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Abstract Auxin is a signaling molecule with profound influence on plant mor-

phogenesis. Because of its activity gradient-related effects on plant development

and response programs, it is considered as a plant morphogen. Auxin displays a

spectacular ability to mobilize in a cell-to-cell and polar fashion. Auxin efflux

carrier PIN proteins direct this intercellular flow of auxin and thus bear a rate-

limiting effect on the formation of auxin activity gradients. With this influence

on directionality and amount of auxin transport, PINs play crucial roles in plant

body organization and connect cell polarity to plant patterning. As a conse-

quence, mechanisms regulating the localization of PINs are widely investigated.

Recent work uncovers the roles of vesicle trafficking regulator ARF–GEF

GNOM, a kinase PINOID, a SNX1–VPS29 retromer complex, ROP-GTPases,

Rab-GTPases, endocytosis regulator clathrin, membrane sterol composition, and

cytoskeleton for subcellular PIN trafficking and their polar localization. In this

chapter, we cover the state of the art of polar auxin transport and its impact on

plant morphogenesis.
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1 Auxin: A Plant Signaling Molecule with Morphogen-Like

Characters

The forms and functions of multicellular organisms are not possible without effec-

tive communication between cells, tissues, and organs. Due to cell immobility, the

regulation of morphogenesis in plants occurs in a coordinated fashion, and it

predominantly depends on spatially instructive chemical signals called hormones.

Auxin was the first hormone to be discovered in plants with some morphogen-like

characteristics. In a classical book “The Power of Movement in Plants” in 1880,

Charles Darwin described the effects of light on movement of canary grass (Phalaris
canariensis) coleoptiles. Upon application of unidirectional light on the coleoptile, it
bends in the direction of the light. Darwin’s experiment suggested that the tip of the

coleoptile was the tissue responsible for perceiving the light and producing some

signal, which was transported to the lower part of the coleoptile where bending

occurred. In 1926, Fritz Went isolated a plant growth substance by placing agar

blocks under coleoptile tips and then removing and placing them on decapitated

Avena stems (Went 1926).

Indole-3-acetic acid (IAA) is the most important member of signaling molecules

from the auxin family. The production and persistence of IAA in the plants are

controlled in many ways. By functioning as a mobile signal that connects cells,

tissues, and organs, auxin coordinates plant morphogenesis and response programs.

It plays crucial roles in many growth and developmental processes and thus shapes

plant architecture. Interestingly, auxin is the only hormone transported in a polar

manner. The pattern of auxin distribution within the plant navigates plant growth

(Friml et al. 2003; Benkova et al. 2003). The long-distance auxin transport occurs

via the stream of fluid in phloem vessels, and the short-distance auxin transport

exhibits cell-to-cell movement. Auxin regulates transcription of various downstream

genes in auxin-signaling pathway (Abel and Theologis 1996; Hagen and Guilfoyle

2002). Auxin binds and activates the TIR1 F-box component of the SCFTIR1 E3

ubiquitin ligase, which then ubiquitinates the auxin-signaling repressor AUX/IAA

proteins, targeting them for destruction by the proteasome (Dharmasiri et al. 2005;

Kepinski and Leyser 2005). This releases the auxin response factor (ARF) from the

repressing influence of AUX/IAA to activate transcription of downstream genes

(Tiwari et al. 2001). Plant, such as Arabidopsis, possesses 29 AUX/IAAs and 23

ARFs representing a complex matrix of auxin-signaling-dependent transcriptional

network. In addition, functions of the ARF proteins are variable and also a high

degree of functional redundancy is seen among the family members (Rademacher

et al. 2011). Together, this poses tremendous challenges to untangle the circuitry of

auxin-signaling machinery. A transcription-based synthetic reporter, DR5,

consisting of multiple tandem repeats of ARF binding site (TGTCTC) is generally

used to detect auxin activity in plant cells (Ulmasov et al. 1997a, b). Recently, more

sensitive and repression-based auxin sensor has been developed, exploiting the

auxin perception-related degradation properties of IAA (Vernoux et al. 2011;
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Brunoud et al. 2012). Additional experimental methods such as microdissection,

mass spectroscopy, and immuno-localization are used to measure the auxin level,

and its distribution can be correlated with DR5 reporter.

