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Abstract. We study a game-theoretic model for the diffusion of competing prod-
ucts in social networks. Particularly, we consider a simultaneous non-cooperative
game between competing firms that try to target customers in a social network.
This triggers a competitive diffusion process, and the goal of each firm is to max-
imize the eventual number of adoptions of its own product. We study issues of
existence, computation and performance (social inefficiency) of pure strategy
Nash equilibria in these games. We mainly focus on 2-player games, and we
model the diffusion process using the known linear threshold model. Nonethe-
less, many of our results continue to hold under a more general framework for
this process.

1 Introduction

A large part of research on social networks concerns the topic of diffusion of informa-
tion (e.g., ideas, behaviors, trends). Mathematical models for diffusion processes have
been proposed ever since [11, 19] and also later in [9]. Given such a model, some of
the earlier works focused on the following optimization problem: find a set of nodes
to target so as to maximize the spread of a given product (in the absence of any com-
petitors). This problem was initially studied by Domingos and Richardson [8], Kempe
et al. [13], and subsequently by [6, 18]. Their research builds on a “word-of-mouth”
approach, where the initial adopters influence some of their friends, who in turn rec-
ommend it to others, and eventually a cascade of recommendations is created. Within
this framework, finding the most influential set of nodes is NP-hard, and approximation
algorithms as well as heuristics have been developed for various models.

Different considerations, however, need to be made in the presence of multiple com-
peting products in a market. In real networks, customers end up choosing a product
among several alternatives. Hence, one natural approach to model this competitive pro-
cess is the use of game-theoretic analysis with the players being the firms that try to
market their product. The game-theoretic approaches that have been proposed along
this direction mainly split into two types. The first is to view the process as a Stack-
elberg game, where the competitors of a product first choose their strategy, and then a
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last mover needs to make a decision on the set of nodes to target [3–5, 14]. This ap-
proach essentially reduces to the algorithmic question of finding the best response for
the firm that moves last. The main results that have been obtained along this direction
is that, in certain cases, the algorithm of [13], for the case of a single product, can be
applied in the competitive environment as well. For more models and related problems
under this context see also [2]. A different approach is to capture the competition as
a simultaneous game, where firms pick their initial set of nodes at the same time, and
then the diffusion process follows (after first taking care of ties). This was first proposed
in [1], and has also been studied very recently by [10]. The approach of [1] and [10] as
a noncooperative normal-form game is the focus of our work as well.

1.1 Contributions

Our work is an attempt to further understand game theoretic aspects of viral marketing.
To this end, we first define in Section 2 a general framework for a competitive diffusion
process in a social network, generalizing the model of [1]. This corresponds to a class of
non-cooperative games where firms target customers in order to maximize the spread of
their own product. We study issues of existence, computation, and performance (social
inefficiency) of pure Nash equilibria (PNE). The games we define are one-stage games,
as in [1, 10], i.e., all firms spend their budget in one step, a fact that renders natural the
analysis of PNE. We use as instantiations of the competitive diffusion process the well-
known linear threshold model, however some of our results also hold for more general
local interaction schemes.

In more detail, we mostly deal with 2-player games, as in [10], and in Section 3 we
first illustrate that such games may not possess PNE, even for simple graphs. On top
of that, we also prove that it is co-NP-hard to decide whether a PNE exists for a given
game. We then move on to investigate conditions for the existence of PNE. In Section
4, we begin with studying the improvement paths induced by our games. We exhibit
that networks with special in and out-degree distributions — e.g. power law — are not
expected to be more stable than others, in the sense that all possible dynamics can be
realized essentially by any graph. Motivated by all these, we then focus on sufficient
conditions for the existence of PNE via generalized ordinal potential functions. We
also consider ε-approximate generalized ordinal potentials, and we provide tight upper
bounds on the existence of such approximations, as well as, polynomial time algorithms
for computing approximate PNE. Finally, we study the Price of Anarchy and Stability
for games with an arbitrary number of players, and we show that PNE (when they exist)
can be quite inefficient. We conclude with a discussion of the effects on the payoff of a
single player (or a coalition of players), as the number of competitors increases.

We view as one of the main contributions the fact that we unveil new decisive fac-
tors for the existence of PNE that are intertwined with structural characteristics of the
underlying network. For example, some of the factors that play a role in our model for
obtaining generalized ordinal potentials (exact, or approximate) involve i) the diffusion
depth of a game (defined in Section 2 as the maximum possible duration of the diffusion
process), ii) the ideal spread (defined as the maximum possible spread that a strategy
can achieve) and iii) the diffusion collision factor (defined in Section 4.3 as a measure
for comparing how two strategies of one player perform against a given strategy of
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another player). We advocate that our results motivate further empirical research on
social networks for identifying a typical range of these quantities in real networks. Re-
garding the diffusion depth, some empirical research has already provided new insights
for certain recommendation networks [15].

