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Abstract. This paper reports on the formalization and proof of sound-
ness, using the Coq proof assistant, of an alias analysis: a static analysis
that approximates the flow of pointer values. The alias analysis con-
sidered is of the points-to kind and is intraprocedural, flow-sensitive,
field-sensitive, and untyped. Its soundness proof follows the general style
of abstract interpretation. The analysis is designed to fit in the Comp-
Cert C verified compiler, supporting future aggressive optimizations over
memory accesses.

1 Introduction

Alias Analysis. Most imperative programming languages feature pointers, or
object references, as first-class values. With pointers and object references comes
the possibility of aliasing: two syntactically-distinct program variables, or two
semantically-distinct object fields can contain identical pointers referencing the
same shared piece of data.

The possibility of aliasing increases the expressiveness of the language, en-
abling programmers to implement mutable data structures with sharing; how-
ever, it also complicates tremendously formal reasoning about programs, as well
as optimizing compilation. In this paper, we focus on optimizing compilation
in the presence of pointers and aliasing. Consider, for example, the following C
program fragment:

... *p = 1; *q = 2; x = *p + 3; ...

Performance would be increased if the compiler propagates the constant 1 stored
in p to its use in *p + 3, obtaining

... *p = 1; *q = 2; x = 4; ...

This optimization, however, is unsound if p and q can alias. Therefore, the
compiler is allowed to perform this optimization only if a prior static analysis,
called alias analysis or pointer analysis, establishes that the pointers p and q

differ in all executions of the program.1

1 More precisely, the static analysis needed here is called may-alias analysis and aims
at proving that two pointers are always different. There also exists must-alias anal-
yses, which aim at proving that two pointers are always identical, but we will not
consider these analyses in this paper.
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For another example, consider:

... *p = x; y = *q; ...

To give more time to the processor cache to perform the load from q, and there-
fore improve instruction-level parallelism, an instruction scheduling pass would
elect to permute the load from q and the store to p, obtaining:

... y = *q; *p = x; ...

Again, this optimization is sound only if the compiler can establish that p and
q never alias. Many other optimizations rely on the availability of nonaliasing
information. It is fair to say that a precise and efficient alias analysis is an
important component of any optimizing compiler.

Compiler Verification. Our aim, in this paper, is to equip the CompCert C
compiler with a may-alias analysis, in order to enable this compiler to per-
form more aggressive optimizations over memory accesses. CompCert C is a
moderately-optimizing C compiler, producing code for the ARM, PowerPC and
x86 architectures [11]. The distinguishing feature of CompCert C is that it is
formally verified using the Coq proof assistant: a formal, operational semantics
is given to every source, intermediate and target language used in CompCert,
and a proof of semantic preservation is conducted for every compilation pass.
Composing these proofs, we obtain that the assembly code generated by Comp-
Cert executes as prescribed by the semantics of the source C program, therefore
ruling out the possibility of miscompilation.

When an optimization pass exploits the results of a prior static analysis,
proving semantic preservation for this pass requires us to first prove soundness of
the static analysis: the results of the analysis must, in a sense to be made precise,
be a safe over-approximation of the possible run-time behaviors of the program.
This paper, therefore, reports on the proof of soundness of an alias analysis for
the RTL intermediate language of the CompCert compiler. In keeping with the
rest of CompCert, we use the Coq proof assistant both to program the alias
analysis and to mechanize its proof of correctness.2 This work is, to the best of
our knowledge, the first mechanized verification of an alias analysis.

The Landscape of Alias Analyses. Like most published may-alias analyses
(see Hind [8] for a survey), ours is of the points-to kind: it infers sets of facts of the
form “this abstract memory location may contain a pointer to that other abstract
memory location”. Existing alias analyses differ not only on their notions of
abstract memory locations, but also along the following orthogonal axes:

– Intraprocedural vs. interprocedural : an intraprocedural analysis processes
each function of the program separately, making no nonaliasing assumptions
about the values of parameters and global variables at function entry.

2 The Coq development is available at http://gallium.inria.fr/~varobert/alias/

http://gallium.inria.fr/~varobert/alias/
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An interprocedural analysis processes groups of functions, or even whole
programs, and can therefore infer more precise facts at the entry point of a
function when all of its call sites are known.

– Flow-sensitivity: a flow-sensitive analysis such as Andersen’s [1] takes the
control flow of the program into account, and is able to infer different sets of
facts for different program points. A flow-insensitive analysis such as Steens-
gaard’s [16] maintains a single set of points-to facts that apply to all program
points. Consider for example:

... L1: p = &x; ... L2: p = &y; ...

