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Abstract. Learning algorithms related to artificial neural networks and
in particular for Deep Learning may seem to involve many bells and
whistles, called hyper-parameters. This chapter is meant as a practical
guide with recommendations for some of the most commonly used hyper-
parameters, in particular in the context of learning algorithms based
on back-propagated gradient and gradient-based optimization. It also
discusses how to deal with the fact that more interesting results can be
obtained when allowing one to adjust many hyper-parameters. Overall,
it describes elements of the practice used to successfully and efficiently
train and debug large-scale and often deep multi-layer neural networks.
It closes with open questions about the training difficulties observed with
deeper architectures.

19.1 Introduction

Following a decade of lower activity, research in artificial neural networks was
revived after a 2006 breakthrough [61, 14, 95] in the area of Deep Learning,
based on greedy layer-wise unsupervised pre-training of each layer of features.
See [7] for a review. Many of the practical recommendations that justified the
previous edition of this book are still valid, and new elements were added, while
some survived longer by virtue of the practical advantages they provided. The
panorama presented in this chapter regards some of these surviving or novel
elements of practice, focusing on learning algorithms aiming at training deep
neural networks, but leaving most of the material specific to the Boltzmann
machine family to another chapter [60].

Although such recommendations come out of a living practice that emerged
from years of experimentation and to some extent mathematical justification,
they should be challenged. They constitute a good starting point for the exper-
imenter and user of learning algorithms but very often have not been formally
validated, leaving open many questions that can be answered either by theo-
retical analysis or by solid comparative experimental work (ideally by both). A
good indication of the need for such validation is that different researchers and
research groups do not always agree on the practice of training neural networks.
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Several of the recommendations presented here can be found implemented
in the Deep Learning Tutorials1 and in the related Pylearn2 library2, all based
on the Theano library (discussed below) written in the Python programming
language.

The 2006 Deep Learning breakthrough [61, 14, 95] centered on the use of
unsupervised representation learning to help learning internal representations3
by providing a local training signal at each level of a hierarchy of features4.
Unsupervised representation learning algorithms can be applied several times
to learn different layers of a deep model. Several unsupervised representation
learning algorithms have been proposed since then. Those covered in this chap-
ter (such as auto-encoder variants) retain many of the properties of artificial
multi-layer neural networks, relying on the back-propagation algorithm to esti-
mate stochastic gradients. Deep Learning algorithms such as those based on the
Boltzmann machine and those based on auto-encoder or sparse coding variants
often include a supervised fine-tuning stage. This supervised fine-tuning as well
as the gradient descent performed with auto-encoder variants also involves the
back-propagation algorithm, just as like when training deterministic feedforward
or recurrent artificial neural networks. Hence this chapter also includes recom-
mendations for training ordinary supervised deterministic neural networks or
more generally, most machine learning algorithms relying on iterative gradient-
based optimization of a parametrized learner with respect to an explicit training
criterion.

This chapter assumes that the reader already understands the standard algo-
rithms for training supervised multi-layer neural networks, with the loss gradient
computed thanks to the back-propagation algorithm [103]. It starts by explain-
ing basic concepts behind Deep Learning and the greedy layer-wise pretraining
strategy (Section 19.1.1), and recent unsupervised pre-training algorithms (de-
noising and contractive auto-encoders) that are closely related in the way they
are trained to standard multi-layer neural networks (Section 19.1.2). It then re-
views in Section 19.2 basic concepts in iterative gradient-based optimization and
in particular the stochastic gradient method, gradient computation with a flow
graph, automatic differentation. The main section of this chapter is Section 19.3,
which explains hyper-parameters in general, their optimization, and specifically
covers the main hyper-parameters of neural networks. Section 19.4 briefly de-
scribes simple ideas and methods to debug and visualize neural networks, while
Section 19.5 covers parallelism, sparse high-dimensional inputs, symbolic inputs

1 http://deeplearning.net/tutorial/
2 http://deeplearning.net/software/pylearn2
3 A neural network computes a sequence of data transformations, each step encoding

the raw input into an intermediate or internal representation, in principle to make
the prediction or modeling task of interest easier.

4 In standard multi-layer neural networks trained using back-propagated gradients, the
only signal that drives parameter updates is provided at the output of the network
(and then propagated backwards). Some unsupervised learning algorithms provide
a local source of guidance for the parameter update in each layer, based only on the
inputs and outputs of that layer.
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and embeddings, and multi-relational learning. The chapter closes (Section 19.6)
with open questions on the difficulty of training deep architectures and improv-
ing the optimization methods for neural networks.

19.1.1 Deep Learning and Greedy Layer-Wise Pretraining

The notion of reuse, which explains the power of distributed representations [7], is
also at the heart of the theoretical advantages behind Deep Learning. Complexity
theory of circuits, e.g. [54, 55], (which include neural networks as special cases)
has much preceded the recent research on deep learning. The depth of a circuit is
the length of the longest path from an input node of the circuit to an output node
of the circuit. Formally, one can change the depth of a given circuit by changing
the definition of what each node can compute, but only by a constant factor [7].
The typical computations we allow in each node include: weighted sum, product,
artificial neuron model (such as a monotone non-linearity on top of an affine
transformation), computation of a kernel, or logic gates. Theoretical results [54,
55, 13, 10, 9] clearly identify families of functions where a deep representation
can be exponentially more efficient than one that is insufficiently deep. If the
same set of functions can be represented from within a family of architectures
associated with a smaller VC-dimension (e.g. less hidden units5), learning theory
would suggest that it can be learned with fewer examples, yielding improvements
in both computational efficiency and statistical efficiency.

Another important motivation for feature learning and Deep Learning is that
they can be done with unlabeled examples, so long as the factors (unobserved
random variables explaining the data) relevant to the questions we will ask later
(e.g. classes to be predicted) are somehow salient in the input distribution itself.
This is true under the manifold hypothesis, which states that natural classes and
other high-level concepts in which humans are interested are associated with
low-dimensional regions in input space (manifolds) near which the distribution
concentrates, and that different class manifolds are well-separated by regions
of very low density. It means that a small semantic change around a particular
example can be captured by changing only a few numbers in a high-level abstract
representation space. As a consequence, feature learning and Deep Learning are
intimately related to principles of unsupervised learning, and they can work in
the semi-supervised setting (where only a few examples are labeled), as well as
in the transfer learning and multi-task settings (where we aim to generalize to
new classes or tasks). The underlying hypothesis is that many of the underlying
factors are shared across classes or tasks. Since representation learning aims to
extract and isolate these factors, representations can be shared across classes and
tasks.

One of the most commonly used approaches for training deep neural net-
works is based on greedy layer-wise pre-training [14]. The idea, first introduced
in Hinton et al. [61], is to train one layer of a deep architecture at a time using

5 Note that in our experiments, deep architectures tend to generalize very well even
when they have quite large numbers of parameters.



440 Y. Bengio

unsupervised representation learning. Each level takes as input the representa-
tion learned at the previous level and learns a new representation. The learned
representation(s) can then be used as input to predict variables of interest, for
example to classify objects. After unsupervised pre-training, one can also per-
form supervised fine-tuning of the whole system6, i.e., optimize not just the
classifier but also the lower levels of the feature hierarchy with respect to some
objective of interest. Combining unsupervised pre-training and supervised fine-
tuning usually gives better generalization than pure supervised learning from
a purely random initialization. The unsupervised representation learning algo-
rithms for pre-training proposed in 2006 were the Restricted Boltzmann Machine
or RBM [61], the auto-encoder [14] and a sparsifying form of auto-encoder similar
to sparse coding [95].

19.1.2 Denoising and Contractive Auto-encoders

An auto-encoder has two parts: an encoder function f that maps the input x to a
representationh = f(x), and a decoder function g that maps h back in the space of
x in order to reconstructx. In the regular auto-encoder the reconstruction function
r(·) = g(f(·)) is trained to minimize the average value of a reconstruction loss on
the training examples. Note that reconstruction loss should be high for most other
input configurations7. The regularization mechanism makes sure that reconstruc-
tion cannot be perfect everywhere, while minimizing the reconstruction loss at
training examples digs a hole in reconstruction error where the density of training
examples is large. Examples of reconstruction loss functions include ||x− r(x)||2
(for real-valued inputs) and −

∑
i xi log ri(x) + (1 − xi) log(1 − ri(x)) (when

interpreting xi as a bit or a probability of a binary event). Auto-encoders cap-
ture the input distribution by learning to better reconstruct more likely input
configurations. The difference between the reconstruction vector and the input
vector can be shown to be related to the log-density gradient as estimated by
the learner [114, 16] and the Jacobian matrix of the reconstruction with respect
to the input gives information about the second derivative of the density, i.e.,
in which direction the density remains high when you are on a high-density
manifold [99, 16]. In the Denoising Auto-Encoder (DAE) and the Contractive
Auto-Encoder (CAE), the training procedure also introduces robustness (insen-
sitivity to small variations), respectively in the reconstruction r(x) or in the
representation f(x). In the DAE [115, 116], this is achieved by training with
stochastically corrupted inputs, but trying to reconstruct the uncorrupted in-
puts. In the CAE [99], this is achieved by adding an explicit regularizing term
in the training criterion, proportional to the norm of the Jacobian of the en-
coder, ||∂f(x)∂x ||2. But the CAE and the DAE are very related [16]: when the
6 The whole system composes the computation of the representation with computation

of the predictor’s output.
7 Different regularization mechanisms have been proposed to push reconstruction error

up in low density areas: denoising criterion, contractive criterion, and code sparsity.
It has been argued that such constraints play a role similar to the partition function
for Boltzmann machines [96].
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noise is Gaussian and small, the denoising error minimized by the DAE is equiv-
alent to minimizing the norm of the Jacobian of the reconstruction function
r(·) = g(f(·)), whereas the CAE minimizes the norm of the Jacobian of the
encoder f(·). Besides Gaussian noise, another interesting form of corruption has
been very successful with DAEs: it is called the masking corruption and consists
in randomly zeroing out a large fraction (like 20% or even 50%) of the inputs,
where the zeroed out subset is randomly selected for each example. In addition
to the contractive effect, it forces the learned encoder to be able to rely only on
an arbitrary subset of the input features.

Another way to prevent the auto-encoder from perfectly reconstructing every-
where is to introduce a sparsity penalty on h, discussed below (Section 19.3.1).

19.1.3 Online Learning and Optimization of Generalization Error

The objective of learning is not to minimize training error or even the train-
ing criterion. The latter is a surrogate for generalization error, i.e., performance
on new (out-of-sample) examples, and there are no hard guarantees that min-
imizing the training criterion will yield good generalization error: it depends
on the appropriateness of the parametrization and training criterion (with the
corresponding prior they imply) for the task at hand.