1.2 Related Work

Our work has been largely motivated by [1], (see also the erratum [21]). To the best of
our knowledge, this was the first article to consider such games over networks with the
players being the firms. The diffusion process of [1] is a special case of our model, in
particular, it is a linear threshold model where each firm is allowed to target only one
node as a seed, and the thresholds and the weights are equal to 1/|N(v)| (with N(v)
being the neighborhood of v). We consider the general class of linear threshold models,
and in some cases our results hold even for arbitrary local interaction schemes beyond
threshold models. In [1] the existence of equilibria is linked to bounding the diameter
of the graph. In our model we find that the diameter is not much correlated to existence.
Instead we identify other parameters that influence the existence of equilibria.

Besides [1], a very recent related work is [10]. One of the major differences be-
tween [10] and our work is that they study the set of mixed Nash equilibria of a similar
diffusion game, and focus on the Price of Anarchy, and another measure denoted as the
Budget Multiplier. We, on the other hand, focus on pure Nash equilibria. Another differ-
ence is that [10] is studying stochastic processes whereas our local interaction schemes
induce deterministic processes, as in [1].

Other game-theoretic approaches have also been considered for social networks. One
line of work concerns models of Stackelberg games as mentioned earlier [3–5, 14]. A
different approach is to consider a game where the players are the individual nodes of
the network, who have a utility function depending on their own choice, and that of
their neighbors, see e.g., [17, 20]. This leads to very different considerations.

2 Preliminaries

2.1 Social Networks

The underlying structure of the social network is assumed static, and is modeled by a
fixed finite directed graph G = (V, E) with no parallel edges and no self-loops. Each
node v ∈ V represents an individual within the social network, while each directed
edge (u, v) ∈ E represents that v can be influenced by u. We assume that there are two
competing products (or trends, ideas, behavioral patterns) produced by two different
firms M = {1, 2}, and to each such product we assign a distinct color. Throughout
this work, we shall use the terms product, color, and firm interchangeably. Further, each
node can have at most one color, and as with most of the literature, we assume that all
decisions are final; i.e., no node that has adopted a particular product will later alter its
decision. Moreover, if a node has adopted a product, we shall refer to it as colored, or
infected, otherwise we will call it a white node.

We denote the (in-)neighbors of a node v as N(v) = {u ∈ V |(u, v) ∈ E}, i.e., N(v)
is the set of nodes that can influence v. Also, we denote as din

v and dout
v the in-degree and
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out-degree of v. The way that a node v can be influenced by N(v) is usually described
by a local interaction scheme (LIS). Hence, a local interaction scheme is essentially
a function that takes as input a node v, the status of its neighbors, a product c under
consideration, and possibly other characteristics of the graph, and determines if node
v is eligible to adopt this product. An example of a LIS, that was initially studied for
the spread of a single product, is the linear threshold model (LTM) [11, 19]. Under
LTM, there is a weight wuv ∈ [0, 1] for every edge (u, v) such that for every node v, it
holds that

∑
u∈N(v) wuv ≤ 1. Every node v also has a threshold value θv ∈ (0, 1]. The

condition that needs to hold, under LTM, so that node v can adopt a product c is

∑

u∈N(v)

Iuwuv ≥ θv,

where Iu is 1 if u has already adopted product c, and zero otherwise. Note that in a local
interaction scheme, the eligibility condition may hold for more than one product at a
given time (e.g., under LTM this could happen if θv < 1/2 for some node v).

Given a local interaction scheme, and a set of competing firms, we consider the
following competitive diffusion process, which evolves over discrete time steps:

The diffusion process. Initially each firm tries to infect a set of “seeds”. The number of
seeds for each firm may depend on its budget for advertising and marketing. We assume
here that the firms have the same power so that in the beginning they can target a set
of k nodes each (we think of k as being much smaller than |V | but not necessarily a
constant).

– At time step t = 0: This is the initiation step. In the beginning, all nodes are
colored white. If a node v was targeted by a single firm c, then v adopts product c.
Since each firm may pick to target an arbitrary set of k nodes, some overlaps may
also occur. Thus, we assume that a tie-breaking criterion TBC1 is applied to resolve
such dilemmas. This may be a global rule, or a rule that depends on each node.

