

Lecture Notes in Computer Science 7679
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Chris Hawblitzel Dale Miller (Eds.)

Certified Programs
and Proofs
Second International Conference, CPP 2012
Kyoto, Japan, December 13-15, 2012
Proceedings

13

Volume Editors

Chris Hawblitzel
Microsoft Research Redmond, WA, USA
E-mail: chris.hawblitzel@microsoft.com

Dale Miller
INRIA Saclay and LIX, Ecole Polytechnique, Palaiseau Cedex, France
E-mail: dale@lix.polytechnique.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-35307-9 e-ISBN 978-3-642-35308-6
DOI 10.1007/978-3-642-35308-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.3.1, F.4.1, D.3.3, I.2.3, D.2.4, D.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 2nd International Conference on
Certified Programs and Proofs (CPP 2012) held during 13–15 December 2012 in
Kyoto, Japan.

The CPP series of meetings aims to cover those topics in computer science
and mathematics in which certification via formal techniques is crucial. This
year’s edition of CPP was co-located with APLAS 2012 (Asian Symposium on
Programming Languages and Systems); similarly, CPP 2011 and APLAS 2011
were co-located in Taiwan. Both CPP 2011 and CPP 2012 took place in Asia
in order to provide a focus point for the work on certification that is occurring
there. The plan is to eventually locate CPP in Europe and North America as
well as in Asia. A manifesto for CPP, written by Jean-Pierre Jouannaud and
Zhong Shao, appears in the proceedings of CPP 2011 (LNCS 7086).

We are pleased that Gilles Barthe and Naoki Kobayashi accepted our invi-
tation to be invited speakers for CPP 2012 and that Xavier Leroy and Greg
Morrisett accepted to be keynote speakers addressing both APLAS 2012 and
CPP 2012.

The program committee for CPP 2012 was composed of 18 researchers from
12 countries. We received a total of 37 submissions and eventually accepted
18 papers. Every submission was reviewed by at least 4 program committee
members and their selected reviewers.

We wish to thank the program committee members and their reviewers for
their efforts in helping to evaluate the submissions: it was a privilege to work with
them. The EasyChair conference management system helped us to deal with all
aspects of putting together our program. It was a pleasure to work with Jacques
Garrigue, the General Chair for CPP 2012, and with Atsushi Igarashi and Ranjit
Jhala who were, respectively, the General Chair and the Program Committee
Chair for APLAS 2012. We also wish to thank the invited speakers, the authors
of submitted papers, and the reviewers for their interest and strong support of
this new conference series. Finally, we thank Nagoya University Graduate School
of Mathematics for institutional sponsorship of this meeting.

October 2012 Chris Hawblitzel
Dale Miller

Organization

Organizing Committee

Jacques Garrigue Nagoya University, Japan
Atsushi Igarashi Kyoto University, Japan

CPP Steering Committee

Andrew Appel Princeton University, USA
Nikolaj Bjørner Microsoft Research Redmond, USA
Georges Gonthier Microsoft Research Cambridge, UK
John Harrison Intel Corporation, USA
Jean-Pierre Jouannaud

(Co-chair) INRIA, France and Tsinghua University, China
Gerwin Klein NICTA, Australia
Tobias Nipkow Technische Universität München, Germany
Zhong Shao (Co-chair) Yale University, USA

Program Committee

Stefan Berghofer Secunet Security Networks AG, Germany
Wei-Ngan Chin National Univ. of Singapore, Singapore
Adam Chlipala MIT, USA
Mike Dodds University of Cambridge, UK
Amy Felty University of Ottawa, Canada
Xinyu Feng Toyota Technological Institute at Chicago, USA
Herman Geuvers Radboud University Nijmegen,

The Netherlands
Robert Harper Carnegie Mellon University, USA
Chris Hawblitzel Microsoft Research Redmond, USA
Gerwin Klein NICTA and UNSW, Australia
Laura Kovacs TU Vienna, Austria
Rupak Majumdar UCLA, USA
Dale Miller INRIA, France
Lawrence Paulson University of Cambridge, UK
Frank Piessens Katholieke Universiteit Leuven, Belgium
Randy Pollack University of Edinburgh, UK
Bow-Yaw Wang Academia Sinica, Taiwan
Santiago Zanella Béguelin IMDEA Software Institute, Spain

VIII Organization

Additional Reviewers

Avigad, Jeremy
Bourke, Timothy
Brotherston, James
Bulwahn, Lukas
Campbell, Brian
Capretta, Venanzio
Chang, Bor-Yuh Evan
Charguéraud, Arthur
Chaudhuri, Kaustuv
Costea, Andreea
David, Cristina
Dixon, Lucas
Ellison, Chucky
Gherghina, Cristian
Hoefner, Peter
Hölzl, Johannes
Jackson, Paul
Kloos, Johannes
Kozen, Dexter
Krebbers, Robbert
Le, Quang Loc
Le, Ton-Chanh
Mahboubi, Assia
Matichuk, Daniel
McKinna, James
Memarian, Kayvan

Merz, Stephan
Moskal, Micha�l
Muehlberg, Jan Tobias
Murray, Toby
Nakata, Keiko
Nigam, Vivek
Norrish, Michael
O’Connor, Russell
Pichardie, David
Platzer, André
Schmidt, Renate
Scott, Owens
Sergey, Ilya
Sewell, Thomas
Smans, Jan
Stampoulis, Antonis
Starostin, Artem
Ta, Quang-Trung
Tahar, Sofiene
Théry, Laurent
Tiu, Alwen
Tuerk, Thomas
van der Weegen, Eelis
Vogels, Frederic
Wickerson, John
Wiedijk, Freek

Table of Contents

Scalable Formal Machine Models . 1
Greg Morrisett

Mechanized Semantics for Compiler Verification . 4
Xavier Leroy

Automation in Computer-Aided Cryptography: Proofs, Attacks
and Designs . 7

Gilles Barthe, Benjamin Grégoire, César Kunz,
Yassine Lakhnech, and Santiago Zanella Béguelin

Program Certification by Higher-Order Model Checking 9
Naoki Kobayashi

A Formally-Verified Alias Analysis . 11
Valentin Robert and Xavier Leroy

Mechanized Verification of Computing Dominators for Formalizing
Compilers . 27

Jianzhou Zhao and Steve Zdancewic

On the Correctness of an Optimising Assembler for the Intel MCS-51
Microprocessor . 43

Dominic P. Mulligan and Claudio Sacerdoti Coen

An Executable Semantics for CompCert C . 60
Brian Campbell

Producing Certified Functional Code from Inductive Specifications 76
Pierre-Nicolas Tollitte, David Delahaye, and Catherine Dubois

The New Quickcheck for Isabelle: Random, Exhaustive and Symbolic
Testing under One Roof . 92

Lukas Bulwahn

Proving Concurrent Noninterference . 109
Andrei Popescu, Johannes Hölzl, and Tobias Nipkow

Noninterference for Operating System Kernels . 126
Toby Murray, Daniel Matichuk, Matthew Brassil,
Peter Gammie, and Gerwin Klein

Compositional Verification of a Baby Virtual Memory Manager 143
Alexander Vaynberg and Zhong Shao

X Table of Contents

Shall We Juggle, Coinductively? . 160
Keisuke Nakano

Proof Pearl: Abella Formalization of λ-Calculus Cube Property 173
Beniamino Accattoli

A String of Pearls: Proofs of Fermat’s Little Theorem 188
Hing-Lun Chan and Michael Norrish

Compact Proof Certificates for Linear Logic . 208
Kaustuv Chaudhuri

Constructive Completeness for Modal Logic with Transitive Closure 224
Christian Doczkal and Gert Smolka

Rating Disambiguation Errors . 240
Andrea Asperti and Wilmer Ricciotti

A Formal Proof of Square Root and Division Elimination in Embedded
Programs . 256

Pierre Neron

Coherent and Strongly Discrete Rings in Type Theory 273
Thierry Coquand, Anders Mörtberg, and Vincent Siles

Improving Real Analysis in Coq: A User-Friendly Approach to Integrals
and Derivatives . 289

Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond

Author Index . 305

Scalable Formal Machine Models

Greg Morrisett

Harvard University
greg@eecs.harvard.edu

Abstract. In the past few years, we have seen machine-checked proofs of
relatively large software systems, including compilers and micro-kernels.
But like all formal arguments, the assurance gained by these mechani-
cal proofs is only as good as the models we construct of the underlying
machine. I will argue that how we construct and validate these models
is of vital importance for the research community. In particular, I pro-
pose that we develop domain-specific languages (DSLs) for describing the
semantics of machines, and build interpretations of these DSLs in our re-
spective proof-development systems. This will allow us to factor out and
re-use machine semantics for everything from software to hardware.

1 Overview

Thirty years ago, the idea that we might build a real software component, such as
a compiler, and construct a machine-checked proof that it was correct, was still a
dream. There were some examples, such as the work of Milner and Weyrauch [1],
yet those systems tended to be small examples for toy architectures.

In the intervening decades, the community has made great progress: Auto-
mated deduction techniques (e.g., SAT solvers and SMT provers) have improved
tremendously. Proof development systems including ACL2, Coq, HOL, Isabelle,
NuPRL, and PVS have become more powerful, more scalable, and much easier
to use. At the same time, our need for strong assurance in safety and security-
critical software systems has grown, driving down the cost of proofs relative to
the benefits. These factors, amongst others, have led to shining examples of us-
able, real-world software components with detailed proofs of correctness, such as
Leroy’s CompCert compiler [2] or Klein et al’s seL4 micro-kernel [3]. The size
and complexity of these artificats has led to a new kind of “proof engineering”
where careful design is needed to ensure not only that the proofs can be done,
but that they can be maintained as the software systems evolve.

Stepping back, what does it mean to prove a compiler or operating system
correct? In each case, we must define a formal semantics for the software compo-
nent (e.g., the dialect of C supported by CompCert or the API provided by seL4)
as well as the underlying machine on which the software is intended to execute.
Developing these semantic models takes substantial effort, akin to building an
interpreter for a programming language or architecture. For the toy languages
and machines of the past, this was not difficult, but for realistic languages (e.g.,
Java) and architectures (e.g., the x86), constructing a full semantic specification
demands an almost overwhelming amount of detail.

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 1–3, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 G. Morrisett

These specifications are so big, that we are sure to get some details wrong, sug-
gesting three things: First, we should avoid building lots of different, incomplete,
and incompatible specifications (one for each research project) and instead work
together to build robust models for important systems that transcend proof-
development environments. Second, the design of our semantic models must
support (efficient) execution so that we can test our models against real-world
implementations. Finally, these models must be carefully constructed so that we
can update them, whether due to a bug or natural evolution, and yet insulate,
to the best of our ability, the proofs from these updates.

As an example of some work towards these goals, I will describe an on-going
project that my colleague Gang Tan and I have been pursuing on formal mod-
els of instruction set architectures. Our primary goal is to build certified tools
for enforcing security policies on x86 machine code, including Software Fault
Isolation [4], Control-Flow Isolation [5], and variants of Typed Assembly Lan-
guage [6]. To do so, we require a formal model of the syntax and semantics of
x86 code, and while fragments of such models exist, none of them had enough
detail that we could directly use them. Furthermore, some of the fragments were
coded in ACL2, others in Isabelle, and others in Coq.

Consequently, we started to build a new model of the x86. Our design was
broken into two major stages, one addressing decoding and the other addressing
execution. Both stages were designed around domain-specific languages (DSLs)
inspired by work on re-targeting compilers [7,8,9]. One DSL is used to describe
the decoder and is similar to other parsing generators, but unlike say Yacc,
comes equipped with a formal semantics that makes it easy to reason compo-
sitionally and declaratively about the relation between concrete and abstract
syntax. Furthermore, it is carefully designed to support extraction of an effi-
cient, table-driven parser. The execution stage of our x86 model is described via
translation to a simple, RISC-like register transfer language. This RTL language
is itself parameterized by a notion of machine state and comes equipped with an
operational semantics, as well as other tools needed for both symbolic reasoning
as well as validation.

Using these tools, we have constructed a semantic model for a significant frag-
ment of the x86 (all of the integer and most of the floating-point instructions),
and as described in a previous paper, used the model to prove the correctness
of a tool for enforcing software fault isolation [10]. As expected, our model
had (and probably still has) a number of bugs, but the ability to extract an
executable model for testing has proved invaluable. Furthermore, we believe the
modular design makes it relatively easy to add new features to the model, such as
support for multiple-cores or alternative instruction sets. Finally, we have found
the approach to describing behavior, based largely on translation to a small,
orthogonal target language, works well for other kinds of machines, including
the abstract machines used for high-level languages.

Nevertheless, in hindsight, there are many design decisions that we got wrong.
For instance, we used a deep-embedding of our DSLs into Coq, taking advan-
tage of features such as modules and dependent types that other proof assistants

Scalable Formal Machine Models 3

may lack. Consequently, it is not clear how to “port” our specifications to other
environments. As another example, we followed the design of compiler-based
RTLs a little too closely and used an imperative representation for the interme-
diate code, when a functional representation makes both execution and symbolic
reasoning easier.

References

1. Milner, R., Weyhrauch, R.: Proving compiler correctness in a mechanized logic.
In: Proceedings of the 7th Annual Machine Intelligence Workshop. Machine Intel-
ligence, vol. 7, pp. 51–72. Edinburgh University Press (1972)

2. Leroy, X.: Formal verification of a realistic compiler. Commun. of the ACM 52(7),
107–115 (2009)

3. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: sel4: formal verification of an os kernel. In: Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, SOSP 2009, pp. 207–
220. ACM, New York (2009)

4. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault
isolation. In: Proc. of the 14th ACM Symp. on Operating Systems Principles, SOSP
1993, pp. 203–216. ACM (1993)

5. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Proc. of
the 12th ACM Conf. on Computer and Commun. Security, CCS 2005, pp. 340–353.
ACM (2005)

6. Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly
language. In: Proc. of the 25th ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, POPL 1998, pp. 85–97. ACM (1998)

7. Ramsey, N., Fernandez, M.F.: Specifying representations of machine instructions.
ACM Trans. Program. Lang. Syst. 19(3), 492–524 (1997)

8. Ramsey, N., Davidson, J.W.: Machine Descriptions to Build Tools for Embed-
ded Systems. In: Müller, F., Bestavros, A. (eds.) LCTES 1998. LNCS, vol. 1474,
pp. 176–192. Springer, Heidelberg (1998)

9. Dias, J., Ramsey, N.: Automatically generating instruction selectors using declar-
ative machine descriptions. In: Proc. of the 37th ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages, POPL 2010, pp. 403–416. ACM (2010)

10. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J.B., Gan, E.: Rocksalt: better, faster,
stronger sfi for the x86. In: Proceedings of the 33rd ACM SIGPLAN Conference on
ProgrammingLanguageDesign and Implementation,PLDI 2012, pp. 395–404.ACM,
New York (2012)

Mechanized Semantics for Compiler Verification

Xavier Leroy

INRIA Paris-Rocquencourt
xavier.leroy@inria.fr

Abstract. The formal verification of compilers and related program-
ming tools depends crucially on the availability of appropriate mecha-
nized semantics for the source, intermediate and target languages. In this
invited talk, I review various forms of operational semantics and their
mechanization, based on my experience with the formal verification of
the CompCert C compiler.

What does this program do, exactly? What is this program transformation
or analysis supposed to do, exactly? Formal semantics is the art of providing
mathematically-precise answers to these questions. It is a prerequisite to the
verification of individual programs, and also to the specification (let alone veri-
fication) of programs that operate over other programs, such as static analyzers,
program provers, code generators, and optimizing compilers.

Fundamental questions rarely have unique answers. Indeed, a great many dif-
ferent styles of semantics have been explored over the last 50 years, ranging
from denotational to axiomatic to operational. In some application areas, de
facto standards of semantics have emerged, such as labeled transition systems
for concurrency, following Milner’s seminal work on CCS and the π-calculus
[1,2], and small-step reduction semantics in the type systems community, follow-
ing Wright and Felleisen’s preservation-and-progress pattern for type soundness
proofs [3].

The landscape of programming languages research evolves quickly, renewing
interest in other forms of semantics. For example, mechanization—formalizing
semantics “on machine” with the help of interactive theorem provers, rather
than “on paper”—is becoming standard practice in our field. The POPLmark
challenge [4] showed that elementary semantic tools such as capture-avoiding
substitution can be difficult to mechanize. On the other hand, the power of
proof assistants makes it easier to work with semantic styles that are difficult
to get right on paper, such as step-indexed logical relations [5] or definitional
interpreters [6].

Another evolution worth noting is to formalize “real world” languages, such
as C and Javascript, and to prove semantic properties that go beyond type safety,
such as semantic preservation for a code generation or optimization algorithm.
The reduction-based semantics that work so well to prove type safety for small
languages such as IMP, Mini-ML or Featherweight Java can “burst at the seams”
when applied to big, messy languages such as C. Likewise, relating the executions
of two programs, before and after a code transformation, is fundamentally more

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 4–6, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Mechanized Semantics for Compiler Verification 5

difficult than showing the preservation of a typing invariant throughout the
execution of a single program.

In this talk, I survey some of these issues based on my personal experience
with the formal verification of the CompCert C compiler [7]. As part of this
effort, S. Blazy and I had to give mechanized semantics to 14 languages: a very
large subset of ANSI C as the source language, assembly for the ARM, Pow-
erPC and x86 machine architectures as target languages, and 10 intermediate
languages that bridge the semantic gap between the source and target languages.
This semantic engineering is a large part of the CompCert effort, first because
these semantics appear prominently in the statement of compiler correctness
that we prove, second because we had to change these semantics in essential
ways throughout the development of CompCert, in order to prove stronger cor-
rectness statements and to accommodate progressively bigger subsets of ANSI C.

The first verifications were conducted against natural (big-step) semantics for
the source language and most of the intermediate languages; only the target as-
sembly language was in pure transition (small-step) style [8,9]. Natural semantics
lived up to its name, resulting in relatively straightforward specifications for our
languages, and helping us discover the main insights of the semantic preserva-
tion proofs. However, we quickly hit limitations of natural semantics, such as its
inability to describe nonterminating executions.

The second iteration of CompCert, therefore, uses a combination of small-
step transition semantics with explicit call stack for most of the intermediate
languages [10], and of coinductive big-step semantics for the source language
and the first intermediate languages. Coinductive big-step semantics, as intro-
duced by Grall and Leroy [11], enable divergence to be described by coinductive
inference rules that follow the structure of executions, like natural semantics
does for termination.

We then wanted to account for unstructured control (the goto statement)
and nondeterministic evaluation order of C, and also to make provisions for a
future extension towards shared-memory concurrency—many features where big-
step semantics is not appropriate. We therefore switched to small-step, labeled
transition semantics for the source and intermediate languages with structured
control. We found reduction semantics in the style of MiniML or Featherweight
Java inadequate for compiler proofs, but succeeded in using continuation-based
semantics as introduced by Appel and Blazy [12]. These semantics carefully sep-
arate the current sub-command under execution from the execution context in
which it appears, with the context being represented “inside-out” as a contin-
uation term. This style of operational semantics is reminiscent not only of the
CEK abstract machine [13], but also of polarization and focusing in proof theory
and in λ-calculus [14,15]

CompCert’s journey through the landscape of operational semantics has been
rather tortuous, but led to the discovery of original forms of operational semantics
along theway.Arewe at the end of the path? It depends on the language featureswe
would like to model in the future. For instance, giving semantics to program frag-
ments (compilation units) and reasoning about separate compilation and linking

6 X. Leroy

probably requires more compositional reasoning principles based on logical rela-
tions, in the style of Benton and Hur [16]. In all likelihood, the large-scale formal
verification of compilers and static analyzer, as well as other emerging applications
of semantics, will keep challenging the state of the art in semantics and exposing
the need for new approaches and mechanizations.

References

1. Milner, R.: Communication and Concurrency. Prentice-Hall (1990)
2. Milner, R.: Communicating and Mobile Systems: the pi-Calculus. Cambridge Uni-

versity Press (1999)
3. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information

and Computation 115(1), 38–94 (1994)
4. Aydemir, B.E., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering

formal metatheory. In: 35th symposium Principles of Programming Languages,
pp. 3–15. ACM Press (2008)

5. Appel, A.W., McAllester, D.A.: An indexed model of recursive types for founda-
tional proof-carrying code. ACM Transactions on Programming Languages and
Systems 23(5), 657–683 (2001)

6. Danielsson, N.A.: Operational semantics using the partiality monad. In: Inter-
national Conference on Functional Programming 2012, pp. 127–138. ACM Press
(2012)

7. Leroy, X.: Formal verification of a realistic compiler. Communications of the
ACM 52(7), 107–115 (2009)

8. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: 33rd Symposium Principles of Programming Languages,
pp. 42–54. ACM Press (2006)

9. Blazy, S., Dargaye, Z., Leroy, X.: Formal Verification of a C Compiler Front-End. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 460–475.
Springer, Heidelberg (2006)

10. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reason-
ing 43(4), 363–446 (2009)

11. Leroy, X., Grall, H.: Coinductive big-step operational semantics. Information and
Computation 207(2), 284–304 (2009)

12. Appel, A.W., Blazy, S.: Separation Logic for Small-Step cminor. In: Schneider, K.,
Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 5–21. Springer, Heidelberg
(2007)

13. Felleisen, M., Friedman, D.P.: Control operators, the SECD machine and the λ-
calculus. In: Formal Description of Programming Concepts III, pp. 131–141. North-
Holland (1986)

14. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and clas-
sical logics. Theoretical Computer Science 410(46), 4747–4768 (2009)

15. Curien, P.-L., Munch-Maccagnoni, G.: The Duality of Computation under Focus.
In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 165–181.
Springer, Heidelberg (2010)

16. Benton, N., Hur, C.K.: Biorthogonality, step-indexing and compiler correctness.
In: International Conference on Functional Programming 2009, pp. 97–108. ACM
Press (2009)

Automation in Computer-Aided Cryptography:

Proofs, Attacks and Designs

Gilles Barthe1, Benjamin Grégoire3, César Kunz1,2,
Yassine Lakhnech4, and Santiago Zanella Béguelin5

1 IMDEA Software Institute
2 Universidad Politécnica de Madrid

3 INRIA Sophia Antipolis-Méditerranée
4 Université de Grenoble, France

5 Microsoft Research

CertiCrypt [3] and EasyCrypt [2] are machine-checked frameworks for proving the
security of cryptographic constructions. Both frameworks adhere to the game-
based approach [9,6,8] to provable security [7], but revisit its realization from
a formal verification pespective. More specifically, CertiCrypt and EasyCrypt use
a probabilistic programming language pWHILE for expressing cryptographic
constructions, security properties, and computational assumptions, and a prob-
abilistic relational Hoare logic pRHL for justifying reasonings in cryptographic
proofs. While both tools coincide in their foundations, they differ in their un-
derlying technologies: CertiCrypt is implemented as a set of libraries in the Coq
proof assistant, whereas EasyCrypt uses a verification condition generator for
pRHL in combination with off-the-shelf SMT solvers and automated theorem
provers. Over the last six years, we have used both tools to verify prominent ex-
amples of public-key encryption schemes, modes of operation, signature schemes,
hash function designs, zero-knowledge proofs. Recently, we have also used both
tools to certify the output of a zero-knowledge compiler [1].

The next challenge is to extend EasyCrypt with automated mechanisms for
discovering proofs or attacks. As a first step in this direction, we have developed
a front-end that searches for security proofs or attacks for public-key encryption
schemes built from one-way trapdoor permutations and random oracles. Given
a candidate scheme, the front-end first searches for attacks using a deducibility
relation inspired from symbolic cryptography: if an attack is found, it outputs an
attacker. If not, the front-end searches for game-based proofs that the scheme is
secure: if a proof is found, it outputs a concrete security bound and an EasyCrypt
script that can be verified independently. We have evaluated the applicability of
the front-end on more than hundred variants of OAEP [5], a widely used padding
scheme commonly used for strengthening RSA encryption: pleasingly, it proves
most secure variants of OAEP and computes security bounds that match known
bounds in many cases. In addition, we have used the front-end in combination
with synthesis algorithms to explore the design space of the class of encryption
schemes it covers. This has led to the discovery of ZAEP [4], a simplified variant
of the OAEP padding scheme that can be used to strengthen RSA encryption
with exponents 2 and 3.

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 7–8, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

8 G. Barthe et al.

More information about the project can be found at:

http://easycrypt.gforge.inria.fr

References

1. Almeida, J.B., Barbosa, M., Bangerter, E., Barthe, G., Krenn, S., Béguelin, S.Z.:
Full proof cryptography: Verifiable compilation of efficient zero-knowledge protocols.
In: 19th ACM Conference on Computer and Communications Security, CCS 2012.
ACM (2012)

2. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-Aided Security
Proofs for the Working Cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011)

3. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryp-
tographic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2009, pp. 90–101. ACM, New York (2009)

4. Barthe, G., Pointcheval, D., Béguelin, S.Z.: Verified security of redundancy-free en-
cryption from Rabin and RSA. In: 19th ACM Conference on Computer and Com-
munications Security, CCS 2012. ACM (to appear, 2012)

5. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

6. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Frame-
work for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

7. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

8. Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryptol-
ogy ePrint Archive, Report 2005/181 (2005)

9. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004)

Program Certification

by Higher-Order Model Checking

Naoki Kobayashi

The University of Tokyo

Abstract. Model checking of higher-order recursion schemes or (col-
lapsible) higher-order pushdown automata (higher-order model checking,
for short) is a generalization of finite state and pushdown model check-
ing, which has been extensively studied in the last decade [1–11, 15–17].
Higher-order recursion schemes are essentially terms of the simply-typed
λ-calculus with recursion and tree constructors; therefore, they serve as
good models for higher-order functional programs. Indeed, various veri-
fication problems for higher-order functional programs can be easily re-
duced to higher-order model checking, and automated verification tools
have been developed based on the reduction [9, 12–14, 18].

In the talk, I will first provide a brief introduction to higher-order
model checking and its applications to higher-order program verification.
I will then discuss higher-order model checking from the viewpoint of
certificates. In particular, I plan to discuss the following questions: (i)
How can we certify the result of program verification based on higher-
order model checking? (ii) Why does higher-order model checking work
at all, despite its extremely high worst-case complexity?

References

1. Aehlig, K.: A finite semantics of simply-typed lambda terms for infinite runs of
automata. Logical Methods in Computer Science 3(3) (2007)

2. Broadbent, C.H., Carayol, A., Hague, M., Serre, O.: A Saturation Method for Col-
lapsible Pushdown Systems. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer,
R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 165–176. Springer, Heidelberg
(2012)

3. Broadbent, C.H., Carayol, A., Ong, C.-H.L., Serre, O.: Recursion schemes and
logical reflection. In: Proceedings ofo LICS 2010, pp. 120–129. IEEE Computer
Society Press (2010)

4. Carayol, A., Serre, O.: Collapsible pushdown automata and labeled recursion
schemes: Equivalence, safety and effective selection. In: Proceedings of LICS 2012.
IEEE Computer Society Press (2012)

5. Hague, M., Murawski, A., Ong, C.-H.L., Serre, O.: Collapsible pushdown automata
and recursion schemes. In: Proceedings of 23rd Annual IEEE Symposium on Logic
in Computer Science, pp. 452–461. IEEE Computer Society (2008)

6. Hague, M., Ong, C.-H.L.: Symbolic backwards-reachability analysis for higher-
order pushdown systems. Logical Methods in Computer Science 4(4) (2008)

7. Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-Order Pushdown Trees Are Easy.
In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222.
Springer, Heidelberg (2002)

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 9–10, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

10 N. Kobayashi

8. Kobayashi, N.: Model-checking higher-order functions. In: Proceedings of PPDP
2009, pp. 25–36. ACM Press (2009)

9. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: Proceedings of ACM SIGPLAN/SIGACT Symposium on Prin-
ciples of Programming Languages (POPL), pp. 416–428 (2009)

10. Kobayashi, N.: A Practical Linear Time Algorithm for Trivial Automata Model
Checking of Higher-Order Recursion Schemes. In: Hofmann, M. (ed.) FOSSACS
2011. LNCS, vol. 6604, pp. 260–274. Springer, Heidelberg (2011)

11. Kobayashi, N., Ong, C.-H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: Proceedings of LICS 2009,
pp. 179–188. IEEE Computer Society Press (2009)

12. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proceedings of ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pp. 222–233 (2011)

13. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree transduc-
ers and recursion schemes for program verification. In: Proceedings of ACM SIG-
PLAN/SIGACT Symposium on Principles of Programming Languages (POPL),
pp. 495–508 (2010)

14. Lester, M.M., Neatherway, R.P., Ong, C.-H.L., Ramsay, S.J.: Model checking live-
ness properties of higher-order functional programs. In: Proceedings of ML Work-
shop 2011 (2011)

15. Neatherway, R.P., Ramsay, S.J., Ong, C.-H.L.: A traversal-based algorithm for
higher-order model checking. In: ACM SIGPLAN International Conference on
Functional Programming (ICFP 2012), pp. 353–364 (2012)

16. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS 2006, pp. 81–90. IEEE Computer Society Press (2006)

17. Ong, C.-H.L.: Models of higher-order computation: Recursive schemes and collapsi-
ble pushdown automata. In: Logics and Languages for Reliability and Security,
pp. 263–299. IOS Press (2010)

18. Ong, C.-H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching
algebraic data types. In: Proceedings of ACM SIGPLAN/SIGACT Symposium on
Principles of Programming Languages (POPL), pp. 587–598 (2011)

A Formally-Verified Alias Analysis

Valentin Robert1,2 and Xavier Leroy1

1 INRIA Paris-Rocquencourt
2 University of California, San Diego

vrobert@cs.ucsd.edu, xavier.leroy@inria.fr

Abstract. This paper reports on the formalization and proof of sound-
ness, using the Coq proof assistant, of an alias analysis: a static analysis
that approximates the flow of pointer values. The alias analysis con-
sidered is of the points-to kind and is intraprocedural, flow-sensitive,
field-sensitive, and untyped. Its soundness proof follows the general style
of abstract interpretation. The analysis is designed to fit in the Comp-
Cert C verified compiler, supporting future aggressive optimizations over
memory accesses.

1 Introduction

Alias Analysis. Most imperative programming languages feature pointers, or
object references, as first-class values. With pointers and object references comes
the possibility of aliasing: two syntactically-distinct program variables, or two
semantically-distinct object fields can contain identical pointers referencing the
same shared piece of data.

The possibility of aliasing increases the expressiveness of the language, en-
abling programmers to implement mutable data structures with sharing; how-
ever, it also complicates tremendously formal reasoning about programs, as well
as optimizing compilation. In this paper, we focus on optimizing compilation
in the presence of pointers and aliasing. Consider, for example, the following C
program fragment:

... *p = 1; *q = 2; x = *p + 3; ...

Performance would be increased if the compiler propagates the constant 1 stored
in p to its use in *p + 3, obtaining

... *p = 1; *q = 2; x = 4; ...

This optimization, however, is unsound if p and q can alias. Therefore, the
compiler is allowed to perform this optimization only if a prior static analysis,
called alias analysis or pointer analysis, establishes that the pointers p and q

differ in all executions of the program.1

1 More precisely, the static analysis needed here is called may-alias analysis and aims
at proving that two pointers are always different. There also exists must-alias anal-
yses, which aim at proving that two pointers are always identical, but we will not
consider these analyses in this paper.

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 11–26, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

12 V. Robert and X. Leroy

For another example, consider:

... *p = x; y = *q; ...

To give more time to the processor cache to perform the load from q, and there-
fore improve instruction-level parallelism, an instruction scheduling pass would
elect to permute the load from q and the store to p, obtaining:

... y = *q; *p = x; ...

Again, this optimization is sound only if the compiler can establish that p and
q never alias. Many other optimizations rely on the availability of nonaliasing
information. It is fair to say that a precise and efficient alias analysis is an
important component of any optimizing compiler.

Compiler Verification. Our aim, in this paper, is to equip the CompCert C
compiler with a may-alias analysis, in order to enable this compiler to per-
form more aggressive optimizations over memory accesses. CompCert C is a
moderately-optimizing C compiler, producing code for the ARM, PowerPC and
x86 architectures [11]. The distinguishing feature of CompCert C is that it is
formally verified using the Coq proof assistant: a formal, operational semantics
is given to every source, intermediate and target language used in CompCert,
and a proof of semantic preservation is conducted for every compilation pass.
Composing these proofs, we obtain that the assembly code generated by Comp-
Cert executes as prescribed by the semantics of the source C program, therefore
ruling out the possibility of miscompilation.

When an optimization pass exploits the results of a prior static analysis,
proving semantic preservation for this pass requires us to first prove soundness of
the static analysis: the results of the analysis must, in a sense to be made precise,
be a safe over-approximation of the possible run-time behaviors of the program.
This paper, therefore, reports on the proof of soundness of an alias analysis for
the RTL intermediate language of the CompCert compiler. In keeping with the
rest of CompCert, we use the Coq proof assistant both to program the alias
analysis and to mechanize its proof of correctness.2 This work is, to the best of
our knowledge, the first mechanized verification of an alias analysis.

The Landscape of Alias Analyses. Like most published may-alias analyses
(see Hind [8] for a survey), ours is of the points-to kind: it infers sets of facts of the
form “this abstract memory location may contain a pointer to that other abstract
memory location”. Existing alias analyses differ not only on their notions of
abstract memory locations, but also along the following orthogonal axes:

– Intraprocedural vs. interprocedural : an intraprocedural analysis processes
each function of the program separately, making no nonaliasing assumptions
about the values of parameters and global variables at function entry.

2 The Coq development is available at http://gallium.inria.fr/~varobert/alias/

http://gallium.inria.fr/~varobert/alias/

A Formally-Verified Alias Analysis 13

An interprocedural analysis processes groups of functions, or even whole
programs, and can therefore infer more precise facts at the entry point of a
function when all of its call sites are known.

– Flow-sensitivity: a flow-sensitive analysis such as Andersen’s [1] takes the
control flow of the program into account, and is able to infer different sets of
facts for different program points. A flow-insensitive analysis such as Steens-
gaard’s [16] maintains a single set of points-to facts that apply to all program
points. Consider for example:

... L1: p = &x; ... L2: p = &y; ...

A flow-sensitive analysis can tell that just after L1, p points only to x, and
just after L2, p points only to y. A flow-insensitive analysis would conclude
that p points to either x or y after both L1 and L2.

– Field-sensitivity : a field-sensitive analysis is able to maintain different points-
to information for different fields of a compound data structure, such as a C
struct. A field-insensitive analysis makes no such distinction between fields.

– Type-based vs. untyped : many alias analyses operate at the source-language
level (e.g. C or Java) and exploit the static typing information of this lan-
guage (e.g. struct declarations in C and class declarations in Java). Other
analyses ignore static type information, either because it is unreliable (as in
C with casts between pointer types or nondiscriminated unions) or because it
is not available (analysis at the level of intermediate or machine languages).

These characteristics govern the precision/computational cost trade-off of the
analysis, with intraprocedural being cheaper but less precise than interprocedu-
ral, flow-insensitive cheaper and less precise than flow-sensitive, and type-based
cheaper and more precise than untyped.

The alias analysis that we proved correct in Coq is of the points-to, intraproce-
dural, flow-sensitive, field-sensitive, and untyped kind: untyped, because the RTL
language it works on is untyped; flow-sensitive, because it instantiates a general
framework for dataflow analyses that is naturally flow-sensitive; field-sensitive,
for additional precision at moderate extra analysis costs; and intraprocedural,
because we wanted to keep the analysis and its proof relatively simple. Our anal-
ysis is roughly similar to the one outlined by Appel [2, section 17.5] and can be
viewed as a simplified variant of Andersen’s seminal analysis [1].

Related Work. The literature on may-alias analysis is huge; we refer the reader
to Hind [8] for a survey, and only discuss the mechanized verification of these
analyses. Many alias analyses are instances of the general framework of abstract
interpretation. Bertot [3], Besson et al. [4], and Nipkow [15] develop generic
mechanizations of abstract interpretation in Coq and Isabelle/HOL, but do not
consider alias analysis among their applications. Dabrowski and Pichardie [7]
mechanize the soundness proof of a data race analysis for Java bytecode, which
includes a points-to analysis, flow-sensitive for local variables but flow-insensitive
for heap contents. The analysis is formally specified but its implementation is
not verified. Their soundness proof follows a different pattern than ours, relying

14 V. Robert and X. Leroy

on an instrumented, alias-aware semantics that is inserted between the concrete
semantics of Java bytecode and the static analysis.

Outline. The remainder of this paper is organized as follows. Section 2 briefly
introduces the RTL intermediate language over which the alias analysis is con-
ducted. Section 3 explains how we abstract memory locations and execution
states. Section 4, then, presents the alias analysis as a forward dataflow analy-
sis. Section 5 outlines its soundness proof. Section 6 discusses a data structure,
finite maps with overlapping keys and weak updates, that plays a crucial role
in the analysis. Section 7 reports on an experimental evaluation of our analysis.
Section 8 concludes and discusses possible improvements.

2 The RTL Intermediate Language

Our alias analysis is conducted over the RTL intermediate language [12, sec-
tion 6.1]. RTL stands for “register transfer language”. It is the simplest of the
CompCert intermediate languages, and also the language over which optimiza-
tions that benefit from nonaliasing information are conducted. RTL represents
functions as a control-flow graph (CFG) of abstract instructions, corresponding
roughly to machine instructions but operating over pseudo-registers (also called
“temporaries”). Every function has an unlimited supply of pseudo-registers, and
their values are preserved across function call. In the following, r ranges over
pseudo-registers and l over labels of CFG nodes.

Instructions: i ::= nop(l) no operation (go to l)
| op(op, �r, r, l) arithmetic operation
| load(κ,mode, �r, r, l) memory load
| store(κ,mode, �r, r, l) memory store
| call(sig , (r | id), �r, r, l) function call
| tailcall(sig , (r | id), �r) function tail call
| cond(cond , �r, ltrue , lfalse) conditional branch
| return | return(r) function return

Control-flow graphs: g ::= l �→ i finite map

Functions: F ::= { sig = sig ;
params = �r; parameters
stacksize = n; size of stack data block
entrypoint = l; label of first instruction
code = g} control-flow graph

Each instruction takes its arguments in a list of pseudo-registers �r and stores
its result, if any, in a pseudo-register r. Additionally, it carries the labels of its
possible successors. Each function has a stack data block, automatically allocated
on function entry and freed at function exit, in which RTL producers can allocate
local arrays, structs, and variables whose addresses are taken.

The dynamic semantics of RTL is given in small-step style as a transition
relation between execution states. States are tuples State(Σ, g, σ, l, R,M) of a

A Formally-Verified Alias Analysis 15

call stack Σ, a CFG g for the function currently executing, a pointer σ pointing
to its stack data block, a label l for the CFG node to be executed, a register
state R and a memory state M . (See Leroy [12, section 6.1] for more details on
the semantics.)

Register states R map pseudo-registers to their current values: the disjoint
union of 32-bit integers, 64-bit floats, pointers, and a special undef value. Pointer
values Vptr(b, i) are composed of a block identifier b and an integer byte offset
i within this block.

Memory states M map (block, offset, memory type) triples to values. (See
[14,13] for a complete description of the CompCert memory model.) Distinct
memory blocks are associated to 1- every global variable of the program, 2- the
stack blocks of every function currently executing, and 3- the results of dynamic
memory allocation (the malloc function in C), which is presented as a special
form of the call RTL instruction.

3 Abstracting Memory Locations and Memory States

The first task of a points-to analysis is to partition the unbounded number of
memory blocks that can appear during execution into a finite, tractable set of
abstract blocks. Since our analysis is intraprocedural, we focus our view of the
memory blocks on the currently-executing function, and distinguish the following
classes of abstract blocks:

Abstract blocks: b̂ ::= Stack

| Globals(Just id) | Globals(All)
| Allocs(Just l) | Allocs(All)
| Other | �

Stack denotes the stack block for the currently-executing function;
Globals(Just id), the block associated to the global variable id ; Allocs(Just l),
the blocks dynamically allocated (by malloc) at point l in the current function;
and Other all other blocks, including stack blocks and dynamically-allocated
blocks of other functions.

The Stack and Globals(Just id) classes correspond to exactly one concrete
memory block each. Other classes can match several concrete blocks. For exam-
ple, if a call to malloc at point l occurs within a loop, several concrete blocks
are allocated, all matching Allocs(Just l).

To facilitate static analysis, we also introduce summary abstract blocks:
Globals(All), standing for all the global blocks; Allocs(All), standing for all
the dynamically-allocated blocks of the current function; and �, standing for
all blocks. The inclusions between abstract blocks are depicted in Fig. 1.

Two abstract blocks that are not related by inclusion denote disjoint sets of
concrete blocks. We write b̂1 ∩ b̂2 = ∅ in this case. If, for instance, the analysis
tells us that the pseudo-registers x may point to Stack and y to Allocs(Just 3),
we know that x and y cannot alias.

To achieve field sensitivity, our analysis abstracts pointer values not just as
abstract blocks, but as abstract locations: pairs �̂ = (b̂, ı̂) of an abstract block b̂

16 V. Robert and X. Leroy

and an abstract offset ı̂, which is either an integer i or �, denoting a statically-
unknown offset. We extend the notion of disjointness to abstract locations in the
obvious way:

(b̂1, ı̂1) ∩ (b̂2, ı̂2) = ∅ def
= b̂1 ∩ b̂2 = ∅ ∨ (̂ı1 �= � ∧ ı̂2 �= � ∧ ı̂1 �= ı̂2)

For example, the analysis can tell us that x maps to the abstract location
(Stack, 4) and y to the abstract location (�, 0). In this case, we know that
x and y never alias, since these two abstract locations are disjoint even though
the two abstract blocks Stack and � are not.

For additional precision, our analysis manipulates points-to sets P̂ , which
are finite sets {�̂1, . . . , �̂n} of abstract locations. For example, the empty points-
to set denotes any set of values that can be integers or floats but not point-
ers; the points-to set {(�,�)} denotes all possible values; and the points-to
set {(Globals(All),�), (Other,�)} captures the possible values for a function
parameter, before the stack block and the dynamic blocks of the function are
allocated.

Our points-to analysis, therefore, associates a pair (R̂, M̂) to every program
point l of every function, where R̂ abstracts the register states R at this point
by a finite map from pseudo-registers to points-to sets, and M̂ abstracts the
memory states M at this point by a map from abstract pointers to points-to
sets.

4 The Alias Analysis

The alias analysis we consider is an instance of forward dataflow analysis. Given
the points-to information (R̂, M̂) just “before” program point l, a transfer func-
tion conservatively estimates the points-to information (R̂′, M̂ ′) “after” execut-
ing the instruction at l, and propagates it to the successors of l in the control-
flow graph. Kildall’s worklist algorithm [9], then, computes a fixed point over all
nodes of the control-flow graph. The transfer function is defined by a complex
case analysis on the instruction at point l. We now describe a few representative
cases.

Globals(All) Stack Allocs(All) Other

Globals(Just id1) . . . Globals(Just idn) Allocs(Just l1) . . . Allocs(Just ln)

�

Fig. 1. Abstract blocks and their inclusion relation

A Formally-Verified Alias Analysis 17

For an arithmetic operation op(op, �r, r, l′), memory and pseudo-registers other
than r are unchanged, therefore the points-to information “after” is (R̂{r ←
P̂}, M̂). P̂ is the abstraction of the result of the operation. Most operations
compute integers or floats but not pointers, so we take P̂ = ∅. Other operations
form pointers into the stack block or into global variables, where we take P̂ =
{(Stack, i)} or P̂ = {(Globals(Just id), i)} as appropriate. Finally, for move

instructions as well as pointer addition and pointer subtraction, P̂ is determined
from the points-to sets R̂(�r) of the argument registers.

For a load instruction load(κ,mode, �r, r, l), the points-to information “after”
is, likewise, of the form (R̂{r ← P̂}, M̂), where P̂ abstracts the value just loaded.
If κ denotes a 32-bit integer-or-pointer quantity, P̂ is determined by querying
the current abstract memory state M̂ at the abstract locations determined by
the addressing mode mode applied to the points-to sets R̂(�r) of the argument
registers. If κ denotes a small integer or floating-point quantity, the RTL se-
mantics guarantee that the result of the load is not a pointer; we therefore take
P̂ = ∅.

For a store instruction store(κ,mode, �r, r, l), pseudo-registers are unchanged
but memory is modified. The analysis determines the set L of abstract loca-
tions accessed, as a function of mode and R̂(�r), then produces the points-to

information (R̂, M̂ ′), where M̂ ′ = M̂ � {�̂ �→ R̂(r) | �̂ ∈ L}.
Since our abstract pointers correspond, in general, to multiple concrete mem-

ory locations, we must perform a weak update: the points-to sets associated with
�̂ ∈ L are not replaced by the points-to set R̂(r), but joined with the latter, using
set union. Moreover, we must perform this weak update not only for the abstract
locations in L, but also for all the abstract locations that are not disjoint from
the locations in L. This weak update is achieved by our definition of the upper
bound operation � over memory maps. The end result is that the new memory
map M̂ ′ satisfies the following two properties that are crucial to our soundness
proof:

M̂ ′(�̂) M̂(�̂) for all abstract locations �̂

M̂ ′(�̂) R̂(r) if ∃�̂′ ∈ L, �̂ ∩ �̂′ �= ∅
As mentioned above, the alias analysis reuses the generic fixed-point solver pro-
vided by CompCert [12, section 7.1]. Termination is guaranteed by bounding the
total number of iterations and returning � if no fixpoint is reached within this
limit. There is, therefore, no need to prove termination. However, the iteration
limit is very high, therefore we must make sure that a fixpoint is reached rel-
atively quickly. For such dataflow analyses, termination is typically ensured by
the combination of two facts: the monotonicity of the transfer function and the
finite height of the underlying lattice. While our transfer function is monotonic,
our lattice of points-to sets does not have a finite height because the sets can
grow indefinitely by adding more and more different abstract offsets. To address
this issue, we ensure termination by widening [6], which accelerates possibly in-
finite chains by approximation: if the points-to set computed for some memory
location or register, at an edge of the control flow graph, contains an accurate
memory location (that is, an abstract block with a particular offset) which is

18 V. Robert and X. Leroy

a shifted version (that is, the same abstract block and a different offset) of an
element of the previous points-to set of that same object, then we widen that
points-to set to contain the whole abstract block. This prevents any infinite chain
of differing offsets. The lattice quotiented by this widening indeed has a finite
height, since the number of abstract blocks to be considered within a function
is bounded (the number of global variables and allocation sites is bounded).

5 Soundness Proof

The main contribution of this work is the mechanized proof that the alias anal-
ysis is sound : namely, that the properties of non-aliasing and flow of pointer
values inferred by the analysis are satisfied in every possible execution of the
analyzed program. The proof follows the general pattern of abstract interpreta-
tion, namely, establishing a correspondence between abstract “things” (blocks,
locations, states, etc) and sets of concrete “things”, then show that this corre-
spondence is preserved by transitions of the concrete semantics.

The correspondence is presented as relations between abstract and concrete
“things”, parameterized by an abstracting function, called “abstracter” in the
Coq development:

Definition abstracter := block -> option absb.

An abstracter maps every concrete memory block to an abstract memory block,
or to None if the concrete block is not allocated yet. The abstracter is existentially
quantified: the gist of the soundness proof is to construct a suitable abstracter
for every reachable concrete execution state.

Given an abstracter, a concrete value belongs to a points-to set if the following
predicate holds:

Definition valsat (v: val) (abs: abstracter) (s: PTSet.t) :=

match v with

| Vptr b o =>

match abs b with

| Some ab => PTSet.In (Loc ab o) s

| None => PTSet.ge s PTSet.top

end

| _ => True

end.

In other words, non-pointer values belong to any points-to set. A pointer value
Vptr b o belongs to the set s if the concrete block b is mapped to the abstract
block ab by the abstracter and if the abstract location Loc ab o, or a “bigger”
abstract location, appears in s. To simplify the proof, we also account for the case
where b is not mapped by the abstracter, in which case we require s to contain
all possible abstract locations, i.e. to be at least as large as the � points-to set.

We extend the valsat relation to pseudo-registers and to memory locations.
In the following, (Rhat, Mhat) are the register map and memory map computed
by the static analysis at a given program point.

A Formally-Verified Alias Analysis 19

Definition regsat (r: reg) (rs: regset) (abs: abstracter) (Rhat: RMap.t) :=

valsat rs#r abs (RMap.get r Rhat).

(The concrete value rs#r of register r belongs to the points-to set RMap.get r

Rhat predicted by the analysis.)

Definition memsat (b: block) (o: Int.int) (m: mem)

(abs: abstracter) (Mhat: MMap.t) :=

forall v,

Mem.loadv Mint32 m (Vptr b o) = Some v ->

match abs b with

| Some ab => valsat v abs (MMap.get (Loc ab o) Mhat)

| None => False

end).

(If, in the concrete memory state, location (b, o) contains value v, it must be
the case that b is abstracted to ab and v belongs to the points-to set MMap.get
(Loc ab o) Mhat predicted by the analysis.)

Not all abstracters are sound: they must map the stack block for the currently-
executing function to the abstract block Stack, and the blocks for global vari-
ables to the corresponding abstract blocks:

Definition ok_abs_genv (abs: abstracter) (ge: genv) :=

forall id b,

Genv.find_symbol ge id = Some b ->

abs b = Some (Just (Globals (Just id))).

It must also be the case that only valid, already-allocated concrete blocks are
abstracted:

Definition ok_abs_mem (abs: abstracter) (m: mem) :=

forall b, abs b <> None <-> Mem.valid_block m b.

Piecing everything together, we obtain the following characterization of concrete
execution states that agree with the predictions of the static analysis:

Inductive satisfy (ge: genv) (abs: abstracter): state -> Prop :=

| satisfy_state: forall cs f bsp pc rs m Rhat Mhat

(STK: ok_stack ge (Mem.nextblock m) cs)

(MEM: ok_abs_mem abs m)

(GENV: ok_abs_genv abs ge)

(SP: abs bsp = Some (Just Stack))

(RPC: (safe_funanalysis f)#pc = (Rhat, Mhat))

(RSAT: forall r, regsat r rs abs Rhat)

(MSAT: forall b o, memsat b o m abs Mhat),

satisfy ge abs (State cs f (Vptr bsp Int.zero) pc rs m)

We omit the ok_stack predicate, which collects some technical conditions over
the call stack cs. The safe funanalysis function is the implementation of
our alias analysis: it returns a map from program points pc to abstract states
(Rhat, Mhat).

20 V. Robert and X. Leroy

In essence, the satisfy property says that the abstracter abs is sound
(premises MEM, GENV, SP) and that, with respect to this abstracter, the values
of registers and memory locations belong to the points-to sets predicted by the
analysis at the current program point pc (premises RPC, RSAT and MSAT).

The main proof of soundness, then, is to show that for every concrete state
st reachable during the execution of the program, the property exists abs,

satisfy ge abs st holds:

Theorem satisfy_init:

forall p st,

initial_state p st ->

exists abs, satisfy (Genv.globalenv p) abs st.

Theorem satisfy_step:

forall ge st t st’ abs,

satisfy ge abs st -> step ge st t st’ ->

exists abs’, satisfy ge abs’ st’.

As a corollary, we obtain the soundness of the non-aliasing predictions made on
the basis of the results of the analysis:

Corollary nonaliasing_sound:

forall ge abs cs f sp pc rs m Rhat Mhat r1 b1 o1 r2 b2 o2,

satisfy ge abs (State cs f sp pc rs m) ->

(safe_funanalysis f)#pc = (Rhat, Mhat) ->

disjoint (RMap.get r1 Rhat) (RMap.get r2 Rhat) ->

rs # r1 = Vptr b1 o1 -> rs # r2 = Vptr b2 o2 ->

Vptr b1 o1 <> Vptr b2 o2.

Here, disjoint is the decidable predicate stating that two sets of abstract lo-
cations are pairwise disjoint, in the sense of the l̂1 ∩ l̂2 = ∅ definition above. An
optimization that exploits the inferred aliasing information would test whether
disjoint holds of the points-to sets of two registers r1 and r2. If the test is pos-
itive, and since the satisfy predicate holds at any reachable state, the corollary
above shows that r1 and r2 do not alias at run-time, i.e. they cannot contain
the same pointer value. In turn, this fact can be used in the proof of semantic
preservation for the optimization.

The Coq development consists of about 1200 lines of specifications and 2200
lines of proofs. The proof is entirely constructive: given a suitable abstracter
abs “before” a transition of the semantics, it is always possible to construct
the abstracter abs’ that satisfies the state after the transition. A large part of
the proof is devoted to proving the many required properties of points-to sets
and memory maps. A crucial invariant to be maintained is that memory maps
M̂ maps stay compatible with the inclusion relation between abstract locations:
M̂(�̂1) ⊆ M̂(�̂2) whenever �̂1 � �̂2. For instance, the points-to set of the abstract
block that represents all possible concrete blocks must be a superset of the
points-to set of any abstract pointer. We maintain this invariant through the
use of dependent types (Coq’s subset types).

A Formally-Verified Alias Analysis 21

Additional complications stem from the need to keep the representation of
abstract memory states relatively small, eliminating redundant information in
order to speed up map updates. We describe our solution in the next section.

6 Maps with Weak Update

Purely-functional finite maps are among the most frequently used data struc-
tures in specifications and programs written using proof assistants. The standard
signature for total finite maps is of the following form:

Module Type Map (K: DecidableType) (V: AnyType).

Parameter t: Type.

Parameter init: V.t -> t

Parameter get: K.t -> t -> V.t

Parameter set: K.t -> V.t -> t -> t

Axiom get_init: forall k v, get k (init v) = v

Axiom get_set_same:

forall k1 k2 v m, K.eq k1 k2 -> get k1 (set k2 v m) = v

Axiom get_set_other:

forall k1 k2 v m, ~K.eq k1 k2 -> get k1 (set k2 v m) = get k1 m

End Map.

Here, K is the type of map keys, equipped with a decidable equality, and V

is the type of map values. Three operations are provided: init, to create a
constant map; set, to change the value associated with a given key; and get,
to obtain the value associated with a key. The semantics of set are specified
by the familiar “good variable” properties get_set_same and get_set_other

above. Such a signature of total finite maps can easily be implemented on top
of an implementation of partial finite maps, such as the AVL maps provided by
the Coq library FMaps.

To implement the memory maps inferred by our alias analysis, we need a
slightly different finite map structure, where the strong update operation set

is replaced by a weak update operation add. During weak update, not only the
value of the updated key changes, but also the values of the keys that overlap
with / are not disjoint from the updated key. Moreover, the new values of the
changed keys are an upper bound of their old value and the value given to add.
This is visible in the following signature:

Module Type OverlapMap (O: Overlap) (L: SEMILATTICE).

Parameter t: Type.

Parameter init: t.

Parameter get: O.t -> t -> L.t.

Parameter add: O.t -> L.t -> t -> t.

Axiom get_init: forall x, get x init = L.bot.

Axiom get_add:

forall x y s m, L.ge (get x (add y s m)) (get x m).

Axiom get_add_overlap: forall x y s m,

O.overlap x y -> L.ge (get x (add y s m)) s.

End OverlapMap.

22 V. Robert and X. Leroy

The type of map values, L.t is now a semi-lattice: a type equipped with a
partial ordering ge, an upper bound operation lub, and a smallest element bot.
Likewise, the type of keys, O.t is a type equipped with a decidable overlap

relation, which holds when two keys are not disjoint. (Additional operations
such as parent are included to support the efficient implementation that we
discuss next.) Here is the Overlap signature:

Module Type Overlap.

Parameter t: Type.

Parameter eq_dec: forall (x y: t), {eq x y} + {~eq x y}.

Parameter overlap: t -> t -> Prop.

Axiom overlap_dec: forall x y, {overlap x y} + {~ overlap x y}.

Declare Instance overlap_refl: Reflexive overlap.

Declare Instance overlap_sym: Symmetric overlap.

Parameter top: t.

Parameter parent: t -> option t.

Parameter measure: t -> nat.

Axiom parent_measure: forall x px,

parent x = Some px -> measure px < measure x.

Axiom no_parent_is_top: forall x, parent x = None <-> x = top.

Axiom parent_overlap: forall x y px,

overlap x y -> parent x = Some px -> overlap px y.

End Overlap.

Note that the overlap relation must be reflexive and symmetric, but is not
transitive in general. For example, in our application to alias analysis, (Stack,�)
and (Other,�) do not overlap, but both overlap with (�,�).

How, then, to implement the OverlapMap data structure? Naively, we could
build on top of a regular Map data structure, implementing the add (weak update)
operation by a sequence of set (strong updates) over all keys k1, . . . , kn that
overlap the given key k. However, the set of overlapping keys is not necessarily
finite: if k is Allocs(All), all keys Allocs(Just l) overlap. Even if we could
restrict ourselves to the program points l that actually occur in the function
being analyzed, the set of overlapping keys would still be very large, resulting in
inefficient add operations.

In practice, during alias analysis, almost all the keys Allocs(Just l) have
the same values as the summary key Allocs(All), except for a small number
of distinguished program points l, and likewise for keys Globals(Just id). This
observation suggests a sparse representation of maps with overlap where we do
not store the value of a key if this value is equal to that of its parent key.

More precisely, we assume that the client of the OverlapMap structure provides
us with a spanning tree that covers all possible keys. This tree is presented as
the top element of the Overlap structure, representing the root of the tree,
and the parent partial function, which maps non-top keys to their immediate
ancestor in the spanning tree. Fig. 2 depicts this spanning tree and the sparse
representation in the case where abstract locations are used as keys.

Following these intuitions, we implement the type t of OverlapMap as a stan-
dard, partial, finite map with strong update (written M below), as provided by

A Formally-Verified Alias Analysis 23

(�,�) �→ A

(b,�) �→ A

(b′,�) �→ B

(�, i) �→ A

(b, i) �→ A

(b′, i) �→ C

(�,�) �→ A

(b,�)

(b′,�) �→ B

(�, i)

(b, i)

(b′, i) �→ C

Fig. 2. Sparse maps indexed by abstract locations. Left: the logical view. Arrows rep-
resent the inclusion relation between abstract locations. Each location is associated
with a value. Right: the concrete representation. Arrows represent the parent relation
(spanning tree). Some locations are not associated with a value, because their value is
to be looked up in their parent locations.

Coq’s FMap library for example. We then define the get operation as a recursive
traversal of the spanning tree, starting at the given key and moving “up” in the
tree until a binding is found:

Function get (k: O.t) (m: t) {measure O.measure k}: L.t :=

match M.find k m with

| Some s => s

| None => match O.parent k with None => L.bot | Some p => get p m end

end.

The add weak update operation, then, can be defined by traversing all the non-
default bindings found in the sparse map, and updating those that overlap with
the given key:

Definition lub_if_overlap (key: O.t) (val: L.t) (k: O.t) (v: L.t): L.t :=

if O.overlap_dec key k then L.lub val v else v.

Definition add (k: O.t) (v: L.t) (m: t): t :=

M.mapi (lub_if_overlap k v) (M.add k (get k m) m).

Here. M.mapi is pointwise application of a function to a finite map: the map
returned by M.mapi f m maps k to f k v if and only if m maps k to v.

The initial call to M.add is redundant if the key is already present, but
necessary when the key is absent, in order to populate the underlying map
with the key, at its current value, before performing the traversal. This def-
inition almost satisfies the two “weak good variables” properties get_add and
get_add_overlap: for the latter property, we need to assume that the O.top key
is bound in the sparse map, otherwise some keys could keep their default L.bot
value after the weak update. This assumption is easily satisfied by defining the
initial map init not as the empty sparse map, but as the singleton sparse map
O.top �→ L.bot. To make sure that the assumption always holds, we package it
along with the sparse maps using a subset type of the form

Definition t := { m : M.t | M.In O.top m }

24 V. Robert and X. Leroy

This makes it possible to prove the two “weak good variables” properties without
additional hypotheses.

This sparse representation of maps, while simple, appears effective for our
alias analysis. Two improvements can be considered. One would be to compress
the sparse map after each add operation, removing the bindings k �→ v that
have become redundant because k’s parent is now mapped to the same value v.
Another improvement would be to enrich the data structure to ensure that non-
overlapping keys have their values preserved by an add update:

Conjecture get_add_non_overlap: forall x y s m,

~O.overlap x y -> get x (add y s m) = get x m.

This property does not hold for our simple sparse representation: assume x not
bound in the sparse map, its parent px bound in the sparse map, x non over-
lapping with y, but px overlapping with y. The value of px is correctly updated
by the add y s m operation, but as a side effect this also modifies the result of
get x after the add.

7 Experimental Evaluation

The first author integrated the alias analysis described here in the CompCert
verified compiler and modified its Common Subexpression Elimination pass to
exploit the inferred nonaliasing information. CompCert’s CSE proceeds by value
numbering over extended basic blocks [12, section 7.3]. Without aliasing infor-
mation, value numbering equations involving memory loads are discarded when
reaching a memory write. Using aliasing information, CSE is now able to pre-
serve such equations across memory writes whenever the address of the read is
known to be disjoint from that of the write.

This implementation was evaluated on the CompCert test suite. Evaluation
consisted in 1- visual examination of the points-to sets inferred to estimate the
precision of the analysis, 2- measurements on compilation times, and 3- counting
the number of instructions eliminated by CSE as a consequence of the more
precise analysis of memory loads enabled by nonaliasing information.

Concerning precision, the analysis succeeds in inferring the expected nona-
liasing properties between global and local variables of array or structure types,
and between their fields. The lack of interprocedural analysis results in a very
conservative analysis of linked, dynamically-allocated data structures, however.

Concerning analysis times, the cost of the analysis is globally high: on most of
our benchmarks, overall compilation times increase by 40% when alias analysis
is turned on, but a few files in the SPASS test exhibit pathological behaviors of
the analysis, more than doubling compilation times.

The additional nonaliasing information enables CSE to eliminate about 1400
redundant loads in addition to the 5600 it removes without this information, a
25% gain. To illustrate the effect, here is an excerpt of RTL intermediate code
before (left column) and after (right column) aliasing-aware CSE:

A Formally-Verified Alias Analysis 25

16: x16 = int8signed[currentCodeLen + 0]

15: x15 = x16 + -8

[. . .]
6: int8unsigned[stack(0)] = x10

[. . .]
4: x9 = int8signed[currentCodeLen + 0] → 4: x9 = x16

3: x7 = x9 + -8 → 3: x7 = x15

The memory store at point 6 was analyzed as addressing offset 0 of the stack
block, which cannot alias the global block addressed at point 16. Therefore, when
we read that same location at point 4, CSE knows that the result value is the
same as that computed at point 16, and therefore reuses the result x16 of the
load at 16. In turn, CSE simplifies the add at point 3, as it knows that the same
computation already took place at point 15.

8 Conclusions and Perspectives

An easy simplification that could reduce the cost of alias analysis is to restrict
ourselves to points-to sets that are singletons, i.e. a single abstract location
instead of a set of abstract locations. The experimental evaluation shows that
points-to sets of cardinality 2 or more rarely appear, owing to our use of widening
during fixpoint iteration. Moreover, those sets could be collapsed in a single
abstract location at little loss of information just by adding a few extra points
in the lattice of abstract locations depicted in Fig. 1.

Further improvements in analysis speed appear to require the use of more so-
phisticated, graph-based data structures, such as the alias graphs used by Larus
and Hilfinger [10] and Steensgaard [16], among other authors. It is a challenge to
implement and reason upon these data structures in a purely functional setting
such as Coq. However, we could circumvent this difficulty by performing vali-
dation a posteriori in the style of Besson et al. [5]: an untrusted alias analysis,
implemented in Caml using sophisticated data structures, produces a tentative
map from program points to (R̂, M̂) abstract states; a validator, written and
proved correct in Coq, then checks that this tentative map is indeed a post-
fixpoint of the dataflow inequations corresponding to our transfer function.

Concerning analysis precision, a first improvement would be to perform strong
updates when the location stored into is uniquely known at analysis time, e.g.
when the set of accessed abstract locations is a singleton of the form {(Stack, i)}
or {(Globals(Just id), i)}. In this case, the contents of the memory map for
this location can be replaced by the points-to set of the right-hand side of the
store, instead of being merged with this points-to set.

Another direction is to analyze the offset parts of pointer values more precisely.
The flat lattice of integers that we currently use to track offset values could be
replaced by integer intervals. More generally, the analysis could be parameterized
over an arbitrary abstract domain of integers.

The next major improvement in precision would be to make the analysis
interprocedural. Conceptually, the modifications to the abstract interpretation

26 V. Robert and X. Leroy

framework are minimal, namely introducing Stack(f) and Allocs(f, p) abstract
blocks that are indexed by the name of the function f where the corresponding
stack allocation or dynamic allocation occurs. However, the fixpoint iteration
strategy must be changed: in particular, for a call to a function pointer, the
points-to set of the function pointer is used to determine the possible successors
of the call. In addition, issues of algorithmic efficiency and sparse data structures
become much more acute in the interprocedural case.

References

1. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen (1994)

2. Appel, A.W.: Modern Compiler Implementation in ML. Cambridge University
Press (1998)

3. Bertot, Y.: Structural Abstract Interpretation: A Formal Study Using Coq. In:
Bove, A., Barbosa, L.S., Pardo, A., Pinto, J.S. (eds.) LerNet 2008. LNCS, vol. 5520,
pp. 153–194. Springer, Heidelberg (2009)

4. Besson, F., Cachera, D., Jensen, T.P., Pichardie, D.: Certified Static Analysis by
Abstract Interpretation. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD
2007/2008/2009. LNCS, vol. 5705, pp. 223–257. Springer, Heidelberg (2009)

5. Besson, F., Jensen, T., Pichardie, D.: Proof-carrying code from certified abstract in-
terpretation to fixpoint compression. Theoretical Computer Science 364(3), 273–291
(2006)

6. Cousot, P., Cousot, R.: Comparing the Galois Connection andWidening/Narrowing
Approaches to Abstract Interpretation. In: Bruynooghe, M., Wirsing, M. (eds.)
PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)

7. Dabrowski, F., Pichardie, D.: A Certified Data Race Analysis for a Java-like Lan-
guage. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009.
LNCS, vol. 5674, pp. 212–227. Springer, Heidelberg (2009)

8. Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: Program Anal-
ysis For Software Tools and Engineering (PASTE 2001), pp. 54–61. ACM (2001)

9. Kildall, G.A.: A unified approach to global program optimization. In: 1st Sympo-
sium Principles of Programming Languages, pp. 194–206. ACM Press, New York
(1973)

10. Larus, J.R., Hilfinger, P.N.: Detecting conflicts between structure accesses. In: Pro-
gramming Language Design and Implementation (PLDI 1988), pp. 21–34. ACM
Press, New York (1988)

11. Leroy, X.: Formal verification of a realistic compiler. Communications of the
ACM 52(7), 107–115 (2009)

12. Leroy, X.: A formally verified compiler back-end. J. Automated Reasoning 43(4),
363–446 (2009)

13. Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert memory model,
version 2. Research report RR-7987, INRIA (June 2012)

14. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for
verifying program transformations. J. Automated Reasoning 41(1) (2008)

15. Nipkow, T.: Abstract Interpretation of Annotated Commands. In: Beringer, L.,
Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 116–132. Springer, Heidelberg
(2012)

16. Steensgaard, B.: Points-to analysis in almost linear time. In: 23rd Symp. Principles
of Programming Languages (POPL 1996), pp. 32–41. ACM (1996)

Mechanized Verification of Computing

Dominators for Formalizing Compilers

Jianzhou Zhao and Steve Zdancewic

University of Pennsylvania
{jianzhou,stevez}@cis.upenn.edu

Abstract. One prerequisite to the formal verification of modern com-
pilers is to formalize computing dominators, which enable SSA forms,
advanced optimizations, and analysis. This paper provides an abstract
specification of dominance analysis that is sufficient for formalizing mod-
ern compilers; it describes a certified implementation and instance of the
specification that is simple to design and reason about, and also reason-
ably efficient. The paper also presents applications of dominance analy-
sis: an SSA-form type checker, verifying SSA-based optimizations, and
constructing dominator trees. This development is a part of the Vellvm
project. All proofs and implementation have been carried out in Coq.

1 Introduction

Compilers are not always correct due to the complexity of language semantics
and transformation algorithms, the trade-offs between compilation speed and
verifiability, etc. Bugs in compilers can undermine the source-level verification
efforts (such as type systems, static analysis, and formal proofs), and produce
target programs with different meaning from source programs. The CompCert
project [12] first implemented a realistic and mechanically verified compiler with
classic intermediate representations in the Coq proof assistant. The CompCert
compiler generates compact and efficient assembly code for a large fragment of
the C language, and is proved to be more robust than non-verified compilers.

Recently researchers started to formalize and verify modern compilers in the
Vellvm project [14] and in the CompCertSSA project [3]. One crucial component
of modern compilers, such as LLVM and GCC, is computing dominators—on a
control-follow-graph, a node l1 dominates a node l2 if all paths from the entry
to l2 must go through l1 [2]. Dominance analysis allows compilers to represent
programs in the SSA form [6] (which enables many advanced SSA-based opti-
mizations), optimize loops, analyze memory dependency, and parallelize code
automatically, etc. Therefore, one prerequisite to the formal verification of mod-
ern compilers is to formalize computing dominators.

In this paper, we present the formalization of dominance analysis used in
the Vellvm project. To the best of our knowledge, this is the first mechanized
verification of dominator computation for LLVM. Although the CompCertSSA
project [3] also formalized dominance analysis to prove the correctness of a global
value numbering optimization, our results are more general: beyond soundness,

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 27–42, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

28 J. Zhao and S. Zdancewic

we establish completeness and related metatheory results that can be used in
other applications. Because different styles of formalization may also affect the
cost of proof engineering, we also discuss some tradeoffs in the choices of for-
malization. In this work, we evaluate our formalism by applying it to several
applications in Vellvm.

To simplify the formal development, we describe the work in the context of
Vminus, which is a simpler subset of the full LLVM SSA IR formalized in Vellvm,
that still captures the essence of dominance analysis. Our Coq development
formalizes all the claims of the paper for the full Vellvm1. Following LLVM, we
distinguish dominators at the block level and at the instruction level. Given the
former one, we can easily compute the latter one. Therefore, we will focus on
the block-level analysis, and discuss the instruction-level analysis only briefly.

We present the following contributions. Section 2 gives a specification of com-
puting dominators at the block level. We instantiate the specification by two
algorithms. Section 3 shows the standard dominance analysis [1] (AC). Section 4
presents an extension of AC [5] (CHK) that is easy to implement and verify,
but still fast. We verify the correctness of both algorithms. Section 3.1 provides
a verified depth first search algorithm. Then, Section 5 extends the dominance
analysis to the instruction level, and present several applications used in the
Vellvm project: a type checker for SSA, verifying SSA-based optimizations, and
constructing dominator trees. Section 6 evaluates performance of the algorithms,
and shows that in practice CHK runs nearly as fast as the LLVM’s algorithm.

2 The Specification of Computing Dominators

This section first defines dominators in term of the syntax of Vminus, then gives
an abstract and succinct specification of algorithms that compute dominators.

Syntax of Vminus. Figure 1 gives the syntax of Vminus, focusing on the syntax
of Vminus at the block level. Section 5 will revisit the rest of the syntax. All code
in Vminus resides in top-level functions, whose bodies are composed of blocks b.
Here, b denotes a list of blocks; we use similar notation for other lists throughout
the paper. As in classic compiler representations, a basic block consists of a label
l , a series of instructions insn followed by a terminator tmn (br and ret) that
branches to another block or returns from the function. In the following, we also
use the label of a block to denote the block.

The set of blocks making up the top-level function f constitutes a control-flow
graph (CFG) G = (e, succs) where e is the entry point (the first block) of f ;
succs maps each label to a list of its successors. On a CFG, we use G |= l1 →∗ l2
to denote a path ρ from l1 to l2, and l ∈ ρ to denote that l is in the path ρ. By
wf f, we require that a well-formed function must contain an entry point that
cannot be reached from other blocks, all terminators can only branch to blocks
within f , and that all labels in f are unique. In this paper, we consider only
well-formed functions to streamline the presentation.

1 Available at http://www.cis.upenn.edu/~jianzhou/Vellvm/dominance

http://www.cis.upenn.edu/~jianzhou/Vellvm/dominance
http://www.cis.upenn.edu/~jianzhou/Vellvm/dominance

Mechanized Verification of Computing Dominators 29

Types typ : : = int Instructions insn : : = φ | c | tmn

Constants cnst : : = Int Phi Nodes φ : : = r = phi typ [valj , lj]
j

Values val : : = r | cnst Commands c : : = r := val1 bop val2
Blocks b : : = l φ c tmn Terminators tmn : : = br l | br val l1 l2 | ret typ val

Functions f : : = fun {b} Non-φs φ̂ : : = c | tmn

Fig. 1. Syntax of Vminus

Definition 1 (Domination (Block-level)). Given G with an entry e,

– A block l is reachable, written G →∗ l , if there exists a path G |= e →∗ l .
– A block l1 dominates a block l2, written G |= l1 �= l2, if for every path ρ

from e to l2, l1 ∈ ρ.
– A block l1 strictly dominates a block l2, written G |= l1 � l2, if for every

path ρ from e to l2, l1 �= l2 ∧ l1 ∈ ρ.

Because the dominance relations of a function at the block level and in its CFG
are equivalent, in the following we do not distinguish f and G. The following
consequence of the definitions are useful to define the specification of computing
dominators. For all labels in G, �= and � are transitive.

Lemma 1
- If G |= l1 �= l2 and G |= l2 �= l3, then G |= l1 �= l3.
- If G |= l1 � l2 and G |= l2 � l3, then G |= l1 � l3.

However, because there is no path from the entry to unreachable labels, �=
and � relate every label to any unreachable labels.

Lemma 2. If ¬(G →∗ l2), then G |= l1 �= l2 and G |= l1 � l2.

If we only consider the reachable labels in V , � is acyclic.

Lemma 3 (� is acyclic). If G →∗ l , then ¬G |= l � l .

Moreover, all labels that strictly dominate a reachable label are ordered.

Lemma 4 (� is ordered). If G →∗ l3, l1 �= l2, G |= l1 � l3 and G |= l2 � l3,
then G |= l1 � l2 ∨G |= l2 � l1.

2.1 Specification

Coq Notations. We use {} to denote an empty set; use {+}, {<=}, ‘In‘, {\/}
and {/\} to denote set addition, inclusion, membership, union and intersection
respectively. Our developments reuse the basic tree and map data structures
implemented in the CompCert project [12]: ATree.t and PTree.t are trees with
keys of type l and positive respectively; PMap.t is a map with keys of type
positive. We use [] to denote tree and map lookup. succs are defined by trees.
[] returns an empty list when a searched-for key in succs does not exist. [x] is
a list with one element x.

30 J. Zhao and S. Zdancewic

Module Type ALGDOM.

Parameter sdom: f →l →set l.

Definition dom f l1 := l1 {+} sdom f l1.

Axiom entry_sound: forall f e, entry f = Some e →sdom f e = {}.

Axiom successors_sound: forall f l1 l2,

In l1 (succs f)[l2] →sdom f l1 {<=} dom f l2.

Axiom complete: forall f l1 l2,

wf f →f |= l1 >> l2 →l1 ‘In‘ (sdom f l2).

End ALGDOM.

Module AlgDom_Properties(AD: ALGDOM).

Lemma sound: forall f l1 l2,

wf f →l1 ‘In‘ (AD.sdom f l2) →f |= l1 >> l2.

(**)

(* Properties: conversion, transitivity, acyclicity, ordering and ... *)

(**)

End AlgDom_Properties.

Fig. 2. The specification of algorithms that find dominators

Figure 2 gives an abstract specification of algorithms that compute dominators
using a Coq module interface ALGDOM. First of all, sdom defines the signature of
a dominance analysis algorithm: given a function f and a label l1, (sdom f l1)
returns the set of strict dominators of l1 in f ; dom defines the set of dominators
of l1 by adding l1 into l1’s strict dominators.

To make the interface simple, ALGDOM only requires the basic properties that
ensure that sdom is correct: it must be both sound and complete in terms
of the declarative definitions (Definition 1). Given the correctness of sdom,
the AlgDom Properties module can ‘lift’ properties (conversion, transitivity,
acyclicity, ordering, etc.) from the declarative definitions to the implementa-
tions of sdom and dom. Section 5 shows how clients of ALGDOM use the properties
proven in AlgDom Properties by examples.

ALGDOM requires completeness directly. Soundness can be proven by two more
basic properties: entry sound requires that the entry has no strict dominators;
successors sound requires that if l1 is a successor of l2, then l2’s dominators
must include l1’s strict dominators. Given an algorithm that establishes the two
properties, AlgDom Properties proves that the algorithm is sound by induction
over any path from the entry to l2.

2.2 Instantiations

In the literature, there is a long history of algorithms that find dominators,
each making different trade-offs between efficiency and simplicity. Most of the
industry compilers, such as LLVM and GCC, use the classic Lengauer-Tarjan
algorithm [11] (LT) that has a complexity of O(E ∗ log(N)) where N and E are
the number of nodes and edges respectively, but is complicated to implement
and reason about. The Allen-Cocke algorithm [1] (AC) based on iteration is
easier to design, but suffers from a large asymptotic complexity. Moreover, LT
explictly creates dominator trees that provide convenient data structures for

Mechanized Verification of Computing Dominators 31

Fig. 3. Postorder

stk visited PO l2p po

e[a d] e
e[d]; a[b] e a
e[d]; a[]; b[c d] e a b
e[d]; a[]; b[d]; c[] e a b c (c,1)
e[d]; a[]; b[]; d[b] e a b c d (c,1)
e[d]; a[]; b[]; d[] e a b c d (c,1); (d,2)
e[d]; a[]; b[]; e a b c d (c,1); (d,2); (b,3)
e[d]; a[]; e a b c d (c,1); (d,2); (b,3); (a,4)
e[] e a b c d (c,1); (d,2); (b,3); (a,4); (e,5)

Fig. 4. The DFS execution sequence

compilers whereas AC needs an additional tree construction algorithm with more
overhead. The Cooper-Harvey-Kennedy algorithm [5] (CHK), extended from AC
with careful engineering, runs nearly as fast as LT in common cases [5,8], but is
still simple to implement and reason about. Moreover, CHK generates dominator
trees implicitly, and provides a faster tree construction algorithm.

Because CHK gives a relatively good trade-off between verifiability and effi-
cency, we present CHK as an instance of ALGDOM. In the following sections, we
first review the AC algorithm, and then study its extension CHK.

3 The Allen-Cocke Algorithm

The Allen-Cocke algorithm (AC) is an instance of the forward worklist-based
Kildall’s algorithm [10] that visits nodes in reverse postorder (PO) [9] (in which
AC converges faster). At the high-level, our Coq implementation of AC works
in three steps: 1) calculate the PO of a CFG by depth-first-search (DFS); 2)
compute strict dominators for PO-numbered nodes in Kildall; 3) finally relate
the analysis results to the original nodes. We omit the 3rd step’s proofs here.

This section first presents a verified DFS algorithm that computes PO, then
reviews Kildall’s algorithm as implemented in the CompCert project [12], and
finally it studies the implementation and metatheory of AC.

3.1 DFS: PO-Numbering

DFS starts at the entry, visits nodes as deep as possible along each path, and
backtracks when all deep nodes are visited. DFS generates PO by numbering a
node after all its children are numbered. Figure 3 gives a PO-numbered CFG. In
the CFG, we represent the depth-first-search (DFS) tree edges by solid arrows,
and non-tree edges by dotted arrows. We draw the entry node in a box, and
other nodes in circles. Each node is labeled by a pair with its original label name
on the left, and its PO number on the right. Because DFS only visits reachable
nodes, the PO numbers of unreachable nodes are represented by ‘ ’.

Figure 5 shows the data structures and auxiliary functions used by a typical
DFS algorithm that maintains four components to compute PO. PostOrder

32 J. Zhao and S. Zdancewic

Record PostOrder := mkPO { PO_cnt: positive; PO_l2p: LTree.t positive }.

Record Frame := mkFr { Fr_name: l; Fr_scs: list l }.

Definition dfs_F_type : Type := forall (succs: LTree.t (list l))

(visited: LTree.t unit) (po:PostOrder) (stk: list Frame), PostOrder.

Definition dfs_F (f: dfs_F_type) (succs: LTree.t (list l))

(visited: LTree.t unit) (po:PostOrder) (stk: list Frame): PostOrder :=

match find_next succs visited po stk with

| inr po’ ⇒po’

| inl (next, visited’, po’, stk’) ⇒f succs visited’ po’ stk’

end.

Fig. 5. The DFS algorithm

takes the next available PO number and a map from nodes to their PO numbers
with type positive. succs maps a node to its successors. To facilitate reasoning
about DFS, we represent the recursive information of DFS explicitly by a list of
Frame records that each contains a node Fr name and its unprocessed successors
Fr scs. To prevent the search from revisiting nodes, the DFS algorithm uses
visited to record visited nodes. dfs F defines one recursive step of DFS.

Figure 4 gives a DFS execution sequence (by running dfs F until all nodes
are visited) of the CFG in Figure 3. We use l[l1 · · · ln] to denote a frame with
the node l and its unprocessed successors l1 to ln; (l, p) to denote a node l and
its PO p. Initially the DFS adds the entry and its successors to the stack. At
each recursive step, find next finds the next available node that is the unvisited
node in the Fr scs of the latest node l ′ of the stack. If the next available node
exists, the DFS pushes the node with its successors to the stack, and makes the
node to be visited. find next pops all nodes in front of l ′, and gives them PO
numbers. If find next fails to find available nodes, the DFS stops.

We can see that the straightforward algorithm is not a structural recursion.
To implement the algorithm in Coq, we must show that it terminates. Although
in Coq we can implement the algorithm by well-founded recursion, such designs
are hard to reason about [4]. One possible alternative is implementing DFS
with a ‘strong’ dependent type to specify the properties that we need to reason
about DFS. However, this design is not modular because when the type of DFS
is not strong enough—for example, if we need a new lemma about DFS—we
must extend or redesign its implementation by adding new invariants. Instead,
following the ideas in Coq’Art [4], we implement DFS by iteration and prove its
termination and inductive principle separately. By separating implementation
and specification, the DFS design is modular, and easier to reason about.

Figure 6 presents our design. The top-level entry is iter, which needs a bound-
ing step n, a fixpoint F and a default value g. iter only calls g when n reaches
zero, and otherwise recursively calls one more iteration of F. If F is terminating,
we can prove that there must exist a final value and a bound n, such that for
any bound k that is greater than or equal to n, iter always stops and generates
the same final value. In other words, F reaches a fixpoint in fewer than n steps.
The proof of the existence of n is erasable; the computation part provides a
terminating algorithm, not requiring the bound step at runtime.

Mechanized Verification of Computing Dominators 33

Fixpoint iter (A:Type) (n:nat) (F:A→A) (g:A) : A :=

match n with

| O ⇒g

| S p ⇒F (iter A p F g)

end.

Definition wf_stk succs visited stk :=

stk_in_succs succs stk ∧incl visited succs

Program Fixpoint dfs_tmn succs visited po stk

(Hp: wf_stk succs visited stk) {measure (size succs - size visited)}:

{ po’:PostOrder | exists p:nat,

forall k (Hlt: p < k) (g:dfs_F_type),

iter _ k dfs_F g succs visited po stk = po’ } :=

match find_next succs visited po stk with

| inr po’ ⇒po’

| inl (next, visited’, po’, stk’) ⇒
let _ := dfs_tmn succs visited’ po’ stk’ _ in _

end.

Program Definition dfs succs entry : PostOrder :=

fst (dfs_tmn succs empty (mkPO 1 empty) (mkFr entry [succs[entry]]) _).

Fig. 6. Termination of the DFS algorithm

In Figure 6, dfs tmn proves DFS termination, which is established by well-
founded recursion over the number of unvisited nodes. This holds because each
iteration the DFS visits more nodes. The invariant that the number of unvis-
ited nodes decreases holds only for well-formed recursion states (wf stk), which
requires that all visited nodes and unprocessed nodes in frames are in the CFG.

To reason about dfs, we defined a well-founded inductive principle for dfs
(See our code). With the inductive principle, we proved the following properties
of DFS that are useful to establish the correctness of AC and CHK.

Variable (succs: ATree.t (list l)) (entry:l) (po:PostOrder).

Hypothesis Hdfs: dfs succs entry = po.

First of all, a non-entry node must have at least one predecessor that has a
greater PO number than the node’s. This is because 1) DFS must visit at least
one predecessor of a node before visiting the node; 2) PO gives greater numbers
to the nodes visited earlier:

Lemma dfs_order: forall l1 p1, l1 <> entry →(PO_l2p po)[l1] = Some p1,

exists l2, exists p2,

In l2 ((make_preds succs)[l1]) ∧(PO_l2p po)[l2] = Some p2 ∧p2 > p1.

(* Given succs, (make_preds succs) computes predecessors of each node. *)

Second, a node is PO-numbered iff the node is reachable:

Lemma dfs_reachable:forall l,(PO_l2p po)[l] <> None <→ (entry,succs)→* l.

Moreover, different nodes do not have the same PO number.
Lemma dfs_inj: forall l1 l2 p,

(PO_l2p po)[l2] = Some p →(PO_l2p po)[l1] = Some p →l1 = l2.

34 J. Zhao and S. Zdancewic

Module Kildall (NS: PNODE_SET) (L: LATTICE). Section Kildall.

Variable succs: PTree.t (list positive).

Variable transf : positive →L.t →L.t.

Variable inits: list (positive * L.t).

Record state : Type := mkst { sin: PMap.t L.t; swrk: NS.t }.

Definition start_st := mkst (start_state_in inits) (NS.init succs).

Definition propagate_succ (out: L.t) (s: state) (n: positive) :=

let oldl := s.(sin)[n] in

let newl := L.lub oldl out in

if L.eq newl oldl

then mkst (PMap.set n newl s.(sin)) (NS.add n s.(swrk)) else s.

Definition step (s: state): PMap.t L.t + state :=

match NS.pick s.(swrk) with

| None ⇒inl s.(sin)

| Some(n, rem) ⇒inr (fold_left

(propagate_succ (transf n s.(sin)[n]))

succs[n] (mkst s.(sin) rem))

end.

Variable num : positive.

Definition fixpoint : option (PMap.t L.t):= Iter.iter step num start_st.

End Kildall. End Kildall.

Fig. 7. Kildall’s algorithm

3.2 Kildall’s Algorithm

Figure 7 summarizes the Kildall module used in the CompCert project. The
module is parameterized by the following components: NS that provides the
order to process nodes, and a lattice L that defines top, bot, equality (eq), least
upper bound (lub) and order (ge) of the abstract domain of an analysis; succs
that is a tree that maps each node to its successors; transf that is the transfer
function of Kildall analysis; inits that initializes the analysis. Given the inputs,
state records the iteration states that include sin, which records analysis states
for each node, and a work list swrk containing nodes to process.

The fixpoint implements iterations by Iter.iter—bounded recursion with
a maximal step number (num) [4]. Iter.iter is partial if an analysis does not
stop after the maximal number of steps. A monotone analysis must reach its
fixpoint after a finite number of steps. Therefore, we can alway pick a large
enough number of steps for a monotone analysis.

Initially Kildall’s algorithm calls start st to initialize iteration states. Nodes
not in inits are initialized to be the bottom of L. Then start st adds all
nodes into the worklist and starts loops. step defines the loop body. At step,
Kildall’s algorithm checks if there are still unprocessed nodes in the worklist. If
the worklist is empty, the algorithm stops. Otherwise, step picks a node from
the worklist in term of the order provided by NS, and then propagates its infor-
mation (computed by transf) to all the node’s successors by propagate succ.
In propagate succ, the new value of a successor is L.lub of its old value and

Mechanized Verification of Computing Dominators 35

the propagated value from its predecessor. The algorithm only adds a successor
into the worklist when its value is changed.

Kildall’s algorithm satisfies the following properties:

Variable res: PMap.t L.t.

Hypothesis Hfix: fixpoint = Some res.

First of all, the worklist contains nodes that have unstable successors in the
current state. Formally, each state st preserves the following invariant:

forall n, NS.In n st.(swrk) ∨
(forall s, In s (succs[n]) →L.ge st.(sin)[s] (transf n st.(sin)[n])).

Each iteration may only remove the picked node n from the worklist. If none of
n’s successors’ values are changed, no matter whether n belongs to its successors,
n won’t be added back to the worklist. Therefore, the above invariant holds. This
invariant implies that when the analysis stops, all nodes hold the in-equations:

Lemma fixpoint_solution: forall s,

In s (succs[n]) →L.ge res[s] (transf n res[n]).

The second property of Kildall’s algorithm is monotonicity. At each iteration,
the value of a successor of the picked node can only be updated from oldl to
newl. Because newl is the least upper bound of oldl and out, newl is greater
than or equal to oldl. Therefore, iteration states are always monotonic:

Lemma fixpoint_mono: incr (start_state_in inits) res.

where incr is a pointwise lift of L.ge for corresponding nodes. With monotonic-
ity, we proved that Kildall’s algorithm must terminate (See our code).

3.3 The AC Algorithm

AC instantiates Kildall with PN that picks nodes in reverse PO (by picking
the maximal nodes from the worklist), and LDoms that defines the lattice of
AC. Dominance analysis computes a set of strict dominators for each node. We
represent the domain of LDoms by option (set l). The top and bot of LDoms
are Some nil and None respectively. The least upper bound, order and equality
of LDoms are lifted from set intersection, set inclusion, and set equality to option:
None is smaller than Some x for any x. This design leads to better performance
by providing shortcuts for operations on None. Note that using None as bot does
not make the height of LDoms to be infinite, because any non-bot element can
only contain nodes in the CFG, and the height of LDoms is N .

AC uses the following transfer function and initialization:

Definition transf l1 input := l1 {+} input.

Definition inits := [(e, LDoms.top)].

Initially AC sets the strict dominators of the entry to be empty, and other nodes’
strict dominators to be all labels in the function. The algorithm will iteratively
remove non-strict-dominators from the sets until the conditions below hold (by
Lemma fixpoint mono and Lemma fixpoint solution):

(forall s, In s (succs[n]) →
L.ge (st.(sin))[s] (n{+}(st.(sin))[n])) ∧(st.(sin))[e] = {}.

which proves that AC satisfies entry sound and successors sound.

36 J. Zhao and S. Zdancewic

To show that the algorithm is complete, it is sufficient to show that each
iteration state st preserves the following invariant:

forall n1 n2, ∼n1 ‘In‘ st.(sin)[n2] →∼(e, succs) |= n1 >> n2.

In other words, AC only removes non-strict dominators. Initially, AC sets the
entry’s strict dominators to be empty. Because in a well-formed CFG, the entry
has no predecessors, the invariant holds at the very beginning. At each iteration,
suppose that we pick a node n, and updates one of its successors s. Consider a
node n’ not in LDoms.lub st.(sin)[s] (n {+} st.(sin)[n]). If n’ is not in
LDoms.lub st.(sin)[s], then n’ does not strictly dominate s because st holds
the invariant. If n’ is not in (n {+} st.(sin)[n]), then n’ does not strictly
dominate n because st holds the invariant. Appending the path from the entry
to n that bypasses n’ with the edge from n to s leads to a path from the entry
to s that bypasses n’. Therefore, n’ does not strictly dominate s, either.

4 Extension: The Cooper-Harvey-Kennedy Algorithm

The CHK algorithm is based on the following observation: when AC processes
nodes in a reversed post-order (PO), if we represent the set of strict dominators
in a list, and always add a newly discovered strict dominator at the head of the
list (on the left in Figure 9), the list must be sorted by PO. Figure 9 shows the
execution of the algorithm for the CFG in Figure 3.

Because lists of strict dominators are always sorted, we can implement the set
intersection (lub) and the set comparison (eq) of two sorted lists by traversing
the two lists only once. Moreover, the algorithm only calls eq after lub. There-
fore, we can group lub and eq into LDoms.lub together. The following defines a
merge function used by LDoms.lub that intersects two sorted lists and returns
whether the final result is equal to the left one:

Program Fixpoint merge (l1 l2: list positive) (acc:list positive * bool)

{measure (length l1 + length l2)}: (list positive * bool) :=

let ’(rl, changed) := acc in

match l1, l2 with

| p1::l1’, p2::l2’ ⇒
match (Pcompare p1 p2 Eq) with

| Eq ⇒merge l1’ l2’ (p1::rl, changed)

| Lt ⇒merge l1’ l2 (rl, true)

| Gt ⇒merge l1 l2’ (rl, changed)

end

| nil, _ ⇒acc

| _::_, nil ⇒(rl, true)

end.

(* (Pcompare p1 p2 Eq) returns whether p1 = p2, p1 < p2 or p1 > p2. *)

4.1 Correctness

To show that CHK is still correct, it is sufficient to show that all lists are well-
sorted at each iteration, which ensures that the above merge correctly imple-

Mechanized Verification of Computing Dominators 37

Fig. 8. Dominator Trees

Nodes sin

5 [] [] [] [] [] [] [] [] []
4 · [5] [5] [5] [5] [5] [5] [5] [5]
3 · · [45] [45] [45] [5] [5] [5] [5]
2 · · · [345] [345] [345] [35] [35] [35]
1 · [5] [5] [5] [5] [5] [5] [5] [5]

swrk [54321] [4321] [321] [21] [1] [3] [21] [1] []

Fig. 9. The execution of CHK

ments intersection and comparison. First, if a node with number n still maps to
bot, the worklist must contain one of its predecessors that has a greater number.
forall n, in_cfg n succs →(st.(sin))[n] = None →
exists p, In p ((make_preds succs)[n]) ∧p > n ∧PN.In p st.(st_wrk).

