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Abstract. The paper presents a set of experiments on pathological voice
detection over the Saarbrücken Voice Database (SVD) by using the Mul-
tiFocal toolkit for a discriminative calibration and fusion. The SVD is
freely available online containing a collection of voice recordings of dif-
ferent pathologies, including both functional and organic. A generative
Gaussian mixture model trained with mel-frequency cepstral coefficients,
harmonics-to-noise ratio, normalized noise energy and glottal-to-noise
excitation ratio, is used as classifier. Scores are calibrated to increase
performance at the desired operating point. Finally, the fusion of differ-
ent recordings for each speaker, in which vowels /a/, /i/ and /u/ are
pronounced with normal, low, high, and low-high-low intonations, of-
fers a great increase in the performance. Results are compared with the
Massachusetts Eye and Ear Infirmary (MEEI) database, which makes
possible to see that SVD is much more challenging.

Keywords: Pathological Voice Detection, Saarbrücken Voice Database,
GMM, Fusion, MultiFocal toolkit.

The detection of laryngeal pathologies through an automatic voice analysis is one
of the most promising tools for speech therapists, mainly due to its noninvasive
nature and its objectivity for making decisions. The performance of these systems
is nevertheless not perfect, and nowadays it is used as an additional source of
information for other laryngoscopial exams [1].

Researchers have focused their efforts on finding new features that could dis-
criminate between normal and pathological voices or even assess their quality,
but also on finding different approaches for classification. Some of the most useful
features are considered to be acoustic parameters such as mel-frequency cepstral
coefficients (MFCC) [17, 1], amplitude and frequency perturbation parameters
[9], and noise related parameters [2, 6], but there are different alternatives like
nonlinear analysis [3, 4]. Regarding to the classifiers, well-known approaches in
speech processing like hidden Markovmodels (HMM) [7], Gaussian mixture mod-
els (GMM) [1], multilayer perceptrons (MLP) [8], or support vector machines
(SVM) [9], have been studied.
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Most of the works in the literature make use of the MEEI database, openly
commercialized by Kay Elemetrics [12]. In other cases, private databases col-
lected in local hospitals are the alternative. However, recently a new open and
freely downloadable database, the SVD [13], has been recorded by the Institute
of Phonetics of Saarland University. On it, sustained /a/, /i/ and /u/ vowels,
pronounced with normal, low, high and low-high-low intonations, and a spoken
sentence in German, are found, what make of this database a very complete set
to conduct experiments, and easy to reach by all the community. No previous
results for voice pathology detection have been found on it, and with this work
we also aim at proposing a baseline for future research.

Experiments related with pathological voices can be focused on three main
tasks. While the most simple and direct idea is to classify voices as pathological or
normal, like in [2, 6, 7, 10, 11], another goal is to assess voice quality according to
a perceptual scale, like GRBAS [24, 25], DSI [27, 28] or VPA [26], among others.
A third typical problem is to identify a specific pathology, like for example,
functional dysphonia in [28], nodules and other laryngeal injuries in [9], or polyps,
keratosis leukoplakia, adductor spasmodic dysphonia and vocal nodules in [5].

The work developed in [11] explores different configurations for a GMM clas-
sifier to detect pathological voices, fed with MFCC, harmonics-to-noise ratio
(HNR) [14], normalized noise energy (NNE) [15] and glottal-to-noise excitation
ratio (GNE) [16]. The performance is tested on the MEEI database, and only
files with recordings of vowel /ah/ sustained are used. A 30-fold strategy is fol-
lowed and several random partitions are created to average results. The best
performance is obtained with 3 Gaussians and 16 MFCCs, and the area under
the curve (AUC) [18] is 0.98459, with the 95.49% of the pathological files and
90.70% of the normal files correctly classified. In addition, the same study is
performed in different environments, such as MP3 compression and telephone
channel distortion.