– At any time step t > 0: We look at each remaining white node and check if it is
eligible to adopt any of the products, i.e., if the adoption condition, as determined by
LIS, holds. For this, we take into account only the neighbors of v that were infected
up until time step t − 1, hence the order with which we examine the white nodes
does not matter. During this process, a white node v may be eligible to adopt more
than one product. To resolve such dilemmas a second tie-breaking criterion TBC2
should be considered. The process terminates at a time step t, when no white node
is eligible to adopt any product. We allow that TBC1 may differ from TBC2, since
TBC2 may depend on specific features of the diffusion process, whereas TBC1
occurs only at the initiation step.

A particular instance of a tie-breaking criterion, that we shall often use, is the rule that
is also used in [12, 17], where ties are resolved in favor of the “best quality” product:
all the individuals within the social network share a common reputation ordering, say
R≺ ≡ 1 � 2, over the products and in case of ties they decide according to R≺. We
shall also see later that some of our results are independent of the tie-breaking rules.
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Note 1. All definitions above can be generalized in a straightforward manner to an ar-
bitrary number of m firms, i.e., M = {1, . . . , m}. In Section 3 and Section 4 we focus
mostly on the 2-player case. Section 5 deals with arbitrary m-player games as well.

Definition 1. A social network N is defined through the tuple (G,LIS,TBC1,TBC2).

2.2 Strategic Games Induced by Diffusion Processes

A game Γ = (N , M, k) is induced by a social network N = (G,LIS,TBC1,TBC2)
and the set of firms M = {1, . . . , m}, which we shall refer to as a diffusion game.
In a diffusion game, all participating firms choose simultaneously a set of k seeds,
which then triggers a diffusion process according to the interaction scheme and tie-
breaking criteria of N . We denote as S = {S : |S| = k} the set of available strate-
gies, which is the same for each firm. We shall use the phrases strategy S and sub-
set S interchangeably. A pure strategy profile is a vector s = (S1, . . . , Sm) ∈ Sm,
where Si corresponds to the strategy played by player i ∈ M. Also, we set s−i ≡
{S1, . . . , Si−1, Si+1, . . . , Sm}.

Given a strategy profile s ∈ Sm, the utility of firm i ∈ M, denoted by ui(s), is the
total number of nodes that have been colored by firm i at the end of the competitive
diffusion process. We denote the associated game matrix as Π(Γ ). Moreover, a pure
strategy profile s ∈ Sm is a pure Nash equilibrium (PNE) of game Γ if ui(S′

i, s−i) ≤
ui(s), ∀i and ∀S′

i.
An important parameter in our games is the so-called diffusion depth defined below.

Definition 2. The diffusion depth D(Γ ) of a game Γ is defined as the maximum num-
ber of time steps that the competitive diffusion process may need, where the maximum
is taken over all strategy profiles s ∈ Sm.

Observe that the diffusion depth can take values either lower, equal, or greater than the
diameter of the underlying graph G.

Another important notion in our analysis is defined below. Consider a hypothetical
scenario where only one player participates in the game. Then his payoff will not be
obstructed by anybody else, and any strategy that he chooses achieves its best possible
performance. This is useful for quantifying the players’ utilities as we shall see later on.

Definition 3. Assume that only one player from M participates in the game, and let
S ∈ S be one of his strategies. We define as ideal spread of S, denoted by HS , the set
of nodes that have adopted by the end of the diffusion process the product of this player
under strategy S. This includes the initial seed as well, i.e., S ⊆ HS .

3 Existence: Examples and Complexity

We start with some remarks concerning the presentation. In Section 3 and Section 4
we consider mostly 2-player games. Furthermore, our results mainly hold for the linear
threshold model but some of them can be generalized to arbitrary models. Whenever in
stating a theorem, we do not specify a parameter of the network, it means that it holds
independent of its value (e.g. in some results we do not specify the tie-breaking criteria,
or the local interaction scheme).
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The games that we study do not always possess PNE and we present an example
below to illustrate this. We note that this is independent of the tie-breaking criteria
used. For any other choice of such criteria (deterministic or even randomized), we can
construct analogous examples.

