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Preface

This volume contains the papers presented at WINE 2012, the 8th Workshop on
Internet and Network Economics, held on December 10–12, 2012 in Liverpool,
UK.

Over the past decade, there has been a growing interaction between re-
searchers in theoretical computer science, networking and security, economics,
mathematics, sociology, and management sciences devoted to the analysis of
problems arising from the Internet and the World Wide Web. The Workshop
on Internet and Network Economics (WINE) is an interdisciplinary forum for
the exchange of ideas and results arising from these various fields. At the time
of writing, WINE 2012 had just been approved for “in cooperation” status with
ACM SIGecom (ACM’s special interest group on electronic commerce).

In the Call for Papers we solicited regular papers (14 pages) and short papers
(7 pages). We received 112 submissions, from which we accepted 36 regular and
13 short papers. As for WINE 2011, we also allowed submissions to be designated
as working papers. For these papers, the submission was assessed in the same way
as other papers, but only the abstract has been published in the proceedings. This
allows subsequent publication in journals that do not accept papers where full
versions have previously appeared in conference proceedings. Of the 49 accepted
papers, 3 are working papers. All papers were rigorously reviewed by the program
committee members and/or external referees; each received at least 3 detailed
reviews. Submissions were evaluated on the basis of their significance, novelty,
soundness, and relevance to the workshop.

Besides the regular talks, the program also included three invited talks by
Kamal Jain (eBay Research Labs, USA), Benny Moldovanu (University of Bonn,
Germany) and David Parkes (Harvard University, USA). The conference orga-
nizers also hosted tutorials on the day before WINE, on topics of interest to the
community: an introduction to the GAMBIT software by Rahul Savani and Ted
Turocy; a talk entitled “An Overview of Matching Markets: Theory and Prac-
tice” by David Manlove, and an introduction to Judgement Aggregation by Ulle
Endriss.

We are very grateful to Google Research and Microsoft Research for their gen-
erous financial contribution to the conference. We also thank the Department of
Computer Science at the University of Liverpool for their financial contribution
and organizational support.

We also acknowledge Easychair, a powerful and flexible system for manag-
ing all stages of the paper handling process, from the submission stage to the
preparation of the final version of the proceedings.

October 2012 Paul W. Goldberg
Mingyu Guo
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An Introduction to the Algorithmic Game

Theory of eBay’s Buyer-Seller Matching
(Invited Talk)

Kamal Jain
eBay Research Labs, San Jose, CA and Redmond, WA.

kamaljain@gmail.com

Abstract

Buyer-seller matching is a widely used problem. It is a problem of Google’s (ads)
and Amazon’s; and it is also a problem of traditional retailers such as Walmart
and Costco. In the offline world a traditional retailer is trying to match the
products supplied by the manufacturers to the interested buyers. In the case of
a traditional retailer this matching is a static matching done once for all the
buyers. In the online world, it is possible to do this matching for every potential
buyer, perhaps based on their expressed (e.g., based on a search query) or implied
(e.g., based on a browser cookie) intent. eBay is perhaps the first major company
to start such a buyer-seller matching online; hence the title. The presentation is
based on buyer-seller matching from a viewpoint of electronic commerce industry
in general. This includes search ads, online retailers, and online marketplaces.

There are various issues arise in buyer-seller matching perhaps many of them
could be captured by the trade off between Relevance and Revenue. Relevance
is broadly defined as the expected net utility of a seller’s offering (known as
listing on eBay) to a potential buyer at a given price. Decreasing the price of
an offering increases the relevance while increasing the price decreases it. So
essentially selling any item at a very high price can make an offering completely
irrelevant. Revenue is defined as the expected fee charged by the company doing
the matching, e.g., by eBay. The company doing the match is henceforth called
an intermediary.

There are two major strategic decisions an intermediary makes; 1. on what
event(s) a fee is charged for doing the matching; and 2. what criteria to use
to decide the order of listings to display to a potential buyer. There are many
different choices being made in the industry. eBay charges a fee at the time
of including a listing in its index and then again when the product listed is
bought by a buyer. Google charges a fee when a potential buyer clicks on an
advertisement and lands on a seller’s page. Walmart charges its fee as a markup
on top of the wholesale price it gets from its suppliers. Costco charges its fee when
a potential buyer registers with it and also as a markup on top of the wholesale
price it gets from its suppliers. How these fees are charged and on what order a
potential buyer sees the listings have a tremendous influence on the selection of
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products a buyer sees and as well as the prices a buyer sees. For an example, it
can be proven that given risk-neutral sellers and given that the same amount of
expected revenue is made by the intermediary, if the intermediary fee is charged
as a sale’s commission versus a statistically equivalent fee charged on a click,
then the net price a buyer sees is higher in the former pricing structure. The
reason being that a click fee is sunk cost for the seller while a sale’s commission
is marginal cost. This is not true if the sellers are risk averse, which is often
the case with small sellers. Small sellers may not have know-how or may not
be able to afford to hire help to manage their risk. So despite higher prices to
potential buyers, fee charged as a sale’s commission may offer a bigger selection
to a potential buyer than a statistically equivalent fee charged on a click.

When a problem space is defined by two separate parameters, such as Rele-
vance and Revenue in our context, then it is often the case that one could define
various notions of optimality. One of the simplest notions is perhaps ignoring
one of the parameters altogether. So one question we ask is how to optimize
the expected revenue for the intermediary, given a strategic buyer and sellers. A
paper with Chris Wilken [2] looks at this problem. Given that a buyer probably
has a limited attention span, the paper considers various conceptual models of a
buyer’s attention. A full attention model is when a buyer considers all possible
listings before deciding what to purchase. On the other end of the spectrum, a
buyer considers only 1 listing and decides whether to purchase it or not. The pa-
per shows, in a very general Bayesian setting, that if the attention model is known
then finding a revenue optimal mechanism is essentially an algorithmic problem,
since game-theoretic properties are automatically satisfied. In other words the
paper proposes an optimal mechanism for a general setting given unlimited com-
putation.This is not necessarily true for approximately optimal algorithms. This
is because the optimal algorithms result in some kind of monotonicity properties
which are often needed to prove incentive compatibility, but approximation often
lose the monotonicity. The paper proposes incentive compatible approximately
optimal mechanisms for a set of attention models.

Another practical generalization of this setting is to associate multiple sellers
with the same listing. When an item is sold often there are multiple sellers
behind the item who benefit from the sale. For an example, if Best Buy sells a
computer made by Samsung having Intel processor and Windows OS then all
4 companies benefit. Currently the surplus of only the last agent, Best Buy in
this example, is directly represented in the matching marketplace. In reality all
these 4 sellers are bundled together, because a computer is a bundled product.
Separately, there are also settings where the buyers are bundled, e.g., Groupon
purchases are executed when a certain number of buyers commit to a purchase.

A paper with Darrell Hoy and Chris Wilkens [1] introduces an ad matching
auction where an ad benefits multiple sellers. The industry seems to be evolving
in the direction where it is the products whose ads are auctioned rather than
just sellers’ ads, e.g., Google’s search pages now also show the ads of products,
besides the ads of the webpages of sellers. In product auction setting, one can
conceive that in future the interest of various parties who benefit from the sale
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of the product could be represented in the marketplace to enhance both the
revenue and relevance. This is indeed quite feasible in a marketplace like eBay
which anyway displays specific products.

In general, in an auction setting when there are complementary bidders, the
revenue for the auctioneer could be as little as zero. This paper [1] demonstrates
that the first price auction has a minimum revenue guarantee at equilibrium.
Even newer results demonstrate a bidding language which allows pure strategy
equilibria in the first price auction, thereby fixing a historic flaw when the first
price auction was used by Overture in ad-auctions. Overture’s first price ad-
auction did not always have a pure strategy equilibrium, thereby causing a cyclic
behavior by the bidders. Subsequent work also demonstrate how a first price
auction could converge to an equilibrium.

References

1. Hoy, D., Jain, K., Wilkens, C.A.: Coopetitive ad auctions (2012),
http://arxiv.org/pdf/1209.0832.pdf

2. Jain, K., Wilkens, C.A.: ebay’s market intermediation problem (2012),
http://arxiv.org/pdf/1209.5348.pdf



On the Equivalence of Bayesian and Dominant

Strategy Implementation
(Invited Talk)

Benny Moldovanu
University of Bonn, Lennéstr. 37, 53113 Bonn

mold@uni-bonn.de

Abstract. We consider a standard social choice environment with linear
utilities and independent, one-dimensional, private types. We prove that
for any Bayesian incentive compatible mechanism there exists an equiv-
alent dominant strategy incentive compatible mechanism that delivers
the same interim expected utilities for all agents and the same ex ante
expected social surplus. The short proof is based on an extension of an
elegant result due to Gutmann et al. (Annals of Probability, 1991). We
also show that the equivalence between Bayesian and dominant strat-
egy implementation generally breaks down when the main assumptions
underlying the social choice model are relaxed, or when the equivalence
concept is strengthened to apply to interim expected allocations.

Joint work with A. Gershkov, J. Goeree, A. Kushnir and X. Shi.



New Applications of Search and Learning

to Problems of Mechanism Design
(Invited Talk)

David C. Parkes
School of Engineering and Applied Sciences, Harvard University

parkes@eecs.harvard.edu

Abstract. When faced with a hard optimization problem, common ap-
proaches are to either design a polynomial-time approximation algo-
rithm, or design a heuristic algorithm (perhaps search-based) that is fast
enough, and generates solutions of high enough quality, to be of practical
interest. But the main focus in algorithmic mechanism design has been
on the first, “polynomial + approximation” direction, with the require-
ment of truthful mechanisms tending to impede progress in the second
(heuristic search) direction. In this talk I describe two ways in which
heuristic algorithms can be leveraged within mechanism design. One ap-
proach is to modify branch-and-bound search to make it monotone in the
input, enabling search to be used as a building block for single-parameter,
truthful mechanisms on NP-hard problems, and even without running to
optimality. A second approach, which applies also to multi-parameter
domains, takes as input a particular allocation algorithm. Given this al-
gorithm, statistical machine learning is used to identify a payment rule
that minimizes expected ex post regret for deviating from truthful re-
ports. A direct connection is established between this “minimize ex post
regret” problem and the problem of training a multi-class classifier to
minimize generalization error. By relaxing truthfulness, this opens up a
new direction in coupling “almost implementable” allocation algorithms
with suitable payment rules.

This talk is based on two papers: Monotone Branch-and-Bound Search
for Restricted Combinatorial Auctions, by John K. Lai and David C.
Parkes, in Proc. 13th ACM Conference on Electronic Commerce (EC
’12), 2012, and Payment Rules through Discriminant-Based Classifiers,
Paul Duetting, Felix Fischer, Pichayut Jirapinyo, John K. Lai, Benjamin
Lubin, and David C. Parkes, in Proc. 13th ACM Conference on Elec-
tronic Commerce (EC ’12), 2012.
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Joachim Schauer, and Gerhard Woeginger



XVIII Table of Contents

Incentive Compatible Two Player Cake Cutting . . . . . . . . . . . . . . . . . . . . . . 170
Avishay Maya and Noam Nisan

LP-Based Covering Games with Low Price of Anarchy . . . . . . . . . . . . . . . . 184
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Abstract. We study a game-theoretic model for the diffusion of competing prod-
ucts in social networks. Particularly, we consider a simultaneous non-cooperative
game between competing firms that try to target customers in a social network.
This triggers a competitive diffusion process, and the goal of each firm is to max-
imize the eventual number of adoptions of its own product. We study issues of
existence, computation and performance (social inefficiency) of pure strategy
Nash equilibria in these games. We mainly focus on 2-player games, and we
model the diffusion process using the known linear threshold model. Nonethe-
less, many of our results continue to hold under a more general framework for
this process.

1 Introduction

A large part of research on social networks concerns the topic of diffusion of informa-
tion (e.g., ideas, behaviors, trends). Mathematical models for diffusion processes have
been proposed ever since [11, 19] and also later in [9]. Given such a model, some of
the earlier works focused on the following optimization problem: find a set of nodes
to target so as to maximize the spread of a given product (in the absence of any com-
petitors). This problem was initially studied by Domingos and Richardson [8], Kempe
et al. [13], and subsequently by [6, 18]. Their research builds on a “word-of-mouth”
approach, where the initial adopters influence some of their friends, who in turn rec-
ommend it to others, and eventually a cascade of recommendations is created. Within
this framework, finding the most influential set of nodes is NP-hard, and approximation
algorithms as well as heuristics have been developed for various models.

Different considerations, however, need to be made in the presence of multiple com-
peting products in a market. In real networks, customers end up choosing a product
among several alternatives. Hence, one natural approach to model this competitive pro-
cess is the use of game-theoretic analysis with the players being the firms that try to
market their product. The game-theoretic approaches that have been proposed along
this direction mainly split into two types. The first is to view the process as a Stack-
elberg game, where the competitors of a product first choose their strategy, and then a
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last mover needs to make a decision on the set of nodes to target [3–5, 14]. This ap-
proach essentially reduces to the algorithmic question of finding the best response for
the firm that moves last. The main results that have been obtained along this direction
is that, in certain cases, the algorithm of [13], for the case of a single product, can be
applied in the competitive environment as well. For more models and related problems
under this context see also [2]. A different approach is to capture the competition as
a simultaneous game, where firms pick their initial set of nodes at the same time, and
then the diffusion process follows (after first taking care of ties). This was first proposed
in [1], and has also been studied very recently by [10]. The approach of [1] and [10] as
a noncooperative normal-form game is the focus of our work as well.

1.1 Contributions

Our work is an attempt to further understand game theoretic aspects of viral marketing.
To this end, we first define in Section 2 a general framework for a competitive diffusion
process in a social network, generalizing the model of [1]. This corresponds to a class of
non-cooperative games where firms target customers in order to maximize the spread of
their own product. We study issues of existence, computation, and performance (social
inefficiency) of pure Nash equilibria (PNE). The games we define are one-stage games,
as in [1, 10], i.e., all firms spend their budget in one step, a fact that renders natural the
analysis of PNE. We use as instantiations of the competitive diffusion process the well-
known linear threshold model, however some of our results also hold for more general
local interaction schemes.

In more detail, we mostly deal with 2-player games, as in [10], and in Section 3 we
first illustrate that such games may not possess PNE, even for simple graphs. On top
of that, we also prove that it is co-NP-hard to decide whether a PNE exists for a given
game. We then move on to investigate conditions for the existence of PNE. In Section
4, we begin with studying the improvement paths induced by our games. We exhibit
that networks with special in and out-degree distributions — e.g. power law — are not
expected to be more stable than others, in the sense that all possible dynamics can be
realized essentially by any graph. Motivated by all these, we then focus on sufficient
conditions for the existence of PNE via generalized ordinal potential functions. We
also consider ε-approximate generalized ordinal potentials, and we provide tight upper
bounds on the existence of such approximations, as well as, polynomial time algorithms
for computing approximate PNE. Finally, we study the Price of Anarchy and Stability
for games with an arbitrary number of players, and we show that PNE (when they exist)
can be quite inefficient. We conclude with a discussion of the effects on the payoff of a
single player (or a coalition of players), as the number of competitors increases.

We view as one of the main contributions the fact that we unveil new decisive fac-
tors for the existence of PNE that are intertwined with structural characteristics of the
underlying network. For example, some of the factors that play a role in our model for
obtaining generalized ordinal potentials (exact, or approximate) involve i) the diffusion
depth of a game (defined in Section 2 as the maximum possible duration of the diffusion
process), ii) the ideal spread (defined as the maximum possible spread that a strategy
can achieve) and iii) the diffusion collision factor (defined in Section 4.3 as a measure
for comparing how two strategies of one player perform against a given strategy of
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another player). We advocate that our results motivate further empirical research on
social networks for identifying a typical range of these quantities in real networks. Re-
garding the diffusion depth, some empirical research has already provided new insights
for certain recommendation networks [15].

1.2 Related Work

Our work has been largely motivated by [1], (see also the erratum [21]). To the best of
our knowledge, this was the first article to consider such games over networks with the
players being the firms. The diffusion process of [1] is a special case of our model, in
particular, it is a linear threshold model where each firm is allowed to target only one
node as a seed, and the thresholds and the weights are equal to 1/|N(v)| (with N(v)
being the neighborhood of v). We consider the general class of linear threshold models,
and in some cases our results hold even for arbitrary local interaction schemes beyond
threshold models. In [1] the existence of equilibria is linked to bounding the diameter
of the graph. In our model we find that the diameter is not much correlated to existence.
Instead we identify other parameters that influence the existence of equilibria.

Besides [1], a very recent related work is [10]. One of the major differences be-
tween [10] and our work is that they study the set of mixed Nash equilibria of a similar
diffusion game, and focus on the Price of Anarchy, and another measure denoted as the
Budget Multiplier. We, on the other hand, focus on pure Nash equilibria. Another differ-
ence is that [10] is studying stochastic processes whereas our local interaction schemes
induce deterministic processes, as in [1].

Other game-theoretic approaches have also been considered for social networks. One
line of work concerns models of Stackelberg games as mentioned earlier [3–5, 14]. A
different approach is to consider a game where the players are the individual nodes of
the network, who have a utility function depending on their own choice, and that of
their neighbors, see e.g., [17, 20]. This leads to very different considerations.

2 Preliminaries

2.1 Social Networks

The underlying structure of the social network is assumed static, and is modeled by a
fixed finite directed graph G = (V, E) with no parallel edges and no self-loops. Each
node v ∈ V represents an individual within the social network, while each directed
edge (u, v) ∈ E represents that v can be influenced by u. We assume that there are two
competing products (or trends, ideas, behavioral patterns) produced by two different
firms M = {1, 2}, and to each such product we assign a distinct color. Throughout
this work, we shall use the terms product, color, and firm interchangeably. Further, each
node can have at most one color, and as with most of the literature, we assume that all
decisions are final; i.e., no node that has adopted a particular product will later alter its
decision. Moreover, if a node has adopted a product, we shall refer to it as colored, or
infected, otherwise we will call it a white node.

We denote the (in-)neighbors of a node v as N(v) = {u ∈ V |(u, v) ∈ E}, i.e., N(v)
is the set of nodes that can influence v. Also, we denote as din

v and dout
v the in-degree and
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out-degree of v. The way that a node v can be influenced by N(v) is usually described
by a local interaction scheme (LIS). Hence, a local interaction scheme is essentially
a function that takes as input a node v, the status of its neighbors, a product c under
consideration, and possibly other characteristics of the graph, and determines if node
v is eligible to adopt this product. An example of a LIS, that was initially studied for
the spread of a single product, is the linear threshold model (LTM) [11, 19]. Under
LTM, there is a weight wuv ∈ [0, 1] for every edge (u, v) such that for every node v, it
holds that

∑
u∈N(v) wuv ≤ 1. Every node v also has a threshold value θv ∈ (0, 1]. The

condition that needs to hold, under LTM, so that node v can adopt a product c is

∑
u∈N(v)

Iuwuv ≥ θv,

where Iu is 1 if u has already adopted product c, and zero otherwise. Note that in a local
interaction scheme, the eligibility condition may hold for more than one product at a
given time (e.g., under LTM this could happen if θv < 1/2 for some node v).

Given a local interaction scheme, and a set of competing firms, we consider the
following competitive diffusion process, which evolves over discrete time steps:

The diffusion process. Initially each firm tries to infect a set of “seeds”. The number of
seeds for each firm may depend on its budget for advertising and marketing. We assume
here that the firms have the same power so that in the beginning they can target a set
of k nodes each (we think of k as being much smaller than |V | but not necessarily a
constant).

– At time step t = 0: This is the initiation step. In the beginning, all nodes are
colored white. If a node v was targeted by a single firm c, then v adopts product c.
Since each firm may pick to target an arbitrary set of k nodes, some overlaps may
also occur. Thus, we assume that a tie-breaking criterion TBC1 is applied to resolve
such dilemmas. This may be a global rule, or a rule that depends on each node.

– At any time step t > 0: We look at each remaining white node and check if it is
eligible to adopt any of the products, i.e., if the adoption condition, as determined by
LIS, holds. For this, we take into account only the neighbors of v that were infected
up until time step t − 1, hence the order with which we examine the white nodes
does not matter. During this process, a white node v may be eligible to adopt more
than one product. To resolve such dilemmas a second tie-breaking criterion TBC2
should be considered. The process terminates at a time step t, when no white node
is eligible to adopt any product. We allow that TBC1 may differ from TBC2, since
TBC2 may depend on specific features of the diffusion process, whereas TBC1
occurs only at the initiation step.

A particular instance of a tie-breaking criterion, that we shall often use, is the rule that
is also used in [12, 17], where ties are resolved in favor of the “best quality” product:
all the individuals within the social network share a common reputation ordering, say
R≺ ≡ 1 � 2, over the products and in case of ties they decide according to R≺. We
shall also see later that some of our results are independent of the tie-breaking rules.
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Note 1. All definitions above can be generalized in a straightforward manner to an ar-
bitrary number of m firms, i.e., M = {1, . . . , m}. In Section 3 and Section 4 we focus
mostly on the 2-player case. Section 5 deals with arbitrary m-player games as well.

Definition 1. A social network N is defined through the tuple (G,LIS,TBC1,TBC2).

2.2 Strategic Games Induced by Diffusion Processes

A game Γ = (N , M, k) is induced by a social network N = (G,LIS,TBC1,TBC2)
and the set of firms M = {1, . . . , m}, which we shall refer to as a diffusion game.
In a diffusion game, all participating firms choose simultaneously a set of k seeds,
which then triggers a diffusion process according to the interaction scheme and tie-
breaking criteria of N . We denote as S = {S : |S| = k} the set of available strate-
gies, which is the same for each firm. We shall use the phrases strategy S and sub-
set S interchangeably. A pure strategy profile is a vector s = (S1, . . . , Sm) ∈ Sm,
where Si corresponds to the strategy played by player i ∈ M. Also, we set s−i ≡
{S1, . . . , Si−1, Si+1, . . . , Sm}.

Given a strategy profile s ∈ Sm, the utility of firm i ∈ M, denoted by ui(s), is the
total number of nodes that have been colored by firm i at the end of the competitive
diffusion process. We denote the associated game matrix as Π(Γ ). Moreover, a pure
strategy profile s ∈ Sm is a pure Nash equilibrium (PNE) of game Γ if ui(S′

i, s−i) ≤
ui(s), ∀i and ∀S′

i.
An important parameter in our games is the so-called diffusion depth defined below.

Definition 2. The diffusion depth D(Γ ) of a game Γ is defined as the maximum num-
ber of time steps that the competitive diffusion process may need, where the maximum
is taken over all strategy profiles s ∈ Sm.

Observe that the diffusion depth can take values either lower, equal, or greater than the
diameter of the underlying graph G.

Another important notion in our analysis is defined below. Consider a hypothetical
scenario where only one player participates in the game. Then his payoff will not be
obstructed by anybody else, and any strategy that he chooses achieves its best possible
performance. This is useful for quantifying the players’ utilities as we shall see later on.

Definition 3. Assume that only one player from M participates in the game, and let
S ∈ S be one of his strategies. We define as ideal spread of S, denoted by HS , the set
of nodes that have adopted by the end of the diffusion process the product of this player
under strategy S. This includes the initial seed as well, i.e., S ⊆ HS .

3 Existence: Examples and Complexity

We start with some remarks concerning the presentation. In Section 3 and Section 4
we consider mostly 2-player games. Furthermore, our results mainly hold for the linear
threshold model but some of them can be generalized to arbitrary models. Whenever in
stating a theorem, we do not specify a parameter of the network, it means that it holds
independent of its value (e.g. in some results we do not specify the tie-breaking criteria,
or the local interaction scheme).
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The games that we study do not always possess PNE and we present an example
below to illustrate this. We note that this is independent of the tie-breaking criteria
used. For any other choice of such criteria (deterministic or even randomized), we can
construct analogous examples.

Example 1. Consider the game (N , M = {1, 2} , k = 1) over the graph of Figure 1,
where N = (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺). It is easy to generalize this to
a line with an arbitrary number of nodes. We assume that all nodes have threshold 1.
The game matrix is seen in Table 1 and it is easy to check that no PNE exists.

n1 n2 n3
1 �� 1 ��

Fig. 1. A network with underlying structure
a line

Table 1. The payoff matrix for the game
of Figure 1

n1 n2 n3

n1 3, 0 1, 2 2, 1
n2 2, 1 2, 0 1, 1
n3 1, 2 1, 1 1, 0

The example reveals that even simple graph structures may fail to have PNE. This
holds for larger values of k as well, and we have also found other examples with no
PNE, where the graph G is a cycle, a clique, or belongs to certain classes of trees.

Given these examples, the next natural question is whether it is easy to decide if a
given game has at least one PNE. We assume that the input to this problem is not the
game matrix, which can be exponentially large, but simply the graph G and a descrip-
tion of the local interaction scheme. Note that for k = O(1) the problem is easy, hence
the challenge is for larger values of k. We establish the following hardness result.

Theorem 1. Deciding whether a game ((G, LIS = LTM, TBC1 = R≺, TBC2 = R≺),
M, k) has a PNE is co-NP-hard and belongs to Σp

2 .

Remark 1. The reduction in the proof of Theorem 1 produces instances where the net-
work is a directed acyclic graph (DAG) and the diffusion depth is D = 3.

The proof of Theorem 1 is based on a reduction from 3SAT. Note that we have not
obtained membership in the class co-NP. This is because there seems to be no short
certificate for checking that a game does not have any PNE (one would need to check
all strategy profiles). It is an open problem to determine if the problem is complete
for Σp

2 . Another open problem would be to determine the complexity for games with
diffusion depth D = 1, or D = 2.

4 Towards Characterizations

To understand better the issue of existence of PNE, we start with quantifying the utility
functions ui : S2 	→ N, i ∈ M = {1, 2}. For this we need to introduce some important
notions. A convenient way to calculate the utility of a player under a profile s, is by
utilizing the definition of HS in Section 2, which is the ideal spread of a product if the
firm was playing on its own and used S as a seed. In the presence of a competitor, the
firm will lose some of the nodes that belong to HS . The losses happen due to three
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reasons. First, the competitor may have managed to infect a node at an earlier time step
than the step that the firm would reach that node. Second, the firm may lose nodes due
to the tie-breaking criteria, if both firms are eligible to infect a node at the same time
step. Finally, there may be nodes that belong to HS , but the firm did not manage to
infect enough of their neighbors so as to color them as well. These nodes either remain
white, or are eventually infected by the other player. All these are captured below:

Definition 4. Consider a game ((G,LIS,TBC1,TBC2), M, k), and a strategy profile
s = (S1, S2). For i ∈ {1, 2},

i. we denote by αi(s) the number of nodes that belong to HSi , and under profile s,
player i would be eligible to color them at some time step t but the other player has
already infected them at some earlier time step t′ < t (e.g., this may occur under
the threshold model when θv < 1/2 for some node v).

ii. we denote by βi(s) the number of nodes in HSi , such that under profile s, both
firms become eligible to infect them at the same time step, and due to tie-breaking
rules, they get infected by the competitor of i.

iii. we denote by γi(s) the number of nodes that belong to HSi , but under s, firm i
never becomes eligible to infect them (because i did not manage to color the right
neighbors under s).

Finally, we set αi,max (respectively βi,max, γi,max) to be the maximum value of αi(s)
over all valid strategy profiles and also αmax = max{α1,max, α2,max} (similarly for
βmax, and γmax). We refer the reader to an example in our full version for an illustration
of these concepts.

When we use R≺ for tie-breaking, clearly β1(s) = 0. Hence for 2-player games
of the form ((G,LIS,TBC1 = R≺,TBC2 = R≺), M, k), the utility functions of the
players, given a strategy profile s = (S1, S2) ∈ S2, are

u1(s) = |HS1 | − α1(s) − γ1(s), (1)

u2(s) = |HS2 | − α2(s) − β2(s) − γ2(s). (2)

4.1 Realizability of Improvement Paths

Following Section 3, we unwind further the richness and complexity of our games mo-
tivated by the study of their improvement paths. We establish that one of the main struc-
tural properties of social networks, their degree distribution, does not play a role on its
own to the existence of equilibria. This fact motivates the search for other important
parameters related to existence, which is the topic of the next subsections.

An improvement path is any sequence (x1, x2, . . . , xj , . . .) of strategy profiles
xj ∈ S2 such that for every j the strategy profiles xj and xj+1 differ in exactly
one coordinate, say the i(j)-th, i.e., only player i(j) has switched to another strategy,
and also ui(j)(xj) < ui(j)(xj+1), ∀j ≥ 1. It is called a best response path if also
ui(j)(xj+1) = maxx∈Sui(j)(x, (xj+1)−i(j)). We can also define improvement cycles
in a similar fashion.
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A well-known sufficient condition for existence of PNE is the Finite Improvement
Property (FIP), saying that all improvement paths are finite [16]. In our case, the FIP
does not hold, but in order to find conditions for the existence of PNE, one could still
try to understand how do cycles occur. For example, do the cycles have some particular
form? Does the degree distribution affect the formation of cycles? We obtain a negative
result in this direction, showing that essentially in any given graph, any possible set of
cycles may be realized, independent of its structure.

We proceed with some more definitions. Given a finite 2-player game Γ , played on a
r × r matrix, let P (Γ ) denote the set of all improvement paths (including infinite ones)
that are induced by the game starting from any entry in the matrix. Let P denote any
possible set of consistent improvement paths (including cycles) that can be created on a
r × r matrix. By a consistent set we mean that if, e.g., there is a path with a move from
entry (i, j) of the matrix to (i, l), then there cannot be another path in P that contains
a move from (i, l) to (i, j). We say that P is realizable if there is a game Γ such that
P = P (Γ ). We show that any such set P is realizable by the family of our games,
essentially by any graph. Hence all possible dynamics can be captured by these games.

To prove our claim, we will argue about an appropriate submatrix of the games we
construct, since some strategy profiles may need to be eliminated due to domination.
Particularly, we need the following form of domination.

Definition 5. Given a 2-player game, assume that S = X ∪ Y , where X ∩ Y = ∅. We
say that X is a sink in S, if at least one of the following holds:

i. ∀(a, b) ∈ Y ×(Y ∪X), ∃x ∈ X such that u1(x, b) > u1(a, b), and ∀(a, b) ∈ X×Y ,
∃x ∈ X such that u2(a, x) > u2(a, b).

ii. ∀(a, b) ∈ (Y ∪X)×Y , ∃y ∈ X such that u2(a, y) > u2(a, b), and ∀(a, b) ∈ Y ×X ,
∃x ∈ X such that u1(x, b) > u1(a, b).

The definition says that any improvement path that is not a cycle, starting from the
Y -region of the matrix, will eventually come to the X-region.

Given a 2-player game, we let SD denote a minimal sink in S, and Π(SD, SD) be the
restriction of the game matrix over this set of strategies. Furthermore, given a graph G,
let Pin and Pout be the in and out-degree distributions of G, i.e., Pin(i) is the number
of nodes with in-degree equal to i. We can now state the following theorem.

Theorem 2. Consider a graph G′ = (V, E) with in and out-degree distributions, Pin,
and Pout. There exists a class of games ((G ∈ F ,LIS = LTM,TBC1 = R≺,TBC2 =
R≺), M, k), where F is a family of graphs with the same set of nodes as G′, such that:

i. each G ∈ F has degree distributions P G
in, P G

out such that for all i, |Pin(i) −
P G

in(i)|/|V | → 0, as |V | → ∞, and the same holds for Pout and P G
out.

ii. For any r ≥ 3, all sets of consistent improvement paths (including cycles) formed
on a r × r matrix are realizable over the games played on F in Π(SD, SD), where
SD (for each G ∈ F) is a minimal sink with |SD| = r.

This result discloses the richness of our games, but above all it severely mitigates the
role of the widely studied degree distribution of networks to the stability of the involved
games. Hence, we advocate, in the following, that one needs to take into account the
effects of other properties as well.
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4.2 Conditions for the Existence of a PNE

In this subsection, we use the notion of ordinal potentials to argue about existence of
PNE. A function P : S2 	→ R is a generalized ordinal potential [16] (GOP) for a
game Γ if ∀i ∈ M, ∀s−i ∈ Sm−1, and ∀x, z ∈ S,

ui(x, s−i) > ui(z, s−i) ⇒ P (x, s−i) > P (z, s−i).

If Γ admits a GOP and is also finite (as our games are), the FIP property holds (see
Section 4.1), and all improvement paths terminate at a PNE [16]. On the other hand,
in our games the existence of PNE is not equivalent with the FIP property; we can
construct games that possess PNE, but do not admit a GOP. We omit these due to lack
of space. Instead, we continue with a set of necessary conditions for the existence of a
GOP. To this end, we shall say that a set X of nodes is reachable from a strategy S if
and only if X ⊆ HS , where HS is the ideal spread of S.

Lemma 1. The game ((G,LIS,TBC1 = R≺,TBC2), M, k) cannot admit a general-
ized ordinal potential if

i. ∃(S1, S2) ∈ S2, S1 �= S2, such that S1 is reachable from S2, and S2 is reachable
from S1.

ii. ∃(S1, S2) ∈ S2, S1 �= S2, such that |HS1 | = |HS2 |, and S1 is reachable from S2,
or S2 is reachable from S1.

The Lemma suggests that many classes of our games may not admit a GOP — in the
next subsection we shall approximate how close to admitting a GOP these games are.
The fact is elucidated further through the following corollary, where we assume k = 1,
i.e., as in [1], each player has to pick a single node, therefore, the only reasonable
strategies are the nodes u for which there is at least one edge (u, v) such that wuv ≥ θv.

Corollary 1. If the game ((G,LIS = LTM,TBC1 = R≺,TBC2 = R≺), M, k = 1)
admits a generalized ordinal potential, then

i. G contains a DAG that includes the set {u|∃v ∈ V, such that wuv ≥ θv}.
ii. If wuv ≥ θv for every edge (u, v) ∈ E, then G has to be a DAG.

Corollary 1 shows that for the case of k = 1, the conditions on the ideal spreads implied
by Lemma 1, enforce the graph to have the special structure of a DAG. But clearly not
all DAGs admit a GOP as has been demonstrated in Example 1.

We now move on to derive a sufficient condition for the existence of a GOP.

Theorem 3. Consider a game ((G,LIS,TBC1 = R≺,TBC2), M, k), and suppose
that we order the set of the available strategies so that |HS1 | ≥ . . . ≥ |HS|S| |. If for all
i ∈ {1, . . . , |S| − 1} it holds that

|HSi+1 | ≤
⌊ |HSi | + max {γ1(Si, Si+1), γ2(Si, Si+1)}

2

⌋
(3)
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then the game admits a generalized ordinal potential. Moreover, all its PNE have the
form (Smax, S2), where Smax ≡ argmaxS∈S {|HS |}.

For an interpretation of Theorem 3, consider a game where the max term is zero in (3).
Then, a GOP exists if all ideal spreads are well separated, and Player 2 can never hope
to take more than half of the nodes that Player 1 would get ideally (we refer the reader
to the introductory example for this theorem in our full version).

The condition of Theorem 3 can be relaxed so that not all ideal spreads need to be
well separated, e.g., in certain cases where there is no overlap between the ideal spreads
of some strategies. For example, when G is a full and complete d-ary tree, d ≥ 2, then
(3) does not hold but using similar arguments as in the proof of Theorem 3 we have:

Corollary 2. The games of the form ((G,LIS = LTM(wuv ≥ θv, ∀(u, v) ∈ E),TBC1
= R≺, TBC2 = R≺), M, k = 1), where G is a full and complete d-ary tree, admit a
GOP.

4.3 Quantifying Instability

The previous sections on existence and complexity motivate our next discussion on
approximate PNE. Overall, the main conclusion of this subsection is that even though
PNE do not always exist, we do have in certain cases approximate equilibria with a
good quality of approximation, and we can also compute them in polynomial time.

A strategy profile s is an ε-PNE, if no agent can benefit more than ε by unilater-
ally deviating to a different strategy, i.e., for every i ∈ M, and S′

i ∈ S it holds that
ui(S′

i, s−i) ≤ ui(s) + ε. Recall that in our case, utilities are integers in {0, ..., |V |}, and
ε also takes integer values1. Additionally, a function P : S2 	→ R is an ε-generalized
ordinal potential (ε-GOP) for a game Γ (see [7]) if ∀i ∈ M, ∀s−i ∈ S2, ∀x, z ∈ S,
ui(x, s−i) > ui(z, s−i) + ε ⇒ P (x, s−i) > P (z, s−i). Such a function P yields di-
rectly the existence of ε-PNE. We first obtain such a potential function for games that
have diffusion depth D = 1, based on the ideal spread of the players’ strategies and on
the quantification of the utility functions in the beginning of Section 4 (Definition 4).

Theorem 4. Any game Γ = ((G,LIS,TBC1 = R≺,TBC2 = R≺), M, k), where
D(Γ ) = 1, admits the function P (s) = (1+βmax+γmax)|HS1 |+|HS2|−β2(s)−γ2(s),
as a k-GOP. Moreover, a k-PNE can be computed in polynomial time.

The last assertion of Theorem 4 is easy to see since the value of the function P (s) is
at most O(|V |2). Therefore, by following an improvement path (with improvements of
more than k), we can find an approximate PNE quite efficiently.

Note that this holds for any local interaction scheme, and not just the linear threshold
model. Theorem 4 implies that when D(Γ ) = 1 and k is small, we can have a good
quality of approximation. E.g., for k = O(1), or k = o(|V |), and as |V | → ∞, we
can have approximate equilibria where any node can additionally gain only a negligible
fraction of the graph by deviating.

1 We could normalize the utilities by dividing by |V |, and then ε would take values in the set
{1/|V |, 2/|V |, ..., 1}. We present the theorems without the normalization so as to be consis-
tent with all other sections.
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For games with higher diffusion depth, we define below an important parameter that
captures the quality of approximation we can achieve in worst case via ε-GOP.

Definition 6. i. Given a 2-player game, and two strategy profiles s = (S1, S2), s′ =
(S′

1, S2), the diffusion collision factor of player 1 for strategy S′
1 compared to S1,

given S2, is defined as DC1(S′
1, S1|S2) ≡ (α1(s′) + γ1(s′)) − (α1(s) + γ1(s)).

ii. Similarly, for s = (S1, S2), s′ = (S1, S′
2), the diffusion collision factor of Player

2 for S′
2 compared to S2, given S1, is defined as DC2(S′

2, S2|S1) ≡ (α2(s′) +
γ2(s′)) − (α2(s) + γ2(s)).

In order to understand this new notion, recall from Equation (1) that, given a profile
s, α1(s) + γ1(s) denotes the number of nodes that Player 1 does not infect due to
the presence of Player 2 in the market; this fact directly yields some intuition for the
definition of DC1. This is not exactly the case for DC2, as the β2-term is missing (see
Eq. (2)); nonetheless, it turns out that it suffices to define DC2 in a uniform manner
as DC1, when using R≺ for ties. Finally, we set DCmax to be the maximum possible
diffusion collision factor.

Theorem 5. Any game Γ = ((G,LIS,TBC1 = R≺,TBC2 = R≺), M, k), where
D(Γ ) ≥ 2, admits the function P (s) = x1|HS1 | + |HS2 | − β2(s), as a DCmax-
GOP, where x1 is any number satisfying x1 > βmax. Moreover, a DCmax-PNE can be
computed in polynomial time.

The approximations of k and DCmax are tight for LIS=LTM, and we provide the cor-
responding examples in our full version.

5 Quantifying Inefficiency

5.1 Price of Anarchy and Stability

Given an m-player game, and a strategy profile s, the sum SW (s) =
∑m

j=1 uj(s) is
the social welfare of s. The Price of Anarchy (PoA), for a family of games, is the
worst possible ratio of SW (s)/SW (s′), where s is a social optimum, and s′ is a Nash
equilibrium. Similarly, the Price of Stability (PoS) is defined as the best such ratio.

Suppose now that |V | is sufficiently large, so that players will never play overlapping
strategies at a PNE, e.g., this is ensured if |V | ≥ mk. In that case we would have
1 ≤ P oA ≤ |V |/(mk). The question of interest then is whether PoA can be much
lower than this upper bound.

The following theorem exhibits that for diffusion depths greater than one, competi-
tion can severely hurt social welfare. This can be detrimental both to the firms, and the
network users, since it implies that in worst case the firms will have a very low utility,
and the service offered by these competing products will reach only a small fraction of
the nodes. This is in agreement with the worst case scenario in the model of [10]2. On
the contrary, this is not always the case when the diffusion depth is one.

2 In the stochastic process of [10], PoA can be very high when their so-called switching function
is not concave.
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Fig. 2. The network for the proof of Theorem 7(ii): All nodes have threshold 1, except of node
n3 that has θn3 = 1/2, and node n8 that has θn8 = 1/2

Theorem 6. i. For the family of games ((G,LIS = LTM,TBC1 = R≺,TBC2 =
R≺), M, k), P oA = |V |/(mk), and P oS ≥ k

k+1
|V |
mk , even for D = 2.

ii. For the family of games ((G,LIS = LTM,TBC1 = R≺,TBC2 = R≺), M =
{1, 2}, k = 1), with D = 1, we have P oS = 1, and P oA ≤ SW (s)/(SW (s)−1),
where s is a social optimum. Moreover, if there exist at least two nodes with nonzero
out-degree, then P oA = 1.

The negative effect of competition on the players’ utilities is further illustrated in the
next subsection from the perspective of the best quality player.

5.2 Worst-Case Scenarios for the Best Quality Player

We end our presentation with identifying a different form of inefficiency for PNE, which
arises from the following question: Consider games with the reputation ordering R≺ as
the tie-breaker. Does the firm with the best quality product ensure the maximum spread
among all the players at any PNE? Theorem 7 illustrates that this may not always be the
case for games with at least three players (but it is so for 2-player games). In fact, the
payoff of the best quality player may be arbitrarily lower than the player with the highest
market share at a PNE. We consider this as a form of inefficiency since in a socially
desirable outcome, one would expect that the product with the best quality/reputation
should have the largest market share. This surprising result dictates the necessity for
quantifying such effects in PNE.

Theorem 7. Consider the class of games ((G,LIS,TBC1 = R≺,TBC2), M, k).

i. If m = 2, then for all PNE s, it is u1(s) ≥ u2(s).
ii. If m ≥ 3, LIS = LTM, and TBC2 = R≺, then a game exists with a PNE s such

that ui(s) < uj(s), although i � j with regard to R≺.

Proof. i. Assume that a PNE s = (S1, S2) exists such that u1 (s) < u2 (s). Then,
Player 1 can deviate to S′

1 = S2, and obtain utility u1(S2, S2) ≥ u2(s) > u1(s).
Thus, s cannot be a PNE.

ii. Note that R≺ = 1 � 2 � 3, and consider the social network in Figure 2: As ni,
∀i ∈ {1, . . . , 8}, and as ai, ∀i ∈ {1, . . . , μ}, where μ > k, we denote single nodes.
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We assume that all of them have threshold 1, except of nodes n3, and n8 that have
θn3 = 1/2, and θn8 = 1/2. As Si, ∀i ∈ {1, 2, 3}, we denote sets of k nodes.
Finally, the edges between single nodes are annotated with their corresponding
weight. On the other hand, the edges that emanate from a set Si are annotated with
the accumulated corresponding weight of the underlying edges between each of
the nodes in Si and the involved end-node (e.g., ∀v ∈ S1, it is wvn3 = θn3 /k).
One can now verify that the profile s ≡ (S1, S2, S3) constitutes a PNE, even though
it is u2(s) = k +μ+4, u1(s) = k +3, and u3(s) = k +1 — i.e., u2(s) > u1(s) >
u3(s). We omit the details.

In the network of Figure 2, observe that at the PNE s = (S1, S2, S3), u2(s) = k +
μ + 4 > u1(s) + u3(s) = 2k + 4, since μ > k — note that μ can be arbitrarily
large. Thereby, if firm 1 is affiliated with firm 3, while their products are marketed as
competing and incompatible (e.g. airline merges), firm 1 is incentivized to withdraw
firm 3 from the game: the resulting 2-player game between firm 1 and firm 2, has a
unique PNE, namely (S2, S1), in which firm 1 achieves the maximum possible utility
— u1(S2, S1) = k + μ + 4. Moreover, notice that in this 2-player game, firm 1 initiates
only k nodes to achieve this utility. On the other hand, in the original 3-player game,
firms 1 and 3 initiate k nodes each, and still they achieve a lower sum of utilities at s.

Our discussion indicates the necessity to capture the motivation of a player to either
merge with other players, or to divide itself to several new ones that, although affiliated,
they are still non-cooperative within the induced game. For example, given the network
of Figure 2 Player 1 faces the question: Should I play alone against the others, since I
am the best firm, or should I merge even with the weakest? We believe this aspect of
PNE is worth further investigation and we leave it as an open direction for future work.

6 Conclusions and Future Work

We have studied a competitive diffusion process from a non-cooperative game-theoretic
viewpoint. We have investigated several aspects related to the stability of such games
and we have unveiled some important parameters that have met no previous investiga-
tion. We believe that our work motivates primarily further empirical research on social
networks with regard to the following questions: Can we identify a range of typical val-
ues for decisive structural features such as the diffusion depth, the ideal spread, and the
maximum diffusion collision factor? This could quantify the instability of the induced
games, in light of Theorems 4 and 5, as well as the results in Section 4.2.

Other interesting questions have to do with resolving some of the remaining open
problems from our work. It is still open if the complexity of determining that a PNE ex-
ists is Σp

2 -complete, or not. The Price of Anarchy is also not yet completely determined
when D = 1 and k is arbitrary. Finally, additional compelling questions may concern
the robustness to network changes.
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Abstract. We examine the impact of independent agents failures on the
solutions of cooperative games, focusing on totally balanced games and
the more specific subclass of convex games. We follow the reliability ex-
tension model, recently proposed in [1] and show that a (approximately)
totally balanced (or convex) game remains (approximately) totally bal-
anced (or convex) when independent agent failures are introduced or
when the failure probabilities increase. One implication of these results
is that any reliability extension of a totally balanced game has a non-
empty core. We propose an algorithm to compute such a core imputation
with high probability. We conclude by outlining the effect of failures on
non-emptiness of the core in cooperative games, especially in totally bal-
anced games and simple games, thereby extending observations in [1].

Keywords: Totally Balanced Games, Convex Games, Agent Failures,
Cooperative Game Theory.

1 Introduction

Consider a communication network designed to transmit information from a
source node to a target node, where selfish agents control the different links in
the network. Suppose the utility generated by the network is proportional to the
bandwidth it can achieve between the source and the target. Further suppose
that the links are not fully reliable and may fail, and that these link failures are
independent of each other, although the failure probability of each link may be
different. The surviving links provide a certain bandwidth from the source to the
target. Since it is not known a priori which links would fail, there is uncertainty
regarding the revenue that the agents would generate.

In such a setting the agents owning the links typically need each other in order
to generate revenue, but since they are selfish each of them attempts to maximize
his own share of the revenue. Which agreements are these agents likely to make
regarding sharing the revenue? How do the link failures affect the agents’ ability
to reach a stable agreement regarding distributing the gains amongst themselves?
Can we compute such stable payment allocations?
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Interactions between selfish agents who must cooperate to achieve their goals
are analyzed using cooperative game theory [18,7], where solution concepts at-
tempt to characterize how such agents might agree to act and share the resulting
gains among themselves. A prominent such concept is the core [11] which requires
that no sub-coalition could defect and improve its utility by operating on its own.

Shapley and Shubik introduced the class of totally balanced games and showed
that such games have a non-empty core [24]. Many interesting and practical
classes of games have been shown to be totally balanced, such as the network
flow game [13], Owen’s linear production game [19], the permutation game [27],
the assignment game [25], the minimum cost spanning tree game [12], etc. Our
motivating example is a network flow game with independent agent failures.

Despite the wide coverage of cooperative interactions, most models ignore
failures although it is hardly realistic to assume that all agents can always fill
their roles. We use the reliability extension model [1] which formalizes indepen-
dent agent failures in cooperative games, to investigate such failures in totally
balanced games and in the more specific subclass of convex games.

Our Contribution: We first study the reliability extension of general cooper-
ative games. We show how a game is transformed when failures are introduced
or when the reliabilities (probabilities of agents not failing) change. Next we in-
troduce the class of ε-totally balanced games, a natural generalization of totally
balanced games, and investigate the effect of failures on such games. We prove
that every reliability extension of an ε-totally balanced game is also ε-totally
balanced. For ε = 0, this implies that every reliability extension of a totally
balanced game is also totally balanced. Further, we show that decreasing one or
more reliabilities in an ε-totally balanced game keeps it ε-totally balanced.

Using Shapley’s result that convex games are totally balanced [23], our results
imply that every reliability extension of a convex game is also totally balanced.
This strengthens a result by Bachrach et. al. [1] who prove that every reliability
extension of a convex game has a non-empty core. Similarly to ε-totally bal-
anced games, we also introduce ε-convex games and prove that every reliability
extension of an ε-convex game is also ε-convex. For ε = 0, this implies that every
reliability extension of a convex game is not just totally balanced, but convex.
Further, we show that decreasing reliabilities in an ε-convex game keeps it ε-
convex. We then prove that any ε/(n − 1)-convex game is ε-totally balanced,
generalizing Shapley’s result that convex games are totally balanced. Addition-
ally, we examine the computational aspects of a game’s reliability extension, and
provide an algorithm that computes a core solution of any reliability extension
of a totally balanced game with high probability.

Our results show that both introducing failures and increasing failure prob-
abilities preserve core non-emptiness in totally balanced games. We point out
that neither of these preserve core non-emptiness in general cooperative games.
Bachrach et. al. [1] observe that introducing failures preserves non-emptiness of
the core in simple games (where every coalition has value either 0 or 1). Surpris-
ingly, we show that this is not the case for increasing failure probabilities.
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2 Related Work

Shapley and Shubik [24] introduced the notion of totally balanced games and
proved their equivalence to the class of market games. Kalai and Zemel [13] later
proved that they are also equivalent to two other classes of games: finite collec-
tions of simple additive games and network flow games. Owen [19] and Tijs et.
al. [27] introduced two practical classes of totally balanced games: respectively,
linear production games arising from linear programming problems and permu-
tation games arising in sequencing and assignment problems. Deng et. al. [10]
extended the analysis of total balancedness to various combinatorial optimiza-
tion games, partition games and packing and convering games. These results
suggest that the class of totally balanced games is elementary and practical.

Our analysis follows the reliability extension model of Bachrach et. al. [1] to
examine the impact of independent agent failures in totally balanced games. A
somewhat reminiscent model was proposed by Chalkiadakis et. al. [8] in which
they consider the problem of coalition formation in a Bayesian setting. In their
model, agents have types which are private information and agents have beliefs
about the types of the other agents. In our setting, the failure probabilities can be
viewed as types, but we focus on the specific case when these failure probabilities
are public information and the failures are independent. Agent failures have
also been widely studied in non-cooperative game theory. For example, Penn et.
al. [20] study independent agent failures in congestion games, which are non-
cooperative normal form games. Such failures have also been studied in other
fields such as reliable network formation [4], non-cooperative Nash networks [5],
sensor networks [14] etc. It is quite surprising that such an elementary notion of
failure was only recently formalized in cooperative games.

3 Preliminaries

A transferable utility cooperative game G = (N, v) is composed of a set of
agents N = {1, 2, . . . , n} and a characteristic function v : 2N → R indicating the
total utilities achievable by various coalitions (subsets of agents). By convention,
v(∅) = 0. For any agent i ∈ N and coalition S ⊆ N , we denote S ∪ {i} by S + i
and S \ {i} by S − i. For a game G = (N, v) and coalition S ⊆ N , GS denotes
the subgame of G obtained by restricting the set of agents to S.

Convex Games: A characteristic function is called supermodular if for each
i ∈ N and for all S and T such that S ⊆ T ⊆ N − i, we have v(S + i)− v(S) ≤
v(T + i)− v(T ) (i.e., increasing marginal returns). A game is called convex if its
characteristic function is supermodular. Similarly, for any ε ≥ 0, a characteristic
function is called ε-supermodular if for each i ∈ N and for all S and T such that
S ⊆ T ⊆ N − i, we have v(S + i)− v(S) ≤ v(T + i)− v(T ) + ε. Define a game
to be ε-convex if its characteristic function is ε-supermodular. Note that convex
games are recovered as the special case of ε = 0.
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Imputation: The characteristic function defines the value that a coalition can
achieve on its own, but not how it should distribute the value among its mem-
bers. A payment vector p = (p1, . . . , pn) is called a pre-imputation if

∑n
i=1 pi =

v(N). A payment vector p = (p1, . . . , pn) is called an imputation if it is a pre-
imputation and also individually rational, i.e., pi ≥ v({i}) for every i ∈ N . Here,
pi is the payoff of agent i, and the payoff of a coalition C is p(C) =

∑
i∈C pi.

Core: A basic requirement for any good imputation is that the payoff to every
coalition is at least as much it can gain on its own so that no coalition can gain
by defecting. The core is the set of all imputations p such that p(N) = v(N)
and p(S) ≥ v(S) for all S ⊆ N . It may be empty or may contain more than
one imputation. One closely related concept is that of ε-core. For any ε ∈ R,
the ε-core is the set of all imputations p such that p(N) = v(N) and for every
S ⊆ N such that S 	= N , we have p(S) ≥ v(S) − ε. When ε > 0, it serves as a
relaxation of the core and is useful in predicting behaviour in games where the
core is empty. When ε < 0, it serves as a stronger concept where every coalition
requires at least an incentive of |ε| to defect. We denote the case of ε > 0 as the
approximate core and the case of ε < 0 as the superstable core. For any game,
it is easy to show that the set {ε | the ε-core is non-empty} is compact and thus
has a minimum element εmin. The εmin is known as the least core value of the
game and the εmin-core is known as the least core.

Total Balancedness: As defined by Shapley and Shubik [24], a game is called
totally balanced if every subgame of the game has a non-empty core. We define a
natural generalization of totally balanced games. For any ε ≥ 0, a game is called
ε-totally balanced if every subgame of the game has non-empty ε-core.

Reliability Game: As defined in [1], a reliability game G = (N, v, r) consists
of the set of agents N = {1, 2, . . . , n}, the base characteristic function v which
describes the values of the coalitions in the absence of failures, and the reliability
vector r where ri is the probability of agent i not failing. After taking failures
into account, the characteristic function of the reliability game, denoted by vr,
is given by the following equation. For every coalition S ⊆ N ,

vr(S) =
∑
S′⊆S

Pr(S′|S) · v(S′) =
∑
S′⊆S

⎛⎝∏
i∈S′

ri ·
∏

j∈S\S′

(1− rj)

⎞⎠ · v(S′). (1)

Here, Pr(S′|S) denotes the probability that every agent in S′ survives and every
agent in S\S′ fails so vr(S) is the expected utility S achieves under failures. The
set S′ is called the survivor set for the coalition S. For the base game G = (N, v),
the game Gr = (N, v, r) is called the reliability extension of G with the reliability
vector r. For a reliability vector r, we denote by r-i the vector of reliabilities of
all agents except i and by r′ = (p, r-i) the reliability vector where r′i = p and
r′j = rj for j 	= i. For vectors x and y, define x ≤ y if xi ≤ yi for every i.
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4 Reliabilities, Total Balancedness and Convexity

We examine how the value of a coalition changes as the reliability of an agent
changes in a general game.

Lemma 1. Let G = (N, v, r) be a reliability game. Let i ∈ N be an agent
and let p = ri > 0 be the reliability of agent i in G. Take 0 ≤ p′ ≤ 1 and let
G′ = (N, v, r′) where r′ = (p′, r-i). Let vr and vr

′
be the characteristic functions

of G and G′ respectively. Then the following holds.1

1. For any coalition S ⊆ N such that i /∈ S, we have vr
′
(S) = vr(S).

2. For any coalition S ⊆ N such that i ∈ S, we have

vr
′
(S) =

p′

p
· vr(S) +

(
1− p′

p

)
· vr(S − i).

Proof Sketch. Part 1 of the proof is trivial and follows directly from Equation (1).
For the second part, for any coalition S ⊆ N such that i ∈ S, we define vreli (S)
as the value of S in the game Grel

i = (N, v, rrel
i ) where rrel

i = (1, r-i). Now we
break the summation in Equation (1) into two parts: summation over the subsets
containing i and summation over the subsets not containing i, and observe that
vr(S) = p · vreli (S) + (1− p) · vr(S − i) and similarly, vr

′
(S) = p′ · vreli (S) + (1−

p′) · vr′
(S − i). Finally, observing that vr

′
(S − i) = vr(S − i) (using part 1) and

eliminating vreli (S) from the two equations, we get the desired result. �

The proof appears in the full version of the paper.2 Note that by starting with
G = (N, v,1) where 1 = 〈1, 1, . . . , 1〉, we can use Lemma 1 to analyze the effect
of introducing failures into a cooperative game as well.

4.1 Approximately Totally Balanced Games

We now analyze the reliability extension of ε-totally balanced games and prove
that ε-total balancedness is preserved when the reliability of one agent decreases.

Theorem 1. Let ε ≥ 0 and G = (N, v, r) be a reliability game that is ε-totally
balanced. Fix i ∈ N and let p = ri > 0 be the reliability of agent i in G. Take p′

such that 0 ≤ p′ ≤ p and define G′ = (N, v, r′) where r′ = (p′, r-i). Then G′ is
ε-totally balanced.

Proof. Let vr and vr
′

denote the characteristic functions of G and G′ respec-
tively. We want to prove that G′ is ε-totally balanced, i.e., for any coalition

1 The equation in part 2 of Lemma 1 really captures both parts 1 and 2. Part 1 is
obtained by observing that S − i = S when i /∈ S. The two cases are separated for
clarity and for the convenience of the reader.

2 The full version is available from: http://www.cs.cmu.edu/~nkshah/papers.html.

http://www.cs.cmu.edu/~nkshah/papers.html
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S ⊆ N , the subgame G′
S has an ε-core imputation. Fix any coalition S ⊆ N .

There are two cases: i ∈ S and i /∈ S.3
If i /∈ S, then using Lemma 1 we see that vr

′
(C) = vr(C) for every C ⊆ S,

i.e., the subgames G′
S and GS are equivalent. Further, since G is an ε-totally

balanced game, its subgame GS has an ε-core imputation x. It is easy to see
that x is also an ε-core imputation of G′

S .
Now let i ∈ S. Since G is an ε-totally balanced game, both its subgames GS

and GS−i have ε-core imputations, say xS and xS−i (take xφ = 〈0, 0, . . . , 0〉).
Extend both vectors by setting the payments to agents in N \ S (and payment
to i in xS−i) to be zero. We prove that x = p′/p · xS + (1− p′/p) · xS−i is an
ε-core imputation of G′

S . First we show that x is a pre-imputation.

x(S) =
p′

p
· xS(S) +

[
1− p′

p

]
· xS−i(S) =

p′

p
· xS(S) +

[
1− p′

p

]
· xS−i(S − i)

=
p′

p
· vr(S) +

[
1− p′

p

]
· vr(S − i) = vr

′
(S),

Here, the second transition follows since the payment to agent i in xS−i is 0,
the third transition follows since xS and xS−i are ε-core imputations of GS and
GS−i respectively and the last transition follows from Lemma 1.

Now for any coalition C ⊆ S and C 	= S, we want to show that x(C) ≥
vr

′
(C)− ε. We again take two cases: i ∈ C and i /∈ C. Let i /∈ C, i.e., C ⊆ S− i.

Since xS and xS−i are ε-core imputations of GS and GS−i respectively, we have
that xS(C) ≥ vr(C) − ε and xS−i(C) ≥ vr(C)− ε. Therefore,

x(C) =
p′

p
·xS(C)+

[
1− p′

p

]
·xS−i(C) ≥

[
p′

p
+ 1− p′

p

]
·(vr(C)−ε) = vr

′
(C)−ε,

where the second transition uses p′ ≤ p and the third transition follows since
vr

′
(C) = vr(C) (part 1 of Lemma 1). Now let i ∈ C. Once again, we have that

x(C) =
p′

p
· xS(C) +

[
1− p′

p

]
· xS−i(C) =

p′

p
· xS(C) +

[
1− p′

p

]
· xS−i(C − i)

≥ p′

p
· (vr(C)− ε) +

[
1− p′

p

]
· (vr(C − i)− ε) = vr

′
(C)− ε.

The second transition follows since payment to agent i in xS−i is 0. The third
transition follows since xS and xS−i are ε-core imputations of GS and GS−i re-
spectively and since p′ ≤ p. The last transition follows due to part 2 of Lemma 1.

Hence, we proved that x(S) = vr
′
(S) and x(C) ≥ vr

′
(C)−ε for every coalition

C ⊆ S where C 	= S. This proves that x is an ε-core imputation of G′
S . Since

S ⊆ N was selected arbitrarily, we have proved that every subgame of G′ has
non-empty ε-core, i.e., G′ is ε-totally balanced. �
3 It is possible to combine all the cases in the proof of Theorem 1 using Footnote 1.

However, a case-wise analysis is presented to avoid any confusion.
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Since ε-total balancedness is preserved when we decrease a single reliability, we
can decrease multiple reliabilities one-by-one and repeatedly apply Theorem 1
to show ε-total balancedness in the resulting game, so we obtain the following.

Corollary 1. Let ε ≥ 0. Let G = (N, v, r) be an ε-totally balanced reliability
game and G′ = (N, v, r′) where r′ ≤ r. Then G′ is ε-totally balanced.

Any reliability extension of a game can be obtained by starting from the base
game (equivalent to its reliability extension with the reliability vector 1) and
decreasing reliabilities as required. Hence Corollary 1 implies that reliability ex-
tensions preserve ε-total balancedness. Conversely if a game G is not ε-totally
balanced, it has a subgame GS , which is also a reliability extension with reliabil-
ity 1 for i ∈ S and 0 otherwise, having empty ε-core. This proves the following.

Corollary 2. For any ε ≥ 0, a game is ε-totally balanced if and only if every
reliability extension of the game is ε-totally balanced.

Shapley [23] showed that convex games are totally balanced. Thus Corollary 2
implies that every reliability extension of a convex game is totally balanced. This
strengthens a theorem by Bachrach et. al. [1] which states that every reliability
extension of a convex game has a non-empty core.4 We strengthen this further
and prove that every reliability extension of a convex game is in fact convex.

4.2 Approximately Convex Games

For the reliability extension of ε-convex games, the results are parallel to those
for ε-totally balanced games, but require different proof techniques.

Theorem 2. Let ε ≥ 0. Let G = (N, v, r) be an ε-convex reliability game. Fix
i ∈ N and let p = ri > 0 be the reliability of agent i in G. Take p′ such that
0 ≤ p′ ≤ p and define G′ = (N, v, r′) where r′ = (p′, r-i). Then G′ is ε-convex.

Proof Sketch. Let vr and vr
′
be the characteristic functions of G and G′ respec-

tively. We want to prove that G′ is ε-convex, i.e., for every j ∈ N and for all S ⊆
T ⊆ N−j, vr

′
(S+j)−vr

′
(S) ≤ vr

′
(T+j)−vr

′
(T )+ε. We know that this is true

for vr since G is ε-convex. We analyze the marginal contributions of j to S and T
in both vr and vr

′
and apply ε-convexity of G and Lemma 1 (wherever required)

in order to prove ε-convexity of G′. �
The proof appears in the full version of the paper. Similarly to totally balanced
games, Theorem 2 can be extended to cover general decreases in reliabilities,
including those starting from the base game.

Corollary 3. Let ε ≥ 0. Let G = (N, v, r) be an ε-convex reliability game and
G′ = (N, v, r′) where r′ ≤ r. Then G′ is ε-convex.

Corollary 4. For any ε ≥ 0, a game is ε-convex if and only if every reliability
extension of the game is ε-convex.
4 The converse part of Theorem 3 in [1] is technically incorrect and only holds when

the game is not totally balanced, which is again generalized by our results.
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4.3 Relation between convexity and total balancedness

Shapley [23] proved that convex games are totally balanced. In the above results,
we deal with the notions of ε-convexity and ε-total balancedness. We now prove
a relation between the two concepts for any ε ≥ 0, extending Shapley’s result.

Theorem 3. For any ε ≥ 0, an ε/(n−1)-convex game with n agents is ε-totally
balanced.

The proof of this theorem is along the same lines as the proof of Shapley’s result
(see, e.g., [7]) and appears in the full version of the paper. We also show that
the sufficient condition in Theorem 3 cannot be improved by a factor of more
than n− 1. The proof again appears in the full version of the paper.

Lemma 2. For any ε ≥ 0, δ > 0 and n ∈ N, there exists a game with n agents
which is ε+ δ-convex but not ε-totally balanced.

There are several implications of this relation. First, Corollary 4 showed that any
reliability extension of an ε-convex game is ε-convex. Using Theorem 3, we can
see that such an extension is also ε ·(n−1)-totally balanced. Second, the core has
been well studied in the literature. For simple games, the core is non-empty if
and only if a veto agent exists. In general games, convexity serves as a sufficient
condition for non-emptiness of the core. However, conditions for non-emptiness
of the approximate core are relatively less studied. Theorem 3 provides such a
sufficient condition in terms of approximate convexity.

5 Computing a Core Imputation

In Section 4, we proved that every reliability extension of a totally balanced
game is totally balanced and thus has a non-empty core. However, the proof was
non-constructive. For several classes of totally balanced games without failures,
elegant LP based approaches exist to compute a core imputation in polynomial
time. But computing a core imputation in the reliability extension may have a
different computational complexity. For example, Bachrach et. al. [1] note that
although computing a core imputation is easy in connectivity games on networks,
even computing the value of a coalition (and hence computing a core imputation)
becomes computationally hard in the reliability extension.

Nevertheless, we show that it is possible to compute a core imputation in
any reliability extension of a totally balanced game with high probability. In
this section, we use ε-core for both ε ≥ 0 (core/approximate core) and ε < 0
(superstable core). In literature, the approximate core is well studied in cases
where the core is empty. When the core is not empty, typically only the least
core, which corresponds to the εmin-core (εmin < 0) is studied.

First, we show how to compute the core (or the ε-core) in a reliability extension
of a general game in terms of the core (or the ε-core) of the subgames of the
base game. The latter is known to be a tractable problem for many domains.
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Theorem 4. Let ε ∈ R. Let G = (N, v) be an ε-totally balanced game and
Gr = (N, v, r) be its reliability extension. For any coalition S ⊆ N , let xS be an
ε-core imputation of the subgame GS. Define x∗ =

∑
S⊆N Pr(S|N) · xS, where

Pr(S|N) =
∏

i∈S ri ·
∏

i∈N\S(1− ri). Then the following holds.

1. If ε ≥ 0, then x∗ is an ε-core imputation of Gr.
2. If ε < 0, then x∗ is an rmin·ε-core imputation of Gr, where rmin = mini∈N ri.

Proof. For every coalition S, by definition we have that xS(S) = v(S) and
xS(C) ≥ v(C)− ε for every C ⊆ S. Let vr be the characteristic function of Gr.
First, we prove that x∗ is a pre-imputation of Gr.

x∗(N) =
∑
S⊆N

Pr(S|N) · xS(S) =
∑
S⊆N

Pr(S|N) · v(S) = vr(N),

where the first transition follows since payment to agents in N \S is zero in xS,
the second transition follows since xS(S) = v(S) and the last transition follows
due to Equation (1). Now, fix any coalition C ⊆ N where C 	= N . For any
C′ ⊆ C, for all S ⊆ N such that S∩C = C′, we have xS(C) = xS(C

′) ≥ v(C′)−ε
except when S = C′ where we have xC′(C) = xC′(C′) = v(C′). Now,

x∗(C) =
∑
S⊆N

Pr(S|N) · xS(C) =
∑
C′⊆C

⎡⎣ ∑
S⊆N s.t. S∩C=C′

Pr(S|N) · xS(C)

⎤⎦

≥
∑
C′⊆C

⎡⎢⎢⎣
⎛⎜⎜⎝ ∑

S⊆N s.t.
S∩C=C′,S �=C′

Pr(S|N) · (v(C′)− ε)

⎞⎟⎟⎠+ Pr(C′|N) · v(C ′)

⎤⎥⎥⎦
=
∑
C′⊆C

⎡⎣(v(C′)− ε) ·

⎛⎝ ∑
S⊆N s.t. S∩C=C′

Pr(S|N)

⎞⎠+ Pr(C′|N) · ε

⎤⎦
=
∑
C′⊆C

[(v(C′)− ε) · Pr(C′|C) + Pr(C′|N) · ε]

=
∑
C′⊆C

[Pr(C′|C) · v(C ′)]− ε ·

⎡⎣ ∑
C′⊆C

Pr(C′|C)−
∑
C′⊆C

Pr(C′|N)

⎤⎦
= vr(C)− ε ·

⎛⎝1−
∏

i∈N\C
(1 − ri)

⎞⎠ ,

where the fourth transition follows by adding and subtracting Pr(C′|N) · ε in
the outer summation and rearranging terms and the last transition follows from
Equation (1). Formal proofs for intuitive substitutions used in the fifth and the
last transitions appear in the full version of the paper.

Using this and that x∗ is a pre-imputation, we know that x∗ is an ε′-core
imputation of Gr if ε′ ≥ ε ·

(
1−
∏

i∈N\C(1− ri)
)
, for every C ⊆ N such that
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C 	= N . If ε ≥ 0, then we need to maximize 1 −
∏

i∈N\C(1 − ri) else we need
to minimize it. A trivial upper bound is 1 −

∏
i∈N (1 − ri) ≤ 1. We use the

loose upper bound of 1. For a lower bound, note that since C 	= N , there exists
j ∈ N \C, hence

∏
i∈N\C(1−ri) ≤ 1−rj ≤ 1−rmin. Thus rmin is a lower bound

(which is also attained when C = N − t where rt = rmin). This proves that x∗ is
an ε-core imputation of Gr if ε ≥ 0, and an rmin · ε-core imputation if ε < 0. �

For a game G = (N, v), define ε∗ as the maximum least core value over all
subgames of G. That is, ε∗(G) = maxS⊆N εmin(GS). Note that a subgame with
a single agent has εmin = −∞ by definition. Thus, every subgame of G has non-
empty ε∗-core and hence there exists an ε∗-core imputation for every subgame.
Since an ε-core imputation is also an ε∗-core imputation for any ε ≤ ε∗ (by
definition), any least core imputation of any subgame of G is also an ε∗-core
imputation of that subgame. Thus we obtain the following.

Corollary 5. Let G, Gr and rmin be as defined in Theorem 4. Let ε∗ denote the
maximum least core value over all subgames of G. For any coalition S ⊆ N , let
xS be a least core imputation of GS . Define x∗ =

∑
S⊆N Pr(S|N) · xS, where

Pr(S|N) is as defined in Theorem 4. Then we have that

1. If ε∗ ≥ 0, then x∗ is an ε∗-core imputation of Gr.
2. If ε∗ < 0, then x∗ is an rmin · ε∗-core imputation of Gr.

Consider a totally balanced game G = (N, v). Assume that we have an oracle
LC such that LC(GS) returns a least core imputation of the subgame GS of the
base game G. Such an oracle subroutine exists with polynomial time complexity
for many classes of totally balanced games. For example, Solymosi et. al. [26] give
a polytime algorithm to compute the nucleolus of assignment games which are
totally balanced [25]. Nucleolus is a special (and unique) least core imputation
that maximizes stability. Other examples of polytime algorithms to compute the
nucleolus of totally balanced games include the algorithm by Kuipers [16] for
convex games, the algorithm by Deng et. al. [9] for simple flow games and the
algorithm by Kern et. al. [15] for matching games (which are totally balanced
over bipartite graphs [10]). For technical reasons, we extend the payment vector
LC(GS) to a payment vector over all agents by setting the payments to agents
in N \ S to be zero. For now, we assume that LC is deterministic, in the sense
that it returns the same least core imputation every time it is called with the
same subgame. We relax this assumption in Remark 2.

Observe that ε∗ ≤ 0 for a totally balanced game. Corollary 5 implies that x∗

is an rmin · ε∗-core imputation of Gr (and hence a core imputation as well since
rmin · ε∗ ≤ 0) that can be computed using exponentially many calls to LC. We
reduce the number of calls to LC to a polynomial in n, log(1/δ) (1 − δ is the
confidence level), v(N), 1/rmin and 1/|ε∗| by sampling the subgames instead of
iterating over them and using some additional tricks. However, both rmin and
|ε∗| can be exponentially small (even zero) making this algorithm possibly an
exponential time algorithm. Thus if the bound on k in Theorem 5 exceeds 2n or
if ε∗ = 0, we revert to the naïve exponential summation of Corollary 5. Section 7
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discusses the issues with computation of ε∗. Note that even when ε∗ is unknown,
the algorithm can be used in practice by taking large number of samples. Also,
the algorithm uses the value of vr(N) which is easy to approximate by sampling
and the additive error can be taken care of as in Footnote 5.

Algorithm CoreReliability: Computing a core imputation of a reliability
extension of a totally balanced game.
Input: Totally balanced game G = (N, v), subroutine LC to compute a least
core imputation of subgames of G, reliability vector r, vr(N), δ and k.
Output: x̂, which is in the core of Gr with probability at least 1− δ.

1. Set y = 0.
2. For t = 1 to k do

(a) For each agent i ∈ N , set li = 1 with probability ri and li = 0 otherwise.
(b) y = y + LC(GS) where S = {i ∈ N | li = 1} (the survivor set).

3. Let x = y/k.
4. Return x̂ = x− γ · 1, where 1 = 〈1, 1, . . . , 1〉 and γ = 1

n · (x(N)− vr(N)).

Theorem 5. The payment vector x̂ returned by Algorithm CoreReliability
is in the core of Gr with probability at least 1− δ if

k ≥
2 · v(N)2 · n2 · log

(
2·n
δ

)
r2min · |ε∗|2 .

Proof. Let xS = LC(GS). In Step 2, every S is sampled with probability
Pr(S|N) and the value added is xS, so E[x] =

∑
S⊆N Pr(S|N) · xS = x∗ (as

in Corollary 5). For any S ⊆ N and for any i ∈ N , the payment to agent i in
LC(GS) is in [0, v(N)]. Using Hoeffding’s inequality, for any i ∈ N ,

Pr

(
|xi − x∗

i | ≥
rmin · |ε∗|

2 · n

)
≤ 2 · e−

2·k
v(N)2

·
(

rmin·|ε∗|
2·n

)2

.

Substituting the value of k, we get that this probability is at most δ/n for every
i ∈ N . Taking union bound over i ∈ N , we obtain that the probability that

∀ i ∈ N, |xi − x∗
i | ≤

rmin · |ε∗|
2 · n , (2)

holds is at least 1− δ. Now we prove that x̂ is a core imputation of Gr assuming
Equation (2) holds. First of all, we can see that

∑
i∈N xi ≤

∑
i∈N x∗

i+rmin·|ε∗|/2.
But using Corollary 5, we know that x∗ is an rmin · ε∗-core imputation of Gr

and hence
∑

i∈N x∗
i = vr(N). Therefore γ in Step 4 of the algorithm follows

γ = 1
n ·
(∑

i∈N xi − vr(N)
)
≤ rmin·|ε∗|

2·n . Hence, we can see that for every i ∈ N ,

x̂i = xi − γ ≥ x∗
i − rmin · |ε∗|

2 · n − γ ≥ x∗
i − rmin · |ε∗|

n
, (3)

where the second transition follows due to Equation (2). Hence for any C ⊆ N ,

x̂(C) =
∑
i∈C

x̂i ≥
∑
i∈C

(
x∗
i − rmin · |ε∗|

n

)
≥ x∗(C)− rmin · |ε∗|. (4)
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Since x∗ is an rmin · ε∗-core imputation of Gr, we know that x∗(C) ≥ vr(C) −
rmin · ε∗ = vr(C) + rmin · |ε∗| (since ε∗ < 0). Substituting this into Equation (4),
we get that x̂(C) ≥ vr(C) for every C ⊆ N and C 	= N . Furthermore, x̂(N) =
x(N)− n · γ = vr(N) by definition of x̂ and γ. Hence x̂ is in the core of Gr. �

Remark 1. Note that the algorithm works so long as the subroutine LC can
compute an ε∗-core imputation of every subgame of the base game. The reason
why we have chosen to work with the least core is that in our case ε∗ < 0 and
when it is possible to compute an ε∗-core imputation of every subgame, it is
usually possible to compute a least core imputation of every subgame as well.5

Remark 2. Initially we assumed that LC returns a fixed least core imputation
for every subgame. This is because Theorem 4 only works with fixed imputa-
tions. However, it is easy to check that if LC has any distribution over the set
of all least core imputations of a subgame, then the expected payment vector
returned by LC is a least core imputation of that subgame. Thus in Algorithm
CoreReliability, E[x] = E[x∗] is still an rmin · ε∗-core imputation of the
reliability extension, and the algorithm still works with the same bound on k.6

Remark 3. Note that Hoeffding’s inequality is usually applied when the require-
ments for the result are somewhat fuzzy whereas the requirements of a core
imputation are quite strict. The use of least core imputations of subgames of
the base game provides us enough margin of error to be able to use Hoeffding’s
inequality and still satisfy the strict constraints with high probability.

6 Failures and Non-emptiness of the Core

While studying reliability extensions of totally balanced games, we saw that in-
troducing failures in a totally balanced game without failures, and increasing
failure probabilities in a totally balanced reliability game preserve total bal-
ancedness, and hence non-emptiness of the core. In this section, we outline the
effect of these two operations on three classes of games: i) general cooperative
games, ii) totally balanced games, and iii) simple games.

General Games: In many games introducing failures does not preserve non-
emptiness of the core. Any game G that has a non-empty core but is not totally
balanced is such a game since a subgame of G with an empty core is also a reli-
ability extension of G. Introducing failures is a special case of increasing failure
probabilities where we start with failure probabilities being zero, so increasing
failure probabilities also does not preserve core non-emptiness in general games.

Totally Balanced Games: Our results show that for totally balanced games,
both introducing failures and more generally increasing failure probabilities pre-
serve non-emptiness of the core (in fact, they preserve total balancedness).
5 LC can also be replaced by a subroutine LC′ which returns an approximate least core

imputation so long as the additive error in each component is less than rmin · ε∗/n.
6 Algorithm CoreReliability can be easily adapted to compute an approximate or

superstable core imputation of any reliability game in general with high probability.
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Simple Games: For simple games, Bachrach et. al. [1] observe that introducing
failures preserves non-emptiness of the core. To analyze increasing failure prob-
abilities, we performed simulations on a special class of simple games known
as weighted voting games. A weighted voting game is defined by G = (N,w, t)
where N is a set of agents where each agent i ∈ N has a weight wi ≥ 0, w is the
vector of these weights and t is the threshold; a coalition C with

∑
i∈C wi ≥ t has

v(C) = 1 and v(C) = 0 otherwise. Simulations revealed the following example
where increasing failure probabilities does not preserve core non-emptiness.

Example: Consider a weighted voting game G with 5 agents with weight vector
w = 〈4, 3, 3, 2, 1〉 and threshold t = 6. Consider its reliability extension Gr

with the reliability vector r = 〈0.1, 0.6, 1, 1, 0.5〉. Gr has a non-empty core, but
decreasing the reliability of agent 5 from 0.5 to 0.1 makes the core empty.

While the theme that decreasing reliability increases stability does not hold
strictly for simple games, it appears to hold on average, at least for weighted
voting games. We performed several simulations where we randomly gener-
ated weighted voting games with weights sampled from various distributions,
e.g., uniform distribution, normal distribution, exponential distribution etc. We
kept the reliabilities of all the agents equal, and observed that as this uniform
reliability decreases (i.e., the failure probability increases), the probability of
the core being non-empty increases. We also observed the same result for the
ε-core.

7 Discussion and Future Work

We studied the reliability extension of totally balanced games. We proved that
both ε-total balancedness and ε-convexity (generalizations of the respective con-
cepts) are preserved when the reliabilities decrease. We proved a relation between
these classes, generalizing a result by Shapley [23] that ties convexity and total
balancedness. We also proposed an algorithm to compute a core imputaiton of
any reliability extension of a totally balanced game with high probability.

This opens several possibilities for future research. First, Lemma 1 shows
how the reliabilities affect the characteristic function of a game and we derived
some useful results about totally balanced games and convex games building on
it. Lemma 1 might also have other applications, e.g., in analyzing the effect of
failures on power indices such as the Shapley value or the Banzhaf power index.
It would also be interesting to examine how the reliability extension affects the
external subsidy required to maintain stability, i.e. the Cost of Stability [3,21].

Next, the number of samples required in the algorithm presented in Section 5
depends on ε∗, the maximum least core value over all subgames of the game
without failures. We are unable to settle the question of computing ε∗ or obtain-
ing a lower bound on it in polynomial time (and thus obtaining an upper bound
on the number of samples required). Such an investigation may also lead to dis-
coveries regarding the relative stabilities of different subgames of a cooperative
game.
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Lastly, our analysis is restircted to games where only one coalition can be
formed. In contrast, cooperative games with coalitional structures [17] allow
multiple coalitions to arise simultaneously, and are used successfully to model
collaboration in multi-agent environments [22,6,2]. It would be interesting to
extend the reliability extension model to games with coalitional structures.
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Abstract. We analyze the value to e-commerce website operators of
offering privacy options to users, e.g., of allowing users to opt out of ad
targeting. In particular, we assume that site operators have some control
over the cost that a privacy option imposes on users and ask when it is to
their advantage to make such costs low. We consider both the case of a
single site and the case of multiple sites that compete both for users who
value privacy highly and for users who value it less. One of our main
results in the case of a single site is that, under normally distributed
utilities, if a privacy-sensitive user is worth at least

√
2−1 times as much

to advertisers as a privacy-insensitive user, the site operator should strive
to make the cost of a privacy option as low as possible. In the case of
multiple sites, we show how a Prisoner’s-Dilemma situation can arise: In
the equilibrium in which both sites are obliged to offer a privacy option
at minimal cost, both sites obtain lower revenue than they would if they
colluded and neither offered a privacy option.

1 Introduction

Advertising supports crucially important online services, most notably search.
Indeed, more than 95% of Google’s total revenue derives from advertising.1 Other
advertiser-supported websites provide a growing array of useful services, includ-
ing news and matchmaking. Because of its essential role in e-commerce, online
advertising has been and continues to be the subject of intensive study by di-
verse research communities, including Economics and Computer Science. In this
paper, we focus on an aspect of online advertising that has received little atten-
tion to date: how website operators can maximize their revenue while permitting
privacy-sensitive users to avoid targeted ads.

Targeted ads are those chosen to appeal to a certain group of users. In con-
textual targeting, ads are matched to search queries or other commands issued
by users; because it does not entail the collection and mining of any informa-
tion except that which the user provides voluntarily and explicitly at the time
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the ad is placed, it is not usually viewed as intrusive, and few users try to avoid
it. In demographic targeting, ads are matched to users’ demographic categories
such as gender, location, age, race, religion, profession, or income. Demographic
targeting may involve considerable data collection and analysis, and it is more
controversial than contextual targeting: Some users are uncomfortable about
being categorized, feel more vulnerable to ads that make use of their demo-
graphic categories, and worry that the same demographic information may be
used for purposes more consequential and nefarious than advertising; other users
appreciate the fact that their membership in certain demographic categories,
particularly age, gender, and location, can prevent their being shown numerous
time-wasting ads that are provably irrelevant to them. In behavioral targeting,
ads are matched to individual users’ browsing histories. By definition, it involves
the collection and analysis of sensitive information, and many users take steps
to avoid it.

Unsurprisingly, targeted ads are more effective than generic, untargeted ads,
and thus they fetch higher prices. Behavioral targeting, for example, has been
shown to produce higher click-through rates than no targeting; estimates of the
extent of improvement in click-through rates vary widely, however, from 20%
in the work of Chen et al. [4] to a factor of six in the work of Yan et al. [13].
Conversion rate, i.e., the fraction of those users who, after clicking through to
the advertiser’s site actually buy something, is also higher for targeted ads; see
Beales [2] for a discussion of the effect of behavioral targeting on conversion rates
and Jansen and Solomon [9] on the effect of demographic targeting in general
and gender in particular. Although efforts to quantify the effect of ad targeting
on website operators’ revenues are ongoing, there is credible evidence that the
effect is large enough to imply that the elimination of targeted ads could mean
the end of the Web as we know it; Goldfarb and Tucker [6], for example, studied
the effect of EU privacy regulation on ad revenue and concluded that, all else
equal, advertisers would have to spend approximately $14.8B more annually to
achieve the same effectiveness under a strict privacy regime (i.e., one that is less
friendly to targeted ads) and that the dependence on targeted ads is highest
among general-audience websites, such as those that provide news or weather.

Because targeted ads are lucrative for website operators, users are being ob-
served, categorized, and tracked ever more precisely. Understandably, some users
fear loss of privacy, and various tools offered by website operators (e.g., opt-outs
and other customizable privacy settings) and by third parties (e.g., anonymizing
browser plug-ins such as Torbutton2) that promise online-privacy protection are
proliferating. These tools allow users to avoid targeted ads, but of course people
who use them can still be shown generic, untargeted ads. Although many such
tools are available without charge, they can impose non-monetary costs on users,
e.g., time and effort spent figuring out the often obscure privacy options presented
by a UI, time and effort spent on installation of new software such as a privacy-
enhancing browser plug-in, and reduced ease of use, speed, and/or quality of ser-
vice. To a considerable extent, these costs can be controlled by website operators.

2 See https://www.torproject.org/torbutton/ .

https://www.torproject.org/torbutton/
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We ask when it is to website operators’ advantage to make the cost of such
privacy options low. Our major contributions include:

– Economic models in which to address the problem, both for the case of a
single site and for that of multiple sites that compete both for users who
value privacy very highly and for users who value it less.

– A complete analysis of the case of a single site with homogeneous users and
normally distributed utilities. In this setting, if a privacy-sensitive user is
worth at least

√
2 − 1 times as much to advertisers as a privacy-insensitive

user, the site operator should strive to make the cost of a privacy option as
low as possible.

– A complete analysis of the case of two sites with user demand functions that
denote their privacy preferences. In this setting, we show how a Prisoner’s-
Dilemma situation can arise: In the equilibrium in which both sites are
obliged to offer a privacy option at minimal cost, both sites obtain lower
revenue than they would if they colluded and neither offered a privacy
option.

2 Related Work

To the best of our knowledge, we are the first to study the question of when it
is to the advantage of website operators to minimize the cost of providing users
with privacy options. However, several related aspects of web users’ ability to
control their personal information have been studied.

Riederer et al. [10] propose a market for personal information based on the
notion of transactional privacy. Users decide what information about themselves
should be for sale, and aggregators buy access to users’ information and use it
to decide what ads to serve to each user. The information market that con-
nects users and aggregators, handles payments, and protects privacy achieves
truthfulness and efficiency using an unlimited-supply auction.

Carrascal et al. [3] use experience sampling to study the monetary value that
users place on difference types of personal information. They find, for example,
that users place a significantly higher value on information about their offline
behavior than they do on information about their browsing behavior. Among
categories of online information, they value financial and social-network infor-
mation more highly than search and shopping information.

Iyer, Soberman, and Villas-Boas [8] consider advertising strategies in seg-
mented markets, where competing firms can target ads to different segments.
They find that firms can increase profits by targeting more ads at consumers
who have a strong preference for their product than at comparison shoppers
who might be attracted to the competition. Interestingly, targeted advertising
produces higher profits regardless of whether the firms can price discriminate.
Moreover, the ability to target advertising can be more valuable to firms in a
competitive environment than the ability to price discriminate.

Telang, Rajan, and Mukhopadhyay [12] address the question of why multiple
providers of free, online search services can coexist for a long time. In standard
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models of vertical (or quality) differentiation, a lower-quality product or service
must sell for a lower price than its higher-quality competitor if it is to remain in
the marketplace; if the prices are equal, all consumers choose the higher-quality
alternative. Similarly, in standard models of horizontal (or taste) differentiation,
sustained differentiation among products or services occurs when users incur
high transportation costs. Yet, neither price nor transportation cost is a strate-
gic variable in online search. Telang, Rajan, and Mukhopadhyay point out that,
although the quality of one search service may clearly be higher than that of its
competitors on average, the quality of results of a particular search by a partic-
ular user is highly variable and inherently stochastic. Thus, there is a nontrivial
probability that a user will be dissatisfied with the results of a particular search
and wish to search again for the same information, using a different search ser-
vice. It is precisely the zero-price, zero-transportation-cost nature of the user’s
task that may cause him to use more than one search service in a single session.
In the aggregate, this feature creates residual demand for lower-quality search
services, allowing them to coexist with their higher-quality competitor.

Acquisti and Varian [1] consider the conditions under which a merchant should
price-discriminate based on consumers’ past purchases. They find that it may be
profitable to do so when anonymizing technologies are too costly for consumers
to use. Conitzer et al. [5] study a similar setting, where the merchant has control
over the anonymity option. They find that consumers will chose anonymity when
it is costless, a behavior which also maximizes the merchant’s profit. Similar to
our results, they demonstrate at Prisoner’s Dilemma: the consumers could have
obtained higher welfare by jointly deciding to disclose their identities. Conse-
quently, costly anonymity could be beneficial to all parties.

3 Single-Provider Case

We begin by presenting a general model of an ad-supported service with a single
provider. Let n be the size of the market for this service (i.e., the number of
users), v be the revenue extracted by the service provider for each user that allows
targeted ads (referred to below as a “targeted user”), and γv, with 0 < γ ≤ 1,
the revenue extracted for each user that avoids targeted ads (referred to below
as a “private user”). The total revenue extracted by the provider is given by:

r = nv(s+ γp), (1)

where s is the fraction of the market that consists of targeted users, and p is the
fraction that consists of private users.

In this setting, we model the users by way of their utilities. For a specific
user, the random variables US and UP denote the utilities that the provider
derives from the targeted and private services, respectively. We discount the
utility by a cost c, which can be thought of as fixed cost that the user pays to
set up the privacy option. In our model, we assume c is under the control of the
service provider; hence, the provider will choose the cost of the privacy option
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to optimize revenue.3 We assume c ≥ 0, but one could expand our analyses
to include settings in which the provider “pays” users to use its service and
thereby induces a negative cost c. Let U = (US , UP ) be the corresponding joint
distribution. Let f(x, y) = Pr[US = x, UP = y] be the joint density, and similarly
let F (x, y) = Pr[US � x, UP � y] be the joint distribution function.

A user may:

1. use the targeted option and derive utility US;

2. use the privacy option and derive utility UP − c;

3. abstain from using the service for a utility of 0.

Users choose among the above options to maximize their utility. Their choices
determine the values of s and p.

From the standpoint of the provider, finding the revenue-maximizing cost c∗

involves computing trade-offs between s and p. We have:

s = Pr[UP − US < c, US ≥ 0] =

∞∫
0

c+y∫
−∞

f(x, y)dxdy, (2)

p = Pr[UP − US ≥ c, UP ≥ c] =

∞∫
0

∞∫
c+y

f(x, y)dxdy +

0∫
−∞

∞∫
c

f(x, y)dxdy. (3)

We emphasize that, in this model, s+ p may be less than 1, because users with
negative utility from both targeted and privacy options will not use the service
at all.

3.1 Normally Distributed User Utilities

We now explore this model by considering the case of normally distributed user
utilities. Assume that U = (US , UP ) follows a standard bivariate normal dis-
tribution with mean vector zero and covariance matrix Σ = {{1, ρ}, {ρ, 1}};
here, ρ is the correlation coefficient between US , and UP . Use φ2 to denote
U ’s density and Φ2 to denote its distribution function. The marginal distribu-
tions US and UP are standard normal with mean 0, variance 1, density function
φ(x) = 1√

2π
exp(−x2/2), and distribution function Φ(x) = 1

2

[
1 + erf(x/

√
2)
]
.

We first consider the case in which ρ = 0.

3 One could imagine more elaborate models, where the cost was governed by a distri-
bution, and the provider could, for example, control the mean of the distribution;
for simplicity, we focus on the constant-cost model in this first paper.
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Fig. 1. Optimal privacy-option setup
cost and value for various γ and n =
100, v = 1
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Fig. 2. The value of γ(0) – where the
privacy option takes on zero cost – for
three settings: UP ’s mean fixed at 0,
US ’s mean fixed at 0, and UP and US

have the same mean

3.2 Uncorrelated User Utilities, ρ = 0.

The fraction of targeted users is

s = Pr[UP − US < c, US ≥ 0] (4)

=

∞∫
0

c+y∫
−∞

φ(x)φ(y)dxdy. (5)

Similarly, the fraction of private users is

p = Pr[UP − US ≥ c, UP ≥ c] (6)

=

∞∫
0

∞∫
c+y

φ(x)φ(y)dxdy +

0∫
−∞

∞∫
c

φ(x)φ(y)dxdy, (7)

where erfc(x) = 1−erf(x). Observe that s is monotonically increasing in c, while
p is monotonically decreasing in c. The rate of change of the fraction of targeted
users as a function of c is:

∂s

∂c
=

∫ ∞

0

φ(y)φ(c + y) dy (8)

=

∫ ∞

0

e−
y2

2

√
2π

e−
1
2 (c+y)2

√
2π

dy (9)

=

∫ ∞

0

e−
1
2 (c+y)2− y2

2

2π
dy (10)

=
e−

c2

4 erfc
(
c
2

)
4
√
π

, (11)
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which is easily seen to be decreasing in c. Using similar calculations, we can
compute the rate of change of the fraction of private users with respect to c:

∂p

∂c
=

∫ 0

−∞
−φ(c)φ(y) dy +

∫ ∞

0

−φ(y)φ(c + y) dy (12)

= −
e−

c2

2

(
e

c2

4 erfc
(
c
2

)
+

√
2
)

4
√
π

, (13)

which is similarly increasing in c. The provider is indifferent with respect to
revenue earned between the two types of users when:

∂s

∂c
= −γ

∂p

∂c
. (14)

Denote by γ(c) the value of c for which equality holds. Substituting and solving
for γ(c), we obtain:

γ(c) = 1− 2
√
2e

c2

4 erfc
(
c
2

)
+ 2

. (15)

We continue by proving an auxiliary lemma.

Lemma 1. γ(c) in decreasing in c.

Proof. Consider the derivative

∂e
c2

4 erfc
(
c
2

)
∂c

=
1

2
ce

c2

4 erfc
( c
2

)
− 1√

π
. (16)

We show that it is negative for all c > 0; this suffices to prove the lemma. Note
the following equivalences.

1

2
ce

c2

4 erfc
( c
2

)
− 1√

π
< 0 (17)

ce
c2

4 erfc
( c
2

)
<

2√
π

(18)

ce
c2

4
2√
π

∫ ∞

c/2

e−t2 dt <
2√
π

(19)

ce
c2

4

∫ ∞

c/2

e−t2 dt < 1. (20)

We prove the last line above, using the following bound of [11] (a tighter version
of Komatsu’s inequality [7]):

ex
2

∫ ∞

x

e−t2dt < 2/
(
3x+

√
x2 + 4

)
. (21)

At x = c/2, we obtain

e
c2

4

∫ ∞

c/2

e−t2dt < 2/
(
3c/2 +

√
c2/4 + 4

)
, (22)
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which yields

ce
c2

4

∫ ∞

c/2

e−t2dt < 2c/
(
3c/2 +

√
c2/4 + 4

)
< 1, (23)

proving the lemma. ��

We have that γ(0) =
√
2− 1. Furthermore, because γ(c) is decreasing in c, for

any γ ≥ γ(0), it follows that the provider’s best strategy is c = 0, i.e., offering a
free privacy option. Using the above, we are now ready to state the main theorem
of this section.

Theorem 1. If U follows a standard bivariate normal distribution with correla-
tion ρ = 0, then the provider will offer a free privacy option whenever γ ≥

√
2−1.

Remark 1. The specific value
√
2−1 arises from our assumption that UP and US

were distributed according to a standard normal distribution of mean 0. Similar
results for other means and variances can be calculated in a similar fashion.
Figure 2 demonstrates three variations: where the mean of UP is fixed at 0 but
the mean of US varies; where the mean of US is fixed at 0 but the mean of UP

varies; and where the means vary but are equal. (All variances remain 1.) For
example, where US and UP have equal means, we see that γ(0) converges to 1
very quickly, as offering privacy cannibalizes more lucrative targeted users more
readily than it garners new private users.

3.3 Correlated Utilities, ρ �= 0.

Assume that U = (US , UP ) follows a standard bivariate normal distribution with
correlation ρ. Use φ2 to denote its density function. We derive an indifference
condition similar to the one in Equation 14:

γ

(∫ 0

−∞
φ2(c, y) dy +

∫ ∞

0

φ2(c+ y, y) dy

)
=

∫ ∞

0

φ2(c+ y, y) dy. (24)

Substituting for the density function of the standard bivariate normal and inte-
grating, we obtain an expression for γ in terms of c and ρ:

γ =

⎛⎜⎜⎝
√
2− 2ρe

c2(1−2ρ)
4(ρ−1) erfc

(
cρ√
2−2ρ2

)
erfc
(

c
2
√
ρ+1

) + 1

⎞⎟⎟⎠
−1

. (25)

As before, setting c = 0 yields

γ(0) =
1

1 +
√
2− 2ρ

. (26)
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We observe that, as the correlation coefficient increases (reps., decreases) the
value of γ beyond which it makes sense to offer a privacy option at no cost also
increases (reps., decreases). That is, greater correlation means one requires higher
revenue from private users in order to offer privacy at no cost; in particular, when
UP = US , Equation 26 reasonably requires that γ(0) = 1. We can now state a
generalized version Theorem 1, taking into account correlated user utilities.

Theorem 2. If U follows a standard bivariate normal distribution with correla-
tion ρ, then the provider will offer a free privacy option whenever γ ≥ 1

1+
√
2−2ρ

.

4 A Two-Player Game

We provide a general model of the two-player version of the game. We then
explore the model by delving into a concrete example. Throughout this section,
we use the terms “player” and “provider” interchangeably. As in the single-
provider case, a “targeted user” is one who does not use the privacy option, and
a “private user” is one who does.

The game proceeds in two periods t = 1, 2. To begin, at t = 1, we have
two providers Si, for i = 1, 2, that offer competing, advertising-supported, non-
private services. We let S0 denote a user’s outside option, which in this case is
to use neither service. Denote the fraction of users who choose Si at time t by
sit. We have

∑2
i=0 si1 = 1.

At t = 2, simultaneously, both providers can introduce private variants, i.e.,
ones in which users avoid targeted ads; we denote these by Pi. The providers can
determine an associated “cost” that controls the utility of the private variants,
with the goal of tuning the market share for each service they provide. We denote
these costs by ci. The fraction of users that choose Pi at time t is given by pit. We
have

∑2
i=0 si2 +

∑2
j=1 pj2 = 1. The fraction of users left using the non-private

options (or neither option) at t = 2 is given by:

si2 = si1(1− Fi(c1, c2)) for i = 0, 1, 2.

That is, Fi(c1, c2) is the fraction of users who were using Si or were not using
either service but are now using one of the private variants. The users si1 − si2
switching to a private variant are distributed among the two providers as follows:

pi2 = Hi(c1, c2)

2∑
j=0

(sj1 − sj2) for i = 1, 2.

Here,Hi(c1, c2) is a function determining the split, among the competing private-
service providers, of users switching to a private variant; note H1(c1, c2) = 1 −
H2(c1, c2). Also, recall that pi1 = 0.

Let vi be the value that provider i derives from the standard service. Let γivi
be the value it derives from the private service, where γi ∈ (0, 1]. Let ri denote
the revenue function of provider i at the second stage of the game. We have:
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ri = visi2 + viγipi2

= visi1(1 − Fi(c1, c2)) + viγiHi(c1, c2)

2∑
j=0

(sj1 − sj2)

= visi1(1 − Fi(c1, c2)) + viγiHi(c1, c2)
2∑

j=0

(sj1 − sj1(1− Fj(c1, c2)))

= vi

⎛⎝si1(1− Fi(c1, c2)) + γiHi(c1, c2)
2∑

j=0

sj1Fj(c1, c2)

⎞⎠
(27)

for i = 1, 2.
In equilibrium, neither provider can increase its revenue by unilaterally devi-

ating. The first-order conditions (FOC) are given by

∂ri
∂ci

= 0, for i = 1, 2. (28)

Let {ĉ1, ĉ2} be a solution to this system of equations. Then, the second-order
conditions (SOC) are given by:

∂2ri
∂c2i

(ĉ1, ĉ2) < 0, for i = 1, 2. (29)

Our questions revolve around the equilibrium of this game.

4.1 A Prisoners’ Dilemma

The framework described above was designed to be very general; however, this
makes it somewhat difficult to get a handle on the nature of the game. We
consider a worked example in order to gain more insight. For simplicity, we will
assume Fi = F for i = 0, 1, 2. There are certain natural properties that we want
for the function F : F should be decreasing in the costs ci, and F should go to 0
as both ci go to infinity. We simplify things further by assuming that, if either
cost ci goes to 0, all users will prefer the zero-cost privacy option, and thus F
will go to 1. This may not be the case in all settings, but it is a reasonable and
instructive place to start.

A relatively straightforward function with these properties is

F (c1, c2) =

⎧⎪⎨⎪⎩
0 if c1 = c2 = ∞,

1 if c1 = 0, or c2 = 0,

exp(− c1c2
c1+c2

) otherwise.

(30)
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We define Hi so that the fraction that goes to Pi is proportional to its cost.

H1(c1, c2) =

⎧⎪⎨⎪⎩
0 if c1 = ∞,
1
2 if c1 = c2 = 0,
c2

c1+c2
otherwise.

(31)

We define H2 similarly. Also, for notational simplicity let si1 = si. Under these
assumptions, the payoff function for player 1 is:

r1 = v1

(
e−

c1c2
c1+c2 (c2γ1 − (c1 + c2) s1) /(c1 + c2) + s1

)
, (32)

and similarly, for player 2. Note that the payoffs are continuous. Furthermore,
under the assumption that Fi = F , the first and second derivatives of the revenue
function assume the following forms:

∂ri
∂ci

= vi

(
−si1

∂F

∂ci
+ γi

∂Hi

∂ci
F (c1, c2) + γiHi(c1, c2)

∂F

∂ci

)
, (33)

and
∂2ri
∂c2i

= vi

(
−si1

∂2F

∂c2i
+ γi

(
2
∂Hi

∂ci

∂F

∂ci
+

∂2Hi

∂c2i
F +

∂2F

∂c2i
H

))
. (34)

4.2 Computation of Equilibria

We now assume that γi > 0, i.e., that both players can derive some revenue
from private users.

Theorem 3. The game has two possible equilibria:

1. at {c∗1 = 0, c∗2 = 0}, with ri = viγi/2,
2. at {c∗1 = ∞, c∗2 = ∞}, if si > γi, with ri = sivi.

Remark 2. Theorem 3 demonstrates how the Prisoners’ Dilemma arises natu-
rally in this two-player game. For example, if si =

3
4γi for i = 1, 2, then, when

neither provider offers a privacy option, their revenue is 3
4γivi. However, this

is not an equilibrium point; at equilibrium, both players offer zero-cost privacy
options, and their revenue is reduced to 1

2γivi.

Proof. The proof proceeds in a sequence of lemmas. We begin by considering
cases in which one player offers a free privacy option, while the other charges a
(possibly infinite) cost.

Lemma 2. The game does not admit solutions of the form {ci = 0, c−i > 0}.
Proof. Because the game is symmetric, it suffices to consider the case in which
c1 = 0, and c2 = c, for some constant c > 0. From Equations 30 and 31,
we have F (0, c) = 1, H1(0, c) = 1, and H2(0, c) = 0. From Equation 27, the
revenue for player 1 is r1 = v1γ1, and for player 2 it is r2 = 0. Suppose player
2 unilaterally deviates by playing c2 = 0. In this case, H2(0, 0) = 1/2, and
r2 = v2γ2/2. Therefore, because γ2 > 0, c1 = 0, c2 = c, does not constitute an
equilibrium. ��
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Next, we consider settings in which both players offer the privacy option for a
finite, non-zero cost.

Lemma 3. The game does not admit solutions of the form {ci > 0, c−i > 0}.

Proof. We consider candidate equilibria suggested by solutions to the FOC:

F (c1, c2)c2v1
(
c2 (c1 + c2) s1 −

(
c22 + c2 + c1

)
γ1
)
/ (c1 + c2)

3 = 0 (35)

F (c1, c2)c1v2
(
c1 (c1 + c2) s2 −

(
c21 + c1 + c2

)
γ2
)
/ (c1 + c2)

3 = 0. (36)

First, note that, because costs are finite, F (c1, c2) > 0. Therefore, the FOC can
be simplified to the following equivalent conditions:

c2 (c1 + c2) s1 −
(
c22 + c2 + c1

)
γ1 = 0, (37)

c1 (c1 + c2) s2 −
(
c21 + c1 + c2

)
γ2 = 0. (38)

Solving the first equation above for c1 and substituting into the second one, we
obtain the following solution:{

c1 =
γ2

s2 − γ2
K, c2 =

γ1
s1 − γ1

K

}
, (39)

where

K =
γ1s2 + γ2s1 − 2γ1γ2
γ1s2 + γ2s1 − γ1γ2

. (40)

Next, we need to check the SOC for this solution. A long sequence of calculations
yields:

∂2r1
∂c21

(c1, c2) =
γ4
1v1e

− γ1γ2
γ1s2+γ2(s1−γ1) (s1 − γ1) (s2 − γ2)

4
(γ1s2 + γ2s1 − γ1γ2)

(γ1s2 + γ2s1 − 2γ1γ2)
5 < 0,

∂2r2
∂c22

(c1, c2) =
γ4
2v2e

− γ1γ2
γ1s2+γ2(s1−γ1) (s2 − γ2) (s1 − γ1)

4 (γ1s2 + γ2s1 − γ1γ2)

(γ1s2 + γ2s1 − 2γ1γ2)
5 < 0,

which can be further simplified to the equivalent conditions

(s1 − γ1)
γ1s2 + γ2s1 − γ1γ2
γ1s2 + γ2s1 − 2γ1γ2

=
s1 − γ1

K
< 0, (41)

(s2 − γ2)
γ1s2 + γ2s1 − γ1γ2
γ1s2 + γ2s1 − 2γ1γ2

=
s2 − γ2

K
< 0. (42)

Notice that (s1 − γ1)/K has the same sign as c1 in Equation 39. Similarly,
(s2−γ2)/K has the same sign as c2. Because costs are non-negative, the second-
order conditions are not met; this solution minimizes rather than maximizes the
revenue of the players and is therefore not an equilibrium point. ��

Next, we consider the case in which both players offer free privacy options.

Lemma 4. Both players’ offering free privacy options (i.e., c1 = c2 = 0) con-
stitutes an equilibrium of the game.
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Proof. In this case, users switch en masse to the private services and are dis-
tributed equally between the two providers. The revenue for player i is viγi/2.
Furthermore, if a player unilaterally deviates and switches to a non-zero cost for
privacy, his revenue instantly collapses to zero. Therefore, c1 = c2 = 0 consti-
tutes an equilibrium to the game. ��

Finally, we consider the case in which neither player offers a privacy option.

Lemma 5. Neither player’s offering a privacy option (i.e., c1 = c2 = ∞) con-
stitutes an equilibrium of the game if si < γi, for i = {1, 2}.

Proof. Suppose that neither player offers a privacy option; so ri = visi. Now,
consider the case in which player 1 wishes to deviate unilaterally. (The case
for player 2 can be argued identically.) First, note that limc2→∞ F (c1, c2) =
exp(−c1), and limc2→∞ H1(c1, c2) = 1. Therefore, if player 2 doesn’t offer a
privacy option, i.e., c2 = ∞, player 1 deviates and plays c1; his new revenue will
be

r1 = s1v1(1− exp(−c1)) + v1γ1 exp(−c1) = s1v1 + v1 exp(−c1)(γ1 − s1). (43)

If γ1 < s1, then player 1 cannot improve his position; therefore, not offering
a privacy option constitutes an equilibrium. If γ1 > s1, player 1 can increase
his revenue by decreasing his cost; therefore, not offering a privacy option is
not an equilibrium. (If γ1 = s1, player 1 cannot strictly improve his revenue by
deviating, and we have a weak equilibrium.) ��

This concludes the proof of Theorem 3. ��

This example demonstrates what we see as the potentially natural outcomes of
this two-player dynamic that would extend to three or more players as well. It is
possible that no service provider is incentivized to offer a privacy option in this
game. In such a setting, one might expect a new entrant to enter the “game”
and disrupt the status quo by offering a suitable privacy option, potentially
forcing other providers to do so as well. It is also possible that all competitors
are inclined to offer a privacy option. In our example, this led to all users’ opting
to offer privacy, but we could have utilized arguably more realistic functions F to
account for the fact that some users might find more value in not offering privacy
or might find the cost of doing so non-trivial regardless of the efforts they exert
to drive the cost down. Under such settings, we would expect other equilibria to
arise; in our example, there were other points at which the first-order conditions
but not the second-order conditions were met, but, more generally (for other
functional relationships), we could have other equilibria.

5 Conclusion

The results of Sections 3 and 4 suggest that website operators could have their
cake and eat it, too. By carefully controlling the cost to users of opting out of
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targeted ads, they could maximize their revenue and respect their users’ privacy
concerns. Putting this approach into practice would require surmounting at least
two major obstacles.

First, a service provider would need a good estimate of the parameter γ, i.e.,
the fraction of the revenue derived from a targeted user that can be derived
from a private user. The value of γ is closely related to the extent to which click-
through and conversion rates are improved by various forms of ad targeting,
which in turn is still the subject of intensive, ongoing research.

Second, the service provider would need to translate the abstract “cost” ci
of our economic analysis into a concrete privacy-enforcement tool that can be
installed and used at a cost of ci. It may suffice to be able to choose between
two technological options, one of which is clearly more costly to users than the
other, but even this would be nontrivial given the state of the art of privacy
enforcement.
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Abstract. We study individual rational, Pareto optimal, and incentive
compatible mechanisms for auctions with heterogeneous items and bud-
get limits. For multi-dimensional valuations we show that there can be
no deterministic mechanism with these properties for divisible items.
We use this to show that there can also be no randomized mechanism
that achieves this for either divisible or indivisible items. For single-
dimensional valuations we show that there can be no deterministic mech-
anism with these properties for indivisible items, but that there is a
randomized mechanism that achieves this for either divisible or indivis-
ible items. The impossibility results hold for public budgets, while the
mechanism allows private budgets, which is in both cases the harder vari-
ant to show. While all positive results are polynomial-time algorithms,
all negative results hold independent of complexity considerations.

1 Introduction

A canonical problem in Mechanism Design is the design of economically efficient
auctions that satisfy individual rationality and incentive compatibility. In set-
tings with quasi-linear utilities these goals are achieved by the Vickrey-Clarke-
Groves (VCG) mechanism. In many practical situations, including settings in
which the agents have budget limits, the quasi-linear assumption fails to be true
and, thus, the VCG mechanism is not applicable.

Ausubel [2] describes an ascending-bid auction for homogeneous items that
yields the same outcome as the sealed-bid Vickrey auction, but offers advantages
in terms of simplicity, transparency, and privacy preservation. In his concluding
remarks he points out that “when budgets impair the bidding of true valuations
in a sealed-bid Vickrey auction, a dynamic auction may facilitate the expression
of true valuations while staying within budget limits” (p. 1469).

Dobzinski et al. [7] show that an adaptive version of Ausubel’s “clinching
auction” is indeed the unique mechanism that satisfies individual rationality,
Pareto optimality, and incentive compatibility in settings with public budgets.
They use this fact to show that there can be no mechanism that achieves those
properties for private budgets.
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An important restriction of Dobzinski et al.’s impossibility result for private
budgets is that it only applies to deterministic mechanisms. In fact, as Bhat-
tacharya et al. [4] show, there exists a randomized auction that is individual
rational, Pareto optimal, and incentive compatible with private budgets.

All these results assume that the items are homogeneous, although as Ausubel
[3] points out, “situations abound in diverse industries in which heteroge-
neous (but related) commodities are auctioned” (p. 602). He also describes an
ascending-bid auction, the “crediting and debiting auction”, that takes the place
of the “clinching auction” when items are heterogeneous.

Positive and negative results for deterministic mechanisms and public budgets
are given in [8, 10, 9, 6]. We focus on randomized mechanisms, and prove positive
results for private budgets and negative results for public budgets. We thus
explore the power and limitations of randomization in settings with heterogeneous
items and budget limits.

Model. There are n agents and m items. The items are either divisible or indi-
visible. Each agent has a valuation for each item and each agent has a budget.
Agents can be assigned more than one item and valuations are additive across
items. All valuations are private. We distinguish between settings in which bud-
gets are public and settings in which budgets are private. A mechanism is used
to compute assignments and payments based on the reported valuations and the
reported budgets. An agent’s utility is defined as valuation for the assigned items
minus the payment if the payment does not exceed the budget and the utility is
minus infinity otherwise. We assume that agents are utility maximizers and as
such need not report their true valuations and true budgets.

Our goal is to design mechanisms with certain desirable properties or to show
that no such mechanism exists. For deterministic mechanisms we require that
the respective properties are always satisfied. For randomized mechanisms we
either require that the properties hold for all outcomes or that they hold in
expectation. In the former case we say that they are satisfied ex post, in the
latter case we say that they are satisfied ex interim.

We are interested in the following properties:
(a) Individual rationality (IR): A mechanism is IR if all outcomes it pro-

duces give non-negative utility to the agents and the sum of the payments is
non-negative. (b) Pareto optimality (PO): A mechanism is PO if it produces
an outcome such that there is no other outcome in which all agents and the
auctioneer are no worse off and at least one of the agents or the auctioneer is
strictly better off. 1 (c) No positive transfers (NPT): A mechanism satisfies NPT
if it produces an outcome in which all payments are non-negative. (d) Incentive
compatibility (IC): A mechanism is IC if each agent maximizes his utility by re-
porting his true valuation(s) and true budget no matter what the other agents’

1 If the outcome for which we want to establish PO is IR, then we only have to consider
alternative outcomes that are IR. In the alternative outcome individual payments
may be negative, even if the original outcome satisfied IR and NPT. See the arXiv
version of [8] for a more detailed discussion.
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reported valuations and reported budgets are. If the budget is public then the
agents can only report their true budgets. Following prior work we focus on IR,
PO, NPT, and IC for positive results and on IR, PO, and IC for negative re-
sults. Both the inclusion of NPT for positive results and the exclusion of NPT
for negative results strengthens the respective results.

Results. We analyze two settings with heterogeneous items, one with multi-
dimensional valuations and one with single-dimensional valuations. In the setting
with multi-dimensional valuations, each agent has an arbitrary, non-negative
valuation for each of the items. In the setting with single-dimensional valuations,
which is inspired by sponsored search auctions, an agent’s valuation for an item
is the product of an item-specific quality and an agent-specific valuation. Our
motivation for studying this setting is that an advertiser might want to show his
ad in multiple slots on a search result page.

(a) For multi-dimensional valuations the impossibility result of [8] implies
that there can be no deterministic mechanism for indivisible items that is IR,
PO, and IC for public budgets. We show that there also can be no determin-
istic mechanism with these properties for divisible items. We use this to show
that for both divisible and indivisible items there can be no randomized mech-
anism that is IR ex interim, PO ex interim, and IC ex interim. This is the
first impossibility result for randomized mechanisms for auctions with budget
limits. It establishes an interesting separation between randomized mechanisms
for single-dimensional valuations, where such mechanisms exist (see below), and
multi-dimensional valuations, where no such mechanism exists.

(b) For single-dimensional valuations the impossibility result of [7] implies
that there can be no deterministic mechanism for indivisible items that is IR,
PO, and IC for private budgets. We show that for heterogeneous items there
can also be no deterministic mechanism for indivisible items that is IR, PO, and
IC for public budgets. We thus obtain a strong separation between deterministic
mechanisms, that do not exist for public budgets, and randomized mechanisms,
that exist for private budgets (see below). This separation is stronger than in
the homogeneous items setting, where a deterministic mechanism exists for pub-
lic budgets [7]. Additionally, our impossibility result is tight in the sense that
if any of the conditions is relaxed such a mechanism exists: (i) For homoge-
neous, indivisible items a deterministic mechanism is given in [7], (ii) we give a
deterministic mechanism for heterogeneous, divisible items, and (iii) we give a
randomized mechanism for heterogeneous, indivisible items.

(c) For single-dimensional valuations we give mechanisms that extend ear-
lier work for homogeneous items to heterogeneous items. Specifically, we give a
randomized mechanism that satisfies IR ex interim, NPT ex post, PO ex post,
and IC ex interim for divisible or indivisible items and public or private bud-
gets. Additionally, for the case of divisible items and public budgets we give a
deterministic mechanism that is IR, NPT, PO, and IC.

We summarize our results and the results from related work described next
in Table 1 and Table 2 below.
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Related Work.The setting in which all items are identical was first studied by
[7]. By adapting the “clinching auction” of [2] from settings without budgets to
settings with budgets they obtain deterministic mechanisms that are IR, NPT,
PO, and IC with public budgets for divisible and indivisible items. They also
show that these mechanisms are the only mechanisms that are IR, PO, and IC,
and that they are not IC for private budgets, implying that there can be no
deterministic mechanism that is IR, PO, and IC when the budgets are private.
However, [4] showed that there is such a mechanism for private budgets that is
randomized. Note that both, [7] and [4] study only homogeneous items.

Impossibility results for general, non-additive valuations were given in [10, 6,
9]. Combined they show that there can be no deterministic mechanism for indi-
visible items that is IR, PO, and IC with public budgets for monotone valuations
with decreasing marginals. These impossibility results do not apply to additive
valuations, which is the case that we study.

Heterogeneous items were first studied in [8]. In their model each agent has
the same valuation for each item in an agent-dependent interest set and zero for
all other items. They give a deterministic mechanism for indivisible items that
satisfies IR, NPT, PO, and IC when both interest sets and budgets are public.
They also show that when the interest sets are private, then there can be no
deterministic mechanism that satisfies IR, PO, and IC. This implies that for
indivisible items and public budgets there can be no deterministic IR, PO, and
IC mechanism for unconstrained valuations.

Settings with heterogeneous items were in parallel to this paper studied by
[6] and [9]. The former study problems with multiple keywords, each having
multiple slots. Agents have unit demand per keyword. They are either interested
in a subset of the keywords and have identical valuations for the slots or they
are interested in all keywords and have sponsored search like valuations for the
slots. The latter study settings in which the agents have identical valuations and
the allocations must satisfy polymatroidal or polyhedral constraints.

The settings studied in [6, 9] are more general than the single-dimensional
valuations setting studied here. On the one hand this implies that their posi-
tive results apply to the single-dimensional valuations setting studied here, and
show that there are deterministic mechanisms for divisible items and random-
ized mechanisms for both divisible and indivisible items that are IC with public
budgets. On the other hand this implies that our negative result for the single-
dimensional valuations setting applies to the settings studied in these papers,
and shows that there can be no deterministic mechanisms that are IC with pub-
lic budgets for indivisible items. Finally, the impossibility results presented in
[6, 9] either assume that the valuations are non-additive or that the allocations
satisfy arbitrary polyhedral constraints and have therefore no implications for
the multi-dimensional valuations setting studied here.

Overview. We summarize the results from related work and this paper for
indivisible items in Table 1 and for divisible items in Table 2. We use a plus (+
or ⊕) to indicate that there is an IR, PO, NPT, and IC mechanism. We use a
minus (− or �) to indicate that there is no IR, PO, and IC mechanism. We use
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+ and − for results from related work and ⊕ and � for results from this paper.
A question mark (?) indicates that nothing is known for this setting. For the
model of [8] the table has two entries, one for public and one for private interest
sets. While all positive results from this paper are polynomial-time algorithms,
all negative results hold independent of complexity considerations.

Table 1. Results for Indivisible Items from Related Work and this Paper

homogeneous heterogeneous & additive

add. non-add.
interest set multi-keyword

single-dim. multi-dim.
budgets public/private unit demand

det.
public + [7] −[10, 6] +[8]/−[8] � � − [8]
private − [7] − [7] −[7]/−[7] − [7] −[7] − [7]

rand.
public + [7] ? +[8]/? +[6, 9] ⊕ �
private + [4] ? ?/? ? ⊕ �

Table 2. Results for Divisible Items from Related Work and this Paper

homogeneous heterogeneous & additive

add. non-add.
polymatroid multi-keyword

single-dim. multi-dim.
budgets constraints unit demand

det.
public + [7, 4] −[9] +[9] +[6, 9] ⊕ �
private − [7] −[7] − [7] − [7] − [7] − [7]

rand.
public + [7, 4] ? +[9] +[6, 9] ⊕ �
private + [4] ? ? ? ⊕ �

Techniques. Our technical contributions are as follows:
(a) For multi-dimensional valuations we obtain a partial characterization of

IC by generalizing the “weak monotonicity” (WMON) condition of [5] from set-
tings without budgets to settings with public budgets. We obtain our impossibility
result for deterministic mechanisms and divisible items by showing that in cer-
tain settings WMON will be violated. For this we use that multi-dimensional
valuations enable the agents to lie in a sophisticated way: While all previous
impossibility proofs in this area used agents that either only overstate or only
understate their valuations, we use an agent that overstates his valuation for one
item and understates his valuation for another.

(b) For single-dimensional valuations and both divisible and indivisible items
we characterize PO by a simpler “no trade” (NT) condition. Although this con-
dition is more complex than similar conditions in [7, 4, 8], we are able to show
that an outcome is PO if and only if it satisfies NT. We also generalize the
“classic”characterization results of IC mechanism of [11, 1] from settings with-
out budgets to settings with public budgets by showing that a mechanism is IC
with public budgets if and only if it satisfies “value monotonicity” (VM) and
“payment identity” (PI). The characterizations of PO and IC with public bud-
gets play a crucial role in the proof of our impossibility result for indivisible
items, which uses NT and PI to derive lower bounds on the agents’ payments
that conflict with the upper bounds on the payments induced by IR.
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(c) We establish the positive results for single-dimensional valuations and
both divisible and indivisible items by giving a new reduction of this case to the
case of a single and by definition homogeneous item. This allows us to apply
the techniques that [4] developed for the single-item setting. This is a general
reduction between the heterogeneous items setting and the homogeneous items
setting, which is likely to have further applications.

(d) We give an explicit polynomial-time algorithm for the “adaptive clinching
auction” for divisible items and an arbitrary number of agents. To the best of
our knowledge we are the first ones to actually give a polynomial-time version
of this auction for arbitrarily many agents.

Due to space constraints we omit some proofs and the description of the
polynomial-time algorithm from this extended abstract, and refer the reader
to the full version of the paper for details.

2 Problem Statement

We are given a set N of n agents and a set M ofm items. We distinguish between
settings with divisible items and settings with indivisible items. In both settings
we use X =

∏n
i=1 Xi for the allocation space. For divisible items the allocation

space is Xi = [0, 1]m for all agents i ∈ N and xi,j ∈ [0, 1] denotes the fraction of
item j ∈ M that is allocated to agent i ∈ N . For indivisible items the allocation
space is Xi = {0, 1}m for all agents i ∈ N and xi,j ∈ {0, 1} indicates whether
item j ∈ M is allocated to agent i ∈ N or not. In both cases we require that∑n

i=1 xi,j ≤ 1 for all items j ∈ M . We do not require that
∑m

j=1 xi,j ≤ 1 for all
agents i ∈ N , i.e., we do not assume that the agents have unit demand.

Each agent i has a type θi = (vi, bi) consisting of a valuation function vi :
Xi → R≥0 and a budget bi ∈ R≥0. We use Θ =

∏n
i=1 Θi for the type space.

We consider two settings with heterogeneous items, one with multi- and one
with single-dimensional valuations. In the first setting, each agent i ∈ N has a
valuation vi,j ∈ R≥0 for each item j ∈ M and agent i’s valuation for allocation xi

is vi(xi) =
∑m

j=1 xi,jvi,j . In the second setting, which is inspired by sponsored
search auctions, each agent i ∈ N has a valuation vi ∈ R≥0, each item j ∈
M has a quality αj ∈ R≥0, and agent i’s valuation for allocation xi ∈ Xi

is vi(xi) =
∑m

j=1 xi,jαjvi. For simplicity we will assume that in this setting
α1 > α2 > · · · > αm and that v1 > v2 > · · · > vn > 0.

A (direct revelation) mechanisms M = (x, p) consisting of an allocation rule
x : Θ → X and a payment rule p : Θ → Rn is deployed to compute an outcome
(x, p) consisting of an allocation x ∈ X and payments p ∈ Rn. We say that a
mechanism is deterministic if the computation of (x, p) is deterministic, and it
is randomized if the computation of (x, p) is randomized.

We assume that the agents are utility maximizers and as such need not report
their types truthfully. We consider settings in which both the valuations and
budgets are private and settings in which only the valuations are private and
the budgets are public. When the valuations resp. budgets are private, then the
other agents have no knowledge about them, not even about their distribution.
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In the former setting a report by agent i ∈ N with true type θi = (vi, bi) can be
any type θ′i = (v′i, b

′
i). In the latter setting agent i ∈ N is restricted to reports

of the form θ′i = (v′i, bi). In both settings, if mechanism M = (x, p) is used to
compute an outcome for reported types θ′ = (θ′1, . . . , θ

′
n) and the true types are

θ = (θ1, . . . , θn) then the utility of agent i ∈ N is

ui(xi(θ
′), pi(θ

′), θi) =

{
vi(xi(θ

′))− pi(θ
′) if pi(θ

′) ≤ bi, and

−∞ otherwise.

For deterministic mechanisms and their outcomes we are interested in the fol-
lowing properties:

(a) Individual rationality (IR): A mechanism is IR if it always produces an IR
outcome. An outcome (x, p) for types θ = (v, b) is IR if it is (i) agent rational:
ui(xi, pi, θi) ≥ 0 for all agents i ∈ N and (ii) auctioneer rational:

∑n
i=1 pi ≥ 0. (b)

Pareto optimality (PO): A mechanism is PO if it always produces a PO outcome.
An outcome (x, p) for types θ = (v, b) is PO if there is no other outcome (x′, p′)
such that ui(x

′
i, p

′
i, θi) ≥ ui(xi, pi, θi) for all agents i ∈ N and

∑n
i=1 p

′
i ≥
∑n

i=1 pi,
with at least one of the inequalities strict.2 (c) No positive transfers (NPT): A
mechanism satisfies NPT if it always produces an NPT outcome. An outcome
(x, p) satisfies NPT if pi ≥ 0 for all agents i ∈ N. (d) Incentive compatibility (IC):
A mechanism satisfies IC if for all agents i ∈ N , all true types θ, and all reported
types θ′ we have ui(xi(θi, θ

′
−i), pi(θi, θ

′
−i), θi) ≥ ui(xi(θ

′
i, θ

′
−i), pi(θ

′
i, θ

′
−i), θi).

If a randomized mechanism satisfies any of these conditions in expectation,
then we say that the respective property is satisfied ex interim. If it satisfies any
of these properties for all outcomes it produces, then we say that it satisfies the
respective property ex post.

3 Multi-dimensional Valuations

In this section we obtain a partial characterization of mechanisms that are IC
with public budgets by generalizing the “weak monotonicity” condition of [5]
from settings without budgets to settings with budgets. We use this partial
characterization together with a sophisticated way of lying, in which an agent
understates his valuation for some item and overstates his valuation for another
item, to prove that there can be no deterministic mechanism for divisible items
that is IR, PO, and IC with public budgets. Afterwards, we use this result to
show that there can be no randomizedmechanism for either divisible or indivisible
items that is IR ex interim, PO ex interim, and IC ex interim for public budgets.

Partial Characterization of IC. For settings without budgets every mech-
anism that is incentive compatible must satisfy what is known as weak mono-
tonicity (WMON), namely if x′

i and xi are the assignments of agent i for reports
v′i and vi, then the difference in the valuations for the two assignments must

2 Both IR and PO are defined with respect to the reported types, and are satisfied
with respect to the true types only if the mechanism also satisfies IC.
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be at least as large under v′i as under vi, i.e., v
′
i(xi(θ

′
i, θ−i)) − v′i(xi(θi, θ−i)) ≥

vi(xi(θ
′
i, θ−i)) − vi(xi(θi, θ−i)). We show that this is also true for mechanisms

that respect the publicly known budget limits.3

Proposition 1. If a mechanism M = (x, p) for multi-dimensional valuations
and either divisible or indivisible items that respects the publicly known budget
limits is IC, then it satisfies WMON.

Deterministic Mechanisms for Divisible Items. We prove the impossibility
result by analyzing a setting with two agents and two items. This restriction is
without loss of generality as the impossibility result for an arbitrary number of
agents n > 2 and an arbitrary number of items m > 2 follows by setting vi,j = 0
if i > 2 or j > 2. In our impossibility proof agent 2 is not budget restricted (i.e.,
b2 > v2,1 + v2,2). Agents can lie when they report their valuations, and it is not
sufficient to study a single input to prove the impossibility. Hence, we study the
outcome for three related cases, namely Case 1 where v1,1 < v2,1 and v1,2 < v2,2;
Case 2 where v1,1 > v2,1, v1,2 < v2,2, and b1 > v1,1; and Case 3 where v1,1 > v2,1,
v1,2 > v2,2, and additionally, b1 > v1,1, v1,1v2,2 > v1,2v2,1, and v2,1 + v2,2 > b1.
We give a partial characterization of those cases, which allows us to analyze the
rational behavior of the agents.

Case 1 is easy: Agent 2 is not budget restricted and has the highest valuations
for both items; so he will get both items. Thus the utility for agent 1 is zero. Based
on this observation Case 2 can be analyzed: Agent 1 has the higher valuation for
item 1, while agent 2 has the higher valuation for item 2. Thus, agent 1 gets item
1 and agent 2 gets item 2. Since the only difference to Case 1 is that in Case 2
v1,1 > v2,1 while in Case 1 v1,1 < v2,1, the critical value whether agent 2 gets
item 1 or not is v2,1. Thus, in every IC mechanism, agent 1 has to pay v2,1 and
has utility v1,1− v2,1. The details of these proofs can be found in the full version
of the paper. Using these observations we are able to exactly characterize the
allocation produced in Case 3 as follows: In Case 3 agent 1 has a higher valuation
than agent 2 for both items, but he does not have enough budget to pay for both
fully. First we show that if agent 1 does not spend his whole budget (p1 < b1)
he must fully receive both items (specifically x1,2 = 1), since if not, he would
buy more of them. Additionally, even if he spent his budget fully (i.e., p1 = b1)
his utility ui, which equals x1,1v1,1 + x1,2v1,2 − b1, must be non-negative. Since
b1 > v1,1 this implies that x1,1 must be 1, i.e., he must receive item 1 fully, and
x1,2 must be non-zero.

Lemma 1. Given v1,1 > v2,1, v1,2 > v2,2, b1 > v1,1, and v1,1v2,2 > v1,2v2,1, if
p1 < b1 then x1,1 = 1 and x1,2 = 1, else if p1 = b1 then x1,1 = 1 and x1,2 > 0,
in every IR and PO outcome.

Then we show that actually x1,2 < 1, which, combined with the previous lemma,
implies that p1 = b1. The fact that x1,2 < 1, i.e, that agent 1 does not fully get

3 Without this restriction we could charge pi > bi from all agents i ∈ N to be IC.
This restriction is satisfied by IR mechanisms to which we will apply this result.
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item 1 and 2 is not surprising since he does not have enough budget to outbid
agent 2 on both items as b1 < v2,1+v2,2. However, we are even able to determine
the exact value of x1,2, which is (b1 − v2,1)/v2,2.

Lemma 2. Given b2 > v2,1 + v2,2, v1,1 > v2,1, v1,2 > v2,2, b1 > v1,1, v1,1v2,2 >
v1,2v2,1, and v2,1 + v2,2 > b1, then p1 = b1 and x1,2 = (b1 − v2,1)/v2,2 < 1 in
every IR and PO outcome selected by an IC mechanism.

We combine these characterizations of Case 3 with (a) the WMON property
shown in Proposition 1 and (b) a sophisticated way of the agent to lie: He
overstates his value for item 1 by a value α and understates his value for item
2 by a value 0 < β < α, but by such small values that Case 3 continues to
hold. Thus, by Lemma 1 x2,1 remains 0 (whether the agent lies or does not),
and thus, the WMON condition implies that x2,2 does not increase. However,
by the dependence of x1,2 on v2,1 and v2,2 shown in Lemma 2, x1,2, and thus
also x2,2 changes when agent 2 lies. This gives a contradiction to the assumption
that such a mechanism exists.

Theorem 1. There is no deterministic IC mechanism for divisible items which
selects for any given input with public budgets an IR and PO outcome.

Proof. Let us assume by contradiction that such a mechanism exists and consider
an input for which b2 > v2,1 + v2,2, v1,1 > v2,1, v1,2 > v2,2, b1 > v1,1, v1,1v2,2 >
v1,2v2,1, and v2,1 + v2,2 > b1 holds. Such an input exists, for example v1,1 = 4,
v1,2 = 5, v2,1 = 3, and v2,2 = 4 with budgets b1 = 5 and b2 = 8 would be

such an input. Lemma 1 and 2 imply that x1,1 = 1, x2,1 = 0, x1,2 =
b1−v2,1
v2,2

,

x2,2 = 1−x1,2, and p1 = b1. Let us consider an alternative valuation by agent 2.
We define v′2,1 = v2,1 + α and v′2,2 = v2,2 − β for arbitrary α, β > 0 and α > β
which are sufficiently small such that v1,1v

′
2,2 > v1,2v

′
2,1 holds. By Proposition 1,

IC implies WMON, and therefore, x′
2,2v

′
2,2 − x2,2v

′
2,2 ≥ x′

2,2v2,2 − x2,2v2,2. It

follows that x2,2 ≥ x′
2,2, and by Lemma 2,

b1−v2,1
v2,2

≤ b1−v′
2,1

v′
2,2

. Hence, the budget

of agent 1 has to be large enough, such that b1 ≥ v2,2v
′
2,1−v2,1v

′
2,2

v2,2−v′
2,2

=
v2,1β+v2,2α

β >

v2,1 + v2,2, but b1 < v2,1 + v2,2 holds by assumption. Contradiction! ��

Randomized Mechanisms for Divisible and Indivisible Items.We exploit
the fact that randomized mechanisms for both divisible and indivisible items are
essentially equivalent to deterministic mechanisms for divisible items.

We show that for agents with budget constraints every randomized mechanism
M̄ = (x̄, p̄) for divisible or indivisible items can be mapped bidirectionally to a
deterministic mechanism M = (x, p) for divisible items with identical expected
utility for all the agents and the auctioneer when the same reported types are
used as input. To turn a randomized mechanism for indivisible items into a
deterministic mechanism for divisible items simply compute the expected values
of pi and xi,j for all i and j and return them. To turn a deterministic mechanism
for divisible items into a randomized mechanism for indivisible items simply pick
values with probability xi,j and keep the same payment as the deterministic
mechanism.
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Proposition 2. Every randomized mechanism M̄ = (x̄, p̄) for agents with finite
budgets, a rational auctioneer, and a limited amount of divisible or indivisible
items can be mapped bidirectionally to a deterministic mechanism M = (x, p)
for divisible items such that ui(xi(θ

′), pi(θ
′), θi) = E [ui(x̄i(θ

′), p̄i(θ
′), θi)] and∑

i∈N pi(θ
′) = E [

∑
i∈N p̄i(θ

′)] for all agents i, all true types θ = (v, b), and
reported types θ′ = (v′, b′).

Proof. Let us map M̄ = (x̄, p̄) to M = (x, p) that assigns for each agent i ∈ N
and item j ∈ M a fraction of E [x̄i,j ] of item j to agent i, and makes each agent
i ∈ N pay E [p̄i]. The expectations exist since the feasible fractions of items and
the feasible payments have an upper bound and a lower bound. For the other
direction, we map M = (x, p) to M̄ = (x̄, p̄) that randomly picks for each item
j ∈ M an agent i ∈ N to which it assigns item j in a way such that agent i is
picked with probability xi,j , and makes each agent i ∈ N pay pi. Since x = E [x̄]
and p = E [p̄],

∑
j∈M (xi,jvi,j) − pi = E [

∑
j∈M (x̄i,jvi,j) − p̄i] for all i ∈ N and∑

i∈N pi = E [
∑

i∈N p̄i].

This proposition implies the non-existence of randomized mechanisms stated in
Theorem 2.

Theorem 2. There can be no randomized mechanism for divisible or indivisible
items that is IR ex interim, PO ex interim, and IC ex interim, and that satisfies
the public budget constraint ex post.

Proof. For a contradiction suppose that there is such a randomized mechanism.
Then, by Proposition 2, there must be a deterministic mechanism for divisible
items and public budgets that satisfies IR, PO, and IC. This gives a contradiction
to Theorem 1. ��

4 Single-Dimensional Valuations

In this section we present exact characterizations of PO outcomes and mecha-
nisms that are IC with public budgets. We characterize PO by a simpler “no
trade” condition and, similar to Section 3, we extend the “classic” characteriza-
tion results for IC mechanisms for single-dimensional valuations (see, e.g., [11, 1])
without budgets to settings with public budgets. We use these characterizations
to show that there can be no deterministic mechanism for divisible items that is
IR, PO, and IC with public budgets. We also present a reduction to the setting
with a single (and thus homogeneous) item that allows us to apply the following
proposition from [4]. The basic building block of the mechanisms mentioned in
this proposition is the “adaptive clinching auction” for a single divisible item. It
is described for two agents in [7], as a “continuous time process” for arbitrarily
many agents in [4], and as an explicit polynomial-time algorithm for arbitrarily
many agents in the full version of this paper.

Proposition 3 ([4]). For a single divisible item there exists a deterministic
mechanism that satisfies IR, NPT, PO, and IC for public budgets. Additionally,
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for a single divisible or indivisible item there exists a randomized mechanism
that satisfies IR ex interim, NPT ex post, PO ex post, and IC ex interim for
private budgets.

Exact Characterizations of PO and IC. We start by characterizing PO
outcomes through a simpler “no trade” condition. Outcome (x, p) for single-
dimensional valuations and either divisible or indivisible items that respects
the budget limits satisfies no trade (NT) if (a)

∑
i∈N xi,j = 1 for all j ∈ M ,

and (b) there is no x′ such that for δi =
∑

j∈M (x′
i,j − xi,j)αj for all i ∈ N ,

W = {i ∈ N | δi > 0}, and L = {i ∈ N | δi ≤ 0} we have
∑

i∈N δivi > 0 and∑
i∈W min(bi − pi, δivi) +

∑
i∈L δivi ≥ 0.4 This definition says that there should

be no alternative assignment that overall increases the sum of the valuations, and
allows the “winners” to compensate the “losers”. It differs from the definitions
in prior work in that it allows trades that involve both items and money. We
will exploit this fact in the proof of our impossibility result.

Proposition 4. Outcome (x, p) for single-dimensional valuations and either di-
visible or indivisible items that respects the budget limits is PO if and only if it
satisfies NT.

Next we characterize mechanisms that are IC with public budgets by “value
monotonicity” and “payment identity”. Mechanism M = (x, p) for single-
dimensional valuations and indivisible items that respects the publicly known
budgets satisfies value monotonicity (VM) if for all i ∈ N , θi = (vi, bi), θ

′
i =

(v′i, bi), and θ−i = (v−i, b−i) we have that vi ≤ v′i implies
∑

j∈M xi,j(θi, θ−i)αj ≤∑
j∈M xi,j(θ

′
i, θ−i)αj . Mechanism M = (x, p) for single-dimensional valuations

and indivisible items that respects the publicly known budgets satisfies payment
identity (PI) if for all i ∈ N and θ = (v, b) with cγt ≤ vi ≤ cγt+1 we have

pi(θ) = pi((0, bi), θ−i) +
∑t

s=1(γs − γs−1)cγs(bi, θ−i), where γ0 < γ1 < . . . are
the values

∑
j∈M xi,jαj can take and cγs(bi, θ−i) for 1 ≤ s ≤ t are the corre-

sponding critical valuations. While VM ensures that stating a higher valuation
can only lead to a better allocation, PI gives a formula for the payment in terms
of the possible allocations and the critical valuations. In the proof of our im-
possibility result we will use the fact that the payments for worse allocations
provide a lower bound on the payments for better allocations.

Proposition 5. Mechanism M = (x, p) for single-dimensional valuations and
indivisible items that respects the publicly known budgets is IC if and only if it
satisfies VM and PI.

Deterministic Mechanisms for Indivisible Items. The proof of our impos-
sibility result uses the characterizations of PO outcomes and mechanisms that
are IC with public budgets as follows: (a) PO is characterized by NT and NT
induces a lower bound on the agents’ payments for a specific assignment, namely

4 For PO we only need that the outcome respects the reported budget limits. Hence
our characterization also applies in private budget settings.
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for the case that agent 1 only gets item m. (b) IC, in turn, is characterized by
VM and PI. Now VM and PI can be used to extend the lower bound on the
payments for the specific assignment to all possible assignments. (c) Finally, IR
implies upper bounds on the payments that, with a suitable choice of valuations,
conflict with the lower bounds on the payments induced by NT, VM, and PI.

Theorem 3. For single-dimensional valuations, indivisible items, and public
budgets there can be no deterministic mechanism M = (x, p) that satisfies IR,
PO, and IC.

Proof. For a contradiction suppose that there is a mechanism M = (x, p) that
is IR, PO, and IC for all n and all m. Consider a setting with n = 2 agents and
m = 2 items in which v1 > v2 > 0 and b1 > α1v2.

Observe that if agent 1’s valuation was v′1 = 0 and he reported his valuation
truthfully, then since M satisfies IR his utility would be u1((0, b1), θ−1, (0, b1)) =
−p1((0, b1), θ−1) ≥ 0. This shows that p1((0, b1), θ−1) ≤ 0.

By PO, which by Proposition 4 is characterized by NT, agent 1 with valuation
v1 > v2 and budget b1 > α1v2 must win at least one item because otherwise he
could buy any item from agent 2 and compensate him for his loss.

PO, respectively NT, also implies that agent 1’s payment for item 2 must be
strictly larger than b1 − (α1 − α2)v2 because otherwise he could trade item 2
against item 1 and compensate agent 2 for his loss.

By IC, which by Proposition 5 is characterized by VM and PI, agent 1’s
payment for item 2 is given by p1({2}) = p1((0, b1), θ−1)+α2cα2(b1, θ−1), where
cα2 is the critical valuation for winning item 2. Together with p1({2}) > b1−(α1−
α2)v2 this shows that cα2(b1, θ−1) > (1/α2)[b1 − (α1 − α2)v2 − p1((0, b1), θ−1)].

IC, respectively VM and PI, also imply that agent 1’s payment for any non-
empty set of items S in terms of the fractions γt =

∑
j∈S αj > · · · > γ1 = α2 >

γ0 = 0 and corresponding critical valuations cγt(b1, θ−1) ≥ · · · ≥ cγ1(b1, θ−1) =

cα2(b1, θ−1) is p1(S) = p1((0, b1), θ−1) +
∑t

s=1(γs − γs−1)cγs(b1, θ−1). Because

cγs(b1, θ−1) ≥ cα2(b1, θ−1) for all s and
∑t

s=1(γs − γs−1) =
∑

j∈S αj we obtain
p1(S) ≥ p1((0, b1), θ−1) + (

∑
j∈S αj)cα2(b1, θ−1).

Combining this lower bound on p1(S) with the lower bound on cα2(b1, θ−1)
shows that p1(S) > (

∑
j∈S αj/α2)[b1 − (α1 − α2)v2].

For v1 such that (1/α2)[b1 − (α1 − α2)v2] > v1 > v2 we know that agent 1
must win some item, but for any non-empty set of items S the lower bound on
agent 1’s payment for S contradicts IR. ��

Randomized Mechanisms for Indivisible and Divisible Items. Interest-
ingly, the impossibility result for deterministic mechanisms for indivisible items
can be avoided by a randomized mechanism: (a) Apply the randomized mech-
anism for a single indivisible item of [4] to a single indivisible item for which
agent i ∈ N has valuation ṽi =

∑
j∈M αjvi. (b) Map the single-item outcome

(x̃, p̃) into an outcome (x, p) for the multi-item setting by setting xi,j = 1 for all
j ∈ M if and only if x̃i = 1 and setting pi = p̃i for all i ∈ N .

A similar idea works for divisible items. The only difference is that we use the
mechanisms of [4] for a single divisible item, and map the single-item outcome
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(x̃, p̃) into a multi-item outcome by setting xi,j = x̃i for all i ∈ N and all j ∈ M
and setting pi = p̃i for all i ∈ N.

The main difficulty in proving that the resulting mechanisms inherit the prop-
erties of the mechanisms in [4] is to show that the resulting mechanisms satisfy
PO (ex post). For this we argue that a certain structural property of the single-
item outcomes is preserved by the mapping to the multi-item setting and remains
to be sufficient for PO (ex post).

Proposition 6. Let (x̄, p̄) be the outcome of our mechanism and let (x, p) be
the outcome of the respective mechanism of [4], then ui(x̄i, p̄i) = ui(xi, pi) for
all i ∈ N resp. E[ui(x̄i, p̄i)] = E[ui(xi, pi)] for all i ∈ N .

Theorem 4. For single-dimensional valuations, divisible or indivisible items,
and private budgets there is a randomized mechanism that satisfies IR ex interim,
NPT ex post, PO ex post, and IC ex interim. Additionally, for single-dimensional
valuations and divisible items there is a deterministic mechanism that satisfies
IR, NPT, PO, and IC for public budgets.

Proof. IR (ex interim) and IC (ex interim) follow from Proposition 6 and the
fact that the mechanisms of [4] are IR (ex interim) and IC (ex interim). NPT
(ex post) follows from the fact that the payments in our mechanisms and the
mechanisms of [4] are the same, and the mechanisms in [4] satisfy NPT (ex post).
For PO (ex post) we argue that the structural property of the outcomes of the
mechanisms in [4] that (a)

∑
i∈N x̃i,j = 1 for all j ∈ M and (b)

∑
j∈M x̃i,j > 0

and ṽi′ > ṽi imply p̃i′ = bi′ is preserved by the mapping to the multi-item setting
and remains to be sufficient for PO (ex post).

We begin by showing that the structural property is preserved by the mapping.
For this observe that

∑
i∈N x̃i,j = 1 for all j ∈ M implies that

∑
i∈N xi,j = 1

for all j ∈ M and that
∑

j∈M x̃i,j > 0 and ṽi′ > ṽi imply p̃i′ = bi′ implies that∑
j∈M xi,j > 0 and vi′ > vi imply pi′ = bi′ .
Next we show that the structural property remains to be sufficient for PO

(ex post). For this assume by contradiction that the outcome (x, p) is not PO
(ex post). Then, by Proposition 4, there exists an x′ such that

∑
i∈N δivi > 0

and
∑

i∈W min(bi − pi, δivi) +
∑

i∈L δivi ≥ 0, where δi =
∑

j∈M (x′
i,j − xi,j)αj ,

W = {i ∈ N | δi > 0}, and L = {i ∈ N | δi ≤ 0}.
Because (x, p) satisfies condition (a), i.e.,

∑
i∈N xi,j = 1 for all j ∈ M , and

x′ is a valid assignment, i.e.,
∑

i∈N x′
i,j ≤ 1 for all j ∈ M , we have

∑
i∈N δi =∑

j∈M

∑
i∈N (x′

i,j − xi,j)αj ≤ 0. Because
∑

i∈N δivi > 0 we have
∑

i∈W δivi ≥∑
i∈N δivi > 0 and, thus,

∑
i∈W δi > 0. We conclude that

∑
i∈L δi =

∑
i∈N δi −∑

i∈W δi < 0 and, thus,
∑

i∈L δivi < 0.
Because (x, p) satisfies condition (b), i.e.,

∑
j∈M xi,j > 0 and vi′ > vi imply

pi′ = bi′ , there exists a t with 1 ≤ t ≤ n such that (1)
∑

j∈M xi,j ≥ 0 and pi = bi
for 1 ≤ i ≤ t, (2)

∑
j∈M xi,j ≥ 0 and pi ≤ bi for i = t+1, and (3)

∑
j∈M xi,j = 0

and pi ≤ bi for t+ 2 ≤ i ≤ n.
Case 1: t = n. Then

∑
i∈W min(bi − pi, δivi) = 0 and, thus,

∑
i∈W min(bi −

pi, δivi) +
∑

i∈L δivi < 0.
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Case 2: t < n and W ∩ {1, . . . , t} = ∅. Then
∑

i∈W δivi ≤
∑

i∈W δivt+1

and
∑

i∈L δivi ≤
∑

i∈L δivt+1 and, thus,
∑

i∈N δivi =
∑

i∈W δivi +
∑

i∈L δivi ≤∑
i∈N δivt+1 ≤ 0.
Case 3: t < n and W ∩ {1, . . . , t} 	= ∅. Then

∑
i∈W min(pi − bi, δivi) ≤∑

i∈W\{1..t} δivt+1 and
∑

i∈L δivi ≤
∑

i∈L δivt+1 and, thus,
∑

i∈W min(pi −
bi, δivi) +

∑
i∈L δivi ≤ (

∑
i∈N δi −

∑
i∈W∩{1,...,t} δi)vt+1 < 0. ��

5 Conclusion and Future Work

In this paper we analyzed IR, PO, and IC mechanisms for settings with het-
erogeneous items. Our main accomplishments are: (a) An impossibility result
for randomized mechanisms and public budgets for additive valuations. (b) Ran-
domized mechanisms that achieve these properties for private budgets and a
restricted class of additive valuations. We are able to circumvent the impossi-
bility result in the restricted setting because our argument for the impossibility
result is based on the ability of an agent to overstate his valuation for one and
understate his valuation for another item, which is not possible in the restricted
setting. A promising direction for future work is to identify other valuations for
which this is the case.
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1. Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: Proc. of
42nd FOCS, pp. 482–491 (2001)

2. Ausubel, L.: An efficient ascending-bid auction for multiple objects. The American
Economic Review 94(5), 1452–1475 (2004)

3. Ausubel, L.: An efficient dynamic auction for heterogeneous commodities. The
American Economic Review 96(3), 602–629 (2006)

4. Bhattacharya, S., Conitzer, V., Munagala, K., Xia, L.: Incentive compatible budget
elicitation in multi-unit auctions. In: Proc. of 21st SODA, pp. 554–572 (2010)

5. Bikhchandani, S., Lavi, R., Mu, A., Nisan, N., Sen, A.: Weak monotonicity char-
acterizes deterministic dominant-strategy implementation. Econometrica 74(4),
1109–1132 (2006)

6. Colini-Baldeschi, R., Henzinger, M., Leonardi, S., Starnberger, M.: On multiple
keyword sponsored search auctions with budgets. In: Czumaj, A., Mehlhorn, K.,
Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 1–12.
Springer, Heidelberg (2012)

7. Dobzinski, S., Lavi, R., Nisan, N.: Multi-unit auctions with budget limits. Games
and Economic Behavior 74(2), 486–503 (2012)

8. Fiat, A., Leonardi, S., Saia, J., Sankowski, P.: Single-valued combinatorial auctions
with budgets. In: Proc. of 12th EC, pp. 223–232 (2011)

9. Goel, G., Mirrokni, V., Paes Leme, R.: Polyhedral clinching auctions and the ad-
words polytope. In: Proc. of 44th STOC, pp. 107–122 (2012)

10. Lavi, R., May, M.: A note on the incompatibility of strategy-proofness and pareto-
optimality in quasi-linear settings with public budgets. In: Chen, N., Elkind, E.,
Koutsoupias, E. (eds.) Internet and Network Economics. LNCS, vol. 7090, p. 417.
Springer, Heidelberg (2011)

11. Myerson, R.: Optimal auction design. Mathematics of Operations Research 6(1),
58–73 (1981)



Bayesian Mechanism Design with Efficiency,

Privacy, and Approximate Truthfulness�

Samantha Leung and Edward Lui

Department of Computer Science, Cornell University
{samlyy,luied}@cs.cornell.edu

Abstract. Recently, there has been a number of papers relating mech-
anism design and privacy (e.g., see [1–6]). All of these papers consider
a worst-case setting where there is no probabilistic information about
the players’ types. In this paper, we investigate mechanism design and
privacy in the Bayesian setting, where the players’ types are drawn
from some common distribution. We adapt the notion of differential
privacy to the Bayesian mechanism design setting, obtaining Bayesian
differential privacy. We also define a robust notion of approximate truth-
fulness for Bayesian mechanisms, which we call persistent approximate
truthfulness. We give several classes of mechanisms (e.g., social welfare
mechanisms and histogram mechanisms) that achieve both Bayesian dif-
ferential privacy and persistent approximate truthfulness. These classes
of mechanisms can achieve optimal (economic) efficiency, and do not use
any payments. We also demonstrate that by considering the above mech-
anisms in a modified mechanism design model, the above mechanisms can
achieve actual truthfulness.

1 Introduction

One of the main goals in mechanism design is to design mechanisms that achieve
a socially desirable outcome even if the players behave selfishly. Because of the
revelation principle, mechanism design has focused on direct (revelation) mech-
anisms where each player simply reports his/her private type (or valuation).
This leads to the issue of privacy, where the players may be concerned that the
mechanism’s output may leak information about their private types (even if the
mechanism is trusted).

Mechanism Design and Privacy. Traditional mechanism design did not in-
clude the aspect of privacy. However, in the context of releasing information
from databases, the issue of privacy has already been studied quite extensively.
In this context, the current standard notion of privacy is differential privacy
[7, 8]. A data release algorithm satisfies differential privacy if the algorithm’s
output distribution does not change much when one person’s data is changed in
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the database. This implies that the algorithm does not leak much information
about any person in the database.

Recently, there has been a number of papers that combine mechanism de-
sign with differential privacy. In [1], McSherry and Talwar develop a general
mechanism called the exponential mechanism that is differentially private; they
also show that any differentially private mechanism is approximately truthful.
In [4], Nissim, Smorodinsky, and Tennenholtz modify the standard mechanism
design model by adding a “reaction stage”; in this new model, the authors com-
bine differentially private mechanisms with a “punishing mechanism” to obtain
mechanisms that are actually truthful. However, the mechanisms in [4] might
not protect the privacy of the players, due to the reaction stage.

The main goal of the above two papers was to use differential privacy as a
tool for achieving some form of truthfulness, as opposed to achieving privacy
for the players. However, there has been other papers that focus on designing
mechanisms that protect the privacy of the players. In [6], Huang and Kannan
show that a pricing scheme can be added to the exponential mechanism to make
it actually truthful, resulting in a general mechanism that is both differentially
private and truthful. In [2], Xiao provides a transformation that takes truthful
mechanisms and transforms them into truthful and differentially private mech-
anisms. On the other hand, Xiao also shows that a mechanism that is truthful
and differentially private might not be truthful in a model where the players are
“privacy-aware”, i.e., privacy is explicitly captured in the players’ utility func-
tions. In [3], Chen et al. construct mechanisms that are truthful even in a model
where the players are privacy-aware. In [5], Nissim, Orlandi, and Smorodinsky
construct mechanisms that are truthful in a different privacy-aware model.

Bayesian Mechanism Design. One desirable property of a mechanism is
(economic) efficiency; in fact, it would be best if the mechanism always chooses
a social alternative that is optimal with respect to some measure of efficiency,
such as social welfare. However, such optimal efficiency is not achieved by any of
the above results. In fact, it is not possible for a differentially private mechanism
to achieve optimal efficiency (for a non-trivial problem), since the mechanism
has to be randomized in order to satisfy differential privacy. However, all of
the above results are in a worst-case setting where there is no probabilistic
information about the players’ types. If we consider a non-worst-case setting,
then it may be possible for a mechanism to achieve differential privacy without
using any randomization.

One such setting is the Bayesian setting, where the players’ types are drawn
from some common distribution. Such a setting follows the Bayesian approach
that has been the standard in economic theory for many decades. Recently,
mechanism design in the Bayesian setting has also been gaining popularity in
the computer science community. Thus, it is interesting to consider the issue of
privacy in the Bayesian setting as well. In particular, it may be possible for a
Bayesian mechanism to achieve optimal efficiency while satisfying some form of
differential privacy. Achieving optimal efficiency may be critical for certain prob-
lems, such as presidential elections and kidney transplant allocations, where it
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may be unethical and/or unfair to make a non-optimal choice. Although differ-
entially private mechanisms in the worst-case setting may asymptotically achieve
nearly optimal efficiency in expectation (or with reasonably high probability),
there is no guarantee that the chosen outcome for a particular execution of the
mechanism is actually close to optimal.

Bayesian Differential Privacy and Persistent Approximate Truthful-
ness. In this paper, we consider mechanism design in the Bayesian setting, and
our main goal is to construct useful mechanisms that achieve optimal efficiency,
some form of differential privacy, and some notion of truthfulness. Since differen-
tial privacy is a worst-case notion in the sense that no distributional assumptions
are made on the input of the mechanism, we first adapt the notion of differen-
tial privacy to the Bayesian mechanism design setting. We call this new notion
Bayesian differential privacy; this is the privacy notion that we use in this paper.

As mentioned above, Xiao [2] showed that a mechanism that is truthful and
differentially private might not be truthful in a model where privacy is explicitly
captured in the players’ utility functions. In this paper, we do not use such a
model, since there are many settings where the players would already be satisfied
with differential privacy and would not report strategically in an attempt to
further protect their privacy. Our results will be meaningful in these settings;
furthermore, even in a setting where we want to explicitly capture privacy in
the players’ utility functions, our techniques and results can still be useful in
constructing truthful mechanisms (similar to how the mechanisms in [3] and [5]
are still based on differentially private mechanisms).

We also want our mechanisms to satisfy some form of truthfulness. The stan-
dard notion of truthfulness in Bayesian mechanism design is that the truthful
strategy profile is a Bayes-Nash equilibrium. Similar to [1], we first relax truth-
fulness so that the truthful strategy profile only needs to be an ε-Bayes-Nash
equilibrium, where an ε margin is allowed in the Nash conditions. However, we
would like to obtain notions of truthfulness that are stronger than that provided
by the ε-Bayes-Nash equilibrium. Thus, we strengthen the ε-Bayes-Nash equi-
librium such that even if up to k players deviate from the equilibrium, everyone
else’s best-response is still to adhere to their part of the equilibrium. We call this
new equilibrium concept the k-tolerant ε-Bayes-Nash equilibrium. We would also
like our equilibrium concept to be resilient against coalitions. Thus, we further
strengthen our notion of k-tolerant ε-Bayes-Nash equilibrium to (k, r)-persistent
ε-Bayes-Nash equilibrium, which is resilient against coalitions of size r even in
the presence of k deviating players. The notion of truthfulness we use requires
that the truthful strategy profile is a (k, r)-persistent ε-Bayes-Nash equilibrium,
which we will refer to as persistent approximate truthfulness.

1.1 Our Results

In this paper, we present three classes of mechanisms that achieve both Bayesian
differential privacy and persistent approximate truthfulness:
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Histogram Mechanisms. Roughly speaking, a histogram mechanism is a
mechanism that first computes a histogram from the reported types, and then
chooses a social alternative based only on the histogram. In Section 4.1, we show
that if every bin of the histogram has positive expected count, then the histogram
mechanism is both Bayesian differentially private and persistent approximately
truthful.

Mechanisms for Two Social Alternatives. Roughly speaking, this class
includes any mechanism that makes a choice between two social alternatives
{A,B} based on the difference between the sums of two functions u(·, A) and
u(·, B) on the types. In Section 4.2, we show that as long as the random variable
u(t, A) − u(t, B) (where t is distributed according to the type distribution) has
non-zero variance, then such a mechanism is both Bayesian differentially private
and persistent approximately truthful.

Social Welfare Mechanisms. Roughly speaking, this class includes any mech-
anism that makes a choice based on the social welfare provided by each social
alternative. An important subset of these mechanisms is the set of mechanisms
that maximize social welfare. In Section 4.3, we show that if the players’ valua-
tions for each social alternative are normally distributed, then such a mechanism
is both Bayesian differentially private and persistent approximately truthful. In
our full paper, we generalize this result to the case where the players’ valuations
for each social alternative are arbitrarily distributed with non-zero variance.

The mechanisms in the above three classes are all deterministic and can achieve
optimal efficiency. Furthermore, the mechanisms do not use any payments. All
proofs, as well as additional examples, can be found in our full paper.

Obtaining Actual Truthfulness. Recall that in [4], the authors added a
“reaction stage” to the standard mechanism design model in order to achieve
actual truthfulness from approximate truthfulness (which is obtained via dif-
ferential privacy). We can also use this model and their techniques to obtain
actual truthfulness in our results. In our full paper, we also describe an al-
ternative model where actual truthfulness can be obtained from approximate
truthfulness. In this new model, the mechanism is given the ability to verify the
truthfulness of a small number of players. This model is simple to use and is
realistic in settings where the truthfulness of a player can be verified objectively
(e.g., income, expenses, age, address).

2 Preliminaries and Definitions

For any k ∈ N, we will use [k] to denote the set {1, . . . , k}. We consider a standard
mechanism design environment consisting of the following components:

– A number n of players ; we will often use [n] to denote the set of n players.
– A type space T ; each player has a private type from the type space T .
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– A distribution T over the type space; the players’ private types are indepen-
dently drawn from this distribution.

– A set S of social alternatives ; for convenience, we assume that S is finite.
– For each player i, a utility function ui : T × S → R; for t ∈ T and s ∈ S,

ui(t, s) represents the utility that player i receives if player i has type t and
the social alternative s is chosen.

We will focus on direct revelation mechanisms where each player reports his/her
type. Therefore, a mechanism is a function M : T n → S, and a (pure) strategy
for player i is a function σi : T → T that maps true types to announced types.
For convenience, whenever we refer to a mechanism M : T n → S, we assume
that it is associated with an environment as described above.

2.1 Equilibrium Concepts

In this section, we will define several equilibrium concepts based on the standard
Bayes-Nash equilibrium (see, e.g., [9]). These equilibrium concepts will be used
to define various notions of truthfulness. Our definitions build on the ε-Bayes-
Nash equilibrium, which is a relaxation of the Bayes-Nash equilibrium in the
sense that an ε margin is allowed in the Nash conditions. This relaxation reflects
the assumption that players will not deviate from the equilibrium if gains from
deviation are sufficiently small. In this paper, we also refer to ε-Bayes-Nash
equilibria as approximate Bayes-Nash equilibria. For more information about
various notions of approximate equilibria, see [10–12].

Our equilibrium concepts strengthen the ε-Bayes-Nash equilibrium. We chose
two strengthenings to address the following weaknesses of Nash equilibria. Firstly,
a player’s part of a Nash equilibrium is only guaranteed to be a best-response if
all the other players are playing their parts of the equilibrium. In other words, a
Nash equilibrium cannot tolerate players deviating from their equilibrium strat-
egy — if there is one irrational person in the system, the equilibrium breaks
down. Deviations are especially problematic in ε-equilibria, where there is less
confidence that everyone would play their part of the equilibrium. Secondly, a
Nash equilibrium is not resilient to deviations by more than one person; coali-
tions of players can have profitable deviations from the equilibrium.

To address the first problem, we strengthen the Nash conditions such that even
if up to k players deviate from the equilibrium, everyone else’s best-response is
still to adhere to their part of the equilibrium. In other words, the equilibrium
tolerates arbitrary deviations of k individuals.

Definition 1 (k-tolerant ε-Bayes-Nash equilibrium). A strategy profile σ =
(σ1, . . . , σn) is a k-tolerant ε-Bayes-Nash equilibrium if for every I ⊆ [n] with
|I| ≤ k, every possible announced types t′I ∈ T |I| for I, every player i /∈ I, and
every pair of types ti, t

′
i for player i, we have

EtJ [ui(ti,M(σi(ti), t
′
I ,σJ(tJ)))] ≥ EtJ [ui(ti,M(t′i, t

′
I ,σJ(tJ)))] − ε,

where J = [n] \ (I ∪ {i}) and tJ ∼ T |J|.
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We note that k-tolerance is distinct from the notion of k-immunity as defined in
[13, 14], which guarantees that when up to k people deviate from the equilibrium,
the utilities of the non-deviating players do not decrease.

The second problem mentioned above is addressed by r-resilience (see, e.g.,
[10, 14]). A Bayes-Nash equilibrium is r-resilient if for any group of size at most
r, there does not exist a deviation of the group such that any member of the
coalition has increased utility.

Definition 2 (r-resilient ε-Bayes-Nash equilibrium). A strategy profile σ =
(σ1, . . . , σn) is an r-resilient ε-Bayes-Nash equilibrium if for every coalition
C ⊆ [n] with |C| ≤ r, every true types tC ∈ T |C| for C, every player i ∈ C, and
every possible announced types t′C ∈ T |C| for C, we have

Et−C
[ui(ti,M(σC(tC),σ−C(t−C)))] ≥ Et−C

[ui(ti,M(t′C ,σ−C(t−C)))]− ε,

where t−C ∼ T n−|C|.

It is not hard to see that resilience and tolerance can be independently violated,
and hence neither implies the other. Just as the authors in [13, 14] combine im-
munity and resilience, we consider the combination of tolerance and resilience.
Roughly speaking, a (k, r)-persistent Bayes-Nash equilibrium is a Bayes-Nash
equilibrium that is r-resilient (protects against coalitions of size r), even in the
presence of up to k individuals that are deviating arbitrarily from the equilib-
rium.

