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Abstract. In this paper we discuss marketing strategies for goods that
have positive network externalities, i.e., when a buyer’s value for an
item is positively influenced by others owning the item. We investigate
revenue-optimal strategies of a specific form where the seller gives the
item for free to a set of users, and then sets a fixed price for the rest. We
present a 1

2
-approximation for this problem under assumptions about

the form of the externality. To do so, we apply ideas from the influence
maximization literature [13] and also use a recent result on non-negative
submodular maximization as a black-box [3,7].

1 Introduction

Consumer goods and services often exhibit positive network externalities—
a buyer’s value for the good or service is influenced positively by other buyers own-
ing the good or using the service. Such positive network externalities arise in var-
ious ways. For instance, XBox Live is an online gaming service that allows users
to play with each other. Thus, the value of an XBox to a user increases as more of
her friends also own an XBox. Popular smartphone platforms (such as Android,
iOS, or Windows Mobile) actively support developer networks, because develop-
ers add ‘Applications’ that make the phone more useful to other users. Thus, the
value of a smartphone to a user increases with the size of the developer network.
Many consumer goods, especially those that have been newly introduced, benefit
from word-of-mouth effects. Prospective buyers use this word-of-mouth to judge
the quality of the item while making a purchase decision. If the good or service is
of good quality, the word-of-mouth will cause a positive externality.

Irrespective of how positive network externalities arise, it is clear that they are
worth paying attention to in designing a good marketing/pricing strategy. Com-
panies that own smartphone platforms often hand out upcoming devices to de-
velopers. Manufacturers send out a new version of a device to technology review
websites. Detergent companies, and manufacturers of health foods, hand out free
samples of new products. The hope is that giving out the item for free drives up de-
mand for the good/service and increases the revenue generated from future sales.
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In this paper we attempt to identify a revenue maximizing marketing strategy
of the following form: The seller selects a set S of buyers and gives them the good
for free, and then sets a fixed per-unit price p at which other consumers can buy
the item. The strategy is consistent with practice as the examples above illustrate
and is easy to implement. However, optimizing revenue poses two challenges.
First, the choice of the set S and the price p are coupled and must be traded-off
optimally: expanding the set S loses potential revenue from the set S, but may
increase the positive externality on buyers not in S and may allow the seller
to extract more revenue from them. A second, more subtle, issue is that it is
important to have a handle on the dynamics of adoption. For a fixed set S and a
price p, a buyer j /∈ S who is initially unwilling to buy the item at a price p, may
later do so as other buyers (who are not in S and are willing to buy the item at
a price p) go first. This may result in a ‘cascade’ of sales and it is important to
have a handle on this revenue when optimizing for S and p.

Our Results. The related problem of influence maximization (as opposed to
our revenue maximization problem) is well-studied (e.g., Chapter 23 in [13]).
The canonical question in this literature, first posed by Domingos and Richard-
son [5], is: Which set I of influential nodes of cardinality k in a social network
should be convinced to use a service, so that subsequent adoption of the service
is maximized? This literature has made substantial progress in understanding
the cascading of process of adoption and using this to optimize for I (see for in-
stance [5,11,12,15]). However, this literature does not model the impact of price
on the probability of adopting a service and does not attempt to quantify the
revenue from adoption. Therefore it cannot be directly applied to answer our
revenue-maximization question.

Our main technical contribution (Lemma 1) establishes a correspondence be-
tween the dynamics of our (price-sensitive) process and the dynamics of the
general threshold model [11] from the influence maximization literature. We
use it along with a recent result on optimizing non-negative submodular func-
tions [3,7] to identify an algorithm that is a 1

2 -approximation for our problem
(Theorem 1). It is worth noting that, although we prove our result through es-
tablishing a connection to the general threshold model [11], we cannot use the
greedy (1− 1

e )-approximation algorithm of Nemhauser, Wolsey, and Fischer [16],
and instead we need to use the recent 1

2 -approximation [3,7] for non-negative
submodular maximization.

