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Abstract. This paper presents a new method to train traditional voice conver-
sion functions based on Gaussian mixture models, linear transforms and cep-
stral parameterization. Instead of using statistical criteria, this method calculates 
a set of linear transforms that represent physically meaningful spectral modifi-
cations such as frequency warping and amplitude scaling. Our experiments in-
dicate that the proposed training method leads to significant improvements in 
the average quality of the converted speech with respect to traditional statistical 
methods. This is achieved without modifying the input/output parameters or the 
shape of the conversion function. 
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1 Introduction 

Voice conversion (VC) has acquired a lot of attention from speech technologies re-
searchers during the last two decades [1–13], being a subject still far from conclusion. 
VC can be understood as the process by which the voice characteristics of a speaker 
(source speaker) are replaced by those of another speaker (target speaker) so that the 
modified speech signal will sound as if it had been produced by the target speaker. 
VC can be applied to a full range of applications. It can provide an almost costless 
source of voice variability in text-to-speech (TTS) synthesis, where re-recording new 
voices is an expensive process and not always possible. This technique can also be 
applied for voice modifications in movie, music and computer game industries or can 
be used to repair pathological voices. 

VC systems operate in two different modes: training and conversion. During the 
training phase, given speech recordings from the two involved speakers, the VC sys-
tems learn a function to transform the source speaker's acoustic space into that of the 
target speaker. During the conversion phase, this function is applied to transform new 
input utterances from the source speaker. Various types of VC techniques have been 
studied in the literature: vector quantization and mapping codebooks [1], more  
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sophisticated solutions based on fuzzy vector quantization [2], frequency warping 
transformations [3, 4], artificial neural networks [5], hidden Markov models [6], clas-
sification and regression trees [6], etc. However, another technique, namely statistical 
parametric VC based on Gaussian mixture models (GMM), has prevailed over them. 

GMM-based VC systems [7, 8] use statistical principles to partition the acoustic 
space into a finite number of overlapping classes. Then, a linear transformation is 
learnt for each class. The function applied during the conversion stage is a statistically 
weighted combination of these linear transforms. The main problem associated with 
this well known technique is referred to as oversmoothing. This phenomenon is a 
consequence of the limited capability of this specific statistical conversion function to 
capture the correspondence between source and target features in all its variability. As 
a result of it, the converted speech will sound excesively smoothed and not very natu-
ral in terms of subjective quality. Existing methods to alleviate oversmoothing either 
oversimplify the conversion function [9] or apply sophisticated transformations in-
volving utterance-level features such as the global variance of the converted parame-
ters [10], thus losing the capability of performing frame-by-frame VC in real-time 
applications. 

This paper follows the line of previous works in which frequency warping (FW) 
based transformations were combined with traditional GMM-based systems [11–13]. 
FW functions map the frequency axis of the source speaker's spectrum into that of the 
target speaker. Since they do not remove any detail of the source spectrum, they yield 
high-quality converted speech judged as quite natural by listeners. However, the con-
version accuracy they achieve is moderate because the FW procedure does not modify 
the relative amplitude of meaningful parts of the spectrum. For this reason, FW was 
combined with traditional GMM-based systems in several ways [11–13]. In all of 
these systems, the shape of the VC function had to be modified and more sophisti-
cated signal models and vocoders had to be used to make this combination possible. 

In this paper we propose an alternative way of training the set of linear transforma-
tions to be applied by a traditional GMM-based VC system. In this new training  
method, the matrices and vectors of the transformation are calculated according to 
physical criteria: the matrices are forced to correspond to a FW operation, and the 
vectors play the role of corrective filters. During conversion, the system operates in 
the same way as a traditional one and uses the same input/output parameters, i.e. Mel-
cepstral coefficients. Despite this, its performance is significantly enhanced in terms 
of subjective quality, because the degree of oversmoothing is effectively reduced and 
the converted voice sounds more natural. 