Definition 3 ((k, r)-persistent ε-Bayes-Nash equilibrium). A strategy pro-
file σ = (σ1, . . . , σn) is a (k, r)-persistent ε-Bayes-Nash equilibrium if for every
I ⊆ [n] with |I| ≤ k, every possible announced types t′I ∈ T |I| for I, every coali-
tion C ⊆ [n] \ I with |C| ≤ r, every true types tC ∈ T |C| for C, every player
i ∈ C, and every possible announced types t′C ∈ T |C| for C, we have

EtJ [ui(ti,M(σC(tC), t
′
I ,σJ (tJ )))] ≥ EtJ [ui(ti,M(t′C , t

′
I ,σJ(tJ)))] − ε,

where J = [n] \ (I ∪ C) and tJ ∼ T |J|.

2.2 Notions of Truthfulness

In this section, we define various notions of truthfulness based on the equilib-
rium concepts from the previous section. Recall that a mechanism is Bayes-Nash
truthful if the truthful strategy profile is a Bayes-Nash equilibrium. Similarly, a
mechanism is ε-Bayes-Nash truthful if the truthful strategy profile is an ε-Bayes-
Nash equilibrium. By using the equilibrium concepts from the previous section,
we can obtain stronger notions of truthfulness.

Definition 4 ([k-tolerant]/[r-resilient]/[(k, r)-persistent] ε-Bayes-Nash
truthful). A mechanism is k-tolerant ε-Bayes-Nash truthful if the truthful strat-
egy profile is a k-tolerant ε-Bayes-Nash equilibrium. Similarly, a mechanism is
r-resilient (resp., (k, r)-persistent) ε-Bayes-Nash truthful if the truthful strategy
profile is an r-resilient (resp., (k, r)-persistent) ε-Bayes-Nash equilibrium.
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It is easy to see that if a mechanism is (k, r)-persistent ε-Bayes-Nash truth-
ful, then it is also k-tolerant ε-Bayes-Nash truthful and r-resilient ε-Bayes-Nash
truthful. In many settings, it is reasonable to believe that players in an ε-Bayes-
Nash truthful mechanism will be truthful, since (1) truth-telling is simple while
computing a profitable deviation can be costly (see, e.g., [15]), and (2) lying can
induce a psychological (morality) cost. Indeed, there are many results in mecha-
nism design that assume that approximate truthfulness is enough to ensure that
players will be truthful (see, e.g., [1, 16–18]).

3 Privacy for Bayesian Mechanism Design

In this section, we describe and define Bayesian differential privacy, which is a
natural adaptation of differential privacy [7, 8] to the Bayesian mechanism design
setting. Roughly speaking, differential privacy requires that when one person’s
input to the mechanism is changed, the output distribution of the mechanism
changes very little (here, the mechanism is randomized).

We now describe Bayesian differential privacy. We first note that even though
the players’ true types are drawn from some distribution T , if all the players
are non-truthful and announce a type independently of their true type, then
the input of the mechanism is no longer distributional and we are essentially in
the same scenario as in (worst-case) differential privacy. Thus, it is necessary to
make some assumptions on the strategies of the players, so that the input of the
mechanism contains at least some randomness.

In our notion of Bayesian differential privacy, we assume that at least some
players (e.g., a constant fraction of the players) are truthful so that their an-
nounced types have the same distribution as their true types. This assumption
is not unreasonable, since we later show that if a mechanism is Bayesian differ-
entially private, then the mechanism is automatically persistent approximately
truthful, so we expect that most players would be truthful anyway. In particu-
lar, if we have an equilibrium where most players are truthful, then privacy is
achieved at this equilibrium.

Roughly speaking, (k, ε, δ)-Bayesian differentially privacy requires that when
a player i changes his/her announced type, the output distribution of the mech-
anism changes by at most an (ε, δ) amount, assuming that at most k players are
non-truthful (possibly lying in an arbitrary way). This implies that the mecha-
nism leaks very little information about each player’s announced type, so each
player’s privacy is protected. The mechanism is assumed to be deterministic, so
the randomness of the output is from the randomness of the types of the truthful
players. (One can also consider randomized mechanisms, but we chose to focus
on deterministic mechanisms in this paper.)

Definition 5 ((k, ε, δ)-Bayesian differential privacy). A mechanism M :
T n → S is (k, ε, δ)-Bayesian differentially private if for every player i ∈ [n],
every subset I ⊆ [n] \ {i} of players with |I| ≤ k, every pair of types ti, t

′
i ∈ T
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for player i, and every t′I ∈ T |I|, the following holds: Let J = [n] \ (I ∪ {i}) (the
remaining players) and tJ ∼ T |J|; then, for every Y ⊆ S, we have

Pr[M(ti, t
′
I , tJ ) ∈ Y ] ≤ eε · Pr[M(t′i, t

′
I , tJ) ∈ Y ] + δ,

where the probabilities are over tJ ∼ T |J|.

The parameter k controls how many non-truthful players the mechanism can
tolerate while satisfying privacy; k can be a function of n (the number of play-
ers), such as k = n

2 . One can even view the non-truthful players as being con-
trolled/known by an adversary that is trying to learn information about a player
i’s type; as long as the adversary controls/knows at most k people, player i’s pri-
vacy is still protected. The parameters ε and δ bound the amount of information
about each person’s (announced) type that can be “leaked” by the mechanism.
Since the above definition of Bayesian differential privacy is a natural adaptation
of differential privacy to Bayesian mechanism design, and since differential pri-
vacy is a well-motivated and well-accepted notion of privacy, we will not further
elaborate on the details of the above definition.

Our definition of (k, ε, δ)-Bayesian differential privacy has some similarities
to the notion of (ε, δ)-noiseless privacy (for databases) introduced and studied
in [19]. However, there are some subtle but significant differences between the
two definitions, so the results in this paper do not follow from the theorems
and proofs in [19]. Nevertheless, the ideas and techniques in [19], and for (ε, δ)-
noiseless privacy in general, may be useful for designing Bayesian differentially
private mechanisms.

It is known that differentially private mechanisms are approximately (dominant-
strategy) truthful (see [1]). Similarly, Bayesian differentially private mechanisms
are persistent approximate Bayes-Nash truthful.

Theorem 1 (Bayesian differential privacy =⇒ persistent approximate
truthfulness). Suppose the utility functions are bounded by α > 0, i.e., the
utility function for each player i is ui : T×S → [−α, α]. Let M be any mechanism
that is (k, ε, δ)-Bayesian differentially private. Then, M satisfies the following
properties:

1. M is k-tolerant (ε+ 2δ)(2α)-Bayes-Nash truthful.
2. For every 1 ≤ r ≤ k+1, M is r-resilient (rε+2rδ)(2α)-Bayes-Nash truthful.
3. For every 1 ≤ r ≤ k+1, M is (k− r+1, r)-persistent (rε+2rδ)(2α)-Bayes-

Nash truthful.

4 Efficient Bayesian Mechanisms with Privacy and
Persistent Approximate Truthfulness

In this section, we present three classes of mechanisms that achieve both Bayesian
differential privacy and persistent approximate truthfulness.
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4.1 Histogram Mechanisms

We first present a broad class of mechanisms, called histogram mechanisms, that
achieve Bayesian differential privacy and persistent approximate truthfulness.
Given a partition P = {B1, . . . , Bm} of the type space T with m blocks (ordered
in some way), a histogram with respect to P is simply a vector in (Z≥0)

m that
specifies a count for each block of the partition. Given a partition P , let HP

denote the set of all histograms with respect to P ; given a vector t of types, let
HP (t) be the histogram formed from t by simply counting how many components
(types) of t belong to each block of the partition P .

We now define what we mean by a histogram mechanism. Intuitively, a his-
togram mechanism is a mechanism that, on input a vector of types, computes
the histogram from the types with respect to some partition P , and then applies
any function f : HP → S to the histogram to choose a social alternative in S.

Definition 6 (Histogram mechanism). Let P be any partition of the type
space T . A mechanism M : T n → S is a histogram mechanism with respect to
P if there exists a function f : HP → S such that M(t) = f(HP (t)) ∀ t ∈ T n.

The following theorem states that any histogram mechanism with bounded util-
ity functions and positive expected count for each bin is both Bayesian differen-
tially private and persistent approximately truthful.

Theorem 2 (Histogram mechanisms are private and persistent ap-
proximately truthful). Let M : T n → S be any histogram mechanism with
respect to some partition P of T . Let pmin = minB∈P Prt∼T [t ∈ B], and suppose
that pmin > 0. Then, for every 0 ≤ k ≤ n − 2 and 4

pmin·(n−k−1) ≤ ε ≤ 1, M

satisfies the following properties with δ = e−Ω((n−k)·pmin·ε2):

1. Privacy: M is (k, ε, δ)-Bayesian differentially private.
2. Persistent approximate truthfulness: Suppose the utility functions are bounded

by α > 0, i.e., the utility function for each player i is ui : T × S → [−α, α].
Then, for every 1 ≤ r ≤ k+1, M is (k− r+1, r)-persistent (rε+2rδ)(2α)-
Bayes-Nash truthful.

One possible partition of the type space is the one where there is a distinct
block for each type. Thus, Theorem 2 covers the case where the choice of the
mechanism depends only on the number of players that reported each type,
and not their identities. In fact, given any partition, one can redefine the type
space so that the new types are the blocks of the partition. This means we
could always redefine the type space and simply use the partition where there
is a distinct block for each type in the new type space. However, we believe it
is more natural to preserve the original, natural type space, and to allow the
histogram mechanism to use an appropriate partition of the type space.

In Theorem 2, since the histogram mechanism is not modified in any way
to satisfy privacy and persistent approximate truthfulness, all properties of the
mechanism (e.g., efficiency, truthfulness, individual rationality, etc.) are pre-
served. We now give a simple example to illustrate Theorem 2.
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Example 1 (Voting with multiple candidates). Suppose we are trying to
select a winner from a finite set of candidates (e.g., political candidates) using
the plurality rule (i.e., each voter casts one vote and the candidate with the
most votes wins). The set of social alternatives is the set of candidates, and the
natural type space is the set of all preference orders over the candidates. However,
we can partition the type space such that each block b represents a candidate
cb, and all the types with cb as their top choice belong to block b. Intuitively,
announcing a type that belongs to block b can be understood as casting a vote
for candidate cb. Using this partition, we can define a histogram mechanism
that implements the plurality rule. It is well known that the plurality rule is
not strategy-proof when there are more than two candidates (see, e.g., [11]).
However, by Theorem 2, this histogram mechanism is Bayesian differentially
private and persistent approximate Bayes-Nash truthful.

4.2 Mechanisms for Two Social Alternatives

Although histogram mechanisms are useful in many settings, in order to apply
Theorem 2 to get good parameters, the number of bins cannot be extremely
large. We now present a class of mechanisms that do not require the partitioning
of types into bins, but are still Bayesian differentially private and persistent
approximately truthful. Roughly speaking, the following theorem states that any
mechanism that makes a choice between two social alternatives {A,B} based on
the difference between the sums of two functions u(·, A) and u(·, B) on the types
is Bayesian differentially private and persistent approximately truthful.

Theorem 3 (Private and persistent approximately truthful mechanisms
for two social alternatives). Let S = {A,B} be any set of two social alter-
natives, let T ⊆ R be the type space, let T be any distribution over T , and let
u : T × S → [−β, β] be any function (e.g., a utility function for all the play-
ers). Suppose the random variable u(t, A) − u(t, B), where t ∼ T , has non-zero
variance and a probability density function.

Let M : T n → S be any mechanism such that

M(t) = f

(
n∑

i=1

u(ti, A)−
n∑

i=1

u(ti, B)

)

for some function f : R → S. Then, for every 0 ≤ k ≤ n− 2 and 0 < ε ≤ 1, M

satisfies the following properties with ε′ = ε+O(
√

ln(n−k)
n−k ) and δ = O( 1

ε
√
n−k

):

1. Privacy: M is (k, ε′, δ)-Bayesian differentially private.
2. Persistent approximate truthfulness: Suppose the utility functions are bounded

by α > 0, i.e., the utility function for each player i is ui : T × S → [−α, α].
Then, for every 1 ≤ r ≤ k+1, M is (k− r+1, r)-persistent (rε′ +2rδ)(2α)-
Bayes-Nash truthful.
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The mechanism in Theorem 3 chooses a social alternative by applying some func-
tion f on the difference between

∑n
i=1 u(ti, A) and

∑n
i=1 u(ti, B). We note that

the mechanism may already have certain properties, such as efficiency, truth-
fulness, individual rationality, etc.; by Theorem 3, this mechanism also satisfies
privacy and persistent approximate truthfulness, in addition to the original prop-
erties that it already satisfies. One obvious application of Theorem 3 is to let u be
a common utility function for the players, where the utility of player i with type
ti is u(ti, A) if A is chosen, and is u(ti, B) if B is chosen. If we define f : R → S
such that f(x) = A if and only if x > 0, then the mechanism maximizes social
welfare.

4.3 Social Welfare Mechanisms

In this section, we present a class of mechanisms that make choices based on the
social welfare provided by each social alternative. An important subset of these
mechanisms is the set of mechanisms that maximize social welfare.

In this section, a type t ∈ T is a valuation function that assigns a valuation to
each social alternative s ∈ S. In many settings, it is reasonable to assume that
the players’ valuations for each social alternative follow a normal distribution,
since the normal distribution has been frequently used to model many natural
and social phenomena. For convenience of presentation, we will use the standard
normal distribution N (0, 1) in our theorems below. However, our theorems can
be easily generalized to work with arbitrary normal distributions. In any case, it
is easy to see that given any normal distribution over the valuations, the valua-
tions can be translated and scaled to obtain the standard normal distribution.

For any reasonable mechanism, it is natural to have a bound on the set of
possible valuations — it would be unreasonable to allow a player to report an
arbitrarily high or low valuation (e.g. 2100) and single-handedly influence the
choice of the mechanism. Therefore, we will restrict the possible valuations to
the interval [−α, α] for some value α > 0. As a result, our type space T will be
the set of all valuation functions t : S → [−α, α]. Furthermore, we will assume
that the players’ valuations for each social alternative follow the standard normal
distribution. However, because of the bound on the set of valuations, we will use
the truncated standard normal distribution obtained by conditioning N (0, 1) to
lie on the interval [−α, α]. We denote this distribution by N (0, 1)[−α,α].

For simplicity, we will first present the following theorem, which is a special
case of our more general result (Theorem 5). The following theorem states that if
each player’s valuation for each social alternative is distributed as the truncated
standard normal distribution N (0, 1)[−α,α], then any mechanism that makes a
choice based on the set of total valuations for each social alternative is Bayesian
differentially private and persistent approximate Bayes-Nash truthful.

Theorem 4 (Social welfare mechanisms). Let S = {s1, . . . , sm} be a set of
m social alternatives. Let the type space T be the set of all valuation functions
t : S → [−α, α] on S, where α = Θ( 4

√
n). Let T be the distribution over T

obtained by letting t(s) ∼ N (0, 1)[−α,α] for each s ∈ S independently. For each
player i, let the utility function for player i be ui(ti, s) = ti(s).
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Let swj(t) =
∑n

i=1 ti(sj) be the (reported) social welfare for the social alter-
native sj. Let M : T n → S be any mechanism such that

M(t) = f(sw1(t), . . . , swm(t))

for some function f : Rm → S. Then, for every constant c < 1, every k ≤
c · n, and every 0 < ε ≤ 1, M satisfies the following properties with δ =

O(e−Ω( ε2

m2 ·
√
n)+ln(m

√
n)):

1. Privacy: M is (k, ε, δ)-Bayesian differentially private.
2. Persistent approximate truthfulness: For every 1 ≤ r ≤ k+1, M is (k− r+

1, r)-persistent (rε + 2rδ)(2α)-Bayes-Nash truthful.

In Theorem 4, swj(t) represents the social welfare that will be achieved if the
players’ types (i.e., valuation functions) are t and the social alternative sj is cho-
sen by the mechanism. Thus, Theorem 4 says that any mechanism whose choice
depends only on the set {swj(t)}j∈[m] of social welfare values satisfies Bayesian
differential privacy and persistent approximate Bayes-Nash truthfulness, in ad-
dition to any properties that it may already satisfy (e.g., efficiency, truthfulness,
individual rationality, etc.). In particular, a mechanism that chooses a social
alternative to maximize social welfare satisfies this requirement and achieves
optimal efficiency with respect to social welfare.

In Theorem 4, the value α at which the standard normal distribution is trun-
cated is chosen so that the truncated distribution is very close to the untruncated
one. This means that even if we had used the untruncated distribution instead,
with high probability no valuation would fall outside the interval [−α, α].

In the next theorem, we consider a setting where there is a set of available
“options”, and we allow the mechanism to choose any subset of these options.
Thus, the set of social alternatives is the power set of the set of options. To
keep the set of valuations tractable, instead of having a valuation for each social
alternative, the players have a valuation for each option. Moreover, we allow for
the flexibility where for each player, only certain options are relevant/applicable
to that player. We capture this flexibility by having a binary weight for each
player-option pair. Note that Theorem 4 is the special case where the set of
social alternatives consists of the sets of single options (i.e., the singletons), and
where all options are considered relevant to all players.

The binary weight wi,j associated with player i and option oj indicates whether
option oj is relevant/applicable to player i. wi,j = 1 means that option oj is rel-
evant/applicable to player i, so player i’s announced valuation is taken into
account in the social welfare for option oj . On the other hand, wi,j = 0 means
that player i’s valuation is ignored in the social welfare for option oj . These
weights are known to or set by the mechanism designer. For example, perhaps
only people with low income should have a voice in decisions regarding subsi-
dized housing, and only people with disabilities should have a say in decisions
regarding building accessibility laws. We now state our next theorem, which
generalizes Theorem 4 to this new setting.
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Theorem 5 (Social welfare mechanisms with multiple options). Let the
set S of social alternatives be 2O, where O = {o1, . . . , om} is a set of m possible
“options”. Let the type space T be the set of all valuation functions t : O →
[−α, α] on O, where α = Θ( 4

√
n). Let T be the distribution over T obtained by

letting t(o) ∼ N (0, 1)[−α,α] for each option o ∈ O independently. Suppose the
weights {wi,j}i∈[n],j∈[m] satisfy

∑n
i=1 wi,j ≥ c1 · n for every option oj , where

c1 > 0 is some constant.
Let swj(t) =

∑n
i=1 wi,j · ti(oj) be the (reported) social welfare for option oj.

Let M : T n → S be any mechanism such that

M(t) = f(sw1(t), . . . , swm(t))

for some function f : Rm → S. Then, for every constant c2 < c1, every k ≤
c2 · n, and every 0 < ε ≤ 1, M satisfies the following properties with δ =

O(e−Ω( ε2

m2 ·√n)+ln(m
√
n)):

1. Privacy: M is (k, ε, δ)-Bayesian differentially private.
2. Persistent approximate truthfulness: Suppose the utility functions are bounded

by β > 0, i.e., the utility function for each player i is ui : T × S → [−β, β].
Then, for every 1 ≤ r ≤ k+1, M is (k− r+1, r)-persistent (rε+2rδ)(2β)-
Bayes-Nash truthful.

In Theorem 5, the requirement on the binary weights simply means that each
option is relevant/applicable to at least some constant fraction of the players.
Note that the persistent approximate truthfulness result of Theorem 5 requires
the players’ utility functions to be bounded by β > 0. This assumption is needed
since the players’ utility functions can actually be arbitrary functions. However,
the most natural way to use Theorem 5 is to let player i’s utility function be the
following: if the chosen social alternative is a singleton {oj}, then the utility for
player i is wi,j · ti(oj); if the chosen social alternative is a set s consisting of two
or more options, then the utility for player i is the sum of the utilities for each
singleton subset of s. Alternatively, a player i’s utility for a social alternative s
does not have to be additive in the options that s contains — the utility function
for player i can capture complementarities and substitutabilities of the options
as well. We now give a simple example that illustrates Theorem 5.

Example 2 (Multiple public projects). The municipal government would like
to spend its budget surplus of 4 million on the community. There are four options
that the government is considering, each costing 2 million to build: a senior home,
a casino, a subsidized housing complex, and a library. The government would
like to find out, on a scale from −α to α, how much each individual values each
option. For each individual i, the government chooses the weights for each of the
options as follows: the weight for the senior home is 1 if and only if individual
i is over the age of 65; the weight for the casino is 1 if and only if individual i
is over the age of 19; the weight for the subsidized housing complex is 1 if and
only if individual i is classified as low-income; and the weight for the library is
always 1.
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After collecting the valuations from the individuals, the government can com-
pute the social welfare provided by each option, or compute an average utility
for each option by dividing its social welfare by the number of people who have
weight 1 for that option. Finally, the government can choose two of the options
to maximize social welfare or average utility. By Theorem 5, this mechanism is
Bayesian differentially private and persistent approximately truthful.

In our full paper, we generalize Theorem 5 to the case where the players’ valua-
tions for each social alternative are arbitrarily distributed with non-zero variance.
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Abstract. A network creation game simulates a decentralized and non-
cooperative building of a communication network. Informally, there are
n players sitting on the network nodes, which attempt to establish a
reciprocal communication by activating, incurring a certain cost, any
of their incident links. The goal of each player is to have all the other
nodes as close as possible in the resulting network, while buying as few
links as possible. According to this intuition, any model of the game
must then appropriately address a balance between these two conflicting
objectives. Motivated by the fact that a player might have a strong re-
quirement about its centrality in the network, in this paper we introduce
a new setting in which if a player maintains its (either maximum or av-
erage) distance to the other nodes within a given bound, then its cost is
simply equal to the number of activated edges, otherwise its cost is un-
bounded. We study the problem of understanding the structure of pure
Nash equilibria of the resulting games, that we call MaxBD and SumBD,
respectively. For both games, we show that when distance bounds asso-
ciated with players are non-uniform, then equilibria can be arbitrarily
bad. On the other hand, for MaxBD, we show that when nodes have a
uniform bound R on the maximum distance, then the Price of Anarchy

(PoA) is lower and upper bounded by 2 and O
(
n

1
�log3 R�+1

)
for R ≥ 3

(i.e., the PoA is constant as soon as R is Ω(nε), for some ε > 0), while for
the interesting case R = 2, we are able to prove that the PoA is Ω(

√
n)

and O(
√
n log n). For the uniform SumBD we obtain similar (asymptot-

ically) results, and moreover we show that the PoA becomes constant as

soon as the bound on the average distance is 2ω
(√

logn
)
.

1 Introduction

Communication networks are rapidly evolving towards a model in which the
constituting components (e.g., routers and links) are activated and maintained
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by different owners, which one can imagine as players sitting on the network
nodes. When these players act in a selfish way with the final intent of creating a
connected network, the challenge is exactly to understand whether the pursuit
of individual profit is compatible with the attainment of an equilibrium status
for the system (i.e., a status in which players are not willing to move from), and
how the social utility for the system as a whole is affected by the selfish behavior
of the players. While the former question is inherently game-theoretic and has
been originally addressed in [10] by the economists (for further references see
also Chapter 6 in [11]), the latter one involves also computational issues, since it
can be regarded as a comparison between the performances of an uncoordinated
distributed system as opposed to a centralized system which can optimally design
a solution. Not surprisingly then, this class of games, which we refer to as network
creation games (NCGs), received a significative attention also from the computer
science community, starting from the paper of Fabrikant et al. [9], where the main
computational aspects of a NCG have been initially formalized and investigated.
More precisely, in [9] the authors focused on an Internet-oriented NCG, defined
as follows: We are given a set of n players, say V , where the strategy space
of player v ∈ V is the power set 2V \{v}. Given a combination of strategies
S = (Sv)v∈V , let G(S) denote the underlying undirected graph whose node set
is V , and whose edge set is E(S) =

{
(v, v′) | v ∈ V ∧ v′ ∈ Sv

}
. Then, the cost

incurred by player v under S is

costv(S) = α · |Sv|+
∑
u∈V

dG(S)(u, v) (1)

where dG(S)(u, v) is the distance between nodes u and v in G(S). Thus, the cost
function implements the inherently antagonistic goals of a player, which on the
one hand attempts to buy as little edges as possible, and on the other hand aims
to be as close as possible to the other nodes in the outcoming network. These
two criteria are suitably balanced in (1) by making use of the parameter α ≥ 0.
Consequently, the Nash Equilibria1 (NE) space of the game is heavily influenced
by α, and the corresponding characterization must be given as a function of it.
The state-of-the-art for the Price of Anarchy (PoA) of the game, that we will call
henceforth SumNCG, is summarized in [15], where the most recent progresses
on the problem have been reported.

Further NCG models. A first natural variant of SumNCG was introduced in [7],
where the authors redefined the player cost function as follows

costv(S) = α · |Sv|+max{dG(S)(u, v) : u ∈ V }. (2)

This variant, named MaxNCG, received further attention in [15], where the au-
thors improved the PoA of the game on the whole range of values of α. However,
a criticism made to both the aforementioned models is that usage and building
cost are summed up together in the player’s cost, and this mixing is reflected

1 In this paper, we only focus on pure strategies Nash equilibria.
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in the social cost of the resulting network. As a consequence, we have that in
this game the PoA alone does not say so much about the structural properties
of the network, such as density, diameter, or routing cost. Moreover, they both
incorporate in the cost function the parameter α, which is in a sense artificially
introduced in order to suitably balance usage and building cost.

Thus, in an effort of addressing these critical issues, in [14] the authors pro-
posed an interesting variant in which a player v, when forming the network, has
a limited budget bv to establish links to other players. This way, the player cost
function restricts to the usage cost, namely either the maximum or the total dis-
tance to other nodes. For these bounded-budget versions of the game, that we call
MaxBB and SumBB, respectively, the authors in [14] showed that determining
the existence of a NE is NP-hard. On a positive side, they proved that for uniform
budgets, say k, both variants always admit a NE, and that its Price of Stability

(PoS) is Θ(1). Finally, they proved that the PoA of MaxBB is Ω
(

n
k logk n

)
and

O
(

n
logk n

)
, while the PoA of SumBB is Ω

(√
n

k logk n

)
, O
(√

n
logk n

)
. Notice that

in both MaxBB and SumBB, links are seen as directed. Thus, a natural exten-
sion of the model was given in [8], were the undirected case was considered. For
this, it was proven that both MaxBB and SumBB always admit a NE. More-
over, the authors showed that the PoA for MaxBB and SumBB is Ω(

√
logn)

and O(
√
n), respectively, while in the special case in which the budget is equal

to 1 for all the players, the PoA is O(1) for both versions of the game.
In all the above models it must be noticed that, as stated in [9], for a player

it is NP-hard to find a best response once that the other players’ strategies
are fixed. To circumvent this problem, in [4] the authors proposed a further
variant, called basic NCG (BNCG), in which given some existing network, the
only improving transformations allowed are edge swaps, i.e., a player can only
modify a single incident edge, by either replacing it with a new incident edge,
or by removing it. This naturally induces a weaker concept of equilibrium for
which a best response of a player can be computed in polynomial time. In this
setting, the authors were able to give, among other results, an upper bound of
2O(

√
logn) for the PoA of SumBNCG, and a lower bound of Ω(

√
n) for the PoA

of MaxBNCG. However, as pointed out in [15], the fact that now an edge has
not a specific owner, prevents the possibility to establish any implications on
the PoA of the classic NCG, since a NE in a BNCG is not necessarily a NE of
a NCG. Finally, another NCG model which is barely related to the NCG model
we study in this paper has been addressed in [6].

Our results. In this paper, we propose a new NCG variant that complements
the model proposed in [8]. More precisely, we assume that the cost function of
each player only consists of the number of bought edges (without any budget on
them), but with the additional constraint that each player v needs to stay within
a given (either maximum or average) distance, say (either Rv or Dv), from the
other players.

For this bounded-distance version of the NCG, we address the problem of
understanding the structure of the NE associated with the two variants of the
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game, that we denote by MaxBD and SumBD. In this respect, we first show
that both games can have an unbounded PoA as soon as players hold at least two
different distance bounds. Moreover, in both games, computing a best response
for a player is NP-hard. These bad news are counterbalanced by the positive
results we get for uniform distance bounds. In this case, first of all, the PoS for
MaxBD is equal to 1, while for SumBD it is at most 2. Then, as far as the PoA
is concerned, let R and D denote the uniform bound on the maximum and the
average distance, respectively. We show that

(i) for MaxBD, the PoA is lower and upper bounded by 2 and O
(
n

1
�log3 R�+1

)
for R ≥ 3, respectively, while for R = 2 is Ω(

√
n) and O(

√
n logn);

(ii) for SumBD, the PoA is lower bounded by 2 − ε, for any ε > 0, as soon as
D ≥ 2− 3/n, while it is upper bounded as reported in Table 1.

Table 1. Obtained PoA upper bounds for uniform SumBD

D ∈ [2, 3) ≥ 3 and O(1) ω(1) ∩ O
(
3
√

log n
)

ω
(
3
√

log n
)
∩ 2O

(√
log n

)
2ω

(√
log n

)
PoA O

(√
n logn

)
O

(
n

1
�log3 D/4�+2

)
2O(

√
log n) O

(
n

1
�log3 D/4�+2

)
O(1)

Motivations and significance of the new model. Our model was originally moti-
vated by the observation that, in a realistic scenario, a player might have a strong
objective/requirement about its centrality in the under-costruction network. In
fact, in daily life, people actively participate to the autonomous formation of
(social) networks. In our experience, a user downplays any concerns about the
number/cost of activated links. Rather, he initially pays attention only to the
fact of remaining as close as possible to (a subset of) the other users, and only
later on he tries to minimize his outdegree accordingly. Our model aims to (par-
tially) address this dynamics. Actually, at this initial stage, we have relaxed this
quite complicate setting, by associating with each user just a (uniform) single
distance bound w.r.t. all the other users. Nevertheless, even in this simplified
scenario, we can get some new insights as opposed to previous NCG models. In-
deed, a closer inspection of our provided results suggests that the PoA becomes
constant as soon as the maximum/average distance bound is Ω(nε), for some
ε > 0. This is quite interesting, since it implies that the autonomous network
tends to be sparser as soon as the distance bounds grow. Notice that in the Fab-
rikant’s model (and its variants), we cannot directly infer any information about
network sparseness by just knowing that the PoA is constant. Furthermore, our
model, as for those proposed in [14,8,4], does not rely on the α parameter, and
this makes the proofs of the various bounds intimately related with some graph-
theoretic properties of a stable network. For example, it is interesting to notice
that in our setting the minimum degree and the size of a minimum dominating
set play an important role. In this respect, in the concluding remarks of this pa-
per, we pose an intriguing relationship between our problem and the well-known
graph-theoretic degree-diameter problem, that we believe could help in solving
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some of the issues still left open, like the quite large gap between lower and upper
bounds for the PoA. Finally, focusing on MaxBD, we observe that when R = 2,
which should consistently model the scenario depicted by local-area networks,
we obtain the meaningful result that the PoA is far to be constant. We also
conjecture that this undesirable behavior can actually be extended to larger,
still constant, values of R, although the generalization of the lower bounding
argument seems likely technically involved.

The paper is organized as follows. After giving some basic definitions in Sec-
tion 2, we provide some preliminary results in Section 3. Then, we study upper
and lower bounds for uniform MaxBD and SumBD in Sections 4 and 5, respec-
tively. Finally, in Section 6 we conclude the paper by discussing some intrigu-
ing relationships of our games with the famous graph-theoretic degree-diameter
problem. Due to space limitations, some of the proofs are omitted here and will
be given in the full version of the paper.

2 Problem Definition

Graph terminology. Let G = (V,E) be an undirected (simple) graph with n
vertices. For a graph G, we will also denote by V (G) and E(G) its set of vertices
and its set of edges, respectively. For every vertex v ∈ V , let NG(v) := {u | u ∈
V \ {v}, (u, v) ∈ E}. The minimum degree of G is equal to minv∈V |NG(v)|.

We denote by dG(u, v) the distance in G from u to v. The eccentricity of a
vertex v in G, denoted by εG(v), is equal to maxu∈V dG(u, v). The diameter and
the radius of G are equal to the maximum and the minimum eccentricity of its
nodes, respectively. A node is said to be a center of G if εG(v) is equal to the
radius of G. We define the broadcast cost of v in G as BG(v) =

∑
u∈V dG(u, v),

while the average distance from v to a node inG is denoted byDG(v) = BG(v)/n.
A dominating set of G is a subset of nodes U ⊆ V such that every node of

V \ U is adjacent to some node of U . We denote by γ(G) the cardinality of a
minimum-size dominating set of G. Moreover, for any real k ≥ 1, the kth power
of G is defined as the graph Gk = (V,E(Gk)) where E(Gk) contains an edge
(u, v) if and only if dG(u, v) ≤ k. Let F ⊆ {(u, v) | u, v ∈ V, u 	= v}. We denote
by G + F the graph on V with edge set E ∪ F . When F = {e} we will denote
G+ {e} by G+ e.

Problem Statements. The bounded maximum-distance NCG (MaxBD) is defined
as follows: Let V be a set of n nodes, each representing a selfish player, and for
any v ∈ V , let Rv > 0 be an integer representing a bound on the eccentricity of
v. The strategy of a player v consists of a subset Sv ⊆ V \ {v}. Denoting by S
the strategy profile of all players, let G(S) be the undirected graph with node set
V , and with edge set E(S) = {(v, v′) | v ∈ V ∧ v′ ∈ Sv)}. When u ∈ Sv, we will
say that v is buying the edge (u, v), or that the edge (u, v) is bought by v. Then,
the cost of a player v in S is costv(S) = |Sv| if εG(S)(v) ≤ Rv, +∞ otherwise.

The bounded average-distance NCG (SumBD) is defined analogously, with
a bound Dv on the average distance of v from all the other nodes, and cost
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function costv(S) = |Sv| if DG(S)(v) ≤ Dv, +∞ otherwise. In the rest of the
paper, depending on the context, we will interchangeably make use of the bound
on the broadcast cost Bv = Dv · n when referring to SumBD.

In both variants, we say that a node v is within the bound in S (or in G(S))
if costv(S) < +∞. We measure the overall quality of a graph G(S) by its social
cost SC (S) =

∑
v∈V costv(S). A graph G(S) minimizing SC (S) is called social

optimum.
We use the Nash Equilibrium (NE) as solution concept. More precisely, a NE

is a strategy profile S in which no player can decrease its cost by changing its
strategy, assuming that the strategies of the other players are fixed. When S is
a NE, we will say that G(S) is stable. Conversely, a graph G is said to be stable
if there exists a NE S such that G = G(S). Notice that in both games, when
S is a NE, all nodes are within the bound and, since every edge is bought by a
single player, SC (S) coincides with the number of edges of G(S).

We conclude this section by recalling the definition of the two measures we
will use to characterize the NE space of our games, namely the Price of Anarchy
(PoA) [9] and the Price of Stability (PoS) [3], which are defined as the ratio
between the highest (respectively, the lowest) social cost of a NE, and the cost
of a social optimum.

3 Preliminary Results

First of all, observe that for MaxBD it is easy to see that a stable graph always
exists. Indeed, if there is at least one node having distance bound 1, then the
graph where all 1-bound nodes buy edges towards all the other nodes is stable.
Otherwise, any spanning star is stable. Notice that any spanning star is stable
for SumBD as well, but only when every vertex has a bound Bv ≥ 2n− 3, while
the problem of deciding whether a NE always exists for the remaining values of
Bv is open. From these observations, we can derive the following negative result.

Theorem 1. The PoA of MaxBD and SumBD (with distance bounds Bv ≥
2n− 3) is Ω(n), even for only two distance-bound values.

Sketch of proof. We exhibit a graph G′ with Ω(n2) edges, and a strategy profile
S such that G(S) = G′ and G(S) is stable in both models for suitable distance
bounds. We also show that the social optimum is n− 1.

The graph G′ is defined as follows. We have a clique of k nodes. For each node
v of the clique, we add four nodes v11 , v

1
2 , v

2
1 , v

2
2 and four edges (v12 , v

1
1), (v

1
1 , v),

(v22 , v
2
1), and (v21 , v). Clearly,G

′ has n = 5k nodes andΩ(n2) edges. Now, consider
a strategy profile S with G′ = G(S) and such that (i) every edge is bought
by a single player, and (ii) the edges (vj2, v

j
1), (v

j
1, v) are bought by vj2 and vj1,

respectively, j = 1, 2.
For MaxBD, we set the bound of every node of the clique to 3, while all the

other nodes have bound 5. For SumBD, we set the bound of each node v of the
clique to

∑
u∈V dG(v, u) = 11k − 5 > 2n − 3, while we assign to all the other

nodes bound n2.
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It is then not so hard to show that G(S) is stable. To conclude the proof,
observe that any spanning star (with cost n− 1) is a social optimum for the two
instances of MaxBD and SumBD given above. ��
Given the above bad news, from now on we focus on the uniform case of the
games, i.e., all the bounds on the distances are the same, say R and D (i.e.,
B = D · n) for the maximum and the average version, respectively. Similarly to
other NCGs, also here we have the problem of computing a best response for a
player, as stated in the following theorem.

Theorem 2. Computing the best response of a player in MaxBD and SumBD
is NP-hard. ��

On the other hand, a positive result which clearly implies that SumBD always
admits a pure NE is the following:

Theorem 3. The PoS of MaxBD is 1, while for SumBD it is at most 2. ��

4 Upper and Lower Bounds to the PoA for MaxBD

We start by providing few results which will be useful to prove our upper bounds
to the PoA for MaxBD.

Lemma 1. Let G(S) = (V,E(S)) be stable and let H be a subgraph of G(S). If
for each node v ∈ V there exists a set Ev of edges (all incident to v) such that
v is within the bound in H + Ev, then SC (S) ≤ |E(H)|+

∑
v∈V |Ev|.

Proof. Let kv be the number of edges of H that v is buying in S. If v buys Ev

additionally to its kv edges, then v will be within the bound in H +Ev. Hence,
since S is a NE, we have that costv(S) ≤ kv + |Ev|, from which it follows that

SC (S) =
∑
v∈V

costv(S) ≤
∑
v∈V

kv +
∑
v∈V

|Ev| = |E(H)|+
∑
v∈V

|Ev|. ��

Thanks to Lemma 1, we can prove the following lemma.

Lemma 2. Let G(S) be stable, and let γ be the cardinality of a minimum dom-
inating set of G(S)R−1. Then SC (S) ≤ (γ + 1)(n− 1).

Proof. Let U be a minimum dominating set of G(S)R−1, with γ = |U |. It is easy
to see that there is a spanning forest F of G(S) consisting of γ trees T1, . . . , Tγ ,
such that every Tj contains exactly one vertex in U , and when we root Tj at
such vertex the height of Tj is at most R− 1.

For a node v ∈ V , let Ev = {(v, u) | u ∈ U \ {v}}. Clearly, v is within the
bound in F + Ev, hence by using Lemma 1, we have

SC (S) ≤ |E(F )|+
∑
u∈U

|Eu|+
∑

v∈V \U
|Ev| = n−γ+(γ−1)γ+γ(n−γ) ≤ (γ+1)(n−1).

��
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Let G(S) be stable and let v be a node of G(S). Since v is within the bound,
the neigborhood of v in G is a dominating set of GR−1. Therefore, thanks to
Lemma 2 we have proven the following corollary.

Corollary 1. Let G(S) be stable, and let δ be the minimum degree of G(S),
then SC (S) ≤ (δ + 1)(n− 1). ��

We are now ready to prove our upper bound to the PoA for MaxBD.

Theorem 4. The PoA of MaxBD is O
(
n

1
�log3 R�+1

)
for R ≥ 3, and O(

√
n logn)

for R = 2.

Proof. Let G be a stable graph, and let γ be the size of a minimum dominating
set of GR−1. We define the ball of radius k centered at a node u as βk(u) = {v ∈
V | dG(u, v) ≤ k}. Moreover, let βk = minu∈V |βk(u)|. The idea is to show that
in G the size of any ball increases quite fast as soon as the radius of the ball
increases.

Claim. For any k ≥ 1, we have β3k+1 ≥ min{n, γβk}.

Proof. Consider the ball β3k+1(u) centered at any given node u, and assume
that |β3k+1(u)| < n. Let T be a maximal set of nodes such that (i) the distance
from every vertex in T and u is exactly 2k+2, and (ii) the distance between any
pair of nodes in T is at least 2k+1. We claim that for every node v /∈ β3k+1(u),
there is a vertex t ∈ T with dG(t, v) < dG(u, v). Indeed, consider the node t′

in a shortest path in G between v and u at distance exactly 2k + 1 from u. If
t′ ∈ T the claim trivially holds, otherwise consider the node t ∈ T that is closest
to t′. From the maximality of T we have that dG(t, v) ≤ dG(t, t

′) + dG(t
′, v) ≤

2k + dG(u, v)− (2k + 1) < dG(u, v).
As a consequence, we have that T ∪ {u} is a dominating set of GR−1, and

hence |T | + 1 ≥ γ. Moreover, all the balls centered at nodes in T ∪ {u} with
radius k are all pairwise disjoint. Then

|β3k+1(u)| ≥ |βk(u)|+
∑
t∈T

|βk(t)| ≥ γβk. ��

Now, observe that since the neighborhood of any node in G is a dominating set
of GR−1, we have that β1 ≥ γ. Then, after using the above claim x times, we
obtain

β 3x+1−1
2

≥ min
{
n, γx+1

}
.

Let us consider the case R ≥ 3 first. Let U be a maximal independent set of
GR−1. Since U is also a dominating set of GR−1, it holds that |U | ≥ γ. We
consider the |U | balls centered at nodes in U with radius given by the value
of the parameter x = �log3 R − 1�. Every ball has radius at most (R − 1)/2,
and since U is an independent set of GR−1, all balls are pairwise disjoint, and
hence we have n ≥ |U |γ�log3 R−1�+1 ≥ γ�log3 R�+1. As a consequence, we obtain

γ ≤ n
1

�log3 R�+1 , and the claim now follows from Lemma 2.
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Now assume R = 2. We use the bound given in [5] to the size γ(G) of a
minimum dominating set of a graph G with n nodes and minimum degree δ,
namely γ(G) ≤ n

δ+1Hδ+1, where Hi =
∑i

j=1 1/j is the i-th harmonic number.
Hence, since a social optimum has cost n − 1, from Lemma 2 and Corollary 1,

we have SC (S)
n−1 ≤ min

{
δ+1, n

δ+1Hδ+1+1
}
= O

(
min{δ, nδ logn}

)
, for any stable

graph G(S) with minimum degree δ. Since this is asymptotically maximized
when δ = Θ

(√
n logn

)
, the claim follows. ��

Now we focus on lower bounds to the PoA of MaxBD. We first prove a simple
constant lower bound for R = o(n), and then we show an almost tight lower
bound of Ω(

√
n) for R = 2. We postpone to the concluding section a discussion

on the difficulty of finding better lower bounds for large values of R.

Theorem 5. For any ε > 0 and for every 1 < R = o(n), the PoA of MaxBD
is at least 2− ε.

Proof. Assume we are given a set of n = 2R + h vertices {u1, . . . , u2R} ∪
{v1, . . . , vh}. The strategy profile S is defined as follows. Vertex uj buys a single
edge towards uj+1, for each j = 1, . . . , 2R − 1, while every vi buys two edges
towards u1 and u2R. It is easy to see that G(S) has diameter R and is stable.
The claim follows from the fact that SC(S) goes to 2(n−1) as h goes to infinity,
and since, as observed in Section 3, a spanning star (having social cost equal to
n− 1) is a social optimum. ��

Theorem 6. The PoA of MaxBD for R = 2 is Ω(
√
n).

Proof. We provide only the lower-bound construction due to lack of space. Let
p ≥ 3 be a prime number. We exhibit (see Figure 1) a graph G′ of diameter 2
containing O(p2) vertices and Ω(p3) edges, and a strategy profile S such that
G(S) = G′ and G(S) is stable. G′ contains two vertex-disjoint rooted trees T and
T ′ as subgraphs. T is a complete p-ary tree of height 2. We denote by r the root
of T , by C = {c0, . . . , cp−1} the set of children of r, and by Vi = {vi,0, . . . , vi,p−1}
the set of children of ci. T

′ is a star with p2 leaves rooted at the center r′. The
leaves of T ′ are partitioned in p groups each having exactly p vertices. For every
i = 0, . . . , p− 1, we denote by Ui = {ui,0, . . . , ui,p−1} the set of vertices of group
i. G′ = (V,E) has vertex set V = V (T ) ∪ V (T ′), and edge set

E = E(T ) ∪ E(T ′) ∪ {(r, r′)} ∪
{
(c, c′) | c, c′ ∈ C, c 	= c′

}
∪

p−1⋃
i=0

{
(u, u′) | u, u′ ∈ Ui, u 	= u′}

∪
{
(ui,j , vi′,j′) | i, i′, j, j′ ∈ [p− 1], j + i′i ≡ j′ (mod p)

}
.

In the strategy profile S, (i) r buys all edges of G′ incident to it, (ii) each vi′,j′

buys all edges of G′ incident to it, (iii) each edge (ui,j , r
′) of G′ is bought by ui,j ,

and (iv) each of the remaining edges in G′ is bought by any of its two endpoint
players. ��
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to v0,j

to vp−1,(j+(p−1)i) mod p

to v1,(j+i) mod p

.

..

up−1,0u0,p−1 up−1,p−1ui,ju0,0

r r′

ci

v0,p−1v0,0 vi,0 vi,p−1 vp−1,p−1vp−1,0

c0 cp−1

Fig. 1. The graph G(S). Edges are bought from the nodes they exit from. Notice that
nodes in grey boxes are clique-connected (with arbitrary orientations, i.e., ownership),
and for the sake of readability we have only inserted edges leading to node ui,j .

5 Upper and Lower Bounds to the PoA for SumBD

For SumBD, we start by giving an upper bound to the PoA similar to that
obtained for MaxBD. For the remaining of this section we use D to denote the
average bound of every node, namely D = B/n.

Theorem 7. The PoA of SumBD is O
(√

n logn
)
when 2 ≤ D < 3, and

O(n
1

�log3 D/4�+2 ) for D ≥ 3. ��

From the above result, it follows that the PoA becomes constant when D =
Ω(nε), for some ε > 0. We now show how to lower such a threshold to D =

2ω(
√
logn) = n

ω
(

1√
log n

)
(and we also improve the upper bound when D = ω(1)∩

o(3
√
log n)).

Lemma 3. Let G(S) be stable and let v be a node such that BG(S)(v) ≤ B − n,
then SC (S) ≤ 2(n− 1).

Proof. Let T be a shortest path tree of G rooted at v. The claim immediately
follows from Lemma 1 by observing that v is within the bound in T and every
other node u is within the bound in T + (u, v). ��

Notice that the above lemma shows that when a stable graph G has diameter at
most D − 1, then the social cost of G is at most twice the optimum. Now, the
idea is to provide an upper bound to the diameter of any stable graph G as a
function of δ, where δ is the minimum degree of G. Then we combine this bound
with Lemma 3 in order to get a better upper bound to the PoA for interesting
ranges of D.

Theorem 8. Let G be stable with minimum degree δ. Then the diameter of G
is 2O(

√
logn) if δ = 2O(

√
logn), and O(1) otherwise.
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Proof. We start by proving two lemmas.

Lemma 4. Let G be stable with minimum degree δ. Then either G has diameter
at most 2 logn or, for every node u, there is a node x with dG(u, x) ≤ logn such
that (i) x is buying δ/c edges (for some constant c > 1), and (ii) the removal of
these edges increases the sum of distances from x by at most 2n(1 + logn).

Proof. Assume that the diameter of G is greater than 2 logn, and consider a node
u. Let Uj be the set of nodes at distance exactly j from u, and let nj = |Uj |.
Moreover, denote by T a shortest path tree of G rooted at node u. Let i be
the minimum index such that ni+1 < 2ni (i must exist since the height of T
is greater than logn). Consider the set of edges F of G having both endpoints
in Ui−1 ∪ Ui ∪ Ui+1 and that do not belong to T . Then, |F | ≥ δni/2 − 3ni.
Moreover, we have that ni−1 + ni + ni+1 ≤ ni/2 + ni + 2ni = 7ni/2. As a
consequence, there is a vertex x ∈ Ui−1 ∪ Ui ∪ Ui+1 which is buying at least
ni/2−3ni

7ni/2
≥ δ/c edges of F , for some constant c > 1. Moreover, when x removes

these edges, the distance to any other node y increases by at most 2(1 + logn)
because dT (x, y) ≤ 2(1 + logn). The claim follows. ��

Lemma 5. In any stable graph G, there is a constant c′ > 1 such that the
addition of δ/c′ edges all incident to a node u decreases the sum of distances
from u by at most 5n logn.

Proof. If G has diameter at most 2 logn, then the claim trivially holds. Other-
wise, let x be the node of the previous lemma and let c′ be such that δ/c′ ≤
δ/c − 1. Moreover, assume by contradiction that the sum of distances from
u decreases by more than 5n logn when we add to G the set of edges F =
{(u, v1), . . . , (u, vh)}, with h = δ/c′. Then, let F ′ = {(x, vj) | j = 1, . . . , h}. We
argue that x can reduce its cost by saving at least an edge as follows: x deletes
its δ/c edges and adds F ′. Indeed, the sum of distances from x increases by at
most 2n(1 + logn) ≤ 4n logn, and decreases by at least 5n logn− n logn, since
for every node y such that the shortest path in G+F from u to y passes through
x, we have that dG(u, y)−dG+F (u, y) ≤ logn. Hence, x is still within the bound
in G+ F ′ and is saving at least one edge, a contradiction. ��

Recall that the ball of radius k centered at a node u ∈ V is defined as βk(u) =
{v ∈ V | dG(u, v) ≤ k}, and that βk = minu∈V |βk(u)|. We claim that

β4k ≥ min

{
n/2 + 1,

kδ

20c logn
βk

}
, (3)

for some constant c > 1. To prove that, let u ∈ V be any node and assume
that |β4k(u)| ≤ n/2. Let T be a maximal set of nodes such that (i) the distance
from every vertex in T and u is exactly 2k + 1, and (ii) the distance between
any pair of nodes in T is at least 2k + 1. From the maximality of T , for every
node v /∈ β3k(u) there is a node t ∈ T such that dG(v, t) ≤ dG(u, v) − k. Since
|β4k(u)| ≤ n/2, at least n/2 nodes have a distance more than 3k from u. This
implies the existence of a set Y of such vertices and a set T ′ ⊆ T such that (i)
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|Y | ≥ nδ/(2|T |), (ii) |T ′| = δ/c, and (iii) for every v ∈ Y , there exists v′ ∈ T ′ such
that dG(v, v

′) ≤ dG(u, v)−k. If we add δ/c edges from u to nodes in T ′, the sum of
distances from u decreases by at least (k−1)n/(2|T |) ≥ kn/(4|T |). By Lemma 5
this improvement is at most 5n logn and, as a consequence, |T | ≥ δk/(20c logn).
Moreover, all the balls centered at nodes in T are disjoint, and this proves the
recurrence (3). Now, the claim follows by solving such a recurrence. ��
Next theorem provides an alternative upper bound to the PoA of SumBD.

Theorem 9. The PoA of SumBD is 2O(
√
logn) if D = ω(1), and O(1) if D =

2ω(
√
logn).

Proof. Let G(S) be stable, and let Δ be the diameter of G(S). First of all,
consider the case Δ = o(D), and observe that BG(S)(v) = o(B) for every v.

Therefore, Lemma 3 implies that SC (S)
n−1 = O(1). This implies the second part of

the claim since Theorem 7 implies that Δ = 2O(
√
n).

Now, consider the case Δ = Ω(D). Since D = ω(1), we have that Δ = ω(1)

and therefore, from Theorem 7, δ = 2O(
√
n). To complete the proof, we show that

SC(S)
n−1 ≤ δ + 1. Let v be a node with degree δ, and let NG(S)(v) = {u1, . . . , uδ}.

Consider a shortest path tree T of G(S) rooted at v. Clearly, v is within the
bound in T , and if we define Ex = {(x, uj) | 1 ≤ j ≤ δ} for any x 	= v,
we have BT+Ex(x) ≤ BG(S)(v) ≤ B. Hence, from Lemma 1, it follows that
SC (S) ≤ |E(T )|+ (n− 1)δ ≤ (δ + 1)(n− 1). ��
Then, by combining the results of Theorems 7 and 9, we get the bounds reported
in Table 1. Finally, we can give the following

Theorem 10. For any ε > 0 and for 2n− 3 ≤ B = o(n2), the PoA of SumBD
is at least 2− ε. ��

6 Concluding Remarks

In this paper, we have introduced a new NCG model in which the emphasis is put
on the fact that a player might have a strong requirement about its centrality in
the resulting network, as it may well happen in decentralized computing (where,
for instance, the bound on the maximum distance could be used for synchronizing
a distributed algorithm). We developed a systematic study on the PoA of the two
(uniform) games MaxBD and SumBD, which, however, needs to be continued,
since a significant gap between the corresponding lower and upper bounds is still
open. In particular, it is worth to notice that finding a better upper bound to
the PoA would provide a better estimation about how much dense a network in
equilibrium can be.

Actually, in an effort of reducing such a gap, we focused on MaxBD, and
we observed the following fact: Recall that a graph is said to be self-centered
if every node is a center of the graph (thus, the eccentricity of every node is
equal to the radius of the graph, which then coincides with the diameter of the
graph). An interesting consequence of Lemma 2 is that only stable graphs that
are self-centered can be dense, as one can infer from the following
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Proposition 1. Let G(S) be stable for MaxBD. If G(S) is not self-centered,
then SC (S) ≤ 2(n− 1).

Proof. Let v be a node with minimum eccentricity. It must be εG(S)(v) ≤ R− 1.
Then, U = {v} is a dominating set of GR−1, and Lemma 2 implies the claim. ��

Thus, to improve the lower bound for the PoA of MaxBD, one has to look
to self-centered graphs. Moreover, if one wants to establish a lower bound of
ρ, then a stable graph of minimum degree ρ − 1 (from Corollary 1) is needed.
Starting from these observations, we investigated the possibility to use small and
suitably dense self-centered graphs as gadgets to build lower bound instances for
increasing values of R. To illustrate the process, see Figure 2, where using a
self-centered cubic graph of diameter 3 and size 20, we have been able to obtain
a lower bound of 3 (it is not very hard to see that the obtained graph is in
equilibrium).

vnv1

Fig. 2. A graph with n+ 20 nodes and 3n+ 30 edges, showing a lower bound for the
PoA of MaxBD for R = 3 approaching to 3, as soon as n grows. Edges within the
gadget (on the left side) are bought by either of the incident nodes, while other edges
are bought from the nodes they exit from.

Interestingly enough, the gadget is a famous extremal (i.e., maximal w.r.t.
node addition) graph arising from the study of the degree-diameter problem,
namely the problem of finding a largest size graph having a fixed maximum
degree and diameter (for a comprehensive overview of the problem, we refer
the reader to [1]). More precisely, the gadget is a graph of largest possible size
having maximum degree Δ = 3 and diameter R = 3. In fact, this seems not to
be coincidental, since also Moore graphs (which are extremal graphs for R = 2
and Δ = 2, 3, 7, 57), and the extremal graph for R = 4 and Δ = 3 (see [1]), can
be shown to be in equilibrium, and then they can be used as gadgets (clearly,
the lower bounds implied by Moore graphs for R = 2 are subsumed by our result
in Theorem 6). Notice that from this, it follows that we actually have a lower
bound of 3 for the PoA of MaxBD also for R = 4. So, apparently there could
be some strong connection between the equilibria for MaxBD and the extremal
graphs w.r.t. to the degree-diameter problem, and we plan in the near future to
explore such intriguing issue.
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Abstract. While it is relatively easy to start an online advertising campaign,
proper allocation of the marketing budget is far from trivial. A major challenge
faced by the marketers attempting to optimize their campaigns is in the sheer
number of variables involved, the many individual decisions they make in fix-
ing or changing these variables, and the nontrivial short and long-term interplay
among these variables and decisions.

In this paper, we study interactions among individual advertising decisions us-
ing a Markov model of user behavior. We formulate the budget allocation task
of an advertiser as a constrained optimal control problem for a Markov Decision
Process (MDP). Using the theory of constrained MDPs, a simple LP algorithm
yields the optimal solution. Our main result is that, under a reasonable assump-
tion that online advertising has positive carryover effects on the propensity and
the form of user interactions with the same advertiser in the future, there is a
simple greedy algorithm for the budget allocation with the worst-case running
time cubic in the number of model states (potential advertising keywords) and
an efficient parallel implementation in a distributed computing framework like
MapReduce. Using real-world anonymized datasets from sponsored search adver-
tising campaigns of several advertisers, we evaluate performance of the proposed
budget allocation algorithm, and show that the greedy algorithm performs well
compared to the optimal LP solution on these datasets and that both show con-
sistent 5-10% improvement in the expected revenue against the optimal baseline
algorithm ignoring carryover effects.

1 Introduction

The Internet has become a major advertising medium, with billions of dollars at
stake [21]. It has made it relatively easy even for small advertisers to quickly set up
campaigns, track expenses, monitor effectiveness of the campaigns, and tinker with
campaign parameters. Nonetheless, proper allocation of the marketing budget is far
from trivial. A major challenge faced by the marketers attempting to optimize their
campaigns is in the sheer number of variables they can possibly change. Even within
a single advertising channel such as sponsored search ads on a particular search en-
gine, the advertiser can optimize by reallocating the budget across different keywords,
choosing a particular bidding strategy to use within a single ad auction, deciding on the
daily advertising budget or what demographics of users to target. Each of these tasks
can be solved reasonably well when considered as a standalone optimization problem,
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yet one can only wonder what fraction of social surplus (and advertising revenues) is
lost by ignoring sophisticated dependencies and interaction patterns between individual
optimization tasks, such as long-term effects of ads interacting with other ads.

In this paper, we study interactions among individual advertising decisions using a
Markov model of user behavior, and develop optimization algorithms for budget allo-
cation in this context. In particular, we focus on a potential positive carryover effect
that online advertising has on the propensity and the form of user interactions with an
advertiser in the future, and develop improved algorithms for the problem in this setting.
We clarify these ideas on a simple scenario from the sponsored search area.

Example 1. A number of competing retailers are selling a single good with a certain
brand name online. Every retailer has a choice of advertising only on the retailer spe-
cific keywords like the retailer’s name or advertising on both the retailer specific key-
words and the brand name of the good they sell. In this scenario, most of the users
potentially interested in buying the good are initially uninformed about individual re-
tailers’ existence and therefore search directly with the brand name of the good. As
the good is relatively expensive, they do not buy it from the first retailer found, instead
clicking on multiple ads and comparing numerous offers. Once decided on the best of-
fer, they often search with the retailer’s name directly, proceed to the retailer’s website
and convert, i.e., make a purchase. Furthermore, a fraction of the converted users may
become loyal customers that in the future skip the comparison shopping phase and go
to the retailer’s website directly without performing any brand related searches. Impor-
tant property of this example is that analyzing profitability of retailer-specific keywords
and brand-specific keywords separately improperly captures the influence of both on
the retailer’s revenue. Indeed, individual analysis in our example would suggest that
brand-specific keywords provide significantly worse return-on-investment (ROI) than
retailer-specific keywords due to both high CPC 1 values (heavy competition with other
retailers) and low conversion rates (a lot of users clicking on multiple ads before con-
verting). 2 Yet it would not be wise (and many advertisers know that) for the retailer
to significantly cut spending on the brand-specific keywords as it is likely to reduce
inflow of users to the retailer-specific keywords as well. One can say that there is a
carryover from advertising on the brand-specific keywords to the ROI of advertising on
the retailer-specific keywords. ��
The above was only an example scenario and we emphasize that the model of carry-
over that we present in this paper is not restricted to only capture interactions between
brand-specific and retailer-specific keywords, nor is it restricted to the domain of the
sponsored search. Motivated by Markov models of user browsing behavior [20], in par-
ticular a previous study on mining advertiser-specific user behavior in sponsored search
auctions [3], we model users using a Markov chain and advertising as not only affecting
the current user action but also the future actions (through changing the state transition
probabilities). Our contributions are as follows:

1 Cost per click.
2 This is only a hypothetical scenario and its conclusions might not generalize to all settings.

There are empirical findings that suggest that the presence of retailer-specific information in
the keyword increases click-through rates, and the presence of brand-specific information in
the keyword increases conversion rates [13].
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– (Problem) In the Markovian user model, we formulate the budget allocation task
of an advertiser as a constrained optimal control problem for a Markov Decision
Process (MDP).

– (Algorithm) Using well-developed theory of constrained MDPs [2], we show that a
simple LP algorithm yields the optimal policy. As the main contribution, we show
that, under a reasonable assumption on the structure of carryover effects (see Sec-
tion 5), there is a faster greedy algorithm for the optimal solution of the problem
with the worst-case running time cubic in the number of model states (potential
advertising keywords). This greedy algorithm is inspired by the Lagrangian relax-
ation of the optimization problem which is solvable using a combinatorial greedy
algorithm in the presence of positive carryover effects. A major advantage of this
algorithm is that it can be implemented efficiently in parallel using a distributed
computing framework like MapReduce.

– (Empirical Study) Using real-world anonymized datasets from sponsored search
advertising campaigns of several advertisers, we show that our greedy algorithm
performs as well as the optimal LP solution, thus justifying our carryover assump-
tion under which we can prove the optimality of our greedy algorithm. Furthermore,
our budget allocation algorithm shows 5-10% improvement in revenues against the
baseline, consistent across a wide range of different settings and budget constraints.

While budget optimization problems have been studied previously in sponsored search,
even in the setting of possible externalities, our paper is the first to consider the long
term impacts of different ad instances on each other.

Due to space constraints, we do not include the proofs, and the details of the descrip-
tion of algorithms in this extended abstract.

2 Related Work

Advertising carryover in marketing refers to the well-known phenomenon that advertis-
ing messages affect consumers long after the initial exposure. Carryover effects have
been extensively studied in marketing literature [7], including online settings [23]. The
exact mechanism by which carryover works is often unspecified and the effect itself is
usually modeled simply by assuming that a certain fraction of the advertising effects
in the current period is retained in the next period. In our paper, we model carryover
at the level of individual advertising decisions within the campaign. For instance, hy-
pothetically, the decision of JetBlue to advertise on “cheap tickets” keyword may have
carryover effect on the number of users that issue search queries with the airline’s brand
name in the future.

This paper focuses on positive externalities of ads for the same advertiser in different
sessions, i.e., ads of an advertiser on multiple keywords reinforce each other in a posi-
tive way [18,8,14]. Certain empirical support for the presence of positive externalities in
sponsored search can be found in [18]: a randomized controlled experiment, performed
in cooperation between Yahoo! and a major retailer, found that the online advertising
campaign had substantial positive impact not only on the users who clicked on the ads
but also on those who merely viewed them. In another study, comScore [8] reported an
incremental lift of 27% in the online sales after the initial exposure to an online ad, as
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well as lift in other important online behaviors, such as the brand site visitation and the
trademark searches. Ghose and Yang [14] report positive interdependency between paid
and organic search results: the presence of organic listings is associated with a higher
probability of click-throughs on paid ads, and vice-versa.

In the world populated by Markov users, we consider the standard budgeted cam-
paign optimization problem [12,19,10]: find an optimal bidding policy to maximize the
number of user conversions subject to the budget constraint for the expected advertising
cost. Our approach allows us to apply machinery from the familiar field of constrained
MDPs, in particular reduce the budget optimization problem to a regular LP (an excel-
lent review of constrained MDPs can be found in [2]). As the main contribution of the
paper, under assumption of positive carryover effects we provide a simple, fast greedy
algorithm for this problem based on the ideas of Lagrangian relaxation.

3 Our Model and Problem

The notation below is chosen to be consistent with [2], except that we consider the
problem of maximizing the long-term total reward (conversion probability) while [2]
considered the problem of minimizing the long-term total cost.

Let X be a finite state space representing possible user states. In one interpretation,
the state can capture the last query issued by the user. For any x ∈ X , let A(x) repre-
sents the finite set of possible actions (advertising levels) in state x. For instance, A(x)
can be {advertise, do not advertise} but one can also consider more sophisticated possi-
bilities with different levels of advertising, for instance, one can think of different slots
on the search results page as possible advertising levels. Without loss of generality, we
can always assume a common set of advertising levels A(x) ≡ A available in all states.
The user randomly “jumps” between states with transition probabilities depending on
the level of the advertising the user is exposed to. Let Pxay be the probability of moving
from state x to state y if advertising level a ∈ A is chosen. Next, let d(x, a) ≥ 0 be the
immediate monetary cost of advertising at level a in state x. This cost will relate to the
budget constraint (V ) for our optimization problem.

We define three special states in the system: xc ∈ X representing the conversion
state, xn ∈ X representing the non-conversion state, and xf representing the final state.
The final state xf is absorbing. All transitions from the non-conversion state xn and the
conversion state xc lead to the final state xf . The initial flow of users to the system is
given by measure β(x) and the advertisers’ optimization problem is to maximize the
expected number of converted users subject to the budget constraint. Without loss of
generality, we can assume that β is normalized to 1 and therefore represents a probabil-
ity measure. In such normalization, V will represent a per-user budget constraint. We
can recast the optimization problem as a particular case of constrained MDPs by defin-
ing the reward function that we are trying to maximize as r(x, a) ≡ C when x = xc

and r(x, a) ≡ 0 otherwise (i.e., we get a reward of C in the conversion state and zero
everywhere else). We assume that the Markov process is absorbing, i.e, sooner or later
we will end up in the final state in which we accumulate no reward and pay no cost,
thus the optimization problem is well-defined. We formalize this as follows.

For t = 1, . . . ,∞, let Ht be the set of all possible user histories of length t. Ev-
ery element ht ∈ Ht is a history of states and chosen actions until time t, i.e. ht =
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(x1, a1, x2, a2, ..., xt) (note that the advertising exposure at time t is not included). A
general policy u is a collection of functions

ut : Ht → �(A),

where �(A) represents the set of probability distributions over A (policies can be ran-
domized). Note that the general policy allows for the targeted advertising, i.e., choosing
the advertising level for the user based on the complete history of the prior user searches
and ads the user was exposed to.

Definition 1. For every distribution over initial states β and a policy u, there is a
unique measure on the space of trajectories H∞. We can use Pu

β to denote this measure.
Moreover, define

puβ(t;x, a) = Pu
β (xt = x, at = a),

i.e., puβ(t;x, a) is the probability of observing the state x and the advertising level a at
the step t of the process when following the policy u. Next, define the expected total re-
ward and the expected total cost for a policy u as R(β, u) =

∑∞
t=1

∑
X,A puβ(t;x, a)r(x, a)

and D(β, u) =
∑∞

t=1

∑
X,A puβ(t;x, a)d(x, a) respectively. ��

Note that both are well-defined as we assume that the MDP is absorbing.
The budget optimization problem we face (for a single user) is simply

max
u∈U

R(β, u) [P1] , s.t. D(β, u) ≤ V

where U is the set of policies of interest.

Special Classes of Policies. There are three classes of policies of our interest:

– In Markov policies, ut depends only on xt, that is, we target users based only on
their current state and the amount of time they spent in the system.

– In the special case of stationary policies, ut does not depend on t, that is, we target
users based on their current state only.

– Further special are stationary deterministic policies, for which the advertising level
is chosen in each state deterministically. That is, we target users based on their
current state only and all users in the same state are exposed to the same advertising
level.

4 Classic Results for Constrained Markov Decision Processes

Below is a summary of well-known results for constrained MDPs that apply to our
model. The proofs are in [2].

Fact 1. It is sufficient to restrict consideration to Markov policies only (see Theorem
2.1 of [2]) as for any general policy u, there exists some other Markov policy v such
that puβ(t; ·, ·) ≡ pvβ(t; ·, ·).
Fact 2. Let X ′ = X \ {xf}. An occupation measure is a “visit count” measure over the
set of states and advertising levels (μ ∈ M(X ′×A)) achievable by some Markov policy
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u: μ(x, a) =
∑∞

t=1 p
u
β(t;x, a). Let L(β) be the set of all occupation measures, L(β)S

be the set of all occupation measures achievable with a stationary policy and L(β)D
be the set of all occupation measures achievable with a stationary deterministic policy.
Theorem 3.2 from [2] gives characterization of the set of all occupation measures. It
says that L(β) = L(β)S = coL(β)D (convex hull). Moreover, it is equal to Q(β),
where Q(β) is the set of all non-negative finite measures ρ on X ′ ×A such that

∀x ∈ X ′
∑
y∈X′

∑
a∈A

ρ(y, a)(δx(y)− Pyax) = β(x) (1)

Note that Equation 1 is the basic “conservation of flow” statement, thus the result can
be interpreted as “any measure satisfying the set of conservation of flow constraints is
achievable with some stationary policy” (the reverse is obviously true as well).

Fact 3. The previous result means that we can only look for stationary policies or, even
better, we can look for the solution in form of an occupation measure. Theorem 3.5
from [2] shows that there is one to one equivalence between feasible (and optimal)
solutions of P1 and feasible (and optimal) solutions of the following linear program:

max
ρ

∑
x∈X′

∑
a∈A

r(x, a)ρ(x, a) [P2]

s.t.
∑
x∈X′

∑
a∈A

d(x, a)ρ(x, a) ≤ V∑
y∈X′

∑
a∈A

ρ(y, a)(δx(y)− Pyax) = β(x) ∀x ∈ X ′

ρ(x, a) ≥ 0 ∀x ∈ X ′, a ∈ A.

In particular, if ρ∗ is the optimal solution of P2, then the stationary policy u∗ choosing
the advertising level a with probability of ρ∗(x,a)∑

b ρ∗(x,b) is the optimal randomized station-
ary policy (one can choose any advertising level if the denominator is zero).

Note that the linear program P2 has |X ′| + 1 constraints (the budget constraint and
|X ′| consistency constraints) in addition to the non-negativity constraints. Thus, one can
always find the optimal solution in which at most |X ′| + 1 ρ(y, a) values are positive.
That implies that there is always an optimal advertising strategy with randomization in
at most one state. Fact 4. In the following, it will also be useful to consider the dual
program of P2:

min
π,λ

∑
x∈X′

β(x)π(x) + λV [P3]

s.t. λ ≥ 0

π(x) ≥ r(x, a) − λd(x, a) +
∑
y∈X′

Pxay π(y)

∀x ∈ X ′, a ∈ A

Here λ is the Lagrange multiplier for the budget constraint and, for any fixed value of
λ, π(x) can be thought of as the optimal value function in the Markov model Mλ with
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adjusted rewards rλ(x) = r(x, a)−λd(x, a). This intuition is captured by the following
LP for a fixed λ:

min
πλ

∑
x∈X′

β(x)π(x) [P3(λ)]

s.t. πλ(x) ≥ rλ(x, a) +
∑
y∈X′

Pxay πλ(y)

∀x ∈ X ′, a ∈ A

Because the value of λ is fixed, [P3(λ)] is a classic infinite-horizon DP problem on a
graph Mλ with rewards rλ(x, a), therefore it has a uniformly optimal stationary dual
policy, which in every state x chooses the advertising level a(x) deterministically and
does not depend on the distribution of initial states β.

5 Budget Optimization with Positive Carryover Effects

The previous section shows that the budget optimization problem in Markovian world
can be cast a simple linear program P2 with |X ′|×|A| variables and |X ′|+1 constraints.
In real world online advertising settings, in particular, in sponsored search, |X ′| repre-
sents the number of feasible keywords to advertise on and therefore can be as large as
tens of thousands for a single advertiser. Number of advertising levels can be in the or-
der of ten (different slots) or more. Considering the fact that the constraint matrix is not
sparse, the direct LP approach presents significant practical computational challenges.
In this section, we identify the structure in the problem and use that to design a sim-
pler greedy algorithm which proceeds under assumption that the advertising carryover
effects are positive, which is realistic. The algorithm is guaranteed to find the optimal
solution of P2 with the worst-case running time of |X ′|3 × |A|2 under this assumption.
As the experimental section shows, the suggested algorithm performs very well in the
real world settings even if the underlying assumptions are violated.

First, we impose that the set of advertising levels A is totally ordered a1 � a2 �
... � ak, with interpretation that if ai ≺ aj then aj represents a more intense level of
advertising than ai. Next, we assume that the Markov user model satisfies the following
conditions which are realistic (our empirical study will not make such assumptions):

– More advertising never hurts (Postive Carryover):

∀x ∈ X ′, y ∈ X ′ \ {xn}, a � b Pxay ≤ Pxby

– More advertisting is more expensive: 3

∀x ∈ X ′, a � b d(x, a) ≤ d(x, b)

– Not advertising costs nothing: d(x, a1) ≡ 0, i.e., we assume that the advertiser can
always opt out of advertising in any state at no extra cost.

3 This assumption is not essential and can be relaxed. Indeed, if there are two advertising levels
a and b such that a � b but d(x, a) > d(x, b) then the advertiser can safely drop level a from
consideration (using b instead is always a better choice).
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Now, for any fixed λ ≥ 0 consider the optimization problem P3(λ): and its dual
P4(λ):

min
ρ

∑
x∈X′

∑
a∈A

(r(x, a) − λd(x, a))ρ(x, a) [P4(λ)]

s.t ∀x ∈ X ′
∑
y∈X′

∑
a∈A

ρ(y, a)(δx(y)− Pyax) = β(x)

∀x ∈ X ′, a ∈ A ρ(x, a) ≥ 0.

We emphasize that because P3(λ) is a classic infinite-horizon DP problem on a graph, it
has a uniformly optimal stationary policy. In case of λ = 0, this policy has a particularly
simple structure due to positive externalities.

Lemma 1 (Solution of Unconstrained Problem). For λ = 0 there is a uniformly
optimal policy of P3(λ) in which we advertise with the highest possible intensity (ak) in
every state.

The proofs are not included in this extended abstract.

Lemma 2 (Monotonicity of Dual Value Function). Let 0 ≤ λ1 < λ2, u1, u2 be the
corresponding uniformly optimal stationary policies and π1, π2 be the corresponding
value functions for P3(λ). Then, ∀x ∈ X ′ π1(x) ≥ π2(x).

Lemma 3 (Continuity of Dual Value Function). Let fβ(λ) be the value of the opti-
mization problem P3(λ) 4. fβ(λ) is a continuous function of λ. In particular, taking
β ≡ δx, we obtain that π∗

λ(x) is a continuous function of λ.

Definition 2. For any λ ≥ 0 and x ∈ X ′, define the set of active advertising levels
A(λ, x) as {

a ∈ A s. t.
∃π∗ uniformly optimal for P3(λ) and

π∗(x) = rλ(x, a) +
∑

y∈X′ Pxay π
∗(y)

}
Note that A(λ, x) is always non-empty.

Definition 3. For any λ ≥ 0 and x ∈ X ′, define the lowest active advertising level
aL(λ, x) and the highest active advertising level aH(λ, x) as

aL(λ, x) = minA(λ, x),

aH(λ, x) = maxA(λ, x).

Lemma 4 (Monotone Selection).
For any x ∈ X and 0 ≤ λ1 < λ2, we have aL(λ1, x) � aL(λ2, x) and aH(λ1, x) �
aH(λ2, x).

4 Subscript β is used to indicate the dependence on the initial distribution β
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Note. Proof of Lemma 4 looks like a standard single-crossing argument that can be used
to prove monotone selection theorems for supermodular and quasisupermodular func-
tions. While the primal optimization problem can indeed be written as a supermodular
function, the Lagrangian relaxation of the dual is not supermodular, nor quasisupermod-
ular (we omit the counterexamples due to space limitation), therefore Lemma 4 doesn’t
seem to be a corollary of Topkis’s theorem [22] or monotone selection theorems for
quasisupermodular functions.

Lemma 5 (Structure of Dual Value Function).
fβ(λ) is a piecewise linear continuous function. Moreover, the slope of fβ at any par-
ticular λ is equal to −βT (I − Pλ)

−1dλ, where β is the column vector of β(x), dλ is
the column vector of d(x, aH(λ, x)) and Pλ is the matrix of PxaH(λ,x)y. 5

5.1 Greedy BO Algorithm

Lemma 5 suggests a simple greedy algorithm for determining all breakpoint values λi

for the dual value function fβ(λ). Algorithm 2 keeps the the current set of highest active
advertising levels Aλi as a part of its state. Aλi is stored as a simple set of numbers
m(x) for every state x, representing that Aλi = {(x, am(x))|x ∈ X ′}. At every step
of the algorithm we choose one candidate node x∗. One way to define this node is to
imagine that we freeze the current set of active advertising levels Aλi and start gradually
increasing the value of λ. The first node, for which it will be locally optimal to decrease
the advertising level m(x), is the node x∗, the new value λi+1 at which that happens is
given by λi+1 = λi + δ∗ and the new advertising level at x∗ will be m∗.

Theorem 1 (Greedy BO algorithm). Algorithm 2 correctly constructs the dual value
function fβ(λ).

5.2 Improved Greedy BO Algorithm

Number of iterations of Algorithm 2is bounded by |X | × |A|. The most expensive
operation inside a single iteration is solving a linear system with |X | unknowns and
|X | variables. This can be done in O(|X |3) operations in practice or in O(|X |2.376)
asymptotically [9]. Fortunately, we can significantly improve the performance of the
algorithm by noting that it proceeds one variable at a time, always adjusting advertising
level in a single state only. Thus, we do not really need to solve the system dπi+1 ⇐
−(I −Pi+1)

−1di+1 from the scratch each time. Instead, the algorithm can keep an LU
decomposition of the matrix I − Pi, updating it in every step. Because only a single
row is replaced in the matrix, updating the LU decomposition can be trivially done in a
quadratic time by solving a system of equations with a triangular matrix. That results in
the O(|X |2 × |A|) worst-case performance of the inner loop and O(|X |3 × |A|2) worst-
case performance of the whole algorithm assuming a sequential processing model. The
improved version of the algorithm is given by Algorithm 3.

5 Note that there is an equivalent representation in which dλ = d(x, aL(λ, x)) and Pλ =
PxaL(λ,x)y.
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5.3 Parallel Implementation of Greedy BO Algorithm

The most interesting property of Algorithm 3 is that it supports an efficient parallel im-
plementation using a distributed programming framework like MapReduce [11]. This
might be an important advantage for solving large-scale advertising campaigns with
several thousands of keywords. This is in contrast to the original LP program P2, which
is not a packing-covering linear program and, therefore, we are not aware of any dis-
tributed or parallel algorithm to solve it. Below, we give a brief description of the idea
behind this parallel implementation.

The Candidate Selection() function can be parallelized to run on |X | machines
simply by distributing every iteration of the outer loop (for every x ∈ X ′) to a separate
machine and aggregating the results afterwards. Similarly, solution of a system of linear
inequalities with a triangular matrix can be done in |X | time on |X | machines. Thus,
we state that in a parallel processing framework with |X | machines, Algorithm 3 worst-
case performance is O(|X |2×|A|2) plus the time needed to perform LU decomposition
of the matrix I −P0 in the initialization step. Details of the implementation are beyond
the scope of this paper.

Table 1. Summary Statistics for CPC and number of keywords per campaign

Min Max Median Mean
CPC 1.43¢ $1.34 5.49¢ 25.46¢

Keywords 285 998 933 782.33

6 Evaluation

We performed evaluation of our budget optimization algorithms on nine real world
datasets containing data from nine different sponsored search campaigns. All datasets
were advertiser-specific and included only user activities (such as ad clicks) related to
a single search campaign of a single advertiser. The dataset was collected at user level
and contained information on a random sample of users who converted with the adver-
tiser within a period of two weeks in December 2009. For every anonymous user, the
dataset recorded ad clicks of this user before the conversion. Every ad click event had
associated timestamp and the keyword the user query was matched with. In this data
set, we do not observe the events in which the users did not click on the ad. Moreover,
since we focus on advertiser-specific information, user searches for which the adver-
tiser’s ad was not shown, such as searches with irrelevant search queries, keywords on
which the advertiser bid too low, or keywords for which the advertiser was excluded
from the auction due to a daily budget constraint, are not included in our dataset. While
such extra data might be available in some form to the search engine, due to several
privacy and competition issues, it would not be reported to the advertisers, therefore we
intentionally focus on the restricted advertiser-specific data described above.

In addition to the above datasets, we compiled cost information for all keywords
from our sample. To simplify the experiments, we used average CPC (cost per click)
values, computed as the average cost of the clicks that the advertiser got for a particular
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1

Fig. 1. Performance of budget optimization techniques: LP-based (red), greedy BO (blue) and
baseline assuming no carryover (green). Horizontal axis: budget per user in cents. Vertical axis:
expected value per user in cents.

keyword in a similar time period of two weeks. Summary statistics for the average CPC
per keyword and the number of keywords per campaign are given in Table 1.

To represent user behavior by a Markov chain, we follow the approach of [3]. [3] sug-
gests that from advertisers’ perspective, user behavior can be reasonably approximated
by a first order Markov chain. In such Markov Chain, state represents the last observed
event for the user (for example, user searching for “Prada shirt”) and transition probabil-
ities between states are directly estimated from the data. Following [3], we model user
state by the keyword that the last user search was matched with. In contrast with [3],
we only include clicked ads as model states because pure impression information was
missing from our sample.

Next, we add four special states: the begin state (xb) representing a new user entering
the system, the conversion state representing the user conversion event (xc), the non-
conversion state representing the user leaving the system without converting (xn) 6 and
the final state (xf ). The final state is absorbing and, by construction, conversion and non-
conversion states always lead to the final state. The begin state has no incoming edges.

Due to the nature of our data, we only consider two possible advertising levels for
every keyword, “advertise” and “do not advertise”, and restrict consideration to the

6 We never really know whether the user has dropped out or he is going to come back later and
convert. As only small number of users converts, it is always reasonable to assume that the
user, who hasn’t converted so far, is not going to.
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top 250 keywords in each campaign 7. “Do not advertise” decisions cost nothing and
“advertise” decisions cost the average CPC of the corresponding keyword. Consistent
with our theoretical model, transition probabilities between states depend on whether
the user was exposed to the advertisement or not. In order to distinguish between cases
in which a user click influences his/her later activities, we apply the following model:
assume that if the time gap between two consecutive user states (consecutive searches)
is large enough (e.g., at least one day), the transition between these states was not due
to influence of the online ad and therefore would have happened even if the ad was
not shown to the user. Although this is an intuitive assumption, we acknowledge that
this strategy may produce biased transition probability estimates. However, as our goal
is only to evaluate performance of the budget optimization algorithm across multiple
campaigns and wide range of parameters, such bias can be tolerated, and constructing
approximate models should be enough to evaluate the performance of the algorithms
and in particular, the comparison between the scalable greedy algorithms and LP solu-
toins. The graph construction algorithm has two configuration parameters that can be
tuned. The first parameter α represents the probability that a user can leave the system
at any moment of time. We follow a conservative approach and assume that this proba-
bility is unaffected by whether the user was exposed to the advertisement in the last step
or not. The second parameter C represents the advertiser’s value for a single converted
user. As both parameters were unknown in our dataset, we have validated the model
across a wide range of them. In the paper, we present results assuming α = 0.5 and
C = $5.

In the following, we compare performance of three budget optimization algorithms.
The baseline algorithm is a simple greedy solution of the fractional knapsack, in which
the advertiser sorts all keywords by the immediate ROI value Pxa1y −Pxa0y

CPC (ignoring
the potential carryover effects to other keywords) and picks the keywords to advertise
on in sequence starting from the keyword with the highest ROI. The process stops once
we reach the expected allowed budget of the advertising campaign. As the expected
campaign budget depends on the assumed model of user behavior, we still have to as-
sume Markovian world when estimating the expected budget in the baseline algorithm.
To reconcile this fact with the assumption that the advertiser is optimizing myopically,
we assume that, in the baseline algorithm, we advertise to every user only the first time
the user enters into the system. We compare the performance of the baseline algorithm
with performance of the two alternative budget optimization algorithms:

– the direct approach which is based on solving the linear program P2 and therefore
is guaranteed to construct the optimal solution,

– the greedy budget optimization technique of Algorithm 3. 8

We perform comparison across a range of possible budget values starting from zero bud-
get (in which case the only feasible solution is not to advertise) up to the value Vmax

7 The main reasons for limiting the number of keywords to only 250 are slow performance
of the LP algorithm with large number of variables (the greedy BO algorithm works fine) and
presence of significant noise in transition probability estimates for infrequently used keywords.

8 In fact, we use the alternative version of Algorithm 3in which we start from λ = +∞ and
reconstruct fβ(λ) by gradually decreasing λ.
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which represents the budget value for which the budget constraint does not bind the opti-
mal solution anymore. Results of the three algorithms on all nine advertising campaigns
are shown in Figure 1. As can be seen from the plot, there was no significant difference
in performance of the LP algorithm and the greedy BO algorithm, confirming the pos-
itive carryover assumptions and the overall validity of our approach. Both algorithms
consistently performed better than the baseline (the fractional knapsack) algorithm. If
we measure the algorithm performance by AUC (area under the curve) in Figure 1, then
the median gain in AUC was 5.79% and the mean gain in AUC was 9.14%. The largest
observed difference in AUC was a gain of 27.14% and the smallest one was a gain
of 1.77%. Furthermore, the difference in performance was particularly significant for
medium values of the budget constraint, that are neither too small nor too large.

7 Conclusions

The Internet has become a major advertising medium. While it is relatively easy to
start an online advertising campaign, proper allocation of the marketing budget is far
from trivial. A major challenge faced by the marketers attempting to optimize their
campaigns is in the sheer number of variables they can possibly change and nontrivial
interactions between them. In this paper, we consider the important interaction effect
between individual advertising decisions: a potential carryover effect that online adver-
tising has on the propensity and the form of user interactions with an advertiser in the
future. We adopt the Markov model of user browsing behavior and formulate the budget
allocation task of an advertiser as a constrained optimal control problem for a Markov
Decision Process (MDP). Using well-developed theory of constrained MDPs, we show
that a simple LP algorithm yields the optimal policy. Furthermore, we show that, under
reasonable assumptions on the structure of carryover effects, there is a simple greedy
algorithm for the optimal solution of the problem that is faster and has an efficient im-
plementation in a parallel processing framework. Using real-world anonymized datasets
from sponsored search advertising campaigns of some large advertisers, we evaluate ap-
plicability of our model and performance of the proposed budget allocation algorithm.
Our budget allocation algorithm shows 5-10% improvement in revenues against the op-
timal baseline algorithm ignoring carryover effects, consistent across a wide range of
different settings and budget constraints.
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Abstract. We study the consequences of adopting products by agents
who form a social network. To this end we use the threshold model intro-
duced in [1], in which the nodes influenced by their neighbours can adopt
one out of several alternatives, and associate with each such social net-
work a strategic game between the agents. The possibility of not choosing
any product results in two special types of (pure) Nash equilibria.

We show that such games may have no Nash equilibrium and that
determining the existence of a Nash equilibrium, also of a special type,
is NP-complete. The situation changes when the underlying graph of the
social network is a DAG, a simple cycle, or has no source nodes. For
these three classes we determine the complexity of establishing whether
a (special type of) Nash equilibrium exists.

We also clarify for these categories of games the status and the com-
plexity of the finite improvement property (FIP). Further, we introduce
a new property of the uniform FIP which is satisfied when the underlying
graph is a simple cycle, but determining it is co-NP-hard in the general
case and also when the underlying graph has no source nodes. The latter
complexity results also hold for verifying the property of being a weakly
acyclic game.

1 Introduction

1.1 Background

Social networks are a thriving interdisciplinary research area with links to so-
ciology, economics, epidemiology, computer science, and mathematics. A flurry
of numerous articles and recent books, see, e.g., [2], testifies to the relevance of
this field. It deals with such diverse topics as epidemics, analysis of the connec-
tivity, spread of certain patterns of social behaviour, effects of advertising, and
emergence of ‘bubbles’ in financial markets.

One of the prevalent types of models of social networks are the threshold
models introduced in [3]. In such a setup each node i has a threshold θ(i) ∈ (0, 1]
and adopts an ‘item’ given in advance (which can be a disease, trend, or a
specific product) when the total weight of incoming edges from the nodes that
have already adopted this item exceeds the threshold. One of the most important
issues studied in the threshold models has been that of the spread of an item,
see, e.g., [4,5,6]. From now on we shall refer to an ‘item’ that is spread by a more
specific name of a ‘product’.

P.W. Goldberg and M. Guo (Eds.): WINE 2012, LNCS 7695, pp. 100–113, 2012.
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In this context very few papers dealt with more than one product. One of
them is [7] with its focus on the notions of compatibility and bilinguality that
result when one adopts both available products at an extra cost. Another one
is [8], where the authors investigate whether the algorithmic approach of [5] can
be extended to the case of two products.

In [1] the authors introduced a new threshold model of a social network in
which nodes (agents) influenced by their neighbours can adopt one out of sev-
eral products. This model allowed us to study various aspects of the spread of a
given product through a social network, in the presence of other products. We
analysed from the complexity point of view the problems of determining whether
adoption of a given product by the whole network is possible (respectively, neces-
sary), and when a unique outcome of the adoption process is guaranteed. We also
clarified for social networks without unique outcomes the complexity of deter-
mining whether a given node has to adopt some (respectively, a given) product
in some (respectively, all) final network(s), and the complexity of computing the
minimum and the maximum possible spread of a given product.

1.2 Motivation

Our interest here is in understanding and predicting the behaviour of the con-
sumers (agents) who form a social network and are confronted with several al-
ternatives (products). To carry out such an analysis we use the above model
of [1] and associate with each such social network a natural strategic game. In
this game the strategies of an agent are products he can choose. Additionally a
‘null’ strategy is available that models the decision of not choosing any product.
The idea is that after each agent chose a product, or decided not to choose any,
the agents assess the optimality of their choices comparing them to the choices
made by their neighbours. This leads to a natural study of (pure) Nash equilib-
ria, in particular of those in which some, respectively all, constituent strategies
are non-null.

Social network games are related to graphical games of [9], in which the pay-
off function of each player depends only on a (usually small) number of other
players. In this work the focus was mainly on finding mixed (approximate) Nash
equilibria. However, in graphical games the underlying structures are undirected
graphs. Also, social network games exhibit the following join the crowd prop-
erty: the payoff of each player depends only on his strategy and on the set of
players who chose his strategy and weakly increases when more players choose
his strategy.

Since these games are related to social networks, some natural special cases
are of interest: when the underlying graph is a DAG, has no source nodes or a
simple cycle which is a special case of a graph without source nodes. Such social
networks correspond respectively to a hierarchical organization or to a ‘circle of
friends’, in which everybody has a friend (a neighbour). Studying Nash equilibria
of these games and various properties defined in terms of improvement paths
allows us to gain better insights into the consequences of adopting products.
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1.3 Related Work

There are a number of papers that focus on games associated with various forms
of networks, see, e.g., [10] for an overview. A more recent example is [11] that
analyses a strategic game between players being firms who select nodes in an
undirected graph in order to advertise competing products via ‘viral marketing’.
However, in spite of the focus on similar questions concerning the existence and
structure of Nash equilibria and on their reachability, from a technical point
of view, the games studied here seem to be unrelated to the games studied
elsewhere.

Still, it is useful to mention the following phenomenon. When the underlying
graph of a social network has no source nodes, the game always has a trivial Nash
equilibrium in which no agent chooses a product. A similar phenomenon has been
recently observed in [12] in the case of their network formation games, where such
equilibria are called degenerate. Further, note that the ‘join the crowd’ property
is exactly the opposite of the defining property of the congestion games with
player-specific payoff functions introduced in [13]. In these game the payoff of
each player weakly decreases when more players choose his strategy. Because in
our case (in contrast to [13]) the players can have different strategy sets, the
resulting games are not coordination games.

2 Preliminaries

2.1 Strategic Games

Assume a set {1, . . . , n} of players, where n > 1. A strategic game for n players,
written as (S1, . . . , Sn, p1, . . . , pn), consists of a non-empty set Si of strategies
and a payoff function pi : S1 × . . . × Sn → R, for each player i.

Fix a strategic game G := (S1, . . . , Sn, p1, . . . , pn). We denote S1 × · · · × Sn

by S, call each element s ∈ S a joint strategy, denote the ith element of s by
si, and abbreviate the sequence (sj)j �=i to s−i. We also write (si, s−i) instead of
s. We call a strategy si of player i a best response to a joint strategy s−i of
his opponents if ∀s′

i ∈ Si pi(si, s−i) ≥ pi(s′
i, s−i). Next, we call a joint strategy

s a Nash equilibrium if each si is a best response to s−i, that is, if

∀i ∈ {1, . . . , n} ∀s′
i ∈ Si pi(si, s−i) ≥ pi(s′

i, s−i).

Given a joint strategy s we call the sum SW (s) =
∑n

j=1 pj(s) the social welfare
of s. When the social welfare of s is maximal we call s a social optimum. Recall
that, given a finite game that has a Nash equilibrium, its price of anarchy
(respectively, price of stability) is the ratio SW (s)

SW(s′) where s is a social optimum
and s′ is a Nash equilibrium with the lowest (respectively, highest) social welfare.
For division by zero, we interpret the outcome as ∞.

Next, we call a strategy si of player i a better response given a joint strategy
s if pi(s′

i, s−i) > pi(si, s−i). Following the terminology of [14], a path in S is a
sequence (s1, s2, . . .) of joint strategies such that for every k > 1 there is a player i
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such that sk = (s′
i, sk−1

−i ) for some s′
i �= sk−1

i . A path ξ is called an improvement
path if it is maximal and for all k smaller than the length of ξ, pi(sk) > pi(sk−1),
where i is the player who deviated from sk−1. The last condition simply means
that each deviating player selects a better response. A game has the finite
improvement property (in short, FIP) if every improvement path is finite.
Obviously, if a game has the FIP, then it has a Nash equilibrium–the last element
of each path.

Finally, recall that a game is called weakly acyclic (see [13]) if for every joint
strategy there exists a finite improvement path that starts at it.

2.2 Social Networks

We are interested in specific strategic games defined over social networks. In
what follows we focus on a model of social networks recently introduced in [1].

Let V = {1, . . . , n} be a finite set of agents and G = (V, E, w) a weighted
directed graph with wij ∈ [0, 1] being the weight of the edge (i, j). We often use
the notation i → j to denote (i, j) ∈ E and write i →∗ j if there is a path from
i to j in the graph G. Given a node i of G we denote by N(i) the set of nodes
from which there is an incoming edge to i. We call each j ∈ N(i) a neighbour
of i in G. We assume that for each node i such that N(i) �= ∅,

∑
j∈N(i) wji ≤ 1.

An agent i ∈ V is said to be a source node in G if N(i) = ∅.
Let P be a finite set of alternatives or products. By a social network (from

now on, just network) we mean a tuple S = (G, P , P, θ), where P assigns to
each agent i a non-empty set of products P (i) from which it can make a choice.
θ is a threshold function that for each i ∈ V and t ∈ P (i) yields a value
θ(i, t) ∈ (0, 1].

Given a network S we denote by source(S) the set of source nodes in the
underlying graph G. One of the classes of the networks we shall study are the
ones with source(S) = ∅.

2.3 Social Network Games

Fix a network S = (G, P , P, θ). Each agent can adopt a product from his product
set or choose not to adopt any product. We denote the latter choice by t0.

With each network S we associate a strategic game G(S). The idea is that
the nodes simultaneously choose a product or abstain from choosing any. Sub-
sequently each node assesses his choice by comparing it with the choices made
by his neighbours. Formally, we define the game as follows: the players are the
agents, the set of strategies for player i is Si := P (i) ∪ {t0}, for i ∈ V , t ∈ P (i)
and a joint strategy s, let N t

i (s) := {j ∈ N(i) | sj = t}, i.e., N t
i (s) is the set of

neighbours of i who adopted in s the product t. The payoff function is defined
as follows, where c0 is some positive constant given in advance:

– for i ∈ source(S), pi(s) :=
{

0 if si = t0
c0 if si ∈ P (i)
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– for i �∈ source(S), pi(s) :=

⎧⎨
⎩

0 if si = t0∑
j∈N t

i
(s)

wji − θ(i, t) if si = t, for some t ∈ P (i) .

Let us explain the underlying motivations behind the above definition. In the
first entry we assume that the payoff function for the source nodes is constant
only for simplicity. In the last section of the paper we explain that the obtained
results hold equally well in the case when the source nodes have arbitrary positive
utility for each product.

The second entry in the payoff definition is motivated by the following consid-
erations. When agent i is not a source node, his ‘satisfaction’ from a joint strategy
depends positively from the accumulated weight (read: ‘influence’) of his neigh-
bours who made the same choice as him, and negatively from his threshold level
(read: ‘resistance’) to adopt this product. The assumption that θ(i, t) > 0 re-
flects the view that there is always some resistance to adopt a product. So when
this resistance is high, it can happen that the payoff is negative. Of course, in
such a situation not adopting any product, represented by the strategy t0, is a
better alternative.

The presence of this possibility allows each agent to refrain from choosing a
product. This refers to natural situations, such as deciding not to purchase a
smartphone or not going on vacation. In the last section we refer to an initiated
research on social network games in which the strategy t0 is not present. Such
games capture situations in which the agents have to take some decision, for
instance selecting a secondary school for their children.

By definition the payoff of each player depends only on the strategies chosen
by his neighbours, so the social network games are related to graphical games
of [9]. However, the underlying dependence structure of a social network game
is a directed graph and the presence of the special strategy t0 available to each
player makes these games more specific.

In what follows for t ∈ P ∪ {t0} we use the notation t to denote the joint
strategy s where sj = t for all j ∈ V . This notation is legal only if for all agents i
it holds that t ∈ P (i). The presence of the strategy t0 motivates the introduction
and study of special types of Nash equilibria. A Nash equilibrium s is

– determined if for all i, si �= t0,
– non-trivial if for some i, si �= t0,
– trivial if for all i, si = t0, i.e., s = t0.

3 Nash Equilibria: General Case

The first natural question that we address is that of the existence of Nash equi-
libria in the social network games. We establish the following result.

Theorem 1. Deciding whether for a network S the game G(S) has a (respec-
tively, non-trivial) Nash equilibrium is NP-complete.
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To prove it we first construct an example of a social network game with no Nash
equilibrium and then use it to determine the complexity of the existence of Nash
equilibria.

Example 1. Consider the network given in Figure 1, where the product set of
each agent is marked next to the node denoting it and the weights are labels
on the edges. The source nodes are represented by the unique product in the
product set.
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�� 3

w2
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{t3}

w1
��

Fig. 1. A network with no Nash equilibrium

So the weights on the edges from the nodes {t1}, {t2}, {t3} are marked by w1
and the weights on the edges forming the triangle are marked by w2. We assume
that each threshold is a constant θ, where θ < w1 < w2. So it is more profitable
to a player residing on a triangle to adopt the product adopted by his neighbour
residing on a triangle than by the other neighbour who is a source node. For
convenience we represent each joint strategy as a triple of strategies of players
1, 2 and 3.

It is easy to check that in the game associated with this network no joint
strategy is a Nash equilibrium. Indeed, each agent residing on the triangle can
secure a payoff of at least w1 − θ > 0, so it suffices to analyze the joint strategies
in which t0 is not used. There are in total eight such joint strategies. Here is
their listing, where in each joint strategy we underline the strategy that is not
a best response to the choice of other players: (t1, t1, t2), (t1, t1, t3), (t1, t3, t2),
(t1, t3, t3), (t2, t1, t2), (t2, t1, t3), (t2, t3, t2), (t2, t3, t3). �

Proof of Theorem 1. As in [1], to show NP-hardness, we use a reduction from the
NP-complete PARTITION problem, which is: given n positive rational numbers
(a1, . . ., an), is there a set S such that

∑
i∈S ai =

∑
i�∈S ai? Consider an instance

I of PARTITION. Without loss of generality, suppose we have normalised the
numbers so that

∑n
i=1 ai = 1. Then the problem instance sounds: does there

exist a set S such that
∑

i∈S ai =
∑

i�∈S ai = 1
2 ?

To construct the appropriate network we employ the networks given in Fig-
ure 1 and in Figure 2, where for each node i ∈ {1, . . ., n} we set wia = wib = ai,
and assume that the threshold of the nodes a and b is constant and equal 1

2 .
We use two copies of the network given in Figure 1, one unchanged and the

other in which the product t1 is replaced by t′
1, and construct the desired network

S by identifying the node a of the network from Figure 2 with the node marked
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1
{t1,t′

1}

w1a

��
w1b

�������
������

������
������

������
������

���� 2
{t1,t′

1}
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����
��
��
��
�� w2b

��

··· n
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1}
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��
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��
a

{t1}
b

{t′
1}

Fig. 2. A network related to the PARTITION problem

by {t1} in the network from Figure 1, and the node b with the node marked by
{t′

1} in the modified version of the network from Figure 1.
Suppose now that a solution to the considered instance of the PARTITION

problem exists, i.e., for some set S ⊆ {1, . . ., n} we have
∑

i∈S ai =
∑

i�∈S ai = 1
2 .

Consider the game G(S) and the joint strategy formed by the following strategies:

– t1 assigned to each node i ∈ S in the network from Figure 2,
– t′

1 assigned to each node i ∈ {1, . . ., n} \ S in the network from Figure 2,
– t0 assigned to the nodes a, b and the nodes 1 in both versions of the network

from Figure 1,
– t3 assigned to the nodes 2, 3 in both versions of the networks from Figure 1

and the two nodes marked by {t3},
– t2 assigned to the nodes marked by {t2}.

We claim that this joint strategy is a non-trivial Nash equilibrium. Consider first
the player (i.e, node) a. The accumulated weight of its neighbours who chose
strategy t1 is 1

2 , so its payoff after switching to the strategy t1 is 0. Therefore
t0 is indeed a best response for player a. For the same reason, t0 is also a best
response for player b. The analysis for the other nodes is straightforward.

Conversely, suppose that a joint strategy s is a Nash equilibrium in the game
G(S). Then it is also a non-trivial Nash equilibrium. We claim that the strategy
selected by the node a in s is t0. Otherwise, this strategy equals t1 and the strate-
gies selected by the nodes of the network of Figure 1 form a Nash equilibrium
in the game associated with this network. This yields a contradiction with our
previous analysis of this network.

So t0 is a best response of the node a to the strategies of the other players
chosen in s. This means that

∑
i∈{1,. . .,n}|si=t1

wia ≤ 1
2 . By the same reasoning

t0 is a best response of the node b to the strategies of the other players chosen
in s. This means that

∑
i∈{1,. . .,n}|si=t′

1
wib ≤ 1

2 .
But

∑n
i=1 ai = 1 and for i ∈ {1, . . ., n}, wia = wib = ai, and si ∈ {t1, t′

1}.
So both above inequalities are in fact equalities. Consequently for S := {i ∈
{1, . . ., n} | si = t1} we have

∑
i∈S ai =

∑
i�∈S ai. In other words, there exists a

solution to the considered instance of the PARTITION problem.
To prove that the problem lies in NP it suffices to notice that given a network

S = (G, P , P, θ) with n nodes checking if a joint strategy is a non-trivial Nash
equilibrium can be done by means of n · |P| checks, so in polynomial time. ��
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4 Nash Equilibria: Special Cases

In view of the fact that in general Nash equilibria may not exist we now consider
networks with special properties of the underlying directed graph. We consider
first networks whose underlying graph is a directed acyclic graph (DAG). Intu-
itively, such networks correspond to hierarchical organizations.

Theorem 2. Consider a network S whose underlying graph is a DAG.

(i) G(S) always has a non-trivial Nash equilibrium.
(ii) Deciding whether G(S) has a determined Nash equilibrium is NP-complete.

Theorem 3. Consider a network S = (G, P , P, θ) whose underlying graph is a
simple cycle. There is a procedure that runs in time O(|P| · n), where n is the
number of nodes in G, that decides whether G(S) has a non-trivial (respectively,
determined) Nash equilibrium.

Theorem 4. The price of anarchy and the price of stability for the games as-
sociated with the networks whose underlying graph is a DAG or a simple cycle
is unbounded.

Finally, we consider the case when the underlying graph G = (V, E) of a network
S has no source nodes, i.e., for all i ∈ V , N(i) �= ∅. Intuitively, such a network
corresponds to a ‘circle of friends’: everybody has a friend (a neighbour). For
such networks we prove the following result.

Theorem 5. Consider a network S = (G, P , P, θ) whose underlying graph has
no source nodes. There is a procedure that runs in time O(|P| · n3), where n
is the number of nodes in G, that decides whether G(S) has a non-trivial Nash
equilibrium.

The proof of Theorem 5 requires some characterization results that are of inde-
pendent interest. The following concept plays a crucial role. Here and elsewhere
we only consider subgraphs that are induced and identify each such subgraph
with its set of nodes. (Recall that (V ′, E′) is an induced subgraph of (V, E) if
V ′ ⊆ V and E′ = E ∩ (V ′ × V ′).)

We say that a (non-empty) strongly connected subgraph (in short, SCS) Ct

of G is self sustaining for a product t if for all i ∈ Ct,

– t ∈ P (i),
–

∑
j∈N(i)∩Ct

wji ≥ θ(i, t).

An easy observation is that if S is a network with no source nodes, then it always
has a trivial Nash equilibrium, t0. The following lemma states that for such
networks every non-trivial Nash equilibrium satisfies a structural property which
relates it to the set of self sustaining SCSs in the underlying graph. We use the
following notation: for a joint strategy s and product t, At(s) := {i ∈ V | si = t}
and P (s) := {t | ∃i ∈ V with si = t}.
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Lemma 1. Let S = (G, P , P, θ) be a network whose underlying graph has no
source nodes. If s �= t0 is a Nash equilibrium in G(S) then for all products
t ∈ P (s) \ {t0} and i ∈ At(s) there exists a self sustaining SCS Ct ⊆ At(s) for t
and j ∈ Ct such that j →∗ i.

Lemma 2. Let S = (G, P , P, θ) be a network whose underlying graph has no
source nodes. The joint strategy t0 is a unique Nash equilibrium in G(S) iff there
does not exist a product t and a self sustaining SCS Ct for t in G.

Proof. (⇐) By Lemma 1.
(⇒) Suppose there exists a self sustaining SCS Ct for a product t. Let R be the
set of nodes reachable from Ct which eventually can adopt product t. Formally,
R :=

⋃
m∈N

Rm where

– R0 := Ct,
– Rm+1 := Rm ∪ {j | t ∈ P (j) and

∑
k∈N(j)∩Rm

wkj ≥ θ(j, t)}.

Let s be the joint strategy such that for all j ∈ R, we have sj = t and for all
k ∈ V \ R, we have sk = t0. It follows directly from the definition of R that s
satisfies the following properties:

(P1) for all i ∈ V , si = t0 or si = t,
(P2) for all i ∈ V , si �= t0 iff i ∈ R,
(P3) for all i ∈ V , if i ∈ R then pi(s) ≥ 0.

We show that s is a Nash equilibrium. Consider first any j such that sj = t (so
sj �= t0). By (P2) j ∈ R and by (P3) pj(s) ≥ 0. Since pj(s−j , t0) = 0 ≤ pj(s),
player j does not gain by deviating to t0. Further, by (P1), for all k ∈ N(j), sk = t
or sk = t0 and therefore for all products t′ �= t we have pj(s−j , t′) < 0 ≤ pj(s).
Thus player j does not gain by deviating to any product t′ �= t either.

Next, consider any j such that sj = t0. We have pj(s) = 0 and from (P2) it
follows that j �∈ R. By the definition of R we have

∑
k∈N(j)∩R

wkj < θ(j, t). Thus

pj(s−j , t) < 0. Moreover, for all products t′ �= t we also have pj(s−j , t′) < 0 for
the same reason as above. So player j does not gain by a unilateral deviation.
We conclude that s is a Nash equilibrium. ��

For a product t ∈ P , we define the set Xt :=
⋂

m∈N
Xm

t , where

– X0
t := {i ∈ V | t ∈ P (i)},

– Xm+1
t := {i ∈ V | ∑

j∈N(i)∩Xm
t

wji ≥ θ(i, t)}.

The following characterization leads to a direct proof of the claimed result.

Lemma 3. Let S be a network whose underlying graph has no source nodes.
There exists a non-trivial Nash equilibrium in G(S) iff there exists a product t
such that Xt �= ∅.
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Proof. Suppose S = (G, P , P, θ).
(⇒) It follows directly from the definitions that if there is a self sustaining SCS
Ct for product t then Ct ⊆ Xt. Suppose now that for all t, Xt = ∅. Then for
all t, there is no self sustaining SCS for t. So by Lemma 2, t0 is a unique Nash
equilibrium.
(⇐) Suppose there exists t such that Xt �= ∅. Let s be the joint strategy defined
as follows:

si :=

{
t if i ∈ Xt

t0 if i �∈ Xt

By the definition of Xt, for all i ∈ Xt, pi(s) ≥ 0. So no player i ∈ Xt gains by
deviating to t0 (as then his payoff would become 0) or to a product t′ �= t (as
then his payoff would become negative since no player adopted t′). Also, by the
definition of Xt and of the joint strategy s, for all i �∈ Xt and for all t′ ∈ P (i),
pi(t′, s−i) < 0. Therefore, no player i �∈ Xt gains by deviating to a product t′

either. It follows that s is a Nash equilibrium. ��
Proof of Theorem 5. On the account of Lemma 3, the following procedure can
be used to check for the existence of a non-trivial Nash equilibrium.

found := false;
while P �= ∅ and ¬found do

choose t ∈ P ;
P := P − {t};
compute Xt;
found := (Xt �= ∅)

od
return found

To assess its complexity, note that for a network S = (G, P , P, θ) and a fixed
product t, the set Xt can be constructed in time O(n3), where n is the number
of nodes in G. Indeed, each iteration of Xm

t requires at most O(n2) comparisons
and the fixed point is reached after at most n steps. In the worst case, we need
to compute Xt for every t ∈ P , so the procedure runs in time O(|P| · n3). ��

In fact, the proof of Lemma 3 shows that if a non-trivial Nash equilibrium exists,
then it can be constructed in polynomial time as well.

5 The FIP and the Uniform FIP

A natural question is whether the games for which we established the existence
of a Nash equilibrium belong to some well-defined class of strategic games, for
instance, games with the finite improvement property (FIP). When the under-
lying graph of the network is a DAG, the game does indeed have the FIP. The
following theorem shows that the result can be improved in the case of two player
social network games.

Theorem 6. Every two players social network game has the FIP.



110 S. Simon and K.R. Apt

Proof. By the above comment on DAGs, we can assume that the underlying
graph is a cycle, say 1 → 2 → 1. Consider an improvement path ρ. Without loss
of generality we can assume that the players alternate their moves in ρ. In what
follows given an element of ρ (that is not the last one) we underline the strategy
of the player who moves, i.e., selects a better response. We call each element of ρ
of the type (t, t) or (t, t) a match. Further, we shorten the statement “each time
player i switches his strategy his payoff strictly increases and it never decreases
when his opponent switches strategy” to “player i’s payoff steadily goes up”.

Consider two successive matches in ρ, based respectively on the strategies t
and t1. The corresponding segment of ρ is one of the following four types.
Type 1. (t, t) ⇒∗ (t1, t1). The fragment of ρ that starts at (t, t) and finishes at
(t1, t1) has the form: (t, t) ⇒ (t2, t) ⇒∗ (t1, t3) ⇒ (t1, t1). Then player 1’s payoff
steadily goes up. Additionally, in the step (t1, t3) ⇒ (t1, t1) his payoff increases
by w21. In turn, in the step (t, t) ⇒ (t2, t) player 2’s payoff decreases by w12 and
in the remaining steps his payoff steadily goes up. So p1(t̄) + w21 < p1(t1) and
p2(t̄) − w12 < p2(t1).
Type 2. (t, t) ⇒∗ (t1, t1). Then player 1’s payoff steadily goes up. In turn, in the
first step of (t, t) ⇒∗ (t1, t1) the payoff of player 2 decreases by w12, while in
the last step (in which player 1 moves) his payoff increases by w12. So these two
payoff changes cancel against each other. Additionally, in the remaining steps
player 2’s payoff steadily goes up. So p1(t̄) < p1(t1) and p2(t̄) < p2(t1).
Type 3. (t, t) ⇒∗ (t1, t1). This type is symmetric to Type 2, so p1(t̄) < p1(t1)
and p2(t̄) < p2(t1).
Type 4. (t, t) ⇒∗ (t1, t1). This type is symmetric to Type 1, so p1(t̄)−w21 < p1(t1)
and p2(t̄) + w12 < p2(t1).

Table 1 summarizes the changes in the payoffs between the two matches.

Table 1. Changes in p1 and p2

Type p1 p2
1 increases decreases

by > w21 by < w12
2, 3 increases increases
4 decreases increases

by < w21 by > w12

Consider now a match (t, t) in ρ and a match (t1, t1) that appears later in
ρ. Let Ti denote the number of internal segments of type i that occur in the
fragment of ρ that starts with (t, t) and ends with (t1, t1).
Case 1. T1 ≥ T4. Then Table 1 shows that the aggregate increase in p1 in
segments of type 1 exceeds the aggregate decrease in segments of type 4. So
p1(t̄) < p1(t1).
Case 2. T1 < T4. Then analogously Table 1 shows that p2(t̄) < p2(t1).

We conclude that t �= t1. By symmetry the same conclusion holds if the con-
sidered matches are of the form (t, t) and (t1, t1). This proves that each match
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occurs in ρ at most once. So in some suffix η of ρ no match occurs. But each
step in η increases the social welfare, so η is finite, and so is ρ. ��
The FIP ceases to hold when the underlying graph has cycles. Figure 3(a) gives
an example. Take any threshold and weight functions which satisfy the condition
that an agent gets positive payoff when he chooses the product picked by his
unique predecessor in the graph. Figure 3(b) then shows an infinite improvement
path. In each joint strategy, we underline the strategy that is not a best response
to the choice of other players. Note that at each step of this improvement path
a best response is used. On the other hand, one can check that for any initial
joint strategy there exists a finite improvement path. This is an instance of a
more general result proved below.

1

��	
		

		
		
{t1,t2}

{t1,t2}
3

��






{t1,t2}
2��

(t2,t2,t1) �	 (t1,t2,t1) �	 (t1,t2,t2)

��
(t2,t1,t1)

��

(t2,t1,t2)�� (t1,t1,t2)��

(a) (b)

Fig. 3. A social network with an infinite improvement path

By a scheduler we mean a function f that given a joint strategy s that is
not a Nash equilibrium selects a player who did not select in s a best response.
An improvement path ξ = s1, s2, . . . conforms to a scheduler f if for all k
smaller than the length of ξ, sk+1 = (s′

i, sk
−i), where f(sk) = i. We say that a

strategic game has the uniform FIP if there exists a scheduler f such that all
improvement paths ρ which conform to f are finite. The property of having the
uniform FIP is stronger than that of being weakly acyclic [15].

Theorem 7. Let S be a network such that the underlying graph is a simple
cycle. Then the game G(S) has the uniform FIP.

Proof. We use the scheduler f that given a joint strategy s chooses the smallest
index i such that si is not a best response to s−i. So this scheduler selects a
player again if he did not switch to a best response. Therefore we can assume
that each selected player immediately selects a best response.

Consider a joint strategy s taken from a ‘best response’ improvement path.
Observe that for all k if sk ∈ P (k) and pk(s) ≥ 0 (so in particular if sk is a best
response to s−k), then sk = sk	1. So for all i > 1, the following property holds:

Z(i): if f(s) = i and si−1 ∈ P (i − 1) then for all j ∈ {n, 1, . . ., i − 1}, sj = si−1.

In words: if i is the first player who did not choose a best response and player
i − 1 strategy is a product, then this product is a strategy of every earlier player
and of player n. Along each ‘best response’ improvement path that conforms
to f the value of f(s) strictly increases until the path terminates or at certain
stage f(s) = n. In the latter case if sn−1 = t0, then the unique best response for
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player n is t0. Otherwise sn−1 ∈ P (n−1), so on the account of property Z(n) all
players’ strategies equal the same product and the payoff of player n is negative
(since f(s) = n). So the unique best response for player n is t0, as well.

This switch begins a new round with player 1 as the next scheduled player.
Player 1 also switches to t0 and from now on every consecutive player switches
to t0, as well. The resulting path terminates once player n−2 switches to t0. ��

6 Concluding Remarks

In this paper we studied the consequences of adopting products by agents who
form a social network. To this end we analysed a natural class of strategic games
associated with the class of social networks introduced in [1]. The following
table summarizes our complexity and existence results, where we refer to the
underlying graph with n nodes.

property arbitrary DAG simple cycle no source
nodes

Arbitrary NE NP-complete always exists always exists always exists
Non-trivial NE NP-complete always exists O(|P| · n) O(|P| · n3)
Determined NE NP-complete NP-complete O(|P| · n) NP-complete

FIP co-NP-hard yes – co-NP-hard
Uniform FIP co-NP-hard yes yes co-NP-hard

Weakly acyclic co-NP-hard yes yes co-NP-hard

In the definition of the social network games we took a number of simplifying
assumptions. In particular, we stipulated that the source nodes have a constant
payoff c0 > 0. One could allow the source nodes to have arbitrary positive util-
ity for different products. This would not affect any proofs. Indeed, in the Nash
equilibria the source nodes would select only the products with the highest pay-
off, so the other products in their product sets could be disregarded. Further, the
FIP, the uniform FIP and weak acyclicity of a social network game is obviously
not affected by such a modification.

The results of this paper can be slightly generalized by using a more general
notion of a threshold that would also depend on the set of neighbours who
adopted a given product. In this more general setup for i ∈ V , t ∈ P (i) and X ⊆
N(i), the threshold function θ yields a value θ(i, t, X) ∈ (0, 1] and satisfies
the following monotonicity condition: if X1 ⊆ X2 then θ(i, t, X1) ≥ θ(i, t, X2).
Intuitively, agent i’s resistance to adopt a product decreases when the set of its
neighbours who adopted it increases. We decided not to use this definition for
the sake of readability.

This work can be pursued in a couple of natural directions. One is the study
of social networks with other classes of underlying graphs. Another is an investi-
gation of the complexity results for other classes of social networks, in particular
for the equitable ones, i.e., networks in which the weight functions are defined
as wij = 1

|N(i)| nodes i and j ∈ N(i). One could also consider other equilibrium
concepts like the strict Nash equilibrium.
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Finally, we also initiated a study of slightly different games, in which the
players are obliged to choose a product, so the games in which the strategy t0
is absent. Such games naturally correspond to situations in which the agents
always choose a product, for instance a subscription for their mobile telephone.
These games substantially differ from the ones considered here. For example,
Nash equilibrium may not exist when the underlying graph is a simple cycle.

References

1. Apt, K.R., Markakis, E.: Diffusion in Social Networks with Competing Prod-
ucts. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 212–223. Springer,
Heidelberg (2011)

2. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets. Cambridge University
Press (2010)

3. Granovetter, M.: Threshold models of collective behavior. American Journal of
Sociology 83(6), 1420–1443 (1978)

4. Morris, S.: Contagion. The Review of Economic Studies 67(1), 57–78 (2000)
5. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence

through a social network. In: Proceedings of the International Conference on
Knowledge Discovery and Data Mining, pp. 137–146 (2003)

6. Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete
Math. 23(3), 1400–1415 (2009)

7. Immorlica, N., Kleinberg, J.M., Mahdian, M., Wexler, T.: The role of compatibility
in the diffusion of technologies through social networks. In: ACM Conference on
Electronic Commerce, pp. 75–83. ACM (2007)

8. Borodin, A., Filmus, Y., Oren, J.: Threshold Models for Competitive Influence in
Social Networks. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 539–550.
Springer, Heidelberg (2010)

9. Kearns, M., Littman, M., Singh, S.: Graphical models for game theory. In: Proceed-
ings of the 17th Conference in Uncertainty in Artificial Intelligence (UAI 2001),
pp. 253–260. Morgan Kaufmann (2001)

10. Tardos, É., Wexler, T.: Network formation games and the potential function
method. In: Algorithmic Game Theory, pp. 487–516. Cambridge University Press
(2007)

11. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: A note on competitive
diffusion through social networks. Inf. Process. Lett. 110(6), 221–225 (2010)

12. Brautbar, M., Kearns, M.: A Clustering Coefficient Network Formation Game. In:
Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 224–235. Springer, Heidelberg
(2011)

13. Milchtaich, I.: Congestion games with player-specific payoff functions. Games and
Economic Behaviour 13, 111–124 (1996)

14. Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behaviour 14,
124–143 (1996)

15. Brokkelkamp, K.R., de Vries, M.J.: Convergence of Ordered Improvement Paths in
Generalized Congestion Games. In: Serna, M. (ed.) SAGT 2012. LNCS, vol. 7615,
pp. 61–71. Springer, Heidelberg (2012)



Efficiently Learning from Revealed Preference

Morteza Zadimoghaddam1 and Aaron Roth2

1 MIT, CSAIL
morteza@csail.mit.edu

2 University of Pennsylvania
aaroth@cis.upenn.edu

Abstract. In this paper, we consider the revealed preferences problem
from a learning perspective. Every day, a price vector and a budget is
drawn from an unknown distribution, and a rational agent buys his most
preferred bundle according to some unknown utility function, subject
to the given prices and budget constraint. We wish not only to find a
utility function which rationalizes a finite set of observations, but to
produce a hypothesis valuation function which accurately predicts the
behavior of the agent in the future. We give efficient algorithms with
polynomial sample-complexity for agents with linear valuation functions,
as well as for agents with linearly separable, concave valuation functions
with bounded second derivative.

1 Introduction

Consider the problem of a market-researcher attempting to divine the preferences
of a population of consumers merely by observing their past buying behavior.
Suppose, for example, that the researcher may observe a consumer each day:
every day, the consumer is faced with the choice to buy some subset of goods,
each of which may have a different price. The consumer is facing an optimiza-
tion problem – each day he attempts to buy the subset of goods that maximizes
his utility function, given his budget constraints. The market-researcher, on the
other hand, is facing a learning problem. Based on his observations of the con-
sumer, he would like to learn a model for the agent’s utility function that can
explain his behavior, and that can be used to predict (and therefore optimally
exploit) his future behavior.

This is the “revealed preferences” problem, and it has received a great deal of
attention in the economics literature (see, e.g., [1] for a nice survey). Typically,
however, the work on the revealed preferences problem has focused on deter-
mining whether a set of observations is rationalizable or not – i.e. whether it is
consistent with any utility function that is monotone increasing in each good.
A classic result in this literature is Afriat’s Theorem, which roughly states that
any finite set of observations is rationalizable if and only if it is rationalizable
by a monotone increasing, piecewise linear, concave utility function.

Note, however, that the problem of rationalizing is easier than the problem of
learning. To rationalize a set of observations, it is sufficient to find a utility func-
tion which explains past behavior. Learning, however, requires finding a utility

P.W. Goldberg and M. Guo (Eds.): WINE 2012, LNCS 7695, pp. 114–127, 2012.
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function which not only explains past behavior, but also will be predictive of future
behavior! In particular, Afriat’s theorem can be taken as showing that attempting
to learn from the set of all monotone increasing, piecewise linear, concave utility
functions is as hard (and as hopeless) as learning from the set of all utility func-
tions. Indeed, Beigman and Vohra [2] have shown that this class of functions has
infinite fat-shattering dimension, and so without further restricting the set of al-
lowable utility functions, no accurate predictions can in general be made after any
finite set of observations, even by inefficient learning algorithms!

In this paper, we initiate the study of efficiently (in terms of both computa-
tional complexity and sample complexity) learning utility functions which can
accurately predict future purchases of a utility-maximizing agent, given access
to past purchase behavior. We necessarily restrict the class of agent utility func-
tions, and consider both linear utility functions, and linearly separable concave
utility functions with bounded 2nd derivative. We give polynomial upper and
lower bounds on the sample complexity (i.e. the number of observations) required
for learning, as well as efficient algorithms that can learn predictive models from
polynomially many observations.

1.1 Our Results

We consider a model in which an agent has an unknown utility function over a
set of n divisible goods. We get to observe the behavior of the agent, who every
day faces a set of prices for each good, together with a budget constraint, which
is drawn from a fixed but unknown probability distribution. The agent selects
a bundle of goods to buy so as to maximize his utility function subject to his
budget constraint, and the goal of a learning algorithm is to impute a model for
his utility function that correctly predicts his behavior with high probability on
future price/budget instances drawn from the same distribution.

We consider both linear utility functions, and then more generally, linearly
separable concave utility functions with bounded derivatives. For both of these
cases, we give efficient learning algorithms with polynomially bounded sample
complexity. We then consider a relaxed model in which our algorithm receives
expanded feedback from the agent during the learning stage, and is permitted
to predict bundles that are within a small additive error of the agent’s optimal
bundle. In this relaxed model, we give a polynomial time learning algorithm with
improved sample complexity bounds.

1.2 Related Work

Work on the “revealed preferences problem” has a long history in economics,
beginning with the seminal work of Samuelson [3]. Modern work on revealed
preferences, in which explanatory utility functions are constructively generated
from finitely many agent price/purchase observations began with Afriat [4, 5]
who showed (via an algorithmic construction) that any finite sequence of obser-
vations is rationalizable if and only if it is rationalizable by a piecewise linear,
monotone, concave utility function. We will not attempt to review the extremely
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large body of work on revealed preferences, and instead refer the reader to an
excellent survey of Varian [1].

Algorithms that constructively generate utility functions given a finite set
of observations can be viewed as learning algorithms for the set of all mono-
tone increasing utility functions. These algorithms typically come with a caveat,
however, that the hypothesis utility functions they generate have the same de-
scription length as the set of observations that they were generated from, and
so tend to overfit the data – this observation is related to a recent paper of
Echenique, Golovin, and Wierman [6], who gave a thought-provoking result:
that any set of rationalizable observations can in fact be rationalized by a util-
ity function which is computationally easy to optimize. However, such a utility
function clearly cannot be predictive of the future behavior of an agent who is in
fact making his decisions based on an intractable utility function1, because the
hypothesis produced by the learning algorithm would itself be witness to the ex-
istence of a polynomially sized circuit for optimizing the purportedly intractable
utility function of the agent.

Most related to our work is the work of Beigman and Vohra [2] who first pose
the revealed preferences problem in the model of computational learning theory,
with a distribution over observations and the explicit goal of producing a pre-
dictive hypothesis. They show that the set of all monotone utility functions has
infinite fat-shattering dimension, and therefore prove that (without restricting
the class of allowable utility functions), there does not exist any algorithm (inde-
pendent of computational efficiency) which can provide any non-trivial predictive
guarantees from any finite number of samples, over every distribution over ob-
servations. They also show that if the agent utility functions satisfy a certain
bounded-jump condition, then the resulting class in fact has finite fat-shattering
dimension, and that predictive learning is therefore possible using a finite num-
ber of samples. We continue this line of work by considering specific, simple
classes of utility functions, and give efficient learning algorithms together with
small polynomial upper and lower bounds on the sample complexity necessary
for learning.

A very nice recent line of work by Balcan and Harvey, and Balcan et al. [7, 8]
considers a related problem of learning valuation functions. This is similar in
motivation, but is orthogonal to the revealed preference setting considered here
because it uses direct access to the valuation function evaluated on bundles,
rather than only the “revealed” preference of the user, which is the maximum
value bundle selected subject to some cost constraint.

2 Preliminaries

We consider the revealed preferences problem for an agent who when faced with
a set of prices over n goods [n] buys the most valued bundle available to him.

1 We have two utility functions here, one utility function rationalizes the set of obser-
vations, and the other one is agent’s actual utility function which could be intractable
to optimize.
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A bundle of goods is a vector of quantities x ∈ [0, 1]n, one for each good: xi

represents the fraction of the good i that is in the bundle. The goods are divisible:
i.e. bundles can be arbitrary real valued vectors x ∈ [0, 1]n.

The agent has a value function v : [0, 1]n → R. His value for a bundle x ∈
[0, 1]n is simply v(x). Goods can also be paired with vectors of non-negative
prices p ∈ Rn

+, where pi is the price for good i. The price of a bundle is linear
in the goods in the bundle. The price of a bundle x with respect to prices p is
therefore simply x ·p. Prices are important, because the agent may be faced with
a budget constraint B: he can only buy bundles x such that x · p ≤ B.

The agent is a utility maximizer. When faced with a price vector p and a
budget B, he will choose to buy the bundle that maximizes his value subject to
his budget constraint: That is, he will choose the bundle:

x∗(v, p, B) = argmax
x∈[0,1]n:x·p≤B

v(x)

We will consider several types of value functions in this paper. A linear value
function v is defined by a vector v ∈ Rn

+, where vi is the marginal value of good
i. In this case, v(x) = v · x. More generally, we can consider linearly separable
concave utility functions. A value function v is linearly separable and concave if it
can be described using concave functions v1, . . . , vn where each vi : [0, 1] → R+ is
a one-dimensional real valued function, and we can evaluate v(x) =

∑n
i=1 vi(xi).

The revealed preferences problem is to recover a value function that can explain
a sequence of choices that the agent was observed to make. In this paper, we
wish to recover a value function that cannot only rationalize observed behavior,
but can help predict future behavior. In order for this to be a meaningful task,
we must assume that the choices presented to the agent are drawn from some
distribution.

Definition 1. An example is a price vector p ∈ Rn
+ paired with a budget B ∈

R+. A distribution over examples D is simply a distribution over (p,B) ∼
[0, 1]n × R+.

Definition 2. An observation of an agent with value function v,
(p,B, x∗(p,B, v)) ∈ Rn

+ ×R+ ×Rn
+ is simply a triple consisting of a price vector

p, a budget B, and a bundle x∗(p,B, v) chosen by the agent given p and B: i.e.
a bundle x that maximizes v(x) subject to x · p ≤ B.

Definition 3. An algorithm A δ-learns a class of value functions V from m =
m(δ) observations if for every distribution D over examples and for every value
function v ∈ V, given a set of m observations {(pi, Bi, x

∗(pi, Bi, v))}mi=1 where
examples (pi, Bi) are drawn i.i.d. from D, with probability 1 − δ it produces a
hypothesis v̂ such that:

Pr
(p,B)∼D

[v(x∗(p,B, v)) = v(x∗(p,B, v̂))] ≥ 1− δ.

We say that A is efficient if both its run-time and its sample complexity m(δ)
are bounded by some polynomial p(n, 1/δ). We say that the sample complexity of
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learning V is at most m∗ = m∗(δ) if there is some algorithm A which δ-learns
V from m(δ) ≤ m∗(δ) observations.

Remark 1. Note that a learning algorithm must with high probability (over the
choice of observations and coins of the mechanism) produce a value function
which most of the time (over draws of examples) selects a bundle which is equal
to the bundle that the agent would have selected.

In section 5 we relax our definition of learning to allow our learning algorithm to
predict bundles which are only approximately optimal to the agent, rather than
requiring that it select the exactly correct bundle. Note that such approximately
optimal bundles might look very different from exactly optimal bundles, and so
we will also need to allow our learning algorithms to receive richer feedback from
the agent.

Definition 4. An algorithm A (ε, δ)-learns a class of value functions V from
m = m(δ) observations if for every distribution D over examples and for every
value function v ∈ V, given a set of m observations {(pi, Bi, x

∗(pi, Bi, v))}mi=1

where examples (pi, Bi) are drawn i.i.d. from D, with probability 1−δ it produces
a hypothesis v̂ such that:

Pr
(p,B)∼D

[v(x∗(p,B, v̂)) ≥ v(x∗(p,B, v))− ε] ≥ 1− δ.

For this notion of additive approximation to be meaningful, we will typically
normalize the target utility function v to lie in the range [0, 1].

3 All Pairs Comparisons Algorithm: Learning Linear
Valuation Functions

In this section, we present an algorithm that efficiently δ-learns the class of all

linear valuation functions given a set of m = O(n
2 ln(n2/δ)

δ ) observations. In par-
ticular, this provides a quadratic upper bound on the optimal sample complexity
m∗(δ) for learning linear valuation functions. We note that a linear Ω(m) lower
bound is immediate in this setting. We start by characterizing the optimal bun-
dle for an agent maximizing a linear utility function, and give intuition for our
learning algorithm.

Let v∗ and p denote some fixed value and price vectors respectively, and let
B denote some fixed budget. We denote the optimal bundle (according to the
linear utility function defined by value vector v∗, price vector p, and budget B)
by x∗. Recall that the value of the optimal bundle is v∗ · x∗, and its cost p ·x∗ is
at most the budget B. Observe that in choosing bundle x∗, the agent is solving a
divisible knapsack problem, and so the following structural lemma is immediate.

Lemma 1. For any pair of goods i, j ∈ [n] with x∗
i > x∗

j , it must be that:

v∗i
pi

≥
v∗j
pj
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Equivalently, for any pair of goods with
v∗
i

v∗
j
≥ pi

pj
, the optimal bundle “prefers”

good i over good j (It will never buy any of good j until it has exhausted the
supply of good i). Our algorithm is based on this structural characterization,
and operates by maintaining upper and lower bounds on each of the n2 ratios
v∗
i

v∗
j

for i 	= j ∈ [n]. Based on this transitive relation, we can sort the goods,

and find the optimal bundle by buying the goods one by one starting from high
priority goods until the budget B is spent completely. In this optimal bundle,
we have at most one fractional item. In our algorithm, we try to learn ratios vi

vj

accurately for all pair of goods with high probability.

Algorithm 1

AllPairsLearn(δ) which takes as input an accuracy parameter δ.

Training Phase:

Let E be a set of m = O
(

n2 ln(n2/δ)
δ

)
observations (p,B, x∗(p,B, v)).

Initialize bounds (Li,j , Ui,j) for each i 	= j ∈ [n]. Initially Li,j = 0 and Ui,j = ∞
for all i, j.
for Each (p,B, x∗) ∈ E do

for Each i 	= j ∈ [n] do
If x∗

i > x∗
j , Let Li,j = max(Li,j ,

pi
pj
)

If x∗
j > x∗

i , Let Ui,j = min(Ui,j ,
pi
pj
)

end for
end for
Classification Phase:
On a new example (p,B) let v′ ∈ [0, 1]n be any vector such that for all i 	= j ∈ [n]
v′
i

v′
j
∈ [Li,j , Ui,j ]. Predict bundle x′(p,B, v′) that results from maximizing v′ with

respect to prices p and budget constraint B.

end

The intuition is that in order to find the optimal bundle x∗, we need only know
bounds on the ratios of the values of pairs of goods for which unequal quantities
are purchased in the optimal bundle. So if we know that vi

vj
≥ pi

pj
for any pair

of goods with x∗
i > x∗

j , we can find the optimal bundle x∗. We need not know
the values themselves – it is sufficient to bound these ratios. For example, if the
lower bound Li,j is at least pi

pj
, we can infer that good i is preferred to good j.

If we can infer all these preferences for pairs of goods (i, j) with x∗
i 	= x∗

j , we can
find the optimal bundle as well. Following we show that with high probability
after observing m = O(n2 ln(n2/δ)/δ) i.i.d. examples we can find the optimal
bundle.

Theorem 1. AllPairsLearn(δ) efficiently δ-learns the class of linear valuation

functions given m = O
(

n2 ln(n2/δ)
δ

)
observations.

Proof. For each pair of goods (i, j), we define ai,j and bi,j as follows:
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ai,j = inf

{
a|a ≤ vi

vj
& Pr

(
x∗
i > x∗

j &
pi
pj

∈ [a,
vi
vj

]

)
≤ δ

n2

}
bi,j = sup

{
b|b ≥ vi

vj
& Pr

(
x∗
j > x∗

i &
pi
pj

∈ [
vi
vj

, b]

)
≤ δ

n2

}

where p is the price vector drawn from the distribution D, and x∗ is its optimal
bundle. The above equations are well defined while the right hand side sets
are non-empty. If the first(second) right hand side set is empty in the above
equation, we set the value of inf (sup) to be vi/vj. Every time an i.i.d. example
is drawn, with probability δ/n2, the lower bound Li,j becomes at least ai,j ,
and the upper bound Ui,j becomes at most bi,j for every pair (i, j). For each
pair (i, j) after m observations, Li,j is less than ai,j with probability at most

(1−δ/n2)m ≤ e− ln(n2/δ) ≤ δ/n2. A similar argument holds for Ui,j . Using union
bound, we can have that with probability 1 − δ, every Li,j is at least ai,j , and
every Ui,j is at most bi,j .

Now when a new example (p′, B′, x′(p′, B′, v)) arrives (x′ is the optimal bun-
dle), the probability that x′

i 	= x′
j and we cannot imply which of these two items

are preferred over the other one, i.e. pi

pj
∈ [Li,j , Ui,j ] is at most 2δ/n2, because

we know that [Li,j, Ui,j ] ⊆ [ai,j , bi,j ]. Using union bound, with probability 1− δ
we can derive all preference relations for items with unequal fractions in the
optimal bundle x′. In the other words, with probability 1 − δ, we can find the
optimal bundle x′.

4 Learning Linearly Separable Concave Utility Function

In this section, we modify the algorithm presented in section 3 to learn the class
of linearly separable concave utility functions. Recall that agents with linearly
separable utility functions have a separate function vi : [0, 1] → R+ for each 1 ≤
i ≤ n, and their utility for bundle x is

∑n
i=1 vi(xi). We assume that each utility

function vi is a concave function with bounded second derivative. Concavity
corresponds to a decreasing marginal utility condition: that buying an additional
ε fraction of item i increases agent utility more when we have less of item i:
vi(a+ ε)− vi(a) ≥ vi(b+ ε)− vi(b) for any a ≤ b. Our bounded second derivative
assumption states that the second derivative of each utility function has some
supremum strictly less than ∞.

We first characterize optimal bundles, and then adapt our learning algorithm
for linear valuation functions to apply to the class of linearly separable concave
utility functions.

Fix a utility function v∗ = {v∗i : [0, 1] → R+} and a price/budget pair (p,B).
The corresponding optimal bundle can be characterized as follows. For any

threshold τ ≥ 0, define xτ
i to be Max{f |f ∈ [0, 1]&

v′
i(f)
pi

≥ τ} where v′i(f) is the

first derivative of function vi at point f . We can now define pτ to be
∑n

i=1 pix
τ
i .

We will show that the optimal bundle x∗ for v∗ in the face of price/budget pair
(p,B) is the vector such that x∗

i = xτ
i for each 1 ≤ i ≤ n where τ is the maximum

value such that this bundle does not exceed the budget constraint.
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Lemma 2. The optimal bundle x∗ for pair (p,B) is equal to xτ where τ is
Max{τ |pτ ≤ B}.

The intuition for our algorithm now follows from the linear utility case. From
each observation consisting of an example and its optimal bundle, we may infer
some constraints on the derivatives of utility functions at various points. Just
as in the linear utility case, these are the only pieces of information we need to
infer the optimal bundle.

Algorithm 2

LinearSeparableLearn(ε, δ) with accuracy and error parameters δ, and ε.

Training Phase:

Let E be a set of m = O
(

(n(k+2))2 ln((n(k+2))2/δ)
δ

)
observations (p,B, x∗(p,B, v))

where k is defined in Definition 5.
Initialize bounds (L(i, r, j, s), U(i, r, j, s)) for each i 	= j ∈ [n] and r, s ∈ [k]
defined in Definition 5. Initially L(i, r, j, s) = 0 and U(i, r, j, s) = ∞.
for Each (p,B, x∗) ∈ E do

for Each i 	= j ∈ [n] do
If x∗

i > x∗
j , Let L(i, 
kx∗

i �, j, �kx∗
j ) = max(L(i, 
kx∗

i �, j, �kx∗
j ), pi

pj
)

If x∗
i > x∗

j , Let U(i, �kx∗
i , j, 
kx∗

j �) = min(U(i, �kx∗
i , j, 
kx∗

j �), pi
pj
)

end for
end for
Classification Phase:

On a new example (p,B) find thresholds {li}ni=1 such that
v′
i(li/k)

v′
j((lj+1)/k)

≥ pi
pj

for

each pair i, j ∈ [n], and
∑n

i=1
piMax{li,0}

k
≤ B ≤ ∑n

i=1
piMin{li+1,k}

k
. Buy li/k

fraction of object i for every i ∈ [n], and spend the remaining budget to buy equal
fraction of all objects.

end

Unlike the linear utility setting, however, it is not possible to maintain bounds
on all ratios of derivatives of utility functions at all relevant points, because there
are a continuum of points and the derivatives may take a distinct value at each
point. Instead, we discretize the interval [0, 1] with k+1 equally distanced points
0, 1/k, 2/k, · · · , 1 for some positive integer value of k defined in Definition 5, and
maintain bounds on the ratios of the derivatives at these points.

Definition 5. We let k to be an integer at least
[
(2Q/ε)·max(p,B)∼D,1≤j≤n{ B

pj
}
]

where Q is an upper bound on v′′i (x) over all i and x ∈ [0, 1], and ε is the error
with which we are happy learning to. We define V (i, l) = v′i(l/k) for item i,
1 ≤ i ≤ n and discretization step l, 0 ≤ l ≤ k. For convenience, we define
V (i, k + 1) = 0. For any pairs 1 ≤ i, j ≤ n, and 0 ≤ r, s ≤ l, we define

L(i, r, j, s) and U(i, r, j, s) to be the lower and upper bounds on the ratio V (i,r)
V (j,s) .

The lower and upper bounds are intialized to zero and ∞ respectively.
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Analogously to the linear case, our algorithm will maintain upper and lower
bounds on the pairwise ratios between each of these these n(k + 2) variables.
Since the utilities are concave, we will also maintain the constraint that V (i, l) ≤
V (i, l − 1) for any 1 ≤ i ≤ n and 1 ≤ l ≤ k + 1 throughout the course of the
algorithm.

In the training phase, the algorithm selects m = O((n(k + 2))2log((n(k +
2))2/δ)/δ) observations. Note the similarity in the number of examples here
as compared to the linear case: this is no coincidence. Instead of maintaining
bounds on the pairwise ratios of n derivatives we are maintaining bounds on the
pairwise ratios between n(k + 2) derivatives.

Consider the inequalities we can infer from each observation (p,B, x∗). By
our optimality characterization, we know that for any pair of items i and j with

x∗
i > 0 and x∗

j < 1, we must have:
v′
i(x

∗
i )

pi
≥ v′

j(x
∗
j )

pj
. We therefore can obtain the

following inequality:

V (i, �kx∗
i �)

pi
≥ v′i(x

∗
i )

pi
≥

v′j(x
∗
j )

pj
≥

V (j,  kx∗
j !)

pj

The above inequality defines the update step that we can impose on the lower

bound L(i, l′, j, l′′) and upper bound U(i, l′, j, l′′) on the ratios V (i,l′)
V (j,l′′) where

l′ = �kx∗
i �, and l′′ =  kx∗

j ! , analogously to our algorithms update for the linear
case. For each example, we update these bounds appropriately.

After the training phase completes, our algorithm uses these bounds to pre-
dict a bundle for a new example (p,B). The algorithm attempts to find some
threshold −1 ≤ li ≤ k for each item i such that the following two properties
hold. We define V (i,−1) = ∞ for each 1 ≤ i ≤ n.

– For each pair of items i 	= j ∈ [n], upper and lower bounds imply that
V (i,li)

pi
≥ V (j,lj+1)

pj
.

– We have that:
∑n

i=1
piMax{li,0}

k ≤ B ≤
∑n

i=1
piMin{li+1,k}

k . In other words,
there is enough budget to buy max{li, 0}/k fraction of object i for all 1 ≤
i ≤ n, and the total cost of buying min{li + 1, k}/k fraction of each item i
is at least B.

After finding these thresholds l1, l2, · · · , ln, our algorithm selects a bundle that
contains max{li, 0}/k units of item i for each i, and then spend the rest of
the budget (if there is any remaining) to buy an equal fraction of all objects
with 0 ≤ li < k, i.e. if B′ of the budget remains after the first step, we buy

B′∑
1≤i≤n, 0≤li<k pi

units of each object i with 0 ≤ li < k. Intuitively, the objects

with li = 0, represent very expensive objects (in comparison to their values)
which we prefer not to buy at all. On the other hand, we have already exhausted
the supply of objects with li = 1.

In the rest of this section, we show in Lemma 3 how to find these thresholds
(the sequence li for 1 ≤ i ≤ n) based on the learned upper and lower bounds on
ratios if such thresholds exist. Then, we prove in Lemma 4 that after training on
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m examples, with high probability (at least 1− 2δ), this sequence of thresholds
indeed exists. Finally we conclude that our algorithm is an (ε, δ)-learner.

Lemma 3. Assuming there exists a sequence of thresholds {li}ni=1 with the two
desired properties in our algorithm, there exists a polynomial time algorithm to
find them.

We now show that the required sequence of thresholds {li}ni=1 exist with high
probability.

Lemma 4. After updating the algorithm’s upper and lower bounds using m =
O((n(k+2))2log((n(k+2))2/δ)/δ) observations, when considering a new example
(p,B), the sequence of thresholds {li}ni=1 exists with probability at least 1− 2δ.

To conclude, we just need to show that if we find the thresholds with the desired
properties, the returned bundle is a good approximation of the optimum bundle.

Theorem 2. For any ε > 0, we can find some k (the discretization factor) such
that with probability at least 1− 2δ over the choice of example (p,B), the bundle
x̂ = x̂(p,B) returned by our mechanism admits at least one of the following
properties:

1. For each item 1 ≤ i ≤ n, we have that x̂i ≥ x∗
i − ε,

2. v∗(x̂) ≥ v∗(x∗)− ε

In other words, have that our mechanism is an efficient (ε, δ)-learning algorithm
for the class of linearly separable concave utility functions with bounded range
v : [0, 1]n → [0, 1].

5 A Learning Algorithm Based on Sampling from a
Convex Polytope

In this section, we present another learning algorithm for (ε, δ)-learning linear
cost functions. We introduce a new model, that gets a stronger form of feedback
from the agent, and as a result achieve an improved sample complexity bound

that requires only m = Õ
(

npolylog(n)
δ3

)
observations.

During the training phase of our algorithm, it will interact with the agent
by adding constraints to a linear program and given a new example, propose a
candidate bundle to the agent. The agent will either accept the candidate bundle
(if it is approximately optimal), or else return to the algorithm a set of linear
constraints witnessing the suboptimality of the proposed bundle. The main idea
is that for each new example either our algorithm’s bundle is almost optimal,
or we receive a set of linear constraints to add to our linear program that sub-
stantially reduce the volume of the feasible polytope. If the set of constraints
are restrictive enough, with high probability, we achieve an approximately opti-
mum bundle on all new examples, and we can end the training phase. Otherwise
each new example cuts off some constant fraction of the linear program polytope
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with high probability. After feeding a polynomial number of examples, and using
some arguments to upper bound the volume of the polytope at the beginning
and lower bound its volume at the end, we can prove with high probability, the
algorithm finds an almost optimal bundle for future examples. First we explain
the model, and then we present our algorithm.

Model: We consider agents with linear utility functions, here bounded so
that v ∈ [0, 1]n . If we have that v · x̂ ≥ v ·x− ε, we say bundle x̂ is an ε-additive
approximation to the optimal bundle x∗ = x∗(v∗, p, B), and it will be accepted
by the agent if it is proposed. If a proposed bundle x̂ is not ε-approximately
optimal, the agent rejects the bundle if proposed, and instead returns a set of
inequalities which are witness to the sub-optimality of our solution. The agent
returns all valid inequalities of the following form for different pairs of objects

i, j ∈ [n]: vi−ε′

pi
>

vj+ε′

pj
where ε′ = ε/nM , and M is the maximum ratio of two

different prices in the domain of the price distribution (D).
Intuitively, for these pairs we have that vi

pi
is greater than

vj
pj

by some non-

negligible margin. In the following, we show that for any suboptimal bundle (not
an ε-additive approximation) resulted from a value vector v̂, there exists at least

one of these inequalities for which we have that v̂i
pi

≤ v̂j
pj
. In other words, these

set of inequalities that our algorithm returns could be seen as some evidence of
suboptimality for any suboptimal bundle for example (p,B).

Lemma 5. For any pair of price vector and budget (p,B), and a suboptimal
sampled value vector v̂ (that does not generate an ε-approximately optimal bundle

x̂), there exists at least one pair of items (i, j) such that we have vi−ε′

pi
>

vj+ε′

pj
,

and v̂i
pi

≤ v̂j
pj
.

Proof. Let x∗ and x̂ be the optimal bundle and the returned bundle based on
v̂ respectively. We note that since all objects have non-negative values, we have
that x∗ · p = x̂ · p = B unless the budget B is enough to buy all objects in which
case both x∗ and x̂ are equal to (1, 1, · · · , 1) which is a contradiction because we
assumed x̂ is suboptimal.

We can exchange v/pi units of object i with v/pj units of item j and vice
versa without violating the budget constraint. We show that all the differences
in entries of x∗ and x̂ can be seen as the sum of at most n of these simple
exchanges between pairs of objects as follows. We take two entries i and j such
that x∗

i > x̂i and x∗
j < x̂j . We note that as long as two vectors x∗ and x̂ are not

the same, we can find such a pair because we also have that v ·p = v̂ ·p. Without
loss of generality, assume that (x∗

i − x̂i)pi ≤ (x̂j − x∗
j )pj . Now we buy x∗

i − x̂i

more units of item i in bundle x̂ to make the two entries associated with object
i in bundles x∗ and x̂ equal. Instead we buy (x∗

i − x̂i)pi/pj fewer units of object
j to obey the budget limit B. This way, we decrease the number of different
entries in x∗ and x̂, so after at most n exchanges we make x̂ equal to x∗. By
assumption, v∗(x̂) ≤ v∗(x∗) − ε. Therefore, in at least one of these exchanges,
the value of x̂ is increased by more than ε/n.
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Assume this increase happened in exchange of objects i and j. Let r be (x∗
i −

x̂i)pi. We bought r/pi more units of i, and r/pj fewer units of j. The increase
in value is r(vi/pi − vj/pj) = (x∗

i − x̂i)(vi − vjpi/pj) ≥ ε/n. Since x∗
i − x̂i is

at most 1, we also have that vi − vjpi/pj > ε/n which can be rewritten as:

vi − ε/2n > vjpi/pj + ε/2n. This is equivalent to vi−ε/2n
pi

>
vj+(ε/2n)(pj/pi)

pj
.

We can conclude that vi−ε/(2nM)
pi

>
vj+(ε/2nM)

pj
which is by definition of ε′:

vi−ε′

pi
>

vj+ε′

pj
.

We also note that x̂i < 1 and x̂j > 0, so we can infer that v̂i
pi

≤ v̂j
pj
. Otherwise

one could exchange some fraction of j with some fraction of i and gain more
value with respect to value vector v̂. This completes the proof of both inequalities
claimed in this lemma.

Algorithm: We maintain a linear program with n variables representing a hy-
pothesis value vector v̂. Since v is in [0, 1]n, we initially have the constraints:
0 ≤ vi ≤ 1 for any 1 ≤ i ≤ n. At any given time, our set of constraints forms a
convex body K.

Our algorithm loops until we reach a desired property. At each step of the loop

we sample C log(n) log(1/δ)
δ2 examples, and for each of them we sample uniformly

at random a vector v̂ from the convex body K, and predict the optimal bundle
based on this sampled vector. (Note that uniform sampling from a convex body
can be done in polynomial time by [9]). At the end of the loop, we add the linear
constraints that we obtained as feedback from the agent to our linear program,
and get a more restricted version of K which we call K ′.

If the volume of K ′ is greater than 1− δ times the volume of K, we stop the
learning algorithm, and return K as the candidate convex body. Otherwise, we
replace K with the new more constrained body K ′, and repeat the same loop
again. To avoid confusion, we name the final returned convex body K̂. After the
training phase ends, for future examples, our algorithm samples a value vector v̂
uniformly at random from this convex body K̂, and predicts the optimal bundle
based on v̂. We explain what kinds of constraints we add at the end of each loop
to find K ′.

Each iteration of the training phase uses C log(n) log(1/δ)
δ2 examples. Recall that

for each one, the mechanism proposes a bundle to the agent, who either accepts
or rejects it. For each rejected bundle, we are given a set of pairs of objects

(i, j) such that vi−ε′

pi
>

vj+ε′

pj
. For each inequality like this, we add the looser

constraint vi
pi

>
vj
pj
. At the end, we have a more restricted convex body K ′ which

is formed by adding all of these constraints to K.
We must show that after the training phase of the algorithm terminates, we are

left with a hypothesis which succeeds at predicting valuable bundles with high
probability. We must also also bound the number of iterations (and therefore
the number of examples used by the algorithm) before the training phase of
the algorithm terminates. First we bound the total number of iterations of the
training phase.
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Lemma 6. The total number of examples sampled by our algorithm is at most

m = O

(
n log(n)(log(n) + log(M)) log(1/ε) log(1/δ)

δ3

)
.

Finally, we argue that after the learning phase terminates, the algorithm returns
a good hypothesis.

Theorem 3. The algorithm (ε, δ)-learns from the set of linear utility functions.

Proof. Given a new example (p,B), the algorithm samples a value vector v̂
uniformly at random from the convex body K̂, and returns an optimal bundle
with respect to v̂, p, and B.

Consider a price vector p and budget B. For some value vectors in K̂, the
returned bundle is suboptimal (not an ε-additive approximation). We call this
subset the set of suboptimal value vectors with respect to (p,B), and the fraction
of suboptimal value vectors in K̂ is the probability that our algorithm does not
return a good bundle, i.e. the error probability of our algorithm. We say a pair
(p,B) is unlucky if for more than δ fraction of value vectors in K̂, the returned
bundle is suboptimal. We prove that with probability at least 1−δ/2, the convex
body K̂ we return, has this property that with at most probability δ/2, the pair
(p,B) drawn from D is unlucky. This way with probability at most δ/2+δ/2 = δ,
the pair (p,B) is unlucky which proves that our algorithm is (ε, δ)-learner.

We prove the claim by contradiction. Define A to be the event that ”with
probability more than δ/2, the pair (p,B) ∼ D is unlucky”. We prove that the
probability of event A is at most δ/2. LetKi be the convex body at the beginning
of iteration i, and K ′

i be the more restricted version of Ki that we compute at
the end of iteration i. Event A holds if for some i we have these two properties:
a) the probability that a pair (p,B) drawn i.i.d. from D is unlucky with respect
to Ki is more than δ/2, i.e. if we sample the value vector from Ki, the returned
bundle for (p,B) is suboptimal with probability more than δ. b) the volume of
K ′

i is not less than 1− δ times volume of Ki.
We bound the probability of having both of these properties at iteration i. In

this iteration, for every example we take, with probability more than δ/2, the
pair (p,B) is unlucky. For an unlucky pair (p,B), with probability more than
δ, we return a suboptimal example, and then we get feedback from the agent.
Using lemma 5, and the feedback we get from the agent, all of the suboptimal
value vectors for pair (p,B) will be removed from Ki and will not exist in K ′

i (by
the new constraints we add in this loop). Since (p,B) is unlucky, more than δ
fraction of the Ki will be deleted in this case. In other words, for each example in
loop i with probability at least δ2/2, more than δ fraction of Ki will be removed.
Clearly, since K ′

i has volume at least 1− δ fraction of Ki, this has not happened

for any of the examples of loop i. Since we have C log(n) log(1/δ)
δ2 examples in

each loop, the probability of holding both these properties at loop i is at most

(1−δ2)
C log(n) log(1/δ)

δ2 < δ/(2nC) for δ ≤ 1/2. Since there are less than nC number
of loops for some large enough constant C, the probability of event A (which
might happen in any of the loops) is less than δ/2.
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6 Discussion

In this paper we have considered the problem of efficiently learning predictive
classifiers from revealed preferences. We feel that the revealed preferences prob-
lem is much more meaningful when the observed data must be rationalized with
a predictive hypothesis, and of course much remains to be done in this study.
Our work leaves many open questions:

1. What are tight bounds on the sample complexity for δ-learning linear valu-
ation functions? There is a simple Ω(n) lower bound, and here we give an
algorithm with sample complexity Õ(n2/δ), but where does the truth lie?

2. Is there a general measure of sample complexity, akin to VC-dimension in the
classical learning setting, that can be fruitfully applied to the revealed pref-
erences problem? Beigman and Vohra [2] adapt the notion of fat-shattering
dimension to this setting, but applied to the revealed preferences problem,
fat shattering dimension is cumbersome and seems ill-suited to proving tight
polynomial bounds.
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Abstract. We introduce the Funding Game, in which m identical re-
sources are to be allocated among n selfish agents. Each agent requests
a number of resources xi and reports a valuation ṽi(xi), which verifiably
lower-bounds i’s true value for receiving xi items. The pairs (xi, ṽi(xi))
can be thought of as size-value pairs defining a knapsack problem with
capacity m. A publicly-known algorithm is used to solve this knapsack
problem, deciding which requests to satisfy in order to maximize the
social welfare.

We show that a simple mechanism based on the knapsack highest
ratio greedy algorithm provides a Bayesian Price of Anarchy of 2, and for
the complete information version of the game we give an algorithm that
computes a Nash equilibrium strategy profile in O(n2 log2 m) time. Our
primary algorithmic result shows that an extension of the mechanism to
k rounds has a Price of Anarchy of 1 + 1

k
, yielding a graceful tradeoff

between communication complexity and the social welfare.

1 Introduction

Efficiently allocating resources among multiple potential recipients is a central
problem in both computer science and economics. In the mechanism design liter-
ature it is customary to use the power of currency exchange to provide incentives
for the agents to be truthful. However, it has been pointed out that assuming the
existence of currency in the model is not always justified ([21]). In the present
paper we initiate the study of mechanisms with verification, first introduced by
Nisan and Ronen in [19] for the job scheduling problem, for resource alloca-
tion problems in a setting without currency. This reveals an unexplored middle
ground area between the settings of the multiple choice knapsack problem and
that of multi-item auctions, which has some obvious practical applications.

The knapsack problem and its variations model the setting where the supplier
knows precisely what value the agents are getting from any number of items. This
can be thought of as a perfect verification mechanism, and selfishness does not

P.W. Goldberg and M. Guo (Eds.): WINE 2012, LNCS 7695, pp. 128–141, 2012.
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play a role. At the other extreme, work in algorithmic game theory has generally
considered the case where the supplier knows nothing about the agents’ valuation
and must provide incentives, typically by imposing payments, for the agents to
be truthful. In this paper we introduce the Funding Game, in which a supplier
distributes m identical resources among n agents, each of whom has a private
valuation function depending only on the number of items received. Each agent
requests a number of items xi, and specifies its value ṽi(xi) for these items,
which might be less that its real value vi(xi). The supplier can verify that the
valuations are not exaggerated, and uses a publicly known algorithm to allocate
the items to the agents. The supplier’s allocation algorithm has an impact on
the requests made by agents, and in effect, on the instance of the allocation
problem that must be solved. Therefore we desire a mechanism that encourages
agents to be relatively abstemious, or not too greedy in choosing their requests,
and thereby produces an allocation yielding near-optimal social welfare.

1.1 Motivation

Our model closely resembles a financing competition, where multiple contestants
apply for funding provided by one supplier. Contestants must write an applica-
tion, or proposal, showing how the resources requested are going to be used to
acquire the said value. The supplier is able to verify the veracity of the proposals
and disqualify any contestant that reports a higher valuation than justified. This
is the verification mechanism, and motivates our assumption that agents cannot
inflate the reported value. However, the supplier may not be able to verify that
the reported value is the maximum a contestant could obtain, since it may not
know the full capabilities of the contestant.

The verification mechanism can also be thought of as a set of laws or a rep-
utation system. If an agent obtains the requested items and does not bring
the reported value, the repercussions may outweigh any immediate gains. This
understanding of the verification mechanism also justifies the assumption that
agents cannot inflate their reported valuation.

1.2 Related Work

We show how related literature fits in our setting, categorizing it along two or-
thogonal dimensions: the power of the verification mechanism and communica-
tion complexity, or metaphorically, soundness and completeness. Fig. 1 classifies
existing work within these dimensions.

No verification, full revelation. This is the most common assumption in the
algorithmic mechanism design literature. Multi-unit auctions model the situa-
tion where a verification mechanism does not exist and thus agents must be
assumed dishonest. Truthfulness can be achieved through VCG payments, but
doing so depends on solving the allocation problem optimally, which may be
intractable. Starting with the work of Nisan and Ronen [19], the field of algo-
rithmic mechanism design has sought to reconcile selfishness with computational
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complexity. Multi-unit auctions have been studied extensively in this context,
including truthful mechanisms for single-minded bidders [18, 7], and k-minded
bidders [16, 10, 11].

More recently Procaccia and Tennenholtz ([21]), initiated the study of strategy
proof mechanisms without money, which was followed by the adaptation of many
previously studied mechanism design problems to the non-monetary setting ( [1],
[2], [8], [12], [14], [17]).

No verification, partial revelation. The multi item allocation problem has also
been studied in the setting where dishonest agents only partially reveal their
valuation functions. The main question in this setting concerns the extent to
which limiting communication complexity affects mechanism efficiency. In [5, 6],
for example, bid sizes in a single-item auction are restricted to real numbers
expressed by k bits. In [9], agent valuation functions are only partially revealed
because full revelation would require exponential space in the number of items.

Partial verification, full revelation. Mechanisms with verification have been in-
troduced in [19] for selfish settings of the task scheduling problem. The authors
show that truthful mechanisms exist for this problem when the mechanism can
detect some of the lies, which is very natural in this setting. More recently, this
results were generalized to mechanisms that are collusion resistant ([20]), and to
more general optimization functions ([4], [3], [13]), as well as multi parameter
agents [23].

Full verification, full revelation. If the verification mechanism has full power to
ensure agents’ honesty and agents must report their full valuation functions, the
supplier has complete information and selfishness on the part of the recipients is
irrelevant. This setting can be modeled as a multiple-choice knapsack problem
solvable by FPTAS [15].

1.3 Contributions

This paper extends the study of mechanisms with partial verification to multi unit
resource allocation. Unlike the problems analyzed before, there are polynomial
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time truthful mechanisms for multi unit auctions. However, these mechanisms
require both full revelation of the agent type, which may be hard to compute
and communicate, and currency transfer, which may be impractical in some sce-
narios. Our work uses the added power of verification to provide an efficient
approximation mechanism for scenarios where currency transfer cannot be mod-
eled.

We propose the highest-ratio greedy (HRG) mechanism for the Funding Game,
which provides a Bayesian PoA of 2 under the assumption that valuation func-
tions give diminishing marginal returns (Theorem 1). We also provide an algo-
rithm that computes the Nash equilibrium strategy profile in O(n2 log2 m) time
and a best response protocol that converges to a Nash equilibrium profile. We
show that an extension of HRG to multiple rounds can arbitrarily strengthen
the pure PoA. In this extension, the supplier partitions the m items into k
carefully-sized subsets, and allocates them successively over k consecutive Fund-
ing Games. We show that this mechanism has a pure PoA of 1 + 1

k , yielding
a graceful tradeoff between communication complexity and the social welfare
(Theorem 2).

2 Preliminaries

A single-round Funding Game is specified by a set of agents or players {1, ..., n},
a set of m identical resources or items, and for each agent i a valuation function
vi : {0, ...,m} → R+

0 denoting the value i derives from receiving different numbers
of items. We assume all valuation functions satisfy vi(0) = 0, are nondecreasing,
and exhibit diminishing marginal returns:

vi(x) − vi(x − 1) ≥ vi(x+ 1)− vi(x)

A strategy or request of agent i is a pair si(xi) = (xi, ṽi(xi)) specifying the
number xi of items requested, and its valuation for these items. A request is
valid if ṽi(x) ≤ vi(x).

A strategy profile is an n-tuple of strategies s = (s1(x1), ..., sn(xn)). We denote
by Si the set of valid strategies for agent i, and by S = S1 × ...× Sn the set of
valid strategy profiles. We denote by X = (X1, ..., Xn) an allocation of the items
to the players where Xi is the number of items allocated to player i. Let X be
the set of all valid allocations, i.e. all X such that

∑
i∈[n] Xi ≤ m. A mechanism

M : S → X is an allocation algorithm that takes as input a strategy profile
s and outputs an allocation X of the items to the players. We will denote by
XM (s) = (XM

1 (s), ..., XM
n (s)) the output of mechanism M for strategy profile s.

The payoff of player i with valuation vi is its valuation for the number of items
it has been allocated: uM

i (vi; s) = vi(X
M
i (s)). If v = (v1, ..., vn) is a valuation

function profile we denote by OPT v an optimal allocation, by sw(OPT v) the
social welfare of the optimal allocation, and by swM (v; s) =

∑
i∈[n] u

M
i (vi; s)

the social welfare of strategy profile s. We use (s′i, s−i) to denote the strategy
profile s in which player ith strategy has been replaced by s′i.
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A strategy profile s is a Nash equilibrium for a Funding Game with valuation
functions v if for any i and any s′i ∈ Si, u

M
i (vi; s) ≥ uM

i (vi; s
′
i, s−i). The Price

of Anarchy (PoA) bounds the ratio of the optimal social welfare and the social
welfare of the worst Nash equilibrium in any Funding Game:

PoAM = sup
v, NE s

sw(OPT v)

swM (v; s)

In incomplete information games we assume that player i’s valuation function
vi is drawn from a set Vi of possible valuation functions, according to some
distribution Di. We denote by D = D1 × ...×Dn the product distribution of all
players’ valuation functions. A strategy σi in an incomplete information game is
a mapping σi : Vi → Si from the set of the possible valuation functions to the
set of valid requests. Assuming that the distribution D is commonly known, the
Bayesian Nash equilibrium is a tuple of strategies σ = (σ1, ..., σn) such that, for
any player i, any valuation function vi ∈ Vi and any alternate pure strategy s′i:

Ev−i∼D−i [u
M
i (vi;σi(vi), σ−i(v−i)] ≥ Ev−i∼D−i [u

M
i (vi; s

′
i, σ−i(v−i)]

The Bayesian Price of Anarchy is defined as the ratio between the expected
optimal social welfare and that of the worst bayesian Nash equilibrium:

BPoA = sup
D, BNE σ

Ev∼D[swM (v;OPT v]

Ev∼D[swM (v;σ(v)]

3 Single-Round Games

We first observe that the mechanism that solves the induced integer knapsack
problem optimally has an unbounded PoA. This can be shown by the following
simple example. Assume that n items are to be allocated to n players with
valuation functions vi(x) = 1 + x ∗ ε for all i and x > 0. A Nash equilibrium
of this game is when all players request all items. The mechanism allocates all
items to one player resulting in a social welfare of 1+n ·ε. The optimal allocation
will allocate one item to each player for a social welfare of n.