More Related Work. Besides the literature on influence maximization men-
tioned above, there is also an expanding literature on algorithms for revenue
maximization with positive network externalities. Hartline, Mirrokni, and Sun-
dararajan [9] study the marketing strategies where the seller can give the item
for free to a set of buyers, and then visit the remaining buyers in a sequence of-
fering each a buyer-specific price. Such strategies are hard to implement because
the seller must control the time at which the transaction takes place. Further,
there is also evidence that buyers may react negatively to price-discrimination as
it generates a perception of unfairness. Oliver and Shor [17] discuss why such a
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negative reaction may arise. Partly in response to some of these issues, Akhlagh-
pour et al. [1] explore strategies that allow the seller to vary the price across
time. Though these strategies do not perform price discrimination, there is some
evidence that such strategies may also cause buyers to react negatively, espe-
cially if the prices vary significantly across time. For instance, there was some
unhappiness when Apple dropped the price of an iPhone by 33% two months
after an initial launch (http://www.apple.com/hotnews/openiphoneletter/). In
contrast, our approach is to offer the good at a fixed price, albeit after giving the
item for free to some set of users, a step which seems socially acceptable (see the
examples in the Introduction.) This strategy can also increase the revenue to the
seller above using a fixed price without an influence step. More recently, Hagh-
panah et al. [8] take an auction-theoretic (as opposed to a pricing) approach.
This approach is applied only to some forms of positive externality where the
temporal sequence of sales is not necessary for the externality to manifest (so it
applies to the XBox example from the introduction, but not the settings where
word-of-mouth is involved).

There is also a literature in economics that has studied equilibrium behavior
in the adoption of goods with network externalities [2,4,6,10,14,18]. For instance,
Carbal, Salant, and Woroch [4] show that in a social network the seller might
decide to start with low introductory prices to attract a critical mass of players
when the players are large (i.e, the network effect is significant). The focus here
is to characterize the equilibrium that arises from buyer rationality, as opposed
to optimizing the seller’s strategy.

2 Model

Consider a seller who wants to sell a good to a set of potential buyers, V .
Consider a digital good with zero marginal cost of manufacturing and assume
that the seller has an unlimited supply of the good. We assume that the seller
is a monopolist and is interested in maximizing its revenue.

Externality Model. We assume that a buyer i’s value for the digital good
depends on its own inherent valuation ωi for the good and also on the influence
from the set S ⊆ V \ {i} of buyers who already own the good. More specifically,
we consider the graph model with concave influence in which each buyer i ∈ V is
associated with a non-negative, non-decreasing, concave function fi : R+ → R+

with fi(0) = 0. The value of the digital item for a buyer i ∈ V given that a set
S of buyers have already bought the item is denoted by vi(S) and is equal to
ωi + fi(

∑
j∈S wij). Each inherent valuation ωi is drawn independently from a

uniform distribution (or more generally from a distribution Gi) and each wij is

drawn from a distribution G̃ij capturing the influence of buyer i over buyer j.
We assume that a buyer i buys the item at a price p if and only if vi(S) ≥ p.
We assume that the valuations and prices are in an interval [0,M ].

Fixed-Price Marketing.A fixed-price marketing strategy consists of two stages:
in the first stage, the seller gives the item for free to a subset A of buyers (inital
influence); in the second stage, the seller sets a fixed price p for the digital good
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(price setting). After setting the price p, buyers i with value vi(A) ≥ p buy
the item. Let set S1 be the set of buyers whose value vi(A) after the influence
step is greater than p, i.e., S1 = {i �∈ A|vi(A) ≥ p}. After buyers in set S1

buy the item at price p, they may influence other buyers, and their value may
increase and go above p. As a result, after set S1 buys the item, some other
buyers may have incentive to buy the item. Let set S2 be this set of buyers, i.e.,
S2 = {i �∈ A ∪ S1|vi(A ∪ S1) ≥ p}. As more buyers buy the digital good, more
buyers have incentive to buy the item. This process continues and the dynamics
propagates, i.e, for any i (2 ≤ i ≤ k), Si is the set of buyers not in (∪j<iSj)∪A
whose value is more than or equal to p given that set (∪j<iSj) ∪ A of buyers
already adopted the item. The seller’s goal is to find a set A of buyers to in-
fluence and a fixed price p to maximize the total revenue he can extract from
buyers, i.e., in the optimal fixed-price marketing problem with positive network
externalities, the sellers’s goal is to choose A and p to maximize p(| ∪i≥1 Si|).
3 Approximation Algorithm

In this section, we design a constant-factor approximation algorithm for the
problem. We first observe that a simple 1

8 -approximation algorithm exists for the
special case of the problem where weights are deterministic. Then we elaborate
on an improved 1

2 -approximation algorithm for the graph model with concave
influence function that explicitly exploits dynamics.

