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Preface to the Second Edition

There have been substantial changes in the field of neural networks since the first
edition of this book in 1998. Some of them have been driven by external factors
such as the increase of available data and computing power. The Internet made
public massive amounts of labeled and unlabeled data. The ever-increasing raw
mass of user-generated and sensed data is made easily accessible by databases
and Web crawlers. Nowadays, anyone having an Internet connection can parse
the 4,000,000+ articles available on Wikipedia and construct a dataset out of
them. Anyone can capture a Web TV stream and obtain days of video content
to test their learning algorithm.

Another development is the amount of available computing power that has
continued to rise at steady rate owing to progress in hardware design and en-
gineering. While the number of cycles per second of processors has thresholded
due to physics limitations, the slow-down has been offset by the emergence of
processing parallelism, best exemplified by the massively parallel graphics pro-
cessing units (GPU). Nowadays, everybody can buy a GPU board (usually al-
ready available in consumer-grade laptops), install free GPU software, and run
computation-intensive simulations at low cost.

These developments have raised the following question: Can we make use of
this large computing power to make sense of these increasingly complex datasets?
Neural networks are a promising approach, as they have the intrinsic modeling
capacity and flexibility to represent the solution. Their intrinsically distributed
nature allows one to leverage the massively parallel computing resources.

During the last two decades, the focus of neural network research and the
practice of training neural networks underwent important changes. Learning in
deep (or “deep learning”) has to a certain degree displaced the once more preva-
lent regularization issues, or more precisely, changed the practice of regularizing
neural networks. Use of unlabeled data via unsupervised layer-wise pretrain-
ing or deep unsupervised embeddings is now often preferred over traditional
regularization schemes such as weight decay or restricted connectivity. This new
paradigm has started to spread over a large number of applications such as image
recognition, speech recognition, natural language processing, complex systems,
neuroscience, and computational physics.

The second edition of the book reloads the first edition with more tricks.
These tricks arose from 14 years of theory and experimentation (from 1998
to 2012) by some of the world’s most prominent neural networks researchers.
These tricks can make a substantial difference (in terms of speed, ease of im-
plementation, and accuracy) when it comes to putting algorithms to work on
real problems. Tricks may not necessarily have solid theoretical foundations or
formal validation. As Yoshua Bengio states in Chap. 19, “the wisdom distilled
here should be taken as a guideline, to be tried and challenged, not as a practice
set in stone” [1].
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The second part of the new edition starts with tricks to faster optimize neu-
ral networks and make more efficient use of the potentially infinite stream of
data presented to them. Chapter 18 [2] shows that a simple stochastic gradi-
ent descent (learning one example at a time) is suited for training most neural
networks. Chapter 19 [1] introduces a large number of tricks and recommenda-
tions for training feed-forward neural networks and choosing the multiple hyper-
parameters.

When the representation built by the neural network is highly sensitive to
small parameter changes, for example, in recurrent neural networks, second-order
methods based on mini-batches such as those presented in Chap. 20 [9] can be a
better choice. The seemingly simple optimization procedures presented in these
chapters require their fair share of tricks in order to work optimally. The software
Torch7 presented in Chap. 21 [5] provides a fast and modular implementation
of these neural networks.

The novel second part of this volume continues with tricks to incorporate
invariance into the model. In the context of image recognition, Chap. 22 [4] shows
that translation invariance can be achieved by learning a k-means representation
of image patches and spatially pooling the k-means activations. Chapter 23 [3]
shows that invariance can be injected directly in the input space in the form
of elastic distortions. Unlabeled data are ubiquitous and using them to capture
regularities in data is an important component of many learning algorithms.
For example, we can learn an unsupervised model of data as a first step, as
discussed in Chaps. 24 [7] and 25 [10], and feed the unsupervised representation
to a supervised classifier. Chapter 26 [12] shows that similar improvements can
be obtained by learning an unsupervised embedding in the deep layers of a neural
network, with added flexibility.

The book concludes with the application of neural networks to modeling time
series and optimal control systems. Modeling time series can be done using a very
simple technique discussed in Chap. 27 [8] that consists of fitting a linear model on
top of a “reservoir” that implements a rich set of time series primitives. Chapter 28
[13] offers an alternative to the previousmethodbydirectly identifying the underly-
ing dynamical system that generates the time series data. Chapter 29 [6] presents
how these system identification techniques can be used to identify a Markov de-
cision process from the observation of a control system (a sequence of states and
actions in the reinforcement learning terminology). Chapter 30 [11] concludes by
showing how the control system can be dynamically improved by fitting a neural
network as the control system explores the space of states and actions.

The book intends to provide a timely snapshot of tricks, theory, and algo-
rithms that are of use. Our hope is that some of the chapters of the new second
edition will become our companions when doing experimental work—eventually
becoming classics, as some of the papers of the first edition have become. Even-
tually in some years, there may be an urge to reload again...

September 2012 Grégoire
Klaus
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Introduction�

It is our belief that researchers and practitioners acquire, through experience
and word-of-mouth, techniques and heuristics that help them successfully apply
neural networks to difficult real world problems. Often these “tricks” are theoret-
ically well motivated. Sometimes they are the result of trial and error. However,
their most common link is that they are usually hidden in people’s heads or in
the back pages of space-constrained conference papers. As a result newcomers
to the field waste much time wondering why their networks train so slowly and
perform so poorly.

This book is an outgrowth of a 1996 NIPS workshop called Tricks of the Trade
whose goal was to begin the process of gathering and documenting these tricks.
The interest that the workshop generated, motivated us to expand our collection
and compile it into this book. Although we have no doubt that there are many
tricks we have missed, we hope that what we have included will prove to be
useful, particularly to those who are relatively new to the field. Each chapter
contains one or more tricks presented by a given author (or authors). We have
attempted to group related chapters into sections, though we recognize that the
different sections are far from disjoint. Some of the chapters (e.g. 1,13,17) contain
entire systems of tricks that are far more general than the category they have
been placed in.

Before each section we provide the reader with a summary of the tricks con-
tained within, to serve as a quick overview and reference. However, we do not
recommend applying tricks before having read the accompanying chapter. Each
trick may only work in a particular context that is not fully explained in the
summary. This is particularly true for the chapters that present systems where
combinations of tricks must be applied together for them to be effective.

Below we give a coarse roadmap of the contents of the individual chapters.

Speeding Learning

The book opens with a chapter based on Leon Bottou and Yann LeCun’s popular
workshop on efficient backpropagation where they present a system of tricks for
speeding the minimization process. Included are tricks that are very simple to
implement as well as more complex ones, e.g. based on second-order methods.
Though many of the readers may recognize some of these tricks, we believe that
this chapter provides both: a thorough explanation of their theoretical basis as
well as an understanding of the subtle interactions among them.

This chapter provides an ideal introduction for the reader. It starts with dis-
cussing fundamental tricks addressing input representation, initialization, target

� Previously published in: Orr, G.B. and Müller, K.-R. (Eds.): LNCS 1524, ISBN
978-3-540-65311-0 (1998).

G. Montavon et al. (Eds.): NN: Tricks of the Trade, 2nd edn., LNCS 7700, pp. 1–5, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 G.B. Orr and K.-R. Müller

values, choice of learning rates, choice of the nonlinearity, and so on. Subse-
quently, the authors introduce in great detail tricks for estimation and approxi-
mation of the Hessian in neural networks. This provides the basis for a discussion
of second-order algorithms, fast training methods like the stochastic Levenberg-
Marquardt algorithm, and tricks for learning rate adaptation.

Regularization Techniques to Improve Generalization

Fast minimization is important but only if we can also insure good general-
ization. We therefore next include a collection of chapters containing a range
of approaches for improving generalization. As one might expect, there are no
tricks that work well in all situations. However, many examples and discussions
are included to help the reader to decide which will work best for their own
problem.

Chapter 2 addresses what is one of the most commonly used techniques:
early stopping. Here Lutz Prechelt discusses the pitfalls of this seemingly simple
technique. He quantifies the tradeoff between generalization and training time
for various stopping criteria, which leads to a trick for picking an appropriate
criterion.

Using a weight decay penalty term in the cost function is another common
method for improving generalization. The difficulty, however, is in finding a good
estimate of the weight decay parameter. In chapter 3, Thorsteinn Rögnvaldsson
presents a fast technique for finding a good estimate, surprisingly, by using in-
formation measured at the early stopping point. Experimental evidence for its
usefulness is given in several applications.

Tony Plate in chapter 4 treats the penalty terms along the lines of MacKay,
i.e. as hyperparameters to be found through iterative search. He presents and
compares tricks for making the hyperparameter search in classification networks
work in practice by speeding it up and simplifying it. Key to his success is a
control of the frequency of the hyperparameter updates and a better strategy in
cases where the Hessian becomes out-of-bounds.

In chapter 5, Jan Larsen et al. present a trick for adapting regularization
parameters by using simple gradient descent (with respect to the regularization
parameters) on the validation error. The trick is tested on both classification
and regression problems.

Averaging over multiple predictors is a well known method for improving
generalization. Two questions that arise are how many predictors are “enough”
and how does the number of predictors affect the stopping criteria for early
stopping. In the final chapter of this section, David Horn et al. present solutions
to these questions by providing a method for estimating the error of an infinite
number of predictors. They then demonstrate this trick for a prediction task.

Improving Network Models and Algorithmic Tricks

In this section we examine tricks that help improve the network model. Even
though standard multilayer perceptrons (MLPs) are, in theory, universal ap-
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proximators, other architectures may provide a more natural fit to a problem. A
better fit means that training is faster and that there is a greater likelihood of
finding a good and stable solution. For example, radial basis functions (RBFs)
are preferred for problems that exhibit local features in a finite region. Of course,
which architecture to choose is not always obvious.

In chapter 7, Gary Flake presents a trick that gives MLPs the power of both
an MLP and an RBF so that one does not need to choose between them . This
trick is simply to add extra inputs whose values are the square of the regular
inputs. Both a theoretical and intuitive explanation are presented along with a
number of simulation examples.

Rich Caruana in chapter 8 shows that performance can be improved on a
main task by adding extra outputs to a network that predict related tasks. This
technique, known as multi-task learning (MTL), trains these extra outputs in
parallel with the main task. This chapter presents multiple examples of what
one might use as these extra outputs as well as techniques for implementing
MTL effectively. Empirical examples include mortality rankings for pneumonia
and road-following in a network learning to steer a vehicle.

Patrick van der Smagt and Gerd Hirzinger consider in chapter 9 the ill-
conditioning of the Hessian in neural network training and propose using what
they call a linearly augmented feed-forward network, employing input/output
short-cut connections that share the input/hidden weights. This gives rise to
better conditioning of the learning problem and, thus, to faster learning, as
shown in a simulation example with data from a robot arm.

In chapter 10, Nicol Schraudolph takes the idea of scaling and centering the
inputs even further than chapter 1 by proposing to center all factors in the
neural network gradient: inputs, activities, error signals and hidden unit slopes.
He gives experimental evidence for the usefulness of this trick.

In chapter 11, Tony Plate’s short note reports a numerical trick for computing
derivatives more accurately with only a small memory overhead.

Representation and Incorporating Prior Knowledge in
Neural Network Training

Previous chapters (e.g. Chapter 1) present very general tricks for transforming
inputs to improve learning: prior knowledge of the problem is not taken into
account explicitly (of course regularization, as discussed in Chapters 2-5, im-
plicitly assumes a prior but on the weight distribution). For complex, difficult
problems, however, it is not enough to take a black box approach, no matter
how good that black box might be. This section examines how prior knowledge
about a problem can be used to greatly improve learning. The questions asked
include how to best represent the data, how to make use of this representation
for training, and how to take advantage of the invariances that are present. Such
issues are key for proper neural network training. They are also at the heart
of the tricks pointed out by Patrice Simard, et al. in the first chapter of this
section. Here, the authors present a particularly interesting perspective on how
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to incorporate prior knowledge into data. They also give the first review of the
tangent distance classification method and related techniques evolving from it
such as tangent prop. These methods are applied to the difficult task of optical
character recognition (OCR).

In chapter 13, Larry Yaeger, et al. give an overview of the tricks and tech-
niques for on-line handwritten character recognition that were eventually used
in the Apple Computer’s Newton MessagePad ©Rand eMate©R. Anyone who has
used these systems knows that their handwriting recognition capability works
exceedingly well. Although many of the issues that are discussed in this chapter
overlap with those in OCR, including representation and prior knowledge, the
solutions are complementary. This chapter also gives a very nice overview of
what design choices proved to be efficient as well as how different tricks such as
choice of learning rate, over-representation of more difficult patterns, negative
training, error emphasis and so on work together.

Whether it be handwritten character recognition, speech recognition or med-
ical applications, a particularly difficult problem encountered is the unbalanced
class prior probabilities that occur, for example, when certain writing styles
and subphoneme classes are uncommon or certain illnesses occur less frequently.
Chapter 13 briefly discusses this problem in the context of handwriting recogni-
tion and presents a heuristic which controls the frequency with which samples
are picked for training.

In chapter 14, Steve Lawrence, et al. discuss the issue of unbalanced class prior
probabilities in greater depth. They present and compare several different heuris-
tics (prior scaling, probabilistic sampling, post scaling and class membership
equalization) one of which is similar to the one in chapter 13. They demonstrate
their tricks solving an ECG classification problem and provide some theoretical
explanations.

Many training techniques work well for small to moderate size nets. However
when problems consist of thousands of classes and millions of examples, not
uncommon in applications such as speech recognition, many of these techniques
break down. This chapter by Jürgen Fritsch and Michael Finke is devoted to the
issue of large scale classification problems and representation design in general.
Here the problem of unbalanced class prior probabilities is also tackled.

Although Fritsch and Finke specifically exemplify their design approach for
the problem of building a large vocabulary speech recognizer, it becomes clear
that these techniques are also applicable to the general construction of an appro-
priate hierarchical decision tree. A particularly interesting result in this paper
is that the structural design to incorporate prior knowledge about speech done
by a human speech expert was outperformed by their machine learning tech-
nique using an agglomerative clustering algorithm to choose the structure of the
decision tree.

Tricks for Time Series

We close the book with two papers on the subject of time series and economic
forecasting. In the first of these chapters, John Moody presents an excellent
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survey of both the challenges of macroeconomic forecasting as well a number of
neural network solutions. The survey is followed by a more detailed description of
smoothing regularizers, model selection methods (e.g. AIC, effective number of
parameters, nonlinear cross-validation), and input selection via sensitivity-based
input pruning. Model interpretation and visualization are also discussed.

In the final chapter, Ralph Neuneier and Hans Georg Zimmermann present
an impressive integrated system for neural network training of time series and
economic forecasting. Every aspect of the system is discussed including input
preprocessing, cost functions, handling of outliers, architecture, regularization
techniques, as well as solutions for dealing with the problem of bottom-heavy
networks, i.e. the input dimension is large while the output dimension is very
small. There is also a thought-provoking discussion of the Observer-Observer
dilemma: we want both to create a model based on observed data while, at the
same time, use this model to judge the correctness of new incoming data. Even
those people not interested specifically in economic forecasting are encouraged
to read this very useful example of how to incorporate prior (system) knowledge
into training.

Final Remark

As a final remark, we note that some of the views taken in the chapters are
contradictory, e.g. some authors favor one regularization method over another,
while other authors make exactly the opposite statement. On the one hand, one
can explain these discrepancies by stating that the field is still very active and
therefore opposing viewpoints will inevitably exist until more is understood. On
the other hand, it may be that both (contradicting) views are correct but on
different data sets and in different applications, e.g. an approach that considers
noisy time-series needs algorithms with a completely different robustness than
in, say, an OCR setting. In this sense, the present book mirrors an active field
and a variety of applications with its diversity of views.

August 1998 Jenny & Klaus
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Speeding Learning�

Preface

There are those who argue that developing fast algorithms is no longer necessary
because computers have become so fast. However, we believe that the complexity
of our algorithmsand the size of our problems will always expand to consume all cy-
cles available, regardless of the speed of ourmachines.Thus, there will never come a
time when computational efficiency can or should be ignored. Besides, in the quest
to find solutions faster, we also often find better and more stable solutions as well.
This section is devoted to techniques for making the learning process in backprop-
agation (BP) faster and more efficient. It contains a single chapter based on a work-
shop by Leon Bottou and Yann LeCun. While many alternative learning systems
have emerged since the time BP was first introduced, BP is still the most widely
used learning algorithm. The reason for this is its simplicity, efficiency, and its gen-
eral effectiveness on a wide range of problems. Even so, there are many pitfalls in
applying it, which is where all these tricks enter.

Chapter 1 begins gently by introducing us to a few practical tricks that are
very simple to implement. Included are easy to understand qualitative explana-
tions of each. There is a discussion of stochastic (on-line) vs batch mode
learning where the advantages and disadvantages of both are presented while
making it clear that stochastic learning is most often preferred (p. 13). There
is a trick that aims at maximizing the per iteration information presented to
the network simply by knowing how best to shuffle the examples (p. 15).
This is followed by an entire set of tricks that must be coordinated together for
maximum effectiveness. These include:

– how to normalize, decorrelate, and scale the inputs (p. 16)
– how to choose the sigmoid (p. 17)
– how to set target values (classification) (p. 19)
– how to initialize the weights (p. 20)
– how to pick the learning rates (p. 20).

Additional issues discussed include the effectiveness of momentum and the choice
between radial basis units and sigmoid units (p. 21).

Chapter 1 then introduces us to a little of the theory, providing deeper under-
standing of some of the preceding tricks. Included are discussions of the effect
of learning rates on the speed of learning and of the relationship between the
Hessian matrix, the error surface, and the learning rates. Simple examples of
linear and multilayer nets are provided to illustrate the theoretical results.

The chapter next enters more difficult territory by giving an overview of sec-
ond order methods (p. 31). Quickly summarized here, they are
� Previously published in: Orr, G.B. and Müller, K.-R. (Eds.): LNCS 1524, ISBN

978-3-540-65311-0 (1998).

G. Montavon et al. (Eds.): NN: Tricks of the Trade, 2nd edn., LNCS 7700, pp. 7–8, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Newton method: generally impractical to use since it requires inverting the
full Hessian and works only in batch mode.

conjugate gradient: an O(N) algorithm that doesn’t use the Hessian, but
requires a line search and so works only in batch mode.

Quasi-Newton, Broyden-Fletcher-Goldfarb-Shanno (BFGS) method:
an O(N2) algorithm that computes an estimate of the inverse Hessian. It re-
quires line search and also only works in batch mode.

Gauss-Newton method: an O(N3) algorithm that uses the square Jacobi ap-
proximation of the Hessian. Mainly used for batch and works only for mean
squared error loss functions.

Levenberg Marquardt method: extends the Gauss-Newton method to in-
clude a regularization parameter for stability.

Second order methods can greatly speed learning at each iteration but often at
an excessive computational cost. However, by replacing the exact Hessian with
an approximation of either the full or partial Hessian, the benefits of second order
information can still be reaped without incurring as great a computational cost.

The first and most direct method for estimating the full Hessian is fi-
nite differences which simply requires little more than two backpropagations to
compute each row of the Hessian (p. 35). Another is to use the square Jacobian
approximation which guarantees a positive semi-definite matrix which may be
beneficial for improving stability. If even more simplification is desired, one can
just compute the diagonal elements of the Hessian. All of the methods mentioned
here are easily implemented using BP.

Unfortunately, for very large networks, many of the classical second order
methods do not work well because storing the Hessian is far too expensive and
because batch mode, required by most of the methods, is too slow. On-line
second order methods are needed instead. One such technique presented here is
a stochastic diagonal Levenberg Marquardt method (p. 40).

If all that is needed is the product of the Hessian with an arbitrary vec-
tor rather than the Hessian itself, then much time can be saved using a method
that computes this entire product directly using only a single backpropagation
step (p. 37). Such a technique can be used to compute the largest eigenvalue and
associated eigenvector of the Hessian. The inverse of the largest eigenvalue can
then be used to obtain a good estimate of the learning rate.

Finally, three useful tricks are presented for computing the principal eigen-
value and vector without having to compute the Hessian: the power
method, Taylor expansion, and an on-line method (p. 42).

Jenny & Klaus
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Abstract. The convergence of back-propagation learning is analyzed
so as to explain common phenomenon observed by practitioners. Many
undesirable behaviors of backprop can be avoided with tricks that are
rarely exposed in serious technical publications. This paper gives some
of those tricks, and offers explanations of why they work.

Many authors have suggested that second-order optimization methods
are advantageous for neural net training. It is shown that most “classical”
second-order methods are impractical for large neural networks. A few
methods are proposed that do not have these limitations.

1.1 Introduction

Backpropagation is a very popular neural network learning algorithm because
it is conceptually simple, computationally efficient, and because it often works.
However, getting it to work well, and sometimes to work at all, can seem more of
an art than a science. Designing and training a network using backprop requires
making many seemingly arbitrary choices such as the number and types of nodes,
layers, learning rates, training and test sets, and so forth. These choices can be
critical, yet there is no foolproof recipe for deciding them because they are largely
problem and data dependent. However, there are heuristics and some underlying
theory that can help guide a practitioner to make better choices.

In the first section below we introduce standard backpropagation and discuss
a number of simple heuristics or tricks for improving its performance. We next
discuss issues of convergence. We then describe a few “classical” second-order
non-linear optimization techniques and show that their application to neural
network training is very limited, despite many claims to the contrary in the
literature. Finally, we present a few second-order methods that do accelerate
learning in certain cases.

� Previously published in: Orr, G.B. and Müller, K.-R. (Eds.): LNCS 1524, ISBN
978-3-540-65311-0 (1998).

G. Montavon et al. (Eds.): NN: Tricks of the Trade, 2nd edn., LNCS 7700, pp. 9–48, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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1.2 Learning and Generalization

There are several approaches to automatic machine learning, but much of the
successful approaches can be categorized as gradient-based learning methods. The
learning machine, as represented in Figure 1.1, computes a function M(Zp,W )
where Zp is the p-th input pattern, andW represents the collection of adjustable
parameters in the system. A cost function Ep = C(Dp,M(Zp,W )), measures
the discrepancy between Dp, the “correct” or desired output for pattern Zp, and
the output produced by the system. The average cost function Etrain(W ) is the
average of the errors Ep over a set of input/output pairs called the training set
{(Z1, D1), ....(ZP , DP )}. In the simplest setting, the learning problem consists in
finding the value of W that minimizes Etrain(W ). In practice, the performance
of the system on a training set is of little interest. The more relevant measure
is the error rate of the system in the field, where it would be used in practice.
This performance is estimated by measuring the accuracy on a set of samples
disjoint from the training set, called the test set. The most commonly used cost
function is the Mean Squared Error:

Ep =
1

2
(Dp −M(Zp,W ))2, Etrain =

1

P

∑

p=1

Ep

COST FUNCTION

LEARNING
MACHINE

Parameters

Output

E0, E1,....Ep

Error

Desired
Output

D0, D1,...Dp

Input

M(Z,W)

Z0, Z1,... Zp

W

Fig. 1.1. Gradient-based learning machine

This chapter is focused on strategies for improving the process of minimizing
the cost function. However, these strategies must be used in conjunction with
methods for maximizing the network’s ability to generalize, that is, to predict
the correct targets for patterns the learning system has not previously seen (e.g.
see chapters 2, 3, 4, 5 for more detail).

To understand generalization, let us consider how backpropagation works. We
start with a set of samples each of which is an input/output pair of the function
to be learned. Since the measurement process is often noisy, there may be errors
in the samples. We can imagine that if we collected multiple sets of samples
then each set would look a little different because of the noise and because
of the different points sampled. Each of these data sets would also result in
networks with minima that are slightly different from each other and from the
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true function. In this chapter, we concentrate on improving the process of finding
the minimum for the particular set of examples that we are given. Generalization
techniques try to correct for the errors introduced into the network as a result
of our choice of dataset. Both are important.

Several theoretical efforts have analyzed the process of learning by minimizing
the error on a training set (a process sometimes called Empirical Risk Minimiza-
tion) [40, 41].

Some of those theoretical analyses are based on decomposing the generaliza-
tion error into two terms: bias and variance (see e.g. [12]). The bias is a measure
of how much the network output, averaged over all possible data sets differs from
the desired function. The variance is a measure of how much the network output
varies between datasets. Early in training, the bias is large because the net-
work output is far from the desired function. The variance is very small because
the data has had little influence yet. Late in training, the bias is small because
the network has learned the underlying function. However, if trained too long,
the network will also have learned the noise specific to that dataset. This is re-
ferred to as overtraining. In such a case, the variance will be large because the
noise varies between datasets. It can be shown that the minimum total error will
occur when the sum of bias and variance are minimal.

There are a number of techniques (e.g. early stopping, regularization) for
maximizing the generalization ability of a network when using backprop. Many
of these techniques are described in later chapters 2, 3, 5, 4.

The idea of this chapter, therefore, is to present minimization strategies (given
a cost function) and the tricks associated with increasing the speed and quality
of the minimization. It is however clear that the choice of the model (model
selection), the architecture and the cost function is crucial for obtaining a net-
work that generalizes well. So keep in mind that if the wrong model class is used
and no proper model selection is done, then even a superb minimization will
clearly not help very much. In fact, the existence of overtraining has led several
authors to suggest that inaccurate minimization algorithms can be better than
good ones.

1.3 Standard Backpropagation

Although the tricks and analyses in this paper are primarily presented in the
context of “classical” multi-layer feed-forward neural networks, many of them
also apply to most other gradient-based learning methods.

The simplest form of multilayer learning machine trained with gradient-based
learning is simply a stack of modules, each of which implements a function Xn =
Fn(Wn, Xn−1), where Xn is a vector representing the output of the module, Wn

is the vector of tunable parameters in the module (a subset of W ), and Xn−1 is
the module’s input vector (as well as the previous module’s output vector). The
input X0 to the first module is the input pattern Zp. If the partial derivative of
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Ep with respect to Xn is known, then the partial derivatives of Ep with respect
to Wn and Xn−1 can be computed using the backward recurrence

∂Ep

∂Wn
=
∂F

∂W
(Wn, Xn−1)

∂Ep

∂Xn

∂Ep

∂Xn−1
=
∂F

∂X
(Wn, Xn−1)

∂Ep

∂Xn
(1.1)

where ∂F
∂W (Wn, Xn−1) is the Jacobian of F with respect to W evaluated at the

point (Wn, Xn−1), and ∂F
∂X (Wn, Xn−1) is the Jacobian of F with respect to X .

The Jacobian of a vector function is a matrix containing the partial derivatives
of all the outputs with respect to all the inputs. When the above equations
are applied to the modules in reverse order, from layer N to layer 1, all the
partial derivatives of the cost function with respect to all the parameters can be
computed. The way of computing gradients is known as back-propagation.

Traditional multi-layer neural networks are a special case of the above system
where the modules are alternated layers of matrix multiplications (the weights)
and component-wise sigmoid functions (the units):

Yn =WnXn−1 (1.2)
Xn = F (Yn) (1.3)

where Wn is a matrix whose number of columns is the dimension of Xn−1, and
number of rows is the dimension of Xn. F is a vector function that applies a
sigmoid function to each component of its input. Yn is the vector of weighted
sums, or total inputs, to layer n.

Applying the chain rule to the equation above, the classical backpropagation
equations are obtained:

∂Ep

∂yin
= f ′(yin)

∂Ep

∂xin
(1.4)

∂Ep

∂wij
n

= xjn−1

∂Ep

∂yin
(1.5)

∂Ep

∂xkn−1

=
∑

i

wik
n

∂Ep

∂yin
. (1.6)

The above equations can also be written in matrix form:
∂Ep

∂Yn
= F ′(Yn)

∂Ep

∂Xn
(1.7)

∂Ep

∂Wn
= Xn−1

∂Ep

∂Yn
(1.8)

∂Ep

∂Xn−1
=WT

n

∂Ep

∂Yn
. (1.9)

The simplest learning (minimization) procedure in such a setting is the gradient
descent algorithm where W is iteratively adjusted as follows:

W (t) =W (t− 1)− η ∂E
∂W

. (1.10)
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In the simplest case, η is a scalar constant. More sophisticated procedures use
variable η. In other methods η takes the form of a diagonal matrix, or is an
estimate of the inverse Hessian matrix of the cost function (second derivative
matrix) such as in the Newton and Quasi-Newton methods described later in
the chapter. A proper choice of η is important and will be discussed at length
later.

1.4 A Few Practical Tricks

Backpropagation can be very slow particularly for multilayered networks where
the cost surface is typically non-quadratic, non-convex, and high dimensional
with many local minima and/or flat regions. There is no formula to guarantee
that (1) the network will converge to a good solution, (2) convergence is swift, or
(3) convergence even occurs at all. However, in this section we discuss a number
of tricks that can greatly improve the chances of finding a good solution while
also decreasing the convergence time often by orders of magnitude. More detailed
theoretical justifications will be given in later sections.

1.4.1 Stochastic versus Batch Learning

At each iteration, equation (1.10) requires a complete pass through the entire
dataset in order to compute the average or true gradient. This is referred to as
batch learning since an entire “batch” of data must be considered before weights
are updated. Alternatively, one can use stochastic (online) learning where a
single example {Zt, Dt} is chosen (e.g. randomly) from the training set at each
iteration t. An estimate of the true gradient is then computed based on the error
Et of that example, and then the weights are updated:

W (t+ 1) =W (t)− η ∂E
t

∂W
. (1.11)

Because this estimate of the gradient is noisy, the weights may not move precisely
down the gradient at each iteration. As we shall see, this “noise” at each iteration
can be advantageous. Stochastic learning is generally the preferred method for
basic backpropagation for the following three reasons:

Advantages of Stochastic Learning
1. Stochastic learning is usually much faster than batch learning.
2. Stochastic learning also often results in better solutions.
3. Stochastic learning can be used for tracking changes.

Stochastic learning is most often much faster than batch learning particularly
on large redundant datasets. The reason for this is simple to show. Consider the
simple case where a training set of size 1000 is inadvertently composed of 10
identical copies of a set with 100 samples. Averaging the gradient over all 1000
patterns gives the exact same result as computing the gradient based on just
the first 100. Thus, batch gradient descent is wasteful because it recomputes
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the same quantity 10 times before one parameter update. On the other hand,
stochastic gradient will see a full epoch as 10 iterations through a 100-long
training set. In practice, examples rarely appear more than once in a dataset,
but there are usually clusters of patterns that are very similar. For example in
phoneme classification, all of the patterns for the phoneme /æ/ will (hopefully)
contain much of the same information. It is this redundancy that can make batch
learning much slower than on-line.

Stochastic learning also often results in better solutions because of the noise in
the updates. Nonlinear networks usually have multiple local minima of differing
depths. The goal of training is to locate one of these minima. Batch learning
will discover the minimum of whatever basin the weights are initially placed. In
stochastic learning, the noise present in the updates can result in the weights
jumping into the basin of another, possibly deeper, local minimum. This has
been demonstrated in certain simplified cases [15, 30].

Stochastic learning is also useful when the function being modeled is chang-
ing over time, a quite common scenario in industrial applications where the
data distribution changes gradually over time (e.g. due to wear and tear of the
machines). If the learning machine does not detect and follow the change it is
impossible to learn the data properly and large generalization errors will result.
With batch learning, changes go undetected and we obtain rather bad results
since we are likely to average over several rules, whereas on-line learning – if
operated properly (see below in section 1.4.7) – will track the changes and yield
good approximation results.

Despite the advantages of stochastic learning, there are still reasons why one
might consider using batch learning:

Advantages of Batch Learning
1. Conditions of convergence are well understood.
2. Many acceleration techniques (e.g. conjugate gradient) only op-

erate in batch learning.
3. Theoretical analysis of the weight dynamics and convergence

rates are simpler.

These advantages stem from the same noise that make stochastic learning
advantageous. This noise, which is so critical for finding better local minima
also prevents full convergence to the minimum. Instead of converging to the
exact minimum, the convergence stalls out due to the weight fluctuations. The
size of the fluctuations depend on the degree of noise of the stochastic updates.
The variance of the fluctuations around the local minimum is proportional to the
learning rate η [28, 27, 6]. So in order to reduce the fluctuations we can either
decrease (anneal) the learning rate or have an adaptive batch size. In theory
[13, 30, 36, 35] it is shown that the optimal annealing schedule of the learning
rate is of the form

η ∼ c
t
, (1.12)

where t is the number of patterns presented and c is a constant. In practice, this
may be too fast (see chapter 13).
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Another method to remove noise is to use “mini-batches”, that is, start with
a small batch size and increase the size as training proceeds. Møller discusses
one method for doing this [25] and Orr [31] discusses this for linear problems.
However, deciding the rate at which to increase the batch size and which inputs
to include in the small batches is as difficult as determining the proper learning
rate. Effectively the size of the learning rate in stochastic learning corresponds
to the respective size of the mini batch.

Note also that the problem of removing the noise in the data may be less
critical than one thinks because of generalization. Overtraining may occur long
before the noise regime is even reached.

Another advantage of batch training is that one is able to use second order
methods to speed the learning process. Second order methods speed learning
by estimating not just the gradient but also the curvature of the cost surface.
Given the curvature, one can estimate the approximate location of the actual
minimum.

Despite the advantages of batch updates, stochastic learning is still often the
preferred method particularly when dealing with very large data sets because it
is simply much faster.

1.4.2 Shuffling the Examples

Networks learn the fastest from the most unexpected sample. Therefore, it is
advisable to choose a sample at each iteration that is the most unfamiliar to
the system. Note, this applies only to stochastic learning since the order of
input presentation is irrelevant for batch1. Of course, there is no simple way
to know which inputs are information rich, however, a very simple trick that
crudely implements this idea is to simply choose successive examples that are
from different classes since training examples belonging to the same class will
most likely contain similar information.

Another heuristic for judging how much new information a training example
contains is to examine the error between the network output and the target value
when this input is presented. A large error indicates that this input has not been
learned by the network and so contains a lot of new information. Therefore, it
makes sense to present this input more frequently. Of course, by “large” we mean
relative to all of the other training examples. As the network trains, these relative
errors will change and so should the frequency of presentation for a particular
input pattern. A method that modifies the probability of appearance of each
pattern is called an emphasizing scheme.

Choose Examples with Maximum Information Content
1. Shuffle the training set so that successive training examples

never (rarely) belong to the same class.
2. Present input examples that produce a large error more fre-

quently than examples that produce a small error.

1 The order in which gradients are summed in batch may be affected by roundoff error
if there is a significant range of gradient values.



16 Y.A. LeCun et al.

However, one must be careful when perturbing the normal frequencies of input
examples because this changes the relative importance that the network places
on different examples. This may or may not be desirable. For example, this
technique applied to data containing outliers can be disastrous because outliers
can produce large errors yet should not be presented frequently. On the other
hand, this technique can be particularly beneficial for boosting the performance
for infrequently occurring inputs, e.g. /z/ in phoneme recognition (see chapter
13, 14).

1.4.3 Normalizing the Inputs

Convergence is usually faster if the average of each input variable over the train-
ing set is close to zero. To see this, consider the extreme case where all the inputs
are positive. Weights to a particular node in the first weight layer are updated
by an amount proportional to δx where δ is the (scalar) error at that node and x
is the input vector (see equations (1.5) and (1.10)). When all of the components
of an input vector are positive, all of the updates of weights that feed into a
node will be the same sign (i.e. sign(δ)). As a result, these weights can only
all decrease or all increase together for a given input pattern. Thus, if a weight
vector must change direction it can only do so by zigzagging which is inefficient
and thus very slow.

In the above example, the inputs were all positive. However, in general, any
shift of the average input away from zero will bias the updates in a particular
direction and thus slow down learning. Therefore, it is good to shift the inputs
so that the average over the training set is close to zero. This heuristic should
be applied at all layers which means that we want the average of the outputs
of a node to be close to zero because these outputs are the inputs to the next
layer [19], chapter 10. This problem can be addressed by coordinating how the
inputs are transformed with the choice of sigmoidal activation function. Here we
discuss the input transformation. The discussion of the sigmoid follows.

Convergence is faster not only if the inputs are shifted as described above but
also if they are scaled so that all have about the same covariance, Ci, where

Ci =
1

P

P∑

p=1

(zpi )
2. (1.13)

Here, P is the number of training examples, Ci is the covariance of the ith input
variable and zpi is the ith component of the pth training example. Scaling speeds
learning because it helps to balance out the rate at which the weights connected
to the input nodes learn. The value of the covariance should be matched with
that of the sigmoid used. For the sigmoid given below, a covariance of 1 is a
good choice.

The exception to scaling all covariances to the same value occurs when it is
known that some inputs are of less significance than others. In such a case, it
can be beneficial to scale the less significant inputs down so that they are “less
visible” to the learning process.
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Transforming the Inputs
1. The average of each input variable over the training set should be close

to zero.
2. Scale input variables so that their covariances are about the same.
3. Input variables should be uncorrelated if possible.

The above two tricks of shifting and scaling the inputs are quite simple to
implement. Another trick that is quite effective but more difficult to implement
is to decorrelate the inputs. Consider the simple network in Figure 1.2. If inputs
are uncorrelated then it is possible to solve for the value of w1 that minimizes
the error without any concern for w2, and vice versa. In other words, the two
variables are independent (the system of equations is diagonal). With correlated
inputs, one must solve for both simultaneously which is a much harder problem.
Principal component analysis (also known as the Karhunen-Loeve expansion)
can be used to remove linear correlations in inputs [10].

Inputs that are linearly dependent (the extreme case of correlation) may also
produce degeneracies which may slow learning. Consider the case where one
input is always twice the other input (z2 = 2z1). The network output is constant
along lines W2 = v − (1/2)W1, where v is a constant. Thus, the gradient is zero
along these directions (see Figure 1.2). Moving along these lines has absolutely
no effect on learning. We are trying to solve in 2-D what is effectively only a 1-D
problem. Ideally we want to remove one of the inputs which will decrease the
size of the network.

Figure 1.3 shows the entire process of transforming inputs. The steps are
(1) shift inputs so the mean is zero, (2) decorrelate inputs, and (3) equalize
covariances.

z1 z2

y

ω1 ω2

ω2

ω1

Lines of
constant  E

Fig. 1.2. Linearly dependent inputs

1.4.4 The Sigmoid

Nonlinear activation functions are what give neural networks their nonlinear
capabilities. One of the most common forms of activation function is the sigmoid
which is a monotonically increasing function that asymptotes at some finite value
as ±∞ is approached. The most common examples are the standard logistic
function f(x) = 1/(1 + e−x) and hyperbolic tangent f(x) = tanh(x) shown in
Figure 1.4. Sigmoids that are symmetric about the origin (e.g. see Figure 1.4b)
are preferred for the same reason that inputs should be normalized, namely,
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Mean
Cancellation

KL-
Expansion

Covariance
Equalization

Fig. 1.3. Transformation of inputs

because they are more likely to produce outputs (which are inputs to the next
layer) that are on average close to zero. This is in contrast, say, to the logistic
function whose outputs are always positive and so must have a mean that is
positive.
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(a) (b)

Fig. 1.4. (a) Not recommended: the standard logistic function, f(x) = 1/(1 + e−x).
(b) Hyperbolic tangent, f(x) = 1.7159 tanh

(
2
3
x
)
.

Sigmoids
1. Symmetric sigmoids such as hyperbolic tangent often converge faster

than the standard logistic function.
2. A recommended sigmoid [19] is: f(x) = 1.7159 tanh

(
2
3x
)
. Since the

tanh function is sometimes computationally expensive, an approxima-
tion of it by a ratio of polynomials can be used instead.

3. Sometimes it is helpful to add a small linear term, e.g. f(x) = tanh(x)+
ax so as to avoid flat spots.

The constants in the recommended sigmoid given above have been chosen so
that, when used with transformed inputs (see previous discussion), the variance
of the outputs will also be close to 1 because the effective gain of the sigmoid
is roughly 1 over its useful range. In particular, this sigmoid has the properties
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(a) f(±1) = ±1, (b) the second derivative is a maximum at x = 1, and (c) the
effective gain is close to 1.

One of the potential problems with using symmetric sigmoids is that the
error surface can be very flat near the origin. For this reason it is good to avoid
initializing with very small weights. Because of the saturation of the sigmoids,
the error surface is also flat far from the origin. Adding a small linear term to
the sigmoid can sometimes help avoid the flat regions (see chapter 9).

1.4.5 Choosing Target Values

In classification problems, target values are typically binary (e.g. {-1,+1}). Com-
mon wisdom might seem to suggest that the target values be set at the value of
the sigmoid’s asymptotes. However, this has several drawbacks.

First, instabilities can result. The training process will try to drive the output
as close as possible to the target values, which can only be achieved asymptoti-
cally. As a result, the weights (output and even hidden) are driven to larger and
larger values where the sigmoid derivative is close to zero. The very large weights
increase the gradients, however, these gradients are then multiplied by an expo-
nentially small sigmoid derivative (except when a twisting term2 is added to the
sigmoid) producing a weight update close to zero. As a result, the weights may
become stuck.

Second, when the outputs saturate, the network gives no indication of confi-
dence level. When an input pattern falls near a decision boundary the output
class is uncertain. Ideally this should be reflected in the network by an out-
put value that is in between the two possible target values, i.e. not near either
asymptote. However, large weights tend to force all outputs to the tails of the sig-
moid regardless of the uncertainty. Thus, the network may predict a wrong class
without giving any indication of its low confidence in the result. Large weights
that saturate the nodes make it impossible to differentiate between typical and
nontypical examples.

A solution to these problems is to set the target values to be within the range of
the sigmoid, rather than at the asymptotic values. Care must be taken, however,
to insure that the node is not restricted to only the linear part of the sigmoid.
Setting the target values to the point of the maximum second derivative on the
sigmoid is the best way to take advantage of the nonlinearity without saturating
the sigmoid. This is another reason the sigmoid in Figure 1.4b is a good choice.
It has maximum second derivative at ±1 which correspond to the binary target
values typical in classification problems.

Targets
Choose target values at the point of the maximum second derivative on the
sigmoid so as to avoid saturating the output units.

2 A twisting term is a small linear term added to the node output, e.g.
f(x) = tanh(x) + ax.
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1.4.6 Initializing the Weights

The starting values of the weights can have a significant effect on the training
process. Weights should be chosen randomly but in such a way that the sig-
moid is primarily activated in its linear region. If weights are all very large then
the sigmoid will saturate resulting in small gradients that make learning slow.
If weights are very small then gradients will also be very small. Intermediate
weights that range over the sigmoid’s linear region have the advantage that (1)
the gradients are large enough that learning can proceed and (2) the network
will learn the linear part of the mapping before the more difficult nonlinear part.

Achieving this requires coordination between the training set normalization,
the choice of sigmoid, and the choice of weight initialization. We start by requir-
ing that the distribution of the outputs of each node have a standard deviation
(σ) of approximately 1. This is achieved at the input layer by normalizing the
training set as described earlier. To obtain a standard deviation close to 1 at
the output of the first hidden layer we just need to use the above recommended
sigmoid together with the requirement that the input to the sigmoid also have a
standard deviation σy = 1. Assuming the inputs, yi, to a unit are uncorrelated
with variance 1, the standard deviation of the units weighted sum will be

σyi =

⎛

⎝
∑

j

w2
ij

⎞

⎠
1/2

. (1.14)

Thus, to insure that the σyi are approximately 1 the weights should be randomly
drawn from a distribution with mean zero and a standard deviation given by

σw = m−1/2 (1.15)

where m is the number of inputs to the unit.

Initializing Weights
Assuming that:

1. the training set has been normalized, and
2. the sigmoid from Figure 1.4b has been used

then weights should be randomly drawn from a distribution (e.g. uniform)
with mean zero and standard deviation

σw = m−1/2 (1.16)

where m is the fan-in (the number of connections feeding into the node).

1.4.7 Choosing Learning Rates

There is at least one well-principled method (described in section 1.9.2) for esti-
mating the ideal learning rate η. Many other schemes (most of them rather em-
pirical) have been proposed in the literature to automatically adjust the learning
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rate. Most of those schemes decrease the learning rate when the weight vector
“oscillates”, and increase it when the weight vector follows a relatively steady di-
rection. The main problem with these methods is that they are not appropriate
for stochastic gradient or on-line learning because the weight vector fluctuates
all the time.

Beyond choosing a single global learning rate, it is clear that picking a different
learning rate ηi for each weight can improve the convergence. A well-principled
way of doing this, based on computing second derivatives, is described in sec-
tion 1.9.1. The main philosophy is to make sure that all the weights in the
network converge roughly at the same speed.

Depending upon the curvature of the error surface, some weights may require a
small learning rate in order to avoid divergence, while others may require a large
learning rate in order to converge at a reasonable speed. Because of this, learning
rates in the lower layers should generally be larger than in the higher layers (see
Figure 1.21). This corrects for the fact that in most neural net architectures, the
second derivative of the cost function with respect to weights in the lower layers
is generally smaller than that of the higher layers. The rationale for the above
heuristics will be discussed in more detail in later sections along with suggestions
for how to choose the actual value of the learning rate for the different weights
(see section 1.9.1).

If shared weights are used such as in time-delay neural networks (TDNN) [42]
or convolutional networks [20], the learning rate should be proportional to the
square root of the number of connections sharing that weight, because we know
that the gradients are a sum of more-or-less independent terms.

Equalize the Learning Speeds
– give each weight its own learning rate
– learning rates should be proportional to the square root of the

number of inputs to the unit
– weights in lower layers should typically be larger than in the

higher layers

Other tricks for improving the convergence include:

Momentum. Momentum

Δw(t+ 1) = η
∂Et+1

∂w
+ μΔw(t),

can increase speed when the cost surface is highly nonspherical because it damps
the size of the steps along directions of high curvature thus yielding a larger
effective learning rate along the directions of low curvature [43] (μ denotes the
strength of the momentum term). It has been claimed that momentum generally
helps more in batch mode than in stochastic mode, but no systematic study of
this are known to the authors.
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Adaptive Learning Rates. Many authors, including Sompolinsky et al. [37],
Darken & Moody [9], Sutton [38], Murata et al. [28] have proposed rules for
automatically adapting the learning rates (see also [16]). These rules control the
speed of convergence by increasing or decreasing the learning rate based on the
error.

We assume the following facts for a learning rate adaptation algorithm: (1) the
smallest eigenvalue of the Hessian (see Eq.(1.27)) is sufficiently smaller than the
second smallest eigenvalue and (2) therefore after a large number of iterations,
the parameter vector w(t) will approach the minimum from the direction of the
minimum eigenvector of the Hessian (see Eq.(1.27), Figure 1.5). Under these
conditions the evolution of the estimated parameter can be thought of as a one-
dimensional process and the minimum eigenvector v can be approximated (for
a large number of iterations: see Figure 1.5) by

v = 〈∂E
∂w
〉/‖〈∂E

∂w
〉‖,

where ‖ ‖ denotes the L2 norm. Hence we can adopt a projection

ξ = 〈vT ∂E

∂w
〉 = ‖〈∂E

∂w
〉‖

to the approximated minimum Eigenvector v as a one dimensional measure of
the distance to the minimum. This distance can be used to control the learning
rate (for details see [28])

w(t + 1) = w(t + 1)− ηt
∂Et

∂w
, (1.17)

r(t+ 1) = (1 − δ)r(t) + δ ∂Et

∂w
, (0 < δ < 1) (1.18)

η(t+ 1) = η(t) + αη(t) (β‖r(t+ 1)‖ − η(t)) , (1.19)

where δ controls the leak size of the average, α, β are constants and r is used as
auxiliary variable to calculate the leaky average of the gradient ∂E

∂w .
Note that this set of rules is easy to compute and straightforward to imple-

ment. We simply have to keep track of an additional vector in Eq.(1.18): the
averaged gradient r. The norm of this vector then controls the size of the learn-
ing rate (see Eq.(1.19)). The algorithm follows the simple intuition: far away
from the minimum (large distance ξ) it proceeds in big steps and close to the
minimum it anneals the learning rate (for theoretical details see [28]).

1.4.8 Radial Basis Functions vs Sigmoid Units

Although most systems use nodes based on dot products and sigmoids, many
other types of units (or layers) can be used. A common alternative is the radial
basis function (RBF) network (see [7, 26, 5, 32]) In RBF networks, the dot
product of the weight and input vector is replaced with a Euclidean distance
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W*

Fig. 1.5. Convergence of the flow. During the final stage of learning the average flow
is approximately one dimensional towards the minimum w∗ and it is a good approxi-
mation of the minimum eigenvalue direction of the Hessian.

between the input and weight and the sigmoid is replaced by an exponential.
The output activity is computed, e.g. for one output, as

g(x) =

N∑

i=1

wi exp

(
− 1

2σ2i
‖x− νi‖2

)
,

where νi (σi) is the mean (standard deviation) of the i-th Gaussian. These units
can replace or coexist with the standard units and they are usually trained by
combination of gradient descent (for output units) and unsupervised clustering
for determining the means and widths of the RBF units.

Unlike sigmoidal units which can cover the entire space, a single RBF unit
covers only a small local region of the input space. This can be an advantage
because learning can be faster. RBF units may also form a better set of basis
functions to model the input space than sigmoid units, although this is highly
problem dependent (see chapter 7). On the negative side, the locality property
of RBFs may be a disadvantage particularly in high dimensional spaces because
may units are needed to cover the spaces. RBFs are more appropriate in (low
dimensional) upper layers and sigmoids in (high dimensional) lower layers.

1.5 Convergence of Gradient Descent

1.5.1 A Little Theory

In this section we examine some of the theory behind the tricks presented earlier.
We begin in one dimension where the update equation for gradient descent can
be written as

W (t+ 1) =W (t)− η dE(W )

dW
. (1.20)

We would like to know how the value of η affects convergence and the learning
speed. Figure 1.6 illustrates the learning behavior for several different sizes of η
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when the weight W starts out in the vicinity of a local minimum. In one dimen-
sion, it is easy to define the optimal learning rate, ηopt, as being the learning
rate that will move the weight to the minimum, Wmin, in precisely one step (see
Figure 1.6(i)b). If η is smaller than ηopt then the stepsize will be smaller and
convergence will take multiple timesteps. If η is between ηopt and 2ηopt then the
weight will oscillate around Wmin but will eventually converge (Figure 1.6(i)c).
If η is more than twice the size of ηopt (Figure 1.6(i)d) then the stepsize is so
large that the weight ends up farther fromWmin than before. Divergence results.

E(ω)

ω

η > ηopt

ωmin

E(ω)

ω

η < ηopt

ωmina)

c)

E(ω)

ω

η = ηopt

ωmin

E(ω)

ω

η > 2 ηopt

ωmin

b)

d)

E(ω)

ω

η = ηopt

ω

Δω

   dE/dω

   ωc

  
ωmin

   ωc

  
ωmin  

dE(ωc)
dω

(i) (ii)

Fig. 1.6. Gradient descent for different learning rates

What is the optimal value of the learning rate ηopt? Let us first consider
the case in 1-dimension. Assuming that E can be approximated by a quadratic
function, ηopt can be derived by first expanding E in a Taylor series about the
current weight, Wc:

E(W ) = E(Wc) + (W −Wc)
dE(Wc)

dW
+

1

2
(W −Wc)

2 d
2E(Wc)

dW 2
+ . . . , (1.21)

where we use the shorthand dE(Wc)
dW ≡ dE

dW

∣∣
W=Wc

. If E is quadratic the second
order derivative is constant and the higher order terms vanish. Differentiating
both sides with respect to W then gives

dE(W )

dW
=
dE(Wc)

dW
+ (W −Wc)

d2E(Wc)

dW 2
. (1.22)

Setting W = Wmin and noting that dE(Wmin)/dW = 0, we are left after rear-
ranging with

Wmin =Wc −
(
d2E(Wc)

dW 2

)−1
dE(Wc)

dW
. (1.23)
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Comparing this with the update equation (1.20), we find that we can reach a
minimum in one step if

ηopt =

(
d2E(Wc)

dW 2

)−1

. (1.24)

Perhaps an easier way to obtain this same result is illustrated in Figure 1.6(ii).
The bottom graph plots the gradient of E as a function of W . Since E is
quadratic, the gradient is simply a straight line with value zero at the mini-
mum and ∂E(Wc)

∂W at the current weightWc. ∂2E/∂2W is simply the slope of this
line and is computed using the standard slope formula

∂2E/∂2W =
∂E(Wc)/∂W − 0

Wc −Wmin
. (1.25)

Solving for Wmin then gives equation (1.23).
While the learning rate that gives fastest convergence is ηopt, the largest learn-

ing rate that can be used without causing divergence is (also see Figure 1.6(i)d)

ηmax = 2ηopt. (1.26)

If E is not exactly quadratic then the higher order terms in equation (1.21) are
not precisely zero and (1.23) is only an approximation. In such a case, it may
take multiple iterations to locate the minimum even when using ηopt, however,
convergence can still be quite fast.

In multiple dimensions, determining ηopt is a bit more difficult because the
right side of (1.24) is a matrix H−1 where H is called the Hessian whose com-
ponents are given by

Hij ≡
∂2E

∂Wi∂Wj
(1.27)

with 1 ≤ i, j ≤ N , and N equal to the total number of weights.
H is a measure of the curvature of E. In two dimensions, the lines of constant

E for a quadratic cost are oval in shape as shown in Figure 1.7. The eigenvec-
tors of H point in the directions of the major and minor axes. The eigenvalues
measure the steepness of E along the corresponding eigendirection.

Example. In the least mean square (LMS) algorithm, we have a single layer
linear network with error function

E(W ) =
1

2P

P∑

p=1

|dp −
∑

i

wix
p
i |2 (1.28)

where P is the number of training vectors. The Hessian in this case turns out
the be the same as the covariance matrix of the inputs,

H =
1

P

∑

p

xpxpT . (1.29)
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Fig. 1.7. Lines of constant E

x1

x2

Fig. 1.8. For the LMS algorithm, the eigenvectors and eigenvalues of H measure the
spread of the inputs in input space

Thus, each eigenvalue of H is also a measure of the covariance or spread of the
inputs along the corresponding eigendirection as shown in Figure 1.8.

Using a scalar learning rate is problematic in multiple dimensions. We want
η to be large so that convergence is fast along the shallow directions of E (small
eigenvalues of H), however, if η is too large the weights will diverge along the
steep directions (large eigenvalues of H). To see this more specifically, let us
again expand E, but this time about a minimum

E(W ) ≈ E(Wmin) +
1

2
(W −Wmin)

TH(Wmin)(W −Wmin). (1.30)

Differentiating (1.30) and using the result in the update equation (1.20) gives

W (t+ 1) =W (t)− η ∂E(t)
∂W

(1.31)

=W (t)− ηH(Wmin)(W (t)−Wmin). (1.32)

Subtracting Wmin from both sides gives

(W (t+ 1)−Wmin) = (I − ηH(Wmin))(W (t) −Wmin). (1.33)
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If the prefactor (I − ηH(Wmin)) is a matrix transformation that always shrinks
a vector (i.e. its eigenvalues all have magnitude less than 1) then the update
equation will converge.

How does this help with choosing the learning rates? Ideally we want different
learning rates along the different eigendirections. This is simple if the eigendi-
rections are lined up with the coordinate axes of the weights. In such a case,
the weights are uncoupled and we can assign each weight its own learning rate
based on the corresponding eigenvalue. However, if the weights are coupled then
we must first rotate H such that H is diagonal, i.e. the coordinate axes line up
with the eigendirections (see Figure 1.7b). This is the purpose of diagonalizing
the Hessian discussed earlier.

Let Θ be the rotation matrix such that

Λ = ΘHΘT (1.34)

where Λ is diagonal and ΘTΘ = I. The cost function then can be written as

E(W ) ≈ E(Wmin) +
1

2

[
(W −Wmin)

TΘT
] [
ΘH(Wmin)Θ

T
]
[Θ(W −Wmin)] .

(1.35)
Making a change of coordinates to ν = Θ(W − Wmin) simplifies the above
equation to

E(ν) ≈ E(0) + 1

2
νTΛν (1.36)

and the transformed update equation becomes

ν(t+ 1) = (I − ηΛ)ν(t). (1.37)

Note that I − ηΛ is diagonal with diagonal components 1 − ηλi. This equation
will converge if |1− ηλi| < 1, i.e. η < 2

λi
for all i. If constrained to have a single

scalar learning rate for all weights then we must require

η <
2

λmax
(1.38)

in order to avoid divergence, where λmax is the largest eigenvalue of H . For
fastest convergence we have

ηopt =
1

λmax
. (1.39)

If λmin is a lot smaller than λmax then convergence will be very slow along the
λmin direction. In fact, convergence time is proportional to the condition number
κ ≡ λmax/λmin so that it is desirable to have as small an eigenvalue spread as
possible.

However, since we have rotated H to be aligned with the coordinate axes,
(1.37) consists actually of N independent 1-dimensional equations. Therefore,
we can choose a learning rate for each weight independent of the others. We see
that the optimal rate for the ith weight νi is ηopt,i = 1

λi
.
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1.5.2 Examples

Linear Network. Figure 1.10 displays a set of 100 examples drawn from two
Gaussian distributed classes centered at (-0.4,-0.8) and (0.4,0.8). The eigenvalues
of the covariance matrix are 0.84 and 0.036. We train a single layer linear network
with 2 inputs, 1 output, 2 weights, and 1 bias (see Figure (1.9)) using the LMS
algorithm in batch mode. Figure 1.11 displays the weight trajectory and error
during learning when using a learning rates of η = 1.5 and 2.5. Note that the
learning rate (see Eq. 1.38) ηmax = 2/λmax = 2/.84 = 2.38 will cause divergences
as is evident for η = 2.5.

ω1
ω0

ω2

χ0

y

χ1

Fig. 1.9. Simple linear network
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Fig. 1.10. Two classes drawn from gaussian dis-
tributions centered at (-0.4,-0.8) and (0.4,0.8)

Figure 1.12 shows the same example using stochastic instead of batch mode
learning. Here, a learning rate of η = 0.2 is used. One can see that the trajectory
is much noisier than in batch mode since only an estimate of the gradient is
used at each iteration. The cost is plotted as a function of epoch. An epoch
here is simply defined as 100 input presentations which, for stochastic learning,
corresponds to 100 weight updates. In batch, an epoch corresponds to one weight
update.

Multilayer Network. Figure 1.14 shows the architecture for a very simple
multilayer network. It has 1 input, 1 hidden, and 1 output node. There are
2 weights and 2 biases. The activation function is f(x) = 1.71 tanh((2/3)x).
The training set contains 10 examples from each of 2 classes. Both classes are
Gaussian distributed with standard deviation 0.4. Class 1 has a mean of -1 and
class 2 has a mean of +1. Target values are -1 for class 1 and +1 for class 2.
Figure 1.13 shows the stochastic trajectory for the example.
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Fig. 1.11. Weight trajectory and error curve during learning for (a) η = 1.5 and (b)
η = 2.5
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Fig. 1.12. Weight trajectory and error
curve during stochastic learning for η =
0.2
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Fig. 1.13. Weight trajectories and errors
for 1-1-1 network trained using stochastic
learning
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Fig. 1.14. The minimal multilayer network

1.5.3 Input Transformations and Error Surface Transformations
Revisited

We can use the results of the previous section to justify several of the tricks
discussed earlier.

Subtract the means from the input variables

The reason for the above trick is that a nonzero mean in the input variables
creates a very large eigenvalue. This means the condition number will be large,
i.e. the cost surface will be steep in some directions and shallow in others so that
convergence will be very slow. The solution is to simply preprocess the inputs
by subtracting their means.

For a single linear neuron, the eigenvectors of the Hessian (with means sub-
tracted) point along the principal axes of the cloud of training vectors (recall
Figure 1.8). Inputs that have a large variation in spread along different directions
of the input space will have a large condition number and slow learning. And so
we recommend:

Normalize the variances of the input variables.

If the input variables are correlated, this will not make the error surface
spherical, but it will possibly reduce its eccentricity.

Correlated input variables usually cause the eigenvectors of H to be rotated
away from the coordinate axes (Figure 1.7a versus 1.7b) thus weight updates
are not decoupled. Decoupled weights make the “one learning rate per weight”
method optimal, thus, we have the following trick:

Decorrelate the input variables.

Now suppose that the input variables of a neuron have been decorrelated,
the Hessian for this neuron is then diagonal and its eigenvalues point along the
coordinate axes. In such a case the gradient is not the best descent direction
as can be seen in Fig 1.7b. At the point P, an arrow shows that gradient does
not point towards the minimum. However, if we instead assign each weight its
own learning rate (equal the inverse of the corresponding eigenvalue) then the
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descent direction will be in the direction of the other arrow that points directly
towards the minimum:

Use a separate learning rate for each weight.

1.6 Classical Second Order Optimization Methods

In the following we will briefly introduce the Newton, conjugate gradient, Gauss-
Newton, Levenberg Marquardt and the Quasi-Newton (BFGS) method (see also
[11, 34, 3, 5]).

ω -½Λ    Θ′

-½ΘΛ

U

Network

input

output

ω Network
ω

input

output

Θ-½ΛU

Newton Algorithm here ...... ....is like Gradient Descent
   there

Fig. 1.15. Sketch of the whitening properties of the Newton algorithm

1.6.1 Newton Algorithm

To get an understanding of the Newton method let us recapitulate the results
from section 1.5.1. Assuming a quadratic loss function E (see Eq.(1.21)) as
depicted in Figure 1.6(ii), we can compute the weight update along the lines
of Eq.(1.21)-(1.23)

Δw = η

(
∂2E

∂w2

)−1
∂E

∂w
= ηH(w)−1 ∂E

∂w
, (1.40)

where η must to be chosen in the range 0 < η < 1 since E is in practice not
perfectly quadratic. In this equation information about the Hessian H is taken
into account. If the error function was quadratic one step would be sufficient to
converge.

Usually the energy surface around the minimum is rather ellipsoid, or in the
extreme like a taco shell, depending on the conditioning of the Hessian. A whiten-
ing transform, well known from signal processing literature [29] can change this
ellipsoid shape to a spherical shape through u = ΘΛ1/2w (see Figure 1.15 and
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Fig. 1.16. Sketch of conjugate gradient directions in a 2D error surface

Eq.(1.34)). So the inverse Hessian in Eq.(1.40) basically spheres out the error
surface locally. The following two approaches can be shown to be equivalent: (a)
use the Newton algorithm in an untransformed weight space and (b) do usual
gradient descent in a whitened coordinate system (see Figure 1.15) [19].

Summarizing, the Newton algorithm converges in one step if the error function
is quadratic and (unlike gradient descent) it is invariant with respect to linear
transformations of the input vectors. This means that the convergence time is
not affected by shifts, scaling and rotation of input vectors. However one of the
main drawbacks is that an N ×N Hessian matrix must be stored and inverted,
which takes O(N3) per iterations and is therefore impractical for more than a
few variables. Since the error function is in general non-quadratic, there is no
guarantee of convergence. If the Hessian is not positive definite (if it has some
zero or even negative Eigenvalues where the error surface is flat or some directions
are curved downward), then the Newton algorithm will diverge, so the Hessian
must be positive definite. Of course the Hessian matrix of multilayer networks
is in general not positive definite everywhere. For these reasons the Newton
algorithm in its original form is not usable for general neural network learning.
However it gives good insights for developing more sophisticated algorithms, as
discussed in the following.

1.6.2 Conjugate Gradient

There are several important properties in conjugate gradient optimization: (1)
it is a O(N) method, (2) it doesn’t use the Hessian explicitly, (3) it attempts
to find descent directions that try to minimally spoil the result achieved in the
previous iterations, (4) it uses a line search, and most importantly, (5) it works
only for batch learning.
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The third property is shown in Figure 1.16. Assume we pick a descent di-
rection, e.g. the gradient, then we minimize along a line in this direction (line
search). Subsequently we should try to find a direction along which the gradi-
ent does not change its direction, but merely its length (conjugate direction),
because moving along this direction will not spoil the result of the previous it-
eration. The evolution of the descent directions ρk at iteration k is given as

ρk = −∇E(wk) + βkρk−1, (1.41)

where the choice of βk can be done either according to Fletcher and Reeves [34]

βk =
∇E(wk)

T∇E(wk)

∇E(wk−1)T∇E(wk−1)
(1.42)

or Polak and Ribiere

βk =
(∇E(wk)−∇E(wk−1))

T∇E(wk)

∇E(wk−1)T∇E(wk−1)
. (1.43)

Two directions ρk and ρk−1 are defined as conjugate if

ρTkHρk−1 = 0,

i.e. conjugate directions are orthogonal directions in the space of an identity Hes-
sian matrix (see Figure 1.17). Very important for convergence in both choices is
a good line search procedure. For a perfectly quadratic function with N variables
a convergence within N steps can be proved. For non-quadratic functions Po-
lak and Ribiere’s choice seems more robust. Conjugate gradient (1.41) can also
be viewed as a smart choice for choosing the momentum term known in neural
network training. It has been applied with large success in multi-layer network
training on problems that are moderate sized with rather low redundancy in the
data. Typical applications range from function approximation, robotic control
[39], time-series prediction and other real valued problems where high accuracy
is wanted. Clearly on large and redundant (classification) problems stochastic
backpropagation is faster. Although attempts have been made to define mini-
batches [25], the main disadvantage of conjugate gradient methods remains that
it is a batch method (partly due to the precision requirements in line search
procedure).

ρ κ−1

ρ κ

κω 

Fig. 1.17. Sketch of conjugate gradient directions in a 2D error surface
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1.6.3 Quasi-Newton (BFGS)

The Quasi-Newton (BFGS) method (1) iteratively computes an estimate of the
inverse Hessian, (2) is an O(N2) algorithm, (3) requires line search and (4) it
works only for batch learning.

The positive definite estimate of the inverse Hessian is done directly without
requiring matrix inversion and by only using gradient information. Algorithmi-
cally this can be described as follows: (1) first a positive definite matrix M is
chosen, e.g. M = I, (2) then the search direction is set to

ρ(t) =M(t)∇E(w(t)),

(3) a line search is performed along ρ, which gives the update for the parameters
at time t

w(t) = w(t − 1)− η(t)ρ(t).

Finally (4) the estimate of the inverse Hessian is updated. Compared to the
Newton algorithm the Quasi-Newton approach only needs gradient information.
The most successful Quasi-Newton algorithm is the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method. The update rule for the estimate of the inverse Hessian
is

M(t) =M(t− 1)

(
1 +

φTMφ

δTφ

)
δδT

δTφ
−
(
δφTM +MφδT

δTφ

)
, (1.44)

where some abbreviations have been used for the following N × 1 vectors

φ = ∇E(w(t)) −∇E(w(t − 1))

δ = w(t)− w(t − 1). (1.45)

Although, as mentioned above, the complexity is only O(N2), we are still re-
quired to store a N × N matrix, so the algorithm is only practical for small
networks with non-redundant training sets. Recently some variants exist that
aim to reduce storage requirements (see e.g. [3]).

1.6.4 Gauss-Newton and Levenberg Marquardt

Gauss-Newton and Levenberg Marquardt algorithm (1) use the square Jacobi
approximation, (2) are mainly designed for batch learning, (3) have a complexity
of O(N3) and (4) most important, they work only for mean squared error loss
functions. The Gauss-Newton algorithm is like the Newton algorithm, however
the Hessian is approximated by the square of the Jacobian (see also section 1.7.2
for a further discussion)

Δw =

(
∑

p

∂f(w, xp)

∂w

T
∂f(w, xp)

∂w

)−1

∇E(w). (1.46)
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The Levenberg Marquardt method is like the Gauss-Newton above, but it has a
regularization parameter μ that prevents it from blowing up, if some eigenvalues
are small

Δw =

(
∑

p

∂f(w, xp)

∂w

T
∂f(w, xp)

∂w
+ μI

)−1

∇E(w), (1.47)

where I denotes the unity matrix. The Gauss Newton method is valid for
quadratic cost functions however a similar procedure also works with Kullback-
Leibler cost and is called Natural Gradient (see e.g. [1, 44, 2]).

1.7 Tricks to Compute the Hessian Information in
Multilayer Networks

We will now discuss several techniques aimed at computing full or partial Hessian
information by (a) finite difference method, (b) square Jacobian approximation
(for Gauss-Newton and Levenberg-Marquardt algorithm), (c) computation of
the diagonal of the Hessian and (d) by obtaining a product of the Hessian and
a vector without computing the Hessian. Other semi-analytical techniques that
allow the computation of the full Hessian are omitted because they are rather
complicated and also require many forward/backward propagation steps [5, 8].

1.7.1 Finite Difference

We can write the k-th line of the Hessian

H(k) =
∂(∇E(w))
∂wk

∼ ∇E(w + δφk)−∇E(w)
δ

,

where φk = (0, 0, 0, . . . , 1, . . . , 0) is a vector of zeros and only one 1 at the k-th
position. This can be implemented with a simple recipe: (1) compute the total
gradient by multiple forward and backward propagation steps. (2) Add δ to the
k-th parameter and compute again the gradient, and finally (3) subtract both
results and divide by δ. Due to numerical errors in this computation scheme the
resulting Hessian might not be perfectly symmetric. In this case it should be
symmetrized as described below.

1.7.2 Square Jacobian Approximation for the Gauss-Newton and
Levenberg-Marquardt Algorithms

Assuming a mean squared cost function

E(w) =
1

2

∑

p

(dp − f(w, xp))T (dp − f(w, xp)) (1.48)

then the gradient is

∂E(w)

∂w
= −

∑

p

(dp − f(w, xp))T
∂f(w, xp)

∂w
(1.49)
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and the Hessian follows as

H(w) =
∑

p

∂f(w, xp)

∂w

T
∂f(w, xp)

∂w
+
∑

p

(dp − f(w, xp))T
∂2f(w, xp)

∂w∂w
. (1.50)

A simplifying approximation of the Hessian is the square of the Jacobian which
is a positive semi-definite matrix of dimension: N ×O

H(w) ∼
∑

p

∂f(w, xp)

∂w

T
∂f(w, xp)

∂w
, (1.51)

where the second term from Eq.(1.50) was dropped. This is equivalent to as-
suming that the network is a linear function of the parameters w. Again this is
readily implemented for the k-th column of the Jacobian: for all training pat-
terns, (1) we forward propagate, then (2) set the activity of the output units to
0 and only the k-th output to 1, (3) a backpropagation step is taken and the
gradient is accumulated.

1.7.3 Backpropagating Second Derivatives

Let us consider a multi-layer system with some functional blocks with Ni inputs,
No outputs and N parameters of the form O = F (W,X). Now assume we knew
∂2E/∂O2, which is a No × No matrix. Then it is straight forward to compute
this matrix

∂2E

∂W 2
=
∂O

∂W

T ∂2E

∂O2

∂O

∂W
+
∂E

∂O

∂2O

∂W 2
. (1.52)

We can drop the second term in Eq.(1.52) and the resulting estimate of the
Hessian is positive semi-definite. A further reduction is achieved, if we ignore all
but the diagonal terms of ∂2E

∂O2 :

∂2E

∂w2
i

=
∑

k

∂2E

∂o2k

(
∂ok
∂wi

)2

. (1.53)

A similar derivation can be done to obtain the Ni times Ni matrix ∂2E/∂x2.

1.7.4 Backpropagating the Diagonal Hessian in Neural Nets

Backpropagation procedures for computing the diagonal Hessian are well known
[18, 4, 19]. It is assumed that each layer in the network has the functional form
oi = f(yi) = f(

∑
j wijxj) (see Figure 1.18 for the sigmoidal network). Using

the Gauss-Newton approximation (dropping the term that contain f ′′(y)) we
obtain:

∂2E

∂y2k
=
∂2E

∂o2k
(f ′(yk))

2
, (1.54)

∂2E

∂w2
ki

=
∂2E

∂y2k
x2i (1.55)
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and
∂2E

∂x2i

∑

k

∂2E

∂y2k
w2

ki. (1.56)

With f being a Gaussian nonlinearity as shown in Figure 1.18 for the RBF
networks we obtain

∂2E

∂w2
ki

=
∂2E

∂y2k
(xi − wki)

2 (1.57)

and
∂2E

∂x2i
=
∑

k

∂2E

∂y2k
(xi − wki)

2. (1.58)

The cost of computing the diagonal second derivatives by running these equa-
tions from the last layer to the first one is essentially the same as the regular
backpropation pass used for the gradient, except that the square of the weights
are used in the weighted sums. This technique is applied in the “optimal brain
damage” pruning procedure (see [21]).
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Fig. 1.18. Backpropagating the diagonal Hessian: sigmoids (left) and RBFs (right)

1.7.5 Computing the Product of the Hessian and a Vector

In many methods that make use of the Hessian, the Hessian is used exclusively in
products with a vector. Interestingly, there is a way of computing such products
without going through the trouble of computing the Hessian itself. The finite
difference method can fulfill this task for an arbitrary vector Ψ

HΨ ∼ 1

α

(
∂E

∂w
(w + αΨ)− ∂E

∂w
(w)

)
, (1.59)

using only two gradient computations (at point w and w + αΨ respectively),
which can be readily computed with backprop (α is a small constant).

This method can be applied to compute the principal eigenvector and eigen-
value of H by the power method. By iterating and setting

Ψ(t+ 1) =
HΨ(t)

‖Ψ(t)‖ , (1.60)



38 Y.A. LeCun et al.

the vector Ψ(t) will converge to the largest eigenvector of H and ‖Ψ(t)‖ to the
corresponding eigenvalue [23, 14, 10]. See also [33] for an even more accurate
method that (1) does not use finite differences and (2) has similar complexity.

1.8 Analysis of the Hessian in Multi-layer Networks

It is interesting to understand how some of the tricks shown previously influence
on the Hessian, i.e. how does the Hessian change with architecture and details of
the implementation. Typically, the eigenvalue distribution of the Hessian looks
like the one sketched in Figure 1.20: a few small eigenvalues, many medium ones
and few very large ones. We will now argue that the large eigenvalues will cause
the trouble in the training process because [23, 22]

– non-zero mean inputs or neuron states [22] (see also chapter 10)
– wide variations of the second derivatives from layer to layer
– correlation between state variables.

To exemplify this, we show the eigenvalue distribution of a network trained on
OCR data in Figure 1.20. Clearly, there is a wide spread of eigenvalues (see Fig-
ure 1.19) and we observe that the ratio between e.g. the first and the eleventh
eigenvalue is about 8. The long tail of the eigenvalue distribution (see Fig-
ure 1.20) is rather painful because the ratio between the largest and smallest
eigenvalue gives the conditioning of the learning problem. A large ratio corre-
sponds to a big difference in the axis of the ellipsoidal shaped error function:
the larger the ratio, the more we find a taco-shell shaped minima, which are
extremely steep towards the small axis and very flat along the long axis.
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trained on 320 handwritten digits



1. Efficient BackProp 39

0 2 4 6 8 10 12 14 16
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Eigenvalue magnitude

Nu
mb

er
 o

f 
Ei

ge
nv

al
ue

s

Big killers

Fig. 1.20. Eigenvalue spectrum in a 4 layer shared weights network (256×128×64×10)
trained on 320 handwritten digits

Fig. 1.21. Multilayered architecture: the second derivative is often smaller in lower
layers
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Another general characteristic of the Hessian in multi-layer networks is the
spread between layers. In Figure 1.21 we roughly sketch how the shape of the
Hessian varies from being rather flat in the first layer to being quite steep in
the last layer. This affects the learning speed and can provide an ingredient
to explain the slow learning in lower layers and the fast (sometime oscillating)
learning in the last layer. A trick to compensate this different scale of learning is
to use the inverse diagonal Hessian to control the learning rate (see also section
1.6, chapter 17).

1.9 Applying Second Order Methods to Multilayer
Networks

Before we concentrate in this section on how to tailor second order techniques
for training large networks, let us first repeat some rather pessimistic facts about
applying classical second order methods. Techniques using full Hessian informa-
tion (Gauss -Newton, Levenberg-Marquardt and BFGS) can only apply to very
small networks trained in batch mode, however those small networks are not
the ones that need speeding up the most. Most second order methods (conju-
gate gradient, BFGS, . . . ) require a line-search and can therefore not be used
in the stochastic mode. Many of the tricks discussed previously apply only to
batch learning. From our experience we know that a carefully tuned stochastic
gradient descent is hard to beat on large classification problems. For smaller
problems that require accurate real-valued outputs like in function approxima-
tion or control problems, we see that conjugate gradient (with Polak-Ribiere
Eq.(1.43)) offers the best combination of speed, reliability and simplicity. Sev-
eral attempts using “mini batches” in applying conjugate gradient to large and
redundant problems have been made recently [17, 25, 31]. A variant of conjugate
gradient optimization (called scaled CG) seems interesting: here the line search
procedure is replaced by a 1D Levenberg Marquardt type algorithm [24].

1.9.1 A Stochastic Diagonal Levenberg Marquardt Method

To obtain a stochastic version of the Levenberg Marquardt algorithm the idea
is to compute the diagonal Hessian through a running estimate of the second
derivative with respect to each parameter. The instantaneous second derivative
can be obtained via backpropagation as shown in the formulas of section 1.7. As
soon as we have those running estimates we can use them to compute individual
learning rates for each parameter

ηki =
ε

〈 ∂2E
∂w2

ki
〉+ μ

, (1.61)

where ε denotes the global learning rate, and 〈 ∂2E
∂w2

ki
〉 is a running estimate of the

diagonal second derivative with respect to wki. μ is a parameter to prevent ηki
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from blowing up in case the second derivative is small, i.e. when the optimization
moves in flat parts of the error function. The running estimate is computed as

〈 ∂
2E

∂w2
ki

〉new = (1− γ)〈 ∂
2E

∂w2
ki

〉old + γ
∂2Ep

∂w2
ki

, (1.62)

where γ is a small constant that determines the amount of memory that is
being used. The second derivatives can be computed prior to training over e.g.
a subset of the training set. Since they change only very slowly they only need
to be reestimated every few epochs. Note that the additional cost over regular
backpropagation is negligible and convergence is – as a rule of thumb – about
three times faster than a carefully tuned stochastic gradient algorithm.

In Figure 1.22 and 1.23 we see the convergence of the stochastic diagonal
Levenberg Marquardt method (1.61) for a toy example with two different sets
of learning rates. Obviously the experiment shown Figure 1.22 contains fewer
fluctuations than in Figure 1.23 due to smaller learning rates.
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Fig. 1.22. Stochastic diagonal Levenberg-Marquardt algorithm. Data set from 2 Gaus-
sians with 100 examples. The network has one linear unit, 2 inputs and 1 output, i.e.
three parameters (2 weights, 1 bias).
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Fig. 1.23. Stochastic diagonal Levenberg-Marquardt algorithm. Data set from 2 Gaus-
sians with 100 examples. The network has one linear unit, 2 inputs and 1 output, i.e.
three parameters (2 weights, 1 bias).

1.9.2 Computing the Principal Eigenvalue/Vector of the Hessian

In the following we give three tricks for computing the principal eigenvalue/Vec-
tor of the Hessian without having to compute the Hessian itself. Remember
that in section 1.4.7 we also introduced a method to approximate the smallest
eigenvector of the Hessian (without having to compute the Hessian) through
averaging (see also [28]).

Power Method. We repeat the result of our discussion in section 1.7.5: starting
from a random initial vector Ψ , the iteration

Ψnew = H
Ψold
‖Ψold‖

,

will eventually converge to the principal eigenvector (or a vector in the principal
eigenspace) and ‖Ψold‖ will converge to the corresponding eigenvalue [14, 10].
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Fig. 1.24. Evolution of the eigenvalue as a function of the number of pattern presen-
tations for a shared weight network with 5 layers, 64638 connections and 1278 free
parameters. The training set consists of 1000 handwritten digits.

Taylor Expansion. Another method makes use of the fact that small pertur-
bations of the gradient also lead to the principal eigenvector of H

Ψnew =
1

α

(
∂E

∂w
(w + α

Ψold
‖Ψold‖

)− ∂E
∂w

(w)

)
, (1.63)

where α is a small constant. One iteration of this procedure requires two forward
and two backward propagation steps for each pattern in the training set.

Online Computation of Ψ . The following rule makes use of the running
average to obtain the largest eigenvalue of the average Hessian very fast

Ψnew = (1− γ)Ψ +
1

α

(
∂Ep

∂w
(w + α

Ψold
‖Ψold‖

)− ∂E
∂w

(w)

)
. (1.64)
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Fig. 1.25. Mean squared error as a function of the ratio between learning rate and
predicted optimal learning rate for a fully connected network (784 × 30 × 10). The
training set consists of 300 handwritten digits.

To summarize, the eigenvalue/vector computations:

1. a random vector is chosen for initialization of Ψ ,
2. an input pattern is presented with desired output, a forward and backward

propagation, step is performed and the gradients G(w) are stored,
3. α Ψold

‖Ψold‖ is added to the current weight vector w,
4. a forward and backward propagation step is performed with the perturbed

weight vector and the gradients G(w′) are stored,
5. the difference 1/α(G(w′) − G(w)) is computed and the running average of

the eigenvector is updated,
6. we loop from (2)-(6) until a reasonably stable result is obtained for Ψ ,
7. the optimal learning rate is then given as

ηopt =
1

‖Ψ‖ .



1. Efficient BackProp 45

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

0

0.5

1

1.5

2

2.5

LEARNING RATE
PREDICTED OPTIMAL LEARNING RATE

M
E

A
N

 S
Q

U
A

R
E

D
 E

R
R

O
R

1 epoch

2 epochs

3 epochs

4 epochs

5 epochs

Fig. 1.26. Mean squared error as a function of the ratio between learning rate and
predicted optimal learning rate for a shared weight network with 5 layers (1024 ×
1568 × 392 × 400 × 100 × 10), 64638 (local) connections and 1278 free parameters
(shared weights). The training set consists of 1000 handwritten digits.

In Figure 1.24 we see the evolution of the eigenvalue as a function of the number
of pattern presentations for a neural network in a handwritten character recog-
nition task. In practice we adapt the leak size of the running average in order
to get fewer fluctuations (as also indicated on the figure). In the figure we see
that after fewer than 100 pattern presentations the correct order of magnitude
for the eigenvalue, i.e the learning rate is reached. From the experiments we also
observe that the fluctuations of the average Hessian over training are small.

In Figure 1.25 and 1.26 we start with the same initial conditions, and perform
a fixed number of epochs with learning rates computed by multiplying the pre-
dicted learning rate by a predefined constant. Choosing constant 1 (i.e. using the
predicted optimal rate) always gives residual errors which are very close to the
error achieved by the best choice of the constant. In other words, the “predicted
optimal rate” is optimal enough.
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1.10 Discussion and Conclusion

According to the recommendations mentioned above, a practitioner facing a
multi-layer neural net training problem would go through the following steps:

– shuffle the examples
– center the input variables by subtracting the mean
– normalize the input variable to a standard deviation of 1
– if possible, decorrelate the input variables.
– pick a network with the sigmoid function shown in figure 1.4
– set the target values within the range of the sigmoid, typically +1 and -1.
– initialize the weights to random values as prescribed by 1.16.

The preferred method for training the network should be picked as follows:

– if the training set is large (more than a few hundred samples) and redundant,
and if the task is classification, use stochastic gradient with careful tuning,
or use the stochastic diagonal Levenberg Marquardt method.

– if the training set is not too large, or if the task is regression, use conjugate
gradient.

Classical second-order methods are impractical in almost all useful cases.
The non-linear dynamics of stochastic gradient descent in multi-layer neural

networks, particularly as it pertains to generalization, is still far from being well
understood. More theoretical work and systematic experimental work is needed.
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Regularization Techniques to Improve
Generalization�

Preface

Good tricks for regularization are extremely important for improving the gener-
alization ability of neural networks. The first and most commonly used trick is
early stopping, which was originally described in [11]. In its simplest version,
the trick is as follows:

Take an independent validation set, e.g. take out a part of the training
set, and monitor the error on this set during training. The error on the
training set will decrease, whereas the error on the validation set will
first decrease and then increase. The early stopping point occurs where
the error on the validation set is the lowest. It is here that the network
weights provide the best generalization.

As Lutz Prechelt points out in chapter 2, the above picture is highly idealized.
In practice, the shape of the error curve on the validation set is more likely very
ragged with multiple minima. Choosing the “best” early stopping point then
involves a trade-off between (1) improvement of generalization and (2) speed of
learning. If speed is not an issue then, clearly, the safest strategy is to train all
the way until the minimum error on the training set is found, while monitoring
the location of the lowest error rate on the validation set. Of course, this can
take a prohibitive amount of computing time. This chapter presents less costly
strategies employing a number of different stopping criteria, e.g. when the ratio
between the generalization loss and the progress exceeds a given threshold (see
p. 57). A large simulation study using various benchmark problems is used in
the discussion and analysis of the differences (with respect to e.g. robustness,
effectiveness, training time, . . . ) between these proposed stopping criteria (see
p. 60ff.). So far theoretical studies [12, 1, 6] have not studied this trade-off.

Weight decay is also a commonly used technique for controlling capacity in
neural networks. Early stopping is considered to be fast, but it is not well defined
(keep in mind the pitfalls mentioned in chapter 2). On the other hand, weight
decay regularizers [5, 2] are well understood, but finding a suitable parameter λ
to control the strength of the weight decay term can be tediously time consuming.
Thorsteinn Rögnvaldsson proposes a simple trick for estimating λ by making
use of the best of both worlds (see p. 75): simply compute the gradient at the
early stopping solution W es and divide it by the norm of W es,

λ̂ = ‖∇E(W es)‖/‖2W es‖.

Other penalties are also possible. The trick is speedy, since we neither have to do
a complete training nor a scan of the whole λ parameter space, and the accuracy
of the determined λ̂ is good, as seen from some interesting simulations.
� Previously published in: Orr, G.B. and Müller, K.-R. (Eds.): LNCS 1524, ISBN

978-3-540-65311-0 (1998).
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Tony Plate in chapter 4 treats the penalty factors for the weights (hyperpa-
rameters) along the Bayesian framework of MacKay [8] and Neal [9]. There
are two levels in searching for the best network. The inner loop is a minimization
of the training error keeping the hyperparameters fixed, whereas the outer loop
searches the hyperparameter space with the goal of maximizing the evidence
of having generated the data. This whole procedure is rather slow and compu-
tationally expensive, since, in theory, the inner search needs to converge (to a
local minimum) at each outer loop search step. When applied to classification
networks using the cross-entropy error function the outer-loop search can be
unstable with the hyperparameter values oscillating wildly or going to inappro-
priate extremes. To make this Bayesian framework work better in practice, Tony
Plate proposes a number of tricks that speed and simplify the hyperparameter
search strategies (see p. 96). In particular, his search strategies center around
the questions: (1) how often (when) should the hyperparameters be updated
(see p. 96) and (2) what should be done if the Hessian is out-of-bounds (see p.
97ff.). To discuss the effects of the choices made in (1) and (2), Tony Plate uses
simulations based on artificial examples and concludes with a concise set of rules
for making the hyperparameter framework work better.

In chapter 5, Jan Larsen et al. formulate an iterative gradient descent scheme
for adapting their regularization parameters (note, different regularizers
can be used for input/hidden and hidden/output weights). The trick is simple:
perform gradient descent on the validation set errors with respect to the regu-
larization parameters, and iteratively use the results for updating the estimate
of the regularization parameters (see p. 116). This method holds for a variety
of penalty terms (e.g. weight decay). The computational overhead is negligible
for computing the gradients, however, an inverse Hessian has to be estimated. If
second order methods are used for training, then the inverse Hessian may already
be available, so there is little additional effort. Otherwise obtaining full Hessian
information is rather tedious and limits the approach to smaller applications
(see discussion in chapter 1). Nevertheless approximations of the Hessian (e.g.
diagonal) could also be used to limit the computation time. Jan Larsen, et al.,
demonstrate the applicability of their trick on classification (vowel data) and
regression (time-series prediction) problems.

