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Abstract. A bootstrap percolation process on a graph G is an “in-
fection” process which evolves in rounds. Initially, there is a subset of
infected nodes and in each subsequent round each uninfected node which
has at least r infected neighbours becomes infected and remains so for-
ever. The parameter r � 2 is fixed.

We analyse this process in the case where the underlying graph is
an inhomogeneous random graph, which exhibits a power-law degree
distribution, and initially there are a(n) randomly infected nodes. The
main focus of this paper is the number of vertices that will have been
infected by the end of the process. The main result of this work is that
if the degree sequence of the random graph follows a power law with
exponent β, where 2 < β < 3, then a sublinear number of initially
infected vertices is enough to spread the infection over a linear fraction
of the nodes of the random graph, with high probability.

More specifically, we determine explicitly a critical function ac(n) such
that ac(n) = o(n) with the following property. Assuming that n is the
number of vertices of the underlying random graph, if a(n) � ac(n),
then the process does not evolve at all, with high probability as n grows,
whereas if a(n) � ac(n), then there is a constant ε > 0 such that, with
high probability, the final set of infected vertices has size at least εn.
This behaviour is in sharp contrast with the case where the underlying
graph is a G(n, p) random graph with p = d/n. Recent results of Janson,
�Luczak, Turova and Vallier have shown that if the number of initially
infected vertices is sublinear, then with high probability the size of the
final set of infected vertices is approximately equal to a(n). That is,
essentially there is lack of evolution of the process.

It turns out that when the maximum degree is o(n1/(β−1)), then ac(n)
depends also on r. But when the maximum degree is Θ(n1/(β−1)), then

ac(n) = n
β−2
β−1 .
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1 Introduction

Models for the processes by which new ideas and new behaviors propagate
through a population have been studied in a number of domains, including the
epidemiology, political science, agriculture, finance and the effects of word of
mouth (also known as viral marketing) in the promotion of new products. An
idea or innovation appears (for example, the use of a new technology among col-
lege students) and it can either die out quickly or make significant advances into
the population. The hypothesis of viral marketing is that by initially targeting a
few influential members of the network (e.g., by giving them free samples of the
product), we can trigger a cascade of influence by which friends will recommend
the product to other friends, and many individuals will ultimately try it. But
how should we choose the few key individuals to use for seeding this process?
This problem is known as “the influence maximization problem”; hardness re-
sults have been obtained in [29], [30] and there is a large literature on this topic
(see for example [31] and the references therein). However, in most practical
cases, the structure of the underlying network is not known and then one has to
initially target the popular and attractive individuals with many connections.

In this paper, we consider a simple model of diffusion, known as ”bootstrap
percolation model”. Bootstrap percolation was introduced by Chalupa, Leath
and Reich [13] in 1979 in the context of magnetic disordered systems and has
been re-discovered since then by several authors mainly due to its connections
with various physical models. A bootstrap percolation process with activation
threshold an integer r � 2 on a graph G = G(V,E) is a deterministic process
which evolves in rounds. Every vertex has two states: it is either infected or
uninfected. Initially, there is a subset A0 ⊆ V which consists of infected vertices,
whereas every other vertex is uninfected. This set can be selected either deter-
ministically or randomly. Subsequently, in each round, if an uninfected vertex
has at least r of its neighbours infected, then it also becomes infected and re-
mains so forever. This is repeated until no more vertices become infected. We
denote the final infected set by Af .

Bootstrap percolation processes (and extensions) have been used as models
to describe several complex phenomena in diverse areas, from jamming transi-
tions [27] and magnetic systems [24] to neuronal activity [3], [26] and spread of
defaults in banking systems (see e.g. [4] with a more refined model). A short
survey regarding applications of bootstrap percolation processes can be found
in [1].