(* in_cfg checks if a node is in CFG. *)

This invariant holds in the beginning because all nodes are in the worklist. At
each iteration, the invariant implies that the picked node n with the maximal
number in st.(st wrk) is not bot. Suppose it is bot, there cannot be any
node with greater number in the worklist. This property ensures that after each
iteration, the successors of n cannot be bot, and that the new nodes added into
the worklist cannot be bot, because they must be those successors. Therefore,
the predecessors of the remaining bot nodes still in the worklist cannot be n.
Since only n is removed, the rest of the bot nodes still hold the above invariant.

In the algorithm, a node’s value is changed from bot to non-bot when one of
its non-bot predecessors is processed. With the above invariant, we know that
the predecessor must be of larger number. Once a node turns to be non-bot,
no new elements will be added in its set. Therefore, this implies that, at each
iteration, if the value of a node is not bot, then all its candidate strict dominators
must be larger than the node:

forall n sdms, (st.(sin))[n] = Some sdms →Forall (Plt n) sdms.

(* Plt is the less-than of positive. *)

Moreover, a node n is considered as a candidate of strict dominators originally by
tranf that always cons n at the head of (st.(sin))[n]. Therefore, we proved
that the non-bot value of a node is always sorted:

forall n sdms, (st.(sin))[n] = Some sdms →Sorted Plt (n::sdms).

5 Applications

5.1 Type Checker

The first application is the type checker of Vminus. The Vminus language in
Figure 1 is in SSA form [6] in which each variable may be defined only once,
statically, and each use of the variable must be dominated by its definition with
respect to the control-flow graph of the containing function. To maintain these
invariants in the presence of branches and loops, SSA form uses φ-instructions to

38 J. Zhao and S. Zdancewic

merge definitions from different incoming paths. As usual in SSA representation,
the φ nodes join together values from a list of predecessor blocks of the control-
flow graph—each φ node takes a list of (value, label) pairs that indicates the value
chosen when control transfers from a predecessor block with the associated label.

To check that a program is in SSA form, we need to extend domination
relations from the block-level to the instruction-level. Instruction positions are
denoted by program counters pc. We write f [pc] = �insn� if insn is at pc of f .

Definition 2 (Domination (Instruction-level))

– valuses r � val = r.
– insn uses r � ∃val. valuses r ∧ val is an operand of insn.
– A variable r is defined at a program counter pc of f , written f defines r @ pc,

if f [pc] = �insn� and r is the left-hand side of insn.
– In function f , pc1 strictly dominates pc2, written f |= pc1 � pc2, if pc1

and pc2 are at distinct blocks l1 and l2 respectively and f |= l1 � l2; or if pc1
and pc2 are in the same block, and pc1 appears earlier than pc2.

– sdomf (pc) is the set of variables whose definitions strictly dominate pc:
{r|f defines r @ pc′ and f |= pc′ � pc}

Then we check if a program is of SSA form with the following rules:

∀r.(φ̂uses r =⇒ r ∈ sdomf (pc))

f �� φ̂ @ pc

∀rj .(valj uses rj =⇒ rj ∈ sdomf (lj . t))
j

f �� r = phi typ [valj , lj]
j

The left rule ensures that a non-φ-instruction (c or tmn) can only use the defi-
nitions in the scope of sdomf (pc); the right rule ensures that in φ, an incoming
value must use the definition that strictly dominates the end of the correspond-
ing incoming block where l . t is the program counter at the end of l . Please refer
to [14] for the type safety proofs of Vminus.

5.2 SSA-Based Optimizations

The SSA form is good for implementing optimizations because the SSA invari-
ants make def/use information of variables explicit, enforcing fewer mutable
states [2]. An SSA-based transformation is correct if it preserves the semantics
of the original program and its transformed program is still in SSA. Here, we
briefly show how to reason about well-formedness-preservation by examples.

First, we proved that the strict domination relation at the instruction level
still satisfies transitivity and acyclicity.

Lemma 5
- If f |= pc1 � pc2 and f |= pc2 � pc3, then f |= pc1 � pc3.
- If pc is in a reachable block, then ¬f |= pc � pc.

Consider the following typical SSA-based optimization:

Mechanized Verification of Computing Dominators 39

Original Transformed

e : · · ·
@pc1

br r0 l1 l2
l1 : r3 = phi int[0, e][r5, l1]

@pc2 r4 := r1 ∗ r2
r5 := r3 + r4
r6 := r5 ≥ 100
br r6 l1 l2

l2 : r7 = phi int[0, e][r5, l2]
@pc3 r8 := r1 ∗ r2

r9 := r8 + r7

e : · · ·
r4 := r1 ∗ r2
br r0 l1 l2

l1 : r3 = phi int[0, e][r5, l1]

r5 := r3 + r4
r6 := r5 ≥ 100
br r6 l1 l2

l2 : r7 = phi int[0, e][r5, l1]

r9 := r4 + r7

In the original program, r1 ∗ r2 is a partial common expression for the defini-
tions of r4 and r8, because there is no domination relation between r4 and r8.
Therefore, eliminating the common expression directly is not correct.

We might transform this program in three steps. First, we move the instruction
r4 := r1 ∗ r2 from l1 to the end of e. Because e strictly dominates l1, we have
f |= pc1 � pc2 where pc1 is exactly before e. t; f defines r4 @ pc2. By Lemma 5,
the definition of r4 at pc1 should still strictly dominate all its uses.

We have f |= pc1 � pc3 where f defines r8 @ pc3, because e strictly domi-
nates l2. Then, we can safely replace all the uses of r8 by r4, because the definition
of r4 at pc1 dominates all the uses of r8 (by Lemma 5).

Finally, by Lemma 5, we know that r4 and r8 cannot be equal. Therefore, we
can remove r8, because there are no uses of r8 after the substitution. The final
program after the transformations is shown on the right of the above example.

5.3 Constructing Dominator Trees

In practice, compilers construct dominator trees from dominators, and analyze
or optimize programs by recursion on dominator trees.

Definition 3

– A block l1 is an immediate dominator of a block l2, written G |= l1 ≫ l2,
if G |= l1 � l2 and (∀G |= l3 � l2,G |= l3 �= l1).

– A tree is called a dominator tree of G if the tree has an edge from l to l ′

iff G |= l ≫ l ′.

Figure 8 shows the dominator tree of a CFG, in which solid edges represent
tree edges, and dotted edges represent non-tree but CFG edges. Formally, a
dominator tree has the inductive well-formed property with which we can
reason about recursion on dominator trees: given a tree node l , 1) l is reachable;
2) l is different from all labels in l ’s descendants; 3) labels of l ’s subtrees are
disjointed; 4) l immediate-dominates its children; 5) l ’s subtrees are well-formed.

Consider the final analysis results of CHK in Figure 9, we can see that for
each node, its list of strict dominators exactly presents a path from root to the
node on the dominator tree. Therefore, we can construct a dominator tree by

40 J. Zhao and S. Zdancewic

0%

50%

100%

150%

200%

250%

O
ve

rh
ea

d
ov

er
 L

L
V

M

CHK-tree
CHK
AC-tree
AC

go
compress ijpeg gzip vpr

mesa art
ammp

equake
256.bzip2

parser
twolf

401.bzip2 gcc mcf
hmmer

libquantum lbm milc sjeng
h264ref

Geo. mean

Fig. 10. Analysis overhead over LLVM’s dominance analysis for our extracted analysis

merging the paths. We proved that the algorithm correctly constructs a well-
formed dominator tree (See our code). For the sake of space, we only present
that each tree edge represents ≫ by showing that for any node l in the final
state, the list of l ’s dominators must be sorted by ≫.

We first show that the list is sorted by �. Consider two adjacent nodes in
the list, l1 and l2, such that l1 < l2. Because of soundness, G |= l1 �= l and
G |= l2 �= l . By Lemma 4, G |= l2 � l1∨G |= l1 � l2. Suppose G |= l1 � l2, by
completeness, l1 must be in the strict dominators computed for l2, and therefore,
be greater than l2. This is a contradiction. Then, we prove that the list is sorted
by ≫. Suppose G |= l3 � l1. By Lemma 1, G |= l3 � l . By completeness, l3
must be in the list. We have two cases: 1) l3 ≥ l2: because the list is sorted by
�, G |= l3 �= l2; 2) l3 ≤ l1: this is a contradiction by Lemma 3.

6 Performance Evaluation

We use Coq extraction to obtain a certified implementation of AC and CHK.
We evaluate the performance of the resultant code on a 1.73 GHz Intel Core i7
processor with 8 GB memory running benchmarks selected from the SPEC CPU
benchmark suite that consist of over 873k lines of C source code.

Figure 10 reports the analysis time overhead (smaller is better) over the LLVM
dominance analysis (which uses LT) baseline. LT only generates dominator trees.
Given a dominator tree, the strict dominators of a tree node are all the node’s
ancestors. The second left bar of each group shows the overhead of CHK, which
provides an average overhead of 27.45%. The right-most bar of each group is the
overhead of AC, which provides 36.02% on average.

To study the asymptotic complexity, Figure 11 shows the result of graphs that
elicit the worst-case behavior used in [8]. On average, CHK is 86.59 times slower
than LT. The ‘ ’ indicates that the running time is too long to collect. For the
testcases on which AC stops, AC is 226.14 times slower than LT.

The results of CHK match earlier experiments [8,5]: in common cases, CHK
runs nearly as fast as LT. For programs with reducible CFGs, a forward iteration
analysis in reverse PO halts in no more than 6 passes [9], and most CFGs of the
benchmarks are reducible. The worst-case tests contain huge irreducible CFGs.

Mechanized Verification of Computing Dominators 41

Instance Analysis Times (s)

Name Vertices Edges LT CHK CHK-tree AC AC-tree

idfsquad 6002 10000 0.08 10.54 24.87
ibfsquad 4001 6001 0.14 11.38 13.16 12.43 30.00
itworst 2553 5095 0.14 8.47 11.22 19.16 69.72
sncaworst 3998 3096 0.19 17.03 32.08 205.07 740.53

Fig. 11. Worst-case behavior

Different from these experiments, AC does not provide large overhead, because
we use None to represent bot, which provides shortcuts for set operations.

As shown in Section 5.3, CHK computes dominator trees implicitly, while AC
needs additional costs to create dominator trees. Figure 10 and Figure 11 also
report the performance of the dominator tree construction. CHK-tree stands for
the algorithm that first computes dominators by CHK, and then runs the tree
construction defined in Section 5.3. AC-tree stands for the algorithm that first
computes dominators by AC, sorts strict dominators for each node, and then
runs the same tree construction. For common programs, on average, CHK-tree
provides an overhead 40.00% over the baseline; AC-tree provides an overhead
78.20% over the baseline (gcc’s overhead is 361.23%). The additional overhead
of AC-tree is from its sorting algorithm. For worst-case programs, on average,
CHK-tree is 104.48 times slower than LT. For the testcases on which AC-tree
stops, on average, AC-tree is 738.24 times slower than LT.

These results indicate that CHK makes a good trade-off between simplicity
and efficiency.

7 Related Work

Machine-Checked Formalizations. The Vellvm project [14] uses dominance
analysis to design a type checker of LLVM bitcode in SSA form. This paper ex-
tends and generalizes the implementation and metatheory in the Vellvm project.
The CompCertSSA project [3] improves the CompCert compiler by creating a
verified SSA-based middle-end. They also formalize the AC algorithm to vali-
date SSA construction and GVN passes, and prove the soundness of AC. We
implement both AC and CHK—an extension of AC in a generic way, and prove
they are both sound and complete. We also provide the corresponding dominator
tree constructions, and evaluate performance.

Informal Formalizations. Georgiadis and Tarjan [7] propose an almost linear-
time algorithm that validates if a tree is a dominator tree of a CFG. Although
the algorithm is fast, it is nearly as complicated as the LT algorithm, and it re-
quires a substantial amount of graph theory. Ramalingam [13] proposes another
dominator tree validation algorithm by reducing validating dominator trees to
validating loop structures. However, in practice, most of modern loop identifi-
cation algorithms used in LLVM and GCC are based on dominance analysis to
find loop headers and bodies.

42 J. Zhao and S. Zdancewic

8 Conclusion

This paper provided an abstract specification of dominance analysis that is cru-
cial for compiler design/verification and program analysis. We implemented and
certified an instance of the specification that has a good trade-off between ef-
ficiency and simplicity. We also presented several applications of the analysis:
a type checker for the SSA form; verifying SSA-based optimizations; and con-
structing dominator trees. This development is a part of the Vellvm project.
However, our work might be used in other compiler verification projects [3].

Acknowledgments. We thank Santosh Nagarakatte and Milo Martin whose
valuable discussions and technical input helped us carry out this research. This
research was sponsored in part by NSF grant CCF-1065116. The views and
conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied,
of the U.S. Government.

References

1. Allen, F.E., Cocke, J.: Graph theoretic constructs for program control flow analysis.
Technical report, IBM T.J. Watson Research Center (1972)

2. Appel, A.W.: Modern Compiler Implementation in C: Basic Techniques. Cam-
bridge University Press (1997)

3. Barthe,G.,Demange,D.,Pichardie,D.: AFormallyVerified SSA-BasedMiddle-End.
In: Seidl,H. (ed.)ESOP2012.LNCS,vol. 7211, pp. 47–66. Springer,Heidelberg (2012)

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions (2004)

5. Cooper, K.D., Harvey, T.J., Kennedy, K.: A simple, fast dominance algorithm
(2000), www.cs.rice.edu/~keith/Embed/dom.pdf

6. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13, 451–490 (1991)

7. Georgiadis, L., Tarjan, R.E.: Dominator tree verification and vertex-disjoint paths.
In: SODA 2005, pp. 433–442 (2005)

8. Georgiadis, L., Werneck, R.F., Tarjan, R.E., August, D.I.: Finding Dominators in
Practice. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 677–688.
Springer, Heidelberg (2004)

9. Kam, J.B., Ullman, J.D.: Global data flow analysis and iterative algorithms. J.
ACM 23(1), 158–171 (1976)

10. Kildall, G.A.: A unified approach to global program optimization. In: POPL 1973,
pp. 194–206 (1973)

11. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst. 1, 121–141 (1979)

12. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reason-
ing 43(4), 363–446 (2009)

13. Ramalingam, G.: On loops, dominators, and dominance frontiers. ACM Trans.
Program. Lang. Syst. 24(5), 455–490 (2002)

14. Zhao, J., Nagarakatte, S., Martin, M.M.K., Zdancewic, S.: Formalizing the LLVM
intermediate representation for verified program transformations. In: POPL 2012
(2012)

www.cs.rice.edu/~keith/Embed/dom.pdf

On the Correctness of an Optimising Assembler

for the Intel MCS-51 Microprocessor�

Dominic P. Mulligan and Claudio Sacerdoti Coen

Dipartimento di Scienze dell’Informazione,
Universitá degli Studi di Bologna

Abstract. We present a proof of correctness in Matita for an optimising
assembler for the MCS-51 microcontroller. The efficient expansion of
pseudoinstructions, namely jumps, into machine instructions is complex.
We isolate the decision making over how jumps should be expanded from
the expansion process itself as much as possible using ‘policies’, making
the proof of correctness for the assembler more straightforward.

Our proof strategy contains a tracking facility for ‘good addresses’ and
only programs that use good addresses have their semantics preserved
under assembly, as we observe that it is impossible for an assembler to
preserve the semantics of every assembly program. Our strategy offers
increased flexibility over the traditional approach to proving the correct-
ness of assemblers, wherein addresses in assembly are kept opaque and
immutable. In particular, we may experiment with allowing the benign
manipulation of addresses.

Keywords: Verified software, CerCo (Certified Complexity), MCS-51
microcontroller, Matita proof assistant.

1 Introduction

We consider the formalisation of an assembler for the Intel MCS-51 8-bit mi-
croprocessor in the Matita proof assistant [1]. This formalisation forms a major
component of the EU-funded CerCo (‘Certified Complexity’) project [3], con-
cerning the construction and formalisation of a concrete complexity preserving
compiler for a large subset of the C programming language.

The MCS-51 dates from the early 1980s and is commonly called the 8051/8052.
Derivatives are still widely manufactured by a number of semiconductor foundries,
with the processor being used especially in embedded systems.

The MCS-51 has a relative paucity of features compared to its more modern
brethren, with the lack of any caching or pipelining features meaning that tim-
ing of execution is predictable, making the MCS-51 very attractive for CerCo’s
ends. However, the MCS-51’s paucity of features—though an advantage in many
respects—also quickly becomes a hindrance, as the MCS-51 features a relatively

� The project CerCo acknowledges the financial support of the Future and Emerg-
ing Technologies (FET) programme within the Seventh Framework Programme for
Research of the European Commission, under FET-Open grant number: 243881.

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 43–59, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

44 D.P. Mulligan and C. Sacerdoti Coen

minuscule series of memory spaces by modern standards. As a result our C com-
piler, to be able to successfully compile realistic programs for embedded devices,
ought to produce ‘tight’ machine code.

To do this, we must solve the ‘branch displacement’ problem—deciding how
best to expand pseudojumps to labels in assembly language to machine code
jumps. The branch displacement problem arises when pseudojumps can be ex-
panded in different ways to real machine instructions, but the different expan-
sions are not equivalent (e.g. differ in size or speed) and not always correct (e.g.
correctness is only up to global constraints over the compiled code). For instance,
some jump instructions (short jumps) are very small and fast, but they can only
reach destinations within a certain distance from the current instruction. When
the destinations are too far away, larger and slower long jumps must be used. The
use of a long jump may augment the distance between another pseudojump and
its target, forcing another long jump use, in a cascade. The job of the optimising
compiler (assembler) is to individually expand every pseudo-instruction in such
a way that all global constraints are satisfied and that the compiled program is
minimal in size and faster in concrete time complexity. This problem is known
to be computationally hard for most CISC architectures (see [4]).

To simplify the CerCo C compiler we have chosen to implement an optimising
assembler whose input language the compiler will target. Labels, conditional
jumps to labels, a program preamble containing global data and a MOV instruction
for moving this global data into the MCS-51’s one 16-bit register all feature in
our assembly language. We further simplify by ignoring linking, assuming that
all our assembly programs are pre-linked.

Another complication we have addressed is that of the cost model. CerCo
imposes a cost model on C programs or, more specifically, on simple blocks of
instructions. This cost model is induced by the compilation process itself, and
its non-compositional nature allows us to assign different costs to identical C
statements depending on how they are compiled. In short, we aim to obtain a
very precise costing for a program by embracing the compilation process, not
ignoring it. At the assembler level, this is reflected by our need to induce a
cost model on the assembly code as a function of the assembly program and
the strategy used to solve the branch displacement problem. In particular, our
optimising assembler should also return a map that assigns a cost (in clock
cycles) to every instruction in the source program. We expect the induced cost
to be preserved by the assembler: we will prove that the compiled code tightly
simulates the source code by taking exactly the predicted amount of time.

Note that the temporal tightness of the simulation is a fundamental prereq-
uisite of the correctness of the simulation because some functions of the MCS-
51—timers and I/O—depend on the microprocessor’s clock. If the pseudo- and
concrete clock differ the result of an I/O operation may not be preserved.

Branch displacement algorithms must have a deep knowledge of the way the
rest of the assembler works in order to build globally correct solutions. Proving
their correctness is quite a complex task (see, for instance, the companion pa-
per [2]). Nevertheless, the correctness of the whole assembler only depends on

On the Correctness of an Optimising Assembler 45

the correctness of the branch displacement algorithm. Therefore, in the rest of
the paper, we presuppose the existence of a correct policy, to be computed by a
branch displacement algorithm if it exists. A policy is the decision over how any
particular jump should be expanded; it is correct when the global constraints
are satisfied. The assembler fails to assemble an assembly program if and only if
a correct policy does not exist. This is stated in an elegant way in the dependent
type of the assembler: the assembly function is total over a program, a policy
and the proof that the policy is correct for that program.

A final complication in the proof is due to the kind of semantics associated
to pseudo-assembly programs. Should assembly programs be allowed to freely
manipulate addresses? The traditional answer is ‘no’: values stored in mem-
ory or registers are either concrete data or symbolic addresses. The latter can
only be manipulated in very restricted ways and programs that do not do so
are not assigned a semantics and cannot be reasoned about. All programs that
have a semantics have it preserved by the assembler. We take an alternative
approach, allowing programs to freely manipulate addresses non-symbolically
but only granting a preservation of semantics to those programs that act in
‘well-behaved’ ways. In principle, this should allow some reasoning on the actual
semantics of malign programs. In practice, we note how our approach facilitates
more code reuse between the semantics of assembly code and object code.

The formalisation of the assembler and its correctness proof are given in
Sect. 2. Sect. 3 presents the conclusions and relations with previous work.

Matita. Matita is a proof assistant based on a variant of the Calculus of
(Co)inductive Constructions [1]. It features dependent types that we exploit
in the formalisation. The (simplified) syntax of the statements and definitions in
the paper should be self-explanatory. Pairs are denoted with angular brackets,
〈−,−〉.

Matita features a liberal system of coercions. It is possible to define a uniform
coercion λx.〈x, ?〉 from every type T to the dependent product Σx : T.P x. The
coercion opens a proof obligation that asks the user to prove that P holds for
x. When a coercion must be applied to a complex term (a λ-abstraction, a local
definition, or a case analysis), the system automatically propagates the coercion
to the sub-terms For instance, to apply a coercion to force λx.M : A → B to
have type ∀x : A.Σy : B.P x y, the system looks for a coercion from M : B to
Σy : B.P x y in a context augmented with x : A. This is significant when the
coercion opens a proof obligation, as the user will be presented with multiple, but
simpler proof obligations in the correct context. In this way, Matita supports the
‘Russell’ proof methodology developed by Sozeau in [12], with an implementation
that is lighter and more tightly integrated with the system than that of Coq.

2 Certification of an Optimising Assembler

Our aim here is to explain the main ideas and steps of the certified proof of
correctness for an optimising assembler for the MCS-51.

46 D.P. Mulligan and C. Sacerdoti Coen

In Subsect. 2.1 we sketch an operational semantics (a realistic and efficient
emulator) for the MCS-51. We also introduce a syntax for decoded instructions
that will be reused for the assembly language.

In Subsect. 2.2 we describe the assembly language and its operational seman-
tics. The latter is parametric in the cost model that will be induced by the
assembler, reusing the semantics of the machine code on all ‘real’ instructions.

Branch displacement policies are introduced in Subsect. 2.3 where we also
describe the assembler as a function over policies as previously described.

To prove our assembler correct we show that the object code given in output,
together with a cost model for the source program, simulates the source program
executed using that cost model. The proof can be divided into two main lem-
mas. The first is correctness with respect to fetching, described in Subsect. 2.4.
Roughly it states that a step of fetching at the assembly level, returning the
decoded instruction I, is simulated by n steps of fetching at the object level
that returns instructions J1, . . . , Jn, where J1, . . . , Jn is, amongst the possible
expansions of I, the one picked by the policy. The second lemma states that
J1, . . . , Jn simulates I but only if I is well-behaved, i.e. manipulates addresses
in ‘good’ ways. To keep track of well-behaved address manipulations we record
where addresses are currently stored (in memory or an accumulator). We intro-
duce a dynamic checking function that inspects this map to determine if the
operation is well-behaved, with an affirmative answer being the pre-condition of
the lemma. The second lemma is detailed in Subsect. 2.5 where we also establish
correctness of our assembler as a composition of the two lemmas: programs that
are well-behaved when executed under the cost model induced by the compiler
are correctly simulated by the compiled code.

2.1 Machine Code and Its Semantics

We implemented a realistic and efficient emulator for the MCS-51 microproces-
sor. An MCS-51 program is just a sequence of bytes stored in the read-only code
memory of the processor, represented as a compact trie of bytes addressed by the
program counter. The Status of the emulator is a record that contains the mi-
croprocessor’s program counter, registers, stack pointer, clock, special function
registers, data memory, and so on. The value of the code memory is a parameter
of the record since it is not changed during execution.

The Status records is itself an instance of a more general datatype PreStatus
that abstracts over the implementation of code memory in order to reuse the
same datatype for the semantics of the assembly language in the next section.

The execution of a single instruction is performed by the execute 1 function,
parametric over the content cm of the code memory:

definition execute_1: ∀cm. Status cm → Status cm

The function execute 1 closely matches the fetch-decode-execute cycle of the
MCS-51 hardware, as described by a Siemen’s manufacturer’s data sheet [11].
Fetching and decoding are performed simultaneously: we first fetch, using the

On the Correctness of an Optimising Assembler 47

program counter, from code memory the first byte of the instruction to be exe-
cuted, decoding the resulting opcode, fetching more bytes as is necessary to de-
code the arguments. Decoded instructions are represented by the instruction

data type which extends a data type of preinstructions that will be reused
for the assembly language.

inductive preinstruction (A: Type[0]): Type[0] :=

| ADD: �acc_a� → �registr; direct; indirect; data� → preinstruction A

| DEC: �acc_a; registr; direct; indirect� → preinstruction A

| JB: �bit_addr� → A → preinstruction A

| . . .
inductive instruction: Type[0] :=

| LCALL: �addr16� → instruction

| AJMP: �addr11� → instruction

| RealInstruction: preinstruction �relative� → instruction.

| . . .

The MCS-51 has many operand modes, but an unorthogonal instruction set:
every opcode is only enable for a finite subset of the possible operand modes.
Here we exploit dependent types and an implicit coercion to synthesise the type
of arguments of opcodes from a vector of names of operand modes. For example,
ACC has two operands, the first one constrained to be the A accumulator, and the
second one to be a disjoint union of register, direct, indirect and data operand
modes.

The parameterised type A of preinstruction represents the addressing mode
allowed for conditional jumps; in the RealInstruction constructor we con-
straint it to be a relative offset. A different instantiation (labels) will be used in
the next section for assembly programs.

Once decoded, execution proceeds by a case analysis on the decoded instruc-
tion, following the operation of the hardware. For example, the DEC preinstruc-
tion (‘decrement’) is executed as follows:

| DEC addr ⇒
let s := add_ticks1 s in

let 〈result, flags〉 := sub_8_with_carry (get_arg_8 s true addr)

(bitvector_of_nat 8 1) false in

set_arg_8 s addr result

Here, add ticks1 models the incrementing of the internal clock of the micro-
processor; it is a parameter of the semantics of preinstructions that is fixed
in the semantics of instructions according to the manufacturer datasheet.

2.2 Assembly Code and Its Semantics

An assembly program is a list of potentially labelled pseudoinstructions, bundled
with a preamble consisting of a list of symbolic names for locations in data
memory (i.e. global variables). All preinstructions are pseudoinstructions, but

48 D.P. Mulligan and C. Sacerdoti Coen

conditional jumps are now only allowed to use Identifiers (labels) as their
target.

inductive pseudo_instruction: Type[0] :=

| Instruction: preinstruction Identifier → pseudo_instruction

. . .
| Jmp: Identifier → pseudo_instruction

| Call: Identifier → pseudo_instruction

| Mov: �dptr� → Identifier → pseudo_instruction.

The pseudoinstructions Jmp, Call and Mov are generalisations of machine code
unconditional jumps, calls and move instructions respectively, all of whom act
on labels, as opposed to concrete memory addresses. The object code calls and
jumps that act on concrete memory addresses are ruled out of assembly programs
not being included in the preinstructions (see previous Section).

Execution of pseudoinstructions is an endofunction on PseudoStatus. A
PseudoStatus is an instance of PreStatus that differs from a Status only in the
datatype used for code memory: a list of optionally labelled pseudoinstructions
versus a trie of bytes. The PreStatus type is crucial for sharing the majority of
the semantics of the two languages.

Emulation for pseudoinstructions is handled by execute 1 pseudo -

instruction:

definition execute_1_pseudo_instruction:

∀cm. ∀costing:(∀ppc: Word. ppc < |snd cm| → nat × nat).

∀s:PseudoStatus cm. program_counter s < |snd cm| → PseudoStatus cm

The type of execute 1 pseudo instruction is more involved than that of
execute 1. The first difference is that execution is only defined when the pro-
gram counter points to a valid instruction, i.e. it is smaller than the length
|snd cm| of the program. The second difference is the abstraction over the cost
model, abbreviated here as costing. The costing is a function that maps valid
program counters to pairs of natural numbers representing the number of clock
ticks used by the pseudoinstructions stored at those program counters. For con-
ditional jumps the two numbers differ to represent different costs for the ‘true
branch’ and the ‘false branch’. In the next section we will see how the optimising
assembler induces the only costing (induced by the branch displacement policy
deciding how to expand pseudojumps) that is preserved by compilation.

Execution proceeds by first fetching from pseudo-code memory using the pro-
gram counter—treated as an index into the pseudoinstruction list. This index is
always guaranteed to be within the bounds of the pseudoinstruction list due to
the dependent type placed on the function. No decoding is required. We then
proceed by case analysis over the pseudoinstruction, reusing the code for object
code for all instructions present in the MCS-51’s instruction set. For all newly
introduced pseudoinstructions, we simply translate labels to concrete addresses
before behaving as a ‘real’ instruction.

On the Correctness of an Optimising Assembler 49

We do not perform any kind of symbolic execution, wherein data is the disjoint
union of bytes and addresses, with addresses kept opaque and immutable. Labels
are immediately translated before execution to concrete addresses, and registers
and memory locations only ever contain bytes, never labels. As a consequence,
we allow the programmer to mangle, change and generally adjust addresses as
they want, under the proviso that the translation process may not be able to
preserve the semantics of programs that do this. This will be further discussed
in Subsect. 2.5. The only limitation introduced by this approach is that the size
of assembly programs is bounded by 216.

2.3 The Assembler

The assembler takes in input an assembly program made of pseudoinstructions
and a branch displacement policy for it. It returns both the object code (a list of
bytes to be loaded in code memory for execution) and the costing for the source.

Conceptually the assembler works in two passes. The first pass expands ev-
ery pseudoinstruction into a list of machine code instructions using the function
expand pseudo instruction. The policy determines which expansion among
the alternatives will be chosen for pseudo-jumps and pseudo-calls. Once the ex-
pansion is performed, the cost of the pseudoinstruction is defined as the cost of
the expansion. The second pass encodes as a list of bytes the expanded instruc-
tion list by mapping the function assembly1 across the list, and then flattening.

[P1, . . . Pn]

⎛
⎜⎜⎝Pi

Pi

expand pseudo instruction−−−−−−−−−−−−→[I1i,...I
q
i
]

assembly1∗−−−−−−−−−−−−→[0110]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
assembly 1 pseudo instruction

[0110]

⎞
⎟⎟⎠

∗

−−−→
assembly

[. . . 0110 . . .]

In order to understand the type for the policy, we briefly hint at the branch
displacement problem for the MCS-51. A detailed description is found in [2].
The MCS-51 features three unconditional jump instructions: LJMP and SJMP—
‘long jump’ and ‘short jump’ respectively—and an 11-bit oddity of the MCS-51,
AJMP. Each of these three instructions expects arguments in different sizes and
behaves in markedly different ways: SJMP may only perform a ‘local jump’ to an
address closer then 27 bytes; LJMP may jump to any address in the MCS-51’s
memory space and AJMP may jump to any address in the current memory page.
Memory pages partition the code memory into 28 disjoint areas. The size of each
opcode is different, with long jumps being larger than the other two. Because
of the presence of AJMP, an optimal global solution may be locally unoptimal,
employing a long jump where a shorter one could be used to force later jumps
to stay inside single memory pages.

Similarly, a conditional pseudojump must be translated potentially into a
configuration of machine code instructions, depending on the distance to the
jump’s target. For example, to translate a jump to a label, a single conditional
jump pseudoinstruction may be translated into a block of three real instructions
as follows (here, JZ is ‘jump if accumulator is zero’):

50 D.P. Mulligan and C. Sacerdoti Coen

JZ label JZ size of SJMP instruction
. . . translates to SJMP size of LJMP instruction

label : MOV A B =⇒ LJMP address of label
. . .
MOV A B

Naturally, if label is ‘close enough’, a conditional jump pseudoinstruction is
mapped directly to a conditional jump machine instruction; the above translation
only applies if label is not sufficiently local.

The cost returned by the assembler for a pseudoinstruction is set to be the
cost of its expansion in clock cycles. For conditional jumps that are expanded
as just shown, the costs of taking the true and false branches are different and
both need to be returned.

The expand pseudo instruction function is driven by a policy in the choice
of expansion of pseudoinstructions. The simplest idea is then to define policies as
functions that maps jumps to their size. This simple idea, however, is impractical
because short jumps require the offset of the target. For instance, suppose that
at address ppc in the assembly program we found Jmp l such that l is associated
to the pseudo-address a and the policy wants the Jmp to become a SJMP δ. To
compute δ, we need to know what the addresses ppc+1 and a will become in the
assembled program to compute their difference. The address a will be associated
to is a function of the expansion of all the pseudoinstructions between ppc and
a, which is still to be performed when expanding the instruction at ppc.

To solve the issue, we define the policy policy as a map from a valid pseudo-
address to the corresponding address in the assembled program. Therefore, δ in
the example above can be computed simply as policy(a) - policy(ppc + 1).
Moreover, the expand pseudo instruction emits a SJMP only after verifying for
each Jmp that δ < 128. When this is not the case, the function emits an AJMP if
possible, or an LJMP otherwise, therefore always picking the locally best solution.
In order to accommodate those optimal solutions that require local sub-optimal
choices, the policy may also return a Boolean used to force the translation of a
Jmp into a LJMP even if δ < 128. An essentially identical mechanism exists for
call instructions and conditional jumps.

In order for the translation of a jump to be correct, the address associated
to a by the policy and by the assembler must coincide. The latter is the sum of
the size of all the expansions of the pseudo-instructions that precede the one at
address a: the assembler just concatenates all expansions sequentially. To grant
this property, we impose a correctness criterion over policies. A policy is correct
when policy(0) = 0 and for all valid pseudoaddresses ppc

policy(ppc+1) = policy(ppc) + instruction size(ppc) ≤ 216

Here instruction size(ppc) is the size in bytes of the expan-
sion of the pseudoinstruction found at pcc, i.e. the length of
assembly 1 pseudo instruction(ppc).

On the Correctness of an Optimising Assembler 51

2.4 Correctness of the Assembler with Respect to Fetching

We now begin the proof of correctness of the assembler. Correctness consists of
two properties: firstly that the assembly process never fails when fed a correct
policy and secondly the object code returned simulates the source code when
the latter is executed according to the cost model also returned by the assem-
bler. This second property can be further decomposed into two main properties:
correctness with respect to fetching and decoding and correctness with respect
to execution.

Informally, correctness with respect to fetching is the following statement:
when we fetch an assembly pseudoinstruction I at address ppc, then we
can fetch the expanded pseudoinstruction(s) [J1, ..., Jn] = fetch pseudo -

instruction ... I ppc from policy ppc in the code memory obtained by
loading the assembled object code. This section reviews the main steps to prove
correctness with respect to fetching. Subsect. 2.5 deals with correctness with
respect to execution: the instructions [J1, ..., Jn] simulate the pseudoin-
struction I.

The (slightly simplified) Russell type for the assembly function is:

definition assembly:

∀program: pseudo_assembly_program. ∀policy.
Σassembled: list Byte × (BitVectorTrie nat 16).

|program| ≤ 216 → policy is correct for program →
policy (|program|) = |fst assembled| ≤ 216 ∧
∀ppc: pseudo_program_counter. ppc < 216 →
let pseudo_instr := fetch from program at ppc in

let assembled_i := assemble pseudo_instr in

|assembled_i| ≤ 216 ∧
∀n: nat. n < |assembled_i| → ∃k: nat.

nth assembled_i n = nth assembled (policy ppc + k).

In plain words, the type of assembly states the following. Given a correct policy
for the program to be assembled, the assembler never fails and returns some
object code and a costing function. Under the condition that the policy is ‘cor-
rect’ for the program and the program is fully addressable by a 16-bit word, the
object code is also fully addressable by a 16-bit word. Moreover, the result of
assembling the pseudoinstruction obtained fetching from the assembly address
ppc is a list of bytes found in the generated object code starting from the object
code address policy(ppc).

Essentially the type above states that the assembly function correctly ex-
pands pseudoinstructions, and that the expanded instruction reside consecu-
tively in memory. The fundamental hypothesis is correctness of the policy which
allows us to prove the inductive step of the proof, which proceeds by induction
over the assembly program. It is then straightforward to lift the property from
lists of bytes (object code) to tries of bytes (i.e. code memories after loading).
The assembly ok lemma does the lifting.

52 D.P. Mulligan and C. Sacerdoti Coen

We have established that every pseudoinstruction is compiled to a sequence of
bytes that is found in memory at the expect place. This does not trivially imply
that those bytes will be decoded in a correct way to recover the pseudoinstruction
expansion. Indeed, we first need to prove a lemma that establishes that the fetch
function is the left inverse of the assembly1 function:

lemma fetch_assembly:

∀pc: Word.

∀i: instruction.

∀code_memory: BitVectorTrie Byte 16.

∀assembled: list Byte.

assembled = assemble i →
let len := |assembled| in

let pc_plus_len := pc + len in

encoding_check pc pc_plus_len assembled →
let 〈instr, pc’, ticks〉 := fetch pc in

instr = i ∧ ticks = (ticks_of_instruction instr) ∧ pc’ = pc_plus_len.

We read fetch assembly as follows. Any time the encoding assembled of an
instruction i is found in code memory starting at position pc (the hypothesis
encoding check . . .), when we fetch at address pc retrieving the instruction i,
the new program counter is pc plus the length of the encoding, and the cost of the
fetched instruction is the one predicted for i. Or, in plainer words, assembling,
storing and then immediately fetching gets you back to where you started.

Remembering that assembly 1 pseudo instruction is the composition of
assembly1 with expand pseudo instruction, we can lift the previous result
from instructions (already expanded) to pseudoinstructions (to be expanded):

lemma fetch_assembly_pseudo:

∀program: pseudo_assembly_program.

∀policy,ppc,code_memory.
let 〈preamble, instr_list〉 := program in

let pi := π1 (fetch_pseudo_instruction instr_list ppc) in

let pc := policy ppc in

let instructions := expand_pseudo_instruction policy ppc pi in

let 〈l, a〉 := assembly_1_pseudoinstruction policy ppc pi in

let pc_plus_len := pc + l in

encoding_check code_memory pc pc_plus_len a →
fetch_many code_memory pc_plus_len pc instructions.

Here, l is the number of machine code instructions the pseudoinstruction
at hand has been expanded into. We assemble a single pseudoinstruction
with assembly 1 pseudoinstruction, which internally calls expand pseudo -

instruction. The function fetch many fetches multiple machine code instruc-
tions from code memory and performs some routine checks.

Intuitively, Lemma fetch assembly pseudo says that expanding a pseudoin-
struction into n instructions, encoding the instructions and immediately fetching
n instructions back yield exactly the expansion.

On the Correctness of an Optimising Assembler 53

Combining assembly ok with the previous lemma and a proof of correctness
of loading object code in memory, we finally get correctness of the assembler
with respect to fetching:

lemma fetch_assembly_pseudo2:

∀program. |snd program| ≤ 216 →
∀policy. policy is correct for program →
∀ppc. ppc < |snd program| →
let 〈assembled, costs’〉 := π1 (assembly program policy) in

let cmem := load_code_memory assembled in

let 〈pi, newppc〉 := fetch_pseudo_instruction program ppc in

let instructions := expand_pseudo_instruction policy ppc pi in

fetch_many cmem (policy newppc) (policy ppc) instructions.

Here we use π1 to project the existential witness from the Russell-typed function
assembly. We read fetch assembly pseudo2 as follows. Suppose we are given
an assembly program which can be addressed by a 16-bit word and a policy
that is correct for this program. Suppose we are able to successfully assemble
an assembly program using assembly and produce a code memory, cmem. Then,
fetching a pseudoinstruction from the pseudo-code memory stored in the inter-
val [ppc, newppc] corresponds to fetching a sequence of instructions from the real
code memory, stored in the interval [policy(ppc), policy(ppc+1)]. The correspon-
dence is precise: the fetched instructions are exactly those obtained expanding
the pseudoinstruction according to policy.

In order to complete the proof of correctness of the assembler, we need to
prove that each pseudoinstruction is simulated by the execution of its expansion
(correctness with respect to execution). In general this is not the case when
instructions freely manipulate program addresses. Characterising well-behaved
programs and proving correctness with respect to expansion is discussed next.

2.5 Correctness for ‘Well-Behaved’ Assembly Programs

Most assemblers can map a single pseudoinstruction to zero or more machine
instructions, whose size (in bytes) is not independent of the expansion. The
assembly process therefore always produces a map (which for us is just the policy)
that associates to each assembly address a a code memory address policy(a)
where the instructions that correspond to the pseudoinstruction at a are located.
Ordinarily, the map is not just a linear function, but depends on the local choices
and global optimisations performed.

During execution of assembly code, addresses can be stored in memory
locations or in the registers. Moreover, arithmetical operations can be applied to
addresses, for example to compare them or to shift a function pointer in order to
implement C switch statements. In order to show that the object code simulates
the assembly code we must compute the processor status that corresponds to
the assembly status. In particular, those a in memory that are used as data

54 D.P. Mulligan and C. Sacerdoti Coen

should be preserved as a, but those used as addresses should be changed into
policy(a). Moreover, every arithmetic operation should commute with policy

in order for the semantics to be preserved.
Following the previous observation, we can ask if it is possible at all for an

assembler to preserve the semantics of an assembly program. The traditional
approach to the verification of assemblers answers the question in the affirma-
tive by restricting the semantics of assembly programs. In particular, the type of
memory cells and registers is set to the disjoint union of data and symbolic ad-
dresses, and the semantics is always forced to consider all possible combinations
of arguments (data vs. data, data vs. addresses, and so on), rejecting operations
whose semantics cannot be preserved.

Mem : Addr → Bytes+ Addr �−� : Instr → Mem → option Mem

�MUL @A1 @A2�M =

⎧⎨
⎩
Byte b1, Byte b2 → Some(M with accumulator := b1+ b2)

−, Addr a → None

Addr a, − → None

This approach has two main limitations. The first one is that it does not assign
any semantics to interesting programs that could intentionally mangle addresses
for malign (e.g. viruses) or benign (e.g. operating systems) purposes. The second
is that it does not allow one to adequately share the semantics of assembly
pseudoinstructions and object code instructions: only the Byte-Byte branch
above can share the semantics with the object code MUL.

In this paper we have already taken a different approach from Sect. 2.2, where
we have assigned a semantics to every assembly program by not distinguishing
at all between data and symbolic addresses. Memory cells and registers always
hold bytes, and symbolic labels are mapped to absolute addresses before exe-
cution. Consequently we do not expect that all assembly programs will have
their semantics respected by object code. We call those programs that do well-
behaved. Further, we can now reason over the semantics of programs that are not
well-behaved, and that we can handle well-behavedness as an open predicate,
recognising more and more good behaviours as required. Naturally, compilers
that target our assembler will need to produce well-behaved programs, which is
usually the case by construction.

The definition of well-behavedness we employ uses a map to keep track of
the memory locations and registers that hold addresses during execution of an
assembly program. The map acts as a sort of dynamic typing system sitting
atop memory. This approach seems similar to one taken by Tuch et al [13] for
reasoning about low-level C code.

The semantics of an assembly program is then augmented with a function that
at each execution step updates the map, signalling an error when the program
performs an ill-behaved operation. The actual computation is not performed by
this mechanism, being already part of the assembly semantics.

On the Correctness of an Optimising Assembler 55

AddrMap : Addr → {Data,Addr} �−� : Instr → AddrMap → option AddrMap

�MUL @A1 @A2�M =

⎧⎪⎨
⎪⎩
Data, Data → Some(Mwith accumulator :=Data)

−, Addr a → None

Addr a, − → None

To prove semantic preservation we must associate an object code status to each
assembly pseudostatus. This operation is driven by the current AddrMap: if at ad-
dress a the assembly level memory holds d, then if AddrMap(a) = Data the object
code memory will hold d (data is preserved), otherwise it will hold policy(d). If
all the operations accepted by the address update map are well-behaved, this is
sufficient to show preservation of the semantics for those computation steps that
are well-behaved, i.e. such that the map update does not fail.

We now apply the previous idea to the MCS-51, an 8-bit processor whose
code memory is word addressed. All MCS-51 operations can therefore only ma-
nipulate and store one half of the address at a time (lower or higher bits). For
instance, a memory cell could contain just the lower 8 bits of an address a. The
corresponding cell at object code level must therefore hold the lower 8 bits of
policy(a), which can be computed only if we can also retrieve the higher 8 bits
of a. We achieve this by storing the missing half of an address in the AddrMap

— called internal pseudo address map in the formalisation.

definition address_entry := upper_lower × Byte.

definition internal_pseudo_address_map :=

(BitVectorTrie address_entry 7) × (BitVectorTrie address_entry 7)

× (option address_entry).

Here, upper lower is an inductive type with two constructors: Upper and Lower.
The map consists of three components to track addresses in lower and upper
internal ram and also in the accumulator A. If an assembly address a holds h and
if the current internal pseudo address map maps a to 〈 Upper, l〉, then h is
the upper part of the h·l address and a will hold the upper part of policy(h·l)
in the object code status.

The relationship between assembly pseudostatus and object code status is
computed by the following function which deterministically maps each pseu-
dostatus into a corresponding status. It takes in input the policy and both the
current pseudostatus and the current tracking map in order to identify those
memory cells and registers that hold fragments of addresses to be mapped using
policy as previously explained. It also calls the assembler to replace the code
memory of the assembly status (i.e. the assembly program) with the object code
produced by the assembler.

definition status_of_pseudo_status:

internal_pseudo_address_map → ∀pap. ∀ps: PseudoStatus pap.

∀policy. Status (code_memory_of_pseudo_assembly_program pap policy)

56 D.P. Mulligan and C. Sacerdoti Coen

The function that implements the tracking map update, previously denoted by
�−�, is called next internal pseudo address map in the formalisation. For the
time being, we accept as good behaviours address copying amongst memory cells
and the accumulator (MOV pseudoinstruction) and the use of the CJNE conditional
jump that compares two addresses and jumps to a given label if the two labels are
equal. Moreover, RET to return from a function call is well-behaved iff the lower
and upper parts of the return address, fetched from the stack, are both marked
as complementary parts of the same address (i.e. h is tracked as 〈Upper,l〉 and
l is tracked as 〈Lower,h〉. These three operations are sufficient to implement the
backend of the CerCo compiler. Other good behaviours could be recognised in
the future, for instance in order to implement the C branch statement efficiently.

definition next_internal_pseudo_address_map: internal_pseudo_address_map →
∀cm. (Identifier → PseudoStatus cm → Word) → ∀s: PseudoStatus cm.

program_counter s < 216 → option internal_pseudo_address_map

We now state the (simplified) statement of correctness of our compiler, whose
proofs combines correctness with respect to fetching and correctness with respect
to execution. It states that the well-behaved execution of a single assembly pseu-
doinstruction according to the cost model induced by compilation is correctly
simulated by the execution of (possibly) many machine code instructions.

theorem main_thm:

∀M, M’: internal_pseudo_address_map.

∀program: pseudo_assembly_program.

∀program_in_bounds: |program| ≤ 216.
∀policy. policy is correct for program.

∀ps: PseudoStatus program. ps < |program|.
next_internal_pseudo_address_map M program . . .= Some M’ →
∃n. execute n (status_of_pseudo_status M ps policy) =

status_of_pseudo_status M’

(execute_1_pseudo_instruction program (ticks_of program policy) ps)

policy.

The statement is standard for forward simulation, but restricted to
PseudoStatuses ps whose tracking map is M and who are well-behaved accord-
ing to internal pseudo address map M. The ticks of program policy func-
tion returns the costing computed by assembling the program using the given
policy. An obvious corollary of main thm is the correct simulation of n well-
behaved steps by some number of steps m, where each step must be well-behaved
with respect to the tracking map returned by the previous step.

3 Conclusions

We are proving the correctness of an assembler for MCS-51 assembly language.
Our assembly language features labels, arbitrary conditional and unconditional

On the Correctness of an Optimising Assembler 57

jumps to labels, global data and instructions for moving this data into the MCS-
51’s single 16-bit register. Expanding these pseudoinstructions into machine code
instructions is not trivial, and the proof that the assembly process is ‘correct’, in
that the semantics of a subset of assembly programs are not changed is complex.

The formalisation is a component of CerCo which aims to produce a verified
concrete complexity preserving compiler for a large subset of the C language. The
verified assembler, complete with the underlying formalisation of the semantics
of MCS-51 machine code, will form the bedrock layer upon which the rest of
CerCo will build its verified compiler platform.

We may compare our work to an ‘industrial grade’ assembler for the MCS-51:
SDCC [10], the only open source C compiler that targets the MCS-51 instruction
set. It appears that all pseudojumps in SDCC assembly are expanded to LJMP

instructions, the worst possible jump expansion policy from an efficiency point
of view. Note that this policy is the only possible policy in theory that makes
every assembly program well-behaved, preserving its the semantics during the
assembly process. This comes at the expense of assembler completeness as the
generated program may be too large for code memory, there being a trade-off
between the completeness of the assembler and the efficiency of the assembled
program. The definition and proof of a terminating, correct jump expansion
policy is described elsewhere [2].

Verified assemblers could also be applied to the verification of operating system
kernels and other formalised compilers. For instance the verified seL4 kernel [5],
CompCert [7] and CompCertTSO [14] all explicitly assume the existence of trust-
worthy assemblers. The fact that an optimising assembler cannot preserve the se-
mantics of all assembly programs may have consequences for these projects.

Our formalisation exploits dependent types in different ways and for multiple
purposes. The first purpose is to reduce potential errors in the formalisation of
the microprocessor. Dependent types are used to constrain the size of bitvec-
tors and tries that represent memory quantities and memory areas respectively.
They are also used to simulate polymorphic variants in Matita, in order to pro-
vide precise typings to various functions expecting only a subset of all possible
addressing modes that the MCS-51 offers. Polymorphic variants nicely capture
the absolutely unorthogonal instruction set of the MCS-51 where every opcode
must accept its own subset of the 11 addressing mode of the processor.

The second purpose is to single out sources of incompleteness. By abstracting
our functions over the dependent type of correct policies, we were able to manifest
the fact that the compiler never refuses to compile a program where a correct
policy exists. This also allowed to simplify the initial proof by dropping lemmas
establishing that one function fails if and only if some previous function does so.

Finally, dependent types, together with Matita’s liberal system of coercions,
allow us to simulate almost entirely in user space the proof methodology ‘Russell’
of Sozeau [12]. Not every proof has been carried out in this way: we only used
this style to prove that a function satisfies a specification that only involves that
function in a significant way. It would not be natural to see the proof that fetch
and assembly commute as the specification of one of the two functions.

58 D.P. Mulligan and C. Sacerdoti Coen

Related work. We are not the first to consider the correctness of an assembler
for a non-trivial assembly language. The most impressive piece of work in this
domain is Piton [8], a stack of verified components, written and verified in ACL2,
ranging from a proprietary FM9001 microprocessor verified at the gate level, to
assemblers and compilers for two high-level languages—Lisp and μGypsy [9].
Klein and Nipkow also provide a compiler, virtual machine and operational se-
mantics for the Jinja [6] language and prove that their compiler is semantics and
type preserving.

Though other verified assemblers exist what sets our work apart from that
above is our attempt to optimise the generated machine code. This complicates a
formalisation as an attempt at the best possible selection of machine instructions
must be made—especially important on devices with limited code memory. Care
must be taken to ensure that the time properties of an assembly program are
not modified by assembly lest we affect the semantics of any program employing
the MCS-51’s I/O facilities. This is only possible by inducing a cost model on
the source code from the optimisation strategy and input program.

Resources. Our source files are available at http://cerco.cs.unibo.it. We
assumed several properties of ‘library functions’, e.g. modular arithmetic and
datastructure manipulation. We axiomatised various small functions needed to
complete the main theorems, as well as some ‘routine’ proof obligations of the
theorems themselves, in focusing on the main meat of the theorems. We believe
that the proof strategy is sound and that all axioms can be closed, up to minor
bugs that should have local fixes that do not affect the global proof strategy.

The complete development is spread across 29 files with around 20,000 lines of
Matita source. Relevant files are: AssemblyProof.ma, AssemblyProofSplit.ma
and AssemblyProofSplitSplit.ma, consisting of approximately 4500 lines of
Matita source. Numerous other lines of proofs are spread all over the development
because of dependent types and the Russell proof style, which does not allow
one to separate the code from the proofs. The low ratio between source lines and
the number of lines of proof is unusual, but justified by the fact that the pseudo-
assembly and the assembly language share most constructs and large swathes of
the semantics are shared.

References

1. Asperti, A., Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: User interaction with the
Matita proof assistant. Automated Reasoning 39, 109–139 (2007)

2. Boender, J., Sacerdoti Coen, C.: On the correctness of a branch displacement
algorithm (2012), http://arxiv.org/abs/1209.5920

3. The CerCo FET-Open project (2011), http://cerco.cs.unibo.it/
4. Branch displacement optimisation (2006),

http://groups.google.com/group/alt.lang.asm/msg/d31192d442accad3

5. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: Formal verification of an operating system kernel. In: SOSP
(2009)

http://cerco.cs.unibo.it
http://arxiv.org/abs/1209.5920
http://cerco.cs.unibo.it/
http://groups.google.com/group/alt.lang.asm/msg/d31192d442accad3

On the Correctness of an Optimising Assembler 59

6. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, vir-
tual machine and compiler. ACM Transactions on Programming Languages and
Systems 28(4), 619–695 (2006)

7. Leroy, X.: A formally verified compiler back-end. Automated Reasoning 43(4),
363–446 (2009)

8. Moore, J.S.: Piton: A mechanically verified assembly language. Automated Rea-
soning Series, vol. 3. Springer (1996)

9. Moore, J.S.: A grand challenge proposal for formal methods (2005)
10. Small device C compiler 3.0.0 (2011), http://sdcc.sourceforge.net/
11. Siemens Semiconductor Group 8051 derivative instruction set (2011),

http://www.win.tue.nl/~aeb/comp/8051/instruction-set.pdf

12. Sozeau, M.: Subset Coercions in Coq. In: Altenkirch, T., McBride, C. (eds.)
TYPES 2006. LNCS, vol. 4502, pp. 237–252. Springer, Heidelberg (2007)

13. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: POPL,
pp. 97–108 (2007)

14. Ševč́ık, J., Vafeiadis, V., Zappa Nardelli, F., Jagannathan, S., Sewell, P.: Relaxed-
memory concurrency and verified compilation. In: POPL, pp. 43–54 (2011)

http://sdcc.sourceforge.net/
http://www.win.tue.nl/~aeb/comp/8051/instruction-set.pdf

An Executable Semantics for CompCert C�

Brian Campbell

LFCS, University of Edinburgh
Brian.Campbell@ed.ac.uk

Abstract. CompCert is a C compiler developed by Leroy et al, the ma-
jority of which is formalised and verified in the Coq proof assistant. The
correctness theorem is defined in terms of a semantics for the ‘CompCert
C’ language, but how can we gain faith in those semantics? We explore
one approach: building an equivalent executable semantics that we can
check test suites of code against.

Flaws in a compiler are often reflected in the output they produce: buggy com-
pilers produce buggy code. Moreover, bugs can evade testing when they only
manifest themselves on source code of a particular shape, when particular opti-
misations are used. This has made compilers an appealing target for mechanized
verification, from early work such as Milner and Weyhrauch’s simple compiler
in LCF [15] to modern work on practical compilers, such as the Verisoft C0
compiler [10] which is used as a key component of a larger verified software
system.

The CompCert project [11] has become a nexus of activity in recent years, in-
cluding the project members’ own efforts to refine the compiler and add certified
optimisations [22,18,8], and external projects such as an extensible optimisation
framework [20] and compiling concurrent programs [23]. The main result of the
project is a C compiler which targets the assembly languages for a number of
popular processor architectures. Most of the compiler is formalised in the Coq
proof assistant and accompanied by correctness results, most notably proving
that any behaviour given to the assembly output must be an acceptable be-
haviour for the C source program.

To state these correctness properties requires giving some semantics to the
source and target languages. In CompCert these are given by inductively defined
small-step relations. Errors and omissions in these semantics can weaken the
overall theorems, potentially masking bugs in the compiler. In particular, if no
semantics is given to a legitimate C program then any behaviour is acceptable
for the generated assembly, and the compiler is free to generate bad code1. This

� The project CerCo acknowledges the financial support of the Future and Emerg-
ing Technologies (FET) programme within the Seventh Framework Programme for
Research of the European Commission, under FET-Open grant number: 243881.

1 By design, the compiler is also free to fail with an error for any program, even if it
is well-defined.

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 60–75, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Executable Semantics for CompCert C 61

corresponds to the C standard’s notion of undefined behaviour, but this notion
is left implicit in the semantics, so there is a danger of underdefining C.

Several methods could be used to gain faith in the semantics; in the con-
clusions of [11] Leroy suggests manual review, testing of executable versions
and proving connections to alternative forms of semantics. Here we investigate
testing an executable semantics which, by construction, is closely and formally
related to CompCert’s input language. The testing is facilitated by Coq’s extrac-
tion mechanism, which produces OCaml code corresponding to the executable
semantics that can be integrated with CompCert’s existing parser to produce a
C interpreter.

Our motivation for this work comes principally from the CerCo project where
we use executable semantics throughout [1], and in particular have an executable
version of CompCert’s Clight intermediate language [5]. There we found an omis-
sion involving function pointers during testing. We wished to attempt to replicate
this in CompCert C and search for any other evident problems. An executable se-
mantics is far more practical for this task than manual animation of the inductive
definitions2. Morever, CompCert C is a more complex and interesting language
than Clight, especially due to the presence of side-effects and non-determinism
in the evaluation of expressions.

The main contributions of this paper are

1. demonstrating the successful retrofitting of a small-step executable semantics
to an existing verified compiler with equivalence proofs against the original
semantics,

2. showing that testing of the resulting interpreter does lead to the identification
of bugs in both the semantics and the compiler,

3. showing that the executable semantics can illustrate the limitations of the
semantics, and fill in a gap in the relationship between the original deter-
ministic and non-deterministic versions of the semantics, and

4. demonstrate that a mixture of formal Coq and informal OCaml code can
make testing more effective by working around known bugs with little effort.

The full development is available online as a modified version of CompCert3.
In Section 1 we will give an overview of the relevant parts of the CompCert

compiler. In Section 2 we will discuss the construction of the executable seman-
tics, its relationship to the inductively defined semantics from CompCert (both
formalised in Coq) and the additional OCaml code used to support testing. This
is followed by the results of testing the semantics in Section 3, including descrip-
tions of the problems encountered. Finally, Section 4 discusses related work,
including an interpreter Leroy added to newer versions of CompCert following
this work.

2 This is partly because manual animation requires providing witnesses for the results
or careful management of existential metavariables, and partly because we can prove
results once for the executable semantics rather than once per program. Automatic
proof search has similar problems.

3 http://homepages.inf.ed.ac.uk/bcampbe2/compcert/

http://homepages.inf.ed.ac.uk/bcampbe2/compcert/

62 B. Campbell

1 Overview of the CompCert Compiler

CompCert compiles a simplified but substantial subset of the C programming
language to one of three different architectures (as of version 1.8.2, which we refer
to throughout unless stated otherwise). The main stages of the compiler, from
an abstract syntax tree of the ‘CompCert C’ language to target specific pseudo-
assembly code, are written in the Calculus of Inductive Constructions (CIC) —
the dependently-typed language that underlies the Coq proof assistant [21]. The
formal proofs of correctness refer to these definitions. Coq’s extraction facili-
ties [13] produce OCaml code corresponding to them, which can be combined
with a C parser and assembler text generation to complete the compiler. The
resulting compilation chain is summarised in Figure 1.

C CompCert C Clight

ASM Machine code
(8 more intermediate languages)

Fig. 1. Start and end of the CompCert compilation chain

Note that the unformalised C parser is not a trivial piece of code. Originally
based on the CIL library for C parsing [17] but heavily adapted, it not only
produces an abstract syntax tree, but also calculates type information and can
perform several transformations to provide partial support for features that are
not present in the formalised compiler. In particular, bitfields, structure passing
and assignment, and long double and long long types are (optionally) handled
here. There is a further transformation to simplify the annotated C abstract
syntax tree into the CompCert C language.

Earlier versions of CompCert did not feature CompCert C at all, but the less
complex Clight language. Clight lives on as the next intermediate language in
the compiler. Hence several publications on CompCert refer to this language [3].
The major difference between the languages is that the syntax and semantics of
expressions in Clight are much simpler because they are deterministic and side-
effect free. Moreover, CompCert’s original semantics were in big-step form and
lacked support for goto statements. Version 1.5 added these using a small-step
semantics, and 1.8 added the CompCert C language with its C-like expressions.
The latter effectively moved some of the work done by the OCaml parser into
the formalised compiler.

CompCert C is also interesting because it has two semantics: one with non-
deterministic behaviour for expressions which models the uncertainty about eval-
uation order in C, and a deterministic semantics which resolves this uncertainty.
The former can be regarded as the intended input language of the compiler, and
the latter as a more specific version that the compiler actually implements. In
addition, these semantics have slightly different forms: in particular the non-
deterministic version is always small-step, whereas the deterministic form makes

An Executable Semantics for CompCert C 63

a single big-step for side-effect free subexpressions. The two are connected by a
result showing that programs which are safe in the non-deterministic semantics
admit some execution in the deterministic semantics, where by safe we mean
that the program never gets stuck regardless of the order of evaluation used
(for a fixed choice of I/O behaviour). This result essentially holds because the
deterministic semantics is choosing one of the possible evaluation orders.

Note that throughout the definitions of all of these semantics we benefit
from a specialisation of C to the targets that CompCert supports. Various
implementation-defined parts of the language such as integer representation and
sizes are fixed (in fact, the formalisation heavily uses the assumption of a 32-bit
word size). Also, some undefined behaviour is given a meaning; notably mix-
tures of reads and writes to a variable in a single expression are given a non-
deterministic behaviour rather than ruled out as per the C standard [4, §6.5.16].

2 Construction of the Executable Semantics

The executable semantics consists of several parts: existing executable definitions
from CompCert, functions which closely correspond to the original relational se-
mantics, a mechanism for resolving non-deterministic behaviour, and finally the
proofs that steps of the relational semantics are equivalent to steps of the exe-
cutable semantics. We do not consider whole program executions or interaction
with the outside world (I/O) here, but only individual steps of the semantics. It
is not difficult to include these (we have done this for Clight as part of the CerCo
project [5]), but we do not expect that it would yield any worthwhile insights dur-
ing testing to justify the effort involved arising from the extra non-determinism
from I/O and the coinductive reasoning for non-terminating programs.

The existing definitions that we can reuse include the memory model that is
used throughout the CompCert development [12]. This model features symbolic
pointers with discrete abstract blocks of memory, and so is more suitable for
our purposes than non-executable alternatives such as a concrete model with
non-deterministic choice of fresh locations for allocations. The semantics of op-
erations on values (for example, + and ==) are naturally defined as auxiliary
functions in the relational semantics, which we reuse. Casts and the conver-
sion of values to booleans are exceptions to this; they are defined inductively in
the relational semantics and we treat them in the same way as the rest of the
inductive definitions, below.

Local and global variable environments are necessarily executable in Com-
pCert because they are used throughout the actual compiler code in addition
to the semantics. We also make use of the compiler’s error monad to recover
the partiality of the relational semantics (that is, CIC is a language of total
functions, so we must model failure explicitly).

The environments are efficiently implemented because of their use in the com-
piler itself. However, the memory model was not intended to be efficient and
builds large chains of closures to represent changes to memory. Fortunately, the
performance was sufficient for our testing, so we did not attempt to optimise it.

64 B. Campbell

2.1 Executing a Step of the Semantics

The relational semantics uses a series of inductive definitions to describe the steps
of the abstract machine: one for reducing lvalues, expressions which represent
a location that can be read from, written to, or extracted as a pointer; one for
rvalues expressions that only yield a value, such as addition; and one for setting
up function calls:

Inductive lred: expr -> mem -> expr -> mem -> Prop := ...

Inductive rred: expr -> mem -> expr -> mem -> Prop := ...

Inductive callred: expr -> fundef -> list val -> type -> Prop := ...

The estep relation represents whole state transitions corresponding to the re-
ductions on expressions given by the first three relations, and the sstep relation
performs steps of statements and function entry and exit:

Inductive estep: state -> trace -> state -> Prop := ...

Inductive sstep: state -> trace -> state -> Prop := ...

The union of these two relations gives the overall step relation.
The executable semantics uses functions corresponding to each of these re-

lations. The syntax directed nature of the inductive definitions makes this task
straightforward. For example, consider the rred rules for conditional expressions:

| red_condition_true: forall v1 ty1 r1 r2 ty m,

is_true v1 ty1 -> typeof r1 = ty ->

rred (Econdition (Eval v1 ty1) r1 r2 ty) m

(Eparen r1 ty) m

| red_condition_false: forall v1 ty1 r1 r2 ty m,

is_false v1 ty1 -> typeof r2 = ty ->

rred (Econdition (Eval v1 ty1) r1 r2 ty) m

(Eparen r2 ty) m

These state that a true conditional reduces to its left subexpression and a false
one to its right, subject to a typing constraint.

We rearrange the rules to fit in a tree of pattern matching, check type equali-
ties where necessary, and introduce error messages where no reduction is possible:

Definition exec_rred (e:expr) (m:mem) : res (expr * mem) :=

match e with

...

| Econdition (Eval v1 ty1) r1 r2 ty =>

do b <- exec_bool_val v1 ty1;

let r := if b then r1 else r2 in

match type_eq (typeof r) ty with

| left _ => OK (Eparen r ty, m)

| right _ => Error (msg "type mismatch in Econdition")

end

This transforms the value v1 to a boolean, selects the appropriate subexpression
and checks its type. The ‘do’ notation is a use of the error monad: the con-
version to a boolean is not always defined and may return an error, which the

An Executable Semantics for CompCert C 65

monad propogates to the caller of exec_rred. The auxiliary relations defining the
relationship between values and booleans, exec_bool_val, and casting are also
defined as functions.

Defining a function for the statement reduction, sstep, is similar. One part of
function entry handling deserves particular attention. CompCert has a notion of
external functions, which are a set of primitive CompCert C functions that are
handled outside of the program to provide system calls, dynamic memory allo-
cation, volatile memory accesses and annotations. Inductive predicates describe
what changes to the program’s state are allowed. We have only implemented the
dynamic memory allocation (by constructing a function similar to the predicates
for malloc and free), and provide a predicate on states to identify uses of the
other calls so that we may give a partial completeness result in the next section.

The expression relation estep is more difficult. This is the point in the se-
mantics at which non-deterministic behaviour appears — any subexpression in
a suitable context can be reduced. The contexts are defined by an inductive
description of which subexpressions can be evaluated in the current state (for
example, only the guard of a conditional expression can be evaluated before the
conditional expression itself, whereas either subexpression of e1 + e2 can be re-
duced). We could execute the non-deterministic semantics by collecting all of the
possible reductions in a set (in the form of the possible successor states), but we
are primarily interested in testing the semantics on well behaved C programs,
and an existing theorem in CompCert shows that any program with a safe non-
deterministic behaviour also has a behaviour in the deterministic semantics.

Hence we are satisfied with following a single path of execution, and so
parametrise the executable semantics by a strategy function which determines
the evaluation order by picking a particular subexpression, and also returns its
context. These contexts should be valid with respect to the inductive definition
mentioned above. Moreover, if we choose a function matching the determinis-
tic semantics then we know that any well-defined C program which goes wrong
is demonstrating a bug (in the form of missing behaviour) which affects both
sets of semantics. Regardless of the choice of strategy, we can used failed exe-
cutions to pinpoint rules in the semantics which concern us. We will discuss the
implemented strategies and their implications in the following section.

Finally, to match the non-deterministic semantics of estep precisely we must
also check that there are no stuck subexpressions. This detects subexpressions
which cannot be reduced because they are erroneous, rather than because they
are already values. Normally the lack of any reducible subexpression would in-
dicate an error, but the extra check is required because an accompanying non-
terminating subexpression will mask it. The CompCert documentation gives the
example f() + (10 / x) where x is initially 0 and f is non-terminating. Without
the check, a program containing this expression would appear to be well-defined
because f can always be reduced, whereas we should make the program undefined
because of the potential division by zero.

Informally, the condition for estep states that any subexpression in an evalu-
ation context is either a value, or has a further subexpression that is reducible.

66 B. Campbell

This form suggests an inefficient executable approach: for every context perform
a search for the reducible subexpression. Fortunately it can be implemented by a
relatively direct recursive function because we can reuse reducible subexpressions
that we have already found in a larger context. Thus we only have to check that
an expression can be reduced (using the reduction functions discussed above)
when all of the subexpressions have already been reduced to values.

The deterministic semantics does not enforce this condition because it com-
mits to one particular evaluation, regardless of whether other evaluations may
fail. This means that the relationship between the non-deterministic and deter-
ministic semantics is not a straightforward inclusion: the deterministic semantics
accepts some executions where the stuckness check fails, but rejects the execu-
tions allowed by the non-deterministic semantics under a different expression
reduction order. Thus we make the executable version of the check optional so
that we may implement either semantics.

2.2 Equivalence to the Non-deterministic Semantics

We show the equivalence of the executable semantics to the original relational
semantics in two parts, summarising the proofs from the formal Coq develop-
ment. First, we show that any successful execution of a step corresponds to some
derivation in the original semantics, regardless of the strategy we choose.

Theorem 1 (Soundness). Given a strategy which picks valid contexts, the ex-
ecution of any step s1 to s2 with trace t implies that there exists a derivation of
step s1 t s2.

The proof consists of building similar lemmas for each relation in the semantics,
using case analysis on the states, statements and expressions involved, reduction
of the executable hypothesis and reasoning on equalities until the premises of the
constructor are realised. The check for stuck subexpressions is the most involved
task: we must prove a more general result differentiating between reducible and
fully reduced expressions, and show that reducible terms found in subexpressions
can be lifted. If no such term exists, we show that attempting to reduce the whole
term is sufficient.

The second part is to show that any step of the original semantics is success-
fully executed by the executable semantics.

Theorem 2 (Completeness — non-deterministic). For any derivation of
step s1 t s2 which is not about to call an unsupported external function there
exists a strategy p such that exec_step p s1 = OK (t, s2).

As in the soundness proof, a lemma is shown for each relation. The general form
of the proofs is to perform inversion on the hypothesis for the derivation and use
rewriting and the prior lemmas to reduce the goal. Again, the stuckness check
is more difficult: it follows by induction on the expression, and showing that if
a subexpression gets stuck then the parent expression gets stuck too.

An Executable Semantics for CompCert C 67

Note that each step might require a different strategy because we have re-
stricted our attention to strategies that can be expressed as functions on the
abstract machine state. This rules out strategies where the execution order de-
pends on (for example) previous states or randomness, but these do not occur
in the CompCert compiler.

2.3 Strategies and the Deterministic Semantics

Two evaluation strategies were implemented for the executable semantics. The
first was a simple leftmost-innermost strategy that picks the first non-value
subexpression that we are allowed to reduce. It was chosen because it is simple
to implement, sufficient for testing (any bugs were likely to be independent of
evaluation order, and our experience with the second strategy supported this),
and could be used as the basis for the second strategy.

However, to provide the greatest benefit from the executable semantics we
wanted to get executions which precisely match the deterministic semantics that
the compiler actually implements. That is, we wish to have an interpreter that
predicts exactly the behaviour of the compiled program. This is not entirely
straightforward because the original deterministic semantics are formalised in a
slightly different way to non-deterministic executions: expressions with no side
effects are dealt with by a big-step relation, and effectful expressions use a small-
step relation as before. Here ‘effectful’ includes both changes to the state and
to control flow such as the conditional operator. This prioritisation of the ef-
fectful subexpressions is also what causes the difference in evaluation order. For
example, x+(x=1) when x �= 1 gives a different answer with the second strategy
because the assignment is evaluated first.

Despite the difference in construction, we can still encode the resulting eval-
uation order as a strategy:

1. find the leftmost-innermost effectful subexpression (or take the whole ex-
pression if it is effect-free), then

2. (a) pick the leftmost-innermost effect-free non-value subexpression of that
if one is present, otherwise

(b) reduce the whole subexpression.

Intuitively, this works because the effect-free subexpressions can be reduced in
any order that is allowed without changing the result.

To show formally that this matches the relational semantics we first show
that the big-steps of effect-free subexpressions can be decomposed into a series
of small-steps using the relations from the non-deterministic semantics. We can
then show that iterating the executable semantics will perform the same steps,
reaching the same end state as the big-step. Then using some lemmas to show
that the leftcontexts (the deterministic version of expression contexts) used
in the semantics are found by our leftmost-innermost effectful subexpression
strategy, we can show that any step of the deterministic semantics is performed
by some number of steps of the executable semantics:

68 B. Campbell

Theorem 3 (Completeness — deterministic). For any derivation of step
s1 t s2 in the deterministic semantics which is not about to call an unsupported
external function, repeated use of the exec_step function starting with s1 using
the above strategy yields the state s2. Moreover, the concatenation of the resulting
traces is t.

Again, a precise version of the above argument is formalised in Coq.
Together with the connections between the non-deterministic semantics and

the executable semantics, and the result from CompCert linking the two rela-
tional semantics we get the relationships depicted in Figure 2. We can see that
the new result completes a loop — confirming the intuition that the determin-
istic semantics is the same as the non-deterministic semantics with a particular
choice of evaluation order, but without the ‘stuckness-check’.

Non-deterministic Deterministic

Executable

(safe only)

(no stuck expression check)
(strategy)

Theorem 1

Theorem 2
Theorem 3

Existing result

Fig. 2. Relationships between the different CompCert C semantics

We also see directly from the executable semantics that the evaluation order is
the only possible source of non-determinism besides I/O, because each step of
the semantics can be expressed as a function rather than a relation.

2.4 Informal OCaml Code

To produce the actual interpreter we add some OCaml code which uses the
existing CompCert parser to produce CompCert C from C source code, and
then iterates the step function extracted from Coq until the program successfully
completes, or fails with an error.

Ideally we would fix each bug that we encounter when testing this interpreter,
but this can involve repairing the specifications, the compiler, and the proofs;
all of which CompCert’s developers are better placed to deal with. Nonetheless,
we wish to continue testing in spite of any bugs found. To achieve this we detect
troublesome states in the OCaml main loop and override the normal behaviour
of the executable semantics without changing the formal development. To assist
in the implementation of these workarounds we use a higher order function to

An Executable Semantics for CompCert C 69

apply a local change to an expression to any applicable subexpression appearing
in an evaluation context.

We also take the opportunity to add some support functions that are outside
the scope of the semantics, but which are informally supported by the compiler.
They are implemented by detecting states which call these functions and running
an OCaml version instead. We provide exit and abort (trivial functions to halt
execution), memcpy and memcmp (impossible to implement in CompCert C because
the memory model does not provide byte-by-byte representations of pointers4)
and a limited version of printf. CompCert’s semantics also assume that the
entire program is present in a single file, so we provide some support for merging
definitions from multiple files to simulate separate compilation.

All of these can be added without requiring any extra proof or changing the
compiler or the semantics. They can also be turned off to be sure that problems
we encounter come from the formalised semantics and not the workarounds.

Finally, we note that the execution of the semantics can be examined in the
debugger packaged with OCaml when absolute certainty about the cause of a
problem is required. Indeed, during the testing below the debugger was used to
retrieve extra information about the program state that was not included in the
interpreter’s error message.

3 Testing

After some basic testing to ensure that the interpreter was functioning correctly
(in particular, testing the informal driver code), we proceeded with the example
that illustrated an omission in CerCo’s Clight semantics, then attempted more
demanding tests.

3.1 Function Pointers

The simple program

int zero(void) { return 0; }

int main(void) {

int (*f)(void) = zero;

return f();

}

returns zero by a call to the zero function via a function pointer. It failed during
testing of CerCo’s executable semantics due to a bad type check, and CompCert
C was suspected to suffer from the same problem. Indeed, execution fails at the
call with the same type error: the variable f’s type is a pointer to a function and
the semantics only accepts a function type.

4 Implementation of memcpy and memcmp was assisted by the fact that Coq’s extraction
process exposes the internal representation of the memory model, rather than forcing
us to implement them through the model’s interface.

70 B. Campbell

There are two noteworthy aspects to this bug. First, the compiler itself fea-
tures the correct type check and works perfectly. The error only affects the
specification of the compiler; this is extra behaviour that has not been proved
correct. The semantics can be easily modified to use the same check, and the only
other change required is to remove some steps from the proof scripts. Second,
the bug only became relevant from version 1.7 of CompCert — before which the
parser always added an explicit dereference. This illustrates a general issue: the
intended semantics of CompCert C is unclear because it is difficult to understand
what we should assume about the output of the complex parser.

3.2 Csmith

Csmith is a tool for the random generation of test cases for C compilers that uses
a mixture of static and dynamic checks to ensure that the generated code has
well-defined behaviour [24]. Failing test cases are identified by the compiler failing
with a crash or error, the generated code crashing, or by comparing the output
of the test case with that obtained using different compilers. Each generated test
case outputs a checksum to summarise its runtime behaviour for comparison.

Csmith is particularly interesting because it has already been used to test the
CompCert compiler as a whole where it detected several bugs in the informal
part of the compiler and a mismatch between the assembler output and the as-
sembler’s behaviour. These problems have since been corrected, partly by the
introduction of CompCert C as the input language. Thus it gives us the oppor-
tunity to compare the semantics against the actual compiler. However, it is not
an ideal tool for testing semantics because it focuses on detecting ‘middle-end’
bugs, and thus only generates a limited range of front-end language features.

Given the previous testing of the compiler, it was unsurprising that we found
no problems when executing the randomly generated code with the interpreter
and comparing the results against the compiler5. However, we did encounter a
failure with the non-random support code which implements the dynamic checks
that prevent undefined behaviour in arithmetic operations. The failing code can
be seen in Figure 3.

The failure is caused by the reduction rules for conditional expressions:

| red_condition_true: forall v1 ty1 r1 r2 ty m,

is_true v1 ty1 -> typeof r1 = ty ->

rred (Econdition (Eval v1 ty1) r1 r2 ty) m

(Eparen r1 ty) m

| red_condition_false: forall v1 ty1 r1 r2 ty m,

is_false v1 ty1 -> typeof r2 = ty ->

rred (Econdition (Eval v1 ty1) r1 r2 ty) m

(Eparen r2 ty) m

Each rule requires the type of the chosen subexpression to equal the type of the
entire expression. However, here one branch is an 8-bit integer, and the other
a 32-bit integer so one of the rules cannot be applied. The C standard requires

5 Using Csmith version 2.0.

An Executable Semantics for CompCert C 71

int8_t lshift_func_int8_t_s_s(int8_t left, int right)

{

return

((left < 0) ||

(((int)right) < 0) ||

(((int)right) >= 32) ||

(left > (INT8_MAX >> ((int)right)))) ?

left :

(left << ((int)right));

}

Fig. 3. Excerpt of the safe arithmetic code from Csmith (edited for readability)

that ‘the usual arithmetic conversions’ should be applied to coerce the result to
a common type [4, §6.5.15], so the 8-bit integer should be promoted to a 32-bit
one.

As with the function pointers, this test works with the compiler because the
two types have a common representation — all integers are handled as 32-bit
words in CompCert. It is only when they are loaded and stored to memory that
the integer size is taken into account. Nonetheless, this failure provides us with
enough information to construct an example on which the compiler fails because
the representations differ:

double f(int x, int a, double b) {

return x ? a : b;

}

Fortunately, the compiler performs some type reconstruction for the RTL in-
termediate language which makes it produce an error rather than bad code.
Curiously, this means that the overall correctness theorem still holds if the se-
mantics are corrected because the compiler is always allowed to fail, even on
reasonable programs. However, the intermediate results about the front-end be-
come false because the bug is present much earlier in the compiler than the type
reconstruction.

Alleviating this bug was essential for proper testing with Csmith, but a full
solution requires fixing the semantics, compiler and proofs and is beyond the
scope of this work. By implementing an alternative reduction rule in OCaml as
a workaround we were able to continue testing without difficulty.

3.3 gcc-torture

The GCC compiler contains an extensive test suite for several of its supported
languages [7, §6.4]. The gcc-torture suite contains an executable subset of the
tests in C. Many of the test cases use GCC-specific features, but we are able

72 B. Campbell

to reuse a subset selected by another executable C semantics project, kcc [6].
Unlike the Csmith generated tests, gcc-torture contains many specialised tests
for corner-cases of the C standard. In addition to finding errors, these also serve
to highlight deliberate limitations in CompCert’s semantics.

A small test harness ran each test case with the executable semantics. The
failing cases were manually classified and in a few cases a workaround or fix to
the parser was added to prevent known bugs hiding further issues.

The tests revealed that the semantics were missing some minor casting rules
and that zero initialisation of file scope variables was not performed when ini-
tialising the memory model. Both were handled correctly by the compiler, in the
latter case by the informal code that produces the assembler output.

Several issues with the OCaml parser appeared: initialisation of an array by
a shorter string did not add null-padding; arrays were not permitted to the left
of a -> dereference; incomplete array types were not fully supported; and the
reported line numbers in error messages could be wrong. Ironically, the latter
was caused by side-effects and OCaml’s own non-deterministic evaluation order.

Deliberate limitations of CompCert were strongly apparent in the result too.
Unsupported and partially supported constructs such as long long integer types
and bitfields caused many test case failures. A more interesting case is that the
comparison of pointers is undefined when one points just beyond the end of the
object (which is explicitly permitted by the C standard), or when a function
pointer is used. However, we were unable to find any mention of this limitation
in the documentation, and without testing would never have known about it.

4 Related Work

The CompCert developers had already proposed implementing an executable
semantics for the first version of Clight, but in a big-step style with a bound on
the depth of the evaluation to ensure termination [3, §5.4]. However, it would be
difficult to implement the workarounds described in Section 2.4 with a big-step
semantics.

Reaction to this work from the CompCert developers has been positive: bugs
identified before the next release were fixed (in the case of the missing casts,
independently before they were identified by testing), and Leroy has subse-
quently added a similar small-step interpreter. The new interpreter differs from
the present work by focusing solely on the non-deterministic semantics and com-
puting all of the successor states at once. This greatly simplifies the checking
and proof of non-stuckness described in Section 2.1, and provides an option to
explore the entire space of evaluation orders (which is surprisingly tractable).
However, there is no easy way to mimic just the deterministic evaluation order,
and no tricks in the driver code to make testing easier. Together with the bug
fixes, this makes directly comparing test results with the current work infeasible,
although some brief testing with the gcc-torture suite behaved as expected. The
latest version of CompCert, 1.11, also features a more efficient memory model,
improving the interpreter’s performance.

An Executable Semantics for CompCert C 73

Ševč́ık et al. [23] have created CompCertTSO, a derivative of an earlier ver-
sion of CompCert which supports concurrent shared-memory programs with a
Total Store Ordering (TSO) memory model. The source language for the for-
malised part of the compiler is ClightTSO and is given an executable semantics
in addition to the usual relational semantics, which ‘revealed a number of sub-
tle errors.’ The main issues found in the present work did not arise because it
was based on a version of CompCert that predated their introduction, and the
pointer comparisons were not a problem because they were specified differently
in CompCertTSO.

Ellison and Roşu [6] have developed a semantics for C based on rewriting logic
that aims to be as close to the standard as possible, including many parts of the
language that are not currently supported by CompCert. An interpreter called
kcc is derived from the semantics and has been tested against the gcc-torture
test suite that we reused. They go further and perform coverage analysis to gauge
the proportion of the semantics exercised by the tests. These semantics are not
used for compiler verification, but are intended for studying (and ultimately
verifying) the behaviour of C programs.

The Piton compiler [16] was formalised in the Boyer-Moore prover, which
is an example of an environment where an executable semantics is the natural
choice. The Piton language is a very low-level systems language defined for the
project, so they do not benefit from preexisting test suites. However, the work
is particularly interesting due to the connected hardware formalisation of the
target. A later use of executable semantics in ACL2 demonstrated the usefulness
of executable semantics in hardware verification because running an existing test
suite for AMD’s RTL language against the semantics was crucial for convincing
managers that the model was relevant [19, §3].

Lochbihler and Bulwahn [14] applied and extended Isabelle’s code extraction
and predicate compiler [2] to animate the semantics of a multithreaded Java
formalisation in Isabelle/HOL, JinjaThreads. This is a very appealing approach
because the predicate compiler deals with most of the burden of writing an
executable version of an inductively defined semantics, although JinjaThreads
still required a substantial amount of work to deal with some difficult definitions.
Their description of testing focuses on performance rather than correctness, but
executable versions of the code have been tested on an ongoing basis since the
earlier Jinja formalisation that it is based on [9].

5 Conclusions

We have shown that executable semantics can be useful enough for the necessary
task of validating semantics to justify retrofitting them to existing verified com-
pilers, and in the case of CompCert found a real compiler bug in the formalised
front-end, alongside numerous minor issues. It also illustrates that testing of the
semantics can be more sensitive than testing the compiler: our original failing
case for the conditional expressions bug would (and did) pass compiler testing,

74 B. Campbell

but using that failure in the semantics we were able to derive a test case that
also failed in the compiler.

In addition to the testing, the executable semantics were also useful for demon-
strating the limitations of the semantics, both known and unknown. Moreover,
we were able to take the opportunity to prove that an intuitive relationship be-
tween the deterministic and non-deterministic semantics of CompCert C holds.

References

1. Amadio, R., Asperti, A., Ayache, N., Campbell, B., Mulligan, D., Pollack, R.,
Régis-Gianas, Y., Coen, C.S., Stark, I.: Certified complexity. Procedia Computer
Science 7, 175–177 (2011)

2. Berghofer, S., Bulwahn, L., Haftmann, F.: Turning Inductive into Equational Spec-
ifications. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 131–146. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-03359-9_11

3. Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language.
Journal of Automated Reasoning 43, 263–288 (2009),
http://dx.doi.org/10.1007/s10817-009-9148-3

4. Programming languages — C. International standard ISO/IEC 9899:1999, ISO
(1999)

5. Campbell, B., Pollack, R.: Executable formal semantics of C. Tech. Rep. EDI-INF-
RR-1412, School of Informatics, University of Edinburgh (2010)

6. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In:
Proceedings of the 39th annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2012, pp. 533–544. ACM, New York (2012),
http://doi.acm.org/10.1145/2103656.2103719

7. Free Software Foundation: GNU Compiler Collection (GCC) Internals, version
4.4.3 (2008)

8. Jourdan, J.-H., Pottier, F., Leroy, X.: Validating LR(1) Parsers. In: Seidl, H.
(ed.) ESOP 2012. LNCS, vol. 7211, pp. 397–416. Springer, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-28869-2_20

9. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine, and compiler. ACM Trans. Program. Lang. Syst. 28(4), 619–695 (2006),
http://doi.acm.org/10.1145/1146809.1146811

10. Leinenbach, D., Petrova, E.: Pervasive compiler verification from verified programs
to verified systems. Electronic Notes in Theoretical Computer Science 217, 23–40
(2008), http://www.sciencedirect.com/science/article/pii/
S1571066108003836

11. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52, 107–115
(2009), http://doi.acm.org/10.1145/1538788.1538814

12. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for
verifying program transformations. Journal of Automated Reasoning 41(1), 1–31
(2008)

13. Letouzey, P.: A New Extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES
2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003)

14. Lochbihler, A., Bulwahn, L.: Animating the Formalised Semantics of a Java-
Like Language. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F.
(eds.) ITP 2011. LNCS, vol. 6898, pp. 216–232. Springer, Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-22863-6_17

http://dx.doi.org/10.1007/978-3-642-03359-9_11
http://dx.doi.org/10.1007/s10817-009-9148-3
http://doi.acm.org/10.1145/2103656.2103719
http://dx.doi.org/10.1007/978-3-642-28869-2_20
http://doi.acm.org/10.1145/1146809.1146811
http://www.sciencedirect.com/science/article/pii/S1571066108003836
http://www.sciencedirect.com/science/article/pii/S1571066108003836
http://doi.acm.org/10.1145/1538788.1538814
http://dx.doi.org/10.1007/978-3-642-22863-6_17

An Executable Semantics for CompCert C 75

15. Milner, R., Weyhrauch, R.: Proving compiler correctness in a mechanized logic.
Machine Intelligence 7, 51–70 (1972)

16. Moore, J.S.: A mechanically verified language implementation. Journal of Auto-
mated Reasoning 5, 461–492 (1989), http://dx.doi.org/10.1007/BF00243133

17. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs. In: CC 2002. LNCS,
vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

18. Rideau, S., Leroy, X.: Validating Register Allocation and Spilling. In: Gupta, R.
(ed.) CC 2010. LNCS, vol. 6011, pp. 224–243. Springer, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-11970-5_13

19. Moore, J.S.: Symbolic Simulation: An ACL2 Approach. In: Gopalakrishnan, G.C.,
Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522, pp. 334–350. Springer, Heidel-
berg (1998), http://dx.doi.org/10.1007/3-540-49519-3_22

20. Tatlock, Z., Lerner, S.: Bringing extensibility to verified compilers. In: Proceedings
of the 2010 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2010, pp. 111–121. ACM, New York (2010),
http://doi.acm.org/10.1145/1806596.1806611

21. Team, T.C.D.: The Coq Proof Assistant: Reference Manual, Version 8.3. INRIA
(2010), http://coq.inria.fr/distrib/8.3pl2/refman/

22. Tristan, J.B., Leroy, X.: Formal verification of translation validators: a case study
on instruction scheduling optimizations. In: Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2008, pp. 17–27. ACM, New York (2008)

23. Ševč́ık, J., Vafeiadis, V., Zappa Nardelli, F., Jagannathan, S., Sewell, P.: Relaxed-
memory concurrency and verified compilation. In: Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2011, pp. 43–54. ACM, New York (2011),
http://doi.acm.org/10.1145/1926385.1926393

24. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2011, pp. 283–294. ACM, New
York (2011), http://doi.acm.org/10.1145/1993498.1993532

http://dx.doi.org/10.1007/BF00243133
http://dx.doi.org/10.1007/978-3-642-11970-5_13
http://dx.doi.org/10.1007/3-540-49519-3_22
http://doi.acm.org/10.1145/1806596.1806611
http://coq.inria.fr/distrib/8.3pl2/refman/
http://doi.acm.org/10.1145/1926385.1926393
http://doi.acm.org/10.1145/1993498.1993532

Producing Certified Functional Code
from Inductive Specifications

Pierre-Nicolas Tollitte1, David Delahaye2, and Catherine Dubois3

1 CEDRIC/ENSIIE, Évry, France
tollitte@ensiie.fr

2 CEDRIC/CNAM, Paris, France
David.Delahaye@cnam.fr

3 CEDRIC/ENSIIE/INRIA, Paris, France
dubois@ensiie.fr

Abstract. Proof assistants based on type theory allow the user to adopt
either a functional style, or a relational style (e.g., by using inductive
types). Both styles have pros and cons. Relational style may be pre-
ferred because it allows the user to describe only what is true, discard
momentarily the termination question, and stick to a rule-based descrip-
tion. However, a relational specification is usually not executable. This
paper proposes to turn an inductive specification into a functional one,
in the logical setting itself, more precisely Coq in this work. We define for
a certain class of inductive specifications a way to extract functions from
them and automatically produce the proof of soundness of the extracted
function w.r.t. its inductive specification. In addition, using user-defined
modes which label inputs and outputs, we are able to extract several
computational contents from a single inductive type.

Keywords: Executable Specifications, Inductive Relations, Functional
Code Generation, Soundness Proof Generation, Coq.

1 Introduction

Proof assistants based on type theory allow the user to adopt either a functional
style, or a relational style (e.g., by using inductive types). The choice between
the two styles may be guided by different requirements, but it is also a matter of
taste. Using inductive types or relational style may be preferred because it allows
the user to specify only what is true, discard termination issues, and stick to
usual rule-based presentations. A typical example, which illustrates these points,
concerns the definition of an operational semantics including a while loop. While
it is rather tricky to define an interpretation function [4], it is easier and more
natural to define its operational semantics by means of an inductive relation. The
former approach has to deal with general recursion, partiality, and termination.
The latter approach provides the user with a straightforward implementation,
where the inference system is formalized as an inductive type whose constructors
are a direct rewording of the inference rules. However, in some systems like Coq

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 76–91, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Certified Execution of Inductive Specifications 77

or Isabelle, these definitions are not directly executable. Simulating the execution
of a program therefore requires proving a judgment using the constructors of the
inductive type with more or less automation, and this kind of process does not
scale up to complex specifications. Another argument in favor of relational style
is that an inductive specification may describe several computational behaviors
according to the arguments of the inductive relation which have been selected
as inputs. For example, from the predicate add where add n m p specifies that p
is the sum of n and m, it is possible to extract not only a function realizing the
addition, but also a function realizing the subtraction.