Averaging over multiple predictors is a well known method for improving
generalization (see e.g. [10, 3, 7, 13]). David Horn et al. raises two questions in
ensemble training: (1) how many predictors are “enough” and (2) how does the
number of predictors affect the stopping criteria for early stopping (see p. 134).
They present solutions for answering these questions by providing a method for
estimating the error of an infinite number of predictors and they demonstrate the
usefulness of their trick for the sunspot prediction task. Additional theoretical
reasoning is given to explain their success in terms of variance minimization
within the ensemble.

Jenny & Klaus
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Abstract. Validation can be used to detect when overfitting starts dur-
ing supervised training of a neural network; training is then stopped
before convergence to avoid the overfitting (“early stopping”). The exact
criterion used for validation-based early stopping, however, is usually
chosen in an ad-hoc fashion or training is stopped interactively. This
trick describes how to select a stopping criterion in a systematic fashion;
it is a trick for either speeding learning procedures or improving gen-
eralization, whichever is more important in the particular situation. An
empirical investigation on multi-layer perceptrons shows that there ex-
ists a tradeoff between training time and generalization: From the given
mix of 1296 training runs using different 12 problems and 24 different
network architectures I conclude slower stopping criteria allow for small
improvements in generalization (here: about 4% on average), but cost
much more training time (here: about factor 4 longer on average).

2.1 Early Stopping Is Not Quite as Simple

2.1.1 Why Early Stopping?

When training a neural network, one is usually interested in obtaining a network
with optimal generalization performance. However, all standard neural network
architectures such as the fully connected multi-layer perceptron are prone to
overfitting [10]: While the network seems to get better and better, i.e., the error
on the training set decreases, at some point during training it actually begins
to get worse again, i.e., the error on unseen examples increases. The idealized
expectation is that during training the generalization error of the network evolves
as shown in Figure 2.1. Typically the generalization error is estimated by a
validation error, i.e., the average error on a validation set , a fixed set of examples
not from the training set.

There are basically two ways to fight overfitting: reducing the number of di-
mensions of the parameter space or reducing the effective size of each dimension.

� Previously published in: Orr, G.B. and Müller, K.-R. (Eds.): LNCS 1524, ISBN
978-3-540-65311-0 (1998).
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Techniques for reducing the number of parameters are greedy constructive learn-
ing [7], pruning [5, 12, 14], or weight sharing [18]. Techniques for reducing the
size of each parameter dimension are regularization, such as weight decay [13]
and others [25], or early stopping [17]. See also [8, 20] for an overview and [9]
for an experimental comparison.

Early stopping is widely used because it is simple to understand and imple-
ment and has been reported to be superior to regularization methods in many
cases, e.g. in [9].

2.1.2 The Basic Early Stopping Technique

In most introductory papers on supervised neural network training one can find a
diagram similar to the one shown in Figure 2.1. It is claimed to show the evolution
over time of the per-example error on the training set and on a validation set
not used for training (the training error curve and the validation error curve).
Given this behavior, it is clear how to do early stopping using validation:

Training error
Validation error

Fig. 2.1. Idealized training and validation error curves. Vertical: errors; horizontal:
time.

1. Split the training data into a training set and a validation set, e.g. in a 2-to-1
proportion.

2. Train only on the training set and evaluate the per-example error on the
validation set once in a while, e.g. after every fifth epoch.

3. Stop training as soon as the error on the validation set is higher than it was
the last time it was checked.

4. Use the weights the network had in that previous step as the result of the
training run.

This approach uses the validation set to anticipate the behavior in real use (or
on a test set), assuming that the error on both will be similar: The validation
error is used as an estimate of the generalization error.
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2.1.3 The Uglyness of Reality

However, for real neural network training the validation set error does not evolve
as smoothly as shown in Figure 2.1, but looks more like in Figure 2.2. See Sec-
tion 2.4 for a rough explanation of this behavior. As we see, the validation error
can still go further down after it has begun to increase — plus in a realistic
setting we do never know the exact generalization error but estimate it by the
validation set error instead. There is no obvious rule for deciding when the min-
imum of the generalization error is obtained. Real validation error curves almost
always have more than one local minimum. The above curve exhibits as many
as 16 local minima before severe overfitting begins at about epoch 400. Of these
local minima, 4 are the global minimum up to where they occur. The optimal
stopping point in this example would be epoch 205. Note that stopping in epoch
400 compared to stopping shortly after the first “deep” local minimum at epoch
45 trades an about sevenfold increase of learning time for an improvement of
validation set error by 1.1% (by finding the minimum at epoch 205). If repre-
sentative data is used, the validation error is an unbiased estimate of the actual
network performance; so we expect a 1.1% decrease of the generalization error in
this case. Nevertheless, overfitting might sometimes go undetected because the
validation set is finite and thus not perfectly representative of the problem.

Unfortunately, the above or any other validation error curve is not typical
in the sense that all curves share the same qualitative behavior. Other curves
might never reach a better minimum than the first, or than, say, the third; the
mountains and valleys in the curve can be of very different width, height, and
shape. The only thing all curves seem to have in common is that the differences
between the first and the following local minima are not huge.

As we see, choosing a stopping criterion predominantly involves a tradeoff
between training time and generalization error. However, some stopping criteria
may typically find better tradeoffs that others. This leads to the question of
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Validation error (Glass dataset, 4+4 hidden)

Fig. 2.2. A real validation error curve. Vertical: validation set error; horizontal: time
(in training epochs).
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which criterion to use with cross validation to decide when to stop training.
This is why we need the present trick: To tell us how to really do early stopping.

2.2 How to Do Early Stopping Best

What we need is a predicate that tells us when to stop training. We call such
a predicate a stopping criterion. Among all possible stopping criteria we are
searching for those which yield the lowest generalization error and also for those
with the best “price-performance ratio”, i.e., that require the least training for a
given generalization error or that (on average) result in the lowest generalization
error for a certain training time.

2.2.1 Some Classes of Stopping Criteria

There are a number of plausible stopping criteria and this work considers three
classes of them. To formally describe the criteria, we need some definitions first.
Let E be the objective function (error function) of the training algorithm, for
example the squared error. Then Etr(t), the training set error (for short: train-
ing error), is the average error per example over the training set, measured after
epoch t. Eva(t), the validation error, is the corresponding error on the validation
set and is used by the stopping criterion. Ete(t), the test error, is the correspond-
ing error on the test set; it is not known to the training algorithm but estimates
the generalization error and thus benchmarks the quality of the network result-
ing from training. In real life, the generalization error is usually unknown and
only the validation error can be used to estimate it.

The value Eopt(t) is defined to be the lowest validation set error obtained in
epochs up to t:

Eopt(t) := min
t′≤t

Eva(t
′)

Now we define the generalization at epoch t to be the relative increase of the
validation error over the minimum-so-far (in percent):

GL(t) = 100 ·
(
Eva(t)

Eopt(t)
− 1

)

High generalization loss is one obvious candidate reason to stop training, be-
cause it directly indicates overfitting. This leads us to the first class of stop-
ping criteria: stop as soon as the generalization loss exceeds a certain
threshold. We define the class GLα as

GLα : stop after first epoch t with GL(t) > α

However, we might want to suppress stopping if the training is still progressing
very rapidly. The reasoning behind this approach is that when the training error
still decreases quickly, generalization losses have higher chance to be “repaired”;
we assume that often overfitting does not begin until the error decreases only
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slowly. To formalize this notion we define a training strip of length k to be a
sequence of k epochs numbered n + 1 . . . n + k where n is divisible by k. The
training progress (in per thousand) measured after such a training strip is then

Pk(t) := 1000 ·
( ∑t

t′=t−k+1 Etr(t
′)

k ·mintt′=t−k+1Etr(t′)
− 1

)

that is, “how much was the average training error during the strip larger than
the minimum training error during the strip?” Note that this progress measure is
high for unstable phases of training, where the training set error goes up instead
of down. This is intended, because many training algorithms sometimes produce
such “jitter” by taking inappropriately large steps in weight space. The progress
measure is, however, guaranteed to approach zero in the long run unless the
training is globally unstable (e.g. oscillating).

Now we can define the second class of stopping criteria: use the quo-
tient of generalization loss and progress.

PQα : stop after first end-of-strip epoch t with
GL(t)

Pk(t)
> α

In the following we will always assume strips of length 5 and measure the vali-
dation error only at the end of each strip.

A completely different kind of stopping criterion relies only on the sign of
the changes in the generalization error. We define the third class of stopping
criteria: stop when the generalization error increased in s successive
strips.

UPs : stop after epoch t iff UPs−1 stops after epoch t− k and
Eva(t) > Eva(t− k)

UP1 : stop after first end-of-strip epoch t with Eva(t) > Eva(t− k)
The idea behind this definition is that when the validation error has increased not
only once but during s consecutive strips, we assume that such increases indicate
the beginning of final overfitting, independent of how large the increases actually
are. The UP criteria have the advantage of measuring change locally so that they
can be used in the context of pruning algorithms, where errors must be allowed
to remain much higher than previous minima over long training periods.

None of these criteria alone can guarantee termination. We thus complement
them by the rule that training is stopped when the progress drops below 0.1 or
after at most 3000 epochs.

All stopping criteria are used in the same way: They decide to stop at some
time t during training and the result of the training is then the set of weights that
exhibited the lowest validation error Eopt(t). Note that in order to implement
this scheme, only one duplicate weight set is needed.

2.2.2 The Trick: Criterion Selection Rules

These three classes of stopping criteria GL, UP , and PQ were evaluated on
a variety of learning problems as described in Section 2.3 below. The results
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indicate that “slower” criteria, which stop later than others, on the average lead
to improved generalization compared to “faster” ones. However, the training time
that has to be expended for such improvements is rather large on average and
also varies dramatically when slow criteria are used. The systematic differences
between the criteria classes are only small.

For training setups similar to the one used in this work, the following rules
can be used for selecting a stopping criterion:

1. Use fast stopping criteria unless small improvements of network performance
(e.g. 4%) are worth large increases of training time (e.g. factor 4).

2. To maximize the probability of finding a “good” solution (as opposed to
maximizing the average quality of solutions), use a GL criterion.

3. To maximize the average quality of solutions, use a PQ criterion if the net-
work overfits only very little or an UP criterion otherwise.

2.3 Where and How Well Does This Trick Work?

As no mathematical analysis of the properties of stopping criteria is possible
today (see Section 2.4 for the state of the art), we resort to an experimental
evaluation.

We want to find out which criteria will achieve how much generalization using
how much training time on which kinds of problems. To achieve broad cover-
age, we use 12 different network topologies, 12 different learning tasks, and 14
different stopping criteria. To keep the experiment feasible, only one training
algorithm is used.

2.3.1 Concrete Questions

To derive and evaluate the stopping criteria selection rules presented above we
need to answer the following questions:

1. Training time: How long will training take with each criterion, i.e., how fast
or slow are they?

2. Efficiency: How much of this training time will be redundant, i.e., will occur
after the to-be-chosen validation error minimum has been seen?

3. Effectiveness: How good will the resulting network performance be?
4. Robustness: How sensitive are the above qualities of a criterion to changes

of the learning problem, network topology, or initial conditions?
5. Tradeoffs: Which criteria provide the best time-performance tradeoff?
6. Quantification: How can the tradeoff be quantified?

The answers will directly lead to the rules already presented above in Sec-
tion 2.2.2. To find the answers to the questions we record for a large number of
runs when each criterion would stop and what the associated network perfor-
mance would be.
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2.3.2 Experimental Setup

Approach. To measure network performance, we partition each dataset into
two disjoint parts: Training data and test data. The training data is further
subdivided into a training set of examples used to adjust the network weights
and a validation set of examples used to estimate network performance during
training as required by the stopping criteria. The validation set is never used
for weight adjustment. This decision was made in order to obtain pure stopping
criteria results. In contrast, in a real application after a reasonable stopping
time has been computed, one would include the validation set examples in the
training set and retrain from scratch.

Stopping Criteria. The stopping criteria examined were GL1, GL2, GL3, GL5,
PQ0.5, PQ0.75, PQ1, PQ2, PQ3, UP2, UP3, UP4, UP6, and UP8. All criteria
where evaluated simultaneously, i.e., each single training run returned one result
for each of the criteria. This approach reduces the variance of the estimation.

Learning Tasks. Twelve different problems were used, all from the Proben1
NN benchmark set [19]. All problems are real datasets from realistic application
domains; they form a sample of a broad class of domains, but none of them
exhibits extreme nonlinearity. The problems have between 8 and 120 inputs,
between 1 and 19 outputs, and between 214 and 7200 examples. All inputs and
outputs are normalized to range 0. . . 1. Nine of the problems are classification
tasks using 1-of-n output encoding (cancer, card, diabetes, gene, glass, heart,
horse, soybean, and thyroid), three are approximation tasks (building, flare, and
hearta).

Datasets and Network Architectures. The examples of each problem were
partitioned into training (50%), validation (25%), and test set (25% of examples)
in three different random ways, resulting in 36 datasets. Each of these datasets
was trained with 12 different feedforward network topologies: one hidden layer
networks with 2, 4, 8, 16, 24, or 32 hidden nodes and two hidden layer networks
with 2+2, 4+2, 4+4, 8+4, 8+8, or 16+8 hidden nodes in the first+second hidden
layer, respectively; all these networks were fully connected including all possible
shortcut connections. For each of the network topologies and each dataset, two
runs were made with linear output units and one with sigmoidal output units
using the activation function f(x) = x/(1 + |x|).
Training Algorithm. All runs were done using the RPROP training algorithm
[21] using the squared error function and the parameters η+ = 1.1, η− = 0.5,
Δ0 ∈ 0.05 . . .0.2 randomly per weight, Δmax = 50, Δmin = 0, initial weights
−0.5 . . .0.5 randomly. RPROP is a fast backpropagation variant that is about
as fast as quickprop [6] but more stable without adjustment of the parame-
ters. RPROP requires epoch learning, i.e., the weights are updated only once
per epoch. Therefore, the algorithm is fast without parameter tuning for small
training sets but not recommendable for large training sets. Lack of parameter
tuning helps to avoid the common methodological error of tuning parameters
using the test error.
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2.3.3 Experiment Results

Altogether, 1296 training runs were made for the comparison, giving 18144 stop-
ping criteria performance records for the 14 criteria. 270 of these records (or
1.5%) from 125 different runs reached the 3000 epoch limit instead of using the
stopping criterion itself.

The results for each stopping criterion averaged over all 1296 runs are shown
in Table 2.1. Figure 2.3 describes the variance embedded in the means given in
the table. I will now explain and then interpret the entries in both, table and
figure. Note that the discussion is biased by the particular collection of criteria
chosen for the study.
Definitions. For each run, we define Eva(C) as the minimum validation error
found until criterion C indicates to stop; it is the error after epoch number
tm(C) (read: “time of minimum”). Ete(C) is the corresponding test error and
characterizes network performance. Stopping occurs after epoch ts(C) (read:
“time of stop”). A best criterion Ĉ of a particular run is one with minimum ts of
all those (among the examined) with minimum Eva, i.e., a criterion that found
the best validation error fastest. There may be several best, because multiple
criteria may stop at the same epoch. Note that there is no single criterion Ĉ
because Ĉ changes from run to run. C is called good in a particular run if
Eva(C) = Eva(Ĉ), i.e., if it is among those that found the lowest validation set
error, no matter how fast or slow.

2.3.4 Discussion: Answers to the Questions

We now discuss the questions raised in Section 2.3.1.

Table 2.1. Behavior of stopping criteria. SGL2 is normalized training time, BGL2 is
normalized test error (both relative toGL2). r is the training time redundancy, Pg is the
probability of finding a good solution. For further description please refer to the text.

training time efficiency and effectiveness
C Sĉ(C) SGL2(C) r(C) Bĉ(C) BGL2(C) Pg(C)

UP2 0.792 0.766 0.277 1.055 1.024 0.587
GL1 0.956 0.823 0.308 1.044 1.010 �0.680
UP3 1.010 1.264 0.419 �1.026 1.003 0.631
GL2 1.237 1.000 0.514 1.034 1.000 �0.723
UP4 1.243 1.566 0.599 �1.020 0.997 0.666
PQ0.5 1.253 1.334 0.663 1.027 1.002 0.658
PQ0.75 1.466 1.614 0.863 1.021 0.998 0.682
GL3 1.550 1.450 �0.712 1.025 0.994 �0.748
PQ1 1.635 1.796 1.038 1.018 0.994 0.704
UP6 1.786 2.381 1.125 �1.012 0.990 0.737
GL5 2.014 2.013 1.162 1.021 0.991 �0.772
PQ2 2.184 2.510 1.636 1.012 0.990 0.768
UP8 2.485 3.259 1.823 �1.010 0.988 0.759
PQ3 2.614 3.095 2.140 1.009 0.988 0.800
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Fig. 2.3. Variance of slowness SĈ(C) (top), redundancy r(C) (middle), and badness
BĈ(C) (bottom) for each pair of learning problem and stopping criterion. In each of the
168 columns, the dot represents the mean computed from 108 runs: learning problem
and stopping criterion are fixed, while three other parameters are varied (12 topologies
× 3 runs × 3 dataset variants). The length of the line is twice the standard deviation
within these 108 values. Within each block of dot-line plots, the plots represent (in
order) the problems building, cancer, card, diabetes, flare, gene, glass, heart, hearta,
horse, soybean, thyroid. The horizontal line marks the median of the means. Note:
When comparing the criteria groups, remember that overall the PQ criteria chosen are
slower than the others. It is unfair to compare, for example, PQ0.5 to GL1 and UP2.
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1. Training time: The slowness of a criterion C in a run, relative to another
criterion x is Sx(C) := ts(C)/ts(x), i.e., the relative total training time. As we
see, the times relative to a fixed criterion as shown in column SGL2(C) vary by
more than factor 4. Therefore, the decision for a particular stopping criterion
influences training times dramatically, even if one considers only the range of cri-
teria used here. In contrast, even the slowest criteria train only about 2.5 times
as long as the fastest criterion of each run that finds the same result, as indi-
cated in column SĈ(C). This shows that the training times are not completely
unreasonable even for the slower criteria, but do indeed pay off to some degree.

2. Efficiency: The redundancy of a criterion can be defined as r(C) :=
(ts(C)/tm(C)) − 1. It characterizes how long the training continues after the
final solution has been seen. r(C) = 0 would be perfect, r(C) = 1 means that
the criterion trains twice as long as necessary. Low values indicate efficient crite-
ria. As we see, the slower a criterion is, the less efficient it tends to get. Even the
fastest criteria “waste” about one fifth of their overall training time. The slower
criteria train twice as long as necessary to find the same solution.

3. Effectiveness: We define the badness of a criterion C in a run relative to
another criterion x as Bx(C) := Ete(C)/Ete(x), i.e., its relative error on the
test set. Pg(C) is the fraction of the 1296 runs in which C was a good criterion.
This is an estimate of the probability that C is good in a run. As we see from
the Pg column, even the fastest criteria are fairly effective. They reach a result
as good as the best (of the same run) in about 60% of the cases. On the other
hand, even the slowest criteria are not at all infallible; they achieve about 80%.
However, Pg says nothing about how far from the optimum the non-good runs
are. Columns BĈ(C) and BGL2(C) indicate that these differences are usually
rather small: column BGL2(C) shows that even the criteria with the lowest error
achieve only about 1% lower error on the average than the relatively fast criterion
GL2. In column BĈ(C) we see that several only modestly slow criteria have just
about 2% higher error on the average than the best criteria of the same run. For
obtaining the lowest possible generalization error, independent of training time,
it appears that one has to use an extreme criterion such as GL50 or even use a
conjunction of all three criteria classes with high parameter values.

4. Robustness: We call a criterion robust to the degree that its performance
is independent of the learning problem and the learning environment (network
topology, initial conditions etc.). Optimal robustness would mean that in Fig-
ure 2.3 all dots within a block are at the same height (problem independence)
and all lines have length zero (environment independence). Note that slowness
and badness are measured relative to the best criterion of the same program run.
We observe the following:

– With respect to slowness and redundancy, slower criteria are much less robust
than faster ones. In particular the PQ criteria are quite sensitive to the
learning problem, with the card and horse problems being worst in this
experimental setting.

– With respect to badness, the picture is completely different: slower criteria
tend to be slightly more robust than slower ones. PQ criteria are a little
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more robust than the others while GL criteria are significantly less robust.
All criteria are more or less instable for the building, cancer, and thyroid
problems. In particular, all GL criteria have huge problems with the building
problem, whose dataset 1 is the only one that is partitioned non-randomly;
it uses chronological order of examples, see [19]. The slower variants of the
other criteria types are nicely robust in this case.

– Similar statements apply when one analyzes the influence of only large or
only small network topologies separately (not shown in any figure or table).
One notable exception was the fact that for networks with very few hidden
nodes the PQ criteria are more cost-effective than both the GL and the
UP criteria for minimizing BĈ(C). The explanation may be that such small
networks do not overfit severely; in this case it is advantageous to take train-
ing progress into account as an additional factor to determine when to stop
training.

Overall, fast criteria improve the predictability of the training time, while slow
ones improve the predictability of the solution quality.

5. Best tradeoffs: Despite the common overall trend, some criteria may be
more cost-effective than others, i.e., provide better tradeoffs between training
time and resulting network performance. Column Bĉ of the table suggests that
the best tradeoffs between test error and training time are (in order of increasing
willingness to spend lots of training time) UP3, UP4, and UP6, if one wants to
minimize the expected network performance from a single run. These criteria are
also robust. If on the other hand one wants to make several runs and pick the
network that seems to be best (based on its validation error), Pg is the relevant
metric and the GL criteria are preferable. The best tradeoffs are marked with a
star in the table. Figure 2.4 illustrates these results. The upper curve corresponds
to column BĈ of the table (plotted against column SĈ); local minima indicate
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Fig. 2.4. Badness BĈ(C) and Pg against slowness SĈ(C) of criteria
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criteria with the best tradeoffs. The lower curve corresponds to column Pg; local
maxima indicate the criteria with the best tradeoffs. All measurements are scaled
by 1000.

6. Quantification: From columns SGL2(C) and BGL2(C) we can quantify the
tradeoff involved in the selection of a stopping criterion as follows: In the range
of criteria examined we can roughly trade a 4% decrease in test error (from 1.024
to 0.988) for an about fourfold increase in training time (from 0.766 to 3.095).
Within this range, some criteria are somewhat better than others, but there is
no panacea.

2.3.5 Generalization of These Results

It is difficult to say whether or how these results apply to different contexts
than those of the above evaluation. Speculating though, I would expect that the
behavior of the stopping criteria

– is similar for other learning rules, unless they frequently make rather extreme
steps in parameter space,

– is similar for other error functions, unless they are discontinuous,
– is similar for other learning tasks, as long as they are in the same ballpark

with respect to their nonlinearity, number of inputs and outputs, and amount
of available training data.

Note however, that at least with respect to the learning task deviations do occur
(see Figure 2.3). More research is needed in order to describe which properties
of the learning tasks lead to which differences in stopping criteria behavior —
or more generally: in order to understand how which features of tasks influence
learning methods.

2.4 Why This Works

Detailed theoretical analyses of the error curves cannot yet be done for the
most interesting cases such as sigmoidal multi-layer perceptrons trained on a
modest number of examples; today they are possible for restricted scenarios
only [1, 2, 3, 24] and do usually not aim at finding the optimal stopping crite-
rion in a way comparable to the present work. However, a simplification of the
analysis performed by Wang et al. [24] or the alternative view induced by the
bias/variance decomposition of the error as described by Geman et al. [10] can
give some insights why early stopping behaves as it does.

At the beginning of training (phase I), the error is dominated by what Wang
et al. call the approximation error — the network has hardly learned anything
and is still very biased. During training this part of the error is further and
further reduced. At the same time, however, another component of the error
increases: the complexity error that is induced by the increasing variance of the
network model as the possible magnitude and diversity of the weights grows.
If we train long enough, the error will be dominated by the complexity error



2. Early Stopping — But When? 65

(phase III). Therefore, there is a phase during training, when the approximation
and complexity (or: bias and variance) components of the error compete but
none of them dominates (phase II). See Amari et al. [1, 2] for yet another view
of the training process, using a geometrical interpretation. The task of early
stopping as described in the present work is to detect when phase II ends and
the dominance of the variance part begins.

Published theoretical results on early stopping appear to provide some nice
techniques for practical application: Wang et al. [24] offer a method for comput-
ing the stopping point based on complexity considerations — without using a
separate validation set at all. This could save precious training examples. Amari
et al. [1, 2] compute the optimal split proportion of training data into training
and validation set.

On the other hand, unfortunately, the practical applicability of these theo-
retical analyses is severely restricted. Wang et al.’s analysis applies to networks
where only output weights are being trained; no hidden layer training is cap-
tured. It is unclear to what degree the results apply to the multi-layer networks
considered here. Amari et al.’s analysis applies to the asymptotic case of very
many training examples. The analysis does not give advice on stopping criteria;
it shows that early stopping is not useful when very many examples are avail-
able but does not cover the much more frequent case when training examples
are scarce.

There are several other theoretical works on early stopping, but none of them
answers our practical questions. Thus, given these theoretic results, one is still
left with making a good stopping decision for practical cases of multilayer net-
works with only few training examples and faced with a complicated evolution of
the validation set error as shown in Figure 2.2. This is why the present empirical
investigation was necessary.

The jagged form of the validation error curve during phase II arises because
neither bias nor variance change monotonically, let alone smoothly. The bias
error component may change abruptly because training algorithms never per-
form gradient descent, but take finite steps in parameter space that sometimes
have severe results. The observed variance error component may change abruptly
because, first, the validation set error is only an estimate of the actual general-
ization error and, second, the effect of a parameter change may be very different
in different parts of parameter space.

Quantitatively, the different error minima that occur during phase II are quite
close together in terms of size, but may be rather far apart in terms of training
epoch. The exact validation error behavior seems rather unpredictable when only
a short left section of the error curve is given. The behavior is also very different
for different training situations.

For these reasons no class of stopping criteria has any big advantage over
another (on average, for the mix of situations considered here), but scaling the
same criterion to be slower always tends to gain a little generalization.
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Abstract. We present a simple trick to get an approximate estimate of
the weight decay parameter λ. The method combines early stopping and
weight decay, into the estimate

λ̂ = ‖∇E(W es)‖/‖2W es‖,

where W es is the set of weights at the early stopping point, and E(W )
is the training data fit error.

The estimate is demonstrated and compared to the standard cross-
validation procedure for λ selection on one synthetic and four real life
data sets. The result is that λ̂ is as good an estimator for the optimal
weight decay parameter value as the standard search estimate, but orders
of magnitude quicker to compute.

The results also show that weight decay can produce solutions that
are significantly superior to committees of networks trained with early
stopping.

3.1 Introduction

A regression problem which does not put constraints on the model used is ill-
posed [21], because there are infinitely many functions that can fit a finite set
of training data perfectly. Furthermore, real life data sets tend to have noisy
inputs and/or outputs, which is why models that fit the data perfectly tend
to be poor in terms of out-of-sample performance. Since the modeler’s task is
to find a model for the underlying function while not overfitting to the noise,
models have to be based on criteria which include other qualities besides their
fit to the training data.

In the neural network community the two most common methods to avoid
overfitting are early stopping and weight decay [17]. Early stopping has the ad-
vantage of being quick, since it shortens the training time, but the disadvantage
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of being poorly defined and not making full use of the available data. Weight
decay, on the other hand, has the advantage of being well defined, but the dis-
advantage of being quite time consuming. This is because much time is spent
with selecting a suitable value for the weight decay parameter (λ), by searching
over several values of λ and estimating the out-of-sample performance using e.g.
cross validation [25].

In this paper, we present a very simple method for estimating the weight decay
parameter, for the standard weight decay case. This method combines early
stopping with weight decay, thus merging the quickness of early stopping with
the more well defined weight decay method, providing a weight decay parameter
which is essentially as good as the standard search method estimate when tested
empirically.

We also demonstrate in this paper that the arduous process of selecting λ can
be rewarding compared to simpler methods, like e.g. combining networks into
committees [16].

The paper is organized as follows: In section 2 we present the background of
how and why weight decay or early stopping should be used. In section 3 we
review the standard method for selecting λ and also introduce our new estimate.
In section 4 we give empirical evidence on how well the method works, and in
section 5 we summarize our conclusions.

3.2 Ill-Posed Problems, Regularization, and Such
Things...

3.2.1 Ill-Posed Problems

In what follows, we denote the input data by x(n), the target data by y(n),
and the model (neural network) output by f(W ,x(n)), where W denotes the
parameters (weights) for the model. We assume a target data generating process
of the form

y(n) = φ[x(n)] + ε(n) (3.1)

where φ is the underlying function and ε(n) are sampled from a stationary un-
correlated (IID) zero mean noise process with variance σ2. We select models f
from a model family F , e.g. multilayer perceptrons, to learn an approximation to
the underlying function φ, based on the training data. That is, we are searching
for

f∗ ≡ f(W ∗) ∈ F such that E(f∗, φ) ≤ E(f, φ) ∀ f ∈ F, (3.2)

where E(f, φ) is a measure of the “distance” between the model f and the true
model φ. Since we only have access to the target values y, and not the underlying
function φ, E(f, φ) is often taken to be the mean square error

E(f, φ)→ E(f, y) = E(W ) =
1

2N

N∑

n=1

[y(n)− f(W ,x(n))]2. (3.3)

Unfortunately, minimizing (3.3) is, more often than not, an ill-posed problem.
That is, it does not meet the following three requirements [21]:



3. A Simple Trick for Estimating the Weight Decay Parameter 71

– The model (e.g. neural network) can learn the function training data, i.e.
there exists a solution f∗ ∈ F .

– The solution is unique.
– The solution is stable under small variations in the training data set. For

instance, training with two slightly different training data sets sampled from
the same process must result in similar solutions (similar when evaluated on
e.g. test data).

The first and second of these requirements are often not considered serious prob-
lems. It is always possible to find a multilayer perceptron that learns the training
data perfectly by using many internal units, since any continuous function can be
constructed with a single hidden layer network with sigmoid units (see e.g. [6]),
and we may be happy with any solution and ignore questions on uniqueness.
However, a network that has learned the training data perfectly will be very
sensitive to changes in the training data. Fulfilling the first requirement is thus
usually in conflict with fulfilling the third requirement, which is a really impor-
tant requirement. A solution which changes significantly with slightly different
training sets will have very poor generalization properties.

3.2.2 Regularization

It is common to introduce so-called regularizers1 in order to make the learning
task well posed (or at least less ill-posed). That is, instead of only minimizing an
error of fit measure like (3.3) we augment it with a regularization term λR(W )
which expresses e.g. our prior beliefs about the solution.

The error functional then takes the form

E(W ) =
1

2N

N∑

n=1

[y(n)− f(W ,x(n))]2 + λR(W ) = E0(W ) + λR(W ), (3.4)

where λ is the regularization parameter which weighs the importance of R(W )
relative to the error of fit E0(W ).

The effect of the regularization term is to shrink the model family F , or make
some models more likely than others. As a consequence, solutions become more
stable to small perturbations in the training data.

The term “regularization” encompasses all techniques which make use of
penalty terms added to the error measure to avoid overfitting. This includes
e.g. weight decay [17], weight elimination [26], soft weight sharing [15], Lapla-
cian weight decay [12] [27], and smoothness regularization [2] [9] [14] . Certain
forms of “hints” [1] can also be called regularization.

3.2.3 Bias and Variance

The benefit of regularization is often described in the context of model bias and
model variance. This originates from the separation of the expected generaliza-
tion error 〈Egen〉 into three terms [8]
1 Called “stabilizers” by Tikhonov [21].
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〈Egen〉 = 〈
∫

[y(x)− f(x)]2 p(x)dx〉

=

∫
[φ(x)− 〈f(x)〉]2 p(x)dx+ 〈

∫
[f(x)− 〈f(x)〉]2 p(x)dx〉+

〈
∫

[y(x)− φ(x)]2 p(x)dx〉

= Bias2 + Variance+ σ2, (3.5)

where 〈〉 denotes taking the expectation over an ensemble of training sets. Here
p(x) denotes the input data probability density.

A high sensitivity to training data noise corresponds to a large model vari-
ance. A large bias term means either that φ ∈/ F , or that φ is downweighted in
favour of other models in F . We thus have a trade-off between model bias and
model variance, which corresponds to the trade-off between the first and third
requirements on well-posed problems.

Model bias is weighed versus model variance by selecting both a parametric
form for R(W ) and an optimal2 value for the regularization parameter λ.

Many neural network practitioners ignore the first part and choose weight
decay by default, which corresponds to a Gaussian parametric form for the prior
on W . Weight decay is, however, not always the best choice (in fact, it is most
certainly not the best choice for all problems). Weight decay does not for instance
consider the function the network is producing, it only puts a constraint on
the parameters. Another, perhaps more correct, choice would be to constrain
the higher order derivatives of the network function (which is commonplace in
statistics) like in e.g. [14].

3.2.4 Bayesian Framework

From a Bayesian and maximum likelihood perspective, prior information about
the model (f) is weighed against the likelihood of the training data (D) through
Bayes theorem (see [4] for a discussion on this). Denote the probability for ob-
serving data set D by p(D), the prior distribution of models f by p(f), and the
likelihood for observing the data D, if f is the correct model, by p(D|f). We
then have for the posterior probability p(f |D) for the model f given the observed
data D

p(f |D) =
p(D|f)p(f)
p(D)

⇒

− ln p(f |D) = − log p(D|f)− ln p(f) + ln p(D)⇒

− ln p(f |D) =

N∑

n=1

[y(n)− f(W ,x(n))]2 − ln p(f) + constant, (3.6)

where Gaussian noise ε is assumed in the last step. If we identify 2NλR(W ) with
the negative logarithm of the model prior, − ln p(f), then maximizing p(f |D) is
equivalent to minimizing expression (3.4).
2 Optimality is usually measured via cross-validation or some similar method.
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From this perspective, choosing R(W ) is equivalent to choosing a parameter-
ized form for the model prior p(f), and selecting a value for λ corresponds to
estimating the parameters for the prior.

3.2.5 Weight Decay

Weight decay [17] is the neural network equivalent to the Ridge Regression [11]
method. In this case R(W ) = ‖W ‖2 =

∑
k w

2
k and the error functional is

E(W ) = E0(W ) + λR(W ) =
1

2N

N∑

n=1

[y(n)− f(W ,x(n))]2 + λ‖W ‖2, (3.7)

and λ is usually referred to as the weight decay parameter. In the Bayesian
framework, weight decay means implicitly imposing the model prior

p[f(W )] =

√
λ

2πσ2
exp

(
−λ‖W ‖2

2σ2

)
(3.8)

where σ2 is the variance of the noise in the data.
Weight decay often improves the generalization properties of neural network

models, for reasons outlined above.

3.2.6 Early Stopping

Undoubtedly, the simplest and most widely used method to avoid overfitting is
to stop training before the training set has been learned perfectly. This is done
by setting aside a fraction of the training data for estimating the out-of-sample
performance. This data set is called the validation data set. Training is then
stopped when the error on the validation set starts to increase. Early stopping
often shortens the training time significantly, but suffers from being ill-defined
since there really is no well defined stopping point, and wasteful with data, since
a part of the data is set aside.

There is a connection between early stopping and weight decay, if learning
starts from small weights, since weight decay applies a potential which forces
all weights towards zero. For instance, Sjöberg and Ljung [20] show that, if a
constant learning rate η is used, the number of iterations n at which training is
stopped is related to the weight decay parameter λ roughly as

λ ∼ 1

2ηn
. (3.9)

This does not, however, mean that using early stopping is equivalent to using
weight decay in practice. Expression (3.9) is based on a constant learning rate,
a local expansion around the optimal stopping point, ignoring local minima,
and assumes small input noise levels, which may not reflect the situation when
overfitting is a serious problem. The choice of learning algorithm can also affect
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the early stopping point, and one cannot expect (3.9) to hold exactly in the
practical case.

Inspired by this connection between early stopping and weight decay, we use
early stopping in the following section to estimate the weight decay parameter
λ.

3.3 Estimating λ

From a pure Bayesian point of view, the prior is something we know/assume
in advance and do not use the training data to select (see e.g. [5]). There
is consequently no such thing as “λ selection” in the pure Bayesian model selec-
tion scheme. This is of course perfectly fine if the prior is correct. However, if
we suspect that our choice of prior is less than perfect, then we are better off
if we take an “empirical Bayes” approach and use the data to tune the prior,
through λ.

Several options for selecting λ have been proposed. Weigend et al. [26] present,
for a slightly differentweight cost term, a set of heuristic rules for changingλduring
the training. Although Weigend et al. demonstrate the use of these heuristics on a
couple of time series problems,we cannot get these rules to work consistently to our
satisfaction. A more principled approach is to try several values of λ and estimate
the out-of-sample error, either by correcting the training error, with some factor or
term, or by using cross-validation. The former is done in e.g. [10], [23], and [24] (see
also references therein). The latter is done by e.g. [25].

The method of using validation data for estimating the out-of-sample error is
robust but slow since it requires training several models. We use cross-validation
here because of its reliability.

3.3.1 Search Estimates

Finding the optimal λ requires the use of a search algorithm, which must be
robust because the validation error can be very noisy. A simple and straight-
forward way is to start at some large λ where the validation error is large, due
to the large model bias, and step towards lower values until the out-of-sample
error becomes large again, due to the large model variance. In our experience, it
often makes sense to do the search in logλ (i.e. with equally spaced increments
in logλ).

The result of such a search is a set ofK values {λk} with corresponding average
n-fold cross validation errors {logEnCV,k} and standard deviations {σnCV,k} for
the validation errors. These are defined as

logEnCV,k =
1

n

n∑

j=1

logEj,k (3.10)

σ2nCV,k =
1

n− 1

n∑

j=1

(logEj,k − logEnCV,k)
2 (3.11)
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when λ = λk. The number of validation data sets is n and Ej,k denotes the
validation error when λ = λk and we use validation set j. Taking logarithms
is motivated by our observation that the validation error distribution looks ap-
proximately log-normal and we use this in our selection of the optimal λ value
below.

Once the search is finished, the optimal λ is selected. This is not necessarily
trivial since a large range of values may look equally good, or one value may
have a small average cross-validation error with a large variation in this error,
and another value may have a slightly higher average cross-validation error with
a small variation in this error. The simplest approach is to look at a plot of
the validation errors versus λ and make a judgement on where the optimal λ
is, but this adds an undesired subjectiveness to the choice. Another is to take
a weighted average over the different λ values, which is what we use here (see
Ripley [19] for a discussion on variants of λ selection methods).

Our estimate for the optimal λ is the value

λ̂opt =

∑K
k=1 nkλk∑K
k=1 nk

(3.12)

where nk is the number of times λk corresponds to the minimum validation error
when we sample validation errors from K log-normal distributions with means
logEnCV,k and standard deviations σnCV,k, assuming that the validation errors
are independent. This is illustrated on a hypothetical example in Figure 3.1.
The choice (3.12) was done after confirming that it often agrees well with our
subjective choice for λ. We refer to this below as a “Monte Carlo estimate” of λ.

3.3.2 Two Early Stopping Estimates

If W ∗ is the set of weights when E(W ) in eq. (3.4) is minimized, then

∇E(W ∗) = ∇E0(W
∗) + λ∇R(W ∗) = 0, (3.13)

which implies

λ =
‖∇E0(W

∗)‖
‖∇R(W ∗)‖ (3.14)

for the regularization parameter λ. Thus, if we have a reasonable estimate of
W ∗, or of ‖∇E0(W

∗)‖ and ‖∇R(W ∗)‖, then we can use this to estimate λ. An
appealingly simple way of estimating W ∗ is to use early stopping, because of its
connection with weight decay.

Denoting the set of weights at the early stopping point by W es, we have

λ̂1 =
‖∇E0(W es)‖
‖∇R(W es)‖

, (3.15)

as a simple estimate for λ. A second possibility is to consider the whole set of
linear equations defined by (3.13) and minimize the squared error

‖∇E0(W es) + λ∇R(W es)‖2 =

‖∇E0(W es)‖2 + 2λ∇E0(W es) · ∇R(W es) + λ
2‖∇R(W es)‖2 (3.16)
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Fig. 3.1. Illustration of the procedure for estimating λ̂opt on a hypothetical example.
From the search we have a set of K lognormal distributions with means logEnCV,k

and variances σ2
nCV,k, which is illustrated in the top plate. From these K distributions,

we sample K error values and select the λ corresponding to the minimum error value
as “winner”. This is repeated several times (100 in the figure but 10,000 times in the
experiments in the text) collecting statistics on how often different λ values are winners,
and the mean log λ is computed. This is illustrated in the bottom plate, which shows the
histogram resulting from sampling 100 times. From this we get log λ̂opt = −2.48±1.15,
which gives us λ = 10−2.48 = 0.003 for training the “best” network.

with respect to λ. That is, solving the equation

∂

∂λ

{
‖∇E0(W es) + λ∇R(W es)‖2

}
= 0 (3.17)

which gives

λ̂2 = max

[
0,
−∇E0(W es) · ∇R(W es)

‖∇R(W es)‖2

]
. (3.18)

The estimate is bound from below since λ must be positive.
The second estimate, λ̂2, corresponds to a linear regression without intercept

term on the set of points {∂iE0(W es), ∂iR(W es)}, whereas the first estimate,
λ̂1, is closer to the ratio max[|∂iE0(W es)|]/max[|∂iR(W es)|]. It follows from
the Cauchy-Schwartz inequality that

λ̂1 ≥ λ̂2. (3.19)

For the specific case of weight decay, where R(W ) = ‖W ‖2, expressions (3.15)
and (3.18) become

λ̂1 =
‖∇E0(W es)‖

2‖W es‖
, (3.20)
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λ̂2 = max

[
0,
−∇E0(W es) ·W es

2‖W es‖2

]
. (3.21)

These estimates are sensitive to the particularities of the training and validation
data sets used, and possibly also to the training algorithm. One must therefore
average them over different validation and training sets. It is, however, still
quicker to do this than to do a search since early stopping training often is
several orders of magnitude faster to do than a full minimization of (3.7).

One way to view the estimates (3.15) and (3.18) is as the weight decay pa-
rameters that correspond to the early stopping point. However, our aim here is
not to imitate early stopping with weight decay, but to use early stopping to
estimate the weight decay parameter λ. We hope that using weight decay with
this λ value will actually result in better out-of-sample performance than what
we get from doing early stopping (the whole exercise becomes rather meaningless
if this is not the case).

As a sidenote, we imagine that (3.15) and (3.18) could be used also to esti-
mate weight decay parameters in cases when different weight decays are used
for weights in different layers. This would then be done by considering these
estimates for different groups of weights.

3.4 Experiments

3.4.1 Data Sets

We here demonstrate the performance of our algorithm on a set of five regression
problems. For each problem, we vary either the number of inputs, the number of
hidden units, or the amount of training data to study the effects of the numbers
of parameters relative to the number of training data points. The five problems
are:

Synthetic Bilinear Problem. The task is to model a bilinear function of the
form

φ(x1, x2) = x1x2. (3.22)

We use three different sizes of training data sets, M ∈ {20, 40, 100}, but a con-
stant validation set size of 10 patterns. The validation patterns are in addition
to the M training patterns. The test error, or generalization error, is computed
by numerical integration over 201 × 201 data points on a two-dimensional lat-
tice (x1, x2) ∈ [−1, 1]2. The target values (but not the inputs) are contam-
inated with three different levels of Gaussian noise with standard deviation
σ ∈ {0.1, 0.2, 0.5}. This gives a total of 3 × 3 = 9 different experiments on
this particular problem, which we refer to as setup A1, A2, ..., and A9 below.

This allows controlled studies w.r.t. noise levels and training set sizes, while
keeping the network architecture constant (2 inputs, 8 tanh hidden, and one
linear output).
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Predicting Puget Sound Power and Light Co. Power Load between
7 and 8 a.m. the Following Day. This data set is taken from the Puget
Sound Power and Light Co’s power prediction competition [3]. The winner of
this competition used a set of linear models, one for each hour of the day. We
have selected the subproblem of predicting the load between 7 and 8 a.m. 24 hrs.
in advance. This hour shows the largest variation in power load. The training set
consists of 844 weekdays between January 1985 and September 1990. Of these,
150 days are randomly selected and used for validation. We use 115 winter week-
days, from between November 1990 and March 1992, for out-of-sample testing.
The inputs are things like current load, average load during the last 24 hours,
average load during the last week, time of the year, etc., giving a total of 15
inputs. Three different numbers of internal units are tried on this task: 15, 10,
and 5, and we refer to these experiments as B1, B2, and B3 below.

Predicting Daily Riverflow in Two Icelandic Rivers. This problem is
tabulated in [22], and the task is to model tomorrow’s average flow of water
in one of two Icelandic rivers, knowing today’s and previous days’ waterflow,
temperature, and precipitation. The training set consists of 731 data points,
corresponding to the years 1972 and 1973, out of which we randomly sample
150 datapoints for validation. The test set has 365 data points (the year 1974).
We use two different lengths of lags, 8 or 4 days back, which correspond to 24
or 12 inputs, while the number of internal units is kept constant at 12. These
experiments are referred to as C1, C2, C3, and C4 below.

Predicting the Wolf Sunspots Time Series. This time series has been used
several times in the context of demonstrating new regularization techniques, for
instance by [15] and [26]. We try three different network architectures on this prob-
lem, always keeping 12 input units but using 4, 8, or 12 internal units in the network.
These experiments are referred to as setup D1, D2, and D3 below. The training set
size is kept constant at M = 221 (years 1700-1920), out of which we randomly
pick 22 patterns for validation. We test our models under four different conditions:
Single step prediction on “test set 1” with 35 data points (years 1921-1955), 4-step
iterated prediction on “test set 1”, 8-step iterated prediction on all 74 available test
years (1921-1994), and 11-step iterated prediction on all available test years.These
test conditions are coded as s1, m4, m8, and m11.

Estimating the Peak Pressure Position in a Combustion Engine. This
is a data set with 4 input variables (ignition time, engine load, engine speed, and
air/fuel ratio) and only 49 training data points, out of which we randomly pick 9
patterns for validation. The test set consists of 35 data points, which have been
measured under slightly different conditions than the training data. We try four
different numbers of internal units on this task: 2, 4, 8, or 12, and refer to these
experiments as E1, E2, E3, and E4.
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3.4.2 Experimental Procedure

The experimental procedure is the same for all problems: We begin by estimating
λ in the “traditional” way by searching over the region logλ ∈ [−6.5, 1.0] in steps
of Δ logλ = 0.5. For each λ value, we train 10 networks using the Rprop training
algorithm 3 [18]. Each network is trained until the total error (3.7) is minimized,
measured by

log

[
1

100

100∑

i=1

|ΔEi|
‖ΔW i‖

]
< −5, (3.23)

where the sumruns over themost recent100epochs, oruntil 105epochshavepassed,
whichever occurs first. The convergence criterion (3.23) is usually fulfilled within
105 epochs. New validation and training sets are sampled for each of the 10 net-
works, but the different validation sets are allowed to overlap. Means and standard
deviations, logEnCV,k and σnCV,k, for the errors are estimated from these 10 net-
work runs, assuming a lognormal distribution for the validation errors. Figure 3.2
shows an example of such a search for the Wolf sunspot problem, using a neural
network with 12 inputs, 8 internal units, and 1 linear output.
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Fig. 3.2. Left panel: Training and validation errors on the Wolf sunspot time series,
setup D2, plotted versus the weight decay parameter λ. Each point corresponds to
an average over 10 runs with different validation and training sets. The error bars
mark 95% confidence limits for the average validation and training errors, under the
assumption that the errors are lognormally distributed. The objective Monte Carlo
method gives log λ̂opt = −2.00± 0.31. Right panel: The corresponding plot for the test
error on the sunpots “test set 1”. The network architecture is 12 inputs, 8 tanh internal
units, and 1 linear output.

Using the objective Monte Carlo method described above, we estimate an
optimal λ̂opt value from this search. This value is then used to train 10 new

3 Initial tests showed that the Rprop algorithm was considerably more efficient and
robust than e.g. backprop or conjugate gradients in minimizing the error. We did
not, however, try true second order algorithms like Levenberg-Marquardt or Quasi-
Newton.
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Fig. 3.3. Left panel: Histogram showing the estimated values λ̂1 for 100 different train-
ing runs, using different training and validation sets each time. Right panel: Similar
histogram for λ̂2. The problem (D2) is the same as that depicted in Figure 3.2.

networks with all the training data (no validation set). The test errors for these
networks are then computed using the held out test set.

A total of 16 × 10 = 160 network runs are thus done to select the λ̂opt for
each experiment. This corresponds to a few days’ or a week’s work, depending
on available hardware and the size of the problem. Although this is in excess of
what is really needed in practice (one could get away with about half as many
runs in a real application) the time spent doing this is aggravating. The times
needed for doing the searches described in this paper ranged from 10 up to 400
cpu-hours, depending on the problem and the computer4. For comparison, the
early stopping experiments described below took between 10 cpu-minutes and
14 cpu-hours. There was typically a ratio of 40 between the time needed for a
search and the time needed for an early stopping estimate.

We then estimate λ̂1 and λ̂2, by training 100 networks with early stopping. One
problem here is that the stopping point is ill-defined, i.e. the first observed mini-
mum in the validation error is not necessarily the minimum where one should stop.
The validation error quite often decreases again beyond this point. To avoid such
problems, we keep a record of the weights corresponding to the latest minimum
validation error and continue training beyond that point. The training is stopped
when as many epochs have passed as it took to find the validation error minimum
without encountering a new minimum. The weights corresponding to the last vali-
dation error minimum are then used as the early stopping weights. For example, if
the validation error has a minimum at say 250 epochs, we then wait until a total of
500 epochs have passed before deciding on that particular stopping point. Fromthe
100 networks, we get 100 estimates for λ̂1 and λ̂2. We take the logarithm of these
and compute means 〈log λ̂1〉 and 〈log λ̂2〉, and corresponding standard deviations.

4 A variety of computers were used for the simulations, including NeXT, Sun Sparc,
DEC Alpha, and Pentium computers running Solaris.
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The resulting arithmetic mean values are taken as the estimates for λ and the stan-
darddeviations are used asmeasures of the estimation error.The arithmetic means
are then used to train 10 networks which use all the training data. Figure 3.3 shows
the histograms corresponding to the problem presented in Figure 3.2.

When comparing test errors achieved with different methods, we use the
Wilcoxon rank test [13], also called the Mann-Whitney test, and report dif-
ferences at 95% confidence level.

3.4.3 Quality of the λ Estimates

As a first test of the quality of the estimates λ̂1 and λ̂2, we check how well they
agree with the λ̂opt estimate, which can be considered a “truth”. The estimates
for all the problem setups are tabulated in table 3.1 and plotted in Figure 3.4.

Table 3.1. Estimates of λ for the 23 different problem setups. Code A corresponds
to the synthetic problem, code B to the Power prediction, code C to the riverflow
prediction, code D to the Sunspots series, and code E to the maximum pressure position
problem. For the log λ̂opt column, errors are the standard deviations of the Monte Carlo
estimate. For the early stopping estimates, errors are the standard deviations of the
estimates.

Problem log λ̂opt log λ̂1 log λ̂2
A1 (M = 20, σ = 0.1) -2.82 ± 0.04 -2.71 ± 0.66 -3.44 ± 1.14
A2 (M = 20, σ = 0.2) -2.67 ± 0.42 -2.32 ± 0.58 -3.20 ± 0.96
A3 (M = 20, σ = 0.5) -0.49 ± 1.01 -1.93 ± 0.78 -3.14 ± 1.15
A4 (M = 40, σ = 0.1) -2.93 ± 0.49 -2.85 ± 0.73 -3.56 ± 0.87
A5 (M = 40, σ = 0.2) -2.53 ± 0.34 -2.41 ± 0.64 -2.91 ± 0.68
A6 (M = 40, σ = 0.5) -2.43 ± 0.44 -2.13 ± 0.74 -2.85 ± 0.77
A7 (M = 100, σ = 0.1) -3.45 ± 0.78 -3.01 ± 0.86 -3.74 ± 0.93
A8 (M = 100, σ = 0.2) -3.34 ± 0.71 -2.70 ± 0.73 -3.33 ± 0.92
A9 (M = 100, σ = 0.5) -3.31 ± 0.82 -2.34 ± 0.63 -3.13 ± 1.06
B1 (Power, 15 hidden) -3.05 ± 0.21 -3.82 ± 0.42 -5.20 ± 0.70
B2 (Power, 10 hidden) -3.57 ± 0.35 -3.75 ± 0.45 -4.93 ± 0.50
B3 (Power, 5 hidden) -4.35 ± 0.66 -3.78 ± 0.52 -5.03 ± 0.74
C1 (Jökulsá Eystra, 8 lags) -2.50 ± 0.10 -3.10 ± 0.33 -4.57 ± 0.59
C2 (Jökulsá Eystra, 4 lags) -2.53 ± 0.12 -3.15 ± 0.40 -4.20 ± 0.59
C3 (Vatnsdalsá, 8 lags) -2.48 ± 0.11 -2.65 ± 0.40 -3.92 ± 0.56
C4 (Vatnsdalsá, 4 lags) -2.39 ± 0.55 -2.67 ± 0.45 -3.70 ± 0.62
D1 (Sunspots, 12 hidden) -2.48 ± 0.12 -2.48 ± 0.50 -3.70 ± 0.42
D2 (Sunspots, 8 hidden) -2.00 ± 0.31 -2.43 ± 0.45 -3.66 ± 0.60
D3 (Sunspots, 4 hidden) -2.51 ± 0.44 -2.39 ± 0.48 -3.54 ± 0.65
E1 (Pressure, 12 hidden) -3.13 ± 0.43 -3.03 ± 0.70 -4.69 ± 0.91
E2 (Pressure, 8 hidden) -3.01 ± 0.52 -3.02 ± 0.64 -4.72 ± 0.82
E3 (Pressure, 4 hidden) -3.83 ± 0.80 -3.07 ± 0.71 -4.50 ± 1.24
E4 (Pressure, 2 hidden) -4.65 ± 0.78 -3.46 ± 1.34 -4.21 ± 1.40
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The linear correlation between log λ̂1 and log λ̂opt is 0.71, which is more than
three standard deviations larger than the expected correlation between 23 ran-
dom points. Furthermore, a linear regression with intercept gives the result

λ̂opt = 0.30 + 1.13λ̂1. (3.24)

Thus, λ̂1 is a fairly good estimator of λ̂opt.
The linear correlation between λ̂2 and λ̂opt is 0.48, more than two standard

deviations from the random correlation. A linear regression gives

λ̂opt = −0.66 + 0.57λ̂2, (3.25)

and the second estimator λ̂2 is clearly a less good estimator of λ̂opt.
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Fig. 3.4. Plot of the results in Table 3.1. Left plate: The λ̂1 estimate plotted versus
λ̂opt. The linear correlation between log λ̂1 and log λ̂opt is 0.71. Right plate: λ̂2 plotted
versus λ̂opt. The linear correlation between log λ̂2 and log λ̂opt is 0.48. The sizes of the
crosses correspond to the error bars in Table 3.1.

We next compare the out-of-sample performances of these different λ esti-
mates, which is what really matters to the practitioner. Table 3.2 lists the dif-
ferences in out-of-sample performance when using the early stopping estimates
or the search estimate. A “+” means that using the early stop estimate results
in significantly (95% significance level) lower test error than if λ̂opt is used. Sim-
ilarly, a “–” means that the search estimate gives significantly lower test error
than the early stopping estimates. A “0” means there is no significant difference.
The conclusion from Table 3.2 is that λ̂2 is significantly worse than λ̂opt, but
that there is no consistent difference between λ̂1 and λ̂opt. The two estimates are
essentially equal, in terms of test error. In some cases, like the power prediction
problem, it would have been beneficial to do a small search around the early
stop estimate to check for a possibly better value.
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The test errors for the combustion engine (setups E) are not included in Tables
3.2 (and 3.3) because the test set is too different from the training set to provide
relevant results. In fact, no regularized network is significantly better than an
unregularized network on this problem.

Table 3.2. Relative performance of single networks trained using the estimates λ̂1 and
λ̂2, for the weight decay parameter, and the performance of single networks trained
using the search estimate λ̂opt. The relative performances are reported as: “+” means
that using λ̂i results in a test error which is significantly lower than what the search
estimate λ̂opt gives, “0” means that the performances are equivalent, and “–” means
that using λ̂opt results in a lower test error than when using λ̂i. All results are reported
for a 95% confidence level when using the Wilcoxon test. See the text on why the E
results are left out.

Problem Setup λ̂1 vs. λ̂opt λ̂2 vs. λ̂opt
A1 (M = 20, σ = 0.1) 0 0
A2 (M = 20, σ = 0.2) 0 –
A3 (M = 20, σ = 0.5) 0 0
A4 (M = 40, σ = 0.1) 0 0
A5 (M = 40, σ = 0.2) 0 –
A6 (M = 40, σ = 0.5) 0 0
A7 (M = 100, σ = 0.1) – 0
A8 (M = 100, σ = 0.2) 0 0
A9 (M = 100, σ = 0.5) + 0
B1 (Power, 15 hidden) – –
B2 (Power, 10 hidden) – –
B3 (Power, 5 hidden) + –
C1 (Jökulsá Eystra, 8 lags) – –
C2 (Jökulsá Eystra, 4 lags) 0 –
C3 (Vatnsdalsá, 8 lags) – –
C4 (Vatnsdalsá, 4 lags) 0 –
D1.s1 (Sunspots, 12 hidden) 0 –
D2.s1 (Sunspots, 8 hidden) + –
D3.s1 (Sunspots, 4 hidden) 0 –
D1.m4 (Sunspots, 12 hidden) 0 –
D2.m4 (Sunspots, 8 hidden) + –
D3.m4 (Sunspots, 4 hidden) + –
D1.m8 (Sunspots, 12 hidden) 0 –
D2.m8 (Sunspots, 8 hidden) – –
D3.m8 (Sunspots, 4 hidden) + –
D1.m11 (Sunspots, 12 hidden) 0 0
D2.m11 (Sunspots, 8 hidden) + –
D3.m11 (Sunspots, 4 hidden) 0 –
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3.4.4 Weight Decay versus Early Stopping Committees

Having trained all these early stopping networks, it is reasonable to ask if using
them to estimate λ for a weight decay network is the optimal use of these net-
works? Another possible use is, for instance, to construct a committee [16] from
them.

To test this, we compare the test errors for our regularized networks with
those when using a committee of 10 networks trained with early stopping. The
results are listed in Table 3.3.

Some observations from Table 3.3, bearing in mind that the set of problems
is small, are: Early stopping committees seem like the better option when the
problem is very noisy (setups A3, A6, and A9), and when the network does
not have very many degrees of freedom (setups B3, C4, and D3). Weight decay
networks, on the other hand, seem to work better than committees on problems
with many degrees of freedom (setups B1 and C3), problems with low noise
levels and much data (setup A7), and problems where the prediction is iterated
through the network (m4, m8, and m11 setups). We emphasize, however, that
these conclusions are drawn from a limited set of problems and that all problems
tend to have their own set of weird characteristics.

We also check which model works best on each problem. On the power pre-
diction, the best overall model is a large network (B1) which is trained with
weight decay. On the river prediction problems, the best models are small (C2
and C4) and trained with either weight decay (Jökulsá Eystra) or early stopping
and then combined into committees (Vatnsdalsá). On the sunspot problem, the
best overall model is a large network (D1) trained with weight decay.

These networks are competitive with previous results on the same data sets.
The performance of the power load B1 weight decay networks, using λ̂opt, are
significantly better than what a human expert produces, and also significantly
better than the results by the winner of the Puget Sound Power and Light Co.
Power Load Competition [7], although the difference is small. The test results
are summarized in Figure 3.5. The performance of the sunspot D1 weight decay
network is comparable with the network by Weigend et al., listed in [26]. Figure
3.6 shows the performance of the D1 network trained with weight decay, λ =
λ̂1, and compares it to the results by Weigend et al. [26]. The weight decay
network produces these results using a considerably simpler λ selection method
and regularization cost than the one presented in [26].

From these anecdotal results, one could be bold and say that weight decay
shows a slight edge over early stopping committees. However, it is fair to say that
it is a good idea to try both committees and weight decay when constructing
predictor models.

It is emphasized that these results are from a small set of problems, but that
these problems (except perhaps for the synthetic data) are all realistic in the
sense that the datasets are small and noisy.
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Table 3.3. Relative performance of single networks trained using weight decay and
early stopping committees with 10 members. The relative performance of weight decay
(WD) and 10 member early stopping committees are reported as: “+” means that
weight decay is significantly better than committees, “0” means that weight decay and
committees are equivalent, and “–” means that committees are better than weight
decay. All results are reported for a 95% confidence level when using the Wilcoxon
test. See the text on why the E results are left out.

Problem Setup WD(λ̂opt) vs. Comm. WD(λ̂1) vs. Comm.
A1 (M = 20, σ = 0.1) 0 +
A2 (M = 20, σ = 0.2) 0 0
A3 (M = 20, σ = 0.5) – –
A4 (M = 40, σ = 0.1) 0 0
A5 (M = 40, σ = 0.2) + +
A6 (M = 40, σ = 0.5) – –
A7 (M = 100, σ = 0.1) + +
A8 (M = 100, σ = 0.2) 0 0
A9 (M = 100, σ = 0.5) – 0
B1 (Power, 15 hidden) + –
B2 (Power, 10 hidden) 0 –
B3 (Power, 5 hidden) – –
C1 (Jökulsá Eystra, 8 lags) + 0
C2 (Jökulsá Eystra, 4 lags) + 0
C3 (Vatnsdalsá, 8 lags) + +
C4 (Vatnsdalsá, 4 lags) – –
D1.s1 (Sunspots, 12 hidden) 0 0
D2.s1 (Sunspots, 8 hidden) – 0
D3.s1 (Sunspots, 4 hidden) – –
D1.m4 (Sunspots, 12 hidden) + +
D2.m4 (Sunspots, 8 hidden) + +
D3.m4 (Sunspots, 4 hidden) 0 +
D1.m8 (Sunspots, 12 hidden) + +
D2.m8 (Sunspots, 8 hidden) + 0
D3.m8 (Sunspots, 4 hidden) 0 0
D1.m11 (Sunspots, 12 hidden) + +
D2.m11 (Sunspots, 8 hidden) 0 +
D3.m11 (Sunspots, 4 hidden) + +
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Fig. 3.5. The performance of the 10 neural networks with 15 inputs, 15 hidden units,
and one output unit, trained with weight decay using λ = λ̂opt, on the power prediction
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Sound Power and Light Co., and “Competition winner” denotes the result by the model
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3.5 Conclusions

The established connection between early stopping and weight decay regulariza-
tion naturally leads to the idea of using early stopping to estimate the weight
decay parameter. In this paper we have shown how this can be done and that
the resulting λ results in as low test errors as achieved with the standard cross-
validation method, although this varies between problems. In practical applica-
tions, this means replacing a search which may take days or weeks, with a com-
putation that usually does not require more than a few minutes or hours. This
value can also be used as a starting point for a more extensive cross-validation
search.

We have also shown that using several early stopping networks to estimate λ
can be smarter than combining the networks into committees. The conclusion
from this is that although there is a correspondence between early stopping and
weight decay under asymptotic conditions this does not mean that early stopping
and weight decay give equivalent results in real life situations.

The method unfortunately only works for regularization terms that have a
connection with early stopping, like quadratic weight decay or “weight decay
like” regularizers where the weights are constrained towards the origin in weight
space (but using e.g. a Laplacian prior instead of the usual Gaussian prior). The
method does not carry over to regularizers which do not have any connection to
early stopping (like e.g. Tikhonov smoothing regularizers).
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Abstract. In order to achieve good generalization with neural networks
overfitting must be controlled. Weight penalty factors are one common
method of providing this control. However, using weight penalties creates
the additional search problem of finding the optimal penalty factors.
MacKay [5] proposed an approximate Bayesian framework for training
neural networks, in which penalty factors are treated as hyperparameters
and found in an iterative search. However, for classification networks
trained with cross-entropy error, this search is slow and unstable, and
it is not obvious how to improve it. This paper describes and compares
several strategies for controlling this search. Some of these strategies
greatly improve the speed and stability of the search. Test runs on a
range of tasks are described.

4.1 Introduction

Neural networks can provide useful flexible statistical models for non-linear re-
gression and classification. However, as with all such models, the flexibility must
be controlled to avoid overfitting. One way of doing this in neural networks is to
use weight penalty factors ( regularization parameters). This creates the problem
of finding the values of the penalty factors which will maximize performance on
new data. As various researchers have pointed out, including MacKay [5], Neal
[10] and Bishop [1], it is generally advantageous to use more than one penalty
factor, in order to differentially penalize weights between different layers of the
network. However, doing this makes it computationally infeasible to choose op-
timal penalty factors by k-fold cross validation.

MacKay [5] describes a Bayesian framework for training neural networks and
choosing optimal penalty factors (which are hyperparameters in his framework).
In this framework, we choose point estimates of hyperparameters to maximize the
“evidence” of the network. Parameters (i.e., weights) can be assigned into different
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groups, and each controlled by a separate hyperparameter. This allows weights be-
tween different layers to be penalized differently. MacKay [6, 8] and Neal [10] have
shown that it also provides a way of implementing “Automatic Relevance Detec-
tion” (ARD), in which connections emerging from different units in the input layer
are assigned to different regularization groups. The idea is that hyperparameters
controllingweights for irrelevant inputs should become large, driving those weights
to zero, while hyperparameters for relevant inputs stabilize at small to moderate
values. This can help generalization by causing the network to ignore irrelevant
inputs and also makes it possible to see at a glance which inputs are important.

In this framework the search for an optimal network has two levels. The inner
level is a standard search for weights which minimize error on the training data,
with fixed hyperparameters. The outer level is a search for hyperparameters
which maximize the evidence. For the Bayesian theory to apply, the inner level
search should be allowed to converge to a local minima at each step of the outer
level search. However, this can be expensive and slow. Problems with speed and
stability of the search seem especially severe with classification networks trained
with cross-entropy error.

This paper describes experiments with different control strategies for updating
the hyperparameters in the outer level search. These experiments show that the
simple “let it run to convergence and then update” strategy often does not work
well, and that other strategies can generally work better. In previous work, the
current author successfully employed one of these strategies in an application of
neural networks to epidemiological data analysis [11]. The experiments reported
here confirmthe necessity for update strategies and also demonstrate that although
the strategy used in this previous work is reasonably effective in some situations,
there are simpler and better strategies which work in a wider range of situations.
These experiments also furnish data on the relationship between the evidence and
the generalization error. This data confirms theoretical expectations about when
the evidence should and should not be a good indication of generalization error.

In the second section of this chapter, the update formulas for hyperparameters
are given. Network propagation and weight update formulas are not given, as
they are well known and available elsewhere, e.g., in Bishop [1]. Different control
strategies for the outer level hyperparameter search are described in the third
section. In the fourth section, the simulation experiments are described, and the
results are reported in the fifth section. The experimental relationships between
evidence and generalization error are reported in the sixth section.

4.2 Hyperparameter Updates

The update formulas for the hyperparameters (weight penalty factors) in the
outer level search are quite simple. Before describing them we need some termi-
nology. For derivations and background theory see Bishop [1], MacKay [5, 7], or
Thodberg [13].

• n is the total number of weight in the network.
• wi the value of the ith weight.
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• K is the number of hyperparameters.
• Ic is the set of indices of the weights in the cth hyperparameter group.
• αc is the value of the hyperparameter controlling the cth hyperparameter

group; it specifies the prior distribution on the weights in that group. α[i] de-
notes the value of the hyperparameter controlling the group to which weight
i belongs.
• nc is the number of weights in the cth hyperparameter group.
• C is the weight cost (penalty term) for the network: C = 1

2

∑n
i=1 α[i]w

2
i .

• m is the total number of training examples.
• yj and tj are the network outputs and target values, respectively, for the jth

training example.
• E is the error term of the network. For the classification networks described

here, the modified cross-entropy (Bishop [1], p.232) is used:

E = −
m∑

j=1

{tj log y
j

tj
+ (1− tj) log 1− yj

1− tj }.

Note that all graphs and tables of test set performance use the “deviance”,
which is twice the error.
• H is the Hessian of the network (the second partial derivatives of the sum of

the error and weight cost). hij denotes the ijth element of this matrix, and
h−1
ij denotes the ijth element of H−1:

hij =
∂2(E + C)

∂wi∂wj
.

HE is the matrix of second partial derivatives of just the error, and HC is
the matrix of second partial derivatives of just the weight cost.
• Tr(H−1) is the trace of the inverse of H: Tr(H−1) =

∑n
i=1 h

−1
ii .

• Trc(H−1) is the trace of the inverse Hessian for just those elements of the
cth regularization group: Trc(H−1) =

∑
i∈Ic

h−1
ii .

• γc is a derived parameter which can be seen as an estimate of the number of
well-determined parameters in the cth regularization group, i.e., the number
of parameters determined by the data rather than by the prior.

The overall training procedure is shown in Figure 4.1.
The updates for the hyperparameters αc depend on the estimate γc (the

number of well-determined parameters in group c) which is calculated as follows
(Eqn 27 in [7]; derivable from Eqn 10.140 in [1]):

γc = nc − αcTrc(H−1). (4.1)

If a Gaussian distribution is a reasonable approximation to the posterior weight
distribution, γc should be between 0 and nc. Furthermore, we expect each
parameter in group c to contribute between 0 and 1 to γc. Hence, we expect h−1

ii

to always be in the range [0, 1/α[i]].
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set the αc to initial values
set wi to initial random values
repeat

repeat
make an optimization step for weights to minimize E + C

until finished weight optimization
re-estimate the αc

until finished max number of passes through training data

Fig. 4.1. The training procedure

The updates for the αc is as follows (Eqn 22 in [7]; Eqn 10.74 in [1]):

α′
c =

γc∑
i∈Ic

w2
i

(4.2)

MacKay [7] remarks that this formula can be seen as matching the prior to the
data: 1/αc is an estimate of the variance for the weights in group c, taking into
account the effective number of well determined parameters (effective degrees of
freedom) in that group.

4.2.1 Difficulties with Using the Update Formulas

The difficulties with using these update formulas arise when the assumption that
the error plus cost surface is a quadratic bowl is false. This assumption can fail
in two ways: the error plus cost surface may not be quadratic, or it may not be
a bowl (i.e., the Hessian is not positive definite). In either of these situations, it
is possible for γc to be out of the range [0, nc]. To illustrate, consider a single
diagonal element of the Hessian in the situation where off-diagonal elements are
zero:

H =

⎡

⎢⎢⎣

. . . 0
hii

0
. . .

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

. . . 0
hEii + α[i]

0
. . .

⎤

⎥⎥⎦

Since the off-diagonal elements are zero, the inverse Hessian is simple to write
down:

H−1 =

⎡

⎢⎢⎣

. . . 0
1

hE
ii+α[i]

0
. . .

⎤

⎥⎥⎦

Suppose the i parameter is in the cth regularization group, by itself. Then the
number of well-determined parameters in this group is given by:

γ[i] = 1− α[i]h
−1
ii = 1−

α[i]

hEii + α[i]

=
hEii

hEii + α[i]

(4.3)
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If hEii is positive, γ[i] will be between 0 and 1. γ[i] will be large if hEii is large
relative to α[i], which means that wi is well determined by the data, i.e., small
moves of wi will make a large difference to E. γ[i] will be small if hEii is small
relative to α[i], which means that wi is poorly determined by the data.

The expectation that h−1
ii is in the range [0, 1/αc] (and hence contributes

between 0 and 1 well determined parameter to γ[i]) can fail even if the model
is at a local minima of E + C. Being at a local minimum of E + C does not
guarantee that hEii will be positive: it is possible for the hyperparameter to “pin”
the weight value to a convex portion of a non-quadratic E surface. Consider the
case where the Hessian is diagonal and positive definite, but hEii is negative. From
Eqn 4.3, we can see that h−1

ii can make a negative contribution1 to γc, which
makes little sense in terms of “numbers of well-determined parameters”. This
situation2 is illustrated in Figure 4.2: at the minimum of the E+C function the
E function is convex (d

2E
dw2 is negative). Here, negative degrees of freedom would

be calculated under the (incorrect) assumption that error plus cost is quadratic.
This is important for neural networks, because even if sum-squared error is used,
non-linearities in the sigmoids can cause the the error plus cost function to be
not a quadratic function of weights.
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Fig. 4.2. In minimizing E + C, a weight cost function C can pin a weight value to a
convex portion of the error surface E. The plot on the left shows the surfaces, the plot
on the right shows the derivatives in the region of the minimum.

If the model is not at a local minimum of E + C all bets are off. H may not
even be positive definite (i.e., the Hessian of a quadratic bowl), and if this is the
case it is almost certain that some h−1

ii will be out of the range [0, 1/α[i]]. Even

1 With general matrices it is possible that h−1
ii < −α[i], in which case the contribution

will be an unbounded positive number.
2 In Figure 4.2, E = w(w − 1)(w + 1)2 + 1, C = 4w2, d(E+C)

dw

∣∣∣
0.152645

≈ 0, and
d2E
dw2

∣∣∣
0.152645

≈ −0.8036.
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if H is positive definite, and HE is also positive definite, it can still be the case
that some h−1

ii are out-of-bounds, and thus make contributions of less than zero
or more than one “well-determined parameter” each.

These difficulties leave us with two problems:

1. When should the hyperparameters be updated?
2. What should be done when h−1

ii is not in [0, 1/α[i]] (i.e., is “out-of-bounds”).

Bishop [1] suggests updating hyperparameters after every few weight updates.
Thodberg [13] suggests updating the αc after every weight update, but only re-
calculating the γc occasionally (at five evenly-spaced intervals throughout the
whole process). While updating hyperparameters after every weight update is not
feasible when using conjugate gradient or other second-order training methods,
common practice seems to be more or less in line with Thodberg’s recommenda-
tions: train the network more or less to convergence before each hyperparameter
update. However, this strategy can result in an extremely slow overall search.
Furthermore, training to convergence does not eliminate the problem of out-
of-bounds h−1

ii values. In the remainder of this chapter, various strategies for
choosing when to update hyperparameters, and for dealing with out-of-bounds
h−1
ii values are described and compared in experiments.

4.3 Control Strategies

The strategies tested here fall into three groups: strategies for when to update
hyperparameters, strategies for dealing with out-of-bounds h−1

ii values, and spe-
cial strategies for dealing with exceptional cases. For each task, searches were
run a fixed number of minimization steps, with different combinations of control
strategies. Each step of the inner minimization loop was a step of a conjugate
gradient method, and could involve a number of passes through the training
data, though the average was just over two.

4.3.1 Choosing When to Update Hyperparameters

Four different strategies for choosing when to break out of the inner loop and
update hyperparameters were employed:

rare: Update at 10 evenly spaced intervals.
medium: Update at 30 evenly spaced intervals.
often: Update at 100 evenly spaced intervals.
patience: Update when the improvement in the last n steps was less than 1% of

the improvement since the start of the inner loop, or when the improvement
in the last n steps was less than 0.01% of the null error (the minimum error
that can be achieved with a constant output value). At least n steps of the
inner loop are taken.



4. Hyperparameter Search in MacKay’s Bayesian Framework 97

Convergence was difficult to test when using a number of different datasets and
networks. One standard way of detecting convergence is to test whether the ratio
|ḡ|/|w̄| is less than some threshold (|ḡ| is the Euclidean length of the vector of
weight derivatives, and |w̄| is the Euclidean length of the vector of weights.)
However, the appropriate threshold varied greatly among different tasks. In any
case, with all strategies, if a convergence test was met (|ḡ|/|w̄| < 10−6), the
inner loop terminated, and the hyperparameters were updated. This did not
occur often in the experiments described here.

The “patience” strategy is intended to be a surrogate for convergence: the
inner loop runs out of patience when the improvement achieved in the last n
steps is minuscule. With “patience”, the inner loop is guaranteed to terminate
if the error is bounded below. In practice, the inner loop runs out of patience
reasonable quickly: the update rate is somewhere between “rare” and “medium”
depending on the difficulty of the optimization problem.

4.3.2 Dealing with Out-of-Bounds Estimates of Numbers of
Well-Determined Parameters

In each of the experiments, one of the following strategies was used to deal with
out-of-bounds h−1

ii values. In describing these strategies, h−1′
ii or γ′c are used to

denote values which are used instead of the originally calculated ones.

none: This strategy allows γc to take on unreasonably large values, but not
negative ones (h−1

ii values are not checked):

γ′c =

{
0 if γc < 0
γc otherwise

group: This strategy forces the total number of well-determined parameters in
a regularization group to be reasonable:

γ′c =

⎧
⎨

⎩

0 if γc < 0
nc if γc > nc
γc otherwise

trim: This strategy forces the contribution of each h−1
ii to be reasonable. If h−1

ii

is out-of-bounds, it is assumed to represent zero well-determined parameters:

h−1′
ii =

{
1/α[i] if h−1

ii is not in [0, 1/α[i]]
h−1
ii otherwise

snip: This strategy forces the contribution of each h−1
ii to be reasonable. If h−1

ii

is out-of-bounds, it is assumed to represent one well-determined parameter:

h−1′
ii =

{
0 if h−1

ii is not in [0, 1/α[i]]
h−1
ii otherwise
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useold: This strategy forces the contribution of each h−1
ii to be reasonable. If

h−1
ii is out-of-bounds the last good estimate of the well-determinedness of

parameter i is used:

γ′c =

nc∑

i=1

{
1− α∗

ch
−1∗
ii if h−1

ii is not in [0, 1/α[i]]
1− αch

−1
ii otherwise

,

where α∗
c and h−1∗

ii are most recent values such that h−1
ii is in [0, 1/α[i]], or

if there are no such values, h−1∗
ii = 0.

cond: This strategy only updates αc, using γc or a snipped version of γc, under
the following conditions:

(a) all eigenvalues of H are positive, and
(b) for all i ∈ Ic, h−1

ii is in [0, 1/α[i]], or a snipped version of γc will result
in a change in αc in the same direction as the last change when all the
eigenvalues of H were positive and all the h−1

ii in group c were in bounds,
and there have not been more than five such changes since all of the h−1

ii

for group c have been in range.
cheap: This is Mackay’s [7] “cheap and cheerful” method, in which all pa-

rameters are assumed to be well determined, i.e.,

γ′c = nc.

The advantage of this method is that Hessian need not be calculated.
Mackay remarks that this method can be expected to perform poorly
when there are a large number of poorly determined parameters.

4.3.3 Further Generally Applicable Strategies

Several further strategies which could be combined with any of the ones already
mentioned were also employed:

nza: (no zero alphas) Do not accept an updated alpha value of zero (retain the
old value).

limit: Limit the the change in an alpha value to have a magnitude of no more
than 10, i.e., round α′

c to be in the interval [0.1αc, 10αc].
omit: If there are any h−1

ii not in [0, 1/α[i]], omit the corresponding rows and
columns from H to give the smaller matrix H′, and use the diagonal elements
of H′−1 for h−1

ii . The idea is to omit troublesome components of the model
so that they do not interfere with estimates of well-determinedness for well-
behaved parameters. Strategies from the previous section are used to assign
well-determinedness values for parameters with out-of-bound h−1

ii values in
H−1 or H′−1.

4.4 Experimental Setup

The experiments reported here used seven different test functions, based on the
five 2-dimensional functions used by Hwang et al. [4] and Roosen and Hastie [12]:
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linear function:
f0(x1, x2) = (2x1 + x2)/0.6585

simple interaction:
f1(x1, x2) = 10.391((x1 − 0.4)(x2 − 0.6) + 0.36)

radial function:
f2(x1, x2) = 24.234((x1 − 0.5)2 + (x2 − 0.5)2)(0.75− ((x1 − 0.5)2

+(x2 − 0.5)2))

harmonic function:
f3(x1, x2) = 42.659(0.1 + (x1 − 0.5)(0.05− 10(x1 − 0.5)2(x2 − 0.5)2

+(x1 − 0.5)4 + 5(x2 − 0.5)4))

additive function:
f4(x1, x2) = 1.3356(1.5(1− x1) + e(2x1−1) sin(3π(x1 − 0.6)2)

+e3(x2−0.5) sin(4π(x2 − 0.9)2))

complicated interaction:
f5(x1, x2) = 1.9(1.35 + ex1 sin(13(x1 − 0.6)2)e−x2 sin(7x2))

interaction plus linear:
f6(x1, x2) = 0.83045(f0(x1, x2) + f1(x1, x2))

Training data for the binary classification tasks was generated by choosing 250
xj1 and xj2 points from a uniform distribution over [0, 1]. Another 250 sj points
were chosen from the uniform [0, 1] distribution to determine whether the target
should be 0 or 1. The {0, 1} target tji for case j for function i depended on the
probability pji of a 1 calculated as the sigmoid of the function value (with the
mean of the function subtracted):

pji =
1

1 + e−(fi(x
j
1,x

j
2)−μi)

tji =

{
0 if pji < s

j

1 otherwise

where μi is the mean of each function over the unit square (μ0 = 2.28, μ1 =
3.6, μ2 = 2.3, μ3 = 4.4, μ4 = 2.15, μ5 = 2.7, μ6 = 4.92).

A further 5 random distractor points chosen from a uniform [0, 1] distribution
were concatenated with each (xj1, x

j
2) pair, to give a 7 dimensional function-

approximation task. These extra points were added so that in order for the neural
network to generalize well it would be necessary that the automatic relevance
determination set the weights from irrelevant inputs to zero (by driving the α’s
for those weights to high values).



100 T. Plate

For testing, the probabilities were used as targets, rather than stochastic bi-
nary values. This was done to reduce the noise in measuring the test error. The
test set inputs consisted of 400 (x1, x2) points from the uniform grid over [0, 1],
and 400 vectors of distractors chosen from a uniform distribution over [0, 1]. In
order that test and training errors be comparable the test error was calculated
as the expected error over the test points, assuming actual targets had been
chosen randomly with the given target probabilities. The expected error for one
test case was calculated as follows:

Ej
i = −

(
pji log y

j
i + (1− pji ) log(1 − y

j
i )
)

where yji was the prediction of the network for test case j.
The seven learning tasks are called I0 through I6 (the “I” is for “impure” in

Roosen and Hastie’s terminology [12].) It should be noted that these learning
tasks are much harder than the tasks used by Hwang et al. [4], as the binomial
outputs make the training data much noisier, and irrelevant inputs are present.

4.4.1 Targets for “Good” Performance

Various simple modeling strategies were applied to the data to give an indica-
tion of what level of test error performance was achievable, and to demonstrate
how important it was to ignore the distractor inputs. Three different models
were tried: linear and quadratic logistic models, and generalized additive models
(GAMs) [3], each with and without the distractor inputs. No attempt was made
to prevent overfitting, as the intention of these models was to show how much
overfitting can occur if distractor are not ignored.

null: No inputs are used. The predicted output is the average of the targets (1
parameter).

true: The actual function value. This is included to indicate the level of noise
in the data.

lin: A logistic (linear) model fit using only x1 and x2 as inputs (3 parameters).
lin.D: A logistic (linear) model fit using all inputs, including the distractors (8

parameters).
quad: A logistic model (with quadratic terms) fit using only x1 and x2 as inputs

(6 parameters).
quad.D: A logistic model (with quadratic terms) fit using all inputs, including

the distractors (36 parameters).
gam: A generalized additive model fit using only x1 and x2 as inputs, with three

degrees of freedom for each dimension (approx 7 parameters).
gam.D: A generalized additive model fit using all inputs, with three degrees of

freedom for each dimension (approx 22 parameters).
T: The target for “good” network performance.

The test set deviances for the various models and tasks are shown in Table 4.1,
ordered by error for each task. Some tasks are easy, while others are very difficult
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(finding good solutions for task I3 appears to extremely difficult, as Roosen and
Hastie [12] also discovered.) Targets for “good” neural network performance were
derived from the errors achieved by any model. The targets were chosen to be
achievable by neural network models and yet lower than the test set deviance
achieved by any of the above simple models using all the inputs (except for I3,
which neural networks had great difficulty with).

Table 4.1. Test set deviances (twice the error) for various models. Names ending in “.D”
are those of models which used both the distractor and relevant inputs. The number
in parentheses beside the target for good network performance (T) is the number of
networks which achieved this target at the end of training (out of 540).

I0 I1 I2 I3 I4 I5 I6
true 478
lin 487

T (165) 493
lin.D 498
quad 501
gam 502

gam.D 519
null 555

quad.D 556

true 488
quad 495

T (258) 520
lin 545

gam 548
null 556

lin.D 558
quad.D 595
gam.D 608

true 475
quad 494
gam 507

T (44) 530
gam.D 551

null 555
lin 561

quad.D 575
lin.D 577

true 495
gam 546

T (7) 555
lin 556

lin.D 557
null 558

quad 566
gam.D 574
quad.D 669

true 480
gam 498

T (114) 530
quad 533

gam.D 537
lin 554

null 556
lin.D 558

quad.D 597

true 491
gam 539

T (58) 545
quad 547

lin 547
lin.D 555
null 555

gam.D 572
quad.D 620

true 478
quad 485

T (233) 500
lin 517

lin.D 523
gam 529

quad.D 540
gam.D 550

null 557

4.4.2 Network Architecture and Training

Standard feed-forward networks were used, with details as follows. All networks
had 3 to 15 hidden units, which computed the tanh function (a symmetric sig-
moid). Inputs were in the range 0 to 1. The output unit computed the logistic
function of its total input. Weights were initialized to random values drawn from
a Gaussian distribution with variance 0.5.

Networks had nine hyperparameters (weight penalties): one for the weights
for each input, one for hidden unit biases, and one for hidden to output weights.
There was no penalty on the output bias. All hyperparameters were initialized
to 0.5. Hyperparameters were allowed to increase to maximum value of 10,000.

Networks were trained using a conjugate algorithm for the number of steps
specified in Table 4.2. These numbers of steps were chosen give ample time for
reasonably good methods to converge on some solution (the harder problems
required more steps). Each step of the conjugate gradient algorithm involved
one or more passes through the training set (the average was just over two).
Training was terminated if the total number of passes through the training set
exceeded 2.3 times the maximum allowed number of conjugate gradient steps.

The Hessian was calculated using the exact analytical method described in
Buntine and Weigend [2]. This requires h+ 1 passes through the training data,
where h is the number of hidden units. This is usually far faster than a finite-
differences method, which requires n+1 for the forward differences method and
2n+1 passes for the more accurate central differences method. The total number
of floating point operations involved in the exact calculation of the Hessian is
dominated by the update of the Hessian matrix (Eqn 15c in [2]). For a network
with one output unit it is approximately 3.5(h+ 1)Nn2 (there are 7 operations
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in each Hessian element update, but only half the elements need be computed as
the matrix is symmetric). Eigendecomposition and inversion of the Hessian takes
approximately 4/3n3 operations, but this is usually small compared to the cal-
culation of the Hessian matrix. As long as hyperparameters are not updated too
frequently, the time taken by Hessian evaluation and inversion is generally not
an excessive amount on top of the time taken by the standard weight-training
part of the procedure. For example, in the easier tasks (I0, I1, and I6) with the
most frequent Hessian calculations (the “often” updates: 100 during), approxi-
mately one-third of the computation time was spent in Hessian calculations. In
the more difficult tasks, relatively less time was spent in Hessian calculations
because the training times were longer.