In the context of real-world networks and in particular in social networks, a
bootstrap percolation process can be thought of as a primitive model for the
spread of ideas or new trends within a set of individuals which form a network.
Each of them has a threshold r and A0 corresponds to the set of individuals
who initially are “infected” with a new belief. If for an “uninfected” individual
at least r of its acquaintances have adopted the new belief, then this individual
adopts it as well. Bootstrap percolation processes have also been studied on a
variety of graphs, such as trees [8], [18], grids [12], [20], [7], [6], hypercubes [5],
as well as on several distributions of random graphs [9], [22], [2].
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More than a decade ago, Faloutsos et al. [17] observed that the Internet ex-
hibits a power-law degree distribution, meaning that the proportion of vertices
of degree k scales like k−β, for all sufficiently large k, and some β > 2. In par-
ticular, the work of Faloutsos et al. [17] suggested that the degree distribution
of the Internet at the router level follows a power law with β ≈ 2.6. Kumar et
al. [23] also provided evidence on the degree distribution of the World Wide Web
viewed as a directed graph on the set of web pages, where a web page “points”
to another web page if the former contains a link to the latter. They found that
the indegree distribution follows a power law with exponent approximately 2.1,
whereas the outdegree distribution follows also a power law with exponent close
to 2.7. Other empirical evidence on real-world networks has provided examples
of power law degree distributions with exponents between 2 and 3.

Thus, in the present work, we focus on the case where 2 < β < 3. More
specifically, the underlying random graph distribution we consider was intro-
duced by Chung and Lu [14], who invented it as a general purpose model for
generating graphs with a power-law degree sequence. Consider the vertex set
[n] := {1, . . . , n}. Every vertex i ∈ [n] is assigned a positive weight wi, and the
pair {i, j}, for i �= j ∈ [n], is included in the graph as an edge with probability
proportional to wiwj , independently of every other pair. Note that the expected
degree of i is close to wi. With high probability the degree sequence of the re-
sulting graph follows a power law, provided that the sequence of weights follows
a power law (see [28] for a detailed discussion). Such random graphs are also
characterized as ultra-small worlds, due to the fact that the typical distance of
two vertices that belong to the same component is O(log logn) – see [15] or [28].

Regarding the initial conditions of the bootstrap percolation process, our gen-
eral assumption will be that the initial set of infected vertices A0 is chosen
randomly among all subsets of vertices of a certain size.

The aim of this paper is to analyse the evolution of the bootstrap percola-
tion process on such random graphs and, in particular, the typical value of the
ratio |Af |/|A0|. The main finding of the present work is the existence of a crit-
ical function ac(n), which is sublinear, such that when |A0| “crosses” ac(n) we
have a sharp change on the evolution of the bootstrap percolation process. When
|A0| � ac(n), then typically the process does not evolve, but when |A0| � ac(n),
then a linear fraction of vertices is eventually infected. Of course the non-trivial
case here is when |A0| is sublinear. What turns out to be the key to such a dis-
semination of the infection is the vertices of high weight. These are typically the
vertices that have high degree in the random graph and, moreover, they form a
fairly dense graph. We exploit this fact and show how this causes the spread of
the infection to a linear fraction of the vertices (see Theorem 2 below). Interpret-
ing this from the point of view of a social network, these vertices correspond to
popular and attractive individuals with many connections – these are the hubs
of the network. Our analysis sheds light to the role of these individuals in the
infection process.

These results are in sharp contrast with the behaviour of the bootstrap perco-
lation process in G(n, p) random graphs, where every edge on a set of n vertices
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is included independently with probability p. Recently, Janson, �Luczak, Turova
and Vallier [22] came up with a complete analysis of the bootstrap percolation
process for various ranges of the probability p. Since the random graphs we
consider have constant average degree, we focus on their findings regarding the
range where p = d/n and d > 0 is fixed. Among the findings of Janson et al. [22]
(see Theorem 5.2 there) is that when |A0| = o(n), then typically the process
essentially does not evolve. More precisely, the ratio |Af |/|A0| converges to 1
in probability – see below for the definition of this notion. In other words, the
density of the initially infected vertices must be positive in order for the density
of infected vertices to grow. We note that similar behavior to the case of G(n, p)
has been observed in the case of random regular graphs [9], and in random
graphs with given vertex degrees constructed through the configuration model,
studied by the first author in [2], when the sum of the square of degrees scales
linearly with n, the size of the graph. The later case includes random graphs
with power-law degree sequence with exponent β > 3. Our results imply that
the two regimes 2 < β < 3 and β > 3 have completely different behaviors.