The remainder of the paper is structured as follows. Section 2 contains a brief de-
scription of the fundamentals of GMM-based voice conversion, including a mathe-
matical interpretation of the oversmoothing effect. In section 3 we show the details of 
one of the most popular FW training methods. In section 4 we explain the novel train-
ing method in which FW-based transformations are integrated into the traditional 
statistical framework. The effectiveness of this method is experimentally shown in 
section 5. Finally, the conclusions of this work are summarized in section 6. 



32 T.-C. Zorilă, D. Erro, and I. Hernaez 

2 Traditional GMM-Based VC 

The conversion function applied by traditional GMM-based VC systems [7, 8] is a 
probabilistic combination of m linear transforms: 
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where m is the number of Gaussian mixtures of the model θ, μi
(x) and Σi

(xx) are the 
mean vector and covariance matrix that characterize the ith Gaussian mixture of θ, and 
pi

(θ)(x) is the probability that x belongs to that specific mixture. Alternatively, the VC 
function can be expressed as 
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Given a training set of paired vectors contained acoustic parameters (Mel-cepstral 
coefficients in this case), the unknown vectors and matrices of this VC function, {νi} 
and {Γi}, can be obtained either by least squares based minimization of the conver-
sion error [7] or by joint density modeling of the concatenated pairs of vectors [8]. In 
both cases, the resulting converted speech will be perceived by listeners as over-
smoothed. Previous investigations on the reasons why oversmoothing appears [9] 
showed that most of the elements of the matrices {Ai} yielded by traditional training 
methods were very close to zero due to the limited capability of the GMMs to model 
the source-target correspondence. In these conditions, the transformation given by 
expression (1) can be approximated by a simple weighted combination of m vectors 
{νi}, which explains the observed oversmoothing phenomenon. 

In the next section we will show that alternative training methods based on physi-
cal principles can provide the traditional linear VC function with matrices and vectors 
that make it less prone to oversmoothing. 

3 Fundamentals of Dynamic Frequency Warping 

Dynamic FW (DFW) [3] is a procedure that calculates the FW function that should be 
applied to a set of (N+1)-point log-amplitude semispectra, {Xt}, to make them max-
imally close to their paired counterparts, {Yt}. It is based on a cost function D(i, j) 
which indicates the accumulated log-spectral distortion that would be obtained if the 
ith bin of the source spectra were mapped into the jth bin of the target spectra following 
the “best” path from (0, 0) to (i, j). D(i, j) can be expressed mathematically as follows: 
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where w, 1 ≤ w < 2, is an adjustable weighting coefficient that controls the relative 
penalty of vertical and horizontal paths (w ≈ 2 means no penalty for them, while w ≈ 1 
means strong penalty), and d(i, j) is a local distortion measure involving exclusively 
the ith source bin and the jth target bin. In our implementation, d(i, j) is calculated si-
multaneously from all the available training vectors to globally optimize the warping 
procedure: 
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The frequency warping path P is given by a sequence of points, 
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such that the presence of (i, j) in P indicates that the ith bin of the source spectrum 
should be mapped into the jth bin of the target spectrum for an optimal warping in 
terms of log-spectral distortion. In this work, iK and jK are forced to be equal to N, so 
the remaining points of P are backtracked from (N, N) following the minimal-
distortion path in inverse order. Note that this path is determined by the recursion in 
expression (4). 

4 Physically Motivated Linear Transforms 

DFW is not trainable directly in the parametric domain. Therefore, the first step in the 
training procedure is translating pth-order cepstral vectors into (N+1)-point discrete 
log-amplitude semispectra. By definition, this can by done by multiplying the cepstral 
vectors by the following matrix: 
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where g( ) is an optional perceptual frequency scale. Note that g( ) is directly related 
to the frequency scale assumed during the cepstral analysis. 