A feature offered by some systems such as Coq, Isabelle, or HOL, consists of
the possibility to extract code from functional specifications. In Isabelle [3,2] and
Coq (see the previous work of some of the authors [6], as well as the plugin
distributed with Coq), it is even possible to do so from inductive specifications.
However, in the Coq framework, an ML function extracted from an inductive
type, even if it terminates, cannot be used in the Coq environment itself.

In this paper, we propose an approach which turns an inductive specification
into a functional one within the logical setting itself, i.e. Coq [10] in particular.
For a class of inductive specifications, we define a way to extract functions from
these specifications and produce the proof of soundness of any extracted function
w.r.t. its inductive specification. This allows us to not only use the generated
functions within the proof assistant, but also reason over them. This approach is
fully automatic if the extracted function follows a structural recursion scheme.
Otherwise, if the recursion is general, the user must provide termination infor-
mation, such as a measure or a well-founded order. Our approach is limited to
inductive specifications from which we can extract structurally recursive func-
tions. Our contribution consists in automating a common but tedious practice,
as illustrated by this quotation by Blazy and Leroy in [5]: “The recommended
approach to execute a Coq specification by inductive predicates, therefore, is to
define a reference interpreter as a Coq function, prove its equivalence with the
inductive specification, and evaluate applications of the function.”.

To produce the Coq functional code, we follow the translation scheme given
in [6] for extracting ML code from inductive specifications. Compared to [6],
we are able to deal with a larger family of inductive specifications, involving
in particular some specific cases of non-deterministic inductive relations, and as
said previously, we are also able to deal with proofs of soundness.

The closest approach to the work described in this paper concerns the com-
pilation of inductive relations in Isabelle/HOL into executable programs [3,2].
In this approach, the authors rely on a mode consistency analysis, in the same
way as in [6] and the work presented here. The notion of mode comes from logic
programming and helps us perform various analyses and optimizations. In [2],
the inductive definition is translated into a set of equations equivalent to the ini-
tial moded definition, and then exported to a functional programming language.
The equivalence is proved by means of a sound and complete procedure. The
main difference between this approach and our work is that the authors are able
to compile non-deterministic specifications, while we reject some of them. As a

78 P.-N. Tollitte, D. Delahaye, and C. Dubois

consequence, this approach relies on an infrastructure of sequences in order to
have all the possible results even if the specification is deterministic, resulting in
less readable programs in some cases. In another context, inductive specifications
encoded in Twelf [9] can be executed using a higher-order logic programming lan-
guage, but it does not export any code within or outside of the logic.

The paper is structured as follows: in Section 2, we illustrate our approach on
a basic example; we then introduce, in Section 3, our notion of inductive specifi-
cation, and present our code generation algorithm; next, in Section 4, we describe
the generation of proofs of soundness for the extracted functions w.r.t. their cor-
responding inductive specifications; finally, in Section 5, we provide information
regarding the implementation which has been realized in the framework of Coq.

2 An Example

In this section, we present how our functional extraction should work on an ex-
ample of inductive specification within the Coq framework [10]. This functional
extraction is performed in several steps. First, the user annotates his/her in-
ductive relation with a mode specifying which arguments are inputs, the others
being considered as outputs. A mode consistency analysis is then performed to
determine if the extraction is possible w.r.t. the provided mode. If the previ-
ous analysis is successful, the inductive relation is translated into a functional
program. Finally, if the previous translation is successful, a proof of soundness
is produced, ensuring that the generated function verifies the initial inductive
relation. Compared to [6], the translation into a functional program is performed
within the logical framework (i.e. Coq), which requires the extracted function to
terminate and allows us to generate a proof of soundness.

As an example of extraction, let us consider the specification consisting in
searching for a value in a binary search tree, which can be formalized in Coq as
follows (let us note that we introduce two inductive relations, one for comparing
two values of the tree, and another one for searching a value in the tree):

Inductive b s t : Set :=
| Empty : b s t
| Node : b s t → nat → b s t → b s t .

Inductive comp_nat : Set := | I n f | Sup | Eq .

Inductive path : Set :=
| Not_found | End_path
| Le f t : path → path | Right : path → path .

Inductive compare : nat → nat → comp_nat → Prop :=
| Compare_eq : compare 0 0 Eq
| Compare_inf : f o ra l l n , compare 0 (S n) I n f
| Compare_sup : f o ra l l n , compare (S n) 0 Sup
| Compare_rec : f o ra l l n m c , compare n m c →

compare (S n) (S m) c .

Certified Execution of Inductive Specifications 79

Inductive search : b s t → nat → path → Prop :=
| Search_empty : f o ra l l n , search Empty n Not_found
| Search_found : f o ra l l n m t1 t2 , compare n m Eq →

search (Node t1 m t2) n End_path
| Search_inf : f o ra l l n m t1 t2 b , search t1 n b →

compare n m In f → search (Node t1 m t2) n (Le f t b)
| Search_sup : f o ra l l n m t1 t2 b , search t2 n b →

compare n m Sup → search (Node t1 m t2) n (Right b) .

Using the mode {1, 2} both for the compare and search relations (which means
that we use the two first arguments of compare and search as inputs), the fol-
lowing function can be automatically extracted from the relation search:

Fixpoint search12 (p1 : b s t) (p2 : nat) : path :=
match p1 with
| Empty ⇒ Not_found
| Node t1 m t2 ⇒

match compare12 p2 m with
| I n f ⇒ l e t b := search12 t1 p2 in Le f t b
| Sup ⇒ l e t b := search12 t2 p2 in Right b
| Eq ⇒ End_path
end

end .

where compare12 is the function extracted from the relation compare.
It should be noted that using the mode {1, 2}, the relation search appears

as non-deterministic in the sense that several constructors overlap (in this case,
Search_found, Search_inf, and Search_sup). This requires a specific analysis
of the premises of the corresponding constructors to realize that the relation is
actually deterministic using the result of a given call to distinguish them (here,
the result of the application of compare12).

Once the previous function has been generated, it is possible to produce a
proof of soundness for this function, i.e. to prove that it verifies the relation from
which it has been extracted. To do so, the idea is to use the functional induction
scheme of the extracted function generated by Coq, which is the following (due to
space restrictions, we only describe the cases of Search_empty and Search_inf):

Lemma search12_ind :
f o ra l l P : b s t → nat → path → Prop ,

(f o ra l l (p1 : b s t) (p2 : nat) , p1 = Empty →
P Empty p2 Not_found) →

(f o ra l l (p1 : b s t) (p2 : nat) (t1 : b s t) (m : nat)
(t2 : b s t) , p1 = Node t1 m t2 →
compare12 p2 m = I n f → P t1 p2 (search12 t1 p2) →
l e t p := search12 t1 p2 in
P (Node t1 m t2) p2 (Le f t p)) → . . .

f o ra l l (p1 : b s t) (p2 : nat) , P p1 p2 (search12 p1 p2) .

80 P.-N. Tollitte, D. Delahaye, and C. Dubois

Using this induction scheme, it is possible to automatically complete the proof
of soundness for the function previously extracted as follows (we still focus on
the cases corresponding to the constructors Search_empty and Search_inf):

Lemma search12_sound :
f o ra l l (p1 : b s t) (p2 : nat) (p : path) ,

search12 p1 p2 = p → search p1 p2 p .
Proof .

intros until 0 ; intro H ; subst p ; apply search12_ind .
(∗ Search_empty ∗)
intros until 0 ; intro H ; apply Search_empty .
(∗ Search_inf ∗)
intros until 0 ; intros H1 H2 H3 ; simpl .
apply Search_inf ;

[assumption | apply compare12_sound ; assumption] .
. . . (∗ Search_sup and Search_found ∗)

Save .

where compare12_sound is the soundness lemma for the compare12 function.

3 Code Generation

Our code generation algorithm consists in producing a functional program from
an inductive relation and an extraction mode. In the following, we will borrow
some definitions and notations from [6], and in particular, an inductive relation
will be called logical inductive type. If the extraction is performed from a logical
inductive type d, the definition of d may use other logical inductive types named
di. In this case, extraction modes must be provided for all these types. We
will not deal with mutually recursive definitions, and we will assume that each
dependency w.r.t. di has already been extracted with its extraction mode.

3.1 Logical Inductive Types

The Coq proof assistant relies on the Calculus of Inductive Constructions (CIC
for short) type theory, for which a description can be found in the Coq doc-
umentation [10]. This theory is actually too extensive for the purpose of this
paper, and we will use a subset of CIC to describe logical inductive types. The
subset of CIC that we will consider is very similar to the one used in [6], and
we will only add some restrictions on the form of the terms. An inductive def-
inition is noted Ind(d : τ, Γ), where d is the name of the inductive definition,
τ its type, and Γ the context representing the constructors (their names to-
gether with their respective types). In this notation, two restrictions have been
made: we do not deal with parameters (i.e. the additional arguments which are
shared by the type τ of the inductive definition and the types of constructors
defined in Γ) and mutual inductive definitions. In addition, dependent types,
higher order and propositional arguments are not allowed in the type of an
inductive definition; more precisely, this means that τ has the following form

Certified Execution of Inductive Specifications 81

τ1 → . . . τi → . . . τn → Prop where τi, with i = 1 . . . n, is of type Set or Type,
and does not contain any product or dependent inductive type. Moreover, we
suppose that the types of constructors are in prenex from, with no dependency
between the bounded variables and no higher order; thus, the type of a construc-
tor is ∀x1 : X1, . . . , xn : Xn.T1 → . . . Tj → . . . Tm → d t1 . . . tp where xi �∈ Xl,
with l > i, Xi is of type Set or Type, Tj is of type Prop and does not contain
any product or dependent inductive type, and tk, with k = 1 . . . p, are terms. In
the following, the terms Tj are called the premises of the constructor, whereas
the term d t1 . . . tp is called the conclusion of the constructor. We impose the
additional constraint that Tj is a fully applied logical inductive type, i.e. Tj is of
the form dj tj1 . . . tjpj , where dj is a logical inductive type (possibly different
from d), tjk, with k = 1 . . . pj , are terms, and pj is the arity of dj . Additionally,
we put some restrictions on the form of a term ti, which is either a variable or a
fully applied constructor ci ti1 . . . tipi , where pi is the arity of ci. An inductive
type verifying the conditions above is called a logical inductive type. We aim to
propose an extraction method for this kind of inductive types.

In the general case, we aim to extract only deterministic specifications. We
actually distinguish two kinds of determinism. The basic notion of determinism
is when for a given extraction mode, the inputs of the conclusions of constructors
are pairwise non-unifiable. However, there also exists another kind of determin-
ism, where the logical inductive type seems non-deterministic but actually re-
mains deterministic, i.e. where there are overlapping conclusions of constructors,
but where a function can still be extracted (see the example of Section 2). In con-
trary to [6], we propose to also deal with this other kind of determinism in some
specific cases, where using a premise, we can distinguish between the construc-
tors whose conclusions overlap. This requires the use of a specific representation
of logical inductive types, which is introduced in the next subsection.

In the following, we will refer to the constructors using their names. In order
to denote the constructor named C, we will use Γ (C). We will also add the
notation P (C) to denote the set of premises of a constructor named C, and the
notation P (C, i) to denote the ith premise of the constructor C.

3.2 Intermediate Representation for Merging Constructors

As said previously, the work developed in this paper also proposes to relax some
restrictions imposed in [6]. One of them is that constructors do not overlap,
which means that their respective conclusions are pairwise non-unifiable. This
restriction is too strong as it prevents from handling quite common specifications
like the example of Section 2. However, when some conclusions overlap, we can
still generate some code in some cases. The first pattern matching of the gen-
erated function is usually used to distinguish between constructors. To extract
specifications with overlapping conclusions, the idea is to merge them and use
premises to distinguish between constructors. In the example of Section 2, we
have to merge the conclusions of the Search_inf, Search_sup, and Search_found
constructors. These three conclusions will be compiled as the same pattern in the
extracted function. In some cases, it may be also necessary to merge premises.

82 P.-N. Tollitte, D. Delahaye, and C. Dubois

search
12

Empty n _ search
12

_ _ Not_found

compare
12

n m Inf search
12

t1 n b search
12

_ _ Left b

search
12

(Node t1 m t2) n _ compare
12

n m Sup search
12

t2 n b search
12

_ _ Right b

compare
12

n m Eq search
12

_ _ End_path

Fig. 1. Rel-Tree Representation for the Binary Search Tree Example

Relation-Tree Definition. In order to represent the merging of constructors,
we introduce a new intermediate data structure to represent logical inductive
types where constructors can be merged. This new representation is based on
trees, a data structure which eases both the verification of some properties over
the specification and the code generation. Logical inductive types are actually
represented as a forest called a relation-tree, which is defined as follows:

Definition 1 (Relation-Tree). Given a logical inductive type d, it can be rep-
resented by the following relation-tree (or rel-tree for short):

Rel−Tree({(d t11 . . . t1p,Nodes1), . . . , (d tk1 . . . tkp,Nodesk)})

where Nodesi is either {(Ti1,Nodesi1), . . . , (Tik,Nodesik)} or d ti1 . . . tip.

It should be noted that in this definition, k is always smaller than or equal to
the number of constructors in the logical inductive type d, because there is at
most one node by constructor, and less if there are merged constructors.

Considering the example of the binary search tree of Section 2, it is pos-
sible to represent the inductive relation search by the rel-tree of Figure 1. In
this representation, we use several conventions. The leaves are represented at
the right-hand side. The nodes annotated by a conclusion of the specification
are represented by the boxes with sharp corners, whereas the nodes related to
premises are in the boxes with rounded corners. In these nodes, some arguments
may be hidden with underscores when they are not relevant; for instance, we
hide the output in the root nodes and the inputs in the leaf nodes, because
they are not involved when extracting the code. In addition, in each node, the
extraction mode is mentioned under the considered relation name.

Rel-Tree Properties. The main task of the code generation is to build a rel-
tree verifying the three properties described below (the code generation itself is in
turn quite straightforward). In order to describe these three properties, we need
a function to get a path from a rel-tree. In the following, the treepaths function
will return the set of paths that can be built from a rel-tree. For example, if
bst_tree denotes the rel-tree of Figure 1, we have:

Certified Execution of Inductive Specifications 83

treepaths(bst_tree) =
{ [search Empty n _; search _ _ Not_found],
[search (Node t1 m t2) n _; compare n m Inf ; search t1 n b;
search _ _ Left b], . . . }

We also need functions to compute input and output terms according to a mode,
where a mode is a set of indexes which correspond to the arguments of the logical
inductive type used as inputs:

Definition 2 (Functions for Inputs/Outputs). Given a logical inductive
type d, some terms t1 . . . tpd

, and a mode m, we define the following functions:

in(d t1 . . . tpd
,m) � (ti1 , . . . , tim), where m is {i1, . . . , im}

invars(d t1 . . . tpd
,m) � variables(in(d t1 . . . tpd

,m))

out(d t1 . . . tpd
,m) �

{
if ∃j ∈ 1 . . . pd, j /∈ {i1, . . . , im} then tj
else true

where m is {i1, . . . , im}
outvars(d t1 . . . tpd

,m) � variables(out(d t1 . . . tpd
,m))

where variables(t) returns the set of variables occurring in the term t.

We also define the global environment M, which contains the extraction modes
for all the logical inductive types used in the logical inductive type being ex-
tracted. We can get the extraction mode for the logical inductive type d using
the notation M(d). This notation is extended for the premises as follows: if Ti

is of the form di ti1 . . . tipi , then M(Ti) = M(di). In the following, d and m
will refer to the logical inductive type being extracted and its extraction mode.

The first property describes the relationship between the logical inductive
type and its rel-tree. We must ensure that we find all constructors with their
conclusions and their premises in the rel-tree (up to renaming).

Property 1 (Specification Compliance). The rel-tree r is said to comply with its
logical inductive type d iff it verifies the following property:

SC(r) � ∀C ∈ Γ , ∃!p ∈ treepaths(r), SC′(p, C) ∧
∀p ∈ treepaths(r), ∃!C ∈ Γ , SC′(p, C)

where SC′ is the compliance of a path [T0; T1; . . . ; Tn; Tn+1] for a given con-
structor named C defined as follows:

SC′([T0; T1; . . . ; Tn; Tn+1], C) �
∃σ, ∃Π,n = card(P (C)) ∧ ∀i ∈ 1 . . . n, Tj = σ(P (C,Πi)) ∧

out(Tn+1,m) = out(σ(concl(Γ (C))),m) ∧
in(T0,m) = σ(in(concl(Γ (C)),m))

where σ is a variable renaming, Π a permutation of 1 . . . n, and concl a function
which returns the conclusion term of a constructor.

84 P.-N. Tollitte, D. Delahaye, and C. Dubois

The second property is similar to the mode consistency analysis of [6], but is
performed on the rel-tree instead of the logical inductive type. It verifies that
variables are not used before they are defined in the generated function.

Property 2 (Mode Consistency Analysis). Given a mode m and a rel-tree r of
the form Rel−Tree({(d t11 . . . t1p,Nodes1); . . . ; (d tn1 . . . tnp,Nodesn)}), m is
said to be consistent w.r.t. r iff the following property is verified:

MCA({(d t11 . . . t1p,Nodes1); . . . ; (d tn1 . . . tnp,Nodesn)}) �
∀i, i ∈ 1 . . . n,MCA′(Nodesi, invars(d ti1 . . . tip))

where MCA′ is defined as follows:

MCA′(nodes, S) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if nodes is d t1 . . . tp then
outvars(d t1 . . . tp,m) ⊆ S

if nodes is {(T1,Nodes1); . . . ; (Tn,Nodesn)} then
∀i, i ∈ 1 . . . n, invars(Ti,M(Ti)) ⊆ S ∧

MCA′(Nodesi, S ∪ outvars(Ti,M(Ti)))

The third property ensures that we build valid pattern matchings from the
rel-tree, i.e. with exclusive clauses (involving non-overlapping patterns). The
patterns of the same pattern matching will be the outputs of the premise nodes
which are the children of the same parent node.

Property 3 (Non-Overlapping Patterns). Given a mode m and a rel-tree r of
the form Rel−Tree({(d t11 . . . t1p,Nodes1); . . . ; (d tn1 . . . tnp,Nodesn)}), the
function extracted from r in mode m will only involve non-overlapping patterns
iff the following property is verified:

NO({(d t11 . . . t1p,Nodes1); . . . ; (d tn1 . . . tnp,Nodesn)}) �
∀i, i ∈ 1 . . . n,NO′(Nodesi) ∧ ∀j, j ∈ 1 . . . n, j �= i ⇒

in(d ti1 . . . tip,m) and in(d tj1 . . . tjp,m) are not unifiable

where the NO′ property is defined as follows:

NO′(nodes) �⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if nodes is d t1 . . . tp then true
if nodes is [(T1,Nodes1); . . . ; (Tn,Nodesn)] then

∀i, i ∈ 1 . . . n,NO′(Nodesi) ∧ ∀j, j ∈ 1 . . . n, j �= i ⇒
in(Ti,M(Ti)) = in(Tj ,M(Tj)) ∧
out(Ti,M(Ti)) and out(Tj,M(Tj)) are not unifiable

Due to space restrictions, we do not present the rel-tree generation algorithm
in details here, and we only provide a short description of this algorithm. The
complexity of this algorithm mainly comes from the possible permutations of
premises. The basic idea is to generate all the possible rel-trees from the specifi-
cation and find if there is any rel-tree verifying the three properties introduced

Certified Execution of Inductive Specifications 85

above. However, in order to generate fewer rel-trees (because there are many
permutations of premises), we therefore add some heuristics using the three
properties described above. From the first property, we can deduce a general
form of rel-trees. Each rel-tree must contain one path for each constructor of
the specification. Each path must begin and end with the conclusion. Except
these two nodes, there is one node for each premise. The second property can
be verified independently for each path. Only the third property needs all the
constructors to be present in the rel-tree to be verified, but it can be verified
after each insertion. As a result, we can insert the constructors one by one, and
verify the three properties at each step.

3.3 Partial Mode Extraction of Complete Specifications

As said in the introduction, we only consider structurally recursive functions in
this paper. As a consequence, the extracted functions are generated as regular
fixpoints of CIC, which consists of our target language. We actually use the fol-
lowing subset of CIC (we use the notations of the Coq documentation [10]):

t ::= fix f (x1 : τ1) . . . (xn : τn) : τ := t
| f t1 . . . tpf

| c t1 . . . tpc | let x := t1 in t2 | x
| (match tm with

| c1 x11 . . . x1p1 ⇒ f1 | . . . | cn xn1 . . . xnpn ⇒ fn)

In this language, there is no complex pattern matching. We can only match one
term of type τ and there is one pattern per constructor of the type τ . However,
to simplify the presentation of the code generation, we use more complex pattern
matching expressions (with nested patterns) as follows:

match (tm1, . . . , tmn) with
| p11, . . . , p1n ⇒ t1 | . . . | pk1, . . . , pkn ⇒ tk

where “ p ::= c p1 . . . ppc | x | _”.
These more complex pattern matching expressions are then compiled into

simpler pattern matching expressions, which conform to the initial language of
the CIC subset considered for the extraction. This compilation is performed
using a specialized version of the algorithm described in [7].

In the following, we describe the code generation for partial modes and com-
plete specifications. A mode is partial iff there is one output (otherwise, when
there is no output, the mode is full). A specification is complete for a given mode
iff its extraction produces a complete function, in which all the pattern match-
ings are exhaustive. The extraction for full modes and incomplete specifications
will be explained later, as evolutions of the algorithm described below.

The code generation of a rel-tree r built from the inductive definition d, of
the form Rel−Tree({(d t11 . . . t1p,Nodes1), . . . , (d tk1 . . . tkp,Nodesk)}), and
extracted with the mode m = {i1, . . . , im}, is denoted by �r�M and performed
in the following way:

86 P.-N. Tollitte, D. Delahaye, and C. Dubois

�{(d t11 . . . t1p,Nodes1), . . . , (d tk1 . . . tkp,Nodesk)}�M �
fix fd (x1 : τi1) . . . (xm : τim) : τo :=

match (x1, . . . , xm) with
| in(d t11 . . . t1p) ⇒ �Nodes1�M
| . . .
| in(d tk1 . . . tkp) ⇒ �Nodesk�M

This function generates the outermost pattern matching of the extracted func-
tion, and the generated code for each node is produced as follows:

�Nodes�M �⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

if Nodes is d t1 . . . tp then out(d t1 . . . tp,m)
if Nodes is {(Ti1,Nodesi1), . . . , (Tik,Nodesik)} then

match �Ti1�M with
| out(Ti1,M(Ti1)) ⇒ �Nodesi1�M
| . . .
| out(Tik,M(Tik)) ⇒ �Nodesik�M

where �Ti1�M involves the function extracted from the logical inductive type
upon which Ti1 is built. If Ti1 = dj t1 . . . tpj then �Ti1�M = fdj in(Ti1,M(Ti1)).

Using the code generation algorithm described above, we obtain the following
function from the binary search tree example introduced in Section 2:

fix search12 (p1 : bst) (p2 : nat) : path :=
match (p1, p2)
| (Empty , _) ⇒ Not_found
| (Node t1 m t2, n) ⇒

(match compare12 n m with
| Inf ⇒ (match search12 t1 p2 with b ⇒ Left b)
| Sup ⇒ (match search12 t2 p2 with b ⇒ Right b)
| Eq ⇒ End_path)

3.4 Extensions of the Code Generation

This section proposes two extensions of the code generation algorithm. The first
one concerns a larger family of non-deterministic specifications, while the second
one aims to deal with full modes and incomplete specifications.

Non-deterministic Specifications. It is possible to accept specifications with
overlapping conclusions where the premises cannot help distinguish between
them, but can be ordered using an order over the patterns defined as follows:

Definition 3 (Pattern Order). Given two patterns t1 and t2, t1 is more gen-
eral than t2, denoted by t1 > t2, iff the following property is verified:

Certified Execution of Inductive Specifications 87

t1 > t2 ⇔ (t1 = v ∧ t2 = cl t1 . . . tpl
) ∨

(t1 = _ ∧ t2 = cl t1 . . . tpl
) ∨

(t1 = cl t
′
1 . . . t′pl

∧ t2 = cl t1 . . . tpl
∧

∃i ∈ 1 . . . pl, t
′
i > ti ∧ ∀i ∈ 1 . . . pl, t

′
i > ti ∨ t′i = ti)

It should be noted that in the generated code, some decisions are made according
to this order, and completeness may therefore be lost, i.e. some possible outputs
w.r.t. the specification cannot be computed by the extracted function.

To illustrate this extension of the code generation algorithm, let us consider
an improvement of the binary search tree example introduced in Section 2, which
consists in adding two constructors (in bold font) in the search logical inductive
type in order to correctly propagate the Not_found value as follows:

Inductive search : b s t → nat → path → Prop :=
| Search_empty : f o ra l l n , search Empty n Not_found
| Search_found : f o ra l l n m t1 t2 , compare n m Eq →

search (Node t1 m t2) n End_path
| Search_inf : f o ra l l n m t1 t2 b , search t1 n b →

compare n m In f → search (Node t1 m t2) n (Le f t b)
| Searchinf_nf : forall n m t1 t2, search t1 n Not_found →

compare n m Inf → search (Node t1 m t2) n Not_found
| Search_sup : f o ra l l n m t1 t2 b , search t2 n b →

compare n m Sup → search (Node t1 m t2) n (Right b)
| Searchsup_nf : forall n m t1 t2, search t2 n Not_found →

compare n m Sup → search (Node t1 m t2) n Not_found .

As can be observed, the conclusions of Search_inf and Searchinf_nf overlap,
and the two premises search t1 n b and search t1 n Not_found as well, but these
premises can be ordered: b is more general than Not_found.

Considering this new kind of specifications requires some modifications in the
rel-tree representation and consequently in the three related properties. The rel-
tree representation is adapted to allow this ordering, and a rel-tree is defined by
using lists of nodes instead of sets of nodes.

Definition 4 (Rel-Tree with Lists). Given a logical inductive type d, it can
be represented using the new following definition of rel-tree:

Rel−Tree([(d t11 . . . t1p,Nodes1), . . . , (d tk1 . . . tkp,Nodesk)])

where Nodesi is [(Ti1,Nodesi1), . . . , (Tik,Nodesik)] or d ti1 . . . tip.

The previous properties SC, MCA, and NO must be adapted according to this
new definition of rel-trees. In particular, in the property NO, we have to change
the “not unifiable” statements by a new relation defined as follows:

Definition 5 (Pattern Relation). Given two patterns t1 and t2, t1 is more
general than t2 or non-unifiable with t2, denoted by t1 � t2, iff the following
property is verified:

t1 � t2 ⇔ t1 > t2 or t1 and t2 are not unifiable

88 P.-N. Tollitte, D. Delahaye, and C. Dubois

As for the code generation algorithm from a rel-tree, it remains unchanged. Re-
garding the new specification of the binary search tree, the extracted function is
then obtained as follows:

fix search12 (p1 : bst) (p2 : nat) : path :=
match (p1, p2)
| (Empty , _) ⇒ Not_found
| (Node t1 m t2, n) ⇒

(match compare12 n m with
| Inf ⇒
(match search12 t1 n with
| Not_found ⇒ Not_found
| b ⇒ Left b)

| Sup ⇒
(match search12 t2 n with
| Not_found ⇒ Not_found
| b ⇒ Right b)

| Eq ⇒ End_path)

Full Modes and Incomplete Specifications. In the code generation de-
scribed previously, we only consider partial modes and complete specifications.
We are also able to deal with full modes and incomplete specifications. In the
case of a full mode, the output of the extracted function is a boolean: true when
the relation between the arguments is verified, false otherwise. The code genera-
tion follows the same algorithm than previously. In addition, for each case where
a constructor is not defined, we add to the generated function the default case
“ | _ → false”. Regarding incomplete specifications, if we follow the previous
code generation algorithm, it produces a partially defined function, which is not
supported by the CIC type theory. The algorithm has therefore to be adapted
to extract a function whose result type is an option type of T , where T is the
type of the output. The code generation then follows the same algorithm than
previously, but for each case where a constructor is not defined, we add to the
generated function the default case “ | _ → None”, where None is the empty
constructor of the option type.

4 Soundness Proof Generation

In the previous section, we have explained how to extract functions from log-
ical inductive types. In addition, we want to automatically provide proofs of
soundness for these functions. In the following, we will only consider proofs of
soundness for extractions of complete specifications with partial modes. How-
ever, the principle of soundness proof generation can be generalized to the other
cases. The theorem of soundness has the following form:

Certified Execution of Inductive Specifications 89

∀p1, . . . , pn, fd p1 . . . pn−1 = pn → d p1 . . . pn

where fd is the name of the extracted function from the logical inductive type d
with the mode {1, . . . , n− 1}.

We prove the previous theorem by automatically providing a Coq proof script,
which performs a functional induction using the extracted function [1]. Actually,
for any function, Coq generates a functional induction scheme, which follows
precisely the execution paths of the function (see the scheme search12_ind gen-
erated for the function search12 in Section 2). When applying the induction
scheme to the goal representing the theorem of soundness to be proved, we get
a subgoal for each execution path of the extracted function. It should be noted
that in the code generation described previously, we only use a high-level pat-
tern matching, which is automatically compiled into a low-level pattern match-
ing. This compilation may introduce some code duplication, and some “ let-in”
constructs are introduced to avoid the duplication of recursive calls. In the fol-
lowing, we will consider extracted functions where this compilation will have
been performed, and which will be allowed to involve “ let -in” expressions.

4.1 Annotated Execution Paths

Before generating the proof script, we compute, from the generated code, the
annotated execution paths, which correspond to the different cases of the func-
tional induction scheme. An execution path is very similar to the target language
used for the code generation, but it contains only one branch for each pattern
matching. In the following, C will refer to the name of a constructor of a logical
inductive type, while c will refer to a constructor of an inductive data type.

Definition 6 (Annotated Execution Path). An annotated execution path is
defined as follows:

b ::= t | letl x := t in b
| match t with c x1 . . . xp ⇒l b

where t is a term and l is an annotation which is either a set of constructor
names {C1, . . . , Cn}, or a set of premise positions {(C1, i1), . . . , (Cn, in)},
in which (Ci, ik) denotes the ithk premise of constructor Ci.

This representation will help us generate the proof script because it contains
information on both the generated code (and therefore the subgoal) and the
specification (through the annotations). An annotation indicates the parts of
the specification from whence the generated code comes. Thus, if (C, j) appears
in the annotation l of a matching clause “c x1 . . . xp ⇒l b”, then the constructor
c appears in the premise P (C, j). These annotated execution paths are generated
from the extracted code, which is also annotated. The code generation algorithm
is adapted to produce the annotations, which are initially computed from the
specification and embedded in the rel-tree representation.

90 P.-N. Tollitte, D. Delahaye, and C. Dubois

4.2 Proof Script of the Soundness Proof

As seen previously, we know that applying the functional induction scheme gen-
erates one subgoal per execution path of the extracted function. Each execution
path is associated with one constructor in the specification, that we call C. One
or more execution paths may be associated with the same constructor (due to
the compilation of pattern matchings). Finally, it should be noted that we have
an association between a constructor, an execution path, a case in the induction
scheme, and a subgoal of the proof (once the induction scheme has been applied).

Each subgoal has the following form:

∀−→v , ∀−→v1 ,−→a1 → H1 → . . . ∀−→vk,−→ak → Hk → . . . ∀−→vj ,−→aj → Hj → d t1 . . . tp

where −→v , −→vk, with k in 1 . . . j, are lists of variables, j the number of premises
of the associated constructor C, −→ak a list of equalities or “ let-in” expressions
corresponding to the associated annotated execution path, and Hk the soundness
hypothesis if the logical inductive type involved in the premise, dk, is d or an
equality of the form fk w1 . . . wu = r, where fk is the extracted function for dk.
We assume that the extraction has been already performed from dk, and as a
consequence, the theorem of soundness related to fk and dk is available.

Each subgoal is transformedby applying successive introductions and rewritings
using the several aki, leading to a goal which is the conclusion of the constructor
C (up to renaming), and where each premise is present in the context. When aki
is a “ let-in” expression, it is transformed into an equality, and a rewriting is per-
formed. The annotated execution paths are used to determine from which premise
the equalities and “ let-in” expressions of the subgoal come from. Thanks to this
information, we know how to rewrite the goal. Finally, we apply the constructor
C and this nearly finishes the proof of the subgoal: the arguments of the construc-
tor are either present in the hypothesis context, or must be proved using the theo-
rems of soundness related to the logical inductive types (other than d) used in the
constructor (like in the example of Section 2).

5 Implementation

We have implemented the extraction of logical inductive types within the Coq
proof assistant as a plugin (not yet distributed, but available on demand by
sending a mail to the authors). For information, another plugin (distributed
since Coq version 8.4) allows the user to extract ML code from logical inductive
types. In the short term, we plan to merge these two plugins.

With the current implementation, it is possible to extract specifications in-
volving several logical inductive types, but there are some restrictions. First, the
definitions must not be mutually recursive, and the extracted functions must rely
on structural recursion. Moreover, logical inductive types must contain neither
logical connectives (∧, ∨, or ¬), nor equality symbols. Finally, regarding proofs
of soundness, we are only able to generate them for complete functions extracted
with partial modes. These restrictions should be relaxed in the near future.

Certified Execution of Inductive Specifications 91

6 Conclusion

We have presented an operational approach allowing the extraction of computa-
tional content written as a Coq function from a Coq inductive specification. This
extracted function is accompanied by a proof of soundness establishing that the
result of the function complies with the specification. Future work will consist in
completing the proof generation: generating soundness proof for the other kinds
of modes and specifications, and also (when it is relevant) producing complete-
ness proofs. The former is just an adaptation of the approach presented here (i.e.
a functional induction exploiting annotations produced during the code gener-
ation), while the latter requires a different proof generation scheme. The next
step will be to address inductive specifications embedding a general recursion. Fi-
nally, we could also try to extract functions from non-terminating specifications
(e.g. the semantics of a language featuring a while loop), expressed as mixed
inductive-coinductive definitions (see [8] for some examples). A simple approach
would consist in adding to the extracted function a non-negative integer counter
which bounds the depth of the computation (as done in CompCert [5]).

References

1. Barthe, G., Courtieu, P.: Efficient Reasoning about Executable Specifications in
Coq. In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS,
vol. 2410, pp. 31–46. Springer, Heidelberg (2002)

2. Berghofer, S., Bulwahn, L., Haftmann, F.: Turning Inductive into Equational Spec-
ifications. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 131–146. Springer, Heidelberg (2009)

3. Berghofer, S., Nipkow, T.: Executing Higher Order Logic. In: Callaghan, P., Luo,
Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 24–40.
Springer, Heidelberg (2002)

4. Bertot, Y., Capretta, V., Das Barman, K.: Type-Theoretic Functional Semantics.
In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410,
pp. 83–98. Springer, Heidelberg (2002)

5. Blazy, S., Leroy, X.: Mechanized Semantics for the Clight Subset of the C Language.
Journal of Automated Reasoning (JAR) 43(3), 263–288 (2009)

6. Delahaye, D., Dubois, C., Étienne, J.-F.: Extracting Purely Functional Contents
from Logical Inductive Types. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007.
LNCS, vol. 4732, pp. 70–85. Springer, Heidelberg (2007)

7. Le Fessant, F., Maranget, L.: Optimizing Pattern-Matching. In: Pierce, B.C.
(ed.) International Conference on Functional Programming (ICFP). SIGPLAN,
pp. 26–37. ACM (2001)

8. Leroy, X., Grall, H.: Coinductive Big-Step Operational Semantics. Information and
Computation (IC) 207(2), 284–304 (2009)

9. Pfenning, F., Schürmann, C.: System Description: Twelf - A Meta-Logical Frame-
work for Deductive Systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI),
vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

10. The Coq Development Team. Coq, version 8.4. INRIA (August 2012),
http://coq.inria.fr/

http://coq.inria.fr/

The New Quickcheck for Isabelle

Random, Exhaustive and Symbolic Testing
under One Roof

Lukas Bulwahn

Institut für Informatik, Technische Universität München, Germany

Abstract. The new Quickcheck is a counterexample generator for Isa-
belle/HOL that uncovers faulty specifications and invalid conjectures
using various testing strategies. The previous Quickcheck only tested
conjectures by random testing. The new Quickcheck extends the previous
one and integrates two novel testing strategies: exhaustive testing with
concrete values; and symbolic testing, evaluating conjectures with a nar-
rowing strategy. Orthogonally to the strategies, we address two general
issues: First, we extend the class of executable conjectures and specifica-
tions, and second, we present techniques to deal with conditional conjec-
tures, i.e., conjectures with premises. We evaluate the testing strategies
and techniques on a number of specifications, functional data structures
and a hotel key card system.

1 Introduction

Counterexample generators are very useful advisory tools for users of interactive
theorem provers. They make developing and proving specifications an enjoyable
experience. Users can identify errors leading to invalid conjectures by immediate
counterexamples rather than by time-consuming unsuccessful proof attempts.

Isabelle [13] uncovers invalid conjectures by two means: Refute [17] and Nit-
pick [3] search for countermodels by reducing a conjecture to boolean satisfi-
ability, whereas Quickcheck tests a conjecture by assigning values to the free
variables of the conjecture and evaluating it. To evaluate the conjecture effi-
ciently, Quickcheck translates the conjecture and related definitions to an ML or
Haskell program, exploiting Isabelle’s code generation infrastructure [10]. This
allows Quickcheck to test a conjecture with millions of test cases within seconds.

In earlier work [1], Quickcheck was originally modeled after the QuickCheck
tool for Haskell [7], which tests user-supplied properties of a Haskell program
with randomly generated values. The first contribution of this work is to ex-
tend Quickcheck with exhaustive and narrowing-based testing as complements
to random testing. Exhaustive testing checks the formula for every possible set
of values up to a given bound, and hence finds counterexamples that random
testing might miss. Narrowing-based testing evaluates the formula symbolically
rather than with a finite set of ground values, and therefore, it can be more
precise and more efficient than the other two approaches.

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 92–108, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The New Quickcheck for Isabelle 93

Another contribution is to address previous weaknesses of counterexample
generation by testing. Quickcheck is inherently limited to executable specifica-
tions, and consequently the specification must be transformed into a functional
program. We extend the class of executable conjectures in several directions:

– Narrowing-based testing can handle unbounded existential quantifiers over
infinite types, enabling refutation for a class of conjectures where all other
counterexample generators fail due to their imprecision or lack of support.

– For polymorphic conjectures, Quickcheck finds counterexamples by evaluat-
ing the conjecture for all finite models of small sizes.

– Quickcheck now handles underspecified functions, and provides a simple user
interface to cope with arbitrary type definitions.

A well-known problem of testing with concrete values are conditional conjectures,
especially those with very restrictive premises. These conjectures are problem-
atic because when testing naively, for the vast majority of variable assignments
the premise is not fulfilled, and the conclusion is left untested. Clearly, it is desir-
able to take the premise into account when generating values. We present three
solutions for Quickcheck to generate only appropriate variable assignments:

– Derivation of custom test data generators from user declarations
– Automatic synthesis of test data generators that take the condition’s defini-

tion into account
– Symbolic evaluation

To measure the impact of our improvements, we compare the various testing
approaches in Quickcheck on a large set of automatically generated conjectures,
on faulty implementations of functional data structures, and on a formalization
of a hotel key card system, which was until now beyond the reach of Isabelle’s
counterexample generators. In a unrefereed paper [2], we previously presented
an overview of this work as one part of Isabelle’s latest developments.

The paper is structured as follows. We begin with Quickcheck’s basic infra-
structure (§2 and §3) for testing with concrete values, i.e., random and exhaustive
testing. We show how to deal with conditional conjectures (§4) to avoid the vac-
uous test cases that plague most specification testing tools. Then we discuss the
advantages of narrowing-based testing (§5). We highlight aspects (§6) that im-
prove Quickcheck’s performance and complete its infrastructure. Our evaluation
(§7) sheds further light on the counterexample generators’ strength.

2 From Conjectures to Test Programs

Given a conjecture, Quickcheck builds a test program that combines the conjec-
ture’s evaluation with the generation of test values. This test program is then
passed to Isabelle’s code generator, which executes it efficiently within Isabelle’s
underlying ML runtime system. Turning the conjecture into a test program is a
step common to both random and exhaustive testing.

94 L. Bulwahn

We create a test program for a given conjecture by enclosing its evaluation
with test data generators for its free variables. The test program returns the
counterexample as an optional value: It either returns Some x, where x is a
counterexample, or None. Both testing approaches define test data generators.
A generator creates a finite domain of values and performs a test for a given
conjecture to all elements of that domain. Our presentation here focuses on
exhaustive testing. The construction for random testing is analogous.

Given a function c that checks the conjecture for a single value, the generator
exhaustive c yields a function that checks the conjecture for all values up to a
given bound. For feedback for the user, a counterexample of type τ is mapped
to a fixed type result using the function reify :: τ ⇒ result. We describe the
generators in detail in §3. A simple test program for a conjecture C with a single
variable x can be expressed as:

exhaustive (λx. if C x then None else Some (reify x))

Test programs are improved by taking the common structure of conjectures into
account, as a list of premises and a conclusion. If a premise does not depend on
a free variable, the generation of values for this free variable can be postponed
until after checking the premise. Thus, Quickcheck optimizes the test program
so that it generates the values for each variable as late as possible.

For example, consider the function insort, which inserts an element into a
sorted list in such a way that it remains sorted. If insort is implemented correctly,
the following property should hold:

sorted xs =⇒ sorted (insort x xs)

Quickcheck generates values for xs and checks the premise sorted xs. Now only
for values fulfilling the premise, Quickcheck proceeds generating values for x,
and checks the conclusion insort x xs . Consequently, Quickcheck produces this
optimized test program:

exhaustive (λxs . if ¬ sorted xs then None
else exhaustive (λx. if sorted (insort x xs) then None

else Some (reify (x, xs))))

In the presence of (multiple) premises, this interleaving of generation and eval-
uation already improves its performance dramatically. In §4, we optimize the
generation and evaluation of this kind of conjectures even more.

3 Test Data Generators

Quickcheck automatically synthesizes test data generators for random and ex-
haustive testing (§3.1 and §3.2). For both testing strategies, Quickcheck supports
the definition of generators: Generators of inductive data types (§3.3) are au-
tomatically defined, and generators of arbitrary type definitions (§3.4) can be
defined with some guidance from the user.

The New Quickcheck for Isabelle 95

Both testing approaches build on a family of test data generators. These test
data generators are type-based, i.e., there is exactly one generator for each type.
Generators for a complex type τ are constructed following its type structure,
which is nicely described using type classes in Isabelle [18]. For example, given
a generator for polymorphic lists α list and a generator for the type of natural
numbers (type nat), the generator for nat list is implicitly composed from those
two generators by the type class mechanism. Throughout the presentation, we
denote an instance of an overloaded constant c with type τ by cτ .

Generators are put together by chaining and choosing between alternatives.
The generators express a nondeterministic (branching) computation. The gen-
erators’ operations are closely related to operations on a plus monad, a general-
ization of the ideas for nondeterministic computations in [16].

3.1 Basic Random Generators

Random generators are provided by the type class random, which defines a
function random of type nat ⇒ seed ⇒ τ × seed for type τ in this class. The
generator yields a value of type τ , and is parametrized by the size of values to
be generated. The state seed is used for the underlying random engine. Random
generators are chained together by the return and bind (written infix as >>=)
operators on an open state monad:

return ::α ⇒ σ ⇒ α× σ
return x s = (x, s)

>>= :: (σ ⇒ α× σ) ⇒ (α ⇒ σ ⇒ β × σ) ⇒ σ ⇒ β × σ
(f >>= g) s = g x s′ where (x, s′) = f s

With this notation, the random generator for product types is built from gener-
ators for its type constructor’s arguments, where i denotes the size:

randomα×β i = randomα i >>= (λx. randomβ i >>= (λy. return (x, y)))

Given a list of generators with associated weights, select yields a random gen-
erator that chooses one of the generators (randomly using the seed value). The
weights are used to give a non-uniform probability distribution to the alterna-
tives. The random generator for the sum type α+ β (with constructors Inl and
Inr) illustrates selecting of alternative generators:

randomα+β i = select [(1, randomα i >>= (λx. return (Inl x))),
(1, randomβ i >>= (λx. return (Inr x)))])

3.2 Basic Exhaustive Generators

Similar to random generators, exhaustive generators are provided by the type
class exhaustive with a function exhaustive of type (τ ⇒ result option) ⇒ nat ⇒
result option. The exhaustive generators are expressed with continuations: They
take a continuation (which ultimately checks the conjecture), and evaluate it with

96 L. Bulwahn

all values of type τ up to the given size. Generators are chained by nesting the
continuations. For example, for a given continuation c and size i, the generator
for product types is defined by

exhaustiveα×β c i = exhaustiveα (λx. exhaustiveβ (λy. c (x, y))) i) i

As the weights of alternatives are irrelevant for exhaustive testing, generators
can be simply combined with the binary operation �, which chooses the first
Some value when evaluating from left to right:

� ::α option ⇒ α option ⇒ α option
(Some x) � y = Some x
None � y = y

The generator for α + β joins the two exhaustive generators for types α and β
employing the operator �:

exhaustiveα+β c i =
exhaustiveα (λx. c (Inl x)) i � exhaustiveβ (λx. c (Inr x)) i

3.3 Generators for Inductive Datatypes

Most commonly, new types are defined by datatype declarations. For these types,
Quickcheck automatically constructs random and exhaustive generators upon
the type’s definition. The construction of random generators has been described
in [1], so we only sketch the construction of exhaustive generators here.

We view a datatype as a recursive type definition of a sum of product types.
For example, the datatype α list can be seen as least fixed point of the equation
α list = unit + α × (α list). Following the scheme of exhaustive generators for
product and sum type, the exhaustive generator for lists is defined recursively:

exhaustiveα list c i = if (i = 0) then None else (c Nil �
exhaustiveα (λx. exhaustiveα list (λxs . c (Cons x xs)) (i − 1)) i)

Generalizing this example to an arbitrary datatype is almost straightforward,
only recursion through functions takes some care.

3.4 Generators for Arbitrary Type Definitions

Beyond inductive datatypes, types can also be defined by other means, e.g.,
by HOL-style type definitions. For such types, code generation requires special
setup by the user. Quickcheck provides a simple interface with which users can
specify generators. One simply lists the constructing functions for values of this
type. Generators are then built using these functions, as if they were datatype
constructors for this type. For example, red-black trees are binary search trees
with a sophisticated invariant. The type (α, β) rbt contains all binary search
trees with keys of type α and values of type β fulfilling the invariant. Values of
this type can be generated with the invariant-preserving operations:

The New Quickcheck for Isabelle 97

empty :: (α, β) rbt
insert ::α ⇒ β ⇒ (α, β) rbt ⇒ (α, β) rbt

Using these as constructing functions, Quickcheck provides random and exhaus-
tive generators for (α, β) rbt that produce values starting with the empty tree
and executing a sequence of insert operations. The random generator chooses the
key and value for the insert operation randomly from the set of possible values,
whereas the exhaustive generator enumerates all possible keys and values (up to
a given size) for the insert operations.

4 Conditional Conjectures

The main weakness of both random and exhaustive testing, already mentioned
in the original QuickCheck for Haskell paper, is that they do not cope well
with hard-to-satisfy premises. For example, when testing our previous conjecture
about insort,

sorted xs =⇒ sorted (insort x xs)

the conjecture is evaluated with all lists up to a given bound for xs. For all
unsorted lists, the premise is not fulfilled, and the conclusion is left untested.
Clearly, it is desirable to take the condition into account when generating values:
In this example, we would like to only generate sorted lists.

Often, these conditional conjectures arise in the verification of functional data
structures, e.g., red-black trees. A properly implemented delete operation for
red-black trees satisfies the following property:

is-rbt t =⇒ is-rbt (delete k t)

The predicate is-rbt captures the invariant of red-black trees on the type of bi-
nary search trees (α, β) tree. Again, binary trees generated naively rarely satisfy
the premise, and we prefer to only generate trees satisfying the invariant.

4.1 Custom Generators

The simplest solution to test conditional conjectures effectively is to employ a
custom generator that has been provided by the user. Assuming the user provides
a generator for some type restricted by a predicate (cf. §3.4) that matches the
condition, Quickcheck automatically lifts the conjecture to the restricted type.
For example, the conjecture about delete is automatically lifted to the type
(α, β) rbt, where Reprbt t′ maps a red-black tree t′ of type (α, β) rbt to its
representative binary tree on type (α, β) tree:

is-rbt (Reprbt t
′) =⇒ is-rbt (delete k (Reprbt t

′))

Note that t′ is now of type (α, β) rbt, unlike the original conjecture, where t has
the type (α, β) tree. As all representatives of type (α, β) rbt satisfy the predicate
is-rbt (by the type’s construction), the premise is-rbt (Reprbt t′) simplifies to
true. This way, Quickcheck obtains an unconditional conjecture, which it tests
either with the random or exhaustive generator of (α, β) rbt.

98 L. Bulwahn

4.2 Smart Generators

A more sophisticated solution to test conditional conjectures effectively, is smart
test data generators that take the condition’s definition into account. These test
data generators construct values in a bottom-up fashion, simultaneously testing
the condition and generating appropriate values.

For our conjecture about insort, Quickcheck can automatically derive a test
data generator that only constructs sorted lists. From the definition for sorted,

sorted Nil = True
sorted [x] = True
sorted (x1 · (x2 · xs)) = (x1 ≤ x2 ∧ sorted (x2 · xs)),

we obtain an exhaustive generator that constructs sorted lists choosing either
Nil, a singleton list [x], or appending an element to the front of a sorted list if
the element is smaller than the list’s head:

exhaustive-sortedα list c i = if (i = 0) then None else ((c Nil) �
(exhaustiveα (λx. c [x]) (i− 1)) �
(exhaustive-sortedα list (λxs

′. case xs ′ of Nil ⇒ None
| x2 · xs ⇒ exhaustiveα (λx1. if (x1 ≤ x2) then c (x1 · (x2 · xs))

else None)) (i− 1)) (i − 1))

Briefly, we synthesize these generators by reformulating the definitions as a set
of Horn clauses and computing its data-flow dependencies (cf. [4] for more de-
tails). Applying these generators, Quickcheck’s performance improves signifi-
cantly (cf. §7.2).

5 Narrowing-Based Testing

The random and exhaustive strategies suffer from two important limitations:
They cannot refute propositions that existentially quantify over infinite types,
and they often repeatedly test formulas with values that checks essentially the
same executions (e.g., because of symmetries).

Both issues arise from the use of ground values and can be addressed by
evaluating the formula symbolically. The technique is called narrowing and is
well known from term rewriting. The main idea is to evaluate the conjecture with
partially instantiated terms and to progressively refine these terms as needed.
The following simple conjecture illustrates the benefit of the narrowing approach.

∃n :: nat . ∀m ::nat . n = m

To disprove it, we must show for every natural number n that ∃m. n �= m.
Taking a symbolic view, if n = 0, we can choose any m �= 0 and if n > 0, then 0
can serve as a witness for m.

At its core, the mechanism evaluates boolean expressions where free vari-
ables are substituted by partially instantiated terms. These terms are construc-
tor terms, i.e., they are built from datatype constructors and distinct variables,

The New Quickcheck for Isabelle 99

∃n ∀m X

(a) initial tree

∃n ∀m

∀m′ X

Suc m′

X

Zero

(b) after 1. refinement

∃n

∃n′ ∀m

∀m′ X

Suc m′

X

Zero

Suc n′

∀m

∀m′ X

Suc m′

X

Zero

Zero

(c) after 2. refinement

∃n

∃n′ ∀m

∀m′ X

Suc m′

F

Zero

Suc n′

∀m

∀m′ F

Suc m′

T

Zero

Zero

(d) after 3 evaluations

Fig. 1. Refinement tree for the evaluation of ∃n ::nat. ∀m ::nat. m = n

e.g., Suc n, Zero and Cons x1 (Cons x2 x3). Exploiting evaluations in Haskell, an
expression with partial terms is evaluated to head normal form as far as possible:
The execution either returns the (ground) head normal form if it is reduced de-
spite variables in the initial term, or it indicates which variable is critical for the
evaluation. For the evaluation of a boolean expression, it yields ground values
true or false, if the expression is true or false for all substitutions of the free
variables, resp., or it indicates the critical variable. For example, the execution
determines that Zero �= Suc n is true for all natural numbers n, but the value of
Suc Zero �= Suc n depends the value of n.

On top of this evaluation for partial terms, there is a refinement algorithm that
refutes formulas in prenex normal form. It uses a refinement tree that records the
results of the evaluation with partial terms and keeps track of refinements. The
tree is used to determine the formula’s truth value and successive evaluations
with partial terms. Figure 1 shows the refinement tree during the refutation of
the conjecture ∃n :: nat. ∀m :: nat. m = n.

Leafs of the tree carry the evaluation’s result: initially unknown (X), and
after the evaluation, the definite results true (T) or false (F). Inner nodes carry
a variable and are classified as universal or existential. Branches are annotated
with simple substitutions for its parent’s variable, i.e., variables are assigned a
single constructor with fresh variables as arguments. A path from the root to
a leaf represents an assignment of partial terms by composing the substitutions
along the path. For example, the path to the node annotated with T in Fig. 1d
assigns n and m to Zero.

100 L. Bulwahn

The truth value of a tree is defined recursively: The leafs’ values are given by
their annotations; the value of a universal node is the conjunction of the values
of its subtrees; dually for existential nodes, it is the disjunction of its subtrees.
Conjunction and disjunction are defined as in Kleene’s three-valued logic with
unknown as the third value. Starting with an initial tree with no refinements,
the refinement algorithm does the following three steps:

1. Find by depth-first search a leaf, that makes the tree’s truth value unknown,
and evaluate the property with the partial terms associated with this leaf.

2. If the evaluation yields a boolean truth value, the leaf is annotated. If the
evaluation calls for a refinement, the refinement tree is altered reflecting a
case distinction on the critical variable.

3. If the new tree’s truth value is false, we have found a counterexample to
the conjecture. If it remains unknown, we continue with the first step. If the
evaluation requires too many refinement steps, the execution is aborted. In
rare cases, the tree’s truth value might be true, proving the conjecture.

The illustrated evaluation in Fig. 1 starts with an initial tree that represents the
quantifier part of the formula above and one leaf annotated with X (Fig. 1a).
The first evaluation of m = n with symbolic values m and n leads the tool to
refine m. The top-most constructor of m can either be Zero or Suc (Fig. 1b).
The next evaluation with m �→ Zero requires a refinement of n, resulting in the
state of Fig. 1c. Now, the evaluation with n �→ Zero,m �→ Zero yields true, and
for n �→ Zero,m �→ Suc m1 with some fresh variable m1 yields false. As the truth
value of the upper branch n �→ Zero is false, we continue with the lower branch
n �→ Suc n′. The last evaluation for n �→ Suc n1,m �→ Zero yields false, and thus
shows the invalidity of the formula (Fig. 1d). We note that the refutation never
evaluated n �→ Suc n1,m �→ Suc m1.

The above example is perhaps too simple to be convincing. A more realistic
example is based on the observation that the palindrome [a, b, b, a] can be split
into the list [a, b] and its reverse [b, a]. Generalizing this to arbitrary lists, we
boldly conjecture that

rev xs = xs =⇒ ∃ys . xs = ys @ rev ys

The narrowing approach immediately finds the counterexample xs = [a1], infer-
ring that there is no witness for ys in the infinite domain of lists: If ys is empty,
ys @ rev ys = [] �= [a1], and if ys is not empty, ys @ rev ys consists of at least
two elements and hence cannot be equal to [a1].

Narrowing also deals very well with conditional conjectures. In our example
with the delete operation on red-black trees,

is-rbt t =⇒ is-rbt (delete k t)

the premise is-rbt t ensures that the tree t has a black root node, and in fact,
after a few refinements, narrowing will only test symbolic values satisfying this
property, already pruning away about half of the overall test cases.

The New Quickcheck for Isabelle 101

6 Completing the Infrastructure

So far, we presented the core parts of Quickcheck. In the following subsections,
we touch on two further aspects: testing of polymorphic conjectures and under-
specified functions.

6.1 Polymorphic Conjectures

If the conjecture is polymorphic, we can instantiate the type variables with any
concrete type for refuting it. Older versions of Quickcheck instantiated type
variables with the type of integers (if possible depending on the type class
constraints), and tested the conjecture with increasing integer values. Lately,
Quickcheck prefers to use a set of small finite types instead, so that conjectures
with quantifiers, e.g., existential conjectures ∃x ::α. P x, can be refuted by a
finite number of P tests.

The implementation for refuting quantified formulas over a finite type is based
on the type class enum. This allows us to obtain implementations for more com-
plex types by composition. E.g., the type α × β ⇒ γ is finite if α, β and γ
are finite types. The type class enum provides three operations for every fi-
nite type τ : univ :: τ list enumerates the finite universe; all :: (τ ⇒ bool) ⇒ bool
and ex :: (τ ⇒ bool) ⇒ bool check universal and existential properties. The exis-
tential and universal quantifiers could be expressed just with univ :: τ list, i.e.,
∀x :: τ. P x = list-all P (univ :: τ list). Due to the strict evaluation of ML, this
would be rather inefficient: The evaluation would first construct a finite (but
potentially large) list of values, and then check them sequentially. To avoid the
large intermediate list, we implement the quantifiers using continuations, simi-
lar to the construction of the exhaustive generators (cf. §3.2). For example, the
universal quantifiers for product and sum type are implemented by

allα×β P = allα (λa ::α. allβ (λb :: β. P (a, b)))
allα+β P = (allα (λa ::α. P (Inl a)) ∧ allβ (λb :: β. P (Inr b)))

For most types, the implementation is straightforward. Only for the function
type, it is a bit more involved. To construct the set of all functions α ⇒ β, we
have to create all possible mappings, i.e., all lists of type β list with the same
length as univ ::α list, and transform those lists into functions.

6.2 Underspecified Functions

Even though HOL is a logic of total functions, users can give underspecified
function definitions. The results are total functions, but equations only exist for
some subset of possible inputs. A prominent example here is the head function
on lists. It is specified by hd (Cons x xs) = x, but no equation is given for
the Nil constructor. Some facts only hold on the domain where the function is
specified, while others may hold in general, even on values where the function
has no specifying equations. For example, the conjecture about hd and append,

102 L. Bulwahn

hd (append xs ys) = (if xs = Nil then hd ys else hd xs),

is valid for all lists xs and ys , even if xs and ys are Nil. In this special case,
left and right hand side are equal, i.e., they reduce to the same term hd Nil. In
contrast, the conjecture hd (map f xs) = f (hd xs) is valid only if xs �= Nil.
In the presence of underspecified function definitions, Quickcheck cannot dis-
tinguish the two cases occurring in the examples above. In other words, it
cannot determine if a counterexample in the examples above is genuine or
spurious. Therefore, it marks the counterexample as potentially spurious. On
the two conjectures above, Quickcheck returns the potentially spurious counter-
examples xs = Nil, ys = Nil and xs = Nil, f = λx. a1. Nevertheless, these
potentially spurious counterexamples are useful in two ways: First, it makes
users aware that the choice of how the underspecified function is turned into a
total function might be crucial for the validity of this conjecture; second, when
users know that the property only holds on values where the function is prop-
erly specified, they can validate that the given assumptions suffice to restrict
the values to the defined part of the function by observing that no potentially
spurious counterexample is found.

To uncover counterexamples with underspecified functions, we slightly change
the test programs. The evaluation of underspecified functions in Standard ML
yields a Match exception if it encounters a call to such a function and no pattern
matches the given arguments. The test program catches this exception. If we are
interested in possible counterexamples due to underspecification, Quickcheck
returns the values that yield the exception as counterexample. Alternatively,
if we are only interested in genuine counterexamples, Quickcheck continues to
search for other values.

7 Empirical Results

We evaluated Quickcheck with its different strategies on a database of theorem
mutations, faulty implementations of functional data structures, and a trace-
based hotel key card system.1 The functional data structures and the key card
system are well suited for comparing the different techniques to cope with con-
ditional conjectures.

7.1 Evaluation on Theorem Mutations

To obtain a large set of non-theorems in Isabelle, we derive formulas mutating
existing theorems by replacing constants and swapping arguments, as in [1, 3].
Table 1 shows the results of running the counterexample generators on 400 mu-
tated theorems of 13 theories with a very liberal time limit of 30 seconds. The
chosen set of theories focuses on executable ones, and leaves out those that are
obviously not executable. For example, theories with axiomatic definitions or

1 The test data is available at http://www21.in.tum.de/~bulwahn/cpp2012.tar.gz

The New Quickcheck for Isabelle 103

Table 1. Results for running counterexample generators on mutated theorems on a
Intel Core2 Duo T7700 2.40GHz with a time limit of 30 seconds

Theory
Counterexample generators

Random Exhaustive Narrowing Nitpick

Arithmetics
Divides [fin] 199/318 212/318 221/343

259/400
Divides [int] 224/369 239/369 248/394
GCD 203/294 203/294 228/336 216/400
MacLaurin [fin] 44/61 44/61 45/77

19/400
MacLaurin [int] 55/79 55/79 56/95

Set Theory
Fun [fin] 214/394 215/394 201/396

235/400
Fun [int] 146/254 144/254 161/326
Relation [fin] 248/395 251/395 248/395

247/400
Relation [int] 139/230 155/230 160/258
Set [fin] 246/395 246/395 249/395

260/400
Set [int] 205/329 206/329 220/369
Wellfounded [fin] 229/372 233/372 232/373

249/400
Wellfounded [int] 45/94 47/94 51/122

Datatypes
List [fin] 197/319 197/318 215/354

245/400
List [int] 191/312 193/312 212/351
Map [fin] 257/400 257/400 257/400

258/400
Map [int] 146/221 148/221 160/248

AFP Theories
Huffman 244/399 248/399 246/399 251/400
List-Index 256/399 256/399 263/399 271/400
Max-Card-Matching [fin] 152/345 212/345 212/345

214/400
Max-Card-Matching [int] 4/11 4/11 4/11
Regular-Sets 154/304 152/304 210/368 142/400

coinductive datatypes are not executable with Isabelle’s code generation. Con-
jectures in these theories are only refuted by Nitpick.

The four columns show the absolute number of genuine counterexamples of
the different approaches: random testing, exhaustive testing, narrowing-based
testing, and Nitpick. In a cell with values A/B, A is the number of genuine
counterexamples and B the number of executable mutants of the corresponding
counterexample generator. As Nitpick handles arbitrary specifications, it is able
to check all 400 mutants. Quickcheck can use finite types or integers to instantiate
polymorphic conjectures (cf. §6.1). For theories with polymorphic conjectures,
we show both modes separately in the table, indicated with [fin] and [int]. Using
finite types for polymorphic conjectures makes almost all conjectures in the
set theory domain amenable to Quickcheck, closing the previously existing gap
between Quickcheck and Nitpick in this domain. The narrowing-based testing

104 L. Bulwahn

can execute more conjectures than concrete testing with random and exhaustive
testing. We gain most on the Regular-Sets theory, increasing from 304 to 368.

We also compared the tools against each other, and measured the number of
counterexamples that can be found uniquely by one tool compared to another.
Exhaustive testing slightly outperforms random testing. Narrowing often finds a
few more counterexamples than exhaustive testing, but this is mainly due to the
larger set of executable formulas. Narrowing and Nitpick complement each other
to some extent, as witnessed most prominently by Isabelle’s GCD theory. In ab-
solute numbers, narrowing and Nitpick find 228 and 216 counterexamples; hence
only differing by 12. However, they succeed on different conjectures—narrowing
finds 23 counterexamples where Nitpick fails, Nitpick finds 11 where narrowing
fails—meaning that employing them in combination yields 239 counterexamples.

To illustrate the differences in strength between testing with Quickcheck and
model finding with Nitpick, we show two interesting examples of our evaluation.
On the one hand, consider one of the monotonicity lemmas for integer division:

b·q+r = b′·q′+r′∧0 ≤ b′·q′+r′∧r′ < b′∧0 ≤ r∧0 < b′∧b′ ≤ b =⇒ q ≤ q′

For Quickcheck, it is no problem to detect two typos that change the second
premise to 0 ≤ b′ · b′ + r′ and the fifth premise to 0 < q′. It produces the
counterexample b = −2; q = 3; r = 1; b′ = −2; q′ = 1; r′ = −3 instantaneously,
while Nitpick replies after seven minutes with a similar counterexample.

On the other hand, in the Isabelle theory of maximal matchings in graphs
(Max-Card-Matching), a certain invalid conjecture is refuted by constructing a
graph with 4 vertices and a matching with two edges. Owing to the power of its
SAT solver, Nitpick finds this matching within a few seconds. Exhaustive testing
tries to enumerate all graphs and searches for matchings quite naively. Thus,
Quickcheck needs roughly a minute to find a counterexample. Random testing
does not find the counterexample, even with 100,000 iterations for each size and
testing a few minutes—a matching for a valid graph is too unlikely to obtain by
randomly chosen values. Narrowing prunes the search space before evaluating
the conjecture with all possible concrete values, and finds a counterexample in
about thirty seconds.

These two examples demonstrate the strength of both tools: Quickcheck is
strong on arithmetics, while Nitpick handles well boolean constraints over finite
domains.

7.2 Functional Data Structures

Beyond the mutations of lemmas, we evaluated the different testing approaches
on faulty implementations of typical functional data structures. We injected
faults by adding typos into the correct implementations of the delete opera-
tion of AVL trees, red-black trees, and 2-3 trees. By adding typos, we create
10 different (possibly incorrect) versions of the delete operation for each data
structure. On 2-3 trees, we check two invariants of the delete operation, keeping
the tree balanced and ordered, i.e., balanced t =⇒ balanced (delete k t), and
ordered t =⇒ ordered (delete k t). We check two similar properties for AVL

The New Quickcheck for Isabelle 105

Table 2. Number of counterexamples on faulty implementations of functional data
structures (time limit: 30 s for AVL and red-black trees; 120 s for 2-3 trees)

R2K R20K Exh. Cu.G. Sm.G. Nar. Nit.

AVL trees 5 7 7 9 9 11 4
Red-black trees 10 18 21 22 19 26 11
2-3 trees 5 5 7 11 12 12 0

trees, and three similar properties for red-black trees. With the 10 versions, this
yields 20 tests each for 2-3 and AVL trees, and 30 tests for red-black trees, on
which we apply various counterexample generators. In this setting, we compare
the techniques to deal with conditional conjectures. Random testing is applied
with 2,000 and 20,000 iterations for each size (abbrev. R2K, R20K). Furthermore,
we used exhaustive testing (Exh.), custom generators (Cu.G., §4.1), smart gen-
erators (Sm.G., §4.2), narrowing (Nar.) and Nitpick (Nit.).

Table 2 summarizes the results. Overall, narrowing, smart, and custom gener-
ators beat exhaustive testing, which itself performs better than random testing
and Nitpick. Nitpick struggles with large functional programs and is limited to
shallow errors in the smaller implementations of AVL and red-black trees. In-
creasing the number of iterations for random testing helps, but in our experience,
it does not find any error that was not also found by testing exhaustively. For
the 2-3 trees, the smart generators and narrowing find errors in 5 more cases
than exhaustive testing. However, in principle, exhaustive testing should find the
errors eventually. Thus, in these more intrinsic cases, we increased the time for
the naive exhaustive testing to finally discover the fault. However, even after one
hour of testing, exhaustive testing was not able to detect a single one of them.
This shows that using the test data generators and narrowing-based testing in
this setting is clearly superior to naive exhaustive testing. The smart generators
and narrowing find 12 errors in 20 conjectures. In the eight cases where they
did not find anything within the time limit, even testing more thoroughly for an
hour did not reveal any further errors. Most probably, the property still holds,
as the randomly injected faults do not necessarily affect the invariant.

7.3 Trace-Based Hotel Key Card System

As a further case study, we checked a hotel key card system by Nipkow [12]. The
faulty system contains a tricky man-in-the-middle attack, which is only uncov-
ered by a trace of length 6. The formalization uses a restrictive predicate that
describes in which order specific events occur. Due to the occurrence of exis-
tential quantifiers, the original specification is not executable for random and
exhaustive testing. Even after refinements to obtain an executable reformula-
tion, the naive random and exhaustive testing fail to find the counterexample
within ten minutes of testing, as the search space is too large. Smart generators
include some processing that detects if the values of existential quantifiers are

106 L. Bulwahn

bound in the formula. Therefore, we do not have to reformulate the specification
when we use smart generators. Employing these smart generators, we can find
the attack within a few seconds. Narrowing can handle the existential quantifiers
in principle, but in practice it performs badly with the deeply nested existential
quantifiers in the specification. This renders it impossible to find the counter-
example with narrowing. After eliminating the existential quantifiers manually,
we also obtain a counterexample with narrowing within a few seconds.

On this trace-based version of the hotel key card system, Nitpick fails to find
the counterexample with a time limit of ten minutes. However, Nitpick finds the
counterexample on an equivalent state-based formalization of the hotel key card
system (cf. [3], §6.2). This indicates that Quickcheck and Nitpick excel on for-
malizations with different specification styles: Nitpick on relational descriptions,
Quickcheck on realistic functional programs and trace-based descriptions.

8 Related Work

The success story of Haskell’s QuickCheck [7] has led to many descendants in
interactive theorem provers. Besides Isabelle, PVS [14], Agda [8], ACL2 [9] and
ACL2 Sedan [5] include a random testing tool like the original QuickCheck.

The tool in ACL2 Sedan simplifies the conjecture using a synergistic combina-
tion of random testing and theorem proving: The application of selected theorem
proving methods before testing can ease testing of conditional conjectures.

Our exhaustive testing is inspired by Haskell’s SmallCheck [15], but is target-
ing ML with its strict evaluation. The implementation of Haskell’s SmallCheck
takes advantage of its laziness, simplifying the definition of generators, while
Isabelle’s tool takes the strictness of ML into account and uses continuations.

Tools using narrowing for testing functional programs symbolically are the
Agsy tool [11] for Agda, EasyCheck [6] for the programming language Curry,
and LazySmallCheck [15] for Haskell. Like LazySmallCheck, our implementa-
tion exploits Haskell’s lazy evaluation and imprecise exceptions. The refinement
algorithm of [15] only allows universal properties whereas our refinement algo-
rithm can also deal with existential quantifiers.

9 Conclusion

As we have seen, the methods to uncover invalid conjectures, testing and model
finding, implemented by the counterexample generators Quickcheck and Nitpick
in Isabelle, have their justification. Quickcheck with its new testing strategies and
our effort to extend its applicability allows to check many conjectures effectively
that were previously beyond the scope of testing. Isabelle’s users benefit from
having all these strategies at their disposal, because they complement each other
very well. Unmentioned so far, Quickcheck’s performance also profits from the
fact that code generation in Isabelle is becoming more common and widely used.
Isabelle’s library provides many additions to set up code generation for numerous

The New Quickcheck for Isabelle 107

purposes. To validate specifications with simple examples before proving, users
invest some time to make their specifications executable. Quickcheck returns
this investment the first time users encounter an invalid conjecture, so they can
correct an error immediately instead of wasting hours on an impossible proof.

Acknowledgment. I thank Jasmin Blanchette, Brian Huffman, Peter Lam-
mich, Tobias Nipkow, Lars Noschinski, Andrei Popescu, Thomas Tuerk, Dmitriy
Traytel, Tjark Weber and the anonymous referees for suggesting several tex-
tual improvements. I acknowledge funding from DFG doctorate program 1480
(PUMA).

References

1. Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: Cuellar, J., Liu,
Z. (eds.) SEFM 2004, pp. 230–239. IEEE C.S. (2004)

2. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic Proof and Disproof in Isa-
belle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS,
vol. 6989, pp. 12–27. Springer, Heidelberg (2011)

3. Blanchette, J.C., Nipkow, T.: Nitpick: A Counterexample Generator for Higher-
Order Logic Based on a Relational Model Finder. In: Kaufmann, M., Paulson, L.C.
(eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

4. Bulwahn, L.: Smart Testing of Functional Programs in Isabelle. In: Bjørner, N.,
Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 153–167. Springer, Hei-
delberg (2012)

5. Chamarthi, H.R., Dillinger, P., Kaufmann, M., Manolios, P.: Integrating testing
and interactive theorem proving (2011), http://arxiv.org/pdf/1105.4394

6. Christiansen, J., Fischer, S.: EasyCheck — Test Data for Free. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322–336. Springer,
Heidelberg (2008)

7. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of
Haskell programs. In: ICFP 2000, pp. 268–279. ACM (2000)

8. Dybjer, P., Haiyan, Q., Takeyama, M.: Combining Testing and Proving in Depen-
dent Type Theory. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758,
pp. 188–203. Springer, Heidelberg (2003)

9. Eastlund, C.: Doublecheck your theorems. In: 8th Int. Workshop on the ACL2
Theorem Prover and its Applications (2009)

10. Haftmann, F., Nipkow, T.: Code Generation via Higher-Order Rewrite Systems.
In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010)

11. Lindblad, F.: Property directed generation of first-order test data. In: Morazán,
M. (ed.) TFP 2007, pp. 105–123. Intellect (2008)

12. Nipkow, T.: Verifying a Hotel Key Card System. In: Barkaoui, K., Cavalcanti, A.,
Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 1–14. Springer, Heidelberg
(2006)

13. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

108 L. Bulwahn

14. Owre, S.: Random testing in PVS. In: AFM 2006 (2006)
15. Runciman, C., Naylor, M., Lindblad, F.: SmallCheck and Lazy SmallCheck: Au-

tomatic exhaustive testing for small values. In: Haskell Symp. 2008, pp. 37–48
(2008)

16. Wadler, P.: How to Replace Failure by a List of Successes. In: Jouannaud, J.-P.
(ed.) FPCA 1985. LNCS, vol. 201, pp. 113–128. Springer, Heidelberg (1985)

17. Weber, T.: SAT-based Finite Model Generation for Higher-Order Logic. Ph.D.
thesis, Institut für Informatik, Technische Universität München, Germany (2008)

18. Wenzel, M.: Type Classes and Overloading in Higher-order Logic. In: Gunter, E.L.,
Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidel-
berg (1997)

Proving Concurrent Noninterference�

Andrei Popescu1,2, Johannes Hölzl1, and Tobias Nipkow1

1 Technische Universität München
2 Institute of Mathematics Simion Stoilow, Romania

Abstract. We perform a formal analysis of compositionality techniques for prov-
ing possibilistic noninterference for a while language with parallel composition.
We develop a uniform framework where we express a wide range of noninter-
ference variants from the literature and compare them w.r.t. their contracts: the
strength of the security properties they ensure weighed against the harshness of
the syntactic conditions they enforce. This results in a simple implementable al-
gorithm for proving that a program has a specific noninterference property, using
only compositionality, which captures uniformly several security type-system re-
sults from the literature and suggests a further improved type system. All formal-
ism and theorems have been mechanically verified in Isabelle/HOL.

1 Introduction

Language-based noninterference is an important and well-studied security property. To
state this property, one assumes the program memory is separated into a low, or public,
part, which an attacker is able to observe, and a high, or private, part, hidden to the
attacker. Then a program satisfies noninterference if, upon running it, the high part
of the initial memory does not affect the low part of the resulting memory. Thus, the
program has no information leaks from the private part of the memory into the public
one, so that a potential attacker should not be able to obtain information about private
data by inspecting public data.

Noninterference comes in several different variants, depending on what type of chan-
nels one accepts as capable of transmitting leaks—besides the normal channels repre-
sented by program variables, so-called covert channels include termination and timing
channels. Moreover, when nondeterminism is involved, one can distinguish between
possibilistic and probabilistic noninterference (the latter also taking probabilistic chan-
nels into account).

In this paper, we deal with noninterference in the presence of possibilistic concur-
rency. The literature abounds in notions of concurrent possibilistic noninterference and
techniques to enforce it [2–6, 14, 19–21, 24, 29, 31], many of them surveyed in [23].
There is usually a tradeoff between the strength of a security property and the harsh-
ness of the conditions imposed on the programs in order to satisfy it (typically, a type
system). Yet, new methods for establishing noninterference are often presented as im-
provements over older methods (e.g., a more lenient type system) while being rather

� Supported by the DFG project Ni 491/13–1 (part of the DFG priority program RS3) and the
DFG RTG 1480.

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 109–125, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

110 A. Popescu, J. Hölzl, and T. Nipkow

brief on the notion that in effect the whole contract is being changed: less pressure on
the programs, weaker noninterference ensured.

The paper presents the first comparison of a variety of noninterference notions and
results, in a unified and formalized framework, where complex results from the litera-
ture are given uniform and simplified proofs. As a preview of the kind of properties we
analyze and classify in this paper, here is a selection of informal notions of a command
c being secure (noninterfering):

(1) Given any two initial memory states that are indistinguishable by the attacker
(have the same low, i.e., public, part), the executions of c proceed identically w.r.t. both
the program counter and the updates on the low part of the memory—we call this prop-
erty self isomorphism.

(2) c may never change the low part of the memory during its execution—we call
this discreetness (often in the literature this is called highness).

(3) If started in two indistinguishable memory states, the executions of c are lock-
step bisimilar, performing the same updates to the low part of the memory—we call this
self strong bisimilarity, i.e., strong bisimilarity to itself (called strong security in [25]).

(4) A relaxation of strong bisimilarity with lock-step synchronization replaced by
01-bisimilarity (simply called bisimilarity in [5]), where only attacker-visible (i.e., low-
memory changing) steps in one execution are required to be matched by corresponding
steps in the other, while “discreet” (i.e., low-memory unchanging) steps need not be
matched. Thus, one step may be matched by either zero or one steps.

(5) A further relaxation of strong bisimilarity—weak bisimilarity [16] (used in [4,29]
in a security context) where one step may be matched by any number of steps.

Property 1 (self isomorphism) is a very strong security notion, ensuring that an attacker
controlling the low inputs of c is not able to infer any information about the high inputs,
not even if he is allowed to observe the low part of intermediate memory states and the
program counter. In particular, self isomorphism exhibits no leaks on covert channels
such as timing or termination. Property 2 (discreetness) is neither weaker nor stronger
than self isomorphism, but it no longer guarantees indistinguishability w.r.t. the program
counter, and moreover the attacker may infer confidential information by measuring ex-
ecution time. Property 3 (strong bisimilarity) prevents leaks on standard channels (low
variable values) and timing channels, but, unlike self isomorphism, does not guarantee
that execution starting in indistinguishable states follow the very same paths (taking the
same branches). Properties 4 (01-bisimilarity) and 5 (weak bisimilarity) are weakenings
of all of the above three. They are only able to guarantee the absence of leakage through
standard channels.

Example 1. Consider the following commands, where l is a low variable and h,h′ are
high variables:

– c0: h := 0
– c1: if l = 0 then h := 1 else l := 2
– c2: if h = 0 then h := 1 else h := 2
– c3: if h = 0 then h := 1 ; h := 2 else h := 3
– c4: l := 4 ; c3

– c5: c3 ; l := 4

Proving Concurrent Noninterference 111

– c6: l := h
– c7: h′ := 0 ; while h > 0 do {h := h− 1 ; h′ := h′+ 1} ; l := 4

c0 is both self isomorphic and discreet. c1 is self isomorphic (since it is not testing any
high variable), but not discreet. c2 and c3 are discreet (as they are not updating any low
variable), but not self isomorphic. c1 and c2, but not c3, are self strongly bisimilar—
the reason why c3 is not is its branching on a high test in conjunction with one branch
taking longer than the other. c4 is self 01-bisimilar, because, after a self isomorphic
assignment, it transits to a discreet continuation. c5 is not self 01-bisimilar, but it is self
weakly bisimilar. c6 is not secure according to any of the five criteria— it exhibits a
direct leak from high to low.

If we ignore timing channels and assume that initially h ≥ 0, then it is reasonable to
consider c7 secure, since it has the same effect as the program h′ := h ; l := 4. However,
whether or not we should deem c7 secure when placed in parallel with other threads
depends on the assumption we make on these threads—e.g., are they allowed to change
h, thus preventing termination of c7?

Note that the above example programs are sequential, which seems to contrast with
our declared focus on concurrency—the explanation, hinted in the previous paragraph
and detailed throughout the paper, is that the discussed notions of noninterference are
defined anticipating parallel composition, i.e., so that the subject threads behave well
when placed in parallel with other threads.

Here is an overview of this paper, where we use “security” and “noninterference”
as synonyms. We start by introducing the concurrent setting where we operate: a while
language with parallel composition and a fixed attacker-indistinguishability relation on
program states (§2). Then we systematize and compare bisimilarity-based notions from
the literature (§3). A formal study of the compositionality of, and of the implications
between, these notions (§4) yields a novel proof methodology: To show that c is secure
according to some notion N, first try to reduce the goal to proving N for the components
of c; if this is not feasible due to failure of the required compositionality of N w.r.t. the
language construct Cns located at the top of c (e.g., Cns can be an If, or a While, etc.),
try to identify a stronger notion M that is (more) compositional w.r.t. Cns, and so on,
recursively. The compositionality caveats of existing notions suggests the definition of a
fully compositional security notion (§5). We then look at existing work on security type
systems in the light of our analysis (§6)— the aforementioned simple proof technique
turns out quite insightful, capturing these type system criteria uniformly. Our novel
security notion from §5 yields a more permissive syntactic criterion than the existing
ones, but the result targets only terminating programs. Finally, we discuss end-to-end
security aspects of the studied bisimilarity-based notions (§7). We do not present any
proofs of the stated facts—however, a (readable) Isabelle formalization of this paper’s
development, together with a map connecting the formal scripts with the propositions
stated in this paper, is available at [18].

2 The Programming Language

We consider a simple while language with parallel composition, whose set com of com-
mands, ranged over by c,d,e, is given by the following grammar:

112 A. Popescu, J. Hölzl, and T. Nipkow

c ::= atm | Seq c1 c2 | If tst c1 c2 |While tst c | Par c1 c2

Above, atm ranges over an unspecified set atom of atomic commands (atoms). Stan-
dard examples of atoms are assignments such as x := x+ y. Seq c1 c2 is the sequential
composition of c1 and c2, written in concrete syntax as c1 ; c2. If tst c1 c2 is the con-
ditional, written in concrete syntax as if tst then c1 else c2, where tst ranges over an
unspecified set test of tests. Standard examples of tests are Boolean expressions such as
x = y. While tst c is the usual while loop, in concrete syntax, while tst do c. Par c1 c2 is
the parallel composition of c1 and c2, in concrete syntax, c1 ‖ c2. We generally prefer
abstract syntax in theoretical results and concrete syntax in examples.

To give semantics to the language, we assume: a set of (memory) states, state, ranged
over by s, t; an execution function for the atoms, aexec : atom → state → state; an eval-
uation function for the tests, tval : test → state → bool. Then we define a standard
small-step semantics [17] as a pair of inductive predicates →T : (com× state)→ state
and →C : (com× state)→ (com× state) (where the subscripts T and C stand for “ter-
mination” and “continuation”) specified in Fig. 1. Intuitively, we interpret (c,s)→Ts′ as
stating: in state s, command c may take a step terminating while changing the state to s′;
and (c,s)→C(c′,s′) as saying: in state s, command c may take a step yielding the contin-
uation c′ while changing the state to s′. The pairs (c,s), which we call configurations,
are thus thought of as consisting of the part of the program that remains to be executed,
c, and the current state, s. We carefully distinguish between continuation and terminat-
ing steps (as the two predicates →C and →T), since termination-sensitiveness will be
crucial in our development. →∗

C
denotes the reflexive-transitive closure of →C, and →∗

T

the composition of →∗
C with →T. Thus, (c,s)→∗

C (c
′,s′) means that (c′,s′) is reachable

from (c,s) by zero or more continuation steps, and (c,s)→∗
T s′ that (the final state) s′ is

reachable from (c,s) by zero or more continuation steps followed by a terminating step.

(atm,s)→T aexec atm s
(c1,s)→Ts′

(Seq c1 c2,s)→C(c2,s′)
(c1,s)→C(c′1,s

′)
(Seq c1 c2,s)→C(Seq c′1 c2,s′)

tval tst s
(If tst c1 c2,s)→C(c1,s)

¬ tval tst s
(If tst c1 c2,s)→C(c2,s)

¬ tval tst s
(While tst c,s)→Ts

(c1,s)→C(c′1,s
′)

(Par c1 c2,s)→C(Par c′1 c2,s′)
tval tst s

(While tst c,s)→C(Seq c(While tst c),s)

(c2,s)→C(c′2,s
′)

(Par c1 c2,s)→C(Par c1 c′2,s′)
(c2,s)→Ts′

(Par c1 c2,s)→C(c1,s′)
(c1,s)→Ts′

(Par c1 c2,s)→C(c2,s′)

Fig. 1. Small-step semantics

3 Notions of Noninterference

Next we proceed to a uniform description of several notions of noninterference from
the literature. We fix a relation ∼ on states, called indistinguishability, where s ∼ t is
meant to say “s and t are indistinguishable by the attacker.”

Proving Concurrent Noninterference 113

Example 2. Often, ∼ is defined as follows. We assume that atomic statements and tests
are built by means of arithmetic and boolean expressions applied to variables taken from
a set var. States are assignments of values to variables, i.e., the set state is var → val,
where val is a set of values (e.g., integers). Variables are classified as either low (lo)
or high (hi) by a given security level function sec : var → {lo,hi}. Then ∼ is defined
as coincidence on the low variables, with the intuition that the attacker is only able to
observe these. Formally, s ∼ t ≡ ∀x ∈ var. sec x = lo=⇒ s x = t x.

We define the following predicates on commands coinductively as greatest fixed points,
i.e., as the strongest predicates satisfying the indicated clauses:

– Self isomorphism, siso, by siso c ≡
(∀s t c′ s′. s ∼ t ∧ (c,s)→C(c′,s′) =⇒ (∃t ′. (c, t)→C(c′, t ′) ∧ s′ ∼ t ′)) ∧
(∀s t s′. s ∼ t ∧ (c,s)→Ts′ =⇒ (∃t ′. (c, t)→Tt ′ ∧ s′ ∼ t ′)) ∧
(∀s c′ s′. (c,s)→C(c′,s′) =⇒ siso c′)

– Discreetness, discr, by discr c ≡
(∀s c′ s′. (c,s)→C(c′,s′) =⇒ s ∼ s′ ∧ discr c′) ∧ (∀s s′. (c,s)→Ts′ =⇒ s ∼ s′)

The coinductive definition of self isomorphism expresses that that execution of a com-
mand proceeds absolutely independently of the indistinguishability class of the state,
and this is true interactively, i.e., regardless of the intervention of the environment, pro-
vided this intervention is itself compatible with the state indistinguishability relation.
And similarly for the definition of discr, expressing that the command never changes
the indistinguishability class, regardless of what that class has become due to potential
action from the environment.

The last aspect, interactivity, is expressed by the universal quantification over the
indistinguishable states s and t in the definition of siso. Indeed, even though transi-
tions operate on (command,state) pairs, the siso predicate operates on commands alone,
forgetting each time the result state s′ from the continuation (c′,s′). Thus, at each re-
sumption point, the predicate quantifies universally over all states s (“overwriting” the
previous s′), to account for the fact that the new state produced by the command under
consideration may have been changed by the environment (perhaps consisting of other
threads running in parallel, and/or of the attacker) before that command gets to perform
an other step. For example, the command c ≡ h := 0 ; l := h (with h high and l low)
would be deemed as self isomorphic if it were not for the interactivity constraint. In-
deed, if no interference from the environment is assumed, the execution of c proceeds
the same way regardless of the initial value of h, as it first assigns 0 to h. However, siso c
does not hold, since the continuation l := h is required to be secure given any value of h
arising as the effect of a secure thread running in parallel, say, h := h′ with h′ high. This
interactivity twist (originating from [22, 25]) is convenient for compositionality, since
it ensures that a command is secure not only in isolation, but also if placed in any pool
of secure threads running in parallel. As a consequence, most of the security notions
discussed in this paper will be interactive.

We shall also need the following interactive notion of termination possibility at each
point during execution, via the coinductively defined predicate mayT (read “may termi-
nate”): mayTc ≡ ∀sc′ s′.(c,s)→C(c′,s′) =⇒ (∃s′′.(c′,s′)→∗

T s′′)∧mayTc′.

114 A. Popescu, J. Hölzl, and T. Nipkow

Self isomorphism and discreetness were expressible as unary predicates. However,
interesting noninterference properties may require binary relations. To see this, assume
we wish to express that c is secure, i.e., its executions are (multi)step-wise equivalent
if started in indistinguishable states. Assume c branches according to a high test. Then
indistinguishable states may yield different continuations, say, c1 and c2, and so we
are faced with the problem of proving the executions of c1 and c2 (multi)step-wise
equivalent, i.e., proving c1 and c2 bisimilar. (The above two notions have by-passed
this problem in trivial ways: self isomorphism forbids this situation by disallowing the
program counter to diverge, hence disallowing high tests, while discreetness of c also
requires c1 and c2 to be discreet, hence trivially “equivalent”.)

matchC
C θ c d ≡

∀s t c′ s′. s ∼ t ∧ (c,s)→C(c′,s′) =⇒
(∃d′ t ′. (d, t)→C(d′, t ′) ∧ s′ ∼ t ′ ∧ θ c′ d′)
matchC

01C θ c d ≡
∀s t c′ s′. s ∼ t ∧ (c,s)→C(c′,s′) =⇒
(∃d′ t ′. (d, t)→C(d′, t ′) ∧ s′ ∼ t ′ ∧ θ c′ d′) ∨
(s′ ∼ t ∧ θ c′ d)
matchC

01 θ c d ≡
∀s t c′ s′. s ∼ t ∧ (c,s)→C(c′,s′) =⇒
(∃d′ t ′. (d, t)→C(d′, t ′) ∧ s′ ∼ t ′ ∧ θ c′ d′) ∨
(s′ ∼ t ∧ θ c′ d) ∨
(∃t ′. (d, t)→Tt ′ ∧ s′ ∼ t ′ ∧ discr c′)
matchT

T c d ≡
∀s t s′. s ∼ t ∧ (c,s)→Ts′ =⇒
(∃t ′. (d, t)→Tt ′ ∧ s′ ∼ t ′)
matchT

01 c d ≡
∀s t s′. s ∼ t ∧ (c,s)→Ts′ =⇒
(∃t ′. (d, t)→Tt ′ ∧ s′ ∼ t ′) ∨
(∃d′ t ′. (d, t)→C(d′, t ′)∧ s′ ∼ t ′ ∧discr d′) ∨
(s′ ∼ t ∧ discr d)

matchC
MC θ c d ≡

∀s t c′ s′. s ∼ t ∧ (c,s)→C(c′,s′) =⇒
(∃d′ t ′. (d, t)→∗

C (d
′, t ′) ∧ s′ ∼ t ′ ∧ θ c′ d′)

matchC
M θ c d ≡

∀s t c′ s′. s ∼ t ∧ (c,s)→C(c′,s′) =⇒
(∃d′ t ′. (d, t)→∗

C (d
′, t ′) ∧ s′ ∼ t ′ ∧ θ c′ d′) ∨

(∃t ′. (d, t)→∗
T t ′ ∧ s′ ∼ t ′ ∧ discr c′)

matchT
MT c d ≡

∀s t s′. s ∼ t ∧ (c,s)→Ts′ =⇒
(∃t ′. (d, t)→∗

T t ′ ∧ s′ ∼ t ′)
matchT

M c d ≡
∀s t s′. s ∼ t ∧ (c,s)→Ts′ =⇒
(∃t ′. (d, t)→∗

T t ′ ∧ s′ ∼ t ′) ∨
(∃d′ t ′. (d, t)→∗

C (d
′, t ′)∧ s′ ∼ t ′ ∧discr d′)

Fig. 2. Matchers

In order to define relevant notions of bisimilarity, it will be useful to first introduce
matching operators (or matchers) that express various choices of rules for the bisimilar-
ity game. They are defined in Fig. 2, where θ ranges over binary relations on commands.
In the operator names, the superscripts indicate the kind of steps being taken, and the
subscripts indicate by what kind of steps these must be simulated (matched), where: “C”
means (single) continuation step; “T” means (single) terminating step; “01C” means 0
or 1 continuation steps; “01” means 0 or 1 continuation or terminating steps, i.e., 01C or
T; “MC” means multiple continuation steps; “MT” means multiple continuation steps,
followed by a terminating step; “M” means MC or MT. E.g., matchC

C refers to matching
any continuation step by a continuation step, matchC

01C to matching any continuation step
by 0 or 1 continuation steps, i.e., either by a continuation step or by a stutter move.