Basic Notations. Let R+ be the set of positive real numbers. For non-negative
sequences xn and yn, we describe their relative order of magnitude using Lan-
dau’s o(.) and O(.) notation. We write xn = O(yn) if there exist N ∈ N and
C > 0 such that xn � Cyn for all n � N , and xn = o(yn), if xn/yn → 0, as
n → ∞. We also write xn � yn when xn = o(yn) and xn � yn when yn = o(xn).

Let {Xn}n∈N be a sequence of real-valued random variables on a sequence of

probability spaces {(Ωn,Pn)}n∈N. If c ∈ R is a constant, we write Xn
p→ c to

denote that Xn converges in probability to c. That is, for any ε > 0, we have
Pn(|Xn − c| > ε) → 0 as n → ∞.
Let {an}n∈N be a sequence of real numbers that tends to infinity as n → ∞.
We write Xn = op(an), if |Xn|/an converges to 0 in probability. Additionally, we
write Xn = Op(an), to denote that for any positive-valued function ω(n) → ∞,
as n → ∞, we have P(|Xn|/an � ω(n)) = o(1). If En is a measurable subset
of Ωn, for any n ∈ N, we say that the sequence {En}n∈N occurs asymptotically
almost surely (a.a.s.) if P(En) = 1 − o(1), as n → ∞.

Also, we denote by Be(p) a Bernoulli distributed random variable whose prob-
ability of being equal to 1 is p. The notation Bin(k, p) denotes a binomially dis-
tributed random variable corresponding to the number of successes of a sequence
of k independent Bernoulli trials each having probability of success equal to p.

2 Models and Results

The random graph model that we consider is asymptotically equivalent to a
model considered by Chung and Lu [15], and is a special case of the so-called
inhomogeneous random graph, which was introduced by Söderberg [25] and was
generalised and studied in great detail by Bollobás, Janson and Riordan in [11].
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2.1 Inhomogeneous Random Graphs – The Chung-Lu Model

In order to define the model we consider for any n ∈ N the vertex set [n] :=
{1, . . . , n}. Each vertex i is assigned a positive weight wi(n), and we will write
w = w(n) = (w1(n), . . . , wn(n)). We assume in the remainder that the weights
are deterministic, and we will suppress the dependence on n, whenever this is
obvious from the context. However, note that the weights could themselves be
random variables; we will not treat this case here, although it is very likely that
under suitable technical assumptions our results generalize to this case as well.
For any S ⊆ [n], set

WS(w) :=
∑

i∈S

wi.

In our random graph model, the event of including the edge {i, j} in the resulting
graph is independent of the events of including all other edges, and equals

pij(w) = min

{
wiwj

W[n](w)
, 1

}
. (1)

This model was considered by Chung et al., for fairly general choices of w, who
studied in a series of papers [14–16] several typical properties of the resulting
graphs, such as the average path length or the component distribution. We will
refer to this model as the Chung-Lu model, and we shall write CL(w) for a
random graph in which each possible edge {i, j} is included independently with
probability as in (1). Moreover, we will suppress the dependence on w, if it is
clear from the context which sequence of weights we refer to.