A flow-sensitive analysis can tell that just after L1, p points only to x, and
just after L2, p points only to y. A flow-insensitive analysis would conclude
that p points to either x or y after both L1 and L2.

– Field-sensitivity : a field-sensitive analysis is able to maintain different points-
to information for different fields of a compound data structure, such as a C
struct. A field-insensitive analysis makes no such distinction between fields.

– Type-based vs. untyped : many alias analyses operate at the source-language
level (e.g. C or Java) and exploit the static typing information of this lan-
guage (e.g. struct declarations in C and class declarations in Java). Other
analyses ignore static type information, either because it is unreliable (as in
C with casts between pointer types or nondiscriminated unions) or because it
is not available (analysis at the level of intermediate or machine languages).

These characteristics govern the precision/computational cost trade-off of the
analysis, with intraprocedural being cheaper but less precise than interprocedu-
ral, flow-insensitive cheaper and less precise than flow-sensitive, and type-based
cheaper and more precise than untyped.

The alias analysis that we proved correct in Coq is of the points-to, intraproce-
dural, flow-sensitive, field-sensitive, and untyped kind: untyped, because the RTL
language it works on is untyped; flow-sensitive, because it instantiates a general
framework for dataflow analyses that is naturally flow-sensitive; field-sensitive,
for additional precision at moderate extra analysis costs; and intraprocedural,
because we wanted to keep the analysis and its proof relatively simple. Our anal-
ysis is roughly similar to the one outlined by Appel [2, section 17.5] and can be
viewed as a simplified variant of Andersen’s seminal analysis [1].

Related Work. The literature on may-alias analysis is huge; we refer the reader
to Hind [8] for a survey, and only discuss the mechanized verification of these
analyses. Many alias analyses are instances of the general framework of abstract
interpretation. Bertot [3], Besson et al. [4], and Nipkow [15] develop generic
mechanizations of abstract interpretation in Coq and Isabelle/HOL, but do not
consider alias analysis among their applications. Dabrowski and Pichardie [7]
mechanize the soundness proof of a data race analysis for Java bytecode, which
includes a points-to analysis, flow-sensitive for local variables but flow-insensitive
for heap contents. The analysis is formally specified but its implementation is
not verified. Their soundness proof follows a different pattern than ours, relying



14 V. Robert and X. Leroy

on an instrumented, alias-aware semantics that is inserted between the concrete
semantics of Java bytecode and the static analysis.

Outline. The remainder of this paper is organized as follows. Section 2 briefly
introduces the RTL intermediate language over which the alias analysis is con-
ducted. Section 3 explains how we abstract memory locations and execution
states. Section 4, then, presents the alias analysis as a forward dataflow analy-
sis. Section 5 outlines its soundness proof. Section 6 discusses a data structure,
finite maps with overlapping keys and weak updates, that plays a crucial role
in the analysis. Section 7 reports on an experimental evaluation of our analysis.
Section 8 concludes and discusses possible improvements.

2 The RTL Intermediate Language

Our alias analysis is conducted over the RTL intermediate language [12, sec-
tion 6.1]. RTL stands for “register transfer language”. It is the simplest of the
CompCert intermediate languages, and also the language over which optimiza-
tions that benefit from nonaliasing information are conducted. RTL represents
functions as a control-flow graph (CFG) of abstract instructions, corresponding
roughly to machine instructions but operating over pseudo-registers (also called
“temporaries”). Every function has an unlimited supply of pseudo-registers, and
their values are preserved across function call. In the following, r ranges over
pseudo-registers and l over labels of CFG nodes.

Instructions: i ::= nop(l) no operation (go to l)
| op(op, �r, r, l) arithmetic operation
| load(κ,mode, �r, r, l) memory load
| store(κ,mode, �r, r, l) memory store
| call(sig , (r | id), �r, r, l) function call
| tailcall(sig , (r | id), �r) function tail call
| cond(cond , �r, ltrue , lfalse) conditional branch
| return | return(r) function return

Control-flow graphs: g ::= l �→ i finite map

Functions: F ::= { sig = sig ;
params = �r; parameters
stacksize = n; size of stack data block
entrypoint = l; label of first instruction
code = g} control-flow graph

Each instruction takes its arguments in a list of pseudo-registers �r and stores
its result, if any, in a pseudo-register r. Additionally, it carries the labels of its
possible successors. Each function has a stack data block, automatically allocated
on function entry and freed at function exit, in which RTL producers can allocate
local arrays, structs, and variables whose addresses are taken.