Example 1. Consider the game (N , M = {1, 2} , k = 1) over the graph of Figure 1,
where N = (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺). It is easy to generalize this to
a line with an arbitrary number of nodes. We assume that all nodes have threshold 1.
The game matrix is seen in Table 1 and it is easy to check that no PNE exists.

n1 n2 n3
1 �� 1 ��

Fig. 1. A network with underlying structure
a line

Table 1. The payoff matrix for the game
of Figure 1

n1 n2 n3

n1 3, 0 1, 2 2, 1
n2 2, 1 2, 0 1, 1
n3 1, 2 1, 1 1, 0

The example reveals that even simple graph structures may fail to have PNE. This
holds for larger values of k as well, and we have also found other examples with no
PNE, where the graph G is a cycle, a clique, or belongs to certain classes of trees.

Given these examples, the next natural question is whether it is easy to decide if a
given game has at least one PNE. We assume that the input to this problem is not the
game matrix, which can be exponentially large, but simply the graph G and a descrip-
tion of the local interaction scheme. Note that for k = O(1) the problem is easy, hence
the challenge is for larger values of k. We establish the following hardness result.

Theorem 1. Deciding whether a game ((G, LIS = LTM, TBC1 = R≺, TBC2 = R≺),
M, k) has a PNE is co-NP-hard and belongs to Σp

2 .

Remark 1. The reduction in the proof of Theorem 1 produces instances where the net-
work is a directed acyclic graph (DAG) and the diffusion depth is D = 3.

The proof of Theorem 1 is based on a reduction from 3SAT. Note that we have not
obtained membership in the class co-NP. This is because there seems to be no short
certificate for checking that a game does not have any PNE (one would need to check
all strategy profiles). It is an open problem to determine if the problem is complete
for Σp

2 . Another open problem would be to determine the complexity for games with
diffusion depth D = 1, or D = 2.

4 Towards Characterizations

To understand better the issue of existence of PNE, we start with quantifying the utility
functions ui : S2 	→ N, i ∈ M = {1, 2}. For this we need to introduce some important
notions. A convenient way to calculate the utility of a player under a profile s, is by
utilizing the definition of HS in Section 2, which is the ideal spread of a product if the
firm was playing on its own and used S as a seed. In the presence of a competitor, the
firm will lose some of the nodes that belong to HS . The losses happen due to three
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reasons. First, the competitor may have managed to infect a node at an earlier time step
than the step that the firm would reach that node. Second, the firm may lose nodes due
to the tie-breaking criteria, if both firms are eligible to infect a node at the same time
step. Finally, there may be nodes that belong to HS , but the firm did not manage to
infect enough of their neighbors so as to color them as well. These nodes either remain
white, or are eventually infected by the other player. All these are captured below:

Definition 4. Consider a game ((G,LIS,TBC1,TBC2), M, k), and a strategy profile
s = (S1, S2). For i ∈ {1, 2},

i. we denote by αi(s) the number of nodes that belong to HSi , and under profile s,
player i would be eligible to color them at some time step t but the other player has
already infected them at some earlier time step t′ < t (e.g., this may occur under
the threshold model when θv < 1/2 for some node v).

ii. we denote by βi(s) the number of nodes in HSi , such that under profile s, both
firms become eligible to infect them at the same time step, and due to tie-breaking
rules, they get infected by the competitor of i.

iii. we denote by γi(s) the number of nodes that belong to HSi , but under s, firm i
never becomes eligible to infect them (because i did not manage to color the right
neighbors under s).

Finally, we set αi,max (respectively βi,max, γi,max) to be the maximum value of αi(s)
over all valid strategy profiles and also αmax = max{α1,max, α2,max} (similarly for
βmax, and γmax). We refer the reader to an example in our full version for an illustration
of these concepts.

When we use R≺ for tie-breaking, clearly β1(s) = 0. Hence for 2-player games
of the form ((G,LIS,TBC1 = R≺,TBC2 = R≺), M, k), the utility functions of the
players, given a strategy profile s = (S1, S2) ∈ S2, are

u1(s) = |HS1 | − α1(s) − γ1(s), (1)

u2(s) = |HS2 | − α2(s) − β2(s) − γ2(s). (2)

4.1 Realizability of Improvement Paths

Following Section 3, we unwind further the richness and complexity of our games mo-
tivated by the study of their improvement paths. We establish that one of the main struc-
tural properties of social networks, their degree distribution, does not play a role on its
own to the existence of equilibria. This fact motivates the search for other important
parameters related to existence, which is the topic of the next subsections.