Note that in a Chung-Lu random graph, the weights essentially control the ex-
pected degrees of the vertices. Indeed, if we ignore the minimization in (1), and
also allow a loop at vertex i, then the expected degree of that vertex is∑n

j=1 wiwj/W[n] = wi. In the general case, a similar asymptotic statement is true,
unless the weights fluctuate too much. Consequently, the choice of w has a signifi-
cant effect on the degree sequence of the resulting graph. For example, the authors
of [15] choose wi = dβ−2

β−1 ( n
i+i0

)1/(β−1), which typically results in a graph with a
power-law degree sequence with exponent β, average degree d, and maximum de-
gree proportional to (n/i0)

1/(β−1), where i0 was chosen such that this expression
is O(n1/2). Our results will hold in a more general setting, where larger fluctua-
tions around a “strict” power law are allowed, and also larger maximum degrees
are possible, thus allowing a greater flexibility in the choice of the parameters.

2.2 Power-Law Degree Distributions

Following van der Hofstad [28], let us write for any n ∈ N and any sequence of
weights w = (w1(n), . . . , wn(n))

Fn(x) = n−1
n∑

i=1

1[wi(n) < x], ∀x ∈ [0,∞)

for the empirical distribution function of the weight of a vertex chosen uniformly
at random. We will assume that Fn satisfies the following two conditions.
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Definition 1. We say that (Fn)n�1 is regular, if it has the following two
properties.

– [Weak convergence of weight] There is a distribution function F : [0,∞)→
[0, 1] such that for all x at which F is continuous limn→∞ Fn(x) = F (x);

– [Convergence of average weight] Let Wn be a random variable with dis-
tribution function Fn, and let WF be a random variable with distribution
function F . Then we have limn→∞ E [Wn ] = E [WF ].

The regularity of (Fn)n�1 guarantees two important properties. Firstly, the weight
of a random vertex is approximately distributed as a random variable that follows
a certain distribution. Secondly, this variable has finite mean and therefore the
resulting graph has bounded average degree. Apart from regularity, our focus will
be on weight sequences that give rise to power-law degree distributions.

Definition 2. We say that a regular sequence (Fn)n�1 is of power law with
exponent β, if there are 0 < γ1 < γ2, x0 > 0 and 0 < ζ � 1/(β − 1) such that
for all x0 � x � nζ

γ1x
−β+1 � 1 − Fn(x) � γ2x

−β+1,

and Fn(x) = 0 for x < x0, but Fn(x) = 1 for x > nζ.

Thus, we may assume that for 1 � i � n(1 − Fn(nζ)) we have wi = nζ , whereas
for (1 − Fn(nζ))n < i � n we have wi = [1 − Fn]−1(i/n), where [1 − Fn]−1 is
the generalized inverse of 1−Fn, that is, for x ∈ [0, 1] we define [1−Fn]−1(x) =
inf{s : 1 − Fn(s) < x}. Note that according to the above definition, for ζ >
1/(β − 1), we have n(1−Fn(nζ)) = 0, since 1−Fn(nζ) � γ2n

−ζ(β−1) = o(n−1).
So it is natural to assume that ζ � 1/(β − 1). Recall finally that in the Chung-Lu
model [15] the maximum weight is O(n1/2).

2.3 Results

The main theorem of this paper regards the random infection of the whole of
[n]. We determine explicitly a critical function which we denote by ac(n) such
that when we infect randomly a(n) vertices in [n], then the following threshold
phenomenon occurs. If a(n) � ac(n), then a.a.s. the infection spreads no further
than A0, but when a(n) � ac(n), then at least εn vertices become eventually
infected, for some ε > 0. We remark that ac(n) = o(n).

Theorem 1. For any β ∈ (2, 3) and any integer r � 2, we let

ac(n) = n
r(1−ζ)+ζ(β−1)−1

r (2)

for all n ∈ N. Let a : N → N be a function such that a(n) → ∞, as n → ∞, but
a(n) = o(n). Let also r−1

2r−β+1 < ζ � 1
β−1 . If we initially infect randomly a(n)

vertices in [n], then the following holds:



468 H. Amini and N. Fountoulakis

– if a(n) � ac(n), then a.a.s. Af = A0;
– if a(n) � ac(n), then there exists ε > 0 such that a.a.s. |Af | > εn.

