretic properties of a stable network. For example, it is interesting to notice
that in our setting the minimum degree and the size of a minimum dominating
set play an important role. In this respect, in the concluding remarks of this pa-
per, we pose an intriguing relationship between our problem and the well-known
graph-theoretic degree-diameter problem, that we believe could help in solving
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some of the issues still left open, like the quite large gap between lower and upper
bounds for the PoA. Finally, focusing on MaxBD, we observe that when R = 2,
which should consistently model the scenario depicted by local-area networks,
we obtain the meaningful result that the PoA is far to be constant. We also
conjecture that this undesirable behavior can actually be extended to larger,
still constant, values of R, although the generalization of the lower bounding
argument seems likely technically involved.

The paper is organized as follows. After giving some basic definitions in Sec-
tion 2, we provide some preliminary results in Section 3. Then, we study upper
and lower bounds for uniform MaxBD and SumBD in Sections 4 and 5, respec-
tively. Finally, in Section 6 we conclude the paper by discussing some intrigu-
ing relationships of our games with the famous graph-theoretic degree-diameter
problem. Due to space limitations, some of the proofs are omitted here and will
be given in the full version of the paper.

2 Problem Definition

Graph terminology. Let G = (V,E) be an undirected (simple) graph with n
vertices. For a graph G, we will also denote by V (G) and E(G) its set of vertices
and its set of edges, respectively. For every vertex v ∈ V , let NG(v) := {u | u ∈
V \ {v}, (u, v) ∈ E}. The minimum degree of G is equal to minv∈V |NG(v)|.

We denote by dG(u, v) the distance in G from u to v. The eccentricity of a
vertex v in G, denoted by εG(v), is equal to maxu∈V dG(u, v). The diameter and
the radius of G are equal to the maximum and the minimum eccentricity of its
nodes, respectively. A node is said to be a center of G if εG(v) is equal to the
radius of G. We define the broadcast cost of v in G as BG(v) =

∑
u∈V dG(u, v),

while the average distance from v to a node inG is denoted byDG(v) = BG(v)/n.
A dominating set of G is a subset of nodes U ⊆ V such that every node of

V \ U is adjacent to some node of U . We denote by γ(G) the cardinality of a
minimum-size dominating set of G. Moreover, for any real k ≥ 1, the kth power
of G is defined as the graph Gk = (V,E(Gk)) where E(Gk) contains an edge
(u, v) if and only if dG(u, v) ≤ k. Let F ⊆ {(u, v) | u, v ∈ V, u �= v}. We denote
by G + F the graph on V with edge set E ∪ F . When F = {e} we will denote
G+ {e} by G+ e.

Problem Statements. The bounded maximum-distance NCG (MaxBD) is defined
as follows: Let V be a set of n nodes, each representing a selfish player, and for
any v ∈ V , let Rv > 0 be an integer representing a bound on the eccentricity of
v. The strategy of a player v consists of a subset Sv ⊆ V \ {v}. Denoting by S
the strategy profile of all players, let G(S) be the undirected graph with node set
V , and with edge set E(S) = {(v, v′) | v ∈ V ∧ v′ ∈ Sv)}. When u ∈ Sv, we will
say that v is buying the edge (u, v), or that the edge (u, v) is bought by v. Then,
the cost of a player v in S is costv(S) = |Sv| if εG(S)(v) ≤ Rv, +∞ otherwise.

The bounded average-distance NCG (SumBD) is defined analogously, with
a bound Dv on the average distance of v from all the other nodes, and cost
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function costv(S) = |Sv| if DG(S)(v) ≤ Dv, +∞ otherwise. In the rest of the
paper, depending on the context, we will interchangeably make use of the bound
on the broadcast cost Bv = Dv · n when referring to SumBD.

In both variants, we say that a node v is within the bound in S (or in G(S))
if costv(S) < +∞. We measure the overall quality of a graph G(S) by its social
cost SC (S) =

∑
v∈V costv(S). A graph G(S) minimizing SC (S) is called social

optimum.
We use the Nash Equilibrium (NE) as solution concept. More precisely, a NE

is a strategy profile S in which no player can decrease its cost by changing its
strategy, assuming that the strategies of the other players are fixed. When S is
a NE, we will say that G(S) is stable. Conversely, a graph G is said to be stable
if there exists a NE S such that G = G(S). Notice that in both games, when
S is a NE, all nodes are within the bound and, since every edge is bought by a
single player, SC (S) coincides with the number of edges of G(S).