Thirty six different combinations of the hyperparameter update strategies
discussed in Section 4.3 were tested. Training on each problem was repeated five
times with different initial weights. The same five sets of random initial weights
were used for each strategy. This means that there were a total of 160 attempts
to train each sized network for each problem.

Table 4.2. Number of conjugate gradient steps allowed for different sized networks on
the different tasks

Number of hidden units
Task 3 5 10 15

I0, I1, I6 1800 3000 6000 –
I2, I3, I4 3000 6000 12000 –

I5 – 6000 12000 30000

4.5 Effectiveness of Control Strategies

Effective of various combinations of control strategies was judged by whether
or not the test error at the end of training was acceptable (using the deviance
targets in Table 4.1). Good performance on any of the tasks was not possi-
ble without setting the hyperparameters in the appropriate ranges: low for the
weights coming from the x1 and x2 inputs, and high for the weights coming
from the distractor inputs. Figure 4.3 shows example plots of hyperparameter
values versus test deviance for networks trained on task I6 (with jitter added to
make dense clouds of points visible). Task I6 was a reasonably easy task: nearly
all networks ended with appropriate low values for the relevant-input hyperpa-
rameters. Finding appropriate high values for distractor hyperparameters was
more difficult, and those networks which did not did not perform well. All such
plots had the same tendencies as those in Figure 4.3: low test set deviance was
achieved only be networks with low values for relevant-input hyperparameters
and high values for distractor hyperparameters. Some of the other tasks were
more difficult, e.g., I5, and poor search strategies would set relevant-input hy-
perparameters to high values, resulting in poor performance from ignoring the
relevant inputs.
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Fig. 4.3. Final hyperparameter values versus test set deviances for networks with 5
hidden units trained on task I6

The number of successes for each of the 36 (combinations of) strategies on
each task is shown in Table 4.3. Each asterisk represents one success, i.e., a
network which ended up with test set performance lower than the target for
good performance (Table 4.1.) The maximum number of successes for any cell is
15, as 5 random starts were used for each of three different sized networks. The
row totals are out of 105, and the column totals are out of 540. The grand total
(987 successes) is out of 3780.

The clear overall best strategy is “snip+often”. The special strategies “nza”
and “limit” seem to help a little. These conclusions are strengthened by exam-
ining plots of the evolution of test deviance during training. Figures 4.4 and 4.5
show plots of test deviance during training for networks with 5 hidden units
on task I6, and for networks with 10 hidden units on task I4. There are five
lines in each plot because five random starts were used for each network. The
ideal network has a test deviance which descends rapidly and then stays below
the target performance (the dotted line) – this shows that the strategy quickly
found good values for hyperparameters (the tasks were set up so that it was not
possible to achieve low test deviance without having appropriate values for the
hyperparameters). Lines which flatten out at around 557 are for networks whose
hyperparameters have all been set to high values, so that the network ignores all
inputs and thus has the same performance as the null model (see Table 4.1). The
search was terminated early for many of these networks, because no hyperpa-
rameters or weights were changing. Note that few of the networks with 10 hidden
units reached the target for good performance on task I4 though networks with
5 hidden units did much better. This indicates that the redundancy in these
networks could not be effectively controlled.
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Table 4.3. Number of successes for each strategy on each task

total I0 I1 I2 I3 I4 I5 I6
cheap+often 4 ****
group+medium 10 *** *** * ***
group+patience 10 * *** * *****
none+patience 10 **** * *****
none+rare 11 *** ** ******
group+rare 12 *** *** ******
snip+rare 14 ** ** **** ******
trim+often 16 ***** **** **** ***
trim+patience 17 *** ****** * * * *****
none+medium 18 **** ****** * * ** ****
omit+snip+patience 18 ******* ****** *****
omit+snip+patience+limit 18 ******* ****** *****
trim+medium 20 ***** ****** *** *** ***
trim+rare 20 ** ****** *** **** *****
useold+patience 20 **** ****** * * ** * *****
omit+useold+patience 21 **** ******* *** ** *****
omit+useold+patience+limit 22 **** ****** **** *** *****
cheap+medium 22 ***** ***** *** * ********
cheap+patience 23 ***** ***** * ** **********
none+often 26 ******** ********* * *** ** ***
snip+medium 26 ****** ********* ***** ** ****
snip+patience 26 ****** ***** * ***** **** *****
omit+trim+patience 27 ********** ****** ** ** ** *****
snip+patience+nza+limit 27 ***** ******* * ***** **** *****
omit+useold+often 28 ********* ******** *** ** ******
omit+useold+often+limit 29 ********* ******** ** *** *******
snip+patience+nza 29 ******* ******* * ***** **** *****
group+often 31 ******** *********** * * ** ********
cond+often+limit+nza 32 ************* ********** *********
omit+snip+often+limit 32 ************ ********* ***********
useold+often 32 *********** ******** **** ** *******
cheap+rare 34 ********* ********* ***** ** *********
omit+snip+often 36 ** ************* ******** *************
snip+often 50 ******** *************** ** ** **** ***** **************
snip+often+nza 54 ********** *************** ** ** ***** ****** **************
snip+often+nza+limit 54 ********** ************** * ******* ******** **************

987 165 258 44 7 114 58 233

Update strategies other than “snip” tend to be very unstable. Frequent updates
seem essential for achieving good final performance within a reasonable amount
of time. The more complex strategies for getting or retaining good estimates of
γ’s, i.e., omit and useold, seemed to be of little benefit.

Finding good hyperparameter values is difficult. If updates are too frequent,
α’s can rise uncontrollably or become unstable. If updates are too infrequent,
the search is too slow. Uncontrollable rises in α’s can occur when the network
has not started using the weights it needs, and those weights are small. In these
circumstances α is overestimated, which forces weights to become smaller in a
runaway-feedback process. Instability results because of the feedback between
γ and α: a change in γ causes a same direction change in α, and a change in
alpha causes an opposite direction change in γ. Thus, if γ is overestimated, this
leads to an overestimation in α, which lead to a lower reestimate of γ, which in
turn can lead to a lower reestimate of α. While this process sometimes results in
stable self-correcting behavior, other times it results in uncontrolled oscillations
(which is what is happening with the “none+often” strategy: second row, third
column in Figures 4.4 and 4.5). In general, while it is slow to raise an α from a
value that is too low, it is more difficult to lower an α from a value which is too
high (because the weights are forced to zero immediately). The reasons for the
differing behavior of the various strategies appear to be as follows:

none, group: Frequently give out-of-bounds or very poor estimates for γ, and
cause instability in the search.
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cond: Results in fairly stable behavior, but often does not find the optimal
values for all α’s because it stops updating them.

cheap: Overestimates γ and kills weights too quickly.
trim: Sometimes underestimates γ because it assumes zero degrees of freedom

when the γ estimates from the Hessian are out-of-bounds, and thus reduces
α values which should be large, resulting in instability.

snip: Sometimes overestimates γ because it assumes one degree of freedom for
a parameter whose γ estimate from the Hessian is out-of-bounds. However,
this keeps α values high without raising them too much: overestimation of
γ appears to be much less harmful than underestimation.

Update frequency was also important. With good α calculation strategies, up-
dating frequently (i.e., “often”) gave fastest convergence to good α values and
best overall performance. Waiting for some degree of convergence in the conju-
gate gradient search before updating α values (i.e., “patience”) was of no benefit
at all.

4.6 Relationship of Test Set Error to Evidence

If we have trained a number of networks, we often want to know which will
have the lowest generalization error. The “evidence” value calculated for each
network can be used choose networks which will perform well. The evidence is
the log likelihood of the data given the values of the hyperparameters, integrated
over weight values based on the assumption of a Gaussian distribution for the
posterior of the weights. The evidence for a network evaluated with cross-entropy
error is as follows (Eqn 10.67 in [1]; Eqn 30 in [7]):

ln p(D|α) = −1

2

n∑

i=1

α[i]w
2
i − E −

1

2
|H |+

∑

c

nc
2

lnαc −
N

2
ln(2Π) (4.4)

Whether or not the evidence is a good guide to which networks will perform
well is questionable, as various assumptions on which evidence calculations are
based are often violated in particular networks. The simulations performed offer
a good opportunity to examine how accurately high evidence indicates good test
set performance.

The evidence is particularly sensitive to low eigenvalues in the Hessian of the
network. The validity of the evidence value is doubtful in cases where the Hessian
has low or negative eigenvalues. Bishop [1] recommends omitting eigenvalues
which are lower than some threshold from the calculation of the evidence.

Figure 4.6 shows plots of test deviances that would be achieved by selecting
twenty networks based on their evidence values. Two different methods of calcu-
lating the evidence were used: (a) ignore negative eigenvalues of the Hessian, and
(b) if an eigenvalue is lower than the smallest non-zero αc, replace it with that αc

(“clipped evidence”). Because the evidence is sensitive to low eigenvalues, four dif-
ferent filters were applied to networks: (a) use all networks; (b) throw out networks
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Fig. 4.4. Test set deviance during training for networks with 5 hidden units on task
I6. The horizontal axis is the number of passes through the training set. The dotted
line is the target for good performance. The minimum value quoted is the minimum
deviance at any point in training.
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Fig. 4.5. Test set deviance during training for networks with 10 hidden units on task
I4. The horizontal axis is the number of passes through the training set. The dotted
line is the target for good performance. The minimum value quoted is the minimum
deviance at any point in training.
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Fig. 4.6. Distribution of test errors for the 20 “best” nets selected according to evidence
and network diagnostics

with negative eigenvalues; (c) throw out networks with eigenvalues lower than the
the smallest αc; and (d) throw out networks with out-of-bounds h−1

ii values.
The first row in each plot of Figure 4.6 shows the distribution of the actual best

20 test deviances (this would normally be impossible to calculate, but we can cal-
culate it here because we have artificial tasks.) If evidence were a perfect predictor
of test set performance, the 20 networks with highest evidence would be the same
20 networks, but it is not, as the rest of the figure shows. The remaining eight rows
show the distribution of test errors for netswith the highest evidence,with evidence
calculated in both of the ways described above. Lower pairs of rows rules more nets
out of consideration, based on diagnostics of the Hessian and inverse Hessian.

The two different ways of calculating the evidence did not make any discernible
difference. The box-and-whisker plots show the median as a solid circle. The
box shows the upper and lower quartiles (i.e., 50% of points are in the box).
The whiskers show the furthest points within 1.5 times the interquartile range
(the length of the box) of the quartiles. Points outside the whiskers are plotted
individually with hollow circles.

Plots of the evidence versus test deviance show a strong correlation, which
seems strongest and most reliable for networks which have no low eigenvalues.
However, the plots in Figure 4.6 show that using the evidence to select networks
is not always reliable. Networks with high evidence but with poorly conditioned
Hessians have a wide range of test error, but some networks with the lowest test
error have poorly conditioned Hessians. This means that allowing networks with
poorly conditioned Hessians resulted in choosing too many networks with high
test error, whereas rejecting networks with poorly conditioned Hessians rejected
too many of the networks with low test error. This seemed to be more of a
problem for the more difficult tasks. On the easier tasks (e.g., I6), networks with
high evidence and no low eigenvalues had very low test deviance.
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4.7 Conclusion

For classification networks, the search for optimal hyperparameters can be slow
and unstable. However, the search can be improved by using the strategies sum-
marized below. Similar experiments with regression networks (with linear out-
put units and sum-square errors, on tasks with continuous targets and Gaussian
noise) revealed that the hyperparameter search in such tasks is generally faster
and more stable than in classification tasks. Only when the tasks had very high
noise in the training cases (with variance of 4 or greater) did the hyperparameter
search become at all difficult. Under these conditions, none of the strategies tried
was clearly superior.

One of the main causes of instability in the hyperparameter search is low
eigenvalues in the Hessian. In turn, one of the main causes of this is redun-
dancies in the network. It is easily verified that the Hessian for a network with
redundancies can have zero or close to zero eigenvalues – the only thing that
prevents the eigenvalues being zero is non-zero hyperparameters. In neural net-
works both additive (parallel) and multiplicative (serial) redundancies can occur.
Larger networks are more likely to have redundancies. Hence we could expect
the search to be more stable for smaller networks, and this is what was observed
(though of course some small networks did not perform well as they did not have
sufficient capacity to model the task).

The initial hyperparameter and weight values are important. If the initial
hyperparameters are too high, they can force all the weights to zero before the
network has a chance to learn anything. If the initial hyperparameters are too
low the network can get trapped in an overfitting mode. Thodberg [13] makes
the reasonable suggestion that the initial hyperparameters should be set so that
the weight cost is 10% of the error at the beginning of training.

The results described in this chapter lead to the following recommendations
for hyperparameter updates:

– update hyperparameters frequently
– if any h−1

ii values are out-of-bounds, replace them with zero in the calcula-
tion of γ[i] (so that each out-of-bounds h−1

ii contributes one well-determined
parameter)

– ignore updates for αc which suggest a zero value
– limit changes in αc to have a maximum magnitude of 10.
– ignore negative eigenvalues in calculations of the evidence
– regard evidence values as unreliable for networks with eigenvalues lower than

the lowest αc

Those interested in Bayesian approaches to neural network modeling should
also consider Neal’s [9] Markov-chain Monte Carlo methods. Although these
Monte Carlo methods sometimes require longer computation times than methods
based on Mackay’s approximate Bayesian framework, they have some theoretical
advantages and also require less tweaking.
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Abstract. In this paper we address the important problem of optimiz-
ing regularization parameters in neural network modeling. The suggested
optimization scheme is an extended version of the recently presented al-
gorithm [25]. The idea is to minimize an empirical estimate – like the
cross-validation estimate – of the generalization error with respect to
regularization parameters. This is done by employing a simple itera-
tive gradient descent scheme using virtually no additional programming
overhead compared to standard training. Experiments with feed-forward
neural network models for time series prediction and classification tasks
showed the viability and robustness of the algorithm. Moreover, we pro-
vided some simple theoretical examples in order to illustrate the potential
and limitations of the proposed regularization framework.

5.1 Introduction

Neural networks are flexible tools for time series processing and pattern recogni-
tion. By increasing the number of hidden neurons in a 2-layer architecture any
relevant target function can be approximated arbitrarily close [19]. The asso-
ciated risk of overfitting on noisy data is of major concern in neural network
design, which find expression in the ubiquitous bias-variance dilemma, see e.g.,
[9].

The need for regularization is two-fold: First, it remedies numerical prob-
lems in the training process by smoothing the cost function and by introducing
curvature in low (possibly zero) curvature regions of cost function. Secondly, reg-
ularization is a tool for reducing variance by introducing extra bias. The overall
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objective of architecture optimization is to minimize the generalization error.
The architecture can be optimized directly by stepwise selection procedures (in-
cluding pruning techniques) or indirectly using regularization. In general, one
would prefer a hybrid scheme; however, a very flexible regularization may sub-
stitute the need for selection procedures. The numerical experiments we consider
mainly hybrid pruning/adaptive regularization schemes.

The trick presented in this communication addresses the problem of adapting
regularization parameters.

The trick consists in formulating a simple iterative gradient descent
scheme for adapting the regularization parameters aiming at minimiz-
ing the generalization error.

We suggest to use an empirical estimate1 of the generalization error, viz. the
K-fold cross-validation [8], [39]. In [25] and [3] the proposed scheme was studied
using the hold-out validation estimator.

In addition to empirical estimators for the generalization error a number of
algebraic estimators like FPE [1], FPER [23], GEN [21], GPE [31] and NIC [33]
have been developed in recent years. These estimates, however, depend on a
number of statistical assumptions which can be quite hard to justify. In partic-
ular, they are o(1/Nt) estimators where Nt is the number of training examples.
However, for many practical modeling set-ups it is hard to meet the large training
set assumption.

In [14] properties of adaptive regularization is studied in the simple case of
estimating the mean of a random variable using an algebraic estimate of the av-
erage2 generalization error and [15] proposed an adaptive regularization scheme
for neural networks based on an algebraic estimate. However, experiments in-
dicate that this scheme has a drawback regarding robustness. In addition, the
requirement of a large training set may not be met.

The Bayesian approach to adapt regularization parameters is to minimize the
so-called evidence [5, Ch. 10], [30]. The evidence, however, does not in a simple
way relate to the generalization error which is our primary object of interest.

Furthermore [2] and [38] consider the use of a validation set to tune the amount
of regularization, in particular when using the early-stop technique.

Section 5.2 considers training and empirical generalization assessment. In Sec-
tion 5.3 the framework for optimization of regularization parameters is presented.
The experimental section 5.4 deals with examples of feed-forward neural net-
works models for classification and time series prediction. Further, in order to
study the theoretical potential/limitations of the proposed framework, we in-
clude some simulations on a simple toy problem.

5.2 Training and Generalization

Suppose that the neural network is described by the vector function f(x;w)
where x is the input vector and w is the vector of network weights and thresholds
1 For further discussion on empirical generalization assessment, see e.g., [24].
2 Average w.r.t. to different training sets.
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with dimensionality m. The objective is to use the network model for approxi-
mating the true conditional input-output distribution p(y|x), or some moments
hereof. For regression and signal processing problems we normally model the
conditional expectation E{y|x}.

Assume that we have available a data set D = {x(k);y(k)}Nk=1 of N input-
output examples. In order to both train and empirically estimate the general-
ization performance we follow the idea of K-fold cross-validation [8], [39] and
split the data set into K randomly chosen disjoint sets of approximately equal
size, i.e., D = ∪Kj=1Vj and ∀ i �= j : Vi ∩ Vj = ∅. Training and validation is
replicated K times, and in the j’th run training is done on the set Tj = D \ Vj
and validation is performed on Vj .

The cost function, CTj , for network training on Tj , is supposed to be the sum
of a loss function (or training error), STj (w), and a regularization term R(w,κ)
parameterized by a set of regularization parameters κ, i.e.,

CTj (w) = STj (w) +R(w,κ) =
1

Ntj

Ntj∑

k=1

� (y(k), ŷ(k);w) +R(w,κ) (5.1)

where �(·) measures the distance between the output y(k) and the network
prediction ŷ(k) = f (x(k);w). In section 5.4 we will consider log-likelihood and
the square error loss function � = |y − ŷ|2. Ntj ≡ |Tj | defines the number of
training examples in Tj and k is used to index the k’th example [x(k),y(k)].
Training provides the estimated weight vector ŵj = arg minw CTj (w).

The j’th validation set Vj consist of Nvj = N −Ntj examples and the valida-
tion error3 of the trained network reads

SVj (ŵj) =
1

Nvj

Nvj∑

k=1

� (y(k), ŷ(k); ŵj) (5.2)

where the sum runs over the Nvj validation examples. SVj (ŵj) is thus an esti-
mate of the generalization error, defined as the expected loss,

G(ŵj) = Ex,y{�(y, ŷ; ŵj)} =
∫
�(y, ŷ; ŵj) · p(x,y) dxdy (5.3)

where p(x,y) is the unknown joint input-output probability density. Generally,
SVj (ŵj) = G(ŵj) +O(1/

√
Nvj) where O(·) is the Landau order function4. Thus

we need large Nvj to achieve an accurate estimate of the generalization error. On
the other hand, this leaves only few data for training thus the true generalization
G(ŵj) increases. Consequently there exist a trade-off among the two conflicting
aims which calls for finding an optimal split ratio. The optimal split ratio5 is an
interesting open and difficult problem since it depends on the total algorithm in
which the validation error enters. Moreover, it depends on the learning curve6 [17].
3 That is, the loss function on the validation set.
4 If h(x) = O(g(x)) then |h(x)|/|g(x)| <∞ for x→ 0.
5 For more elaborations on the split of data, see e.g., [2], [20], [24] and [26].
6 Defined as the average generalization error as a function of the number of training

examples.
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The final K-fold cross-validation estimate is given by the average validation
error estimates,

Γ̂ =
1

K

K∑

j=1

SVj(ŵj). (5.4)

Γ̂ is an estimate of the average generalization error over all possible training sets
of size Ntj,

Γ = ET {G(ŵj)}. (5.5)

Γ̂ is an unbiased estimate of Γ if the data of D are independently distributed7,
see e.g., [16].

The idea is now to optimize the amount of regularization by minimizing Γ̂
w.r.t. the regularization parameters κ. An algorithm for this purpose is described
in Section 5.3. Furthermore, we might consider optimizing regularization using
the hold-out validation estimate corresponding to K = 1. In this case one has to
choose a split ratio. Without further ado, we will recommend a 50/50 splitting.

Suppose that we found the optimal κ using the cross-validation estimate.
Replications of training result in K different weight estimates ŵj which might
be viewed as an ensemble of networks. In [16] we showed under certain mild
conditions that when considering a o(1/N) approximation, the average general-
ization error of the ensemble network fens(x) =

∑K
j=1 βj · f(x, ŵj) equals that

of the network trained on all examples in D where βj weights the contribution
from the j’th network and

∑
j βj = 1. If K is a divisor in N then ∀j, βj = 1/K,

otherwise βj = (N −Nvj)/N(K − 1). Consequently, one might use the ensemble
network to compensate for the increase in generalization error due to only train-
ing on Ntj = N −Nvj data. Alternatively, one might retrain on the full data set
D using the optimal κ. We use the latter approach in the experimental section.

A minimal necessary requirement for a procedure which estimates the network
parameters on the training set and optimizes the amount of regularization from a
cross-validation set is: the generalization error of the regularized network should
be smaller than that of the unregularized network trained on the full data set
D. However, this is not always the case, and is the quintessence of various “no
free lunch” theorems [12], [44], [46]:

– If the regularizer is parameterized using many parameters, κ, there is a
potential risk of over-fitting on the cross-validation data. A natural way
to avoid this situation is to limit the number of regularization parameters.
Another recipe is to impose constraints on κ (hyper regularization).

– The specific choice of the regularizers functional form impose prior con-
straints on the functions to be implemented by the network8. If the prior
information is mismatched to the actual problem it might be better not to
use regularization.

– The de-biasing procedure described above which compensate for training
only on Ntj < N examples might fail to yield better performance since the

7 That is, [x(k1), y(k1)] is independent of [x(k2), y(k2)] for all k1 �= k2.
8 The functional constraints are through the penalty imposed on the weights.
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weights now are optimized using all data, including those which where left
out exclusively for optimizing regularization parameters.

– The split among training/validation data, and consequently the number of
folds, K, may not be chosen appropriately.

These problems are further addressed in Section 5.4.1.

5.3 Adapting Regularization Parameters

The choice of regularizer may be motivated by

– the fact that the minimization of the cost function is normally an ill- posed
task. Regularization smoothens the cost function and thereby facilitates the
training. The weight decay regularizer9, originally suggested by Hinton in
the neural networks literature, is a simple way to accomplish this task, see
e.g., [35].

– a priori knowledge of the weights, e.g., in terms of a prior distribution (when
using a Bayesian approach). In this case the regularization term normally
plays the role of a log-prior distribution. Weight decay regularization may
be viewed as a Gaussian prior, see e.g., [2]. Other types of priors, e.g., the
Laplacian [13], [43] and soft weight sharing [34] has been considered. More-
over, priors have been developed for the purpose of restricting the number
of weights (pruning), e.g., the so-called weight elimination [42].

– a desired characteristics of the functional mapping performed by the network.
Typically, a smooth mapping is preferred. Regularizers which penalizes cur-
vature of the mapping has been suggested in [4], [7], [32], [45], [10].

In the experimental section we consider weight decay regularization and some
generalizations hereof. Without further ado, weight decay regularization has
proven to be useful in many neural network applications.

The standard approach for estimation of regularization parameters is more
and less systematic search and evaluation of the cross-validation error. However,
this is not viable for multiple regularization parameters. On the other hand, as
will be demonstrated, it is possible to derive an optimization algorithm based
on gradient descent.

Consider a regularization term R(w,κ) which depends on q regularization pa-
rameters contained in the vector κ. Since the estimated weights
ŵj = arg minw CTj (w) are controlled by the regularization term, we may in
fact consider the cross-validation error (5.4) as an implicit function of the regu-
larization parameters, i.e.,

Γ̂ (κ) =
1

K

K∑

j=1

SVj (ŵj(κ)) (5.6)

9 Also known as ridge regression.
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where ŵj(κ) is the κ-dependent vector of weights estimated from training set
Tj . The optimal regularization can be found by using gradient descent10,

κ(n+1) = κ(n) − η
∂Γ̂

∂κ
(ŵ(κ(n))) (5.7)

where η > 0 is a step-size (learning rate) and κ(n) is the estimate of the regu-
larization parameters in iteration n.

Suppose the regularization term is linear in the regularization parameters,

R(w,κ) = κ�r(w) =

q∑

i=1

κiri(w) (5.8)

where κi are the regularization parameters and ri(w) the associated regular-
ization functions. Many suggested regularizers are linear in the regularization
parameters, this includes the popular weight decay regularization as well as reg-
ularizers imposing smooth functions such as the Tikhonov regularizer [4], [2] and
the smoothing regularizer for neural networks [32], [45]. However, there exist ex-
ceptions such as weight-elimination [42] and soft weight sharing [34]. In this case
the presented method needs few modifications.

Using the results of the Appendix, the gradient of the cross-validation error
equals

∂Γ̂

∂κ
(κ) =

1

K

K∑

j=1

∂SVj

∂κ
(ŵj), (5.9)

∂SVj

∂κ
(ŵj) = −

∂r

∂w� (ŵj) · J−1
j (ŵj) ·

∂SVj

∂w
(ŵj). (5.10)

where J j = ∂
2CTj/∂w∂w

� is the Hessian of the cost function. As an example,
consider the case of weight decay regularization with separate weight decays for
two group of weights, e.g., the input-to-hidden and hidden-to output weights,
i.e.,

R(w,κ) = κI · |wI |2 + κH · |wH |2 (5.11)

where κ = [κI , κH ], w = [wI ,wH ] with wI , wH denoting the input-to-hidden
and hidden-to output weights, respectively. The gradient of the validation error
then yields,

∂SVj

∂κI
(ŵj) = −2(ŵI

j )
� · gI

j ,
∂SVj

∂κH
(ŵj) = −2(ŵH

j )� · gH
j (5.12)

where gj is the vector

gj = [gI
j , g

H
j ] = J−1

j (ŵj) ·
∂SVj

∂w
(ŵj). (5.13)

In summary, the algorithm for adapting regularization parameters consists of
the following 8 steps:
10 We have recently extended this algorithm incorporating second order information

via the Conjugate Gradient technique [11].
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1. Choose the split ratio; hence, the number of folds, K.
2. Initialize κ and the weights of the network11.
3. Train the K networks with fixed κ on Tj to achieve ŵj(κ), j = 1, 2, · · · ,K.

Calculate the validation errors SVj and the cross-validation estimate Γ̂ .
4. Calculate the gradients ∂SVj/∂κ and ∂Γ̂/∂κ cf. (5.9) and (5.10). Initialize

the step-size η.
5. Update κ using (5.7).
6. Retrain the K networks from the previous weight estimates and recalculate

the cross-validation error Γ̂ .
7. If no decrease in cross-validation error then perform a bisection of η and go

to step 5; otherwise, continue.
8. Repeat steps 4–7 until the relative change in cross-validation error is below

a small percentage or, e.g., the 2-norm of the gradient ∂Γ̂ /∂κ is below a
small number.

Compared to standard neural network training the above algorithm does gen-
erally not lead to severe computational overhead. First of all, the standard ap-
proach of tuning regularization parameters by, more or less systematic search,
requires a lot of training sessions. The additional terms to be computed in the
adaptive algorithm are: 1) the derivative of the regularization functions w.r.t. the
weights, ∂r/∂w, 2) the gradient of the validation errors, ∂SVj/∂w, and 3) the
inverse Hessians, J−1

j . The first term is often a simple function of the weights12
and computationally inexpensive. In the case of feed-forward neural networks,
the second term is computed by one pass of the validation examples through a
standard back-propagation algorithm. The third term is computationally more
expensive. However, if the network is trained using a second order scheme, which
requires computation of the inverse Hessian13, there is no computational over-
head.

The adaptive algorithm requires of the order ofK ·itrκ ·itrη weight retrainings.
Here itrκ is the number of iterations in the gradient descent scheme for κ and
itrη is the average number of bisections of η in step 7 of the algorithm. In the
experiments carried out the number of retrainings is approx. 100–300 times K.
Recall, since we keep on retraining from the current weight estimate, the number
of training epochs is generally small.

The number of weight retrainings is somewhat higher than that involved when
optimizing the network by using a pruning technique like validation set based Op-
timal Brain Damage (vOBD) [25], [27]. vOBD based on K-fold cross-validation
requires of the order of K ·m retrainings, where m = dim(w). The adaptive reg-
ularization algorithm is easily integrated with the pruning algorithm as demon-
strated in the experimental section.

11 In Sec. 5.4.1 a practical initialization procedure for κ is described.
12 For weight decay, it is 2w.
13 Often the computations are reduced by using a Hessians approximation, e.g.,

the Gauss-Newton approximation. Many studies have reported significant training
speed-up by using second order methods, see e.g., [22], [35].
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5.4 Numerical Experiments

5.4.1 Potentials and Limitations in the Approach

The purpose of the section is to demonstrate the potential and limitations of
the suggested adaptive regularization framework. We consider the simple linear
data generating system, viz. estimating the mean of a Gaussian variable,

y(k) = w◦ + ε(k) (5.14)

where w◦ is the true mean and the noise ε(k) ∼ N (0, σ2ε).
We employ 2-fold cross-validation, i.e., D = T1 ∪T2, where Tj , j = 1, 2 denote

the two training sets in the validation procedure containing approximately half
the examples14. The linear model y(k) = w + e(k) is trained using the mean
square cost function augmented by simple weight decay, as shown by

CTj (w) =
1

Ntj

Ntj∑

k=1

(y(k)− w)2 + κ · w2 (5.15)

where k runs over examples of the data set in question. The estimated weights
are ŵj = ȳj/(1 + κ) where ȳj = N−1

tj

∑Ntj

k=1 y(k) are the estimated mean. For
this simple case, the minimization of the cross-validation error given by,

Γ̂ (κ) =
1

2

2∑

j=1

SVj (ŵj(κ)), SVj (ŵj(κ)) =
1

Nvj

Nvj∑

k=1

(y(k)− ŵj)
2, (5.16)

can be done exactly. The optimal κ is given by

κopt =
ȳ21 + ȳ

2
2

2ȳ1ȳ2
− 1. (5.17)

Assuming N to be even, the ensemble average of the estimated weights15,
ŵj(κopt), leads to the final estimate

ŵreg =
1

2
(ŵ1(κopt) + ŵ2(κopt)) =

ȳ1ȳ2(ȳ1 + ȳ2)

ȳ21 + ȳ
2
2

. (5.18)

Notice two properties: First, the estimate is self-consistent as limN→∞ ŵreg =

limN→∞ ŵD = w◦ where ŵD = N−1
∑N

k=1 y(k) = (ȳ1 + ȳ2)/2 is the
unregularized estimate trained on all data. Secondly, it is easy to verify that
ȳj ∼ N (w◦, 2σ2ε/N). That is, if the normalized true weight θ ≡ w◦/A where
A =

√
2/N · σε is large then ȳj ≈ w◦ which means, ŵreg ≈ ŵD .

14 That is, Nt1 = �N/2	 and Nt2 = N −Nt1. Note that these training sets are also the
two validation sets, V1 = T2, and vice versa.

15 The ensemble average corresponds to retraining on all data using κopt. The weighting
of the two estimates is only valid for N even (see Sec. 5.2 for the general case).
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The objective is now to test whether using ŵreg results in lower generalization
error than employing the unregularized estimate ŵD. The generalization error
associated with using the weight w is given by

G(w) = σ2ε + (w − w◦)2. (5.19)

Further define the generalization error improvement,

Z = G(ŵD)−G(ŵreg) = (ŵD − w◦)2 − (ŵreg − w◦)2. (5.20)

Note that Z merely is a function of the random variables ȳ1, ȳ2 and the true
weight w◦, i.e., it suffices to get samples of ȳ1, ȳ2 when evaluating properties of
Z. Define the normalized variables

ỹj =
ȳj
A
∼ N

(
w◦

σε
·
√
N

2
, 1

)
= N (θ, 1). (5.21)

It is easily shown that the normalized generalization error improvement Z/A2

is a function of ỹ1, ỹ2 and θ; hence, the distribution of Z/A2 is parameterized
solely by θ.

As a quality measure we consider the probability of improvement in generaliza-
tion error given by Prob{Z > 0}. Note that Prob{Z > 0} = 1/2 corresponds to
equal preference of the two estimates. The probability of improvement depends
only on the normalized weight θ since Prob{Z > 0} = Prob{Z/A2 > 0}.

Moreover, we consider the relative generalization error improvement , defined
as

RGI = 100% · Z

G(ŵD)
. (5.22)

In particular, we focus on the probability that the relative improvement in gen-
eralization is bigger than16 x, i.e., Prob(RGI > x). Optimally Prob(RGI > x)
should be close to 1 for x ≤ 0% and slowly decaying towards zero for 0% < x ≤
100%. Using the notation w̃reg = ŵreg/A, w̃D = ŵD/A, RGI can be written as

RGI = 100% · (w̃D − θ)2 − (w̃reg − θ)2
N/2 + (w̃D − θ)2

. (5.23)

Thus, the distribution of RGI is parameterized by θ and N .
The quality measures are computed by generating Q independent realizations

of ỹ1, ỹ2, i.e., {ỹ(i)1 , ỹ
(i)
2 }

Q
i=1. E.g., the probability of improvement is estimated

by Pimp = Q−1
∑Q

i=1 μ(Z
(i)) where μ(x) = 1 for x > 0, and zero otherwise.

The numerical results of comparing ŵreg to the unregularized estimate ŵD is
summarized in Fig. 5.1.

16 Note that, Prob(RGI > 0) = Prob(Z > 0).
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Fig. 5.1. Result of comparing the optimally regularized estimate ŵreg of the mean of a
Gaussian variable to the unregularized estimate ŵD. The results are based on Q = 105

independent realizations. The probability of improvement Pimp, shown in panel (a), is
one for when the normalized true weight θ =

√
N/2 · w◦/σε = 0, and above 0.5 for

θ <∼ 0.8. That is, when the prior information of the weight decay regularizer is correct
(true weight close to zero), when N is small or when σε is large. As θ becomes large
Pimp tends to 0.5 due to the fact that w̃ ≈ ŵD. Panel (b)–(d) display Prob(RGI > x)
for θ ∈ {0, 2, 10}. The ideal probability curve is 1 for x < 0 and a slow decay towards
zero for x > 0. The largest improvement is attained for small θ and small N . Panel
(c) and (d) indicate that small N gives the largest probability for x > 0; however,
also the smallest probability for negative x. That is, a higher chance of getting a good
improvement also increases the change of deterioration. Notice, even though Pimp < 0.5
for θ = 2, 10 there is still a reasonable probability of getting a significant improvement.

5.4.2 Classification

We test the performance of the adaptive regularization algorithm on a vowel
classification problem. The data are based on the Peterson and Barney database
[36]. The classes are vowel sounds characterized by the first four formant frequen-
cies. 76 persons (33 male, 28 female and 15 children) have pronounced c = 10
different vowels (IY IH EH AE AH AA AO UH UW ER) two times. This results
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in a data base of totally 1520 examples. The database is the verified database
described in [41] where all data17 are used, including examples where utterance
failed of unanimous identification in the listening test (26 listeners). All examples
were included to make the task more difficult.

The regularization was adapted using a hold-out validation error estimator,
thus the examples were split into a data set, D, consisting of N = 760 examples
(16 male, 14 female and 8 children) and an independent test set of the remaining
760 examples. The regularization was adapted by splitting the data set D equally
into a validation set of Nv = 380 examples and a training set of Nt = 380
examples (8 male, 7 female and 4 children in each set).

We used a feed-forward 2-layer neural network with hyperbolic tangent neu-
rons in the hidden layer and modified SoftMax normalized outputs, ŷi, see e.g.,
[2], [18], [3]. Thus, the outputs estimates the posterior class probabilities p(Ci|x),
where Ci denotes the i’th class, i = 1, 2, · · · , c. Bayes rule (see e.g., [2]) is used to
assign Ci to input x if i = argmaxj p(Cj |x). Suppose that the network weights
are given by w = [wI ,wI

bias,w
H ,wH

bias] where wI , wH are input-to-hidden and
hidden-to-output weights, respectively, and the bias weights are assembled in
wI

bias and wH
bias. Suppose that the targets yi(k) = 1 if x(k) ∈ Ci, and zero oth-

erwise. The network is optimized using a log-likelihood loss function augmented
by a weight decay regularizer using 4 regularization parameters,

C(w) =
1

Nt

Nt∑

k=1

c∑

i=1

yi(k) log(ŷi(k,w))

+κI · |wI |2 + κIbias · |wI
bias|2 + κH · |wH |2 + κHbias · |wH

bias|2. (5.24)

We further define unnormalized weight decays as α ≡ κ · Nt. This regularizer
is motivated by the fact that the bias, input and hidden layer weights play a
different role, e.g., the input, hidden and bias signals normally have different
scale (see also [2, Ch. 9.2]).

The simulation set-up is:

– Network: 4 inputs, 5 hidden neurons, 9 outputs18.
– Weights are initialized uniformly over [−0.5, 0.5], regularization parameters

are initialized at zero. One step in a gradient descent training algorithm (see
e.g., [29]) is performed and the weight decays are re-initialized at λmax/10

2,
where λmax is the max. eigenvalue of the Hessian matrix of the cost function.
This initialization scheme is motivated by the following observations:
• Weight decays should be so small that they do not reduce the approxi-

mation capabilities of the network significantly.
• They should be so large that the algorithm is prevented from being

trapped in a local optimum and numerical instabilities are eliminated.
17 The database can be retrieved from ftp://eivind.imm.dtu.dk/dist/data/vowel/

PetersonBarney.tar.Z
18 We only need 9 outputs since the posterior class probability of the 10th class is given

by 1−
∑9

j=1 p(Cj |x).
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– Training is now done using a Gauss-Newton algorithm (see e.g., [29]). The
Hessian is inverted using the Moore-Penrose pseudo inverse ensuring that
the eigenvalue spread19 is less than 108.

– The regularization step-size η is initialized at 1.
– When the adaptive regularization scheme has terminated 3% of the weights

are pruned using a validation set based version of the Optimal Brain Damage
(vOBD) recipe [25], [27].

– Alternation between pruning and adaptive regularization continues until the
validation error has reached a minimum.

– Finally, remaining weights are retrained on all data using the optimized
weight decay parameters.

Table 5.1. Probability of misclassification (pmc) and log-likelihood cost function
(without reg. term, see (5.24)) for the classification example. The neural network av-
erages and standard deviations are computed from 10 runs. In the case of small fixed
regularization, weight decays were set at initial values equal to λmax/10

6 where λmax

is the largest eigenvalue of the Hessian matrix of the cost function. Optimal regular-
ization refers to the case of optimizing 4 weight decay parameters. Pruning refers to
validation set based OBD. KNN refers to k-nearest-neighbor classification.

Probability of Misclassification (pmc)

NN NN KNN
small fixed reg. opt. reg.+prun. (k = 9)

Training Set 0.075 ±0.026 0.107± 0.008 0.150
Validation Set 0.143± 0.014 0.115± 0.004 0.158

Test Set 0.146± 0.010 0.124± 0.006 0.199
Test Set (train. on all data) 0.126± 0.010 0.119± 0.004 0.153

Log-likelihood Cost Function

NN NN
small fixed reg. opt. reg.+prun.

Training Set 0.2002± 0.0600 0.2881± 0.0134
Validation Set 0.7016± 0.2330 0.3810± 0.0131

Test Set 0.6687± 0.2030 0.3773± 0.0143
Test Set (train. on all data) 0.4426± 0.0328 0.3518± 0.0096

Table 5.1 reports the average and standard deviations of the probability of
misclassification (pmc) and log-likelihood cost function over 10 runs for pruned
networks using the optimal regularization parameters. Note that retraining on

19 Eigenvalue spread should not be larger than the square root of the machine precision
[6].
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the full data set decreases the test pmc slightly on the average. In fact, improve-
ment was noticed in 9 out of 10 runs. The table further shows the gain of the
combined adaptive regularization/pruning algorithm relative to using a small
fixed weight decay. However, recall, cf. Sec. 5.4.1, that the actual gain is very
dependent on the noise level, data set size, etc. The objective is not to demon-
strate high gain for a specific problem, rather to demonstrate that algorithm
runs fairly robust in a classification set-up. For comparison we used a k-nearest-
neighbor (KNN) classification (see e.g., [2]) and found that k = 9 neighbors was
optimal by minimizing pmc on the validation set. The neural network performed
significantly better. Contrasting the obtained results to other work is difficult. In
[37] results on the Peterson-Barney vowel problem are reported, but their data
are not exactly the same; only the first 2 formant frequencies were used. Fur-
thermore, different test sets have been used for the different methods presented.
The best result reported [28] is obtained by using KNN and reach pmc = 0.186
which is significantly higher than our results.

Fig. 5.2 shows the evolution of the adaptive regularization as well as the
pruning algorithm.

5.4.3 Time Series Prediction

We tested the performance of the adaptive regularization schemes on the Mackey-
Glass chaotic time series prediction problem, see e.g., [22], [40]. The goal is to pre-
dict the series 100 steps ahead based on previous observations. The feed-forward
net configuration is an input lag-space x(k) = [x(k), x(k−6), x(k−12), x(k−18)]
of 4 inputs, 25 hidden hyperbolic tangent neurons, and a single linear output
unit ŷ(k) which predicts y(k) = x(k+100). The cost function is the squared er-
ror, N−1

t

∑Nt

k=1(y(k)− ŷ(k,w))2, augmented by a weight decay regularizer using
4 different weight decays as described in Section 5.4.2.

The simulation set-up is:

– The data set, D, has N = 500 examples and an independent test has 8500
examples.

– The regularization parameters are optimized using a hold-out validation er-
ror with an even split20 of the data set into training and validation sets each
having 250 examples.

– Weight decays are initialized at zero and one Gauss-Newton iteration is
performed, then weight decays were re-initialized at λmax/10

6, where λmax

is the max. eigenvalue of the Hessian matrix of the cost function.
– The network is trained using a Gauss-Newton training scheme. The Hes-

sian is inverted using the Moore-Penrose pseudo inverse ensuring that the
eigenvalue spread is less than 108.

– The regularization step-size η is initialized at 10−2.

20 The sensitivity to different splits are considered in [25].
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Fig. 5.2. Classification example. Panels (a), (b) and (c) show the evolution of the adap-
tive regularization algorithm in a typical run (fully connected network). The weight
decays are optimized aiming at minimizing the validation error in panel (a). Note that
also the test error decreases. This tendency is also evident in panel (b) displaying pmc
even though a small increase noticed. In panel (c) the convergence unnormalized weight
decays, α = κ · Nt, are depicted. Panels (d) and (e) show the evolution of errors and
pmc during the pruning session. The optimal network is chosen as the one with mini-
mal validation error, as indicated by the vertical line. There is only a marginal effect of
pruning in this run. Finally, in panel (f), the variation of the optimal (end of pruning)
α’s in different runs is demonstrated. A clear similarity over runs is noticed.



5. Adaptive Regularization in Neural Network Modeling 125

Table 5.2. Normalized squared error performance for the time series prediction ex-
amples. All figures are in units of 10−3σ̂2

x and averages and standard deviations are
computed from 10 runs. In the case of small fixed regularization, weight decays were set
at initial values equal to λmax/10

6 where λmax is the largest eigenvalue of the Hessian
matrix of the cost function. Optimal regularization refers to the case of optimizing 4
weight decay parameters. Pruning refers to validation set based OBD.

NN NN NN
small fixed reg. small fixed reg.+prun. opt. reg.+prun.

Training Set 0.17 ± 0.07 0.12± 0.04 0.10 ± 0.07

Validation Set 0.53 ± 0.26 0.36± 0.07 0.28 ± 0.14

Test Set 1.91 ± 0.68 1.58± 0.21 1.29 ± 0.46

Test Set (train. on all data) 1.33 ± 0.43 1.34± 0.26 1.17 ± 0.48

– Alternation between adapting the 4 weight decays and validation set based
pruning [25].

– The pruned network is retrained on all data using the optimized weight decay
parameters.

Table 5.2 reports the average and standard deviations of the normalized squared
error (i.e., the squared error normalized with the estimated variance of x(k), de-
noted σ̂2x) over 10 runs for optimal regularization parameters. Retraining on the
full data set decreases the test error somewhat on the average. Improvement was
noticed in 10 out of 10 runs. We tested 3 different cases: small fixed regulariza-
tion, small fixed regularization assisted by pruning and combined adaptive reg-
ularization/pruning. It turns that pruning alone does not improve performance;
however, supplementing by adaptive regularization gives a test error reduction.

We furthermore tried a flexible regularization scheme, viz. individual weight
decay where R(w,κ) =

∑m
i=1 κiw

2
i and κi ≥ 0 are imposed. In the present case

it turned out that the flexible regularizer was not able to outperform the joint
adaptive regularization/pruning scheme; possibly due to training and validation
set sizes.

Fig. 5.3 demonstrates adaptive regularization and pruning in a typical case
using 4 weight decays.

5.5 Conclusions

In this paper it was suggested to adapt regularization parameters by minimizing
the cross-validation error or a simple hold-out validation error. We derived a sim-
ple gradient descent scheme for optimizing regularization parameters which has
a small programming overhead and an acceptable computational overhead com-
pared to standard training. Numerical examples with a toy linear model showed
limitations and advantages of the adaptive regularization approach. Moreover,
numerical experiments on classification and time series prediction problems suc-
cessfully demonstrated the functionality of the algorithm. Adaptation of regu-
larization parameters resulted in lower generalization error; however, it should
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Fig. 5.3. Time series prediction example. Panels (a) and (b) show a typical evolution
of errors and unnormalized weight decay values α when running the adaptive regular-
ization algorithm using 4 weight decays. The normalized validation error drops approx.
a factor of 2 when adapting weight decays. It turns out that some regularization of the
input-to-hidden and output bias weights are needed whereas the other weights essen-
tially requires no regularization22 . In panel (c) and (d) it is demonstrated that pruning
reduces the test error slightly. The optimal network is chosen as the one with minimal
validation error, as indicated by the vertical line.

be emphasized that the actual yield is very dependent on the problem and the
choice of the regularizers functional form.
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8 it does not influence the Moore-
Penrose pseudo inversion of the Hessian.
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Appendix

Assume that the regularization term is linear in the regularization parameters,
i.e.,

R(w,κ) = κ�r(w) =

q∑

i=1

κiri(w) (5.25)

The gradient of the cross-validation error (5.4) is

∂Γ̂

∂κ
(κ) =

1

K

K∑

j=1

∂SVj

∂κ
(ŵj(κ)) (5.26)

Using the chain rule the gradient vector of the validation error, SVj , can be
written as

∂SVj

∂κ
(ŵj(κ)) =

∂w�

∂κ
(ŵj(κ)) ·

∂SVj

∂w
(ŵj(κ)) (5.27)

where ∂w�/∂κ is the q × m derivative matrix of the estimated weights w.r.t.
the regularization parameters and m = dim(w). In order to find this derivative
matrix, consider the gradient of the cost function w.r.t. to the weights as a
function of κ and use the following expansion around the current estimate κ(n),

∂CTj

∂w
(κ) =

∂CTj

∂w
(κ(n)) +

∂2CTj

∂w∂κ� (κ(n)) · (κ− κ(n)) + o(|κ− κ(n)|). (5.28)

Requiring ŵ(κ(n+1)) in the next iteration to be an optimal weight vector, i.e.,
∂CTj/∂w(κ(n+1)) = 0 implies

∂2CTj

∂w∂κ� (ŵ(κ(n))) = 0. (5.29)

Recall that ∂CTj/∂w(κ(n)) = 0 by assumption. (5.29) can be used for deter-
mining ∂w�/∂κ. Recognizing that the cost function CTj (ŵ(κ)) = STj (ŵ(κ)) +
R(ŵ(κ),κ) depends implicitly (thorough ŵ(κ)) and explicitly on κ it is possible,
by using (5.25), to derive the following relation23:

∂w�

∂κ
(ŵj) = −

∂r

∂w� (ŵj) · J−1
j (ŵj) (5.30)

where J j = ∂
2CTj/∂w∂w

� is the Hessian of the cost function which e.g., might
be evaluated using the Gauss-Newton approximation [29]. Finally, substituting
(5.30) into (5.27) gives

∂SVj

∂κ
(ŵj) = −

∂r

∂w� (ŵj) · J−1
j (ŵj) ·

∂SVj

∂w
(ŵj) (5.31)

∂SVj/∂w is found by ordinary back- propagation on the validation set while
∂r/∂w� is calculated from the specific assumptions on the regularizer.
23 For convenience, here ŵ’s explicit κ-dependence is omitted.



128 J. Larsen et al.

References

[1] Akaike, H.: Fitting Autoregressive Models for Prediction. Annals of the Institute
of Statistical Mathematics 21, 243–247 (1969)

[2] Amari, S., Murata, N., Müller, K.R., Finke, M., Yang, H.: Asymptotic Statistical
Theory of Overtraining and Cross-Validation. Technical report METR 95-06 and
IEEE Transactions on Neural Networks 8(5), 985–996 (1995)

[3] Nonboe Andersen, L., Larsen, J., Hansen, L.K., Hintz-madsen, M.: Adaptive Reg-
ularization of Neural Classifiers. In: Principe, J., et al. (eds.) Proceedings of the
IEEE Workshop on Neural Networks for Signal Processing VII, pp. 24–33. IEEE,
Piscataway (1997)

[4] Bishop, C.M.: Curvature-Driven Smoothing: A Learning Algorithm for Feedfor-
ward Neural Networks. IEEE Transactions on Neural Networks 4(4), 882–884
(1993)

[5] Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

[6] Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization
and Non-linear Equations. Prentice- Hall, Englewood Cliffs (1983)

[7] Drucker, H., Le Cun, Y.: Improving Generalization Performance in Character
Recognition. In: Juang, B.H., et al. (eds.) Neural Networks for Signal Process-
ing: Proceedings of the 1991 IEEE-SP Workshop, pp. 198–207. IEEE, Piscataway
(1991)

[8] Geisser, S.: The Predictive Sample Reuse Method with Applications. Journal of
the American Statistical Association 50, 320–328 (1975)

[9] Geman, S., Bienenstock, E., Doursat, R.: Neural Networks and the Bias/Variance
Dilemma. Neural Computation 4, 1–58 (1992)

[10] Girosi, F., Jones, M., Poggio, T.: Regularization Theory and Neural Networks
Architectures. Neural Computation 7(2), 219–269 (1995)

[11] Goutte, C., Larsen, J.: Adaptive Regularization of Neural Networks using Conju-
gate Gradient. In: Proceedings of ICASSP 1998, Seattle, USA, vol. 2, pp. 1201–
1204 (1998)

[12] Goutte, C.: Note on Free Lunches and Cross-Validation. Neural Computation 9(6),
1211–1215 (1997)

[13] Goutte, C.: Regularization with a Pruning Prior. Neural Networks (1997) (to
appear)

[14] Hansen, L.K., Rasmussen, C.E.: Pruning from Adaptive Regularization. Neural
Computation 6, 1223–1232 (1994)

[15] Hansen, L.K., Rasmussen, C.E., Svarer, C., Larsen, J.: Adaptive Regularization.
In: Vlontzos, J., Hwang, J.-N., Wilson, E. (eds.) Proceedings of the IEEE Work-
shop on Neural Networks for Signal Processing IV, pp. 78–87. IEEE, Piscataway
(1994)

[16] Hansen, L.K., Larsen, J.: Linear Unlearning for Cross-Validation. Advances in
Computational Mathematics 5, 269–280 (1996)

[17] Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Com-
putation. Addison-Wesley Publishing Company, Redwood City (1991)

[18] Hintz-Madsen, M., With Pedersen, M., Hansen, L.K., Larsen, J.: Design and Eval-
uation of Neural Classifiers. In: Usui, S., Tohkura, Y., Katagiri, S., Wilson, E.
(eds.) Proceedings of the IEEE Workshop on Neural Networks for Signal Process-
ing VI, pp. 223–232. IEEE, Piscataway (1996)



5. Adaptive Regularization in Neural Network Modeling 129

[19] Hornik, K.: Approximation Capabilities of Multilayer Feedforward Networks. Neu-
ral Networks 4, 251–257 (1991)

[20] Kearns, M.: A Bound on the Error of Cross Validation Using the Approxima-
tion and Estimation Rates, with Consequences for the Training-Test Split. Neural
Computation 9(5), 1143–1161 (1997)

[21] Larsen, J.: A Generalization Error Estimate for Nonlinear Systems. In: Kung, S.Y.,
et al. (eds.) Proceedings of the 1992 IEEE-SP Workshop on Neural Networks for
Signal Processing, vol. 2, pp. 29–38. IEEE, Piscataway (1992)

[22] Larsen, J.: Design of Neural Network Filters, Ph.D. Thesis, Electronics Institute,
Technical University of Denmark (1993),
ftp://eivind.imm.dtu.dk/dist/PhD_thesis/jlarsen.thesis.ps.Z

[23] Larsen, J., Hansen, L.K.: Generalization Performance of Regularized Neural Net-
work Models. In: Vlontzos, J., et al. (eds.) Proceedings of the IEEE Workshop on
Neural Networks for Signal Processing IV, pp. 42–51. IEEE, Piscataway (1994)

[24] Larsen, J., Hansen, L.K.: Empirical Generalization Assessment of Neural Network
Models. In: Girosi, F., et al. (eds.) Proceedings of the IEEE Workshop on Neural
Networks for Signal Processing V, pp. 30–39. IEEE, Piscataway (1995)

[25] Larsen, J., Hansen, L.K., Svarer, C., Ohlsson, M.: Design and Regularization of
Neural Networks: The Optimal Use of a Validation Set. In: Usui, S., Tohkura,
Y., Katagiri, S., Wilson, E. (eds.) Proceedings of the IEEE Workshop on Neural
Networks for Signal Processing VI, pp. 62–71. IEEE, Piscataway (1996)

[26] Larsen, J., et al.: Optimal Data Set Split Ratio for Empirical Generalization Error
Estimates (in preparation)

[27] Le Cun, Y., Denker, J.S., Solla, S.A.: Optimal Brain Damage. In: Touretzky,
D.S. (ed.) Proceedings of the 1989 Conference on Advances in Neural Information
Processing Systemsshers, vol. 2, pp. 598–605. Morgan Kaufmann Publishers, San
Mateo (1990)

[28] Lowe, D.: Adaptive Radial Basis Function Nonlinearities and the Problem of Gen-
eralisation. In: Proc. IEE Conf. on Artificial Neural Networks, pp. 171–175 (1989)

[29] Ljung, L.: System Identification: Theory for the User. Prentice-Hall, Englewood
Cliffs (1987)

[30] MacKay, D.J.C.: A Practical Bayesian Framework for Backprop Networks. Neural
Computation 4(3), 448–472 (1992)

[31] Moody, J.: Prediction Risk and Architecture Selection for Neural Networks. In:
Cherkassky, V., et al. (eds.) From Statistics to Neural Networks: Theory and
Pattern Recognition Applications, vol. 136. Springer-Verlag Series F, Berlin (1994)

[32] Moody, J., Rögnvaldsson, T.: Smoothing Regularizers for Projective Basis Func-
tion Networks. In: Proceedings of the 1996 Conference on Advances in Neural
Information Processing Systems, vol. 9. MIT Press, Cambridge (1997)

[33] Murata, N., Yoshizawa, S., Amari, S.: Network Information Criterion — Deter-
mining the Number of Hidden Units for an Artificial Neural Network Model. IEEE
Transactions on Neural Networks 5(6), 865–872 (1994)

[34] Nowlan, S., Hinton, G.: Simplifying Neural Networks by Soft Weight Sharing.
Neural Computation 4(4), 473–493 (1992)

[35] With Pedersen, M.: Training Recurrent Networks. In: Proceedings of the IEEE
Workshop on Neural Networks for Signal Processing VII. IEEE, Piscataway (1997)

[36] Peterson, G.E., Barney, H.L.: Control Methods Used in a Study of the Vowels.
JASA 24, 175–184 (1952)

[37] Shadafan, R.S., Niranjan, M.: A Dynamic Neural Network Architecture by Se-
quential Partitioning of the Input Space. Neural Computation 6(6), 1202–1222
(1994)

ftp://eivind.imm.dtu.dk/dist/PhD_thesis/jlarsen.thesis.ps.Z


130 J. Larsen et al.

[38] Sjöberg, J.: Non-Linear System Identification with Neural Networks, Ph.D. The-
sis no. 381, Department of Electrical Engineering, Linköping University, Sweden
(1995)

[39] Stone, M.: Cross-validatory Choice and Assessment of Statistical Predictors. Jour-
nal of the Royal Statistical Society B 36(2), 111–147 (1974)

[40] Svarer, C., Hansen, L.K., Larsen, J., Rasmussen, C.E.: Designer Networks for
Time Series Processing. In: Kamm, C.A., et al. (eds.) Proceedings of the IEEE
Workshop on Neural Networks for Signal Processing, vol. 3, pp. 78–87. IEEE,
Piscataway (1993)

[41] Watrous, R.L.: Current Status of PetersonBarney Vowel Formant Data. JASA 89,
2459–2460 (1991)

[42] Weigend, A.S., Huberman, B.A., Rumelhart, D.E.: Predicting the Future: A Con-
nectionist Approach. International Journal of Neural Systems 1(3), 193–209 (1990)

[43] Williams, P.M.: Bayesian Regularization and Pruning using a Laplace Prior. Neu-
ral Computation 7(1), 117–143 (1995)

[44] Wolpert, D.H., Macready, W.G.: The Mathematics of Search. Technical Report
SFI-TR-95-02-010, Santa Fe Instute (1995)

[45] Wu, L., Moody, J.: A Smoothing Regularizer for Feedforward and Recurrent Neu-
ral Networks. Neural Computation 8(3) (1996)

[46] Zhu, H., Rohwer, R.: No Free Lunch for Cross Validation. Neural Computa-
tion 8(7), 1421–1426 (1996)



6
Large Ensemble Averaging�

David Horn1, Ury Naftaly1, and Nathan Intrator2

1 School of Physics and Astronomy
2 School of Mathematical Sciences

Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University, Tel Aviv 69978, Israel

horn@neuron.tau.ac.il
http://neuron.tau.ac.il/~horn/

Abstract. Averaging over many predictors leads to a reduction of the
variance portion of the error. We present a method for evaluating the
mean squared error of an infinite ensemble of predictors from finite (small
size) ensemble information. We demonstrate it on ensembles of networks
with different initial choices of synaptic weights. We find that the optimal
stopping criterion for large ensembles occurs later in training time than
for single networks. We test our method on the suspots data set and
obtain excellent results.

6.1 Introduction

Ensemble averaging has been proposed in the literature as a means to improve
the generalization properties of a neural network predictor[3, 11, 7]. We follow
this line of thought and consider averaging over a set of networks that differ from
one another just by the initial values of their synaptic weights.

We introduce a method to extract the performance of large ensembles from
that of finite size ones. This is explained in the next section, and is demonstrated
on the sunspots data set. Ensemble averaging over the initial conditions of the
neural networks leads to a lower prediction error, which is obtained for a later
training time than that expected from single networks. Our method outperforms
the best published results for the sunspots problem [6].

The theoretical setting of the method is provided by the bias/variance decom-
position. Within this framework, we define a particular bias/variance decompo-
sition for networks differing by their initial conditions only. While the bias of
the ensemble of networks with different initial conditions remains unchanged,
the variance error decreases considerably.

6.2 Extrapolation to Large-Ensemble Averages

The training procedure of neural networks starts out with some choice of initial
values of the connection weights. We consider ensembles of networks that differ
� Previously published in: Orr, G.B. and Müller, K.-R. (Eds.): LNCS 1524, ISBN

978-3-540-65311-0 (1998).

G. Montavon et al. (Eds.): NN: Tricks of the Trade, 2nd edn., LNCS 7700, pp. 131–137, 2012.
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from one another just by their initial values and average over them. Since the
space of initial conditions is very large we develop a technique which allows us
to approximate averaging over the whole space.

Our technique consists of constructing groups of a fixed number of networks,
Q. All networks differ from one another by the random choice of their initial
weights. For each group we define our predictor to be the average of the output
of all Q networks. Choosing several different groups of the same size Q, and
averaging over their predictions for the test set, defines the finite size average
that is displayed in Fig. 1. Then we perform a parametric estimate of the limit
Q → ∞. A simple regression in 1/Q suffices to obtain this limit in the suspots
problem, as shown in Fig. 2. In general one may encounter a more complicated
inverse power behavior, indicating correlations between networks with different
initial weights.

0 50 100 150

0.08

0.09

Fig. 6.1. ARV of test set
Prediction error (ARV) is plotted vs. training time in kilo epochs (KE). The
curves correspond to different choices of group sizes: Q = 1, 2, 4, 5, 10, 20 from
top to bottom. The lowest curve is the extrapolation to Q→∞.

6.2.1 Application to the Sunspots Problem

Yearly sunspot statistics have been gathered since 1700. These data have been
extensively studied and have served as a benchmark in the statistical literature
[9, 10, 4]. Following previous publications [10, 6, 8] we choose the training set to
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Fig. 6.2. Extrapolation method used for extracting the Q→∞ prediction
The results for different ensemble size Q at two different training periods, t =
70KE (dots) and 140KE (circles) lie on straight lines as a function of 1/Q.
For each curve, the first three points from the right represent ensemble sizes
of 1, 2, and 4 respectively. While the three points of 140KE all lie above the
corresponding ones of 70KE, an extrapolation to larger ensemble sizes suggests
that the overall performance will be better for 140KE as is observed from the fit
to the line.

contain the period between 1701 and 1920, and the test-set to contain the years
1921 to 1955. Following [10], we calculate the prediction error according to the
average relative variance (ARV) of the data set S:

ARV =

∑
k∈S (yk − f(xk))

2

∑
k∈S (yk − E [yk])

2 (6.1)

yk(xk) are the data values and f(xk) is the predictor. In our time series problem,
for any given time point t = k, the input vector xk has component values taken
from the series at times t− 1, t− 2, · · · , t− 12 (as in [10]). The denominator in
Eq. 1 is σ2 = 1535 for the training set. The same value is used for the test set.
We use neural networks with 12 inputs, one sigmoidal hidden layer consisting of
4 units and a linear output. They are then enlarged to form recurrent networks
(SRN) [1] in which the input layer is increased by adding to it the hidden layer
of the previous point in the time series. The learning algorithm consists of back
propagation applied to an error function which is the MSE of the training set. A
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validation set containing 35 randomly chosen points was left out during training
to serve for performance validation.

Fig. 6.1 displays our results on the test set as a function of the number of
training epochs. We observe a descending order of Q = 1, 2, 4, 5, 10, 20 followed
by the extrapolation to Q → ∞. All of these curves correspond to averages
over groups of size Q, calculated by running 60 networks. To demonstrate how
the extrapolation is carried out we display in Fig. 6.2 the points obtained for
t = 70 and t = 140 KE as a function of 1

Q . It is quite clear that a linear
extrapolation is very satisfactory. Moreover, the results for Q = 20 are not far
from the extrapolated Q → ∞ results. Note that the minimum of the Q → ∞
curve in Fig.1 occurs at a much higher training time than that of the Q = 1 single
network curve. This is also evident from the crossing of the t = 70 and t = 140
KE lines on Fig. 2. An important conclusion is that the stopping criterion for
ensemble training (to be applied, of course, to every network in the group) is
very different from that of single network training.

6.2.2 Best Result

The curves shown in Fig. 1 were obtained with a learning rate of 0.003. Lower
learning rates lead to lower errors. In that case the effect of ensemble averaging
is not as dramatic. We obtained our best result by changing our input vector into
the six dimensional choice of Pi & Peterson [8] that consists of xt−1, xt−2, xt−3,
xt−4, xt−9 and xt−10. Using a learning rate of 0.0005 on the otherwise unchanged
SRN described above, we obtain the minimum of the prediction error at 0.0674,
which is better than any previously reported result.

6.3 Theoretical Analysis

The theoretical setting of the method is provided by the bias/variance decompo-
sition. Within this framework, we define a particular bias/variance decomposi-
tion for networks differing by their initial conditions only. This is a particularly
useful subset of the general set of all sources of variance.

The performance of an estimator is commonly evaluated by the Mean Square
Error (MSE) defined as

MSE(f) ≡ E
[
(y − f(x))2

]
(6.2)

where the average is over test sets for the predictor f , and y are the target values
of the data in x. Assuming the expectation E is taken with respect to the true
probability of x and y, the MSE can be decomposed into

E
[
(y − f(x))2

]
= E

[
(y − E[y|x])2

]
+ E

[
(f(x)− E[y|x])2

]
. (6.3)

The first RHS term represents the variability or the noise in the data and is
independent of the estimator f . It suffices therefore to concentrate on the second
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Fig. 6.3. Our best results for the test set of the sunspots problem. Plotted here are
Q = 1 results for various choices of initial conditions, represented by their averages
with error-bars extending over a standard deviation, and Q = 20 results (the thinner
points), as a function of training time in K-epochs. The network is based on the Pi &
Peterson variables, and the learning rate is 0.0005.

term. Any given predictor f(x) is naturally limited by the set of data on which
it is trained. Considering a typical error one may average over all data space [2]
and decompose this error into Bias and Variance components:

ED
[
(f(x)− E[y|x])2

]
= BD + VD (6.4)

where
BD(f(x)) = (ED [f(x)]− E[y|x])2 (6.5)

VD(f(x)) = ED
[
(f(x)− ED [f(x)])

2
]
. (6.6)

In our application we use as our predictor EI [f(x)] where the subscript I de-
notes the space of initial weights of the neural network that serves as f(x). To
understand the effect of averaging over initial weights let us construct a space
R by the direct product of D and I. It can then be shown that

BR(f(x)) = BD(EI [f(x)]), (6.7)

and
VR(f(x)) ≥ VD(EI [f(x)]). (6.8)
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This means that using EI [f(x)] as the predictor, the characteristic error has
reduced variance but unchanged bias.

The bias term may also be represented as BR = ED [BI ] where

BI(f(x)) = (EI [f(x)]− E[y|x])2 . (6.9)

BI is unaffected when f(x) is replaced by its average. The analogously defined
variance term, VI , gets eliminated by such averaging. In other words, by aver-
aging over all I we eliminated all variance due to the choice of initial weights.
The difference between the Q = 1 and Q → ∞ curves in Fig. 1 represents this
reduction of variance.

To understand the Q dependence of Fig. 2 consider an average defined by
f̄(x) over functions that represent independent identically distributed random
variables. It can then be shown that

B(f̄) = B(f) V (f̄) = V (f)/Q. (6.10)

Hence we can interpret the 1/Q behavior displayed in Fig. 2 as a demonstration
that the choice of initial conditions in that analysis acts as effective random noise.
In general this is not necessarily the case, since networks with different initial
conditions may have non-trivial correlations. For a more thorough discussion of
this and other points see [5].

In conclusion, we see that averaging over networks with different initial weights
is helpful in reducing the prediction error by eliminating the variance induced
by initial conditions. Performing this average over groups of finite size Q one
finds out from the Q dependence if the errors induced by initial conditions are
correlated or not. Moreover, one may estimate the Q needed to eliminate this
source of variance.
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Improving Network Models and Algorithmic
Tricks�

Preface

This section contains 5 chapters presenting easy to implement tricks which mod-
ify either the architecture and/or the learning algorithm so as to enhance the
network’s modeling ability. Better modeling means better solutions in less time.

In chapter 7, Gary Flake presents a trick that gives an MLP the additional
power of an RBF. Trivial to implement, one simply adds extra inputs whose
values are the square of the original inputs (p. 144). While adding higher
order terms as inputs is not a new idea, this chapter contributes new insight
by providing (1) a good summary of previous work, (2) simple clear examples
illustrating this trick, (3) a theoretical justification showing that one need only
add the higher order squared terms, and (4) a thorough comparison with nu-
merous other network models. The need for only the squared terms is significant
because it means that we gain this extra power without having the number of
inputs grow excessively large. We remark that this idea can be extended further
by including relevant features other than squared inputs e.g. by using kernel
PCA [2] to obtain the non-linear features.

Rich Caruana in chapter 8 presents multi-task learning (MTL) (p. 163)
where extra outputs are added to a network to predict tasks separate but related
to the primary task. To introduce the trick, the chapter begins with an example
and detailed discussion of a simple boolean function of binary inputs. The author
then presents several of what one might use as extra outputs in practice. These
include, among others: (1) features that are available only after predictions
must be made, but which are available offline at training time (p. 170), (2) the
same task but with a different metric (p. 175), and (3) the same task but with
different output representations (p. 176). Empirical results are presented for
(1) mortality rankings for pneumonia where the extra outputs are test results
not available when the patient first enters the hospital but which are available a
posteriori to complement the training data, and (2) a vehicle steering task where
other outputs include location of centerline and road edges, etc. The last part of
the chapter is devoted to topics for implementing MTL effectively, such as size
of hidden layers (p. 181), early stopping (p. 181), and learning rates (p. 185).

The next chapter by Patrick van der Smagt and Gerd Hirzinger presents a
trick to reduce the problem of ill-conditioning in the Hessian. If a unit has a
very small outgoing weight then the influence of the incoming weights to that
unit will be severely diminished (see chapter 1 for other sources of Hessian ill-
conditioning). This results in flat spots in the error surface, which translates into

� Previously published in: Orr, G.B. and Müller, K.-R. (Eds.): LNCS 1524, ISBN
978-3-540-65311-0 (1998).
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slow training (see also [1]). The trick is to add linear shortcut connections (p.
196) from the input to the output nodes to create what the authors refer to as
a linearly augmented feed-forward network. These connections share the
weights with the input to hidden connections so that no new weight parameters
are added. This trick enhances the sensitivity of the network to those incom-
ing weights thus removing or reducing the flat spots in the error surface. The
improvement in the quality of the error surface is illustrated in a toy example.
Simulations with data from a robot arm are also shown.

The trick discussed by Nicol Schraudolph in chapter 10 is to center the various
factors comprising the neural network’s gradient (p. 208): input and hidden
unit activities (see chapter 1), error signals, and the slope of the hidden units’
nonlinear activation functions (p. 208). To give an example: activity centering
(p. 207) is done by simply transforming the values of the components xi into

x̌i = xi − 〈xi〉 ,

where 〈·〉 denotes averaging over training samples. All different centering strate-
gies can be implemented efficiently for a stochastic, batch or mini batch learning
scenario (p. 209). He also uses shortcut connections (p. 208) but quite differ-
ently from the previous chapter: the shortcut connections contain new weights
(not shared) which complement slope centering by carrying the linear compo-
nent of the signal, making it possible for the rest of the network to concentrate
on the nonlinear component of the problem. So, with respect to shortcut con-
nections, the approaches in chapters 9 and 10 appear complementary. Centering
gives a nice speed-up without much harm to the generalization error, as seen in
the simulations on toy and vowel data (p. 211).

In chapter 11, Tony Plate presents a trick requiring only minimal mem-
ory overhead that reduces numerical round-off in backpropagation networks.
Round-off error can occur in the standard method for computing the derivative
of the logistic function since it requires calculating the product

y(1− y)

where y is the output of either a hidden or output unit. When the value of y is
close to 1 then the limited precision of single or even double precision floating
point numbers can result in the product being zero. This may not be a serious
problem for on-line learning but can cause significant problems for networks using
batch mode, particularly when second order methods are used. Such round-off
can occur in other types of units as well. This chapter provides formulas for
reducing such round-off errors in the computation of

– derivatives of the error for logistic units or tanh units (p. 226 and 229)
– derivatives in a one-of-k classification problem with cross-entropy error and

softmax (p. 228)
– derivatives and errors in a two-class classification problem using a single

logistic output unit with cross entropy error and 0/1 targets (p. 228).

Jenny & Klaus
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Abstract. Consider a multilayer perceptron (MLP) with d inputs, a sin-
gle hidden sigmoidal layer and a linear output. By adding an additional
d inputs to the network with values set to the square of the first d inputs,
properties reminiscent of higher-order neural networks and radial basis
function networks (RBFN) are added to the architecture with little added
expense in terms of weight requirements. Of particular interest, this ar-
chitecture has the ability to form localized features in a d-dimensional
space with a single hidden node but can also span large volumes of the in-
put space; thus, the architecture has the localized properties of an RBFN
but does not suffer as badly from the curse of dimensionality. I refer to a
network of this type as a SQuare Unit Augmented, Radially Extended,
MultiLayer Perceptron (SQUARE-MLP or SMLP).

7.1 Introduction and Motivation

When faced with a new and challenging problem, the most crucial decision that
a neural network researcher must make is in the choice of the model class to pur-
sue. Several different types of neural architectures are commonly found in most
model building tool-boxes, with two of the more familiar, radial basis function
networks (RBFNs) [15, 16, 13, 1, 17] and multilayer perceptrons (MLPs) [25, 20],
exemplifying the differences found between global and local model types. Specif-
ically, an MLP is an example of a global model that builds approximations with
features that alter the entire input-output response, while an RBFN is a local
model that uses features confined to a finite region in the input-space. This single
difference between the two model types has major implications for many archi-
tectural and algorithmic issues. While MLPs are slow learners, have low memory
retention, typically use homogeneous learning rules and are relatively less trou-
bled by the curse of dimensionality, RBFNs are nearly opposite in every way:
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they are fast learners, have high memory retention, typically use heterogeneous
learning rules and are greatly troubled by the curse of dimensionality.

Because of these differences, it is often tempting to use one or more heuristics
to make the choice, e.g., RBFNs (MLPs) for low (high) dimensional problems,
or RBFNs (MLPs) for continuous function approximation (pattern classifica-
tion) problems. While these rules-of-thumb are often sufficient for simple prob-
lems there are many exceptions that defy the rules (e.g., see [12]). Moreover,
more challenging problems from industrial settings often have high-dimensional
input-spaces that are locally well-behaved and may not be clearly defined as
either function approximation or pattern classification problems. This means
that choosing the best architectures for a particular problem can be a nontrivial
problem in itself.

Ironically, a good compromise to this dilemma has been known for quite some
time but only recently has the elegance of the trick been appreciated. For years,
researchers have commonly used augmented MLPs by adding the squares of
the inputs as auxiliary inputs. The justification for this has always been fairly
casual and has usually boiled down to the argument that using this trick couldn’t
possibly hurt. But as it turns out, an MLP augmented in this way with n hidden
nodes can almost perfectly approximate an RBFN with n basis functions. The
“almost” comes from the fact that the radial basis function in the augmented
MLP is not Gaussian but quasi-Gaussian (which is an admittedly undefined term
that I simply use to mean “so close to Gaussian that it really doesn’t matter.”).
This means that an MLP augmented with the squares of it’s inputs can easily
form local features with a single hidden node but can also span vast regions of
the input-space, thereby effectively ignoring inputs when needed. Thus, the best
of both architectural approaches is retained by using this amazingly simple trick.

The remainder of this chapter is divided into 5more sections. Section7.2contains
a description of the trick and briefly gives a comparison of the proposed architec-
ture to other classes ofwell-knownmodels. In Section 7.3, a function approximation
problem and a pattern classification problem are used as examples to demonstrate
the effectiveness of the trick. Afterwards, a well-known and challenging vowel clas-
sification problem is studied in greater detail. Section 7.4 theoretically justifies the
trick by showing the equivalence of the resulting architecture and RBFNs, while
Section 7.5 gives a more intuitive justification for the proposed trick by illustrat-
ing the types of surfaces and boundaries that can be formed by a single node with
auxiliary square inputs. Finally, in Section 7.6, I give my conclusions.

7.2 The Trick: A SQUARE-MLP

The proposed trick involves only a simple modification to the standard MLP
architecture: the input layer of an MLP is augmented with an extra set of inputs
that are coupled to the squares of the original inputs. This trick can be imple-
mented in at least two different ways. The first technique is to simply augment
a data set with the extra inputs. Thus, if one had a set with each input pattern
having d components, then a new data set can be made from the original that
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has 2d inputs with the extra d inputs set equal to the squares of the original
inputs. Implementing the trick in this way is expensive from a memory point
of view but has the advantage that not a single line of new source code need
be written to try it out. Moreover, this allows the trick to be tried even on a
commercial simulator where one may not have access to source code.

The second way to implement the trick is to explicitly code the actual changes
into the architecture:

y =
∑

i

wig

⎛

⎝
∑

j

uijxj +
∑

k

vikx
2
k + ai

⎞

⎠+ b, (7.1)

with g(x) = tanh(x) or 1/(1+exp(−x)). I call such a network a SQuare Unit Aug-
mented, Radially Extended, MultiLayer Perceptron (SQUARE-MLP or SMLP).
The “square unit augmented” portion of the name comes from the newly added
vikx

2
k terms. The reason behind the “radially extended” portion of the name will

become clear in Sections 7.4 and 7.5. All experiments in Section 7.3 use the ar-
chitecture described by Equation 7.1. The history of this trick is rather difficult
to trace primarily because it is such a trivial trick; however, a brief list of some
related ideas is presented below.

Engineering and Statistics. Very early related ideas have been pursued in the
statistics community in the form of polynomial regression and Volterra filters in
the engineering community [24, 22]. However, in both of these related approaches
the model output is always linear in the polynomial terms, which is not the case
with the SMLP architecture or in the other neural architectures discussed below.

Sigma-PiNetworks. Someneural network architectureswhich aremuchmore com-
plicated than Equation 7.1 have the SMLP as a special case. Perhaps the earliest
reference to a similar idea in the neural network literature can be traced back to
Sigma-Pi networks [20], which extends an MLP’s linear net input function with a
summation of products,

∑
i wji

∏
k xik. One could imagine a multilayer Sigma-Pi

network that manages to compute the squares of the xik terms prior to them being
passed through to a sigmoidal activation function. This would be a rather clumsy
way of calculating the squares of the inputs, but it is possible to do it, nonetheless.

Higher-Order Networks. Perhaps the closest example is the higher-order net-
work, proposed by Lee et al. [14], which is similar to Equation 7.1 but uses the
full quadratic net input function:

y =
∑

i

wig

⎛

⎝
∑

j

uijxj +
∑

k

∑

l

viklxkxl + ai

⎞

⎠+ b. (7.2)

With vikl set to zero when k �= l a SMLP is recovered. Thus, a SMLP is actually
a higher-order network with a diagonal quadratic term. Higher-order networks
have been shown to be very powerful extensions of MLPs. They can form both
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local and global features but only at the cost of squaring the number of weights
for each hidden node. The memory requirements become an even greater issue
when more sophisticated optimization routines are applied to an architecture
such as Newton’s or quasi-Newton methods which require memory proportional
to the square of the number of weights in the network.

Functional Link Networks. Another related architecture is the functional-link
network [18], which is similar to a standard MLP but explicitly augments the
network with the results of scalar functions applied to the inputs. For example,
in some applications it may be known in advance that the desired output of
the network is a function of the sine and cosine of one or more inputs (e.g.,
the inputs may correspond to angles of a robot arm). In this case, one would
do well to include these values explicitly as inputs into the network instead of
forcing the network to learn a potentially difficult-to-model concept. Functional-
link networks may use any scalar function that, in the end, essentially performs a
type of preprocessing on the data. Usually, expert knowledge is used to determine
which extra scalar functions are to be incorporated into the network; that is,
there is no general technique for choosing the best preprocessor functions a
priori . However, given a set of nonlinear transformations on the input data one
can perform principal component analysis (PCA) on the nonlinear feature space
to select a subset that carries the most variance. A computationally feasible
version of this technique has been proposed in [23], which they refer to as kernel
PCA. In any event, by using the square function to augment a functional-link
network, the SMLP is once again recovered.

While I have tried to assign proper credit, it is generally accepted that the basic
idea of adding the squares of the inputs to a model is at least as old as the sage
advice “preprocessing is everything.”

7.3 Example Applications

The following three examples demonstrate problem domains in which an SMLP
can conceivably outperform an MLP or an RBFN. All of the examples are well-
known benchmarks. In each case, the output response of the models must form
local features while simultaneously spanning a large region of the input-space.
In general, the MLPs will have difficulty forming the local features, while the
RBFNs will have trouble spanning the flat regions of the input space.

7.3.1 Hill-Plateau Function Approximation

The first problem is an admittedly contrived example that was chosen precisely
because it is difficult for both MLPs and RBFNs. The “Hill-Plateau” surface [21],
displayed in Figure 7.1, has a single local bump on a sigmoidal ridge. Training
data for this problem consists of a two-dimensional uniform sampling on a 21×21
grid of the region shown in the figure while the testing data comes from a finer
41× 41 grid.
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Fig. 7.1. A hill-plateau exemplifies the differences between local and global architec-
tures. MLPs can easily form the plateau but have a hard time on the hill, while RBFNs
trivially form the hill but are troubled by the plateau.

Table 7.1. Best of twenty runs for the Hill-Plateau surface

Model # of Nodes # of Weights Test RMSE
RBFN 2 9 0.333406

3 13 0.071413
4 17 0.042067
5 21 0.002409

MLP 2 9 0.304800
3 13 0.015820
4 17 0.001201

SMLP 2 13 0.000025

Besides a standard MLP, a normalized RBFN (NRBFN) was used for this
problem, which is described by the two equations:

y =

∑
iwiri(x)∑
j rj(x)

+ a and (7.3)

ri(x) = exp(−||x− ci||2/σ2i ), (7.4)

with ci and σi being the ith basis center and width, respectively. To train the
NRBFNs the centers were first clustered in the input-space of the training pat-
terns with the k-means clustering algorithm. The width of each basis function
was then set proportional to the distance to the nearest neighbor. Afterwards,
the least-mean-square solution of the linear terms, wi and a, were solved for
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Fig. 7.2. Data for the Two-Spiral problem

exactly using a singular value decomposition to compute the pseudo-inverse. All
of this formed the initial set of weights for the quasi-Newton’s method (BFGS)
optimization routine which was used on all weights simultaneously for up to 200
epochs.

For the MLPs, a single hidden layer with the tanh(x) activation function and
a linear output was used. All weights were initially set to uniform random values
in a -0.1 to 0.1 range. All weights were then trained with quasi-Newton method
(BFGS) for up to 200 epochs. The SMLPs were setup and trained exactly as the
MLPs.

Table 7.1 shows the results for all three architectures. As can be seen, both
the RBFNs and the MLPs have a fair amount of difficulty with this task, even
though the training data is noise free and the training procedures are fairly
sophisticated. Contrary to this, the SMLP manages to nail the surface with only
two hidden nodes. Moreover, the testing error is orders of magnitude better than
the best results from the other two architectures.

7.3.2 Two-Spirals Classification

The two-spirals classification problem is a well-knownbenchmark that is extremely
challenging for all neural network architectures; additionally, virtually no results
have been reported for RBFNs as the problem is such that local models would
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have to memorize the training data with many basis functions (> 100) in order to
come even close to solving it. Thus, this is an example of a problem that RBFNs
are not even viable candidates, which is why they are not considered further. Fig-
ure 7.2 shows the data for the two-spirals problem, which consists of 194 points
on the x-y-plane that belong to one of two spirals, each of which rotates around
the origin three times.

Previous results by other researchers for this problem have mostly focused
on traditional MLPs and MLPs with shortcut connections. The best reported
results for 100% classification accuracy are summarized below:

– (Lang & Witbrock [9]): 2-5-5-5-1 MLP with shortcut connections and 138
total weights. Average convergence time of 20,000 batched backpropagation
epochs.

– (Lang & Witbrock [9]): 2-5-5-5-1 MLP with shortcut connections, 138 total
weights, and cross-entropy error function. Average convergence time of 12,000
batched backpropagation epochs.

– (Lang & Witbrock [9]): 2-5-5-5-1 MLP with shortcut connections and 138
total weights. Average of 7,900 quickprop [3] epochs.

– (Frostrom [unpublished]): 2-20-10-1 MLP with no shortcut connections and
281 weights. Required 13,900 batched backpropagation with momentum
epochs.

– (Fahlman and Lebiere [4]): Cascade-Correlation MLP using 12 to 19 hidden
units (15 average) and an average of 1700 quickprop epochs. Because of
the cascade correlation topology, these networks used between 117 and 250
weights.

As these results show, the two-spiral problem is exceptionally difficult, requiring
both complicated network topologies and long training times.

Compared to the results above, the SMLP architecture seems to be very well-
suited to this problem. An SMLP with 15 hidden hyperbolic tangent units (for
a total of only 91 weights) was trained with a conjugate gradient optimization
routine. In ten out of ten trials, the SMLP solved the two-spirals problem with an
average of 2500 training epochs (but as few as 800). Notice that the architecture
for the SMLP, both topologically and in the number of weights, is much simpler
than those used in the studies with the MLPs. As a result, the optimization
algorithms can be much more efficient. This is a case of the representation power
of an architecture simplifying the learning, thereby making weight optimization
a faster process.

Although it was not always possible to consistently train a simpler SMLP
to solve this problem, an SMLP with 10 hidden nodes (and only 61 weights)
succeeded on three separate trials, taking an average of 1500 epochs. The output
response surface of this SMLP is shown in Figure 7.3. In Section 7.5 we will
examine the different types of surfaces that can be formed by a single SMLP
hidden node. We shall see that the the SMLP’s ability to easily form local and
global features is crucial to its ability to rapidly solve the two-spiral problem.
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Fig. 7.3. SMLP reconstructed Two-Spiral surface from only ten hidden nodes

7.3.3 Vowel Classification

The Deterding vowel recognition data set [2] is another widely studied bench-
mark that is much more difficult than the two earlier problems and is also more
indicative of the type of problem that a neural network practitioner could be
faced with. The data consists of auditory features of steady state vowels spo-
ken by British English speakers. There are 528 training patterns and 462 test
patterns with each pattern consisting of 10 features and belonging to exactly
one of 11 classes that correspond to the spoken vowel. The speakers are of both
genders, making this a very interesting problem.

All results for this section use an architecture with 10 inputs, a varying number
of hidden units, and 11 outputs. Some results from previous studies are summa-
rized in Table 7.2. Some of the earlier studies are somewhat anecdotal in that
they used either a single experiment or only a few experiments but they are infor-
mative as they demonstrate what the sophisticated neural network practitioner
could expect to achieve on this problem with a wide number of architectures.
Interestingly, Robinson’s results show that a nearest neighbor classifier is very
difficult to beat for this problem. With a 56% correct classification rate, a nearest
neighbor classifier outperforms all of Robinson’s neural solutions. However, near-
est neighbor approaches require vast amounts of data to be stored as a look-up
table, so this is not a particularly encouraging result.
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The best score, reported by Hastie and Tibshirani [7], was achieved with a
Discriminant Adaptive Nearest Neighbor (DANN) classifier. The score of 61.7%
was from the best classifier found in a number of simulation studies; hence, this
score represents the best known prior result as found by an expert attempting
multiple solutions.