Note that the above theorem implies that when the maximum weight of the

sequence is n1/(β−1), then the threshold function becomes equal to n
β−2
β−1 and

does not depend on r.
The second theorem has to do with the targeted infection of a(n) vertices

where a(n) → ∞, as n → ∞. Let f : N → R
+ be a function. We define the

f -kernel to be
Kf := {i ∈ [n] : wi � f(n)}.

We will denote by CL[Kf ] the subgraph of CL(w) that is induced by the vertices
of Kf . We show that there exists a function f such that if we infect randomly
a(n) vertices of Kf , then this is sufficient to infect almost the whole of the C-
kernel, for some constant C > 0, with high probability. In other words, the gist
of this theorem is that there is a specific part of the random graph of size o(n)
such that if the initially infected vertices belong to it, then this is enough to
spread the infection to a positive fraction of the vertices.

Theorem 2. Let a : N → N be a function such that a(n) → ∞, as n → ∞, but
a(n) = o(n). Assume also r−1

2r−β+1 < ζ � 1
β−1 . If β ∈ (2, 3), then there exists

an ε0 = ε0(β, γ1, γ2) such that for any positive ε < ε0 there exists a constant
C = C(γ1, γ2, β, ε, r) > 0 and a function f : N → R

+ such that f(n) → ∞
as n → ∞ but f(n) � nζ satisfying the following. If we infect randomly a(n)
vertices in Kf , then at least (1 − ε)|KC | vertices in KC become infected a.a.s.

In both theorems, the sequence of probability spaces we consider are the product
spaces of the random graph together with the random choice of A0.

We finish this section, by stating the result of [2] concerning bootstrap per-
colation in the case of power-law random graphs with exponent β > 3. (Note
that the result in [2] is stated for random graphs with given vertex degrees con-
structed through the configuration model.) We assume that at time zero each
node becomes infected with probability α independently of all the other vertices.
Then if pk denotes the fraction of nodes with degree k and pk ∝ k−β for β > 3,
the final fraction of infected nodes satisfies

|Af |
n

p−→ 1 − (1 − α)
∑

k

pkP(Bin(k, 1 − y∗) < r),

where y∗ is the largest solution in [0, 1] to the following fixed point equation

y2
∑

k

kpk = (1 − α)y
∑

k

kpkP(Bin(k − 1, 1 − y) < r).

Our results imply that the two regimes 2 < β < 3 and β > 3 have completely
different behaviors.

3 Proof of Theorem 1

In this section we present a sketch of the proof of Theorem 1.
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3.1 Subcritical Case

We will use a first moment argument to show that if a(n) = o(ac(n)), then
a.a.s. there are no vertices outside A0 that have at least r neighbours in A0

and, therefore, the bootstrap percolation process does not actually evolve. Here
we assume that initially each vertex becomes infected with probability a(n)/n,
independently of every other vertex.

For every vertex i ∈ [n], we define an indicator random variable Xi which is
1 precisely when vertex i has at least r neighbours in A0. Let X =

∑
i∈[n] Xi.

Our aim is to show that E [X ] = o(1), thus implying that a.a.s. X = 0.
For i ∈ [n] let pi = E [Xi ] = P [Xi = 1 ]. We will first give an upper bound on

pi and, thereafter, the linearity of the expected value will conclude our statement.

Lemma 1. For all integers r � 2 and all i ∈ [n], we have

pi �
(
ewia(n)

rn

)r

.

From this, we can use the linearity of the expected value to deduce an upper
bound on E [X ]. We have

E [X ] =
∑

i∈[n]

pi �
∑

i∈[n]

(
ewia(n)

rn

)r

= o

((
ac(n)

n

)r) ∑

i∈[n]

wr
i . (3)

We now need to give an estimate on
∑

i∈[n] w
r
i .