For the remainder of this section we analyze the performance of a simple
greedy mechanism in a single shot game. The Highest Ratio Greedy (HRG)mech-
anism grants the requests in descending order according to the ratio vi(xi)/xi,
breaking ties in the favor of the player with lower index. If there are not enough
items available to satisfy a request completely, the request is satisfied partially.
This is exactly the greedy algorithm for the fractional knapsack problem. In this
section we show that both the pure and Bayesian PoA are 2. An interesting open
problem is whether a mechanism exist for the single round game that improves
this PoA. We make use of the notion of smooth games ([22]) which we review
below, cast to the Funding Games studied here. Since we are only considering
the Highest Ratio Greedy mechanism we will omit the superscript M from all
notations in this section.
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Definition 1 (Smooth game [22]). A Funding Game is (λ, μ)-smooth with
respect to a choice function c∗ : V1× ...×Vn → S and the social welfare objective
if, for any valuation function profiles v and w and any strategy profile s that is
valid with respect to both v and w, we have:

n∑
i=1

ui(vi; c
∗
i (v), s−i) ≥ λ · sw(v; c∗(v)) − μ · sw(w; s)

The choice function can be thought of as the optimal strategy profile, in our case
the strategy profile in which each player requests the number of items received
in an optimal allocation, when the valuation function profile is v.

Lemma 1. Let OPT v = (ov1 , ..., o
v
n) be an optimal allocation for valuation pro-

file v and O : V1 × ... × Vn → S be the optimal strategy choice function, with
O(v) = ((ovi , vi(o

v
i ))i∈[n]). The Funding Games are (1, 1)-smooth with respect to

O and the social welfare objective.

Proof. We will use oi instead of either request (ovi , vi(o
v
i )) or integer o

v
i . It will

be clear from context whether oi stands for a request or an integer.
Fix valuation function profiles v and w. For a strategy profile s valid with

respect to both v and w we show that
∑n

i=1 ui(vi; oi, s−i) ≥ sw(v;O(v)) −
sw(w; s).

Let A = {i : ui(vi; oi, s−i) < ui(vi;O(v))} be the set of players that are
allocated more items in the optimal allocation than in profile (oi, s−i). It is
enough to show that

∑
i∈A ui(vi; oi, s−i) + sw(w; s) ≥

∑
i∈A ui(vi;O(v)).

For each player i ∈ A, the value per allocated item at profile (oi, s−i) is at

least vi(oi)
oi

since by definition i is being allocated less than oi items, and the

valuation functions are concave. Then, ui(vi; oi, s−i) ≥ vi(x
∗
i )

x∗
i

· Xi(oi, s−i). By

definition, each player i ∈ A would be allocated fewer items than oi.
Therefore the requests in s−i that have a better value per item ratio sum up

to m −Xi(c
∗
i (v), s−i) items. Since the strategy profile s is assumed to be valid

with respect to valuation function profile w, the valuations expressed in s are at
most equal to the valuations w. We can conclude that for any i ∈ A

sw(w; s) ≥ (m−Xi(oi, s−i)) ·
vi(oi)

oi

Then for any i ∈ A, ui(vi; oi, s−i)+sw(w; s) ≥ m· vi(oi)oi
. This is true in particular

for player j ∈ A with the highest value per item ratio
vj(oj)
oj

. Therefore∑
i∈A

ui(vi; oi, s−i) + sw(w; s) ≥ uj(vj ; oj , s−j) + sw(w; s)

≥ m · vj(oj)
oj

≥
∑
i∈A

ui(vi;O(v))

which completes the proof. ��
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Theorem 1. Both the pure and Bayesian Price of Anarchy for the Funding
Games are equal to 2.

Proof. Since the Funding Games are (1, 1)-smooth with respect to an optimal
allocation, the extension theorem in [22] guarantees that the BPoA is bounded by
2. We now show that the pure PoA is arbitrarily close to 2. Consider the Funding
Game with m items and two players with valuation functions v1(x) = m and
v2(x) = x ∀x > 0. One possible Nash equilibrium strategy is for both players to
request all items. Since the value per item ratios are equal, only the first player
will be allocated, for a social welfare of m. The optimal solution allocates one
item to the first player and m− 1 items to the second player for a social welfare
of 2m− 1. Taking m large enough leads to a PoA arbitrarily close to 2. ��

3.1 Complexity of Computing the Nash Equilibrium

We now present an algorithm that finds the Nash equilibrium in the full infor-
mation setting in O(n2 log2 m) time. For each player i we use binary search to
find the largest request (αi, vi(αi)) that passes the isSatisfiable test. The isSatis-
fiable function below assures that regardless of the other players requests, there
will be at least αi items available when the request of player i is considered
by the greedy algorithm. It is easy to see that for the resulting strategy profile
each player receives exactly as many items as requested and that all items are
allocated. We need to show that if player i increases its request then it will not
receive more items. By the construction of αj , for any player j 	= i, player j will
receive at least αj items regardless of the requests of the other players. Therefore
player i cannot receive more than αi = m−

∑
j �=i αj by changing its request.

Algorithm 1. isSatisfiable (i, xi)

for all j < i do

xj ← max{x ∈ [m] :
vj(x)

x
≥ vi(αi)

αi
}

end for
for all j > i do

xj ← max{x ∈ [m] :
vj(x)

x
> vi(αi)

αi
}

end for
return true if

∑
j �=i xj ≤ m− αi else false

4 Multiple-Round Games

In this section we present our main algorithmic result. We extend the Funding
Game introduced in the previous section to multiple rounds, and we show that
the PoA of a k-round Funding Game is 1+ 1

k , yielding a graceful tradeoff between
mechanism complexity and the social welfare. In a k-round Funding Game, the
supplier partitions the m items into k bundles, which are distributed among the
n agents in k successive Funding Games or rounds. We assume that the supplier
does not reveal the total number of available items m, nor the number of rounds
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k a priori. In our analysis we assume that the agents play the Nash equilibrium
strategy myopically, in each individual round. This assumption is in line with the
maximin principle which states that rational agents will choose a strategy that
maximizes their minimum payoff. If agents never know whether any additional
items are going to be awarded in future rounds, they will try to maximize the
utility in the current round. In the Funding Game, this is equivalent to playing
the Nash equilibrium strategy.

As above, we use subscripts to indicate player index; we now use superscripts
to indicate round index. Let m1, ...,mk be the sizes of the bundles awarded
in rounds 1, ..., k respectively, with

∑k
t=1 m

t = m. As before, the agents have
valuation functions vi : {0, ...,m} → R+

0 , which are normalized (vi(0) = 0), are
nondecreasing, and exhibit diminishing marginal returns.

Let xt
i be the number of items requested by agent i in game t and let Xt

be the allocation vector for round t. Let αt
i =

∑
j=1,..,t X

j
i be the cumulative

number of items allocated to agent i in the first t games, with α0
i = 0 for all

i. In round t, agent i’s valuation function vti is its marginal valuation given the
number of items received in the earlier rounds:

vti(x) = vi(x+ αt−1
i )− vi(α

t−1
i )

Observe that these marginal valuations functions vti are normalized, are non-
decreasing and have diminishing marginal returns, just like the full valuation
functions vi. G

t will denote the Funding Game played at round t with mt items
and valuation functions vti . Observe that these individual Funding Games agents
are playing at each round depend on how items have been allocated in previous
rounds, and indirectly, on players’ strategies in previous rounds.

A strategy or request for agent i is a k-tuple si(x
1
i , ..., x

k
i ) = (s1i (x

1
i ), ..., s

k
i (x

k
i ))

where sti(x
t
i) = (xt

i, v
t
i(x

t
i)) is the request of player i in game t. We use si as a

shorthand to denote the strategy of player i in G, and sti to denote the strategy of
player i in game t. A strategy profile for a k-round Funding Game will refer to an
n-tuple of strategies s = (s1, ..., sn) and a strategy profile for game Gt will refer
to the n-tuple of requests of players in round t, st = (st1, ..., s

t
n). For a strategy

profile s, we will write sw(s) =
∑n

i=1 vi(α
k
i ) for the social welfare of s. Let sw(s

t)
be the social welfare of st. Let Δt = maxi v

t
i(1) be the highest marginal value for

one item for any agent in round t. Observe that Δt is a nonincreasing function
of t.

Definition 2. Strategy profile s is a myopic equilibrium for the k-round Funding
Game if for each t, st is a Nash equilibrium of round t. The myopic Price of
Anarchy (PoA) bounds the ratio of the optimal social welfare and the social
welfare of the worst myopic equilibrium in any k-round Funding Game:

PoA = sup
v, myopic NE s

sw(OPT v)

sw(s)

Our goal is to analyze how a supplier should partition the m items into bundles
in order to obtain as good a PoA as possible. Theorem 2 in this section shows
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how the PoA relates to the choices of bundle ratios, while in the next section
we find the bundle ratios that give the best PoA guarantees.

Lemma 2. For any myopic Nash equilibrium strategy profile s for a k-round

game, we have Δt ≥ sw(st)
mt ≥ Δt+1 for each t.

Proof: The first inequality follows from the definition of Δt and the diminishing
returns assumption.

For the second inequality, suppose Δt+1 > sw(st)
mt . This would imply that

either some items are not allocated at st (impossible since st is Nash equilibrium
and by assumption Δt+1 > 0) or that some winning player i has valuation-

per-item ratio
vt
i (x

t
i)

xt
i

< Δt+1 = vt+1
j (1), for some player j. But then j could

have successfully requested another item in game Gt, meaning st is not Nash
equilibrium, and so contradiction. ��

Lemma 3. For any myopic equilibrium s of a k-round Funding Game, we have:

sw(OPT ) ≤ sw(s) +Δk+1 ·
k∑

t=1

(
mt − sw(st)

Δt

)

Theorem 2. Let yt = mt/m1. The PoA of the k-round Funding Game with
bundle sizes mt is bounded by:

1 + sup
x1,...,xn:xi≥1

∑k
t=1 yt(1− 1

xt
)∑k

t=1 yt
∏k

i=t+1 xi

(1)

Proof. Let s be a myopic equilibrium for a k-round game. We will show that
there exist x1, ..., xk, xi ≥ 1, such that:

sw(OPT )

sw(s)
≤
∑k

t=1 yt(1− 1
xt
)∑k

t=1 yt
∏k

i=t+1 xi

From Lemma 3, we have:

sw(OPT ) ≤ sw(s) +Δk+1 ·
k∑

t=1

(
mt − sw(st)

Δt

)

Let xt =
Δt

Δt+1 , which is at least 1 for each t. Since st is a Nash equilibrium for

round t, Δt+1 ≤ sw(st)
mt for each t.
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Then we have:

sw(OPT )− sw(s) ≤ Δk+1 ·
k∑

t=1

(
mt − sw(st)

Δt

)

≤ Δk+1 ·
k∑

t=1

mt

(
1− Δt+1

Δt

)

≤ m1Δk+1 ·
k∑

t=1

yt

(
1− 1

xt

)
(2)

Observe that Δt = Δk+1
∏k

i=t xi. Therefore:

sw(s) =

k∑
t=1

sw(st) ≥
k∑

t=1

mtΔt+1 ≥ m1Δk+1 ·
k∑

t=1

yt ·
k∏

i=t+1

xi (3)

From (2) and (3) it follows that for any k-round game with bundle sizes mt,
there exist x1, ..., xk such that:

PoA = 1 + sup
sw(OPT )− sw(s)

sw(s)
≤ 1 + sup

xt≥1

∑k
t=1 yt

(
1− 1

xt

)
∑k

t=1 yt ·
∏k

i=t+1 xi

��

5 Evaluating the PoA

In this section we present two results analyzing the expression (1) above. Theo-
rem 3 shows that supremum of this expression taken over all valid choices of xt

but fixing yt = t is 1/k. This corresponds to bundle sizes m1, 2 ·m1, ..., k ·m1 for
some m1, indicating that the PoA for such bundle sizes equals 1 + 1/k.

Second, we show that the min-sup of this expression, now also taken over
choices of yi, which corresponds to considering all possible choices of bundle
sizes, equals the same value 1/k, indicating that there is no better partition of
the items.

Theorem 3. Let

F (x1, ..., xk) =

k∑
i=1

i(1− 1
xi
)

k∑
i=1

i
k∏

j=i+1

xj

xi ≥ 1, i = 1, ..., k

Then sup
x

F (x) = 1
k .
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Proof. First observe that:

F (x) =

1− 1
x1

+
k∑

i=2

i(1− 1
xi
)

k∑
i=1

i
k∏

j=i+1

xj

< lim
x1→∞

F (x)

If we set xi =
i

i−1 , i = 2, ..., k, we have lim
x1→∞

F (x) = 1
k . It remains to show that

lim
x1→∞

F (x) ≤ 1
k . We note that the following inequalities are equivalent:

lim
x1→∞

F (x) ≤ 1

k
⇔ lim

x1→∞

⎛⎝ k∑
i=1

i

k∏
j=i+1

xj − k

k∑
i=1

i(1− 1

xi
)

⎞⎠ ≥ 0 ⇔

lim
x1→∞

(
k∑

i=1

(izi + ik · zi
zi−1

)−
k∑

i=1

ik

)
≥ 0, (4)

where zi =

k∏
j=i+1

xj , i = 1, ..., k − 1; zk = 1; z0 = x1z1

Now define a function C : [0,∞)k−1 → R, C(z) =
k∑

i=1

(izi + ik · zi
zi−1

) −
k∑

i=1

ik.

Notice that C is a function of k − 1 variables since z0 and zk are fixed. Also
notice that the domain of C strictly includes the domain of z as defined in Eq.
(4). To complete the proof, we show that C(z) ≥ 0 for any z ∈ [0,∞)k−1. We
will do this in two steps: (i) showing that C(z) has a unique stationary point,
and then (ii) showing that C(z) ≥ 0 at any of the domain boundaries and the
stationary point.
C(z) has a unique stationary point. Let a = (a1, ..., ak−1) be a stationary
point for function C, and let a0 = z0 = x1z1 and ak = zk = 1:

∂C

∂zi
(a) = i+

ik

ai−1
− k(i+ 1)

ai+1

a2i
= 0, i = 1, ..., k − 1 (5)

We show now by induction that each ai can be written as a function of a1. For
the base case, let a0 = x1 · a1 = f0(a1) and f1(a1) = a1.

Now assume that ai−1 = fi−1(a1) and ai = fi(a1). Then we will define ai+1

as a function of a1 as follows. From Eq. (5) we can infer:

ai+1 =

(
i+

ik

ai−1

)
· a2i
k(i+ 1)

ai+1 =

(
i+

ik

fi−1(a1)

)
· f2

i (a1)

k(i+ 1)
� fi+1(a1) (6)

where fi+1(·) is the name given to the expression in Eq. (6) as a function of a1.
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Therefore the equations ai = fi(a1), i = 1, ..., k− 1 uniquely define a stationary
point a with respect to a1. To show that the stationary point a is unique, we only
need to show that fk(a1) = 1 has a unique solution. For this it is sufficient to
show that the derivative of fk with respect to a1 is always positive: f ′

k(a1) > 0.

We show this by induction on i = 0, ..., k. Let hi = fi
fi−1

, i = 2, ..., k − 1.

The inductive hypothesis is that f ′
i(a1) > 0, i = 1, ..., k and hj(a1) > 0 and

h′
j(a1) > 0, j = 2, ..., k.

For the base case, observe the following:

f1(a1) = a1 > 0 and f ′
1(a1) = 1 > 0

f2(a1) =
x1a

2
1 + ka1
2kx1

and f ′
2(a1) =

2x1a1 + k

2kx1
> 0

h2(a1) =
f2(a1)

f1(a1)
=

x1a1 + k

2kx1
> 0 and h′

2(a1) =
x1

2kx1
> 0

Now assume that f ′
i(a1) > 0, hi(a1) > 0, and h′

i(a1) > 0. We then observe that
f ′
i+1(a1), hi+1(a1) and h′

i+1(a1) are all strictly positive:

f ′
i+1(a1) = h′

i(a1) · fi(a1) + hi(a1) · f ′
i(a1) > 0

hi+1(a1) =

(
i +

ik

fi−1(a1)

)
· fi(a1)

k(i + 1)

=
i

k(i + 1)
fi(a1) +

i

i+ 1
· hi(a1) > 0

h′
i+1(a1) =

i

k(i + 1)
f ′
i(a1) +

i

i+ 1
· h′

i(a1) > 0

This shows that the equation fk(a1) = 1 has a unique solution, and thus con-
cludes step (i).
C(z) ≥ 0 at all boundary points and at the unique stationary point.
First observe that ai =

k
i satisfies Eq. (6), i = 1, ..., k and hence a = (a1, ..., ak−1)

is the unique stationary point for C. Now we show that C(a) ≥ 0:

C(a) =
k∑

i=1

(iai + ik · ai
ai−1

)−
k∑

i=1

ik =
k∑

i=1

(k + k(i− 1))−
k∑

i=1

ik = 0

Let b = (b1, ..., bk−1) be a boundary point. Then we must show that C(b) ≥ 0.
Since b is a boundary point there must exist j such that bj = 0 or bj = ∞:

C(b) =
k∑

i=1

(ibi + ik · bi
bi−1

)−
k∑

i=1

ik

The only negative term is
∑k

i=1 ik, which is constant with respect to b. If bj = 0

for some j, then the positive term (i+1)k · bi+1

bi
is infinite and C(b) > 0. On the

other hand, if bj = ∞ for some j, then the positive term ik · bi
bi+1

is infinite and
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again C(b) > 0. Steps (i) and (ii) above show that C(z) ≥ 0 ∀z ∈ [0,∞)k−1 and
therefore C(z) ≥ 0 on the restricted domain of equation (4), which completes
the proof. ��

Corollary 1. The PoA for the k-round Funding Games with bundle ratios mt

m1
=

t is 1 + 1
k .

Theorem 4. Let

G(x,y) =

k∑
i=1

yi(1 − 1
xi
)

k∑
i=1

yi
k∏

j=i+1

xj

yi ≥ 0; xi ≥ 1, i = 1, ..., k

Then min
y

sup
x

G(x,y) = 1
k .

6 Discussion

In this paper, we introduced the Funding Game, a novel formulation of resource
allocation for agents whose valuation declarations can be verified, but reveal only
partial information. We analyzed the PoA for the pure and Bayesian Nash equi-
librium and showed that allocating the resources in multiple successive rounds
can improve the pure PoA arbitrarily close to 1. There are two directions in
which this work can be extended. First, our mechanism relies on the assumption
that the valuation functions are concave. An interesting open problem is find-
ing an efficient mechanism for general valuation functions. Second, it might be
desirable to develop efficient verification mechanisms for combinatorial settings,
where players’ valuation functions are defined on subsets of items.
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Abstract. We introduce and analyze greedy equilibria (GE) for the well-
known model of selfish network creation by Fabrikant et al. [PODC’03].
GE are interesting for two reasons: (1) they model outcomes found by
agents which prefer smooth adaptations over radical strategy-changes,
(2) GE are outcomes found by agents which do not have enough com-
putational resources to play optimally. In the model of Fabrikant et al.
agents correspond to Internet Service Providers which buy network links
to improve their quality of network usage. It is known that computing a
best response in this model is NP-hard. Hence, poly-time agents are likely
not to play optimally. But how good are networks created by such agents?
We answer this question for very simple agents. Quite surprisingly, naive
greedy play suffices to create remarkably stable networks. Specifically, we
show that in the Sum version, where agents attempt to minimize their
average distance to all other agents, GE capture Nash equilibria (NE)
on trees and that any GE is in 3-approximate NE on general networks.
For the latter we also provide a lower bound of 3

2
on the approxima-

tion ratio. For the Max version, where agents attempt to minimize their
maximum distance, we show that any GE-star is in 2-approximate NE
and any GE-tree having larger diameter is in 6

5
-approximate NE. Both

bounds are tight. We contrast these positive results by providing a linear
lower bound on the approximation ratio for the Max version on general
networks in GE. This result implies a locality gap of Ω(n) for the metric
min-max facility location problem, where n is the number of clients.

1 Introduction

The area of Network Design is one of the classical and still very active fields in
the realm of Theoretical Computer Science and Operations Research. But there
is this curious fact: One of the most important networks which is increasingly
shaping our everyday life – the Internet – cannot be fully explained by classical
Network Design theory. Unlike centrally designed and optimized networks, the
Internet was and still is created by a multitude of selfish agents (Internet Service
Providers (ISPs)), who control and modify varying sized portions of the network
structure (“autonomous systems”). This decentralized nature is an obstacle to
approaching the design and analysis of the Internet as a classical optimization
problem. Interestingly, each agent does face classical Network Design problems,
i.e. minimizing the cost of connecting the own network to the rest of the Internet
while ensuring a high quality of service. The Internet is the result of the interplay

P.W. Goldberg and M. Guo (Eds.): WINE 2012, LNCS 7695, pp. 142–155, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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of such local strategies and can be considered as an equilibrium state of a game
played by selfish agents.

The classical and most popular solution concept of such games is the (pure)
Nash equilibrium [15], which is a stable state, where no agent unilaterally wants
to change her current (pure) strategy. However, Nash equilibria (NE) have their
difficulties. Besides their purely descriptive, non-algorithmic nature, there are
two problems: (1) With NE as solution concept agents only care if there is a
better strategy and would perform radical strategy-changes even if they only
yield a tiny improvement. (2) In some games it is computationally hard to even
tell if a stable state is reached because computing the best possible strategy of
an agent is hard. Thus, for such games NE only predict stable states found by
supernatural agents.

But what solutions are actually found by more realistic players, i.e. by agents
who prefer smooth strategy-changes and who can only perform polynomial-time
computations? And what impact on the stability has this transition from super-
natural to realistic players?

In this paper, we take the first steps towards answering these questions for one
of the most popular models of selfish network creation. This model, called the
Network Creation Game (NCG), was introduced a decade ago by Fabrikant
et al. [9]. In NCGs agents correspond to ISPs who create links towards other
ISPs while minimizing cost and maximizing their quality of network usage. It
seems reasonable that ISPs prefer greedy refinements of their current strategy
(network architecture) over a strategy-change which involves a radical re-design
of their infrastructure. Furthermore, computing the best strategy in NCGs is NP-
hard. Hence, it seems realistic to assume that agents perform smooth strategy-
changes and that they do not play optimally. We take this idea to the extreme
by considering very simple agents and by introducing and analyzing a natural
solution concept, called greedy equilibrium, for which agents can easily compute
whether a stable state is reached and which models an ISP’s preference for
smooth strategy-changes.

1.1 Model and Definitions

In NCGs [9] there is a set of n agents V and each agent v ∈ V can buy an edge
{v, u} to any agent u ∈ V for the price of α > 0. Here α is a fixed parameter
of the game which specifies the cost of creating any link. The strategy Sv of an
agent v is the set of vertices towards which v buys an edge. Let G = (V, E) be the
induced network, where an edge {x, y} ∈ E is present if x ∈ Sy or y ∈ Sx. The
network G will depend heavily on the parameter α. To state this explicitly, we
let (G, α) denote the network induced by the strategies of all agents V . In a NCG
agents selfishly choose strategies to minimize their cost. There are basically two
versions of NCGs, depending on the definition of an agent’s cost-function. In the
Sum version [9], agents try to minimize the sum of their shortest path lengths
to all other nodes in the network, while in the Max version [7], agents try to
minimize their maximum shortest path distance to any other network node. The
precise definitions are as follows: Let Sv denote agent v’s strategy in (G, α),
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then we have for the Sum version that the cost of agent v is cv(G, α) = α|Sv|+∑
w∈V (G) dG(v, w), if G is connected and cv(G, α) = ∞, otherwise. For the Max

version we define agent v’s cost as c′v(G, α) = α|Sv| + maxw∈V (G) dG(v, w), if
G is connected and c′v(G, α) = ∞, otherwise. In both cases dG(·, ·) denotes
the shortest path distance in the graph G. Note that both cost functions nicely
incorporate two conflicting objectives: Agents want to pay as little as possible for
being connected to the network while at the same time they want to have good
connection quality. For NCGs we are naturally interested in networks where no
agent unilaterally wants to change her strategy. Clearly, such outcomes are pure
NE and we let Sum-NE denote the set of all pure NE of NCGs for the Sum
version and Max-NE denotes the corresponding set for the Max version.

Another important notion is the concept of approximate Nash equilibria. Let
(G, α) be any network in a NCG. For all u ∈ V (G) let c(u) and c∗(u) denote
agent u’s cost induced by her current pure strategy in (G, α) and by her best
possible pure strategy, respectively. We say that (G, α) is a β-approximate Nash
equilibrium if for all agents u ∈ V (G) we have c(u) ≤ βc∗(u), for some β ≥ 1.

1.2 Related Work

The work of Fabrikant et al. [9] did not only introduce the very elegant model
described above. Among other results, the authors showed that computing a
best possible strategy of an agent is NP-hard.

To remove the quite intricate dependence on the parameter α, Alon et al. [3]
recently introduced the Basic Network Creation Game (BNCG), in which
a network G is given and agents can only “swap” incident edges to decrease their
cost. Here, a swap is the exchange of an incident edge with a non-existing incident
edge. The cost of an agent is defined like in NCGs but without the edge-cost
term. The authors of [3] proposed the swap equilibrium (SE) as solution concept
for BNCGs. A network is in SE, if no agent unilaterally wants to swap an edge
to decrease her cost. This solution concept has the nice property that agents can
check in polynomial time if they can perform an improving strategy-change. The
greedy equilibrium, which we analyze later, can be understood as an extension
of the swap equilibrium which has similar properties but provides agents more
freedom to act. Note, that in BNCGs an agent can swap any incident edge,
whereas in NCGs only edges which are bought by agent v can be modified by
agent v. This problem, first observed by Mihalák and Schlegel [13], can easily
be circumvented, as recently proposed by the same authors in [14]: BNCGs
are modified such that every edge is owned by exactly one agent and agents
can only swap own edges. The corresponding stable networks of this modified
version are called asymmetric swap equilibrium (ASE). However, independent of
the ownership, edges are still two-way. These simplified versions of NCGs are an
interesting object of study since (asymmetric) swap equilibria model the local
weighing of decisions of agents and despite their innocent statement they tend
to be quite complicated structures. In [12] it was shown that greedy dynamics in
a BNCG converge very quickly to a stable state if played on a tree. The authors
of [5] analyzed BNCGs on trees with agents having communication interests.
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However, simplifying the model as in [3] is not without its problems. Allowing
only edge-swaps implies that the number of edges remains constant. Hence, this
model seems too limited to explain the creation of rapidly growing networks.

A part of our work focuses on tree networks. Such topologies are common out-
comes of NCGs if edges are expensive, which led the authors of [9] to conjecture
that all (non-transient) stable networks of NCGs are trees if α is greater than
some constant. The conjecture was later disproved by Albers et al. [1] but it was
shown to be true for high edge-cost. In particular, the authors of [13] proved
that all stable networks are trees if α > 273n in the Sum version or if α > 129
in the Max version. Experimental evidence suggests that this transition to tree
networks already happens at much lower edge-cost and it is an interesting open
problem to improve on these bounds.

Demaine et al. [6] investigated NCGs, where agents cannot buy every possible
edge. Furthermore, Ehsani et al. [8] recently analyzed a bounded-budget version.
Both versions seem realistic, but in the following we do not restrict the set of
edges which can be bought or the budget of an agent. Clearly, such restrictions
reduce the qualitative gap between simple and arbitrary strategy-changes and
would lead to weaker results for our analysis. Note, that this indicates that
outcomes found by simple agents in the edge or budget-restricted version may
be even more stable than we show in the following sections.

To the best of our knowledge, approximate Nash equilibria have not been
studied before in the context of selfish network creation. Closest to our approach
here may be the work of Albers et al. [2], which analyzes for a related game how
tolerant the agents have to be in order to accept a centrally designed solution.
We adopt a similar point of view by asking how tolerant agents have to be to
accept a solution found by greedy play.

Guylás et al. [10] recently published a paper having a very similar title to
ours. They investigate networks created by agents who use the length of “greedy
paths” as communication cost and show that the resulting equilibria are sub-
stantially different to the ones we consider here. Their term “greedy” refers to
the distances whereas our term “greedy” refers to the behavior of the agents.

1.3 Our Contribution

We introduce and analyze greedy equilibria (GE) as a new solution concept
for NCGs. This solution concept is based on the idea that agents (ISPs) pre-
fer greedy refinements of their current strategy (network architecture) over a
strategy-change which involves a radical re-design of their infrastructure. Fur-
thermore, GE represent solutions found by very simple agents, which are com-
putationally bounded. We show in Section 2 that such greedy refinements can
be computed efficiently and clarify the relation of GE to other known solution
concepts for NCGs.

Our main contribution follows in Section 3 and Section 4, where we analyze
the stability of solutions found by greedily playing agents. For the Sum version
we show the rather surprising result that, despite the fact that greedy strategy-
changes may be sub-optimal from an agent’s point of view, Sum-GE capture
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Sum-NE on trees. That is, in any tree network which is in Sum-GE no agent
can decrease her cost by performing any strategy-change. For general networks
we prove that any network in Sum-GE is in 3-approximate Sum-NE and we
provide a lower bound of 3

2 for this approximation ratio. Hence, we are able to
show that greedy play almost suffices to create perfectly stable networks.

For the Max version we show that these games have a strong non-local flavor
which yields diminished stability. Here even GE-trees may be susceptible to non-
greedy improving strategy-changes. Interestingly, susceptible trees can be fully
characterized and we show that their stability is very close to being perfect.
Specifically, we show that any GE-star is in 2-approximate Max-NE and that
any GE-tree having larger diameter is in 6

5 -approximate Max-NE. We give a
matching lower bound for both cases. For non-tree networks in GE the picture
changes drastically. We show that for GE-networks having a very small α the
approximation ratio is related to their diameter and we provide a lower bound
of 4. For α ≥ 1, we show that there are non-tree networks in Max-GE, which
are only in Ω(n)-approximate Max-NE. The latter result yields that the locality
gap of uncapacitated metric min-max facility location is in Ω(n).

Regarding the complexity of deciding Nash-stability, we show that there are
simple polynomial time algorithms for tree networks in both versions. Further-
more, greedy-stability represents an easy to check certificate for 3-approximate
Nash-stability in the Sum version.

2 Greedy Agents and Greedy Equilibria

We consider agents which check three simple ways to improve their current
infrastructure. The three operations are

– greedy augmentation, which is the creation of one new own link,
– greedy deletion, which is the removal of one own link,
– greedy swap, which is a swap of one own link.

Computing the best augmentation/deletion/swap for one agent can be done in
O(n2(n + m)) steps by trying all possibilities and re-computing the incurred
cost. Observe, that these smooth strategy-changes induce some kind of organic
evolution of the whole network which seems highly adequate in modeling the
Internet. This greedy behavior naturally leads us to a new solution concept:

Definition 1 (Greedy Equilibrium). (G, α) is in greedy equilibrium if no
agent in G can decrease her cost by buying, deleting or swapping one own edge.

Note, that GE can be understood as solutions which are obtained by a distributed
local search procedure performed by selfish agents.

The next theorem relates GE to other solution concepts in the Sum version.
See Fig. 1 for an illustration. Relationships are similar in the Max version.

Theorem 1. For the Sum version it is true that NE ⊂ GE ⊂ ASE and that
SE ⊂ ASE. Furthermore, we have NE\SE �= ∅, GE\SE �= ∅, (GE\SE)\NE �= ∅,
(GE\NE) ∩ SE �= ∅ and NE ∩ GE ∩ SE �= ∅.
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(H1, 7)

(H6, 9)

(H2, 3)

(H3, 3)

(H5, 5)

(H4, 3.5)
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Fabrikant et al.[9] Alon et al.[3]

Mihalák & Schlegel[14]

Fig. 1. Relations between solution concepts for NCGs in the Sum version. Edge-
directions indicate edge-ownership, edges point away from its owner.

3 The Quality of Sum Greedy Equilibria

This section is devoted to discussing the quality of greedy equilibrium networks
in the Sum version. We begin with a simple but very useful property.

Lemma 1. If an agent v cannot decrease her cost by buying one edge in the
Sum version, then buying k > 1 edges cannot decrease agent v’s cost.

3.1 Tree Networks in Sum Greedy Equilibrium

We show that in a NCG all stable trees found by greedily behaving agents are
even stable against any strategy-change. Hence, in case of a tree equilibrium no
loss in stability occurs by greedy play. This is a counter-intuitive result, since
for each agent alone being greedy is clearly sub-optimal (the network in Fig. 2
with α = 6 is an example). Thus, the following theorem shows the emergence of
an optimal outcome out of a combination of sub-optimal strategies.

Theorem 2. If (T, α) is in Sum-GE and T is a tree, then (T, α) is in Sum-NE.

Before we prove Theorem 2, we first provide some useful observations. The well-
known notion of a 1-median [11] is used: A 1-median of a connected graph G is
a vertex x ∈ V (G), where x ∈ arg minu∈V (G)

∑
w∈V (G) d(u, w).

Lemma 2. Let (T, α) be a tree network in Sum-GE. If agent u owns edge {u, w}
in (T, α), then w must be a 1-median of its tree in the forest T − {u}.
Let (T, α) be any tree network in Sum-GE and let T u be the forest induced by
removing all edges owned by agent u from T . Let Fu be the forest T u without
the tree containing vertex u. The above lemma directly implies the following:

Corollary 1. Let (T, α) be in Sum-GE, and let Fu be defined as above. Agent
u’s strategy in (T, α) is the optimal strategy among all strategies that buy exactly
one edge into each tree of Fu.
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Let x ∈ V (T ) be a 1-median of the tree T . Let u /∈ V (T ) be a special vertex. We
consider the network (Gu

T , α), which is obtained by adding vertex u and inserting
edge {u, x}, which is owned by u, in T and by assigning the ownership of all
other edges arbitrarily among the respective endpoints of any other edge in Gu

T .
Furthermore, let y1, . . . , yl denote the neighbors of vertex x in T and let Tyi , for
1 ≤ i ≤ l, denote the maximal subtree of T which is rooted at yi and which does
not contain vertex x. See Fig. 2 (left) for an illustration. We consider a special

x u x ux1

x2

x3

y2

y1

y3

Ty2

Ty1

Ty3

Fig. 2. The network (Gu
T , α) before and after agent u changes her strategy to S∗

u

strategy of agent u in (Gu
T , α): Let S∗

u = {x1, . . . , xk} be the best strategy of
agent u which purchases at least two edges. The situation with agent u playing
strategy S∗

u is depicted in Fig. 2 (right).

Lemma 3. Let (Gu
T , α), S∗

u = {x1, . . . , xk} and the subtrees Tyi, for 1 ≤ i ≤ l be
specified as above. There is no subtree Tyi, which contains all vertices x1, . . . , xk.

Next, let us consider two special strategies of agent u. Let S1
u be agent u’s best

strategy, which buys at least two edges including one edge towards vertex x.
Furthermore, let S2

u be agent u’s best strategy, which buys at least two edges,
but no edge towards vertex x.

Lemma 4. Let (Gu
T , α), S1

u, S2
u and vertex x be specified as above. Let xj ∈ S2

u

be a vertex which has minimum distance to x among all vertices in S2
u. If strategy

S2
u yields less cost for agent u than strategy S1

u, then xj cannot be a leaf of Gu
T .

Now we have all the tools we need to prove Theorem 2.

Proof (of Theorem 2). We will prove the contra-positive statement of Theorem 2.
We show that if an agent u can decrease her cost by performing a strategy-change
in a tree network (T, α) which is in Sum-GE, then there is an agent z in V (T )
who can decrease her cost by performing a greedy strategy-change. In that case
we have a contradiction to (T, α) being in Sum-GE.

If agent u can decrease her cost by buying, deleting or swapping one own edge,
thenwehaveu = z andwe are done.Hence,we assume that agentu cannot decrease
her costbyagreedy strategy-changebutbyperforming anarbitrary strategy-change.
We consider agentu’s strategy-change towards the best possible arbitrary strategy
S∗ (if u has more than one such strategy, then we choose the one which buys the
least number of edges). Clearly, agent u cannot remove any owned edge without
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purchasing edges, since T is a tree and the removal would disconnect T . Further-
more, since (T, α) is in Sum-GE and by Lemma 1, agent u cannot decrease her cost
by purchasing k > 0 additional edges. Hence, the only way agent u can possibly
decrease her cost is by removing j own edges and building k edges simultaneously.
Clearly, k ≥ j must hold. Furthermore, by Corollary 1, it follows that k > j. Let
Fu be the forest obtained by removing the j edges owned by agent u from T and
let T ∗ be the tree in Fu which contains vertex u. Observe that among the k new
edges, there cannot be edges having an endpoint in T ∗. This is true because (T, α)
is in Sum-GE and by Lemma 1. Any such edge would be a possible greedy augmen-
tation which we assume not to exist. Hence, by the pigeonhole principle, we have
that there must be at least one tree Tq in Fu into which agent u buys at least two
edges with strategy S∗. We focus on Tq and will find agent z within.

Let {u, x}, with x ∈ V (Tq), be the unique edge of T which connects u to the
subtree Tq. Hence, agent u’s strategy-change to S∗ removes edge {u, x} and buys
kq > 1 edges {u, x1}, . . . , {u, xkq}, with xj ∈ V (Tq) for 1 ≤ j ≤ kq. Let X =
{x1, . . . , xkq}. By Lemma 1, we have xj �= x, for xj ∈ X . Let y1, . . . , yl denote the
neighbors of vertex x in Tq and let Ty1 , . . . , Tyl

be the maximal subtrees of Tq not
containing vertex x, which are rooted at vertex y1, . . . , yl, respectively. Let xa ∈ X
be a vertex of X which has minimum distance to vertex x. Let Ta ∈ {Ty1, . . . , Tyl

}
be the subtree containing xa. By Lemma 3, we have that there is a subtree Tb ∈
{Ty1, . . . , Tyl

}, with Tb �= Ta, which contains at least one vertex of X . Let B =
{xb1 , . . . , xbp} = X∩V (Tb). Furthermore, since no strategywhichbuys at least two
edges including an edge towards x into Tq outperforms u’s greedy strategy within
Tq and by Lemma 4, we have that vertex xa cannot be a leaf. That is, there is a
vertex z ∈ V (Tq), which is a neighbor of xa, such that d(z, x) > d(xa, x). We show
that agent z can decrease her cost by buying one edge in (T, α).

First of all, notice that by definition of S∗, we have that each edge {u, xj},
with xj ∈ X , must independently of the other bought edges yield a distance
decrease of more than α for agent u. Otherwise agent u could remove this edge
and obtain a strictly better (or smaller) strategy, which contradicts the fact
that S∗ is the best possible strategy (buying the least number of edges). Let
Dj ⊂ V (Tq) be the set of vertices to which edge {u, xj} is the first edge on
agent u’s unique shortest path. Since xa has minimum distance to x, it follows
that Dr ⊆ V (Tb) for r ∈ {b1, . . . , bp}. The main observation is that agent z faces
in some sense the same situation as agent u with strategy S∗ but without all
edges {u, y}, where y ∈ B: Both have vertex xa as neighbor and their shortest
paths to any vertex in Tb all traverse xa and x. Remember, that each edge
{u, y}, for all y ∈ B, yields a distance decrease of more than α for agent u and
that Dr ⊆ V (Tb), for r ∈ {b1, . . . , bp}. Furthermore, removing all those edges
from S∗ yields a strict cost increase for agent u. This implies that agent z can
decrease her cost by buying all edges {z, y}, for y ∈ B, simultaneously. If |B| = 1,
then this strategy-change is a greedy move by agent z which decreases z’s cost.
If |B| > 1, then, by the contra-positive statement of Lemma 1, it follows that
there exists one edge {z, y∗}, with y∗ ∈ B, which agent z can greedily buy to
decrease her cost. ��
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3.2 Non-tree Networks in Sum Greedy Equilibrium

There exist non-tree networks in Sum-GE, since, as shown by Albers et al. [1],
there exist non-tree networks in Sum-NE and we have Sum-NE ⊆ Sum-GE.
Having Theorem 2 at hand, one might hope that this nice property carries over
to non-tree greedy equilibria. Unfortunately, this is not true.

Theorem 3. There is a network in Sum-GE which is not in β-approximate
Sum-NE for β < 3

2 .

Fig. 3 shows the construction of a critical greedy equilibrium network.
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Fig. 3. The network (Gk, k + 1) for k = 3 and agent u’s best response. Edges point
away from its owner. For k → ∞ agent u’s improvement approaches a factor of 3

2
.

Now let us turn to the good news. We show that Sum-GEs cannot be arbitrarily
unstable. On the contrary, they are very close to Sum-NEs in terms of stability.

Theorem 4. Every network in Sum-GE is in 3-approximate Sum-NE.

Proof. We prove Theorem 4 by providing a “locality gap preserving” reduction
to the Uncapacitated Metric Facility Location problem (UMFL) [16].
Let u be an agent in (G, α) and let Z be the set of vertices in V (G) which
own an edge towards u. Consider the network (G′, α), where all edges owned by
agent u are removed. Observe, that the set Z is the same in (G, α) and (G′, α).
Let S = {U | U ⊆ (V (G′) \ {u}) ∧ U ∩ Z = ∅} denote the set of agent u’s pure
strategies in (G′, α) which do not induce multi-edges or a self-loop. We transform
(G′, α) into an instance I(G′) for UMFL as follows:

Let V (G′) \ {u} = F = C, where F is the set of facilities and C is the set of
clients. For all facilities f ∈ Z ∩ F we define the opening cost to be 0, all other
facilities have opening cost α. Thus, Z is exactly the set of cost 0 facilities in
I(G′). For every i, j ∈ F ∪ C we define dij = dG′(i, j) + 1. If there is no path
between i and j in G′, then we define dij = ∞. Clearly, since the distance in G′

is metric we have that all distances dij in I(G′) are metric as well. See Fig. 4 for
an example.
Now, observe that any strategy S ∈ S of agent u in (G′, α) corresponds to
the solution of the UMFL instance I(G′), where exactly the facilities in FS =
S∪Z are opened and where all clients are assigned to their nearest open facility.
Moreover, every solution F ′ = X ∪ Z, where X ⊆ F \ Z, for instance I(G′)
corresponds to agent u’s strategy X ∈ S in (G′, α). Let SUMFL = {W ⊆ F | Z ⊆
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Fig. 4. Network (G′, α) and its corresponding UMFL instance I(G′). Edges between
clients and between facilities are omitted. All other omitted edges have length ∞.

W} denote the set of all solutions to instance I(G′), which open at least all cost
0 facilities. Hence, we have a bijection π : S → SUMFL, with π(S) = S ∪ Z and
π−1(X) = X \ Z. Let π(S) = FS and let (GS , α) denote the network (G′, α),
where agent u has bought all edges towards vertices in S. Let cost(FS) denote
the cost of the solution FS to instance I(G′). We have that agent u’s cost in
(GS , α) is equal to the cost of the corresponding UMFL solution FS , since

cu(GS , α) = α|S| +
∑

w∈V (GS)\{u}

(
1 + min

x∈S∪Z
dG′(x, w)

)
= α|S| + 0|Z|+

∑
w∈V (GS)\{u}

min
x∈S∪Z

dxw

= α|FS \ Z| + 0|Z|+
∑
w∈C

min
x∈FS

dxw = cost(FS).

We claim the following: If agent u plays strategy S ∈ S and cannot decrease
her cost by buying, deleting or swapping one edge in (GS , α), then we have that
the cost of the corresponding solution FS ∈ SUMFL to instance I(G′) cannot be
strictly decreased by opening, closing or swapping one facility.

Proving the above claim suffices to prove Theorem 4. This can be seen as fol-
lows: For UMFL, Arya et al. [4] have already shown that the locality gap of UMFL
is 3, that is, that any UMFL solution in which clients are assigned to their nearest
open facility and which cannot be improved by opening, closing or swapping one
facility is a 3-approximation of the optimum solution. By construction of I(G′),
we have that every facility z ∈ Z is the unique facility which is nearest to some
client w ∈ C. Thus, we have that in any locally optimal and any globally optimal
UMFL solution to I(G′) all cost 0 facilities must be open, since otherwise such
a solution can be improved by opening a cost 0 facility. Hence, every locally or
globally optimal solution to I(G′) has a corresponding strategy of agent u which
yields the same cost. Using the claim and the result by Arya et al. [4], it follows
that if agent u cannot decrease her cost by buying, deleting or swapping an edge
in (GS , α) then we have cu(GS , α) ≤ 3cu(GS∗ , α), where S∗ is agent u’s optimal
(non-greedy) strategy in (G′, α) and (GS∗ , α) the network induced by S∗.

Now we prove the claim. Let π(S) = FS . We have already shown that cu(GS , α)=
cost(FS). Furthermore, we have Z ⊆ FS . We prove the contra-positive
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statement of the claim. Assume that solution FS can be improved by open-
ing, closing or swapping one facility. Let F ′

S be this locally improved solution
and let cost(F ′

S) < cost(FS). Note, that Z ⊆ F ′
S must hold. This is true, since by

construction of I(G′) closing a cost 0 facility increases the cost of any solution to
I(G′). Hence, no facility z ∈ Z can be included in a closing or swapping opera-
tion. It follows that the strategy S′ := π−1(F ′

S) exists. Observe, that S = FS \Z
and S′ = F ′

S \ Z must differ by one element. Furthermore, by cost-equality, we
have that cu(GS′ , α) = cost(F ′

S) < cost(FS) = cu(GS , α). Hence, agent u can
buy, delete or swap one edge in (GS , α) to decrease her cost. ��

4 The Quality of Max Greedy Equilibria

In this section, we discuss the stability of networks in Max-GE. We will start by
showing that operations of buying, deleting and swapping edges each may have
a strong non-local flavor. See Fig. 5 for an illustration.

Lemma 5. For k ≥ 2 there is a network (G, α), where an agent can decrease her
cost by buying/deleting/swapping k edges but not by buying/deleting/swapping
j < k edges.
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Fig. 5. The networks and strategy-changes for k = 5

Having seen Lemma 5, it should not come as a surprise that greedy local opti-
mization may get stuck at sub-optimal states of the game.

4.1 Tree Networks in Max Greedy Equilibrium

The examples on the left and right side of Fig. 5 already show that there are tree
networks, which are in Max-GE but not in Max-NE. In the following we show
that this undesired behavior is restricted only to two families of tree networks in
Max-GE. That is, we provide a characterization of all tree networks in Max-GE
which are not in Max-NE. Furthermore, we show tight bounds on the stability
for both mentioned families which are very close to the optimum. We start by
introducing the main actors: Cheap Stars and Badly Connected Trees.

Definition 2 (Cheap Star). A network (T, α) in Max-GE is called a Cheap
Star, if T is a star having at least n ≥ 4 vertices and α < 1

n−2 . Furthermore,
the ownership of all edges in T is arbitrary.
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Definition 3 (Badly Connected Tree). A tree network (T, α) in Max-GE
is a Badly Connected Tree if there is an agent u ∈ V (T ) who can decrease her
cost by swapping k > 1 own edges simultaneously.

Intuitively, Cheap Stars owe their instability to a multi-buy operation, whereas
Badly Connected Trees owe their instability to a multi-swap operation. Observe
that Cheap Stars have diameter 2 and that Badly Connected Trees have diameter
at least 3. Hence, these families are disjunct. The following theorem shows that
Cheap Stars and Badly Connected Trees are the only tree networks in Max-GE
which are not in Max-NE.

Theorem 5. Let (T, α) be a network in Max-GE, where T is a tree. The net-
work (T, α) is in Max-NE if and only if it is not a Cheap Star or a Badly
Connected Tree.

We can use the characterization provided by Theorem 5 to “circumvent” the
hardness of deciding whether a tree network is in Max-NE.

Theorem 6. For every tree network (T, α) it can be checked in O(n4) many
steps whether (T, α) is in Max-NE.

We are interested in the stability of tree networks in Max-GE. By Theorem 5,
we only have to analyze the stability of Cheap Stars and Badly Connected Trees
to get bounds on the stability on any tree network in Max-GE.

Lemma 6. Every Cheap Star is in 2-approximate Max-NE. Furthermore, this
bound is tight.

Lemma 7. Every Badly Connected Tree is in 6
5 -approximate Max-NE. Fur-

thermore, this bound is tight.

Combining Theorem 5 with Lemma 6 and Lemma 7 we arrive at the following:

Theorem 7. Let (T, α) be a tree network in Max-GE. If T has diameter at
most 2, then (T, α) is in 2-approximate Max-NE. If T has diameter at least 3,
then (T, α) is in 6

5 -approximate Max-NE. Moreover, both bounds are tight.

4.2 Non-tree Networks in Max Greedy Equilibrium

Fig. 5 (middle) shows that there are non-tree networks in Max-GE, which are
not in Max-NE. We want to quantify the loss in stability of Max-GEs versus
Max-NEs. For tree networks we have that Cheap Stars play a crucial role. These
networks owe their instability to a multi-buy operation and to the fact that they
are in Max-GE for arbitrarily small α. We generalize this property of Cheap
Stars to non-tree networks.

Definition 4 (Cheap Network). A network (G, α) in Max-GE, is called a
Cheap Network, if (G, α) remains in Max-GE when α tends to 0.

Cheap Stars yield a lower bound on the stability approximation ratio which
equals their diameter. We can generalize this observation:
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Theorem 8. If there is Cheap Network (G, α) having diameter d, then there is
an α∗ such that the network (G, α∗) is in Max-GE but not in β-approximate
Max-NE for any β < d.

Lemma 8. There is a Cheap Network having diameter 4.

Corollary 2. For α < 1 there is a network (G, α) in Max-GE, which is not in
β-approximate Max-NE for any β < 4.

Now we consider the case, where α ≥ 1. Quite surprisingly, it turns out that this
case yields a very high lower bound on the approximation ratio.

Theorem 9. For α ≥ 1 there is a Max-GE network (G, α) having n vertices,
which is not in β-approximate Max-NE for any β < n−1

5 .

We give a family of networks in Max-GE each having an agent u who can de-
crease her cost by a factor of n−1

5 by a non-greedy strategy-change. The network
(G1, α) can be obtained as follows: V (G1) = {u, v, l1, l2, a1, a2, b1, b2, x1, y1} and
agent u owns edges to a1, a2 and x1. For i ∈ {1, 2}, agent bi owns an edge to v
and to ai and agent li owns an edge to bi. Finally, agent y1 owns an edge to x1

and to v. Fig. 6 (left) provides an illustration. To get the k-th member of the
family, for k ≥ 2, we simply add the vertices xj , yj, for 2 ≤ j ≤ k, and let agent
yj own edges towards xj and v. See Fig. 6 (right).
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Fig. 6. (G1, α) before (left) and after (middle) agent u’s non-greedy strategy change
and the network (Gk, α) (right)

Lemma 9. Each of the networks (Gi, α), as described above, is in Max-GE for
1 ≤ α ≤ 2.

Proof (of Theorem 9). We focus on agent u in the network (Gk, α) and show that
this agent can change her strategy in a non-greedy way and thereby decrease
her cost by a factor of n−1

5 , where n is the number of vertices of Gk. Let Su be
agent u’s current strategy in (Gk, α) and let S∗

u be u’s strategy which only buys
one edge towards vertex v. See Fig 6 (left and middle). Let cost(u) and cost∗(u)
denote agent u’s cost induced by strategy Su and S∗

u, respectively. For α = 2,
we have

cost(u)
cost∗(u)

=
α(2 + k) + 3

α + 3
=

7
5

+
2k

5
=

n − 1
5

,

where the last equality follows since k = n−8
2 , by construction. ��

Corollary 3. Uncapacitated Metric Min-Max Facility Location has a locality
gap of n−1

5 , where n is the number of clients.
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Abstract. We consider a setting where one has to organize one or several group
activities for a set of agents. Each agent will participate in at most one activity,
and her preferences over activities depend on the number of participants in the
activity. The goal is to assign agents to activities based on their preferences. We
put forward a general model for this setting, which is a natural generalization of
anonymous hedonic games. We then focus on a special case of our model, where
agents’ preferences are binary, i.e., each agent classifies all pairs of the form
”(activity, group size)” into ones that are acceptable and ones that are not. We
formulate several solution concepts for this scenario, and study them from the
computational point of view, providing hardness results for the general case as
well as efficient algorithms for settings where agents’ preferences satisfy certain
natural constraints.

1 Introduction

There are many real-life situations where a group of agents is faced with a choice of
multiple activities, and the members of the group have differing preferences over these
activities. Sometimes it is feasible for the group to split into smaller subgroups, so that
each subgroup can pursue its own activity. Consider, for instance, a workshop whose
organizers would like to arrange one or more social activities for the free afternoon.1

The available activities include a hike, a bus trip, and a table tennis competition. As
they will take place simultaneously, each attendee can select at most one activity (or
choose not to participate). It is easy enough to elicit the attendees’ preferences over
the activities, and divide the attendees into groups based on their choices. However, the
situation becomes more complicated if one’s preferences may depend on the number
of other attendees who choose the same activity. For instance, the bus trip has a fixed
transportation cost that has to be shared among its participants, which implies that,
typically, an attendee i is only willing to go on the bus trip if the number of other
participants of the bus trip exceeds a threshold �i. Similarly, i may only be willing to
play table tennis if the number of attendees who signed up for the tournament does not

1 Some of the co-authors of this paper had to deal with this problem when co-organizing a
Dagstuhl seminar.

P.W. Goldberg and M. Guo (Eds.): WINE 2012, LNCS 7695, pp. 156–169, 2012.
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exceed a threshold ui: as there is only one table, the more participants, the less time
each individual spends playing.

Neglecting to take the number of participants of each activity into account may lead
to highly undesirable outcomes, such as a bus that is shared by two persons, each of
them paying a high cost, and a 48-participant table tennis tournament with one table.
Adding constraints on the number of participants for each activity is a practical, but
imperfect solution, as the agents’ preferences over group sizes may differ: while some
attendees (say, senior faculty) may be willing to go on the bus trip with just 4–5 other
participants, others (say, graduate students) cannot afford it unless the number of par-
ticipants exceeds 10. A more fine-grained approach is to elicit the agents’ preferences
over pairs of the form “(activity, group size)”, rather than over activities themselves, and
allocate agents to activities based on this information. In general, agents’ preferences
can be thought of as weak orders over all such pairs, including the pair “(do nothing,
1)”, which we will refer to as the void activity. A simpler model, which will be the
main focus of this paper, assumes that each agents classifies all pairs into ones that
are acceptable to him and ones that are not, and if an agent views his current assign-
ment as unacceptable, he prefers (and is allowed) to switch to the void activity (so the
assignment is unstable unless it is acceptable to all agents).

The problem of finding a good assignment of agents to activities, which we will re-
fer to as the Group Activity Selection Problem (GASP), may be viewed as a mechanism
design problem (or, more narrowly, a voting problem) or as a coalition formation prob-
lem, depending on whether we expect the agents to act strategically when reporting their
preferences. Arguably, in our motivating example the agents are likely to be honest, so
throughout the paper we assume that the central authority knows (or, rather, can reliably
elicit) the agents’ true preferences, and its goal is to find an assignment of players to
activities that, informally speaking, is stable and/or maximizes the overall satisfaction.
This model is closely related to that of anonymous hedonic games [3], where, just as
in our setting, players have to split into groups and each player has preferences over
possible group sizes. The main difference between anonymous hedonic games and our
problem is that, in our setting, the agents’ preferences depend not only on the group
size, but also on the activity that has been allocated to their group; thus, our model can
be seen as a generalization of anonymous hedonic games. On the other hand, we can
represent our problem as a general (i.e., non-anonymous) hedonic game [4,3], by cre-
ating a dummy agent for each activity and endowing it with suitable preferences (see
Section 2.2 for details). However, our setting has useful structural properties that distin-
guish it from a generic hedonic game: for instance, it allows for succinct representation
of players’ preferences, and, as we will see, has several natural special cases that admit
efficient algorithms for finding good outcomes.

In this paper, we initiate the formal study of GASP. Our goal is to put forward a
model for this problem that is expressive enough to capture many real-life activity se-
lection scenarios, yet simple enough to admit efficient procedures for finding good as-
signments of agents to activities. We describe the basic structure of the problem, and
discuss plausible constraints of the number and type of available activities and the struc-
ture of agents’ preferences. We show that even under a fairly simple preference model
(where agents are assumed to approve or disapprove each available alternative) finding
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an assignment that maximizes the number of satisfied agents is computationally hard;
however, we identify several natural special cases of the problem that admit efficient
algorithms. We also briefly discuss the issue of stability in our setting.

We do not aim to provide a complete analysis of the group activity selection prob-
lem; rather, we view our work as a first step towards understanding the algorithmic and
incentive issues that arise in this setting. We hope that our paper will lead to future re-
search on this topic; to facilitate this, throughout the paper we highlight several possible
extensions of our model as well as list some problems left open by our work.

2 Formal Model

Definition 1. An instance of the Group Activity Selection Problem (GASP) is given
by a set of agents N = {1, . . . , n}, a set of activities A = A∗ ∪ {a∅}, where A∗ =
{a1, . . . , ap}, and a profile P , which consists of n votes (one for each agent): P =
(V1, . . . , Vn). The vote of agent i describes his preferences over the set of alternatives
X = X∗ ∪ {a∅}, where X∗ = A∗ × {1, . . . , n}; alternative (a, k), a ∈ A∗, is inter-
preted as “activity a with k participants”, and a∅ is the void activity.

The vote Vi of an agent i ∈ N is (also denoted by �i) is a weak order over X∗; its
induced strict preference and indifference relations are denoted by �i and ∼i, respec-
tively. We set Si = {(a, k) ∈ X∗ | (a, k) �i a∅}; we say that voter i approves of all
alternatives in Si, and refer to the set Si as the induced approval vote of voter i.

Throughout the paper we will mostly focus on a special case of our problem where
no agent is indifferent between the void activity and any other alternative (i.e., for any
i ∈ N we have {x ∈ X∗ | x ∼i a∅} = ∅), and each agent is indifferent between all the
alternatives in Si. In other words, preferences are trichotomous: the agent partitions X
into three clusters Si, {a∅} and X \ (Si ∪{a∅}), is indifferent between two alternatives
of the same cluster, prefers any (a, k) in Si to a∅, and a∅ to any (a, k) in X\(Si∪{a∅});
we denote this special case of our problem by a-GASP.

It will be convenient to distinguish between activities that are unique and ones that
exist in multiple copies. For instance, if there is a single tennis table and two buses,
then we can organize one table tennis tournament, two bus trips (we assume that there
is only one potential destination for the bus trip, so these trips are identical), and an
unlimited number of hikes (again, we assume that there is only one hiking route). This
distinction will be useful for the purposes of complexity analysis: for instance, some
of the problems we consider are easy when we have k copies of one activity, but hard
when we have k distinct activities. Formally, we say that two activities a and b are
equivalent if for every agent i and every j ∈ {1, . . . , n} it holds that (a, j) ∼i (b, j).
We say that an activity a ∈ A∗ is k-copyable if A∗ contains exactly k activities that are
equivalent to a (including a itself). We say that a is simple if it is 1-copyable; if a is
k-copyable for k ≥ n, we will say that it is ∞-copyable (note that we would never need
to organize more than n copies of any activity). If some activities in A∗ are equivalent,
A∗ can be represented more succinctly by listing one representative of each equivalence
class, together with the number of available copies. However, as long as we make the
reasonable assumption that each activity exists in at most n copies, this representation
is at most polynomially more succinct.
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Our model can be enriched by specifying a set of constraints Γ . One constraint that
arises frequently in practice is a global cardinality constraint, which specifies a bound
K on the number of activities to be organized. More generally, we could also consider
more complex constraints on the set of activities that can be organized simultaneously,
which can be encoded, e.g., by a propositional formula or a set of linear inequalities. We
remark that there can also be external constraints on the number of participants for each
activity: for instance, a bus can fit at most 40 people. However, these constraints can be
incorporated into agents’ preferences, by assuming that all agents view the alternatives
that do not satisfy these constraints as unacceptable.

2.1 Special Cases

We now consider some natural restrictions on agents’ preferences that may simplify
the problem of finding a good assignment. We first need to introduce some additional
notation. Given a vote Vi and an activity a ∈ A∗, let S↓a

i denote the projection of Si

onto {a} × {1, . . . , n}. That is, we set S↓a
i = {k | (a, k) ∈ Si}.

Example 1. Let A∗ = {a, b} and consider an agent i whose vote Vi is given by
(a, 8) �i (a, 7) ∼i (b, 4) �i (a, 9) �i (b, 3) �i (b, 5) �i (a, 6) �i (b, 6) �i a∅ �i . . .

Then Si = {a} × [6, 9] ∪ {b} × [3, 6] and S↓a
i = {6, 7, 8, 9}.

We are now ready to define two types of restricted preferences for a-GASP that are
directly motivated by our running example, namely, increasing and decreasing prefer-
ences. Informally, under increasing preferences an agent prefers to share each activity
with as many other participants as possible (e.g., because each activity has an associated
cost, which has to be split among the participants), and under decreasing preferences
an agent prefers to share each activity with as few other participants as possible (e.g.,
because each activity involves sharing a limited resource). Of course, an agent’s prefer-
ences may also be increasing with respect to some activities and decreasing with respect
to others, depending on the nature of each activity. We provide a formal definition for
a-GASP only; however, it can be extended to GASP in a straightforward way.

Definition 2. Consider an instance (N, A, P ) of a-GASP. We say that the preferences
of agent i are increasing (INC) with respect to an activity a ∈ A∗ if there exists a
threshold �a

i ∈ {1, . . . , n + 1} such that S↓a
i = [�a

i , n] (where we assume that [n +
1, n] = ∅). Similarly, we say that the preferences of agent i are decreasing (DEC) with
respect to an activity a ∈ A∗ if there exists a threshold ua

i ∈ {0, . . . , n} such that
S↓a

i = [1, ua
i ] (where we assume that [1, 0] = ∅).

We say that an instance (N, A, P ) of a-GASP is increasing (respectively, decreasing)
if the preferences of each agent i ∈ N are increasing (respectively, decreasing) with
respect to each activity a ∈ A∗. We say that an instance (N, A, P ) of a-GASP is mixed
increasing-decreasing (MIX) if there exists a set A+ ⊆ A∗ such that for each agent
i ∈ N his preferences are increasing with respect to each a ∈ A+ and decreasing with
respect to each a ∈ A− = A∗ \ A+.

A recently proposed model which can be embedded into GASP with decreasing prefer-
ences is the ordinal version of cooperative group buying ([7], Section 6): the model has
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a set of buyers and a set of items with volume discounts; buyers rank all pairs (j, pj)
for any item j and any of its possible discounted prices, where the discounted price is a
function of the number of buyers who are matched to the item.

For some activities, an agent may have both a lower and an upper bound on the
acceptable group size: e.g., one may prefer to go on a hike with at least 3 other people,
but does not want the group to be too large (so that it can maintain a good pace). In
this case, we say that an agent has interval (INV) preferences; note that INC/DEC/MIX
preferences are a special case of interval preferences.

Definition 3. Consider an instance (N, A, P ) of a-GASP. We say that the preferences
of agent i are interval (INV) if for each a ∈ A∗ there exists a pair of thresholds �a

i , ua
i ∈

{1, . . . , n} such that S↓a
i = [�a

i , u
a
i ] (where we assume that [i, j] = ∅ for i > j).

Other natural constraints on preferences include restricting the size of Si (or, more
liberally, that of S↓a

i for each a ∈ A∗), or requiring agents to have similar preferences:
for instance, one could limit the number of agent types, i.e., require that the set of agents
can be split into a small number of groups so that the agents in each group have identical
preferences. We will not define such constraints formally, but we will indicate if they
are satisfied by the instances constructed in the hardness proofs in Section 4.1.

2.2 GASP and Hedonic Games

Recall that a hedonic game [3,4] is given by a set of agents N , and, for each agent
i ∈ N , a weak order ≥i over all coalitions (i.e., subsets of N ) that include i. That is,
in a hedonic game each agent has preferences over coalitions that he can be a part of.
A coalition S, i ∈ S, is said to be unacceptable for player i if {i} >i S. A hedonic
game is said to be anonymous if each agent is indifferent among all coalitions of the
same size that include him, i.e., for every i ∈ N and every S, T ⊆ N \ {i} such that
|S| = |T | it holds that S ∪ {i} ≥i T ∪ {i} and T ∪ {i} ≥i S ∪ {i}.

At a first glance, it may seem that the GASP formalism is more general than that of
hedonic games, since in GASP the agents care not only about their coalition, but also
about the activity they have been assigned to. However, we will now argue that GASP
can be embedded into the hedonic games framework.

Given an instance of the GASP problem (N, A, P ) with |N | = n, where the i-
th agent’s preferences are given by a weak order �i, we construct a hedonic game
H(N, A, P ) as follows. We create n + p players; the first n players correspond to
agents in N , and the last p players correspond to activities in A∗. The last p players
are indifferent among all coalitions. For each i = 1, . . . , n, player i ranks every non-
singleton coalition with no activity players as unacceptable; similarly, all coalitions
with two or more activity players are ranked as unacceptable. The preferences over
coalitions with exactly one activity player are derived naturally from the votes: if S, T
are two coalitions involving player i, x is the unique activity player in S, and y is the
unique activity player in T , then i weakly prefers S to T in H(N, A, P ) if and only if
(x, |S| − 1) �i (y, |T |− 1), and i weakly prefers S to {i} in H(N, A, P ) if and only if
(x, |S| − 1) �i a∅. We emphasize that the resulting hedonic games are not anonymous.
Further, while this embedding allows us to apply the standard solution concepts for
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hedonic games without redefining them, the intuition behind these solution concepts is
not always preserved (e.g., because activity players never want to deviate). Therefore,
in Section 3, we will provide formal definitions of the relevant hedonic games solution
concepts adapted to the setting of a-GASP.

We remark that when A∗ consists of a single ∞-copyable activity (i.e., there are
n activities in A∗, all of them equivalent to each other), GASP become equivalent to
anonymous hedonic games. Such games have been studied in detail by Ballester [2],
who provides a number of complexity results for them. In particular, he shows that
finding an outcome that is core stable, Nash stable or individually stable (see Section 3
for the definitions of some of these concepts in the context of a-GASP) is NP-hard.
Clearly, all these complexity results also hold for GASP. However, they do not directly
imply similar hardness results for a-GASP.

3 Solution Concepts

Having discussed the basic model of GASP, as well as a few of its extensions and
special cases, we are ready to define what constitutes a solution to this problem.

Definition 4. An assignment for an instance (N, A, P ) of GASP is a mapping π : N →
A; π(i) = a∅ means that agent i does not participate in any activity. Each assignment
naturally partitions the agents into at most |A| groups: we set π0 = {i | π(i) = a∅}
and πj = {i | π(i) = aj} for j = 1, . . . , p. Given an assignment π, the coalition
structure CSπ induced by π is the coalition structure over N defined as follows:

CSπ =
{
πj | j = 1, . . . , p, πj �= ∅} ∪ {{i} | i ∈ π0

}
.

Clearly, not all assignments are equally desirable. As a minimum requirement, no agent
should be assigned to a coalition that he deems unacceptable. More generally, we prefer
an assignment to be stable, i.e., no agent (or group of agents) should have an incentive
to change its activity. Thus, we will now define several solution concepts, i.e., classes
of desirable assignments. We will state our definitions for a-GASP only, though all of
them can be extended to the more general case of GASP in a natural way. Given the
connection to hedonic games pointed out in Section 2.2, we will proceed by adapting
the standard hedonic game solution concepts to our setting; however, this has to be done
carefully to preserve intuition that is specific to our model.

The first solution concept that we will consider is individual rationality.

Definition 5. Given an instance (N, A, P ) of a-GASP, an assignment π : N → A is
said to be individually rational if for every j > 0 and every agent i ∈ πj it holds that
(aj , |πj |) ∈ Si.

Clearly, if an assignment is not individually rational, there exists an agent that can ben-
efit from abandoning his coalition in favor of the void activity. Further, an individually
rational assignment always exists: for instance, we can set π(i) = a∅ for all i ∈ N .
However, a benevolent central authority would usually want to maximize the number of
agents that are assigned to non-void activities. Formally, let #(π) = |{i | π(i) �= a∅}|
denote the number of agents assigned to a non-void activity. We say that π is maximum
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individually rational if π is individually rational and #(π) ≥ #(π′) for every individ-
ually rational assignment π′. Further, we say that π is perfect2 if #(π) = n. We denote
the size of a maximum individually rational assignment for an instance (N, A, P ) by
#(N, A, P ). In Section 4, we study the complexity of computing a perfect or maxi-
mum individually rational assignment for a-GASP, both for the general model and for
the special cases defined in Section 2.1.

Besides individual rationality, there are a number of solution concepts for hedonic
games that aim to capture stability against individual or group deviations, such as Nash
stability, individual stability, contractual individual stability, and (weak and strong) core
stability (see, e.g., [5]). In what follows, due to lack of space, we only provide the formal
definition (and some results) for Nash stability. We briefly discuss how to adapt other
notions of stability to our setting, but we leave the detailed study of their algorithmic
properties as a topic for future work.

Definition 6. Given an instance (N, A, P ) of a-GASP, an assignment π : N → A is
said to be Nash stable if it is individually rational and for every agent i ∈ N such that
π(i) = a∅ and every aj ∈ A∗ it holds that (aj , |πj | + 1) �∈ Si.

If π is not Nash stable, then there is an agent assigned to the void activity who wants
to join a group that is engaged in a non-void activity, i.e., he would have approved of
the size of this group and its activity choice if he was one of them. Note that a perfect
assignment is Nash stable. The reader can verify that our definition is a direct adapta-
tion of the notion of Nash stability in hedonic games: if an assignment is individually
rational, the only agents who can profitably deviate are the ones assigned to the void
activity. The requirement of Nash stability is much stronger than that of individual ra-
tionality, and there are cases where a Nash stable assignment does not exist (the proof
is omitted due to space limits).

Proposition 1. For each n ≥ 2, there exists an instance (N, A, P ) of a-GASP with
|N | = n that does not admit a Nash stable assignment. This holds even if |A∗| = 1 and
all agents have interval preferences.

In Definition 6 an agent is allowed to join a coalition even if the members of this coali-
tion are opposed to this. In contrast, the notion of individual stability only allows a
player to join a group if none of the existing group members objects. We remark that if
all agents have increasing preferences, individual stability is equivalent to Nash stabil-
ity: no group of players would object to having new members join.

A related hedonic games solution concept is contractual individual stability: under
this concept, an agent is only allowed to move from one coalition to another if neither
the members of his new coalition nor the members of his old coalition object to the
move. However, for a-GASP contractual individual stability is equivalent to individual
stability. Indeed, in our model no agent assigned to a non-void activity has an incentive
to deviate, so we only need to consider deviations from singleton coalitions.

2 The terminological similarity with the notion of perfect partition in a hedonic game [1] is not
a coincidence; there a perfect partition assigns each agent to her preferred coalition; here a
perfect assignment assigns each agent to one of her equally preferred alternatives.
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The solution concepts discussed so far deal with individual deviations; resistance to
group deviations is captured by the notion of the core. One typically distinguishes be-
tween strong group deviations, which are beneficial for each member of the deviating
group, and weak group deviations, where the deviation should be beneficial for at least
one member of the deviating group and non-harmful for others; these notions of devi-
ation correspond to, respectively, weak and strong core. We note that in the context of
a-GASP strong group deviations amount to players in π0 forming a coalition in order
to engage in a non-void activity. This observation immediately implies that every in-
stance of a-GASP has a non-empty weak core, and an outcome in the weak core can be
constructed by a natural greedy algorithm; we omit the details due to space constraints.

4 Computing Good Outcomes

In this section, we consider the computational complexity of finding a “good” assign-
ment for a-GASP. We mostly focus on finding perfect or maximum individually rational
assignments; towards the end of the section, we also consider Nash stability. Besides
the general case of our problem, we consider special cases obtained by combining con-
straints on the number and type of activities (e.g., unlimited number of simple activities,
a constant number of copyable activities, etc.) and constraints on voters’ preferences
(INC, DEC, INV, etc.). Note that if we can find a maximum individually rational assign-
ment, we can easily check if a perfect assignment exists, by looking at the size of our
maximum individually rational assignment. Thus, we will state our hardness results for
the “easier” perfect assignment problem and phrase our polynomial-time algorithms in
terms of the “harder” problem of finding a maximum individually rational assignment.

4.1 Individual Rationality: Hardness Results

We start by presenting four NP-completeness results, which show that finding a perfect
assignment is hard even under fairly strong constraints on preferences and activities. We
remark that this problem is obviously in NP, so in what follows we will only provide
the hardness proofs.

Our first hardness result applies when all activities are simple and the agents’ pref-
erences are increasing.

Theorem 1. It is NP-complete to decide whether a-GASP admits a perfect assignment,
even when all activities in A∗ are simple and all agents have increasing preferences.

Proof (sketch). We provide a reduction from EXACT COVER BY 3-SETS (X3C). Re-
call that an instance of X3C is a pair 〈X,Y〉, where X = {1, . . . , 3q} and Y =
{Y1, . . . , Yp} is a collection of 3-element subsets of X ; it is a “yes”-instance if X
can be covered by exactly q sets from Y , and a “no”-instance otherwise. Given an
instance 〈X,Y〉 of X3C, we construct an instance of a-GASP as follows. We set N =
{1, . . . , 3q} and A∗ = {a1, . . . , ap}. For each agent i, we define his vote Vi so that
the induced approval vote Si is given by Si = {(aj , k) | i ∈ Yj , k ≥ 3}, and let
P = (V1, . . . , Vn). Clearly, (N, A, P ) is an instance of a-GASP with increasing pref-
erences. It is not hard to check that 〈X,Y〉 is a “yes”-instance of X3C if and only if
(N, A, P ) admits a perfect assignment. ��
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Our second hardness result applies to simple activities and decreasing preferences, and
holds even if each agent is willing to share each activity with at most one other agent.

Theorem 2. It is NP-complete to decide whether a-GASP admits a perfect assignment,
even when all activities in A∗ are simple, all agents have decreasing preferences, and,
moreover, for every agent i ∈ N and every alternative a ∈ A∗ we have S↓a

i ⊆ {1, 2}.

Proof (sketch). Consider the following restricted variant of the problem of scheduling
on unrelated machines. There are n jobs and p machines. An instance of the problem
is given by a collection of numbers {pij | i = 1, . . . , n, j = 1, . . . , p}, where pij is
the running time of job i on machine j, and pij ∈ {1, 2, +∞} for every i = 1, . . . , n
and every j = 1, . . . , p. It is a “yes”-instance if there is a mapping ρ : {1, . . . , n} →
{1, . . . , p} assigning jobs to machines so that the makespan is at most 2, i.e., for each
j = 1, . . . , p it holds that

∑
i:ρ(i)=j pij ≤ 2. This problem is known to be NP-hard (see

the proof of Theorem 5 in [6]).
Given an instance {pij | i = 1, . . . , n, j = 1, . . . , p} of this problem, we construct an

instance of a-GASP as follows. We set N = {1, . . . , n}, A∗ = {a1, . . . , ap}. Further,
for each agent i ∈ N we construct a vote Vi so that the induced approval vote Si

satisfies S
↓aj

i = {1} if pij = 2, S
↓aj

i = {1, 2} if pij = 1, and S
↓aj

i = ∅ if pij = +∞.
Clearly, these preferences satisfy the constraints in the statement of the theorem, and it
can be shown that a perfect assignment for (N, A, P ) corresponds to a schedule with
makespan of at most 2, and vice versa. ��
Our third hardness result also concerns simple activities and decreasing preferences.
However, unlike Theorem 2, it holds even if each agent approves of at most 3 activities.
The proof proceeds by a reduction from MONOTONE 3-SAT.

Theorem 3. It is NP-complete to decide whether a-GASP admits a perfect assignment,
even when all activities in A∗ are simple, all agents have decreasing preferences, and,
moreover, for every agent i ∈ N it holds that |{a | S↓a

i �= ∅}| ≤ 3.

Our fourth hardness result applies even when there is only one activity, which is ∞-
copyable, and every agent approves at most two alternatives; however, the agents’ pref-
erences constructed in our proof do not satisfy any of the structural constraints defined
in Section 2.1. The proof proceeds by a reduction from X3C.

Theorem 4. It is NP-complete to decide whether a-GASP admits a perfect assignment,
even when all activities in A∗ are equivalent (i.e., A∗ consists of a single ∞-copyable
activity a) and for every i ∈ N we have |S↓a

i | ≤ 2.

4.2 Individual Rationality: Easiness Results

The hardness results in Section 4.1 imply that if A∗ contains an unbounded number of
distinct activities, finding a maximum individually rational assignment is computation-
ally hard, even under strong restrictions on agents’ preferences (such as INC or DEC).
Thus, we can only hope to develop an efficient algorithm for this problem if we assume
that the total number of activities is small (i.e., bounded by a constant) or, more lib-
erally, that the number of pairwise non-equivalent activities is small, and the agents’
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preferences satisfy additional constraints. We will now consider both of these settings,
starting with the case where p = |A∗| is bounded by a constant.

Theorem 5. There exist an algorithm that given an instance of a-GASP finds a maxi-
mum individually rational assignment and runs in time (n + 1)ppoly(n).

Proof. We will check, for each r = 0, . . . , n, if there is an individually rational as-
signment π with #(π) = r, and output the maximum value of r for which this is the
case. Fix an r ∈ {0, . . . , n}. For every vector (n1, . . . , np) ∈ {0, . . . , n}p that satisfies
n1 + · · · + np = r we will check if there exists an assignment of agents to activities
such that for each j = 1, . . . , p exactly nj agents are assigned to activity aj (with the
remaining agents being assigned to the void activity), and each agent approves of the
resulting assignment. Each check will take poly(n) steps, and there are at most (n+1)p

vectors to be checked; this implies our bound on the running time of our algorithm.
For a fixed vector (n1, . . . , np), we construct an instance of the network flow prob-

lem as follows. Our network has a source s, a sink t, a node i for each player i =
1, . . . , n, and a node aj for each aj ∈ A∗. There is an arc of unit capacity from s to
each agent, and an arc of capacity nj from node aj to the sink. Further, there is an arc
of unit capacity from i to aj if and only if (aj , nj) ∈ Si. It is not hard to see that an
integral flow F of size r in this network corresponds to an individually rational assign-
ment of size r. It remains to observe that it can be checked in polynomial time whether
a given network admits a flow of a given size. ��
Moreover, when A∗ consists of a single simple activity a, a maximum individually
rational assignment can be found by a straightforward greedy algorithm.

Proposition 2. Given an instance (N, A, P ) of a-GASP with A∗ = {a}, we can find
a maximum individually rational assignment for (N, A, P ) in time O(s log s), where
s =

∑
i∈N |Si|.

Proof. Clearly, (N, A, P ) admits an individually rational assignment π with #(π) = k
if and only if | {i | (a, k) ∈ Si} | ≥ k. Let R = {(i, k) | (a, k) ∈ Si}; note that
|R| = s. We can sort the elements of R in descending order with respect to their
second coordinate in time O(s log s). Now we can scan R left to right in order to find
the largest value of k such that R contains at least k pairs that have k as their second
coordinate; this requires a single pass through the sorted list. ��
Now, suppose that A∗ contains many activities, but most of them are equivalent to each
other; for instance, A∗ may consist of a single k-copyable activity, for a large value of
k. Then the algorithm described in the proof of Theorem 5 is no longer efficient, but this
setting still appears to be more tractable than the one with many distinct activities. Of
course, by Theorem 4, in the absence of any restrictions on the agents’ preferences, find-
ing a maximum individually rational assignment is hard even for a single ∞-copyable
activity. However, we will now show that this problem becomes easy if we additionally
assume that the agents’ preferences are increasing or decreasing.

Observe first that for increasing preferences having multiple copies of the same ac-
tivity is not useful: if there is an individually rational assignment where agents are
assigned to multiple copies of an activity, we can reassign these agents to a single copy
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of this activity without violating individual rationality. Thus, we obtain the following
easy corollary to Theorem 5.

Corollary 1. Let (N, A, P ) be an instance of a-GASP with increasing preferences
where A∗ contains at most K activities that are not pairwise equivalent. Then we can
find a maximum individually rational assignment for (N, A, P ) in time nKpoly(n).

If all preferences are decreasing, we can simply eliminate all ∞-copyable activities.
Indeed, consider an instance (N, A, P ) of a-GASP where some activity a ∈ A∗ is ∞-
copyable. Then we can assign each agent i ∈ N such that (a, 1) ∈ Si to his own copy
of a; clearly, this will only simplify the problem of assigning the remaining agents to
the activities.

It remains to consider the case where the agents’ preferences are decreasing, there
is a limited number of copies of each activity, and the number of distinct activities is
small. While we do not have a complete solution for this case, we can show that in the
case of a single k-copyable activity a natural greedy algorithm succeeds in finding a
maximum individually rational assignment.

Theorem 6. Given a decreasing instance (N, A, P ) of a-GASP where A∗ consists
of a single k-copyable activity (i.e., A∗ = {a1, . . . , ak}, and all activities in A∗ are
pairwise equivalent), we can find a maximum individually rational assignment in time
O(n log n).

Proof. Since all activities in A∗ are pairwise equivalent, we can associate each agent
i ∈ N with a single number ui ∈ {0, . . . , n}, which is the maximum size of a coalition
assigned to a non-void activity that he is willing to be a part of. We will show that our
problem can be solved by a simple greedy algorithm. Specifically, we sort the agents in
non-increasing order of uis. From now on, we will assume without loss of generality
that u1 ≥ · · · ≥ un. To form the first group, we find the largest value of i such that
ui ≥ i, and assign agents 1, . . . , i to the first copy of the activity. In other words, we
continue adding agents to the group as long as the agents are happy to join. We repeat
this procedure with the remaining agents until either k groups have been formed or all
agents have been assigned to one of the groups, whichever happens earlier.

Clearly, the sorting step is the bottleneck of this procedure, so the running time of our
algorithm is O(n log n). It remains to argue that it produces a maximum individually
rational assignment. To show this, we start with an arbitrary maximum individually
rational assignment π and transform it into the one produced by our algorithm without
lowering the number of agents that have been assigned to a non-void activity. We will
assume without loss of generality that π assigns all k copies of the activity (even though
this is is not necessarily the case for the greedy algorithm).

First, suppose that π(i) = a∅, π(j) = a� for some i < j and some � ∈ {1, . . . , k}.
Then we can modify π by setting π(i) = a�, π(j) = a∅. Since i < j implies ui ≥ uj ,
the modified assignment is individually rational. By applying this operation repeatedly,
we can assume that the set of agents assigned to a non-void activity forms a contiguous
prefix of 1, . . . , n.

Next, we will ensure that for each � = 1, . . . , k the group of agents that are assigned
to a� forms a contiguous subsequence of 1, . . . , n. To this end, let us sort the coalitions
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in π according to their size, from the largest to the smallest, breaking ties arbitrarily.
That is, we reassign the k copies of our activity to coalitions in π so that � < r implies
|π�| ≥ |πr|. Now, suppose that there exist a pair of players i, j such that i < j, π(i) =
a�, π(j) = ar, and � > r (and hence |π�| ≤ |πr|). We have uj ≥ |πr| ≥ |π�|,
ui ≥ uj ≥ |πr|, so if we swap i and j (i.e., modify π by setting π(j) = a�, π(i) = ar),
the resulting assignment remains individually rational. Observe that every such swap
increases the quantity Σ =

∑k
t=1

∑
s∈πt(s · t) by at least 1: prior to the swap, the

contribution of i and j to Σ is i� + jr, ans after the swap it is ir + j� > i� + jr. Since
for any assignment we have Σ ≤ kn(n + 1)/2, eventually we arrive to an assignment
where no such pair (i, j) exists. At this point, each π�, � = 1, . . . , k, forms a contiguous
subsequence of 1, . . . , n, and, moreover, � < r implies i ≤ j for all i ∈ π�, j ∈ πr.

Now, consider the smallest value of � such that π� differs from the �-th coalition
constructed by the greedy algorithm (let us denote it by γ�), and let i be the first agent
in π�+1. The description of the greedy algorithm implies that π� is a strict subset of γ�

and agent i belongs to γ�. Thus, if we modify π by moving agent i to π�, the resulting
allocation remains individually rational (since i is happy in γ�). By repeating this step,
we will gradually transform π into the output of the greedy algorithm (possibly discard-
ing some copies of the activity). This completes the proof. ��
The algorithm described in the proof of Theorem 6 can be extended to the case where we
have one k-copyable activity a and one simple activity b, and the agents have decreasing
preferences over both activities. For each s = 1, . . . , n we will look for the best solution
in which s players are assigned to b; we will then pick the best of these n solutions. For
a fixed s let Ns = {i ∈ N | (b, s) ∈ Si}. If |Ns| < s, no solution for this value of s
exists. Otherwise, we have to decide which size-s subset of Ns to assign to b. It is not
hard to see that we should simply pick the agents in Ns that have the lowest level of
tolerance for a, i.e., we order the agents in Ns by the values of ua

i from the smallest to
the largest, and pick the first s agents. We then assign the remaining agents to copies
of a using the algorithm from the proof of Theorem 6. Indeed, any assignment can be
transformed into one of this form by swapping agents so that the individual rationality
constraints are not broken. It would be interesting to see if this idea can be extended to
the case where instead of a single simple activity b we have a constant number of simple
activities or a single k′-copyable activity.

We conclude this section by giving an O(
√

n)-approximation algorithm for find-
ing a maximum individually rational assignment in a-GASP with a single ∞-copyable
activity.

Theorem 7. There exists a polynomial-time algorithm that given an instance (N, A, P )
of a-GASP where A∗ consists of a single ∞-copyable activity a, outputs an individually
rational assignment π with #(π) = Θ( 1√

n
)#(N, A, P ).

Proof. We say that an agent i is active in π if π(i) �= a∅; a coalition of agents is said
to be active if it is assigned to a single copy of a. We construct an individually rational
assignment π iteratively, starting from the assignment where no agent is active. Let
N∗ = {i | π(i) = a∅} be the current set of inactive agents (initially, we set N∗ = N ).
At each step, we find the largest subset of N∗ that can be assigned to a single fresh copy
of a without breaking the individual rationality constraints, and append this assignment
to π. We repeat this step until the inactive agents cannot form another coalition.
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Now we compare the number of active agents in π with the number of active agents
in a maximum individually rational assignment π∗. To this end, let us denote the active
coalitions of π by B1, . . . , Bs, where |B1| ≥ . . . ≥ |Bs|. If |B1| ≥ √

n, we are done,
so assume that this is not the case. Note that since B1 was chosen greedily, this implies
that |C| ≤ √

n for every active coalition C in π∗.
Let C be the set of active coalitions in π∗. We partition C into s groups by setting

C1 = {C ∈ C | C ∩ B1 �= ∅} and Ci = {C ∈ C | C ∩ Bi �= ∅, C �∈ Cj for j < i}
for i = 2, . . . , s. Note that every active coalition C ∈ π∗ intersects some coalition in π:
otherwise we could add C to π. Therefore, each active coalition in π∗ belongs to one
of the sets C1, . . . , Cs. Also, by construction, the sets C1, . . . , Cs are pairwise disjoint.
Further, since the coalitions in Ci are pairwise disjoint and each of them intersects Bi,
we have |Ci| ≤ |Bi| for each i = 1, . . . , s. Thus, we obtain

#(π∗) =
∑

i=1,...,s

∑
C∈Ci

|C| ≤
∑

i=1,...,s

∑
C∈Ci

√
n

≤
∑

i=1,...,s

|Ci|√n ≤
∑

i=1,...,s

|Bi|
√

n ≤ #(π)
√

n. ��

4.3 Nash Stability

We have shown that a-GASP does not not always admit a Nash stable assignment
(Proposition 1). In fact, it is difficult to determine whether a Nash stable assignment
exists. The proofs of the next two results are omitted due to space constraints.

Theorem 8. It is NP-complete to decide whether a-GASP admits a Nash stable
assignment.

However, if agents’ preferences satisfy INC, DEC, or MIX, a Nash stable assignment
always exists and can be computed efficiently.

Theorem 9. If (N, A, P ) is an instance of a-GASP that is increasing, decreasing, or
mixed increasing-decreasing, a Nash stable assignment always exists and can be found
in polynomial time.

Moreover, the problem of finding a Nash stable assignment that maximizes the number
of agents assigned to a non-void activity admits an efficient algorithm if A∗ consists of
a single simple activity.

Theorem 10. There exist a polynomial-time algorithm that given an instance (N, A, P )
of a-GASP with A∗ = {a} finds a Nash stable assignment maximizing the number of
agents assigned to a non-void activity, or decides that no Nash stable assignment exists.

Proof. For each k = n, . . . , 0, we will check if there exists a Nash stable assignment π
with #(π) = k, and output the largest value of k for which this is the case.

For each i ∈ N , let S′
i = S↓a

i . For k = n a Nash stable assignment π with #(π) = n
exists if and only if n ∈ S′

i for each i ∈ N . Assigning every agent to a∅ is Nash stable
if and only if 1 /∈ S′

i for each i ∈ N . Now we assume 1 ≤ k ≤ n − 1 and set
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U1 = {i ∈ N | k ∈ S′
i, k + 1 /∈ S′

i}, U2 = {i ∈ N | k /∈ S′
i, k + 1 ∈ S′

i},
and U3 = {i ∈ N | k ∈ S′

i, k + 1 ∈ S′
i}. If |U1| + |U3| < k, there does not

exist an individually rational assignment π with #(π) = k. If U2 �= ∅, no Nash stable
assignment π with #(π) = k can exist, since each agent from U2 would want to switch.
If |U3| > k, no Nash stable assignment π with #(π) = k can exist, since at least
one agent in U3 would not be assigned to a and thus would be unhappy. Finally, if
|U1| + |U3| ≥ k, |U3| ≤ k, U2 = ∅, we can construct a Nash stable assignment π by
assigning all agents from U3 and k−|U3| agents from U1 to a. Since we have π(i) = a∅
for all i with k �∈ S′

i and π(i) �= a∅ for all i with k + 1 ∈ S′
i, no agent is unhappy. ��

5 Conclusions and Future Work

We have defined a new model for the selection of a number of group activities, dis-
cussed its connections with hedonic games, defined several stability notions, and, for
two of them, we have obtained several complexity results. A number of our results are
positive: finding desirable assignments proves to be tractable for several restrictions of
the problem that are meaningful in practice. Interesting directions for future work in-
clude exploring the complexity of computing other solution concepts for a-GASP and
extending our results to the more general setting of GASP.
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Abstract. We characterize methods of dividing a cake between two bid-
ders in a way that is incentive-compatible and Pareto-efficient. In our
cake cutting model, each bidder desires a subset of the cake (with a
uniform value over this subset), and is allocated some subset. Our char-
acterization proceeds via reducing to a simple one-dimensional version of
the problem, and yields, for example, a tight bound on the social welfare
achievable.

1 Introduction

The question of allocating resources among multiple people is one of the most
basic questions that humans have been studying. At this level of generality one
may say that most of the economic theory is devoted to this problem, as well
as other fields of study. One class of scenarios of this form, with an enormous
amount of literature, goes by the name of “cake cutting”. In this type of scenario
the goods are modeled as the (infinitely divisible) unit interval (the cake), the
preferences as (measurable) valuation functions on the cake and the allocation
as a partition of the cake. Many variants of this model have been considered and
the usual goals are various notions of fairness and efficiency. See, e.g. [2] for an
introduction.

Recently the research community has started looking at such models from
a mechanism design point of view, i.e., considering the incentives of the play-
ers. From this perspective, players act rationally to maximize their utility and
will thus “tell” the cake cutting algorithm whatever will make it maximize their
own piece’s value. In the simplest form1 we would ask for an“incentive compati-
ble” (equivalently, truthful or strategy-proof) cake cutting allocation mechanism
where each bidder always maximizes his utility by reporting his true valuation.

Several recent papers have designed incentive-compatible cake cutting mech-
anisms. For example, in [4] an incentive-compatible, envy-free, Pareto-efficient,
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a Google grant on Electronic Markets and Auctions.

�� Research at the Hebrew University partially supported by a grant from the Israeli
Science Foundation and by a Google grant on Electronic Markets and Auctions.

1 Which by the revelation mechanisms is really without loss of generality since an
arbitrary one, when analyzed at equilibrium, may be converted to an incentive-
compatible one where truth is an equilibrium.
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and proportional cake cutting mechanism is obtained for the model where player
valuations are “uniform”: each player i desires a subset Si of the items, and has
a uniform value over this subset with the total value of each player normalized to
1.2 In [8], an incentive-compatible, proportional, and Pareto-efficient mechanism
is constructed for the case of arbitrary (not necessarily uniform) preferences.
A “randomized” cake cutting mechanism that is truthful in expectation with
better guarantees is also provided in that paper.

In this paper we seek to characterize incentive-compatible cake cutting mecha-
nisms, and show bounds on possible performance measures. As our model has no
“money” (i.e. no transferable utilities) the standard tools of mechanism design
with quasi-linear utilities (such as Vickrey-Clarke-Groves [11,5,6] or Myerson
[9]) do not apply. In this sense our work lies within the framework of approxi-
mate mechanism design without money, advocated, e.g., by [1,10]. As opposed
to most of the cake cutting literature, we focus solely on incentive compatibility
and efficiency and do not consider notions of fairness. As our results are mostly
“negative”, this only strengthens them. We should mention that the positive re-
sults that we provide, i.e. the mechanisms that have the “best” properties among
all incentive-compatible ones, turn out to also be envy-free.

Our general model, following that of [4], considers an infinitely-divisible atom-
less cake and considers only the restricted class of uniform player valuations.3 For-
mally, the “cake” is modeled as the real interval [0, 1], each player desires a (mea-
surable) set A ⊆ [0, 1] and his valuation is uniform over that set (and normalized
to 1): VA(S) = |S ∩ A|/|A|, where | · | specifies the usual Lebesgue measure. We
restrict ourselves to “non-wasteful” mechanisms, where no piece that is desired by
some player may be left unallocated and no piece is allocated to a player that does
not want it (this is essentially equivalent to Pareto-efficiency of the outcome.4)We
restrict ourselves to the case of two players. Thus a non-wasteful mechanism ac-
cepts as input the setsA andB desired by the two players and returns two disjoint
(measurable) sets C = C(A,B) ⊆ A andD = D(A,B) ⊆ B. In this case, the first
player’s utility is given by VA(C) = |C|/|A| and the second’s by VB(D) = |D|/|B|.
A mechanism is called “incentive-compatible” if for everyA,B and A′ we get that
VA(C(A,B)) ≥ VA(C(A′, B)) and similarly for the second player.

As a tool for studying this model, we introduce a simple, one-dimensional
“aligned” model. In the aligned model we first restrict the possible player valu-
ations: the first player desires the sub-interval A = [0, a] and the second player
desires the sub-interval B = [1−b, 1]. This is interesting when 1−b < a in which
case the question is how to allocate the overlap [1−b, a] between the players. We
then also restrict the allowed allocation by the mechanism: the first player must
be allocated an interval C = [0, c] and the second an interval D = [1 − d, 1].

2 For purposes of efficient computation, it is also required that the sets would be given
as a finite collection of intervals.

3 Again, as our results are mostly “negative” this limited setting strengthens them.
4 The inessential technical difference is detailed in the next section. While it does not
seem that leaving pieces of the cake unallocated can be useful, whether this is really
the case remains open.
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Thus, in the aligned model the input is fully specified by its lengths a,b, the
output by its lengths c,d, and a mechanism is a pair of real valued functions
f = (c(a, b), d(a, b)). It turns out that these two restrictions offset each other
in some sense, allowing us to convert mechanisms between the two models. As
the aligned model is really single-dimensional, we are able to fully characterize
incentive-compatible mechanisms in it, a characterization that then has strong
implications in the general model as well.

Theorem 1. (Characterization of Aligned Model) A non-wasteful deterministic
mechanism for two-players in the aligned model is incentive-compatible if and
only if it is from the following family, characterized by 0 ≤ θ ≤ 1: the allocation
gives the first player the interval [0,min {a,max {1− b, θ}}] while the second
player gets the interval [1−min {b,max {1− a, 1− θ}} , 1].

This characterization holds regardless of any issues of fairness, and the only mech-

anism in this family that is fair in any sense is that with θ =
1

2
which gives envy-

freeness and turns out to be equivalent to the mechanism of [4] for the case of
two players. This tight characterization in the aligned model allows the calcula-
tion of the best achievable results – under any desired performance measure – for
incentive-compatible mechanisms. Specifically, we are interested in performance
measures that depend on relative lengths of demands and allocations, formally
on the set of 4-tuples (α, β, γ, δ) where α = |A|/|A ∪ B|, β = |B|/|A ∪ B|,
γ = |C|/|A ∪ B|, and δ = |D|/|A ∪ B|.5 A typical performance measure of this
form is the competitive ratio for social welfare: the worst case ratio between the
social welfare achieved by the mechanism (which is γ/α+ δ/β) and that achieved
at the optimal allocation (which turns out to be 1+(1−min{α, β})/max{α, β}).
Many other variants can be considered, such as looking at other aggregations of
the two players’ utility (e.g. min{γ/α, δ/β} or log(γ/α)+log(δ/β)), assigning dif-
ferent weights to the different players, using a different comparison benchmark
(e.g. the one splitting the intersection equally), using additive regret rather than
multiplicative ratio, etc.

We prove the following reductions, which preserve the 4-tuples of ratios
(α, β, γ, δ), between these models.

Theorem 2. (Reduction Between Models)

1. Let f = (c(a, b), d(a, b)) be an incentive-compatible and non-wasteful mech-
anism in the aligned model. There exists an incentive-compatible and non-
wasteful mechanism F = (C(A,B), D(A,B)) in the general model such that
for all A,B: |C(A,B)|/|A ∪ B| = c(a, b) and |D(A,B)|/|A ∪ B| = d(a, b)
where a = |A|/|A ∪B| and b = |B|/|A ∪B|.

2. Let F = (C(A,B), D(A,B)) be an incentive-compatible and non-wasteful
mechanism in the general model. There exists an incentive-compatible and
non-wasteful mechanism f = (c(a, b), d(a, b)) in the aligned model such that

5 Note that as |A∩B|/|A∪B| = α+β−1, C ⊆ A,D ⊆ B, C∩D = ∅, andA∪B = C∪D
we have all the information regarding the sizes in the Venn diagram.
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for all a, b there exist A,B such that |A| = a, |B| = b, c(a, b) = |C(A,B)|
and d(a, b) = |D(A,B)|, and furthermore whenever a + b ≥ 1 we have that
A ∪B = [0, 1].

These two reductions imply that while the general model may be (and actually
is) richer, this richness cannot buy anything in terms of performance – for any
notion of performance that depends on relative lengths of bids and allocations.
For every mechanism with a certain performance level in the general model there
exists a mechanism with the same performance level in the aligned model and
vice-versa.

Thus our characterization in the aligned model implies the same bounds on
performance in the general model as well. For example, in the aligned model,
one may easily calculate that at most a fraction of (8− 4

√
3)−1 ≈ 0.93 of social

welfare can be extracted by any mechanism in the characterized family, and this

competitive ratio is in fact obtained by the envy-free mechanism with θ =
1

2
.

The reductions imply that this same bound also applies to mechanisms in the
general model. This ratio may thus be termed “the price of truthfulness” in this
setting. A complementary result appears in [3], where the “price of fairness” is
studied, comparing envy-free allocations to general ones, and obtaining the same
numeric bound on the fraction of the optimal welfare that can be extracted by
any envy-free allocation. Our results do not require any notion of fairness, but
instead show that incentive-compatibility by itself implies this bound. In fact,
for the special case of social welfare we also provide a direct proof for this bound,
a proof that also applies to randomized mechanisms.

Theorem 3. (Price of Truthfulness) Any deterministic or randomized incentive-
compatible mechanism for cake cutting for two-players in the general model,
achieves at most a (8 − 4

√
3)−1 ≈ 0.93 fraction of the optimal welfare for some

player valuations.

It should be noted that this is tight, as indeed the deterministic mechanism of
[4] achieves this ratio when restricted to two players.

The paper is structured as follows: in section 2 we present our two models, the
general one and the aligned one. Section 3 provides the characterization of the
aligned model, and section 4 shows the reductions between the models. In section
5 we provide a direct proof of the price of truthfulness result for a randomized
mechanism.

2 Models

2.1 The General Model

Our model has two players each desiring a measurable subset of [0, 1]. We will
denote by A ⊆ [0, 1] the set desired player I and by B ⊆ [0, 1] the set desired by
the player II. We viewA andB as private information. Everything else is common
knowledge. The players will be assigned disjoint measurable subsets, C ⊆ [0, 1]
to player I and D ⊆ [0, 1] to player II. We assume that player valuations are
uniform over the subsets they desire and normalized to 1.
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Definition 1. The valuation of a player who desires subset A ⊆ [0, 1] for a
subset C ⊆ [0, 1] is VA(C) = |C ∩ A|/|A|, where | · | specifies the Lebesgue
measure.

Definition 2. A mechanism is a function which divides the cake between the
two players. The function receives as inputs two measurable subsets of [0, 1]: A
and B (the demands of the players), and outputs two disjoint measurable subsets
of [0, 1], C and D, where C is the subset that player I receives and D is the subset
that player II receives.

We denote a mechanism by F (A,B) = (C(A,B), D(A,B)), where C(·), D(·)
denote the functions that determine the allocations to the two players, respec-
tively, and must satisfy C(A,B) ∩D(A,B) = ∅ for all A,B.

Our point of view is that the two players are strategic, aiming to maximize their
valuation and since A and B are private information the players may “lie” to
the mechanism regarding their real interest in the cake if that may give them an
allocation with a higher valuation for them.

Definition 3. F = (C(A,B), D(A,B)) is called incentive-compatible if none of
the players can gain by declaring a subset which is different from the real subset
he is interested in. Formally, for all A,B,A′: VA(C(A,B)) ≥ VA(C(A′, B)) and
similarly for the second player: for all A,B,B′: VB(D(A,B)) ≥ VB(D(A,B′)).

Definition 4. A mechanism F = (C(A,B), D(A,B)) is said to be Pareto-
efficient if for every input A,B and the corresponding allocation made by the
mechanism C(A,B), D(A,B), any other possible allocation C′, D′ can not be
strictly better for one of the players and at least as good for the other.

Note that two possible allocations C,D and C′, D′, which differ only in the
division of areas which none of the players is interested in, are equivalent in the
eyes of the players. Therefore, we would use a specific Pareto-efficient allocation
– a non-wasteful allocation, in which pieces of the cake that neither of the players
demanded will not be allocated.

Definition 5. A mechanism F = (C(A,B), D(A,B)) is called non-wasteful
if for every A,B we have that C(A,B) ⊆ A, D(A,B) ⊆ B, and C(A,B) ∪
D(A,B) = A ∪B.

Proposition 1. Everynon-wastefulmechanism isPareto-efficient.EveryPareto-
efficient mechanism F = (C(A,B), (D(A,B)) can be converted to an equivalent
non-wasteful one bydefiningC ′(A,B) = C(A,B)∩AandD′(A,B) = D(A,B)∩B.

Thus any analysis of non-wasteful mechanisms directly implies a similar one
for Pareto-efficient ones, as do all our results in this paper. For a non-wasteful
mechanism the valuations of the players are simply |C|/|A| for player I and
|D|/|B| for player II.

Although we do not deal directly with the envy-freeness of mechanisms, a
mechanism that is described in this paper has this property, as described below.
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Definition 6. F = (C(A,B), D(A,B)) is called envy-free if each player weakly
prefers the piece he received to the piece the other player received. Formally, for
all A,B: VA(C(A,B)) ≥ VA(D(A,B)) and similarly for the second player, for
all A,B: VB(D(A,B)) ≥ VB(C(A,B)).

2.2 The Aligned Model

A special case of the above general model is called the aligned model. The model
makes two specializing assumptions, one on player valuations, and the other on
mechanism allocations:

1. The two players are interested in subsets of the form [0, a] for player I and
[1− b, 1] for player II.

2. The mechanism must divide te cake so that player I and player II would
receive subsets of the form [0, c] and [1− d, 1] respectively.

In the aligned model we denote a mechanism as f(a, b) = (c(a, b), d(a, b)), Where
c, d are in fact functions c, d : R+ × R+ → R+, such that for all a, b: c(a, b) +
d(a, b) ≤ 1.

2.3 The Price of Truthfulness

As noted in the introduction, using the two reductions that will be proved in
section 4, it is possible to study a family of performance measures for the aligned
model and conclude from that implications for the general models. For example,
one of these performance measures is the Price of Truthfulness.

Definition 7. The social welfare of a mechanism F = (C(A,B), D(A,B)) on
inputA,B, denoted bySWF (A,B), isSWF (A,B) = VA(C(A,B))+VB(D(A,B)).

Definition 8. Denoted by SWmax(A,B) is the sum of valuations of the
two players in the allocation that maximizes social welfare: SWmax(A,B) =
max
F

SWF (A,B).

Definition 9. The competitive ratio for social welfare of a mechanism F is

ηF = min
A,B

ηF (A,B), where ηF (A,B) =
SWF (A,B)

SWmax(A,B)
.

Similar to the price of anarchy, the price of truthfulness is the highest possible
competitive ratio of a truthful mechanism. Formally:

Definition 10. The price of truthfulness is PoT ≡ max
F

ηF , where F ranges

over all non-wasteful truthful mechanisms.

2.4 Randomized Mechanisms

In the last part of our paper we will also consider randomized mechanisms.
For the purposes of this paper, one may either consider those as a probability
distribution over deterministic mechanisms, or allow the mechanism’s allocation
(C,D) to be a random variable.
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Definition 11. For a randomized mechanism F , the above definitions are ex-
tended by replacing SWF (A,B) by E [SWF (A,B)] where the expectation is over
the random choices made by the mechanism.

3 The Aligned Model

3.1 Characterization of the Aligned Model

Theorem 4. (Characterization of Aligned Model) A non-wasteful deterministic
mechanism for two-players in the aligned model is incentive-compatible if and
only if it is from the following family, characterized by 0 ≤ θ ≤ 1: the allocation
gives the first player the interval [0,min {a,max {1− b, θ}}] while the second
player gets the interval [1−min {b,max {1− a, 1− θ}} , 1].
The remainder of this subsection is a proof of the above theorem.

Assume f(a, b) = (c(a, b), d(a, b)) is a non-wasteful incentive-compatible de-
terministic mechanism for two-players in the aligned model.

In case a + b ≤ 1, there is no overlap between the demands of the players
which are aligned to the sides. Therefore, from non-wastefulness, the mechanism
would have to give each player all of his demand (and that is clearly incentive-
compatible and deterministic). We can also notice that this scenario matches the
expressions for the pieces of the cake allocated to the players from the theorem,
regardless of θ.

During the rest of this proof, we will assume that there is an overlap between
the demands of the player, i.e. a+ b > 1.

Definition 12. For the mechanism f(a, b) = (c(a, b), d(a, b)) and a fixed de-
mand b for player II, we will denote by cb(a) the function c(a, b), which deter-
mines the size of the piece that the mechanism gives to player I according to his
demands a. In a similar way da(b) is also defined.

Lemma 1. For every b, the function cb(a) of the mechanism f(a, b) is non de-
creasing and Lipschitz continuous (with a Lipschitz constant K = 1).

Proof. For a < a′, say that cb(a) > cb(a
′), then from non-wastefulness, a′ > a ≥

cb(a) > cb(a
′). Therefore, if player I’s real interest is a piece of size a′, he can

gain strictly more by demanding a instead. He would receive not only a larger
piece of the cake, but also a larger piece of his interest, due to the alignment of
the piece to the side. That stands in contradiction to the incentive-compatibility
of the mechanism. Hence, cb(a) ≤ cb(a

′), meaning that cb(a) is non decreasing.
Furthermore, for a < a′, cb(a

′)− cb(a) ≤ a′ − a. Otherwise, if cb(a
′)− cb(a) >

a′ − a, this means that cb(a
′) − a′ + a > cb(a). Since the mechanism is non-

wasteful, cb(a
′) ≤ a′, and therefore a > cb(a). In such a case, if player I’s real

interest is of size a, he will not receive all of his demand. Therefore, he might
lie and demand a′ instead. By asking for a′ he would receive a larger piece
(cb(a

′) − a′ + a > cb(a) ⇒ cb(a
′) > cb(a)), which because of the alignment, has

a larger intersection with his real interest. Again, this contradicts the incentive-
compatibility of the mechanism.
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We have that cb(a) is Lipschitz continuous (with a Lipschitz constant K = 1).

Therefore cb(a) is continuous. Hence, in the interval [0, 1] it must attain a max-
imum value, and the following quantities are well defined.

Definition 13. μ(b) is the maximal piece size that player I can receive, when
player II demands a piece of size b. Formally, μ(b) ≡ max

a
cb(a).

In the same way ν(a) ≡ max
b

da(b) is defined for player II.

Definition 14. We will denote by am the minimal a for which cb(am) = μ(b).

Lemma 2. For the mechanism f(a, b) as mentioned, for every b:

cb(a) =

{
a for a < μ(b)

μ(b) for a ≥ μ(b)
= min {a, μ(b)}

(see Figure 1)

Proof.

– For a < am, cb(a) can not be larger than a, because of the non-wastefulness
of f(a, b). If cb(a) < a, then player I, whose real interest is of size a, does not
receive all of his interest and therefore would prefer to lie and ask for am.
Since a < am, by definition of am, cb(a) < cb(am). Not only would player I
receive a strictly larger piece by lying, since the piece is aligned to the side,
he would also receive a strictly larger piece of his real interest. This stands
in contradiction to the incentive-compatibility of f . Therefore, cb(a) = a.

– For a > am, since cb(a) is non-decreasing, cb(a) ≥ cb(am). It is also known
that cb(am) = μ(b) is the maximal value of cb(a). Therefore, cb(a) = μ(b).

– We showed that for a < am, cb(a) = a, hence cb(am) = am by continuity.
Since cb(am) = μ(b), am = μ(b).

Putting everything together, we get that cb(a) = min {a, μ(b)}.

Remark 1. Characterization of player II’s piece size for a fixed a can be done in
the same way to obtain da(b) = min {b, ν(a)}.

Now, we can continue to the characterization of the function μ(b).

Remark 2. We should notice that μ(1) + ν(1) = 1 (from non-wastefulness, in
case both players want the whole cake we should divide the whole cake).

Lemma 3. The function μ(b) must be of the form:

μ(b) =

{
1− b for b < 1− θ

θ for b ≥ 1− θ
= max {1− b, θ}

(For θ ∈ [0, 1]). (see Figure 2)
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Proof. According to the function cb(a), which we found earlier, the size of the
piece that player I receives is min{a, μ(b)}. As mentioned in the beginning of
the subsection, we assume that a + b > 1. As we are examining the aligned
model, the mechanism should divide the whole interval [0, 1]. Therefore, player
II would receive 1 − min{a, μ(b)}. We also know that the form of the function
da(b) resembles the form of cb(a) and that means that the size of the piece that
player II receives is min{b, ν(a)}. Combined together:

1−min{a, μ(b)} = min{b, ν(a)} =

{
b for b < ν(a)

ν(a) for b ≥ ν(a)

=⇒ min{a, μ(b)} =

{
1− b for b < ν(a)

1− ν(a) for b ≥ ν(a)

Let us look at the last equation for a = 1:

μ(b) = min{1, μ(b)} =

{
1− b for b < ν(1)

1− ν(1) for b ≥ ν(1)

We also know that μ(b) does not depend on a. Therefore, the last statement is
true in general and not only for a = 1. We showed previously that μ(1)+ν(1) = 1.
Let us denote θ ≡ μ(1) = 1 − ν(1), and rewrite μ(b) (ν(a) can be found in a
similar way):

μ(b) =

{
1− b for b < 1− θ

θ for b ≥ 1− θ
= max{1− b, θ}

ν(a) =

{
1− a for a < θ

1− θ for a ≥ θ
= max{1− a, 1− θ}

If we insert those μ(b) and ν(a) into the expressions for cb(a) and da(b) that we
found earlier, we would get that c(a, b) = min{a,max{1 − b, θ}} and d(a, b) =
min{b,max{1− a, 1− θ}}, as in the statement of the theorem.

In the opposite direction, it can be noticed that the allocation is deterministic.
Furthermore, for all values of a, b and θ, each of the players either receives all
of his demand, or a maximal value which depends only on the other player.
Therefore, he cannot gain by lying. Moreover, c(a, b)+d(a, b) = min{a+b, 1}, and
because of the alignment of the interests and allocations, this type of allocation
is non-wasteful.

We conclude that this is in fact the family of all possible mechanisms. We will
denote by fθ the mechanism with the parameter θ from that family.

3.2 Social Welfare in the Aligned Model

Theorem 5. The non-wasteful and incentive-compatible deterministic mecha-
nism f 1

2
for the aligned model achieves ηf 1

2

= (8− 4
√
3)−1 ≈ 0.93.
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cb(a)

(b)

Fig. 1. The size of the allocation for
player I as a function of his demand (for
a constant b)

(b)

1-

Fig. 2. The value in which the graph cb(a)
(for a specific b) turns constant, as a func-
tion of that b)

This theorem is proved in the full version of the paper [7].

Remark 3. It is possible to prove that for every other mechanism fθ from the
family of mechanisms for the aligned model, ηfθ < ηf 1

2

, by checking the value of

ηfθ for two possible sets of inputs: ã = 1, b̃ =
√
3− 1 and ã =

√
3− 1, b̃ = 1. We

will prove a stronger theorem in the last section.

Moreover, it can be noticed that θ =
1

2
is the only θ for which fθ is envy-free.

4 Reductions

4.1 Reduction From the Aligned to the General Model

Theorem 6. Let f = (c(a, b), d(a, b)) be an incentive-compatible and non-
wasteful mechanism for the aligned model. There exists an incentive-compatible
and non-wasteful mechanism F = (C(A,B), D(A,B)) for the general model such
that for all A,B: |C(A,B)|/|A ∪ B| = c(a, b) and |D(A,B)|/|A ∪ B| = d(a, b)
where a ≡ |A|/|A ∪B| and b ≡ |B|/|A ∪B|.
Note that from the properties of f it has to be from the family of mechanisms
described in the previous section. Therefore there is a θ such that f is fθ.

For that fθ, we will define mechanism F (A,B) as follows:

– Use the mechanism fθ to calculate the size of the players’ allocations (c(a, b),
d(a, b)) when:6

• a =
|A|

|A ∪B| , meaning player I demands the section [0,
|A|

|A ∪B| ].

• b =
|B|

|A ∪B| , meaning player II demands the section [1 − |B|
|A ∪B| , 1].

6 The division by |A∪B| in this phase is a normalization of the original demands over
a full [0, 1] interval.



180 A. Maya and N. Nisan

– Calculate |C(A,B)| ≡ c(a, b) · |A ∪B| and |D(A,B)| ≡ d(a, b) · |A ∪B|. 7

– Give player I pieces in a total size of |C(A,B)| and Player II pieces in a
total size of |D(A,B)|. For each of them – start at first from giving the cake
intervals that only he asked for, then move to intervals in the joint area.

The size of the piece that mechanism F would allocate to player I is: |C(A,B)| =
|A ∪ B| · min{ |A|

|A ∪B| ,max{1 − |B|
|A ∪B| , θ}} = min{|A|,max{|A ∪ B| − |B|, θ ·

|A∪B|}} = min{|A|,max{|A \B|, θ · |A∪B|}}. In a similar way we can get the
expression for the size of player II’s piece.

Lemma 4. F is non-wasteful.

Proof. Themechanismassigns twopieceswith total size of |C(A,B)|+|D(A,B)| =
(c(a, b) + d(a, b)) · |A ∪ B| =

a+b≥1→c+d=1
|A ∪ B|, meaning the total size that was

assigned is equal to the total requested size. Moreover, c(a, b) ≤ a =
|A|

|A ∪B| ,

therefore |C(A,B)| ≤ |A| and in the same way |D(A,B)| ≤ |B|. This means that
themechanismgives each player nomore than his demand. Therefore, it is possible
to construct the player’s allocation only from intervals he has asked for. Since the
allocation of those pieces starts with intervals that only one player asked for and
because the total size allocated is |A ∪B|, the division is non-wasteful.

Lemma 5. F is incentive-compatible.

In this proof we examine a general subset A1 which differs from the real interest
of player I, A. We look at the symmetric difference between those two subsets,
divide it into 4 disjoint sets, and one after the other show that zeroing the size
of a set cannot damage the player. Therefore, he has no interest to lie. This
theorem is proved in the full version of the paper [7].

Concluding, the mechanism F meets the demands of the theorem, thus com-
pleting the proof.

Say we choose f and examine the matching mechanism F , as described. If the
inputs for mechanism F are A,B, we can look at the 4-tuple of ratios created

by F :

(
|A|

|A ∪B| ,
|B|

|A ∪B| ,
|C|

|A ∪B| ,
|D|

|A ∪B|

)
. The above reduction shows that

the inputs a =
|A|

|A ∪B| , b =
|B|

|A ∪B| for mechanism f will result in the output

c =
|C|

|A ∪B| , d =
|D|

|A ∪B| . Since a + b =
|A|

|A ∪B| +
|B|

|A ∪B| ≥ 1 and since the

requests are aligned to different sides, the total demand made by the two players
is of size 1. Therefore, in this case, the 4-tuple of ratios is (a, b, c, d), which is
identical to the 4-tuple that was obtained by F on the inputs A,B.

7 A normalization of the results back to the original interval.
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4.2 Reduction From the General to the Aligned Model

Theorem 7. Let F = (C(A,B), D(A,B)) be an incentive-compatible and non-
wasteful mechanism for the general model. There exists an incentive-compatible
and non-wasteful mechanism f = (c(a, b), d(a, b)) for the aligned model, such
that for all a, b there exist A,B such that |A| = a, |B| = b, c(a, b) = |C(A,B)|
and d(a, b) = |D(A,B)|, and furthermore whenever a + b ≥ 1 we have that
A ∪B = [0, 1].

For mechanism F (A,B) as mentioned, we will define mechanism f(a, b) as fol-
lows:

– Find the division made by F in case both players want the whole cake:
F ([0, 1], [0, 1]) = (C̃, D̃). Since F is non-wasteful, C̃ % D̃ = [0, 1].

– Denote c(a, b) ≡ min
{
a,max

{
1− b, |C̃|

}}
– Denote d(a, b) ≡ min

{
b,max

{
1− a, 1− |C̃|

}}
– Give players I and II pieces [0, c(a, b)] and [1− d(a, b), 1] respectively.

Lemma 6. f = (c(a, b), d(a, b)) is non-wasteful and incentive-compatible.

Proof. f receives an aligned players’ input and divides the cake into aligned
pieces. The size |C̃| is between 0 and 1 (similar to θ). The sizes of the pieces that
the players receive (c(a, b) and d(a, b)) match the family of mechanisms that was
mentioned in the section about the aligned model, for θ = |C̃|. Therefore, f is,
in fact, the mechanism f|C̃| from that family. We already know that for aligned

players’ valuation function (as in this case), mechanisms from that family are
non-wasteful and incentive-compatible.

Lemma 7. For F = (C(A,B), D(A,B)) and f = (c(a, b), d(a, b)) as defined,
for all a, b there exists A,B such that |A| = a, |B| = b, c(a, b) = |C(A,B)|
and d(a, b) = |D(A,B)|, and furthermore whenever a + b ≥ 1 we have that
A ∪B = [0, 1].

This lemma is proved in the full version of the paper [7].

Concluding, the mechanism f meets the demands of the theorem, completing
the proof.

Say we choose F and examine the matching mechanism f , as described.
Denote the inputs of mechanism f as a, b. If a + b ≤ 1, choosing A =
[0, a], B = [1 − b, 1] as inputs for F will result in each of the players re-
ceiving all of his demand, causing an identical 4-tuple of ratios for the two

mechanisms:

(
a

a+ b
,

b

a+ b
,

a

a+ b
,

b

a+ b

)
. If a + b > 1, the union of the play-

ers’ demands is of size 1. The theorem shows that there are A,B such that
|A| = a, |B| = b, |C(A,B)| = c(a, b), |D(A,B)| = d(a, b) and furthermore,
|A ∪ B| = 1. Therefore, the ratio 4-tuples obtained by f(a, b) and F (A,B) (for
the specific A and B suggested in the theorem) are identical: (a, b, c, d).
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5 The Price of Truthfulness

As was mentioned in Remark 3, it is possible to show that for any 0 ≤ θ ≤
1 , θ 	= 1

2
, the competitive ratio of the social welfare of the mechanism fθ

(marked as ηfθ ), is < (8 − 4
√
3)−1. Using the two reductions from the last

section, we can conclude that there isn’t a non-wasteful, incentive-compatible,
deterministic mechanism for the general model with higher η. Moreover, Since
ηf 1

2

= (8− 4
√
3)−1, there is an incentive-compatible, non-wasteful deterministic

mechanism F for general model8 which achieves ηF = (8 − 4
√
3)−1 ≈ 0.93.

We will now prove a stronger claim - this upper bound still holds even if the
mechanism can be wasteful or randomized, as long as the valuation functions
are of the same form which we defined in the general model (actually, the exact
proof is even stronger and also works even if the players are limited only to the
aligned model’s valuation functions).

Theorem 8. (Price of Truthfulness) Any deterministic or randomized incentive-
compatible mechanism for cake cutting for two-players in the general model,
achieves at most a (8 − 4

√
3)−1 ≈ 0.93 fraction of the optimal welfare for some

player valuations.

Proof. Say each of the two players’ real demand is the whole cake: [0, 1]. We will
denote by p and q the expected sizes of the pieces of cake that the mechanism
gives player I and player II in that case, respectively. W.l.o.g we assume that

player I received the (weakly) smaller piece, p ≤ q and since p+ q ≤ 1, p ≤ 1

2
.

Now, we will examine what happens if player I’s demand is A = [0, 1 − τ ]
for some 0 ≤ τ ≤ 1, and player II’s demand remains unchanged. Intuitively, in
order to maximize the social welfare, as a player demands a smaller piece, the
mechanism needs to give him a larger allocation (in case he really asks for his
real demand). However, from incentive-compatibility, the size of the piece that
player I will receive can not be greater than p (if it did, it would have been better
for him to lie in the previous case and ask for the smaller piece instead of the
whole cake). We denote by p′, q′ the expected size of the pieces that the players
receive in that case.

Since ηF = min
A,B

E [SWF (A,B)]

SWmax(A,B)
, and we are checking only a specific subset of

inputs (of the form A = [0, 1− τ ], B = [0, 1]), we can say that for each of those
A,B:

ηF ≤ E [SWF (A,B)]

SWmax(A,B)
=

p′

1−τ + q′

1
1−τ
1−τ + τ

1

≤
p′≤p,1−τ≤1

q′≤1−p′

8 This mechanism is F that is generated by reduction 4.2 using the mechanism f 1
2
.
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p
1−τ + 1− p

1 + τ
=

1 + p
(

1
1−τ − 1

)
1 + τ

≤
1

1−τ −1>0

p≤ 1
2

1
2

1−τ + 1
2

1 + τ

The minimal value of this expression is (8− 4
√
3)−1 at τ = 2−

√
3.

Therefore, ηF ≤ (8− 4
√
3)−1

We remark again – there exists a mechanism F , in the general model, which
achieves the bound for a mechanism in that model, (8− 4

√
3)−1 ≈ 0.93. This is

the price of truthfulness.
On top of being incentive compatible, this mechanism is also deterministic,

non-wasteful and envy-free.
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Abstract. We design a new class of vertex and set cover games, where
the price of anarchy bounds match the best known constant factor ap-
proximation guarantees for the centralized optimization problems for lin-
ear and also for submodular costs. This is in contrast to all previously
studied covering games, where the price of anarchy grows linearly with
the size of the game. Both the game design and the price of anarchy
results are based on structural properties of the linear programming re-
laxations. For linear costs we also exhibit simple best-response dynamics
that converge to Nash equilibria in linear time.

1 Introduction

Distributed algorithms is a developing field that tries to address the novel com-
putational challenges of networked environments, such as the Internet. The pur-
pose of these systems is to coordinate numerous computational resources so as
to achieve a common goal, such as solving a large optimization problem. There is
a wide spectrum of approaches within distributed algorithm design, depending
on the level of coordination between different computational elements. On one
extreme, complete coordination is equivalent to centralized algorithms, whereas
in the other extreme, sometimes referred to as decentralized computation, there
exists no common goal but only local ones that depend on the information
available in the immediate neighborhood of each computational element. Such
solutions, when they exist, are highly sought after since they can tolerate failures
in individual subsystems, as well as evolving network topologies, including the
arbitrary addition/deletion of computational elements.
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A fundamental trend in mechanism design, often called implementation theory,
is to construct games where the Nash equilibria correspond to globally desirable
outcomes (see e.g. [16,8,30]). By appropriately setting up the rules and payoffs,
we can enforce the selfishly acting agents to arrive at an outcome realizing social
goals. An important assumption in these works is the existence of an omnipotent
central authority that collects the players’ choices, determines and enforces the
outcome. In contrast, we put emphasis on the distributed aspect: we do not allow
computations performed by a central authority and use of global information, but
require that the incentives of each agent/node need to be efficiently computable
based on information available in its immediate neighborhood.

The standard measure of the efficiency in algorithmic game theory is the price
of anarchy [26], the maximal ratio between the social cost of a Nash equilibrium
and that of the global optimal configuration. Intuitively, a low price of anarchy
implies that upon converging to a socially stable outcome, the quality of the
acquired solution is almost optimal from a central optimization perspective.

Games for vertex cover and set cover problems have already been studied,
however, all these approaches exhibit prohibitively high price of anarchy. Specif-
ically, Cardinal and Hoefer in [6] define a vertex cover game where the edges of
a network are owned by k agents. An agent’s goal is to have each of his edges
supplied by a service point at least one of its endpoints. There is a cost c(v) ≥ 0
associated to building a service point at vertex v. The strategy of an agent is
a vector consisting of offers to the vertices. Service points will be installed at
vertices where the total offer exceeds the cost of the vertex. Similar games are
defined by Buchbinder et al. [5] and by Escoffier et al. [11] for the more general
set cover problem.

A different approach was followed by Balcan et al. [2]. Here the agents are
the vertices of the graph, and their strategies are deciding whether they open a
service point. If opening a service point, vertex v incurs a cost c(v). If he decides
not to open, he has to pay a penalty for all edges incident to v whose other
endpoints are uncovered.

The price of anarchy is Θ(k) in [6] and Θ(n) in [2]. Indeed, if the underlying
network is a star, and each edge is owned by a different agent in the first case,
we get Nash equilibria with all leaves being service points. These guarantees
are significantly worse than the ones available in the centralized setting, where
simple factor 2-approximation algorithms exist [3].

We close this gap completely by designing a distributed game with low infor-
mation burden (i.e. the utilities of the agents depends on the state of their local
neighborhood/subnetwork) and high efficiency (i.e. low price of anarchy).

Specifically, we propose games (called “Mafia games”) for covering problems
with the price of anarchy being equal to the best constant factor approxima-
tion algorithms for the central optimization problems. We prove the following
theorem which is the summary of Theorems 3, 4, 5 and 6.

Theorem 1. The Mafia games for vertex cover, hitting set and submodular hit-
ting set always have pure Nash equilibria, and the price of anarchy is 2 for vertex
cover and d for (submodular) hitting set, where d is the maximum set cardinality.
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An important feature of our games is their distributed nature: we assume
no central authority for computing the outcome, and the payoff of every player
depends only on the decisions of their close neighbourhoods. We believe that
this technique may have a wider applicability to extend approximation results
from combinatorial optimization to the field of algorithmic game theory and
decentralized algorithm design.

Let us give a brief informal description of our vertex cover game. The agents
are the vertices, and the regulations delegate the responsibility of covering every
edge of the network to its two endpoints: both incur a high penalty if the edge is
left uncovered. The agents who open a service point can demand compensation
from their neighbors. This is justified since if u opens a service point, every
neighbor v benefits from this as the common responsibility of covering uv is taken
over by u. In the description, we use intuitive terminology of a Mafia (service
points) which provides “security” (covers edges). The vertices may choose to
join Mafia or to remain civilians. Each edge of the graph has to be “secured”,
that is, at least one endpoint must be in Mafia. Mafiosi can collect ransoms as
the price of security of the incident edges: if a vertex v chooses to be a mafioso,
his strategy also includes a ransom vector, so that the total ransom he demands
from his neighbors is c(v). It is a one-shot game and mafiosi can ransom both
their civilian and mafioso neighbors.

If v is a civilian, he has to pay to his neighbors in the Mafia all ransom they
demand. Furthermore, if there is an incident uncovered edge uv, that is, u is
also a civilian, both of them have to pay a huge penalty. In contrast, if v is a
mafioso, he has to pay c(v) for joining, and he receives whatever he can collect
from ransoms. However, mafiosi ransomed excessively obtain a protected status:
if the total demand from v is more than c(v), he satisfies only a proportional
fraction of the demands.

The model avoids bad Nash equilibria that are possible in [6] and [2]. As
an example, consider a star with all vertices having cost 1. We cannot have a
Nash equilibrium with the leaves forming the Mafia and the central vertex being
the single civilian: all leaves would demand ransom from the central agent, who
would then have a strong incentive to join the Mafia in order to obtain the
protected status.

As a different interpretation of the game, consider a road network with the
vertices representing cities. The maintenance of a road must be provided by a
facility at one of the endpoints. The cost of opening the facility dominates the
operating cost: if city v decides to open one at cost c(v), it is able to maintain
all incident roads. As a compensation, the cities can try to recollect the opening
cost by asking contributions from their neighbors. A city without a facility has
to pay all contributions he is asked to pay. However, if a city opens a facility, its
liability is limited and has to satisfy demands only up to his opening cost, c(v).

Our approach can be extended to the hitting set problem, which is equiva-
lent to the set cover problem. We are given a hypergraph G = (V, E), and a
cost function c : V → R+ on the vertices. Our aim is to find a minimum cost
subset M of V intersecting every hyperedge in E . This problem is known to be
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approximable within a factor of d, the maximum size of a hyperedge. In the
corresponding Mafia game, the hyperedges shall be considered as clubs in need
of security. A mafioso can assign ransoms to the clubs he is a member of, that
will be distributed equally to all other members of the club.

We shall prove that for the vertex cover and hitting set games, the price of an-
archy is 2 and d, respectively. Bar-Yehuda and Even gave a simple primal-dual
algorithm with this guarantee in 1981 [3]. No better constant factor approxi-
mation has been given ever since. Furthermore, assuming the Unique Games
Conjecture, Khot and Regev [20] proved that the hitting set problem cannot be
approximated by any constant factor smaller than d.

As a further extension, we also investigate the submodular hitting set (or set
cover) problem, that has received significant attention recently. The goal is to find
a hitting set M of a hypergraph minimizing C(M) for a submodular set function
C on the ground set. Independently, Koufogiannakis and Young [25] and Iwata
and Nagano [19] gave d-approximation algorithms. Our game approach extends
even to this setting, with the same price of anarchy d. This involves a new
agent, the Godfather, who’s strategy consists of setting a budget vector in the
submodular base polyhedron of C. Otherwise, the game is essentially the same
as the (linear) hitting set game.

Convergence and Complexity of Dynamics. The above price of anarchy
results imply that any Nash converging protocol, will reach an almost optimal
cover. However, there exist no a priori convergence speed guarantees for such
protocols in general games. So, in order to complete the picture we need to
argue about the convergence properties and speed of reasonable game dynamics
such as that of best response.

Indeed, in our covering games, we first show that even in simple instances,
round robin best-response dynamics1 may end in a loop. However, this can be
simply fixed by a slight modification of the payoff. We introduce a tie-breaking
rule for choosing amongst best responses, that does not affect the price of anarchy
results, but merely instigates the mafiosi to use more fair (symmetric) ransoms.
Given this breaking of ties, we show that actually a single round of best-response
dynamics under a simple selection rule of the next agent results in a Nash-
equilibrium. This dynamics in fact simulates the Bar-Yehuda–Even algorithm.
An analogous dynamics is shown in the case of hitting set. Moreover, these
dynamics can be interpreted in a distributed manner, enabling several agents to
change their strategies at the same time.2

We also state the following theorem (and omit the proof due to paper size
limits).

Theorem 2. For the vertex cover and hitting set covering games, there is a
best-response sequence of O(n) moves, such that we reach a Nash equilibrium.

1 These are the dynamics where each agent takes turn playing his best-response in a
cyclic ordering according to some fixed permutation.

2 In our games, the set of strategies is infinite as ransoms can be arbitrary real numbers.
However, if the vertex weights are integers, we can restrict possible ransoms to be
integers as well. All results of the paper straightforwardly extend to this finite game.
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Related Work. There is a vast literature on implementation theory and on dis-
tributed algorithmic mechanism design. Here we only focus on literature related
to covering games. The basic set cover games in [5], [11] and [2] fall into the class
of congestion games [32]. In the models of [5], [11], in the hitting set terminology,
the agents are the hyperedges that choose a vertex to cover them, and the cost
of the vertex is divided among them according to some rule. [5] investigates the
influence of a central authority that can influence choices by taxes and subsidies
in a best-response dynamics; [11] studies different cost sharing rules of the ver-
tices (“local taxes”). However, none of these methods achieve a constant price of
anarchy. The model of [2] can achieve a good equilibrium by assuming a central
authority that propagates information on an optimal solution to a fraction of the
agents. In contrast to [5] and [2], our model is defined locally, without assuming
a central authority.

Cardinal and Hoefer [7] define a general class of covering games, including the
vertex cover game [6], and also the selfish network design game by Anshelevich
et al. [1]. The game is based on a covering problem given by a linear integer
program. Variables represent resources, and the agents correspond to certain
sets of constraints they have to satisfy. An agent can offer money for resources
needed to satisfy her constraints. From each variable, the number of units cov-
ered by the total offers of the agents will be purchased and can be used by all
agents simultaneously to satisfy their constraints, regardless to their actual con-
tributions to the resource. Further generalizations of this model were studied by
Hoefer [15], and by Harks and Peis [14], investigating settings where the price
of each resource may depend on the number of players using it.

In the vertex cover or hitting set game, the resources are the service points
and the set of constraints belonging to the agents express that every (hyper)edge
owned by them has to be covered. In the model of [1], agent i wants to connect a
set of terminals Si in a graph G = (V,E) with edge costs c. Hence the variables
represent the edges of the graph and the constraints belonging to agent i enforce
the connectivity of Si.

Our games can be seen as the duals of these coverings games. That is, the
agents correspond to the variables, and are responsible for the satisfaction of the
constraints containing them. If a constraint is left unsatisfied, the participating
variables get punished. Also, a variable may require compensation (ransoms)
from other variables participating in the same constraints. These compensations
will correspond to a dual solution in a Nash equilibrium. We hope that our
approach of studying dual covering games might be extended to a broader class
of problems, with the price of anarchy matching the integrality gap.

Our result and the above papers are focused on noncooperative covering
games. A different line study in mechanism design focuses on cost sharing mech-
anism, e.g. [9,10,17,12,27,28].

The performance of behavioral dynamics in games and specifically establishing
fast convergence to equilibria of good quality has been the subject of intensive
recent research [22,23,35]. The importance of such results that go beyond the
analysis of performance of Nash equilibria has also been stressed in recent work
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[21,18,31] where it has been shown that even in simple and well studied games,
the performance of natural learning dynamics can be arbitrarily better than
(any convex combination of) the payoffs of Nash equilibria. A mini review of
this literature can be found here[29].

Recent work of Roughgarden et al. [33,4,34] has shown that the majority of
positive results in price of anarchy literature can be reduced to a specific common
set of structural assumptions. In contrast, in our work, we use a novel approach
by exploring connections to the LP relaxations of the underlying centralized
optimization problems. This connection raises interesting questions about the
limits of its applicability.

The rest of this extended abstract is organized as follows. Section 2 defines
the Mafia games for vertex cover, hitting set, and submodular hitting set. The
proofs of existence of Nash equilibria and the price of anarchy bound is given
only for vertex cover and omitted for the other two problems. Section 3 discusses
results on dynamics, and Section 4 possible further research directions.

2 The Mafia Games and Price of Anarchy Bounds

2.1 Vertex Cover

Given a graph G = (V,E), let c : V → R+ be a cost function on the vertices.
In the vertex cover problem, the task is to find a minimum cost set M ⊆ V
containing at least one endpoint of every edge in E. For a vertex v ∈ V , let
N(v) = {u : uv ∈ E} denote the set of its neighbors.

Game Definition. The Mafia Vertex Cover Game is a one-shot game on the
agent set V . The basic strategy of an agent is to decide being a civilian or a
mafioso. The set of civilians shall be denoted by C, the set of mafiosi (Mafia)
by M . For civilians, no further decision has to be made, while for mafiosi, their
strategy also contains a ransom vector. Each mafioso m ∈ M can demand ran-
soms from his neighbors totaling c(m). The ransom demanded from a neighbor
u ∈ N(m) is r(m,u) ≥ 0, with

∑
u∈N(v) r(m,u) = c(m). The strategy profile

S = (M,C, r) thus consists of the sets of mafiosi and civilians, and the ransom
vectors.

Let us call c(v) the budget of an agent v ∈ V , and let T >
∑

v∈V c(v) be a
huge constant. Let D(v) =

∑
m∈M r(m, v) be the demand asked from the agent

v ∈ V .
Let us now define the payoffs for a given strategy profile S. For a civilian v ∈ C,

let Pen(v) = T if v is incident to an uncovered edge, that is C ∩N(v) 	= ∅, and
Pen(v) = 0 otherwise. The utility of v ∈ C is US(v) = −D(v)− Pen(v).

If v ∈ M and the total demand from v is D(v) > c(v) (i.e. v is asked too
much), we call v protected and denote the set of protected mafiosi by P ⊆ M .
The real amount of money that the protected mafioso p ∈ P pays to his neighbors

is scaled down to c(p)
D(p)r(u, p). Let F

−(v) = min{D(v), c(v)} be the total amount

the mafioso v pays for ransom.
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Let F+(v) =
∑

u∈N(v)\P r(v, u) +
∑

u∈N(v)∩P
c(u)
D(u)r(v, u) denote the income

of v ∈ M from the ransoms. Then the utility of a mafioso v ∈ M is defined as
US(v) = −c(v) + F+(v)− F−(v).

This means v has his initial cost c(v) for entering the Mafia, receives full
payment from civilians and unprotected mafiosi, receives reduced payment from
protected mafiosi, and pays the full demand to his neighboring mafiosi if v is
unprotected, or reduced payment if v is protected.

The Existence of Pure Nash Equilibria. Pure Nash equilibria are (de-
terministic) strategy outcomes such that no agent can improve her payoff by
unilaterally changing her strategy. We will start by establishing that our game
always exhibits such states. The following is the standard linear programming
relaxation of vertex cover along with its dual.

min
∑
v∈V

c(v)x(v) (P-VC)

x(u) + x(v) ≥ 1 ∀uv ∈ E

x ≥ 0

max
∑
uv∈E

y(uv) (D-VC)

∑
uv∈E

y(uv) ≤ c(u) ∀u ∈ V

y ≥ 0

For a feasible dual solution y we say that the vertex v ∈ V is tight if
∑

uv∈E y(uv) =
c(v). We call the pair (M, y) a complementary pair if M is a vertex cover, y is a
feasible dual solution, and each v ∈ M is tight with respect to y. The followingwell-
known claim states that a complementary solution provides good approximation.

Lemma 1. If (M, y) is a complementary pair, then M is a 2-approximate so-
lution to the vertex cover problem.

The simple approximation algorithm by Bar-Yehuda and Even [3] returns a
complementary pair, and therefore has approximation factor 2. We start from
y = 0 and M = ∅. In each step, we pick an arbitrary uncovered edge uv, and raise
y(uv) until u or v becomes tight. We add the tight endpoint(s) to M and iterate
with a next uncovered edge. It is straightforward that the algorithm returns a
complementary pair (M, y). Our next lemma proves that a complementary pair
provides a Nash equilibrium.

Lemma 2. Let (M, y) be a complementary pair, and consider the strategy profile
where the agents in M form the Mafia and C = V \ M are the civilians. For
u ∈ M , define r(u, v) = y(uv) for every v ∈ N(u). Then the strategy profile
S = (M,C, r) is a Nash equilibrium.

Proof. Since D(v) ≤ c(v) for all players, there are no protected mafiosi. If v is a
civilian, his payoff is −D(v). He would not get a protected status if he entered
the Mafia as D(v) ≤ c(v), and thus his payoff would be −c(v)+F+(v)−D(v) ≤
−D(v) by arbitrary choice of ransoms. If v is a mafioso, he has F+(v) = c(v) as
none of his neighbors is protected. Thus his utility is −D(v), the maximum he
can obtain for any strategy. �
As an immediate consequence, we get the following.
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Theorem 3. The Mafia Vertex Cover Game always has a pure Nash equilib-
rium.

The Price of Anarchy. For a strategy profile S with α vertices incident to
uncovered edges, the sum of the utilities is −c(M)− αT . The Price of Anarchy
compares this sum in a Nash equilibrium at the worst case to the maximum value
over all strategy profiles, that corresponds to a minimum cost vertex cover.

Consider a strategy profile S that encodes a Nash equilibrium. First, observe
that Mafia M is a vertex cover due to the high penalties on uncovered edges.
We shall prove that the cost c(M) is at most twice the cost of an optimal vertex
cover, consequently, the price of anarchy is at most 2.

Lemma 3. Let the strategy profile S = (M,C, r) be a Nash equilibrium. Then
there are no protected mafiosi.

Proof. For a contradiction, suppose P is nonempty. First we show there exists
an edge mp ∈ E such that m ∈ M \ P , p ∈ P and r(m, p) > 0. Indeed, if there
were no such edges, then

∑
p∈P D(p) ≤

∑
p∈P c(p) as the ransoms demanded

from protected mafiosi are all demanded by others in P . However, by definition
D(p) > c(p) for all p ∈ P , giving

∑
p∈P D(p) >

∑
p∈P c(p), a contradiction.

Consider the edge mp ∈ E as above. If N(m) ⊆ M , then m could increase his
utility by becoming a civilian, as F−(m) = D(m) and F+(m) < c(m), whereas
he would receive −D(m) as a civilian. If there is a v ∈ C, mv ∈ E, then m could
increase his utility by decreasing r(m, p) to 0 and increasing r(m, v) by the same
amount. �

Lemma 4. Suppose the strategy profile S = (M,C, r) is a Nash equilibrium and
let v ∈ C. Then D(v) ≤ 2c(v).

Proof. Suppose the contrary: let D(v) > 2c(v) and thus US(v) < −2c(v). If
joining Mafia, v receives the protected status and thus gains utility at least
−2c(v) as F−(v) = c(v). �

Theorem 4. The price of anarchy in the Mafia game is 2.

Proof. Let S = (M,C, r) be a strategy profile in a Nash equilibrium. Using the
convention r(u, v) = 0 if u ∈ C, let us define y(uv) = r(u, v) + r(v, u) for every
edge uv ∈ E. We show that

∑
u∈V y(uv) ≤ 2c(v) for every v ∈ V . Indeed,

if v ∈ C, then
∑

u∈V y(uv) =
∑

u∈M r(u, v) = D(v) ≤ 2c(v) by Lemma 4.
If v ∈ M , then

∑
u∈V y(uv) =

∑
u∈N(v) r(v, u) + D(v) ≤ 2c(v) by Lemma 3.

Therefore 1
2y is a feasible solution to (D-VC) and∑

uv∈E

1

2
y(uv) =

1

2

∑
m∈M

∑
v∈V

r(m, v) =
1

2

∑
m∈M

c(m).

This verifies that the objective value for 1
2y is the half of the cost of the primal

feasible vertex cover M , proving that M is a 2-approximate vertex cover. �
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2.2 Set Cover and Hitting Set

In this section, we generalize our approach to the hitting set problem. Given
a hypergraph G = (V, E) and a cost function c : V → R+, we want to find a
minimum cost M ⊆ V intersecting every hyperedge. Let d = max{|S| : S ∈ E}.

The set cover problem is well-known to be equivalent to the hitting set prob-
lem. Also, without loss of generality we may define the hitting set game on a
d-uniform hypergraph. The general case can be easily reduced to it by adding
at most d− 1 new dummy elements of high cost.

Game Definition. We define the Mafia Hitting Set Game on a d-uniform hy-
pergraph G = (V, E). The set of agents is V , with v ∈ V having a budget c(v).
We shall call the hyperedges clubs. For an agent v ∈ V , let N (v) ⊆ E denote the
set of clubs containing v. The agents again choose from the strategy of being a
civilian or being a mafioso, denoting their sets by C and M , respectively. The
strategies of the mafioso m incorporates the ransoms r(m,S) for the clubs S
containing m, with

∑
S∈N (v) r(m,S) = c(m).

We define the payoffs for the strategy profile S = (M,C, r) similarly to the
vertex cover case. For a civilian v ∈ C, Pen(v) = T for a large constant T if v
participates in a club containing no mafiosi, and 0 otherwise.

In each club S, the ransom r(m,S) of a mafioso m ∈ S∩M has to be payed by

all other members at equal rate, that is, everyone pays r(m,S)
(d−1) to m. The demand

from an agent is the total amount he has to pay in all clubs he is a member of,
that is,

D(v) =
1

d− 1

∑
S∈N (v)

∑
m∈(M∩S)\{v}

r(m,S).

The utility of a civilian v ∈ C is defined as US(v) = −D(v)− Pen(v).
A mafioso v receives the protected status if D(v) > c(v). The set of protected

mafiosi is denoted by P , and they pay proportionally reduced ransoms. Let
F−(v) = min{D(v), c(v)} be the total amount v pays. The income is defined by

F+(v) =
∑

S∈N (v)

r(v, S)

d− 1

⎛⎝|S \ (P ∪ {v})|+
∑

u∈(S∩P )\{v}

c(u)

D(u)

⎞⎠ .

The utility of a mafioso v ∈ M is then US(v) = −c(v) + F+(v) − F−(v).
Analogously to vertex cover, we show the following.

Theorem 5. There exist pure Nash equilibria in the Mafia Hitting Set Game,
and the Price of Anarchy is at most d. The output of the Bar-Yehuda–Even
algorithm always gives a Nash equilbrium.

The proof is omitted. It is similar to the case of vertex cover; the difficult part
is showing the following analogue of Lemma 4.

Lemma 5. Let the strategy profile S = (M,C, r) be a Nash equilibrium and let
v ∈ C. Then D(v) ≤ d

d−1c(v).
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2.3 Submodular Hitting Set

In the submodular hitting set problem, we are given a hypergraph G = (V, E)
with a submodular set function C : 2V → R+, that is, C(∅) = 0, and

C(X) + C(Y ) ≥ C(X ∩ Y ) + C(X ∪ Y ) ∀X,Y ⊆ V.

We shall assume also that C is monotone, that is, C(X) ≤ C(Y ) if X ⊆ Y . Our
aim is to find a hitting set M minimizing C(M).

Koufogiannakis and Young [25], and Iwata and Nagano [19] obtained
d-approximation algorithms for this problem, where d is the maximum size of
a hyperedge. The primal-dual algorithm in [19] is a natural extension of the
Bar-Yehuda–Even algorithm.

A notion needed to define our game is the submodular base polyhedron:

B(C) = {z ∈ RV : z ≥ 0, z(Z) ≤ C(Z) ∀Z � V, z(V ) = C(V )}.

Game Definition. The Submodular Mafia Hitting Set Game is defined on a
hypergraph G = (V, E) and a monotone submodular set function C : 2V → R+.
There are |V | + 1 agents, one for each vertex and a special agent g, called the
Godfather.

The strategy of the Godfather is to return a budget vector c̃ ∈ B(C). The basic
strategy of an agent v ∈ V is to decide being a civilian or being a mafioso. The
strategy of a mafioso m further incorporates normalized ransoms r0(m,S) ≥ 0
for clubs S ∈ N (m) with

∑
S∈N (m) r0(m,S) = 1, that is, r0(m,S) expresses the

fraction of the budget of m he is willing to charge on S.
The sets of civilians and mafiosi will again be denoted by C and M , respec-

tively. Hence a strategy profile is given as S = (M,C, c̃, r0). The actual ransoms
will be r(m,S) = r0(m,S) · c̃(m).

The utility of the Godfather is the total budget of the Mafia: US(g) = C(M).
The utility of the vertex agents is defined the same way as for the linear Mafia
Hitting Set Game in Section 2.2, with replacing c(v) by c̃(v) everywhere.

For linear cost functions, we have C(Z) =
∑

v∈Z c(z). Then the only vector
in B(C) is c, hence the Godfather has only one strategy to choose. Therefore we
obtain the same game as described in Section 2.2. Our result can be summarized
as follows.

Theorem 6. There exist pure Nash equilibria in the Submodular Mafia Hitting
Set Game, and the Price of Anarchy is at most d. The output of the primal-dual
algorithm by Iwata and Nagano [19] always gives a Nash equilbrium.

The proof reduces to the linear Mafia Hitting Set Game, exploiting the fact the
whenever the Godfather has no incentive to change his strategy, from the perspec-
tive of the vertex players it is identical to a linear game with fixed budgets c̃.

3 Convergence to Nash Equilibrium

In this section, we investigate the Mafia Vertex Cover Game from the
best-response dynamics perspective. There exists an example showing that a
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best-response dynamics can run into a loop. The problem is due to assymetric
ransoms between mafiosi. We introduce secondary utilities motivated by this
phenomenon.

For a strategy profile S = (M,C, r), US(v) is the utility as defined in Sec-
tion 2.1. Let us define ŨS(v) = 0 if v ∈ C and ŨS(v) = −

∑
uv∈E,u∈M |r(u, v)−

r(v, u)| if u ∈ M . The total utility is then (US(v), ŨS(v)) in the lexicographic
ordering: the agents’ main objective is to maximize US(v), and if that is the
same for two outcomes, they choose the one maximizing ŨS(v).

ŨS(v) ≤ 0 and equality holds if r(u, v) = r(v, u) for every uv ∈ M , u, v ∈ M .
Therefore all results in Section 2.1 remain valid: in Lemma 2 we define a strategy
profile where ŨS(v) = 0 for all agents, hence it also gives a Nash equilibrium for
the extended definition of utilities. The secondary utility term Ũ does not affect
the proofs in Section 2.1.

Consider now the following simple dynamics: Start from the strategy profile
where all agents are civilians. In each step, take an agent who is incident to
uncovered edge and subject to this, minimizes c(v) − D(v), and give him the
opportunity to change his strategy.

Theorem 7. After each agent changing his strategy at most once, we obtain a
strategy profile in Nash equilibrium.

Proof. By induction, we shall prove that in every step, c(v) ≥ D(v) and ŨS(v) =
0 for all v ∈ V . Consider the next move: let the player v on move be such that he is
incident to some uncovered edges, and that minimizes c(v)−D(v). He obviously
has to enter the Mafia, and can achieve a maximal (primary and secondary)
utility if he sets r(v, u) = r(u, v) for any u ∈ M ∩N(v), and distributes the rest
of his ransoms arbitrarily to his civilian neighbors. Note that this can always
be done because c(v) ≥ D(v). Also, note that the total ransom v will demand
from other civilians is c(v) − D(v). By the extremal choice of v, it follows that
none of his civilian neighbors z will violate c(z) ≥ D(z). This also remains true
if z ∈ M , as D(z) is at most the total ransom z demands due to the symmetry
of the ransoms.

Hence the induction hypothesis is maintained by an arbitrary best response of
v. A mafioso who is not protected and has secondary objective 0 has no incentive
to change his strategy. Also, a civilian v with c(v) ≥ D(v) has no incentive to
join the Mafia if there are no uncovered edges incident to v. Consequently, the
game ends after all uncovered edges are gone, and once an agent joins to Mafia,
he would not change his strategy anymore. �

Observe that the dynamics is closely related to the Bar-Yehuda–Even algo-
rithm: if the next agent always ransoms only one of its civilian neighbors, then
it corresponds to a possible performance of the algorithm.

The above dynamics can be naturally interpreted in a distributive manner.
In the proof of Theorem 7, we only use that the vertex v changing his strategy
is a local minimizer of c(v)−D(v). The simultaneous move of two agents u and
v could interfere only if uv ∈ E or they have a neighbor t in common. In this
case, c(t) < D(t) could result if both u and v start ransoming t simultaneously.
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We assume that the agents have a hierarchical ordering ≺: u ≺ v expresses
that v is more powerful than u. We call an agent v a local minimizer if v ∈ C,
v is incident to some uncovered edges, and c(v)−D(v) ≤ c(u)−D(u) whenever
u ∈ C, uv ∈ E. A local minimizer v is then called eligible if u ≺ v for all local
minimizers u whose distance from v is at most 2.

We start from C = V . In each iteration of the dynamics, we let all eligible
agents change their strategy to a best response simultaneously. As in the proof of
Theorem 7, c(v)−D(v) ≥ 0 is maintained for all v ∈ V , and thus the dynamics
terminates after each agent changes his strategy at most once.

In contrast to efficient distributed algorithms for vertex cover in the literature
(e.g. [24]), we cannot give good bounds on the number of iterations of our dis-
tributed dynamics. For example, if the graph is a path v1 . . . vn, and the budgets
are c(vi) = i, then only agent i will move in step i. Yet we believe that our
dynamics could be practically efficient.

This result could be extended to the hitting set game, with a more sophisti-
cated choice of the next player. There also exists a bad example for submodular
hitting set.

4 Conclusions and Further Research

We have defined games whose Nash equilibria correspond to certain covering
problems, with the price of anarchy matching the best constant factor approx-
imations. The payoffs in these games are locally defined, and the analysis is
based on the LP relaxations of the corresponding covering problems. An intrigu-
ing question is if similar mechanisms can be designed for further combinatorial
optimization problems.

The first natural direction would be to extend our approach to a broader
class of covering games. The most general approximation result on covering
games is [25], giving a d-approximation algorithm for minimizing a submodular
function under monotone constraints, each constraint dependent on at most d
variables. As a first step, one could study hitting set with the requirement that
each hyperedge S must be covered by at least h(S) ≥ 1 elements; a simple
primal-dual algorithm was given in [13]. However, extending our game even to
this setting does not seem straightforward.

One could also try to formulate analogous settings for classical optimization
problems such as facility location, Steiner-tree or knapsack. One inherent dif-
ficulty is that in our analysis, it seems to be crucial that any greedily chosen
maximal feasible dual solution gives a good approximation. Also, we heavily
rely on the fact that each constraint contains at most d variables.

In Section 3, we have shown that the best response dynamics rapidly converges
for vertex cover and hitting set under certain assumptions. Stronger convergence
results might hold: for example, it is open if arbitrary round robin best response
dynamics converge to a Nash equilibrium. For the Submodular Mafia Hitting
Set Game, no convergence result is known.
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Abstract. We develop efficient algorithms to construct approximately
utility maximizing mechanisms for a risk averse seller in the presence of
potentially risk-averse buyers in Bayesian single parameter and multi-
parameter settings. We model risk aversion by concave utility function.
Bayesian mechanism design has usually focused on revenue maximization
in a risk-neutral environment, and while some work has regarded buyers’
risk aversion, very little of past work addresses the seller’s risk aversion.

We first consider the problem of designing a DSIC mechanism for a
risk-averse seller in the case of multi-unit auctions. We give a poly-time
computable pricing mechanism that is a (1− 1/e − ε)-approximation to
an optimal DSIC mechanism, for any ε > 0. Our result is based on a
novel application of correlation gap bound, that involves splitting and
merging of random variables to redistribute probability mass across buy-
ers. This allows us to reduce our problem to that of checking feasibility
of a small number of distinct configurations, each of which corresponds
to a covering LP.

DSIC mechanisms are robust against buyers’ risk aversion, but may
yield arbitrarily worse utility than the optimal BIC mechanisms, when
buyers’ utility functions are assumed to be known. For a risk averse seller,
we design a truthful-in-expectation mechanism whose utility is a small
constant factor approximation to the utilty of the optimal BIC mecha-
nism under two mild assumptions: (a) ex post individual rationality and
(b) no positive transfers. Our mechanism simulates several rounds of se-
quential offers, that are computed using stochastic techniques developed
for our DSIC mechanism. We believe that our techniques will be useful for
other stochastic optimization problems with concave objective functions.

1 Introduction

Bayesian mechanism design has usually focused on maximizing expected revenue
in a risk-neutral environment, i.e. where all the buyers and the seller have linear
utility, and choose their strategy with the aim of maximizing their expected pay-
off. However, since the payoff is a random outcome that depends on other players’
valuations and strategies, there is risk associated with it. A standard model [5,15]
that captures risk aversion assumes that a player has a non-decreasing concave
utility function U : (−∞,∞) → (−∞,∞), so that when the payoff obtained is
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R, the player’s utility is U(R). The player may choose to express various levels
of risk aversion by specifying a suitable concave function as his utility, and then
his aim becomes to maximize his expected utility. While mechanism design in
a risk-neutral (linear utility) environment is well understood, many properties
tend to break down in the presence of risk aversion (concave utility). In this pa-
per, we develop efficient algorithms to compute mechanisms in the presence of
risk-averse players. We primarily focus on the single-parameter setting of k-unit
auctions, where each buyer wants at most one unit.

Our main results focus on maximizing expected utility for a risk-averse seller,
in the presence of potentially risk-averse buyers. Very little past work has stud-
ied the effect of a seller’s risk aversion. Even if the seller were risk-neutral,
risk aversion among buyers is enough to violate the revenue equivalence prin-
ciple established by Myerson [14], and an optimal Dominant Strategy Incentive
Compatible (DSIC) mechanism may generate less expected utility for the seller
compared to an optimal Bayesian Incentive Compatible (BIC) mechanism. This
is because when buyers are risk-averse, the seller can extract greater expected
revenue by offering a deterministic payment scheme to the buyers and charging
extra for this insurance [11]. Further, the gap between optimal DSIC and BIC
mechanisms for a risk averse seller is unbounded if buyers were risk neutral [9]
(see Example 1).

DSIC mechanisms have the attractive property that truth-telling is an equi-
librium for buyers as long as their utility functions are non-decreasing, thus they
are independent of buyers’ risk properties.1 This property does not hold when
computing optimal BIC mechanisms (or even truthful-in-expectation mecha-
nisms). This motivates the study of two problems: (a) an approximately optimal
DSIC mechanism for a risk averse seller, and (b) an approximately optimal BIC
mechanism for a risk averse seller when buyers are also risk averse.

DSIC Mechanism for a Risk-Averse Seller: We reiterate that DSIC mechanisms
are independent of buyers’ risk properties as long as their utility functions are
monotone. Myerson’s mechanism is the optimal mechanism for a risk neutral
seller, however it is not true for when the seller is risk averse. Further, a virtual
value maximization approach does not apply for such seller when he has at least
two units of inventory2. This is because the contributions of different buyers
is not additive when the seller has a non-linear utility function. The following
theorem summarizes our main result.

Theorem 1. For a risk averse seller, there is a poly-time computable determin-
istic sequential posted pricing mechanism (SPM) for multi-unit auctions with

1 We say that a (possibly randomized) mechanism is DSIC if truth-telling maximizes
every buyer’s utility for any set of bids by other buyers and any realization of random
bits used by the mechanism. It should be distinguished from the weaker notion of
truthful-in-expectation (TIE), where truth-telling maximizes every buyer’s expected
utility, where expectation is taken over the random bits of the mechanism.

2 With only one item to sell, at most one buyer pays in any realization, and the seller’s
utility can be maximized by scaling the bid values using the utility function.
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expected utility at least (1 − 1
e − ε)OPT, for any ε > 0, where OPT is the ex-

pected utility of an optimal DSIC mechanism.

Our techniques extend to give a constant approximation to optimal deterministic
DSIC mechanism in a multi-parameter setting, namely, when there are multiple
distinct items and unit-demand buyers.

In a related work, Sundarajan and Yan [16] designed DSIC mechanisms for
multi-unit auctions for a risk-averse seller when buyers’ valuation functions are
regular. They focus on designing mechanisms which do not even depend on the
seller’s own utility function, but simultaneously perform well with respect to
every concave utility. While this stronger benchmark may be useful when the
seller is unsure of his own utility, a mechanism that is simultaneously optimal
for all concave utility functions may not even exist. The stronger benchmark
also forces their approximation guarantees to be weaker – 1/8-approximation
for regular distributions (1/2 when there is unlimited supply of items). They
also exhibit a lower bound instance implying unbounded gap for general distri-
butions (even neglecting computational constraints). Non-regular distributions
are not uncommon – any multi-modal distribution is non-regular. Risk aversion
is important in the presence of such high variance distributions, which motivates
the design of mechanisms that are tailored to the seller’s utility function.

BIC Mechanisms for Risk-Averse Seller and Buyers: We next design a BIC
mechanism for multi-unit auctions, where buyers and seller may all be risk-
averse, and all utility functions are public knowledge. Eso and Futo [9] designed
optimal BIC mechanism for a risk-averse seller when buyers are risk-neutral: the
mechanism obtains deterministic revenue by transferring all uncertainty to the
buyers. However, such a strategy is infeasible when buyers are risk-averse too.
Further, the gap between optimal DSIC mechanism and optimal BIC mechanism
can be unbounded, as shown by the following example.

Example 1. Consider an instance with two buyers and a seller with two identical
items. Each buyer has valuation 1 for the item w.p. ε and 0 otherwise, and the
first buyer is risk-neutral. The seller’s utility function U is as follows: U(t) =
min{t, ε}. The utility optimal DSIC mechanism sets a price of 1 for each buyer,
and gets utility ε with probability less than 2ε, otherwise its utility is 0. So
the expected utility of an optimal DSIC is at most 2ε2. Consider the following
BIC mechanism: charge the first buyer ε in every realization without giving the
item (even when his value is zero), and set a price of 1 to the second buyer. If
the second buyer pays up (which happens w.p. ε), then transfer this 1 dollar to
the first buyer. The first buyer never gets the item, and makes zero expected
payment. The seller gets a revenue of ε in every realization, so his expected
utility is ε. Therefore the gap is unbounded as ε → 0. �
We design a BIC mechanism for a risk averse seller that is competitive against an
optimal BIC mechanism that satisfies two reasonable conditions: (a) if Ui is the
utility function of any buyer i, then Ui(t) = −∞ for any t < 0, which implies that
the mechanism is restricted to be ex post individually rational for every buyer,
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and (b) there is no payment from the seller to buyer in any realization (no
positive transfer). Our computed mechanism also satisfies these two conditions,
and is in fact truthful-in-expectation (TIE). Our approximation factor is (1 −
1/e)3 for k = 1, and approaches (1−1/e) as k becomes large. As a corollary, this
result bounds the gap between TIE mechanisms and reasonable BIC mechanisms.

Let γ(k) = (1 − kk

k!ek
); γ(1) = 1 − 1/e, and approaches (1 − 1√

2πk
) for large k.

The following theorem summarizes our result.

Theorem 2. There is a polynomial time algorithm to compute a TIE mecha-

nism for a k-unit auction with expected utility at least
(
1− 1

e

)2
γ(k)OPT where

OPT is the expected utility of an optimal BIC mechanism that respects the above
two conditions. Moreover, for k ≥ 1/ε3, there is a

(
1− 1

e − ε
)
-approximation.

For the case of IID buyers with identical utility functions, we show an improved
approximation factor of (1− 1

e − ε)γ(k).

Other Related Work: Most of the past work on risk-averse mechanism design
has focused on revenue maximization (risk-neutral seller) in presence of risk-
averse buyers. In this setting, Maskin and Riley [11] characterized optimal BIC
mechanism for selling a single item when buyers’ value distributions are IID,
again assuming that buyers’ utility functions are public knowledge. Their re-
sult uses Border’s inequality. We note that due to recent poly-time computable
generalizations of Border’s inequality to multiple items and non-identical dis-
tributions [3,7], the result of Maskin and Riley [11] easily extends to the same
setting. Further, revenue maximization when buyers’ preference are nonlinear
and multi-dimensional, is considered by Alaei et al [4]. Another well-known re-
sult states that under some natural assumptions on the buyers’ utility functions,
(Bayes-Nash equilibrium of) first-price auction with reserve generates greater
revenue than second-price auction with the same reserve [12,11,13].

Table 1 summarizes the best known poly-time approximation results for all
the different risk averse settings and benchmarks discussed above.