An improvement path is any sequence (x1, x2, . . . , xj , . . .) of strategy profiles
xj ∈ S2 such that for every j the strategy profiles xj and xj+1 differ in exactly
one coordinate, say the i(j)-th, i.e., only player i(j) has switched to another strategy,
and also ui(j)(xj) < ui(j)(xj+1), ∀j ≥ 1. It is called a best response path if also
ui(j)(xj+1) = maxx∈Sui(j)(x, (xj+1)−i(j)). We can also define improvement cycles
in a similar fashion.
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A well-known sufficient condition for existence of PNE is the Finite Improvement
Property (FIP), saying that all improvement paths are finite [16]. In our case, the FIP
does not hold, but in order to find conditions for the existence of PNE, one could still
try to understand how do cycles occur. For example, do the cycles have some particular
form? Does the degree distribution affect the formation of cycles? We obtain a negative
result in this direction, showing that essentially in any given graph, any possible set of
cycles may be realized, independent of its structure.

We proceed with some more definitions. Given a finite 2-player game Γ , played on a
r × r matrix, let P (Γ ) denote the set of all improvement paths (including infinite ones)
that are induced by the game starting from any entry in the matrix. Let P denote any
possible set of consistent improvement paths (including cycles) that can be created on a
r × r matrix. By a consistent set we mean that if, e.g., there is a path with a move from
entry (i, j) of the matrix to (i, l), then there cannot be another path in P that contains
a move from (i, l) to (i, j). We say that P is realizable if there is a game Γ such that
P = P (Γ ). We show that any such set P is realizable by the family of our games,
essentially by any graph. Hence all possible dynamics can be captured by these games.

To prove our claim, we will argue about an appropriate submatrix of the games we
construct, since some strategy profiles may need to be eliminated due to domination.
Particularly, we need the following form of domination.

Definition 5. Given a 2-player game, assume that S = X ∪ Y , where X ∩ Y = ∅. We
say that X is a sink in S, if at least one of the following holds:

i. ∀(a, b) ∈ Y ×(Y ∪X), ∃x ∈ X such that u1(x, b) > u1(a, b), and ∀(a, b) ∈ X×Y ,
∃x ∈ X such that u2(a, x) > u2(a, b).

ii. ∀(a, b) ∈ (Y ∪X)×Y , ∃y ∈ X such that u2(a, y) > u2(a, b), and ∀(a, b) ∈ Y ×X ,
∃x ∈ X such that u1(x, b) > u1(a, b).

The definition says that any improvement path that is not a cycle, starting from the
Y -region of the matrix, will eventually come to the X-region.

Given a 2-player game, we let SD denote a minimal sink in S, and Π(SD, SD) be the
restriction of the game matrix over this set of strategies. Furthermore, given a graph G,
let Pin and Pout be the in and out-degree distributions of G, i.e., Pin(i) is the number
of nodes with in-degree equal to i. We can now state the following theorem.

Theorem 2. Consider a graph G′ = (V, E) with in and out-degree distributions, Pin,
and Pout. There exists a class of games ((G ∈ F ,LIS = LTM,TBC1 = R≺,TBC2 =
R≺), M, k), where F is a family of graphs with the same set of nodes as G′, such that:

i. each G ∈ F has degree distributions P G
in, P G

out such that for all i, |Pin(i) −
P G

in(i)|/|V | → 0, as |V | → ∞, and the same holds for Pout and P G
out.

ii. For any r ≥ 3, all sets of consistent improvement paths (including cycles) formed
on a r × r matrix are realizable over the games played on F in Π(SD, SD), where
SD (for each G ∈ F) is a minimal sink with |SD| = r.

This result discloses the richness of our games, but above all it severely mitigates the
role of the widely studied degree distribution of networks to the stability of the involved
games. Hence, we advocate, in the following, that one needs to take into account the
effects of other properties as well.
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4.2 Conditions for the Existence of a PNE

In this subsection, we use the notion of ordinal potentials to argue about existence of
PNE. A function P : S2 	→ R is a generalized ordinal potential [16] (GOP) for a
game Γ if ∀i ∈ M, ∀s−i ∈ Sm−1, and ∀x, z ∈ S,

ui(x, s−i) > ui(z, s−i) ⇒ P (x, s−i) > P (z, s−i).

If Γ admits a GOP and is also finite (as our games are), the FIP property holds (see
Section 4.1), and all improvement paths terminate at a PNE [16]. On the other hand,
in our games the existence of PNE is not equivalent with the FIP property; we can
construct games that possess PNE, but do not admit a GOP. We omit these due to lack
of space. Instead, we continue with a set of necessary conditions for the existence of a
GOP. To this end, we shall say that a set X of nodes is reachable from a strategy S if
and only if X ⊆ HS , where HS is the ideal spread of S.

