
10
Centering Neural Network Gradient Factors�

Nicol N. Schraudolph

IDSIA, Corso Elvezia 36
6900 Lugano, Switzerland

nic@idsia.ch
http://www.idsia.ch/

Abstract. It has long been known that neural networks can learn faster
when their input and hidden unit activities are centered about zero; re-
cently we have extended this approach to also encompass the centering
of error signals [15]. Here we generalize this notion to all factors involved
in the network’s gradient, leading us to propose centering the slope of
hidden unit activation functions as well. Slope centering removes the
linear component of backpropagated error; this improves credit assign-
ment in networks with shortcut connections. Benchmark results show
that this can speed up learning significantly without adversely affecting
the trained network’s generalization ability.

10.1 Introduction

Centering is a general methodology for accelerating learning in adaptive systems
of the type exemplified by neural networks — that is, systems that are typically
nonlinear, continuous, and redundant; that learn incrementally from examples,
generally by some form of gradient descent. Its basic tenet is:

All pattern-dependent factors entering the update equation for a neural
network weight should be centered, i.e., have their average over patterns
subtracted out.

Prior Work. It is well-known that the inputs to an LMS adaptive filter should
be centered to permit rapid yet stable adaptation [22], and it has been argued
[12] that the same applies to input and hidden unit activity in a multi-layer
network. Although Sejnowski [16] proposed a variant of Hebbian learning in
which both the pre- and postsynaptic factors of the weight update are centered,
the idea was not taken up when backpropagation became popular. The benefits of
centering error signals in multi-layer networks were thus reported only recently
[15]; here we finally suggest centering as a general methodology, and present
backpropagation equations in which all factors are centered.
� Previously published in: Orr, G.B. and Müller, K.-R. (Eds.): LNCS 1524, ISBN

978-3-540-65311-0 (1998).

G. Montavon et al. (Eds.): NN: Tricks of the Trade, 2nd edn., LNCS 7700, pp. 205–223, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.idsia.ch/


206 N.N. Schraudolph

Independence of Architecture. Although centering is introduced here in the
context of feedforward networks with sigmoid activation functions, the approach
itself has a far wider reach. The implementation details may vary, but in essence
centering is not tied to any particular architecture: its principles are equally
applicable to feedforward and recurrent networks, with sigmoid, radial, or other
basis functions, with or without topological structure, time delays, multiplicative
gates, etc. — in short, the host of architectural elements used in neural network
design.

Independence of Learning Algorithm. Similarly, centering is not wedded
to any particular learning algorithm either. It may be applied to determinis-
tic (batch) or stochastic (online) gradient descent; more importantly, it may be
freely combined with more sophisticated optimization techniques such as ex-
pectation maximization, conjugate gradient and quasi-Newton methods. It also
leaves available the many useful tricks often employed with stochastic gradient
descent, such as momentum, learning rate adaptation, gradient normalization,
and so forth. Due to this flexibility, centering has the potential to further accel-
erate even the fastest of these methods.

Overview. Section 10.2 introduces the centering approach in terms of the mod-
ifications it mandates for ordinary backpropagation learning. We then discuss
implementation details in Section 10.3 before presenting benchmark results in
Section 10.4. Section 10.5 concludes our paper with a brief analysis of how cen-
tering facilitates faster learning.

10.2 Centered Backpropagation

The backpropagation learning algorithm is characterized by three equations,
describing the forward propagation of activity, the backpropagation of error, and
the modification of weights, respectively. Here are the implications of centering
for each of these three equations:

10.2.1 Activity Propagation

Conventional. Consider a neural network with activation of node j given by

xj = fj(yj) , yj =
∑

i∈Aj

wij x̌i , (10.1)

where fj is a nonlinear (typically sigmoid) activation function, wij are the synap-
tic weights, and Aj denotes the set of anterior nodes feeding their activity x̌i into
node j. Conventionally, the anterior nodes’ output is fed forward directly, i.e.,
(∀i) x̌i≡ xi. We imply that nodes are activated via Equation 10.1 in appropri-
ately ordered (feedforward) sequence, and that some have their values clamped
so as to represent external inputs to the network. In particular, we posit a bias
input x0≡1 and require that all nodes are connected to it: (∀j>0) 0 ∈Aj .



10. Centering Neural Network Gradient Factors 207

Centered. As suggested by LeCun et al. [12], the activity of the network’s input
and hidden units should be centered to permit faster learning (see Chapter 1).
We do so by setting

(∀i > 0) x̌i = xi − 〈xi〉 , (10.2)

where 〈·〉 denotes averaging over training samples (see Section 10.3 for ways to
implement this operator). Note that the bias input must not be centered — since
x0 = 〈x0〉 = 1, it would otherwise become inoperative.

10.2.2 Weight Modification

Conventional. The weights wij of the network given in Equation 10.1 are
typically optimized by gradient descent in some objective function E. With a
local step size η ij for each weight, this results in the weight update equation

Δwij = η ij δj x̌i , where δj = −∂E/∂yj . (10.3)

Centered. We have recently proposed [15] that the error signals δj should be
centered as well to achieve even faster convergence. This is done by updating all
non-bias weights via

(∀i > 0) Δwij = η ij δ̌j x̌i , where δ̌j = δj − 〈δj〉 . (10.4)

As before, this centered update must not be used for bias weights, for otherwise
they would remain forever stuck (except for stochastic fluctuations) at their
present values:

* 〈Δw0j〉 ∝
〈
δ̌j
〉
= 〈δj〉 − 〈δj〉 = 0 . (10.5)

Instead, bias weights are updated conventionally (Equation 10.3). Since this
means that the average error 〈δj〉 is given exclusively to the bias weight w0j , we
have previously called this technique d.c. error shunting [15].