1.1 Overview of Techniques

Every DSIC mechanism offers a price to each buyer as a function of other buyers’
bids and the buyer is allocated an item when his valuation is more than the
offered price. We argue that a (1 − 1

e )-approximate (randomized) SPM can be
obtained by using the same price distribution as that offered to each buyer in
the optimal mechanism, except that the prices are now set independently (see
Lemma 4). The argument uses the correlation gap bound of Agrawal et. al. [1] for
submodular objectives. Sampling from the randomized SPM yields a satisfactory
deterministic SPM. However, this is only an existential result, since getting the
randomized SPM requires oracle access to a utility-optimal DSIC mechanism.
Our main technical contribution is to show that it suffices (with same loss factor
of (1−1/e)) to match the optimal mechanism only in the sum of sale probabilities
over all buyers, and not the sale probability for each buyer, at every price. That is,
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Table 1. Summary of approximation results for k-unit auctions

Type of risk
environment

Comp. with Opt. DSIC Comparison with Optimal BIC
Poly-time DSIC 1 Poly-time TIE 2 Poly-time BIC 2

risk-neutral seller,
risk-neutral buyers

1 [Myerson ’81] 1
[Myerson ’81]

1 [Myerson ’81]

risk-neutral seller,
risk-averse buyers

1 [Myerson ’81] γ(k) 3

[Full Version]
1 [Alaei et al ’12]

risk-averse seller,
risk-neutral buyers

(1− 1/e − ε)
[Theorem 1]

(1− 1/e)2γ(k)− ε
[Theorem 2]4

1 [Eso-Futo ’99]

risk-averse seller,
risk-averse buyers

(1− 1/e − ε)
[Theorem 1]

(1− 1/e)2γ(k)− ε
[Theorem 2]4

(1 − 1/e)2γ(k) − ε
[Theorem 2]4

a Need to know seller’s utility function. Independent of buyers’ utility functions as
long as they are non-decreasing.

b Need to know both seller and buyers’ utility functions.
c γ(k) = (1− kk

k!ek
). γ(1) = 1− 1/e, and it approaches (1− 1√

2πk
) for large k.

d Improves to (1 − 1/e)γ(k) − ε for IID buyers. Further, the factor improves to (1 −
1/e− ε) if k ≥ 1/ε3. Here, comparison is made only against optimal BIC satisfying:
(i) ex-post IR, and (ii) no positive transfers.

any two mechanisms that match in this coarse footprint will have approximately
equal expected utility. This property is a generalization of correlation gap bound
in [1], which not only introduces independence but also redistributes probability
mass across variables (see Lemma 8). The redistribution is achieved by splitting
andmerging random variables to transform one given mechanism to another that
matches the coarse footprint. Using a careful classification of prices, we show that
it suffices to match an even coarser footprint containing only constant number of
parameters, which define a configuration. The algorithm finds a feasible solution
for each configuration using a covering LP. Then, it simulates these SPMs, one
for each feasible configuration, to choose one with the highest expected utility.

To design a BIC mechanism when the seller as well as the buyers are risk-
averse, the techniques developed for DSIC mechanisms can be used to establish
that if allocation and payment functions of the optimal mechanism across buyers
are made independent, and inventory constraints removed, the utility will be at
least (1−1/e)OPTBIC. However, to convert such a soft mechanism into a mecha-
nism that strictly satisfies the inventory constraint is not easy: if we restrict the
allocation to buyers with top k payments in a realization of a soft mechanism,
a function which is submodular, the resulting mechanism is no longer BIC. Fur-
ther, distributions on the revenue from any two allocations in the mechanism
are incomparable (as the seller’s objective function is not linear), so restricting
to first k allocations in a realization of a soft mechanism can be arbitrarily bad.
To overcome this problem, we develop a mechanism with L → ∞ rounds, such
that in each round, each buyer is ignored with a high probability of (1 − 1/L).
We show that the revenue from each allocation in this mechanism has identical
distribution, and the loss in the expected utility caused by imposing the hard
inventory constraint is bounded.
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Organization: In Section 2, we provide some background material. In Sections
3 and 4, we present our main DSIC and BIC mechanisms, respectively. Missing
proofs and rest of the results are deferred to full version of the paper [6].

2 Preliminaries

Single Parameter Multi-unit Auctions: The seller provides a single type
of item (or service), of which he has k identical copies. There are n buyers
{1, 2, . . . n}, who have some private value for that service. Let buyer i have a
valuation of vi for the item (and he can consume only one unit), which is drawn,
independent of other buyers’ valuations, from a known distribution with cdf
Fi(x) = Pr [vi ≤ x]. We refer to v = (v1, v2 . . . vn) as the valuation vector.

Revenue, Utility and Optimality: The revenue Rev(M,v) of a mechanism
M, when the realized valuation vector is v, is the sum of payments from each
buyers. The expected revenue of a mechanism Rev(M) is Ev[Rev(M,v)]. In
this work, we assume that the seller has a monotonically increasing concave
utility function U, which also satisfies U(0) = 0. The utility of the mecha-
nism is U(Rev(M,v)), and the expected utility of the mechanism is U(M) =
Ev[U(Rev(M,v))]. Let OPTDSIC and OPTBIC denote the expected utility of
a utility-optimal DSIC and BIC mechanisms respectively. A mechanism is said
to be an α-approximation to optimal DSIC (or BIC) mechanism if U(M) ≥
αOPTDSIC (or U(M) ≥ αOPTBIC).

DSIC Mechanisms: It is well-known (eg. [14]) that a DSIC mechanism sets
a (possibly randomized) price for buyer i based on v−i but independent of vi,
and buyer i gets an item if and only if his valuation exceeds this price. So as
long as a buyer has a non-decreasing utility function, he will report truthfully in
a DSIC mechanism, for any realization of valuation vector and random bits of
the mechanism. Moreover, random bits do not help a DSIC mechanism obtain
greater utility, since the definition of DSIC implies that truthfulness must hold
even if the random bits were revealed prior to submitting bids. So there is a
utility-optimal DSIC mechanism which is deterministic.

Buyer’s Risk Aversion and BIC Mechanisms: Each buyer i is associated
with a publicly known monotone concave utility function Ui (defined on the
value of item received minus payment) with Ui(0) = 0. A BIC mechanism is
associated with two functions h(·, ·, ·) and g(·, ·, ·): h(i, j, v) is the probability
that for valuation v, buyer i is allocated an item for a payment of pj , and g(i, j, v)
is the probability that he pays pj and is not allocated an item for valuation v.
We refer to these two functions as the payment functions of the mechanism. We
note that the allocation and payment of a buyer is possibly correlated with other
buyers’ payments, allocations as well as their valuations. Thus, a mechanism is
BIC if and only if for each i, v, v′, we have∑

j (Ui(v − pj) (h(i, j, v)− h(i, j, v′)) + Ui(−pj) (g(i, j, v)− g(i, j, v′))) ≥ 0

We note, given any buyer i, we allow his payment to be randomized rather than
a fixed value as a function of buyer i’s valuation and whether he gets an item.
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This strictly gives more power to a risk-averse seller maximizing his expected
utility. This is in contrast to the setting considered by Maskin and Riley [11],
where it suffices to assume that buyer i’s payment for valuation v is a fixed value
as a function of v and whether he gets the item.

We define a soft randomized sequential mechanism as a mechanism without
inventory limit that arranges buyers in an arbitrary order, asks each buyer for
his valuation one-by-one. If the buyer i’s reported valuation is v, the mechanism
allocates an item to him independently w.p.

∑
j h(i, j, v). If he is allocated an

item, then the seller charges him pj w.p. h(i,j,v)∑
l h(i,l,v)

. When he is not allocated an

item, he pays pj w.p. g(i,j,v)∑
l g(i,l,v)

. Randomized sequential mechanisms are same as

soft randomized sequential mechanisms with an exception that they stop after
running out of inventory. We note that if a soft randomized sequential mechanism
is BIC, then the corresponding randomized sequential mechanism is also BIC.

Stochastic Dominance: Given two non-negative distributions D1 and D2, we
sayD1 stochastically dominates D2, denoted byD1 � D2, if ∀a ≥ 0, PrX�D1(X ≥
a) ≥ PrX�D2(X ≥ a). We note an important property of concave functions in
the following lemma.

Lemma 1. Given any non-decreasing concave function U, and three indepen-
dent non-negative random variables X,Y1, Y2, let D1 and D2 be the distributions
of Y1 and Y2 respectively. If D1 � D2, then
(a) EX,Y1�D1 [U(X + Y1)−U(Y1)] ≤ EX,Y2�D2 [U(X + Y2)−U(Y2)], and
(b) EX,Y1�D1 [U(X + Y1)−U(X))] ≥ EX,Y2�D2 [U(X + Y2)−U(X)]

3 Risk-Averse Seller: DSIC Mechanism

In this section, we construct a DSIC mechanism for a risk-averse seller for k-unit
auction, and prove Theorem 1. We first prove the existence of an SPM that
achieves a (1−1/e)-approximation to the optimal expected utility (Section 3.1),
however this result does not lead to an efficient implementation. We then identify
a set of sufficient properties of (1−1/e−ε)-approximate mechanisms that enables
us to construct a poly-time algorithm (Section 3.2).

3.1 Existence of a (1 − 1/e)-Approximate SPM

Given a set S = {x1, x2 . . . xn} of non-negative real number, let maxi{x1, x2 . . . xn}
denote the ith largest value in the set, and let it be zero if i > n. LetUk : Rn → R
be the function defined as Uk(S) = U(

∑k
i=1 maxi{x1, x2 . . . xn}), i.e. utility of

the sum of the k largest arguments. Let U(S) denote U∞(S) = U|S|(S), the
utility of the sum of all variables. We note an important property of Uk in the
following lemma; its proof is deferred to the full version of the paper.

Lemma 2. For any concave utility function U, and any k and n, the function
Uk : Rn → R is a symmetric, monotone and submodular.
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We shall use the following correlation gap bound established by Agrawal et. al.
[1] for monotone submodular functions.

Lemma 3. [1] Given n non-negative random variables X1, X2, ..., Xn with dis-
tributions D1, D2, ..., Dn, let D be an arbitrary joint distribution over these
n random variables such that the marginal distribution for each Xi remains
unchanged. Let Dind be the joint distribution where each Xi is sampled from
Di independent of X−i. Then for any monotone submodular function f over

X1, X2, ..., Xn, we have
EX∼Dind

f(X)

EX∼Df(X) ≥ 1− 1/e.

Let MOPT be a utility optimal DSIC mechanism for a k-unit auction. It follows
that in MOPT, every buyer i is offered a (random) price Pi as a function of other
buyers’ bids; he receives an item and pays the offered price if and only if his value
exceeds the price. The following lemma uses the correlation gap to establish the
existence of an SPM which is a (1− 1/e)-approximation to MOPT.

Lemma 4. Suppose that MOPT offers a (random) price Pi to each buyer i (the
prices Pi, 1 ≤ i ≤ n, may be correlated). Let M′ be a randomized SPM that
selects an independent random price P ′

i for each buyer, such that P ′
i and Pi have

the same marginal distribution, and offers items to buyers in decreasing order of
prices, until the items run out. Then U(M′) ≥ (1− 1/e)OPT.

Proof. Let Ri be the payment obtained in MOPT from buyer i. Note that Pi

and Ri are correlated random variables that depend on the realization of the
valuations, and Ri = Pi if vi > Pi, else Ri = 0. As at most k buyers can make a
positive payment in any realization of MOPT, we have

U(MOPT) = E [U(R1, R2 . . . Rn)] = E [Uk(R1, R2 . . . Rn)]

Let R′
i = P ′

i if vi > P ′
i , else R

′
i = 0. Since the SPM M′ orders buyers in decreas-

ing order of offer prices, so it collects the k largest acceptable prices as payment.
We have U(M′) = E [Uk(R

′
1, R

′
2 . . . R

′
n)]. Note that Ri and R′

i have the same
distribution for each i, except that R1, R2 . . . Rn are correlated variables, while
R′

1, R
′
2 . . . R

′
n are mutually independent. Using the submodularity ofUk (Lemma

2) and the correlation gap (Lemma 3), we get

U(M′) = E [Uk(R
′
1, R

′
2 . . . R

′
n)] ≥ (1− 1/e)E [Uk(R1, R2 . . . Rn)]

= (1− 1/e)U(MOPT)

This completes the proof. �
Correlation gap was used by Yan [18] to show the same approximation ratio
for an SPM to expected revenue maximization. However, for revenue maximiza-
tion, it suffices for the SPM to match a revenue-optimal mechanism only in
the probability of sale to each buyer, which solely determines the buyer’s con-
tribution to expected revenue. In contrast, for the utility maximization result
of Lemma 4, the SPM should match a utility-optimal mechanism in the entire
distribution of prices to each buyer. Also, the SPM for revenue maximization is
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poly-time computable, since a revenue-optimal mechanism is known (Myerson’s
mechanism). To the best of our knowledge, the SPM designed in Lemma 4 is not
poly-time computable: constructing it would need an oracle access to a utility-
optimal mechanism. Further, as we have to match MOPT for each buyer-price
pair, guessing the entire price distribution would require time exponential in the
number of buyers.

3.2 Algorithm to Compute a (1 − 1/e − ε)-Approximate SPM

We now present a polynomial time algorithm to compute an SPM whose approx-
imation guarantee essentially matches the existential result above. To simplify
the exposition of our algorithm, we assume that prices offered by any truthful
mechanism belong to some known set P = {p1, p2, . . .} whose size is polynomial
in n. Let πij be the probability that buyer i is offered price pj in MOPT; and
qj =

∑
i πij(1−Fi(pj)), i.e. qj is the total probability of sale of an item at price

pj summed over all buyers in MOPT.
We divide the prices in P into 3 classes, small, large and huge. Fix some

1 > ε > 0. Let Phg be the set of huge prices defined as pj ≥ U−1(OPT/ε). The
distinction between small and large prices depend more intricately on the optimal
mechanism. Let p∗ be the largest price such that

∑
U−1(OPT/ε)>pj≥p∗ qj ≥ 1/ε4,

i.e. the threshold where the total sale probability of all large prices add up to
at least 1/ε4. If such a threshold does not exist, then let p∗ = 0 (note that p∗
must be zero if k < 1/ε4). Let Psm be all prices less than p∗, so that Plg = {pj |
U−1(OPT/ε) > pj ≥ p∗}.

In the following lemma, we present a key set of sufficient conditions for a
(1 − 1/e − ε)-approximate mechanism which forms the basis of our algorithm;
we defer its proof to later in the section.

Lemma 5. Consider any SPM M′, that offers price pj to buyer i w.p. π′
ij ,

such that (a)
∑

i,pj∈Psm
pjπ

′
ij(1− Fi(pj)) =

∑
pj∈Psm

pjqj, (b) for each pj ∈ Plg,∑
i π

′
ij(1 − Fi(pj)) = qj, (c)

∑
i,pj∈Phg

U(pj)π
′
ij(1 − Fi(pj)) =

∑
pj∈Phg

U(pj)qj

and (d)
∑

i,pj∈P π′
ij(1−Fi(pj)) ≤ k. Then we have U(M′) ≥ (1− 1

e −O(ε))OPT.

Lemma 5 states that instead of matching MOPT in the probability mass of each
<buyer, large-price> pair, it suffices to match the total probability mass at each
large price, summed over all buyers. Thus the probability mass can be redis-
tributed across buyers without much loss in utility.

Further, Lemma 5 effectively states that the contribution of the small prices
and the large prices can be linearized. Intuitively, if the small prices make a signif-
icant contribution to utility, then the mechanism must be collecting many small
prices, so the total revenue from small prices exhibits a concentration around
its expectation. Moreover, whenever a huge price is obtained in a realization, we
can neglect the contribution from all other buyers in that realization, without
losing much of the expected utility. So the contribution of huge prices can be
measured separately. This separation of huge and small prices from large prices
enables us to keep the number of distinct large prices to at most a constant.
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Algorithm: We give an outline of the algorithm; the details are deferred to the
full version of the paper. From Lemma 5, it suffices to match MOPT in (a) the
expected revenue from the small prices (R), (b) the expected contribution to
utility from the huge prices H , and (c) the total sale probability at each large
price (qj). The values of these parameters define a configuration, and we guess the
value of each parameter with appropriate discretization. The number of distinct
configurations is bounded by 2poly(1/ε). For each configuration, we check if there
exists an SPM satisfying the configuration, using the covering linear program
(LP) below. In the LP, the variable xij denotes the probability that buyer i is
offered price pj . ∑

i (1− Fi(pj))xij ≥ qj ∀pj ∈ Plg∑
i,pj∈Psm

(1− Fi(pj)) pjxij ≥ R∑
i,pj∈Phg

(1− Fi(pj))U(pj)xij ≥ H∑
i,j (1− Fi(pj))xij ≤ k∑

j xij ≤ 1 ∀j
xij ∈ [0, 1] ∀i, j

Any feasible solution to this linear program gives a distribution of prices for
each buyer, which gives us an SPM that satisfies the guessed configuration. We
iterate through all the configurations, and pick the best among these SPMs. A
deterministic SPM with desired utility guarantees can be easily identified by
sampling from this randomized SPM.

3.3 Proof of Lemma 5

We begin by introducing two operations on random variables, split and merge.
Using these two operations, we prove two key properties of random variables in
Lemmas 8 and 9; Lemma 5 would follow as a corollary of these two lemmas.

Split and Merge Operations: We now define two operations, merge and
split, on non-negative random variables. In the merge operation, given a set S of
independent non-negative random variables, let Xi, Xj be any two variables in S
such that Pr [Xi 	= 0]+Pr [Xj 	= 0] ≤ 1, then variables Xi, Xj are replaced by a
new variable Y such that, for each p > 0, Pr [Y = p] = Pr [Xi = p]+Pr [Xj = p]
and Y is independent of other variables in S\{Xi, Xj}.

The split operation breaks a random variable into a set of independent
variables. Formally, given a set S of non-negative (possibly correlated) random
variables, first the variables in S are made mutually independent, and then each
variable Xi ∈ S is split into an arbitrary pre-specified set of independent random
variables {Xi1, Xi2, ..., Xit} such that for each p > 0,

∑
1≤j≤t Pr [Xij = p] =

Pr [Xi = p] and the sets of variables created are also made mutually indepen-
dent. Intuitively, the merge operation introduces negative correlation. Analo-
gously, the split operation introduces independence. In Lemmas 6 and 7, we
establish useful properties of merge and the split operations for a concave non-
decreasing function; their proofs are deferred to the full version of the paper.
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Lemma 6. Let S be a set of independent non-negative random variables, Let
X1, X2 ∈ S, and let Y be the variable formed by merging X1 and X2. Then
E [Uk(S)] ≤ E [Uk((S \ {X1, X2}) ∪ {Y })].
Lemma 7. Consider a sequence of split operations on a set S of arbitrarily
correlated non-negative random variables and let S′ be the set of independent
random variables at the end of the split operation. Then E [Uk(S

′)] ≥ (1 −
1
e )E [Uk(S)].

Using these two operations, we establish an important property in the following
lemma, that not only introduces independence across correlated random vari-
ables, but also allows to redistribute the probability mass across variables.

Lemma 8. Given an arbitrarily correlated set S = {X1, X2, ..., Xn}of non-
negative random variables, consider any set S′ = {X ′

1, X
′
2, X

′
3, ..., X

′
m} of in-

dependent non-negative random variables, such that for each value pj > 0, we
have

∑
iPr [Xi = pj] =

∑
iPr [X ′

i = pj ]. Then for any concave function U and
any k > 0, we have E [Uk(S

′)] ≥ (1 − 1
e )E [Uk(S)].

Proof. We perform the split operation on S to create a set Y = {Yijl} of variables
as follows: for each 1 ≤ i ≤ n and pj > 0, create L → ∞ variables {Yijl|1 ≤ l ≤
L} where Yijl takes value pj w.p.

Pr[Xi=pj ]
L and 0 otherwise. Using Lemma 7,

we get that E [Uk(Y )] ≥ (1− 1
e )E [Uk(S)]

Now we perform merge operation repeatedly on variables in Y to simulate
variables in S′. The condition in the lemma statement ensures that such merg-
ing is always possible, since L → ∞. Then by Lemma 6, we get E [Uk(S

′)] ≥
E [Uk(Y )] ≥ (1− 1/e)E [Uk(S)]. �
The following lemma effectively states that, given a set of independent random
variables, the contribution to the utility of huge values can be separated, and
for small values, the variables can be replaced by their expectations; we defer its
proof to the full version of the paper.

Lemma 9. Given any ε > 0 and a set of independent non-negative random
variables S = {X1, X2, X3 . . .} such that Xi takes value pi w.p. πi and 0 other-
wise, where p1 ≥ p2 ≥ p3 ≥ . . . ≥ 0. Also, suppose that

∑
Xi∈S πi ≤ k. Let p̂ be

a price that satisfies p̂ ≥ U−1 (E [Uk(S)]/ε), and let p∗ be any price such that∑
pi∈[p∗,p̂) πi >

1
ε4 (p∗ is 0, if no such price exists). Also, let Ssm = {Xi|pi < p∗},

Slg = {Xi|p∗ ≤ pi < p̂}, and Shg = {Xi|pi > p∗}. Then∑
Xi∈Shg

E [U(Xi)] +E
[
U
(
E [Ssm] +

∑
Xi∈Slg

Xi

)]
∈ [1±O(ε)]E [Uk(S)]

Now we are ready to prove Lemma 5. The revenue from a buyer in a mechanism
can be represented by a random variable, possibly correlated with other buyers’
random variables. Let M′ be a mechanism that matches MOPT on the total
sale probability for each price, and its sale probability for each <buyer, large-
price> pair is same as M. Using Lemma 8, we get U(M′) ≥ (1−1/e)U(MOPT).
As M and M′ have (approximately) identical revenues from small prices and
utilities from huge prices, we can invoke Lemma 9 to establish that U(M) ≥
(1− ε)U(M′). This completes the proof.
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4 BIC Mechanism for Risk Averse Seller and Buyers

We now prove Theorem 2 by designing a BIC mechanism which satisfies the two
restrictions. Consider any mechanism M: let g(·, ·, ·) and h(·, ·, ·) be its payment
functions. Then we have g(i, j, v) = 0 for each i, v and payment pj (from ex-
post individual rationality assumption), thus it is not required to describe the
mechanism. Further, we have h(i, j, v) = 0 for each i, v and payment pj < 0 (from
no positive transfer assumption). Let MOPT be a utility optimal BIC mechanism
satisfying the two restrictions, and hOPT(·, ·, ·) be its payment function.

Overall Idea: Consider any soft randomized sequential mechanism M′ that
processes buyers independently (according to its payment function h(·, ·, ·) as
follows: it asks buyer i for his valuation; if it is v, then the item is given to him
w.p.

∑
j h(i, j, v), and when he gets the item, buyer i makes a payment of pj

w.p. h(i,j,v)∑
k h(i,k,v) ), and matches MOPT for (a) the total probability of each large

payment summed over all buyers, (b) the total revenue from small payments and
(c) the utility from huge payments. Using stochastic techniques developed for
DSIC mechanisms, we get U(M′) ≥ (1 − 1/e)OPT. However, converting such
soft mechanism into a mechanism that strictly satisfies the inventory constraint
while maintaining truthfulness is not easy. In the case of DSIC mechanisms, the
buyers were arranged in a decreasing order of prices, noting that top-k is a sub-
modular function. Here, if we allocate items to buyers with top-k payments in
a realization of M′, then the mechanism is no longer truthful. Further, as first-
k is not a sub-modular function, the desired approximation guarantee cannot
be proven if we process buyers according to a fixed order. We get around this
problem by constructing a mechanism with L → ∞ rounds, where in every
round, each buyer is processed independently w.p. 1/L. The revenue from each
allocation in this mechanism has an identical distribution. This helps to limit
the loss caused by imposing strict inventory constraints. We now describe our
mechanism in detail.

The Mechanism: Our mechanism Mrounds consists of L → ∞ rounds and
hrounds(·, ·, ·) is the payment function associated with it. In each round, buyers
arrive according to a predefined order. When buyer i arrives, subject to avail-
ability of items, he is independently processed with probability 1

L as follows: if
his reported valuation is v, then he is given an item w.p.

∑
j hrounds(i, j, v), and

whenever he is given an item, he makes a payment of pj w.p. hrounds(i,j,v)∑
l hrounds(i,l,v)

.

Once processed, buyer i is not considered for any future rounds. Further, the
payment function hrounds(·, ·, ·) satisfies following properties:

(a)
∑

i,v,pj∈Psm
pjhrounds(i, j, v)fi(v) =

∑
i,v,pj∈Psm

pjhOPT(i, j, v)fi(v),

(b) for each pj ∈ Plg,
∑

i,v hrounds(i, j, v)fi(v) =
∑

i,v hOPT(i, j, v)fi(v),
(c)
∑

i,v,pj∈Phg
U(pj)hrounds(i, j, v)fi(v) =

∑
i,v,pj∈Phg

U(pj)hOPT(i, j, v)fi(v),

(d) for each i, v, v′,
∑

j Ui(v − pj)hrounds(i, j, v) ≥
∑

j Ui(v − pj)hrounds(i, j, v
′),

and
(e)
∑

i,j,v hrounds(i, j, v)fi(v) ≤ k.
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We draw a parallel between the properties of hrounds(·, ·, ·) with the algorithm
developed in the case of DSIC mechanisms: the first three properties are equiv-
alent to designing a mechanism that matches MOPT in the total probability for
each large payment, the expected revenue from small payments and the expected
utility from huge payments. The fourth constraint establishes the truthfulness
of Mrounds, and the last constraint ensures its feasibility in expectation. Further,
Mrounds is a TIE mechanism: conditioned on processing buyer i in some round,
the payment function ensures truthfulness in terms of his expected utility.

The following lemma bounds the utility of Mrounds, we defer its proof to later
in the section.

Lemma 10. As L → ∞, U (Mrounds) ≥ (1− ε)
(
1− 1

e

)2
γ(k)OPT.

Algorithm: To construct an algorithm, we guess the total probability for each
large payment (qj), the utility from huge payments (H) and the revenue from
the small payments (R). The feasibility of a configuration can be checked using
a covering LP. There are 2poly(1/ε) configurations, and we select a feasible config-
uration with maximum expected utility. Further, the number of rounds can be
limited to O(n2) with a small loss in the approximation factor. To establish our
result, it remains to prove Lemma 10.

Proof of Lemma 10. We give an overview of the proof of Lemma 10; the de-
tailed proofs of intermediate steps are deferred to the full version of the paper.
Let Icopies be an instance of the problem where each buyer is split into L inde-
pendent copies, the copies of buyer i are i1, i2, ..., iL, and the valuation for each
copy is drawn independently from Fi. Consider a mechanism Msoft on Icopies with
L iterations. The lth copy of every buyer is considered in the lth iteration; when
buyer il arrives, Msoft discards him w.p. (1 − 1/L), otherwise it processes him
according to hrounds(i, ·, ·). In the following lemma, we lower bound the utility of
Msoft; its proof follows from Lemma 8 and Lemma 9.

Lemma 11. U(Msoft) ≥ (1 − 1/e− ε)OPT.

To simplify notation, in the rest of the proof, we refer to the payment function
of Msoft by h(·, ·, ·). Further, let kexp =

∑
i,j,v hrounds(i, j, v)fi(v); note kexp ≤ k.

Observe that mechanisms Mrounds and Msoft are equivalent with two excep-
tions: (a) hard inventory constraint of Mrounds, and (b) Msoft can process more
than one copy of a buyer in a realization. We first address the issue of the inven-
tory constraint. Using the correlation gap, we get that the expected number of
allocations in Msoft after first k allocations is at most kexp/e. This alone is not
sufficient to prove the lemma as U is not linear. We note a crucial property of
Msoft in Lemma 12, it establishes that the revenue from any allocation in Msoft

has an identical distribution. Let Di be the distribution on the revenue from first
i allocations in Msoft.

Lemma 12. As L → ∞, we have PrXi�Di,Xi−1�Di−1 [(Xi −Xi−1) = pj ] =∑
i,v h(i,j,v)fi(v)

kexp
.

Consider a new mechanism Mhard on Icopies that is identical to Msoft with an
exception that it stops after k allocations. We now bound its utility.
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Lemma 13. As L → ∞, U(Mhard) ≥ γ(k)U(Msoft).

Now we address the issue that Mhard can process more than one copy of a buyer
in a realization. Note that the distribution on the revenue from all copies of first i
buyers in Mhard stochastically dominates the same in Mrounds. Using correlation
gap, the expected number of rounds in which buyer i is processed in Mhard after
first processing is 1/e. Thus the expected loss in the utility can be bounded by
a factor 1/e. This completes the proof. �
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Abstract. An exciting application of crowdsourcing is to use social net-
works in complex task execution. In this paper, we address the problem
of a planner who needs to incentivize agents within a network in order to
seek their help in executing an atomic task as well as in recruiting other
agents to execute the task. We study this mechanism design problem
under two natural resource optimization settings: (1) cost critical tasks,
where the planner’s goal is to minimize the total cost, and (2) time crit-
ical tasks, where the goal is to minimize the total time elapsed before
the task is executed. We identify a set of desirable properties that should
ideally be satisfied by a crowdsourcing mechanism. In particular, sybil-
proofness and collapse-proofness are two complementary properties in
our desiderata. We prove that no mechanism can satisfy all the desirable
properties simultaneously. This leads us naturally to explore approximate
versions of the critical properties. We focus our attention on approximate
sybil-proofness and our exploration leads to a parametrized family of pay-
ment mechanisms which satisfy collapse-proofness. We characterize the
approximate versions of the desirable properties in cost critical and time
critical domain.

1 Introduction

Advances in the Internet and communication technologies have made it pos-
sible to harness the wisdom and efforts from a sizable portion of the society
towards accomplishing tasks which are otherwise herculean. Examples include
labeling millions of images, prediction of stock markets, seeking answers to spe-
cific queries, searching for objects across a wide geographical area, etc. This
phenomenon is popularly known as crowdsourcing (for details, see [10] and [7]).
Amazon Mechanical Turk is one of the early examples of online crowdsourcing
platform. The other example of such online crowdsourcing platforms include
oDesk, Rent-A-Coder, kaggle, Galaxy Zoo, and Stardust@home.

P.W. Goldberg and M. Guo (Eds.): WINE 2012, LNCS 7695, pp. 212–226, 2012.
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In recent times, an explosive growth in online socialmedia has given a novel twist
to crowdsourcing applications where participants can exploit the underlying social
network for inviting their friends to help executing the task. In such a scenario, the
task owner initially recruits individuals from her immediate network to participate
in executing the task. These individuals, apart from attempting to execute the task
by themselves, recruit other individuals in their respective social networks to also
attempt the task and further grow the network. An example of such applications
include the DARPA Red Balloon Challenge [3], DARPA CLIQR quest [4], query
incentive networks [8], and multi-level marketing [6]. The success of such crowd-
sourcing applications depends on providing appropriate incentives to individuals
for both (1) executing the task by themselves and/or (2) recruiting other individu-
als. Designing a proper incentive scheme (crowdsourcing mechanism) is crucial to
the success of any such crowdsourcing based application. In the red balloon chal-
lenge, the winning team from MIT successfully demonstrated that a crowdsourcing
mechanism can be employed to accomplish such a challenging task (see [9]).

A major challenge in deploying such crowdsourcing mechanisms in realistic
settings is their vulnerability to different kinds of manipulations (e.g. false name
attacks, also known as sybil attacks in the literature) that rational and intelligent
participants would invariably attempt. This challenge needs to be addressed in
a specific manner for a specific application setting at the time of designing the
mechanism. The application setting is characterized, primarily, by the nature of
the underlying task and secondly, by the high level objectives of the designer.
Depending on the nature of the underlying task, we can classify them as follows.
Viral Task. A viral task is the one where the designer’s goal is to involve as
many members as possible in the social network. This kind of tasks do not have a
well defined stopping criterion. Examples of such a task include viral marketing,
multi-level marketing, users of a social network participating in an election, etc.
Atomic Task. An atomic task is one in which occurrence of a particular event
(typically carried out by a single individual) signifies the end of the task. By
definition, it comes with a well defined measure of success or accomplishment.
Examples of an atomic task include the DARPA Red Balloon Challenge, DARPA
CLIQR quest, query incentive networks, and transaction authentication in Bit-
coin system [1].

In this paper, we focus on the problem of designing crowdsourcing mech-
anisms for atomic tasks such that the mechanisms are robust to any kind of
manipulations and additionally achieve the stated objectives of the designer.

2 Prior Work

Prior work can be broadly classified into two categories based on the nature of
the underlying task - viral or atomic.

Viral Task. The literature in this category focuses, predominantly, on the prob-
lem of multi-level marketing. Emek et al.[6] and Drucker and Fleischer [5] have an-
alyzed somewhat similar models for multi-level marketing over a social network.
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In their model, the planner incentivizes agents to promote a product among
their friends in order to increase the sales revenue. While [6] shows that the ge-
ometric reward mechanism uniquely satisfies many desirable properties except
false-name-proofness, [5] presents a capping reward mechanism that is locally
sybil-proof and collusion-proof. The collusion here only considers creating fake
nodes in a collaborative way. In all multi-level marketing mechanisms, the rev-
enue is generated endogenously by the participating nodes, and a fraction of the
revenue is redistributed over the referrers. On slightly different kind of tasks,
Conitzer et al.[2] proposes mechanisms that are robust to false-name manipula-
tion for applications such as facebook inviting its users to vote on its future terms
of use. Further, Yu et al.[11] proposes a protocol to limit corruptive influence of
sybil attacks in P2P networks by exploiting insights from social networks.
Atomic Task. The red-bal loon challenge [3], query incentive networks [8], and
transaction authentication in Bitcoin system [1] are examples of atomic tasks.
The reward in such settings is exogenous, and hence the strategic problems are
different from the viral tasks such as multi-level marketing. Sybil attacks still
pose a problem here. Pickard et al.[9] proposed a novel solution method for Red
Balloon challenge and can be considered as an early work that motivated the
study of strategic aspects in crowdsourcing applications. [1] provides an almost
uniform mechanism where sybil-proofness is guaranteed via iterated elimination
of weakly dominated strategies. The work by Kleinberg and Raghavan [8] deals
with a branching process based model for query incentive networks and proposes
a decentralized reward mechanism for the nodes along the path from the root to
the node who answers the query.

3 Contributions and Outline

In this paper, we propose design of crowdsourcing mechanisms for atomic tasks
such that the mechanisms are robust to any kind of manipulations and addition-
ally achieve the stated objectives of the designer. Our work is distinct from the
existing body of related literature in the following aspects.
(1) Collapse-Proofness: We discover that agents can exhibit an important
strategic behavior, namely node collapse attack, which has not been explored
in literature. Though the sybil attack has been studied quite well, a sybil-proof
mechanism cannot by itself prevent multiple nodes colluding and reporting as a
single node in order to increase their collective reward. A node collapse behavior
of the agents is undesirable because, (i) it increases cost to the designer, (ii) the
distribution of this additional payment creates a situation of bargaining among
the agents, hence is not suitable for risk averse agents, and (iii) it hides the
structure of the actual network, which could be useful for other future purposes.
A node collapse is a form of collusion, and it can be shown that the sybil-proof
mechanisms presented in both [1] and [5] are vulnerable to collapse attack. In
this paper, in addition to sybil attacks, we also address the problem of collapse
attacks and present mechanisms that are collapse-proof.
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(2) Dominant Strategy Implementation: In practical crowdsourcing sce-
narios, we cannot expect all the agents to be fully rational and intelligent. We,
therefore, take a complementary design approach, where instead of satisfying
various desirable properties (e.g. sybil-proofness, collapse-proofness) in the Nash
equilibrium sense, 1 we prefer to address a approximate versions of the same
properties, and design dominant strategy mechanisms. If a mechanism satisfies
an approximate version of a cheat-proof property then it means the loss in an
agents’ utility due to him following a non-cheating behavior is bounded (irre-
spective of what others are doing).
(3) Resource Optimization Criterion: The present literature mostly focuses
on the design of a crowdsourcing mechanism satisfying a set of desirable cheat-
proof properties. The feasible set could be quite large in many scenarios and
hence a further level of optimization of the resources would be a natural ex-
tension. In this paper, we demonstrate how to fill this gap by analyzing two
scenarios - (1) cost critical tasks, and (2) time critical tasks.

A summary of our specific contributions in this paper is as follows.

1. We identify a set of desirable properties and prove that not even a subset of
them are simultaneously satisfiable (Theorem 1).

2. We then prove a possibility result with one property relaxed, but the possi-
bility yields a very restrictive mechanism (Theorem 2).

3. Next, we propose dominant strategy mechanisms for approximate versions
of these properties, which is complementary to the solution provided by [1]
that guarantees sybil-proofness in Nash equilibrium.

4. The approximate versions help expand the space of feasible mechanisms,
leading us naturally to the following question: Which mechanism(s) should
be chosen from a bunch of possibilities? We ask this question in two natu-
ral settings: (a) cost critical tasks, where the goal is to minimize the total
cost, (b) time critical tasks, where the goal is to minimize the total time
for executing the task 2. The basic difference between these two scenarios is
that in (b) the goal of the designer is not to save money from the budget,
rather to dispense off the entire money satisfying the properties. Hope is
that with this excess amount of money, the agents will act promptly, leading
to a faster execution of the atomic task. Hence the name ‘time-critical’. We
provide characterization theorems (Theorems 4 and 5) in both the settings
for the mechanisms satisfying approximate properties.

To the best of our knowledge, this is the first attempt at providing approximate
sybil-proofness and exact collapse-proofness in dominant strategies with certain
additional fairness guarantees.

1 For example, the solution provided by Babaioff et al.[1] guarantees sybil-proofness
only in Nash equilibrium and not in dominant strategies.

2 Note, query incentive networks [8] and multi-level marketing [6] fall under the cat-
egory of cost critical tasks, while search-and-rescue operations such as red balloon
challenge [3] fall under that of time critical tasks.
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4 The Model

Consider a planner (such as DARPA) who needs to get an atomic task executed.
The planner recruits a set of agents and asks them to execute the task. The re-
cruited agents can try executing the task themselves or in turn forward the task to
their friends and acquaintances who have not been offered this deal so far, thereby
recruiting them into the system. If an agent receives separate invitations from mul-
tiple nodes to join their network, she can accept exactly one invitation.Thus, at any
point of time, the recruited agents network is a tree. The planner stops the process
as soon as the atomic task gets executed by one of the agents and offers rewards to
the agents as per a centralized monetary reward scheme, say R. Let T = (VT , ET )
denote the final recruitment tree when the atomic task gets executed by one of the
recruited agents. In T , the agent who executes the atomic task first is referred to as
the winner. Let us denote the winner as w ∈ VT . The unique path from the winner
to the root is referred to as the winning chain. We consider the mechanisms where
only winning chain receives positive payments.

For our setting, we assume that the planner designs the centralized reward
mechanism R, which assigns a non-negative reward to every node in the winning
chain and zero to all other nodes. Hence, we can denote the reward mechanism
as a mapping R : N × N → R+ where N is the set of natural numbers and R+

is the set of nonnegative reals. In such a mechanism, R(k, t), k ≤ t denotes
the reward of a node which is at depth k in the winning chain, where length of
the winning chain is t. The payment is made only after completion of the task.
Note, this reward mechanism is anonymous to node identities and the payment
is solely dependent on their position in T . Throughout this paper, we would
assume that the payment to all nodes of any non-winning chain is zero. Hence,
all definitions of the desirable properties apply only to the winning chain.

An example of such a reward mechanism is the geometric payment used by
[6] and [9]. These mechanisms pay the largest amount to the winner node and
geometrically decrease the payment over the path to the root. This class of
mechanisms are susceptible to sybil attacks. For example, the winning node can
create a long chain of artificial nodes, {x1, ..., xm}, and report that xi recruits
xi+1 and xm is the winner. Then each fake xi would extract payment from the
mechanism.

4.1 Desirable Properties

An ideal reward mechanism of our model should satisfy several desirable prop-
erties. In what follows, we have listed down a set of important properties that
must be satisfied by an ideal mechanism under dominant strategy equilibrium.

Definition 1 (Downstream Sybilproofness, DSP). Given the position of a
node in a recruitment tree, a reward mechanism R is called downstream sybil-
proof, if the node cannot gain by adding fake nodes below itself in the current
subtree (irrespective of what other are doing). Mathematically,

R(k, t) ≥ ∑n
i=0 R(k + i, t + n) ∀k ≤ t, ∀t, n. (1)
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Definition 2 (Budget Balance, BB). Let us assume the maximum budget
allocated by the planner for executing an atomic task is Rmax. Then, a mechanism
R is budget balanced if, ∑t

k=1 R(k, t) ≤ Rmax, ∀t. (2)

Definition 3 (Contribution Rationality, CR). This property ensures that
a node gets non-negative payoff whenever she belongs to the winning chain. We
distinguish between strict and weak versions of this property as defined below.
For all t ≥ 1, (1) Strict Contribution Rationality (SCR):

R(k, t) > 0, ∀k ≤ t, if t is length of the winning chain. (3)

(2) Weak Contribution Rationality (WCR):

R(k, t) ≥ 0, ∀k ≤ t − 1, if t is the length of the winning chain.
R(t, t) > 0, winner gets positive reward. (4)

DSP ensures that an agent in the network cannot gain additional payment by
creating fake identities and pretending to have recruited these nodes. SCR en-
sures that nodes have incentive to recruit, since all members of the winning chain
are rewarded.

There exist some reward mechanisms that satisfy these three properties. For
example, let us consider a mechanism that diminishes the rewards geometrically
in both k and t, i.e. R(k, t) = 1

2k+t · Rmax. This mechanism pays heavy to the
nodes near the root and less near the leaf. We call this class of mechanisms as
top-down mechanisms. This mechanism satisfies DSP, BB, and SCR properties
for any finite t. However, the best response strategy of the agents in this type of
mechanisms could introduce other kinds of undesirable behavior. For example,
the agents of any chain would be better off by colluding among themselves
and representing themselves as a single node in front of the designer, since if
the winner emerges from that particular chain, they would gain more collective
reward than they could get individually. We call this node collapse problem. This
introduces a two-fold difficulty. First, the designer cannot learn the structure of
the network that executed the task, and hence cannot use the network structure
for future applications. Second, she ends up paying more than what she should
have paid for a true network. Hence, in the scenario where designer is also willing
to minimize the expenditure, she would like to have collapse-proofness.

Definition 4 (Collapse-Proofness, CP). Given a depth k in a winning chain,
a rewardmechanismR is called collapse-proof, if the subchain of lengthp down below
k collectively cannot gain by collapsing to depth k (irrespective of what others are
doing). Mathematically,∑p

i=0 R(k + i, t) ≥ R(k, t − p) ∀k + p ≤ t, ∀t. (5)

In the following section, we will show that some of these properties are impossible
to satisfy together. To this end, we need to define a class of mechanisms, called
Winner Takes All (WTA), where the winning node receives a positive reward
and all other nodes get zero reward.
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Definition 5 (WTA Mechanism). A reward mechanism R is called WTA
mechanism if Rmax ≥ R(t, t) > 0, and R(k, t) = 0, ∀k < t.

5 Impossibility and Possibility Results

Theorem 1 (Impossibility Result). For t ≥ 3, no reward mechanism can
satisfy DSP, SCR, and CP together.

Proof: Suppose the reward mechanism R satisfies DSP, SCR, and CP. Then by
CP, let us put t ← t+n and p ← n in Equation 5, and we get,

∑n
i=0 R(k + i, t+

n) ≥ R(k, t+n−n) = R(k, t), ∀k ≤ t, ∀t, n. This is same as Equation 1 with the
inequality reversed. So, to satisfy DSP and CP together, the inequalities reduce
to the following equality.

R(k, t) =
∑n

i=0 R(k + i, t + n), ∀k ≤ t, ∀t, n. (6)

Now we use the following substitutions, leading to the corresponding equalities.

put k ← t − 2, t ← t − 2, n ← 2, to get,
R(t − 2, t − 2) = R(t − 2, t) + R(t − 1, t) + R(t, t) (7)
put k ← t − 1, t ← t − 1, n ← 1, to get,
R(t − 1, t − 1) = R(t − 1, t) + R(t, t) (8)
put k ← t − 2, t ← t − 2, n ← 1, to get,
R(t − 2, t − 2) = R(t − 2, t − 1) + R(t − 1, t− 1) (9)
put k ← t − 2, t ← t − 1, n ← 1, to get,
R(t − 2, t − 1) = R(t − 2, t) + R(t − 1, t) (10)

Substituting the value of Eq. 8 on the RHS of Eq. 9,

R(t − 2, t − 2) = R(t − 2, t− 1) + R(t − 1, t) + R(t, t) (11)

Substituting Eq. 11 on the LHS of Eq. 7 yields

R(t − 2, t) = R(t − 2, t − 1) (12)

From Eq. 12 and Eq. 10, we see that,

R(t − 1, t) = 0. (13)

which contradicts SCR. �

From the above theorem and the fact that additional properties reduce the space
of feasible mechanisms, we obtain the following corollary.

Corollary 1. For t ≥ 3, it is impossible to satisfy DSP, SCR, CP, and BB
together.

Theorem 2 (Possibility Result). For t ≥ 3, a mechanism satisfies DSP,
WCR, CP and BB iff it is a WTA mechanism.
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Proof: (⇐) It is easy to see that WTA mechanism satisfies DSP, WCR, CP
and BB. Hence, it suffices to investigate the other direction.

(⇒) From Equations 8 and 13, we see that, R(t− 1, t− 1) = R(t, t), which is
true for any t. By induction on the analysis of Theorem 1 for length t−1 in place
of t, we can show that R(t−2, t−1) = 0. But, by Eq. 12, R(t−2, t−1) = R(t−2, t).
Hence, R(t − 2, t) = 0. Inductively, for all t and for all k < t, R(k, t) = 0. It
shows that for all non-winner nodes, the reward would be zero. So, we can assign
any positive reward to the winner node and zero to all others, which is precisely
the WTA mechanism. This proves that for WCR, the reward mechanism that
satisfies DSP, CP and BB must be a WTA mechanism. �

6 Approximate Versions of Desirable Properties

The results in the previous section are disappointing in that the space of mech-
anisms satisfying desirable properties is extremely restricted (WTA being the
only one). This suggests two possible ways out of this situation. The first route
is to compromise on stronger equilibrium notion of dominant strategy and settle
for a slightly weaker notion such as Nash equilibrium. The other route could
be to weaken these stringent properties related to cheat-proofness and still look
for a dominant strategy equilibrium. We choose to go by the later way because
Nash equilibrium makes assumptions of all players being rational and intelligent
which may not be true in crowdsourcing applications. Therefore, we relax some
of the desirable properties to derive their approximate versions. We begin with
approximation of the DSP property.

Definition 6 (ε - Downstream Sybilproofness, ε-DSP). Given the position
of the node in a tree, a payment mechanism R is called ε - DSP, if the node
cannot gain by more than a factor of (1 + ε) by adding fake nodes below herself
in the current subtree (irrespective of what others are doing). Mathematically,

(1 + ε) · R(k, t) ≥ ∑n
i=0 R(k + i, t + n), ∀k ≤ t, ∀t, n. (14)

Theorem 3. For all ε > 0, there exists a mechanism that is ε-DSP, CP, BB,
and SCR.

Proof: The proof is constructive. Let us consider the following mechanism:
set R(t, t) = (1 − δ) · Rmax, ∀ t, the reward to the winner, where δ ≤ ε

1+ε . Also,
let R(k, t) = δ · R(k + 1, t) = δt−k · R(t, t) = δt−k(1 − δ)Rmax, k ≤ t − 1. By
construction, this mechanism satisfies BB. It is also SCR, since δ ∈ (0, 1). It
remains to show that this satisfies ε-DSP and CP. Let us consider,∑n

i=0 R(k + i, t + n) =
∑n

i=0 δt+n−k−i · R(t + n, t + n)

= δt−k · (1 + δ + · · · + δn) · (1 − δ)Rmax

= R(k, t) · (1 + δ + · · · + δn)

≤ R(k, t) · 1
1 − δ

≤ (1 + ε) · R(k, t), since δ ≤ ε

1 + ε
.
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This shows that this mechanism is ε-DSP. Also,∑p
i=0 R(k + i, t) =

∑p
i=0 δt−k−i · R(t, t)

=
∑p−1

i=0 δt−k−i · R(t, t) + δt−k−p · R(t, t)︸ ︷︷ ︸
=R(k,t−p)

≥ R(k, t − p)

This shows that this mechanism is CP as well. �

Discussion: (a) The above theorem suggests that merely weakening the DSP
property allows a way out of the impossibility result given in Theorem 1. One
can try weakening the CP property analogously (instead of DSP) and check for
the possibility/impossibility results. This we leave as an interesting future work.
(b) One may argue that no matter how small is ε, as long we satisfy the ε-DSP
property, an agent would always find it beneficial to add as many sybil nodes
as possible. However, in real crowdsourcing networks, there would be a non-zero
cost involved in creating fake nodes and hence there must be a threshold point
so that the agent’s net gain would increase till he creates that many sybil nodes
but starts declining after that. Note, it is impossible for an agent to compute the
threshold point a priori as his own reward is uncertain at the time of him getting
freshly recruited by someone and he trying to create sybil nodes. Therefore, in
the face of this uncertainty, the agent can assure himself of a bounded regret if
he decides not to create any sybil nodes.

6.1 Motivation for δ-SCR and γ-SEC

As per the previous theorem, the class of mechanisms that satisfy ε-DSP, CP,
BB, and SCR is non-empty. However, the exemplar mechanism of this class,
which was used in the proof of this theorem, prompts us to think of the follow-
ing undesirable consequence - the planner can assign arbitrarily low reward to
the winner node and still manage to satisfy all these properties. This could dis-
courage the agents from putting in effort by themselves for executing the task.
Motivated by this considerations, we further extend the SCR property by relax-
ing it to δ-SCR and also introduce an additional property, namely Winner’s γ
Security (γ-SEC).

Definition 7 (δ - Strict Contribution Rationality, δ-SCR). This ensures
that a node in the winning chain gets at least δ ∈ (0, 1) fraction of her successor.
Also the the winner gets a positive reward. For all t ≥ 1,

R(k, t) ≥ δR(k + 1, t), ∀k ≤ t − 1, t: winning chain.
R(t, t) > 0, winner gets positive reward. (15)

Definition 8 (Winner’s γ Security, γ-SEC). This ensures that payoff to the
winning node is at least γ fraction of the total available budget.

R(t, t) ≥ γ · Rmax, t is the winning chain (16)
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Discussion: (a) The δ-SCR property guarantees that recruiter of each agent on
the winning chain gets a certain fraction of the agent’s reward. This property will
encourage an agent to propagate the message to her acquaintances even though
she may not execute the task by herself. This would result in rapid growth of
the network which is desirable in many settings.
(b) On the other hand, γ-SEC ensures that the reward to the winner remains
larger than a fraction of the total reward. This works as a motivation for any
agent to spend effort on executing the task by herself.

In what follows, we characterize the space of mechanisms satisfying these
properties.

7 Cost Critical Tasks

In this section, we design crowdsourcing mechanisms for the atomic tasks where
the planner’s objective is to minimize total cost of executing the task.

Definition 9 (MINCOST over C ). A reward mechanism R is called MINCOST
over a class of mechanisms C , if it minimizes the total reward distributed to the
participants in the winning chain. That is, R is MINCOST over C , if

R ∈ arg minR′∈C

∑t
k=1 R′(k, t), ∀t. (17)

We will show that the MINCOST mechanism over the space of ε-DSP, δ-SCR, and
BB properties is completely characterized by a simple geometric mechanism,
defined below.

Definition 10 ((γ, δ)-Geometric Mechanism, (γ, δ)-GEOM). This mech-
anism gives γ fraction of the total reward to the winner and geometrically de-
creases the rewards towards root with the factor δ. For all t, R(t, t) = γ · Rmax;
R(k, t) = δ · R(k + 1, t) = δt−k · R(t, t) = δt−k · γRmax, k ≤ t − 1.

7.1 Characterization Theorem for MINCOST

Now, we will show that (γ, δ)-Geometric mechanism characterizes the space of
MINCOST mechanisms satisfying ε-DSP, δ-SCR, γ-SEC, and BB. We start with
an intermediate result.

Lemma 1. A mechanism is δ-SCR, γ-SEC and BB only if γ ≤ 1 − δ.

Proof: Suppose γ > 1 − δ. Then by δ-SCR, we have,∑t
k=1 R(k, t) ≥ (1 + δ + · · · + δt−1) · R(t, t) (18)

≥ (1 + δ + · · · + δt−1) · γRmax (19)

> (1 + δ + · · · + δt−1)(1 − δ)Rmax

This holds for all t ≥ 1. It must hold for t → ∞. Hence, limt→∞
∑t

k=1 R(k, t) >
1

1−δ · (1 − δ)Rmax = Rmax. Which is a contradiction to BB. �
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Theorem 4. If δ ≤ min{1 − γ, ε
1+ε}, a mechanism is MINCOST over the class

of mechanisms satisfying ε-DSP, δ-SCR, γ-SEC, and BB iff it is (γ, δ)-GEOM
mechanism.

Proof: (⇐) It is easy to see that (γ, δ)-GEOM is δ-SCR and γ-SEC by con-
struction. It is also BB since δ ≤ 1− γ or γ ≤ 1− δ. For the ε-DSP property, we
see that the following expression,∑n

i=0 R(k + i, t + n) =
∑n

i=0 δt+n−k−i · R(t + n, t + n)

= δt−k · (1 + δ + · · · + δn) · γRmax

= R(k, t) · (1 + δ + · · · + δn)

≤ R(k, t) · 1
1 − δ

≤ (1 + ε)R(k, t), as δ ≤ ε

1 + ε
.

Also for a given δ and γ, this mechanism minimizes the total cost as it pays each
node the minimum possible reward. Thus, δ-GEOM mechanism is MINCOST over
ε-DSP, δ-SCR, γ-SEC, and BB.

(⇒) Since δ ≤ 1 − γ, from Lemma 1, we see that δ-SCR, γ-SEC, and BB are
satisfiable. In addition the objective of the mechanism designer is to minimize
the total reward (Rtotal) given to the winning chain.

Rtotal =
∑t

k=1 R(k, t)
Eq. 19

≥ (1 + δ + · · · + δt−1) · γRmax

We require a mechanism that is also ε-DSP and minimizes the above quantity.
Let us consider a mechanism R1 that pays the leaf an amount of γRmax and
any other node at depth k, an amount δt−kγRmax. We ask the question if this
mechanism is ε-DSP. This is because if this is true, then there cannot be any other
mechanism that minimizes the cost, as this achieves the lower bound of Rtotal.
To check for ε-DSP of this mechanism, we consider the following expression.∑n

i=0 R1(k + i, t + n) =
∑n

i=0 δt+n−k−i · R1(t + n, t + n)

= δt−k · (1 + δ + · · · + δn) · γRmax

= R1(k, t) · (1 + δ + · · · + δn)

≤ R1(k, t) · 1
1 − δ

≤ (1 + ε)R1(k, t) since δ ≤ ε

1 + ε

implying R1 is also ε-DSP. Hence, R1 is the MINCOST mechanism over ε-DSP,
δ-SCR, γ-SEC, and BB. Note, R1 is precisely the (γ, δ)-GEOM mechanism. �

Discussion: It can be shown that, (γ, δ)-GEOM mechanism additionally satis-
fies CP. The proof is omitted due to space constraint.

8 Time Critical Tasks

In applications where the faster growth of network is more important than max-
imizing the surplus, the designer can spend the whole budget in order to incen-
tivize participants to either search for the answer or forward the information
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quickly among their acquaintances. In such settings, we can design mechanisms
which aim to maximize reward of the leaf node of the winning chain. In this sec-
tion, we show that such kind of mechanisms with the same fairness guarantees
can also be characterized by a similar mechanism that exhausts the budget even
for a finite length of the winning chain. In what follows, we define the design
goal and a specific geometric mechanism.

Definition 11 (MAXLEAF over C ). A reward mechanism R is called MAXLEAF
over a class of mechanisms C , if it maximizes the reward of the leaf node in the
winning chain. That is, R is MAXLEAF over C , if

R ∈ arg max
R′∈C

R′(t, t), ∀t. (20)

Definition 12 (δ-Geometric mechanism, δ-GEOM). This mechanism gives
1−δ
1−δt fraction of the total reward to the winner and geometrically decreases the re-
wards towards root with the factor δ, where t is the length of the winning chain. For
all t, R(t, t) = 1−δ

1−δt · Rmax; R(k, t) = δ · R(k + 1, t) = δt−k · R(t, t), k ≤ t − 1.

8.1 Characterization Theorem for MAXLEAF

Theorem 5. If δ ≤ ε
1+ε , a mechanism is MAXLEAF over the class of mechanisms

satisfying ε-DSP, δ-SCR, and BB iff it is δ-GEOM mechanism.

Proof: (⇐) By construction, the δ-GEOM mechanism is δ-SCR and BB for
all t. It is also ε-DSP, as,∑n

i=0 R(k + i, t + n) =
∑n

i=0 δt+n−k−i · R(t + n, t + n)

= δt−k · (1 + δ + · · · + δn) · R(t + n, t + n)

= δt−kR(t, t) · R(t + n, t + n)
R(t, t)

· 1 − δn+1

1 − δ

= R(k, t) · R(t + n, t + n)
R(t, t)

· 1 − δn+1

1 − δ

= R(k, t) ·
1−δ

1−δt+n · Rmax

1−δ
1−δt · Rmax

· 1 − δn+1

1 − δ
= R(k, t) · 1 − δn+1

1 − δt+n
· 1 − δt

1 − δ
.

Since 1−δn+1

1−δt+n ↑ n and 1−δt

1−δ ↑ t, we can take limits as n → ∞ and t → ∞
respectively to get an upper bound on the quantity of the RHS, which gives,

n∑
i=0

R(k + i, t + n) = R(k, t) · 1
1 − δ

≤ (1 + ε) · R(k, t),

since δ ≤ ε
1+ε . Hence this is ε-DSP. Suppose this is not MAXLEAF. Then ∃ some

other mechanism R′ in the same class that pays R′(t, t) > 1−δ
1−δt ·Rmax. Since, R′

is also δ-SCR,
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∑t
k=1 R′(k, t) ≥ (1 + δ + · · · + δt−1) · R′(t, t)

=
1 − δt

1 − δ
· R′(t, t) >

1 − δt

1 − δ
· 1 − δ

1 − δt
· Rmax = Rmax,

which is a contradiction to BB. Hence proved.
(⇒) Let R be a mechanism that is MAXLEAF over the class of mechanisms

satisfying ε-DSP, δ-SCR, and BB. Hence,

Rmax ≥
t∑

k=1

R(k, t)
Eq. 18

≥ 1 − δt

1 − δ
· R(t, t)

⇒ R(t, t) ≤ 1 − δ

1 − δt
· Rmax, for all t. (21)

The first and second inequalities arise from BB and δ-SCR respectively. Now,
from the ε-DSP condition of R, we get, for all n, t, k ≤ t,

(1 + ε)R(k, t) ≥ ∑n
i=0 R(k + i, t + n)

≥ ∑n
i=0 δt+n−k−i · R(t + n, t + n)

= δt−k · (1 + δ + · · · + δn) · R(t + n, t + n),

where the second inequality comes from δ-SCR of R. Rearranging, we obtain,

1 + ε ≥ δt−k · 1 − δn+1

1 − δ
· R(t + n, t + n)

R(k, t)
(22)

Since this is a necessary condition for any k ≤ t, it should hold for k = t in
particular. Using this in Equation 22 the necessary condition becomes,

1 + ε ≥ 1 − δn+1

1 − δ
· R(t + n, t + n)

R(t, t)
(23)

Now, we have two conditions on R(t + n, t + n) as follows.

R(t + n, t + n) ≤ (1 + ε) · 1 − δ

1 − δn+1
· R(t, t)

Eq. 21

≤ (1 + ε) · 1 − δ

1 − δn+1
· 1 − δ

1 − δt
· Rmax︸ ︷︷ ︸

=:A(n,t)

(24)

and using Eq. 21 directly on R(t + n, t + n), we get,

R(t + n, t + n) ≤ 1 − δ

1 − δt+n
· Rmax︸ ︷︷ ︸

=:B(n,t)

(25)

It is clear that to satisfy δ-SCR, ε-DSP and BB, it is necessary for R to satisfy,
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R(t + n, t + n) ≤ min
n,t

{A(n, t), B(n, t)}.

We can show the following bounds for the quantity B(n,t)
A(n,t) , which we skip due to

space constraints.
1

1 + ε
≤ B(n, t)

A(n, t)
≤ 1

(1 + ε)(1 − δ)
. (26)

Since δ ≤ ε
1+ε , we see that the upper bound 1

(1+ε)(1−δ) ≤ 1. Hence, A(n, t)
uniformly dominates B(n, t), ∀ n, t. Hence, R(t + n, t + n) ≤ B(n, t). Since R is
also MAXLEAF, equality must hold and it must be true that,

R(t, t) =
1 − δ

1 − δt
· Rmax, ∀ t. (27)

Also, since R is BB, it is necessary that,

R(k, t) = δt−k · R(t, t), k ≤ t − 1. (28)

This shows that R has to be δ-GEOM. �

Discussion: It can be proved that a δ-GEOM mechanism also satisfies CP.

9 Conclusions and Future Work

In this paper, we have studied the problem of designing manipulation free crowd-
sourcing mechanisms for atomic tasks under the cost critical and time critical
scenarios. We have motivated the need for having CP as an additional property
of the mechanism beyond what already exists in the literature. Starting with
an impossibility result, we have developed mechanisms for both cost and time
critical scenarios which satisfy CP property along with weaker versions of other
desirable properties (all under dominant strategy equilibrium). We find that
there is a scope for further investigation in the cost-critical setting, but for the
time-critical scenario, our results are tight and characterize the entire space of
mechanisms. We would characterize the complementary scenarios of our results
in the cost-critical setting in our future work.
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Abstract. The second welfare theorem tells us that social welfare in an
economy can be maximized at an equilibrium given a suitable redistri-
bution of the endowments. We examine welfare maximization without
redistribution. Specifically, we examine whether the clustering of traders
into k submarkets can improve welfare in a linear exchange economy.
Such an economy always has a market clearing ε-approximate equilib-
rium. As ε → 0, the limit of these approximate equilibria need not be
an equilibrium but we show, using a more general price mechanism than
the reals, that it is a “generalized equilibrium”. Exploiting this fact, we
give a polynomial time algorithm that clusters the market to produce
ε-approximate equilibria in these markets of near optimal social welfare,
provided the number of goods and markets are constants. On the other
hand, we show that it is NP-hard to find an optimal clustering in a linear
exchange economy with a bounded number of goods and markets. The
restriction to a bounded number of goods is necessary to obtain any rea-
sonable approximation guarantee; with an unbounded number of goods,
the problem is as hard as approximating the maximum independent set
problem, even for the case of just two markets.

1 Introduction

The fundamental theorems of welfare economics are considered “the most re-
markable achievements of modern microeconomic theory” [9] and are the “central
set of propositions that economists have to offer the outside world - propositions
that are in a real sense, the foundations of Western capitalism” [5]. Informally,
they state (under certain conditions that we will discuss later).

First Fundamental Welfare Theorem. A competitive equilibrium is
Pareto efficient.
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Second Fundamental Welfare Theorem. Any Pareto efficient solu-
tion can be supported as a competitive equilibrium.

The First Welfare Theorem is widely viewed as “a mathematical statement of
Adam Smith’s notion of the invisible hand leading to an efficient allocation”
[12]. The Second Welfare Theorem implies that we can separate out issues of
economic efficiency from issues of equity. Specifically, by redistributing the ini-
tial endowments (by lump-sum payments), a set of prices exists that can sustain
any Pareto solution. This second theorem has “fundamental implications for
how we think about economic organization” [13] and is “arguably the theoret-
ical result that has had the most dramatic effect on economic thinking” [4].
Despite this, “much of public economics takes as its starting point the rejection
of the practical value of the second theorem” [11]. Why this discrepancy? To un-
derstand this, note that lump-sum transfers are theoretically considered a very
desirable form of taxation as they do not distort incentives within the pricing
mechanism. However, this is essentially accomplished by a massive distortion of
the initial market! Moreover, these are personalized liabilities which in turn can
be viewed as an extremely unfair form of taxation in that they don’t depend
upon the actions or behaviors of the agents, and are impractical for a myriad of
implementational and political reasons (see, for example, [2], [3], [11] and [10]).

This observation motivates our work. Can the market mechanism be used to
sustain Pareto allocations without redistribution? In particular, suppose that
without redistribution a single market leads to low social welfare (or even has no
competitive equilibrium at all). In these circumstances, can the market mecha-
nism still be used to produce an allocation of high social welfare? We address
this question under the classical model of exchange economy, and show that in-
deed this can often be achieved provided the single market can be clustered into
submarkets.

1.1 The Exchange Economy

We consider the classical model of an exchange economy – an economy without
production. We have n traders i ∈ {1, 2, . . . , n} and m goods j ∈ {1, 2, . . . , m}.
(To avoid any ambiguity between traders and goods we will often refer to good
j as good gj). Each trader i has an initial endowment ei ∈ Rm

+ , where eij is
the quantity of good gj that she owns, and a utility function ui : Rm

+ → R.
The traders have no market power and so are price-takers. Given a set of prices
p ∈ Rm

+ , where pj is the price of good gj , trader i will demand the best bundle
she can afford, that is, argmaxxi

ui(xi) s.t. p · xi ≤ p · ei. These prices and
demand bundles form a Walrasian (competitive) equilibrium if all markets clear:
demand does not exceed supply for any good gj. That is,

∑
i xij ≤ ∑

i eij .
In this paper, we focus on the basic case of linear utility functions – the linear
exchange model. Here the function ui(.) can be written as ui(xi) =

∑m
j=1 uij xij

where uij ≥ 0 is the utility per unit that trader i has for good gj . (We denote
by ui the vector of utility coefficients for trader i.)
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1.2 The Fundamental Welfare Theorems

An allocation is Pareto efficient if there is no feasible allocation in which some
trader is strictly better off but no trader is worse off. The first welfare theorem
states that any Walrasian equilibrium is Pareto efficient. It holds under very mild
conditions, such as monotonic utilities or non-satiation. Clearly for this result
to be of interest, though, we need this economy to possess Walrasian equilibria.
In groundbreaking work, Arrow and Debreu [1] showed that this is indeed the
case, under certain conditions such as concave utility functions and positive
endowments.1 Interestingly, equilibria need not exist even in a linear exchange
economy. However, there is a combinatorial characterization for existence due to
Gale [6], and we discuss this characterization and other properties of the linear
exchange economy in detail in Section 2.

Observe that Pareto efficiency is not a particularly restrictive notion: an al-
location is efficient unless there is an alternative that is universally agreed to
be better (or at least as good). This requirement of unanimity has important
implications. Allocations that may be viewed as societally better outcomes may
be blocked by a single agent. For example, Pareto allocations can be extremely
inequitable. The second welfare theorem attempts to address this concern: Any
Pareto solution can be supported as a Walrasian equilibrium. Specifically, by
redistributing the initial endowments via lump-sum payments, a set of prices
exists that can sustain any Pareto solution. (The second theorem also requires
concave utility functions.) Thus, the second welfare theorem implies that we can
separate out issues of economic efficiency from issues of equity.

As stated, however, the second theorem is of limited practical value due to
the infeasibility of direct transfer payments. Thus, our goal is to obtain non-
redistributive second welfare theorems. Specifically, maximizing the social wel-
fare,

∑n
i=1 ui(xi), is a fundamental question in economics; so, can we support

at equilibrium an allocation with high social welfare? For example, in a linear
exchange economy it is particularly easy to find an optimal social allocation. For
each good gj , simply give all of it to the trader i for whom it proffers the greatest
utility per unit. However, even in this basic case, a Walrasian equilibrium may
produce very low social welfare. Intuitively the reason is simple: a trader with
a large utility coefficient for a good may not be able to afford many units of
it. This may be because (a) the good is in high demand and thus has a high
price and/or (b) the trader has a small budget because the goods she initially
possesses are abundant and, thus, have a low price.

On the other hand, the second welfare theorem tells us that, with redistribu-
tion, it is possible to find prices that support an allocation of optimal welfare.
Can any more practical, market-based mechanisms achieve this? To answer this,
we consider a mechanism that is allowed to cluster the traders into trading groups.
1 As well as the possibility of non-concave utility function, numerous other factors may

affect the practicality of the welfare theorems: market power and the presence of price-
makers; incomplete or asymmetric information; externalities; convergence issues for
equilibria; the existence of multiple equilibria; economies of scale when production is
added to the exchange economy, etc. Such issues are not our focus here.
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1.3 Market Clustering

Suppose we partition the traders into k separate markets, for some integer k. In
each market t, trade then proceeds as normal with a distinct set of Walrasian
prices pt and corresponding allocation generated. This partition and the collec-
tion of Walrasian equilibria (if they exist) form a k-equilibrium. The allocation
induced by a k-equilibrium may be very different than one produced from a sin-
gle market. So, first, can market clustering be used to improve social welfare? If
so, second, can it be used to optimize social welfare?

The answer to the first question is yes. Trivially, the option to segment the
market cannot hurt because we could simply place all the traders in the same
market anyway. In fact, market clustering may dramatically improve social wel-
fare; there is an example where the ratio between the social welfare with two
markets and the social welfare with one market is unbounded.

The answer to the second question, however, is no. Not every Pareto solution
can be supported by market clustering. In particular, there are cases where the
optimal social solution cannot be obtained by clustering. Indeed, there is an
example where the ratio between the optimal social welfare and the optimal
welfare that can be generated by market clustering is also unbounded.

The main focus of this paper then becomes to efficiently obtain as large a
welfare as possible under market clustering.

We remark that the basic idea underlying market clustering, i.e., the grouping
and separation of traders, is a classical one in both economic theory and practice.
In particular, it lies at the heart of the theory of trade. On the one hand, countries
should trade together (grouping) to exploit the laws of comparative advantage;
on the other hand, trade between countries may be restricted (separation) to
protect the interests of certain subsections (e.g. specific industries or classes of
worker). Interestingly, of course, whilst separation has a net negative effect on
welfare in international trade models, our results show that it can have a large
net positive effect in general equilibrium models. Other examples that can be
viewed as market clustering arise in the regulation of oligopolies and in the issue
of trading permits. A less obvious example concerns bandwidth auctions where
participants are grouped into “large” (incumbent) and “small” (new-entrants).
Trade, with the mechanism in the form of feasible bidding strategies, is then
restricted depending upon the group.

1.4 Our Results

Our main result, in Section 6, is a polynomial time algorithm that finds an ε-
approximate k-equilibrium, of almost optimal social welfare, provided the num-
ber of goods and markets are constants. The key to this result is a limit theorem
in Section 5 showing that, in a single market, ε-approximate equilibria converge
to what we call a generalized equilibrium.

On the other hand, in Section 4 we show that it is NP-hard to find an optimal
k-equilibrium in a linear exchange economy with a bounded number of goods and
markets. The restriction to a bounded number of goods is necessary to obtain
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any reasonable approximation guarantees; for linear exchange economies with
an unbounded number of goods, the problem is as hard as approximating the
maximum independent set problem, even for the case of just 2 markets.

Due to space constraints many proofs of theorems and lemmas are omitted
but can be found in the full paper.

2 Walrasian Equilibria in the Linear Exchange Model

Take an equilibrium with prices p and allocations xi for the Walrasian model
with linear utilities. Recall, we may assume that the followings hold:

Budget Constraints: Trader i cannot spend more than she receives: p · xi ≤ p · ei

(1)

Optimality:Each trader i optimizes the bundle of goods she buys:
ui · xi is maximized subject to (1)

(2)

Market Clearing: Demand does not exceed supply, for any gj :
∑

i

xij ≤
∑

i

eij (3)

2.1 Properties of Equilibria

The following claims are well-known facts (see e.g. [8]).

Claim 1. At equilibrium, the budget constraint (1) is tight for any trader.

Claim 2. At equilibrium, the market clearing condition (3) is tight for any gj

with pj > 0.

Claim 3. At equilibrium, for any subset S of traders, there is a good gj such
that ∑

i∈S

xij >
∑
i∈S

eij ⇐⇒ there is a good gj′ with
∑
i/∈S

xij′ >
∑
i/∈S

eij′

Claim 4. At equilibrium, for any i with Pi := p · ei > 0 and any good gj with
price pj > 0

uij

pj
≤ ui · xi

Pi
(4)

Moreover, the inequality is tight for any i, j with xij > 0.

2.2 The Existence of Equilibria in a Single Market

Gale [6] gave a characterization for when linear exchange economies possess
equilibria. Observe that the price of every good will be strictly positive provided
that each good is owned by at least one trader, and at least one trader desires it.
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We may assume this is the case as any good that does not satisfy this condition
may be removed from the model; in this case, supply will exactly equal demand
for each good. Gale also assumes that every trader is non-altruistic in that they
each desire at least one good. (We say that a trader i is an altruist if uij = 0 for
every good gj .)

Theorem 5 ([6]). An altruist-free linear exchange economy has a Walrasian
equilibrium if and only if there is no super self-sufficient set of traders.

Here, a subset S of traders is called super self-sufficient if

1. Self-Sufficiency:
∑

i/∈S eij = 0 for every good gj such that
∑

i∈S uij >
0.
2. Superfluity:There is a good gj such that

∑
i∈S eij > 0 and

∑
i∈S uij = 0.

It will be useful to reinterpret Gale’s condition combinatorially using the market
graph. The market graph GM for a given market is a directed graph whose set
of vertices is the set of goods in that market. There is an arc j → j′ with label
i if there is a trader i with eij > 0 and uij′ > 0; thus, trader i has good gj and,
depending upon the prices, is willing to trade it for good gj′ . Let h(S) denote
the goods that are the heads of arcs with labels from traders in S, and let t(S̄)
denote the goods that are the tails of arcs corresponding to traders not in S.
Then S is self-sufficient if h(S) ∩ t(S̄) = ∅. In this case, h(S) induces a directed
in-cut in the market graph. (Thus, a sufficient – but not necessary – condition for
the existence of an equilibrium is the strong connectivity of the market graph.
Moreover, any directed cut will correspond to a self-sufficient set.) If, in addition,
h(S) is a strict subset of t(S), then S is super self-sufficient.

For example, the market graph shown in Figure 1 does not have an equilib-
rium. It represents a market with 6 traders and 5 goods g1, . . . g5: each arc g

i→ h
represents one trader i with eig = 1 and uih = 1; all other values are 0. Then
traders {4, 5, 6} form a super self-sufficient set, so this market does not have an
equilibrium.

g1

g2 g3 g4

g5

1 2

3 4

56

Fig. 1. A market graph with a super self-sufficient set and, therefore, has no equilibrium

We can use the market graph to test Gale’s condition efficiently. Furthermore,
Jain [8] gave a polynomial time algorithm to find an equilibrium when one exists.
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2.3 The Existence of Equilibria in a Market Clustering

Recall that a trader i is an altruist if uij = 0 for every good gj. An economy is
altruistic if it is allowed to contain altruistic traders. It is important for us to un-
derstand the implications of altruism even for economies without altruists. This
is because clustering may create de facto altruists in the submarkets. Moreover,
such altruists are one of the factors that allow the equilibria to exist in a market
clustering, even if the single market has no equilibrium. We can easily extend
Gale’s theorem to altruistic economies.

Theorem 6. An altruistic, linear exchange economy has an equilibrium if and
only if every super self-sufficient set of traders contains at least one altruist.

So, altruistic economies need not have equilibria. However, they can always be
clustered into markets with equilibria provided that the number of markets k is
at least the number of goods m.

Theorem 7. An altruistic, linear exchange economy with m goods has an m-
equilibrium.

Proof. We prove this by induction on the number of goods. An altruistic economy
with one good gj has a trivial equilibrium. Now take an altruistic economy with
m goods. If it has no super self-sufficient set of traders consisting entirely of
non-altruists then, by Theorem 6, it has an equilibrium. Otherwise, let S be
a minimal super self-sufficient set of non-altruists. By minimality, the market
induced by S contains an equilibrium as it has no super self-sufficient subset.

As they are not altruistic, each trader in S desires at least one good. By
definition, however, traders in S desire no goods held by traders in S̄. So, there
is at least one good held by S that is not held by traders in S̄. Thus, the market
induced by the traders in S̄ contains at most m − 1 goods. By induction it can
be partitioned into m − 1 clusters that each has an equilibrium. Together with
the cluster S, we obtain an m-equilibrium. ��
For example, consider again the market in Figure 1. If we partition the traders
into two, with trader 3 alone in the first market and traders {1, 2, 4, 5, 6} in the
second market, then both resulting markets have equilibria (with x32 = 1 in the
first market, and p3 = 0 in the second market).

3 Single Markets, Market Clustering and Welfare
Redistribution

In this section, we examine the potential benefits of market clustering and the
limits of its power as a tool. First, we have seen that equilibria may not exist
in the single market case (i.e., when market clustering is prohibited). In such
instances, by Theorem 7, market clustering can always be applied to produce
equilibria. Furthermore, even when equilibria do exist in the single market case,
market clustering may lead to huge improvements in social welfare in comparison.
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On the other hand, market clustering is not as powerful as welfare redistribution;
specifically, market clustering does not always support every Pareto allocation.
To see this, we consider two measures regarding the social welfare function:

1. The Clustering Ratio: the ratio between the maximum social welfare un-
der market clustering and the social welfare obtained in a single market.

2. The Redistribution Ratio: the ratio between the maximum achievable
social welfare (with welfare redistribution) and the maximum welfare under
market clustering.

Examples showing that both ratios can be unbounded can be found in the full
paper.

4 The Hardness of Market Clustering

In this section, we consider the hardness of the k-market clustering problem. We
show that the problem is NP-hard even if we only have a fixed number of goods
and a fixed number of markets, that is, m and k are constant.

Theorem 8. Given an instance of the 2-market clustering problem with five
goods and linear utility functions, it is NP-hard to decide whether there is a
clustering that yields a social welfare of value at least Z, for any Z > 0.

The problem becomes much harder when the number of goods is unbounded.

Theorem 9. For any constant δ > 0 and maximum social welfare Z, unless
NP = ZPP, it is hard to distinguish between the following two cases:

– Yes-Instance: There is a clustering that yields a social welfare of value at
least Z1−δ.

– No-Instance: There is no clustering that yields a social welfare of value at
least Zδ.

5 Approximate Walrasian Equilibria

We are interested in finding an ε-approximate market equilibrium; that is, for
each market, our algorithm outputs a price p and an allocation x satisfying the
following conditions.

– Budget Constraints:Trader i cannot spend more than she receives: xi·p ≤
ei · p

– Approximate Optimality: Subject to the budget constraints, each trader i
purchases a bundle xi whose utility is similar to that of the optimal bundle
x∗

i : ui · xi ≥ (1 − ε)ui · x∗
i

– Market Clearing: Demand never exceeds supply: for any gj,
∑

i xij ≤∑
i eij
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5.1 Existence of Approximate Walrasian Equilibria

Compared to exact market equilibria, which do not always exist, there is always
an approximate market equilibrium with arbitrary small approximation:

Theorem 10. For ε > 0, every market has a market-clearing ε-approximate
equilibrium.

By market-clearing ε-approximate equilibrium, we mean an ε-approximate equi-
librium for which the approximate market clearing inequality is tight. This the-
orem can be inferred from the algorithm of [7]. A direct proof of this fact can
be found in the full paper.

5.2 Properties of Approximate Walrasian Equilibria

We now discuss some properties of equilibria that will later be very useful to us in
designing efficient algorithms. Given a market, we use the following definitions:

– umax = maxi,j uij is the maximum coefficient of any utility function.
– umin = mini,j:uij>0 uij is the minimum non-zero coefficient of any utility

function.
– pmax = maxj pj is the maximum price of any good in the market.
– pmin = minj:pj>0 pj is the minimum non-zero price of any good in the market.
– emin = mini,j:eij >0 eij is the minimum non-zero endowment for any good

and trader.

Assume wlog that
∑

i eij = 1, for every good gj . We can connect the above
values via the market graph. Recall that n denotes the number of traders and
m denotes the number of goods; then we obtain

Lemma 1. If the market graph is strongly connected then, at a market equilib-
rium,

pmax

pmin
≤ e

nm
e

(
umax

eminumin

)nm

In particular, scaling so that pmin = 1 gives pmax ≤ e
nm

e

(
umax

eminumin

)nm

.

Proof. We may assume (solely for the duration of this proof) that each trader
has a positive endowment for exactly one good and no two traders have pos-
itive endowments for the same good [8]. To do this, consider a trader i with
endowment ei. For each good gj such that ei,j > 0, we create a new trader ij
with eijj = eij , uij = ui and eijj′ = 0, for all j′ �= j. So, each trader now has
only one good. Furthermore, if two traders have the same good, then we simply
give the good two different names (and replicate the utility functions of other
traders accordingly). Now, each trader represents a unique good, i.e., a trader
i has a positive endowment for the unique good gi. So, we have at most nm
traders/goods.
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These transformations maintain the strong connectivity of the market graph.
Moreover, all the copies of the same original good will have the same price in
an equilibrium. After these transformations, the number of units of each good
will in general be less than one. Thus, we scale all the initial endowments so
that each trader i has one unit of a good gi. In addition, we must scale the
coefficients of utility functions; otherwise, the scaling would effect the social
welfare. Specifically, for each good gi, we divide the initial endowments of trader
i by eii, and we multiply the utilities of every trader for this good by eii, so as
to keep the prices unchanged.

We may assume that no good has a price of zero. By Equation (4), we have:

u′
ij

pj
≤

∑
� u′

i� · xi�

pi

For a pair i, j with u′
ij > 0, we get

pi

pj
≤

∑
� u′

i� · xi�

u′
ij

≤ u′
max

u′
min

∑
�

xi�

Assume p′min = p′i0 and p′max = p′is
, where s ≤ nm. Because the market

is strongly connected, there is a sequence of traders with indices i0, i1 . . . , is,
s ≤ nm, such that u′

ij−1ij
> 0 for all i ∈ {1, . . . , s}. Multiplying the previous

inequalities for all consecutive terms of this sequence, we get

pmax

pmin
=

s−1∏
j=0

pij+1

pij

≤
(

u′
max

u′
min

)s

·
s∏

j=0

(∑
�

xj�

)
≤
(nm

s

)s
(

u′
max

u′
min

)nm

≤ e
nm

e

(
u′

max

u′
min

)nm

Here the second inequality follows from the Arithmetic-Geometric Mean Inequal-
ity and the fact that

∑s
j=0

∑
� xj� ≤ ∑s

j=0

∑
� ej� ≤ nm by the market clearing

constraint (3). Now, observe that there is a pair i, j such that u′
min = ejjuij ≥

eminumin, and there is a (different) pair i, j such that u′
max = ejjuij ≤ umax. ��

The same reasoning applied to approximate equilibria gives:

Lemma 2. If the market graph is strongly connected, at an ε-approximate mar-
ket equilibrium, we have pmax

pmin
≤ e

nm
e

(
umax

(1−ε)uminemin

)nm

.

It is possible for a market that is not strongly connected to have an equilibrium:
the owners of the goods reachable from a strongly connected set induce a self-
sufficient set but not necessarily a super self-sufficient set. However, in this case,
we cannot bound the ratio pmax/pmin as seen from the following lemma.

Lemma 3. Consider a market with equilibrium p,x. Let W be a proper subset
of goods such that for any trader i, if there is some good gj ∈ W with eij > 0,
then uik = 0 for all k /∈ W (i.e., W is the shore of a directed cut in the market
graph). Then, for any B > 1, p′,x is also an equilibrium where p′j = pj if gj /∈ W
and p′j = Bpj if gj ∈ W .
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Proof. The lemma follows from the following two facts. First, xij = 0 for any
good gj /∈ W and any trader i with

∑
k∈W eik > 0 since then uij = 0 by the

definition of W . Second, xij = 0 for any trader i with
∑

k∈W eik = 0 and gj ∈ W .
Consequently, scaling the prices of goods in W does not effect the equilibrium. ��

An implication of this lemma is that the strongly connected components have
price allocations that are essentially independent of each other: for example
one could decompose the problem, find local equilibria in each component, and
then scale the prices accordingly to get a global equilibrium. Also, again by
scaling the prices of W , we can assume that the minimum price in W is no more
than umax/umin times the maximum price outside W , as it does not change
the optimality of the allocations (it would be a problem if there was a trader
with

∑
j /∈W uij = 0 and

∑
j /∈W eij = 0, but then taking this trader plus {i :∑

j∈W eij > 0} would give a super self-sufficient set). This gives the following
strengthening:

Lemma 4. Any market having an equilibrium has one such that
pmax
pmin

≤ e
nm

e

(
umax

eminumin

)nm

.

5.3 Limits of Equilibria

By Theorem 10, for any ε > 0 there is a market-clearing ε-approximate equilib-
rium. When ε tends to 0, the prices of these approximate equilibria may diverge
(if no exact equilibrium exists), but the allocations of goods to traders, as they
are chosen from a compact set, admit at least one limit point, an allocation x̊.
We call such an allocation a limit allocation. In particular, if the market admits
an exact equilibrium, then x̊ is the allocation of an exact equilibrium (if x̊ could
not be obtained as a limit of approximate equilibria with converging prices, one
could exhibit a super self-sufficient set and this would be a contradiction). In
any case, x̊ satisfies the market clearing constraints with equality.

The allocation x̊ may not be supported by a set of real prices. For example,
there is obviously no set of prices supporting x̊ when the market does not have
an exact equilibrium. We show that x̊ can be supported by taking prices from
a set more general than the real numbers. Consider the set Q = N × R+, our
new set of “prices”. We denote by π1 and π2 the first and second projection,
i.e., π1(x, y) = π2(y, x) = x. We extend these projections to vectors (and abuse
notation) by: πi ((vj)j) = (πi(vj))j . We then redefine the notion of equilibrium
in terms of Q. For p ∈ Qm and x̊ ∈ Rm×n

+ , let the rank ri of i be the maximum a
such that

∑
j : π1(pj)=a eij > 0, for all i. The pair p,x is a generalized equilibrium

if

– Budget Constraints: For all i ∈ {1, . . . , n}, for all a ≥ ri,∑
j : π1(pj)=a

π2(pj) · xij ≤
∑

j : π1(pj)=a

π2(pj) · eij
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– Optimality: For each trader, xi maximizes the utility ui · xi over all allo-
cations satisfying the budget constraint.

– Market Clearing: No good is in deficit:
∑

i xij ≤ ∑
i eij for all goods j

with π2(pj) > 0.

This is indeed a generalization. If we force the prices to be in {0} × R+ then a
generalized equilibrium would give a Walrasian equilibrium. An ε-approximate
generalized equilibrium is defined by replacing the optimality condition by: ui ·xi

is at least (1 − ε) times the utility of a best response of trader i, for all i.

Theorem 11. For any market, each limit allocation x̊ gives a generalized
equilibrium.

A generalized equilibrium can be approximated by an approximate Walrasian
equilibrium with almost as high welfare. The converse is not true. An approx-
imate equilibrium may achieve a welfare arbitrarily high compared to a gener-
alized equilibrium; consider the market with two traders and two goods where
e11 = e22 = 1, u12 = L, u22 = 1 and all the other values are zero. In this mar-
ket, the only generalized equilibrium has welfare 1, but there is an approximate
equilibrium with welfare ε · L + (1 − ε), and this tends to +∞ when L tends to
+∞.

Lemma 5. Let x̊, p̊ be a generalized equilibrium. For any ε > 0, there is an
approximate equilibrium with total welfare at least 1 − ε times the welfare of
x̊, p̊.

6 A Fully Polynomial Time Approximation Scheme

In this section, we exploit the structure we have now developed to obtain a
polynomial time algorithm to find an ε-approximate equilibrium for the k-market
clustering problem where the number of goods m and the number of markets k
are constant. Moreover, this equilibrium has a very strong welfare guarantee: it
gives social welfare of at least 1 − ε times the welfare of the optimal k-cluster
generalized equilibrium.

Theorem 12. For any ε > 0 and for fixed k, n ∈ N, there is an algorithm that,
given a market M with m goods, computes within time polynomial in 1

ε and the
size of the M , an ε-approximate generalized k-equilibrium for M with welfare at
least 1 − ε the optimal welfare of a generalized k-equilibrium.

6.1 The Dynamic Program

Our dynamic program takes as an input a set of generalized prices for every good
in each market. This follows as we may try all possible prices selected from a finite
set of prices in {1, . . . , m}×P where P = {1, 1+1/b, (1+1/b)2, . . . , (1+1/b)σ−2}.
Here b ∈ N+ is a parameter to be set later, and σ is such that (1 + 1/b)σ−3 ≤
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enm/e
(

m·umax

eminumin

)nm

≤ (1 + 1/b)σ−2. A generalized price (a, p) encodes a real
price ν(a, p) given by La · p, where L is an arbitrarily large constant. So, we
have m · σ possible prices for each good in each market. Thus, the number of
combinations of prices is (mσ)km, where k is the number of markets and m is
the number of goods.

Given the estimated prices, the dynamic program runs over each market to
compute an approximate equilibrium that maximizes the total social welfare.
We denote the estimated prices in market t by pt ∈ ({1, . . . , m} × P )m, i.e., pt

j

is the price of a good gj in a market t. We denote an initial endowment and a
final allocation in a clustered market by et

i and xt
i. (Thus,

∑k
t=1 et

i = ei.)
The algorithm considers each trader iteratively. At each iteration, it assigns

the trader to a market and gives a near-optimal bundle to this trader, according
to her utility function and the prices in that market. Once the ith trader is
assigned, the algorithm only remembers the deficit (or surplus) of each good
in every market – this will be a key in obtaining an efficient algorithm. Once
every trader is assigned, it selects the best possible solution that satisfies the
approximate market clearing constraint, i.e., the deficits must be small. Thus,
we encode the state of each market t by a vector yt, where yt

j denotes the surplus
(or deficit) of the good gj. Let It denote the set of traders already in the market
t, and xi, i ∈ It the bundles given to these traders. Ideally, we would like to
have yt

j =
∑

i∈It
eij −

∑
i∈It

xij . Hence, the value of yt
j could be any real value

between −1 and 1. However, as we cannot afford to store all possible values for
yt, we round these values into a set W̃ of cardinality α · 4n, where α will be set
later. To define W̃ , we first define a coarser set W .

W =

{(
b

b + 1

)α

,

(
b

b + 1

)α−1

, . . . ,
b

b + 1
, 1

}
.

We then choose α to be minimal such that(
b

b + 1

)α

≤ emin

2n(b + 1)
and

(
b

b + 1

)α

<
umin · emin

m · umax · pmax
· 1
(b + 1)2

Observe that W induces a set of intervals
[
(b/(b + 1))�, (b/(b + 1))�−1

]
, for � =

1, . . . α. We can now create the set W̃ by dividing each interval of W and its nega-
tion into subintervals. Specifically, for each interval

[
(b/(b + 1))�, (b/(b + 1))�−1

]
(resp., for each interval

[−(b/(b + 1))�−1,−(b/(b + 1))�
]
), we divide W equally

into 2n(b + 1) subintervals and put the boundary points in W̃ . Thus,

W̃ =
α−1⋃
�=1

{(
b

b + 1

)�(
1 +

q

2nb(b + 1)

)
: q ∈ {0, 1, . . . , 2n(b + 1)}

}
∪ {0}∪

α−1⋃
�=1

{(
− b

b + 1

)�(
1 +

q

2nb(b + 1)

)
: q ∈ {0, 1, . . . , 2n(b + 1)}

}
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We insist that the algorithm selects allocations of goods that take values from
W , and we then round down the surplus (or deficits) to values in W̃ . Formally,
xt ⊆ Wn×m and yt ⊆ W̃m for any market t. Towards this goal, let �a�

W̃
denote

the value of a rounded down to the closest value in W̃ , i.e., a′ = �a�
W̃

is the
largest value in W̃ such that a′ ≤ a.

We now need to ensure that these allocations correspond to an approximate
generalized equilibrium (which in turn will correspond to an approximate equi-
librium). To do this, for a market t and a trader i, we say that an allocation xi

of goods is compatible with i and t if, for ri = maxj:eij>0 π1(pj):

– uij > 0 =⇒ π1(pt
j) ≥ ri,

– xij > 0 =⇒ π1(pt
j) ≤ ri,

–
∑

j:π1(pt
j)≥ri

π2(pt
j) · xij ≤ ∑

j:π1(pt
j)≥ri

π2(pt
j) · eij (Budget constraint).

An allocation xi compatible with i and t is nearly-optimal if ui · xi ≥ (1 −
ε)maxz ui · z where z ranges over all the allocations compatible with i and t.
By this definition, assuming L is large enough, a nearly-optimal allocation is an
approximate best response for trader i in market t. The recurrence relation of
our dynamic programming algorithm is then

f(0,y1,y2, . . . ,yk) =
{

0 if y1 = y2 = . . . = yk = 0
−∞ otherwise

f(i,y1,y2, . . . ,yk) = max
t∈{1,2,...,k},xi

f(i − 1,y1, . . . , �yt − ei + xi�W̃
, . . . ,yk) + uixi

where xi ranges over the nearly-optimal allocations compatible with i and t.
Finally, an allocation is valid if 0 ≤ yt ≤ 1−(b/(b+1))3 for all t, i.e., there is no

market having a positive deficit, or a surplus greater than 1−(b/(b+1))3. Notice
that some of the surplus may have been lost in the rounding steps; we will show
later that these additional losses amount to a fraction at most 1/(b + 1) of each
good. Hence, if f(n,y1, . . . ,yt) is finite for some valid allocation, and provided
that b is sufficiently large, it gives an approximate generalized equilibrium: the
budget constraints and approximate optimality constraints are guaranteed by the
restriction on the choice of xi at each step, and market clearing is guaranteed
by the validity of the allocation.

This completes the description of the dynamic program. It remains to compare
the total social welfare to that of the optimal clustering and to analyze the
running time of the algorithm.

6.2 Quality Analysis

Because of the rounding step, our dynamic programming algorithm loses some
fraction of each good gj . We have to bound the number of units of the good
gj that we lose. By the scaling on W̃ , each time we round yt

j, we lose at most
(2n(b+1))−1

∑
i∈It

eij units when yt
j is rounded to a positive value, and we lose

at most (b/(b + 1))α ≤ emin (2n(b + 1))−1 units when yt
j is rounded to zero. By
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the definition of emin, we have emin ≤ ∑
i∈It

eij for all goods gj . Furthermore,
we round down yt

j at most n times, once for each trader. Thus, summing them
up, we lose at most 1/(2(b + 1)) · ∑i∈It

eij < 1/(2b + 2) units of each good gj .
Now, we compare the social welfare of the approximate generalized equilib-

rium obtained by our algorithm with that of some exact generalized equilibrium.

Lemma 6. For any market M = (n, m,u, e) and any ε > 0, there is an exact
generalized equilibrium such that

maxj π2(pj)
minj:π2(pj) =0 π2(pj)

≤ enm/e

(
pmax · m

emin · pmin

)nm

Proof. Take an exact generalized equilibrium x,p that maximizes the total wel-
fare. Let Gr := {gj : π1(pj) = r}, Ir := {i : ri = r} and Ar := {i ∈ Ir : ∀j ∈
Gr, uij = 0}. For each possible rank r, let Mr be the market obtained by re-
stricting M to the set of goods Gr. Define xr

ij = xij and pr
j = π2(pj) for any

trader i and good gj in Mr. Fix some rank r.

Claim 13. We may assume that
∑

j∈Gr
pr

jxij =
∑

j∈Gr
pr

jeij for any i.

Proof. By market-clearing for x,p, we have
∑

i xij =
∑

i eij for any j ∈ Gr.
By optimality, we also have

∑
j∈Gr

pr
jeij =

∑
j∈Gr

pr
jxij for any i ∈ Ir − Ar.

Subtracting the two equalities, we get
∑

j∈Gr

(∑
i∈Ar

pr
jeij +

∑
i:ri>r pr

jeij

)
=∑

j∈Gr

(∑
i∈Ar

pr
jxij +

∑
i:ri>r pr

jxij

)
. Because ur

ij = 0 for any i with ri > r or
any i ∈ Ar, we can redistribute the goods of Gr allocated to these traders to
fulfill the condition of the claim. ��
Then xr,pr is an equilibrium in Mr because of the previous claim (the opti-
mality constraints and market-clearing constraints follow from the definition of
generalized equilibrium). Let r be some rank and consider Mr. We want to com-
pute an approximate equilibrium for Mr such that we can bound the prices. If
there is no altruist in Mr, then we apply Lemma 4. Otherwise, for any altruist
i, let ji be such that pjix

r
iji

is maximized. Define the utility vector ur

ur
ij =

⎧⎨
⎩

uij if i is not an altruist in Mr,
1 if i is altruist in Mr and j = ji,
0 otherwise.

Then the market defined by e and ur, xr ,pr is an approximate solution, where
only the altruists of Mr do not follow a best response, and the approximation
ratio is at most (m− 1)/m by the choice of ur

i for altruist trader i (and because
there are at most m goods in Mr). Hence, by applying Lemma 2, we get pmax

pmin
≤

enm/e
(

mumax
uminemin

)nm

. ��

Fix any optimal clustering and consider any market t. Take a generalized equi-
librium p∗,x∗ as in Lemma 6. We show that the dynamic program outputs an
approximate generalized equilibria with total welfare (1 − ε) times the welfare
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of p∗,x∗. This is done by building from p∗,x∗ a set of generalized prices p′ and
allocations x′ computable by the dynamic program.

We assume wlog that p∗min := minj:p∗
j >0 π2(p∗j ) = 1. Denote pmax :=

maxj:p∗
j >0 π2(p∗j ). p′ is obtained by rounding down the second components of

prices to values in P ; hence, b/(b + 1) ·π2(p∗) ≤ π2(p′) ≤ π2(p∗). Consequently,
we have for each trader i and a ≥ ri:

b

b + 1

∑
j:π1(p′

j)=a

π2(p′j)x
∗
ij ≤ b

b + 1

∑
j:π1(p′

j)=a

π2(p∗j )eij ≤
∑

j:π1(p′
j)=a

π2(p′j)eij

Hence, b/(b + 1) · x∗ satisfies the budget constraint for the prices p′.
Next, we have to modify b/(b+1) ·x∗ further so that it satisfies the condition

in our dynamic programming algorithm. Namely, we round down the coefficients
of b/(b + 1) · x∗ to W . This gives an allocation x′ with the properties:(

b

b + 1

)2

x∗
ij ≤ x′

ij ≤ x∗
ij if x∗

ij ≥
(

b

b + 1

)α

, and x′
ij = 0 otherwise.

Clearly, x′ also satisfies the budget constraint inequalities. It remains to show
that x′

i is an almost optimal choice for trader i. To see this, consider any good
gj. We have(

b

b + 1

)3

π2(p∗j ) · x∗
ij ≤ b

b + 1
π2(p∗j ) · x′

ij ≤ π2(p′j) · x′
ij ≤ π2(p∗j ) · x∗

ij

when x∗
ij ≥

(
b

b+1

)
or x∗

ij = 0, otherwise uijx
′
ij = 0 and uijx

∗
ij ≤

(
b

b+1

)α

uij .
We have to handle the latter special case, when x′

ij = 0 < x∗
ij . For this pur-

pose, notice first that the welfare of a trader i with
∑

j:π1(p∗
j )=ri

uij > 0 is
lower bounded by emin·umin

pmax
as emin is the minimum possible budget for a trader

(other traders have welfare 0). The maximum ratio utility per unit of price
achievable is umax

pmin
. Thus, any allocation x∗

ij ≤ (b/(b + 1))α contributes to the

total welfare at most
(

b
b+1

)α
umax·pmax
umin·emin

, which is less than (1/m)(1/(b + 1))2 ≤
(1/m)

(
1 − (b/(b + 1))3

)
by the choice of α. Hence, over all goods, the fraction

of welfare lost in rounding down x∗ is at most 1 − 2(b/(b + 1))3. This bounds

our approximation ratio to 1 − ε ≤ 2
(

b
b+1

)3

, which is true for b = �3/ε�.
With this choice, x′ and p′ satisfy the approximate market equilibrium con-

straints, thus the dynamic algorithm will find a solution with welfare at least
u · x′ ≥ (b/(b + 1))2u · x∗.

6.3 Running Time Analysis

Now, consider the complexity of the dynamic program. It can be seen that
the running of our algorithm for one set of prices is O(nkαm(αnb)km), and
the running time for all possible price allocation is (mσ)km. This implies the
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total running time of O(nkm+1kα(k+1)m(mbσ)km). Thus, we have a (1 − ε)-
approximation algorithm with a running time of

O

(
n(3k+1)m+1m(2k+1)mk

(
1 +

3

ε

)3km+m ( 1

e
+ log

m · umax

eminumin

)(k+1)m (
log

m · umax

uminemin

)km
)

The input of the k-market clustering problem in a standard binary representa-
tion has a size of Ω(n(log(1/emin) + log(umax/umin)). Thus, the running time
of our algorithm is polynomial in the size of the input when m and k are constant.
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Abstract. A cost-sharing mechanism defines how to share the cost of
a service among serviced customers. It solicits bids from potential cus-
tomers and selects a subset of customers to serve and a price to charge
each of them. The mechanism is group-strategyproof if no subset of cus-
tomers can gain by lying about their values. There is a rich literature that
designs group-strategyproof cost-sharing mechanisms using schemes that
satisfy a property called cross-monotonicity. Unfortunately, Immorlica et
al. showed that for many services, cross-monotonic schemes are provably
not budget-balanced, i.e., they can recover only a fraction of the cost.
While cross-monotonicity is a sufficient condition for designing group-
strategyproof mechanisms, it is not necessary. Pountourakis and Vi-
dali recently provided a complete characterization of group-strategyproof
mechanisms. We construct a fully budget-balanced cost-sharing mecha-
nism for the edge-cover problem that is not cross-monotonic and we
apply their characterization to show that it is group-strategyproof. This
improves upon the cross-monotonic approach which can recover only
half the cost, and provides a proof-of-concept as to the usefulness of
the complete characterization. This raises the question of whether all
“natural” problems have budget-balanced group-strategyproof mecha-
nisms. We answer this question in the negative by designing a set-cover
instance in which no group-strategyproof mechanism can recover more
than a (18/19)-fraction of the cost.

1 Introduction

In cost-sharing problems, a service provider faces a set of potential customers,
each of which has a private value for the service. The provider must select a
subset of customers to serve, and a price to charge each of them. To this end, he
defines a mechanism that solicits bids from potential customers and, based on
these bids, outputs the serviced subset and corresponding prices. To cover the
cost of providing service, he looks for a mechanism that is budget-balanced, that
is the sum of prices equals the cost of service for every input bid vector.

A central goal in mechanism design is to define mechanisms that are strat-
egyproof in that no agent can gain by misreporting his value. This guarantees
that the equilibrium bidding strategy of agents is robust and so the mechanism

P.W. Goldberg and M. Guo (Eds.): WINE 2012, LNCS 7695, pp. 244–255, 2012.
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behaves as predicted. In cost-sharing problems, there is an inherent coopera-
tive aspect: the cost of service changes drastically depending on which subset
is serviced and so groups of agents may have aligned interests. In these prob-
lems, it makes sense to ask for an even more robust solution concept, group-
strategyproofness. In a group-strategyproof mechanism, no group of agents can
mutually gain by misreporting their values.

Group-strategyproofness is a very strong requirement. Nonetheless, there is a
rich literature defining group-strategyproof mechanisms for various cost-sharing
problems [5,8,7,12]. All these papers use the same general technique. They de-
fine a cost-sharing scheme which, given any subset of customers, defines the price
each of them would have to pay if that subset was serviced. They then turn this
scheme into a mechanism by applying a procedure of Moulin [10]. The resulting
mechanism is group-strategyproof so long as the underlying cost-sharing scheme
satisfies a property called cross-monotonicity. Intuitively, cross-monotonicity re-
quires that as more agents are serviced, the price to each decreases. If the
cross-monotonic cost-sharing scheme is (approximately) budget-balanced on ev-
ery subset of customers, then the resulting group-strategyproof mechanism is
also (approximately) budget-balanced.

Unfortunately, the use of this technique comes at a cost. While submodular
cost functions always have fully budget-balanced cross-monotonic cost-sharing
schemes [11], and many combinatorial optimization problems have approximately
budget-balanced schemes [5,8,7,12], Immorlica et al. [6] showed that cross-mono-
tonicity fundamentally limits achievable budget-balance factors for many combi-
natorial optimization problems. They also note that, while cross-monotonicity is
a sufficient condition for giving rise to group-strategyproof mechanisms, it is not
necessary. This left open the question of whether another approach might enable
the design of group-strategyproofmechanisms with better budget-balance factors.

In recent work Pountourakis and Vidali [14] provided a complete character-
ization of group-strategyproof mechanisms. Their characterization is based on
cost-sharing schemes that satisfy three technical properties. They then give a
procedure that converts any such (approximately) budget-balanced cost-sharing
scheme into an (approximately) budget-balanced group-strategyproof mecha-
nism.1

In this work, we provide a natural cost-sharing scheme for the edge-cover
problem and use the techniques of Pountourakis-Vidali to prove it gives rise to
a group-strategyproof mechanism. In the edge-cover problem, the agents are the
vertices of a graph, and the cost of a subset is the minimum number of edges
that must be selected in order to cover every agent in the subset. The problem
models, for example, assigning people to rooms either as a single occupant or
with a compatible roommate (as defined by the edges of the graph).

It is shown that the best budget-balance factor of any cross-monotonic cost-
sharing scheme for edge-cover is just 1/2 [6]. Using the complete characteriza-
tion [14], we design a fully budget-balanced group-strategyproof mechanism for

1 In general, this procedure is not known to be polynomial-time.
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edge-cover. Thus our result improves upon any group-strategyproof mechanism
designed using the standard cross-monotonic technique, thereby demonstrating
the significance of the full characterization. Furthermore, the cost-sharing scheme
that we define is very intuitive: for a given subset of agents, we compute a
lexicographically first maximum matching of that subset, charge each matched
agent a price of 1/2, and charge each remaining agent in the subset a price
of 1. This natural scheme is not cross-monotonic. However, using a key lemma
regarding alternating paths of certain matchings, we are able to prove that this
scheme does satisfy the characterization of Pountourakis and Vidali [14].

We would like to stress out that we wanted to provide a simple mechanism for
edge-cover, hence, we chose to restrict our attention to two possible prices. Even
though, one could construct fully budget-balanced group-strategyproof mecha-
nisms that use more than two prices, their analysis would be even more compli-
cated. Our goal is to show the existence of such a mechanism rather characterize
them, hence, we restricted to something intuitive and simple. Moreover, it allowed
us to implement the allocation of the mechanism in polynomial time, whereas it is
not certain that this would be possible if the cost-sharing scheme was more com-
plicated. It is open whether natural and simple cost-sharing schemes for other in-
teresting problems happen to satisfy the sufficient conditions [14] and in that case
if we can find efficient implementation.

We also show that not all problems have fully budget-balanced group-strategy-
proof mechanisms. This is fairly obvious when one allows arbitrary (e.g., non-
monotone) cost functions.2 In this paper, we prove this result for the natural
monotone cost function defined by the set cover problem, a generalization of the
edge cover problem. For set cover, there is a bound of n−1/2 (where n is the number
of agents) on the budget-balance factor of cross-monotonic cost-sharing schemes [6],
implying that the standard technique for designing group-strategyproof mecha-
nisms is highly impractical. This negative result is particularly disturbing in light
of the fact that there exists a trivial fully budget balanced strategyproof mecha-
nism (see Example 4.1 [6]) for any non-decreasing cost-function if we don’t take
computational limits into consideration. Even imposing computational limits, we
can obtain a O(1/ log n)-budget balanced mechanism that is strategyproof but
not group-strategyproof [3]. In our work we are interested in bounding the power
of group-strategyproofness without any computational assumption. We present
a set-cover instance, where there is no cost-sharing scheme satisfying the charac-
terization of Pountourakis and Vidali [14] with budget-balance factor better than
18/19. Since this characterization does not take computational constraints into
consideration this implies a bound for every group-strategyproof mechanism in-
dependent of its running time.

Finally, we would like to note that while we try to deal with the limita-
tions of cross-monotonic mechanisms by exploiting the full power of group-
strategyproofness, another approach that has been followed so far was to
relax group-strategyproofness. In particular, there is a general framework to de-
sign weak group-strategyproonf mechanisms [9]. This framework has been used

2 See, for example [14].
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to design mechanism with better budget balance guarantees for many com-
binatorial problems [9,1]. Specifically, cost-sharing schemes used by [9] were
naturally derived by primal-dual schemes without any refinement that would
ensure cross-monotonicity [12]. However, as we argue in Section 5 these cost-
sharing schemes fail to satisfy the necessary condition to give rise to group-
strategyproofness; hence, ideas from this literature cannot be directly applied to
group-strategyproof mechanism design.

Related Work. In addition to the literature on cost-sharing mechanisms men-
tioned above, our work is related to the literature on combinatorial public
projects. This problem was introduced in [13] who assume that a set of agents is
interested in sharing a number of resources. Each agent has a private valuation
for each subset of these resources. For some given k, a mechanism has to choose
based on the valuations of the agent a set of k resources so as to maximize the
social welfare.

There are communication and computational bounds for every strategyproof
mechanism that solves this problem when the valuation functions satisfy sub-
modularity [13]. There are similar bounds without the constraint of truthfulness,
but slightly relaxing submodularity of valuation functions [15]. Finally, recent
work [2] studies similar questions for sub-additive valuations and provide various
upper and lower bound for specific valuation function classes.

This problem differs from cost-sharing in the sense that there are multiple
resources the mechanism is called to choose upon, however, all the agents are
going to share them. Moreover, they are interested in maximizing social welfare
rather than budget balance. However, both of these problems have applications
to resource sharing and particularly network formation.

2 Model

A set of agents A = {1, 2, . . . , n} is interested in receiving a service. Each agent
i has a private type vi, which is her valuation for receiving the service. A cost-
sharing mechanism inputs a bid bi for each agent i and outputs the subset
of agents Q ⊆ A that receive service and the price pi that each agent i pays.
Assuming quasi-linear utilities, each agent wants to maximize the quantity vixi−
pi where xi = 1 if i ∈ Q and xi = 0 if i /∈ Q. We concentrate on mechanisms
that satisfy the following conditions [10,11]:

– Voluntary Participation (VP): An agent that is not serviced is not charged
(i /∈ Q ⇒ pi = 0) and a serviced agent is never charged more than her bid
(i ∈ Q ⇒ pi ≤ bi).

– No Positive Transfer (NPT): The payment of each agent i is non-negative
(pi ≥ 0 for all i).

– Consumer Sovereignty (CS): For each agent i there exists a value b∗i ∈ R

such that if she bids b∗i , then it is guaranteed that agent i will receive the
service no matter what the other agents bid.
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We also assume that the agents can bid in a way that they will definitely
not receive the service. This can be done by allowing negative bids. Then VP
implies that an agent that reports a negative amount has to be charged a negative
amount if she is serviced, which is prohibited by NPT.

We are interested in mechanisms that are group-strategyproof (GSP). A mech-
anism is GSP if for every two valuation vectors v, v′ and every coalition of agents
S ⊆ A, satisfying vi = v′i for all i /∈ S, one of the following is true: (a) There
is some i ∈ S, such that vix

′
i − p′i < vixi − pi or (b) for all i ∈ S, it holds that

vix
′
i − p′i = vixi − pi, where x′

i and p′i is the allocation and payment of player i
respectively when the agents report v′.

We also assume the existence of an underlying cost-function C : 2A → R+ ∪
{0}, where C(S) specifies the cost of providing service to all agents in S. We say
that a mechanism is α-budget balanced with respect to C if for all b, αC(Q) ≤∑

i∈A pi ≤ C(Q), where Q and {pi} are the prices and allocation output by the
mechanism on input b.

2.1 Characterization

A cost-sharing scheme ξ : A × 2A → R is a function that takes as input an
agent and a set and outputs a real number. The amount ξ(i, S) can be viewed
as the payment of agent i when the set of agents S receives the service.3 A
cost-sharing scheme is α-budget balanced with respect to C if for all S, αC(S) ≤∑

i∈S ξ(i, S) ≤ C(S).
A property of the cost-sharing scheme, namely cross-monotonicity, has played

a central role in the literature. Intuitively, cross-monotonicity requires that the
cost-share of an agent can not increase as the serviced set grows. Moulin [10,11]
showed that given a cross-monotone cost-sharing scheme we can construct a
group-strategyproof mechanism with a budget-balance factor equal to that of
the cost-sharing scheme. Moreover, if the underlying cost function is submodu-
lar then there exist a perfectly budget balanced cost-sharing scheme. However,
when the cost function is given by the cost of the optimal solution of an optimiza-
tion problem, the cost function is often not submodular. Subsequent work [6]
proved bounds on the budget balance factor of cross-monotonic cost-sharing
schemes. This gave rise to the question of whether there are group-strategyproof
mechanisms for such problems with better budget-balance properties. A step
towards answering this question was taken by [14], where they gave a com-
plete characterization of the cost-sharing schemes that can give rise to group-
strategyproof mechanisms. Let ξ∗(i, L, U) be the minimum payment of player
i for getting serviced when the serviced set is “between” sets L and U , i.e.,
ξ∗(i, L, U) := min{L⊆S⊆U,i�S} ξ(i, S).

3 This is a restrictive form of a payment policy as we exclude the possibility of charging
different values given two different bid vectors where the mechanism provides the
service to the same set of agents. Nevertheless, this is without loss of generality for
the mechanisms of our setting [6].
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Theorem 1 (Pountourakis and Vidali [14]). A cost-sharing scheme ξ can
give rise to a group-strategyproof mechanism if and only if for every L ⊆ U ⊆ A
it satisfies the following three properties.

(a) There exists a set S with L ⊆ S ⊆ U , such that for all i ∈ S, we have
ξ(i, S) = ξ∗(i, L, U).

(b) For each player i ∈ U \L there exists one set Si with i ∈ Si and L ⊆ Si ⊆ U ,
such that for all j ∈ Si \ L, we have ξ(j, Si) = ξ∗(j, L, U).
(Since i ∈ Si \ L, it holds that ξ(i, Si) = ξ∗(i, L, U).)

(c) If for some C ⊂ U there is a player j ∈ C with ξ(j, C) < ξ∗(j, L, U) (obvi-
ously L � C), then there exists a set T �= ∅ with T ⊆ L \ C, such that for
all i ∈ T , ξ(i, C ∪ T ) = ξ∗(i, L, U).

2.2 Allocation

Additionally, there is a complete characterization of the allocation functions that
can be coupled with a cost-sharing scheme satisfying the properties of Theorem 1
to yield a group-strategyproof mechanism [14] .

Theorem 2 (Pountourakis and Vidali [14]). If ξ is a cost-sharing scheme
that satisfies the properties of Theorem 1, then for every bid vector b there exist
unique sets L(b) ⊆ U(b) ⊆ A such that

1. for all i ∈ L(b), bi > ξ∗(i, L(b), U(b)),
2. for all i ∈ U(b) \ L(b), bi = ξ∗(i, L(b), U(b)),
3. and for all R ⊆ A \ U(b), there exist i ∈ R with bi < ξ∗(i, L(b), U(b) ∪ R).

Furthermore, the mechanism that on input b outputs allocation Q = S and prices
pi = ξ(i, S) where

1. L(b) ⊆ S ⊆ U(b), and
2. for all i ∈ S, ξ(i, S) = ξ∗(i, L(b), U(b)) (such a set must exist by Theo-

rem 1(a)),

is a group-strategyproof mechanism.

A way to implement the allocation is to exhaustively search for these sets L(b)
and U(b) and a set S that satisfy the properties of the theorem. It is still not
known if there is an algorithm that implements this procedure with asymp-
totically better running time in general. However, in Section 3, we provide a
fully budget-balanced cost-sharing scheme and corresponding polynomial-time
allocation when the cost function is given by the edge-cover problem.

3 Edge Cover

In this section, we give a fully budget-balanced group-strategyproof mechanism
for the unweighted edge-cover cost-sharing game. To do so, we derive a cost-
sharing scheme that satisfies the conditions presented in Theorem 1. Previous
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work [6] implies that group-strategyproof mechanisms for edge-cover designed via
cross-monotonic cost-sharing schemes are at best 1/2-budget balanced. Thus, our
work improves upon the previous results and demonstrates that the assumption
of cross-monotonicity is not without loss for group-strategyproof mechanism
design. We start with a definition of the edge cover game.

Definition 1. In the edge cover game we are given a graph G = (V, E) with
no isolated vertices. The agents in the game are the vertices V of the graph G.
Given a subset of vertices S ⊆ V , an edge-cover of S is a subset of edges F ⊆ E
such that for all vertices v ∈ S there is some edge e ∈ F such that v ∈ e. The
cost of a set S is the minimum cardinality edge-cover of S.

In the following subsections, we first present a cost-sharing scheme for the edge
cover game that provably gives rise to a group-strategyproof mechanism. We
then show how to use this scheme to define a computationally efficient group-
strategyproof mechanism for our problem.

3.1 Cost-Sharing Scheme

Our cost-sharing scheme is based on the following well-known polynomial time
algorithm [4] for finding the minimum edge cover F of a set S. Let F be the
set of edges in the maximum matching on S, and then for each vertex v ∈ S
uncovered by F , add to F an edge e adjacent to v. Based on this algorithm, a
natural cost-sharing scheme is to charge each agent v ∈ S a price of 1/2 if v is in
the matching found by the algorithm, and 1 otherwise. The problem that arises
with this cost-sharing scheme is the existence of multiple maximum matchings.
We demonstrate this in the full version of the paper using an example of bad
tie-breaking rule among maximum matchings.

Definition 2. Given G = (V, E) on m edges, label edges E from 1 to m arbi-
trarily. For a subset of vertices S ⊆ V , let MS denote the lexicographically first
maximum matching according to the labeling. Moreover let V (MS) = {v | ∃e ∈
MS s.t. v ∈ e}, i.e., V (MS) contains the vertices that are matched in MS.

Note that the lexicographically first maximum matching MS of any set of vertices
S can be found efficiently, for example by assigning a weight of (1 + 2i)/2m to
the i’th edge and then computing the maximum weight matching. We are now
ready to formally define the cost-sharing scheme ξ. This cost-sharing scheme
extends one introduced by [6] for an edge-cover instance on just three vertices
as an example of a group-strategyproof mechanism without a cross-monotone
cost-sharing scheme.

Definition 3. Let G = (V, E). For every S ⊆ V and every i ∈ V we define

ξ(i, S) =

⎧⎨
⎩

0 i /∈ S
1/2 i ∈ V (MS)
1 i ∈ S \ V (MS)
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By construction, the cost-sharing scheme of Definition 3 is 1-budget balanced
(and therefore, by the results of [6], it is not cross-monotone). We show that
it additionally satisfies all the necessary and sufficient conditions of group-
strategyproofness.

Theorem 3. The cost-sharing scheme ξ of Definition 3 satisfies all the neces-
sary and sufficient conditions to give rise to a GSP mechanism. Consequently
there is a 1-budget balanced GSP mechanism for the edge-cover problem.

The proof uses the characterization presented in Theorem 1. The main challenge
is to show that for any lower set L and upper set U , there is some intermediate
set S∗, L ⊆ S∗ ⊆ U , in which every agent in S∗ achieves his minimum cost-share
among all intermediate sets (i.e., property (a)). Since cost-shares are always
either 1 or 1/2, this amounts to finding a set S∗ in which each agent i ∈ S∗ either
has cost-share 1/2, or has cost-share 1 for every intermediate set S, L ⊆ S ⊆ U .

The proof idea is as follows. We start with an arbitrary intermediate set S
and work our way towards S∗. First, we prove in the following lemmas that for
any set S, we can discard agents with cost-share equal to 1 without changing
the solution for the other agents. Thus starting from an arbitrary intermediate
set S, we can work our way towards S∗ by discarding all agents in S \ L with
cost-share equal to 1. This leaves the question of whether agents in S ∩ L are
receiving their minimum cost-share among the intermediate sets. Unfortunately,
this is not necessarily the case: there may be some unhappy agent i ∈ L ∩ S
with cost-share equal to 1 who has a cost-share equal to 1/2 in some other
intermediate set Si. In this case, we use the lexicographically first maximum
matchings MS and MSi to construct an alternating path starting from agent i.
We prove that this alternating path ends in a node j that can either be added
to or deleted from S in order to decrease the number of unhappy agents in L∩S
(interestingly, agent i may still be unhappy after this fix, but at least one agent
becomes happy). In this way, starting from an arbitrary intermediate set S, we
can walk towards S∗. The complete proof can be found in the full version of the
paper.

3.2 Polynomial-Time Allocation

We now argue that the group-strategyproof mechanism corresponding to the
cost-sharing scheme in Definition 3 can be constructed in polynomial time. To
do so, we must find, for any bid vector b, a set S satisfying the conditions of
Theorem 2. Namely, we are looking for a set S that lies between some lower-
bound set L(b) and upper-bound set U(b) such that:

1. for all i ∈ L(b), bi > ξ∗(i, L(b), U(b)),
2. for all i ∈ U(b) \ L(b), bi = ξ∗(i, L(b), U(b)),
3. and for all R ⊆ A \ U(b), there exist i ∈ R with bi < ξ∗(i, L(b), U(b) ∪ R),

and for all i ∈ S, ξ(i, S) = ξ∗(i, L(b), U(b)). In words, the elements in L(b) should
be bidding more than their minimum cost-share; the elements in U(b) \ L(b)
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should be bidding equal to their minimum cost-share; and U(b) is maximal in the
sense that when we try to add elements to it, at least one of the newcomers can’t
afford his minimum cost-share. The set S allocated by the group-strategyproof
mechanism is then any of the intermediate sets in which each agent is happy
(gets its minimum cost-share), i.e., a set S with

L(b) ⊆ S ⊆ U(b), s.t. ∀i ∈ S, ξ(i, S) = ξ∗(i, L(b), U(b)).

For ease of notation, in the rest of this section we fix b and use L to denote L(b)
and U to denote U(b).

The main difficulty in finding S is that we do not know L and U . However,
using the structure of these sets and the fact that the only cost-shares in our
scheme are 1 and 1/2, we can bound these two sets. Given a bid vector b let us
define P = {i | bi > 1

2} and Q = {i | bi ≥ 1
2}. Then L ⊆ P and U ⊆ Q. Hence

we can search through intermediate sets of P and Q, looking for our S. Any
such S will definitely contain L as L ⊆ P , but may not be contained in U ; our
algorithm must provide a separate guarantee for this containment.

Our algorithm for finding S is based on a local search procedure and cor-
responding potential function φ(.) which is strictly increasing with respect to
the steps of this search. The search procedure iteratively adds an element to, or
deletes an element from, the current set S while maintaining the invariant that
P ⊆ S ⊆ Q. Our potential function φ(S) counts the number of happy elements
in L ⊆ S, i.e.,

φ(S) = |{i ∈ L | ξ(i, S) = ξ∗(i, L, U)}|.
We show that as long as φ(S) < |L|, there is always a way to improve the
potential. Since L is fixed and finite (given b), this procedure must terminate.
Furthermore, by definition of the potential, when the procedure terminates, each
agent in L ⊆ S is happy. To guarantee that agents in S \ L are happy and also
that S ⊆ U , we need to prune S. As we show later, it is sufficient to simply
remove agents from S whose bids are less than their cost-shares. The following
procedure implements this local search.

1. S ← P .
2. Iterate as long as the set S changes:

(a) Remove all players in S \ P with ξ(i, S) = 1.
(b) If there is some i ∈ Q \ S such that the cardinality of the maximum

matching in S ∪ {i} is increased, then set S ← S ∪ {i}.
(c) Else if there is some i ∈ S \ P that was matched in M(S) and the

maximum matching in S \ {i} does not decrease, then set S ← S \ {i}.
3. Set S ← {i | bi ≥ ξ(i, S)}.

We first observe that this algorithm runs in polynomial time. Specifically steps 2
(b) and 2 (c) reduce to finding whether the inclusion of some agent in Q\P forms
an augmented path or whether an agent in S\P is not present in every maximum
cardinality matching respectively. Both of these steps can be implemented in
polynomial time. Since at each step the potential function increases, step 2 is
performed at most as many times as the cardinality of L, which is bounded by
the total number of agents.
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Theorem 4. This procedure outputs a set S, L ⊆ S ⊆ U , where for all i ∈ S,
ξ(i, S) = ξ∗(i, L, U).

We refer the reader to the full version for the proof of this theorem.

4 Set Cover

In this section we show that it is impossible to construct a fully budget balanced
group-strategyproof mechanism when the cost function is determined by the opti-
mal objective function of the set-cover problem. It is known that no cross-monotonic
cost-sharing scheme can have a budget-balance of better than n−1/2 where n is the
number of elements or the size of the largest subset in the set-cover instance [6].
Here we show that there are instances where no group-strategyproof mechanism
canbe (18/19)-budget-balanced.Thus,while group-strategyproofmechanismsmay
be able to improve upon the budget-balance factor of cross-monotonic ones, we
show that they can not, in general, provide full budget-balance.

Definition 4. In the set cover game we are given a ground set V and a collection
of subsets F ⊆ 2V . The agents in the game are the elements V of the ground
set. Given a subset of agents S ⊆ V , a set-cover of S is a collection of subsets
C ⊆ F such that S ⊆ ⋃C∈C C, i.e., every element i ∈ S belongs to some subset
C ∈ C. The cost of a set of agents S is the minimum cardinality set-cover of S.

In the following subsection, in order to build intuition, we first prove that there is
no fully budget-balanced group-strategyproof mechanism for the set-cover game.
Our counter-example uses the following instance of a set-cover game. There are
six elements U = {A1, A2, B1, B2, C1, C2}, and the collection of subsets is F =
{{Ai, Bj , Ck}i,j,k=1,2}. In other words there are three groups of two elements
and the available subsets are all those who contain exactly one element from
each group. We then extend the proof to show the constant bound.

4.1 Impossibility of Full Budget-Balance

We will show by contradiction that there is no fully budget balanced group-
strategyproof mechanism for this instance of the set-cover game. The first step
to reach a contradiction is to show that the necessary properties together with
full budget balance imply that at sets of the form {A1, A2, Bj , Ck}, there must
be an unfair sharing of the cost in the sense that A1 or A2 must be responsible
for their externality (their inclusion increases the cost of the optimal solution by
one). Since one of the agents of the group A is responsible for her externality
this puts an upper bound on the sum of the rest agents’ payments. Then, since
adding the missing agent from group B does not increase the cost, we show this
does not change the upper bound. Finally, we exploit the symmetric form of
this instance to derive the same bound with different agents in groups A and B.
By summing, we deduce that the contribution of agent Ck is zero in the set U .
Applying the same argument for every agent we deduce that no agent must be
charged in U reaching a contradiction.
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Theorem 5. There is no fully budget-balanced group-strategyproof mechanism
for the set-cover game.

A slight different approach can be used to obtain a constant lower bound for
this example.

Theorem 6. There is no (18/19)-budget-balanced group-strategyproof mecha-
nism for set cover.

We refer the reader to the full version of the paper for the proofs of these
theorems.

5 Conclusion

Our work is the first application of the complete characterization of group-
strategyproof mechanisms [14]. We use the characterization to show bounds on
the budget balance of group-strategyproof mechanisms for specific combinato-
rial problems. Particularly, we show that a very natural cost-sharing scheme for
edge-cover satisfies the conditions of the characterization and is fully budget bal-
anced. While the case of edge-cover is completely solved by this paper, it remains
open to bound the optimal budget balance factor of group-strategyproof mech-
anisms for set-cover. Other problems of interest include facility location, vertex
cover, Steiner tree, and Steiner forest. In the previous literature, these problems
have only been solved using techniques involving cross-monotonic cost-sharing
schemes, and it is known such an approach can not achieve perfect budget-
balance for these problems.

Many constructions of cross-monotonic cost-sharing schemes rely on primal-
dual schema. In these schemes, the natural linear-programming formulations of
the combinatorial problems have constraints corresponding to the demand of the
agents. The primal-dual scheme charges each agent her respective dual variable.
In order to guarantee cross-monotonicity, these schemes introduce the notion
of ghost-shares, i.e., the idea that variables contributing to a tight constraint
are not frozen but rather keep growing and contributing to other constraints.
Nevertheless, the payment of an agent is determined by the time that the dual
variable was first involved in a tight constraint.

If we don’t use the ghost-share technique the resulting cost-sharing scheme
is not cross-monotone. However, in many cases it can be used to design weakly
group-strategyproof mechanisms [9]. A natural question that arises is whether
such a cost-sharing scheme satisfies the necessary conditions of group-strategy-
proofness despite the fact that it fails to satisfy cross-monotonicity. Unfortu-
nately, the following observation indicates that this may not be true. Consider
a cost-sharing scheme that is constructed by a primal-dual scheme and does not
satisfy cross-monotonicity. Note that this implies the existence of a set S and
two agents i, j ∈ S such that ξ(j, S \ {i}) < ξ(j, S). This means that the con-
straint that was responsible for freezing the dual variable of agent j becomes
tight at a later time when i is present. This is only possible if there is another
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agent k ∈ S that contributed to this constraint for subset S \ {i}; however, the
inclusion of agent i caused the variable of k to freeze earlier, which means that
ξ(k, S \ {i}) > ξ(k, S). Such a cost-sharing scheme would not satisfy even the
weaker necessary property of semi-cross monotonicity identified in [6].

The previous observation indicates that one should search beyond primal-dual
schemes in order to design group-strategyproof mechanisms that perform strictly
better than mechanisms captured by the cross-monotonic framework.
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Abstract. We consider elections under the Plurality rule, where all vot-
ers are assumed to act strategically. As there are typically many Nash
equilibria for every preference profile, and strong equilibria do not always
exist, we analyze the most stable outcomes according to their stability
scores (the number of coalitions with an interest to deviate). We show
a tight connection between the Maximin score of a candidate and the
highest stability score of the outcomes where this candidate wins, and
show that under mild conditions the Maximin winner will also be the
winner in the most stable outcome under Plurality.

1 Introduction

Voting over potential possibilities is often used by societies to select an outcome
that has a global effect. As the different individuals have different incentives, the
way votes are aggregated to a final decision is important. Various voting systems
have been suggested and analyzed, where a society with given preferences may
often end up with radically different outcome, according to the voting system in
use.1 Thus, different voting systems offer different interpretations of consensus,
or society’s preferences. In political elections, the two prevalent systems are the
single round Plurality vote, and the two round Plurality with Runoff, where a
second round of Plurality occurs between the two leaders of the first round.

To complicate matters, even if we agree on a voting system that best im-
plements the will of the society, voters may not reveal their true preferences.
As Gibbard and Satterthwaite showed [4,13], it is unavoidable that in any non-
trivial voting system there will be manipulations. One manipulation may trigger
counter-manipulations by other voters, and so on. Therefore, the real question

� At the time of research the author was affiliated with Microsoft Research Herzlia,
Israel.

1 There is an example with five candidates and five widely-used voting systems, where
each candidate emerges as a winner under one of the systems, see here
http://www.cs.cmu.edu/~arielpro/mfai_papers/lecture6.pdf
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that has to be asked when analyzing a voting system is not about the charac-
terization of its truthful outcome, but rather what is its likely outcome. This is
not a simple question, as the appropriate equilibrium concept is highly depen-
dent on many parameters: whether voters vote simultaneously or sequentially,
the information available to them, opportunities for collusion, etc.

The näıve approach of analyzing Nash equilibria typically fails due to the
very large number of Nash equilibria, especially when there are many voters
(and thus in almost all profiles no voter has real power to change the outcome
alone). Several solutions have been proposed to the equilibria selection problem,
typically by adding refinements that take into account voters’ information or
dynamics (see related work). Some of this work is driven by empirical findings
on how people vote – either in lab experiments or in real elections. For example,
a well-observed phenomenon in Plurality is that most votes are concentrated on
a small number of candidates. A stronger form of this effect is the Duverger’s
law, which asserts that Plurality voting reduces to a match between only two
candidates. A challenge to theorists is therefore to come up with models that
replicate such effects and explain under what conditions they occur.

A very natural refinement, which directly addresses one of the main weak-
nesses of the Nash equilibrium, is to consider manipulations of coalitions rather
than singletons. While a strong equilibrium (where no coalition can gain by de-
viating) does not always exist, some outcomes have fewer coalitional deviations
than others. This counting measure of coalitional stability in games has been
recently formalized under the name stability scores [3]. Stability scores can be
used to compare various outcomes in a given game and highlight those outcomes
that have the lowest number of deviating coalitions. They are therefore highly
useful as an equilibrium selection criterion in situations where coalitional sta-
bility is important. In particular, a requirement for low stability scores can be
thought of as a relaxation of strong equilibrium that is still stronger than Nash.

In this work we apply stability scores to identify the most stable outcomes
under the Plurality rule. We then measure the stability of a candidate according
to the most stable profile in which this candidate wins.

Our paper shows that the stability of each candidate strongly depends on
her Maximin score. We study this dependency, and characterize the most stable
winner under Plurality when voters are strategic.

1.1 Related Work

The equilibria outcomes of many voting rules have been studied. Due to its wide
use and simplicity, Plurality was a natural focus for many of these studies. My-
erson and Weber [10] tackled the multiple equilibria problem by assuming that
voters have some level of uncertainty about the preferences of others. Thus ev-
ery voter has some chance of being pivotal. They showed that every positional
scoring rule has at least one equilibrium under these assumptions. Myerson and
Weber, and later de Sinopoli [15,16] showed that under Plurality votes are typi-
cally more condensed in equilibrium, although they do not necessarily replicate
Duverger’s law.
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A recent empirical study by Thompson et al. [17] studies a particular refine-
ment of Nash equilibrium, that is achieved by adding a slight preference toward
truthful reporting. They show that such equilibria tend to prefer winners that
are ranked high on average (i.e. have high Borda score). While Thompson et
al. did not measure the Maximin score of winners, we have no reason to believe
that it is particularly high, as their equilibrium refinement is completely different
from ours.

Other studies of the Plurality rule looked on equilibria that follow from a par-
ticular dynamics, e.g. when voters are voting in turns [2,7,20]. However, in all the
papers we mentioned thus far, an outcome was considered to be an equilibrium
if no single voter could gain by deviating.

Coalitional Stability. When considering manipulations by coalitions, an equilib-
rium is no longer guaranteed to exist. It has been shown by Kukushkin [6] that
the only voting rule that guarantees the existence of a strong equilibrium (where
no coalition of voters can gain) for any profile, is dictatorial. Messner and Pol-
born [8] considered robust political equilibria (RPE), which both assumes a level
of uncertainty (also known as trembling hand perfection), and requires that devi-
ating coalitions will themselves be stable. It turns out that trembling hand alone
(even without considering coalitions) induces the Duverger’s law under Plurality
for any number of candidates. For three candidates, the authors characterize all
RPEs and show conditions under which it exists and is unique. Interestingly, a
sufficient condition is that there is no Condorcet winner.

Finally and closest to our model, Sertel and Sanver [14] characterized profiles
in which strong equilibria exist in a wide variety of voting rules. They offered
a criterion called generalized Condorcet, and proved that it is a necessary and
sufficient condition to the existence of strong equilibrium. In particular, for the
case of Plurality the generalized Condorcet criterion coincides with the standard
definition. At the end of their paper, Sertel and Sanver leave as an open question
whether there are relaxations of strong equilibrium for which their characteriza-
tion could prove useful.

Counting Manipulations. Stability scores have been defined by Feldman et al. [3],
and applied to congestion games and auctions. Our definitions follow their paper
where possible. The proportion of coalitions of a given size that have a manip-
ulation had been previously studied by Procaccia and Rosenschein and later by
Xia and Conitzer [12,19]. However there are two significant differences between
such counting methods and our stability scores approach. First, we do not as-
sume truthful voting. Second, we compare the number of deviations assuming a
fixed preference profile, rather than a distribution over profiles.

Another perspective on counting manipulations comes from the recent line of
research on quantitative versions of robust social choice impossibility theorems,
such as Arrow’s and Gibbard-Satterthwaite’s theorems. This line of research –
having its roots in the study of the geometry of the Boolean cube, Analysis of
Boolean functions, and discrete Fourier Analysis – started in [5]. The state-of-
the-art in this direction is a theorem by Mossel and Racz [9] that bounds the
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number of profitable manipulations of any voting mechanism, in terms of its dis-
tance from a trivial mechanism, i.e. a dictatorship or a constant mechanism. An
implication of this theorem is that in anonymous mechanisms, such as plurality,
every profile has, on average, many profitable manipulations.

Such theorems study isoperimetric properties of the profile space, viewed as a
graph whose edges are defined by profitable manipulations. However, like most
work on voting, these results assume that there is only a single manipulator.
The study we wish to initiate focuses on the extended definition of manipu-
lation, where all voters may vote strategically, and deviations can be made by
coalitions of any size. Of course, the scope of this paper is limited just to a single
mechanism, namely Plurality.

1.2 Our Contribution

We relax the requirement for a strong equilibrium, and instead look for the most
stable profiles and candidates in terms of their stability score. We show tight
connection between the Maximin score of a candidate and its stability score,
where the latter decreases roughly exponentially in the former. The Copeland
score of a candidate also affects its coalitional stability, but has a secondary role.

As a corollary from the relation between the Maximin score and stability
scores, we show that given mild conditions the Maximin winner always emerges
as the most stable candidate under Plurality, i.e. as the winner in the most stable
voting profile. This suggests that the Plurality rule implements the Maximin
rule by selecting its winner under the stability scores solution concept. As a
special case, we have that if and only if the Maximin score of a is at least n/2
(equivalently, when a is a Condorcet winner), it has a stability score of 0 - i.e.
no coalition can deviate. For a lower Maximin score, the stability score increases
gradually. Therefore our result generalizes the result of Sertel and Sanver on
the Plurality rule to arbitrary profiles. We complement our results by showing
that when our mild restrictions are relaxed, there are cases where the Maximin
winner is not the winner of the most stable outcome.

To allow continuous reading, we moved most of the proofs to the appendix.

2 Preliminaries

Let A be a finite set of alternatives. R is a preference profile, i.e. a collection of n
total orders R1, . . . , Rn over A. Q = (a1, . . . , an) is a voting profile in Plurality,
where voter i votes for candidate ai. We assume that the preference profile R
is fixed, whereas the voting profile Q may change due to strategic voting. We
denote a �i b when a is preferred over b according to the preference order Ri.

s(Q) = (s1(Q), . . . , sm(Q)) is a scoring vector, where si(Q) is the number of
voters who voted for i in the profile Q. The Plurality winner in Q is f(Q) =
argmaxa∈A sa(Q).

For every a, a′ ∈ A, denote W (a, a′) = {i ∈ N : a �i a′}, and w(a, a′) =
|W (a, a′)|. These pairwise matches induce a tournament graph over A, with an
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edge a → b whenever a beats b. We also denote d(a) = |{b ∈ A : w(a, b) <
w(b, a)}|, i.e. the indegree of a in the tournament graph. Note that m − d(a)
is the Copeland score of a. The Maximin score of a in profile R is ms(a, R) =
mina′ =a w(a, a′). For simplicity we assume throughout the paper that the num-
ber of voters n is odd (some minor adjustments are required if this assump-
tion is relaxed). We denote the Maximin winner under profile R by MX(R) =
argmaxa∈A ms(a, R) (only when it is unique).

Sertel and Sanver [14] define the set C(R; n, q) of (n, q)-Condorcet winners as
follows: a is in C(R; n, q) if for all b ∈ A, w(a, b) ≥ q. Thus this set coincides
exactly with the set of candidates with Maximin score of at least q. They show
that for a large collection of voting rules, the set of strong equilibrium winners
can be characterized in terms of containment using C(R; n, q) for appropriate
values of q. In particular, for the Plurality rule with odd n the appropriate
threshold is q = �n/2�, and thus C(R; n, q) consists of the Condorcet winner (if
one exists).

Stability Scores. Given a preference profile R (which defines the game together
with the voting rule), a voting profile Q and a candidate a ∈ A, the a-stability
score of Q is defined as follows: For every a �= f(Q), SCa(Q, t) is the number of
coalitions C ⊆ N s.t.

– |C| = t.
– ∀i ∈ C, a �i f(Q) (i.e. all voters in C prefer a over the current outcome).
– There is another voting profile Q′

C of C, s.t. f(Q−C , Q′
C) = a.

The stability score of Q, SC(Q, t), is simply the sum

SC(Q, t) =
∑

a∈A\{f(Q)}
SCa(Q, t).

Since we get a different score for every size t, we need to aggregate these scores to
a single number. We do so by treating all coalitions equally.2 The total stability
score is thus defined as TSC(Q) =

∑
t≤n SC(Q, t). Similarly, for all a ∈ A,

TSCa(Q) =
∑

t≤n SCa(Q, t).

3 Stability of Outcomes under Plurality

Assume there is some given preference profile R. Let x(a) = n − ms(a, R), i.e.
the largest support that any candidate has against a (note that lower x(a) is
better). For every candidate a ∈ A, let Qa be the unanimity voting profile for
this candidate, i.e. Qa = (a, a, . . . , a). Obviously, f(Qa) = a.

The next two lemmas show that Qa is the most stable voting profile among
all profiles where a wins.3

2 We note that in the context of this work the exact way in which we aggregate scores
over a and t does not really matter. See Discussion.

3 While profiles where all voters vote the same are not very likely, we will later show
that there are also other profiles with the same score.



On Coalitions and Stable Winners in Plurality 261

Lemma 1. For every candidate a ∈ A, it holds that

1. for all b �= a, and any t ≥ �n/2�, SCb(Qa, t) =
(
w(b,a)

t

)
. If w(b, a) < n/2

(i.e. a beats b) or t < n/2 then SCb(Qa, t) = 0.
2. maxb=a SCb(Qa, t) =

(
x(a)

t

)
.

Proof. In the voting profile Qa, a coalition C can change the outcome to b iff
|C| > n/2. Also, C wants to change the outcome iff C ⊆ W (b, a). To see why
the last property holds, note that x(a) = n − ms(a, R) = n − minb=a w(a, b) =
maxb=a w(b, a).

Lemma 2. Let Q be a voting profile s.t. a = f(Q). For any b �= a and t ≥ �n/2�,
SCb(Q, t) ≥ (w(b,a)

t

)
.

Proof. Let C ⊆ W (b, a) be a coalition of size t. If all members of C will vote
for b, then sb(Q′) ≥ t > n/2, and thus b will become the winner. Since b may
already have some voters in C, it may be the case that many more coalitions of
size t (or smaller coalitions) can change the outcome to b.

Let us now look on the “most stable” profile. That is, the voting profile Q that
minimizes TSC(Q). By the two lemmas above, it is sufficient to look on the m
unanimous profiles {Qa}a∈A. Since unanimous profiles are both most stable and
simple, we will use them in our analysis. However the next lemma shows that
there may still be other profiles where a wins, that have the same stability score.

Lemma 3. Let a, b ∈ A s.t. b is pair-wise losing to a. Let Q′ be a voting profile
where a wins s.t. (1) all voters vote for either a or b; and (2) all voters voting
to b rank a last. Then TSC(Q′) = TSC(Qa).

We denote by ST (R) = argmina∈A TSC(Qa) the “most stable” winner under
profile R. In the remainder of this paper, we study the relations between MX(R)
and ST (R). In particular, we seek conditions under which the two coincide.

Proposition 1. Let a and a′ be two candidates such that x(a) ≤ x(a′)− k (i.e.
a has a better Maximin score than a′), then

TSC(Qa) ≤ max

{
0, d(a)

(
n/2 − x(a′)
n − x(a′)

)k

TSC(Qa′)

}
,

and in particular TSC(Qa) ≤ d(a)2−kTSC(Qa′).

This means that the stability score of candidates drops (i.e. improves) exponen-
tially with their Maximin score (the complement of x(a)), and linearly with their
Copeland score (the complement of d(a)). As a special case, we get that when
ms(a, R) > n/2 (i.e. when a is a Condorcet winner), then Qa is a strong equi-
librium – as has been showed by Sertel and Sanver. This is since for all b ∈ A,
w(b, a) < n/2, and thus the right-hand side of the equation is 0.
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3.1 Maximin and Stability

Our main result ties together high Maximin score and low stability score.

Theorem 2. Let a = ST (R), then ms(a, R) ≥ maxb ms(b, R) − log d(b). That
is, ST (R) is approximately the Maximin winner (under truthful voting).

Proof. If a is the Maximin winner then we are done. Otherwise, let b ∈ A be some
candidate such that ms(b, R) > ms(a, R), and denote k = ms(b, R)−ms(a, R),
thus x(b) = x(a) − k. By Proposition 1,

TSC(Qb) ≥ d(b)2−kTSC(Qa) = 2d(b)−kTSC(Qa).

However, since TSC(Qa) ≤ TSC(Qb), this implies that 2k−log d(b) ≤ 1, which
means that k ≤ log d(b). Thus ms(a, R) = ms(b, R) − k ≥ ms(b, R) − log d(b).

We next show that in most natural scenarios, the most stable winner is indeed
the Maximin winner, and not just an approximation.

Let MoV (R) deonte the margin of victory of the winner a under Maximin,
in profile R. That is, MoV (R) = maxb∈A(ms(a, R)− ms(b, R)), where a is the
Maximin winner of R.

From Theorem 2 it is easy to see that MX(R) = ST (R) whenever the
MoV (R) is higher than log m. Our next result complements this observation
by showing that even if the margin is low (say, MoV (R) = 1), but the Maximin
score of MX(R) is sufficiently high, then it has to be the most stable winner.

Theorem 3. Let a = MX(R), and suppose that ms(a, R) ≥ n(1
2 − 1

2(m−2) ).
Then a = ST (R).

In particular, when there are 3 candidates, the condition always holds, and
ST (R) = MX(R) for any profile R. Using the fact that transitive votes pose
certain constraints on the possible Maximin scores, we can strengthen this result
even further.

Corollary 4. For every profileR over (at most) 4 candidates, MX(R)=ST (R).

For any number of candidates, this equality holds almost always, provided that
there are enough voters. This is since the MoV in most voting rules including
Maximin is typically of the order of

√
n or more [18].4 This is usually much

larger than log m, which means that the Maximin winner indeed minimizes the
stability score.

However, it is not always the case that the Maximin winner is also the most
stable. We construct such an example for 7 candidates, the details of which are
given in the proof of the following proposition, in the appendix. Therefore, the
additional requirements in Theorems 2 and 3 cannot be completely omitted.

4 This holds whenever voters are drawn i.i.d. from some fixed distribution with full
support over profiles.
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Proposition 5. There is a preference profile R over 7 candidates,
s.t. MX(R) �= ST (R).

The main idea is to construct a voting profile with candidates a and b and 5
“dummy candidates”, s.t. a beats b and also has a slightly higher Maximin score.
However a loses to all dummy candidates, and by a larger margin than b does.
We then show that it is in fact sufficient to count only coalitions whose size
is close to n/2 (as these are almost all coalitions), and that for any such size
there are more coalitions deviating from Qa than from Qb. Thus a is not the
most stable winner. Clearly, such example can also be constructed for any higher
number of candidates.

4 Discussion and Implications

4.1 Implementation by Manipulation

Our analysis demonstrates that in the voting profile that is most stable against
coalitional deviations, the winner is almost always the Maximin winner of the
original profile. This result has two interpretations, or implications.

The first implication is a predictive one. In the presence of strategic voters who
freely form coalitions, we may think of the most stable outcome (in terms of stabil-
ity scores), as the most likely outcome. That is, we can predict that under Plurality,
the Maximin winner will tend to be selected. Thus stability scores provide us with
a solution concept, much like Nash equilibrium, strong equilibrium and other so-
lution concepts are widely applied as predictions of the outcome. A drawback of
this interpretation is that we did not compute the stability score of other profiles
where the Maximin winner wins, whereas the unanimous profile is not a very likely
outcome in itself.

We think the predictive interpretation is still valuable for two reasons. First,
we conjecture that on average, other outcomes where the Maximin winner is
selected will tend to be more stable than outcomes with a different winner. Sec-
ond, even without proving such a conjecture, our prediction about the selection
of the Maximin winner can still be tested empirically and experimentally.

The second implication of our result falls under mechanism design. A neutral
arbitrator with access to the real preferences of the voters can recommend all
voters to vote for a particular candidate (or any other recommendation). Vot-
ers may decide not to follow the recommendation, especially if they can find a
sufficiently large group that by doing so will achieve a better outcome. Since
low stability score indicates that there are few such coalitions, the most sta-
ble recommendation would be to vote for the Maximin winner. Note that in
most cases voters who rank the Maximin winner last may avoid playing their
dominated strategy (by ignoring the recommendation), without weakening the
stablility score of the outcome.

This approach is very similar to the one taken by Peleg in his remarkable
work on voting in committees [11]. In his paper, he describes a particular voting
rule which is not truthful, but where an arbitrator can always recommend voters
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a particular voting profile which is itself a strong equilibrium - and selects the
truthful winner. This is a rule that in a sense “implements itself” under strong
equilibrium. Our results suggest that while Maximin may not implement itself,
it can be implemented by Plurality under a somewhat weaker notion than strong
equilibrium.

4.2 Variations of the Stability Score

Smaller coalitions are typically considered to be more likely to form than large
ones. According to our definitions every deviating coalition is counted once,
regardless of its size.

To the other extreme, one can choose to count only coalitions of size t =
⌈

n
2

⌉
,

the smallest size of coalition that is guaranteed to exist in every profile (given
that there is no Condorcet winner), and ignore larger coalitions. Even with this
definition, our analysis remains correct. Notice that such coalitions contribute
most to the stability score, as SC(Qa, t) decreases exponentially in t. Therefore,
such a choice is a good approximation of every definition of aggregation (in the
unanimous profiles we analyzed).

Profitable coalitions of a given size can be counted with several resolutions:

– By members: In this model every combination of voters that can form a
profitable coalition is counted once. This is the definition used by Feldman
et al. [3] in the context of ad-auctions.

– By members + target : In this model every combination of voters that can
form a profitable coalition is counted by the number of distinct profitable
outcomes (i.e. winners) it can obtain.

– By members + target + action: In this model every profitable deviation by
a set of voters is counted. This fits a model where the profitable deviation
is chosen at random, since it is known to be computationally hard to obtain
such a deviation in some mechanisms [1].

In this paper we chose to use the second resolution for two reasons. First, it
somewhat simplifies the exposition, and second, it can be argued to be more ap-
propriate in the context of voting, since there is a small defined set of alternative
winners on which the coalition may try to agree. However, for the profiles that
we analyzed and for coalitions of size t =

⌈
n
2

⌉
, the main results remain the same

for all of the three models, subject to minor modifications of the analysis.

4.3 Future Work

Other than studying the connections between stability scores and coalitional
dynamics, a natural direction is applying a similar stability analysis to voting
rules other than Plurality. Such an analysis can reveal the properties that turn
a candidate into a stable winner, and help to better predict the outcome in such
settings.
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A Proofs

Lemma 3. Let a, b ∈ A s.t. b is pair-wise losing to a. Let Q′ be a voting profile
where a wins s.t. (1) all voters vote for either a or b; and (2) all voters voting
to b rank a last. Then TSC(Q′) = TSC(Qa).

Proof. We only need to show that every deviating coalition from Q′ can still
deviate in Qa. Note that even if all of W (b, a) will vote for b, this will still not
make b a winner, as w(b, a) < w(a, b). Thus any coalition that can make b a
winner must contain voters from W (a, b), which do not want to deviate. Let C
be a coalition deviating to some candidate b′, and denote by B all voters voting
for b in Q′. Then C ∪ B is a deviating coalition in Qa.

Notice that by Lemma 1 and the definition of the total score,

TSCb(Qa) =
w(b,a)∑
t=�n

2 �
SCb(Qa, t) =

w(b,a)∑
t=�n

2 �

(
w(b, a)

t

)

We denote α(x) =
∑x

t=�n
2 �
(

x
t

)
, so TSCb(Qa) = α(w(b, a)).

Lemma 4. α(x) ≥ α(x − 1) x
x−�n/2� .

Proof. Assume x ≥ �n/2�, otherwise α(x) = 0 and we get the inequality trivially.
For all t ≥ �n/2�,(

x

t

)
=
(

x − 1
t

)
x

x − t
≥
(

x − 1
t

)
x

x − �n/2�
Summing over all t,

α(x) =
x∑

t=�n/2�

(
x

t

)
>

x−1∑
t=�n/2�

(
x

t

)

≥
x−1∑

t=�n/2�

(
x − 1

t

)
x

x − �n/2� =
x

x − �n/2�α(x − 1)

Proposition 1. Let a and a′ be two candidates such that x(a) ≤ x(a′) − k (i.e.
a has a better Maximin score than a′), then

TSC(Qa) ≤ d(a)
(

n/2 − x(a′)
n − x(a′)

)k

TSC(Qa′) ≤ d(a)2−kTSC(Qa′)

Proof. Let b∗ be the candidate that beats a by the largest number of voters,
thus x(a) = w(b∗, a) = n − w(a, b∗). Similarly, there is a candidate b′ ∈ A s.t.
x(a′) = w(b′, a′). Thus w(b′, a′) − w(b∗, a) = x(a′) − x(a) ≥ k.
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By applying the inequality from Lemma 4 k times, we have that α(x) ≥(
x

x−�n/2�
)k

α(x − k). Then

TSCb∗(Qa) = α(w(b∗, a)) ≤ α(w(b′, a′) − k) ≤
(

w(b′, a′) − �n/2�
w(b′, a′)

)k

α(w(b′, a′))

=
(�n/2� − w(a′, b′)

n − w(a′, b′)

)k

α(w(b′, a′)) =
(�n/2� − w(a′, b′)

n − w(a′, b′)

)k

TSCb′(Qa′).

Also, we do not need to consider all m − 1 candidates but only candidates that
beat a (there are d(a) such candidates). Thus

TSC(Qa) =
∑

b:w(b,a)>n/2

TSCb(Qa) ≤
∑

b:w(b,a)>n/2

TSCb∗(Qa) = d(a)TSCb∗(Qa),

whereas TSC(Qa′) ≥ TSCb′(Qa).
Summing over all possible deviations,

TSC(Qa) ≤ d(a)TSCb∗(Qa) ≤ d(a)
(

n/2 − w(a′, b′)
n − w(a′, b′)

)k

TSCb′(Qa′)

≤ d(a)
(

n/2 − x(a′)
n − x(a′)

)k

TSCb′(Qa′)

≤ d(a)
(

n/2 − x(a′)
n − x(a′)

)k

TSC(Qa′) ≤ d(a)2−kTSC(Qa′)

Theorem 3. Let a = MX(R), and suppose that ms(a, R) ≥ n(1
2 − 1

2(m−2) ).
Then a = ST (R).

Proof. Note that ms(a, R) ≥ n(1
2− 1

2(m−2) ) iff
n
2 −x(a)

n−x(a) ≤ 1
m−1 . Also, d(a) ≤ m−1

and x(a) ≤ x(a′) for every a′ ∈ A. Thus by Proposition 1, for every a′ �= a s.t.
x(a′) = x(a) + k,

TSC(Qa) < d(a)
( n

2 − x(a′)
n − x(a′)

)k

TSC(Qa′) ≤ d(a)
n
2 − x(a′)
n − x(a′)

TSC(Qa′)

≤ (m − 1)
n
2 − x(a)
n − x(a)

TSC(Qa′) ≤ (m − 1)
1

m − 1
TSC(Qa′) = TSC(Qa′)

Lemma 5. Let C = (c1, . . . , ck) be a tuple of k candidates.
Then

∑k
i=1 w(ai, a(i mod k)+1) ≥ n.

Proof. Otherwise, the union of all sets W (ai, a(i mod k)+1) does not cover all
voters, and thus there is a voter with cyclic preferences ck � ck+1 � · · · � c1 �
ck.



On Coalitions and Stable Winners in Plurality 267

Corollary 4. For every profile R over (at most) 4 candidates, MX(R) =
ST (R).

Proof. Denote a = MX(R), b = ST (R). Assume, toward a contradiction, that
a �= b. Then from our previous corollaries we know that

– d(a)
(

n/2−ms(b,R)
n−ms(b,R)

)t

> 1, where t = ms(a, R) − ms(b, R). Therefore:
– d(a) ≥ 3. That is, a must be a beaten by at least (and exactly) 3 candidates.
– t = 1. That is, ms(b, R) = ms(a, R) − 1.

It thus follows, that

3
n/2− ms(b, R)
n − ms(b, R)

> 1 ⇒
3n/2− 3ms(b, R) > n − ms(b, R) ⇒
n/2 > 3ms(b, R) − ms(b, R) = 2ms(b, R) ⇒
ms(b, R) < n/4.

Denote by c the candidate that beats b, then w(b, c) = ms(b, R). c must also
beat a, and since there is no Condorcet winner, the fourth candidate d beats c
(and loses to b).

Since a is the Maximin winner, and the Maximin scores of a and b differ by 1,
we have that ms(c, R), ms(d, R) ≤ ms(b, R) < n/4 as well. We also know that
each of c, d is beaten by a single candidate, and thus w(c, d) = ms(c, R) < n/4
(since d beats c), and w(d, b) = ms(d, R) < n/2 (since b beats d). Therefore,

w(b, c) + w(c, d) + w(d, b) < n/4 + n/4 + n/2 < n,

in contradiction to Lemma 5.

Proposition 5. There is a preference profile R over 7 candidates, s.t. MX(R) �=
ST (R).

Proof. We will use m = 7 candidates denoted A = {a, b, c1, . . . , c5}, and n voters,
where n = 4n′ + 3 for some integer n′. We note that as the number of voters
grows, it becomes easier to construct such examples. Also, we can build similar
constructions with more dummy candidates. The preference profile R is defined
as follows.

– n′ + 1 voters rank a � b � C.
– 2n′ + 2 voters rank C � a � b.
– n′ voters rank b � C � a.

The preferences among the set C are set so that roughly n/5 voters rank ci

above c(i mod 5)+1 (this is easy to set via cyclic shifts). Note that w(a, b) =
n′ + 1 + 2n′ + 2 = 3n′ + 3 = �3n/4�, and that for all c ∈ C, w(c, a) = 3n′ + 2 =
�3n/4�, w(c, b) = 2n′ + 2 = �n/2�. It therefore holds that ms(a, R) = w(a, c) =
n−w(c, a) = �n/4�, ms(b, R) = �n/4�, ∀c ∈ C ms(c, R) ∼= n/5. In particular, a
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is the Maximin winner. We next turn to compute the stability scores of Qa and
Qb, to show that the latter is more stable.

For Qa, we need to consider all winning coalitions that prefer c over a, for
every c ∈ C. Note that x(a) = w(c, a) = �3n/4�, and x(b) = w(a, b) = �3n/4� =
x(a) + 1.

∀t ≥ �n/2� , SC(Qa, t) = |C|SCc(Qa, t) = 5
(

x(a)
t

)
.

As for Qb, there is exactly one coalition of size �n/2� that can deviate from Qb

to any c. For any higher t, the only possible deviations are to a. Thus ∀t s.t.
�n/2 + log(n)� ≥ t > �n/2�

SC(Qb, t) = SCa(Qb, t) =
(

x(b)
t

)
=
(

x(a) + 1
t

)
=
(

x(a)
t

)
x(a)

x(a) − t

=
1
5
SC(Qa, t)

x(a)
x(a) − t

≤ 1
5
SC(Qa, t)

x(a)
x(a) − �n/2 + log(n)�

=
1
5
SC(Qa, t)

x(a)
x(a) − �n/2 + log(n)� =

1
5
SC(Qa, t)

�3n/4�
�3n/4� − �n/2 + log(n)�

=
1
5
SC(Qa, t)

�3n/4�
�n/4 − log(n)� <

1
5
SC(Qa, t) · 3.1 <

7
10

SC(Qa, t)

(for every n > 100)

For t = �n/2�, we need to add the 5 coalitions that deviate to C. We now turn
to sum over al sizes of coalitions. Note that there are many deviating coalitions
of size t = �n/2�, but this size drops exponentially as t grows. In fact almost
all deviations (say, 95%) are in the range t ∈ [�n/2� , �n/2 + log(n)�]. In other
words

�n/2+log(n)�∑
t=�n/2�

SCa(Qb, t) > 0.95
n−x(b)∑
t=�n/2�

SCa(Qb, t) = 0.95 · TSCa(Qb, t), (1)

whereas TSC(Qb) = TSCa(Qb) + 5.
Adding all inequalities,

TSC(Qb) = TSCa(Qb) + 5 < 5 + 1.06
�n/2+log(n)�∑

t=�n/2�
SCa(Qb, t)

< 5 + 1.06
�n/2+log(n)�∑

t=�n/2�

7
10

SC(Qa, t)

< 5 +
8
10

�n/2+log(n)�∑
t=�n/2�

SC(Qa, t) < 5 +
8
10

TSC(Qa) < TSC(Qa).

Thus for sufficiently large n, candidate b has a lower (better) stability score than
a.
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Abstract. We consider the marketing model of (Hartline, Mirrokni, Sundarara-
jan, WWW ’08) for selling a digital product in a social network under positive
externalities. The seller seeks for a marketing strategy, namely an ordering in
which he approaches the buyers and the prices offered to them, that maximizes
her revenue. We restrict our attention to the Uniform Additive Model of exter-
nalities, and mostly focus on Influence-and-Exploit (IE) marketing strategies. We
show that in undirected social networks, revenue maximization is NP-hard not
only when we search for a general optimal marketing strategy, but also when
we search for the best IE strategy. Rather surprisingly, we observe that allow-
ing IE strategies to offer prices smaller than the myopic price in the exploit step
leads to a significant improvement on their performance. Thus, we show that the
best IE strategy approximates the maximum revenue within a factor of 0.911 for
undirected and of roughly 0.553 for directed networks. Utilizing a connection
between good IE strategies and large cuts in the underlying social network, we
obtain polynomial-time algorithms that approximate the revenue of the best IE
strategy within a factor of roughly 0.9. Hence, we significantly improve on the
best known approximation ratio for the maximum revenue to 0.8229 for undi-
rected and to 0.5011 for directed networks (from 2/3 and 1/3, respectively).

1 Introduction

Understanding the flow of information, influence, and epidemics through the social
fabric has become increasingly important due to the high interconnectedness brought
about by technological advances. The digitization of communications (e.g., cell phones,
emails, text messages) and of the social interaction (e.g., Facebook, Twitter) not only
has provided the researchers with a strong empirical footing upon which they can base
their theories and test their predictions, but also has opened the frontier of algorith-
mic applications related to social networks. Particularly, there has been a shift from
aggregate descriptive theories, in the spirit of Diffusion of Innovations, to models incor-
porating the structure of social networks, culminating with the algorithmic paradigm of
Influence Maximization.
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Firms operating in such a reticular environment, where information about products
and services diffuses rapidly between individuals, have acknowledged the importance
of revisiting their approach. The availability of information about users and the miti-
gated effectiveness of traditional forms of marketing occasion the need for intelligent
marketing strategies. Towards realizing this goal, there are three main challenges: min-
ing individual preferences, quantifying the influence that buyers exert upon each other,
and fusing these information along a marketing strategy. The ideal solution would be
an algorithm that intelligently adjusts its actions (e.g., prices, individuals to approach)
based on the current state of the network, and maximizes the seller’s revenue.

In this work, we are interested in the latter challenge of designing efficient market-
ing strategies that exploit the positive influence between buyers. We focus on the setting
where the utility of the product depends inherently on the scale of the product’s adop-
tion, e.g., the value of a social network depends on the fraction of the population using
it on a regular basis. In fact, for many products, their value to a buyer depends on the
set of her friends using them (e.g., cell phones, online gaming). In the presence of such
positive externalities between the potential buyers, the seller seeks for a marketing strat-
egy that guarantees a significant revenue through a wide adoption of the product, which
leads to an increased value, and consequently, to a profitable pricing of it.

Marketing Model. More formally, we adopt the model of Hartline, Mirrokni, and Sun-
dararajan [14], where a digital product is sold to a set of potential buyers under positive
externalities. We assume an unlimited supply of the product and that there is no pro-
duction cost for it. A (possibly directed) weighted social network G(V, E, w) on the set
V of potential buyers models how their value of the product is affected by other buyers
who already own the product. Specifically, an edge (j, i) ∈ E denotes that the event
that j owns the product has a positive influence on i’s value of the product. The strength
of this influence is quantified by a non-negative weight wji associated with edge (j, i).
Also, buyer i may have an intrinsic value of the product, quantified by a non-negative
weight wii. The product’s value to each buyer i is given by a non-decreasing function
vi : 2Ni  → R+, which depends on wii and on the set S ⊆ Ni of i’s neighbors who
already own the product, where Ni = {j ∈ V \ {i} : (j, i) ∈ E}. The exact values
vi(S) are unknown and are treated as random variables of which only the distributions
Fi,S are known to the seller. In particular, we assume that for each buyer i and each set
S ⊆ Ni, the seller only knows the probability distribution Fi,S(x) = IPr[vi(S) < x]
that buyer i rejects an offer of price x for the product.

Regarding the distribution of vi(S)’s, the most interesting cases outlined in [14]
are: (i) the Concave Graph Model, where the weights wji are random variables, and
the values vi(S) are determined by a concave function of the total influence Mi,S =∑

j∈S∪{i} wji perceived by buyer i from the set S of her neighbors owning the product,
and (ii) the Uniform Additive Model, where the weights wji are deterministic, and the
values vi(S) are uniformly distributed in [0, Mi,S]. In this work, we restrict our attention
to the Uniform Additive Model, which can be regarded as an extension of the widely
accepted Linear Threshold Model of social influence [15]. Though technically simpler,
the Uniform Additive Model incorporates all the main features of the marketing model
of [14]. An important special case of the Uniform Additive Model is the undirected (or
the symmetric) case, where wij = wji for all edges {i, j} of the social network.
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In this setting, the seller approaches each potential buyer once and makes an offer to
him. Thus, a marketing strategy (π, x) consists of a permutation π of the buyers and a
pricing vector x = (x1, . . . , xn), where π determines the order in which the buyers are
approached and x the prices offered to them. Given the set S of i’s neighbors who own
the product when the seller approaches her, buyer i accepts the offer with probability
1−Fi,S(xi), in which case she pays the price xi, or rejects it, with probability Fi,S(xi),
in which case she pays nothing and never receives an offer again. The seller’s goal is to
compute a marketing strategy (π, x) that maximizes her expected revenue, namely the
total amount paid by the buyers who accept the offer.