Proving Concurrent Noninterference 115

Matchers indicate how the single steps of a command c may be matched by single
or multiple steps of a command d. In most cases, the matcher is also parameterized by
a continuation relation θ ; exceptions are matchT

T and matchT
MT, where, due to termina-

tion of both the left and the right sides, no continuation makes sense. matchC
01, matchT

01,
matchC

M and matchT
M are termination-flexible matchers, in that they allow matching con-

tinuation steps against termination steps and vice versa. For instance, matchC
01 (“match

a continuation step against 0 or 1 steps of either kind”) requires for θ , c and d that, for
all indistinguishable states s and t, any step (c,s)→C(c′,s′) be matched by either a con-
tinuation step (d, t)→C(d′, t ′), or a stutter step, or a termination step (d, t)→Tt ′. In each
case, it is also required that the resulting states are indistinguishable. Moreover, in the
first two cases (for continuation and stutter) it is required that the resulting commands
are in relation θ . For the third case though (the termination step), the latter condition
does not make sense, since on the left of the matcher we have a continuation com-
mand, c′, while the right side has terminated; what we require instead is that, w.r.t. the
attacker-observable behavior, c′ acts as if it terminated, in that it will never change the
indistinguishability class of the state, i.e., is discreet. (Similar discreetness conditions
appear in the definitions of the other termination-flexible matchers for similar reasons.)

We are now ready to define the following bisimilarity relations, again coinductively,
by plugging in different combinations of matchers and taking each time the largest
symmetric relation satisfying the given clause (where the bisimilarities are written with
infix notation on the left and are passed as arguments to the matchers on the right):

– Strong bisimilarity, ≈S , by c ≈S d ≡ matchC
C (≈S) c d ∧ matchT

T c d
– 01-bisimilarity, ≈01 , by c ≈01 d ≡ matchC

01 (≈01) c d ∧ matchT
01 c d

– Termination-sensitive 01-bisimilarity (01T-bisimilarity), ≈01T , by
c ≈01T d ≡ matchC

01C (≈01T) c d∧ matchT
T c d

– Weak bisimilarity, ≈W , by c ≈W d ≡ matchC
M (≈W) c d ∧ matchT

M c d
– Termination-sensitive weak bisimilarity (weak T-bisimilarity), ≈WT , by

c ≈W d ≡ matchC
MC (≈W) c d ∧ matchT

MT c d

All these bisimilarity relations are by definition symmetric and can also be proved tran-
sitive, but they are not reflexive. In fact, the notion of a command c being bisimilar with
itself (e.g., c ≈S c, c ≈01 c, etc.), which we call self bisimilarity of c (e.g., self strong
bisimilarity, self 01-bisimilarity, etc.) is taken in this paper as the formalization of the
informal notion of security of a command. Below we explain how different bisimilari-
ties correspond to different attacker models.

In all cases, one assumes the attacker has access to the program (command) source
code and the low part of the state, and the ability to set, at the beginning of the com-
mand execution, the low part of the state in any desired way. For strong bisimilarity
(≈S), we assume the attacker’s ability to repeatedly stop the program after single exe-
cution steps and inspect the (low part of the) state, or, equivalently, take snapshots of
the state after controlled numbers of execution steps. Technically, this shows in the two
involved matchers, matchC

C and matchT
T, being one-to-one (w.r.t. continuation or termina-

tion steps). Moreover, we assume the attacker can detect termination—this shows in the
fact that the two matchers preserve the type of transition: continuation vs. continuation
and termination vs. termination. For weak bisimilarity (≈W), the attacker may still stop
the program repeatedly, but has no control on the number of steps that the program takes

116 A. Popescu, J. Hölzl, and T. Nipkow

between two stops. (For what the attacker knows, zero, one, or more steps could have
been taken.) This shows in the one-to-many nature of the matchers. The termination-
sensitive version of weak bisimilarity (≈WT) additionally assumes the attacker is able
to detect termination. Thus, ≈WT allows, via matchT

MT, matching a termination step by a
sequence of steps only if the latter ends in a termination step. 01-bisimilarity (≈01), also
coming with a termination-sensitive variant (≈01T), is intermediate between strong and
weak bisimilarity. Here, the attacker may keep running the program for 0 or 1 steps,
without knowing which of the two situations has actually occurred.

The following proposition, relating different notions of self bisimilarity, follows eas-
ily from the definitions of the corresponding matchers:

Prop 1. The implications in Fig. 3 hold.

Note that discreetness implies self 01-bisimilarity, but not self 01T-bisimilarity. How-
ever, for may-terminating processes (roughly, processes with finite behavior), it does
imply self wT-bisimilarity.

c ≈W c

c ≈01 c

�������������

�����������
c ≈WT c

��

c ≈01T c

���� �����������

�����������

discr c

��

c ≈S c

��

discr c ∧ mayT c

��

��
�����������������������

�����������������������
siso c

��

Fig. 3. Implications between security notions

c mayT c discr c ϕ c ψ c

atm True pres atm cpt atm cpt atm

Seq c1 c2
mayT c1
mayT c2

discr c1
discr c2

ϕ c1
ϕ c2

ψT c1
ψ c2

ψ c1
discr c2

If tst c1 c2
mayT c1
mayT c2

discr c1
discr c2

cpt tst
ϕ c1
ϕ c2

cpt tst
ψ c1
ψ c2

While tst d False discr d
cpt tst
ϕ d

False

Par c1 c2
mayT c1
mayT c2

discr c1
discr c2

ϕ c1
ϕ c2

ψ c1
ψ c2

ϕ ∈ {siso,≈S,≈01T,≈WT} ψ ∈ {≈01,≈W}
ψT ≡

{≈01T, if ψ =≈01

≈WT, if ψ =≈W

Fig. 4. Compositionality table

Example 1 already illustrates most of the above bisimilarities. Here are some further
illustrations that also take Prop. 1 into account (using the Example 1 notations).

Example 3. (1) c3 is self 01-bisimilar, as any two discreet processes are 01-bisimilar.
(2) However, c3 is not self 01T-bisimilar, as shown by the following reasoning: de-
pending on h, c3 can move to d ≡ h := 1 ; h := 2 or e ≡ h := 3; but d and e are not
01T-bisimilar, as d is not able to 01T-match the immediate terminating step from e.
(3) The above is not a problem for weak T-bisimilarity though, since here d can catch up
with e by taking multiple steps. Thus, c3 is self weakly T-bisimilar (as any two discreet
processes with finite behavior are weakly T-bisimilar).

Proving Concurrent Noninterference 117

(4) c5 ≡ c3 ; l := 4 is self weakly T-bisimilar, since alternative executions (starting in
indistinguishable states) of its first part c3 are able to ≈WT -synchronize, so that they
can proceed strongly synchronously with the remaining non-discreet step l := 4.
(5) However, c5 is not self 01-bisimilar since the above e-continuation of c3 is able
to terminate first, putting itself in a position to take the non-discreet step l := 4, not
available at that time for the other continuation, d.
(6)while h= 0 do h := 0 is discreet, hence self 01-bisimilar, but not weakly T-bisimilar,
as a diverging execution from h = 0 cannot match a terminating one from h �= 0.

The weak and 01-bisimilarities provide the most fruitful notions in type-system ap-
proaches to noninterference. (The others—self isomorphism, discreetness and strong
bisimilarity—are too harsh requirements, but, as we shall see, turn out as useful aux-
iliaries.) Thus, Smith and Volpano [29] focus on termination-sensitive weak bisimi-
larity. On the other hand, Boudol and Castellani [5, 6] prefer termination-insensitive
01-bisimilarity, while later Boudol [4] also considers weak bisimilarity, but in its
termination-insensitive form. In these works, the newly introduced bisimilarities are
not formally compared with preexisting ones—instead, the focus is on comparing the
end-product type systems, i.e., the rely side of the contract (while the bismilarities are
the guarantee part). In order to properly revisit and compare type-system results, we
first need an analysis of compositionality for these bisimilarities.

4 Compositionality

We now move to the central concept of this paper—compositionality of noninterference
w.r.t. the language constructs.

An atom atm is called ∼-preserving, written pres atm, if ∀s. aexec atm s ∼ s; it is
called ∼-compatible, written cpt atm, if ∀s t. s ∼ t =⇒ aexec atm s ∼ aexec atm t. A
test tst is called ∼-compatible, written cpt tst, if ∀s t. s ∼ t =⇒ tval tst s = tval tst t.
In the setting of Example 2, for atoms, ∼-preservation means no assignment to low
variables and∼-compatibility means no direct leaks, i.e., no assignment to low variables
of expressions depending on high variables (high expressions). Moreover, for tests, ∼-
compatibility means no dependence on high variables.

Prop 2. The compositionality facts stated in Fig. 4 hold.

Here is how to read Fig. 4. The first column lists the possible forms of a command c (c
may be an atom atm, or have the form Seq c1 c2, etc.). The next columns list conditions
under which the predicates stated on the first row hold for c. Thus, e.g., row 3 column 3
says: if discr c1 and discr c2 then discr (Seq c1 c2). The horizontal line in row 3 column 5
represents an “or” – thus, row 3 column 5 says: if either [ψT c1 and ψ c2] or [ψ c1 and
discr c2] then ψ (Seq c1 c2). The involved bisimilarities are considered in their unary,
“self” form, e.g., ψ c means c ≈01 c or c ≈W c.

Example 4. The informal arguments in Examples 1 and 3 can be made rigorous using
the compositionality table in Fig. 4 in conjunction with the implication graph in Fig. 3.
For instance, c4 from Example 1 has the form Seq (l := 4) c3, where c3 has the form
If (h= 0) (Seq (h := 1) (h := 2)) (h := 3). According to the table, for c4 ≈01 c4, it suffices

118 A. Popescu, J. Hölzl, and T. Nipkow

that (l := 4)≈01T (l := 4) and c3 ≈01 c3. The former is true by the table, since l := 4 is
compatible. However, the table cannot help (yet) in proving c3 ≈01 c3, because there
the required side condition is cpt (h = 0), which does not hold. Therefore we turn to
the implication graph, and try to prove the fact for one of the predecessors of ≈01. One
predecessor is ≈01T , which again requires cpt (h = 0), and so does its predecessor ≈S ,
and so does the predecessor of the latter, siso, which is a bottom node—therefore this
path fails. The other predecessor of ≈01 is discr, for which the table does not require the
problematic side-condition. And the proof of discr c3 goes smoothly according to the
table, since it is reduced to discr (Seq (h := 1) (h := 2)) and discr (h := 3), and further
to discr (h := 1), discr (h := 2) and discr (h := 3), all being true by ∼-preservation.

Note that we appeal to the Fig. 3 graph whenever the table result is not sufficiently
strong, i.e., the given security notion is not sufficiently compositional w.r.t. the given
language construct. For this table-and-graph proof technique, it is instructive to com-
pare the termination-sensitive security notions with the termination-insensitive ones,
that is, ϕ with ψ in Fig. 4. ϕ is more compositional than ψ w.r.t. Seq. (In fact, if interac-
tivity is responsible for Par-compositionality, termination-sensitiveness can be deemed
responsible for Seq-compositionality.) Indeed, for ψ (Seq c1 c2) to go through, the ta-
ble requires strengthening ψ either for c1 to its termination-sensitive variant, ψT, or
for c2 to discreetness. A consequence of this is also the lack of compositionality of ψ
w.r.t. While (since the semantics of While involves iteration of Seq). On the other hand,
ψ enjoys better compositionality w.r.t. If. This is not visible by looking at the table
alone, where the If rules of ϕ and ψ are the same, and they are both conditioned by
the ∼-compatibility of tst. The difference appears when tst is not compatible—then,
according to the graph, unlike ϕ , ψ can “fall back” on discr, which does not require
tst to be compatible. Indeed, unlike ϕ , ψ is above discr in the graph. Note that, among
the ϕ’s, ≈WT is the best located with this respect, since it is above the conjunction of
discr c and mayT c in the graph. But this is still worse than ψ , since falling back on
discr c ∧ mayT c forbids while loops, as shown in the table for mayT.

An interesting theoretical question is whether we can have the best of both worlds
and define a relation that is both above discreetness in the graph and fully compositional
w.r.t. Seq, without sacrificing compositionality with the other constructs. A positive
answer to this question is presented next.

5 A More Compositional Security Notion

The rough idea of the proposed solution is as follows. If we knew that the whole
program terminates, then discreetness would imply ≈WT. And to integrate termination
information into our coinductive interactiveness, we note that, given a thread c run-
ning in parallel with others in a pool whose execution from a given state s is known
to terminate, the following are true: (1) the execution of c alone starting in s must
terminate; (2) between resumption points of the execution of c, the other threads are
guaranteed to change the state in such a way that termination is preserved. This leads
us to ≈T , a relaxation of ≈WT with interactivity restricted to mustT (“must terminate”)
configurations, where mustT(c,s) is defined to mean that there exists no infinite chain
(c0,s0), . . . ,(cn,sn), . . . such that (c0,s0) = (c,s) and ∀i. (ci,si)→C(ci+1,si+1):

Proving Concurrent Noninterference 119

– matchC
TMC θ c d ≡ ∀s t c′ s′.mustT (c,s) ∧ mustT (d, t) ∧ s ∼ t ∧ (c,s)→C(c′,s′)

=⇒ (∃d′ t ′. (d, t)→∗
C
(d′, t ′) ∧ s′ ∼ t ′ ∧ θ c′ d′)

– matchT
TMT c d ≡ ∀s t s′.mustT (c,s) ∧ mustT (d, t) ∧ s ∼ t ∧ (c,s)→Ts′

=⇒ (∃t ′. (d, t)→∗
T t ′ ∧ s′ ∼ t ′)

– c ≈T d ≡ matchC
TMC (≈T) c d ∧ matchT

TMT c d

And, indeed, ≈T achieves the targeted properties, as can be shown by an argument sim-
ilar to those of Props. 1 and 2:

Prop 3. (1) The compositionality facts stated in Fig. 4 for ϕ also hold for ≈T.
(2) discr c =⇒ c ≈T c.

Note that ≈T does not require, for the involved programs, termination (a liveness prop-
erty), but rather preservation of termination (a safety property). ≈T is weaker than ≈WT ,
and neither weaker nor stronger than ≈01 and ≈W. The benefit of having ≈T better suited
than the other notions w.r.t. our table-and-graph reasoning is the availability of a more
permissive syntactic criterion, as we detail next.

6 Syntactic Criteria

The (compositionality based) table-and-graph proof technique described in Example 4
can be automated, yielding a collection of recursive syntactic predicates corresponding
to the various security notions. The recursive clauses for these predicates will simply
perform the necessary lookups: first in the table, then, if needed, in the graph.

Before listing these clauses, we first simplify the Fig. 3 graph, noticing that ≈S and
≈01T are redundant nodes on top of siso. Indeed, the compositionality conditions for ≈S

and ≈01T from the Fig. 4 table are identical to those of all nodes below, hence identical
to those of siso. This means that, when proving c ≈S c or c ≈01T c, one cannot do better
than proving compositionality of the stronger (more desirable) siso notion of security.
We therefore drop ≈S and ≈01T from the graph. Fig. 5 shows this new graph, where ≈T

is also integrated. In the Fig. 4 table, we also redefine ψT by redirecting ≈01 to siso:

ψT ≡
{
siso, if ψ =≈01

≈WT , if ψ =≈W .
Let us introduce some notation for the Fig. 4 table and the Fig. 5 graph. A (syntactic)

constructor Cns is any of the following: Seq, If tst where tst ∈ test, While tst where
tst ∈ test, Par. In addition, for uniformity, we also introduce a constructor Atm atm for
every atm ∈ atom, and assume Atm atm is the same as atm. Thus, any command c
has the form Cns c1 . . .ck, where Cns is a constructor and c1 . . .ck are k commands, the
components of c, with k either 0, 1 or 2, depending on Cns (it is 0 for Atm atm).

Henceforth, we let χ range over the notions in the table, namely, χ ∈ {mayT,discr,
siso,≈S,≈01T,≈WT,≈01,≈W,≈T}. The table has an entry corresponding to every combina-
tion (χ ,Cns), for which we define the following:

– sideχ ,Cns is its side condition, i.e., the part of it not depending on the compo-
nents. If this part is empty, we put True. E.g., sidemayT,Atm atm = sidesiso,Seq = True,
sidesiso,If tst = cpt tst.

120 A. Popescu, J. Hölzl, and T. Nipkow

c ≈T c c ≈W c

c ≈01 c

�����������

���������
c ≈WT c

���� ���������

���������

discr c

��

��

discr c ∧ mayT c

��

��
���������������

���������������
siso c

��		����������������

����������������

Fig. 5. Simplified implication graph of
security notions

≈T c

≈W c

��

≈01 c

									

									
≈WT c

��

discr c

��

discr c ∧ mayT c

��

��

siso c

��������������������

����������������

Fig. 6. Syntactic implications

– rcondχ ,Cns(c1, . . . ,ck) is its recursion condition, i.e., the part involving the compo-
nents of c. Again, if this part is empty, we put True. E.g., rcondmayT,Atm atm = True,
rcondsiso,Seq(c1,c2) = rcondsiso,If tst(c1,c2) = (siso c1 ∧ siso c2).

For any element χ in the graph, we let Pred χ denote its set of predecessors. E.g.,
Pred siso = /0, Pred ≈01= {discr, siso}, Pred ≈W= {≈01,≈WT}.

Note that, for all χ , Cns, and c of the form Cns c1 . . .ck,

– The table ensures that sideχ ,Cns ∧ rcondχ ,Cns(c1, . . . ,ck) =⇒ χ c;
– The graph ensures that (

∨
χ ′∈Pred χ χ ′ c) =⇒ χ c.

We define, for each security notions χ , a syntactic predicate χ on commands by turning
the above implications into recursive clauses for each constructor Cns, where one first
tries the table, and then, if the table fails, one tries the graph:

χ (Cns c1 . . .ck) ≡
{
rcondχ ,Cns(c1, . . . ,ck), if sideχ ,Cns(c1, . . . ,ck),∨

χ ′∈Pred χ χ ′ (Cns c1 . . .ck), otherwise,

where rcondχ ,Cns and sideχ ,Cns are rcondχ ,Cns and sideχ ,Cns with all the involved security
predicates χ ′ replaced by their syntactic counterparts χ ′.

For example, taking Cns = If tst, we have:

1. discr (If tst c1 c2) = (discr c1 ∧ discr c2).

2. siso (If tst c1 c2) =

{
siso c1 ∧ siso c2, if cpt tst
False, otherwise.

3. ≈01 (If tst c1 c2) =

{ ≈01 c1 ∧ ≈01 c2, if cpt tst
discr (If tst c1 c2) ∨ siso (If tst c1 c2), otherwise

= (by 1 and 2) =

{ ≈01 c1 ∧ ≈01 c2, if cpt tst
discr c1 ∧ discr c2, otherwise.

Proving Concurrent Noninterference 121

(Recall that, when we instantiate χ to a bisimilarity such as ≈WT , we refer to its unary
version, taking χ c to be c ≈WT c. Hence, an instance of χ is the unary predicate ≈WT .)

The proof of the following fact is now routine by structural induction on commands:

Prop 4. The syntactic criteria χ are sound for the security notions χ in Fig. 5, in that
χ c =⇒ χ c for all commands c.

A remarkable property of the χ’s is that they preserve the Fig. 5 hierarchy of χ’s. In
fact, they actually refine it:

Prop 5. The implications listed in Fig. 6 hold.

The hierarchy refinement from Fig. 5 to Fig. 6 consists of the advance of ≈T to the top,
even though ≈T is not weaker than ≈W or ≈01. The reason why ≈T is weaker than ≈W is
the following: The recursive definition of each χ is as permissive as is χ compositional.
And since ≈T is at least as compositional as ≈W and any other relation involved in its
compositionality (here, ≈WT), the proof of ≈W c =⇒ ≈T c goes through by structural
induction on c.

So far, our analysis was purely semantic and local: for semantic notions of secu-
rity χ , we studied compositionality w.r.t. each language construct, inferring from these
syntactic criteria χ automatically. Now it is time to have a closer look at the recursive
clauses of χ and see what they tell us about χ independently of χ . First the easy cases:

– mayT c holds iff c does not contain while loops.
– discr c holds iff all atoms in c are ∼-preserving, a.k.a. high.
– siso c holds iff all tests in c are ∼-compatible, a.k.a. low, and all atoms are ∼-

compatible.

siso c corresponds to a type system from Smith and Volpano [29] for scheduler indepen-
dent security – this criterion is extremely harsh, forbidding high tests at If and While.

We now move to the more interesting cases. ≈WT c is equivalent to another, pos-
sibilistic type system from Smith and Volpano [29]. Here, high tests are allowed at If
provided the branches are discreet, but are disallowed at While: ≈WT (While tst c) ={ ≈WT c, if cpt tst
discr (While tst c)∧mayT (While tst c), otherwise

=

{ ≈WT c, if cpt tst
False, otherwise.

The above harsh condition on While is the starting point of work by Boudol and Castel-
lani in [5, 6], where a type system equivalent to ≈01 is introduced. ≈01 allows high
tests for While provided the body of the While is discreet. This is possible because, un-
like ≈WT , ≈01 can fall back on discr:
≈01 (While tst c) = discr (While tst c)∨ siso (While tst c) = discrc∨ (cpt tst ∧ sisoc).
However, the price for this is a harsher clause for Seq (as we have seen, a limitation
shared by all termination-insensitive notions). Indeed, ≈WT commutes smoothly with
Seq as ≈WT (Seq c1 c2) = (≈WT c1 ∧ ≈WT c2), but ≈01 needs either siso on the left or
discr on the right: ≈01 (Seq c1 c2) = (siso c1 ∧ ≈01 c2) ∨ (≈01 c1 ∧ discr c2).
Thus, ≈01 requires that either c1 has only low tests, or c2 has only high atoms. Hence,
e.g., the command c5 from Example 1 is accepted by ≈WT , but rejected by ≈01 .

An improvement of ≈01 that accepts c5 also is proposed by Boudol in [4], where
the idea is that, in the c1 part of Seq c1 c2, one should no longer restrict to low tests

122 A. Popescu, J. Hölzl, and T. Nipkow

everywhere, but rather only in places that may affect termination (i.e., inside While

loops). Interestingly, this condition on c1 is the one imposed by ≈WT , and therefore
the approach of [4] can be seen as a carefully designed combination of ≈WT and ≈01 .
Remarkably, it turns out to be equivalent to ≈W , whose Seq clause is: ≈W (Seq c1 c2) =
(≈WT c1 ∧ ≈W c2) ∨ (≈W c1 ∧ discr c2).

In the above cited work, the soundness of the proposed type systems (results cor-
responding to Prop. 4) are given rather elaborate proofs, defining global bisimulation
relations that involve multiple language constructs combined in ingenious and ad hoc
ways. These proofs are often hard to understand and mechanize. Moreover, they are not
exploiting the uniformities, commonalities and inter-dependencies of the various ap-
proaches. By contrast, our proof methodology is entirely local and uniform: we choose
a language construct and a notion of security, and essentially do our best at proving
(partial) compositionality. Then syntactic criteria follow automatically by our table-
and-graph method. We were pleasantly surprised to find that this general method could
capture such a variety of ad hoc results.

Finally, we discuss ≈T , which is our own novel type-system-like criterion for non-
interference. It turns out to be a natural extension of the original Volpano-Smith-Irvine
typing of sequential programs [30], using the same clauses for the sequential part to-
gether with ≈T (Par c1 c2) = (≈T c1 ∧ ≈T c2). The reason why such a natural type
system is absent from the literature is probably that its associated semantic notion of
security, ≈T , was overlooked.

≈T accepts the commands c7 from Example 1 and d ≡ c7 ‖ l := 5, while the most
permissive criterion studied so far, ≈W , rejects them. However, as discussed, the secu-
rity property that ≈T guarantees, ≈T , is different from ≈W , the main restriction of ≈T

being that it only makes sense under the termination assumption. Thus, ≈T provides a
useful guarantee for c7 and d only in cases when the initial state s ensures termination,
here, if it has h ≥ 0. On the other hand, ≈W rejects d out of fear that its c7 component
may not terminate, which would yield the pipelining of the c7 termination channel into
a standard channel for d. Termination knowledge excludes such behavior, and this is
where the new criterion ≈T is advantageous.

7 After-Execution Noninterference

The bisimilarity-based notions of security studied so far are rather complex, assuming
an elaborate attacker model that interacts continuously with program execution—we
call these during-execution noninterference. Often one is interested in a more tractable
notion, as an input-to-output property, such as: a command is secure if, upon execution
starting in indistinguishable states, the result states (after the command has finished
executing) are again indistinguishable. We call such input-to-output properties after-
execution noninterference.

So what are the after-execution guarantees of the various bisimilarities from §3? To
answer this, we need some terminology. Given a configuration (c,s):

– A finite execution trace starting in (c,s) (finite (c,s)-trace for short) is a finite
sequence of the form (c0,s0),(c1,s1), . . . ,(cn−1,sn−1),sn (consisting of a number of
configurations followed by a state) such that (c0,s0) = (c,s), (ci,si)→C(ci+1,si+1)

Proving Concurrent Noninterference 123

for all i < n− 1, and (cn−1,sn−1)→Tsn. Then n is said to be the length of the trace
and sn the final state of the trace.

– An infinite execution trace starting in (c,s) (infinite (c,s)-trace for short) is an
infinite sequence of the form (c0,s0),(c1,s1), . . . (consisting of configurations only)
such that (c0,s0) = (c,s) and ∀i. (ci,si)→C(ci+1,si+1).

Given a finite (c,s)-trace tr, length(tr) denotes its length and fstate(tr) denotes its final
state. Thus, finite (c,s)-traces represent the terminating computations starting in (c,s),
and infinite (c,s)-traces the divergent computations starting in (c,s). Note that (c,s)
“must terminate” (as defined in §5) iff there exist no infinite (c,s)-traces. It is not hard
to prove the following about the termination-sensitive bisimilarities:

Prop 6. (1) If c ≈S c and s ∼ t, then, for every finite (c,s)-trace tr, there exists a finite
(c, t)-trace tr′ with fstate(tr′)∼ fstate(tr) and length(tr′) = length(tr).
(2) If c ≈01T c and s ∼ t, then, for every finite (c,s)-trace tr, there exists a finite (c, t)-
trace tr′ with fstate(tr′)∼ fstate(tr) and length(tr′)≤ length(tr).
(3) If c ≈WT c and s ∼ t, then, for every finite (c,s)-trace tr, there exists a finite (c, t)-
trace tr′ with fstate(tr′)∼ fstate(tr).

Thus, for self strongly bisimilar commands, terminating executions starting in indis-
tinguishable states have, up to indistinguishability, the same outcomes, obtained in the
same amount of time—this means both standard (low data) channels and timing chan-
nels are secure here. For self weakly T-bisimilar commands, again the outcomes are the
same up to indistinguishability, but timing channels are no longer secured. As usual,
01T-bisimilarity lies in between—there is a time guarantee, but weaker than perfect
synchronization.

Now, turning to the termination-insensitive notions, during-execution security faces
the difficulty that here terminating executions need not be matched by terminating exe-
cutions. However, we can still prove a termination-conditioned result:

Prop 7. If ∀s′. mustT (c,s′), then Prop. 6(3) holds with ≈01 or ≈W substituted for
≈WT .

Thus, in the termination-insensitive case, the after-execution distinction between 01-
and weak bisimilarity vanishes. As for the after-execution guarantee of our termination-
sensitive security notion ≈T from §5, it is weaker than that of ≈WT (Prop. 6(3)), but
stronger than that of ≈01 and ≈W (Prop. 7):

Prop 8. If mustT (c,s), then Prop. 6(3) holds with ≈T substituted for ≈WT .

8 Conclusions and More Related Work

This paper was concerned with systematizing and comparing existing type-system based
noninterference results from the literature. As a technical tool, we have introduced a
compositionality “table-and-graph” technique able to capture such results in a uniform
way. The study also suggested a novel, suitably compositional, notion, the termination-
interactive bisimilarity ≈T.

124 A. Popescu, J. Hölzl, and T. Nipkow

Our approach has important precursors in the literature. Thus, [25] makes a strong
case for compositionality, and illustrates how it can be used to extend to concurrency
a noninterference result [1] in the style of Volpano and Smith. However, [25] does not
pursue this idea systematically or devise a general technique as we do in this paper.
Moreover, our bisimilarity-based treatment employs insight from process algebra [16]
in general and from process algebra approaches to noninterference [8] in particular.
In system-based security, [9, 11, 15] provide general frameworks for trace-based sys-
tem security, the last two having a special focus on compositionality and the first also
incorporating probabilistic systems.

Themes missing from the compositionality framework discussed in this paper are
probabilistic noninterference [13, 26–28], dynamic thread creation [13, 25, 31] and
scheduler independence [6, 13, 25, 31], known to be particularly problematic w.r.t. non-
interference. Incorporating some of these features in our compositional setting is a goal
for future research.

Another exciting future direction is a framework for proving concurrent noninter-
ference by a combination of automated and interactive methods along the lines of
approaches going beyond type systems [2, 7, 12]. This would follow a rely-guarantee
paradigm [10], with information about the environment made available to individual
threads by suitably relaxing interactivity. A step towards this direction is made by our
termination-interactive bisimilarity ≈T , where such context information is termination,
but could in principle be any liveness property.

Acknowledgements. We are grateful to Jasmin Blanchette for lots of suggestions that
have significantly improved the presentation of this paper, to Benedict Nordhoff and
Peter Lammich for noticing various technical typos, and to the anonymous reviewers
for useful comments.

References

1. Agat, J.: Transforming out timing leaks. In: POPL, pp. 40–53 (2000)
2. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition. In: IEEE

Computer Security Foundations Workshop, pp. 100–114 (2004)
3. Barthe, G., Nieto, L.P.: Formally verifying information flow type systems for concurrent and

thread systems. In: FMSE, pp. 13–22 (2004)
4. Boudol, G.: On Typing Information Flow. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005.

LNCS, vol. 3722, pp. 366–380. Springer, Heidelberg (2005)
5. Boudol, G., Castellani, I.: Noninterference for Concurrent Programs. In: Yu, Y., Spirakis,

P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 382–395. Springer,
Heidelberg (2001)

6. Boudol, G., Castellani, I.: Noninterference for concurrent programs and thread systems. The-
oretical Computer Science 281(1-2), 109–130 (2002)

7. Darvas, Á., Hähnle, R., Sands, D.: A Theorem Proving Approach to Analysis of Secure In-
formation Flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol. 3450, pp. 193–209.
Springer, Heidelberg (2005)

8. Focardi, R., Gorrieri, R.: Classification of Security Properties (Part i: Information Flow). In:
Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, p. 331. Springer, Heidelberg
(2001)

Proving Concurrent Noninterference 125

9. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst. Se-
cur. 12(1) (2008)

10. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress 1983,
pp. 321–332 (1983)

11. Mantel, H.: On the composition of secure systems. In: IEEE Symposium on Security and
Privacy, pp. 88–101 (2002)

12. Mantel, H., Sands, D., Sudbrock, H.: Assumptions and guarantees for compositional nonin-
terference. In: CSF 2011, Cernay-la-Ville, France, pp. 218–232 (2011)

13. Mantel, H., Sudbrock, H.: Flexible Scheduler-Independent Security. In: Gritzalis, D., Pre-
neel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 116–133. Springer,
Heidelberg (2010)

14. Mantel, H., Sudbrock, H., Kraußer, T.: Combining Different Proof Techniques for Verifying
Information Flow Security. In: Puebla, G. (ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 94–110.
Springer, Heidelberg (2007)

15. McLean, J.: A general theory of composition for trace sets closed under selective interleaving
functions, pp. 79–93 (May 1994)

16. Milner, R.: Communication and concurrency. Prentice Hall (1989)
17. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program. 60-

61, 17–139 (2004)
18. Popescu, A., Hölzl, J.: Possibilistic noninterference formalized in Isabelle/HOL. Archive for

Formal Proofs (2012), http://afp.sourceforge.net/entries/
Possibilistic Noninterference.shtml

19. Russo, A., Hughes, J., Naumann, D.A., Sabelfeld, A.: Closing Internal Timing Channels by
Transformation. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 120–135.
Springer, Heidelberg (2008)

20. Russo, A., Sabelfeld, A.: Security for Multithreaded Programs Under Cooperative Schedul-
ing. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 474–480.
Springer, Heidelberg (2007)

21. Sabelfeld, A.: The Impact of Synchronisation on Secure Information Flow in Concurrent
Programs. In: Bjørner, D., Broy, M., Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244,
pp. 225–239. Springer, Heidelberg (2001)

22. Sabelfeld, A.: Confidentiality for Multithreaded Programs via Bisimulation. In: Broy, M.,
Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 260–274. Springer, Heidelberg (2004)

23. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Journal on Se-
lected Areas in Communications 21(1), 5–19 (2003)

24. Sabelfeld, A., Sands, D.: A Per Model of Secure Information Flow in Sequential Programs. In:
Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 40–58. Springer, Heidelberg (1999)

25. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs. In: IEEE
Computer Security Foundations Workshop, pp. 200–214 (2000)

26. Smith, G.: A new type system for secure information flow. In: IEEE Computer Security
Foundations Workshop, pp. 115–125 (2001)

27. Smith, G.: Probabilistic noninterference through weak probabilistic bisimulation. In: IEEE
Computer Security Foundations Workshop, pp. 3–13 (2003)

28. Smith, G.: Improved typings for probabilistic noninterference in a multi-threaded language.
Journal of Computer Security 14(6), 591–623 (2006)

29. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative language. In:
ACM Symposium on Principles of Programming Languages, pp. 355–364 (1998)

30. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis. Journal of
Computer Security 4(2,3), 167–187 (1996)

31. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program security. In:
IEEE Computer Security Foundations Workshop, pp. 29–43 (2003)

http://afp.sourceforge.net/entries/Possibilistic_Noninterference.shtml
http://afp.sourceforge.net/entries/Possibilistic_Noninterference.shtml

Noninterference for Operating System

Kernels�,��

Toby Murray1,2, Daniel Matichuk1, Matthew Brassil1,
Peter Gammie1, and Gerwin Klein1,2

1 NICTA, Sydney, Australia
2 School of Computer Science and Engineering, UNSW, Sydney, Australia

{firstname.lastname}@nicta.com.au

Abstract. While intransitive noninterference is a natural property for
any secure OS kernel to enforce, proving that the implementation of
any particular general-purpose kernel enforces this property is yet to be
achieved. In this paper we take a significant step towards this vision
by presenting a machine-checked formulation of intransitive noninterfer-
ence for OS kernels, and its associated sound and complete unwinding
conditions, as well as a scalable proof calculus over nondeterministic
state monads for discharging these unwinding conditions across a ker-
nel’s implementation. Our ongoing experience applying this noninter-
ference framework and proof calculus to the seL4 microkernel validates
their utility and real-world applicability.

Keywords: Information flow, refinement, scheduling, state monads.

1 Introduction

A primary function of any operating system (OS) kernel is to enforce security
properties and policies. The classical security property of noninterference [8]
formalises the absence of unwanted information flows within a system, and is a
natural goal for any secure OS to aim to enforce. Here, the system is divided into
a number of domains, and the allowed information flows between domains spec-
ified by means of an information flow policy �, such that d � d ′ if information
is allowed to flow from domain d to domain d ′. So-called intransitive noninter-
ference [10] generalises noninterference to the case in which the relation � is
possibly intransitive.

� NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

�� This material is in part based on research sponsored by the Air Force Research
Laboratory, under agreement number FA2386-10-1-4105. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the Air Force
Research Laboratory or the U.S. Government.

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 126–142, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Noninterference for Operating System Kernels 127

While intransitive noninterference is a natural property for any secure OS ker-
nel to enforce, proving that the implementation of any particular general-purpose
kernel enforces this property is yet to be achieved. In this paper we take a sig-
nificant step towards this vision by presenting a machine-checked formulation of
intransitive noninterference for OS kernels, and its associated sound and com-
plete proof obligations (called unwinding conditions), as well as a scalable proof
calculus over nondeterministic state monads for discharging these unwinding
conditions across a kernel’s implementation. Both our noninterference formula-
tion and proof calculus are termination-insensitive, under the assumption that a
noninterference verification for an OS kernel is performed only after proving that
its execution is always defined (and thus every system call always terminates).
Our experience applying this noninterference framework and proof calculus to
the seL4 microkernel [11] validates their utility and real-world applicability.

Our intransitive noninterference formulation improves on traditional formula-
tions [10, 16, 19, 21] in two ways that make it more suitable for application to OS
kernels. Firstly, traditional formulations of intransitive noninterference assume a
static mapping dom from actions to domains, such that the domain dom a on whose
behalf some action a is being performed can be determined solely from the action
itself. No such mapping exists in the case of an OS kernel, which must infer this
information at run-time. For instance, when a system call occurs, in order to work
out which thread has requested the system call the kernel must consult the data-
structures of the scheduler to determine which thread is currently running. This
prevents traditional noninterference formulations from being able to reason about
potential information flows that might occur via these scheduling data structures.
An example would be a scheduler that does not properly isolate domains by bas-
ing its decision about whether to schedule a Low thread on whether a High thread
is runnable. Our noninterference formulation makes dom dependent on the cur-
rent state s, in order to overcome this problem, such that the domain associated
with some action a that occurs from state s is dom a s. This makes the resulting
noninterference formulation entirely state-dependent and complicates the proofs
of soundness for our unwinding conditions. Proving that a system satisfies these
unwinding conditions (and therefore our formulation of noninterference) requires
showing that the scheduler does not leak information via its scheduling decisions.

Secondly, while phrased for (possibly) nondeterministic systems, our noninter-
ference formulation is preserved by refinement. As explained later, this requires it
to preclude all domain-visible nondeterminism, which necessarily abstracts away
possible sources of information. Being preserved by refinement is important in al-
lowing our noninterference formulation to be proved of real kernels at reasonable
cost, as it can be proved about an abstract specification and then transported to
the more complex implementation by refinement. In the case of seL4, this allows
us to prove noninterference about a mostly-deterministic refinement [13] of its
abstract functional specification, which its C implementation has been proved to
refine [11], in order to conclude it of the implementation. Our experience to date
suggests that reasoning about seL4’s functional specification requires an order
of magnitude less effort than reasoning directly about the implementation [12].

128 T. Murray et al.

Our proof calculus resembles prior language-based frameworks for proving
termination-insensitive confidentiality (and other relational) properties of pro-
grams [1, 2, 4]; however, it is better suited than these frameworks for general-
purpose OS kernels. Firstly, our calculus aims not at generality but rather at
scalability, which is essential to enable its practical application to entire OS ker-
nels. Secondly, it is explicitly designed for reasoning about systems for which no
complete static assignment of memory locations or program variables to secu-
rity domains exists. As is the case with a general-purpose OS kernel like seL4
that implements a dynamic access control system, whether a memory location
is allowed to be read by the currently running thread depends on the access
rights that the current thread has, if any, to that location. In a microkernel
like seL4 that implements virtual memory, this of course depends on the cur-
rent virtual memory mappings for the currently running thread. Thus, like the
mapping of actions to domains, the mapping of memory locations to domains
is also state-dependent in a general-purpose OS kernel. Our proof calculus is
tuned to tracking and discharging these kinds of state-dependent proof obliga-
tions that arise when reasoning about confidentiality in such a system. These
manifest themselves as preconditions on confidentiality statements about indi-
vidual function calls that we discharge using a monadic Hoare logic and its
associated VCG [6]. Our calculus is specially tuned so that this same VCG en-
gine can automate its application, without modification, to automatically prove
confidentiality statements for those functions that do not read confidential state
(i.e. the vast majority of them), given appropriate user-supplied loop invariants.

Our experience applying this calculus to seL4 suggests that it scales very well
to real-world systems. So far we have used it to prove confidentiality for 98%
of the functions in the abstract seL4 specification in under 15 person-months.
The remaining fraction comprises nondeterministic functions that abstract away
from sources of confidential information — i.e. parts of the specification that
are too abstract to allow correct reasoning about confidentiality. We are in the
process of making these parts of the specification more concrete to produce a
refinement of the functional specification, which seL4’s C implementation refines
in turn, suitable for reasoning about confidentiality [13]. We have already done
this and proved confidentiality for the revoke system call, which is the kernel’s
most complex code path. The remaining functions are currently in progress.

In this paper, Section 2 presents our noninterference formulation for OS ker-
nels and its associated unwinding conditions. In Section 3 we present our proof
calculus for discharging these unwinding conditions across an entire kernel.
Section 4 considers related work before Section 5 concludes. All theorems and
definitions in this paper have been generated directly from the interactive theo-
rem prover Isabelle/HOL [14] in which all of our work was carried out.

2 Noninterference

Our noninterference formulation for OS kernels extends von Oheimb’s notion
of noninfluence [21]. We formalise noninterference over de Roever-Engelhardt

Noninterference for Operating System Kernels 129

style data types [7], which can be thought of as automata with a supported
theory of refinement, allowing us to prove that our noninterference formulation
is preserved under refinement. We first introduce the data type formalism and
the notion of refinement, before presenting our noninterference formulation and
its associated unwinding conditions. We prove that the unwinding conditions
are sound and complete for our noninterference formulation. We explain how
our unwinding conditions (and, hence, our noninterference formulation) require
us to prove the absence of information leaks through scheduling decisions. Lastly
we show how our noninterference formulation is preserved by refinement.

2.1 Data Types and Refinement

We model an OS kernel as a state machine whose transitions include processing
an interrupt or exception, performing a system call, and ordinary user-level ac-
tions like reading and writing user-accessible memory. We use the terms event
and action interchangeably to refer to an automaton’s individual transitions.

A data type automaton A is simply a triple comprising three functions:
an initialisation function InitA :: state ⇒ istate set that maps individual ob-
servable states to sets of corresponding internal states, an internal step re-
lation IStepA :: event ⇒ (istate × istate) set , and a final projection function
FinA :: istate ⇒ state that maps individual internal states to corresponding indi-
vidual observable states. For a data type A and initial observable state s :: state
and sequence of transitions as, let execution A s as denote the set of observable
states that can be reached by A performing as. execution A s as operates by first
applying InitA to the observable state s to produce a set of corresponding initial
internal states. It then computes a set of resulting internal states by repeatedly
applying IStepA to each event a in as in turn to arrive at a set of final internal
states. To each of these it applies FinA to obtain the set of final observable states.

execution A s as ≡ FinA ‘ foldl (λS a. IStepA a ‘‘ S) (InitA s) as

Here R ‘‘ S and f ‘ S are the relational images of the set S under the relation R
and function f respectively, and foldl is the standard fold function on lists.

A data type C refines data type A, written A � C, when its behaviours are
a subset of A’s.

A � C ≡ ∀ s as . execution C s as ⊆ execution A s as

2.2 System Model

Let A be an automaton, whose observable state is of type state, and s0::state de-
note the initial observable state from which execution of A begins. Let reachable s
denote that observable state s is reachable from s0:

reachable s ≡ ∃ as. s ∈ execution A s0 as

As occurs in OS kernels generally, we assume that every event is always enabled.

130 T. Murray et al.

reachable s −→ (∃ s ′. s ′ ∈ execution A s as)

Let the function Step characterise the single-step behaviour of the system:

Step a ≡ {(s, s ′) | s ′ ∈ execution A s [a]}
For the information flow policy, we assume a set of security domains and a re-
flexive relation � that specifies the allowed information flows between domains,
where d � d ′ implies that information is allowed to flow from domain d directly
to d ′. Noninterference asserts that no information flows outside of � can occur.

For each domain d, let
d∼ be an equivalence relation on observable states, such

that s
d∼ t if and only if domain d ’s state is identical in s and t. Here, d ’s state

will include the user-visible state that d can directly read, but might also include
kernel-level state that the kernel might legitimately reveal to d. This relation is
sometimes called an unwinding relation. When the system transitions directly

from state s to state s ′ and s
d∼ s ′ for example, domain d has not been observably

affected by this transition. For a set of domains D, let s
D≈ t ≡ ∀ d∈D . s

d∼ t.
Traditional noninterference formulations associate a security domain dom e

with each event e that occurs, which defines the domain that performed the event.
Recall from Section 1 that when a system call event occurs, the kernel must con-
sult the data structures of the scheduler to determine which thread performed the
system call, which will be the thread that is currently active. So events are not in-
trinsically associated with domains; rather, this association depends on part of
the current state of the system which records the currently running domain.

Therefore, let dom :: event ⇒ state ⇒ domain be a function such that dom e s
gives the security domain that is associated with event e in state s. When the
scheduler’s state is identical in states s and t, we expect that dom e s = dom e t
for all events e. Formally, let s-dom :: domain be an arbitrary domain, whose
state encompasses that part of the system state that determines which domain
is currently active. s-dom stands for scheduler domain. Then we assume that for
all events e and states s and t

s
s-dom∼ t −→ dom e s = dom e t

Actions of the scheduling domain s-dom naturally include all those that schedule
a new domain d to execute. We expect that when a domain d is scheduled, that
d will be able to detect that it is now active, and so that an information flow
might have occurred from s-dom to d. Since the scheduler can possibly schedule
any domain, we expect that a wellformed information flow policy � will have
an edge from s-dom to every domain d :

s-dom � d

In order to prevent s-dom from being a global transitive channel by which infor-
mation can flow from any domain to any other, we require that information can
never flow directly from any other domain d to s-dom, so

d � s-dom −→ d = s-dom.

Noninterference for Operating System Kernels 131

This restriction forces us to prove that the scheduler’s decisions about which
domain should execute next are independent of the other domains, which is
typical scheduler behaviour in a separation kernel.

2.3 Formulating Noninterference

Traditionally [16], intransitive noninterference definitions make use of a sources

function, whereby for a sequence of actions as and a domain d, sources as d gives
the set of domains that are allowed to pass information to d when as occurs. Be-
cause our dom function depends on the current state s, sources must do so as well.
Therefore let sources as s d denote the set of domains that can pass information
to d when as occurs, beginning in state s. The following definition is an extension
of the standard one [16, 21] in line with our augmented dom function.

sources [] s d = {d}
sources (a·as) s d =

⋃ {sources as s ′ d | (s, s ′) ∈ Step a} ∪
{w | w = dom a s ∧ (∃ v s ′. dom a s � v ∧ (s, s ′) ∈ Step a ∧ v ∈ sources as s ′ d)}

Here, we include in sources (a·as) s d all domains that can pass information
to d when as occurs from all successor-states s ′ of s, as well as the domain
dom a s performing a, whenever there exists some intermediate domain v
that it is allowed to pass information to who in turn can pass information
to d when the remaining events as occur from some successor state s ′ of s.
An alternative, and seemingly more restrictive, definition would include only
those domains that are present in all sources as s ′ d, and include dom a s
only when some such v can be found for each sources as s ′ d, where (s , s ′) ∈
Step a. However, as a consequence of Lemma 2 introduced later, this yields an
equivalent noninterference formulation.

As is usual, the sources function is used to define a purge function, ipurge, in
terms of which noninterference is formulated. Traditionally, for a domain d and
action sequence as, ipurge d as returns the sequence of actions as with all actions
removed that are not allowed to (indirectly) influence d when as occurs [16].
Naturally, we must include the current state s in our ipurge function. However,
for nondeterministic systems purging may proceed from a set ss of possible initial
states. This leads to the following definition.

ipurge d [] ss = []

ipurge d (a·as) ss = if ∃ s∈ss. dom a s ∈ sources (a·as) s d
then a·ipurge d as (

⋃
s∈ss {s ′ | (s, s ′) ∈ Step a})

else ipurge d as ss

Initially, the set ss will be a singleton containing one initial state s. Given a se-
quence of actions a·as being performed from s, ipurge will keep the first action a
if dom a s ∈ sources (a·as) s d, i.e. if this action is allowed to affect the target
domain d. Purging then continues on the remaining actions as from the successor

132 T. Murray et al.

states of s after a. On the other hand, if the action a being performed is not
allowed to affect the target domain d, then it is removed from the sequence.
For this reason, purging continues on the remaining actions as from the current
state s, rather than its successors. We require the action to be able to affect
the target domain in only one of the states s ∈ ss to avoid purging it. An
alternative definition would instead place this requirement on all states s ∈ ss.
Again however, because of Lemma 2, this yields an equivalent noninterference
formulation.

For states s and t and sequences of actions as and bs and domain d, let
uwr-equiv s as t bs d denote when the contents of domain d is identical af-
ter executing as from s and bs from t in all resulting pairs of states. When
uwr-equiv s as t bs d is true, domain d is unable to distinguish the cases in
which as is executed from s, and bs is executed from t. Recall that we assume
that every event is always enabled and that divergence never occurs on any indi-
vidual execution step, under the assumption that noninterference is proved only
after proving that a system’s execution is always defined. This is why uwr-equiv

and the following noninterference formulation are termination-insensitive.

uwr-equiv s as t bs d ≡
∀ s ′ t ′. s ′ ∈ execution A s as ∧ t ′ ∈ execution A t bs −→ s ′ d∼ t ′

Traditionally [16, 21] this property is defined using a projection function out ::

domain ⇒ state ⇒ output so that, rather than testing whether s ′ d∼ t ′ for final
states s ′ and t ′, it tests whether out d s ′= out d t ′. However, these traditional for-
mulations invariably require the unwinding condition of output consistency which

asserts that out d s ′ = out d t ′ whenever s ′ d∼ t ′, and construct the remaining
unwinding conditions to establish precisely this latter relation. We avoid this
indirection by discarding out entirely. One could re-phrase the noninterference
formulation here in terms of out if necessary, in which case the addition of out-
put consistency to the unwinding conditions presented here would be sufficient
to prove the resulting noninterference property.

We now have the ingredients to express our noninterference formulation, which
we derive as follows. Given two action sequences as and bs, a domain d, and
an initial state s from which each sequence is executed, if ipurge d as {s} =
ipurge d bs {s} then, when all events that are not allowed to affect d are removed
from each sequence, they are both identical. So if none of these removed events
can actually affect d, we should expect that d cannot distinguish the execution
of one sequence from the other, i.e. that uwr-equiv s as s bs d should hold.

However, the only domains that should be able to affect d when as executes
here are those in sources as s d. So if s were modified to produce a state t from
which bs was executed instead, we should expect uwr-equiv s as t bs d to hold
so long as: (1) s and t agree on the state of all domains in sources as s d, i.e.

s
sources as s d≈ t, and (2) the same domain is currently active in both, i.e. s

s-dom∼ t.
This is our formulation of von Oheimb’s noninfluence [21], denoted noninfluence.

Noninterference for Operating System Kernels 133

noninfluence ≡
∀ d as bs s t .

reachable s ∧ reachable t ∧ s
sources as s d≈ t ∧ s

s-dom∼ t ∧
ipurge d as {s} = ipurge d bs {s} −→ uwr-equiv s as t bs d

Note that, as a consequence of Lemma 1 introduced later, replacing the term
ipurge d bs {s} by ipurge d bs {t} here yields an equivalent property.

noninfluence might be too strong a property for systems with a pre-determined
static schedule that is fixed for the entire lifetime of the system and known to
all domains. If every domain always knows the exact sequence of events that
must have gone before whenever it executes, then purging makes less sense. For
these kinds of systems, an analogue of von Oheimb’s weaker notion of nonleakage
might be more appropriate. We denote this property nonleakage.

nonleakage ≡ ∀ as s t d . reachable s ∧ reachable t ∧ s
s-dom∼ t ∧ s

sources as s d≈ t −→
uwr-equiv s as t as d

Naturally, noninfluence implies nonleakage.

2.4 Unwinding Conditions

A standard proof technique for noninterference properties involves proving so-
called unwinding conditions [16] that examine individual execution steps of the
system in question. We introduce two unwinding conditions. The first is sound
and complete for nonleakage. The addition of the second to the first is sound and
complete for noninfluence.

Both of these conditions examine individual execution steps of the system,
and assert that they must all satisfy specific properties. As is usual with nonin-
terference, we would like to conclude that these same properties are true across
all runs of the system. However, this rests on the assumption that a run of the
system, say in which it performs some sequence of actions as, is equivalent to
performing a sequence of one-step executions for each of the events in as in turn.

This is formalised by the following function Run, which takes a step func-
tion Stepf, and repeatedly applies it to perform a sequence of actions as by
executing each action in as in turn.

Run Stepf [] = {(s, s) | True}
Run Stepf (a·as) = Stepf a ◦ Run Stepf as

Like ours, traditional unwinding con-

ditions are predicated on the assumption that reachable s −→ execution A s as =
{s ′ | (s , s ′) ∈ Run Step as} (assuming naturally that reachable s0 too). While this
is valid for traditional noninterference formulations, in which their execution is
defined exactly in this way [21], it is not always true for an arbitrary data-type
automaton of the kind introduced in Section 2.1 over which our noninterference
properties are defined. However, for most well behaved data types this condition
is true, and certainly holds for those that model the seL4 functional specification
and its C implementation. Thus we restrict our attention to those automata A
that satisfy this assumption and return to our unwinding conditions.

134 T. Murray et al.

The first unwinding condition is a confidentiality property, while the second
is an integrity property. The confidentiality property we denote confidentiality-u,
and resembles the conjunction of von Oheimb’s weak step consistency and step
respect [21] for deterministic systems; however, we require it to hold for all
successor states and to take into account the scheduler domain s-dom.

confidentiality-u ≡ ∀ a d s t s ′ t ′. reachable s ∧ reachable t ∧ s
s-dom∼ t ∧ s

d∼ t ∧
(dom a s � d −→ s

dom a s∼ t) ∧ (s , s ′) ∈ Step a ∧ (t , t ′) ∈ Step a −→ s ′ d∼ t ′

This property says that the contents of a domain d after an action a occurs can
depend only on d ’s contents before a occurred, as well as the contents of the
domain dom a s performing a if that domain is allowed to send information to d.
This condition alone allows d to perhaps infer that a has occurred, but not to
learn anything about the contents of confidential domains.

The second unwinding condition is an integrity property, denoted integrity-u,
and is essentially Rushby’s local respect [16] adapted to nondeterministic systems
and again asserted for all successor states.

integrity-u ≡ ∀ a d s s ′. reachable s ∧ dom a s �� d ∧ (s , s ′) ∈ Step a −→ s
d∼ s ′

It says that an action a that occurs from some state s can affect only those
domains that the domain performing the action, dom a s, is allowed to directly
send information to. It prevents any domain d for which dom a s �� d from even
knowing that a has occurred.

The soundness proofs for these unwinding conditions are slightly more in-
volved than traditional proofs of soundness for unwinding conditions. This is
because our sources and ipurge functions are both state-dependent. The following
lemma is useful for characterising those states that agree on sources and ipurge,

under confidentiality-u, namely those related by
s-dom∼ .

Lemma 1. confidentiality-u ∧ reachable s ∧ reachable t ∧ s
s-dom∼ t −→

sources as s d = sources as t d ∧ ipurge d as {s} = ipurge d as {t}

With this result, the proofs of the soundness of our unwinding conditions are
similar to those for traditional non-state-dependent formulations of noninterfer-
ence, since (as we explain shortly) confidentiality-u guarantees that the equivalence
s-dom∼ , asserted by noninfluence and nonleakage, is always maintained. The com-
pleteness proofs for these unwinding conditions are straightforward.

Theorem 1 (Soundness and Completeness)
nonleakage = confidentiality-u, and noninfluence = (confidentiality-u ∧ integrity-u)

2.5 Scheduling

We said that our noninterference formulation requires us to show that the sched-
uler’s choices are independent of the other domains. To see why, consider when
the domain d from our unwinding conditions is s-dom. Then confidentiality-u im-
plies that s-dom can never be affected by the state of the other domains:

Noninterference for Operating System Kernels 135

∀ a s t s ′ t ′. reachable s ∧ reachable t ∧ s
s-dom∼ t ∧ (s, s ′) ∈ Step a ∧ (t , t ′) ∈ Step a

−→ s ′ s-dom∼ t ′

Thus confidentiality-u implies that
s-dom∼ is always maintained.

When dom a s �= s-dom, dom a s �� s-dom. So integrity-u implies that the
scheduler domain can never be affected by the actions of the other domains:

∀ a s s ′. reachable s ∧ dom a s �= s-dom ∧ (s, s ′) ∈ Step a −→ s
s-dom∼ s ′

2.6 Refinement

We now show that noninfluence and nonleakage are preserved by refinement. This
means we can prove them of an abstract specification A and conclude that they
hold for all concrete implementations C that refine it (i.e. for which A � C).

Theorem 2 (noninfluence and nonleakage are Refinement-Closed)
When A � C, noninfluenceA −→ noninfluenceC , and nonleakageA −→ nonleakageC

Proof. We will prove that each unwinding condition is closed under re-
finement, which implies that their conjunction is as well. The result then
follows from Theorem 1. Let A and C be two automata, and write
StepA, sourcesA etc. for those respective functions applied to A and sim-
ilarly for C. Then, when A � C, C ’s executions are a subset of A’s,
so reachableC s −→ reachableA s and StepC a ⊆ StepA a. It is straightfor-
ward to show then that integrity-uA −→ integrity-uC and confidentiality-uA −→
confidentiality-uC , as required. �

As mentioned earlier, a consequence of being preserved by refinement is that our
unwinding conditions tolerate very little nondeterminism. Specifically, if the un-
winding conditions hold, a system must have no domain-visible nondeterminism,
which is nondeterminism that can be observed by any domain. This is because
any such nondeterminism could abstract from a confidential source of informa-
tion that is present in a refinement, and so implies the existence of insecure
refinements. The following lemma states this restriction formally.

Lemma 2 (No Visible Nondeterminism).

confidentiality-u ∧ reachable s ∧ (s, s ′) ∈ Step a ∧ (s, s ′′) ∈ Step a −→ s ′ d∼ s ′′

3 A Proof Calculus for Confidentiality for State Monads

Having explained our noninterference formulation, and in particular its unwind-
ing conditions, we now present a proof calculus for discharging these unwinding
conditions across an OS kernel. We have successfully applied this calculus to the
seL4 microkernel, as part of ongoing work to prove that it enforces our nonin-
terference formulation.

136 T. Murray et al.

Our proof calculus operates over nondeterministic state monads, the formalism
that underpins the seL4 abstract functional specification. Specifically, the inter-
nal steps of the automaton that embodies the seL4 functional specification are
formalised as computations of a nondeterministic state monad. The state type of
this monad is simply the internal state of the automaton, which for the seL4 func-
tional specification is also identical to its observable state. The unwinding con-
dition integrity-u asserts that the state before a single execution step is related to
each final state after the execution step. It is naturally phrased as a Hoare triple,
and discharged using standard verification techniques. For seL4, we have used a
monadic Hoare logic and its associated verification condition generator (VCG) [6]
to discharge this condition [17]. This leaves just the property confidentiality-u. It is
this property that our confidentiality proof calculus addresses.

3.1 Nondeterministic State Monad

To prove confidentiality for an entire kernel specification, we need to be able to
decompose it across that specification to make verification tractable. It is this
challenge that our proof calculus addresses for nondeterministic state monads.

The type for this nondeterministic state monad is

state ⇒ (α × state) set × bool

That is, it is a function that takes a state s as its sole argument, and returns a
pair p. The first component fst p is a set of pairs (rv , s ′), where rv is a return-
value and s ′ is the result state. Each such pair (rv , s ′) represents a possible
execution of the monad. The presence of more than one element in this set
implies that the execution is nondeterministic. The second part snd p of the
pair returned by the monad is a boolean flag, indicating whether at least one
of the computations has failed. Since our confidentiality property is termination
insensitive, this flag can be ignored for the purpose of this paper.

Our proof calculus for confidentiality properties over this state monad builds
upon the simpler proof calculus for Hoare triples [6] mentioned above. In this
calculus, a precondition P is a function of type state ⇒ bool, i.e. a function P
such that, a given state s satisfies P if and only if P s is true. Since a monad f
returns a set of return-value/result-state pairs, a postcondition Q is a function
of type α ⇒ state ⇒ bool . Q may be viewed as a function that given a return-
value rv and corresponding result-state s ′, tells whether they meet some criteria.
Alternatively, Q may be viewed as a function that, given some return-value rv,
yields a state-predicate Q rv that tests validity of the corresponding result-
state s ′. We write such Hoare triples as {|P |} f {|Q |}, and define their meaning
as follows.

{|P |} f {|Q |} ≡ ∀ s . P s −→ (∀ (rv , s ′)∈fst (f s). Q rv s ′)

The proof calculus for Hoare triples of our nondeterministic state monad includes
a mechanical rule application engine that acts as a VCG for discharging Hoare
triples [6]. Later we discuss how we can apply this same engine to act as a VCG
for discharging our confidentiality properties.

Noninterference for Operating System Kernels 137

3.2 Confidentiality over State Monads

Observe that the property, confidentiality-u, addressed by our confidentiality proof
calculus considers two pre-states, s and t, for which some equivalences hold, and
then asserts that for all post-states, s ′ and t ′, another equivalence holds. We
formalise this for our nondeterministic state monad, generalising over the pre-
and post-state equivalences, as the property ev A B P f, pronounced equivalence
valid. Here, A and B are pre-state and post-state equivalence relations respec-
tively (often called just the pre-equivalence and post-equivalence respectively),
f is the monadic computation being executed and P is a precondition that the
pre-states s and t are assumed to satisfy.

ev A B P f ≡
∀ s t . P s ∧ P t ∧ A s t −→ (∀ (ra, s ′)∈fst (f s). ∀ (rb, t ′)∈fst (f t). ra = rb ∧ B s ′ t ′)

Note that ev A B P f also asserts that the return values from both executions
of f are equal. This requires that these return-values be derived only from those
parts of the system state that are identical between the two executions (i.e. those
parts that the pre-equivalence A guarantees are identical). The purpose of the
precondition P is to allow extra conditions under which the pre-equivalence A
guarantees that confidentiality is satisfied. For instance, if f is a function that
reads a region of user memory, the precondition P might include a condition
that ensures that this region is covered by the pre-equivalence A.

To decompose this property across a monadic specification, we need to define
proof rules for the basic monad operators, return and >>= (pronounced “bind”).
return x is the state monad that leaves the state unchanged and simply returns
the value x. This means that if A holds for the pre-states, then A will hold for
the post-states as well. Also, return x always returns the same value (x) when
called. This gives us the following proof rule.

ev A A (λ-. True) (return x)
return-ev

Note that this rule restricts the post-equivalence to be the same as the pre-
equivalence. As we explain shortly, this turns out not to be a problem in practice.

f >>= g is the composite computation that runs f, and then runs g on the
result, and is used to sequence computations together. Specifically, f >>= g runs
the computation f to obtain a return value rv and result state s ′, and then calls
g rv to obtain a second computation that is run on the state s ′. Because f might
be nondeterministic, f >>= g does this for all pairs (rv , s ′) that f emits, taking
the distributed union over all results returned from each g rv s ′.

Because we want to be able to decompose the proof of ev across a specification,
we need a proof rule for f >>= g that allows us to prove ev for f and g separately,
and then combine the results to obtain a result overall. The following proof rule,
bind-ev, does exactly that.

∀ rv . ev B C (Q rv) (g rv) ev A B P ′ f {|P ′′|} f {|Q |}
ev A C (P ′ and P ′′) (f >>= g)

bind-ev

138 T. Murray et al.

Here, P ′ and P ′′ is the conjunction of preconditions P ′ and P ′′, i.e. P ′ and P ′′ ≡
λs . P ′ s ∧ P ′′ s. bind-ev can be read as a recipe for finding a precondition ?P
such that ev A C ?P (f >>= g) is true. First, for any return value rv that f
might emit, find some state-equivalence B and a precondition Q rv, which may
mention rv, such that g rv yields post-states that satisfy the post-equivalence C.
Secondly, find a precondition P ′ such that executing f yields post-states that
satisfy the just found state-equivalence B. Finally, find a precondition P ′′, such
that for all return-values rv emitted from executing f, their corresponding result-
states satisfy Q rv. The desired precondition ?P is then P ′ and P ′′.

This rule works because if ev is true for f, we know that both executions of
f yield the same return-value, say rv, which means that the two subsequent
executions both run the same computation, g rv. In the rare case that ev cannot
be proved for f (say because f returns a value rv derived from confidential state),
a more sophisticated rule is required that we introduce later in Section 3.4.

3.3 Automating Confidentiality Proofs

Note that when C = A, we may define a simpler variant of bind-ev, called
bind-ev’, in which B and C are both A.

∀ rv . ev A A (Q rv) (g rv) ev A A P ′ f {|P ′′|} f {|Q |}
ev A A (P ′ and P ′′) (f >>= g)

bind-ev’

To apply this rule, we need only compute sufficient preconditionsQ rv, P ′ and P ′′

for the relevant obligations. Our ordinary Hoare logic VCG can be applied to
compute P ′′, of course, while bind-ev’ is itself a recipe for computing sufficient
Q rv and P ′. In other words, we may recursively apply bind-ev’ to compute
appropriate Q rv and P ′, given appropriate ev rules for the primitive monadic
functions.

This is precisely the technique that we have taken to prove these statements
across the seL4 functional specification. Specifically, at the top-level, the pre-
equivalence of confidentiality-u, asserted for s and t, implies the post-equivalence,
d∼, asserted for all s ′ and t ′, because the pre-equivalence includes

d∼. Hence, if
we prove that the pre-equivalence is preserved, we can deduce that the post-
equivalence must hold after each kernel event. This allows us to reason about a
more restricted version of ev in which the pre- and post-equivalences are always
identical, using rules like return-ev and bind-ev’ above.

The rule-application engine developed previously [6] that acts as a VCG for
Hoare triples over our nondeterministic state monad, can be applied directly
without any modification to discharge ev statements by feeding it the appropri-
ate rules. It requires rules like bind-ev’, to decompose these proofs into smaller
goals, as well as appropriate rules, like return-ev, to discharge the goals at
the leaves of the proof tree. Familiar rules from prior work on proof methods
for relational properties of programs [1, 2, 4] may be derived for other monadic
functions, such as the one below for monadic while-loops. It establishes confi-
dentiality for the loop under the invariant P when the loop body B maintains

Noninterference for Operating System Kernels 139

confidentiality and the pre-equivalence A guarantees that both executions ter-
minate together. The loop body B and condition C are both parametrised by
a loop parameter n, which for subsequent loop iterations is the return-value of
the previous iteration.

∀ s t n. A s t ∧ P n s ∧ P n t −→ C n s = C n t
∀ n. {|P n and C n|} B n {|P |} ∀ n. ev A A (P n and C n) (B n)

ev A A (P n) (whileLoop C B n)
while-ev

3.4 Proving the Functions That Read Confidential State

The approach so far allows very automatic proofs for functions that do not read
any confidential state, and so always yield identical return-values rv. Because
these functions make up the bulk of seL4, this is what our calculus has been
tuned for. However, it is less well suited to functions that operate on confiden-
tial state without revealing it to unauthorised domains. Our approach requires
confidentiality proofs for these kinds of functions to be performed more manually.

An example is the seL4 function send-async-ipc, which sends a message on an
asynchronous endpoint. Asynchronous endpoints facilitate unidirectional com-
munication, which implies that the act of sending on an asynchronous endpoint
should not leak any information back to the sender. Sending such a message does
require the kernel to read state outside of the sending domain (such as state in
the endpoint); however, it should not reveal any of this state to the sender.

There is no guarantee, then, that when the two executions of send-async-ipc

that ev compares each read the internal state of the endpoint in question, they
will get the same result. This means their subsequent executions might behave
differently to each other. Proving that ev holds in this case requires comparing
two different executions, and showing that they establish the post-equivalence.
This suggests that we should reason about a more general property than ev that
can talk about two different executions, and allows return-values to differ.

These insights lead to the following property, called ev2.

ev2 A B R P P ′ f f ′ ≡
∀ s t . P s ∧ P ′ t ∧ A s t −→

(∀ (ra, s ′)∈fst (f s). ∀ (rb, t ′)∈fst (f ′ t). R ra rb ∧ B s ′ t ′)

ev2 takes two computations, f and f ′, and two associated precondi-
tions, P and P ′. It also takes a return-value relation R, that it asserts
holds for the return-values of f and f ′. ev2 generalises ev, specifically
ev A B P f ≡ ev2 A B op = P P f f , where op = is the equality operator. One
usually applies this equivalence to rewrite ev goals that cannot be proved by the
VCG, into ev2 goals. One then manually applies proof rules like in Figure 1 to
discharge these goals.

Applying bind-ev2 usually requires the human to come up with an appro-
priate intermediate return-value relation R ′ that will hold for the return values
emitted from f and f ′. As with ev, we usually work with a simpler rule in which
(B = C) = A, which we omit for brevity. We suspect that techniques could be

140 T. Murray et al.

∀ s t . P s ∧ P ′ t ∧ A s t −→ R x y

ev2 A A R P P ′ (return x) (return y)
return-ev2

∀ rv rv ′. R ′ rv rv ′ −→ ev2 B C R (Q rv) (Q ′ rv ′) (g rv) (g ′ rv ′)
ev2 A B R ′ P P ′ f f ′ {|S |} f {|Q |} {|S ′|} f ′ {|Q ′|}

ev2 A C R (P and S) (P ′ and S ′) (f >>= g) (f ′ >>= g ′)
bind-ev2

Fig. 1. VCG rules for ev2

borrowed from other work on automatically proving confidentiality properties
of programs [2,18] to help automatically infer appropriate R ′. However, because
ev2 proofs are seldom required for seL4, we have not needed to implement them.

4 Related Work

Recently, Barthe et al. [3] presented a formalisation of isolation for an idealised
model of a hypervisor, and its unwinding conditions. Like ours, their definition
is based on von Oheimb’s noninfluence [21]. As in traditional formalisations of
noninterference, in their formulation actions are intrinsically linked to domains,
and so it cannot reason about information leaks through scheduling decisions.

INTEGRITY-178B is a real-time operating system for which an isolation proof
has been completed [15]. The isolation property proved is based on the GWVr2
information flow property [9], which bears similarities to the unwinding condi-
tions for noninterference. Like ours, it is general enough to handle systems in
which previous execution steps affect which is the entity that executes next.
Unlike ours, it is defined only for deterministic systems. The exact relationship
between GWVr2 and our conditions deserves further study.

Our formulation of information flow security is descendant from traditional
ipurge-based formulations of intransitive noninterference (starting with Haigh
and Young’s [10]). Van der Meyden [19] argues that ipurge-based formulations of
intransitive noninterference are too weak for certain intransitive policies, and pro-
poses a number of stronger definitions. He shows that Rushby’s unwinding con-
ditions [16] are sufficient for some of these alternatives. Given the similarity of
our unwinding conditions to Rushby’s, we wonder whether our existing unwinding
conditions may be sufficient to prove analogues of van der Meyden’s definitions.

Others have presented noninterference conditions for systems with scheduling
components. One recent example is van der Meyden and Zhang [20], who con-
sider systems that run in lock-step with a scheduling component that controls
which domain’s actions are currently enabled. Their security condition for the
scheduler requires that the actions of the High domain cannot affect scheduling
decisions. Our formulation, in contrast, has the scheduler update a component of
the system state that determines the currently running domain. This allows our
scheduler security condition to require that scheduling decisions be unaffected
not only by domain actions, but also by domain state.

Noninterference for Operating System Kernels 141

A range of proof calculi and verification procedures for confidentiality proper-
ties, and other relational properties, have also been developed [1,2,4,5,18]. Unlike
many of these, ours aims not at generality but rather at scalability. The simplic-
ity of our calculus has enabled it to scale to the entire functional specification of
the seL4 microkernel, whose size is around 2,500 lines of Isabelle/HOL, and whose
implementation that refines this specification is around 8,500 lines of C.

5 Conclusion

We have presented a definition of noninterference for operating system kernels,
with sound and complete unwinding conditions. We have shown how these lat-
ter can be implemented in a proof calculus for nondeterministic state monads
with automation support. Our success in applying both of these to the seL4
microkernel, in an ongoing effort to prove that it enforces noninterference, attest
to their practical utility and applicability to programs on the order of 10,000
lines of C.

Acknowledgements. We thank Kai Engelhardt, Sean Seefried, and Timothy
Bourke for their comments on earlier drafts of this paper.

References

1. Amtoft, T., Banerjee, A.: Information Flow Analysis in Logical Form. In:
Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 100–115. Springer, Heidelberg
(2004)

2. Amtoft, T., Banerjee, A.: Verification condition generation for conditional infor-
mation flow. In: FMSE 2007, pp. 2–11. ACM (2007)

3. Barthe, G., Betarte, G., Campo, J.D., Luna, C.: Formally Verifying Isolation and
Availability in an Idealized Model of Virtualization. In: Butler, M., Schulte, W.
(eds.) FM 2011. LNCS, vol. 6664, pp. 231–245. Springer, Heidelberg (2011)

4. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: POPL 2004, pp. 14–25. ACM (2004)

5. Beringer, L.: Relational Decomposition. In: van Eekelen, M., Geuvers, H.,
Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 39–54. Springer,
Heidelberg (2011)

6. Cock, D., Klein, G., Sewell, T.: Secure Microkernels, State Monads and Scalable
Refinement. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS,
vol. 5170, pp. 167–182. Springer, Heidelberg (2008)

7. de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Meth-
ods and their Comparison. Cambridge University Press (1998)

8. Goguen, J., Meseguer, J.: Security policies and security models. In: IEEE Symp.
Security & Privacy, Oakland, California, USA, pp. 11–20. IEEE (April 1982)

9. Greve, D.A.: Information security modeling and analysis. In: Hardin, D.S. (ed.) De-
sign and Verification of Microprocessor Systems for High-Assurance Applications,
pp. 249–300. Springer (2010)

10. Haigh, J.T., Young, W.D.: Extending the noninterference version of MLS for SAT.
Trans. Softw. Engin. 13, 141–150 (1987)

142 T. Murray et al.

11. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: Formal verification of an OS kernel. In: 22nd SOSP, pp. 207–
220. ACM (2009)

12. Klein, G., Murray, T., Gammie, P., Sewell, T., Winwood, S.: Provable security:
How feasible is it? In: 13th HotOS, Napa, CA, USA, pp. 28–32. USENIX (May
2011)

13. Matichuk, D., Murray, T.: Extensible Specifications for Automatic Re-use of Spec-
ifications and Proofs. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM
2012. LNCS, vol. 7504, pp. 333–341. Springer, Heidelberg (2012)

14. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

15. Richards, R.J.: Modeling and security analysis of a commercial real-time operating
system kernel. In: Hardin, D.S. (ed.) Design and Verification of Microprocessor
Systems for High-Assurance Applications, pp. 301–322. Springer (2010)

16. Rushby, J.: Noninterference, transitivity, and channel-control security policies.
Technical Report CSL-92-02, SRI International (December 1992)

17. Sewell, T., Winwood, S., Gammie, P., Murray, T., Andronick, J., Klein, G.: seL4
Enforces Integrity. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F.
(eds.) ITP 2011. LNCS, vol. 6898, pp. 325–340. Springer, Heidelberg (2011)

18. Terauchi, T., Aiken, A.: Secure Information Flow as a Safety Problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005)

19. van der Meyden, R.: What, Indeed, Is Intransitive Noninterference? In: Biskup, J.,
López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 235–250. Springer, Heidel-
berg (2007)

20. van der Meyden, R., Zhang, C.: Information flow in systems with schedulers. In:
21st CSF, pp. 301–312. IEEE (June 2008)

21. von Oheimb, D.: Information Flow Control Revisited: Noninfluence = Noninter-
ference + Nonleakage. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R.
(eds.) ESORICS 2004. LNCS, vol. 3193, pp. 225–243. Springer, Heidelberg (2004)

Compositional Verification of a Baby Virtual Memory
Manager

Alexander Vaynberg and Zhong Shao

Yale University

Abstract. A virtual memory manager (VMM) is a part of an operating system
that provides the rest of the kernel with an abstract model of memory. Although
small in size, it involves complicated and interdependent invariants that make
monolithic verification of the VMM and the kernel running on top of it difficult.
In this paper, we make the observation that a VMM is constructed in layers: phys-
ical page allocation, page table drivers, address space API, etc., each layer pro-
viding an abstraction that the next layer utilizes. We use this layering to simplify
the verification of individual modules of VMM and then to link them together
by composing a series of small refinements. The compositional verification also
supports function calls from less abstract layers into more abstract ones, allow-
ing us to simplify the verification of initialization functions as well. To facilitate
such compositional verification, we develop a framework that assists in creation
of verification systems for each layer and refinements between the layers. Using
this framework, we have produced a certification of BabyVMM, a small VMM
designed for simplified hardware. The same proof also shows that a certified ker-
nel using BabyVMM’s virtual memory abstraction can be refined following a
similar sequence of refinements, and can then be safely linked with BabyVMM.
Both the verification framework and the entire certification of BabyVMM have
been mechanized in the Coq Proof Assistant.

1 Introduction

Software systems are complex feats of engineering. What makes them possible is the
ability to isolate and abstract modules of the system. In this paper, we consider an op-
erating system kernel that uses virtual memory. The majority of the kernel makes an
assumption that the memory is a large space with virtual addresses and a specific inter-
face that allows the kernel to request access to any particular page in this large space. In
reality, this entire model of memory is in the imagination of the programmer, supported
by a relatively small but important portion of the kernel called the virtual memory man-
ager. The job of the virtual memory manager is to handle all the complexities of the real
machine architecture to provide the primitives that the rest of the kernel can use. This
is exactly how the programmer would reason about this software system.

However, when we consider verification of such code, current approaches are mostly
monolithic in nature. Abstraction is generally limited to abstract data types, but such
abstraction can not capture changes in the semantics of computation. For example, it
is impossible to use abstract data types to make virtual memory appear to work like
physical memory without changing operational semantics. To create such abstraction, a

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 143–159, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

144 A. Vaynberg and Z. Shao

change of computational model is required. In the Verisoft project[11,18], the abstract
virtual memory is defined by creating the CVM model from VAMP architecture. In
AIM[7], multiple machines are used to define interrupts in the presence of a scheduler.

These transitions to more abstract models of computation tend to be quite rare, and
when present tend to be complex. The previously mentioned VAMP-CVM jump in
Verisoft abstracts most of kernel functionality in one step. In our opinion, it would
be better to have more abstract computation models, with smaller jumps in abstrac-
tion. First, it is easier to verify code in the most abstract computational model possible.
Second, smaller abstractions tend to be easier to prove and to maintain, while larger
abstractions can be still achieved by composing the smaller ones. Third, more abstrac-
tions means more modularity; changes in the internals of one module will not have
global effects.

However, we do not commonly see Hoare-logic verification that encourages multi-
ple models. The likely reason is that creating abstract models and linking across them
is seen as ad-hoc and tedious additional work. In this paper we show how to reduce
the effort required to define models and linking, so that code verification using multi-
ple abstractions becomes an effective approach. More precisely, our paper makes the
following contributions:

– We present a framework for quickly defining multiple abstract computational mod-
els and their verification systems.

– We show how our framework can be used to define safe cross-abstraction linking.
– We show how to modularize a virtual memory manager and define abstract compu-

tational models for each layer of VMM.
– We show a complete verification of a small proof-of-concept virtual memory man-

ager using the Coq Proof Assistant.

The rest of this paper is organized as follows. In Section 2, we give an informal overview
of our work. In Section 3, we discuss the formal details of our verification and refine-
ment framework. In Section 4, we specialize the framework for a simple C-like lan-
guage. In Section 5, we certify BabyVMM, our small virtual memory manager. Section
6 discusses the Coq proof, and Section 7 presents related work and concludes.

2 Overview and Plan for Certification

We begin the overview by explaining the design of BabyVMM, our small virtual mem-
ory manager. First, consider the model of memory present in simplified hardware (left
side of Figure 1). The memory is a storage system, which contains cells that can be
read from or written to by the software. These cells are indexed by addresses. However,
to facilitate indirection, the hardware includes a system called address translation (AT),
which, when enabled, will cause all requests for specific addresses from the software
to be translated. The AT system adds special registers to the memory system - one to
enable or disable AT, and the other to point where the software-managed AT tables are
located in memory. The fact that these tables are stored in memory is one of the sources
of complexity in the AT system - updating AT tables requires updating in-memory ta-
bles, a process which goes through AT as well.

Compositional Verification of a Baby Virtual Memory Manager 145

Fig. 1. Hardware (HW) and Address Space (AS) Models of Memory

Fig. 2. Allocated (ALE) and Page Map (PMAP) Models of Memory

Because AT is such a complicated, machine-dependent, and general mechanism,
BabyVMM creates an abstraction that defines specific restrictions on how AT will be
used, and presents a simpler view of AT to the kernel. Although the abstract models of
memory may differ depending on the features that the kernel may require, BabyVMM
defines a very basic model, to which we refer as the address space (AS) model of mem-
ory (right side of Figure 1). The AS model replaces the small physical memory with
a larger virtual address space with allocatable pages and no address translation. The
space is divided into high and low areas, where the low area is actually a window into
physical memory (a pattern common in many kernels). Because of this distinction, the
memory model has two sets of allocation functions, one for the “high” memory area
where the programmer requests a specific page for allocation, and one for the “low”
memory area, where the programmer can not pick which page to allocate.

However, creating an abstraction that makes the jump from the HW model directly
to AS model is complex. As a result, we create two more intermediate models, which
slowly build up the abstraction. The first model is ALE (left side of Figure 2), which
incorporates allocation information into the hardware memory, requiring that programs

146 A. Vaynberg and Z. Shao

Fig. 3. Complete Plan for VMM Certification

only access memory locations that are marked allocated. The model adds primitives
in the form of mem alloc and mem free, with semantics same as the ones in the AS
model. Although this is not shown on the diagram, the ALE model still maintains the
hardware’s AT mechanism.

The second intermediate level, which we call PMAP (right side of Figure 2) is de-
signed to replace the hardware’s AT mechanism with an abstract one. The model fea-
tures a page map that exists outside the normal memory space, unlike the lower level
models. The page map maps virtual page numbers to physical page numbers, with a 0
value meaning invalid. In our particular design, the pagemap is always identity for the
lower addresses, creating a window into physical memory from within the virtual space.
The model still contains allocation primitives, and adds two more primitives, pt set

and pt lookup, which update and lookup values in the pagemap.
Using these abstract memory models, we can construct the BabyVMM verification

plan (Figure 3). The light-yellow boxes in the kernel represent the actual functions

Compositional Verification of a Baby Virtual Memory Manager 147

(State) S ∈ Σ
(Operation) ι ∈ Δ

(Cond) b ∈ β
(CondInterp) Υ ∈ β→ Σ→ Prop

(State Predicate) p ∈ Σ → Prop
(State Relation) g ∈ Σ → Σ → Prop

(Operational Semantics) OS ∈ {ι� (p,g)}∗
(Language /Machine) M ∈ (Σ,Δ,β,Υ,OS)

whereM(ι) �M.OS(ι) andM(b) �M.Υ(b)

Fig. 4. Abstract State Machine

id � (λS.True, λS.λS′.S′ = S)
fail � (λS.False, λS.λS′.False)
loop � (λS.True, λS.λS′.False)
(p,g)◦ (p′,g′) � (λS.p S∧∀S′.g S S′ → p′ S′, λS.λS′′.∃S′.g S S′ ∧g′ S′ S′′)
(p,g)⊕

c
(p′,g′) � (λS.(p S∧ c S)∨ (p′ S∧¬c S),λS.λS′. (c S∧g S S′)∨ (¬c S∧g′ S S′))

(p,g) ⊇ (p′,g′) � ∀S.p S→ p′ S∧∀S,S′.g′ S S′ → g S S′

Fig. 5. Combinators and Properties of Actions

(Meta-program) P ::= (C, I)

(Proc) I ::= nil | ι | [l] | I1; I2
| (b? I1+I2)

(Proc Heap) C ::= {l� I}∗
(Labels) l ::= n (nat numbers)

(Spec Heap) Ψ,L ::= {l� (p,g)}∗

�C,a�0M := loop
�C,nil�nM := id
�C, ι�nM := (M(ι))
�C, [l]�nM := �C,C(l)�n−1

M�
C, I; I′�nM := �C, I�nM◦�C, I�nM
�C, (b? I1+I2)�nM := �C, I1�nM ⊕

M(b)
�C, I2�nM

Fig. 6. Syntax and Semantics of the Meta-Language

(actual code is given in Appendix A of TR[19]). The darker green boxes represent
computational models with primitives labeled. The diagram shows how each module of
BabyVMM will be certified in the model best suited for it. For example, the high-level
kernel is certified in the AS model, meaning that it does not see underlying physical
memory at all. The implementation of as request and as release are defined over
an abstract page map, and thus do not have to know how the hardware deals with page
tables, and so on. The plan also indicates which primitives are implemented by which
code (lines with circles). When we certify the code, these will be the cross-abstraction
links we will have to prove. Lastly, the plan also indicates the stubs in the initialization,
which are needed to certify calls from init to functions defined over higher abstraction.
The PE and PD models are restrictions on HW model, where AT is always on, and
always off respectively. ALD is an analogue of ALE, where AT is off.

On boot, the AT is off, and init is called. The init then calls mem init to initialize
the allocation table and pt init to initialize the page tables. Then, init uses the HW
primitives to enable AT, and jumps into the high-level kernel by calling kernel init.

We will now focus on the technical details to put this plan in action.

148 A. Vaynberg and Z. Shao

∀l ∈ dom(C).M,Ψ ∪L � C(l) : Ψ (l)
M,L � C : Ψ

(code)
M,Ψ � I : (p′,g′) (p,g) ⊇ (p′,g′)

M,Ψ � I : (p,g)
(weak)

M,Ψ � I′ : (p′,g′) M,Ψ � I′′ : (p′′,g′′)
M,Ψ � (b? I′+I′′) : (p′,g′) ⊕

M(b)
(p′′,g′′)

(split) M,Ψ � I′ : (p′,g′) M,Ψ � I′′ : (p′′,g′′)
M,Ψ � I′; I′′ : ((p′,g′)◦ (p′′,g′′))

(seq)

M,Ψ � ι :M(ι)
(perf) M,Ψ � [l] : Ψ (l)

(call) M,Ψ � nil : id
(nil)

Fig. 7. Static Semantics of the Meta-Language

3 Certifying with Refinement

Our framework for multi-machine certification is defined in two parts. First, we create
a machine-independent verification framework that will allow us to define quickly and
easily as many machines for verification as we need. Second, we will develop our notion
of refinements which will allow us to link all the separate machines together.

3.1 A Machine-Independent Certification Framework

Our Hoare-logic based framework is parametric over the definition of operational se-
mantics of the machine, and is sound no matter what machine semantics it is param-
eterized with. To begin defining such a framework, we first need to understand what
exactly is a machine on which we can certify code. The definition that we use is given
in Figure 4. Our notion of the machine consists of the following parts:

– State type (Σ). Define the set of all possible states in a machine.
– Operations (Δ). This is a set of names of all operations that the machine supports.

The set can be infinite, and defined parametrically.
– Conditionals (β). Defines a type of expressions that are used for branching.
– Conditional Interpreter (Υ). Converts conditionals into state predicates.
– The operational semantics OS. This is the main portion of the machine definition. It

is a set of actions (p,g) named by all operations in the machine.

The most important bit of information in the machine are the semantics (OS). The se-
mantics of operations are defined by a precondition (p), which shows when the op-
eration is safe to execute, and by a state relation (g) that defines the set of possible
states that the operation may result in. We will refer to the pair of (p,g) as an action
of the operation. Later we will also use actions to define the specification of programs.
Because the type of actions is somewhat complex, we define action combinators in Fig-
ure 5, including composition and branching. The same figure also shows the weaker
than relation between actions.

Although, at this point we have defined our machines, it does not have any notion of
computation. To make use of the machine, we will need to define a concept of programs,
as well as what it means for the particular program to execute.

Compositional Verification of a Baby Virtual Memory Manager 149

The definition of the program is given in Figure 6. The most important definition
in that figure is that of the procedure, I. The procedure is a bit of program logic that
sequences together calls to the operations of a machine (ι), or to other procedures [l]
(loops are implemented as recursive calls). Procedures also include a way to branch on
a condition. The procedures can be given a name, and placed in the procedure heap C,
where they can be referenced from other procedures through the [l] constructor. The
procedure heap together with a program rest (the currently executing procedure) makes
up the program that can be executed.

The meaning of executing a program is given by the indexed denotational semantics
shown on the right side of Figure 6. The meaning of the program is an action that is
constructed by sequencing operations. As programs can be infinite, the semantics are
indexed by the depth of procedure inclusion.

We use the static semantics (Figure 7) to approximate the action of a procedure.
These semantics are similar to the denotational semantics of the meta-language, except
that the specifications of called procedure are looked up in the table (Ψ). This means
that the static semantics works by the programmer approximating the actions of (speci-
fying) the program, and then making sure that the actual action of the program is within
the specifications. These well-formed procedures are then grouped into a well-formed
module using the code rule, which forms the concept of a certified moduleM,L�C :Ψ ,
where every procedure in C is well-formed under specification in Ψ . The module also
defines a library (L) which is a set of specifications of stubs, i.e. procedures that are
used by the module, but are not in the module. These stubs can then be eliminated
by providing procedures that match the stubs (see Section 3.2). For a program to be
completely certified, all stubs must either be considered valid primitives or eliminated.

For a proof of partial correctness, please see the TR.

3.2 Linking

When we certify using modules, it will be very common that the module will require
stubs for the procedures of another module. Linking two modules together should re-
place the stubs in both modules for the actual procedures that are now present in the
linked code. The general way to accomplish this is by the following linking lemma:

Theorem 1 (Linking)

M,L1 � C1 :Ψ1 M,L2 � C2 :Ψ2 C1 ⊥ C2 L1 ⊥ Ψ2 L2 ⊥ Ψ1 L1 ⊥ L2

M, ((L1∪L2) \ (Ψ1∪Ψ2)) � C1∪C2 :Ψ1∪Ψ2
(link)

where Ψ1 ⊥ Ψ2 � ∀l ∈ dom(Ψ1). (l � dom(Ψ2) ∨ Ψ1(l) = Ψ2(l)).

However, the above rule does not always apply immediately. When the two modules
are developed independently, it is possible that the stubs of one module are weaker than
the specifications of the procedures that will replace the stubs, which breaks the linking
lemma. To fix this, we strengthen the library.

Theorem 2 (Stub Strengthening)
IfM,L � C : Ψ , then for any L′ s.t. ∀l ∈ dom(L).L(l) ⊇ L′(l) and dom(L′)∩ dom(Ψ) = ∅, the
following holds:M,L′ � C : Ψ .

150 A. Vaynberg and Z. Shao

This theorem allows us to strengthen the stubs to match the specs of procedures, en-
abling the linking lemma. Of course, if the specs of the real procedures are not stronger
than the specs of the stubs, then the procedures do not correctly implement what the
module expects, and linking is not possible.

3.3 The Refinement Framework

Up to this point, we have only considered what happens to the code that is certified over
a single machine. However, the purpose of our framework is to facilitate multi-machine
verification. For this purpose, we construct the refinement framework that will allow
us to refine certified modules in one machine to certified modules in another. The most
general notion of refinement in our framework can be defined by the following:

Definition 1 (Certified Refinement)
A certified refinement from machine MA to machine MC is a pair of relations (TC,TΨ) and a
predicate over the abstract certified module Acc, such that for all CA,Ψ

′
A,ΨA, the following holds

MA,Ψ
′
A � CA :ΨA Acc

(MA,Ψ
′
A � CA :ΨA

)

MC ,TΨ (Ψ ′A) � TC(CA) :TΨ (ΨA)
refine

This definition is not a rule, but a template for other definitions. To define a refinement,
one has to provide the particular TC, TΨ , Acc together with the proof that the rule holds.
However, instead of trying to define these translations directly, we will automatically
generate them from the relations between the particular pairs of machines.

Representation Refinement. The only automatic refinement we will discuss in this
paper is the representation refinement. The representation refinement can be generated
for an abstract (MA) and a concrete machine (MC), where both use the same operations
and condtionals (e.g.MA.Δ =MC .Δ andMA.β =MC .β) by defining a relation (repr :
MA.Σ→MC .Σ→ Prop) between the states of the two machines. Using repr, we can
define our specification translation function:

TA−C(p,g) �
(λSC.∃SA.repr SA SC ∧p SA,
λSC .λS

′
C .∀SA.repr SA SC →∀S′A.g SA S

′
A→ repr S′A S′C)

This operation creates an concrete action from an abstract action. Informally it works
as follows. There must be at least one abstract state related to the starting concrete state
for which the abstract action applies. The action starting from state SC results in set
containing S′C , only if for all related abstract states for which the abstract action is
valid result in sets of abstract states that contain a state related to S′C . Essentially, the
resulting concrete action is an intersection of all abstract actions that do not fail.

To make this approach work, we require several properties over the machines and
the repr. First, the refined semantics of abstraction operations have to be weaker than
the semantics of their concrete counterparts, e.g. ∀ιA ∈MA.TA−C(MA(ιA)) ⊇MC(ιA).

Second, the refinement must preserve the branch choice, e.g. if the refined program
chooses left branch, then abstract program had to choose the left branch in all states
related by repr as well. This property is ensured by requiring the following:

Compositional Verification of a Baby Virtual Memory Manager 151

∀b.∀S,S′. (∃SC .repr(S,SC)∧repr(S′,SC)
)→ (M(b) S↔M(b) S′)

With these properties, we can define a valid refinement by the following lemma:

Lemma 1 (repr-refinement valid)
Given repr with proofs of the two properties above, the following is valid:

MA,LA � C : ΨA

MC ,TΨ (LA) � C : TΨ (ΨA)

where TΨ (Ψ) := {TA−C(Ψ (l)) | l ∈ dom(Ψ))

This refinement is interesting in that it preserves the code of the program, and per-
forming point-wise refinement on specifications. Our actual work defines several other
refinement generators. One of these, code-preserving refinement, is included in the TR,
and is used as a stepping stone for proof of Lemma 1. Coq implementation features
more general versions of refinements presented, as well as several others.