The dynamic semantics of RTL is given in small-step style as a transition
relation between execution states. States are tuples State(Σ, g, σ, l, R,M) of a
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call stack Σ, a CFG g for the function currently executing, a pointer σ pointing
to its stack data block, a label l for the CFG node to be executed, a register
state R and a memory state M . (See Leroy [12, section 6.1] for more details on
the semantics.)

Register states R map pseudo-registers to their current values: the disjoint
union of 32-bit integers, 64-bit floats, pointers, and a special undef value. Pointer
values Vptr(b, i) are composed of a block identifier b and an integer byte offset
i within this block.

Memory states M map (block, offset, memory type) triples to values. (See
[14,13] for a complete description of the CompCert memory model.) Distinct
memory blocks are associated to 1- every global variable of the program, 2- the
stack blocks of every function currently executing, and 3- the results of dynamic
memory allocation (the malloc function in C), which is presented as a special
form of the call RTL instruction.

3 Abstracting Memory Locations and Memory States

The first task of a points-to analysis is to partition the unbounded number of
memory blocks that can appear during execution into a finite, tractable set of
abstract blocks. Since our analysis is intraprocedural, we focus our view of the
memory blocks on the currently-executing function, and distinguish the following
classes of abstract blocks:

Abstract blocks: b̂ ::= Stack

| Globals(Just id) | Globals(All)
| Allocs(Just l) | Allocs(All)
| Other | �

Stack denotes the stack block for the currently-executing function;
Globals(Just id), the block associated to the global variable id ; Allocs(Just l),
the blocks dynamically allocated (by malloc) at point l in the current function;
and Other all other blocks, including stack blocks and dynamically-allocated
blocks of other functions.

The Stack and Globals(Just id) classes correspond to exactly one concrete
memory block each. Other classes can match several concrete blocks. For exam-
ple, if a call to malloc at point l occurs within a loop, several concrete blocks
are allocated, all matching Allocs(Just l).

To facilitate static analysis, we also introduce summary abstract blocks:
Globals(All), standing for all the global blocks; Allocs(All), standing for all
the dynamically-allocated blocks of the current function; and �, standing for
all blocks. The inclusions between abstract blocks are depicted in Fig. 1.

Two abstract blocks that are not related by inclusion denote disjoint sets of
concrete blocks. We write b̂1 ∩ b̂2 = ∅ in this case. If, for instance, the analysis
tells us that the pseudo-registers x may point to Stack and y to Allocs(Just 3),
we know that x and y cannot alias.

To achieve field sensitivity, our analysis abstracts pointer values not just as
abstract blocks, but as abstract locations: pairs �̂ = (b̂, ı̂) of an abstract block b̂
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and an abstract offset ı̂, which is either an integer i or �, denoting a statically-
unknown offset. We extend the notion of disjointness to abstract locations in the
obvious way:

(b̂1, ı̂1) ∩ (b̂2, ı̂2) = ∅ def
= b̂1 ∩ b̂2 = ∅ ∨ (̂ı1 �= � ∧ ı̂2 �= � ∧ ı̂1 �= ı̂2)

For example, the analysis can tell us that x maps to the abstract location
(Stack, 4) and y to the abstract location (�, 0). In this case, we know that
x and y never alias, since these two abstract locations are disjoint even though
the two abstract blocks Stack and � are not.

For additional precision, our analysis manipulates points-to sets P̂ , which
are finite sets {�̂1, . . . , �̂n} of abstract locations. For example, the empty points-
to set denotes any set of values that can be integers or floats but not point-
ers; the points-to set {(�,�)} denotes all possible values; and the points-to
set {(Globals(All),�), (Other,�)} captures the possible values for a function
parameter, before the stack block and the dynamic blocks of the function are
allocated.

Our points-to analysis, therefore, associates a pair (R̂, M̂) to every program
point l of every function, where R̂ abstracts the register states R at this point
by a finite map from pseudo-registers to points-to sets, and M̂ abstracts the
memory states M at this point by a map from abstract pointers to points-to
sets.

4 The Alias Analysis

The alias analysis we consider is an instance of forward dataflow analysis. Given
the points-to information (R̂, M̂) just “before” program point l, a transfer func-
tion conservatively estimates the points-to information (R̂′, M̂ ′) “after” execut-
ing the instruction at l, and propagates it to the successors of l in the control-
flow graph. Kildall’s worklist algorithm [9], then, computes a fixed point over all
nodes of the control-flow graph. The transfer function is defined by a complex
case analysis on the instruction at point l. We now describe a few representative
cases.