Auxin regulates cell expansion, cell growth, and cell division, in a concentration

and context-dependent manner. Auxin concentration along with other local factors

contributes to cell specification, differentiation, and dedifferentiation. Depending on

the specific tissue, auxin may stimulate axial elongation, lateral expansion, or

isodiametric expansion. In addition to the differential distribution of auxin-signaling

machinery, auxin biosynthesis is also spatiotemporally regulated. Once auxin is

synthesized, it is transported to sites of its action. Auxin is generally transported

from shoot apex to root apex. For a long-distance auxin transport, phloem vessels act

as the highway, but for a short-distance auxin transport, a unique system of cell-to-

cell polar transport is exploited. As auxin signaling relates to auxin distribution

patterns and as auxin distribution patterns are regulated by the landscape of cell-to-

cell polar auxin transport canals, it is considered that polar auxin transporters directly

feed on the auxin-regulated programs. Thus, the directional signaling of auxin

depends on the subcellular localizations of plasma membrane-associated auxin

efflux and influx carriers. As auxin can enter into the cell either with the help of

influx carrier or in a passive manner and as auxin requires efflux carriers for its exit

out of the cell, the efflux carrier bears critical rate-limiting and directional influence

on auxin transport. Efflux carrier PIN-FORMED (PIN) proteins have been

established to be the main actors for the directional auxin transport. The localization

of PIN proteins determines the direction of auxin flow and the choreographed relay

of PIN activity along the auxin passage generates auxin gradients (Benkova et al.

2003; Petrásek et al. 2006; Paponov et al. 2005).

Auxin biosynthesis-, auxin conjugation-, and polar auxin transport-achieved

auxin accumulation provides spatial coordinates for navigating plant organ forma-

tion, organ growth, and organ response programs (Benjamins and Scheres 2008).

Auxin contributes to apical dominance. The apical bud synthesizes auxin and it

diffuses downward to suppress lateral bud dominance. As shoot tip forms an auxin

source and root tip an auxin sink, cutting of shoot tip impairs auxin supply to the

roots and leads to inhibition of root growth and the formation of lateral roots (Sassi

et al. 2012). In contrast, shoot decapitation leads to the development of lateral stems

that allows gardeners to practice pruning in order to promote formation of extra

shoots. Further, auxin participates in phototropism, geotropism, hydrotropism, and

other developmental modifications. Cell division increases the number of cells and

cell expansions, and growth is ultimately reflected in the tissue morphology, organ

shape, and plant architecture. Differential auxin distribution modifies the coordina-

tion between cell division and expansion and as a consequence leads towards

differential growth, triggering the shoots bending towards light or the root bending

towards gravity (Peer et al. 2011). Auxin is necessary for fruit development and it

delays fruit senescence. Exogenous application of auxin in fruits with removed seeds

initiates fruit growth. When polar auxin transport is disrupted, it leads to abnormal
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fruit morphologies. Auxin also plays a role in flower initiation and development of

reproductive organs (Sundberg and Østergaard 2009). Auxin also plays an instru-

mental role in regeneration process (Duclercq et al. 2011). Furthermore, auxin

promotes organization and development of xylem and phloem (Ye 2002).

1.1 Morphogenic Properties of Auxin

A morphogen is generally thought of as a chemical whose concentration varies in

space, and for which varying threshold concentrations direct qualitatively different

cellular responses or fates. Auxin acts in the micro- to nano-molar range. Graded

concentration of auxin is essential for embryonic patterning and root and shoot

organogenesis. Total amount of auxin arriving from the shoot to the root influences

the degree of root growth. Auxin appears to dictate cell fates in the embryo in a

concentration-dependent manner. Through regulated transport, it can accumulate in a

spatially asymmetric concentration gradient and acts as a transcriptional regulator.

Varying concentrations of auxin could result in different degrees of AUX/IAA

degradation, thus releasing variable amounts of ARF proteins that could then activate

downstream targets in an ARF concentration-dependent manner. However, a direct

correspondence between the cellular auxin concentration gradient and the develop-

ment of discrete cell types or regions in the embryo has yet to be proved (Bhalerao

and Bennett 2003; Friml et al. 2003).

1.2 Auxin Efflux Carrier PINs

The PIN proteins have been identified as the key regulators of auxin-mediated

developmental processes including growth, tropism, embryogenesis, and organo-

genesis (Friml et al. 2002, 2003; Friml 2003). PIN proteins are plasma membrane-

located proteins that act as efflux carriers (Petrásek et al. 2006; Paponov et al. 2005).