4 Certifying C Code

Since BabyVMM is written in C, we define a formal specification of a tiny subset of
the C language using our framework. This C machine will be parameterized by the
specific semantics of the memory model, as our plan required. We will also utilize the
C machine to further speed up the creation of refinements.

4.1 The Semantics of C

To define our C machine in terms of our verification framework, we need to give it
a state type, a list of operations, and the semantics of those operations expressed as
actions. All of these are given in Figure 8.

The state of the C machine includes two components, the stack and the memory.
The stack is an abstract C stack that consists of a list of frames, which include call,
data, and return frames. In the current version, the stack is independent from memory
(one can think of it existing within a statically defined part of the loaded kernel). The
memory model is a parameter in the C machine, meaning that it can make use of any
memory model as long as it defines load and store operations. The syntax of the C
machine is different from the usual definition, in that it relies on the meta-machine for
its control flow by using the meta-machines call and branch. Our definition of C adds
atomic operations that perform state updates. Thus the operations include two types
assignments - one to stack and one to memory, and 4 operations to manipulate stack for
call and return, which push and pop the frames.

Because control flow is provided by a standard machine, the code has to be modified
slightly. For example, a function call of the form r = f (x) will split into a sequence
of three operations: f call([x]); [f];readret([r]), the first setting up a call frame, the
second making the call, and the third doing the cleanup. Similarly, the body of the func-
tion f (x){body;return(0); }will become args([x]);body;ret(0), as the function must first

152 A. Vaynberg and Z. Shao

move the arguments from the call frame into a data frame. Loops have to be desugared
into recursive procedures with branches. These modifications are entirely mechanical,
and hence we can claim that our machine supports desugared linearized C code.

4.2 Refinement in C Machines

C machines at different abstraction layers differ only in their memory models, with
the stack being the same. We can use this fact to generate refinements between the C
machines using only the representation relation between memory models. This relation
(M1 � M2) can be completely arbitrary as long as these conditions hold:

(State) S ::= (M,S)
(Memory) M ::= (any type over which load(M,l) and store(M,l,w) are defined)

(Stack) S ::= nil | Call(list w) :: S | Data({v� w} :: S) | Ret(w) :: S

(Expressions) e ::= se | ∗(e)

(StackExpr, Cond) se,b ::= w | v | binop(bop,e1,e2)

(Binary Operators) bop ::= + | − | ∗ | / | % | == | < | <= | >= | > | ! = | && | ||
(Variables) v ::= (a decidable set of names)

(Words) w ::= n (integers)

(Operation) ι ::= v := e | ∗(eloc) := e | fcall(list e) | ret(e) | args(list v) | readret(v)

Operation (ι) = Action (M(ι)) =

v := e
(λS.∃S′,F,w.S.S = Data(F) :: S′ ∧ eval(e,S) = w,
λS,S′.∃S′,F,w.S.S = Data(F) :: S′ ∧ eval(e,S) = w∧

S
′.M = S.M∧S′.S = Data(F{v� w}) :: S′)

∗(eloc) := e
(λS.∃l,w.eval(e,S) = w∧ eval(eloc,S) = l∧∃M′.M′ = store(M, l,w),
λS,S′.∃l,w.eval(e,S) = w∧ eval(eloc,S) = l∧

S
′.M = store(S.M, l,w)∧S′.S = S.S)

fcall([e1, . . . ,en])
(λS.∃v1, . . . ,vn.eval(e1,S) = v1 ∧ . . .∧ eval(en,S) = vn,

λS,S′.∃v1, . . . ,vn.eval(e1,S) = v1 ∧ . . .∧ eval(en,S) = vn∧
S
′.M = S.M∧S′.S =Call([v1, . . . ,vn]) :: S.S)

args([v1, . . . ,vn])
(λS.∃w1, . . . ,wn,S′.S.S =Call([w1, . . . ,wn]) :: S′,
λS,S′.∃w1, . . . ,wn,S′.S.S =Call([w1, . . . ,wn]) :: S′∧

S
′.M = S.M∧S′.S = Data({v1� w1, . . . ,vn� wn}) :: S′)

readret(v)
(λS.∃S′,w.S.S = Ret(w) :: Data(D) :: S′,
λS,S′.∃S′,w.S.S = Ret(w) :: Data(D) :: S′∧

S
′.M = S.M∧S′.S = Data(D{v� w}) :: S′)

ret(e) (λS.∃w.eval(e,S) = w, λS,S′.S′.M = S.M∧S′.S = Ret(eval(e,S)) :: S.S)

eval(e,S) ::=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w if e = w

S.S(v) if e = v

load(S.M,eval(e1,S)) if e = (∗e1)

b(eval(e1,S),eval(e2,S)) if e = binop(b,e1,e2)
Υ(b) ::= λS.eval(b,S) � 0

Fig. 8. Primitive C-like machine

Compositional Verification of a Baby Virtual Memory Manager 153

Definition Value Description

PGSIZE 4096 Number of bytes per page
NPAGES unspecified Number of phys. pages in memory
VPAGES unspecified Maximum page number of a virtual address
Pg(addr) addr/PGSIZE gets page of address
Off(addr) addr%PGSIZE offset into page of address
LowPg(pg) 0 ≤ pg < NPAGES valid page in low memory area
HighPg(pg) NPAGES ≤ pg < VPAGES valid page in high memory area

Fig. 9. Page Definitions

∀l,v. load(M1, l) = v→ load(M2, l) = v
∀l,v,M′1.

(
M′1 = (store(M1, l,v))

)
→
(
M′1 � (store(M2, l,v))

)

The above properties make sure that the load and store operations of memory behave in
a similar way. We construct the repr between C machine as follows:

repr := λSA,SC . (SA.S = SC.S) ∧ (SA.M � SC .M)

Using the properties of load and store, we show properties needed for repr-refinement
to work: that for every operation ι in the C machine TM1−M2(MM1(ι)) ⊇MM2(ι), and
that repr preserves branching. For details, please see the TR. Now we can define the
actual refinement rule for C machines:

Corollary 1 (C Refinement)
For any two memory models M1 and M2, s.t. M1 � M2, the following refinement works for C
machines instantiated with M1 and M2.

MM1,L � C : Ψ
MM2,TM1−M2(L) � C : TM1−M2(Ψ)

M1−M2

Thus we know that if we have two C-machines that have related memory models, then
we have a working refinement between the two machines. Our next step is the to show
the relations between all the memory models shown in our plan (in Figure 3).

5 Virtual Memory Manager

At this point, we have all the machinery necessary to start building our certified memory
manager according to the plan. The first step is to formally define and give relations
between the memory models that we will use in our certification. Then we will certify
the code of the modules that make up the VMM. These modules will then be refined
and linked together, resulting in the conclusion that the entire BabyVMM is certified.

5.1 The Memory Models

Because of the space limit, we will only formally present the PMAP memory model
(Figures 9 and 10). For the definitions of others, please see the TR.

154 A. Vaynberg and Z. Shao

(Global Storage System) M ::= (D,A,PM)
(Allocatable Memory) D ::= {addr� w | LowPg(Pg(addr))∧addr%8 = 0}∗

(Page Allocation Table) A ::= {pg� bool | LowPg(pg)}∗
(Page Map) PM ::= {pg� pg′ | HighPg(pg)}∗

Notation Definition

load(M,va) M.D(trans(M,va)) if M.A(Pg(trans(M,va))) = true
store(M,va,w) (M.D{trans(M,va)� w},M.A,M.PM) if M.A(Pg(trans(M,va))) = true

trans(M,va) :=

⎧
⎪⎪⎨
⎪⎪⎩

M.PM(Pg(va))∗PGSIZE+Off(va) if HighPg(Pg(va))

va otherwise

Label Specification

mem alloc

(λS.∃S′.S.S =Call([]) :: S′,
λS,S′.∃S′. (S.S = Call([]) :: S′)∧ ((S′.S = Ret(0) :: S′ ∧S′.M = S.M)∨
(∃pg.S′.S = Ret(pg) :: S′ ∧S′.M.A = S.M.A{pg� true}∧S′.M.PM = S.M.PM∧
∧S.M.A(pg)= f alse∧∀l.S.M.A(Pg(l))= true→ (S′.M.D(l) = S.M.D(l))))

mem free
(λS.∃S′, pg.S.S =Call([pg]) :: S′ ∧S.M.A(pg) = true,
λS,S′.∃S′, pg.S.S =Call([pg]) :: S′ ∧S′.S = Ret(0) :: S′ ∧S′.M.PM = S.M.PM∧
S
′.M.A = S.M.A{pg� f alse}∧∀l.S′.M.A(Pg(l)) = true→ S′.M.D(l) = S.M.D(l))

pt set
(λS. .∃S′,vp, pp.S.S =Call([vp, pp]) :: S′ ∧HighPg(vp)∧LowPg(pp)
λS,S′.∃S′,vp, pp.S.S =Call([vp, pp]) :: S′ ∧S′.S = Ret(0) :: S′ ∧S′.M.A = S.M.A∧
S
′.M.PM = S.M.PM{vp� pp}∧∀l.S′.M.A(Pg(l)) = true→ S′.M.D(l) = S.M.D(l))

pt lookup
(λS.∃S′,vp.S.S =Call([vp]) :: S′ ∧HighPg(vp),
λS,S′.∃S′,vp.S.S =Call([vp]) :: S′ ∧S′.S = Ret(S.M.PM(vp)) :: S′ ∧S′.M = S.M)

Fig. 10. PMAP Memory Model (MPMAP) and Library (LPMAP)

The state of the PMAP memory has three components, the actual memory store D,
the allocation table A, and the first-class pagemap PM. The memory store contains the
actual data in memory, indexed by physical addresses. The allocation table A, keeps
track of which pages are allocated and which are not. This allocation information is
abstract - it does not have to correspond to the actual allocation table used within the
VMM. For example, the hardware page tables, which this model abstracts, are still in
memory, but are hidden by the allocation table. The page map is the abstract mapping
of virtual pages to physical pages, which purposefully skips all addresses mappable to
physical memory. This mapping is used in loads and stores of the memory model, which
use the trans predicate to translate addresses by looking up mappings in the PM.

The PMAP model relies on the stub library (LPMAP) for updating auxiliary data
structures. There are two stubs for memory allocation, mem alloc and mem free. Their
specs show how they modify the allocation table, and how allocating a page is non-
deterministic and may potentially return any free page. The other two stubs, pt set

and pt lookup update and look up page map entries; their specs are straightforward.

5.2 Relation between Memory Models

Our plan calls for creation of the refinements between the memory models. In Sec-
tion 4.2, we have shown that we can generate a valid refinement by creating a relation

Compositional Verification of a Baby Virtual Memory Manager 155

Fig. 11. Relation between Memory Models

between the memory states, and then showing that abstract loads and stores are pre-
served by this relation. These relations and proofs of preserving the memory operations
are fairly lengthy and quite technical, and thus we leave the mathematical detail to our
Coq implementation, opting for a visual description shown in Figure 11.

On the right is a state of the hardware memory, whose operational semantics gives
little protection from accessing data. Some areas of memory are dangerous, some are
empty, others contain data, including the allocation tables and page tables. This memory
relates to the ALE memory model by abstracting out the memory allocation table. This
allocation table now offers protection for accessing both the unallocated space, and the
space that seems unallocated, but dangerous to use (marked by wavy lines). An example
of such area is the allocation table itself - the ALE model hides the table, making it
appear to be unusable. The ALE mem alloc primitive will never allocate pages from
these wavy areas, protecting them without complicating the memory model.

The relation between the PMAP and ALE models shows that the abstract pagemap
of PMAP model is actually contained within the specific area of the ALE model. The
relation makes sure that the mappings contained in the PMAP’s pagemap are the same
as the translation results of the ALE’s page table structures. To protect the in memory
page tables, the relation hides the page table memory area from the PMAP model, using
the same trick as the one used to protect the allocation tables in the ALE model.

The relation between the AS and PMAP models collapses PMAP’s memory and
the page maps into a single memory like structure in the AS model. This is mostly

156 A. Vaynberg and Z. Shao

accomplished by chaining the translation mechanism with the storage mechanism. How-
ever, to make this work, it is imperative that the relation ensures that no two pages of
the AS model ever map to the same physical page in the PMAP model. This means
that all physical pages that are mapped from the high-addresses become hidden in the
AS model. We will not go into detail about the preservation of load and stores, as these
proofs are mostly straightforward, given the relations.

5.3 Certification and Linking of BabyVMM

We have verified all the functions of the virtual memory on the appropriate memory
models. This means that we have defined appropriate specifications for our functions,
and certified our code. We also make an assumption that a kernel is certified in the AS
model. The result is the following certified modules:

MPE ,LPE � Cmem : Ψmem
PE MALE ,LPMAP � Cas : Ψas

PMAP MPD,LPD � Cmeminit : Ψmeminit
PD

MALE ,LALE � Cpt : Ψ pt
ALE MAS ,LAS � Ckernel : Ψ kernel

AS MALD ,LALD � Cptinit : Ψ ptinit
ALD

However, the init function makes calls to other procedures that are certified in more
abstract machines. Thus to certify init over theMHW machine, we will need to create
stubs for these procedures, which have to be carefully crafted to be valid for the refined
specifications of the actual procedures. Thus, the specification of init results in the
following:

MHW ,LHW ∪
{
kernel init� akernel−init

HW , mem init� ameminit
HW , pt init� a

ptinit
HW

}
� Cinit : Ψ init

HW

With all the modules verified, we proceed to link them together. The first step is to refine
the kernel. We use our AS-PMAP refinement rule to get the refined module:

MPMAP,TAS−PMAP(LAS) � Ckernel : TAS−PMAP(Ψ kernel
AS)

Then we show that the specs of functions and the primitives of the PMAP machine are
proper implementation of the refined specs of LAS , more formally, TAS−PMAP(LAS) ⊇
LPMAP ∪Ψas

PMAP. Using library strengthening and the linking lemma, we produce a cer-
tified module that is the union of the refined kernel and address space library:

MPMAP,LPMAP � Ckernel∪Cas : TAS−PMAP(Ψ kernel
AS)∪Ψas

PMAP

Applying this process to all the modules over all refinements, we link all parts of the
code, except init certified overMHW . For readability, we hide chains of refinements.
For example, TAS−HW is actually TAS−PMAP ◦TPMAP−ALE ◦TALE−PE ◦TPE−HW .

MHW ,LHW � Ckernel∪Cas∪Cpt ∪Cmem ∪Cmeminit ∪Cptinit :

TAS−HW (Ψ kernel
AS) ∪ TPMAP−HW (Ψas

PMAP) ∪ TALE−HW (Ψ pt
ALE) ∪

TPE−HW (Ψmem
PE) ∪ TPD−HW (Ψmeminit

PD) ∪ TALD−HW (Ψ ptinit
ALD)

To get the initialization to link with the refined module, we must make sure that the
stubs that we have developed for init are compatible with the refined specifications of
the actual functions. This means that we prove the following:

Compositional Verification of a Baby Virtual Memory Manager 157

akernel−init
HW ⊇ TAS−HW (Ψ kernel

AS)(kernel-init)

ameminit
HW ⊇ TPD−HW (Ψmeminit

PD)(mem-init) a
ptinit
HW ⊇ TALD−HW (Ψ ptinit

ALD)(pt-init)

Using these properties, we apply stub strengthening to the init module:

MHW ,LHW ∪TAS−HW (Ψ kernel
AS) ∪TPD−HW (Ψmeminit

PD) ∪TALD−HW (Ψ ptinit
ALD) � Cinit : Ψ init

HW

This certification is now linkable to the rest of the VMM and kernel, to produce the final
result that we need:

MHW ,LHW � Ckernel∪Cas∪Cpt ∪Cmem ∪Cmeminit ∪Cptinit ∪Cinit :

TAS−HW (Ψ kernel
AS) ∪ TPMAP−HW (Ψas

PMAP) ∪ TALE−HW (Ψ pt
ALE) ∪

TPE−HW (Ψmem
PE) ∪ TPD−HW (Ψmeminit

PD) ∪ TALD−HW (Ψ ptinit
ALD) ∪ Ψ init

HW

This result means that given a certified kernel in the AS model, we can refine it to the
HW model of memory by linking it with VMM implementation. Furthermore, it is safe
to start this kernel by calling the init function, which will perform the setup, and then
call the kernel-init function, the entry point of the high-level kernel.

6 Coq Implementation

All portions of this system have been implemented in the Coq Proof Assistant[5]. The
portions of the implementation directly related to the BabyVMM verification, including
C machines, refinements, specs, and related proofs (excluding frameworks) took about
3 person-months to verify. The approximate line counts for unoptimized proof are:

– Verification and refinement framework - 3000 lines
– Memory models - 200-400 lines each
– repr and compatibility between models - 200-400 lines each
– Compatibility of stubs and implementation - 200-400 lines per procedure
– Code verification - less than 200 lines per procedure (half of it boilerplate).

7 Related Work and Conclusion

The work presented here is a continuation of the work on Hoare-logic frameworks for
verification of system software. The verification framework evolved from SCAP[8] and
GCAP[3]. Although our framework does not mention separation logic[17], information
hiding[16], and local action[4] explicitly, these methods had great influence on the de-
sign of the meta-language and the refinements. The definition of repr generalizes the
work on certified garbage collector[15] to fit our concept of refinement. The project’s
motivation is the modular and reusable certification of the CertiKOS kernel[10].

The well-known work in OS verification is L4.verified[12,6], which has shown a
complete verification of an OS kernel. Their methodology is different, but they have

158 A. Vaynberg and Z. Shao

considered verification of virtual memory[13,14]. However, their current kernel verifi-
cation does not abstract virtual memory, maintaining only the invariant that allows the
kernel to function, and leaving the details to the user level.

The Verisoft project [9,2,1,11,18] is the work that is closest to ours. We both aim
for pervasive verification of OS by doing foundational verification of all components.
Both works utilize multiple machines, and require linking. As both projects aim for
certification of a kernel, both have to handle virtual memory. Although Verisoft uses
multiple machine models, they use them sparingly. For example, the entire microkernel,
excluding assembly code, is specified in a single layer, with correctness shown as a
single simulation theorem between the concurrent user thread model (CVM) and the
instruction set. The authors mention that the proof of correctness is a more complex
part of Verisoft. Such monolithic approach is susceptible to local modifications, where
a small change in one part of microkernel may require changes to the entire proof.

Our method for verification defines many more layers, with smaller refinement proofs
between them, and composes them to produce larger abstractions, ensuring that the ver-
ification is more reusable and modular. Our new framework enables us to create ab-
straction layers with less overhead, reducing the biggest obstacle to our approach. We
have demonstrated the practicality of our approach by certifying BabyVMM, a small
virtual memory manager running on simplified hardware, using a new layer for every
non-trivial abstraction we could find.

Acknowledgements. We thank anonymous referees for suggestions and comments
on an earlier version of this paper. This research is based on work supported
in part by DARPA grants FA8750-10-2-0254 and FA8750-12-2-0293, ONR grant
N000141210478, and NSF grants 0910670 and 1065451. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental purposes notwithstand-
ing any copyright notation thereon. Any opinions, findings, and conclusions contained
in this document are those of the authors and do not reflect the views of these agencies.

References

1. Alkassar, E., Hillebrand, M.A., Leinenbach, D.C., Schirmer, N.W., Starostin, A., Tsyban,
A.: Balancing the load: Leveraging a semantics stack for systems verification. Journal of
Automated Reasoning: OS Verification 42, 389–454 (2009)

2. Alkassar, E., Schirmer, N.W., Starostin, A.: Formal Pervasive Verification of a Paging Mecha-
nism. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 109–123.
Springer, Heidelberg (2008)

3. Cai, H., Shao, Z., Vaynberg, A.: Certified self-modifying code. In: Proc. PLDI 2007, pp.
66–77. ACM, New York (2007)

4. Calcagno, C., O’Hearn, P., Yang, H.: Local action and abstract separation logic. In: Proc.
LICS 2007, pp. 366–378 (July 2007)

5. Coq Development Team. The Coq proof assistant reference manual. The Coq release v8.0
(October 2005)

6. Elphinstone, K., Klein, G., Derrin, P., Roscoe, T., Heiser, G.: Towards a practical, verified
kernel. In: Proc. HoTOS 2007, San Diego, CA, USA (May 2007)

7. Feng, X., Shao, Z., Dong, Y., Guo, Y.: Certifying low-level programs with hardware inter-
rupts and preemptive threads. In: Proc. PLDI 2008, pp. 170–182. ACM (2008)

Compositional Verification of a Baby Virtual Memory Manager 159

8. Feng, X., Shao, Z., Vaynberg, A., Xiang, S., Ni, Z.: Modular verification of assembly code
with stack-based control abstractions. In: PLDI 2006, pp. 401–414 (June 2006)

9. Gargano, M., Hillebrand, M.A., Leinenbach, D., Paul, W.J.: On the Correctness of Operating
System Kernels. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 1–16.
Springer, Heidelberg (2005)

10. Gu, L., Vaynberg, A., Ford, B., Shao, Z., Costanzo, D.: Certikos: A certified kernel for secure
cloud computing. In: Proc. APSys 2011. ACM (2011)

11. In der Rieden, T.: Verified Linking for Modular Kernel Verification. PhD thesis, Saarland
University, Computer Science Department (November 2009)

12. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: formal
verification of an OS kernel. In: Proc. SOSP 2009, pp. 207–220 (2009)

13. Klein, G., Tuch, H.: Towards verified virtual memory in l4. In: TPHOLs Emerging Trends
2004, Park City, Utah, USA (September 2004)

14. Kolanski, R., Klein, G.: Mapped Separation Logic. In: Shankar, N., Woodcock, J. (eds.)
VSTTE 2008. LNCS, vol. 5295, pp. 15–29. Springer, Heidelberg (2008)

15. McCreight, A., Shao, Z., Lin, C., Li, L.: A general framework for certifying garbage collec-
tors and their mutators. In: Proc. PLDI 2007, pp. 468–479 (2007)

16. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. In: POPL 2004,
pp. 268–280 (January 2004)

17. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Proc. LICS
2002, pp. 55–74 (July 2002)

18. Starostin, A.: Formal Verification of Demand Paging. PhD thesis, Saarland University, Com-
puter Science Department (March 2010)

19. Vaynberg, A., Shao, Z.: Compositional verification of BabyVMM (extended version and
Coq proof). Technical Report YALEU/DCS/TR-1463, Yale University (October 2012),
http://flint.cs.yale.edu/publications/babyvmm.html

http://flint.cs.yale.edu/publications/babyvmm.html

Shall We Juggle, Coinductively?

Keisuke Nakano

The University of Electro-Communications, Japan
ksk@cs.uec.ac.jp

Abstract. Buhler et al. presented a mathematical theory of toss jug-
gling by regarding a toss pattern as an arithmetic function, where the
function must satisfy a condition for the pattern to be valid. In this pa-
per, the theory is formalized in terms of coinduction, reflecting the fact
that the validity of toss juggling is related to a property of infinite phe-
nomena. A tactic is implemented for proving the validity of toss patterns
in Coq. Additionally, the completeness and soundness of a well-known
algorithm for checking the validity is demonstrated. The result exposes
a practical aspect of coinductive proofs.

1 Introduction

Toss juggling, the most popular form of juggling, involves the tossing of multiple
objects (e.g., balls, clubs, rings, knives, torches, and pieces of fruit) into the
air and catching them by hand in succession. It has been not only artistically
impressive to people in the audience but also theoretically attractive to many
mathematicians like Claude E. Shannon and Ronald Graham because of the
scientific features of its patterns.

A pattern can be represented by a finite sequence of non-negative integers,
called siteswap [BEGW94]. Each integer in a siteswap corresponds to a beat and
encodes the height of the toss, i.e., the number of beats for which the tossed
object is in the air. Consider a very simple siteswap 〈3.0.0〉, which represents
trivial 1-object juggling. The 3 means tossing an object so that it stays in the
air for 3 beats. The two 0’s mean no object is caught and tossed. Since a finitely
represented siteswap implicitly represents an infinite toss pattern due to rep-
etition, 〈3.0.0〉 actually denotes toss pattern 〈3.0.0.3.0.0.3.0.0. . . .〉. We assume
that an object (possibly nothing) is tossed by an alternate hand on every beat.
Suppose that we start by tossing an object with the right hand (R), as shown
in Fig. 1. Since it stays in the air for 3 beats, it falls into the left hand (L) and

3 0 0 3 0 0 3 0 0
R L R L R L R L R

Fig. 1. Siteswap 〈3.0.0〉

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 160–172, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Shall We Juggle, Coinductively? 161

3 3 3 3 3 3 3 3 3

(a) siteswap 〈3〉
4 4 1 4 4 1 4 4 1

(b) siteswap 〈4.4.1〉

5 1 5 1 5 1 5 1 5

(c) siteswap 〈5.1〉
1 2 3 4 5 1 2 3 4

(d) siteswap 〈1.2.3.4.5〉

Fig. 2. Examples of valid siteswap patterns

5 5 1 5 5 1 5 5 1

(a) pattern 〈5.5.1〉
2 4 0 1 2 4 0 1 2

(b) pattern 〈2.4.0.1〉

Fig. 3. Examples of invalid patterns

is thrown up again 3 beats later, to be caught in the right hand, and so on. A
0 between two 3’s denotes a rest beat for each hand during which they do not
catch, toss, or hold an object.

Figure 2 shows four diagrams generated using siteswaps in the labels. Siteswap
〈3〉 denotes infinite pattern 〈3.3.3 . . .〉, which represents a standard pattern of
3-ball juggling, called a cascade. Siteswap 〈4.4.1〉 denotes infinite pattern 〈4.4.1.
4.4.1. . . .〉, in which no two objects will be caught simultaneously by the same
hand as shown in the figure. We can also check such validity of 〈5.1〉 and
〈1.2.3.4.5〉 in a similar way. The number of orbits in the figure corresponds to
the number of juggled objects.

Note that not all finite sequences of non-negative integers are valid siteswaps.
For instance, 〈5.5.1〉 and 〈2.4.0.1〉 are not valid, as easily proved by drawing their
diagrams. As shown in Fig. 3, the two objects tossed on the second and sixth
beats in the 〈5.5.1〉 pattern are caught simultaneously by the same hand1. In the
〈2.4.0.1〉 pattern, the object tossed on the first beat is caught two beats later
by a hand that should be at rest for that beat. Since an orbit corresponds to
an object’s movement, this toss pattern represents extinguishing the object. In
short, these patterns are not valid siteswaps.

On the other hand, how can we prove the validity of the 〈4.4.1〉 siteswap?
No matter how far we extend the diagram in Fig. 2(b), we cannot prove that

1 There is a siteswap notation for multiplex toss juggling that allows for a hand to
manipulate two objects at the same time. In this paper, we deal with the standard
(vanilla) siteswap notation in which each hand manipulates at most one object at a
time.

162 K. Nakano

two objects never collide with each other. We need an effective technique for
completing a proof in finite steps.

Our approach to meeting this need is based on the use of coinduction to for-
malize the ‘never collide’ property. While most applications of coinduction in
computer science are related to bisimulation [San09], reasoning about infinite
behaviors is also a natural application of coinduction [LG09, NU09]. In Sec-
tion 2, we start by formalizing a theory for validating toss patterns in terms of
coinduction and validate specific toss patterns by coinduction. We also present
a general tactic for validating arbitrary patterns. In Section 3, we describe the
implementation of a well-known algorithm [BEGW94] for validating siteswap
patterns.

All theorems in this paper are certified in Coq and the source code is avail-
able at http://millsmess.cs.uec.ac.jp/~ksk/siteswap/. Coq-style syntax
is used for formal definitions in the rest of this paper.

2 Toss Streams and Their Validity

We formalize a theory for validating juggling toss patterns by using a stream
which is a typical coinductive structure, because a toss pattern has an infinite
length. The definition of pattern validity is also given by using coinduction. We
will show several examples of proofs for validating patterns and present a general
tactic for validation.

2.1 Toss Streams

A stream of succeeding tosses, a toss stream, is defined by

CoInductive toss : Set := Toss : nat -> toss -> toss.

Infix "::˜" := Toss (right associativity, at level 60).

in which each number (non-negative integer) encodes the height of the toss. The
second line introduces a right associative infix symbol ::̃ as an alias of the Toss
constructor. For example, we can define 〈3.0.0〉, 〈4.4.1〉, and 〈1.2.3.4.5〉 by
CoFixpoint toss_300 : toss := 3 ::˜ 0 ::˜ 0 ::˜ toss_300.

CoFixpoint toss_441 : toss := 4 ::˜ 4 ::˜ 1 ::˜ toss_441.

CoFixpoint toss_12345 : toss :=

1 ::˜ 2 ::˜ 3 ::˜ 4 ::˜ 5 ::˜ toss_12345.

respectively, by using a co-recursive definition. Hereafter, 〈4.4.1〉 represents an
infinite repetition of 4, 4, and 1. We will implicitly use equivalence between
〈4.4.1〉 and 4 ::̃ 〈4.1.4〉, which can be proved by coinduction.

We use tn to represent the height of the n-th toss of a toss stream t, where the
stream starts with the 0-th toss; i.e., toss stream t is equivalent to t0::̃ t1::̃ t2::̃
An object tossed on the n-th beat is caught on the (tn + n)-th beat.

Shall We Juggle, Coinductively? 163

� t

� 0 ::̃ t
(Waiting)

n � t

� (n+ 1) ::̃ t
(FirstToss)

n � t

0 � (n+ 1) ::̃ t
(CatchToss)

n � t

n+ 1 � 0 ::̃ t
(NoToss)

n � t m � t n �= m

n+ 1 � (m+ 1) ::̃ t
(Tossable)

Fig. 4. Validation rules for toss streams

2.2 Validity of Toss Streams

There are many invalid toss streams such as 〈5.5.1〉 and 〈2.4.0.1〉 shown in Fig. 3.
These streams cannot be a juggling pattern because either more than one tossed
object is simultaneously caught in a hand or a caught object disappears.

Formally, we say that a toss stream t is invalid if there are two distinct counts
n and m such that the caught counts tn+n and tm+m coincide. If both tn and
tm are more than 0, the coincidence implies that two objects are caught at the
same time; if either tn or tm is 0, it implies that a caught object disappears. We
say that t is valid , denoted by |= t, if t is not invalid.

Now we give an alternative definition for the validity of toss streams by coin-
duction, as shown in Fig. 4. We use two judgment forms, � t and n � t, with a
toss stream t and non-negative integer n, for validation rules. A unary judgment
� t means that a toss stream t is valid and binary judgment n � t means that it
is valid even if an object in the air will be caught in n beats later. More specif-
ically, 0 � t means that one object is being caught by a hand at the beginning
of t. Therefore, n � n ::̃ t must not hold so that any two objects are caught on
a distinct beat (when n > 0) and no objects disappear (when n = 0). It is easy
to check that n � n ::̃ t has no proof for any n in our validation system.

The unary judgment has two rules: (Waiting) and (FirstToss). Rule
(Waiting) implies that a 0-height toss on the starting beat is valid if the re-
maining toss stream is. Rule (FirstToss) implies that an (n+1)-height toss is
valid if the remaining toss stream with an n-height object in the air is valid.

The binary judgment has three rules: (CatchToss), (NoToss), and (Toss-

able). Rule (CatchToss) implies that an (n + 1)-height toss on the current
beat with an object caught at the moment is valid if the remaining toss stream
with an n-height object in the air is valid. Rule (NoToss) implies that no toss
on the current beat with an (n + 1)-height object in the air is valid if the re-
maining toss stream with an n-height object in the air is valid. The height of
the object decreases by one on each beat. Rule (Tossable) implies that an
(m+1)-height toss on the current beat with an (n+1)-height object in the air is

164 K. Nakano

valid if the remaining toss stream is valid both with an n-height object and with
an m-height object in the air where n �= m. Note that there is no axiomatic rule
like a ‘base case’ in the inductive definition. We define validity for toss streams
in a coinductive manner because toss streams have a coinductive structure.

Our definition of validity is appropriate in the sense that a toss stream includes
a collision if and only if it is not valid. This fact is formalized in the following
theorem.

Theorem 1 (soundness and completeness of validation rules). For any
toss stream t, a judgment � t holds if and only if t is valid, i.e., |= t.

The ‘only if’ statement establishes the soundness of the validation rules; that
is, any toss stream derived from the validation rules must be valid. The ‘if’
statement establishes the completeness of the validation rules; that is, any valid
toss stream can be derived from the validation rules. We will give a proof of this
theorem in Section 2.5 after showing how our coinductive rules work for toss
stream validation.

2.3 Validation of Toss Streams by Coinduction

We show how a given toss stream is validated in our validation system. The
validity is proved by coinduction because the validation rules are coinductively
defined.

We first give a brief review of proof by coinduction in a general setting. Coin-
duction is the dual of induction. While an assumption should have an inductive
structure in an inductive proof, the conclusion should have a coinductive struc-
ture in a coinductive proof. To prove a coinductive statement P by coinduction,
we can add P itself as an assumption, but it can be applied only in a restricted
manner. Without this restriction, an arbitrary statement could be proved freely.
We can understand the details of the restriction by recalling the Curry-Howard
correspondence [How80].

The Curry-Howard correspondence is a connection between constructive logics
and programming languages: there exists a constructive proof of a formula if and
only if there exists a program of the corresponding type. For example, a formula
A → B → A has a proof that A can be concluded from two assumptions A and
B as a → b → a is a type of λx : a. λy : b. x. This is a natural correspondence
between constructions of proofs and programs (in λ-terms).

The aforementioned restriction of coinductive proofs can be explained through
the Curry-Howard correspondence, which connects them with co-recursive pro-
grams. A co-recursive program defines the greatest fixed point of an equation
while a recursive program defines the least fixed point. Let us see a simple re-
striction for co-recursion in Coq, called a guardedness condition, which restricts
occurrences of co-recursive calls. For example,

CoFixpoint toss_0 : toss := 0 ::˜ toss_0.

CoFixpoint toss_51 : toss := 5 ::˜ 1 ::˜ toss_51.

Shall We Juggle, Coinductively? 165

are legally defined in Coq, but

CoFixpoint toss_loop : toss := toss_loop.

CoFixpoint toss_app : toss := 2 ::˜ f (3 ::˜ toss_app).

where f is a function over toss streams are not. This is because the first two
equations have a trivial greatest fixed point while the latter two do not. Every co-
recursive call should be guarded by only constructors in order to be syntactically
judged a legal coinductive definition.

Coinductive proofs have the same restriction in terms of the Curry-Howard
correspondence. As previously mentioned, in a coinductive proof of a statement
P , we can add P itself as an assumption. The assumption cannot be directly
used to conclude P as the definition of toss_loop should not be legal. In con-
trast, we can apply the added assumption for ‘guarded’ contexts in a sense.
Since constructors correspond to judgment rules in a proof system through the
Curry-Howard correspondence, the assumption can be used only after applying
some rules. Coq provides the cofix tactic for adding the current goal to the
assumptions, which is allowed only for restricted uses defined by the guarded-
ness condition. Details on how the guardedness condition works are available
elsewhere [Gim95, GC98].

Now we prove the validity of toss patterns by coinduction. Consider the simple
〈3.0.0〉 pattern (Fig. 1). The following proof tree illustrates the validity of the
pattern.

...
0 � 〈3.0.0〉
1 � 〈0.3.0〉
2 � 〈0.0.3〉
0 � 〈3.0.0〉
1 � 〈0.3.0〉
2 � 〈0.0.3〉
� 〈3.0.0〉

The three dots at the top of the tree indicate that the tree has an infinite
structure. In the coinductive proof, when deriving the judgment 0 � 〈3.0.0〉 on
the fourth line from the bottom, we put it as an assumption. We then use it
to prove the same formula on the second line from the top2. The proof of the
validity of 〈3.0.0〉 in Coq is described as follows:

Theorem toss_300_valid : � toss_300.

Proof.

assert (0 � toss_300); cofix;

rewrite eq_unfold_toss; simpl; repeat constructor; auto.

Qed.

2 We may choose 2 � 〈0.0.3〉 or 1 � 〈0.3.0〉 as a lemma instead of 0 � 〈3.0.0〉.

166 K. Nakano

...
3 � 〈1.4.4〉
0 � 〈4.1.4〉

...
3 � 〈4.1.4〉

1 � 〈4.4.1〉

...
3 � 〈4.1.4〉
0 � 〈4.4.1〉

2 � 〈1.4.4〉

...
0 � 〈4.4.1〉
0 � 〈1.4.4〉

...
3 � 〈1.4.4〉

1 � 〈4.1.4〉
...

3 � 〈4.1.4〉
2 � 〈4.4.1〉

...
0 � 〈4.4.1〉

3 � 〈1.4.4〉
3 � 〈4.1.4〉
� 〈4.4.1〉

Fig. 5. Proof tree for validation of toss stream 〈4.4.1〉 by mutual coinduction

where we first prove a lemma 0 � 〈3.0.0〉 by coinduction using the cofix tactic.
The successive instructions rewrite eq_unfold_toss; simpl unfold once the
definition of the toss stream following Chlipala’s technique [Chl11]. Now what
we have to prove is � 3 ::̃ 0 ::̃ 0 ::̃ 〈3.0.0〉 and 0 � 3 ::̃ 0 ::̃ 0 ::̃ 〈3.0.0〉 under
the assumption 0 � 〈3.0.0〉. Then the instruction repeat constructor applies
judgment rules (without unfolding) as much as possible and auto proves trivial
statements.

A proof tree for validation of the 〈4.4.1〉 toss stream is more complex, as shown
in Fig. 5, where there are many dots on the top. Every judgment beneath the
dots occurs in a different branch of the tree, meaning that the validity is proved
by mutual (or nested) coinduction. In the case of 〈4.4.1〉, we have to mutually
prove many judgments that occur under the dots in the proof tree. Note that
all of them can be derived from three judgments: 0 � 〈4.4.1〉, 1 � 〈4.4.1〉, and
2 � 〈4.4.1〉. Hence we can prove the validity of 〈4.4.1〉 in Coq as follows:

Theorem toss_441_valid : � toss_441.

Proof.

assert(0 � toss_441); cofix;

assert(1 � toss_441); cofix;

assert(2 � toss_441); cofix;

rewrite eq_unfold_toss; simpl; repeat constructor; auto.

Qed.

where we first prove three auxiliary lemmas, 0 � 〈4.4.1〉, 1 � 〈4.4.1〉, and
2 � 〈4.4.1〉, by coinduction. The remaining instructions are similar to those for
proving the validity of � 〈3.0.0〉. The auto tactic is used for proving disequalities,
which are caused by applying the (Tossable) rule. The lemmas needed depend
on the toss pattern to be validated, as discussed later.

It is easier to disprove the validity of toss streams than to prove their validity.
Because of Theorem 1, it suffices to find two distinct n and m such that tn+n =
tm +m. For example, a toss stream t represented by 〈5.5.1〉 is invalid because
both t1 +1 and t5 +5 are equal to 6. A toss stream t represented by 〈2.4.0.1〉 is
invalid because both t0 + 0 and t2 + 2 are equal to 2.

Shall We Juggle, Coinductively? 167

Remark. Our definition of validity is independent of the number of objects. It
is possible to write a valid toss stream for an infinite number of objects, e.g.,
toss_ints (= 0 ::̃ 1 ::̃ 2 ::̃ 3 ::̃ . . .) defined by

CoFixpoint toss_ints_from (n:nat) : toss :=

n ::˜ toss_ints_from (S n).

Definition toss_ints : toss := toss_ints_from O.

which represents a toss stream t with tn = n. Because tn + n (= 2n) and
tm +m (= 2m) differ for distinct n and m, toss stream t is valid from the def-
inition. Note that no object is caught by a hand on an odd beat. We have to
manipulate an infinite number of objects since we have to toss a new object on
every odd beat. This pattern was also considered by Buhler et al. [BEGW94].
From Theorem 1, the validity of the toss_ints pattern can be proved by coin-
duction in our validation system. Indeed, we can also directly illustrate the
validity of the pattern by showing the lemma that n � toss_int_from m holds
when n < m, which can be proved by coinduction.

One may think that juggling patterns with infinite objects could not be valid.
This is not a concern, however, if we consider only ‘periodic patterns’ represented
by siteswap notation. Since no periodic pattern can generate a toss stream in-
volving infinite objects [BEGW94], we use the definition above for the validity
of toss streams.

2.4 General Tactic for Proving Validity of Patterns

As we mentioned above, we need to prepare auxiliary lemmas to prove the va-
lidity of a periodic toss stream. The lemmas needed depend on the toss pattern
to be validated. For instance, the proof of the validity of 〈1.2.3.4.5〉 is given by

Theorem toss_12345_valid : � toss_12345.

Proof.

assert (0 � toss_12345); cofix;

assert (2 � toss_12345); cofix;

assert (4 � toss_12345); cofix;

rewrite eq_unfold_toss; simpl; repeat constructor; auto.

Qed.

where we show three auxiliary lemmas 0 � 〈1.2.3.4.5〉, 2 � 〈1.2.3.4.5〉, and 4 �
〈1.2.3.4.5〉, simultaneously. In general, to prove � t in this way, the number of
auxiliary lemmas of the form n � t needed is the same as the number of orbits
(i.e., the number of objects) that start being tossed n beats later from the initial
position.

We shall present a tactic for proving the validity that works for arbitrary
periodic toss streams as long as they are valid. This certify_toss tactic is
defined by

Ltac certify_toss :=

repeat (cofix; rewrite eq_unfold_toss; simpl;

repeat constructor; auto; try simplify_eq).

168 K. Nakano

Table 1. With-and-without comparison of certify toss for valid patterns

siteswap 〈1.2.3.4.5〉 〈5.5.5.1〉 〈7.5.3.1〉 〈0.1.2.3.4.5.6〉
with tactic 1.071s / 0.549s 3.948s / 1.789s 4.814s / 2.108s 12.142s / 6.753s
without tactic 0.048s / 0.088s 0.080s / 0.379s 0.094s / 0.215s 0.107s / 0.933s

which simply repeatedly tries to prove any statement by coinduction. The auto
tactic is employed to use an assumption and solve the trivial disequality. It
finally tries the simplify_eq tactic to solve the remaining disequalities because
the auto tactic cannot prove disequalities between large numbers, on which we
will give an observation later.

The tactic will end when all statements are proved by applying judgment rules
and assumptions. Informally, termination of the tactic can be shown as follows.
The tactic contains two repeat tactics that may cause non-termination. The
inner repeat obviously terminates because the constructor tactic tries to apply
a judgment rule without unfolding the toss stream. Let us show termination of
the outer repeat. The only tactic that forks goals is constructor. The number
of possible goals added by the constructor tactic is finite since each added goal
has the form n � t, where the number of possible n’s and t’s is bounded. This
is because the toss stream is periodic and the number n must be less than the
number in the toss stream. Furthermore, the same goal cannot be tried to prove
twice. Once the goal is added by constructor, it is pushed as an assumption by
the cofix tactic. After the goal is added at the next time, the auto tactic must
have solved it from the assumption. As a consequence, all of the goals of the form
n � t are solved. Since the auto tactic which may use the assumption added
by cofix is applied after the constructor tactic, the guardedness condition
for coinduction cannot be violated. If the certify_toss tactic is applied to an
invalid toss stream, Coq fails to prove it, leaving many incorrect goals like n �= n,
which are wrecks of tried application of the (Tossable) rule.

Using the certify_toss tactic has an efficiency problem, however, because it
tries to prove all occurred judgments by coinduction. This is much less efficient
than a proof using the necessary lemmas as done in Section 2.3.

Table 1 shows a with-and-without comparison of the certify_toss tactic for
four valid siteswap patterns. Each cell in the table has the form tsol/tcon where
tsol and tcon are the times for goal solving phase and proof term construction
phase, respectively, and both are the total CPU time measured with the Time

command in Coq 8.3pl2 running on a MacBook Air computer (1.8 GHz Intel Core
i7 and 4 GB memory). The time for proof term construction includes guarded-
ness checking. The siteswaps, 〈1.2.3.4.5〉, 〈5.5.5.1〉, 〈7.5.3.1〉, and 〈0.1.2.3.4.5.6〉,
denote the toss patterns in which 3, 4, 4, and 3 objects are manipulated, respec-
tively. We can see that proving the validity with the tactic is much less efficient
than without it particularly not only when the number of objects is large but
also when the siteswap is long. This is because the tactic generates more goals
to be proved for longer siteswaps. To improve the performance, we need to modify

Shall We Juggle, Coinductively? 169

the definition of the tactic so that unnecessary statements are not tried to prove,
which is difficult to do in general.

The tactic-based approach has other problems even if we cleverly redefine the
tactic. First, we cannot guarantee termination of the tactic in Coq. We need
to certify outside Coq that the body of the repeat tactic eventually fails and
that all recursively defined tactics terminate. Second, we cannot guarantee the
correctness of the tactics in Coq. We need to certify that no tactic leaves unex-
pected goals after its application. In fact, one may implement the certify_toss
tactic without simplify_eq at the end because it happens to succeed in proving
all examples in the benchmark above. However, without simplify_eq, it fails
to prove the validity of 〈9, 1〉, which is a valid siteswap pattern. This wrong
tactic leaves obvious disequalities, 6 �= 8, that fails to be proved by the auto

tactic because of the limitation of the search depth. To solve this problem, we
should either modify the definition of certify_toss as above or register the
discriminate tactic as a hint to make auto more powerful.

These problems with the tactic-based approach can be solved by using a
validity checking algorithm for arbitrary periodic toss patterns in Section 3.

2.5 Proof of Theorem 1

Theorem 1 is illustrated by independently proving the ‘only if’ statement and the
‘if’ statement. Both statements are proved in Coq. For convenience, we extend
the definition of |= to a binary relation: for a non-negative integer n and a toss
stream t, we say n |= t if both |= t holds and n �= tm +m for any non-negative
integer m.

Proof of the only-if statement. The statement establishes the soundness of our
validation rules; that is, � t implies |= t for any toss stream t. This can be shown
by using two lemmas:

(i) x � t implies |= t for any non-negative integer x, and
(ii) x � t implies x |= t for any non-negative integer x.

Recall that the definition of |= t is that, for any m and n with m �= n, tm+m �=
tn+n holds. Hence, we can use induction on these m and n to prove a statement
in the form |= t. Statement (i) is proved by induction on either m or n. To prove
statement (ii), it suffices to show that x � t implies x �= tm+m for anym because
of statement (i) and the definition of x |= t, which is proved by induction on
x. The ‘only if’ statement above is proved using statement (ii) by induction on
either m or n, again.

Proof of the if statement. The statement establishes the completeness of our
validation rules; that is, |= t implies � t for any toss stream t. This can be shown
by using a lemma:

(iii) x |= t implies x � t for any non-negative integer x,

which is proved by coinduction with case analyses on x and t. Then the if-
statement above is proved by coinduction, again.

170 K. Nakano

Input: a toss pattern as a list l = [a1, . . . , ap]
Output: whether the toss stream t = 〈a1, . . . , ap〉 is valid
1. Add a number n to the n-th element in l for each n.
2. Take modulo p for each element.
3. If the obtained list contains no pair of elements with the same numbers, t is valid;

otherwise not.

Fig. 6. Algorithm for validating toss streams represented by siteswap

3 Validity Checking Algorithm for Periodic Toss Patterns

To avoid the problems related to user-defined tactics mentioned in Section 2.4,
we implement a general method for toss pattern validation. We use the algo-
rithm developed by Buhler et al. [BEGW94] to validate periodic toss streams.
They proved the correctness of the algorithm in their formulation, in which each
juggling pattern was given by a bijective function over integers. In this section,
we show the soundness and completeness of the algorithm in our formulation, in
which each juggling pattern is represented by a coinductive data structure.

Let us formalize a periodic toss pattern as a nonempty list in Coq:

Definition toss_pattern := { ns:list nat | nil <> ns }.
where { x:A | P x } represents a sigma type of A satisfying the P property.
We use the pattern_to_toss function which takes a toss pattern and returns a
periodic toss stream obtained by repeating the pattern. The function is defined
by a co-recursion:

CoFixpoint pattern_to_toss (pat:toss_pattern) : toss :=

head pat ::˜ pattern_to_toss (rotate pat).

where head pat returns the first element of pat (this will not fail because pat

is not empty) and rotate pat returns a pattern obtained by removing the first
element and appending it to the end of the pattern.

3.1 Siteswap Verification Algorithm

Figure 6 shows the algorithm used to determine the validity of a toss stream
given by siteswap notation. It is easy to define the procedure in Coq:

Definition passed_toss_pattern (pat:toss_pattern) : Prop :=

NoDup (map (modulo_length pat) (add_offset pat)).

where modulo_length pat is a function computing the remainder of division
of a given number by the length of the toss pattern pat, and add_offset pat

returns a list of the same length as the toss pattern pat the elements of which
are incremented by the offset position from the head of the list. The map function
is the same as in functional programming languages, and NoDup checks whether

Shall We Juggle, Coinductively? 171

a given list has no duplicated elements. This procedure can be implemented as
an algorithm due to the decidability of pass_toss_pattern, which obviously
holds because the NoDup property is decidable for lists of natural numbers. The
passed_toss_pattern property is useful for giving a precise definition of valid
and periodic patterns if we need:

Definition valid_toss_pattern :=

{ pat:toss_pattern | passed_toss_pattern pat }.

We prove the soundness and completeness of the validation algorithm with the
following theorem:

Theorem 2 (soundness and completeness of validation algorithm). Let
t be a toss stream generated by a toss pattern p, i.e., t = pattern to toss p.
Then � t if and only if the algorithm outputs yes for p.

The ‘if’ statement of the theorem represents soundness while the ‘only if’ state-
ment represents completeness. Note that this theorem establishes correctness of
the algorithm only for a toss stream generated by repeating a toss pattern. It ex-
cludes non-periodic patterns like toss_ints mentioned in the previous section.
There is no general scheme to determine the validity of non-periodic patterns.

The proof of this theorem in Coq is done in a way similar to the original
one by Buhler et al. [BEGW94]. Because of Theorem 1, it suffices to show that
the algorithm exactly determines the validity of toss streams in terms of |=. We
could hence prove it in Coq without coinduction as Buhler et al. did. It would be
interesting to consider a direct coinductive proof of the theorem without relying
on Theorem 1.

4 Conclusion

We have formalized the validation of juggling toss patterns, called siteswap,
in terms of coinduction. This is a natural application of coinduction since the
validity involves an infinite phenomenon. The formalization was implemented in
Coq. We have introduced a general tactic that proving the validity of toss streams
using mutual coinduction. Furthermore, we have implemented the algorithm
developed by Buhler et al. for checking the validity of siteswap and proved its
correctness.

We could formalize the validation of toss patterns by using a list of non-
conflict orbits. Toss patterns could be defined by using mixture of induction and
coinduction: a toss pattern could be defined as a list of orbits that is an induc-
tive structure; the orbits and their non-conflicting property could be defined by
coinduction. This formalization may be useful for showing coincidence between
the number of orbits (that is, the length of the orbit list) and the average of the
numbers in the siteswap pattern [BEGW94]. This coincidence indicates that the
number of objects is finite if the toss pattern is periodic. Note that the converse
is not true. We can construct a non-periodic toss pattern by replacing binary

172 K. Nakano

numbers in the Thue-Morse sequence [OEIS] with two patterns 〈2〉 and 〈3.1〉,
i.e., 2 ::̃ 3 ::̃ 1 ::̃ 3 ::̃ 1 ::̃ 2 ::̃ 3 ::̃ 1 ::̃ 2 ::̃ 2 ::̃ 3 ::̃ 1 ::̃ . . ., which is a toss pattern
in which two objects are manipulated.

Acknowledgments. The author is grateful to Sebastian Fischer for inspiring
me to think about a tactic for validating arbitrary toss patterns. He also thanks
to the anonymous reviewers for their helpful comments and suggestions.

References

[BEGW94] Buhler, J., Eisenbud, D., Graham, R., Wright, C.: Juggling Drops and
Descents. American Mathematical Monthly 101(6), 507–519 (1994)

[Chl11] Chlipala, A.: Certified Programming with Dependent Types. MIT
Press (2011), http://adam.chlipala.net/cpdt/

[GC98] Giménez, E., Castéran, P.: A Tutorial on [Co-]Inductive Types in Coq
(1998)

[Gim95] Giménez, E.: Codifying Guarded Definitions with Recursive Schemes.
In: Smith, J., Dybjer, P., Nordström, B. (eds.) TYPES 1994. LNCS,
vol. 996, pp. 39–59. Springer, Heidelberg (1995)

[How80] Howard, W.A.: The Formulae-As-Types Notion of Construction. In:
Seldin, J.P., Hindley, J.R. (eds.) To H. B. Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism, pp. 479–490. Academic
Press (1980)

[LG09] Leroy, X., Grall, H.: Coinductive big-step operational semantics. Infor-
mation and Computation 207(2), 284–304 (2009)

[NU09] Nakata, K., Uustalu, T.: Trace-Based Coinductive Operational Seman-
tics for While. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M.
(eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 375–390. Springer, Heidel-
berg (2009)

[OEIS] OEIS Foundation Inc. Sequence A010060. The On-Line En-
cyclopedia of Integer Sequences, published electronically at
http://oeis.org/A010060

[San09] Sangiorgi, D.: On the Origins of Bisimulation and Coinduction. ACM
Transactions on Programming Languages and Systems 31(4), 15:1–
15:41 (2009)

http://adam.chlipala.net/cpdt/
http://oeis.org/A010060

Proof Pearl:

Abella Formalization of λ-Calculus Cube
Property

Beniamino Accattoli

INRIA and LIX (École Polytechnique) - Palaiseau, France
Carnegie Mellon University - Pittsburgh, PA, USA

Abstract. In 1994 Gerard Huet formalized in Coq the cube property
of λ-calculus residuals. His development is based on a clever idea, a
beautiful inductive definition of residuals. However, in his formalization
there is a lot of noise concerning the representation of terms with binders.
We re-interpret his work in Abella, a recent proof assistant based on
higher-order abstract syntax and provided with a nominal quantifier. By
revisiting Huet’s approach and exploiting the features of Abella, we get
a strikingly compact and natural development, which makes Huet’s idea
really shine.

1 Introduction

The confluence or Church-Rosser theorem of λ-calculus has been formalized
in several proof assistants, and it is probably the theorem with the highest
number of formalized proofs [26,31,21,32,27,30,17,5,16]. In [17] Huet formalizes
in Coq also a deeper result, the cube property of λ-calculus residuals (due to
Jean-Jacques Lévy [20,4]). This paper presents a new, simple formalization of
this result, developed in Abella [9,8], a recent proof-assistant based on higher-
order abstract syntax (HOAS) [7,23] and provided with a nominal quantifier
[13,12,11,24,10,2].

Residual systems are a standard tool in rewriting [20,18,19,22,15,3,34]. In par-
ticular, they are at the basis of the advanced rewriting theory of λ-calculus and
orthogonal rewriting systems (standardization, neededness, Lévy’s families and
optimality, inside-out reductions, see [20,18,19,3,34]). Roughly, one first intro-
duces a mechanism to track redexes along reductions (typically using positions
or underlinings), so that it is possible to say which are the residuals of a redex
r after another redex. Then, one shows that any given span u2 ← t → u1 can
be closed by simply reducing on both sides the residuals of one redex after the
other. The idea is that residuals refine confluence providing a minimal closure
of confluence diagrams. The abstract theory of residual systems—which is in-
dependent from λ-calculus—is based on three axioms, the cube property plus
two other minor axioms (see [34], Chapter 8.7). The development in this paper
essentially proves that λ-calculus admits a residual system, but we will not enter
into the details of the abstract theory.

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 173–187, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

174 B. Accattoli

A delicate point is how to define residuals for a given calculus. In [17] Huet
presents an elegant and compact solution for λ-calculus: he uses a simple ternary
relation over terms with underlinings, defined by induction on the structure of the
first term. However, Huet represents (marked) λ-terms using de Bruijn indexes,
and a relevant part of his development deals with the properties of indexes,
substitution and lifting.

Initially, we repeated Huet’s development to see how much Abella—being a
proof assistant based on HOAS—could help in simplifying Huet’s work. All the
troubles about indexes, lifting and substitution disappear, this was expected.
However, along the way we realized that other simplifications were possible (the
first two are independent from Abella):

1. Marks : Huet underlines applications, which requires to introduce a notion of
well-formed term (regular terms in [17]) and to show that various operations
preserve well-formedness. According to common practice we rather mark
redexes (as in [3], for instance), so that any marked term is well-formed, and
some lemmas disappear.

2. Rewriting: by analyzing inductions and dependencies between lemmas we
simplify the statements and the number of lemmas required to prove the
cube property. In particular, Huet recognizes the so-called prism property as
more fundamental than the cube property, but we show that the direct proof
of the cube property is not harder than the proof of the prism property. This
also agrees with the clean abstract theory in [34] (which did not exist at the
time of [17]), where there are examples of residual systems enjoying the cube
property but not the prism property. Actually, we show that for λ-calculus
it is possible to prove both properties with the same induction.

3. Contexts : in HOAS-based proof assistants α-equivalence and substitution
are primitive notions, but induction usually requires to consider predicates
inside contexts of local assumptions (called worlds in Twelf [28], schemas
in Beluga [29,6]) and prove properties about them. With respect to the
untyped λ-calculus these contexts are artifacts, since they do not belong
to the informal theory. The nominal quantifier ∇ (nabla) of Abella, not
available in other HOAS settings, allows to formalize the untyped λ-calculus
circumventing the use of contexts.

The final result is quite striking: we formalize a property subsuming both the
cube and prism properties using only two definitions and one auxiliary lemma.
Moreover, the development follows exactly the informal, pen-and-paper rea-
soning: there is no need to care about indexes, α-equivalence, substitution or
contexts.

The next section contains an introduction to residuals and the way Huet rep-
resents them. In Section 3 we present the formal development, also explaining
the representation of λ-terms. Section 4 discusses some variations over our de-
velopment.

The sources of the development can be found on-line [1].

Proof Pearl 175

2 The Diamond and Cube Properties, Informally

The diamond property. A rewriting system (S,→) is confluent when for any
s ∈ S:

s2
∗← s →∗ s1 implies ∃t s.t. s1 →∗ t ∗← s2

The corresponding diagram is in Fig. 1.a (solid arrows denote the reductions
in the hypothesis, dashed arrows denote the reductions in the conclusion). A
stronger notion is the diamond property (Fig. 1.b):

s2 ← s → s1 implies ∃t s.t. s1 → t ← s2

The diamond property implies confluence, but not the converse. Unfortu-
nately, β-reduction does not enjoy the diamond property (because of dupli-
cations/erasures). The standard technique (due to Tait and Martin-Löf) for
proving confluence of β-reduction is to use a parallel reduction. The idea is
to extend β-reduction to a reduction ⇒ so that:

1. ⇒ enjoys the diamond property, and thus confluence;
2. confluence of ⇒ implies confluence of →β .

a) Confluence: b) Diamond: c) Parallel moves: d) Cube:

s s1

s2 t

*

* * *

s s1

s2 t

s s1

s2 t

P

R

P/R

R/P

Q Q′

Q′′ S

P

R

P/R

R/P

Fig. 1. Diagrams

The parallel reduction ⇒ is defined as follows1:

⇒-varx ⇒ x
t ⇒ t′ ⇒-λ

λx.t ⇒ λx.t′

t ⇒ t′ u ⇒ u′ ⇒-@
t u ⇒ t′u′

t ⇒ t′ u ⇒ u′ ⇒-β
(λx.t) u ⇒ t′{x/u′}

The proof of confluence for →β is in two parts. The first part is to prove that
⇒ has the diamond property. The second part is to deduce confluence of →β

1 There is a subtlety: sometimes (in [34] for instance) parallel reduction denotes
the reduction which reduces in parallel disjoint redexes only, while the reduction
presented here (which may reduce nested redexes using rule ⇒-β, for instance
(λx.x)((λy.y)z) ⇒ z) is called simultaneous or multi-step reduction. Often, how-
ever, the two concepts are not distinguished and the simultaneous reduction is called
parallel (in [33] for instance). We follow this second tradition.

176 B. Accattoli

from the diamond property for ⇒. Clearly, one has →β⊆⇒⊆→∗
β, which implies

→∗
β⊆⇒∗⊆→∗

β , i.e. →∗
β=⇒∗. A straightforward induction shows that the dia-

mond property of ⇒ implies the diamond property of ⇒∗, which is nothing but
confluence of →β.

The first part of the confluence proof uses structural induction over terms with
binders, and it is related to the cube property for residuals, so we shall focus
on it. The second part is based on the so-called strip lemma, it mostly involves
first-order reasoning, and its formalization in Abella does not differ much from
the other developments of confluence in the literature (for instance [17,27]), and
thus it will be omitted2.

The proof of the diamond property requires a substitution lemma:

Lemma 1 (substitutivity of ⇒). If t ⇒ t′ and u ⇒ u′ then t{x/u} ⇒
t′{x/u′}.
Proof. By induction on t ⇒ t′. Two base cases (rule ⇒-var): x ⇒ x, which gives
x{x/u} = u ⇒ u′ = x{x/u′}, and y ⇒ y (with y �= x) for which y{x/u} = y ⇒
y = y{x/u′}. The cases ⇒-λ and ⇒-@ follow immediately from the i.h.. The
case ⇒-β: if t = (λy.s)v and t′ = s′{y/v′} then by i.h. s{x/u} ⇒ s′{x/u′}
and v{x/u} ⇒ v′{x/u′}, then by ⇒-β we get r = (λy.s{x/u})v{x/u} ⇒
s′{x/u′}{y/v′{x/u′}} = r′. We conclude, since r = t{x/u} and r′ = t′{x/u′}
Then (both proofs are formalized in Section 3, Figure 5, page 182):

Theorem 1 (diamond property of ⇒). s2 ⇐ s ⇒ s1 implies ∃t s.t. s1 ⇒
t ⇐ s2.

Proof. By induction on s ⇒ s1 and case analysis of s ⇒ s2, using Lemma 1. If
s = x ⇒ x = s1 then s2 can only be x and there is nothing to prove. The⇒-λ case
follows by the i.h.. Both⇒-@ and⇒-β cases have two subcases, corresponding to
s ⇒ s2 being⇒-@ or⇒-β. In every subcase one has to use the i.h., and whenever
one of the hypothesis is ⇒-β it is necessary to apply Lemma 1.

Residuals. The diamond property of ⇒ can be strengthened with information
about which redexes are reduced. First, one needs to introduce a mechanism for
tracing redexes through reductions.

Let us stress that we need to trace sets of redexes. Indeed, consider the fol-
lowing reductions, where I = λz.z:

(λx.xx) (II) →β (II)(II) (λx.y) (II) →β y

The redex II may be duplicated, getting two residuals in the reduct, or erased,
having no residual. By the way, this is also the reason why β-reduction does not
enjoy the diamond property.

2 The second part has nonetheless been formalized in Abella, it can be found in [1].

Proof Pearl 177

Consider a term s and two sets of redexes R and P in s. If s ⇒ v by reducing
the redexes in P then there must be a way of describing what is left in v of the
redexes in R after the reduction of P , i.e. of describing the set of residuals of R
after P , noted R/P .

Now, assume to know how to define and trace residuals, and to have a refined

notion of reduction s
R⇒ v, which reduces the set R of redexes in s. The diamond

property enriched with residuals—usually called the parallel moves property—
is in Fig. 1.c. The refinement essentially says that residuals allow to close the
diagram in a minimal way3.

The point is now how to define residuals and their reduction. Huet uses a
brillant method, but unfortunately in [17] his idea does not shine as it could,
because of too many technical details. One of the aims of this paper is to bring
to the fore the elegance of Huet’s approach.

First of all, one needs to represent sets of redexes. This can easily be done
introducing a new constructor (λx.s)v for marked redexes and say that a set of
redexes R in a term t is the term with marks T obtained from t by marking the
redexes in R. So we switch to the following grammar of marked terms:

R ::= x | λx.R | RR | (λx.R)R

For instance the four possible sets of redexes of (λx.(II))I are:

(λx.(II))I (λx.(II))I (λx.(II))I (λx.(II))I

In [17] the marks are on applications, which may not be redexes. Marking
applications requires a notion of well-marked term (regular terms in [17])
which comes with various annoying complications. The choice of marking
redexes is our first simplification (which is standard, we are not claiming origi-
nality).

Huet’s contribution is the definition of residuals. For a marked redex R let its
support be the λ-term obtained by removing all underlinings. Given a term t we
want to define R/P , the residuals of the redexes in the set R after the reduction
of another set P of redexes of t. Note that both R and P are terms, and that
they share the same support t. A first step towards the definition of R/P is to
forget t and consider R, which is t plus the information about the redexes we
want to track. The idea is to see R/P simply as the target R′ of a reduction step

R
P⇒ R′. Of course, now the point is how to define R

P⇒ R′. What is particularly
nice is that it can be defined by a simple structural induction over R, exploiting
the fact that R and P have the same support:

3 This minimality can be stated mathematically as the existence of pushouts in a
certain category of reductions sequences, but its precise formulation requires to in-
troduce permutation equivalence, which is beyond the scope of this paper.

178 B. Accattoli

x
x⇒ x

R
P⇒ R′

λx.R
λx.P⇒ λx.R′

R
P⇒ R′ S

Q⇒ S′

RS
PQ⇒ R′S′

R
P⇒ R′ S

Q⇒ S′

(λx.R)S
(λx.P)Q⇒ (λx.R′)S′

R
P⇒ R′ S

Q⇒ S′

(λx.R)S
(λx.P) Q⇒ R′{x/S′}

R
P⇒ R′ S

Q⇒ S′

(λx.R)S
(λx.P)Q⇒ R′{x/S′}

An example: if R = (λx.xx) (II) and P = (λx.xx) (II) then R/P is the marked

term R′ = (II)(II), because one easily derives:

(λx.xx) (II)
(λx.xx) (II)⇒ (II)(II)

Now, we have all the ingredients to prove the parallel moves property. However,
a stronger property—the cube property, due to Jean-Jacques Lévy [20,4]—can
now be expressed. Note that in Fig. 1.c the starting term is a λ-term s. Observe
that any λ-term s is a marked term: it represents the empty set of redexes of s.
By simply replacing s with a generic set of redexes, i.e. a marked term Q, we get
the cube property (see Fig. 1.d). The cube enriches the parallel moves property
with a sort of contextual coherence: the two sides of the diagram give the same
term and act in the same way on any other set of redexes in the starting term.

By repeating Huet’s development in Abella and then analyzing the structure
of the formal proof we realized that the cube property can be proved exactly
as the diamond property of ⇒. One needs to first prove the following lemma
(called commutation lemma in [17]):

Lemma 2 (substitutivity of
P⇒). If R

P⇒ R′ and S
Q⇒ S′ then

R{x/S} P{x/Q}⇒ R′{x/S′}.

The proof is a simple induction on R
P⇒ R′ (analogously to Lemma 1). Then

one gets4:

Theorem 2 (cube property of
P⇒). Q′ P⇐ Q

R⇒ Q′′ implies ∃S s.t. Q′ R/P⇒
S

P/R⇐ Q′′.

The proof is by induction on Q
P⇒ Q′ and case analysis of Q

R⇒ Q′′, using Lemma
2 (their formalization is in the last page, after the bibliography).

The prism property. In [17] Huet argues that the cube property follows from
a more primitive property, the prism property. We need a definition: given two

4 The more accurate but less readable statement is: Q′ P⇐ Q
R⇒ Q′′ implies ∃S,R′, P ′

s.t. P
R⇒ P ′, R P⇒ R′, and Q′ R′⇒ S

P ′⇐ Q′′.

Proof Pearl 179

�

�

�

�

x ≤ x
R ≤ R′

λx.R ≤ λx.R′
R ≤ R′ S ≤ S′

RS ≤ R′S′

R ≤ R′ S ≤ S′

(λx.R)S ≤ (λx.R′)S′
R ≤ R′ S ≤ S′

(λx.R)S ≤ (λx.R′)S′

x∪x = x
R∪P = Q S∪T = U

RS∪PT = QU

R∪P = Q S∪T = U

(λx.R)S∪(λx.P)T = (λx.Q)U

R∪P = Q

λx.R∪λx.P = λx.Q

R∪P = Q S∪T = U

(λx.R)S∪(λx.P)T = (λx.Q)U

R∪P = Q S∪T = U

(λx.R)S∪(λx.P)T = (λx.Q)U

Fig. 2. The order (≤) and the union operation (∪) for sets of redexes/marked terms

a) Prism 1: if P ≤ R b) Prism 2: if P ≤ R c) Prism 1-2: if P ≤ R d) Prism-Cube:

Q Q′

Q′′

P

R
R/P

Q Q′

Q′′

P

R
R/P

Q Q′

Q′′

P

R
R/P

Q Q′

Q′′ S

P

R

P/R

R/P

R∪P

Fig. 3. Prism diagrams

marked terms R and S with the same support, let R ≤ S hold if S has all the
marks in R and possibly more (see Fig. 2 for an inductive definition). Then the
prism property is given by the two implications in Fig. 3.a-b. The idea is that
the prism gives one half of the cube property, which then follows by a symmetry
argument (actually one needs only Fig.3.a).

By looking closely at the formalized proofs we realized that both parts of the
prism property can be proved by induction on P ≤ R. So that it should rather
be stated as in Fig.3.c. The point is that the cube property essentially follows
from the same induction.

Let us clarify this point. Given marked redexes R and S sharing the same
support, let R∪S be the marked term with all the marks of R and all the marks
of S (see Fig. 2). If R ≤ S then there is P s.t. R ∪ P = S. So doing induction
on R ≤ S is essentially equivalent to inducting on R ∪ P . The cube property in
Fig. 1.d can be proved by induction on R ∪ P . Therefore, the same induction
also proves the diagram in Fig. 3.d, which puts together the prism and the cube

property. Last, induction on R ∪ P can be replaced by induction over Q
P⇒ Q′

and case analysis of Q
R⇒ Q′′. We then get:

Theorem 3 (Prism-cube property of
P⇒). Q′ P⇐ Q

R⇒ Q′′ implies ∃S s.t.

Q′ R/P⇒ S
P/R⇐ Q′′ and Q

R∪P⇒ S.

180 B. Accattoli

In the theory of abstract residuals systems [34] (Chapter 8.7) the cube property
is one of the axioms while the prism property (there called triangle property) is
not required to hold, and in fact there are examples of residual systems where
it fails ([34], 8.7.29, page 440, or the rewriting system obtained orienting the
associativity rule, see also [22]).

As for the cube property, it is possible to refine the diamond property into
the prism-diamond property: if s2 ⇐ s ⇒ s1 then ∃t s.t. s1 ⇒ t ⇐ s2 and also
s ⇒ t. Actually, it is this enriched property—proved exactly as the diamond
property—that we have formalized in Abella.

3 The Diamond and Cube Properties, Formally in Abella

Abella. Abella is an interactive theorem prover developed by Andrew Gacek [9,8],
and based on the logic G developed by Gacek, Miller, and Nadathur [13,12,11].
Abella uses the higher-order abstract syntax (HOAS) approach to binders [7,23]
and it is provided with a nominal quantifier ∇ (nabla) [13,12,11,24,10,2] (which
has a subtle proof theory that shall not be treated here). Being based on HOAS,
Abella provides a primitive handling of α-equivalence and capture-avoiding sub-
stitution. By exploting ∇, Abella is also able to mix inductive and co-inductive
reasoning.

Many domains in which Abella has been used involve reasoning about typing
judgements. In order to facilitate the treatment of such judgements, a second
logic is defined within Abella. This second logic, a small intuitionistic specifica-
tion logic, can be used to directly treat a range of typing judgments; this is what
is sometimes called the two-levels approach [14]. A key property is that the spec-
ification logic satisfies cut-elimination. This fact allows to use cut-elimination as
a tactic, and derive substitution lemmas for free. For instance, subject-reduction
proofs can often be written very cleanly.

If one uses Abella to reason on specifications that do not involve typing judge-
ments, then the built-in specification logic is not needed. For example, many
properties of the untyped π-calculus have been proved using ∇, induction, and
co-induction, without using the two-level logic architecture of Abella [25]. Since
our subject here is the untyped λ-calculus, we shall similarly find no need for
Abella’s second level of logic.

λ-terms. The encoding of λ-terms we use is standard (for HOAS). The encoding
of marked terms extends the encoding of λ-terms (whose constructors are now
renamed mabs and mapp) with mredex R S, which represents the marked redex
(λx.R)S. The two sets of terms have type tm and mtm (standing for term and
marked term) and are in Fig. 4.

There is no explicit constructor for variables. This point is a bit delicate.
Let us try to explain it. The free variables are handled by the nabla quantifier
(see the example in the next paragraph). The bound variables are provided by
the HOAS-approach to binders, which codes binders as functions from terms
to terms. For instance the term λx.xx is represented as abs x\ app x x, i.e.

Proof Pearl 181

kind tm type.
type app tm -> tm -> tm.
type abs (tm -> tm) -> tm.

kind mtm type.
type mapp mtm -> mtm -> mtm.
type mabs (mtm -> mtm) -> mtm.
type mredex (mtm -> mtm) -> mtm -> mtm.

Fig. 4. Definition of λ-terms and marked λ-terms in Abella

it is obtained by applying the abs constructor to the function x �→ app x x

(which maps the generic term x to the term app x x), coded in Abella with
x\ app x x. In particular, mabs M and mredex M N are both of type mtm, but
their subexpression M is not a term of type mtm, but rather a term of type
mtm->mtm.

Finally, given a β-redex app (abs M) N representing (λx.M)N , the reduct
M{x/N} is denoted by M N, i.e. the application of the function M to N (application
is given by juxtaposition). The user can forget any trouble with α-equivalence
and substitution: Abella takes care of them.

An example. Suppose that we want to write the predicate tm M which isolates
terms without marked redexes in the larger set of marked terms. In Abella it
can be written as follows:

Define tm : mtm -> prop by

nabla x, tm x;

tm (mabs M) := nabla x, tm (M x);

tm (mapp M N) := tm M /\ tm N.

It corresponds exactly to the common way of defining λ-terms. The first line
reads: if x is a fresh variable then x is a term. The second line: mabs M is a
term if given a fresh variable x the term obtained by applying the function M to
x is a term. Informally, one would simply ask that M is a term. What we used
is nothing but its HOAS formulation, which has to adapt the informal approach
because M itself is not of type mtm (but mtm->mtm). The third line: mapp M N is
a term if both M and N are terms.

Prism-diamond property. Figure 5 contains the development of the prism-
diamond property, where parallel reduction is the predicate pred.

Look at the second and the fourth cases of the definition of pred. There, T
and T’ are functions representing the binders associated to the corresponding
abstractions. In the hypothesis of the two rules they are applied to x, in order
to get a term. Moreover, the fourth case contains T’ U’, the application of the
function T’ to U’: it is where β-reduction and substitution take place.

The substitution lemma follows, proved by simple induction on T ⇒ T ′. Note
that T is assumed to be a function, since in the conclusion we want to substitute
U in T (and U’ in T’). This is why the first assumption contains (T x), and x is
bound by ∇ (nabla). The commands induction on 1, intros, and case H1 are
the Abella code to start an induction on the first hypothesis. Then every line is

182 B. Accattoli

Define pred : tm -> tm -> prop by
nabla x, pred x x;
pred (abs T) (abs T’) := nabla x, pred (T x) (T’ x);
pred (app T U) (app T’ U’) := pred T T’ /\ pred U U’;
pred (app (abs T) U) (T’ U’) := nabla x, pred (T x) (T’ x) /\ pred U U’.

Theorem pred_sub : forall T T’ U U’, nabla x,
pred (T x) (T’ x) -> pred U U’ -> pred (T U) (T’ U’).
induction on 1. intros. case H1.

search.
search.
apply IH to H3 H2. search.
apply IH to H3 H2. apply IH to H4 H2. search.
apply IH to H3 H2. apply IH to H4 H2. search.

Theorem prism-diamond : forall T U1 U2,
pred T U1 -> pred T U2 -> exists V, pred U1 V /\ pred U2 V /\ pred T V.
induction on 1. intros. case H1.

case H2. search.
case H2. apply IH to H3 H4. search.
case H2.

apply IH to H3 H5. apply IH to H4 H6. search.
case H3. apply IH to H4 H6. apply IH to H7 H5.

apply pred_sub to H12 H9. search.
case H2.

case H5. apply IH to H3 H7. apply IH to H4 H6.
apply pred_sub to H8 H11. search.

apply IH to H3 H5. apply IH to H4 H6. apply pred_sub to H7 H10.
apply pred_sub to H8 H11. search.

Fig. 5. Abella development of the prism-diamond property for t ⇒ t′ (called
pred T T’)

a case of the induction. The search tactic attempts to prove the current goal by
an automatic simple search. Clearly, apply IH applies the inductive hypothesis.

The diamond property is proved by induction on the first hypothesis and case
analysis of the second (note that each subcase starts with case H2). The proof
uses only the i.h. and the substitution lemma, and it is the same proof which
appears in [27], which also contains the only complete proof of confluence for
λ-calculus based on HOAS of which we are aware.

Prism-cube property. The development for the prism-cube property is in the last

page, after the bibliography, where R
P⇒ R′ is represented with res R P R’.

As we explained in Section 2 it follows exactly the same pattern used for the
diamond property (plus the additional definition for the union of marked terms).
The third component (R’ S’) of the last two cases defining res is where β-
reduction and substitution are used.

Beyond Huet’s original paper [17], the cube property has also been formalized
in [31,35]. Our development is the first one using HOAS, and it is sensibly simpler
and shorter than the others. Indeed, it fits—in full—into one single page. We
believe that this is quite remarkable.

Proof Pearl 183

4 Beyond the Pearl

This section contains a few observations and variations over our developments,
others can be found in [1].

Confluence by developments. The (complete) development t◦ of a term t is the
result of the parallel step which reduces all the redexes in t. The development t◦

can easily be described by induction on t, as follows:

x◦ = x (tu)◦ = t◦u◦ if t �= λx.t′

(λx.t)◦ = λx.t◦ ((λx.t′)u)◦ = t′◦{x/u◦}
Developments enjoy the following property, which is a sort of maximal prism
property: if t ⇒ u then t ⇒ t◦ and u ⇒ t◦. By specializing the prism-diamond
property to complete developments, one gets the following development property:
s2 ⇐ s ⇒ s1 implies s1 ⇒ s◦ ⇐ s2 and s ⇒ s◦.

The proof of confluence by developments consists in showing the diamond
property by proving the development property. This approach is dual to the use
of residuals. Indeed, developments give a sort of maximum closure of any span
u2 ← t → u1, while residuals give the minimum.

The development property can be proved in Abella essentially as the prism-
diamond property (see [1] for details). The formal proof (2 lemmas) is a sensible
simplification of the one in Abella by Randy Pollack (18 lemmas), or of the
similar one done in Twelf by Dan Licata. They can be found on the websites
of the respective proof assistants, and both are based on Takahashi’s proof [33]
(see also [30]).

Using the specification logic. We now describe the impact of the specification
logic provided by Abella on our developments. Let us come back to the toy
tm predicate of Section 3, which isolates terms among marked terms. At the
specification level it takes the following form (the syntax of the specification
level is different, an explanation follows):

tm (mabs R) :- pi x\ tm x => tm (R x).

tm (mapp M N) :- tm M, tm N.

where pi x\ means ∀x, and tm M, tm N stays for tm M and tm N. There are
two main differences. The first is that there is no case for free variables. This is
due to the fact that ∇ is not in the weaker specification logic. It means that we
can only represent bound variables, i.e. only closed terms. This fact induces the
second difference: the first line of the definition says that for proving that abs R

is a term we need to prove that R x is a term under the assumption that x is a
term. This new under the assumption part has a consequence at the reasoning
level: it forces to annotate every use of a predicate involving binders with a
context, i.e. the set of current assumptions under which the predicate holds.
Such contexts are what allows to deal with open terms in this weaker setting
without nabla. The idea is that to prove tm (abs R) we now need to be able to

184 B. Accattoli

prove the judgement tm x |- tm (R x) (where |- is the concrete notation for
the turnstile �), i.e. tm (R x) in the context of assumptions tm x.

The presence of contexts usually requires to prove some properties about
them, to introduce relations between contexts, and to generalize the statements
of lemmas and theorems. In [1] we also recast our developments at the speci-
fication level. The structure of the proofs is the same, but some complications
(i.e. additional definitions and lemmas) about contexts arise. Such complications
are typically raised by statements having more than one predicate on the same
term: the contexts of these predicates have to be related because they refer to
the same binding structure. Indeed, the prism-diamond property (which uses
only ⇒) requires less reasoning on contexts than the development and prism-
cube properties (both using two predicates); this is also why in [27] worlds (the
analogous of contexts in Twelf) do not require much attention, while they do
require it in the proof of the development property by Dan Licata.

One of the aims of this paper is to show that in untyped frameworks the
combined use of ∇ and HOAS gets formalizations which are extremely faithful
to common pen-and-paper reasoning. Some of the examples dealing with the
untyped λ-calculus on Abella website have been lifted from the specification
to the reasoning logic, getting quite simpler and more readable formalizations,
see [1]. It has to be said, however, that there are some untyped specifications
that are of an intrinsic closed nature. For instance, the examples equivalence
of terms based on paths and determinism of translation between HOAS and de
Bruijn representations on the Abella website do not lift in a natural way to the
reasoning level.

Substitution lemmas. In our developments we prove explicitly substitution lem-

mas for ⇒ and
P⇒. One of the features of the specification logic is that it allows

to get substitution lemmas for free. One would then expect that switching to
the specification logic such lemmas disappear, and the formalizations get even
shorter. Interestingly, this is not the case. Let us focus on ⇒, which is simpler.
The clause involving abstractions is:

pred (abs U) (abs V) :- pi x\ pred x x => pred (U x) (V x).

This implies that the contexts for pred contains assumptions of the form

pred x x. The substitution lemma provided by Abella then says that if t ⇒ t′

then t{x/u} ⇒ t′{x/u}. This is not Lemma 1, because the second term should

be t′{x/u′} (with u ⇒ u′). But the assumption pred x x forces u′ = u. Unfor-

tunately, this simpler lemma cannot be used to prove the diamond property. It

seems that it is enough to define pred as follows:

pred (abs U) (abs V) :- pi x\ pi y\ pred x y => pred (U x) (V y).

One gets indeed the right substitution lemma. But now it is necessary to prove
the reflexivity of pred (which before followed implicitly by the definition), which
is non-trivial with assumptions of the form pred x y.

Proof Pearl 185

Summing up, the substitution lemmas for free provided by the specification
level do not help in any way in the development under study.

Acknowledgements. To Dale Miller, who supervised me, encouraged me and
helped me all along this work. To Kaustuv Chaudhuri and David Baelde for
help and discussions about HOAS and Abella. To Fabien Renaud, Stéphane
Zimmermann, and the anonymous reviewers for suggesting useful improvements.
This work was partially supported by the Qatar National Research Fund under
grant NPRP 09-1107-1-168.

References

1. Accattoli, B.: Sources,
https://sites.google.com/site/beniaminoaccattoli/residuals

2. Baelde, D.: On the expressivity of minimal generic quantification. Electr. Notes
Theor. Comput. Sci. 228, 3–19 (2009)

3. Barendregt, H.P.: The Lambda Calculus – Its Syntax and Semantics, vol. 103.
North-Holland (1984)

4. Berry, G., Lévy, J.J.: Minimal and optimal computations of recursive programs.
In: POPL, pp. 215–226 (1977)

5. Brotherston, J., Vestergaard, R.: A formalised first-order confluence proof for the
λ-calculus using one-sorted variable names. Inf. Comput. 183(2), 212–244 (2003)

6. Dunfield, J., Pientka, B.: Beluga: A Framework for Programming and Reasoning
with Deductive Systems (System Description). In: Giesl, J., Hähnle, R. (eds.)
IJCAR 2010. LNCS, vol. 6173, pp. 15–21. Springer, Heidelberg (2010)

7. Elliott, C., Pfenning, F.: Higher-order abstract syntax. In: PLDI, pp. 199–208
(1988)

8. Gacek, A.: The Abella Interactive Theorem Prover (System Description). In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 154–161. Springer, Heidelberg (2008)

9. Gacek, A.: A framework for specifying, prototyping, and reasoning about compu-
tational systems. Ph.D. thesis, University of Minnesota (September 2009)

10. Gacek, A.: Relating nominal and higher-order abstract syntax specifications. In:
PPDP 2010, pp. 177–186. ACM (July 2010)

11. Gacek, A., Miller, D., Nadathur, G.: Combining generic judgments with recursive
definitions. In: LICS, pp. 33–44 (2008)

12. Gacek, A., Miller, D., Nadathur, G.: Reasoning in Abella about structural oper-
ational semantics specifications. ENTCS 228, 85–100 (2009)

13. Gacek, A., Miller, D., Nadathur, G.: Nominal abstraction. Inf. Comput. 209(1),
48–73 (2011)

14. Gacek, A., Miller, D., Nadathur, G.: A two-level logic approach to reasoning about
computations. J. Autom. Reasoning 49(2), 241–273 (2012)

15. Glauert, J.R.W., Khasidashvili, Z.: Relating conflict-free stable transition and
event models via redex families. Theor. Comput. Sci. 286(1), 65–95 (2002)

16. Homeier, P.V.: A proof of the Church-Rosser theorem for the λ-calculus in higher
order logic. In: TPHOLs 2001: Supplemental Proceedings, pp. 207–222 (2001)

17. Huet, G.P.: Residual theory in λ-calculus: A formal development. J. Funct. Pro-
gram. 4(3), 371–394 (1994)

https://sites.google.com/site/beniaminoaccattoli/residuals

186 B. Accattoli

18. Huet, G.P., Lévy, J.J.: Computations in orthogonal rewriting systems, I. In: Com-
putational Logic - Essays in Honor of Alan Robinson, pp. 395–414 (1991)

19. Huet, G.P., Lévy, J.J.: Computations in orthogonal rewriting systems, II. In:
Computational Logic - Essays in Honor of Alan Robinson, pp. 415–443 (1991)

20. Lévy, J.J.: Réductions correctes et optimales dans le lambda-calcul. Thése d’Etat,
Univ. Paris VII, France (1978)

21. McKinna, J., Pollack, R.: Pure Type Systems Formalized. In: Bezem, M., Groote,
J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 289–305. Springer, Heidelberg (1993)

22. Melliès, P.-A.: Axiomatic Rewriting Theory VI Residual Theory Revisited. In:
Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 24–50. Springer, Heidelberg (2002)

23. Miller, D., Nadathur, G.: A logic programming approach to manipulating formulas
and programs. In: SLP, pp. 379–388 (1987)

24. Miller, D., Tiu, A.: A proof theory for generic judgments. ACM Trans. Comput.
Log. 6(4), 749–783 (2005)

25. Miller, D., Tiu, A.: Proof search specifications of bisimulation and modal logics
for the π-calculus. ACM Trans. Comput. Log. 11(2) (2010)

26. Nipkow, T.: More Church-Rosser proofs (in Isabelle/HOL). Journal of Automated
Reasoning, 733–747 (1996)

27. Pfenning, F.: A proof of the Church-Rosser theorem and its representation in a log-
ical framework. Tech. Rep. CMU-CS-92-186, Carnegie Mellon University (1992)

28. Pfenning, F., Schürmann, C.: System Description: Twelf - A Meta-Logical Frame-
work for Deductive Systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI),
vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

29. Pientka, B.: Beluga: Programming with Dependent Types, Contextual Data, and
Contexts. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS,
vol. 6009, pp. 1–12. Springer, Heidelberg (2010)

30. Pollack, R.: Polishing up the Tait-Martin-Löf proof of the Church-Rosser theorem
(1995)

31. Rasmussen, O.: The Church-Rosser theorem in Isabelle: a proof porting experi-
ment. Tech. Rep. 164, University of Cambridge (1995)

32. Shankar, N.: A mechanical proof of the Church-Rosser theorem. J. ACM 35(3),
475–522 (1988)

33. Takahashi, M.: Parallel reductions in λ-calculus. Inf. Comput. 118(1), 120–127
(1995)

34. Terese: Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press (2003)

35. Vestergaard, R.: The Primitive Proof Theory of the lambda-Calculus. Ph.D. the-
sis, Heriot-Watt University, Edinburgh, Scotland (2003)

Proof Pearl 187

Define res : mtm -> mtm -> mtm -> prop by
nabla x, res x x x;
res (mabs R) (mabs P) (mabs R’) := nabla x, res (R x) (P x) (R’ x);
res (mapp R S) (mapp P Q) (mapp R’ S’) := res R P R’ /\ res S Q S’;
res (mredex R S) (mapp (mabs P) Q) (mredex R’ S’) :=

nabla x, res (R x) (P x) (R’ x) /\ res S Q S’;
res (mapp (mabs R) S) (mredex P Q) (R’ S’) :=

nabla x, res (R x) (P x) (R’ x) /\ res S Q S’;
res (mredex R S) (mredex P Q) (R’ S’) :=

nabla x, res (R x) (P x) (R’ x) /\ res S Q S’.

Define res_union : mtm -> mtm -> mtm -> prop by
nabla x, res_union x x x;
res_union (mabs R) (mabs P) (mabs Q) := nabla x, res_union (R x) (P x) (Q x);
res_union (mapp R S) (mapp P T) (mapp Q U) :=

res_union R P Q /\ res_union S T U;
res_union (mredex R S) (mredex P T) (mredex Q U) :=

nabla x, res_union (R x) (P x) (Q x) /\ res_union S T U;
res_union (mapp (mabs R) S) (mredex P T) (mredex Q U) :=

nabla x, res_union (R x) (P x) (Q x) /\ res_union S T U;
res_union (mredex R S) (mapp (mabs P) T) (mredex Q U) :=

nabla x, res_union (R x) (P x) (Q x) /\ res_union S T U.

Theorem res_subst : forall R P R’ S Q S’, nabla x,
res (R x) (P x) (R’ x) -> res S Q S’ -> res (R S) (P Q) (R’ S’).
induction on 1. intros. case H1.

search.
search.
apply IH to H3 H2. search.
apply IH to H3 H2. apply IH to H4 H2. search.
apply IH to H3 H2. apply IH to H4 H2. search.
apply IH to H3 H2. apply IH to H4 H2. search.
apply IH to H3 H2. apply IH to H4 H2. search.

Theorem prism_cube : forall Q P R Q’ Q’’,
res Q R Q’’ -> res Q P Q’ -> exists P’ R’ RunionP S,
res P R P’ /\ res R P R’ /\ res Q’ R’ S /\
res Q’’ P’ S /\ res Q RunionP S /\ res_union P R RunionP.
induction on 1. intros. case H1.

case H2. search.
case H2. apply IH to H3 H4. search.
case H2.

apply IH to H3 H5. apply IH to H4 H6. search.
case H3. apply IH to H4 H6. apply IH to H7 H5.

apply res_subst to H16 H10. search.
case H2.

apply IH to H3 H5. apply IH to H4 H6. search.
apply IH to H3 H5. apply IH to H4 H6. apply res_subst to H9 H15. search.

case H2.
case H5. apply IH to H3 H7. apply IH to H4 H6.

apply res_subst to H11 H17. search.
apply IH to H3 H5. apply IH to H4 H6. apply res_subst to H9 H15.

apply res_subst to H10 H16. search.
case H2.

apply IH to H3 H5. apply IH to H4 H6. apply res_subst to H10 H16. search.
apply IH to H3 H5. apply IH to H4 H6. apply res_subst to H9 H15.

apply res_subst to H10 H16. search.

A String of Pearls: Proofs of Fermat’s Little Theorem

Hing-Lun Chan1 and Michael Norrish2

1 Australian National University
joseph.chan@anu.edu.au

2 Canberra Research Lab, NICTA�;
also, Australian National University

Michael.Norrish@nicta.com.au

Abstract. We discuss mechanised proofs of Fermat’s Little Theorem in a variety
of styles, focusing in particular on an elegant combinatorial “necklace” proof that
has not been mechanised previously. What is elegant in prose turns out to be
long-winded mechanically, and so we examine the effect of explicitly appealing
to group theory. This has pleasant consequences both for the necklace proof, and
also for the direct number-theoretic approach.

1 Introduction

Fermat’s Little Theorem is a famous result in basic number theory. When p is prime,
then

ap ≡ a (mod p) for any natural number a.

Though resources like Wikipedia [15] provide an extensive range of proofs of this result,
it seems that standard practice in interactive proof assistants (e.g. Hurd et al. [9]) is to
use Euler’s generalisation, which is number-theoretic. There is good reason for this: the
number theory required is actually quite simple, making it easy to establish the result
without needing a great deal of background theory. This paper shows, however, how a
number of other proofs, some with interesting ideas, can be performed mechanically.

The simplest such proof (the necklace) is based on combinatorics over lists. It is
relatively straightforward to mechanise (we use the HOL4 proof assistant [13], which
has built-in support for lists), but aspects of the proof become smoother when it is
rephrased in the language of group theory. This required background does not represent
a particularly onerous burden for mechanisation. Indeed, the more group theory one has
to hand, the more polished the proof becomes.

We also examine the effect of using group theory in number-theoretic approaches.