Many learning tasks of interest will require huge quantities of data (most of
which will be unlabeled) and as the number of examples increases, so long as
capacity is limited (the number of parameters is small compared to the num-
ber of examples), training error and generalization approach each other. In the
regime of such large datasets, we can consider that the learner sees an unending
stream of examples (e.g., think about a process that harvests text and images
from the web and feeds it to a machine learning algorithm). In that context, it
is most efficient to simply update the parameters of the model after each exam-
ple or few examples, as they arrive. This is the ideal online learning scenario,
and in a simplified setting, we can even consider each new example z as being
sampled i.i.d. from an unknown generating distribution with probability density
p(z). More realistically, examples in online learning do not arrive i.i.d. but in-
stead from an unknown stochastic process which exhibits serial correlation and
other temporal dependencies. Many learning algorithms rely on gradient-based
numerical optimization of a training criterion. Let L(z, θ) be the loss incurred
on example z when the parameter vector takes value θ. The gradient vector for
the loss associated with a single example is ∂L(z,θ)

∂θ .
If we consider the simplified case of i.i.d. data, there is an interesting obser-

vation to be made: the online learner is performing stochastic gradient descent
on its generalization error. Indeed, the generalization error C of a learner with
parameters θ and loss function L is

C = E[L(z, θ)] =

∫
p(z)L(z, θ)dz
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while the stochastic gradient from sample z is

ĝ =
∂L(z, θ)

∂θ

with z a random variable sampled from p. The gradient of generalization error
is

∂C

∂θ
=
∂

∂θ

∫
p(z)L(z, θ)dz =

∫
p(z)

∂L(z, θ)

∂θ
dz = E[ĝ]

showing that the online gradient ĝ is an unbiased estimator of the generalization
error gradient ∂C

∂θ . It means that online learners, when given a stream of non-
repetitive training data, really optimize (maybe not in the optimal way, i.e., using
a first-order gradient technique) what we really care about: generalization error.

19.2 Gradients

19.2.1 Gradient Descent and Learning Rate

The gradient or an estimator of the gradient is used as the core part the computa-
tion of parameter updates for gradient-based numerical optimization algorithms.
For example, simple online (or stochastic) gradient descent [102, 28] updates the
parameters after each example is seen, according to

θ(t) ← θ(t−1) − εt
∂L(zt, θ)

∂θ

where zt is an example sampled at iteration t and where εt is a hyper-parameter
that is called the learning rate and whose choice is crucial. If the learning rate
is too large8, the average loss will increase. The optimal learning rate is usually
close to (by a factor of 2) the largest learning rate that does not cause divergence
of the training criterion, an observation that can guide heuristics for setting the
learning rate [8], e.g., start with a large learning rate and if the training criterion
diverges, try again with 3 times smaller learning rate, etc., until no divergence
is observed.

See [26] for a deeper treatment of stochastic gradient descent, including sug-
gestions to set learning rate schedule and improve the asymptotic convergence
through averaging.

In practice, we use mini-batch updates based on an average of the gradients9
inside each block of B examples:

θ(t) ← θ(t−1) − εt
1

B

B(t+1)∑

t′=Bt+1

∂L(zt′, θ)

∂θ
. (19.1)

8 Above a value which is approximately 2 times the largest eigenvalue of the average
loss Hessian matrix.

9 Compared to a sum, an average makes a small change in B have only a small effect on
the optimal learning rate, with an increase in B generally allowing a small increase
in the learning rate because of the reduced variance of the gradient.
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With B = 1 we are back to ordinary online gradient descent, while with B equal
to the training set size, this is standard (also called “batch”) gradient descent.
With intermediate values of B there is generally a sweet spot. When B increases
we can get more multiply-add operations per second by taking advantage of
parallelism or efficient matrix-matrix multiplications (instead of separate matrix-
vector multiplications), often gaining a factor of 2 in practice in overall training
time. On the other hand, as B increases, the number of updates per computation
done decreases, which slows down convergence (in terms of error vs number of
multiply-add operations performed) because less updates can be done in the
same computing time. Combining these two opposing effects yields a typical
U-curve with a sweet spot at an intermediate value of B.

Keep in mind that even the true gradient direction (averaging over the whole
training set) is only the steepest descent direction locally but may not point
in the right direction when considering larger steps. In particular, because the
training criterion is not quadratic in the parameters, as one moves in parameter
space the optimal descent direction keeps changing. Because the gradient direc-
tion is not quite the right direction of descent, there is no point in spending a lot
of computation to estimate it precisely for gradient descent. Instead, doing more
updates more frequently helps to explore more and faster, especially with large
learning rates. In addition, smaller values of B may benefit from more explo-
ration in parameter space and a form of regularization both due to the “noise”
injected in the gradient estimator, which may explain the better test results
sometimes observed with smaller B.

When the training set is finite, training proceeds by sweeps through the train-
ing set called an epoch, and full training usually requires many epochs (iterations
through the training set). Note that stochastic gradient (either one example at a
time or with mini-batches) is different from ordinary gradient descent, sometimes
called “batch gradient descent”, which corresponds to the case where B equals
the training set size, i.e., there is one parameter update per epoch). The great
advantage of stochastic gradient descent and other online or minibatch update
methods is that their convergence does not depend on the size of the training
set, only on the number of updates and the richness of the training distribution.
In the limit of a large or infinite training set, a batch method (which updates
only after seeing all the examples) is hopeless. In fact, even for ordinary datasets
of tens or hundreds of thousands of examples (or more!), stochastic gradient de-
scent converges much faster than ordinary (batch) gradient descent, and beyond
some dataset sizes the speed-up is almost linear (i.e., doubling the size almost
doubles the gain)10. It is really important to use the stochastic version in order
to get reasonable clock-time convergence speeds.

As for any stochastic gradient descent method (including the mini-batch case),
it is important for efficiency of the estimator that each example or mini-batch
be sampled approximately independently. Because random access to memory
(or even worse, to disk) is expensive, a good approximation, called incremental

10 On the other hand, batch methods can be parallelized easily, which becomes an
important advantage with currently available forms of computing power.
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gradient [21], is to visit the examples (or mini-batches) in a fixed order corre-
sponding to their order in memory or disk (repeating the examples in the same
order on a second epoch, if we are not in the pure online case where each example
is visited only once). In this context, it is safer if the examples or mini-batches
are first put in a random order (to make sure this is the case, it could be useful
to first shuffle the examples). Faster convergence has been observed if the order
in which the mini-batches are visited is changed for each epoch, which can be
reasonably efficient if the training set holds in computer memory.

19.2.2 Gradient Computation and Automatic Differentiation

The gradient can be either computed manually or through automatic differen-
tiation. Either way, it helps to structure this computation as a flow graph, in
order to prevent mathematical mistakes and make sure an implementation is
computationally efficient. The computation of the loss L(z, θ) as a function of θ
is laid out in a graph whose nodes correspond to elementary operations such as
addition, multiplication, and non-linear operations such as the neural networks
activation function (e.g., sigmoid or hyperbolic tangent), possibly at the level
of vectors, matrices or tensors. The flow graph is directed and acyclic and has
three types of nodes: input nodes, internal nodes, and output nodes. Each of its
nodes is associated with a numerical output which is the result of the applica-
tion of that computation (none in the case of input nodes), taking as input the
output of previous nodes in a directed acyclic graph. Example z and parameter
vector θ (or their elements) are the input nodes of the graph (i.e., they do not
have inputs themselves) and L(z, θ) is a scalar output of the graph. Note that
here, in the supervised case, z can include an input part x (e.g. an image) and
a target part y (e.g. a target class associated with an object in the image). In
the unsupervised case z = x. In a semi-supervised case, there is a mix of labeled
and unlabeled examples, and z includes y on the labeled examples but not on
the unlabeled ones.

In addition to associating a numerical output oa to each node a of the flow
graph, we can associate a gradient ga = ∂L(z,θ)

∂oa
. The gradient will be defined and

computed recursively in the graph, in the opposite direction of the computation
of the nodes’ outputs, i.e., whereas oa is computed using outputs op of predecessor
nodes p of a, ga will be computed using the gradients gs of successor nodes s of
a. More precisely, the chain rule dictates

ga =
∑

s

gs
∂os
∂oa

where the sum is over immediate successors of a. Only output nodes have no
successor, and in particular for the output node that computes L, the gradient
is set to 1 since ∂L

∂L = 1, thus initializing the recursion. Manual or automatic
differentiation then only requires to define the partial derivative associated with
each type of operation performed by any node of the graph. When implementing
gradient descent algorithms with manual differentiation the result tends to be
verbose, brittle code that lacks modularity – all bad things in terms of software
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engineering. A better approach is to express the flow graph in terms of objects
that modularize how to compute outputs from inputs as well as how to compute
the partial derivatives necessary for gradient descent. One can pre-define the
operations of these objects (in a “forward propagation” or fprop method) and
their partial derivatives (in a “backward propagation” or bprop method) and
encapsulate these computations in an object that knows how to compute its
output given its inputs, and how to compute the gradient with respect to its
inputs given the gradient with respect to its output. This is the strategy adopted
in the Theano library11 with its Op objects [18], as well as in libraries such as
Torch12 [37] and Lush13.

Compared to Torch and Lush, Theano adds an interesting ingredient which
makes it a full-fledged automatic differentiation tool: symbolic computation. The
flow graph itself (without the numerical values attached) can be viewed as a
symbolic representation (in a data structure) of a numerical computation. In
Theano, the gradient computation is first performed symbolically, i.e., each Op
object knows how to create other Ops corresponding to the computation of the
partial derivatives associated with that Op. Hence the symbolic differentiation
of the output of a flow graph with respect to any or all of its input nodes can
be performed easily in most cases, yielding another flow graph which specifies
how to compute these gradients, given the input of the original graph. Since
the gradient graph typically contains the original graph (mapping parameters to
loss) as a sub-graph, in order to make computations efficient it is important to
automate (as done in Theano) a number of simplifications which are graph trans-
formations preserving the semantics of the output (given the input) but yielding
smaller (or more numerically stable or more efficiently computed) graphs (e.g.,
removing redundant computations). To take advantage of the fact that com-
puting the loss gradient includes as a first step computing the loss itself, it is
advantageous to structure the code so that both the loss and its gradient are
computed at once, with a single graph having multiple outputs. The advantages
of performing gradient computations symbolically are numerous. First of all, one
can readily compute gradients over gradients, i.e., second derivatives, which are
useful for some learning algorithms. Second, one can define algorithms or training
criteria involving gradients themselves, as required for example in the Contrac-
tive Auto-Encoder (which uses the norm of a Jacobian matrix in its training
criterion, i.e., really requires second derivatives, which here are cheap to com-
pute). Third, it makes it easy to implement other useful graph transformations
such as graph simplifications or numerical optimizations and transformations
that help making the numerical results more robust and more efficient (such as
working in the domain of logarithms of probabilities rather than in the domain
of probabilities directly). Other potential beneficial applications of such sym-
bolic manipulations include parallelization and additional differential operators
(such as the R-operator, recently implemented in Theano, which is very useful to

11 http://deeplearning.net/software/theano/
12 http://www.torch.ch
13 http://lush.sourceforge.net
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compute the product of a Jacobian matrix ∂f(x)
∂x or Hessian matrix ∂2L(x,θ)

∂θ2 with
a vector without ever having to actually compute and store the matrix itself [90]).