Claim. For all integers r � 2 and for β ∈ (2, 3) we have

∑

i∈[n]

wr
i = Θ

(
n1+ζ(r−β+1)

)
.

Substituting this bound into the right-hand side of (3), we obtain:

E [X ] = o

(
nr(1−ζ)+ζ(β−1)−1

nr
n1+ζ(r−β+1)

)
.

But
r(1 − ζ) + ζ(β − 1) − 1 − r + 1 + ζ(r − β + 1) = 0,

thus implying that E [X ] = o(1).

3.2 Supercritical Case

We begin with stating a recent result due to Janson, �Luczak, Turova and Val-
lier [22] regarding the evolution of bootstrap percolation processes on Erdős-
Rényi random graphs, as these will be needed in our proofs. These results re-
gard the binomial model G(N, p) introduced by Gilbert [19] and subsequently
became a major part of the theory of random graphs (see [10] or [21]). Here N is
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a natural number and p is a real number that belongs to [0, 1]. We consider the
set [N ] =: {1, . . . , N} and create a random graph on the set [N ], including each
pair {i, j}, where i �= j ∈ [N ], independently with probability p. The following
theorem from [22] considers the bootstrap percolation process on G(N, p), when
p as a function of N does not decay too quickly.

Theorem 3 (Theorem 5.8 [22]). Let r � 2 and assume that initially a uni-
formly random subset of [N ] that has size a(N) becomes infected. If p � N−1/r

and a(N) � r, then a.a.s. |Af | = N .

Now we proceed with the proof of Theorem 1. In this part of the proof, we
shall be assuming that ac(n) = o(a(n)). Additionally, we shall assume that the
initially infected set is the set of the a(n) vertices of smallest weight.

We will show first that there exists a function f : N → R
+ such that f(n) → ∞

as n → ∞ but f(n) = o(nζ) for which a.a.s. Kf will become completely infected.
This is where we use Theorem 3. More precisely, the subgraph of CL(w) that is
induced by the vertices of Kf , which we denote by CL[Kf ], stochastically con-
tains G(Nf , pf ), where Nf = |Kf | and pf is a lower bound on the probability that
two vertices in Kf are adjacent – essentially pf is equal to min{f2(n)/W[n], 1}.
That is, one can construct a probability space that accommodates both CL(Kf )
and G(Nf , pf ), on the same vertex set and with the correct distributions, in such
a way that always the latter is a subgraph of the former.

We then show that any given vertex in Kf has at least r neighbours in A0

with some probability pInf which we determine later in (4). In other words, each
vertex in Kf becomes infected in one round with probability pInf independently
of every other vertex. Hence, as we may consider G(Nf , pf ) as a subgraph of
CL[Kf ] on the same vertex set, we deduce that the final set of infected vertices
in Kf is bounded from below by the size of the final set of infected vertices in
a bootstrap percolation process on G(Nf , pf ), assuming that the set of initially
infected vertices is the set of vertices which have at least r neighbours in A0. We
will show that pInf , Nf and pf satisfy the premises of Theorem 3, whereby we
will deduce that in fact Kf becomes completely infected a.a.s. Thereafter, we use
the following proposition, whose proof is rather lengthy and technical and, for
this reason, we omit it. We consider a bootstrap percolation process on CL(w)
where the initially infected set is a large subset of Kf .

Proposition 1. Let r � 2 and let f : N → R
+ be a function such that f(n) → ∞

as n → ∞ but f(n) = o(nζ). Then there exists an ε0 = ε0(β, γ1, γ2) > 0 such
that for any positive ε < ε0 there exists C = C(γ1, γ2, β, ε, r) > 0 for which the
following holds. If (1 − ε)|Kf | vertices of Kf have been infected, then a.a.s. at
least (1 − ε)|KC | vertices of KC become infected.