Table 7.3 lists the results of the experiments done specifically for this work.
Five different model/optimization combinations are shown in the table, and each
row in the table corresponds to fifty separate trials started with different random
initial conditions. For the major entries labeled as “trained” the weights of the
model were determined by conjugate gradient for models with more than 1,000
weights and quasi-Newton’s method for models with fewer than 1,000 weights.
The optimization routines were set to minimize an error function of the form
E = e2+λ||w||2 where e is the difference between the actual and desired outputs
and λ is a weight decay term that penalizes large weights. λ was set to 10−4

for all experiments. Values of λ equal to 10−3 and 10−5 consistently gave worse
results for all architectures, so 10−4 was a fair compromise.1 All MLP and SMLP
architectures used a tanh(x) activation function, while the RBFN is the same
as described in Section 7.3.1 but is unnormalized (The normalized RBFN gave
consistently inferior results). The optimization routines were always allowed to
run until convergence (change in error measure is less 10−20) unless otherwise
noted.

The weights in the RBFN and NRBFN models were “solved” with a three
step process: 1) set the centers to the cluster centers generated by the k-means
clustering algorithm applied to the input vectors of the training data; 2) set the
widths proportional to the distance to the nearest neighbor of each center; and
3) solve the remaining linear weights as a least mean square problem with a
matrix pseudo-inverse.

The SMLP architecture can be solved for in a manner similar to how the
RBFN and NRBFN networks are solved. The details of this procedure are cov-
ered in Section 7.4, but it suffices to say at this point that the procedure is nearly
identical with the exception that the weights corresponding to the centers and
the widths must be slightly transformed.

Interestingly, the SMLP can use this “solve” procedure to compute an initial
set of weights for an SMLP that is then trained with a gradient-based method.
This has the effect of predisposing the SMLP to a very good initial solution
that can be refined by the gradient-based optimization routines. The row in Ta-
ble 7.3 with the parenthetical label “hybrid” corresponds to SMLPs trained in this
way.

Three of the columns in Table 7.3 show three different ways of measuring
success for the various models, of which the only statistically significant measure
is the column labeled “% Correct (Average),” which is the average test set score
achieved after the optimization procedure halted on the training data. The scores
reported under the column heading “% Correct (Best)” correspond to the best

1 Note that since the SMLP has an extra set of weights, care must be taken to control
the capacity and avoid over-fitting the data.
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Table 7.2. Previous result on the vowel data as summarized in [19], [12], [5] [8], [6],
and [7]. All entries are either deterministic techniques or are the best scores reported,
unless the score appears with a “�,” in which case the score represents an average over
multiple runs.

Model Number of Number of Percent
Hidden Weights Correct

Single-Layer Perceptron — 11 33
Multilayer Perceptron [19] 11 253 44

22 495 45
88 1,947 51

Multilayer Perceptron [12] 5 121 50.1�

(with renormalization) 10 231 57.5�

20 451 50.6�

Stochastic Network [5] 8 297 54�

(FF-R classifier) 16 473 56�

32 825 57.9�

Radial Basis Function 88 1,936 48
528 11,616 53

Gaussian Node Network 11 253 47
22 495 54
88 1,947 53
528 11,627 55

Square Node Network 11 253 50
(not an SMLP) 22 495 51

88 1,947 55
Modified Kanerva Model 88 968 43

528 5808 50
Local Approximation 2 5808 50.0

3 5808 52.8
5 5808 53.0
10 5808 48.3
20 5808 45.0

Nearest Neighbor — (5,808) 56
Linear Discriminant Analysis — 715 44

Softmax — -?- 33
Quadratic Discriminant Analysis — -?- 47

CART — -?- 44
CART (linear comb. splits) — -?- 46

FDA / BRUTO — -?- 56
Softmax / BRUTO — -?- 50

FDA / MARS (degree 1) — -?- 55
FDA / MARS (degree 2) — -?- 58

Softmax / MARS (degree 1) — -?- 52
Softmax / MARS (degree 2) — -?- 50

LOCOCODE / Backprop 11 473 58�

(30 inputs)
DANN — -?- 61.7
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Fig. 7.4. The results from Table 7.3 shown in a graphical format: (a) the average results
shown for all models types; (b) the average of the SMLP and MLP models with error
bars shown; (c) the average of the SMLP and RBFN models with error bars shown
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Table 7.3. Results from this study: All averages are computed from 50 trials with any
result less than 33% (the score of a perceptron) being discarded as non-convergent. See
the text for an explanation of the terms “Cheating,” “Best,” “and “Average”.

Model # of # of % Correct % Correct % Correct) Standard
Hidden Weights (Cheating) (Best) (Average) Deviation

MLP 11 253 53.24 51.08 44.53 3.34
(trained) 44 979 58.00 54.76 49.54 2.55

88 1947 57.57 57.14 50.67 3.69
SMLP 11 363 63.63 60.82 53.25 5.02
(trained) 22 715 64.93 63.63 55.11 3.31

33 1067 65.15 65.15 56.54 3.92
44 1419 66.66 65.15 58.50 2.51

RBFN 11 253 —— 56.92 52.11 2.64
(solved) 22 495 —— 63.20 57.36 2.89

33 737 —— 66.88 59.03 3.45
44 979 —— 67.53 61.38 2.66
66 1463 —— 65.80 61.79 2.23
88 1947 —— 67.09 61.58 2.38

SMLP 11 363 —— 58.87 54.14 2.79
(solved) 22 715 —— 63.63 56.68 3.23

33 1067 —— 63.85 57.17 3.09
44 1419 —— 67.31 59.41 2.89
66 2123 —— 68.39 60.36 3.04
88 2827 —— 67.09 60.30 2.57

SMLP 11 363 66.66 63.85 57.19 2.98
(hybrid) 22 715 66.88 63.41 59.22 2.50

33 1067 66.45 64.71 59.64 2.81
44 1419 68.18 66.88 60.59 2.74

final test score achieved from the 50 runs, while the “% Correct (Cheating)” is the
best test score achieved at any time during the training by any of the models in
the fifty runs. Since the “solved” models have their weights computed in a single
step, the “cheating” score only has meaning for the iterative techniques. One
way of interpreting the “cheating” score is that it is the best score that could be
achieved if one had a perfect cross validation set to use for the purpose of early
stopping.

Some of the information in Table 7.3 is graphically summarized in Figure 7.3.3
and can, therefore, be better appreciated. In every case the SMLPs and the
RBFNs outperform the MLPs by a statistically significant margin. However,
the difference between the SMLPs and the RBFNs is much narrower, with the
RBFNs and the hybrid SMLPs being nearly identical performance-wise. Also
note that the hybrid training scheme appears to offer some improvement over
both the trained and the solved SMLPs.
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Fig. 7.5. A “quasi-Gaussian” activation function as a affine transformed sigmoidal

7.4 Theoretical Justification

Given the context of the numerical experiments from the previous section, we
are now ready to see how an SMLP can be thought of as a “radially extended”
version of an MLP. In this section, I will rewrite Equation 7.1 into a form that
is equivalent to an RBFN; thus, we will see how it is possible for an SMLP to
almost perfectly approximate an RBFN.

The first step is to more closely examine the sigmoidal activation function.
Let sigmoid(x) = 1/(1 + exp(−x)) and gauss(x) = exp(−x2). We can define a
quasi-Gaussian function as:

q(x) = 2− 2/(gauss(x) + 1) = 2− 2 sigmoid(x2). (7.5)

This means that a local kernel function can be formed from an affine transfor-
mation of a sigmoid whose input has been squared.

Figure 7.5 shows how the quasi-Gaussian function relates to the true Gaussian
function. Both functions are unimodal and exponentially decay in both direc-
tions. Moreover, a similar transformation can be applied to a hyperbolic tangent
function; hence, it really doesn’t matter which of the two common sigmoid func-
tions are used as either can be transformed into a basis function.

Since a basis function has a center and a width, we want to be able to form
local features of arbitrary size at an arbitrary location. Typically, this means
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that a basis function incorporates a distance measure such as Euclidean distance.
With a center denoted by ci and a width proportional to σ, we can rewrite a
normalized Euclidean distance function as follows:

1

σ2i
||x− ci||2 =

1

σ2i
(x · x− 2ci · x+ ci · ci)

=

(
− 2

σ2i
ci

)
· x+

(
1

σ2i

)
x · x+

(
1

σ2i
ci · ci

)

=
∑

j

(
− 2

σ2i
cij

)
xj +

∑

k

(
1

σ2i

)
x2k +

(
1

σ2i
ci · ci

)
(7.6)

Thus, the equation

2− 2 sigmoid

⎛

⎝
∑

j

uijxj +
∑

k

vikx
2
k + ai,

⎞

⎠ (7.7)

looks a lot like a radial basis function. By comparing Equation 7.6 to Equation 7.7
it is trivial to set the uij , vij , and ai terms in such a way that a local “bump” is
placed at a specific location with a specific width. This means that a single hidden
node in an SMLP network can form a local feature in an input of any dimension.
By way of comparison, Lapedes and Farber [10, 11] similarly constructed local
features with standard MLPs. However, in a d-dimensional input space, one
would need an MLP with two hidden layers, 2d hidden nodes in the first hidden
layers, and another hidden node in the second hidden layer, just to form a single
local “bump”.

This simple analysis shows that local features are exceptionally easy to form in
an SMLP but are potentially very difficult to form in an MLP. As mentioned in
Section 7.3.3, it is possible to exploit the similarity between SMLPs and RBFNs
and “solve” the weights in an SMLP with a non-iterative procedure. The first
step is to choose a set of basis centers that can be determined by sub-sampling
or clustering the input-space of the training data. After the centers are chosen,
the nearest neighbor of each center with respect to the other centers can be
calculated. These distances can be used as the widths of the basis centers. Next,
the centers ci and widths σi can be plugged into Equation 7.6 to determine the
values of the uij , vik and ai weights. Finally, the linear weights in the SMLP, wi

and b from Equation 7.1, can be solved for exactly by using a matrix pseudo-
inverse procedure.

Thus, one can train an SMLP as one would an MLP or one could solve an
SMLP as one would an RBFN. It is also possible to combine the approaches and
let the solved weights be the initial weights for a training procedure. Using the
procedure to solve the weights can sometimes cut the computational overhead
for computing the weight by orders of magnitude compared to typical training
methods. Moreover, as was found in the numerical experiments in Section 7.3.3,
solutions found with this hybrid scheme may easily exceed the quality of solutions
found with more traditional approaches.
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Fig. 7.6. Several difference types of surfaces and decision boundaries that can be
formed by a single SMLP node
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Fig. 7.7. Output response surfaces of the 10 hidden nodes in the SMLP network that
solved the two spiral problem

7.5 Intuitive and Topological Justification

While the previous analysis shows that an SMLP can efficiently approximate
an RBFN, the transformation from an SMLP into an RBFN examined only a
single special case of the type of features that can be formed by an SMLP node.
In fact, a single SMLP node can form many other types of features besides
hyper-sigmoids and local bumps. To show that this is indeed the case, one only
needs to compose a two-dimensional diagonal quadratic equation into a sigmoidal
function to see what type of surfaces are possible.

Figure 7.6 shows some familiar surfaces and decision boundaries that can be
formed with a single SMLP node. As expected, hyper-sigmoids and bumps can
be formed. What is interesting, however, is that there are many types of SMLP
features that are neither local nor global. For example, a ridge, wedge or saddle
may look like a local or global feature if it is projected onto one lower dimension;
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however, whether this projection is local or global depends on the subspace that
the projection is formed.

How important is it for an architecture to be able to form these features? The
very fact that these types of boundaries and surfaces have names means that
they are important enough that one may need a type of model that can efficiently
form them. However, if we reexamine the two-spirals problem from Section 7.3.2
it is possible to dissect the decision boundary formed by the SMLP (shown in
Figure 7.3) to see how the surface was formed. What it truly interesting is that
radial boundaries, wedges, and a sigmoid were all crucial to forming the entire
decision surface. If the SMLP lacked the ability to form any of these features,
then it is easily possible that the hidden node requirements for this problem
would explode.

There is, however, one caveat with the variety of features that can be formed
with a single SMLP node. The wedge, ridge, ellipse and saddle structures shown
in Figure 7.6 must always be aligned with one of the input axes. In other words,
it is impossible to make a ridge that would run parallel to the line defined by
x = y. We can see that this is true by noting that (x− y)2 has the term −2xy in
its expansion, which means that the quadratic form is non-diagonal. In general,
in order to have the ability to rotate all of the features in Figure 7.6, one would
need the full quadratic form, thus requiring a higher-order network instead of
the SMLP. Hence, while eliminating the off-diagonal terms in a higher-order
network saves a considerable number of weights, there is a cost in the types of
features that can be formed.

7.6 Conclusions

We have seen that there are problems whose solutions require features of both
local and global scope. MLPs excel at forming global features but have a difficult
time forming local features. RBFNs are exactly the opposite. The SMLP archi-
tecture can efficiently form both types of features with only a small penalty in
the number of weights. However, the increase in the number of weights is more
than compensated for by improvements in the network’s ability to form features.
This often results in simpler networks with fewer weights that can learn much
faster and approximate more accurately.

For the two main numerical studies in this work, it was found that the SMLP
architecture performed as well or better than the best known techniques for the
two-spirals problem and the Deterding vowel recognition data. Moreover, these
results are strengthened by the fact that the average performance of the SMLP
was often superior to the best known results for the other techniques.

It was also found that the dual nature of the SMLP can be exploited in the
form of hybrid algorithms. SMLPs can be “solved” like an RBFN, trained like an
MLP, or both. It is also noteworthy that the nonlinear weights in an SMLP are
only “moderately” nonlinear. For example, gradient-based learning algorithms
can be used on RBFNs but it is known that the high degree of nonlinearity found
in the weights which correspond to centers and widths can often make gradient
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training very slow for RBFNs when the nonlinear weight are included. Similarly,
since MLPs require two hidden layers of nodes to form local features efficiently,
the first layer of weights in an MLP are exceedingly nonlinear because they are
eventually passed through two layers of nonlinear nodes. Counter to this, the
nonlinear nodes in an SMLP are only passed through a single layer of nonlinear
nodes. Although it is unproven at this time, it seems like a reasonable conjecture
that SMLP networks may be intrinsically better conditioned for gradient-based
learning of local “bumps” than MLPs with two hidden layers.

Acknowledgements. I thank Frans Coetzee, Chris Darken, Lee Giles, Jenny
Orr, Ray Watrous, and the anonymous reviewers for many helpful comments
and discussions.

References

[1] Casdagli, M.: Nonlinear prediction of chaotic time series. Physica D 35, 335–356
(1989)

[2] Deterding, D.H.: Speaker Normalisation for Automatic Speech Recognition. PhD
thesis, University of Cambridge (1989)

[3] Fahlman, S.E.: Faster-learning variations on back-propagation: An empirical
study. In: Proceedings of the 1988 Connectionist Models Summer School. Mor-
gan Kaufmann (1988)

[4] Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In:
Touretzky, S. (ed.) Advances in Neural Information Processing Systems, vol. 2.
Morgan Kaufmann (1990)

[5] Finke, M., Müller, K.-R.: Estimating a-posteriori probabilities using stochastic
network models. In: Mozer, M., Smolensky, P., Touretzky, D.S., Elman, J.L.,
Weigend, A.S. (eds.) Proceedings of the 1993 Connectionist Models Summer
School, pp. 324–331. Erlenbaum Associates, Hillsdale (1994)

[6] Hastie, T., Tibshirani, R.: Flexible discriminant analysis by optimal scoring. Tech-
nical report, AT&T Bell Labs, Murray Hill, New Jersey (1993)

[7] Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence 18(6), 607–616
(1996)

[8] Hochreiter, S., Schmidhuber, J.: Lococode. Technical Report FKI-222-97, Fakultät
für Informatik, Technische Universität München (1997)

[9] Lang, K.J., Witbrock, M.J.: Learning to tell two spirals apart. In: Proceedings of
the 1988 Connectionist Models Summer School. Morgan Kaufmann, San Francisco
(1988)

[10] Lapedes, A., Farber, R.: Nonlinear signal processing using neural networks: Pre-
diction and system modelling. Technical Report LA-UR-87-2662, Los Alamos Na-
tional Laboratory, Los Alamos, NM (1987)

[11] Lapedes, A., Farber, R.: How neural nets work. In: Anderson, D.Z. (ed.) Neural
Information Processing Sysytems, pp. 442–456. American Institute of Physics,
New York (1988)

[12] Lawrence, S., Tsoi, A.C., Back, A.D.: Function approximation with neural net-
works and local methods: Bias, variance and smoothness. In: Bartlett, P., Burkitt,
A., Williamson, R. (eds.) Australian Conference on Neural Networks, pp. 16–21.
Australian National University (1996)



7. Square Unit Augmented, Radially Extended, Multilayer Perceptrons 161

[13] Lee, S., Kil, R.M.: Multilayer feedforward potential function networks. In: IEEE
international Conference on Neural Networks, pp. 1:161–1:171. SOS Printing, San
Diego (1988)

[14] Lee, Y.C., Doolen, G., Chen, H.H., Sun, G.Z., Maxwell, T., Lee, H.Y., Giles,
C.L.: Machine learning using higher order correlation networks. Physica D 22-D,
276–306 (1986)

[15] Moody, J., Darken, C.: Learning with localized receptive fields. In: Touretsky, D.,
Hinton, G., Sejnowski, T. (eds.) Proceedings of the 1988 Connectionist Models
Summer School, Morgan Kaufmann (1988)

[16] Moody, J., Darken, C.: Fast learning in networks of locally-tuned processing units.
Neural Computation 1, 281–294 (1989)

[17] Niranjan, M., Fallside, F.: Neural networks and radial basis functions in classifying
static speech patterns. Computer Speech and Language 4, 275–289 (1990)

[18] Pao, Y.H.: Adaptive Pattern Recognition and Neural Networks. Addison-Wesley
Publishing Company, Inc., Reading (1989)

[19] Robinson, A.J.: Dynamic Error Propagation Networks. PhD thesis, Cambridge
University (1989)

[20] Rumelhart, D.E., McClelland, J.L.: the PDP Research Group. In: Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition, vol. 2. MIT
Press (1986)

[21] Sarle, W.: The comp.ai.neural-nets Frequently Asked Questions List (1997)
[22] Schetzen, M.: The Volterra and Wiener Theories of Nonlinear Systems. John Wiley

and Sons, New York (1980)
[23] Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel

eigenvalue problem. Technical report, Max-Planck-Institut für biologische Kyber-
netik, 1996. Neural Computation 10(5), 1299–1319 (1998)

[24] Volterra, V.: Theory of Functionals and of Integro-differential Equations. Dover
(1959)

[25] Werbos, P.: Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis, Harvard University (1974)



8
A Dozen Tricks with Multitask Learning�

Rich Caruana

Just Research and Carnegie Mellon University,
4616 Henry Street, Pittsburgh, PA 15213

caruana@cs.cmu.edu
http://www.cs.cmu.edu/~caruana/

Abstract. Multitask Learning is an inductive transfer method that im-
proves generalization accuracy on a main task by using the information
contained in the training signals of other related tasks. It does this by
learning the extra tasks in parallel with the main task while using a
shared representation; what is learned for each task can help other tasks
be learned better. This chapter describes a dozen opportunities for ap-
plying multitask learning in real problems. At the end of the chapter we
also make several suggestions for how to get the most our of multitask
learning on real-world problems.

When tackling real problems, one often encounters valuable information that
is not easily incorporated in the learning process. This chapter shows a dozen
ways to benefit from the information that often gets ignored. The basic trick is
to create extra tasks that get trained on the same net with the main task. This
Multitask Learning is a form of inductive transfer1 that improves performance
on the main task by using the information contained in the training signals of
other related tasks. It does this by learning the main task in parallel with the
extra tasks while using a shared representation; what is learned for each task
can help other tasks be learned better.

We use the term “task” to refer to a function that will be learned from a
training set. We call the important task that we wish to learn better the main
task. Other tasks whose training signals will be used by multitask learning to
learn the main task better are the extra tasks. Often, we do not care how well
extra tasks are learned. Their sole purpose is to help the main task be learned
better. We call the union of the main task and the extra tasks a domain. Here
we restrict ourselves to domains where the tasks are defined on a common set of
input features, though some of the extra tasks may be functions of only a subset
of these input features.

This chapter shows that most real-world domains present a number of op-
portunities for multitask learning (MTL). Because these opportunities are not
� Previously published in: Orr, G.B. and Müller, K.-R. (Eds.): LNCS 1524, ISBN

978-3-540-65311-0 (1998).
1 Inductive transfer is the process of transfering anything learned for one problem to

help learning of other related problems.

G. Montavon et al. (Eds.): NN: Tricks of the Trade, 2nd edn., LNCS 7700, pp. 163–189, 2012.
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always obvious, most of the chapter is dedicated to showing different ways useful
extra tasks arise in real problems. We demonstrate several of these opportunities
using real data. The chapter ends with a few suggestions that help you get the
most out of multitask learning. Some of these suggestions are so important that
if you don’t follow them, MTL can easily hurt performance on the main task
instead of helping it.

8.1 Introduction to Multitask Learning in Backprop Nets

Consider the following boolean functions defined on eight bits, B1 · · ·B8:

Task1 = B1 ∨ Parity(B2 · · ·B6)

Task2 = ¬B1 ∨ Parity(B2 · · ·B6)

Task3 = B1 ∧ Parity(B2 · · ·B6)

Task4 = ¬B1 ∧ Parity(B2 · · ·B6)

where “Bi” represents the ith bit, “¬” is logical negation, “∨” is disjunction, “∧"
is conjunction, and “Parity(B2 · · ·B6)” is the parity of bits 2–6. Bits B7 and B8

are not used by the functions. These four tasks are related in several ways:

– they are all defined on the same inputs, bits B1 · · ·B8;
– they all ignore the same inputs, bits B7 and B8;
– each uses a common computed subfeature, Parity(B2 · · ·B6);
– when B1 = 0, Task 1 needs Parity(B2 · · ·B6), but Task 2 does not, and vice

versa;
– as with Tasks 1 and 2, when Task 3 needs Parity(B2 · · ·B6), Task 4 does

not need it, and vice versa.

We can train artificial neural nets on these tasks with backprop. Bits B1 · · ·B8

are the inputs to the net. The task values computed by the four functions are the
target outputs. We create a data set by enumerating all 256 combinations of the
eight input bits, and computing for each setting of the bits the task signals for
Tasks 1, 2, 3, and 4 using the definitions above. This yields 256 different cases,
with four different training signals for each case.

8.1.1 Single and Multitask Learning of Task 1

Consider Task 1 the main task. Tasks 2, 3, and 4 are the extra tasks. That is,
we are interested only in improving the accuracy of models trained for Task 1.
We’ve done an experiment where we train Task 1 on the three nets shown in
Figure 8.1. All the nets are fully connected feed-forward nets with 8 inputs, 100
hidden units, and 1–4 outputs. Where there are multiple outputs, each output
is fully connected to the hidden units. Nets were trained in batch mode using
backprop with MITRE’s Aspirin/MIGRAINES 6.0 with learning rate = 0.1 and
momentum = 0.9.
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Task 1 is trained alone on the net on the left of Figure 8.1. This is a backprop
net trained on a single task. We refer to this as single task learning (STL) or
single task backprop (STL-backprop). The net in the center of Figure 8.1 trains
Task 1 on a net that is also trained on Task 2. The hidden layer of this net is
shared by Tasks 1 and 2. This is multitask backprop (MTL-backprop) with two
tasks. The net on the right side of Figure 8.1 trains Task 1 with Tasks 2, 3, and
4. The hidden layer of this net is shared by all four tasks. This is MTL-backprop
with four tasks. How well will Task 1 be learned by the different nets?

INPUTS

.   .   .

Task 1

B1  B2  B3  B4  B5  B6  B7  B8

INPUTS

.   .   .

Task 1                Task 2 

B1  B2  B3  B4  B5  B6  B7  B8

INPUTS

.   .   .

Task 1               Task 2               Task 3               Task 4

B1  B2  B3  B4  B5  B6  B7  B8

Fig. 8.1. Three Neural Net Architectures for Learning Task 1

We performed 25 independent trials by resampling training and test sets from
the 256 cases. From the 256 cases, we randomly sample 128 cases for the training
set, and use the remaining 128 cases as a test set. (For now we ignore the com-
plexity of early stopping, which can be tricky with MTL nets. See section 8.3.2
for a thorough discussion of early stopping in MTL nets.)

For each trial, we trained three nets: an STL net for Task 1, an MTL net for
Tasks 1 and 2, and an MTL net for Tasks 1–4. We measure performance only
on the output for Task 1. When there are extra outputs for Task 2 or Tasks 2–4,
these are trained with backprop, but ignored when the net is evaluated. The sole
purpose of the extra outputs is to affect what is learned in the hidden layer these
outputs share with Task 1.

8.1.2 Results

Every 5000 epochs we evaluated the performance of the nets on the test set. We
measured the RMS error of the output with respect to the target values, the
criterion being optimized by backprop. We also measured the accuracy of the
output in predicting the boolean function values. If the net output is less than
0.5, it was treated as a prediction of 0, otherwise it was treated as a prediction
of 1.
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Figure 8.2 shows the RMSE for Task 1 on the test set during training. The
three curves in the graph are each the average of 25 trials.2 RMSE on the main
task, Task 1, is reduced when Task 1 is trained on a net simultaneously trained
on other related tasks. RMSE is reduced when Task 1 is trained with extra Task
2, and is further reduced when extra Tasks 3 and 4 are added. Training multiple
tasks on one net does not increase the number of training patterns seen by the
net. Each net sees exactly the same training cases. The MTL nets do not see
more training cases; they receive more training signals with each case.
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Fig. 8.2. RMSE Test-set Performance of Three Different Nets on Task 1

Figure 8.3 shows the average test-set accuracy on Task 1 for 25 trials with
the three different nets. Task 1 has boolean value 1 about 75% of the time. A
simple learner that learned to predict 1 all the time should achieve about 75%
accuracy on Task 1. When trained alone (STL), performance on Task 1 is about
80%. When Task 1 is trained with Task 2, performance increases to about 88%.
When Task1 is trained with Tasks 2, 3, and 4, performance increases further to
about 90%. Table 8.1 summarizes the results of examining the training curve
from each trial.
2 Average training curves can be misleading, particularly if training curves are not

monotonic. For example, it is possible for method A to always achieve better error
than method B, but for the average of method A to be everywhere worse than the
average of method B because the regions where performance on method A is best
do not align, but do align for method B. Before presenting average training curves,
we always examine the individual curves to make sure the average curve is not
misleading.
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Fig. 8.3. Test-set Percent Correct of Three Different Nets on Task 1

Table 8.1. Test-set performance on Task 1 of STL of Task 1, MTL of Tasks 1 and 2,
and MTL of Tasks 1, 2, 3, and 4. *** indicates performance is statistically better than
STL at .001 or better, respectively.

NET STL: 1 MTL: 1+2 MTL: 1+2+3+4

Root-Mean-Squared-Error 0.211 0.134 *** 0.122 ***
Percent Correct 79.7% 87.5% *** 88.9% ***

8.1.3 Discussion

Why is the main task learned better if it is trained on a net learning other
related tasks at the same time? We ran a number of experiments to verify that
the performance increase with MTL is due to the fact that the tasks are related,
and not just a side effect of training multiple outputs on one net.

Adding noise to neural nets sometimes improves their generalization perfor-
mance [22]. To the extent that MTL tasks are uncorrelated, their contribution
to the aggregate gradient may appear as noise to other tasks and this might
improve generalization. To see if this explains the benefits we see from MTL, in
one experiment we train Task 1 on a net with three random tasks.

A second effect to be concerned about is that adding tasks tends to increase the
effective learning rate on the input-to-hidden layer weights because the gradients
from the multiple outputs add at the hidden layer, and this might favor nets with
multiple outputs. To test this, we train an MTL net with four copies of Task
1. Each of the four outputs receives exactly the same training signal. This is a
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degenerate form of MTL where no extra information is given to the net by the
extra tasks.

A third effect that needs to be ruled out is net capacity. 100 hidden units is a
lot for these tasks. Does the MTL net, which has to share the 100 hidden units
among four tasks, generalize better because each task has fewer hidden units?
To test for this, we train Task 1 on STL nets with 200 hidden units and with
25 hidden units. This will tell us if generalization would be better with more or
less capacity.

Finally, we ran a fourth experiment based on the heuristic used in [37]. We
shuffle the training signals (the target output values) for Tasks 2, 3, and 4 before
training an MTL net on the four tasks. Shuffling reassigns the target values to
the input vectors in the training set for Tasks 2, 3, and 4. The main task, Task
1, is not affected. The distributions of the training signals for outputs 2–4 have
not changed, but the training signals are no longer related to Task 1. This is a
powerful test that has the potential to rule-out many mechanisms that do not
depend on relationships between the tasks.

We ran each experiment 25 times using exactly the same data sets used in
the previous section. Figure 8.4 shows the generalization performance on Task
1 in the four experiments. For comparison, the performance of of STL, MTL
with Tasks 1 and 2, and MTL with Tasks 1–4 from the previous section are also
shown.

When Task 1 is trained with random extra tasks, performance on Task 1 drops
below the performance on Task 1 when it is trained alone on an STL net. We
conclude MTL of Tasks 1–4 probably does not learn Task 1 better by adding
noise to the learning process through the extra outputs.

When Task 1 is trained with three additional copies of Task 1, the performance
is comparable to that when Task 1 is trained alone with STL.3 We conclude
that MTL does not learn Task 1 better just because backprop works better with
multiple outputs.

When Task 1 is trained on an STL net with 25 hidden units, performance
is comparable to the performance with 100 hidden units. Moreover, when Task
1 is trained on an STL net with 200 hidden units, it is slightly better. (The
differences between STL with 25, 100, and 200 hidden units are not statistically
significant.) We conclude that performance on Task 1 is relatively insensitive
to net size for nets between 25 and 200 hidden units, and, if anything, Task 1
would benefit from a net with more capacity, not one with less capacity. Thus
it is unlikely that MTL on Tasks 1–4 performs better on Task 1 because Tasks
2–4 are using up extra capacity that is hurting Task 1.

3 We sometimes observe that training multiple copies of a task on one net does improve
performance. When we have observed this, the benefit is never large enough to
explain away the benefits observed with MTL. But it is interesting and surprising,
as the improvement is gained without any additional information being given to
the net. The most likely explanation is that the multiple connections to the hidden
layer allow different hidden layer predictions to be averaged and thus act as a weak
boosting mechanism.
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Fig. 8.4. RMSE test-set performance of Task 1 when trained with: MTL with three
random tasks; MTL with three more copies of Task 1; MTL with shuffled training
signals for Tasks 2–4; STL on nets with 25 or 200 hidden units.

When Task 1 is trained with training signals for Tasks 2–4 that have been
shuffled, the performance of MTL drops below the performance of Task 1 trained
alone on an STL net. Clearly the benefit we see with MTL on these problems is
not due to some accident caused by the distribution of the extra outputs. The
extra outputs must be related to the main task to help it.

These experiments rule out most explanations for why MTL outperforms STL
on Task 1 that do not require Tasks 2–4 be related to Task 1. So why is the main
task learned better when trained in parallel with Tasks 2–4?

One reason is that Task 1 needs to learn the subfeature Parity(B2 · · ·B6)
that it shares with Tasks 2–4. Tasks 2–4 give the net information about this
subfeature that it would not get from Task 1 alone. For example, when B1 = 1,
the training signal for Task 1 contains no information about Parity(B2 · · ·B6).
We say B1 masks Parity(B2 · · ·B6) when B1 = 1. But the training signals for
Task 2 provide information about the Parity subfeature in exactly those cases
where Task 1 is masked. Thus the hidden layer in a net trained on both Tasks
1 and 2 gets twice as much information about the Parity subfeature as a net
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trained on one of these tasks, despite the fact that they see exactly the same
training cases. The MTL net is getting more information with each training case.

Another reason why MTL helps Task 1 is that all the tasks are functions of
the same inputs, bits B1 · · ·B6, and ignore the same inputs, B7 and B8. Because
the tasks overlap on the features they use and don’t use, the MTL net is better
able select which input features to use.

A third reason why MTL helps Task 1 is that there are relationships be-
tween the way the different tasks use the inputs that promote learning good
internal representations. For example, all the tasks logically combine input B1

with a function of inputs B2 · · ·B6. This similarity tends to prevent the net from
learning internal representations that, for example, directly combine bits B1 and
B2. A net trained on all the tasks together is biased to learn more modular, in
this case more correct, internal representations that support the multiple tasks.
This bias towards modular internal representations reduces the net’s tendency
to learn spurious correlations that occur in any finite training sample: there may
be a random correlation between bit B3 and the output for Task 1 that looks
fairly strong in this one training set, but if that spurious correlation does not
also help the other tasks, it is less likely to be learned.

8.2 Tricks for Using Multitask Learning in the Real
World

The previous section introduced multitask learning (MTL) in backprop nets us-
ing four tasks carefully designed to have relationships that make learning them
in parallel work better than learning them in isolation. How often will real prob-
lems present extra tasks that allow multitask learning to improve performance
on the main task?

This section shows that many real world problems yield opportunities for mul-
titask learning. We present a dozen prototypical real-world applications where
the training signals for related extra tasks are available and can be leveraged.
We believe most real-world problems fall into one or more of these prototypical
classes. This claim might sound surprising given that few of the test problems
traditionally used in machine learning are multitask problems. We believe most
of the problems used in machine learning so far have been heavily preprocessed
to fit the single task learning mold. Most of the opportunities for MTL in these
problems were eliminated as the problems were defined.

8.2.1 Using the Future to Predict the Present

Often valuable features become available after predictions must be made. If
learning is done offline, these features can be collected for the training set and
used for learning. These features can’t be used as inputs, because they will not
be available when making predictions for future test cases. They can, however,
be used as extra outputs for multitask learning. The predictions the learner
makes for these extra tasks will be ignored when the system is used to make
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predictions for the main task. Their sole function is to provide extra information
to the learner during training so that it can learn the main task better.

One source of applications of learning from the future is sequential decision
making in medicine. Given the initial symptoms, decisions are made about what
tests to make and what treatment to begin. New information becomes available
when the tests are completed and as the patient responds (or fails to respond) to
the treatment. From this new information, new decisions are made. Should more
tests be made? Should the treatment be changed? Has the patient’s condition
changed? Is this patient now high risk, or low risk? Does the patient need to be
hospitalized? Etc.

When machine learning is applied to early stages in the decision making pro-
cess, only those input features that typically would be available for patients at
this stage of the process are usually used. This is unfortunate. In an historical
database, all of the patients may have run the full course of medical testing and
treatment and their final outcome may be known. Must we ignore the results of
lab tests and other valuable features in the database just because these will not
be available for patients at the stage of medical decision making for which we
wish to learn a model?

The Pneumonia Risk Prediction Problem. Consider pneumonia. There
are 3,000,000 cases of pneumonia each year in the U.S., 900,000 of which get
hospitalized. Most pneumonia patients recover given appropriate treatment, and
many can be treated effectively without hospitalization. Nonetheless, pneumonia
is serious: 100,000 of those hospitalized for pneumonia die from it, and many
more are at elevated risk if not hospitalized.

Consider the problem of predicting a patient’s risk from pneumonia before
they are hospitalized. (The problem is not to diagnose if the patient has pneu-
monia, but to determine how much risk the pneumonia poses to the patient.) A
primary goal in medical decision making is to accurately, swiftly, and econom-
ically identify patients at high risk from diseases like pneumonia so that they
may be hospitalized to receive aggressive testing and treatment; patients at low
risk may be more comfortably, safely, and economically treated at home.

Some of the most useful features for assessing risk are the lab tests that
become available only after a patient is hospitalized. It is the extra lab tests
made after patients are admitted to the hospital that we use as extra tasks for
MTL; they cannot be used as inputs because they will not be available for most
future patients when making the decision to hospitalize.4

The most useful decision aid for this problem would be to predict which pa-
tients will live or die. This is too difficult. In practice, the best that can be
achieved is to estimate a probability of death (POD) from the observed symp-
toms. In fact, it is sufficient to learn to order patients by POD so lower-risk
patients can be discriminated from higher risk patients; patients at least risk
may then be considered for outpatient care.
4 Other researchers who tackled this problem ignored the the lab tests because they

knew they would not be available at run time and did not see ways to use them
other than as inputs.
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The performance criteria used by others working with this database [15] is the
accuracy with which one can select prespecified fractions of a patient population
who will live. For example, given a population of 10,000 patients, find the 20%
of this population at least risk. To do this we learn a risk model, and a threshold
for this risk model, that allows 20% of the population (2000 patients) to fall
below it. If 30 of the 2000 patients below this threshold die, the error rate is
30/2000 = 0.015. We say that the error rate for FOP 0.20 is 0.015 (FOP stands
for “fraction of population”). Here we consider FOPs 0.1, 0.2, 0.3, 0.4, and 0.5.
Our goal is to learn models and thresholds such that the error rate at each FOP
is minimized.

Multitask Learning and Pneumonia Risk Prediction. The straightfor-
ward approach to this problem is to use backprop to train an STL net to learn
to predict which patients live or die, and then use the real-valued predictions
of this net to sort patients by risk. This STL net has 30 inputs for the 30 ba-
sic pre-hospitalization measurements, a single hidden layer, and a single output
trained with targets 0=lived, 1=died.5 Given a large training set, a net trained
this way should learn to predict the probability of death for each patient, not
which patients live or die. If the training sample is small, the net will overfit
and learn a very nonlinear function that outputs values near 0/1 for cases in
the training set, but which does not generalize well. It is critical to use early
stopping to halt training before this happens.

We developed a method called Rankprop specifically for this domain. Rankprop
learns to rank patients without learning to predict mortality (0=lived,1=died).
Figure 8.5 compares the performance of squared error on 0/1 targets with
rankprop on this problem. Rankprop outperforms traditional backprop using
squared error on targets 0=lived,1=died by 10%-40% on this domain, depend-
ing on which FOP is used for comparison. See [9] for details about rankprop.6

There are 35 future lab values that we use as extra backprop outputs, as shown
in Figure 8.6. The expectation is that these extra outputs will bias the shared
hidden layer toward representations that better capture important features of
each patient’s condition, and that this will lead to more accurate predictions of
patient risk at the main task output.

The STL net has 30 inputs, 8 hidden units, and one output trained to predict
risk with rankprop. The MTL net has the same 30 inputs, 64 hidden units, one
output for rankprop, and 35 extra outputs trained with squared error. (Prelim-
inary experiments suggested 8–32 hidden units was optimal for STL, and that
MTL performs best with nets as large as 512 hidden units. We used 8 and 64
hidden units so that we could run many experiments.) The 35 extra outputs on

5 We tried both squared error and cross entropy. The difference between the two was
small. Squared error performed slightly better.

6 We use rankprop for the rest of our experiments on this domain because it is the
best performer we know of on this problem. We want to see if MTL can make the
best method better.
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Fig. 8.5. The performance of SSE (0/1 targets) and rankprop on the 5 FOPs in the
pneumonia domain. Lower error indicates better performance.

the MTL net (see Figure 8.6) are trained at the same time the net is trained to
predict risk.

We train the net using training and validation sets containing 1000 patients
randomly drawn from the database. Training is halted on both the STL and
MTL nets when overfitting is observed on the main rankprop risk task. On the
MTL net, the performance of the extra tasks is not taken into account for early
stopping. Only the performance of the output for the main task is considered
when deciding when to stop training. (See section 8.3.2 for more discussion of
early stopping with MTL nets.) Once training is halted, the net is tested on the
remaining unused patients in the database.

Results. Table 8.2 shows the mean performance of ten runs of rankprop using
STL and MTL. The bottom row shows the percent improvement in performance
obtained on this problem by using the future lab measurements as extra MTL
outputs. Negative percentages indicate MTL reduces error. Although MTL low-
ers the error at each FOP compared with STL, only the differences at FOP 0.3,
0.4, and 0.5 are statistically significant with ten trials using a standard t-test.

The improvement from MTL is 5–10%. This improvement can be of consid-
erable consequence in medical domains. To verify that the benefit from MTL is
due to relationships between what is learned for the future labs and the main
task, we ran the shuffle test (see section 8.1.3). We shuffled the training signals
for the extra tasks in the training sets before training the nets with MTL.
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Table 8.2. Error Rates (fraction deaths) for STL with Rankprop and MTL with
Rankprop on Fractions of the Population predicted to be at low risk (FOP) between
0.0 and 0.5. MTL makes 5–10% fewer errors than STL.

FOP 0.1 0.2 0.3 0.4 0.5
STL Rankprop .0083 .0144 .0210 .0289 .0386
MTL Rankprop .0074 .0127 .0197 .0269 .0364

% Change -10.8% -11.8% -6.2% * -6.9% * -5.7% *

Figure 8.7 shows the results of MTL with shuffled training signals for the
extra tasks. The results of STL and MTL with unshuffled extra tasks are also
shown. Shuffling the training signals for the extra tasks reduces the performance
of MTL below that of STL. We conclude that it is the relationship between the
main task and the extra tasks that lets MTL perform better on the main task;
the benefit disappears when these relationships are broken by shuffling the extra
task signals.

We have also run experiments where we use the future lab tests as inputs to
a net trained to predict risk, and impute the values for the lab tests when they
are missing on future test cases. Imputing missing values for the lab tests did
not yield performance comparable to MTL on this problem. Similar experiments
with feature nets [17] also failed to yield improvements comparable to MTL.
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Fig. 8.7. Performance of STL, MTL, and MTL with shuffled extra task signals on
pneumonia risk prediction at the five FOPs

Future measurements are available in many offline learning problems. As just
one very different example, a robot or autonomous vehicle can more accurately
measure the size, location, and identity of objects if it passes nearer them in
the future. For example, road stripes and the edge of the road can be detected
reliably as a vehicle passes alongside them, but detecting them far ahead of the
vehicle is hard. Since driving brings future road closer to the car, stripes and
road borders can be measured accurately as the car passes them. Dead reckoning
allows these future measurements to be added to the training set. They can’t be
used as inputs; They won’t be available in time while driving. But they can be
used to augment a training set. We suspect that using future measurements as
extra outputs will be a frequent source of extra tasks in real problems.

8.2.2 Multiple Metrics

Sometimes it is hard to capture everything that is important in one error metric.
When alternate metrics capture different, but useful, aspects of a problem, MTL
can be used to benefit from the multiple metrics. One example of this is the
pneumonia problem in the previous section. Rankprop outperforms backprop
using traditional squared error on this problem, but has trouble learning to
rank cases at such low risk that virtually all patients survive because these
cases provide little ordering information. Interestingly, squared error performs
best when cases have high purity, such as in regions of feature space where
most cases have low risk. Squared error is at its best where rankprop is weakest.
Adding an extra output trained with squared error to a net learning to predict
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pneumonia risk with rankprop improves the accuracy of the rankprop output an
additional 5-10% for the least-risk cases. The earliest example of using multiple
output representations we know of is [38] which uses both SSE and cross-entropy
outputs for the same task.

8.2.3 Multiple Output Representations

Sometimes it is not apparent what output encoding is best for a problem. Dis-
tributed output representations often help parts of a problem be learned well
because the parts have separate error gradients. But non-distributed output
representations are sometimes more accurate. Consider the problem of learn-
ing to classify a face as one of twenty faces. One output representation is to
have one output code for each face. Another representation is to have outputs
code for features such as beard/no_beard, glasses/no_glasses, long_hair/short,
eye_color(blue, brown), male/female, that are sufficient to distinguish the faces.
Correct classification, however, may require that each feature be correctly pre-
dicted. The non-distributed output coding that uses one output for each individ-
ual may be more reliable. But training the net to recognize specific traits should
help, too. MTL is one way to merge these conflicting requirements in one net by
using both output representations, even if only one representation will be used
for prediction.

A related approach to multiple output encodings is error correcting codes
[18]. Here, multiple encodings for the outputs are designed so that the combined
prediction is less sensitive to occasional errors in some of the outputs. It is not
clear how much ECOC benefits from MTL-like mechanisms. In fact, ECOC may
benefit from being trained on STL nets (instead of MTL nets) so that different
outputs do not share the same hidden layer and thus are less correlated. But
see [27] for ways of using MTL to decorrelate errors in multiple outputs to boost
committee machine performance.

8.2.4 Time Series Prediction

The simplest way to use MTL for time series prediction is to use a single net
with multiple outputs, each output corresponding to the same task at a different
time. This net makes predictions for the same task at different times. We tested
this on a robot domain where the goal is to predict what the robot will sense 1,
2, 4, and 8 meters in the future as it moves forward. Training all four of these
distances on one MTL net improved the accuracy of the long range predictions
about 10% (see chapter 17 where MTL is used in a time series application).

8.2.5 Using Non-operational Features

Some features are impractical to use at run time, either because they are too
expensive to compute, or because they need human expertise that won’t be
available. We usually have more time, however, to prepare our training sets.
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When it is impractical to compute some features on the fly at run time, but
practical to compute them for the training set, these features can be used as
extra outputs to help learning. Pattern recognition provides a good example of
this. We tested MTL on a door recognition problem where the goal is to recognize
doorways and doorknobs. The extra tasks were features such as the location of
door edges and doorway centers that required laborious hand labelling that
would not be applied to the test set. The MTL nets that were trained to predict
these additional hand-labelled features were 25% more accurate at locating doors
and doorknobs. Other domains where hand-labelling can be used to augment
training sets this way include text domains, medical domains, acoustic domains,
and speech domains.

8.2.6 Using Extra Tasks to Focus Attention

Learning often uses large, ubiquitous patterns in the inputs, while ignoring small
or less common inputs that might also be useful. MTL can be used to coerce
the learner to attend to patterns in the input it would otherwise ignore. This is
done by forcing it to learn internal representations to support related tasks that
depend on these patterns.

A good example is road following. Here, STL nets often ignore lane markings
when learning to steer because lane markings are usually a small part of the
image, are constantly changing, and are often difficult to see (even for humans).
If a net learning to steer is also required to learn to recognize road stripes, the net
will learn to attend to those parts of the image where stripes occur. To the extent
that the stripe tasks are learnable, the net will develop internal representations
to support them. Since the net is also learning to steer using the same hidden
layer, the steering task can use the parts of the stripe hidden representation that
are useful for steering.

We tested this idea using a road image simulator developed by Pomerleau
to permit rapid testing of learning methods for road-following domains [28].
Figure 8.8 shows several 2-D road images.

The principal task is to predict steering direction. For the MTL experiments,
we used eight additional tasks:

• whether the road is one or two lanes • location of centerline (if any)
• location of left edge of road • location of right edge of road
• location of road center • intensity of road surface
• intensity of region bordering road • intensity of centerline (if any)

These additional tasks are all computable from the internal variables in the
simulator. Table 8.3 shows the average performance of ten runs of single and
multitask learning on each of these tasks. The MTL net has 32 inputs, 16 hidden
units, and 9 outputs. The 36 STL nets have 32 inputs, 2, 4, 8 or 16 hidden units,
and 1 output each.

The last two columns compare STL and MTL. The first is the percent reduc-
tion in error of MTL over the best STL run. Negative percentages indicate MTL
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Fig. 8.8. Sample single and two lane roads generated with Pomerleau’s road simulator

performs better. The last column is the percent improvement of MTL over the
average STL performance. On the important steering task, MTL outperforms
STL 15–30%.

We ran a follow-up experiment to test how important centerstripes are to the
STL and MTL nets. We eliminated the stripes from the images in a test set. If
MTL learned more about centerstripes than STL, and uses what it learned about
centerstripes for the main steering task, we expect to see steering performance
degrade more for MTL than for STL when we remove the centerstripes from the
images. Error increased more for the MTL nets than for the STL nets, suggesting
the MTL nets are making more use of the stripes in the images.

Table 8.3. Performance of STL and MTL on the road following domain. The under-
lined entries in the STL columns are the STL runs that performed best. Differences
statistically significant at .05 or better are marked with an *.

ROOT-MEAN SQUARED ERROR ON TEST SET

TASK Single Task Backprop (STL) MTL Change MTL Change MTL
2HU 4HU 8HU 16HU 16HU to Best STL to Mean STL

1 or 2 Lanes .201 .209 .207 .178 .156 -12.4% * -21.5% *
Left Edge .069 .071 .073 .073 .062 -10.1% * -13.3% *
Right Edge .076 .062 .058 .056 .051 -8.9% * -19.0% *
Line Center .153 .152 .152 .152 .151 -0.7% -0.8%
Road Center .038 .037 .039 .042 .034 -8.1% * -12.8% *
Road Greylevel .054 .055 .055 .054 .038 -29.6% * -30.3% *
Edge Greylevel .037 .038 .039 .038 .038 2.7% 0.0%
Line Greylevel .054 .054 .054 .054 .054 0.0% 0.0%
Steering .093 .069 .087 .072 .058 -15.9% * -27.7% *
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8.2.7 Hints: Tasks Hand-Crafted by a Domain Expert

Extra outputs can be used to inject rule hints into nets about what they should
learn [32, 33]. This is MTL where the extra tasks are carefully engineered to
coerce the net to learn specific internal representations. Hints can also be pro-
vided to backprop nets via extra terms in the error signal backpropagated for
the main task output [1, 2]. The extra error terms constrain what is learned to
satisfy desired properties of main task such as monotonicity [31], symmetry, or
transitivity with respect to certain sets of inputs. MTL, which does not use extra
error terms on task outputs, could be used in concert with these techniques.

8.2.8 Handling other Categories in Classification

In real-world applications of digit recognition, some of the images given to the
classifier may be alphabetic characters or punctuation marks instead of digits.
One way to prevent accidentally classifying a “t” as a one or seven is to create
an “other” category that is the correct classification for non-digit images. The
large variety of characters mapped to this “other” class makes learning this class
potentially very difficult. MTL suggests an alternate way to do this. Split the
“other” class into separate classes for the individual characters that are trained
in parallel with the main digit tasks. A single output coding for the “other” class
can be used, as well. Breaking the “other” category into multiple tasks gives the
net more learnable error signal for these cases [26].

8.2.9 Sequential Transfer

MTL is parallel transfer. Often tasks arise serially and we can’t wait for all of
them to begin learning. In these cases we can use parallel transfer to perform
sequential transfer. If the training data can be stored, do MTL using whatever
tasks are available when it is time to start learning, and re-train as new tasks or
new data arise. If training data cannot be stored, or if we already have models for
which data is not available, we can still use MTL. Use the models to generate
synthetic data that is then used as extra training signals. This approach to
sequential transfer avoids catastrophic interference (forgetting old tasks while
learning new ones). Moreover, it is applicable where the analytical methods of
evaluating domain theories required by some serial transfer methods [29, 34] are
not available. For example, the domain theory need not be differentiable, it only
needs to make predictions. One issue that arises when synthesizing data from
prior models is what distribution to sample from. See [16] for a discussion of
synthetic sampling.

8.2.10 Similar Tasks With Different Data Distributions

Sometimes there are multiple instances of the same problem, but the distribution
of samples differs for each instantiation. For example, most hospitals diagnose
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and treat the same diseases, but the demographics of the patients each hospital
serves is different. Hospitals in Florida see older patients, urban hospitals see
poorer patients, etc. Models trained separately for each hospital would perform
best, but often there is insufficient data to train a separate model for each hos-
pital. Pooling the data, however, may not lead to models that are accurate for
each hospital. MTL provides one solution to this problem. Use one net to make
predictions for each hospital, using a different output on the net for each hos-
pital. Because each patient is a training case for only one hospital, error can be
backpropagated only through the one output that has a target value for each
input vector.

8.2.11 Learning with Hierarchical Data

In many domains, the data falls in a hierarchy of classes. Most applications of
machine learning to hierarchical data make little use of the hierarchy. MTL pro-
vides one way of exploiting hierarchical information. When training a model to
classify data at one level in the hierarchy, include as extra tasks the classification
tasks that arise for ancestors, descendants, and siblings of the current classifi-
cation task. The easiest way to to accomplish this is to train one MTL net to
predict all class distinctions in the hierarchy at the same time.

8.2.12 Some Inputs Work Better as Outputs

The common practice in backprop nets is to use all features that will be available
for test cases as inputs, and have outputs only for tasks that need to be pre-
dicted. On real problems, however, learning often works better given a carefully
selected subset of the features to use inputs[7, 23, 24]. One way to benefit from
features not used as inputs is to use them as extra outputs for MTL. We’ve done
experiments with both synthetic and real problems where moving some features
from the input side of the net to the output side of the net improves performance
on the main task. We use feature selection to select those features that should
be used as inputs, and then treat some of the remaining features as extra tasks.

Figure 8.9 shows the ROC Area on a pneumonia problem as the number of
input features on the backprop net varies.7 ROC Areas closer to 1 indicate better
performance. There are 192 features available for most patients. Using all 192
features as inputs (Net1) is suboptimal. Better performance is obtained by using
the first 50 features selected with feature selection (Net2). The horizontal line at
the top of the graph (Net3) shows the ROC Area obtained by using the first 50
features as inputs, and the next 100 features as extra outputs. Using these same
150 features all as inputs (Net4) yields worse performance.8

7 This is not the same pneumonia problem used in section 8.2.1.
8 Although the 95% confidence intervals for Net2 and Net3 overlap with ten trials, a

paired t-test shows the results are significant at .01.
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Fig. 8.9. ROC Area on the Pneumonia Risk Prediction Task vs. the number of input
features used by the backprop net

8.3 Getting the Most Out of MTL

The basic machinery for doing multitask learning in neural nets is present in
backprop. Backprop, however, was not designed to do MTL well. This chapter
presents suggestions for how to make MTL in backprop nets work better. Some
of the suggestions are counterintuitive, but if not used, can cause MTL to hurt
generalization on the main task instead of helping it.

8.3.1 Use Large Hidden Layers

The basic idea behind MTL in backprop nets is that what is learned in the
hidden layer for one task can be useful to other tasks. MTL works when tasks
share hidden units. One might think that small hidden layers would help MTL
by promoting sharing between tasks.

For the kinds of problems we’ve examined here, this usually does not work.
Usually, tasks are different enough that much of what each task needs to learn
does not transfer to many (or any) other tasks. Using a large hidden layer insures
that there are enough hidden units for tasks to learn independent hidden layer
representations when they need to. Sharing can still occur, but only when the
overlap between the hidden layer representations for different tasks is strong. In
many real-world problems, the loss in accuracy that results from forcing tasks
to share by keeping the hidden layer small is larger than the benefit that arises
from the sharing. Usually it is important to use large hidden layers with MTL.

8.3.2 Do Early Stopping for Each Task Separately

The classic NETtalk application [30] used one trained both phonemes and stresses
on one backprop net. NETtalk is an early example of MTL. But the builders
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Fig. 8.10. On NETtalk, the Stress task trains very quickly and overfits long before the
Phoneme task reaches peak performance

of NETtalk viewed the multiple outputs as codings for a single problem, not as
independent tasks that benefited each other by being trained together.

Figure 8.10 shows the learning curves for the phoneme and stress subtasks
separately. It is clear that the stress tasks begin to overfit before the phoneme
tasks reach peak performance. Better performance could be obtained on NETtalk
by doing early stopping on the stress and phoneme tasks individually, or by
balancing their learning rates so they reach peak performance at the same time.

Early stopping prevents overfitting by halting the training of error-driven
procedures like backprop before they achieve minimum error on the training set
(see chapter 2). Recall the steering prediction problem from section 8.2.6. We
applied MTL to this problem by training a net on eight extra tasks in addition
to the main steering task. Figure 8.11 shows nine learning curves, one for each of
the tasks on this MTL net. Each graph is the validation set error during training.

Table 8.4 shows the best place to halt each task. There is no one epoch where
training can be stopped so as to achieve maximum performance on all tasks.
If all tasks are important, and one net is used to predict all the tasks, halting
training where the error summed across all outputs is minimized is the best you
can do. Figure 8.12 shows the combined RMS error of the nine tasks. The best
average RMSE occurs at 75,000 backprop passes.
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Fig. 8.11. Test-Set Performance of MTL Net Trained on Nine Tasks

But using one net to make predictions for all the tasks is suboptimal. Better
performance is achieved by using the validation set to do early stopping on each
output individually. The trick is to make a copy of the net at the epoch where
performance on each task is best, and use this copy to make predictions for that
task. After making each copy, continue training the net until the other tasks
reach peak performance. Sometimes, it is best to continue training all outputs
on the net, including those that have begun to overfit. Sometimes, it is better
to stop training (or use a lower learning rate) for outputs that have begun to
overfit. Keep in mind that once an output has begun to overfit, we no longer
care how well the net performs on that task because we have a copy of the net
from an earlier epoch when performance on that task was best. The only reason
to continue training the task is because it may benefit other tasks that have not
reached peak performance yet.



184 R. Caruana

0.55

0.6

0.65

0.7

0.75

0.8

0 200000 400000 600000 800000 1e+06

 r
oo

t-
m

ea
n-

sq
ua

re
d-

er
ro

r 

 backprop passes (epochs x 100) 

all_9_tasks_combined

Fig. 8.12. Combined Test-Set Performance on all Nine Tasks

Table 8.4. Performance of MTL on the nine tasks in the steering domain when training
is halted on each task individually compared with halting using the combined error
across all tasks

TASK Halted Individually Halted Combined Difference
BP Pass Performance BP Pass Performance

1: 1 or 2 Lanes 100000 0.444 75000 0.456 2.7%
2: Left Edge 100000 0.309 75000 0.321 3.9%
3: Right Edge 100000 0.376 75000 0.381 1.3%
4: Line Center 75000 0.486 75000 0.486 0.0%
5: Road Center 200000 0.208 75000 0.239 14.9%
6: Road Greylevel 750000 0.552 75000 0.680 23.2%
7: Edge Greylevel 375000 0.518 75000 0.597 15.3%
8: Line Greylevel 1 1.010 75000 1.158 14.7%
9: Steering 125000 0.276 75000 0.292 5.8%

Table 8.4 compares the performance of early stopping done per task with
the performance one obtains by halting training for the entire MTL net at one
place using the combined error. On average, early stopping for tasks individually
reduces error 9.0%. This is a large difference. For some tasks, the performance
of the MTL net is worse than the performance of STL on this task if the MTL
net is not halted on that task individually.

Before leaving this topic, it should be mentioned that the training curves for
the individual outputs on an MTL net are not necessarily monotonic. While it is
not unheard of for the test-set error of an STL net to be multimodal, the training-
set error for an STL net should descend monotonically or become flat. This is
not true for the errors of individual outputs on an MTL net. The training-set
error summed across all outputs should never increase, but any one output may
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exhibit more complex behavior. The graph for road_greylevel (graph number 6)
in Figure 8.11 shows a multimodal test-set curve. The training set curve for this
output is similar. This makes judging when to halt training more difficult with
MTL nets. Because of this, we always do early stopping on MTL nets by training
past the epoch where performance on each task appears to be best, and either
retrain the net a second time (with the same random seed) to get the copies,
or are careful to keep enough copies during the first run that we have whatever
copies we will need.

8.3.3 Use Different Learning Rates for Different Tasks

Is it possible to control the rates at which different tasks train so they each reach
their best performance at the same time? Would best performance on each task
be achieved if each task reached peak performance at the same time? If not, is
it better for extra tasks to learn slower or faster than the main task?

The rate at which different tasks learn using vanilla backprop is rarely optimal
for MTL. Task that train slower than the main task will not have learned enough
to help the main task when training on the main task is stopped. Tasks that
train faster than the main task may overfit so much before the main task is
learned well that either what they have learned is no longer useful to the main
task, or they may drive the main task into premature overfitting.

The most direct method of controlling the rate at which different tasks learn
is to use a different learning rate for each task, i.e., for each output. We have
experimented with using gradient descent to find learning rates for each extra
output to maximize the generalization performance on the main task. Table 8.5
shows the performance on the main steering task before and after optimizing the
learning rates of the other eight extra tasks. Optimizing the learning rates for the
extra MTL tasks improved performance on the main task an additional 11.5%.
This improvement is over and above the original improvement of 15%–25% for
MTL over STL.

Examining the training curves for all the tasks as the learning rates are op-
timized shows that the changes in the learning rates of the extra tasks has a
significant effect on the rate at which the extra tasks are learned. Interestingly,
it also has a significant effect on the rate at which the main task is learned.

Table 8.5. Performance of MTL on the main Steering Direction task before and after
optimizing the learning rates of the other eight extra tasks

TRIAL Before Optimization After Optimization Difference
Trial 1 0.227 0.213 -6.2%
Trial 2 0.276 0.241 -12.7%
Trial 3 0.249 0.236 -5.2%
Trial 4 0.276 0.231 -16.3%
Trial 5 0.276 0.234 -15.2%
Average 0.261 0.231 -11.5% *
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This is surprising because we keep the learning rate for the main task fixed
during optimization. Perhaps even more interesting is the fact that optimizing
the learning rate to maximize the generalization accuracy of the main task also
improved generalization on the extra tasks nearly as much as it helped the main
task. What is good for the goose appears to be good for the gander.

8.3.4 Use a Private Hidden Layer for the Main Task

Sometimes the optimal number of hidden units is 100 hidden units or more per
output. If there are hundreds of extra tasks this translates to thousands of hidden
units. This not only creates computational difficulties, but degrades performance
on the main task because most of the hidden layer repersentation is constructed
for other tasks. The main task output unit has a massive hidden unit selection
problem as it tries to use only those few hidden units that are useful to it.

      I n p u t s

Main Output(s)Extra Outputs

MTL Hidden
  Layer

Private Hidden
Layer for Main

 fully connected
to input features

 fully connected
to input features

...

Fig. 8.13. MTL Architecture With a Private Hidden Layer for the Main Task(s), and
a Shared Hidden Layer Used by the Main Task(s) and the Extra Tasks

Figure 8.13 shows a net architecture that solves this problem. Instead of one
hidden layer shared equally by all tasks, there are two disjoint hidden layers.
Hidden layer 1 is a private hidden layer used only by the main task(s). Hidden
layer 2 is shared by the main task(s) and the extra tasks. This is the hidden layer
that supports MTL transfer. Because the main task sees and affects the shared
hidden layer, but the extra tasks do not affect the hidden layer reserved for the
main tasks(s), hidden layer 2 can be kept small without hurting the main task.

8.4 Chapter Summary

We usually think of the inputs to a backprop net as the place where information is
given to the net, and the outputs as the place where the net outputs predictions.
Backprop, however, pushes information into the net through the outputs during
training. The information fed into a net through its outputs is as important as
the information fed into it through its inputs.
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Multitask Learning is a way of using the outputs of a backprop net to push
additional information into the net during training. If the net architecture allows
sharing of what is learned for different outputs, this additional information can
help the main task be learned better. (See [5, 6, 4, 8, 3, 9, 11, 10, 20, 35, 36, 12,
21, 13, 14] for additional discussion about multitask learning.)

MTL trains multiple tasks in parallel not because this is a more efficient way
to learn multiple tasks, but because the information in the training signals for
the extra tasks can help the main task be learned better. Sometimes what is
optimal for the main task is not optimal for the extra tasks. It is important to
optimize the technique so that performance on the main task is best, even if this
hurts performance on the extra tasks. If the extra tasks are important too, it
may be best to rerun learning for each important extra task, with the technique
optimized for each task one at a time.

This chapter presented a number of opportunities for using extra outputs to
leverage information that is available in real domains. The trick in most of these
applications is to view the outputs of the net as inputs that are used only during
learning. Any information that is available when the net is trained, but which
would not be available later when the net is used for prediction, can potentially
be used as extra outputs. There are many domains where useful extra tasks will
be available. The list of prototypical domains provided in this chapter is not
complete. More kinds of extra tasks will be identified in the future.
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Abstract. In this paper we investigate the feed-forward learning prob-
lem. The well-known ill-conditioning which is present in most feed-for-
ward learning problems is shown to be the result of the structure of the
network. Also, the well-known problem that weights between ‘higher’
layers in the network have to settle before ‘lower’ weights can converge
is addressed. We present a solution to these problems by modifying the
structure of the network through the addition of linear connections which
carry shared weights. We call the new network structure the linearly
augmented feed-forward network, and it is shown that the universal ap-
proximation theorems are still valid. Simulation experiments show the
validity of the new method, and demonstrate that the new network is
less sensitive to local minima and learns faster than the original network.

9.1 Introduction

One of the major problems with feed-forward network learning remains the ac-
curacy and speed of the learning algorithms. Since the learning problem is a
complex and highly nonlinear one [12, 4], iterative learning procedures must be
used to solve the optimisation problem [2, 14]. A continuing desire to improve
the behavior of the learning algorithm has lead to many excellent optimisation
algorithms which are especially tailored for feed-forward network learning.

However, an important problem is the particular form of the error function
that represents the learning problem. It has long been noted [10, 16] that the
derivatives of the error function are usually ill-conditioned. This ill-conditioning
is reflected in error landscapes which contain many saddle points and flat areas.

Although this problem can be solved by using stochastic learning methods
(e.g., [9, 1, 13]), these methods require many learning iterations in order to find
an optimum, and are therefore not suited for problems where fast learning is a
requirement. We therefore remain focused on gradient-based learning methods.
� Previously published in: Orr, G.B. and Müller, K.-R. (Eds.): LNCS 1524, ISBN

978-3-540-65311-0 (1998).
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Algorithms exist which attempt to find well-behaving minima [7], yet an impor-
tant factor of the learning problem remains the structure of the feed-forward
network.

In this chapter an explanation of the ill-conditioned learning problem is pro-
vided as well as a solution to alleviate this problem. Section 9.2 formally in-
troduces the learning problem, and describes the problem of singularities in the
learn matrices. In section 9.3 the cause of the singularities are analyzed and an
adapted learning rule is introduced which alleviates this problem. Section 9.4
discusses a few applications.

9.2 The Learning Process

With a neural network N : �N × �n → �M we create an approximation to
a set of p learning samples {(x1,y1), (x2,y2), . . . , (xp,yp)}, with xi ∈ �N

and yi ∈ �M , for which holds that ∀1 ≤ i ≤ p : F(xi) = yi. The function
F : �N → �M is called the model function.

Let n be the number of free parameters W of the network. In this particular
case we are interested in approximating the learning samples rather than the
underlying function F , or assume that the p learning samples are representative
for F .

The oth output of the function that is represented by the neural network can
be written as

N (x,W )o =
∑

h

whos

(
∑

i

wihxi + θh

)
+ θo (9.1)

where s(x) the transfer function, o indicates an output unit, h a hidden unit, i
an input unit. The symbol who indicates an element of W corresponding with
the connection from hidden unit h to output unit o; wih is similarly used for a
connection from input unit i to hidden unit h. Finally, θ is a bias weight and
therefore an element of W . An exemplar feed-forward network with one input
and output unit and two hidden units is depicted in figure 9.1.

The learning task consists of minimizing an approximation error, which is
usually defined as

EN (W ) =

p∑

i=1

‖N (xi,W )− yi‖ (9.2)

where for ‖ · ‖ we prefer to use the L2 norm. We will leave the subscript N out
when no confusion arises. E(W ) is (highly) nonlinear in W , such that iterative
search techniques are required to find theW for which E(W ) is sufficiently small.

Finally we define the residual pattern error

eM(i−1)+j = ‖N (xi,W )j − yij‖, (9.3)

i.e., the error in the j’th output value for the i’th learning sample.
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Fig. 9.1. An exemplar feed-forward neural network. The circles represent neurons; the
black filled circle is a bias unit, and always carries an activation value of ‘1’.

9.2.1 Learning Methodology

Gradient based learning methods are characterized by considering low-order
terms from the Taylor expansion to the approximation error,

E(W +W0) = E(W0) + ∇E|W0
W +WT ∇2E

∣∣
W0
W + . . . . (9.4)

In most cases more than the second order term is neglected. We define

Ẽ1(W +W0) = E(W0) + ∇E|W0
W (9.5)

and
Ẽ2(W +W0) = Ẽ1(W ) +WT ∇2E

∣∣
W0
W (9.6)

being the first-order and second-order approximation to E, respectively.
By locally considering the approximation error as a first- or second-order func-

tion of W , we can use several existing approximation methodologies to minimize
E. When, according to the local second-order approximation information, E is
minimized, the local information is updated and a second minimization step is
carried out. This process is repeated until a minimum is found.

Well-known minimization methods are steepest descent (a variant of which is
known as error backpropagation), conjugate gradient optimisation, Levenberg-
Marquardt optimisation, variable metric methods, and (quasi-) Newton meth-
ods. Each of these methods has its advantages and disadvantages which are
discussed elsewhere [14].

The optimisation methods work in principle as follows. By considering the
second-order approximation to E, an optimum can be analytically found if ∇E
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and ∇2E are known. After the optimum has been located, ∇E and ∇2E are
recomputed using the local information, and the minimum is relocated. This
process is repeated until a minimum is found.

Naturally, the success of this approach stands or falls with the form of the
error function. If the error function is not too complex but smooth, and can
be reasonably approximated by a quadratic function, the discussed optimisation
methods are a reliable and fast way of finding minima. In feed-forward network
training, however, the error functions appear to have a large number of flat areas
where minimization is a difficult task due to limited floating point accuracy.

9.2.2 Condition of the Learning Problem

The flat areas of the error function can be formalized as follows. We define the
(Mp)× n Jacobian matrix as

J ≡

⎛

⎜⎜⎜⎝

∇eT
1

∇eT
2

...
∇eTMp

⎞

⎟⎟⎟⎠ where ∇ek ≡

⎛

⎜⎜⎜⎜⎝

∂ek
∂w1
∂ek
∂w2

...
∂ek
∂wn

⎞

⎟⎟⎟⎟⎠
(9.7)

such that we can write J as

J ≡

⎛

⎜⎜⎜⎜⎝

∂e1
∂w1

∂e1
∂w2

· · · ∂e1
∂wn

∂e2
∂w1

∂e2
∂w2

· · · ∂e2
∂wn

...
. . .

...
∂eMp

∂w1

∂eMp

∂w2
· · · ∂eMp

∂wn

⎞

⎟⎟⎟⎟⎠
. (9.8)

In the learning process we thus encounter that ∇E = 2JTe.
We furthermore define the Hessian H = ∇2E, which is the matrix of second

order derivatives of E. We are interested in the eigenvalues and eigenvectors of
H . Since H is a positive semidefinite symmetric matrix close to a local mini-
mum, its eigenvalues are all positive real numbers. When an eigenvalue is very
small, the effect of moving in the direction of the corresponding eigenvector on
the approximation error is very small. This means that, in that direction, the
error function is (nearly) singular. The singularity of the error function can be
expressed in the condition of H , which is defined as the quotient of its largest
and its smallest eigenvalues.

As mentioned above, a bad condition of H may occur at minima or flat points
in the error function E(W ). It appears that feed-forward learning tasks are
generally characterized by having a singular or near-singular Hessian matrix.
Although the said learning methods are mathematically not influenced by a
badly conditioned Hessian, it does lead to inaccuracies due to the limited floating
point accuracy of the digital computer.
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9.2.3 What Causes the Singularities

Reference [10] lists a few cases in which the Hessian may become singular or near-
singular. The listed reasons are associated with the ill character of the sigmoid
transfer function. Typical for this function is the fact that limx→∞ s(x) = c+
and limx→−∞ s(x) = c−. Also, bad conditioning can be the result of uncentered
data, and can also be alleviated [11].

Assuming that some neuron is in this ‘saturated’ state for all learning patterns,
its input weights will have a delta equal to 0 (according to the backpropagation
rule) such that these weights will never change. For each of the incoming weights
of this neuron, this leads to a 0-row in H , and therefore singularity.

However, there is another important reason for singularity, which may espe-
cially occur after network initialization. When a multi-layer feed-forward network
has a small (e.g., less than 0.1) weight leaving from a hidden unit, the influence
of the weights that feed into this hidden unit is significantly reduced. Therefore
the ∂e/∂wk will be close to 0, leading to near-null rows in J and a near-singular
H .

We observe that this kind of singularity is very common and touches a char-
acteristic problem in feed-forward network learning: The gradients in the lower-
layer weights are influenced by the higher-layer weights. A related problem is
the influence that the change of the weights between the hidden and output
units have on the change of the input weights; when they rapidly and frequently
change, as will be the case during the initial stages of learning, the lower weights
will have nonsensical repeated perturbations.

9.2.4 Definition of Minimum

A minimum is said to be reached when the derivative of the error function is
zero, i.e., ∂E/∂w1≤k≤n = 0. Since the gradient of the error function equals the
column-sum of the Jacobian, a minimum has been reached when

∀1 ≤ k ≤ n :

Mp∑

i=1

∂ei
∂wk

= 0, (9.9)

i.e., when each of the columns adds up to 0. Eq. (9.9) defines the minimum for
a batch-learning system: the gradient, when summed over all learning samples,
should be 0. This also means, however, that it may occur that elements of a
column-sum cancel each other out, even when not all elements of the Jacobian
are 0. Differently put, it may occur that the gradient for some patterns are
non-zero, whereas the gradients sum up to zero.

The optimal case is reached when all elements of the Jacobian are 0. This
means, of course, that the residual error of each pattern is 0.

9.3 Local Minima are Caused by BackPropagation

In this section we propose a new neural network structure which alleviates
the above problems. In the standard backpropagation learning procedure, the
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gradient of the error function with respect to the weights is determined by com-
puting the following steps for each learning pattern:

1. For each output unit o, compute the delta δo = yo − ao where ao is the
activation value for that unit, when a learning sample is presented.

2. Compute the weight derivative for the weights who from the hidden to output
units:

Δwho = δoah

where ah is the activation value for the hidden unit.
3. Compute the delta for the hidden unit:

δh =
∑

o

δowhos
′(ah).

4. Compute the weight derivative for the weights wih from the input to hidden
units:

Δwih = δhai =
∑

o

δowhos
′(ah)ai. (9.10)

The gradient is then computed as the summation of the Δw’s.
From (9.10) we can see that there are four cases when the gradient for a weight

from an input to a hidden unit is negligible, such that the corresponding row
and column in the Hessian are near-zero:

– When δo is small. This is correct, since that case means that the output of
the network is close to its desired output.

– When who is small. This is an undesired situation: A small weight from
hidden to output unit paralyzes weights from input to hidden units. This is
especially important since the weight might have to change its value later.

– When s′(ah) is small; this occurs when the weight wih is large. Again, this
saturation type of paralysis is undesired.

– Finally, when ai is small. This is desired: When the input value is insignifi-
cant, it should have no influence on the output.

9.3.1 A New Neural Network Structure

In order to alleviate these problems, we propose a change to the learning system
of (9.10) as follows:

Δwih =
∑

o

δo(whos
′[ah] + c)ai = δhai + c

∑

o

δoai.

By adding a constant c to the middle term, we can solve both paralysis problems.
In effect, an extra connection from each input unit to each output unit is created,
with a weight value coupled to the weight from the input to hidden unit.
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Fig. 9.2. An exemplar adapted feed-forward neural network

Although c can be made a learnable parameter, in the sequel we will assume
c = 1. The o’th output of the neural network is now computed as

M(x,W )o =
∑

h

(
whos

[
∑

i

wihxi + θh

]
+
∑

i

wihxi

)
+ θo. (9.11)

We call the new network the linearly augmented feed-forward network.
The structure of this network is depicted in figure 9.2. Note the equivalence of
N andM, viz.,

M(x,W )o ≡ N (x,W )o +
∑

h

∑

i

wihxi. (9.12)

9.3.2 Influence on the Approximation Error E

Although the optimal W will be different for the networks N and M, we can
still compare the forms of the error functions EN vs. EM. Using (9.2) and (9.11)
we can compute the error in the approximation of a single learning sample (x, y)
with N inputs, κ hidden units, and a single output:

EM(W )2 = (M[x,W ]− y)2

=

(

N (x,W )− y +
∑

i

∑

h

wihxi

)2

= EN (W )2 + 2
∑

i

∑

h

wihxi(N [x,W ]− y) +
(
∑

i

∑

h

wihxi

)2

. (9.13)
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The error for the network M differs from the error for N in two terms. When
we consider EM at those values of W where EN is minimal, we can see that the
difference between EN and EM consists of a normalization term ‖

∑
h w

T
hx‖; wh

is the vector of weights connecting the inputs to hidden unit h. This non-negative
term will only be zero when the vectors wT

1 x, wT
2 x, . . ., wT

κx cancel each other
out for each input vector x which is in the training set. In words: EM(W )2

introduces a penalty for hidden units doing the same thing, thus making the
network use its resources more efficiently.

9.3.3 M and the Universal Approximation Theorems

It has been shown in various publications [3, 6, 8] that the ordinary feed-forward
neural network N can represent any Borel-measurable function with a single
layer of hidden units which have sigmoidal or Gaussian activation functions in
the hidden layer.

Theorem 1. The networkM can represent any Borel-measurable function with
a single layer of hidden units which have sigmoidal or Gaussian activation func-
tions in the hidden layer.

Proof. We show that any network N can be written as a network M; therefore,
the class of networks M are universal approximators.

By using (9.1) and (9.11),

N (x,W )o =

κ∑

h=1

whos

(
∑

i

wihxi + θh

)
+ θo

=

κ∑

h=1

(
whos

[
∑

i

wihxi + θh

]
+
∑

i

wihxi

)
+ θo −

κ∑

h=1

∑

i

wihxi

=M(x,W )o +

2κ∑

l=κ+1

(
0

[
∑

i

−wi,l−κxi + 0

]
+
∑

i

−wi,l−κxi

)
+ 0

=M(x,W )o +M(x, V )o

where V is a weight matrix such that the elements of V corresponding to the
weights from hidden to output units are 0, and the other weights equal the nega-
tion of its W counterparts. Furthermore, bias weights are set to 0.

The sumM(x,W )o +M(x, V )o represents two M-networks, which can also
be written as a singleM(x,W ′)-network with the double amount of hidden units,
where W ′ = [WV ].

Using the theorems from [3, 6, 8] the proof is complete.

Note that it is also possible to write each M-network as an N -network, by
doubling the number of hidden units and using infinitesimal weights from the
input units to these hidden units, and their multiplicative inverse for the weights
from these hidden to the output units.

Figure 9.3 shows the equivalence of an N andM network for the two-hidden
unit case.
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Fig. 9.3. Equivalence of an N -network (left) and anM-network (right). Note that bias
units are left out for clarity.

9.3.4 Example

As an example, we train a network with a single hidden unit, and no bias
connections, to represent the learning samples (1, 1) and (2, 2). The hidden
unit has a sigmoid activation function. The function that is computed by the
network thus is N (x,W ) = w2s(w1x) for the original neural network, and
M(x,W ) = w2s(w1x)+w1x for the adapted neural network. We use the sigmoid
function s(x) = 1/(1+ e−x) as activation function, which has the following well-
known properties: limx→∞ s(x) = 1, limx→−∞ s(x) = 0, and limx→±∞ s

′(x) = 0.
Figure 9.4 shows the error function and its derivatives for this neural network.

In the top row of this figure we see the original neural network. Notice in the top
middle figure, depicting ∂E/∂w1, that ∂E/∂w1 ≈ 0 for small values of w2. In
other words, when w2 is small, w1 will hardly change its value. Similarly, when
w1 is large, then ∂E/∂w1 will be small due to the fact that the derivative of the
transfer function is nearly 0. In the bottom row the modified neural network is
depicted. Left, again, the error function. The middle figure clearly shows that
the derivative has no areas anymore which are zero or very small. The right
figure still shows that, if w1 has a large negative value, ∂E/∂w2 is negligible:
after all, the activation value of the hidden unit is near-zero.

9.4 Applications

We have applied the new learning scheme to several approximation problems. In
all problems, each network has been run 3,000 times with different initial random
values for the weights. In order to train the network, we used a Polak-Ribière
conjugate gradient optimization technique with Powell restarts [14].

The applications with real data (problems 3 and 4) use two independent sets
of data: a learn set and a cross-validation set. In all cases, the network was
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Fig. 9.4. Error function and derivatives using the original and adapted learning rule.
The top row shows the error function for the original learning rule (left), as well as
its derivative ∂E/∂w1 (centre) and ∂E/∂w2 (right). The bottom row shows the same
graphs for the adapted learning rule. The contour lines have a distance of 0.5 (left
graphs) and 0.2 (middle and right graphs).

trained until the error over the cross-validation set was minimal (i.e., up to but
not beyond the point where the network started to over-fit). The approximation
errors that are reported are computed using the samples in the cross-validation
set.

Problem 1: (synthetic data) the XOR problem. The well-known XOR problem
consists of representing four learning samples [(0, 0), 0], [(0, 1), 1], [(1, 0), 1], and
[(1, 1), 0]. The network has two inputs, two hidden units, and one output.

It has been noted [5] that the XOR problem is very atypical in neural network
learning, because it is penalized for generalization. Nevertheless, the XOR prob-
lem is generally considered as a small standard learning benchmark problem.

Whereas the network N reaches local minima in 22.4% of the runs, the lin-
early augmented network M always reached a global minimum. For N , the
average number of steps to obtain an approximation error of 0.0 (within the
32-bit floating point accuracy of the computer) equals 189.1; for M, 98.3 steps
were required.

When using the ordinary error backpropagation learning rule (i.e., no conju-
gate gradient learning), the XOR learning problem has been reported to lead to
8.7% local minima [14].
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Problem 2: (synthetic data) approximating tan(x). As a second test, the net-
works have been used for the approximation of the function F(x) = tan(x).
The function has been uniformly sampled in the domain [0, π] using 20 learning
samples in total. For the approximation we used a network with one input, five
hidden units in a single hidden layer, and one output.

With network N , 14.6% of the runs lead to a local minimum. The linearly
augmented neural network is not perfect; it is stuck in a local minimum in 6.2%
of the runs. In all other cases, a global minimum of very close to 0.0 was found.

Problem 3: (real data) approximating robot arm inverse kinematics. Thirdly we
approximated data describing a hand-eye coordination learning problem with a
Manutec R2 robot arm.

The data is organized as follows. There are five input variables, describing
the current position of the robot arm in joint angles θ2, θ3, as well as the visual
position of an object with respect to the hand-held camera in pixel coordinates
x, y, z. The output part of the data consists of the required joint rotations Δθ1,
Δθ2, and Δθ3 necessary to reach the object. See [15] for further description of
this hand-eye coordination problem. In this particular problem, 1103 learning
samples are used; 1103 samples are used for cross-validation. The optimal of six
hidden units in a single layer [15] is used. Only the cross-validating data is used
for evaluating the network.

With the normal network N , in 2.3% of the cases the network got stuck in
a minimum with an unacceptably high error for both the learn and test sets.
This never occurred in the 3,000 trials in which the linearly augmented network
was used. The cross-validated approximation error after 10,000 learning steps
equals 4.20 · 10−4 for network N , and 4.04 · 10−4 for network M (both values
are average per learning sample). The new method shows a slight improvement
here.

Problem 4: (real data) gear box deformation data. The final test consists of the
following problem, which is encountered in the control of a newly developed
lightweight robot arm. A gear box connects a DC motor with a robot arm seg-
ment. In order to position the robot arm segment at a desired joint angle θa,
the DC motor has to exert a force τ . However, in the normal setup a joint angle
decoder is only available at the DC motor side, which measures the angle θm.
By mounting an extra decoder at the arm segment in a laboratory setup we can
measure θa. The actual joint angle θa differs slightly from θm because of the
gear-box elasticity. We attempt to learn θa from (θm, θ̇m, τ).

In order to learn these data, we use a network with 3 inputs, 6 hidden units
in a single layer, and one output. The data consists of 4,000 learning samples
as well as 4,000 samples used for the cross-validation. In each run, up to 10,000
learning iterations are performed but not beyond the point of overfitting.

Both network N asM do not get stuck in a minimum with an unacceptably
high error for both the learn and test sets. A surprise, however, is encountered in
the cross-validated approximation error that is computed after 10,000 learning
steps. For network N , this error equals 2.85 · 10−4 per learning sample; for M,
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however, this error is as low as 1.87 · 10−6 per sample. Further data analysis has
shown that the data has strong linear components, which explains the fact that
the approximation error is two orders of magnitude lower.

Results are summarized in table 9.1.

Table 9.1. Results of the ordinary feed-forward network N and the linearly augmented
feed-forward networkM on the four problems

N M
XOR % local minima 22.4 0.0

avg. steps 189.1 98.3
tan % local minima 14.6 6.2
robot % local minima 2.3 0.0
3D data avg. error 4.20 · 10−4 4.04 · 10−4

gear box % local minima 0.0 0.0
data avg. error 2.85 · 10−4 1.87 · 10−6

9.5 Conclusion

It has been shown that the ordinary backpropagation learning rule leads to
bad conditioning in the matrix of second-order derivatives of the error function
which is encountered in feed-forward neural network learning. This again leads to
local minima and saddle points in the error landscape. In order to alleviate this
problem, we have introduced an adaptation to the backpropagation rule, which
can be implemented as an adapted feed-forward neural network structure. We
call this network the the linearly augmented feed-forward neural network. The
adaptation leads to a learning rule which obtains stable values for the weights
which connect the input units with the hidden units, even while the weights from
hidden to output units change.

A mathematical analysis shows the validity of the method; in particular, the
universal approximation theorems are shown to remain valid with the new neural
network structure. The application of the new method to two sets of synthetic
data and two sets of real data shows that the new method is much less sensitive
to local minima, and reaches an optimum in fewer iterations.

Acknowledgments. The authors acknowledge the help of Alin Albu-Schäffer
in supplying the gear box data.
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Abstract. It has long been known that neural networks can learn faster
when their input and hidden unit activities are centered about zero; re-
cently we have extended this approach to also encompass the centering
of error signals [15]. Here we generalize this notion to all factors involved
in the network’s gradient, leading us to propose centering the slope of
hidden unit activation functions as well. Slope centering removes the
linear component of backpropagated error; this improves credit assign-
ment in networks with shortcut connections. Benchmark results show
that this can speed up learning significantly without adversely affecting
the trained network’s generalization ability.

10.1 Introduction

Centering is a general methodology for accelerating learning in adaptive systems
of the type exemplified by neural networks — that is, systems that are typically
nonlinear, continuous, and redundant; that learn incrementally from examples,
generally by some form of gradient descent. Its basic tenet is:

All pattern-dependent factors entering the update equation for a neural
network weight should be centered, i.e., have their average over patterns
subtracted out.

Prior Work. It is well-known that the inputs to an LMS adaptive filter should
be centered to permit rapid yet stable adaptation [22], and it has been argued
[12] that the same applies to input and hidden unit activity in a multi-layer
network. Although Sejnowski [16] proposed a variant of Hebbian learning in
which both the pre- and postsynaptic factors of the weight update are centered,
the idea was not taken up when backpropagation became popular. The benefits of
centering error signals in multi-layer networks were thus reported only recently
[15]; here we finally suggest centering as a general methodology, and present
backpropagation equations in which all factors are centered.
� Previously published in: Orr, G.B. and Müller, K.-R. (Eds.): LNCS 1524, ISBN
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Independence of Architecture. Although centering is introduced here in the
context of feedforward networks with sigmoid activation functions, the approach
itself has a far wider reach. The implementation details may vary, but in essence
centering is not tied to any particular architecture: its principles are equally
applicable to feedforward and recurrent networks, with sigmoid, radial, or other
basis functions, with or without topological structure, time delays, multiplicative
gates, etc. — in short, the host of architectural elements used in neural network
design.

Independence of Learning Algorithm. Similarly, centering is not wedded
to any particular learning algorithm either. It may be applied to determinis-
tic (batch) or stochastic (online) gradient descent; more importantly, it may be
freely combined with more sophisticated optimization techniques such as ex-
pectation maximization, conjugate gradient and quasi-Newton methods. It also
leaves available the many useful tricks often employed with stochastic gradient
descent, such as momentum, learning rate adaptation, gradient normalization,
and so forth. Due to this flexibility, centering has the potential to further accel-
erate even the fastest of these methods.