19.3 Hyper-parameters

A pure learning algorithm can be seen as a function taking training data as input
and producing as output a function (e.g. a predictor) or model (i.e. a bunch
of functions). However, in practice, many learning algorithms involve hyper-
parameters, i.e., annoying knobs to be adjusted. In many algorithms such as
Deep Learning algorithms the number of hyper-parameters (ten or more!) can
make the idea of having to adjust all of them unappealing. In addition, it has
been shown that the use of computer clusters for hyper-parameter selection can
have an important effect on results [91]. Choosing hyper-parameter values is
formally equivalent to the question of model selection, i.e., given a family or set
of learning algorithms, how to pick the most appropriate one inside the set? We
define a hyper-parameter for a learning algorithm A as a variable to be set prior
to the actual application of A to the data, one that is not directly selected by the
learning algorithm itself. It is basically an outside control knob. It can be discrete
(as in model selection) or continuous (such as the learning rate discussed above).
Of course, one can hide these hyper-parameters by wrapping another learning
algorithm, say B, around A, to selects A’s hyper-parameters (e.g. to minimize
validation set error). We can then call B a hyper-learner, and if B has no hyper-
parameters itself then the composition of B over A could be a “pure” learning
algorithm, with no hyper-parameter. In the end, to apply a learner to training
data, one has to have a pure learning algorithm. The hyper-parameters can be
fixed by hand or tuned by an algorithm, but their value has to be selected. The
value of some hyper-parameters can be selected based on the performance of
A on its training data, but most cannot. For any hyper-parameter that has an
impact on the effective capacity of a learner, it makes more sense to select its
value based on out-of-sample data (outside the training set), e.g., a validation
set performance, online error, or cross-validation error. Note that some learning
algorithms (in particular unsupervised learning algorithms such as algorithms
for training RBMs by approximate maximum likelihood) are problematic in this
respect because we cannot directly measure the quantity that is to be optimized
(e.g. the likelihood) because it is intractable. On the other hand, the expected
denoising reconstruction error is easy to estimate (by just averaging the denoising
error over a validation set).

Once some out-of-sample data has been used for selecting hyper-parameter
values, it cannot be used anymore to obtain an unbiased estimator of generaliza-
tion performance, so one typically uses a test set (or double cross-validation14, in

14 Double cross-validation applies recursively the idea of cross-validation, using an outer
loop cross-validation to evaluate generalization error and then applying an inner loop
cross-validation inside each outer loop split’s training subset (i.e., splitting it again
into training and validation folds) in order to select hyper-parameters for that split.
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the case of small datasets) to estimate generalization error of the pure learning
algorithm (with hyper-parameter selection hidden inside).

19.3.1 Neural Network Hyper-parameters

Different learning algorithms involve different sets of hyper-parameters, and it
is useful to get a sense of the kinds of choices that practitioners have to make in
choosing their values. We focus here mostly on those relevant to neural networks
and Deep Learning algorithms.

Hyper-parameters of the Approximate Optimization. First of all, several
learning algorithms can be viewed as the combination of two elements: a train-
ing criterion and a model (e.g., a family of functions, a parametrization) on the
one hand, and on the other hand, a particular procedure for approximately opti-
mizing this criterion. Correspondingly, one should distinguish hyper-parameters
associated with the optimizer from hyper-parameters associated with the model
itself, i.e., typically the function class, regularizer and loss function. We have al-
ready mentioned above some of the hyper-parameters typically associated with
gradient-based optimization. Here is a more extensive descriptive list, focusing
on those used in stochastic (mini-batch) gradient descent (although number of
training iterations is used for all iterative optimization algorithms).

– The initial learning rate (ε0 below, Eq.(19.2)). This is often the single
most important hyper-parameter and one should always make sure that it
has been tuned (up to approximately a factor of 2). Typical values for a
neural network with standardized inputs (or inputs mapped to the (0,1)
interval) are less than 1 and greater than 10−6 but these should not be taken
as strict ranges and greatly depend on the parametrization of the model. A
default value of 0.01 typically works for standard multi-layer neural networks
but it would be foolish to rely exclusively on this default value. If there is
only time to optimize one hyper-parameter and one uses stochastic gradient
descent, then this is the hyper-parameter that is worth tuning.

– The choice of strategy for decreasing or adapting the learning rate sched-
ule (with hyper-parameters such as the time constant τ in Eq. (19.2) below).
The default value of τ →∞ means that the learning rate is constant over
training iterations. In many cases the benefit of choosing other than this
default value is small. An example of O(1/t) learning rate schedule, used
in Bergstra and Bengio [17] is

εt =
ε0τ

max(t, τ)
(19.2)

which keeps the learning rate constant for the first τ steps and then decreases
it in O(1/tα), with traditional recommendations (based on asymptotic anal-
ysis of the convex case) suggesting α = 1. See Bach and Moulines [2] for
a recent analysis of the rate of convergence for the general case of α ≤ 1,
suggesting that smaller values of α should be used in the non-convex case,
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especially when using a gradient averaging or momentum technique (see be-
low). An adaptive and heuristic way of automatically setting τ above is to
keep εt constant until the training criterion stops decreasing significantly (by
more than some relative improvement threshold) from epoch to epoch. That
threshold is a less sensitive hyper-parameter than τ itself. An alternative to
a fixed schedule with a couple of (global) free hyper-parameters like in the
above formula is the use of an adaptive learning rate heuristic, e.g., the sim-
ple procedure proposed in [26]: at regular intervals during training, using
a fixed small subset of the training set (what matters is only the number
of examples used, not what fraction of the whole training set it represents),
continue training with N different choices of learning rate (all in parallel),
and keep the value that gave the best results until the next re-estimation of
the optimal learning rate. Other examples of adaptive learning rate strategies
are discussed below (Sec. 19.6.2).

– The mini-batch size (B in Eq. (19.1)) is typically chosen between 1 and a
few hundreds, e.g. B = 32 is a good default value, with values above 10 tak-
ing advantage of the speed-up of matrix-matrix products over matrix-vector
products. The impact of B is mostly computational, i.e., larger B yield faster
computation (with appropriate implementations) but requires visiting more
examples in order to reach the same error, since there are less updates per
epoch. In theory, this hyper-parameter should impact training time and not
so much test performance, so it can be optimized separately of the other
hyper-parameters, by comparing training curves (training and validation er-
ror vs amount of training time), after the other hyper-parameters (except
learning rate) have been selected. B and ε0 may slightly interact with other
hyper-parameters so both should be re-optimized at the end. Once B is se-
lected, it can generally be fixed while the other hyper-parameters can be
further optimized (except for a momentum hyper-parameter, if one is used).

– Number of training iterations T (measured in mini-batch updates). This
hyper-parameter is particular in that it can be optimized almost for free using
the principle of early stopping: by keeping track of the out-of-sample error
(as for example estimated on a validation set) as training progresses (every
N updates), one can decide how long to train for any given setting of all the
other hyper-parameters. Early stopping is an inexpensive way to avoid strong
overfitting, i.e., even if the other hyper-parameters would yield to overfitting,
early stopping will considerably reduce the overfitting damage that would
otherwise ensue. It also means that it hides the overfitting effect of other
hyper-parameters, possibly obscuring the analysis that one may want to do
when trying to figure out the effect of individual hyper-parameters, i.e., it
tends to even out the performance obtained by many otherwise overfitting
configurations of hyper-parameters by compensating a too large capacity
with a smaller training time. For this reason, it might be useful to turn
early-stopping off when analyzing the effect of individual hyper-parameters.
Now let us turn to implementation details. Practically, one needs to continue
training beyond the selected number of training iterations T̂ (which should be
the point of lowest validation error in the training run) in order to ascertain



19. Recommendations for Training Deep Architectures 449

that validation error is unlikely to go lower than at the selected point. A
heuristic introduced in the Deep Learning Tutorials15 is based on the idea
of patience (set initially to 10000 examples in the MLP tutorial), which is
a minimum number of training examples to see after the candidate selected
point T̂ before deciding to stop training (i.e. before accepting this candidate
as the final answer). As training proceeds and new candidate selected points
T̂ (new minima of the validation error) are observed, the patience parameter
is increased, either multiplicatively or additively on top of the last T̂ found.
Hence, if we find a new minimum16 at t, we save the current best model,
update T̂ ← t and we increase our patience up to t+constant or t× constant.
Note that validation error should not be estimated after each training update
(that would be really wasteful) but after every N examples, where N is at
least as large as the validation set (ideally several times larger so that the
early stopping overhead remains small)17.

– Momentum β. It has long been advocated [56, 59] to temporally smooth
out the stochastic gradient samples obtained during the stochastic gradi-
ent descent. For example, a moving average of the past gradients can be
computed with ḡ ← (1 − β)ḡ + βg, where g is the instantaneous gradient
∂L(zt,θ)

∂θ or a minibatch average, and β is a small positive coefficient that
controls how fast the old examples get downweighted in the moving aver-
age. The simplest momentum trick is to make the updates proportional to
this smoothed gradient estimator ḡ instead of the instantaneous gradient g.
The idea is that it removes some of the noise and oscillations that gradient
descent has, in particular in the directions of high curvature of the loss func-
tion18. A default value of β = 1 (no momentum) works well in many cases
but in some cases momentum seems to make a positive difference. Polyak
averaging [93] is a related form of parameter averaging19 that has theoretical
advantages and has been advocated and shown to bring improvements on
some unsupervised learning procedures such as RBMs [110]. More recently,
several mathematically motivated algorithms [88, 75] have been proposed
that incorporate some form of momentum and that also ensure much faster
convergence (linear rather than sublinear) compared to stochastic gradient

15 http://deeplearning.net/tutorial/
16 Ideally, we should use a statistical test of significance and accept a new minimum

(over a longer training period) only if the improvement is statistically significant,
based on the size and variance estimates one can compute for the validation set.

17 When an extra processor on the same machine is available, validation error can
conveniently be recomputed by a processor different from the one performing the
training updates, allowing more frequent computation of validation error.

18 Think about a ball coming down a valley. Since it has not started from the bottom of
the valley it will oscillate between its sides as it settles deeper, forcing the learning
rate to be small to avoid large oscillations that would kick it out of the valley.
Averaging out the local gradients along the way will cancel the opposing forces from
each side of the valley.

19 Polyak averaging uses for predictions a moving average of the parameters found in
the trajectory of stochastic gradient descent.
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descent, at least for convex optimization problems. See also [26] for an exam-
ple of averaged SGD with successful empirical speedups in the convex case.
Note however that in the pure online case (stream of examples) and under
some assumptions, the sublinear rate of convergence of stochastic gradient
descent with O(1/t) decrease of learning rate is an optimal rate, at least for
convex problems [87]. That would suggest that for really large training sets
it may not be possible to obtain better rates than ordinary stochastic gra-
dient descent, albeit the constants in front (which depend on the condition
number of the Hessian) may still be greatly reduced by using second-order
information online [28, 27].

– Layer-specific optimization hyper-parameters: although rarely done,
it is possible to use different values of optimization hyper-parameters (such
as the learning rate) on different layers of a multi-layer network. This is
especially appropriate (and easier to do) in the context of layer-wise unsu-
pervised pre-training, since each layer is trained separately (while the layers
below are kept fixed). This would be particularly useful when the number of
units per layer varies a lot from layer to layer. See the paragraph below enti-
tled Layer-wise optimization of hyper-parameters (Sec. 19.3.3). Some
researchers also advocate the use of different learning rates for the different
types of parameters one finds in the model, such as biases and weights in the
standard multi-layer network, but the issue becomes more important when
parameters such as precision or variance are included in the lot [38].