Previous Work. Using a transformation from Maximum Acyclic Subgraph, Hartline et
al. [14] proved that if we have complete knowledge of the buyers’ valuations, computing
a revenue-maximizing ordering is NP-hard for directed social networks. Combined
with the result of [12], this suggests an upper bound of 0.5 on the approximation ratio
of revenue maximization for directed networks and deterministic additive valuations.
On the positive side, they gave a polynomial-time dynamic programming algorithm for
a fully symmetric special case, where the order of the buyers is insignificant.

An interesting contribution of [14] is a class of elegant marketing strategies called
Influence-and-Exploit (IE). An IE strategy first offers the product for free to a selected
subset of buyers, aiming to increase the value of the product to the remaining buyers
(influence step). Then, in the exploit step, it approaches the remaining buyers, in a
random order, and offers them the product at the so-called myopic price. The myopic
price ignores the current buyer’s influence on the subsequent buyers and maximizes
the expected revenue extracted from her. In the Uniform Additive Model, each buyer
accepts the myopic price with probability 1/2. Hence, there is a notion of uniformity
in the prices offered in the exploit step, in the sense that the buyers accept them with a
fixed probability, and we can say that the IE strategy uses a pricing probability of 1/2.

As for the revenue extracted by IE strategies compared against the maximum rev-
enue extracted by general marketing strategies, Hartline et al. [14] proved that the best
IE strategy approximates the maximum revenue within a factor of 0.25 for the Concave
Graph Model, which improves to e

4e−2 ≈ 0.306 if the distributions Fi,S satisfy the
monotone hazard rate condition, and within a factor of 0.94 for the (polynomially solv-
able) fully symmetric case of the Uniform Additive Model. Combined with the recent
algorithm of [16] for unconstrained submodular maximization, which can be used to
approximate the revenue of the best IE strategy within a factor of 0.5, the results of [14]
imply an approximation ratio of 0.125 for the maximum revenue in the Concave Graph
Model, which improves to 0.153 if the distributions Fi,S satisfy the monotone hazard
rate condition. As for the Uniform Additive Model, Hartline et al. [14] proved that if
each buyer is selected in the influence set randomly, with an appropriate probability,
the expected revenue of IE is at least 2/3 (resp. 1/3) times the maximum revenue of
undirected (resp. directed) networks. Since [14], the Influence-and-Exploit paradigm
has been applied to a few other settings where one seeks to maximize revenue in the
presence of positive externalities (see e.g. [4,5,13]).

Contribution and Techniques. Although IE strategies are simple, elegant, and promis-
ing in terms of efficiency, their performance against the maximum revenue and their
approximability are not well understood. Moreover, the absence of any strong bounds
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on the fraction of the maximum revenue extracted by the best IE strategy and the poor
approximation ratios for the maximum revenue in the Concave Graph Model suggest
looking into simpler cases of the model. This is also suggested by previous work on
Influence Maximization, where focusing on simpler cases provides insights, which, in
turn, can enhance our understanding of more general settings. In this work, we focus
on the important case of the Uniform Additive Model, and obtain a comprehensive col-
lection of results on the efficiency and the approximability of IE strategies. Our results
also imply a significant improvement on the best known approximation ratio for revenue
maximization in the Uniform Additive Model.

We first show that in the Uniform Additive Model, revenue maximization is NP-
hard for undirected networks1 not only when we search for a general optimal marketing
strategy, but also when we search for the best IE strategy. Next, we embark on a system-
atic study of the algorithmic properties of IE strategies (Section 3). In [14], IE strategies
are restricted, by definition, to the myopic pricing probability, which for the Uniform
Additive Model is 1/2. Rather surprisingly, we observe that we can achieve a significant
improvement on the efficiency of IE strategies if we use smaller prices (equivalently, a
larger pricing probability) in the exploit step. Thus, we let IE strategies use a carefully
selected pricing probability p ∈ [1/2, 1).

We prove the existence of an IE strategy with pricing probability 0.586 (resp. 2/3)
which approximates the maximum revenue, extracted by an unrestricted marketing
strategy, within a factor of 0.911 for undirected (resp. 0.55289 for directed) networks.
The proof assumes a revenue-maximizing pricing probability vector p and constructs
an IE strategy with the desired expected revenue by applying randomized rounding to
p. An interesting consequence is that the upper bound of 0.5 on the approximation ratio
of the maximum revenue for directed networks does not apply to the Uniform Additive
Model. In Section 3, we discuss the technical reasons behind this and show a pair of
upper bounds on the approximation ratio achievable for directed networks. Specifically,
assuming the Unique Games conjecture, we show that it is NP-hard to approximate the
maximum revenue within a factor greater than 27/32, if we use any marketing strategy,
and greater than 3/4, if we are restricted to IE strategies with pricing probability 2/3.

The technical intuition behind most of our results comes from the apparent connec-
tion between good IE strategies and large cuts in the underlying social network. Follow-
ing this intuition, we optimize the parameters of the random-partitioning IE strategy of
[14] and slightly improve the approximation ratio to 0.686 (resp. 0.343) for undirected
(resp. directed) networks. Building on the idea of generating revenue from large cuts
in the network, we discuss, in Section 4, a natural generalization of IE strategies that
use more than two pricing classes. We show that a simple random partitioning of the
buyers in six pricing classes further improves the approximation ratio for the maximum
revenue to 0.7032 for undirected networks and to 0.3516 for directed social networks.

The main hurdle in obtaining better approximation guarantess for the maximum rev-
enue problem is the lack of any strong upper bounds on it. In Section 5, we introduce
a strong Semidefinite Programming (SDP) relaxation for the problem of computing the

1 If the seller has complete knowledge of the buyers’ valuations, finding a revenue-maximizing
ordering for undirected networks is polynomially solvable (Lemma 1). Therefore, the reduc-
tion of [14] does not imply that revenue maximization for undirected networks is NP-hard.
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best IE strategy with any given pricing probability. Our approach exploits the resem-
blance between computing the best IE strategy and the problems of MAX-CUT and
MAX-DICUT, and builds on the elegant approach of Goemans and Williamson [11] and
Feige and Goemans [8]. Solving the SDP relaxation and using randomized rounding,
we obtain a 0.9032 (resp. 0.9064) approximation for the best IE strategy with a pricing
probability of 0.586 for undirected networks (resp. of 2/3 for directed networks). Com-
bining these results with the bounds on the fraction of the maximum revenue extracted
by the best IE strategy, we significantly improve on the best known approximation ratio
for revenue maximization to 0.8229 for undirected networks and 0.5011 for directed
networks (from 2/3 and 1/3, respectively, in [14]). To the best of our knowledge, this
is the first time an (approximate) SDP relaxation for a pricing model under positive
externalities is suggested and exploited to improve the approximation ratio for the cor-
responding revenue (or welfare) maximization problem. Actually, we believe that our
SDP-based approach may find applications to other pricing models under externalities.

Other Related Work. Our work lies in the area of pricing and revenue maximization
under positive externalities, and more generally, in the area of social contagion and
influence maximization (see e.g., [7,15]). Recent research has studied the impact of
externalities in a variety of settings (see e.g. [14,4,1,3,6,5,13,9]). Hartline et al. [14]
were the first to consider social influence in the framework of revenue maximization.
Since then, relevant research has focused either on posted price strategies, where there
is no price discrimination, or on game theoretic considerations, where the buyers act
strategically according to their value of the product. To the best of our knowledge,
our work is the first that considers the approximability of the revenue extracted by an
optimal strategy and by the best IE strategy, which were the central problems in [14].

Regarding posted pricing, Arthur et al. [4] considered a model where recommenda-
tions about the product cascade through the network from early adopters, and presented
an IE-based O(1)-approximation algorithm for the maximum revenue. Akhlaghpour
et al. [1] considered iterative posted pricing, where all interested buyers can buy the
product at the same price at a given time. They studied revenue maximization under
two different repricing models allowing for at most k prices. They proved that if fre-
quent repricing is allowed, revenue maximization is NP-hard to approximate, while
if the repricing rate is limited, there is an FPTAS. Anari et al. [3] considered a posted
price setting with historical externalities. Given a fixed price trajectory, the buyers de-
cide when to buy the product. In this setting, they studied existence and uniqueness of
equilibria, and presented an FPTAS for special cases of revenue maximization.

In a complementary direction, Chen et al. [6] investigated the (Bayesian-)Nash equi-
libria when each buyer’s value of the product depends on the set of buyers who own the
product. They focused on two classes of equilibria, pessimistic and optimistic ones, and
showed how to compute these equilibria and how to find revenue-maximizing prices.
Candogan et al. [5] investigated a scenario where a monopolist sells a divisible good to
buyers under positive externalities. They considered a two-stage game where the seller
first sets an individual price for each buyer, and then the buyers decide on their con-
sumption level. They proved that the optimal price for each buyer is proportional to
her Bonacich centrality, and that if the buyers are partitioned into two pricing classes
(which is conceptually similar to IE), the problem is reducible to MAX-CUT.
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2 The Model and Preliminaries

The Influence Model. The social network is a (possibly directed) weighted network
G(V, E, w) on the set V of potential buyers. There is a positive weight wij associated
with each edge (i, j) ∈ E (we assume that wij = 0 if (i, j) �∈ E). A social network is
undirected (or symmetric) if wij = wji for all i, j ∈ V , and directed otherwise. There
may exist a non-negative weight wii associated with each buyer i 2. Each buyer i has a
value vi : 2Ni  → R+ of the product, which depends on wii and on the set S ⊆ Ni of
i’s neighbors who already own the product, where Ni = {j ∈ V \ {i} : (j, i) ∈ E}.
However, the exact values vi(S) are unknown to the seller, who, for each buyer i and
each set S ⊆ Ni, only knows the probability distribution Fi,S(x) = IPr[vi(S) < x]
that buyer i rejects an offer of price x for the product.

In the Uniform Additive Model [14, Section 2.1], the values vi(S) are drawn from
the uniform distribution in [0, Mi,S ], where Mi,S =

∑
j∈S∪{i} wji is the total influence

perceived by i by the set S of her neighbors owning the product. Then, the probability
that buyer i rejects an offer of price x is Fi,S(x) = x/Mi,S .

Myopic Pricing. The myopic price disregards any externalities imposed by i on her
neighbors, and simply maximizes the expected revenue extracted from buyer i, given
that S is the current set of i’s neighbors who own the product. For the Uniform Additive
Model, the myopic price is Mi,S/2, the probability that buyer i accepts it is 1/2, and
the expected revenue extracted from her with the myopic price is Mi,S/4, which is the
maximum revenue one can extract from buyer i alone.

Marketing Strategies and Revenue Maximization. We can usually extract more rev-
enue from G by employing a marketing strategy that exploits the positive influence
between the buyers. A marketing strategy (π, x) consists of a permutation π of the
buyers and a pricing vector x = (x1, . . . , xn), where π determines the order in which
the buyers are approached and x the prices offered to them.

We observe that for any buyer i and any probability p that i accepts an offer, there
is an (essentially unique) price xp such that i accepts an offer of xp with probability p.
For the Uniform Additive Model, xp = (1−p)Mi,S and the expected revenue extracted
from buyer i with such an offer is p(1−p)Mi,S . Throughout this paper, we equivalently
regard marketing strategies as consisting of a permutation π of the buyers and a vector
p = (p1, . . . , pn) of pricing probabilities. We note that if pi = 1, i gets the product
for free, while if pi = 1/2, the price offered to i is (the myopic price of) Mi,S/2. We
assume that pi ∈ [1/2, 1], since any expected revenue in [0, Mi,S/4] can be achieved
with such pricing probabilities. The expected revenue of a marketing strategy (π, p) is:

R(π, p) =
∑
i∈V

pi(1 − pi)

⎛⎝wii +
∑

j:πj<πi

pjwji

⎞
⎠ (1)

The problem of revenue maximization under the Uniform Additive Model is to find
a marketing strategy (π∗, p∗) that extracts a maximum revenue of R(π∗, p∗) from a
given social network G(V, E, w).

2 Wlog., we ignore wii’s for directed networks, since we can replace each wii by an edge (i′, i)
of weight wii from a new node i′ with a single outgoing edge (i′, i) and no incoming edges.
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Bounds on the Maximum Revenue. Let N =
∑

i∈V wii and W =
∑

i<j wij , if the
social network G is undirected, and W =

∑
(i,j)∈E wij , if G is directed. Then an upper

bound on the maximum revenue of G is R∗ = (W +N)/4, and follows by summing up
the myopic revenue over all edges of G [14, Fact 1]. A lower bound on the maximum
revenue is (W + 2N)/8 (resp. (W + 4N)/16), if G is undirected (resp. directed), and
follows by approaching the buyers in any order (resp. in a random order) and offering
them the myopic price. Thus, myopic pricing achieves an approximation ratio of 0.5 for
undirected networks and of 0.25 for directed networks.

Ordering and NP-Hardness. Revenue maximization exhibits a dual nature involving
optimizing both the pricing probabilities and the sequence of offers. For directed net-
works, finding a good ordering π of the buyers bears a resemblance to the Maximum
Acyclic Subgraph problem, where given G(V, E, w), we seek for an acyclic subgraph
of maximum total edge weight. In fact, any permutation π of V corresponds to an
acyclic subgraph of G that includes all edges going forward in π, i.e., all edges (i, j)
with πi < πj . [14, Lemma 3.2] shows that given a directed network G and a pricing
probability vector p, computing an optimal ordering of the buyers (for the particular p)
is equivalent to computing a Maximum Acyclic Subgraph of G, with each edge (i, j)
having a weight of pipj(1− pj)wij . Consequently, computing an ordering π that max-
imizes R(π, p) is NP-hard and Unique-Games-hard to approximate within a factor
greater than 0.5 [12]. On the other hand, we can show that in the undirected case, if the
pricing probabilities are given, we can easily compute the best ordering of the buyers.

Lemma 1. Let G(V, E, w) be an undirected social network, and let p be any pricing
probability vector. Then, approaching the buyers in non-increasing order of their pric-
ing probabilities maximizes the revenue extracted from G under p.

Therefore, [14, Lemma 3.2] does not imply the NP-hardness of revenue maximization
for undirected networks. The following lemma employs a reduction from monotone
One-in-Three 3-SAT [10, LO4], and shows that revenue maximization is NP-hard for
undirected networks.

Lemma 2. Computing a marketing strategy that extracts the maximum revenue from
an undirected social network is NP-hard.

3 Influence-and-Exploit Strategies

An Influence-and-Exploit (IE) strategy IE(A, p) consists of a set of buyers A receiving
the product for free and a pricing probability p offered to the remaining buyers in V \A,
approached in a random order. We slightly abuse the notation, and let IE(q, p) denote
an IE strategy where each buyer is selected in A independently with probability q. For
directed networks, IE(A, p) extracts an expected (wrt the random ordering of the exploit
set) revenue of:

RIE(A, p) = p(1 − p)
∑

i∈V \A

⎛⎝wii +
∑
j∈A

wji +
∑

j∈V \A, j =i

p wji

2

⎞
⎠ (2)
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Specifically, IE(A, p) extracts a revenue of p(1 − p)wji from each edge (j, i) with
j ∈ A and i ∈ V \ A, and a revenue of p2(1 − p)wji from each edge (j, i) with both
j, i ∈ V \ A, if j is before i in the random order, which happens with probability 1/2.

The problem of finding the best IE strategy is to compute a subset of buyers A∗ and
a pricing probability p∗ that extract a maximum revenue of RIE(A∗, p∗) from a given
social network G(V, E, w). The following lemma employs a reduction from monotone
One-in-Three 3-SAT, and shows that computing the best IE strategy is NP-hard.

Lemma 3. The problems of computing the best IE strategy and of computing the best
IE strategy with a given pricing probability p, for any fixed p ∈ [1/2, 1), are NP-hard,
even for undirected networks.

Simple IE strategies extract a significant fraction of the maximum revenue. E.g., for
undirected networks, RIE(∅, 2/3) = (4W + 6N)/27, and IE(∅, 2/3) achieves an ap-
proximation ratio of 16

27 . Moreover, IE(X, 1/2) extracts the maximum revenue from any
simple undirected bipartite network G(X, Y, E). For directed networks, RIE(∅, 2/3) =
(2W + 6N)/27, and IE(∅, 2/3) achieves an approximation ratio of 8

27 . We next show
that carefully selected IE strategies extract a larger fraction of the maximum revenue.

Exploiting Large Cuts. A natural idea is to exploit the apparent connection between a
large cut in the social network and a good IE strategy. For example, in the
undirected case, an IE strategy IE(q, p) is conceptually similar to the randomized 0.5-
approximation algorithm for MAX-CUT, which puts each node in set A with proba-
bility 1/2. However, in addition to a revenue of p(1 − p)wij from each edge {i, j} in
the cut (A, V \ A), IE(q, p) extracts a revenue of p2(1 − p)wij from each edge {i, j}
between nodes in the exploit set V \ A. Thus, to optimize the performance of IE(q, p),
we carefully adjust the probabilities q and p so that IE(q, p) balances between the two
sources of revenue. The proof of Proposition 1 extends the proof of [14, Theorem 3.1].

Proposition 1. Let G(V, E, w) be an undirected (resp. directed) social network, let

λ = N/W , and let q = max{1 −
√

2(2+λ)
4 , 0}, Then, IE(q, 2 −√

2) approximates the
maximum revenue of G within a factor of 0.686 (resp. 0.343).

On the Efficiency of Influence-and-Exploit. IE makes a rough discretization of the
pricing space, and exploits the fact that the combinatorial structure of partitioning the
vertices into two sets is well understood. Nevertheless, we are left with the nontrivial
task of correlating the maximum revenue with only two prices and the maximum rev-
enue with any set of prices. We next show that the best IE strategy, which is NP-hard
to compute, manages to extract a significant fraction of the maximum revenue.

Theorem 1. For any undirected social network, there exists an IE strategy with pricing
probability 0.586 whose revenue is at least 0.9111 times the maximum revenue.

Proof. We consider an undirected social network G(V, E, w), start from the revenue-
maximizing pricing probability vector p, and obtain an IE strategy IE(A, p̂) by apply-
ing randomized rounding to p. We show that for p̂ = 0.586, the expected (wrt the
randomized rounding choices) revenue of IE(A, p̂) is at least 0.9111 times the revenue
extracted from G by the best ordering for p.
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By Lemma 1, the best ordering is to approach the buyers in non-increasing order of
pricing probabilities. Hence, we let p1 ≥ · · · ≥ pn, and let π be the identity permuta-
tion. Then,

R(π, p) =
∑
i∈V

pi(1 − pi)wii +
∑
i<j

pipj(1 − pj)wij

For the IE strategy, we assign each buyer i to the influence set A independently with
probability I(pi) = α(pi)(pi−0.5), and to the exploit set with probability E(pi) = 1−
I(pi), where α(x) : [0.5, 1]  → [0, 2] is a piecewise linear function with breakpoints at
(0.5, 0.7, 0.8, 0.9, 1.0) and values (0.0, 1.0, 1.33, 1.63, 2.0) at these points. By linearity
of expectation, the expected revenue of IE(A, p̂) is:

RIE(A, p̂) =
∑
i∈V

p̂(1 − p̂)E(pi)wii +
∑
i<j

p̂(1 − p̂) (I(pi)E(pj)

+ E(pi)I(pj) + p̂ E(pi)E(pj)) wij

Specifically, IE(A, p̂) extracts a revenue of p̂(1 − p̂)wii from each loop {i, i}, if i is
included in the exploit set. Moreover, IE(A, p̂) extracts a revenue of p̂(1 − p̂)wij from
each edge {i, j}, i < j, if one of i, j is included in the influence set A and the other is
not, and a revenue of p̂2(1− p̂)wij if both i and j are included in the exploit set V \A.

The approximation ratio of IE(A, p̂) to the maximum revenue of G under p is derived
as the minimum ratio between any pair of terms in R(π, p) and RIE(A, p̂) correspond-
ing to the same loop {i, i} or to the same edge {i, j}. Therefore, the approximation
ratio of IE(A, p̂) is no less than the minimum of:

min
0.5≤x≤1

p̂ (1 − p̂) E(x)

x (1 − x)
and min

0.5≤y≤x≤1

p̂ (1 − p̂)(I(x)E(y) + E(x) I(y) + p̂ E(x)E(y))

x y (1 − y)

Using calculus, we can show that for p̂ = 0.586, these ratios are at least 0.9111. ��
For directed networks, we use the same approach, and obtain the following theorem.

Theorem 2. For any directed social network, there is an IE strategy with pricing prob-
ability 2/3 whose expected revenue is at least 0.55289 times the maximum revenue.

Proof sketch. Working as in the proof of Theorem 1, we show that the approxima-
tion ratio of the IE strategy obtained by applying randomized rounding to the revenue-
maximizing pricing probability vector is at least:

min
0.5≤x,y≤1

p̂ (1 − p̂)(I(x)E(y) + 0.5 p̂E(x)E(y))
x y (1 − y)

For p̂ = 2/3 and α(x) = 1.0, for all x, this is simplified to miny∈[0.5,1]
2(3−2y)
27y(1−y) , which

attains its minimum value of ≈ 0.55289 at y = 3−√
3

2 . ��
Similarly, we can show that there is an IE strategy that uses the myopic pricing proba-
bility of 1/2 and extracts a revenue of at least 0.8857 (resp. 0.4594) times the maximum
revenue for undirected (resp. directed) social networks.
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On the Approximability of the Maximum Revenue for Directed Networks. The
results of [14, Lemma 3.2] and [12] suggest that given a pricing probability vector p,
it is Unique-Games-hard to compute a vertex ordering π of a directed network G for
which R(π, p) is at least 0.5 times the maximum revenue of G under p. An interesting
consequence of Theorem 2 is that the inapproximability bound of 0.5 does not apply to
revenue maximization in the Uniform Additive Model. In particular, given the prices p,
Theorem 2 computes, in linear time, an IE strategy with an expected revenue of at least
0.55289 times the maximum revenue of G under p. This does not contradict the results
of [14,12], because the pricing probabilities of the IE strategy are different from p.

In the Uniform Additive Model, different acyclic (sub)graphs (equivalently, differ-
ent vertex orderings) allow for a different fraction of their edge weight to be translated
into revenue, while in the reduction of [14, Lemma 3.2], the weight of each edge in
an acyclic subgraph is equal to its revenue. Thus, although the IE strategy of Theo-
rem 2, with pricing probability 2/3, gives a 0.55289-approximation to the maximum
revenue of G under p, its vertex ordering combined with p may generate a revenue
of less than 0.5 times the maximum revenue of G under p. Next, we obtain a pair of
inapproximabity results for revenue maximization in the Uniform Additive Model.

Lemma 4. Assuming the Unique Games conjecture, it is NP-hard to approximate
within a factor greater than 27/32 (resp. to compute an IE strategy with pricing proba-
bility 2/3 that approximates within a factor greater than 3/4) the maximum revenue of
a directed social network in the Uniform Additive Model.

4 Generalized Influence-and-Exploit

Building on the idea of generating revenue from large cuts between pricing classes, we
obtain a class of generalized IE strategies, which employ a partition of buyers in more
than two pricing classes. A generalized IE strategy consists of K ≥ 3 classes. Each class
k, k = 1, . . . , K , is associated with a pricing probability of pk = 1− k−1

2(K−1) , and each

buyer is assigned to the class k independently with probability qk, where
∑K

k=1 qk = 1,
and is offered a pricing probability of pk. The buyers are considered in non-increasing
order of pricing probability, i.e., the buyers in class k are considered before the buyers
in class k + 1, and the buyers in the same class are considered in a random order.

Let IE(q, p) be such a generalized IE strategy, where q = (q1, . . . , qK) is the as-
signment probability vector and p = (p1, . . . , pK) is the pricing probability vector. We
can show that the approximation ratio of IE(q, p) for undirected networks is at least:

min

{
4

K∑
k=1

qkpk(1 − pk), 4
K∑

k=1

qkpk(1 − pk)

(
qkpk + 2

k−1∑
�=1

q�p�

)}
, (3)

while for directed social networks, the approximation ratio of IE(q, p) is at least half
of the quantity in (3). We can now select the assignment probability vector q so that (3)
is maximized. With the pricing probability vector p fixed, this involves maximizing a
quadratic function of q over linear constraints. Thus, we obtain the following:
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Theorem 3. For any undirected (directed) network G, the generalized IE strategy with
K = 6 classes and assignment probabilities q = (0.183, 0.075, 0.075, 0.175, 0.261,
0.231) approximates the maximum revenue of G within a factor of 0.7032 (0.3516).

5 Influence-and-Exploit via Semidefinite Programming

The main hurdle in obtaining better approximation guarantees for the maximum rev-
enue is the loose upper bound of (N +W )/4. We do not know how to obtain a stronger
upper bound on the maximum revenue. However, in this section, we obtain a Semidef-
inite Programming (SDP) relaxation for the problem of computing the best IE strategy
with any given pricing probability p ∈ [1/2, 1). Our approach exploits the resemblance
between computing the best IE strategy and the problems of MAX-CUT (for undirected
networks) and MAX-DICUT (for directed networks), and builds on the approach of
[11,8]. Solving the SDP relaxation and using randomized rounding, we obtain, in poly-
nomial time, a good approximation to the best influence set for the given p. Then, em-
ploying the bounds of Theorems 1 and 2, we obtain strong approximation guarantees
for the maximum revenue in both directed and undirected networks.

Directed Social Networks. The case of a directed network G(V, E, w) is a bit simpler,
because we can ignore loops (i, i) without loss of generality. We observe that for any
given pricing probability p ∈ [1/2, 1), the problem of computing the best IE strategy
IE(A, p) is equivalent to solving the following Quadratic Integer Program:

max p(1−p)
4

∑
(i,j)∈E

wij

(
1 + p

2 + (1 − p
2 )y0yi − (1 + p

2 )y0yj − (1 − p
2 )yiyj

)
(Q1)

s.t. yi ∈ {−1, 1} ∀i ∈ V ∪ {0}
In (Q1), there is a variable yi for each buyer i and an additional variable y0 denoting the
influence set A. A buyer i is assigned to A, if yi = y0, and to the exploit set, otherwise.
For each edge (i, j), 1 + y0yi − y0yj − yiyj is 4, if yi = y0 = −yj (i.e., if i is assigned
to the influence set and j is assigned to the exploit set), and 0, otherwise. Moreover,
p
2 (1 − y0yi − y0yj + yiyj) is 2p, if yi = yj = −y0 (i.e., if both i and j are assigned to
the exploit set), and 0, otherwise. Therefore, the contribution of each edge (i, j) to the
objective function of (Q1) is equal to the revenue extracted from (i, j) by IE(A, p).

Following the approach of [11,8], we relax (Q1) to the following Semidefinite Pro-
gram, where vi · vj denotes the inner product of vectors vi and vj :

max p(1−p)
4

∑
(i,j)∈E

wij

(
1 + p

2 + (1 − p
2 ) v0 · vi − (1 + p

2 ) v0 · vj − (1 − p
2 ) vi · vj

)
s.t. vi · vj + v0 · vi + v0 · vj ≥ −1 (S1)

vi · vj − v0 · vi − v0 · vj ≥ −1
−vi · vj − v0 · vi + v0 · vj ≥ −1
−vi · vj + v0 · vi − v0 · vj ≥ −1

vi · vi = 1, vi ∈ Rn+1 ∀i ∈ V ∪ {0}
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Any feasible solution to (Q1) can be translated into a feasible solution to (S1) by setting
vi = v0, if yi = y0, and vi = −v0, otherwise. An optimal solution to (S1) can be
computed within any precision ε in time polynomial in n and in ln 1

ε (see e.g. [2]).
Given a directed social network G(V, E, w), a pricing probability p, and a parameter

γ ∈ [0, 1], the algorithm SDP-IE(p, γ) first computes an optimal solution v0, v1, . . . , vn

to (S1). Then, following [8], the algorithm maps each vector vi to a rotated vector v′i
which is coplanar with v0 and vi, lies on the same side of v0 as vi, and forms an angle
with v0 equal to fγ(θi) = (1 − γ)θi + γπ(1 − cos θi)/2, where π = 3.14 . . . and
θi = arccos(v0 · vi) is the angle of v0 and vi. Finally, the algorithm computes a random
vector r uniformly distributed on the unit (n + 1)-sphere, and assigns each buyer i to
the influence set A, if sgn(v′i · r) = sgn(v0 · r), and to the exploit set V \ A, otherwise
where sgn(x) = 1, if x ≥ 0, and −1, otherwise. We next show that:

Theorem 4. For any directed social network G, SDP-IE(2/3, 0.722) approximates the
maximum revenue extracted from G by the best IE strategy with pricing probability 2/3
within a factor of 0.9064.

Proof. We let v0, v1, . . . , vn be an optimal solution to (S1), let θij = arccos(vi · vj) be
the angle of any two vectors vi and vj , and let θi = arccos(v0 · vi) be the angle of v0

and any vector vi. Similarly, we let θ′ij = arccos(v′i ·v′j) be the angle of any two rotated
vectors v′i and v′j , and let θ′i = arccos(v0 · v′i) be the angle of v0 and any rotated vector
v′i. Building on the proof of [11, Lemma 7.3.2], we can show that:

Lemma 5. The IE strategy of SDP-IE(p, γ) extracts from each edge (i, j) an expected
revenue of:

wij p(1 − p)
(1 − p

2 ) θ′ij − (1 − p
2 ) θ′i + (1 + p

2 ) θ′j
2π

(4)

Since (S1) is a relaxation of the problem of computing the best IE strategy with pricing
probability p, the revenue of an optimal IE(A, p) strategy is at most:

p(1−p)
4

∑
(i,j)∈E

wij

(
1 + p

2 + (1 − p
2 ) cos θi − (1 + p

2 ) cos θj − (1 − p
2 ) cos θij

)
(5)

On the other hand, by Lemma 5 and linearity of expectation, the IE strategy computed
by SDP-IE(p, γ) generates an expected revenue of:

p(1−p)
2π

∑
(i,j)∈E

wij

(
(1 − p

2 ) θ′ij − (1 − p
2 ) θ′i + (1 + p

2 ) θ′j
)

(6)

We recall that for each i, θ′i = fγ(θi). In [8, Section 4], it is shown that for each i, j,

θ′ij = arccos
(
cos fγ(θi) cos fγ(θj) + cos θij−cos θi cos θj

sin θi sin θj
sin fγ(θi) sin fγ(θj)

)
≡ gγ(θij , θi, θj)

The approximation ratio of SDP-IE(p, γ) is derived as the minimum ratio of any pair
of terms in (6) and (5) corresponding to the same edge (i, j). Thus, the approximation
ratio of SDP-IE(p, γ) is at least:
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ρ(p, γ) =
2
π

min
0≤θij ,θi,θj≤π

(1 − p
2 ) gγ(θij , θi, θj) − (1 − p

2 )fγ(θi) + (1 + p
2 )fγ(θj)

1 + p
2 + (1 − p

2 ) cos θi − (1 + p
2 ) cos θj − (1 − p

2 ) cos θij
,

where cos θij = vi · vj , cos θi = v0 · vi, and cos θj = v0 · vj must satisfy the inequality
constraints of (S1). It can be shown numerically that ρ(2/3, 0.722) ≥ 0.9064. ��

Combining Theorem 4 and Theorem 2, we conclude that:

Theorem 5. For any directed social network G, the IE strategy of SDP-IE(2/3, 0.722)
approximates the maximum revenue of G within a factor of 0.5011.

Undirected Social Networks. We apply the same approach to an undirected network
G(V, E, w). The important difference is that the objective function of the SDP relax-
ation now is:

max p(1−p)
2

∑
i∈V

wii (1 − v0 · vi)+

p(1−p)
4

∑
i<j

wij (2 + p − p v0 · vi − p v0 · vj − (2 − p) vi · vj)

Apart from the SDP relaxation, the algorithm is the same as that for directed networks.
Working as in the proof of Theorem 4, we can prove that:

Theorem 6. For any undirected social network G, SDP-IE(0.586, 0.209) approximates
the maximum revenue extracted from G by the best IE strategy with pricing probability
0.586 within a factor of 0.9032.

Combining Theorem 6 and Theorem 1, we conclude that:

Theorem 7. For any undirected network G, the IE strategy of SDP-IE(0.586, 0.209)
approximates the maximum revenue of G within a factor of 0.8229.

Remark. By the same approach, we compute the approximation ratio of SDP-IE(p, γ)
against the best IE strategy, for any pricing probability p ∈ [1/2, 1). Viewed as a
function of p, both the best value of γ and the approximation ratio of SDP-IE(p, γ)
against the best IE strategy increase slowly with p. For example, for directed net-
works, the approximation ratio of SDP-IE(0.5, 0.653) (resp. SDP-IE(0.52, 0.685) and
SDP-IE(0.52, 0.704)) is 0.8942 (resp. 0.8955 and 0.9005). For undirected social net-
works, the approximation ratio of SDP-IE(0.5, 0.176) (resp. SDP-IE(0.52, 0.183) and
SDP-IE(2/3, 0.425)) is 0.899 (resp. 0.9005 and 0.907). Then, for any p ∈ [1/2, 1), we
can multiply the approximation ratio of SDP-IE(p, γ) and the bound obtained by the
approach of Theorems 1 and 2 on the fraction of the maximum revenue extracted by
the best IE strategy with pricing probability p, and obtain the approximation ratio of
SDP-IE(p, γ) against the (unrestricted) optimal marketing strategy.



On the Efficiency of Influence-and-Exploit Strategies 283

References

1. Akhlaghpour, H., Ghodsi, M., Haghpanah, N., Mirrokni, V.S., Mahini, H., Nikzad, A.: Op-
timal Iterative Pricing over Social Networks (Extended Abstract). In: Saberi, A. (ed.) WINE
2010. LNCS, vol. 6484, pp. 415–423. Springer, Heidelberg (2010)

2. Alizadeh, F.: Interior point methods in Semidefinite Programming with applications to com-
binatorial optimization. SIAM J. on Optimization 5, 13–51 (1995)

3. Anari, N., Ehsani, S., Ghodsi, M., Haghpanah, N., Immorlica, N., Mahini, H., Mirrokni,
V.S.: Equilibrium Pricing with Positive Externalities (Extended Abstract). In: Saberi, A. (ed.)
WINE 2010. LNCS, vol. 6484, pp. 424–431. Springer, Heidelberg (2010)

4. Arthur, D., Motwani, R., Sharma, A., Xu, Y.: Pricing Strategies for Viral Marketing on So-
cial Networks. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 101–112. Springer,
Heidelberg (2009)

5. Candogan, O., Bimpikis, K., Ozdaglar, A.: Optimal Pricing in the Presence of Local Network
Effects. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 118–132. Springer, Heidelberg
(2010)

6. Chen, W., Lu, P., Sun, X., Tang, B., Wang, Y., Zhu, Z.A.: Optimal Pricing in Social Networks
with Incomplete Information. In: Chen, N., Elkind, E., Koutsoupias, E. (eds.) WINE 2011.
LNCS, vol. 7090, pp. 49–60. Springer, Heidelberg (2011)

7. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proc. of the
7th ACM-SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD 2001), pp. 57–66. ACM (2001)

8. Feige, U., Goemans, M.X.: Aproximating the value of two prover proof systems, with appli-
cations to MAX 2SAT and MAX DICUT. In: Proc. of the 3rd Israel Symposium on Theory
of Computing and Systems, pp. 182–189 (1995)

9. Fotakis, D., Krysta, P., Telelis, O.: Externalities among Advertisers in Sponsored Search. In:
Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 105–116. Springer, Heidelberg (2011)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman (1979)

11. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for Maximum Cut
and Satisfiability problems using Semidefinite Programming. J. Assoc. Comput. Mach. 42,
1115–1145 (1995)

12. Guruswami, V., Manokaran, R., Raghavendra, P.: Beating the random ordering is hard: In-
approximability of Maximum Acyclic Subgraph. In: Proc. of the 49th IEEE Symposium on
Foundations of Computer Science (FOCS 2008), pp. 573–582 (2008)

13. Haghpanah, N., Immorlica, N., Mirrokni, V.S., Munagala, K.: Optimal auctions with posi-
tive network externalities. In: Proc. of the 12th ACM Conference on Electronic Commerce
(EC 2011), pp. 11–20 (2011)

14. Hartline, J., Mirrokni, V.S., Sundararajan, M.: Optimal marketing strategies over social net-
works. In: Proc. of the 17th International Conference on World Wide Web (WWW 2008),
pp. 189–198 (2008)
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Abstract. We study the price of anarchy of a trading mechanism for
divisible goods in markets containing both producers and consumers (i.e.
in two-sided markets). Each producer is asked to submit a linear pricing
function (or, equivalently, a linear supply function) that specifies a per-
unit price p(d) as a function of the demand d that they face. Consumers
then buy their preferred resource amounts at these prices.

We prove that having three producers for every resource guarantees
the price of anarchy is bounded. In general, the price of anarchy depends
heavily on the level of horizontal and vertical competition in the mar-
ket, on the producers’ cost functions, and on the elasticity of consumer
demand. We show how these characteristics affect economic efficiency
and in particular, we find that the price of anarchy equals 2/3 in a per-
fectly competitive market, 3/4 in a monopsony, and 2ε(2− ε)/(4− ε) in a
monopoly where consumer valuations have a fixed elasticity of ε. These
results hold in markets with multiple goods, particularly in bandwidth
markets over arbitrary graphs.

Pricing mechanisms are used in several real-world applications; our
results suggest how to add formal efficiency guarantees to these mecha-
nisms. On the theory side, we show that near-optimal efficiency can be
achieved within two-sided markets by simple mechanisms in the spirit of
Bertrand and Cournot. This result extends to the two-sided setting the
analyses for fixed-supply and fixed-demand markets of Johari and Tsit-
siklis (2005), Acemoglu and Ozdaglar (2007), and Correa et al. (2010).

1 Introduction

We consider the problem of designing a mechanism that enables the trading of
divisible goods between producers and consumers. A natural way of achieving
this is to set prices on goods according to some rule, and then simply let the users
trade. Such pricing mechanisms are appealing due to their simplicity, and are
often found in real-world applications, such as power engineering or networking.

In this paper, we analyze the following simple pricing rule for a market in
which operate a set of consumers Q and a set of producers R. In the simplest
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setting, when there is only one good in the market, each producer r ∈ R is asked
to provide a linear pricing function (or, equivalently, a linear supply function)
pr(fr) = γrfr with slope γr > 0, which specifies the per-unit price producer r
will charge if its total demand is fr. In other words, if a consumer buys x units
from r, they will pay r a sum of pr(fr)x = (γrfr)x. Although γr specifies a
pricing function, for brevity we will often refer to γr as a “price”. After seeing
the producers’ prices, each consumer q ∈ Q chooses a resource amount dqr to buy
from producer r and pays for it pr(fr)dqr . Because producers input scalar pricing
information and consumers input resource quantities, we call this mechanism
Bertrand-Cournot (somewhat stretching the usual terminology). Although the
pr can be also viewed as supply functions, we will only refer to them as pricing
functions from now on.

When multiple goods are traded, we identify the market with a multigraph
G = (V,E). Each consumer q owns a source-sink pair (sq, tq) ∈ V , and each pro-
ducer r operates on an edge er ∈ E. As in the single-good mechanism, producer r
inputs a linear pricing function pr(fr). Consumers now buy edge capacities from
producers and derive utility from the size of the maximum (sq, tq)-flow they can
send in the resulting capacitated graph G. Thus, capacities can be associated
with goods. Specifically, each consumer q directly submits for each (sq, tq)-path
p the size dqp of the flow it wishes to send over p, and pays

∑
p∈P

∑
e∈p pe(fe)dqp

where fe is the total demand faced by the producer at edge e.
We choose to study this model because we seek a mechanism that is both effi-

cient and conceptually simple. This puts our work within the research agenda of
understanding the tradeoffs between economic efficiency and mechanism com-
plexity, set by Johari and Tsitsklis in [7]. Although the simplest mechanism
would consist in asking producers for fixed, scalar prices and consumers for re-
source amounts, this type of market has been shown to be very inefficient [3].
The mechanism we consider is slightly more complex, but it is provably efficient.
To the best of our knowledge, it is the first to combine good economic efficiency
(i.e. price of anarchy close to one), high scalability (i.e. scalar strategy spaces),
and conceptual simplicity of the strategy space within two-sided markets.

Representing the market as a graph makes our mechanism directly applicable
to real-world markets for goods such as transportation, bandwidth, and elec-
tricity. Perhaps more interestingly, this graphical structure allows us to study
the effects of horizontal and vertical competition between producers. In the for-
mer, producers sell substitute goods that are graphically represented by parallel
edges. In the latter, producers’ goods are complements that are represented by
consecutive edges on a path: capacity on one edge can be used only if it is also
bought on all the others in the path.

2 Results

Our main result is to show that the price of anarchy of our mechanism is bounded
by a constant, as long as there are at least three producers for every good. The
precise value the price of anarchy takes depends heavily on the level of horizontal
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and vertical competition among producers, on their cost functions, and on the
elasticity of demand. Within series-parallel graphs, our techniques yield closed-
form expressions for market efficiency as a function of these characteristics.

More generally, we make the following contributions in this paper.

– We show that near-optimal efficiency can be achieved within two-sided mar-
kets by simple mechanisms in the spirit of Bertrand and Cournot. Almost
all results for such mechanisms hold only in models in which either supply
or demand is fixed [1,8], and the only result for two-sided markets that we
know is negative [3]. Our mechanism is the first to possess formal guarantees
in two-sided markets with atomic players.

– Our results suggest how to improve pricing mechanisms that are used in
practice. Most mechanisms intended to be used in practice [5,12] tend to be
inefficient [3]. On the other hand, mechanisms that are efficient are often
quite unintuitive. The mechanism we propose is both efficient and concep-
tually simple.

– We examine how market structure affects economic efficiency. To the best
of our knowledge, this has never been thoroughly studied within two-sided
markets with atomic players. In our paper, we derive closed-form expressions
that describe the effects of market structure on efficiency.

3 Related Work

Pricing mechanisms have been extensively studied within electrical engineering
and computer science as a way of allocating bandwidth between users on a
network. A seminal result in this field is the proportional allocation mechanism
(PAM), which distributes a fixed supply of a resource among consumers [9]. In
[7], Johari and Tsitsiklis show that the PAM has a price of anarchy of 3/4; in
[11], Kuleshov and Vetta extend this fixed-supply result to two-sided markets.

In both settings, the PAM admits the best price of anarchy guarantee within
a large class of mechanisms. Nonetheless, more natural mechanisms — especially
ones that are Cournot or Bertrand — have also received significant attention,
as they are easier to use in practice. In the Cournot setting, the price of anar-
chy varies between 0 and 2/3 when supply is fixed, depending on how resources
are priced [6,8]. In the Bertrand setting, when demand is fixed, Acemoglu and
Ozdaglar showed that the price of anarchy equals 5/6 in single-resource markets
and 0 in multi-resource markets [1]. In [4], Correa et al. propose an alternative
pricing scheme for fixed-demand markets that accepts from producers linear
pricing functions instead of scalar prices. They establish constant price of anar-
chy bounds in the multi-resource setting and also discuss how market structure
affects efficiency.

Many of the above models appear to be also studied in the economics literature
on supply function equilibria [10] and their applications to electricity markets.
Interestingly, our work appears to be among the first price of anarchy analyses
for these models. We refer the reader to [2] for a survey of the literature on linear
supply function bidding.
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Pricing mechanisms for markets containing both consumers and producers
have been studied by Chawla and Roughgarden in [3]. Their system operates
as the Cournot mechanism of Johari and Tsitsiklis [8] on the demand side and
as the Bertrand mechanism of Acemoglu and Ozdaglar [1] on the supply side.
Although that mechanism is extremely intuitive, its price of anarchy is zero in
most settings.

Here, we present a mechanism that is both easy to use and efficient. It com-
bines the demand side of Johari and Tsitsiklis [8] and the supply side of Correa
et al. [4].

4 Definitions and Assumptions

We first refer the reader to the introduction for a high-level definition of the
mechanism. As we mentioned, in its most general form, the mechanism is defined
over a multigraph G = (V,E). We use P to denote the set of paths in G. We call
a set of parallel edges between two vertices a link; the set of all links is denoted
by L. Essentially, links correspond to goods. We call a path in the induced graph
(V, L) a route; the set of all routes is denoted by T . Two sets of users operate
on the multigraph: consumers Q and producers R. Consumer q ∈ Q owns a
source and a sink sq, tq ∈ V ; producer r ∈ R operates on some edge e ∈ E. The
strategy of consumer q is a positive vector dq = (dqp)p∈Pq , specifying a flow on
each (sq, tq)-path in G; the strategy of producer r is a scalar γr > 0, specifying
a linear pricing function pr(f) = γrf . Several equivalent strategy spaces can be
defined for this mechanism, which we will discuss later in the paper; here, we use
one that is standard in the literature [7]. We also assume there is a one-to-one
relationship between edges and producers and throughout the paper we may use
both r and e to index providers.

We make the following assumptions on the utilities of the agents:

Assumption 1. The utility of consumer q for sending a flow of size dq is
Uq(dq) = Vq(dq) −

∑
p∈Pq

dqp
∑

e∈p pe(fe), where Vq(dq) is q’s valuation func-

tion. The valuation functions Vq(dq) : R+ → R+ are continuous, increasing,
concave, and differentiable for all q ∈ Q.

Assumption 2. The utility of producer r for supplying fr units of capacity on
its edge is Ur(fr) = pr(fr)fr −Cr(fr), where Cr(fr) is r’s cost function. For all

r ∈ R, the cost function Cr(f) : R+ → R+ is of the form Cr(f) =
∫ f

0 cr(x)dx
where cr(x) : R+ → R+ is the marginal cost function. It is continuous, strictly
increasing, convex, and cr(0) = 0.

Both assumptions are standard in the literature, see for example [4,6]. Requiring
convex marginal costs in a relatively strong assumption; fortunately, it holds
in several important areas of application, such as in electricity markets, where
generators tend to use their cheapest capacity first. We refer the reader to [11]
for techniques for showing that the price of anarchy smoothly degrades to zero
as the marginal cost functions become more concave.

From the above utilities we obtain the social welfare within the market:
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Definition 1. The social welfare within the mechanism equals
∑

q∈Q Vq(dq) −∑
r∈RCr(fr).

An important observation is that the demand fr faced by producer r is a function
of all the edge prices in the mechanism (which we denote by the vector γ =
(γe)e∈E) when consumers are at a Nash equilibrium in the Cournot game with
edge prices γ. This function is well-defined because Nash equilibria in Cournot
mechanisms always exist and are unique [8].

Definition 2. A Nash equilibrium of the Bertrand-Cournot mechanism is a set
of strategies {dq, γr | q ∈ Q, r ∈ R} such that

1. The dq form a demand-side equilibrium given prices γ and utilities Uq. That
is, for all q ∈ Q, dq = argmaxd Uq(d,d−q,γ), where d−q are the strategies
of all consumers except q.

2. The prices γ form a supply-side equilibrium given demand functions fr and
utilities Ur. That is, for all r ∈ R, γr = argmaxγ (γfr(γ,γ−r)− Cr(fr(γ,γ−r))) ,
where γ−r are the strategies of all providers except r. Thus γr is the best re-
sponse to the other prices when r anticipates consumers’ equilibrium demand.

We measure economic efficiency using the concept of price of anarchy.

Definition 3. The price of anarchy is defined as the smallest welfare ratio⎛⎝∑
q∈Q

Vq(d
NE
q )−

∑
r∈R

Cr(fr(γ
NE))

⎞⎠ /

⎛⎝ sup
dq,fr

∑
q∈Q

Vq(dq)−
∑
r∈R

Cr(fr)

⎞⎠ ,

where the dNE
q , γNE form Nash equilibrium.

Our goal is to lower-bound the price of anarchy across all instances of the
mechanism.

The producers’ strategies in the mechanism are primarily determined by con-
sumers’ responses to price. In economics, the elasticity of demand with respect
to price is the standard way of measuring these responses.

Definition 4. Let f(x) : R → R be a differentiable function. The elasticity of f
with respect to x is a function εxf(y) : R → R defined as εx f(y) =

df
dx(y)

y
f(y) .

We mainly work with εγrfr, the elasticity of demand to producer r. When re-
ferring to εγef(γe), we often drop the γe subscript and simply write εefe or εfe.
Throughout this paper, we extensively use some standrd properties of elasticity
which are derived in the full version of the paper.

5 Markets with a Single Good

We begin our analysis with a market in which there is only a single resource. In
this setting, the multigraph G consists of two nodes, s and t, and one link; every
producer r offers to carry flow from s to t over an edge in the link.



Economic Efficiency of Simple Pricing Mechanisms 289

We establish bounds on the price of anarchy within this market by analyzing
the demand and supply sides of the market separately. On the demand side,
welfare is usually lost because consumers that value the resource less end up
receiving goods that should go to the consumers that value the resource the
most. We call that demand-side inefficiency. On the supply side, welfare is lost
because producers charge consumers at rates higher than at their marginal costs
(marginal cost pricing can be shown to be optimal in terms of social welfare). We
call that supply-side inefficiency. We adopt the following three-step procedure
to measure these two inefficiencies:

1. Defining a simplified version of the mechanism. We define an equiva-
lent mechanism in which we ask consumers for the size of the flow they want
to send across the link, and have the mechanism split it across providers
automatically. The per-unit flow price is set using a single linear pricing
function P (f) = Γf , whose slope Γ is defined as a function of the prices γe.

2. Measuring inefficiency on the demand side.

(a) First, we show that the worst price of anarchy occurs in a game where
valuations are linear and costs are quadratic.

(b) We then formulate the price of anarchy as the minimum of an optimiza-
tion problem that minimizes the welfare ratio over all possible linear
valuations and marginal costs and over all relevant strategy profiles.

(c) We analytically solve this problem and find that the price of anarchy
equals 2ρ(2 − ρ)/(4 − ρ), where 0 ≤ ρ ≤ 1 is a parameter measuring
supply-side inefficiency.

3. Measuring inefficiency on the supply side.We derive bounds on ρ when
there are at least three producers in the market, and we show how it varies
with the number of producers and with the elasticity of consumer demand.

Interestingly, in later sections, we will use essentially the same approach to an-
alyze the price of anarchy in markets with more complex structure.

5.1 Defining a Simplified Version of the Mechanism

Observe that from a consumer’s perspective, there is only a single resource in the
market: (s, t)-flow. It’s therefore quite natural that we can define a single price
for that flow and automatically split the resulting demand across providers.

Definition 5. In the simplified single-link Bertrand-Cournot mechanism,

1. Producers submit linear pricing functions as in the regular mechanism. The
aggregate pricing function is set to P (f) = Γf , where Γ = 1∑

e∈E 1/γe
.

2. Consumer q submits an (s, t)-flow dq and pays for it Γfdq, where f =∑
q∈Q dq.

3. The mechanism sends fe = 1/γe∑
e′∈E 1/γe′

f over edge e and pays the producer

γef
2
e .
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This new mechanism is easier to analyze, easier to use, and from the point of
view of a consumer, its communication complexity no longer depends on the
number of producers. It is also equivalent to the original mechanism.

Theorem 1. The Nash equilibria of the standard and simplified mechanisms are
identical, and at equilibrium, the utilities of each player are the same. ��

Interestingly, when the producers’ costs are quadratic, we can also aggregate
their cost functions βr

2 f2
r into a single cost function C(f) = B

2 f
2 that specifies

the smallest cost for sending a total flow of f across all the edges. We can then
use this function to compute the size of the socially optimal flow as if there was
only a single provider in the market.

Definition 6. When the marginal costs at the edges are of the form ce(f) = βef ,
the slope of the aggregate cost function of the link is defined to be B = 1∑

e∈E 1/βe
.

Theorem 2. When producers’ marginal costs are linear, a cost-minimizing al-
location f has a total cost of B

2 f
2. ��

Proofs of these theorems can be found in the full version of the paper.

5.2 Measuring Inefficiency on the Demand Side

Next, observe that the price of anarchy can be written out as the solution to
the following optimization problem, taken over all possible functions (Vq)q∈Q,
(Cr)r∈R and over scalars dq, d

∗
q , γr, f

∗
r (the fr(γ) are implicitly defined by the

Vq):

min

⎛⎝∑
q∈Q

Vq(dq)−
∑
r∈R

Cr(fr(γ))

⎞⎠ /

⎛⎝∑
q∈Q

Vq(d
∗
q)−

∑
r∈R

Cr(f
∗
r )

⎞⎠ (1)

s.t. The Vq are valuations and the Cr are costs satisfying Assumptions 1 and 2.

The dq and the γr are equilibrium strategies given (Vq)q∈Q, (Cr)r∈R

The d∗q and the f∗
r are optimum allocations given (Vq)q∈Q, (Cr)r∈R.

As it stands, the above formulation is not very useful. However, by our next
lemma, we can restrict our attention to settings where the valuations and marginal
costs are all linear (therefore the costs themselves are quadratic), in which case
the above problem becomes finite-dimensional, and therefore much simpler.

Lemma 1. Given any game instance G, one can construct a new game instance
G′ where:

1. Consumers have linear valuations and producers have quadratic costs.
2. Producers set prices as if the demand functions fr they were facing were the

ones in G.

The price of anarchy of G′ is a lower bound on that of G. ��
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A more formal version of this lemma and a proof can be found in the full version
of the paper.

Using the above lemma, we can show that for a fixed set of demand functions,
the optimization problem (1) reduces to the following problem in only 2(Q+R)
scalar variables dq, γr, αq and βr and 3 “helper” variables f, Γ,B.

Lemma 2. The price of anarchy is lower-bounded by the solution to the follow-
ing system.

min

∑Q
q=1 αqdq − B

2 f
2

maxf̄ (maxq∈Q αq f̄ − B
2 f̄

2)

s.t.

Γf + Γdq (for all q ∈ Q) βr = γr

(
2− 1

|εγrfr(γ)|

)
(for all r ∈ R)

Γ = 1∑
e∈E 1/γe

B = 1∑
e∈E 1/βe∑

q∈Q dq = f 0 ≤ αq, dq, Γ, B

When valuation functions are linear, this bound is tight. ��

The variables αq correspond to the slopes of the consumers’ linear valuation
functions; the βr correspond to marginal cost slopes. The first two constraints
are the necessary and sufficient conditions for an allocation to be a Nash equi-
librium. The third constraint ensures that supply equals demand. Variables Γ ,
B correspond to the the aggregate prices that we defined in Section 5.1, and
εγrfr(γ) is the elasticity of the demand function fr faced by provider r. When
seeking the solution of the program, we take εγrfr(γ) to be fixed; we will mini-
mize over εγrfr(γ) in the next section.

In the full version of the paper, we analytically solve the above problem using
techniques developed in [1,7]. As a result, we obtain the following lemma.

Lemma 3. The welfare ratio in a single-good market is bounded by 2ρ(2− ρ)/(4−
ρ), where 0 ≤ ρ ≤ 1 is an overcharging parameter. It equals B/Γ , where Γ is the
equilibrium aggregate price. Thus the price of anarchy equals the minimal value
of ρ over all βe, γe that satisfy the supply-side Nash equilibrium condition

βr = γr

(
2− 1

|εγrfr(γ)|

)
for all r. (2)

When valuations are linear, this bound is tight. ��

Lemma 3 suggests that the price of anarchy has two distinct components: one
arising from demand-side inefficiency and another from supply-side inefficiency.
Demand-side inefficiency has been accounted for by the minimization problem
in Lemma 2. All that remains is to combine that analysis with a measure of
supply-side inefficiency ρ. Note this parameter corresponds to the ratio of true
producer costs over the prices that they charge the users, which was how we
defined supply-side inefficiency.
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5.3 Measuring Inefficiency on the Supply Side

As usual, we start by looking at the simplest setting, in which there is only one
monopolist producer in the market, so that Γ = γe.

Theorem 3. Suppose the market is a monopoly. Suppose users have monomial
valuation functions Vq(dq) = αqd

x
q , where 0 < x ≤ 1 and αq > 0. The price of

anarchy is bounded by 2x(2− x)/(4− x). When valuations are linear, the bound
equals 2/3 and is tight. ��

Notice that when x → 0, the elasticity of demand decreases and the bound tends
to zero. It can be shown that as x → 0, this is actually tight. This observation
is hardly surprising: if consumer demand changes very little with price, there is
nothing to stop the monopolist from substantially overcharging its customers.

It can be shown this kind of overcharging can happen even when there are
two producers, but with three competitors in the market, the price of anarchy
can be bounded by a constant. This is our main result for the single-resource
case.

Theorem 4. Suppose there are at least 3 producers in the market. Suppose there
is a 0 < Δ ≤ 1 such that mine βe/maxe βe ≥ Δ. Then the price of anarchy is
bounded by a constant for any type of consumer demand.

Proof. In the simplified mechanism, the flow fe over edge e equals Sef , where
f is the total flow across the link, and Se denotes the fraction that is routed
through edge e. Using properties of elasticity, we obtain

εγefe = εγeSe + εγef = εγeSe + εΓ f εγeΓ

= εγe

1/γe∑
e′∈E 1/γe′

+ εΓ f εγe

1∑
e′ 1/γe′

= −
∑

e′ �=e 1/γe′∑
e′ 1/γe′

+ εΓ f
1/γe∑
e′ 1/γe′

(3)

Now suppose for a contradiction that ρ(βn,γn) → 0 for some sequence (βn,γn)
∞
n=1

(where βn and γn are vectors of costs and equilibrium prices, indexed by edges).
We claim that this implies βen/γen → 0 as n → ∞ for all e ∈ E. If βen/γen � 0

for some e, then ρ(βn,γn) =
∑

e′ 1/γe′n∑
e′ 1/βe′n

≥ (
∑

e′ 1/γe′n)Δβen ≥ Δβen

γen
� 0 where

n is arbitrary. We see that in this case ρ cannot go to zero.
Since βen/γen → 0 for all e, by equation (2) we have εγefe(βn,γn) → −1/2

for all e as n → ∞. In particular, for some N ≥ 0 sufficiently high we must have
εγefe(βN ,γN ) ≥ −1/2− ε/|E| for ε > 0 and for all e ∈ E.

Inserting expression (3) into εfe ≥ −1/2− ε/|E| and summing the result over

all e, we obtain εΓ f − (|E| − 1) ≥ − |E|
2 − ε, which cannot be achieved for small

values of ε when |E| ≥ 3, because εΓ f cannot be positive. Thus we arrive at a
contradiction. ��
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The requirement that mine βe/maxe βe ≥ Δ for some 0 < Δ ≤ 1 ensures that
producers are able to compete with each other. If one producer had significantly
higher costs than the others, they could not never undercut their competitors.

The precise constant that bounds the price of anarchy depends on both Δ
and the number of producers. For fixed values of these parameters, it can be
computed numerically by formulating ρ as the minimum of an optimization
problem. Interestingly, it tends to 2/3 as |R| → ∞, which is the same value
it achieves when demand has an elasticity of 1. Thus market competition may
entirely offset the effects of inelastic demand.

Theorem 5. Consider a single-resource market over a link graph G = ((s, t), E)
Suppose there is a 0 < Δ ≤ 1 such that mine∈E βe/maxe∈E βe ≥ Δ for any set
of edges E. Then as |E| → ∞, the price of anarchy goes to 2/3.

Proof. Consider a countably infinite set of producers R with quadratic cost func-
tions {βr

2 f2
r | r ∈ R}, and let Rm = {r1, ..., rm} denote the set of the first m pro-

ducers. Let γm denote a vector of equilibrium prices in the game where the set

of providers is Rm, and define ρm = Bm

Γm
=

∑
r∈Rm

1/γmr∑
r∈Rm

1/βr
to be the corresponding

overcharging factor.
We have to show that ρm → 1 as m → ∞. For simplicity, assume that

εΓ f = 0; it is easy to show that more elastic demand functions always lead
to less overcharging and a better supply-side efficiency measure ρ. Assuming
εΓ f = 0, one can easily derive from the equilibrium constraint (2) the identity

βr = γmr

(
1− 1/γmr∑

r∈Rm
1/γmr

)
, (4)

which holds for all m, r.
First, we claim that for all ε > 0, there is an N such that for all m = 1, 2, ...,

the number of players in Rm for which 1/γmr∑
r∈Rm

1/γmr
> ε is less than N . If

not, then for some ε, we can find a set RM such that the above holds for a
set of at least 1/ε players R′

M , and so we arrive at the following contradiction:

1 =
∑

r∈RM

1/γMr∑
r∈RM

1/γMr
≥
∑

r∈R′
M

1/γMr∑
r∈RM

1/γMr
> 1

ε · ε = 1.

So fix an ε > 0 and an m and let Rε
m denote the set of producers in Rm

for which 1/γmr∑
r∈Rm

1/γmr
< ε. Note that by equation (4), we have for all these

producers that βr > γmr (1− ε) .

We can now express the ratio ρm as ρm =
∑

r∈Rm
1/γmr∑

r∈Rm
1/βr

≥
∑

r∈Rε
m

1/γmr∑
r∈Rm

1/βr
>

(1−ε)
∑

r∈Rε
m

1/βr∑
r∈Rε

m
1/βr+

∑
r∈Rm\Re

m
1/βr

. Since this holds for all m, since the set Rm\Re
m is

finite, and since there is a 0 < Δ ≤ 1 such that minr∈Rm βr/maxr∈Rm βr ≥ Δ for
anyRm, we can easily establish by pickingm large enough that lim infm→∞ ρm ≥
1− ε. But since ε was arbitrary, it must follow that lim infm→∞ ρm ≥ 1. This is
precisely what we wanted to prove. ��
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Thus a perfectly competitive market has a price of anarchy of 2/3. The best
possible price of anarchy guarantee, on the other hand, is achieved when there
is no competition among consumers.

Corollary 6. When there is only one user and an infinite number of producers,
the price of anarchy equals 3/4. ��

The proof of this theorem can be found in the full version of our paper.

6 Multi-resource Markets over Series-Parallel Graphs

We now turn our attention to the more interesting setting where the market
contains multiple resources. In this setting, the efficiency is highly dependent
on whether producers compete horizontally or vertically with each other. Recall
that in the former case, producers sell substitute goods that are graphically
represented by parallel edges; in the latter, producers’ goods are complements
that are represented by consecutive edges on a path.

The effects of horizontal and vertical competition are most easily understood
by looking at series-parallel graphs. Informally, a series-parallel graph is built
recursively by connecting smaller series-parallel graphs in parallel or in series,
starting from edges. See [4] for a full definition. For our purposes, it will be
enough to look only at two-level series-parallel graphs, although our results also
carry over to arbitrary series-parallel graphs (usually by an induction argument).

Definition 7. A two-level series-parallel graph G consists of a set of T disjoint
parallel routes that connect two special nodes: a source s and a target t.

We also assume in this section that consumers have linear valuations {αqdq | q ∈
Q} and that providers have quadratic costs {βr

2 f2
r | r ∈ R}; in the next Section

7, we formally establish that this is the worst-case setting.
Our analysis follows the same plan as in the single-resource case. First, we

show that the mechanism can be simplified on the consumer side like in Section
5.1. Then, using the same argument as in the single-resource setting, we derive a
price of anarchy bound that is a function of supply-side inefficiency (an analogue
of Lemma 3). Finally, we bound the supply-side inefficiency and obtain the full
price of anarchy. See Section 5 for more details.

6.1 Defining a Simplified Version of the Mechanism

LetG be a two-level series-parallel graph with a a source and a target node shared
by all consumers. We can define like in Section 5.1 a pricing function P (f) = Γf
for (s, t)-flow f and show that charging consumers for their total flow using P
results in a game that is equivalent to the original. More formally, given the graph
G, we define Γ to be Γ = 1∑

t∈T 1/Γt
, where Γt =

∑
l∈t Γl and Γl = 1/

∑
e∈l 1/γe.

The intuition here is that the price of a route is a sum of the prices of its links,
and parallel routes with prices Γt can be aggregated like edges in a link.
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Definition 8. In the simplified Bertrand-Cournot mechanism for a two-level
series-parallel graph G,

1. Each producer r submits a linear pricing function with slope γr like in the
regular mechanism, and the aggregate pricing function is set to P (f) = Γf .

2. Each consumer q chooses to send dq units of (s, t)-flow and pays Γfdq, where
f =

∑
q∈Q dq.

3. The mechanism divides payments and flow proportionally to the producers’
contribution to Γ . The producer on edge e on link l on route t receives the

following fraction of the flow and payments: 1/Γt∑
t′∈T 1/Γt′

Γl∑
l′∈t Γl′

1/γe∑
e′∈l 1/γe′

.

Theorem 7. The Nash equilibria of the standard and simplified mechanisms are
identical, and at equilibrium, the utilities of each player are the same. ��

See the full paper for a proof In the same way as we did for Γ , we can also
define a true cost B = 1∑

t∈T 1/Bt
, where Bt =

∑
l∈t Bl and Bl = 1/

∑
e∈l 1/βe.

The lowest true cost of sending a flow of f can again be computed using this
function, as if there was only a single producer in the market.

6.2 Measuring Inefficiency on the Demand Side

Since from a consumer’s perspective, there is again only a single resource in the
simplified mechanism, (s, t)-flow, the same argument as in the single-resource
setting establishes the following bound on the price of anarchy (an analogue of
Lemma 3), which is independent of graph structure.

Lemma 4. The welfare ratio in a market over a two-level series-parallel graph
is bounded by 2ρ(2− ρ)/(4−ρ), where 0 ≤ ρ ≤ 1 is an overcharging parameter. It
equals B/Γ , where Γ is the equilibrium aggregate price. Thus the price of anarchy
is the minimum ρ over all βe, γe that satisfy the supply-side Nash equilibrium
condition

βr = γr

(
2− 1

|εγrfr(γ)|

)
for all r. (5)

When valuations are linear, this bound is tight. ��
The parameter ρ can be seen as the ratio of the true cost of (s, t)-flow over the
price that the users are charged. See the full paper for a proof.

6.3 Measuring Inefficiency on the Supply Side

Unlike consumer behavior, the behavior of producers depends heavily on the
topology of the graph G. In particular, when producers are located on parallel
edges, competition tends to drive down the price, whereas when producers are
on edges connected in series, the opposite happens.

Although we don’t have a closed-form expression for the price of anarchy as
a function of graph structure, the following formula shows how horizontal and
vertical competition affect the elasticity of the flow at an edge. The price of
anarchy can then be obtained by plugging the expression for εγefe into ρ.
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Theorem 8. In a two-level series-parallel graph G, let e be an edge located on
link l on route t. The elasticity of the (s, t)-flow fe at e with respect to γe equals

εγefe =−
∑

e′∈l;e′ �=e 1/γe′∑
e′∈l 1/γe′

−
∑

t∈T ;t′ �=t 1/Γt′∑
t′∈T 1/Γt′

Γl∑
l′∈t Γl′

1/γe∑
e′∈l 1/γe′

+
1/Γt∑

t′∈T 1/Γt′

Γl∑
l′∈t Γl′

1/γe∑
e′∈l 1/γe′

εΓ f. ��

This somewhat complicated-looking expression actually has three distinct terms.
The first term approaches −1 (its best possible value) as horizontal competition
at the link containing e increases. Similarly, the other two terms drive the elas-
ticity up when the number of parallel routes increases. On the other hand, when
the number of serial links increases, the last two terms tends to zero, and the
elasticity worsens. Thus horizontal competition leads to higher efficiency, while
vertical competition drives efficiency down.

The theorems below formalize this claim. Our first results pertain to route
graphs — graphs containing exactly one route of L serial links — which turn
out to admit the worst price of anarchy of all series-parallel graphs. We assume
there are at least two edges in every link; otherwise there is no equilibrium in
the market.

Theorem 9. Let G be a route graph with m producers per link and suppose
that there exists a 0 < Δ ≤ 1 such that mine∈E βe/maxe∈E βe ≥ Δ for all m.
Whenever m ≥ 3, the price of anarchy is bounded by a constant. As m goes to
infinity, ρ goes to one. ��

In general series-parallel graphs, there is more competition among producers,
since consumers are offered alternative routes. That turns out to improve the
price of anarchy.

Theorem 10. Let G be a two-level series-parallel graph with at least three providers
on every link and suppose that and suppose that there exists a 0 < Δ ≤ 1 such
that mine∈E βe/maxe∈E βe ≥ Δ. When the number of parallel routes of G goes
to infinity, the elasticity of total demand in the graph εΓ f tends to one. ��

Theorem 11. Let G be a two-level series-parallel graph. The price of anarchy
of G is lower-bounded by that of a route series-parallel graph. ��

7 Multi-resource Markets over Arbitrary Graphs

Finally, we return to the general setting we described at the beginning of the
paper, under Assumptions 1 and 2 and an arbitrary graph G. Although we can
no longer describe how graph structure affects efficiency, our two most important
results carry over to this general setting.

Theorem 12. Let G be an arbitrary graph with m producers per link and sup-
pose that mine∈E βe/maxe∈E βe ≥ Δ for some 0 < Δ ≤ 1. Whenever m ≥ 3,
the price of anarchy is bounded. As m → ∞, ρ → 1 and the POA → 2/3.
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These results are established using the same three-step process that was used in
previous sections.

8 Existence of Nash Equilibria

We can also establish the following extension of the equilibrium result for fixed-
demand mechanisms [4].

Theorem 13. Let G be a series-parallel graph with at least two producers per
link. When producers’ costs are quadratic and that consumers’ valuations are
linear a Nash equilibrium exits and best-responses converge. ��
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Abstract. We show that computing the revenue-optimal deterministic
auction in unit-demand single-buyer Bayesian settings, i.e. the optimal
item-pricing, is computationally hard even in single-item settings where
the buyer’s value distribution is a sum of independently distributed at-
tributes, or multi-item settings where the buyer’s values for the items are
independent. We also show that it is intractable to optimally price the
grand bundle of multiple items for an additive bidder whose values for
the items are independent. These difficulties stem from implicit defini-
tions of a value distribution. We provide three instances of how different
properties of implicit distributions can lead to intractability: the first is
a #P -hardness proof, while the remaining two are reductions from the
SQRT-SUM problem of Garey, Graham, and Johnson [14]. While simple
pricing schemes can oftentimes approximate the best scheme in revenue,
they can have drastically different underlying structure. We argue there-
fore that either the specification of the input distribution must be highly
restricted in format, or it is necessary for the goal to be mere approxi-
mation to the optimal scheme’s revenue instead of computing properties
of the scheme itself.

1 Introduction

Designing auctions to maximize revenue in a Bayesian setting is a problem of high
importance in both theoretical and applied economics [19–21]. While substantial
progress has been made on designing mechanisms with revenue guarantees that
are approximately optimal [4, 6, 9, 10], the question of determining the optimal
mechanism exactly has been much more intricate [1, 2, 7, 8, 11, 16, 17, 22].

In this paper, we study the complexity of designing optimal deterministic
auctions for single-bidder problems, i.e. optimal pricing mechanisms. Prior to
our work, Briest showed that finding the optimal pricing mechanism for a unit-
demand bidder is highly inapproximable when the bidder’s values for different
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items are correlated [5]. Our work complements his by either considering single-
item settings, or multi-item settings with product value distributions. We also
investigate the complexity of optimally pricing the grand bundle of multiple
items for an additive buyer whose values for the items are independent. For these
problems we demonstrate that even when the optimal mechanism can only be
one of two possibilities, it can be computationally difficult to determine which
one achieves the highest expected revenue.

We note that all hard instances presented in this paper have fully polynomial-
time approximation schemes, and thus our results preclude exact algorithms but
not computationally efficient approximation schemes. From a practical perspec-
tive, a nearly optimal mechanismmay be almost as desirable as an exact one. From
a theoretical perspective, however, it is important to understand the structure of
the exactly optimal mechanism [20], which may be drastically different than that
of approximate ones. Computational barriers to determining the best mechanism,
such as the ones presented here, reflect barriers to understanding its structure.

Our results suggest in particular that great care must be taken in how a bid-
der’s value distributions are specified. Intricate distributions can be described
succinctly, providing a simple outlet to encode computationally hard problems.
We present three concrete scenarios where succinctly-represented distributions
lead to computational hardness: Easy-to-describe discrete distributions may have
exponential size support, may have mild irrationality in their support, or have
mild irrationality in the probabilities they assign. Indeed, many (or all) of these
features of discrete distributions can be present in simple continuous distribu-
tions. Thus, to obtain a robust theory of optimal Bayesian mechanism design,
we must either aim for only approximate revenue guarantees or severely limit
the types and specification format of allowable value distributions.

2 Preliminaries

In our model, there is a seller with n items and a buyer whose values for the
items v1, ..., vn are random variables drawn from known distributions F1, ..., Fn.
We will consider both unit-demand and additive buyer types:

– A (quasi-linear) unit-demand buyer is interested in buying at most one item;
if the item prices are p1, ..., pn, the buyer buys the item maximizing his
utility, vi−pi, as long as it is positive, breaking ties among the maximizers in
some pre-determined way, e.g. lexicographic or in favor of the cheapest/most
expensive item.

– A (quasi-linear) additive buyer values a subset S of items
∑

i∈S vi. If subset
S is priced PS , his utility for buying that subset is

∑
i∈S vi −PS . The buyer

buys the subset of items that maximizes his utility, as long as it is positive,
breaking ties among subsets in some pre-determined way.

In the case of a unit-demand bidder, the seller’s goal is to price the items to
optimize the expected price paid by the buyer. Finding the optimal such prices
is called the unit-demand pricing problem. In the case of an additive bidder,
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the seller’s goal is to price all subsets of items to optimize the expected price
paid by the buyer. Of course, the seller may not want to explicitly list the
price of every subset but describe their prices in some succinct manner, or may
want to offer only some subsets at a finite price. We are particularly interested
in the grand bundle pricing problem where the seller wants to optimally price
the set of all items (the grand bundle) and the buyer must take all items or
nothing. As shown in [18], pricing just the grand bundle is optimal in several
natural settings. Furthermore, it oftentimes achieves revenue close to the optimal
mechanism [3, 15]. Optimally pricing the grand bundle is furthermore interesting
in its own right [13].

Finally, the distributions F1, ..., Fn may be provided explicitly, by listing their
support and the probabilities placed on each point in the support, or implicitly
giving a closed-form formula for them. In this paper, we study how various ways
to describe the distributions affect the complexity of the pricing problem.

3 Complexity of Sum-of-Attributes Distributions

We first consider the problem of optimally pricing a single item for a single
buyer whose value for the item is a sum of independent random variables. The
probability distribution of the item’s value has an exponentially sized support,
but has a succinct description in terms of each component variable’s distribution.
The seller must choose a price P for the item. The buyer will accept the offer
(and pay P ) if his value for it is at least P , and will reject the offer (giving the
seller zero revenue) if his value is strictly less than P . The seller’s goal is to choose
P to maximize his expected revenue. In fact it follows from Myerson [20] that
pricing the item at the optimal price is the optimal mechanism in this setting,
even among randomized mechanisms.

This problem occurs fairly naturally. When selling a complex product (for
example, a car), there are a number of attributes (color, size, etc) that a buyer
may or may not value highly, and his value for the product may be the sum
of his values for the individual attributes. If his values for the attributes are
independent, the buyer’s value for the product can be modeled as a sum of
independent random variables.

Formally, the problem we study in this section is the following.

Definition 1 (The Sum-of-Attributes Pricing (SoAP) Problem). Given
n pairs of nonnegative integers (u1, v1), (u2, v2), . . . , (un, vn) and rational proba-
bilities p1, p2, . . . , pn, determine the price P ∗ which maximizes P ∗·Pr[

∑n
i=1 Xi ≥

P ∗], where the Xi are independent random variables taking value ui with proba-
bility pi and vi with probability 1− pi.

Notice that we can always view an instance of the sum-of-attributes pricing
problem as an instance of the grand bundle pricing problem where we seek the
optimal price to sell the “grand bundle” of a collection of n items that are
independently distributed.

Theorem 1. The Sum-of-Attributes Pricing problem and the Grand Bundle
Pricing problem are #P -hard.
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Proof. We show how to use oracle access to the SoAP problem to solve the count-
ing analog of the SUBSET-SUM problem, defined next, which is #P -complete.1

#-SUBSET-SUM: Given as input a set of positive integers {a1, a2, . . . , an} and
a positive integer T ≤

∑
i ai, the goal is to determine the number of subsets of

the ai’s which sum to at least T .

The idea of our reduction is to design an instance of the SoAP problem with
n+1 attributes for which the optimal price is one of two possible prices. A single
parameter (in particular, the probability pn+1 of the last attribute) determines
which of these two prices is optimal. By repeatedly querying a SoAP oracle with
varying values of pn+1, we can determine the exact threshold value of pn+1,
which provides sufficient information to deduce the answer to the #-subset sum
instance.

We proceed to provide the details of our reduction. Given an instance of the
#-subset sum problem, we create an instance of SoAP with n + 1 attributes,
where for all i ∈ {1, . . . , n} we take ui = ai and vi = 0, while for the last
attribute we take un+1 = T + 1 and vn+1 = 1. Moreover, for all i ∈ {1, . . . , n},
we set

pi �
1

2nn(n+ 1 +
∑n

j=1 aj)
2
.

Notice in particular that the first n attributes have the same probability of taking
their highest value. Moreover, the probability that all the first n attributes have
value 0 is:(

1− 1

2nn(n+ 1 +
∑n

j=1 aj)
2

)n

> 1− 1

2n(n+ 1 +
∑n

j=1 aj)
2

i.e. very close to 1. We leave the probability pn+1 that the last attribute takes
its highest value a free parameter, which we denote by p for convenience.

Now, suppose that we use price B for the SoAP instance. We claim the fol-
lowing:

1. If B = 1, the expected revenue is 1.
2. If 1 < B < T + 1, then the expected revenue is at most

B

(
p+

1− p

2n(n+ 1 +
∑n

j=1 aj)
2

)
.

3. If B = T + 1, then the expected revenue is at least p(T + 1).
4. If T + 1 < B ≤ T + 1 +

∑n
j=1 aj, then the expected revenue is at most(

T + 1 +
n∑

i=1

ai

)(
1

2n(n+ 1 +
∑n

j=1 aj)
2

)
≤

1 +
∑n

j=1 ai

2n−1(n+ 1 +
∑n

j=1 aj)
2
< 1.

5. If B > T + 1 +
∑n

j=1 aj , then the expected revenue is 0.

1 Indeed, the reduction from SAT to SUBSET-SUM as presented in [23] is parsimo-
nious.
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The fourth and fifth cases are never optimal, since they are both dominated by
using B = 1. We claim that the second case is also never optimal. Suppose for
the sake of contradiction that some integral price B strictly between 1 and T +1
were optimal. Then we would have the following two constraints:

– B
(
p+ 1−p

2n(n+1+
∑n

j=1 aj)2

)
≥ 1

– B
(
p+ 1−p

2n(n+1+
∑

n
j=1 aj)2

)
≥ (T + 1)p.

To show a contradiction, define for convenience

ε � 1

2n(n+ 1 +
∑n

j=1 aj)
2
.

We will show that no value of p exists for which both of the above constraints are
simultaneously satisfied. From the first constraint, we deduce p+ ε(1−p) ≥ 1/B
and thus

p ≥ 1/B − ε

1− ε
≥ 1/T − ε

1− ε
> 1/T − ε,

where for the last inequality we used that T ≤
∑n

j=1 aj . Moreover,

1/T − ε ≥ 1∑n
j=1 ai

− 1

2n(n+ 1 +
∑n

j=1 aj)2
≥ 1∑n

j=1 aj
− 1

2n
∑n

j=1 aj
≥ 1

2
∑n

j=1 aj
.

Therefore, the first constraint implies that p > 1
2
∑

aj
. From the second con-

straint, we deduce B(p+ ε(1− p)) ≥ (T + 1)p and thus

p ≤ Bε

T + 1−B +Bε
,

where we used that B ≤ T so T + 1−B +Bε > 1. We further have

p < Bε ≤ T ε ≤
n∑

j=1

ajε =

∑n
j=1 aj

2n(n+ 1+
∑n

j=1 aj)
2
<

1

2
∑n

j=1 aj
.

We get a contradiction as both constraints on p cannot be satisfied simultane-
ously. In summary, we have shown the following:

“For any p, the optimal price is either 1 or T + 1.”

We also note the following monotonicity property. If, for some p, the optimal
price is T + 1, then the optimal price is T + 1 for any p′ > p.2 Therefore, there
exists a unique p∗ for which the expected revenue of selling at price T + 1 is
exactly the same as the expected revenue of selling at price 1.

2 This follows from the fact that the expected revenue from selling at T + 1 will only
increase as p increases.
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Suppose that we knew some p∗ such that the expected revenue of selling at
T+1 is exactly 1. Then, if we denote by Vn the total value of the first n attributes,
p∗ should satisfy:

1 = (T + 1) (p∗ + (1 − p∗)P [Vn ≥ T ]) ;

so

P [Vn ≥ T ] =
1/(T + 1)− p∗

1− p∗
.

Therefore, it is simple arithmetic to compute P [Vn ≥ T ] from p∗. We also note
that

P [Vn ≥ T ] =

n∑
k=0

pk1(1− p1)
n−k · S(k, T ) = pn1 ·

n∑
k=0

(
1− p1
p1

)n−k

· S(k, t),

where S(k, T ) is the number of size k subsets of the ai’s which sum to at least
T . By our choice of p1 being sufficiently small, we know that 1−p1

p1
= 1

p1
− 1 is

an integer greater than 2n. Therefore, the S(k, t) are the unique integers in the
base-( 1

p1
− 1) representation of P [Vn ≥ T ]/pn1 , and can be found efficiently. So

given p∗ we can compute the total number of subsets of the ai’s that sum up to
at least T , thereby solving the given instance of #-SUBSET SUM.

It remains to argue that we can compute p∗ using oracle access to SoAP.
We do binary search on p while maintaining all other parameters of the SoAP
instance fixed, as described above. In every step of the binary search, we solve
the corresponding SoAP instance, determining if the optimal price is 1 or T +1
and respectively increasing or decreasing the value of p for the next step, until
we have pinned down p∗ exactly. To argue that this takes polynomial time we
notice that:

p∗ =
1/(T + 1)− P [Vn ≥ T ]

1− P [Vn ≥ T ]
.

We also notice that P [Vn ≥ T ] is a rational number that can be specified with a
polynomial number of bits.3 So p∗ has polynomial accuracy and we need poly-
nomially many calls to SoAP to determine it exactly. ��

4 Complexity of Mildly Irrational Valuations

Issues of numerical precision may arise when analyzing value distributions which
are implicitly described. Even very mild irrationality, such as the support of the
distribution containing square roots of integers, can cause the resulting pricing
problem to be computationally intricate. In particular, optimization may require
deciding between two mechanisms whose expected utility differs only by an ex-
ponentially small amount. In this section, we present an example of how we can
reduce a numerical problem whose status even in NP remains unknown to the
pricing problem for a unit-demand buyer with mildly irrational valuations.

3 In particular, each number of the form pi1(1− p1)
n−i has polynomial bit-length.
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Definition 2 (The Square Root Sum Problem). Given positive integers
α1 ≤ α2 ≤ · · · ≤ αn and K, the SQRT-SUM problem is to determine whether or
not
∑n

i=1

√
αi > K.

While known to be in PSPACE, it remains an important open problem whether
the square root sum problem is solvable in NP, let alone whether it is in P. [12, 14]

Remark 1. Checking whether
∑

i

√
ai = K for positive integers ai, i = 1, .., n,

and K can be done in polynomial time [14]. So the square root sum problem
draws its computational difficulty from instances where equality between

∑
i

√
ai

and K does not hold and we need to decide whether
∑

i

√
ai is > or < than K.

In the hardness proofs of Theorems 2 and 3 we will implicitly assume that the
given instance of the square root sum problem satisfies

∑
i

√
ai 	= K. Given

such instance we will construct an unit-demand pricing instance whose solution
answers the question of whether

∑
i

√
ai is > or < than K.

Remark 2. The important computational difference between the square root of
an integer and the sum of square roots of multiple integers is that the i-th bit of
the former can be computed in time polynomial in i and the number’s description
complexity, while the same is not known to be true for the latter.

Theorem 2. The unit-demand pricing problem is SQRT-SUM-hard when the
item values are independent of support two with rational probabilities and each
possible item value is the square root of an integer.4

Proof. We will reduce SQRT-SUM to the pricing problem for a single unit-
demand buyer whose values for the items are distributed independently, take
one of two possible values with rational probabilities, and each of these possible
values is the square root of an integer.

Given an input α1 ≤ α2 ≤ · · · ≤ αn and K to the SQRT-SUM problem,
we construct an input to the unit-demand pricing problem with n + 1 items.
For i = 1, . . . , n, item i has value

√
αi with probability 1/i, and value 0 with

probability 1 − 1/i. Finally, item n + 1 has value T/2 with probability 1/2 + ε
and value T with probability 1/2− ε, where:

ε � K

4nmax(K,αn)
≤ 1

2
; T � (1/2 + ε)K

nε
.

Notice that T/2 > K
4nε = max(K,αn) ≥ αn ≥ √

αn.
We now claim that the optimal expected revenue for the unit-demand pricing

instance we defined is the maximum of T/2 and

(1/2− ε)T +
1/2 + ε

n
(
√
α1 + · · ·+√

αn) .

4 The item values are mildly irrational since the i-th bit of the square root of an integer
can be computed exactly in time polynomial in i and the description complexity of
the integer.
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Indeed, it is clearly possible to achieve revenue T/2 by pricing item n+1 at T/2
and all other items at a price greater than

√
αn. Since T/2 >

√
αn, if item n+1

is priced less than or equal to T/2, the revenue cannot be higher than T/2.
Now what if item n+1 were priced at a price higher than T/2? Suppose, e.g.,

that we price item n+ 1 at T and all other items i at
√
αi. Then the expected

revenue we would get is5

(1/2− ε)T + (1/2 + ε)

(
1

n

√
αn +

n− 1

n
· 1

n− 1

√
αn−1 + · · ·+ 1

n

√
α1

)
(1)

We claim that this is the best revenue we could possibly achieve if item n+ 1 is
priced at a price higher than T/2. Indeed, it is easy to see that the maximum
of the values of items 1, . . . , n is independent of the value of item n + 1, it
has expectation 1

n

∑
i

√
αi and, because T/2 >

√
αn, it is smaller than T with

probability 1. So consider any pricing where the price of item n + 1 is larger
than T/2. In the event that the value of item n + 1 is T (which happens with
probability exactly 1/2−ε) the best revenue that the pricing could possibly get is
at most T , while in the event that the value of item n+1 is T/2 (which happens
with probability exactly 1/2+ ε) the revenue cannot exceed the maximum of the
values of items 1, . . . , n which has expectation 1

n

∑
i

√
αi even after conditioning

on the value of item n+ 1 as it is independent from the value of item n+ 1.
Observe that (1) is higher than T/2 if and only if

εT <
(1/2 + ε)

n
(
√
α1 + · · ·+√

αn) ,

which occurs precisely when K <
√
α1 + · · ·+√

αn. ��

5 Complexity of Mildly Irrational Probabilities

The reduction of the previous section used distributions that were supported on
irrational values. A possible critique of this in a discrete setting is that it may be
unnatural for an individual to hold irrational values for an item. Contrastingly,
it seems more natural to allow for a person’s values to be rational but to depend
on certain mildly irrational probabilities.

Perhaps the simplest form of an irrational probability is one for which we
can efficiently compute arbitrary bits of its binary expansion correctly.6 Notice
that using a fair coin to sample exactly such probability, e.g.

√
1/3, is no more

work than sampling exactly a rational probability, e.g. 1/3: Imagine an infinite
sequence of coin tosses. We reveal a prefix of that sequence until, viewed as a
binary number, we can certify that the sequence lies above or below the target
probability written in binary; if above, we output 1, otherwise we output 0.

5 Suppose that ties are broken in favor of the most expensive item.
6 This property is satisfied, for example, by a probability of the form

√
r, where r is a

rational number; but, as remarked in section 4, it is unknown whether it is satisfied
by a probability of the form

∑
i

√
ri, for rational ri’s.
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We now consider unit-demand pricing instances as in the previous section,
except where the values are integral and the probabilities are irrational. As in
the previous section, we will give a SQRT-SUM-hardness reduction.

Theorem 3. The unit-demand pricing problem is SQRT-SUM-hard when the
item values are independent of support two, have probabilities for which the ith

bit of their binary expansions can be computed in time polynomial in i, and each
possible item value is integral.

Proof. Let a1 ≤ ... ≤ an and K be an instance of the SQRT-SUM problem.
Also let X be a large integer with X > max{3K/n, an}. We define an+1 = X2

maintaining the monotonicity of the sequence ai since X > an.
We reduce the given SQRT-SUM instance to an instance of the unit-demand

pricing problem with n + 1 items. For i = 1, ..., n, item i has value i with
probability pi = 1−

√
ai/ai+1, and value 0 with probability

√
ai/ai+1. Finally,

item n+1 has value T/2 with probability 3/4 and value T with probability 1/4,
where:

T � 3

(
n− K

X

)
.

Notice that by the choice of X > 3K/n we have that T/2 > n, the highest
possible value of any other item. Also, since the sequence of ai’s is non-decreasing,
all probabilities pi are well defined.

As in the proof of Theorem 2, we can argue that the optimal pricing either
prices item n+ 1 at T/2 and the other items at infinity (call this “Scheme 1”),
or prices all items at their high value (call this “Scheme 2”). In the former case
the revenue is T/2. In the latter case the bidder will choose to buy the largest
item he values high, i.e. will choose item n + 1 if he values it high, otherwise
item n if he values it high, and so on.7 Therefore, Scheme 1 beats Scheme 2 if
and only if:

T

2
>

T

4
+

3

4
(pnn+ pn−1(1 − pn)(n− 1) + ...+ p1

n∏
i=2

(1− pi)),

which becomes, after substituting for the pi’s:

T

2
>

T

4
+

3

4

n∑
i=1

(
i

(√
ai+1

an+1
−
√

ai
an+1

))
.

Simplifying and using the fact that
√
an+1 = X , our condition becomes

T

2
>

T

4
+

3

4

(
n−

∑n
i=1

√
ai

X

)
.

7 As in the proof of Theorem 2 we assume that ties are broken in favor of the most
expensive item.
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This occurs precisely when:

n∑
i=1

√
ai > X(n− T/3) = K.

Therefore, Scheme 1 is strictly better than Scheme 2 precisely when
∑n

i=1

√
αi >

K, concluding our reduction from the SQRT-SUM problem. ��

6 Future Work

Studying the complexity of optimal pricing in a Bayesian context is an important
question, both theoretically and practically. However, to have a robust complex-
ity model, great care must be taken in specifying the input distributions. Indeed,
as shown in this paper, implicit distributions can easily embed hard problems
into the distribution’s parameters, and therefore any complexity theoretic model
of pricing must take into account the complexity of the distributions themselves,
and not just the length of a minimal specification.

A setting that avoids the computational barriers raised in this paper is that of
several items, each distributed independently on some finite size support, with
all values and probabilities rational and explicitly given. This problem is not yet
resolved for either unit-demand or additive bidders. Moreover, while our paper
has focused only on discrete distributions, issues of distributional specification
are perhaps even more vital if one wishes to model the complexity of pricing
with continuous distributions. It is of interest to propose a robust computational
framework for studying the pricing problem with continuous distributions.

Finally, our results apply to computing the optimal deterministic mechanism,
which in the case of a single buyer is tantamount to finding an optimal pric-
ing scheme. It is an important open question to determine the complexity of
the optimal mechanism design problem when randomized mechanisms are also
allowed.
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Abstract. We study a market for private data in which a data ana-
lyst publicly releases a statistic over a database of private information.
Individuals that own the data incur a cost for their loss of privacy pro-
portional to the differential privacy guarantee given by the analyst at
the time of the release. The analyst incentivizes individuals by compen-
sating them, giving rise to a privacy auction. Motivated by recommender
systems, the statistic we consider is a linear predictor function with pub-
licly known weights. The statistic can be viewed as a prediction of the
unknown data of a new individual, based on the data of individuals
in the database. We formalize the trade-off between privacy and accu-
racy in this setting, and show that a simple class of estimates achieves
an order-optimal trade-off. It thus suffices to focus on auction mecha-
nisms that output such estimates. We use this observation to design a
truthful, individually rational, proportional-purchase mechanism under
a fixed budget constraint. We show that our mechanism is 5-approximate
in terms of accuracy compared to the optimal mechanism, and that no
truthful mechanism can achieve a 2− ε approximation, for any ε > 0.

1 Introduction

Recommender systems are ubiquitous on the Internet, lying at the heart of
some of the most popular Internet services, including Netflix, Yahoo, and Ama-
zon. These systems use algorithms to predict, e.g., a user’s rating for a movie,
her propensity to click on an advertisement or to purchase a product online.
By design, such prediction algorithms rely on access to large training datasets,
typically comprising data from thousands (often millions) of individuals. This
large-scale collection of user data has raised serious privacy concerns among re-
searchers and consumer advocacy groups. Privacy researchers have shown that
access to seemingly non-sensitive data (e.g., movie ratings) can lead to the leak-
age of potentially sensitive information when combined with de-anonymization
techniques [1]. Moreover, a spate of recent lawsuits [2, 3, 4] as well as behavioral
studies [5] have demonstrated the increasing reluctance of the public to allow
the unfettered collection and monetization of user data.

As a result, researchers and advocacy groups have argued in favor of legisla-
tion protecting individuals, by ensuring they can “opt-out” from data collection
if they so desire [6]. However, a widespread restriction on data collection would
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be detrimental to profits of the above companies. One way to address this tension
between the value of data and the users’ need for privacy is through incentiviza-
tion. In short, companies releasing an individual’s data ought to appropriately
compensate her for the violation of her privacy, thereby incentivizing her consent
to the release.

We study the issue of user incentivization through privacy auctions, as intro-
duced by Ghosh and Roth [7]. In a privacy auction, a data analyst has access
to a database d ∈ Rn of private data di, i = 1, . . . , n, each corresponding to a
different individual. This data may represent information that is to be protected,
such as an individual’s propensity to click on an ad or purchase a product, or the
number of visits to a particular website. The analyst wishes to publicly release
an estimate ŝ(d) of a statistic s(d) evaluated over the database. In addition,
each individual incurs a privacy cost ci upon the release of the estimate ŝ(d),
and must be appropriately compensated by the analyst for this loss of utility.
The analyst has a budget, which limits the total compensation paid out. As such,
given a budget and a statistic s, the analyst must (a) solicit the costs of indi-
viduals ci and (b) determine the estimate ŝ to release as well as the appropriate
compensation to each individual.

Ghosh and Roth employ differential privacy [8] as a principled approach to
quantifying the privacy cost ci. Informally, ensuring that ŝ(d) is ε-differentially
private with respect to individual i provides a guarantee on the privacy of this
individual; a small ε corresponds to better privacy since it guarantees that ŝ(d) is
essentially independent of the individual’s data di. Privacy auctions incorporate
this notion by assuming that each individual i incurs a cost ci = ci(ε), that is a
function of the privacy guarantee ε provided by the analyst.

1.1 Our Contribution

Motivated by recommender systems, we focus in this paper on a scenario where
the statistic s takes the form of a linear predictor :

s(d) := 〈w,d〉 =
∑n

i=1 widi, (1)

where w ∈ Rn, is a publicly known vector of real (possibly negative) weights.
Intuitively, the public weights wi serve as measures of the similarity between
each individual i and a new individual, outside the database. The function s(d)
can then be interpreted as a prediction of the value d for this new individual.

Linear predictors of the form (1) include many well-studied methods of statis-
tical inference, such as the k-nearest-neighbor method, the Nadaranya-Watson
weighted average, ridge regression, as well as support vector machines. We pro-
vide a brief review of such methods in Section 5. Functions of the form (1) are
thus of particular interest in the context of recommender systems [9, 10], as well
as other applications involving predictions (e.g., polling/surveys, marketing). In
the sequel, we ignore the provenance of the public weights w, keeping in mind
that any of these methods apply. Our contributions are as follows:

1. Privacy-Accuracy Trade-off. We characterize the accuracy of the esti-
mate ŝ in terms of the distortion between the linear predictor s and ŝ defined
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as δ(s, ŝ) := maxd E
[
|s(d)− ŝ(d)|2

]
, i.e., the maximum mean square error

between s(d) and ŝ(d) over all databases d. We define a privacy index β(ŝ)
that captures the amount of privacy an estimator ŝ provides to individuals
in the database. We show that any estimator ŝ with low distortion must also
have a low privacy index (Theorem 1).

2. Laplace Estimators Suffice. We show that a special class of Laplace es-
timators [8, 11] (i.e., estimators that use noise drawn from a Laplace dis-
tribution), which we call Discrete Canonical Laplace Estimator Functions
(DCLEFs), exhibits an order-optimal trade-off between privacy and distor-
tion (Theorem 2). This allows us to restrict our focus on privacy auctions
that output DCLEFs as estimators of the linear predictor s.

3. Truthful, 5-Approximate Mechanism, and Lower bound.We design a
truthful, individually rational, and budget feasible mechanism that outputs a
DCLEF as an estimator of the linear predictor (Theorem 3). Our estimator’s
accuracy is a 5-approximation with respect to the DCLEF output by an
optimal, individually rational, budget feasible mechanism. We also prove
a lower bound (Theorem 4): there is no truthful DCLEF mechanism that
achieves an approximation ratio 2− ε, for any ε > 0.

In our analysis, we exploit the fact that when ŝ is a Laplace estimator mini-
mizing distortion under a budget resembles the knapsack problem. As a result,
the problem of designing a privacy auction that outputs a DCLEF ŝ is similar
in spirit to the knapsack auction mechanism [12]. However, our setting poses
an additional challenge because the privacy costs exhibit externalities : the cost
incurred by an individual is a function of which other individuals are being com-
pensated. Despite the externalities in costs, we achieve the same approximation
as the one known for the knapsack auction mechanism [12].

Due to space constraints we omit all proofs from this extended abstract, and
refer the interested reader to the full version [13] of the paper.

1.2 Related Work

Privacy of Behavioral Data. Differentially-private algorithms have been de-
veloped for the release of several different kinds of online user behavioral data
such as click-through rates and search-query frequencies [14], as well as movie
ratings [15]. As pointed out by McSherry and Mironov [15], the reason why the
release of such data constitutes a privacy violation is not necessarily that, e.g.,
individuals perceive it as embarrassing, but that it renders them susceptible to
linkage and de-anonymization attacks [1]. Such linkages could allow, for example,
an attacker to piece together an individual’s address stored in one database with
his credit card number or social security number stored in another database. It
is therefore natural to attribute a loss of utility to the disclosure of such data.

Privacy Auctions. Quantifying the cost of privacy loss allows one to study
privacy in the context of an economic transaction. Ghosh and Roth initiate this
study of privacy auctions in the setting where the data is binary and the statistic
reported is the sum of bits, i.e., di ∈ {0, 1} and wi = 1 for all i = 1, . . . , n [7].
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Unfortunately, the Ghosh-Roth auction mechanism cannot be readily general-
ized to asymmetric statistics such as (1), which, as discussed in Section 5, have
numerous important applications including recommender systems. Our Theo-
rems 1 and 2, which parallel the characterization of order-optimal estimators
in [7], imply that to produce an accurate estimate of s, the estimator ŝ must
provide different privacy guarantees to different individuals. This is in contrast
to the multi-unit procurement auction of [7]. In fact, as discussed the introduc-
tion, a privacy auction outputting a DCLEF ŝ(d) has many similarities with a
knapsack auction mechanism [12], with the additional challenge of externalities
introduced by the Laplacian noise (see also Section 4).

Privacy and Truthfulness in Mechanism Design. A series of interesting
results follow an orthogonal direction, namely, on the connection between pri-
vacy and truthfulness when individuals have the ability to misreport their data.
Starting with the work of McSherry and Talwar [16] followed by Nissim et al [17],
Xiao [18] and most recently Chen et al [19], these papers design mechanisms that
are simultaneously truthful and privacy-preserving (using differential privacy or
other closely related definitions of privacy). As pointed out by Xiao [18], all
these papers consider an unverified database, i.e., the mechanism designer can-
not verify the data reported by individuals and therefore must incentivize them
to report truthfully. Recent work on truthfully eliciting private data through a
survey [20, 21] also fall under the unverified database setting [18]. In contrast,
our setting, as well as that of Ghosh and Roth, is that of a verified database,
in which individuals cannot lie about their data. This setting is particularly rel-
evant to the context of online behavioral data: information on clicks, websites
visited and products purchased is collected and stored in real-time and cannot
be retracted after the fact.

Correlation between Privacy Costs and Data Values. An implicit as-
sumption in privacy auctions as introduced in [7] is that the privacy costs ci are
not correlated with the data values di. This might not be true if, e.g., the data
represents the propensity of an individual to contract a disease. Ghosh and Roth
[7] show that when the privacy costs are correlated to the data no individually
rational direct revelation mechanism can simultaneously achieve non-trivial ac-
curacy and differential privacy. As discussed in the beginning of this section, the
privacy cost of the release of behavioral data is predominantly due to the risk
of a linkage attack. It is reasonable in many cases to assume that this risk (and
hence the cost of privacy loss) is not correlated to, e.g., the user’s movie ratings.
Nevertheless, due to its importance in other settings such as medical data, more
recent privacy auction models aim at handling such correlation [20, 21, 22]; we
leave generalizing our results to such privacy auction models as future work.

2 Preliminaries

Let [k] = {1, · · · , k}, for any integer k > 0, and define I := [Rmin, Rmax] ⊂ R to
be a bounded real interval. Consider a database containing the information of
n > 0 individuals. In particular, the database comprises a vector d, whose entries
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di ∈ I, i ∈ [n], represent the private information of individual i. Each entry
di is a priori known to the database administrator, and therefore individuals
do not have the ability to lie about their private data. A data analyst with
access to the database would like to publicly release an estimate of the statistic
s(d) of the form (1), i.e. s(d) =

∑
i∈[n]widi, for some publicly known weight

vector w = (w1, . . . , wn) ∈ Rn. For any subset H ⊆ [n], we define w(H) :=∑
i∈H |wi|, and denote by W := w([n]) =

∑n
i=1 |wi| the �1 norm of vector w.

We denote the length of interval I by Δ := Rmax − Rmin, and its midpoint by
R̄ := (Rmin + Rmax)/2. Without loss of generality, we assume that wi 	= 0 for
all i ∈ [n]; if not, since entries for which wi = 0 do not contribute to the linear
predictor, it suffices to consider the entries of d for which wi 	= 0.

2.1 Differential Privacy and Distortion

Similar to [7], we use the following generalized definition of differential privacy:

Definition 1 (Differential Privacy). A (randomized) function f : In → Rm

is (ε1, . . . , εn)-differentially private if for each individual i ∈ [n] and for any pair
of data vectors d,d(i) ∈ In differing in only their i-th entry, εi is the smallest
value such that P[f(d) ∈ S] ≤ eεiP[f(d(i)) ∈ S] for all S ⊂ Rm.

This definition differs slightly from the usual definition of ε-differential pri-
vacy [11], as the latter is stated in terms of the worst case privacy across all
individuals. More specifically, according to the notation in [11], an (ε1, . . . , εn)-
differentially private function is ε-differentially private, where ε = maxi εi.

Given a deterministic function f , a well-knownmethod to provide ε-differential
privacy is to add random noise drawn from a Laplace distribution to this function
[11]. This readily extends to (ε1, . . . , εn)-differential privacy.

Lemma 1 ([11]). Consider a deterministic function f : In → R. Define f̂(d) :=
f(d) + Lap(σ), where Lap(σ) is a random variable sampled from the Laplace

distribution with parameter σ. Then, f̂ is (ε1, . . . , εn)-differentially private, where
εi = Si(f)/σ, and Si(f) := maxd,d(i)∈In |f(d) − f(d(i))|, is the sensitivity of f
to the i-th entry di, i ∈ [n].

Intuitively, the higher the variance σ of the Laplace noise added to f , the smaller
εi, and hence, the better the privacy guarantee of f̂ . Moreover, for a fixed σ, en-
tries i with higher sensitivity Si(f) receive a worse privacy guarantee (higher εi).

There is a natural tradeoff between the amount of noise added and the ac-
curacy of the perturbed function f̂ . To capture this, we introduce the notion of
distortion between two (possibly randomized) functions:

Definition 2. (Distortion). Given two functions f : In → R and f̂ : In → R,
the distortion, δ(f, f̂), between f and f̂ is given by

δ(f, f̂) := max
d∈In

E
[
|f(d)− f̂(d)|2

]
.
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In our setup, the data analyst wishes to disclose an estimator function ŝ : In → R
of the linear predictor s. Intuitively, a good estimator ŝ should have a small
distortion δ(s, ŝ), while also providing good differential privacy guarantees.

2.2 Privacy Auction Mechanisms

Each individual i ∈ [n] has an associated cost function ci : R+ → R+, which
determines the cost ci(εi) incurred by i when an (ε1, . . . , εn)-differentially private
estimate ŝ is released by the analyst. As in [7], we consider linear cost functions,
i.e., ci(ε) = viε, for all i ∈ [n]. We refer to vi as the unit-cost of individual i.
The unit-costs vi are not a priori known to the data analyst. Without loss of
generality, we assume throughout the paper that v1 ≤ . . . ≤ vn.

Given a weight vector w = (w1, . . . , wn) ∈ Rn, let Ms be a mechanism com-
pensating individuals in [n] for their loss of privacy from the release of an estimate
ŝ of the linear predictor s(d). Formally, Ms takes as input a vector of reported
unit-costs v = (v1, . . . , vn) ∈ Rn

+ and a budget B, and outputs

1. a payment pi ∈ R+ for every i ∈ [n], and
2. an estimator function ŝ : In → R+.

Assume that the estimator ŝ satisfies (ε1, . . . , εn)-differential privacy. A mecha-
nism is budget feasible if

∑
i∈[n] pi ≤ B, i.e., the payments made by the mech-

anism are within the budget B. Moreover, a mechanism is individually rational
if for all i ∈ [n], pi ≥ ci(εi) = viεi, i.e., payments made by the mechanism
exceed the cost incurred by individuals. Finally, a mechanism is truthful if for all
i ∈ [n], pi(vi, v−i) − viεi(vi, v−i) ≥ pi(v

′
i, v−i) − viεi(v

′
i, v−i), i.e., no individual

can improve her utility by misreporting her private unit-cost.

2.3 Outline of Our Approach

We denote by δMs := δ(s, ŝ) the distortion between s and the function output by
the mechanism Ms. Ideally, a mechanism should output an estimator that has
small distortion. However, the smaller the distortion, the higher the privacy vio-
lation and, hence, the more money the mechanism needs to spend. As such, the
objective of this paper is to design a mechanism with minimal distortion, subject
to the constraints of truthfulness, individual rationality, and budget feasibility.

To address this question, in Section 3, we first establish a privacy-distortion
tradeoff for differentially-private estimators of the linear predictor. We then in-
troduce a family of estimators, Discrete Canonical Laplace Estimator Functions
(DCLEFs), and show that they achieve a near-optimal privacy-distortion trade-
off. This result allows us to limit our attention to DCLEF privacy auction mech-
anisms, i.e., mechanisms that output a DCLEF ŝ. In Section 4, we present a
mechanism that is truthful, individually rational, and budget feasible, while also
being near-optimal in terms of distortion.
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3 Privacy-Distortion Tradeoff and Laplace Estimators

Recall that a good estimator should exhibit low distortion and simultaneously
give good privacy guarantees. In this section, we establish the privacy-distortion
tradeoff for differentially-private estimators of the linear predictor. Moreover,
we introduce a family of estimators that exhibits a near-optimal tradeoff be-
tween privacy and distortion. This will motivate our focus on privacy auction
mechanisms that output estimators from this class in Section 4.

3.1 Privacy-Distortion Tradeoff

There exists a natural tension between privacy and distortion, as highlighted by
the following two examples.
Example 1. Consider the estimator ŝ := R̄

∑n
i=1 wi, where recall that R̄ =

(Rmin+Rmax)/2. This estimator guarantees perfect privacy (i.e., εi = 0), for all
individuals. However, δ(s, ŝ) = (WΔ)2/4.
Example 2. Consider the estimator function ŝ :=

∑n
i=1 widi. In this case,

δ(s, ŝ) = 0. However, εi = ∞ for all i ∈ [n].
In order to formalize this tension between privacy and distortion, we define

the privacy index of an estimator as follows.

Definition 3. Let ŝ : In → R be any (ε1, . . . , εn)-differentially private estimator
function for the linear predictor. We define the privacy index, β(ŝ), of ŝ as

β(ŝ) := max

{
w(H) : H ⊆ [n] and

∑
i∈H

εi < 1/2

}
. (2)

β(ŝ) captures the weight of the individuals that have been guaranteed good
privacy by ŝ. Next we characterize the impossibility of having an estimator with
a low distortion but a high privacy index. Note that for Example 1, β(ŝ) = W ,
i.e., the largest value possible, while for Example 2, β(ŝ) = 0. We stress that the
selection of 1/2 as an upper bound in (2) is arbitrary; Theorems 1 and 2 still
hold if another value is used, though the constants involved will differ.

Our first main result establishes a trade-off between the privacy index and
the distortion of an estimator.

Theorem 1 (Trade-off between Privacy-index and Distortion). Let 0 <
α < 1. Let ŝ : In → R be an arbitrary estimator function for the linear predictor.
If δ(s, ŝ) ≤ (αWΔ)2/48 then β(ŝ) ≤ 2αW .

In other words, if an estimator has low distortion, the weight of individuals with
a good privacy guarantee (i.e., a small εi) can be at most an α fraction of 2W .

3.2 Laplace Estimator Functions

Consider the following family of estimators for the linear predictor ŝ : In → R:

ŝ(d; a,x, σ) :=

n∑
i=1

widixi +

n∑
i=1

wiai(1− xi) + Lap(σ) (3)
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where xi ∈ [0, 1], and each ai ∈ R is a constant independent of the data vector
d. This function family is parameterized by x, a and σ. The estimator ŝ results
from distorting s in two ways: (a) a randomized distortion by the addition of
the Laplace noise, and (b) a deterministic distortion through a linear interpola-
tion between each entry di and some constant ai. Intuitively, the interpolation
parameter xi determines the extent to which the estimate ŝ depends on entry
di. Using Lemma 1 and the definition of distortion, it is easy to characterize the
privacy and distortion properties of such estimators.

Lemma 2. Given wi, i ∈ [n], let s(d) be the linear predictor given by (1), and
ŝ an estimator of s given by (3). Then,

1. ŝ is (ε1, . . . , εn)-differentially private, where εi =
Δ|wi| xi

σ , i ∈ [n].

2. The distortion satisfies δ(s, ŝ) ≥
(
Δ
2

∑n
i=1 |wi|(1− xi)

)2
+ 2σ2, with equality

attained when ai = R̄, for all i ∈ [n].

Note that the constants ai do not affect the differential privacy properties of ŝ.
Moreover, among all estimators with given x, the distortion δ(s, ŝ) is minimized
when ai = R̄ for all i ∈ [n]. In other words, to minimize the distortion without
affecting privacy, it is always preferable to interpolate between di and R̄. This
motivates us to define the family of Laplace estimator functions as follows.

Definition 4. Given wi, i ∈ [n], the Laplace estimator function family (LEF)
for the linear predictor s is the set of functions ŝ : In → R, parameterized by x
and σ, such that

ŝ(d;x, σ) =

n∑
i=1

widixi + R̄

n∑
i=1

wi(1− xi) + Lap(σ) (4)

We call a LEF discrete if xi ∈ {0, 1}. Furthermore, we call a LEF canonical if
the Laplace noise added to the estimator has a parameter of the form

σ = σ(x) := Δ

n∑
i=1

|wi|(1− xi) (5)

Recall that xi controls the dependence of ŝ on the entry di; thus, intuitively,
the standard deviation of the noise added in a canonical Laplace estimator is
proportional to the “residual weight” of data entries. Note that, by Lemma 2,
the distortion of a canonical Laplace estimator ŝ has the following simple form:

δ(s, ŝ) =
9

4
Δ2
( n∑
i=1

|wi|(1− xi)
)2

=
9

4
Δ2
(
W −

n∑
i=1

|wi|xi

)2
. (6)

Our next result establishes that there exists a discrete canonical Laplace es-
timator function (DCLEF) with a small distortion and a high privacy index.



Privacy Auctions for Recommender Systems 317

Theorem 2 (DCLEFs suffice). Let 0 < α < 1. Let

ŝ∗ := argmax
ŝ:δ(s,ŝ)≤(αWΔ)2/48

β(ŝ)

be an estimator with the highest privacy index among all ŝ for which δ(s, ŝ)
≤ (αWΔ)2/48. There exists a DCLEF ŝ◦ : In → R such that δ(s, ŝ◦) ≤ (9/4)
(αWΔ)2, and β(ŝ◦) ≥ 1

2β(ŝ
∗).

In other words, there exists a DCLEF that is within a constant factor, in terms of
both its distortion and its privacy index, from an optimal estimator ŝ∗. Theorem
2 has the following immediate corollary:

Corollary 1. Consider an arbitrary estimator ŝ with distortion δ(s, ŝ) < (WΔ)2

48. Then, there exists a DCLEF ŝ◦ such that δ(s, ŝ◦) ≤ 108δ(s, ŝ) and β(ŝ◦) ≥
1
2β(ŝ).

Proof. Apply Theorem (2) with α =
√
48δ(s, ŝ)/(WΔ). In particular, for this

α and ŝ as in the theorem statement, we have that ŝ∗ := argmaxŝ′:δ(s,ŝ′)≤δ(s,ŝ)

β(ŝ′), hence β(ŝ∗) ≥ β(ŝ). Therefore, there exists a DCLEF ŝ◦ such that δ(s, ŝ◦)
≤ (9/4)(αWΔ)2 ≤ 108δ(s, ŝ), and β(ŝ◦) ≥ 1

2β(ŝ
∗) ≥ 1

2β(ŝ).

Theorems 1 and 2 imply that, when searching for estimators with low distortion
and high privacy index, it suffices (up to constant factors) to focus on DCLEFs.
Similar results were derived in [7] for estimators of unweighted sums of bits.

4 Privacy Auction Mechanism

Motivated by Theorems 1 and 2, we design a truthful, individually rational,
budget-feasible DCLEF mechanism (i.e., a mechanism that outputs a DCLEF)
and show that it is 5-approximate in terms of accuracy compared with the op-
timal, individually rational, budget-feasible DCLEF mechanism. Note that a
DCLEF is fully determined by the vector x ∈ {0, 1}n. Therefore, we will simply
refer to the output of the DCLEF mechanisms described below as (x,p), as the
latter characterize the released estimator and the compensations to individu-
als.

4.1 An Optimal DCLEF Mechanism

Consider the problem of designing a DCLEF mechanism M that is individu-
ally rational and budget feasible (but not necessarily truthful), and minimizes
δM . Given a DCLEF ŝ, define H(ŝ) := {i : xi = 1} to be the set of individ-
uals that receive non-zero differential privacy guarantees. Eq. (6) implies that
δ(s, ŝ) = 9

4Δ
2(W − w(H(ŝ)))2. Thus, minimizing δ(s, ŝ) is equivalent to maxi-

mizing w(H(ŝ)). Let (xopt,popt) be an optimal solution to the following problem:
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maximize S(x;w) =

n∑
i=1

|wi|xi

subject to: pi ≥ viεi(x), ∀i ∈ [n], (individual rationality)
n∑

i=1

pi ≤ B (budget feasibility)

xi ∈ {0, 1}, ∀i ∈ [n] (discrete estimator function)

(7)

where, by Lemma 2 and (5),

εi(x) =
Δ|wi|xi

σ(x)
=

|wi|xi∑
i |wi|(1 − xi)

(canonical property). (8)

A mechanism Mopt that outputs (xopt,popt) will be an optimal, individually
rational, budget feasible (but not necessarily truthful) DCLEF mechanism. Let
OPT := S(xopt;w) be the optimal objective value of (7). We use OPT as the
benchmark to which we compare the (truthful) mechanism we design below.
Without loss of generality, we make the following assumption:

Assumption 5. For all i ∈ [n], |wi|vi/(W − |wi|) ≤ B.

Observe that if an individual i violates this assumption, then ci(εi(x)) > B for
any x output by a DCLEF mechanism that sets xi = 1. In other words, no
DCLEF mechanism (including Mopt) can compensate this individual within the
analyst’s budget and, hence, will set xi = 0. Therefore, it suffices to focus on the
subset of individuals for whom the assumption holds.

4.2 A Truthful DCLEF Mechanism

To highlight the challenge behind designing a truthful DCLEF mechanism, ob-
serve that if the privacy guarantees were given by εi(x) = xi rather than (8), the
optimization problem (7) would be identical to the budget-constrained mecha-
nism design problem for knapsack studied by Singer [12]. In the reverse-auction
setting of [12], an auctioneer purchases items valued at fixed costs vi by the
individuals that sell them. Each item i is worth |wi| to the auctioneer, while the
auctioneer’s budget is B. The goal of the auctioneer is to maximize the total
worth of the purchased set of items, i.e., S(x;w). Singer presents a truthful
mechanism that is 6-approximate with respect to OPT . However, in our set-
ting, the privacy guarantees εi(x) given by (8) introduce externalities into the
auction. In contrast to [12], the εi’s couple the cost incurred by an individual i
to the weight of other individuals that are compensated by the auction, mak-
ing the mechanism design problem harder. This difficulty is overcome by our
mechanism, which we call FairInnerProduct, described in Algorithm 1.

The mechanism takes as input the budget B, the weight vector w, and the
vector of unit-costs v, and outputs a set O ⊂ [n], that receive xi = 1 in the
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Algorithm 1. FairInnerProduct(v,w, B)

Let k be the largest integer such that B
w([k])

≥ vk
W−w([k])

.

Let i∗ := argmaxi∈[n] |wi|.
Let p̂ be as defined in (9).
if |wi∗ | > ∑

i∈[k]\{i∗} |wi| then
Set O = {i∗}.
Set pi∗ = p̂ and pi = 0 for all i 	= i∗.

else
Set O = [k].
Pay each i ∈ O, pi = |wi|min{ B

w([k])
,

vk+1

W−w([k])
}, and for i /∈ O, pi = 0.

end if
Set xi = 1 if i ∈ O and xi = 0 otherwise.

DCLEF, as well as a set of payments for each individual in O. Our construction
uses a greedy approach similar to the Knapsack mechanism in [12]. In particular,
it identifies users that are the “cheapest” to purchase. To ensure truthfulness,
it compensates them within budget based on the unit-cost of the last individual
that was not included in the set of compensated users. As in greedy solutions to
knapsack, this construction does not necessarily yield a constant approximation
w.r.t. OPT; for that, the mechanism needs to sometimes compensate only the
user with the highest absolute weight |wi|. In such cases, the payment of the
user of the highest weight is selected so that she has no incentive to lie about
here true unit cost.

Recall that v1 ≤ . . . ≤ vn. The mechanism defines i∗ := argmaxi∈[n] |wi|
as the individual with the largest |wi|, and k as the largest integer such that

B
w([k]) ≥ vk

W−w([k]) . Subsequently, the mechanism either sets xi = 1 for the first

k individuals, or, if |wi∗ | >
∑

i∈[k]\{i∗} |wi|, sets xi∗ = 1. In the former case,

individuals i ∈ [k] are compensated in proportion to their absolute weights |wi|.
If, on the other hand, only xi∗ = 1, the individual i∗ receives a payment p̂ defined
as follows: Let

S−i∗ :=
{
t∈ [n]\{i∗} : B∑

i∈[t]\{i∗}|wi|
≥ vt

W −
∑

i∈[t]\{i∗}|wi|
and
∑

i∈[t]\{i∗}
|wi| ≥ |wi∗ |

}
.

If S−i∗ 	= ∅, then let r := min{i : i ∈ S−i∗}. Define

p̂ :=

{
B, if S−i∗ = ∅

|wi∗ |vr
W−|wi∗ | , otherwise

(9)

The next theorem states that FairInnerProduct has the properties we desire.

Theorem 3. FairInnerProduct is truthful, individually rational and budget fea-
sible. It is 5-approximate with respect to OPT . Further, it is 2-approximate when
all weights are equal.

We note that the truthfulness of the knapsack mechanism in [12] is established
via Myerson’s characterization of truthful single-parameter auctions (i.e., by
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showing that the allocation is monotone and the payments are threshold). In con-
trast, because of the coupling of costs induced by the Laplace noise in DCLEFs,
we are unable to use Myerson’s characterization and, instead, give a direct ar-
gument about truthfulness.

We prove a 5-approximation by using the optimal solution of the fractional
relaxation of (7). This technique can also be used to show that the knapsack
mechanism in [12] is 5-approximate instead of 6-approximate. FairInnerProduct
generalizes the Ghosh-Roth mechanism; in the special case when all weights
are equal FairInnerProduct reduces to the Ghosh-Roth mechanism, which, by
Theorem 3, is 2-approximate with respect to OPT . In fact, our next theorem
states that the approximation ratio of a truthful mechanism is at least 2.

Theorem 4 (Hardness of Approximation). For all ε > 0, there is no truth-
ful, individually rational, budget feasible DCLEF mechanism that is also 2 − ε-
approximate with respect to OPT .

Our benchmark OPT is stricter than that used in [7]. In particular, Ghosh and
Roth show that their mechanism is optimal among all truthful, individually
rational, budget-feasible, and envy-free mechanisms. In fact, the example we use
to show hardness of approximation is a uniform weight example, implying that
the lower-bound also holds for uniform weight case. Indeed, the mechanism in [7]
is 2-approximate with respect to OPT , although it is optimal among individually
rational, budget feasible mechanisms that are also truthful and envy free.

5 Discussion on Linear Predictors

As discussed in the introduction, a statistic s(d) of the form (1) can be viewed as
a linear predictor and is thus of particular interest in the context of recommender
systems. We elaborate on this interpretation in this section. Assume that each
individual i ∈ [n] = {1, . . . , n} is endowed with a public vector yi ∈ Rm, which
includes m publicly known features about this individual. These could be, for
example, demographic information such as age, gender or zip code, that the
individual discloses in a public online profile. Note that, though features yi are
public, the data di is perceived as private.

Let Y = [yi]i∈[n] ∈ Rn×m be a matrix comprising public feature vectors.
Consider a new individual, not belonging to the database, whose public feature
profile is y ∈ Rm. Having access to Y, d, and y, the data analyst wishes to
release a prediction for the unknown value d for this new individual. Below, we
give several examples where this prediction takes the form s(d) = 〈w,d〉, for
some w = w(y,Y). All examples are textbook inference examples; we refer the
interested reader to, for example, [23] for details.

k-Nearest Neighbors. In k-Nearest Neighbors prediction, the feature space Rm

is endowed with a distance metric (e.g., the �2 norm), and the predicted value
is given by an average among the k nearest neighbors of the feature vector y of
the new individual. I.e., s(d) = 1

k

∑
i∈Nk(y)

di where Nk(y) ⊂ [n] comprises the
k individuals whose feature vectors yi are closest to y.
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Nadaranya-Watson Weighted Average. The Nadaranya-Watson weighted av-
erage leverages all data in the database, weighing more highly data closer to y.
The general form of the prediction is 5s(d) =

∑n
i=1 K(y,yi)di/

∑n
i=1 K(y,yi)

where the kernel K : Rm × Rm → R+ is a function decreasing in the distance

between its argument (e.g., K(y,y′) = e−‖y−y′‖2

).
Ridge Regression. In ridge regression, the analyst first fits a linear model to

the data, i.e., solves the optimization problem

minb∈Rm

∑n
i=1

(
di − 〈yi,b〉

)2
+ λ‖b‖22, (10)

where λ ≥ 0 is a regularization parameter, enforcing that the vector b takes small
values. The prediction is then given by the inner product 〈y,b〉. The solution to
(10) is given by b = (YTY+ λI)−1YTd; as such, the predicted value for a new
user with feature vector y is given by s(d) = 〈y,b〉 = yT (YTY + λI)−1YTd.

In all three examples, the prediction s(d) is indeed of the form (1). Note that
the weights are non-negative in the first two examples, but may assume negative
values in the last one.

6 Conclusion and Future Work

We considered the setting of an auction, where a data analyst wishes to buy,
from a set of n individuals, the right to use their private data di ∈ R, i ∈ [n],
in order to cheaply obtain an accurate estimate of a statistic. Motivated by
recommender systems and, more generally, prediction problems, the statistic we
consider is a linear predictor with publicly known weights. The statistic can be
viewed as a prediction of the unknown data of a new individual based on the
database entries. We formalized the trade-off between privacy and accuracy in
this setting; we showed that obtaining an accurate estimate necessitates giving
poor differential privacy guarantees to individuals whose cumulative weight is
large. We showed that DCLEF estimators achieve an order-optimal trade-off
between privacy and accuracy, and, consequently, it suffices to focus on DCLEF
mechanisms. We use this observation to design a truthful, individually rational,
budget feasible mechanism under the constraint that the analyst has a fixed
budget. Our mechanism can be viewed as a proportional-purchase mechanism,
i.e., the privacy εi guaranteed by the mechanism to individual i is proportional
to her weight |wi|. We show that our mechanism is 5-approximate in terms of
accuracy compared to an optimal (possibly non-truthful) mechanism, and that
no truthful mechanism can achieve a 2− ε approximation, for any ε > 0.

Our work is the first studying privacy auctions for asymmetric statistics, and
can be extended in a number of directions. An interesting direction to investigate
is characterizing the most general class of statistics for which truthful privacy
auctions that achieve order-optimal accuracy can be designed. An orthogonal
direction is to study the release of asymmetric statistics in other settings such
as (a) using a different notion of privacy, (b) allowing costs to be correlated
with the data values, and (c) survey-type settings where individuals first decide
whether to participate and then reveal their private data.
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Abstract. Redistribution of VCG payments has been mostly studied in
the context of resource allocation. This paper focuses on another fun-
damental model—the public project problem. In this scenario, the VCG
mechanism collects in payments up to n−1

n
of the total value of the

agents. This collected revenue represents a loss of social welfare. Given
this, we study how to redistribute most of the VCG revenue back to the
agents. Our first result is a bound on the best possible efficiency ratio,
which we conjecture to be tight based on numerical simulations. Further-
more, the upper bound is confirmed on the case with 3 agents, for which
we derive an optimal redistribution function. For more than 3 agents,
we turn to heuristic solutions and propose a new approach to designing
redistribution mechanisms.

1 Introduction

Public good or public project problems refer to situations where a group of agents
need to decide whether or not to undertake a project or to procure a good. The
project is “public” in the sense that everyone will enjoy the benefits of it. A
typical example is a community deciding to build a bridge. If the bridge is built,
everyone will be able to cross it. The challenge in deciding whether or not the
bridge should be built, lies in learning how much the people need the bridge.
Each person has a value for the bridge, but this value is known to him alone.
The efficient outcome is to build the bridge if and only if the total value exceeds
the cost of the bridge. Public project problems have been studied extensively in
both economics and computer science literature (see, e.g., [9–11, 7, 1]).

In this context, we are interested in mechanisms that satisfy dominant-strategy
incentive compatibility (DSIC), and maximize social welfare. The social welfare
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is measured as the sum of the utilities of the agents. Specifically, any payments
collected from the agents reduce social welfare. Some payments however are
required by DSIC. The objective of social welfare is natural in public good pro-
vision problems: after all, the benefits are to be enjoyed by all non-exclusively,
and public projects are normally undertaken in the interest of the participants.
This is in contrast to private goods that are often sold to generate profit for
the auctioneer (there is no auctioneer or residual claimant in the public good
problems we consider).

Our focus here is on mechanisms that are efficient and weakly budget-balanced
(i.e., do not require an external subsidy). The latter restriction is necessary, as
otherwise one can achieve infinite social welfare by providing an infinite subsidy
to the agents. To this end, mechanisms from the Groves class align the incentives
of the agents with the objective of choosing the efficient outcome. Specifically,
under a Groves mechanism, each agent prefers reporting her value truthfully
regardless of the reports of the other agents. In fact, Groves mechanisms are the
only mechanisms that are dominant-strategy incentive compatible (or, truth-
ful) and efficient for public project problems [8]. The mechanisms within the
Groves class differ in the amount of payment collected from the agents. An easy
way to describe this class of mechanisms is through the most prominent Groves
mechanism—the VCG mechanism: payment made by agent i under any Groves
mechanism can be represented as the payment collected by the VCG mechanism
minus a redistribution hi(v−i), which is a function of other agents’ values. For
efficient mechanisms without an auctioneer, the objective of maximizing social
welfare is equivalent to the objective of minimizing the revenue collected. Under
this objective, the VCG mechanism has a very poor performance (i.e., collects a
lot of revenue) as we detail next. Therefore, the question we study in this paper
is how to design the redistribution functions that maximize social welfare.

We do not assume any prior on agent valuations and we evaluate mechanisms
based on the worst-case performance over all possible value profiles. Following
previous work on redistribution in resource allocation settings (e.g., [12, 6]),
we make the performance metric unit free by measuring the performance as a
percentage of the value of the efficient outcome achieved. We will refer to this
metric as the ratio. Since there are no external subsidies, the value of the efficient
outcome is the highest welfare that can be achieved, had all values been publicly
known. Thus, the highest possible ratio is one.

The ratio of the VCG mechanism is 1
n , where n is the number of agents [7]. In

this paper, we derive an upper bound on the optimal ratio. Unlike the ratio of
VCG, which decreases with n, the upper bound increases with n. We conjecture
the bound to be tight based on numerical simulations. Further, for the case
of n = 3, we find an optimal mechanism which guarantees the upper bound
ratio of 2

3 . Finally, we propose a general heuristic-based approach for deriving
redistribution mechanisms. Using a simple sampling-based heuristic, we obtain
a mechanism whose ratio is higher than that of VCG for n = 4, 5, 6.

Our work is related to, and builds upon, some recent research on redistri-
bution mechanisms. The public good model and, in particular, the valuation
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function of the agents are the same as in [7]. There, non-efficient but strongly
budget-balanced mechanisms are considered. The authors discuss a randomized
allocation function that guarantees a high expected ratio, while restricting the
payments to add up to zero. In contrast, here we study deterministic mecha-
nisms optimizing only over the payment functions, while the allocation rule is
fixed to choose the efficient allocation. Our upper bound results suggest that full
social welfare may be achievable asymptotically without resorting to randomized
mechanisms.

Other work in various allocation settings has studied the problem of find-
ing payments for Groves mechanisms that are optimal in terms of social wel-
fare. In particular, Moulin [12] and Guo and Conitzer [6] simultaneously derived
the optimal redistribution for allocating identical items to agents with unit de-
mand. The results were further extended to multi-unit demand in [6]. An optimal
Groves mechanism for allocating heterogeneous items was derived in [5]. Gen-
eral techniques have also been proposed for optimizing payments according to
the mechanism designer’s objectives, for single-parameter and multi-parameter
domains [13, 4]. In fact, we make use of a heuristic technique from [4] to derive
an optimal solution for n = 3.

There are also other redistribution mechanisms aiming to minimize payments
that can be applied to the public good setting. Bailey [2] proposed a redistribu-
tion mechanism for public good problems, but under the worst-case analysis it
is not weakly budget-balanced. While the mechanism proposed by Cavallo [3] is
efficient and weakly budget-balanced, it cannot redistribute any VCG revenue
in public good problems [7]. In this paper, we propose weakly budget-balanced
mechanisms that do redistribute some of the VCG revenue, which increases social
welfare without requiring external subsidy.

The rest of the paper is organized as follows. We present the model in Sec-
tion 2. A conjecture about the optimal ratio is derived analytically in Section 3.
The optimal solution to the case with n = 3 is presented in Section 4. We then
propose a heuristic-based approach for deriving redistribution mechanisms and
analyze the resulting mechanism’s performance in Section 5. Section 6 relaxes
the assumption that allowed us to restrict the value space while deriving prior
results. We conclude and discuss directions for future work in Section 7.

2 The Model

There are n agents deciding whether or not to undertake a project, such as
building a bridge. The cost of the bridge is C, which is commonly known. Each
agent has a private type θi ≥ 0 denoting how much he will benefit if the bridge
is built. We will assume θi ∈ [0, C], and will demonstrate in Section 6 that it is
without loss of generality to consider types that are bounded from above by C.
Also, without loss of generality, we can assign labels to the agents so that agent
1 is the agent with the highest value, agent 2—with the second highest, etc.
Thus, C ≥ θ1 ≥ θ2 ≥ . . . ≥ θn ≥ 0, and we denote the space of agent values by
Θ = {θ ∈ [0, C]n | C ≥ θ1 ≥ θ2 ≥ . . . ≥ θn ≥ 0}. A mechanism for this problem
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consists of the outcome and the payment functions. The outcome is denoted by
k(θ) ∈ {0, 1} with k(θ) = 1 if the bridge is built, and ti(θ) ∈ R are payments
made by each agent i. We fix k to be the efficient rule: k(θ) = 1 iff

∑
i θi > C.

The value of each agent depends on his type and whether or not the bridge
is built. Following [7], we define the value of the efficient outcome as follows:

s(θ) = max(
∑

i

θi, C)

This definition corresponds to the interpretation that if the bridge is not built,
the agents get to distribute C among themselves (or, equivalently, they do not
spend C on the bridge). This is reflected in the valuation function, which lets
each agent keep C

n if the bridge is not built:

vi(k(θ), θi) =

{
θi if k(θ) = 1
C
n otherwise

Utility of agent i is quasi-linear in the payment ti ∈ R collected from him:

ui(θ) = vi(k(θ), θi) − ti(θ)

Without loss of generality, for efficient and dominant-strategy incentive compat-
ible mechanisms, we focus on the Groves class. Furthermore, we focus on Groves
mechanisms that are anonymous, which, for our objective of maximizing worst-
case performance (see Equations 2 and 4), is without loss of generality [1]. These
mechanisms implement the efficient outcome, k(θ) = 1 iff

∑
i θi > C. Note that∑

i vi(k(θ), θi) = s(θ) for the efficient k(θ). DSIC is achieved by selecting ti that
aligns an agent’s utility with the goal of selecting the efficient outcome:

ti(θ) = vi(k(θ), θi) − s(θ) + h(θ−i)

which yields

ui(θ) = s(θ) − h(θ−i) (1)

where h : W → R is an arbitrary function of the values of the agents other than
the agent whose redistribution (or rather, rebate) is computed.1 Here, domain
W = {w ∈ [0, C]n−1 | C ≥ w1 ≥ w2 ≥ . . . ≥ wn−1 ≥ 0} of rebate function h
(which we will also term the rebate space) refers to the space of values of n − 1
agents (other than i). Importantly, the second term of utility, h(θ−i), character-
izes all mechanisms within the Groves class. Our goal is to choose function h
that maximizes social welfare subject to the constraint of weak budget balance.

Weak budget balance constraint means that the sum of payments made by
the agents must be non-negative:∑

i

ti(θ) =
∑

i

(vi(k(θ), θi) − s(θ) + h(θ−i)) =
∑

i

h(θ−i) − (n − 1)s(θ) ≥ 0 ∀θ

1 Under Equation 1, h is the function that determines how much of the value of the
efficient outcome the agent should pay back. This is hardly a redistribution/rebate,
but we keep this terminology to be consistent with prior literature.



Redistribution of VCG Payments in Public Project Problems 327

Next, we describe how the performance of a mechanism is measured. A mecha-
nism guarantees the ratio r if the following holds:∑

i

ui(θ) = ns(θ) −
∑

i

h(θ−i) ≥ rs(θ) ∀θ

Stated formally, we seek to solve the following optimization problem:

max
h:W→R,r∈R

r (2)∑
i

h(θ−i) ≥ (n − 1)s(θ) ∀ θ ∈ Θ (3)

ns(θ) −
∑

i

h(θ−i) ≥ rs(θ) ∀ θ ∈ Θ (4)

In words, we are looking for a mechanism with the highest ratio (Equations 2
and 4) that is weakly budget-balanced (Equation 3). Note that both constraints
can be written in one line as

(n − r)s(θ) ≥
∑

i

h(θ−i) ≥ (n − 1)s(θ) ∀θ (5)

3 Optimal Ratio (Conjecture)

In this section, we describe an interesting structure of the optimization problem
(2)-(4). The problem has an infinite number of constraints, but our numerical
results showed that it is sufficient to consider only n + 1 constraints to obtain
an upper bound on the ratio, such that this ratio does not change when we
add additional constraints (of course, we were only able to check finite sets of
constraints). This provides numerical evidence that the upper bound is tight.
Furthermore, we derive this upper bound in closed form, which we show in the
rest of this section.

First, we discuss how the ratio can be upper bounded computationally using
the technique RestrictedProblem from [4]. The idea is to solve the problem
while only enforcing a finite subset of constraints. The solution may violate some
of the excluded constraints, thus providing an upper bound on the objective value
(we are considering a maximization problem). In more detail, the optimization
problem (2)-(4) has an infinite number of constraints (one for each θ ∈ Θ) and
optimizes over functions (equivalently, there is an infinite number of variables—a
rebate h(w) for each w ∈ W ). To make the problem more manageable, we limit
the space of value profiles to a finite subset Θ̂ ⊂ Θ. Notice that once the set of
profiles is finite, the set of rebates that appear in the constraints is also finite. It
can be obtained by “projecting” each value profile into n profiles by removing
one of the elements while keeping the rest. For example, when we restrict the
value space to the set of profiles Θ̂ = {(a, b, c), (d, e, f)}, the relevant rebates
are defined for each profile in Ŵ = {(b, c), (a, c), (a, b),(e, f),(d, f),(d, e)}. The
constraints (3) and (4) appear once for each value profile, and the number of
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variables is |Ŵ |. With these restrictions, the optimization problem in (2)-(4)
becomes a linear program, which we implemented and solved using CPLEX.

Clearly, the choice of the enforced constraints as governed by Θ̂ determines
the quality of the upper bound. Adding more constraints can only improve the
bound. Interestingly, we find that considering only n + 1 “important” profiles
gave the best upper bound we could find among all sets of Θ̂ that we tried.
In more detail, for a given n, we obtained the profiles Θ̂ by discretizing the
space of values an agent may have. For example, discretizing into z + 1 possible
values we get θi ∈ {j C

z }z
j=0. Without loss of generality we set C = 1, and focus

on θi ∈ { j
z}z

j=0. Looking deeper into the patterns, we observed an interesting
structure, that let us characterize the upper bound analytically.

The best upper bound we observed numerically across n was obtained when
solving the restricted problem with the following n + 1 value profiles: the zero

profile and the profiles (
1
b
, . . . ,

1
b︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
n−k

) where b is the integer part of n
2 and

1 ≤ k ≤ n. For example, for n = 5 we have b = 2, and the profiles (0, 0, 0, 0, 0),
(1
2 , 0, 0, 0, 0), . . . , (1

2 , 1
2 , 1

2 , 1
2 , 1

2 ). We refer to these n+1 profiles as important pro-
files. Next we provide an optimal solution to the restricted problem analytically.

Theorem 1. No mechanism can achieve a ratio above r.

r =1 −
⎛⎝2 +

2(n
2
!)2

n

n−4
4∑

j=0

(3n − 4j)

(2j)!(n − 2j)!

⎞
⎠

−1

n = 4, 8, 12, . . . (6)

r =1 −
⎛⎝2 +

2(n
2
!)2

n

n−2
4∑

j=0

(3n − 4j − 2)

(2j + 1)!(n − 2j − 1)!

⎞
⎠

−1

n = 6, 10, 14, . . . (7)

r =1 −
⎛⎝n(n−1

2
!)2

n − 1

n−1
4∑

j=0

(n + 4j − 1)

(2j)!(n − 2j)!

⎞
⎠

−1

n = 5, 9, 13, . . . (8)

r =1 −
⎛⎝n(n−1

2
!)2

n − 1

n−3
4∑

j=0

(n + 4j + 1)

(2j + 1)!(n − 2j − 1)!

⎞
⎠

−1

n = 3, 7, 11, . . . (9)

Proof. The proof is available in the full version of the paper. ��
Considering much larger sets of value profiles never improved the bound. This
leads us to believe that the bound is tight. Furthermore, performing sensitivity
analysis revealed that only the constraints used to derive the bound were tight in
optimal solutions to restricted problems that included supersets of the important
profiles. If the ratio is indeed tight, then we also have optimal rebates for the
n rebate profiles used in deriving the bound: these values are unique, and thus,
they cannot change in a solution that achieves the bound.

Observing the behavior of this upper bound (see Figure 1), we see that it
approaches 1 as the number of agents increases. Thus, if this bound on the ratio
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Fig. 1. The loss, 1 − r, approaches zero as the number of agents increases

is tight, then an optimal mechanism for the public project problem will have a
loss of social welfare approaching zero with additional agents. This is in contrast
to the VCG mechanism, which has an overall social welfare of 1

n that approaches
zero as the number of agents increase [7].

4 Optimal Redistribution for n = 3

For the case of n = 3, we obtain an optimal redistribution function. It was
derived using techniques described in [4]. We provide the details next.

The upper bound linear program described in Section 3 can be modified to
produce a heuristic redistribution function using another technique from [4]. The
idea is to optimize over the space of rebate functions that are piecewise linear
within a specified set of regions. The algorithm LinearRebates described in [4]
takes a subdivision of the rebate space into regions and produces a redistribution
function (and the ratio it achieves) that is optimal over all rebate functions that
are linear within these regions. We use LinearRebates with the subdivision
shown in Figure 2 to obtain a redistribution function. This piecewise linear
function is composed of linear functions for each of the 4 regions

h(w) =
2
3
C +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if w ∈ region 0
2
3w1 + 2

3w2 − C
3 if w ∈ region 1

1
3w1 + 2

3w2 − C
6 if w ∈ region 2

7
6w1 + 3

2w2 − C if w ∈ region 3
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This function can be represented more compactly. Let s(θ, C) = max(
∑

i θi, C),
denote the value of the efficient outcome for agents defined by value profile θ
and some total cost C. The optimal piecewise linear redistribution function is

h(θ−i) =
5
6
s(θ−i, C) +

2
3
s(θ−i,

C

2
) − 1

3
s(θ1

−i,
C

2
) − C

3
(10)

where θ1
−i refers to the first element of the vector θ−i.

The ratio obtained by this function is 2
3 . However, 2

3 is also the upper bound
on the ratio as computed in Equation 9. This means that the rebate function we
found is optimal.

We next provide an interpretation of the rebate function, which may help
generalize it to more than 3 agents. In the analytical form used in Equation 10
to express the function, each region boundary of the subdivision is encoded in a
single s(·) term. Note that, without the coefficient, the first term is the rebate
agent i would receive in a normal VCG mechanism. The second term is the VCG
rebate for a project with cost C

2 . The first two terms are piecewise linear, with
boundaries at

∑
j =i θj = C and

∑
j =i θj = C

2 , respectively. In Figure 2, these are
the region-2-3 boundary and region-0-1 boundary, respectively. Finally, since we
assume agents are sorted, the max-valued agent in the third term is always agent
w1, and this third term is piecewise linear, with a boundary at maxj =i θj = C

2 ,
i.e. the region-1-2 boundary.

The next step is to generalize the rebate function above to problems with
more than 3 agents. One way to do this is through finding a subdivision of the
rebate space such that an optimal mechanism for this subdivision improves over
the VCG mechanism. However, generalizing the subdivision in Figure 2 to 3- or
higher dimensional rebate spaces proved elusive, and the question remains open.

5 Heuristic-Based Redistribution

In the previous section, we have solved for an optimal mechanism for 3 agents.
However, when there are more agents, we do not yet know how to solve for the
optimal mechanisms. Given this, we propose a new heuristic-based approach for
designing weakly budget-balanced mechanisms with high social welfare. By using
a simple sampling-based heuristic, we derive the sampling-based redistribution
(SBR) mechanism. We show that SBR’s ratio is higher than that of VCG for
n = 4, 5, 6, and conjecture that this is still the case for n > 6. Both the heuristic-
based approach and the SBR mechanism are general enough that they may
potentially be used in settings other than public project problems.

Our approach builds on the Cavallo mechanism [3], which works as follows:
We first run VCG. Besides paying the VCG payment, agent i also receives

1
n

min
θ′

i

V CG(θ′i, θ−i)

Here, V CG(θ′i, θ−i) represents the total VCG payment for the profile under
which agent i reports θ′i, and the other agents report θ−i. In words, agent i
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Fig. 2. Subdivision of the space θ−i for 3 agents. The rebate function h(θ−i) =
h(w1, w2) is linear within each of the 4 regions.

receives 1
n times the minimal possible total VCG payment given that the other

agents report θ−i. Since the additional amount agent i receives is independent
of her own type, the Cavallo mechanism is dominant-strategy incentive compat-
ible. Then, since every agent at most receives 1

n times the actual total VCG
payment, the Cavallo mechanism is weakly budget-balanced. In many settings
(e.g., resource allocation with free disposal and public good provision), VCG
is pay-only. In these settings, the additional amount an agent receives is non-
negative. Unfortunately, for our model, the additional amount an agent receives
is always 0.2 That is, the Cavallo mechanism always coincides with VCG.

Our heuristic-based approach works as follows:

– We start with a dominant-strategy incentive-compatible mechanism (e.g.,
VCG). Let P (θ) be the total payment under this mechanism for profile θ.

– Besides paying the payment under the initial mechanism, agent i also receives

1
n

EM(θ−i)

Here, EM(θ−i) represents agent i’s estimation of the total payment under
the initial mechanism, given that the others report θ−i. Agent i’s estimation
should not depend on her own report, which is to maintain dominant-strategy
incentive compatibility. The estimation function EM can be based on any
heuristic. (One naive choice would be EM(θ−i) = P (0, θ−i), which uses the
total payment assuming θi = 0 to be the estimation.) The goal of this step is
to modify the initial mechanism, so that it becomes as close to strong budget

2 minθ′
i
V CG(θ′

i, θ−i) is always 0 [1]: if
∑

j �=i θj ≥ n−1
n

C, then set θ′
i to be C; otherwise,

set θ′
i to be 0.
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balance as possible. Generally, we cannot achieve perfect budget balance.
That is, even if EM is based on a good heuristic, the mechanism at this
point still incurs some small amount of waste or deficit, depending on the
profile.

– To ensure weak budget balance, we finally collect from every agent 1
n times

the maximum possible deficit, given the heuristic that we use (EM) and given
the other agents’ reports. Formally, we collect from agent i the following
amount:

1
n

max
θ′

i

{
∑

j

1
n

EM(θ̂−j) − P (θ̂)}

Here, θ̂ represents the profile (θ′i, θ−i). It should be noted that this step is
based on exactly the idea behind the Cavallo mechanism. Dominant-strategy
incentive compatibility is maintained because the amount we charge from
an agent does not depend on her own report. Furthermore, since the total
amount we charge is never less than the actual deficit, the resulting mecha-
nism is weakly budget-balanced.

We start with VCG, by using a simple sampling-based heuristic, we obtain a
specific mechanism, which we call the sampling-based redistribution (SBR) mech-
anism. In detail, to estimate the total VCG payment given the others’ report
θ−i, we just assume that agent i’s type is drawn uniformly at random from θ−i,
and then use the expected total VCG payment as the estimation. Formally, EM
is defined as follows:

EM(θ−i) =

∑
j =i V CG(θj , θ−i)

n − 1

Next, we show how to derive a lower bound on the ratio of SBR. Without loss
of generality, we let C = 1.

The social welfare under SBR is:

s(θ) − V CG(θ) +
∑

i

1
n

EM(θ−i) −
∑

i

1
n

max
θ′

i

{
∑

j

1
n

EM(θ̂−j) − V CG(θ̂)}

We have:

−V CG(θ) +
∑

i

1
n

EM(θ−i) ≥ min
θ

{
∑

i

1
n

EM(θ−i) − V CG(θ)}

Also,∑
i

1
n

max
θ′

i

{
∑

j

1
n

EM(θ̂−j)−V CG(θ̂)} ≤
∑

i

1
n

max
θ

{
∑

j

1
n

EM(θ−j)−V CG(θ)}

= max
θ

{
∑

i

1
n

EM(θ−i) − V CG(θ)}
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We use EMV CG(θ) to denote
∑

i
1
nEM(θ−i) − V CG(θ). The social welfare

under SBR is then at least:

s(θ) + min
θ

EMV CG(θ) − max
θ

EMV CG(θ)

The ratio of SBR is then:
s(θ) + minθ EMV CG(θ) − maxθ EMV CG(θ)

s(θ)

≥ 1 + min
θ

EMV CG(θ) − max
θ

EMV CG(θ)

(We recall that s(θ) is at least C = 1.)
Given n, minθ EMV CG(θ) and maxθ EMV CG(θ) are constants. For small

n, we can numerically solve for their values. Specifically, instead of minimiz-
ing/maximizing over all possible profiles, we only consider profiles where every
agent’s report is an integer multiple of 1/N . Larger values of N generally corre-
spond to more accurate results. We notice that as long as N is a multiple of 2n
(e.g., N = 2n, N = 4n, . . . , N = 100n), we always end up with the same max-
imizing/minimizing profiles. To double check, for every maximizing/minimizing
profile obtained, we generate 10, 000 random vectors, and perturb the profile
along these 10, 000 directions. At the end, no perturbation ever leads to higher
maximum or lower minimum. The results are presented in the following table.
We only considered n ≤ 6 due to the exponential complexity of this approach.

n = 3 n = 4 n = 5 n = 6

maxθ EMV CG(θ) 2/9 1/4 6/25 2/9
arg maxθ EMV CG(θ) (1, 1, 0) (1, 1, 0, 0) (1, 1, 0, 0, 0) (1, 1, 0, 0, 0, 0)

minθ EMV CG(θ) −4/9 −19/48 −2/5 −23/60
arg minθ EMV CG(θ) (1, 0, 0) (5/8, 3/8, 0, 0) (3/5, 2/5, 0, 0, 0) (7/12, 5/12, 0, 0, 0, 0)

1 + minθ EMV CG(θ) 1/3 17/48 9/25 71/180
−maxθ EMV CG(θ) ≈ 0.333333 ≈ 0.354167 ≈ 0.360000 ≈ 0.394444

There are two interesting observations. First, at least for 3 ≤ n ≤ 6, the lower
bound of the ratio of SBR increases as n increases. We conjecture that this trend
remains when n is greater than 6. Second, when n = 3, the lower bound of the
ratio of SBR is the same as VCG’s ratio (1/n), and when 4 ≤ n ≤ 6, the lower
bound of the ratio of SBR is higher than VCG’s ratio.

Finally, it should be noted that even though we do not know how to estimate
the ratio of SBR when n > 6, we do know that SBR is always dominant-strategy
incentive-compatible and weakly budget-balanced. Also, SBR’s payments are
computationally easy to calculate. Therefore, we can always apply it. It is just
that for n > 6, we do not know how well it will perform. We tried to experimen-
tally evaluate the ratio of SBR for larger values of n. For example, for n = 10, we
randomly generated 1, 000, 000 profiles (every agent’s type is drawn from i.i.d.
uniform distribution from 0 to 1). For these profiles, the worst-case ratio of SBR
is around 0.850. However, 1, 000, 000 is hardly a large enough sample size, be-
cause for these same set of profiles, the worst-case ratio of VCG is around 0.827,
which we know is much higher than its actual ratio 1/n = 0.1.
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6 Extending the Solution for Values Below C to All
Values

So far we have assumed that the agents’ values are bounded from above by
C. In this section, we show that this assumption is without loss of generality.
Basically, if we can solve for a weakly budget-balanced mechanism with ratio r
in the restricted setting where the agents’ values are bounded from above by C,
then we can extend this mechanism to cover all values, and achieve the same
ratio. If a mechanism is optimal in the restricted setting where the agents’ values
are bounded from above by C, then the extended mechanism is also optimal in
the more general setting where the agents’ values are not bounded from above.

Let h be a feasible solution of the original model (the one with the assumption
that the agents’ values are bounded from above by C), and let r be the ratio
achieved by h (0 ≤ r ≤ 1). Then, h together with r must satisfy the following
constraints:

(n − r)s(θ) ≥
∑

i

h(θ−i) ≥ (n − 1)s(θ) ∀ θ ∈ Θ

We introduce the following notation to convert values that are not bounded from
above into values bounded from above by C:

θ̄ = (min{θ1, C}, . . . , max{θn, C})

The values marked with the “bar” are capped at C. We construct h′ as follows:

h′(θ−i) =
∑
j =i

(θj − θ̄j) + h(θ̄−i)

It turns out that h′ corresponds to a mechanism that is weakly budget-balanced
and has ratio r even if we allow the agents’ values to be greater than C. To show
this, we need to prove that h′ together with r satisfy the following:

(n− r)s(θ) ≥
∑

i

h′(θ−i) ≥ (n− 1)s(θ) ∀ θ ∈ {θ ∈ [0,∞)n | θ1 ≥ . . . ≥ θn ≥ 0}

Since h′ coincides with h when θi are bounded from above by C, we only need
to consider scenarios where θ1 ≥ C. That is, we only need to prove:

(n−r)s(θ) ≥
∑

i

h′(θ−i) ≥ (n−1)s(θ) ∀ θ ∈ {θ ∈ [0,∞)n | θ1 ≥ C, θ1 ≥ . . . ≥ θn ≥ 0}

Again, since h′ coincides with h when θi are bounded from above by C, we have:

∀ θ ∈ {θ ∈ [0,∞)n | θ1 ≥ C, θ1 ≥ . . . ≥ θn ≥ 0}

(n − r)s(θ̄) ≥
∑

i

h′(θ̄−i) =
∑

i

h(θ̄−i) ≥ (n − 1)s(θ̄)
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Now, if θ1 ≥ C, then s(θ) =
∑

i θi and s(θ̄) =
∑

i θ̄i. That is, s(θ) = s(θ̄) +∑
i(θi − θ̄i). Adding (n − 1)

∑
i(θi − θ̄i) to every term in the above inequality,

after simplification, we get:

(1 − r)s(θ̄) + (n − 1)s(θ) ≥
∑

i

h′(θ−i) ≥ (n − 1)s(θ)

Finally, since s(θ) ≥ s(θ̄), we obtain the required:

(n−r)s(θ) ≥
∑

i

h′(θ−i) ≥ (n−1)s(θ) ∀ θ ∈ {θ ∈ [0,∞)n | θ1 ≥ C, θ1 ≥ . . . ≥ θn ≥ 0}

7 Conclusions and Future Work

Public good provision is a fundamental problem in economic theory. However,
unlike various allocation models, optimal Groves mechanisms (that is, optimal
efficient and truthful mechanisms) for public good settings have not previously
been considered. Against this background, we provided the first results for this
problem. Specifically, we derived an upper bound on the best possible efficiency
ratio, successfully characterized the optimal mechanism for 3 agents, and pre-
sented a new heuristic-based approach to designing weakly budget-balanced
mechanisms with high social welfare.

The question of deriving an optimal mechanism for more than 3 agents re-
mains open for future research. Another interesting direction is to consider public
good problems where the choice involves multiple possible projects.
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Abstract. In a combinatorial auction (CA) with item bidding, several
goods are sold simultaneously via single-item auctions. We study how the
equilibrium performance of such an auction depends on the choice of the
underlying single-item auction. We provide a thorough understanding of
the price of anarchy, as a function of the single-item auction payment
rule.

When the payment rule depends on the winner’s bid, as in a first-
price auction, we characterize the worst-case price of anarchy in the
corresponding CAs with item bidding in terms of a sensitivity measure
of the payment rule. As a corollary, we show that equilibrium existence
guarantees broader than that of the first-price rule can only be achieved
by sacrificing its property of having only fully efficient (pure) Nash equi-
libria.

For payment rules that are independent of the winner’s bid, we prove
a strong optimality result for the canonical second-price auction. First,
its set of pure Nash equilibria is always a superset of that of every other
payment rule. Despite this, its worst-case POA is no worse than that of
any other payment rule that is independent of the winner’s bid.

1 Introduction

The problem of allocating multiple heterogeneous goods to a number of compet-
ing buyers is well motivated, notoriously difficult in practice, and, when buyers’
preferences are private (i.e., unknown to the seller), central to the study of al-
gorithmic mechanism design. More precisely, suppose there are m goods and
each buyer i has a private valuation vi that assigns a value vi(S) to each bun-
dle (i.e., subset) S of goods. For example, each good could represent a license
for exclusive use of a given frequency range in a given geographic area, buyers
could correspond to mobile telecommunication companies, and valuations then
describe a company’s willingness to pay for a given collection of licenses [6]. One
natural objective function, for example when the seller is the government, is wel-
fare maximization: partition the goods into bundles S1, . . . , Sn, with Si denoting
the goods given to buyer i, to maximize the welfare

∑n
i=1 vi(Si).
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A combinatorial auction is a protocol that elicits information from buyers
about their private valuations, computes an allocation of the goods, and deter-
mines who pays what. There are at least three different types of obstacles to de-
signing good combinatorial auctions. The first problem is information-theoretic:
players’ valuations have size exponential in m, so eliciting full valuations is not
feasible unless m is small. The second problem is computational: the welfare-
maximization problem is generally NP -hard, even to approximate, even when
players’ valuations have succinct representations. The third problem is game-
theoretic: a player is happy to misreport its preferences to manipulate a poorly-
designed auction to produce an outcome that favors the player. Thus designing
combinatorial auctions requires compromises — on the welfare of the computed
solution, the complexity of the mechanism, or the strength of the incentive-
compatibility guarantee.

Most previous work on combinatorial auctions in the theoretical computer
science literature focuses on truthful approximation mechanisms [3]. Such mech-
anisms run in time polynomial in n and m (with oracle access to players’ val-
uations) and satisfy a very strong incentive-compatibility guarantee: for every
player, reporting its true preferences in the auction is a dominant strategy (i.e.,
maximizes its utility, no matter what the other players do). The benefits of such
mechanisms are clear: they require minimal work from and make minimal behav-
ioral assumptions on the players, and are computationally tractable. They suffer
from two major drawbacks, however. The first is that the strong requirement of
a dominant-strategy implementation severely restricts what is possible: even for
the relatively well-behaved class of submodular valuations,1 no truthful approx-
imation mechanism achieves a sub-polynomial approximation factor [7,9]. The
second is that, even for settings where good truthful approximation mechanisms
exist, these mechanisms are often quite complicated (see e.g. [8]).

The complexity and provable limitations of dominant-strategy implementa-
tions motivate the design of combinatorial auctions that have weaker incentive
guarantees, in exchange for simpler formats or better approximation factors.
One natural and practical auction format that has been studied recently is com-
binatorial auctions (CA) with item bidding. In a CA with item bidding, each
player submits a single bid for each item, and each item is sold independently
via a single-item auction. They were first studied in [5] and [4] with second-
price single-item auctions. CAs with item bidding and first-price auctions were
recently studied in [12].

Combinatorial auctions with item bidding are interesting for many reasons.
First, they are one of the simplest auction formats that could conceivably admit
performance guarantees for non-trivial combinatorial auction problems. By con-
struction, they do not suffer from the informational problems of most combina-
torial auctions — each player is forced to summarize its entire (exponential-size)
valuation for the mechanism in the form of m bids — nor from the compu-
tational problems, since the auction outcome is as trivial to compute as in a

1 A valuation v is submodular if, for every pair S ⊆ T of goods and good j /∈ T ,
v(T ∪ {j}) − v(T ) ≤ v(S ∪ {j}) − v(S).
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single-item auction. Of course, there is no hope for a“truthful” implementation
— players are not even granted the vocabulary to express fully their preferences
— and the incentive properties of CAs with item bidding will be weaker than in
dominant-strategy implementations. Second, CAs with item bidding naturally
arise “in the wild”. They were first studied in the AI literature [4] because trad-
ing agents are often forced to participate in them — imagine, for example, an
automated travel agent responsible for acquiring a vacation package by negoti-
ating simultaneously with hotels, airlines, and tour guides. Similarly, single-item
auction sites like eBay are presumably used by some buyers to acquire several
goods in parallel, even when there are non-trivial substitutes or complements
among the goods [5]. Third, the recent strong lower bounds on the performance
of dominant-strategy CAs [7,9] imply that further progress in algorithmic mech-
anism design requires the systematic study of mechanisms with weaker incentive
guarantees. CAs with item bidding are a natural and well-motivated starting
point for this exploration. Fourth, as discussed in [12], equilibria in CAs with
item bidding can be thought of as generalizations of price equilibria in settings
with indivisible goods, where a conventional (i.e., Walrasian) price equilibrium
need not exist.

The properties of a CA with item bidding depend on the format choice for the
underlying single-item auctions. For example, CAs with item bidding and first-
price auctions have Nash equilibria (in pure strategies) in strictly fewer settings
than with second-price auctions; but Nash equilibria with first-price auctions are
always welfare-maximizing, while those with second-price auctions are not [5,12].

The goal of this paper is to understand how the equilibrium set of a CA
with item bidding depends on the format choice for its constituent single-item
auctions.

(Q1) How does the equilibrium performance of a combinatorial auction depend
on the choice of the underlying single-item auction?

(Q2) Is there an ”optimal” single-item auction for CAs with item bidding? Is
there a single-item auction that shares the benefits of both the first- and
second-price auctions?

1.1 Our Results

We provide a thorough understanding of the price of anarchy of pure Nash
equilibria, when such equilibria exist, in CAs with item bidding, as a function
of the single-item auction payment rule. When the payment rule depends on
the winner’s bid (like in a first-price auction), we characterize the worst-case
price of anarchy in the corresponding CAs with item bidding in terms of a
“sensitivity measure” of the payment rule. As a corollary, we derive the following
“undominated” property of the first-price payment rule: the only way to have
broader equilibrium existence guarantees is to sacrifice the property of having
only fully efficient equilibria.

For payment rules that are independent of the winner’s bid, we prove a strong
optimality result for the canonical second-price auction. First, its set of pure
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Nash equilibria is always a superset of that of every other payment rule. Despite
this, its worst-case POA is no worse than that of any other payment rule that
is independent of the winner’s bid.

1.2 Related Work

The literature on combinatorial auctions is too big to survey here; see the book [6]
and book chapter [3] for general information on the topic. Related work on
combinatorial auctions with item bidding, also mentioned above, are [2,5,21]
for second-price auctions and [12] for first-price auctions. An alternative simple
auction format is sequential (rather than simultaneous) single-item auctions;
the price of anarchy in such auctions was studied recently in [16,20]. Most other
work in theoretical computer science on combinatorial auctions has focused on
truthful, dominant-strategy implementations (see [3]), with [1] being a notable
exception.

A less obviously related paper is by Fu et al. [10]. This paper introduces
the concept of a conditional equilibrium. Lavi (personal communication) showed
that a conditional equilibrium exists for a valuation profile if and only if a “con-
servative” equilibrium (defined below) exists in the corresponding CA with item
bidding with the second-price payment rule. The paper shows that, for every
valuation profile, every conditional equilibrium has welfare at least 1/2 times
that of an optimal allocation.

Finally, several previous works [13,19,18] consider the independent private
values model and study how the Bayes-Nash equilibrium of a single-item auction
varies with the choice of payment rule.

2 Preliminaries

Combinatorial Auctions. In a combinatorial auction (CA), there is a set of
n players and a set M of m goods (or items). Each player i has a valuation
vi : 2M → R+ that describes its value for each subset of the goods. We always
assume that vi(∅) = 0 and vi(S) ≤ vi(T ) for all S ⊆ T . The social welfare
SW (X) of an allocation X := {X1, X2, . . . , Xn} of the goods to the players is∑n

i=1 vi(Xi).
For a valuation profile v = {v1, v2, . . . , vn}, we denote the welfare-maximizing

allocation by OPT (v).

Item Bidding. In a CA with item bidding, each player i submits m bids, one
for each good. Each good is allocated to the highest bidder at a price given by
a payment rule p. We denote such a mechanism by Mp.

For a fixed mechanism, we use Xi(b) to denote the goods allocated to player i
in the bid profile b and SW (b) =

∑n
i=1 vi(Xi(b)) the social welfare of the

resulting allocation. Player i’s utility in a bid profile b = (b1, b2, . . . bn) is

ui(b) = vi(Xi(b)) −
∑

j∈Xi(b)

pi(b1(j), b2(j), . . . bn(j)).



Simultaneous Single-Item Auctions 341

Payment Rules. We consider payment rules that meet the following natural
conditions. We assume that the payment rule is anonymous. For such a pay-
ment rule p, the winner’s payment when the bids are x1 ≥ x2 ≥ . . . ≥ xn is
denoted by p(x1, x2, . . . , xn). We further assume that the payment function is
non-decreasing: raising bids can only increase the price charged to the winner.
Finally, we assume that the payment function is continuous in every bid. For
example, every payment rule given by a convex combination of the bids satisfies
all of these assumptions.

For convenience, we also assume that the payment rule is not bounded or
constant, and that the minimum price p(0, 0, . . . 0) is 0. As we show in the full
version, payment rules that do not meet these assumptions are uninteresting
— either there are never any equilibria, or such equilibria can be arbitrarily
inefficient.

Auctions as Games. Players generally have no dominant strategies in a CA
with item bidding, and we study the performance of an auction via the equilibria
of the corresponding bidding game. In this paper, we focus on a full-information
model, where players’ valuations are publicly known, and on pure Nash equi-
libria. Recall that for a fixed valuation profile v = (v1, v2, . . . vn), a bid profile
b = (b1, b2, . . . bn) is a (pure) Nash equilibrium if ui(b) ≥ ui(b′i,b−i) for every
player i and (feasible) deviation b′i, where (b′i,b−i) denotes the bid profile in
which player i bids b′i and all other players bid according to b.

The price of anarchy (POA) is the ratio of the social welfare of an optimal
allocation and that of the worst Nash equilibrium:

POA = max
b: a pure Nash eq.

SW (OPT (v))
SW (b)

. (1)

The POA is undefined when no equilibria exist.