Overview. The rest of the paper is structured as follows. In Sections 2 and 3, we de-
scribe both the standard number-theoretic proof, and Golomb’s combinatorial necklace
proof [4], and their mechanisation. In Section 4, we discuss how the required (rather
basic) group theory is mechanised, before showing how this theory can be applied to

� NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 188–207, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A String of Pearls: Proofs of Fermat’s Little Theorem 189

Necklaces Groups Arithmetic

Cycles,
Similarity Group Actions

Cosets,
Subgroups

Primes,
Modulo Arithmetic

Orbits, Stabilizers a|G| = e (§6)
Multiplicative
Groups on N

Necklace (§2) Action (§5) Euler (§6) Group (§6) Number (§3)

Fig. 1. Theory dependencies for proofs of Fermat’s Little Theorem. Double-lined boxes indicate
significant results discussed in the corresponding section of the paper. The leftmost Necklace
and rightmost Number are direct proofs; others use group theory. Combinatoric results (in light
gray) are of ap ≡ a (mod p), which is equivalent (when 0 < a < p) to number-theoretic results
(in dark gray) of ap−1 ≡ 1 (mod p). Euler is aϕ(n) ≡ 1 (mod n).

the necklace proof (in Section 5), and to the number-theoretic proof (in Section 6). We
conclude in Section 7, including a comparison of the different approaches in terms of
their complexity.

Figure 1 gives a graphical summary of the logical dependencies underlying all of the
proofs we discuss. The graph falls into three parts:

– The leftmost route shows Golomb’s necklace proof, a combinatorial proof based
on rotations of lists.

– The rightmost route shows an elementary number-theoretic proof commonly found
in textbooks.

– The central paths are of various group-theoretic proofs. The first path from the left
is the application of group theory (via the notions of action, orbit, and stabilizer)
to the necklace proof. The others show the proof of the group-theoretic analogue
of Fermat’s Little Theorem, followed by the derivation of specific results in the
domain of natural numbers.

HOL4 Notation and Theorems. All statements appearing with a turnstile (�) are
HOL4 theorems, automatically pretty-printed to LATEX from the relevant theory in the
HOL4 development. Notation specific to this paper is explained as it is introduced.
Otherwise, HOL4 supports a notation that is a generally pleasant combination of quan-
tifiers (∀, ∃) and functional programming (λ for function abstraction, juxtaposition for
function application).

Lists are written between square brackets, e.g.,[1; 2]. The length of a list � is writ-
ten |�|. The concatenation of �1 and �2 is written �1 ++ �2 . Sets are written between
braces, also allowing comprehensions such as {x | x < 6}. Sets also support stan-
dard operations such as cardinality (also written with vertical bars: |{3; 5}| = 2),
union (∪), intersection (∩), and difference (\). We write IMAGE f s for the im-
age of the set s under function f , and BIJ f s1 s2 means that function f is a bijection

190 H.L. Chan and M. Norrish

between sets s1 and s2. The term R equiv_on s means that R is an equivalence
relation on the set s, and partition R s denotes the set of subsets of s that are
partitions with respect to an equivalence relation R.

Our Contribution. As already noted, Fermat’s Little Theorem has been mechanised a
number of times before, e.g., in Coq [10], ACL2 [12] and HOL Light [6]. The minimal
group theory we used and mechanised is also very standard.1 Our contribution is the
mechanisation of the necklace proof, in direct and group-theoretic styles (we believe
both to be entirely novel). We also compare these proofs with the standard number-
theoretic approaches.

Availability. HOL4 proof scripts can be found at http://bitbucket.org/
jhlchan/hol/src. The linearised scripts (discussed in Section 7) are those be-
ginning with prefix All in the fermat directory. Proofs as they were developed (in
various separate theories) are laid out in sub-directories below fermat.

2 The Necklace Proof

Leonard Eugene Dickson, in his authoritative treatise History of the Theory of Num-
bers [3, Chapter 3], thoroughly documented all known proofs of this Fermat’s result, up
to 1919. Among them was this nice combinatorial proof by Julius Petersen in 1872:

Take p elements from q with repetitions in all ways, that is, in qp ways. The
q sets with elements all alike are not changed by a cyclic permutation of the
elements, while the remaining qp − q sets are permuted in sets of p [when p is
prime]. Hence p divides qp − q.

This idea is the basis of the Necklace proof of S. W. Golomb [4], which has since been
re-discovered or discussed by many others (e.g., Smyth [14], Rouse [11], Evans [7], and
Conrad [2]).

The necklaces of Golomb’s proof are the p elements drawn from a set of cardinality
q. Where Peterson has cyclic permutations, Golomb’s version adds the image of rotating
beads on a necklace (Figure 2).

2.1 Necklaces and Colours

Consider the set N of necklaces of length n (i.e., n beads) with a colours (i.e., a choices
for a bead’s colour). Since a bead can have any of the a colours, and there are n beads
in total, the total number of necklaces is |N | = an, or |N | = an . Of these necklaces,
the monocoloured necklaces are those with the same colour for all beads; the others are
multicoloured necklaces.

Let S (for single) denote the set of monocoloured necklaces, and M (for multiple)
denote the multi-coloured necklaces. Clearly, N = S ∪M , and S ∩M = ∅ — that is,

1 The Orbit-Stabiliser theorem has not been mechanised before in HOL, but this is a minor
contribution given the existing work in other systems such as Coq.

http://bitbucket.org/jhlchan/hol/src
http://bitbucket.org/jhlchan/hol/src

A String of Pearls: Proofs of Fermat’s Little Theorem 191

Fig. 2. Necklaces with 3 beads in 2 colours. The first and last are monocoloured necklaces. The
other multicoloured necklaces are divided into 2 parts: those with one white bead and those
with two white beads. Multicoloured necklaces in each part can cycle only among themselves.
Note that, for 3 beads, each part consists of 3 necklaces. Hence the number of multi-2-coloured
necklaces with 3 beads (which is 23 − 2 = 8− 2 = 6) is divisible by 3.

S and M are disjoint, and they form a partition of the set of necklaces N . Since there is
only 1 monocoloured necklace for each colour, the number of monocoloured necklaces
|S| is just a. Given that the two types of necklaces partition the whole set, the number
of multicoloured necklaces |M | is equal to |N |−|S| =an−a.

HOL Implementation. Let (necklace n a) be the set of necklaces of length n with
a colours. The HOL definition is

� necklace n a = {� | |�| = n ∧ set � ⊆ count a }
Our necklaces’ beads are just natural numbers, and the definition requires that the
“colours” of the necklace are simply drawn from the set (count a): the set of nat-
ural numbers less than a.

Simple properties of the set (necklace n a) readily follow from the definition:

� FINITE (necklace n a)
� |necklace n a| = an

The monocoloured and multicoloured necklaces are defined thus:

� monocoloured n a = {� | � ∈ necklace n a ∧ (� �= [] ⇒ SING (set �))}
� multicoloured n a = necklace n a \ monocoloured n a

where SING (set �) means that the set of list elements (set �) is a singleton. The
cardinality results for these sets are straightforward:

� 0 < n ⇒ |monocoloured n a| = a
� 0 < n ⇒ |multicoloured n a| = an−a

In order to show that the last expression an−a is divisible by n when length n is prime,
we need to know something more about the multicoloured necklaces, especially how
an equivalence relation involving cyclic permutations partitions the set.

2.2 Cycles

Necklaces are represented by lists of length n. Following the imagery, it is natural to
think of them as being joined from end to end. We define a cycle operation on lists:

192 H.L. Chan and M. Norrish

� cycle n � = FUNPOW (λ �. DROP 1 � ++ TAKE 1 �) n �

The expression DROP n � discards the first n elements of list �, returning whatever
remains, while TAKE n � returns the first n elements (for the empty list [], TAKE and
DROP both return []). By putting n = 1, this is chopping off the first bead, shifting it
to the other end and adding it back. Therefore DROP 1 � ++ TAKE 1 � represents
a rotation by 1 bead position. Then FUNPOW just repeats this operation n times.2 These
elementary facts about cycle follow immediately:

� cycle 0 � = � (CYCLE_0)
� cycle n (cycle m �) = cycle (n + m) � (CYCLE_ADD)

Applying cycle on a necklace results in another necklace, of the same length and
colours:

� � ∈ necklace n a ⇒ ∀ k . cycle k � ∈ necklace n a
� |cycle n �| = |�|
� set (cycle n �) = set �

As a result, cycle of a monocoloured necklace is still monocoloured, and cycle of
a multicoloured necklace is still multicoloured, as expected.

We can reason about cycles with modular arithmetic:

� � �= [] ⇒ cycle n � = cycle (n mod |�|) � (CYCLE_MOD_LENGTH)
� � �= [] ⇒ cycle m (cycle n �) = cycle ((m + n) mod |�|) �

And ultimately, a cycle can come full-circle, in multiples, or can be undone by another
cycle:

� cycle |�| � = � (CYCLE_BACK)
� cycle n � = � ⇒ ∀m. cycle (m × n) � = � (CYCLE_MULTIPLE_BACK)
� n ≤ |�| ⇒ cycle (|�|−n) (cycle n �) = � (CYCLE_INV)

Already, one can see the possible connections to group theory.

2.3 Similarity and Partitions

We shall say two necklaces �1 , �2 are similar, denoted �1 == �2 , when:

� �1 == �2 ⇐⇒ ∃n. �2 = cycle n �1

That is, �1 can cycle to �2 because they consist of the same beads in cyclic order.
The following properties of (==) follow from properties of cycle:

� � == [] ∨ [] == � ⇐⇒ � = []
� �1 == �2 ⇒ |�1 | = |�2 |
2 This definition of cycle n � using FUNPOW makes sense for all n, whereas a definition

using TAKE n and DROP n would only work when n ≤ |�|.

A String of Pearls: Proofs of Fermat’s Little Theorem 193

With a little more effort, the fact that (==) is an equivalence relation can be proved:

� � == �
� �1 == �2 ⇒ �2 == �1
� �1 == �2 ∧ �2 == �3 ⇒ �1 == �3

The key for reflexivity is CYCLE_0, for symmetry is CYCLE_INV, for transitivity is
CYCLE_ADD.
Let us denote the equivalence classes under (==) by associates:

� associates x = {y | x == y }
As (==) is an equivalence relation, the associates partition the set of necklaces.
This partitioning has a particularly simple structure when the necklace lengthn is prime.

2.4 Multicoloured Necklaces with Prime Length

First, an important result about values that “cycle back” and their greatest common
divisor:

Theorem 1. If two values m,n can cycle back, the value gcd m n can also cycle
back.

� cycle m � = � ∧ cycle n � = � ⇒ cycle (gcd m n) � = �

Proof. If n = 0, then cycle (gcd m 0) � = cycle m � = � by assumption. Other-
wise, we can use Bézout’s identity, called LINEAR_GCD in HOL library, which states that if
n �= 0, then there exist p and q such that p× n = q ×m+ gcd m n , and reason:

cycle (gcd m n) �
= cycle (gcd m n) (cycle (q × m) �) by CYCLE_MULTIPLE_BACK
= cycle (gcd m n + q × m) � by CYCLE_ADD
= cycle (p × n) � by LINEAR_GCD
= � by CYCLE_MULTIPLE_BACK

��

A distinguishing feature of monocoloured necklaces is:

Theorem 2. A necklace � is monocoloured iff cycle 1 � = �.

� 0 < n ∧ 0 < a ∧ � ∈ necklace n a ⇒
(� ∈ monocoloured n a ⇐⇒ cycle 1 � = �)

Proof. A monocoloured necklace � has all beads the same colour, so shifting 1 bead
makes no difference, hence cycle 1 � = �. Conversely, given cycle 1 � = �,
applying CYCLE_MULTIPLE_BACK, � = cycle 2 � = cycle 3 � = As
lists, head of � is the first bead, head of cycle 1 � is the second bead, head of
cycle 2 � is the third bead, etc. Since these cycle lists are all the same, and equal
lists mean equal heads, all beads have the same colour, making the necklace � mono-
coloured. &�

194 H.L. Chan and M. Norrish

We proceed to find the size of associates of multicoloured necklaces with prime
length:

Theorem 3. For multicoloured necklaces � with prime |�| = p, the cycle map from
count p to associates � is injective.

� prime p ∧ � ∈ multicoloured p a ⇒
INJ (λn. cycle n �) (count p) (associates �)

Proof. This is to show that, for all x < p and y < p,
cycle x � = cycle y � ⇒ x = y . Suppose this is not the case. Then there
are x �= y such that there is a common �′ = cycle x � = cycle y �. Note that
both necklaces �′ and � are multicoloured with same length p (Section 2.2). Without
loss of generality, assume x < y. Then y = d + x, where difference d > 0 and d < p
(since both x < p and y < p). Hence cycle d �′ = cycle d (cycle x �) =
cycle (d + x) � = cycle y � = �′. With cycle d �′ = �′, and from
CYCLE_BACK we have cycle p �′ = �′, hence cycle (gcd d p) �′ = �′ by
Theorem 1. But gcd d p = 1 for prime p, 0 < d < p. This implies the multicoloured
necklace �′ has cycle 1 �′ = �′, which is a contradiction in view of Theorem 2. &�
Theorem 4. For multicoloured necklaces � with |�| = n (prime or non-prime), the
cycle map from count n to associates � is surjective.

� � ∈ multicoloured n a ⇒ SURJ (λ k . cycle k �) (count n) (associates �)

Proof. This is because, if a necklace �′ is similar to �, there is a k such that �′ =
cycle k �. By CYCLE_MOD_LENGTH, �′ = cycle (k mod n) �, and so it is
in the range of count n . &�
Theorem 5. For multicoloured necklaces � with prime |�| = p, their associates have
size p.

� prime p ∧ � ∈ multicoloured p a ⇒ |associates �| = p

Proof. Since the cycle map is surjective in general (Theorem 4), and injective when
the necklace length is prime (Theorem 3), there is a bijection between count p and
associates � for multicoloured necklaces � when |�| = p is prime. The result fol-
lows from this bijection between finite sets. &�
This leads directly to the following mechanisation of the necklace proof of

Theorem 6. Fermat’s Little Theorem.

� prime p ⇒ p divides ap−a

Proof. For prime p, the multicoloured necklaces � ∈ multicoloured p a
are “permuted in sets of p”, as claimed by Julius Petersen (Section 2), since
|associates �| = p by Theorem 5. Recall that associates � are the equiva-
lence classes of (==) on multicoloured p a (Section 2.3). Since equivalence
classes form a partition, and here they all have the same size p, we have:

|multicoloured p a| = p× |partition (==) (multicoloured p a)|
As p is prime, 0 < p, and |multicoloured p a| = ap−a (Section 2.1). Combin-
ing these results we have p divides ap−a by definition of divides. &�

A String of Pearls: Proofs of Fermat’s Little Theorem 195

3 Direct Number-Theoretic Proof

The proof of Fermat’s Little Theorem given in most textbooks, and also that given in
various theorem-proving systems, is number-theoretic, based on properties of modulo
arithmetic. In particular, modulo prime multiplication has some special properties. The
first one, usually referred to as Euclid’s Lemma, is that a prime divides a product iff the
prime divides a factor. In terms of modulo arithmetic, this is:

� prime p ⇒ (x × y ≡ 0 (mod p) ⇐⇒ x ≡ 0 (mod p) ∨ y ≡ 0 (mod p))

Thus, left-cancellation of a non-zero factor is possible in prime modulo arithmetic:

� prime p ∧ x × y ≡ x × z (mod p) ∧ x �≡ 0 (mod p) ⇒ y ≡ z (mod p)

Definition 1. Let the residues of prime p be the non-zero numbers less than
p: {1. . . p−1}.

Take any a from the residues of p, and consider the various values of a × x mod p,
for all x also a residue of p. In HOL, this is denoted by a row operation:

Definition 2. � row p a x = a × x mod p

Theorem 7. The row products form a permutation of the residues for prime modulo.

� prime p ∧ a ∈ {1. . . p−1} ⇒ {1. . . p−1} = IMAGE (row p a) {1. . . p−1}

Proof. The IMAGE on the right-hand side is equivalent to
{a × x mod p | 1 ≤ x ∧ x < p }. The possible remainders under modulo
p are 0, 1, . . . p−1. Since a prime p has no proper factors, and both a and x are less than
p, the product a × x cannot be the prime p, nor any multiple of the prime p. Hence
the remainder, a × x mod p cannot be zero, making this result one of the residues
of p. The possible values are distinct because if a × x ≡ a × y (mod p), then
x ≡ y (mod p) by left-cancellation of non-zero a. So the right-hand side, the row
products, is just a permutation of the left-hand side, the residues of p. &�
This is the key for the number-theoretic proof of

Theorem 8. Fermat’s Little Theorem (equivalent form3)

� prime p ∧ a ∈ {1. . . p−1} ⇒ ap−1 ≡ 1 (mod p)

Proof. Consider multiplying all numbers (denoted by the symbol
∏

) from each of these
finite sets:
(1) the residues {1. . . p−1} and (2) its row products
IMAGE (row p a) {1. . . p−1}.
Clearly, the first one is a factorial:

3 To show ap ≡ a (mod p) for all a, it is sufficient to show this for 0 ≤ a < p, the possible
remainders under modulo p. The case a = 0 is trivial. The case 0 < a < p has gcd a p
= 1, since p is prime. This allows left-cancellation of non-zero a on both sides, giving the
equivalent form ap−1 ≡ 1 (mod p).

196 H.L. Chan and M. Norrish

� ∏ {1. . . p−1} = (p−1)!
For the second one, since for numbers the order of multiplication does not affect the
product, all the factors a of (row p a) (Definition 2) can be collected together, so we
have:

� prime p ∧ a ∈ {1. . . p−1} ⇒∏
(IMAGE (row p a) {1. . . p−1}) ≡ ap−1 ×(p−1)! (mod p)

As the underlying sets are the same due to permutation (Theorem 7), the two products
under modulo p are identical:

� prime p ∧ a ∈ {1. . . p−1} ⇒ (p−1)! ≡ ap−1 ×(p−1)! (mod p)

A prime p has no proper factor, and (p−1)! has of all the numbers less than p, so
(p−1)! �≡ 0 (mod p). Applying non-zero left-cancellation of modulo p multipli-
cation gives Fermat’s Little Theorem. &�

4 Group Theory

The combinatorial necklace proof and the number-theoretic proof may appear unre-
lated, but there is an underlying algebra behind both proofs, that of group theory. The
algebra gives us:

– the cycles and similarities in the necklace proof;
– the factor cancellation in the number-theoretic proof; and
– an insight, allowing a modest generalisation.

The discussion that follows is an expansion of this theme.
We mechanise the necessary theorems from group theory following an existing

mechanisation in the HOL distribution by Joe Hurd [9].4 We have a predicate Group g
on a record of four fields (the group operation (x × y), the inverse (x−1), the identity
(e) and the carrier set). We abuse notation to allow G and H to stand for the carrier sets
of groups g and h respectively:

� Group g ⇐⇒
e ∈ G ∧ (∀ x y::(G). x × y ∈ G) ∧ (∀ x::(G). x−1 ∈ G) ∧
(∀ x::(G). e× x = x) ∧ (∀ x::(G). x−1× x = e) ∧
∀ x y z::(G). x × y × z = x ×(y × z)

The double-colon notation (e.g., ∀ x y::(G). P x y) is a restriction on all the pre-
ceding bound variables (x and y here) requiring them to be in the set G.

Typical results in this mechanisation appear with the Group predicate as a side-
condition.

� Group g ⇒ ∀ x y z::(G). x × y = x × z ⇐⇒ y = z
� Group g ⇒ ∀ x y z::(G). x × y = z ⇐⇒ x = z × y−1

� Group g ⇒ ∀ x::(G). (x−1)−1 = x

4 The source code of a prior HOL mechanisation of group theory by Elsa L. Gunter [5] is not
generally available.

A String of Pearls: Proofs of Fermat’s Little Theorem 197

This is perhaps not the slickest possible presentation of abstract algebra, even within the
constraints of HOL4’s simple type theory, but it is both well-understood and sufficient
for our purposes.

Group exponentiation is defined via primitive recursion, giving us the usual
properties:

� Group g ∧ x ∈ G ⇒ x 0 = e
� Group g ∧ x ∈ G ⇒ x 1 = x
� Group g ∧ x ∈ G ⇒ xm ×n = (xm)n

� Group g ∧ x ∈ G ⇒ (xn)−1 = (x−1)n

We write h ≤ g to mean that h is a subgroup of g, and define the coset of a set X with
respect to a group element a (normally written aX) to be

� coset g X a = IMAGE (λ z . a × z) X

The cosets of a subgroup’s carrier are important because of these standard results:

Theorem 9. Subgroup cosets partition the group’s carrier set, by the following equiv-
alence relation:

� Group g ∧ h ≤ g ⇒ coset g H equiv_on G

Theorem 10. Each coset of a subgroup is in bijection with the subgroup itself.

� Group g ∧ h ≤ g ∧ a ∈ G ⇒ BIJ (λ x . a × x) H (coset g H a)

This bijection allows determination of the size of subgroup cosets:

Theorem 11. For a finite subgroup, the size of its coset equals the size of subgroup
itself:

� Group g ∧ h ≤ g ∧ a ∈ G ∧ FINITE H ⇒ |coset g H a| = |H|
Therefore the subgroup cosets partition consists of equal-size chunks, leading to La-
grange’s Identity:

� FiniteGroup g ∧ h ≤ g ⇒ |G| = |H| × |partition (coset g H) G|

and Lagrange’s Theorem on cardinality of subgroups:

� FiniteGroup g ∧ h ≤ g ⇒ |H| divides |G|

5 Group Theory Applied to the Necklace Proof

The group-theoretic version of the necklace proof requires a little more theory than the
basic development of the preceding section. We shall use the group Z+

n , which is the
additive group over the natural numbers less than n. This group’s binary operation is
addition modulo n, and its identity is zero.

198 H.L. Chan and M. Norrish

5.1 Group Actions

Definition 3. Let g be a group over a set of elements of type α, X be a set of elements
of type β, and (infix) ◦ a function of type α → β → β. The mapping (◦) is called a
group action from g to X , (written action (◦) g X), if these three conditions are
satisfied:

– Closure: a ∈ G ∧ x ∈ X ⇒ a ◦ x ∈ X
– Identity: x ∈ X ⇒ e ◦ x = x
– Composition: a, b ∈ G ∧ x ∈ X ⇒ a ◦ (b ◦ x) = (a× b) ◦ x

The HOL definition is

� action (◦) g X ⇐⇒
∀ x .

x ∈ X ⇒
(∀ a::(G). a ◦ x ∈ X) ∧ e ◦ x = x ∧
∀ a b::(G). a ◦ b ◦ x = (a × b) ◦ x

The set X above is called the target. We can picture a target point x ∈ X being acted
upon by the group elements. Alternatively, we say that point x can reach another point
a ◦ x for some a ∈ G. If a ◦ x = x, we say that the group element a leaves the point x
fixed. This leads to the following:

Definition 4. For x ∈ X , the set of target points it can reach form its orbit.

Definition 5. For x ∈ X , the set of group elements that leave it fixed form its
stabilizer.

For example, Z+
n acts on the set of necklaces of length n, with cycle being an action

from Z+
n to the necklaces. Each monocoloured necklace always cycles to itself. Thus

its orbit consists of itself only, and its stabilizer is all of the group’s carrier. For each
multicoloured necklace, cycling brings it to another (similar) multicoloured necklace.
Since |Z+

n | = n, its orbit contains at most n reachable points in the target. Generally,
more reachable points give a larger orbit, and the corresponding stabilizer is smaller. In
the extreme case when the orbit has n distinct target points, the stabilizer contains just
the group identity.

This is a hint that the sizes of orbits and stabilizers may have a relationship — an
issue we shall explore.

HOL Implementation. The HOL definitions of these concepts pick up multiple param-
eters, so that, for example, the reach relation is not simply a binary notion but has
to include explicit parameters for the action and the governing group. Similar extra
parameters are required for orbit and stabilizer definitions:

� reach (◦) g x y ⇐⇒ ∃ a. a ∈ G ∧ a ◦ x = y
� orbit (◦) g X x = {y | y ∈ X ∧ reach (◦) g x y }
� stabilizer (◦) g x = {a | a ∈ g.carrier ∧ a ◦ x = x }

A String of Pearls: Proofs of Fermat’s Little Theorem 199

For presentational reasons, we shall assume fixed operation (◦), group g and target
set X in much of what follows, and use the following abbreviations in prose and HOL
theorems:

– orbit x for orbit (◦) g X x , and
– stabilizer x for stabilizer (◦) g x .

5.2 Action Basics

Properties of group actions blend nicely with properties of groups, as shown by these
basic results.

Theorem 12. Reachability is an equivalence relation on the target set.

� Group g ∧ action (◦) g X ⇒ reach (◦) g equiv_on X

Proof. Let x ∼ y stand for reach (◦) g x y . By action identity: e ◦ x = x, hence
x ∼ x, or reach is reflexive. If a ∈ G moves point x to y: a ◦ x = y, then a−1 ∈ G
moves y to x: a−1 ◦ y = a−1 ◦ (a ◦ x) = (a−1 × a) ◦ x = e ◦ x = x, hence
x ∼ y ⇒ y ∼ x, or reach is symmetric. If a ◦ x = y, b ◦ y = z, then by action
composition: (b× a) ◦ x = b ◦ (a ◦ x) = b ◦ y = z, hence x ∼ y ∧ y ∼ z ⇒ x ∼ z, or
reach is transitive. Thus reach is an equivalence relation. &�
The orbits are equivalence classes of reach, and they form a partition of the target set
X . Another characterisation of orbit using the action mapping (◦) is:

� Group g ∧ action (◦) g X ∧ x ∈ X ⇒ orbit x = {a ◦ x | a ∈ G}
Theorem 13. The stabilizer of a point in the target set forms a subgroup.

� action (◦) g X ∧ x ∈ X ∧ Group g ⇒ StabilizerGroup (◦) g x ≤ g

Proof. If two elements a, b ∈ G fix a point x ∈ X , i.e., a◦x = x and b◦x = x, then by
action composition: (a× b) ◦ x = a ◦ (b ◦ x) = a ◦ x = x. Therefore, the stabilizer is a
closed subset of G. The identity e is in the stabilizer by action identity: e◦x = x. If a is
in the stabilizer, its inverse a−1 is also in the stabilizer since a−1 ◦ x = a−1 ◦ (a ◦ x) =
(a−1 × a) ◦ x = e ◦ x = x. Hence the stabilizer is a subgroup. &�

5.3 Orbit-Stabilizer Theorem

Consider a point x ∈ X . Its orbit is the set of points reachable through the action of all
group elements a ∈ G. If all action points a ◦ x are distinct, only e ◦ x = x fixes x,
hence its stabilizer consists of the group identity e only, the smallest possible subgroup.
For example, let G = {a, b, c, d, e, f} with e being the identity, and X = {x, y, z, . . .}.
An example of such a group action is shown in Figure 3.

What happens if not all action points are distinct? This is interesting:

Theorem 14. If action points coincide: a ◦ x = b ◦ x, the quotient a−1 × b lies in the
stabilizer of x.

� Group g ∧ action (◦) g X ∧ x ∈ X ⇒
∀ a b::(G). a ◦ x = b ◦ x ⇐⇒ a−1 × b ∈ stabilizer x

200 H.L. Chan and M. Norrish

Proof. From left to right, apply the action a−1 to both sides of a ◦ x = b ◦ x. Thus
x = (a−1 × b) ◦ x. From right to left, we have (a−1 × b) ◦ x = x. Apply the action a
to both sides of this equation, deriving b ◦ x = a ◦ x as required. &�

x

y

z

a

b
c

d

e

f

x

y

z

e

a

b

f

c

d

Fig. 3. If a group action, shown on the left, maps a point x ∈ X to distinct reachable points,
each reachable point corresponds to only one element in G. These reachable points can be joined
together by arcs, shown on the right, giving the orbit x. The “balloon” over each y ∈ orbit x
contains the group element which acts on x to reach y. Note the balloon over x is stabilizer x,
in this case just {e}, corresponds to the self-loop over x on the left.

x

z

t

a

b

d

f

e
c

x

z

t

e, c

a, b

d, f

Fig. 4. If stabilizer x , shown on the left as self-loops over x, has two elements {e, c}, then every
z ∈ orbit x is reachable by two group elements: z = a ◦ x = a ◦ (c ◦ x) = (a× c) ◦ x = b ◦ x
where b = a × c, and b �= a since c �= e. On the right are shown the two group elements for
every point in orbit x inside its “balloon”. The balloon over x is stabilizer x; the other balloons
are cosets of stabilizer x.

A String of Pearls: Proofs of Fermat’s Little Theorem 201

Fig. 5. Orbits of necklaces with 3 beads in 2 colours under cycle action by Z
+
3 are shown as

background round rectangles. Light gray orbits of monocoloured ones always have size = 1.
Dark gray orbits of multicoloured ones always have size > 1. By Orbit-Stabilizer theorem, orbit
size divides |Z+

3 | = 3, hence multicoloured orbit size = 3.

Furthermore a−1× b is some c ∈ G by closure property of the group. By uniqueness of
group inverses, c �= e if a �= b. Hence for distinct a, b with a ◦ x = z = b ◦ x, there is
an element c �= e and c ∈ stabilizer x. Note that a−1 × b = c implies b = a× c. So if,
for example (Figure 4), stabilizer x is indeed just {e, c}, then the set of group elements
enabling x to reach z, i.e. {a, b} = {a× e, a× c} = a {e, c}, is a coset of stabilizer x .

Similar reasoning shows that, for any point y ∈ orbit x, the set of group elements
{a ∈ G | a ◦ x = y} that enables x to reach y will be a coset of stabilizer x . In HOL,
this is expressed as:

Theorem 15. The set of group elements enabling x to reach point y ∈ orbit x is a
coset of stabilizer x .

� Group g ∧ action (◦) g X ∧ x ∈ X ∧ y ∈ orbit x ⇒
{a | a ∈ G ∧ a ◦ x = y } =

coset g (stabilizer x) (actionElement (◦) g x y)

where (actionElement (◦) g x y) is a group element that acts on x, generating
y.

Such an element exists when x and y are in the same orbit, as assumed. Since the choice
made by actionElement may not be drawing on a singleton set, this association of
a point y ∈ orbit x with a coset is only meaningful if the coset is independent of this
choice. This follows from a standard result about subgroup cosets:

Theorem 16. Two cosets of a subgroup are equal when it has the quotient of their
generating elements.

� Group g ∧ h ≤ g ⇒
∀ b a::(G). coset g H b = coset g H a ⇐⇒ a−1 × b ∈ H

Proof. For the if-part (⇒), since b ∈ bH , bH = aH implies there is a c ∈ H such that
b = a× c. Solving for c in a group: c = a−1 × b ∈ H . For the only-if part (⇐), since
(a−1 × b) ∈ H , so for any c ∈ H , (a−1 × b) × c equals to some d ∈ H , by closure
property of a subgroup. Now (a−1 × b)× c = d implies b× c = a× d, for any c ∈ H .
This shows bH ⊆ aH . Repeating the same argument with b−1×a = (a−1×b)−1 ∈ H ,
as a subgroup includes all inverses, gives aH ⊆ bH . Thus bH = aH . &�
This matching condition is used to prove the association of stabilizer cosets to orbit
points (Theorem 15). Together with the matching condition of reachable points (Theo-
rem 14), both are crucial in establishing:

202 H.L. Chan and M. Norrish

Theorem 17. The points of x’s orbit are in bijection with the cosets of x’s stabilizer.

� Group g ∧ action (◦) g X ∧ x ∈ X ⇒
BIJ (λ z . coset g (stabilizer x) (actionElement (◦) g x z))

(orbit x) {coset g (stabilizer x) a | a | a ∈ G}
The last set comprehension is a special form marking a as the only variable that varies
in the leftmost expression, coset g (stabilizer x) a . This bijection provides the
key for:

Theorem 18. Orbit-Stabilizer Theorem.

� FiniteGroup g ∧ action (◦) g X ∧ x ∈ X ∧ FINITE X ⇒
|G| = |orbit x | × |stabilizer x |

Proof. There are |orbit x | points in x’s orbit. Each point is associated with a coset of
stabilizer x . Since stabilizer x is a subgroup (Theorem 13), each coset is the same size
as stabilizer x (Theorem 11). The cosets form a partition of the carrier set G (Theo-
rem 9), which is counted by the bijection of Theorem 17:

|G| =
∑
a∈G

|a(stabilizer x)| = |orbit x | |stabilizer x |

&�

5.4 Applying Action to Necklaces

The Orbit-Stabilizer theorem is the key to classifying necklace orbits, especially when
the necklace length is prime. First we identify the action:

Theorem 19. cycle is an action from Z+
n to the set of necklaces:

� 0 < n ∧ 0 < a ⇒ action cycle Z+
n (necklace n a)

Proof. For necklace � ∈ necklace n a , |�| = n . Each element k ∈ Z+
n , i.e. 0 ≤

k < n, maps a necklace � to the cycle result: cycle k �, i.e. cycling of the necklace
by k beads. Recall these earlier results about cycle (Section 2.2):

� � ∈ necklace n a ⇒ ∀ k . cycle k � ∈ necklace n a
� cycle 0 � = �
� � �= [] ⇒ cycle x (cycle y �) = cycle ((x + y) mod |�|) �

The first shows cycle is closed for necklaces. The second shows cycle has an iden-
tity. The third shows cycle composes under modulo n addition. Hence cycle is an
action from the group Z+

n . &�
Since length and colours are invariants for cycle (Section 2.2), a multicoloured neck-
lace cannot be cycled to a monocoloured necklace. This shows cycle is also closed
for those sets respectively:

� 0 < n ∧ 0 < a ⇒ action cycle Z+
n (monocoloured n a)

� 0 < n ∧ 0 < a ⇒ action cycle Z+
n (multicoloured n a)

The classification of orbits for necklaces is simple:

A String of Pearls: Proofs of Fermat’s Little Theorem 203

Theorem 20. Only monocoloured necklaces have orbit size equal to 1.

� 0 < n ∧ 0 < a ∧ � ∈ monocoloured n a ⇒
|orbit cycle Z+

n (monocoloured n a) �| = 1
� 0 < n ∧ 0 < a ∧ � ∈ multicoloured n a ⇒

|orbit cycle Z+
n (multicoloured n a) �| �= 1

Proof. Only a monocoloured necklace � has cycle 1 � = � (Theorem 2), i.e. for all
multiples k , cycle k � = � by CYCLE_ADD. Hence only such orbit collapses to a
singleton, with cardinality 1. &�
Theorem 21. For multicoloured necklaces of length p, a prime, the orbit size of each
necklace equals p.

� prime p ∧ 0 < a ∧ � ∈ multicoloured p a ⇒
|orbit cycle Z+

p (multicoloured p a) �| = p

Proof. When the necklace length is prime p, the action group is Z+
p . By the Orbit-

Stabilizer theorem (Theorem 17): |orbit �| × |stabilizer �| = |Z+
p | = p for any neck-

lace �. A prime p has only trivial factorization: p = 1× p = p× 1. By Theorem 20, the
orbit of a multicoloured necklace is not a singleton, so its size must be p. &�
Recall that reach is an equivalence relation (Theorem 12). Orbits are the equivalence
classes of reach, so they form a partition of the target set. From Theorem 21, the
target is (multicoloured p a) with size (ap−a) (Section 2.1). Theorem 21 also
specifies an equal-size partition, giving the visual image of division (Figure 5). Hence,
p divides ap−a , which in modulo p is Fermat’s Little Theorem:

� prime p ⇒ ap ≡ a (mod p)

6 Group Theory applied to the Number-Theoretic Proof

Having applied group theory to the necklace proof, it is interesting to try the “same
trick” with the number-theoretic proof. The subsequent results are not novel, but allow
a fuller comparison of approaches when we conclude.

It is straightforward to recast the number-theoretic proof of Fermat’s Little Theorem
(Section 3) in the context of finite Abelian groups, the structure that naturally mimics
prime modulo multiplication. The factor rearrangement and cancellation are direct con-
sequences of commutativity and cancellation laws in Abelian groups. However, this is
not very illuminating, and unnecessarily restrictive, as the group-theoretic version of
Fermat’s Little Theorem holds for all finite groups (not just the Abelian ones):

� FiniteGroup g ∧ a ∈ G ⇒ a|G| = e

Assuming this result (which will be proved later, see Theorem 22), to derive Fermat’s
Little Theorem it is sufficient to show that prime modulo multiplication, i.e. Z∗

p for
prime p, does indeed form a group — with |Z∗

p| = |{1. . . p−1}| = p−1, and the
multiplicative identity is 1. Critically, we need to show that any x ∈ {1. . . p−1} has a
multiplicative inverse in Z∗

p. This can be done by appeal to Bézout’s identity, a property
of gcd already used in Theorem 1:

204 H.L. Chan and M. Norrish

� x �= 0 ⇒ ∃ k q. k × x = q × p + gcd p x

With p a prime and 0 < x < p, gcd p x = 1. Taking modulo p on both sides of the
equation, the right-hand side becomes 1, and the k on the left gives k (mod p) as the
multiplicative inverse of x in Z∗

p.

6.1 Euler’s Generalization

When the modulo n is not a prime, the non-zeroes of Zn do not form a multiplicative
group; e.g. to find the multiplicative inverse for 2 in Z6 would require solving 2x =
6y+1, which is impossible by parity. However, Euler observed that the Bézout’s identity
of the preceding section actually guarantees a multiplicative inverse for x < n whenever
gcd n x = 1, i.e. x is co-prime to n:

� 1 < n ∧ 0 < x ∧ x < n ∧ coprime n x ⇒
∃ y. 0 < y ∧ y < n ∧ coprime n y ∧ y × x mod n = 1

This is then the basis for a group, whose carrier is Z∗
n — the set of elements of Zn with

multiplicative inverses. The cardinality of this set is known as its totient, denoted by
ϕ(n):

� Z∗
n = {x | 0 < x ∧ x < n ∧ coprime n x }

� ϕ(n) = |Z∗
n |

Euler’s generalisation of Fermat’s Little Theorem follows:

� 1 < n ∧ 0 < a ∧ a < n ∧ coprime n a ⇒ aϕ(n) ≡ 1 (mod n)

We shall now prove the group-theoretic version of Fermat’s Little Theorem for any
finite group, via the generated subgroup of its elements.

6.2 Generated Subgroups

Let a be a group element. Consider the sequence a, a2, a3, If the group is finite,
there must eventually be a repetition in this sequence. Assume m < n and am = an,
then we can use left-cancellation to remove the common factor am, giving us

� Group g ∧ a ∈ G ∧ m < n ∧ am = an ⇒ an−m = e

Definition 6. Call the least non-zero exponent that maps an element back to the iden-
tity, its order:

� order g a = LEAST k . 0 < k ∧ ak = e

The preceding argument shows that order exists for finite group elements, and it sat-
isfies:

� FiniteGroup g ∧ a ∈ G ⇒ 0 < order g a ∧ aorder g a = e
� FiniteGroup g ∧ a ∈ G ⇒ a−1 = aorder g a−1

A String of Pearls: Proofs of Fermat’s Little Theorem 205

By properties of group exponentiation (Section 4), the powers of an element a ∈ G
form a subgroup: Generated g a , also written as 〈a〉. This subgroup is related to
order by:

� FiniteGroup g ∧ a ∈ G ⇒ |(Generated g a).carrier| = order g a

This result can be deduced by the LEAST property of order, and provides the key for:

Theorem 22. Fermat’s Little Theorem for finite groups.

� FiniteGroup g ∧ a ∈ G ⇒ a|G| = e

Proof. Consider 〈a〉, the generated subgroup of a ∈ G, with |〈a〉| = order g a ,
and aorder g a = e. Since 〈a〉 is a subgroup of g, there is a k such that
|G| = order g a × k by Lagrange’s Theorem. Hence,

a|G| = aorder g a × k = (aorder g a)k = ek = e

as required. &�

Table 1. Line counts for theories developing each approach. The filename is that of the linearised
script in the bitbucket.org repository.

Type of Proof Approach (Section ref.) Filename Total

Combinatorial Direct via cycles (2) AllFLTnecklaceScript.sml 824

Group via action (5) AllFLTactionScript.sml 1387

Number-theoretic Direct via modulo arithmetic (3) AllFLTnumberScript.sml 473

Group via generated subgroups (6) AllFLTgroupScript.sml 839

Euler via generated subgroups (6) AllFLTeulerScript.sml 871

7 Conclusion

Fermat’s Little Theorem is a very basic and well-known result in number theory. Having
attempted its proof in a slew of different styles, we now attempt to draw some lessons.

For each proof discussed, we have linearised our various script files into one script
containing just the lemmas required for that particular effort. Table 1 includes total line
counts for each file. The verdict is clear: the basic number-theoretic approach is much
better in terms of overall lines-of-code. However, these results can only be suggestive:
our HOL scripts may not be the optimal expression of the various proof strategies, and
our own skills may not be uniform across the numerical and algebraic domains.

Additionally, HOL4’s features make some proofs easier to automate, and some
goals easier to express. Certainly, we believe that our naı̈ve approach to group theory
makes the numbers for the group-theoretic proofs worse than they might be, and the
Orbit-Stabiliser theorem is arguably a steeper requirement than Theorem 22. Sub-types,

206 H.L. Chan and M. Norrish

perhaps best exemplified by their use in Coq (though also approximated and used for
group theory in HOL4 by Hurd [8]), would be an obvious way to approach this issue.
Isabelle’s axiomatic type-classes and locales have also been used to provide appeal-
ing mechanisations of abstract algebra. It would be interesting to see what these other
systems made of the directly combinatorial necklace proof, and of the group-theoretic
version of the same.

Future Work. The HOL4 source code provides an example of proving Fermat’s Little
Theorem using the Binomial Theorem.5 The proof is by induction, and thus rather dif-
ferent from the proofs in this paper. Indeed, Fermat’s Little Theorem and the Binomial
Theorem are crucial concepts in Agrawal et al.’s famous result [1] that primality testing
can be done in polynomial time. A mechanisation of the AKS algorithm is certainly an
appealing prospect.

Final Verdict. Our results show that we have yet to find the sweet spot when it comes
to performing combinatorial proofs in HOL. Our consolation is to have found that at-
tacking the result via explicit appeals to group theory gives us two distinct mechanised
proofs that are arguably more elegant than their direct analogues. Our mechanisation
of the necklace proofs may be the first; we hope it is not the last, and that still more
beautiful pearls may be found in this vein.

References

1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 160(2), 781–
793 (2004)

2. Conrad, K.: Group actions (2008), http://www.math.uconn.edu/ kconrad/
blurbs/grouptheory/gpaction.pdf

3. Dickson, L.E.: History of the Theory of Numbers: vol. 1: Divisibility and Primality. Carnegie
Institution of Washington (1919)

4. Golomb, S.W.: Combinatorial proof of Fermat’s “Little” Theorem. The American Mathe-
matical Monthly 63(10), 718 (1956)

5. Gunter, E.L.: Doing algebra in simple type theory. Technical Report MS-CIS-89-38, De-
partment of Computer and Information Science, Moore School of Engineering,University of
Pennsylvania (June 1989)

6. Harrison, J.: HOL Light Tutorial (for version 2.20). Intel JF1-13, Section 18.2: Fermat’s
Little Theorem (2011)

7. Holt, B.V., Evans, T.J.: A group action proof of Fermat’s Little Theorem,
http://arxiv.org/abs/math/0508396

8. Hurd, J.: Predicate Subtyping with Predicate Sets. In: Boulton, R.J., Jackson, P.B. (eds.)
TPHOLs 2001. LNCS, vol. 2152, pp. 265–280. Springer, Heidelberg (2001)

9. Hurd, J., Gordon, M., Fox, A.: Formalized elliptic curve cryptography. In: High Confidence
Software and Systems: HCSS 2006 (April 2006)

10. Oostdijk, M.: Library pocklington.fermat, http://coq.inria.fr/pylons/
contribs/files/Pocklington.fermat.html

5 This proof is by Laurent Théry, and is apparently itself a translation of a Coq proof by
J. C. Almeida.

http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/gpaction.pdf
http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/gpaction.pdf
http://arxiv.org/abs/math/0508396
http://coq.inria.fr/pylons/contribs/files/Pocklington.fermat.html
http://coq.inria.fr/pylons/contribs/files/Pocklington.fermat.html

A String of Pearls: Proofs of Fermat’s Little Theorem 207

11. Rouse, J.: Combinatorial proofs of congruences. Master’s thesis, Harvey Mudd College
(2003)

12. Russinoff, D.: ACL2 Version 3.2 source (2007),
books/quadratic-reciprocityfermat.lisp

13. Slind, K., Norrish, M.: A Brief Overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar,
S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008)

14. Smyth, C.J.: A coloring proof of a generalisation of Fermat’s Little Theorem. The American
Mathematical Monthly 93(6), 469–471 (1986)

15. Wikipedia: Proofs of Fermat’s Little Theorem, http://en.wikipedia.org/wiki/
Proofs_of_Fermat’s_little_theorem

 books/quadratic-reciprocityfermat.lisp
http://en.wikipedia.org/wiki/Proofs_of_Fermat's_little_theorem
http://en.wikipedia.org/wiki/Proofs_of_Fermat's_little_theorem

Compact Proof Certificates for Linear Logic

Kaustuv Chaudhuri

INRIA, France
http://kaustuv.chaudhuri.info

Abstract. Linear logic is increasingly being used as a tool for communi-
cating reasoning agents in domains such as authorization, access control,
electronic voting, etc., where proof certificates represent evidence that
must be verified by proof consumers as part of higher protocols. Con-
trolling the size of these certificates is critical. We assume that the proof
consumer is allowed to do some search to reconstruct details of the full
proof that are omitted from the certificates. Because the decision problem
for linear logic is unsolvable, the certificate must contain at least enough
information to bound the search: we show how to use the sequence of
contractions in the sequent proof for this bound. The remaining content
of the proof, in particular the information about resource divisions, can
then be omitted from the certificate. We also describe a technique for giv-
ing a variable amount of additional search hints to the proof consumer
to limit its non-determinism.

1 Introduction

A proof certificate is a way for a proof producer to convey certainty about a theo-
rem to a proof consumer. It is the embodiment of a compromise between the size
of the certificate (which directly correlates to the difficulty of processing, trans-
mitting, and storing the certificate) and the complexity of checking (and hence
trusting) it. A fully detailed proof can be very large, but it might be checkable
by a simple and trustworthy checker (the so-called De Bruijn Criterion). On the
other extreme, the certificate might just record a “yes”, and the consumer must
reconstruct the entire proof. This paper explores some of the spectrum between
these two extremes and provides some guidelines for producing certificates that
have a tunable amount of detail. Of particular interest is the kind of certificate
where the level of detail can be modified by intermediaries between the ultimate
producer and consumer, an idea that is at the heart of the “marketplace of
proofs” concept [16].

To be simple and concrete, this paper considers this question for classical
linear logic, which is undecidable even in the propositional fragment [15]. The
ideas readily extend to the first-order and to intuitionistic and classical logic,
where many of the issues are simpler. The underlying proof system will be a
sequent calculus. Sequent calculi are ideally suited for proof-search in many logics
for at least two important reasons: first, the subformula property, which is the
sine qua non of automation; and second, polarity and focusing, wherein the

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 208–223, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://kaustuv.chaudhuri.info

Compact Proof Certificates for Linear Logic 209

ordinary sequent rules coalesce into synthetic “macro” forms to make larger
logical steps without sacrificing completeness [1]. The careful use of focusing
enables a general search strategy to implement a wide variety of operational
strategies directly [8,6].

The sequent calculus is nevertheless not an ideal certificate format. It is a
simple matter to build a syntax for fully detailed sequent proofs. If the proof is
of an important mathematical result, then such detailed proofs can perhaps be
tolerated as they are unlikely to be consumed often. Commonly, however, auto-
matically generated proofs are used in domains where the proofs are intended
to convince the consumer of some semantic property of digital artefacts, such
as conformance to security policies. Probably the best example is proof-carrying
code (PCC) [18]. Certificates in such domains are meta-information and gener-
ally considered to be overhead. For PCC, the standard technique for reducing the
overhead is to specify the search semantics for the consumer (e.g., by means of a
logic programming language) and then to record the choices needed to guide the
consumer in the form of oracle strings. While this may be a good engineering so-
lution for the specific problem of PCC, oracle strings are an unsatisfactory proof
certificate format in general. The strings must match the operational semantics
of the consumer, for one, which limits the portability and maintainability of
proofs. They are also denotationally opaque.

An alternative to the oracles approach—the one used in this paper—is to
elide some of the details in the proof if they can be dependably reconstructed by
the consumer. This is to say that the elision must be such that reconstructing
the full sequent proof always remains at least decidable, and preferably feasible
and predictable. A good example of this approach is the Dedukti system [2]
where purely computational steps in a proof are elided because the consumer is
equipped with a general rewrite engine. However, we want more than just the
ability to omit certain classes of sub-proofs: we want the level of detail in a proof
to be fully variable. Linearity also brings its own problems to such approaches:
the key issue is that linear proofs consume resources,1 so an omitted proof would
consume an unknown amount of resources. Reconstructing the resource divisions
is the well known resource management problem [10,11], which is unsolvable in
general as it is the source of the undecidability of linear logic.

What details are essential in a sequent proof? Every logical rule introduces
some connective, so applying the rule from the conclusion to the premises con-
sumes the principal formula. Of the structural rules, the only rule that strictly
increases the complexity of a sequent is contraction. The contraction-free frag-
ment of the sequent calculus is manifestly decidable, assuming the subformula
relation is well-founded and no rule has infinitely many premises – reasonable as-
sumptions for logics where automated reasoning is feasible. The proof-theoretic
impact of restricting or removing the contraction rules is a long studied field
(see, e.g., [9]), but the following deceptively simple observation seems to be ei-
ther missing or vanishingly unpopular in the literature on proof objects: the
sequence of contractions in a sequent proof is a sufficient certificate.

1 A resource is a hypothesis that can disappear upon use.

210 K. Chaudhuri

One reason why this observation might be rare is that it is unclear how to
isolate the contractions from the other rules in the sequent calculus. Other proof
calculi, such as the calculus of structures [19,7], permit inferences in any formula
context and thus allow the contraction rule to permute freely. Separating the
contractions from an arbitrary proof is routine in such formalisms and generally
forms the basis of much of their meta-theory. From the perspective of proof
search, this extra permutative freedom is actually detrimental, for the proof
search trees are much more branching. But, once a proof is built, it can be freely
reorganized. The record of contractions is generally much smaller than the full
proof—which needs to record the contractions anyhow—because it lacks all the
logical content.

Now, while the contraction rules in the sequent calculus obviously do not
permute, what is important is not the ability to permute but a mechanism to
pre-compute the contractions. This pre-computed information about just the
contractions can then be used to control their application in a general search
strategy, so they form a suitable proof certificate. To extract this information,
we require a mechanism for uniquely indexing every subformula in a sequent.
This is not particularly hard: we merely give a unique name to every subformula
path in the sequent and perform some additional book-keeping to ensure that
the names remain unique through applications of sequent rules. The contrac-
tions then manifest as subformula paths that can potentially be duplicated; this
information can then be used as a bound on search, wherein every application
of contraction “consumes” one of the copies of the replicable subformula paths.

Bounding the contractions in this manner makes proof search (and hence
reconstruction in the consumer) decidable, but it does not necessarily make it
feasible. As already mentioned, a good certificate format should allow a variable
level of detail to control the non-determinism in the consumer. It turns out
that, carefully done, the indexing mechanism used for the contractions can then
be exploited in another important manner: the tree of names of the principal
formulas in the sequent proof is also a suitable certificate format. Moreover,
this tree can serve as a skeleton from which to hang the information about
contractions. This is the main technical contribution of this paper.

We begin by limiting ourselves to focused proofs [1,8,14]. The essence of fo-
cusing is to reduce the subformula relation to one that clarifies the alternation
between invertible (“don’t care”) and non-invertible (“don’t know”) choices in
search. Only these points of phase shift need to be indexable. Of the phase shifts,
the most important ones are those that decide to focus on a particular formula:
the corresponding labels are recorded in the decision tree of labels. This crystal-
lizes the common intuition that the essence of a focused proof is the sequence
of decisions; the details of the choices inside particular phases of focusing are
unimportant. In fact, the other non-deterministic choices in a proof, viz. the
resource distribution and the disjunctive choices, can be recovered directly from
this decision tree. Lastly, at any level in the decision tree we can simply replace
the sub-tree with a bound on the contractions, which gives us certificates with
a variable level of detail.

Compact Proof Certificates for Linear Logic 211

� a, a ai � Γ, A � Δ, B
� Γ, Δ, A ⊗ B

⊗ � 1 1
� Γ, Ai

� Γ, A1 ⊕ A2
⊕ � Γ, A, B

� Γ, A

&

B

& � Γ
� Γ, ⊥ ⊥

� Γ, A � Γ, B
� Γ, A & B & � Γ, � � � ?Γ, A

� ?Γ, !A !
� Γ, A
� Γ, ?A ?

� Γ, ?A, ?A
� Γ, ?A

ct � Γ
� Γ, ?A wk

Fig. 1. Rules of llk. In the ⊕ rule, i ∈ {1, 2}.

To summarize, our prescription for obtaining compact proof certificates is as
follows: (1) start from a focused sequent proof; (2) uniquely name every subfor-
mula path in the end-sequent; (3) extract the tree of names for the principal
formulas in the decision rules; and (4) replace some of the sub-trees in this tree
by a suitable search bound, such as one on the contractions. We begin with an
overview of the focused sequent calculus (Sect. 2), then we show how to label
the sequents and tame contraction (Sect. 3), and finally we describe how to use
the decision trees as determinizing hints for proof reconstruction (Sect. 4).

2 Background

We use propositional linear logic in this paper, though the technique extends
straightforwardly to the first-order. It also extends to ordinary logic (intuition-
istic or classical) where the problems are simpler than the linear case. Formulas
(written A, B, . . .) have the following grammar.

A, B, . . . ::= a A ⊗ B 1 A ⊕ B 0 !A
| a A

&

B ⊥ A & B � ?A

Atomic formulas are written using a, b, . . . , and the negation of a is written as
a. Formulas are in negation-normal form with each vertical column in the above
grammar depicting one De Morgan dual pair; we write (A)⊥ for the dual of A.
The linear sequent calculus, which we call llk, is usually presented using one-
sided sequents of the form � Γ, where Γ is a multi-set of formulas. The rules of
this system are in Fig. 1

Looking at the permutations of rules in llk, it is easy to see that some rules
can always permute because they are invertible (i.e., if the conclusion of the rule
is true, then so is the conjunction of its premises), while other (non-invertible)
rules permute only in specific circumstances. Andreoli famously showed that
these permutation properties can be exploited to define a restricted but com-
plete class of sequent proofs that follow a focusing discipline [1]. The essence of
the discipline is that the ordinary (unfocused) rules of llk naturally coalesce
into larger clumps of derived rules that abstract over the irrelevant details such
as the order of application of invertible rules. Focusing was originally an op-
erational device to control the non-determinism in proof-search in linear logic
programming, but it is now seen as a general device for analyzing the structural
properties of proof systems, akin to cut-elimination for the sequent calculus. Fo-
cused proof systems have been formulated for a number of other logics [8,14]
and proof systems [3,7] besides its origin in the classical linear sequent calculus.

212 K. Chaudhuri

The standard presentation of focusing for llk is as follows, in broad outline.
The non-atomic formulas of linear logic divide evenly into those that have in-
vertible rules and those that do not; moreover, the two sets of formulas are De
Morgan duals. Following general tradition, we call the connectives with invertible
logical rules negative, and those with non-invertible rules positive. The atomic
formulas can be placed into either class as long as duality is maintained, but we
follow tradition and classify them as positive and their negations as negative. We
also adopt the device of polarization [12], wherein the changes between positive
and negative subformulas is explicitly marked with shift connectives (↓ and ↑).
While the choice of a polarized syntax is usually unnecessary for focusing, we
will exploit it for our certificates.

Polarized formulas have the following grammar.

P, Q, . . . ::= a P ⊗ Q 1 P ⊕ Q 0 !N ↓N

N, M, . . . ::= a N

&

M ⊥ N & M � ?P ↑P

(positive formulas)
(negative formulas)

We will continue to use A, B, . . . to refer to formulas of either polarity. The
sequents in the focused variant of llk, which we call llkf, have one the following
two forms.

� Γ; Δ;
[
P

]
(positive sequent with P focused)

� Γ; Δ; Ω (negative sequent with Ω active)

The contexts Γ, Δ and Ω are all multi-sets of the following kinds of formulas.
Γ ::= · Γ, P Δ ::= · Δ, P Δ, a Ω ::= · Ω, N

Although all three contexts are multi-sets, semantically the context Γ is unre-
stricted (admitting weakening and contraction) while Δ and Ω are linear (admit-
ting neither weakening nor contraction).

Figure 2 contains the full collection of rules of llkf. The logical rules of llkf
are applied in one of two phases. The positive phase consists of rules applied to
positive sequents. Each such rule has the focused formula in the positive sequent
as the principal formula, and if the operands of the principal connective are also
positive then the focus is maintained on them in their corresponding premises.
Likewise, the negative phase consists of rules applied to the active context of
negative sequents. Mediating the two phases are the decision rules

[
lf

]
and

[
uf

]

where particular formulas are granted focus. In the case that the formula is
selected from the unrestricted context Γ, it continues to be present in Γ in the
premises, i.e., the rule has a built in contraction. This is in fact the only form of
contraction in the calculus. Instead of a structural rule of weakening, rules with
no premises are altered to admit any number of unrestricted side formulas.

In order to compare llkf to llk, we must first translate between the two
syntaxes – unpolarized and polarized.

Definition 1 (Depolarization). Given a polarized formula A, let 	A
 stand
for that unpolarized formula with all occurrences of ↓ and ↑ removed from A.
Extend this definition naturally to multi-sets of polarized formulas.

Compact Proof Certificates for Linear Logic 213

Positive Phase

� Γ; a;
[
a
]

[
fi
] � Γ; Δ1;

[
P

]
� Γ; Δ2;

[
Q

]

� Γ; Δ1, Δ2;
[
P ⊗ Q

]
[
⊗

]
� Γ; ·;

[
1
]

[
1
] � Γ; Δ;

[
Pi

]

� Γ; Δ;
[
P1 ⊕ P2

]
[
⊕

]

� Γ; ·; N

� Γ; ·;
[
!N

]
[
!
] � Γ; Δ; N

� Γ; Δ;
[
↓N

]
[
↓
]

Negative Phase

� Γ; Δ, a; Ω
� Γ; Δ; Ω, a

[
nr

] � Γ; Δ; Ω, N, M
� Γ; Δ; Ω, N

&

M

[&] � Γ; Δ; Ω
� Γ; Δ; Ω, ⊥

[
⊥

] � Γ; Δ; Ω, N � Γ; Δ; Ω, M
� Γ; Δ; Ω, N & M

[
&

]

� Γ; Δ; Ω, �
[
�

] � Γ, P ; Δ; Ω
� Γ; Δ; Ω, ?P

[
?
] � Γ; Δ, P ; Ω

� Γ; Δ; Ω, ↑P

[
↑
]

Decision

� Γ; Δ;
[
P

]

� Γ; Δ, P ; ·
[
lf

] � Γ, P ; Δ;
[
P

]

� Γ, P ; Δ; ·
[
uf

]

Fig. 2. Rules of llkf. In the
[
⊕

]
rule, i ∈ {1, 2}.

Theorem 1 (Soundness and completeness of llkf w.r.t. llk)

– If � Γ; Δ;
[
P

]
in llkf, then � ?	Γ
, 	Δ
 , 	P
 in llk.

– If � Γ; Δ; Ω in llkf, then � ?	Γ
, 	Δ
 , 	Ω
 in llk.
– If � 	Ω
 in llk, then � ·; ·; Ω in llkf.

Proof. There are many ways to prove this theorem. We refer the interested reader
to one of the standard approaches [13,17,5]. ��

3 Labelling Subformulas and Taming Contraction

As already mentioned in the introduction, there is a single rule each in llk
and in llkf that causes the set of derivations (including open derivations) of
a given sequent to be infinite: contraction (ct) in the former, and unrestricted
focus (

[
uf

]
) in the latter. The

[
lf

]
rule moves a positive formula into focus after

which its principal connective is consumed, and the
[
nr

]
rule moves a negative

atom into the linear context from which it can never be selected as a principal
formula again. The remaining rules all consume a connective. Therefore, in order
to obtain a decidable sub-logic of linear logic for which these proof systems are
manifestly decision procedures, it is these rules of contraction that need to be
controlled.

To find such a means of controlling contraction, we can look for inspiration
at calculi with more permissive permutations in their inference rules. Generally
speaking, such calculi tend to be calculi of deep inference, wherein there is no
strong distinction between sequent and formula, and inference rules can be ap-
plied in any subformula context. The system lsf for classical linear logic in the

214 K. Chaudhuri

focused calculus of structures [7] is perhaps the most closely related system to
llkf in this paper. In lsf (like in nearly every proof system in the calculus of
structures), the contraction rules permute with all rules (including other con-
tractions). Any lsf proof can therefore be divided into two phases: a bottom
part consisting of the contractions, and a top part that is contraction-free. If the
system is designed carefully, as lsf is, then this contraction-free sub-calculus
admits only finitely many (possibly open) derivations of a given formula, and is
therefore decidable.

While it is possible to adopt lsf instead of llkf to represent proofs, this
will require a complicated and not particularly enlightening detour. Instead, we
will just transplant the effect of permuting and separating the contractions to
llkf proofs. The mechanism we will use is labelling the contractions: both the
formulas and the inference rules will be modified to admit labels.

Definition 2. A label (written α, β, . . .) is a non-empty word formed over an
infinite set of atomic labels (written a, b, . . .). Two distinct atomic labels 0 and
1 are always assumed to be present. We use L to denote the set of all labels, Λ
to denote label multi-sets, and αβ to denote the label formed by concatenating
the labels α and β.

The labels will be used to index particular subformulas in a derivation in a la-
belled version of llkf, which we call l3kf. Intuitively, a label denotes a path
through the subformula relation, with the formula labelled by αβ being a strict
subformula of that labelled by α. Not every subformula needs to be labelled –
those subformulas that do not involve any polarity changes or boundary con-
ditions can remain unlabelled. Instead, we affix labels only to the shifts, the
exponentials, and the atomic formulas.

Definition 3. Action formulas (written L) and reaction formulas (written R)
are given by the following grammar.

R ::= aa !aN ↓aN L ::= aa ?aP ↑aP

Labelled polarized formulas have the following grammar.

P, Q, . . . ::= R P ⊗ Q 1 P ⊕ Q 0
N, M, . . . ::= L N

&

M ⊥ N & M �
Strictly speaking, for tracking contractions we do not need to label any but the
?-formulas. We choose to label all (re)action subformulas anticipating their use
in the next section. For the rest of this paper, unless indicated, we will work
solely with labelled polarized formulas. The contexts of l3kf are modifications
of those of llkf to support labelled formulas.

Γ ::= · Γ,
〈
α:P

〉
Δ ::= · Δ,

〈
α:P

〉
Δ,

〈
α:aa〉

Ω ::= · Ω,
〈
α:N

〉

In addition to these labelled contexts, the focused formula in positive sequents
will also be labelled, written as

[
α:P

]
. From any l3kf sequent we can index

particular subformulas using the labels.

Compact Proof Certificates for Linear Logic 215

Positive Phase

� Γ;
〈
α:aa〉;

[
β:ab]

[
fi
] � Γ1; Δ1;

[
α:P

]
� Γ2; Δ2;

[
α:Q

]

� Γ1, Γ2; Δ1, Δ2;
[
α:P ⊗ Q

]
[
⊗

]
� Γ; ·;

[
α:1

]
[
1
]

� Γ; Δ;
[
α:Pi

]

� Γ; Δ;
[
α:P1 ⊕ P2

]
[
⊕

] � Γ; ·;
〈

αa:N
〉

� Γ; ·;
[
α:!aN

]
[
!
] � Γ; Δ;

〈
αa:N

〉

� Γ; Δ;
[
α:↓aN

]
[
↓
]

Negative Phase

� Γ; Δ,
〈

α:aa〉; Ω

� Γ; Δ; Ω,
〈

α:aa〉
[
nr

] � Γ; Δ; Ω,
〈

α:N
〉
,
〈

α:M
〉

� Γ; Δ; Ω,
〈

α:N

&

M
〉

[&] � Γ; Δ; Ω
� Γ; Δ; Ω,

〈
α:⊥

〉
[
⊥

]

� Γ; Δ; Ω,
〈

α:N
〉

� Γ; Δ; Ω,
〈

α:M
〉

� Γ; Δ; Ω,
〈

α:N & M
〉

[
&

]
� Γ; Δ; Ω,

〈
α:�

〉
[
�

]

� Γ,
〈

αa:P
〉
; Δ; Ω

� Γ; Δ; Ω,
〈

α:?aP
〉

[
?
] � Γ; Δ,

〈
αa:P

〉
; Ω

� Γ; Δ; Ω,
〈

α:↑aP
〉

[
↑
]

Decision

� Γ; Δ;
[
α:P

]

� Γ; Δ,
〈

α:P
〉
; ·

[
lf

] � Γ,
〈

α0:P
〉
; Δ;

[
α1:P

]

� Γ,
〈

α:P
〉
; Δ; ·

[
uf

]

Fig. 3. Rules of l3kf. In the
[
⊕

]
rule, i ∈ {1, 2}.

Definition 4 (indexing). Given an l3kf sequent σ and a label α, we write
σ(α) for an arbitrary (re)action subformula of σ such that:

– α is of the form βγ (with γ possibly empty);
– β labels some contextual element of σ, i.e., the contexts of σ contain an

element of the form
〈
β:A

〉
; and

– γ indicates that subformula of A reached by the trail of atomic labels in γ.

For example, if the sequent σ contains the labelled element
〈
α:ab ⊕ ↓c(N

&

cd)
〉

in a context, then σ(αb) = ab, σ(αc) = N

&

cd, and σ(αcd) = cd. Indexing can
be non-deterministic if there are duplicates of labels in an l3kf sequent. We will
generally only work with sequents where there are no duplicates, which we call
standard sequents.

Definition 5. We say that an l3kf sequent σ is standard if for every label α,
there is at most one labelled formula A such that σ(α) = A.

We assume that all l3kf sequents in the the rest of the paper are standard. We
shall design the rules of l3kf in such a way that if the end-sequent is standard,
then in every (possibly open) l3kf derivation of that sequent all intermediate
sequents are also standard.

216 K. Chaudhuri

The full set of rules of l3kf is shown in Fig. 3. For the rules involving shifts
and exponentials, the atomic label on the principal formula is appended to the
relevant label in the sequent. The other rules preserve the labels from conclusion
to premises. The binary rules

[⊗]
and

[
&

]
are the only rules that cause a com-

plete duplication of the labels in the side formulas; however, if the conclusion is
standard, then each premise of these two rules is individually also standard. For
the

[&]
rule, although the label for the principal formula is duplicated, if the con-

clusion is standard then each operand of the

&

will have a disjoint set of atomic
labels in its respective subformulas and hence the premise is also standard.

The only rule that differs from the pattern is the
[
uf

]
rule that appends a new

atomic label 0 or 1 to the end of the contextual label of the principal formula.
Repeated applications of this rule on the same principal formula will keep one
version with a sequence of 0s appended in the unrestricted context, while the
remaining copies will be focused on and decomposed. As we intend to control
this rule, we will impose a global restriction on the number of 0s that can be
appended to a given label: we call this a contraction bound.

Definition 6. A contraction bound B is a total function from L to N that maps
all but a finite set of labels to 0s with the additional property that for every α ∈ L,
if B(α) = n > 0 then B(α0) = n − 1.

Definition 7. Given a contraction bound B, the system l3kf(B) is a proof sys-
tem consisting of the inference rules of l3kf (Fig. 3) such that all the instances
of the

[
uf

]
rule with principal formula

〈
α:P

〉
have the property that B(α) > 0.

Remark 1. Any l3kf sequent has only finitely many (possibly open) l3kf(B)
derivations, as the contraction bounds get stricter with more 0s. ��
Obviously, therefore, l3kf(B) for an arbitrary B is not complete with respect to
llkf (nor to llk) because propositional linear logic is undecidable [15]. Yet, for
any (possibly open) llkf derivation we can indeed construct a B such that the
corresponding labelled form of the llkf end-sequent is provable in l3kf(B). To
make this formal, we compare the llkf and l3kf systems modulo labelling.

Definition 8. Given an l3kf sequent σ, we write unl (σ) for that llkf sequent
that: replaces all instances of

〈
α:A

〉
in σ by A, then erases all labels from the

(re)action subformulas of σ.

Theorem 2 (soundness and completeness)

1. For any σ derivable in l3kf(B), the sequent unl (σ) is derivable in llkf.
2. For any standard σ for which unl (σ) is derivable in llkf, there is a con-

traction bound B such that σ is derivable in l3kf(B).

Proof (Sketch). Each case follows by a simple induction.

1. If unl (−) is applied to every sequent in every inference rule of l3kf(B), then
the result is an inference rule of llkf.

Compact Proof Certificates for Linear Logic 217

2. Begin with an empty bound and read the llkf derivation from conclusion
upwards. Whenever

[
uf

]
is applied in the llkf derivation, for the corre-

sponding label α in the l3kf derivation we set B(α) = 1, then increment the
bounds for every prefix of α formed by removing 0s from the end. We then
perform this instance of

[
uf

]
in the l3kf(B) derivation. For all the other

rules, the contraction bound remains untouched and the l3kf rule is the
obvious one from Fig. 3. ��

The above completeness theorem is much more general than needed. As we intend
the contraction bounds to be used in proof certificates for llkf derivations, we
may give ourselves the freedom to choose a labelling for the end-sequent. In fact,
we may choose a most parsimonious simple labelling.

Definition 9. An l3kf sequent is said to be simply labelled if there is at most
a single occurrence of every atomic label in the sequent. In other words, no
two contextual elements share a non-empty label prefix, and every (re)action
subformula has a unique atomic label.

It is easy to see that a simply labelled sequent is standard. In an implementation,
if the llkf sequents have some canonical universal representation, then this
simply labelled form is predictable and so the labelled form of the llkf end-
sequent need not be recorded in the proof certificate. Nevertheless, to be general,
we will mention the simply labelled forms in the certificates.

Definition 10. A contraction certificate for an llkf sequent σ is a pair (τ, B)
where: (1) τ is a simply labelled l3kf sequent with unl (τ) = σ; and (2) B is a
contraction bound.

Contraction certificates obviously exist even for unprovable llkf sequents. Com-
pleteness (Thm. 2.2) guarantees that any provable llkf sequent will have a cor-
responding contraction bound B for which the simply labelled form is provable
in l3kf(B). To consume—check—a contraction certificate is equivalent to con-
structing this l3kf(B) proof knowing just the end-sequent and the contraction
bound. Now, for any contraction bound B, the system l3kf(B) is manifestly
a decision procedure. After all, l3kf has only finitely many open derivations
(Remark 1). Thus, in order to consume a contraction certificate (τ, B), it is suf-
ficient to enumerate all l3kf(B) derivations of τ , succeeding if any one of them
is an l3kf(B) proof. The llkf proof of unl (τ) can be reconstructed from this
l3kf(B) proof by applying the procedure outlined in the proof of Thm. 2.1.

To represent the contraction certificate, we require no more space than the
product of the number of labels in the end-sequent and the number of uses of the
contraction rule. This will always be smaller than the full proof (which needs to
record the contractions anyhow) because it omits all the logical content of the
proof. However, it is an easy exercise to construct a series of problems where
the number of required uses of contraction grows exponentially, so in the worst
case the contraction certificate will not necessarily improve over the full proof by
more than a polynomial factor. In practical uses of proof certificates, however,

218 K. Chaudhuri

the contractions will only be expected to be used for “facts” from the ambient
unrestricted context (in other words, the axioms in the theory and the lemmas),
which is not so pathological. Indeed, in the very expressive multi-set rewriting
fragment of linear logic, the only uses of contraction will be for the (encoding
of the) rewrite rules, and there will be exactly as many contractions as steps in
the trace. The contraction bounds in the corresponding contraction certificates
will be considerably smaller than the full proofs; indeed, the space requirement
for the bound will be linear in the length of the trace.

4 Determinizing Hints

We can potentially declare success at this point, but it is worth noting that
consuming a contraction certificate by enumerating all proofs up to a bound may
not be very practical. If the llkf proof is of a purely MALL formula, then there
are no occurrences of

[
uf

]
at all, and hence the contraction bound will be empty.

Since the proof certificate records none of the logical rules, the reconstruction of
the l3kf(B) proof is then at least as computationally expensive as searching for
the MALL proof, which is a PSPACE-complete problem [15]. In this section, we
will add more information to the proof certificates to make reconstruction more
deterministic in exchange for an increase in the size of the certificates. This
additional detail in the certificate will be a tunable parameter: with enough
detail, the reconstruction should be completely deterministic, but a certificate
without any detail should still remain consumable.

To motivate the additions, let us first consider the kinds of information that
are recorded in a fully detailed proof. For linear logic, we have the following
general non-deterministic choices when searching for an llkf (or an l3kf) proof.

– Choices between multiple rules for the same principal formula, caused by the[⊕]
rule, also known as disjunctive non-determinism.

– Choices involving splitting the linear context in the
[⊗]

rule, also known as
multiplicative non-determinism.

– Choices of foci in the
[
lf

]
and

[
uf

]
rules, or the decision non-determinism.

(In the first-order case, constructing the existential witnesses is also non-deter-
ministic, which is very similar to the disjunctive case.) None of the other choices
matter for focused search. In particular, the order of application of the rules in
the negative phase is immaterial. Every unfinished premise of a negative llkf
(or l3kf(B)) sequent will be neutral (i.e., of the form � Γ; Δ; ·). Regardless of the
order of application of the negative rules there will always be the same multi-set
of neutral premises of a negative sequent.

In order to determinize proof reconstruction, the certificate will have to record
these non-deterministic choices. For disjunctive choices, one of the operands of a
⊕ formula disappears from the sequent. Recall that in a standard l3kf sequent,
every (re)action subformula is indexed by a unique label. Therefore, for the
operand of the ⊕ rule that disappears, so will all the indexes associated to the
subformulas of that lost operand. Since the positive phase must (eventually)

Compact Proof Certificates for Linear Logic 219

finish2 by one of
[
fi
]
,

[
!
]

or
[↓]

, it follows that exactly one of the topmost atomic
labels in the focused ⊕ formula will eventually be mentioned in the derivation
above, so the choice made in the ⊕ rule can be deduced from the indexes in the
sequents higher in the proof.

For the multiplicative choices, we can use the input-output interpretation of
the linear context [10,11]. Briefly, the entire linear context is sent to the left
premise of an instance of

[⊗]
; this premise consumes as much of the context

as it needs and sends the rest to the right premise, which in turn sends its un-
consumed portion “down” the proof. The proof of the end-sequent is accepted
if it is able to consume the entire linear context. The input-output interpre-
tation thus determinizes the multiplicative non-determinism, i.e., backtracking
over different ways of splitting the context is unnecessary. It is nevertheless not
complete: it forces a sequence between different multiplicative—and semantically
concurrent—branches of the proof, and so an adversarial problem can be con-
structed for which committing to, say, the left premise before the right will lead
to infinitely deep proofs. This incompleteness is not an issue for us, however,
as the contraction bound makes all derivations finite. No matter which multi-
plicative branch is scheduled first, the search procedure on that branch must
terminate within the bound. Because this technique is well known and standard,
we omit a more detailed and formal description in this paper.

This leaves only the focusing decisions. An obvious way to record these is
to just extract the tree of decision rules—which we will call the decision tree
(to be formalized presently)—from the l3kf(B) proof. Because every sequent in
the derivation is standard, the contextual label of the principal formula in the
decision rule is unambiguous. Hence, the decision tree can be straightforwardly
built using these labels for the internal nodes. Still, this representation is not
wholly satisfactory: the decision tree is, in the worst case, a constant fraction of
the size of the entire l3kf(B) proof.3 To save space, proof certificates must be
allowed to omit portions of the full tree.

Now, the complete decision tree already contains a record of all the decision
rules required to build a proof, and hence an additional bound such as one on
contractions is redundant. But, if we omit portions of the tree, it does become
important to record the contraction bounds so that reconstruction remains de-
cidable. A single contraction bound for the entire proof can certainly be recorded
in the certificate anyway, but we can avoid the redundancy with the (recorded
portion of the) decision tree by a simple trick. For every unrecorded suffix of the
decision tree, we compute locally the contraction bound of the corresponding
sub-proof and make it the leaf of the tree. In other words, the certificate would
contain a prefix of the decision tree, with contraction bounds at the leaves that
correspond to omitted sub-proofs.

It should be intuitively obvious that reconstruction using this representation
is decidable, as every sub-proof is built either deterministically from the record

2 Reading, as usual, in the direction of conclusion to premises.
3 In practice, of course, this fraction will tend to be small because focusing already

eliminates much of the noise in llk proofs.

220 K. Chaudhuri

of focusing steps in the tree or by bounded search using the contraction bounds.
It is also clear that proof reconstruction will get increasingly deterministic as
more of the decision tree is recorded. The level of detail in the certificate thus
becomes a tunable parameter that can be tailored to particular needs or even
negotiated between the producer and the consumer.

Let us now crystallize these intuitions with formal definitions.

Definition 11. A decision tree D is a tree where each node: (1) contains a pair〈
α, Λ

〉
where α is a label and Λ is a set of atomic labels, and has a finite number

(possibly zero) of children; or (2) contains a contraction bound (Defn. 6) and no
children. A decision tree is full if it contains no nodes with contraction bounds.

The pairs
〈
α, Λ

〉
are interpreted as follows: α is the contextual label of the prin-

cipal formula of a corresponding decision rule (
[
lf

]
or

[
uf

]
), and Λ represents

the labels of all the reaction formulas—i.e., the labels of the principal formu-
las of the

[
fi
]
,

[
!
]

and
[↓]

rules—at the boundaries of the positive phase that
immediately follows (reading from conclusion upwards) the decision rule. Any
disjunctive choices made in the positive phase is fully determined by this second
component, as it will only contain the labels corresponding to disjuncts that are
selected in the

[⊕]
rules. Technically, this set of labels merely needs to be large

enough to disambiguate all the disjunctive choices made in the positive phase.

Definition 12. A certificate for an llkf sequent σ is of the form
〈
τ, D〉

where
τ is a neutral simply labelled l3kf sequent with unl (τ) = σ and D is a decision
tree. A full certificate is a certificate with a full decision tree.

To consume (i.e., check) a certificate, we execute the following algorithm.

Definition 13 (checking proof certificates). The following algorithm de-
cides if a given proof certificate

〈
τ, D〉

is valid or not. We proceed by induction
on the structure of D.

1. If the root node of D contains a contraction bound B, then we enumerate
all l3kf(B) derivation of τ , succeeding if any of them is a proof and failing
otherwise.

2. If the root node of D contains
〈
α, Λ

〉
and has children D1, . . . , Dn, then we

find
〈
α:P

〉
in τ (failing if it doesn’t exist) and perform the corresponding de-

cision rule (
[
lf

]
or

[
uf

]
). In the subsequent positive phase, for all disjunctive

choices we select that disjunct whose immediate reactive subformulas have
atomic labels found amongst Λ (failing if both disjuncts meet this criterion
or if neither does). If this phase results in n neutral sequents τ1, . . . , τn, we
then check each certificate

〈
τi, Di

〉
for i ∈ 1..n.

In order for this checking procedure to avoid unnecessary work, the sub-trees
in case 2 must line up precisely with the sub-derivations. This requires that
the premises of an inference rule be produced in a predictable order, which in
turn requires determinizing the order of application of the rules in the negative
phase. This is easily done by treating the active context Ω as a list instead of

Compact Proof Certificates for Linear Logic 221

as a multi-set, with the principal formula then always at the head of the list.
This is precisely Andreoli’s original proposal for the negative (or asynchronous)
phase in focusing [1]. Note that this is purely a matter of performance. The
checking algorithm can backtrack over all the ways to match up sub-trees to
neutral premises (there are only a finite number of permutations). The available
indexes in the neutral premises and in the sub-trees can also give hints as to the
right match-up.

Theorem 3 (soundness of checking). If the certificate
〈
τ, D〉

is accepted by
the algorithm of Defn. 13, then unl (τ) is a provable llkf sequent.

Proof. Immediate from Thm. 2 (1). ��

Theorem 4 (completeness of certification). If σ is provable in llkf, then
there is a valid proof certificate

〈
τ, D〉

for which unl (τ) = σ.

Proof (Sketch). By Thm. 2 (2), there is an l3kf derivation of a τ for some τ
with unl (τ) = σ. The full decision tree from this l3kf derivation gives a suitable
certificate. ��

Observe that checking a full certificate involves no non-deterministic choices at
all. There is, in fact, an order of determinacy among proof certificates, stated
below as a theorem. Its proof is omitted here because it requires a fairly unillu-
minating sequence of technical lemmas.

Proposition 1 (determinacy). Given two certificates ξ1 =
〈
τ, D1

〉
and ξ2 =〈

τ, D2
〉
, say that ξ1 is more deterministic than ξ2 if D2 with all contraction

bound nodes removed is a prefix of D1 likewise. Then, checking ξ1 involves fewer
non-deterministic choices than checking ξ2. ��

5 Concluding Remarks

We have given a way of systematically building proof certificates with a vari-
able level of detail from focused sequent proofs. The main technical device is
labelling of particular subformulas, which is both used to extract pre-computed
information about contractions and to obtain a skeletal form of the proof as a
decision tree. We have intentionally limited ourselves to bounded contraction as
the mechanism for eliding detail from the proof certificate. There are obviously
other—even simpler—means of eliding detail: for instance, instead of bounding
contractions, we can just bound the overall depth of the sub-proof. These alter-
native mechanisms are readily compatible with the proposed design.

For intuitionistic or classical logic, the situation is generally simpler because
of the absence of resource non-determinism. (Their propositional fragments are
generally decidable anyway.) For the first-order case, the proof certificates would
additionally have to depend on first-order unification in the consumer; alterna-
tively, the decision tree nodes would have to record the existential witnesses.

222 K. Chaudhuri

As rightly pointed out by the anonymous referees, the claim in this paper of
building compact proof certificates will ultimately have to be validated empiri-
cally. To this end, we are in the process of adapting the LI family of automated
proof-producing linear logic provers [4] to function as “proof-elaborators” that
will convert a certificate into a full proof, in essence implementing the algorithm
of Defn. 13.

Acknowledgement. we thank Nicolas Guenot and Lutz Straßburger for many
useful discussions on the nature of contraction, and the anonymous referees for
their insightful comments.

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. of Logic
and Computation 2(3), 297–347 (1992)

2. Boespflug, M.: Conception d’un noyau de vérification de preuves pour le λΠ-calcul
modulo. PhD thesis, Ecole Polytechnique (2011)

3. Brock-Nannestad, T., Schürmann, C.: Focused Natural Deduction. In: Fermüller,
C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 157–171. Springer, Hei-
delberg (2010)

4. Chaudhuri, K.: The Focused Inverse Method for Linear Logic. PhD thesis, Carnegie
Mellon University, Technical report CMU-CS-06-162 (December 2006)

5. Chaudhuri, K.: Focusing Strategies in the Sequent Calculus of Synthetic Connec-
tives. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI),
vol. 5330, pp. 467–481. Springer, Heidelberg (2008)

6. Chaudhuri, K.: Magically Constraining the Inverse Method Using Dynamic Po-
larity Assignment. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS,
vol. 6397, pp. 202–216. Springer, Heidelberg (2010)

7. Chaudhuri, K., Guenot, N., Straßburger, L.: The Focused Calculus of Structures.
In: Computer Science Logic: 20th Annual Conference of the EACSL. Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pp. 159–173. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik (September 2011)

8. Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and
backward chaining in the inverse method. J. of Automated Reasoning 40(2-3), 133–
177 (2008)

9. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. of Symbolic
Logic 57(3), 795–807 (1992)

10. Hodas, J., Miller, D.: Logic programming in a fragment of intuitionistic linear logic.
Information and Computation 110(2), 327–365 (1994)

11. Hodas, J., Watkins, K., Tamura, N., Kang, K.-S.: Efficient implementation of a
linear logic programming language. In: Jaffar, J. (ed.) Proceedings of the 1998
Joint International Conference and Symposium on Logic Programming, pp. 145–
159 (1998)

12. Laurent, O.: Etude de la polarisation en logique. PhD thesis, Université Aix-
Marseille II (March 2002)

13. Laurent, O.: A proof of the focalization property of linear logic (May 2004) (un-
published note)

Compact Proof Certificates for Linear Logic 223

14. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classi-
cal logics. Theoretical Computer Science 410(46), 4747–4768 (2009)

15. Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for proposi-
tional linear logic. Annals Pure Applied Logic 56, 239–311 (1992)

16. Miller, D.: A Proposal for Broad Spectrum Proof Certificates. In: Jouannaud, J.-P.,
Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 54–69. Springer, Heidelberg (2011)

17. Miller, D., Saurin, A.: From Proofs to Focused Proofs: A Modular Proof of Focal-
ization in Linear Logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS,
vol. 4646, pp. 405–419. Springer, Heidelberg (2007)

18. Necula, G.C.: Proof-carrying code. In: Conference Record of the 24th Symposium
on Principles of Programming Languages 1997, Paris, France, pp. 106–119. ACM
Press (1997)

19. Straßburger, L.: Linear Logic and Noncommutativity in the Calculus of Structures.
PhD thesis, Technische Universität Dresden (2003)

Constructive Completeness

for Modal Logic with Transitive Closure

Christian Doczkal and Gert Smolka

Saarland University, Saarbrücken, Germany
{doczkal,smolka}@ps.uni-saarland.de

Abstract. Classical modal logic with transitive closure appears as a
subsystem of logics used for program verification. The logic can be ax-
iomatized with a Hilbert system. In this paper we develop a constructive
completeness proof for the axiomatization using Coq with Ssreflect. The
proof is based on a novel analytic Gentzen system, which yields a certi-
fying decision procedure that for a formula constructs either a derivation
or a finite countermodel. Completeness of the axiomatization then fol-
lows by translating Gentzen derivations to Hilbert derivations. The main
difficulty throughout the development is the treatment of transitive clo-
sure.

Keywords: modal logic, completeness, decision procedures, construc-
tive proofs, Hilbert Systems, Gentzen systems, Coq, Ssreflect.

1 Introduction

We are interested in a constructive and formal metatheory of decidable logics
developed for program verification. In this paper we consider a logic K+, which
appears as a subsystem of PDL [8] and CTL [6]. K+ extends the basic modal
logic K with a modality for the transitive closure of the step relation. Our con-
structive account of K+ is based on a Hilbert system and a class of models. Our
main result is a constructive proof that the Hilbert system is complete for our
class of models. The completeness proof comes in the form of a certifying deci-
sion procedure1 that for a formula constructs either a derivation in the Hilbert
system or a finite countermodel. This establishes the completeness of the Hilbert
system and the small model property of the logic. The main difficulty through-
out the development is the treatment of transitive closure. The presence of the
transitive closure modality for instance shows in the non-compactness of K+.

We obtain our Hilbert system for K+ from a Hilbert system for PDL [15].
Proving the completeness of the Hilbert system constructively turned out to be
a challenge. The completeness proofs in the literature [15] are based on maximal
consistent sets and are thus nonconstructive. The notable exception is a paper [1]
by Ben-Ari, Pnueli, and Manna, where the completeness of a Hilbert system for

1 When we say decision procedure in this paper we do not claim that execution is
feasible in practice.

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 224–239, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Constructive Completeness for Modal Logic with Transitive Closure 225

UB (a logic subsuming K+) is shown by extending a tableau-based decision
procedure such that it yields a Hilbert refutation in case it fails to construct a
model.

We refine the approach of Ben-Ari et al. [1] by replacing the tableau-based
system with an analytic Gentzen system. In contrast to the tableau system,
which constructs models, the Gentzen system constructs derivations, which can
be translated to Hilbert derivations. Less directly, the Gentzen system also con-
structs models. The states of the models are obtained from the underivable
sequents containing only subformulas of the input formula. Thus the Gentzen
system gives us a certifying decision procedure that for an input formula s re-
turns either a finite model of ¬s or a derivation certifying that s is true in all
models.

For propositional logic, the correspondence between tableau systems and
Gentzen systems is immediate and well-known [17,20]. For modal logic, the situ-
ation is less clear. Fitting gives a tableaux system for S4 [9] and a corresponding
Gentzen system [10]. This system can be easily adapted to K, and the resulting
system serves as the basis of our Gentzen system for K+. Finding the missing
rule for K+ took some effort. Existing tableau systems for K+ and related logics
use local conditions to expand the tableau but also check global conditions like
reachability on the constructed graph. For a corresponding Gentzen system these
conditions must be reformulated as inference rules deriving valid sequents from
valid sequents. For K+ this leads to a rule we call compound rule. In contrast to
the other rules, which are based on local properties, the compound rule in one
step analyzes a strongly connected component of the search space for a model.

Once we have the Gentzen system for K+, we translate Gentzen derivations
into Hilbert derivations. To do so, we give for each Gentzen rule a function
that for Hilbert derivations of the premises yields a Hilbert derivation of the
conclusion. For all rules but the compound rule this is straightforward. The
compound rule is the only rule dealing with the transitive closure modality. We
handle the compound rule with an application of the induction-like Segerberg
axiom of the Hilbert system to an invariant accounting for the strongly connected
component licensing the application of the compound rule. Ben-Ari et al. [1] use
the Segerberg axiom in a similar way but their invariant did not work for us.

Our development [4] is carried out in Coq [19] with the Ssreflect [14] extension.
We profit much from Ssreflect since our development requires computational
finite types for subformulas, sequents, and sets of sequents.

We think that certifying decision procedures for logics used in program ver-
ification deserve more attention. The usual tableau-based decision procedures
for such logics (e.g., [1,16]) construct finite models for satisfiable formulas but
do not construct certificates for unsatisfiable formulas. For K+, we remedy this
situation with a Gentzen system that constructs derivations for unsatisfiable
formulas and models for satisfiable formulas.

In a previous paper [5] we give a constructive and formal proof of the decid-
ability of an extension of K+. There we rely on a pruning-based decision method
and make no attempt to generate Hilbert proofs.

226 C. Doczkal and G. Smolka

The paper is organized as follows. We first define the syntax, the models, and
the Hilbert system for K+. We then say a few things about finite types and finite
sets in Ssreflect, which provide essential infrastructure for our development. Next
we discuss how we formalize analytic Gentzen systems in Coq using Ssreflect.
We then define a class of syntactic models we call demos. Demos represent the
models produced by our Gentzen systems. Next we introduce propositional re-
tracts, which we need for the formulation of the compound rule. We then define
the Gentzen system for K+ and prove that it yields a demo for every underiv-
able sequent. Finally, we show how derivations in this system are translated to
derivations in the Hilbert system.

2 Problem Statement

We assume a countable alphabet P of atomic propositions p and consider the
formulas

s, t ::= ⊥ | p | s → t | �s | �+s

To increase readability, we introduce a number of defined logical operations.

¬s := s → ⊥ s ∧ t := ¬(s → ¬t) s ∨ t := ¬s → t �∗s := s ∧�+s

Formulas are interpreted over transition systems consisting of a set of states
|M|, a transition relation →M⊆ |M| × |M|, and a labeling ΛM : |M| → 2P .
The satisfaction relation M, w |= s between transition systems, their states, and
formulas is defined as follows:

M, w �|= ⊥
M, w |= p ⇐⇒ p ∈ ΛM(w)

M, w |= s → t ⇐⇒ M, w |= s implies M, w |= t

M, w |= �s ⇐⇒ M, v |= s for all v such that w →M v

M, w |= �+s ⇐⇒ M, v |= s for all v such that w →+
M v

Here,→+
M is the transitive closure of the transition relation. In Coq, we represent

transition systems as a record type:

������ ts : Type := TS {

state :> Type ;

trans : state -> state -> Prop ;

label : state -> aprop -> Prop }.

We define the satisfaction relation as a function into Prop:

satisfies : ����		 (T : ts), T -> form -> Prop

Since we consider classical modal logic, we consider as models those transition
systems, for which the satisfaction relation is stable under double negation.

�������� stable (X Y : Type) (R : X -> Y -> Prop) :=

����		 x y, ~ ~ R x y -> R x y.

������ model := Model { ts_of :> ts ; modelP : stable (satisfies ts_of) }.

Constructive Completeness for Modal Logic with Transitive Closure 227

s → t → s (K)
(s → t → u) → (s → t) → (s → u) (S)
¬¬s → s (DN)
�(s → t) → �s → �t (N)
�+(s → t) → �+s → �+t (N+)
�+s → �s (T1)
�+s → ��+s (T2)
�s → ��+s → �+s (T3)
�s → �+(s → �s) → �+s (Segerberg)

s → t s

t
MP

s

�s
Nec

s

�+s
Nec

+

Fig. 1. Hilbert System for Modal Logic with Transitive Closure

A formula is satisfiable if it has a model, i.e., it holds at some state of some
model. A formula s is valid if it holds at every state of every model. The Hilbert
system for which we want to show completeness is shown in Figure 1. We write
� s if s is provable in the Hilbert system. We represent the Hilbert system in
Coq as an inductive predicate:

�������� prv : form -> Prop :=

| r_mp s t : prv (s ---> t) -> prv s -> prv t

| ax_k s t : prv (s ---> t ---> s)

...