In this work, we have tried to follow the guidelines marked in [11] to discrim-
inate between normal and pathological voices, extrapolating the techniques to
the SVD, and taking benefit of the MultiFocal toolkit [19] for fusing different
subsystems. MultiFocal toolkit is a toolkit developed by Niko Brümmer, and is
widely used among the speaker and language recognition community.

The rest of the paper is organized as follows: in Section 1, the MEEI database
and the SVD are presented; in Section 2, the features extracted from the audio
are described; in Section 3, it is detailed how a GMM classifier works; in Section
4, a brief description of MultiFocal toolkit is given: in Section 5, the experiments
that have been performed are presented and analyzed, for the two databases
mentioned above; and in Section 6, the conclusions of this work are drawn.

1 Databases

1.1 MEEI, Kay Elemetrics

The same configuration adopted in [2, 6, 11] has been taken for the present
work. There, 226 recordings of the whole database were used, corresponding to
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vowel /ah/ sustained. From this subset, 173 files belong to pathological patients
and 53 to normal speakers. Male and female speakers covering ages from 21 to
59 are uniformly distributed in both groups. The mean length of pathological
recordings is 1 second and the one of normal recordings is 3 seconds. All files are
converted to a common sampling frequency of 25 kHz and 16-bit resolution.

1.2 SVD, Saarland University

This database has been recently made freely available online [13]. It is a collection
of voice recordings from more than 2000 persons, where a session is defined as a
collection of:

– recordings of vowels /a/, /i/, /u/ produced at normal, high, low and low-
high-low pitch.

– recording of sentence ”Guten Morgen, wie geht es Ihnen?” (”Good morning,
how are you?”).

That makes a total of 13 files per session. In addition, the electroglottogram
(EGG) signal is also stored for each case in a separate file. The length of the files
with sustained vowels is between 1 and 3 seconds. All recordings are sampled
at 50 kHz and their resolution is 16-bit. 71 different pathologies are contained,
including both functional and organic. For our experiments only files with sus-
tained vowels and people older than 18 are used. A total of 1970 sessions are
kept, after discarding those where some of the recordings were missing or dam-
aged. 1320 (609 males and 711 females) sessions belong to pathological speakers
and 650 (400 males and 250 females) to normal speakers.

2 Features

The features used in this work are divided in two groups, according to their
nature: acoustic features, represented by the MFCC, where the aim is to charac-
terize the frequency content of the signal; and noise related features, represented
by HNR, NNE and GNE, where the aim is to measure how good the quality of
the signal is, or simply, how noisy it is.

2.1 Acoustic Features

MFCC are a family of parameters widely used for many tasks related with speech
processing. It makes a frequency analysis of the signal based on the human per-
ception of the sounds. This idea matches well with the fact that an experienced
speech therapist can detect the presence of a disorder just by listening to the
signal [10].

In the extraction procedure, after downsampling to 25 kHz, a 40 ms window
with 50% overlap has been used, with a bank of 30 Mel filters, to obtain 15
MFCC plus log-energy. The first two and last two frames have been discarded to
avoid possible errors in the edges of the recordings, like peaks due to the on and
off switches. Finally, the coefficients are mean and variance normalized within
each file.



102 D. Mart́ınez et al.

2.2 Noise Related Features

Harmonics-to-Noise Ratio. HNR was introduced to measure in an objective
manner the perceptual feeling of hoarseness in the voice [14]. To calculate it,
the signal is firstly downsampled to 16 kHz, and split into 25 ms length frames,
with 10 ms shift. In each frame, a comb filter is applied to the signal to compute
the energy in the harmonic components. To the logarithm of this quantity, the
log-energy of the noise is substracted to get the HNR.

Normalized Noise Energy. In a similar process to the calculation of the HNR,
and also with the signal downsampled to 16 kHz and with 25 ms length frames
and 10 ms shift, the noise estimation is calculated and normalized by the total
energy of the signal. This was first used in [15] and it assumes that pathological
voices are noisier than normal voices.