We conclude this section by recalling the definition of the two measures we
will use to characterize the NE space of our games, namely the Price of Anarchy
(PoA) [9] and the Price of Stability (PoS) [3], which are defined as the ratio
between the highest (respectively, the lowest) social cost of a NE, and the cost
of a social optimum.

3 Preliminary Results

First of all, observe that for MaxBD it is easy to see that a stable graph always
exists. Indeed, if there is at least one node having distance bound 1, then the
graph where all 1-bound nodes buy edges towards all the other nodes is stable.
Otherwise, any spanning star is stable. Notice that any spanning star is stable
for SumBD as well, but only when every vertex has a bound Bv ≥ 2n− 3, while
the problem of deciding whether a NE always exists for the remaining values of
Bv is open. From these observations, we can derive the following negative result.

Theorem 1. The PoA of MaxBD and SumBD (with distance bounds Bv ≥
2n− 3) is Ω(n), even for only two distance-bound values.

Sketch of proof. We exhibit a graph G′ with Ω(n2) edges, and a strategy profile
S such that G(S) = G′ and G(S) is stable in both models for suitable distance
bounds. We also show that the social optimum is n− 1.

The graph G′ is defined as follows. We have a clique of k nodes. For each node
v of the clique, we add four nodes v11 , v

1
2 , v

2
1 , v

2
2 and four edges (v12 , v

1
1), (v

1
1 , v),

(v22 , v
2
1), and (v21 , v). Clearly,G

′ has n = 5k nodes andΩ(n2) edges. Now, consider
a strategy profile S with G′ = G(S) and such that (i) every edge is bought
by a single player, and (ii) the edges (vj2, v

j
1), (v

j
1, v) are bought by vj2 and vj1,

respectively, j = 1, 2.
For MaxBD, we set the bound of every node of the clique to 3, while all the

other nodes have bound 5. For SumBD, we set the bound of each node v of the
clique to

∑
u∈V dG(v, u) = 11k − 5 > 2n − 3, while we assign to all the other

nodes bound n2.
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It is then not so hard to show that G(S) is stable. To conclude the proof,
observe that any spanning star (with cost n− 1) is a social optimum for the two
instances of MaxBD and SumBD given above. ��
Given the above bad news, from now on we focus on the uniform case of the
games, i.e., all the bounds on the distances are the same, say R and D (i.e.,
B = D · n) for the maximum and the average version, respectively. Similarly to
other NCGs, also here we have the problem of computing a best response for a
player, as stated in the following theorem.

Theorem 2. Computing the best response of a player in MaxBD and SumBD
is NP-hard. ��
On the other hand, a positive result which clearly implies that SumBD always
admits a pure NE is the following:

Theorem 3. The PoS of MaxBD is 1, while for SumBD it is at most 2. ��

4 Upper and Lower Bounds to the PoA for MaxBD

We start by providing few results which will be useful to prove our upper bounds
to the PoA for MaxBD.

Lemma 1. Let G(S) = (V,E(S)) be stable and let H be a subgraph of G(S). If
for each node v ∈ V there exists a set Ev of edges (all incident to v) such that
v is within the bound in H + Ev, then SC (S) ≤ |E(H)|+∑

v∈V |Ev|.
Proof. Let kv be the number of edges of H that v is buying in S. If v buys Ev

additionally to its kv edges, then v will be within the bound in H +Ev. Hence,
since S is a NE, we have that costv(S) ≤ kv + |Ev|, from which it follows that

SC (S) =
∑

v∈V

costv(S) ≤
∑

v∈V

kv +
∑

v∈V

|Ev| = |E(H)|+
∑

v∈V

|Ev|. ��

Thanks to Lemma 1, we can prove the following lemma.

Lemma 2. Let G(S) be stable, and let γ be the cardinality of a minimum dom-
inating set of G(S)R−1. Then SC (S) ≤ (γ + 1)(n− 1).

Proof. Let U be a minimum dominating set of G(S)R−1, with γ = |U |. It is easy
to see that there is a spanning forest F of G(S) consisting of γ trees T1, . . . , Tγ ,
such that every Tj contains exactly one vertex in U , and when we root Tj at
such vertex the height of Tj is at most R− 1.

For a node v ∈ V , let Ev = {(v, u) | u ∈ U \ {v}}. Clearly, v is within the
bound in F + Ev, hence by using Lemma 1, we have

SC (S) ≤ |E(F )|+
∑

u∈U

|Eu|+
∑

v∈V \U
|Ev| = n−γ+(γ−1)γ+γ(n−γ) ≤ (γ+1)(n−1).