Lemma 1. The game ((G,LIS,TBC1 = R≺,TBC2), M, k) cannot admit a general-
ized ordinal potential if

i. ∃(S1, S2) ∈ S2, S1 �= S2, such that S1 is reachable from S2, and S2 is reachable
from S1.

ii. ∃(S1, S2) ∈ S2, S1 �= S2, such that |HS1 | = |HS2 |, and S1 is reachable from S2,
or S2 is reachable from S1.

The Lemma suggests that many classes of our games may not admit a GOP — in the
next subsection we shall approximate how close to admitting a GOP these games are.
The fact is elucidated further through the following corollary, where we assume k = 1,
i.e., as in [1], each player has to pick a single node, therefore, the only reasonable
strategies are the nodes u for which there is at least one edge (u, v) such that wuv ≥ θv.

Corollary 1. If the game ((G,LIS = LTM,TBC1 = R≺,TBC2 = R≺), M, k = 1)
admits a generalized ordinal potential, then

i. G contains a DAG that includes the set {u|∃v ∈ V, such that wuv ≥ θv}.
ii. If wuv ≥ θv for every edge (u, v) ∈ E, then G has to be a DAG.

Corollary 1 shows that for the case of k = 1, the conditions on the ideal spreads implied
by Lemma 1, enforce the graph to have the special structure of a DAG. But clearly not
all DAGs admit a GOP as has been demonstrated in Example 1.

We now move on to derive a sufficient condition for the existence of a GOP.

Theorem 3. Consider a game ((G,LIS,TBC1 = R≺,TBC2), M, k), and suppose
that we order the set of the available strategies so that |HS1 | ≥ . . . ≥ |HS|S| |. If for all
i ∈ {1, . . . , |S| − 1} it holds that

|HSi+1 | ≤
⌊ |HSi | + max {γ1(Si, Si+1), γ2(Si, Si+1)}

2

⌋

(3)
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then the game admits a generalized ordinal potential. Moreover, all its PNE have the
form (Smax, S2), where Smax ≡ argmaxS∈S {|HS |}.

For an interpretation of Theorem 3, consider a game where the max term is zero in (3).
Then, a GOP exists if all ideal spreads are well separated, and Player 2 can never hope
to take more than half of the nodes that Player 1 would get ideally (we refer the reader
to the introductory example for this theorem in our full version).

The condition of Theorem 3 can be relaxed so that not all ideal spreads need to be
well separated, e.g., in certain cases where there is no overlap between the ideal spreads
of some strategies. For example, when G is a full and complete d-ary tree, d ≥ 2, then
(3) does not hold but using similar arguments as in the proof of Theorem 3 we have:

Corollary 2. The games of the form ((G,LIS = LTM(wuv ≥ θv, ∀(u, v) ∈ E),TBC1
= R≺, TBC2 = R≺), M, k = 1), where G is a full and complete d-ary tree, admit a
GOP.

4.3 Quantifying Instability

The previous sections on existence and complexity motivate our next discussion on
approximate PNE. Overall, the main conclusion of this subsection is that even though
PNE do not always exist, we do have in certain cases approximate equilibria with a
good quality of approximation, and we can also compute them in polynomial time.

A strategy profile s is an ε-PNE, if no agent can benefit more than ε by unilater-
ally deviating to a different strategy, i.e., for every i ∈ M, and S′

i ∈ S it holds that
ui(S′

i, s−i) ≤ ui(s) + ε. Recall that in our case, utilities are integers in {0, ..., |V |}, and
ε also takes integer values1. Additionally, a function P : S2 	→ R is an ε-generalized
ordinal potential (ε-GOP) for a game Γ (see [7]) if ∀i ∈ M, ∀s−i ∈ S2, ∀x, z ∈ S,
ui(x, s−i) > ui(z, s−i) + ε ⇒ P (x, s−i) > P (z, s−i). Such a function P yields di-
rectly the existence of ε-PNE. We first obtain such a potential function for games that
have diffusion depth D = 1, based on the ideal spread of the players’ strategies and on
the quantification of the utility functions in the beginning of Section 4 (Definition 4).

Theorem 4. Any game Γ = ((G,LIS,TBC1 = R≺,TBC2 = R≺), M, k), where
D(Γ ) = 1, admits the function P (s) = (1+βmax+γmax)|HS1 |+|HS2|−β2(s)−γ2(s),
as a k-GOP. Moreover, a k-PNE can be computed in polynomial time.