We deduce by above proposition that there exists a real number C > 0 such
that with high probability KC will be almost completely infected. This and
Definition 2 imply that there exists an ε > 0 such that a.a.s. at least εn vertices
become infected.
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Spreading the Infection to a Positive Fraction of the Vertices. We begin
with determining the function f . To this end, we need to bound from below the
probability that an arbitrary vertex in Kf becomes infected. In fact, we shall
bound from below the probability that an arbitrary vertex in Kf will become
infected already in the first round. Note that this amounts to bounding the prob-
ability that such a vertex has at least r neighbours in A0. Therefore, this forms a
collection of independent events which is equivalent to the random independent
infection of the vertices of Kf with probability equal to the derived lower bound.
Recall that the random graph induced on Kf stochastically contains an Erdős-
Rényi random graph with the appropriate parameters. This observation allows
us to determine f . To be more specific, if the probability that any given vertex in
Kf exceeds the complete infection threshold of this Erdős-Rényi random graph
and the premises of Theorem 3 is satisfied, then a.a.s. Kf eventually becomes
completely infected.

Under the assumption that A0 consists of the a(n) vertices of smallest weight,
we will bound from below the probability a vertex v ∈ Kf has at least r neigh-
bours in A0. We denote the degree of v in A0 by dA0(v) and note that this

random variable is equal to
∑

i∈A0
Be

(
wvwi

W[n]

)
, where the summands are inde-

pendent Bernoulli distributed random variables. Note also that for all n and for
all i ∈ [n] we have wi � x0. Thus, we can deduce the following (parts of it hold
for n sufficiently large)

P

[
∑

i∈A0

Be

(
wvwi

W[n]

)
� r

]
� P

[
∑

i∈A0

Be

(
wvx0

W[n]

)
� r

]

= P

[
Bin

(
a(n),

wvx0

W[n]

)
� r

]

�
(
a(n)

r

) (
wvx0

W[n]

)r (
1 − wvx0

W[n]

)a(n)−r

� a(n)r

1.5 r!

(
f(n)x0

W[n]

)r (
1 − f(n)x0

W[n]

)a(n)−r

.

Thus, assuming that a(n)f(n) = o(n) we have

(
1 − f(n)x0

W[n]

)a(n)−r

= 1 − o(1).

Therefore, for n sufficiently large

P

[
∑

i∈A0

Be

(
wvwi

W[n]

)
� r

]
� 1

2r!

(
a(n)f(n)x0

W[n]

)r

=: pInf . (4)

Thus, every vertex of Kf becomes infected during the first round with probability
at least pInf , independently of every other vertex in Kf .
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Recall that 2r−β+1
r−1 � ζ � 1

β−1 and ac(n) = n
r(1−ζ)+ζ(β−1)−1

r . Let us assume

that a(n) = ω(n)n
r(1−ζ)+ζ(β−1)−1

r , where ω : N → R
+ is some increasing function

that grows slower than any polynomial. Setting f = f(n) = nζ

ω1+1/r(n)
, we will

consider CL[Kf ]. Before doing so, we will verify the assumption that a(n)f(n) =
o(n). Indeed, we have

a(n)f(n) =
1

ω1/r(n)
n

r(1−ζ)+ζ(β−1)−1
r +ζ .

But

r(1 − ζ) + ζ(β − 1) − 1

r
+ ζ =

r(1 − ζ) + ζ(β − 1) − 1 + rζ

r

= 1 +
ζ(β − 1) − 1

r
� 1,

since ζ � 1/(β − 1), whereby a(n)f(n) � n
ω1/r(n)

= o(n).

Now, note that if ζ > 1
2 , then CL[Kf ] is the complete graph on |Kf | vertices.

However, when ζ � 1
2 , then CL[Kf ] stochastically contains G(Nf , pf ), where

Nf = |Kf | and pf = f2(n)
W[n]

. We will treat these two cases separately.

Case I : 1
2 < ζ � 1

β−1 .