Overview. Section 10.2 introduces the centering approach in terms of the mod-
ifications it mandates for ordinary backpropagation learning. We then discuss
implementation details in Section 10.3 before presenting benchmark results in
Section 10.4. Section 10.5 concludes our paper with a brief analysis of how cen-
tering facilitates faster learning.

10.2 Centered Backpropagation

The backpropagation learning algorithm is characterized by three equations,
describing the forward propagation of activity, the backpropagation of error, and
the modification of weights, respectively. Here are the implications of centering
for each of these three equations:

10.2.1 Activity Propagation

Conventional. Consider a neural network with activation of node j given by

xj = fj(yj) , yj =
∑

i∈Aj

wij x̌i , (10.1)

where fj is a nonlinear (typically sigmoid) activation function, wij are the synap-
tic weights, and Aj denotes the set of anterior nodes feeding their activity x̌i into
node j. Conventionally, the anterior nodes’ output is fed forward directly, i.e.,
(∀i) x̌i≡ xi. We imply that nodes are activated via Equation 10.1 in appropri-
ately ordered (feedforward) sequence, and that some have their values clamped
so as to represent external inputs to the network. In particular, we posit a bias
input x0≡1 and require that all nodes are connected to it: (∀j>0) 0 ∈Aj .
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Centered. As suggested by LeCun et al. [12], the activity of the network’s input
and hidden units should be centered to permit faster learning (see Chapter 1).
We do so by setting

(∀i > 0) x̌i = xi − 〈xi〉 , (10.2)

where 〈·〉 denotes averaging over training samples (see Section 10.3 for ways to
implement this operator). Note that the bias input must not be centered — since
x0 = 〈x0〉 = 1, it would otherwise become inoperative.

10.2.2 Weight Modification

Conventional. The weights wij of the network given in Equation 10.1 are
typically optimized by gradient descent in some objective function E. With a
local step size η ij for each weight, this results in the weight update equation

Δwij = η ij δj x̌i , where δj = −∂E/∂yj . (10.3)

Centered. We have recently proposed [15] that the error signals δj should be
centered as well to achieve even faster convergence. This is done by updating all
non-bias weights via

(∀i > 0) Δwij = η ij δ̌j x̌i , where δ̌j = δj − 〈δj〉 . (10.4)

As before, this centered update must not be used for bias weights, for otherwise
they would remain forever stuck (except for stochastic fluctuations) at their
present values:

* 〈Δw0j〉 ∝
〈
δ̌j
〉
= 〈δj〉 − 〈δj〉 = 0 . (10.5)

Instead, bias weights are updated conventionally (Equation 10.3). Since this
means that the average error 〈δj〉 is given exclusively to the bias weight w0j , we
have previously called this technique d.c. error shunting [15].

10.2.3 Error Backpropagation

Conventional. For output units, the error δj can be computed directly from
the objective function; for hidden units, it must be derived through error back-
propagation:

δj = f ′j(yj) γj , γj =
∑

k∈Pj

wjk δk , (10.6)

where Pj denotes the set of posterior nodes fed from node j, and f ′j(yj) is the
node’s current slope — the derivative of its nonlinearity fj at the present level
of activation.
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Centered. By inserting Equation 10.6 into Equation 10.4, we can express the
weight update for hidden units as a triple product of their activity, backpropa-
gated error, and slope:

Δwij ∝ f ′j(yj) γ̌j x̌i , (10.7)

where γ̌j denotes backpropagated centered errors. It is not necessary to center
the γ̌j explicitly since

〈γ̌j〉 =
〈
∑

k∈Pj

wjk δ̌k

〉
=
∑

k∈Pj

wjk

〈
δ̌k
〉
= 0 . (10.8)

By centering activity and error signals we have so far addressed two of the
three factors in Equation 10.7, leaving the remaining third factor — the node’s
slope — to be dealt with. This is done by modifying the nonlinear part of error
backpropagation (Equation 10.6) to

δj = f̌ ′j(yj) γ̌j , where f̌ ′j(yj) = f ′j(yj)−
〈
f ′j(yj)

〉
. (10.9)

Decimation of Linear Errors. Note that for a linear node n we would have
f ′n(yn)≡ 1, and Equation 10.9 would always yield δn≡ 0. In other words, slope
centering (for any node) blocks backpropagation of the linear component of error
signals — that component which a linear node in the same position would receive.
Viewed in terms of error decimation, we have thus taken the logical next step past
error centering, which removed the d.c. (constant) component of error signals.

Shortcuts. It was important then to have a parameter — the bias weight — to
receive and correct the d.c. error component about to be eliminated. Likewise, we
now require additional weights to implement the linear mapping from anterior to
posterior nodes that the unit in question is itself no longer capable of. Formally,
we demand that for each node j for which Equation 10.9 is used, we have

(∀i ∈ Aj) Pj ⊆ Pi . (10.10)

We refer to connections that bypass a node (or layer) in this fashion as shortcuts.
It has been noted before that neural network learning sometimes improves with
the addition of shortcut weights. In our own experiments (see Section 10.4),
however, we find that it is slope centering that makes shortcut weights genuinely
useful.

A Complementary Approach? In Chapter 9, van der Smagt and Hirzinger
also advocate shortcuts as a means for accelerating neural network learning.
Note, however, that their use of shortcuts is quite different from ours: in order
to improve the conditioning of a neural network, they add shortcut connections
whose weights are coupled to (shared with) existing weights. They thus suit-
ably modify the network’s topology without adding new weight parameters, or
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deviating from a strict gradient-based optimization framework. By contrast, we
deliberately decimate the linear component of the gradient for hidden units in
order to focus them on their nonlinear task. We then use shortcuts with ad-
ditional weight parameters to take care of the linear mapping that the hidden
units now ignore.

While both these approaches use shortcuts to achieve their ends, from another
perspective they appear almost complementary: whereas we eliminate the linear
component from our gradient, van der Smagt and Hirzinger in fact add just
such a component to theirs. It may even be possible to profitably combine the
two approaches in a single — admittedly rather complicated — neural network
architecture.

10.3 Implementation Techniques

We can distinguish a variety of approaches to centering a variable in a neural
network in terms of how the averaging operator 〈·〉 is implemented. Specifically,
averaging may be performed either exactly or approximately, and applied either
a priori, or adaptively during learning in either batch (deterministic) or online
(stochastic) settings:

centering method: approximate exact

a priori by design extrinsic
online running average —adaptive
{

batch previous batch two-pass, single-pass

10.3.1 A Priori Methods

By Design. Some of the benefits of centering may be reaped without any modi-
fication of the learning algorithm, simply by setting up the system appropriately.
For instance, the hyperbolic tangent (tanh) function with its symmetric range
from -1 to 1 will typically produce better-centered output than the commonly
used logistic sigmoid f(y) = 1/(1 + e−y) ranging from 0 to 1, and is therefore
the preferred activation function for hidden units [12]. Similarly, the input repre-
sentation can (and should) be chosen such that inputs will be roughly centered.
When using shortcuts, one may even choose a priori to subtract a constant (say,
half their maximum) from hidden unit slopes to improve their centering.

We refer to these approximate methods as centering by design. Though inex-
act, they provide convenient and easily implemented tricks to speed up neural
network learning. Regardless of whether further acceleration techniques will be
required or not, it is generally a good idea to keep centering in mind as a design
principle when setting up learning tasks for neural networks.

Extrinsic. Quantities that are extrinsic to the network — i.e., not affected
by its weight changes — may often be centered exactly prior to learning. In
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particular, for any given training set the network’s inputs can be centered in
this fashion. Even in online settings where the training set is not known in
advance, it is sometimes possible to perform such extrinsic centering based upon
prior knowledge of the training data: instead of a time series x(t) one might for
instance present the temporal difference signal x(t) − x(t−1) as input to the
network, which will be centered if x(t) is stationary.

10.3.2 Adaptive Methods

Online. When learning online, the immediate environment of a single weight
within a multi-layer network is highly non-stationary, due to the simultaneous
adaptation of other weights, if not due to the learning task itself. A uniquely
defined average of some signal x(t) to be centered is therefore not available
online, and we must make do with running averages — smoothed versions of the
signal itself. A popular smoother is the exponential trace

x̄(t+1) = α x̄(t) + (1−α)x(t) , (10.11)

which has the advantage of being history-free and causal, i.e., requiring neither
past nor future values of x for the present update. The free parameter α (with
0≤ α≤ 1) determines the time scale of averaging. Its choice is not trivial: if it
is too small, x̄ will be too noisy; if it is too large, the average will lag too far
behind the (drifting) signal.

Note that the computational cost of centering by this method is proportional
to the number of nodes in the network. In densely connected networks, this is
dwarfed by the number of weights, so that the propagation of activities and error
signals through these weights dominates the computation. The cost of online
centering will therefore make itself felt in small or sparsely connected networks
only.

Two-Pass Batch. A simple way to implement exact centering in a batch learn-
ing context is to perform two passes through the training set for each weight
update: the first to calculate the required averages, the second to compute the
resulting weight changes. This obviously may increase the computational cost
of network training by almost a factor of two. For relatively small networks and
training sets, the activity and error for each node and pattern can be stored
during the first pass, so that the second pass only consists of the weight update
(Equation 10.4). Where this is not possible, a feedforward-only first pass (Equa-
tion 10.1) is sufficient to compute average activities and slopes; error centering
may then be implemented via one of the other methods described here.

Previous Batch. To avoid the computational overhead of a two-pass method,
one can use the averages collected over the previous batch in the computation
of weight changes for the current batch. This approximation assumes that the
averages involved do not change too much from batch to batch; this may result in
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stability problems in conjunction with very high learning rates. Computationally
this method is quite attractive in that it is cheaper still than the online technique
described above. When mini-batches are used for training, both approaches can
be combined profitably by centering with an exponential trace over mini-batch
averages.

Single-Pass Batch. It is possible to perform exact centering in just a single
pass through a batch of training patterns. This is done by expanding the triple
product of the fully centered batch weight update (cf. Equation 10.7). Using f ′j
as a shorthand for f ′j(yj), we have

Δwij ∝
〈
(xi − 〈xi〉)(γj − 〈γj〉)(f ′

j −
〈
f ′
j

〉
)
〉

=
〈
xiγjf

′
j

〉
−

〈
〈xi〉 γjf ′

j

〉
−

〈
xi 〈γj〉 f ′

j

〉
−

〈
xiγj

〈
f ′
j

〉〉
+

〈
〈xi〉 〈γj〉 f ′

j

〉
+

〈
〈xi〉 γj

〈
f ′
j

〉〉
+

〈
xi 〈γj〉

〈
f ′
j

〉〉
−

〈
〈xi〉 〈γj〉

〈
f ′
j

〉〉
=

〈
xiγjf

′
j

〉
− 〈xi〉

〈
γjf

′
j

〉
− 〈γj〉

〈
xif

′
j

〉
− 〈xiγj〉

〈
f ′
j

〉
+ 2 〈xi〉 〈γj〉

〈
f ′
j

〉
(10.12)

In addition to the ordinary (uncentered) batch weight update term
〈
xiγjf

′
j

〉

and the individual averages 〈xi〉, 〈γj〉, and
〈
f ′j
〉
, the single-pass centered up-

date (10.12) thus also requires collection of the sub-products 〈xiγj〉,
〈
xif

′
j

〉
, and〈

γjf
′
j

〉
. Due to the extra computation involved, the single-pass batch update is

not necessarily more efficient than a two-pass method. It is simplified consider-
ably, however, when not all factors are involved — for instance, when activities
have already been centered a priori so that 〈xi〉 ≈ 0.

Note that the expansion technique shown here may be used to derive an exact
single-pass batch method for any weight update that involves the addition (or
subtraction) of some quantity that must be computed from the entire batch of
training patterns. This includes algorithms such as BCM learning [4, 10] and
binary information gain optimization [14].

10.4 Empirical Results

While activity centering has long been part of backpropagation lore, and empiri-
cal results for error centering have been reported previously [15], slope centering
is being proposed for the first time here. It is thus too early to assess its general
applicability or utility; here we present a number of experiments designed to
show the typical effect that centering has on speed and reliability of convergence
as well as generalization performance in feedforward neural networks trained by
accelerated backpropagation methods.

The next section describes the general setup and acceleration techniques used
in all our experiments. Subsequent sections then present our respective results for
two well-known benchmarks: the toy problem of symmetry detection in binary
patterns, and a difficult vowel recognition task.
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10.4.1 Setup of Experiments

Benchmark Design. For each benchmark task we performed a number of
experiments to compare performance with vs. without various forms of centering.
Each experiment consisted of 100 runs starting from different initial weights
but identical in all other respects. For each run, networks were initialized with
random weights from a zero-mean Gaussian distribution with standard deviation
0.3. All experiments were given the same sequence of random numbers for their
100 weight initializations; the seed for this sequence was picked only after the
design of the benchmark had been finalized.

Training Modality. In order to make the results as direct an assessment of cen-
tering as possible, training was done in batch mode so as to avoid the additional
free parameters (e.g., smoothing time constants) required by online methods.
Where not done a priori, centering was then implemented with the exact two-
pass batch method. In addition, we always updated the hidden-to-output weights
of the network before backpropagating error through them. This is known to
sometimes improve convergence behavior [17], and we have found it to increase
stability at the large step sizes we desire.

Competitive Controls. The ordinary backpropagation (plain gradient de-
scent) algorithm has many known defects, and a large number of acceleration
techniques has been proposed for it. We informally tested a number of such
techniques, then picked the combination that achieved the fastest reliable con-
vergence. This combination — vario-η and bold driver — was then used for
all experiments reported here. Thus any performance advantage for centering
reported thereafter has been realized on top of a state-of-the-art accelerated
gradient method as control.

Vario-η [23, page 48]. This interesting technique — also described in Chap-
ter 17 — sets the local learning rate for each weight inversely proportional to
the standard deviation of its stochastic gradient. The weight change thus be-
comes

Δwij =
−η gij

�+ σ(gij)
, where gij ≡

∂E

∂wij
and σ(u) ≡

√
〈u2〉 − 〈u〉2 ,

(10.13)
with the small positive constant � preventing division by near-zero values. Vario-
η can be used in both batch and online modes, and is quite effective in that it
not only performs gradient normalization, but also adapts step sizes to the level
of noise in the local gradient signal.

We used vario-η for all experiments reported here, with � = 0.1. In a batch
implementation this leaves only one free parameter to be determined: the global
learning rate η.
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Bold Driver [11, 21, 2, 3]. This algorithm for adapting the global learning rate
η is simple and effective, but only works for batch learning. Starting from some
initial value, η is increased by a certain factor after each batch in which the error
did not increase by more than a very small constant ε (required for numerical
stability). Whenever the error rises by more than ε, however, the last weight
change is undone, and η decreased sharply.

All experiments reported here were performed using bold driver with a learn-
ing rate increment of 2%, a decrement of 50%, and ε=10−10. These values were
found to provide fast, reliable convergence across all experiments. Due to the
amount of recomputation they require, we do count the “failed” epochs (whose
weight changes are subsequently undone) in our performance figures.

10.4.2 Symmetry Detection Problem

In our first benchmark, a fully connected feedforward network with 8 inputs, 8
hidden units and a single output is to learn the symmetry detection task: given
an 8-bit binary pattern at the input, it is to signal at the output whether the
pattern is symmetric about its middle axis (target = 1) or not (target = 0). This
is admittedly a toy problem, although not a trivial one.

Since the target is binary, we used a logistic output unit and cross-entropy
loss function. For each run the network was trained on all 256 possible patterns
until the root-mean-square error of its output over the batch fell below 0.01. We
recorded the number of epochs required to reach this criterion, but did not test
for generalization ability on this task.

Error and Activity Centering. In our first set of experiments we examined
the separate and combined effect of centering the network’s activity and/or error
signals. For convenience, activity centering was performed a priori by using -1
and 1 as input levels, and the hyperbolic tangent (tanh) as activation function
for hidden units. The off-center control experiments were done with 0 and 1 as
input levels and the logistic activation function f(y) = 1/(1 + e−y). Note that
all differences between the tanh and logistic nonlinearities are eliminated by the
vario-η algorithm, except for the eccentricity of their respective outputs.

Results. Table 10.1 shows that centering either activity or error signals pro-
duced an approximate 7-fold increase in convergence speed. In no instance was
a run that used one (or both) of these centering methods slower than the corre-
sponding control without centering. The similar magnitude of the speed-up sug-
gests that it may be due to the improved conditioning of the Hessian achieved
by centering either errors or activities (see Section 10.5). Note, however, that
activity centering beat error centering almost 2/3 of the time in the direct com-
parison.

On the other hand, error centering appeared to improve the reliability of con-
vergence: it cut the convergence time’s coefficient of variation (the ratio between
its standard deviation and mean, henceforth: c.v.) in half while activity centering
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Table 10.1. The effect of centering activities and/or error signals on the symmetry
detection task without shortcuts. Reported are the empirical mean, standard deviation,
and 25th/50th/75th percentile (rounded to three significant digits) of the number of
epochs required to converge to criterion. Also shown is the result of directly comparing
runs with identical random seeds. The number of runs in each comparison may sum to
less than 100 due to ties.

error signals: conventional centered
mean ± st.d. direct comparison: mean ± st.d.activities:

quartiles # of faster runs quartiles

669 ± 308 0 – 100 97.5 ± 21.8off-center (0/1)
453/580/852 0 0 35 7 82/95.5/109

93.1 ± 46.7 100
|

63
×

100 93
|

65.4 ± 15.9centered (-1/1)
67.5/79.5/94 14 – 84 57/62/70

left it unchanged. We speculate that this may be the beneficial effect of centering
on the backpropagated error, which does not occur for activity centering.

Finally, a further speedup of 50% (while maintaining the lower c.v.) occurred
when both activity and error signals were centered. This may be attributed to
the fact that our centering of hidden unit activity by design (cf. Section 10.3)
was only approximate. To assess the significance of these effects, note that since
the data was collected over 100 runs, the standard error of the reported mean
time to convergence is 1/

√
100 = 1/10 its reported standard deviation.

Shortcuts and Slope Centering. In the second set of experiments we left both
activity and error signals centered, and examined the separate and combined
effect of adding shortcuts and/or slope centering. Note that since the complement
of a symmetric bit pattern is also symmetric, the symmetry detection task has no
linear component at all — we would therefore expect shortcuts to be of minimal
benefit here.

Results. Table 10.2 shows that indeed adding shortcuts alone was not beneficial
— in fact it slowed down convergence in over 80% of the cases, and significantly
increased the c.v. Subsequent addition of slope centering, however, brought
about an almost 3-fold increase in learning speed, and restored the original c.v.
of about 1/4. When used together, slope centering and shortcuts never increased
convergence time, and on average cut it in half. By contrast, slope centering
without shortcuts failed to converge at all about 1/3 of the time. This may come
as a surprise, considering that the given task had no linear component. However,
consider the following:
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Table 10.2. The effect of centering slopes and/or adding shortcuts on the symmetry
detection task with centered activity and error signals. Results are shown in the same
manner as in Table 10.1.

slopes: conventional centered
mean ± st.d. direct comparison: mean ± st.d.topology:

quartiles # of faster runs quartiles

65.4 ± 15.9 52 – 48 * 51.6 ± 16.2

short- no 57/62/70 81 0 61 4 43/64.5/∞

cuts? 90.4 ± 31.1 17
|

39
×

99 95
|

33.1 ± 8.6yes
69.5/80/102 0 – 100 28/31/35

*Mean and standard deviation exclude 34 runs which did not converge.

Need for Shortcuts. Due to the monotonicity of their nonlinear transfer func-
tion, hidden units always carry some linear moment, in the sense of a positive
correlation between their net input and output. In the absence of shortcuts,
the hidden units must arrange themselves so that their linear moments together
match the overall linear component of the task (here: zero). This adaptation
process is normally driven by the linear component of the error — which slope
centering removes.

The remaining nonlinear error signals can still jostle the hidden units into
an overall solution, but such an indirect process is bound to be unreliable: as it
literally removes slope from the error surface, slope centering creates numerous
local minima. Shortcut weights turn these local minima into global ones by
modeling the missing (linear) component of the gradient, thereby freeing the
hidden units from any responsibility to do so.

In summary, while a network without shortcuts trained with slope centering
may converge to a solution, the addition of shortcut weights is necessary to ensure
that slope centering will not be detrimental to the learning process. Conversely,
slope centering can prevent shortcuts from acting as redundant “detractors” that
impede learning instead of assisting it. These two techniques should therefore
always be used in conjunction.

10.4.3 Vowel Recognition Problem

Our positive experiences with centering on the symmetry detection task imme-
diately raise two further questions: 1) will these results transfer to more chal-
lenging, realistic problems, and 2) is the gain in learning speed — as often
happens — bought at the expense of generalization ability? In order to address
these questions, we conducted further experiments with the speaker-independent
vowel recognition data due to Deterding [5], a popular benchmark for which good
generalization performance is rather difficult to achieve.
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The Task. The network’s task is to recognize the eleven steady-state vowels
of British English in a speaker-independent fashion, given 10 spectral features
(specifically: LPC-derived log area ratios) of the speech signal. The data consists
of 990 patterns to be classified: 6 instances for each of the 11 vowels spoken by
each of 15 speakers. We follow the convention of splitting it into a training set
containing the data from the first 8 (4 male, 4 female) speakers, and a test set
containing those of the remaining 7 (4 male, 3 female). Note that there is no
separate validation set available.

Prior Work. Robinson [13] pioneered the use of Deterding’s data as a bench-
mark by comparing the performance of a number of neural network architectures
on it. Interestingly, none of his methods could outperform the primitive single
nearest neighbor approach (which misclassifies 44% of test patterns), thus posing
a challenge to the pattern recognition community. Trained on the task as formu-
lated above, conventional backpropagation networks in fact appear to reach their
limits at error rates of around 42% [6, 9], while an adaptive nearest neighbor
technique can achieve 38% [7]. In Chapter 7, Flake reports comparably favorable
results for RBF networks as well as his own hybrid architectures. Even better
performance can be obtained by using speaker sex/identity information [19, 20],
or by training a separate model for each vowel [8]. By combining these two ap-
proaches, a test set error of 23% has been reached [18], the lowest we are aware
of to date.

Training and Testing. We trained fully connected feedforward networks with
10 inputs, 22 hidden units, and 11 logistic output units by minimization of cross-
entropy loss. The target was 1 for the output corresponding to the correct vowel,
0 for all others. Activity centering was done a priori by explicitly centering the
inputs (separately for training and test set), and by using the tanh nonlinearity
for hidden units. The uncentered control experiments used the original input
data, and logistic activation functions.

The relatively small size of our networks enabled us to run all experiments
out to 2 000 epochs of training. After each epoch, the network’s generalization
ability was measured in terms of its misclassification rate on the test set. For the
purpose of testing, a maximum likelihood approach was adopted: the network’s
highest output for a given test pattern was taken to indicate its classification of
that pattern.

First Results. Figure 10.1 shows how the average test set error (over 100
runs) evolved during training in each of the 8 experiments we performed for
this benchmark. For all curves, error bars were at most the size of the marks
shown along the curve, and have therefore been omitted for clarity. Following our
experience on the symmetry detection task, shortcuts and slope centering were
always used in conjunction whereas activity and error centering were examined
independently. The following effects can be discerned:
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Fig. 10.1. Evolution of the average test set error while learning the vowel recognition
task with activity centering (triangular marks), error centering (filled marks), and/or
slope centering with shortcut weights (solid lines), vs. their uncentered controls. Ex-
periments are denoted a)–h) as in Table 10.3.

1. All experiments with activity centering (triangular marks) clearly outper-
formed all experiments without it (circular marks) in both average conver-
gence speed and minimum average test set error.

2. All experiments with shortcuts and slope centering (solid lines) outperformed
the corresponding experiment without them (dashed lines).

3. With one notable exception (experiment d), error centering (filled marks)
sped up convergence significantly. Its effect was greatest in the experiments
without activity centering.

4. The best experiment in terms of both convergence speed and minimum av-
erage test set error was e), the fully centered one; the worst was a), the fully
conventional one.

The qualitative picture that emerges is that centering appears to significantly
speed up convergence without adversely affecting the trained network’s general-
ization ability. We will now attempt to quantify this finding.

Quantifying the Effect. Since the curves in Figure 10.1 are in fact superpo-
sitions of 100 nonlinear curves each, they are ill-suited to quantitative analysis:
value and location of the minimum average test set error do not tell us anything
about the distribution of such minima across individual runs — not even their
average value or location. In order to obtain such quantitative results, we need to
identify an appropriate minimum in test set error for each run. This will allow
us to directly compare runs with identical initial weights across experiments,
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as well as to characterize the distribution of minima within each experiment
by aggregate statistics (e.g., mean, standard deviation, quartiles) for both the
minimum test set error, and the time taken to reach it.

A fair and consistent strategy to identify minima suitable for the quantitative
comparisons we have in mind is not trivial to design. Individual runs may have
multiple minima in test set error, or none at all. If we were to just use the global
minimum over the duration of the run (2 000 epochs), we would not be able
to distinguish a fast method which makes some insignificant improvement to a
long-found minimum late in the run from a slow method which takes that long
to reach its first minimum. Given that we are concerned with both the quality
of generalization performance and the speed with which it is achieved, a greedy
strategy for picking appropriate minima is indicated.

Identification of Minima. We follow the evolution of test set error over the
course of each run, noting new minima as we encounter them. If the best value
found so far is not improved upon within a certain period of time, we pick it as the
minimum of that run for the purpose of quantitative analysis. The appropriate
length of waiting period before giving up on further improvement is a difficult
issue — see Chapter 2 for a discussion. For a fair comparison between faster and
slower optimization methods, it should be proportional to the time it took to
reach the minimum in question: a slow run then has correspondingly more time
to improve its solution than a fast one.

Unfortunately this approach fails if a minimum of test set error occurs during
the initial transient, within the first few epochs of training: the waiting period
would then be too short, causing us to give up prematurely. On the other hand,
we cannot wait longer than the overall duration of the run. We therefore stop
looking for further improvement in a run after min(2 000, 2ε+100) epochs, where
ε records when the network first achieved the lowest test set error seen so far in
that run. Only 9 out of the 800 runs reported here expired at the upper limit of
2 000 epochs, so we are confident that its imposition did not significantly skew
our results.

Test Set Used as Validation Set. Note that since we use the test set to deter-
mine at which point to compare performance, we have effectively appropriated
it as a validation set. The minimum test set errors reported below are therefore
not unbiased estimators for the network’s ability to generalize to novel speakers,
and should not be compared to proper measurements of this ability (for which
the test set must not affect the training procedure in any way). Nonetheless, let
us not forget that the lowest test set error does measure the network’s general-
ization ability in a consistent fashion after all: even though these scores are all
biased to favor a particular set of novel speakers (the test set), by no means does
this render their comparison against each other insignificant.

Overview of Results. Table 10.3 summarizes quantitative results obtained in
this fashion for the vowel recognition problem. To assess their significance, recall



10. Centering Neural Network Gradient Factors 219

Table 10.3. Minimum test set error (misclassification rate in %), and the number of
epochs required to reach it, for the vowel recognition task. Except for the different
layout, results are reported in the same manner as in Tables 10.1 and 10.2. Due to
space limitations, only selected pairs of experiments are compared directly.

features: performance measure:
centering minimum test set error epochs required

mean ± st.d. dir. comparison: mean ± st.d. dir. comparison:

exp
erim

ent
activ.
error
slope

shortcuts quartiles # of better runs quartiles # of faster runs

48.0 ± 3.6 554 ± 321
a)

45.7/47.3/50.0 67 17 13 19 37 365/486/691 3 10 4 1 14

49.1 ± 2.9 31
|

125 ± 82 97
|

b)
√

47.0/49.6/50.9 10 67.5/104/163 51

43.9 ± 2.5 82 156 ± 110 90
c)
√

42.3/43.9/46.0 51 75/137/215 47

44.3 ± 2.3 89 46
|

84 158 ± 141 48 52
|

96
d)
√ √

42.9/44.2/45.9 49 65 72/124/186 21 85

44.2 ± 2.5 49
|

80 72.4 ± 55.5 78
|

99
e)
√ √ √ √

42.3/44.4/46.3 70 47 68 37.5/51.5/81 76 75 92

44.2 ± 2.8 51
|

113 ± 64 24
|

f)
√ √ √

42.3/44.4/46.1 68 69.5/97.5/148 88

46.8 ± 3.7 27 126 ± 139 22
g)

√ √ √
44.0/47.0/48.9 43 64/94/138 84

46.5 ± 3.1 56
|

31 29 30 61 270 ± 164 15
|

12 15 8 86
h)

√ √
44.5/46.8/48.5 162/235/316

that the standard error in the mean of a performance measure reported here
is 1/

√
100 = 1/10 of its reported standard deviation. Figure 10.2 depicts the

same data (except for the direct comparisons) graphically in form of cumulative
histograms for the minimum test set error and the number of epochs required
to reach it.

The results generally confirm the trends observed in Figure 10.1. Runs in the
fully centered experiment e) clearly converged most rapidly — and to test set
errors that were among the best. Compared to the conventional setup a), full
centering converged almost 8 times faster on average while generalizing better
80% of the time.

Generalization Performance. Average misclassification rates on the test set
ranged from 44% to 49%, which we consider a fair result given our comparatively
small networks. They cluster into three groups: networks with activity centering
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Fig. 10.2. Cumulative histograms for the minimum test set error (left), and the number
of epochs required to reach it (right), for the vowel recognition task. Curves are labelled
as in Figure 10.1, and marked every 10th percentile.

achieved around 44%, the two others with shortcuts and slope centering came
in under 47%, while the remaining two only reached 48–49%. The cumulative
histogram (Figure 10.2, left) shows that all activity-centered networks had an
almost identical distribution of minimum test set errors.

Note that centering the inputs changes the task, and that the addition of
shortcuts changes the network topology. It is possible that this — rather than
centering per se — accounts for their beneficial effect on generalization. Error
centering was the one feature in our experiments that changed the dynamics
of learning exclusively. Its addition appeared to slightly worsen generalization,
particularly in the absence of other forms of centering. This could be caused by
a reduction (due to centering) of the effective number of parameters in what is
already a rather small model. Such an effect should not overly concern us: one
could easily recoup the lost degrees of freedom by slightly increasing the number
of hidden units for centered networks.

Convergence Speed. All three forms of centering examined here clearly sped
up convergence, both individually and in combination. A slight anomaly ap-
peared in that the addition of error centering in going from experiment c) to d)
had no significant effect on the average number of epochs required. A look at
the cumulative histogram (Figure 10.2, right) reveals that while experiment d)
is ahead between the 20th and 80th percentile, c) had fewer unusually slow runs
than d), and a few exceptionally fast ones.

With the other forms of centering in place, the addition of error centering was
unequivocally beneficial: average convergence time decreased from 113 epochs
in f) to 72.4 epochs in e). The histogram shows that the fully centered e) is far
ahead of the competition through almost the entire percentile range.
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Finally, it is interesting to note that the addition of shortcuts and slope cen-
tering, both on their own and to a network with activity and error centering,
roughly doubled the convergence speed — the same magnitude of effect as ob-
served on the symmetry detection task.

10.5 Discussion

The preceding section has shown that centering can indeed have beneficial effects
on the learning speed and generalization ability of a neural network. Why is this
so? In what follows, we offer an explanation from three (partially overlapping)
perspectives, considering in turn the effect of centering on the condition number
of the Hessian, the level of noise in the local gradient, and the credit assignment
between different parts of the network.

Conditioning the Hessian. It is well known that the minimal convergence
time for first-order gradient descent on quadratic error surfaces is inversely re-
lated to the condition number of the Hessian matrix, i.e., the ratio between its
largest and its smallest eigenvalue. A common strategy for accelerating gradient
descent is therefore to seek to improve the condition number of the Hessian.

For a single linear node y =wTx with squared loss function, the Hessian is
simply the covariance matrix of the inputs: H=

〈
xxT

〉
. Its largest eigenvalue is

typically caused by the d.c. component of x [12]. Centering the inputs removes
that eigenvalue, thus conditioning the Hessian and permitting larger step sizes
(cf. Chapter 1). For batch learning, error centering has exactly the same effect
on the local weight update:

Δw ∝ 〈(δ−〈δ〉)x〉 = 〈δ x〉 − 〈δ〉 〈x〉 = 〈δ (x−〈x〉)〉 (10.14)

Error centering does go further than activity centering, however, in that it also
affects the error backpropagated to anterior nodes. Moreover, Equation 10.14
does not hold for online learning, where the gradient is noisy.

Noise Reduction. It can be shown that centering improves the signal-to-noise
ratio of the local gradient. Omitting the slope factor for the sake of simplicity,
consider the noisy weight update

Δwij ∝ (δj + φ)(xi + ξ) = δjxi + ξδj + φxi + φξ (10.15)

where φ and ξ are the noise terms, presumed to be zero-mean, and independent
of activity, error, and each other. In the expansion on the right-hand side, the
first term is the desired (noise-free) weight update while the others represent
noise that contaminates it. While the last (pure noise) term cannot be helped,
we can reduce the variance of the two mixed terms by centering δj and xi so as
to minimize

〈
δ 2j
〉

and
〈
x 2
i

〉
, respectively.

One might of course contend that in doing so, we are also shrinking the signal
δjxi, so that in terms of the signal-to-noise ratio we are no better — in fact,
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worse — off than before. This cuts right to the heart of the matter, for centering
rests upon the notion that the error signal relevant to a non-bias, non-shortcut
weight is the fully centered weight update, and that any d.c. components in
δjxi should therefore also be regarded as a form of noise. This presumption can
of course be maintained only because we do have bias and shortcut weights to
address the error components that centering removes.

Improved Credit Assignment. From the perspective of a network that has
these additional parameters, then, centering is a way to improve the assignment
of responsibility for the network’s errors: constant errors are shunted to the bias
weights, linear errors to the shortcut weights, and the remainder of the network
is bothered only with those parts of the error signal that actually require a
nonlinearity. Centering thus views hidden units as a scarce resource that should
only be called upon where necessary. Given the computational complications that
arise in the training of nonlinear nodes, we submit that this is an appropriate
and productive viewpoint.

Future Work. While the results reported here are quite promising, more ex-
periments are required to assess the general applicability and effectiveness of
centering. For feedforward networks, we would like to explore the use of cen-
tering with multiple hidden layers, stochastic (online) gradient descent, and for
function approximation (rather than classification) problems. The centering ap-
proach per se, however, is rather more general than that, and so further ahead we
anticipate its application to a range of more sophisticated network architectures,
learning algorithms, and problem domains.
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Abstract. One significant source of roundoff error in backpropagation
networks is the calculation of derivatives of unit outputs with respect
to their total inputs. The roundoff error can lead result in high relative
error in derivatives, and in particular, derivatives being calculated to
be zero when in fact they are small but non-zero. This roundoff error
is easily avoided with a simple programming trick which has a small
memory overhead (one or two extra floating point numbers per unit)
and an insignificant computational overhead.

11.1 Introduction

Backpropagating derivatives is an essential part of training multilayer networks.
Accuracy of these derivatives is important to many training methods, especially
ones which use second-order information, such as conjugate gradients. The stan-
dard formula for backpropagating error derivatives (eg., as given in Ripley [3],
Bishop [1], and Rumelhart, Hinton, and Williams [4]) use floating point arith-
metic in such a way that can result in significant roundoff error. In particular,
small derivatives are rounded off to zero. These errors can cause second-order
methods to become confused (because of inaccurate gradients) and can also cause
the weight search to stop or be very slow because some derivatives are calculated
to be zero when in fact they are small but non-zero. This chapter explains how
this particular source of roundoff error can be avoided simply and cheaply. The
method applies to both logistic and tanh units, and to the sum-squared and
cross-entropy error functions.

In this chapter, the symbol “=” is used to denote mathematical equality, and
the symbol “←” is used to denote an assignment to some floating-point variable.
Floating point values are denoted by an asterisk, eg., x∗i is the floating point
version of xi.
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11.2 Roundoff Error in Sigmoid Units

Consider a non-input unit whose output yi is computed as the logistic function
of its total input xi:

yi =
1

1 + exp(−xi)
and y∗i ←

1

1 + exp(−x∗i )
.

In the backpropagationphase of training,we need to calculate the partial derivative
of the error with respect to the total input. This is done using the chain rule:

∂E

∂xi
=
∂E

∂yi

∂yi
∂xi

.

The standard way of calculating ∂yi

∂xi
is to use the formula relating it to yi, which

for the logistic function is
(
∂yi
∂xi

)∗
← y∗i (1− y∗i ).

This computation is a potential source of roundoff error: if the actual value of
yi is so close to one that y∗i is exactly one, then ( ∂yi

∂xi
)∗ will equal zero.

Figures 11.1 show the values of this expression calculated in single and double
precision floating point arithmetic. In single precision, when xi is greater than
about 17.33, y∗i (1− y∗i ) evaluates to zero. For xi values slightly lower than 17.33
there is significant quantization. In double precision y∗i (1− y∗i ) evaluates to zero
when xi is greater than about 36.74.
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Fig. 11.1. Quantization in calculated values of unit derivatives ( ∂y
∂x

) for logistic units,
computed using the formula y∗(1− y∗) where y∗ ← 1/(1 + exp(−x∗)). Roundoff error
causes quantization on the right hand side of each plot.

Note that in Figure 11.1 the roundoff error due to the calculation of 1 − y∗
only occurs for positive x. For negative x, y∗ approaches zero, and is accurately
represented, and the relative roundoff error in 1−y∗ is insignificant. This provides
a clue as to how to avoid the roundoff error for positive x: don’t compute 1− y∗
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when y∗ is close to one. Indeed, these roundoff errors can be avoided entirely by
storing an extra value with each unit, which is zi = 1− yi, calculated accurately
in floating point arithmetic as follows:

y∗i ←
1

1 + exp(−x∗i )
and z∗i ←

exp(−x∗i )
1 + exp(−x∗i )

.

Together, these two floating points numbers accurately represent the unit output
at its extremes: y∗i is an accurate representation when the output is close to zero,
and z∗i is an accurate representation of one minus the output when the output
is close to one. With them, ∂yi

∂xi
is simply and accurately calculated as follows:
(
∂yi
∂xi

)∗
← y∗i z

∗
i .

Implementing these calculations requires the storage of one extra floating point
number per unit (ie., z∗i ), and the computation of one extra division per unit. This
extra resource usage is insignificant because the total resource requirements for a
forward- and back-propagation pass are proportional to the number of weights in
the network, which is usually of the order of the square of the number of units.

The value yi is also used in calculating partial derivatives for weights on con-
nections emerging from unit i. However, the errors in the representations of
values of yi close to one do not cause high relative errors in these weight deriva-
tives (except in special circumstances where derivatives from different examples
cancel each other, but there is no simple remedy in these rare situations). Hence,
it is generally safe to use just y∗i for these calculations.

11.2.1 Sum-Squared Error Computations

Roundoff errors can also occur in the calculation of errors and their derivatives.
This is unlikely to be important if targets are rounded-off versions of true targets,
eg., targets like 0.3129871 or 0.9817523, because such targets have as much
roundoff error as the values of unit outputs.

However, if sum-squared error is used, and targets are all 0 or 1 and are
accurate (i.e., 1 is not a rounded-off version of 0.99999999 or 1.00000001), and
unit i computes a logistic function of its total input, then the following formulas
can be used (where ti is the target for unit i, E = 1

2 (ti − yi)2, and zi = 1 − yi,
calculated as before):

E∗ ←
{

1
2 (t

∗
i − y∗i )2 if y∗i ≤ 0.5

1
2 ((t

∗
i − 1) + z∗i )

2 if y∗i > 0.5
(
∂E

∂yi

)∗
←
{
y∗i − t∗i if y∗i ≤ 0.5

(1− t∗i )− z∗i if y∗i > 0.5

These formulas could be split into a greater number of simpler cases if ti were
always 0 or 1, but as they are they are correct for general values of ti and accurate
when ti is 0 or 1.
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11.2.2 Single Logistic-Output Cross-Entropy Computations

If the network has a single output unit (unit i) which represents probability in
a two-class classification problem, then the cross-entropy error function [1] for
one example is as follows:

E = tilogyi + (1− ti)log(1− yi).

This error function is most appropriately used with a logistic function on the
output unit. In this case, errors and partial derivatives can be calculated from
the following formulas, and the calculations will be accurate for ti = 0 or 1
(where zi = 1− yi, calculated as before). To get accurate results, it is necessary
to use the function1 log1p(x), which computes log(1 + x) accurately for tiny x.

E∗ ←
{
t∗i logy∗i + (1− t∗i )log1p(−y∗i ) if y∗i ≤ 0.5

t∗i log1p(−z∗i ) + (1− t∗i )logz∗i if y∗i > 0.5
(
∂E

∂xi

)∗
←
{
y∗i − t∗i if y∗i ≤ 0.5

1− t∗i − z∗i if y∗i > 0.5

11.2.3 Other Approaches to Avoiding Zero-Derivatives with the
Logistic Function

Fahlman [2] suggested adding 0.1 to ∂yi

∂xi
in order to decrease learning time by

eliminating flat spots in the training surface (ie., spots with small derivatives),
and also to avoid zero-derivatives due to roundoff. In Fahlman’s experiments this
technique improved the learning time. However, it also makes the derivatives
incorrect with respect to the error function. This may not matter in networks
where the actual output numbers do not mean very much other than “high” or
“low”. However, in networks where achieving accurate estimates of the targets
is important, eg., where the targets are probabilities, or targets are continuous
values in a modeling task, this technique is undesirable as it causes the gradient
search to not minimize the error, but to minimize some other quantity instead.

Another technique sometimes used with neural networks is to transform tar-
gets from the range [0, 1] to [0.1, 0.9]. Again, a secondary motivation is to avoid
zero-derivatives, and again, this technique should not be used where actual out-
put values have any more significance than “high” or “low”.

11.3 Softmax and Cross-Entropy Computations

In networks which must classify instances into one of k mutually exclusive classes,
cross-entropy is often used as the error measure, together with the softmax
output function. The softmax output function allows the outputs of the k output
units to be interpreted as probabilities: it forces each output to be between zero
1 log1p(x) is available in Unix math libraries.
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and one, and forces their total to be one. Assuming that outputs units are
numbered 1 to k, the equations for softmax and cross-entropy (for one example)
are as follows:

yi =
exp(xi)∑k
j=1 exp(xj)

and E =

k∑

j=1

tj logyj.

The derivative of the error with respect to x has a very simple form:

∂E

∂xi
= yi − ti.

This equation is subject to high relative error due to roundoff when ti is exactly
one and yi is close to one. This can happen often in training neural nets, and
can lead to derivatives being calculated as zero when in fact they are just small.

This roundoff error, and also possible overflow in the computation of yi,
can be avoided by using the following computations, which use extra float-
ing point variables to store the values of zi = 1 − yi and x′i = xi − maxj xj :

m∗ ← max
j
x∗j

x′i
∗ ← x∗i −m∗

Q∗ ←
∑

j

exp(x′j
∗
)

y∗i ←
1

Q∗ exp(x′i
∗
)

z∗i ←
{
1− y∗i if y∗i ≤ 0.5
1
Q∗
∑

j �=i exp(x
′
j
∗
) if y∗i > 0.5

(
∂E

∂xi

)∗
←
{
y∗i − t∗i if y∗i ≤ 0.5

(1 − t∗i )− z∗i if y∗i > 0.5

E∗ ←
∑

j

{
t∗j log(y

∗
j ) if y∗i ≤ 0.5

t∗j log1p(−z∗j ) if y∗i > 0.5

The space overhead is low: at most two extra floating point variables per
output unit, depending on the implementation. The time overhead is also low.
The only lengthy additional computation is the second alternative for z∗i , which
can be performed for at most one i because it is impossible for more than one
yi to be greater than 0.5.

11.4 Roundoff Error in Tanh Units

The same ideas apply to the calculation of derivatives in tanh units, which are
described by the following equations:

yi =
1− exp(−2xi)
1 + exp(−2xi)

and
∂yi
∂xi

= (1− yi)(1 + yi).

For tanh units, the output yi can take on values between -1 and 1. Hence, to repre-
sent outputs accurately at the extremes we need two extra floating point numbers
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to store the values zi = 1 − yi and ui = 1 + yi. Then the following expressions
evaluated in floating point arithmetic will avoid unnecessary roundoff error:

v∗i ← exp(−2x∗i )

u∗i ←
2

1 + v∗i
z∗i ← v∗i u

∗
i

y∗i ← u∗i − 1
(
∂yi
∂xi

)∗
← z∗i u

∗
i

The tanh function is not often used on output units, but if desired, formulas for
accurately calculating errors and derivatives when targets are always 1 or -1 are
easily derived.

11.5 Why Bother?

Since the derivatives which are affected by roundoff error are very small, the pro-
posal to calculate them accurately might provoke the response “why bother?” For
on-line learning methods (stochastic gradient), there is probably no point, as com-
puting small gradients to high accuracy is unlikely to make any difference. How-
ever, for nets trained in batch mode with second-order methods such as conjugate
gradients, small derivatives can be quite important, for the following reasons:

1. Quantization in error or derivatives can confuse line search routines, so avoid-
ing quantization is a good thing.

2. Many small derivatives can add up.
3. Computing small but non-zero derivatives allows training methods to con-

tinue as opposed to stopping because of zero derivatives. Some training meth-
ods can make significant progress with small derivatives, so it is possible that
the weights will move out of the flat area of the error function.

Indeed, there is little reason not to compute these values accurately, as the extra
storage and computations are insignificant.
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Representing and Incorporating Prior Knowledge
in Neural Network Training�

Preface

The present section focuses on tricks for four important aspects in learning: (1)
incorporation of prior knowledge, (2) choice of representation for the learning
task, (3) unequal class prior distributions, and finally (4) large network training.

Patrice Simard, et al. review the famous tangent distance and tangent
propagation algorithms. Included are tricks for speeding and increasing the
stability that were not published in previous work. One important trick for
obtaining good performance in their methods is smoothing (see p. 249) of the
input data, which is illustrated for 2D handwritten character recognition images.
To obtain the tangent we must compute the derivative, however, this obviously
cannot be calculated for discrete images. To compute tangent vectors, it must
be possible to interpolate between the pixel values of the images (or the features
of the images). Since many interpolations are possible, a “smoothing” regular-
izer is used because it has the extra benefit of imposing some control on the
locality of the transformation invariance. However, care must be taken not to
over smooth (or useful features are washed away). Another trick is to use the
so-called elastic tangent distance (see p. 249) which eliminates the problem
of singular systems which arises when there is zero distance between two pat-
terns, or when their tangent vectors are parallel. Finally, through a very refined
hierarchy of resolution and accuracy (see p. 251) the tangent distance algo-
rithm can be sped up by two or tree orders of magnitude over a straight forward
implementation.

Tangentprop takes the invariance idea even further by making it possible to
incorporate local or global invariances and prior knowledge directly into the loss
function of backpropagation and to backpropagate tangents efficiently (see p.
259). The chapter concludes with a digression on the mathematical background
(Lie groups) and the simplifications that follow from the theory of this very
successful (record breaking OCR) algorithm.

In the next chapter Larry Yaeger, et al. present an entire collection of tricks
for an application that also is of strong commercial interest, on-line handwritten
character recognition. These tricks were used by the authors to develop the rec-
ognizer in the Apple Computer’s Newton MessagePad©R and eMate©R products.
Their recognizer consists of three main components: a segmenter, a classifier,
and a context driven search component. Of particular interest is the intricate
representation of stroke information (see p. 274) that serves as input to
the classifier. Prior knowledge has led the authors to include specific stroke

� Previously published in: Orr, G.B. and Müller, K.-R. (Eds.): LNCS 1524, ISBN
978-3-540-65311-0 (1998).

G. Montavon et al. (Eds.): NN: Tricks of the Trade, 2nd edn., LNCS 7700, pp. 231–233, 2012.
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features, grayscale character images, and coarse character attributes (stroke
count and character aspect ratio), all combined into an ensemble of networks.
The ensemble decisions are then combined in algorithmic search through a hy-
pothesis space of dictionaries and combinations of dictionaries comprising a
broad coverage, weakly applied language model.

An extensive set of tricks for training the network are also discussed, including:

Normalizing output error: Assist output activities of secondary choices to
have non-zero values (NormOutErr). This enhances the robustness for the
subsequent integrated search procedure since the search can now also take
the n best choices into account (p. 276).

Negative training: Reduce the effect of invalid character segmentation (p.
278).

Stroke warping: Generate randomly warped versions of patterns to increase
the generalization ability (p. 279).

Frequency balancing: Reduce the problem of unbalanced class priors using
the simple trick of repeating low frequency classes more often in order to
force the network to allocate more resources to these cases (p. 280).

Error emphasis: Account for different and uncommon writing styles by pre-
senting difficult or unusual patterns more often (p. 281).

Quantized weights: Enable the neural network classifier to run with only one-
byte weights and train with a temporary additional two bytes (p. 282).

In chapter 14, Steve Lawrence, et al. discuss several different tricks for alleviating
the problem of unbalanced class prior probabilities. Some theoretical explana-
tions are also provided. In the first trick, prior scaling (p. 296), weight updates
are scaled so that the total expected update for each class is equal. The second
trick, probabilistic sampling (p. 298), slightly modifies the frequency balanc-
ing in chapter 13. Here, a class is first chosen and then from within this class
a sample is drawn. The next trick is referred to as post scaling (p. 298). The
network is trained as usual but the network outputs are rescaled after training.
This method can also be used to optimize other criteria that are different from
the loss function the network has been trained with. Finally the authors propose
to equalize class memberships (p. 299) by either subsampling the class with
higher frequency or by duplicating patterns from the class with lower frequency
(however they report that this trick works least efficiently). The effectiveness of
each of these tricks is examined and compared for an ECG classification problem.

Training problems with thousands of classes and millions of examples, as
are common for speech and handwritten character recognition problems, pose a
major challenge. While many of the training techniques discussed so far work well
for moderate size nets, they can fail miserably for these extremely large problems.
In chapter 15, Jürgen Fritsch and Michael Finke design a representation and
architecture for such large scale learning problems and, like the previous two
chapters, they also tackle the problem of unbalanced class priors (since not all
of the 24k subphonemes are equally probable). They exemplify their approach
by building a large vocabulary speech recognizer. In the first step they break
down the task into a hierarchy of smaller decision problems of controllable size
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(divide and conquer, p. 313) and estimate the conditional probabilities for
each node of the decision tree with a neural network. The network training uses
mini batches and individual adaptive learning rates that are increased
if progress is made in weight space and decreased if the fluctuations in weight
space are too high (p. 332). These estimated probabilities – modeled by every
single neural network node – are combined to give an overall estimate of the
class decision probabilities.

The authors either determine the decision tree structure manually or esti-
mate it by their ACID clustering algorithm (p. 324). Interestingly, the man-
ual structure design was outperformed by the proposed agglomerative clustering
scheme. No doubt that prior knowledge helps to achieve better classification re-
sults. However, this astonishing result indicates that human prior knowledge,
although helpful in general, is suboptimal for structuring such a large task,
particularly since automatic clustering allows for fine-grain subdivision of the
classification task and aims for uniformity of priors. This desirable goal is hardly
achievable by manual construction of the classification hierarchy. Furthermore,
the human prior knowledge also does not provide the best basis from which a
machine learning algorithm can learn optimally, a fact that is important to keep
in mind for other applications as well.

Jenny & Klaus
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Abstract. In pattern recognition, statistical modeling, or regression,
the amount of data is a critical factor affecting the performance. If the
amount of data and computational resources are unlimited, even trivial
algorithms will converge to the optimal solution. However, in the practi-
cal case, given limited data and other resources, satisfactory performance
requires sophisticated methods to regularize the problem by introduc-
ing a priori knowledge. Invariance of the output with respect to certain
transformations of the input is a typical example of such a priori knowl-
edge. In this chapter, we introduce the concept of tangent vectors, which
compactly represent the essence of these transformation invariances, and
two classes of algorithms, “tangent distance” and “tangent propagation”,
which make use of these invariances to improve performance.

12.1 Introduction

Pattern Recognition is one of the main tasks of biological information process-
ing systems, and a major challenge of computer science. The problem of pattern
recognition is to classify objects into categories, given that objects in a particular
category may have widely-varying features, while objects in different categories
may have quite similar features. A typical example is handwritten digit recogni-
tion. Characters, typically represented as fixed-size images (say 16 by 16 pixels),
must be classified into one of 10 categories using a classification function. Build-
ing such a classification function is a major technological challenge, as irrelevant
variabilities among objects of the same class must be eliminated, while mean-
ingful differences between objects of different classes must be identified. These
classification functions for most real pattern recognition tasks are too compli-
cated to be synthesized “by hand” using only what humans know about the task.
Instead, we use sophisticated techniques that combine humans’ a priori knowl-
edge with information automatically extracted from a set of labeled examples
� Previously published in: Orr, G.B. and Müller, K.-R. (Eds.): LNCS 1524, ISBN

978-3-540-65311-0 (1998).
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(the training set). These techniques can be divided into two camps, according to
the number of parameters they require: the “memory based” algorithms, which in
effect store a sizeable subset of the entire training set, and the “learned-function”
techniques, which learn by adjusting a comparatively small number of parame-
ters. This distinction is arbitrary because the patterns stored by a memory-based
algorithm can be considered the parameters of a very complex learned function.
The distinction is however useful in this work, because memory based algorithms
often rely on a metric which can be modified to incorporate transformation in-
variances, while learned-function algorithms consist of selecting a classification
function, the derivatives of which can be constrained to reflect the same transfor-
mation invariances. The two methods for incorporating invariances are different
enough to justify two independent sections.

12.1.1 Memory Based Algorithms

To compute the classification function, many practical pattern recognition sys-
tems, and several biological models, simply store all the examples, together with
their labels, in a memory. Each incoming pattern can then be compared to all
the stored prototypes, and the labels associated with the prototypes that best
match the input determine the output. The above method is the simplest exam-
ple of the memory-based models. Memory-based models require three things: a
distance measure to compare inputs to prototypes, an output function to produce
an output by combining the labels of the prototypes, and a storage scheme to
build the set of prototypes.

All three aspects have been abundantly treated in the literature. Output func-
tions range from simply voting the labels associated with the k closest proto-
types (K-Nearest Neighbors), to computing a score for each class as a linear
combination of the distances to all the prototypes, using fixed [21] or learned [5]
coefficients. Storage schemes vary from storing the entire training set, to picking
appropriate subsets of it (see [8], chapter 6, for a survey) to learned-functions
such as learning vector quantization (LVQ) [17] and gradient descent. Distance
measures can be as simple as the Euclidean distance, assuming the patterns and
prototypes are represented as vectors, or more complex as in the generalized
quadratic metric [10] or in elastic matching methods [15].

Pattern to
be classified Prototype A Prototype B

Fig. 12.1. According to the Euclidean distance the pattern to be classified is more
similar to prototype B. A better distance measure would find that prototype A is
closer because it differs mainly by a rotation and a thickness transformation, two
transformations which should leave the classification invariant.
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A simple but inefficient pattern recognition method is to use a simple distance
measure, such as Euclidean distance between vectors representing the raw input,
combined with a very large set of prototypes. This method is inefficient because
almost all possible instances of a category must be present in the prototype
set. In the case of handwritten digit recognition, this means that digits of each
class in all possible positions, sizes, angles, writing styles, line thicknesses, skews,
etc... must be stored. In real situations, this approach leads to impractically large
prototype sets or to mediocre recognition accuracy as illustrated in Figure 12.1.
An unlabeled image of a thick, slanted “9” must be classified by finding the closest
prototype image out of two images representing respectively a thin, upright “9”
and a thick, slanted“4”. According to the Euclidean distance (sum of the squares
of the pixel to pixel differences), the “4” is closer. The result is an incorrect
classification. The classical way of dealing with this problem is to use a so-called
feature extractor whose purpose is to compute a representation of the patterns
that is minimally affected by transformations of the patterns that do not modify
their category. For character recognition, the representation should be invariant
with respect to position, size changes, slight rotations, distortions, or changes in
line thickness. The design and implementation of feature extractors is the major
bottleneck of building a pattern recognition system. For example, the problem
illustrated in Figure 12.1 can be solved by deslanting and thinning the images.

An alternative to this is to use an invariant distance measure constructed
in such a way that the distance between a prototype and a pattern will not be
affected by irrelevant transformations of the pattern or of the prototype. With an
invariant distance measure, each prototype can match many possible instances
of pattern, thereby greatly reducing the number of prototypes required.

The natural way of doing this is to use “deformable” prototypes. During the
matching process, each prototype is deformed so as to best fit the incoming pat-
tern. The quality of the fit, possibly combined with a measure of the amount of
deformation, is then used as the distance measure [15]. With the example of Fig-
ure 12.1, the “9” prototype would be rotated and thickened so as to best match
the incoming “9”. This approach has two shortcomings. First, a set of allowed
deformations must be designed based on a priori knowledge. Fortunately, this is
feasible for many tasks, including character recognition. Second, the search for
the best-matching deformation is often enormously expensive, and/or unreliable.
Consider the case of patterns that can be represented by vectors. For example,
the pixel values of a 16 by 16 pixel character image can be viewed as the compo-
nents of a 256-dimensional vector. One pattern, or one prototype, is a point in
this 256-dimensional space. Assuming that the set of allowable transformations is
continuous, the set of all the patterns that can be obtained by transforming one
prototype using one or a combination of allowable transformations is a surface
in the 256-D pixel space. More precisely, when a pattern P is transformed (e.g.
rotated) according to a transformation s(P, α) which depends on one parameter
α (e.g. the angle of the rotation), the set of all the transformed patterns

SP = {x | ∃α for which x = s(P, α)} (12.1)
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is a one-dimensional curve in the vector space of the inputs. In the remainder of
this chapter, we will always assume that we have chosen s be differentiable with
respect to both P and α and such that s(P, 0) = P .

When the set of transformations is parameterized by n parameters αi (ro-
tation, translation, scaling, etc.), the intrinsic dimension of the manifold SP is
at most n. For example, if the allowable transformations of character images
are horizontal and vertical shifts, rotations, and scaling, the surface will be a
4-dimensional manifold.

In general, the manifold will not be linear. Even a simple image translation
corresponds to a highly non-linear transformation in the high-dimensional pixel
space. For example, if the image of an “8” is translated upward, some pixels
oscillate from white to black and back several times. Matching a deformable
prototype to an incoming pattern now amounts to finding the point on the sur-
face that is at a minimum distance from the point representing the incoming
pattern. This non-linearity makes the matching much more expensive and un-
reliable. Simple minimization methods such as gradient descent (or conjugate
gradient) can be used to find the minimum-distance point, however, these meth-
ods only converge to a local minimum. In addition, running such an iterative
procedure for each prototype is usually prohibitively expensive.

If the set of transformations happens to be linear in pixel space, then the
manifold is a linear subspace (a hyperplane). The matching procedure is then
reduced to finding the shortest distance between a point (vector) and a hyper-
plane, which is an easy-to-solve quadratic minimization problem. This special
case has been studied in the statistical literature and is sometimes referred to
as Procrustes analysis [24]. It has been applied to signature verification [12] and
on-line character recognition [26].

This chapter considers the more general case of non-linear transformations
such as geometric transformations of gray-level images. Remember that even a
simple image translation corresponds to a highly non-linear transformation in
the high-dimensional pixel space. The main idea of the chapter is to approx-
imate the surface of possible transforms of a pattern by its tangent plane at
the pattern, thereby reducing the matching to finding the shortest distance be-
tween two planes. This distance is called the tangent distance. The result of the
approximation is shown in Figure 12.2, in the case of rotation for handwritten
digits. At the top of the figure, is the theoretical curve in pixel space which
represents equation (12.1), together with its linear approximation. Points of the
transformation curve are depicted below for various amounts of rotation (each
angle corresponds to a value of α). The bottom of Figure 12.2 depicts the linear
approximation of the curve s(P, α) given by the Taylor expansion of s around
α = 0:

s(P, α) = s(P, 0) + α
∂s(P, α)

∂α
+O(α2) ≈ P + αT. (12.2)

This linear approximation is completely characterized by the point P and the
tangent vector T = ∂s(P,α)

∂α . Tangent vectors, also called the Lie derivatives of
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Fig. 12.2. Top: Representation of the effect of the rotation in pixel space. Middle:
Small rotations of an original digitized image of the digit “2”, for different angle values
of α. Bottom: Images obtained by moving along the tangent to the transformation
curve for the same original digitized image P by adding various amounts (α) of the
tangent vector T .

the transformation s, will be the subject of section 12.4. As can be seen from
Figure 12.2, for reasonably small angles (‖α‖ < 1), the approximation is very
good.

Figure 12.3 illustrates the difference between the Euclidean distance, the full
invariant distance (minimum distance between manifolds) and the tangent dis-
tance. In the figure, both the prototype and the pattern are deformable (two-
sided distance), but for simplicity or efficiency reasons, it is also possible to
deform only the prototype or only the unknown pattern (one-sided distance).

Although in the following we will concentrate on using tangent distance to
recognize images, the method can be applied to many different types of signals:
temporal signals, speech, sensor data...
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between P and E
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E

Fig. 12.3. Illustration of the Euclidean distance and the tangent distance between P
and E. The curves Sp and Se represent the sets of points obtained by applying the
chosen transformations (for example translations and rotations) to P and E. The lines
going through P and E represent the tangent to these curves. Assuming that working
space has more dimensions than the number of chosen transformations (on the diagram,
assume one transformation in a 3-D space) the tangent spaces do not intersect and the
tangent distance is uniquely defined.

12.1.2 Learned-Function Algorithms

Rather than trying to keep a representation of the training set, it is also possible
to choose a classification function by learning a set of parameters. This is the
approach taken in neural networks, curve fitting, regression, et cetera.

We assume all data is drawn independently from a given statistical distri-
bution P , and our learning machine is characterized by the set of functions it
can implement, Gw(x), indexed by the vector of parameters w. We write F (x)
to represent the “correct” or “desired” labeling of the point x. The task is to
find a value for w such that Gw best approximates F . We can use a finite set
of training data to help find this vector. We assume the correct labeling F (x)
is known for all points in the training set. For example, Gw may be the func-
tion computed by a neural net having weights w, or Gw may be a polynomial
having coefficients w. Without additional information, finding a value for w is
an ill-posed problem unless the number of parameters is small and/or the size
of the training set is large. This is because the training set does not provide
enough information to distinguish the best solution among all the candidate ws.
This problem is illustrated in Figure 12.4 (left). The desired function F (solid
line) is to be approximated by a functions Gw (dotted line) from four exam-
ples {(xi, F (xi))}i=1,2,3,4. As exemplified in the picture, the fitted function Gw
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largely disagrees with the desired function F between the examples, but it is not
possible to infer this from the training set alone. Many values of w can generate
many different functions Gw, some of which may be terrible approximations of
F , even though they are in complete agreement with the training set. Because
of this, it is customary to add “regularizers”, or additional constraints, to restrict
the search of an acceptable w. For example, we may require the function Gw to
be “smooth”, by adding the constraint that ‖w‖2 should be minimized. It is im-
portant that the regularizer reflects a property of F , hence regularizers depend
on a priori knowledge about the function to be modeled.

x2x1 x3 x4

F(x)

x x2x1 x3 x4

F(x)

x

w
G  (x)

w
G  (x)

Fig. 12.4. Learning a given function (solid line) from a limited set of examples (x1 to
x4). The fitted curves are shown by dotted line. Left: The only constraint is that the fit-
ted curve goes through the examples. Right: The fitted curves not only go through each
example but also its derivatives evaluated at the examples agree with the derivatives
of the given function.

Selecting a good family G = {Gw, w ∈ �q} of functions is a difficult task,
sometimes known as “model selection” [16, 14]. If G contains a large family of
functions, it is more likely that it will contain a good approximation of F (the
function we are trying to approximate), but it is also more likely that the selected
candidate (using the training set) will generalize poorly because many functions
in G will agree with the training data and take outrageous values between the
training samples. If, on the other hand, G contains a small family of functions,
it is more likely that a function Gw which fits the data will be a good approxi-
mation of F . The capacity of the family of functions G is often referred to as the
VC dimension [28, 27]. If a large amount of data is available, G should contain
a large family of functions (high VC dimension), so that more functions can be
approximated, and in particular, F . If, on the other hand, the data is scarce, G
should be restricted to a small family of functions (low VC dimension), to control
the values between the (more distant) samples1. The VC dimension can also be
1 Note that this point of view also applies to memory based systems. In the case where

all the training data can be kept in memory, however, the VC dimension is infinite,
and the formalism is meaningless. The VC dimension is a learning paradigm and is
not useful unless learning is involved.
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controlled by putting a knob on how much effect is given to some regularizers.
For instance it is possible to control the capacity of a neural network by adding
“weight decay” as a regularizer. Weight decay is a heuristic that favors smooth
classification functions, by making a tradeoff by decreasing ‖w‖2 at the cost,
usually, of slightly increased error on the training set. Since the optimal classi-
fication function is not necessarily smooth, for instance at a decision boundary,
the weight decay regularizer can have adverse effects.

As mentioned earlier, the regularizer should reflect interesting properties (a
priori knowledge) of the function to be learned. If the functions F and Gw are
assumed to be differentiable, which is generally the case, the search for Gw can be
greatly improved by requiring that Gw’s derivatives evaluated at the points {xi}
are more or less equal (this is the regularizer knob) to the derivatives of F at the
same points (Figure 12.4 right). This result can be extended to multidimensional
inputs. In this case, we can impose the equality of the derivatives of F and Gw

in certain directions, not necessarily in all directions of the input space. Such
constraints find immediate use in traditional pattern recognition problems. It is
often the case that a priori knowledge is available on how the desired function
varies with respect to some transformations of the input. It is straightforward
to derive the corresponding constraint on the directional derivatives of the fitted
function Gw in the directions of the transformations (previously named tangent
vectors). Typical examples can be found in pattern recognition where the desired
classification function is known to be invariant with respect to some transfor-
mation of the input such as translation, rotation, scaling, etc., in other words,
the directional derivatives of the classification function in the directions of these
transformations is zero.

This is illustrated in Figure 12.4. The right part of the figure shows how
the additional constraints on Gw help generalization by constraining the values
of Gw outside the training set. For every transformation which has a known
effect on the classification function, a regularizer can be added in the form of
a constraint on the directional derivative of Gw in the direction of the tangent
vector (such as the one depicted in Figure 12.2), computed from the curve of
transformation.

The next section will analyze in detail how to use a distance based on tangent
vector in memory based algorithms. The subsequent section will discuss the use
of tangent vectors in neural network, with the tangent propagation algorithm.
The last section will compare different algorithms to compute tangent vectors.

12.2 Tangent Distance

The Euclidean distance between two patterns P and E is in general not ap-
propriate because it is sensitive to irrelevant transformations of P and of E. In
contrast, the transformed distance D(E,P ) is defined to be the minimal distance
between the two manifolds SP and SE , and is therefore invariant with respect to
the transformation used to generate SP and SE (see Figure 12.3). Unfortunately,
these manifolds have no analytic expression in general, and finding the distance
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between them is a difficult optimization problem with multiple local minima.
Besides, true invariance is not necessarily desirable since a rotation of a “6” into
a “9” does not preserve the correct classification.

Our approach consists of computing the minimum distance between the linear
surfaces that best approximate the non-linear manifolds SP and SE . This solves
three problems at once: 1) linear manifolds have simple analytical expressions
which can be easily computed and stored, 2) finding the minimum distance
between linear manifolds is a simple least squares problem which can be solved
efficiently and, 3) this distance is locally invariant but not globally invariant.
Thus the distance between a “6” and a slightly rotated “6” is small but the
distance between a “6” and a “9” is large. The different distances between P and
E are represented schematically in Figure 12.3.

The figure represents two patterns P and E in 3-dimensional space. The man-
ifolds generated by s are represented by one-dimensional curves going through E
and P respectively. The linear approximations to the manifolds are represented
by lines tangent to the curves at E and P . These lines do not intersect in 3 di-
mensions and the shortest distance between them (uniquely defined) is D(E,P ).
The distance between the two non-linear transformation curves D(E,P ) is also
shown on the figure.

An efficient implementation of the tangent distance D(E,P ) will be given in
the next section, using image recognition as an illustration. We then compare
our methods with the best known competing methods. Finally we will discuss
possible variations on the tangent distance and how it can be generalized to
problems other than pattern recognition.

12.2.1 Implementation

In this section we describe formally the computation of the tangent distance. Let
the function s transform an image P to s(P, α) according to the parameter α. We
require s to be differentiable with respect to α and P , and require s(P, 0) = P .
If P is a 2 dimensional image for instance, s(P, α) could be a rotation of P by
the angle α. If we are interested in all transformations of images which conserve
distances (isometry), s(P, α) would be a rotation by αθ followed by a translation
by αx, αy of the image P . In this case α = (αθ, αx, αy) is a vector of parameters
of dimension 3. In general, α = (α1, . . . , αm) is of dimension m.

Since s is differentiable, the set SP = {x | ∃α for which x = s(P, α)} is
a differentiable manifold which can be approximated to the first order by a
hyperplane TP . This hyperplane is tangent to SP at P and is generated by the
columns of matrix

LP =
∂s(P, α)

∂α

∣∣∣∣
α=0

=

[
∂s(P, α)

∂α1
, . . . ,

∂s(P, α)

∂αm

]

α=0

(12.3)

which are vectors tangent to the manifold. If E and P are two patterns to be
compared, the respective tangent planes TE and TP can be used to define a new
distance D between these two patterns. The tangent distance D(E,P ) between
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E and P is defined by

D(E,P ) = min
x∈TE,y∈TP

‖x− y‖2. (12.4)

The equation of the tangent planes TE and TP is given by:

E′(αE) = E + LEαE (12.5)
P ′(αP ) = P + LPαP (12.6)

where LE and LP are the matrices containing the tangent vectors (see equa-
tion (12.3)) and the vectors αE and αP are the coordinates of E′ and P ′ (using
bases LE and LP ) in the corresponding tangent planes. Note that E′, E, LE

and αE denote vectors and matrices in linear equations (12.5). For example, if
the pixel space was of dimension 5, and there were two tangent vectors, we could
rewrite equation (12.5) as

⎡

⎢⎢⎢⎢⎢⎢⎣

E′
1

E′
2

E′
3

E′
4

E′
5

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

E1

E2

E3

E4

E5

⎤

⎥⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎢⎣

L11 L12

L21 L22

L31 L32

L41 L42

L51 L52

⎤

⎥⎥⎥⎥⎥⎥⎦

[
α1

α2

]
. (12.7)

The quantities LE and LP are attributes of the patterns so in many cases they
can be precomputed and stored.

Computing the tangent distance

D(E,P ) = min
αE ,αP

‖E′(αE)− P ′(αP )‖2 (12.8)

amounts to solving a linear least squares problem. The optimality condition is
that the partial derivatives of D(E,P ) with respect to αP and αE should be
zero:

∂D(E,P )

∂αE
= 2(E′(αE)− P ′(αP ))

�LE = 0 (12.9)

∂D(E,P )

∂αP
= 2(P ′(αP )− E′(αE))

�LP = 0. (12.10)

Substituting E′ and P ′ by their expressions yields to the following linear system
of equations, which we must solve for αP and αE :

L�
P (E − P − LPαP + LEαE) = 0 (12.11)

L�
E(E − P − LPαP + LEαE) = 0. (12.12)

The solution of this system is

(LPEL
−1
EEL

�
E − L�

P )(E − P ) = (LPEL
−1
EELEP − LPP )αP (12.13)

(LEPL
−1
PPL

�
P − L�

E)(E − P ) = (LEE − LEPL
−1
PPLPE)αE (12.14)

where LEE = L�
ELE , LPE = L�

PLE , LEP = L�
ELP and LPP = L�

PLP . LU
decompositions of LEE and LPP can be precomputed. The most expensive part
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in solving this system is evaluating LEP (LPE can be obtained by transposing
LEP ). It requires mE ×mP dot products, where mE is the number of tangent
vectors for E andmP is the number of tangent vectors for P . Once LEP has been
computed, αP and αE can be computed by solving two (small) linear systems of
respectively mE and mP equations. The tangent distance is obtained by com-
puting ‖E′(αE)−P ′(αP )‖ using the value of αP and αE in equations (12.5) and
(12.6). If n is the dimension of the input space (i.e. the length of vector E and P ),
the algorithm described above requires roughly n(mE+1)(mP +1)+3(m3

E+m3
P )

multiply-adds. Approximations to the tangent distance can however be computed
more efficiently.

12.2.2 Some Illustrative Results

Local Invariance. The “local2 invariance” of tangent distance can be illustrated
by transforming a reference image by various amounts and measuring its distance
to a set of prototypes.

The bottom of Figure 12.5 shows 10 typical handwritten digit images. One of
them – the digit “3” – is chosen to be the reference. The reference is translated
horizontally by the amount indicated in the abscissa. There are ten curves for
Euclidean distance and ten more curves for tangent distance, measuring the
distance between the translated reference and one of the 10 digits.

Since the reference was chosen from the 10 digits, it is not surprising that
the curve corresponding to the digit “3” goes to 0 when the reference is not
translated (0 pixel translation). It is clear from the figure that if the reference
(the image “3”) is translated by more than 2 pixels, the Euclidean distance will
confuse it with other digits, namely “8” or “5”. In contrast, there is no possible
confusion when tangent distance is used. As a matter of fact, in this example,
the tangent distance correctly identifies the reference up to a translation of 5
pixels! Similar curves were obtained with all the other transformations (rotation,
scaling, etc...).

The “local” invariance of tangent distance with respect to small transforma-
tions generally implies more accurate classification for much larger transforma-
tions. This is the single most important feature of tangent distance.

The locality of the invariance has another important benefit: Local invari-
ance can be enforced with very few tangent vectors. The reason is that for in-
finitesimal (local) transformations, there is a direct correspondence3 between the
tangent vectors of the tangent plane and the various compositions of transforma-
tions. For example, the three tangent vectors for X-translation, Y-translation and

2 Local invariance refers to invariance with respect to small transformations (i.e. a
rotation of a very small angle). In contrast, global invariance refers to invariance
with respect to arbitrarily large transformations (i.e. a rotation of 180 degrees).
Global invariance is not desirable in digit recognition, since we need to distinguish
“6” from a “9”.

3 An isomorphism actually, see “Lie algebra” in [6].
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Fig. 12.5. Euclidean and tangent distances between 10 typical images of handwritten
digits and a translated image of the digit “3”. The abscissa represents the amount of
horizontal translation (measured in pixels).

rotations around the origin, generate a tangent plane corresponding to all the
possible compositions of horizontal translations, vertical translations and rota-
tions. The resulting tangent distance is then locally invariant to all the trans-
lations and all the rotations (around any center). Figure 12.6 further illustrates
this phenomenon by displaying points in the tangent plane generated from only
5 tangent vectors. Each of these images looks like it has been obtained by ap-
plying various combinations of scaling, rotation, horizontal and vertical skewing,
and thickening. Yet, the tangent distance between any of these points and the
original image is 0.

Handwritten Digit Recognition. Experiments were conducted to evaluate
the performance of tangent distance for handwritten digit recognition. An inter-
esting characteristic of digit images is that we can readily identify a set of local
transformations which do not affect the identity of the character, while covering
a large portion of the set of possible instances of the character. Seven such image
transformations were identified: X and Y translations, rotation, scaling, two hy-
perbolic transformations (which can generate shearing and squeezing), and line
thickening or thinning. The first six transformations were chosen to span the
set of all possible linear coordinate transforms in the image plane. (Neverthe-
less, they correspond to highly non-linear transforms in pixel space.) Additional
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Original

Tangent vectors Points in the tangent plane

Fig. 12.6. Left: Original image. Middle: 5 tangent vectors corresponding respectively
to the 5 transformations: scaling, rotation, expansion of the X axis while compressing
the Y axis, expansion of the first diagonal while compressing the second diagonal and
thickening. Right: 32 points in the tangent space generated by adding or subtracting
each of the 5 tangent vectors.

transformations have been tried with less success. Three databases were used to
test our algorithm:

US Postal Service Database: The database consisted of 16 × 16 pixel size-
normalized images of handwritten digits, coming from US mail envelopes. The
training and testing set had respectively 9709 and 2007 examples.

NIST1 Database: The second experiment was a competition organized by the
National Institute of Standards and Technology (NIST) in Spring 1992. The
object of the competition was to classify a test set of 59,000 handwritten digits,
given a training set of 223,000 patterns.

NIST2 Database: The third experiment was performed on a database made
out of the training and testing database provided by NIST (see above). NIST
had divided the data into two sets which unfortunately had different distribu-
tions. The training set (223,000 patterns) was easier than the testing set (59,000
patterns). In our experiments we combined these two sets 50/50 to make a train-
ing set of 60,000 patterns and testing/validation sets of 10,000 patterns each, all
having the same characteristics.

For each of these three databases we tried to evaluate human performance to
benchmark the difficulty of the database. For USPS, two members of our group
went through the test set and both obtained a 2.5% raw error performance.
The human performance on NIST1 was provided by the National Institute of
Standard and Technology. The human performance on NIST2 was measured on
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a small subsample of the database and must therefore be taken with caution.
Several of the leading algorithms where tested on each of these databases.

The first experiment used the K-Nearest Neighbor algorithm, using the or-
dinary Euclidean distance. The prototype set consisted of all available training
examples. A 1-Nearest Neighbor rule gave optimal performance in USPS while
a 3-Nearest Neighbors rule performed better in NIST2.

The second experiment was similar to the first, but the distance function was
changed to tangent distance with 7 transformations. For the USPS and NIST2
databases, the prototype set was constructed as before, but for NIST1 it was
constructed by cycling through the training set. Any patterns which were mis-
classified were added to the prototype set. After a few cycles, no more prototypes
are added (the training error was 0). This resulted in 10,000 prototypes. A 3-
Nearest Neighbors rule gave optimal performance on this set.

Other algorithms such as neural nets [18, 20], optimal margin classifier [7],
local learning [3] and boosting [9] were also used on these databases. A case
study can be found in [20].

Table 12.1. Results: Performances in % of errors for (in order) human, K-nearest
neighbor, tangent distance, Lenet1 (simple neural network), Lenet4 (large neural net-
work), optimal margin classifier (OMC), local learning (LL) and boosting (Boost)

Human K-NN T.D. Lenet1 Lenet4 OMC LL Boost
USPS 2.5 5.7 2.5 4.2 4.3 3.3 2.6

NIST1 1.6 3.2 3.7 4.1
NIST2 0.2 2.4 1.1 1.7 1.1 1.1 1.1 0.7

The results are summarized in Table 12.1. As illustrated in the table, the
tangent distance algorithm equals or outperforms all other algorithms we tested,
in all cases except one: Boosted LeNet 4 was the winner on the NIST2 database.
This is not surprising. The K-nearest neighbor algorithm (with no preprocessing)
is very unsophisticated in comparison to local learning, optimal margin classifier,
and boosting. The advantange of tangent distance is the a priori knowledge of
transformation invariance embedded into the distance. When the training data
is sufficiently large, as is the case in NIST2, some of this knowledge can be picked
up from the data by the more sophisticated algorithms. In other words, the value
of a priori knowledge decreases as the size of the training set increases.

12.2.3 How to Make Tangent Distance Work

This section is dedicated to the technological “know how” which is necessary
to make tangent distance work with various applications. “Tricks”of this sort
are usually not published for various reasons (they are not always theoretically
sound, page area is too valuable, the tricks are specific to one particular appli-
cation, commercial competitive considerations discourage telling everyone how
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to reproduce the result, etc.), but they are often a determining factor in making
the technology a success. Several of these techniques will be discussed here.

Smoothing the Input Space: This is the single most important factor in
obtaining good performance with tangent distance. By definition, the tangent
vectors are the Lie derivatives of the transformation function s(P, α) with respect
to α. They can be written as:

LP =
∂s(P, α)

∂α

∣∣∣∣ = lim
ε→0

s(P, ε)− s(P, 0)
ε

. (12.15)

It is therefore very important that s be differentiable (and well behaved) with
respect to α. In particular, it is clear from equation (12.15) that s(P, ε) must
be computed for ε arbitrarily small. Fortunately, even when P can only take
discrete values, it is easy to make s differentiable. The trick is to use a smoothing
interpolating function Cσ as a preprocessing for P , such that s(Cσ(P ), α) is
differentiable (with respect to Cσ(P ) and α, not with respect to P ). For instance,
if the input space for P is binary images, Cσ(P ) can be a convolution of P with
a Gaussian function of standard deviation σ. If s(Cσ(P ), α) is a translation of
α pixels, the derivative of s(Cσ(P ), α) can easily be computed since s(Cσ(P ), ε)
can be obtained by translating Gaussian functions. This preprocessing will be
discussed in more details in section 12.4.

The smoothing factor σ controls the locality of the invariance. The smoother
the transformation curve defined by s is, the longer the linear approximation
will be valid. In general the best smoothing is the maximum smoothing which
does not blur the features. For example, in handwritten character recognition
with 16x16 pixel images, a Gaussian function with a standard deviation of 1
pixel yielded the best results. Increased smoothing led to confusion (such as a
“5” mistaken for “6” because the lower loop had been closed by the smoothing)
and decreased smoothing didn’t make full use of the invariance properties.

If the available computation time allows it, the best strategy is to extract
features first, smooth shamelessly, and then compute the tangent distance on
the smoothed features.

Controlled Deformation: The linear system given in equation (12.8) is singu-
lar if some of the tangent vectors for E or P are parallel. Although the probability
of this happening is zero when the data is taken from a real-valued continuous
distribution (as is the case in handwritten character recognition), it is possible
that a pattern may be duplicated in both the training and the test set, resulting
in a division by zero error. The fix is quite simple and elegant. Equation (12.8)
can be replaced by equation:

D(E,P ) = min
αE ,αP

‖E+LEαE−P −LPαP ‖2+k‖LEαE‖2+k‖LPαP ‖2. (12.16)

The physical interpretation of this equation, depicted in Figure 12.7, is that
the point E′(αE) on the tangent plane TE is attached to E with a spring with
spring constant k and to P ′(αp) (on the tangent plane TP ) with spring constant
1, and P ′(αp) is also attached to P with spring constant k. (All three springs
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Fig. 12.7. The tangent distance between E and P is the elastic energy stored in each
of the three springs connecting P , P ′, E′ and E. P ′ and E′ can move without friction
along the tangent planes. The spring constants are indicated on the figure.

have zero natural length.) The new tangent distance is the total potential elastic
energy stored of all three springs at equilibrium. As for the standard tangent
distance, the solution can easily be obtained by differentiating equation (12.16)
with respect to αE and αP . The differentiation yields:

L�
P (E − P − LP (1 + k)αP + LEαE) = 0 (12.17)

L�
E(E − P − LPαP + LE(1 + k)αE) = 0. (12.18)

The solution of this system is

(LPEL
−1
EEL

�
E − (1 + k)L�

P )(E − P ) = (LPEL
−1
EELEP − (1 + k)2LPP )αP (12.19)

(LEPL
−1
PPL

�
P − (1 + k)L�

E)(E − P ) = ((1 + k)2LEE − LEPL
−1
PPLPE)αE (12.20)

where LEE = L�
ELE, LPE = L�

PLE , LEP = L�
ELP and LPP = L�

PLP . The
system has the same complexity as the vanilla tangent distance except that,
it always has a solution for k ≥ 0, and is more numerically stable. Note that
for k = 0, it is equivalent to the standard tangent distance, while for k = ∞,
we have the Euclidean distance. This approach is also very useful when the
number of tangent vectors is greater or equal than the number of dimensions
of the space. The standard tangent distance would most likely be zero (when
the tangent spaces intersect), but the “spring” tangent distance still expresses
valuable information about the invariances.

If the number of dimension of the input space is large compared to the num-
ber of tangent vectors, keeping k as small as possible is better because it doesn’t
interfere with the “sliding” along the tangent plane (E′ and P ′ are less con-
strained).
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Contrary to intuition, there is no danger of sliding too far in high dimensional
space because tangent vectors are always roughly orthogonal and they could only
slide far if they were parallel.

Hierarchy of Distances: If several invariances are used, classification using
tangent distance alone would be quite expensive. Fortunately, if a typical memory
based algorithm is used, for example, K-nearest neighbors, it is quite unnecessary
to compute the full tangent distance between the unclassified pattern and all
the labeled samples. In particular, if a crude estimate of the tangent distance
indicates with a sufficient confidence that a sample is very far from the pattern to
be classified, no more computation is needed to know that this sample is not one
of the K-nearest neighbors. Based on this observation one can build a hierarchy of
distances which can greatly reduce the computation of each classification. Let’s
assume, for instance, that we havem approximationsDi of the tangent distance,
ordered such that D1 is the crudest approximation of the tangent distance and
Dm is exactly tangent distance (for instance D1 to D5 could be the Euclidean
distance with increasing resolution, and D6 to D10 each add a tangent vector at
full resolution).

The basic idea is to keep a pool of all the prototypes which could potentially be
the K-nearest neighbors of the unclassified pattern. Initially the pool contains all
the samples. Each of the distances Di corresponds to a stage of the classification
process. The classification algorithm has 3 steps at each stage, and proceeds from
stage 1 to stage m or until the classification is complete: Step 1: the distance Di

between all the samples in the pool and the unclassified pattern is computed.
Step 2: A classification and a confidence score is computed with these distances.
If the confidence is good enough, let’s say better than Ci (for instance, if all
the samples left in the pool are in the same class) the classification is complete,
otherwise proceed to step 3. Step 3: TheKi closest samples, according to distance
Di are kept in the pool, while the remaining samples are discarded.

Finding the Ki closest samples can be done in O(p) (where p is the number
of samples in the pool) since these elements need not to be sorted [22, 2]. The
reduced pool is then passed to stage i+ 1.

The two constantsCi andKi must be determined in advance using a validation
set. This can easily be done graphically by plotting the error as a function of
Ki and Ci at each stage (starting with all Ki equal to the number of labeled
samples and Ci = 1 for all stages). At each stage there is a minimum Ki and
minimum Ci which give optimal performance on the validation set. By taking
larger values, we can decrease the probability of making errors on the test sets.
The slightly worse performance of using a hierarchy of distances is often well
worth the speed-up. The computational cost of a pattern classification is then
equal to:

computational cost ≈
∑

i

number of
prototypes
at stage i

×
distance
complexity
at stage i

×
probability
to reach
stage i

(12.21)

All this is better illustrated with an example as in Figure 12.8. This system was
used for the USPS experiment described in a previous section. In classification
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Fig. 12.8. Pattern recognition using a hierarchy of distances. The filter proceeds from
left (starting with the whole database) to right (where only a few prototypes remain).
At each stage distances between prototypes and the unknown pattern are computed
and sorted; then the best candidate prototypes are selected for the next stage. As
the complexity of the distance increases, the number of prototypes decreases, making
computation feasible. At each stage a classification is attempted and a confidence score
is computed. If the confidence score is high enough, the remaining stages are skipped.

of handwritten digits (16x16 pixel images), D1, D2, and D3, were the Euclidean
distances at resolution 2× 2, 4× 4 and 8× 8 respectively. D4 was the one sided
tangent distance with X-translation, on the sample side only, at resolution 8×8.
D5 was the double sided tangent distance with X-translation at resolution 16×16.
Each of the subsequent distances added one tangent vector on each side (Y-
translation, scaling, rotation, hyperbolic deformation1, hyperbolic deformation2
and thickness) until the full tangent distance was computed (D11).