Glottal-to-Noise Excitation Ratio. The goal of this parameter is to compare
the amount of signal due to vocal folds vibration with the amount of signal due
to noise produced by air turbulences produced during phonation [16]. It is a good
measurement of breathiness, although not the only factor that can cause it. To
compute it, the signal is first downsampled to 10 kHz, and frames of 40 ms length
with 20 ms shift are taken. For each frame, the spectrum is divided into bands
of 2000 Hz with centers separated 500 Hz. For each of these bands, the Hilbert
envelope in time domain is calculated and the correlation of this envelope with
the envelopes of the bands separated more than half of the bandwidth (in this
case, bands must be at least 1000 Hz) is computed. The GNE is the maximum of
all correlations. If the voice is not pathological, the correlation should be high,
because all bands should be excited at the same time when the glottis is closed.

3 GMM Classifier

The features extracted from the signal are used to train a generative GMM
model [22] for each class. This model is the basis for many speech processing
tasks, like speech, speaker, or language recognition. It is a generalization of the
Gaussian model, and it permits to generate much more complicated likelihood
functions.

For D-dimension features x calculated in a frame-by-frame basis, a GMM
probability density function has the form

p(x|ω, μ,Σ) =

K∑

k=1

ωkN (x|μk, Σk), (1)

where K is the number of Gaussians in the model, ωk is the weight of the
kth Gaussian, and N (x|μk, Σk) is the Gaussian function with mean μk and
covariance Σk.
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To train this model the expectation-maximization (EM) algorithm [23] has
been used. K random Gaussians are generated for initialization and 10 iterations
of the algorithm are performed. Full-covariance matrices are used. Then for each
test file y, the likelihoods for pathological and normal classes are calculated,
calibrated as explained in next section, and the log-likelihood ratio between
them is obtained as

LLK(y) = log p(y|pathological)− log p(y|normal), (2)

which will decide to which class the file belongs.

4 Calibration and Fusion with MultiFocal Toolkit

In pathology detection, the traditional metrics to evaluate the performance of
the classifiers are:

– the area under the receiver operating characteristic (ROC) curve (AUC) [18]
– equal-error-rate (EER), point in ROC where the probability of miss is equal

to the probability of false alarm
– correct classification rate (CCR), percentage of trials correctly classified
– error rate (ER), percentage of trials wrong classified, complementary to CCR
– sensitivity (S), ability of the classifier to detect the target class
– specifity (E), ability of the classifier to detect the impostor class

AUC and EER are calibration-insensitive evaluation metrics, and the last four
are calibration-sensitive metrics. Since we are interested in a specific operating
point, that is, in the hard decisions made by our classifier, we find more interest-
ing to evaluate the real performance of our classifier with a calibration-sensitive
metric than with AUC and EER. AUC and EER can be useful in early stages
of our system development, when hard decisions are not of immediate interest
and we are only interested in the goodness of uncalibrated scores [20].

In addition, two more metrics that we consider meaningful are the detection
cost function (DCF) or empirical Bayes risk, and its minimum value for the
selected operating point (minDCF) [19]. DCF is defined as

DCF = πCmissPmiss + (1 − π)CfaPfa, (3)

where π is the prior probability of the target class, in our case the pathological
voice, Cmiss and Cfa are the costs of a miss, that is, a pathological voice classified
as normal, and a false alarm, that is, a normal voice classified as pathological,
respectively, and Pmiss and Pfa are the probabilities of a miss and a false alarm.
It is a calibration-sensitive metric, since it depends on the current threshold.
However, minDCF is calibration-insensitive, and it gives the minimum cost that
could have been obtained with optimal calibration, at every operating point. It
is calculated by varying the threshold from −∞ to ∞ for each operating point,
and then picking the minimum.