Up to now we have only discussed the hyper-parameters in the setup where
one trains a neural network by stochastic gradient descent. With other opti-
mization algorithms, some hyper-parameters are typically different. For exam-
ple, Conjugate Gradient (CG) algorithms typically have a number of line search
steps (which is a hyper-parameter) and a tolerance for stopping each line search
(another hyper-parameter). An optimization algorithm like L-BFGS (limited-
memory Broyden-Fletcher-Goldfarb-Shanno) also has a hyper-parameter con-
trolling the memory usage of the algorithm, the rank of the Hessian approxima-
tion kept in memory, which also has an influence on the efficiency of each step.
Both CG and L-BFGS are iterative (e.g., one line search per iteration), and the
number of iterations can be optimized as described above for stochastic gradient
descent, with early stopping.

19.3.2 Hyper-parameters of the Model and Training Criterion

Let us now turn to “model” and “criterion” hyper-parameters typically found in
neural networks, especially deep neural networks.

– Number of hidden units nh. Each layer in a multi-layer neural network
typically has a size that we are free to set and that controls capacity. Because
of early stopping and possibly other regularizers (e.g., weight decay, discussed
below), it is mostly important to choose nh large enough. Larger than op-
timal values typically do not hurt generalization performance much, but of



19. Recommendations for Training Deep Architectures 451

course they require proportionally more computation (in O(n2h) if scaling all
the layers at the same time in a fully connected architecture). Like for many
other hyper-parameters, there is the option of allowing a different value of
nh for each hidden layer20 of a deep architecture. See the paragraph below
entitled Layer-wise optimization of hyper-parameters (Sec. 19.3.3).
In a large comparative study [70], we found that using the same size for
all layers worked generally better or the same as using a decreasing size
(pyramid-like) or increasing size (upside down pyramid), but of course this
may be data-dependent. For most tasks that we worked on, we find that an
overcomplete21 first hidden layer works better than an undercomplete one.
Another even more often validated empirical observation is that the opti-
mal nh is much larger when using unsupervised pre-training in a supervised
neural network, e.g., going from hundreds of units to thousands of units.
A plausible explanation is that after unsupervised pre-training many of the
hidden units are carrying information that is irrelevant to the specific super-
vised task of interest. In order to make sure that the information relevant to
the task is captured, larger hidden layers are therefore necessary when using
unsupervised pre-training.

– Weight decay regularization coefficient λ. A way to reduce overfitting is
to add a regularization term to the training criterion, which limits the ca-
pacity of the learner. The parameters of machine learning models can be
regularized by pushing them towards a prior value, which is typically 0.
L2 regularization adds a term λ

∑
i θ

2
i to the training criterion, while L1

regularization adds a term λ
∑

i |θi|. Both types of terms can be included.
There is a clean Bayesian justification for such a regularization term: it is
the negative log-prior − logP (θ) on the parameters θ. The training criterion
then corresponds to the negative joint likelihood of data and parameters,
− logP (data, θ) = − logP (data|θ)− logP (θ), with the loss function L(z, θ)
being interpreted as − logP (z|θ) and − logP (data|θ) = −

∑T
t=1 L(zt, θ) if

the data consists of T i.i.d. examples zt. This detail is important to note
because when one is doing stochastic gradient-based learning, it makes sense
to use an unbiased estimator of the gradient of the total training criterion
(including both the total loss and the regularizer), but one only considers
a single mini-batch or example at a time. How should the regularizer be
weighted in this sum, which is different from the sum of the regularizer and
the total loss on all examples? On each mini-batch update, the gradient of
the regularization penalty should be multiplied not just by λ but also by B

T ,
i.e., one over the number of updates needed to go once through the training
set. When the training set size is not a multiple of B, the last mini-batch
will have size B′ < B and the contribution of the regularizer to the mini-
batch gradient should therefore be modified accordingly (i.e. scaled by B′

B
compared to other mini-batches). In the pure online setting (there is no fixed
ahead training set size nor iterating again on the examples), it would then

20 A hidden layer is a group of units that is neither an input layer nor an output layer.
21 Larger than the input vector.
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make sense to use B
t at example t, or one over the number of updates to

date. L2 regularization penalizes large values more strongly and corresponds
to a Gaussian prior ∝ exp(− 1

2
||θ||2
σ2 ) with prior variance σ2 = 1/(2λ). Note

that there is a connection between early stopping (see above, choosing the
number of training iterations) and L2 regularization [34], with one basically
playing the same role as the other (but early stopping allowing a much more
efficient selection of the hyper-parameter value, which suggests dropping L2
regularization altogether when early-stopping is used). However, L1 regular-
ization behaves differently and can sometimes be useful, acting as a form of
feature selection. L1 regularization makes sure that parameters that are not
really very useful are driven to zero (i.e. encouraging sparsity of the param-
eter values), and corresponds to a Laplace density prior ∝ e− |θ|

s with scale
parameter s = 1

λ . L1 regularization often helps to make the input filters22
cleaner (more spatially localized) and easier to interpret. Stochastic gradi-
ent descent will not yield actual zeros but values hovering around zero. If
both L1 and L2 regularization are used, a different coefficient (i.e. a differ-
ent hyper-parameter) should be considered for each, and one may also use a
different coefficient for different layers. In particular, the input weights and
output weights may be treated differently.

One reason for treating output weights differently (i.e., not relying only
on early stopping) is that we know that it is sufficient to regularize only the
output weights in order to constrain capacity: in the limit case of the number
of hidden units going to infinity, L2 regularization corresponds to Support
Vector Machines (SVM) while L1 regularization corresponds to boosting [12].
Another reason for treating inputs and outputs differently from hidden units
is because they may be sparse. For example, some input features may be 0
most of the time while others are non-zero frequently. In that case, there are
fewer examples that inform the model about that rarely active input feature,
and the corresponding parameters (weights outgoing from the correspond-
ing input units) should be more regularized than the parameters associated
with frequently observed inputs. A similar situation may occur with target
variables that are sparse (e.g., trying to predict rarely observed events). In
both cases, the effective number of meaningful updates seen by these pa-
rameters is less than the actual number of updates. This suggests to scale
the regularization coefficient of these parameters by one over the effective
number of updates seen by the parameter. A related formula turns up in
Bayesian probit regression applied to sparse inputs [53]. Some practitioners
also choose to penalize only the weights w and not the biases b associated
with the hidden unit activations w′z+b for a unit taking the vector of values
z as input. This guarantees that even with strong regularization, the predic-
tor would converge to the optimal constant predictor, rather than the one
corresponding to 0 activation. For example, with the mean-square loss and
the cross-entropy loss, the optimal constant predictor is the output average.

22 The input weights of a 1st layer neuron are often called “filters” because of analogies
with signal processing techniques such as convolutions.
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– Sparsity of activation regularization coefficient α. A common practice in
the Deep Learning literature [95, 97, 81, 82, 3, 49, 33, 52] consists in adding
a penalty term to the training criterion that encourages the hidden units to
be sparse, i.e., with values at or near 0. Although the L1 penalty (discussed
above in the case of weights) can also be applied to hidden units activations,
this is mathematically very different from the L1 regularization term on
parameters. Whereas the latter corresponds to a prior on the parameters,
the former does not because it involves the training distribution (since we
are looking at data-dependent hidden units outputs). Although we will not
discuss this much here, the inspiration for a sparse representation in Deep
Learning comes from the earlier work on sparse coding [89]. As discussed
in Goodfellow et al. [51] sparse representations may be advantageous because
they encourage representations that disentangle the underlying factors of
representation. A sparsity-inducing penalty is also a way to regularize (in
the sense of reducing the number of examples that the learner can learn
by heart) [97], which means that the sparsity coefficient is likely to interact
with the many other hyper-parameters which influence capacity. In general,
increased sparsity can be compensated by a larger number of hidden units.
Several approaches have been proposed to induce a sparse representation (or
with more hidden units whose activation is closer to 0). One approach [97,
72, 120] is simply to penalize the L1 norm of the representation or another
function of the hidden units’ activation (such as the student-t log-prior). This
typically makes sense for non-linearities such as the sigmoid which have a
saturating output around 0, but not for the hyperbolic tangent non-linearity
(whose saturation is near the -1 and 1 interval borders rather than near
the origin). Another option is to penalize the biases of the hidden units,
to make them more negative [95, 81, 51, 69]. Note that penalizing the bias
runs the danger that the weights could compensate for the bias23, which
could hurt the numerical optimization of parameters. When directly penal-
izing the hidden unit outputs, several variants can be found in the literature,
but no clear comparative analysis has been published to evaluate which one
works better. Although the L1 penalty (i.e., simply α times the sum of out-
put elements hj in the case of sigmoid non-linearity) would seem the most
natural (because of its use in sparse coding), it is used in few papers involv-
ing sparse auto-encoders. A close cousin of the L1 penalty is the Student-t
penalty (log(1 + h2j)), originally proposed for sparse coding [89]. Several
researchers penalize the average output h̄j (e.g. over a mini-batch), and in-
stead of pushing it to 0, encourage it to approach a fixed target ρ. This
can be done through a mean-square error penalty such as

∑
j(ρ − h̄j)2, or

maybe more sensibly (because hj behaves like a probability), a Kullback-
Liebler divergence with respect to the binomial distribution with probability
ρ, −ρ log h̄j − (1− ρ) log(1− h̄j)+constant, e.g., with ρ = 0.05, as in [59]. In
addition to the regularization penalty itself, the choice of activation function

23 Because the input to the layer generally has a non-zero average, that when multiplied
by the weights acts like a bias.
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can have a strong impact on the sparsity obtained. In particular, rectifying
non-linearities (such as max(0, x), instead of a sigmoid) have been very suc-
cessful in several instances [64, 86, 49, 84, 50]. The rectifier also relates to the
hard tanh [35], whose derivatives are also 0 or 1. In sparse coding and sparse
predictive coding [65] the activations are directly optimized and actual zeros
are the expected result of the optimization. In that case, ordinary stochastic
gradient is not guaranteed to find these zeros (it will oscillate around) and
other methods such as proximal gradient are more appropriate [21].

– Neuron non-linearity. The typical neuron output is s(a) = s(w′x + b),
where x is the vector of inputs into the neuron, w the vector of weights and
b the offset or bias parameter, while s is a scalar non-linear function. Sev-
eral non-linearities have been proposed and some choices of non-linearities
have been shown to be more successful [64, 48, 49]. The most commonly
used by the author, for hidden units, are the sigmoid 1/(1 + e−a), the hy-
perbolic tangent ea−e−a

ea+e−a , the rectifier max(0, a) and the hard tanh [35]. Note
that the sigmoid was shown to yield serious optimization difficulties when
used as the top hidden layer of a deep supervised network [48] without
unsupervised pre-training, but works well for auto-encoder variants24. For
output (or reconstruction) units, hard neuron non-linearities like the recti-
fier do not make sense because when the unit is saturated (e.g. a < 0 for
the rectifier) and associated with a loss, no gradient is propagated inside the
network, i.e., there is no chance to correct the error25. In the case of hid-
den layers the gradient manages to go through a subset of the hidden units,
even if the others are saturated. For output units a good trick is to obtain
the output non-linearity and the loss by considering the associated negative
log-likelihood and choosing an appropriate (conditional) output probability
model, usually in the exponential family. For example, one can typically take
squared error and linear outputs to correspond to a Gaussian output model,
cross-entropy and sigmoids to correspond to a binomial output model, and
− log output[target class] with softmax outputs to correspond to multino-
mial output variables. For reasons yet to be elucidated, having a sigmoidal
non-linearity on the output (reconstruction) units (along with target inputs
normalized in the (0,1) interval) seems to be helpful when training the con-
tractive auto-encoder.