10.2.3 Error Backpropagation

Conventional. For output units, the error δj can be computed directly from
the objective function; for hidden units, it must be derived through error back-
propagation:

δj = f ′j(yj) γj , γj =
∑

k∈Pj

wjk δk , (10.6)

where Pj denotes the set of posterior nodes fed from node j, and f ′j(yj) is the
node’s current slope — the derivative of its nonlinearity fj at the present level
of activation.



208 N.N. Schraudolph

Centered. By inserting Equation 10.6 into Equation 10.4, we can express the
weight update for hidden units as a triple product of their activity, backpropa-
gated error, and slope:

Δwij ∝ f ′j(yj) γ̌j x̌i , (10.7)

where γ̌j denotes backpropagated centered errors. It is not necessary to center
the γ̌j explicitly since

〈γ̌j〉 =
〈
∑

k∈Pj

wjk δ̌k

〉
=
∑

k∈Pj

wjk

〈
δ̌k
〉
= 0 . (10.8)

By centering activity and error signals we have so far addressed two of the
three factors in Equation 10.7, leaving the remaining third factor — the node’s
slope — to be dealt with. This is done by modifying the nonlinear part of error
backpropagation (Equation 10.6) to

δj = f̌ ′j(yj) γ̌j , where f̌ ′j(yj) = f ′j(yj)−
〈
f ′j(yj)

〉
. (10.9)

Decimation of Linear Errors. Note that for a linear node n we would have
f ′n(yn)≡ 1, and Equation 10.9 would always yield δn≡ 0. In other words, slope
centering (for any node) blocks backpropagation of the linear component of error
signals — that component which a linear node in the same position would receive.
Viewed in terms of error decimation, we have thus taken the logical next step past
error centering, which removed the d.c. (constant) component of error signals.

Shortcuts. It was important then to have a parameter — the bias weight — to
receive and correct the d.c. error component about to be eliminated. Likewise, we
now require additional weights to implement the linear mapping from anterior to
posterior nodes that the unit in question is itself no longer capable of. Formally,
we demand that for each node j for which Equation 10.9 is used, we have

(∀i ∈ Aj) Pj ⊆ Pi . (10.10)

We refer to connections that bypass a node (or layer) in this fashion as shortcuts.
It has been noted before that neural network learning sometimes improves with
the addition of shortcut weights. In our own experiments (see Section 10.4),
however, we find that it is slope centering that makes shortcut weights genuinely
useful.

A Complementary Approach? In Chapter 9, van der Smagt and Hirzinger
also advocate shortcuts as a means for accelerating neural network learning.
Note, however, that their use of shortcuts is quite different from ours: in order
to improve the conditioning of a neural network, they add shortcut connections
whose weights are coupled to (shared with) existing weights. They thus suit-
ably modify the network’s topology without adding new weight parameters, or



10. Centering Neural Network Gradient Factors 209

deviating from a strict gradient-based optimization framework. By contrast, we
deliberately decimate the linear component of the gradient for hidden units in
order to focus them on their nonlinear task. We then use shortcuts with ad-
ditional weight parameters to take care of the linear mapping that the hidden
units now ignore.

While both these approaches use shortcuts to achieve their ends, from another
perspective they appear almost complementary: whereas we eliminate the linear
component from our gradient, van der Smagt and Hirzinger in fact add just
such a component to theirs. It may even be possible to profitably combine the
two approaches in a single — admittedly rather complicated — neural network
architecture.

10.3 Implementation Techniques

We can distinguish a variety of approaches to centering a variable in a neural
network in terms of how the averaging operator 〈·〉 is implemented. Specifically,
averaging may be performed either exactly or approximately, and applied either
a priori, or adaptively during learning in either batch (deterministic) or online
(stochastic) settings:

centering method: approximate exact

a priori by design extrinsic
online running average —adaptive
{

batch previous batch two-pass, single-pass

10.3.1 A Priori Methods

By Design. Some of the benefits of centering may be reaped without any modi-
fication of the learning algorithm, simply by setting up the system appropriately.
For instance, the hyperbolic tangent (tanh) function with its symmetric range
from -1 to 1 will typically produce better-centered output than the commonly
used logistic sigmoid f(y) = 1/(1 + e−y) ranging from 0 to 1, and is therefore
the preferred activation function for hidden units [12]. Similarly, the input repre-
sentation can (and should) be chosen such that inputs will be roughly centered.
When using shortcuts, one may even choose a priori to subtract a constant (say,
half their maximum) from hidden unit slopes to improve their centering.

We refer to these approximate methods as centering by design. Though inex-
act, they provide convenient and easily implemented tricks to speed up neural
network learning. Regardless of whether further acceleration techniques will be
required or not, it is generally a good idea to keep centering in mind as a design
principle when setting up learning tasks for neural networks.

Extrinsic. Quantities that are extrinsic to the network — i.e., not affected
by its weight changes — may often be centered exactly prior to learning. In



210 N.N. Schraudolph

particular, for any given training set the network’s inputs can be centered in
this fashion. Even in online settings where the training set is not known in
advance, it is sometimes possible to perform such extrinsic centering based upon
prior knowledge of the training data: instead of a time series x(t) one might for
instance present the temporal difference signal x(t) − x(t−1) as input to the
network, which will be centered if x(t) is stationary.