The polar localization of PIN proteins determines the direction of auxin flow

(Wisniewska et al. 2006). There are eight PIN genes in the genome of Arabidopsis

and encode for protein between 351 and 647 amino acids. PIN1 and PIN4 are

involved in organogenesis; PIN1, PIN3, PIN4, and PIN7 are involved in embryo-

genesis; PIN2 and PIN3 are involved in gravitropism; and PIN1 and PIN3 are

involved in phototropism (Paponov et al. 2005). The Arabidopsis PIN proteins are

functionally characterized and found to be localized in a polar fashion either at

different sides of various cell types or within the cell organelle (Blilou et al. 2005;

Vieten et al. 2005; Mravec et al. 2009; Ding et al. 2012). The PIN proteins constitute

prominent cell polarity markers in plants. The analysis of intron–exon structures of

Arabidopsis thaliana (At) AtPIN family members reveals the relationship between

AtPIN1, AtPIN4, and AtPIN7. Five of the eight AtPINs are located in the duplicated

blocks. AtPIN3 and AtPIN7 share the same location. AtPIN1 is more closely related
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to AtPIN3, AtPIN4, and AtPIN7 as compared to AtPIN2 (Paponov et al. 2005). The

diversity of hydrophilic central regions of AtPIN shows that there is a degree of

functional variation in this family. Genes homologous to Arabidopsis PIN family are

identified in most of the plants. With the divergence of both monocot and dicot

plants, there have been significant changes in the number and the structure of PINs.

The plants Medicago and potato contain five PIN sequences similar to one of the

eight PINs of Arabidopsis. The low identity between PIN5 genes and the hydrophilic

domains in the proteins reveals that PIN5 diverged from the ancestral PIN gene from

early stage of development. Not surprisingly, unlike other PIN proteins, PIN5 is not

localized at the PM and is not involved in cell-to-cell polar auxin transport. Instead,

it resides at the endoplasmic reticulum and regulates intracellular auxin homeostasis

and metabolism (Mravec et al. 2009; Table 1).

Auxin efflux is proportional to the degree of PIN expression and its polar

localization, and the entire process is sensitive to polar auxin transport inhibitors.

Auxin abundance regulates PIN gene expression, localization, and degradation,

forming a complex feedback loop between auxin and its transport amount and

directionality. Besides the changes in PIN expression and localization in response

to developmental cascades, PIN polarity switches can also occur in response to

environmental stimuli (Friml et al. 2002, 2003; Benkova et al. 2003; Reinhardt et al.

2003; Scarpella et al. 2006).

2 Role of PINs in Plant Development

2.1 Auxin and Embryogenesis

Polar auxin transport has long been suggested to play a principal role in plant

embryogenesis. It has been shown that the hypocotyl of mature embryos of both

angiosperms and gymnosperms transports auxin in the direction of the root (Green-

wood and Goldsmith 1970; Fry and Wangermann 1976). Fry and Wangermann

Table 1 Members of the PIN protein family and their respective roles for various plant develop-

mental and response programs

Auxin efflux

carrier Role in development

AtPIN1 Phyllotaxy, vein formation. Embryogenesis, lateral organ formation. Vascular

development

AtPIN2 Organ development, root gravitropism

AtPIN3 Gravitropism, phototropism, organ development

AtPIN4 Root patterning, embryogenesis

AtPIN5 Regulation of intracellular auxin metabolism

AtPIN6 Transport activity

AtPIN7 Embryogenesis, root development
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(1976) were the first to propose that the commencement of polarized auxin transport

in globular embryo might facilitate the morphological polarity expressed in

subsequent stages of plant embryogenesis. The probable role of polar auxin transport

in somatic embryogenesis was confirmed by Schiavone and Cooke (1987) who

treated different phases of carrot somatic embryos by TIBA and NPA. Both auxin

transport inhibitors at a concentration of 1 μM are capable of blocking the ability of

somatic embryos to go through morphogenetic change to the successive phases:

globular embryo goes through persistent spherical expansion, oblong embryos (an

intermediary phase in somatic embryogenesis) carry on axis elongation devoid of

any cotyledon initiation, and heart embryo grows additional growth axis on their

hypocotyls. The embryonic pattern formation is in fact well maintained by two

coinciding mechanisms:

1. A positional mechanism that rises as a maternal consequence from the ovular

tissue surrounding the zygotic embryo or as a result of the polarized location of

the egg cell and/or early embryo inside the embryo sac

2. Auxin-mediated mechanisms that are established right since beginning of polar

auxin transport in the late globular embryo

The route of auxin transport is determined by the polar plasmamembrane localiza-

tion of PIN proteins. Even before the identification of the PIN proteins, it was revealed

that pharmacological inhibition of auxin transport obstructs normal embryo patterning

in numerous plant species (Liu et al. 1993; Hadfi et al. 1998), indicating a role

for auxin transport in embryo patterning. In Arabidopsis, four PIN proteins are

dynamically expressed throughout the embryogenesis (Friml et al. 2003). Once the

first division of the zygote is over, PIN7 is confined to the apical side of the basal cell

and probably driving auxin transport into the apical cell. At the 32-cell phase, PIN7

polarity reverses to the basal membranes of the suspensor cells, possibly causing

transport of auxin away from the suspensor cells. PIN1 gets expressed from the two-

cell onwards to the 16-cell stage well before the establishment of its polarity in

the embryo. At the 32-cell stage, PIN1 becomes polarly confined to the basal

membranes in the provascular cells adjacent to the hypophysis and helps the transport

of auxin into the hypophysis (Fig. 1). At the transition stage of embryogenesis, PIN1

gets polarly localized near the flanks of the apical embryo domain, which possibly

results in auxinmaxima at these convergent points. The PIN4 protein gets expressed in

the hypophysis cell and following division, in its topmost daughter cell. The expres-

sion of PIN3 commences fairly late at the heart stage in the columella precursors.