We can immediately show soundness.

Lemma 2.1 (Soundness). If s is provable, then s is valid.

Proof. Induction on the derivation of � s, using stability of the satisfaction
relation to show the case for (DN).

Our main result is the following.

Theorem 2.2 (Certified Decidability). For every formula s, we can either
construct a finite model of ¬s or a proof of s.

Corollary 2.3 (Completeness). If s is valid, then s is provable.

For the rest of this paper, we will mostly use mathematical notation to convey the
ideas of the completeness proof. We present Coq code to show design choices and
when the formal proof differs from the mathematical presentation. The reader
is invited to browse the coqdoc proof outline and the source files [4].

3 Finite Types and Finite Sets in Ssreflect

Our formal proofs rely heavily on the Ssreflect extension to Coq, so we briefly
describe the most important features we use. For technical details refer to [12,13].

228 C. Doczkal and G. Smolka

|| && Boolean disjunction and conjunction
x \in xs Generic membership operation for lists, sets, etc.
seq_sub xs The finite type whose elements are the members of the list xs
{set X} The finite type of sets over the finite type X.
:|: :&: Union and intersection
[set x:X | A] The set { x ∈ X | A } as an element of the type {set X}.

Fig. 2. Ssreflect’s Syntax for Finite Types and Finite Sets

In Ssreflect, a counted type is a type with a boolean equality test and a choice
operator for boolean predicates. A finite type is a counted type together with a
finite list enumerating its elements. Finite types can be constructed from finite
lists and finiteness is preserved by many type constructors. In particular, finite
types are closed unter cartesian products and taking sets. Finite types come
with boolean quantifiers [forall x, p x] and [exists x, p x] taking boolean
predicates and returning booleans. The Coq syntax for the remaining operations
we use is given in Figure 2.

4 Analytic Gentzen Systems in Coq

For a constructive proof of Theorem 2.2, we need a decision procedure which
for a given formula eiher constructs a countermodel or a Hilbert proof. We will
use an analytic Gentzen system for this purpose. Before we develop the Gentzen
system for K+, we first show how we represent analytic Gentzen systems in Coq.
As an example we will use an analytic Gentzen for basic modal logic K which
is adapted from Fitting’s tableau system for S4 [9]. This Gentzen system for K
will also serve as the starting point for the development of our Gentzen System
for K+.

We represent sequents as finite sets of signed formulas [17] we call clauses. For
instance, the sequent p, q ⇒ u, v is represented as the clause {p+, q+, u−, v−}.
The letter C ranges over clauses. A state satisfies a signed formula sσ if it satisfies
�sσ� where �s+� = s and �s−� = ¬s. A state satisfies a clause, if it satisfies all
signed formulas it contains. Accordingly, the associated formula of a clause C is∧

sσ∈C�sσ�.
A sound Gentzen system is now a deduction system that derives unsatisfiable

clauses from unsatisfiable clauses. This is in harmony with the conventional
view that a sound Gentzen system derives valid sequents from valid sequents
since validity of the formula p ∧ q → u ∨ v associated with the sequent p, q ⇒
u, v is equivalent to unsatisfiability of the formula we associate to the clause
{p+, q+, u−, v−}

Figure 3 shows our Gentzen system for basic modal logic K. The notation
C; sσ is to be read as C∪{sσ}. The notationRC denotes the set { s+ | �s+ ∈ C },
which we call the request of C. The system is analytic in the sense that if a clause
C is derivable, it has a derivation employing only signed subformulas of the

Constructive Completeness for Modal Logic with Transitive Closure 229

C; s+; s−
Ax

C;⊥+
⊥

C; s+; t−

C; s → t−
→− C; s− C; t+

C; s → t+
→+

RC; s−

C;�s−
Jump

Fig. 3. Analytic Gentzen System for K

formulas in C. For analytic Gentzen systems derivability of clauses is decidable
provided that rule instantiation is decidable.

We want to use analytic Gentzen systems as certifying decision procedures.
Hence, we fix an “input” formula s0 and parameterize our definitions by this
formula. This allows us to only consider the finitely many signed subformulas of
s0, which in turn allows us to leverage Ssreflect’s finite types and sets.

Writing sub s0 for the list of subformulas of s0, we represent the signed for-
mulas as the finite type F and clauses as sets over F.

�������� F := (bool * seq_sub (sub s0)) %type.

�������� clause := {set F}.

This allows most properties of clauses and sets of clauses to be expressed as
boolean predicates and reasoned about classically. The rules of a Gentzen system
will be represented as a boolean predicate

rule : {set clause} -> clause -> bool

Thus, the type of the rule predicate ensures that the system is analytic. Us-
ing a boolean predicate to represent rules also captures our intuition that rule
instantiation should be decidable.

The set of derivable clauses is the least fixpoint of one-step derivability:

�������� onestep_derivable_from (S : {set clause}) :=

[set C | [����� D : {set clause}, (D \subset S) && rule D C]].

One-step derivability is monotone so the least fixpoint exists and can be com-
puted by applying the onestep_derivable_from function n times to the empty
set where n is the size of the type clause. Hence derivability is decidable for any
boolean rule predicate.

5 Demos

We now define a class of syntactic models we call demos [16]. The states of demos
will be clauses and the definition will be such that every demo satisfies all the
clauses it contains. Further, we will design our Gentzen system for K+ such that
it is complete for demos, i.e., the underivable clauses contain a demo satisfying
all underivable clauses.

230 C. Doczkal and G. Smolka

A clause H is called a Hintikka clause if it satisfies the following conditions:

H1. ⊥+ /∈ H
H2. If p− ∈ H , then p+ /∈ H
H3. If (s → t)+ ∈ H , then s− ∈ H or t+ ∈ H
H4. If (s → t)− ∈ H , then s+ ∈ H and t− ∈ H

To express the Hintikka property as a boolean predicate we have to take care of
the fact that the Coq representation of our signed formulas consist of three parts:
a formula, a proof that this formula is a subformula of s0, and a boolean sign.
With sc : s \in sub s0 we write the signed formula s− as [F s; sc; false].
We define projections on the membership proofs in sub s0:

����� pIl s t (sc : s ---> t \in sub s0) : s \in sub s0.

With this in place, we can express the Hintikka property as follows:

�������� Hcond (t : F) (H : {set F}) :=

���� t ���

| [F s ---> t; sc; true] =>

([F s; pIl sc; false] \in H) || ([F t; pIr sc; true] \in H)

| ...

���.

�������� hintikka (H : {set F}) : bool := [����		 t in H, Hcond t H].

We now come to the definition of demos. The states of demos are Hintikka
clauses. For the transition relation we extend the notion of request to K+.

RC := { s+ | �s+ ∈ C } ∪ { s+ | �+s+ ∈ C } ∪ {�+s+ | �+s+ ∈ C }
For every set S of clauses, we define a transition relation →S ⊆ S×S as follows:
C →S D iff RC ⊆ D and {C,D} ⊆ S. We write →+

S for the transitive closure
of →S . A set D of Hintikka clauses is a demo if every clause C ∈ D satisfies the
following conditions:

D1. If �t− ∈ C, then there is a clause D ∈ D such that C →D D and t− ∈ D.
D2. If �+t− ∈ C, then there is a clause D ∈ D such that C →+

D D and t− ∈ D.

A demo for a clause C is a demo that contains a clause that extends C. Let D
be a demo. The model associated with D takes as states the clauses in D and as
transition relation the relation →D. Moreover, a state C of the associated model
is labeled with atomic proposition p if and only if p ∈ C.

Lemma 5.1. Let D be a demo, M its associated model, and s a formula. If
sσ ∈ C ∈ D, then M, C |= �sσ�.
Proof. Induction on s. &�
Note that, in contrast to the demo condition for �t−, the demo condition for
�+t− is non-local in the sense that it may take an arbitrary number of transi-
tions to reach the clause containing t−. We call a formula of the form �+t− an
eventuality and say that a clause D satisfying (D2) fulfills the eventuality. Com-
ing up with a Gentzen system whose underivable Hintikka clauses satisfy (D2)
requires some work.

Constructive Completeness for Modal Logic with Transitive Closure 231

6 Propositional Retracts

We now begin the development of our Gentzen system vor K+. To ease our
notation, we will from now on write just s for a positively signed formula s+.

We will design our system such that the set of underivable clauses will contain
a demo for every underivable clause. Since demos only contain Hintikka clauses,
we need to ensure that for every underivable clause there is an underivalbe
Hintikka extension, i.e, an underivable Hintikka clause containing C.

We call a set of clauses D a retract of C, writen D�C, if C is derivable from
D using propositional reasoning. More precisely, a retract of C is the frontier of
a backwards derivation starting at C using the propositional rules from Figure 3.
See Figure 4 for the precise definition of this notion. A retract D of C is called
a Hintikka retract if every H ∈ D is a Hintikka extension of C.

Lemma 6.1. For every clause one can compute a Hintikka retract.

Proof. Let C be a clause. We prove this by induction on the number of signed
formulas not in C. If C is a Hintikka clause, then {C} is a Hintikka retract of
C. If C contains a formula both with positive and negative sign or ⊥+, we pick
the empty retract. Otherwise, there is some implication s → tσ whose Hintikka
condition is not satisfied. We consider the case where σ = −; the other case
is similar. We have C � C; s; t− so by induction hypothesis we can compute a
Hintikka retract H for C; s; t− which is also a Hintikka retract for C. &�
On the Coq side, this amounts to showing.

����� saturation C : { H | hretract H C }

Here, { H | retract H D} is the type of dependent pairs of sets of clauses H and
proofs that these are Hintikka retracts of C. We define a function which computes
a Hintikka retract for every clause, by projecting out the first component of that
pair:

�������� dret C := proj1_sig (saturation C)

We refer to the Hintikka retract computed by dret as the default retract of C.
We now have the first rule of our Gentzen system for K+, the retract rule:

C1 . . . Cn

C
{C1, . . . , Cn} is the default Hintikka retract for C

{C}� C ∅� C
⊥ ∈ C or {s+, s−} ⊆ C

D1 � C; s− D2 �C; t

D1 ∪ D2 � C; s → t+
D � C; s; t−

D � C; s → t−

Fig. 4. Retracts

232 C. Doczkal and G. Smolka

Note that the use of the default retract in the definition of the retract rule essen-
tially fixes a single strategy in which the propositional rules can be applied. This
allows us to express the retract rule as a boolean predicate without the tedium
of expressing the retract relation as a boolean predicate. Mathematically, any
Hintikka retract would suffice since we do not make use of any special properties
of the default retract.

Lemma 6.2 (Extension). If C is underivable, it has an underivable Hintikka
extension.

Note that all clauses that are derivable using propositional reasoning have an
empty default retract. Hence, the retract rule allows us to handle propositional
reasoning in a single step and completely separately from modal reasoning.

7 The Gentzen System for K+

The Gentzen system consisting of the retract rule and the jump rule from Fig-
ure 3 is already complete for formulas not involving �+.

Lemma 7.1. The underivable Hintikka clauses satisfy condition (D1).

Hence, all we need is a rule that establishes (D2). A first candidate for a rule for
the �+ modality might be the following split-jump rule:

RC; s− RC;�+s−

C;�+s−

The rule is motivated by the two ways in which we can satisfy the eventuality
�+s−: we either satisfy s− at the next state (left branch of the rule) or we delay
fulfilling the eventuality (right branch). However, the resulting Gentzen system
would be incomplete as witnessed by the following example.

Example 7.2. The clause {�+(s → t),�+s,�+t−} corresponding to the ax-
iom (N+) is an example of an unsatisfiable but underivable clause. Alternating
between applying the split-jump and the retract rule yields a looping derivation
that can be visualized as a graph:

L1 : �+(s → t),�+s,�+t−

E : �+(s → t),�+s, s → t, s, t− R : �+(s → t),�+s, s → t, s,�+t−

L2 : �+(s → t),�+s, s → t, s, t,�+t−

Constructive Completeness for Modal Logic with Transitive Closure 233

Here, {L2} is the unique Hintikka retract of R. The clause E can be proved by
the retract rule, but the derivation “loops” around the clause L2.

To obtain a complete deduction system, we need a stronger rule for eventualities.
As we have seen in the previous example, applying the retract and the jump
rule can lead to looping derivations on unsatisfiable clauses. Thus, our rule for
eventualities is a generalization of the split-jump rule that allows for certain
looping derivations.

A compound is a triple (s,L, E) consisting of a formula s and two sets L and E
of clauses such that every clause C ∈ L satisfies the following conditions:

1. �+s− ∈ C
2. RC; s− ∈ E
3. L ∪ E contains all clauses of the default retract of RC;�+s−.

If (s,L, E) is a compound, we call L the loop and the clauses in E exit clauses.
We now formulate the remaining rule and call it compound rule:

C1 · · · Cn

C
(s,L, {C1, . . . , Cn}) is a compound and C ∈ L

Starting from a clause C containing �+s−, instances of the compound rule can
be generated as follows: We set L := {C} and E := ∅ and start by applying the
split-jump rule to C. The left premise and those clauses in the default retract of
RC;�+s− that we want to derive by other means are added to E . The remaining
clauses that are not yet in L are added to L, and we continue by applying the
split-jump rule to these clauses. This process must terminate with a compound
(s,L, E) since there are only finitely many clauses that can be added to L. The
fact that one does not need to apply the split-jump rule to clauses that are
already in L allows for looping derivations. The compound rule can easily be
expressed as a boolean predicate.

Example 7.3. We can derive the clause {�+(s → t),�+s,�+t−} from Exam-
ple 7.2 using the compound rule. Taking L1, L2, and E as in Example 7.2, the
triple (t, {L1, L2}, {E}) is a compound and E can be derived using the retract
rule.

Lemma 7.4. The underivable Hintikka clauses satisfy condition (D2).

Proof. Let U be the set of underivable Hintikka clauses and �+s− ∈ C ∈ U . We
define

L := {C′ ∈ U | �+s− ∈ C and C →∗
U C′ }

Let D be the set of derivable clauses. Since C ∈ L and C is not derivable, we
know that (s,L,D) is not a compound. However, compound conditions (1) and
(3) hold. Hence there is a clause D ∈ L such that RD; s− /∈ D. Thus RD; s− is
not derivable and therefore has a Hintikka extension D′ ∈ U (Lemma 6.2). Thus
C →∗

U D →U D′ and t− ∈ D′. &�

234 C. Doczkal and G. Smolka

We now have a complete Gentzen system for K+.

Theorem 7.5. The set of underivable Hintikka clauses is a demo for every
underivable clause. Thus every underivable clause is satisfiable.

Proof. Follows with Lemma 7.1, Lemma 7.4, and Lemma 5.1. &�

8 Translating Gentzen Derivations to Hilbert Proofs

So far we did not consider soundness of the Gentzen system. However, soundness
of the Gentzen system will follow as a by-product of a translation of Gentzen
derivations to Hilbert proofs, which we need anyway to show completeness of
the Hilbert system.

We associate with every signed formula and every clause a formula as defined
in Section 4. If a clause appears in the place of a formula, the clause is to be
understood as notation for its associated formula.

We aim for a translation theorem of the following form:

Theorem 8.1. If C is derivable in the Gentzen system, then � ¬C.

We call a Hilbert proof of ¬C a (Hilbert) refutation of C. A constructive proof of
the translation theorem can be seen as a translation from Gentzen derivations to
Hilbert refutations. To prove this theorem by induction on the Gentzen deriva-
tion, we need a number of lemmas corresponding to the rules of the Gentzen
system.

For the retract rule we have the following Lemma which we will also use in
the translation of the compound rule.

Lemma 8.2. If D � C, then � C → ∨D.

Proof. Induction on the definition of retract. &�
For the jump rule we have:

Lemma 8.3. If � ¬(RC; s−), then � ¬(C;�s−).

Proof. We reason as follows:

1. � ¬(RC; s−) assumption

2. � RC → s propositional reasoning

3. � �RC → �s Nec, N

4. � C → �s � C → �RC

5. � ¬(C;�s−) propositional reasoning

&�
Note that the Gentzen system consisting only of the retract rule and the jump
rule corresponds very closely to the Gentzen system in 3 and is complete for
formulas not involving �+. So giving a constructive completeness proof for K is
not difficult. The difficulty of giving a constructive completeness proof for K+

lies entirely in the treatment of transitive closure.

Constructive Completeness for Modal Logic with Transitive Closure 235

9 Generating Hilbert Proofs

Before we turn to the translation of the compound rule, we first note that to
formalize this kind of translation argument, we need to develop some infras-
tructure for generating Hilbert proofs in Coq as finding Hilbert proofs in the
bare Hilbert system can be a difficult task. Of course, Hilbert systems are well
understood and there are many techniques to come up with Hilbert proofs. We
merely mention two techniques that are easy to set up and help significantly in
generating Hilbert proofs in Coq.

It is well known that the entailment relation (i.e., prv (s ---> t) in Coq) de-
fines a preorder on formulas and that the logical operations have certain mono-
tonicity properties with respect to this preorder. For example:

� s′ → s � t → t′

� (s → t) → (s′ → t′)
� s → s′ � t → t′

� (s ∧ t) → (s′ ∧ t′)
� s → s′

� �s → �s′
. . .

We make these monotonicity properties known to Coq’s extended (setoid) rewrit-
ing tactic [18]. This allows us to freely rewrite with the entailment relation to
strengthen claims or to weaken assumptions, thereby contracting many mechan-
ical reasoning steps into a single rewrite.

Another major hindrance, in particular to finding propositional proofs, is the
lack of assumption management in the Hilbert system. However, we can simulate
natural deduction style reasoning inside the Hilbert system using a few lemmas
on big conjunctions.

In Coq, we realize big conjunctions and disjunctions over lists of formulas using
Ssreflect’s canonical big operators [2]. We also need big conjunctions indexed by
finite sets, which we represent by fixing an arbitrary enumeration of the elements.
The most prominent use of this construction is for the associated formulas of
clauses. For a big conjunction of the form

∧
x∈A x we will just write

∧
A and

likewise for disjunctions.
The lemmas we use to simulate natural deduction style reasoning are dis-

played as rules in Figure 5. Here xs ranges over lists of formulas and :: is the
cons operator. Note that there are no rules corresponding to Nec and Nec

+

since these rules would clearly be unsound in the presence of assumptions. This
essentially restricts reasoning with assumptions to the propositional fragment,
which is sufficient for our purposes.

Building on these rules, we define a set of tactics simulating the behavior
of basic Coq tactics like intros and apply on the level of Hilbert proofs. For
additional detail, we refer the reader to the theory files. Using setoid rewriting
and these tactics the various modal logic lemmas that we need for our translation
proof can be proved easily. Those modal logic lemmas to which we will refer
explicitly can be found in Figure 6.

10 Translation Method for the Compound Rule

We now turn to the last missing piece in our formal completeness proof, the
translation method for the compound rule.

236 C. Doczkal and G. Smolka

s ∈ xs∧
xs → s

∧
s :: xs → t

∧
xs → s → t

∧
nil → s

s

∧
xs → s → t

∧
xs → s

∧
xs → t

Fig. 5. Assumption Lemmas

� �s ∨�t → �(s ∨ t) (D2)

� �∗s → ��∗s (S1)

� �+s → ��∗s (S2)

� C → �RC (R1)

If � s → t, then � �+s → �+t (Reg
+)

Fig. 6. Basic Modal Logic Lemmas

Lemma 10.1. Let (s,L, E) be a compound such that � ¬D for all D ∈ E. Then
for every C ∈ L, we have � ¬C.

Proof. Let C0 ∈ L. It suffices to show � C0 → �+s since �+s− ∈ C0 by the
definition of compound. We define

I := �∗s ∨
∨
C∈L

RC

and show the following properties of I:

(i) � C0 → �I
(ii) � I → s
(iii) � I → �I

Once we have shown (i) to (iii), we can finish the proof as follows:

1. � �+(I → �I) (iii), Nec
+

2. � �I → �+I Segerberg

3. � �I → �+s (ii), Reg
+

4. � C0 → �+s (i)

For (i - iii) we reason as follows:

(i) We have:

1. � C0 → �RC0 (R1)

2. � C0 → �I monotonicity

Constructive Completeness for Modal Logic with Transitive Closure 237

(ii) It suffices to show � RC → s for every C ∈ L. For every such C we have:

1. � ¬(RC; s−) Def. compound, assumption

2. � RC → s propositional reasoning

(iii) We show that every disjunct of I implies �I. By (S1) it suffices to show
� RC → �I for every C ∈ L. Let C ∈ L and let D ⊆ L ∪ E be the default
retract of RC;�+s−.

1. � RC;�+s− →
∨

D Lemma 8.2

2. � RC;�+s− →
∨

(D ∩ L) � ¬D for all D ∈ E
3. � RC;�+s− →

∨
L∈L

L propositional reasoning

4. � RC;�+s− →
∨
L∈L

�RL (R1), monotonicity

5. � RC;�+s− → �
∨
L∈L

RL (D2)

6. � RC → �+s ∨�
∨
L∈L

RL propositional reasoning

7. � RC → �(�∗s ∨
∨
L∈L

RL) (S2), (D2)

8. � RC → �I Def. I

&�
Now we can prove the translation theorem.

Proof (of Theorem 8.1). Let C be derivable. We prove the claim by induction
on the derivation of C. The case for the compound rule follows immediately
with Lemma 10.1. The cases for the jump rule and the retract rule follow with
Lemma 8.3 and Lemma 8.2 respectively. &�
Proof (of Theorem 2.2). Derivability in our Gentzen system is decidable, so we
consider two cases:
The clause {s−} is derivable. By Lemma 8.1, we have � ¬¬s and hence � s.
The clause {s−} is underivable. By Lemma 7.5, the set of underivable clauses
over the subformulas of s yields a model for {s−} and hence for ¬s. &�
Note that in the proof above, the size of the countermodel can be bounded by
22n where n is the number of subformulas of s. Hence, we have also shown that
K+ has the small model property.

Organizing the proof as we do, we obtain a development of rather moderate
size. It consists of less than 1000 lines specific to our proof, about half of which
are Hilbert infrastructure and a collection of basic modal logic lemmas. On top
of this we need a couple of hundred lines of generic constructions like the fixpoint
computation described in Section 4.

238 C. Doczkal and G. Smolka

11 Related Work

Only after submitting the initial version of this paper, we became aware of
the work of Brünnler and Lange [3] presenting analytic sequent calculi for LTL
and CTL. In their calculi one can focus on an eventuality formula and keep a
history of the contexts in which a rule has been applied to this eventuality. If
an eventuality occurs in a context that is already in the history, the sequent is
provable.

Adapting Brünnler and Lange’s rules to K+, we obtain a system where one of
the eventuality formulas in a clause can be annotated with a finite set of plain,
i.e., annotation-free clauses. The rules for �+ then look as follows:

RC; s− RC;�+
RCs

−

C;�+s−
RC; s− RC;�+

H;RCs
−

C;�+
Hs− C;�+

H;RCs
−

An annotated eventuality �+
Hs− is satisfied at a state w if there is a path from w

to a state satisfying s− that has at least one transition and after the first tran-
sition no state on the path satisfies a clause in H . The system consisting of the
rules above and the rules from Figure 3 is sound for this semantics and complete
for plain clauses.

LTL and CTL can express the semantics of annotated eventualities as a for-
mula using the until operator. So given complete Hilbert systems for LTL [11] or
CTL [7] it should be possible to translate derivations in Brünnler and Lange’s
calculi to Hilbert proofs. Unlike LTL and CTL, K+ cannot express the semantics
of an annotated eventuality as a formula. Hence, it is not clear how to translate
the rules above to Hilbert refutations in the Hilbert system.

The motivation for our Gentzen system was the need for a simple induc-
tive characterization of unsatisfiability that can be translated to Hilbert refu-
tations to constructively show the completeness of the Hilbert system. In fact,
our monolithic compound rule allows us to directly read off the instantiation of
the Segerberg axiom. So while for constructive completeness proofs for Hilbert
systems for LTL and CTL history-based Gentzen systems seem promising, a
system with a compound rule appears essential for weaker logics like K+.

Acknowledgments. We thank Chad Brown for many helpful discussions and
the suggestion to consider �+s rather than �∗s as primitive. We also thank the
anonymous referees for their helpful comments.

References

1. Ben-Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branching time. Acta
Inf. 20, 207–226 (1983)

2. Bertot, Y., Gonthier, G., Biha, S.O., Pasca, I.: Canonical Big Operators. In:
Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170,
pp. 86–101. Springer, Heidelberg (2008)

Constructive Completeness for Modal Logic with Transitive Closure 239

3. Brünnler, K., Lange, M.: Cut-free sequent systems for temporal logic. J. Log. Al-
gebr. Program. 76(2), 216–225 (2008)

4. Doczkal, C., Smolka, G.: Coq formalization accompanying this paper,
http://www.ps.uni-saarland.de/extras/cpp12/

5. Doczkal, C., Smolka, G.: Constructive Formalization of Hybrid Logic with Eventu-
alities. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 5–20.
Springer, Heidelberg (2011)

6. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Programming 2(3), 241–266 (1982)

7. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. J. Comput. System Sci. 30(1), 1–24 (1985)

8. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. System Sci., 194–211 (1979)

9. Fitting, M.: Intuitionistic logic, model theory and forcing. Studies in Logic. North-
Holland Pub. Co. (1969)

10. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Reidel (1983)
11. Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.

In: Abrahams, P.W., Lipton, R.J., Bourne, S.R. (eds.) POPL, pp. 163–173. ACM
Press (1980)

12. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging Mathematical
Structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)

13. Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A Modular Formali-
sation of Finite Group Theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007.
LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)

14. Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the
Coq system. Research Report RR-6455, INRIA (2008),
http://hal.inria.fr/inria-00258384/en/

15. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press (2000)
16. Kaminski, M., Schneider, T., Smolka, G.: Correctness and Worst-Case Optimality

of Pratt-Style Decision Procedures for Modal and Hybrid Logics. In: Brünnler, K.,
Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 196–210. Springer,
Heidelberg (2011)

17. Smullyan, R.M.: First-Order Logic. Springer (1968)
18. Sozeau, M.: A new look at generalized rewriting in type theory. Journal of Formal-

ized Reasoning 2(1) (2009)
19. The Coq Development Team, http://coq.inria.fr
20. Troelstra, A.S., Schwichtenberg, H.: Basic proof theory, 2nd edn. Cambridge Uni-

versity Press, New York (2000)

http://www.ps.uni-saarland.de/extras/cpp12/
http://hal.inria.fr/inria-00258384/en/
http://coq.inria.fr

Rating Disambiguation Errors�

Andrea Asperti and Wilmer Ricciotti

Department of Computer Science, University of Bologna
{asperti,ricciott}@cs.unibo.it

Abstract. Ambiguous notation is a powerful tool developed to deal with
the complexity of mathematics without sacrificing clarity or conciseness.
In the mechanized parsing of ambiguous terms, a disambiguation algo-
rithm can be used to provide the system with the intelligence necessary to
select valid interpretations for the overloaded symbols received in input.

Disambiguation works by means of an incremental analysis of the in-
put term, progressively discarding all invalid interpretations. As a result,
if the input term cannot be disambiguated, many errors will be produced,
only a handful of which are truly meaningful to the user.

In this paper, we improve the existing technique to classify disam-
biguation errors by introducing a new heuristic to sort errors from the
most meaningful to the least, showing that it can be implemented in a
natural way in the existing disambiguation algorithm. We also describe
a neat interface to present disambiguation errors to the user, suitable for
the use in interactive theorem proving applications.

1 Introduction

One of the most notable features of mathematical notation is ambiguity: for
instance, it is possible to overload operators, as long as the intended interpre-
tation of a given formula can be inferred from its context. On the other hand,
results to be stored in formal libraries of interactive provers [13], need to be in
an unambiguous form.

Ambiguous notation serves an important purpose, hiding redundant informa-
tion and providing a standardized lexicon through which mathematicians can
communicate more easily. It is therefore important that tools for mechanized
mathematics be able to bridge the gap between mathematical notation and
the unambiguous formalism used by the system. Hence, all interactive theorem
provers address the issue of ambiguous notation in some way. Some provers try to
resolve the ambiguity at parsing time by means of a deterministic system of in-
terpretation scopes (an approach used in Coq). A more sophisticated technique
popularized by the Haskell programming language and extended to theorem
proving first in Isabelle, then in Coq and Matita, is that of type classes [12]; in
this case every notation is associated unambiguously to a certain type class and

� The project CerCo acknowledges the financial support of the Future and Emerg-
ing Technologies (FET) programme within the Seventh Framework Programme for
Research of the European Commission, under FET-Open grant number: 243881.

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 240–255, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Rating Disambiguation Errors 241

parsed as such; each type class provides several possible overloaded instances of
the notation, allowing the intended one to be selected later on during semantic
analysis.

A different approach supported in Matita [3] since the very beginning, allows
the parser to produce an ambiguous abstract syntax tree from ambiguous nota-
tion, which is later fed to a component called disambiguator, in charge of deriving
all the possible well-typed interpretations. This paper is an ideal continuation
of two works by Sacerdoti Coen and Zacchiroli about the implementation of dis-
ambiguators [9,10]. In particular, we focus on disambiguation errors and how to
predict how much informative they are going to be for the user.

While the disambiguator approach has a great flexibility, it turns out that
error reporting in this setting has an even more critical status than in type-
checking. Usually the disambiguation process fails because of a single mistake
by the user: in such a case, a human reader is often able to infer the intended
meaning of the user input and spot the mistake; from the system perspective,
however, each combination of the possible interpretations of ambiguous parts of
the input will yield a different error. That is to say, when the disambiguation
process fails, we may be left with dozens of failing interpretations and no clear
way to recognize the interesting ones.

Our goal is to allow users to recover their intended interpretation from the
heap of failures in order to understand what went wrong. We do this by pro-
viding a heuristic criterion to rate how likely an interpretation is to be the one
intended by the user. This criterion is implemented as a straightforward addition
to Sacerdoti Coen and Zacchiroli’s efficient disambiguation algorithm.

The structure of the paper is as follows: Section 2 deals with the notion of dis-
ambiguation and provides definitions that will be used in the rest of the paper;
Section 3 recalls the efficient disambiguation, which will serve as a basis for the
rest of this work. Our contributions are described beginning in Section 4, where
we discuss some drawbacks of a previous technique to detect so called spurious
errors; Section 5 presents an entirely novel criterion providing a quantitative
analysis of how much errors can be expected to be relevant and discusses an
extension of the disambiguation algorithm yielding this finer classification; Sec-
tion 6 presents a user interface for reporting disambiguation errors in an orderly
way. Both the algorithm and the user interface have been implemented and are
used as part of the Matita web application1.

2 The Notion of Disambiguation

In the handbook approach to compilation, the semantic analysis phase is in
charge of associating to an abstract syntax tree (AST) at most one interpreta-
tion (or no interpretation at all in the case of a static semantic error). In the
context of the formalization of mathematics, however, we are willing to allow the
user to employ the standard, ambiguous mathematical syntax, with the maxi-
mum degree of flexibility. In this scenario, the ambiguity of concrete syntax is

1 See http://matita.cs.unibo.it/matitaweb.shtml

http://matita.cs.unibo.it/matitaweb.shtml

242 A. Asperti and W. Ricciotti

transferred by the parser to an ambiguous AST, where by ‘ambiguous’ we mean
that it admits more than one interpretation. The process associating an AST to
the set of all its valid interpretations is called disambiguation. We will now make
these concepts more formal.

In this discussion, we will provide an abstract presentation to avoid sticking
to a specific syntax or formalism. We will call AST a tree built from primitive
nodes in the set S; the set of ASTs will be denoted by A. For every node in s ∈ S

there exists an associated interpretation domain Ds which we will also regard as
primitive.

A node in an AST can be either ambiguous or disambiguated. An ambiguous
node is a bare primitive node (obtained by parsing ambiguous concrete syntax);
a disambiguated node is a pair 〈s, d〉 such that d is an interpretation in Ds.
Disambiguated nodes can be an intermediate product of disambiguation, but
can also result from parsing of unambiguous concrete syntax (which in turn can
be a deliberate choice of the user, or the refinement of ambiguous user syntax
by means of disambiguation feedback). A given node may occur multiple times
in an AST, therefore we will denote occurrences (i.e. positions in an AST) by
n, n′, The lookup operation returning the node at position n in the AST t is
denoted t(n).

We call an AST containing occurrences of ambiguous nodes an ambiguous
AST, and an AST containing only disambiguated nodes an unambiguous AST.
The set of unambiguous ASTs is denoted A. The set of the occurrences of ambigu-
ous nodes in an AST t is called domain of t and denoted dom(t). A substitution
for an AST t is a finite partial map from the domain of t to disambiguated nodes,
such that an occurrence of an ambiguous node s is mapped to a corresponding
disambiguated node 〈s, d〉. The substitution map is lifted from nodes to ASTs
in the obvious way. We say that an AST t′ is an instance of another AST t, or
equivalently that t is a generalization of t′ (notation: t) t′) if there exists a
substitution σ such that t′ = tσ. The following property follows immediately.

Lemma 1.) is a partial order relation.

Our intuition tells us that the semantics of an unambiguous AST is unique and
that the semantics of an ambiguous AST is the union of the semantics of all its
unambiguous instances. For our purposes, we can identify the set of semantics
of ASTs with the set of unambiguous ASTs A. The semantics of ASTs is then
formalized as follows:

Definition 1. The semantics of ASTs �·� : A → ℘(A) is a function associating
to any AST the set of all its unambiguous instances

�t� = {t′ ∈ A : t) t′}

Since every unambiguous AST is the only instance of itself, according to the
above definition, the semantics of an unambiguous AST is a singleton, regardless
of the intepretations of its nodes, as expected. However, this definition is in a
sense too loose to be of any use, because it says nothing about the coherence

Rating Disambiguation Errors 243

of the interpretations we chose. The most obvious example of incoherence is ill-
typedness: if our choices yield an ill-typed AST, that AST must be considered
meaningless and thus discarded. In our abstract context, we do not employ any
concrete notion of well-typedness, but rather we will assume the existence of an
oracle R deciding whether an AST is valid or not: the oracle will return ✓ in
the former case, and an informative error message otherwise.

Definition 2. The disambiguation function D : A → ℘(A) maps any AST to
the set of all its valid interpretations

D(t) = {t′ ∈ �t� : R(t′) = ✓}
A trivial algorithm implementing D consists of computing the set of all ground
instances of the AST to be disambiguated and then filtering through the oracle
R. This technique is clearly inefficient, since the number of ground instances of
an AST is exponential in the number of its ambiguous nodes.

3 A Disambiguation Algorithm

Efficient implementations of disambiguation operate by incrementally instanti-
ating the original AST, immediately pruning those partial instances which can
already be shown to be invalid by the oracle, and iterating the process until
no ambiguous nodes are left. Early pruning leads to enormous performance im-
provements.

In order for this kind of implementation to work, we must relax the definition
of R to allow it to take ambiguous ASTs as input too. In this case, we want R
to always return ✓ if the input AST can be instantiated to a valid unambiguous
AST, because only invalid instances should be pruned. When this condition is
satisfied, we clearly want as many ASTs as possible to be rejected, to minimize
the number of incremental instantiations.

In summary, we would like the oracle to return an error if and only if all the
instances of the input AST are invalid. However, in general we are not able to
identify all the ambiguous ASTs not admitting valid instantiations: this happens
for two reasons:

– while some errors are located in disambiguated parts of the AST and can be
immediately recognized as such, other errors, located in ambiguous parts,
can only be recognized after disambiguation of some nodes: to detect such
errors, it is necessary to first instantiate some ambiguous nodes, making an
efficient implementation of R impossible;

– in the case where all instances of the input AST are invalid, R should re-
turn a single message explaining why all such instances cannot be accepted:
unfortunately, it may be the case that all the instances are invalid, but each
of them is invalid for a different reason.

Our disambiguation algorithm will therefore assume that ASTs rejected by R
are invalid for all possible instantiations, but the inverse implication will not
hold in general.

244 A. Asperti and W. Ricciotti

Property 1. Given a (possibly ambiguous) AST t, if R(t) returns an error, then
all instances of t are not valid.

Property 2. IfR(t) returns an error, that error is meaningful for all instances of t.

Given a set of ASTs Σ, we define the notations Σ✓ and Σ✗ as follows:

Σ✓ = {t|t ∈ Σ ∧R(t) = ✓}
Σ✗ = {〈t,R(t)〉|t ∈ Σ ∧R(t) �= ✓}

Therefore, Σ✓ will contain the subset of all the ASTs that are still valid, while
Σ✗ will contain all the invalid ASTs in Σ paired with their error messages.

We can now show the “efficient” disambiguation algorithm originally pre-
sented in [9]. It follows the aforementioned criterion of incremental instantiation
of the input AST.

procedure disambiguate(t)
begin

Σ ← {t}✓; Ω ← {t}✗;

while (Σ �= ∅ ∧ next(Σ) �= ✗)
begin
n ← next(Σ);
Δ ← {u[n �→ 〈u(n), d〉]|u ∈ Σ, d ∈ Du(n)};
Σ ← Δ✓; Ω ← Ω ∪ Δ✗;

end
return Σ,Ω

end

The algorithm maintains a set Σ of partially disambiguated instances of the in-
put AST t, ensuring that they share the same domain and have not been rejected
by R yet (Σ is initialized as the singleton {t}, except when t is immediately re-
jected by R, in which case it is initialized as the empty set, leading to failure).
The algorithm is parametric on a procedure next taking as input a set of ASTs
sharing the same domain and returning an element of that domain (an ambigu-
ous node occurrence), or ✗ if no ambiguous node is left. In the while cycle, we
choose a node next(Σ) from the domain of Σ and instantiate it in all possi-
ble ways, obtaining a new set Δ. We then filter out invalid instances obtaining
a new set Σ to continue iteration. The cycle stops when either all ambiguous
nodes have been instantiated (next(Σ) = ✗), meaning the disambiguation was
successful, or when Σ is empty, meaning all the instances of t are invalid. Ω is
used to collect all the errors produced by R.

To discuss the properties of the algorithm, we introduce a notation to refer
to the value of a variable at a specific iteration of a while cycle: we will use v0
to denote the value of a variable v before the first iteration, and vi to denote its
value at the end of the i-th iteration.

Lemma 2. In an execution of disambiguate(t), for all i ≥ 1, each AST t′ in
Δi is such that |dom(t′)| = |dom(t)| − i

Rating Disambiguation Errors 245

Proof. By induction on i: when i = 1, we instantiate a single ambiguous node
from the original AST t, and the thesis follows easily; when i > 1, we know
that Σi−1 is a subset of Δi−1, so by induction hypothesis every AST in it has
a domain of cardinality |dom(t)| − i + 1: to compute Δi, we instantiate one
ambiguous node more, therefore getting a domain of cardinality dom(t) − i, as
needed.

Lemma 3. The disambiguate algorithm terminates after at most |dom(t)| ex-
ecutions of the while cycle.

Proof. Trivial, since at each iteration, either Σ becomes empty (and the algo-
rithm terminates immediately), or the number of ambiguous nodes in Σ de-
creases by one (easily proved by means of Lemma 2), eventually reaching 0 and
falsifying the guard of the while cycle.

Lemma 4. Given an AST t, for all t′ ∈ A such that t) t′ and for all i ≤
|dom(t)|, there exists t′′ such that t) t′′) t′ and either t′′ ∈ Σi and R(t′′) = ✓,
or t′′ ∈ Ωi and R(t′′) �= ✓.

Proof. We proceed by induction on i. If i = 0, then we choose t′′ = t and the
statement is satisfied. If i > 0, by induction hypothesis there exists t′′′ such
that t) t′′′) t′ and either R(t′′′) = ✓ and t′′′ ∈ Σi−1 or R(t′′′) �= ✓ and
t′′′ ∈ Ωi−1. If t

′′′ ∈ Ωi−1, we choose t′′ = t′′′ and get the thesis since Ωi−1 ⊆ Ωi.
If t′′′ ∈ Σi−1, we choose t′′ = t′′′[ni �→ t′(ni)]: clearly t) t′′) t′ by definition;
furthermore, t′′ ∈ Δi. If R(t′′) = ✓, then we proved that t′′ ∈ Σi; otherwise,
t′′ ∈ Ωi. In both cases, the thesis holds.

The two following theorems assert the soundness of the algorithm, respectively
saying that the Σ returned by the algorithm is the set of all valid disambiguated
instances of the input, and that all invalid disambiguated instances of the input
have an invalid generalization in the Ω returned by the algorithm (or equiva-
lently, that Ω contains an error explaining why that AST is invalid).

Theorem 1. The set Σ returned by disambiguate(t) is equal to D(t).

Proof. We prove that the algorithm returns a Σ such that Σ ⊆ D(t) and Σ ⊇
D(t).

Σ ⊆ D(t): Since only valid ASTs ever enter Σ and the cycle only terminates
when the domain of ASTs in Σ is empty (or Σ = ∅), Σ only contains
unambiguous valid ASTs, thus Σ ⊆ D(t).

Σ ⊇ D(t): By lemmata 3 and 4, we can prove that at the last execution of the
while cycle, for all t′ ∈ D(t), there exists t′′) t′ such that t′′ ∈ Σ; this
implies Σ is not empty and t′′ is unambiguous (otherwise, the cycle would
execute another time). It thus follows that t′′ = t′ and, consequently, t′ ∈ Σ.

Theorem 2. Let t be an AST and Ω the error collection returned by
disambiguate(t). Then:

246 A. Asperti and W. Ricciotti

1. given an AST t′ and an error message e such that 〈t′, e〉 ∈ Ω, for all t′′ such
that t′) t′′ we have R(t′′) �= ✓;

2. for all t′ such that t) t′ and t′ /∈ D(t), there exists an AST t′′ such that
t) t′′) t′ and 〈t′′,R(t′′)〉 ∈ Ω.

Proof. Part 1 is trivial (only invalid ASTs enter Ω, and by Property 1 of R, all
their instances must also be invalid).
To prove part 2, let k be the number of iterations after which the algorithm
terminates. We have Σ = Σk and Ω = Ωk: thus by using Lemma 4 with i = k,
we get a t′′ such that t) t′′) t′ and either t′′ ∈ Σ or t′′ ∈ Ω. In the first case
by Theorem 1, t′′ ∈ D(t). This implies t′′ is also unambiguous, thus from t′′) t′

we also get t′′ = t′. But then t′ ∈ D(t), which falsifies our hypothesis. If instead
t′′ ∈ Ω, the thesis follows immediately.

The choice of next influences both efficiency and the errors returned by the
algorithm. Since in general the interpretation of one node constrains the inter-
pretation of all its children, while the constraints imposed by a node to its parent
and siblings are much less restrictive (if they exist at all), and since, as we noted,
the constraints we imposed on the validity test are such that no reasonable im-
plementation is allowed to consider the children of an ambiguous node, the next
function should be implemented by visiting the nodes nearest to the root first,
as in a pre-order or level-order (breadth first) traversal.

4 Spurious Errors

When disambiguation is successful, it is generally going to return a small set of
choices (most usually, just one), all of which are meaningful: in this case, the
errors produced during the disambiguation process can be ignored. If disam-
biguation fails, however, we want to provide the user with information on what
went wrong, by returning to him the Ω set computed by disambiguate. This set
can easily contain a large amount of invalid interpretations that to the system
are equally wrong, even though the user is likely to have committed just one
mistake; the vast majority of errors produced by the disambiguation algorithm
is spurious : they do not correspond to a user error, but are only a technical
means to drive the disambiguation algorithm to the correct interpretation (if it
exists).

In order to provide the user with more accurate information, a heuristic cri-
terion to distinguish genuine errors from spurious errors was introduced in [10]:

Criterion 1 (Spurious Error Detection). An error is spurious when it is
localized in a sub-formula F such that there is an alternative interpretation of
the formula such that no error is located in F .

The meaning of the criterion is clear: the system should try to interpret the
input AST as much as possible and keep as real errors only those that are
“unrecoverable”, i.e. those for which no alternative valid interpretation exists.

Rating Disambiguation Errors 247

However Criterion 1 lacks a clear implementation, especially because an efficient
algorithm (like the one presented in the previous section) does not consider
all possible interpretations (and consequently all possible errors) of the input
AST. For this reason, the following restriction of the criterion2, allowing a more
obvious implementation, has been suggested in the aforementioned paper (here
rephrased to make it agree with our simpler presentation of Section 2):

Criterion 2 (Draconian Spurious Error Detection). During the disambig-
uation of t, an error message relative to an instance t′ of t is spurious iff there
exists an occurrence n ∈ dom(t) and an alternative instance t′′ of t such that:

1. t′(n) �= t′′(n);
2. t′, t′′ are both unambiguous on all n′ preceding n in pre-order;
3. R(t′′) = ✓;

Let us point out the heuristic status of the criterion: the causal relation between
the interpretation of a node and an error is informal and cannot be grasped
accurately by any disambiguation algorithm. In practice, this means that we
may sometimes find genuine errors classified as spurious.

A second suspicious point is the second requirement of the criterion, explicitly
stating the traversal algorithm to be used in the disambiguation process. The
choice of a pre-order traversal is sensible but arbitrary (a breadth-first traver-
sal also enjoys good properties with respect to the disambiguation algorithm).
Indeed, the classification of spurious errors is dependent on the order in which
subterms are considered: in some cases, opposite classifications can be performed
on semantically equivalent terms, differing only by a commutativity property.
The next example shows this anomaly.

Example 1. Consider the concrete syntax

(α + β) + (α+ γ) = (x+ y) + (x+ z)

where α, β, γ are interpreted to be in R and x,y, z in R2. Assume that the
interpretation domain for + contains elements plusR and plusV representing
respectively sum on real scalars and vectors; similarly, the domain for = will
contain interpretations eqR and eqV for equality on scalars and vectors. In a
disambiguation algorithm classifying spurious errors, the nodes will be consid-
ered and assigned interpretations in the pre-order sequence; disambiguation of
the above formula will fail because the two sides of the equality have different
types. Immediately before failure, the only instance of the original AST still
being processed is

(α +plusR β) +plusR (α+plusR γ) =eqR (x+y) +plusR (x+ z)

where the symbol being considered is the underlined one. Both interpretations
in its domain will fail, returning errors:

2 The criterion is called draconian because it recognizes as spurious more errors than
the prudent criterion also proposed in [10]. It is not possible to discuss both the
criteria here due to space contraints, but the considerations we are going to draw
apply to the prudent criterion as well.

248 A. Asperti and W. Ricciotti

• (α +plusR β) +plusR (α +plusR γ) =eqR (x+plusR y) +plusR (x+ z): x has type
vector but is here used as a scalar

• (α +plusR β) +plusR (α +plusR γ) =eqR (x +plusV y) +plusR (x + z): x +plusV y
has type vector but is here used as a scalar

After generating those errors, no valid interpretation is left and the algorithm
will stop. Errors produced by the disambiguation of preceding nodes in the pre-
order sequence will be flagged as spurious by the draconian criterion, including
the errors precluding the plusV interpretation for α+ β:

• (α+plusR β) +plusV (α+ γ) =eqV (x+y) + (x+ z): α+plusR β has type scalar
but is here used as a vector

• (α +plusV β) +plusR (α + γ) =eqR (x+ y) + (x+ z): α has type scalar but is
here used as a vector

If on the contrary we consider the symmetric equation

(x+ y) + (x+ z) = (α+ β) + (α+ γ)

the disambiguation will proceed until the only interpretation left is:

(x+plusV y) +plusV (x+plusV z) =eqV (α+β) +plusV (α+ γ)

The system will then return the following errors as meaningful:

– (x +plusV y) +plusV (x +plusV z) =eqV (α +plusR β) +plusV (α + γ): α +plusR β
has type scalar but is here used as a vector

– (x+plusV y) +plusV (x+plusV z) =eqV (α +plusV β) +plusV (α + γ): α has type
scalar but is here used as a vector

In this case, the errors about x+y will be flagged as spurious, showing that the
notion of spuriousness is not stable under minor syntactic modifications of the
input. Arguably, in both versions of the equation, x+ y and α + β are equally
wrong (since they are both responsible for the whole equation being rejected).

5 Error Rating

Example 1 shows that in some cases an error is classified as spurious only because
of its position in the formula to be disambiguated, even though a user would
recognize it as a real error. We attribute this anomaly to the extreme coarseness
of the distinction spurious/non-spurious: if we could establish a rating criterion
capable of distinguishing more than two degrees of significance, it would be
possible to present errors to the user so that the most meaningful come first,
followed by the less meaningful in a gradual fashion.

Our intent is therefore to understand what are the features of an error that
is meaningful to the user. Typically, a meaningful error tells the user something
interesting by contrasting large valid subterms with a single incoherent node;
according to this point of view, an erroneous AST should be rated depending on

Rating Disambiguation Errors 249

its valid generalizations. Let us call maximal valid generalization of a (possibly
invalid) AST t an AST t′ that is a valid generalization of t and such that all
other valid generalizations of t have fewer intepreted nodes than t′. The more
nodes are interpreted by t′, the better the rating of t should be.

Essentially, when rating erroneous interpretations, we want to privilege those
that are closer to being valid because their maximal valid generalizations have
more interpreted nodes. This requirement is expressed by the following criterion.

Criterion 3 (Error rating criterion). Given two erroneous partial instances
t1 and t2 of the same input AST t, the error for t1 is less likely than the error in
t2 (notation: t1 � t2) iff there exists a valid generalization of t2 whose domain
is smaller than the domain of all valid generalizations of t1. Formally:

t1 � t2 ⇐⇒
(∃t′2) t2 : R(t′2) = ✓∧
∀t′1) t1 : R(t′1) = ✓ =⇒ |dom(t′1)| ≥ |dom(t′2)|

)
We can also express the rating of an AST by means of a natural number using
the following rating function.

Definition 3 (Rating function). The rating of an AST t (notation: �(t)) is
defined as the smallest cardinality of the domains of all its valid generalizations.
Formally:

�(t) � min
t′�t∧R(t′)=✓

|dom(t′)|

According to this definition, the lower the rating, the more likely an AST is to
be what the user originally intended. In particular, a valid unambiguous AST
receives a rating of 0.

Lemma 5. For all t1, t2, t1 � t2 iff �(t1) ≥ �(t2).

Proof.
=⇒: By the definition of likelihood according to Criterion 3, there exists a

valid generalization t′2 of t2 such that for all valid generalizations t′1 of
t1, |dom(t′1)| ≥ |dom(t′2)|; on the other hand, the definition of � implies
that �(t1) = |dom(t′′1)| for some t′′1 . By taking t′1 = t′′1 , we have �(t1) =
|dom(t′′1)| ≥ |dom(t′2)|, and by the definition of �, |dom(t′2)| ≥ �(t2). Then
the thesis holds by transitivity of ≥.

⇐=: By the definition of �, let t′2 be a valid generalization of t2 such that
|dom(t′2)| = �(t2). Then, again by definition of �, we know that for all valid
generalizations t′1 of t1, |dom(t′1)| ≥ �(t1); then combining the hypothesis
we get |dom(t′1)| ≥ |dom(t′2)|; by the definition of likelihood, this yields the
thesis.

Corollary 1. � is a total order relation.

Proof. A consequence of ≥ being a total order relation, by means of Lemma 5.

The rating of an AST provides a formal, yet very natural way of assessing the
significance of an interpretation, even when it is not valid. Anyway, the definition

250 A. Asperti and W. Ricciotti

we gave does not provide an immediate method for computing the rating of
an AST: enumerating the generalizations of a given AST until a valid one is
found could be computationally expensive. Luckily, it is possible to generalize
the efficient disambiguation algorithm so that it returns errors sorted depending
on their rating.

procedure disambiguate and rate(t)
begin

Σ ← {t}✓;

if Σ �= ∅ then Ω ← [] else Ω ← [{t}✗];
while (Σ �= ∅ ∧ next(Σ) �= ✗)

begin
n ← next(Σ);
Δ ← {u[n �→ 〈u(n), d〉]|u ∈ Σ, d ∈ Du(n)};
Σ ← Δ✓;

if Δ✗ �= ∅ then Ω ← Δ✗ :: Ω;

end
return Σ,Ω

end

It is easy to show that the Σ and Ω returned by disambiguate and rate contain
exactly the same ASTs as those returned by disambiguate, thus the soundness
of this algorithm descends from that of the other one. The whole difference
between the two lies not in the content of Ω, but in its structure. First it is
not a set anymore, but a list of sets; each element in the list, which we will call
error frame, is obtained from the failing interpretations in a certain Δi: thus
all the failing interpretations have the same domain, and are failing after the
instantiation of the same node. This allows us to prove the following theorem.

Theorem 3. The list Ω returned by disambiguate_and_rate is sorted by de-
creasing likelihood, that is, if Ω = [ω1, ω2, . . . , ωm], then for all ti ∈ ωi and
tj ∈ ωj where i ≤ j, tj � ti.

Proof. It is easy to prove that Ω = [Δ✗
k1
, Δ✗

k2
, . . . , Δ✗

km
], such that ki > kj iff

i < j. Therefore, we will prove that if i < j, then ti ∈ Δ✗
ki

and tj ∈ Δ✗
kj

are such that tj � ti. We know from the definition of the algorithm that for
all h, each t′ ∈ Δh is obtained from some AST t′′ in Σh−1 by instantiating
a single ambiguous node, and that each AST in Σh−1 is valid. This implies
�(ti) = |dom(ti)| + 1 and �(tj) = |dom(tj)| + 1. By Lemma 2, we prove that
|dom(ti)| = |dom(t)| − ki and |dom(tj)| = |dom(t)| − kj ; since ki > kj , we prove
that �(tj) ≥ �(ti) and by Lemma 5, tj � ti.

We still have to decide whether we should prefer, as the implementation of next,
an in-order visit or a level-order visit. The issue cannot be addressed exclusively
on the basis of efficiency, since it is easy to show ASTs on which the former
choice outperforms the latter, and vice-versa. However our tests indicate that
our algorithm behaves better when employed with a level-order visit, in the sense

Rating Disambiguation Errors 251

that the error ordering produced is closer to the expected one. This is probably
due to the fact that the interpretations of node occurrences located nearer to the
leaves (and consequently the related error messages) tend to be more significant
from the user point of view than those of nodes located nearer to the root of
the AST. An in-order visit, on the other hand, alternates deep and shallow node
occurrences and should therefore be avoided.

6 Error Reporting

An attractive option for reporting disambiguation errors is to let the user dis-
ambiguate manually individual error locations by means of a point-and-click
interface, until the amount of disambiguation errors and their quality is judged
to be satisfying. Our original intention was to implement such an interface; how-
ever our experience as users of interactive theorem provers tells us that the
user is frequently incapable of guessing where disambiguation went wrong. The
reason is that the combination of overloading with other advanced features of
theorem provers, especially dependent types and coercive subtyping, make the
disambiguation process quite intricate from a human perspective. Since the user
is reviewing errors precisely for the purpose of understanding what went wrong,
it is highly likely that a single interaction at a random error location with a
point-and-click interface will not be clarifying at all, leading to frustration.

Our rating algorithm was designed having in mind that in this quite unusual
case, the system knows better than the user which errors are the best candidates
to being genuine, thanks to the rating criterion we proposed. We will employ it
to design a user interface abiding by the following requirements:

– errors should be grouped according to their location;
– users should see those errors that are more meaningful first;
– the number of errors shown at the same time should be manageable.

Classification of spurious errors in the style of Section 4 only partially respects
these requirements: in particular, errors cathegorized as non-spurious respect the
requirements, but the other ones do not. As we saw in Example 1, some errors
that are morally non-spurious may be cathegorized as spurious too, meaning
they will be intermingled with maybe dozens of uninteresting errors coming
from mixed locations.

On the other hand, the ωi sets in the list Ω returned by our algorithm seem
to be good candidates for the use in an interface satisfying the aforementioned
requirements. All the errors in the same set were produced at the same location in
the AST, thus satisfying the first requirement; the ordering of the list Ω asserted
by Theorem 3 provides a good basis for respecting the second requirement;
finally, partitioning the errors in possibly more than just two sets (spurious
and non-spurious) guarantees that our algorithm will perform better also with
respect to the last requirement.

Each frame ωi is obtained by interpreting one ambiguous node occurrence of
all ASTs in Σ in all possible ways, filtering by means of R and keeping only the
invalid instances. This has two consequences:

252 A. Asperti and W. Ricciotti

(a) not all interpretations possible for the node may be present in the frame,
because some of them may only be shown to be invalid after the AST is
instantiated further;

(b) some interpretations for the node may yield more than one invalid AST (in
particular, up to one for each AST in Σ).

Given an interpretation for the node occurrence being considered in ωi, we call
the subset of ASTs instantiated with that interpretation a slice of ωi. All the
ASTs in the same slice have the same interpretation for the last node considered
occurrence, but differ in the interpretation of at least another node.

(a)

(b) (c)

Fig. 1. Error reporting interface

We propose a user interface composed of two panes. The first pane, called
interpretation pane (Figure 1(b)), shows, for a given frame, a list of the inter-
pretations of the node occurrence being considered yielding a disambiguation
error; we use highlighting directly in the user input (Figure 1(a)) to show the
node currently being considered. After choosing an interpretation in the inter-
pretation pane, we are sent to an error list pane (Figure 1(c)), reporting the list
of all the errors associated with that choice (i.e. a slice of the frame).

The activity diagram in Figure 2 shows the intended user interaction with this
interface. The user will initially be shown a list of interpretations from the frame
ω1 (which is the most likely to contain meaningful errors): if the user intended
the current node to be associated to one of those interpretations, he will choose
it and immediately view the list of related errors; otherwise, he will use the None
of the above button to switch the view to the following frame and iterate the
procedure. After viewing the error list, the user can either be satisfied with the
errors shown (when at least one of them explains what went wrong), or decide
to go back to the interpretation pane to try selecting a different interpretation
or inspecting another frame.

Example 2. Consider again the AST for the expression

(α + β) + (α+ γ) = (x+ y) + (x+ z)

Rating Disambiguation Errors 253

Fig. 2. User interaction with the error reporting interface

from Example 1, using for the variables the same types as we used in that
example. After using the disambiguate and rate algorithm with a level-order
traversal of the AST, disambiguation will fail and the user interface will highlight
a symbol in the original expression:

(α+ β) + (α+ γ) = (x+y) + (x+ z)

Among the two possibilities, in the interpretation pane we choose “vector plus”.
The interface returns a single error:

• the term x+plusV y has type vector but is here used with type scalar.

We decide that the error is not informative to us: something went wrong in a
different part of the AST, therefore we switch to the next error frame.

(α+ β) + (α+γ) = (x+ y) + (x+ z)

This time, the interpretation pane only shows the choice “vector plus”, which is
not the intended one. We switch again to the next error frame:

(α+β) + (α+ γ) = (x+ y) + (x+ z)

After choosing the interpretation “scalar plus”, the error list pane will show us
the error

254 A. Asperti and W. Ricciotti

• the term α+plusR β has type scalar but is here used with type vector.

Now we realize that the expression we intended to write was

f(α+ β) + f(α+ γ) = (x+ y) + (x+ z)

for a given function f from scalars to vectors. As we noted in Example 1, if we
had used the spurious error classification, the error message about α+ β would
have been considered spurious, making it much more difficult to spot it.

7 Conclusions

There have been considerable research efforts devoted to improving the way type
errors are reported to the user. Most works are concerned with type systems à la
Hindley-Milner, whose type-inference algorithm has been shown to work in a way
that is substantially different fromhow people commonly reason about types. Such
works (among which we mention those by Jun, Michaelson, and Trinder [6], Hage
and Heeren [5], and Stuckey, Sulzmann and Wasny [11]) are mainly interested in
improving the errormessage that is returned to the user bymeans of several heuris-
tics. Another relevant proposal by Rittri ([8]) is devoted to the design of an inter-
active interface that can help explain to the user the source of a type error.

Both kinds of work bear some resemblance to our implementation, in the
spirit if not in the letter. Given the fact that the notion of disambiguation error
is more general than that of type error, to improve the user experience we are
urged to address a different kind of problem: how to help the user to discriminate
between genuine errors and spurious errors.

We do this by means of a new algorithm that is capable of partitioning and sort-
ing errors according to their significance. This constitutes a remarkable improve-
ment over the previous technique of spurious error detection, which is only capable
of distinguishing two degrees of significance. In addition to this, we also believe that
our approach is based on a more understandable principle, which does not involve
implementation details such as the order in which nodes in an AST are visited.

Even though the two approaches stem from different analyses of the problem,
the solutions have more in common than expected: it can easily be shown that,
when an in-order traversal is chosen for the disambiguate and rate algorithm,
the error list returned by it is structured in such a way that the topmost frame
contains the genuine errors and the rest of the list contains the spurious ones
(according to the draconian criterion). In this sense, the rating of disambiguation
errors is a refinement of the discrimination of spurious errors.

We kept our discussion considerably abstract, making only a few weak and
plausible assumptions on the structure of ASTs and on the existence of a validity
test R; this allows our algorithm and interface to be used in a wide range of
applications, including of course interactive theorem provers. In particular, in
our implementation of the disambiguation algorithm in Matita, R operates by
first translating the input AST to a term in the foundational language of the
system – a variant of the Calculus of (Co)Inductive Constructions extended with

Rating Disambiguation Errors 255

metavariables in the style of [4,7] – in such a way that ambiguous nodes and their
descendants are replaced by fresh metavariables (this ensures that Property 1 of
Section 3 holds). The obtained term is then fed to the refinement facility of the
system ([2]) for a typability check.

Our final remarks are about the user experience. The new disambiguation
infrastructure has been developed recently as part of the web application version
of Matita [1]. Our impression is that it provides a marked improvement over the
past, especially because the interface is much less invasive. Due to this change
being so new, there could still be room for improvement and we are committed
to considering opinions and suggestions coming from the users of the system.

References

1. Asperti, A., Ricciotti, W.: A Web Interface for Matita. In: Jeuring, J., Campbell,
J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012.
LNCS, vol. 7362, pp. 417–421. Springer, Heidelberg (2012)

2. Asperti, A., Ricciotti, W., Sacerdoti Coen, C., Tassi, E.: A bi-directional refinement
algorithm for the calculus of (co)inductive constructions. LMCS 8(1) (2012)

3. Asperti, A., Ricciotti, W., Sacerdoti Coen, C., Tassi, E.: The Matita Interactive
Theorem Prover. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 64–69. Springer, Heidelberg (2011)

4. Geuvers, H., Jojgov, G.I.: Open Proofs and Open Terms: A Basis for Interactive
Logic. In: Bradfield, J.C. (ed.) CSL 2002. LNCS, vol. 2471, pp. 537–552. Springer,
Heidelberg (2002)

5. Hage, J., Heeren, B.: Heuristics for Type Error Discovery and Recovery. In:
Horváth, Z., Zsók, V., Butterfield, A. (eds.) IFL 2006. LNCS, vol. 4449, pp. 199–
216. Springer, Heidelberg (2007)

6. Jun, Y., Michaelson, G., Trinder, P.: Explaining polymorphic types. Comput.
J. 45(4), 436–452 (2002)

7. Muñoz, C.: A Calculus of Substitutions for Incomplete-Proof Representation in
Type Theory. PhD thesis, INRIA (November 1997)

8. Rittri, M.: Finding the source of type errors interactively. Technical report, De-
partment of Computer Science, Chalmers University of Technology, Sweden (1993)

9. Sacerdoti Coen, C., Zacchiroli, S.: Efficient Ambiguous Parsing of Mathematical
Formulae. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS,
vol. 3119, pp. 347–362. Springer, Heidelberg (2004)

10. Sacerdoti Coen, C., Zacchiroli, S.: Spurious disambiguation errors and how to get
rid of them. Journal of Mathematics in Computer Science, Special Issue on MKM 2,
355–378 (2008)

11. Stuckey, P.J., Sulzmann, M., Wazny, J.: Improving type error diagnosis. In: Pro-
ceedings of 2004 ACM SIGPLAN Haskell Workshop, Haskell 2004, pp. 80–91.
ACM, New York (2004)

12. Wenzel, M.: Type Classes and Overloading in Higher-Order Logic. In: Gunter,
E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer,
Heidelberg (1997)

13. Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600.
Springer, Heidelberg (2006)

A Formal Proof of Square Root
and Division Elimination in Embedded Programs

Pierre Neron

École Polytechnique - Inria
pierre.neron@inria.fr

Abstract. The use of real numbers in a program can introduce differences
between the expected and the actual behavior of the program, due to the
finite representation of these numbers. Therefore, one may want to define
programs using real numbers such that this difference vanishes. This paper
defines a program transformation for a certain class of programs that im-
proves the accuracy of the computations on real number representations
by removing the square root and division operations from the original pro-
gram in order to enable exact computation with addition, multiplication
and subtraction. This transformation is meant to be used on embedded
systems, therefore the produced programs have to respect constraints rel-
ative to this kind of code. In order to ensure that the transformation is
correct,i.e., preserves the semantics, we also aim at specifying and proving
this transformation using the PVS proof assistant.

Keywords: Program Transformation, Program Verification, Real Num-
ber Arithmetic, Safety Critical Embedded Systems, Semantics.

Safety critical embedded systems, for instance in aeronautics, demand a very high
level of reliability since any failure can have critical consequences. A good way to
achieve such a level of reliability is to prove properties on these programs using
proof assistants such as Pvs, Coq, Hol,... The programs we target are straight
line programs, thus the language is not Turing complete since it contains neither
loops nor any recursive structure, but core functionality of safety-critical systems
are often implemented in a restricted language similar to the one described in
this paper (see e.g., [13,10]).

One of the main challenge is that these systems use real numbers that can not
be represented in an exact way in programs and we have to use different represen-
tations in order to make computation, e.g., the floating point numbers defined by
the IEEE754-Standard [9] with a fixed number of bits. This kind of representa-
tions always introduces differences between the expected behavior (defined by the
abstract semantics), where we assume that numbers are genuine real numbers, and
the actual behavior (defined by a concrete semantics), happening when we run the
program. Furthermore some programs, e.g., air traffic management systems [13],
use tests on comparisons between real numbers and we may want to ensure some
numerical stability on the programs that use these features since a tiny error in a
test can make the actual behavior to greatly diverge from the expected one.

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 256–272, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Formal Proof of Square Root and Division Elimination 257

Using formalizations of the floating point semantics [2,1,8,12] makes proofs of
programs used in aeronautics difficult since most of the properties of real num-
bers and operations (e.g., associativity) do not hold on such representations,
therefore many proofs are done on the abstract semantics which does not repre-
sent the actual behavior of the program. Differences between the abstract and
the floating point semantics have been studied in a particular efficient way using
static analysis by abstract interpretation with numerical abstract domains [4]
and interval arithmetic in order to provide numerical analysis of programs [7].
These methods have been used to define a program transformation to improve
accuracy [11] but our goal is slightly different.

We aim at producing, for any program that computes a boolean with real
arithmetic using +, −, ×, /,

√ , an equivalent program whose concrete semantics
is equal to its abstract semantics on genuine real numbers. Exact representation
of algebraic numbers has already been efficiently implemented [3] and formally
represented in the Coq system [5]. However, in embedded systems we favor
programs that can be executed in a fixed size memory, this prevent us from
using the polynomial representation of algebraic numbers since computation
over it requires the use of dynamic structures.

Exact computation over real numbers can also be done on addition and mul-
tiplication by using a fixed point representation with dynamic size since we
are able to predict the sizes required by such computations using static anal-
ysis, the language we target being free of loops or recursion. Thus, we aim at
defining a program transformation that removes square roots and divisions op-
erations in every boolean expressions of the program, e.g., transforms

√
x > y

into y < 0∨ x > y2, in order use this exact computation with only addition and
multiplication which will protect the control flow from rounding errors.

Our goal being to improve the safety of the systems we target, we want to
formally prove in Pvs that this transformation preserves the semantics. There-
fore, by computing exactly with addition and multiplication, we can ensure that
the path taken in each test is the same in both abstract and concrete semantics
and that formal proofs of properties about boolean values done on the abstract
semantics still hold on the concrete one. Indeed, if proofs on the original program
using concrete semantics are difficult, so are proofs on the output of program
transformations due to the size and the complexity of the produced code, this is
the reason why the correction of the transformation needs to be formally proven.

The paper is organized as follows. First, we define the language on which
the transformation applies and some general features about the Pvs formal-
ization. Then we define the main transformation and two auxiliary methods
that respectively remove square roots and divisions from boolean expression and
from variable definitions. Finally, we present some experimental results using
the OCaml implementation of the transformation which is almost an executable
copy of PVS formalization1 with few hand made extra features.

1 PVS and OCaml files are available at http://www.lix.polytechnique.fr/~neron/

http://www.lix.polytechnique.fr/~neron/

258 P. Neron

1 Presentation of the Language

1.1 Language Definition

In this section we define the syntax of the language the transformation applies to.
This language, that embeds the core functionalities of our targeted programs, is
a typed functional language that contains numerical (R) and boolean constants,
variable definitions (as let in instructions), tests (if then else), pairs and the
usual arithmetic +, −, × (we also use . instead of ×), /, √ , the comparisons
=, �=, >, ≥, <, ≤ and boolean operators (∧, ∨, ¬). Therefore we can define
the syntax of our language as follows:

Definition 1.1 (Syntax of the language).

Prog := Const
| uop Prog
| Prog op Prog

| fst Prog
| snd Prog
| (Prog, Prog)

| Var
| let Var = Prog in Prog
| if Prog then Prog else Prog

where: Const ⊂ R ∪ {True, False}
op ∈ {+,×, /, =, �=, >, ≥, <, ≤, ∧, ∨}

uop ∈ {√ , −, ¬}

Then we introduce the type system, as usual we use a typing environment Γ
that associates to every free variable its type.

Definition 1.2 (Type system).
Type := R | B | Type× Type

The rules are the usual ones for a functional language, e.g.,2:
Γ�e1 :T1 Γ,x:T1�e2 :T2

Γ�let x = e1 in e2:T2

Γ�f :B Γ� e1:T Γ�e2:T
Γ�if f then e1 else e2:T

These types are used to identify the way a program has to be transformed. In-
deed, the transformation is different for pure numerical expressions (e.g., in a
variable definition) and for the ones used in boolean expressions (i.e., as argu-
ments of a comparison). It is easy to define a type checking function in PVS,
type_infer(p,Γ), that returns either a type or an undefined value (U) if the
program has no valid type in the given environment. TyΓ (p) now denotes the
result of type_infer(Γ)(p).

Notation. In the paper we use the teletype font to represent PVS expressions.
For clarity and concision reasons, every element of Prog and subtypes of Prog will
be written using the sans serif font in the concrete syntax (instead of their PVS
abstract syntax,e.g., we will write e1 op e2 for bop(op,e1,e2)), some PVS ex-
pressions will be abstracted by their equivalent mathematic expressions (e.g.,
∀Γ, T yΓ (p) �= U stands for FORALL env, type_infer(p,env) /= Undefined)

2 Complete sets of rules and formal definitions can be found in the long version [14]

A Formal Proof of Square Root and Division Elimination 259

and we will not give the type when there is no ambiguity (Γ is always a typing
environment i.e., a function from Var to Type).

We then define the denotational semantics of a program in the language, using
an environment Env that associates to every variable its value. It is the usual
semantics of a functional language. The Fail value corresponds to the square
roots of negative numbers, divisions by zero and unsound types cases.

Definition 1.3 (Denotational semantics of the language). The rules for
square root and test are:

Env � �E�=e

Env � �
√

E�=Fail
e < 0 ∨ e = Fail

Env � �E�=e

Env � �
√

E�=
√
e
e ≥ 0

Env � � f �=True Env � �E1�=e1
Env � �if f then E1 else E2�=e1

Env � � f �=Fail
Env � �if f then E1 else E2�=Fail

We now denote �P�Env the abstract semantics of P into an environment Env
(i.e., the v such that Env � �P�Env = v, that corresponds to the PVS function
semantics). The language being defined, we now precise some subtypes of Prog,
that represent restricted syntactic forms.

1.2 Program Sub-types

Normalized Language. The normalized language is the subtype on which our
transformation applies, it is a subtype of the Prog type that have the following
definition (see 1.4 for program normalization):

Definition 1.4 (Expressions and programs normal form). The unary ex-
pressions Eu are built with operators, the expressions E with pairs and the pro-
grams P allow variable definitions and tests.

Eu := Var | Const | uop Eu | Eu op Eu | fst Eu | snd Eu

E := (E, E) | Eu

P := let Var = P in P | if P then P else P | E

Hence, in a well typed program, projections can not contain any square roots or
divisions as sub expressions.

Target Language. Now we present the language that corresponds to programs
from which divisions and square roots have been eliminated. Certainly, we can
not eliminate all square roots and divisions from any program, (e.g., in the
program

√
2) but we are able to remove them from all the boolean values com-

putations. Therefore we define some new subtypes of expressions and programs.

Definition 1.5 (E and P sub-classes)
— EN is E where the √ and / operators are not allowed
— EN√

,/
is E where the √ and / operators are allowed only in numerical

expressions that are not arguments of comparison operators
— PN := let Variable = PN in PN | if PN then PN else PN | EN is the class

of program that do not contain any √ or /

— PN√,/
:= let Variable = PN in PN√,/

| if PN then PN√,/
else PN√,/

|
EN√

,/
is P without √ or / in tests or variable definitions bodies

260 P. Neron

For example (
√
x, a > b) is in EN√

,/
but not in EN but

√
a > b is in none of

them. One can notice that any program in PN√
,/

of type Bn is also in PN. These
definitions allow us to characterize the set of programs transformed by each step
of our transformation and what kind of programs it produces.

PVS Sub-typing. The specification of an algorithm and the related proofs in
PVS mainly relies on the PVS sub-typing. Given a type T and a predicate P of
type T –> B, {x : T | P(x)} is the subtype of T of all elements x of type T that
verify P, this type can also be denoted (P). Then every definition of a function
in PVS can be specified using these subtypes, e.g.,

f(x : (P)) : {x’ : T’ | P’(x’)}
defines a partial function on T that takes only elements x of type T that verify P
and returns elements of type T’ that verify P’. Then PVS type checker generates
Type Check Conditions (TCC) where we have to prove that:

— f can be applied to every element of type (P) (Completeness)
— ∀ x : T, f(x) : T’ ∧ P’(f(x)) (Soundness)
— if f is recursive, then for every recursive call on e:

- e : (P) (Recursive call correctness)
- a measure decreases, according to a well founded order

provided in the definition of f (Termination)

The type of a function can also be restricted using the HAS_TYPE judgement, e.g.,
given two types T and T’, two subtypes S of T and S’ of T’ and a function f (x
: T) : T’, then we can state the following judgement f (x : S) HAS_TYPE S’
and use either T’ or S’ as type of f(x) when x : S. Therefore we will not give
in this paper correctness lemmas of the functions we define but only their type.

1.3 No Fail Assumption

In the context of that transformation, we assume that the programs we want
to transform are well typed (there exists a type environment that allow us to
type the program) and do not fail in the environment where we want to evaluate
them (e.g., there are no divisions by zero or square roots of negative numbers)
since it is the case of embedded programs we target. Hence we will not have
to force the failure cases that disappear when removing divisions and square
roots, e.g., we can transform 1/x > 0 into x > 0 instead of if x = 0 then Fail
else x > 0. Therefore we will only ensure the preservation of the type and the
semantics in every environment where the initial program is well typed and does
not fail. This preservation is defined in the language of Pvs by the predicate
sem_ty_nf_eq(p)(p’), that is:

(∀Γ, T yΓ (p) �= U =⇒ TyΓ (p’) = TyΓ (p)) ∧
(∀Env, � p �Env �= Fail =⇒ � p’ �Env = � p �Env)

A Formal Proof of Square Root and Division Elimination 261

We consider that programs p and p’ are equivalent when sem_ty_nf_eq(p)(p’)
holds. Given this no fail hypothesis, we can now formally define our main goal
which is to present a transformation Elim that has the following specification:

Definition 1.6 (Elim specification)
Elim(Γ)(p :Prog | TyΓ (p) �= U) : {p’:PN√,/

| sem_ty_nf_eq(p)(p’)}

The Elim function is defined by a sequence of elementary transformations, all of
them preserving the semantics when the program does not fail. Every elementary
transformation is formalized using a function whose output type is of the form:

{p’:P’ | sem_ty_nf_eq(p)(p’)} where P’ is a subtype of Prog

1.4 Generic Functions

Substitution. We now describe a function that defines a capture avoiding sub-
stitution of every free occurrence of a variable x in a program p by a given pro-
gram e (also denoted p[x:=e]). The semantics and the types of p are preserved in
every environment where e is well typed and does not fail. That gives the follow-
ing specification: replace(x : Var,e,p : Prog) : {p’ : Prog | ∀Γ,Env,

� p’ �Env = � p �Env;(x,�e�Env) ∧ TyΓ (p’) = TyΓ,(x,TyΓ (e))(p)}
Termination is ensured using the number of variable definitions. The replace
function also has several types that ensure the preservation of subtypes, e.g.,

replace(x : Var, e : Eu, p : P) HAS_TYPE P

Correction of the substitution is proved using the lemmas that characterize the
fresh variables, e.g., if we denote FV (p) the set of the free variables of p, then:

- no_FV_no_change : LEMMA =
∀ x, p, x /∈ FV (p) =⇒ ∀ Env, v, �p�Env = �p�Env;(x,v)

Program Normalization. The transformation of any program in Prog into a
program of type P can be done using a set of reduction rules that takes the tests
and variable definitions out of the binary operators and pairs and that reduces
the projections, e.g.,:

– uop (let x = e1 in e2) −→ let x = e1 in (uop e2)
– (if f then e1 else e2) op e3 −→ let xi = if f then e1 else e2 in (xi op e3) xi /∈ FV (e3)
– fst (e1,e2) −→ e1

The transformation rules for a test inside a binary operator or a pair uses a
variable definition in order to avoid duplicating the other arguments, a process
that can strongly increase the size of the transformed code. On the other way,
creating new variable definition makes the direct termination proof more compli-
cated. Therefore we first define a set of functions that normalize the application
of operators, pair or projections to a program in normal form,e.g., :

262 P. Neron

uop_P_switch(uop)(p:P | wtp(p)) : {p’:P | sem_ty_nf_eq(uop p)(p’)}
wtp(p) being the predicate stating that the program p is well typed. Since we
sometimes use renaming, due to free variable constraints, in the case of binary
operators, the termination proof is done using the depth of the program. The
correction is proved by using the no_FV_no_change lemmas. Using these defi-
nitions we can define the main function that transforms any program into an
equivalent normalized program by iterating these functions:
p_norm_reduction(xi:Var)(p:(wtp)) : {pp:P | sem_ty_nf_eq(p)(pp)}

Since we can transform every well typed program in Prog into an equivalent
one in P, we now describe the major function Elim of the transformation that
transforms any well typed program in P into an equivalent one in PN√

,/
.

2 Normalized Program Transformation

This Elim function is a recursive program transformation algorithm eliminating
square roots and divisions. It uses two functions, Elim_bool and Elim_let, that
will be described in sections 3 and 4 and have the following specifications:

Definition 2.1 (Elim_bool and Elim_let specifications). Elim_bool trans-
forms any comparison (the comparison_expression subtype will be formally
defined in section 3) into an equivalent boolean program without any square root
or division and Elim_let transforms a variable definition into an equivalent one
that contains neither square root nor division in its body:
Elim_bool(Γ)(xsq : Var)(c : comparison_expression(Γ)) :

{ e : Blet | sem_ty_nf_eq(c)(e) }
where Blet is the type of square root and division free boolean expressions that
allows variable definitions and xsq a variable used to name some boolean expres-
sions in order to avoid formula duplications.

Elim_let(Γ)(x:Var, p1:PN√,/
, p2:P | TyΓ (let x = p1 in p2) �= U) :

{ x’:Var, p1’:PN, p2’:P |
sem_ty_nf_eq(let x = p1 in p2)(let x’ = p1’ in p2’) &
if_letin_number(p2’) <= if_letin_number(p2) }

Remark. By applying the Elim_bool function to every comparison we can find
in an expression, we can define the Elim_bool_expr function that transforms
every well typed expression in E into an equivalent one in EN√,/

.

The function if_letin_number(p) gives the number of variable definitions and
tests which occur in p, it will be used to prove the termination of the main algo-
rithm. Therefore using these two functions, we can define the recursive algorithm
that transforms any program in P in an equivalent one in PN√

,/
:

A Formal Proof of Square Root and Division Elimination 263

Definition 2.2 (Elim function)
Elim(Γ, xsq)(p:P | TyΓ (p) �= Fail) : {p’:PN√

,/
| sem_ty_nf_eq(p)(p’)}=

CASES p OF
let x = p1 in p2 :
LET pn1 = Elim(Γ)(xsq)(p1) IN
LET (x’,p1’,p2’) = Elim_let(Γ)(x,pn1,p2) IN

let x’ = p1’ in Elim(Γ, (x’, T yΓ (p1’)))(xsq)(p2’),
if f then p1 else p2 :

if Elim(Γ)(xsq)(f) then Elim(Γ)(xsq)(p1) else Elim(Γ)(xsq)(p2)
ELSE Elim_bool_expr(Γ)(xsq)(p) ENDCASES
MEASURE (if_letin_number(p)) BY <

The correction is ensured by both Elim_bool_expr and Elim_let typing predi-
cates. Therefore, applying the main_elim function, which is the composition of
both p_norm_reduction and Elim functions to any program in Prog, we can
state that every program in Prog has an equivalent one in PN√,/

:

Theorem (Prog is equivalent to PN√
,/
)

∀ Γ, xsq, ifname,
main_elim(Γ)(xsq,ifname)(p : Prog | TyΓ (p) �= Fail) :

{p’:PN√,/
| sem_ty_nf_eq(p)(p’)}

And its corollary stating that any boolean program (whose type is in Bn) has
an equivalent division and square root division free program:

Corollary (Square root and division elimination in boolean programs)
∀ Γ, xsq, ifname,

main_elim(Γ)(xsq,ifname)(p : Prog | TyΓ (p) ∈ Bn) HAS_TYPE PN

Let us focus on the Elim_bool function in section 3 and on the Elim_let function
in section 4.

3 √ and / Elimination in Boolean Expressions: Elim_bool

In this section, we describe the function Elim_bool, i.e., how to transform a well
typed comparison expression into an equivalent boolean expression which is free
of divisions and square roots (i.e., of class Blet). The elimination of square roots
and divisions in boolean formulas is a particular case of the quantifier elimina-
tion over real closed fields e.g., the formula

√
x+ 3√

y > 4 can be rewritten as:
∃ x′, y′, y′′, x′2 = x ∧ y′2 = y ∧ y′′ × y′ = 3 ∧ x′ + y′′ > 4

Therefore, quantifier elimination produces an equivalent boolean formula with-
out any division or square root. The general quantifier elimination with cylin-
drical algebraic decomposition [15,6] has been implemented as QEPCAD3 but
this algorithm does not succeed in most of our cases due to the large number of
3 See http://www.usna.edu/cs/~qepcad/B/QEPCAD.html

http://www.usna.edu/cs/~qepcad/B/QEPCAD.html

264 P. Neron

free variables in a program transformation. The elimination of square roots and
division in formulas has also been studied by V. Weispfenning in its restriction
of the quantifier elimination to the quadratic case [16] but we use a different one
that allows us to eliminate all occurrences of one square root in one step.

3.1 Expressions Subtyping

As we mentioned in section 1, some sub-types of Prog will help us to define some
specific transformations. Elim_bool is a partial function that only applies to a
sub-type of the general programs that is:
comparison_expression(Γ) : TYPE = { e1 op e2 :Prog |

TyΓ (e1 op e2) = B & op ∈ {=, �=, >,≥, <,≤} & e1:N√,/ & e2:N√,/}
where N√,/ is the sub-type of numerical expressions (Eu with only numerical
operators). We also define the type of well typed numerical expressions:

wt_num_expr(Γ): TYPE = { e : N√,/ | TyΓ (e) = R}.
Using these type definitions we can define the first step of elimination of square
roots and divisions which is a reduction to a normal form for numerical expres-
sions N√,/.

3.2 One Division Normal Form

The elimination of the division is in fact quite simple since every numerical
expression on +, −, ×, /,

√ can be represented with only one division at head.
Therefore the expression we get by reducing expressions to the same denominator
without splitting square roots corresponds to the following normal form:

Definition 3.1 (Division and polynomial normal forms).
DNF := PNF | PNF

PNF

PNF := PNF+PNF | PNF×PNF | − PNF |
√

N√
,/ | fst PNF | snd PNF | Const | Var

Reduction to division normal form is done by the to_dnf function that trans-
forms any well typed numerical expression into an equivalent one with only one
division as head operation. This corresponds to the following specification:
to_dnf(Γ)(e : wt_num_expr(Γ)) :
{ eout : DNF | sem_ty_nf_eq(e)(eout) & sq_number_eq(e,eout) }

that implements a reduction to the same denominator.

Remark. This transformation is only correct in the context of the no fail as-
sumption, e.g., semantics equivalence of the rule e1

e2
e3

−→ e1.e3
e2 only holds when

�e3�Env �= 0.
sq_number_eq(e,eout) is a predicate that will be used to prove the termina-

tion of the Elim_bool function. It states that every square root that appears in
the output was already in the input:

sq_number_eq(e,eout) = ∀ sq,
√

sq « eout ⇒ √
sq « e

where x « y means that x is a subterm of y or is equal to y.

A Formal Proof of Square Root and Division Elimination 265

3.3 Division Elimination Rules

Once we have a comparison between two DNF form, the head division can be
easily eliminated by multiplying both arguments by the denominators. But since
we want to avoid the creation of new comparisons due to the signs conditions
of the denominators when multiplying, we will sometimes prefer the following
elimination rule:

Definition 3.2 (Elimination of division)
— when - ∈ {=, �=}: e1

e2 - e3
e4 −→ e1.e4 − e3.e2 - 0

— when - ∈ {>,<,≥,≤}: e1
e2 - e3

e4 −→ e1.e2.e42 − e3.e4.e22 - 0

Remark. The application of this rule eliminates the last division that is not inside
a square root. Therefore the expressions produced are boolean combinations of
relations between numerical expressions in PNF and 0.

These elimination rules are implemented in PVS with the following function:
elim_div_rule1(Γ)(p : comparison_expression(Γ)) :

{ e1 op e2 : comparison_expression(Γ) | sq_number_eq(p,e1) &
sem_ty_nf_eq(p)(e1 op e2) & PNF?(e1) & e2 = 0 }

The OCaml implementation gives the option to use either this rule or the usual
one (with sign distinction) but only this one was proven since it gives better
results for the size of the produced code. Now we first have to eliminate top
level square roots, that will make the divisions in the arguments of square roots
appear at top level and allow us to continue the elimination of both operations.

3.4 Square Root Elimination

For every comparison between a PNF form and 0 we choose one square root that
is at top-level, that means this square root does not appear in the argument of
another square root, we call it Q. Then, we factorize the PNF expression in the
form (P.

√
Q + R) where

√
Q does not appear in P or R:

factorize_sqrt(Γ)(e:wt_num_expr(Γ) | PNF?(e))(q:wt_num_expr(Γ)):
{ p,r : wt_num_expr(Γ) | sem_ty_nf_eq(e)(p.

√
q + r)

sq_number_but_q_eq(e)(q)(p) & sq_number_but_q_eq(e)(q)(r)}
where sq_number_but_q_eq states that every square root of an output was al-
ready in an input and is different from q. Then by splitting cases depending on
the signs of P and R we get a new formula equivalent to P.

√
Q + R > 0 under

the condition that Q ≥ 0:
(P.

√
Q+R) > 0 −→ (P > 0∧R > 0)∨(P > 0∧P2.Q−R2 > 0)∨(R > 0∧R2−P2.Q > 0)

In order to reduce the size of the final expression, we name the atoms and share
their different occurrences instead of duplicating them. Therefore the implemen-
tation of these rules relies on composition of functions such as

266 P. Neron

name_comp(xsq : Var, e1, e2, e3, e4 : Prog) : Prog =
let xsq = ((e1,e2),(e3,e4)) in

(fst(fst(xsq)) ∧ snd(fst(xsq))) ∨ (fst(fst(xsq)) ∧ fst(snd(xsq))) ∨
(snd(fst(xsq)) ∧¬ fst(snd(xsq)) ∧ snd(snd(xsq)))

and on elimination rules such as
elim_sqrt_rule_gt(Γ)(p,q,r : wt_num_expr(Γ)) :

{ e1, e2, e3, e4 : comparison_expression(Γ) |
∀(x:Var) : sem_ty_nf_eq(p.

√
q + r > 0)(name_comp(x,e1,e2,e3,e4))} =

(p > 0,r > 0,p2.q − r2 > 0,p2.q − r2 �= 0)

Using reduction to DNF, square root factorization and the elimination rules for
division and square root, we can define the main algorithm which transforms a
comparison into an equivalent fragment of code that contains neither division nor
square root. This algorithm is a recursive combination of these transformations:

Definition 3.3 (elim_bool description). While the comparisons contains
divisions or square roots, do:

— Reduce to DNF
— Eliminate the head division
— Factorize using one top level square root
— Eliminate that square root

The full transformation of the comparisons is defined by the elim_bool function
whose specification was given in definition 2.1. In order to ensure the termination
of the algorithm, we prove that the number of distinct square roots a comparison
contains strictly decreases. Indeed, after applying the 4 steps, every square root
in the output comparisons was already in the input and is different from the one
we eliminated, which was also in the input.

Example 3.1 (/ and √ elimination)

x+
√

y
z > 0 −→

let xsq = ((z > 0,x.z > 0),(z2.y − (x.z)2 > 0,z2.y − (x.z)2 �= 0)) in
(fst(fst(xsq)) ∧ snd(fst(xsq))) ∨ (fst(fst(xsq)) ∧ fst(snd(xsq))) ∨

(snd(fst(xsq)) ∧¬ fst(snd(xsq)) ∧ snd(snd(xsq)))

Complexity. In a comparison A, if we write |A|√ the number of distinct square
roots, the number of comparisons produced by eliminating the square roots in
this comparison is bounded by 4|A|√. We did not study the exact complexity
of the algorithm since the reduction into DNF and the factorization may also
increase the size of the formula. Nevertheless, experimentally our specialized
algorithm is able to transform bigger formula than the QEPCAD implementation
of the quantifier elimination by cylindrical algebraic decomposition, e.g.,

∃sq, sq2 = q ∧ sq ≥ 0 ∧ (p1.sq + r1).(p2.sq + r2).(p3.sq + r3) > 0

Indeed, the complexity of our transformation does not depend on the number of
variables of the formula but only on the number of square roots and divisions.

We now define the second transformation used in the method, it transforms
a variable definition into an equivalent one without square roots or divisions.

A Formal Proof of Square Root and Division Elimination 267

4 Transformation of Variables Definitions: Elim_let

In this section, our goal is to define how to transform a variable definition in
order to take the divisions and square roots out of the body. We will describe a
function that corresponds to the specification given in definition 2.1. We noticed
that inlining the variable definitions satisfies this specification but it leads to an
explosion of the size of the code therefore we will now present a way to inline
only the divisions and square roots as in example 4.1.

There are different way to achieve such a goal and we really want to minimize
the number of square roots created in that process, therefore for genericity reason
this function is only axiomatized in Pvs but the OCaml program implements
one version. Hence, in this section, we only use the mathematic font in order to
describe the transformation and for clarity we use multiple variable definition.

Example 4.1
let x = if y > 0 then (a1 + a2)/b else c +

√
d1.d2 in P −→

let (x0,x1,x2) = if y > 0 then (a1 + a2,b,0) else (c,1,d1.d2) in P[x:= x0+
√

x2
x1]

Square roots and divisions that were used to define x are now explicit in P.

4.1 Transformation of the Variable Definition Code

The elimination of square roots and divisions from a variable definition (let x =
p1 in p2 where x : Var, p1 : PN√

,/
and p2 : P) relies on a decomposition of its

body p1 in:

— a program part Pp of type En
N√

,/
−→ PN√,/

and En
N −→ PN

— a list of expressions (e1, ..., en) of En
N√

,/
such that Pp(e1, ..., en) = p1, that

decomposes itself in:
- a template Temp of type Ek

N −→ EN√
,/

- a list of k-tuple of division and square root free sub-expressions se1, ..., sen
of type Ek

N such that: ∀i ∈ [1...n], Env, �Temp(sei)�Env = �ei�Env

Therefore we have that ∀Env, �p1� = �Pp(Temp(se1), ..., T emp(sen))�Env and
we transform the variable definition in the following way:

Definition 4.1 (Variable definition transformation). A variable definition
is transformed by commuting elements of its decomposition:
let x = Pp(Temp(se1), ..., T emp(sen))
in p2

−→ let (xε1 , ..., xεk) = Pp(se1, ..., sen)
in p2[x := Temp(xε1 , ..., xεn)]

We now begin the description of the two decompositions. In order to simplify
the presentation, we introduce the following notation. For every program p,
(fun (x1, ..., xn) → p) is a function of Pn −→P, such that:

(fun (x1, ..., xn) → p)(u1, ..., un) = p[x1 := u1; ...;xn := un]

We first decompose the body of the definition that is in PN√
,/

into a program
part (the part that contains the local variable definitions and tests) and the
expression part.

268 P. Neron

4.2 Program and Expression Part Decomposition

We define the following recursive algorithm Decompose, that computes from a
program p in PN√

,/
, its program part and its expression part.