10.3.2 Adaptive Methods

Online. When learning online, the immediate environment of a single weight
within a multi-layer network is highly non-stationary, due to the simultaneous
adaptation of other weights, if not due to the learning task itself. A uniquely
defined average of some signal x(t) to be centered is therefore not available
online, and we must make do with running averages — smoothed versions of the
signal itself. A popular smoother is the exponential trace

x̄(t+1) = α x̄(t) + (1−α)x(t) , (10.11)

which has the advantage of being history-free and causal, i.e., requiring neither
past nor future values of x for the present update. The free parameter α (with
0≤ α≤ 1) determines the time scale of averaging. Its choice is not trivial: if it
is too small, x̄ will be too noisy; if it is too large, the average will lag too far
behind the (drifting) signal.

Note that the computational cost of centering by this method is proportional
to the number of nodes in the network. In densely connected networks, this is
dwarfed by the number of weights, so that the propagation of activities and error
signals through these weights dominates the computation. The cost of online
centering will therefore make itself felt in small or sparsely connected networks
only.

Two-Pass Batch. A simple way to implement exact centering in a batch learn-
ing context is to perform two passes through the training set for each weight
update: the first to calculate the required averages, the second to compute the
resulting weight changes. This obviously may increase the computational cost
of network training by almost a factor of two. For relatively small networks and
training sets, the activity and error for each node and pattern can be stored
during the first pass, so that the second pass only consists of the weight update
(Equation 10.4). Where this is not possible, a feedforward-only first pass (Equa-
tion 10.1) is sufficient to compute average activities and slopes; error centering
may then be implemented via one of the other methods described here.

Previous Batch. To avoid the computational overhead of a two-pass method,
one can use the averages collected over the previous batch in the computation
of weight changes for the current batch. This approximation assumes that the
averages involved do not change too much from batch to batch; this may result in



10. Centering Neural Network Gradient Factors 211

stability problems in conjunction with very high learning rates. Computationally
this method is quite attractive in that it is cheaper still than the online technique
described above. When mini-batches are used for training, both approaches can
be combined profitably by centering with an exponential trace over mini-batch
averages.

Single-Pass Batch. It is possible to perform exact centering in just a single
pass through a batch of training patterns. This is done by expanding the triple
product of the fully centered batch weight update (cf. Equation 10.7). Using f ′j
as a shorthand for f ′j(yj), we have

Δwij ∝
〈
(xi − 〈xi〉)(γj − 〈γj〉)(f ′

j −
〈
f ′
j

〉
)
〉

=
〈
xiγjf

′
j

〉
−

〈
〈xi〉 γjf ′

j

〉
−

〈
xi 〈γj〉 f ′

j

〉
−

〈
xiγj

〈
f ′
j

〉〉
+

〈
〈xi〉 〈γj〉 f ′

j

〉
+

〈
〈xi〉 γj

〈
f ′
j

〉〉
+

〈
xi 〈γj〉

〈
f ′
j

〉〉
−

〈
〈xi〉 〈γj〉

〈
f ′
j

〉〉
=

〈
xiγjf

′
j

〉
− 〈xi〉

〈
γjf

′
j

〉
− 〈γj〉

〈
xif

′
j

〉
− 〈xiγj〉

〈
f ′
j

〉
+ 2 〈xi〉 〈γj〉

〈
f ′
j

〉
(10.12)

In addition to the ordinary (uncentered) batch weight update term
〈
xiγjf

′
j

〉

and the individual averages 〈xi〉, 〈γj〉, and
〈
f ′j
〉
, the single-pass centered up-

date (10.12) thus also requires collection of the sub-products 〈xiγj〉,
〈
xif

′
j

〉
, and〈

γjf
′
j

〉
. Due to the extra computation involved, the single-pass batch update is

not necessarily more efficient than a two-pass method. It is simplified consider-
ably, however, when not all factors are involved — for instance, when activities
have already been centered a priori so that 〈xi〉 ≈ 0.

Note that the expansion technique shown here may be used to derive an exact
single-pass batch method for any weight update that involves the addition (or
subtraction) of some quantity that must be computed from the entire batch of
training patterns. This includes algorithms such as BCM learning [4, 10] and
binary information gain optimization [14].

10.4 Empirical Results

While activity centering has long been part of backpropagation lore, and empiri-
cal results for error centering have been reported previously [15], slope centering
is being proposed for the first time here. It is thus too early to assess its general
applicability or utility; here we present a number of experiments designed to
show the typical effect that centering has on speed and reliability of convergence
as well as generalization performance in feedforward neural networks trained by
accelerated backpropagation methods.

The next section describes the general setup and acceleration techniques used
in all our experiments. Subsequent sections then present our respective results for
two well-known benchmarks: the toy problem of symmetry detection in binary
patterns, and a difficult vowel recognition task.



212 N.N. Schraudolph

10.4.1 Setup of Experiments

Benchmark Design. For each benchmark task we performed a number of
experiments to compare performance with vs. without various forms of centering.
Each experiment consisted of 100 runs starting from different initial weights
but identical in all other respects. For each run, networks were initialized with
random weights from a zero-mean Gaussian distribution with standard deviation
0.3. All experiments were given the same sequence of random numbers for their
100 weight initializations; the seed for this sequence was picked only after the
design of the benchmark had been finalized.

Training Modality. In order to make the results as direct an assessment of cen-
tering as possible, training was done in batch mode so as to avoid the additional
free parameters (e.g., smoothing time constants) required by online methods.
Where not done a priori, centering was then implemented with the exact two-
pass batch method. In addition, we always updated the hidden-to-output weights
of the network before backpropagating error through them. This is known to
sometimes improve convergence behavior [17], and we have found it to increase
stability at the large step sizes we desire.