Table 12.2 shows the expected number of multiply-adds at each of the stages.
It should be noted that the full tangent distance need only be computed for
1 in 20 unknown patterns (probability 0.05), and only with 5 samples out of
the original 10, 000. The net speed up was in the order of 500, compared with
computing the full tangent distance between every unknown pattern and every
sample (this is 6 times faster than computing the Euclidean distance at full
resolution).

Multiple Iterations: Tangent distance can be viewed as one iteration of a
Newton-type algorithm which finds the points of minimum distance on the true
transformation manifolds. The vectors αE and αP are the coordinates of the two
closest points in the respective tangent spaces, but they can also be interpreted
as the value for the real (non-linear) transformations. In other words, we can
use αE and αP to compute the points s(E,αE) and s(P, αP ), the real non-
linear transformation of E and P . From these new points, we can recompute
the tangent vectors, and the tangent distance and reiterate the process. If the
appropriate conditions are met, this process can converge to a local minimum in
the distance between the two transformation manifolds of P and E.

This process did not improve handwritten character recognition, but it yielded
impressive results in face recognition [29]. In that case, each successive iteration
was done at increasing resolution (hence combining hierarchical distances and
multiple iterations), making the whole process computationally efficient.
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Table 12.2. Summary computation for the classification of 1 pattern: The first column
is the distance index, the second column indicates the number of tangent vectors (0
for the Euclidean distance), and the third column indicates the resolution in pixels,
the fourth is Ki or the number of prototypes on which the distance Di must be com-
puted, the fifth column indicates the number of additional dot products which must
be computed to evaluate distance Di, the sixth column indicates the probability of
not skipping that stage after the confidence score has been used, and the last column
indicates the total average number of multiply-adds which must be performed (product
of column 3 to 6) at each stage.

i # of T.V. Reso # of proto (Ki) # of prod Probab # of mul/add
1 0 4 9709 1 1.00 40,000
2 0 16 3500 1 1.00 56,000
3 0 64 500 1 1.00 32,000
4 1 64 125 2 0.90 14,000
4 2 256 50 5 0.60 40,000
6 4 256 45 7 0.40 32,000
7 6 256 25 9 0.20 11,000
8 8 256 15 11 0.10 4,000
9 10 256 10 13 0.10 3,000

10 12 256 5 15 0.05 1,000
11 14 256 5 17 0.05 1,000

12.3 Tangent Propagation

The previous section dealt with memory-based techniques. We now apply
tangent-distance principles to learned-function techniques.

The key idea is to incorporate the invariance directly into the learned classi-
fication function. In this section, we present an algorithm, called “tangent prop-
agation”, in which gradient descent is used to propagate information about the
invariances of the training data. The process is a generalization of the widely-
used “back propagation” method, which propagates information about the train-
ing data itself.

We again assume all data is drawn independently from a given statistical
distribution P , and our learning machine is characterized by the set of functions
in can implement, Gw(x), indexed by the vector of parameters w. Ideally, we
would like to find w which minimizes the energy function

E =

∫
‖Gw(x)− F (x)‖2dP(x) (12.22)



254 P.Y. Simard et al.

where F (x) represents the “correct” or “desired” labeling of the point x. In the
real world we must estimate this integral using only a finite set of training points
B drawn the distribution P . That is, we try to minimize

Ep =

p∑

i=1

‖Gw(xi)− F (xi)‖ (12.23)

where the sum runs over the training set B. An estimate of w can be computed
by following a gradient descent using the weight-update rule:

Δw = −η ∂Ep

∂w
. (12.24)

Let’s consider an input transformation s(x, α) controlled by a parameter α. As
always, we require that s is differentiable and that s(x, 0) = x. Now, in addition
to the known labels of the training data, we assume that ∂F (s(xi,α))

∂α is known at
α = 0 for each point x in the training set. To incorporate the invariance property
into Gw(x), we add that the following constraint on the derivative:

Er =

p∑

i=1

∣∣∣∣
∂Gw(s(xi, α))

∂α
− ∂F (s(xi, α))

∂α

∣∣∣∣
2

α=0

(12.25)

should be small at α = 0. In many pattern classification problems, we are inter-
ested in the local classification invariance property for F (x) with respect to the
transformation s (the classification does not change when the input is slightly
transformed), so we can simplify equation (12.25) to:

Er =

p∑

i=1

∣∣∣∣
∂Gw(s(xi, α))

∂α

∣∣∣∣
2

α=0

(12.26)

since ∂F (s(xi,α))
∂α = 0. To minimize this term we can modify the gradient descent

rule to use the energy function

E = ηEp + μEr (12.27)

with the weight update rule:

Δw = −∂E
∂w
. (12.28)

The learning rates (or regularization parameters) η and μ are tremendously
important, because they determine the tradeoff between learning the invariances
(based on the chosen directional derivatives) versus learning the label itself (i.e.
the zeroth derivative) at each point in the training set.

The local variation of the classification function, which appears in equa-
tion (12.26) can be written as:

∂Gw(s(x, α))

∂α

∣∣∣∣
α=0

=
∂Gw(s(x, α))

∂s(x, α)

∂s(x, α)

∂α

∣∣∣∣
α=0

= ∇xGw(x).
∂s(x, α)

∂α

∣∣∣∣
α=0

(12.29)



12. Tangent Distance and Tangent Propagation 255

since s(x, α) = x if α = 0 and where ∇xGw(x) is the Jacobian of Gw(x) for
pattern x, and ∂s(α, x)/∂α is the tangent vector associated with transformation
s as described in the previous section. Multiplying the tangent vector by the
Jacobian involves one forward propagation through a “linearized” version of the
network. If α is multi-dimensional, the forward propagation must be repeated
for each tangent vector.

The theory of Lie algebras [11] ensures that compositions of local (small)
transformations correspond to linear combinations of the corresponding tangent
vectors (this result will be discussed further in section 12.4). Consequently, if
Er(x) = 0 is verified, the network derivative in the direction of a linear combina-
tion of the tangent vectors is equal to the same linear combination of the desired
derivatives. In other words, if the network is successfully trained to be locally
invariant with respect to, say, horizontal translations and vertical translations,
it will be invariant with respect to compositions thereof.

It is possible to devise an efficient algorithm, “tangent prop”, for performing
the weight update (equation (12.28)). It is analogous to ordinary backpropaga-
tion, but in addition to propagating neuron activations, it also propagates the
tangent vectors. The equations can be easily derived from Figure 12.9.

Network Jacobian network

wl+1
ki

βli ξli

ψl
i γli

bli

yli

bl−1
j

xli

ali

xl−1
j

βl−1
j ξl−1

j

σ σ′

wl+1
ki

wl
ij wl

ij

Fig. 12.9. Forward propagated variables (a, x, γ, ξ), and backward propagated vari-
ables (b, y, β, ψ) in the regular network (roman symbols) and the Jacobian (linearized)
network (greek symbols). Converging forks (in the direction in which the signal is
traveling) are sums, diverging forks just duplicate the values.
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12.3.1 Local Rule

The forward propagation equation is:

ali =
∑

j

wl
ijx

l−1
j xli = σ(a

l
i) (12.30)

where σ is a non linear differentiable function (typically a sigmoid). The forward
propagation starts at the first layer (l = 1), with x0 being the input layer, and
ends at the output layer (l = L). Similarly, The tangent forward propagation
(tangent prop) is defined by:

γli =
∑

j

wl
ijξ

l−1
j ξli = σ

′(ali)γ
l
i . (12.31)

The tangent forward propagation starts at the first layer (l = 1), with ξ0 being
the tangent vector ∂s(x,α)

∂α , and ends at the output layer (l = L). The tangent
gradient backpropagation can be computed using the chain rule:

∂E

∂ξli
=
∑

k

∂E

∂γl+1
k

∂γl+1
k

∂ξli

∂E

∂γli
=
∂E

∂ξli

∂ξli
∂γli

(12.32)

βli =
∑

k

ψl+1
k wl+1

ki ψl
i = β

l
iσ

′(ali). (12.33)

The tangent backward propagation starts at the output layer (l = L), with ξL

being the network variation ∂Gw(s(x,α))
∂α , and ends at the input layer. Similarly,

the gradient backpropagation equation is:

∂E

∂xli
=
∑

k

∂E

∂al+1
k

∂al+1
k

∂xli

∂E

∂ali
=
∂E

∂xli

∂xli
∂ali

+
∂E

∂ξli

∂ξli
∂ali

(12.34)

bli =
∑

k

yl+1
k wl+1

ki yli = b
l
iσ

′(ali) + βiσ
′′(ali)γ

l
i. (12.35)

The standard backward propagation starts at the output layer (l = L), with
xL = Gw(x

0) being the network output, and ends at the input layer. Finally,
the weight update is:

Δwl
ij = − ∂E

∂ali

∂ali
∂wl

ij

− ∂E
∂γli

∂γli
∂wl

ij

(12.36)

Δwl
ij = −ylixl−1

j − ψl
iξ

l−1
j . (12.37)

The computation requires one forward propagation and one backward propaga-
tion per pattern and per tangent vector during training. After the network is
trained, it is approximately locally invariant with respect to the chosen trans-
formation. After training, the evaluation of the learned function is in all ways
identical to a network which is not trained for invariance (except that the weights
have different values).
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Fig. 12.10. Generalization performance curve as a function of the training set size for
the tangent prop and the backprop algorithms

12.3.2 Results

Two experiments illustrate the advantages of tangent prop. The first experiment
is a classification task, using a small (linearly separable) set of 480 binary im-
ages of handwritten digits. The training sets consist of 10, 20, 40, 80, 160 or
320 patterns, and the test set contains 160 patterns. The patterns are smoothed
using a Gaussian kernel with standard deviation of one half pixel. For each of
the training set patterns, the tangent vectors for horizontal and vertical trans-
lation are computed. The network has two hidden layers with locally connected
shared weights, and one output layer with 10 units (5194 connections, 1060 free
parameters) [19]. The generalization performance as a function of the training
set size for traditional backprop and tangent prop are compared in Figure 12.10.
We have conducted additional experiments in which we implemented not only
translations but also rotations, expansions and hyperbolic deformations. This
set of 6 generators is a basis for all linear transformations of coordinates for
two dimensional images. It is straightforward to implement other generators in-
cluding gray-level-shifting, “smooth” segmentation, local continuous coordinate
transformations and independent image segment transformations.

The next experiment is designed to show that in applications where data is
highly correlated, tangent prop yields a large speed advantage. Since the dis-
tortion model implies adding lots of highly correlated data, the advantage of
tangent prop over the distortion model becomes clear.

The task is to approximate a function that has plateaus at three locations. We
want to enforce local invariance near each of the training points (Figure 12.11,
bottom). The network has one input unit, 20 hidden units and one output unit.
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Fig. 12.11. Comparison of the distortion model (left column) and tangent prop (right
column). The top row gives the learning curves (error versus number of sweeps through
the training set). The bottom row gives the final input-output function of the network;
the dashed line is the result for unadorned back prop.

Two strategies are possible: either generate a small set of training points cov-
ering each of the plateaus (open squares on Figure 12.11 bottom), or generate
one training point for each plateau (closed squares), and enforce local invariance
around them (by setting the desired derivative to 0). The training set of the
former method is used as a measure of performance for both methods. All pa-
rameters were adjusted for approximately optimal performance in all cases. The
learning curves for both models are shown in Figure 12.11 (top). Each sweep
through the training set for tangent prop is a little faster since it requires only
6 forward propagations, while it requires 9 in the distortion model. As can be
seen, stable performance is achieved after 1300 sweeps for the tangent prop,
versus 8000 for the distortion model. The overall speedup is therefore about 10.

Tangent prop in this example can take advantage of a very large regularization
term. The distortion model is at a disadvantage because the only parameter
that effectively controls the amount of regularization is the magnitude of the
distortions, and this cannot be increased to large values because the right answer
is only invariant under small distortions.
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12.3.3 How to Make Tangent Prop Work

Large Network Capacity: Relatively few experiments have been done with
tangent propagation. It is clear, however, that the invariance constraint can be
extremely beneficial. If the network does not have enough capacity, it will not
benefit from the extra knowledge introduced by the invariance.

Interleaving of the Tangent Vectors: Since the tangent vectors introduce
even more correlation inside the training set, a substantial speed up can be
obtained by alternating a regular forward and backward propagation with a
tangent forward and backward propagation (even if there are several tangent
vectors, only one is used at each pattern). For instance, if there were 3 tangent
vectors, the training sequence could be:

x1, t1(x1), x2, t2(x2), x3, t3(x3), x4, t1(x4), x5, t2(x5), . . . (12.38)

where xi means a forward and backward propagation for pattern i and tj(xi)
means a tangent forward and backward propagation of tangent vector j of pat-
tern i. With such interleaving, the learning converges faster than grouping all the
tangent vectors together. Of course, this only makes sense with on-line updates
as opposed to batch updates.

12.4 Tangent Vectors

In this section, we consider the general paradigm for transformation invariance
and for the tangent vectors which have been used in the two previous sections.
Before we introduce each transformation and their corresponding tangent vec-
tors, a brief explanation is given of the theory behind the practice. There are
two aspects to the problem. First it is possible to establish a formal connection
between groups of transformations of the input space (such as translation, rota-
tion, etc. of �2) and their effect on a functional of that space (such as a mapping
of �2 to �, which may represent an image, in continuous form). The theory of
Lie groups and Lie algebra [6] allows us to do this. The second problem has to do
with coding. Computer images are finite vectors of discrete variables. How can a
theory which was developed for differentiable functionals of �2 to � be applied
to these vectors? We first give a brief explanation of the theorems of Lie groups
and Lie algebras which are applicable to pattern recognition. Next, we explore
solutions to the coding problem. Finally some examples of transformation and
coding are given for particular applications.

12.4.1 Lie Groups and Lie Algebras

Consider an input space I (the plane �2 for example) and a differentiable func-
tion f which maps points of I to �.

f : X ∈ I �−→ f(X) ∈ �. (12.39)
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The function f(X) = f(x, y) can be interpreted as the continuous (defined for
all points of �2) equivalent of the discrete computer image P [i, j].

Next, consider a family of transformations tα, parameterized by α, which
maps bijectively a point of I to a point of I

tα : X ∈ I �−→ tα(X) ∈ I. (12.40)

We assume that tα is differentiable with respect to α and X , and that t0 is the
identity. For example tα could be the group of affine transformations of �2:

tα :

(
x

y

)
�−→

(
x+ α1x+ α2y + α5

α3x+ y + α4y + α6

)
with

∣∣∣∣∣
1 + α1 α2

α3 1 + α4

∣∣∣∣∣ �= 0. (12.41)

This is a Lie group4 with 6 parameters. Another example is the group of direct
isometry:

tα :

(
x

y

)
�−→

(
x cos θ − y sin θ + a
x sin θ + y cos θ + b

)
(12.42)

which is a Lie group with 3 parameters.
We now consider the functional s(f, α), defined by

s(f, α) = f ◦ t−1
α . (12.43)

This functional s, which takes another functional f as an argument, should
remind the reader of Figure 12.2 where P , the discrete equivalent of f , is the
argument of s.

The Lie algebra associated with the action of tα on f is the space generated
by the m local transformations Lαi of f defined by:

Lai(f) =
∂s(f, α)

∂αi

∣∣∣∣
α=0

. (12.44)

We can now write the local approximation of s as:

s(f, α) = f + α1Lα1(f) + α2Lα2(f) + · · ·+ αmLαm(f) + o(‖α‖2)(f). (12.45)

This equation is the continuous equivalent of equation (12.2) used in the intro-
duction.

The following example illustrates how Lαi can be computed from tα. Let’s
consider the group of direct isometry defined in equation (12.42) (with parameter
α = (θ, a, b) as before, and X = (x, y))

s(f, α)(X) = f((x−a) cos θ+(y− b) sin θ,−(x−a) sin θ+(y− b) cosθ). (12.46)

If we differentiate around α = (0, 0, 0) with respect to θ, we obtain

∂s(f, α)

∂θ
(X) = y

∂f

∂x
(x, y) + (−x)∂f

∂y
(x, y) (12.47)

4 A Lie group is a group that is also a differentiable manifold such that the differen-
tiable structure is compatible with the group structure.
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that is
Lθ = y

∂

∂x
+ (−x) ∂

∂y
. (12.48)

The transformation La = − ∂
∂x and Lb = − ∂

∂y can be obtained in a similar
fashion. All local transformations of the group can be written as

s(f, α) = f + θ(y
∂f

∂x
+ (−x)∂f

∂y
)− a∂f

∂x
− b∂f

∂y
+ o(‖α‖2)(f) (12.49)

which corresponds to a linear combination of the 3 basic operators Lθ, La and
Lb

5. The property which is most important to us is that the 3 operators generate
the whole space of local transformations. The result of applying the operators to
a function f , such as a 2D image for example, is the set of vectors which we have
been calling “tangent vector” in the previous sections. Each point in the tangent
space correspond to a unique transformation and conversely any transformation
of the Lie group (in the example all rotations of any angle and center together
with all translations) corresponds to a point in the tangent plane.

12.4.2 Tangent Vectors

The last problem which remains to be solved is the problem of coding. Computer
images, for instance, are coded as a finite set of discrete (even binary) values.
These are hardly the differentiable mappings of I to � which we have been
assuming in the previous subsection.

To solve this problem we introduce a smooth interpolating function C which
maps the discrete vectors to a continuous mapping of I to �. For example, if P
is a image of n pixels, it can be mapped to a continuously valued function f over
�2 by convolving it with a two dimensional Gaussian function gσ of standard
deviation σ. This is because gσ is a differentiable mapping of �2 to �, and P
can be interpreted as a sum of impulse functions. In the two dimensional case
we can write the new interpretation of P as:

P ′(x, y) =
∑

i,j

P [i][j]δ(x− i)δ(y − j) (12.50)

where P [i][j] denotes the finite vector of discrete values, as stored in a computer.
The result of the convolution is of course differentiable because it is a sum of
Gaussian functions. The Gaussian mapping is given by:

Cσ : P �−→ f = P ′ ∗ gσ. (12.51)

In the two dimensional case, the function f can be written as:

f(x, y) =
∑

i,j

P [i][j]gσ(x− i, y − j). (12.52)

5 These operators are said to generate a Lie algebra, because on top of the addition
and multiplication by a scalar, there is a special multiplication called “Lie bracket”
defined by [L1, L2] = L1 ◦L2−L2 ◦L1. In the above example we have [Lθ , La] = Lb,
[La, Lb] = 0, and [Lb, Lθ] = La.
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Fig. 12.12. Graphic illustration of the computation of f and two tangent vectors corre-
sponding to Lx = ∂/∂x (X-translation) and Lx = ∂/∂y (Y-translation), from a binary
image I . The Gaussian function g(x, y) = exp(−x2+y2

2σ2 ) has a standard deviation of
σ = 0.9 in this example although its graphic representation (small images on the right)
have been rescaled for clarity.

Other coding functions C can be used, such as cubic spline or even bilinear
interpolation. Bilinear interpolation between the pixels yields a function f which
is differentiable almost everywhere. The fact that the derivatives have two values
at the integer locations (because the bilinear interpolation is different on both
side of each pixels) is not a problem in practice – just choose one of the two
values.

The Gaussian mapping is preferred for two reasons: First, the smoothing pa-
rameter σ can be used to control the locality of the invariance. This is because
when f is smoother, the local approximation of equation (12.45) is valid for larger
transformations. And second, when combined with the transformation operator
L, the derivative can be applied on the closed form of the Gaussian function.
For instance, if the X-translation operator L = ∂

∂x is applied to f = P ′ ∗ gσ, the
actual computation becomes:

LX(f) =
∂

∂x
(P ′ ∗ gσ) = P ′ ∗ ∂gσ

∂x
. (12.53)

because of the differentiation properties of convolution when the support is com-
pact. This is easily done by convolving the original image with the X-derivative of
the Gaussian function gσ. This operation is illustrated in Figure 12.12. Similarly,
the tangent vector for scaling can be computed with

LS(f) =

(
x
∂

∂x
+ y

∂

∂y

)
(I ∗ gσ) = x(I ∗

∂gσ
∂x

) + y(I ∗ ∂gσ
∂y

). (12.54)
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This operation is illustrated in Figure 12.13.

=

=x

x

Fig. 12.13. Graphic illustration of the computation of the tangent vector Tu = DxSx+
DySy (bottom image). In this example the displacement for each pixel is proportional
to the distance of the pixel to the center of the image (Dx(x, y) = x−x0 and Dy(x, y) =
y−y0). The two multiplications (horizontal lines) as well as the addition (vertical right
column) are done pixel by pixel.

12.4.3 Important Transformations in Image Processing

This section summarizes how to compute the tangent vectors for image process-
ing (in 2D). Each discrete image Ii is convolved with a Gaussian of standard
deviation gσ to obtain a representation of the continuous image fi, according to
equation:

fi = Ii ∗ gσ. (12.55)

The resulting image fi will be used in all the computations requiring Ii (except
for computing the tangent vector). For each image Ii, the tangent vectors are
computed by applying the operators corresponding to the transformations of
interest to the expression Ii ∗ gσ. The result, which can be precomputed, is an
image which is the tangent vector. The following list contains some of the most
useful tangent vectors:

X-translation: This transformation is useful when the classification function
is known to be invariant with respect to the input transformation:

tα :

(
x

y

)
�−→

(
x+ α

y

)
. (12.56)
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The Lie operator is defined by:

LX =
∂

∂x
. (12.57)

Y-translation: This transformation is useful when the classification function
is known to be invariant with respect to the input transformation:

tα :

(
x

y

)
�−→

(
x

y + α

)
. (12.58)

The Lie operator is defined by:

LY =
∂

∂y
. (12.59)

Rotation: This transformation is useful when the classification function is
known to be invariant with respect to the input transformation:

tα :

(
x

y

)
�−→

(
x cosα− y sinα
x sinα+ y cosα

)
. (12.60)

The Lie operator is defined by:

LR = y
∂

∂x
+ (−x) ∂

∂y
. (12.61)

Scaling: This transformation is useful when the classification function is known
to be invariant with respect to the input transformation:

tα :

(
x

y

)
�−→

(
x+ αx

y + αy

)
. (12.62)

The Lie operator is defined by:

LS = x
∂

∂x
+ y

∂

∂y
. (12.63)

Parallel hyperbolic transformation: This transformation is useful when the
classification function is known to be invariant with respect to the input
transformation:

tα :

(
x

y

)
�−→

(
x+ αx

y − αy

)
. (12.64)

The Lie operator is defined by:

LS = x
∂

∂x
− y ∂

∂y
. (12.65)
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Diagonal hyperbolic transformation: This transformation is useful when
the classification function is known to be invariant with respect to the input
transformation:

tα :

(
x

y

)
�−→

(
x+ αy

y + αx

)
. (12.66)

The Lie operator is defined by:

LS = y
∂

∂x
+ x

∂

∂y
. (12.67)

The resulting tangent vector is is the norm of the gradient of the image,
which is very easy to compute.

Thickening: This transformation is useful when the classification function is
known to be invariant with respect to variation of thickness. This is known
in morphology as dilation and its inverse, erosion. It is very useful in certain
domains (such as handwritten character recognition because) thickening and
thinning are natural variations which correspond to the pressure applied on a
pen, or to different absorbtion properties of the ink on the paper. A dilation
(resp. erosion) can be defined as the operation of replacing each value f(x,y)
by the largest (resp. smallest) value of f(x′, y′) found within a neighborhood
of a certain shape, centered at (x, y). The region is called the structural
element. We will assume that the structural element is a sphere of radius
α. We define the thickening transformation as the function which takes the
function f and generates the function f ′α defined by:

f ′α(X) = max
‖r‖≤α

f(X + r) for α ≥ 0 (12.68)

f ′α(X) = min
‖r‖≤−α

f(X + r) for α ≤ 0. (12.69)

The derivative of the thickening for α ≥ 0 can be written as:

lim
α−→0

f ′(X)− f(X)

α
= lim

α−→0

max‖r‖≤α f(X + r)− f(X)

α
. (12.70)

f(X) can be put within the max expression because it does not depend on
‖r‖. Since ‖α‖ tends toward 0, we can write:

f(X + r)− f(X) = r · ∇f(X) +O(‖r‖2) ≈ r · ∇f(X). (12.71)

The maximum of

max
‖r‖≤α

f(X + r)− f(X) = max
‖r‖≤α

r · ∇f(X) (12.72)

is attained when r and ∇f(X) are co-linear, that is when

r = α
∇f(X)

‖∇f(X)‖ (12.73)
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assuming α ≥ 0. It can easily be shown that this equation holds when α is
negative, because we then try to minimize equation (12.69). We therefore
have:

lim
α−→0

f ′α(X)− f(X)

α
= ‖∇f(X)‖ (12.74)

which is the tangent vector of interest. Note that this is true for α positive or
negative. The same tangent vector describes both thickening and thinning.
Alternatively, we can use our computation of the displacement r and define
the following transformation of the input:

tα(f) :

(
x

y

)
�−→

(
x+ αrx

y + αry

)
(12.75)

where

(rx, ry) = r = α
∇f(X)

‖∇f(X)‖ . (12.76)

This transformation of the input space is different for each pattern f (we do
not have a Lie group of transformations, but the field structure generated
by the (pseudo Lie) operator is still useful. The operator used to find the
tangent vector is defined by:

LT = ‖∇‖ (12.77)

Scaling Rotation Axis deformation Diagonal
deformation

Thickness
deformation

Fig. 12.14. Illustration of 5 tangent vectors (top), with corresponding displacements
(middle) and transformation effects (bottom). The displacement Dx and Dy are rep-
resented in the form of vector field. It can be noted that the tangent vector for the
thickness deformation (right column) correspond to the norm of the gradient of the
gray level image.
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which means that the tangent vector image is obtained by computing the
normalized gray level gradient of the image at each point (the gradient at
each point is normalized).

The last 5 transformations are depicted in Figure 12.14 with the tangent vector.
The last operator corresponds to a thickening or thinning of the image. This un-
usual transformation is extremely useful for handwritten character recognition.

12.5 Conclusion

The basic tangent distance algorithm is quite easy to understand and implement.
Even though hardly any preprocessing or learning is required, the performance
is surprisingly good and compares well to the best competing algorithms. We
believe that the main reason for this success is its ability to incorporate a priori
knowledge into the distance measure. The only algorithm which performed better
than tangent distance on one of the three databases was boosting, which has
similar a priori knowledge about transformations built into it.

Many improvements are of course possible. For instance, smart preprocessing
can allow us to measure the tangent distance in a more appropriate “feature”
space, instead of the original pixel space. In image classification, for example, the
features could be horizontal and vertical edges. This would most likely further
improve the performance6 The only requirement is that the preprocessing must
be differentiable, so that the tangent vectors can be computed (propagated) into
the feature space.

It is also straightforward to modify more complex algorithms such as LVQ
(learning vector quantization) to use a tangent distance. In this case even the
tangent vectors can be trained. The derivation has been done for batch training
[13] and for on-line training [23] of the tangent vectors. When such training
is performed, the a priori knowledge comes from other constraints imposed on
the tangent vectors (for instance how many tangent vectors are allowed, which
classes of transformation do they represent, etc).

Finally, many optimizations which are commonly used in distance based algo-
rithms can be used as successfully with tangent distance to speed up computa-
tion.Themulti-resolutionapproachhavealreadybeen tried successfully [25].Other
methods like “multi-edit-condensing” [1, 30] and K-d tree [4] are also possible.

The main advantage of tangent distance is that it is a modification of a stan-
dard distance measure to allow it to incorporate a priori knowledge that is
specific to the problem at hand. Any algorithms based on a common distance
measure (as it is often the case in classification, vector quantization, predictions,
etc...) can potentially benefit from a more problem-specific distance. Many of
these “distance based” algorithms do not require any learning, which means that
they can be adapted instantly by just adding new patterns in the database. These
additions are leveraged by the a priori knowledge put in the tangent distance.
6 There may be an additional cost for computing the tangent vectors in the feature

space if the feature space is very complex.
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The two drawbacks of tangent distance are its memory and computational
requirements. The most computationally and memory efficient algorithms gen-
erally involve learning [20]. Fortunately, the concept of tangent vectors can also
be used in learning. This is the basis for the tangent propagation algorithm.
The concept is quite simple: instead of learning a classification function from
examples of its values, one can also use information about its derivatives. This
information is provided by the tangent vectors. Unfortunately, not many exper-
iments have been done in this direction. The two main problems with tangent
propagation are that the capacity of the learning machine has to be adjusted
to incorporate the additional information pertinent to the tangent vectors, and
that training time must be increased. After training, the classification time and
complexity are unchanged, but the classifier’s performance is improved.

To a first approximation, using tangent distance or tangent propagation is like
having a much larger database. If the database was plenty large to begin with,
tangent distance or tangent propagation would not improve the performance.
To a better approximation, tangent vectors are like using a distortion model to
magnify the size of the training set. In many cases, using tangent vectors will be
preferable to collecting (and labeling!) vastly more training data, and preferable
(especially for memory-based classifiers) to dealing with all the data generated
by the distortion model. Tangent vectors provide a compact and powerful rep-
resentation of a priori knowledge which can easily be integrated in the most
popular algorithms.
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9726745.
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Abstract. While on-line handwriting recognition is an area of
long-standing and ongoing research, the recent emergence of portable,
pen-based computers has focused urgent attention on usable, practi-
cal solutions. We discuss a combination and improvement of classical
methods to produce robust recognition of hand-printed English text,
for a recognizer shipping in new models of Apple Computer’s New-
ton MessagePad©Rand eMate©R. Combining an artificial neural network
(ANN), as a character classifier, with a context-driven search over seg-
mentation and word recognition hypotheses provides an effective recog-
nition system. Long-standing issues relative to training, generalization,
segmentation, models of context, probabilistic formalisms, etc., need to
be resolved, however, to get excellent performance. We present a num-
ber of recent innovations in the application of ANNs as character classi-
fiers for word recognition, including integrated multiple representations,
normalized output error, negative training, stroke warping, frequency
balancing, error emphasis, and quantized weights. User-adaptation and
extension to cursive recognition pose continuing challenges.

13.1 Introduction

Pen-based hand-held computers are heavily dependent upon fast and accurate
handwriting recognition, since the pen serves as the primary means for inputting
data to such devices. Some earlier attempts at handwriting recognition have
utilized strong, limited language models to maximize accuracy. However, this
approach has proven to be unacceptable in real-world applications, generating
disturbing and seemingly random word substitutions – known colloquially within
Apple and Newton as “The Doonesbury Effect”, due to Gary Trudeau’s satirical
look at first-generation Newton recognition performance. But the original hand-
writing recognition technology in the Newton, and the current, much-improved
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“Cursive Recognizer” technology, both of which were licensed from ParaGraph
International, Inc., are not the subject of this article.

In Apple’s Advanced Technology Group (aka Apple Research Labs), we pur-
sued a different approach, using bottom-up classification techniques based on
trainable artificial neural networks (ANNs), in combination with comprehensive
but weakly-applied language models. To focus our work on a subproblem that
was tractable enough to lead to usable products in a reasonable time, we initially
restricted the domain to hand-printing, so that strokes are clearly delineated by
pen lifts. By simultaneously providing accurate character-level recognition, dic-
tionaries exhibiting very wide coverage of the language, and the ability to write
entirely outside those dictionaries, we have produced a hand-print recognizer that
some have called the “first usable” handwriting recognition system. The ANN
character classifier required some innovative training techniques to perform its
task well. The dictionaries required large word lists, a regular expression gram-
mar (to describe special constructs such as date, time, phone numbers, etc.), and
a means of combining all these dictionaries into a comprehensive language model.
And well balanced prior probabilities had to be determined for in-dictionary and
out-of-dictionary writing. Together with a maximum-likelihood search engine,
these elements form the basis of the so-called “Print Recognizer”, that was first
shipped in Newton OS 2.0 based MessagePad 120 units in December, 1995, and
has shipped in all subsequent Newton devices. In the MessagePad 2000 and 2100,
despite retaining its label as a “Print Recognizer”, it has been extended to handle
connected characters (as well as a full Western European character set).

There is ample prior work in combining low-level classifiers with dynamic time
warping, hidden Markov models, Viterbi algorithms, and other search strategies
to provide integrated segmentation and recognition for writing [15] and speech
[11]. And there is a rich background in the use of ANNs as classifiers, includ-
ing their use as low-level character classifiers in a higher-level word recognition
system [2]. But these approaches leave a large number of open-ended questions
about how to achieve acceptable (to a real user) levels of performance. In this
paper, we survey some of our experiences in exploring refinements and improve-
ments to these techniques.

13.2 System Overview

Apple’s print recognizer (APR) consists of three conceptual stages – Tentative
Segmentation, Classification, and Context-Driven Search – as indicated in Fig-
ure 13.1. The primary data upon which we operate are simple sequences of (x,y)
coordinate pairs, plus pen-up/down information, thus defining stroke primitives.
The Segmentation stage decides which strokes will be combined to produce seg-
ments - the tentative groupings of strokes that will be treated as possible charac-
ters - and produces a sequence of these segments together with legal transitions
between them. This process builds an implicit graph which is then labeled in
the Classification stage and examined for a maximum likelihood interpretation
in the Search stage. The Classification stage evaluates each segment using the
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ANN classifier, and produces a vector of output activations that are used as
letter-class probabilities. The Search stage then uses these class probabilities to-
gether with models of lexical and geometric context to find the N most likely
word or sentence hypotheses.

(x,y) Points & Pen-Lifts

Tentative
Segmentation Character

Segmentation
Hypotheses

Neural Network
Classifier Character

Class
Hypotheses

Search
with Context

Words

Fig. 13.1. A simplified block diagram of our hand-print recognizer

13.3 Tentative Segmentation

Character segmentation – the process of deciding which strokes comprise which
characters – is inherently ambiguous. Ultimately this decision must be made,
but, short of writing in boxes, it is impossible to do so (with any accuracy)
in advance, external to the recognition process. Hence the initial segmentation
stage in APR produces multiple, tentative groupings of strokes, and defers the
final segmentation decisions until the search stage, thus integrating those seg-
mentation decisions with the overall recognition process.

APR uses a potentially exhaustive, sequential enumeration of stroke combina-
tions to generate a sequence of viable character-segmentation hypotheses. These
segments are subjected to some obvious constraints (such as “all strokes must be
used” and “no strokes may be used twice”), and some less obvious filters (to cull
“impossible” segmentations for the sake of efficiency). The resulting algorithm
produces the actual segments that will be processed as possible characters, along
with the legal transitions between these segments.

The legal transitions are defined by forward and reverse delays. The forward
delay indicates the next possible segment in the sequence (though later segments
may also be legal), pointing just past the last segment that shares the trailing
stroke of the current segment. The reverse delay indicates the start of the current
batch of segments, all of which share the same leading stroke. Due to the enu-
meration scheme, a segment’s reverse delay is the same as its stroke count minus
one, unless preceeding segments (sharing the same leading stroke) were elimi-
nated by the filters mentioned previously. These two simple delay parameters
(per segment) suffice to define an implicit graph of all legal segment transitions.
For a transition from segment number i to segment number j to be legal, the
sum of segment i’s forward delay plus segment j’s reverse delay must be equal to
j - i. Figure 13.2 provides an example of some ambiguous ink and the segments
that might be generated from its strokes, supporting interpretations of “dog”,
“clog”, “cbg”, or even “%g”.
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Segment Stroke Forward Reverse
I n k Number Segment Count Delay Delay

1 1 3 0

2 2 4 1

3 3 4 2

4 1 2 0

5 2 2 1

6 1 1 0

7 1 0 0

Fig. 13.2. Segmentation of strokes into tentative characters or segments

13.4 Character Classification

The output of the segmentation stage is a stream of segments that are then
passed to an ANN for classification as characters. Except for the architecture
and training specifics detailed below, a fairly standard multi-layer perceptron
trained with error back-propagation (BP) provides the ANN character classifier
at the heart of APR. A large body of prior work exists to indicate the general
applicability of ANN technology as a classifier providing good estimates of a
posteriori probabilities of each class given the input ([5, 12, 11], and others cited
herein). Compelling arguments have been made for why ANNs providing poste-
rior probabilities in a probabilistic recognition formulation should be expected
to outperform other recognition approaches [8], and ANNs have performed well
as the core of speech recognition systems [10].

13.4.1 Representation

A recurring theme in ANN research is the extreme importance of the represen-
tation of the data that is given as input to the network. We experimented with a
variety of input representations, including stroke features both anti-aliased (gray-
scale) and not (binary), and images both anti-aliased and not, and with various
schemes for positioning and scaling the ink within the image input window.
In every case, anti-aliasing was a significant win. This is consistent with oth-
ers’ findings, that ANNs perform better when presented with smoothly varying,
distributed inputs than they do when presented with binary, localized inputs. Al-
most the simplest image representation possible, a non-aspect-ratio-preserving,
expand-to-fill-the-window image (limited only by a maximum scale factor to keep
from blowing dots up to the full window size), together with either a single unit
or a thermometer code (some number of units turned on in sequence to represent
larger values) for the aspect ratio, proved to be the most effective single-classifier
solution. However, the best overall classifier accuracy was ultimately obtained
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by combining multiple distinct representations into nearly independent, parallel
classifiers, joined at a final output layer. Hence representation proved not only
to be as important as architecture, but, ultimately, to help define the architec-
ture of our nets. For our final, hand-optimized system, we utilize four distinct
inputs, as indicated in Figure 13.3. The stroke count representation was dithered
(changed randomly at a small probability), to expand the effective training set,
prevent the network from fixating on this simple input, and thereby improve the
network’s ability to generalize. A schematic of the various input representations
can be seen as part of the architecture drawing in Figure 13.4 in the next section.

Input Feature Resolution Description

Image 14x14 anti-aliased, scale-to-window, scale-limited
Stroke 20x9 anti-aliased, limited resolution tangent slope,

resampled to fixed number of points
Aspect Ratio 1x1 normalized and capped to [0,1]
Stroke Count 5x1 dithered thermometer code

Fig. 13.3. Input representations used in APR

13.4.2 Architecture

As with representations, we experimented with a variety of architectures, in-
cluding simple fully-connected layers, receptive fields, shared weights, multiple
hidden layers, and, ultimately, multiple nearly independent classifiers tied to a
common output layer. The final choice of architecture includes multiple input
representations, a first hidden layer (separate for each input representation) us-
ing receptive fields, fully connected second hidden layers (again distinct for each
representation), and a final, shared, fully-connected output layer. Simple scalar
features – aspect ratio and stroke count – connect to both second hidden lay-
ers. The final network architecture, for our original English-language system, is
shown in Figure 13.4.

Layers are fully connected, except for the inputs to the first hidden layer on the
image side. This first hidden layer on the image side consists of 8 separate grids,
each of which accepts inputs from the image input grid with its own receptive
field sizes and strides, shown parenthetically in Figure 13.4 as (x-size x y-size; x-
stride, y-stride). A stride is the number of units (pixels) in the input image space
between sequential positionings of the receptive fields, in a given direction. The
7x2 and 2x7 side panels (surrounding the central 7x7 grid) pay special attention
to the edges of the image. The 9x1 and 1x9 side panels specifically examine full-
size vertical and horizontal features, respectively. The 5x5 grid observes features
at a different spatial scale than the 7x7 grid.

Combining the two classifiers at the output layer, rather than, say, averaging
the outputs of completely independent classifiers, allows generic BP to learn
the best way to combine them, which is both convenient and powerful. But
our integrated multiple-representations architecture is conceptually related to
and motivated by prior experiments at combining nets such as Steve Nowlan’s
“mixture of experts” [7].
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Stroke
Count

Aspect
Ratio ImageStroke Feature

14 x 141 x 15 x 1
20 x 9

72 x 1

104 x 1

95 x 1

112 x 1

2 x 7
7 x 2

7 x 7

(8x8)
(8x7;1,7) (7x8;7,1)
(8x6;1,8) (6x8;8,1)

1 x 9

9 x 1

(10x10)

(6x14)
(14x6)

5 x 5

a … z A … Z 0 … 9 ! … ~£

Fig. 13.4. Final English-language net architecture. (See the text for an explanation
of the notation.)

13.4.3 Normalizing Output Error

Analyzing a class of errors involving words that were misrecognized due to per-
haps a single misclassified character, we realized that the net was doing a poor
job of representing second and third choice probabilities. Essentially, the net
was being forced to attempt unambiguous classification of intrinsically ambigu-
ous patterns due to the nature of the mean squared error minimization in BP,
coupled with the typical training vector which consists of all 0’s except for the
single 1 of the target. Lacking any viable means of encoding legitimate proba-
bilistic ambiguity into the training vectors, we decided to try “normalizing” the
“pressure towards 0” vs. the “pressure towards 1” introduced by the output error
during training. We refer to this technique as NormOutErr, due to its normaliz-
ing effect on target versus non-target output error.

We reduce the BP error for non-target classes relative to the target class by
a factor that normalizes the total non-target error seen at a given output unit
relative to the total target error seen at that unit. Assuming a training set with
equal representation of classes, this normalization should then be based on the
number of non-target versus target classes in a typical training vector, or, simply,
the number of output units (minus one). Hence for non-target output units, we
scale the error at each unit by a constant:

e′ = Ae
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p=P(correct)

net output y

Fig. 13.5. Empirical p vs. y histogram for a net trained with A = 0.11 (d = 0.1), with
the corresponding theoretical curve

where e is the error at an output unit, and A is defined to be:

A =
1

d(Noutputs − 1)

where Noutputs is the number of output units, and d is our tuning parameter,
typically ranging from 0.1 to 0.2. Error at the target output unit is unchanged.
Overall, this raises the activation values at the output units, due to the re-
duced pressure towards zero, particularly for low-probability samples. Thus the
learning algorithm no longer converges to a least mean-squared error (LMSE)
estimate of p(class|input), but to an LMSE estimate of a nonlinear function
f(p(class|input), A) depending on the factor A by which we reduced the error
pressure toward zero.

Using a simple version of the technique of [3], we worked out what that re-
sulting nonlinear function is. The net will attempt to converge to minimize the
modified quadratic error function

〈Ê2〉 = p(1− y)2 +A(1− p)y2

by setting its output y for a particular class to

y =
p

A−Ap+ p

where p = p(class|input), and A is as defined above. For small values of p, the
activation y is increased by a factor of nearly 1/A relative to the conventional
case of y = p, and for high values of p the activation is closer to 1 by nearly a
factor of A. The inverse function, useful for converting back to a probability, is

p =
yA

yA+ 1− y
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Fig. 13.6. Character and word error rates for two different values of NormOutErr(d).
A value of 0.0 disables NormOutErr, yielding normal BP. The unusually high value of
0.8 (A = 0.013) produces nearly equal pressures towards 0 and 1.

We verified the fit of this function by looking at histograms of character-level
empirical percentage-correct versus y, as in Figure 13.5.

Even for this moderate amount of output error normalization, it is clear that
the lower-probability samples have their output activations raised significantly,
relative to the 45◦ line that A = 1 yields.

The primary benefit derived from this technique is that the net does a much
better job of representing second and third choice probabilities, and low proba-
bilities in general. Despite a small drop in top choice character accuracy when
using NormOutErr, we obtain a very significant increase in word accuracy by this
technique. Figure 13.6 shows an exaggerated example of this effect, for an atyp-
ically large value of d (0.8), which overly penalizes character accuracy; however,
the 30% decrease in word error rate is normal for this technique. (Note: These
data are from a multi-year-old experiment, and are not necessarily representative
of current levels of performance on any absolute scale.)

13.4.4 Negative Training

The previously discussed inherent ambiguities in character segmentation neces-
sarily result in the generation and testing of a large number of invalid segments.
During recognition, the network must classify these invalid segments just as it
would any valid segment, with no knowledge of which are valid or invalid. A sig-
nificant increase in word-level recognition accuracy was obtained by performing
negative training with these invalid segments. This consists of presenting invalid
segments to the net during training, with all-zero target vectors. We retain con-
trol over the degree of negative training in two ways. First is a negative-training
factor (ranging from 0.2 to 0.5) that modulates the learning rate (equivalently
by modulating the error at the output layer) for these negative patterns. This
reduces the impact of negative training on positive training, thus modulating the
impact on characters that specifically look like elements of multi-stroke charac-
ters (e.g., I, 1, l, o, O, 0). Secondly, we control a negative-training probability
(ranging between 0.05 and 0.3), which determines the probability that a partic-
ular negative sample will actually be trained on (for a given presentation). This
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both reduces the overall impact of negative training, and significantly reduces
training time, since invalid segments are more numerous than valid segments.
As with NormOutErr, this modification hurts character-level accuracy a little
bit, but helps word-level accuracy a lot.

13.4.5 Stroke Warping

During training (but not during recognition), we produce random variations
in stroke data, consisting of small changes in skew, rotation, and x and y lin-
ear and quadratic scalings. This produces alternate character forms that are
consistent with stylistic variations within and between writers, and induces an
explicit aspect ratio and rotation invariance within the framework of standard
back-propagation. The amounts of each distortion to apply were chosen through
cross-validation experiments, as just the amount needed to yield optimum gen-
eralization. (Cross-validation is a standard technique for early stopping of ANN
training, to prevent over-learning of the training set, and thus reduced accu-
racy on new data outside that training set. The technique consists of keeping
aside some subset of the available data, the cross-validation set, and testing on
it at some interval, but never training on it, and then stopping the training
when accuracy ceases to improve on this cross-validation set, despite the fact
that accuracy might continue to improve on the training set.) We chose relative
amounts of the various transformations by testing for optimal final, converged
accuracy on a cross-validation set. We then increased the amount of all stroke
warping being applied to the training set, just to the point at which accuracy
on the training set ceased to diverge from accuracy on the cross-validation set.

We also examined a number of such samples by eye to verify that they rep-
resent a natural range of variation. A small set of such variations is shown in
Figure 13.7.

Fig. 13.7. A few random stroke warpings of the same original “m” data

Our stroke warping scheme is somewhat related to the ideas of Tangent Dist
and Tangent Prop [14, 13] (see chapter 12), in terms of the use of predetermined
families of transformations, but we believe it is much easier to implement. It is
also somewhat distinct in applying transformations on the original coordinate
data, as opposed to using distortions of images. The voice transformation scheme
of [4] is also related, but they use a static replication of the training set through a
small number of transformations, rather than dynamic random transformations
of an essentially infinite variety.
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13.4.6 Frequency Balancing

Training data from natural English words and phrases exhibit very non-uniform
priors for the various character classes, and ANNs readily model these priors.
However, as with NormOutErr, we find that reducing the effect of these priors
on the net, in a controlled way, and thus forcing the net to allocate more of its
resources to low-frequency, low-probability classes is of significant benefit to the
overall word recognition process. To this end, we explicitly (partially) balance
the frequencies of the classes during training. We do this by probabilistically
skipping and repeating patterns, based on a precomputed repetition factor. Each
presentation of a repeated pattern is “warped” uniquely, as discussed previously.

To compute the repetition factor for a class i, we first compute a normalized
frequency of that class:

Fi =
Si
S̄

where Si is the number of samples in class i, and S̄ is the average number of
samples over all classes, computed in the obvious way:

S̄ =
1

C

C∑

i=1

Si

with C being the number of classes. Our repetition factor is then defined to be:

Ri =

(
a

Fi

)b

with a and b being adjustable controls over the amount of skipping vs. repeating
and the degree of prior normalization, respectively. Typical values of a range
from 0.2 to 0.8, while b ranges from 0.5 to 0.9. The factor a < 1 lets us do more
skipping than repeating; e.g. for a = 0.5, classes with relative frequency equal to
half the average will neither skip nor repeat; more frequent classes will skip, and
less frequent classes will repeat. A value of 0.0 for b would do nothing, giving
Ri = 1.0 for all classes, while a value of 1.0 would provide “full” normalization.
A value of b somewhat less than one seems to be the best choice, letting the net
keep some bias in favor of classes with higher prior probabilities.

This explicit prior-bias reduction is conceptually related to Lippmann’s [8]
and Morgan and Bourlard’s [10] recommended method for converting from the
net’s estimate of posterior probability, p(class|input), to the value needed in an
HMM or Viterbi search, p(input|class), which is to divide by p(class) priors. Us-
ing that technique, however, should produce noisier estimates for low frequency
classes, due to the divisions by low frequencies, resulting in a set of estimates
that are not really optimized in a LMSE sense (as the net outputs are). In ad-
dition, output activations that are naturally bounded between 0 and 1, due to
the sigmoid, convert to potentially very large probability estimates, requiring a
re-normalization step. Our method of frequency balancing during training elim-
inates both of these concerns. Perhaps more significantly, frequency balancing
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also allows the standard BP training process to dedicate more network resources
to the classification of the lower-frequency classes, though we have no current
method for characterizing or quantifying this benefit.

13.4.7 Error Emphasis

While frequency balancing corrects for under-represented classes, it cannot ac-
count for under-represented writing styles. We utilize a conceptually related
probabilistic skipping of patterns, but this time for just those patterns that the
net correctly classifies in its forward/recognition pass, as a form of “error empha-
sis”, to address this problem. We define a correct-train probability (ranging from
0.1 to 1.0) that is used as a biased coin to determine whether a particular pat-
tern, having been correctly classified, will also be used for the backward/training
pass or not. This only applies to correctly segmented, or “positive” patterns, and
misclassified patterns are never skipped.

Especially during early stages of training, we set this parameter fairly low
(around 0.1), thus concentrating most of the training time and the net’s learning
capability on patterns that are more difficult to correctly classify. This is the only
way we were able to get the net to learn to correctly classify unusual character
variants, such as a 3-stroke “5” as written by only one training writer.

Variants of this scheme are possible in which misclassified patterns would be
repeated, or different learning rates would apply to correctly and incorrectly
classified patterns. It is also related to techniques that use a training subset,
from which easily-classified patterns are replaced by randomly selected patterns
from the full training set [6].

13.4.8 Annealing

Though some discussions of back-propagation espouse explicit formulae for mod-
ulating the learning rate over time, many seem to assume the use of a single,
fixed learning rate. We view the stochastic back-propagation process as a kind of
simulated annealing, with a learning rate starting very high and decreasing only
slowly to a very low value. But rather than using any prespecified formula to
decelerate learning, the rate at which the learning rate decreases is determined
by the dynamics of the learning process itself. We typically start with a rate near
1.0 and reduce the rate by a multiplicative decay factor of 0.9 until it gets down
to about 0.001. The rate decay factor is applied following any epoch in which the
total squared error increased on the training set, relative to the previous epoch.
This “total squared error” is summed over all output units and over all patterns
in one full epoch, and normalized by those counts. So even though we are using
“online” or stochastic gradient descent, we have a measure of performance over
whole epochs that can be used to guide the “annealing” of the learning rate. Re-
peated tests indicate that this approach yields better results than low (or even
moderate) initial learning rates, which we speculate to be related to a better
ability to escape local minima.
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In addition, we find that we obtain best overall results when we also allow
some of our many training parameters to change over the course of a training
run. In particular, the correct train probability needs to start out very low to
give the net a chance to learn unusual character styles, but it should finish up
near 1.0 in order to not introduce a general posterior probability bias in favor of
classes with lots of ambiguous examples. We typically train a net in four “phases”
according to parameters such as in Figure 13.8.

Phase
Learning

Rate

Correct
Train
Prob

Negative
Train
ProbEpochs

1

2

3

4

25

25

50

30

1.0 - 0.5

0.5 - 0.1

0.1 - 0.01

0.01 - 0.001

0.1

0.25

0.5

1.0

0.05

0.1

0.18

0.3

Fig. 13.8. Typical multi-phase schedule of learning rates and other parameters for
training a character-classifier net

13.4.9 Quantized Weights

The work of Asanovic and Morgan [1] shows that two-byte (16-bit) weights
are about the smallest that can be tolerated in training large ANNs via back-
propagation. But memory is expensive in small devices, and RISC processors,
such as the ARM-610 in the first devices in which this technology was deployed,
are much more efficient doing one-byte loads and multiplies than two-byte loads
and multiplies, so we were motivated to make one-byte weights work.

Running the net for recognition demands significantly less precision than does
training the net. It turns out that one-byte weights provide adequate precision
for recognition, if the weights are trained appropriately. In particular, a dynamic
range should be fixed, and weights limited to that legal range during training,
and then rounded to the requisite precision after training. For example, we find
that a range of weight values from (almost) -8 to +8 in steps of 1/16 does
a good job. Figure 13.9 shows a typical resulting distribution of weight val-
ues. If the weight limit is enforced during high-precision training, the resources
of the net will be adapted to make up for the limit. Since bias weights are
few in number, however, and very important, we allow them to use two bytes
with essentially unlimited range. Performing our forward/recognition pass with
low-precision, one-byte weights (a ±3.4 fixed-point representation), we find no
noticeable degradation relative to floating-point, four-byte, or two-byte weights
using this scheme.
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Fig. 13.9. Distribution of weight values in a net with one-byte weights, on a log count
scale. Weights with magnitudes greater than 4 are sparse, but important.

We have also developed a scheme for training with augmented one-byte
weights. It uses a temporary augmentation of the weight values with two addi-
tional low-order bytes to achieve precision in training, but runs the forward pass
of the net using only the one-byte high-order part. Thus any cumulative effect of
the one-byte rounded weights in the forward pass can be compensated through
further training. Small weight changes accumulate in the low-order bytes, and
only occasionally carry into a change in the one-byte weights used by the net. In
a personal product, this scheme could be used for adaptation to the user, after
which the low-order residuals could be discarded and the temporary memory
reclaimed.

13.5 Context-Driven Search

The output of the ANN classifier is a stream of probability vectors, one vector
for each segmentation hypothesis, with as many potentially nonzero probability
elements in each vector as there are characters (that the system is capable of
recognizing). In practice, we typically only pass the top ten (or fewer) scored
character-class hypotheses, per segment, to the search engine, for the sake of
efficiency. The search engine then looks for a minimum-cost path through this
vector stream, abiding by the legal transitions between segments, as defined in
the tentative-segmentation step discussed previously. This minimum-cost path
is the APR system’s best interpretation of the ink input by the user, and is
returned to the system in which APR is embedded as the recognition result for
whole words or sentences of the user’s input.

The search is driven by a somewhat ad hoc, generative language model, which
consists of a set of graphs that are searched in parallel. We use a simple beam
search in a negative-log-probability (or penalty) space for the best N hypothe-
ses. The beam is based on a fixed maximum number of hypotheses, rather than a
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particular value. Each possible transition token (character) emitted by one of
the graphs is scored not only by the ANN, but by the language model itself, by
a simple letter-case model, and by geometric-context models discussed below.
The fully integrated search process takes place over a space of character- and
word-segmentation hypotheses, as well as character-class hypotheses.

13.5.1 Lexical Context

Context is essential to accurate recognition, even if that context takes the form
of a very broad language model. Humans achieve just 90% accuracy on isolated
characters from our database. Lacking any context this would translate to a
word accuracy of not much more than 60% (0.95), assuming an average word
length of 5 characters. We obviously need to do much better, with even lower
isolated-character accuracy, and we accomplish this by the application of our
context models.

A simple model of letter case and adjacency – penalizing case transitions
except between the first and second characters, penalizing alphabetic-to-numeric
transitions, and so on – together with the geometric-context models discussed
later, is sufficient to raise word-level accuracy up to around 77%.

The next large gain in accuracy requires a genuine language model. We pro-
vide this model by means of dictionary graphs, and assemblages of those graphs
combined into what we refer to as BiGrammars. BiGrammars are essentially
scored lists of dictionaries, together with specified legal (scored) transitions be-
tween those dictionaries. This scheme allows us to use word lists, prefix and suf-
fix lists, and punctuation models, and to enable appropriate transitions between
them. Some dictionary graphs are derived from a regular-expression grammar
that permits us to easily model phone numbers, dates, times, etc., as shown in
Figure 13.10.

dig    = [0123456789]
digm01 =   [23456789]

acodenums = (digm01 [01] dig)

acode  = { (“1-”?    acodenums “-”):40 ,
           (“1”? “(“ acodenums “)”):60 }

phone = (acode? digm01 dig dig “-” dig dig dig dig)

Fig. 13.10. Sample of the regular-expression language used to define a simple
telephone-number grammar. Symbols are defined by the equal operator; square brack-
ets enclose multiple, alternative characters; parentheses enclose sequences of symbols;
curly braces enclose multiple, alternative symbols; an appended colon followed by num-
bers designates a prior probability of that alternative; an appended question mark
means “zero or one occurrence”; and the final symbol definition represents the graph
or grammar expressed by this dictionary.
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All of these dictionaries can be searched in parallel by combining them into
a general-purpose BiGrammar that is suitable for most applications. It is also
possible to combine subsets of these dictionaries, or special-purpose dictionar-
ies, into special BiGrammars targeted at more limited contexts. A very simple

BiGrammar Phone

[Phone.lang 1. 1. 1.]

Fig. 13.11. Sample of a simple BiGrammar describing a telephone-only context.
The BiGrammar is first named (Phone), and then specified as a list of dictionaries
(Phone.lang), together with the probability of starting with this dictionary, ending
with this dictionary, and cycling within this dictionary (the three numerical values).

BiGrammar FairlyGeneral
(.8
   (.6
      [WordList.dict .5  .8  1. EndPunct.lang .2]
      [User.dict     .5  .8  1. EndPunct.lang .2]
   )
   (.4
      [Phone.lang    .5  .8  1. EndPunct.lang .2]
      [Date.lang     .5  .8  1. EndPunct.lang .2]
   )
)

(.2
   [OpenPunct.lang  1.  0.  .5
      (.6
         WordList.dict .5
         User.dict     .5
      )
      (.4
         Phone.lang    .5
         Date.lang     .5
      )
   ]
)

[EndPunct.lang  0.  .9  .5  EndPunct.lang .1]

Fig. 13.12. Sample of a slightly more complex BiGrammar describing a fairly general
context. The BiGrammar is first named (FairlyGeneral), and then specified as a list of
dictionaries (the *.dict and *.lang entries), together with the probability of starting with
this dictionary, ending with this dictionary, and cycling within this dictionary (the first
three numerical values following each dictionary name), plus any dictionaries to which
this dictionary may legally transition, along with the probability of taking that transi-
tion. The parentheses permit easy specification of multiplicative prior probabilities for
all dictionaries contained within them. Note that in this simple example, it is not pos-
sible (starting probability = 0) to start a string with the EndPunct (end punctuation)
dictionary, just as it is not possible to end a string with the OpenPunct dictionary.
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BiGrammar, which might be useful to specify context for a field that only ac-
cepts telephone numbers, is shown in Figure 13.11. A more complex BiGrammar
(though still far short of the complexity of our final general-input context) is
shown in Figure 13.12.

We refer to our language model as being “weakly applied” because in parallel
with all of the wordlist-based dictionaries and regular-expression grammars, we
simultaneously search both an alphabetic-characters grammar (“wordlike”) and
a completely general, any-character-anywhere grammar (“symbols”). These more
flexible models, though given fairly low a priori probabilities, permit users to
write any unusual character string they might desire. When the prior probabili-
ties for the various dictionaries are properly balanced, the recognizer is able to
benefit from the language model, and deliver the desired level of accuracy for
common in-dictionary words (and special constructs like phone numbers, etc.),
yet can also recognize arbitrary, non-dictionary character strings, especially if
they are written neatly enough that the character classifier can be confident of
its classifications.

We have also experimented with bi-grams, tri-grams, N-grams, and we are
continuing experiments with other, more data-driven language models; so far,
however, our generative approach has yielded the best results.

13.5.2 Geometric Context

We have never found a way to reliably estimate a baseline or topline for char-
acters, independent of classifying those characters in a word. Non-recognition-
integrated estimates of these line positions, based on strictly geometric features,
have too many pathological failure modes, which produce erratic recognition
failures. Yet the geometric positioning of characters most certainly bears infor-
mation important to the recognition process. Our system factors the problem
by letting the ANN classify representations that are independent of baseline
and size, and then using separate modules to score both the absolute size of
individual characters, and the relative size and position of adjacent characters.

The scoring based on absolute size is derived from a set of simple Gaussian
models of individual character heights, relative to some running scale param-
eters computed both during learning and during recognition. This CharHeight
score directly multiplies the scores emitted by the ANN classifier, and helps
significantly in case disambiguation.

We also employ a GeoContext module that scores adjacent characters, based
on the classification hypotheses for those characters and on their relative size
and placement. GeoContext scores each tentative character based on its class
and the class of the immediately preceding letter (for the current search hy-
pothesis). The character classes are used to look up expected character sizes
and positions in a standardized space (baseline=0.0, topline=1.0). The ink be-
ing evaluated provides actual sizes and positions that can be compared directly
to the expected values, subject only to a scale factor and offset, which are cho-
sen so as to minimize the estimated error of fit between data and model. This
same quadratic error term, computed from the inverse covariance matrix of a
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full multivariate Gaussian model of these sizes and positions, is used directly as
GeoContext’s score (or penalty, since it is applied in the -log probability space
of the search engine). Figure 13.13 illustrates the bounding boxes derived from
the user’s ink vs. the table-driven model, with the associated error measures for
our GeoContext module.

"if" from User vs. Table:

Fig. 13.13. The eight measurements that contribute to the GeoContext error vector
and corresponding score for each letter pair

GeoContext’s multivariate Gaussian model is learned directly from data. The
problem in doing so was to find a good way to train per-character parameters of
top, bottom, width, space, etc., in our standardized space, from data that had
no labeled baselines, or other absolute referent points. Since we had a technique
for generating an error vector from the table of parameters, we decided to use
a back-propagation variant to train the table of parameters to minimize the
squared error terms in the error vectors, given all the pairs of adjacent characters
and correct class labels from the training set.

GeoContext plays a major role in properly recognizing punctuation, in dis-
ambiguating case, and in recognition in general. A more extended discussion of
GeoContext has been provided by Lyon and Yaeger [9].

13.5.3 Integration with Word Segmentation

Just as it is necessary to integrate character segmentation with recognition via
the search process, so is it essential to integrate word segmentation with recog-
nition and search, in order to obtain accurate estimates of word boundaries, and
to reduce the large class of errors associated with missegmented words. To per-
form this integration, we first need a means of estimating the probability of a
word break between each pair of tentative characters. We use a simple statisti-
cal model of gap sizes and stroke-centroid spacing to compute this probability
(spaceProb). Gaussian density distributions, based on means and standard devi-
ations computed from a large training corpus, together with a prior probability
scale factor, provide the basis for the word-gap and stroke-gap (non-word-gap)
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models, as illustrated in Figure 13.14. Since any given gap is, by definition, ei-
ther a word gap or a non-word gap, the simple ratio defined in Figure 13.14
provides a convenient, self-normalizing estimate of the word-gap probability. In
practice, that equation further reduces to a simple sigmoid form, thus allowing
us to take advantage of a lookup-table-based sigmoid derived for use in the ANN.
In a thresholding, non-integrated word-segmentation model, word breaks would
be introduced when spaceProb exceeds 0.5; i.e., when a particular gap is more
likely to be a word-gap than a non-word-gap. For our integrated system, both
word-break and non-word-break hypotheses are generated at each segment tran-
sition, and weighted by spaceProb and (1-spaceProb), respectively. The search
process then proceeds over this larger hypothesis space to produce best esti-
mates of whole phrases or sentences, thus integrating word segmentation as well
as character segmentation.

P  = Γ  / (Γ  + Γ )

Samples

Gap Size

Word BreakStroke (Non-Word) Break

Γ
StrokeGap

Γ
WordGap

WordGap WordGapStrokeGapWordBreak

Fig. 13.14. Gaussian density distributions yield a simple statistical model of word-
break probability, which is applied in the region between the peaks of the StrokeGap
and WordGap distributions. Hashed areas indicate regions of clear cut decisions, where
PWordBreak is set to either 0.0 or 1.0, to avoid problems dealing with tails of these simple
distributions.

13.6 Discussion

The combination of elements described in the preceeding sections produces a
powerful, integrated approach to character segmentation, word segmentation,
and recognition. Users’ experiences with APR are almost uniformly positive, un-
like experiences with previous handwriting recognition systems. Writing within
the dictionary is remarkably accurate, yet the ease with which people can write
outside the dictionary has fooled many people into thinking that the Newton’s
“Print Recognizer” does not use dictionaries. As discussed previously, our recog-
nizer certainly does use dictionaries. Indeed, the broad-coverage language model,
though weakly applied, is essential for high accuracy recognition. Curiously, there
seems to be little problem with dictionary perplexity – little difficulty as a result
of using very large, very complex language models. We attribute this fortunate
behavior to the excellent performance of the neural network character classifier
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at the heart of the system. One of the side benefits of the weak application of
the language model is that even when recognition fails and produces the wrong
result, the answer that is returned to the user is typically understandable by the
user – perhaps involving substitution of a single character. Two useful phenomena
ensue as a result. First, the user learns what works and what doesn’t, especially
when she refers back to the ink that produced the misrecognition, so the system
trains the user gracefully over time. Second, the meaning is not lost the way it
can be, all too easily, with whole word substitutions – with that “Doonesbury
Effect” found in first-generation, strong-language-model recognizers.

Though we have provided legitimate accuracy statistics for certain compar-
ative tests of some of our algorithms, we have deliberately shied away from
claiming specific levels of accuracy in general. Neat printers, who are familiar
with the system, can achieve 100% accuracy if they are careful. Testing on data
from complete novices, writing for the first time using a metal pen on a glass
surface, without any feedback from the recognition system, and with ambigu-
ous instructions about writing with “disconnected characters” (intended to mean
printing, but often interpreted to mean writing with otherwise cursive characters
but separated by large spaces in a wholely unnatural style), can yield word-level
accuracies as low as 80%. Of course, the entire interesting range of recognition
accuracies lies between these two extremes. Perhaps a slightly more meaningful
statistic comes from common reports on usenet newsgroups, and some personal
testing, that suggest accuracies of 97% to 98% in regular use. But for scien-
tific purposes, none of these numbers have any real meaning, since our testing
datasets are proprietary, and the only valid tests between different recognizers
would have to be based on results obtained by processing the exact same bits,
or by analyzing large numbers of experienced users of the systems in the field –
a difficult project which has not been undertaken.

One of the key reasons for the success of APR is the suite of innovative
neural network training techniques that help the network encode better class
probabilities, especially for under-represented classes and writing styles. Many
of these techniques – stroke count dithering, normalization of output error, fre-
quency balancing, error emphasis – share a unifying theme: Reducing the effect
of a priori biases in the training data on network learning significantly improves
the network’s performance in an integrated recognition system, despite a mod-
est reduction in the network’s accuracy for individual characters. Normaliza-
tion of output error prevents over-represented non-target classes from biasing
the net against under-represented target classes. Frequency balancing prevents
over-represented classes from biasing the net against under-represented classes.
And stroke-count dithering and error emphasis prevent over-represented writing
styles from biasing the net against under-represented writing styles. One could
even argue that negative training eliminates an absolute bias towards properly
segmented characters, and that stroke warping reduces the bias towards those
writing styles found in the training data, although these techniques also provide
wholly new information to the system.
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Though we’ve offered arguments for why each of these techniques, individually,
helps the overall recognition process, it is unclear why prior-bias reduction, in
general, should be so consistently valuable. The general effect may be related
to the technique of dividing out priors, as is sometimes done to convert from
p(class|input) to p(input|class). But we also believe that forcing the net, during
learning, to allocate resources to represent less frequent sample types may be
directly beneficial. In any event, it is clear that paying attention to such biases
and taking steps to modulate them is a vital component of effective training
of a neural network serving as a classifier in a maximum-likelihood recognition
system.

The majority of this paper describes a sort of snapshot of the system and
its architecture as it was deployed in its first commercial release, when it was,
indeed, purely a “Print Recognizer”. Letters had to be fully “disconnected”; i.e.,
the pen had to be lifted between each pair of characters. The characters could
overlap to some extent, but the ink could not be continuous. Connected char-
acters proved to be the largest remaining class of errors for most of our users,
since even a person who normally prints (as opposed to writing in cursive script)
may occasionally connect a pair of characters – the cross-bar of a “t” with the
“h” in “the”, the “o” and “n” in any word ending in “ion”, and so on. To address
this issue, we experimented with some fairly straightforward modifications to
our recognizer, involving the fragmenting of user-strokes into multiple system-
strokes, or fragments. Once the ink representing the connected characters is
broken up into fragments, we then allow our standard integrated segmentation
and recognition process to stitch them back together into the most likely char-
acter and word hypotheses, as always. This technique has proven itself to work
quite well, and the version of the “Print Recognizer” in the MessagePad 2000 and
2100 supports recognition of printing with connected characters. This capability
was added without significant modification of the main recognition algorithms
as presented in this paper. Due to certain assumptions and constraints in the
current release of the software, APR is not yet a full cursive recognizer, though
that is an obvious next direction to explore.

The net architecture discussed in section 13.4.2 and shown in Figure 13.4 also
corresponds to the true printing-only recognizer. The final output layer has 95
elements corresponding to the full printable ASCII character set plus the British
Pound sign. Initially for the German market, and now even in English units, we
have extended APR to handle diacritical marks and the special symbols needed
for most European languages (although there is only very limited coverage of
foreign languages in the dictionaries of English units). The main innovation that
permitted this extended character set was an explicit handling of any compound
character as a base plus an accent. This way only a few nodes needed to be added
to the neural network output layer, representing just the bases and accents,
rather than all combinations and permutations of same. And training data for all
compound characters sharing a common base or a common accent contributed to
the network’s ability to learn that base or accent, as opposed to contributing only
to the explicit base+accent combination. Here again, however, the fundamental
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recognizer technology has not changed significantly from that presented in this
paper.

13.7 Future Extensions

We are optimistic that our algorithms, having proven themselves to work essen-
tially as well for connected characters as for disconnected characters, may extend
gracefully to full cursive.

On a more speculative note, we believe that the technique may extend well
to ideographic languages, substituting radicals for characters, and ideographic
characters for words.

Finally, a note about learning and user adaptation: For a learning technology
such as ANNs, user adaptation is an obvious and natural fit, and was planned
as part of the system from its inception. However, due to RAM constraints
in the initial shipping product, and the subsequent prioritization of European
character sets and connected characters, we have not yet deployed a learning
system. We have, however, done some testing of user adaptation, and believe
it to be of considerable value. Figure 13.15 shows a comparison of the average
performance on an old user-independent net trained on data from 45 writers,
and the performance for three individuals using (A) the user-independent net,
(B) a net trained on data exclusively from that individual, and (C) a copy of the
user-independent net adapted to the specific user by some incremental training.
(Note: These data are from a multi-year-old experiment, and are not necessarily
representative of current levels of performance on any absolute scale.)
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Fig. 13.15. User-adaptation test results for three individual writers with three differ-
ent nets each, plus the overall results for 45 writers tested on a user-independent net
trained on all 45 writers

An important distinction is being made here between “user-adapted” and
“user-specific” nets. “User-specific” nets have been trained with a relatively large
corpus of data exclusively from that specific user. “User-adapted” nets were based
on the user-independent net, with some additional training using limited data
from the user in question. All testing was performed with data held out from all
training sets.
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One obvious thing to note is the reduction in error rate ranging from a fac-
tor of 2 to a factor of 5 that both user-specific and user-adapted nets provide.
An equally important thing to note is that the user-adapted net performs es-
sentially as well as a user-specific net – in fact, slightly better for two of the
three writers. Given ANNs’ penchant for local minima, we were concerned that
this might not be the case. But it appears that the features learned during the
user-independent net training served the user-adapted net well. We believe that
a very small amount of training data from an individual will allow us to adapt
the user-independent net to that user, and improve the overall accuracy for that
user significantly, especially for individuals with more stylized writing, or whose
writing style is underrepresented in our user-independent training corpus. And
even for writers with common and/or neat writing styles, there is inherently less
ambiguity in a single writer’s style than in a corpus of data necessarily doing its
best to represent essentially all possible writing styles.

These results may be exaggerated somewhat by the limited data in the user-
independent training corpus at the time these tests were performed (just 45 writ-
ers), and at least two of the three writers in question had particularly problematic
writing styles. We have also made significant advances in our user-independent
recognition accuracies since these tests were performed. Nonetheless, we believe
these results are suggestive of the significant value of user adaptation, even in
preference to a user-specific solution.
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14.1 Introduction

It has been shown theoretically that MLPs approximate Bayesian a posteriori
probabilities when the desired network outputs are 1 of M and squared-error or
cross-entropy cost functions are used [6, 11, 12, 15, 23, 25, 26, 28, 29, 32]. This
result relies on a number of assumptions for accurate estimation: the network
must be large enough and training must find a global minimum, infinite training
data is required, and the a priori class probabilities of the test set must be
correctly represented in the training set.

In practice, MLPs have also been shown to accurately estimate Bayesian a
posteriori probabilities for certain experiments [10]. However, a commonly en-
countered problem in MLP classification is related to the case when the frequency
of the classes in the training set varies significantly1. If the number of training
examples for each class varies significantly between classes then there may be a
bias towards predicting the more common classes [3, 4], leading to worse clas-
sification performance for the rarer classes. In [5] it was observed that classes
with low a priori probability in a speech application were “ignored” (no samples
were classified as these classes after training). Such problems indicate that either
the estimation of Bayesian a posteriori probabilities is inaccurate, or that such
estimation may not be desired (e.g. due to varying misclassification costs (this is
explained further in section 14.4)). Bourlard and Morgan [7] have demonstrated
inaccurate estimation of Bayesian a posteriori probabilities in speech recogni-
tion. This chapter discusses how the problem may occur along with methods of
dealing with the problem.

14.2 The Trick

This section describes the tricks for alleviating the aforementioned problem.
Motivation for their use and experimental results are provided in the following
sections. The methods all consider some kind of scaling which is performed on
a class by class basis2.

14.2.1 Prior Scaling

A method of scaling weight updates on a class by class basis according to the prior
class probabilities is proposed in this section. Consider gradient descent weight
updates for each pattern: wl

ki(new) = wl
ki(old) + Δwl

ki(p) where Δwl
ki(p) =

−η ∂E(p)

∂wl
ki

, p is the pattern index, and wki is the weight between neuron k in layer
l and neuron i in layer l− 1. Scaling the weight updates on a pattern by pattern

1 For the data in general. Others have considered the case of different class probabilities
between the training and test sets, e.g. [23].

2 Anand et al. [2] have also presented an algorithm related to unequal prior class
probabilities. However, their algorithm aims only to improve convergence speed.
Additionally, their algorithm is only for two class problems and batch update.
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basis is considered such that the total expected update for patterns belonging
to each class is equal (i.e. independent of the number of patterns in the class):

〈 Np∑

p=1

|sxΔwl
ki(p)|pc=x

〉
= c1, ∀x ∈ X (14.1)

where pc is the target classification of pattern p, c1 is a constant, sx is a scaling
factor, x ranges over all classes X , <> denotes expectation, and the pc = x
subscript indicates that the sum is only over the patterns in a particular class
x. This effectively scales the updates for lower frequency classes so that they are
higher – the aim is to account for the fact that lower frequency classes tend to
be “ignored” in certain situations. We assume that the expected weight update
for individual patterns in each class is equal:

〈
|Δwl

ki(p)|pc=x

〉
= c2, ∀x ∈ X (14.2)

where c2 is a constant not related to c1. The scaling factor required is therefore:

sx =
1

pxNc
(14.3)

where sx is the scaling factor for all weight updates associated with a pattern
belonging to class x, Nc is the number of classes, and px is the prior probability
of class x.

Scaling as defined above invalidates the Bayesian a posteriori probability proofs
(for example, scaling a class by two canbe comparedwithduplicating every pattern
in the data for that class – causing changes in probability distributions), i.e. there is
no reason to expect that the scaling strategywill be optimal.This, and the empirical
result that the scalingmay improveperformance, leads to the hypothesis that there
may be a point between no prior scaling and prior scaling as defined above which
produces performance better than either of the two extremes.The following scaling
rule can be used to select a degree of scaling between the two extremes:

s′x = 1− cs +
cs
pxNc

(14.4)

where 0 ≤ cs ≤ 1 is a constant specifying the amount of prior scaling to use.
cs = 0 corresponds to no scaling according to prior probabilities, and cs = 1
corresponds to scaling as above. Prior scaling in this form can be expressed as
training with the following alternative cost function3

3 A cost function with similar motivation, the “classification figure-of-merit” (CFM) pro-
posed by Hampshire and Waibel [13], has been suggested as a possible improvement
when prior class probabilities vary [3]. In [13], the CFM cost function leads to networks
whichmakedifferenterrors tothose trainedwith theMSEcriterion,andcanthereforebe
useful for improvingperformancebycombiningclassifiers trainedwith theCFMandthe
MSE. However, networks trained with the CFM criterion do not result in higher classi-
fication performance than networks trained with the MSE criterion for the experiments
reported in [13].
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Definition 1

E =
1

2

Np∑

k=1

Nc∑

j=1

s′x(dkj − ykj)2 (14.5)

where the network has one output for each of the Nc classes, Np is the number
of patterns, d is the desired or target output, y is the predicted output, and x is
the class of pattern k.

When using prior scaling as defined in this section, the individual s′x values can
be large for classes with low prior probability. This may lead to the requirement
of decreasing the learning rate in order to prevent the relatively large weight
updates interfering with the gradient descent process. Comparing the use of
prior scaling and not using prior scaling then becomes problematic because the
optimal learning rate is different for each case. An alternative is to normalize the
s′x values so that the maximum is 1. Another possibility is to present patterns
repeatedly to the network instead of scaling weight updates, i.e. for a class with
a scaling factor of 2 each pattern would be presented twice. This would have
the advantage of reducing the range of weight updates in terms of magnitude,
e.g. an update of magnitude x might be repeated twice rather than using a
single update of magnitude 2x. This may allow the use of a higher learning rate,
and therefore reduce the number of epochs required. However, a disadvantage of
repeating patterns is that the effective training set would be larger, resulting in
longer training times for the same number of epochs. Such a technique could be
done probabilistically, and this is the subject of the next technique.

14.2.2 Probabilistic Sampling

Yaeger et al. [33] (chapter 13) have proposed a method called frequency balanc-
ing which is similar to the prior scaling method above. In frequency balancing,
Yaeger et al. use all training samples in random order for each training epoch
and allow each sample to be presented to the network a random number of times,
which may be zero or more and is computed probabilistically. A balancing factor
is included, which is analogous to the scaling factor above (cs).

We introduce a very similar method here called probabilistic sampling whereby
training patterns are chosen randomly in the following manner: the class is chosen
randomly with the probability of choosing each class x, being (1 − cs)px + cs

Nc
.

A training sample is then chosen randomly from among all training samples for
the chosen class.

14.2.3 Post Scaling

Instead of scaling weight updates or altering the effective class frequencies, it is
possible to train the network as usual and then scale the outputs of the network
after training. For example, the network could be trained as usual and then
the outputs scaled according to the prior probabilities in a similar fashion to
the prior scaling method (using equation 14.3 or 14.4). Experiments with this
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technique alone show that it is not always as successful as prior scaling of the
weight updates. This may be because the estimation of the lower frequency
classes can be less accurate than that of the higher frequency classes [24] (the
deviations of the network outputs from the true values in regions with a higher
number of data points influence the squared error cost function more than the
deviations in regions with a lower number of points [23]).

The post scaling technique introduced here can also be used to optimize a
given criterion, e.g. the outputs may be scaled so that the probability of pre-
dicting each class matches the prior probabilities in the training set as closely
as possible. Post scaling to minimize a different criterion is demonstrated in the
results section. For the results in this chapter, the minimization is performed
using a simple hill-climbing algorithm which adjusts a scaling factor associated
with each of the outputs of the network.

14.2.4 Equalizing Class Membership

A simple method for alleviating difficulty with unequal prior class probabilities is
to adjust (e.g. equalize) the number of patterns in each class, either by subsam-
pling [24] (removing patterns from higher frequency classes), or by duplication
(of patterns in lower frequency classes)4. For subsampling, patterns can be re-
moved randomly, or heuristics may be used to remove patterns in regions of low
ambiguity. Subsampling involves a loss of information which can be detrimen-
tal. Duplication involves a larger dataset and longer training times for the same
number of training epochs (the convergence time may be longer or shorter).

14.3 Experimental Results

Results on an ECG classification problem are reported in this section after dis-
cussing the use of alternative performance measures. Results on a simple artificial
problem are also included in the explanation section.

14.3.1 Performance Measures

When the interclass prior probabilities of the classes vary significantly, then the
overall classification error may not be the most appropriate performance crite-
rion. For example, a model may always predict the most common class and still
provide relatively high performance. Statistics such as the Sensitivity, Positive
Predictivity, and False Positive Rate can provide more meaningful results [1].
These are defined on a class by class basis as follows:

The Sensitivity of a class is the proportion of events labeled as that class
which are correctly detected. For the two class confusion matrix shown in table
14.1 the sensitivity of class 1 is c11

c11+c12
.

4 The heuristic of adding noise during training [22] could be useful here as with the
other techniques in this chapter.
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The Positive Predictivity of a class is the proportion of events which were
predicted to be the class and were labeled as that class. For the two class con-
fusion matrix shown in table 14.1 the positive predictivity of class 1 is c11

c11+c21
.

The False Positive Rate of a class is the proportion of all patterns for other
classes which were incorrectly classified as that class. For the two class confusion
matrix shown in table 14.1 the false positive rate of class 1 is c21

c11+c21
.

Table 14.1. A sample confusion matrix which is used to illustrate sensitivity, positive
predictivity, and false positive rate. Rows correspond to the desired classes and columns
correspond to the predicted classes.

Class 1 2

1 c11 c12

2 c21 c22

No single performance criterion can be labeled as the best for comparing
algorithms or models because the best criterion to use is problem dependent.
Here, we take the sensitivity as defined above, and create a single performance
measure, the mean squared sensitivity error (MSSE). We define the MSSE as
follows:

Definition 2

MSSE =
1

Nc

Nc∑

i=1

(1− Si)2 (14.6)

where Nc = the number of classes and Si = sensitivity of class i as defined
earlier.

Sensitivities range from 0 (no examples of the class correctly classified) to 1 (all
examples correctly classified). Thus, a lower MSSE corresponds to better per-
formance. We choose this criterion because each class is given equal importance
and the square causes lower individual sensitivities to be penalized more (e.g. for
a two class problem, class sensitivities of 100% and 0% produce a higher MSSE
than sensitivities of 50% and 50%). Note that this is only one possible criterion,
and other criterion could be used in order to reflect different requirements, e.g.
specific misclassification costs for each class. The post scaling heuristic can be
used with any criterion (and doing so may be simpler than reformulating the
neural network training algorithm for the new criterion).

14.3.2 ECG Classification Problem

This section presents results using the beforementioned techniques on an ECG
classification problem. The database used is the MIT-BIH Arrhythmia database
[21] – a common publicly available ECG database which contains a large number
of ECG records that have been carefully annotated by experts. Detection of
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the following four beat types is considered: Normal (N), Premature Ventricular
Contraction (PVC), Supraventricular Contraction (S), and Fusion (F) [21], i.e.
there are four output classes. The four classes are denoted 1 (N), 2 (PVC), 3 (S),
and 4 (F). An autoregressive model is calculated for a window of 200 samples
centered over the peak of the R-wave of each beat. The inputs are the polar
coordinates of each pole in the z-plane, i.e. frequency changes are reflected in
the angular variation of the poles and damping is reflected in the magnitude
variations. The model order was four corresponding to eight input variables.
The prior probability of the classes (according to the training data) is (0.737,
0.191, 0.0529, 0.0196) corresponding to beat types (N, PVC, S, F).

MLPs with 20 hidden units were trained with stochastic backpropagation
(update after each pattern) using an initial learning rate of 0.02 which was
linearly reduced to zero over the training period of 500,000 updates. We used
5,000 points in each of the training, validation and test sets. The validation
set was used for early stopping. The following algorithms were used – a) prior
scaling with the degree of scaling, cs, varied from 0 to 1, b) probabilistic sampling
with the degree of scaling, cs, varied from 0 to 1, c) as per a) and b) with the
addition of post scaling, and d) equalizing the number of cases in each class by
removing cases in more common classes. The post scaling attempted to minimize
the MSSE on the training set5. 10 trials were performed for each case.

The median test set MSSE for d) was 0.195. The results for probabilistic sam-
pling and probabilistic sampling plus post scaling are shown with box-whiskers
plots6 in figure 14.1. For probabilistic sampling, the best scaling results corre-
spond to a degree of scaling in between no scaling and scaling according to the
prior probabilities (cs ≈ 0.8). When cs is larger, the sensitivity of class 1 drops
significantly and results in higher false positive rates for the other classes. When
cs is lower, the sensitivity of classes 3 and 4 drops significantly. It can be seen
that the addition of post scaling appears to almost always improve performance
for this problem. The optimal degree of scaling, cs ≈ 0.8, is difficult to deter-
mine a priori. However, it can be seen that the addition of post scaling makes
the selection of cs far less critical (cs = 0.3 to cs = 1.0 result in similar per-
formance). Figure 14.2 shows confusion matrices (in graphical form). Without

5 400 steps were used for the hill climbing algorithm where each step corresponded to
either multiplying or dividing an individual output scale factor by a constant which
was reduced linearly over time from 1.5 to 1. The time taken was short compared to
the overall training time.

6 The distribution of results is often not Gaussian and alternative means of presenting
results other than the mean and standard deviation can be more informative. Box-
whiskers plots show the interquartile range (IQR) with a box and the median as a
bar across the box. The whiskers extend from the ends of the box to the minimum
and maximum values. The median and the IQR are simple statistics which are not
as sensitive to outliers as the mean and the standard deviation [31]. The median is
the value in the middle when arranging the distribution in order from the smallest to
the largest value. If the data is divided into two equal groups about the median, then
the IQR is the difference between the medians of these groups. The IQR contains
50% of the points.
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scaling (cs = 0), it can be seen that classes 3 & 4 have low sensitivity. With
scaling using cs = 1 all classes are now recognized, however the sensitivity of
class 1 is worse and the false positive rate of classes 3 & 4 is significantly worse.

The results for prior scaling and prior scaling combined with post scaling
were very similar but slightly worse than the results with probabilistic sampling.
The prior scaling results are not plotted in order to make the graph easier to
follow, however the qualitative results are as follows: for low cs, prior scaling and
probabilistic sampling perform very similarly. However, for high cs, probabilistic
sampling has a clear advantage for this problem. This is perhaps just as expected
– the relatively high variation in prior class probabilities leads to a high variation
in weight update magnitudes across the classes when using high cs. Results for
all methods can be seen in table 14.2.

Table 14.2. Results for the various methods. We show the average results for the best
selection of cs and also an average across all selections of cs. Note that selection of
the optimal value of cs is less critical when using post scaling in addition to either the
prior scaling or probabilistic sampling methods.

Method Prior Prior Scaling + Probabilistic Probabilistic Equalizing
Scaling Post Scaling Sampling Sampling + Membership

Post Scaling

Average MSSE 0.10 0.096 0.099 0.089 0.195
(for best cs) (cs = 0.8) (cs = 0.6) (cs = 0.8) (cs = 0.3)

Average MSSE 0.19 0.10 0.18 0.099 0.195
(over all cs)

14.4 Explanation

This section discusses why the techniques presented can be useful, limitations of
the techniques, and how they relate to the theoretical result that MLPs approx-
imate Bayesian a posteriori probabilities under certain conditions.