Definition 4.2 (Program and expression part decomposition).
Decompose(p) =

— if p ∈ EN√
,/

then ((fun x → x), [p])
— if p = let y = a in p’ then

• (pp,ep) := Decompose(p’)
• return ((fun x → let y = a in pp(x)), ep)

— if p = if B then p1 else p2 then
• (pp1,ep1) := Decompose(p1)
• (pp2,ep2) := Decompose(p2)
• return ((fun (x1, x2) → if B then pp1(x1) else pp2(x2)), ep1@ep2)

Example 4.1
Decompose(if F then let y = a in a +

√
b else c) =

(fun (x, y) → if F then let y = a in x else y, (a+
√

b,c))

The program p being in PN√
,/

, neither the local variable definitions bodies nor
the boolean arguments of the tests can contain division or square root. Therefore
if we apply Pp to a tuple of expressions in EN, the result does not contain any
divisions or square roots. Now we will see how we can decompose the expression
part in order to remove square roots and divisions from it.

4.3 Expression Decompositions

Initially we will see how to decompose a single expression by assuming that the
body of the definition does not contain any test, thus the expression part is a
list of one element, then we will extend this definition to any list of expressions.

Template of an Expression. The idea for transforming a variable definition
with an expression is to transform this definition into several variable defini-
tions that correspond to the sub-expressions that are square roots and divisions
free. Therefore we need to introduce this decomposition of an expression as the
application of a function to square roots and divisions free expressions:

Definition 4.3 (Template of expression). Given an expression e ∈ EN√
,/
, a

template for e is a function t of Ek
N −→EN√

,/
such that:

∃ e1, ..., ek : EN, e = t(e1, ..., ek)

The template and sub-expression tuple of a unique expression can be computed
by giving the tuple of square roots and division free sub-expressions.

A Formal Proof of Square Root and Division Elimination 269

Example 4.2
a1.a2+b

√
c

d.
√

e1+e2+
√
c
= (fun (x1, x2, x3, sq1, sq21) → x1+x2

√sq1

x3
√

sq21+
√sq1

)(a1.a2, b, d, c, e1 + e2)

We use special names for square roots because we want to avoid creating different
names for the same square root. Spotting the identical square roots is essential
in order to preserve a reasonable size for the produced code.

Common Template of Expressions. Given the definition of a template of
one expression, we will now extend this decomposition to programs that contain
tests. If the body contains a test as in example 4.1, its expression part is a list
of expressions (i.e.,[(a1 + a2)/b; c +

√
d1.d2]). The objective is now to decompose

these expressions using the same template (i.e., x0+
√

x2
x1), the common template:

Definition 4.4 (Common template of expressions). A common template
of two expressions e1 and e2 is a function t that is a template of both e1 and e2,
that means t satisfies:

∃ se1, se2 : Ek
N, e1 = t(e1) and e2 = t(e2)

Let x1, ...xk be the local variables corresponding to e1 and x′
1, ...x

′
k′ the one to

e2, then if we define t as:
fun (s, x1, ..., xk, x

′
1, ..., x

′
k′) → (s× e1 + (1 − s)× e2)

we have: t(1, x1, ...xk, 0, ..., 0) = e1 ∧ t(0, 0, ..., 0, x′
1, ...x

′
k′) = e2, it is a common

template of e1 and e2. This is only an example since we use a more compact form
in our transformation in order to limit the number of square roots produced by
the template but we will not describe the common template computation in this
paper. For example we have the following transformation:

Example 4.3 (Declaration with test)

let x =
if F then a1 + a2.

√
b1 + b2.

√
b3

else c1
c2+c3.

√
d1

in P

−→
let (x1,x2,x3,x4,sq1,sq2,sq3) =
if F then (a1, a2, 1, 0, b1, b2, b3)

else (c1, 0, c2, c3, 0, 0, d1)
in P[x:= t(x1,x2,x3,x4,sq1,sq2,sq3)]

where t = fun (x1, x2, x3, x4, sq1, sq2, sq3) → x1+x2.
√

sq1+sq2.
√

sq3

x3+x4.
√
sq3

is the common
template of a1 + a2.

√
b1 + b2.

√
b3 and c1

c2+c3.
√

d1
.

The definition of a common template of two expressions extends naturally to
several expressions. Therefore we are able to build a common template for any
list of expressions in EN√

,/
.

The transformation being described, the last section presents some remarks
about the effective implementation of the transformation.

5 Practical Aspects of the Program Transformation

Exact Computation with +,−,×. The air traffic management system intro-
duced in [13] computes with distances and other geometric quantities. Therefore

270 P. Neron

it has use of the square root and division operations. Computing with addition,
multiplication and subtraction can be done exactly by using a dynamic repre-
sentation of real numbers which will allow us to use all the bits we need to
avoid losing accuracy during computation (e.g., the product of two numbers of
size n can be stored in a number of size 2.n) whereas square root or division
computations are approximate regardless the number of bits used to express the
number. Certainly, these kind of computation does not respect the constraint
of embedded systems that requires to know at compile time the memory the
program will use at run time. But, since our language does not contain loop or
recursion, a simple static analysis can give us the number of bits required by
every computation depending the number of bits of the inputs. Being able to
compute exactly with addition, multiplication and subtraction is the reason why
we want to eliminate square root and division operations.

Experiments. We have tested this transformation on several functions defined
by the NASA Langley Formal Method Team in their Airborne Coordinated
Conflict Resolution and Detection (ACCoRD) framework. Since our language
does not support the function definitions yet, we had to inline the calls by hand
in the target program. We tried our transformation on the cd3d and trackline
functions defined in [10,13] that solve plane geometry problems. On these two
functions we computed the transformation and therefore we can give the size of
the produced code but we also computed an estimation of the required memory
size if we want to compute on that produced code using exact computation with
+,−,×. Assuming the inputs are represented on 64 bits, that gives the following
results:

Function Input code Output code Required memory
cd3d 2,3 KB 13 KB 15 Kb
trackline 1 KB 13 KB 57 Kb

The size and the memory required by the output programs quickly growing with
the number of square roots and division, it is absolutely critical to keep that
number as low as possible during the transformation process in order to get
reasonable sizes.

Conclusion

In this paper is described a way to transform any program built with variable
definitions and tests into another semantically equivalent one where the control
flow never depends on the result of a square root or division, thus protecting
this control flow from rounding errors in these operations. It allows proofs done
on the abstract semantic to still hold on the concrete one. This transformation
also respects the constraints of embedded code since the transformed program
does not use any dynamic structures.

The main issues of this transformation were not only to define procedures
that remove divisions and square roots from nearly every part of the program

A Formal Proof of Square Root and Division Elimination 271

but also to keep the size of the produced code in an acceptable range. This is
the reason why we did not define the computation of the template, since several
complex algorithms, as in the OCaml implementation, may be used to generate
the most appropriate template in order to minimize the size of the produced code.
Nevertheless, the only thing to prove is that they generate a valid template. This
work led us to define the problem of template generation that may be of general
interest and will be discussed in future work.

Most of the program generic transformations so as the elimination of square
root and divisions expressions have already been formalized and proved in the
Pvs proof assistant. Both the Pvs development and the OCaml implementation
can be found on the web site of the author. Future work includes extending this
transformation to more complex languages which contain structures such as func-
tion definitions and bounded loops and keep reducing the size of the produced
code by using static analysis techniques such as using the information given by
the tests values in the corresponding branches during the transformation.

Acknowledgement. I would like to thank both my PhD. advisors Gilles Dowek
and Cesar Muñoz for this topic proposal and the helpful discussions and Cather-
ine Dubois and Cyril Cohen for their useful reviews of this paper.

References

1. Boldo, S., Filliâtre, J.-C.: Formal verification of floating-point programs. In:
Kornerup, P., Muller, J.-M. (eds.) Proceedings of the 18th IEEE Symposium on
Computer Arithmetic, Montpellier, France, pp. 187–194 (June 2007)

2. Boldo, S., Muñoz, C.: A formalization of floating-point numbers in PVS. Report
NIA Report No. 2006-01, NASA/CR-2006-214298, NIA-NASA Langley, National
Institute of Aerospace, Hampton, VA (2006)

3. Bostan, A.: Algorithmique efficace pour des opérations de base en Calcul formel.
Ph.d. thesis (2003), http://algo.inria.fr/bostan/these/These.pdf

4. Chen, L., Miné, A., Cousot, P.: A Sound Floating-Point Polyhedra Abstract Do-
main. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 3–18. Springer,
Heidelberg (2008)

5. Cohen, C.: Construction of Real Algebraic Numbers in Coq. In: Beringer, L., Felty,
A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 67–82. Springer, Heidelberg (2012)

6. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition: a synopsis. SIGSAM Bull 10, 10–12 (1976)

7. Daumas, M., Melquiond, G., Muñoz, C.: Guaranteed proofs using interval arith-
metic. In: IEEE Symposium on Computer Arithmetic, pp. 188–195 (2005)

8. Harrison, J.: Floating Point Verification in HOL. In: Schubert, E.T., Alves-Foss, J.,
Windley, P. (eds.) HUG 1995. LNCS, vol. 971, pp. 186–199. Springer, Heidelberg
(1995)

9. IEEE. IEEE standard for binary floating-point arithmetic. Institute of Electrical
and Electronics Engineers, New York, Note: Standard 754–1985 (1985)

10. Maddalon, J., Butler, R., Muñoz, C., Dowek, G.: Mathematical basis for the safety
analysis of conflict prevention algorithms. Technical Memorandum NASA/TM-
2009-215768, NASA, Langley Research Center, Hampton VA 23681-2199, USA
(June 2009)

http://algo.inria.fr/bostan/these/These.pdf

272 P. Neron

11. Martel, M.: Program transformation for numerical precision. In: PEPM, pp. 101–
110 (2009)

12. Miner, P.S.: Defining the ieee-854 floating-point standard in pvs (1995)
13. Narkawicz, A., Muñoz, C., Dowek, G.: Formal verification of air traffic preven-

tion bands algorithms. Technical Memorandum NASA/TM-2010-216706, NASA,
Langley Research Center, Hampton VA 23681-2199, USA (June 2010)

14. Neron, P.: A formal proof of square root and division elimination in embedded
programs - long version (2012), http://www.lix.polytechnique.fr/~neron/

15. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn.
Univ. of California Press (1951)

16. Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and
beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)

http://www.lix.polytechnique.fr/~neron/

Coherent and Strongly Discrete Rings

in Type Theory�

Thierry Coquand, Anders Mörtberg, and Vincent Siles

Department of Computer Science and Engineering
University of Gothenburg, Sweden

{coquand,mortberg,siles}@chalmers.se

Abstract. We present a formalization of coherent and strongly discrete
rings in type theory. This is a fundamental structure in constructive al-
gebra that represents rings in which it is possible to solve linear systems
of equations. These structures have been instantiated with Bézout do-
mains (for instance Z and k[x]) and Prüfer domains (generalization of
Dedekind domains) so that we get certified algorithms solving systems
of equations that are applicable on these general structures. This work
can be seen as basis for developing a formalized library of linear algebra
over rings.

Keywords: Formalization of mathematics, Constructive algebra, Coq,
SSReflect.

1 Introduction

One of the fundamental operations in linear algebra is the ability to solve linear
systems of equations. The concept of (strongly discrete) coherent rings abstracts
over this ability which makes them an important notion in constructive alge-
bra [14]. This makes these rings suitable as a basis for developing computational
homological algebra, that is, linear algebra over rings instead of fields [3].

Another reason that these rings are important in constructive algebra is that
they generalize the notion of Noetherian rings.1 Classically any Noetherian ring
is coherent but the situation in constructive mathematics is more complex and
there is in fact no standard constructive definition of Noetherianity [16]. Logi-
cally, Noetherianity is expressed by a higher-order condition (it involves quan-
tification over every ideal of the ring) while ”coherent” is a simpler notion, which
involves only quantification on matrices over the ring, and ”strongly discrete” is
a first-order notion.

One important example (aside from fields) of coherent strongly discrete rings
are Bézout domains, which are a non-Noetherian generalization of principal ideal
domains (rings where all ideals are generated by one element). The two standard

� The research leading to these results has received funding from the European Union’s
7th Framework Programme under grant agreement nr. 243847 (ForMath).

1 Rings where all ideals are finitely generated.

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 273–288, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

274 T. Coquand, A. Mörtberg, and V. Siles

examples of Bézout domains are Z and k[x] where k is a field. Another example
of coherent strongly discrete rings are Prüfer domains with decidable divisibility
which are a non-Noetherian generalization of Dedekind domains. The condition
of being a Prüfer domain captures what Dedekind thought was the most impor-
tant property of Dedekind domains [1], namely the ability to invert ideals (which
is usually hidden in standard classical treatments of Dedekind domains). This
property also has applications in control theory [18].

All our proofs and definitions are expressed in a constructive framework.While
it would be possible to use classical logic in the proof of correctness of our
algorithms, we feel that they are clearer and shorter in this way. It can also be
argued that our definitions are better expressed in this way. For instance, we
can define a coherent ring as one for which a linear system has a finite number
of generators. In a classical framework, to express this in a computationally
meaningful way would involve the notion of recursive functions.

All of these notions have been formalized2 using the SSReflect exten-
sion [11] to the Coq proof assistant [5]. This work can be seen as a generalization
of the previous formalization of linear algebra in the SSReflect library [10].

The main motivation behind this work is that it can be seen as a basis for a
formalization of computational homological algebra. This approach is inspired
by the one of homalg [3] where homological algorithms (without formalized
correctness proofs) are implemented based on a notion that they call computable
rings [2] which in fact are the same as coherent strongly discrete rings. Another
source of inspiration is the work of Lombardi and Quitté [13] on constructive
commutative algebra.

This paper is organized as follows: first the formalization of coherent rings is
presented followed by strongly discrete rings. Next Prüfer domains are explained
together with the proofs that they are both coherent and strongly discrete. This
is followed by a section on how to implement a computational version of the
SSReflect development. We end by a section on conclusions and further work.

2 Coherent Rings

Given a ring R (in our setting commutative but it is possible to consider non-
commutative rings as well [2]) one important problem to study is how to solve
linear systems over R. If R is a field, then we have a nice description of the space
of solution by a basis of solutions. Over an arbitrary ring R there is in general
no basis.3 But an important weaker property is that there is a finite number of
solutions which generate all solutions. We say that the ring is coherent if this is
the case.

2 Documentation and formalization can be found at:
http://www.cse.chalmers.se/~mortberg/coherent/

3 For instance over the ring R = k[X, Y, Z] where k is a field, the equation pX +
qY + rZ = 0 has no basis of solutions. It can be shown that a generating system of
solutions is given by (−Y,X, 0), (Z, 0,−X), (0,−Z, Y).

http://www.cse.chalmers.se/~mortberg/coherent/

Coherent and Strongly Discrete Rings in Type Theory 275

More concretely, given a rectangular matrix M over R we want to find a finite
number of solutions X1, . . . , Xn of the system MX = 0 such that any solution
is of the form a1X1+ · · ·+anXn where a1, . . . , an ∈ R. If this is possible, we say
that the module of solutions of the system MX = 0 is finitely generated. This
can be reformulated with matrices: we want to find a matrix L such that

MX = 0 ↔ ∃Y.X = LY

A ring is coherent if for any matrix M it is possible to compute a matrix L such
that this holds. If this is the case it follows that ML = 0.

For this it is enough to consider the case where M has only one line. Indeed,
assume that for any 1 × n matrix M we can find a n × m matrix L such that
MX = 0 iff X = LY for some Y . To solve the system

M1X = · · · = MkX = 0

where eachMi is a 1×nmatrix first compute L1 such thatM1X = 0 iff X = LY1

for some Y1. Next compute L2 such that M2L1Y1 = 0 iff Y1 = L2Y2. At the end
we obtain L1, . . . , Lk such that M1X = · · · = MkX = 0 iff X is of the form
L1 · · ·LkY and so L1 · · ·Lk provide a system of generators for the solution of
the system.

Hence it is sufficient to formulate the condition for coherent rings as: For any
row matrix M it is possible to find a matrix L such that

MX = 0 ↔ ∃Y.X = LY

Note that the notion of coherent is not stressed in classical presentations of alge-
bra since Noetherian rings are automatically coherent, but in a computationally
meaningless way. It is however fundamental, both conceptually [13,14] and com-
putationally. The system homalg [3] for instance takes this notion as the central
one.

In the development, coherent rings have been implemented as in [9] using the
Canonical Structuremechanism of Coq. In the SSReflect libraries matrices
are represented by finite functions over pairs of ordinals (the indices):

(* ’I_n *)

Inductive ordinal (n : nat) := Ordinal m of m < n.

(* ’M[R]_(m,n) = ’M_(m,n) *)

(* ’rV[R]_m = ’M[R]_(1,m) *)

(* ’cV[R]_m = ’M[R]_(m,1) *)

Inductive matrix R m n := Matrix of {ffun ’I_m * ’I_n -> R}.

Hence the sizes of the matrices need to be known when implementing coherent
rings. But in general the size of L cannot be predicted so we need an extra
function that computes this:

276 T. Coquand, A. Mörtberg, and V. Siles

Record mixin_of (R : ringType) : Type := Mixin {

size_solve : forall m, ’rV[R]_m -> nat;

solve_row : forall m (V : ’rV[R]_m), ’M[R]_(m,size_solve V);

_ : forall m (V : ’rV[R]_m) (X : ’cV[R]_m),

reflect (exists Y : ’cV[R]_(size_solve V), X = solve_row V *m Y)

(V *m X == 0)

}.

Here *m denotes matrix multiplication and V *m X == 0 is the boolean equality
of matrices, so the specification says that this equality is reflected by the exis-
tence statement. An alternative to having a function computing the size would
be to output a dependent pair but this has the undesired behavior that the pair
has to be destructed when stating lemmas about it which in turn would mean
that these lemmas would be cumbersome to use as it would not be possible to
rewrite with them directly.

Using this we have implemented the algorithm for computing the generators
of a system of equations:

Fixpoint solveMxN (m n : nat) :

forall (M : ’M_(m,n)), ’M_(n,size_solveMxN M) :=

match m return forall M : ’M_(m,n), ’M_(n,size_solveMxN M) with

| S p => fun (M : ’M_(1 + _,n)) =>

let L1 := solve_row (usubmx M)

in L1 *m solveMxN (dsubmx M *m L1)

| _ => fun _ => 1%:M

end.

Lemma solveMxNP : forall m n (M : ’M[R]_(m,n)) (X : ’cV[R]_n),

reflect (exists Y : ’cV_(size_solveMxN M), X = solveMxN M *m Y)

(M *m X == 0).

In order to instantiate this structure one can of course directly give an algorithm
that computes the solution of a single row system. However there is another ap-
proach that will be used in the rest of the paper that is based on the intersection
of finitely generated ideals.

2.1 Ideal Intersection and Coherence

In the case when R is an integral domain one way to prove that R is coherent is
to show that the intersection of two finitely generated ideals is again finitely gen-
erated. This amounts to given two ideals I = (a1, . . . , an) and J = (b1, . . . , bm)
compute generators (c1, . . . , ck) of I ∩ J . For I ∩ J to be the intersection of I
and J it should satisfy

I ∩ J ⊆ I

I ∩ J ⊆ J

∀x. x ∈ I ∧ x ∈ J → x ∈ I ∩ J

Coherent and Strongly Discrete Rings in Type Theory 277

The first two of these mean that the generators of I ∩ J should be possible
to write as a linear combination of the generators of both I and J . The third
property states that if x can be written as a linear combination of the generators
of I and J then it can be written as a linear combination of the generators of
I ∩ J .

A convenient way to express this inCoq is to use strongly discrete rings, which
are discussed in section 3. For now we just assume that we can find matrices V
and W such that IV = I ∩ J and JW = I ∩ J (with matrix multiplication and
ideals represented by row-vectors containing the generators). Using this there is
an algorithm to compute generators of the solutions of a system:

m1x1 + · · ·+mnxn = 0

The main idea is to compute generators, M0, of the solution for m2x2 + · · · +
mnxn = 0 by recursion and also compute generators t1, . . . , tp of (m1) ∩
(−m2, . . . ,−mn) together with V and W such that

(m1)V = (t1, . . . , tp)

(−m2, . . . ,−mn)W = (t1, . . . , tp)

The generators of the module of solutions are then given by:[
V 0
W M0

]
This has been implemented by:

Fixpoint solve_int m : forall (M : ’rV_m),’M_(m,size_int M) :=

match m return forall (M : ’rV_m), ’M_(m,size_int M) with

| S p => fun (M’ : ’rV_(1 + p)) =>

let m1 := lsubmx M’ in

let ms := rsubmx M’ in

let M0 := solve_int ms in

let V := cap_wl m1 (-ms) in

let W := cap_wr m1 (-ms) in

block_mx (if m1 == 0 then delta_mx 0 0 else V) 0

(if m1 == 0 then 0 else W) M0

| 0 => fun _ => 0

end.

Lemma solve_intP : forall m (M : ’rV_m) (X : ’cV_m),

reflect (exists Y : ’cV[R]_(size_int M), X = solve_int M *m Y)

(M *m X == 0).

Here cap_wl computes V and cap_wr computes W . Note that some special care
has to be taken if m1 is zero, if this is the case we output a matrix:[

1 0 · · · 0 0
0 0 · · · 0 M0

]

278 T. Coquand, A. Mörtberg, and V. Siles

However it would be desirable to output just[
1 0
0 M0

]
But this would not have the correct size. This could be solved by having a more
complicated function that outputs a sum type with matrices of two different
sizes. As this would give slightly more complicated proofs we decided to pad with
zeroes instead. In section 5 we will discuss how to implement a more efficient
algorithm, without any padding, that is more suitable for computation.

3 Strongly Discrete Rings

An important notion in constructive mathematics is the notion of discrete ring,
that is, rings with decidable equality. Another important notion is strongly dis-
crete rings, these are rings where membership in finitely generated ideals is
decidable and if x ∈ (a1, . . . , an) there is an algorithm computing w1, . . . , wn

such that x =
∑

i aiwi.
Examples of such rings are multivariate polynomial rings over discrete fields

(via Gröbner bases [6,12]) and Bézout domains with explicit divisibility, that
is, whenever a | b one can compute x such that b = xa. We have represented
strongly discrete rings in Coq as:

CoInductive member_spec (R : ringType) n (x : R) (I : ’rV[R]_n)

: option ’cV[R]_n -> Type :=

| Member J of x%:M = I *m J : member_spec x I (Some J)

| NMember of (forall J, x%:M != I *m J) : member_spec x I None.

Record mixin_of (R : ringType) : Type := Mixin {

member : forall n, R -> ’rV_n -> option ’cV_n;

_ : forall n (x : R) (I : ’rV_n), member_spec x I (member x I)

}.

The structure of strongly discrete rings contains a function taking an element
and a row vector (with the generators of the ideal) and return an option type
with a column vector. This is Some J if x can be written as I *m J and if it is
None then there should also be a proof that there cannot be any J satisfying x =

I *m J. Note that the use of CoInductive has nothing to do with coinduction
but it should be seen as a datatype without any recursion schemes (as opposed
to datatypes defined using Inductive) on which one can do case-analysis, for
more information see [11].

3.1 Ideal Theory

In the development we have chosen to represent finitely generated ideals as row
vectors, so an ideal in R with n generators is represented as a row matrix of type

Coherent and Strongly Discrete Rings in Type Theory 279

’rV[R]_n. This way operations on ideals can be implemented using functions on
matrices and properties can be proved using the matrix library of SSReflect.

A nice property of strongly discrete rings is that the inclusion relation of
finitely generated ideals is decidable. This means that we can decide if I ⊆ J
and if this is the case express every generator of I as a linear combination
of the generators of J . We have implemented this as the function subid with
correctness expressed as:

Notation "A <= B" := (subid A B).

Notation "A == B" := ((A <= B) && (B <= A)).

Lemma subidP : forall m n (I : ’rV[R]_m) (J : ’rV[R]_n),

reflect (exists D, I = J *m D) (I <= J)%IS.

Note that this is expressed using matrix multiplication, so subidP says that
if I <= J then every generator of I can be written as a linear combination of
generators of J.

Ideal multiplication is an example where it is convenient to represent ideals
as row vectors. As the product of two finitely generated ideals is generated by
all products of generators of the ideals this can be expressed compactly using
matrix operations:

Definition mulid m n (I : ’rV_m) (J : ’rV_n) : ’rV_(m * n) :=

mxvec (I^T *m J).

Notation "I *i J" := (mulid I J).

Here mxvec flattens a matrix of type ’M[R]_(m,n) into a row vector of type ’rV[R
]_(m * n) and I^T is the transpose of I. By representing ideals as row vectors we
get compact definitions and quite simple proofs as the theory already developed
about matrices can be used when proving properties of ideal operations.

It is also convenient to specify what the intersection of I and J is: it is an ideal
K such that K <= I, K <= J and forall (x : R), member x I -> member x

J -> member x K. So in order to prove that an integral domain is coherent it
suffices to give an algorithm that computes K and prove that it satisfies these
three properties. The cap_wr and cap_wl functions used in solve_with_int can
then be implemented easily by explicitly computing D in subidP.

3.2 Coherent Strongly Discrete Rings

If a ring R is both coherent and strongly discrete it is not only possible to solve
homogeneous systems MX = 0 but also any system MX = A. The algorithm
for computing this is expressed by induction on the number of equations where
the case of one equation follow directly from the fact that the ring is strongly
discrete. In the other case the matrix looks like:[

R1

M

]
X =

[
a1
A

]

280 T. Coquand, A. Mörtberg, and V. Siles

Now compute generators G1 for the module of system of solutions of the
homogeneous system R1X = 0 and also test if a1 ∈ R1, if this is not the case the
system is not solvable otherwise get W1 such that R1W1 = a1. Now compute by
recursion the solution S of MG1X = A−MW1 such that MG1S = A−MW1.
The solution to the system is then W1 +G1S as[

R1

M

]
(W1 +G1S) =

[
R1W1 +R1G1S
MW1 +MG1S

]
=

[
a1
A

]
This algorithm has been implemented and proved correct as the function

solve_general. Together with solveMxN this constitutes the only operations
used as basis in the libraries of the homalg project [3].

3.3 Bézout Domains Are Strongly Discrete and Coherent

The first example of coherent strongly discrete rings that we studied were Bézout
domains with explicit divisibility. These are integral domains where every finitely
generated ideal is principal (generated by a single element). The two main ex-
amples of Bézout domains are Z and k[x] where k is a discrete field.

Bézout domains can also be characterized as rings with a GCD operation in
which there is a function computing the elements of the Bézout identity. This
means that given a and b one can compute x and y such that xa+by is associate4

to gcd(a, b). Based on this it is straightforward to implement a function that given
a finitely generated ideal (a1, . . . , an) computes g such that (a1, . . . , an) ⊆ (g)
and (g) ⊆ (a1, . . . , an) where this g is the greatest common divisor of all the ai.
To test if x ∈ (a1, . . . , an) in a Bézout domain first compute a principal ideal (g)
and then test if g | x and if this is the case we we can construct the witness and
otherwise we know that x /∈ (a1, . . . , an).

For showing that Bézout domains are coherent let I and J be two finitely
generated ideals and compute principal ideals such that I = (a) and J = (b).
Now it easy to prove that I ∩ J = (lcm(a, b)), where lcm(a, b) is the lowest
common multiple of a and b which is computable in our setting as any Bézout
ring is a GCD domain with explicit divisibility. Hence we have now proved that
Z and k[x] are both coherent and strongly discrete which means that we can
solve arbitrary systems of equations over them.

4 Prüfer Domains

Another class of rings that are coherent are Prüfer domains. These can be seen
as non-Noetherian analogues of Dedekind domains and have many different char-
acterizations, for instance does Bourbaki list fourteen of them [4]. The one we
choose here is the one in [13] that says that a Prüfer domain is an integral domain
where given any x and y there exists u, v and w such that

4 a and b are associates if a | b and b | a or equivalently that there exists a unit u ∈ R
such that a = bu.

Coherent and Strongly Discrete Rings in Type Theory 281

ux = vy

and
(1− u)y = wx

This is implemented in Coq by:

Record mixin_of (R : ringType) : Type := Mixin {

prufer: R -> R -> (R * R * R)%type;

_ : forall x y, let: (u,v,w) := prufer x y in

u * x = v * y /\ (1 - u) * y = w * x

}.

As we require that Prüfer domains have explicit divisibility it is possible to
prove that they are strongly discrete which in turn means that we can use the
library of ideal theory developed for strongly discrete rings when proving that
they are coherent. However it would be possible to prove that Prüfer domains
are coherent without assuming explicit divisibility.

The most basic examples of Prüfer domains are Bézout domains (in particular
Z and k[x]). However there are many other examples, for instance if R is a Bézout
domain then the ring of elements integral over R is a Prüfer domain, this gives
examples from algebraic geometry like k[x, y]/(y2+x4−1) and algebraic number
theory like Z[

√−5].

4.1 Principal Localization Matrices and Strong Discreteness

The key algorithm in the proof that Prüfer domains with explicit divisibility
are both strongly discrete and coherent is an algorithm computing a principal
localization matrix of an ideal [8]. This means that given a finitely generated
ideal (x1, . . . , xn) one can compute a n× n matrix M = (aij) such that:

n∑
i=1

aii = 1

and
∀ijl. aljxi = alixj

Note that there is no constraint n �= 0 which means that the first of these is a
bit problematic as if n = 0 the sum will be empty and hence 0. To remedy this
we express the property formally as:

Definition P1 n (M : ’M[R]_n) :=

\big[+%R/0]_(i: ’I_n) (M i i) = (0 < n)%:R.

Definition P2 n (I : ’rV[R]_n) (M : ’M[R]_n) :=

forall (i j l : ’I_n), (M l j) * (I 0 i) = (M l i) * (I 0 j).

Definition isPLM n (I : ’rV[R]_n) (M : ’M[R]_n) := P1 M /\ P2 I M.

282 T. Coquand, A. Mörtberg, and V. Siles

The first statement uses an implicit coercion from booleans to rings where
false is coerced to 0 and true to 1. The algorithm computing a principal
localization matrix, plm, is quite involved so we have omitted it from this pre-
sentation, the interested reader should have a look in the formal development
and at the proofs in [8] and [13]. We have proved that this algorithm satisfies
the above specification:

Lemma plmP : forall n (I : ’rV[R]_n), isPLM I (plm I).

The reason that principal localization matrices are interesting is that they
give a way to compute the inverse of a finitely generated ideal I, this is a finitely
generated ideal J such that IJ (with ideal multiplication) is principal. In fact
if I = (x1, . . . , xn) and M = (aij) is its principal localization matrix then every
column of M is an inverse to I. This means that we can define an algorithm for
computing the inverse of ideals in Prüfer domains:

Definition inv_id n : ’I_n -> ’rV[R]_n -> ’rV[R]_n := match n with

| S p => fun (i : ’I_(1 + p)%N) (I : ’rV[R]_(1 + p)%N) =>

(col i (plm I))^T

| _ => fun _ _ => 0

end.

Lemma inv_idP n (I : ’rV[R]_n) i :

(inv_id i I *i I == (I 0 i)%:M)%IS.

Using this it is possible to prove that Prüfer domains with explicit divisibility
are strongly discrete. To compute if x ∈ I first compute J such that IJ = (a).
Now x ∈ I iff (x) ⊆ I iff xJ ⊆ (a). This can be decided if we can decide when
an element is divisible by a.

We have used this to prove that our implementation of Prüfer domains is
strongly discrete which means that the theory about ideals developed for strongly
discrete rings can be used when proving that they are coherent.

4.2 Coherence

The key property of ideals in Prüfer domains for computing the intersection is
that finitely generated ideals I and J satisfy:

(I + J)(I ∩ J) = IJ

This means that we can devise an algorithm for computing generators for the
intersection by first computing (I + J)−1 such that (I + J)−1(I + J) = (a) and
then get that

I ∩ J =
(I + J)−1IJ

a

Note the use of division here. In fact it is possible to compute the intersection
without assuming division but then the algorithm is more complicated. Using
this the function for computing generators of the intersection is:

Coherent and Strongly Discrete Rings in Type Theory 283

Definition pcap (n m : nat) (I : ’rV[R]_n) (J : ’rV[R]_m) :

’rV[R]_(pcap_size I J).+1 := match find_nonzero (I +i J) with

| Some i => let sIJ := I +i J in

let a := sIJ 0 i in

let acap := inv_id i sIJ *i I *i J in

(0 : ’M_1) +i (\row_i (odflt 0 (acap 0 i %/? a)))

| None => 0

end.

Here %/? is the explicit divisibility function of R. The reason to add 0 as a
generator of the ideal is simply to have the correct size as the formalized proof
that R is coherent if I∩J is computable requires that I∩J is nonempty. Also note
the function find_nonzerowhich finds the first nonzero element in a row-vector.
This could have been implemented using the pick function for picking an element
satisfying a decidable predicate which is provided for all SSReflect rings. But
in order to simplify the translation to an efficient version of the algorithm we
avoid using it here.

To prove that pcap really computes the intersection we need to first prove the
main property used above for finding the algorithm computing I ∩ J :

Lemma pcap_id (n m : nat) (I : ’rV[R]_n) (J : ’rV[R]_m) :

((I +i J) *i pcap I J == I *i J)%IS.

Using this it is possible to prove that pcap compute the intersection:

Lemma pcap_subidl m n (I: ’rV_m) (J: ’rV_n): (pcap I J <= I)%IS.

Lemma pcap_subidr m n (I: ’rV_m) (J: ’rV_n): (pcap I J <= J)%IS.

Lemma pcap_member m n x (I : ’rV[R]_m) (J : ’rV[R]_n) :

member x I -> member x J -> member x (pcap I J).

Hence we have now proved that Prüfer domains with explicit divisibility are
coherent strongly discrete rings so not only can we solve homogeneous systems
over them but also any linear system of equations.

4.3 Examples of Prüfer Domains

As mentioned before, any Bézout domain is a Prüfer domain. The proof of this
is easy:

Definition bezout_calc (x y: R) : (R * R * R)%type :=

let: (g,c,d,a,b) := egcdr x y in (d * b, a * d, b * c).

Lemma bezout_calcP (x y : R) : let: (u,v,w) := bezout_calc x y in

u * x = v * y /\ (1 - u) * y = w * x.

Here egcdr is the extended Bézout algorithm where g is the gcd of x and y,
x = ag, y = bg and ca+ db = 1.

We have not yet formalized the proof that Z[
√−5] and k[x, y]/(y2 − 1 + x4)

are Prüfer domains but we have previously implemented this in Haskell [15].

284 T. Coquand, A. Mörtberg, and V. Siles

5 Computations

In the paper algorithms are presented on structures using rich dependently typed
datatypes which is convenient when proving properties but for computation this
is not necessary. In fact it can be more efficient to implement the algorithms
on simply typed datatypes instead, a good example is matrices: As explained in
section 2 they are represented using finite functions from the indices (represented
using ordinals) but this representation is not suitable for computation as finite
functions are represented by their graph which has to be traversed linearly each
time the function is evaluated.

In order to develop more efficient versions of the algorithms we use a previously
developed library where matrices are represented using lists of lists and imple-
ment the algorithms on this representation. These algorithms are then linked
to the inefficient versions using translation lemmas. The methodology that we
follow is summarized in [7] as:

1. Implement an abstract version of the algorithm using SSReflect structures
and use the libraries to prove properties about them. Here we can use the
full power of dependent types when proving correctness.

2. Refine this algorithm into an efficient one using SSReflect structures and
prove that it behaves like the abstract version.

3. Translate the SSReflect structures and the efficient algorithm to the low-
level data types, ensuring that they will perform the same operations as their
high-level counterparts.

So far we have only presented step 1. The second step involves giving more
efficient algorithms, a good example of this is the algorithms on ideals. A simple
optimization that can be made is to ensure that there are no zeroes as generators
in the output of the ideal operations. The goal would then be to prove that
the more efficient operations generate the same ideal as the original operation.
Another example is solve_int that can be implemented without padding with
zeroes, this would then be proved to produce a set of solution of the system and
then be translated to a more efficient algorithm on list based matrices.

The final step corresponds to implementing “computable” counterparts of
the structures that we presented so far based on simple types. For example,
computable coherent rings are implemented as:

Record mixin_of (R : coherentRingType)

(CR : cstronglyDiscreteType R) : Type := Mixin {

csize_solve : nat -> seqmatrix CR -> nat;

csolve_row : nat -> seqmatrix CR -> seqmatrix CR;

_ : forall n (V : ’rV[R]_n),

seqmx_of_mx CR (solve_row V) = csolve_row n (seqmx_of_mx _ V);

_ : forall n (V: ’rV[R]_n),

size_solve V = csize_solve n (seqmx_of_mx _ V)

}.

Coherent and Strongly Discrete Rings in Type Theory 285

Here seqmatrix is the list based representation of matrices and seqmx_of_mx

is the translation function from SSReflect matrices to seqmatrix. Using
this more efficient versions of the algorithms presented above can be imple-
mented simply by changing the functions on SSReflect matrices to functions
on seqmatrix:

Fixpoint csolveMxN m n (M : seqmatrix CR) : seqmatrix CR :=

match m with

| S p => let u := usubseqmx 1 M in

let d := dsubseqmx 1 M in

let G := csolve_row n u in

let k := csize_solve n u in

let R := mulseqmx n k d G in

mulseqmx k (csize_solveMxN p k R) G (csolveMxN p k R)

| _ => seqmx1 CR n

end.

Lemma csolveMxNE : forall m n (M : ’M[R]_(m,n)),

seqmx_of_mx _ (solveMxN M) = csolveMxN m n (seqmx_of_mx _ M).

The lemma states that solving the system on SSReflect matrices and then
translating is the same as first translating and then compute the solution us-
ing the list based algorithm. The proof of this is straightforward as all of the
functions in the algorithm have translation lemmas, so it is done by expanding
definitions and translating using already implemented translation lemmas.

This way we have implemented all of the above algorithms and instances to
make some computations with Z using the algorithms for Bézout domains. First
we can compute the generators of (2) ∩ (3, 6):

Eval vm_compute in (cbcap 1 2 [::[::2]] [::[::3; 6]]).

= [:: [:: 6]]

Next we can test if 6 ∈ (2):

Eval vm_compute in (cmember 1%N 6 [::[:: 2]]).

= Some [:: [:: 3]]

It is also possible to solve the homogeneous system:[
1 2
2 4

] [
x1

x2

]
=

[
0
0

]

Eval vm_compute in (csolveMxN 2 2 [::[:: 1;2];[::2;4]]).

= [:: [:: 2; 0];

[:: -1; 0]]

and the inhomogeneous system:[
2 3
4 6

] [
x1

x2

]
=

[
4
8

]

286 T. Coquand, A. Mörtberg, and V. Siles

Eval vm_compute in (csolveGeneral 2 2 [::[:: 2; 3]; [:: 4; 6]]

[::[:: 4];[:: 8]]).

= Some [:: [:: -4];

[:: 4]]

The system 2x = 1 does not have a solution in Z:

Eval vm_compute in (csolveGeneral 1 1 [::[:: 2]] [::[::1]]).

= None

We can also do some computations on the algorithms for Prüfer domains using
Z:

Eval vm_compute in (cplm 3 [::[:: 2; 3; 5]]).

= [:: [:: 8; 12; 20];

[:: 12; 18; 30];

[:: -10; -15; -25]]

Eval vm_compute in (cinv_id 2 0 [:: [:: 2; 3]]).

= [:: [:: -2; 2]]

The first computation computes the principal localization matrix of (2, 3, 5) and
the second compute the inverse of the ideal (2, 3).

6 Conclusions and Further Work

In this paper we have represented in type theory interesting and mathematically
nontrivial results in constructive algebra. The algorithms based on coherent and
strongly discrete rings have been refined to more efficient algorithms on simple
datatypes, this way we get certified mathematical algorithms that are suitable for
computation. Hence can this work be seen as an example that the methodology
presented in [7] is applicable on more complicated structures as well.

In the future it would be interesting to prove that multivariate polynomial
rings over discrete fields are coherent and strongly discrete. This would require a
formalization of Gröbner bases and the Buchberger algorithm which has already
been done in Coq [17,19]. It would be interesting to reimplement this using
SSReflect and compare the complexity of the formalizations.

It would also be interesting to use this work as a basis for a library of for-
malized computational homological algebra inspired by the homalg project. In
fact solveMxN and solveGeneral are the only operations used as a basis in
homalg [2]. This formalization would involve first proving that the category of
finitely presented modules over coherent strongly discrete rings form an abelian
category and then use this to implement further algorithms for doing homological
computations.

In SSReflect all rings are equipped with a choice operator which can be
used to pick an element satisfying a decidable predicate. This could have been
used more in our development, for instance in the implementation of pcap to
find a nonzero generator of an ideal. We believe that using this feature more

Coherent and Strongly Discrete Rings in Type Theory 287

Integral domains

Strongly discrete

Coherent Prüfer domains

Bézout domains

Fig. 1. The extension to the SSReflect hierarchy

would lead to simpler formal proofs, but our experience is that the use of choice
complicates the implementation of efficient algorithms. As we want to be able
to compute with our algorithms inside Coq we decided to have slightly more
complicated proofs but easier translation to efficient algorithms.

In Fig. 1 the extension to the SSReflect hierarchy is presented. Integral do-
mains are already present in the hierarchy and the extension consists of the other
structures. The arrows represent that the target is an instance of the source. This
presentation differ from standard presentations in constructive algebra [13,14] as
there is no need to assume that coherent rings and Prüfer domains are strongly
discrete. The motivation behind this design choice is that it simplified the for-
malization and the examples that we are primarily interested in are all strongly
discrete anyway. We actually started to formalize the notions without assuming
that the rings are strongly discrete but this led to too complicated formal proofs
as we could not use the library of ideal theory developed for strongly discrete
rings. However, in constructive algebra ideal theory is usually developed without
assuming decidable ideal membership, but in our experience, both the SSRe-

flect library and tactics are best suited for theories with decidable functions.
A consequence of this is that it is difficult to formalize things in full gen-

erality, for instance are all rings assumed to be not only strongly discrete but
also discrete. It would be more natural from the point of view of constructive
mathematics to represent more general structures. However, while the use of
SSReflect imposes some decidability conditions, we found that in this frame-
work of decidable structures the notations and tactics provided are particularly
elegant and well-suited.

288 T. Coquand, A. Mörtberg, and V. Siles

References

1. Avigad, J.: Methodology and metaphysics in the development of Dedekind’s theory
of ideals. In: The Architecture of Modern Mathematics. Essays in History and
Philosophy. Oxford University Press, Oxford (2006)

2. Barakat, M., Lange-Hegermann, M.: An axiomatic setup for algorithmic homolog-
ical algebra and an alternative approach to localization. J. Algebra Appl. 10(2),
269–293 (2011)

3. Barakat, M., Robertz, D.: homalg – A Meta-Package for Homological Algebra. J.
Algebra Appl. 7(3), 299–317 (2008)

4. Bourbaki, N.: Commutative algebra. Elements of Mathematics, ch. 1-7. Springer
(1998)

5. COQ development team. The COQ Proof Assistant Reference Manual, version 8.3.
Technical report (2010)

6. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms: An introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer (2006)

7. Dénès, M., Mörtberg, A., Siles, V.: A Refinement-Based Approach to Computa-
tional Algebra in Coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406,
pp. 83–98. Springer, Heidelberg (2012)

8. Ducos, L., Lombardi, H., Quitté, C., Salou, M.: Théorie algorithmique des anneaux
arithmétiques, des anneaux de Prüfer et des anneaux de Dedekind. Journal of
Algebra 281(2), 604–650 (2004)

9. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging Mathematical
Structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)

10. Gonthier, G.: Point-Free, Set-Free Concrete Linear Algebra. In: van Eekelen, M.,
Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 103–
118. Springer, Heidelberg (2011)

11. Gonthier, G., Mahboubi, A.: A Small Scale Reflection Extension for the Coq sys-
tem. Technical report, Microsoft Research INRIA (2009)

12. Lombardi, H., Perdry, H.: The Buchberger Algorithm as a Tool for Ideal Theory
of Polynomial Rings in Constructive Mathematics (1998)

13. Lombardi, H., Quitté, C.: Algébre commutative, Méthodes constructives: Modules
projectifs de type fini. Calvage et Mounet (2011)

14. Mines, R., Richman, F., Ruitenburg, W.: A Course in Constructive Algebra.
Springer (1988)

15. Mörtberg, A.: Constructive Algebra in Functional Programming and Type Theory.
Master’s thesis, Chalmers University of Technology (2010)

16. Perdry, H., Schuster, P.: Noetherian orders. Mathematical. Structures in Comp.
Sci. 21(1), 111–124

17. Persson, H.: An Integrated Development of Buchberger’s Algorithm in Coq (2001)
18. Quadrat, A.: The fractional representation approach to synthesis problems: An

algebraic analysis viewpoint part ii: Internal stabilization. SIAM J. Control Op-
tim. 42(1), 300–320 (2003)

19. Théry, L.: A Certified Version of Buchberger’s Algorithm. In: Kirchner, C.,
Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 349–364. Springer,
Heidelberg (1998)

Improving Real Analysis in Coq:

A User-Friendly Approach
to Integrals and Derivatives�

Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond

Inria Saclay Île-de-France, ProVal, Palaiseau, F-91120
LRI, Université Paris-Sud, CNRS, Orsay, F-91405

{Sylvie.Boldo,Catherine.Lelay,Guillaume.Melquiond}@inria.fr

Abstract. Verification of numerical analysis programs requires dealing
with derivatives and integrals. High confidence in this process can be
achieved using a formal proof checker, such as Coq. Its standard library
provides an axiomatization of real numbers and various lemmas about real
analysis, which may be used for this purpose. Unfortunately, its definitions
of derivative and integral are unpractical as they are partial functions that
demand a proof term. This proof termmakes the handling ofmathematical
formulas cumbersome and does not conform to traditional analysis. Other
proof assistants usually do not suffer from this issue; for instance, theymay
rely on Hilbert’s epsilon to get total operators. In this paper, we propose
a way to define total operators for derivative and integral without having
to extend Coq’s standard axiomatization of real numbers. We proved the
compatibility of our definitionswith the standard library’s in order to lever-
age existing results. We also greatly improved automation for real analysis
proofs that use Coq standard definitions. We exercised our approach on
lemmas involving iterated partial derivatives and differentiation under the
integral sign, that were missing from the formal proof of a numerical pro-
gram solving the wave equation.

1 Introduction

From Newton and Leibniz during the 17th century, many mathematicians have
used integrals and derivatives. Their use is both for pure analysis theorems, but
also more recently for applied mathematics. For example, numerical analysis
aims at solving ordinary differential equations and partial differential equations.
When the solutions are not analytic, it provides algorithms to approximate these
solutions and bounds to assert their correctness. Typically, it consists in a nu-
merical scheme over a discrete grid and its convergence proof, meaning that the
approximation improves when the grid size decreases.

Recent advances in formal proof assistants have shown that they can be applied
to various kinds of problems, but analysis and especially numerical analysis was

� This research was supported by the F
∮
st project (ANR-08-BLAN-0246-01) of the

French national research organization (ANR) and by the Coquelicot project of the
Digiteo cluster and the Île-de-France regional council.

C. Hawblitzel and D. Miller (Eds.): CPP 2012, LNCS 7679, pp. 289–304, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

290 S. Boldo, C. Lelay, and G. Melquiond

not as much studied as algebra. One reason may be that formalizations of analysis
were done years ago and seldom used. This is precisely the case in the standard
library of Coq: derivatives and integrals were defined with real numbers a dozen
years ago, but the libraries did not evolve with Coq. A more extensive use could
have proved the ponderousness of the library. The most blatant example is that
derivatives require a proof term to be written. This means that, instead of f ′(x) we
have to handle (f, x,H) whereH is a proof that f is differentiable in x. This makes
the rewritings clumsy and unpractical. More, this is not the way mathematicians
prove their theorems: proofs that functions are regular enough, when present, are
side-proofs that do not arise in the main development. Another example is the
missing definitions and lemmas about partial derivatives.

As shown in Figure 1, we have extended the standard Coq library with equiva-
lent definitions that are easier to use and with some automations. The developed
library can be downloaded and browsed at

http://coquelicot.saclay.inria.fr/results.html

R axioms

R standard library

derive pt(f, x,H)

∫ b
a (f,H) ⇐⇒

∫ b
a f

f ′(x)

∂2f
∂t2

auto derive tactic∫ b(x)
a(x) f(x, t)dt

our library

Fig. 1. Sketch of our library: equivalent definitions, additional lemmas, and an auto-
matic tactic, without introducing new axioms

To validate this approach, we have applied it to an example coming from
a numerical analysis program. We had previously proved the correctness of a
program solving the wave equation, but we left out the proofs about the existence
and regularity of a solution to the partial differential equation.

Section 2 presents the existing formalizations of analysis in proof assistants,
and especially in Coq. Section 3 presents the power of the underlying logic of Coq,
especially the changes when considering the axiomatic of real numbers. Section 4
presents our design choices for the derivative and the integral. Section 5 presents
our application about the wave equation and its required results.

http://coquelicot.saclay.inria.fr/results.html

Improving Real Analysis in Coq: A User-Friendly Approach 291

2 State of the Art

We will present the notions of differentiability and integrability as they are
defined in various proof assistant such as Coq1, the Coq constructive library
C-CoRN2, HOL Light3, Isabelle/HOL4, PVS5, Mizar6, and ACL2(r)7. We will
first present the definitions of the differentiability and integrability predicates,
and then describe the design choices for the derivative and integral functions.

2.1 Differentiability and Integrability

The choices made here are to adopt one of the common mathematical defini-
tions. For differentiability, Coq and PVS use ε-δ-definition based on the Landau
definition directly or through the limit definition:

∃� ∈ R, ∀ε > 0, ∃δ > 0, ∀h ∈ R, (h �= 0 ∧ |h| < δ) ⇒
∣∣∣∣f(x+ h)− f(x)

h
− �

∣∣∣∣ < ε

In HOL Light (and Isabelle/HOL which has inherited that formalization of anal-
ysis), the Newton’s difference quotient is also used, but the limit is a more generic
notion as it is defined in a topological space based on a field [12]. Another ap-
proach is implemented in additional libraries: the Frechet derivative in a real
normed vector space [13]. In C-CoRN, a constructive formalization of real num-
bers for Coq, the previous definition is modified to get a uniform differentia-
bility [5] on a closed interval [a; b], i.e. there is a single δ for all x ∈ [a; b] . In
Mizar, differentiability is defined for multi-variable functions [17] as usual by the
existence of a linear function L such that f(x+ h)− f(x)− L(h) = o(h).

To define Riemann integrability, Coq defines the integral on step functions
and then uses the traditional ε-δ-definition:

∀ε > 0, there are two step functions ϕ, ψ : [a; b] → R, such that
(∀t ∈ [a; b], |f(t)− ϕ(t)| ≤ ψ(t)) ∧ | ∫ ψ| < ε

The value of the integral is then defined as the limit of
∫
ϕ when ε → 0.

PVS in [4] and Mizar in [7] define Riemann integrability as the convergence
of Riemann sums. Both definitions are mathematically equivalent. A difference
is that the integral value is explicitly given by this second definition while Coq’s
definition only provides approximations of Riemann integral.

C-CoRN uses a third equivalent definition of Riemann integrability: the con-
vergence of Darboux sequences. As with Riemann sums, the integral value is
directly obtained from the definition.

1 http://coq.inria.fr/stdlib/index.html
2 http://corn.cs.ru.nl/
3 http://www.cl.cam.ac.uk/~jrh13/hol-light/
4 http://isabelle.in.tum.de/dist/library/HOL/index.html
5 http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/
6 http://www.mizar.org/
7 http://www.cs.utexas.edu/users/moore/acl2/v5-0/

http://coq.inria.fr/stdlib/index.html
http://corn.cs.ru.nl/
http://www.cl.cam.ac.uk/~jrh13/hol-light/
http://isabelle.in.tum.de/dist/library/HOL/index.html
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/
http://www.mizar.org/
http://www.cs.utexas.edu/users/moore/acl2/v5-0/

292 S. Boldo, C. Lelay, and G. Melquiond

HOL Light does not define Riemann integrals, but both gauge and Lebesgue
integrals, which are more general but less intuitive. As with derivatives, all the
notions are defined for multivariate functions.

In a former library about reals in Isabelle/HOL [8], and the current library in
ACL2(r) [9], differentiability was defined from non-standard analysis where the
formal notion of “infinitely close”, i.e. difference is less than all positive real num-
bers, replaces the usual notion of “arbitrarily close” corresponding to a common
formula stating that ∀ε > 0, . . . , the difference may be made smaller than ε.

2.2 Derivative and Integral

In pen-and-paper mathematics, we understand f ′(x) as the function f is differen-
tiable at x and f ′(x) is its derivative value. But the corresponding definitions and
their uses in formal proof assistants are not straightforward and differ, among
others as the underlying logic is different.

PVS is the closest to the mathematical point of view by using Type Correct-
ness Conditions (TCCs). A user may write a statement containing occurrences
of f ′(x) without justification and PVS generates additional goals to prove that
f is actually differentiable in x. PVS tries to infer automatically these additional
goals from the context. The same approach is used in ACL2(r) [10].

HOL Light uses its Hilbert’s epsilon applied to the differentiability property.
The user can then write f ′(x) without proof, but has to prove that f is differ-
entiable at x before using differentiation rules.

In Coq, the derivative is a partial function taking explicitly a proof term
of differentiability. As a derivative cannot be defined or used without this proof
term, this is cumbersome to use. One of the goals of the MathClasses project [18]
is to provide assistance work with these proof terms by trying to infer them.

3 Logical Foundations

Rather than introducing our own set of axioms, we have based our formalization
on the axioms from the Coq standard library on real numbers. This ensures that
our automated proof tools are usable by works based on the standard library, that
some results from the standard library could be reused, and that our work is con-
sistent (assuming the standard library is). We have also taken great care to not
introduce any other axioms, especially not the excluded middle, which is neither
a native concept in Coq logic, nor a consequence of Coq axioms on real numbers.

3.1 An Overview of Coq’s Logic

The formal system of Coq is an intuitionistic logic called the Calculus of In-
ductive Constructions. A salient point is that, whenever one wants to prove a
property of the form ∃x, P (x), one has to actually build a witness x such that
P (x) holds. This is different from classical logic where one could have simply
proved ¬∀x, ¬P (x) and be done.

Improving Real Analysis in Coq: A User-Friendly Approach 293

Another peculiarity of Coq’s logic is related to its type hierarchy. Logical
formulas have type Prop while values and functions have their types in Type.
The point of interest is that Prop is non-informative, that is, one can only
use the witness of an existential property ∃x, P (x) inside the proof of logical
formulas. A witness can never be used inside a logical formula itself, or more
importantly to define a value or a function. For instance, being able to prove a
formula ∀x : X, ∃y : Y, P (x, y) does not provide a function f : X → Y such
that ∀x, P (x, f(x)). Note that strengthening the property so that y exists and
is unique does not help either.

The traditional way in Coq to circumvent this issue is in the use of specification
types. They are existential types denoted {x : X | P (x)} and they contain
dependent pairs (x, p) such that x is an element of type X and p is a proof of
the logical formula P (x). The upside is that witnesses are readily available for
use inside values and functions. The downside is that these types do not live in
Prop and are therefore less natural to manipulate.

For instance, consider the predicate derivable pt from the standard library
that states that a function f is differentiable at point x. It is in fact a notation for
the specification type that associates a value � with the proof that � is the limit
of the slope function of f at point x. As a consequence, knowing that a function
is differentiable gives access to the value of its derivative. But it also means
that trying to express that both f and g are functions that are differentiable as
derivable pt(f, x) ∧ derivable pt(g, x) will be rejected by Coq. Indeed, this
formula is ill-typed since neither members are logical formulas. A coercion from
specification types to formulas in Prop would avoid this issue as long as one only
needs the differentiability property and not the derivative of a function.

In the same way that one can extract a witness from the formula ∃x, P (x) only
when performing a proof, the information about the disjunction P ∨ Q cannot
be used to make a choice inside a value or a function. Again, types outside Prop
have been introduced to offer this possibility; they are denoted {P} + {Q} in
Coq and their values can be used to select the branch of an if-then-else.

To end this overview, one should mention that subsets of a type T are usually
represented by predicates, that is, functions of type T → Prop. As a consequence,
we will indifferently note the containment property by the logical formulas x ∈ S
or S(x).

3.2 Coq’s Standard Axioms for Real Numbers

The formalization of real numbers from the standard library is axiomatic rather
than definitional. Instead of building reals as Cauchy sequences or Dedekind cuts
of rational numbers and proving their properties, Coq developers have chosen
to assume the existence of a set with the usual properties of the real line. In
other words, the standard library states that there is a set R, some arithmetic
operators −, +, ×, �−1, and a comparison operator <, that have the properties
of an ordered field. Except perhaps for the choice for the domain of �−1, the
previous axioms are not controversial.

294 S. Boldo, C. Lelay, and G. Melquiond

Below are the three axioms that state that R is Archimedean, closed under
the supremum bound, and its order is decidable:

– archimed: There is a function up : R → Z such that ∀x ∈ R, x < up(x) ≤ x+1.
– completeness: As long as one can prove that a subset E of R is not empty

(∃x, E(x)) and is bounded (∃M, ∀x, E(x) ⇒ x ≤ M), one gets a value of
type {y : R | y is an upper bound of E and it is the least one}.

– total order T: Given two real numbers x and y, there is a value of type
{x < y}+ {x = y}+ {x > y}.

While all three axioms could have been defined as logical formulas in Prop, they
were not. In other words, it is equivalent to having three functions that can
compute the integer part of a real number, the supremum of a bounded subset
of R, and the order of two numbers. Notice that excluded-middle is not one of the
axioms of Coq’s standard real numbers. While the standard library sometimes
imports this axiom, the CoqTail project8 has shown that it was often unneeded.
So we restrict our use of classical reasoning to the proof of goals that are the
negation of a logical formula.

Notice also that the completeness axiom has an intuitionistic rather than
classical feel to it. Indeed, the axiom is written in such a way that it cannot
produce a proof of E(x) for some real x (especially not the real that is the
supremum of E), since properties of the form E(x) always appear as premises
in the axiom. At best, one can derive the following property which protects the
existential quantifier behind a double negation:

∀ε > 0, ¬¬∃x, y − ε ≤ x ≤ y ∧ E(x).

3.3 Limited Principle of Omniscience

Let P be a decidable predicate on natural numbers. The limited principle of
omniscience (LPO) states that one can decide whether the property never holds,
and if it does, return n such that P (n) holds. In Coq syntax, the principle is
stated {n | P (n)}+ {∀n, ¬P (n)}. It cannot be derived without axioms in Coq,
as it would require the ability to test all the values of n at once. Thanks to the
axioms on real numbers, it becomes possible.

The way we have proved the LPO is as follows. Since P is decidable, we can
build a function f(n) that returns 1/(n+1) if P (n) holds and 0 otherwise. Let us
consider the subset of real numbers {f(n) | n ∈ N}. It is nonempty and bounded
by 1, thus it has a supremum (completeness). This supremum can be tested
against 0 (total order T). If it is zero, we deduce ∀n, ¬P (n). Otherwise we
compute its discrete inverse (archimed) which will act as a witness for building
a value of type {n | P (n)}.

This proof of the LPO, inspired by the CoqTail project, is an improvement
over some previous work that depended on the not all ex not consequence of
the excluded-middle axiom [15].

8 http://coqtail.sourceforge.net/

http://coqtail.sourceforge.net/

Improving Real Analysis in Coq: A User-Friendly Approach 295

3.4 Bounds and Limits

Now that we have proved this principle, we can use it to decide whether a
subset E of real numbers is bounded, which is a precondition for computing its
supremum. First, let us consider the family of subsets En = {0}∪(E ∩ (−∞;n]).
They are nonempty and bounded, so they have a supremum sn. As a conse-
quence, deciding whether E is bounded and computing an upper bound is a mat-
ter of applying the LPO to decide the following alternative (Lemma Rbar ub dec

of our development):

{M | ∀n, sn ≤ M}+ {∀M, ¬(∀n, sn ≤ M)}.
The proof requires that ∀n, sn ≤ M is decidable, which is just a consequence of
the LPO applied to the decidable predicate n �→ M < sn.

Let us define the complete lattice Rbar = R ∪ {−∞,+∞}, inspired by [14].
Since we are able to decide whether a set is bounded, we can define supremum
and infimum functions for nonempty subset of Rbar.9 Let us consider a sequence
(un)n∈N of elements of R (or Rbar). The set of its values is nonempty, thus we
can define its superior and inferior limits:

lim sup (un)n∈N
= inf

m∈N

(sup
n∈N

um+n) lim inf (un)n∈N
= sup

m∈N

(inf
n∈N

um+n)

At this point, we arbitrarily define a function Lim seq from sequences to real
numbers as (lim sup(un) + lim inf(un))/2, or 0 in case of infinities. If (un)n is a
converging sequence, Lim seq (un)n∈N

is the actual limit of the sequence, since
inferior, superior, and plain limits are then equal. Note that this also gives us
a way to decide whether an arbitrary sequence is converging: we just have to
compare its inferior and superior limits. With this definition, we also get “limits
value” for non-convergent sequences: Lim seq(−1)n = (1 + (−1))/2 = 0.

There were simpler possibilities for defining Lim seq, but this one offers the
equality Lim seq(α ·un) = α ·Lim seq(un) for any real α without requiring (un)n
to converge.

We now have an operator able to compute the limit of any converging sequence
and otherwise return an undefined value (as far as the user is concerned). We
can similarly define the limit of a function f in a point x by

Lim(f, x) = Lim_seq

(
f

(
x+

1

n

))
n∈N

.

Again, if the function has a limit at this point, in sense of the usual ε−δ definition
for pointed limit, operator Lim returns it, since limu→x f(u) is then equal to
limn→∞ f(un) for any sequence such that lim(un) = x and ∀n ∈ N, un �=
x. Otherwise it does return a value, but a meaningless one. We did not gain
anything significant by defining the limit with more complicated sequences such
as (f(x− 1/n) + f(x+ 1/n))/2.

9 Supremum and infimum of a subset P are extended with sup ∅ = −∞ and
inf ∅ = +∞ , when one can prove P �= ∅ ⇒ ∃x,P (x). This generalization is not
needed here.

296 S. Boldo, C. Lelay, and G. Melquiond

3.5 Compactness

Limits are the basis for doing real analysis. Another important tool is the prop-
erty of compactness, which has numerous applications in traditional mathemat-
ics. For instance, a function continuous on a compact set is uniformly continuous.
Unfortunately, the compactness property is inherently classical, up to the point
that constructive mathematics tend to redefine continuity so that it actually
means uniform continuity in order to avoid compactness [6]. Our goal is to stay
as close as possible to traditional analysis, so dropping compactness is not a
solution.

One of the definitions of a compact set is a set such that, from any cover
with open sets, one can extract a finite subcover. Yet in most of the proofs
we are interested in, we do not need the whole power of this property. Indeed,
the extracted sets are useless, only their minimum diameter matters. Moreover,
the finiteness property is only useful so that this minimum is nonzero. As a
consequence, we can substitute to the traditional definition a property of interval
[a, b] related to Cousin covers and gauge functions:

∀δ : R → R+, {δ′ : R+ | ∀x ∈ [a, b], ¬¬∃t ∈ [a, b], |x− t| < δ(t) ∧ δ′ ≤ δ(t)}.
The proof of this lemma (compactness value) requires us to construct a value

δ′ that satisfies the property. It is defined by the formula

δ′ =
1

2
sup {d | d ≤ 1 ∧ ∀x ∈ [a, b], ∃t ∈ [a, b], |x− t| < δ(t) ∧ d ≤ δ(t)}.

First, we prove that this supremum is not equal to zero. This is the same idea as
with most cover-based proofs: consider the widest interval [a, b′) such that the
property ∃d > 0, ∀x ∈ [a, b′), ∃t ∈ [a, b], |x − t| < δ(t) ∧ d ≤ δ(t) holds. The
bound b′ is defined as a supremum value and we prove that, if b′ < b, there is a
contradiction. Then we prove that it still holds for the whole interval [a, b], so δ′

is positive.
Second, we prove that δ′ satisfies the original property. This is immediate,

but only because the property contains a double negation. Indeed, as mentioned
before, the completeness axiom never provides us with proofs that the prop-
erty holds for values smaller than the supremum. So the best we can prove is
that there would be contraction if δ′ did not satisfy the property. In practice,
this double negation does not matter because we always use the compactness
property to exhibit contradictions.

Finally, we have proved the compactness property not just for segments of the
real line but for any n-orthotope (Cartesian product of n segments).

4 Derivatives and Integrals

4.1 Derivative

From the previous definition of a limit function in Section 3.4, we defined a total
derivative function:

Derive(f, x) = lim
h→0
h�=0

f(x+ h)− f(x)

h

Improving Real Analysis in Coq: A User-Friendly Approach 297

and we proved that, if the derivative number f ′(x) exists, it is equal to our
derivative number using lemmas proved in the standard library.

This definition allows to write properties about derivative without any proof
term. For example to write “the function f is differentiable on the domain D
and f ′ satisfies the property P on this domain” in Coq, we previously had to
write

����� pr : ������ x, D x → derivable_pt f x.

	��� ������ x (Dx : D x), P (derive_pt f x (pr x Dx)).

using a dependent pair. With our approach, we can write the same statement as

	��� ������ x, D x → ex_derive f x.

	��� ������ x, D x → P (Derive f x).

and then we can prove separately differentiability and the property P . Moreover,
as our derivative is a limit, some properties such as (α ·f)′ = α ·f ′ do not require
the differentiability of f . Therefore, the proof burden is lightened, as theorems
have less preconditions. Such a property could also be obtained for a derivative
defined on top of Hilbert’s epsilon, but not without introducing a cumbersome
definition based on conditionals. Our approach also makes it possible to express
more easily the n-th derivative:{

Derive_n (f, 0, x) = f(x)
Derive_n (f, n+ 1, x) = Derive(x �→ Derive_n (f, n, x), x)

and we express the n-th differentiability as

������ i : nat, (i < n)%nat → ex_Derive (Derive_n f i) x

4.2 Riemann Integral and Riemann Sums

We define our integral RInt as the limit of

RInt_val (f, a, b, n) =
b− a

n+ 1

n∑
k=0

f

(
xn
k + xn

k+1

2

)
where xn

k = a + k · (b − a)/(n + 1). As above, this definition allows to prove
∀α ∈ R, RInt(α · f, a, b) = α · RInt(f, a, b) without hypotheses on f .

The Riemann integrability in the standard library is based on step functions.
Unfortunately, step functions from the standard library are hard to use: a step
function is built from a function f and two lists lx and ly that must satisfy five
conditions. These conditions are difficult both to prove and to use. For example,
the last one states that ∀i, ∀x ∈ (lxi; lxi+1), f(x) = lyi. This is impractical as
it does not provide any information about the values f(lxi).

We chose to define new step functions based on Ssreflect sequences [11]:

����� SF_seq {T : Type} := mkSF_seq {SF_h : R ; SF_t : seq (R * T)}.

Using Ssreflect libraries, our step functions were easier to define and use. We
define our step functions with a generic type T to use it in the same way
with T := R or T := Rbar. For example, to define the step function needed
for RInt_val (f, a, b, n), we use

298 S. Boldo, C. Lelay, and G. Melquiond

��������� SF_val_seq (f : R → R) (a b : R) (n : nat) : SF_seq :=

SF_seq_f2 (��� x y ⇒ f ((x+y)/2)) (RInt_part a b n) 0.

where RInt_part a b n is the partition used in this proof and SF_seq_f2 builds
the needed step function.

Moreover, as the standard library does not provide a global relation between
Riemann integrability and Riemann integral, we chose to prove the equivalence
between this definition and the following convergence of Riemann sums:

∃If ∈ R, ∀ε > 0, ∃δ > 0, ∀(σ, ξ), max
0≤k≤n

|σk+1 − σk| < δ ⇒ |S(f, σ, ξ) − If | < ε

where S(f, σ, ξ) =
∑n

k=0 f(ξk) · (σk+1 − σk) is a Riemann sum, n is the length
of ξ, n+ 1 the length of σ, σ0 = a, σn+1 = b and (σ, ξ) is a pointed subdivision,
i.e. ∀k ≤ n, σk ≤ ξk ≤ σk+1. This is the same approach as in PVS and Mizar.

Thanks to this new definition, we can express integrability with the same
structure as convergence and differentiability: a function gives the value of the
Riemann integral, a predicate states the property of Riemann integrability, and
is_RInt (f, a, b, If) states that If is the Riemann integral of f between a and b.

We can note that our value is the limit of a sequence of specific Riemann sums
S(f, σn, ξn) such that ∀i ∈ [[0;n]], σi+1 − σi = (b − a)/(n+ 1). The correctness
is then immediate for our new definition of Riemann integrability.

To ensure the compatibility with the standard library of Coq, we proved the
equivalence between both definitions, so that we can take advantage of existing
lemmas.

5 Application

5.1 Case Study and d’Alembert’s Formula

Our main application is part of a project aiming at proving numerical analy-
sis programs. The case study was a C program that implements a numerical
scheme for the resolution of the one-dimensional acoustic wave equation. This
corresponds to the oscillation of an attached rope where c is the constant prop-
agation velocity, which depends on the section and density of the string. More
precisely, we consider the following initial-boundary value problem: we have the
initial values u0 and u1, a source term s and we want to compute an approxi-
mation of the exact solution u of

∀t ≥ 0, ∀x ∈ [xmin, xmax],
∂2u

∂t2
(x, t) − c2

∂2u

∂x2
(x, t) = f(x, t),

∀x ∈ [xmin, xmax],
∂u

∂t
(x, 0) = u1(x),

∀x ∈ [xmin, xmax], u(x, 0) = u0(x),

∀t ≥ 0, u(xmin, t) = u(xmax, t) = 0

To actually compute an approximation of the solution u, we chose the second
order centered finite difference scheme, also known as three-point scheme. The
size of the grid is (Δx,Δt) and the value uk

j ≈ u(jΔx, kΔt) is given by

Improving Real Analysis in Coq: A User-Friendly Approach 299

uk
j − 2uk−1

j + uk−2
j

Δt2
− c2

uk−1
j+1 − 2uk−1

j + uk−1
j−1

Δx2
= sk−1

j

and similar formulas that depend on u0 and u1 for the initializations u0
j and u1

j .
We proved that rounding errors do not endanger the results of the numerical

scheme [1]. We also formalized in Coq the numerical scheme and proved its con-
vergence, for an infinite rope [2]. In that work, the differentiation operator was
an arbitrary function. We did not define it nor did we assume any of its proper-
ties. We only used the fact that u is a solution of the partial differential equation
expressed using this operator. This fully corresponds to the way mathematical

proofs are done: we put f ′(x) or ∂2u
∂t2 (x, t) and not diff(f, x,H) whereH is a proof

that f is derivable in x or diff(z → diff(y → u(x, y), z,H1), t,H2) where H1 and
H2 are adequate proof terms. We also needed the regularity of this solution: it is
supposed to be near its Taylor expansion with the usual mathematical bounds
(see below).

Later, we proved the full C program for a finite rope [3]. As we needed to
precisely specify what the program was supposed to compute, we defined each

derivative as the limit of f(x+h)−f(x)
h when h goes to zero. We used the Frama-C

platform with the Jessie plugin and the specification of the C program is de-
scribed in C comments called annotations. As the language of these annotations
is first-order logic, we could not define in our specifications a differentiation op-
erator, but had to define each of the four derivatives as a limit (with a ∀ε, ∃δ . . .
formula). This fully specifies the derivatives but was impractical and difficult to
read. Yet, this meant an equivalence between our previous work and real deriva-
tives. But as our previous work required a differentiation operator, we had to
actually provide it. The chosen solution was to define it as a parameter and add
an axiom stating that, if the function is differentiable, the result of this operator
is the expected derivative. This axiom, similar to a Hilbert ε operator, was not
satisfactory. Thanks to the formalization presented in this paper, we can now
create this operator as a function and get rid of that axiom.

The other axioms needed by this development are the following ones: the
existence of a solution to the partial differential equation and its regularity.

About the existence, the mathematical proof is simpler than expected as this
equation has an analytical solution. More precisely, the following d’Alembert’s
formula

u(x, t) =
1

2
(u0(x+ ct) + u0(x − ct))︸ ︷︷ ︸

α(x,t)

+
1

2c

∫ x+ct

x−ct

u1(ξ) dξ︸ ︷︷ ︸
β(x,t)

+
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

f(ξ, τ) dξ dτ︸ ︷︷ ︸
γ(x,t)

defines a function that is solution to the previous partial differential equation.
We define α, β, and γ, as parts of this formula that will be used below. Just note
that they are of increasing difficulty to handle and derive.

300 S. Boldo, C. Lelay, and G. Melquiond

5.2 Taylor expansions

The regularity of the solution u is the base of the convergence of the chosen
numerical scheme. In the scheme statement, since the grid sizes are small, we
can recognize discrete derivatives:

uk
j − uk−1

j

Δt
≈ ∂u

∂t
(jΔx, kΔt)

uk
j − 2uk−1

j + uk−2
j

Δt2
≈ ∂2u

∂t2
(jΔx, kΔt)

and similarly for space derivatives. The discrete equation is the exact discrete
analog of the continuous wave equation.

Our definition of the Taylor polynomial is the usual one:

TPn(f, x, t) =

n∑
p=0

1

p!

(
p∑

m=0

(
p

m

)
· ∂pf

∂xm∂tp−m
(x, t) ·Δxm ·Δtp−m

)

For the main iteration, we need to guarantee that the difference between the
function and its order-4 Taylor polynomial is proportional to (

√
Δx2 +Δt2)4.

For the initializations, we also need this property at level 3.
We first proved the common Taylor-Lagrange theorem and extended it to its

two-dimensional version we really needed here. We had to prove the Schwarz the-
orem to be able to switch derivatives in space and time. Note that the hypotheses
required to make this switch possible are strong (existence and continuity of both
second-order derivatives).

5.3 Automation

As explained, the two unproved properties from the original development are that
the solution exists and is sufficiently regular. Existence has already been tackled
thanks to a reflexive Coq tactic for proving differentiability [16]. The tactic was
limited: it could handle expressions with one variable only. As a consequence,
while it could automatically perform differentiability proofs on the α and β parts
of d’Alembert’s formula, human intervention was needed for differentiating under
the integral sign of γ. The reason for this shortcoming was the need for proof

terms in derivatives and integrals. For instance, the term
∫ b(x)

a(x)
∂f
∂x(x, t)dt contains

a proof that ∂f
∂x (x, t) can be integrated for t between a(x) and b(x), while the

term ∂f
∂x (x, t) itself contains a proof that f has a first derivative at any point

(x, t) of a domain that depends on x. This nesting of values and proof terms
ended up being out of reach of our tactic.

For the existence, we only had to consider four partial derivatives of γ. So,
despite the absence of automation, we succeeded in formally proving it in Coq.
For this work, however, we wanted to prove not only the existence but also the
regularity, which means manipulating tens of partial derivatives of γ. This makes
it out of reach of a non-automated proof. So we have improved the original tactic
now that we have got rid of proof terms in values. The new tactic auto derive

still produces side conditions, but the values no longer depend on their proofs,

Improving Real Analysis in Coq: A User-Friendly Approach 301

which means the tactic is now able to differentiate below the integral sign. As
the former one, this tactic is programmed in Ltac.

The tactic is meant to help proving statements of the form

derivable_pt_lim f x l

that is, f has a derivative at point x and it is equal to l. A variant of the tactic is
able to tackle goal where l is not yet known. The tactic first performs a reification
of the function f into an inductive object describing the expression. Variables
are encoded using De Bruijn’s indexes. For instance, the inductive object for

y �→
∫ 2y

0

(g(y) + z)dz

is

(Int (* integral *)

(Binary Eplus (* addition *)

(AppExt 1 g [:: Var 1]) (* application: g(y) *)

(Var 0)) (* z *)

(Cst 0) (* lower bound of integral: 0 *)

(Binary Emult (Cst 2) (Var 0))) (* upper bound: 2y *)

Operator D is then applied to this inductive object. This is a recursive function
that differentiates an expression and generates side conditions. For instance,
given an object representing x �→ 2 · f(x), it produces an object representing
x �→ 2 · f ′(x) and a side condition that f can be differentiated at the considered
point. Lemma D correct states that the generated object is the actual derivative
when the side conditions hold. The tactic simply applies this lemma to the
current goal, thus solving it, assuming the user can prove the side conditions.

Consider the following script that proves that ∂2α
∂x2 exists and is equal to α20.

��������� alpha x t := 1/2 * (u0 (x + c*t) + u0 (x - c*t)).

��������� alpha20 x t :=

1/2 * (Derive_n u0 2 (x + c*t) + Derive_n u0 2 (x - c*t)).

����� alpha_20_lim : ������ x t,

is_derive_n (��� u ⇒ alpha u t) 2 x (alpha20 x t).

�����.

intros x t. unfold alpha.

auto_derive_2.

The auto derive 2 is just an ad-hoc tactic developed for this example. It simply
applies auto derive twice in a row, so as to prove properties on iterated deriva-
tives. After executing the tactic, the user is left with several goals to prove. They
state that function u0 can be differentiated with respect to the first variable at
points (v + c · t) and (v − c · t) for an arbitrary real v around x. They also state
that the first partial derivative of u0 can be differentiated with respect to the
first variable at points (x + c · t) and (x − c · t). Finally, the last goal the user
has to prove is the equality between α20(x, t) and the expression obtained by
automatic differentiation, which is straightforward.

302 S. Boldo, C. Lelay, and G. Melquiond

6 Conclusion

We have presented a Coq development for real analysis that aims at being closer
to the traditional way of handling analysis theorems in pen-and-paper proofs.
The main idea we have followed is to replace all the partial operators with total
operators, so that the user no longer has to manipulate dependent types. Once
all the theorems and especially rewriting rules have non-dependent hypotheses,
they become much easier to apply, since reasoning is back to being backward:
from the goal to the hypotheses.

The standard libraries of HOL Light and Isabelle/HOL also provide such
total operators for derivatives and integrals. The main difference with our work
is that they are defined thanks to Hilbert ε operator, which is not available in
Coq. Instead, we have provided algorithms for these operators. They are not the
kind of algorithms that one would find in traditional constructive mathematics,
since our model of computation is a bit unusual. It has a decidable order, as in
the Real RAM model, but it also has a supremum operator and an integer part.

To obtain this model, we have not added any axiom, we have just reused the
axiomatization of real numbers from the Coq standard library. We have also
taken great care to never use the axiom of excluded middle, contrarily to what
is done in the standard library. Unfortunately, when looking at the assumptions
of some of the theorems of our library, there might be occurrences of this axiom.
They leak from the standard library through the equivalence lemmas between
our definition of integral and the standard one. Work is under way to remove
these uses from the standard library and therefore get a formalization that no
longer relies on excluded middle.

Our development of more than 500 lemmas provides total operators for lim-
its, derivatives, and integrals, and equivalence lemmas between our constructive
definitions and the partial operators from the standard library. We have also ex-
tended the theory of real analysis further than what is available in the standard
library: iterated partial derivatives, parametric integrals, and so on.

We have applied our formalization to filling the holes in the formal verification
of a numerical program: the three-point scheme for solving the one-dimensional
wave equation. The original formalization set as an axiom the existence of total
operators for partial derivatives; the verification would never have succeeded
if it had had to cope with the dependent types needed for expressing fourth
derivatives. The work presented in this paper fills this gap.

The original formalization was also assuming the existence and the regularity
of a solution to the partial differential equations. When starting from d’Alembert
formula, the formal proof of these properties is mostly mechanical. One just has
to differentiate the formula as many times as needed (up to 20 times for order-4
regularity). For that purpose, we have also developed a reflexive Coq tactic that
is able to perform such repetitive tasks. The strength of our tactic is that it
is able to differentiate under the integral sign. As far as we know, no similar
strategy has been developed for other provers.

Improving Real Analysis in Coq: A User-Friendly Approach 303

Future Works

For this work, we chose Riemann’s definition of integral. Our only motivation
for this choice was that it is the integral provided by Coq’s standard library and
we wanted to check that we were not less expressive than the standard library. If
not for this constraint, we would have chosen a different definition, e.g. Lebesgue
integral. Indeed, compared to other definitions of integral, Riemann integral does
not have much positive points, except for its prestigious name. Lebesgue integral
would have been easier for us to define and to manipulate, since it is almost a
simple supremum.

In fact, we could presumably go further than Lebesgue integral and define
gauge integral. Indeed, our work on compactness has shown that our limited
framework (no general excluded middle) was still sufficient to manipulate gauge
functions and extract finite subcovers. This is the main property needed to prove
Cousin’s theorem and therefore to define this integral. It has two main positive
points. First, it is no more complicated than Riemann integral. Second, the
second fundamental theorem of calculus can now be expressed without any pre-
condition: each differentiable function is the integral of its derivative. This makes
its usage in formal proofs straightforward.

For now, we have only defined limits, derivatives, and integrals, as total opera-
tors. Our goal is to extend this paradigm to other common operators, e.g. power
series and reciprocal, so as to provide all the basic blocks of analysis. We also
intend to extend our automated tools beyond just differentiation. An obvious
extension is integration, but also automatic proofs of integrability and continu-
ity. Indeed, differentiating under the integral sign tends to generate numerous
side conditions about these properties and they would greatly benefit from being
automatically discharged by the prover during the symbolic computations.

References

1. Boldo, S.: Floats and Ropes: A Case Study for Formal Numerical Program Verifica-
tion. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas,
W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 91–102. Springer, Heidelberg
(2009)

2. Boldo, S., Clément, F., Filliâtre, J.-C., Mayero, M., Melquiond, G., Weis, P.:
Formal Proof of a Wave Equation Resolution Scheme: The Method Error. In:
Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 147–162.
Springer, Heidelberg (2010)

3. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Pro-
gram. Journal of Automated Reasoning (accepted for publication on May 20, 2012),
http://hal.inria.fr/hal-00649240

4. Butler, R.W.: Formalization of the integral calculus in the PVS theorem prover.
Journal of Formalized Reasoning 2(1), 1–26 (2009)

5. Cruz-Filipe, L.: Constructive Real Analysis: a Type-Theoretical Formalization and
Applications. Ph.D. thesis, University of Nijmegen (April 2004)

http://hal.inria.fr/hal-00649240

304 S. Boldo, C. Lelay, and G. Melquiond

6. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN: the constructive Coq reposi-
tory at Nijmegen. In: 3th International Conference on Mathematical Knowledge
Management (MKM), Bialowieza, Poland, pp. 88–103 (2004)

7. Endou, N., Korni�lowicz, A.: The definition of the Riemann definite integral and
some related lemmas. Journal of Formalized Mathematics 8(1), 93–102 (1999)

8. Fleuriot, J.: On the Mechanization of Real Analysis in Isabelle/HOL. In: Aagaard,
M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 145–161. Springer,
Heidelberg (2000)

9. Gamboa, R.: Continuity and differentiability in ACL2. In: Computer-Aided Rea-
soning: ACL2 Case Studies, ch. 18. Kluwer Academic Publisher (2000)

10. Gamboa, R., Kaufmann, M.: Non-standard analysis in ACL2. Journal of Auto-
mated Reasoning 27(4), 323–351 (2001)

11. Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the
Coq system. Tech. Rep. RR-6455, INRIA (2008),
http://hal.inria.fr/inria-00258384

12. Harrison, J.: Theorem Proving with the Real Numbers. Springer (1998)
13. Harrison, J.V.: A HOL Theory of Euclidean Space. In: Hurd, J., Melham, T. (eds.)

TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)
14. Hölzl, J., Heller, A.: Three Chapters of Measure Theory in Isabelle/HOL. In:

van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS,
vol. 6898, pp. 135–151. Springer, Heidelberg (2011)

15. Kaliszyk, C., O’Connor, R.: Computing with classical real numbers. Journal of
Formalized Reasoning 2(1), 27–39 (2009)

16. Lelay, C., Melquiond, G.: Différentiabilité et intégrabilité en Coq. Application à la
formule de d’Alembert. In: 23èmes Journées Francophones des Langages Applicat-
ifs, Carnac, France, pp. 119–133 (2012)

17. Raczkowski, K., Sadowski, P.: Real function differentiability. Journal of Formalized
Mathematics 1(4), 797–801 (1990)

18. Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory.
Mathematical Structures in Computer Sciences 21(4), 795–825 (2011)

http://hal.inria.fr/inria-00258384

Author Index

Accattoli, Beniamino 173
Asperti, Andrea 240

Barthe, Gilles 7
Boldo, Sylvie 289
Brassil, Matthew 126
Bulwahn, Lukas 92

Campbell, Brian 60
Chan, Hing-Lun 188
Chaudhuri, Kaustuv 208
Coquand, Thierry 273

Delahaye, David 76
Doczkal, Christian 224
Dubois, Catherine 76

Gammie, Peter 126
Grégoire, Benjamin 7

Hölzl, Johannes 109

Klein, Gerwin 126
Kobayashi, Naoki 9
Kunz, César 7

Lakhnech, Yassine 7
Lelay, Catherine 289
Leroy, Xavier 4, 11

Matichuk, Daniel 126
Melquiond, Guillaume 289
Morrisett, Greg 1
Mörtberg, Anders 273
Mulligan, Dominic P. 43
Murray, Toby 126

Nakano, Keisuke 160
Neron, Pierre 256
Nipkow, Tobias 109
Norrish, Michael 188

Popescu, Andrei 109

Ricciotti, Wilmer 240
Robert, Valentin 11

Sacerdoti Coen, Claudio 43
Shao, Zhong 143
Siles, Vincent 273
Smolka, Gert 224

Tollitte, Pierre-Nicolas 76

Vaynberg, Alexander 143

Zanella Béguelin, Santiago 7
Zdancewic, Steve 27
Zhao, Jianzhou 27

	Title
	Preface
	Organization
	Table of Contents
	Scalable Formal Machine Models
	Overview
	References

	Mechanized Semantics for Compiler Verification
	References

	Automation in Computer-Aided Cryptography: Proofs, Attacks and Designs
	References

	Program Certification by Higher-Order Model Checking
	References

	A Formally-Verified Alias Analysis
	Introduction
	The RTL Intermediate Language
	Abstracting Memory Locations and Memory States
	The Alias Analysis
	Soundness Proof
	Maps with Weak Update
	Experimental Evaluation
	Conclusions and Perspectives
	References

	Mechanized Verification of Computing Dominators for Formalizing Compilers
	Introduction
	The Specification of Computing Dominators
	Specification
	Instantiations

	The Allen-Cocke Algorithm
	DFS: PO-Numbering
	Kildall's Algorithm
	The AC Algorithm

	Extension: The Cooper-Harvey-Kennedy Algorithm
	Correctness

	Applications
	Type Checker
	SSA-Based Optimizations
	Constructing Dominator Trees

	Performance Evaluation
	Related Work
	Conclusion
	References

	On the Correctness of an Optimising Assembler for the Intel MCS-51 Microprocessor
	Introduction
	Certification of an Optimising Assembler
	Machine Code and Its Semantics
	Assembly Code and Its Semantics
	The Assembler
	Correctness of the Assembler with Respect to Fetching
	Correctness for `Well-Behaved' Assembly Programs

	Conclusions
	References

	An Executable Semantics for CompCert C
	Overview of the CompCert Compiler
	Construction of the Executable Semantics
	Executing a Step of the Semantics
	Equivalence to the Non-deterministic Semantics
	Strategies and the Deterministic Semantics
	Informal OCaml Code

	Testing
	Function Pointers
	Csmith
	gcc-torture

	Related Work
	Conclusions
	References

	Producing Certified Functional Code from Inductive Specifications
	Introduction
	An Example
	Code Generation
	Logical Inductive Types
	Intermediate Representation for Merging Constructors
	Partial Mode Extraction of Complete Specifications
	Extensions of the Code Generation

	Soundness Proof Generation
	Annotated Execution Paths
	Proof Script of the Soundness Proof

	Implementation
	Conclusion
	References

	The New Quickcheck for Isabelle Random, Exhaustive and Symbolic Testing under One Roof
	Introduction
	From Conjectures to Test Programs
	Test Data Generators
	Basic Random Generators
	Basic Exhaustive Generators
	Generators for Inductive Datatypes
	Generators for Arbitrary Type Definitions

	Conditional Conjectures
	Custom Generators
	Smart Generators

	Narrowing-Based Testing
	Completing the Infrastructure
	Polymorphic Conjectures
	Underspecified Functions

	Empirical Results
	Evaluation on Theorem Mutations
	Functional Data Structures
	Trace-Based Hotel Key Card System

	Related Work
	Conclusion
	References

	Proving Concurrent Noninterference
	Introduction
	The Programming Language
	Notions of Noninterference
	Compositionality
	A More Compositional Security Notion
	Syntactic Criteria
	After-Execution Noninterference
	Conclusions and More Related Work
	References

	Noninterference for Operating System Kernels
	Introduction
	Noninterference
	Data Types and Refinement
	System Model
	Formulating Noninterference
	Unwinding Conditions
	Scheduling
	Refinement

	A Proof Calculus for Confidentiality for State Monads
	Nondeterministic State Monad
	Confidentiality over State Monads
	Automating Confidentiality Proofs
	Proving the Functions That Read Confidential State

	Related Work
	Conclusion
	References

	Compositional Verification of a Baby Virtual Memory Manager
	Introduction
	Overview and Plan for Certification
	Certifying with Refinement
	A Machine-Independent Certification Framework
	Linking
	The Refinement Framework

	Certifying C Code
	The Semantics of C
	Refinement in C Machines

	Virtual Memory Manager
	The Memory Models
	Relation between Memory Models
	Certification and Linking of BabyVMM

	Coq Implementation
	Related Work and Conclusion
	References

	Shall We Juggle, Coinductively?
	Introduction
	Toss Streams and Their Validity
	Toss Streams
	Validity of Toss Streams
	Validation of Toss Streams by Coinduction
	General Tactic for Proving Validity of Patterns
	Proof of Theorem 1

	Validity Checking Algorithm for Periodic Toss Patterns
	Siteswap Verification Algorithm

	Conclusion
	References

	Proof Pearl: Abella Formalization of -Calculus Cube Property
	Introduction
	The Diamond and Cube Properties, Informally
	The Diamond and Cube Properties, Formally in Abella
	Beyond the Pearl
	References

	A String of Pearls: Proofs of Fermat's Little Theorem
	Introduction
	The Necklace Proof
	Necklaces and Colours
	Cycles
	Similarity and Partitions
	Multicoloured Necklaces with Prime Length

	Direct Number-Theoretic Proof
	Group Theory
	Group Theory Applied to the Necklace Proof
	Group Actions
	Action Basics
	Orbit-Stabilizer Theorem
	Applying Action to Necklaces

	Group Theory applied to the Number-Theoretic Proof
	Euler's Generalization
	Generated Subgroups

	Conclusion
	References

	Compact Proof Certificates for Linear Logic
	Introduction
	Background
	Labelling Subformulas and Taming Contraction
	Determinizing Hints
	Concluding Remarks
	References

	Constructive Completeness for Modal Logic with Transitive Closure
	Introduction
	Problem Statement
	Finite Types and Finite Sets in Ssreflect
	Analytic Gentzen Systems in Coq
	Demos
	Propositional Retracts
	The Gentzen System for K+
	Translating Gentzen Derivations to Hilbert Proofs
	Generating Hilbert Proofs
	Translation Method for the Compound Rule
	Related Work
	References

	Rating Disambiguation Errors
	Introduction
	The Notion of Disambiguation
	A Disambiguation Algorithm
	Spurious Errors
	Error Rating
	Error Reporting
	Conclusions
	References

	A Formal Proof of Square Root and Division Elimination in Embedded Programs
	Presentation of the Language
	Language Definition
	Program Sub-types
	No Fail Assumption
	Generic Functions

	Normalized Program Transformation
	 and / Elimination in Boolean Expressions: Elim_bool
	Expressions Subtyping
	One Division Normal Form
	Division Elimination Rules
	Square Root Elimination

	Transformation of Variables Definitions: Elim_let
	Transformation of the Variable Definition Code
	Program and Expression Part Decomposition
	Expression Decompositions

	Practical Aspects of the Program Transformation
	Conclusion
	References

	Coherent and Strongly Discrete Rings in Type Theory
	Introduction
	Coherent Rings
	Ideal Intersection and Coherence

	Strongly Discrete Rings
	Ideal Theory
	Coherent Strongly Discrete Rings
	Bézout Domains Are Strongly Discrete and Coherent

	Prüfer Domains
	Principal Localization Matrices and Strong Discreteness
	Coherence
	Examples of Prüfer Domains

	Computations
	Conclusions and Further Work
	References

	Improving Real Analysis in Coq: A User-Friendly Approach to Integrals and Derivatives
	Introduction
	State of the Art
	Differentiability and Integrability
	Derivative and Integral

	Logical Foundations
	An Overview of Coq's Logic
	Coq's Standard Axioms for Real Numbers
	Limited Principle of Omniscience
	Bounds and Limits
	Compactness

	Derivatives and Integrals
	Derivative
	Riemann Integral and Riemann Sums

	Application
	Case Study and d'Alembert's Formula
	Taylor expansions
	Automation

	Conclusion
	References

	Author Index