Competitive Controls. The ordinary backpropagation (plain gradient de-
scent) algorithm has many known defects, and a large number of acceleration
techniques has been proposed for it. We informally tested a number of such
techniques, then picked the combination that achieved the fastest reliable con-
vergence. This combination — vario-η and bold driver — was then used for
all experiments reported here. Thus any performance advantage for centering
reported thereafter has been realized on top of a state-of-the-art accelerated
gradient method as control.

Vario-η [23, page 48]. This interesting technique — also described in Chap-
ter 17 — sets the local learning rate for each weight inversely proportional to
the standard deviation of its stochastic gradient. The weight change thus be-
comes

Δwij =
−η gij

�+ σ(gij)
, where gij ≡

∂E

∂wij
and σ(u) ≡

√
〈u2〉 − 〈u〉2 ,

(10.13)
with the small positive constant � preventing division by near-zero values. Vario-
η can be used in both batch and online modes, and is quite effective in that it
not only performs gradient normalization, but also adapts step sizes to the level
of noise in the local gradient signal.

We used vario-η for all experiments reported here, with � = 0.1. In a batch
implementation this leaves only one free parameter to be determined: the global
learning rate η.



10. Centering Neural Network Gradient Factors 213

Bold Driver [11, 21, 2, 3]. This algorithm for adapting the global learning rate
η is simple and effective, but only works for batch learning. Starting from some
initial value, η is increased by a certain factor after each batch in which the error
did not increase by more than a very small constant ε (required for numerical
stability). Whenever the error rises by more than ε, however, the last weight
change is undone, and η decreased sharply.

All experiments reported here were performed using bold driver with a learn-
ing rate increment of 2%, a decrement of 50%, and ε=10−10. These values were
found to provide fast, reliable convergence across all experiments. Due to the
amount of recomputation they require, we do count the “failed” epochs (whose
weight changes are subsequently undone) in our performance figures.

10.4.2 Symmetry Detection Problem

In our first benchmark, a fully connected feedforward network with 8 inputs, 8
hidden units and a single output is to learn the symmetry detection task: given
an 8-bit binary pattern at the input, it is to signal at the output whether the
pattern is symmetric about its middle axis (target = 1) or not (target = 0). This
is admittedly a toy problem, although not a trivial one.

Since the target is binary, we used a logistic output unit and cross-entropy
loss function. For each run the network was trained on all 256 possible patterns
until the root-mean-square error of its output over the batch fell below 0.01. We
recorded the number of epochs required to reach this criterion, but did not test
for generalization ability on this task.

Error and Activity Centering. In our first set of experiments we examined
the separate and combined effect of centering the network’s activity and/or error
signals. For convenience, activity centering was performed a priori by using -1
and 1 as input levels, and the hyperbolic tangent (tanh) as activation function
for hidden units. The off-center control experiments were done with 0 and 1 as
input levels and the logistic activation function f(y) = 1/(1 + e−y). Note that
all differences between the tanh and logistic nonlinearities are eliminated by the
vario-η algorithm, except for the eccentricity of their respective outputs.

Results. Table 10.1 shows that centering either activity or error signals pro-
duced an approximate 7-fold increase in convergence speed. In no instance was
a run that used one (or both) of these centering methods slower than the corre-
sponding control without centering. The similar magnitude of the speed-up sug-
gests that it may be due to the improved conditioning of the Hessian achieved
by centering either errors or activities (see Section 10.5). Note, however, that
activity centering beat error centering almost 2/3 of the time in the direct com-
parison.

On the other hand, error centering appeared to improve the reliability of con-
vergence: it cut the convergence time’s coefficient of variation (the ratio between
its standard deviation and mean, henceforth: c.v.) in half while activity centering



214 N.N. Schraudolph

Table 10.1. The effect of centering activities and/or error signals on the symmetry
detection task without shortcuts. Reported are the empirical mean, standard deviation,
and 25th/50th/75th percentile (rounded to three significant digits) of the number of
epochs required to converge to criterion. Also shown is the result of directly comparing
runs with identical random seeds. The number of runs in each comparison may sum to
less than 100 due to ties.

error signals: conventional centered
mean ± st.d. direct comparison: mean ± st.d.activities:

quartiles # of faster runs quartiles

669 ± 308 0 – 100 97.5 ± 21.8off-center (0/1)
453/580/852 0 0 35 7 82/95.5/109

93.1 ± 46.7 100
|

63
×

100 93
|

65.4 ± 15.9centered (-1/1)
67.5/79.5/94 14 – 84 57/62/70

left it unchanged. We speculate that this may be the beneficial effect of centering
on the backpropagated error, which does not occur for activity centering.

Finally, a further speedup of 50% (while maintaining the lower c.v.) occurred
when both activity and error signals were centered. This may be attributed to
the fact that our centering of hidden unit activity by design (cf. Section 10.3)
was only approximate. To assess the significance of these effects, note that since
the data was collected over 100 runs, the standard error of the reported mean
time to convergence is 1/

√
100 = 1/10 its reported standard deviation.

Shortcuts and Slope Centering. In the second set of experiments we left both
activity and error signals centered, and examined the separate and combined
effect of adding shortcuts and/or slope centering. Note that since the complement
of a symmetric bit pattern is also symmetric, the symmetry detection task has no
linear component at all — we would therefore expect shortcuts to be of minimal
benefit here.