14.4.1 Convergence and Representation Issues

We first list four possible situations:

1. The proofs regarding estimation of Bayesian a posteriori probabilities assume
networks with an infinite number of hidden nodes in order to obtain accurate
approximation. For a given problem, it can be seen that a network which
is too small will be unable to estimate the probabilities accurately due to
limited resources.
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Fig. 14.1. Box-whiskers plots (on the left in each case) along with the usual mean plus
and minus one standard deviation plots (on the right in each case) showing the test
set MSSE for probabilistic sampling and for probabilistic sampling plus post scaling.
Each result is derived from 10 trials with different starting conditions. The probabilistic
sampling plus post scaling case is offset by 0.03 to aid viewing. It can be seen that the
selection of the scaling degree for the best performance is not as critical when using
the combination of probabilistic sampling and post scaling.

2. Training an MLP is NP-complete in general and it is well known that prac-
tical training algorithms used for MLPs often result in sub-optimal solutions
(e.g. due to local minima). Often, a result of attaining a sub-optimal solution
is that not all of the network resources are efficiently used. Experiments with
a controlled task have indicated that the sub-optimal solutions often have
smaller weights on average [17].

3. Weight decay [16] or weight elimination [30] are often used in MLP training
and aim to minimize a cost function which penalizes large weights. These
techniques tend to result in networks with smaller weights.

4. A commonly recommended technique with MLP classification is to set the
training targets away from the bounds of the activation function (e.g. (-0.8,
0.8) instead of (-1, 1) for the tanh activation function) [14].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 14.2. Confusion matrices for the test set as the degree of prior scaling, cs, is varied
from 0 (left) to 1 (right). The columns correspond to the predicted classes and the rows
correspond to the desired classes. The classes are (left to right and top to bottom) N,
PVC, S, F. For each desired class, the predicted classes are shaded in proportion to
the number of examples which are labeled as the desired class. White indicates no
predictions. A general trend can be observed where classes S & F are recognized as
normal when cs = 0, and progressively more of the normal class examples are recognized
as classes PVC, S, & F as cs approaches 1.
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These four situations can all lead to a bias towards smaller weights, or
“smoother” models7. The possibility of such a bias is not taken into account
by the proofs regarding posterior probabilities, i.e. the difference between the-
ory and practice may, in part, be explained by violation of the assumption that
sufficient convergence is obtained.

When a network is biased towards a “smoother” solution, and accurate fitting
of the optimal function is not possible, the result may be a tendency to “ignore”
lower frequency classes8, e.g. if a network has the choice of fitting either a high
frequency class or a low frequency class then it can provide a lower MSE by
fitting the high frequency class9. We demonstrate by example.

We generated artificial training data using the following distributions: class 1:
N(−5, 1, 2)+N(0, 1, 2)+N(5, 1, 2), class 2: N(−2.5, 0.25, 0.5)+N(2.5, 0.25, 0.5),
where N(μ, σ, x) is a normal distribution with mean μ, standard deviation σ,
and is truncated to lie within (μ− x, μ+ x). We generated 500 training and test
examples from these distributions with the probability of selection for classes
(1,2) being (0.9,0.1), i.e. the training and test sets have nine times as many
samples of class 1 as they do of class 2. Note that there is no overlap between
the classes. Figure 14.3 shows typical output probability plots for training an
MLP with 10 hidden nodes10 with and without probabilistic sampling. 10 trials
were performed in each case with very similar results (see table 14.3). It can
be seen that the network “ignores” class two without the use of probabilistic
sampling.

It should be noted that using conjugate gradient training for this simple
problem results in relatively accurate estimation of both classes with standard
training (alternate parameters with backpropagation may also be successful).
Rather than arguing for either backpropagation or conjugate gradient here (nei-
ther training algorithm is expected to always find a global minimum in general),
we simply note that our experience and the experience of others [7, 18, 19, 27]
suggests that conjugate gradient is not superior for many problems – i.e. back-
propagation works better on one class of problems and conjugate gradient works
better on another class. Conjugate gradient resulted in significantly worse per-
formance when tested on the ECG problem. It should be noted that there are

7 In general, smaller weights correspond to smoother functions, however this is not
always true. For example, this is not the case when fitting the function sech(x)
using two tanh sigmoids [8] (because sech(x) = limd→0(tanh(x + d) − tanh(x))/d,
i.e. the weights become indefinitely large as the approximation improves).

8 In relation to the representational capacity (size of the network), Barnard and Botha
[3] have observed that MLP networks have a tendency to guess higher probability
classes when a network is too small to approximate the decision boundaries reason-
ably well.

9 Lyon and Yaeger [20] find that their frequency balancing technique reduces the effect
of the prior class probabilities on the network and effectively forces the network to
allocate more resources to the lower frequency classes.

10 500,000 stochastic training updates with backpropagation, initial learning rate 0.02
reduced linearly to zero.
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many options when implementing a conjugate gradient training algorithm and
that poor performance may be attributed to the implementation used. We have
used a modified implementation of the algorithm from Fletcher [9].
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Fig. 14.3. Network outputs for the artificial problem with (below) and without (above)
probabilistic sampling. It can be seen that the network “ignores” the lower fre-
quency class without the use of probabilistic sampling. Note that the input has been
normalized.

Table 14.3. Mean and standard deviation of the classification error for the artificial
problem both with and without the use of probabilistic sampling

Classification Error Mean Standard Deviation

Standard Training 11.4 0.02
With Probabilistic Sampling 0.8 0.004

14.4.2 Overlapping Distributions

Consider figure 14.4. If classes 1 and 2 have distributions differing only by trans-
lation (c1 and c′2) then the decision threshold between these classes should be
chosen at x1. Equal percentages of each of these classes will be classified as the
other class. Now, if the distribution of class 2 is as shown (c2) then the decision
threshold between the classes should be chosen at x2. In this case, a higher per-
centage of class 2 will be classified as class 1 than the reverse. If it is desirable to
maximize the class by class sensitivity then scaling such that the effective distri-
bution of c2 is c′2 might be appropriate. Similarly, class 3 (c3) will be “ignored”
without any scaling.
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Scaling on a class by class basis may be desired when i) the distribution of
samples in the training set does not match the true distribution (e.g. it may be
more expensive to collect samples of a particular class)11, or ii) the distribution
of the classes does not represent their relative importance, e.g. in a medical
classification problem the cost of misclassifying a diseased case as normal may
be much higher than the cost of classifying a normal case as a (possibly) diseased
case [24]. The importance of each class may be independent of the class prior
probabilities. Note that scaling such that lower frequency classes are made to
be artificially more important can be useful when considering a higher level
problem. For example, the training data from natural English words and phrases
exhibit very non-uniform priors for different characters. Yaeger et al. [33] find
that reducing the effect of these priors on the network using frequency balancing
improves the performance of the higher level word recognition training.

Observations. a) There is no intrinsic problem if the distributions do not
overlap. b) When distributions overlap, it is desirable to preprocess the data in
a manner that results in reduced overlap. However, it is often not possible to
obtain zero overlap (due to noise, for example).

Fig. 14.4. Overlapping distributions

14.4.3 Limitations

We note a couple of limitations with the heuristics considered herein:

1. Local issues. The heuristics presented counteract biases in the network, train-
ing algorithm and/or training data. There is no reason for these biases to
be constant throughout the input space, e.g. scaling may be helpful in one
region but detrimental in another.

11 It may be possible to obtain more accurate estimates of class probabilities using data
that has class labels without input information. For example, word frequency infor-
mation can be obtained from text databases and the frequency of various diseases
can be obtained from health statistics [23].
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2. Nonlinear calibration. There is no reason for the linear scaling heuristics used
here to be optimal (in the sense that they best counteract the biases).

14.4.4 A Posteriori Proofs

Theoretically it is possible to show that the scaling techniques invalidate the a
posteriori proofs – when performing scaling on a class by class basis the deci-
sion thresholds which are used to determine the winning class should be altered
accordingly. This indicates another possible use of the prior scaling and proba-
bilistic sampling techniques when the conditions given above do not exist. This
use is related to the problem whereby lower frequency classes may be estimated
less accurately than higher frequency classes (see section 14.2.3) – training may
be performed with the heuristically altered problem (e.g. so that the class fre-
quencies are effectively equal) and the outputs or decision thresholds can be
altered accordingly.

14.5 Conclusions

In practice, training issues or characteristics of a given classification problem can
mean that scaling the predicted class probabilities may improve performance in
terms of overall classification error and/or in terms of an alternative criterion.
We introduced algorithms which a) scale weight updates on a class by class basis
according to the prior class probabilities, b) alter class frequencies probabilisti-
cally (very similar to the frequency balancing technique of Yaeger et al. [33]),
and c) scale outputs after training in order to maximize a given performance
criterion. For an electrocardiogram (ECG) classification problem, we found that
the prior scaling, probabilistic sampling, and post scaling techniques provided
better performance in comparison to a) no heuristics, and b) subsampling in
order to equalize the number of cases in each class. The best performance for
prior scaling and probabilistic sampling was obtained with a degree of scaling
in between no scaling and scaling according to the prior probabilities. The opti-
mal degree was difficult to determine a priori. However, it was found that using
prior scaling or probabilistic sampling in combination with post scaling made
the selection of the optimal degree far less critical.
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Abstract. Rather than presenting a specific trick, this paper aims at
providing a methodology for large scale, real-world classification tasks in-
volving thousands of classes and millions of training patterns. Such prob-
lems arise in speech recognition, handwriting recognition and speaker or
writer identification, just to name a few. Given the typically very large
number of classes to be distinguished, many approaches focus on para-
metric methods to independently estimate class conditional likelihoods.
In contrast, we demonstrate how the principles of modularity and hi-
erarchy can be applied to directly estimate posterior class probabilities
in a connectionist framework. Apart from offering better discrimination
capability, we argue that a hierarchical classification scheme is crucial in
tackling the above mentioned problems. Furthermore, we discuss train-
ing issues that have to be addressed when an almost infinite amount of
training data is available.

15.1 Introduction

The majority of contributions in the field of neural computation deal with rela-
tively small datasets and, in case of classification tasks, with a relatively small
number of classes to be distinguished. Representatives of such problems include
the UCI machine learning database [16] and the Proben [20] benchmark set
for learning algorithms. Research concentrates on aspects such as missing data,
model selection, regularization, overfitting vs. generalization and the bias/vari-
ance trade-off. Over the years, many methods and ’tricks’ have been developed to
optimally learn and generalize when only a limited amount of data is available.
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On the other hand, many problems in human computer interaction (HCI) such
as speech and handwriting recognition, lipreading and speaker and writer iden-
tification require comparably large training databases and also often exhibit a
large number of classes to be discriminated, such as (context-dependent) phones,
letters and individual speakers or writers. For example, in state-of-the-art large
vocabulary continuous speech recognition, we are typically faced with an inven-
tory of several thousand basic acoustic units and training databases consisting of
several millions of preprocessed speech patterns. There is only a limited amount
of publications available on the sometimes very different problems concerning the
choice of learning machines and training algorithms for such tasks and datasets.

This article addresses exactly the latter kind of learning tasks and provides
a principled approach to large scale classification problems, exemplifying it on
the problem of connectionist speech recognition. Our approach is grounded on
the powerful divide and conquer paradigm that traditionally has always been
applied to problems of rather large size. We argue that a hierarchical approach
that modularizes classification tasks is crucial in applying statistical estimators
such as artificial neural networks. In that respect, this paper presents not just
a single ’trick of the trade’, it offers a methodology for large scale classification
tasks. Such tasks have traditionally been addressed by building generative mod-
els rather than focusing on the prediction of posteriors without making strong
assumptions on the distribution of the input.

The remainder of the paper is organized as follows. Section 2 presents the gen-
eral approach to soft hierarchical classification. Section 3 then discusses methods
to design the topology of hierarchical classifiers - a task that is of increasing im-
portance when dealing with large numbers of classes. Finally, section 4 demon-
strates in detail the application of hierarchical classification to connectionist
statistical speech recognition. Section 5 concludes this paper with a summary.

15.2 Hierarchical Classification

Consider the task of classifying patterns x as belonging to one of N classes ωk.
Given that we have access to the class conditional probability densities p(x|ωk),
Bayes theory states that the optimal decision should be based on the a-posteriori
probabilities

p(ωk|x) =
p(x|ωk)p(ωk)∑
i p(x|ωi)p(ωi)

.

Given that equal risks are associated with all possible misclassifications, the opti-
mal decision is to choose the class with maximum a-posteriori probability given a
specific pattern x. Two distinct approaches have to be considered when applying
Bayes theory to a learning from examples task with generally unknown distri-
butions. In the first approach, one tries to estimate class-conditional likelihoods
p(x|ωk) and prior probabilities p(ωk) from a labeled dataset which are then
used to calculate posterior probabilities according to Bayes rule. In principle,
this approach can be applied to tasks with an arbitrary large number of classes
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since the class-conditional likelihoods can be estimated independently. However,
such an approach focuses on the modeling of the class-conditional densities. For
classification accuracy however, it is more important to model class boundaries.

The second approach accommodates this perspective by directly estimating
posterior class probabilities from datasets. It was shown (e. g. [6]) that a large
class of artificial neural networks such as multi-layer perceptrons and recur-
rent neural networks can be trained to approximate posterior class probabilities.
The degree of accuracy of the approximation however depends on many factors,
among them the plasticity of the network. Comparing the two approaches, the
discriminative power of methods that estimate posterior probabilities directly is
generally higher, resulting in better classification accuracy especially when the
class-conditional distributions are very complex. This fact (among others) ex-
plains the success and popularity of neural network classifiers on many learning
from examples tasks.

However, when the number of classes to be distinguished increases to say
several thousand, neural network estimators of posterior probabilities fail to
provide good approximations mainly because of two reasons: First, real-world
problems involving such a large number of classes often exhibit an extremely
non-uniform distribution of priors, see chapter 14. Many learning algorithms for
neural networks (especially stochastic on-line gradient descent) have difficulties
with non-uniformly distributed classes. Particularly the distribution of poste-
riors of infrequent classes tend to be approximated poorly. Second, and more
important, one of the prerequisites for training neural networks to estimate pos-
teriors, the 1-out-of-N coding of training targets, implies that the number of
output neurons matches the number of classes. It is unfeasible to train a neu-
ral network with thousands of output neurons. Also, with increasing number of
classes, the complexity of the optimum discriminant functions also increases and
the potential for conflicts between classes grows. Thus, from our point of view,
typical monolithic neural network classifiers are not applicable because of their
limitation to tasks with relatively few classes.

15.2.1 Decomposition of Posterior Probabilities

Applying the principle of divide and conquer, we can break down the task of dis-
criminating between thousands of classes into a hierarchical structure of many
smaller classification tasks of controlled size. This idea underlies the approaches
to decision tree architectures [5, 21, 23]. Decision trees classify input patterns
by asking categorical questions at each internal node. Depending on the answer
to these questions a single path is followed to one of the child nodes and the
process repeats until a leaf node is reached and a (winner) class label is emit-
ted. Therefore, decision tree classifiers can only supply us with hard decisions.
No information about the confusability of a specific input pattern is given to
us. Rather, we are often interested in the posterior class probabilities because
we wish to have a measure of the ambiguity of a decision. Furthermore, we
are sometimes required to feed a measure of the degree of membership for all
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Fig. 15.1. Hierarchical decomposition of posteriors

potential classes into a superior decision making process. As we will see in section
4, statistical speech recognition is a typical example for the latter scenario.

Adhering to the divide and conquer approach but generalizing the decision
tree framework, the statistical method of factoring posteriors can be applied
to design soft classification trees [24, 25]. For now, we assume, that optimal
posterior probabilities are available. Let S be a (possibly large) set of classes ωk
to be discriminated. Consider we have a method at our disposition which gives us
a partitioning of S into M disjoint and non-empty subsets Si such that members
of Si are almost never confused with members of Sj (∀j �= i). A particular class
ωk will now be a member of S and exactly one of the subsets Si. Therefore, we
can rewrite the posterior probability of class ωk as a joint probability of the class
and the corresponding subset Si and factor it according to

p(ωk|x) = p(ωk, Si|x) with ωk ∈ Si
= p(Si|x) p(ωk|Si,x).

Thus, the global task of discriminating between all the classes in S has been
converted into (1) discriminating between subsets Si and (2) independently dis-
criminating between the classes ωk remaining within each of the subsets Si.
Recursively repeating this process yields a hierarchical tree-organized structure
(Fig. 15.1).

Note, that the number of subclasses Si of each node does not need to be con-
stant throughout the classifier tree and might be subject to optimization during
the tree design phase. In order to compute the posterior probability for a specific
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class, we have to follow the path from root node to the leaf corresponding to the
class in question, multiplying all the conditional posteriors along the way. Both
the design of the tree structure (divide) and the estimation and multiplication
(conquer) of conditional posteriors at each node are important aspects in this
architecture, that have to be considered thoroughly because in practice, only
approximations to the conditional posteriors are available.

15.2.2 Hierarchical Interpretation

The presented architecture can be interpreted as a probability mass distribution
device. At the root node, an initial probability mass of 1 is fed into the architec-
ture. At each node, the incoming probability mass is multiplied by the respective
conditional posterior probabilities and fed into the child nodes. Eventually, the
probability mass is distributed among all the leaves (classes) rendering their pos-
terior probabilities. In contrast, classifier trees are mostly used as hard-switching
devices, where only a single path from root node to one of the leaves is taken.

A hierarchical decomposition of posterior probabilities through a soft classifi-
cation tree offers several advantages. If one of the nodes in the tree, for example
the root node fails to provide good estimates of conditional posteriors, a hard
decision tree will produce many classification errors. In a soft classification tree,
such shortcomings will influence the decision process less dramatically. Also,
recovery from errors is often possible through a superior decision process.

Another aspect of soft classification trees that can be exploited for various
purposes is the sum-to-unity property observable in any horizontal cross-section
at any level of the tree. The tree can be cut off at a certain level and still be
used as a soft classification tree that computes posterior class probabilities. This
is equivalent to creating a new (smaller) set of classes by clustering and merg-
ing the original classes according to the tree topology. In general, the resulting
classification task will be easier to solve than the original one.

Related to the sum-to-unity property of cross-sections is that the partial pos-
teriors computed on a path from the root node to a leaf are decreasing mono-
tonically. This in turn allows to close paths whenever a suitable threshold is
reached, pruning whole subtrees with classes that would otherwise receive poste-
riors smaller than the threshold. This property yields the possibility to smoothly
trade off classification accuracy against computational complexity. In the limit,
when only a single path with highest conditional posterior is followed, the soft
classification tree transmutes into a hard decision tree.

15.2.3 Estimation of Conditional Node Posteriors

Given a hierarchical decomposition of posterior class probabilities, it remains to
instantiate the tree nodes with estimators for the required conditional posteriors.
Conditioning a posterior on a subset of classes Si can be accomplished by restrict-
ing the training set of the corresponding learning device to the patterns with a
class label from Si. According to this setting, the available training data in each
node is distributed among all its child nodes according to the class partitioning.
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While the root node receives all available training data, nodes further down the
tree receive less data than their predecessors. On the other hand, specialization
increases from root node to leaves. This fact has important consequences on
learning speed and model selection when training whole hierarchies.

One of the important issues in hierarchical decompositions of posterior prob-
abilities are the unavoidable inaccuracies of practical estimators for the condi-
tional posteriors that have to be provided in each tree node. Neural networks
can only be trained to approximate the true distribution of posterior class proba-
bilities and the degree of accuracy depends on both the inherent difficulty of the
task as given by the training set and the network structure and training schedule
being used. Inaccurate approximations to the true distribution of posteriors hurt
most in the upper layers of a classification tree - a fact that has to be taken into
account by tree design procedures, which we will discuss next.

15.3 Classifier Tree Design

When it comes to the design of soft classifier trees, or equivalently to the de-
sign of hierarchical decompositions of class posteriors, the choice of algorithm
depends mostly on the number of initial classes. We will first discuss optimal
tree structures before we will turn to heuristic design algorithms necessary when
dealing with the large number of classes that we have to deal with.

15.3.1 Optimality

The optimal soft classification tree for a given task and given type and struc-
ture of estimators for the conditional node posteriors is the one which results
in minimum classification error in the Bayes setting. If all the node classifiers
would compute the true conditional posteriors, the tree structure would have no
influence on the classifier performance because any kind of factoring (through
any kind of tree structure) yields an exact decomposition of the class posteriors.
However, in practice, approximation errors of node classifiers render the choice
of tree structure an important issue. For small numbers of classes, the optimal
tree can in principle be found by exhaustively training and testing all possible
partitionings for a particular node (starting with the root node) and chosing the
one that gives the highest recognition accuracy. However, even if restricting the
tree structure to binary branching nodes and balanced partitionings, the number
K of partitionings that have to be examined at the root node

K =
N !

(N2 !)
2

quickly brings this algorithm to its limits, even for a moderate number of classes
N . Therefore, we have to consider heuristics to derive near optimal tree struc-
tures. For example, one valid possibility is to assume that the accuracy of achiev-
able approximations to the true posteriors is related to the separability of the
corresponding sets of classes.
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15.3.2 Prior Knowledge

Following the above mentioned guideline, prior knowledge about the task in
question can often be applied to hierarchically partition the global set of classes
into reasonable subsets. The goal is to partition the remaining set of classes in
a way that intuitively maximizes the separability of the subsets. For example,
given a set of phones in a speech recognizer, a reasonable first partitioning would
be to build subsets consisting of voiced and unvoiced phones. In larger speech
recognition systems where we have to distinguish among multi-state context-
dependent phones, prior knowledge such as state and context identity can be used
as splitting criterion. In tasks such as speaker or writer identification, features
such as gender or age are potential candidates for splitting criteria.

The advantage of such knowledge driven decompositions is a fast tree design
phase which is a clear superiority of this approach when dealing with large
numbers of classes. However, this method for the design of hierarchical classifiers
is subjective and error prone. Two experts in a specific field might disagree
strongly on what constitutes a reasonable hierarchy. Furthermore, it is not always
the case that reasonable partitionings yield good separability of subsets. Expert
knowledge can be misleading.

15.3.3 Confusion Matrices

In case the number of classes is small enough to allow the training of a single
classifier, the design of a soft classifier tree can be based on the confusion matrix
of the trained monolithic classifier. Indicating the confusability of each pair of
classes, the confusion matrix yields relatively good measures of the separabil-
ity of pairs of classes. This information can be exploited for designing a tree
structure using a clustering algorithm. For instance, we can define the following
(symmetric) distance measure between two disjunct sets of classes Sk and Sl

d(Sk, Sl) = −
∑

ωi∈Sk

∑

ωj∈Sl

C(ωi, ωj|T ) + C(ωj , ωi|T )

where C(ωi, ωj|T ) denotes the number of times class ωi is confused with class
ωj as measured on a set of labeled patterns T . The distance d(Sk, Sl) can now
be used as a replacement for the usual Euclidean distance measure in a stan-
dard bottom-up clustering algorithm. Unfortunately, once the number of classes
increases to several thousand, training of a monolithic classifier becomes increas-
ingly difficult.

15.3.4 Agglomerative Clustering

Assuming that separability of classes correlates with approximation accuracy of
estimators for the posterior class probabilities, we can go further and assume that
separability of classes can be measured by a suitable distance between the class
conditional distributions in feature space. We already introduced such a distance
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measure in form of the elements of a class confusion matrix. Other, computation-
ally less expensive distance measures would be the Euclidean distance between
class means or the Mahalanobis distance between the classes second order statis-
tics. Irrespective of the chosen distance measure, the goal always is to group the
set of classes in a way that results in maximum inter- and minimum intra-group
distances. Solutions to this problem are known as agglomerative clustering al-
gorithms and a large pool of variations of the basic algorithm is available in the
literature [7].

15.4 Application to Speech Recognition

In this section, we will demonstrate the main ideas and benefits of the hier-
archical classifier approach on the task of large vocabulary continuous speech
recognition (LVCSR). More specifically, we will focus on acoustic modeling for
statistical speech recognition using hidden Markov models (HMM) [27]. To give
an impression of the complexity of such a task: training databases typically con-
sist of tens of millions of speech patterns, the number of acoustic classes being
distinguished ranges from ca. 50 (monophones) to over 20000 (context-dependent
polyphones).

15.4.1 Statistical Speech Recognition

The basic statistical entity in HMM based speech recognition is the posterior
probability of word sequences W1, . . . ,WN given a sequence of acoustic observa-
tions X1, . . . ,XM and a set of model parameters Θ

P (W1, . . . ,WN |X1, . . . ,XM,Θ)

During training, we are seeking parameters Θ that maximize this probability on
the training data

Θ̂ = argmaxΘ

T∏

t=1

P (W1, . . . ,WN(t)|X1, . . . ,XM(t),Θ)

and during recognition, we want to find the sequence of words that maximizes
this probability for a given acoustic observation and fixed model parameters Θ

Ŵ1, . . . , ŴN = argmaxW1,...,WN
P (W1, . . . ,WN |X1, . . . ,XM,Θ)

In order to simplify the process of maximizing the posterior probability of word
sequences, Bayes rule is usually applied

P (W1, . . . ,WN |X1, . . . ,XM) =
P (X1, . . . ,XM|W1, . . . ,WN ) P (W1, . . . ,WN )

P (X1, . . . ,XM)

This rule separates the estimation process into the so called acoustic model (AM)
consisting of terms that depend on the acoustic observations X1, . . . ,XM and



15. Applying Divide and Conquer to Large Scale Pattern Recognition Tasks 319

the language model (LM) consisting of terms that depend only on the sequence
of words W1, . . . ,WN . In this paper we will focus on acoustic modeling using
connectionist estimators as a typical example of a task involving the discrimina-
tion of thousands of classes. For a review on other important aspects of LVCSR
such as pronunciation modeling, language modeling and decoding algorithms we
refer the reader to [27].

The task of acoustic modeling (ignoring the denominator) is to estimate pa-
rameters ΘAM which maximize

P (X1, . . . ,XM|W1, . . . ,WN ,Θ
AM).

Words Wi are modeled as sequences (or graphs) of phone models. The mapping
from words to phone models is usually accomplished by means of a pronunciation
dictionary. Phone models in turn are usually modeled as m-state left-to-right
hidden Markov models (HMM) to capture the temporal and acoustic variability
of speech signals. The following figure shows the process of converting a sequence
of words into (1) a pronunciation graph (possibly with pronunciation variants)
and (2) an HMM state graph.

I  WILL  GO

/W/
/IH/

/L/

/AY/

/W/ /IH/ /L/

/G/ /OW/

/L/

/AY/

/L/

/G/ /OW/

Fig. 15.2. Typical hidden Markov model in speech recognition
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In this framework, where word sequences are represented as directed acyclic
graphs of HMM states, the likelihood of an acoustic observation can be rewritten
as

P (X1, . . . ,XM|W1, . . . ,WN )=
∑

s1,...,sM

P (X1, . . . ,XM|s1, . . . , sM ) p(s1, . . . , sM )

where the summation extends over all possible state sequences s1, . . . , sM in the
HMM model for the word sequence W1, . . . ,WN . In the Viterbi approximation,
the above likelihood is approximated by the probability of the most likely state
sequence

P (X1, . . . ,XM|W1, . . . ,WN )≈ max
s1,...,sM

P (X1, . . . ,XM|s1, . . . , sM ) p(s1, . . . , sM ).

Given a specific state sequence, the likelihood of the acoustic observations given
that sequence can be factored as follows

P (X1, . . . ,XM|s1, . . . , sM ) ≈
M∏

i=1

p(Xi|X1, . . . , Xi−1, s1, . . . , sM ) p(s1, . . . , sM ).

In the application of first-order hidden Markov models to the estimation of such
likelihoods one usually makes two simplifying assumptions:

– Independence of Observations:

P (X1, . . . ,XM|s1, . . . , sM ) ≈
M∏

i=1

p(Xi|s1, . . . , sM ) p(s1, . . . , sM )

– First-order Assumption:

P (X1, . . . ,XM|s1, . . . , sM ) ≈
M∏

i=1

p(Xi|si) p(si|si−1)

15.4.2 Emission and Transition Modeling

Mainstream LVCSR systems follow the above approach by modeling emission
probability distributions p(Xi|si) and transition probabilities p(si|si−1) sepa-
rately and independently. Emission probability distributions are usually mod-
eled using mixture densities from the exponential family, such as the mixture of
Gaussians

p(Xi|si) =
n∑

k=1

γkNk(Xi|si)

where the γk denote mixture coefficients and the Nk mixture component den-
sities (here: normal distributions). Transition probabilities on the other hand
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are modeled by simple multinomial probabilities since they are conditioned on
a discrete variable only (not on the input vector).

The advantage of this approach is a decoupled estimation process that sep-
arates temporal and acoustic modeling. As such, it allows to easily vary HMM
state topologies after training in order to modify temporal behavior. For instance,
state duplication is a popular technique to increase the minimum duration con-
straint in phone models. Having separated emission and transition probability
estimation, state duplication consists of simply sharing acoustic models among
multiple states and adapting the transition probabilities.

However, the disadvantage of the above approach is a mismatch in the dy-
namic range of emission and transition probabilities. The reason is that transition
probabilities are modeled separately as multinomial probabilities, constrained
by the requirement to sum to one. This leads to a dominant role of emission
probabilities with transition probabilities hardly influencing overall system per-
formance.

15.4.3 Phonetic Context Modeling

So far we have assumed that only one HMM is required per modeled monophone
(see Fig. 15.2). Since the English language can be modeled by approximately 45
monophones, one might get the impression that only that number of HMM mod-
els need to be trained. In practice however, one observes an effect called coar-
ticulation that causes large variations in the way specific monophones actually
sound, depending on their phonetic context.

Usually, explicit modeling of phones in phonetic context yields great gains in
recognition accuracy. However, it is not immediately clear how to achieve robust
context-dependent modeling. Consider, for example, so called triphone models. A
triphone essentially represents the realization of a specific monophone in a spe-
cific context spanning one phone to the left and right. Assuming an inventory of
45 monophones, the number of (theoretically) possible triphones is 453 = 91125.
Many of these triphones will occur rarely or never in actual speech due to the lin-
guistic constraints in the language. Using triphones therefore results in a system
which has too many parameters to train. To avoid this problem, one has to intro-
duce a mechanism for sharing parameters across different triphone models.

Typically, a CART like decision tree is adopted to cluster triphones into gen-
eralized triphones based on both their a-priori probability and their acoustic
similarity. Such a top-down clustering requires the specification of viable at-
tributes to be used as questions on phonetic context in order to split tree nodes.
Mostly, linguistic classes such as vowel, consonant, fricative, plosive, etc. are
being employed. Furthermore, one can generalize triphones to polyphones by al-
lowing dependence on a wider context (and not just the immediate left and right
neighboring phones). Fig. 15.3 shows a typical decision tree for the clustering of
polyphonic variations of a particular monophone state.

The collection of all leaf nodes of decision trees for each monophone state in
a given system represents a robust and general set of context-dependent sub-
phonetic units. Since each of these units corresponds to several triphone HMM
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+1=SONORANT?
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Fig. 15.3. Phonetic Context Modeling using Decision Trees. Shown is a decision tree
modeling phonetic contexts of middle state (3-state HMM) of monophone /AX/.

states, they are often called tied states. Typically, a large vocabulary continuous
speech recognizer models between 3000 and 24000 such tied states. Mainstream
LVCSR systems scale to any number of context-dependent modeling units since
emission and transition models are independently estimated for each tied state.

15.4.4 Connectionist Acoustic Modeling

Locally discriminant connectionist acoustic modeling is the most popular ap-
proach to integrate neural networks into an HMM framework [3, 4, 18]. It is
based on converting estimates of local posterior class probabilities to scaled like-
lihoods using Bayes rule. These scaled likelihoods can then be used as observation
probability estimates in standard HMMs. For a moderately small number N of
HMM states, a neural network can be trained to jointly estimate posterior prob-
abilities p(si|Xi) for each state si given an input vector Xi. Bayes rule yields
the corresponding scaled 1 class conditional likelihoods

p̂(Xi|si) =
p(si|Xi)

p(si)
.

1 The missing additional term consisting of the probability of the input vector p(Xi)
is usually omitted because it is independent of the class/state identity and therefore
does not influence a Viterbi style search for the most likely state sequence.
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STATE-Nets

CONTEXT-Nets

MONO-Net

SPEECH-Net

SIL-Net

NOISE-Net

Fig. 15.4. Topology of a Hierarchy of Neural Networks (HNN) to estimate context-
dependent posteriors, factored based on a-priori phonetic knowledge

While p(si|Xi) is estimated using a neural network, prior probabilities p(si) can
be estimated by relative frequencies as observed in the training data. Several
researchers (e. g. [3, 14]) have reported improvements with connectionist acoustic
modeling when the technique for the estimation of emission probabilities was the
only difference in comparison. Since mainstream HMMs for speech recognizers
are mostly trained in a maximum likelihood framework using the Expectation-
Maximization (EM) algorithm, incorporation of discriminatively trained neural
networks that focus on modeling of class boundaries instead of class distributions
is often observed to be beneficial. Also, compared to mixtures of Gaussians based
acoustic models, connectionist acoustic models are often reported to achieve the
same accuracy with far less parameters.

However, when the number of HMM states is increased to model context-
dependent polyphones (triphones,quintphones), a single neural network can no
longer be applied to estimate posteriors. It becomes necessary to factor the pos-
terior state probabilities [17] and modularize the process of estimating those
posteriors. In most approaches, the posteriors are factored on phonetic context
or monophone identity (e.g. [4, 9, 15]). Viewing factoring as a hierarchical de-
composition of posteriors, we generalized the approaches to context-dependent
connectionist acoustic modeling by introducing a tree structured hierarchy of
neural networks (HNN) [12, 13] corresponding to a multi-level factoring of pos-
teriors based on a-priori knowledge such as broad sound classes (silence, noises,
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phones), phonetic context and HMM state identity. Fig. 15.4 shows the topology
of such a structure.

At the top of this hierarchy, we discriminate silence, noise and speech sounds
by means of two networks (SIL-Net, SPEECH-Net). The motivation for this spe-
cific partitioning comes from the observation that these three classes are easy to
distinguish acoustically. The remainder of the tree structure decomposes the pos-
terior of speech, conditioning on monophone, context and state identity as these
are convenient sound classes modeled by any phone based HMM speech recog-
nizer. The hierarchy of Fig. 15.4 can be decomposed even further, for instance
by factoring conditional monophone posteriors (estimated by the MONO-Net)
based on linguistic features (e.g. voiced/unvoiced, vowel/consonantal, fricative
etc.). The motivation behind such a decomposition is twofold. First, it reduces
the number of local classes in each node, improving approximation accuracy and
second, it yields a decoupled and specialized set of expert networks having to
handle a smaller amount of phonetic variation.

However, as mentioned in section 3, the use of prior knowledge for the design
of a hierarchy of neural networks does not take into account dissimilarity of the
observed classes in feature space. We therefore developed an agglomerative clus-
tering algorithm to automatically design such hierarchies for the estimation of
posteriors for a large number of classes. We termed this framework ACID/HNN
[11].

15.4.5 ACID Clustering

ACID (Agglomerative Clustering based on Information Divergence) is a bottom-
up clustering algorithm for the design of tree-structured soft classifiers such as
a hierarchy of neural networks (HNN) [10, 11]. Although developed for connec-
tionist acoustic modeling, the algorithm can in principle be used for any kind of
classification task. Starting from a typically very large set of initial classes, for
example the set of decision tree clustered HMM states in a speech recognizer 2,
the ACID algorithm constructs a binary hierarchy. The nodes in the resulting
tree are then instantiated with estimators for the respective conditional poste-
rior probabilities, for instance in form of an HNN. The clustering metric in the
ACID algorithm is the symmetric information divergence [26]

d(si, sj) =

∫

x

(p (x|si)− p (x|sj)) log
p(x|si)
p (x|sj)

dx

between class conditional densities of clusters. In contrast to standard agglom-
erative clustering algorithms which mostly represent clusters by their means
and employ the Euclidean distance metric, we chose to represent clusters by
parametric mixture densities (mixtures of Gaussians) in the ACID algorithm.

2 In our case, we experimented with up to 24000 initial classes.
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Modeling clusters with mixture densities is much more adequate than just using
the mean and it still allows to cluster large amounts of classes in a reasonable
time. The symmetric information divergence (also called Kullback-Leibler dis-
tance) measures the dissimilarity of two distributions and was therefore chosen
as the clustering metric. Typically, each initial class (state) is modeled using a
single full covariance multivariate Gaussian density

p(x|si) =
1√

(2π)n|Σi|
exp{−1

2
(x− μi)tΣ−1

i (x− μi)}

with mean vector μi and covariance matrix Σi. Clustering then continuously
merges initial classes which corresponds to building mixture densities based on
the Gaussians. The symmetric information divergence between two states si and
sj with Gaussian distributions amounts to

d(si, sj) =
1

2
tr{(Σi −Σj)(Σ

−1
j −Σ−1

i )}

+
1

2
tr{(Σ−1

i +Σ−1
j )(μi − μj)(μi − μj)t}

The computation of this distance measure requires O(n2) multiplications and
additions (assuming pre-computed inverse covariance matrices), where n is the
dimensionality of the input feature space. To reduce the computational load of
the ACID clustering algorithm, one can model the class conditional likelihoods
with diagonal covariance matrices only. Feature space transformations such as
principal component analysis and linear discriminant analysis can be used to
approximate such distributions. When using diagonal covariance Gaussians, the
symmetric information divergence simplifies to

d(si, sj) =
1

2

n∑

k=1

(σ2jk − σ2ik)2 + (σ2ik + σ2jk)(μik − μjk)2

σ2ikσ
2
jk

where σ2ik and μik denote the k-th coefficient of the variance and mean vectors
of state si, respectively. The evaluation of the latter distance measure requires
only O(n) multiplications and additions.

Making the simplifying assumption of linearity of information divergence, we
can define the following distance measure between clusters of Gaussians Sk and
Sl

D(Sk, Sl) =
∑

si∈Sk

p(si|Sk)
∑

sj∈Sl

p(sj |Sl)d(si, sj)

This distance measure is used in the ACID clustering algorithm:
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1. Initialize algorithm with N clusters Si, each containing
(1) a parametric model of the class-conditional likelihood and
(2) a count Ci, indicating the frequency of class si in the train-
ing set.

2. Compute within cluster priors p(si|Sk) for each cluster Sk, using
the counts Ci

3. Compute the symmetric divergence measure D(Sk, Sl) between
all pairs of clusters Sk and Sl.

4. Find the pair of clusters with minimum divergence, S∗
k and S∗

l

5. Create a new cluster S = S∗
k

⋃
S∗
l containing all Gaussians of S∗

k

and S∗
l plus their respective class counts. The resulting para-

metric model is a mixture of Gaussians where the mixture
coefficients are the class priors

6. Delete clusters S∗
k and S∗

l

7. While there are at least 2 clusters remaining, continue with 2.

ACID Initialization. Initialization requires to estimate class conditional like-
lihoods for all (tied) states modeled by the recognizer. The number N of initial
classes therefore is determined by other parts of the speech recognizer, namely
by the phonetic decision tree that is typically applied to cluster phonetic con-
texts, or equivalently to tie HMM states [27]. Initial class conditional densities
for these classes can be computed from state alignments using either the Viterbi
or the Forward-Backward algorithm on training data and corresponding HMM
state graphs generated from training transcriptions. Estimation of initial para-
metric models for the ACID algorithm therefore requires a single pass through
the training data. After initial models have been estimated, the actual ACID
clustering does not require any further passes through the training data. Fur-
thermore, note that this algorithm clusters HMM states without knowledge of
their phonetic identity solemnly based on acoustic dissimilarity.

ACID Dendrograms. For illustration purposes, Fig. 15.5 shows a dendrogram
of a typical ACID clustering run on a relatively small set of only 56 initial
classes corresponding to the set of single-state monophone HMMs in a context-
independent speech recognizer. The set of classes consists of 44 standard English
phones along with 7 noise sounds (marked with a plus), 4 phones modeling
interjections (marked with an ampersand) and silence (SIL).

Already the top level split separates silence, breathing and noise sounds (lower
subtree) almost perfectly from phonetic sounds (upper subtree). Furthermore,
clusters of acoustically similar phones can be observed in the ACID tree, for
instance

– IX,IH,IY,Y
– JH,CH,SH,ZH
– Z,S,F
– ER,AXR,R
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Fig. 15.5. Typical dendrogram of ACID clustering

ACID clustering was found to be quite effective in generating a hierarchical
decomposition of a classification task into subtasks of increasing difficulty (when
traversing the tree from root node to leaves). In the case of connectionist acoustic
modeling for speech recognition, we observed that nodes in the upper layers
of an ACID clustered HNN tree distinguish between broad phonetic classes,
whereas nodes further down the tree begin to distinguish the particular phones
within a broad phonetic class. Thus, ACID clustering constitutes an effective
algorithm for discovering inherent hierarchical structure and exploiting it for
modular classification.

Model Selection. The choice of model size and topology becomes very impor-
tant in the application of hierarchical soft classifiers to tasks such as connectionist
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speech recognition. While the global tree topology is determined by the outcome
of the ACID clustering (or any other tree design procedure), it remains to de-
cide on local (node-internal) classifier topology. The task of a local classifier is
to estimate conditional posterior probabilities based on the available training
data. Since a particular local estimator is conditioned on all predecessor nodes
in the tree, it only receives training data from all the classes (leaves) that can
be reached from the respective node. This amounts to a gradually diminishing
training set when going from root node to nodes further down the tree. Fig. 15.6
shows this property of HNNs with a plot of the amount of available training pat-
terns vs. node depth for a binary hierarchy with 6000 leaves. Note the logscale
on the ordinate.
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Fig. 15.6. Available Training Data in Different Depths of HNN Tree

When deciding on the local model complexity, we consider tree nodes as lying
in a continuum between the following two extrema:

Top of the Hierarchy
– large amounts of training data available
– allows for large node classifiers
– relatively easy, general classification tasks

Bottom of the Hierarchy
– only small amounts of training data available
– requires relatively small node classifiers
– comparably hard classification tasks
– high degree of specialization
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Ideally, the complexity of local node classifiers should be selected so as to max-
imize generalization ability of the complete hierarchy. Generalization, on the
other hand, is influenced by three factors: (1) size and distribution of the train-
ing set, (2) model complexity and (3) classification complexity of the specific task
at hand. Obviously, we can not alter the latter of these factors. Furthermore, in
the context of our architecture, we assume that the size of the training set for
each node is fixed by the tree topology, once the hierarchy has been designed.
Therefore, we have to choose model complexity based on available training data
and difficulty of classification task.

In our experiments in connectionist acoustic modeling, we typically use multi
layer perceptron (MLP) nodes with a single hidden layer and control model
complexity by varying the number of hidden units. We use standard projective
kernels with tanh activations for the hidden units and a task dependent non-
linearity for the output units (sigmoid for binary and softmax for multiway
classification). The overall number of weights in such a network depends linearly
on the number of hidden units. According to [1] and with some approximations,
a rule of thumb is to choose the number of hidden units M to satisfy

N >
M

ε

where N is the size of the training set and ε is the expected error rate on the test
set. In our case, the variation in the number of training patterns in the different
nodes dominates the above formula. Therefore, we set the number of hidden
units proportional to b−n, where b is the branching factor of the classification
tree and n is the node depth. As long as the tree is approximately balanced
in terms of the prior distribution of child nodes, this strategy leads to hidden
layers with size proportional to the number of available training patterns. A
more fundamental treatment of model complexity using multiple training runs
and cross validation is desirable. However, in case of large-scale applications
such as speech recognition, such a strategy is not realizable because of the high
computational cost resulting from very large training databases. Less heuristic
approaches to select model complexity still have to be explored.

15.4.6 Training Hierarchies of Neural Networks on Large Datasets

For the demonstration of various aspects of training large and complex structures
such as hierarchies of neural networks on typical datasets, we report on exper-
iments on the Switchboard [19] speech recognition database. Switchboard is a
large corpus of conversational American English dialogs, recorded in telephone
quality all over the US. It consists of about 170 hours of speech which typically
corresponds to about 60 million training samples. The corpus currently serves
as a benchmark for the official evaluation of state-of-the-art speech recognition
systems. Switchboard is a comparably hard task, current best systems achieve
word error rates in the vicinity of 30-40%. Fig. 15.7 shows the structure of an
HNN based connectionist acoustic model for an HMM based recognizer, in our
case the Janus recognition toolkit (JanusRTk) [8].
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Fig. 15.7. Hierarchy of Neural Networks for Connectionist Acoustic Modeling: The
upper part shows an ACID clustered HNN after node merging. This architecture com-
putes posterior probabilities for a set of generalized polyphones. To allow for integra-
tion into the HMM framework, these posteriors are converted to scaled likelihoods. The
correspondence to actual HMM states is accomplished by means of phonetic decision
trees.

Due to the inherent variability and complexity of the task and the large
amount of training data, typical speech recognition systems model several thou-
sand distinct subphonetic units (HMM states) as base classes. This requires to
train an estimator for posterior probabilities of thousands of distinct acoustic
classes based on millions of training samples, in order to take advantage of the
full modeling granularity of the speech recognizer.
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In the following, we will discuss several aspects of training a hierarchical soft
classifier on large datasets such as Switchboard. Due to the modular structure
of the classifier, the size of the model inventory and the training database, the
following discussion leads to rather unique problems and solutions. However, it
is important to emphasize that these properties stem from the structure of the
classifier and the size of the task - not from the specific task of acoustic modeling
for speech recognition. Thus, they are transferable to comparably large tasks,
e. g. handwriting, speaker or face recognition.

Classifier Tree Topology. Depending on the number of classes to be modeled,
tree design algorithm, branching factor and size and structure of local node
classifiers have to be chosen. For Switchboard, we were experimenting with three
systems consisting of 6000, 10000 and 24000 distinct classes, respectively. We
used the ACID clustering algorithm to design an initial tree structure from
the set of base classes for the 6k and 24k systems. As a second step of the
tree design phase, we applied a greedy node merging algorithm on the ACID
clustered hierarchy. Node merging decreases the number of internal nodes while
increasing the average branching factor (arity) of the tree. Training of such
hierarchies is less problematic than training of the original binary tree structure
since the difference among nodes (in terms of the number of available training
patterns) is somewhat extenuated and the overall number of networks is reduced.
However, local classification tasks change from 2-way (binomial) to more complex
multi-way (multinomial) problems which might have an impact on the accuracy
of estimating conditional posteriors. Therefore, we constrain the node merging
algorithm to produce nodes with a maximum branching factor of 8-12. This
value was found to improve training speed while not affecting overall classifier
accuracy. Considerably larger branching factors are not reasonable in our case as
we would gradually loose the advantage of the hierarchical structure by flattening
the tree.

For the 10k system, we were using the architecture of Fig. 15.4 that was
designed by prior knowledge, not taking into account any measure of class sim-
ilarity. This structure exhibits a larger average branching factor and less depth
than the ACID clustered trees. Although we could decrease the branching factor
at the MONO node by introducing linguistic classes as mentioned earlier, we
still have large branching factors at the context nodes which are much harder to
resolve with prior knowledge only.

The resulting tree nodes were instantiated with MLPs of varying size of
the (single) hidden layer. The local MLPs output layer were parameterized with
the softmax non-linearity for two reasons. First, it complies to the property of
the modeled probability distribution to sum up to one, and second, the softmax
function implements the expected value of the multinomial probability density.
Fig. 15.8 gives an overview of the structure of the ACID/HNN systems. Tree com-
pactification reduced the number of internal nodes of the 24k system from 24k
to about 4k by increasing the average number of local classes (average branching
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level # nodes = # hidden
# networks units/network

1 1 256
2 1 256
3 1 256
4 3 192
5 19 128
6 121 64
7 816 32

total 962

level # nodes = # hidden
# networks units/network

1 1 128
2 10 128
3 77 64
4 524 32
5 3434 16

total 4046

Fig. 15.8. Overview of ACID clustered HNNs for 6k (left) and 24k (right) classes

factor) from 2 to about 8. Especially when dealing with large numbers of classes,
we found that moderate tree compactification improved classifier performance.
The overall numbers of parameters of the tree classifiers were 2M for the 6k
system, 2.4M for the 10k system and 3.1M for the 24k system.

Training Algorithm and Parameters. Training a distributed, hierarchically
organized collection of neural networks on different amounts of training data is
a challenging task. Our training criterion is maximum likelihood, assuming a
multinomial probability model (1-out-of-N) over all base classes. A target class
label is associated with each training pattern, indicating the correct base class.
All networks in nodes along the path from root node to the current target class’
leaf receive the current pattern for training. Because of the large amount of
training data, we use on-line (stochastic) gradient ascent in log-likelihood with
small batches (10-100 patterns) to train the individual networks. More elaborate
training algorithms which apply second order methods in optimizing the objec-
tive function are too costly in our scenario - a single epoch of training, processing
all 60 million patterns in the training database takes 3-5 days on a Sparc Ultra
workstation. A practical training algorithm therefore must not take longer than
1-4 epochs to converge. Furthermore, because of the large number of networks
that have to be trained, a potential training algorithm can not be allowed to use
large amounts of memory - which could be the case with second order methods.
Of course, training of individual node classifiers is independent and can therefore
easily be parallelized for shared memory multi-processors which alleviates the
latter requirement.

Since we are relying on stochastic gradient ascent in our training method, we
additionally use a simple momentum term to smooth gradients. Also, we use
local learning rates for each network that are initialized with a global learning
rate and adapted individually to the specific learning task. The global learning
rate is annealed in an exponentially decaying scheme:

ηn+1
G = ηnG ∗ γG.
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Typically, we use an initial global learning rate ηG between 0.001 and 0.01, a
momentum constant of 0.5 and a global annealing factor γG of 0.999 . . .0.9999
applied after each batch update.

In order to accommodate the different learning speeds of the node classifiers
due to the different amount of available training data, we control individual
learning rates using the following measure of correlation between successive gra-
dient vectors gn−1 and gn:

αn = arccos
( gtngn−1

||gn||||gn−1||
)

αn measures the angle between the gradients gn−1 and gn. Small angles indi-
cate high correlation and therefore steady movement in weight space. Therefore,
we increase the learning rate linearly up to the current maximum (as deter-
mined by initial learning rate, annealing factor and number of updates per-
formed) whenever αn < 90◦ for several batch updates M . Large angles, on the
other hand, indicate random jumps in weight space. We therefore decrease the
learning rate exponentially whenever αn > 90◦ for several batch updates M .
In summary, we obtain the following update rule for local learning rate ηi of
network i:

ηn+1
i = min

⎧
⎪⎨

⎪⎩
ηn+1
G ,

⎧
⎪⎨

⎪⎩

ηni + δ

ηni ∗ γ
ηni

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
if

⎧
⎪⎪⎨

⎪⎪⎩

1
M

(∑M
k=0 αn−k

)
< 90◦ − ε

1
M

(∑M
k=0 αn−k

)
> 90◦ + ε

else

⎫
⎪⎪⎬

⎪⎪⎭

with linear increase δ = 0.001 . . .0.01 and exponential annealing factor γ =
0.5 . . .0.9. The number of batch updates M controls smoothing of α whereas ε
controls the influence of the global learning rate. For ε → 90◦, local learning
rates are forced to follow the global learning rate, whereas low values of ε allow
local learning rates to develop individually. Typical values that have been used
in our experiments are M = 10 and ε = 20◦.

Adapting individual learning rates to the training speed is a critical issue in
hierarchical classifiers. Networks at the top of the tree have to be trained on
very large amounts of training data. Therefore, learning rates must be allowed
to become relatively small in order to benefit from all the data and not reach
the point of saturation too early. On the other hand, networks at the bottom of
the tree have to be trained with comparably small amounts of data. In order to
train these networks within the same small number of passes through the overall
data, we have to apply comparably large learning rates to reach a maximum in
local likelihood as fast as possible. However, unconstrained adaptation of learn-
ing rates with aggressive optimization of learning speed may result in failure to
converge. In our experiments with global initialization of all networks using the
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same maximum learning rate, global annealing of the maximum learning rate
and local adaptation of individual learning rates that are constrained to never
become larger than the global learning rate gives best results.

Generalization/Overfitting. Simply speaking, we did not observe any over-
fitting in our experiments. Taking a look at the training of a large hierarchy in
terms of performance on an independent cross-validation set (Fig. 15.9), we can
see that the likelihood on this data levels off, but never starts to decrease again,
as is often observed on smaller tasks. In the plots of Fig. 15.9, the vertical lines
indicate multiple epochs (passes) through the training data (consisting of 87000
utterances). Obviously, the large amount of available training data allows for
excellent generalization, early stopping was not necessary. This behavior is sur-
prising at first sight, because we did not use any kind of explicit regularization
of the local MLPs. At second sight, however, we can identify several reasons for
the good generalization of HNNs on this task:

– Training data can be considered very noisy in our case, since samples come
from a large variety of different speakers and recording conditions. Training
with noisy data is similar to regularization and therefore improves general-
ization [2].

– Consider the hierarchy for the 6k classes system (Fig. 15.8). Some of the 816
networks at the bottom of the tree probably have not seen enough training
patterns to generalize well to new data. Although all of these networks to-
gether constitute 85% of the total number of networks, they contribute just
as one of 7 networks to any particular posterior probability. The networks in
the upper part of the hierarchy have the largest influence on the evaluation of
posterior probabilities. For those networks, the amount of available training
data can be considered so abundant that test set error approaches training
set error rate. In other words, optimal generalization can be achieved.

Results. We evaluate the proposed hierarchical classifiers as connectionist acous-
tic models in a speech recognition system. Performance of speech recognizers is
usually measured in terms of the word error rate on a reasonably large set of
test utterances. In our case, we test the different acoustic classifiers with the
Janus [8] recognizer on the first 30 seconds of each speaker in the official 1996
Switchboard evaluation test set, consisting of 366 utterances not present in the
training set.

acoustic classifier # classes # parameters word error rate

HNN 10000 2.0 M 37.3 %
ACID/HNN 6000 2.4 M 36.7 %
ACID/HNN 24000 3.1 M 33.3 %
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The above results are competitive with those of state-of-the-art systems and
indicate a clear advantage of the ACID clustered over the pre-determined hi-
erarchical classifiers. We suspect, that the reason for the better performance of
automatically clustered hierarchies of neural networks is the difference in tree
topology. Automatically clustered HNNs such as the presented ACID/HNN trees
exhibit small and comparably uniform average branching factors that allow to
robustly train estimators of conditional posterior probabilities. In contrast, hand-
crafted hierarchies such as the 10k HNN tree contain nodes with rather large
branching factors. Fig. 15.10 shows the branching factors for all the networks in
the 10k tree structure.
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Fig. 15.10. Branching Factors of Individual Nodes in 10k HNN

The largest observed branching factor in this tree was 276. This requires
the joint estimation of conditional posterior probabilities for as many as 276
classes which may result in rather poor approximations to the true posterior
probabilities for some of the networks in the tree.

Furthermore, the superior performance of both ACID/HNN classifiers over
the hand-crafted 10k tree, demonstrates the full scalability of the hierarchical
approach and justifies the increase in the number of parameters. Earlier attempts
to train hand-crafted hierarchies for 24k classes failed to provide classifiers that
could be used as acoustic models in a speech recognizer. Poor approximations to
the real posterior probabilities led to instabilities in decoding when dividing by
priors in this case. Apart from that, we do not know of any other non-parametric
approach capable of directly and discriminatively estimating posterior probabil-
ities for such a large amount of classes.

15.5 Conclusions

We have presented and discussed a methodology for the estimation of poste-
rior probabilities for large numbers of classes using a hierarchical connectionist
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framework. The aim of the paper is to demonstrate the necessity of hierarchical
approaches to modularize classification tasks in large-scale application domains
such as speech recognition, where thousands of classes have to be considered
and millions of training samples are available. The divide and conquer approach
proves to be a versatile tool in breaking down the complexity of the original
problem into many smaller tasks. Furthermore, agglomerative clustering tech-
niques can be applied to automatically impose a suitable hierarchical structure
on a given set of classes, even in the case this set contains tens of thousands
of classes. In contrast to the relatively small standard benchmarks for learning
machines, aspects such as choice of training method, model selection and gen-
eralization ability appear in different light when tackling large-scale probability
estimation problems.
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Tricks for Time Series�

Preface

In the last section we focus on tricks related to time series analysis and economic
forecasting. In chapter 16, John Moody opens with a survey of the challenges of
macroeconomic forecasting including problems such as noise, nonstationarities,
nonlinearities, and the lack of good a priori models. Lest one be discouraged,
descriptions of many possible neural network solutions are next presented includ-
ing hyperparameter selection (e.g. for regularization, training window length),
input variable selection, model selection (size and topology of network), better
regularizers, committee forecasts, and model visualization.

The survey is followed by a more detailed description of smoothing reg-
ularizers, model selection methods (e.g. prediction risk, nonlinear cross-
validation (NCV) (p. 357)) and sensitivity-based pruning (SBP) (p. 359)
for input selection. The goal of using regularizers is to introduce bias into the
model. But what is the “right bias”? Weight decay may be too ad hoc in that it
does not consider the nature of the function being learned. As an alternative,
the author presents several new smoothing regularizers for both feedforward and
recurrent networks that empirically are found to work better.

In model selection, prediction risk is used as the criterion for determin-
ing “best fits”. Several methods for estimating prediction risk are discussed and
compared: generalized cross-validation (GCV), Akaike’s final prediction error
(FPE), predicted squared error (PSE), and generalized prediction error (GPE)
which can be expressed in terms of the effective number of parameters.

In cross validation, separate networks are trained on different subsets of the
data to obtain estimates of the prediction risk. With nonlinear loss functions,
however, each network may converge to distinct local minima making compar-
ison difficult. NCV alleviates this problem by initializing each network to be
trained on a CV subset in the same minimum w0 (obtained on the full training
set). This way the CV errors computed on the different subsets estimate the
prediction risk locally around this minimum w0 and not by using some remote
local minima. SBP is used to select the “best subset” of input variables to use.
Here a sensitivity measure (e.g. delta error, average gradient, average absolute
gradient, RMS gradient) (p. 360) is used to measure the change in the training
error that would result if a given input is removed. Input variables are ranked
based on importance and, beginning with the least important, are pruned one
at a time, retraining in between. Finally, John Moody shows how sensitivity
measures can be examined visually over time to better understand the role of
each input (p. 361). Throughout, empirical results are presented for forecasting
the U.S. Index of Industrial Production.
� Previously published in: Orr, G.B. and Müller, K.-R. (Eds.): LNCS 1524, ISBN
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In chapter 17, Ralph Neuneier and Hans Georg Zimmermann describe in de-
tail their impressive integrated system – with a lot of different tricks – for neural
network training in the context of economic forecasting. The authors discuss all
design steps of their system, e.g. input preprocessing, cost functions, handling
of outliers, architecture, regularization techniques, learning techniques, robust
estimation, estimation of error bars, pruning techniques. As in chapter 1, the
tricks here are also highly interleaved, i.e. many tricks will not retain their full
efficiency if they are used individually and not en bloc. Let us start with the pre-
processing for which the authors use: squared inputs (see chapter 7), scaled
relative differences, scaled forces in form of scaled curvatures or mean re-
verting that can characterize turning points in time series (p. 370). To limit the
influence of outliers the previously mentioned inputs are transformed by

x′ = tanh(wx),

where the parameters w are learned as one layer in the training process (p.
371). Subsequently, a bottleneck network reduces the number of inputs to the
relevant ones (p. 372). Since networks for time series prediction are in general
bottom heavy, i.e. the input dimension is large while the output dimension is
very small, it is important to increase the number of output targets, so that
more useful error signals can be backpropagated (see also [3, 2]). For this the
authors introduce two output layers: (1) a point prediction layer, where not
only the value to be predicted, i.e. yt+n, but also a number of neighboring values
in time are used and (2) an interaction layer, where differences between these
values, i.e. yt+n+1 − yt+n, corresponding to curvature are employed (p. 375).
Following this interesting trick, several point predictions are averaged to reduce
the variance of the prediction, similar to bagging [1] (p. 377). This overall design
gives rise to an 11-layer neural network architecture, where the available prior
knowledge from financial forecasting is coded.

For training this large – but rather constrained – architecture, cost functions
are defined (p. 383) and a method based on the CDEN approach (p. 384) is
proposed for estimating the error bars of a forecast.

To train the network the so-called vario-η learning rule is introduced, which
is essentially a stochastic approximation of a Quasi-Newton algorithm with in-
dividual learning rates for each weight (p. 392). The authors discuss how the
simple pattern-by-pattern rule has structural consequences that improve gener-
alization behavior; or to put it differently: the stochasticity of learning implicitly
includes a curvature penalty on unreliable network parts.

Then the authors raise the provoking question of the Observer-Observer di-
lemma: to create a model based on observed data while, at the same time, using
this model to judge the correctness of new incoming data (p. 391). This leads
to (1) clearning and (2) training with noise on input data. The rationale behind
clearning is that a very noisy environment, such as financial data, will spoil a
good prediction if the data is taken too seriously. That is, we are allowed to move
the data point a little bit in input space in order to get smoother predictions
(p. 395). Similarly, different additive noise levels for each input are chosen by
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an algorithm in order to adapt the noise level to the (estimated) importance
of the input: a small noise level is used for perfectly described or unimportant
inputs whereas a large noise level should be chosen for a poorly described (likely
noise corrupted) input (p. 397).

In the next step, pruning methods for optimizing the architecture are de-
scribed. They are: (1) node-pruning (p. 401) and (2) several types of weight-
pruning: (a) stochastic pruning (p. 401), (b) early-brain-damage pruning
(p. 402), (c) inverse-kurtosis pruning (p. 403), and (d) instability pruning
(p. 405). The authors use a combination of instability pruning and early-brain-
damage in their application; the first gives stable models and the latter generates
very sparse networks.

Finally, the whole set of tricks is combined into an integrated training process
and monitored on a validation set: early/late stopping, pruning and weight decay
regularization are alternated (p. 414) to obtain an excellent estimate of the
German bond rate from June 1994 to May 1996 (p. 415).

Jenny & Klaus
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Abstract. Macroeconomic forecasting is a very difficult task due to the
lack of an accurate, convincing model of the economy. The most accu-
rate models for economic forecasting, “black box” time series models,
assume little about the structure of the economy. Constructing reliable
time series models is challenging due to short data series, high noise
levels, nonstationarities, and nonlinear effects. This chapter describes
these challenges and presents some neural network solutions to them.
Important issues include balancing the bias/variance tradeoff and the
noise/nonstationarity tradeoff. A brief survey of methods includes hy-
perparameter selection (regularization parameter and training window
length), input variable selection and pruning, network architecture selec-
tion and pruning, new smoothing regularizers, committee forecasts and
model visualization. Separate sections present more in-depth descrip-
tions of smoothing regularizers, architecture selection via the generalized
prediction error (GPE) and nonlinear cross-validation (NCV), input se-
lection via sensitivity based pruning (SBP), and model interpretation and
visualization. Throughout, empirical results are presented for forecast-
ing the U.S. Index of Industrial Production. These demonstrate that,
relative to conventional linear time series and regression methods, supe-
rior performance can be obtained using state-of-the-art neural network
models.

16.1 Challenges of Macroeconomic Forecasting

Of great interest to forecasters of the economy is predicting the “business cycle”,
or the overall level of economic activity. The business cycle affects society as
a whole by its fluctuations in economic quantities such as the unemployment
rate (the misery index), corporate profits (which affect stock market prices), the
demand for manufactured goods and new housing units, bankruptcy rates, in-
vestment in research and development, investment in capital equipment, savings
� Previously published in: Orr, G.B. and Müller, K.-R. (Eds.): LNCS 1524, ISBN
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rates, and so on. The business cycle also affects important socio-political factors
such as the general mood of the people and the outcomes of elections.

The standard measures of economic activity used by economists to track the
business cycle include the Gross Domestic Product (GDP) and the Index of In-
dustrial Production (IP). GDP is a broader measure of economic activity than is
IP. However, GDP is computed by the U.S. Department of Commerce on only a
quarterly basis, while Industrial Production is more timely, as it is computed and
published monthly. IP exhibits stronger cycles than GDP, and is therefore more in-
teresting and challenging to forecast. (See figure 16.1.) In this chapter, all empirical
results presented are for forecasting the U.S. Index of Industrial Production.

Index of Industrial Production: 1967 - 1993
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Fig. 16.1. U.S. Index of Industrial Production (IP) for the period 1967 to 1993. Shaded
regions denote official recessions, while unshaded regions denote official expansions.
The boundaries for recessions and expansions are determined by the National Bureau
of Economic Research based on several macroeconomic series. As is evident for IP,
business cycles are irregular in magnitude, duration, and structure.

Macroeconomic modeling and forecasting is challenging for several reasons:

Non-experimental Science: Like evolutionary biology and cosmology, macroe-
conomics is largely a non-experimental science. There is only one instance of the
world economy, and the economy of each country is not a closed system. Ob-
serving the state of an economy in aggregate is difficult, and it is generally not
possible to do controlled experiments.
No a priori Models: A convincing and accurate scientific model of business
cycle dynamics is not yet available due to the complexities of the economic
system, the impossibility of doing controlled experiments on the economy, and
non-quantifiable factors such as mass psychology and sociology that influence
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economic activity. There are two main approaches that economists have used to
model the macroeconomy, econometric models and linear time series models:

Econometric Models: These models attempt to model the macroeconomy at
a relatively fine scale and typically contain hundreds or thousands of equa-
tions and variables. The model structures are chosen by hand, but model
parameters are estimated from the data. While econometric models are of
some use in understanding the workings of the economy qualitatively, they
are notoriously bad at making quantitative predictions.

Linear Time Series Models: Given the poor forecasting performance of econo-
metric models, many economists have resorted to analyzing and forecasting
economic activity by using the empirical “black box” techniques of standard
linear time series analysis. Such time series models typically have perhaps half
a dozen to a dozen input series. The most reliable and popular of these models
during the past decade or so have been bayesian vector autoregressive (BVAR)
models [22]. As we have found in our own work, however, neural networks can
often outperform standard linear time series models. The lack of an a priori
model of the economy makes input variable selection, the selection of lag struc-
tures, and network model selection critical issues.

Noise: Macroeconomic time series are intrinsically very noisy and generally have
poor signal to noise ratios. (See figures 16.2 and 16.3.) The noise is due both to
the many unobserved variables in the economy and to the survey techniques used
to collect data for those variables that are measured. The noise distributions are
typically heavy tailed and include outliers. The combination of short data series
and significant noise levels makes controlling model variance, model complexity,
and the bias / variance tradeoff important issues [9]. One measure of complexity
for nonlinear models is Peff , the effective number of parameters [24, 25]. Peff can
be controlled to balance bias and variance by using regularization and model
selection techniques.
Nonstationarity: Due to the evolution of the world’s economies over time,
macroeconomic series are intrinsically nonstationary. To confound matters, the
definitions of many macroeconomic series are changed periodically as are the
techniques employed in measuring them. Moreover, estimates of key series are
periodically revised retroactively as better data are collected or definitions are
changed. Not only do the underlying dynamics of the economy change with time,
but the noise distributions for the measured series vary with time also. In many
cases, such nonstationarity shortens the usable length of the data series, since
training on older data will induce biases in predictions. The combination of noise
and nonstationarity gives rise to a noise / nonstationarity tradeoff [23], where
using a short training window results in too much model variance or estimation
error due to noise in limited training data, while using a long training window
results in too much model bias or approximation error due to nonstationarity.

Nonlinearity: Traditional macroeconomic time series models are linear [12, 14].
However, recent work by several investigators have suggested that nonlinearities
can improve macroeconomic forecasting models in some cases [13, 27, 39, 35, 40].



346 J. Moody

1950 1960 1970 1980 1990

4.
5

5.
0

5.
5

6.
0

6.
5

Log_2( IP )

1950 1960 1970 1980 1990-0
.0

10
-0

.0
05

0.
0

0.
00

50
.0

10
0.

01
50

.0
20

Log_2( IP ) : 1 Month Future Returns

1950 1960 1970 1980 1990

-0
.0

2
-0

.0
1

0.
0

0.
01

0.
02

0.
03

Log_2( IP ) : 3 Month Future Returns

1950 1960 1970 1980 1990

-0
.0

2
0.

0
0.

02
0.

04
0.

06

Log_2( IP ) : 6 Month Future Returns

1950 1960 1970 1980 1990-0
.0

4
-0

.0
2

0.
0

0.
02

0.
04

0.
06

Log_2( IP ) : 9 Month Future Returns

1950 1960 1970 1980 1990-0
.0

4
-0

.0
2

0.
0

0.
02

0.
04

0.
06

Log_2( IP ) : 12 Month Future Returns

Fig. 16.2. The U.S. Index of Industrial Production and five return series (rates of
change measured as log differences) for time scales of 1, 3, 6, 9, and 12 months. These
return series served as the prediction targets for the standard Jan 1950 - Dec 1979 / Jan
1980 - Jan 1990 benchmark results reported in [27]. The difficulty of the prediction task
is evidenced by the poor signal to noise ratios and erratic behavior of the target series.
For the one month returns, the performance of our neural network predictor in table 1
suggests that the SNR is around 0.2. For all returns series, significant nonstationarities
and deviations from normality of the noise distributions are present.

(See table 16.1 and figures 16.2 and 16.3.) Based upon our own experience, the
degree of nonlinearity captured by neural network models of macroeconomic
series tends to be mild [27, 20, 38, 42, 28, 45]. Due to the high noise levels
and limited data, simpler models are favored. This makes reliable estimation of
nonlinearities more difficult.

16.2 A Survey of Neural Network Solutions

We have been investigating a variety of algorithms for neural network model
selection that go beyond the vanilla neural network approach.1 The goal of this

1 We define a vanilla neural network to be a fully connected, two-layer sigmoidal
network with a full set of input variables and a fixed number of hidden units that is
trained on a data window of fixed length with backprop and early stopping using a
validation set. No variable selection, pruning, regularization, or committee techniques
are used.
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Fig. 16.3. The U.S. Index of Leading Indicators (DLEAD) and its 11 component series
as currently defined. The Leading Index is a key tool for forecasting business cycles.
The input variables for the IP forecasting models included transformed versions of
DLEAD and several of its components [27]. The difficulty of macroeconomic forecasting
is again evident, due to the high noise levels and erratic behaviors of DLEAD and its
components. (Note that the component series included in DLEAD have been changed
several times during the past 47 years. The labels for the various series are those defined
in Citibase: HSBP denotes housing starts, FM2D82 is M2 money supply, FSPCOM is
the Standard & Poors 500 stock index, and so on.)

work is to construct models with minimal prediction risk (expected test set er-
ror). The techniques that we are developing and testing are described below.
Given the brief nature of this survey, I have not attempted to provide an ex-
haustive list of the many relevant references in the literature.
Hyperparameter Selection: Hyperparameters are parameters that appear in
the training objective function, but not in the network itself. Examples include
the regularization parameter, the training window length, and robust scale pa-
rameters. Examples of varying the regularization parameter and the training
window length for a 12 month IP forecasting model are shown in figures 16.4
and 16.5. Varying the regularization parameter trades off bias and variance,
while varying the training window length trades off noise and nonstationarity.
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Table 16.1. Comparative summary of normalized prediction errors for rates of return
on Industrial Production for the period January 1980 to January 1990 as presented
in [27]. The four model types were trained on data from January 1950 to December
1979. The neural network models significantly outperform the trivial predictors and
linear models. For each forecast horizon, the normalization factor is the variance of the
target variable for the training period. Nonstationarity in the IP series makes the test
errors for the trivial predictors larger than 1.0. In subsequent work, we have obtained
substantially better results for the IP problem [20, 38, 42, 28, 45].

Prediction Trivial Univariate Multivariate Sigmoidal Nets
Horizon (Average of AR(14) Model Linear Reg. w/ PC Pruning
(Months) Training Set) Iterated Pred. Direct Pred. Direct Pred.

1 1.04 0.90 0.87 0.81
2 1.07 0.97 0.85 0.77
3 1.09 1.07 0.96 0.75
6 1.10 1.07 1.38 0.73
9 1.10 0.96 1.38 0.67
12 1.12 1.23 1.20 0.64

Input Variable Selection and Pruning: Selecting an informative set of input
variables and an appropriate representation for them (“features”) is critical to
the solution of any forecasting problem. The variable selection and representa-
tion problem is part of the overall model selection problem. Variable selection
procedures can be either model-independent or model-dependent. The Delta
Test, a model independent procedure, is a nonparametric statistical algorithm
that selects meaningful predictor variables by direct examination of the data set
[36]. Other model-independent techniques make use of the mutual information
[4, 5, 46] or joint mutual information [46]. Sensitivity-based pruning (SBP) tech-
niques are model-dependent algorithms that prune unnecessary or harmful input
variables from a trained network [33, 30, 25, 42, 21]. Sensitivity based pruning
methods are described in greater detail in section 16.4.6.

Model Selection and Pruning: A key technique for controlling the bias / vari-
ance tradeoff for noisy problems is to select the size and architecture of the net-
work. For two-layer networks, this includes selecting the number of internal units,
choosing a connectivity structure, and pruning unneeded nodes, weights, or weight
matrix eigennodes. A constructive algorithm for selecting the number of internal
units is sequential network construction (SNC) [2, 30, 25]. Techniques for pruning
weights and internal nodes include sensitivity-based pruning methods like optimal
brain damage (OBD) [19] and optimal brain surgeon (OBS) [15]. Our recently-
proposed supervised principal components pruning (PCP) method [20] prunes
weight matrix eigennodes, rather than weights. Since PCP does not require train-
ing to a local minimum, it can be used with early stopping. It has computational
advantages over OBS, and can outperform OBD when input variables or hidden
node activities are noisy and correlated. Figure 16.6 shows reductions in prediction
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Fig. 16.4. Example of the Noise / Nonstationary Tradeoff and selection of the best
training window, in this case 10 years [38, 28]. The longer training windows of 15 and
20 years yield higher test set error due to the model bias induced by nonstationarity.
The shorter training windows of 5 and 7 years have significantly higher errors due
to model variance resulting from noise in the data series and smaller data sets. The
test errors correspond to models trained with the best regularization parameter 0.15
indicated in figure 16.5.

errors obtained by using PCP on a set of IP forecasting models. Section 16.4 de-
scribes the model selection problem and the use of estimates of prediction risk such
as nonlinear cross-validation (NCV) to guide the selection process in greater detail.
Better Regularizers: Introducing biases in a model via regularization or prun-
ing reduces model variance and can thus reduce prediction risk. Prediction risk
can be best minimized by choosing appropriate biases. One such set of biases
are smoothing constraints. We have proposed new classes of smoothing regular-
izers for both feedforward and recurrent networks [29, 45] that often yield better
performance than the standard weight decay approach. These are described in
greater detail in section 16.3.
Committee Forecasts: Due to the extremely noisy nature of economic time
series, the control of forecast variance is a critical issue. One approach for re-
ducing forecast variance is to average the forecasts of a committee of models.
Researchers in economics have studied and used combined estimators for a long
time, and generally find that they outperform their component estimators and
that unweighted averages tend to outperform weighted averages, for a variety of
weighting methods [12, 44, 6]. Reductions of prediction error variances obtained
by unweighted committee averaging for a selection of different IP forecasting
models are shown in figure 16.7.

Model InterpretationandVisualization: It is important not only to be able to
make accurate forecasts, but to also understandwhat factors influence the forecasts
that are made. This can be accomplished via the sensitivity analyses described in
sections 16.4.6 and 16.4.8 and the visualization tool presented in section 16.4.8.
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Fig. 16.5. Example of the effect of regularization (weight decay) parameter on test
error [38, 28]. The five curves are for training windows of length 5, 7, 10, 15, and 20
years. The Bias / Variance Tradeoff is clearly evident in all the curves; the minimum
test set errors occur for weight decay parameters of order 0.1. Larger errors due to bias
occur for larger weight decay coefficients, while larger errors due to model variance
occur for smaller values of the coefficient.

16.3 Smoothing Regularizers for Better Generalization

Introducing biases in a model via regularization or pruning reduces model variance
and can thus reduce prediction risk (see also chapters 2-6). Prediction risk can be
bestminimizedby choosing appropriate biases.Quadraticweight decay [37, 18, 17],
the standard approach to regularization used in the neural nets community, is an
ad hoc function of the network weights. Weight decay is ad hoc in the sense that it
imposes direct constraints on the weights independent of the nature of the function
being learned or the parametrization of the network model. A more principled ap-
proach is to require that the function f(W,x) learned by the network be smooth.
This can be accomplished by penalizing the mth order curvature of f(W,x). The
regularization or penalty functional is then the smoothing integral

S(W,m) =

∫
ddxΩ(x)

∥∥∥∥
dmf(W,x)

dxm

∥∥∥∥
2

, (16.1)

where Ω(x) is a weighting function and ‖ ‖ denotes the Euclidean tensor
norm.2 Since numerical computation of (16.1) generally requires expensive Monte
Carlo integrations and is therefore impractical during training, we have derived
algebraically simple approximations and bounds to S(W,m) for feedforward

2 The relation of this type of smoothing functional to radial basis functions has been
studied by [10]. However, the approach developed in that work does not extend to
standard feedforward sigmoidal networks, which are a special case of projective basis
function networks (PBF’s).
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Fig. 16.6. Prediction errors for two sets of neural network models for 12 month returns
for IP, with (dotted line) and without (solid line) Supervised Principal Components
Pruning (PCP) [20]. Each data point is the mean error for 11 nets, while the error bars
represent one standard deviation. Statistically significant improvements in prediction
performance are obtained for the 6, 9, and 12 month prediction horizons by using
the PCP algorithm to reduce the network complexities. While techniques like optimal
brain damage and optimal brain surgeon prune weights from the network, PCP reduces
network complexity and hence model variance by pruning eigennodes of the weight
matrices. Unlike the unsupervised use of principal components, PCP removes those
eigennodes that yield the greatest reduction in estimated prediction error.

networks that can be easily evaluated at each training step [29]. For these new
classes of algebraically simple mth-order smoothing regularizers for networks
of projective basis functions (PBF’s) f(W,x) =

∑N
j=1 ujg

[
xTvj + vj0

]
+ u0,

W = (u, v) with general transfer functions g[·], the regularizers are:

RG(W,m) =
N∑

j=1

u2j‖vj‖2m−1 Global Form

RL(W,m) =

N∑

j=1

u2j‖vj‖2m Local Form.

Our empirical experience shows that these new smoothing regularizers typically
yield better prediction accuracies than standard weight decay.

In related work, we have derived an algebraically-simple regularizer for re-
current nets [45]. This regularizer can be viewed as a generalization of the first
order Tikhonov stabilizer (the m = 1 local form above) to dynamic models. For
two layer networks with recurrent connections described by

Y (t) = g (AY (t− τ) + V X(t)) , Ẑ(t) = UY (t) ,
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Fig. 16.7. Reduction in error variance for prediction of the U.S.Index of Industrial
Production by use of combining forecasts (or committees) [38, 28]. Abscissa points
are various combinations of prediction horizon and test period. For example, “m12.80”
denotes networks trained to make 12 month forecasts on the ten years prior to 1979
and tested by making true ex ante forecasts on the year 1980. Performance metric is
normalized mean square error (NMSE) computed over the particular year. All training
sets have length 10 years. For each point, bars show range of values for either 1000
individual models, or 100 committees of 10. The individual networks each have three
sigmoidal internal units, one linear output, and typically a dozen or so input variables
selected by the δ-test from an initial set of 48 candidate variables.

the training criterion with the regularizer is

E =
1

N

N∑

t=1

||Z(t)− Ẑ(W, I(t))||2 + λρτ 2(W ) ,

where W = {U, V,A} is the network parameter set, Z(t) are the targets, I(t) =
{X(s), s = 1, 2, · · · , t} represents the current and all historical input information,
N is the size of the training data set, ρτ 2(W ) is the regularizer, and λ is a
regularization parameter. The closed-form expression for the regularizer for time-
lagged recurrent networks is:

ρτ (W ) =
γ||U ||||V ||
1− γ||A||

[
1− e

γ||A||−1
τ

]
,

where || || is the Euclidean matrix norm and γ is a factor which depends upon
the maximal value of the first derivatives of the internal unit activations g( ).
Simplifications of the regularizer can be obtained for simultaneous recurrent
nets (τ �→ 0), two-layer feedforward nets, and one layer linear nets. We have
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Fig. 16.8. Regularization parameter vs. normalized prediction errors for the task of
predicting the one month rates of change of the U.S. Index of Industrial Production
[45]. The example given is for a recurrent network trained with standard weight decay
(left) or with the new recurrent smoothing regularizer (right). For standard weight
decay, the optimal regularization parameter is 0.03 corresponding to a test error of
0.734. For the new smoothing regularizer, the optimal regularization parameter which
leads to the least validation error is 0.8 corresponding to a test error of 0.646. The new
recurrent regularizer thus yields a 12% reduction in test error relative to that obtained
using quadratic weight decay.

successfully tested this regularizer in a number of case studies and found that
it performs better than standard quadratic weight decay. A comparison of this
recurrent regularizer to quadratic weight decay for 1 month forecasts of IP is
shown in figure 16.8.

16.4 Model Selection and Interpretation

In this section, we provide a more in-depth discussion of several issues and tech-
niques for neural network model selection, including the problem of selecting
inputs. We describe techniques for selecting architectures via estimates of the
prediction risk, especially the generalized prediction error (GPE) and nonlinear
cross-validation (NCV). We present sensitivity-based pruning (SBP) methods for
selecting input variables, and demonstrate the use of these methods for predict-
ing the U.S. Index of Industrial Production. Finally, we discuss some approaches
to model interpretation and visualization that enable an understanding of eco-
nomic relationships.
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16.4.1 Improving Forecasts via Architecture and Input Selection

For the discussion of architecture selection in this paper, we focus on the most
widely used neural network architecture, the two-layer perceptron (or backprop-
agation) network. The response function for such a network with architecture λ
having Iλ input variables, Hλ internal (hidden) neurons, and a single output is:

μ̂λ(x) = h(u0 +

Hλ∑

j=1

uj g(vj0 +

Iλ∑

i=1

vji xi)) . (16.2)

Here, h and g are typically sigmoidal nonlinearities, the vji and vj0 are input
weights and thresholds, the uj and u0 are the output weights and threshold, and
the index λ is an abstract label for the specific two layer perceptron network
architecture. While we consider for simplicity this restricted class of perceptron
networks in this section, our approach can be easily generalized to networks with
multiple outputs and multiple layers.

For two layer perceptrons, the architecture selection problem is to find a good,
near-optimal architecture λ for modeling a given data set. The architecture λ is
characterized by the number of hidden units Hλ, the subset of input variables Iλ,
and the subset of weights uj and vji that are non-zero. If all of the uj and vji are
non-zero, the network is referred to as fully connected. Since an exhaustive search
over the space of possible architectures is impossible, the procedure for selecting
this architecture requires a heuristic search. See Figure 16.9 for examples of
heuristic search strategies and [25] and [30] for additional discussion.

Input
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Number of
hidden units

Final Network
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Weight
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Fig. 16.9. Heuristic Search Strategies: After selecting the number of hidden units
Hλ, the input removal and weight elimination can be carried out in parallel (A) or
sequentially (B). In (B), the selection of the number of hidden units and removal of
inputs may be iterated (dashed line).

In this section, we focus on selecting the “best subset” of input variables for pre-
dicting the U.S. Index of Industrial Production. In order to avoid an exhaustive
search over the exponentially-large space of architectures obtained by considering
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all possible combinations of inputs, we employ a directed search strategy using the
sensitivity-based input pruning (SBP) algorithm (see section 16.4.6).

16.4.2 Architecture Selection via the Prediction Risk

The notion of “best fits” can be captured via an objective criterion; such as max-
imum a posteriori probability (MAP), minimum Bayesian information criterion
(BIC), minimum description length (MDL), or generalization ability. The gener-
alization ability can be defined precisely as the prediction risk Pλ, the expected
performance of an estimator in predicting new observations. In this section,
we use the prediction risk as our selection criterion for two reasons. First, it
is straightforward to compute, and second, it provides more information than
MAP, BIC, or MDL, since it tells us how much confidence to put in predictions
produced by our best model.

Consider a set of observations D = {(xj , tj); j = 1 . . .N} that are assumed to
be generated as tj = μ(xj) + εj where μ(x) is an unknown function, the inputs
xj are drawn independently with an unknown stationary probability density
function p(x), the εj are independent random variables with zero mean (ε̄ = 0)
and variance σ2ε , and the tj are the observed target values. The learning or
regression problem is to find an estimate μ̂λ(x;D) of μ(x) given the data set D
from a class of predictors or models μλ(x) indexed by λ. In general, λ ∈ Λ =
(S,A,W ), where S ⊂ X denotes a chosen subset of the set of available input
variables X , A is a selected architecture within a class of model architectures A,
and W are the adjustable parameters (weights) of architecture A.

The prediction risk Pλ (defined above) can be approximated by the expected
performance on a finite test set. Pλ can be defined for a variety of loss functions.
For the special case of squared error, it is:

Pλ =

∫
dx p(x)[μ(x)− μ̂(x)]2 + σ2ε (16.3)

≈ E{ 1
N

N∑

j=1

(t∗j − μ̂λ(x∗
j ))

2} (16.4)

where (x∗
j , t

∗
j ) are new observations that were not used in constructing μ̂λ(x).

In what follows, we shall use Pλ as a measure of the generalization ability of a
model. Our strategy is to choose an architecture λ in the model space Λ which
minimizes an estimate of the prediction risk Pλ.

16.4.3 Estimation of Prediction Risk

Since it is not possible to exactly calculate the prediction risk Pλ given only
a finite sample of data, we have to estimate it. The restriction of limited data
makes the model selection and prediction risk estimation problems more difficult.
This is the typical situation in economic forecasting, where the time series are
short.
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A limited training set results in a more severe bias/variance (or underfitting
vs overfitting) tradeoff (see e.g. [9]), so the model selection problem is both more
challenging and more crucial. In particular, it is easier to overfit a small training
set, so care must be taken to select a model that is not too large. Also, limited
data sets make prediction risk estimation more difficult if there is not enough
data available to hold out a sufficiently large independent test sample. In such
situations, one must use alternative approaches which enable the estimation of
prediction risk from the training data, such as data resampling and algebraic esti-
mation techniques. Data resampling methods include nonlinear refinements of ν–
fold cross–validation (NCV) and bootstrap estimation, while algebraic estimates
(in the regression context) include Akaike’s final prediction error (FPE) [1], for
linear models, and the recently proposed generalized prediction error (GPE) for
nonlinear models [31, 24, 25], which is identical to the independently-derived
network information criterion [34]. For comprehensive discussions of prediction
risk estimation, see [8, 16, 43, 25].

16.4.4 Algebraic Estimates of Prediction Risk

Predicted Squared Error for Linear Models. For linear regression models
with the squared error loss function, a number of useful algebraic estimates for
the prediction risk have been derived. These include the well known generalized
cross–validation (GCV) [7, 11] and Akaike’s final prediction error (FPE) [1]
formulas:

GCVλ = ASEλ
1

(
1− Qλ

N

)2 FPEλ = ASEλ

(
1 + Qλ

N

1− Qλ

N

)
. (16.5)

Qλ denotes the number of weights of model λ (ASEλ denotes the average squared
error). Note that although GCV and FPE are slightly different for small sample
sizes, they are asymptotically equivalent for large N :

GCVλ ≈ FPEλ ≈ ASEλ

(
1 + 2

Qλ

N

)
(16.6)

A more general expression of predicted squared error (PSE) is:

PSEλ = ASEλ + 2σ̂2
Qλ

N
, (16.7)

where σ̂2 is an estimate of the noise variance in the data. Estimation strategies for
(16.7) and its statistical properties have been analyzed by [3]. FPE is obtained
as special case of PSE by setting σ̂2 ≡ ASEλ/(N − Qλ). See [8, 16, 43] for
tutorial treatments.