Sketch of a Simple 1
8 -Approximation Algorithm. For fixed ωi’s and wij ’s,

a randomized 1
8 -approximation algorithm is easily derived: Give the item for free

to each buyer with probability 1/2 independently, then search for the highest
revenue achievable given the freebies by considering all prices over a 1/poly(n)-
grid. Let A∗, p∗ be an optimal solution to the problem and define B∗ = {i ∈
V : ωi + fi(

∑
j wij) ≥ p∗}. In expectation, there are |B∗|/2 remaining potential

buyers after the first stage. We claim that, for a fixed second-stage price of
p∗/2, each of the remaining nodes in B∗ has a probability 1

2 of reaching value
p∗/2 in the second stage—giving an expected revenue of |B∗|p∗/8 and proving
the claim. Indeed, let Pi be the revenue earned from i when p = p∗/2 and
note that, ignoring dynamics (i.e., considering only the first round following

the influence stage), E[Pi] ≥ p∗
4 P

[
ωi + fi

(∑
j �jwij

)
≥ p∗

2

]
, where �i is 1 if i

gets the item for free, and 0 otherwise (and wii = 0). Noting that
∑

j �jwij ≥
1
2

∑
j wij =⇒ fi

(∑
j �jwij

)
≥ 1

2fi

(∑
j wij

)
≥ 1

2 [p∗ − ωi], where we used the

concavity of fi and the definition of B∗, we get P

[
ωi + fi(

∑
j �jwij) ≥ p∗

2

]
≥

P

[∑
j �jwij ≥ 1

2

∑
j wij

]
≥ 1/2, by symmetry.

A 1
2 -Approximation Algorithm. Now we present an improved 1

2 -approxima-
tion algorithm when the weights are random that explicitly exploits the dynamics
of the influence process, unlike the simple algorithm above. We assume further
that the prices are in an interval [0,M ] for some constant M , that the wij ’s are
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drawn from arbitrary distributions and that the ωi’s are drawn from a uniform
distribution over [0,M ]. For convenience, we takeM = 1. For any price p ∈ [0, 1],
consider the following set function Yp : 2V → R+: for any subset A ⊂ V , Yp(A)
is the expected revenue from giving the item for free to set A in the influence
stage, and setting the price to p in the fixed-price stage. Our algorithm is as
follows. Fix ε = o(n−1).

1. For every integer ρ where 0 ≤ ρ ≤ ε−1 do:
– Given that the price in the second stage is p = ρε, using the approxima-

tion algorithm for non-negative submodular maximization in [3,7], find
a set Aρ of users to influence in the first stage. The algorithm in [3,7]
uses oracle calls to the objective function. We simulate oracle calls to
Yp by running the influence process poly(n) times independently and
averaging.

– Let Lρ be the revenue from giving the item to set Aρ and setting price
p = ρε.

2. Output the set Aρ and price ρε for which Lρ is maximized.

Our approximation result follows from a mapping of the fixed-price strategy to a
model of viral marketing introduced in [11,12]. In the viral marketing problem,
one gives an item for free to a group of individuals as we do here but, in the
subsequent influence stage, revenue is ignored (i.e., there is no price) and instead
one aims to maximize the number of individuals who purchase the product.
In [11,12], the general threshold model was introduced to model the influence
process. Formally, the special case of the general threshold model relevant here
is obtained from our influence process by setting p = 0 and letting ωi be uniform
in [−1, 0]. See [11,12] for more details on the general threshold model.

Theorem 1 (Approximation). The above algorithm is a 1
2 -approximation al-

gorithm for the optimal fixed-price marketing problem with positive network ex-
ternalities in the graph model with concave influence.

It is worth noting that, although we prove our result through establishing a
connection to the general threshold model, the final set function that we need
to maximize is not necessarily monotone. Therefore, unlike the viral market-
ing problem in [11,12], we cannot use the greedy (1 − 1

e )-approximation algo-
rithm of Nemhauser, Wolsey, and Fischer [16] for monotone submodular max-
imization subject to cardinality constraints. Instead we use the local search 1

2 -
approximation [3,7] for non-negative submodular maximization. Before stating
the proof of this theorem, we note that the approximation algorithm applies to
a more general setting for the distribution of inherent valuations ωi’s.