The last assertion of Theorem 4 is easy to see since the value of the function P (s) is
at most O(|V |2). Therefore, by following an improvement path (with improvements of
more than k), we can find an approximate PNE quite efficiently.

Note that this holds for any local interaction scheme, and not just the linear threshold
model. Theorem 4 implies that when D(Γ ) = 1 and k is small, we can have a good
quality of approximation. E.g., for k = O(1), or k = o(|V |), and as |V | → ∞, we
can have approximate equilibria where any node can additionally gain only a negligible
fraction of the graph by deviating.

1 We could normalize the utilities by dividing by |V |, and then ε would take values in the set
{1/|V |, 2/|V |, ..., 1}. We present the theorems without the normalization so as to be consis-
tent with all other sections.
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For games with higher diffusion depth, we define below an important parameter that
captures the quality of approximation we can achieve in worst case via ε-GOP.

Definition 6. i. Given a 2-player game, and two strategy profiles s = (S1, S2), s′ =
(S′

1, S2), the diffusion collision factor of player 1 for strategy S′
1 compared to S1,

given S2, is defined as DC1(S′
1, S1|S2) ≡ (α1(s′) + γ1(s′)) − (α1(s) + γ1(s)).

ii. Similarly, for s = (S1, S2), s′ = (S1, S′
2), the diffusion collision factor of Player

2 for S′
2 compared to S2, given S1, is defined as DC2(S′

2, S2|S1) ≡ (α2(s′) +
γ2(s′)) − (α2(s) + γ2(s)).

In order to understand this new notion, recall from Equation (1) that, given a profile
s, α1(s) + γ1(s) denotes the number of nodes that Player 1 does not infect due to
the presence of Player 2 in the market; this fact directly yields some intuition for the
definition of DC1. This is not exactly the case for DC2, as the β2-term is missing (see
Eq. (2)); nonetheless, it turns out that it suffices to define DC2 in a uniform manner
as DC1, when using R≺ for ties. Finally, we set DCmax to be the maximum possible
diffusion collision factor.

Theorem 5. Any game Γ = ((G,LIS,TBC1 = R≺,TBC2 = R≺), M, k), where
D(Γ ) ≥ 2, admits the function P (s) = x1|HS1 | + |HS2 | − β2(s), as a DCmax-
GOP, where x1 is any number satisfying x1 > βmax. Moreover, a DCmax-PNE can be
computed in polynomial time.

The approximations of k and DCmax are tight for LIS=LTM, and we provide the cor-
responding examples in our full version.

5 Quantifying Inefficiency

5.1 Price of Anarchy and Stability

Given an m-player game, and a strategy profile s, the sum SW (s) =
∑m

j=1 uj(s) is
the social welfare of s. The Price of Anarchy (PoA), for a family of games, is the
worst possible ratio of SW (s)/SW (s′), where s is a social optimum, and s′ is a Nash
equilibrium. Similarly, the Price of Stability (PoS) is defined as the best such ratio.

Suppose now that |V | is sufficiently large, so that players will never play overlapping
strategies at a PNE, e.g., this is ensured if |V | ≥ mk. In that case we would have
1 ≤ P oA ≤ |V |/(mk). The question of interest then is whether PoA can be much
lower than this upper bound.

The following theorem exhibits that for diffusion depths greater than one, competi-
tion can severely hurt social welfare. This can be detrimental both to the firms, and the
network users, since it implies that in worst case the firms will have a very low utility,
and the service offered by these competing products will reach only a small fraction of
the nodes. This is in agreement with the worst case scenario in the model of [10]2. On
the contrary, this is not always the case when the diffusion depth is one.

2 In the stochastic process of [10], PoA can be very high when their so-called switching function
is not concave.
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Fig. 2. The network for the proof of Theorem 7(ii): All nodes have threshold 1, except of node
n3 that has θn3 = 1/2, and node n8 that has θn8 = 1/2

Theorem 6. i. For the family of games ((G,LIS = LTM,TBC1 = R≺,TBC2 =
R≺), M, k), P oA = |V |/(mk), and P oS ≥ k

k+1
|V |
mk , even for D = 2.

ii. For the family of games ((G,LIS = LTM,TBC1 = R≺,TBC2 = R≺), M =
{1, 2}, k = 1), with D = 1, we have P oS = 1, and P oA ≤ SW (s)/(SW (s)−1),
where s is a social optimum. Moreover, if there exist at least two nodes with nonzero
out-degree, then P oA = 1.