The direction of auxin flow indicated by the localization of PIN proteins

corresponds well to the expression pattern of the auxin response reporter, suggesting

that auxin response maxima are likely to reflect the concentration of auxin and that

the auxin response pattern is a result of active transport. Certainly, pin7 mutant

embryos are affected in the DR5 action in the early embryo and show related cell

division perturbations, signifying that an appropriate auxin circulation and response

is required for exact cell specification in the early embryo. pin1 mutant shows

defects in patterning of apical half of embryo, eventually resulting either into

fused cotyledon or into creation of tri-cotyledon or single-cotyledon seedlings
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(Aida et al. 2002). Single pinmutant does not display dramatic defects in embryonic

patterning, suggesting redundant roles of PIN gene family during embryogenesis.

Indeed, multiple pin mutant combinations show severe root and shoot pole defects

(Friml et al. 2003; Blilou et al. 2005).

2.2 Auxin and Root Development

Auxin plays major roles in root development. Its concentration determines various

aspects of root growth such as length of the epidermal-derived root hairs, the

increase in quantity of lateral root primordia, and the response to gravity (Pitts

et al. 1998; Rahman et al. 2002; Ishida et al. 2008; Péret et al. 2009). Auxin is

synthesized in young leaves and cotyledons (Ljung et al. 2005) and transported to

the root tip which represents the major sink tissue. Sorting of the root cells and

measuring auxin concentration among them provide the most direct evidence of

auxin gradients in the root, including the expected maxima in the quiescent center
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Fig. 1 Polar-localized auxin efflux carrier PIN proteins direct auxin flow during embryogenesis

and root meristem growth to generate local auxin accumulation foci responsible for organ growth.

This figure is adapted from Scientific World Journal (2012) 981658
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(Petersson et al. 2009). In silico modeling of diffusion and PIN-facilitated auxin

transport in and across root cells suggests that a robust auxin gradient associated

with the maximum is able to explain the formation, maintenance, and growth of

meristematic and elongation zones (Fig. 1) (Grieneisen et al. 2007). The local

control of auxin levels creates regional concentration gradients and local maxima

that are vital for establishing and sustaining a root primordium (Reviewed by

Benjamins and Scheres 2008). The cellular auxin level in turn dictates the regula-

tion of gene expression, which defines cell fate. Pharmacological or genetic

interruptions of auxin transport intensely impact root patterning.

Several lines of experimental evidence support the idea that root-derived auxin

contributes to establishment and maintenance of auxin gradient in the root and thus

root growth. First, evidence for the role of auxin biosynthesis pathways in roots

came from the characterization of the weak ethylene-insensitive (wei2 and wei7)
and transport inhibitor response 7 (tir7-1) mutants (Ljung et al. 2005; Stepanova

et al. 2005). These mutants suppress the high-auxin phenotypes of the auxin-

overproducing superroot (sur1 or sur2) and interrupt one of the two subunits of

anthranilate synthase, an enzyme that catalyzes the rate-limiting step of anthranilate

from chorismate during tryptophan synthesis. The failure of specific cells to yield

tryptophan lowers their capacity to yield indole-3-acetic acid, which impairs root

growth (Ljung et al. 2005; Stepanova et al. 2005).

2.3 Auxin and Lateral Root Development

Auxin is the key regulator of lateral root development (reviewed by Benkova and

Hejatko 2009; Fukaki and Tasaka 2009). In many dicot plants as well as

Arabidopsis, lateral roots originate from root pericycle cells adjacent to the proto-

xylem poles of the parent root (Beeckman et al. 2001). Initial events of lateral root

formation are the divisions of a few pericycle cells positioned adjacent to a

protoxylem pole. These cell division events are commonly designated as “lateral

root initiation.” Because the whole protoxylem pole pericycle displays a strong cell

proliferation capability (Beeckman et al. 2001) and every pericycle cell adjacent to

a xylem pole shows the ability to divide in response to elevated auxin levels

(Himanen et al. 2002, 2004; Dubrovsky et al. 2008), it is believed that spatiotem-

poral control exists to limit lateral root initiation to certain sites and time points for

the duration of root growth.