Globals(All) Stack Allocs(All) Other

Globals(Just id1) . . . Globals(Just idn) Allocs(Just l1) . . . Allocs(Just ln)

�

Fig. 1. Abstract blocks and their inclusion relation
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For an arithmetic operation op(op, �r, r, l′), memory and pseudo-registers other
than r are unchanged, therefore the points-to information “after” is (R̂{r ←
P̂}, M̂). P̂ is the abstraction of the result of the operation. Most operations
compute integers or floats but not pointers, so we take P̂ = ∅. Other operations
form pointers into the stack block or into global variables, where we take P̂ =
{(Stack, i)} or P̂ = {(Globals(Just id), i)} as appropriate. Finally, for move

instructions as well as pointer addition and pointer subtraction, P̂ is determined
from the points-to sets R̂(�r) of the argument registers.

For a load instruction load(κ,mode, �r, r, l), the points-to information “after”
is, likewise, of the form (R̂{r← P̂}, M̂), where P̂ abstracts the value just loaded.
If κ denotes a 32-bit integer-or-pointer quantity, P̂ is determined by querying
the current abstract memory state M̂ at the abstract locations determined by
the addressing mode mode applied to the points-to sets R̂(�r) of the argument
registers. If κ denotes a small integer or floating-point quantity, the RTL se-
mantics guarantee that the result of the load is not a pointer; we therefore take
P̂ = ∅.

For a store instruction store(κ,mode, �r, r, l), pseudo-registers are unchanged
but memory is modified. The analysis determines the set L of abstract loca-
tions accessed, as a function of mode and R̂(�r), then produces the points-to

information (R̂, M̂ ′), where M̂ ′ = M̂ � {�̂ �→ R̂(r) | �̂ ∈ L}.
Since our abstract pointers correspond, in general, to multiple concrete mem-

ory locations, we must perform a weak update: the points-to sets associated with
�̂ ∈ L are not replaced by the points-to set R̂(r), but joined with the latter, using
set union. Moreover, we must perform this weak update not only for the abstract
locations in L, but also for all the abstract locations that are not disjoint from
the locations in L. This weak update is achieved by our definition of the upper
bound operation � over memory maps. The end result is that the new memory
map M̂ ′ satisfies the following two properties that are crucial to our soundness
proof:

M̂ ′(�̂)  M̂(�̂) for all abstract locations �̂

M̂ ′(�̂)  R̂(r) if ∃�̂′ ∈ L, �̂ ∩ �̂′ �= ∅
As mentioned above, the alias analysis reuses the generic fixed-point solver pro-
vided by CompCert [12, section 7.1]. Termination is guaranteed by bounding the
total number of iterations and returning � if no fixpoint is reached within this
limit. There is, therefore, no need to prove termination. However, the iteration
limit is very high, therefore we must make sure that a fixpoint is reached rel-
atively quickly. For such dataflow analyses, termination is typically ensured by
the combination of two facts: the monotonicity of the transfer function and the
finite height of the underlying lattice. While our transfer function is monotonic,
our lattice of points-to sets does not have a finite height because the sets can
grow indefinitely by adding more and more different abstract offsets. To address
this issue, we ensure termination by widening [6], which accelerates possibly in-
finite chains by approximation: if the points-to set computed for some memory
location or register, at an edge of the control flow graph, contains an accurate
memory location (that is, an abstract block with a particular offset) which is
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a shifted version (that is, the same abstract block and a different offset) of an
element of the previous points-to set of that same object, then we widen that
points-to set to contain the whole abstract block. This prevents any infinite chain
of differing offsets. The lattice quotiented by this widening indeed has a finite
height, since the number of abstract blocks to be considered within a function
is bounded (the number of global variables and allocation sites is bounded).

5 Soundness Proof

The main contribution of this work is the mechanized proof that the alias anal-
ysis is sound : namely, that the properties of non-aliasing and flow of pointer
values inferred by the analysis are satisfied in every possible execution of the
analyzed program. The proof follows the general pattern of abstract interpreta-
tion, namely, establishing a correspondence between abstract “things” (blocks,
locations, states, etc) and sets of concrete “things”, then show that this corre-
spondence is preserved by transitions of the concrete semantics.

The correspondence is presented as relations between abstract and concrete
“things”, parameterized by an abstracting function, called “abstracter” in the
Coq development:

Definition abstracter := block -> option absb.

An abstracter maps every concrete memory block to an abstract memory block,
or to None if the concrete block is not allocated yet. The abstracter is existentially
quantified: the gist of the soundness proof is to construct a suitable abstracter
for every reachable concrete execution state.