MultiFocal is a toolkit developed in Matlab primarily designed for calibrating
and fusing scores of a language recognition task [19]. The aim of using this toolkit
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is twofold: i) to calibrate scores so cost effective Bayes decisions can be made,
by setting the threshold to the Bayes decision threshold, η,

η = log
Cfa

Cmiss
− logit(π); (4)

ii) to fuse scores coming from different recognizers to obtain a better recognizer.
The idea behind calibration is that scores are converted in such a way that

the Bayes decision threshold can be used for making the best possible decisions.
Equivalently, the user could tune the threshold manually to minimize the error
metric.

To calculate calibrated log-likelihoods, MultiFocal optimizes another
calibration-sensitive metric, Cllr [21]. Cllr is defined as

Cllr = − 1

T

T∑

t=1

ωt log2 Pt, (5)

where T is the number of trials, ωt is a weight to normalize the class proportions
in the evaluation trials,

ωt =
πc(t)

Qc(t)
(6) , Qi =

nr. of trials of classHi

T
, (7)

c(t) is the true class of trial t, πi the prior of class i, Pt is the posterior probability
of hypothesis Hc(t) of true class given the vector of calibrated log-likelihoods,
l′(xt), at trial t,

Pt = P (Hc(t)|l′(xt)) =
πc(t)e

l′c(t)(xt)

πc(t)e
l′
c(t)

(xt) + πc̄(t)e
l′
c̄(t)

(xt)
, (8)

being c̄(t) the impostor class at trial t, and xt the observation at t. As we are in
a 2-class problem, c(t) ∈{‘0’,‘1’}, being ‘0’ the label for the target class, and ‘1’
the label for the impostor class.

Cllr has the sense of a cost and it is measured in terms of bits of information.
0 ≤ Cllr ≤ ∞, being 0 for perfect recognition.

Well-calibrated log-likelihoods, l′(xt), are the final output of our calibration
procedure. They are obtained as,

l′(xt) = αl(xt) + β, (9)

where l(xt) is the uncalibrated log-likelihood obtained from the classifier. Then,
through the mimization of Cllr , we obtain the scalar α, that scales our out-
puts, and the vector β, that shifts our outputs. The optimization is made via a
discriminative logistic regression.

More generally, to fuse K systems what we want is our calibrated log-
likelihoods to be a linear combination of the uncalibrated log-likelihoods of the
K systems,

l′(xt) =

K∑

k=1

αklk(xt) + β. (10)
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As we can check, the fusion is a generalization of the calibration of a single
system (where K=1), and since the fusion is also a calibration, because of the
linearity of the operation, there is no need to pre-calibrate each input system,
or to post-calibrate the fusion [19].

5 Experiments

The experiments conducted in this work are divided in two, according to the
database tested. First, results for the MEEI datatabase will be shown. We have
followed a similar procedure to [11]. This will be useful to compare our classifier
with a state of the art system. After this check, our classifier will be used to test
the SVD. This database will make possible to show how the fusion of different
sources of information increase the performance of the system. The results will be
given in terms of the traditional metrics described in Section 4, AUC, EER, CCR,
ER, S and E, and also in terms of DCF and minDCF as additional information
to check how good the calibration is. Finally, a confidence interval (CI) at 95%
confidence (α = 0.05) will be given for each experiment. Note that it is computed
over the CCR.

For all our experiments, Cfa = Cmiss = 1, π0 = π1 = 0.5, and threshold equal
to the Bayes decision threshold, in our case η=0.

5.1 Results on MEEI

The database is divided in 30 folds, in the same manner as in [11]. For every
test fold, the remaining 29 are used for training. Then, an average performance
measure is extracted from the 30. GMMs with 3 components are trained. This is
the optimal number found in [11]. One difference with [11] is that all recordings of
the same speaker are grouped into the same fold, in such a way that one speaker is
not in the training and test subsets at the same time. This will avoid recognizing
the speaker instead of the pathology. Note that a slight drop in performance
could be seen as a consequence, compared to the experiments in [11].