Results. Table 10.2 shows that indeed adding shortcuts alone was not beneficial
— in fact it slowed down convergence in over 80% of the cases, and significantly
increased the c.v. Subsequent addition of slope centering, however, brought
about an almost 3-fold increase in learning speed, and restored the original c.v.
of about 1/4. When used together, slope centering and shortcuts never increased
convergence time, and on average cut it in half. By contrast, slope centering
without shortcuts failed to converge at all about 1/3 of the time. This may come
as a surprise, considering that the given task had no linear component. However,
consider the following:



10. Centering Neural Network Gradient Factors 215

Table 10.2. The effect of centering slopes and/or adding shortcuts on the symmetry
detection task with centered activity and error signals. Results are shown in the same
manner as in Table 10.1.

slopes: conventional centered
mean ± st.d. direct comparison: mean ± st.d.topology:

quartiles # of faster runs quartiles

65.4 ± 15.9 52 – 48 * 51.6 ± 16.2

short- no 57/62/70 81 0 61 4 43/64.5/∞

cuts? 90.4 ± 31.1 17
|

39
×

99 95
|

33.1 ± 8.6yes
69.5/80/102 0 – 100 28/31/35

*Mean and standard deviation exclude 34 runs which did not converge.

Need for Shortcuts. Due to the monotonicity of their nonlinear transfer func-
tion, hidden units always carry some linear moment, in the sense of a positive
correlation between their net input and output. In the absence of shortcuts,
the hidden units must arrange themselves so that their linear moments together
match the overall linear component of the task (here: zero). This adaptation
process is normally driven by the linear component of the error — which slope
centering removes.

The remaining nonlinear error signals can still jostle the hidden units into
an overall solution, but such an indirect process is bound to be unreliable: as it
literally removes slope from the error surface, slope centering creates numerous
local minima. Shortcut weights turn these local minima into global ones by
modeling the missing (linear) component of the gradient, thereby freeing the
hidden units from any responsibility to do so.

In summary, while a network without shortcuts trained with slope centering
may converge to a solution, the addition of shortcut weights is necessary to ensure
that slope centering will not be detrimental to the learning process. Conversely,
slope centering can prevent shortcuts from acting as redundant “detractors” that
impede learning instead of assisting it. These two techniques should therefore
always be used in conjunction.

10.4.3 Vowel Recognition Problem

Our positive experiences with centering on the symmetry detection task imme-
diately raise two further questions: 1) will these results transfer to more chal-
lenging, realistic problems, and 2) is the gain in learning speed — as often
happens — bought at the expense of generalization ability? In order to address
these questions, we conducted further experiments with the speaker-independent
vowel recognition data due to Deterding [5], a popular benchmark for which good
generalization performance is rather difficult to achieve.



216 N.N. Schraudolph

The Task. The network’s task is to recognize the eleven steady-state vowels
of British English in a speaker-independent fashion, given 10 spectral features
(specifically: LPC-derived log area ratios) of the speech signal. The data consists
of 990 patterns to be classified: 6 instances for each of the 11 vowels spoken by
each of 15 speakers. We follow the convention of splitting it into a training set
containing the data from the first 8 (4 male, 4 female) speakers, and a test set
containing those of the remaining 7 (4 male, 3 female). Note that there is no
separate validation set available.

Prior Work. Robinson [13] pioneered the use of Deterding’s data as a bench-
mark by comparing the performance of a number of neural network architectures
on it. Interestingly, none of his methods could outperform the primitive single
nearest neighbor approach (which misclassifies 44% of test patterns), thus posing
a challenge to the pattern recognition community. Trained on the task as formu-
lated above, conventional backpropagation networks in fact appear to reach their
limits at error rates of around 42% [6, 9], while an adaptive nearest neighbor
technique can achieve 38% [7]. In Chapter 7, Flake reports comparably favorable
results for RBF networks as well as his own hybrid architectures. Even better
performance can be obtained by using speaker sex/identity information [19, 20],
or by training a separate model for each vowel [8]. By combining these two ap-
proaches, a test set error of 23% has been reached [18], the lowest we are aware
of to date.

Training and Testing. We trained fully connected feedforward networks with
10 inputs, 22 hidden units, and 11 logistic output units by minimization of cross-
entropy loss. The target was 1 for the output corresponding to the correct vowel,
0 for all others. Activity centering was done a priori by explicitly centering the
inputs (separately for training and test set), and by using the tanh nonlinearity
for hidden units. The uncentered control experiments used the original input
data, and logistic activation functions.

The relatively small size of our networks enabled us to run all experiments
out to 2 000 epochs of training. After each epoch, the network’s generalization
ability was measured in terms of its misclassification rate on the test set. For the
purpose of testing, a maximum likelihood approach was adopted: the network’s
highest output for a given test pattern was taken to indicate its classification of
that pattern.

First Results. Figure 10.1 shows how the average test set error (over 100
runs) evolved during training in each of the 8 experiments we performed for
this benchmark. For all curves, error bars were at most the size of the marks
shown along the curve, and have therefore been omitted for clarity. Following our
experience on the symmetry detection task, shortcuts and slope centering were
always used in conjunction whereas activity and error centering were examined
independently. The following effects can be discerned:



10. Centering Neural Network Gradient Factors 217

1 10 100 1000

epochs of training

0.4

0.6

0.8

1.0
av

er
ag

e 
te

st
 s

et
 e

rr
or

a)

b)

c)

d) 

e)

f)

g)

h)

Fig. 10.1. Evolution of the average test set error while learning the vowel recognition
task with activity centering (triangular marks), error centering (filled marks), and/or
slope centering with shortcut weights (solid lines), vs. their uncentered controls. Ex-
periments are denoted a)–h) as in Table 10.3.

1. All experiments with activity centering (triangular marks) clearly outper-
formed all experiments without it (circular marks) in both average conver-
gence speed and minimum average test set error.

2. All experiments with shortcuts and slope centering (solid lines) outperformed
the corresponding experiment without them (dashed lines).

3. With one notable exception (experiment d), error centering (filled marks)
sped up convergence significantly. Its effect was greatest in the experiments
without activity centering.