– Weights initialization scaling coefficient. Biases can generally be ini-
tialized to zero but weights need to be initialized carefully to break the

24 The author hypothesizes that this discrepency is due to the fact that the weight
matrix W of an auto-encoder of the form r(x) =W T sigmoid(Wx) is pulled towards
being orthonormal since this would make the auto-encoder closer to the identity
function, because W TWx ≈ x when W is orthonormal and x is in the span of the
rows of W .

25 A hard non-linearity for the output units non-linearity is very different from a hard
non-linearity in the loss function, such as the hinge loss. In the latter case the
derivative is 0 only when there is no error.
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symmetry between hidden units of the same layer26. Because different out-
put units receive different gradient signals, this symmetry breaking issue
does not concern the output weights (into the output units), which can
therefore also be set to zero. Although several tricks [79, 48] for initializing
the weights into hidden layers have been proposed (i.e. a hyper-parameter
is the discrete choice between them), Bergstra and Bengio [17] also inserted
as an extra hyper-parameter a scaling coefficient for the initialization range.
These tricks are based on the idea that units with more inputs (the fan-
in of the unit) should have smaller weights. Both LeCun et al. [79] and
Glorot and Bengio [48] recommend scaling by the inverse of the square
root of the fan-in, although Glorot and Bengio [48] and the Deep Learn-
ing Tutorials use a combination of the fan-in and fan-out, e.g., sample a
Uniform(−r, r) with r =

√
6/(fan-in+ fan-out) for hyperbolic tangent units

and r = 4
√
6/(fan-in + fan-out) for sigmoid units. We have found that we

could avoid any hyper-parameter related to initialization using these formu-
las (and the derivation in Glorot and Bengio [48] can be used to derive the
formula for other settings). Note however that in the case of RBMs, a zero-
mean Gaussian with a small standard deviation around 0.1 or 0.01 works
well [59] to initialize the weights, while visible biases are typically set to
their optimal value if the weights were 0, i.e., log(x̄/(1− x̄)) in the case of a
binomial visible unit whose corresponding binary input feature has empirical
mean x̄ in the training set.

An important choice is whether one should use unsupervised pre-training
(and which unsupervised feature learning algorithm to use) in order to ini-
tialize parameters. In most settings we have found unsupervised pre-training
to help and very rarely to hurt, but of course that implies additional training
time and additional hyper-parameters.

– Random seeds. There are often several sources of randomness in the train-
ing of neural networks and deep learners (such as for random initializa-
tion, sampling examples, sampling hidden units in stochastic models such
as RBMs, or sampling corruption noise in denoising auto-encoders). Some
random seeds could therefore yield better results than others. Because of the
presence of local minima in the training criterion of neural networks (except
in the linear case or with fixed lower layers), parameter initialization matters.
See Erhan et al. [44] for an example of histograms of test errors for hundreds
of different random seeds. Typically, the choice of random seed only has a
slight effect on the result and can mostly be ignored in general or for most
of the hyper-parameter search process. If computing power is available, then
a final set of jobs with different random seeds (5 to 10) for a small set of
best choices of hyper-parameter values can squeeze a bit more performance.
Another way to exploit computing power to push performance a bit is model
averaging, as in Bagging [29] and Bayesian methods. After training them,

26 By symmetry, if hidden units of the same layer share the same input and output
weights, they will compute the same output and receive the same gradient, hence
performing the same update and remaining identical, thus wasting capacity.
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the outputs of different networks (or in general different learning algorithms)
can be averaged. For example, the difference between the neural networks
being averaged into a committee may come from the different seeds used for
parameter initialization, or the use of different subsets of input variables, or
different subsets of training examples (the latter being called Bagging).

– Preprocessing. Many preprocessing steps have been proposed to massage
raw data into appropriate inputs for neural networks and model selection
must also choose among them. In addition to element-wise standardization
(subtract mean and divide by standard deviation), Principal Components
Analysis (PCA) has often been advocated [79, 17] and also allows dimen-
sionality reduction, at the price of an extra hyper-parameter (the number of
principal components retained, or the proportion of variance explained). A
convenient non-linear preprocessing is the uniformization [84] of each feature
(which estimates its cumulative distribution Fi and then transforms each fea-
ture xi by its quantile F−1

i (xi), i.e., returns an approximate normalized rank
or quantile for the value xi). A simpler to compute transform that may help
reduce the tails of input features is a non-linearity such as the logarithm or
the square root, in an attempt to make them more Gaussian-like.

In addition to the above somewhat generic choices, more choices arise with dif-
ferent architectures and learning algorithms. For example, the denoising auto-
encoder has a hyper-parameter scaling the amount of input corruption and the
contractive auto-encoder has as hyper-parameter a coefficient scaling the norm of
the Jacobian of the encoder, i.e., controlling the importance of the contraction
penalty. The latter seems to be a rather sensitive hyper-parameter that must
be tuned carefully. The contractive auto-encoder’s success also seems sensitive
to the weight tying constraint used in many auto-encoder architectures: the
decoder’s weight matrix is equal to the transpose of the encoder’s weight ma-
trix. The specific architecture used in the contractive auto-encoder (with tied
weights, sigmoid non-linearies on hidden and reconstruction units, along with
squared loss or cross-entropy loss) works quite well but other related variants do
not always train well, for reasons that remain to be understood.

There are also many architectural choices that are relevant in the case of
convolutional architectures (e.g. for modeling images, time-series or sound) [78,
80, 71] in which hidden units have local receptive fields.

19.3.3 Manual Search and Grid Search

Many of the hyper-parameters or model choices described above can be ignored
by picking a standard trick suggested here or in some other paper. Still, one
remains with a substantial number of choices to be made, which may give the
impression of neural network training as an art. With modern computing fa-
cilities based on large computer clusters, it is however possible to make the
optimization of hyper-parameters a more reproducible and automated process,
using techniques such as grid search or better, random search, or even hyper-
parameter optimization, discussed below.
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General Guidance for the Exploration of Hyper-parameters. First of
all, let us consider recommendations for exploring hyper-parameter settings,
whether with manual search, with an automated procedure, or with a combi-
nation of both. We call a numerical hyper-parameter one that involves choosing
a real number or an integer (where order matters), as opposed to making a
discrete symbolic choice from an unordered set. Examples of numerical hyper-
parameters are regularization coefficients, number of hidden units, number of
training iterations, etc. One has to think of hyper-parameter selection as a diffi-
cult form of learning: there is both an optimization problem (looking for hyper-
parameter configurations that yield low validation error) and a generalization
problem: there is uncertainty about the expected generalization after optimizing
validation performance, and it is possible to overfit the validation error and get
optimistically biased estimators of performance when comparing many hyper-
parameter configurations. The training criterion for this learning is typically the
validation set error, which is a proxy for generalization error. Unfortunately,
the relation between hyper-parameters and validation error can be complicated.
Although to first approximation we expect a kind of U-shaped curve (when con-
sidering only a single hyper-parameter, the others being fixed), this curve can
also have noisy variations, in part due to the use of finite data sets.

– Best value on the border. When considering the validation error ob-
tained for different values of a numerical hyper-parameter one should pay
attention as to whether or not the best value found is near the border of the
investigated interval. If it is near the border, then this suggests that better
values can be found with values beyond the border: it is recommended in
that case to explore further, beyond that border. Because the relation be-
tween a hyper-parameter and validation error can be noisy, it is generally
not enough to try very few values. For instance, trying only 3 values for a
numerical hyper-parameter is insufficient, even if the best value found is the
middle one.

– Scale of values considered. Exploring values of a numerical
hyper-parameter entails choosing a starting interval to be searched, which
is therefore a kind of hyper-hyper-parameter. By choosing the interval large
enough to start with, but based on previous experience with this hyper-
parameter, we ensure that we do not get completely wrong results. Now
instead of choosing the intermediate values linearly in the chosen interval,
it often makes much more sense to consider a linear or uniform sampling
in the log-domain (in the space of the logarithm of the hyper-parameter).
For example, the results obtained with a learning rate of 0.01 are likely to
be very similar to the results with 0.011 while results with 0.001 could be
quite different from results with 0.002 even though the absolute difference is
the same in both cases. The ratio between different values is often a better
guide of the expected impact of the change. That is why exploring uniformly
or regularly-spaced values in the space of the logarithm of the numerical
hyper-parameter is typically preferred for positive-valued numerical hyper-
parameters.
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– Computational considerations. Validation error is actually not the only
measure to consider in selecting hyper-parameters. Often, one has to con-
sider computational cost, either of training or prediction. Computing re-
sources for training and prediction are limited and generally condition the
choice of intervals of considered values: for example increasing the number
of hidden units or number of training iterations also scales up computation.
An interesting idea is to use computationally cheap estimators of validation
error to select some hyper-parameters. For example, Saxe et al. [105] showed
that the architecture hyper-parameters of convolutional networks could be
selected using random weights in the lower layers of the network (filters of
the convolution). While this yields a noisy and biased (pessimistic) esti-
mator of the validation error which would otherwise be obtained with full
training, this cheap estimator appears to be correlated with the expensive
validation error. Hence this cheap estimator is enough for selecting some
hyper-parameters (or for keeping under consideration for further and more
expensive evaluation only the few best choices found). Even without cheap
estimators of generalization error, high-throughput computing (e.g., on clus-
ters, GPUs, or clusters of GPUs) can be exploited to run not just hundreds
but thousands of training jobs, something not conceivable only a few years
ago, with each job taking on the order of hours or days for larger datasets.
With computationally cheap surrogates, some researchers have run on the
order of ten thousands trials, and we can expect future advances in paral-
lelized computing power to boost these numbers.

Coordinate Descent and Multi-resolution Search. When performing a
manual search and with access to only a single computer, a reasonable strategy
is coordinate descent: change only one hyper-parameter at a time, always making
a change from the best configuration of hyper-parameters found up to now.
Instead of a standard coordinate descent (which systematically cycles through
all the variables to be optimized) one can make sure to regularly fine-tune the
most sensitive variables, such as the learning rate.

Another important idea is that there is no point in exploring the effect of
fine changes before one or more reasonably good settings have been found. The
idea of multi-resolution search is to start the search by considering only a few
values of the numerical hyper-parameters (over a large range), or considering
large changes each time a new value is tried. One can then start from the one
or few best configurations found and explore more locally around them with
smaller variations around these values.

Automated and Semi-automated Grid Search. Once some interval or set
of values has been selected for each hyper-parameter (thus defining a search
space), a simple strategy that exploits parallel computing is the grid search.
One first needs to convert the numerical intervals into lists of values (e.g., K
regularly-spaced values in the log-domain of the hyper-parameter). The grid
search is simply an exhaustive search through all the combinations of these
values. The cross-product of these lists contains a number of elements that
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is unfortunately exponential in the number of hyper-parameters (e.g., with 5
hyper-parameters, each allowed to take 6 different values, one gets 65 = 7776
configurations). In section 19.3.4 below we consider an approach that works more
efficiently than the grid search when the number of hyper-parameters increases
beyond 2 or 3.