3 Winner-Dependent Payment Rules

3.1 Overview

This section considers winner-dependent payment rules, such as the first-price
rule, where the winner’s payment is strictly increasing in its bid. The key prop-
erty shared by such rules is that, in an equilibrium, the winner must bid the
minimum amount required to win.

Are there winner-dependent payment rules that are “better” than the first-
price rule? A drawback with CAs with item bidding and the first-price rule is that
equilibria often fail to exist. Precisely, recall that a Walrasian equilibrium for a
valuation profile is a set of prices p1, . . . , pm on the goods and a feasible allocation
(S1, S2, . . . Sn) of the goods to the players so that each player obtains a bundle
that maximizes its utility (i.e., value minus price). We say that a valuation profile
is Walrasian if it admits a Walrasian equilibrium and non-Walrasian otherwise.
Walrasian equilibria always exist when valuations meet the gross substitutes
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property, but not generally otherwise (see [11,14]). The pure Nash equilibria
of a CA with item bidding and the first-price payment rule correspond to the
Walrasian equilibria (if any) in a natural way, and are fully efficient when they
exist [12].

Other winner-dependent payment rules can yield CAs with item bidding that
possess equilibria even in non-Walrasian instances. We give an explicit example
in the full version, for the payment rule that averages the highest and third-
highest bids. This observation motivates the question: is there a payment rule
that strictly dominates the first-price rule? That is, is there a payment rule that
induces an equilibrium in at least one non-Walrasian instance and has worst-case
POA equal to 1?

We answer this question negatively in the following theorem (proved in Sec-
tion 3.3).

Theorem 1. If the worst-case POA for the mechanism Mp is 1, then pure Nash
equilibria exists under this mechanism only in Walrasian instances.

Thus, for every winner-dependent payment rule p, either there is an instance
in which some pure Nash equilibrium of the mechanism Mp is not efficient, or
every instance in which a pure Nash equilibrium exists is a Walrasian instance.

The main step in our proof of Theorem 1 is a characterization of the worst-
case POA in CAs with item bidding and winner-dependent payment rules. For
a payment rule p, we define a sensitivity measure ζ by

ζ(p) = sup
b:b1=b2≥...≥bn

p(b1, b−n)
p(b)

, (2)

where we interpret 0/0 as 1.
The denominator in (2) is the winner’s payment with the bid vector b. The

numerator is the payment of the lowest bidder in b, after it switches to bidding
the minimum amount necessary to win (namely, b1). We restrict attention to
bid vectors b with b1 = b2 because this property is satisfied in every equilibrium
under a winner-dependent rule. Because p is monotone, p(b1, b−n) ≥ p(b) and
hence ζ(p) ≥ 1. Similarly, if a bidder other the lowest in b changes its bid to b1,
then its payment is at most the numerator in (2).

For a concrete example, consider the payment rule (first-price +2·third-price)/3.
The numerator is (b1 + 2b2)/3 = (b1 + 2b1)/3 = b1, while the denominator is
(b1 + 2b3)/3 ≥ b1/3. In the worst case this ratio is 3, and hence ζ(p) = 3.

We show in Theorem 2 that the parameter ζ(p) is exactly the worst-case POA
in CAs with item bidding and the payment rule p. It follows that the POA is
exactly 1 only when ζ(p) = 1. We use this fact to prove Theorem 1, that a pure
Nash equilibrium exists for such a payment rule only in Walrasian instances.

3.2 Characterization of Worst-Case POA

We now prove that for every winner-dependent payment rule p, the worst case
POA of CAs with item bidding and rule p is exactly ζ(p). The upper bound
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applies to every valuation profile for which an equilibrium exists. The lower
bound already applies to bidders with submodular (or even “budgeted additive”)
valuations.

Theorem 2. For every winner-dependent payment rule p with ζ(p) finite, the
worst-case POA of CAs with item bidding and payment rule p is precisely ζ(p).
For winner-dependent payment rules with ζ(p) = +∞, there are CAs with item
bidding with arbitrarily high POA.

Proof. We first prove an upper bound of ζ(p) on the POA. Fix a valuation profile
v = (v1, v2, . . . vn). Let b = (b1, b2, . . . , bn) denote an equilibrium bid profile and
X(b) = {X1(b), X2(b), . . . , Xn(b)} the corresponding allocation. For each good
j, we use bj1, bj2, . . . , bjn to denote the sorted set of bids on that good and use
bj,−i to denote the same set with the ith bid removed. Since the payment rule is
winner dependent, the winner of each good bids the minimum amount required
to win, and thus bj1 = bj2 for each good j. We use pj to denote the payment
p(bj1, bj2, . . . , bjn) of the winner of good j.

We first relate equilibrium payments to equilibrium welfare. Since the utility
of every player in an equilibrium is non-negative,

∑
j∈Xi(b) pj ≤ vi(Xi(b)) for

every player i. Summing over the players gives
∑

j pj ≤ SW (X(b)).
Next we relate the optimal welfare to the equilibrium utilities. Let O =

(O1, O2, . . . On) denote an optimal allocation. For each player i, define the bid
vector a′

i as equal to bj1 + ε on each good j ∈ Oi and zero otherwise. If
player i bids a′

i, it wins at least the set Oi and pays p(bj1 + ε, bj,−i) on
each good j ∈ Oi. Since b is an equilibrium bid profile, ui(b) ≥ ui(a′

i, b−i) ≥
vi(Oi) −

∑
j∈Oi

p(bj1 + ε,bj,−i). Since this inequality holds for every ε > 0 and
the payment rule is continuous, ui(b) ≥ vi(Oi) −

∑
j∈Oi

p(bj1,bj,−i). By the
definition of ζ in (2), p(bj1,bj,−i) ≤ ζ(p) · pj for every j ∈ Oi. Thus

ui(b) ≥ vi(Oi) − ζ(p) ·
∑
j∈Oi

pj.

Next, since vi(Xi(b)) − ∑
j∈Xi

pj = ui(b) for every player i, we can derive

SW (X(b)) −
∑

j

pj =
n∑

i=1

ui(b)

≥
∑

i

vi(Oi) − ζ(p)
∑

i

∑
j∈Oi

pj

= SW (O) − ζ(p)
∑

j

pj .

Since ζ(p) ≥ 1, and
∑

j pj ≤ SW (X(b)), rearranging terms gives ζ(p)·SW (X(b))
≥ SW (O). This shows that the POA is at most ζ(p).

To establish the lower bound, fix ε > 0 and set ζ′ = ζ(p)− ε. If ζ(p) = +∞ we
can set ζ′ to an arbitrarily large number. There must exist a bid vector b with
b1 = b2 ≥ . . . ≥ bn such that ζ′ ≤ p(b1, b−n)/p(b). Let p1 = p(b1, b−n) and let
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p2 = p(b). Clearly p1 ≥ p2. We construct an instance with n players where the
equilibrium welfare is at most p2/p1 ≤ 1/ζ′ times that of the optimal allocation.

Consider an instance with n players and 2 goods denoted A, B. Player 1 values
good A for p1, good B for p2 and both goods for p1. Player 2 values good A
for p2, good B for p1, and the two together for p1. All other players value every
subset of goods at 0. We show that the following bid profile is an equilibrium:
player 1 bids (bn, b1), player 2 bids (b1, bn), and player i for 3 ≤ i ≤ n bids
(bi−1, bi−1).

Fix a tie-breaking rule to favor player 2 over player 3 on good A and player
1 over player 3 on good B. (Note that the upper bound above is independent
of the tie-breaking rule). In this bid profile, player 2 wins good A and player 1
wins good B. They both pay p2 for the goods they win. If either of them tries
to deviate to win the other good they have to pay p1. Since their values for the
good they currently win is p2 and their value for the other good is p1, these
deviations are not profitable. No other player has an incentive to deviate.

The optimal allocation in this instance is to allocate good A to player 1
and good B to player 2. This allocation has welfare 2p1 while the equilibrium
allocation has welfare 2p2. Thus the POA is at least p1/p2 ≥ ζ′. ��

3.3 Proof of Theorem 1

Consider a winner-dependent payment rule p with worst-case POA equal to 1.
We show that every instance for which the mechanism Mp has an equilibrium
is a Walrasian instance.

Fix a valuation profile and an equilibrium bid profile b for the mechanism Mp

with some deterministic tie-breaking rule. Let (S1, S2, . . . Sn) denote an equilib-
rium allocation and p1, p2, . . . , pm the prices paid by the winner on each good.
We argue by contradiction that the Si’s and pi’s form a Walrasian equilibrium.

Suppose the equilibrium allocation with prices p1, p2, . . . pm is not a Walrasian
equilibrium. Then there must exist a player i and a set X of goods such that
ui(Si, p) < ui(X, p), where ui(S, p) denotes the utility vi(S)−∑

j∈S pj of player i
when receiving bundle S at prices p. Let δ satisfy 0 < δ < ui(X, p)− ui(Si, p).

Let bj1 ≥ bj2 ≥ bj3 . . . ≥ bjn denote the nondecreasing set of equilibrium
bids on a good j. Since the payment rule is winner-dependent, bj1 = bj2 for
every good j. Since the payment rule p is assumed to induce only CAs with item
bidding with fully efficient equilibria, Theorem 2 implies that ζ(p) = 1. This
fact and the monotonicity of p imply that p(bj1,bj,−i) = pj for every j. By the
continuity of p, we can identify an ε such that

∑
j∈X p(bj1 + ε,bj,−i) − pj ≤ δ.

Then,
vi(Si) −

∑
j∈Si

pj < vi(X) −
∑
j∈X

p(bj1 + ε,bj,−i).

Player i can win set X by bidding bj1 + ε on each element j ∈ X and bidding
zero on the rest, and this deviation increases its utility. This contradicts the
assumption that b is an equilibrium bid profile and completes the proof. ��
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We can sharpen Theorem 1 when there are only two players. Every winner-
dependent payment rule p that depends only on the two highest bids satis-
fies ζ(p) = 1. This holds, in particular, for every winner-dependent rule in a
two-player setting. From the proof of Theorem 1, we conclude the following
corollary.

Corollary 1. For every winner-dependent payment rule p and two-player in-
stance, Mp has an equilibrium only if it is a Walrasian instance.

It is easy to construct non-Walrasian two-player instances. We conclude that no
winner-dependent payment rule guarantees existence in all two-player instances.

4 Winner-Independent Payment Rules

This section focuses on winner-independent payment rules, for which the winner’s
payment does not depend on its bid. We prove that among all payment rules in
this class, the second-price rule has the best worst-case POA while guaranteeing
equilibrium existence most often.

First, we prove that there are more pure Nash equilibria under the second-
price payment rule than under any other rule. This “maximal existence: guar-
antee has a possible drawback, however, in the form of a larger worst-case POA
bound. We show that this drawback does not materialize: the second-price rule,
despite the relative profusion of equilibria, leads to a worst-case POA that is as
good as with any other winner-independent rule.

4.1 γ-Conservative Equilibria

To make meaningful statements about equilibrium efficiency in CAs with item
bidding and winner-independent payment rules, we need to parameterize the
equilibria in some way. The reason is that every winner-independent payment
rule suffers from arbitrarily bad equilibria.2

We consider equilibria where the players’ bids satisfy a certain “conserva-
tiveness” condition. This assumption is fairly standard in the POA of auctions
literature [2,5,15,17]. The conservativeness condition assumes that the equilib-
rium bids guarantee each player positive utility on the set it wins, even when
all other players bid the same as this player. More generally, we relax this idea
in two ways: parameterizing it with a parameter γ ≥ 1, and applying it only to
the bundles that players win in the equilibrium (rather than to all bundles they
might hypothetically win). Players have the freedom to bid as high as they want
on the goods they lose and can contemplate arbitrary deviations.

2 Let y > 0 satisfy p(y, y) > 0 and consider an instance with two players and one
good. Player 1 values the good at 0 and player 2 values it at p(y, y). Then player 1
bidding y and player 2 bidding zero is an equilibrium and this equilibrium is clearly
very inefficient.
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Definition 1 (γ-conservative). Suppose a player bidding (b1, b2, . . . bm) wins
a set S in the equilibrium. We say that the bid is γ-conservative if it satisfies∑

j∈S

p(bj, bj , . . . , bj) ≤ γ · v(S).

An equilibrium allocation is γ-conservative if every player uses a γ-conservative
bid in the equilibrium.

4.2 The Second-Price Rule Has the Most Equilibria

Next we show that every γ-conservative equilibrium allocation for a payment
rule p can also be realized as a γ-conservative equilibrium for the second-price
rule. This transformation does not change the prices that the winners pay on the
goods that they win. We use Σγ

p to denote the set of γ-conservative equilibrium
allocations of the mechanism Mp. In particular, Σγ

s.p. denotes the set of γ-
conservative equilibrium allocations of the item bidding mechanism with the
second-price payment rule.

Theorem 3. For every payment rule p, Σγ
p ⊆ Σγ

s.p..

Proof. We start with an equilibrium of the mechanism Mp. Let (S1, S2, . . . Sn)
denote the allocation. Focus on a good j, and let bj1 ≥ bj2 ≥ . . . ≥ bjn be the
ordered bids on the good. While reasoning about individual goods we refer to
the players by their rank in this ordering. The payment the winner (player 1)
makes in this case is p(bj1, bj2, . . . bjn). Denote this as pj1.

Let pj2 = p(bj1, bj1, . . . bj1). If any player i deviates, it will have to bid at least
bj1 and pay at least p(bj1, bj,−i). Here bj,−i denotes the bids on good j by all
players other than player i. Since the payment rule is monotone, this payment is
at most that p(bj1, bj1, . . . bj1) = pj2 when all players bid bj1. By monotonicity,
pj2 ≥ pj1.

Construct an equilibrium under the second-price rule as follows. Fix a player
i. On good j ∈ Si, player i bids pj2, one other player bids pj1, and all other
players bid zero. Note that bidding pj2 is feasible for player i. This is because in
the given equilibrium instance for payment rule p, the players’ bids on the sets
they win are γ-conservative. Hence for every player i,

∑
j∈Si

pj2 ≤ γ · vi(Si).
This is the same as the γ-conservativeness condition for the second price rule,
as for the second price rule when all players bid pj2 the payment is pj2 as well.

In this construction the winner’s payment on a good is the same as that in
the equilibrium for payment rule p. Any player currently not winning a good
has to pay at least pj2 if it deviates to win that good. Deviations are then not
profitable, as in the equilibrium for payment rule p players do not find them
profitable at even lower prices. The constructed bid profile is an equilibrium
for the second-price rule. The equilibrium allocation and the prices paid by the
winners remain the the same. ��
Theorem 3 shows that the second-price payment rule has at least as large a set of
γ-conservative equilibrium allocations as any other payment rule p. We include
in the full version an example showing that this inclusion can be strict.
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Theorem 3 has immediate implications, both positive and negative, for all
winner-independent payment rules. On the negative side, it allows us to port
equilibrium non-existence results for CAs with item bidding and the second-
price rule — like the fact that with subadditive valuations (where vi(S ∪ T ) ≤
vi(S)+vi(T ) for every player i and bundles S, T ), γ-conservative equilibria need
not exist (see [2] and the full version) — to those with an arbitrary winner-
independent rule. On the positive side, Theorem 3 implies that POA bounds
for CAs with item bidding and the second-price rule carry over to all winner-
independent rules. For example, we show in the full version, by modifying a result
in [2], that the POA of γ-conservative equilibria with the second-price rule is at
most γ + 1 (in instances where such an equilibrium exists). Using Theorem 3,
this bound holds more generally for all winner-independent rules.

4.3 POA Lower Bounds

The results of the previous section imply that, for every γ ≥ 1, the POA of
γ-conservative equilibria of CAs with item bidding is as bad with the second-
price rule as with any other winner-independent rule. This section proves the
converse, for every γ ≥ 1.

Theorem 4. For every winner-independent payment rule p, the worst-case POA
of γ-conservative equilibria of Mp is at least γ + 1.

We prove this theorem by establishing a stronger result: when there are only
two players, the set of γ-conservative equilibrium allocations is the same for all
winner-independent payment rules. The POA lower bound then follows from a
lower bound construction for the second-price rule that uses only two players.

Lemma 1. In a two-player CA with item bidding, every equilibrium of the
second-price payment rule is an equilibrium of every winner-independent pay-
ment rule p.

Proof. Consider an equilibrium under the second-price payment rule. Let S1, S2

denote the equilibrium allocation. Fix a player i, and suppose that on good
j ∈ Si the player i bids bj and pays pj. Clearly bj ≥ pj . The other player
would have to bid at least bj to win this good and would then pay bj. The
conservativeness condition for the second-price payment rule implies that for
each player i,

∑
j∈Si

bj ≤ γ · vi(Si).
Since the given payment rule p is winner-independent and there are only two

players, the payment only depends on the non-winning player’s bid. To mimic
the second-price equilibrium allocation with the mechanism Mp, we first identify
for each good a bid vector such that p(b1j , b1j) = pj . This exists because the
payment rule p is continuous and has full range. Similarly, we can identify a
bid xj such that p(xj , xj) = bj. Since bj ≥ pj , xj ≥ b1j Since the payment is
independent of the highest bid it doesn’t change if we raise the winner’s bid to
xj . Hence, pj(xj , b2j) = pj .
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Focus on a player i and set Si. Set player i’s bid on good j in Si to xj . Since xj

satisfies p(xj , xj) = bj and
∑

j∈Si
bj ≤ γ ·vi(Si), these bids form a γ-conservative

strategy for player i. The other player bids b1j on each good j ∈ Si. In case of a
tie, we employ the same tie-breaking rule used in the second-price equilibrium,
resulting in the tie being broken in favor of player i.

If the other player wishes to deviate to win good j it must bid at least xj .
By the choice of xj , it would have to pay at least bj. Since in the second-price
equilibrium neither player wants to deviate when faced with the price bj , no
player wants to deviate in this constructed bid profile either. This bid profile is
an equilibrium with the same allocation and payments as the given equilibrium
under the second-price rule.

To complete the proof that the second-price rule has the best-possible worst-case
POA of γ-conservative equilibria (for every fixed γ ≥ 1), we give a two-player
example with POA equal to γ + 1.

Example 1. There are two goods denoted A, B and two players. Player 1 values
A for 1, B at γ + 1, and both for γ +1. Player 2 values A for γ + 1, B for 1, and
both for γ + 1.

The bid profile where player 1 bids (γ, 0) and player 2 bids (0, γ) is an equilib-
rium of the the CA with item bidding and the second-price payment rule. These
bids are γ-conservative. The welfare of this equilibrium allocation is 2 while the
optimal welfare is 2(γ + 1).

5 Conclusions

There are a number of opportunities for interesting further work. One important
direction is to extend our study of CAs with item bidding to mixed-strategy
Nash equilibria of the full-information model and to Bayes-Nash equilibria in
incomplete information models. These more general equilibrium concepts are
not well understood even for the second- and first-price payment rules [2,12].
A second topic is allocation rules different from the one studied here, where
the highest bidder always wins. For example, can reserve prices improve the
performance of CAs with item bidding in any sense? A third direction is to study
systematically different single-item payment rules in sequential auctions, thereby
extending the recent work in [16,20]. Finally, it would be very interesting to
analyze restricted auction formats that extend simultaneous or sequential single-
item auctions, such as combinatorial auctions with restricted package bidding.
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Abstract. We study coordination mechanisms for Scheduling Games
(with unrelated machines). In these games, each job represents a player,
who needs to choose a machine for its execution, and intends to complete
earliest possible. In the paper, we focus on a general class of �k-norm (for
parameter k) on job completion times as social cost, that permits to bal-
ance overall quality of service and fairness. Our goal is to design schedul-
ing policies that always admit a pure Nash equilibrium and guarantee a
small price of anarchy for the �k-norm social cost. We consider strongly-
local and local policies (the policies with different amount of knowledge
about jobs). First, we study the inefficiency in �k-norm social costs of
a strongly-local policy SPT that schedules the jobs non-preemptively in
order of increasing processing times. We show that the price of anarchy of

policy SPT is O(k
k+1
k ) and this bound is optimal (up to a constant) for

all deterministic, non-preemptive, strongly-local and non-waiting poli-
cies (non-waiting policies produce schedules without idle times). Second,
we consider the makespan (�∞-norm) social cost by making connection
within the �k-norm functions. We present a local policy Balance. This
policy guarantees a price of anarchy of O(logm), which makes it the
currently best known policy among the anonymous local policies that
always admit a pure Nash equilibrium.

1 Introduction

With the development of the Internet, large-scale systems consisting of au-
tonomous decision-makers (players) become more and more important. The ra-
tional behavior of players who compete for the usage of shared resources generally
leads to an unstable and inefficient outcome. This creates a need for resource
usage policies that guarantee stable and near-optimal outcomes.

From a game theoretical point of view, stable outcomes are captured by the
concept of Nash equilibria. Formally, in a game with n players, each player j
chooses a strategy xj from a set Sj and this induces a cost cj(x) for player j
depending all chosen strategies x. A strategy profile x = (x1, . . . , xn) is a pure
Nash equilibrium if no player can decrease its cost by a unilateral deviation,
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i.e., cj(x
′
j , x−j) ≥ cj(x) for every player j and x′

j ∈ Sj , where x−j denotes the
strategies selected by players different from j.

The better-response dynamic is the process of repeatedly choosing an arbitrary
player that can improve its cost and let it take a better strategy while other
player strategies remain unchanged. It is desirable that in a game the better-
response dynamic converges to a Nash equilibrium as it is a natural way that
selfish behavior leads the game to a stable outcome. A potential game is a game
in which for any instance, the better-response dynamic always converges [10].

A standard measure of inefficiency is the price of anarchy (PoA). Given a
game with an objective function and a notion of equilibrium (e.g pure Nash
equilibrium), the PoA of the game is defined as the ratio between the largest
cost of an equilibrium and the cost of an optimal profile, which is not necessarily
an equilibrium. The PoA captures the worst-case paradigm and it guarantees
the efficiency of every equilibrium.

The social cost of a game is an objective function measuring the quality of
strategy profiles. In the literature there are two main extensively-studied objec-
tive functions: (i) the utilitarian social cost is the total individual costs; while
(ii) the egalitarian social cost is the maximum individual cost. The two objective
functions are included in a general class of social costs: the class of �k norms of
the individual costs, with utilitarian and the egalitarian social costs correspond-
ing to the cases k = 1 and k = ∞, respectively. There is a need to design policies
that guarantee the efficiency (e.g the PoA) of games under some specific objec-
tive function. Moreover, it would be interesting to come up with a policy, that
would be efficient for every social costs from this class. Note that the optimum
is defined as the strategy profile minimizing the social cost. As such it depends
on the fixed norm but not on the scheduling policy.

1.1 Coordination Mechanisms in Scheduling Games

In a scheduling game, there are n jobs and m unrelated machines. Each job needs
to be scheduled on exactly one machine. We consider the unrelated parallel
machine model, where each machine could be specialized for a different type
of jobs. In this general setting, the processing time of job j on machine i is
some given arbitrary value pij > 0. A strategy profile x = (x1, . . . , xn) is an
assignment of jobs to machines, where xj denotes the machine (strategy) of job
j in the profile. The cost cj of a job j is its completion time and every job
strategically chooses a machine to minimize the cost. In the game, we consider
the social cost as the �k-norm of the individual costs. The social cost of profile

x is C(x) =
(∑

j c
k
j

)1/k
.

The traditional �1, �∞-norms represent the total completion time and the
makespan, respectively. Both objectives are natural. Minimizing the total com-
pletion time guarantees a quality of service while minimizing the makespan en-
sures the fairness of schedule. Unfortunately, in practice schedules which
optimize the total completion time are not implemented due to a lack of fairness.
Implementing a fair schedule is one of the highest priorities in most systems [16].
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A popular and practical method to enforce the fairness of a schedule is to op-
timize the �k-norm of completion times for some fixed k. By optimizing the
�k-norm of completion time, one balances overall quality of service and fairness,
which is generally desirable. So the system takes into account a trade-off be-
tween quality of service and fairness by optimizing the �k-norm of completion
time [14,16].

A coordination mechanism is a set of scheduling policies, one for each machine,
that determine how to schedule the jobs assigned to a machine. The idea is to
connect the individual cost to the social cost, in such a way that the selfishness of
the agents will lead to equilibria with small social cost. We distinguish between
local and strongly-local policies. These policies are classified in the decreasing
order of the amount of information that ones could use for their decisions. For-
mally, let x = (x1, . . . , xn) be a profile.

– A policy is local if the scheduling of jobs on machine i depends only on the
processing times of jobs assigned to the machine, i.e., {pi′j : xj = i, 1 ≤ i′ ≤
m}.

– A policy is strongly-local if the policy of machine i depends only on the
processing times for this machine i for all jobs assigned to i, i.e., {pij : xj =
i}.

In addition, a policy is anonymous if it does not use any global ordering of
jobs or any global job identities. Note that for any deterministic policy, local
job identities are necessary as a machine may need such information in order to
break ties (a job may have different identities on different machines). Moreover,
we call a policy non-waiting if the schedule contains no idle time between job
executions.

Instead of specifying the actual schedule, we rather describe a scheduling
policy as a function, mapping every job j to some completion time cj(x). Such
a policy is said feasible if for any profile x, there exists a schedule where job j
completes at time cj(x). Formally, for any job j, we must have cj(x) ≥

∑
j′ pij′

where the sum is taken over all jobs j′ with xj = xj′ and cj′(x) ≤ cj(x).
Certainly, any designed deterministic policy needs to be feasible.

1.2 Overview and Contributions

Recently, Roughgarden [12] developed the smoothness argument, a unifying
method to show upper bounds of the PoA for utilitarian games. This canonical
method is elegant in its simplicity and its power. Here we give a brief description
of this argument.

A cost-minimization game with the total cost objective C(x) =
∑

j cj(x) is
(λ, μ)-smooth if for every profile x and x∗,∑

j

cj(x
∗
j , x−j) ≤ μ

∑
j

cj(x) + λ
∑
j

cj(x
∗)

The smooth argument [12] states that the robust price of anarchy (including the
PoA of pure, mixed, correlated equilibria, etc) of a cost-minimization game is
bounded by
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inf

{
λ

1− μ
: λ ≥ 0, μ < 1, the game is (λ, μ)-smooth

}
.

We will make use of this argument to settle the equilibrium inefficiency in
scheduling games. We will prove the robust PoA by applying the smooth ar-
gument to the game with Ck(x) =

∑
j c

k
j (x) where C(x) is the �k-norm social

cost of Scheduling Games. The main difficulty in applying the smooth argument
to Scheduling Games has arisen from the fact that jobs on the same machine
have different costs, which is in contrast to Congestion Games [11] where players
incur the same cost at the same resource. The key technique in this paper is a
system of inequalities, called smooth inequalities, that are useful to prove the
smoothness of the game.

Our contributions are the following:

1. We study the equilibrium inefficiency for the �k-norm objective function. We
consider a strongly-local policy SPT that schedules the jobs non-preemptively
in order of increasing processing times (with a deterministic tie-breaking rule
for each machine)1. We prove that the PoA of the game under the deter-

ministic strongly-local policy SPT is at most O(k
k+1
k ). Moreover, we show

that any deterministic non-preemptive, non-waiting and strongly-local pol-

icy has a PoA at least Ω(k
k+1
k ), which matches to the performance of SPT

policy. Hence, for any �k-norm social cost, SPT is optimal among determin-
istic non-preemptive, non-waiting, strongly-local policy. (The cases k = 1
and k = ∞ are confirmed in [6] and [2,9], respectively.) If one considers the-
oretical evidence to classify algorithms for practical use then SPT is a good
candidate due to its simplicity and theoretically guaranteed performance on
any combination of the quality and the fairness of schedules.

2. We study the equilibrium inefficiency for the makespan objective function
(e.g., �∞-norm) for local policies by making connection between �k-norm
functions. We present a policy Balance (definition is given is Section 4). The
game under that policy always admits Nash equilibrium and induces the
PoA of O(logm) — the currently best performance among anonymous local
policies that always possess pure Nash equilibria.

Our results naturally extend to the case when jobs have weights and the objective
is the �k-norm of weighted completion times, i.e., (

∑
j(wjcj(x))

k)1/k.

1.3 Related Results

The smooth argument has been formalized in [12]. It has been used to establish
tight PoA of congestion games [11], a fundamental class of games. The argument
is also applied to prove bounds on the PoA of weighted congestion games [3].
Subsequently, Roughgarden and Schoppman [13] have extended the argument to
prove tight bounds on the PoA of atomic splittable congestion games for a large
class of latencies.

1 Formal definition of SPT is given in Section 3
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Coordination mechanisms for scheduling games were introduced in [5] where
the makespan (�∞-norm) objective was considered. For strongly-local policies,
Immorlica et al. [9] gave a survey on the existence and inefficiency of different
policies such as SPT, LPT, RANDOM. Some tight bounds on the PoA under
different policies were given. Azar et al. [2] initiated the study on local poli-
cies. They designed a non-preemptive policy with PoA of O(logm). However,
the game under that policy does not necessarily guarantee a Nash equilibrium.
The authors modified the policy and gave a preemptive one that always ad-
mits an equilibrium with a larger PoA as O(log2 m). Subsequently, Caragiannis
[4] derived a non-anonymous local policy ACOORD and anonymous local poli-
cies BCOORD and CCOORD with PoA of O(logm), O(logm/ log logm) and
O(log2 m), respectively where the first and the last ones always admit a Nash
equilibrium. Fleischer and Svitkina [7] showed a lower bound of Ω(logm) for
all deterministic non-preemptive, non-waiting local policies. Recently, Abed and
Huang [1] proved that every deterministic (even preemptive) local policy, that
satisfies natural properties, has price of anarchy at least Ω(logm/ log logm).

Cole et al. [6] studied the game with total completion time (�1-norm) objec-
tive. They considered strongly-local policies with weighted jobs, and derived a
non-preemptive policy inspired by the Smith’s rule which has PoA = 4. This
bound is tight for deterministic non-preemptive non-waiting strongly-local poli-
cies. Moreover, some preemptive policies are also designed with better perfor-
mance guarantee.

1.4 Organization

In Section 2, we state some smooth inequalities that will be used in settling the
PoA for different policies. In Section 3, we study the scheduling game with the
�k-norm social cost. We define and prove the inefficiency of the policiy SPT. We
also provide a lower bound on the PoA for any deterministic non-preemptive non-
waiting strongly-local policy. In Section 4, we consider the makespan (�∞-norm)
social cost for local policies. We define and analyze the performance of policy
Balance. Due to the space constraint, some proofs are given in the appendix.

2 Smooth Inequalities

In the section we show various inequalities that are useful for the analysis.

Lemma 1. Let k be a positive integer. Let 0 < a(k) ≤ 1 be a function on k.
Then, for any x, y > 0, it holds that

y(x+ y)k ≤ k

k + 1
a(k)xk+1 + b(k)yk+1
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where α is some constant and

b(k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Θ

(
αk ·

(
k

log ka(k)

)k−1
)

if limk→∞(k − 1)a(k) = ∞, (1a)

Θ
(
αk · kk−1

)
if (k − 1)a(k) are bounded ∀k, (1b)

Θ

(
αk · 1

ka(k)k

)
if limk→∞(k − 1)a(k) = 0. (1c)

Note that the case (1a) of Lemma 1 could be used to settle the tight bound
on the PoA of Congestion Games in which delay functions are polynomials with
positive coefficients. [15] proved this case for a(k) = 1 and b(k) = Θ( 1k (k/ log k)

k)
in order to upper bound of the PoA in Selfish Load Balancing Games.

Lemma 2. It holds that (k + 1)z ≥ 1− (1− z)k+1 for all 0 ≤ z ≤ 1 and for all
k ≥ 0.

Proof. Consider f(z) = (k + 1)z − 1 + (1 − z)k+1 for 0 ≤ z ≤ 1. We have
f ′(z) = (k+1)− (k+1)(1−z)k ≥ 0 ∀0 ≤ z ≤ 1. So f is non-decreasing function,
thus f(z) ≥ f(0) = 0. Therefore, (k+1)z ≥ 1− (1− z)k+1 for all 0 ≤ z ≤ 1. ��

In the following, we prove inequalities to bound the PoA of the scheduling game.
Remark that until the end of the section, we use i, j as the indices. The following
is the main lemma to show the upper bound O(k(k+1)/k) of the PoA under policy
SPT in the next section.

Lemma 3. For any non-negative sequences (ni)
P
i=1, (mi)

P
i=1, and for any pos-

itive increasing sequence (qi)
P
i=1, define Ai,j := n1q1 + . . . + ni−1qi−1 + j · qi

for 1 ≤ i ≤ P, 1 ≤ j ≤ ni and Bi,j := m1q1 + . . . + mi−1qi−1 + j · qi for
1 ≤ i ≤ P, 1 ≤ j ≤ mi. Then, it holds that

P∑
i=1

mi∑
j=1

(Ai,ni + j · qi)k ≤ μk

P∑
i=1

ni∑
j=1

Ak
i,j + λk

P∑
i=1

mi∑
j=1

Bk
i,j ,

where μk = k+1
k+2 and λk = Θ(αk(k + 1)k) for some constant α.

3 �k-norms of Completion Times under Strongly-Local
Policies

We consider the coordination mechanism under the strongly-local policy SPT
that schedules jobs in the order of non-decreasing processing times. The formal
definition of that policy is the following.

Policy SPT Let x be a strategy profile. Let ≺i be an order of jobs on machine
i, where j′ ≺i j iff pij′ < pij or pij′ = pij and j is priority over j′ (machine i
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chooses a local preference over jobs based on their local identities to break ties).
The cost of job j under the SPT [9] policy is

cj(x) =
∑

j′: xj′=i

j′�j

pij′ .

Note that the policy SPT is feasible. Since all pij could be written as a multiple
of ε (a small precision) without loss of generality, assume that all jobs processing
times (scaling by ε−1) are integers and upper-bounded by P .

Lemma 4. Let x be an assignment of jobs to machines. Then, among all feasible
schedules, SPT policy minimizes the �k-norm of job completion times with respect
to this assignment.

Theorem 1. The PoA of SPT with respect to the �k-norm of job completion

times is O(k
k+1
k ).

Proof. Let x and x∗ be two arbitrary profiles. We focus on a machine i. Let
n1, . . . , nP be the numbers of jobs in x which are assigned to machine i and
have processing times 1, . . . , P , respectively. Similarly, m1, . . . ,mP are defined
for profile x∗. Note that na and ma are non-negative for 1 ≤ a ≤ P . Applying
Lemma 3 for non-negative sequences (na)

P
a=1, (ma)

P
a=1 and the positive increas-

ing sequence (a)Pa=1, we have:

P∑
a=1

⎡⎣( a∑
b=1

bnb + a

)k

+

(
a∑

b=1

bnb + 2a

)k

+ . . .+

(
a∑

b=1

bnb +ma · a
)k
⎤⎦

≤ k + 1

k + 2
·

P∑
a=1

⎡⎣(a−1∑
b=1

bnb + a

)k

+

(
a−1∑
b=1

bnb + 2a

)k

+ . . .+

(
a−1∑
b=1

bnb + na · a
)k
⎤⎦

+Θ
(
αk(k + 1)k

)
·

P∑
a=1

[(
a−1∑
b=1

bmb + a

)k

+

(
a−1∑
b=1

bmb + 2a

)k

+ . . .+

+

(
a−1∑
b=1

bmb +ma · a
)k ]

where α is a constant.
Observe that, by definition of the cost under the SPT policy, the left-hand side

(of the inequality above) is an upper bound for
∑

j:x∗
j=i c

k
j (x−j , x

∗
j ), while the

right-hand side is exactly k+1
k+2 ·

∑
j:xj=i c

k
j (x) +Θ

(
αk(k + 1)k

)
·
∑

j:x∗
j=i c

k
j (x

∗).

Thus,∑
j:x∗

j=i

ckj (x−j , x
∗
j ) ≤

k + 1

k + 2
·
∑

j:xj=i

ckj (x) +Θ
(
αk(k + 1)k

)
·
∑

j:x∗
j=i

ckj (x
∗)
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As the inequality above holds for every machine i, summing over all machines
we have:∑

j

ckj (x−j , x
∗
j ) ≤

k + 1

k + 2
·
∑
j

ckj (x) +Θ
(
αk(k + 1)k

)
·
∑
j

ckj (x
∗)

By the smooth argument, Ck(x) ≤
(
αk(k + 1)k+1

)
Ck(x∗). Therefore, we have

C(x) ≤ O(k
k+1
k )C(x∗).

Choosing x∗ as an optimal assignment. By Lemma 4, the optimal schedule
for this assignment could be done using the SPT policy, i.e., the optimal social

cost is C(x∗). Therefore, the PoA is O(k
k+1
k ). ��

The following theorem proves that the bound on the PoA is tight. The construc-
tion is a generalization of the one in [6] where the authors showed a tight bound
for the �1-norm.

Theorem 2. The PoA of any deterministic non-preemptive non-waiting strongly-

local policy is Ω(k
k+1
k ) with respect to the �k-norm of job completion times.

Proof. Using the technique described in [6], it is sufficient to prove that the PoA

of SPT is Ω(k
k+1
k ).

Let t and m be integers such that m =
∏t

u=1 u
k. (In fact, for the proof it is

enough to choose m such that m/uk is integer for every 1 ≤ u ≤ t.) Consider an
instance in which there are m machines and the jobs are {ju,v : 1 ≤ u ≤ t, 1 ≤
v ≤ m/uk}. A job ju,v has unit processing time on every machine 1 ≤ i ≤ v
and has processing time infinity on other machines. In other words, job ju,v is
allowed to be scheduled only on machine with index at most v. We say that a
job ju,v has more priority than job ju′,v′ if v > v′; or if v = v′ and u < u′. If
two jobs ju,v and ju′,v′ are both assigned to the same (allowed) machine then
the job with higher priority will be scheduled before the other (note that those
jobs have the same unit processing times in the machine).

We first give an assignment of jobs to machines with a small social cost.
Consider an assignment x∗ in which job ju,v for 1 ≤ u ≤ t, 1 ≤ v ≤ m/uk is
scheduled in machine v. An illustration is given in the left of Figure 1. By the
priority order, the completion time of job ju,v is u. By the construction, the
number of jobs with completion time u for 1 ≤ u ≤ t is m/uk. Hence, the social
cost of the assignment satisfies Ck(x∗) =

∑t
u=1 u

km/uk = mt.
Now we construct a Nash equilibrium with high social cost. Roughly speaking,

for each 1 ≤ s ≤ t, we will assign the set of jobs Js = {ju,v : 1 ≤ u ≤
s,m/(s + 1)k < v ≤ m/sk} to a subset of machines i for 1 ≤ i ≤ m/sk+1

in such a way that their completion times are between k(s − 1) + 1 and ks.
Moreover, in the assignment apart of those jobs, no other has completion time
in [k(s− 1)+ 1, ks]. As there are t such sets Js and each set gives rise to k units
in the completion times, the desired lower bound follows.
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Formally, fix 1 ≤ s ≤ t and consider the set Js = {ju,v : 1 ≤ u ≤ s,m/(s +
1)k < v ≤ m/sk}. Partition Js = Js,1 ∪ . . . ∪ Js,k where

Js,a :=

{
ju,v : 1 ≤ u ≤ s,

m

sk−a(s+ 1)a
< v ≤ m

sk+1−a(s+ 1)a−1

}
.

for 1 ≤ a ≤ k. The cardinal of Js,a is

|Js,a| = s

(
m

sk+1−a(s+ 1)a−1
− m

sk−a(s+ 1)a

)
=

m

sk−a(s+ 1)a
.

Note that by definition, jobs in Js′,a′ have higher priority then the ones in Js,a

in case s > s′ or in case s = s′ and a > a′. In total, there are k · t sets Js,a since
1 ≤ s ≤ t and 1 ≤ a ≤ k.

sk

m
2k

m
sk

mm
(s+1)k

Js,1

Js,1

Js,2

Js,k

1

2

s

t

Js,k

(s− 1)k + 2

(s− 1)k + 1

m
(s+1)k

m
sk−2(s+1)2

m
sk−1(s+1)

Fig. 1. Illustration of profiles x (in the left) and x∗ (in the right). The horizontal and
vertical axes represent machines and completion times, respectively.

Consider a profile x in which jobs in Js,a for 1 ≤ s ≤ t and 1 ≤ a ≤ k are
assigned arbitrarily one-to-one to machines 1, 2, . . . , |Js,a|. It is feasible since a
job ju,v ∈ Js,a has index v > m

sk−a(s+1)a
= |Js,a|, meaning that the job could

be scheduled on any machine in 1, 2, . . . , |Js,a|. In this assignment, jobs in the
same set Js,a have the same cost, which is (s− 1)k + a. An illustration is given
in the right of Figure 1. We show that profile x is indeed a Nash equilibrium.
Let ju,v be a job in Js,a. This job has cost (s− 1)k+ a and cannot be scheduled
on any machine with index larger then m

sk+1−a(s+1)a−1 . Recall that if a > 1,
m

sk+1−a(s+1)a−1 = |Js,a−1|; and if a = 1 and s > 1, m
sk+1−a(s+1)a−1 = |Js−1,k|. In

profile x, the jobs assigned to machines 1, 2, . . . , m
sk+1−a(s+1)a−1 with cost strictly

smaller then (s − 1)k + a are jobs in Js′,a′ where either s′ < s or s′ = s and
a′ < a. The jobs have higher priority then ju,v. Therefore, job ju,v ∈ Js,a for
(s, a) 	= (1, 1) cannot unilaterally change machine to improve its cost. Besides,
jobs in J1,1 have no incentive to change their machines as their cost are 1 and
they cannot strictly decrease by doing so. Thus, x is a Nash equilibrium.
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In profile x, there are exactly |Js,a| jobs with cost (s− 1)k+a. Therefore, the
social cost C(x) satisfies:

Ck(x) =

t∑
s=1

k∑
a=1

m

sk−a(s+ 1)a
[(s− 1)k + a]k ≥ kkm

t∑
s=1

k∑
a=1

(s− 1)k

sk−a(s+ 1)a

≥ kk+1m

t∑
s=1

(s− 1)k

(s+ 1)k
≥ kk+1m(t− 1)

1

3k

Hence, we deduce that C(x)/C(x∗) ≥ 1
4k

k+1
k . ��

4 �∞-norms of Completion Times under Local Policies

For any profile x, the social cost C(x) = maxj cj . Let x(i) = {j : xj = i}
be the set of jobs assigned to machine i. Define L(x(i)) :=

∑
j:xj=i pij as the

load of of machine i for 1 ≤ i ≤ m in profile x. The makespan of the profile
is L(x) := maxi L(x(i)). Observe that in an optimal assignment x∗, C(x∗) =
L(x∗) since there is no idle-time in an optimal schedule. For each job j, denote
qj := min{pij : 1 ≤ i ≤ m} and define ρij := pij/qj for all i, j. Note that a local
policy can compute qj for every job j while a strongly-local one cannot.

A profile x is m-efficient if ρxj ,j ≤ m for every job j. The following lemma
guarantees that the restriction to the m-efficient profiles worsens the optimal
social cost only by a constant factor.

Lemma 5 ([4]). Let y∗ be an optimal assignment. Then, there exits a m-
efficient assignment x∗ such that L(x∗) ≤ 2L(y∗).

Policy Balance Let x be a strategy profile. Let ≺i be a total order on the jobs
assigned to machine i, which is a SPT-like order. Formally, j ≺i j

′ if pij < pij′ , or
pij = pij′ and j is priority over j′ (machine i chooses a local preference over jobs
based on their local identities to break ties). Note that the policy does not need
global job identities (there is no communication cost between machines about
job identities) and a job may have different priority on different machines. The
policy is clearly anonymous.

The cost cj of job j assigned to machine i is defined as follows where h is a
positive integer constant to be chosen later.

chj (x) =

⎧⎪⎪⎨⎪⎪⎩
1
qj

[(
pij +

∑
j′:j′≺ij
xj′=i

pij′
)h+1

−
( ∑

j′ :j′≺ij
xj′=i

pij′
)h+1

]
if ρij ≤ m,

∞ otherwise.

Intuitively, the cost of a job scheduled on a machine is proportional to its
marginal contribution to the load of the machine (up to some power). More-
over, by the definition, jobs are allowed to be scheduled only on machines with
inefficiency smaller than m.
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Observe that the cost cj(x) of job j satisfies

chj (x) ≥
1

qj

⎡⎣(pij + ∑
j′ :j′≺ij, xj′=i

pij′
)h+1

−
( ∑

j′:j′≺ij, xj′=i

pij′
)h+1

⎤⎦
≥ pij

qj

(
pij +

∑
j′ :j′≺ij, xj′=i

pij′
)h

≥
(
pij +

∑
j′:j′≺ij, xj′=i

pij′
)h

since pij/qj ≥ 1. As that holds for every job j assigned to machine i, policy
Balance is feasible.

Lemma 6. The best-response dynamic under the Balance policy converges to a
Nash equilibrium.

Proof. By the definition of the policy, any job j will choose a machine i such that
ρij ≤ m. Moreover, since qj is fixed for each job j, the behavior of jobs is similar
to that in the following game. In the latter, the set of strategies of a player j is
the same as in the former except the machines i with ρij > m. Moreover, in the
new game, player j in profile x has cost c′j(x) such that

(
c′j(x)

)h
=
(
pij +

∑
j′≺ij

pij′
)h+1

−
( ∑

j′≺ij

pij′
)h+1

Hence, it is sufficient to prove that the better-response dynamic in the new game
always converges. The argument is the same as the one to prove the existence
of Nash equilibrium for policy SPT [9]. Here we present a proof based on a
geometrical approach [8].

t

u

Fig. 2. A geometrical illustration of |x|u,t, every dot is a (j, cj(x)) pair, colored black
if counted in |x|u,t

First, define posi(j) := 1 + |{j′ : j′ ≺i j, 1 ≤ j′ 	= j ≤ n}| which represents
the priority of job j on machine i. For a value u ∈ R+ and a job index 1 ≤ t ≤ n,
we associate to every profile x the quantity

|x|u,t := |{j : c′j(x) < u or c′j(x) = u, posxj
(j) ≤ t}|.
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We use it to define a partial order ≺ on profiles. Formally x ≺ y if for the
lexicographically smallest pair (u, t) such that |x|u,t 	= |y|u,t we have |x|u,t <
|y|u,t.

We show that the profile strictly increases according to this order, whenever
a job changes to another machine while decreasing its cost. Let j be such a job
changing from machine a in profile x to machine b, resulting in a profile y. We
know that c′j(y) < c′j(x). Remark that only jobs j′ with xj′ = b might have the
cost in y larger than that in x (by definition of the cost c′). Moreover, such job
j′ with xj′ = b and j′ has a different costs in x and y, it must be j ≺b j

′, which
also implies c′j′(x) ≥ c′j(y). In the same spirit, some jobs j′ with xj′ = a might
decrease their cost, but not below c′j(x).

Consider u = c′j(y) and t = posb(j). We have that |x|u′,t′ = |y|u′,t′ for all
u′ < u and all t′. If job j is the only job with processing time pbj among the
ones {j′ : xj′ = b}, then |y|u,t = |x|u,t + 1. Otherwise, |y|u,t′ = |x|u,t′ for t′ < t
and |y|u,t = |x|u,t + 1.

Therefore (u, t) is the first lexicographical pair where |x|u,t 	= |y|u,t and
|y|u,t > |x|u,t. Hence, since the set of strategy profiles is finite, the better-
response dynamic must converge to a pure Nash equilibrium. This completes
the proof. ��

Remark that the game under Balance convergences fast to Nash equilibria in the
best-response dynamic (the argument is the same as [9, Theorem 12]).

Lemma 7. Let x and x∗ be an equilibrium and an m-efficient arbitrary profile,
respectively. Then,

∑m
i=1 L

h+1(x(i)) ≤ O(αhhh+1)
∑m

i=1 L
h+1(x∗(i)) where α is

some constant.

Proof. We focus on an arbitrary job j. Denote i = xj and i∗ = x∗
j . As x is an

equilibrium, we have chj (x) ≤ chj (x−j , x
∗
j ), i.e,(

pij+
∑

j′:j′≺ij
xj′=i

pij′
)h+1

−
( ∑

j′:j′≺ij
xj′=i

pij′
)h+1

≤
(
pi∗j +

∑
j′:j′≺i∗ j
xj′=i∗

pi∗j′
)h+1

−
( ∑

j′:j′≺i∗ j
xj′=i∗

pi∗j′
)h+1

≤
(
pi∗j + L(x(i∗))

)h+1

−
(
L(x(i∗))

)h+1

≤ (h+ 1)pi∗j

(
pi∗j + L(x(i∗))

)h
(2)

where the second inequality is due to the fact that (z + a)h+1 − zh+1 is increas-
ing in z (for a > 0) and

∑
j′:j′≺ij
xj′=i∗

pi∗j′ ≤ L(x(i∗)); the third inequality is due to
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Lemma 2 (by dividing both sides by (pi∗j + L(x(i∗)))h+1 and applying z =
pi∗j

pi∗j+L(x(i∗)) in the statement of Lemma 2). Therefore,

m∑
i=1

Lh+1(x(i)) =

m∑
i=1

∑
j:xj=i

qjc
h
j (x) ≤

m∑
i=1

∑
j:xj=i

qjc
h
j (x−j , x

∗
j )

≤
m∑
i=1

∑
j:x∗

j=i

(h+ 1)pij

(
pij + L(x(i))

)h
≤ (h+ 1)

m∑
i=1

L(x∗(i))
(
L(x(i)) + L(x∗(i))

)h
≤ (h+ 1)

m∑
i=1

h

(h+ 1)2
Lh+1(x(i)) +O

(
αhhh−1

)
Lh+1(x∗(i))

where the first inequality is because x is an equilibrium; the second inequality is
due to the sum of Inequality (2) taken over all jobs j; and the fourth inequality
follows by applying case (1b) of Lemma 1 for a(h) = 1/(h+ 1). Arranging the
terms, the lemma follows. ��
Theorem 3. The PoA of the game under policy Balance is at most O(logm)
by choosing h = �logm�.
Proof. Let y∗ be an optimal assignment and x∗ be an m-efficient assignment
with property of Lemma 5. Let x be an equilibrium. Remark that x is a m-
efficient assignment since every job can always get a bounded cost. Consider a
job j assigned to machine i in profile x. As x is a m-efficient assignment, by the
definition of policy Balance

chj (x) =
1

qj

[(
pij +

∑
j′:j′≺ij
xj′=i

pij′
)h+1

−
( ∑

j′ :j′≺ij
xj′=i

pij′
)h+1

]

≤ 1

qj

[(
L(x(i))

)h+1

−
(
L(x(i))− pij

)h+1
]
≤ (h+ 1)ρijL

h(x(i))

where the first inequality is because function (a + x)h+1 − xh+1 is increasing;
and the last inequality is due to Lemma 2 (by dividing both sides by Lh+1(x(i))
and applying z =

pij

L(x(i)) in the statement of Lemma 2). Moreover, by Lemma 7,

we have

Lh+1(x) ≤
m∑
i=1

Lh+1(x(i)) ≤ O(αhhh+1)
m∑
i=1

Lh+1(x∗(i)) ≤ O(αhhh+1m)Lh+1(x∗)

for some constant α. Therefore,

C(x) = max
j

cj(x) ≤ max
i,j

(
(h+ 1)ρij

)1/h
L(x(i)) ≤

(
(h+ 1)m

)1/h
L(x)

≤ O

((
hh+2m2

)1/h)
L(x∗) ≤ O

((
hh+2m2

)1/h)
L(y∗)
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where the last inequality is due to Lemma 5. Choosing h = �logm�, the theorem
follows. ��
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Abstract. A prevalent assumption in game theory is that all players
act in a purely selfish manner, but this assumption has been repeatedly
questioned by economists and social scientists. In this paper, we study a
model that allows to incorporate the social context of players into their
decision making. We consider the impact of other-regarding preferences
in potential games, one of the most popular and central classes of games
in algorithmic game theory. Our results concern the existence of pure
Nash equilibria and potential functions in games with social context. The
main finding is a tight characterization of the class of potential games
that admit exact potential functions for any social context. In addition,
we prove complexity results on deciding existence of pure Nash equilibria
in numerous popular classes of potential games, such as different classes
of load balancing, congestion, cost and market sharing games.

1 Introduction

Game theory deals with the mathematical study of the interaction of rational
agents. A prevalent assumption in many game-theoretic works is that agents
are selfish, they consider only their own well-being and act upon their own
interest. The assumption that players are purely selfish disregards complicated
externalities or correlations in agent interests and has been repeatedly questioned
by economists and social scientists [19, 12, 13]. In many applications, agents are
embedded in a social context resulting in other-regarding preferences that are
not captured by standard game-theoretic models. There are numerous examples,
such as bidding frenzies in auctions [22] or altruistic contribution behavior on
the Internet, in which players are spiteful or altruistic and (partially) disregard
their own well-being to influence the well-being of others. Despite some recent
efforts, the impact of such other-regarding preferences on fundamental results in
game theory is not well-understood.

In this paper, we study a general appoach to incorporate externalities
in the form of other-regarding preferences into strategic games. Our model is
in line with a number of recent approaches on altruistic and spiteful incentives
in games. We transform a base game into another strategic game, in which play-
ers aggregate dyadic influence values combined with personal utility of other
players. Relying on dyadic relations is also a popular approach in social network
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analysis. Consequently, we refer to the set of dyadic influence values as social
context [3]. Our results concentrate on (exact) potential games, a prominent class
of games with many applications that has received much attention in algorithmic
game theory. Most notably, potential games always possess pure Nash equilibria,
and a potential function argument shows that arbitrary better-response dynam-
ics converge. Our interest is to understand how these conditions change when
social context comes into play.

Not surprisingly, potential functions and pure Nash equilibria might not exist
with social contexts, even in very simple load balancing games [3]. For a variety of
prominent classes of simple potential games, such as load balancing, congestion,
or fair cost-sharing games, we even show hardness of deciding existence of pure
Nash equilibria. On the positive side, our main finding is a tight characterization
of all games that remain exact potential games under social context. We prove
that every such game is isomorphic to a congestion game with affine delays. In
this sense, our characterization is similar to the celebrated result by Monderer
and Shapley [21] that shows isomorphism between exact potential games and
congestion games. The main difference is that our result also allows to specify
the delays as affine functions. In turn, our hardness results imply that in general
the isomorphism result of [21] must use non-affine delays.

Model. We consider strategic games Γ = (K, (Si)i∈K , (ci)i∈K) with a set K
of k players. Each player i ∈ K picks a strategy Si ∈ Si. A state or strategy
profile S is a collection of strategies, one for each player. The (personal) cost for
player i in state S is ci(S). Each player tries to unilaterally improve his cost by
optimizing his strategy choices against the choices of the other players. A state
S has a unilateral improvement move for player i ∈ K if there is S′

i ∈ Si with
ci(S′

i, S−i) < ci(S). A state without improvement move for any player is a pure
Nash equilibrium (PNE).

In an (exact) potential game, we have a potential function Φ(S) such that
ci(S) − ci(S′

i, S−i) = Φ(S) − Φ(S′
i, S−i) for every state S, player i ∈ K and

strategy S′
i ∈ Si. Φ simultaneously encodes the cost changes for all players in

the game. The local optima of Φ are exactly the PNE, and every sequence of
improvement moves is guaranteed to converge to such a PNE. It is well-known
that every exact potential game is isomorphic to a congestion game [21]. In
a congestion game [23] we have a set R of resources and for each i ∈ K the
strategy space Si ⊆ 2R. For state S, we define the load nr(S) of resource r
to be the number of players i with r ∈ Si. Each resource r ∈ R has a delay
dr(S) = dr(nr(S)), and the personal cost of player i ∈ K is ci(S) =

∑
r∈Si

dr(S).
We consider the effects of social context on the existence of potential functions.

We extend a strategic game Γ by a social context defined by a set of weights
F that contains a numerical influence value fij ∈ R for each pair of players
i, j ∈ K, i �= j. In particular, the perceived cost of player i ∈ K is given by his
personal cost and a weighted sum of cost of other players

ci(S, F ) = ci(S) +
∑

j∈K,j =i

fijcj(S) .
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We will assume throughout that the context is symmetric, i.e., fij = fji. In games
with social context a state has a unilateral improvement move for player i if i can
decrease his perceived cost by switching to another strategy. A PNE in a game
with social context is a state without improvement moves for perceived costs. For
our lower bounds, we will restrict to binary contexts F with fij = fji ∈ {0, 1}.
Our existence results, however, do also allow non-binary and negative values. In
the following, we say two players i and j are friends if fij = fji = 1.

We will consider social contexts in a variety of well-studied classes of potential
games which we define more formally in the respective sections.

Results. In Section 2 we provide the following tight characterization of the exis-
tence of potential functions in strategic games with social context. Every strate-
gic game that admits an exact potential function for every binary context is
isomorphic to a congestion game with affine delay functions. In turn, every con-
gestion game with affine delays has an exact potential function for every social
context. Hence, the class of games that allows exact potential functions for all
social contexts is exactly given by congestion games with affine delays.

In the following sections we consider many popular classes of potential games
and examine deciding existence of a PNE for a given game and a given binary
context. In most of these games, however, a PNE might not exist and deciding ex-
istence is NP-hard. In Section 3.1 we show that this holds even for simple classes
of congestion games with increasing delays, e.g., for singleton congestion games
with concave delays, general congestion games with convex delays, or weighted
load balancing games on identical machines. For decreasing delays, we show in
Section 3.2 NP-hardness of deciding PNE existence in Shapley cost-sharing games,
even in broadcast games on undirected networks where every node is a player. If we
consider cost sharing with priority-based sharing rules such as the Prim rule [6], it
turns out that PNE exist in undirected broadcast games, but not necessarily in di-
rected broadcast games. While PNE exist in undirected networks, convergence of
improvement dynamics is not guaranteed. In fact, we show that such games might
not even be weakly acyclic. Finally, in Section 3.3 we briefly consider hardness of
PNE existence in market sharing games. All proofs missing from this extended
abstract are deferred to the full version of this paper.

Related Work. The study of social contexts and other-regarding preferences has
prompted increased interest in recent years, especially in well-studied classes of
potential games such as load balancing [24] or congestion games [23]. Existence
of equilibrium with binary contexts and different aggregation functions in simple
congestion and load balancing games was studied in [3]. Binary contexts with
sum aggregation were also considered in inoculation games [20]. More recently,
social cost of worst-case equilibria with and without context were quantified for
general non-negative contexts in load balancing games [4]. Coalitional stabil-
ity concepts in a model with social context and aggregation via minimum cost
change were studied for load balancing games in [16].

Several works examined the impact of altruism on the price of anarchy [8,5,7]
and equilibrium existence [17, 18] in congestion and load balancing games, and
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in fair cost-sharing games [11]. Altruism in these works is also modelled via
a weighted sum of personal and social cost. For a recent characterization of
stability of social optima in several classes of games with altruism see [2].

The impact of social context with sum aggregation was also studied in other
game-theoretic scenarios, for instance in auctions (see, e.g., [22] or [9] and the
references therein), market equilibria [10], stable matching [1], and others.

Characterizing the existence of potential functions and pure Nash equilibria
was recently discussed in weighted potential games [14,15]. The results imply ex-
istence only for the classes of linear and exponential delay functions. This charac-
terization refers to existence of potential functions and pure Nash equilibria for all
games with the same class of delay functions. For example, for every set of non-
linear or non-exponential delays there is at least one game that has no pure Nash
equilibrium, but there might be others with such delays that have one.

In contrast, we provide a stronger result similar to [21] in the form of a one-
to-one correspondence for each individual game under consideration.

2 Characterization

We start by characterizing the prevalence of potential functions under social
contexts. We say a potential game has a context-potential Φ if there exists a
function Φ(S, F ) with ci(S, F ) − ci(S′

i, S−i, F ) = Φ(S, F ) − Φ(S′
i, S−i, F ) for all

states S, social contexts F , players i ∈ K, and strategies S′
i ∈ Si. Thus, if a

potential game has a context-potential, it remains a potential game under every
given social context F . We show the following theorem.

Theorem 1. A strategic game has a context-potential if and only if it is iso-
morphic to a congestion game with affine delay functions.

We prove the theorem in two steps. We first show that a game Γ that has a
context-potential for every binary context must be isomorphic to a congestion
game with affine delays by constructing an isomorphic game. Afterwards, we
show that these games admit a potential also for every non-binary social context
by providing a context-potential.

Lemma 1. If a strategic game has a context-potential for every binary context,
then it is isomorphic to a congestion game with affine delay functions.

Proof. It is insightful to consider an arbitrary 4-tuple of states involving the
deviations of 2 players, say players i and j. Here we denote S1 = (Si, Sj, S−{i,j}),
S2 = (S′

i, Sj , S−{i,j}), S3 = (S′
i, S

′
j , S−{i,j}), and S4 = (Si, S

′
j , S−{i,j}). For the

cycle (S1, S2, S3, S4, S1) consider the difference in personal cost of the moving
players Δ12

i = ci(S2) − ci(S1), Δ23
j = cj(S3) − cj(S2), Δ34

i = ci(S4) − ci(S3),
Δ41

j = cj(S1) − cj(S4). Note that existence of an exact potential function is
equivalent to assuming that this difference is 0, i.e.,

Δ12
i + Δ23

j + Δ34
i + Δ41

j = 0 , (1)

for every pair of players i and j and every 4-tuple of states as detailed above [21].
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Now suppose Γ is an exact potential game for every binary context F . Note
that for 2 players, every exact potential game is isomorphic to a congestion game
with affine delays, because each resource is used by at most 2 players. Hence,
consider a game with at least three players. The main idea of the proof is to
characterize the impact on the personal cost of player h when a different player i
makes a strategy switch. Using this characterization, we then construct resources
and affine delay functions.

Consider three different players i, j, h ∈ K and F with fih = fhi = 1 and 0
for all other pairs of players in the game. We assume that the resulting game
has an exact potential, we have

Δ12
i + ch(S2) − ch(S1) + Δ23

j + Δ34
i + ch(S4) − ch(S3) + Δ41

j = 0 ,

and by using Eqn. (1) above and the definition of S1, . . . , S4, we see that

ch(S′
i, Sj , S−{i,j})− ch(Si, Sj , S−{i,j}) = ch(S′

i, S
′
j , S−{i,j})− ch(Si, S

′
j , S−{i,j}) .

The sides of this equation describe the change of personal cost of h when i
switches from Si to S′

i, once with j playing Sj (left) and once with j playing
S′

j (right). We can derive this identity for all strategies of each player j �= i, h.
This shows that when i changes his strategy from Si to S′

i, then the change in
personal cost of h is independent of the strategy of any other player j. Hence,
there is

Δh(S′
i, Si, Sh) = ch(S′

i, Sh, S−{i,h}) − ch(Si, Sh, S−{i,h}) .

To show that these values are pairwise consistent, we again consider F with
fih = fhi = 1 and 0 for all other pairs of players. However, this time i and h do
the strategy switches. By considering a 4-cycle as above and using Eqn. (1), we
obtain

ch(S′
i, Sh, S−{i,h}) − ch(Si, Sh, S−{i,h})

+ ci(S′
i, S

′
h, S−{i,h}) − ci(S′

i, Sh, S−{i,h})
+ ch(Si, S

′
h, S−{i,h}) − ch(S′

i, S
′
h, S−{i,h})

+ ci(Si, Sh, S−{i,h}) − ci(Si, S
′
h, S−{i,h}) = 0 ,

or, equivalently,

Δh(S′
i, Si, Sh) + Δi(S′

h, Sh, S′
i) + Δh(Si, S

′
i, S

′
h) + Δi(Si, S

′
i, Sh) = 0 . (2)

We now construct an equivalent congestion game Γ ′ with affine delay functions.
We consider each pair of players i �= h and introduce a single resource r{Si,Sh}
for every unordered pair of strategies in Si × Sh. For every player j ∈ K and
each strategy Sj ∈ Sj , we assume that Sj contains all resources for which it
appears in the index. Let us first restrict our attention to one pair of players i
and h. Due to the fact that the values Δi and Δh can be given separately for
each pair {i, h} and do not depend on other player strategies, we can effectively
reduce the game to a set of 2-player games played simultaneously.
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For each resource r associated with strategies of both i and h, we set all
delays dr(1) = 0. The delay dr(2) is set to 1 for one arbitrarily chosen resource
r{Si,Sh}. The other delays dr(2) simply are derived via the differences Δh and
Δi. In particular, with r′ = r{S′

i,Sh} and r = r{Si,Sh} we have dr′(2) = dr(2) +
Δh(S′

i, Si, Sh). Similarly, with r′ = r{Si,S′
h} and r = r{Si,Sh} we have dr′(2) =

dr(2) + Δi(S′
h, Sh, Si). The set of values dr(2) defined in this way is consistent,

because Eqn (2) essentially proves existence of an exact potential function when
differences are given by Δh and Δi values, as the sum of changes in all 4-cycles of
the state graph is 0. By our assignment, we essentially use this potential function
for the dr(2) values.

In our construction so far, we guarantee that in Γ ′ player i suffers from the
same cost change as in Γ when the other player moves. So far, however, it
does not necessarily implement the correct personal cost or cost change for the
moving player. For this we introduce a single resource rSi for strategy Si ∈ Si

of every player i ∈ K. This resource is used only by player i and only if he plays
strategy Si. We again set the delay dr(1) = 1 for some arbitrary resource rSi .
Then consider a state (Si, S−i) and the deviation to (S′

i, S−i). The difference
in cost for player i is denoted by Δi(S′

i, Si, S−i), and with r = rSi , r′ = rS′
i
,

Rij = {r{Si,Sj} | Sj ∈ Sj} and R′
ij = {r{S′

i,Sj} | Sj ∈ Sj} we get

dr′(1) = dr(1) + Δi(S′
i, Si, S−i) +

∑
j∈K
j =i

⎛⎝ ∑
s∈Rij

ds(Si, S−i) −
∑

s∈R′
ij

ds(S′
i, S−i)

⎞
⎠ .

Thus, we simply account for all delay changes from the sets of resources Rij and
R′

ij and correct the cost to implement the correct delay change of Δi(S′
i, Si, S−i)

via our resource rSi . Note that this gives a consistent set of values for dr(1). For
a fixed S−i, this implies the same cost changes for i as in Γ . To show that
this correctly implements all cost changes for player i as in Γ , consider the
switch from Si to S′

i for a different set of strategies S′
−i and the cost change

Δi(S′
i, Si, S

′
−i). To see that the correct cost change is present also in Γ ′, we

implement the deviation via the following shift. We first let all players other then
i change to S−i. By construction this changes i’s personal cost as in Γ . Then
we let i deviate to Si in state (S′

i, S−i). This yields a change in personal cost as
in Γ by definition. Afterwards, we let other players switch back to S′

−i. Again,
the cost changes of player i are implemented as in Γ . Hence, in conclusion, by
implementing the correct cost change Δi(S′

i, Si, S−i) for a single strategy switch
of Si to S′

i, all other cost changes for switches among these strategies are uniquely
and correctly determined.

This shows that we can turn Γ into a congestion game Γ ′ with the same
potential function, in which every resource is accessed by at most two players.
Trivially, for every such resource we can generate the required delays dr(1) and
dr(2) via an affine delay function dr(x) = ar · x + br. ��
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Lemma 2. A congestion game with affine delay functions has a context-potential
for every social context.

Proof. The context-potential function is given by

Φ(S, F ) =
∑
r∈R

nr(S)∑
j=1

dr(j) +
∑

i=j∈K,
r∈Si∩Sj

fijar

For simplicity of presentation, we consider affine delays dr(x) = ar ·x+ br in the
form of linear delays dr(x) = ar ·x by appropriate introduction of player-specific
resources with linear delays that account for the offsets br. Then, if i changes
from Si to S′

i, the change of cost for player j is given by 0 for the resources of
Sj that are used in neither or both Si and S′

i. The change is ar or −ar for each
resource r that is joined or left by i, respectively. Hence, when we examine the
potential, we see that

Φ(Si, S−i) − Φ(S′
i, S−i)

= Δi(S′
i, Si, S−i) +

∑
i=j∈K,
r∈S′

i∩Sj

fijar −
∑

i=j∈K,
r∈Si∩Sj

fijar

= Δi(S′
i, Si, S−i) +

∑
i=j∈K,

r∈(S′
i−Si)∩Sj

fijar −
∑

i=j∈K,
r∈(Si−S′

i)∩Sj

fijar

= Δi(S′
i, Si, S−i) +

∑
i=j∈K

fij · Δj(S′
i, Si, S−i) ,

as desired. This proves the lemma. ��

3 Computational Results

In this section, we study the computational complexity of deciding existence of
PNE for a given potential game with a given social context. Throughout this
section, we focus on binary contexts. We will say that player i is friends with
player j if fij = fji = 1.

3.1 Congestion Games

We first focus on congestion games as introduced above. For this central class of
games we can prove a NP-completeness result even for singleton games, in which
|Si| = 1 for all players i ∈ K and all strategies Si ∈ Si. We start with a game
that does not have a PNE. This game is then used below in our construction to
show NP-completeness of the decision problem.
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Example 1. Consider a congestion game Γ consisting of the set of players K =
{1, 2, 3, 4} and the set of resources R = {r1, r2}. Players 1 and 2 have only one
strategy each, with S1 = {{r1}} and S2 = {{r2}}. Players 3 and 4 both have two
strategies, S3 = S4 = {{r1}, {r2}}. Both resources have the same delay function
dr with dr(1) = 4, dr(2) = 8 and dr(3) = dr(4) = 9. The binary context is such
that player 4 is friends with all other players. Every other player is only friends
with player 4.

It is easy to verify that this game has no PNE: In a state in which both
resources are used by two players, player 4 has an improvement move by moving
to the other resources. In a strategy profile in which player 3 and 4 are both on
the same resource, player 3 has an improvement move by moving to the other
resource.

Theorem 2. It is NP-complete to decide if a singleton congestion game with
binary context has a pure Nash equilibrium.

The previous result uses concave delay functions to construct a game without
PNE. It is an open problem if PNE always exist in singleton congestion games
with binary context and convex delays. For more general structures of strategy
spaces, however, convex delay functions are not sufficient. Again, we use the
example below to prove NP-completeness of deciding existence.

Example 2. We consider a congestion game with six players denoted by K =
{1, . . . , 6}. Player 1 is friends with 3 and 4. Player 2 is friends with 5 and 6. The
set of resources is R = {r1, r2, r3, r4, r5}. Players 1 and 2 have two strategies.
The strategies of player 1 are S1 = {{r1}, {r2, r3}}. The strategies of player
2 are S2 = {{r2, r4}, {r3, r5}}. The remaining players have one strategy each,
S3 = {{r1}}, S4 = {{r3}}, S5 = {{r2}} and S6 = {{r5}}.

Note that r4 is used by at most 1 player, r1, r5 by at most 2 players each,
r2, r3 by at most 3 players. We define the convex delays only for the required
number of players. For r1 we have dr1(1) = 15 and dr2(2) = 16. Resources r2

and r3 have the same delay function with dr(1) = 5.5, dr(2) = 6 and dr(3) = 10.
Resource r4 has delay dr4(1) = 1. Finally, r5 has delay dr5(1) = 0 and dr5(2) = 1.

Note that only players 1 and 2 have more than one strategy. Thus, to verify
that this game does not have a PNE, we have to check the four possible states
represented by the strategies of players 1 and 2. In state ({r1}, {r2, r4}) the
perceived cost of player 1 is 16 + 16 + 6 = 38 and he would improve by changing
to strategy {r2, r3} resulting in perceived cost of 15 + 10 + 6 + 6 = 37. In state
({r2, r3}, {r2, r4}), the perceived cost of player 2 is 10 + 10 + 1 + 0 = 21 and
he would improve by changing to strategy {r3, r5} resulting in perceived cost of
10 + 1 + 6 + 1 = 18. In state ({r2, r3}, {r3, r5}), the perceived cost of player 1
is 6 + 10 + 15 + 10 = 41 and he would improve by changing to strategy {r1}
resulting in perceived cost of 16 + 16 + 6 = 38. In state ({r1}, {r3, r5}), the
perceived cost of player 2 is 6 + 1 + 5.5 + 1 = 13.5 and he would improve by
changing to strategy {r2, r4} resulting in perceived cost of 6 + 1 + 6 + 0 = 13.

Theorem 3. It is NP-complete to decide if a general congestion game with bi-
nary context has a pure Nash equilibrium even if the delay functions are convex.
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As an extension to ordinary congestion games, we also consider weighted con-
gestion games. In this case, each player i ∈ K has a weight wi ∈ N. Instead of
the number of players using resource r, the delay function dr now takes the sum
of weights of players using r as input and maps it to a delay value. The personal
cost of a player is the sum of delays of chosen resources. Weighted congestion
games are known to possess PNE for linear and exponential delay functions,
see [15]. Here we show that with a binary context, even singleton weighted con-
gestion games with identical linear delays might not have a PNE. This example
can be used in a reduction to show NP-completeness of deciding PNE existence.

Example 3. Consider the following game on two identical resources. Each re-
source r has the delay function dr(x) = x. The game consists of four players
with weights 1,1,4, and 9, respectively. The binary context is such that the three
players with weights 1 and 4 are all friends with each other, but the player with
weight 9 is not friends with anyone. It is easy to verify that this game does not
have a PNE.

Theorem 4. It is NP-complete to decide if a weighted singleton congestion game
with binary context has a pure Nash equilibrium even if all delay functions are
linear.

3.2 Cost Sharing

In this section, we consider several classes of cost sharing games. We first study
Shapley or fair cost-sharing games. These games are congestion games with delay
functions dr(x) = cr/x, where cr ∈ N is the cost of the resource. The cost of
a resource is assigned in equal shares to all players using the resource. As a
subclass, we consider broadcast games with Shapley sharing in which there is a
directed or undirected graph G = (V, E) with a single sink node t ∈ V . Every
edge e ∈ E is a resource. Every node vi ∈ V , vi �= t is associated to a different
player i. The strategy set Si consists of all vi-t-paths in G.

A different cost sharing scheme proposed in [6] yields Prim cost-sharing games.
In this case, resources are edges of a directed or undirected graph G = (V, E) and
players are situated at a subset of the nodes in this graph. There is a single sink
node t, and the set of strategies for a player i in node vi is the set of vi-t-paths in
G. There is a global ranking of players and the cost of an edge is assigned fully
to the highest ranked player using it. The ranking of players derives from the
ordering, in which Prim’s algorithm would add players to construct a minimum
spanning tree (MST). In particular, the first player i is the one which has the
cheapest path to t in G. The second player is the one, which has the cheapest
path to {t, vi}, and so on. Again, in a broadcast game with Prim sharing every
node v �= t is associated with a different player.

We first show that Shapley cost-sharing games with binary context might not
possess a PNE. Remarkably, this even holds for broadcast games with undirected
edges as the following example shows. We then use this example game as a
building block in our NP-completeness result for broadcast games with Shapley
sharing and binary context.
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Fig. 1. A Shapley cost-sharing game that does not have a pure Nash equilibrium. The
players v3, v4, and v5 are friends.

Example 4. Consider a broadcast game with Shapley sharing in the network
depicted in Figure 1. The edges are labeled with their costs. The players that
belong to the vertices v3, v4, and v5 are mutual friends. If player v5 chooses the
path via v3 (or v4), the best response of player v6 is to choose his path via v3 (or
v4, respectively). However, the best response of player v5 is inverted. If player
v6 chooses the path via v3 (or v4), the best response of player v5 is to choose his
path via v4 (or v3, respectively). Thus, no PNE exists.

Theorem 5. It is NP-hard to decide if a broadcast game with Shapley sharing
and binary context has a pure Nash equilibrium.

For Prim cost-sharing games existence and convergence results become more in-
teresting. In particular, for undirected broadcast games with Prim sharing and
arbitrary binary context there always exists a PNE. However, we first show that
a similar result does not hold for directed broadcast games. The following ex-
ample shows that such games with binary contexts do not have PNE in general.
The main idea to prove existence of PNE and convergence without social con-
text is that the player priorities induce a lexicographic potential function for
the game. If we allow additive social context, the lexicographic improvement
property breaks. This is then used to prove NP-hardness of deciding existence
of PNE below.

Example 5. Figure 2 shows an example of a Prim cost-sharing game that does
not have a PNE. In this game player d is friends with all other players and the
players b and c are friends. Observe that in every state, d uses the edge of cost
1000. Hence, this cost is part of the perceived cost of every player in every state.
Therefore, the players never have an incentive to use one of dashed edges. On the
other hand, these are the edges that define the priorities of the players. Given
their priorities, it is straightforward to verify that the players never agree on a
subset of the edges of small cost to buy. Hence, no state of the game qualifies as
a PNE. To turn this game into a broadcast game, note that we can safely add
another player to every intermediate (non-filled) node. These players have only
one strategy each, they will end up with lowest priority, and thus they do not
change the cyclic incentives of players a, b, c and d described above.

Theorem 6. It is NP-hard to decide if a directed broadcast game with Prim
sharing has a pure Nash equilibrium.
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Fig. 2. An example of a Prim cost-sharing game with a binary context that does not
have a pure Nash equilibrium. Here, player d is friends with a, b, and c and the players
b and c are friends.

In contrast, if we consider undirected broadcast games with Prim sharing and
binary contexts, we can construct a PNE using an efficient centralized assign-
ment algorithm. While this shows existence of a PNE, convergence of improve-
ment moves might still be absent. In fact, our theorem below shows the slightly
stronger statement that these games are not even weakly acyclic.

Theorem 7. For every undirected broadcast game with Prim cost sharing there
is a pure Nash equilibrium if the social context F satisfies fij = fji ∈ [0, 1] for
all i, j ∈ K. The pure Nash equilibrium can be computed in polynomial time.

Proof. The proof of the theorem is mainly a consequence of classic arguments
showing non-emptiness of the core in cooperative minimum spanning tree games.
We here use Prim’s MST algorithm not only to define the priority ordering of
players but also to construct a PNE. We first consider the cheapest incident
edge to t and assign the incident player v to play strategy {v, t}. Subsequently,
consider the set V ′ of players connected to t. Consider the cheapest edge con-
necting a player of V ′ to a player in V − V ′. We denote the players incident to
this edge by v′ ∈ V ′ and v ∈ V − V ′. Now we expand V ′ by assigning v to play
the strategy composed of edge (v, v′) and the path that v′ uses to connect to t.
This inductively constructs a state, in which the cost of a MST is shared. Note
that the players are added in order of their priority, and hence every player pays
exactly for the first edge on his path to t. We will argue that this state is a PNE
for every social context with fij = fji ∈ [0, 1] for all i, j ∈ K.

Assume that a player i has a profitable strategy switch that decreases his
perceived cost. This switch does not change the personal cost of any higher
ranked player, these players will stay connected to t by sharing the cost of their
subtree. In addition, the set of all players shares the cost of a MST, i.e., a
minimum cost network connecting all players to t. Hence, the sum of all personal
costs cannot decrease in a strategy switch. First, suppose the personal cost of
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player i strcitly decreases in the strategy switch. Note that all players connecting
to t via his node vi have lower priority. Hence, we could construct a cheaper
network by letting all these players imitate i’s strategy switch, because this
would not change the personal cost of the imitating players. In this way, we would
obtain a strictly cheaper network connecting all players to t, a contradiction.

Thus, the only way to improve the perceived cost is to strictly decrease the
cost of other players that he is friends with. However, player i can only decrease
the cost of lower ranked players by paying some of the edges currently assigned
to them. As fij = fji ≤ 1, he obtains no benefit from paying these edges himself.
As fij = fji ≥ 0, he obtains no benefit from forcing lower ranked players to pay
the edges he vacates. Hence, if he strictly lowers his perceived cost in this way,
then he must also strcitly decrease his personal cost, which is impossible as noted
above. ��
Theorem 8. There is an undirected broadcast game with Prim sharing and bi-
nary context with the property that there exists a starting state from which there
is no sequence of improvement moves to a PNE.

Proof. We construct an example game and an appropriate starting state. Our
game is an adaptation of the game in Fig. 2. We simply turn every directed edge
into an undirected edge. The social context is as before, but here we also assume
that the three auxiliary players in non-filled nodes are all friends with d. In our
starting state, player d uses the edge of cost 1000, and all other players use some
cycle-free path to t that goes over node d. The main invariant is that players c
and b always remain on the edge of cost 1000. Given this condition, player c has
no incentive to switch to a path containing an edge of cost 101, because otherwise
b would be assigned to pay a cost of 1000. If c is assigned to pay the cost of 1000,
all players have an incentive to join c on this edge as the corresponding paths
become cheaper. Thus, no player will have an improvement move purchasing
some of the edges of cost 101, 102 or 103. However, it is straightforward to verify
that without these edges, no PNE can be obtained, and hence no sequence of
improvement moves leads to a PNE. ��

3.3 Market Sharing Games

Market sharing games are a class of congestion games that model content distri-
bution in ad-hoc networks. There is a set of players and a set of markets. Each
player i has a budget Bi, each market has a cost Ci. In addition, a market has a
query rate qi. There is a bipartite network specifying which player can participate
in which market. From the set of markets a player is connected to, he can choose
as strategy any subset for which the sum of costs is at most his budget. The
reward from a market is the query rate, and it is shared equally by the players
that pick the market. Every player gets as utility the sum of rewards of markets
chosen in his strategy. More generally, market games are congestion games with
utility-maximizing players and reward functions dr(x) = qr/x. Market costs and
budgets determine the structure of the strategy spaces.
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In market sharing games with binary context, we again observe absence of
PNE and NP-completeness of deciding PNE existence.

Example 6. Consider the following market sharing game with two identical mar-
kets. Each market has cost of 1 and its query rate (revenue) is 1. There are four
players 1, 2, 3, and 4 in this game. Each player is interested in both markets and
each player has a budget of 1. The players 1, 2, and 3 are mutual friends. It is
easy to see that this game does not have an equilibrium. The players 1, 2, and
3 prefer an outcome in which one of them is in a market by himself.

Theorem 9. It is NP-hard to decide if a market sharing game with a binary
context has a pure Nash equilibrium.
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Abstract. In this paper, we consider the problem of estimating a poten-
tially sensitive (individually stigmatizing) statistic on a population. In
our model, individuals are concerned about their privacy, and experience
some cost as a function of their privacy loss. Nevertheless, they would
be willing to participate in the survey if they were compensated for their
privacy cost. These cost functions are not publicly known, however, nor
do we make Bayesian assumptions about their form or distribution. In-
dividuals are rational and will misreport their costs for privacy if doing
so is in their best interest. Ghosh and Roth recently showed in this set-
ting, when costs for privacy loss may be correlated with private types,
if individuals value differential privacy, no individually rational direct
revelation mechanism can compute any non-trivial estimate of the pop-
ulation statistic. In this paper, we circumvent this impossibility result
by proposing a modified notion of how individuals experience cost as a
function of their privacy loss, and by giving a mechanism which does not
operate by direct revelation. Instead, our mechanism has the ability to
randomly approach individuals from a population and offer them a take-
it-or-leave-it offer. This is intended to model the abilities of a surveyor
who may stand on a street corner and approach passers-by.

1 Introduction

Voluntarily provided data is a cornerstone of medical studies, opinion polls,
human subjects research, and marketing studies. Suppose you are a researcher
and you would like to collect data from a population and perform an analysis
on it. Presumably, you would like your sample, or at least your analysis, to be
representative of the underlying population. Unfortunately, individuals’ decisions
of whether to participate in your study may skew your data: perhaps people with
an embarrassing medical condition are less likely to respond to a survey whose
results might reveal their condition. Some data collectors, such as the US Census,
can get around the issue of voluntary participation by legal mandate, but this is
rare. How might we still get analyses that represent the underlying population?

Statisticians and econometricians have of course attempted to address selec-
tion and non-response bias issues. One approach is to assume that the effect of
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unobserved variables has mean zero. The Nobel-prize-winning Heckman correc-
tion method [1] and the related literature instead attempt to correct for non-
random samples by formulating a theory for the probabilities of the unobserved
variables and using the theorized distribution to extrapolate a corrected sample.
The limitations of these approaches is precisely in the assumptions they make on
the structure of the data. Is it possible to address these issues without needing
to “correct” the observed sample, while simultaneously minimizing the cost of
running the survey?

One could try to incentivize participation by offering a reward for participa-
tion, but this only serves to skew the survey in favor of those who value the
reward over the costs of participating (e.g., hassle, time, detrimental effects of
what the study might reveal), which again may not result in a representative
sample. Ideally, you would like to be able to find out exactly how much you would
have to pay each individual to participate in your survey (her “value”, akin to
a reservation price), and offer her exactly that much. Unfortunately, traditional
mechanisms for eliciting player values truthfully are not a good match for this
setting because a player’s value may be correlated with her private information
(for example, individuals with an embarrassing medical condition might want to
be paid extra in order to reveal it). Standard mechanisms based on the revelation
principle are therefore no longer truthful. In fact, Ghosh and Roth [2] showed
that when participation costs can be arbitrarily correlated with private data,
no direct revelation mechanism can simultaneously offer non-trivial accuracy
guarantees and be individually rational for agents who value their privacy.

The present paper tackles this problem of conducting a survey on sensitive
information when the costs of participating might be correlated with the in-
formation itself. In order to allow us to focus on the problem of incentivizing
participation, we set aside the problem of truthfulness , and assume that once
someone has decided to voluntarily participate in our survey, she must respond
truthfully. This can most simply be justified by assuming that survey responses
are verifiable or cannot easily be fabricated (e.g., the surveyor requires docu-
mentation of answers, or, more invasively, actually collects a blood sample from
the participant). While the approach we present in this paper works well with
such verifiable responses, in addition, our framework provides a formal “almost-
truthfulness” guarantee, that the expected utility a participant could gain by
lying in the survey is at most very small.

Motivated by the negative result of Ghosh and Roth [2], we move away from
direct revelation mechanisms, to a framework where the surveyor is allowed to
make “take-it-or-leave-it” offers to randomly sampled members of the underlying
population. The simplest “take-it-or-leave-it” mechanism one might construct is
simply to offer all sampled individuals the same low price in return for their par-
ticipation in the survey (where participation might come with, e.g., a guarantee
of differential privacy on their private data). If it turns out that this price is
not high enough to induce sufficient rates of participation, one would double the
price and restart the mechanism with a fresh sample of individuals, repeating
until a target participation rate is reached (or the survey budget is exhausted).
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The statistics released from the survey would then be based (perhaps in a dif-
ferentially private manner) on the private information of the participants at the
final (highest) price.

One might hope that such a simple doubling scheme would suffice to get “rea-
sonable” participation rates at “reasonably” low cost. In order to deduce when
take-it-or-leave-it offers will be accepted, though, we need a concrete model for
how individuals value their privacy. Ghosh and Roth [2] provide such a model—
essentially, they interpret the differential privacy parameter as the parameter
governing individuals’ costs. However, as we argue, this model can be problem-
atic.

Our Results. Our first contribution is to document the “paradox of differen-
tial privacy”—in Section 2, we observe that the manner in which Ghosh and
Roth propose to model privacy costs results in clearly nonsensical behavioral
predictions, even in a quite simple take-it-or-leave-it setting. In Section 5, we
offer an alternative model for the value of privacy in multi-stage protocols, using
the tools and language of differential privacy. We then, in Section 6, present a
privacy-preserving variant of the simple “double your offer” algorithm above,
and examine its ability to incentivize participation in data analyses when the
subjects’ value for their private information may be correlated with the sensitive
information itself. We show that our simple mechanism allows us to compute
accurate statistical estimates, addressing the survey problem described above,
and we present an analysis of the costs of running the mechanism relative to a
fixed-price benchmark.

2 The Paradox of Differential Privacy

Over the past decade, differential privacy has emerged as a compelling privacy
definition, and has received considerable attention. While we provide formal
definitions in Section 4, differential privacy essentially bounds the sensitivity
of an algorithm’s output to arbitrary changes in individual’s data. In particu-
lar, it requires that the probability of any possible outcome of a computation
be insensitive to the addition or removal of one person’s data from the input.
Among differential privacy’s many strengths are (1) that differentially private
computations are approximately truthful [3] (which gives the almost-truthfulness
guarantee mentioned above), and (2) that differential privacy is a property of
the mechanism and is independent of the input to the mechanism.

A natural approach taken by past work (e.g., [2]) in attempting to model
the cost incurred by participants in a computation on their private data is to
model individuals as experiencing cost as a function of the differential privacy
parameter ε associated with the mechanism using their data. We argue here,
however, that modeling an individual’s cost for privacy loss solely as any function
f(ε) of the privacy parameter ε predicts unnatural agent behavior and incentives.

Consider an individual who is approached and offered a deal: she can partici-
pate in a survey in exchange for $100, or she can decline to participate and walk
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away. She is given the guarantee that both her participation decision and her in-
put to the survey (if she opts to participate) will be treated in an ε-differentially
private manner. In the usual language of differential privacy, what does this
mean? Formally, her input to the mechanism will be the tuple containing her
participation decision and her private type. If she decides not to participate, the
mechanism output is not allowed to depend on her private type, and switching
her participation decision to “yes” cannot change the probability of any outcome
by more than a small multiplicative factor. Similarly, fixing her participation de-
cision as “yes”, any change in her stated type can only change the probability
of any outcome by a small multiplicative factor.

How should she respond to this offer? A natural conjecture is that she would
experience a higher privacy cost for participating in the survey than not (after
all, if she does not participate, her private type has no effect on the output of the
mechanism – she need not even have provided it), and that she should weigh that
privacy cost against the payment offered, and make her decision accordingly.

However, if her privacy cost is solely some function f(ε) of the privacy param-
eter of the mechanism, she is actually incentivized to behave quite differently.
Since the privacy parameter ε is independent of her input, her cost f(ε) will be
identical whether she participates or not. Indeed, her participation decision does
not affect her privacy cost, and only affects whether she receives payment or not,
and so she will always opt to participate in exchange for any positive payment.

We view this as problematic and as not modeling the true decision-making
process of individuals: real people are unlikely to accept arbitrarily low offers for
their private data. One potential route to addressing this “paradox” would be
to move away from modeling the value of privacy solely in terms of an input-
independent privacy guarantee. This is the approach taken by [4]. Instead, we
retain the framework of differential privacy, but introduce a new model for how
individuals reason about the cost of privacy loss. Roughly, we model individuals’
costs as a function of the differential privacy parameter only of the portion of
the mechanism they participate in, and assume they do not experience cost from
the parts of the mechanism that process data that they have not provided (or
that have no dependence on their data).

3 Related Work

In recent years, differential privacy [5] has emerged as the standard solution
concept for privacy in the theoretical computer science literature. There is by
now a very large literature on this fascinating topic, which we do not attempt
to survey here, instead referring the interested reader to a survey by Dwork [6].

McSherry and Talwar [3] propose that differential privacy could itself be used
as a solution concept in mechanism design (an approach later used by Gupta
et al. [7] and others). They observe that any differentially private mechanism is
approximately truthful, while simultaneously having some resilience to collusion.
Using differential privacy as a solution concept (as opposed to dominant strategy
truthfulness) they give improved results in a variety of auction settings.
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This literature was extended by a series of elegant papers by Nissim, Smorodin-
sky, and Tennenholtz [8], Xiao [9], Nissim, Orlandi, and Smorodinsky [10], and
Chen et al. [4]. This line of work observes ([8,9]) that differential privacy does
not lead to exactly truthful mechanisms, and indeed that manipulations might
be easy to find, and then seeks to design mechanisms that are exactly truth-
ful even when agents explicitly value privacy ([9,10,4]). Recently, Huang and
Kannan show that the mechanism used by McSherry and Talwar is maximal in
range, and so can be made exactly truthful through the use of payments [11].

Feigenbaum, Jaggard, and Schapira consider (using a different notion of pri-
vacy) how the implementation of an auction can affect how many bits of infor-
mation are leaked about individuals’ bids [12].

Most related to this paper is an orthogonal direction initiated by Ghosh and
Roth [2], who consider the problem of a data analyst who wishes to buy data
from a population for the purposes of computing an accurate estimate of some
population statistic. Individuals experience cost as a function of their privacy
loss (as measured by differential privacy), and must be incentivized by a truthful
mechanism to report their true costs. In particular, [2] show that if individuals
experience disutility as a function of differential privacy, and if costs for privacy
can be arbitrarily correlated with private types, then no individually rational
direct revelation mechanism can achieve any nontrivial accuracy. Fleischer and
Lyu [13] overcome this impossibility result by moving to a Bayesian setting,
in which costs are drawn from known prior distributions which depend on the
individual’s private data, and by proposing a relaxation of how individuals ex-
perience privacy cost. In this paper, we also overcome this impossibility result,
but by an abandoning the direct revelation model in favor of a model in which a
surveyor can approach random individuals from the population and offer them
take-it-or-leave-it offers, and by introducing a slightly different model for how
individuals experience cost as a function of privacy. In contrast to [13], our re-
sults allow for worst-case correlations between private data and costs for privacy,
and do not require any Bayesian assumptions. Also in this line of work, Roth
and Schoenebeck [14] consider the problem of deriving Bayesian optimal survey
mechanisms for computing minimum variance unbiased estimators of a popu-
lation statistic from individuals who have costs for participating in the survey.
Although the motivation of this work is similar, the results are orthogonal. In
the present paper, we take a prior-free approach and model costs for private
access to data using the formalism of differential privacy. In contrast, [14] takes
a Bayesian approach, assuming a known prior over agent costs, and does not
attempt to provide any privacy guarantee, and instead only seeks to pay indi-
viduals for their participation.

4 Preliminaries

We model databases as an ordered multiset of elements from some universe X :
D ∈ X∗ in which each element corresponds to the data of a different individ-
ual. We call two databases neighbors if they differ in the data of only a single
individual.
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Definition 1. Two databases of size n D,D′ ∈ Xn are neighbors with respect
to individual i if for all j 	= i ∈ [n], Dj = D′

j.

We can now define differential privacy. Intuitively, differential privacy promises
that the output of a mechanism does not depend too much on any single indi-
vidual’s data.

Definition 2 ([5]). A randomized algorithm A which takes as input a database
D ∈ X∗ and outputs an element of some arbitrary range R is εi-differentially
private with respect to individual i if for all databases D,D′ ∈ X∗ that are
neighbors with respect to individual i, and for all subsets of the range S ⊆ R, we
have:

Pr[A(D) ∈ S] ≤ exp(εi)Pr[A(D′) ∈ S]

A is εi-minimally differentially private with respect to individual i if εi = inf(ε ≥
0) such that A is ε-differentially private with respect to individual i. When it
is clear from context, we will simply write εi-differentially private to mean εi-
minimally differentially private.

A simple and useful fact is that post-processing does not affect differential privacy
guarantees.

Fact 41. Let A : X∗ → R be a randomized algorithm which is εi-differentially
private with respect to individual i, and let f : R → T be an arbitrary (possibly
randomized) function mapping the range of A to some abstract range T . Then the
composition g◦f : X∗ → T is εi-differentially private with respect to individual i.

A useful distribution is the Laplace distribution.

Definition 3 (The Laplace Distribution). The Laplace Distribution with
mean 0 and scale b is the distribution with probability density function: Lap(x|b) =
1
2b exp(−

|x|
b ). We will sometimes write Lap(b) to denote the Laplace distribution

with scale b, and will sometimes abuse notation and write Lap(b) simply to denote
a random variable X ∼ Lap(b).

A fundamental result in data privacy is that perturbing low sensitivity queries
with Laplace noise preserves ε-differential privacy.

Theorem 1 ([5]). Suppose f : X∗ → Rk is a function such that for all adjacent
databases D and D′, ||f(D)− f(D′)||1 ≤ 1. Then the procedure which on input
D releases f(D) + (X1, . . . , Xk), where each Xi is an independent draw from a
Lap(1/ε) distribution, preserves ε-differential privacy.

We consider a (possibly infinite) collection of individuals drawn from some dis-
tribution over types D. There exists a finite collection of private types T . Each
individual is described by a private type ti ∈ T , as well as a nondecreasing cost
function ci : R+ → R+ that measures her disutility ci(εi) for having her private
type used in a computation with a guarantee of εi-differential privacy.
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Agents interact with the mechanism as follows. The mechanism will be en-
dowed with the ability to select an individual i uniformly at random (without
replacement) from D, by making a call to a population oracle OD. Once an indi-
vidual i has been sampled, the mechanism can present i with a take-it-or-leave-it
offer, which is a tuple (pi, ε

1
i , ε

2
i ) ∈ R3

+. pi represents an offered payment, and ε1i
and ε2i represent two privacy parameters. The agent then makes her participa-
tion decision, which consists of one of two actions: she can accept the offer, or she
can reject the offer. If she accepts the offer, she communicates her (verifiable)
private type ti to the auctioneer, who may use it in a computation which is ε2i -
differentially private with respect to agent i. In exchange she receives payment
pi. If she rejects the offer, she need not communicate her type, and receives no
payment. Moreover, the mechanism guarantees that the bit representing whether
or not agent i accepts the offer is used only in an ε1i -differentially private way,
regardless of her participation decision.

5 An Alternate Model of Privacy Costs

We model agents as caring only about the privacy of their private type ti, but
because of possible correlations between costs and types they may also experience
a cost when information about their cost function ci(εi) is revealed. To capture
this while avoiding Bayesian assumptions, we take the following approach.

Implicitly, there is a (possibly randomized) process fi which maps a user’s
private type t to her cost function ci, but we make no assumption about the
form of this map. This takes a worst case view—i.e., we have no prior over
individuals’ cost functions. For a point of reference, in a Bayesian model, the
function fi would represent user i’s marginal distribution over costs conditioned
on her type.

When individual i is faced with a take-it-or-leave-it offer, her type may affect
two computations: first, her participation decision (which may be a function of
her type) is used in some computation A1 which will be ε1i -differentially pri-
vate. Then, if she accepts the offer, she allows her type to be used in some
ε2i -differentially private computation, A2.

We model individuals as caring about the privacy of their cost function only
insofar as it reveals information about their private type. Because their cost
function is determined as a function of their private type, if P is some predicate
over cost functions, if P (ci) = P (fi(ti)) is used in a way that guarantees εi-
differential privacy, then the agent experiences a privacy loss of some ε′i ≤ εi
(which corresponds to a disutility of some ci(ε

′
i) ≤ ci(εi)). We write gi(εi) = ε′i

to denote this correspondence between a given privacy level and the effective
privacy loss due to use of the cost function at that level of privacy. For example,
if fi is a deterministic injective mapping, then fi(ti) is as disclosive as ti and so
gi(εi) = εi. On the other hand, if fi produces a distribution independent of the
user’s type, then gi(εi) = 0 for all εi. Note that by assumption, 0 ≤ gi(εi) ≤ εi
for all εi and gi.
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5.1 Cost Experienced from a Take-It-or-Leave-It Mechanism

Definition 4. A Private Take-It-Or-Leave-It Mechanism is composed of two
algorithms, A1 and A2. A1 makes offer (pi, ε

1
i , ε

2
i ) to individual i and receives a

binary participation decision. If player i participates, she receives a payment of
pi in exchange for her private type ti. A1 performs no computation on ti. The
privacy parameter ε1i for A1 is computed by viewing the input to A1 to be the
vector of participation decisions, and the output to be the number of individuals
to whom offers were made, the offers (pi, ε

1
i , ε

2
i ), and an ε1i -differentially private

count of the number of players who chose to participate at the highest price we
offer.

Following the termination of A1, a separate algorithm A2 computes on the
reported private types of these participating individuals and outputs a real number
ŝ. The privacy parameter ε2i of A2 is computed by viewing the input to be the
private types of the participating agents, and the output as ŝ.

We assume that agents have quasilinear utility (cost) functions: given a payment
pi, an agent i who declines a take-it-or-leave-it offer (and thus receives no pay-
ment) and whose participation decision is used in an ε1i -differentially private way
experiences utility ui = −ci(gi(ε

1
i )) ≥ −ci(ε

1
i ). An agent who accepts a take-it-

or-leave-it offer and receives payment p, whose participation decision is used in
an ε1i -differentially private way, and whose private type is subsequently used in
an ε2i -differentially private way experiences utility ui = pi − ci(ε

2
i + gi(ε

1
i )) ≥

pi − ci(ε
2
i + ε1i ), by a composition property of differential privacy.

Remark 1. This model captures the correct cost model in a number of situations.
Suppose, for example, that costs have correlation 1 with types, and ci(ε) = ∞ if
and only if ti = 1, otherwise ci(ε) ) pi. Then, asking whether an agent wishes to
accept an offer (pi, εi, εi) is equivalent to asking whether ti = 1 or not, and those
accepting the offer are in effect answering this question twice. In this case, we
have gi(ε) = ε. On the other hand, if types and costs are completely uncorrelated,
then there is no privacy loss associated with responding to a take-it-or-leave-it
offer. This is captured by setting gi(ε) = 0.

Agents wish to maximize their utility, and so the following lemma is immediate:

Lemma 1. A utility-maximizing agent i will accept a take-it-or-leave-it offer
(pi, ε

1
i , ε

2
i ) when pi ≥ ci(ε

1
i + ε2i )

Proof. We simply compare the lower bound on an agent’s utility when accepting
an offer with an upper bound on an agent’s utility when rejecting an offer to
find that agent i will always accept when

pi − ci(ε
1
i + ε2i ) ≥ 0.

Remark 2. Note that this lemma is tight exactly when agent types are uncor-
related with agent costs, i.e., when gi(ε) = 0. When agent types are highly
correlated with costs, then rejecting an offer becomes more costly, and agents
may accept take-it-or-leave-it offers at lower prices.
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We make no claims about how agents respond to offers (pi, ε
1
i , ε

2
i ) for which

pi < ci(ε
1
i + ε2i ). Note that since agents can suffer negative utility even by

rejecting offers, it is possible that they will accept offers that lead to experiencing
negative utility. Thus, in our setting, take-it-or-leave-it offers do not necessarily
result in participation decisions that truthfully reflect costs in the standard sense.
Nevertheless, Lemma 1 will provide a strong enough guarantee for us of one-
sided truthfulness : we can guarantee that rational agents will accept all offers
that guarantee them non-negative utility.

Note that our mechanisms will satisfy only a relaxed notion of individual
rationality: we have not endowed agents with the ability to avoid having been
given a take-it-or-leave it offer, even if both options (taking or rejecting) would
leave her with negative utility. Agents who reject take-it-or-leave-it offers can
experience negative utility in our mechanism because their rejection decision
is observed and used in a computation; we limit this negative utility and the
corresponding deviation from individual rationality by treating their rejection
decision in a differentially private manner. Once the take-it-or-leave-it offer has
been presented, agents are free to behave selfishly. We feel that both of these
relaxations (of truthfulness and individual rationality) are well motivated by real
world mechanisms in which surveyors may approach individuals in public, and
crucially, they are necessary in overcoming the impossibility result in [2].

Most of our analysis holds for arbitrary cost functions ci, but we do a bench-
mark cost comparison assuming linear utility functions of the form ci(ε) = viε,
for some quantity vi.

5.2 Accuracy

Our mechanism is designed to be used by a data analyst who wishes to compute
some statistic about the private type distribution of the population. Specifically,
the analyst gives the mechanism some function Q : T → [0, 1], and wishes to
compute a = Eti∼D[Q(ti)], the average value that Q takes among the population
of agents D. The analyst wishes to obtain an accurate answer, defined as follows:

Definition 5. A randomized algorithm, given as input access to a population
oracle OD which outputs an estimate M(OD) = â of a statistic a = Eti∼D[Q(ti)]
is α-accurate if:

Pr[|â− a| > α] <
1

3
where the probability is taken over the internal randomness of the algorithm and
the randomness of the population oracle.

The constant 1
3 is arbitrary, and is fixed only for convenience. It can be replaced

with any other constant value without qualitatively affecting our results.

5.3 Cost

We will evaluate the cost incurred by our mechanism using a bi-criteria bench-
mark: For a parametrization of our mechanism which gives accuracy α, we will
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compare our mechanism’s cost to a benchmark algorithm that has perfect knowl-
edge of each individual’s cost function, but is constrained to make every indi-
vidual the same take-it-or-leave-it offer (the same fixed price is offered to each
person in exchange for some fixed ε′-differentially private computation on her
private type) while obtaining α/32 accuracy.1 That is, the benchmark mecha-
nism must be “envy-free”, and may obtain better accuracy than we do, but only
by a constant factor. On the other hand, the benchmark mechanism has several
advantages: it has full knowledge of each player’s cost, and need not be con-
cerned about sample error. For simplicity, we will state our benchmark results
in terms of individuals with linear cost functions.

6 Mechanism and Analysis

Due to space constraints, proofs can be found in the full version.

6.1 The Take-It-or-Leave-It Mechanism

In this section we describe our mechanism. It is not a direct revelation mecha-
nism, and instead is based on the ability to present take-it-or-leave-it offers to
uniformly randomly selected individuals from some population. This is intended
to model the scenario in which a surveyor is able to stand in a public location
and ask questions or present offers to passers by (who are assumed to arrive
randomly). Those passing the surveyor have the freedom to accept or reject the
offer, but they cannot avoid having heard it.

Our mechanism consists of two algorithms. Algorithm 1, the Harassment
Mechanism, is run on samples from the population with privacy guarantee ε0,
until it terminates at some final epoch ĵ; and then Algorithm 2, the Estimation
Mechanism, is run on (AcceptedSetĵ ,EpochSize(ĵ), ε0). The Harassment Mech-
anism operates in epochs, wherin a large number of individuals are each offered
the same price. The price we offer increases by a multiplicative (1 + η) in each
epoch, for some fixed η . If a differentially private count of the number of players
accepting the offer in a given epoch is high enough, we call this the final epoch,
and hand the participating individuals over to the Estimation Mechanism. The
Estimation Mechanism then computes a differentially private (noisy) version of
the desired statistic over this set of individuals who chose to participate at the
highest price.

6.2 Privacy

Note that our mechanism offers the same ε0 in every take-it-or-leave-it offer.

Theorem 2. The Harassment Mechanism is ε0-differentially private with re-
spect to the participation decision of each individual approached.

1 Note that we have made no attempt to optimize the constant.
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Algorithm 1. Algorithm A1, the “Harassment Mechanism”. It is parametrized
by an accuracy level α, and we view its input to be the participation decision
of each individual approached with a take-it-or-leave-it offer, and its observable
output to be the number of individuals approached, the payments offered, and
the noisy count of the number of players who accepted the offer in the final
epoch.

Let EpochSize(j) ← 100(log j+1)
α2 .

Let j ← 1.
Let ε0 = α
while TRUE do

Let AcceptedSetj ← ∅ and NumberAcceptedj ← 0 and Epochj ← ∅
for i = 1 to EpochSize(j) do

Sample a new individual xi from D.
Let Epochj ← Epochj ∪ {xi}.
Offer xi the take-it-or-leave it offer (pj , ε0, ε0) with pj = (1 + η)j

if i accepts then
Let AcceptedSetj ← AcceptedSetj ∪ {xi} and

NumberAcceptedj ← NumberAcceptedj + 1.
Let νj ∼ Lap(1/ε0) and NoisyCountj = NumberAcceptedj + νj
if NoisyCountj ≥ (1− α/8)EpochSize(j) then

Call Estimate(AcceptedSetj ,EpochSize(j), ε0).
else

Let j ← j + 1

Algorithm 2. The Estimation Mechanism. We view its inputs to be the private
types of each participating individual from the final epoch, and its output is a
single numeric estimate.

Estimate(AcceptedSet,EpochSize, ε):

Let â =
∑

xi∈AcceptedSet Q(xi) + Lap(1/ε)
Output â/EpochSize.

Theorem 3. The Estimation Mechanism is ε0-differentially private with respect
to the participation decision and private type of each individual approached.

Note that these two theorems, together with Lemma 1, imply that each agent
will accept her take-it-or-leave-it offer of (pj , ε0, ε0) whenever pj ≥ ci(2ε0).

6.3 Accuracy

Theorem 4. Our overall mechanism, which first runs the Harassment Mecha-
nism and then hands the types of the accepting players from the final epoch to
the Estimation Mechanism, is α-accurate.
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6.4 Benchmark Comparison

In this section we compare the cost of our mechanism to the cost of an om-
niscient mechanism that is constrained to make envy-free offers and achieve
Θ(α)-accuracy. For the purposes of the cost comparison, in this section we as-
sume that the individuals our algorithm approaches have linear cost functions:
ci(ε) = viε for some vi ∈ R+.

Let v(α) be the smallest value v such that Prxi∼D[vi ≤ v] ≥ 1 − α. In other
words, (v(α)·2ε, ε, ε) is the cheapest take-it-or-leave-it offer for ε-units of privacy
that in the underlying population distribution would be accepted with probabil-
ity at least 1− α, It follows that:

Lemma 2. Any (α/32)-accurate mechanism that makes the same take-it-or-
leave-it offer to every individual xi ∼ D must in expectation pay in total at

least Θ(
v(α

8 )

α ). Note that because here we assume cost functions are linear, this
quantity is fixed independent of the number of agents the mechanism draws from
D.

We now wish to bound the expected cost of our mechanism, and compare it to

our benchmark cost, BenchMarkCost = Θ(
v( α

8 )

α ).

Theorem 5. The total expected cost of our mechanism is at most

E[MechanismCost] = O

(
log log (α · v(α/8)) · BenchMarkCost +

1

α2

)
= O

(
log log

(
α2 · BenchMarkCost

)
· BenchMarkCost +

1

α2

)
.

Remark 3. Note that the additive 1/α2 term is necessary only in the case in
which v(α/8) ≤ (1 + η)/α: i.e., only in the case in which the very first offer will
be accepted by a 1− α/8 fraction of players with high probability. In this case,
we have started off offering too much money, right off the bat. An additive term
is necessary, intuitively, because we cannot compete with the benchmark cost in
the case in which the benchmark cost is arbitrarily small.2

7 Discussion

In this paper, we have proposed a method for accurately estimating a statistic
from a population that experiences cost as a function of their privacy loss. The
statistics we consider here take the form of the expectation of some predicate
over the population. We leave to future work the consideration of other, nonlin-
ear, statistics. We have circumvented the impossibility result of [2] by using a
mechanism empowered with the ability to approach individuals and make them
take-it-or-leave-it offers (instead of relying on a direct revelation mechanism),

2 We thank Lisa Fleischer and Yu-Han Lyu for pointing out the need for the additive
term.
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and by relaxing the measure by which individuals experience privacy loss. Mov-
ing away from direct revelation mechanisms seems to us to be inevitable: if costs
for privacy can be correlated with private data, then merely asking for individ-
uals to report their costs is inevitably disclosive, for any reasonable measure of
privacy. On the other hand, we do not claim that the model we use for how
individuals experience cost as a function of privacy is “the” right one. Neverthe-
less, we have argued that some relaxation away from individuals experiencing
privacy cost entirely as a function of the differential privacy parameter of the
entire mechanism is inevitable (as made particularly clear in the setting of take-
it-or-leave-it offers, in which individuals in this model would accept arbitrarily
low offers). In particular, we believe that the style of survey mechanism pre-
sented in this paper, in which the mechanism may approach individuals with
take-it-or-leave-it offers, is realistic, and any reasonable model for how individ-
uals value their privacy should predict reasonable behavior in the face of such a
mechanism.

Acknowledgements. Work by K. Ligett was partially supported by NSF grant
DMS-1004416. Work by A. Roth was partially supported by NSF grant CCF-
1101389.
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Davide Bilò1, Luciano Gualà2, Stefano Leucci2, and Guido Proietti3,4

1 Dipartimento di Scienze Umanistiche e Sociali, Università di Sassari, Italy
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Abstract. In this paper we study a generalization of the classic network
creation game to the scenario in which the n players sit on a given arbi-
trary host graph, which constrains the set of edges a player can activate
at a cost of α ≥ 0 each. This finds its motivations in the physical lim-
itations one can have in constructing links in practice, and it has been
studied in the past only when the routing cost component of a player is
given by the sum of distances to all the other nodes. Here, we focus on
another popular routing cost, namely that which takes into account for
each player its maximum distance to any other player. For this version
of the game, we first analyze some of its computational and dynamic
aspects, and then we address the problem of understanding the struc-
ture of associated pure Nash equilibria. In this respect, we show that the
corresponding price of anarchy (PoA) is fairly bad, even for several basic
classes of host graphs. More precisely, we first exhibit a lower bound of
Ω(

√
n/(1 + α)) for any α = o(n). Notice that this implies a counter-

intuitive lower bound of Ω(
√
n) for the case α = 0 (i.e., edges can be ac-

tivated for free). Then, we show that when the host graph is restricted to
be either k-regular (for any constant k ≥ 3), or a 2-dimensional grid, the
PoA is still Ω(1+min{α, n

α
}), which is proven to be tight for α = Ω(

√
n).

On the positive side, if α ≥ n, we show the PoA is O(1). Finally, in the
case in which the host graph is very sparse (i.e., |E(H)| = n−1+k, with
k = O(1)), we prove that the PoA is O(1), for any α.

1 Introduction

In a network creation game (NCG), we are given n players identified as the nodes
of a graph, and each player attempts to connect itself to all the other players.
In such a decentralized process, each player aims to selfishly optimize a certain
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routing cost towards the other players. Thus, its action consists of choosing a
suitable subset of players, which are then made adjacent through the activation
of the corresponding set of incident edges. Unavoidably, activating a link incurs
a cost to the player, and so the overall building cost should be strategically
balanced with the aforementioned routing cost.

Due to their generality, it is in clear evidence that NCGs can model very
different practical situations, depending on how all the build-up ingredients are
mixed. In the very classic formulation of the game [7], each player has no limi-
tations in choosing a subset of adjacent players, its routing cost is a function of
the sum of distances to all the other players (i.e., the so called sum cost), and
activating a link has a fixed cost α ≥ 0. Not surprisingly, this model was devised
by the economists, which were mainly interested in understanding whether the
attainment of an equilibrium status (i.e., a status in which players are not willing
to move from) for a mutual-relationships social system is compatible with the
behavior of the players, which tend to establish selfishly their personal contacts.

With the recent advent of the algorithmic game theory, the interest on NCGs
has been reawakened. This is especially due to the fact that NCGs are fit to
model the decentralized construction of communication networks, in which the
constituting components (e.g., routers and links) are activated and maintained
by different owners, as in the Internet. According to its performance measure-
ment philosophy, computer scientists put a new special emphasis on the challenge
of understanding how the social utility for the (very large) system as a whole
is affected by the selfish behavior of the players. This trend originated from the
paper of Fabrikant et al. [6], and was then followed by a sequel of papers, as
detailed in the following.

Previous Work. As said before, the canonical form of a NCG, also known as
SumNCG, is as follows: We are given a set of n players, say V , where the strategy
space of player v ∈ V is the power set 2V \{v}. Given a combination of strategies
σ = (σv)v∈V , let G(σ) denote the underlying undirected graph whose node set
is V , and whose edge set is E(σ) = {(v, u) : v ∈ V ∧ u ∈ σv}. Then, the cost
incurred by player v under σ is

Cv(σ) = α · |σv|+
∑
u∈V

dG(σ)(u, v) (1)

where dG(σ)(u, v) is the distance between nodes u and v in G(σ). Thus, the
cost function implements the inherently antagonistic goals of a player, which
on the one hand attempts to buy as little edges as possible, and on the other
hand aims to be as close as possible to the other nodes in the resulting network.
These two criteria are suitably balanced in (1) by making use of the parameter
α ≥ 0. Consequently, the Nash Equilibria1 (NE) space of the game is a function
of it. Actually, if we characterize such a space in terms of the Price of Anarchy
(PoA), then this has been shown to be constant for all values of α except for
n1−ε ≤ α ≤ 273n, for any ε ≥ 1/ logn (see [9]).

1 In this paper, we only focus on pure strategies Nash equilibria.
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A first natural variant of SumNCG was introduced in [3], where the authors
redefined the player cost function as follows

Cv(σ) = α · |σv|+max{dG(σ)(u, v) : u ∈ V }. (2)

This variant, named MaxNCG, received further attention in [9], where the au-
thors improved the PoA of the game on the whole range of values of α, ob-
taining in this case that the PoA is constant for all values of α except for
129 > α = ω(1/

√
n).

Besides these two basic models, many variations on the theme have been
defined. In an effort of defining α-free models, in [8] the authors proposed a
variant in which a player, when forming the network, has a limited budget to
establish links to other players. This way, the player cost function will only
describe the goal of the player, namely either the maximum distance or the
total distance to other nodes. Since in [8] links and hence the resulting graph
are seen as directed, a natural variant of the model was given in [5], where
the undirected case was considered. Afterwards, in [2] the authors proposed a
model complementing the one given in [5]. More precisely, they assumed that
the cost function of each player now only consists of the number of bought edges
(without any budget on them), and a player needs to connect to the network by
satisfying the additional constraint of staying within a given either maximum
or total distance to the rest of players. Then, in [1] the authors proposed a
further variant, called BasicNCG, in which given some existing network, the
only improving transformations allowed are edge swap, i.e., a player can only
modify a single incident edge, by either replacing it with a new incident edge,
or by removing it. Recently, this model has been extended to the case in which
edges are oriented and players can swap only outleading edges [12]. Notice that,
differently from the previous models, in BasicNCG we have the positive news
that for a player it is not NP-hard to find a best response to the strategies of
other players.

Generally speaking, in all the above models the obtained results on the PoA
are asymptotically worse than those we get in the two basic models, and we refer
the reader to the cited papers for the actual bounds.

Our Results. In this paper we concentrate on a seemingly underplayed gen-
eralization of NCGs, namely that in which for each player the set of possible
adjacent nodes is constrained by a given connected, undirected graph H , which
in the end will host the created network. This finds its practical motivations in
the physical limitations of constructing links, and was originally studied in [4] for
SumNCG, where it is shown that the PoA is upper bounded by O(1 +

√
α) and

min{O(
√
n), 1 + n2/α} for α < n and α ≥ n, respectively, and lower bounded

by Ω(1 + min{α/n, n2/α}). Here, we focus on the max-distance version, that
we call MaxNCG(H), and we show that also in this case the PoA is fairly



The Max-Distance Network Creation Game on General Host Graphs 395

bad,2 even when the host graph is restricted to some basic standard layout
patterns. More precisely, we show that for k-regular (with any constant k ≥ 3)
and 2-dimensional grid host graphs, the PoA is Ω(1 +min{α, n/α}), and this is
asymptotically tight for α = Ω(

√
n) and α ≤ n, since we can prove a general

upper bound of O
(
1+ n

α+ρH

)
, where ρH is the radius of H . Moreover, on general

host graphs, we exhibit a lower bound of Ω
(√

n
1+α

)
for 0 ≤ α = o(n). Quite

surprisingly, this implies that the PoA is Ω(
√
n) even when the players can build

edges for free. On the positive side, if α ≥ n, we show the PoA is at most 2 (this
is a direct consequence of the fact that in this case any equilibrium is a tree).
Finally, in the meaningful practical case in which the host graph is sparse (i.e.,
|E(H)| = n− 1 + k, with k = O(n)), we prove that the PoA is O(1 + k), and so
for very sparse graphs, i.e. k = O(1), we obtain that the PoA is constant.

Preliminarily to the above study, we also provide some results concerning the
computational and dynamic aspects of the game. First, we prove that computing
a best response for a player is NP-hard for any 0 < α = O(n1−ε), thus extending
a similar result given in [9] for MaxNCG when α = 2/n. Then, we prove that
MaxNCG(H) is not a potential game, by showing that an improving response
dynamic does not guarantee to converge to an equilibrium, even if we assume a
minimal liveness property that no player is prevented from moving for arbitrarily
many steps. This implies that an improving response dynamic may not converge
for the MaxNCG game as well (after relaxing such a liveness property). To
the best of our knowledge, a similar negative result is only known for the sum-
distance version of BasicNCG [11].

The paper is organized as follows: in Section 2 we analyze the computa-
tional/convergence aspects of the game, while Sections 3 and 4 discuss the upper
and lower bounds to the PoA, respectively.

2 Preliminary Results

First of all, we observe that, as for the sum-distance version of the problem
studied in [4], it is open to establish whether MaxNCG(H) always admits an
equilibrium. This problem is particularly intriguing, since the topology of H
could play a discriminating role on that. We conjecture an affirmative answer to
this question for any α > 0 (for α = 0 it is trivially true). As a first step towards
this direction, observe that given any H , a breadth-first search tree rooted at a
center of H , and in which each node owns the edges towards its children, is an
equilibrium whenever α ≥ 2ρH − 1, where ρH is the radius of H .

2 According to the spirit of the game, we concentrate on connected equilibria only. In
fact, to avoid pathological disconnected equilibria, we can slightly modify the player’s
cost function (2) as it was done in [5], in order to incentive the players to converge to
connected equilibria. Alternatively, this can be obtained by assuming that initially
the players sit on a connected network (embedded in the hosted graph), and they
move (non-simultaneously) with a myopic best/improving response dynamics.
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Besides that, and similarly to other NCGs, we also have the bad news that it
is hard for a player computing a best response, as stated in the following theorem
(whose proof will be given in the full version of the paper). Notice that this is
true for any 0 < α = O(n1−ε), and so this extends the NP-hardness proof given
in [9] and holding for complete host graphs and α = 2/n.

Theorem 1. For every constant ε > 0 and for every 0 < α = O(n1−ε), the
problem of computing a best response strategy of a player is NP-hard.

On the other hand, it is interesting to notice that the problem of finding a best
response is fixed-parameter tractable w.r.t. to the maximum degree of H . Hence,
for virtually all practical purposes, it is reasonable to assume that players can
actually adhere to the best response dynamics. Incidentally, this could also help
in circumventing a possible convergence problem which may arise by following
instead an improving response dynamics, as suggested by the next. ��

Theorem 2. For every value of α < n
2 − 6, MaxNCG(H) is not a potential

game. Moreover, if α > 0, an improving response dynamics may not converge to
an equilibrium.

Proof. To prove that no potential function can exist we will show a cyclic se-
quence of strategy profiles where, at the end of each cycle, the total cost of the
moving players will decrease by a positive constant amount.

Let l > α+6 be an integer satisfying l ≡ 1 (mod 3) and consider a host graph
H similar to the one shown in Figure 1. H is composed by a cycle of l nodes
labelled from 1 to l, by a path of length l− 1 with endpoints x and z, and by all
the edges between x and the nodes of the cycle. The strategy profile σa being
played is shown by using a graphical notation explained in the caption.

l 1

2

34

5 x

l 1

2

34

5 x

l 1

2

34

5 x

l 1

2

34

5 x

σa σb σc σd

z zz z

Fig. 1. Representation of the strategy changes used in the proof of Theorem 2. On
the left side, the initial configuration, where directed edges exit from their respective
owner node, dashed edges are non-bought edges of H , and the spline denotes a path
between z and x, whose edges are arbitrarily owned.

In such a status, player 1 is paying α+ l−1, whilst changing the strategy to σb

by removing the edge (1, 2) yields a cost of l−1, thus saving α. Observe that now
Cx(σb) is α+ l, and so x has interest in swapping the edge (x, 1) with the edge
(x, 4), thus obtaining the strategy σc and saving 1. In such configuration C1(σc)
has increased to 2l− 4, therefore player 1 can buy back the edge (1, 2), as shown
in strategy σd, thus reducing its cost to α+ l + 2, i.e., saving l − (α+ 6) > 0.
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Notice how configuration σd is similar to σa, with the only difference being
the edge bought by x. Since l ≡ 1 (mod 3), by repeating l times these strategy
changes, every node in the cycle 〈1, . . . , l〉 will play a move at least once, and
the resulting configuration is identical to σa, hence the players will cycle.

To prove the latter part of the claim it suffices to note that after each cycle:
(i) for α > 0 each strategy change is an improving response, and (ii) that the
nodes in the path from x to z other than x, can never change their strategy. ��

Actually, the above proof shows that the improving response dynamics may not
converge even if the minimal liveness property that each player takes a chance
to make an improving move every fixed number of steps is guaranteed. Indeed,
as observed in the proof, the players sitting on the path appended to x do not
move just because they cannot. However, if we modify the above proof by letting
H be complete and by preventing such nodes to move, then the same arguments
continue to hold. This shows that the improving response dynamics may not
converge on complete host graphs as well, i.e., for the classic NCG.

3 Upper Bounds

In this section we prove some upper bounds to the PoA for the game. In what
follows, for a generic graphG, we denote by ρG and δG its radius and its diameter,
respectively, and by εG(v) the eccentricity of node v in G. Moreover, we denote
by SC(σ) the social cost of a generic strategy profile σ (i.e., the sum of players’
individual costs), and by Opt a strategy profile minimizing the social cost. Then

Lemma 1. Let G = G(σ) be a NE, and let α = O(n). Then, we have that
SC(σ)/SC(Opt) = O

(
ρG

α+ρH

)
.

Proof. Let u be a center of G, and let T be a shortest path tree of G rooted
at u. Clearly, the diameter of T is at most 2 ρG. Now, for every node v, let us
denote by kv the number of edges of T bought by v in σ. The key argument is
that if a node v bought only the kv edges of T , its eccentricity would be at most
εT (v) ≤ 2 ρG. Hence, since σ is a NE, we have that Cv(σ) ≤ αkv + 2 ρG. By
summing up the inequalities over all nodes, we obtain

SC(σ) =
∑
v

Cv(σ) ≤ α
∑
v

kv + 2n ρG = α(n− 1) + 2n ρG.

Now, since SC(Opt) ≥ α(n− 1) + n ρH , we have

SC(σ)

SC(Opt)
≤ α(n− 1) + 2n ρG

α(n− 1) + n ρH
≤ 1 +

2n ρG
α(n− 1) + n ρH

= O
( ρG
α+ ρH

)
. ��

As an immediate consequence, we obtain the following:

Theorem 3. For α = O(n), the PoA is O( n
α+ρH

). ��

Another interesting consequence of the Lemma 1 concerns sparse host graphs:



398 D. Bilò et al.

Theorem 4. If the host graph H has n− 1 + k edges, and k = O(n), then the
PoA is O(k + 1).

Proof. Let G = G(σ) be an equilibrium network. Since G must be connected,
we have that |E(H) \E(G)| ≤ k. This is sufficient to provide an upper bound to
the diameter of G. Indeed, in [10] it is shown that the diameter of a connected
graph obtained from a supergraph of diameter δ by deleting h edges is at most
(h + 1)δ. This implies that in our case δG ≤ (1 + k)δH . Now, the claim follows
from Lemma 1. ��

Therefore, for very sparse host graphs, i.e., |E(H)| = n− 1 + k, with k = O(1),
we have that the PoA is O(1), for any α.

The next theorem shows that the PoA is low when α is at least n. The result
has been proved in [3] for the case in which H is a complete graph. In fact, it
turns out that the same proof can be used to extend the result to any H .

Theorem 5 ([3]). For α ≥ n, the PoA is at most 2.

We end this section by showing that when either α is small, or the host graph has
small diameter, every stable tree (if any) is a good equilibrium. This generalizes
a result in [9] given for complete host graphs, which states that the social cost
of every acyclic equilibrium is O(1) times the optimum. ��

Lemma 2. Let (u, v) ∈ E(H) be an edge of the host graph. Then, for every
stable graph G, we have |εG(u)− εG(v)| ≤ 1 + α.

Proof. W.l.o.g. assume εG(u) ≥ εG(v). If (u, v) ∈ E(G), then the claim trivially
holds. Otherwise, if u buys the edge (u, v) then its eccentricity will decrease at
least by εG(u)− εG(v)− 1, while its building cost will increase by α. Since G is
stable, we have εG(u)− εG(v)− 1 ≤ α, and the claim follows. ��

Corollary 1. For every u, v ∈ V and for every stable graph G, it holds that
|εG(u)− εG(v)| ≤ (1 + α) dH(u, v). ��

Lemma 3. Let G = G(σ) be a stable graph. If there are two nodes u, v ∈ V

such that εG(v) ≥ c · εG(u) + k with c > 1 and k ∈ R, then δG
δH

≤ 2 ·
1+α− k

δH

c−1 .

Proof. We have

εG(v) − εG(u) ≥ c · εG(u) + k − εG(u)

≥ (c− 1)εG(u) + k ≥ (c− 1)ρG + k ≥ (c− 1)
1

2
δG + k.

Moreover, from Corollary 1, we have

εG(v)− εG(u) ≤ (1 + α)dH(u, v) ≤ (1 + α)δH ,

from which, we obtain

(c− 1)
1

2
δG + k ≤ (1 + α)δH

and hence the claim. ��
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We are now ready to give the following

Theorem 6. Let σ be a NE such that G = G(σ) is a tree. Then, SC(σ)

SC(Opt)
≤

min{O(1 + α), O(ρH)}.

Proof. Let us consider a center u of G, and let v be a node in the periphery of
G, namely εG(v) = δG. Since G is a tree, we have εG(v) = δG ≥ 2 ρG − 1 =
2 εG(u)− 1. Now, using Lemma 3 and Lemma 1, the claim follows. ��

4 Lower Bounds

In this section we prove some lower bounds to the PoA of the game, as summa-
rized in Table 1.

Table 1. Obtained lower bounds to the PoA

α O( 3
√
n) O(

√
n) Ω(

√
n)

PoA Ω
(√

n
1+α

)
Ω(α) Ω

(
1 + n

α

)

Before getting to the technical details, let us discuss the significance of the
above bounds. First of all, we notice that the lower bound for α = Ω(

√
n) is

tight, due the upper bound given in the previous section. Moreover, observe
that we can obtain such a lower bound for two prominent classes of host graphs,
namely for k-regular graphs (for any constant k ≥ 3) and for 2-dimensional
grids.3 We view this as a meaningful result, due to the practical relevance of
such host topologies.4 Concerning the case α ∈ Ω( 3

√
n)∩O(

√
n), we notice that

the lower bound holds for the same classes of host graphs, but now it is not tight.
Finally, for α = O( 3

√
n), to prove the lower bound we make use of a specific host

graph, but the surprising fact here is that we are able to show a quite large lower
bound (i.e., Ω(

√
n)) even for α = 0. Summarizing, we point out that we get a

polynomial lower bound for any α = O(n1−ε), for any ε > 0, in strong contrast
with the almost everywhere constant upper bound to the PoA of MaxNCG.

Theorem 7. The PoA is Ω
(
1 + min{α, n

α}
)
, even when the host graph is a

2-dimensional grid.

Proof. Let k = 2p where p is an odd number, and let H be a 2-dimensional
square grid of n = k × k vertices. In the rest of the proof, we assume that the
vertex in the i-th row and j-th column of the grid is labeled with 〈i, j〉, where
1 ≤ i, j ≤ k.

3 Notice that a 2-dimensional grid is also planar and bipartite.
4 Actually, using different constructions, we are also able to prove the same lower
bound for outerplanar and series-parallel graphs, but we postpone such result to the
full paper version.
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For every 1 ≤ j ≤ k, let Pj be the path in H which spans all the vertices
of the j-th column of H . Let k∗ = min{1 + �α

2 �, k}. Let F be the set of edges
linking vertex 〈1, j〉 with vertex 〈1, j + 1〉 iff j is even and let F ′ be the set of
edges linking vertex 〈k∗, j〉 with 〈k∗, j + 1〉 iff j is odd.

1

k∗

1 p

√
n

√
n

. . .. . .

Fig. 2. The stable graph G when the host graph H is a square grid of n vertices

Let G be the subgraph of H whose edge set is E(G) = F ∪ F ′ ∪
⋃k

j=1 E(Pj)
(see also Figure 2). Observe that G is a tree of radius greater than or equal to
1
2kk

∗ = Ω
(√

n ·min{1+α,
√
n}
)
. Observe also that 〈k∗, p〉 and 〈k∗, p+1〉 are the

two centers of G. Let 〈k∗, p〉 be the root of G and let Ḡ be the directed version
of G where all root-to-leaf paths are directed towards the leaves. Finally, let σ
be the strategy profile induced by Ḡ, i.e., each player v is buying exactly the
edges in Ḡ outgoing from v. Clearly, G(σ) = G.

To prove that σ is a NE, it is enough to show that every vertex 〈i, j〉, with
1 ≤ i ≤ k and 1 ≤ j ≤ p, is playing a best response strategy. Indeed, if we show
that 〈i, j〉 is playing a best response strategy, then, by symmetry, also 〈i, k−j+1〉
is playing a best response strategy.

Let i and j be two fixed integers such that 1 ≤ i ≤ p and 1 ≤ j ≤ k and
let t be the number of edges bought by 〈i, j〉 in σ. Since G is a tree and since
〈k∗, p〉 and 〈k∗, p+1〉 are the two centers of G, there exists a vertex 〈i′, j′〉, with
1 + p ≤ i′ ≤ k and 1 ≤ j′ ≤ k, such that the distance in G from 〈i, j〉 to 〈i′, j′〉
is exactly equal to the eccentricity of 〈i, j〉 in G. Observe also that the (unique)
path in G from 〈i, j〉 to 〈i′, j′〉 traverses the root as well as the vertex 〈k∗, p+1〉.
Let 〈i′, j′〉 be any vertex such that 1 + p ≤ i′ ≤ k and 1 ≤ j′ ≤ k. First of
all, observe that if we add to G all the edges adjacent to 〈i, j〉 in H , then the
distance from 〈i, j〉 to 〈i′, j′〉 decreases by at most α. Since the cost of activating
new links is at least α, 〈i, j〉 cannot improve its cost function by buying more
than t edges. Now we prove that 〈i, j〉 cannot improve its cost function by buying
at most t edges. First of all, observe that t is the minimum number of edges 〈i, j〉
has to buy to guarantee connectivity. Moreover, to guarantee connectivity, 〈i, j〉
has to buy an edge towards some vertex of every subtree of G rooted at any
of its t children. Since the subtree of G rooted at 〈i, j〉 does not contain 〈i′, j′〉
when 〈i, j〉 is not the root, 〈i, j〉 cannot improve its eccentricity, and thus its cost
function, by buying an edge towards some vertex of every subtree of G rooted
at any of its t children. Furthermore, if 〈i, j〉 is the root of G, then 〈i, j〉 cannot
improve its eccentricity, and thus its cost function, by buying an edge towards
some vertex of every subtree of G rooted at any of its t children as 〈i, j〉 is already
buying the unique edge of H linking it to the subtree of G rooted at 〈k∗, 1+ p〉.
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To complete the proof, observe that SC(Opt) is upper bounded by the social
cost of building H , i.e., SC(Opt) = O

(
n(α +

√
n)
)
. Since SC(σ) ≥ α(n− 1) +

1
2kk

∗n = Ω
(
n3/2 min{1 + α,

√
n}
)
, we have that

SC(σ)

SC(Opt)
=

Ω
(
n3/2 min{1 + α,

√
n}
)

O
(
n(α+

√
n)
) = Ω

(
1 + min{α, n/α}

)
. ��

We now show that a similar lower bound holds also when the host graph is
k-regular.

Theorem 8. If the host graph is k-regular, with k ≥ 3, the PoA is
Ω
(
1 + min{α, n

αk}
)
.

Proof. We will consider α = ω(1) and α = o(n), since otherwise the claim
trivially holds. The proof will be given only for even values of k, while for odd
values it will be just sketched since the construction is very similar.

Let l be the greatest integer such that l ≤ �α+ 1�, and let η be a large value
such that η ≡ 1 (mod l). Notice that if the number of players n is sufficiently
large, then l ≥ 3. We will use a host graph H composed by: (i) a path P of η
nodes, numbered from 0 to η− 1, (ii) a set of shortcut edges on P , and (iii) a set
of gadgets appended to P and used to increase to k the degree of its vertices. In
the following we describe formally how H is built.

Concerning the shortcut edges, let ui be the node on P numbered i · l for
i = 0, . . . , g, where g = η−1

l . Then, a shortcut edge connects ui to ui+1, for
0 ≤ i < g. Notice that any node on P has now degree 2, but for u1, . . . , ug−1

which have degree 4.
Concerning the gadgets, for each node u on P that has degree d < k, augment

H in the following way:

– consider a complete, loop-free, graph K on k + 1 vertices;
– remove k−d

2 vertex-disjoint edges from K, so that every vertex in K has
degree k except k − d vertices that have degree k − 1;

– add the resulting graph to H , by connecting u to the nodes with degree k−1.

At the end of this process the resulting host graph H is k-regular. Consider now
a strategy profile σ such that:

– all the edges of the path P are bought (arbitrarily) by vertices other than
ui, i = 0, . . . , g;

– the vertices of the gadgets that have an edge towards a node on P , buy it;
– the remaining vertices of the gadgets buy a single edge towards a vertex

adjacent to a node of P .

An example of the resulting configuration for k = 4 along with the edges of the
host graph is shown in Figure 3(a).

This configuration is stable. Indeed, every node ui can only change its strategy
by buying either one or two edges, but this can decrease its eccentricity by at
most l− 1, while increasing its building cost of at least α ≥ l− 1. Moreover, the
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u0 u1 u2 ug-1 ug. . .

. . .u0 u1 u′
1

u2 u′
g-1

ug

(a)

(b)

Fig. 3. Representation of the host graph and the equilibrium used in the proof of
Theorem 8 for (a) k = 4, and (b) k = 3

remaining nodes in P cannot change their strategy, as doing so will cause the
disconnection of the graph. Finally, the nodes of the gadgets buy just a single
edge, and no other choice can decrease their eccentricity.

Clearly SC(σ) = Ω(αn+ nη), as G(σ) is a tree with radius Θ(η). Let now Ĝ
be the graph obtained by adding to G(σ) the shortcut edges of H . The number of

edges of Ĝ is n−1+g ≤ 2n, and its diameter is bounded by 2·εĜ(u0) ≤ 2·(g+l+2),
as u0 can take advantage of the shortcut edges. As a consequence, with a small
abuse of notation, we have SC(Ĝ) = O(αn+ n(g + l)).

Using the relations l = Θ(α), η = Θ(lg), and n = Θ(ηk), we have that

PoA ≥ SC(σ)

SC(Ĝ)
=

Ω(αn+ nη)

O(αn + n(g + l))
= Ω

(
η

α+ η
α

)
= Ω

(
n

αk + n
α

)
from which the claim easily follows.

If k is odd, then a host graph similar to that shown in Figure 3(b) (for the
case k = 3) is considered. Notice that the shortcut edges are now vertex-disjoint,
and each node incident to them has degree 3, but for u0 and ug that have degree
2. Then, by appending the appropriate gadget to each node of the path, one can
increase the degree of each node to k. ��

We end this section by proving a non-constant lower bound to the PoA when
α = o(n). Remarkably, our lower bound implies a non-constant lower bound to
the PoA for the case α = 0, i.e., players buy edges for free. Our lower bounding
construction is a non-trivial modification of the 2D-torus-rotated-45◦ construc-
tion used in [1] to prove a lower bound for BasicNCG.

Theorem 9. For α = o(n), the PoA is Ω
(√

n
1+α

)
.

Proof. Let k ∈ N and let H̄ be an edge-weighted 2D-torus-rotated-45◦ consisting
of 2k2 vertices that we call junction vertices. For every pair of integers 0 ≤ i, j <
2k, with i+ j even, there is exactly one vertex of H̄ labeled with 〈i, j〉. We treat
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the two integers of a vertex label as modulo 2k. Each vertex 〈i, j〉 has exactly
four neighbors in H̄: 〈i± 1, j ± 1〉. All edge weights are equal to � = 2(1 +  α!).
For every pair of integers 0 ≤ i, j < 2k, let Xi,j = {〈i′, j′〉 | i′ = i or j′ = j}.
The properties satisfied by H̄ are the following:

(i) H̄ is vertex transitive, i.e., any vertex can be mapped to any other by a
vertex automorphism, i.e., a relabeling of vertices that preserves edges;

(ii) the distance between two vertices 〈i, j〉 and 〈i′, j′〉 in H̄ is equal to � ·
max

{
d̄(i, i′), d̄(j, j′)

}
, where d̄(h, h′) = min

{
|h− h′|, 2k − |h− h′|

}
;

(iii) the eccentricity of each vertex in H̄ is equal to �k;
(iv) for every 0 ≤ i, j < 2k, the distance from every vertex v ∈ Xi,j to vertex

〈|i− k|, |j − k|〉 is equal to �k;
(v) for every edge e of H̄ , the eccentricity of both endpoints of e in H̄ − e is

greater than or equal to �(k + 1);
(vi) for every edge e of H̄ and for every vertex 〈i, j〉, the distance from 〈i, j〉 and

the closest endpoint of e is less than or equal to �(k − 1).

It is easy to see that (i) holds and it is also easy to see that (iv) holds once (ii)
has been proved. To prove (ii), it is enough to observe that each label can change
by ±1 each time we move from one vertex to any of its neighbors. To prove (iii),
we use (i) and the fact that the distance from vertex 〈i′, j′〉 to 〈k, k〉, which is
equal to max{|k − i′|, |k − j′|}, is maximized for i′ = j′ = 0. To prove (v), we
first use (i) to assume that, w.l.o.g, e is the edge linking 〈k, k〉 with 〈k−1, k−1〉.
Next, we observe that any path in H̄−e going from 〈k, k〉 to 〈1, 1〉 must traverse
a neighbor v of 〈k, k〉 in H̄−e and the distance between v and 〈1, 1〉 in H is equal
to �k because one of the two integers in the label of v is equal to k + 1. Finally,
to prove (vi), we first use (i) to assume that, w.l.o.g., i = j = k, i.e., 〈i, j〉 is
〈k, k〉, and the two endpoints of e are, respectively, 〈i′, j′〉 and 〈i′ + 1, j′ + 1〉,
where 0 ≤ i′, j′ < k. Using (ii), it is easy to see that the distance from 〈k, k〉 to
〈i′ + 1, j′ + 1〉 is less than or equal to �(k − 1).

Let G be an unweighted graph obtained from H̄ by replacing each edge of H̄
with a path of length � via the addition of � − 1 new vertices per edge of H̄ .
Let H be the host graph obtained from G by adding an edge between 〈i, j〉 and
every vertex in Xi,j , for every junction vertex 〈i, j〉 (see also Figure 4). Notice
that the number of vertices of H is n = 2k2 + 4k2(� − 1) = Θ

(
(1 + α)k2

)
. In

what follows, we call the vertices in H which are not in H̄ path vertices.
Let σ be any strategy profile such that G(σ) = G and all edges of G(σ) are

bought by players sitting on path vertices, i.e., no edge of G(σ) is bought by
some player sitting on junction vertices. We prove that σ is a NE.

We start proving that players sitting on junction vertices are playing a best
response strategy. Let 〈i, j〉 be a junction vertex. Observe that 〈i, j〉 is not buying
any edge, therefore it suffices to show that 〈i, j〉 cannot improve its cost function
by buying edges. First of all, observe that by (ii) and (vi), the eccentricity of
〈i, j〉 in G is equal to �k. Indeed, if v is a path vertex of a path P corresponding
to edge e of H̄ , then the distance from 〈i, j〉 to the closest endpoint of P (which
corresponds to the closest endpoint of e) is less than or equal to �(k− 1). There-
fore, the distance from 〈i, j〉 to v is less than or equal to �k. To prove that 〈i, j〉
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〈k, k〉

0

1

k

2k ≡ 0k10
2k ≡ 0

Fig. 4. The lower bound construction of Theorem 9. On the left side, the host graph
H is depicted. For the sake of readability, only junction vertices are visible and not
all the edges are shown. The white vertices of row 2k ≡ 0 are copies of the vertices of
row 0 while the white vertices of column 2k ≡ 0 are copies of the vertices of column 0.
The solid edges are paths of length �, while the dashed edges are all the other edges
adjacent to vertex 〈k, k〉. On the right side, the stable graph G is depicted.

is in equilibrium, simply observe that if we add to G all edges of H incident to
〈i, j〉, i.e., all edges linking 〈i, j〉 to vertices in Xi,j , then by (iv) the distance
from 〈i, j〉 to 〈|i − k|, |j − k|〉 is still �k.

Now, we prove that players sitting on path vertices are playing a best response
strategy. Let v be a path vertex. First of all, the eccentricity of v in G is less than
or equal to �k+ 1

2� by (vi). Indeed, if v is a vertex of a path P corresponding to
edge e of H̄, then the distance from any junction vertex to the closest endpoint of
P (which corresponds to the closest endpoint of e) is less than or equal to �(k−1).
Therefore, the distance from v to every junction vertex is less than or equal to
�k and the distance from v to every other path vertex is less than or equal to
�k+ 1

2�. Now, observe that G already contains all edges of H incident to v and,
moreover, the degree of v in G is equal to 2. Therefore, v might improve its cost
function by removing exactly one edge incident to it, i.e., by buying fewer edges
than those it is buying in σ. However, if v removes any of its incident edges in G,
thus saving an α factor from its building cost, then by (v) the eccentricity of the
unique junction vertex closest to v becomes greater than or equal to �(k+1) and
thus, the eccentricity of v also becomes greater than or equal to �(k + 1). Since
�(k+1)−α ≥ �(k+1)− �−2

2 > �k+ 1
2�, v does not improve its cost function by

buying fewer edges than those it is buying in σ.

To complete the proof, we have to show that PoA is Ω
(√

n
1+α

)
. First of all,

observe that the radius of H is Θ(�) = Θ(1+α). Let T be a breadth-first-search
tree rooted at 〈k, k〉. Clearly the radius of T is also Θ(1 + α). Furthermore,
the social cost of Opt is upper bounded by the social cost of building T , i.e.,
SC(Opt) = α(n−1)+n ·O(1+α) = O

(
(1+α)n

)
. As SC(σ) ≥ α(4�k2)+n�k =

Ω(n�k) = Ω
(
(1 + α)nk

)
, we have that

SC(σ)

SC(Opt)
=

Ω
(
(1 + α)nk

)
O
(
(1 + α)n

) = Ω(k) = Ω

(√
n

1 + α

)
. ��
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Abstract. We study the power of local information algorithms for op-
timization problems on social and technological networks. We focus on
sequential algorithms where the network topology is initially unknown
and is revealed only within a local neighborhood of vertices that have
been irrevocably added to the output set. This framework models the
behavior of an external agent that does not have direct access to the
network data, such as a user interacting with an online social network.

We study a range of problems under this model of algorithms with
local information. When the underlying graph is a preferential attach-
ment network, we show that one can find the root (i.e. initial node) in
a polylogarithmic number of steps, using a local algorithm that repeat-
edly queries the visible node of maximum degree. This addresses an open
question of Bollobás and Riordan. This result is motivated by its impli-
cations: we obtain polylogarithmic approximations to problems such as
finding the smallest subgraph that connects a subset of nodes, finding
the highest-degree nodes, and finding a subgraph that maximizes vertex
coverage per subgraph size.

Motivated by problems faced by recruiters in online networks, we also
consider network coverage problems on arbitrary graphs. We demon-
strate a sharp threshold on the level of visibility required: at a certain
visibility level it is possible to design algorithms that nearly match the
best approximation possible even with full access to the graph structure,
but with any less information it is impossible to achieve a non-trivial
approximation. We conclude that a network provider’s decision of how
much structure to make visible to its users can have a significant effect
on a user’s ability to interact strategically with the network.

1 Introduction

In the past decade there has been a surge of interest in the nature of complex
networks that arise in social and technological contexts; see [9] for a recent survey
of the topic. In the computer science community, this attention has been directed
largely towards algorithmic issues, such as the extent to which network structure
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can be leveraged into efficient methods for solving complex tasks. Common prob-
lems include finding influential individuals, detecting communities, constructing
subgraphs with desirable connectivity properties, and so on.

The standard paradigm in these settings is that an algorithm has full access
to the network graph structure. More recently there has been growing interest
in local algorithms, in which decisions are based upon local rather than global
network structure. This locality of computation has been motivated by appli-
cations to distributed algorithms [17,11], improved runtime efficiency [10,20],
and property testing [15,18]. In this work we consider a different motivation:
in some circumstances, an optimization is performed by an external user who
has inherently restricted visibility of the network topology. For such a user, the
graph structure is revealed incrementally within a local neighborhood of nodes
for which a connection cost has been paid. The use of local algorithms in this
setting is necessitated by constraints on network visibility, rather than being a
means toward an end goal of efficiency or parallelizability.

As a motivating example, consider an agent in a social network who wishes to
find (and link to) a highly connected individual. For instance, this agent may be
a newcomer to a community (such as an online gaming or niche-based commu-
nity) wanting to interact with influential or popular individuals, or a recruiter
attempting to form strategic connections in a social network application. Finding
a high-degree node is a straightforward algorithmic problem without informa-
tion constraints, but many online and real-world social networks reveal graph
structure only within one or two hops from a user’s existing connections.

Is it possible for an agent to solve such a problem using only the local infor-
mation available on an online networking site? This question is relevant not only
for individual users, but also to the designer of a social networking service who
must decide how much information to reveal. For example, LinkedIn allows each
user to see the degree of nodes two hops away in the network, whereas Facebook
does not reveal this information by default. We ask: what impact do such design
decisions have on an individual’s ability to interact with the network?

More generally, we consider graph algorithms in a setting of restricted network
visibility. We focus on optimization problems for which the goal is to return a
subset of the nodes in the network; this includes coverage, connectivity, and
search problems. An algorithm in our framework proceeds by incrementally and
adaptively building an output set of nodes, corresponding to those vertices of
the graph that have been queried (or connected to) so far. When the algorithm
has queried a set S of nodes, the structure of the graph within a small radius of
S is revealed, guiding future queries. The principle challenge in designing such
an algorithm is that decisions must be based solely on local information, whereas
the problem to be solved may depend on the global structure of the graph. In
addition to these restrictions, we ask for algorithms that run in polynomial time.

For many problems we derive strong lower bounds on the performance of
local algorithms in general networks. We therefore turn to the class of preferen-
tial attachment (PA) graphs, which model properties of many real-world social
and technological networks. For PA networks, we prove that local information



408 C. Borgs et al.

algorithms do well at many optimization problems, including shortest path rout-
ing and finding the k vertices of highest degree (up to polylogarithmic factors).

We also consider node coverage problems on general graphs, where the goal
is to find a small set of nodes whose neighborhood covers all (or much) of the
network. Such coverage problems are especially motivated in our context by ap-
plications to employment-focused social networking platforms such as LinkedIn,
where there is benefit in having as many nodes as possible within a few hops
of one’s direct connections1. We design local information algorithms whose per-
formances approximately match the best possible even when information about
network structure is unrestricted. We also demonstrate that the amount of local
information available is of critical importance: strong positive results are possible
at a certain range of visibility (made explicit below), but non-trivial algorithms
become impossible when less information is made available. This observation has
implications for the design of online networks, such as the amount of information
to provide a user about the local topology: seemingly arbitrary design decisions
may have a significant impact on a user’s ability to interact with the network.

Results and Techniques. Our first set of results concerns algorithms for preferen-
tial attachment (PA) networks. Such networks are defined by a process by which
nodes are added sequentially and form random connections to existing nodes,
where the probability of connecting to a node is proportional to its degree.

We first consider the problem of finding the root (first) node in a PA network.
A random walk would encounter the root in Õ(

√
n) steps (where n is the number

of nodes in the network). The question of whether a better local information
algorithm exists for this problem was posed by Bollobas and Riordan [5]. They
conjecture that such short paths can be found locally in Θ(log n) steps. We
make the first progress towards this conjecture by showing that polylogarithmic
time is sufficient: there is an algorithm that finds the root of a PA network in
O(log4(n)) time, with high probability. We show how to use this algorithm to
obtain polylogarithmic approximations for finding the smallest subgraph that
connects a subset of nodes (including shortest path), finding the highest-degree
nodes, and finding a subgraph that maximizes vertex coverage per subgraph size.

The local information algorithm we propose uses a natural greedy approach:
at each step, it queries the visible node with highest degree. Demonstrating that
such an algorithm reaches the root in O(log4(n)) steps requires a probabilistic
analysis of the PA process. A natural intuition is that the greedy algorithm will
find nodes of ever higher degrees over time. However, such progress is impeded by
the presence of high-degree nodes with only low-degree neighbors. We show that
these bottlenecks are infrequent enough that they do not significantly hamper
the algorithm’s progress. To this end, we derive a connection between node
degree correlations and supercritical branching processes to prove that a path of
high-degree vertices leading to the root is always available to the algorithm.

1 For example, LinkedIn allows recruiters to execute searches for potential job candi-
dates among all nodes within distance 3 from the recruiter, additionally displaying
resume information for those within distance 2.
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We then consider general graphs, where we explore local information algo-
rithms for dominating set and coverage problems. A dominating set is a set S
such that each node in the network is either in S or the neighborhood of S.
We design a randomized local information algorithm for the minimum dominat-
ing set problem that achieves an approximation ratio that nearly matches the
lower bound on polytime algorithms with no information restriction. As has been
noted in [14], the greedy algorithm that repeatedly selects the visible node that
maximizes the size of the dominated set can achieve a very bad approximation
factor. We consider a modification of the greedy algorithm: after each greedy
addition of a new node v, the algorithm will also add a random neighbor of v.
We show that this randomized algorithm obtains an approximation factor that
matches the known lower bound of Ω(logΔ) (where Δ is the maximum degree
in the network) up to a constant factor. We also show that having enough local
information to choose the node that maximizes the incremental benefit to the
dominating set size is crucial: no algorithm that can see only the degrees of the
neighbors of S can achieve a sublinear approximation factor.

Finally, we extend these results to related coverage problems. For the partial
dominating set problem (where the goal is to cover a given constant fraction
of the network with as few nodes as possible) we give an impossibility result:
no local information algorithm can obtain an approximation better than O(

√
n)

on networks with n nodes. However, a slight modification to the local informa-
tion algorithm for minimum dominating set yields a bicriteria result (in which
we compare performance against an adversary who must cover an additional ε
fraction of the network). We also consider the “neighbor-collecting” problem, in
which the goal is to minimize c|S| plus the number of nodes left undominated
by S, for a given parameter c. For this problem we show that the minimum
dominating set algorithm yields an O(c logΔ) approximation (where Δ is the
maximum degree in the network), and that the dependence on c is unavoidable.

Related Work. Over the last decade there has been a substantial body of work
on understanding the power of sublinear-time approximations. In the context of
graphs, the goal is to understand how well one can approximate graph properties
in a sublinear number of queries. See [18] and [13] for recent surveys. Motivated
by distributed computation, a notion of local computation was formalized by [19]
and further developed in [1]. They define a local computation algorithm as com-
puting only certain specified bits of a global solution. In contrast, our notion
of locality is motivated by information constraints imposed upon a sequential
algorithm. h Local algorithms motivated by efficient computation, rather than
informational constraints, were explored by [2,20]. These works explore local
approximation of graph partitions to efficiently find a global solution.

Preferential attachment (PA) networks were suggested by [3] as a model for
large social networks. There has been much work studying the properties of such
networks, such as degree distribution [6] and diameter [5]; see [4] for a short
survey. The problem of finding high degree nodes, using only uniform sampling
and local neighbor queries, is explored in [7]. The low diameter of PA graphs
can be used to implement distributed algorithms in which nodes repeatedly
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broadcast information to their neighbors [11,8]. A recent work [8] showed that
such algorithms can be used for fast rumor spreading. Our results on the ability
to find short paths in such graphs differs in that our algorithms are sequential,
with a small number of queries, rather than applying broadcast techniques.

The ability to quickly find short paths in social networks has been the focus of
much study, especially in the context of small-world graphs [16,12]. It is known
that local routing using short paths is possible in such models, given some aware-
ness of global network structure (such as coordinates in an underlying grid). In
contrast, our shortest-path algorithm for PA graphs does not require an individ-
ual know the graph structure beyond the degrees of his neighbors. However, our
result requires that routing can be done from both endpoints; in other words,
both nodes are trying to find each other.

For the minimum dominating set problem, Guha and Khuller [14] designed a
local O(logΔ) approximation algorithm. As a local information algorithm, their
method requires that the network structure is revealed up to distance two from
the current dominating set. By contrast, our local information algorithm requires
less information to be revealed on each step. Our focus, and the motivation
behind this distinction, is to determine sharp bounds on the amount of local
information required to approximate this problem (and others) effectively.

2 Model and Preliminaries

Graph Notation. We write G = (V,E) for an undirected graph with node and
edge sets V and E, respectively. We write nG for the number of nodes in G,
dG(v) for the degree of a vertex v in G, and NG(v) for the set of neighbors of
v. Given a subset of vertices S ⊆ V , NG(S) is the set of nodes adjacent to at
least one node in S. We also write DG(S) for the set of nodes dominated by S:
DG(S) = NG(S)∪S. We say S is a dominating set if DG(S) = V . Given nodes u
and v, the distance between u and v is the number of edges in the shortest path
between u and v. The distance between vertex sets S and T is the minimum
distance between a node in S and a node in T . Given a subset S of nodes of
G, the subgraph induced by S is the subgraph consisting of S and every edge
with both endpoints in S. Finally, ΔG is the maximum degree in G. In all of the
above notation we often suppress the dependency on G when clear from context.

Algorithmic Framework. We focus on graph optimization problems in which the
goal is to return a minimal-cost2 set of vertices S satisfying a feasibility con-
straint. We will consider a class of algorithms that build S incrementally under
local information constraints. We begin with a definition of local neighborhoods.

Definition 1 (LocalNeighborhood).Given a set of nodes S in the graphG, the
r-closed neighborhood around S is the induced subgraph of G containing all nodes
at distance less than or equal to r from S, plus the degree of each node at distance
r from S. the r-open neighborhood around S is the r-closed neighborhood around
S, after the removal of all edges between nodes at distance exactly r from S.

2 In most of the problems we consider, the cost of set S will simply be |S|.
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Definition 2 (Local Information Algorithm). Let G be an undirected graph
unknown to the algorithm, where each vertex is assigned a unique identifier. For
integer r ≥ 1, a (possibly randomized) algorithm is an r+-local algorithm if:

1. The algorithm proceeds sequentially, growing step-by-step a set S of nodes,
where S is initialized either to ∅ or to some seed node.

2. Given that the algorithm has queried a set S of nodes so far, it can only
observe the r-closed neighborhood around S.

3. On each step, the algorithm can add a node to S either by selecting a specified
vertex from the r-closed neighborhood around S (a crawl) or by selecting a
vertex chosen uniformly at random from all graph nodes (a jump).

4. In its last step the algorithm returns the set S as its output.

Similarly, for r ≥ 1, we call an algorithm a r-local algorithm if its local informa-
tion (i.e. in item 2) is made from the r-open neighborhood around S.

We focus on computationally efficient (i.e. polytime) local algorithms. Our
framework applies most naturally to coverage, search, and connectivity problems,
where the family of valid solutions is upward-closed. More generally, it is suitable
for measuring the complexity, using only local information, for finding a subset of
nodes having a desirable property. In this case the size of S measures the number
of queries made by the algorithm; we think of the graph structure revealed to
the algorithm as having been paid for by the cost of S.

For our lower bound results, we will sometimes compare the performance of
an r-local algorithm with that of a (possibly randomized) algorithm that is also
limited to using Jump and Crawl queries, but may use full knowledge of the
network topology to guide its query decisions. The purpose of such comparisons
is to emphasize instances where it is the lack of information about the network
structure, rather than the necessity of building the output in a local manner,
that impedes an algorithm’s ability to perform an optimization task.

3 Preferential Attachment Graphs

We consider graphs generated by the preferential attachment (PA) process, con-
ceived by Barabási and Albert [3]. The process is defined sequentially with nodes
added one by one. When a node is added it sends m links to previously created
nodes, connecting to a node with probability proportional to its current degree.

We will use the following, now standard, formal definition of the process, due
to [5]. Given m ≥ 1, we inductively define random graphs Gt

m, 1 ≤ t ≤ n. The
vertex set for Gt

m is [t]. G1
m is the graph with node 1 and m self-loops. Given

G
(t−1)
m , form Gt

m by adding node t and then forming m edges from t to nodes
in [t], say p1(t), . . . , pm(t). The nodes pk(t) are referred to as the parents of t.
The edges are formed sequentially. For each k, node s is chosen with probability
deg(s)/z if s < t, or (deg(s) + 1)/z if s = t, where z is a normalization factor.
Note that deg(s) denotes degree in Gt−1

m , counting previously-placed edges.
We first present a 1-local approximation algorithm for the following simple

problem on PA graphs: given an arbitrary node u, return a minimal connected
subgraph containing nodes u and 1 (i.e. the root of Gn

m).
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Algorithm 1. TraverseToTheRoot

1: Initialize a list L to contain an arbitrary node {u} in the graph.
2: while L does not contain node 1 do
3: Add a node of maximum degree in N(L)\L to L.
4: return L.

Algorithm 2. s-t-Connect

1: P1 ← TraverseToTheRoot(G, s)
2: P2 ← TraverseToTheRoot(G, t)
3: Return P1 ∪ P2

Our algorithm, TraverseToTheRoot, is listed as Algorithm 1. The algorithm
grows a set S of nodes by starting with S = {u} and then repeatedly adding the
node in N(S)\S with highest degree. We will show that, with high probability,
this algorithm traverses the root node within O(log4(n)) steps.

Theorem 1. With probability 1− o(1) over the preferential attachment process
on n nodes, TraverseToTheRoot returns a set of size O(log4(n)).

Remark: For convenience, we have defined TraverseToTheRoot assuming that
the algorithm can determine when it has successfully traversed the root. This
is not necessary in general; our algorithm will have the guarantee that, after
O(log4(n)) steps, it has traversed node 1 with high probability.

Before proving Theorem 1, we discuss its algorithmic implications below.

3.1 Applications of Fast Traversal to the Root

We now describe how to use TraverseToTheRoot to implement local algorithms
for other problems on PA networks. Proofs are omitted due to space constraints.

s-t Connectivity. The s-t connectivity (shortest path) problem is to find a small
connected subgraph containing two given nodes s and t in an undirected graph.

Corollary 1. Let G be a PA graph on n nodes. Then, with probability 1− o(1)
over the PA process, Algorithm 2 (listed above), a 1-local algorithm, returns a
connected subgraph of size O(log4(n)) containing vertices s and t.

This result implies that a subset of k nodes can be connected by a local algorithm
in O(k log4(n)) steps, using a subset of size O(k log4(n)). Also, in the full version
of the paper we show that Corollary 1 does not extend to general graphs: local
algorithms cannot achieve sublinear approximations.

Finding High Degree Nodes. A natural problem on graphs is to find a node
with maximal degree. The algorithm TraverseToTheRoot gives a polylogarithmic
approximation to this problem with high probability. This follows because, with
high probability, the root of a PA network has approximately maximal degree.



The Power of Local Information in Social Networks 413

Corollary 2. Let G be a preferential attachment graph on n nodes. Then, with
probability 1 − o(1), algorithm TraverseToTheRoot will return a node of degree
at least 1

log2(n)
of the maximum degree in the graph, in time O(log4(n)).

In the full version we show that Corollary 2 does not extend to general graphs.

Maximizing Coverage versus Cost. In the full version of the paper we consider
the optimization problem of finding set S such that |D(S)|/|S| is maximized.
For this problem the TraverseToTheRoot algorithm obtains a polylogarithmic
approximation in O(log4(n)) queries, and we prove no such result is possible for
general graphs.

3.2 Analysis of TraverseToTheRoot

We now turn to the proof of Theorem 1. Let us provide some intuition. We would
like to show that TraverseToTheRoot queries nodes of progressively higher de-
grees over time. However, if we query a node i of degree d, there is no guarantee
that subsequent nodes will have degree greater than d; the algorithm may en-
counter local maxima. Suppose, however, that there were a path from i to the
root consisting entirely of nodes with degree at least d. In this case, the algo-
rithm will only ever traverse nodes of degree at least d from that point onward.
One might therefore hope that the algorithm finds nodes that lie on such “good”
paths for ever higher values of d, representing progress toward the root.

Motivated by this intuition, we will study the probability that any given node
i lies on a path to the root consisting of only high-degree nodes (i.e. not much less
than the degree of i). We will argue that many nodes in the network lie on such
paths. We prove this in two steps. First, we show that for any given node i and
parent pk(i), pk(i) will have high degree relative to i with probability greater
than 1/2 (Lemma 2). Second, since each node i has at least two parents, we
use the theory of supercritical branching processes to argue that, with constant
probability for each node i, there exists a path to a node close to the root
following links to such “good” parents (Lemma 3).

This approach is complicated by the fact that existence of such good paths is
highly correlated between nodes; this makes it difficult to argue that such paths
occur “often” in the network. To address this issue, we show that good paths
are likely to exist even after a large set of nodes (Γ in our argument below) is
adversarially removed from the network. We can then argue that each node is
likely to have a good path independently of many other nodes, as we can remove
all nodes from one path before testing the presence of another.

We now provide an outline of the proof. The proofs of technical lemmas appear
in the full version. Set s0 = 160 log(n)(log log(n))2 and s1 = n

225 log2 n
. We think

of vertices in [1, s0] as close to the root, and vertices in [s1, n] as very far from the
root. Let It = [2t + 1, 2t+1] be a partition of [n] into intervals. Define constants
β = 1/4 and ζ = 30.

Definition 3 (Typical node). A node i has typical degree if either deg(i) ≥
m
2ζ

√
n
i or i ≤ s0.
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Lemma 1. The following are true with probability 1− o(1):

– ∀i ≥ s0 : deg(i) ≤ 6m log(n)
√

n
i .

– ∀i ≤ s0 : deg(i) ≥ m
√
n

5 log2(n)
.

– ∀i ≥ s0 : P[i is connected to 1] ≥ 3.9
log(n)

√
i
.

– ∀j ≥ i ≥ s0, k ≤ m : P[pk(i) < j] ≥ 0.9
√
i√

j
.

Our next lemma states that, for any set Γ that contains sufficiently few nodes
from each interval It, and any given parent of a node i, with probability greater
than 1/2 the parent will be typical, not in Γ , and not in the same interval as i.

Definition 4 (Sparse set). A subset of nodes Γ ⊆ [n] is sparse if |Γ ∩ It| ≤
|It|/ log log(n) for all log s0 ≤ t ≤ log s1.