The negative effect of competition on the players’ utilities is further illustrated in the
next subsection from the perspective of the best quality player.

5.2 Worst-Case Scenarios for the Best Quality Player

We end our presentation with identifying a different form of inefficiency for PNE, which
arises from the following question: Consider games with the reputation ordering R≺ as
the tie-breaker. Does the firm with the best quality product ensure the maximum spread
among all the players at any PNE? Theorem 7 illustrates that this may not always be the
case for games with at least three players (but it is so for 2-player games). In fact, the
payoff of the best quality player may be arbitrarily lower than the player with the highest
market share at a PNE. We consider this as a form of inefficiency since in a socially
desirable outcome, one would expect that the product with the best quality/reputation
should have the largest market share. This surprising result dictates the necessity for
quantifying such effects in PNE.

Theorem 7. Consider the class of games ((G,LIS,TBC1 = R≺,TBC2), M, k).

i. If m = 2, then for all PNE s, it is u1(s) ≥ u2(s).
ii. If m ≥ 3, LIS = LTM, and TBC2 = R≺, then a game exists with a PNE s such

that ui(s) < uj(s), although i � j with regard to R≺.

Proof. i. Assume that a PNE s = (S1, S2) exists such that u1 (s) < u2 (s). Then,
Player 1 can deviate to S′

1 = S2, and obtain utility u1(S2, S2) ≥ u2(s) > u1(s).
Thus, s cannot be a PNE.

ii. Note that R≺ = 1 � 2 � 3, and consider the social network in Figure 2: As ni,
∀i ∈ {1, . . . , 8}, and as ai, ∀i ∈ {1, . . . , μ}, where μ > k, we denote single nodes.
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We assume that all of them have threshold 1, except of nodes n3, and n8 that have
θn3 = 1/2, and θn8 = 1/2. As Si, ∀i ∈ {1, 2, 3}, we denote sets of k nodes.
Finally, the edges between single nodes are annotated with their corresponding
weight. On the other hand, the edges that emanate from a set Si are annotated with
the accumulated corresponding weight of the underlying edges between each of
the nodes in Si and the involved end-node (e.g., ∀v ∈ S1, it is wvn3 = θn3 /k).
One can now verify that the profile s ≡ (S1, S2, S3) constitutes a PNE, even though
it is u2(s) = k +μ+4, u1(s) = k +3, and u3(s) = k +1 — i.e., u2(s) > u1(s) >
u3(s). We omit the details.

In the network of Figure 2, observe that at the PNE s = (S1, S2, S3), u2(s) = k +
μ + 4 > u1(s) + u3(s) = 2k + 4, since μ > k — note that μ can be arbitrarily
large. Thereby, if firm 1 is affiliated with firm 3, while their products are marketed as
competing and incompatible (e.g. airline merges), firm 1 is incentivized to withdraw
firm 3 from the game: the resulting 2-player game between firm 1 and firm 2, has a
unique PNE, namely (S2, S1), in which firm 1 achieves the maximum possible utility
— u1(S2, S1) = k + μ + 4. Moreover, notice that in this 2-player game, firm 1 initiates
only k nodes to achieve this utility. On the other hand, in the original 3-player game,
firms 1 and 3 initiate k nodes each, and still they achieve a lower sum of utilities at s.

Our discussion indicates the necessity to capture the motivation of a player to either
merge with other players, or to divide itself to several new ones that, although affiliated,
they are still non-cooperative within the induced game. For example, given the network
of Figure 2 Player 1 faces the question: Should I play alone against the others, since I
am the best firm, or should I merge even with the weakest? We believe this aspect of
PNE is worth further investigation and we leave it as an open direction for future work.

6 Conclusions and Future Work

We have studied a competitive diffusion process from a non-cooperative game-theoretic
viewpoint. We have investigated several aspects related to the stability of such games
and we have unveiled some important parameters that have met no previous investiga-
tion. We believe that our work motivates primarily further empirical research on social
networks with regard to the following questions: Can we identify a range of typical val-
ues for decisive structural features such as the diffusion depth, the ideal spread, and the
maximum diffusion collision factor? This could quantify the instability of the induced
games, in light of Theorems 4 and 5, as well as the results in Section 4.2.

Other interesting questions have to do with resolving some of the remaining open
problems from our work. It is still open if the complexity of determining that a PNE ex-
ists is Σp

2 -complete, or not. The Price of Anarchy is also not yet completely determined
when D = 1 and k is arbitrary. Finally, additional compelling questions may concern
the robustness to network changes.
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