��
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Let G(S) be stable and let v be a node of G(S). Since v is within the bound,
the neigborhood of v in G is a dominating set of GR−1. Therefore, thanks to
Lemma 2 we have proven the following corollary.

Corollary 1. Let G(S) be stable, and let δ be the minimum degree of G(S),
then SC (S) ≤ (δ + 1)(n− 1). ��
We are now ready to prove our upper bound to the PoA for MaxBD.

Theorem 4. The PoA of MaxBD is O
(
n

1
�log3 R�+1

)
for R ≥ 3, and O(

√
n logn)

for R = 2.

Proof. Let G be a stable graph, and let γ be the size of a minimum dominating
set of GR−1. We define the ball of radius k centered at a node u as βk(u) = {v ∈
V | dG(u, v) ≤ k}. Moreover, let βk = minu∈V |βk(u)|. The idea is to show that
in G the size of any ball increases quite fast as soon as the radius of the ball
increases.

Claim. For any k ≥ 1, we have β3k+1 ≥ min{n, γβk}.
Proof. Consider the ball β3k+1(u) centered at any given node u, and assume
that |β3k+1(u)| < n. Let T be a maximal set of nodes such that (i) the distance
from every vertex in T and u is exactly 2k+2, and (ii) the distance between any
pair of nodes in T is at least 2k+1. We claim that for every node v /∈ β3k+1(u),
there is a vertex t ∈ T with dG(t, v) < dG(u, v). Indeed, consider the node t′

in a shortest path in G between v and u at distance exactly 2k + 1 from u. If
t′ ∈ T the claim trivially holds, otherwise consider the node t ∈ T that is closest
to t′. From the maximality of T we have that dG(t, v) ≤ dG(t, t

′) + dG(t
′, v) ≤

2k + dG(u, v)− (2k + 1) < dG(u, v).
As a consequence, we have that T ∪ {u} is a dominating set of GR−1, and

hence |T | + 1 ≥ γ. Moreover, all the balls centered at nodes in T ∪ {u} with
radius k are all pairwise disjoint. Then

|β3k+1(u)| ≥ |βk(u)|+
∑

t∈T

|βk(t)| ≥ γβk. ��

Now, observe that since the neighborhood of any node in G is a dominating set
of GR−1, we have that β1 ≥ γ. Then, after using the above claim x times, we
obtain

β 3x+1−1
2

≥ min
{
n, γx+1

}
.

Let us consider the case R ≥ 3 first. Let U be a maximal independent set of
GR−1. Since U is also a dominating set of GR−1, it holds that |U | ≥ γ. We
consider the |U | balls centered at nodes in U with radius given by the value
of the parameter x = log3 R − 1�. Every ball has radius at most (R − 1)/2,
and since U is an independent set of GR−1, all balls are pairwise disjoint, and
hence we have n ≥ |U |γ�log3 R−1	+1 ≥ γ�log3 R	+1. As a consequence, we obtain

γ ≤ n
1

�log3 R�+1 , and the claim now follows from Lemma 2.
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Now assume R = 2. We use the bound given in [5] to the size γ(G) of a
minimum dominating set of a graph G with n nodes and minimum degree δ,
namely γ(G) ≤ n

δ+1Hδ+1, where Hi =
∑i

j=1 1/j is the i-th harmonic number.
Hence, since a social optimum has cost n − 1, from Lemma 2 and Corollary 1,

we have SC (S)
n−1 ≤ min

{
δ+1, n

δ+1Hδ+1+1
}
= O

(
min{δ, nδ logn}), for any stable

graph G(S) with minimum degree δ. Since this is asymptotically maximized
when δ = Θ

(√
n logn

)
, the claim follows. ��

Now we focus on lower bounds to the PoA of MaxBD. We first prove a simple
constant lower bound for R = o(n), and then we show an almost tight lower
bound of Ω(

√
n) for R = 2. We postpone to the concluding section a discussion

on the difficulty of finding better lower bounds for large values of R.

Theorem 5. For any ε > 0 and for every 1 < R = o(n), the PoA of MaxBD
is at least 2− ε.