Similarly, the pth-order cepstral representation of a discrete log-amplitude spectrum 
can be recovered through the technique known as regularized discrete cepstrum [14], 
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which is equivalent to multiplying the (N+1)-point discrete log-amplitude semispec-
trum in vector form by 

 ( ) T1T SRSSC
−+= λ  (8) 

where S is given by (7), R is a regularization matrix that imposes smoothing con-
straints to the cepstral envelope, 

 { }2222  ,2 ,1 ,08 pdiagR ⋅= π  , (9) 

and λ is an empirical constant typically equal to 2·10-4 [14]. In practice, since the 0th 
cepstral coefficient (the one carrying the energy) is not considered in voice transfor-
mation tasks, we use modified versions of these matrices, Ŝ and Ĉ, where Ŝ results 
from removing the first column of S and Ĉ results from removing the first row of C. 

After the training vectors are converted into spectra using matrix Ŝ, an optimal 
warping path P is obtained via the DTW training procedure in section 3. Then, we can 
define the following matrix containing the source-target correspondence: 
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The multiplication of a source semispectrum by MT would yield a warped version of 
the same semispectrum if there were no one-to-many mappings between target and 
source bins. However, one-to-many mappings are unavoidable according to the struc-
ture of P, which is conditioned by the recursion in (4). Therefore, we define the fol-
lowing warping matrix W in which multiple source bins paired with the same target 
bin are just averaged: 
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Once W has been determined, the matrix that converts a pth-order cepstral vector into 
another cepstral vector representing the warped version of the original spectrum can 
be easily obtained as 

 SWCA ˆˆ~ ⋅⋅=  (12) 

Since the frequency response of a corrective filter can be seen as an additive term in 
the cepstral domain, the cepstral correction vector that is necessary to compensate for 
the differences between frequency-warped source vectors and target vectors is 

 avgavg xAyb
~~ −=  (13) 

where xavg and yavg are computed simply by averaging the source and target cepstral 
vectors over the training dataset. As a result of this training procedure, we get the 
following physically motivated linear transformation: 
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We suggest applying this linear transformation in a traditional statistical framework: 
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The matrices and vectors of the transformation can be trained independently for each 
class of the GMM using exclusively the vectors in that class. For a hard classification, 
we can assume that x belongs to the ith class of model θ when pi

(θ)(x) > pj
(θ)(x) for 

j = 1…m, j ≠ i. Although such a hard partition of the acoustic space during training is 
inconsistent with the soft partition used during conversion (15), this does not have any 
remarkable perceptual consequence according to our listening tests. 

5 Experiments and Discussion 

The speech data used in the evaluation experiments were taken from the CMU 
ARCTIC database [15]. Four speakers were selected from this database: two female 
speakers, slt and clb, and two male speakers, bdl and rms. From now on, for the sake 
of simplicity, they will be referred to as f1, f2, m1 and m2, respectively. 50 parallel 
training sentences per speaker were randomly selected for training and a different set 
of 50 sentences was separated for testing purposes. The remaining sentences of the 
database were simply discarded. The sampling frequency of the signals is 16 kHz. We 
used the vocoder described in [16] to translate the speech signals into Mel-cepstral 
coefficients and to reconstruct the waveforms from the converted vectors. The order 
of the cepstral analysis was 24 (plus the 0th coefficient containing the energy, which 
does not take part in the conversion). The frame shift was set to 8ms. During conver-
sion, the mean and variance of the source speaker’s log f0 distribution were replaced 
by those of the target speaker by means of a linear transformation. In order to find the 
correspondence between the source and target cepstral vectors extracted from the 
parallel training utterances, we calculated a piecewise linear time warping function 
from the phoneme boundaries given by the available segmentation. The GMMs used 
in all the experiments had 32 mixtures with full-covariance matrices. Such a number 
of mixtures was chosen according to phonetic criteria, objective scores measured on 
separate validation sets, and informal listening tests. During DTW-related computa-
tions, N was set to 512. 