Given an abstracter, a concrete value belongs to a points-to set if the following
predicate holds:

Definition valsat (v: val) (abs: abstracter) (s: PTSet.t) :=

match v with

| Vptr b o =>

match abs b with

| Some ab => PTSet.In (Loc ab o) s

| None => PTSet.ge s PTSet.top

end

| _ => True

end.

In other words, non-pointer values belong to any points-to set. A pointer value
Vptr b o belongs to the set s if the concrete block b is mapped to the abstract
block ab by the abstracter and if the abstract location Loc ab o, or a “bigger”
abstract location, appears in s. To simplify the proof, we also account for the case
where b is not mapped by the abstracter, in which case we require s to contain
all possible abstract locations, i.e. to be at least as large as the � points-to set.

We extend the valsat relation to pseudo-registers and to memory locations.
In the following, (Rhat, Mhat) are the register map and memory map computed
by the static analysis at a given program point.
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Definition regsat (r: reg) (rs: regset) (abs: abstracter) (Rhat: RMap.t) :=

valsat rs#r abs (RMap.get r Rhat).

(The concrete value rs#r of register r belongs to the points-to set RMap.get r

Rhat predicted by the analysis.)

Definition memsat (b: block) (o: Int.int) (m: mem)

(abs: abstracter) (Mhat: MMap.t) :=

forall v,

Mem.loadv Mint32 m (Vptr b o) = Some v ->

match abs b with

| Some ab => valsat v abs (MMap.get (Loc ab o) Mhat)

| None => False

end).

(If, in the concrete memory state, location (b, o) contains value v, it must be
the case that b is abstracted to ab and v belongs to the points-to set MMap.get
(Loc ab o) Mhat predicted by the analysis.)

Not all abstracters are sound: they must map the stack block for the currently-
executing function to the abstract block Stack, and the blocks for global vari-
ables to the corresponding abstract blocks:

Definition ok_abs_genv (abs: abstracter) (ge: genv) :=

forall id b,

Genv.find_symbol ge id = Some b ->

abs b = Some (Just (Globals (Just id))).

It must also be the case that only valid, already-allocated concrete blocks are
abstracted:

Definition ok_abs_mem (abs: abstracter) (m: mem) :=

forall b, abs b <> None <-> Mem.valid_block m b.

Piecing everything together, we obtain the following characterization of concrete
execution states that agree with the predictions of the static analysis:

Inductive satisfy (ge: genv) (abs: abstracter): state -> Prop :=

| satisfy_state: forall cs f bsp pc rs m Rhat Mhat

(STK: ok_stack ge (Mem.nextblock m) cs)

(MEM: ok_abs_mem abs m)

(GENV: ok_abs_genv abs ge)

(SP: abs bsp = Some (Just Stack))

(RPC: (safe_funanalysis f)#pc = (Rhat, Mhat))

(RSAT: forall r, regsat r rs abs Rhat)

(MSAT: forall b o, memsat b o m abs Mhat),

satisfy ge abs (State cs f (Vptr bsp Int.zero) pc rs m)

We omit the ok_stack predicate, which collects some technical conditions over
the call stack cs. The safe funanalysis function is the implementation of
our alias analysis: it returns a map from program points pc to abstract states
(Rhat, Mhat).
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In essence, the satisfy property says that the abstracter abs is sound
(premises MEM, GENV, SP) and that, with respect to this abstracter, the values
of registers and memory locations belong to the points-to sets predicted by the
analysis at the current program point pc (premises RPC, RSAT and MSAT).

The main proof of soundness, then, is to show that for every concrete state
st reachable during the execution of the program, the property exists abs,

satisfy ge abs st holds:

Theorem satisfy_init:

forall p st,

initial_state p st ->

exists abs, satisfy (Genv.globalenv p) abs st.

Theorem satisfy_step:

forall ge st t st’ abs,

satisfy ge abs st -> step ge st t st’ ->

exists abs’, satisfy ge abs’ st’.

As a corollary, we obtain the soundness of the non-aliasing predictions made on
the basis of the results of the analysis:

Corollary nonaliasing_sound:

forall ge abs cs f sp pc rs m Rhat Mhat r1 b1 o1 r2 b2 o2,

satisfy ge abs (State cs f sp pc rs m) ->

(safe_funanalysis f)#pc = (Rhat, Mhat) ->

disjoint (RMap.get r1 Rhat) (RMap.get r2 Rhat) ->

rs # r1 = Vptr b1 o1 -> rs # r2 = Vptr b2 o2 ->

Vptr b1 o1 <> Vptr b2 o2.