Proof. Assume we are given a set of n = 2R + h vertices {u1, . . . , u2R} ∪
{v1, . . . , vh}. The strategy profile S is defined as follows. Vertex uj buys a single
edge towards uj+1, for each j = 1, . . . , 2R − 1, while every vi buys two edges
towards u1 and u2R. It is easy to see that G(S) has diameter R and is stable.
The claim follows from the fact that SC(S) goes to 2(n−1) as h goes to infinity,
and since, as observed in Section 3, a spanning star (having social cost equal to
n− 1) is a social optimum. ��
Theorem 6. The PoA of MaxBD for R = 2 is Ω(

√
n).

Proof. We provide only the lower-bound construction due to lack of space. Let
p ≥ 3 be a prime number. We exhibit (see Figure 1) a graph G′ of diameter 2
containing O(p2) vertices and Ω(p3) edges, and a strategy profile S such that
G(S) = G′ and G(S) is stable. G′ contains two vertex-disjoint rooted trees T and
T ′ as subgraphs. T is a complete p-ary tree of height 2. We denote by r the root
of T , by C = {c0, . . . , cp−1} the set of children of r, and by Vi = {vi,0, . . . , vi,p−1}
the set of children of ci. T

′ is a star with p2 leaves rooted at the center r′. The
leaves of T ′ are partitioned in p groups each having exactly p vertices. For every
i = 0, . . . , p− 1, we denote by Ui = {ui,0, . . . , ui,p−1} the set of vertices of group
i. G′ = (V,E) has vertex set V = V (T ) ∪ V (T ′), and edge set

E = E(T ) ∪ E(T ′) ∪ {(r, r′)} ∪ {
(c, c′) | c, c′ ∈ C, c �= c′

}

∪
p−1⋃

i=0

{
(u, u′) | u, u′ ∈ Ui, u �= u′}

∪ {
(ui,j , vi′,j′) | i, i′, j, j′ ∈ [p− 1], j + i′i ≡ j′ (mod p)

}
.

In the strategy profile S, (i) r buys all edges of G′ incident to it, (ii) each vi′,j′

buys all edges of G′ incident to it, (iii) each edge (ui,j , r
′) of G′ is bought by ui,j ,

and (iv) each of the remaining edges in G′ is bought by any of its two endpoint
players. ��
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to v0,j

to vp−1,(j+(p−1)i) mod p

to v1,(j+i) mod p

.

..

up−1,0u0,p−1 up−1,p−1ui,ju0,0

r r′

ci

v0,p−1v0,0 vi,0 vi,p−1 vp−1,p−1vp−1,0

c0 cp−1

Fig. 1. The graph G(S). Edges are bought from the nodes they exit from. Notice that
nodes in grey boxes are clique-connected (with arbitrary orientations, i.e., ownership),
and for the sake of readability we have only inserted edges leading to node ui,j .

5 Upper and Lower Bounds to the PoA for SumBD

For SumBD, we start by giving an upper bound to the PoA similar to that
obtained for MaxBD. For the remaining of this section we use D to denote the
average bound of every node, namely D = B/n.

Theorem 7. The PoA of SumBD is O
(√

n logn
)
when 2 ≤ D < 3, and

O(n
1

�log3 D/4�+2 ) for D ≥ 3. ��
From the above result, it follows that the PoA becomes constant when D =
Ω(nε), for some ε > 0. We now show how to lower such a threshold to D =

2ω(
√
logn) = n

ω
(

1√
log n

)
(and we also improve the upper bound when D = ω(1)∩

o(3
√
log n)).

Lemma 3. Let G(S) be stable and let v be a node such that BG(S)(v) ≤ B − n,
then SC (S) ≤ 2(n− 1).

Proof. Let T be a shortest path tree of G rooted at v. The claim immediately
follows from Lemma 1 by observing that v is within the bound in T and every
other node u is within the bound in T + (u, v). ��
Notice that the above lemma shows that when a stable graph G has diameter at
most D − 1, then the social cost of G is at most twice the optimum. Now, the
idea is to provide an upper bound to the diameter of any stable graph G as a
function of δ, where δ is the minimum degree of G. Then we combine this bound
with Lemma 3 in order to get a better upper bound to the PoA for interesting
ranges of D.

Theorem 8. Let G be stable with minimum degree δ. Then the diameter of G
is 2O(

√
logn) if δ = 2O(

√
logn), and O(1) otherwise.
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Proof. We start by proving two lemmas.

Lemma 4. Let G be stable with minimum degree δ. Then either G has diameter
at most 2 logn or, for every node u, there is a node x with dG(u, x) ≤ logn such
that (i) x is buying δ/c edges (for some constant c > 1), and (ii) the removal of
these edges increases the sum of distances from x by at most 2n(1 + logn).