In table 1, results between normal and pathological classes are shown, where
every recording is considered as a trial. The features are 19 dimensional, includ-
ing 15 MFCCs plus log-energy, HNR, NNE and GNE, previously normalized in
mean and variance. A comparison between results with and without calibration
is done. As we can see, the calibration-insensitive metrics, AUC and EER, do not
change. However, S, E, CCR and ER, indicate that something has changed. With
calibration our system detects better both normal and pathological classes. The
reason is that the scores have been transformed in such a way that the posterior
probabilities of the true class are maximized, what at the same time minimizes
the Bayes risk, because now the Bayes decision threshold will be the optimal one
to make decisions. Note that we have trained the calibration with the data under
test, and this gives the optimal values for α and β. In a real system, these values
should be trained before any clinical evaluation, and the performance would not
probably be optimal. However, in this way an upper bound of the results is ob-
tained, and this is more reliable for comparison with other systems tested over
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Table 1. Evaluation metrics for the experiments on MEEI database. Averages over 30
folds.

Metric AUC EER CCR ER S E CI DCF minDCF
Calibrated 0.943 0.048 0.948 0.052 0.949 0.950 0.071 0.050 0.033
Uncalibrated 0.943 0.048 0.923 0.077 0.950 0.850 0.123 0.099 0.033
Work in [11] 0.985 - 0.943 0.057 0.955 0.907 0.034 0.069 -

the same data, since there is no dependence on any development data used for
training the calibration.

We consider DCF a reasonable criterion to choose one classifier or another,
because it weights both kind of errors, misses and false alarms, at the desired
operating point. minDCF will tell us how good our system could have been
with a perfect calibration. In turn, AUC and EER are evaluation metrics of
the performance of our system considering all operating points. Also in table
1, DCF and minDCF can be found for the experiments made with MEEI. In
[11] they have actually worked at the operating point given by EER, but we do
not know the values for Cfa, Cmiss and π. Assuming they are the same as ours
(which can be an unfair but reasonable assumption since they work at EER and
their effective prior is 0.5, what would give those values of Cfa, Cmiss and π,
for η =0), in terms of DCF, our system performs better. However, their AUC
is very good, and it would probably give better estimated DCF if a calibration
had been performed.

5.2 Results on SVD

In this case, 12 subsets of data are created by grouping separately the recordings
belonging to /a/, /i/, and /u/, pronounced with normal, low, high, and low-
high-low intonation. Then, for each one of these subsets a 30-fold strategy is
followed. Also 3 components are trained in the GMM. In this case, grouping
of the same speaker into the same subset is not guaranteed, what could give
optimistic results. In short, the same procedure as in Section 5.1 is followed for
each subset. In table 2, results for the same 19 dimension features as above are
shown in terms of AUC, EER, CCR, ER, S, E, CI, DCF, and minDCF. Only
calibrated results are shown. The behavior of the classifier for each vowel and
intonation is interesting. It seems that the recognition rate is slightly better for
/a/, but the differences are small. It can be checked that for /a/, normal and
low intonations help the most, for /i/ all intonations behave similar, and for /u/,
the normal intonation is the least discriminative.

Next, a partial fusion is made for each vowel, where the 4 intonations of each
one are fused. This is made for every fold and then all folds are averaged. In
table 2 this is in the last line of each vowel. It can be seen that the results
are improved with regard to the case with every vowel and intonation tested
individually, and that the classifier built with /a/ outperforms the ones with /i/
and /u/. However, looking at the confidence interval, no definitive conclusions
should be made.
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Table 2. Evaluation metrics for the experiments on SVD. Averages over 30 folds.
Intonations are N: normal; L: low; H: high; and LHL: low-high-low.