Lemma 2. Fix sparse set Γ . Then for each i ∈ [s0, s1] and k ∈ [m], the following
are true with probability ≥ 8/15 : pk(i) 	∈ Γ , pk(i) ≤ i/2, and pk(i) is typical.

We now claim that, for any given node i and sparse set Γ , there is likely a short
path from i to vertex 1 consisting entirely of typical nodes that do not lie in Γ .
Our argument is via a coupling with a supercritical branching process. Consider
growing a subtree, starting at node i, by adding to the subtree any parent of
i that satisfies the conditions of Lemma 2, and then recursively growing the
tree in the same way from any parents that were added. Since each node has
m ≥ 2 parents, and each satisfies the conditions of Lemma 2 with probability
> 1/2, this growth process is supercritical and should survive with constant
probability (within the range of nodes [s0, s1]). We should therefore expect that,
with constant probability, such a subtree would contain some node j < s0.

The argument above leads to the following lemma, which we will use in our
analysis of the algorithm TraverseToTheRoot. First a definition.

Definition 5 (Good paths). For any i ∈ [s0, s1], we say i has a good path if
there is a path from i to a node j ≤ s0 consisting of nodes with typical degree.

Lemma 3. Choose any set T of at most 16 logn nodes from [s0, s1]. Then each
i ∈ T has a good path with probability at least 1/5, independently for each i.

We will apply Lemma 3 to the set of nodes queried by TraverseToTheRoot to
argue that progress toward the root is made after every sequence of polyloga-
rithmically many steps. We can now complete the proof of Theorem 1, which we
sketch below; a full proof appears in the full version of the paper.

Our analysis of Algorithm 1 consists of three steps, corresponding to three
phases of the algorithm. The first phase consists of all steps until the first time
we traverse a node i < s1 with a good path. The second phase then lasts until
the algorithm queries a node i < s0. The third phase ends when the algorithm
traverses node 1. We will show that each phase lasts at most O(log4(n)) steps.

We will make use of Lemma 3 in our analysis whenever we consider whether
a node has a good path. We will check at most 16 logn nodes in this manner,
and hence the conditions of Lemma 3 will be satisfied throughout the analysis.
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Analysis of Phase 1. Phase 1 ends when the algorithm traverses a node i < s1
with a good path. The value of s1 is set large enough so that every node queried
by the algorithm has index ≤ s1 with probability at least 1

O(log n) , regardless of

previous nodes traversed. By Lemma 3, each such node has a good path with
probability at least 1/5. Multiplicative Chernoff bounds therefore imply that the
phase will end after at most O(log2(n)) steps, with high probability.

Analysis of Phase 2. We split phase 2 into a number of epochs. For each t ∈
[log s0, log s1], epoch t begins when some node i ∈ It with a good path has been
traversed (and ends when epoch t+ 1 begins). Define random variable Yt to be

the length of epoch t. The total number of steps in phase 2 is
∑log s1

t=log s0
Yt.

Suppose the algorithm is in epoch t, having traversed node i ∈ It with a good
path. Then i has a parent j ∈ Iu with deg(j) ≥ m

2ζ

√
n
i and u < t. This node

j could be traversed by the algorithm, so any node queried before j must have
at least this degree. Moreover, traversing node j would end epoch t, so every
step in epoch t traverses a node with degree at least m

2ζ

√
n
i . By Lemma 1, any

such node � satisfies � < zi log2(n) where z is a constant. But now, by Lemma 1,
each node � traversed in epoch t has a parent r < i/ log2(n) with probability at
least 1

O(log2(n))
. Any such node r has degree greater than any node in It, again

by Lemma 1, so if a queried node had such a parent then the subsequent step
must query a node of index at most 2t. Any such node is on a good path with
probability at least 1/5, by Lemma 3, in which case epoch t would end.

To summarize, each step of epoch t causes an end to the epoch with proba-
bility at least 1

O(log2(n))
. We conclude that

∑log s1
t=log s0

Yt is dominated by the sum

of at most logn geometric random variables, each with mean O(log2(n)). Con-
centration bounds for geometric random variables then imply that, with high
probability, epoch 2 ends in O(log3(n)) steps.

Analysis of Phase 3. We first note that the induced graph on the first s0 nodes
is connected with high probability (see [8], corollary 5.15). By Lemma 1 every

node i ≤ s0 has degree at least d = m
√
n

5 log1.9(n)
, so the algorithm will only traverse

nodes of degree at least d in phase 3. By Lemma 1, any node j with degree at
least d must satisfy j < (60ζ)2 log5.8(n). Also by Lemma 1, for each such j, the
probability that j is adjacent to the root is at least 1

211 log3.9(n)
. Chernoff bounds

then imply that such an event will occur with high probability after at most
O(log4(n)) steps. Thus, with high probability, phase 3 will end after at most
s0 +O(log4(n)) = O(log4(n)) steps. This completes the proof of Theorem 1.

4 Minimum Dominating Set on Arbitrary Networks

We now consider the problem of finding a dominating set S of minimal size for
an arbitrary graph G. Even with full (non-local) access to the network structure,
it is known to be hard to approximate the Minimum Dominating Set Problem
to within a factor of H(Δ) in polynomial time, where H(n) ≈ ln(n) is the nth
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Algorithm 3. AlternateRandom

1: Select an arbitrary node u from the graph and initialize S = {u}.
2: while D(S) 	= V do
3: Choose x ∈ argmaxv∈N(S){|N(v)\D(S)|} and add x to S.
4: if N(x)\S 	= ∅ then
5: Choose y ∈ N(x)\S uniformly at random and add y to S.
6: return S.

harmonic number. In this section we explore how much local network structure
must be made visible in order for it to be possible to match this lower bound.

Guha and Khuller [14] design an O(H(Δ))-approximate algorithm for the
minimum dominating set problem, which can be interpreted in our framework
as a 2+-local algorithm. As we show, the ability to observe network structure up
to distance 2 is unnecessary if we allow the use of randomness: we will construct
a randomized O(H(Δ)) approximation algorithm that is 1+-local. We then show
that this level of local information is crucial: no algorithm with less local infor-
mation can return a non-trivial approximation. Proofs in this section are omitted
due to space constraints, but appear in the full version of the paper.

4.1 A 1+-Local Algorithm

We now present a 1+-local randomized O(H(Δ))-approximation algorithm for
the min dominating set problem. Our algorithm obtains this approximation fac-
tor both in expectation and with high probability in the optimal solution size3.

Roughly speaking, our approach is to greedily grow a subtree of the network,
repeatedly adding vertices that maximize the number of dominated nodes. Such
a greedy algorithm is 1+-local, as this is the amount of visibility required to
determine how much a given node will add to the number of dominated vertices.
Unfortunately, this greedy approach does not yield a good approximation; it is
possible for the algorithm to waste significant effort covering a large set of nodes
that are all connected to a single vertex just beyond the algorithm’s visibility.
To address this issue, we introduce randomness into the algorithm: after each
greedy addition of a node x, we will also query a random neighbor of x. The
algorithm is listed above as Algorithm 3 (AlternateRandom).

We now show that AlternateRandom obtains an O(H(Δ)) approximation,
both in expectation and with high probability. In what follows, OPT will de-
note the size of the optimal dominating set in an inplicit input graph. The proof
follows by bounding, for each node v in the optimal solution, the expected num-
ber of neighbors of v that are queried before v is queried.

Theorem 2. AlternateRandom is 1+-local and returns a dominating set S where
E[|S|] ≤ 2(1 +H(Δ))OPT + 1 and P[|S| > 2(2 +H(Δ))OPT ] < e−OPT .

3 Our algorithm actually generates a connected dominating set, so it can also be seen
as an O(H(Δ)) approximation to the connected dominating set problem.
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We end this section by showing that 1+-locality is necessary for constructing
good local approximation algorithms. The example we consider is a clique with
one edge (u, v) removed, plus two additional nodes u′ and v′ that are adjacent
to nodes u and v respectively.

Theorem 3. For any randomized 1-local algorithm A for the min dominating
set problem, there exists an input instance G for which E[|S|] = Ω(n)OPT ,
where S denotes the output generated by A on input G.

4.2 Partial Coverage Problems

We next study problems in which the goal is not necessarily to cover all nodes
in the network, but rather dominate only sections of the network that can be
covered efficiently. We consider two central problems in this domain: the partial
dominating set problem and the neighbor collecting problem.

Partial Dominating Set. In the partial dominating set problem we are given a
parameter ρ ∈ (0, 1]. The goal is to find the smallest set S such that |D(S)| ≥ ρn.

We begin with a negative result: for any constant k and any k-local algorithm,
there are graphs for which the optimal solution has constant size, but with high
probability Ω(

√
n) queries are required to find any ρ-partial dominating set. Our

example will apply to ρ = 1/2, but can be extended to any constant ρ ∈ (0, 1).
The example is a graph with two embedded stars, one with n/2−

√
n leaves and

one with only
√
n leaves; the optimal solution contains the center of each star,

but the smaller star requires many queries to locate.

Theorem 4. For any randomized k-local algorithm A for the partial dominating
set problem with ρ = 1/2, there exists an input G with optimal partial dominat-
ing set OPT for which E[|S|] = Ω(

√
n) · |OPT |, where S denotes the output

generated by A on input G.

Motivated by this lower bound, we consider a bicriterion result: given ε > 0, we
compare the performance of an algorithm that covers ρn nodes with the optimal
solution that covers ρ(1 + ε)n nodes (assuming ρ(1 + ε) ≤ 1). We show that
a modification to Algorithm 3, in which jumps to uniformly random nodes are
interspersed with greedy selections, yields an O((ρε)−1H(Δ)) approximation.
The proof is similar in spirit to Theorem 2.

Theorem 5. Given any ρ ∈ (0, 1), ε ∈ (0, ρ−1 − 1), and set of nodes OPT with
|D(OPT )| ≥ ρ(1 + ε)n, Algorithm 4 (AlternateRandomAndJump) returns a set
S of nodes with |D(S)| ≥ ρn and E[|S|] ≤ 3|OPT |(ρε)−1H(Δ).

The Neighbor Collecting Problem. We next consider the objective of minimizing
the total cost of the selected nodes plus the number of nodes left uncovered:
choose a set S of G that minimizes f(S) = c|S|+ |V \D(S)| for a given parameter
c > 0. This problem is motivated by the Prize-Collecting Steiner Tree problem.
The proof is similar in spirit to Theorem 2, noting that the optimal dominating
set is no worse than a c-approximation to the optimal solution.
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Algorithm 4. AlternateRandomAndJump

1: Initialize S = ∅.
2: while |D(S)| < ρn do
3: Choose a node u uniformly at random from the graph and add u to S.
4: Choose x ∈ argmaxv∈N(S){|N(v)\D(S)|} and add x to S.
5: if N(x)\S 	= ∅ then
6: Choose y ∈ N(x)\S uniformly at random and add y to S.
7: return S.

Theorem 6. For any c ≥ 1 and set OPT minimizing f(OPT ), algorithm Al-
ternateRandom returns a set S for which E[f(S)] ≤ 2c(1 +H(Δ))f(OPT ).

We show in the full version that the dependency on c is unavoidable and that
Theorem 6 cannot be extended to 1-local algorithms without significant loss.

5 Conclusions

We presented a model of computation in which algorithms are constrained in
the information they have about the input structure, which is revealed over time
as expensive exploration decisions are made. Our motivation lies in determining
whether and how an external user in a network, who cannot make arbitrary
queries of the graph structure, can efficiently solve optimization problems in a
local manner. Our results suggest that inherent structural properties of social
networks may be crucial in obtaining strong performance bounds.

Another implication is that the designer of a network interface, such as an
online social network platform, may gain from considering the power and lim-
itations that come with the design choice of how much network topology to
reveal to individual users. On one hand, revealing too little information may
restrict natural social processes that users expect to be able to perform, such as
searching for potential new connections. On the other hand, revealing too much
information may raise privacy concerns, or enable unwanted behavior such as au-
tomated advertising systems searching to target certain individuals. Our results
suggest that even minor changes to the structural information made available to
a user may have a large impact on the class of optimization problems that can
be reasonably solved by the user.
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Abstract. We analyze the network congestion game with atomic play-
ers, asymmetric strategies, and the maximum latency among all players
as social cost. This important social cost function is much less under-
stood than the average latency. We show that the price of anarchy is
at most two, when the network is a ring and the link latencies are lin-
ear. Our bound is tight. This is the first sharp bound for the maximum
latency objective.

1 Introduction

Selfish routing is a fundamental problem in algorithmic game theory, and was
one of the first problems which were intensively studied in this field [1–4]. A main
question in this field concerns the cost of selfishness: how much performance is
lost because agents behave selfishly, without regard for the other agents or for
any global objective function?

The established measure for this performance loss is the price of anarchy
(PoA) [1]. This is the worst-case ratio between the value of a Nash equilibrium,
where no player can deviate unilaterally to improve, and the value of the optimal
routing.

Of particular interest to computer science are network congestion games,
where agents choose routing paths and experience delays (latencies) depend-
ing on how much other players also use the edges on their paths. Such games
are guaranteed to admit at least one Nash equilibrium [5]. Generally, the price
of anarchy for a selfish routing problem may depend on the network topology,
the number of players (including the non-atomic case where an infinite number
of players each controls a negligible fraction of the solution), the type of latency
functions on the links, and the objective functions of the players and of the
system (the latter is often called the social cost function).

Most of the existing research has focused on the price of anarchy for minimiz-
ing the total latency of all the players [6, 7]. Indeed, this measure is so standard
that it is often not even mentioned in titles or abstracts. In most cases, a sym-
metric setting was considered where all players have the same source node and
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the same destination node, and hence the same strategy set. [8] and [9] inde-
pendently proved that the PoA of the atomic congestion game (symmetric or
asymmetric) with linear latency is at most 2.5. This bound is tight. The bound
grows to 2.618 for weighted demands [9], which is again a tight bound. In non-
atomic congestion games with linear latencies, the PoA is at most 4/3 [3]. This
is witnessed already by two parallel links. The same paper also extended this
result to polynomial latencies.

In this work, we regard as social cost function the maximum latency a player
experiences. While this cost function was suggested already in [1], it seems much
less understood. For general topologies, the maximum PoA of atomic congestion
games with linear latency is 2.5 in single-commodity networks (symmetric case,
all player choose paths between the same pair of nodes), but it grows to Θ(

√
k)

in k-commodity networks (asymmetric case, k players have different nodes to
connect via a path) [8]. The PoA further increases with additional restrictions
to the strategy sets. [10] showed that when the graph consists of n parallel links
and each player’s choice can be restricted to a particular subset of these links,
the maximum PoA lies in the interval [n − 1, n).

For non-atomic selfish routing, [11] showed that the PoA of symmetric games
on n-node networks with arbitrary continuous and non-decreasing latency func-
tions is n− 1, and exhibited an infinite family of asymmetric games whose PoA
grows exponentially with the network size.

Our Setting: In this work, we analyze the price of anarchy of a maximum latency
network congestion game for a concrete and useful network topology, namely
rings. Rings are frequently encountered in communication networks. Seven self-
healing rings form the EuroRings network, the largest, fastest, best-connected
high-speed network in Europe, spanning 25,000 km and connecting 60 cities in 18
countries. As its name suggests, the Global Ring Network for Advanced Appli-
cations Development (GLORIAD) [12] is an advanced science internet network
constructed as an optical ring around the Northern Hemisphere. The global
ring topology of the network provides scientists, educators and students with
advanced networking tools, and enables active, daily collaboration on common
problems. It is therefore worthwhile to study this topology in particular. Indeed,
considerable research has already gone into studying rings, in particular in the
context of designing approximation algorithms for combinatorial optimization
problems [13–17].

As in most previous work, we assume that traffic may not be split, because
this causes the problem of packet reassembly at the receiver and is therefore
generally avoided. Furthermore, we assume that the edges (“links”) have linear
latency functions. That is, each link e has a latency function �e(x) = aex + be,
where x is the number of players using link e and ae and be are nonnegative
constants.

For the problem of minimizing the maximum latency, even assuming a central
authority, the question of how to route communication requests optimally is
nontrivial; it is not known whether this problem is in P . It is known for general
(directed or undirected) network topologies that already the price of stability
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(PoS), which is the ratio of the value of the best Nash equilibrium to that of the
optimal solution [18], is unbounded for this goal function even for linear latency
functions [19, 20]. However, this is not the case for rings. It has been shown that
for any instance on a ring, either its PoS equals 1, or its PoA is at most 6.83,
giving a universal upper bound 6.83 on PoS for the selfish ring routing [19]. The
same paper also gave a lower bound of 2 on the PoA. Recently, an upper bound
of 16 on the PoA was obtained [20].

Our Results: In this paper, we show that the PoA for minimizing the maximum
latency on rings is exactly 2. This improves upon the previous best known up-
per bounds on both the PoA and the PoS [19, 20]. Achieving the tight bound
required us to upper bound a high-dimensional nonlinear optimization problem.
Our result implies that the performance loss due to selfishness is relatively low
for this problem. Thus, for ring routing, simply allowing each agent to choose
its own path will always result in reasonable performance. The lower bound ex-
ample (see Figure 1) can be modified to give a lower bound of 2d for latency
functions that are polynomials of degree at most d.

Proof Overview: Our proof consists of two main parts: first, we analyze for Nash
equilibria the maximum ratio of the latency of any player to the latency of the
entire ring, and then we analyze the ratio of the latency of the entire ring in
a Nash equilibrium to the maximum player latency in an optimal routing. In
the first part we show that this ratio is at most roughly 2/3; the precise value
depends on whether or not every link of the ring is used by at least one player
in the Nash equilibrium.

For the second ratio, we begin by showing the very helpful fact that it is
sufficient to consider only instances where no player uses the same path in the
Nash routing as in the optimal routing. For such instances, we need to distinguish
two cases. The first case deals with instances for which there exists a link that
in the Nash equilibrium is not used by any player. For such instances we use a
structural analysis to bound the second ratio from above by 2 + 2/k, where k is
the number of agents in the system.

For the main case in which the paths of the players in the Nash equilibrium
cover the ring, we show that the second ratio is at most 3. We begin by using the
standard technique of adding up the Nash inequalities which state that no player
can improve by deviating to its alternative path. This gives us a constraint which
must be satisfied for any Nash equilibrium, but this does not immediately give
us an upper bound for the second ratio. Instead, we end up with a nonlinear
optimization problem: maximize the ratio under consideration subject to the
Nash constraint. The analysis of this problem was the main technical challenge
of this paper. We use a series of modifications to reach an optimization problem
with only five variables, which, however, is still nonlinear. It can be solved by
Maple, but we also provide a formal solution.
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2 The Selfish Ring Routing Model

Let I = (R, �, (si, ti)i∈[k]) be a selfish ring routing (SRR) instance, where R =
(V, E) is a ring and where for each agent i ∈ [k] the pair (si, ti) denotes the
source and the destination nodes of agent i. We sometimes refer to the agents as
players. For every link e ∈ E we denote the latency function by �e(x) = aex+be,
where ae and be are nonnegative constants; without loss of generality we assume
that ae, be are nonnegative integers. This is feasible since real-valued inputs can
be approximated arbitrarily well by integers by scaling the input appropriately.

For any subgraph P of R (written as P ⊆ R), we slightly abuse the notation
and identify P with its link set E(P ). If Q is a path on R with end nodes s and
t, we use P\Q to denote the graph obtained from P by removing all nodes in
V (P ) ∩ V (Q) \ {s, t} (all internal nodes of Q which are contained in P ), and all
links in P ∩ Q (all links of Q which are contained in P ).

For any feasible routing π = {P1, . . . , Pk}, where Pi is a path on R between
si and ti, i = 1, . . . , k, we denote by M(π) := maxi∈[k] �(Pi, π) the maximum
latency of any of the k agents. Here we abbreviate by �(P, π) the latency

�(P, π) :=
∑
e∈P

(ae|{i ∈ [k] | e ∈ Pi}| + be)

of a subgraph P ⊆ R in π. We say that π is a Nash equilibrium (routing) if no
agent i ∈ [k] can reduce its latency �(Pi, π) by switching Pi to the alternative
path R\Pi, provided other agents do not change their paths.

Sometimes we are only interested in the latency caused by one additional agent
and we write ||P ||a :=

∑
e∈P ae. Similarly we abbreviate ||P ||b :=

∑
e∈P be.

Let πN = {N1, . . . , Nk} be some fixed worst Nash routing (i.e., a Nash equi-
librium with maximum system latency M(πN )), and let Π∗ be the set of optimal
routings of I.

For any π = {Q1, . . . , Qk} ∈ Π∗, let

h(π) := |{i ∈ [k] : Ni �= Qi}|.

I.e., h(π) is the number of agents for which their Nash routings are not the same
as their optimal routings. We choose π∗ = {Q1, . . . , Qk} ∈ Π∗ to be an optimal
routing that minimizes h = h(π∗). Without loss of generality, we assume that
{i ∈ [k] : Ni �= Qi} = [h] := {1, . . . , h}. We call the agents 1, . . . , h switching
agents and we refer to the agents in [k]\[h] as non-switching ones.

For brevity, we write �∗(P ) := �(P, π∗) and �N (P ) := �(P, πN ). Abusing
notation, for any link e ∈ R, we set

π∗(e) := |{i ∈ [h] | e ∈ Qi}|,

the number of switching (!) players whose optimal paths traverse e. Analogously,
πN (e) := |{i ∈ [h] | e ∈ Ni}|.
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3 Main Result and Outline of the Proof

The purpose of this paper is the proof of the following statement.

Theorem 1. The price of anarchy for selfish ring routing with linear latencies is 2.

As mentioned in the introduction, a simple example for which the price of anar-
chy is two has been given already in [19]. This is the example given in Figure 1.
As is easy to verify, M(π∗) = 1 and M(πN ) = 2.

Fig. 1. A 2-player SRR instance with PoA = 2

Hence, our result is tight. We can resort to proving the upper bound in
Theorem 1. That is, we need to show that for all SRR instances I the ratio
M(πN )/M(π∗) is at most two. The main steps are as follows.

1. We begin by restricting the set of Nash routings we need to consider. We
show that we can assume without loss of generality that in πN there is at
most one player that uses the same path as in π∗, i.e., h ≥ k−1 (Section 3.1).
We call the case where there is such a player the singular case; if there is no
such a player, we are in the nonsingular case.

2. We say that the Nash equilibrium πN is a covering equilibrium if the Nash
paths of the switching agents 1, . . . , h cover the ring, i.e., if ∪i∈[h]Ni = R.
For any non-covering equilibrium, we use a structural analysis of πN to show
(Section 4) that the PoA is less than two for h ≥ 3.

3. We proceed by showing (Lemma 5) that for every covering equilibrium, the
ratio M(πN )/�N(R) is at most 2/3.

4. Finally, in the remainder of Section 5, we show that �N(R)/M(π∗, I) ≤ 3
for any covering equilibrium πN . This is the main part of the proof. We give
a computer assisted proof here in this extended abstract, and we refer to
the full paper [21] for a formal mathematical proof. Combining this with the
third statement concludes the proof of Theorem 1 for covering equilibria.

Some specific cases with small values of h need to be handled separately, and
are omitted in the extended abstract. Our proof needs the following technical
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lemma which is true for both covering and non-covering equilibria. It shows that
any two Nash paths of agents that use different paths in πN and in π∗ share at
least one common link.

Lemma 1. For all i, j ∈ [h], Ni and Nj are not link-disjoint.

Proof. Assume there exist two agents i, j ∈ [h] such that Ni and Nj have no
link in common. Hence their complements, the optimal paths Qi and Qj jointly
cover the entire ring, that is, Qi ∪ Qj = R.

Consider the routing π′ which is exactly the same as π∗, except for these two
agents who use their Nash paths Ni, Nj instead. For any link e ∈ Qi ∩ Qj we
have π′(e) = π∗(e)− 2, and for every link e ∈ (Qi\Qj)∪ (Qj\Qi) the number of
agents on this link does not change, i.e., π′(e) = π∗(e). Since ae ≥ 0 for all e ∈ E,
this yields M(π′) ≤ M(π∗). Hence, π′ ∈ Π∗. But we also have h(π′) < h(π∗),
contradicting the choice of π∗ given in Section 2. ��

3.1 Reduction to Singular and Nonsingular Instances

Lemma 2. Consider any selfish ring routing instance I = (R, �, (si, ti)i∈[k])
with linear latencies. Let π∗ be an optimal routing and let πN be a Nash routing.
Suppose there is an agent q ∈ [k] that uses the same path in πN as in π∗.
Then there exists a selfish routing instance I′ = (R, �′, (si, ti)i∈[k]\{q}) with linear
latency functions �′e(x) such that

– the non-switching agent q is removed from I to get I ′,
– the routing πN restricted to the remaining agents, denoted as πN ′, is a Nash

equilibrium for I′,
– the total ring latencies satisfy �′N (R) := �′(R, πN ′) = �N (R), and
– we have M ′(opt′) ≤ M(π∗) for the maximum latencies of individual agents.

Here, opt′ denotes an optimal routing for I ′ and M ′(·) denotes the maximum
latency of a routing in I ′.

Proof. By definition, player q uses path Qq in both πN = {Ni : i ∈ [k]} and
π∗ = {Qi : i ∈ [k]}. Remove player q from I. For every link e ∈ Qq set �′e(x) :=
�e(x)+ae = aex+be+ae. The latency functions of all other links are unchanged.
Denote the resulting instance (R, �′, (si, ti)i∈[k]\{q}) by I ′.

Every routing π for I induces a routing π′ for I ′ in the natural way, by
omitting the routing for player q. From the modified latency defined in the
proof, we see that the latency of every edge in an induced routing is the same
as the original latency in I. It follows immediately that

– a routing which is a Nash equilibrium in I induces a Nash equilibrium routing
in I ′,

– the latency of the entire ring of an induced routing is also the same as the
ring latency of the original routing in I, and

– the maximum latency of the induced routing π∗′ of the optimal routing π∗

is not larger than the maximum latency of the optimal routing itself, i.e.,
M ′(π∗′) ≤ M(π∗).
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By definition, the optimal routing opt′ for instance I ′ cannot be worse than
the feasible routing π∗′, and we conclude M ′(opt′) ≤ M ′(π∗′) ≤ M(π∗). ��

We call the Nash routing πN singular if M(πN ) > maxi∈[h] �
N(Ni), i.e., if the

maximum latency in πN is obtained only by an agent which uses the same
routing in πN as it uses in π∗. We call πN nonsingular otherwise. That is, πN

is nonsingular if M(πN ) = maxi∈[h] �
N (Ni). Since we are interested in upper

bounding the ratio M(πN )/M(π∗), applying Lemma 2 repeatedly enables us to
make the following assumption.

Assumption 1. h ≤ k ≤ h + 1 and h = k + 1 if and only if πN is singular.

Under Assumption 1, for any singular case (πN , I), Lemma 2 produces a nonsin-
gular case (πN ′

, I ′) with �′N(R, I ′)/M ′(opt′, I ′) ≥ �N (R, I)/M(π∗, I). There-
fore we can upper bound the price of anarchy for the SRR problem as follows:

– analyze the ratio �N(R, I)/M(π∗, I) only for nonsingular instances I where
no player uses the same path in πN and π∗, and

– analyze the ratio M(πN , I)/�N (R, I) for general instances I.

This is what we will do in the remainder of the paper. We refer to the full version
of the paper [21] for the details and proofs omitted due to the space limit.

4 Non-covering Equilibria

Theorem 2. The ratio M(πN )/M(π∗) is at most 4
3 + 5

3h for instances for which
∪i∈[h]Ni �= R.

The proof of Theorem 2 consists of the following two steps. First we show that
the ratio �N(R)/M(π∗) is at most 2 + 2

h . This is Lemma 3. Next we show
(Lemma 4) that for any uncovered instance, if �N(R)/M(π∗) ≤ α for some
constant α, then M(πN )/M(π∗) is at most (2α + 1

h )/3. This proves Theorem 2,
which itself proves Theorem 1 for the non-covered case with h ≥ 3. The remain-
ing case of non-covering equilibria with h = 2 is handled in [21], where we show
M(πN )/M(π∗) ≤ 2 directly by utilizing the structural properties of rings.

Lemma 3. Let I be an SRR instance with ∪i∈[h]Ni �= R. Then
�N(R)/M(π∗) ≤ 2 + 2

h .

Proof. By Lemma 2 it suffices to consider the nonsingular case. That is, we
assume without loss of generality that k = h, i.e., we assume that all agents
change their paths. There exist two agents p, q ∈ [h] such that ∪i∈[h]Ni ⊆ Np ∪
Nq � R, and all h paths in N1, N2, . . . , Nh share a common link in Np ∩ Nq.
This holds because if there were three agents that do not all share a same link,
then two of them would not share a link at all. This is due to the assumption
∪i∈[h]Ni �= R. However, this contradicts Lemma 1. Therefore we can take P to be
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P

p

q

g1 g2

j

Z Y Y Z

Fig. 2. Proof for non-covering equilibria. For this figure, we have mapped the ring to
the real line.

the longest path in Np ∪Nq with end link g1 and g2 (possibly {g1} = {g2} = P )
such that πN (gi) > h/2 for i = 1, 2 and

πN (g) ≤ h/2 for any link g ∈ Np ∪ Nq \ P. (1)

See Figure 2. Since we have g1 = g2 or πN (g1) + πN (g2) > h, there exists
an agent j ∈ [h] such that {g1, g2} ⊆ Nj and thus P ⊆ Nj. Let Y ⊆ Qj

consist of links e with πN (e) ≥ 1 and Z = Qj\Y . It can be seen from (1) that
�N(Qj) ≤ h

2 ||Y ||a + ||Y ||b + ||Z||b and therefore

�N(R) = �N (Qj) + �N (Nj) ≤ 2�N(Qj) + ||Y ||a + ||Z||a
≤ (h + 1)||Y ||a + 2||Y ||b + ||Z||a + 2||Z||b. (2)

Since

�∗(Qj) ≥ h

2
||Y ||a + ||Y ||b + h||Z||a + ||Z||b, (3)

the ratio of the upper bound (2) for �N (R) to the lower bound (3) for �∗(Qj) is
maximized for ||Z||a = ||Z||b = ||Y ||b = 0 and is (h + 1)/(h/2) = 2 + 2/h. ��

To conclude the proof of Theorem 2, we finally show the following.

Lemma 4. The ratio M(πN )/M(π∗) is at most (2α + 1
h )/3 for instances for

which ∪i∈[h]Ni �= R and �N (R)/M(π∗) ≤ α.

Proof. It suffices to show that for any agent i ∈ [k] the inequality �N(Ni) ≤
1
3 (2α+ 1

h)M(π∗) holds. Consider an arbitrary agent i ∈ [k]. Let Ci := R\Ni, the
complement of player i’s path Ni. We partition the link set of Ci into the set of
links Y := {e ∈ Ci | πN (e) ≥ 1} which, in routing πN , have at least one agent
on it and the set of links Z := Ci\Y with no players on it in routing πN .
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Since h is the number of players whose paths in πN deviate from the one in π∗,
the links e in Z satisfy π∗(e) ≥ h, that is, there are at least h players using
these links in the routing π∗. Hence M(π∗) ≥ h||Z||a. In the routing πN , if
player i would switch from path Ni to Ci, it would have a latency of at most
�N(Ci) + ||Y ||a + ||Z||a. Since πN is a Nash equilibrium, we have

�N (Ni) ≤ �N (Ci) + ||Y ||a + ||Z||a ≤ 2�N(Ci) +
1
h

M(π∗). (4)

By assumption we also have �N (Ni)+ �N(Ci) = �N(R) ≤ αM(π∗). Adding twice
this inequality to (4) gives 3�N(Ni) ≤ (2α + 1

h )M(π∗), as required. ��

5 Covering Equilibria

For covering equilibria, we show that the price of anarchy is at most 2. This is
again a two-step approach. First, the covering property implies an upper bound
2/3 on M(πN )/�N(R) as follows.

Lemma 5. If ∪i∈[h]Ni = R, then M(πN )/�N (R) ≤ 2/3.

Proof. Take Q ∈ πN with �N (Q) = M(πN ). Then �N (Q) ≤ �N (R\Q)+ ||R\Q||a
as πN is covering. From �N(R) = �N(Q) + �N(R\Q) ≥ 2�N(Q) − ||R\Q||a ≥
2�N(Q) − �N(R\Q) = 3�N(Q) − �N (R), we deduce that M(πN ) = �N(Q) ≤
2
3�N(R). ��
Second, we prove �N (R)/M(π∗) ≤ 3 by distinguishing between the case h ≤ 2
and h > 2.

Theorem 3. If ∪i∈[h]Ni = R, then �N(R)/M(π∗) ≤ 3.

The former case h ≤ 2 is proved in [21], which along with Lemma 8 in this
section establishes Theorem 3.

By Lemma 2, we only need to bound ratio �N (R)/M(π∗) for nonsingular case
where h = k. In this section we consider the k = h ≥ 3 switching players. For each
switching player i ∈ [h], we can formulate an inequality �N (Ni) ≤ �N (Qi)+||Qi||a
saying that its Nash path may not have a longer latency than its alternative path,
if one unit load is added on every link of the latter. We obtain a constraint by
adding up all of these inequalities.

We can assume that every link has a latency function of x or 1. This can be
achieved by replacing a link e with latency function aex + be by ae links with
latency function x followed by be links with latency function 1. Now there are
only two types of links left, the ones with latency function x and the ones with
latency 1. We introduce variables which count the number of links of both types
which are used by a certain number of players, and write the constraint that we
constructed above in terms of these variables. We then give an upper bound for
�N(R)/M(π∗) in terms of these variables as well.

We end up with a nonlinear optimization problem: maximize the ratio under
consideration subject to the Nash constraint. For this problem, we first show



The Price of Anarchy for Selfish Ring Routing Is Two 429

that, for the links with latency function 1, only the total number of players on
all these links affects the upper bound. For any fixed number of players h that
do not use the same path in the Nash routing as in the optimal routing, this
still leaves us with h + 3 variables, since we have one variable for each possible
number of players on the links with latency function x. We now use a centering
argument to show that only at most two of these h variables are nonzero in an
optimal solution of this optimization problem.

Using normalization, this finally gives us an optimization problem with five
variables. This problem unfortunately is still not linear. It can be solved by
Maple, but we also provide a formal solution. To do this, we fix h and another
variable, and solve the remaining problem; we then determine the optimal overall
values of the fixed h and that variable.

Summing the Nash Inequalities. For a given path P ⊆ R, let P a be the subset
of links with latency function x and let P b be the subset of links with latency
function 1.

Consider a link e ∈ Ra (resp. Rb). By definition and our assumption that
k = h, this link occurs in πN (e) Nash paths. That is, this link occurs πN (e)
times on the left-hand side of the h Nash inequalities given above—each time
with coefficient πN (e) (resp. 1). On the other hand, it occurs h − πN (e) times
on the right-hand side of the inequalities, each time with coefficient πN (e) + 1
(resp. 1).

Formally, we have for i = 1, . . . , h∑
e∈Na

i

πN (e) +
∑

e∈Nb
i

1 = �N(Ni) ≤ �N(Qi) + ||Qi||a =
∑

e∈Qa
i

(πN (e) + 1) +
∑

e∈Qb
i

1

and, by summation,∑
e∈Ra

(πN (e))2 +
∑
e∈Rb

πN (e) ≤
∑

e∈Ra

(h − πN (e))(πN (e) + 1) +
∑
e∈Rb

(h − πN (e)) ,

or
∑

e∈Ra

(
2(πN (e))2 − h

)
+
∑
e∈Rb

2πN (e) ≤
∑

e∈Ra

(h − 1)πN (e) +
∑
e∈Rb

h.

Writing Ai (resp. Bi) as the number of links with i players on it and a latency
function of x (resp. 1), we can group links with the same numbers of players and
write the above as

h∑
i=1

((2i2 − h)Ai + 2iBi) ≤
h∑

i=1

((h − 1)iAi + hBi) (5)

⇒
h∑

i=1

((
2i

h
− 1

i

)
Ci +

2i

h2
Bi

)
≤

h∑
i=1

(
h − 1

h
Ci +

1
h

Bi

)
(6)

where we have written Ci = i
hAi and divided by h2.
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Bounding the Optimal Latency. For the optimal routing we also have, by defini-
tion and the fact that we are in the nonsingular case, h inequalities of the form
M(π∗) ≥ �∗(Qi), i ∈ [h]. Summing all the inequalities and dividing by h implies
a lower bound on M(π∗), namely

M(π∗) ≥ 1
h

h∑
i=1

�∗(Qi) =
1
h

h∑
i=1

(
(h − i)2Ai + (h − i)Bi

)
.

Thus we have

�N(R)
M(π∗)

≤
∑h

i=1 (iAi + Bi)∑h
i=1

(
(h−i)2

h Ai + h−i
h Bi

) =
∑h

i=1

(
Ci + 1

hBi

)
∑h

i=1

(
(h−i)2

ih Ci + h−i
h2 Bi

) (7)

and we want to find an upper bound for this expression under the restriction (6).

Lemma 6. If
∑h

i=1 Ci = 0, then �N (R)/M(π∗) ≤ 2.

Proof. Since Ci ≥ 0 by definition, we have Ci = 0 for all i ∈ [h]. Condition (6)
implies that

∑h
i=1

i
hBi ≤ 1

2

∑h
i=1 Bi. Therefore, by (7), the ratio �N (R)/M(π∗)

is at most (
∑h

i=1 Bi)/(
∑h

i=1 Bi−
∑h

i=1
i
hBi) ≤ (

∑h
i=1 Bi)/(1

2

∑h
i=1 Bi) = 2. ��

Rewriting the Problem. Henceforth we assume
∑h

i=1 Ci > 0. Using (h−i)2

ih =
h
i + i

h −2, from (7) we arrive at the following inequality after dividing numerator
and denominator by

∑h
j=1 Cj > 0.

�N (R)
M(π∗)

≤
1 +

∑h
i=1

Bi

h
∑

h
j=1 Cj∑h

i=1

((
h
i + i

h

)
Ci∑h

j=1 Cj
+ h−i

h2
Bi∑ h

j=1 Cj

)
− 2

≤ 1 + β∑h
i=1

(
h
i + i

h

)
Di − 2 + β − z

where β :=
∑ h

i=1 Bi

h
∑

h
j=1 Cj

≥ 0, z :=
∑h

i=1
iBi

h2
∑

h
j=1 Cj

∈ [β
h , β], and Di := Ci∑

h
j=1 Cj

for

every i ∈ [h]. Notice that
∑h

i=1 Di = 1. We divide both sides of (6) by
∑h

j=1 Cj

and obtain the constraint
∑h

i=1

(
2i
h − 1

i

)
Di + 2z ≤ h−1

h + β. Our problem now
looks as follows.

�N (R)
M(π∗)

≤ max
1 + β∑h

i=1

(
h
i + i

h

)
Di − 2 + β − z

(8)

s.t.
h∑

i=1

(
2i

h
− 1

i

)
Di + 2z ≤ h − 1

h
+ β (9)

h∑
i=1

Di = 1, Di ≥ 0 ∀i ∈ [h] (10)

β ≥ z ≥ β/h (11)
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To bound the ratio �N (R)/M(π∗) from above we will solve the general problem
(8)-(11), where we ignore our definitions of β and z above and thus allow β and
z to take any nonnegative real values (subject to (11)).

Since h
i + i

h ≥ 2 for all i ≥ 1 and h ≥ 1, we see that for any β ≥ 0 and
h ≥ 1, the denominator in (8) is positive for every feasible solution ({Di}h

i=1, z)
of (9)–(11). We can therefore also consider the following equivalent minimization
problem:

min

{
h∑

i=1

(
h

i
+

i

h

)
Di − z

∣∣∣∣∣ (9)–(11)

}
. (12)

In what follows, we solve (12) for any fixed h and β, and then determine which
values of h and β give the highest overall value for (8). For fixed h and β, any
solution ({Di}h

i=1, z) of (9) – (11) is either an optimal solution to both problem
(8)–(11) and problem (12) or to neither of them. The next lemma helps to
simplify our problem (12), and hence problem (8)–(11).

Lemma 7. There is an optimal solution ({Di}h
i=1, z) of (12), which is also an

optimal solution of (8) – (11), such that Di > 0 for at most two values of i. If
there are two such values, they are consecutive.

For an optimal solution ({Di}h
i=1, z) to (8)–(11) as given in Lemma 7, let x ∈

[h−1] be the minimum index such that Di = 0 for all i ∈ [h]\{x, x+1}. That is,
x is the minimum index such that Dx > 0, or x = h− 1. Writing y for Dx+1, we
have Dx = 1 − y, and problem (8) – (11) transforms to the following relaxation
which drops the upper bound β on z in (11).

�N (R)
M(π∗)

≤ max
1 + β

h
x + x

h −
(

h
x(x+1) − 1

h

)
y − 2 + β − z

(13)

s.t.
2x

h
− 1

x
+
(

2
h

+
1

x(x + 1)

)
y + 2z ≤ h − 1

h
+ β (14)

1 ≤ x ≤ h − 1, x ∈ N (15)
0 ≤ y ≤ 1 (16)
β/h ≤ z (17)

Upper Bounding Problem (13)–(17). We can theoretically prove that the optimal
objective value of problem (13)–(17) is at most 3 for any instances I with h ≥ 3
except for the case h = 5. For this case we have to resort to a different approach.
Here in this extended abstract, we provide a computer verification using Maple.
In the Maple program we note that for h ≥ 7 we allow x to take arbitrary
real values. That is, we relax the integer constraint in (15). Still we obtain an
upper bound of less than 3. For a smaller number of players h we check the
several options for integer values x ∈ [h− 1], again using Maple. The results are
presented below, where the last five columns give the values of constants and
variables at which the bound is attained.
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Case Bound h β x y z
h = 3, x = 1 3 3 0.5 1 1 0.167
h = 3, x = 2 3 3 0.5 2 0 0.167
h = 4, x ≤ 2 2.91 4 0 2 0.375 0
h = 4, x = 3 2.59 4 0.833 3 0 0.208
h = 6, x ≤ 2 2.4 6 0 2 1 0.0833
h = 6, x = 3 2.87 6 0.375 3 1 0.0625
h = 6, x ≥ 4 2.87 6 0.375 4 0 0.0625
h ≥ 7, x ≥ 1 2.93 7 0.167 3.24 1 0.0238

To sum up, we have shown the following result.

Lemma 8. If ∪i∈[h]Ni = R and h > 2, then �N (R)/M(π∗) ≤ 3.

6 Concluding Remarks

We have shown that the PoA of network congestion game is two, when the
network is a ring and the link latencies are linear. It is left open whether the PoA
is exactly 2d for polynomial latency functions of degree d. Another challenging
open question is what happens in more complicated network topologies. It is
interesting to see if our proof technique can be extended to the more general
class of games where each player can choose between a set of resources and its
complement.
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A Randomized Algorithm for Voting in a Crowd
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Abstract. Typical voting rules do not work well in settings with many
candidates. If there are even several hundred candidates, then a simple
task such as evaluating and choosing a top candidate becomes imprac-
tical. Motivated by the hope of developing group consensus mechanisms
over the internet, where the numbers of candidates could easily number
in the thousands, we study an urn-based voting rule where each partic-
ipant acts as a voter and a candidate. We prove that when participants
lie in a one-dimensional space, this voting protocol finds a (1 − ε/

√
n)

approximation of the Condorcet winner with high probability while only
requiring an expected O( 1

ε2
log2 n

ε2
) comparisons on average per voter.

Moreover, this voting protocol is shown to have a quasi-truthful Nash
equilibrium: namely, a Nash equilibrium exists which may not be truth-
ful, but produces a winner with the same probability distribution as that
of the truthful strategy.

1 Introduction

Voting is often used as a method for achieving consensus among a group of
individuals. This may happen, for example, when a committee chooses a rep-
resentative or friends go out to watch a movie. When the group is small, this
process is relatively easy; however, for larger groups, the typical requirement of
ranking all candidates becomes impractical and heuristics are often applied to
narrow down opinions to a few representative ones before a vote is taken.

This problem of large-scale preference aggregation is even more interesting in
light of the rising potential of crowdsourcing. Suppose that a city government
wanted to ask its constituencies to contribute solutions for an “ideal budget
that cuts 50 percent of the deficit”.1 Soliciting such proposals may be rela-
tively straightforward; however, it is not clear how these proposals should be
aggregated. In particular, a participant cannot even look through each proposal,
making seemingly simple tasks such as choosing top ranked proposals, difficult.
A solution to this problem would enable a new level of collaboration, a key step
towards unleashing the full potential of crowdsourcing.

In this paper, we propose a randomized voting rule designed for scenarios like
the above. In our problem setting, each participant submits exactly one proposal,

1 See, for example, widescope.stanford.edu, aimed at tackling the federal budget
deficit.

P.W. Goldberg and M. Guo (Eds.): WINE 2012, LNCS 7695, pp. 434–447, 2012.
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representing his or her stance on the question of interest. A random triad of
participants is then selected and each selected member is made to vote between
the other two. Roughly speaking (details are elaborated in Sect. 2), if there is a
three-way tie, the participants are thrown out from the election; otherwise, the
losers are replaced by ‘copies’ of the winner. This is then repeated until there is
a single participant remaining, who is declared the winner.

We show that for single peaked preferences, Triadic Consensus converges ap-
proximately to the Condorcet winner2 with high probability, while only requiring
an average of ∼ log2 n (conjectured to be ∼ logn) comparisons per individual.
We also show that Triadic Consensus has nice properties for protecting against
manipulation. Suppose that the rankings of candidates are induced from an un-
derlying distance metric and suppose that each candidate has a concave utility
in that distance. Then Triadic Consensus has a quasi-truthful Nash equilibrium.
Specifically, (see Sect. 2.1) a Nash equilibrium exists which may not be truthful,
but still chooses a winner with the same probability distribution as if every partic-
ipant voted truthfully. Surprisingly, we achieve this result by counterintuitively
allowing voters to express cyclical preferences (e.g. a > b, b > c, and c > a).
Finally, we show simulations that indicate the practicality of Triadic Consensus
outside of the single-peaked domain and make comparisons to a couple other
algorithms. Because of space constraints, some results and proofs are expanded
on in the longer version[1].

1.1 Related Work and Our Contributions

Given the long history of work on voting theory, it is not surprising that the
problems we tackle have been, for the most part, thought about before. Here, we
give a brief overview of related work, followed by a summary of our contributions.
For in-depth reading, we refer the reader to Brandt et al. [2].

Voting Rule Criteria. One of the earliest criteria introduced for evaluating
voting rules is known as the Condorcet criteria, introduced by Marquis de Con-
dorcet3. It states that if a candidate exists who would win against every other
candidate in a majority election, then this candidate should be elected. Unfor-
tunately, such a candidate does not always exist. Since then, many other criteria
have been introduced as ways to evaluate voting rules. However, in the surpris-
ing result known as Arrow’s Impossibility Theorem, Arrow [4] proved that there
were three desirable criterion that no deterministic voting rule could satisfy. This
was expanded by Pattanaik and Peleg [5] to show that a similar result holds for
probabilistic voting rules.

Strategic Manipulation. This sparked a wave of impossibility results, includ-
ing the classical Gibbard-Satterthwaite Impossibility Theorem. Define a voting

2 The candidate who would beat any other candidate in a pairwise majority election.
In single dimensional spaces, this happens to be the median participant.

3 See Young [3] for a fascinating historical description of the early work of Condorcet.
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rule to be strategy-proof if it is always in a voter’s interest to submit his true pref-
erence, regardless of the other voter rankings. Gibbard [6] and Satterthwaite [7]
independently showed that all deterministic, strategy-proof voting rules must ei-
ther be dictatorships or never allow certain candidates to win. This was extended
to show that only very simple probabilistic voting rules were strategy-proof[8].

Numerous attempts at circumventing these impossibility result have been
made. Bartholdi et al. [9] first proposed using computational hardness as a bar-
rier against manipulation in elections. However, despite many NP-hardness re-
sults on manipulation of voting rules[10], it was shown that there do not exist
any voting rules that are usually hard to manipulate[11].

Procaccia [12] used the simple probabilistic voting rules of Gibbard [8] to ap-
proximate common voting rules in a strategy-proof way, but the approximations
are weak and they show that, for many of these voting rules, no strategy-proof
approximations can be much stronger. Birrell and Pass [13] extended this idea
to approximately strategy-proof voting, proving that there exist tight approxi-
mations of any voting rule that are close to strategy-proof.

Communication Complexity. When the number of candidates is large, it is
important to study voting rules from the perspective of the burden on voters.
Conitzer and Sandholm [14] studied the worst case number of bits that vot-
ers need to communicate (e.g. pairwise comparisons) in order to determine the
ranking or winner of common voting rules; for many of these voting rules, it
was shown that the number of bits required is essentially the same as what is
required for reporting the entire ranking. In addition, they showed [15] that for
many common voting rules, determining how to elicit preferences efficiently is
NP-complete, even when perfect knowledge about voter preferences is assumed.
Lu and Boutilier [16] proposed the idea of reducing communication complexity
under approximate winner determination. Though they do not present theoreti-
cal guarantees, they propose a regret minimizing algorithm and show significant
reductions in communication when run on experimental data sets.

Single-Peaked Preferences. One special case that avoids the many discour-
aging results above is that of single-peaked preferences[17] (or other domain
restrictions). Single-peaked preferences are those for which candidates can be
described as lying on a line. Every voter’s utility function is peaked at one can-
didate and drops off on either side. For such preferences, a Condorcet winner
always exists and is the candidate who is the median of all voter peaks. This
winner can be found by the classical median voting rule, which has each voter
state their peak and returns the median of these peaks. It turns out that the
median voting rule is both strategy-proof[18] and has a low communication com-
plexity of O(n logm)[19], where n is the number of voters and m is the number
of candidates. Conitzer [20] also studies the problem of eliciting voter preferences
or the aggregate ranking using comparison queries.

The median voting rule has one weakness: it requires knowledge of an
axis, which can make it impractical in practice. First, the algorithm requires
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knowledge of the axis in order to pick the median of peaks. When an axis isn’t
known, Escoffier et al. [19] provides an O(mn) algorithm for finding such an
axis with additional queries, but with no strategic guarantees. Second, the voter
also requires knowledge of the axis. In situations where proposals have multiple
criterion, but are still single peaked (for example, in a linear combination of the
criterion), it may not be obvious to the voter where the axis is. Third, and more
subtle, even if an axis is known, it may not be practical to express a voter’s
position on this axis. Take, for example, the canonical liberal-conservative axis
used to support the single-peaked setting. It is obvious that one extreme of the
axis is an absolute liberal and that the other is an absolute conservative. But
how would a voter express any position in between? It would not make sense for
a voter to express his or her peak as “seventy percent liberal”.4

Our Contributions. Triadic Consensus solves the previous problems by elim-
inating the need for an axis. The only task voters are required to perform is a
series of comparisons between two candidates. Likewise, the central algorithm
does not require any knowledge about proposal positions. With these properties,
we prove the following guarantees (as made precise in Sects. 3 and 4):

1. For single-peaked preferences, Triadic Consensus finds a (1− ε/
√
n) approxi-

mation of the Condorcet winner with high probability with a communication
complexity of O( n

ε2 log
2 n

ε2 ), i.e. ∼ n log2 n (conjectured to be ∼ n logn) for

a 1− 1√
n
approximation and ∼ 1

ε2 log
2 1

ε2 for a 1− ε approximation.

2. For a single-dimensional setting, Triadic Consensus has a quasi-truthful Nash
equilibrium when participants have concave utility functions.

These results are especially interesting given that they are coupled with the
following novel concepts:

1. A localized consensus mechanism for large groups. We propose Triadic Con-
sensus as an approach for large groups to make decisions using small decen-
tralized decisions among groups of three.

2. Quasi-truthful voting rules and cyclical preferences. When each participant is
a voter and a candidate, we demonstrate that allowing participants to express
cyclical preferences (a > b, b > c, and c > a) can introduce strategies that
detect and protect against strategic manipulation.

Outline of the Paper. Before continuing, we briefly describe the structure of
the remaining sections. In Sect. 2, we detail Triadic Consensus and introduce
the notion of quasi-truthfulness. This is followed by Sect. 3, which presents
the approximation and communication complexity results, and Sect. 4, which
describes the quasi-truthfulness results. Finally, Sect. 5 concludes by describing
topics elaborated on in the longer version[1] and a discussion on future directions.

4 Note that he cannot just state his favorite candidate as his peak because this would
require looking through all n candidates.
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ALGORITHM 1: Triadic Consensus
Input: An urn with k labeled balls for each participant 1, 2, . . . , n
Output: A winning candidate i.
while there is more than one label do

Sample three balls (with labels x, y, z) uniformly at random with replacement;
w = TriadicVote(x, y, z);
if w 	= ∅ then

Relabel all the sampled balls with the winning label w;
else

/* For example, remove the three sampled balls from the urn */

TriadicMechanism(x, y, z);

if at least one ball remains then
return the id of any remaining ball;

else
return the id of a random ball from the last removed;

ALGORITHM 2: TriadicVote
Input: Candidates x, y, z
Output: One of {x, y, z} if there is a winner, ∅ otherwise
if two of more of x, y, z have the same id then

return the majority candidate;

x votes between y and z; y votes between x and z; z votes between x and y;
if each received exactly one vote then

return ∅;
else

return the candidate with two votes;

2 Triadic Consensus and Quasi-truthfulness

Triadic Consensus applies to scenarios where the set of candidates and voters
coincide. We use x to refer to both the participant x and the candidate solution
that he or she proposes. For x, y, z ∈ {1, 2, . . . , n}, we use *x to denote the
ranking of participant x and y *x z to denote that x prefers y over z.5

The best way to understand Triadic Consensus (Algorithm 1) is to imagine
an urn with balls, each of which is labeled by a participant id. The urn starts
with k balls for each of the n participants.6 At each step, the algorithm samples
three balls uniformly at random (with replacement) and performs a TriadicVote
(Algorithm 2) on the three corresponding participants.

If the three participants x, y, and z are unique, the TriadicVote subroutine
consists of a single comparison for each of the selected participants: x votes

5 We assume a strict ordering, but it is not hard to generalize the algorithm to ties.
6 The intuition for k is that it is a tradeoff between approximation and time. Increasing
k makes the approximation tighter, but requires more comparisons to converge.
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ALGORITHM 3: The Remove mechanism
Input: Balls x, y, and z
Remove the three sampled balls from the urn;

ALGORITHM 4: The RepeatThenRemove mechanism

Input: Balls x, y, and z
w = TriadicVote(x, y, z);
if w 	= ∅ then

Relabel all the sampled balls with the winning label w;
else

Remove(x, y, z);

between y and z, y between x and z, and z between x and y. These votes can
be distributed in some permutation of 2, 1, 0 or split 1, 1, 1. In the first case, the
participant who received two votes is returned as the winner. In the second case,
a tie (represented as ∅) is returned. If two or more of the selected ids are the
same, i.e. are the same person, then he is automatically returned as the winner.

If a winner was returned from the TriadicVote, then the three balls are rela-
beled with the winning id and placed back into the urn; otherwise, one of several
mechanisms can be applied to resolve the tie. This process is repeated until there
is only one participant id remaining, which is declared the winner.

In our paper, we propose two possible mechanisms, each of which has a quasi-
truthful Nash equilibrium. The simplest is Remove (Algorithm 3), in which the
three balls are simply removed. In RepeatThenRemove (Algorithm 4), the three
balls are made to vote again; if there is another three way tie, then they are
removed. Surprisingly, repeating the TriadicVote before elimination results in a
simpler (and more practical) strategy that is a quasi-truthful Nash equilibrium.

2.1 Truthfulness and Quasi-truthfulness

For our analysis of strategic behavior, we will assume that each individual is
represented as a point x in some space X and that his or her preference ranking
is induced by a distance metric d(x, ·) on X . If d(x, y) ≤ d(x, z), then y *x z;
that is, x prefers proposals that are closer to him. Since the individuals voting
in a TriadicVote are also the candidates being voted for, there can never be
a three-way tie in a truthful vote. Otherwise, all three of d(x, y) < d(x, z),
d(y, z) < d(y, x), and d(z, x) < d(z, y) must be simultaneously true, which is
impossible so long as d(·, ·) satisfies the natural property that d(x, y) = d(y, x).

Consider a TriadicVote between participants x, y, and z. If they vote truth-
fully, then there are situations when players may be incentivized to deviate.

Example 1. Four participants lie in space X = R at positions 0, 5, 6, and 7.
Suppose participants 0, 5, and 7 are selected for a TriadicVote. Since they are
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ALGORITHM 5: Quasi-truthful Nash for the Remove mechanism

Input: Voter x, candidates y, z
Output: One of {y, z}
if x thinks he should win then

if y would prefer a win for x rather than a three-way tie in a truthful world then
return y;

else
return z;

else
return a truthful comparison between y and z;

voting truthfully, 0 votes for 5, 5 votes for 7, and 7 votes for 5. As a result, 5
wins and the resulting urn consists of three balls for 5 and one for 6.

Now suppose participant 7 were to vote strategically for participant 0. This
would result in a tie and all the selected balls would be eliminated, leaving only
participant 6. Clearly, participant 7 would prefer this second situation.

At this point, we might note that the truthful winner’s vote (e.g. 5) does not
change the result and that he can use his vote to disincentivize others from
manipulating the TriadicVote. We define any such behavior to be quasi-truthful
when it results in the same outcome as that of truthful voting.

Example 2. Suppose that the participants of Ex. 1 are trying to minimize the
expected distance of the winning proposal to their position. Then a quasi-truthful
strategy would be for 0 to vote for 5, 5 to vote for 0 and 7 to vote for 5. As in
Ex. 1, 5 wins and the resulting urn consists of three balls for 5 and one for 6.

Now suppose participant 7 deviates from this strategy and votes for 0. Then
participant 0 gets two votes and he wins. The resulting urn consists of three balls
for 0 and one for 6, which is clearly worse for participant 7. Likewise, suppose
participant 0 deviates from this strategy and votes for 7. Then there is a three-
way tie and all selected balls get eliminated. The resulting urn consists of a single
ball for 6, which is clearly worse for participant 0.

From this example, we get the intuition for Algorithm 5, a quasi-truthful Nash for
the Remove mechanism. If a participant (x WLOG) is the truthful winner, then
he should look for the participant who would prefer a win for him over a removal
of all three balls. Such a participant will be shown to exist when all players have
concave utilities. The same idea gives us Algorithm 6, a quasi-truthful Nash for
the RepeatThenRemove mechanism and a more practical strategy to implement.
The participant that would prefer a win for x over a removal of all three balls (y
WLOG) will not deviate from voting for x. If x votes for y in the first round, z
cannot cause a tie. If x votes for z in the first round, z can only cause a second
round, during which x will then vote for y. We will show that these intuitions
do indeed translate to rigorous proofs in Sect. 4.
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ALGORITHM 6: Quasi-truthful Nash for the RepeatThenRemove mechanism

Input: Voter x, candidates y, z
Output: One of {y, z}
if x thinks he should win then

if it is the first TriadicVote then
/* For example, a truthful comparison */

return either of y or z;

else
return the candidate that he didn’t vote for in the first round;

else
return a truthful comparison between y and z;

3 Triadic Consensus Approximates the Condorcet
Winner with Low Communication Complexity

3.1 Background: Fixed Size Urns and Urn Functions

The primary idea in proving the results in this section is to reduce the Triadic
Consensus urn to previously known results for fixed size urns with urn functions.
A fixed size urn contains some number of balls, which are each colored either red
or blue. Let Rt and Bt be the number of red and blue balls respectively at time
t, where Rt+Bt = n. Also, let pt =

Rt

n denote the fraction of red balls. At every
discrete time t, either a red ball is sampled with probability f(pt), a blue ball
is sampled with probability f(1 − pt), or nothing happens with the remaining
probability. The function f : [0, 1] → [0, 1] is called an urn function and satisfies
0 ≤ f(x)+ f(1−x) ≤ 1 for 0 ≤ x ≤ 1. If a ball was sampled, it is then recolored
to the opposite color and placed back into the urn. This process repeats until
some time T when all the balls are the same color, i.e. RT = n or RT = 0.

We will show in the following section that Triadic Consensus is closely related
to fixed size urns with urn function f(p) = 3p(1 − p)2. We will then use the
following theorems derived from those in Lee and Bruck [21]

Theorem 1. Let a fixed size urn start with R0 red balls out of n total balls and
have an urn function f(p) = 3p(1− p)2. Let T denote the first time when either
RT = n or RT = 0. Then,

Pr[RT = n] =

(
1

2

)n−1 R0∑
j=1

(
n− 1

j − 1

)

Theorem 2. Let a fixed size urn start with R0 red balls out of n total balls and
have an urn function f(p) = 3p(1− p)2. Let T denote the first time when either
RT = n or RT = 0. Then,

E[T ] ≤ n lnn+O(n)
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3.2 Reduction from Triadic Consensus to Fixed Size Urns

Recall that our results are for the case of single-peaked preferences, for which the
candidates can be said to lie on some axis. Every voter’s utility is described by a
peak on that axis which falls off on either direction. Without loss of generality,
we let the participant ids be labeled from one end of the axis to the other, i.e.
1 < 2 < . . . < n.

Lemma 1. Let x, y, and z be three unique participants whose peaks lie on an
axis such that x < y < z. Then the winner of a quasi-truthful TriadicVote(x, y,
z) must be the median participant y.

Proof. Since y would win in a truthful vote, this follows from the definition of
quasi-truthfulness. ��

Lemma 2. For single-peaked preferences, let the participant ids be labeled from
one end of the axis to the other, i.e. 1 < 2 < . . . < n. Color balls with ids
1, 2, . . . , i red and balls with ids i+ 1, i+ 2, . . . , n blue. Then if participants vote
quasi-truthfully, Triadic Consensus (for k = 1) will produce a red winner with the
same probability as that of a fixed size urn with urn function f(p) = 3p(1− p)2.

Proof. Let pr and pb denote the fraction of red and blue balls respectively. Each
time three balls are sampled, the median ball must win by Lemma 1, which
implies that the majority color must win. Then we have the following four cases:

Three red With probability p3r, there is no change in colors.
Two red, one blue With probability 3p2rpb, one blue ball is recolored red.
One red, two blue With probability 3prp

2
b , one red ball is recolored blue.

Three blue With probability p3b , there is no change in colors.

These are the transition probabilities for a fixed size urn with i red balls, n− i
blue balls, and urn function f(p) = 3p(1−p)2. Since every transition probability
is identical, the final probability of a red winner must be identical. ��

3.3 Main Results

Theorem 3. For single-peaked preferences, let the participant ids be labeled from
one end of the axis to the other, i.e. 1 < 2 < . . . < n. Then if participants vote
quasi-truthfully, Triadic Consensus (for k = 1) will produce a winner w with
probability

Pr[w = i] =

(
1

2

)n−1(
n− 1

i− 1

)
Proof. If balls 1, 2, . . . , i are colored red, then w ≤ i iff the winning ball is red.
Then applying Theorem 1 and Lemma 2, we get Pr[w ≤ i]. By subtracting
Pr[w ≤ i− 1] from Pr[w ≤ i], we get our final expression. ��

A similar argument extends the above theorem for general k. Using standard
probabilistic arguments[22], we get the following corollary.
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Corollary 1. Let there be n single-peaked participants and let w denote the win-
ning id after running Triadic Consensus with k = O( 1

ε2 log
1
δ ). Then assuming

that participants vote quasi-truthfully, w will be a (1 − ε/
√
n) approximation of

the Condorcet winner with probability at least 1− δ.

Theorem 4. For single-peaked preferences and quasi-truthful voting, Triadic
Consensus has a total communication complexity of O(kn log2(kn)).

Proof. Theorem 2 is an upper bound on the expected time it takes to halve the
number of remaining participants (since we can color half the participants red
and half blue). For kn balls, this gives us ≤ kn ln(kn)+O(kn) time to halve the
participants. Each time the urn converges to a single color, we can recolor half
the remaining participants and repeat. After logn rounds, we will be done. ��

The above theorem is an upper bound on the communication complexity. In re-
ality, at each recoloring, the balls will not be split evenly between the two colors.
Based on this intuition and simulations, we conjecture that the communication
complexity is only O(kn log kn).

4 Triadic Consensus Has a Quasi-truthful Nash
Equilibrium for Concave Utilities

To discuss strategic behavior, we need to define the utilities for each participant.
Let Ux(y) denote the utility that x gets from a proposal y. The utility x derives
from y depends on the distance from x to y, i.e. Ux(y) = fx(d(x, y)), where f(·)
must be decreasing in distance so that Ux(y) > Ux(z) whenever y *x z. We say
that a participant x has a concave utility function if fx(·) is a concave function.

Theorem 5. If all participants have concave utility functions, then Algorithms
5 and 6 are quasi-truthful Nash equilibria for Triadic Consensus when using the
Remove and RepeatThenRemove mechanisms respectively.

Proof. We prove our main result with the following proof by induction. Since
the proofs for the Remove mechanism and the RepeatThenRemove mechanism
are almost identical, we will refer solely to the Remove mechanism for simplicity.

Base Case: Algorithm 5 is a Nash equilibrium for n = 1, 2, 3 balls (Lemma 3).

Inductive Step: Assume that Algorithm 5 is a Nash equilibrium for n− 3 balls.
Now consider a participant x who is considering deviating from Algorithm 5 in
an urn with n balls:

1. For any TriadicVote with participants x < y < z in an urn with n balls, if
y votes for x, then by the definition of the strategy and the fact that one of
x and z must prefer y to a three-way tie (Lemma 4), we know that x must
prefer y to win over a three-way tie, which means x should not deviate.
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2. For any TriadicVote with participants x < y < z in an urn with n balls, if
y votes for z, then given that the previous statement is true, we show that
x should prefer a win for y over a win for z (Lemma 5). This is done by
defining a comparison relation between urns that formalizes this intuition
that participants should prefer closer balls. With this definition, we can
define a coupling of two urns: one in which x plays an optimal strategy,
and one in which x always plays according to Algorithm 5. We show that
for every coupled history, the urn from Algorithm 5 does at least as well as
the optimal urn in expected utility. This means that Algorithm 5 is also an
optimal strategy for x in this case.

By carrying out the Inductive Hypothesis, we get our result for all n. ��

4.1 Supporting Lemmas

Lemma 3. Algorithm 5 is a Nash equilibrium for Triadic Consensus with the
Remove mechanism when n = 1, 2, or 3 balls.

Proof. This is trivially true for n = 1 and 2 since no votes take place. For
n = 3, suppose that the three participants are x < y < z. In this case, the only
situation when participants cast votes is when TriadicVote is performed with all
three unique participants. After such a situation occurs, there will either be a
winner or all balls will be eliminated and no further votes take place. Therefore,
our analysis can be constrained to this single TriadicVote.

If participants vote according to Algorithm 5, we know that y will be the
winner since x and z both vote for him. Suppose y votes for x WLOG. Then if
z deviates, x will win, which is clearly suboptimal. If x deviates, then there is a
three-way tie and all are eliminated, resulting in a uniformly random winner.

The difference in utility lost for x by deviating is ΔUx = Ux(y) − 1
3 (Ux(x) +

Ux(y) +Ux(z)). Letting d1 be the distance between x and y and d2 the distance
between y and z, we have ΔUx = 1

3 (fx(d1) − fx(0)) − 1
3 (fx(d1 + d2) − fx(d1))

and

ΔUx≥0 ⇐⇒ fx(d1)−fx(0)≥fx(d1 + d2)−fx(d1) ⇐⇒ fx(d1)−fx(0)

fx(d1 + d2)−fx(d1)
≤ 1

Similarly,

ΔUz ≥ 0 ⇐⇒ fz(d2)− fz(0)

fz(d1 + d2)− fz(d2)
≤ 1

For concave, monotonically non-increasing fx and fz, we know that (detailed in
the long version[1]):

fx(d1)− fx(0)

fx(d1 + d2)− fx(d1)
≤ d1

d2
and

fz(d2)− fz(0)

fz(d1 + d2)− fz(d2)
≤ d2

d1

But then, at least one of d1

d2
or d2

d1
is less than or equal to 1, which means that

at least one of ΔUx and ΔUz is greater than or equal to 0 and prefers a win
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for y over a three-way tie. By the definition of Algorithm 5, y will vote for this
person when he exists. Therefore, since y voted for x, we know ΔUx ≥ 0, which
concludes the proof. ��

Lemma 4. Assume that Algorithm 5 is a Nash equilibrium for any configuration
of n− 3 balls. Then for a TriadicVote among participants x < y < z in an urn
with n balls, at least one of x or z prefers a win for y over a three-way tie, so
long as they both have concave utilities.

Proof. Because of space constraints, we will only outline the proof here, leaving
the notation and algebra for the longer version. The proof has two parts:

Part A. Suppose all balls are positioned somewhere between x and z, i.e. in
the interval [x, z]. Then, if x and z have concave utility functions, at least one
of x and z prefers a win for y over a three-way tie. The proof for this statement
is similar to the one in Lemma 3, albeit more complex.

Part B. For any configuration of n balls, moving any ball at position x left-
wards and moving any ball at position z rightwards can only increase both ΔUx

and ΔUz. Put another way, given any configuration, we can move all balls left
of x to x and all balls right of z to z, while only decreasing ΔUx and ΔUz. Once
moved in this way, the configuration of balls falls under the jurisdiction of Part
1, which states that at least one of ΔUx and ΔUz is greater than or equal to 0.
Therefore, the same participant in the original configuration must also have a
positive ΔU , which means he prefers a win for y over a three-way tie. ��

For the final lemma, we require the following definition.

Definition 1. Given two urns R and S, each with n balls, number the balls in
R from left to right as r1, r2, . . . , rn and number the balls in S from left to right
as l1, l2, . . . , ln. Then R x-dominates S if

si ≤ ri for ri < x

si = ri for ri = x

si ≥ ri for ri > x

Lemma 5. Assume that Algorithm 5 is a Nash equilibrium for any configuration
of n− 3 balls. Then for a TriadicVote among participants x < y < z in an urn
with n balls, if y votes for z (WLOG), x does not benefit by voting strategically
for z.

Proof. Our proof strategy will be to use a coupling argument. Let OPT denote
the optimal strategy for x. We consider two urns R and S. In urn R, x plays
according to Algorithm 5. In urn S, x plays according to OPT, the strategy that
maximizes his expected utility. We couple the TriadicVote’s of these urns in the
following way:

1. Let r1, r2, . . . , rn denote the balls in urn R as indexed from leftmost position
to rightmost position. Let s1, s2, . . . , sn denote the balls in urn S as indexed
from leftmost position to rightmost position.



446 A. Goel and D. Lee

2. Then for every TriadicVote, when balls ri, rj , rk are randomly drawn from
urn R, balls si, sj, sk will be drawn from urn S.

Suppose R x-dominates S and then each undergoes a coupled TriadicVote where
balls ri < rj < rk are selected from R and si < sj < sk are selected from S.
After they vote, we show that the resulting urns R′ and S′ must still satisfy
R′ x-dominates S′. By the coupling rule, this is trivially true when 1) x is
not selected, 2) x is represented in two or more balls, and 3) x is the middle
participant. This is because x either does not vote or cannot affect the result
in these cases (remember that all other participants are voting according to
Algorithm 5). The only remaining case is when x is one of the side participants
(si WLOG). In this case, rj wins in urn R since x plays according to Algorithm
5 in this urn. Suppose sj voted for sk. Then regardless of who x votes for, one
of sj or sk must win, both of which will still satisfy R′ x-dominates S′. Now
suppose sj voted for si. Then x could eliminate all three participants by voting
for sk. However, by Lemma 4 and the definition of Algorithm 5, this would be
suboptimal, which means that x cannot play this strategy in urn S. Therefore,
R′ x-dominates S′.

Finally, we note that before any TriadicVote’s take place, R and S are iden-
tical, i.e. R x-dominates S. Then, the winner of R must also x-dominate the
winner of S, which means that urn R is better for x in every coupled history. ��

5 Other Results and Future Directions

A couple results have been left to [1] due to space constraints. One of these is a
series of simulations demonstrating that Triadic Consensus works well for pref-
erences that are not single-peaked. We also make several comparisons to other
algorithms, which yield an intuition that Triadic Consensus is good at eliminat-
ing outliers. Finally, we point out that the approximation factor produced by
Triadic Consensus cannot be improved significantly given natural assumptions.

There are many future directions for this work. One clear step is to analyze
higher dimensional spaces and attempt to find voting rules that can achieve
low communication complexity for any set of rankings. Along with this comes
the question of whether triads, quasi-truthfulness, and cyclical preferences can
be extended to general settings. For example, one could imagine the following
variant of the Borda count: for each of the

(
n
3

)
triads, add one point to the

score of the winner. Finally, it would be interesting to study more collaborative
dynamics of group consensus mechanisms as opposed to only voting.
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Abstract. We investigate multidimensional covering mechanism-design
problems, wherein there are m items that need to be covered and n
agents who provide covering objects, with each agent i having a private
cost for the covering objects he provides. The goal is to select a set of
covering objects of minimum total cost that together cover all the items.

We focus on two representative covering problems: uncapacitated fa-
cility location (UFL) and vertex cover (VC). For multidimensional UFL,
we give a black-box method to transform any Lagrangian-multiplier-
preserving ρ-approximation algorithm for UFL to a truthful-in-expectation,
ρ-approx. mechanism. This yields the first result for multidimensional
UFL, namely a truthful-in-expectation 2-approximation mechanism.

For multidimensional VC (Multi-VC), we develop a decomposition
method that reduces the mechanism-design problem into the simpler
task of constructing threshold mechanisms, which are a restricted class of
truthful mechanisms, for simpler (in terms of graph structure or problem
dimension) instances of Multi-VC. By suitably designing the decompo-
sition and the threshold mechanisms it uses as building blocks, we ob-
tain truthful mechanisms with approximation ratios (n is the number of
nodes): (1) O(log n) for Multi-VC on any minor-closed family of graphs;
and (2) O(r2 log n) for r-dimensional VC on any graph. These are the
first truthful mechanisms for Multi-VC with non-trivial approximation
guarantees.

1 Introduction

Algorithmic mechanism design (AMD) deals with efficiently-computable algo-
rithmic constructions in the presence of strategic players who hold the inputs
to the problem, and may misreport their input if doing so benefits them. The
challenge is to design algorithms that work well with the true (privately-known)
input. In order to achieve this task, a mechanism specifies both an algorithm and
a pricing or payment scheme that can be used to incentivize players to reveal
their true inputs. A mechanism is said to be truthful, if each player maximizes his
utility by revealing his true input regardless of the other players’ declarations.

In this paper,we initiate a studyofmultidimensional coveringmechanism-design
problems, often called reverse auctions or procurement auctions in the mechanism-
design literature. These can be abstractly stated as follows. There arem items that
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need to be covered and n agents who provide covering objects, with each agent
i having a private cost for the covering objects he provides. The goal is to select
(or buy) a suitable set of covering objects from each player so that their union
covers all the items, and the total covering cost incurred is minimized. This cost-
minimization (CM) problem is equivalent to the social-welfare maximization
(SWM) (where the social welfare is − (total cost incurred by the players and the
mechanism designer)), so ignoring computational efficiency, the classical VCG
mechanism [26,4,15] yields a truthful mechanism that always returns an optimal
solution. However, the CM problem is often NP-hard, so we seek to design a poly-
time truthful mechanism where the underlying algorithm returns a near-optimal
solution to the CM problem.

Although multidimensional packing mechanism-design problems have received
much attention in the AMD literature, multidimensional covering CM problems
are conspicuous by their absence in the literature. For example, the packing
SWM problem of combinatorial auctions has been studied (in various flavors)
in numerous works both from the viewpoint of designing polytime truthful,
approximation mechanisms [10,21,9,13], and from the perspective of proving
lower bounds on the capabilities of computationally- (or query-) efficient truth-
ful mechanisms [20,14,11]. In contrast, the lack of study of multidimensional
covering CM problems is aptly summarized by the blank table entry for results
on truthful approximations for procurement auctions in Fig. 11.2 in [25] (a recent
result of [12] is an exception; see “Related work”). In fact, to our knowledge,
the only multidimensional problem with a covering flavor that has been stud-
ied in the AMD literature is the makespan-minimization problem on unrelated
machines [22,2], which is not an SWM problem.

Our Results and Techniques. We study two representative multidimensional cov-
ering problems, namely (metric) uncapacitated facility location (UFL), and vertex
cover (VC), and develop various techniques to devise polytime, truthful, approx-
imation mechanisms for these problems.

For multidimensional UFL (Section 3), wherein players own (known) differ-
ent facility sets and the assignment costs are public, we present a black-box
reduction from truthful mechanism design to algorithm design. We show that
any ρ-approximation algorithm for UFL satisfying an additional Lagrangian-
multiplier-preserving (LMP) property (that indeed holds for various algorithms)
can be converted in a black-box fashion to a truthful-in-expectation ρ-
approximation mechanism (Theorem 3). This is the first such black-box reduc-
tion for a multidimensional covering problem, and it leads to the first result
for multidimensional UFL, namely, a truthful-in-expectation, 2-approximation
mechanism. Our result builds upon the convex-decomposition technique in [21].
Lavi and Swamy [21] primarily focus on packing problems, but remark that their
convex-decomposition idea also yields results for single-dimensional covering
problems, and leave open the problem of obtaining results for multidimensional
covering problems. Our result for UFL identifies an interesting property under
which a ρ-approximation algorithm for a covering problem can be transformed
into a truthful, ρ-approximation mechanism in the multidimensional setting.



450 H. Minooei and C. Swamy

In Section 4, we consider multidimensional VC, where each player owns a
(known) set of nodes. Although, algorithmically, VC is one of the simplest cover-
ing problems, it becomes a surprisingly challenging mechanism-design problem
in the multidimensional mechanism-design setting, and, in fact, seems signifi-
cantly more difficult than multidimensional UFL. This is in stark contrast with
the single-dimensional setting, where each player owns a single node. Before
detailing our results and techniques, we mention some of the difficulties encoun-
tered. We use Multi-VC to distinguish the multidimensional mechanism-design
problem from the algorithmic problem.

For single-dimensional problems, a simple monotonicity condition character-
izes the implementability of an algorithm, that is, whether it can be combined
with suitable payments to obtain a truthful mechanism. This condition allows
for ample flexibility and various algorithm-design techniques can be leveraged
to design monotone algorithms for both covering and packing problems (see,
e.g., [3,21]). For single-dimensionalVC, many of the known 2-approximation algo-
rithms for the algorithmic problem (based on LP-rounding, primal-dual methods,
or combinatorialmethods) are either alreadymonotone, or can bemodified in sim-
pleways so that they becomemonotone, and thereby yield truthful 2-approximation
mechanisms [7]. However, the underlying algorithm-design techniques fail to yield
algorithms satisfying weak monotonicity (WMON)—a necessary condition for im-
plementability (see Theorem 2)—even for the simplest multidimensional setting,
namely, 2-dimensional VC, where every player owns at most two nodes. In the full
version of the paper, we give examples that show this for various LP-rounding
methods and primal-dual algorithms.

Furthermore, various techniques that have been devised for designing poly-
time truthful mechanisms for multidimensional packing problems (such as com-
binatorial auctions) do not seem to be helpful for Multi-VC. For instance, the
well-known technique of constructing a maximal-in-range, or more generally,
a maximal-in-distributional-range (MIDR) mechanism—fix some subset of out-
comes and return the best outcome in this set—does not work for Multi-VC [12]
(and more generally, for multidimensional covering problems). (More precisely,
any algorithm for Multi-VC whose range is a proper subset of the collection of
minimal vertex covers, cannot have bounded approximation ratio.) This also
rules out the convex-decomposition technique of [21], which we exploit for mul-
tidimensional UFL, because, as noted in [21], this yields an MIDR mechanism.

Thus, we need to develop new techniques to attack Multi-VC (and multidi-
mensional covering problems in general). We devise two main techniques for
Multi-VC. We introduce a simple class of truthful mechanisms called threshold
mechanisms (Section 4.1), and show that despite their restrictions, threshold
mechanisms can achieve non-trivial approximation guarantees. We next develop
a decomposition method for Multi-VC (Section 4.2) that provides a general way
of reducing the mechanism-design problem for Multi-VC into simpler—either in
terms of graph structure, or problem dimension—mechanism-design problems by
using threshold mechanisms as building blocks. We believe that these techniques
will also find use in other mechanism-design problems.
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By leveraging the decomposition method along with threshold mechanisms,
we obtain various truthful, approximation mechanisms for Multi-VC, which yield
the first truthful mechanisms for multidimensional vertex cover with non-trivial
approximation guarantees. We obtain a truthful, O(log n)-approximation mech-
anism (Theorem 13) for any proper minor-closed family of graphs (such as planar
graphs). Our decomposition method shows that any instance of r-dimensional VC
can be broken up into O(r2 logn) instances of single-dimensional VC; this in turn
leads to a truthful, O(r2 logn)-approximation mechanism for r-dimensional VC
(Theorem 14). In particular, for any fixed r, we obtain anO(log n)-approximation
for any graph. Here n is the number of nodes.

It is worthwhile to note that in addition to their usefulness in the design of
truthful, approximation mechanisms for Multi-VC, some of the mechanisms we
design also enjoy good frugality properties. We obtain (Theorem 16) the first
mechanisms for Multi-VC that are polytime, truthful and simultaneously achieve
bounded approximation ratio and bounded frugality ratio with respect to the
benchmarks in [5,19]. This nicely complements a result of [5], who devise such a
mechanism for single-dimensional VC.

Related Work. As mentioned earlier, there is little prior work on the CM prob-
lem for multidimensional covering problems. Dughmi and Roughgarden [12] give
a general technique to convert an FPTAS for an SWM problem to a truthful-
in-expectation FPTAS. However, for covering problems, they obtain an additive
approximation, which does not translate to a (worst-case) multiplicative approx-
imation. In fact, as they observe, a multiplicative approximation ratio is impos-
sible (in polytime) using their technique, or any other technique that constructs
a MIDR mechanism whose range is a proper subset of all outcomes.

For single-dimensional covering problems, various other results, including
black-box results, are known. Briest et al. [3] consider a closely-related gen-
eralization, which one may call the “single-value setting”; although this is a
multidimensional setting, it admits a simple monotonicity condition sufficient
for implementability, which makes this setting easier to deal with than our mul-
tidimensional settings. They show that a pseudopolynomial time algorithm (for
covering and packing problems) can be converted into a truthful FPTAS.

Single-dimensional covering problems have been well studied from the per-
spective of frugality. Here the goal is to design mechanisms that have bounded
(over-)payment with respect to some benchmark, but one does not (typically)
care about the cost of the solution returned. Starting with the work of Archer
and Tardos [1], various benchmarks for frugality have been proposed and inves-
tigated for various problems including VC, k-edge-disjoint paths, spanning tree,
s-t cut; see [18,6,19,5] and the references therein. Some of our mechanisms for
Multi-VC are inspired by the constructions in [19,5], and simultaneously achieve
bounded approximation ratio and bounded frugality ratio.

Our decomposition method, where we combine mechanisms for simpler prob-
lems into a mechanism for the given problem, is somewhat in the same spirit
as the construction in [24]. They give a toolkit for combining truthful mecha-
nisms, identifying sufficient conditions under which this combination preserves
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truthfulness. But they work only with the single-dimensional setting, which is
much more tractable to deal with.

Finally, as noted earlier, there are a wide variety of results on truthful
mechanism-design for packing SWM problems, such as combinatorial auctions
[10,21,9,13,20,14,11].

2 Preliminaries

In a multidimensional covering mechanism-design problem, we have m items
that need to be covered, and n agents/players who provide covering objects.
Each agent i provides a set Ti of covering objects. All this information is public
knowledge. We use [k] to denote the set {1, . . . , k}. Each agent i has a private
cost (or type) vector ci = {ci,v}v∈Ti , where ci,v is the cost he incurs for providing
object v ∈ Ti; for T ⊆ Ti, we use ci(T ) to denote

∑
v∈T ci,v. A feasible solution or

allocation selects a subset Ti ⊆ Ti for each agent i, denoting that i provides the
objects in Ti. Given this solution, each agent i incurs the private cost ci(Ti). Also,
the mechanism designer incurs a publicly-known cost pub(T1, . . . , Tn). The goal
is to minimize the total cost

∑
i ci(Ti) + pub(T1, . . . , Tn) incurred. We call this

the cost minimization (CM) problem. Note that we can encode any feasibility
constraints in the covering problem by simply setting pub(a) = ∞ if a is not
a feasible allocation. Observe that if we view the mechanism designer also as
a player, then the CM problem is equivalent to maximizing the social welfare,
which is given by

∑
i −ci(Ti)− pub(T1, . . . , Tn).

Various covering problems can be cast in the above framework. For example,
in the mechanism-design version of vertex cover (Section 4), the items are edges
of a graph. Each agent i provides a subset Ti of the nodes of the graph and
incurs a private cost ci,v if node v ∈ Ti is used to cover an edge. We can set
pub(T1, . . . , Tn) = 0 if

⋃
i Ti is a vertex cover, and ∞ otherwise, to encode that

the solution must be a vertex cover. It is also easy to see that the mechanism-
design version of uncapacitated facility location (UFL; Section 3), where each
agent provides some facilities and has private facility-opening costs, and the
client-assignment costs are public, can be modeled by letting pub(T1, . . . , Tn) be
the total client-assignment cost given the set

⋃
i Ti of open facilities.

Let Ci denote the set of all possible cost functions of agent i, and O be
the (finite) set of all possible allocations. Let C =

∏n
i=1 Ci. For a tuple x =

(x1, . . . , xn), we use x−i to denote (x1, . . . , xi−1, xi+1, . . . , xn). Similarly, let
C−i =

∏
j �=i Cj . For an allocation a = (T1, . . . , Tn), we sometimes use ai to

denote Ti, ci(a) to denote ci(ai) = ci(Ti). A (direct revelation) mechanism
M = (A, p1, . . . , pn) for a covering problem consists of an allocation algorithm
A : C +→ O and a payment function pi : C +→ R for each agent i, and works as
follows. Each agent i reports a cost function ci (that might be different from his
true cost function). The mechanism computes the allocationA(c) = (T1, . . . , Tn),
and pays pi(c) to each agent i. Throughout, we use ci to denote the true cost
function of i. The utility ui(ci, c−i; ci) that player i derives when he reports ci
and the others report c−i is pi(c) − ci(Ti), and each agent i aims to maximize
his own utility (rather than the social welfare).
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A desirable property for a mechanism to satisfy is truthfulness, wherein every
agent i maximizes his utility by reporting his true cost function. All our mecha-
nisms will also satisfy the natural property of individual rationality (IR), which
means that every agent has nonnegative utility if he reports his true cost.

Definition 1. A mechanism M =
(
A, {pi}

)
is truthful if for every agent i, every

c−i ∈ C−i, and every ci, ci ∈ Ci, we have ui(ci, c−i; ci) ≥ ui(ci, c−i; ci). M is IR
if for every i, every ci ∈ Ci and every c−i ∈ C−i, we have ui(ci, c−i; ci) ≥ 0.

To ensure that truthfulness and IR are compatible, we consider monopoly-free
settings: for every player i, there is a feasible allocation a (i.e., pub(a) < ∞)
with ai = ∅. (Otherwise, if there is no such allocation, then i needs to be paid
at least minv∈Ti ci,v for IR, so he can lie and increase his utility arbitrarily.)

For a randomized mechanism M , where A or the pi’s are randomized, we say
that M is truthful in expectation if each agent i maximizes his expected utility
by reporting his true cost. We now say that M is IR if for every coin toss of the
mechanism, the utility of each agent is nonnegative upon bidding truthfully.

Since the CM problem is often NP-hard, our goal is to design a mechanism
M =

(
A, {pi}

)
that is truthful (or truthful in expectation), and where A is a ρ-

approximation algorithm; that is, for every input c, the solution a = A(c) satisfies∑
i ci(a) + pub(a) ≤ ρ ·minb∈O

(∑
i ci(b) + pub(b)

)
. We call such a mechanism a

truthful, ρ-approximation mechanism.
The following theorem gives a necessary and sometimes sufficient condition

for when an algorithm A is implementable, that is, admits suitable payment
functions {pi} such that

(
A, {pi}

)
is a truthful mechanism. Say that A satisfies

weak monotonicity (WMON) if for all i, all ci, c
′
i ∈ Ci, and all c−i ∈ C−i, if

A(ci, c−i) = a, A(c′i, c−i) = b, then ci(a) − ci(b) ≤ c′i(a) − c′i(b). Define the
dimension of a covering problem to be maxi |Ti|. It is easy to see that for a
single-dimensional covering problem—so Ci ⊆ R for all i—WMON is equivalent
to the following simpler condition: say that A is monotone if for all i, all ci, c

′
i ∈

Ci, ci ≤ c′i, and all c−i ∈ C−i, if A(ci, c−i) = a, A(c′i, c−i) = b then bi ⊆ ai.

Theorem 2 (Theorems 9.29 and 9.36 in [25]). If a mechanism
(
A, {pi}

)
is

truthful, then A satisfies WMON. Conversely, if the problem is single-dimensional,
or if Ci is convex for all i, then every WMON algorithm A is implementable.

3 A Black-Box Reduction for Multidimensional Metric
UFL

In this section, we consider the multidimensional metric uncapacitated facility
location (UFL) problem and present a black-box reduction from truthful mecha-
nism design to algorithm design. We show that any ρ-approximation algorithm
for UFL satisfying an additional property can be converted in a black-box fashion
to a truthful-in-expectation ρ-approximation mechanism (Theorem 3). This is
the first such result for a multidimensional covering problem. As a corollary, we
obtain a truthful-in-expectation, 2-approximation mechanism (Corollary 5).



454 H. Minooei and C. Swamy

In the mechanism-design version of UFL, we have a setD of clients that need to
be serviced by facilities, and a set F of locations where facilities may be opened.
Each agent imay provide facilities at the locations in Ti ⊆ F . By making multiple
copies of a location if necessary, we may assume that the Tis are disjoint. Hence,
we will simply say “facility �” to refer to the facility at location � ∈ F . For each
facility � ∈ Ti that is opened, i incurs a private opening cost of f i,�, and assigning
client j to an open facility � incurs a publicly known assignment/connection cost
c�j . To simplify notation, given a tuple {fi,�}i∈[n],�∈Ti

of facility costs, we use f�
to denote fi,� for � ∈ Ti. The goal is to open a subset F ⊆ F of facilities, so as to
minimize

∑
�∈F f � +

∑
j∈D min�∈F c�j. We will assume throughout that the c�js

form a metric. It will be notationally convenient to allow our algorithms to have
the flexibility of choosing the open facility σ(j) to which a client j is assigned
(instead of argmin�∈F c�j); since assignment costs are public, this does not affect
truthfulness, and any approximation guarantee achieved also clearly holds when
we drop this flexibility.

We can formulate (metric) UFL as an integer program, and relax the integrality
constraints to obtain the following LP. Throughout, we use � to index facilities
in F and j to index clients in D.

min
∑
�

f�y� +
∑
j,�

c�jx�j s.t.
∑
�

x�j ≥ 1 ∀j, 0 ≤ x�j ≤ y�≤1 ∀�, j. (FL-P)

Here, {f�}� = {fi,�}i∈[n],�∈Ti
is the vector of reported facility costs. Variable y�

denotes if facility � is opened, and x�j denotes if client j is assigned to facility
�; the constraints encode that each client is assigned to a facility, and that this
facility must be open.

Say that an algorithm A is a Lagrangian multiplier preserving (LMP) ρ-
approximation algorithm for UFL if for every instance, it returns a solution(
F, {σ(j)}j∈D

)
such that ρ

∑
�∈F f� +

∑
j cσ(j)j ≤ ρ · OPT(FL-P). The main re-

sult of this section is the following black-box reduction.

Theorem 3. Given a polytime, LMP ρ-approximation algorithm A for UFL,
one can construct a polytime, truthful-in-expectation, individually rational, ρ-
approximation mechanism M for multidimensional UFL.

Proof. We build upon the convex-decomposition idea used in [21]. The random-
ized mechanism M works as follows. Let f = {f�} be the vector of reported
facility-opening costs, and c be the public connection-cost metric.

1. Compute the optimal solution (y∗, x∗) to (FL-P) (for the input (f, c)). Let
{p∗i = p∗i (f)} be the payments made by the fractional VCG mechanism that
outputs the optimal LP solution for every input. That is, p∗i =

(∑
� f�y

′
� +∑

�,j c�jx
′
�j

)
−
(∑

�/∈Ti
f�y

∗
� +
∑

�,j c�jx
∗
�j

)
, where (y′, x′) is the optimal solution

to (FL-P) with the additional constraints y� = 0 for all � ∈ Ti.
2. Let Z(P ) = {(y(q), x(q))}q∈I be the set of all integral solutions to (FL-P).
In Lemma 4, we prove the key technical result that using A, one can compute,
in polynomial time, nonnegative multipliers {λ(q)}q∈I such that

∑
q λ

(q) = 1,∑
q λ

(q)y
(q)
� = y∗� for all �, and

∑
q,�,j λ

(q)c�jx
(q)
�j ≤ ρ

∑
�,j c�jx

∗
�j .
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3. With probability λ(q): (a) output the solution
(
y(q), x(q)

)
; (b) pay p

(q)
i to agent

i, where p
(q)
i = 0 if

∑
�∈Ti

f�y
∗
� = 0, and

∑
�∈Ti

f�y
(q)
� · p∗

i∑
�∈Ti

f�y∗
�
otherwise.

Clearly, M runs in polynomial time. Fix a player i. Let f i and fi be the true and
reported cost vector of i. Let f−i be the reported cost vectors of the other players.
Let (y∗, x∗) be an optimal solution to (FL-P) for (f, c). Note that E

[
pi(f)

]
=

p∗i (f) since
∑

q λ
(q)y(q) = y∗� for all �. (If

∑
�∈Ti

f�y
∗
� = 0 then p∗i (f) = 0.) So

E
[
ui(fi, fi; f i)

]
= E

[
pi
]
−
∑

q λ
(q)
∑

�∈Ti
f �y

(q)
� = p∗i (f) −

∑
�∈Ti

f �y
∗
� . Since p∗i

and y∗ are respectively the payment to i and the assignment computed for input
(fi, f−i) by the fractional VCG mechanism, which is truthful, it follows that
player i maximizes his utility in the VCG mechanism, and hence, his expected
utility under mechanism M , by reporting his true opening costs.

Thus, M is truthful in expectation. This also implies the ρ-approximation
guarantee because the convex decomposition obtained in Step 2 shows that the
expected cost of the solution computed by M for input (f, c) (where we may
assume that f is the true cost vector) is at most ρ ·OPT(FL-P)(f, c). Finally, since
the fractional VCG mechanism is IR, for any agent i, the VCG payment p∗i (f)

satisfies p∗i (f) ≥
∑

�∈Ti
f�y

∗
� , and therefore p

(q)
i ≥

∑
�∈Ti

f�y
(q)
� . So M is IR. ��

Lemma 4. The convex decomposition in Step 2 can be computed in polytime.

Proof Sketch. It suffices to show that the LP (P) can be solved in polynomial
time and its optimal value is 1. Recall that {(y(q), x(q))}q∈I is the set of all
integral solutions to (FL-P). The LP (D) is the dual of (P).

max
∑
q

λ(q) (P)

s.t.
∑
q

λ(q)y
(q)

 = y∗


 ∀�
∑
j,
,q

λ(q)c
jx
(q)

j ≤ρ

∑
j,


c
jx
∗

j

∑
q

λ(q)≤ 1, λ≥ 0.

min
∑



y∗

α
+

(
ρ
∑
j,


c
jx
∗

j

)
β+ z (D)

s.t.
∑



y
(q)

 α
+

(∑
j,


c
jx
(q)

j

)
β+ z ≥ 1 ∀q (1)

z, β ≥ 0.

Clearly, OPT (D) ≤ 1 since z = 1, α� = 0 = β for all � is a feasible dual solution.
If there is a feasible dual solution (α′, β′, z′) of value smaller than 1, then the

rough idea is that by running A on the UFL instance with facility costs {α′
�

ρ }
and connection costs {β′c�j}, we can obtain an integral solution whose constraint
(1) is violated. (This idea needs be modified a bit since α′

� could be negative.)
Hence, we can solve (D) efficiently via the ellipsoid method using A to provide
the separation oracle. This also yields an equivalent dual LP consisting of only
the polynomially many violated inequalities found during the ellipsoid method.
The dual of this compact LP gives an LP equivalent to (P) with polynomially
many λ(q) variables whose solution yields the desired convex decomposition. ��

By using the polytime LMP 2-approximation algorithm for UFL devised by Jain
et al. [17], we obtain the following corollary of Theorem 3.



456 H. Minooei and C. Swamy

Theorem 5. There is a polytime, IR, truthful-in-expectation, 2-approximation
mechanism for multidimensional UFL.

4 Truthful Mechanisms for Multidimensional VC

We now consider the multidimensional vertex-cover problem (VC), and devise
various polytime, truthful, approximation mechanisms for it. We often use Multi-
VC to distinguish multidimensional VC from its algorithmic counterpart.

Recall that in Multi-VC, we have a graph G = (V,E) with n nodes. Each
agent i provides a subset Ti of nodes. For simplicity, we first assume that the
Tis are disjoint, and given a cost-vector {ci,u}i∈[n],u∈Ti

, we use cu to denote
ci,u for u ∈ Ti. Monopoly-free then means that each Ti is an independent set. In
Remark 11 we argue that many of the results obtained in this disjoint-Tis setting
(in particular, Theorems 13 and 14) also hold when the Tis are not disjoint (each
Ti is still an independent set). The goal is to choose a minimum-cost vertex cover,
i.e., a min-cost set S ⊆ V such that every edge is incident to a node in S.

As mentioned earlier, VC becomes a rather challenging mechanism-design
problem in the multidimensional mechanism-design setting. Whereas for single-
dimensional VC, many of the known 2-approximation algorithms for VC are
implementable, none of these underlying techniques yield implementable algo-
rithms even for the simplest multidimensional setting, 2-dimensional VC, where
every player owns at most two nodes (see the full version for examples). More-
over, no maximal-in-distributional-range (MIDR) mechanism whose range is a
proper subset of all outcomes can achieve a bounded multiplicative approxi-
mation guarantee [12]. This also rules out the convex-decomposition technique
of [21], which yields MIDR mechanisms.

We develop two main techniques for Multi-VC in this section. In Section 4.1,
we introduce a simple class of truthful mechanisms called threshold mechanisms,
and show that although seemingly restricted, threshold mechanisms can achieve
non-trivial approximation guarantees. In Section 4.2, we develop a decomposition
method for Multi-VC that uses threshold mechanisms as building blocks and
gives a general way of reducing the mechanism-design problem for Multi-VC into
simpler mechanism-design problems.

By leveraging the decomposition method along with threshold mechanisms,
we obtain various truthful, approximation mechanisms for Multi-VC, which yield
the first truthful mechanisms for multidimensional vertex cover with non-trivial
approximation guarantees. (1) We obtain a truthful, O(log n)-approximation
mechanism (Theorem 13) for any proper minor-closed family of graphs (such as
planar graphs). (2) We show that any instance of r-dimensional VC can be de-
composed into O(r2 logn) single-dimensional VC instances; this leads to a truth-
ful, O(r2 logn)-approximation mechanism for r-dimensional VC (Theorem 14).
In particular, for any fixed r, we obtain an O(log n)-approximation.

Theorem 16 shows that our mechanisms also enjoy good frugality properties.
We obtain the first mechanisms for Multi-VC that are polytime, truthful, and
achieve bounded approximation ratio and bounded frugality ratio. This comple-
ments a result of [5], who devise such mechanisms for single-dimensional VC.
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4.1 Threshold Mechanisms

Definition 6. A threshold mechanism M for Multi-VC works as follows. On
input c, for every i and every node u ∈ Ti, M computes a threshold tu = tu(c−i)
(i.e., tu does not depend on i’s reported costs). M then returns the solution
S = {v ∈ V : cv ≤ tv} as the output, and pays pi =

∑
u∈S∩Ti

tu to agent i.

If tu only depends on the costs in the neighbor-set N(u) of u, for all u ∈ V (note
that N(u) ∩ Ti = ∅ if u ∈ Ti), we call M a neighbor-threshold mechanism. A
special case of a neighbor-threshold mechanism is an edge-threshold mechanism:

for every edge uv ∈ E we have edge thresholds t
(uv)
u = t

(uv)
u (cv), t

(uv)
v = t

(uv)
v (cu),

and the threshold of a node u is given by tu = maxv∈N(u)(t
(uv)
u ).

In general, threshold mechanisms may not output a vertex cover, however it
is easy to argue that threshold mechanisms are always truthful and IR.

Lemma 7. Every threshold mechanism for Multi-VC is IR and truthful.

Proof. IR is immediate from the definition of payments. To see truthfulness, fix
an agent i. For every ci, ci ∈ Ci, c−i ∈ C−i we have ui(ci, c−i; ci) =

∑
v∈Ti:cv≤tv

(tv − cv). It follows that i’s utility is maximized by reporting ci = ci. ��

Inspired by [19,5], we define an x-scaled edge-threshold mechanism as follows:

fix a vector (xu)u∈V , where xu > 0 for all u, and set t
(uv)
u := xucv/xv for

every edge (u, v). We abuse notation and use Ax to denote both the resulting
edge-threshold mechanism and its allocation algorithm. Also, define Bx to be
the neighbor-threshold mechanism where we set tu :=

∑
v∈N(u) xucv/xv. Define

α(G;x) := maxu∈V

(
maxS⊆N(u):S independent

x(S)
xu

)
.

Lemma 8. Ax and Bx output feasible solutions and have approximation ratio
α(G;x) + 1.

Proof. Clearly, every node selected by Ax is also selected by Bx. So it suffices
to show that Ax is feasible, and to show the approximation ratio for Bx. For
any edge (u, v), either cu ≤ xucv/xv and u is output, or cv ≤ xvcu/xu and v is
output. So Ax returns a vertex cover.

Let S be the output of Bx on input c, and let S∗ be a min-cost vertex
cover. We have c(S) = c(S ∩ S∗) + c(S \ S∗) ≤ c(S∗) +

∑
u∈S\S∗ tu = c(S∗) +∑

u∈S\S∗
∑

v∈N(u) xucv/xv. Note that S \ S∗ is an independent set since S∗ is

a vertex cover, so
∑

u∈S\S∗
∑

v∈N(u) xucv/xv ≤
∑

v∈S∗
cv
xv

∑
u∈N(v)capS∗ xu ≤∑

v∈S∗ cv · α(G;x). Hence c(S) ≤ (α(G;x) + 1)c(S∗). It is not hard to construct
examples showing that this approximation guarantee is tight. ��

Corollary 9. (i) Setting x = 1 gives α(G;x) ≤ Δ(G), which is the maximum
degree of a node in G, so A1 has approximation ratio at most Δ(G) + 1.
(ii) Taking x to be the eigenvector corresponding to the largest eigenvalue λmax

of the adjacency matrix of G (x > 0 by the Perron-Frobenius theorem) gives
α(G;x) ≤ λmax (see [5]), so Ax has approximation ratio λmax + 1.
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Although neighbor-threshold mechanisms are more general than edge-threshold
mechanisms, Lemma 10 shows that this yields limited dividends in the approxima-
tion ratio. Define α′(G) = minorientations of G

(
maxu∈V,S⊆N in(u):S independent |S|

)
,

where N in(u) = {v ∈ N(u) : (u, v) is directed into u}. Note that α′(G) ≤
α(G;1) ≤ Δ(G). If G = (V,E) is everywhere γ-sparse, i.e., |{(u, v) ∈ E :
u, v ∈ S}| ≤ γ|S| for all S ⊆ V , then α′(G) ≤ γ; this follows from Hakimi’s
theorem [16]. A well-known result in graph theory states that for every proper
family G of graphs that is closed under taking minors (e.g., planar graphs), there
is a constant γ, such that every G ∈ G is has at most γ|V (G)| edges [23] (see
also [8], Chapter 7, Ex. 20); since G is minor-closed, this also implies that G is
everywhere γ-sparse, and hence α′(G) ≤ γ for all G ∈ G.

Lemma 10. A (feasible) neighbor-threshold mechanism M for graph G with
approximation ratio ρ, yields an O

(
ρ log(α′(G))

)
-approximation edge-threshold

mechanism for G. This implies an approximation ratio of (i) O(ρ log γ) if G is
an everywhere γ-sparse graph; (ii) O(ρ) if G belongs to a proper minor-closed
family of graphs (where the constant in the O(.) depends on the graph family).

Remark 11. Any neighbor-threshold mechanism M with approximation ratio ρ
that works under the disjoint-Tis assumption can be modified to yield a truthful,
ρ-approximation mechanism when we drop this assumption. Let Au = {i : u ∈
Ti}. Set ĉu = mini∈Au ci,u for each u ∈ V and let t̂u be the neighbor-threshold
of u for the input ĉ. Note that t̂u depends only on c−i for every i ∈ Au. Set t

i
u :=

min{t̂u,minj �=i:u∈Tj cj,u} for all i, u ∈ Ti. Consider the threshold mechanism M ′

with {tiu} thresholds, where we use a fixed tie-breaking rule to ensure that we pick
u for at most one agent i ∈ Au with ci,u = tiu. Then the outputs of M on c, and
of M ′ on input ĉ coincide. Thus, M ′ is a truthful, ρ-approximation mechanism.

4.2 A Decomposition Method

We now propose a general reduction method for Multi-VC that uses threshold
mechanisms as building blocks to reduce the task of designing truthful mecha-
nisms for Multi-VC to the task of designing threshold mechanisms for simpler (in
terms of graph structure or the dimensionality of the problem) Multi-VC prob-
lems. This reduction is useful because designing good threshold mechanisms
appears to be a much more tractable task for Multi-VC. By utilizing the thresh-
old mechanisms designed in Section 4.1 in our decomposition method, we obtain
an O(log n)-approximation mechanism for any proper minor-closed family of
graphs, and an O(r2 logn)-approximation mechanism for r-dimensional VC.

A decomposition mechanism M for G = (V,E) is constructed as follows.

– Let G1, . . . , Gk be subgraphs of G such that
⋃k

q=1 E(Gq) = E,
– Let M1, . . . ,Mk be threshold mechanisms for G1, . . . , Gk respectively. For
any v ∈ V , let tqv be v’s threshold in Mq if v ∈ V (Gi), and 0 otherwise.

– Define M to be the threshold mechanism obtained by setting the threshold
for each node v to tv := maxq=1,...,k(t

q
v) for any v ∈ V . The payments of M

are then as specified in Definition 6. Notice that if all the Mis are neighbor
threshold mechanisms, then so is M .
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Lemma 12. The decomposition mechanism M described above is IR and truth-
ful. If ρ1, . . . , ρk are the approximation ratios of M1, . . . ,Mk respectively, then
M has approximation ratio

(∑
q ρq
)
.

Proof. Since M is a threshold mechanism, it is IR and truthful by Lemma 7.
The optimal vertex cover for G induces a vertex cover for each subgraph Gq.
So Mq outputs a vertex cover Sq of cost at most ρq · OPT , where OPT is the
optimal vertex-cover cost for G. It is clear that M outputs

⋃
q Sq, which has cost

at most
(∑

q ρq
)
·OPT . ��

Theorem 13. If G = (V,E) is everywhere γ-sparse, then one can devise a
polytime, O(γ log |V |)-approximation decomposition mechanism for G. Hence,
there is a polytime, truthful, O(log n)-approximation mechanism for Multi-VC
on any proper minor-closed family of graphs. These guarantees also hold when
the Tis are not disjoint.

Proof. Let n = |V |. Since |E| ≤ γn, there are at most n/2 nodes with degree
larger than 4γ. Let H1 be the subgraph of G consisting of the edges incident to
the vertices of G with degree at most 4γ. Now, G1 = G \H1 (i.e., we delete the
nodes and edges of H1 to obtain G1) is also γ-sparse. So, we can similarly find
a subgraph H2 that contains at least half of the nodes of G1. Continuing this
process, we obtain subgraphs H1, . . . , Hk that partition G, where each subgraph
Hq has maximum degree at most 4γ and |V (Hq)| ≥ |V (G \ (H1 ∪ . . . Hq−1)|/2.
Hence, k ≤ logn. Using the (edge-threshold) mechanism A1 defined in Corol-
lary 9, for each subgraph gives a (4γ+1)-approximation for each Hq, and hence
a (4γ + 1) logn-approximation neighbor-threshold mechanism for G. By Re-
mark 11, this also holds when the Tis are not disjoint.

As noted in Section 4.1, every proper minor-closed family of graphs is ev-
erywhere γ-sparse for some γ > 0. Thus, the above result implies a truthful,
O(log n)-approximation for any proper minor-closed family (where the constant
in the O(.) depends on the graph family; e.g., for planar graphs γ ≤ 4). ��

We next present a decomposition mechanism whose guarantee depends only on
the dimensionality of the problem, and not on the underlying graph structure.

Theorem 14. For any r-dimensional instance of Multi-VC on G = (V,E), one
can obtain a polytime, O(r2 log |V |)-approximation, decomposition mechanism,
even when the Tis are not disjoint.

Proof. We decompose G into single-dimensional subgraphs, by which we mean
subgraphs that contain at most one node from each Ti. Initialize j = 1, Vj = ∅.
While,

⋃j−1
q=1 E(Gq) 	= E, we do the following: for every agent i, we pick one of

the nodes of Ti uniformly at random and add it to Vj . We also add all the nodes
in V \

(⋃n
i=1 Ti

)
to Vj . Let Gj be the induced subgraph on Vj ; set j ← j + 1.

For any edge e ∈ E, the probability that both of its ends appear in some
subgraph Gj , for any i = 1, . . . , l, is at least 1/r2. So, the expected value of

|E\
⋃j−1

q=1 E(Gq)| decreases by a factor of at least (1−1/r2) with j. Hence, the ex-

pected number of subgraphs produced above is O
( log |E|
log(r2/(r2−1))

)
= O(r2 log |V |)
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(this also holds with high probability). Each Gj yields a single-dimensional VC
instance (where a node may be owned by multiple players). Any truthful mech-
anism for a 1D-problem is a threshold mechanism. So we can use any truthful,
2-approximation mechanism for single-dimensional VC for the Gjs and obtain
an O(r2 logn)-approximation for r-dimensional Multi-VC. ��

The following lemma shows that the decomposition obtained above into single-
dimensional subgraphs is essentially the best that can hope for, for r = 2.

Lemma 15. There are instances of 2-dimensionalVCP that requireΩ(log |V (G)|)
single-dimensional subgraphs in any decomposition of G.

Proof. Define Gn to be the bipartite graph with vertices {u1, . . . , un, v1, . . . , vn}
and edges {(ui, vj) : i 	= j}. Each agent i = 1, . . . , n owns vertices ui and vi.

For n = 2 the claim is obvious. Let qn be the minimum number of single-
dimensional subgraphs needed to decompose Gn. Suppose the claim is true
for all j < n and we have decomposed Gn into single-dimensional subgraphs
D = {G1, . . . , Gqn}. We may assume that V (G1) = {u1, . . . , uk, vk+1, . . . , vn} (if
G1 has less than n nodes, pad it with extra nodes). Let H1 and H2 be the sub-
graphs of G induced by {u1, . . . , uk, v1, . . . , vk} and {uk+1, . . . , un, vk+1, . . . , vn},
respectively. The graphs in D \ {G1} must contain a decomposition of H1 and
a decomposition of H2. So qn ≥ 1 +max(qk, qn−k), and hence, by induction, we
obtain that qn ≥ 1 + (1 + log2(n/2)) = 1 + log2 n. ��

Frugality Considerations. Karlin et al. [18] and Elkind et al. [6] propose
various benchmarks for measuring the frugality ratio of a mechanism, which is a
measure of the (over-)payment of a mechanism. The mechanisms that we devise
above also enjoy good frugality ratios with respect to the benchmark introduced
by [6], which is denoted by ν(G, c) in [19] (and NTUmax in [6]).

The frugality ratio of a mechanismM =
(
A, {pi}

)
onG is defined as φM (G) :=

supc

∑
i pi(c)

ν(G,c) . The proof of Lemma 8 is easily modified to show that the x-scaled

mechanism Ax satisfies
∑

i pi(c) ≤
∑

u tu ≤ β(G;x)c(V ), where β(G;x) =

maxu∈V
x(N(u))

xu
. Since [6] show that ν(G, c) ≥ c(V )/2, this implies that φAx(G) ≤

2β(G;x). Also, if M is a decomposition mechanism constructed from threshold
mechanisms M1, . . . ,Mk, where each Mq satisfies

∑
u t

q
u ≤ φq · c(V (Gq)), then it

is easy to see that φM (G) ≤ 2
∑k

q=1 φq. Thus, we obtain the following results.

Theorem 16. Let G = (V,E) be a graph with n nodes. We can obtain a poly-
time, truthful, IR mechanism M with the following approximation ρ = ρM (G)
and frugality φ = φM (G) ratios.
(i) ρ = (β(G;x) + 1), φ ≤ 2β(G;x) for Multi-VC on G;
(ii) ρ, φ = O(γ logn) for Multi-VC on G when G is everywhere γ-sparse; hence,

we achieve ρ, φ = O(log n) for Multi-VC on any minor-closed family;
(iii) ρ = O(r2 logn), φ = O

(
r2 logn · Δ(G)

)
for r-dimensional Multi-VC on

G (using a 2-approximation mechanism with frugality ratio 2Δ(G) [6] for
single-dimensional VC in the construction of Theorem 14).



Truthful Mechanism Design for Multidimensional Covering Problems 461

References
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Abstract. A bootstrap percolation process on a graph G is an “in-
fection” process which evolves in rounds. Initially, there is a subset of
infected nodes and in each subsequent round each uninfected node which
has at least r infected neighbours becomes infected and remains so for-
ever. The parameter r � 2 is fixed.

We analyse this process in the case where the underlying graph is
an inhomogeneous random graph, which exhibits a power-law degree
distribution, and initially there are a(n) randomly infected nodes. The
main focus of this paper is the number of vertices that will have been
infected by the end of the process. The main result of this work is that
if the degree sequence of the random graph follows a power law with
exponent β, where 2 < β < 3, then a sublinear number of initially
infected vertices is enough to spread the infection over a linear fraction
of the nodes of the random graph, with high probability.

More specifically, we determine explicitly a critical function ac(n) such
that ac(n) = o(n) with the following property. Assuming that n is the
number of vertices of the underlying random graph, if a(n) � ac(n),
then the process does not evolve at all, with high probability as n grows,
whereas if a(n) � ac(n), then there is a constant ε > 0 such that, with
high probability, the final set of infected vertices has size at least εn.
This behaviour is in sharp contrast with the case where the underlying
graph is a G(n, p) random graph with p = d/n. Recent results of Janson,
�Luczak, Turova and Vallier have shown that if the number of initially
infected vertices is sublinear, then with high probability the size of the
final set of infected vertices is approximately equal to a(n). That is,
essentially there is lack of evolution of the process.

It turns out that when the maximum degree is o(n1/(β−1)), then ac(n)
depends also on r. But when the maximum degree is Θ(n1/(β−1)), then

ac(n) = n
β−2
β−1 .
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1 Introduction

Models for the processes by which new ideas and new behaviors propagate
through a population have been studied in a number of domains, including the
epidemiology, political science, agriculture, finance and the effects of word of
mouth (also known as viral marketing) in the promotion of new products. An
idea or innovation appears (for example, the use of a new technology among col-
lege students) and it can either die out quickly or make significant advances into
the population. The hypothesis of viral marketing is that by initially targeting a
few influential members of the network (e.g., by giving them free samples of the
product), we can trigger a cascade of influence by which friends will recommend
the product to other friends, and many individuals will ultimately try it. But
how should we choose the few key individuals to use for seeding this process?
This problem is known as “the influence maximization problem”; hardness re-
sults have been obtained in [29], [30] and there is a large literature on this topic
(see for example [31] and the references therein). However, in most practical
cases, the structure of the underlying network is not known and then one has to
initially target the popular and attractive individuals with many connections.

In this paper, we consider a simple model of diffusion, known as ”bootstrap
percolation model”. Bootstrap percolation was introduced by Chalupa, Leath
and Reich [13] in 1979 in the context of magnetic disordered systems and has
been re-discovered since then by several authors mainly due to its connections
with various physical models. A bootstrap percolation process with activation
threshold an integer r � 2 on a graph G = G(V,E) is a deterministic process
which evolves in rounds. Every vertex has two states: it is either infected or
uninfected. Initially, there is a subset A0 ⊆ V which consists of infected vertices,
whereas every other vertex is uninfected. This set can be selected either deter-
ministically or randomly. Subsequently, in each round, if an uninfected vertex
has at least r of its neighbours infected, then it also becomes infected and re-
mains so forever. This is repeated until no more vertices become infected. We
denote the final infected set by Af .

Bootstrap percolation processes (and extensions) have been used as models
to describe several complex phenomena in diverse areas, from jamming transi-
tions [27] and magnetic systems [24] to neuronal activity [3], [26] and spread of
defaults in banking systems (see e.g. [4] with a more refined model). A short
survey regarding applications of bootstrap percolation processes can be found
in [1].

In the context of real-world networks and in particular in social networks, a
bootstrap percolation process can be thought of as a primitive model for the
spread of ideas or new trends within a set of individuals which form a network.
Each of them has a threshold r and A0 corresponds to the set of individuals
who initially are “infected” with a new belief. If for an “uninfected” individual
at least r of its acquaintances have adopted the new belief, then this individual
adopts it as well. Bootstrap percolation processes have also been studied on a
variety of graphs, such as trees [8], [18], grids [12], [20], [7], [6], hypercubes [5],
as well as on several distributions of random graphs [9], [22], [2].
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More than a decade ago, Faloutsos et al. [17] observed that the Internet ex-
hibits a power-law degree distribution, meaning that the proportion of vertices
of degree k scales like k−β, for all sufficiently large k, and some β > 2. In par-
ticular, the work of Faloutsos et al. [17] suggested that the degree distribution
of the Internet at the router level follows a power law with β ≈ 2.6. Kumar et
al. [23] also provided evidence on the degree distribution of the World Wide Web
viewed as a directed graph on the set of web pages, where a web page “points”
to another web page if the former contains a link to the latter. They found that
the indegree distribution follows a power law with exponent approximately 2.1,
whereas the outdegree distribution follows also a power law with exponent close
to 2.7. Other empirical evidence on real-world networks has provided examples
of power law degree distributions with exponents between 2 and 3.

Thus, in the present work, we focus on the case where 2 < β < 3. More
specifically, the underlying random graph distribution we consider was intro-
duced by Chung and Lu [14], who invented it as a general purpose model for
generating graphs with a power-law degree sequence. Consider the vertex set
[n] := {1, . . . , n}. Every vertex i ∈ [n] is assigned a positive weight wi, and the
pair {i, j}, for i 	= j ∈ [n], is included in the graph as an edge with probability
proportional to wiwj , independently of every other pair. Note that the expected
degree of i is close to wi. With high probability the degree sequence of the re-
sulting graph follows a power law, provided that the sequence of weights follows
a power law (see [28] for a detailed discussion). Such random graphs are also
characterized as ultra-small worlds, due to the fact that the typical distance of
two vertices that belong to the same component is O(log logn) – see [15] or [28].

Regarding the initial conditions of the bootstrap percolation process, our gen-
eral assumption will be that the initial set of infected vertices A0 is chosen
randomly among all subsets of vertices of a certain size.

The aim of this paper is to analyse the evolution of the bootstrap percola-
tion process on such random graphs and, in particular, the typical value of the
ratio |Af |/|A0|. The main finding of the present work is the existence of a crit-
ical function ac(n), which is sublinear, such that when |A0| “crosses” ac(n) we
have a sharp change on the evolution of the bootstrap percolation process. When
|A0| ) ac(n), then typically the process does not evolve, but when |A0| - ac(n),
then a linear fraction of vertices is eventually infected. Of course the non-trivial
case here is when |A0| is sublinear. What turns out to be the key to such a dis-
semination of the infection is the vertices of high weight. These are typically the
vertices that have high degree in the random graph and, moreover, they form a
fairly dense graph. We exploit this fact and show how this causes the spread of
the infection to a linear fraction of the vertices (see Theorem 2 below). Interpret-
ing this from the point of view of a social network, these vertices correspond to
popular and attractive individuals with many connections – these are the hubs
of the network. Our analysis sheds light to the role of these individuals in the
infection process.

These results are in sharp contrast with the behaviour of the bootstrap perco-
lation process in G(n, p) random graphs, where every edge on a set of n vertices



Bootstrap Percolation in Small Worlds 465

is included independently with probability p. Recently, Janson, �Luczak, Turova
and Vallier [22] came up with a complete analysis of the bootstrap percolation
process for various ranges of the probability p. Since the random graphs we
consider have constant average degree, we focus on their findings regarding the
range where p = d/n and d > 0 is fixed. Among the findings of Janson et al. [22]
(see Theorem 5.2 there) is that when |A0| = o(n), then typically the process
essentially does not evolve. More precisely, the ratio |Af |/|A0| converges to 1
in probability – see below for the definition of this notion. In other words, the
density of the initially infected vertices must be positive in order for the density
of infected vertices to grow. We note that similar behavior to the case of G(n, p)
has been observed in the case of random regular graphs [9], and in random
graphs with given vertex degrees constructed through the configuration model,
studied by the first author in [2], when the sum of the square of degrees scales
linearly with n, the size of the graph. The later case includes random graphs
with power-law degree sequence with exponent β > 3. Our results imply that
the two regimes 2 < β < 3 and β > 3 have completely different behaviors.

Basic Notations. Let R+ be the set of positive real numbers. For non-negative
sequences xn and yn, we describe their relative order of magnitude using Lan-
dau’s o(.) and O(.) notation. We write xn = O(yn) if there exist N ∈ N and
C > 0 such that xn � Cyn for all n � N , and xn = o(yn), if xn/yn → 0, as
n → ∞. We also write xn ) yn when xn = o(yn) and xn - yn when yn = o(xn).

Let {Xn}n∈N be a sequence of real-valued random variables on a sequence of

probability spaces {(Ωn,Pn)}n∈N. If c ∈ R is a constant, we write Xn
p→ c to

denote that Xn converges in probability to c. That is, for any ε > 0, we have
Pn(|Xn − c| > ε) → 0 as n → ∞.
Let {an}n∈N be a sequence of real numbers that tends to infinity as n → ∞.
We write Xn = op(an), if |Xn|/an converges to 0 in probability. Additionally, we
write Xn = Op(an), to denote that for any positive-valued function ω(n) → ∞,
as n → ∞, we have P(|Xn|/an � ω(n)) = o(1). If En is a measurable subset
of Ωn, for any n ∈ N, we say that the sequence {En}n∈N occurs asymptotically
almost surely (a.a.s.) if P(En) = 1− o(1), as n → ∞.

Also, we denote by Be(p) a Bernoulli distributed random variable whose prob-
ability of being equal to 1 is p. The notation Bin(k, p) denotes a binomially dis-
tributed random variable corresponding to the number of successes of a sequence
of k independent Bernoulli trials each having probability of success equal to p.

2 Models and Results

The random graph model that we consider is asymptotically equivalent to a
model considered by Chung and Lu [15], and is a special case of the so-called
inhomogeneous random graph, which was introduced by Söderberg [25] and was
generalised and studied in great detail by Bollobás, Janson and Riordan in [11].
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2.1 Inhomogeneous Random Graphs – The Chung-Lu Model

In order to define the model we consider for any n ∈ N the vertex set [n] :=
{1, . . . , n}. Each vertex i is assigned a positive weight wi(n), and we will write
w = w(n) = (w1(n), . . . , wn(n)). We assume in the remainder that the weights
are deterministic, and we will suppress the dependence on n, whenever this is
obvious from the context. However, note that the weights could themselves be
random variables; we will not treat this case here, although it is very likely that
under suitable technical assumptions our results generalize to this case as well.
For any S ⊆ [n], set

WS(w) :=
∑
i∈S

wi.

In our random graph model, the event of including the edge {i, j} in the resulting
graph is independent of the events of including all other edges, and equals

pij(w) = min

{
wiwj

W[n](w)
, 1

}
. (1)

This model was considered by Chung et al., for fairly general choices of w, who
studied in a series of papers [14–16] several typical properties of the resulting
graphs, such as the average path length or the component distribution. We will
refer to this model as the Chung-Lu model, and we shall write CL(w) for a
random graph in which each possible edge {i, j} is included independently with
probability as in (1). Moreover, we will suppress the dependence on w, if it is
clear from the context which sequence of weights we refer to.

Note that in a Chung-Lu random graph, the weights essentially control the ex-
pected degrees of the vertices. Indeed, if we ignore the minimization in (1), and
also allow a loop at vertex i, then the expected degree of that vertex is∑n

j=1 wiwj/W[n] = wi. In the general case, a similar asymptotic statement is true,
unless the weights fluctuate too much. Consequently, the choice ofw has a signifi-
cant effect on the degree sequence of the resulting graph. For example, the authors
of [15] choose wi = dβ−2

β−1 (
n

i+i0
)1/(β−1), which typically results in a graph with a

power-law degree sequence with exponent β, average degree d, and maximum de-
gree proportional to (n/i0)

1/(β−1), where i0 was chosen such that this expression
is O(n1/2). Our results will hold in a more general setting, where larger fluctua-
tions around a “strict” power law are allowed, and also larger maximum degrees
are possible, thus allowing a greater flexibility in the choice of the parameters.

2.2 Power-Law Degree Distributions

Following van der Hofstad [28], let us write for any n ∈ N and any sequence of
weights w = (w1(n), . . . , wn(n))

Fn(x) = n−1
n∑

i=1

1[wi(n) < x], ∀x ∈ [0,∞)

for the empirical distribution function of the weight of a vertex chosen uniformly
at random. We will assume that Fn satisfies the following two conditions.
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Definition 1. We say that (Fn)n�1 is regular, if it has the following two
properties.

– [Weak convergence of weight] There is a distribution function F : [0,∞)→
[0, 1] such that for all x at which F is continuous limn→∞ Fn(x) = F (x);

– [Convergence of average weight] Let Wn be a random variable with dis-
tribution function Fn, and let WF be a random variable with distribution
function F . Then we have limn→∞ E [Wn ] = E [WF ].

The regularity of (Fn)n�1 guarantees two important properties. Firstly, the weight
of a random vertex is approximately distributed as a random variable that follows
a certain distribution. Secondly, this variable has finite mean and therefore the
resulting graph has bounded average degree. Apart from regularity, our focus will
be on weight sequences that give rise to power-law degree distributions.

Definition 2. We say that a regular sequence (Fn)n�1 is of power law with
exponent β, if there are 0 < γ1 < γ2, x0 > 0 and 0 < ζ � 1/(β − 1) such that
for all x0 � x � nζ

γ1x
−β+1 � 1− Fn(x) � γ2x

−β+1,

and Fn(x) = 0 for x < x0, but Fn(x) = 1 for x > nζ.

Thus, we may assume that for 1 � i � n(1− Fn(n
ζ)) we have wi = nζ , whereas

for (1 − Fn(n
ζ))n < i � n we have wi = [1 − Fn]

−1(i/n), where [1 − Fn]
−1 is

the generalized inverse of 1−Fn, that is, for x ∈ [0, 1] we define [1−Fn]
−1(x) =

inf{s : 1 − Fn(s) < x}. Note that according to the above definition, for ζ >
1/(β − 1), we have n(1−Fn(n

ζ)) = 0, since 1−Fn(n
ζ) � γ2n

−ζ(β−1) = o(n−1).
So it is natural to assume that ζ � 1/(β − 1). Recall finally that in the Chung-Lu
model [15] the maximum weight is O(n1/2).

2.3 Results

The main theorem of this paper regards the random infection of the whole of
[n]. We determine explicitly a critical function which we denote by ac(n) such
that when we infect randomly a(n) vertices in [n], then the following threshold
phenomenon occurs. If a(n) ) ac(n), then a.a.s. the infection spreads no further
than A0, but when a(n) - ac(n), then at least εn vertices become eventually
infected, for some ε > 0. We remark that ac(n) = o(n).

Theorem 1. For any β ∈ (2, 3) and any integer r � 2, we let

ac(n) = n
r(1−ζ)+ζ(β−1)−1

r (2)

for all n ∈ N. Let a : N → N be a function such that a(n) → ∞, as n → ∞, but
a(n) = o(n). Let also r−1

2r−β+1 < ζ � 1
β−1 . If we initially infect randomly a(n)

vertices in [n], then the following holds:
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– if a(n) ) ac(n), then a.a.s. Af = A0;
– if a(n) - ac(n), then there exists ε > 0 such that a.a.s. |Af | > εn.

Note that the above theorem implies that when the maximum weight of the

sequence is n1/(β−1), then the threshold function becomes equal to n
β−2
β−1 and

does not depend on r.
The second theorem has to do with the targeted infection of a(n) vertices

where a(n) → ∞, as n → ∞. Let f : N → R+ be a function. We define the
f -kernel to be

Kf := {i ∈ [n] : wi � f(n)}.
We will denote by CL[Kf ] the subgraph of CL(w) that is induced by the vertices
of Kf . We show that there exists a function f such that if we infect randomly
a(n) vertices of Kf , then this is sufficient to infect almost the whole of the C-
kernel, for some constant C > 0, with high probability. In other words, the gist
of this theorem is that there is a specific part of the random graph of size o(n)
such that if the initially infected vertices belong to it, then this is enough to
spread the infection to a positive fraction of the vertices.

Theorem 2. Let a : N → N be a function such that a(n) → ∞, as n → ∞, but
a(n) = o(n). Assume also r−1

2r−β+1 < ζ � 1
β−1 . If β ∈ (2, 3), then there exists

an ε0 = ε0(β, γ1, γ2) such that for any positive ε < ε0 there exists a constant
C = C(γ1, γ2, β, ε, r) > 0 and a function f : N → R+ such that f(n) → ∞
as n → ∞ but f(n) ) nζ satisfying the following. If we infect randomly a(n)
vertices in Kf , then at least (1− ε)|KC | vertices in KC become infected a.a.s.

In both theorems, the sequence of probability spaces we consider are the product
spaces of the random graph together with the random choice of A0.

We finish this section, by stating the result of [2] concerning bootstrap per-
colation in the case of power-law random graphs with exponent β > 3. (Note
that the result in [2] is stated for random graphs with given vertex degrees con-
structed through the configuration model.) We assume that at time zero each
node becomes infected with probability α independently of all the other vertices.
Then if pk denotes the fraction of nodes with degree k and pk ∝ k−β for β > 3,
the final fraction of infected nodes satisfies

|Af |
n

p−→ 1− (1− α)
∑
k

pkP(Bin(k, 1− y∗) < r),

where y∗ is the largest solution in [0, 1] to the following fixed point equation

y2
∑
k

kpk = (1 − α)y
∑
k

kpkP(Bin(k − 1, 1− y) < r).

Our results imply that the two regimes 2 < β < 3 and β > 3 have completely
different behaviors.

3 Proof of Theorem 1

In this section we present a sketch of the proof of Theorem 1.
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3.1 Subcritical Case

We will use a first moment argument to show that if a(n) = o(ac(n)), then
a.a.s. there are no vertices outside A0 that have at least r neighbours in A0

and, therefore, the bootstrap percolation process does not actually evolve. Here
we assume that initially each vertex becomes infected with probability a(n)/n,
independently of every other vertex.

For every vertex i ∈ [n], we define an indicator random variable Xi which is
1 precisely when vertex i has at least r neighbours in A0. Let X =

∑
i∈[n] Xi.

Our aim is to show that E [X ] = o(1), thus implying that a.a.s. X = 0.
For i ∈ [n] let pi = E [Xi ] = P [Xi = 1 ]. We will first give an upper bound on

pi and, thereafter, the linearity of the expected value will conclude our statement.

Lemma 1. For all integers r � 2 and all i ∈ [n], we have

pi �
(
ewia(n)

rn

)r

.

From this, we can use the linearity of the expected value to deduce an upper
bound on E [X ]. We have

E [X ] =
∑
i∈[n]

pi �
∑
i∈[n]

(
ewia(n)

rn

)r

= o

((
ac(n)

n

)r) ∑
i∈[n]

wr
i . (3)

We now need to give an estimate on
∑

i∈[n] w
r
i .

Claim. For all integers r � 2 and for β ∈ (2, 3) we have∑
i∈[n]

wr
i = Θ

(
n1+ζ(r−β+1)

)
.

Substituting this bound into the right-hand side of (3), we obtain:

E [X ] = o

(
nr(1−ζ)+ζ(β−1)−1

nr
n1+ζ(r−β+1)

)
.

But
r(1 − ζ) + ζ(β − 1)− 1− r + 1+ ζ(r − β + 1) = 0,

thus implying that E [X ] = o(1).

3.2 Supercritical Case

We begin with stating a recent result due to Janson, �Luczak, Turova and Val-
lier [22] regarding the evolution of bootstrap percolation processes on Erdős-
Rényi random graphs, as these will be needed in our proofs. These results re-
gard the binomial model G(N, p) introduced by Gilbert [19] and subsequently
became a major part of the theory of random graphs (see [10] or [21]). Here N is
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a natural number and p is a real number that belongs to [0, 1]. We consider the
set [N ] =: {1, . . . , N} and create a random graph on the set [N ], including each
pair {i, j}, where i 	= j ∈ [N ], independently with probability p. The following
theorem from [22] considers the bootstrap percolation process on G(N, p), when
p as a function of N does not decay too quickly.

Theorem 3 (Theorem 5.8 [22]). Let r � 2 and assume that initially a uni-
formly random subset of [N ] that has size a(N) becomes infected. If p - N−1/r

and a(N) � r, then a.a.s. |Af | = N .

Now we proceed with the proof of Theorem 1. In this part of the proof, we
shall be assuming that ac(n) = o(a(n)). Additionally, we shall assume that the
initially infected set is the set of the a(n) vertices of smallest weight.

We will show first that there exists a function f : N → R+ such that f(n) → ∞
as n → ∞ but f(n) = o(nζ) for which a.a.s. Kf will become completely infected.
This is where we use Theorem 3. More precisely, the subgraph of CL(w) that is
induced by the vertices of Kf , which we denote by CL[Kf ], stochastically con-
tainsG(Nf , pf ), whereNf = |Kf | and pf is a lower bound on the probability that
two vertices in Kf are adjacent – essentially pf is equal to min{f2(n)/W[n], 1}.
That is, one can construct a probability space that accommodates both CL(Kf )
and G(Nf , pf ), on the same vertex set and with the correct distributions, in such
a way that always the latter is a subgraph of the former.

We then show that any given vertex in Kf has at least r neighbours in A0

with some probability pInf which we determine later in (4). In other words, each
vertex in Kf becomes infected in one round with probability pInf independently
of every other vertex. Hence, as we may consider G(Nf , pf ) as a subgraph of
CL[Kf ] on the same vertex set, we deduce that the final set of infected vertices
in Kf is bounded from below by the size of the final set of infected vertices in
a bootstrap percolation process on G(Nf , pf ), assuming that the set of initially
infected vertices is the set of vertices which have at least r neighbours in A0. We
will show that pInf , Nf and pf satisfy the premises of Theorem 3, whereby we
will deduce that in fact Kf becomes completely infected a.a.s. Thereafter, we use
the following proposition, whose proof is rather lengthy and technical and, for
this reason, we omit it. We consider a bootstrap percolation process on CL(w)
where the initially infected set is a large subset of Kf .

Proposition 1. Let r � 2 and let f : N → R+ be a function such that f(n) → ∞
as n → ∞ but f(n) = o(nζ). Then there exists an ε0 = ε0(β, γ1, γ2) > 0 such
that for any positive ε < ε0 there exists C = C(γ1, γ2, β, ε, r) > 0 for which the
following holds. If (1 − ε)|Kf | vertices of Kf have been infected, then a.a.s. at
least (1− ε)|KC | vertices of KC become infected.

We deduce by above proposition that there exists a real number C > 0 such
that with high probability KC will be almost completely infected. This and
Definition 2 imply that there exists an ε > 0 such that a.a.s. at least εn vertices
become infected.
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Spreading the Infection to a Positive Fraction of the Vertices. We begin
with determining the function f . To this end, we need to bound from below the
probability that an arbitrary vertex in Kf becomes infected. In fact, we shall
bound from below the probability that an arbitrary vertex in Kf will become
infected already in the first round. Note that this amounts to bounding the prob-
ability that such a vertex has at least r neighbours in A0. Therefore, this forms a
collection of independent events which is equivalent to the random independent
infection of the vertices of Kf with probability equal to the derived lower bound.
Recall that the random graph induced on Kf stochastically contains an Erdős-
Rényi random graph with the appropriate parameters. This observation allows
us to determine f . To be more specific, if the probability that any given vertex in
Kf exceeds the complete infection threshold of this Erdős-Rényi random graph
and the premises of Theorem 3 is satisfied, then a.a.s. Kf eventually becomes
completely infected.

Under the assumption that A0 consists of the a(n) vertices of smallest weight,
we will bound from below the probability a vertex v ∈ Kf has at least r neigh-
bours in A0. We denote the degree of v in A0 by dA0(v) and note that this

random variable is equal to
∑

i∈A0
Be
(

wvwi

W[n]

)
, where the summands are inde-

pendent Bernoulli distributed random variables. Note also that for all n and for
all i ∈ [n] we have wi � x0. Thus, we can deduce the following (parts of it hold
for n sufficiently large)

P

[ ∑
i∈A0

Be

(
wvwi

W[n]

)
� r

]
� P

[ ∑
i∈A0

Be

(
wvx0

W[n]

)
� r

]

= P

[
Bin

(
a(n),

wvx0

W[n]

)
� r

]
�
(
a(n)

r

) (
wvx0

W[n]

)r (
1− wvx0

W[n]

)a(n)−r

� a(n)r

1.5 r!

(
f(n)x0

W[n]

)r (
1− f(n)x0

W[n]

)a(n)−r

.

Thus, assuming that a(n)f(n) = o(n) we have(
1− f(n)x0

W[n]

)a(n)−r

= 1− o(1).

Therefore, for n sufficiently large

P

[ ∑
i∈A0

Be

(
wvwi

W[n]

)
� r

]
� 1

2r!

(
a(n)f(n)x0

W[n]

)r

=: pInf . (4)

Thus, every vertex of Kf becomes infected during the first round with probability
at least pInf , independently of every other vertex in Kf .
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Recall that 2r−β+1
r−1 � ζ � 1

β−1 and ac(n) = n
r(1−ζ)+ζ(β−1)−1

r . Let us assume

that a(n) = ω(n)n
r(1−ζ)+ζ(β−1)−1

r , where ω : N → R+ is some increasing function

that grows slower than any polynomial. Setting f = f(n) = nζ

ω1+1/r(n)
, we will

consider CL[Kf ]. Before doing so, we will verify the assumption that a(n)f(n) =
o(n). Indeed, we have

a(n)f(n) =
1

ω1/r(n)
n

r(1−ζ)+ζ(β−1)−1
r +ζ .

But

r(1 − ζ) + ζ(β − 1)− 1

r
+ ζ =

r(1 − ζ) + ζ(β − 1)− 1 + rζ

r

= 1 +
ζ(β − 1)− 1

r
� 1,

since ζ � 1/(β − 1), whereby a(n)f(n) � n
ω1/r(n)

= o(n).

Now, note that if ζ > 1
2 , then CL[Kf ] is the complete graph on |Kf | vertices.

However, when ζ � 1
2 , then CL[Kf ] stochastically contains G(Nf , pf ), where

Nf = |Kf | and pf = f2(n)
W[n]

. We will treat these two cases separately.

Case I : 1
2 < ζ � 1

β−1 .

In this case, as CL[Kf ] is the complete graph, it suffices to show that with
high probability at least r vertices of Kf become infected already at the first
round. In fact, we will show that the expected number of vertices of Kf that
become infected during the first round tends to infinity as n grows. Note that
this number is equal to NfpInf . Thus, once we show that NfpInf → ∞, as
n → ∞, then Chebyschev’s inequality or a standard Chernoff bound can show
that with probability 1 − o(1), there are at least r infected vertices in Kf and,
thereafter, the whole of Kf becomes infected in one round.

By Definition 2 we have

Nf = |Kf | = Ω

(
n

(
ω(n)

nζ

)β−1
)
,

and by (4) we have

pInf = Θ

(
1

ω(n)

(
n

r(1−ζ)+ζ(β−1)−1
r · nζ

n

)r)
= Θ

(
nζ(β−1)−1

ω(n)

)
.

Hence
NfpInf = Ω

(
ωβ−2(n)

)
.

Case II : r−1
2r−β+1 < ζ � 1

2 .

As we mentioned above, CL[Kf ] stochastically contains G(Nf , pf ), where

pf = f2(n)
W[n]

, as ζ � 1
2 . We will show that here Nfp

r
f → ∞ as n → ∞ and

by Theorem 3 we deduce that Kf becomes completely infected with probability
1− o(1). We have
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Nfp
r
f = Θ

(
ωβ−1(n)n1−ζ(β−1) n2ζr

ω2r+2(n)nr

)
. (5)

and the expression on the right-hand side is

ω−(2r−β+3)(n)n−(r−1)+ζ(2r−β+1) → ∞,

by our assumption on ζ.
For each one of the above cases, Proposition 1 implies that for any real ε > 0

that is small enough there exists a real number C = C(γ1, γ2, β, ε) > 0 such
that a.a.s. at least (1 − ε)|KC | vertices of KC become infected. But we have
|KC | = Θ(n) and the second part of Theorem 1 follows.

4 Conclusion

In this paper, we analyse the evolution of a bootstrap percolation process in a class
of inhomogeneous random graphs which exhibits a power law degree distribution
with exponent β between 2 and 3. The main result of this work is that a sublinear
initially infected set is enough to spread the infection to a linear fraction of vertices
of the random graph. We further explore the role of hub vertices of the random
graph and demonstrate their function in the evolution of the process.

Acknowledgment. We would like to thank Rob Morris for drawing our atten-
tion to an oversight in an earlier version of this paper.
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Abstract. A user’s session of information need often goes well beyond
his search query and first click on the search result page and therefore is
characterized by both search and browse activities on the web. In such
settings, the effectiveness of an ad (measured as CtoC ratio, as well as
#(conversions) per unit payment) could change based on what pages the
user visits and the ads he encounters earlier in the session. We assume
that an advertiser’s welfare is solely derived from conversions.

Our first contribution is to show that the effectiveness of an ad de-
pends upon the past events in the session, namely past exposure to self
as well as to competitors. To this end, we analyze logs of user activity
over a period of one month from Microsoft AdCenter Delivery Engine.
We then propose a new bidding language that allows the advertiser to
specify his valuation of a user’s click as a function of these externalities,
and study the improvement in prediction of conversion events with the
new bidding language. We also study theoretical aspects of the allocation
problem under new bidding language and conduct an extensive empirical
analysis to measure effectiveness of our proposed allocation schemes.

1 Introduction

The increasing amount of time a user spends online conducting e-commerce
transactions has led to a widespread use of online advertising by merchants to at-
tract the potential customer to their sites and/or products. Often, this shopping
experience of a user extends beyond his query to a search engine and includes
visiting multiple web sites learning more about the product. A browse session is
a contiguous sequence of webpages visited by a user; and two consecutive browse
sessions are separated by a period of user’s inactivity.

There has been work on understanding externalities in context of interplay
between advertisements on the same page [1,9,6,8,7], however they neglect an
important aspect that the user is not an independent entity on each page, and
events in a browse session affect effectiveness of ads shown later in the session.
Thus an ad allocation scheme needs to consider the session as a whole, rather
than running independent auctions on each page. We initiate the study of un-
derstanding externalities and ad allocation for a browse session.

Now we describe the problem in detail: the most prevalent model of payment
in search and contextual advertisements is pay-per-click, where advertisers bid
for an ad position on a the page and they pay their bid value on a user’s click.
The advertiser’s real welfare is derived from the sale of the good or service (i.e.
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a conversion), and the additional traffic (or the awareness about the product)
generated by a click can contribute to its increase. The advertiser would want
to bid for a <user, page> based on his perceived probability that the given user’s
click on that page would lead to a conversion. In other words, the advertiser’s
welfare and payment are in different “currencies”, and if events in the browse
session affect his CtoC ratio or his welfare (measured in #(conversions)) per unit
payment, then he would want to change his bid accordingly.

Contributions of This Study: We analyzed the entire set of logs of user
activity over a period of one month obtained from Microsoft AdCenter Delivery
Engine to study the effect of the following two events in a user’s browse session
on an advertiser’s CtoC ratio as well as his welfare per unit payment, namely (a)
how many times the ad has been repeated already in the session, and (b) how
many competing ads have been shown earlier in the session. We observed that
these events affect the CtoC ratio (and the welfare per unit payment) negatively
by up to 50%. While our findings about the externalities from competing ads
agree with previous studies in other contexts such as TV advertising which show
that competitive advertising has a negative effect on the focal brand [5], our
observations for the repeated exposure of ads are contrary to perceptions in other
media (such as TV) in which it is considered beneficial to the advertiser [11].

We model the prior on a user’s browse session by a browse graph, and propose
a natural language that allows advertisers to express their values of a click as
a function of two main externality events. We perform an exhaustive set of
experiments to show that the model can be used to predict the conversion events
in the session with better accuracy. We study theoretical aspects of the allocation
problem under new bidding language, and perform an empirical analysis of some
natural heuristics on data. Our bidding language is simple, and can be considered
as each advertiser specifying his discount factors for each externality event. E.g.
an advertiser can ask to reduce his bid by a factor of disc self(j)+disc comp(k)
if he is already shown in the session j times and k competing ads have been in
the past. Further, our techniques can also be used internally by the ad allocation
engines without exposing the details to advertiser, where the discount factors are
computed by the engine, and it scales advertisers’ bids with the discount factors.

Related Work: There has been work on understanding externalities in online
advertising [1,9,6,8,7]. One model of externality that has been studied is the
effect of cascade models of user’s browsing on the click through rates of ads [1,9].
Gomes et al [8] consider the role of information and position externalities in a
similar cascade model. Ghosh et al [7] consider a special case where the each
advertiser expresses a two bids for a user, for exclusive and non-exclusive display.
Modeling externalities into an auction has also been studied using richer bidding
languages [3,10,4].

Organization: We illustrate the experiments performed to establish the sources
of externality in Section 2. We give a brief overview of our bidding language, and
empirical analysis of some heuristics for ad allocation in Section 3. The details of
the bidding language, its relevance to the conversion events in the data (in terms
of accuracy of prediction) and theoretical aspects of the allocation problem with
the new bidding language are deferred to the full version of the paper [2].
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2 Existence of Externalities

We begin by performing a set of experiments to establish the existence of exter-
nalities in a user’s browse session.

Data Sets: We used the entire set of user activity logs over a period of one
month (June 2011) obtained from Microsoft AdCenter Delivery Engine. These
logs consisted information about the user query, the set of competing ads, their
bids, ads shown, and the click as well as the conversion information. The pages in
consideration were essentially the sponsored search properties as well those sites
enrolled in the Microsoft publisher network. We associated all requests coming
from same IP (anonymized) to a single user. From this data, we extracted the
session information of a user. We defined a session as the set of contiguous
requests by a user such that two consecutive requests are no more than 10
minutes apart. We labeled an advertiser as a valid advertiser if his ad impressions
got at least 1000 clicks in the month. Our experiments are restricted to the set
of valid advertisers for whom the conversion data is available. We further note
that, the data is for search and contextual ads, where the payment model in use
is pay-per-click. We define two advertisers as competitors if there are at least
10000 sessions in the month in which both are assigned an impression. In our
experiments, a valid advertiser without conversion information is allowed to play
the role of a competitor.

Advertiser’s Welfare Model: We assume that an advertiser’s welfare is solely
derived from a conversion even as the payment model is pay-per-click; and for
any fixed advertiser, the welfare derived from a conversion remains same. As an
advertiser’s welfare is derived solely from conversions, he would want to pay the
same (or similar) amount per unit conversion, and we would expect his relative
bid on a given page to be directly proportional to the “anticipated” CtoC ratio
from a click on the page. Given advertiser Ai and a page p, let bi,p be his bid
for a click on that page, and let bi,avg be his average bid over all pages across

all sessions. We define his relative bid for page p as
bi,p

bi,avg
; if there is a click on

p, his relative payment for the click is the value of his relative bid for p.

Existence of Externality: We performed two sets of experiments to establish
each type of externality. We considered two types of externality events: (a) the
current ad is the advertiser’s jth ad in the browse session, and (b) the ad is shown
after showing i competitors’ ads in the session, where i and j are parameters.
Let E be the externality event in consideration.

Effect on CtoC Ratio: We measure the change in the CtoC ratio over all
advertisers as a result of externality event E. Its value is computed as follows:
let conversions(E) and clicks(E) be the number of conversions and clicks
summed over all advertisers when event E is true. Then the value of CtoC ratio
under event E, denote by CtoC(E), is defined to be

CtoC(E) = conversions(E)
clicks(E)

We note that the experiment ignores changes in advertisers’ bids from their
corresponding average bid values.
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(a) Effect of repeated exposure:
Click parameters

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100
Effect of Repetition: Conversions/(Relative payment)

#(Same Impressions Seen in the Session)

(b) Effect of repeated exposure: Ef-
ficiency of payment
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(c) The effect of preceding competi-
tors: Click parameters
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Fig. 1. Different externalities that are present in a user’s browse session

Effect onAdvertiser’sWelfare perUnitPayment:Wemeasure the efficiency-
of-payment for advertisers when the event E is true. It is defined as follows: let
conversions(E) and payment(E) be the number of conversions and the total
relative payment summed over all advertisers when event E is true, then the
efficiency-of-payment under event E, denote by EoP(E), is defined to be

EoP(E) = conversions(E)
payment(E)

As this experiment scales the clicks by advertisers’ bid values, it removes the
effects of external parameters and events on CtoC ratio such as bad quality of
impressions (or less relevant users), as the relative-bid value of an advertiser is
a good indicator of importance of a (user on a) page to the advertiser. If both
experiments show a similar quantitative behavior for the externality event in
consideration, then it establishes the externality for the event. Now we illustrate
our experimental findings.

Effect of Repeating the Same Ad in the Browse Session – Figure 1(a)
plots the values of click parameters over all advertisers based on the prior expo-
sure to the same ad in the current browse session. We measure the prior exposure
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in terms of the number of times the same ad is shown previously in the session.
All values in the plot are relative to the maximum possible value of the corre-
sponding click parameter, which happens when the ad is shown for the first time.
We observe that the CtoC ratio decreases almost linearly as the ad is repeated
multiple times; for instance, it drops to 52% of its maximum value when the
same ad is repeated 10 times in the session. Figure 1(b) plots the efficiency-of-
payment for this externality; we observe that its value also drops linearly and
it is around 55% of its maximum value when the ad is repeated 10 times. Thus
these two quantities show a similar quantitative behavior.

Effect of Competitors – Next we analyze how important it is for an advertiser
that his ad is shown before his competitors in a browse session. Toward this end,
we analyzed the effect on an advertiser’s click parameters when competing ads
are shown on earlier pages in the the current browse session. Figures 1(c) and
1(d) measure the CtoC ratio and the efficiency-of-payment for advertisers as a
function of number of preceding competitors in the session. We note that both
parameters show a similar quantitative behavior and their values decrease as
more competing ads are shown previously in the session. The values of the CtoC
ratio and the efficiency-of-payment drop to 70% and 80% respectively of their
maximum values as the ad is shown after 10 competing ads in the session. In
other experiments, we observed that most advertisers are affected negatively by
prior competing ads. In fact, 30% advertisers have their CtoC ratio dropped by
more than 50% by preceding competitors, and overall, around 80% advertisers
are affected negatively.

3 The Bidding Language and Ad Allocation

In this section, we give a brief overview of a richer bidding language which enables
advertisers to adjust their bids based on the events in the browse session, and
study the effectiveness of some natural heuristics for the ad allocation problem.
The details of the prior on the user’s browse session, the improvement in accuracy
of prediction of conversion events with the bidding language and theoretical
aspects of the ad allocation problem are deferred to the full version of the paper.

Bidding Language: Advertiser Ai specifies the set of his competitors, and
two discount factors: disc selfi : N → R and disc compi : N → R. Let b be
the valuation of a click for Ai on page u. Let j be the number of times advertiser
Ai’s ad is shown in the session so far and k be the number of competing ads
shown in the session so far, then we have

ext self(i, j) = disc selfi(j) and ext comp(i, k) = disc compi(k)

The total externality is the sum of both externalities. Ai’s effective valuation of
node u with externality effect is b(1 + ext self(i, j) + ext comp(i, k)).

Expressive Power: We discuss some examples to illustrate the expressive power
of the simplified bidding language.
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Fig. 2. Performance of various allocation algorithms

If advertiser Ai wants his jth repetition in the session to be discounted by
10× j%, then it can be expressed by setting disc selfi(j) = −0.1× j.

If advertiser Ai has two different bids for node u, his bid is b1 when he is the
first among his competitors in the session, and b2 otherwise, then we can set
w(i, u) = b1, disc compi(0) = 0 and disc compi(> 0) = b2−b1

b1
. This example

is similar to the setting considered in Ghosh et al [7], where as advertiser
specifies two bids, one for the exclusive display on a page and the other for
the non-exclusive display.

The simplified bidding language can also be used as a tool by the ad serving
engine, where it computes the discount factors for advertisers to scale their bids,
so that the advertisers have better value for their money.

Heuristics for Ad Allocation: As the externalities observed in data are
(mostly) negative, the allocation problem is hard to approximate. Hence, we
study the performance of some natural heuristics for the allocation problem on
real data, using the experimental setup described in Section 2.

a) Greedy allocation with past externality (GreedyWithExt:) Assign
the page to the advertiser with maximum (effectivebid) × CTR value, where
effective bid is his bid considering the externality in the session.
b) Randomized allocation (Random:) Chosen advertiser randomly with
probability proportional to his (effectivebid)× CTR value.
c) Greedy Allocation (Greedy) Assign each page to the advertiser with
the maximum (bid × CTR) value. This is the optimal allocation in absence of
externality effects.
d) Optimal allocation (OPT) (Computed using a dynamic program.)

Observations: The experimental results are given in Figure 2. We note some
salient observations:

(1) The first plot (Figure 2(b)) – We measure performances of three algorithms
with respect to the Greedy algorithm for sessions with at least 5 pages. For
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each algorithm, we classify sessions into ten buckets based on the relative wel-
fare compared to the Greedy algorithm. We observe that for every session,
the performance of GreedyWithExt is at least as good as Greedy with at
least 5% better for 5% sessions, and the performance of GreedyWithExt is
indistinguishable from OPT.

(2) The second plot (Figure 2(c)) – We classify sessions based on their length.
For a session type, we measure the ratio of the total welfare of the algorithm in
consideration summed over these sessions compared to the total welfare of the
greedy algorithm for these sessions. As we can see, when the number of pages
in a session is small, OPT and GreedyWithExt are not substantially bet-
ter than Greedy. This is because, there is less externality in a small session,
and the allocation remains almost same even by ignoring it. As session-length
increases to 15 pages, the externality effect becomes significant and Greedy-
WithExt performs 3% better than Greedy. Furthermore, we note that there
is no noticeable difference between the performance of GreedyWithExt and
OPT. This suggests that GreedyWithExt works well in practice.

(3) The third plot (Figure 2(a))– We classify sessions based on the number
of pages in the session, and measure the fraction of pages that have different
allocation in GreedyWithExt and Greedy algorithms for a given session-
type. The difference in allocation increases with an increase in the session length,
with 15% difference for sessions with length ≥ 10 pages.
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Abstract. Firms have ever-increasing amounts of information about possible
customers available to them; furthermore, they are increasingly able to push of-
fers to them rather than having to passively wait for a consumer to initiate con-
tact. This opens up enormous new opportunities for intelligent marketing. In this
paper, we consider the limit case in which the firm can predict consumers’ pref-
erences and relationships to each other perfectly, and has perfect control over
when it makes offers to consumers. We focus on how to optimally introduce a
new product into a social network of agents, when that product has significant
externalities. We propose a general model to capture this problem, and prove that
there is no polynomial-time approximation unless P=NP. However, in the special
case where agents’ relationships are symmetric and externalities are positive, we
show that the problem can be solved in polynomial time.

1 Introduction

Often the utility that a person derives from a technology depends on whether her neigh-
bors are using the same technology. Examples include various kinds of office software
(calendar management, word processing, spreadsheets), mobile phones, etc. In such a
context, the technology-provider may need to charge early adopters lower prices (or
even give them compensations). Moreover, as firms obtain increasing amounts of data
on consumers, they are able to individualize offers to them, in terms of both the timing
of the offer and price quoted. This results in a challenging optimization problem for the
provider: choose intelligently to which agents to make offers, and in which order.

We assume that a new provider is introducing a single new technology. There may
be competing technologies in the market, but in any case the existing situation is static.
This rules out possibilities such as existing providers modifying their own prices or
otherwise acting in response to the new provider’s actions. We also assume that the
agents are myopically rational: when made an offer, an agent decides on the offer based
on the technologies currently used by her neighbors. The agent does not attempt to
predict whether her neighbors will later switch technologies themselves. Finally, we
restrict ourselves to situations where the new provider can perfectly predict how much
an agent is be willing to pay.
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We show that the general problem is hard to approximate unlessP = NP (Section 3).
However, in an interesting special case where the agents have symmetric utilities and pos-
itive externalities, the problem can be formulated as an integer program whose constraint
matrix is totally unimodular. Hence, we get a polynomial time algorithm (Section 4).

Previous Work. There is an extensive literature on marketing policies over a social
network [7]. The generic setting is as follows. Initially, the firm convinces a certain
subset of agents to use the new technology and those agents, in turn, influence their
neighbors. The process continues, and more agents adopt the new technology due to
a cascading effect. A standard objective [11] is to select an initial subset of at most k
agents so as to maximize the influence, which is defined as the total number of agents
who adopt the new technology at the end of the cascading process.

In contrast to the influence maximization, we optimize the profit over a social net-
work [3,9]. The two papers [10,4] are particularly relevant to our setting. They consider
a Bayesian model. Here, an agent’s valuation for the new technology is private knowl-
edge, but it is drawn from a publicly known distribution. This distribution depends on
the subset of her neighbors who have already switched to the new technology. The new
firm visits the agents one by one, and while visiting an agent, it offers her the new
technology at some price. The agents behave myopically, and the objective is to maxi-
mize the expected sum of total payments collected from all the agents. The authors give
simple influence and exploit policies that are constant factor approximations to optimal
profit: In the first stage, a select subset of agents gets the new technology for free. In the
next stage, the remaining agents are visited in a sequence chosen uniformly at random,
and each of those agents is offered the new technology at the myopically optimal price.
Our work is different from these results in three crucial aspects: 1) Unlike these previ-
ous papers, we consider a perfect-information (non-Bayesian) setting. 2) In our model,
the firm incurs a nonnegative cost for producing each unit of the product, and the ob-
jective is to maximize the total payments made by the agents minus the total production
cost. Hence, marketing policies that make offers to a large subset of agents at low prices
can be extremely suboptimal. 3) We allow the agents to have positive utilities for being
in the initial state, which captures settings where an existing technology is already in
use, and our firm wants to enter the market and compete with an incumbent.

2 The Problem: OPTIMAL-OFFER-SEQUENCE

Consider a simple undirected graph G = (V,E). Every node i ∈ V denotes an agent,
and there is an edge {i, j} ∈ E iff i 	= j and i and j are neighbors. Initially, every agent
i ∈ V is in state A. A new firm (say B) now wants to enter the market, and its objective
is to maximize profit by exploiting the network structure. If some agent i ∈ V decides
to be a customer of firm B, then we say that agent i switches (or converts) to state B.

The vector S captures the states of all the agents at any particular instant. Component
i ∈ V of vector S is denoted by Si, and the notation S−i denotes all the components
except component i. Specifically, we set Si = A (resp. Si = B) iff agent i is in state
A (resp. state B). Let Ui(S) be the utility of agent i ∈ V . It is a function of the state
vector, and can be expressed as the sum of two terms:

Ui(S) = Ini(Si) + Γi(Si,S−i) (1)
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In the above equation, the term Ini(Si) denotes the intrinsic utility agent i ∈ V derives
from being in state Si; whereas her extrinsic utility is captured by the term Γi(Si,S−i)
and it is determined in the following manner. Let Φt,t′(i, j) be the (nonnegative) utility
agent i derives from her friend j, when i is in state t ∈ {A,B} and j is in state t′ ∈
{A,B}. In general, these utilities may be asymmetric, that is, we may have Φt,t′(i, j) 	=
Φt′,t(j, i). For all t, t′ ∈ {A,B} and i, j ∈ V , we set Φt,t′(i, j) = 0 if the agents i, j
are not friends with each other. Now:

Γi(Si,S−i) =
∑
j∈V

ΦSi,Sj
(i, j) (2)

Initially, every agent is in state A. Next, firm B selects a subset V ∗ ⊆ V , and computes
a ranking π : V ∗ → {1, . . . , |V ∗|} of the agents in V ∗. The rank of agent i ∈ V ∗ is
given by π(i). Firm B now visits the agents in V ∗ in increasing order of their ranks.
While visiting an agent i, firm B offers her the new technology at a price pi.

Without any loss of generality, we can assume that every agent i ∈ V ∗ accepts her
offer.1 Let S be the state vector just before firm B makes an offer to agent i. Agent
i behaves myopically and utilities are quasilinear. Hence, if she is to switch her state,
then we must have: Ini(B) + Γi(B,S−i) − pi ≥ Ini(A) + Γi(A,S−i). Since firm B
wants to maximize its profit, it sets pi to the highest possible value. Thus, we have:

pi = Ini(B) + Γi(B,S−i)− Ini(A)− Γi(A,S−i) (3)

The price pi can be negative, which implies a subsidy. The idea is that firm B may have
to subsidize some agents in the beginning, when few agents are in state B and they may
incur a loss for switching to the new technology. As more and more agents convert to
state B, the firm will be able to exploit the resulting positive externalities and generate
a large profit, due to the customers who switch in later stages. Firm B also incurs a
manufacturing cost of c per unit of the product. We want to maximize its net profit,
given by the expression

∑
i∈V ∗(pi − c). Throughout the rest of the paper, we refer to

this optimization problem as OPTIMAL-OFFER-SEQUENCE.

Lemma 1. Let PROFIT(j) be the profit from agent j. For all i ∈ V ∗, let π−(i) be the
set of agents switching to state B before agent i, i.e., π−(i) = {j ∈ V ∗ : π(j) < π(i)}.

PROFIT(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if i ∈ V \ V ∗.

(
Ini(B)− Ini(A)− c

)
+
∑

j∈π−(i)

(
ΦB,B(i, j)− ΦA,B(i, j)

)
+

∑
j∈V \π−(i)

(
ΦB,A(i, j)− ΦA,A(i, j)

)
,

if i ∈ V ∗.

The total profit of firm B is given by:
∑

i∈V PROFIT(i) =
∑

i∈V ∗ PROFIT(i).

1 Otherwise, we could delete agent i from the set V ∗.
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Proof. Fix any agent i ∈ V ∗. Note that PROFIT(i) = pi − c. Let S be the state vector
just before i switches to state B. By Equation 3, PROFIT(i) is equal to:

Ini(B)− Ini(A)− c+ Γi(B,S−i)− Γi(A,S−i) (4)

Expanding the right hand side of Equation 2, we can show:

Γi(B,S−i) =
∑

j∈π−(i)

ΦB,B(i, j) +
∑

j∈V \π−(i)

ΦB,A(i, j)

Γi(A,S−i) =
∑

j∈π−(i)

ΦA,B(i, j) +
∑

j∈V \π−(i)

ΦA,A(i, j)

Finally, we substitute the above expressions back in Eq. 4. ��

3 A Hardness Result

In this section, we show that (see Lemma 3) it is NP-hard to decide whether firm B
can make positive profit, by a reduction from the Maximum Arc Set on Tournaments
(MAST) problem. This rules out the existence of any polynomial-time approximation
algorithm for OPTIMAL-OFFER-SEQUENCE, unless P = NP (see Theorem 1).

Let G = (V , E) be a directed tournament graph; that is, for any two distinct nodes
i, j ∈ V , we have |E ∩{(i, j), (j, i)}| = 1. Let π : V → {1, . . . , |V|} be a ranking of the
set of nodes V , where π(i) denotes the rank of node i ∈ V , and π(i) 	= π(j) if i 	= j.
We say that an edge (i, j) ∈ E is a forward edge (resp. backward edge) w.r.t. ranking π
if π(i) < π(j) (resp. π(i) > π(j)).

Maximum Acyclic Subgraph on Tournaments (MAST): An instance F of the prob-
lem consists of an ordered pair (G, θ), where θ ≥ 1 is a positive integer, and G = (V , E)
is a directed tournament graph. The objective is to decide if there exists a ranking of V
where the number of backward edges is at least θ. This problem is NP-hard [6,2,5,1].

The Reduction. Given an instance F of the MAST problem (G = (V , E), θ), we con-
struct the following instance IF of OPTIMAL-OFFER-SEQUENCE. It is easy to see that
the reduction can be implemented in polynomial time.

– G = (V,E) is a complete undirected graph, defined on the same node set as that of
G; that is, V = V and E = {{i, j} : i, j ∈ V, i 	= j}.