Here, disjoint is the decidable predicate stating that two sets of abstract lo-
cations are pairwise disjoint, in the sense of the l̂1 ∩ l̂2 = ∅ definition above. An
optimization that exploits the inferred aliasing information would test whether
disjoint holds of the points-to sets of two registers r1 and r2. If the test is pos-
itive, and since the satisfy predicate holds at any reachable state, the corollary
above shows that r1 and r2 do not alias at run-time, i.e. they cannot contain
the same pointer value. In turn, this fact can be used in the proof of semantic
preservation for the optimization.

The Coq development consists of about 1200 lines of specifications and 2200
lines of proofs. The proof is entirely constructive: given a suitable abstracter
abs “before” a transition of the semantics, it is always possible to construct
the abstracter abs’ that satisfies the state after the transition. A large part of
the proof is devoted to proving the many required properties of points-to sets
and memory maps. A crucial invariant to be maintained is that memory maps
M̂ maps stay compatible with the inclusion relation between abstract locations:
M̂(�̂1) ⊆ M̂(�̂2) whenever �̂1 � �̂2. For instance, the points-to set of the abstract
block that represents all possible concrete blocks must be a superset of the
points-to set of any abstract pointer. We maintain this invariant through the
use of dependent types (Coq’s subset types).
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Additional complications stem from the need to keep the representation of
abstract memory states relatively small, eliminating redundant information in
order to speed up map updates. We describe our solution in the next section.

6 Maps with Weak Update

Purely-functional finite maps are among the most frequently used data struc-
tures in specifications and programs written using proof assistants. The standard
signature for total finite maps is of the following form:

Module Type Map (K: DecidableType) (V: AnyType).

Parameter t: Type.

Parameter init: V.t -> t

Parameter get: K.t -> t -> V.t

Parameter set: K.t -> V.t -> t -> t

Axiom get_init: forall k v, get k (init v) = v

Axiom get_set_same:

forall k1 k2 v m, K.eq k1 k2 -> get k1 (set k2 v m) = v

Axiom get_set_other:

forall k1 k2 v m, ~K.eq k1 k2 -> get k1 (set k2 v m) = get k1 m

End Map.

Here, K is the type of map keys, equipped with a decidable equality, and V

is the type of map values. Three operations are provided: init, to create a
constant map; set, to change the value associated with a given key; and get,
to obtain the value associated with a key. The semantics of set are specified
by the familiar “good variable” properties get_set_same and get_set_other

above. Such a signature of total finite maps can easily be implemented on top
of an implementation of partial finite maps, such as the AVL maps provided by
the Coq library FMaps.

To implement the memory maps inferred by our alias analysis, we need a
slightly different finite map structure, where the strong update operation set

is replaced by a weak update operation add. During weak update, not only the
value of the updated key changes, but also the values of the keys that overlap
with / are not disjoint from the updated key. Moreover, the new values of the
changed keys are an upper bound of their old value and the value given to add.
This is visible in the following signature:

Module Type OverlapMap (O: Overlap) (L: SEMILATTICE).

Parameter t: Type.

Parameter init: t.

Parameter get: O.t -> t -> L.t.

Parameter add: O.t -> L.t -> t -> t.

Axiom get_init: forall x, get x init = L.bot.

Axiom get_add:

forall x y s m, L.ge (get x (add y s m)) (get x m).

Axiom get_add_overlap: forall x y s m,

O.overlap x y -> L.ge (get x (add y s m)) s.

End OverlapMap.
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The type of map values, L.t is now a semi-lattice: a type equipped with a
partial ordering ge, an upper bound operation lub, and a smallest element bot.
Likewise, the type of keys, O.t is a type equipped with a decidable overlap

relation, which holds when two keys are not disjoint. (Additional operations
such as parent are included to support the efficient implementation that we
discuss next.) Here is the Overlap signature:

Module Type Overlap.

Parameter t: Type.

Parameter eq_dec: forall (x y: t), {eq x y} + {~eq x y}.

Parameter overlap: t -> t -> Prop.

Axiom overlap_dec: forall x y, {overlap x y} + {~ overlap x y}.

Declare Instance overlap_refl: Reflexive overlap.

Declare Instance overlap_sym: Symmetric overlap.

Parameter top: t.

Parameter parent: t -> option t.

Parameter measure: t -> nat.

Axiom parent_measure: forall x px,

parent x = Some px -> measure px < measure x.

Axiom no_parent_is_top: forall x, parent x = None <-> x = top.