4. The best experiment in terms of both convergence speed and minimum av-
erage test set error was e), the fully centered one; the worst was a), the fully
conventional one.

The qualitative picture that emerges is that centering appears to significantly
speed up convergence without adversely affecting the trained network’s general-
ization ability. We will now attempt to quantify this finding.

Quantifying the Effect. Since the curves in Figure 10.1 are in fact superpo-
sitions of 100 nonlinear curves each, they are ill-suited to quantitative analysis:
value and location of the minimum average test set error do not tell us anything
about the distribution of such minima across individual runs — not even their
average value or location. In order to obtain such quantitative results, we need to
identify an appropriate minimum in test set error for each run. This will allow
us to directly compare runs with identical initial weights across experiments,



218 N.N. Schraudolph

as well as to characterize the distribution of minima within each experiment
by aggregate statistics (e.g., mean, standard deviation, quartiles) for both the
minimum test set error, and the time taken to reach it.

A fair and consistent strategy to identify minima suitable for the quantitative
comparisons we have in mind is not trivial to design. Individual runs may have
multiple minima in test set error, or none at all. If we were to just use the global
minimum over the duration of the run (2 000 epochs), we would not be able
to distinguish a fast method which makes some insignificant improvement to a
long-found minimum late in the run from a slow method which takes that long
to reach its first minimum. Given that we are concerned with both the quality
of generalization performance and the speed with which it is achieved, a greedy
strategy for picking appropriate minima is indicated.

Identification of Minima. We follow the evolution of test set error over the
course of each run, noting new minima as we encounter them. If the best value
found so far is not improved upon within a certain period of time, we pick it as the
minimum of that run for the purpose of quantitative analysis. The appropriate
length of waiting period before giving up on further improvement is a difficult
issue — see Chapter 2 for a discussion. For a fair comparison between faster and
slower optimization methods, it should be proportional to the time it took to
reach the minimum in question: a slow run then has correspondingly more time
to improve its solution than a fast one.

Unfortunately this approach fails if a minimum of test set error occurs during
the initial transient, within the first few epochs of training: the waiting period
would then be too short, causing us to give up prematurely. On the other hand,
we cannot wait longer than the overall duration of the run. We therefore stop
looking for further improvement in a run after min(2 000, 2ε+100) epochs, where
ε records when the network first achieved the lowest test set error seen so far in
that run. Only 9 out of the 800 runs reported here expired at the upper limit of
2 000 epochs, so we are confident that its imposition did not significantly skew
our results.

Test Set Used as Validation Set. Note that since we use the test set to deter-
mine at which point to compare performance, we have effectively appropriated
it as a validation set. The minimum test set errors reported below are therefore
not unbiased estimators for the network’s ability to generalize to novel speakers,
and should not be compared to proper measurements of this ability (for which
the test set must not affect the training procedure in any way). Nonetheless, let
us not forget that the lowest test set error does measure the network’s general-
ization ability in a consistent fashion after all: even though these scores are all
biased to favor a particular set of novel speakers (the test set), by no means does
this render their comparison against each other insignificant.

Overview of Results. Table 10.3 summarizes quantitative results obtained in
this fashion for the vowel recognition problem. To assess their significance, recall



10. Centering Neural Network Gradient Factors 219

Table 10.3. Minimum test set error (misclassification rate in %), and the number of
epochs required to reach it, for the vowel recognition task. Except for the different
layout, results are reported in the same manner as in Tables 10.1 and 10.2. Due to
space limitations, only selected pairs of experiments are compared directly.

features: performance measure:
centering minimum test set error epochs required

mean ± st.d. dir. comparison: mean ± st.d. dir. comparison:

exp
erim

ent
activ.
error
slope

shortcuts quartiles # of better runs quartiles # of faster runs

48.0 ± 3.6 554 ± 321
a)

45.7/47.3/50.0 67 17 13 19 37 365/486/691 3 10 4 1 14

49.1 ± 2.9 31
|

125 ± 82 97
|

b)
√

47.0/49.6/50.9 10 67.5/104/163 51

43.9 ± 2.5 82 156 ± 110 90
c)
√

42.3/43.9/46.0 51 75/137/215 47

44.3 ± 2.3 89 46
|

84 158 ± 141 48 52
|

96
d)
√ √

42.9/44.2/45.9 49 65 72/124/186 21 85

44.2 ± 2.5 49
|

80 72.4 ± 55.5 78
|

99
e)
√ √ √ √

42.3/44.4/46.3 70 47 68 37.5/51.5/81 76 75 92

44.2 ± 2.8 51
|

113 ± 64 24
|

f)
√ √ √

42.3/44.4/46.1 68 69.5/97.5/148 88

46.8 ± 3.7 27 126 ± 139 22
g)

√ √ √
44.0/47.0/48.9 43 64/94/138 84

46.5 ± 3.1 56
|

31 29 30 61 270 ± 164 15
|

12 15 8 86
h)

√ √
44.5/46.8/48.5 162/235/316

that the standard error in the mean of a performance measure reported here
is 1/

√
100 = 1/10 of its reported standard deviation. Figure 10.2 depicts the

same data (except for the direct comparisons) graphically in form of cumulative
histograms for the minimum test set error and the number of epochs required
to reach it.

The results generally confirm the trends observed in Figure 10.1. Runs in the
fully centered experiment e) clearly converged most rapidly — and to test set
errors that were among the best. Compared to the conventional setup a), full
centering converged almost 8 times faster on average while generalizing better
80% of the time.