The even spacing and arrangement of lateral root primordia draws a parallel with

a priming event that targets only a few pericycle cells as they depart the basal

meristem (De Smet et al. 2007). These cells become primed due to an auxin

response maximum that arises in the adjacent protoxylem cells. The auxin response

maximum in the basal meristem and the simultaneous priming is not continuous but

oscillates with a period of 15 h, which is in turn reflected in the regular spacing of

lateral root along the root axis. The uniform spacing of lateral root primordia arises

from pulses of auxin signaling in the basal meristem. The basal meristem includes
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the set of cells that transit from the meristematic zone into the elongation zone and

thus comprises of cells that undergo division as well as elongation. In seedlings that

are grown in constant light, pulses of auxin signaling occur with a periodicity of

15 h. The response to auxin signaling in the xylem cells primes the adjacent

pericycle cells so that they are competent to develop lateral root founder cells

upon a second, auxin-dependent signal in the differentiation zone (De Smet et al.

2007). As such, the pulses of auxin in the basal meristem together with the

uninterrupted growth of the root lead to the observed regular arrangement of lateral

root primordia.

Auxin derived from both root and shoot is essential for the initiation and

development of lateral roots. Passage of IAA via phloem from the leaf to root at

the seedling stage is essential for emergence but not initiation of lateral roots in

Arabidopsis. Genetic and pharmacological manipulation of this auxin movement

interrupts lateral root formation (Reed et al. 1998; Bhalerao et al. 2002; Wu et al.

2007). Furthermore, experiments with the IAA transport inhibitor NPA demon-

strate that IAA movement through the root tip is important for lateral root initiation,

whereas shoot-derived transport is necessary for lateral root emergence (Casimiro

et al. 2001).

Mutations or transgenes disturbing auxin biosynthesis, auxin metabolism,

auxin transport, and auxin signaling affect the ability to form lateral roots.

A gain-of-function mutation in a member of Aux/IAA protein family, IAA14/

SOLITARY-ROOT, blocks the lateral root initiation (Fukaki et al. 2002). The

presence of several auxin-related mutations specifically inhibiting lateral root

initiation, lateral root morphogenesis, or lateral root emergence shows that auxin

is essential not only for lateral root initiation but also for lateral root primordium

development and morphology (Fukaki and Tasaka 2009). Mutations in several

auxin efflux carrier PIN family members interrupt auxin-induced lateral root

primordium development (Benkova et al. 2003). In addition, auxin influx carrier

AUX1/LAX family members play important roles in lateral root initiation (Swarup

et al. 2001; De Smet et al. 2007). These studies indicate that the regulation of

distinct dynamic auxin transport systems is crucial for lateral root formation and

development.

2.4 Auxin and Shoot Morphogenesis

Recent cellular and genetic data point towards the importance of auxin transport

(Reinhardt et al. 2000, 2003) along with mechanical strains (Heisler et al. 2010;

Peaucelle et al. 2011) in shaping phyllotactic patterns. These data allow

incorporating in vivo PIN dynamics and auxin distribution details into computa-

tional models to theoretically test their relevance for phyllotaxis. Many models that

attempt to understand the ability of auxin transport and mechanical stresses to

capture leaf and even floral (van Mourik et al. 2012-considered for its similarity

to purely phyllotactic models) patterns arising from cell-level simulations have
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been proposed (de Reuille et al. 2006; Heisler et al. 2010; Stoma et al. 2008; Smith

et al. 2006; Jönsson et al. 2006; Bayer et al. 2009).

Role of auxin in defining the initiation pattern of lateral organs sparks from

sufficiency of auxin in triggering organ initiation when applied at the tip of naked

meristem of pin1 mutant, which is defective in polar auxin transport (Reinhardt

et al. 2000). The presumed model suggests that auxin is transported to the site of

lateral organ primordia inception by polar auxin efflux carrier PIN1. Growing

lateral organ primordium acts as sink and this leads to depletion of auxin from

surrounding cells, creating an inhibitory field which in turn controls the spacing

between lateral organs to define a specific phyllotactic pattern (Reinhardt 2003;

Fig. 2). While role of PIN1 was predicted earlier, only recently it has been shown

that pin1 hypomorphs result in switch of spiral pattern to opposite pattern (Prasad

et al. 2011). Several computational models attempt to explain how a defined pattern

is initiated. There is some consensus of assumptions found in various models made

at the cellular and/or tissue level. The commonly used assumptions are:

(a) All decisive events that determine phyllotaxis occur in the outermost L1 layer

except (Bayer et al. 2009) all models reviewed here limit themselves to the

study of a single sheet of cells that form the shoot apical meristem.

(b) Movement of auxin through the apoplast is not considered.