Axiom parent_overlap: forall x y px,

overlap x y -> parent x = Some px -> overlap px y.

End Overlap.

Note that the overlap relation must be reflexive and symmetric, but is not
transitive in general. For example, in our application to alias analysis, (Stack,�)
and (Other,�) do not overlap, but both overlap with (�,�).

How, then, to implement the OverlapMap data structure? Naively, we could
build on top of a regular Map data structure, implementing the add (weak update)
operation by a sequence of set (strong updates) over all keys k1, . . . , kn that
overlap the given key k. However, the set of overlapping keys is not necessarily
finite: if k is Allocs(All), all keys Allocs(Just l) overlap. Even if we could
restrict ourselves to the program points l that actually occur in the function
being analyzed, the set of overlapping keys would still be very large, resulting in
inefficient add operations.

In practice, during alias analysis, almost all the keys Allocs(Just l) have
the same values as the summary key Allocs(All), except for a small number
of distinguished program points l, and likewise for keys Globals(Just id). This
observation suggests a sparse representation of maps with overlap where we do
not store the value of a key if this value is equal to that of its parent key.

More precisely, we assume that the client of the OverlapMap structure provides
us with a spanning tree that covers all possible keys. This tree is presented as
the top element of the Overlap structure, representing the root of the tree,
and the parent partial function, which maps non-top keys to their immediate
ancestor in the spanning tree. Fig. 2 depicts this spanning tree and the sparse
representation in the case where abstract locations are used as keys.

Following these intuitions, we implement the type t of OverlapMap as a stan-
dard, partial, finite map with strong update (written M below), as provided by
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(�,�) �→ A

(b,�) �→ A

(b′,�) �→ B

(�, i) �→ A

(b, i) �→ A

(b′, i) �→ C

(�,�) �→ A

(b,�)

(b′,�) �→ B

(�, i)

(b, i)

(b′, i) �→ C

Fig. 2. Sparse maps indexed by abstract locations. Left: the logical view. Arrows rep-
resent the inclusion relation between abstract locations. Each location is associated
with a value. Right: the concrete representation. Arrows represent the parent relation
(spanning tree). Some locations are not associated with a value, because their value is
to be looked up in their parent locations.

Coq’s FMap library for example. We then define the get operation as a recursive
traversal of the spanning tree, starting at the given key and moving “up” in the
tree until a binding is found:

Function get (k: O.t) (m: t) {measure O.measure k}: L.t :=

match M.find k m with

| Some s => s

| None => match O.parent k with None => L.bot | Some p => get p m end

end.

The add weak update operation, then, can be defined by traversing all the non-
default bindings found in the sparse map, and updating those that overlap with
the given key:

Definition lub_if_overlap (key: O.t) (val: L.t) (k: O.t) (v: L.t): L.t :=

if O.overlap_dec key k then L.lub val v else v.

Definition add (k: O.t) (v: L.t) (m: t): t :=

M.mapi (lub_if_overlap k v) (M.add k (get k m) m).

Here. M.mapi is pointwise application of a function to a finite map: the map
returned by M.mapi f m maps k to f k v if and only if m maps k to v.

The initial call to M.add is redundant if the key is already present, but
necessary when the key is absent, in order to populate the underlying map
with the key, at its current value, before performing the traversal. This def-
inition almost satisfies the two “weak good variables” properties get_add and
get_add_overlap: for the latter property, we need to assume that the O.top key
is bound in the sparse map, otherwise some keys could keep their default L.bot
value after the weak update. This assumption is easily satisfied by defining the
initial map init not as the empty sparse map, but as the singleton sparse map
O.top �→ L.bot. To make sure that the assumption always holds, we package it
along with the sparse maps using a subset type of the form

Definition t := { m : M.t | M.In O.top m }
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This makes it possible to prove the two “weak good variables” properties without
additional hypotheses.

This sparse representation of maps, while simple, appears effective for our
alias analysis. Two improvements can be considered. One would be to compress
the sparse map after each add operation, removing the bindings k �→ v that
have become redundant because k’s parent is now mapped to the same value v.
Another improvement would be to enrich the data structure to ensure that non-
overlapping keys have their values preserved by an add update:

Conjecture get_add_non_overlap: forall x y s m,

~O.overlap x y -> get x (add y s m) = get x m.

This property does not hold for our simple sparse representation: assume x not
bound in the sparse map, its parent px bound in the sparse map, x non over-
lapping with y, but px overlapping with y. The value of px is correctly updated
by the add y s m operation, but as a side effect this also modifies the result of
get x after the add.