The advantage of the grid search, compared to many other optimization strate-
gies (such as coordinate descent), is that it is fully parallelizable. If a large com-
puter cluster is available, it is tempting to choose a model selection strategy that
can take advantage of parallelization. One practical disadvantage of grid search
(especially against random search, Sec. 19.3.4), with a parallelized set of jobs on
a cluster, is that if only one of the jobs fails27 then one has to launch another
volley of jobs to complete the grid (and yet a third one if any of these fails, etc.),
thus multiplying the overall computing time.

Typically, a single grid search is not enough and practitioners tend to pro-
ceed with a sequence of grid searches, each time adjusting the ranges of values
considered based on the previous results obtained. Although this can be done
manually, this procedure can also be automated by considering the idea of multi-
resolution search to guide this outer loop. Different, more local, grid searches can
be launched in the neighborhood of the best solutions found previously. In ad-
dition, the idea of coordinate descent can also be thrown in, by making each
grid search focus on only a few of the hyper-parameters. For example, it is com-
mon practice to start by exploring the initial learning rate while keeping fixed
(and initially constant) the learning rate descent schedule. Once the shape of
the schedule has been chosen, it may be possible to further refine the learning
rate, but in a smaller interval around the best value found.

Humans can get very good at performing hyper-parameter search, and having
a human in the loop also has the advantage that it can help detect bugs or
unwanted or unexpected behavior of a learning algorithm. However, for the sake
of reproducibility, machine learning researchers should strive to use procedures
that do not involve human decisions in the middle, only at the outset (e.g.,
setting hyper-parameter ranges, which can be specified in a paper describing the
experiments).

Layer-Wise Optimization of Hyper-parameters. In the case of Deep Learn-
ing with unsupervised pre-training there is an opportunity for combining coor-
dinate descent and cheap relative validation set performance evaluation associ-
ated with some hyper-parameter choices. The idea, described by Mesnil et al.
[84], Bengio [8], is to perform greedy choices for the hyper-parameters associ-
ated with lower layers (near the input) before training the higher layers. One
first trains (unsupervised) the first layer with different hyper-parameter values
and somehow estimates the relative validation error that would be obtained from
these different configurations if the final network only had this single layer as
internal representation. In the common case where the ultimate task is super-
vised, it means training a simple supervised predictor (e.g. a linear classifier) on

27 For all kinds of hardware and software reasons, a job failing is very common.
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top of the learned representation. In the case of a linear predictor (e.g. regres-
sion or logistic regression) this can even be done on the fly while unsupervised
training of the representation progresses (i.e. can be used for early stopping as
well), as in [70]. Once a set of apparently good (according to this greedy evalu-
ation) hyper-parameters values has been found (or possibly using only the best
one found), these good values can be used as starting point to train (and hyper-
optimize) a second layer in the same way, etc. The completely greedy approach is
to keep only the best configuration up to now (for the lower layers), but keeping
the K best configurations overall only multiplies computational costs of hyper-
parameter selection by K for layers beyond the first one, because we would
still keep only the best K configurations from all the 1st layer and 2nd layer
hyper-parameters as starting points for exploring 3rd layer hyper-parameters,
etc. This procedure is formalized in the Algorithm 19.1 below. Since greedy
layer-wise pre-training does not modify the lower layers when pre-training the
upper layers, this is also very efficient computationally. This procedure allows
one to set the hyper-parameters associated with the unsupervised pre-training
stage, and then there remains hyper-parameters to be selected for the supervised
fine-tuning stage, if one is desired. A final supervised fine-tuning stage is strongly
suggested, especially when there are many labeled examples [67].

19.3.4 Random Sampling of Hyper-parameters

A serious problem with the grid search approach to find good hyper-parameter
configurations is that it scales exponentially badly with the number of hyper-
parameters considered. In the above sections we have discussed numerous hyper-
parameters and if all of them were to be explored at the same time it would be
impossible to use only a grid search to do so.

One may think that there are no other options simply because this is an in-
stance of the curse of dimensionality. But like we have found in our work on Deep
Learning [7], if there is some structure in a target function we are trying to dis-
cover, then there is a chance to find good solutions without paying an exponential
price. It turns out that in many practical cases we have encountered, there is
a kind of structure that random sampling can exploit [17]. The idea of random
sampling is to replace the regular grid by a random (typically uniform) sam-
pling. Each tested hyper-parameter configuration is selected by independently
sampling each hyper-parameter from a prior distribution (typically uniform in
the log-domain, inside the interval of interest). For a discrete hyper-parameter,
a multinomial distribution can be defined according to our prior beliefs on the
likely good values. At worse, i.e., with no prior preference at all, this would be
a uniform distribution across the allowed values. In fact, we can use our prior
knowledge to make this prior distribution quite sophisticated. For example, we
can readily include knowledge that some values of some hyper-parameters only
make sense in the context of other particular values of hyper-parameters. This
is a practical consideration for example when considering layer-specific hyper-
parameters when the number of layers itself is a hyper-parameter.
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Algorithm 19.1 Greedy layer-wise hyper-parameter optimization.
input K: number of best configurations to keep at each level.
input NLEV ELS: number of levels of the deep architecture
input LEV ELSETTINGS: list of hyper-parameter settings to be considered
for unsupervised pre-training of a level
input SFTSETTINGS: list of hyper-parameter settings to be considered for
supervised fine-tuning

Initialize set of best configurations S = ∅
for L = 1 to NLEV ELS do

for C in LEV ELSETTINGS do
for H in (S or {∅}) do

* Pretrain level L using hyper-parameter setting C for level L and
the parameters obtained with setting H for lower levels.

* Evaluate target task performance L using this depth-L pre-trained
architecture (e.g. train a linear classifier on top of these layers and estimate
validation error).

* Push the pair (C∪H,L) into S if it is among theK best performing
of S.

end for
end for

end for
for C in SFTSETTINGS do

for H in S do
* Supervised fine-tuning of the pre-trained architecture associated with

H , using supervised fine-tuning hyper-parameter setting C.
* Evaluate target task performance L of this fine-tuned predictor (e.g.

validation error).
* Push the pair (C ∪H,L) into S if it is among the K best performing

of S.
end for

end for
output S the set of K best-performing models with their settings and vali-
dation performance.
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The experiments performed [17] show that random sampling can be many
times more efficient than grid search as soon as the number of hyper-parameters
goes beyond the 2 or 3 typically seen with SVMs and vanilla neural networks.
The main reason why faster convergence is observed is because it allows one to
explore more values for each hyper-parameter, whereas in grid search, the same
value of a hyper-parameter is repeated in exponentially many configurations (of
all the other hyper-parameters). In particular, if only a small subset of the hyper-
parameters really matters, then this procedure can be shown to be exponentially
more efficient. What we found is that for different datasets and architectures, the
subset of hyper-parameters that mattered most was different, but it was often
the case that a few hyper-parameters made a big difference (and the learning rate
is always one of them!). When marginalizing (by averaging or minimizing) the
validation performance to visualize the effect of one or two hyper-parameters,
we get a more noisy picture using a random search compared to a grid search,
because of the random variations of the other hyper-parameters but one with
much more resolution, because so many more different values have been consid-
ered. Practically, one can plot the curves of best validation error as the number
of random trials28 is increased (with mean and standard deviation, obtained by
considering, for each choice of number of trials, all possible same-size subsets of
trials), and this curve tells us that we are approaching a plateau, i.e., it tells
us whether it is worth it or not to continue launching jobs, i.e., we can per-
form a kind of early stopping in the outer optimization over hyper-parameters.
Note that one should distinguish the curve of the “best trial in first N trials”
with the curve of the mean (and standard deviation) of the “best in a subset
of size N”. The latter is a better statistical representative of the improvements
we should expect if we increase the number of trials. Even if the former has a
plateau, the latter may still be on the increase, pointing for the need to more
hyper-parameter configuration samples, i.e., more trials [17]. Comparing these
curves with the equivalent obtained from grid search we see faster convergence
with random search. On the other hand, note that one advantage of grid search
compared to random sampling is that the qualitative analysis of results is eas-
ier because one can consider variations of a single hyper-parameter with all the
other hyper-parameters being fixed. It may remain a valid option to do a small
grid search around the best solutions found by random search, considering only
the hyper-parameters that were found to matter or which concern a scientific
question of interest29.

Random search maintains the advantage of easy parallelization provided by
grid search and improves on it. Indeed, a practical advantage of random search
compared to grid search is that if one of the jobs fails then there is no need to
re-launch that job. It also means that if one has launched 100 random search

28 Each random trial corresponding to a training job with a particular choice of hyper-
parameter values.

29 This is often the case in machine learning research, e.g., does depth of architecture
matter? then we need to control accurately for the effect of depth, with all other
hyper-parameters optimized for each value of depth.
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jobs, and finds that the convergence curve still has an interesting slope, one can
launch another 50 or 100 without wasting the first 100. It is not that simple to
combine the results of two grid searches because they are not always compatible
(i.e., one is not a subset of the other).

Finally, although random search is a useful addition to the toolbox of the
practitioner, semi-automatic exploration is still helpful and one will often iterate
between launching a new volley of jobs and analysis of the results obtained with
the previous volley in order to guide model design and research. What we need
is more, and more efficient, automation of hyper-parameter optimization. There
are some interesting steps in this direction [62, 19, 63, 109] but much more needs
to done.

19.4 Debugging and Analysis

19.4.1 Gradient Checking and Controlled Overfitting

A very useful debugging step consists in verifying that the implementation of
the gradient ∂L

∂θ is compatible with the computation of L as a function of θ. If
the analytically computed gradient does not match the one obtained by a finite
difference approximation, this signals that a bug is probably present somewhere.
First of all, looking at for which i one gets important relative change between ∂L

∂θi
and its finite difference approximation, we can get hints as to where the problem
may be. An error in sign is particularly troubling, of course. A good next step is
then to verify in the same way intermediate gradients ∂L

∂a with a some quantities
that depend on the faulty θ, such as intervening neuron activations.

As many researchers know, the gradient can be approximated by a finite
difference approximation obtained from the first-order Taylor expansion of a
scalar function f with respect to a scalar argument x:

∂f(x)

∂x
=
f(x+ ε)− f(x)

ε
+ o(ε)

But a less known fact is that a second order approximation can be achieved by
considering the following alternative formula:

∂f(x)

∂x
≈ f(x+ ε)− f(x− ε)

2ε
+ o(ε2).

The second order terms of the Taylor expansion of f(x+ ε) and f(x− ε) cancel
each other because they are even, leaving only 3rd or higher order terms, i.e.,
o(ε2) error after dividing the difference by ε. Hence this formula is twice more
expensive (not a big deal while debugging) but provides quadratically more
precision.

Note that because of finite precision in the computation, there will be a differ-
ence between the analytic (even correct) and finite difference gradient. Contrary
to naive expectations, the relative difference may grow if we choose an ε that is
too small, i.e., the error should first decrease as ε is decreased, and then may
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worsen when numerical precision kicks in, due to non-linearities. We have often
used a value of ε = 10−4 in neural networks, a value that is sufficiently small to
detect most bugs.