(c) Auxin flows between cells by active transport and diffusion. Active transport is

mediated by membrane proteins (PIN proteins) that show dynamic localization

which is dictated by the specific polar auxin mechanism being modeled.

(d) Primordia are formed when auxin levels increase beyond a certain threshold,

and once initiated, it is irreversible.

(e) Nascent and growing primordia act as auxin sinks (the empirical counterpart of

the “inhibitory field”), modeled by the induction of another layer of “vascular

tissue” beneath them that funnels auxin away from surrounding regions (de

Reuille et al. 2006; Stoma et al. 2008), or an increased rate of degradation (van

Mourik et al. 2012), both of which have equivalent mathematical formulations.

I1

P1 P1

P1

I1 I1 I1

a b c

Fig. 2 Polar auxin transport based schematic representation of different patterns arising at the

shoot apex; (a) Distichous (alternate), (b) Spiral, (c) Decussate (opposite) pattern. I (Incipient

primordium), P (Primordium). The schematic representation is based on Reinhardt et al. (2003)
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The distinct consequences of these sinks arise when applied over time. In some

models, the converse is assumed, with developing primordia producing more auxin

(Smith et al. 2006); in this case also, primordia act as sinks because of the

concentration-based feedback involved in this model.

3 PIN Trafficking and Localization

Subcellular polarity of PINs determines the direction of auxin efflux out of that cell

and thus coordinated PIN localizations along the chain of cells channelize direc-

tionality of auxin transport (Wisniewska et al. 2006; Dhonukshe et al. 2008, 2010).

Subcellular analyses of PIN trafficking suggest that the PINs are not statically

localized at the plasma membrane but undergo rapid endocytic cycling involving

PIN internalization from the plasma membrane via clathrin-mediated endocytic

pathway and PIN recycling back to the plasma membrane via ARF–GEF-regulated

polar recycling (Geldner et al. 2001; Friml et al. 2002; Dhonukshe et al. 2007, 2008;

Kleine-Vehn et al. 2008). The protein phosphatase 2A and Ser/Thr protein kinase

PINOID are one of the major determinants of polar PIN localization (Christensen

et al. 2000; Benjamins et al. 2001; Michniewicz et al. 2007; Dhonukshe et al. 2010).

Apically localized PIN2 or basally localized PIN1 in the root meristem seems to be

delivered originally in a nonpolar fashion after the de novo synthesis. Their apical

or basal polarity is then established in the next step involving internalization from

plasma membrane and phosphorylation-state-based polar recycling (Dhonukshe

et al. 2008, 2010; Fig. 3). Additionally, molecules involved in intracellular traffick-

ing of PIN and other proteins include endocytosis regulators, endosomal sorting/

recycling regulators, and transcytosis regulators which are all associated in

modulating polar localization of auxin transporters (Geldner et al. 2003; Kleine-

Vehn et al. 2008).

3.1 Action of ARF–GEF GNOM in Polar Recycling of PINs

The gnom mutant phenocopies pin1 mutant during early embryogenesis in

Arabidopsis (Steinmann et al. 1999). GNOM encodes a BFA (brefeldin A)-sensitive

guanine nucleotide exchange factor (GEF) for ARF GTPases that control vesicle

budding (Steinmann et al. 1999; Geldner et al. 2003; Robert et al. 2008). GNOM

protein resides in both the plasma membrane and endosomes (Steinmann et al. 1999;

Geldner et al. 2003) and co-localizes with PIN1. In gnom mutant, PIN1 recycling is

abnormal and as a result coordinated polar localization of PIN1 (and perhaps other

PIN family members) is perturbed, leading towards drastic auxin transport-related

Polar Auxin Transport: Cell Polarity to Patterning 35



morphogenic defects. Transcytosis refers to the translocation of cargos from one

polar domain to another. GNOM regulates basal PIN1 recycling and thus its basal

localization. PINs have discrete polar plasma membrane localization on the apical,

basal, or lateral side of cells, based on specific cell types (Kaplinsky and Barton

2004). GNOM-dependent transcytosis is crucial for early cell polarization. In the

developmental progression of provascular cells, PIN1 can effectively shift from the

apical side to the basal side in a wild-type line. In contrast, the gnom mutant fails to

transport PIN1, localized on the apical side, to the basal side and shows abnormal

embryo patterning. The BFA-treated wild-type seedlings also display gnom-like
phenotypes (Geldner et al. 2001; Friml et al. 2003). In roots, PIN1, which is found

in the stele, and PIN2, which is found in the cortex, are localized at the basal side of

cells. However, PIN2 is localized at the apical side of epidermal cells. It was

revealed that the BFA-sensitive GNOM ARF–GEF is obligatory for the basal but

not apical localization of PINs. Loss-of-function mutations in GNOM or BFA

treatment affected the basal PINs by recruiting them to the apical side. The shift

in polarity of PINs due to the introduction of BFA was reversible in a protein
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Fig. 3 Mechanism of establishment of PIN polarity by AGC-3 kinases. Non polar PIN gets

translocated to apical upon phosphorylation by AGC-3 kianses and to basal in absence of

phosphorylation. This figure is adapted from (Dhonukshe et al. 2012)
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synthesis-independent manner. It was thus resolved that transcytosis through

endosome-mediated trafficking plays a significant role in modulating PIN polarity

(Kleine-Vehn et al. 2008).