Remark 1. Our 1
2 -approximation algorithm holds more generally under the as-

sumption that the inherent valuations ωi are random with distribution Gi with
positive, differentiable, non-decreasing density gi on (0, 1) and, further, that
there is a constant g > 0 such that the gi’s are bounded above by g. Our proof
is given under these assumptions. The obvious open question is to see if the as-
sumption that gi is non-decreasing can be relaxed to a more realistic assumption
like the monotone hazard rate condition.
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Proof. Note that it follows from Chebyshev’s inequality and the fact that the
revenue is bounded by n that our simulated oracle calls are accurate within
1/poly(n) with probability 1− 1/poly(n). Let OPT be the optimal revenue. We
first condition on the edge weights {wij}ij .
Proposition 1 (Submodularity of Yp). Conditioned on the edge weights
{wij}ij, the function Yp is a (not necessarily monotone) non-negative, submod-
ular function.

Proposition 2 (Continuity of Yp). Let δn be a vanishing function of n (pos-
sibly negative) with |δn| = o(n−k) with k ≥ 1. Conditioned on the edge weights
{wij}ij, we have |Yp(S)− Yp+δn(S)| = o(n−k)OPT, for any set S of buyers.

By linearity, both propositions still hold after taking expectation over edge
weights. Theorem 1 then follows from the main result in [3,7] where a
1
2 -approximation algorithm is derived for non-negative submodular maximiza-
tion. The proof of Proposition 2 is omitted for space.

Proof. (of Proposition 1) For any price p and any buyer i, consider the following
set function hi

p : 2V \{i} → R+: for any subset A ⊂ V \{i}, hi
p(A) is the expected

revenue from user i if we give the item for free to set A in the influence stage, and
then set the price p in the second stage. For any set A, Yp(A) =

∑
i∈V \A hi

p(A).
We need the following lemma

Lemma 1. The set functions hi
p for any buyer i are monotone and submodular.

Proof. Fix 0 ≤ p ≤ 1. Let S be a set of buyers. Note that ωi + fi

(∑
j∈S wij

)
≥

p, if and only if fi

(∑
j∈S wij

)
≥ max{0, p − ωi} ≡ ωi,p. Denote by Qi,p the

distribution function of ωi,p. Note that Qi,p(x) = 1 − Gi(p − x), for 0 ≤ x < p
and Qi,p(x) = 1 for x ≥ p. By assumption, on (0, p), Q′

i,p(x) = gi(p − x) > 0
and Q′′

i,p(x) = −g′i(p − x) ≤ 0 so that Qi,p is increasing and concave. Further,
since Qi,p is continuous at p and constant for x ≥ p, Qi,p is non-decreasing and
concave on [0,+∞).

Let Ui, i ∈ V , be independent uniform random variables. We now describe a
mapping of our influence process to a special case of the general threshold model
where a user i adopts a product as soon as Zi(

∑
j∈S wij) ≥ Ui for a concave

function Zi. To transfer the randomness of our inherent valuation to the thresh-
old side of the general threshold model, we use the inverse transform method
where one simulates a random variable X with distribution function H by using
H−1(U) where U is uniform in [0, 1] andH−1 is a generalized inverse function. By

definition of Qi,p, P
[
Qi,p

(
fi

(∑
j∈S wij

))
≥ Ui

]
= P

[
fi

(∑
j∈S wij

)
≥ ωi,p

]
=

P

[
ωi + fi

(∑
j∈S wij

)
≥ p

]
. Since Qi,p and fi are non-decreasing and concave,

the composition Qi,p(fi(·)) is concave as well and Qi,p(fi(
∑

j∈S wij)) is sub-
modular in S. Hence, we have shown that for any fixed p, the dynamics of the
influence stage are equivalent to a submodular general threshold model. In par-
ticular, by the results in [15], we have that hi

p is submodular.
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Proposition 1 then follows from the following lemma whose proof is omitted
(see [9] for a similar lemma).

Lemma 2. If all set functions hi
p for i ∈ V are monotone and sub modular,

then the set function Yp is also sub modular (but not monotone).
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