Generalization Performance. Average misclassification rates on the test set
ranged from 44% to 49%, which we consider a fair result given our comparatively
small networks. They cluster into three groups: networks with activity centering



220 N.N. Schraudolph

0.4 0.5 0.6

minimum test set error

0

20

40

60

80

100

nu
m

be
r 

of
 r

un
s

a)

b)

c)

d) 

e)

f)

g)

h)

10 100 1000

epochs required

0

20

40

60

80

100

nu
m

be
r 

of
 r

un
s

a)

b)

c)

d) 

e)

f)

g)

h)

Fig. 10.2. Cumulative histograms for the minimum test set error (left), and the number
of epochs required to reach it (right), for the vowel recognition task. Curves are labelled
as in Figure 10.1, and marked every 10th percentile.

achieved around 44%, the two others with shortcuts and slope centering came
in under 47%, while the remaining two only reached 48–49%. The cumulative
histogram (Figure 10.2, left) shows that all activity-centered networks had an
almost identical distribution of minimum test set errors.

Note that centering the inputs changes the task, and that the addition of
shortcuts changes the network topology. It is possible that this — rather than
centering per se — accounts for their beneficial effect on generalization. Error
centering was the one feature in our experiments that changed the dynamics
of learning exclusively. Its addition appeared to slightly worsen generalization,
particularly in the absence of other forms of centering. This could be caused by
a reduction (due to centering) of the effective number of parameters in what is
already a rather small model. Such an effect should not overly concern us: one
could easily recoup the lost degrees of freedom by slightly increasing the number
of hidden units for centered networks.

Convergence Speed. All three forms of centering examined here clearly sped
up convergence, both individually and in combination. A slight anomaly ap-
peared in that the addition of error centering in going from experiment c) to d)
had no significant effect on the average number of epochs required. A look at
the cumulative histogram (Figure 10.2, right) reveals that while experiment d)
is ahead between the 20th and 80th percentile, c) had fewer unusually slow runs
than d), and a few exceptionally fast ones.

With the other forms of centering in place, the addition of error centering was
unequivocally beneficial: average convergence time decreased from 113 epochs
in f) to 72.4 epochs in e). The histogram shows that the fully centered e) is far
ahead of the competition through almost the entire percentile range.



10. Centering Neural Network Gradient Factors 221

Finally, it is interesting to note that the addition of shortcuts and slope cen-
tering, both on their own and to a network with activity and error centering,
roughly doubled the convergence speed — the same magnitude of effect as ob-
served on the symmetry detection task.

10.5 Discussion

The preceding section has shown that centering can indeed have beneficial effects
on the learning speed and generalization ability of a neural network. Why is this
so? In what follows, we offer an explanation from three (partially overlapping)
perspectives, considering in turn the effect of centering on the condition number
of the Hessian, the level of noise in the local gradient, and the credit assignment
between different parts of the network.

Conditioning the Hessian. It is well known that the minimal convergence
time for first-order gradient descent on quadratic error surfaces is inversely re-
lated to the condition number of the Hessian matrix, i.e., the ratio between its
largest and its smallest eigenvalue. A common strategy for accelerating gradient
descent is therefore to seek to improve the condition number of the Hessian.

For a single linear node y =wTx with squared loss function, the Hessian is
simply the covariance matrix of the inputs: H=

〈
xxT

〉
. Its largest eigenvalue is

typically caused by the d.c. component of x [12]. Centering the inputs removes
that eigenvalue, thus conditioning the Hessian and permitting larger step sizes
(cf. Chapter 1). For batch learning, error centering has exactly the same effect
on the local weight update:

Δw ∝ 〈(δ−〈δ〉)x〉 = 〈δ x〉 − 〈δ〉 〈x〉 = 〈δ (x−〈x〉)〉 (10.14)

Error centering does go further than activity centering, however, in that it also
affects the error backpropagated to anterior nodes. Moreover, Equation 10.14
does not hold for online learning, where the gradient is noisy.

Noise Reduction. It can be shown that centering improves the signal-to-noise
ratio of the local gradient. Omitting the slope factor for the sake of simplicity,
consider the noisy weight update

Δwij ∝ (δj + φ)(xi + ξ) = δjxi + ξδj + φxi + φξ (10.15)

where φ and ξ are the noise terms, presumed to be zero-mean, and independent
of activity, error, and each other. In the expansion on the right-hand side, the
first term is the desired (noise-free) weight update while the others represent
noise that contaminates it. While the last (pure noise) term cannot be helped,
we can reduce the variance of the two mixed terms by centering δj and xi so as
to minimize

〈
δ 2j
〉

and
〈
x 2
i

〉
, respectively.

One might of course contend that in doing so, we are also shrinking the signal
δjxi, so that in terms of the signal-to-noise ratio we are no better — in fact,



222 N.N. Schraudolph

worse — off than before. This cuts right to the heart of the matter, for centering
rests upon the notion that the error signal relevant to a non-bias, non-shortcut
weight is the fully centered weight update, and that any d.c. components in
δjxi should therefore also be regarded as a form of noise. This presumption can
of course be maintained only because we do have bias and shortcut weights to
address the error components that centering removes.

Improved Credit Assignment. From the perspective of a network that has
these additional parameters, then, centering is a way to improve the assignment
of responsibility for the network’s errors: constant errors are shunted to the bias
weights, linear errors to the shortcut weights, and the remainder of the network
is bothered only with those parts of the error signal that actually require a
nonlinearity. Centering thus views hidden units as a scarce resource that should
only be called upon where necessary. Given the computational complications that
arise in the training of nonlinear nodes, we submit that this is an appropriate
and productive viewpoint.