3.2 Action of PID (PINOID) Kinase Providing Phosphorylation
Bias for PIN Recruitment into Inverse Recycling Pathways

The pid mutant shows shoot phenotype similar to that of pin1 mutants, displaying

pin-like inflorescence, which indicates PID’s role in auxin transport and/or signaling

(Christensen et al. 2000; Benjamins et al. 2001). PID encodes a plant-specific serine/

threonine protein kinase (Christensen et al. 2000). Interestingly, upon PID

overexpression, PIN1 localization shifts from basal to apical cell side of root stele

cells. The PID protein kinase directly phosphorylates PIN1, and the status of PID-

mediated PIN1 phosphorylation governs its apical or basal distribution via its

differential recruitment into apical or basal recycling pathway (Fig. 3). In addition

to PID, WAG1 and WAG2, other two members of the AGC kinase protein family,

instruct recruitment of PINs into the apical recycling pathway by phosphorylating

the middle serine in three conserved TPRXS(N/S) motifs within the PIN central

hydrophilic loop (Dhonukshe et al. 2010).

3.3 PP2A: A Protein Phosphatase Counteracting to the Action
of PID Kinase

Given the significance of PIN phosphorylation status in determining PIN polar

localization, PIN dephosphorylation is predicted to bear counteractive role. Recent

study demonstrates that the PP2A phosphatase activity is essential for appropriate

polar PIN localization and auxin transport-dependent plant development

(Michniewicz et al. 2007). Mutations in PP2As (in Arabidopsis, there are three

closely linked PP2A, including PP2A1, PP2A2, and PP2A3) cause various devel-

opmental abnormalities consistent with defective polar auxin transport. Genetic

studies pointed out that PP2A (Ser/Thr phosphatases) and PID (Ser/Thr kinase)

have counteracting roles in regulating auxin-dependent embryo and root develop-

ment. A confined signaling pathway operates probably at the plasma membrane

where PINs, PID, and PP2A all co-localize. Calcium also seems to play a role in

PID/PP2A-mediated PIN phosphorylation/dephosphorylation. PID phosphoryla-

tion activity is negatively controlled by calcium and is concentration dependent.

Auxin-related cell elongation and root alignment have been suggested to respond to

changes in cytoplasmic calcium levels, and PINOID-mediated auxin signaling

includes calcium-binding protein (Benjamins et al. 2003).
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3.4 Role of SNX1 and VSP29 for PIN Trafficking
and Localization

A retromer is a heteropentameric compound comprising of a sorting nexin dimer

(through indefinite grouping of SNX1, SNX2, SNX5, or SNX6) and a trimer made

up of VPS26, VPS29, and VPS35 in mammalian cells (Jürgens and Geldner 2007;

Jaillais et al. 2006, 2007). The SNX dimers accomplish the recruitment of the

pentameric retromer to endosomes, while the VPS22–VPS29–VPS35 triple sub-

complex is thought to be binding cargos, which travel between endosomes and the

trans-Golgi network (TGN). An Arabidopsis thaliana sorting nexin 1 (AtSNX1)

was discovered in a novel endosomal compartment (Jaillais et al. 2006). AtSNX1

exists along with endosomal markers RABF1 and RABF2b in endosomes but not in

Golgi, in the trans-Golgi network (TGN), and in endosomes having GNOM in them

(Jaillais et al. 2006). Wortmannin, a PI3K (phosphatidylinositol 3-kinase) inhibitor

deregulating the SNX localization in mammalian cells, also induced the generation

of an enlarged AtSNX1-containing compartment in Arabidopsis. Wortmannin

along with cycloheximide (protein synthesis inhibitor) triggered PIN2 accumula-

tion in wortmannin-induced compartments. Based on these observations, it was

established that polar PIN2 distribution is maintained by a novel AtSNX1-mediated

endosomal pathway that is dissimilar to the GNOM-dependent PIN1-trafficking

pathway, and it was suggested that two distinct populations of endosomes are

involved in PIN1 and PIN2 trafficking, respectively.