Proof. Assume that the diameter of G is greater than 2 logn, and consider a node
u. Let Uj be the set of nodes at distance exactly j from u, and let nj = |Uj |.
Moreover, denote by T a shortest path tree of G rooted at node u. Let i be
the minimum index such that ni+1 < 2ni (i must exist since the height of T
is greater than logn). Consider the set of edges F of G having both endpoints
in Ui−1 ∪ Ui ∪ Ui+1 and that do not belong to T . Then, |F | ≥ δni/2 − 3ni.
Moreover, we have that ni−1 + ni + ni+1 ≤ ni/2 + ni + 2ni = 7ni/2. As a
consequence, there is a vertex x ∈ Ui−1 ∪ Ui ∪ Ui+1 which is buying at least
ni/2−3ni

7ni/2
≥ δ/c edges of F , for some constant c > 1. Moreover, when x removes

these edges, the distance to any other node y increases by at most 2(1 + logn)
because dT (x, y) ≤ 2(1 + logn). The claim follows. ��
Lemma 5. In any stable graph G, there is a constant c′ > 1 such that the
addition of δ/c′ edges all incident to a node u decreases the sum of distances
from u by at most 5n logn.

Proof. If G has diameter at most 2 logn, then the claim trivially holds. Other-
wise, let x be the node of the previous lemma and let c′ be such that δ/c′ ≤
δ/c − 1. Moreover, assume by contradiction that the sum of distances from
u decreases by more than 5n logn when we add to G the set of edges F =
{(u, v1), . . . , (u, vh)}, with h = δ/c′. Then, let F ′ = {(x, vj) | j = 1, . . . , h}. We
argue that x can reduce its cost by saving at least an edge as follows: x deletes
its δ/c edges and adds F ′. Indeed, the sum of distances from x increases by at
most 2n(1 + logn) ≤ 4n logn, and decreases by at least 5n logn− n logn, since
for every node y such that the shortest path in G+F from u to y passes through
x, we have that dG(u, y)−dG+F (u, y) ≤ logn. Hence, x is still within the bound
in G+ F ′ and is saving at least one edge, a contradiction. ��
Recall that the ball of radius k centered at a node u ∈ V is defined as βk(u) =
{v ∈ V | dG(u, v) ≤ k}, and that βk = minu∈V |βk(u)|. We claim that

β4k ≥ min

{
n/2 + 1,

kδ

20c logn
βk

}
, (3)

for some constant c > 1. To prove that, let u ∈ V be any node and assume
that |β4k(u)| ≤ n/2. Let T be a maximal set of nodes such that (i) the distance
from every vertex in T and u is exactly 2k + 1, and (ii) the distance between
any pair of nodes in T is at least 2k + 1. From the maximality of T , for every
node v /∈ β3k(u) there is a node t ∈ T such that dG(v, t) ≤ dG(u, v) − k. Since
|β4k(u)| ≤ n/2, at least n/2 nodes have a distance more than 3k from u. This
implies the existence of a set Y of such vertices and a set T ′ ⊆ T such that (i)
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|Y | ≥ nδ/(2|T |), (ii) |T ′| = δ/c, and (iii) for every v ∈ Y , there exists v′ ∈ T ′ such
that dG(v, v

′) ≤ dG(u, v)−k. If we add δ/c edges from u to nodes in T ′, the sum of
distances from u decreases by at least (k−1)n/(2|T |) ≥ kn/(4|T |). By Lemma 5
this improvement is at most 5n logn and, as a consequence, |T | ≥ δk/(20c logn).
Moreover, all the balls centered at nodes in T are disjoint, and this proves the
recurrence (3). Now, the claim follows by solving such a recurrence. ��
Next theorem provides an alternative upper bound to the PoA of SumBD.

Theorem 9. The PoA of SumBD is 2O(
√
logn) if D = ω(1), and O(1) if D =

2ω(
√
logn).

Proof. Let G(S) be stable, and let Δ be the diameter of G(S). First of all,
consider the case Δ = o(D), and observe that BG(S)(v) = o(B) for every v.

Therefore, Lemma 3 implies that SC (S)
n−1 = O(1). This implies the second part of

the claim since Theorem 7 implies that Δ = 2O(
√
n).

Now, consider the case Δ = Ω(D). Since D = ω(1), we have that Δ = ω(1)

and therefore, from Theorem 7, δ = 2O(
√
n). To complete the proof, we show that

SC(S)
n−1 ≤ δ + 1. Let v be a node with degree δ, and let NG(S)(v) = {u1, . . . , uδ}.