Once the gradient is known to be well computed, another sanity check is that
gradient descent (or any other gradient-based optimization) should be able to
overfit on a small training set30. In particular, to factor out effects of SGD hyper-
parameters, a good sanity check for the code (and the other hyper-parameters)
is to verify that one can overfit on a small training set using a powerful second
order method such as L-BFGS. For any optimizer, though, as the number of
examples is increased, the degradation of training error should be gradual while
validation error should improve. And one typically sees the advantages of SGD
over batch second-order methods like L-BFGS increase as the training set size
increases. The break-even point may depend on the task, parallelization (multi-
core or GPU, see Sec.19.5 below), and architecture (number of computations
compared to number of parameters, per example).

Of course, the real goal of learning is to achieve good generalization error,
and the latter can be estimated by measuring performance on an independent
test set. When test error is considered too high, the first question to ask is
whether it is because of a difficulty in optimizing the training criterion or because
of overfitting. Comparing training error and test error (and how they change
as we change hyper-parameters that influence capacity, such as the number of
training iterations) helps to answer that question. Depending on the answer, of
course, the appropriate ways to improve test error are different. Optimization
difficulties can be fixed by looking for bugs in the training code, inappropriate
values of optimization hyper-parameters, or simply insufficient capacity (e.g.
not enough degrees of freedom, hidden units, embedding sizes, etc.). Overfitting
difficulties can be addressed by collecting more training data, introducing more
or better regularization terms, multi-task training, unsupervised pre-training,
unsupervised term in the training criterion, or considering different function
families (or neural network architectures). In a multi-layer neural network, both
problems can be simultaneously present. For example, as discussed in Bengio
et al. [14], Bengio [7], it is possible to have zero training error with a large top-
level hidden layer that allows the output layer to overfit, while the lower layer
are not doing a good job of extracting useful features because they were not
properly optimized.

Unless using a framework such as Theano which automatically handles the
efficient allocation of buffers for intermediate results, it is important to pay
attention to such buffers in the design of the code. The first objective is to
avoid memory allocation in the middle of the training loop, i.e., all memory
buffers should be allocated once and for all. Careless reuse of the same memory

30 In principle, bad local minima could prevent that, but in the overfitting regime,
e.g., with more hidden units than examples, the global minimum of the training
error can generally be reached almost surely from random initialization, presumably
because the training criterion becomes convex in the parameters that suffice to get
the training error to zero [12], i.e., the output weights of the neural network.
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buffers for different uses can however lead to bugs, which can be checked, in
the debugging phase, by initializing buffers to the NaN (Not-A-Number) value,
which propagates into downstream computation (making it easy to detect that
uninitialized values were used)31.

19.4.2 Visualizations and Statistics

The most basic statistics that should be measured during training are error
statistics. The average loss on the training set and the validation set and their
evolution during training are very useful to monitor progress and differentiate
overfitting from poor optimization. To make comparisons easier, it may be useful
to compare neural networks during training in terms of their “age” (number of
updates made times mini-batch size B, i.e., number of examples visited) rather
than in terms of number of epochs (which is very sensitive to the training set
size).

When using unsupervised training to learn the first few layers of a deep ar-
chitecture, a very common debugging and analysis tool is the visualization of
filters, i.e., of the weight vectors associated with individual hidden units. This is
simplest in the case of the first layer and where the inputs are images (or image
patches), time-series, or spectrograms (all of which are visually interpretable).
Several recipes have been proposed to extend this idea to visualize the preferred
input of hidden units in layers that follow the first one [81, 43]. In the case of the
first layer, since one often obtains Gabor filters, a parametric fit of these filters to
the weight vector can be done so as to visualize the distribution of orientations,
positions and scales of the learned filters. An interesting special case of visualiz-
ing first-layer weights is the visualization of word embeddings (see Section 19.5.3
below) using a dimensionality reduction technique such as t-SNE [113].

An extension of the idea of visualizing filters (which can apply to non-linear or
deeper features) is that of visualizing local (arount the given test point) leading
tangent vectors, i.e., the main directions in input space to which the represen-
tation (at a given layer) is most sensitive to [100].

In the case where the inputs are not images or easily visualizable, or to get
a sense of the weight values in different hidden units, Hinton diagrams [58] are
also very useful, using small squares whose color (black or white) indicates a
weight’s sign and whose area represents its magnitude.

Another way to visualize what has been learned by an unsupervised (or joint
label-input) model is to look at samples from the model. Sampling procedures
have been defined at the outset for RBMs, Deep Belief Nets, and Deep Boltz-
mann Machines, for example based on Gibbs sampling. When weights become
larger, mixing between modes can become very slow with Gibbs sampling. An
interesting alternative is rates-FPCD [112, 30] which appears to be more robust
to this problem and generally mixes faster, but at the cost of losing theoretical
guarantees.

31 Personal communication from David Warde-Farley, who learned this trick from Sam
Roweis.
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In the case of auto-encoder variants, it was not clear until recently whether
they were really capturing the underlying density (since they are not optimized
with respect to the maximum likelihood principle or an approximation of it). It
was therefore even less clear if there existed appropriate sampling algorithms for
auto-encoders, but a recent proposal for sampling from contractive auto-encoders
appears to be working very well [101], based on arguments about the geometric
interpretation of the first derivative of the encoder [16], showing that denoising
and contractive auto-encoders capture local moments (first and second) of the
training density.

To get a sense of what individual hidden units represent, it has also been
proposed to vary only one unit while keeping the others fixed, e.g., to the value
obtained by finding the hidden units representation associated with a particular
input example.

Another interesting technique is the visualization of the learning trajectory in
function space [44]. The idea is to associate the function (as opposed to simply
the parameters) computed by a neural network with a low-dimensional (2-D
or 3-D) representation, e.g., with the t-SNE [113] or Isomap [111] algorithms,
and then plot the evolution of this function during training, or the population
of such trajectories for different initializations. This provides visualization of
effective local minima32 and shows that no two different random initializations
ended up in the same effective local minimum.

Finally, another useful type of visualization is to display statistics (e.g., his-
togram, mean and standard deviation) of activations (inputs and outputs of the
non-linearities at each layer), activation gradients, parameters and parameter
gradients, by groups (e.g. different layers, biases vs weights) and across training
iterations. See Glorot and Bengio [48] for a practical example. A particularly in-
teresting quantity to monitor is the discriminative ability of the representations
learnt at each layer, as discussed in [85], and ultimately leading to an analysis of
the disentangled factors captured by the different layers as we consider deeper
architectures.

19.5 Other Recommendations

19.5.1 Multi-core Machines, BLAS and GPUs

Matrix operations are the most time-consuming in efficient implementations of
many machine learning algorithms and this is particularly true of neural net-
works and deep architectures. The basic operations are matrix-vector products
(forward propagation and back-propagation) and vector times vector outer prod-
ucts (resulting in a matrix of weight gradients). Matrix-matrix multiplications
can be done substantially faster than the equivalent sequence of matrix-vector
products for two reasons: by smart caching mechanisms such as implemented in
the BLAS library (which is called from many higher-level environments such as
32 It is difficult to know for sure if it is a true local minima or if it appears like one

because the optimization algorithm is stuck.
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python’s numpy and Theano, Matlab, Torch or Lush), and thanks to parallelism.
Appropriate versions of BLAS can take advantage of multi-core machines to dis-
tribute these computations on multi-core machines. The speed-up is however
generally a fraction of the total speedup one can hope for (e.g. 4× on a 4-core
machine), because of communication overheads and because not all computa-
tion is parallelized. Parallelism becomes more efficient when the sizes of these
matrices is increased, which is why mini-batch updates can be computationally
advantageous, and more so when more cores are present.

The extreme multi-core machines are the GPUs (Graphics Processing Units),
with hundreds of cores. Unfortunately, they also come with constraints and spe-
cialized compilers which make it more difficult to fully take advantage of their
potential. On 512-core machines, we are routinely able to get speed-ups of 4×
to 40× for large neural networks. To make the use of GPUs practical, it re-
ally helps to use existing libraries that efficiently implement computations on
GPUs. See Bergstra et al. [18] for a comparative study of the Theano library
(which compiles numpy-like code for GPUs). One practical issue is that only the
GPU-compiled operations will typically be done on the GPU, and that trans-
fers between the GPU and CPU considerably slow things down. It is important
to use a profiler to find out what is done on the GPU and how efficient these
operations are in order to quickly invest one’s time where needed to make an
implementation GPU-efficient and keep most operations on the GPU card.

19.5.2 Sparse High-Dimensional Inputs

Sparse high-dimensional inputs can be efficiently handled by traditional super-
vised neural networks by using a sparse matrix multiplication. Typically, the
input is a sparse vector while the weights are in a dense matrix, and one should
use an efficient implementation made for just this case in order to optimally take
advantage of sparsity. There is still going to be an overhead on the order of 2×
or more (on the multiply-add operations, not the others) compared to a dense
implementation of the matrix-vector product.

For many unsupervised learning algorithms there is unfortunately a difficulty.
The computation for these learning algorithms usually involves some kind of
reconstruction of the input (like for all auto-encoder variants, but also for RBMs
and sparse coding variants), as if the inputs were in the output space of the
learner. Two exceptions to this problem are semi-supervised embedding [117]
and Slow Feature Analysis [119, 20]. The former pulls the representation of
nearby examples near each other and pushes dissimilar points apart, while also
tuning the representation for a supervised learning task. The latter maximizes
the learned features’ variance while minimizing their covariance and maximizing
their temporal auto-correlation.

For algorithms that do need a form of input reconstruction, an efficient ap-
proach based on sampled reconstruction [39] has been proposed, successfully
implemented and evaluated for the case of auto-encoders and denoising auto-
encoders. The first idea is that on each example (or mini-batch), one samples
a subset of the elements of the reconstruction vector, along with the associated
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reconstruction loss. One only needs to compute the reconstruction and the loss
associated with these sampled elements (or features), as well as the associated
back-propagation operations into hidden units and reconstruction weights. That
alone would multiplicatively reduce the computational cost by the amount of
sparsity but make the gradient much more noisy and possibly biased as well, if
the sampling distribution was chosen not uniform. To reduce the variance of that
estimator, the idea is to guess for which features the reconstruction loss will be
larger and to sample with higher probability these features (and their loss). In
particular, the authors always sample the features with a non-zero in the input
(or the corrupted input, in the denoising case), and uniformly sample an equal
number of those with a zero in the input and corrupted input. To make the
estimator unbiased now requires introducing a weight on the reconstruction loss
associated with each sampled feature, inversely proportional to the probability
of sampling it, i.e., this is an importance sampling scheme. The experiments
show that the speed-up increases linearly with the amount of sparsity while the
average loss is optimized as well as in the deterministic full-computation case.