In the first experiment, different configurations of the proposed method are com-
pared in terms of average Mel-cepstral distortion (MCD) between converted and tar-
get vectors. Three specific aspects of the method are studied: 

─ The influence of the perceptual frequency scale applied when resampling the cep-
stral envelopes in expression (7). We consider Mel and linear frequency scale. 
These two configurations will be labeled as “mel” and “lin” respectively. 

─ The effect of removing the glottal source spectrum from {Xt} and {Yt} before train-
ing the DFW paths, as suggested in earlier works [3]. In our implementation, we 
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assume that the glottal spectrum is mainly related with the 1st cepstral coefficient. 
According to this, we remove the glottal spectrum by settin c1 = 0. This configura-
tion with will be labelled as “c1=0”. 

─ The effect of considering just one representative vector for each class in expression 
(5), i.e. the average vector, instead of considering all the vectors simultaneously 
during DFW training. We use labels “avg” and “all” for these configurations. 

The MCD scores in Fig. 1, which have been obtained by calculating global scores 
over all possible combinations of voices, reveal that: (i) considering all the training 
vectors instead of their average is significantly advantageous; (ii) removing the glottal 
spectrum is mandatory when only average representative vectors are considered, but it 
is not crucial when all the vectors are considered during DFW training; (iii) no signif-
icant differences can be seen between Mel- and linear-frequency resampling of cep-
stral envelopes. These observations hold for individual conversion directions. 
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Fig. 1. Average MCD scores and 95% confidence intervals for different configurations of the 
system and for all combinations of voices 

Table 1. Objective comparison between traditional and proposed GMM-based VC systems 

 No conversion Traditional GMM Proposed GMM 

MCD (dB) 7.05 ± 0.03 4.78 ± 0.03 5.50 ± 0.03 

Table 1 indicates that a traditional GMM-based system based on joint-density 
modeling [8] gives significantly better MCD scores than the proposed system regard-
less of its configuration. Similar observations were made in previous related works 
[12], where it was also shown that objective distortion measures do not necessary 
correlate well with subjective measures when the nature of the methods under com-
parison is heterogeneous. Therefore, we conducted a perceptual mean opinion score 
(MOS) test to compare the best configuration of the proposed system in terms of 
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MCD (the one labeled as “all, c1=0, lin”) with a traditional GMM-based VC system. 
In this test, 18 volunteer evaluators listened to reference utterances from the target 
speakers (previously parameterized and reconstructed with the same vocoder as the 
converted speech) followed by converted utterances. The listeners were asked to rate 
the similarity between converted and target voices and the quality of the converted 
voices in a 5-point scale. As usual, 5 points was the best score and 1 point was the 
worst. Comparisons were made for 4 different conversion directions: m1-f1, f1-f2, f2-
m2, and m2-m1. The results of the test are shown in Fig. 2. On average, the proposed 
method significantly outperforms the traditional system in terms of quality while 
achieving comparable scores in terms of similarity. A more detailed case-by-case 
analysis reveals that the proposed system is relatively less successful in cross-gender 
cases. In fact, there is one conversion direction, namely “f2-m2”, in which no quality 
improvements are achieved. Further analyses indicated that this can be due to the 
particularities of this specific pair of voices and to some possibly inaccurate decis-
sions regarding the manually adjustable weights and permitted paths in expression 
(4). These issues will be tackled in future works. 
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Fig. 2. Mean opinion scores and 95% confidence intervals: a) similarity; b) quality 

6 Conclusions 

This paper has shown that the performance of traditional voice conversion systems 
based on Gaussian mixture models and linear transforms can be improved by  
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imposing some physically meaningful constraints to the matrices and vectors of the 
transformation. The resulting system is applicable in the same circumstances as the 
traditional one. Subjective listening tests indicate that on average the proposed me-
thod produces evident and statistically significant improvements in quality. Future 
works will aim at finding the optimal configuration of the system for it to be more 
robust against the particularities of some specific voice pairs. 
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