Consider a shortest path tree T of G(S) rooted at v. Clearly, v is within the
bound in T , and if we define Ex = {(x, uj) | 1 ≤ j ≤ δ} for any x �= v,
we have BT+Ex(x) ≤ BG(S)(v) ≤ B. Hence, from Lemma 1, it follows that
SC (S) ≤ |E(T )|+ (n− 1)δ ≤ (δ + 1)(n− 1). ��
Then, by combining the results of Theorems 7 and 9, we get the bounds reported
in Table 1. Finally, we can give the following

Theorem 10. For any ε > 0 and for 2n− 3 ≤ B = o(n2), the PoA of SumBD
is at least 2− ε. ��

6 Concluding Remarks

In this paper, we have introduced a new NCG model in which the emphasis is put
on the fact that a player might have a strong requirement about its centrality in
the resulting network, as it may well happen in decentralized computing (where,
for instance, the bound on the maximum distance could be used for synchronizing
a distributed algorithm). We developed a systematic study on the PoA of the two
(uniform) games MaxBD and SumBD, which, however, needs to be continued,
since a significant gap between the corresponding lower and upper bounds is still
open. In particular, it is worth to notice that finding a better upper bound to
the PoA would provide a better estimation about how much dense a network in
equilibrium can be.

Actually, in an effort of reducing such a gap, we focused on MaxBD, and
we observed the following fact: Recall that a graph is said to be self-centered
if every node is a center of the graph (thus, the eccentricity of every node is
equal to the radius of the graph, which then coincides with the diameter of the
graph). An interesting consequence of Lemma 2 is that only stable graphs that
are self-centered can be dense, as one can infer from the following
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Proposition 1. Let G(S) be stable for MaxBD. If G(S) is not self-centered,
then SC (S) ≤ 2(n− 1).

Proof. Let v be a node with minimum eccentricity. It must be εG(S)(v) ≤ R− 1.
Then, U = {v} is a dominating set of GR−1, and Lemma 2 implies the claim. ��
Thus, to improve the lower bound for the PoA of MaxBD, one has to look
to self-centered graphs. Moreover, if one wants to establish a lower bound of
ρ, then a stable graph of minimum degree ρ − 1 (from Corollary 1) is needed.
Starting from these observations, we investigated the possibility to use small and
suitably dense self-centered graphs as gadgets to build lower bound instances for
increasing values of R. To illustrate the process, see Figure 2, where using a
self-centered cubic graph of diameter 3 and size 20, we have been able to obtain
a lower bound of 3 (it is not very hard to see that the obtained graph is in
equilibrium).

vnv1

Fig. 2. A graph with n+ 20 nodes and 3n+ 30 edges, showing a lower bound for the
PoA of MaxBD for R = 3 approaching to 3, as soon as n grows. Edges within the
gadget (on the left side) are bought by either of the incident nodes, while other edges
are bought from the nodes they exit from.

Interestingly enough, the gadget is a famous extremal (i.e., maximal w.r.t.
node addition) graph arising from the study of the degree-diameter problem,
namely the problem of finding a largest size graph having a fixed maximum
degree and diameter (for a comprehensive overview of the problem, we refer
the reader to [1]). More precisely, the gadget is a graph of largest possible size
having maximum degree Δ = 3 and diameter R = 3. In fact, this seems not to
be coincidental, since also Moore graphs (which are extremal graphs for R = 2
and Δ = 2, 3, 7, 57), and the extremal graph for R = 4 and Δ = 3 (see [1]), can
be shown to be in equilibrium, and then they can be used as gadgets (clearly,
the lower bounds implied by Moore graphs for R = 2 are subsumed by our result
in Theorem 6). Notice that from this, it follows that we actually have a lower
bound of 3 for the PoA of MaxBD also for R = 4. So, apparently there could
be some strong connection between the equilibria for MaxBD and the extremal
graphs w.r.t. to the degree-diameter problem, and we plan in the near future to
explore such intriguing issue.



Bounded-Distance Network Creation Games 85

References

1. http://www-mat.upc.es/grup_de_grafs/grafs/taula_delta_d.html/

Universitat Politécnica de Catalunya, Barcelona, Spain
2. Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On Nash equilibria for

a network creation game. In: Proc. of the 17th ACM-SIAM Symposium on Discrete
Algorithms (SODA 2006), pp. 89–98. ACM Press (2006)

3. Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-optimal network design
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