Future Work. While the results reported here are quite promising, more ex-
periments are required to assess the general applicability and effectiveness of
centering. For feedforward networks, we would like to explore the use of cen-
tering with multiple hidden layers, stochastic (online) gradient descent, and for
function approximation (rather than classification) problems. The centering ap-
proach per se, however, is rather more general than that, and so further ahead we
anticipate its application to a range of more sophisticated network architectures,
learning algorithms, and problem domains.

Acknowledgments. I would like to thank the editors of this book as well as
my colleagues Jürgen Schmidhuber, Marco Wiering, and Rafał Sałustowicz for
their helpful comments. This work was supported by the Swiss National Science
Foundation under grant numbers 2100–045700.95/1 and 2000–052678.97/1.

References

[1] Anderson, J., Rosenfeld, E. (eds.): Neurocomputing: Foundations of Research.
MIT Press, Cambridge (1988)

[2] Battiti, R.: Accelerated back-propagation learning: Two optimization methods.
Complex Systems 3, 331–342 (1989)

[3] Battiti, R.: First- and second-order methods for learning: Between steepest descent
and Newton’s method. Neural Computation 4(2), 141–166 (1992)

[4] Bienenstock, E., Cooper, L., Munro, P.: Theory for the development of neuron se-
lectivity: Orientation specificity and binocular interaction in visual cortex. Journal
of Neuroscience 2 (1982); Reprinted in [1]

[5] Deterding, D.H.: Speaker Normalisation for Automatic Speech Recognition. PhD
thesis, University of Cambridge (1989)



10. Centering Neural Network Gradient Factors 223

[6] Finke, M., Müller, K.-R.: Estimating a-posteriori probabilities using stochastic
network models. In: Mozer, M.C., Smolensky, P., Touretzky, D.S., Elman, J.L.,
Weigend, A.S. (eds.) Proceedings of the 1993 Connectionist Models Summer
School, Boulder, CO. Lawrence Erlbaum Associates, Hillsdale (1994)

[7] Hastie, T.J., Tibshirani, R.J.: Discriminant adaptive nearest neighbor classifi-
cation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(6),
607–616 (1996)

[8] Herrmann, M.: On the merits of topography in neural maps. In: Kohonen, T.
(ed.) Proceedings of the Workshop on Self-Organizing Maps, pp. 112–117. Helsinki
University of Technology (1997)

[9] Hochreiter, S., Schmidhuber, J.: Feature extraction through lococode. Neural
Computation (1998) (to appear)

[10] Intrator, N.: Feature extraction using an unsupervised neural network. Neural
Computation 4(1), 98–107 (1992)

[11] Lapedes, A., Farber, R.: A self-optimizing, nonsymmetrical neural net for content
addressable memory and pattern recognition. Physica D 22, 247–259 (1986)

[12] LeCun, Y., Kanter, I., Solla, S.A.: Eigenvalues of covariance matrices: Application
to neural-network learning. Physical Review Letters 66(18), 2396–2399 (1991)

[13] Robinson, A.J.: Dynamic Error Propagation Networks. PhD thesis, University of
Cambridge (1989)

[14] Schraudolph, N.N., Sejnowski, T.J.: Unsupervised discrimination of clustered data
via optimization of binary information gain. In: Hanson, S.J., Cowan, J.D., Giles,
C.L. (eds.) Advances in Neural Information Processing Systems, vol. 5, pp. 499–
506. Morgan Kaufmann, San Mateo (1993)

[15] Schraudolph, N.N., Sejnowski, T.J.: Tempering backpropagation networks: Not
all weights are created equal. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E.
(eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 563–569.
MIT Press, Cambridge (1996)

[16] Sejnowski, T.J.: Storing covariance with nonlinearly interacting neurons. Journal
of Mathematical Biology 4, 303–321 (1977)

[17] Shah, S., Palmieri, F., Datum, M.: Optimal filtering algorithms for fast learning
in feedforward neural networks. Neural Networks 5, 779–787 (1992)

[18] Tenenbaum, J.B., Freeman, W.T.: Separating style and content. In: Mozer, M.C.,
Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Sys-
tems, vol. 9, pp. 662–668. The MIT Press, Cambridge (1997)

[19] Turney, P.D.: Exploiting Context When Learning to Classify. In: Brazdil, P.B.
(ed.) ECML 1993. LNCS, vol. 667, pp. 402–407. Springer, Heidelberg (1993)

[20] Turney, P.D.: Robust classification with context-sensitive features. In: Proceedings
of the Sixth International Conference on Industrial and Engineering Applications
of Artificial Intelligence and Expert Systems, pp. 268–276 (1993)

[21] Vogl, T.P., Mangis, J.K., Rigler, A.K., Zink, W.T., Alkon, D.L.: Accelerating the
convergence of the back-propagation method. Biological Cybernetics 59, 257–263
(1988)

[22] Widrow, B., McCool, J.M., Larimore, M.G., Johnson Jr., C.R.: Stationary and
nonstationary learning characteristics of the LMS adaptive filter. Proceedings of
the IEEE 64(8), 1151–1162 (1976)

[23] Zimmermann, H.G.: Neuronale Netze als Entscheidungskalkül. In: Rehkugler, H.,
Zimmermann, H.G. (eds.) Neuronale Netze in der Ökonomie: Grundlagen und
finanzwirtschaftliche Anwendungen, pp. 1–87. Vahlen Verlag, Munich (1994)


	Centering Neural Network Gradient Factors
	Introduction
	Centered Backpropagation
	Activity Propagation
	Weight Modification
	Error Backpropagation

	Implementation Techniques
	A Priori Methods
	Adaptive Methods

	Empirical Results
	Setup of Experiments
	Symmetry Detection Problem
	Vowel Recognition Problem

	Discussion
	References