7 Experimental Evaluation

The first author integrated the alias analysis described here in the CompCert
verified compiler and modified its Common Subexpression Elimination pass to
exploit the inferred nonaliasing information. CompCert’s CSE proceeds by value
numbering over extended basic blocks [12, section 7.3]. Without aliasing infor-
mation, value numbering equations involving memory loads are discarded when
reaching a memory write. Using aliasing information, CSE is now able to pre-
serve such equations across memory writes whenever the address of the read is
known to be disjoint from that of the write.

This implementation was evaluated on the CompCert test suite. Evaluation
consisted in 1- visual examination of the points-to sets inferred to estimate the
precision of the analysis, 2- measurements on compilation times, and 3- counting
the number of instructions eliminated by CSE as a consequence of the more
precise analysis of memory loads enabled by nonaliasing information.

Concerning precision, the analysis succeeds in inferring the expected nona-
liasing properties between global and local variables of array or structure types,
and between their fields. The lack of interprocedural analysis results in a very
conservative analysis of linked, dynamically-allocated data structures, however.

Concerning analysis times, the cost of the analysis is globally high: on most of
our benchmarks, overall compilation times increase by 40% when alias analysis
is turned on, but a few files in the SPASS test exhibit pathological behaviors of
the analysis, more than doubling compilation times.

The additional nonaliasing information enables CSE to eliminate about 1400
redundant loads in addition to the 5600 it removes without this information, a
25% gain. To illustrate the effect, here is an excerpt of RTL intermediate code
before (left column) and after (right column) aliasing-aware CSE:
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16: x16 = int8signed[currentCodeLen + 0]

15: x15 = x16 + -8

[. . .]
6: int8unsigned[stack(0)] = x10

[. . .]
4: x9 = int8signed[currentCodeLen + 0] → 4: x9 = x16

3: x7 = x9 + -8 → 3: x7 = x15

The memory store at point 6 was analyzed as addressing offset 0 of the stack
block, which cannot alias the global block addressed at point 16. Therefore, when
we read that same location at point 4, CSE knows that the result value is the
same as that computed at point 16, and therefore reuses the result x16 of the
load at 16. In turn, CSE simplifies the add at point 3, as it knows that the same
computation already took place at point 15.

8 Conclusions and Perspectives

An easy simplification that could reduce the cost of alias analysis is to restrict
ourselves to points-to sets that are singletons, i.e. a single abstract location
instead of a set of abstract locations. The experimental evaluation shows that
points-to sets of cardinality 2 or more rarely appear, owing to our use of widening
during fixpoint iteration. Moreover, those sets could be collapsed in a single
abstract location at little loss of information just by adding a few extra points
in the lattice of abstract locations depicted in Fig. 1.

Further improvements in analysis speed appear to require the use of more so-
phisticated, graph-based data structures, such as the alias graphs used by Larus
and Hilfinger [10] and Steensgaard [16], among other authors. It is a challenge to
implement and reason upon these data structures in a purely functional setting
such as Coq. However, we could circumvent this difficulty by performing vali-
dation a posteriori in the style of Besson et al. [5]: an untrusted alias analysis,
implemented in Caml using sophisticated data structures, produces a tentative
map from program points to (R̂, M̂) abstract states; a validator, written and
proved correct in Coq, then checks that this tentative map is indeed a post-
fixpoint of the dataflow inequations corresponding to our transfer function.

Concerning analysis precision, a first improvement would be to perform strong
updates when the location stored into is uniquely known at analysis time, e.g.
when the set of accessed abstract locations is a singleton of the form {(Stack, i)}
or {(Globals(Just id), i)}. In this case, the contents of the memory map for
this location can be replaced by the points-to set of the right-hand side of the
store, instead of being merged with this points-to set.

Another direction is to analyze the offset parts of pointer values more precisely.
The flat lattice of integers that we currently use to track offset values could be
replaced by integer intervals. More generally, the analysis could be parameterized
over an arbitrary abstract domain of integers.

The next major improvement in precision would be to make the analysis
interprocedural. Conceptually, the modifications to the abstract interpretation
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framework are minimal, namely introducing Stack(f) and Allocs(f, p) abstract
blocks that are indexed by the name of the function f where the corresponding
stack allocation or dynamic allocation occurs. However, the fixpoint iteration
strategy must be changed: in particular, for a call to a function pointer, the
points-to set of the function pointer is used to determine the possible successors
of the call. In addition, issues of algorithmic efficiency and sparse data structures
become much more acute in the interprocedural case.
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