Metric AUC EER CCR ER S E CI DCF minDCF
Vowel /a/
N 0.747 0.321 0.670 0.330 0.636 0.739 0.112 0.313 0.270
L 0.743 0.335 0.656 0.340 0.650 0.680 0.114 0.334 0.286
H 0.722 0.336 0.666 0.334 0.655 0.687 0.112 0.328 0.285
LHL 0.702 0.353 0.645 0.355 0.640 0.655 0.114 0.352 0.304
Fusion /a/ 0.804 0.277 0.718 0.282 0.701 0.752 0.108 0.273 0.234

Vowel /i/
N 0.702 0.350 0.645 0.355 0.627 0.682 0.114 0.345 0.305
L 0.705 0.348 0.642 0.358 0.620 0.687 0.115 0.347 0.303
H 0.700 0.354 0.640 0.359 0.629 0.664 0.115 0.352 0.305
LHL 0.679 0.373 0.639 0.361 0.652 0.612 0.116 0.368 0.322
Fusion /i/ 0.783 0.283 0.710 0.290 0.694 0.741 0.110 0.282 0.247

Vowel /u/
N 0.706 0.354 0.634 0.366 0.615 0.671 0.116 0.357 0.307
L 0.712 0.342 0.646 0.354 0.624 0.692 0.115 0.342 0.301
H 0.713 0.348 0.640 0.356 0.619 0.684 0.116 0.348 0.293
LHL 0.715 0.344 0.666 0.334 0.678 0.642 0.114 0.340 0.293
Fusion /u/ 0.797 0.282 0.715 0.284 0.702 0.741 0.108 0.278 0.242

Fusion 0.879 0.206 0.794 0.206 0.778 0.826 0.095 0.198 0.165

Finally, a global fusion with all vowels and intonations is made for each fold,
and as before, all folds are averaged to obtain a single figure for each of the
metrics. This is in the last line of table 2. Actually, we do not fuse different
systems, but the same system trained on different data. A huge increase in
performance is obtained. Comparing with the best result without fusion (/a/
normal), the increase in perfomance is 17.67% for the AUC, 35.83% for the
EER, and 36.74% for the DCF. We believe that the main reason is the fact
of having much more data, and containing different information, because they
come from different vowels and intonations. Again, these results are optimal in
terms of the fusion, since the fusion parameters have been trained on the test
data. If we compare this fusion with the partial fusion of each vowel, it can be
seen that all vowels contribute to the improvement, because the global fusion
outperforms the partial ones.

6 Conclusions

A new voice database, the SVD, has been evaluated for the task of pathology
detection. The amount of recordings of different sounds and intonations included
in this database makes possible to conduct different and interesting experiments.
This is an open and free database available online. A robust GMM with 3 com-
ponents, trained on MFCC, HNR, NNE and GNE, has been used as classifier,
and the effect of calibration has been shown. Finally, a fusion of the classifiers
trained on /a/, /i/ and /u/, pronounced with normal, low, high and low-high-low
intonations, has been performed, showing that every sound gives different infor-
mation to the system and their combination offers a huge improvement: 17.67%
for the AUC and 36.75 % for the DCF. As future work we plan to test the effect
of the number of Gaussians on the performance and other methods for fusing,
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such as a simple concatenation of files of the same session. In addition, this work
is thought to be a starting point for a further research with the SVD database,
which is currently being perceptually classified according to the GRABS scale
by a speech therapist of the Bioingenieŕıa y Optoelectrónica (ByO) group at the
Universidad Politécnica de Madrid.

Acknowledgements. Thanks to Manfred Pützer and his team for the great
work of recording the SVD.

This work was funded by the Spanish Ministry of Science and Innovation
under projects TIN2011-28169-C05-02 and INNPACTO IPT-2011-1696-390000.

References

[1] Godino Llorente, J.I., et al.: Dimensionality Reduction of a Pathological Voice
Quality Assessment System Based on Gaussian Mixture Models and Short-Term
Cepstral Parameters. IEEE Tr. Biomed. Eng. 53(10) (2006)
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