3.5 Role of Rab5 for PIN Trafficking and Localization

Rab5 affects endocytosis via regulation of clathrin-coated vesicle formation at the

plasma membrane, fusion of vesicles to endosomes, and fusion between endosomes

(van der Bliek 2005). Rab5 localizes in the endosome and acts as a molecular switch

by cycling between GDP-bound and GTP-bound states (Vitale et al. 1995).

Arabidopsis possesses two direct homologues of Rab5 proteins. They are Ara7

and Rha1. The double mutant of ara7rha1 is gametophytic lethal (Dhonukshe

et al. 2008). AtVps9a is the activator of Ara7 and Rha1. In Arabidopsis Rab5

homologues are identified in the endosomes. PINs are internalized largely by

clathrin-mediated endocytosis pathway. The Rab5 interference affects PIN endocy-

tosis. Interference with PIN endocytosis by manipulating the Arabidopsis Rab5

GTPase pathway prevents PIN polarization. Intriguingly, symmetric PIN1 leads to

abnormal auxin distribution and one of the outcomes of such distribution causes

enhanced local accumulation of auxin at cotyledon primordia eventually leading to

root formation from places of cotyledon emergence (Dhonukshe et al. 2008),

suggesting that maintenance of distinct polarity is prerequisite to specify cell fate

and organ identity.
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3.6 Role of ROP/RAC GTPases for PIN Trafficking
and Localization

The plant-specific ROP/Rac subfamily of the extremely conserved Rho-family

GTPases modulates signaling to set up the cell polarity in yeast and animal cells.

Interestingly, it has also been shown to control cell polarity in several cell types of

plants (Yang 2008). GFP–ROP2 was shown to be polarly confined to the plasma

membrane in a similar manner to that of PIN2–GFP (Li et al. 2005). Gravity

stimulation was found to induce vectorial re-localization of GFP–ROP2 in a way

analogous to PIN2 re-localization. Furthermore, ROP2 overexpression intensifies

PIN2–GFP polar localization and amplifies gravity responsiveness (Li et al. 2005).

Further, auxin transported by PIN1 at the site of ROP2 activation induces ROP2 and

ROP6 to regulate interdigitated growth of Arabidopsis leaf epidermal pavement

cells (Xu et al. 2010).

3.7 Importance of Sterol Composition for PIN Localization

Sterols are integral components of the plasma and endomembranes. Sterols play a

central role in the formation of membrane microdomains such as lipid rafts in the

plasma membrane, which have a noteworthy effect on cell polarity. The chemical

structure of plant sterol is similar to animal cholesterol. Polar delivery of cargos in

plants also depends on the sterol composition of plasma membrane (Grebe et al.

2003; Willemsen et al. 2003; Kleine-Vehn et al. 2006). Recent work uncovers the

major role of sterol in reiteration of PIN2 polarity after the division of polarized

cells (Men et al. 2008). Sterols are also dynamic in endocytic trafficking among the

plasma membrane and endosomal compartments, which is sensitive to the applica-

tion of BFA.

4 Perspective

Recently, there has been a burst of literature on plant growth hormone auxin. We

have begun to understand the mechanisms of polar localization and subcellular

trafficking of auxin efflux carrier PINs. Precise localization of PINs, together with

auxin influx carriers AUXs, shapes up the local accumulation of auxin during plant

development. Recent experimental studies have allowed laying down conceptual

models that can explain polar auxin transport and dynamics of PINs in generating

the patterns. A major challenge ahead is to integrate the auxin-signaling pathways

to the mechanistic aspects of polar auxin transport. How do auxin-signaling

pathways instruct the subcellular trafficking of PINs and their polar localization

and thus influence the polar auxin transport? Intriguingly, cell polarity is
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instrumental to set the organ polarity. How the polar localization of PIN in

individual cell and thus auxin transport from one cell to other gets communicated

at the multicellular level to generate the polar organ remains largely unknown.

However, gaining collaborations between in silico modeling studies and in vivo lab

experiments are beginning to uncover the details of the morphogenetic auxin

gradients in orchestrating various developmental processes.
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Orellana A, Geisler M, Friml J (2012) ER-localized auxin transporter PIN8 regulates auxin

homeostasis and male gametophyte development in Arabidopsis. Nat Commun 3:941

Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J,

Benkova E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder

cells. Proc Natl Acad Sci USA 105:8790–8794

Duclercq J, Sangwan-Norreel B, Catterou M, Sangwan RS (2011) De novo shoot organogenesis:

from art to science. Trends Plant Sci 16:597–606

Friml J (2003) Auxin transport - shaping the plant. Curr Opin Plant Biol 2003(6):7–12
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Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ

(2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14:399–408

Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M,

Benfey PN, Sandberg G, Ljung K (2009) An auxin gradient and maximum in the Arabidopsis

root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis.

Plant Cell 21:1659–1668
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