In this case, as CL[Kf ] is the complete graph, it suffices to show that with
high probability at least r vertices of Kf become infected already at the first
round. In fact, we will show that the expected number of vertices of Kf that
become infected during the first round tends to infinity as n grows. Note that
this number is equal to NfpInf . Thus, once we show that NfpInf → ∞, as
n → ∞, then Chebyschev’s inequality or a standard Chernoff bound can show
that with probability 1 − o(1), there are at least r infected vertices in Kf and,
thereafter, the whole of Kf becomes infected in one round.

By Definition 2 we have

Nf = |Kf | = Ω

(
n

(
ω(n)

nζ

)β−1
)
,

and by (4) we have

pInf = Θ

(
1

ω(n)

(
n

r(1−ζ)+ζ(β−1)−1
r · nζ

n

)r)
= Θ

(
nζ(β−1)−1

ω(n)

)
.

Hence
NfpInf = Ω

(
ωβ−2(n)

)
.

Case II : r−1
2r−β+1 < ζ � 1

2 .

As we mentioned above, CL[Kf ] stochastically contains G(Nf , pf ), where

pf = f2(n)
W[n]

, as ζ � 1
2 . We will show that here Nfp

r
f → ∞ as n → ∞ and

by Theorem 3 we deduce that Kf becomes completely infected with probability
1 − o(1). We have
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Nfp
r
f = Θ

(
ωβ−1(n)n1−ζ(β−1) n2ζr

ω2r+2(n)nr

)
. (5)

and the expression on the right-hand side is

ω−(2r−β+3)(n)n−(r−1)+ζ(2r−β+1) → ∞,

by our assumption on ζ.
For each one of the above cases, Proposition 1 implies that for any real ε > 0

that is small enough there exists a real number C = C(γ1, γ2, β, ε) > 0 such
that a.a.s. at least (1 − ε)|KC | vertices of KC become infected. But we have
|KC | = Θ(n) and the second part of Theorem 1 follows.

4 Conclusion

In this paper, we analyse the evolution of a bootstrap percolation process in a class
of inhomogeneous random graphs which exhibits a power law degree distribution
with exponent β between 2 and 3. The main result of this work is that a sublinear
initially infected set is enough to spread the infection to a linear fraction of vertices
of the random graph. We further explore the role of hub vertices of the random
graph and demonstrate their function in the evolution of the process.

Acknowledgment. We would like to thank Rob Morris for drawing our atten-
tion to an oversight in an earlier version of this paper.
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21. Janson, S., �Luczak, T., Ruciński, A.: Random graphs. Wiley-Interscience Series in
Discrete Mathematics and Optimization. Wiley Interscience, New York (2000)

22. Janson, S., �Luczak, T., Turova, T., Vallier, T.: Bootstrap percolation on the
random graph Gn,p. To Appear in The Annals of Applied Probability (2010),
http://arxiv.org/abs/1012.3535

23. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Extracting large scale
knowledge bases from the web. In: Proceedings of the 25th VLDB Conference, pp.
639–650 (1999)

24. Sabhapandit, S., Dhar, D., Shukla, P.: Hysteresis in the random-field Ising model
and bootstrap percolation. Physical Review Letters 88(19), 197202 (2002)
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29. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: KDD 2003: Proceedings of the Ninth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM,
New York (2003)

30. Chen, N.: On the approximability of influence in social networks. SIAM Journal
on Discrete Mathematics 23(3), 1400–1415 (2009)

31. Kleinberg, J.: Cascading behavior in networks: algorithmic and economic issues. In:
Algorithmic Game Theory, pp. 613–632. Cambridge University Press, Cambridge
(2007)

http://arxiv.org/abs/1012.3535
http://www.win.tue.nl/rhofstad/NotesRGCN2011.pdf

	What I Tell You Three Times Is True:Bootstrap Percolation in Small Worlds
	Introduction
	Models and Results
	Inhomogeneous Random Graphs – The Chung-Lu Model
	Power-Law Degree Distributions
	Results

	Proof of Theorem 1
	Subcritical Case
	Supercritical Case

	Conclusion
	References