19.5.3 Symbolic Variables, Embeddings, Multi-task Learning and
Multi-relational Learning

Parameter sharing [68, 77, 68, 31, 4, 5] is an old neural network technique for
increasing statistical power: if a parameter is used in N times more contexts
(different tasks, different parts of the input, etc.) then it may be as if we had N
times more training examples for tuning its value. More examples to estimate a
parameter reduces its variance (with respect to sampling of training examples),
which is directly influencing generalization error: for example the generalization
mean squared error can be decomposed as the sum of a bias term and a variance
term [46]. The reuse idea was first exploited by applying the same parameter
to different parts of the input, as in convolutional neural networks [68, 77].
Reuse was also exploited by sharing the lower layers of a network (and the
representation of the input that they capture) across multiple tasks associated
with different outputs of the network [31, 4, 5]. This idea is also one of the key
motivations behind Deep Learning [7] because one can think of the intermediate
features computed in higher (deeper) layers as different tasks that can share the
sub-features computed in lower layers (nearer the input). This very basic notion
of reuse is key to improving generalization in many settings, guiding the design
of neural network architectures in practical applications as well.

An interesting special case of these ideas is in the context of learning with
symbolic data. If some input variables are symbolic, taking value in a finite
alphabet, they can be represented as neural network inputs by a one-hot sub-
vector of the input vector (with a 0 everywhere except at the position associated
with the particular symbol). Now, sometimes different input variables refer to
different instances of the same type of symbol. A patent example is with neu-
ral language models [11, 6], where the input is a sequence of words. In these
models, the same input layer weights are reused for words at different positions
in the input sequence (as in convolutional networks). The product of a one-hot
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sub-vector with this shared weight matrix is a generally dense vector, and this
associates each symbol in the alphabet with a point in a vector space33, which
we call its embedding. The idea of vector space representations for words and
symbols is older [40] and is a particular case of the notion of distributed repre-
sentation [57, 58] central to the connectionist approaches. Learned embeddings of
symbols (or other objects) can be conveniently visualized using a dimensionality
reduction algorithm such as t-SNE [113].

In addition to sharing the embedding parameters across positions of words
in an input sentence, Collobert et al. [36] share them across natural language
processing tasks such as Part-Of-Speech tagging, chunking and semantic role
labeling. Parameter sharing is a key idea behind convolutional nets, recurrent
neural networks and dynamic Bayes nets, in which the same parameters are used
for different temporal or spatial slices of the data. This idea has been generalized
from sequences and 2-D images to arbitrary graphs with recursive neural net-
works or recursive graphical models [92, 45, 25, 108], Markov Logic Networks [98]
and relational learning [47]. A relational database can be seen as a set of objects
(or typed values) and relations between them, of the form (object1, relation-
type, object2). The same global set of parameters can be shared to characterize
such relations, across relations (which can be seen as tasks) and objects. Object-
specific parameters are the parameters specifying the embedding of a particular
discrete object. One can think of the elements of each embedding vector as im-
plicit learned attributes. Different tasks may demand different attributes, so that
objects which share some underlying characteristics and behavior should end
up having similar values of some of their attributes. For example, words ap-
pearing in semantically and syntactically similar contexts end up getting a very
close embedding [36]. If the same attributes can be useful for several tasks, then
statistical power is gained through parameter sharing, and transfer of informa-
tion between tasks can happen, making the data of some task informative for
generalizing properly on another task.

The idea proposed in Bordes et al. [23, 24] is to learn an energy function that
is lower for positive (valid) relations present in the training set, and parametrized
in two parts: on the one hand the symbol embeddings and on the other hand the
rest of the neural network that maps them to a scalar energy. In addition, by
considering relation types themselves as particular symbolic objects, the model
can reason about relations themselves and have relations between relation types.
For example, ‘To be’ can act as a relation type (in subject-attribute relations)
but in the statement “ ‘To be’ is a verb” it appears both as a relation type and
as an object of the relation.

Such multi-relational learning opens the door to the application of neural
networks outside of their traditional applications, which was based on a single
homogeneous source of data, often seen as a matrix with one row per example
and one column (or group of columns) per random variable. Instead, one often
has multiple heterogeneous sources of data (typically providing examples seen

33 The result of the matrix multiplication, which equals one of the columns of the
matrix.
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as a tuple of values), each involving different random variables. So long as these
different sources share some variables, then the above multi-relational multi-
task learning approaches can be applied. Each variable can be associated with its
embedding function (that maps the value of a variable to a generic representation
space that is valid across tasks and data sources). This framework can be applied
not only to symbolic data but to mixed symbolic/numeric data if the mapping
from object to embedding is generalized from a table look-up to a parametrized
function (the simplest being a linear mapping) from its raw attributes (e.g.,
image features) to its embedding. This has been exploited successfully to design
image search systems in which images and queries are mapped to the same
semantic space [118].

19.6 Open Questions

19.6.1 On the Added Difficulty of Training Deeper Architectures

There are experimental results which provide some evidence that, at least in
some circumstances, deeper neural networks are more difficult to train than
shallow ones, in the sense that there is a greater chance of missing out on bet-
ter minima when starting from random initialization. This is borne out by all
the experiments where we find that some initialization scheme can drastically
improve performance. In the Deep Learning literature this has been shown with
the use of unsupervised pre-training (supervised or not), both applied to super-
vised tasks — training a neural network for classification [61, 14, 95] — and
unsupervised tasks — training a Deep Boltzmann Machine to model the data
distribution [104].

The learning trajectories visualizations of Erhan et al. [44] have shown that
even when starting from nearby configurations in function space, different initial-
izations seem to always fall in a different effective local minimum. Furthermore,
the same study showed that the minima found when using unsupervised pre-
training were far in function space from those found from random initialization,
in addition to giving better generalization error. Both of these findings highlight
the importance of initialization, hence of local minima effects, in deep networks.
Finally, it has been shown that these effects were both increased when consider-
ing deeper architectures [44].

There are also results showing that specific ways of setting the initial dis-
tribution and ordering of examples (“curriculum learning”) can yield better so-
lutions [42, 15, 66]. This also suggest that very particular ways of initializing
parameters, very different from uniformly sampled, can have a strong impact
on the solutions found by gradient descent. The hypothesis proposed in [15] is
that curriculum learning can act similarly to a continuation method, i.e., starting
from an easier optimization task (e.g. convex) and tracking the local minimum
as the learning task is gradually made more difficult and closer to the real task
of interest.

Why would training deeper networks be more difficult? This is clearly still
an open question. A plausible partial answer is that deeper networks are also
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more non-linear (since each layer composes more non-linearity on top of the
previous ones), making gradient-based methods less efficient. It may also be
that the number and structure of local minima both change qualitatively as we
increase depth. Theoretical arguments support a potentially exponential gain in
expressive power of deeper architectures [7, 9] and it would be plausible that
with this added expressive power coming from the combinatorics of composed
reuse of sub-functions could come a corresponding increase in the number (and
possibly quality) of local minima. But the best ones could then also be more
difficult to find.

On the practical side, several experimental results point to factors that may
help training deep architectures:

– A local training signal. What many successful procedures for training
deep networks have in common is that they involve a local training signal that
helps each layer decide what to do without requiring the back-propagation
of gradients through many non-linearities. This includes of course the many
variants of greedy layer-wise pre-training but also the less well-known semi-
supervised embedding algorithm [117].

– Initialization in the right range. Based on the idea that both activations
and gradients should be able to flow well through a deep architecture without
significant reduction in variance, Glorot and Bengio [48] proposed setting up
the initial weights to make the Jacobian of each layer have singular values
near 1 (or preserve variance in both directions). In their experiments this
clearly helped greatly reducing the gap between purely supervised and pre-
trained deep networks.

– Choice of non-linearities. In the same study [48] and a follow-up [49]
it was shown that the choice of hidden layer non-linearities interacted with
depth. In particular, without unsupervised pre-training, a deep neural net-
work with sigmoids in the top hidden layer would get stuck for a long time
on a plateau and generally produce inferior results, due to the special role
of 0 and of the initial gradients from the output units. Symmetric non-
linearities like the hyperbolic tangent did not suffer from that problem, while
softer non-linearities (without exponential tails) such as the softsign func-
tion s(a) = a

1+|a| worked even better. In Glorot et al. [49] it was shown
that an asymmetric but hard-limiting non-linearity such as the rectifier
(s(a) = max(0, a), see also [86]) actually worked very well (but should not
be used for output units), in spite of the prior belief that the fact that when
hidden units are saturated, gradients would not flow well into lower layers.
In fact gradients flow very well, but on selected paths, possibly making the
credit assignment (which parameters should change to handle the current
error) sharper and the Hessian condition number better. A recent heuristic
that is related to the difficulty of gradient propagation through neural net
non-linearities is the idea of “centering” the non-linear operation such that
each hidden unit has zero average output and zero average slope [107, 94].
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19.6.2 Adaptive Learning Rates and Second-Order Methods

To improve convergence and remove learning rates from the list of
hyper-parameters, many authors have advocated exploring adaptive learning
rate methods, either for a global learning rate [32], a layer-wise learning rate,
a neuron-wise learning rate, or a parameter-wise learning rate [22] (which then
starts to look like a diagonal Newton method). LeCun [76], LeCun et al. [79]
advocate the use of a second-order diagonal Newton (always positive) approxi-
mation, with one learning rate per parameter (associated with the approximated
inverse second derivative of the loss with respect to the parameter). Hinton [59]
proposes scaling learning rates so that the average weight update is on the order
of 1/1000th of the weight magnitude. LeCun et al. [79] also propose a simple
power method in order to estimate the largest eigenvalue of the Hessian (which
would be the optimal learning rate). An interesting alternative to variants of
Newton’s method are variants of the natural gradient method [1], but like the
basic Newton method it is computationally too expensive, requiring operations
on a too large square matrix (number of parameters by number of parame-
ters). Diagonal and low-rank online approximations of natural gradient [73, 74]
have been proposed and shown to speed-up training in some contexts. Several
adaptive learning rate procedures have been proposed recently and merit more
attention and evaluations in the neural network context, such as adagrad [41]
and the adaptive learning rate method from Schaul et al. [106] which claims to
remove completely the need for a learning rate hyper-parameter.

Whereas stochastic gradient descent converges very quickly initially it is gen-
erally slower than second-order methods for the final convergence, and this may
be important in some applications. As a consequence, batch training algorithms
(performing only one update after seeing the whole training set) such as the
Conjugate Gradient method (a second order method) have dominated stochas-
tic gradient descent for not too large datasets (e.g. less than thousands or tens
of thousands of examples). Furthermore, it has recently been proposed and suc-
cessfully applied to use second-order methods over large mini-batches [72, 83].
The idea is to do just a few iterations of the second-order methods on each mini-
batch and then move on to the next mini-batch, starting from the best previous
point found. A useful twist is to start training with one or more epoch of SGD,
since SGD remains the fastest optimizer early on in training.

At this point in time however, although the second-order and natural gradient
methods are appealing conceptually, have demonstrably helped in the studied
cases and may in the end prove to be very important, they have not yet become
a standard for neural networks optimization and need to be validated and maybe
improved by other researchers, before displacing simple (mini-batch) stochastic
gradient descent variants.

19.7 Conclusion

In spite of decades of experimental and theoretical work on artificial neural
networks, and with all the impressive progress made since the first edition of
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this book, in particular in the area of Deep Learning, there is still much to
be done to better train neural networks and better understand the underlying
issues that can make the training task difficult. As stated in the introduction, the
wisdom distilled here should be taken as a guideline, to be tried and challenged,
not as a practice set in stone. The practice summarized here, coupled with the
increase in available computing power, now allows researchers to train neural
networks on a scale that is far beyond what was possible at the time of the first
edition of this book, helping to move us closer to artificial intelligence.
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