– For all i, j ∈ V : if (i, j) ∈ E then ΦB,B(i, j) = 1, else ΦB,B(i, j) = 0.
– For all i, j ∈ V : we have ΦA,B(i, j) = ΦB,A(i, j) = ΦA,A(i, j) = 0.
– For all i ∈ V : we set Ini(A) = Ini(B) = 0.
– The cost per unit c is set in such a way that

− c× |V |+ θ = 1 (5)

According to the above reduction, the profit (Lemma 1) from the instance IF equals:

PROFIT = −c|V ∗|+
∑
i∈V ∗

∑
j∈π−(i)

ΦB,B(i, j) (6)
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Let G[V ∗] = (V ∗, E∗) be the subgraph of G induced by the node set V ∗ ⊆ V , so that:

E∗ = {(i, j) ∈ E : i, j ∈ V ∗, i 	= j} (7)

Let E∗
π be the set of backward edges in G[V ∗] w.r.t. π. Since ΦB,B(i, j) = 1 when

(i, j) ∈ E , and ΦB,B(i, j) = 0 when (i, j) /∈ E , Equation 6 implies that

PROFIT = −c|V ∗|+
∑
i∈V ∗

∑
j∈π−(i)

ΦB,B(i, j) = −c|V ∗|+ |E∗
π | (8)

Lemma 2. In the instance IF of OPTIMAL-OFFER-SEQUENCE, the profit-maximizing
solution either converts all the agents to state B, or it does not convert any agent to
state B; that is, it sets either V ∗ = ∅ or V ∗ = V .

Proof. In the profit-maximizing solution, suppose that the agents in V ∗ switch to state
B according to the ranking π : V ∗ → {1, . . . , |V ∗|}. For the sake of contradiction,
suppose that the lemma is false, and the profit-maximizing solution sets ∅ ⊂ V ∗ ⊂
V . Since the profit is nonnegative, Equation 8 implies that −c|V ∗| + |E∗

π | ≥ 0, or
equivalently, c ≤ |E∗

π|/|V ∗|. Since |E∗
π| ≤

(|V ∗|
2

)
, we derive c < |V ∗|/2.

Fix any k ∈ V \ V ∗. Let δ+(k, V ∗) (resp. δ−(k, V ∗)) be the number of outgoing
(resp. incoming) edges of k whose other endpoints lie in V ∗. Since the graph G is a
tournament, either δ−(k, V ∗) ≥ |V ∗|/2 or δ+(k, V ∗) ≥ |V ∗|/2.

Case 1. δ−(k, V ∗) ≥ |V ∗|/2.
In this case, we construct a new solution that converts all the nodes in V ∗ ∪{k} to state
B in the following order: First, it converts node k. Next, it converts the nodes in V ∗

according to ranking π. Let the new profit be P′. Clearly, we have:

P′ = −c(|V ∗|+ 1) + δ−(k, V ∗) + |E∗
π| > −c|V ∗|+ |E∗

π|

The inequality holds since c < |V ∗|/2 and δ−(k, V ∗) ≥ |V ∗|/2. Thus, the new profit
is strictly greater than the maximum profit, which is a contradiction.

Case 2. δ+(k, V ∗) ≥ |V ∗|/2.
In this case, we construct another solution that converts all the nodes in V ∗ ∪ {k} to
state B in the following order: First, it converts the nodes in V ∗ according to ranking
π. Next, it converts node k. Applying an argument similar to Case 1, we show that the
new profit is strictly greater than the maximum profit, which is a contradiction. ��
Lemma 3. Firm B can get positive profit from the instance IF of the OPTIMAL-OFFER-
SEQUENCE problem if and only if the instance F of the MAST problem admits a ranking
where the number of backward edges is at least θ.

Proof. Suppose that the optimal solution to the instance IF converts the agents in V ∗ ⊆
V to state B according to the ranking π. Lemma 2 implies that it is possible to get
positive profit from the instance IF iff V ∗ = V , and in that case, applying Equation 8:

PROFIT = −c|V |+ |E∗
π | = 1− θ + |E∗

π | > 0.

The second equality holds because of Equation 5. Since θ is an integer, 1−θ+ |E∗
π| > 0

iff |E∗
π| ≥ θ. Since π is also a ranking for the MAST instance F , the lemma follows.

Lemma 3 implies Theorem 1.
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Theorem 1. The OPTIMAL-OFFER-SEQUENCE problem does not admit any polynomial-
time approximation algorithm, unless P = NP .

Next, we describe a family of instances that admit a 2-approximation in poly-time.
Theorem 2 follows from a result by Guruswami et al. [8].

Theorem 2. Consider a family of instances of the OPTIMAL-OFFER-SEQUENCE prob-
lem where c = 0, Ini(A) = Ini(B) = 0 for all i ∈ V , and ΦA,B(i, j) = ΦB,A(i, j) =
ΦA,A(i, j) = 0 and ΦB,B(i, j) ≥ 0 for all i, j ∈ V . Under such settings, there exists
a poly-time 2 approximation algorithm for the OPTIMAL-OFFER-SEQUENCE problem,
and it is Unique Games hard to get better than 2 approximation.

4 Symmetric Utility Functions: Polynomial Time Algorithm

In this section, for all {i, j} ∈ E, we require that ΦA,A(i, j) = ΦA,A(j, i), ΦB,B(i, j) =
ΦB,B(j, i), and ΦA,B(i, j) = ΦB,A(j, i) = 0. Such utility functions are symmetric, and
we write ΦA,A({i, j}) and ΦB,B({i, j}) instead of ΦA,A(i, j) and ΦB,B(i, j). Under
symmetric utilities, the problem can be solved in polynomial time (see Theorem 3).

Lemma 4. If the utility functions are symmetric, then the profit of firm B is given by:∑
i∈V ∗

(
Ini(B)− Ini(A) − c

)
+

∑
{i,j}⊆V ∗

ΦB,B({i, j})−
∑

{i,j}∩V ∗ �=∅
ΦA,A({i, j})

Proof. Since the utility functions are symmetric, we have:∑
i∈V ∗

∑
j∈π−(i)

(
ΦB,B(i, j)− ΦA,B(i, j)

)
=

∑
{i,j}⊆V ∗

ΦB,B({i, j}) (9)

∑
i∈V ∗

∑
j∈V \π−(i)

(
ΦB,A(i, j)− ΦA,A(i, j)

)
= −

∑
{i,j}∩V ∗ �=∅

ΦA,A({i, j}) (10)

The lemma follows from Equations 9, 10 and Lemma 1. ��
Lemma 4 implies that the profit of firm B, under symmetric utility functions, is uniquely
determined by the set of agents who switch to state B, and is independent of the order
in which those agents are offered the new technology. We now give an integer program-
ming formulation (IP-1) for our problem. Note that in IP-1, the variables γ{i,j}, λ{i,j}
are defined over unordered pairs of nodes {i, j} ∈ E.

IP-1

Max.
∑
i∈V

(
Ini(B)− Ini(A)− c

)
xi +

∑
{i,j}

(
ΦBB({i, j})γ{i,j} − ΦAA({i, j})λ{i,j}

)
s.t. γ{i,j} − xi ≤ 0 ∀i ∈ V, {i, j} ∈ E (11)

xi − λ{i,j} ≤ 0 ∀i ∈ V, {i, j} ∈ E (12)

xi ∈ {0, 1} ∀i ∈ V (13)

γ{i,j}, λ{i,j} ∈ {0, 1} ∀{i, j} ∈ E (14)
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Lemma 5. The constraints of IP-1 ensure that in an optimal solution:

– The variable xi = 1 iff node i ∈ V switches to state B, that is, when i ∈ V ∗.
– The variable γ{i,j} = 1 iff both the endpoints of edge {i, j} switch to state B.
– The variable λ{i,j} = 1 iff at least one endpoint of edge {i, j} switches to state B.

Hence, Lemma 4 implies that IP-1 gives an integer programming formulation of the
OPTIMAL-OFFER-SEQUENCE problem in the special case of symmetric utilities.

Proof. We show that the interpretation of γ{i,j} is consistent with the interpretation
of xi. Each γ{i,j} has a nonnegative coefficient in the objective. Hence, in an optimal
solution, γ{i,j} is set to the largest possible value. Constraint 11 establishes an upper
bound of min(xi, xj) on the variable γ{i,j}. It follows that γ{i,j} = 1 iff xi = xj = 1.

Each λ{i,j} has a nonpositive coefficient in the objective. Thus, in an optimal solu-
tion, λ{i,j} is set to the smallest possible value. Constraint 12 establishes a lower bound
of max(xi, xj) on the variable γ{i,j}. Hence, λ{i,j} is set to 0 iff xi = xj = 0. ��

Theorem 3. The constraint matrix of IP-1 is totally unimodular. Hence, we can find an
optimal solution of IP-1 in polynomial time. Thus, the OPTIMAL-OFFER-SEQUENCE

problem can be solved efficiently when the utility functions are symmetric.
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Abstract. Generalized Second Price (GSP) auction is one of the most
commonly used auction mechanisms in sponsored search. As compared
to conventional equilibrium analyses on GSP auctions, the convergence
analysis on the dynamic behaviors of the bidders can better describe real-
world sponsored search systems, and give them a more useful guideline
for making improvement. However, most existing works on convergence
analysis assume the bidders to be greedy in taking actions, i.e., they only
utilize the bid information in the current round of auction when deter-
mining the best strategy for the next round. We argue that real-world
professional advertisers are more capable and can utilize the informa-
tion in a longer history to optimize their strategies. Accordingly, we
propose modeling their behaviors by a weighted joint strategy fictitious
play (wJSFP). In the proposed model, bidders determine their optimal
strategies based on their beliefs on other bidders’ bid prices, and the
beliefs are updated by considering all the information they have received
so far in an iterative manner. We have obtained the following theoretical
results regarding the proposed model: 1) when there are only two ad
slots, the bid profile of the bidders will definitely converge; when there
are multiple slots, there is a sufficient condition that guarantees the con-
vergence of the bid profile; 2) as long as the bid profile can converge, it
converges to a Nash equilibrium of GSP. To the best of our knowledge,
this is the first time that the joint strategy fictitious play is adopted in
such a complex game as sponsored search auctions.

1 Introduction

Sponsored search has become an increasingly important advertising channel
nowadays. When a web user submits a query keyword to a search engine, besides
the organic search results, he/she will also see a ranked list of paid ads. If the
user clicks on one of these ads, the corresponding advertiser will be charged by a
certain amount of money. In most search engines today, the ranking and pricing
of the ads are determined by a keyword auction mechanism. Generalized Second
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Price (GSP) auction is one of the most widely used keyword auction mecha-
nisms. With GSP, the ads are ranked according to the products of their quality
scores and bid prices, and the payment for a clicked ad equals the minimal bid
price for the ad to maintain its current rank position.

The theoretical properties of GSP have been well studied in the literature
[1][3][4][5][10]. In particular, Edelman et al.[5] and Varian[10] discussed a type of
Nash equilibrium of GSP named locally envy free equilibrium in the full infor-
mation setting; Christodoulou et al.[3] studied the Bayesian-Nash equilibrium
in the partial information setting; and Bhawalkar et al.[1] provided a guarantee
on the social welfare and revenue in equilibrium for GSP. However, almost all
these works suffer from the following problems: (i) they assume that every bidder
knows the true values of the other bidders (either completely or in a Bayesian
manner), however, the private values are inaccessible in keyword auctions, even
to the auctioneer; (ii) they only investigate the fixed point of the bid profile (i.e.,
equilibrium) and cannot explain how the equilibrium is (progressively) achieved.

To tackle these problems, a number of bidder behavior models were proposed
[2][9][11]. For example, Edelman et al. [2] modeled greedy bidding strategies
and discussed their resultant revenue, convergence, and robustness. Zhou and
Lukose [11] modeled vindictive bidding strategies and showed that most Nash
equilibria are vulnerable to vindictive bidding. Noam Nisan et al. [9] analyzed
the best response models and showed that the simple and myopic best-response
dynamics converge to the VCG outcome in several well studied auction envi-
ronments including GSP. These models have a couple of advantages. First, they
do not assume bidders to know competitors’ true values (but instead only their
bid prices). Second, they can be used to explain how an equilibrium is achieved
in a dynamic environment. However, these models also have their limitations.
Specifically, these models assume the bidders to be greedy in taking actions, i.e.,
they only utilize the bid information in the current round of auction when de-
termining the best strategy for the next round. It is clear that many real-world
professional advertisers are more capable than assumed in these works, and can
utilize the information in a longer history to optimize their strategies.

To better reflect the capability of professional advertisers, we propose mod-
eling their behaviors in GSP auctions using a weighted joint strategy fictitious
play (wJSFP). In this proposed model, every bidder forms a belief (i.e., a distri-
bution) on other bidders’ future bids and iteratively updates it by considering
all the information he/she has received in the history. The bidder then chooses
his/her best bid strategy by maximizing the expected utility according to the
beliefs. The parameter in the proposed model can be estimated from real data,
and can be used to predict the future behaviors of the bidder.

Although the fictitious play model has been proposed for over sixty years,
previous studies on its convergence property are all for relatively simple games,
such as the two-player zero-sum games[7], and the potential games [8]. Its con-
vergence property in such a complex game as GSP auctions is unclear due to
the existence of multiple players and multiple strategies per player. To perform
meaningful convergence analysis, we consider the structure of bidders’ utilities
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in GSP and obtain the following results. 1) When there are only two ad slots,
the bid profile of the bidders will definitely converge. 2) When there are multiple
slots, we obtain a sufficient condition that can guarantee the convergence of the
bid profile. 3) As long as the bid profile converges, it will converge to a Nash
equilibrium of GSP.

To the best of our knowledge, it is the first time that JSFP is adopted in
sponsored search auctions, and it is also the first time that the convergence
properties of JSFP in such a complex setting is comprehensively investigated.

The rest of this paper is organized as follows. In Section 2, we give a brief
introduction to the GSP mechanism and the proposed wJSFP behavior model
in GSP. Our theoretical results are presented in Section 3. The conclusion and
future work are given in the last section.

2 Weighted Joint Strategy Fictitious Play in GSP

In this section, we first give a brief introduction to the keyword auctions in spon-
sored search and the GSP mechanism. Then we describe our proposed wJSFP
model.

Consider the application of sponsored search. Suppose there are m bidders
{1, 2, · · · ,m} who bid for n ad slots, where m ≥ n. Each bidder i has a private
value vi and bid set Xi. Without loss of generality, we assume v1 ≥ v2 ≥ · · · ≥
vm. The click-through rate for ad slot k is denoted as βk, which satisfies βk > 0 if
k ≤ n, βk = 0 if k > n, and β1 > β2 > ... > βn. At time period t, the bid profile
of all the bidders is denoted as bt = (bt1, b

t
2, · · · btm) ∈ X1 × X2 × · · · × Xm �

X , and the bid profile of other bidders except bidder i is denoted as bt−i =
{bt1, · · · bti−1, b

t
i+1, · · · btm}. Then a keyword auction (A, p) is performed based on

the bid profile bt, where the allocation rule A allocates ads to ad slots and the
pricing rule p charges the bidders for the clicks on their ads. Consequently, bidder
i receives his/her utility ui(b

t
i, b

t
−i) = (vi − pi(b

t
i, b

t
−i))βAi(bti,b

t
−i)

.

When the GSP mechanism is adopted, the allocation rule ranks the ads ac-
cording to the products of their quality scores {qi; i = 1, · · · ,m} and bid prices1,
i.e., Ai(b) = 1 +

∑m
j=1 I[qjbj>qibi]; the pricing rule charges a bidder for his/her

clicked ad by the minimum bid price that can maintain the current rank posi-
tion of his/her ad, i.e., pi(b) = qA−1(Ai(b)+1)bA−1(Ai(b)+1)/qi. For simplicity and
without loss of generality, we assume the quality scores to be identical in the
following discussion.2

Next we describe our proposed wJSFP model, which contains the following
three steps.

1. Belief Update: Each bidder has a belief on other bidders’ future bids and
updates it in an iterative manner by considering all the information he/she

1 For simplicity, we break ties (if there exists) by allocating the ad slot to the bidder
with a smaller index.

2 Please note that this assumption does not affect any of our analyses, since one can
absorb the original quality scores into the bid prices.
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has received in the history. Specifically, we denote the belief of bidder i as
π−i(t), which is a distribution on X−i and is updated as follows:

π−i(t) = (1− γt−1
i )π−i(t− 1) + γt−1

i Pδ(bt−1
−i ), (1)

where 0 ≤ γt
i ≤ 1 is the belief update parameter for bidder i at time period

t, Pδ(·) is the delta distribution, and π−i(1) is the prior belief for bidder i at
time period 1. The formula indicates that each bidder updates his/her belief
to a weighted average of his/her current belief and other bidders’ current
bid prices. In some sense, the parameter γ reflects the capability of a bidder
in information collection, processing, and analysis.

2. Utility Maximization: Each bidder computes his/her expected utility based
on his/her belief, i.e.,

ui(bi, π−i(t)) = Eb−i∼π−i(t)ui(bi, b−i), where bi ∈ Xi. (2)

Then, bidder i computes his/her best response set with respect to belief
π−i(t),

BR(π−i(t)) � arg max
bi∈Xi

ui(bi, π−i(t)). (3)

3. Bid Update: Each bidder selects a bid from the best response set BR(π−i(t))
in the following ways: if the current bid belongs to the best response set, the
bidder will not change his/her bid; otherwise, he/she will randomly select a
bid from BR(π−i(t)). The selected bid will then serve as the bid price for
the next round of auction.3

Based on the steps described above, we can rewrite each bidder i’s belief by
using the weight parameter τs,ti as below,

π−i(t) = τ0,t−1
i π−i(1) +

t−1∑
s=1

τs,t−1
i Pδ(bs−i)

, (4)

where τs,ti = γs
i

∏t
k=s+1(1 − γk

i ) for s > 0 and τ0,ti =
∏t

k=1(1 − γk
i ). The bids

profile for other bidders before time period t is bs−i(s < t). It is not difficult

to verify that, if 0 < γt
i < 1 and γt+1

i ≥ γt
i

1+γt
i
, we have τ t,ti ≥ τ t−1,t

i ≥ · · · ≥
τ1,ti > 0. That is, in this case, bidders will put higher weights to the bid vectors
closer to the current time in their belief and will take into consideration all the
information they have received in the history. According to the linearity property
of expectation, we reformulate bidder’s expected utility as below, which will be
used in the next section.

ui(bi, π−i(t)) = τ0,t−1
i ui(bi, π−i(1)) +

t−1∑
s=1

τs,t−1
i ui(bi, b

s
−i). (5)

Please note that the proposed wJSFP behavior model is a generalization of the
best response model [2] and the classical JSFP model [6]. If γt

i ≡ 1 for t ≥ 1, the

3 In this paper, we mainly focus on this particular bid update rule for sake of sim-
plicity. However, please note that one can also apply other bid update rules. For
example, with the random bid update rule, the bidder will randomly choose a bid
from BR(π−i(t)); with the competitor busting bid update rule, the bidder will bid
the maximum of BR(π−i(t)).
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wJSFP model will be reduced to the best-response model; If γt
i = 1

t for t ≥ 1,
the wJSFP model will become the classic JSFP model. As compared to these two
reduced versions of our proposed model, our model can better describe the behav-
iors of real-world advertisers due to the removal of some strict and unreasonable
assumptions.

3 Convergence Analysis

In this section we prove the convergence properties of the proposed wJSFP be-
havior model.

Without loss of generality, we assume that no bidders will over bid, and we
quantize the bids by δ. That is, Xi ⊆ {0, δ, 2δ, ...} for all i ∈ {1, 2, · · · , m},
where δ is the smallest bid that a bidder could choose (in real applications, the bid
price is always quantized since it is money, and δ is one cent).

Lemma 1. Denote St as the set of bidders who can get a slot at time t. If all
bidders behave according to the wJSFP model, limt→∞ St = {1, 2, · · · , n}.
Proof. Let bt(n) be the bid of the bidder in slot n at time t. It is clear that

bt(n) ≤ vn, since bidders will not over bid. Thus, B � lim inf t→∞ bt(n) ≤ vn. Since

bt(n) ∈ {0, δ, 2δ, ...}, ∃ T and {tk}k≥1 (T < t1 < t2 < · · ·) s.t. bt(n) ≥ B (∀t > T )

and btk(n) = B (∀k ≥ 1). Therefore, for ∀ bidder i ∀ sufficiently large t, if bti < B,

ui(b
t) = 0; if bti > B, ui(b

t) ≥ δβn. If bi < B,

ui(bi, π−i(t)) = τ0,t−1
i ui(bi, π−i(1)) +

t−1∑
s=1

τs,t−1
i ui(bi, b

s
−i)

= τT,t−1
i

1

γT
i

(τ0,Ti ui(bi, π−i(1)) +

T∑
s=1

τs,Ti ui(bi, b
s
−i))

≤ τT,t−1
i

1

γT
i

max
bi<B

(τ0,Ti ui(bi, π−i(1)) +

T∑
s=1

τs,Ti ui(bi, b
s
−i))

� τT,t−1
i A(T ). (6)

If vi ≥ bi > B,
ui(bi, π−i(t)) ≥

∑
T<tk<t

τ tk,t−1
i ui(bi, b

s
−i) ≥ τT,t−1

i

∑
T<tk<t

δβn > τT,t−1
i A(T ).(7)

Therefore, for bidder i s.t. vi ≥ B, bti ≥ B.
If B < vn+1, for i ≤ n+1, vi ≥ vn+1 ≥ B. Thus bti ≥ B. Since we allocate slot

to the bidder with a smaller index when a tie appears, if btn+1 ≤ B, un+1(b
t) = 0.

Thus, when bn+1 ≤ B inequality (6) still holds. Further considering (7), we have
btn+1 > B when t is sufficiently large. So, if btn ≤ B, un(b

t) = 0. Similar to the
analysis for bidder n + 1, btn > B. With the same logic, we have bti > B (i =
1, 2, · · · , n+ 1) which is contradicted with the definition of B. Thus, B ≥ vn+1.
For i ≤ n, vi ≥ vn ≥ B, thus bti ≥ B. For i > n, bti ≤ vi ≤ vn+1 ≤ B. Therefore,
{1, 2, · · · , n} will win. �
The above lemma shows that in the wJSFP model, only those bidders whose
private values are ranked in the top n positions can get a slot after a long-term
update. Next, we discuss the convergence property of their bid profile.
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Theorem 1. Consider a GSP auction with m bidders and 2 slots. If all the
bidders behave according to the wJSFP model, their bid profile will converge.

Proof. According to Lemma 1, for bidder i (i > 2), ∃ T > 0, if t > T , ui(b
t) = 0

and thus

ui(bi, π−i(t)) = τ0,t−1
i ui(bi, π−i(1)) +

T∑
s=1

τs,t−1
i ui(bi, b

s
−i) = τT,t−1

i C(T ) (8)

Thus, bti ∈ BR(π−i(t + 1)). According to the bid update rule, bti will remain
unchanged. Then, we consider bidder 1 and bidder 2. Without loss of generality,
we assume β1 = 1, β2 = β. Since the other bidder’ bids remain unchanged, so
does the price for slot 2, which is denoted as p2. Thus, u1(b1, b2) = v1−b2, if b1 ≥
b2, and u1(b1, b2) = (v1 − p2)β, if b1 < b2. Now, we define the following two
sequences based on {bt2},
U t
2 =

{
bt2, if bt2 > (1− β)v1 + βp2
v1, if bt2 ≤ (1− β)v1 + βp2

Lt
2 =

{
bt2, if bt2 < (1− β)v1 + βp2
p2, if bt2 ≥ (1− β)v1 + βp2.

(9)
Let U = lim inft→∞ U t

2 and L = lim supt→∞ Lt
2. Thus ∃ T

′
, if t > T

′
, U t

2 ≥
U > (1 − β)v1 + βp2 > L ≥ Lt

2. Similar to the proof of Lemma 1, we have,
maxL≤b1<U u1(b1, π−1(t)) > maxb1<L,or b1≥U u1(b1, π−1(t)), when t is sufficiently
large. So bt1 ∈ [L,U) and remain unchanged according to the bid update rule, so
does bt2. In this way, we have proven this theorem. �
The discussions on the case with multiple ad slots are more complicated. We
give a sufficient condition that can guarantee the convergence of the bid profile
in this case. Under this condition there is a unique class of Nash equilibrium,
and each bidder i will get slot i for i ∈ {1, 2, · · · , n}.
Theorem 2. In GSP, if (vi − vi+1)βi > viβi+1, ∀i ∈ {1, 2, · · · , n− 1}, and all
bidders behave according to the wJSFP model, their bid profile will converge.

Proof. We consider bidder 1. Since (vi − vi+1)βi > viβi+1, if he/she wins slot
1, his/her utility u1 = (v1 − p1)β1 ≥ (v1 − v2)β1 > v1β2 ≥ (v1 − pk)βk. That
is, slot 1 can bring the largest utility to bidder 1. Thus bt1 ≥ maxi>1,s<t b

s
1

and is increasing when t is sufficiently large. So, limt→∞ bt1 exists, and remain
unchanged since the bid is quantized. We could conduct similar analysis to other
bidders, and come to the conclusion that the bid profile will converge. �
In the next theorem, we show that as long as the bid profile converges, it will
converge to a Nash equilibrium of GSP.

Theorem 3. If the bid profile converges to b ∈ X in GSP, with the wJSFP
behaviors, b must be a Nash equilibrium of GSP.

Proof. Since the bids are quantized and the bid profile converges to b, ∃ T > 0,
s.t. all bidders’ bids remain for any t > T . If b is not a Nash equilibrium of
GSP, we could find a bidder i and bid b

′

i 	= bi s.t. ui(b
′

i, b−i) > ui(bi, b−i). We

define A(T ) = maxbi∈Xi

1
γT
i
(τ0,Ti ui(bi, π−i(1)) +

∑T
s=1 τ

s,T
i ui(bi, b

s
−i)) < ∞ and

ε = ui(b
′

i, b−i)− ui(bi, b−i) > 0 . When t > T + A(T )
ε + 1 we have:

ui(bi, π−i(t)) ≤ τT,t−1
i A(T ) +

t−1∑
s=T+1

τs,t−1
i ui(bi, b

s
−i). (10)
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So ui(bi, π−i(t)) <
∑t−1

s=T+1 τ
s,t−1
i (ui(bi, b

s
−i) + ε) ≤ ui(b

′

i, π−i(t)) for any t >

T + A(T )
ε + 1. Since the bid of bidder i remains bi for all t > T , we have bi ∈

BR(π−i(t)). This contradicts with ui(bi, π−i(t)) < ui(b
′

i, π−i(t)). So b must be a
Nash equilibrium of GSP. �

4 Conclusions

In this paper, we have proposed a weighted joint strategy fictitious play model to
describe bidders’ behaviors in GSP auctions. In this model, bidders update their
beliefs on other bidders’ bid strategies by iteratively involving the information
they receive. We have proven that with the proposed model, when there are
only two ad slots, the bid profile of the bidders will definitely converge; when
there are multiple ad slots, we give a sufficient condition that can guarantee
the convergence of the bid profile. Furthermore, as long as the bid profile can
converge, it will converge to a Nash equilibrium of GSP.

As for the future work, we plan to work on the following aspects. 1) We will
conduct experiments on real data to verify the effectiveness of our proposed
model. 2) We will investigate the necessary and sufficient condition for the con-
vergence of the proposed model in the setting of multiple ad slots.
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Abstract. We study the model of resource allocation games with con-
flicting congestion effects introduced by Feldman and Tamir (2012). In
this model, an agent’s cost consists of its resource’s load (which increases
with congestion) and its share in the resource’s activation cost (which de-
creases with congestion). The current work studies the convergence rate
of best-response dynamics (BRD) in the case of homogeneous agents.
Even within this simple setting, interesting phenomena arise. We show
that, in contrast to standard congestion games with identical jobs and
resources, the convergence rate of BRD under conflicting congestion ef-
fects might be super-linear in the number of jobs. Nevertheless, a specific
form of BRD is proposed, which is guaranteed to converge in linear time.

1 Introduction

Resource allocation is considered to be a fundamental problem in algorithmic
game theory, and has naturally been the subject of intensive research within
this field. Most of the game-theoretic literature on resource allocation settings
emphasizes either the negative or the positive congestion effects on the individual
cost of an agent. The former approach assumes that the cost of a resource is some
non-decreasing function of its load. This literature includes job scheduling and
routing models [11,20]. In these cases an individual user will attempt to avoid
sharing its resource with others as much as possible. The second approach, in
stark contrast, assumes that a resource’s cost is a decreasing function of its load.
This is the case, for example, in network design and cost sharing connection
games, in which each resource has some activation cost, which should be covered
by its users [2,6]. In these cases, an individual user wishes to share its resource
with as many other users as possible in attempt to decrease its share in the cost.

In reality, most applications have cost functions that exhibit both negative and
positive congestion effects. Accordingly, more practical models that integrate the
two congestion effects into a unified cost function have been considered [1,9,15].
The present paper studies the resource allocation setting that is introduced by
Feldman and Tamir [9], in which the individual cost of an agent is composed
of two components, one that exhibits positive externalities, and the other that
exhibits negative externalities. More specifically, every resource has some acti-
vation cost, that is shared among all the agents using it. The individual cost of

P.W. Goldberg and M. Guo (Eds.): WINE 2012, LNCS 7695, pp. 496–503, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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an agent is the sum of its chosen resource’s load (reflecting the negative exter-
nalities) and its share in the resource’s activation cost (reflecting the positive
externalities). This model is applicable to a large set of applications, including
job scheduling, network routing, and network design settings.

The induced game, unlike its two “parent games,” is not a potential game1

when played by heterogeneous agents. Indeed, it has been shown in [9] that
best-response dynamics (BRD) do not necessarily converge in this setting. Yet,
in the special case where agents are identical, the induced game is a potential
game; consequently, any BRD is guaranteed to converge to a Nash equilibrium
[9]. The rate of the convergence, however, has been overlooked thus far. It is
argued that the convergence rate is crucial for the Nash equilibrium hypothesis
to hold; that is, it is more plausible that a Nash equilibrium will be reached if
natural dynamics lead to such an outcome within a small number of moves.

In this paper, we study the convergence rate of BRD in a job scheduling game
with conflicting congestion effects and identical agents.

1.1 Our Results

It is fairly easy to see that for unit-size jobs, convergence to a Nash equilibrium is
linear in the number of jobs in both of the “parent” models; namely, if the the cost
function equals the resource’s load or if it equals the job’s share in the resource’s
activation cost. We find that if the cost function takes both components into
consideration, the convergence rate might be super-linear. We then introduce a
specific form of BRD, referred as max-cost, where the job that incurs the highest
cost is the one to perform its best move. The motivation behind this BRD is
clear: the job that incurs the highest cost has the strongest incentive to improve
its state. For max-cost -BRD, linear convergence rate is guaranteed. Due to space
constraints, we defer some proofs to the full version [10].

1.2 Related Work

A lot of research has been conducted in the analysis of job-scheduling applica-
tions using a game-theoretic approach, where the jobs are owned by players who
choose the machine to run on. The questions that are commonly analyzed under
this approach are Nash equilibrium existence, the convergence of best-response
dynamics to a Nash equilibrium, and the inefficiency of Nash equilibria (quanti-
fied mainly by the price of anarchy [16,18] and price of stability [2] measures).

It is well known that every congestion game is a potential game [19,17], and
therefore admits a pure Nash equilibrium, and every best-response dynamics
converges to a pure Nash equilibrium. However, the convergence time may, in
general, be exponentially long [1,8,21]. This observation has led to a large amount
of work that identified special classes of congestion games, where best-response
dynamics converge to a Nash equilibrium in polynomial time or even linear time.
This agenda has been the focus of [7,12] in a setting with negative congestion

1 Potential games have been introduced by [17].
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effects, and was also studied in a setting of positive congestion effects [2]. In
particular, it has been shown that it takes at most n steps (where n is the number
of users) to converge to a Nash equilibrium if the network is composed of parallel
links [7], and this result has been later extended to extension-parallel networks
[12]. For resource selection games (i.e., where feasible strategies are composed
of singletons), it has been shown in [14] that better-response dynamics converge
within at most mn2 steps for general cost functions (where m and n are the
number of resources and users, respectively). In addition to standard better-
and best-response dynamics, a few variants have been explored. One example is
the study of the convergence rate of α-Nash dynamics to an approximate Nash
equilibrium [5] and to an approximate optimal solutions [3]. Also, the robustness
of best-response convergence to altruistic agents has been studied in [13], where
it has been shown that BRD may cycle as a result of altruism.

In this paper we study the congestion models with conflicting congestion ef-
fects introduced in [9] and studied also in [4]. This model can also be seen as a
special case of the model introduced in [2], where the network is composed of
parallel links and the setup cost is determined through the cost-sharing rule.

2 Model and Preliminaries

We consider a job-scheduling setting with identical machines and identical (unit-
size) jobs. There is a set of machines M = {M1,M2, . . .} of unlimited size,2 each
associated with an activation cost, B. An instance of our problem is given as
a tuple (n,B), where n denotes the number of jobs. An assignment method
produces an assignment s = (s1, . . . , sn) of jobs into machines, where sj ∈ M
denotes the machine to which job j is assigned. We use the terms assignment,
schedule, and profile interchangeably. The load of a machine Mi in a schedule s,
denoted Li(s), is the number of jobs assigned to Mi in s.

Given a job-scheduling setting and an activation cost B, a job-scheduling game
is induced where the set of players is the set of jobs, and the action space of each
player is the set of machines. The cost function of job j in a given schedule is the
sum of two components: the load on j’s machine and j’s share in the machine’s
activation cost. It is assumed that the activation costB is shared equally between
all the jobs that use a particular machine. That is, given a profile s in which
sj = Mi, the cost of job j is cj(s) = Li(s) +

B
Li(s)

. We denote the cost of a job

that is assigned to a machine with load x by c(x), where c(x) = x + B
x . It can

be easily verified that the cost function exhibits the following structure.

Observation 1. The function c(x) = x + B/x for x > 0 attains its minimum
at x =

√
B, is decreasing for x ∈ (0,

√
B), and increasing for x >

√
B.

Practically, the input to the cost function is an integral value. If B is a perfect
square, then the integral load achieving the minimal cost is exactly

√
B. For

example, if B = 100, then being assigned to a machine with load 10 is optimal.

2 In any instance, though, the number of machines will clearly be less than n.
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In general, however, the optimal integral load (i.e., the load that minimizes

the cost function) may be either
⌊√

B
⌋
or
⌈√

B
⌉
, and for some values of B it

may be both. For example, if B = 12 then both 3 and 4 are optimal loads, as
c(3) = c(4) = 12. We denote an optimal load by �∗ = �∗(B). Assuming a unique
integral optimal load, it is easy to verify that the cost function is decreasing for
x ∈ [1, �∗] and increasing for x ≥ �∗. For two optimal integral loads, �∗ − 1 and
�∗, the cost function is decreasing for x ∈ [1, �∗ − 1] and increasing for x ≥ �∗.

An assignment s ∈ S is a pure Nash equilibrium (NE) if no job j ∈ N can
benefit from unilaterally deviating from its machine to another machine (possibly
a new machine). In our game, this implies that for every job j assigned to Mi

and every i′ 	= i, it holds that c(Li(s)) ≤ min(c(1), c(Li′(s) + 1)).

3 Convergence of Best-Response Dynamics

Best-Response Dynamics (BRD) is a local search method where in each step some
player plays its best-response, given the strategies of the others. In systems
where the agents always reach a Nash equilibrium after repeatedly performing
improvement steps, the notion of a pure Nash equilibrium is well justified. This
section explores the convergence rate of best-response dynamics into a pure NE.

In the general case, in which jobs have arbitrary lengths and the activation
cost of a machine is shared by the jobs proportionally to their length, BRD is
not guaranteed to converge to a NE [9]. In contrast, if the jobs are identical, then
the induced game is equivalent to a congestion game with n resources [19]. One
can easily verify that the function Φ(s) =

∑
i

(
B ·H�i +

1
2�

2
i

)
, where �i denotes

the number of jobs on machine i, H0 = 0, and Hk = 1 + 1/2 + . . . + 1/k, is a
potential function for the game. Convergence to a NE is guaranteed in potential
games, but the convergence time might be exponential.

Here, we study the convergence time of BRD of unit-length jobs. We show that
the convergence in general might take Ω(n log n

B ) moves, and propose a specific
BRD that ensures convergence within a linear number of moves. Specifically,

Max-cost BRD: At every time step, a job that incurs the highest cost
among those who can benefit from migration, is chosen to perform its
best-response move (where ties are broken arbitrarily).

The analysis of the convergence rate of BRD and max-cost BRD (MC-BRD
hereafter) is quite complicated and requires several preparations and terminol-
ogy. Recall that all jobs assigned to a machine with load x incur the same cost
c(x) = x+B/x. We denote by �∗ a load achieving minimal cost. By Observation

1, �∗ may be either
⌊√

B
⌋
or
⌈√

B
⌉
, and for some values of B it may be both.

For simplicity, throughout this section we assume a unique optimal load. All the
results hold also for the case of two optimal loads, where minor straightforward
modifications are required in the proofs.

We denote by �ti the load of machine Mi at time t, i.e., before the migration
of iteration t takes place. A machine that has load at least (respectively, smaller
than) �∗ is said to be a high (low) machine.
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We observe that if at some iteration a job migrates to a low machine, then in
subsequent iterations that machine will attract more jobs up to load at least �∗.
Indeed, since c(� + 1) < c(�) for � < �∗, a low best-response machine continues
to be a best response until it is filled up to load at least �∗. Formally,

Observation 2. If at some iteration t there is a migration to a low machine
Mi such that �ti = �∗ − x for some x > 0, then the following x− 1 iterations will
involve migrations to Mi.

3

Properties of MC-BRD: By the design of the MC-BRD process and as a direct
corollary of Observation 1, every migration in the MC-BRD process is from either
the lowest or the highest machine into either the lowest-high or the highest-low
machine (see Figure 3).

l*

Low machines High machines

Fig. 1. MC-BRD process. Every migration is from one of the extreme machines into
one of the middle grey machines.

Since all jobs on a particular machine share the same cost, the MC-BRD pro-
cess can be described as if it acts on machines rather than on jobs. Specifically,
in every iteration t, one job migrates from machine Mi to machine Mk, k 	= i,
where (i) c(�tk + 1) is minimal, (ii) c(�tk + 1) < c(�ti), and (iii) c(�ti) is maximal
among all the machines from which a beneficial migration exists. While the MC-
BRD process does not specify which job is migrating from Mi, for simplicity we
will assume a LIFO (last in first out) job selection rule. Specifically, the job that
entered Mi last is the one to migrate. If all jobs on Mi were assigned to it in the
initial configuration, then an arbitrary job is selected. Since the BRD-process can
be characterized by the load-vector of the machines in every time step, the number
of iterations is independent of the job-selection rule. Consequently, our analysis of
the convergence rate of MC-BRD applied with a LIFO job-selection rule is valid
for any MC-BRD process.

Note that Mi, the machine from which a job is selected to migrate in iteration
t, is not necessarily the machine for which c(�ti) is maximal. For example, suppose
that B = 100 and there are two active machines, a low one with load 3, and a
high one with load 33. It is easy to verify that c(4) < c(33) < c(3) < c(34). In
this case, c(3) is the maximal cost, but jobs on the low machine have no beneficial
move (since c(34) > c(3)). On the other hand, jobs on the high machine wish to

3 It is possible that the system reaches a NE and the BRD process terminates before
x− 1 iterations are performed.
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migrate to the low one (since c(4) < c(33)). Thus, the high machine is the one
selected by MC-BRD to perform a migration, although the low machine is the
one incurring max-cost. Clearly, such a case can only occur if the machine that
incurs the max-cost is itself the best-response machines, as summarized in the
following observation.

Observation 3. If at time t the machine Mi that incurs max-cost is not the
one from which a job is selected to migrate in MC-BRD, then c(�ti + 1) is the
best-response, in particular, this implies that Mi is low.

We next observe that in MC-BRD, if at some iteration a job leaves some low ma-
chine, then in the following iterations all the jobs assigned to that machine leave
it one by one until the machine empties out. To see this, note that c(�− 1) > c(�)
for � < �∗; thus, if a low machine incurs the highest cost, it continues to incur the
highest cost after its load decreases. It remains to show that if a beneficial move
out ofMi exists when it has load � < �∗, then it is also beneficial to leaveMi when
it has load � − 1. This is ensured by Observation 3. Specifically, if it is not ben-
eficial, then c(�) is the cost of the best-response machine. But this is impossible
since c(�) was the max-cost in the previous iteration.

Observation 4. If at some iteration t there is a migration from a low machine
Mi such that �ti = �∗ − x for some x > 0, then the following �∗ −x− 1 iterations
will involve migrations from Mi.

We are now ready to state the bound on the convergence rate of MC-BRD. As
shown in the full version [10], the following bound is almost tight.

Theorem 1. For every job scheduling game with identical jobs, every MC-BRD
process converges to a NE within at most max{ 3n

2 − 3, n− 1} steps.

In contrast to MC-BRD, the convergence time of arbitrary BRD, might not be
linear in n.

Theorem 2. There exists a job scheduling game with identical jobs and a BRD
process such that the convergence time to a NE is Ω(n log n

B ).

While the convergence rate of general BRD is super-linear, the following theorem
establishes an upper bound of n2. Closing the gap remains open.

Theorem 3. For every job scheduling game with identical jobs, every BRD pro-
cess converges to a NE within at most n2 steps.

It is interesting to compare our results to those established for the standard model
that considers only the negative congestion effects (i.e., where a job’s cost is sim-
ply the load of its chosen machine). It has been shown by [7] that if the order of
the jobs performing their best-response moves is determined according to their
lengths (i.e., longer job first), then best-response dynamics reaches a pure Nash
equilibriumwithin atmostn improvement steps. In contrast, if the jobsmove in an
arbitrary order, then convergence to a Nash equilibrium might take an exponen-
tial number of steps. These results imply that for the special case of equal-length
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jobs, convergence occurs within at most n steps. Our results provide evidence that
when there are conflicting congestion effects, it might take longer to reach a Nash
equilibrium. Nevertheless, for the special case of max-cost BRD, the consideration
of positive congestion effects (through activation costs) does not lead to a longer
convergence time.
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Abstract. Many networks such as social networks and organizational
networks in global companies consist of self-interested agents. The topol-
ogy of these networks often plays a crucial role in important tasks such as
information diffusion and information extraction. Consequently, growing
a stable network having a certain topology is of interest. Motivated by
this, we study the following important problem: given a certain desired
network topology, under what conditions would best response (link ad-
dition/deletion) strategies played by self-interested agents lead to forma-
tion of a stable network having that topology. We study this interesting
reverse engineering problem by proposing a natural model of recursive
network formation and a utility model that captures many key features.
Based on this model, we analyze relevant network topologies and derive
a set of sufficient conditions under which these topologies emerge as pair-
wise stable networks, wherein no node wants to delete any of its links
and no two nodes would want to create a link between them.

Keywords: Social Networks, Network Formation, Pairwise Stability,
Network Topology, Strategic Agents.

1 Introduction

In a social network, individuals gain certain benefits from other individuals and
at the same time, pay a certain cost for maintaining links with their friends.
Owing to the tension between benefits and costs, self-interested or rational nodes
think strategically while choosing their immediate neighbors. A stable network
that forms out of this process will have a topological structure as dictated by
the individual utilities and best response strategies of the nodes.

Often, stakeholders such as a social network owner or a social planner, who
work with the networks so formed, would like the network to have a certain
desirable topology to accomplish certain tasks. Typical examples of these tasks
include enabling optimal communication among nodes for maximum efficiency
(knowledge management), extracting certain critical information from the nodes
(information extraction), broadcasting some information to the nodes (informa-
tion diffusion), etc. If a particular topology is the most appropriate for the set of
tasks to be handled, it would be useful to orchestrate network formation in a way
that the required topology emerges as a stable configuration as a culmination of
the network formation process.
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1.1 Motivation

One of the key problems addressed in the literature on social network formation
is: given a set of self-interested nodes and a model of social network formation,
which topologies would be stable and which would be efficient (maximizing sum
of utilities of all nodes). In this paper, our focus is on the inverse problem, namely,
given a certain desired topology, under what conditions would best response
strategies played by self-interested agents lead to formation of a stable network
with that topology. We motivate this problem with some relevant topologies.

Consider a network where there is a need to rapidly spread some crucial
information received by any of the nodes, requiring precautions against link
failures. In such cases, a complete network is ideal. Consider a different scenario
where the information needs to be spread rapidly, however there needs to be a
moderator to verify the authenticity of the information before spreading it to
the other nodes in the network (for example, it could be a rumor). Here a star
network is desirable. Consider a generalization of the star network where there is
a need for decentralization for efficiently controlling information in the network.
It has multiple centers, each linked to every other, and the leaf nodes are divided
among the centers as evenly as possible. We call it, k-star network. Consider a
necessity of having two sections where some or all members of a section receive
certain information simultaneously and there is a need to forward it to the other
section, taking care of link failures. Moreover, it is desirable to not have intra-
section links to save on resources. A bipartite Turán network is ideal in this case
as both communities are practically desirable to be of nearly equal size.

It is clear that depending on the tasks for which the network is used, a certain
topology might be better than others. This provides the motivation for our work.

1.2 Relevant Work

Jackson [5] reviews several models of network formation in the literature. Watts
[10] provides a sequential move game model where nodes are myopic; however,
the resulting network is based on the ordering in which links are altered and so
it is unclear which networks emerge [6]. Hummon [4] uses simulations to explore
the dynamics of network evolution. Doreian [2] analytically arrives at specific
networks that are pairwise stable; but its complexity increases exponentially
with the number of nodes and so the analysis is limited to only five nodes.

There have been a few approaches to design incentives for nodes so that the
resulting network is efficient [8,11]. Though it is often assumed that the welfare
of a network is based only on its efficiency, there are many situations where this
may not be true. A particular network may not be efficient in itself, but it may
be desirable for reasons external to the network, as explained in Section 1.1.

The models of social network formation in literature assume that all nodes are
present throughout the evolution of a network, which allows nodes to form links
that may not be consistent with the desired network. Furthermore, with all nodes
present in an unorganized network, a random ordering over them in sequential
network formation models adds to the complexity of analysis. However, in most
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Stable network
of (n-1) nodes

Network evolves until
it reaches a stable state

Base case
    n=2

n = n+1

A new node enters
network by creating link 
with an existing node?

No

Yes

Fig. 1. Proposed model of network formation

social networks, not all nodes are present from beginning itself. A network starts
building up from a few nodes and gradually grows to its capacity.

1.3 Contributions of the Paper

– We propose a recursive model of network formation using which it is possible
to guarantee that the network retains its topology in each of its stable states;
also the analysis can be carried out independent of the current number of
nodes in the network. We also propose a utility model that captures many
key features, including an entry fee for entering the network.

– We derive sufficient conditions under which star network, complete network,
bipartite Turán network, and k-star network, emerge as pairwise stable.

2 A Recursive Model of Network Formation

The game is played amongst self-interested nodes, which we consider to be all
homogeneous and having global knowledge of the network1. Each node, which
gets to make a move, has a set of strategies at any given time and it chooses
its myopic best response strategy2. A strategy can be of one of the three types,
namely (a) creating a link with a node that is not its immediate neighbor with
its consent, (b) deleting a link with an immediate neighbor without its consent,
or (c) maintaining status quo. Moreover, consistent with the notion of pairwise
stability, if a node gets to make a move, and proposing or deleting a link does not
strictly increase its utility, then it prefers not to do so. But a node will accept a
link proposed by some other node provided its utility does not decrease.

The game starts with one node and the process goes on as depicted in Figure 1.
Now given that a stable network of n−1 nodes is formed, the nth node considers
entering the network. We make an intuitive assumption that in order to be a
part of the network, the nth node has to propose a link with one of the existing
nodes and not vice versa. For successful link creation, utility of the latter should
not decrease. After the new node enters the network, nodes who get to make
1 As assumed in most of the literature on social network formation [6].
2 The assumption of nodes behaving myopically has experimental justifications [9].
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Table 1. Notation for the proposed utility model

N set of nodes present in the network

uj net utility that node j gets from the network

dj degree of node j

bi benefits obtained from a node at distance i (where bi+1 < bi)

c cost incurred in maintaining link with an immediate neighbor

l(j, w) shortest path distance between nodes j and w

E(j, w) set of nodes essential to connect j and w

γ fraction of indirect benefits paid to the corresponding set of essential nodes

c0 network entry factor (see Section 2.1)

T(j) existing node in the network to which node j connects to enter the network

I{j=NE} 1 when j is the newly entering node about to create its first link, else 0

their move are chosen at random at all time and the network evolves until it
becomes a stable network consisting of n nodes. Following this, a new (n + 1)th

node considers entering the network and the process goes on recursively3.

2.1 Utility Model

Our utility model takes the idea of essential nodes proposed by Goyal and Vega-
Redondo [3]. A node j is said to be essential for y and z if j lies on every path
that joins y and z in the network. Any two nodes pay a fraction of the benefits
obtained from each other, as intermediation rents in the form of additional favors
or monetary transfers to the corresponding set of essential nodes4. This fraction
is assumed to be equally divided among the essential nodes connecting that pair.
Thus, nodes get bridging benefits for being an essential node for each such pair.

We introduce a notion of network entry fee which corresponds to some cost a
node has to bear in order to be a part of the network. If a newly entering node
wants its first connection to be with an existing node of high importance or de-
gree, then it has to spend more time or effort. So we assume the entry fee that the
former pays to be an increasing function of the degree of the latter, say dT . For
simplicity of analysis, we assume the fee to be directly proportional to dT and call
the proportionality constant, network entry factor c0.

Table 1 enlists the notation used in the paper. For a node j, the utility function
is a function of the network, that is uj : g → R and is given by

3 The assumption that a node considers entering the network only when it is pair-
wise stable might seem artificial in general social networks, but can be justified in
organizational networks where entry of nodes can be controlled by an administrator.

4 In order to avoid discrete constraints on rents, such as summation of the fractions
paid to be less than one, we assume that irrespective of the number of essential nodes
(provided positive) connecting y and z, they lose the same fraction γ ∈ [0, 1). As a
result, the real producers of benefits are guaranteed at least (1 − γ) fraction of it.
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Fig. 2. Directing Network Evolution for the Formation of Star Topology

uj = − c0dT(j)I{j=NE} + djb1 − djc +
∑
w∈N

l(j,w)>1

bl(j,w)

−
∑
w∈N

E(j,w) =φ

γbl(j,w) +
∑

y,z∈N
j∈E(y,z)

(
γ

|E(y, z)|
)

2bl(y,z)

(1)

The individual terms of Equation (1) represent (a) network entry fee, (b) ben-
efits from immediate neighbors, (c) costs of maintaining links with immediate
neighbors, (d) benefits from indirect neighbors, (e) intermediation rents paid,
and (f) bridging benefits, respectively.

2.2 Directing Network Evolution

We consider the sequential move game model and so the process of network
evolution can be represented as a game tree. The entry of each node in the
network results in a game tree. An improving path is a sequence of networks,
where each transition is obtained by either two nodes choosing to add a link
or one node choosing to delete a link [7]. Thus, a pairwise stable network is
one from which there is no improving path leaving it. Hence, our objective is to
direct the network evolution along a desired improving path in the game tree.
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The procedure for deriving sufficient conditions for the formation of a given
topology is similar to mathematical induction. Consider a base case network with
very few nodes (two in our analysis). We derive conditions so that the network
formed with these few nodes has the desired topology. Then using induction, we
assume that a network with n − 1 nodes has the desired topology, and derive
conditions so that, the network with n nodes, also has that topology.

In Figure 2, we direct the network evolution by imposing a set of conditions
ensuring that the resulting pairwise stable network is a star. Let uj(s) be the
utility of node j when the network is in state s and let leaf ∈ {C, D, E, F}.
As all leaf nodes are equivalent up to relabeling, considering utility of one such
node is sufficient. The conditions sufficient to direct the network evolution along
the desired improving path and avoid any undesired paths (be they improving
or not) are (a) uA(1) > uA(0) and uB(1) ≥ uB(0), (b) uA(1) > uA(2) or
uleaf (2) < uleaf (0), (c) uleaf (1) ≥ uleaf (3), (d) uleaf (1) ≥ uleaf (4), and (e)
uB(1) ≥ uB(5).

3 Sufficient Conditions for Relevant Topologies

In this section, we provide sufficient conditions for the formation of relevant
topologies. We use Equation (1) for mathematically deriving these conditions.
For the proofs, the reader is referred to the full version of this paper [1]. It also
shows that with the derived sufficient conditions, star network and complete
network are efficient, and for sufficiently large number of nodes, efficiencies of
bipartite Turán network and k-star network are respectively, half and 1

k of that
of the efficient network in the worst case and the networks are close to being
efficient in the best case.

Theorem 1. For a network, if b1−b2+γb2 ≤ c < b1 and c0 < (1 − γ) (b2 − b3),
the resulting topology is a star graph.

Theorem 2. For a network, if c < b1 − b2 and c0 ≤ (1 − γ) b2, the resulting
topology is a complete graph.

Theorem 3. For a network with γ < b2−b3
3b2−b3

, if b1 − b2 + γ (3b2 − b3) < c <
b1−b3 and (1 − γ) (b2 − b3) < c0 ≤ (1 − γ) b2, the resulting topology is a bipartite
Turán graph.

In the case of certain topologies, under a given utility model, the conditions
required for its formation on discretely small number of nodes, are inconsistent
with that required on arbitrarily large number of nodes. Under the proposed
utility model, k-star (k ≥ 3) is one such topology [1]. A possible and reasonable
solution to overcome this problem is to analyze the network formation process,
starting with a graph that overcomes the conditions required for discretely small
number of nodes. This graph can be obtained by some other method, one of
which could be providing additional incentives to the nodes of this graph.
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Theorem 4. For a network starting with complete network on k centers (k ≥ 3)
with the centers connecting to one leaf node each, and γ = 0, if c = b1 − b3 and
b2 − b3 < c0 < b2 − b4, the resulting topology is a k-star graph.

The value of c0 lays the foundation for the degree distribution in a network as it
dictates the first connection of a newly entering node. For instance, the values
of c0 in Theorems 1, 3 and 4 ensure that the degree of the first connection of a
newly entering node is high, low, and intermediate, respectively. Furthermore,
the constraints on γ arise owing to contrasting natures of connectivity in a net-
work. For instance, in a bipartite Turán network, nodes from different partitions
are densely connected with each other, while that from the same partition are
not connected at all. Similarly, in a k-star network, there is an extreme contrast
in the densities of connections (dense amongst centers and sparse for leaf nodes).

4 Discussion and Future Work

We proposed a model of recursive network formation where nodes enter a network
sequentially, thus triggering evolution of the network each time a new node
enters. Though we have assumed a sequential move game model with myopic
nodes and pairwise stability as the solution concept, the model, as depicted in
Figure 1, is independent of the model of network evolution, the solution concept
used for equilibrium state, and also the utility model. The recursive nature of
our model enabled us to directly analyze the network formation game using an
elegant induction based technique. We derived sufficient conditions for relevant
topologies by directing the network evolution along a desired improving path in
the sequential move game tree.

It would be interesting to design incentives such that agents in a network com-
ply with the derived sufficient conditions. Our analysis ensures that irrespective
of the chosen node at any point in time, the network evolution is directed as de-
sired. A possible solution for simplifying the analysis for more involved topologies
is to carry out probabilistic analysis for deriving conditions so that a network
has the desired topology with high probability. Another interesting direction,
from a practical viewpoint, is to study the problem of forming networks where
the topology need not be exactly the one which is ideally desirable, for example,
a near-k-star network instead of a precise k-star.

Acknowledgment. The authors thank Rohith D. Vallam for useful suggestions.
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Abstract. We develop a parsimonious and tractable dynamic social network for-
mation model in which agents interact in overlapping social groups. The model
allows us to analyse network properties and homophily patterns simultaneously.
We derive analytical expressions for the distributions of degree and, importantly,
of homophily indices, using mean-field approximations. We test our model using
a large dataset from Facebook covering student friendship networks in 10 Amer-
ican colleges in 2005. We find that our analytical expressions and simulations fit
the homophily patterns, degree distribution, and individual clustering coefficients
well with the data.

1 Introduction

Friendships are an essential part of economic life and social networks affect many areas
of public policy. In many social network formation models in the economics litera-
ture agents are anonymous and the network structure depends entirely on the formation
process. Yet we can think of numerous examples, such as information transmission,
peer-to-peer lending, or sexual contacts, which suggest that the network topology is not
only explained by the network formation process, but also by node characteristics.

We develop a dynamic network formation model that uses information on node char-
acteristics to explain friendship patterns in online social networks and we test it against
the data on Facebook networks in American colleges. In our model, agents spend time
interacting with others across various social categories, such as attending lectures and
spending time in their dorm. Naturally, the time allocation could be established institu-
tionally by timetables or geographical proximity. The time allocation determines who
agents are likely to meet and with whom they document their resulting friendship on
Facebook. Our parsimonious model has only three parameters and is simple enough to
allow us to derive analytic solutions for structural properties of the network. Concep-
tually, the model is related to affiliation networks introduced by [1]. However, these
models typically contain a large number of parameters and most, such as [2,3,4] rely
entirely on simulations.

A particular focus of this paper is homophily – the tendency of individuals to asso-
ciate with those similar to themselves – which has been well documented in sociology
[5]. [6] make it clear that the observed racial homophily patterns in American high
schools do not necessarily arise from an exogenous bias in preferences towards people
of the same race. In our model, we do not assume that agents have any preference bias.
Rather the entire process is governed by the allocation of time and by the relative size
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of the social groups in which agents interact. Homophily therefore emerges purely from
the correlations in agents’ likelihood of interaction in similar social groups.

The empirical part of this paper provides striking support for our model. Using the
analytical expressions, we find the best-fitting parameter values, which determine the al-
location of time across social categories, for ten separate Facebook networks. Students’
friendships reveal that they spend more time socialising in class than in their dorms.
Despite its parsimony, the model closely matches the empirical degree and homophily
distributions in gender and year at the best-fitting parameter values. Remarkably, the
simulations run at these values show that the individual clustering distributions also
match the empirical clustering patterns.

2 Model

2.1 Characteristics of Agents

Let K = [K0, ...,KR] be a finite ordered list of social categories. An element Kr is the

rth category and k ∈ Kr is a characteristic within that category. Let R = {0,1, ...,R}.
Every agent i ∈ N is represented by a vector ki = (k0

i , ...,k
R
i ) of characteristics, where

for each r ∈ R, kr
i ∈ Kr. For any pair i, j ∈ N, let k0

i = k0
j .

1 For each r ∈ R, define a
social group γr

i = { j ∈ N|kr
i = kr

j}\{i}, which is the set of all agents (other than i) that
share the characteristic kr

i within the social category r with i. Note that γ0
i = N\{i}.

Finally, for each non-empty subset of social category indices S ⊆ R, define

πi(S) =
⋂
r∈S

γr
i \

⋃
r∈R\(S∪{0})

γr
i , (1)

which induces a partition Πi = {πi(S)|S ⊆ R,S 	= /0} on N\{i}.2 Therefore, πi(S) is the
set of agents (other than i) that share only the characteristics within the set of categories
indexed by S with i.

Example 1. In a university context, we could have

K = [K0,K1,K2,K3,K4] = [student,class,dorm,gender,year o f graduation] .

All agents are students (k0
i = k0

j for all i, j ∈ N). K1 ∈ K , which represents class, can
include k ∈ {maths, literature,biology}. Suppose, that agent i is represented by a vector
ki = (student,maths,campus, f emale,2006). Let us consider S = {1,3}. γ1

i is the set
of all maths students other than i and γ3

i is the set of all female students other than i.
Therefore, πi(S) is the set of female maths students, who do not live on campus and
are of a different graduating year than i. πi({0}) would be the set of all male non-
mathematicians, who do not live on campus and are of a different graduating year than
i. Πi represents the partition into disjoint sets of students, who share exactly 1, 2, 3, 4
or 5 social categories with i.

1 This does not restrict the characteristics space in any way. The zeroth category, which greatly
simplifies notation, is one in which all agents share the same characteristic.

2 Note that πi(S) = πi(S ∪ {0}) for all non-empty S ⊆ R. Furthermore, since γr
i =

∪π∈{πi(S)|r∈S}π , a social group is a union of disjoint partition elements.
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2.2 Network Formation Process

We model our network as a simple undirected graph with a finite set of nodes N (which
represent agents), a finite set of edges (which represent friendships), and no self-loops.
The degree of an agent is the number of the agent’s friends. At time period t = 0 all
agents are active and have no friends. Let q = (q0, ...,qR) and ∑r∈R qr = 1. In each
period t ∈ {1,2,3 . . .}, an active agent interacts with agents in the social group γr

i with
probability qr ≥ 0. We can thus interpret qr as the proportion of time in period t that
agent i spends with agents in the social group γr

i (one can think of γ0
i = N\{i} as the

social group that i interacts with during i’s “free time”). During the interaction in a social
group, the agent is linked uniformly at random to another active agent in that group with
whom the agent is not yet a friend. If the agent is already linked to every other active
agent in that social group, the agent makes no friends in that period. Friendships are
always reciprocal, so all links are undirected. Finally, in every period, an agent remains
active with a given probability p ∈ (0,1) until the following period and becomes inactive
with probability 1− p. If the agent i becomes inactive, i retains all friendships, but can
no longer form any links with other agents in all subsequent periods.

There must be reasons, other than having linked with every user in the network, for
why people stop adding new friends online: losing interest, finding an alternative online
social network, reaching a cognitive capacity for social interaction, and so on. Including
all these explanations would require a much richer model, so we simply capture them
as a random process with the inactivity probability 1− p.

We are interested in how the agents’ degrees change over time. Let us call di(t) the
expected degree of agent i in period t. We analyse a mean-field approximation to this
dynamic system. This technique is commonly used in statistical mechanics in order to
simplify many-body systems. Essentially, it assumes that the realisation of any random
variable in any time period is its expected value. Hence, we chose to approximate our
model by a discrete-time system, which changes deterministically at the rate propor-
tional to the expected change (see [7,8]).

The probability with which agent i interacts with an agent from πi(S) is given by

qπi(S) = |πi(S)|
[

∑
r∈S∪{0}

qr

|γr
i |

]
. (2)

Indeed, with probability qr, an agent is assigned to social group γr
i , and the probability

that he meets an agent in πi(S)⊆ γr
i is given by |πi(S)|

|γr
i |

. Note that ∑π∈Πi
qπ = 1.

For every π ∈ Πi, let Rπ(t) be the number of remaining active agents in π at t (other
than i) with whom i is not yet linked. Furthermore, recall that an agent makes a link in
every period and on average receives a link with probability 1

Rπ (t) from each of the Rπ(t)
agents (in each π weighted by qπ ). Since i interacts with agents in π with probability
qπ , i makes 2qπ links with agents in π in every period until T π – the expected number
of periods for i to form links with every agent in π . We find T π by solving

Rπ(t + 1) = p [Rπ(t)− 2qπ] . (3)



Homophily in Online Social Networks 515

This difference equation states that Rπ(t+1) is the number of agents who remain active
in π out of Rπ(t) less the number of agents that i links with in π at t. Solving for Rπ(t)
with initial condition Rπ(0) = |π | and setting Rπ(T π) = 0 gives us

T π =
ln
(

2qπ p
2qπ p+(1−p)|π |

)
ln(p)

(except if qπ = 0 then T π = 0) . (4)

This allows us to obtain the expected degree of agent i at time t

di(t) = ∑
π∈Πi

dπ
i (t) = ∑

π∈Πi

2qπ [t1(t ≤ T π)+Tπ 1(t > T π)] , (5)

where dπ
i (t) is the expected number of link i has with agents in π ∈ Πi in period t. Note

that di(t) is concave, piecewise linear, and strictly increasing in the range [0,maxπ∈Πi{T π}].
Hence, active agents make friends at a decreasing rate over time. Since an agent re-
mains active exactly x periods with probability px(1 − p), we have that Pr(t ≤ x) =
∑t=x

t=0 pt(1− p) = 1− px+1. Therefore, the probability that node i has degree at most d
is given by Gi(d)≡ Pr(di(t)≤ d) = Pr(t ≤ ti(d)) = 1− pti(d)+1, where

ti(d)≡ d−1
i (d) =

d −∑π∈Πi
2qπT π 1(d > di(T π))

∑π∈Πi
2qπ1(d ≤ di(T π))

. (6)

Finally, the overall average degree distribution is G(d) = 1
|N| ∑i∈N Gi(d).

2.3 Homophily

Homophily captures the tendency of agents to form links with those similar to them-
selves. Let Π r

i = {πi(S) ∈ Πi|r ∈ S} be the set of partition elements containing agents
that share the characteristic kr

i in category r with i. The individual homophily index in
social category r of agent i in period t is defined as

Hr
i (t) =

number of friends of i at t that share kr
i

number of friends of i at t
=

∑π∈Π r
i

dπ
i (t)

di(t)
. (7)

This is a standard definition from which we can easily recover various other definitions
of homophily given in [6]. Finally, it will be useful to define a composition function
hr

i (d) ≡ (Hr
i ◦ ti)(d), which expresses individual homophily as a function of degree

rather than as a function of time.

2.4 Test of the Mean-Field Approximation

Since we used a mean-field method to derive the analytical expressions, we must test
the accuracy of its approximations against simulations [9]. We did this for degree distri-
butions and the individual homophily distribution against an average of 100 runs of the
simulation for multiple parameter values. In general, the fits were good. An example is
illustrated in Fig. 2.3

3 There is some loss of accuracy at extreme values of the cumulative distribution of the individual
homophily index: (7) makes it clear that the individual homophily index is unlikely to be near
0 or 1. Yet the mean-field approximation of the average is good.
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3 Data

We use the September 2005 cross-section of the complete structures of social connec-
tions on www.facebook.com within (but not across) the first ten American colleges that
joined Facebook (see [10]). We observe six social categories for each user: gender, year
of graduation, major, minor, dorm, and high school. Since all personal data were pro-
vided voluntarily, some users did not submit all their information. We dropped any user
(and their links), who has not provided all the personal characteristics other than high
school. We therefore look only at students graduating between 2006 and 2009, who
have supplied all the relevant personal characteristics (except high school).

4 Empirical Strategy

We test our model against the data using the social categories identified in the Example
1. Using the available information in our dataset, we define agents i and j to be in the
same class if they are in the same year and major or in the same year and minor. We
assume that every agent i interacts in i’s class and dorm with respective probabilities q1

and q2. The probabilities of interacting with the gender and year social categories are
set to zero (q3 = q4 = 0) since it is unreasonable to suppose that agents allocate time
specifically to interacting with agents in these categories. Meeting agents of the same
gender or year happens only through the interactions in the other social groups. Finally,
q0 = 1− q1 − q2 is the proportion of time spent interacting with all other agents (their
“free” time). Hence, the model has 4 parameters and 3 degrees of freedom.

We focus on explaining empirical homophily patterns in gender and year of gradua-
tion. Measuring homophily in these social categories is appropriate because gender and
year of graduation are entirely immutable agent categories: unlike class and dorm, there
is no feedback loop between social category membership and homophily.

4.1 Fitting the Model to Data

In order to fit the model to the data (degree distribution and homophily), we used a grid
search on parameters q0, q1, q2, and p.4 For the degree distribution, we computed the
analytical degree distribution, and, for homophily, we found the analytical homophily
index in gender and year as a function of i’s empirical degree at each point in the grid.
We then found the values q0, q1, q2, and p that minimise an intuitive loss function,
which measures the “overall error” of the fit by taking the product of the normalised
sums of squared distances between the analytical and the empirical distributions for
degree and homophily in gender and year at each point in the grid.

4.2 Results

For each college, we ran 100 simulations at its best-fitting values of q0, q1, q2, and
p.5 Figure 1 presents results for all colleges showing that our model closely matches

4 For q0, q1 and q2 we took values from 0 to 1 in steps of 0.05. For p, we took values from 0.9
to 0.9975 in steps of 0.0025.

5 The results shown are averages over the 100 runs.
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average degree, average homophily, and the average individual clustering coefficient
(see [9, p. 35] for a standard definition).6 Unsurprisingly, students spend most of their
time interacting with others in their class. Interestingly, q0 is small, which suggests that
friendship patterns are far from random. Figure 2 shows the empirical, analytical, and
simulated degree, homophily (in gender and year), and individual clustering distribu-
tions for Harvard University. These fits are representative of the other colleges.

5 Conclusions

We presented a network formation model, which provides rich microfoundations for
the macroscopic properties of online social networks. The friendship and homophily
patterns generated by the model find good support in data. We were also able to estimate
how much time agents spend in particular social groups. There is still scope for further
theoretical work, including finding accurate analytical approximations to the clustering
measures and diameter.

Acknowledgments. We would like to thank Edo Gallo, Manuel Mueller-Frank, and
John Quah for valuable discussions and three anonymous referees for their excellent
suggestions. Bernie Hogan introduced us to digital social science research.
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Abstract. We study online truthful auctions for prior-free revenue max-
imization, to sell copies of a good in limited supply to unit-demand bid-
ders. The model is reminiscent of the secretary problem, in that the order
of the bidders’ arrival is chosen uniformly at random. For two variants of
limited supply, a hard constraint of k available copies and a production
cost per copy given by a convex curve, we reduce the problem algorith-
mically to the unlimited supply case. For the case of k available copies
we obtain a 26e-competitive auction, which improves upon a previously
known ratio from [Hajiaghayi, Kleinberg, Parkes, ACM EC 2004].

1 Introduction

We study truthful online auctions for prior-free revenue maximization in the
context of limited supply of a single good, in a model studied previously in [5,7].
This model is a blend of the Secretary Problem and the framework of Competitive
Auctions proposed by Goldberg et al. [4], for prior-free revenue maximization.

Mechanism design for revenue maximization – referred to as optimal mecha-
nism design – has seen extensive study in the economics community, following the
seminal work of Myerson [8]. Most models assume a prior probability distribu-
tion on the values of bidders and describe maximization of the expected revenue
over this distribution. Goldberg et al. introduced in [4] Competitive Auctions,
along with a model for prior-free revenue maximization, in allocating identical
copies of a single good to unit-demand bidders. The revenue of a truthful auction
is compared against the optimum single price revenue F (2), which allocates at
least two units of the good. Auctions that approximate this benchmark within a
constant, are called competitive. The rationale behind F (2) is that the (uncon-
strained) optimum single price revenue approximates the optimum social welfare
– an absolute upper bound on the achievable revenue by any mechanism – within
factor Θ(log n) [4]. As shown in [4], no truthful mechanism can be competitive
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against the unconstrained optimum single price revenue. This justifies the mini-
mal constraint of allocating to at least two bidders in determining the optimum
single price. For this model the authors give two competitive auctions based on
random sampling, the Random Sampling Optimal Price auction (RSOP) and the
Sampling Cost Sharing auction (SCS). SCS was shown in [4] to be 4-competitive;
RSOP has been the subject of much study though [4,3,1], as its conjectured 4-
competitiveness is open. The best known ratio is 4.68 [1]. The best-performing
auction is 3.243-competitive [6]; a lower bound of 2.42 was proven in [4].

Competitive auctions were taken online in [5,7], in a way reminiscent of the
Secretary Problem [2]. The bids are decided by an adversary and supplied in
an online fashion, in uniformly random order. Hajiaghayi, Kleinberg and Parkes
in [5] studied limited supply of k available copies; they designed a constant-
competitive auction with respect to both, social welfare and revenue – against an
appropriate adaptation of F (2) that we also use here. Koutsoupias and Pierrakos
studied in [7] the online unlimited supply case, using F (2) as a benchmark. They
showed that any offline ρ-competitive auction yields a 2ρ-competitive online
auction. This implies a 6.486-competitive online auction, by the result of [6].
They proved a lower bound of 4 on the competitive ratio of any online auction
(also valid in the settings considered here) and proposed an online auction termed
Best-Price-So-Far (BPSF), that is conjectured to be 4-competitive.

We study further the online model of [5,7], under two limited supply settings:
(i) a constraint of k available copies, as in [5], and (ii) a production cost for
each allocated copy, given by a positive non-decreasing convex function. We
design algorithmic reductions of both settings to the unlimited supply case of [7];
using a ρ-competitive online auction for unlimited supply as a black box in our
algorithms, we obtain truthful 4eρ- and 64eρ-competitive auctions for each of
(i) and (ii) respectively, against appropriate adaptations of F (2). Our result,
along with the reduction of [7] and the best known offline auction of [6] yields a
26e-competitive auction for (i), that improves upon the 6338 ratio of [5].

Definitions. We consider n potential buyers/bidders, with a positive private
value vi each, i = 1, . . . , n, for a single unit of a single good. The values vi are
determined by an adversary. The bidders are revealed online to a mechanism, in
order chosen uniformly at random beforehand. We study truthful mechanisms,
that make a price offer pt to the t-th arriving bidder it, before the bidder reports
his private value vit . Bidder it accepts the offer if pit ≤ vit and buys a unit of the
good, or rejects it, if pit > vit . After the haggling is over, the mechanism learns
the private value vit . Since we study truthful mechanisms, we refer to the bidders’
values as bids which we denote by bi ≡ vi, i = 1, . . . , n. We assume b1 ≥ · · · ≥ bn.
The vector of all bids is denoted by b and we define b[i] ≡ (b1, . . . , bi). We
assume that n is known to the mechanism and that it may refuse to sell a unit
to any bidder. This option can be justified by assumption of knowledge of a very
high upper bound on the bids which, if offered to a bidder as a price, it will
be definitely rejected. This assumption facilitates the observation of bids (i.e.,
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sampling) and cease of selling after some item copies have been sold. We consider
two settings, Limited Supply and Supply with Production Cost.

Limited Supply. We assume that the auctioneer has a limited supply of k ≥ 2
identical units (copies) of a single good to sell to the bidders. The revenue of the
auction after at most k units have been sold, will be compared against the rev-

enue of F (2)
k (b) = max2≤i≤k(i ·bi), the optimal single-price auction that does sell

at least 2 item copies. Our aim is to devise and study limited supply online auc-

tions that are constant-competitive against F (2)
k . The bid index corresponding

to the optimum price that gives F (2)
k (b) is denoted by i∗ = argmaxk≥i≥2(i · bi).

Supply with Production Cost. This setting generalizes both the unlimited
and limited supply models, in that the j-th copy of the good is available to the
auctioneer at a cost c(j), where c is a non-negative non-decreasing function, with
c(0) = 0. We consider a slight generalization of convex cost functions, satisfying:

1

α

∫ α

0

c(x)dx ≤ c(α)

β
, for some β > 1 (1)

This class includes all convex functions, since they all satisfy (1) for β = 2.
The actual profit made in this setting from sales of item copies equals the raised
revenueminus the cumulative production cost of the sold item copies. We extend
F (2) for the optimum single price profit in this case as follows:

F (2)
c (b) = max

i≥2

⎛⎝i · bi −
i∑

j≤i

c(j)

⎞⎠ (2)

F (2)
c is motivated similarly to F (2) in [4]; Fc(b) = maxi≥1

(
i · bi −

∑
j≤i c(j)

)
can be shown to approximate the optimum social welfare within factor O(log k).

2 Revenue Maximization under Limited Supply

We present an algorithmic reduction of the online problem for limited supply k,
to the online problem for unlimited supply. We only consider online unlimited
supply auctions A that offer each bidder it arriving at time t a price independent
of bit , that may depend on the set of bids {bir |r ≤ t} observed so far. Let ρ denote
the competitive ratio of A against F (2). At time t, the auction A processes the
bids seen so far and makes a price offer to the t-th arriving bidder, it. We use A
in designing a limited supply auction LSOAA, as described by algorithm 1.

The mechanism has 2 phases. In the initial sampling phase, for an appropri-
ately determined value of t0 =  n

k !, t0 bids are only observed and the highest
is inserted in a reservoir Rt0 . From time t ≥ t0 + 1 on, the mechanism offers
each bidder it the price A(Rt−1) computed by A for the subset of bidders held
in Rt−1. The online auction A is assumed to process a subset of the bids and
determine a price for the bid arriving next. If bidder it accepts the offered price



522 P. Krysta and O. Telelis

1 Sampling Phase;

2 begin
3 Initialize Rt0 ← ∅;
4 if k ≤ n/2 then t0 ← �n/k;
5 else t0 ← 1;
6 Sample B0 ← {it|t ≤ t0};
7 Set Rt0 ← argmaxi∈B0 bi;

8 end

1 Price Offering Phase;
2 repeat for bidder it, t ≥ t0 + 1
3 Rt ← Rt−1;
4 Offer it price p = A(Rt);
5 if p ≤ bit then k ← k − 1;
6 if bit ≥ minRt−1 then
7 Rt ← Rt ∪ {it};
8 end

9 until k = 0;

Algorithm 1: (LSOAA) A scheme for online limited supply auctions

the number of available units is decreased. If his bid is higher than the lowest
bid held in Rt−1, then Rt is updated to Rt−1 ∪ {it} (otherwise, Rt is set equal
to Rt−1). The following lemma provides a simple fact for the sampling phase:

Lemma 1. In a uniformly distributed random permutation π of n numbers, let
Ei be the event that: the i-th highest number out of the k ≤ n

2 largest numbers,
for any i ∈ [k], is observed as the maximum among the first  n/k! numbers in
π. Then:

Pr[Ei] =
(

n− i

 n/k! − 1

)
·
(

n

 n/k!

)−1

≥ (2ek)−1

Theorem 1. A ρ-competitive online auction for unlimited supply can be trans-
formed into a 4eρ-competitive online auction for limited supply.

Proof. First we examine the case of k ≤ n
2 . Consider the sampling phase of

B0, and the bid i0 = argmaxi∈B0 bi chosen from B0 and inserted in Rt0 . For
any index value of i0, the execution of the online auction A within LSOAA is
equivalent to execution of A over any random permutation of the subset of
i0 − 1 bids b[i0−1]. This holds because no bid with index i > i0 – i.e., smaller
than bi0 – is ever inserted in Rt for any value of t ≥ t0.

Let E
[
LSOAA(b)

]
denote the expected profit of the auction. We make two ob-

servations, in order to lower bound E
[
LSOAA(b)

]
. First, that if argmaxj∈B0 bj =

1, the profit extracted is zero in the worst case; this is because b1 may be the
strictly largest bid of all, and it is the only bid that A will observe in Rt, for
t = 1, . . . , n. Then offering it as a price to any of the rest of the bids will not
result in a purchase. The second observation has to do with the performance of
A on b[i0−1], where i0 = argmaxi∈B0 bi. Because bi0 < bi for all bi ∈ b[i0−1], we
may assume that no online auction will actually make a profit by selling to bidder
i0, because it must first observe at least bi0 . Thus, for any bi ∈ b we have that:

E
[
A(b[i−1])

∣∣∣ Ei] ≥ E
[
A(b[i])

]
Then, by lemma 1, we have for E

[
LSOAA(b)

]
:

E
[
LSOAA(b)

]
≥

k∑
i=2

Pr [Ei]× E
[
A(b[i])

]
≥ 1

2ek

k∑
i=2

E
[
A(b[i])

]
(3)
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≥
i∗−1∑
i=2

i · bi
2ekρ

+

k∑
i=i∗

i∗ · bi∗
2ekρ

≥
i∗−1∑
i=2

i · bi∗
2ekρ

+

k∑
i=i∗

i∗ · bi∗
2ekρ

=
1

2ekρ
·
(

i∗−2∑
i=1

i+ 1

i∗
+

k∑
i=i∗

1

)
· F (2)

k (b)

=
1

2ekρ
·
(
(i∗ − 2)(i∗ + 1)

2i∗
+ k − i∗ + 1

)
· F (2)

k (b)

=
1

2ekρ
·
(
2k − i∗ + 1

2
− 1

i∗

)
· F (2)

k (b)

≥ 2k − i∗

4ekρ
· F (2)

k (b) ≥ 1

4eρ
· F (2)

k (b) (4)

The 2nd line is by the competitive ratio ρ of A and, given that F (2)
k (b) = i∗ · bi∗ ,

we have that F (2)
k (b[i]) = F (2)

k (b) for i ≥ i∗ and F (2)
k (b[i]) = i · bi for i < i∗,

because bi ≥ bi∗ . The last inequality is due to i∗ ≤ k. Now (4) gives the result for
k ≤ n

2 . For the case of k > n
2 , the first (in the random permutation) encountered

bid bi0 is any particular bid i = 1, . . . , k of the k highest with probability at least
1
2k . Then, we obtain competitive ratio 4ρ, from (3):

E
[
LSOAA(b)

]
≥ 1

2k

k∑
i=2

E
[
A(b[i])

]
≥ 1

4ρ
· F (2)

k (b) (5)

where the second inequality follows by the same analysis that led to (4). ��

3 Profit Maximization with Production Cost

We examine next the case of supply under a non-negative non-decreasing pro-
duction cost function c; the cost of the i-th item copy is c(i), with c(0) = 0. The
developed reduction yields competitive online auctions for all such cost functions
c satisfying (1). We use an alternative sampling phase for this case, described
as algorithm 2. The price offering phase is identical to the one given in algo-
rithm 1, with the exception that the offered price is the maximum of the current
production cost and the computed price by an online competitive auction A
for unlimited supply. The benchmark we compare the algorithm’s performance

against is F (2)
c (b) as given by (2). In our analysis we use the following lemma:

Lemma 2. In a single-good online prior-free profit maximization problem (b, c),
with non-negative non-decreasing production cost function c, let k = max{i|bi ≥
c(i + 1)}. If i0 = argmax2≤i≤k(i · bi) and there exists β = O(1) such that c
satisfies

∫ α

0
c(x)dx ≤ αβ−1 · c(α) for any α ≥ 0, then:

F (2)
c (b) ≤ 2β

2β − 3
·

⎛⎝F (2)
k (b)−

∑
i≤i0

c(i)

⎞⎠ (6)
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1 Sampling Phase;
2 begin
3 Initialize t ← 0; B0 ← ∅;
4 repeat
5 t ← t+ 1;
6 Bt ← Bt−1 ∪ {it};
7 until max

j∈Bt

bj > c
(
�n
t

)

OR t ≥ n

2
;

8 t0 ← t;
9 Set Rt0 ← {arg maxi∈Bt bi};

10 end

1 Price Offering Phase;
2 χt0 ← 0; // # copies sold

3 For bidder it on time t ≥ t0 + 1;
4 begin
5 χt ← χt−1; Rt ← Rt−1;
6 Offer p = max{A(Rt), c(1 + χt)};
7 if p ≤ bit then χt ← χt + 1;
8 if bit ≥ minRt−1 then
9 Rt ← Rt ∪ {it};

10 end

11 end

Algorithm 2: (LSOAcA) A scheme for online auctions with production cost

Theorem 2. A ρ-competitive online auction for unlimited supply can be trans-
formed into a 32eβρ

2β−3 -competitive online auction for profit maximization against

F (2)
c , for any non-negative non-decreasing cost function c satisfying (1).

Proof. Define k = max{i|bi ≥ c(i+1)}. This is the point where the k-th highest
bid almost reaches the production cost of the (k + 1)-th copy. In effect, no
profit can be made by sale of any copy from the (k + 2)-nd onwards. First we
examine the case of n ≥ 6 and k ≤ n

2 . Consider the bid picked by the sampling
phase of algorithm 2. This is the first bid that passes the test mentioned in line
7 of the sampling phase and it causes termination of the phase. As we have
argued previously in the proof of theorem 1, if a bid bj causes termination of
the sampling phase, then the price offering phase is essentially equivalent to
executing the online algorithm A on a random permutation of the subset of bids
b[j], conditionally on the fact that bj is observed first in the permutation. Denote
by E ′

i the event that bid bi, i = 1, . . . , k causes termination of the sampling phase
at any sampling step. Pr[E ′

i] is at least equal to the probability that bi is the
maximum bid among the first  n

k ! bids in the random permutation, and the rest
 n
k ! − 1 bids are in {bk+2, . . . , bn}. Indeed, by definition of k, for every bid br,

r = k + 2, . . . , n, it is br ≤ bk+1 ≤ c(k + 2) ≤ c(r). Then:

Pr[E ′
i ] ≥

(
n− 1− k

 n/k! − 1

)
·
(

n

 n/k!

)−1

(7)

=
n−  n/k! − k + 1

n− k
·
(

n− k

 n/k! − 1

)
·
(

n

 n/k!

)−1

≥ n− n/k − k

n− k

(
n− k

 n/k! − 1

)
·
(

n

 n/k!

)−1

≥
n− 2− n

2

n− 2

(
n− k

 n/k! − 1

)
·
(

n

 n/k!

)−1

≥ 1

4
· Pr [Ek] (8)
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where Ek is the instantiation of the event defined in lemma 1, for i = k. The last

two inequalities occur by n−n/k−k
n−k being increasing in k for 2 ≤ k ≤ n/2, thus

minimized for k = 2 to at least 1
4 for n ≥ 6. Then:

E
[
LSOAcA(b)

]
≥

k∑
i=2

Pr [E ′
i]E
[
A(b[i])

]
≥ 1

4

k∑
i=2

Pr [Ek]E
[
A(b[i])

]
≥ 1

8ek

k∑
i=2

E
[
A(b[i])

]
≥ 1

16eρ
F (2)

k (b) ≥ 2β − 3

32eρβ
F (2)

c (b)

The second inequality follows by (8), the third by lemma 1 applied for i = k,
the fourth by (4) in the proof of theorem 1 and the final one by lemma 2.

For the case of k > n
2 , Pr[E ′

i ] can be easily lower bounded by 1
2k and a

calculation similar to (5) yields a better ratio. The only remaining case is n = 5
and k = 2; we find directly from (7) Pr[E ′

i] ≥ 1
5 and proceeding with similar

calculations as right above, we derive E
[
LSOAcA(b)

]
≥ 2β−3

10βρ F
(2)
c (b). ��

To obtain the best competitive ratios for the problems considered, we combine
theorems 1 and 2 with the reduction given in [7](Theorem 1) of online unlimited
suply to offline unlimited supply, and with the best known (offline) competitive
auction from [6], with competitive ratio ρ = 3.243 < 3.25.

Corollary 1. There exist truthful 26e- and 416e-competitive online auctions for
limited supply and for supply under non-negative convex cost, respectively.
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Abstract. We obtain revenue guarantees for the simple pricing mecha-
nism of a single posted price, in terms of a natural parameter of the distri-
bution of buyers’ valuations. Our revenue guarantee applies to the single
item n buyers setting, with values drawn from an arbitrary joint distribu-
tion. Specifically, we show that a single price drawn from the distribution
of themaximum valuation Vmax = max{V1, V2, . . . , Vn} achieves a revenue
of at least a 1

e
fraction of the geometric expectation of Vmax. This generic

bound is a measure of how revenue improves/degrades as a function of the
concentration/spread of Vmax.

We further show that in absence of buyers’ valuation distributions,
recruiting an additional set of identical bidders will yield a similar guar-
antee on revenue. Finally, our bound also gives a measure of the extent to
which one can simultaneously approximate welfare and revenue in terms
of the concentration/spread of Vmax.

Keywords: Revenue, Auction, Geometric expectation, Single posted
price.

1 Introduction

Here is a natural pricing problem: A single item is to be sold to one among n
buyers. Buyers’ valuations are drawn from some known joint distribution. How
good a revenue can be achieved by posting a single price for all the buyers, and
giving the item to the first buyer whose value exceeds the price? Can we lower
bound the revenue in terms of some properties of the distribution? Such a single
pricing scheme is often the only option available, for several natural reasons. In
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many situations, it is illegal or not in good taste to price discriminate between
buyers; furthermore often it is not possible to implement a pricing scheme with
multiple prices.

We define the geometric expectation of a random variable before describing
our result: the geometric expectation of a random variableX is given by eE[log(X)]

(see, e.g., [5]). The geometric expectation is always lower than the expectation,
and the more concentrated the distribution, the closer they are; indeed, the ratio
between the geometric expectation and the expectation is a natural measure of
concentration around the mean. We illustrate how the ratio of geometric and
actual expectations captures the spread of a random variable through an example
in Section 2.

Constant fraction of geometric expectation. We show that a single price obtains a
1
e fraction of the geometric expectation of the maximum among the n valuations
(V1, . . . , Vn), i.e. geometric expectation of Vmax = max{V1, . . . , Vn}. Thus for
distributions that are concentrated enough to have a geometric expectation of
Vmax that is close to the expectation of Vmax, a single pricing scheme extracts
a good fraction of the social surplus. In particular, when the ratio of geometric
and actual expectations is larger than e/4, our revenue guarantee is larger than
a 1/4 fraction of the welfare (and hence the optimal revenue), thus beating
the currently best known bound of 1/4 by Hartline and Roughgarden [4]. In
the special case when the distribution of Vmax satisfies the monotone hazard
rate (MHR) property, a single price can extract a 1

e fraction of the expected
value of Vmax ([3]). However, since several natural distributions fail to satisfy
the MHR property, establishing a generic revenue guarantee in terms of the
geometric expectation, and then bounding the ratio of the geometric and actual
expectation is a useful route. For instance, in Section 2 we compute this ratio
for power law distributions (which do not satisfy the MHR property) and show
that for all exponents m ≥ 1.56 this ratio is larger than e/4 thus beating the
currently known bound.

Why geometric expectation?

1. Since the concentration of a distribution is a crucial property in determining
what fraction of welfare (expectation of Vmax) can be extracted as revenue, it
is natural to develop revenue guarantees expressed in terms of some measure
of concentration.

2. While there are several useful measures of concentration for different con-
texts, in this work we suggest that for revenue in auctions the ratio of the
geometric and actual expectations is both a generic and a useful measure —
as explained in the previous paragraph, for some distributions our revenue
guarantees are the best known so far.

3. The ratio of the two expectations is a dimensionless quantity (i.e., scale free).

Second price auction with an anonymous reserve price. A natural corollary of the
lower bound on single pricing scheme’s revenue is that the second price auction
(or the Vickrey auction) with a single anonymous reserve obtains a fraction 1

e of
the geometric expectation of Vmax. When buyers’ distributions are independent
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and satisfy a technical regularity condition, Hartline and Roughgarden [4] show
that the second price auction with a single anonymous reserve price obtains a
four approximation to the optimal revenue obtainable. Here again, our result
shows that for more general settings, where bidders values could be arbitrarily
correlated, Vickrey auction with a single anonymous reserve price guarantees a
1
e fraction of geometric expectation of Vmax.

Second price auction with additional bidders. When estimating the distribution
is not feasible (and hence computing the reserve price is not feasible), a natural
substitute is to recruit extra bidders to participate in the auction to increase
competition. We show that if we recruit another set of bidders distributed iden-
tically to the first set of n bidders, and run the second price auction on the 2n
bidders, the expected revenue is at least a 2

e fraction of the geometric expectation
of Vmax. As in the previous result, for the special case of independent distribu-
tions that satisfy the regularity condition, Hartline and Roughgarden [4] show
that recruiting another set of n bidders identical to the given n bidders obtains
at least half of the optimal revenue; our result gives a generic lower bound for
arbitrary joint distributions.

In the course of proving this result we also prove the following result: in the
single pricing scheme result, the optimal single price to choose is clearly the
monopoly price of the distribution of Vmax. However we show that a random
price drawn from the distribution of Vmax also achieves a 1

e fraction of geometric
expectation of Vmax.

Related Work. For the special single buyer case, Tamuz [6] showed that the
monopoly price obtains a constant fraction of the geometric expectation of the
buyer’s value. We primarily extend this result by showing that for the n buyer set-
ting, apart from the monopoly reserve price of Vmax, a random price drawn from
the distribution of Vmax also gives a 1

e fraction of geometric expectation of Vmax.
This is important for showing our result by recruiting extra bidders. Daskalakis
and Pierrakos [2] study simultaneous approximations to welfare and revenue for
settings with independent distributions that satisfy the technical regularity condi-
tion. They show that Vickrey auction with non-anonymous reserve prices achieves
a 1

5 of the optimal revenue and welfare in such settings. Here again, for more gen-
eral settings with arbitrarily correlated values, our result gives a measure how the
quality of such simultaneous approximations degrades with the spread of Vmax.
The work of Hartline and Roughgarden [4] on second price auction with anony-
mous reserve price / extra bidders has been discussed already.

2 Definitions and Main Theorem

Consider the standard auction-theoretic problem of selling a single item among
n buyers. Each buyer i has a private (non-negative) valuation Vi for receiving
the item. Buyers are risk neutral with utility ui = Vixi − pi, where xi is the
probability of buyer i getting the item and pi is the price he pays. The valu-
ation profile (V1, V2, . . . , Vn) of the buyers is drawn from some arbitrary joint
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distribution that is known to the auctioneer. Let Vmax = maxi Vi be the random
variable that denotes the maximum value among the n bidders. We denote with
Fmax the cumulative density function of the distribution of Vmax.

Definition 1. For a positive random variable X, the geometric expectation G [X ]
is defined as:

G [X ] = exp(E [logX])

We note that by Jensen’s inequality G [X ] ≤ E [X ] and that equality is achieved
only when X is a deterministic random variable. Further, as noted in the in-
troduction, the ratio of geometric and actual expectations of a random variable
is a useful measure of concentration around the mean. We illustrate this point
through an example.

Example 1. Consider the family Fm(x) = 1 − 1/xm of power-law distributions
for m ≥ 1. As m increases the tail of the distribution decays faster, and thus we
expect the geometric expectation to be closer to the actual expectation. Indeed,
the geometric expectation of such a random variable can be computed to be
e1/m and the actual expectation to be m

m−1 . The ratio e1/m(1 − 1/m) is an
increasing function of m. It reaches 1 at m = ∞, i.e., when the distribution
becomes a point-mass fully concentrated at 1. The special case of m = 1 gives
the equal-revenue distribution, where the geometric expectation equals e and the
actual expectation is infinity. However this infinite gap (or the zero ratio) quickly
vanishes as m grows; at m = 1.56, the ratio already crosses e/4 thus making our
revenue guarantee better than the current best 1/4 of optimal revenue; atm = 4,
the ratio already equals 0.963.

For a random variable X drawn from distribution F , define Rp [X ] as:

Rp [X ] = pP [X ≥ p] ≥ pP [X > p] = p(1− F (p))

If X is the valuation of a buyer, Rp [X ] is the expected revenue obtained by
posting a price of p for this buyer. Therefore Rp [Vmax] is the revenue of a pricing
scheme that posts a single price p for n buyers with values V1, . . . , Vn and Vmax =
max{V1, . . . , Vn}.

We show that the revenue of a posted price mechanism with a single price
drawn randomly from the distribution of Vmax, achieves a revenue that is at least
a 1

e fraction of the geometric expectation of Vmax, or equivalently a 1
e fraction

of the geometric expectation of the social surplus.

Theorem 1 (Main Theorem). Let r be a random price drawn from the dis-
tribution of Vmax. Then:

Er [Rr [Vmax]] ≥
1

e
G [Vmax] . (1)

Proof. By the definition of Rr [V ] we have:

Er [Rr [Vmax]] ≥ Er [r (1 − Fmax(r))] . (2)

By taking logs on both the of the above equation, and using Jensen’s inequality
we get:
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log(Er [Rr [Vmax]]) ≥ log (Er [r(1 − Fmax(r))])

≥ Er [log(r(1 − Fmax(r)))]

= Er [log(r)] + Er [log(1− Fmax(r))] .

For any positive random variable X drawn from a distribution F we have:

E [log(1 − F (X))] =

∫ ∞

−∞
log(1− F (x))dF (x) =

∫ 1

0

log(1− y)dy = −1. (3)

So we have:

log(Er [Rr [Vmax]]) ≥ Er [log(r)]− 1

Er [Rr [Vmax]] ≥
1

e
exp(Er [log(r)] =

1

e
G [Vmax] .

where the last equality follows from the fact that the random reserve r is drawn
from Fmax. ��

Since a random price drawn from Fmax achieves this revenue, it follows that
there exists a deterministic price that achieves this revenue and hence the best
deterministic price will achieve the same.

We define the monopoly price ηF of a distribution F to be the optimal posted
price in a single buyer setting when the buyer’s valuation is drawn from distri-
bution F , i.e.:

ηF = arg sup
r

r(1 − F (r))

So a direct corollary of our main theorem is the following:

Corollary 1. Let ηmax be the monopoly price of distribution Fmax. Then:

Rηmax [Vmax] ≥
1

e
G [Vmax]

3 Applications to Approximations in Mechanisms Design

Single Reserve Mechanisms for Non-iid Irregular Settings. A corollary of our
main theorem is that in a second price auction with a single anonymous reserve,
namely a reserve drawn randomly from the distribution of Fmax or a determinis-
tic reserve of the monopoly price of Fmax, will achieve revenue that is a constant
approximation to the geometric expectation of the maximum value. When the
maximum value distribution is concentrated enough to have the geometric expec-
tation is close to expectation it immediately follows that an anonymous reserve
mechanism’s revenue is close to that of the expected social surplus and hence
the expected optimal revenue.

Corollary 2. The second price auction with a single anonymous reserve achieves
a revenue of at least 1

eG [Vmax] for arbitrarily correlated bidder valuations.

Approximation via replicating buyers in Irregular Settings. When the auctioneer
is unable to estimate the distribution of Vmax, and therefore unable to compute
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the reserve price, a well known alternative [1] to achieve good revenue is to recruit
additional bidders to participate in the auction to increase competition. In our
setting, recruiting a set of n bidders distributed identically as the initial set of n
bidders (i.e. following joint distribution F ) will simulate having a reserve drawn
randomly from Fmax. In fact it performs even better than having a reserve —
one among the additionally recruited agents could be the winner and he pays
the auctioneer, as against the reserve price setting. More formally, observe that
in the setting with 2n bidders, half of the revenue is achieved from the original
n bidders, and half from the new bidders (by symmetry). But the revenue from
each of these parts is exactly that of the second price auction with a random
reserve drawn from the distribution of Vmax. Hence, the revenue of this extended
second price mechanism will be twice the revenue of a second price mechanism
with a single random reserve drawn from the distribution of Vmax. This fact,
coupled with our main theorem gives us the following corollary.

Corollary 3. The revenue of a second price auction with an additional set of
bidders drawn from joint distribution F is at least 2

eG [Vmax].

Approximately Optimal and Efficient Mechanisms. Finally, we note that when
the geometric expectation of Vmax is close to its expectation, all our mechanisms
(both the single pricing scheme, and Vickrey with a single reserve) are also
approximately efficient.

Corollary 4. If G [Vmax] = cE [Vmax], a single price drawn randomly from the
distribution of Fmax is simultaneously c

e approximately revenue-optimal and c
e

approximately efficient.

Proof. Since expected social welfare of a pricing scheme is at least its expected
revenue, we have:

E [Social Welfare] ≥ E [Revenue] ≥ 1

e
G [Vmax] ≥

c

e
E [Vmax]

��
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Abstract. In this paper we discuss marketing strategies for goods that
have positive network externalities, i.e., when a buyer’s value for an
item is positively influenced by others owning the item. We investigate
revenue-optimal strategies of a specific form where the seller gives the
item for free to a set of users, and then sets a fixed price for the rest. We
present a 1

2
-approximation for this problem under assumptions about

the form of the externality. To do so, we apply ideas from the influence
maximization literature [13] and also use a recent result on non-negative
submodular maximization as a black-box [3,7].

1 Introduction

Consumer goods and services often exhibit positive network externalities—
a buyer’s value for the good or service is influenced positively by other buyers own-
ing the good or using the service. Such positive network externalities arise in var-
ious ways. For instance, XBox Live is an online gaming service that allows users
to play with each other. Thus, the value of an XBox to a user increases as more of
her friends also own an XBox. Popular smartphone platforms (such as Android,
iOS, or Windows Mobile) actively support developer networks, because develop-
ers add ‘Applications’ that make the phone more useful to other users. Thus, the
value of a smartphone to a user increases with the size of the developer network.
Many consumer goods, especially those that have been newly introduced, benefit
from word-of-mouth effects. Prospective buyers use this word-of-mouth to judge
the quality of the item while making a purchase decision. If the good or service is
of good quality, the word-of-mouth will cause a positive externality.

Irrespective of how positive network externalities arise, it is clear that they are
worth paying attention to in designing a good marketing/pricing strategy. Com-
panies that own smartphone platforms often hand out upcoming devices to de-
velopers. Manufacturers send out a new version of a device to technology review
websites. Detergent companies, and manufacturers of health foods, hand out free
samples of new products. The hope is that giving out the item for free drives up de-
mand for the good/service and increases the revenue generated from future sales.
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In this paper we attempt to identify a revenue maximizing marketing strategy
of the following form: The seller selects a set S of buyers and gives them the good
for free, and then sets a fixed per-unit price p at which other consumers can buy
the item. The strategy is consistent with practice as the examples above illustrate
and is easy to implement. However, optimizing revenue poses two challenges.
First, the choice of the set S and the price p are coupled and must be traded-off
optimally: expanding the set S loses potential revenue from the set S, but may
increase the positive externality on buyers not in S and may allow the seller
to extract more revenue from them. A second, more subtle, issue is that it is
important to have a handle on the dynamics of adoption. For a fixed set S and a
price p, a buyer j /∈ S who is initially unwilling to buy the item at a price p, may
later do so as other buyers (who are not in S and are willing to buy the item at
a price p) go first. This may result in a ‘cascade’ of sales and it is important to
have a handle on this revenue when optimizing for S and p.

Our Results. The related problem of influence maximization (as opposed to
our revenue maximization problem) is well-studied (e.g., Chapter 23 in [13]).
The canonical question in this literature, first posed by Domingos and Richard-
son [5], is: Which set I of influential nodes of cardinality k in a social network
should be convinced to use a service, so that subsequent adoption of the service
is maximized? This literature has made substantial progress in understanding
the cascading of process of adoption and using this to optimize for I (see for in-
stance [5,11,12,15]). However, this literature does not model the impact of price
on the probability of adopting a service and does not attempt to quantify the
revenue from adoption. Therefore it cannot be directly applied to answer our
revenue-maximization question.

Our main technical contribution (Lemma 1) establishes a correspondence be-
tween the dynamics of our (price-sensitive) process and the dynamics of the
general threshold model [11] from the influence maximization literature. We
use it along with a recent result on optimizing non-negative submodular func-
tions [3,7] to identify an algorithm that is a 1

2 -approximation for our problem
(Theorem 1). It is worth noting that, although we prove our result through es-
tablishing a connection to the general threshold model [11], we cannot use the
greedy (1− 1

e )-approximation algorithm of Nemhauser, Wolsey, and Fischer [16],
and instead we need to use the recent 1

2 -approximation [3,7] for non-negative
submodular maximization.

More Related Work. Besides the literature on influence maximization men-
tioned above, there is also an expanding literature on algorithms for revenue
maximization with positive network externalities. Hartline, Mirrokni, and Sun-
dararajan [9] study the marketing strategies where the seller can give the item
for free to a set of buyers, and then visit the remaining buyers in a sequence of-
fering each a buyer-specific price. Such strategies are hard to implement because
the seller must control the time at which the transaction takes place. Further,
there is also evidence that buyers may react negatively to price-discrimination as
it generates a perception of unfairness. Oliver and Shor [17] discuss why such a



534 V.S. Mirrokni, S. Roch, and M. Sundararajan

negative reaction may arise. Partly in response to some of these issues, Akhlagh-
pour et al. [1] explore strategies that allow the seller to vary the price across
time. Though these strategies do not perform price discrimination, there is some
evidence that such strategies may also cause buyers to react negatively, espe-
cially if the prices vary significantly across time. For instance, there was some
unhappiness when Apple dropped the price of an iPhone by 33% two months
after an initial launch (http://www.apple.com/hotnews/openiphoneletter/). In
contrast, our approach is to offer the good at a fixed price, albeit after giving the
item for free to some set of users, a step which seems socially acceptable (see the
examples in the Introduction.) This strategy can also increase the revenue to the
seller above using a fixed price without an influence step. More recently, Hagh-
panah et al. [8] take an auction-theoretic (as opposed to a pricing) approach.
This approach is applied only to some forms of positive externality where the
temporal sequence of sales is not necessary for the externality to manifest (so it
applies to the XBox example from the introduction, but not the settings where
word-of-mouth is involved).

There is also a literature in economics that has studied equilibrium behavior
in the adoption of goods with network externalities [2,4,6,10,14,18]. For instance,
Carbal, Salant, and Woroch [4] show that in a social network the seller might
decide to start with low introductory prices to attract a critical mass of players
when the players are large (i.e, the network effect is significant). The focus here
is to characterize the equilibrium that arises from buyer rationality, as opposed
to optimizing the seller’s strategy.

2 Model

Consider a seller who wants to sell a good to a set of potential buyers, V .
Consider a digital good with zero marginal cost of manufacturing and assume
that the seller has an unlimited supply of the good. We assume that the seller
is a monopolist and is interested in maximizing its revenue.

Externality Model. We assume that a buyer i’s value for the digital good
depends on its own inherent valuation ωi for the good and also on the influence
from the set S ⊆ V \ {i} of buyers who already own the good. More specifically,
we consider the graph model with concave influence in which each buyer i ∈ V is
associated with a non-negative, non-decreasing, concave function fi : R+ → R+

with fi(0) = 0. The value of the digital item for a buyer i ∈ V given that a set
S of buyers have already bought the item is denoted by vi(S) and is equal to
ωi + fi(

∑
j∈S wij). Each inherent valuation ωi is drawn independently from a

uniform distribution (or more generally from a distribution Gi) and each wij is

drawn from a distribution G̃ij capturing the influence of buyer i over buyer j.
We assume that a buyer i buys the item at a price p if and only if vi(S) ≥ p.
We assume that the valuations and prices are in an interval [0,M ].

Fixed-Price Marketing.A fixed-price marketing strategy consists of two stages:
in the first stage, the seller gives the item for free to a subset A of buyers (inital
influence); in the second stage, the seller sets a fixed price p for the digital good
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(price setting). After setting the price p, buyers i with value vi(A) ≥ p buy
the item. Let set S1 be the set of buyers whose value vi(A) after the influence
step is greater than p, i.e., S1 = {i 	∈ A|vi(A) ≥ p}. After buyers in set S1

buy the item at price p, they may influence other buyers, and their value may
increase and go above p. As a result, after set S1 buys the item, some other
buyers may have incentive to buy the item. Let set S2 be this set of buyers, i.e.,
S2 = {i 	∈ A ∪ S1|vi(A ∪ S1) ≥ p}. As more buyers buy the digital good, more
buyers have incentive to buy the item. This process continues and the dynamics
propagates, i.e, for any i (2 ≤ i ≤ k), Si is the set of buyers not in (∪j<iSj)∪A
whose value is more than or equal to p given that set (∪j<iSj) ∪ A of buyers
already adopted the item. The seller’s goal is to find a set A of buyers to in-
fluence and a fixed price p to maximize the total revenue he can extract from
buyers, i.e., in the optimal fixed-price marketing problem with positive network
externalities, the sellers’s goal is to choose A and p to maximize p(| ∪i≥1 Si|).

3 Approximation Algorithm

In this section, we design a constant-factor approximation algorithm for the
problem. We first observe that a simple 1

8 -approximation algorithm exists for the
special case of the problem where weights are deterministic. Then we elaborate
on an improved 1

2 -approximation algorithm for the graph model with concave
influence function that explicitly exploits dynamics.

Sketch of a Simple 1
8 -Approximation Algorithm. For fixed ωi’s and wij ’s,

a randomized 1
8 -approximation algorithm is easily derived: Give the item for free

to each buyer with probability 1/2 independently, then search for the highest
revenue achievable given the freebies by considering all prices over a 1/poly(n)-
grid. Let A∗, p∗ be an optimal solution to the problem and define B∗ = {i ∈
V : ωi + fi(

∑
j wij) ≥ p∗}. In expectation, there are |B∗|/2 remaining potential

buyers after the first stage. We claim that, for a fixed second-stage price of
p∗/2, each of the remaining nodes in B∗ has a probability 1

2 of reaching value
p∗/2 in the second stage—giving an expected revenue of |B∗|p∗/8 and proving
the claim. Indeed, let Pi be the revenue earned from i when p = p∗/2 and
note that, ignoring dynamics (i.e., considering only the first round following

the influence stage), E[Pi] ≥ p∗
4 P
[
ωi + fi

(∑
j �jwij

)
≥ p∗

2

]
, where �i is 1 if i

gets the item for free, and 0 otherwise (and wii = 0). Noting that
∑

j �jwij ≥
1
2

∑
j wij =⇒ fi

(∑
j �jwij

)
≥ 1

2fi

(∑
j wij

)
≥ 1

2 [p∗ − ωi], where we used the

concavity of fi and the definition of B∗, we get P
[
ωi + fi(

∑
j �jwij) ≥ p∗

2

]
≥

P
[∑

j �jwij ≥ 1
2

∑
j wij

]
≥ 1/2, by symmetry.

A 1
2 -Approximation Algorithm. Now we present an improved 1

2 -approxima-
tion algorithm when the weights are random that explicitly exploits the dynamics
of the influence process, unlike the simple algorithm above. We assume further
that the prices are in an interval [0,M ] for some constant M , that the wij ’s are
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drawn from arbitrary distributions and that the ωi’s are drawn from a uniform
distribution over [0,M ]. For convenience, we takeM = 1. For any price p ∈ [0, 1],
consider the following set function Yp : 2V → R+: for any subset A ⊂ V , Yp(A)
is the expected revenue from giving the item for free to set A in the influence
stage, and setting the price to p in the fixed-price stage. Our algorithm is as
follows. Fix ε = o(n−1).

1. For every integer ρ where 0 ≤ ρ ≤ ε−1 do:
– Given that the price in the second stage is p = ρε, using the approxima-

tion algorithm for non-negative submodular maximization in [3,7], find
a set Aρ of users to influence in the first stage. The algorithm in [3,7]
uses oracle calls to the objective function. We simulate oracle calls to
Yp by running the influence process poly(n) times independently and
averaging.

– Let Lρ be the revenue from giving the item to set Aρ and setting price
p = ρε.

2. Output the set Aρ and price ρε for which Lρ is maximized.

Our approximation result follows from a mapping of the fixed-price strategy to a
model of viral marketing introduced in [11,12]. In the viral marketing problem,
one gives an item for free to a group of individuals as we do here but, in the
subsequent influence stage, revenue is ignored (i.e., there is no price) and instead
one aims to maximize the number of individuals who purchase the product.
In [11,12], the general threshold model was introduced to model the influence
process. Formally, the special case of the general threshold model relevant here
is obtained from our influence process by setting p = 0 and letting ωi be uniform
in [−1, 0]. See [11,12] for more details on the general threshold model.

Theorem 1 (Approximation). The above algorithm is a 1
2 -approximation al-

gorithm for the optimal fixed-price marketing problem with positive network ex-
ternalities in the graph model with concave influence.

It is worth noting that, although we prove our result through establishing a
connection to the general threshold model, the final set function that we need
to maximize is not necessarily monotone. Therefore, unlike the viral market-
ing problem in [11,12], we cannot use the greedy (1 − 1

e )-approximation algo-
rithm of Nemhauser, Wolsey, and Fischer [16] for monotone submodular max-
imization subject to cardinality constraints. Instead we use the local search 1

2 -
approximation [3,7] for non-negative submodular maximization. Before stating
the proof of this theorem, we note that the approximation algorithm applies to
a more general setting for the distribution of inherent valuations ωi’s.

Remark 1. Our 1
2 -approximation algorithm holds more generally under the as-

sumption that the inherent valuations ωi are random with distribution Gi with
positive, differentiable, non-decreasing density gi on (0, 1) and, further, that
there is a constant g > 0 such that the gi’s are bounded above by g. Our proof
is given under these assumptions. The obvious open question is to see if the as-
sumption that gi is non-decreasing can be relaxed to a more realistic assumption
like the monotone hazard rate condition.
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Proof. Note that it follows from Chebyshev’s inequality and the fact that the
revenue is bounded by n that our simulated oracle calls are accurate within
1/poly(n) with probability 1− 1/poly(n). Let OPT be the optimal revenue. We
first condition on the edge weights {wij}ij .

Proposition 1 (Submodularity of Yp). Conditioned on the edge weights
{wij}ij, the function Yp is a (not necessarily monotone) non-negative, submod-
ular function.

Proposition 2 (Continuity of Yp). Let δn be a vanishing function of n (pos-
sibly negative) with |δn| = o(n−k) with k ≥ 1. Conditioned on the edge weights
{wij}ij, we have |Yp(S)− Yp+δn(S)| = o(n−k)OPT, for any set S of buyers.

By linearity, both propositions still hold after taking expectation over edge
weights. Theorem 1 then follows from the main result in [3,7] where a
1
2 -approximation algorithm is derived for non-negative submodular maximiza-
tion. The proof of Proposition 2 is omitted for space.

Proof. (of Proposition 1) For any price p and any buyer i, consider the following
set function hi

p : 2V \{i} → R+: for any subset A ⊂ V \{i}, hi
p(A) is the expected

revenue from user i if we give the item for free to set A in the influence stage, and
then set the price p in the second stage. For any set A, Yp(A) =

∑
i∈V \A hi

p(A).
We need the following lemma

Lemma 1. The set functions hi
p for any buyer i are monotone and submodular.

Proof. Fix 0 ≤ p ≤ 1. Let S be a set of buyers. Note that ωi + fi

(∑
j∈S wij

)
≥

p, if and only if fi

(∑
j∈S wij

)
≥ max{0, p − ωi} ≡ ωi,p. Denote by Qi,p the

distribution function of ωi,p. Note that Qi,p(x) = 1 − Gi(p − x), for 0 ≤ x < p
and Qi,p(x) = 1 for x ≥ p. By assumption, on (0, p), Q′

i,p(x) = gi(p − x) > 0
and Q′′

i,p(x) = −g′i(p − x) ≤ 0 so that Qi,p is increasing and concave. Further,
since Qi,p is continuous at p and constant for x ≥ p, Qi,p is non-decreasing and
concave on [0,+∞).

Let Ui, i ∈ V , be independent uniform random variables. We now describe a
mapping of our influence process to a special case of the general threshold model
where a user i adopts a product as soon as Zi(

∑
j∈S wij) ≥ Ui for a concave

function Zi. To transfer the randomness of our inherent valuation to the thresh-
old side of the general threshold model, we use the inverse transform method
where one simulates a random variable X with distribution function H by using
H−1(U) where U is uniform in [0, 1] andH−1 is a generalized inverse function. By

definition of Qi,p, P
[
Qi,p

(
fi

(∑
j∈S wij

))
≥ Ui

]
= P

[
fi

(∑
j∈S wij

)
≥ ωi,p

]
=

P
[
ωi + fi

(∑
j∈S wij

)
≥ p
]
. Since Qi,p and fi are non-decreasing and concave,

the composition Qi,p(fi(·)) is concave as well and Qi,p(fi(
∑

j∈S wij)) is sub-
modular in S. Hence, we have shown that for any fixed p, the dynamics of the
influence stage are equivalent to a submodular general threshold model. In par-
ticular, by the results in [15], we have that hi

p is submodular.
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Proposition 1 then follows from the following lemma whose proof is omitted
(see [9] for a similar lemma).

Lemma 2. If all set functions hi
p for i ∈ V are monotone and sub modular,

then the set function Yp is also sub modular (but not monotone).
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Abstract. We consider a competitive facility location problem on a net-
work, in which consumers are located on the vertices and wish to connect
to the nearest facility. Knowing this, competitive players locate their fa-
cilities on vertices that capture the largest possible market share. In 1991,
Eiselt and Laporte established the first relation between Nash equilibria
of a facility location game in a duopoly and the solutions to the 1-median
problem. They showed that an equilibrium always exists in a tree because
a location profile is at equilibrium if and only if both players select a 1-
median of that tree [4]. In this work, we further explore the relations
between the solutions to the 1-median problem and the equilibrium pro-
files. We show that if an equilibrium in a cycle exists, both players must
choose a solution to the 1-median problem. We also obtain the same
property for some other classes of graphs such as quasi-median graphs,
median graphs, Helly graphs, and strongly-chordal graphs. Finally, we
prove the converse for the latter class, establishing that, as for trees, any
median of a strongly-chordal graph is a winning strategy that leads to
an equilibrium.

1 Introduction

Facility location problems deal with the optimal placement of facilities with re-
spect to a set of customers. In the discrete version of this problem, a decision-
maker needs to select a vertex of a graph whose vertices represent the potential
locations where the facility may be placed. Vertices also represent customers and
have weights that encode the demand at each location. Finally, distances are cap-
tured by the topology of the graph. In the centralized problem, a decision-maker
has to select a vertex that minimizes the distance that customers need to travel to
visit the facility, solution normally referred to as a 1-median [7].

In the competitive version of the facility location problem, a set of players is com-
peting to attract customers and wish to maximize market share by locating their
facilities strategically in the graph. This problem was first studied by Hotelling
[8] in 1929, where two players select a location on a continuous and linear market
with demand uniformly distributed along it. His prediction was that at equilib-
rium both players locate in the 1-median of that line because otherwise they can
undercut the competitor and increase the market-share.

P.W. Goldberg and M. Guo (Eds.): WINE 2012, LNCS 7695, pp. 539–545, 2012.
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We consider a discrete version of the competitive facility location problem in
a duopoly. Given a graph with weights representing demands, both players must
select a vertex to locate a facility. The utility of a player is given by the total
demand among vertices closest to the selected facility. To break ties, demand is
split evenly for vertices that are equidistant to the two facilities. The work of
Eiselt and Laporte, the first among just a few references that study the facility
location game as stated here, shows that trees always admit pure-strategy Nash
equilibria [4]. Indeed, a selection of facilities is a Nash equilibrium if and only
if both players select a (possibly different) 1-median of the tree, which always
exists. Motivated by this result, our work establishes further links between Nash
equilibria of the facility location problem in a duopoly and the 1-median problem,
for various classes of topologies. To the best of our knowledge, with the exception
of [4], we are not aware of other results in this direction.

Since it is natural for players to locate in a central location in the market, we
seek to understand under what circumstances when an equilibrium exists, players
have the incentive to select solutions to the 1-median problem. We provide a
proof of this result for cycles, which combined with the results of [4] can be
extended to cacti and other more general, but specific, topologies. This extension
relies on a decomposition technique that allows one to focus in the subgraph that
contains the equilibria [6]. The idea is to represent the graph as a tree of maximal
bi-connected components. This representation conserves some of the relevant
information about the original graph and allows one to find the components
where equilibria might be located. In addition, we show that for an arbitrary
graph topology, when an equilibrium exists, both players select vertices that are
local optima to the 1-median problem. This result automatically translates to
proving that equilibria can only be located at a 1-median for different classes
of graphs where no local optima exist, such as median graphs, quasi-median
graphs and Helly graphs. Those families of graphs include grids and latices,
which capture the topology of many real urban networks. Finally, we generalize
the result that trees always have equilibria, which are located in medians, to the
class of strongly chordal graphs. That family of graphs includes trees but also
other topologies such as interval graphs and block graphs.

To decide if an instance of this game admits an equilibrium by exhaustive
search, it is necessary to evaluate all possible deviations from each possible out-
come of the game. There are O(|V |2) outcomes, O(|V |) deviations, and for each
we must evaluate a shortest path tree to compute the market share for each
player. Our results imply that it is not necessary to check every possible outcome
of the game but just the combinations of winning strategies, or the 1-medians if
the former are not available and a fast algorithm to compute them is available
for the specific instance.

To conclude, various versions of facility locations games have been studied
over the last decades, differing in the number of players, the splitting techniques
and the space considered to locate the facilities. For details and references, the
reader is referred to [5]. Intimately related to discrete facility location games
are the Voronoi games, which have been recently visited by [3,11]. In a Voronoi
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game on a graph with several players, each player chooses a vertex and achieves
a utility equal to the number of vertices that are closer to the chosen vertex than
to those of the other players.

2 The Facility Location Game

Let G = (V,E) be an undirected connected weighted graph, in which each vertex
represents a location and has an associated weight w(v) > 0 that quantifies de-
mand. We denote the demand in a set S ⊆ V of vertices by W (S) =

∑
v∈S w(v),

and let W = W (V ) be the total demand. Two players compete for market share
by selecting a vertex each to locate their facilities. We refer to the vertices se-
lected by the players as x1, x2 ∈ V , respectively. Given a profile x̄ = (x1, x2), each
vertex v will split its demand evenly among the set of facilities that are closest to
it; i.e., F (v, x̄) := argmini∈{1,2} d(v, xi), where d(·, ·) is the distance function in-
duced by the topology of the graph where edges have unit length (this restriction
is without much loss of generality since other distances can be achieved by sub-
dividing edges). Similarly, letting Vi(x̄) := {v ∈ V : d(xi, v) ≤ d(xj , v) ∀j 	= i},
a player i will receive utility ui composed by the full demand from vertices in Vi

where the inequality is strict plus half of the demand from vertices in Vi where
there is equality. Since u1 + u2 = W , this is a zero-sum game.

We say that a profile x̄ is a pure-strategy Nash equilibrium (PSNE) of this
facility location game if ui(xi, x−i) ≥ ui(y, x−i) for any y ∈ V , for i = 1, 2. The
main property of an equilibrium is that both players must obtain equal utility;
otherwise, the player with the lowest utility would prefer to emulate the other
player’s strategy and get a utility of W/2.

Although there are always equilibria in mixed strategies, [6] provides examples
that show that not every facility location game with two players has a PSNE.
They characterized equilibria for different topologies using ad-hoc techniques.
We unify some of those results, considering vertices that ensure a big-enough
market share. Indeed, we say that a vertex w ∈ V is a winning strategy if the
utility obtained by a player when choosing vertex w guarantees winning the
game, regardless of the selection of the other player; i.e., u1(w, v) ≥ W/2 for
all v ∈ V . There is a one-to-one relationship between the location of winning
strategies and that of equilibria. In fact, any equilibrium must consist of each
player choosing a winning strategy.

Lemma 1. For arbitrary topologies, an equilibrium of a facility location game
with two players exists if and only if there exists at least a winning strategy.

Proof. The result follows from the definition of a winning strategy. If x̄ is at
equilibrium, W/2 = u2(x1, x2) ≥ u2(x1, v) for all v ∈ V , which implies that x1 is
a winning strategy because, since the game is zero-sum,W/2 ≤ u1(x1, v) ∀v ∈ V .
To prove the converse, take a winning strategy w and consider x̄ = (w,w). By
definition W/2 = u1(x̄) ≤ u1(w, v) for all v ∈ V . Using again that the game is
zero-sum proves the equilibrium condition.
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(a) Vertices are annotated with demands. For
each pair of vertices, one player can always de-
viate to obtain more than half of the demand.

v v1 v2 v3 v4 v5 v6
D(v) 45 59 55 69 55 59

(b) Total distances to vertices. Ver-
tex v1 is the unique 1-median, while
v3 and v5 are local medians.

Fig. 1. Instance with no equilibria and its medians

Note that winning strategies are related to dominant strategies, which refer
to selections that are always optimal regardless of the opponent’s choice. Al-
though our game does not necessarily have dominant-strategy equilibria and
winning strategies are not necessarily dominant, playing a winning strategy
guarantees that the player is not worse than the opponent even if the oppo-
nent deviates from the equilibrium (hence the name). To illustrate, consider the
path (v1, v2, v3, v4, v5) of 5 vertices with unit weight. The unique winning strat-
egy is to choose v3 (therefore, the only equilibrium is (v3, v3)). However, a best
response to an opponent that chooses v5 is to choose v4 and hence v3 is not a
dominant strategy.

Winning strategies, though, are not guaranteed to exist. In the instance shown
in Fig. 1, no vertex can guarantee a player a utility of W/2. Indeed, a best
response to selecting a vertex with demand larger than one is to select the
opposite vertex, whereas a best response to selecting a vertex with unit demand
is to select the adjacent vertex. Therefore, an equilibrium for this instance does
not exist.

As discussed in the introduction, it is natural to select the vertex that is
nearest to the demand. Hence, for a single facility located at vertex y ∈ V , we
compute the total distance to it as D(y) =

∑
v∈V d(y, v)w(v). A vertex is called

a 1-median of G if it minimizes D(·). In the rest of the paper, we sometimes just
write median to refer to the 1-median of a graph, and we use the term median-set
to refer to the set of vertices that are 1-medians.

3 Cycles and the 1-Median Problem

Although we already saw that cycles do not always admit equilibria, when de-
mands are sufficiently large an equilibrium must exist. For instance, [6] showed
that an equilibrium of a cycle can use a vertex v if and only if the demand of
any subpath of cardinality |V |/2 that excludes v does not exceed W/2. That
condition can be interpreted as saying that the corresponding vertices are win-
ning strategies. To see this, note that for an arbitrary profile each player gets
the demand from exactly half of the vertices (one or more vertices may be split
equally depending on the parity of the cycle and on the location of both facili-
ties). Therefore, the condition of [6] is equivalent to v being a winning strategy.
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For trees, it is known that medians and equilibria (and hence winning strate-
gies) of the facility location game in duopolies coincide [4]. The relation of win-
ning strategy and medians for trees follows from a result by Kariv and Hakimi
that establishes that a vertex is a median if and only if removing it induces
components of weight not larger than W/2 [9]. We now show a similar result for
cycles: every winning strategy must be a median. Note that the converse is not
true: medians always exist but winning strategies may not.

Theorem 1. If a winning strategy w of a cycle exists, it must solve the 1-median
problem.

To prove this, we compute the difference in total distance from w to any other
vertex v, representing it as a weighted sum of paths of cardinality |V |/2. Using
that w is a winning strategy, we can prove that the difference is non-negative.
Due to lack of space, the full proof is omitted.

Combining the results for trees and for cycles, we extend the previous prop-
erty to more general topologies. A cactus is a graph where every edge belongs
to at most one cycle. Reducing an arbitrary cactus to a tree representing its
components, as explained in [6], and then using the result for cycles, winning
strategies must also solve the 1-median problem. In addition, because one can
compute winning strategies for cacti in O(|V |)-time, this also provides an effi-
cient algorithm to compute the medians of cacti that admit equilibria.

4 Local Medians

Even though it is natural to think that if an equilibrium of the facility location
game exists, players will choose a 1-median solution, we do not know if this is true
for arbitrary topologies. Nevertheless, we can prove that equilibria of this game
translate into a local median property. Indeed, whenever a winning strategy
exists, it must be a local minimum of the 1-median problem with respect to
neighboring vertices. To illustrate the definition of local median, in the example
of Fig. 1 there is a global median and 2 local ones (the result does not apply to
the example because there are no winning strategies in it).

Theorem 2. If w is a winning strategy for the the facility location game, then
D(w) ≤ D(v) for all v ∈ N(w), where N(w) := {v ∈ V |vw ∈ E}.

Proof. Let w be a winning strategy and let v ∈ N(w). Let dz := d(v, z)−d(w, z)
for all z ∈ V . Because w and v are neighbors, dz ∈ {−1, 0, 1} ∀z. We consider
x̄ = (w, v). Since (w,w) is at equilibrium, W/2 = u2(w,w) ≥ u2(x̄), from where
u1(x̄)−u2(x̄) ≥ 0 because the game is zero-sum. Let Mw (resp. Mv) be the set of
vertices that are strictly closer to w than to v (resp. v to w). The result follows
using that dz = 1 for z ∈ Mw and dz = −1 for z ∈ Mv, because

D(v)−D(w) =
∑
z∈V

w(z)(d(v, z)−d(w, z)) = W (Mv)−W (Mw) = u1(x̄)−u2(x̄).
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In light of this result, one would like to characterize the local minima of the 1-
median problem to understand the possible locations of the winning strategies.
For certain families of graphs, these minima coincide with the (global) 1-medians.
Indeed, [1] proved that if G is a connected graph, then the following conditions
are equivalent: (a) The median-set is connected for arbitrary weights w, and,
(b) The set of local medians coincide with the median-set for arbitrary rational
weights w. Based on this equivalence, we obtain the following corollary.

Corollary 1. Let G be a graph that belongs to a family for which, for any ratio-
nal weights w, the solutions to the 1-median problem induce a connected subgraph
of G. Then, every winning strategy of G solves the 1-median problem.

Families of graphs satisfying this property include median graphs, quasi-median
graphs, pseudo-median graphs, Helly graphs and strongly chordal graphs. A com-
plete characterization of graphs with connected median-sets can be found in
[1]. Among graphs in this family, median graphs are particularly important in
location applications because they represent cities well. Median graphs satisfy
that any three vertices a, b, and c have a unique median (which is a vertex
that belongs to shortest paths between any two of a, b, and c). This class in-
cludes lattices, meshes, and grids, which encode the topology of many realistic
networks.

Notice that not all graphs have connected medians (e.g., Fig. 1a). Further-
more, median-sets may have arbitrary topologies; that is, given a graph G, there
exists a graph H for which the subgraph of H induced by the median vertices
is isomorphic to G [12]. This result implies that the median-set can induce a
disconnected subgraph.

5 Strongly Chordal Graphs

In this section we focus on strongly chordal graphs, which are relevant because
they generalize many well-known classes of graphs such as trees, block graphs
and interval graphs. A graph is chordal if every cycle with more than three
vertices has a chord, i.e., an edge joining two non-consecutive vertices of the
cycle. A p-sun is a chordal graph with a vertex set x1, . . . , xp, y1, . . . , yp such
that y1, . . . , yp is an independent set, (x1, . . . , xp, x1) is a cycle, and each vertex
yi has exactly two neighbors xi − 1 and xi, where x0 = xp. A graph is strongly
chordal if it is chordal and contains no p-sun for p ≥ 3.

We knew from the previous section that winning strategies in strongly chordal
graphs solve the 1-median problem. We prove the converse result, establishing
that graphs in that family always admit equilibria and that the equilibrium
locations and 1-medians coincide. This completely extends the results for trees
of [4] to this family, which is a strict superclass of trees.

Theorem 3. Every connected strongly chordal graph has an equilibrium. Fur-
thermore, there is a one-to-one correspondence between winning strategies and
the solutions to the 1-median problem.
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The proof of this theorem, which is omitted due to lack of space, uses induction
by identifying a vertex that cannot be a winning strategy and removing it to
reduce the problem. This approach follows the methodology of Theorem 1 in [10],
where it is shown that the median-set of a connected strongly chordal graph is a
clique. While we use the same inductive idea, we need to rely on more complex
structures. As a corollary, the set of winning strategies of a connected strongly
chordal graph is, not only connected as previously discussed, but also a clique.

6 Concluding Remarks

We have explored the relations between winning strategies and solutions to the
1-median problem in duopolistic facility location games. For several families of
graphs, we have shown that the locations of both sets coincide or that one is
inside another. We believe that both sets should coincide for some of the classes
of graphs considered, and others as well. Identifying when it holds or providing
counterexamples remains as open problems. In particular, it would be interesting
to further extend our results to some super-class of the strongly-chordal graphs.
We would have liked to prove related results for graphs of bounded treewidth,
but we could not adapt the decomposition technique used to prove our result
for cacti, so other ideas may be needed for that result.
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Abstract. In this paper we study the network design game when the
underlying network is a ring. In a network design game we have a set of
players, each of them aims at connecting nodes in a network by installing
links and sharing the cost of the installation equally with other users.
The ring design game is the special case in which the potential links of
the network form a ring. It is well known that in a ring design game the
price of anarchy may be as large as the number of players. Our aim is to
show that, despite the worst case, the ring design game always possesses
good equilibria. In particular, we prove that the price of stability of the
ring design game is at most 3/2, and such bound is tight. We believe that
our results might be useful for the analysis of more involved topologies
of graphs, e.g., planar graphs.

1 Introduction

In a network design game, we are given an undirected graph G = (V,E) and
edge costs given by a function c : E → R+. The edge cost function naturally
extends to any subset of edges, that is c(B) =

∑
e∈B c(e) for any B ⊆ E.

We define c(∅) = 0. There is a set of n players [n] = {1, . . . , n}; each player
i ∈ [n] wishes to establish a connection between two nodes si, ti ∈ V called
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the source and destination node of player i, respectively. The set of strategies
available to player i consists of all paths connecting nodes si and ti in G. We
call a state of the game a set of strategies σ ∈ Σ (where Σ is the set of all the
states of the game), with one strategy per player, i.e., σ = (σ1, . . . , σn) where
σi denotes the strategy of player i in σ . Given a state σ, let nσ(e) be the
number of players using edge e in σ. Then, the cost of player i in σ is defined

as cσ(i) =
∑

e∈σi

c(e)
nσ(e)

. Let E(σ) be the set of edges that are used by at least

one player in state σ. The social cost C(σ) is simply the total cost of the edges
used in state σ which coincides with the sum of the costs of the players, i.e.,
C(σ) =

∑
e∈E(σ) c(e) =

∑
i∈[n] cσ(i) = c(E(σ)).

Let (σ−i, σ
′
i) denote the state obtained from σ by changing the strategy of

player i from σi to σ′
i. Given a state σ = (σ1, . . . , σn), an improving move of

player i in σ is a strategy σ′
i such that c(σ−i,σ′

i)
(i) < cσ(i). A state of the game is

a Nash equilibrium if and only if no player can perform any improving move. An
improvement dynamics (shortly dynamics) is a sequence of improving moves. A
game is said to be convergent if, given any initial state σ, any dynamics leads
to a Nash equilibrium. It is well known, as it has been proved by Rosenthal [6]
for the more general class of congestion games, that any network design game
is convergent. We denote by NE the set of states that are Nash equilibria. A
Nash equilibrium can be different from the socially optimal solution. Let Opt
be a state of the game minimizing the social cost. The price of anarchy (PoA)
of a network design game is defined as the ratio of the maximum social cost

among all Nash equilibria over the optimal cost, i.e., PoA = maxσ∈NE C(σ)
C(Opt) . It is

trivial to observe that the PoA in a network design game may be as large as
the number of players n, and such bound is tight. The price of stability (PoS) is
defined as the ratio of the minimum social cost among all Nash equilibria over

the optimal cost, i.e., PoS = minσ∈NE C(σ)
C(Opt) . Anshelevich et al. [1] proved that the

price of stability is at most Hn = 1+1/2+ . . .+1/n. Although the upper bound
proof has been shown to be tight for directed networks, the problem is still open
for undirected networks. There have been several attempts to give a significant
lower bound for the undirected case, e.g., [5,4,2,3]. The best known lower bound
so far of 348/155 ≈ 2.245, has been recently shown in [2].

The aim of the current paper is to analyze the network design game when the
underlying graph is a ring. We refer to this special case as ring design game. For
the sake of clarity, by a ring we mean an undirected graph G = (V,E) where
V = {v1, v2, . . . , vk}, E = {e1, e2, . . . , ek}, and ei = vivi+1, i = 1, . . . , k (where
vk+1 = v1). Note that this simple case captures the whole spectra of interesting
behavior, i.e., PoA remains equal the number of players. Moreover, the ring is
crucial in the sense that it is the first non-trivial topology to analyze in the
context of network design and it is the first step in order to cope with more
involved topologies, like planar graphs. Hence, we believe that giving a tight
bounds here could give some insight for studying more general settings.

Let us first point out that, in a ring design game, any improvement dynamics
starting from the optimal state leads to an equilibrium at most 2 times the cost
of the optimal state. In fact, either the optimal state is a Nash equilibrium, or
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there is a player j wishing to switch from his optimal strategy to the alternative
path. At the optimum, the cost of player j is at most C(Opt), and thus the cost
of the alternative path cannot be more than this quantity. Since the alternative
path of j contains edges of the ring not belonging to E(Opt), it implies that
C(Opt) is also an upper bound to c(E \E(Opt)). Consequently, the cost of the
entire ring, and thus the cost of any state, is at most 2C(Opt). As we show here,
by doing a more careful analysis, we are actually able to prove a tight bound of
3/2 · C(Opt) on the cost of any equilibrium reachable from the optimum.

Our results. In this paper we show that in a ring design game, differently from
what the classical bound of n on the price of anarchy suggests, there always
exist good performing Nash equilibria. In particular, we show that there always
exists a Nash equilibrium of cost at most 3/2 times the cost of an optimal state,
thus giving a bound on the PoS. We show that such equilibrium can be reached
by a dynamics having as initial state an optimal configuration. Such result also
gives some insight on the problem of computing an equilibrium in a ring design
game. In fact, it reveals that if the cost of the entire ring is larger than 3/2 times
the cost of an optimal state, then the dynamics starting from an optimal state
converges quickly, within at most 3 steps, to an equilibrium. We also show that
such bound on the PoS is tight, by showing an instance for which PoS = 3/2− ε.

2 Upper and Lower Bounds on the Price of Stability

We start by upper bounding the price of stability. Our technique to prove the
bound on the PoS is different from the previously used ones. Previous techniques
used potential function arguments and proved that any equilibrium reached by
any dynamics starting by an optimal state has potential value at most Hn ·
C(Opt). Here we also bound the cost of a Nash equilibrium reachable by a
dynamics from the optimal state but without using potential function arguments.
In particular, the analysis is made by cases on the number of moves, and for
each such case we write a linear program that captures the most important
inequalities. The most important observation we use is that one needs to consider
the cases when at most 4 players move. We prove that for higher number of moves
the PoS can only be smaller.

Our notation includes the number m representing the amount of steps in
which some fixed dynamics reaches a Nash equilibrium starting from an optimal
state Opt, the Nash equilibrium N obtained after m steps, as well as players
making a move in the dynamics, meaning that πj denotes the player that made
the move at step j = 1, . . . ,m during the dynamics. Note that a player could
make a move at many different steps of the dynamics. Let σ0, . . . , σj , . . . , σm

be the states corresponding to the considered dynamics, where σ0 = Opt and
σm = N. Also, let f be a set of players of interest. The set f will be composed
by a subset of the players moving in the dynamics. The usage of f will be clear
in the proof of Theorem 1. For any A ⊆ f the set DA will denote the edges in
Opt which are used by exactly the players in A, and RA will denote the edges
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used in Opt which are used by exactly the players in A and at least one player
from outside of f , formally:

Df
A = {e ∈ E | (∀i ∈ f. e ∈ Opti ⇐⇒ i ∈ A) ∧ ¬∃i /∈ f. e ∈ Opti},

Rf
A = {e ∈ E | (∀i ∈ f.e ∈ Opti ⇐⇒ i ∈ A) ∧ ∃i /∈ f. e ∈ Opti}.

For the sake of simplicity in the sequel we will omit the superscript f when it is
clear from the context. Notice that DA andRA naturally define a partition of the

edges of the ring, and that for any f we have E(Opt) =
(⋃

A⊆f DA ∪RA

)
\D∅.

Moreover, let λ > 0 be such that c
(
D∅

)
≤ λC(Opt). Since Opt and D∅ is a

partition of E and the cost of any equilibrium N can be at most c(E), then:

PoS ≤ C(N)

C(Opt)
≤

C(Opt) + c
(
D∅

)
C(Opt)

≤ C(Opt) + λ · C(Opt)

C(Opt)
≤ 1 + λ. (1)

Now let us write the necessary conditions for the fact that player πj can
move in step j of the dynamics, for any j = 1, . . . ,m. Such conditions will
be expressed by using the above defined variables DA and RA. Unfortunately,
we do not know the exact usage of edges in sets RA. Let us define functions
leftk, rightk : Σ → R for any players k ∈ f . Set dσ(k) and rσ(k) to be the
collection of subsets A of f such that player k is using (all) edges of DA and
RA respectively in state σ, i.e., dσ(k) = {A ∈ 2f | k is using edges of DA in σ},
rσ(k) = {A ∈ 2f | k is using edges of RA in σ}. Also, define the edges’ usage by
the players’ of interest (i.e., players belonging to f) n̂σ : 2E → N as n̂σ(H) =
#{i ∈ f | H ⊆ σi}. Let us define:

leftσ(k) =
∑

A∈dσ(k)

∑
e∈DA

c(e)

nσ(e)
+
∑

A∈rσ(k)

∑
e∈RA

c(e)

n
=
∑

A∈dσ(k)

c(DA)

n̂σ(DA)
+
∑

A∈rσ(k)

c(RA)

n
.

In the following the function left will be used as a lower bound on the cost of a

player. Then wlog we can consider c(RA)
n to be 0 for any RA. Therefore in the

following we will omit such terms. Moreover, let us define:

rightσ(k) =
∑

A∈dσ(k)

∑
e∈DA

c(e)

nσ(e)
+

∑
A∈rσ(k)

∑
e∈RA

c(e)

n̂σ(RA) + 1

=
∑

A∈dσ(k)

c(DA)

n̂σ(DA)
+

∑
A∈rσ(k)

c(RA)

n̂σ(RA) + 1
.

Then the following inequalities hold for any state σ ∈ Σ:

leftσ(k) ≤ cσ(k) ≤ rightσ(k).

The role of functions leftk and rightk is to weaken the inequalities between
player’s utilities in some neighbour states, so that they become manageable. As
we do not know the exact usage of edges in sets RA, it would be hard to derive
the precise bounds. This means that on the lower-hand side we introduce the
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maximum possible number (i.e., n) of players using edges of sets RA in σ and on
the upper-hand side we introduce the minimum number of players using edges
of RA in σ, i.e., n̂σ(RA) + 1.

The proof of the following lemma will be given in the full version of this paper.
This lemma will become useful in the proof of the main theorem.

Lemma 1. In the ring design game, if in state Opt there are at least two players
able to perform an improving move (both starting from state Opt) then the cost
of the whole ring is at most 3

2 times the cost of an optimal solution, that is
c(E) ≤ 3

2C(Opt).

Theorem 1. The price of stability for the ring design game is at most 3
2 .

Proof. The proof is split into five different cases, depending on the amount m
of steps in which some fixed dynamics reaches a Nash equilibrium starting from
an optimal state Opt. Moreover notice that since in a ring design game the
strategy set of each player i is composed by exactly 2 different strategies, i.e.,
the clockwise and counterclockwise paths connecting si and ti. This implies that
πj 	= πj+1, for any j = 1, . . . ,m − 1. We remark that in some cases we get the
bound by solving a linear program where constraints are naturally defined by
using left and right functions, and where objective functions are proper defined
in each of the case.

Case m = 0. The equality m = 0 trivializes the instance into an example where
Opt is a Nash equilibrium, thus PoS = 1.

Case m = 1. In this case the dynamics reaches a Nash Equilibrium N after
one step starting from Opt. Since player π1 can perform an improving move
starting by state Opt, the following inequalities hold: leftN(π1) ≤ cN(π1) <

cOpt(π1) ≤ rightOpt(π1). Therefore, by setting f = {π1} we have that:
c
(
D∅

)
1 <

c
(
D{π1}

)
1 +

c
(
R{π1}

)
2 . The last inequality directly implies that:

C(N)

C(Opt)
=

c(D∅) + c(R∅) + c(R{π1})

c(D{π1}) + c(R∅) + c(R{π1})
≤

c(D{π1}) + c(R∅) +
3
2c(R{π1})

c(D{π1}) + c
(
R∅

)
+ c
(
R{π1}

) ≤ 3

2
.

Case m = 2. When m = 2, the player π1 leads the dynamic from Opt to σ1 and
player π2 leads the dynamics from σ1 to N. Therefore the following must hold:

leftσ1(π1) ≤ cσ1(π1) < cOpt(π1) ≤ rightOpt(π1),

leftN(π2) ≤ cN(π2) < cσ1(π2) ≤ rightσ1 (π2).

Therefore, by setting f = {π1, π2} we have that:

c
(
D∅

)
1

+
c
(
D{π2}

)
2

<
c
(
D{π1}

)
1

+
c
(
R{π1}

)
2

+
c
(
D{π1,π2}

)
2

+
c
(
R{π1,π2}

)
3

c
(
D∅

)
2

+
c
(
D{π1}

)
1

<
c
(
D{π2}

)
2

+
c
(
R{π2}

)
2

+
c
(
D{π1,π2}

)
1

+
c
(
R{π1,π2}

)
2

.
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Without loss of generality we can add the following constraints:∑
e∈OPT

c(e) ≤ 1, ∀e ∈ E. c(e) ≥ 0.

We need to bound the value of c
(
D∅

)
− 1

2c
(
D{π1,π2}

)
with respect to the above

inequalities. Such a bound can be obtained by forming a linear program from
all the above equations including the appropriate objective function. We have
solved this linear program on a computer using a standard LP solver. This way
we have obtained the following bound: c

(
D∅

)
− 1

2c
(
D{π1,π2}

)
≤ 5

11 < 1
2 .

In the remainder of the proof similar bounds have been obtained in the same
way by using a LP solver. Further, the cost of states N and Opt are:

C(N) = c
(
D∅

)
+ c
(
R∅

)
+ c
(
D{π1}

)
+ c
(
R{π1}

)
+ c
(
D{π2}

)
+ c
(
R{π2}

)
+ c
(
R{π1,π2}

)
,

and

C(Opt) = c
(
D{π1,π2}

)
+ c
(
R∅

)
+ c
(
D{π1}

)
+ c
(
R{π1}

)
+ c
(
D{π2}

)
+ c
(
R{π2}

)
+ c
(
R{π1,π2}

)
,

respectively. Therefore, by using the upper bound on c
(
D∅

)
− 1

2c
(
D{π1,π2}

)
we

obtain that: C(N)
C(Opt) ≤ 16

11 < 3
2 .

Case m = 3. Similarly to the previous case, we will construct a suitable linear
program. We know that π1 	= π2 and π2 	= π3. If π1 = π3 then by Lemma 1 we
have that PoS ≤ 3

2 . Therefore we can assume that π1 	= π3. The following must
hold:

leftσ1(π1) ≤ cσ1(π1) < cOpt(π1) ≤ rightOpt(π1),

leftσ2(π2) ≤ cσ2(π2) < cσ1(π2) ≤ rightσ1 (π2),

leftN(π3) ≤ cN(π3) < cσ2(π3) ≤ rightσ2 (π3).

By setting f = {π1, π2, π3} we obtain a set of constraints that along with
C(Opt) ≤ 1 and maximization target c

(
D∅

)
− 1

2c
(
D{π1,π2,π3}

)
constitute a

linear program with a solution c
(
D∅

)
− 1

2c
(
D{π1,π2,π3}

)
≤ 198

487 < 1
2 . Substituting

it into the ratio of the costs of N and Opt we get that: C(N)
C(Opt) ≤ 685

487 < 3
2 .

Case m ≥ 4. Here it is enough to consider the case m = 4. This is due to the
fact that the inequalities obtained by the dynamics of the first 4 players are
strong enough to bound the cost of the whole ring. This gives the bound on the
cost of any Nash equilibrium the dynamics will converge to, because even if more
players move the cost of the final state will be smaller than the cost of the whole
ring. We show that if m = 4 then c

(
D∅

)
< 1

2 · C(Opt). Clearly, adding new
constraints for m > 4 cannot increase this bound. Then let us consider m = 4.
As in the previous case we have that π1 	= π2 and π2 	= π3 and π1 	= π3, any-
way we are not able to derive any conclusion about π4. It follows that we have to
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consider 3 subcases, i.e., π4 = π1, π4 = π2 and π4 	= πz for z = 1, 2, 3. As usually
in this proof, we are going to derive sets of constraints that must hold at every
step of the dynamics by using functions left and right.

By summarizing we get three different sets of constraints corresponding to
three different linear programs. In each of them it suffices to consider maximiza-
tion target c

(
D∅

)
assuming that C(Opt) ≤ 1 wlog. In all cases the maximum

value of c
(
D∅

)
turns out to be smaller than 1

2 . Hence, by (1) for all these cases
we know that PoS is bounded by 3

2 . ��
Corollary 1. In a ring design game, if the cost of the entire ring is larger
than 3/2 times the cost of an optimal state, then the improvement dynamics
starting from an optimal state converges quickly, within at most 3 steps, to a
Nash equilibrium.

The following theorem will be given in the full version of this paper and con-
structs an example (Figure 1) when the above upper bound is reached.

Theorem 2. Given any ε > 0, there exists an instance of the ring design game
such that the price of stability is at least 3

2 − ε.

� � � �2
e1

2
e2

2
e3

3−ε

e4

Fig. 1. The lower bound example for PoS on the ring. There is a player associated with
each edge. The optimum uses three edges of cost 2 whereas the only Nash equilibrium
uses the whole ring.
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Abstract. In this work we give a tight lower bound on makespan ap-
proximation for envy-free allocation mechanisms dedicated to scheduling
tasks on unrelated machines. Specifically, we show that no mechanism
exists that can guarantee an envy-free allocation of jobs to m machines
with a makespan less than a factor of O(logm) of the minimal makespan.
Combined with previous results, this paper definitively proves that the
optimal algorithm for obtaining a minimal makespan for any envy-free
division can at best approximate the makespan to a factor of O(logm).

Keywords: makespan approximation, locally-efficient, envy-freeness,
mechanism design, scheduling.

1 Introduction

Consider the scenario in which there is a set of tasks and a workforce that is
commissioned to complete it. The tasks we are interested in are indivisible, that
is, we can assign more than one job to each worker but two workers cannot both
work on the same task. One goal is to complete all the tasks in the shortest
period of time. However, each worker is specialized in his own way and ranks the
difficulty of performing each task differently from his colleagues. We would also
like to allocate the tasks in such a way that no worker would prefer to complete
the workload of a colleague over his own. This problem is the focus of this paper.

Determining fair division is at the heart of a large body of research in computer
science. One of its earliest occurrences in literature was in 1947 when Neyman,
Steinhaus, Banach and Bronislaw modeled it as the problem of how to find a
fair partitioning of cake ([13], [14]). Since then, several books including [1], [2],
[3], [11], [9], [12] have been dedicated to the subject. The problem is generally
described as a way of assigning n jobs to be processed by m machines or agents
in a fair manner. One of the reasons that this area of research is so rich is that
there are multiple ways to characterize a fair allocation. One way to do so is to
consider divisions that preserve envy-freeness, the notion that no agent would
be better off if he were assigned the set of jobs given to another ([5], [6]). In the
scenario where jobs can be divided among more than one machine, one solution
would be to divide all jobs equally among all agents (although depending on the
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set-up of the problem this division might be ill-defined, i.e. if one agent takes an
infinitely long time to process a specific job).

Determining a fair allocation when jobs are not divisible is less straightfor-
ward. In order to furnish a solution we must define a mechanism that determines
an allocation as well as payments either to or from the agents, or between agents
and the mechanism or agents among themselves. We consider the utility of each
agent to be quasi-linear, i.e. the difference between the payment he receives and
the cost to process his assignment of jobs.

When determining an optimal envy-free solution other goals can be considered
such as revenue maximization or economic efficiency. The additional goal we
described in our earlier example is makespan minimization, or the intention
to minimize the longest processing time of jobs on any one machine. In their
paper [8], Hartline et. al. considers a task schedule for m machines in which the
minimum makespan for any indivisible allocation is 1. They then go on to show
that no mechanism exists that can provide an envy-free indivisible allocation
with a makespan less than 2−1/m. In addition they provide an algorithm to find
an envy-free indivisible allocation that upper bounds the makespan by (m+1)/2.
Cohen et. al. generalized and tightened the bounds on makespan approximation
[4]. In their paper, they show that there does not exist a mechanism that provides
an envy-free division with a makespan less than O(logm/ log logm) times the
optimal, and demonstrate a polynomial time algorithm that finds an envy-free
scheduling that approximates the minimal makespan by a factor of O(logm).

Our contribution is to tighten the lower bound on makespan approximation
to the upper bound. Specifically, we show that no mechanism exists that can
guarantee an envy-free allocation of jobs to m machines with a makespan less
than a factor of O(logm) of the minimal makespan. The technique we use is a
refined variation of the one employed by Cohen et. al., but the more intricate
construction gives us a better bound. This result definitively proves that the
optimal algorithm for obtaining a minimal makespan for any envy-free division
can at best approximate the makespan to a factor of O(logm).

2 Preliminaries

The scheduling problem that we are interested in is the following: We have n in-
divisible jobs and m machines. We are given a cost matrix c = (ci,j)1≤i≤m,1≤j≤n

where ci,j is the cost of running job j on machine i. The allocation matrix
a = (ai,j)1≤i≤m,1≤j≤n specifies which jobs are assigned to run on which ma-
chines, so that ai,j = 1 if we run job j on the ith machine and ai,j = 0 otherwise.
Since our focus is on indivisible jobs, if ai,j = 1, then ai′,j = 0 for all i′ 	= i. In
the case where jobs are divisible ai,j ∈ [0, 1]. In both the divisible and indivisible
job cases,

∑m
i=1 ai,j = 1, i.e. we always find an allocation of jobs to machines

where every job is processed in its entirety.
Let c̄i = (ci1, . . . , cin) denote the ith row of the cost matrix c and let āi =

(ai1, . . . , ain) denote the ith row of the allocation matrix a. Then the load on
machine i, or the cost of running the jobs assigned to machine i is c̄i · āi =
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j=1 ci,jai,j . The makespan of an assignment is the maximum load on any

machine, or max1≤i≤m c̄i · āi.
We can formulate the problem of finding the minimum makespan for indivis-

ible jobs as an integer programming problem and for divisible jobs as a linear
programming problem. In 1990, Lenstra, et. al. introduced a 2-approximation
algorithm for finding the minimum makespan for indivisible jobs, and showed
that there does not exist a ρ-approximation algorithm for finding the minimum
makespan for ρ < 3/2 unless P = NP [10].

In this formulation we consider each of the m machines as a selfish agent. An
allocation function a is mapped to the m×n cost matrix c so that a(c) = a. As
before let c̄i = (ci1, . . . , cin) and ā(c)i = (a(c)i1, . . . , a(c)in) denote the ith row
of c and a(c), respectively. Let p denote a payment function that is a mapping
from c to Rm, and let p(c)i denote the ith coordinate of p(c).

We define a mechanism as a pair of functions, M =< a, p > where a is
the allocation function and p is the payment function. Given a mechanism <
a, p > with a cost matrix c, the utility of agent i is p(c)i − c̄i · āi. A mechanism
is considered envy-free if no agent can increase his utility by trading his job
allocation and payment with another player. More formally, a mechanism is
envy-free if, for all j ∈ 1..n,

p(c)i − c̄i · āi ≥ p(c)j − c̄i · āj . (1)

We call an allocation function envy-free implementable (EF-implementable) if
there exists a payment function p such that mechanism < a, p > is envy-free.

An allocation function is locally-efficient if for all cost matrices c and permu-
tations π of 1, . . . ,m, we have

m∑
i=1

c̄i · āi ≤
m∑
i=1

c̄i · āπ(i). (2)

Hartline, et. al. introduced the following useful theorem [8].

Theorem 1. Anallocation is EF-implementable if and only if it is locally-efficient.

3 Main Result: Lower Bound on Envy-Free Makespan
Approximation

We give a lower bound of Ω(logm) on the makespan achievable by any envy-free
allocation of jobs.

Let n = ñ
log ñ + 1 be the number of jobs for some ñ ∈ Z+. The number of

machines is m = n + l where 2l = log ñ. Let c denote a cost matrix where ci,j
gives the cost of running job j on machine i. For this cost matrix, we have
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2ñ

1 − log ñ
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2(ñ−2)
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Each row i for 1 ≤ i ≤ n+ l gives the costs for the ith machine and each entry
ci,j in the matrix denotes the cost of running job j on machine i. The horizontal
line lies between machines n and n+ 1. For 1 ≤ i ≤ n, the cost of running job j
on machine i is given by

ci,j =

⎧⎨⎩
1 if i = j

1− (i−j) log ñ
2(ñ−j+1) if i > j

∞ if i < j

. (4)

Note that for 1 ≤ i < n and i > j, we have ci,j − ci+1,j = log ñ
2(ñ−j+1) . For

n < i ≤ n+ l, the cost to process any job on machine i is 2i−n.

Lemma 1. For 1 ≤ i ≤ n+ l and 1 ≤ j ≤ n, we have ci,j ≥ 1/2.

Proof. The statement is trivially true for i ≤ j and i > n. For j < i ≤ n we prove
the equivalent statement that (i − j) log ñ < ñ − j + 1. The LHS is maximized
when i is maximized so we have:

(i− j) log ñ ≤
(

ñ

log ñ
+ 1− j

)
log ñ = ñ− (j − 1) log ñ ≤ ñ− (j − 1) (5)

for ñ > 2.

For this cost matrix, the optimal makespan is 1. We reach this makespan when
i = j. Since the cost of running any job on any machine is strictly greater than
1/2, if more than one job is run per machine the makespan will be more than
1. Any other permutation of jobs would require at least one job j to be run on
some machine i for i < j or for n < i ≤ n + l. Either of these scenarios would
give us a makespan of at least 2.

We show that any envy-free makespan for this cost matrix has a lower bound
of logn. More specifically, we show that no matter how we partition the n jobs
into n+ l bundles, any locally-efficient assignment of the bundles has a makespan
of at least log ñ ≥ logn. This establishes that there does not exist an algorithm
that can always find a makespan less than logn.
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Theorem 2. For any partition of n jobs into bundles, the makespan for every
locally efficient assignment of bundles is at least 2l = log ñ.

Before we prove this theorem, we introduce the following useful lemma.

Lemma 2. Any allocation for the cost matrix c that has makespan fewer than
2l = log ñ has the following properties:

1. Fewer than 2l+1 jobs run on each machine.
2. Fewer than 2l/2i−n jobs run on each machine n+ i for n < i ≤ n+ l.
3. The total number of jobs running on machines n+1, . . . , n+ l is fewer than

2l.

Proof. Property (1) follows directly from Lemma 1; Property (2) holds since

ci,j = 2i−n for n < i ≤ n + l; and (3) follows from (2) because
∑n+1

i=n+1 ci,j <∑n+1
i=n+1 2

l/2i−n = 2l.

Proof (Proof of Theorem 2). Consider an arbitrary partition of the n jobs into
n + l bundles with a makespan less than 2l. Suppose that this assignment is
locally-efficient. In order to prove this theorem by contradiction, we must provide
a permutation of the assignment that decreases the total cost over all jobs. Since
the cost of running a job on machine n + l is 2l, there are no jobs assigned to
run on machine n+ l. Therefore, the permutation we will provide is the one in
which each bundle of jobs assigned to machine i is moved to machine i+ 1.

By Lemma 2 (1), less than 2l+1 jobs run on machine n, so the increase in cost
from moving the bundle of jobs from machine n to machine n + 1 is less than
2l+1(2−1/2) = 3·2l. For n < i < n+l, we have ci+1,j = 2ci,j , and so moving each
bundle from machine i to i+ 1 in this range increases the cost by a factor of 2.
By Lemma 2 (3), fewer than 2l jobs run on this set of l machines, and so moving
each bundle to the next machine would increase the total cost by less than l · 2l.
Therefore, moving each bundle on machine i to machine i+ 1 for n ≤ i < n+ l
increases the cost of the assignment by less than (l+3)2l = (log log ñ+3) log ñ.

By Lemma 2 (3), there are fewer than 2l jobs running on machines n +
1, . . . , n + l, which implies that the total number of jobs running on machines
1, . . . , n is greater than n− 2l. Pairing this with Lemma 2 (1), we know that the
total number of jobs running on machines 1, . . . , n− 1 is greater than n− 2l −
2l+1 = n− 3 · 2l. As noted earlier, moving any job j from machine i to machine
i+ 1 in this range decrease the cost of the job by log ñ

2(ñ−j+1) . Therefore, the total

cost of moving all the bundles on machines 1, . . . , n − 1 decreases by at least
( log ñ

2 )(Hñ/ log ñ − H3·2l) ≈ ( log ñ
2 )(ln ñ − ln log ñ − ln(3 log ñ)), where Hk is the

kth harmonic number.
The decrease in cost from the first n− 1 machines is larger than the increase

in cost from the last l+1 machines and so the makespan for any locally efficient
assignment must be greater than 2l.

Corollary 3 For any partition of n jobs into bundles, the makespan for every
envy-free assignment of bundles is Ω(logm).



558 A. Fiat and A. Levavi

Proof. By Theorem 2, every locally efficient partition has a makespan of at least
log ñ = log((n − 1) log ñ) ≥ logn. Since m = n + l = O(n) for the cost matrix
defined, it holds that it is an Ω(logm) approximation.
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Abstract. Are we as a society getting more polarized, and if so, why?
We try to answer this question through a model of opinion formation.
Empirical studies have shown that homophily results in polarization.
However, we show that DeGroot’s well-known model of opinion for-
mation based on repeated averaging can never be polarizing, even if
individuals are arbitrarily homophilous. We generalize DeGroot’s model
to account for a phenomenon well-known in social psychology as biased
assimilation: when presented with mixed or inconclusive evidence on a
complex issue, individuals draw undue support for their initial position
thereby arriving at a more extreme opinion. We show that in a simple
model of homophilous networks, our biased opinion formation process
results in either polarization, persistent disagreement or consensus de-
pending on how biased individuals are. In other words, homophily alone,
without biased assimilation, is not sufficient to polarize society. Quite
interestingly, biased assimilation also provides insight into the following
related question: do internet based recommender algorithms that show us
personalized content contribute to polarization? We make a connection
between biased assimilation and the polarizing effects of some random-
walk based recommender algorithms that are similar in spirit to some
commonly used recommender algorithms.

A full version of this paper is available at http://arxiv.org/abs/1209.5998.
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Abstract. In this paper, we focus on computing the prices of securities repre-
sented by logical formulas in combinatorial prediction markets when the price
function is represented by a Bayesian network. This problem turns out to be a
natural extension of the weighted model counting (WMC) problem [1], which
we call generalized weighted model counting (GWMC) problem. In GWMC, we
are given a logical formula F and a polynomial-time computable weight function.
We are asked to compute the total weight of the valuations that satisfy F .

Based on importance sampling, we propose a Monte-Carlo meta-algorithm
that has a good theoretical guarantee for formulas in disjunctive normal form
(DNF). The meta-algorithm queries an oracle algorithm that computes marginal
probabilities in Bayesian networks, and has the following theoretical guarantee.
When the weight function can be approximately represented by a Bayesian net-
work for which the oracle algorithm runs in polynomial time, our meta-algorithm
becomes a fully polynomial-time randomized approximation scheme (FPRAS).

NOTE: A full version of this paper is available at
http://people.seas.harvard.edu/˜lxia/Files/GWMC-WINE.pdf

This paper is part of a longer working paper, which we plan to submit to a journal
that may not accept papers published previously in conferences.
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1 Introduction and Results Overview

Walrasian equilibrium is one of the basic notions in economic theory. Items are
priced in such a way that the market clears i.e. the supply for each item equals
the demand for it (or there may be items with excess supply priced at zero.)
When there is a Walrasian equilibrium, it captures nicely the “right” pricing
of items. Unfortunately, Walrasian equilibria are guarantee to exists only for
limited classes of agents’ valuations, namely gross-substitute valuations.

An alternative approach that we looked at in a previous work is to auction the
items simultaneously, and analyze the resulting equilibria. For the simultaneous
first price auction, the resulting pure Nash equilibria turn out to be in one-to-
one correspondence with the Walrasian equilibria. Moreover, even when there
is no Walrasian equilibrium, there is always a mixed Nash equilibrium for the
simultaneous first price auction (with some tie breaking rule).

Walrasian equilibria may fail to exist even with two agents and two items when
one of the agents views the items as complements while the other views them as
substitutes. Here we consider the prototypical game of this form with a “pure”
complement player, AND, and a pure substitute player OR. The AND valuation is
1 if it gets both items and zero otherwise, while the OR has a value of v for
any single item (or both) and zero otherwise. For v > 1/2 there is no Walrsian
equilibrium (or equivalently, pure Nash equilibrium) and in our previous work
we presented a specific mixed Nash equilibrium for the AND-OR game.

In this work we completely characterize the mixed Nash equilibria of the AND-
OR game, showing that they are all slight variants of a single one.

The full version of this paper is available on the arXiv.
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Bilò, Davide 72, 392
Borgs, Christian 406
Brautbar, Michael 406

Chakraborty, Tanmoy 198
Chayes, Jennifer 406
Chen, Wei 489
Chen, Xujin 420
Cohen, Johanne 350
Conitzer, Vincent 482

Dandekar, Pranav 309, 559
Darmann, Andreas 156
Daskalakis, Constantinos 298
Dayama, Pankaj 212
Deckelbaum, Alan 298
Dhamal, Swapnil 504
Doerr, Benjamin 420
Dufton, Lachlan 323
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Lee, David 434, 559
Leniowski, Dariusz 546
Lenzner, Pascal 142
Leucci, Stefano 392
Leung, Samantha 58
Levavi, Ariel 553
Ligett, Katrina 378
Liu, Tie-Yan 489
Lucier, Brendan 406
Lui, Edward 58

Ma, Weidong 420
Mansour, Yishay 561
Markakis, Evangelos 1
Maya, Avishay 170
Meir, Reshef 256
Minooei, Hadi 448
Mirrokni, Vahab S. 86, 532



564 Author Index

Mitzenmacher, Michael 30
Monaco, Gianpiero 546
Muthukrishnan, S. 86

Narahari, Yadati 212, 504
Naroditskiy, Victor 323
Nath, Swaprava 212
Naves, Guyslain 227
Nisan, Noam 170, 561

Piliouras, Georgios 184
Polukarov, Maria 323
Pountourakis, Emmanouil 244
Proietti, Guido 72, 392

Rabanca, George 128
Roch, Sebastien 532
Roth, Aaron 114, 378
Roughgarden, Tim 337

Saban, Daniela 539
Sankowski, Piotr 546
Schauer, Joachim 156
Shah, Nisarg 15
Siminelakis, Paris 270
Simon, Sunil 100
Sivan, Balasubramanian 526
Skopalik, Alexander 364
Starnberger, Martin 44
Stier-Moses, Nicolas 539

Sundararajan, Mukund 532
Swamy, Chaitanya 448
Syrgkanis, Vasilis 526

Tamir, Tami 496
Tamuz, Omer 526
Tarbush, Bassel 512
Telelis, Orestis 519
Tennenholtz, Moshe 256
Teytelboym, Alexander 512
Thang, Nguyen Kim 350
Tzamos, Christos 298
Tzoumas, Vasileios 1

Valla, Tomáš 184
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