It should be noted that PSE, FPE and GCV are asymptotically unbiased
estimates of the prediction risk for the neural network models considered here
under certain conditions. These are: (1) the noise εj in the observed targets tj is
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independent and identically distributed, (2) the resulting model is unbiased, (3)
weight decay is not used, and (4) the nonlinearity in the model can be neglected.
For PSE, we further require that an asymptotically unbiased estimate of σ̂2 is
used. In practice, however, essentially all neural network fits to data will be
biased and/or have significant nonlinearity.

Although PSE, FPE and GCV are asymptotically unbiased only under the
above assumptions, they are much cheaper to compute than NCV since no re-
training is required.
Generalized Prediction Error (GPE) for Nonlinear Models. The pre-
dicted squared error PSE, and therefore the final prediction error FPE, are
special cases of the generalized prediction error GPE [31, 24, 25]. We present an
abbreviated description here.
GPE estimates the prediction risk for biased nonlinear models which may

use general loss functions and include regularizers such as weight decay. The
algebraic form is

GPEλ ≡ Eλtrain +
2

N
tr V̂ Ĝλ , (16.8)

where Eλtrain is the training set error (average value of loss function on training
set), V̂ is a nonlinear generalization of the estimated noise covariance matrix
of the observed targets, and Ĝλ is the estimated generalized influence matrix, a
nonlinear analog of the standard influence or hat matrix.

GPE can be expressed in an equivalent form as:

GPEλ = Eλtrain + 2 σ̂2eff
Q̂λeff

N
, (16.9)

where Q̂eff ≡ tr Ĝ is the estimated effective number of model parameters, and
σ̂2eff ≡ (tr V̂ Ĝ)/(tr Ĝ) is the estimated effective noise variance in the data. For
nonlinear and/or regularized models, Q̂λeff is generally not equal to the number
of weights Qλ.

When the noise in the target variables is assumed to be independent with
uniform variance and the squared error loss function is used, (16.9) simplifies to:

GPEλ = ASEλ + 2σ̂2
Q̂λeff

N
. (16.10)

Note that replacing Q̂λeff with Qλ gives the expression for PSE. Various other
special cases of (16.8) and (16.10) have been derived by other authors and can
be found in [8, 16, 43]. GPE was independently derived by [34], who called it
the Network Information Criterion (NIC).

16.4.5 NCV: Cross-Validation for Nonlinear Models

Cross-validation (CV) is a sample re–use method for estimating prediction risk;
it makes maximally efficient use of the available data. A perturbative refinement
of CV for nonlinear models is called nonlinear cross-validation (NCV) [25, 30].
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Fig. 16.10. A nonlinear model can have many local minima in the error function. Each
local minimum wi, wj and wk (solid curve) corresponds to a different set of parameters
and thus to a different model. Training on a different finite sample of data or retraining
on a subsample, as in nonlinear cross-validation, gives rise to a slightly different error
curve (dashed) and perturbed minima w′

i, w′
j and w′

k. Variations due to data sampling
in error curves and their minima are termed model variance.

Let the data D be divided into ν randomly selected disjoint subsets Dj of
roughly equal size: ∪νj=1Dj = D and ∀i �= j, Di ∩ Dj = ∅. Let Nj denote the
number of observations in subset Dj . Let μ̂λ(Dj)(x) be an estimator trained on
all data except for (x, t) ∈ Dj . Then, the cross-validation average squared error
for subset j is defined as

CVDj (λ) =
1

Nj

∑

(xk,tk)∈Dj

(
tk − μ̂λ(Dj)(xk)

)2
. (16.11)

These are averaged over j to obtain the ν-fold cross-validation estimate of pre-
diction risk:

CV (λ) =
1

ν

∑

j

CVDj (λ) . (16.12)

Typical choices for ν are 5 and 10. Leave–one–out CV is obtained in the limit
ν = N . CV is a nonparametric estimate of the prediction risk that relies only
on the available data.

The frequent occurrence of multiple minima in nonlinear models (see Fig-
ure 16.10), each of which represents a different predictor, requires a refinement
of the cross-validation procedure. This refinement, nonlinear cross-validation
(NCV), is illustrated in Figure 16.11 for ν = 5.

A network is trained on the entire data set D to obtain a model μ̂λ(x) with
weights W0. These weights are used as the starting point for the ν-fold cross–
validation procedure. Each subset Dj is removed from the training data in turn.
The network is re-trained using the remaining data starting at W0 (rather than
using random initial weights). Under the assumption that deleting a subset from
the training data does not lead to a large difference in the locally-optimal weights,
the retraining from W0 “perturbs” the weights to obtain Wi, i = 1 . . . ν. The
Cross-Validation error computed for the “perturbed models” μ̂λ(Dj)(x) thus es-
timates the prediction risk for the model with locally-optimal weights W0 as
desired, and not the performance of other predictors at other local minima.



16. Forecasting the Economy with Neural Nets 359

w

w w

w

w

w

0

1 2

3

4

5

weight space

Fig. 16.11. Illustration of the computation of 5–fold nonlinear cross-validation
(NCV). First, the network is trained on all data to obtain weights w0 which are used
as starting point for the cross-validation. Each data subset Di, i = 1 . . . 5 is removed
from the training data D in turn. The network is trained, starting at W0, using the
remaining data. This “perturbs” the weights to obtain wi. The test error of the “per-
turbed model” wi is computed on the hold-out sample Di. The average of these errors
is the 5-fold CV estimate of the prediction risk for the model with weights w0.

If the network would be trained from random initial weights for each subset,
it could converge to a different minimum corresponding to Wi different from the
one corresponding to W0. This would correspond to a different model. Thus,
starting from W0 assures us that the cross-validation estimates the prediction
risk for a particular model in question corresponding to W ≈W0.

16.4.6 Pruning Inputs via Directed Search and Sensitivity Analysis

Selecting a “best subset” of input variables is a critical part of model selection
for forecasting. This is especially true when the number of available input series
is large, and exhaustive search through all combinations of variables is com-
putationally infeasible. Inclusion of irrelevant variables not only does not help
prediction, but can reduce forecast accuracy through added noise or systematic
bias. A model-dependent method for input variable selection is sensitivity-based
pruning (SBP) [41, 32, 30, 25]. Extensions to this approach are presented in [21].
With this algorithm, candidate architectures are constructed by evaluating the
effect of removing an input variable from the fully connected network. These are
ranked in order of increasing training error. Inputs are then removed following a
“Best First” strategy, i.e. selecting the input that, when removed, increases the
training error least.

The SBP algorithm computes a sensitivity measure Si to evaluate the change
in training error that would result if input xi were removed from the network.
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One such sensitivity measure is the delta error, defined as:

Delta Error (DE) Si =
1

N

N∑

j=1

Sij (16.13)

where Sij is the sensitivity computed for exemplar xj . Since there are usually
many fewer inputs than weights, a direct evaluation of Si is feasible:

Sij = SE(xi, wλ)− SE(xij , wλ) (16.14)

xi =
1

N

N∑

j=1

xij

Si measures the effect on the training squared error (SE) of replacing the ith
input xi by its average xi for all exemplars (replacement of a variable by its
average value removes its influence on the network output).

Note that in computing Si, no retraining is done in evaluating SE(xi, wλ).
Also note that it is not sufficient to just set xij = 0 ∀ j, because the value of the
bias of each hidden unit was determined during training and would not be offset
properly by setting the input arbitrarily to zero. Of course, if the inputs are
normalized to have zero mean prior to training, then setting an input variable
to zero is equivalent to replacing it by its mean.

If Si is large, the network error will be significantly increased by replacing
the ith input variable with its mean. If Si is small, we need the help of other
measures to decide whether the ith input variable is useful. Three additional
sensitivity measures [21] can be computed based on perturbating an input or a
hidden variable and monitoring network output variations:

Average Gradient (AG) Si =
1

N

N∑

j=1

∂f (j)

∂xi
,

Average Absolute Gradient (AAG) Si =
1

N

N∑

j=1

|∂f
(j)

∂xi
| ,

RMS Gradient (RMSG) Si =

√√√√ 1

N

N∑

j=1

[
∂f (j)

∂xi

]2
,

where for ease of notation we define f(x) ≡ μ̂λ(x) and f (j) ≡ f(x1j , ... , xij , ... , xdj)
is the network output given the jth input data pattern.

These three sensitivity measures together offer useful information. If SAG
i is

positive and large, then on average the change of the direction of the network
output f is the same as that of the ith input variable. If SAG

i is negative and
has large magnitude, the change of the direction of f on average is opposite to
that of the ith input variable. When SAG

i is close to zero, we can not get much
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information from this measure. If SAAG
i is large, the output f is sensitive to the

ith input variable; if SAAG
i is small, f is not sensitive to the ith input variable.

If SRMSG
i is very different from SAAG

i , the ith input series could be very noisy
and have a lot of outliers.

16.4.7 Empirical Example

As described in [42], we construct neural network models for predicting the rate
of change of the U.S. Index of Industrial Production (IP). The prediction horizon
for the IP results presented here is 12 months. Following previous work [27, 20],
the results reported here use networks with three sigmoidal units and a single
linear output unit.

The data set consists of monthly observations of IP and other macroeconomic
and financial series for the period from January 1950 to December 1989. The
data set thus has a total of 480 exemplars. Input series are derived from around
ten raw time series, including IP, the Index of Leading Indicators, the Standard
& Poors 500 Index, and so on. Both the “unfiltered” series and various “filtered”
versions are considered for inclusion in the model, for a total of 48 possible input
variables. The target series and all 48 candidate input series are normalized to
zero mean and unit standard deviation. Figures 16.12 and 16.13 show the results
of the sensitivity analysis for the case where the training-set consists of 360
exemplars randomly chosen from the 40 year period; the remaining 120 monthly
observations constitute the test-set.

Local optima for the number of inputs are found at 15 on the FPE curve and
13 on the NCV curve. Due to the variability in the FPE and NCV estimates
(readily apparent in figure 16.13 for NCV), we favor choosing the first good
local minimum for these curves rather than a slightly better global minimum.
This local minimum for NCV corresponds to a global minimum for the test
error. Choosing it leads to a reduction of 35 (from 48 to 13) in the number of
input series and a reduction in the number of network weights from 151 to 46.
Inclusion of additional input variables, while decreasing the training error, does
not improve the test-set performance.

This empirical example demonstrates the effectiveness of the sensitivity-based
pruning (SBP) algorithm guided by an estimate of prediction risk, such as the
nonlinear cross-validation (NCV) algorithm, for selecting a small subset of input
variables from a large number of available inputs. The resulting network mod-
els exhibit better prediction performances, as measured by either estimates of
prediction risk or errors on actual test sets, than models that make use of all 48
input series.

16.4.8 Gaining Economic Understanding through Model
Visualization

Although this chapter has focussed on data-driven time series models for eco-
nomic forecasting, it is possible to extract information from these models about
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Fig. 16.12. Sensitivity-Based Pruning (SBP) method for selecting a subset of input
variables for a neural net forecasting model [42]. The original network was trained on all
48 input variables to predict the 12 month percentage changes in Industrial Production
(IP). The variables have been ranked in order of decreasing importance according to
a sensitivity measure. The input variables are pruned one-by-one from the network;
at each stage, the network is retrained. The figure shows four curves: the Training
Error, Akaike Final Prediction Error (FPE), Nonlinear Cross-Validation Error (NCV)
[30, 25], and the actual Test Error. NCV is used as a selection criterion and suggests
that only 13 of the variables should be included. NCV predicts the actual test error
quite well relative to FPE.

the structure of the economy. The sensitivity analyses presented above in sec-
tion 16.4.6 provide a global understanding about which inputs are important for
predicting quantities of interest, such as the business cycle. Further information
can be gained, however, by examining the evolution of sensitivities over time
[21].

Sensitivity analysis performed for an individual exemplar provides information
about which input features play an important role in producing the current
prediction. Two sensitivity measures for individual exemplars can be defined as:

Delta Output (DO) Si = Δf
(j)
i

≡ f(x1j , ... , xij , ... , xdj)
−f(x1j , ... , xi, ... , xdj) ,

Output Gradient (OG) Si =
∂f (j)

∂xij
,

where as above we define f (j) ≡ f(x1j , ... , xij , ... , xdj) . If SDO
i or SOG

i is large,
then the ith variable plays an important role in making the current prediction,
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Fig. 16.13. Sensitivity Input Pruning for IP (12 month prediction horizon). The figure
illustrates the spread in test-set error for each of the 10 subsets used to calculate NCV
(denoted by circles). The NCV error is the average of these test-set errors.

and slightly changing the value of the variable may cause a large change in the
network output. Figure 16.14 gives an example of a graphical display of the
individual exemplar sensitivities.

Using this graphical display, we can observe which input variables play im-
portant roles in producing the current forecast, or which input variables, when
we change them, can significantly increase or decrease the forecast error. We
can also observe how the roles of different input variables change through time.
For example, in Figure 16.14, for exemplars with indices from 56 to 60, the third
input variable has large negative sensitivity measures. Starting with the 65th ex-
emplar, the sixth input variable starts to play an important role, and this lasts
until the 71th exemplar. This kind of display provides insight into the dynamics
of the economy, as learned from the data by the trained neural network model.

16.5 Discussion

In concluding this brief survey of the algorithms for improving forecast accu-
racy with neural networks, it is important to note that many other potentially
useful techniques have been proposed (see also chapter 17). Also, the empirical
results presented herein are intended to be illustrative, rather than definitive.
Further work on both the algorithms and forecasting models may yield additional
improvements. As a final comment, I would like to emphasize that given the dif-
ficulty of macroeconomic forecasting, no single technique for reducing prediction
risk is sufficient for obtaining optimal performance. Rather, a combination of
techniques is required.
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Fig. 16.14. Sensitivity analysis results for individual exemplars for a 10 input model
for predicting the U.S. Index of Industrial Production [21]. Black and gray represent
negative and positive respectively. The size of a rectangle represents the magnitude of
a value. The monthly time index changes along the horizontal direction. The indices of
input variables are plotted vertically. This type of graph shows which input variables are
important for making forecasts at various points in time. This enables an understanding
of economic relationships.
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Abstract. The purpose of this paper is to give a guidance in neural
network modeling. Starting with the preprocessing of the data, we dis-
cuss different types of network architecture and show how these can be
combined effectively. We analyze several cost functions to avoid unstable
learning due to outliers and heteroscedasticity. The Observer - Obser-
vation Dilemma is solved by forcing the network to construct smooth
approximation functions. Furthermore, we propose some pruning algo-
rithms to optimize the network architecture. All these features and tech-
niques are linked up to a complete and consistent training procedure (see
figure 17.25 for an overview), such that the synergy of the methods is
maximized.

17.1 Introduction

The use of neural networks in system identification or regression tasks is often
motivated by the theoretical result that in principle a three layer network can
approximate any structure contained in a data set [14]. Consequently, the char-
acteristics of the available data determine the quality of the resulting model. The
authors believe that this is a misleading point of view, especially, if the amount
of useful information that can be extracted from the data is small. This situation
arises typically for problems with a low signal to noise ratio and a relative small
training data set at hand. Neural networks are such a rich class of functions, that
the control of the optimization process, i. e. the learning algorithm, pruning, ar-
chitecture, cost functions and so forth, is a central part of the modeling process.
The statement that “The neural network solution is not better than [any classi-
cal] method” has been used too often in order to describe the results of neural
network modeling. At any rate, the assessment of this evaluation presupposes a
precise knowledge of the procedure involved in the neural network solution that
has been achieved. This is the case because a great variety of additional features
and techniques can be applied at the different stages of the process to prevent all
the known problems like overfitting and sensitivity to outliers concerning neural
networks. Due to the lack of a general recipe, one can often find a statement
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declaring that the quality of the neural network model depends strongly on the
person who generated the model, which is usually perceived as negative. In con-
trast, we consider the additional features an outstanding advantage of neural
networks compared to classical methods, which typically do not allow such a
sophisticated control of their optimization. The aim of our article is to provide a
set of techniques to efficiently exploit the capabilities of neural networks. More
important, these features will be combined in such a way that we will achieve a
maximal effect of synergy by their application.

First, we begin with the preprocessing of the data and define a network archi-
tecture. Then, we analyze the interaction between the data and the architecture
(Observer - Observation Dilemma) and discuss several pruning techniques to
optimize the network topology. Finally, we conclude by combining the proposed
features into a unified training procedure (see fig. 17.25 in section 17.8).

Most of the paper is relevant to nonlinear regression in general. Some consid-
erations are focussed on time series modeling and forecasting. All the proposed
approaches have been tested on diverse tasks we have to solve for our clients,
e. g. forecasting financial markets. The typical problem can be characterized
by a relative small set of very noisy data and a high dimensional input vector
to cover the complexity of the underlying dynamical system. The paper gives
an overview of the unified training procedure we have developed to solve such
problems.

17.2 Preprocessing

Besides the obvious scaling of the data (in the following abbreviated by scale(·)),
which transforms the different time series such that each series has a mean value
of zero and a statistical variance of one, some authors have proposed complicated
preprocessing functions. In the field of financial forecasting, these functions are
often derived from technical analysis in order to capture some of the underlying
dynamics of the financial markets (see [37] and [25] for some examples).

After many experiments with real data, we have settled with the following
simple transformations. If the original time series which has been selected as an
input, is changing very slowly with respect to the prediction horizon, i. e. there is
no clearly identifiable mean reverting equilibrium, then an indicator for the iner-
tia and an information of the driving force has been proven to be very informa-
tive. The inertia can be described by a momentum (relative change, eq. 17.1) and
the force by the acceleration of the time series (normalized curvature, eq. 17.2).
If we have a prediction horizon of n steps into the future the original time series
xt is transformed in the following way:

momentum: x̃t = scale
(
xt − xt−n

xt−n

)
, (17.1)

force: x̂t = scale
(
xt − 2xt−n + xt−2n

xt−n

)
. (17.2)
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In eq. 17.1, the relative difference is computed to eliminate exponential trends
which, for example, may be caused by inflationary influences. Using only the pre-
processing functions of eq. 17.1 typically leads to poor models which only follow
obvious trends. The forces, i. e. the transformations by eq. 17.2, are important
to characterize the turning points of the time series.

A time series may be fast in returning to it’s equilibrium state after new infor-
mation has entered the market, as is the case for most prices of goods and stock
rates. In this case, we substitute eq. 17.2 by a description of the forces which drive
the price back to the estimated equilibrium. A simple way to estimate the underly-
ing price equilibrium is to take the average over some past values of the time series.
Instead of using the relative difference between the estimate and the current value,
we look at the difference between the equilibrium and the past value, which lies
in the middle of the averaging window. In our example, this is formulated as

x̂t = scale

(
xt−n − 1

2n+1

∑2n
τ=0 xt−τ

xt−n

)
. (17.3)

Note that in eq. 17.3 we use xt−n instead of the present value xt leading to
an estimation of the equilibrium centered around xt−n. Since, in fact, we are
interested in measuring the tension between a price level and the underlying
market equilibrium, this estimation offers a more appropriate description at the
cost of ignoring the newest possible point information. This concept, known as
mean reverting dynamics in economics, is analog to the behavior of a pendulum
in physics.

17.3 Architectures

We will present several separate architectural building blocks (figures 17.1 to
17.7), which will finally be combined into a unified neural network architecture
for time series analysis (figure 17.8). Most of the structural elements can be used
in general regression.

17.3.1 Net Internal Preprocessing by a Diagonal Connector

In order to have potentially very different inputs on a comparable scale, we
standardize the input data to zero mean and unit variance. A problem with
this common approach is that outliers in the input can have a large impact.
This is particularly serious for data that contain large shocks, as in finance and
economics. To avoid this problem, we propose an additional, net internal (short
for network internal) preprocessing of the inputs by scaling them according to

x′ = tanh(wx) . (17.4)

The implementation of this preprocessing layer is shown in fig. 17.1. This layer
has the same number of hidden units as the input layer and uses standard tanh
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squashing functions. The particular weight matrix between the input layer and
the preprocessing layer is only a square diagonal matrix.

For short term forecasts (e. g. modeling daily returns of stock markets), we
typically initialize the weights with the value of 0.1 to ensure that the tanh is
in its linear range, which in turn ensures that the external inputs pass through
essentially unchanged. If interested in long term models (e. g. six month forecast
horizon), we prefer to start with an initial value of 1. The reason is that monthly
data are typically more contaminated by “non-economical” effects like political
shocks. The large initial weight values eliminate such outliers from the beginning.

The weights in the diagonal connector are restricted to be positive to avoid
fluctuations of the sign of x′ during training. This constraint keeps eq. 17.4 as
a monotonic transformation with the ability to limit outliers. No bias should be
used for the preprocessing layer to prevent numerical ambiguities. We found that
these additional constraints improve the training stability of the preprocessing
layer.

These weights will be adapted during training in the same way as all the other
weights within the network. In practice, we observe both growing and shrinking
values for the weights. Growing values cause a larger proportion of the input
range to be compressed by the squashing function of the tanh. Very small values
of diagonal elements indicate the option to prune the corresponding input.

n input nodes

n hidden nodes

w1

wn0

0

. . .

Fig. 17.1. Net internal preprocessing to limit the influence of outliers and to eliminate
unimportant inputs

17.3.2 Net Internal Preprocessing by a Bottleneck Network

It is an old idea to use a bottleneck network to shrink the dimensionality of the
input vector. This technique was not only used to build encoders [1], but also to
perform a principle component analysis [26]. Using a bottleneck as an internal
preprocessing building block within a larger network offers the opportunity for
us to compress the input information. In addition, the tanh squashing function
of the bottleneck layer acts as a limiter of the outliers in the data.
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In a first attempt, one may implement a bottleneck architecture as an input-
hidden-output-layer sub-network using the inputs also as targets on the output
level. An additional connector from the hidden layer is connected to the remain-
ing parts of the network. This design allows the compression of input signals,
but there are two major disadvantages implied. If we apply input pruning to
the original inputs the decompression becomes disordered. Furthermore, adding
noise to the inputs becomes more complex because the disturbed inputs have
also to be used as targets at the output layer.

A distinct approach of the bottleneck sub-networks which avoids these diffi-
culties is indicated in fig. 17.2. On the left side of the diagram 17.2 we have the
typical compressor-decompressor network. The additional connection is a frozen
identity matrix, which duplicates the input layer to the output layer. Since the
target for this layer is set to zero, the output of the compressor-decompressor
network will adopt the negative values of the inputs in order to compensate
for the identical copy of the inputs. Even though the sign of the input signals
has been reversed, this circumstance does not imply any consequence for the
information flow through the bottleneck layer. This architecture allows an ap-
propriate elimination of inputs as well as the disturbance of the input signals by
artificial noise.

n input nodes

n output nodes

bottleneck

...

id

Fig. 17.2. Net internal preprocessing cluster using a bottleneck

In our experiments, we observed that it is possible to train the bottleneck in
parallel with the rest of the network. As a consequence, the bottleneck can be
shrunk as long as the error on the training set remains at the same level as it
would without a compression. As will be described in section 17.6 it is important
to use a dynamically controlled input noise as a regularization method during
learning. The architecture of fig. 17.2 allows the combination of noise and net
internal preprocessing by data compression.
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17.3.3 Squared Inputs

Following the suggestion of G. Flake in [10], we also supply the network with
the squared values of the inputs which leads to an integration of global and local
decision making. The processing of the original inputs and the squared inputs
within a tanh activation function enables the network to act as a combination of
widely-known neural networks using sigmoidal activation function (MLP) and
radial basis function networks (RBF). The output of a typical three-layer MLP
is

y =
∑

j

vj tanh

(
∑

i

wjixi − θj

)
, (17.5)

whereas the output of a RBF computes to

y =
∑

j

vj e
− 1

2

∑
i

(
xi−μji

σji

)2

. (17.6)

Some research papers typically deal with the comparison of these two types of
basis functions whereas Flake proposes the following combining approach

y =
∑

j

vj tanh

(
∑

i

wjixi + ujix
2
i − θj

)
, (17.7)

which covers the MLP of eq. 17.5 and simultaneously approximates the RBF
output eq. 17.6 to a sufficient level.

Nevertheless, we propose some minor changes to Flake’s approach by taking
the square of the internally preprocessed inputs instead of supplying the squared
original inputs separately. That way, we take advantage of the preprocessing
cluster because it limits the outliers. Furthermore, pruning inputs leads to a
simultaneous elimination of its linear and squared transformation. A possible
implementation is shown in fig. 17.3. The connector id is a fixed identity matrix.
The cluster above this connector uses square as the nonlinear activation function.
The next hidden cluster is able to create MLP and RBF structures with its tanh
squashing function.

One might think that the addition of a new connector between the square and
the hidden layer with all its additional weights would boost the overfitting. Our
experience indicates just the opposite. Furthermore,when optimizing a usualMLP,
one typically stops training before the error on the training set gets too small (early
stopping) in order to increase the probability of good results on the test set.Wehave
observed, that the error on the training set can be very small while at the same time
achieving good test results, even if onedoesnotuseweightpruning.Our experiences
can be understood on the basis of the local modeling features of the architecture.
That is, local artifacts in the input space can be encapsulated, so that they have no
more global influence which may lead to bad generalization performance. This is
especially true for high dimensional input spaces.



17. How to Train Neural Networks 375

n input nodes

n hidden nodes

w1

wn0

0

. . .

hidden

n square nodes

id

Fig. 17.3. Net internal preprocessing cluster and the square cluster, which produces
the input signals for following clusters. Note, that the connector from bias to “hidden”
is required but suppressed for visual clarity.

17.3.4 Interaction Layer

This section summarizes the articles of Weigend and Zimmermann in [36, 32].
In most applications of neural networks in financial engineering the number of
inputs is huge (of the order of a hundred), but only a single output is used. This
situation can be viewed as a large “inverted” funnel; the hard problem is that the
only information available for learning is that of a single output. This is one of the
reasons for the “data-hungriness” of single-output neural networks, i. e. a large
set of training data is often required in order to distinguish nonlinearities from
noise. The flip-side of the coin is that small data sets need to be regularized, thus
only allowing an identification of a simple model, which implies a bias towards
linear models. This circumstance is not to be confused with the bias towards
linear models which is a consequence of some techniques for avoiding overfitting
such as early stopping or weight decay.

One approach for increasing the information flow from the output side to the
input side is to increase the number of output units. In the simplest case, two
output units can be used, one to predict the return, the other one to predict the
sign of the return [34].

Since we have to model dynamical systems, we would like to provide enough
information to characterize the state of the autonomous part of the dynamics
on the output side, similar to Takens’ theorem for the notion of state on the input
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side [11]. The idea of multiple output units has recently been popularized in the
connectionist community in a non-time series context by Caruana [6].

The present paper is concerned with time series, so the embedding of the out-
put can be done analogously to the input side of a tapped “delay” line, indicated
in fig. 17.4 as the point prediction layer.

t+ny   -yt+n-1 t+n+1y      -2y    +yt+n-1t+n t+n+1y       -yt+n

yt+n-1 yt+n
yt+n+1

n input nodes

hidden nodes

point prediction layer

interaction layer

1 1 1 -1

-1 1-2

Fig. 17.4. Point predictions followed by the interaction layer

For the forecast we are interested in yt+n, the n-step ahead forecast of variable
y. Additionally, we also want to predict yt+n−1 and yt+n+1. However, after ex-
perimenting with this architecture, we do not consider it to be much of a benefit
to our aim, because there seems only very little interaction between the behavior
of the outputs as reflected through the implicit transfer by sharing hidden units.

This prompted us to introduce an explicit second output layer, the interac-
tion layer. The additional layer computes the next-neighbor derivatives (yt+n −
yt+n−1) and (yt+n+1−yt+n), as well as the curvature (yt+n+1−2yt+n+yt+n−1).

Differences between neighbors are encoded as fixed weights between point
prediction and interaction layer, so they do not enlarge the number of parameters
to be estimated. The overall cost function is the sum of all six contributions
where all individual contributions are weighted evenly. If the target values are
not properly scaled, it may be useful to give equal contribution to the error and
to scale each error output by the average error of that output unit.

If the point forecasts were perfect, the interaction layer would have no effect
at all. To explain the effect of non-zero errors, consider fig. 17.5. Both predictions
of the three points have the same pointwise errors at each of the three neighboring
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points. However, both the slopes and the curvature are correct in Model 1 (they
don’t give additional errors), but do add to the errors for Model 2.1

Model 1

Model 2

Observations

yt+n
yt+n-1 yt+n+1

Fig. 17.5. Geometric interpretation of the effect of the interaction layer on the cost
function. Given are three curves connecting points at three adjacent steps in time.
Whereas Model 1 (connected by dashed line) and Model 2 (connected by the dotted
line) have identical pointwise errors to the observations (connected by the solid line),
taking derivatives and curvatures into account favors Model 1.

The principle of the interaction layer can also be used to model further re-
lationships on the output side. Let us take as an example a forecasting model
of several exchange rates. Between all these forecasts we should guarantee that
there is no arbitrage between the assets at the forecast horizon. In other words,
at yt+n there is no way to change money in a closed loop and have a positive
return. These intermarket relationships can be realized in form of an interaction
layer.

In general, the control of intermarket relationships becomes more important
if we proceed from forecasting models to portfolio analysis models. In the latter
the correct forecast of the interrelationships of the assets is more important than
a perfect result on one of the titles.

17.3.5 Averaging

Let us assume, that we havem sub-networks for the same learning task. Different
solutions of the sub-networks may be caused by instabilities of the learning or by
a different design of the sub-networks. It is a well known principle that averaging
the output of several networks may give us a better and more stable result [24, 4].

These advantages can be clearly seen if we define as average error function

Eaverage =
1

T

T∑

t=1

[(
1

m

m∑

i=1

yi,t+n

)
− ydt+n

]2
(17.8)

1 Note that in the case of a quadratic error function, the interaction layer can be
substituted by a single output layer of point predictions, combined with a positive
definite non-diagonal quadratic form as target function.
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yt+n yt+n yt+n

average output

... ... ...

1/m 1/m 1/m

... ...

Fig. 17.6. Averaging of several point predictions for the same forecast horizon

with ydt+n as the target pattern, yi,t+n as the output of sub-network i, m as the
number of subnetworks, and T as the number of training patterns. Assuming
that the errors of the sub-networks are uncorrelated,

1

T

T∑

t=1

(yi,t+n − ydt+n)(yj,t+n − ydt+n) = 0 , ∀ i �= j (17.9)

leads to

Eaverage =
1

m

(
1

m

m∑

i=1

(
1

T

T∑

t=1

(yi,t+n − ydt+n)
2

))
(17.10)

=
1

m
average

(
Esub-networks

)
. (17.11)

According to this argument, the error due to the uncertainty of the training
can be reduced. Finally, it is to be noted that averaging adds no additional
information about the specific application of our network.

17.3.6 Regularization by Random Targets

It is known in the neural network community that the addition of random targets
can improve the learning behavior2. An architectural realization of this idea is
shown fig. 17.7.

In economical applications we typically use large input vectors in order to cap-
ture all probably relevant indicators. The resulting large number of parameters
if connecting the input layer to a hidden layer of an appropriate size is the source

2 The authors would appreciate any useful citation.
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hidden nodes

input nodes

random targetscorrect targets

Fig. 17.7. A simple architecture using the original targets (upper left branch) and the
random targets for regularization (upper right branch)

of overfitting. To partly remedy this effect, one can extend the neural network
with additional but random targets. As a decreasing error of this outputs can
only be achieved by memorizing these random events, this technique absorbs a
part of the overparametrization of the network. It should not be confused with
artificial noise on the output side because the additional patterns are randomly
selected according a probability distribution before the training and are held
fixed during the learning.

The question if enough or too many additional random targets are supplied
can be answered by observing the learning behavior. During training the error
with respect to these random targets is steadily decreasing until convergence. If
the number of additional targets is too small one may observe overfitting effects
(e. g. using a validation set) on the real targets after this convergence. On the
other hand, if the the number of additional targets is too large the learning slows
down.

One may suspect the parameters focusing on the random targets may have a
unpredictable effect on the generalization set but we could not observe such a
behavior. If using squared inputs (see sec. 17.3.3), their local learning possibilities
supports this by encapsulating local artifacts.

17.3.7 An Integrated Network Architecture for Forecasting
Problems

As a next step in our investigation, we suppose our task to be an economic fore-
casting model. In the following section we integrate the architectural building
blocks discussed above into an eleven layer network specialized to fulfill our pur-
pose (see fig. 17.8). As indicated in section 17.2, the net external preprocessing
contains at least two inputs per original time series: the momentum in the form
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of the relative difference (eq. 17.1) and a force indicator in the form of a curvature
or mean reverting description (eq. 17.2).

The lowest part of the network shows the net internal preprocessing by a diag-
onal connector. Alternatively, we could also use the bottleneck network. By the
square layer, we allow our network to cover the difference and similarity anal-
ysis of MLP- and RBF- networks. The signals from the internally preprocessed
inputs and their squared values are used as inputs, weighted by the associated
parameters, to the hidden embedding and hidden force layers (see fig. 17.8).

In contrast to typical neural networks, the upper part of the net is organized
in a new way. The underlying dynamical system is supposed to be characterized
by an estimation of different features around the forecast horizon. We distin-
guish these indicators by two particular characteristics, embeddings and forces.
The forecast of these different features has been separated in two branches of
the network in order to avoid interferences during training. Instead of directly
forecasting our final target which has the form:

yt+n − yt
yt

, (17.12)

we use the following indicators as targets in these two output layers:
embeddings:

ui =
yt+n+i + yt+n + yt+n−i

3yt
− 1 i = 1, . . .m

vi =
1

2i+1

∑i
j=−i yt+n+j − yt
yt

i = 1, . . .m

forces:

ri =
−yt+n+i + 2yt+n − yt+n−i

3yt
i = 1, . . .m

si =
yt+n − 1

2i+1

∑i
j=−i yt+n+j

yt
i = 1, . . .m

(17.13)

Target ui describes a normalized 3-point embedding with respect to our forecast
horizon t+n while vi represents a complete average around t+n versus present
time. The forces ri and si are formulated as curvatures or mean reverting (see also
section 17.2). Similar to the embeddings they describe features of a dynamical
system with an increasing width. The different widths in turn allow a complete
characterization of the time series, analogous to the characterization by points
in Takens’ Theorem [29].
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The motivation of this design is contained in the step from the embedding
and force output layers to the multiforecast output layer. We have

yt+n − yt
yt

= ui + ri i = 1, . . .m

yt+n − yt
yt

= vi + si i = 1, . . .m .
(17.14)

That means, we get 2m estimations of our final target by simply adding up the
embeddings and their associated forces in pairs. In the network this is easy to
realize by two identity connectors. After the multiforecast layer we can add an
averaging connector to get our final output. This averaging can be done by fixed
weights 1/2m or by learning after finishing the training of the lower network.

The control-embedding and control-force clusters are motivated by the fol-
lowing observation. On the embedding / force output level the network has
to estimate only slightly different features depending on the width parameter.
Neural networks have a tendency to estimate these features too similarly. To
counteract this behavior we have to add two additional clusters which control
the difference between the individual outputs inside the embedding and the force
cluster. Thus, the network has not only to learn ui and ui+1 on the embedding
output level but also the difference ui − ui+1 on the control embedding level.
The same is valid for vi, ri, si.

From a formal viewpoint the multiforecast cluster, the control-embedding clus-
ter and control-force cluster are interaction layers supporting the identification
of the underlying dynamical system in form of embeddings and forces. Keep in
mind, that although the full network seems to be relatively complex, most of
the connectors are fixed during training. Those are only used to produce the
appropriate information flows whose design is the real focus of this section.

Our proposed network design allows for an intuitive evaluation of the dimen-
sion of the target indicators embeddings and forces: how to choosem in eq. 17.13?
Start with a relative large m and train the network to the minimal error on the
training set as will be described in section 17.8. Then train only the weights of
the up to now fixed connector between cluster multi-forecast and average fore-
cast (fig. 17.8). If the dimension m has been chosen too large training may lead
to such weights which suppress the long range embeddings and forces. Thus, it
is possible to achieve an optimal dimension m of embedding and forces. For the
case of a six month forecast horizon we were successful with a value of m = 6.

The eleven layer network automatically integrates aspects of section 17.3.6
concerning random targets. If the dimension m has been chosen too large, then
the extreme target indicators act as random targets. On the other hand, if the
forecast problem is characterized by high noise in the short term, the indicators
for smaller m values generate random targets. Thus, choosing m too large does
not harm our network design as discussed in section 17.3.6, but can improve
generalization by partly adsorbing the overparametrization of the network.
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Fig. 17.8. The integrating eleven layer architecture

The different forecasts oi of the multiforecast cluster in fig. 17.8 can be used
to estimate structural instability s of the network model by

s =

2m∑

i=1

|oi − o| with o =
1

2m

2m∑

i=1

oi . (17.15)

A subsequent decision support system using this network can interpret the mea-
surements s as indicators how much one can trust the model. Note that these
values of uncertainty must not be identified with error bars as described in sec-
tion 17.5 because the s merely quantify the instability of the learning.
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17.4 Cost Functions

Typical error functions can be written as a sum of individual terms over all T
training patterns,

E =
1

T

T∑

t=1

Et , (17.16)

with the individual error Et depending on the network output y(xt, w) and the
given target data ydt . The often used square error,

Et =
1

2

(
y(xt, w)− ydt

)2
, (17.17)

can be derived from the maximum-likelihood principle and a Gaussian noise
model. Eq. 17.17 yields relatively simple error derivatives and results in asymp-
totically best estimators under certain distribution assumptions, i. e. homoscedas-
ticity. In practical applications, however, several of these assumptions are
commonly violated, which may dramatically reduce the prediction reliability
of the neural network. A problem arising from this violation is the large im-
pact outliers in the target data can have on the learning, which is also a result
of scaling the original time series to zero mean and unit variance. This effect is
particularly serious for data in finance and economics which contain large shocks.
Another cause of difficulties in financial time series analysis is heteroscedasticity,
i.e. situations where the variance of target variable changes over time. We will
especially consider cases where the variance is input-dependent: σ2t = σ2(xt).

We propose two approaches to reduce the problems resulting from outliers
and heteroscedasticity.

17.4.1 Robust Estimation with LnCosh

Outliers are common in financial time series and are usually caused by “infor-
mation shocks” such as announcements of government data or dividends paid by
companies that are out of line with market expectations. These shocks appear as
discontinuities in the trajectory of an affected asset. To be robust against such
shocks, typical cost functions like

Et =
∣∣y(xt, w) − ydt

∣∣ (17.18)

are used which do not overweight large errors. A smoother version is given by

Et =
1

a
log cosh

(
a
(
y(xt, w) − ydt

))
, (17.19)

with parameter a > 1. We typically use a ∈ [3, 4]. This function approximates
the parabola of the squared errors for small differences (Gaussian noise model),
and is proportional to the absolute value of the difference for larger values of the
difference (Laplacian noise model). The assumed noise model, the cost function
17.19 and its derivative for the case a = 5 is shown in fig. 17.9. The function
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Fig. 17.9. The Laplacian-like noise model, left, the log cosh error function 17.19,
middle, and its corresponding derivative, right

log cosh is motivated by the observation that the derivative of |x| is sign(x)
and tanh(ax) is a smooth approximation of this step function with the integral∫
tanh(az)dz = 1

a log cosh (az).

17.4.2 Robust Estimation with CDEN

This section describes a more general framework for robust estimation which is
based on the theory of density estimation. The advantages are twofold. First, any
parameters of the cost function (e. g. the a for eq. 17.19) can be determined by
learning which avoids an artificial bias by setting those parameters to predefined
values. Second, the proposed methods allow the modeling of heteroscedastic time
series whose variance changes over time.

Probability density estimating neural networks have recently gained major
attention in the neural network community as a more adequate tool to describe
probabilistic relations than common feed-forward networks (see [35], [22] and
[20]). Interest has hereby focussed on exploiting the additional information which
is inherent to the conditional density, for example the conditional variance as
a measure of prediction reliability [28], the representation of multi-valued map-
pings in the form of multi-modal densities to approach inverse problems [3], or
the use of the conditional densities for optimal portfolio construction [18]. In
this paper, we will use the Conditional Density Estimation Network (CDEN),
which is, among various other density estimation methods, extensively discussed
in [22] and [20].

A possible architecture of the CDEN is shown in fig. 17.10. It is assumed that
p(y|x), the conditional density to be identified, may be formulated as the para-
metric density p(y|φ(x)). The condition on x is realized by the parameter vector
φ which determines the form of the probability distribution p(y|φ(x)). Both φ(x)
and p(y|·) may be implemented as neural networks with the output of the first
determining the weights of the latter. Denoting the weights contained in the pa-
rameter prediction network φ(x) as w, we may thus write p(y|x,w) = p(y|φw(x)).
Assuming independence such that p(y1, · · · , yT |·) = p(y1|·) · · · p(yT |·) we mini-
mize the negative Log-Likelihood error function.
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E = −logp(y1, · · · , yT |·)

= −log
T∏

t=1

p(yt|xt, w)

= −
T∑

t=1

logp(yt|xt, w) (17.20)

by performing gradient descent using a variant of the common backpropagation
algorithm, we give way to a maximum likelihood estimate of the weights in the
parameter prediction network [22, 20].

Parameter Prediction

Network

Parametric Density

Family Φp(y|      (.))w

x y

w

p(y|x,w)

Fig. 17.10. Conditional Density Estimation Network, CDEN

Specific problems with the discussed model are first approached by determin-
ing an appropriate density family p(y|φ(x)). A powerful choice is a Gaussian
mixture

p(y|φ(x)) =
n∑

i=1

Pi(x) p(y|μi(x), σi(x)), Pi(x) ≥ 0,
n∑

i

Pi(x) = 1 , (17.21)

because they cover a wide range of probability models. For the univariate case
(one output), the p(y|μi(x), σi(x)) are normal density functions:

p(y|μi(x), σi(x)) =
1√

2πσi(x)
e
− 1

2

(
y−μi(x)

σi(x)

)2

. (17.22)

There are several ways to determine the individual density parameters contained
in (Pi, μi, σi)

n
i=1. Either they are set as the output of the parameter prediction

network, or they are trained as x-independent, adaptable weights of the density
network, or some of them may be given by prior knowledge (e. g. clustering,
neuro-fuzzy).
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A probability model p(y|·) based on the CDEN architecture in fig. 17.11 which
perceives the presence of outliers and thus leads to robust estimators is illustrated
in the left part of figure 17.12. The CDEN consists of two Gaussians with iden-
tical estimation for their mean μ(x). While its narrow Gaussian represents the
distribution of the non-outliers part of the data, the wider one expresses the
assumption that some data are located at larger distances from the prediction.
The fact that outliers are basically exceptions may be reflected by an appropriate
choice of the mixture weightings Pi, which may be regarded as prior probabilities
for each Gaussian distribution. Using this probability model yields the following
norm for the maximum-likelihood minimization:

Et = −log

[
P1

σ1
e
− 1

2

(
y(xt,w)−ydt

σ1

)2

+
P2

σ2
e
− 1

2

(
y(xt,w)−ydt

σ2

)2]
. (17.23)
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... ... ...

CDEN

yt+n

Fig. 17.11. A CDEN for limiting the influence of outliers

The qualitative behavior of Et in the one-dimensional case is illustrated in the
middle and left part of figure 17.12 (compare also fig. 17.9). One may clearly see
how the mixture limits the influence of outliers. Norms with influence-limiting
properties are called M-estimators in regression [5].

The difficulty involved in using M-estimators is that they usually possess a
set of parameters which have to be properly determined. In our case, the param-
eters are P1, P2, σ1 and σ2. In the framework of the CDEN architecture, they
are considered as adaptable weights of the density network. The advantage is
that unlike classical M-estimators, the parameters are determined by the data
during training and thus do not bias the solution. One method which has proven
to be successful in regression is to substitute eq. 17.23 by a mixture of a quadratic
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error function and a linear function of the absolute error to limit the influence
of the outliers. An adaptive version of such an error measure may easily be
implemented in the CDEN framework by substituting a mixture of Gaussian
and Laplace distributions in equation 17.21. Other limiting error functions may
be constructed alike.
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Fig. 17.12. The Gaussian mixture noise model, left, the error function 17.23, middle,
and its corresponding derivative, right

Heteroscedasticity may arise due to changes in the risk associated with an
investment. In the stock market, for example, the variance of a stock’s return
is commonly related to the company’s debt-equity ratio due to the well-known
leverage effect of a varying income on its return on equity. Heteroscedasticity has
been extensively studied in time series analysis and is commonly approached us-
ing the (G)ARCH methodology. While the latter explains the conditional vari-
ances based on past residuals, the CDEN particularly accounts for nonlinear
dependencies of the variances on past observations.

If we assume a normally distributed noise model with zero mean and variance
σ2, an appropriate representation is a single Gaussian with variable scale and
location parameter. An implementation in the CDEN is straightforward. We
use a parameter prediction network with two outputs, one for the conditional
expectation and another one for the conditional variance. This special case of the
CDEN has also been extensively investigated by Nix and Weigend [21]. During
the training of the network, the weights are optimized with respect to

Et =

[
log
√
2πσt(xt, w) +

1

2σt(xt, w)2
(
y(xt, w)− ydt

)2
]
. (17.24)

Minimization according to eq. 17.17 and eq. 17.24 obviously only differs in that
the individual errors (y(xt, w) − ydt ) are weighted by estimates of the inverse
variances 1/σ2t (xt, w) in the CDEN. Training the CDEN thus corresponds to
deriving a generalized least square estimator (GLSE), except that we use an
estimate σ̂t(xt, w) instead of the unknown σt.3

3 Definition and properties of the GLSE are extensively discussed in [5]. The case where
an estimate of σ is used during optimization is commonly denoted as a two-stage
estimation.
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17.5 Error Bar Estimation with CDEN

In addition to a more robust learning, the CDEN approach can be used to
estimate the uncertainty associated with the prediction of the expected value
yt+n := y(xt, w). Here we assume a normally distributed error and have to
optimize a likelihood function of the form

E =
1

T

T∑

t=1

[
log
(√

2πσ(xt, wσ)
)
+

(y(xt, w) − ydt )2
2σ2(xt, wσ)

]
. (17.25)

If we assume a Laplacian noise model, the cost function is

E =
1

T

T∑

t=1

[
log (2σ(xt, wσ)) +

|y(xt, w)− ydt )|
σ(xt, wσ)

]
. (17.26)

The log cosh-approximation of the Laplacian model has the form

E =
1

T

T∑

t=1

[
log (πσ(xt, wσ)) + log cosh

(
y(xt, w)− ydt
σ(xt, wσ)

)]
. (17.27)

In fig. 17.13 we show a network architecture which we found useful to apply such
error bar estimations. The architecture combines net internal preprocessing with
the squared input approach and estimates in two branches the expected value
y(xt, w) and the standard derivation σ(xt, wσ). The CDEN cluster combines
these pieces of information and computes the flow of the error.

We have found that the mixture of local and global analysis as shown in
fig. 17.13 harmonizes well with the aim of solving a forecasting problem including
error bars. To assure positive values for σ(x) a suitable activation function e(·)
is used in the σ cluster. By using a positive offset (bias) one can avoid the
singularities in the likelihood target function which are caused by very small
σ(x).

In fig. 17.14 the CDEN with one Gauss-function is combined with the archi-
tecture of section 17.3.7. Here we assume that the estimated “forces” contain the
necessary information to approximate the uncertainty of our averaged forcecast:

σ2(yt+n|xt) = σ2(yt+n|forces(xt)) (17.28)

or, more specifically, using the acceleration and mean reverting forces of fig. 17.14:

σ2(yt+n|xt) =
2m∑

i=1

wi · force2i (xt) . (17.29)
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Fig. 17.13. Error bar estimation with CDEN

By a linear combination of the squared values of the forces, this architecture
learns the input dependent variance σ(yt+n|xt) (see fig. 17.14 and eq. 17.13 for a
description of forces). Thus, we are able to achieve a forecast as well as an error
bar.

The interesting point in this combination is not only to be seen in the pos-
sibility of using the general frame as the means to identify dynamical systems.
In this environment we can even analyze the responsibility of the forces, long
range or short range, with respect to the uncertainty of the forecast. In several
monthly forecast models we have found a monotonic increase of importance from
the short to the long range forces.

Error bars and variance estimates are an essential piece of information for the
typically used mean-variance approach in portfolio management [7]. The aim is
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Fig. 17.14. Error bar estimation with CDEN using the architecture of section 17.3.
The control-embedding and control-force clusters are suppressed for visual clarity.

to compute efficient portfolios which allocate the investor’s capital to several
assets in order to maximize the return of the investment for a certain level of
risk. The variance is often estimated by linear models or is given a priori by
an expert. In contrast, the CDEN approximates σ(yt+n|xt) as a function of the
current state of the financial market and of the forecast of the neural network.

Covariances can also be estimated with CDEN using a multivariate Gaussian
in eq. 17.22. Implementation details can be found in [17, 19]. If one approxi-
mates the conditional density p(y|φ(x)) with several Gaussians, the estimated
expected mean, variance and covariance may be computed using typical moment
generating transformations [23, 19].
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17.6 Data Meets Structure

17.6.1 The Observer-Observation Dilemma

Human beings believe that they are able to solve a psychological version of the
Observer-Observation Dilemma. On the one hand, they use their observations to
constitute an understanding of the laws of the world, on the other hand, they use
this understanding to evaluate the correctness of the incoming pieces of infor-
mation. Of course, as everybody knows, human beings are not free from making
mistakes in this psychological dilemma. We encounter a similar situation when
we try to build a mathematical model using data. Learning relationships from
the data is only one part of the model building process. Overrating this part
often leads to the phenomenon of overfitting in many applications (especially
in economic forecasting). In practice, evaluation of the data is often done by
external knowledge, i. e. by optimizing the model under constraints of smooth-
ness and regularization [16]. If we assume that our model summarizes the best
knowledge of the system to be identified, why shouldn’t we use the model itself
to evaluate the correctness of the data? One approach to do this is called Clearn-
ing [33]. In this paper, we present a unified approach of the interaction between
the data and a neural network (see also [38]). It includes a new symmetric view
on the optimization algorithms, here learning and cleaning, and their control by
parameter and data noise.

17.6.2 Learning Reviewed

We are especially interested in using the output of a neural network y(x,w),
given the input pattern, x, and the weight vector, w, as a forecast of financial
time series. In the context of neural networks learning normally means the min-
imization of an error function E by changing the weight vector w in order to
achieve good generalization performance. Again, we assume that the error func-
tion can be written as a sum of individual terms over all T training patterns,
E = 1

T

∑T
t=1Et. The often used sum-of-square error can be derived from the

maximum-likelihood principle and a Gaussian noise model:

Et =
1

2

(
y(x,w) − ydt

)2
, (17.30)

with ydt as the given target pattern. If the error function is a nonlinear function
of the parameters, learning has to be done iteratively by a search through the
weight space, changing the weights from step τ to τ + 1 according to:

w(τ+1) = w(τ) +Δw(τ). (17.31)

There are several algorithms for choosing the weight incrementΔw(τ), the easiest
being gradient descent. After each presentation of an input pattern, the gradient
gt := ∇Et|w of the error function with respect to the weights is computed. In
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the batch version of gradient descent the increments are based on all training
patterns

Δw(τ) = −ηg = −η 1
T

T∑

t=1

gt, (17.32)

whereas the pattern-by-pattern version changes the weights after each presenta-
tion of a pattern xt (often randomly chosen from the training set):

Δw(τ) = −ηgt. (17.33)

The learning rate η is typically held constant or follows an annealing procedure
during training to assure convergence.

Our experiments have shown that small batches are most useful, especially
in combination with Vario-Eta, a stochastic approximation of a Quasi-Newton
method [9]:

Δw(τ) = − η√
1
T

∑
(gt − g)2

· 1
N

N∑

t=1

gt, (17.34)

with N ≤ 20.
Let us assume, that the error function of a specific problem is characterized

by a minimum in a narrow valley whose boundaries are parallel to the axes of
the weight space. For the two dimensional case, such a situation is shown in
fig. 17.15.

w2

w1

Fig. 17.15. Vario-Eta, a stochastic approximation of a Quasi-Newton method

A gradient approach would follow a “zigzagging” track and would approx-
imate the minimum very slowly. With Vario-Eta, the zigzagging along w2 is
damped and the drift along w1 is accelerated. This behavior is similar to the
weight trajectories classical Newton methods show in such a situation. The ac-
tual implementation uses stochastic approximations to compute the standard
deviation.
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The use of the standard deviation instead of the variance in Vario-Eta means
an additional advantage in training large networks. Passing a long sequence of
layers in a neural network, the error signals contain less and less information.
The normalization in eq. 17.34 rescales the learning information for every weight.
If one designed Vario-Eta as close as possible to second order methods, it would
be appropriate to use the variance instead the standard deviation in the denom-
inator, but then we would also lose the scaling property. In section 17.6.3, we
will provide a further advantage of using the standard deviation.

Learning pattern-by-pattern or with small batches can be viewed as a stochas-
tic search process because we can write the weight increments as:

Δw(τ) = −η
[
g +

(
1

N

N∑

t=1

gt − g
)]
. (17.35)

These increments consist of the terms g with a drift to a local minimum and of
noise terms ( 1

N

∑N
t=1 gt − g) disturbing this drift.

17.6.3 Parameter Noise as an Implicit Penalty Function

Consider the Taylor expansion of E(w) around some point w in the weight space

E(w +Δw) = E(w) +
∑

i

∂E

∂wi
Δwi +

1

2

∑

i,j

∂2E

∂wi∂wj
ΔwiΔwj + . . . . (17.36)

Assume a given sequence of T disturbance vectors Δwt, whose elements are
uncorrelated over t with zero mean and variance (row-)vector var(Δwi). The
expected value 〈E(w)〉 can then be approximated by

〈E(w)〉 ≈ 1

T

∑

t

E(w +Δwt) = E(w) +
1

2

∑

i

var(Δwi)
∂2E

∂w2
i

(17.37)

assuming that the first and second derivatives of E are stable if we are close to
a local minimum. In eq. 17.37, noise on the weights acts implicitly as a penalty
term to the error function given by the second derivatives ∂2E

∂w2
i
. The noise vari-

ances var(Δwi) operate as penalty parameters. As a consequence, flat minima
solutions which may be important for achieving good generalization performance
are favored [13].

Learning pattern-by-pattern introduces automatically such noise in the train-
ing procedure i.e., Δwt = −η · gt. Close to convergence, we can assume that gt
is i.i.d. with zero mean and variance vector var(gi) so that the expected value
can be approximated by

〈E(w)〉 ≈ E(w) + η2

2

∑

i

var(gi)
∂2E

∂w2
i

. (17.38)
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This type of learning introduces a local penalty parameter var(gi), characterizing
the stability of the weights w = [wi]i=1,...,k. In a local minimum the sum of
gradients for the weight wi is

∑
git = 0 whereas the variance var(gi) may be

large. In this case the solution is very sensitive against resampling of the data
and therefore unstable. To improve generalization the curvature of the error
function around such weights with high variance should be strongly penalized.
This is automatically done by pattern-by-pattern learning.

The noise effects due to Vario-Eta learning Δwt(i) = − η√
σ2
i

· gti leads to an

expected value

〈E(w)〉 ≈ E(w) + η2

2

∑

i

∂2E

∂w2
i

. (17.39)

By canceling the term var(gi) in eq. 17.38, Vario-Eta achieves a simplified uni-
form penalty parameter, which depends only on the learning rate η. Whereas
pattern-by-pattern learning is a slow algorithm with a locally adjusted penalty
control, Vario-Eta is fast only at the cost of a simplified uniform penalty term.

local learning rate (Vario-Eta) → global penalty

global learning rate (pattern by pattern) → local penalty

Following these thoughts, we will now show that typical Newton methods
should not be used in stochastic learning. Let us assume that we are close to a
local minimum and that the Hessian H of the error function is not significantly
changing anymore. On this supposition, the implied noise would be of the form
Δwt = ηH

−1gt. Because of the stable Hessian, the mean of the noise is zero so
that the expected error function becomes

〈E(w)〉 ≈ E(w) + η2

2

∑

i

var(gi)
(
∂2E

∂w2
i

)−1

. (17.40)

In this case, we have again a local control of the penalty parameter through the
variance of the gradients var(gi), like in the pattern by pattern learning. But
now, we are penalizing weights at points in the weight space where the inverse
of the curvature is large. This means, we penalize flat minima solutions, which
counters our goal of searching for stable solutions.

Typically Newton methods are used as cumulative learning methods so that
the previous arguments do not apply. Therefore, we conclude, that second order
methods should not be used in stochastic search algorithms. To support global
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Table 17.1. Structure-Speed-Dilemma

learning structure speed

pattern by pattern + −
VarioEta − +

learning and to exploit the bias to flat minima solution of such algorithms, we
only use pattern-by-pattern learning or Vario-Eta in the following.

We summarize this section by giving some advice on how to achieve flat
minima solutions (see also table 17.1):

– Train the network to a minimal training error solution with Vario-Eta, which
is a stochastic approximation of a Newton method and therefore fast.

– Add a final phase of pattern-by-pattern learning with a uniform learning rate
to fine tune the local curvature structure by the local penalty parameters
(eq. 17.38). For networks with many layers, this step should be omitted be-
cause the gradients will vanish due to the long signal flows. Only Vario-Eta
with its scaling capability can solve such optimization problems appropri-
ately.

– Use a learning rate η as high as possible to keep the penalty effective. The
training error may vary a bit, but the inclusion of the implicit penalty is
more important.

We want to point out that the decision of which learning algorithm to use not
only influences the speed and global behavior of the learning, but also, for fixed
learning rates, leads to different structural solutions. This structural consequence
has also to be taken into account if one analyzes and compares stochastic learning
algorithms.

17.6.4 Cleaning Reviewed

When training neural networks, one typically assumes that the input data is
noise-free and one forces the network to fit the data exactly. Even the control
procedures to minimize overfitting effects (i.e., pruning) consider the inputs as
exact values. However, this assumption is often violated, especially in the field
of financial analysis, and we are taught by the phenomenon of overfitting not to
follow the data exactly. Clearning, as a combination of cleaning and learning,
has been introduced in [33]. In the following, we focus on the cleaning aspects.
The motivation was to minimize overfitting effects by considering the input data
as being corrupted by noise whose distribution has to be learned also.
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Fig. 17.16. If the slope of the modeled function is large, then a small shift in the input
data decreases the output error dramatically

The cleaning error function for the pattern t is given by the sum of two terms
assuming same variance levels for input and output

Ey,x
t =

1

2

[(
yt − ydt

)2
+
(
xt − xdt

)2]
= Ey

t + Ex
t (17.41)

with xdt , ydt as the observed data point. In the pattern-by-pattern learning, the
network output y(xt, w) determines the weight adaptation as usual,

w(τ+1) = w(τ) − η ∂E
y

∂w
. (17.42)

We also must memorize correction vectors Δxt for all input data of the training
set in order to present the cleaned input xt to the network,

xt = x
d
t +Δxt . (17.43)

The update rule for the corrections, initialized with Δx(0)t = 0 can be derived
from typical adaptation sequences x(τ+1)

t = x
(τ)
t − η ∂Ey,x

∂x leading to

Δx
(τ+1)
t = (1− η)Δx(τ)t − η(yt − ydt ) ∂y∂x . (17.44)

This is a nonlinear version of the error-in-variables concept in statistics [27] (see
also fig. 17.16 for the two dimensional case).
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All of the necessary quantities, i. e. (yt − ydt )
∂y(x,w)

∂x are computed by typical
back-propagation algorithms anyway. We found that the algorithms work well if
the same learning rate η is used for both the weight and cleaning updates. For
regression, cleaning forces the acceptance of a small error in x, which can in turn
decrease the error in y dramatically, especially in the case of outliers. Successful
applications of cleaning are reported in [33] and [30].

Although the network may learn an optimal model for the cleaned input
data, there is no easy way to work with cleaned data on the test set because for
this data we do not know the output target difference for computing eq. 17.44.
As a consequence, the model is evaluated on a test set with a different noise
characteristic compared to the training set. We will later propose a combination
of learning with noise and cleaning to work around this serious disadvantage.

17.6.5 Data Noise Reviewed

Artificial noise on the input data is often used during training because it creates
an infinite number of training examples and expands the data to empty parts of
the input space. As a result, the tendency of learning by heart may be limited
because smoother regression functions are produced.

Now, we consider again the Taylor expansion, this time applied to E(x) around
some point x in the input space. The expected value 〈E(x)〉 is approximated by

〈E(x)〉 ≈ 1

T

∑

t

E(x +Δxt) = E(x) +
1

2

∑

j

var(Δxj)
∂2E

∂x2j
(17.45)

where ∂2E
∂x2

j
are the diagonal elements of the Hessian Hxx of the error function

with respect to the inputs x. Again, in eq. 17.45, noise on the inputs acts implic-
itly as a penalty term to the error function with the noise variances var(Δxj)
operating as penalty parameters (compare eq. 17.37). Noise on the input im-
proves generalization behavior by favoring smooth models [3].

The noise levels can be set to a constant value, e. g. given by a priori knowl-
edge, or adaptive as described now. We will concentrate on a uniform or normal
noise distribution. Then, the adaptive noise level ξj is estimated for each input
j individually. Suppressing pattern indices, we define the average residual errors
ξj and ξ2j as:

uniform residual error: ξj =
1

T

∑

t

∣∣∣∣
∂Ey

∂xj

∣∣∣∣ , (17.46)

Gaussian residual error: ξ2j =
1

T

∑

t

(
∂Ey

∂xj

)2

. (17.47)
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Actual implementations use stochastic approximation, e. g. for the uniform resid-
ual error

ξ
(τ+1)
j = (1 − 1

T
)ξ

(τ)
j +

1

T

∣∣∣∣
∂Ey

∂xj

∣∣∣∣ . (17.48)

The different residual error levels can be interpreted as follows (table 17.2):
A small level ξj may indicate an unimportant input j or a perfect fit of the
network concerning this input j. In both cases, a small noise level is appropriate.
On the other hand, a high value of ξj for an input j indicates an important but
imperfectly fitted input. In this case high noise levels are advisable. High values of
ξj lead to a stiffer regression model and may therefore increase the generalization
performance of the network. Therefore, we use ξj or ξ2j as parameter to control
the level of noise for input j.

Table 17.2. The interpretation of different levels of the residual errors ξ

observation of
the residual
error

interpretation
advice for the
noise control

ξ small
perfect fit

or
unimportant input

use low noise

ξ large
imperfect fit

but
important input

use high noise

17.6.6 Cleaning with Noise

Typically, training with noisy inputs involves taking a data point and adding
a random variable drawn from a fixed or adaptive distribution. This new data
point xt is used as an input to the network. If we assume, that the data is
corrupted by outliers and other influences, it is preferable to add the noise term
to the cleaned input. For the case of Gaussian noise the resulting new input is:

xt = x
d
t +Δxt + ξφ, (17.49)

with φ drawn from the normal distribution. The cleaning of the data leads to a
corrected mean of the data and therefore to a more symmetric noise distribution,
which also covers the observed data xt.
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We propose a variant which allows more complicated and problem dependent
noise distributions:

xt = x
d
t +Δxt −Δxk, (17.50)

where k is a random number drawn from the indices of the memorized correc-
tion vectors [Δxt]t=1,...,T . By this, we exploit the distribution properties of the
correction vectors in order to generate a possibly asymmetric and/or dependent
noise distribution, which still covers xt = xdt if k = t.

One might wonder why we want to disturb the cleaned input xdt +Δxt with an
additional noisy term Δxk. The reason for this is that we want to benefit from
representing the whole input distribution to the network instead of only using
one particular realization. This approach supplies a solution to the cleaning
problem when switching from the training set to the test set as described in
section 17.6.4.

17.6.7 A Unifying Approach: The Separation of Structure and
Noise

In the previous sections we explained how the data can be separated into a
cleaned part and an unexplainable noisy part. Analogously, the neural network
is described as a time invariant structure (otherwise no forecasting is possible)
and a noisy part.

data → cleaned data + time invariant data noise

neural network → time invariant parameters + parameter noise

We propose using cleaning and adaptive noise to separate the data and using
learning and stochastic search to separate the structure of the neural network.

data ← cleaning (neural network) + adaptive noise (neural network)

neural network ← learning (data) + stochastic search (data)

The algorithms analyzing the data depend directly on the network whereas the
methods searching for structure are directly related to the data. It should be clear
that the model building process should combine both aspects in an alternating
or simultaneous manner. We normally use learning and cleaning simultaneously.
The interaction of the data analysis and network structure algorithms is a direct
embodiment of the the concept of the Observer-Observation Dilemma.
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The aim of the unified approach can be described, exemplary assuming here a
Gaussian noise model, as the minimization of the error due to both, the structure
and the data:

1

2T

T∑

t=1

[(
yt − ydt

)2
+
(
xt − xdt

)2]→ min
xt,w

(17.51)

Combining the algorithms and approximating the cumulative gradient g by g̃
using an exponential smoothing over patterns, we obtain

data

Δx
(τ+1)
t = (1− η)Δx(τ)t − η(yt − ydt ) ∂y∂x
xt = x

d
t + Δx

(τ)
t︸ ︷︷ ︸

cleaning

−Δx(τ)k︸ ︷︷ ︸
noise

structure

g̃(τ+1) = (1− α)g̃(τ) + α(yt − ydt ) ∂y
∂w

w(τ+1) = w(τ) − ηg̃(τ)︸ ︷︷ ︸
learning

− η(gt − g̃(τ))︸ ︷︷ ︸
noise

(17.52)

The cleaning of the data by the network computes an individual correction term
for each training pattern. The adaptive noise procedure according to eq. 17.50
generates a potentially asymmetric and dependent noise distribution which also
covers the observed data. The implied curvature penalty, whose strength depends
on the individual liability of the input variables, can improve the generalization
performance of the neural network.

The learning of the structure involves a search for time invariant parameters
characterized by 1

T

∑
gt = 0. The parameter noise supports this exploration as a

stochastic search to find better “global” minima. Additionally, the generalization
performance may be further improved by the implied curvature penalty depend-
ing on the local liability of the parameters. Note that, although the description
of the weight updates collapses to the simple form of eq. 17.33, we preferred the
formula above to emphasize the analogy between the mechanism which handles
the data and the structure.

In searching for an optimal combination of data and parameters, we have
needed to model in both. This is not an indication of our failure to build a perfect
model but rather it is an important element for controlling the interaction of data
and structure.
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17.7 Architectural Optimization

The initial network can only be a guess on the appropriate final architecture. One
way to handle this inadequacy is to use a growingnetwork.As apossibility in the op-
posite direction, pruning canbe applied to shrink the network.Fromour experience
the advantage of fast learning of growing networks is more than counterbalanced
by the better learning properties of large architectures. At least in the first learning
steps, large networks are not trapped as quickly in local minima. When applying
the pruning methods according the late stopping concept, which trains the weights
of the network until the error function converges (see section 17.8.1), the learning
procedure had a sufficient number of adaptation steps to adjust the broad network
structure. Another advantage of the pruning technique is the greater flexibility in
generating sparse and possibly irregular network architectures.

17.7.1 Node-Pruning

We evaluate the importance of input- or hidden nodes by using as a test value

testi = E(x1, . . . , xi = μ(xi), . . . , xn)− E(x1, . . . , xn) , (17.53)

with μ(xi) describing the mean value of the i-th input in the time series for the
training set. This test value is a measure of the increase of the error if we omit
one of the input series.

The creation of the bottleneck structure in the net internal preprocessing
(section 17.2) is best performed by applying this test for the hidden neurons in
the bottleneck on the training set. Thereby the disturbance of the learning is
reduced to the minimum. In one of the steps of the training procedure (section
17.8) we will show that the pruning of the input neurons should be done on the
validation set to improve the time stability of the forecasting.

In addition to the deletion of nodes the ranking of the inputs can give us a
deeper insight into the task (which inputs are the most relevant and so on).

17.7.2 Weight-Pruning

The neural network topology represents only a hypothesis of the true underly-
ing class of functions. Due to possible mis-specification, we may have defects of
the parameter noise distribution. Pruning algorithms not only limit the mem-
ory of the network, but they also appear to be useful for correcting the noise
distribution in different ways.

Stochastic-Pruning

Stochastic-Pruning [8] is basically a t-test on the weights w,

testw =
|w + g|√

1
T

∑
(gt − g)2

, (17.54)
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with g = 1
T

∑
t gt. Weights with low testw values constitute candidates for prun-

ing. From the viewpoint of our approach, this pruning algorithm is equivalent
to the cancellation of weights with low liability as measured by the size of the
weight divided by the standard deviation of its fluctuations. By this, we get a
stabilization of the learning against resampling of the training data.

This easy to compute method worked well in combination with the early
stopping concept in contrast to insufficient results with the late stopping concept.
For early stopping Stochastic-Pruning acts like a t-test, whereas for late stopping
the gradients of larger weights do not fluctuate enough to give useful test values.
Thus, the pruning procedure includes an artificial bias to nonlinear models.
Furthermore, Stochastic-Pruning is also able to revive already pruned weights.

Early-Brain-Damage

A further weight pruning method is EBD, Early-Brain-Damage [31], which is
based on the often cited OBD pruning method [15]. In contrast to OBD, EBD
allows its application before the training has reached a local minimum.

For every weight, EBD computes as a test value an approximation of the
difference between the error function for w = 0 versus the value of the error
function for the best situation this weight can have

testw = E(0)− E(wmin) = −gw +
1

2
w′Hw +

1

2
gH−1g′ . (17.55)

The above approximation is motivated by a Taylor expansion of the error func-
tion. From

E(w̃) = E(w) + g(w̃ − w) + 1

2
(w̃ − w)′H(w̃ − w) (17.56)

we get

E(0) = E(w)− gw +
1

2
w′Hw (17.57)

and as a solution to the minimum problem E(w̃)→ min we have

wmin = w −H−1g′ together with E(wmin) = E(w)−
1

2
gH−1g′ . (17.58)

The difference of these two error values is the proposed EBD test. The Hessian
H in this approach is computed in the same way as in the original OBD calculus
[15].

One of the advantages of EBD over OBD is the possibility of performing
the testing while being slightly away from a local minimum. In our training
procedure we propose using noise even in the final part of learning so that we
are only near a local minimum. Furthermore, EBD is also able to revive already
pruned weights.

Similar to Stochastic Pruning, EBD favors weights with a low rate of fluc-
tuations. If a weight is pushed around by a high noise, the implicit curvature
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Fig. 17.17. EBD versus ODB weight pruning

penalty would favor a flat minimum around this weight leading to its elimination
by EBD.

Our practical experience shows that EBD pruning allows the creation of ex-
tremely sparse networks. We had examples where we could prune an initial
network with 3000 weights down to a structure with around 50 weights. The
first iterations of EBD pruning would typically give no improvement in general-
ization. This is due to the fact that EBD is testing the importance of a weight
regarding the error function, i. e. the same information which is used by the
backpropagation algorithm. To say it in another way: EBD cancels out only
weights which are not disturbing the learning. Only at the end of the training
procedure does the network have to give up a part of the coded structure which
leads to an improvement in generalization.

Inverse-Kurtosis

A third pruning method we want to discuss is a method which we call Inverse-
Kurtosis. The motivation follows an analysis of the following examples of possible
distributions of gradient impulses forcing a weight shown in fig. 17.18.

If the network is trained to a local minimum the mean of all gradients by def-
inition is equal to zero. Nevertheless the distribution of the gradients may differ.
Now we have to analyze the difference of a peaked or very broad distribution
versus a normal distribution. It is our understanding that the peaked distribu-
tion indicates a weight which reacts only to a small number of training patterns.
A broader distribution, on the other hand, is a sign that many training patterns
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Fig. 17.18. Possible distributions of the gradients gt, if weights are fixed

focus on the optimization of this weight. In other words, a weight with a peaked
distribution has learned by heart special events of the time series but it has not
modeled a general underlying structure of the data. Therefore, Inverse-Kurtosis
pruning harmonizes well with our network architecture which can encapsulate
local structures with its squared layer. Furthermore, a weight with a very broad
distribution of its gradients is pushed around by random events because it re-
acts to almost every pattern with a similar strength. A straight forward way to
distinguish between the above distributions is based on the kurtosis to measure
the difference to a normal distribution:

distancew =

⎛

⎜⎝
1
T

∑T
t=1(gt − g)4(

1
T

∑T
t=1(gt − g)2

)2 − 3

⎞

⎟⎠

2

. (17.59)

To rank importance of the network weights based on this difference to a normal
distribution we define the test values as

testw =
1

ε+ |distancew|
, (17.60)

with the small term ε ≈ 0.001 to avoid numerical problems.
Similar to the previously mentioned pruning techniques we have now large

test values for weights we do not want to eliminate. Note that in this test, we
have neglected the size of the gradients and only taken into account the form
of the distribution. The weights themselves are not a part of the evaluation,
and we have not observed that this method has much effect on the distribution
of the weight sizes found by the learning. In contrast, Stochastic Pruning and
EBD have a tendency to prune out small weights because they explicitly refer
to the size of the weights. Basically, Inverse-Kurtosis computes low test values
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(i. e. probable pruning candidates) for weights which are encapsulating only local
artifacts or random events in the data instead of modeling a general structure.

In our experience we found that this technique can give a strong improvement
of generalization in the first several iterations of pruning.

Instability-Pruning

The local consequence of our learning until the minimal training error is that
the cumulative gradient g for every weight is zero on the training set,

g =
1

T

∑

t∈T

gt = 0 . (17.61)

If this condition was valid for the validation set our model would be perfectly
stable:

gV =
1

V

∑

t∈V

gt = 0 . (17.62)

Since gV typically is different from zero we have to check if the measured dif-
ference is significant enough to indicate instability. In the language of statistics
this is a two sample test for the equality of the mean of two distributions. The
following test value (Welch-test) measures this difference:

distancew =
gV − g√
σ2
V

V +
σ2
T

T

, (17.63)

which is approximately normally distributed with zero mean and unit variance.
As a pruning test value we define

testw =
1

ε+ |distancew|
. (17.64)

This test value can be used to construct a ranking of the weights in the following
way: Train the network until weights are near a local optimum and compute the
test values. Then, take out 5% of the most unstable weights as measured by
this test criterion and redo the learning step. Eliminating more than 5% of the
weights is not recommandable because Instability-Pruning is not referring to the
cost function used for learning, and thus may have a large impact on the error.
This test of stability allows the definition of an interesting criterion when to
stop the model building process. After pruning weights until a given stability
level, we can check if the model is still approximating well enough. This final
stopping criterion is possible due to the asymptotic normal distribution of the
test. For example, if we define weights with |distancew| < 1 as stable, then we
prune weights with testw < 1.

One may argue that the usage of the validation set in this approach is an
implicit modeling of the validation set and therefore the validation set allows no
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error estimation on the generalization set. On the other hand, the typical need
for an validation set is the estimation of a final stopping point in the pruning
procedure. We have tried an alternative approach: Instead of using the validation
set in terms of gV and σ2V in our comparison let us take a weighted measurement
of the training set such that most recent data is given more importance:

g̃ =
2

T (T + 1)

∑

t∈T

tgt , (17.65)

σ̃2 =
2

T (T + 1)

∑

t∈T

t(gt − g̃)2 . (17.66)

Checking the stability over the training set by substituting gv resp. σ2V with
eq. 17.65 resp. 17.66 in eq. 17.63 avoids using the validation set. In our first
experiences we observed that this version works as well as the previous one
although the evaluation still needs more testing.

In comparison to EBD, which eliminates weights with only a small effect on
the error function, Instability-Pruning introduces a new feature in the process
of model building: stability over time. Additional information about when to
choose which pruning method will be given in the following section 17.8.4.

17.8 The Training Procedure

The authors believe that complex real world problems should be attacked by a
combination of various methods in order to handle the different types of difficul-
ties which may arise during the optimization of neural networks. Thus, the aim
of this section is to link all the previously described features to a complete and
consistent training procedure.

17.8.1 Training Paradigms: Early vs. Late Stopping

One of the most well known techniques for attacking the overfitting problem
is the early stopping procedure. In this procedure, we start the learning with
a network initialized by small weights. In its most simple version one uses a
validation set to estimate the beginning of overfitting, at which point the network
learning is stopped. A more sophisticated variant of the procedure is to learn
up to the start of overfitting and then to prune a part of the network structure,
by say 10% of the weights. Then, one restarts the smaller network and repeats
the steps. This sequence, which is schematically shown in in fig. 17.19, has to be
iterated until a stable structure with no signs of overfitting is achieved.

In principle this procedure may work and it will generate a model with good
generalization performance, but in many cases it will fail to do so, as we have
observed in our experiments during the last several years. Difficulties with early
stopping arise because the stopping point turns up after a few learning epochs
through the training data. The authors have worked on examples where the
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Fig. 17.19. Early stopping: After initialization with small weights the network is
trained until the error on the validation set starts to increase (search path 1 to stopping
point 1). Then, some weights are pruned, the remaining weights are reinitialized and
training starts again until stopping point 2. This procedure has to be iterated until a
stable structure with no signs of overfitting is achieved.

stopping point appeared as early as after the second epoch of learning. In this
case, the solution is restricted to linear models, since the network has not been
offered any chance to learn a complex nonlinearity from the data. A decreased
learning rate does not mean a reduction of this bias, because it only slows down
the movement away from the linear models. Using initial weights with larger
values is also problematic for two reasons. The random initial (probably incor-
rect) specification of the network may lead to decreasing error curves due to
shrinking weight values, but after a while overfitting will probably start again.
Another important critique of this initialization is the intrinsic dependency of
the solution on the starting point.

The same argument is true for some of the penalty term approaches for reg-
ularizing the networks. Weight decay, for example, is a regularizer with a bias
towards linear models. Most of the other penalty functions (like data indepen-
dent smoothness) set additional constraints on the model building process. These
restrictions are not necessarily related to the task to be solved (see [16] for
smoothing regularizers for neural networks with sigmoidal activation function in
the hidden layer).

Following these thoughts, in this section we present a sequence of steps that
follow a late stopping concept. We start with small weights to lower the influence
of the random initialization. Then, we learn until the minimal error on the train-
ing data is achieved. Typically, the network shows clear overfitting at this point
but we can be sure that the maximum nonlinearity which can be represented
by the chosen network, has been learned from the data. At this point we must
describe the way back to a solution with good generalization performance, as
indicated in fig. 17.20.
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Fig. 17.20. Late stopping: After initialization with small weights the network is trained
until the minimal training error. Subsequent optimization of the network structure by
pruning increases generalization performance. Then, the network is trained again until
the minimal training error.

Basically the two parts of the training, learning to the minimal training er-
ror and extracting an appropriate generalizing model, can be understood as a
generation of a structural hypothesis followed by a falsification of the generated
structure. These steps will be explained in detail in the next paragraphs.

17.8.2 Setup Steps

Before starting the learning process we have to specify the network architecture.
Let us assume that our aim is the identification of a dynamical system. Then, we
propose using the network architecture (fig. 17.8) of section 17.3, may be with
the CDEN extension (fig. 17.14) of section 17.5 in order to additionally estimate
error bars.

A further setup decision is the separation of the data set into a training
set, a validation set and a generalization set. Possible separations are shown in
fig. 17.21.

Considering forecasting models of time series (at least in economic applica-
tions), the sets should be explicitly separated in the order indicated in fig. 17.21.1.
Otherwise there is no chance to test the model stability over time. If we ran-
domly took out the validation set of the training set (fig. 17.21.2), we would
have no chance to test this stability because the validation patterns are always
embedded in training patterns.

In the proposed sequence we do not use the most recent data before the test
set in the learning. As a consequence, one might tend to choose the validation
patterns from the oldest part while using the most recent data in the training
set (fig. 17.21.3). This leads to a better basis for the generation of our structural
hypothesis by learning. Basically, the pruning methods are a falsification of the
generated structure. Using the separation in fig. 17.21.3 with the validation set
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Fig. 17.21. Separation of the data

including the oldest data can make this falsification misleading. In a fast changing
world, model stability over time is an important performance characteristic of a
good network model. Thus, we prefer the separation in fig. 17.21.1.

The several preprocessed time series which serve as inputs have to be checked
for correlation because highly correlated inputs only serve to increase the amount
of numerical instability in our model. To avoid this, we can introduce a bottle-
neck substructure to perform a principle component analysis. For our typical
application with about 50 inputs, we use net internal preprocessing by the di-
agonal matrix. For models with a very large number of inputs (some hundreds)
the bottleneck approach may be superior.

If using the net internal preprocessing by the diagonal matrix, it is necessary
to check the pairwise correlation of the inputs. Following the common guideline
of using lots of chart indicators in financial modeling it is typical that many of
these indicators have a high correlation. Keeping them in the training set will
cause the solutions of different optimization runs to give us different answers
regarding the importance of the input factors.

Since we often start with a number of weights which is large relative to the
number of training patterns, we also propose using a small weight decay during
learning. The penalty parameter should be in the range of 10% of the learning
rate because we are not interested in reducing the number of effective parameters.
With this small value of the decay parameter, only those weights which simply
learn nothing are pulled to zero. By this, we still achieve the minimal training
error, but eliminate all the unnecessary weights which have an unpredictable
effect on the test set.

17.8.3 Learning: Generation of Structural Hypothesis

If confronted with a large data set, such as in the task of forecasting daily returns,
we propose training the weights with the VarioEta adaptation algorithm. As a
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stochastic approximation to a Newton method this is a fast learning technique.
Obeying the arguments about the implicit penalty of section 17.6 we should let
the VarioEta training be followed by a simple pattern by pattern learning with a
constant learning rate to achieve structurally correct learning. As mentioned, it is
valuable to hold the learning rate as high as possible to benefit from the implied
penalty term. However, if interested in monthly forecasting models, one may use
only the pattern-by-pattern learning because learning speed is not relevant due
to the small data set. On the other hand, the implied curvature penalty is more
important to generate good models (see section 17.6).

We propose to start the cleaning and the cleaning noise procedure of section
17.6 from the beginning. In this way, one can observe the following interesting
relationship and interaction between the stochastic learning and the cleaning
noise which improves the learning behavior. Since the initial noise variance is
set to zero, the noise to the input variables will start with a low level and will
then increase rapidly during the first learning epochs. After several epochs, when
the network has captured some of the structure in the data, the noise decays
in parallel with the residual input error of the network. As a consequence, in
the beginning of the training, the network can learn only the global structure
in the data. Later in the training process, more and more detailed features of
the data are extracted which leads simultaneously to lower cleaning noise levels
(fig. 17.22). Cleaning4 improves the learning process by sequencing the data
structure from global to increasingly specialized features. Furthermore, noise
improves the stochastic search in the weight space and therefore reduces the
problem of local minima.

training epochs
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Fig. 17.22. Due to the large noise level in the beginning of the training phase, the
network first learns global features. At later training steps, it is able to extract more
and more details.

Depending on the problem, we observed that the implicitly controlled noise
level can go down close to zero or it can converge to an intermediate level. We
finish the step of learning to a minimal training error when we observe a stable

4 Even in an early stopping concept Cleaning may improve the learning.
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behavior of the error function on the training and validation set simultaneously
with the stable behavior of the mean noise level for all inputs on the training
set. The final model of this step is a structural hypothesis about the dynamical
system we are analyzing.

17.8.4 Pruning: Falsification of the generated Structure

Next, we have to test the stability of our model over time. Especially in economic
modeling, it is not evident that the structure of the capital markets we are
extracting from the seventies or eighties are still valid now. We can check this
stability by testing the network behavior on the validation set which follows the
training set on the time axis.

By using input pruning on the validation set (see section 17.7), we are able to
identify input series that may be of high relevance in the training set but may
also have no or even a counterproductive effect on the validation data. Note
that, the pruning of non-relevant time series is not possible before achieving the
minimal training error because there exists no well defined relationship between
all the inputs and the target variables before. On the other hand, unimportant
or inconsistent inputs with respect to the validation set should not be eliminated
later in order to facilitate the construction of models with high generalization
performance by subsequent learning.

An alternative way to check the stability of the model is to perform weight
pruning on the validation set using the Instability-Pruning algorithm. If the data
set is very large, weight pruning has a significant advantage because only one
pass through the data set is necessary, in comparison to n passes to get the
ranking of the input pruning with n as the number of inputs. This becomes very
important in the field of data-mining where we have to deal with hundreds or
thousands of megabytes of training data.

Each time after pruning of weights or inputs, the network is trained again
to achieve a stable behavior of the error curves on the training / validation set
(fig. 17.24) and of the noise level (fig. 17.23). Here, by stable behavior of the
error curve we mean that there is no significant downward trend (i. e. improving
of the model) or upward trend (i. e. restructuring of the model). In the diagram
shown in fig. 17.25, these stop conditions are marked with (∗).

To eliminate local artifacts in the network structure at this stage, we can
include some iterations of Inverse-Kurtosis pruning and subsequent retraining.
The process of iteratively pruning and training ends if a drastic decay, i. e. 5%,
of this criterion is no longer observable. For several iterations of training and
pruning, this strategy leads to a rapidly decreasing error on the validation set.

Due to the fact that the shrinking number of network parameters leads to
increasing gradients, pattern by pattern learning with a constant learning rate
is most useful because the implicit local curvature penalty becomes increasingly
important.



412 R. Neuneier and H.G. Zimmermann

One may criticize the proposed pruning policy because it is indeed
an optimization on the validation set. Thus, the error on the validation set
does not represent a good estimation of the generalization error anymore. We
believe that there is no way to omit this pruning step since the test of the
time stability is important for achieving models with high generalization
performance.

In the subsequent part of the network learning, we use “Occam’s Razor” by
weight pruning based on test values computed on the training set. This may
be EBD or Instability-Pruning (see section 17.7.2). The performance of both
methods based on hundreds of experiments is comparable. After pruning about
10% resp. 5% of the active weights, we train again until stable error curves and
noise levels are obtained.

On can combine these pruning methods by first eliminating weights with
Instability-Pruning and generating very sparse networks using EBD afterwards.
Instability-Pruning favors model stability over time whereas EBD allows sparse
models which still approximate well.

If using the eleven layer architecture of fig. 17.8, weight pruning should only
be applied to the weights connecting the preprocessing or square layer to the
hidden layers for two reasons. First, these connectors represent the majority of
the weights in the neural network. Second, it is important to apply the pruning
techniques only to such weights which have the same distance to the output
neurons. Thus, the test values of the gradient based pruning algorithms are
comparable which leads to a reliable ranking of the weights.5
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Fig. 17.23. Interaction between pruning and the adaptive noise level

5 If one decides not to use the eleven layer architecture but a typical neural network
extended by random targets, one has to consider the following consequences for
input and weight pruning. The test values have to be computed only with respect
to the correct targets. By this, weights which are modeling random targets will
loose their importance. EBD pruning works very well in identifying such flat minima
weights (section 17.7.2), and thus, is our favorite pruning method for such a modeling
approach.
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There is an interesting interaction between the pruning and the adaptive noise
procedure (see fig. 17.23). At each pruning step, we eliminate some parameters
which have memorized some of the structure in the data. Thereby, the residual
input errors will increase, which leads to increased noise levels on the inputs.
Consequently, after each pruning step the learning has to focus on more global
structures of the data. Owing to the fact that by pruning the network memory
gradually decreases, the network cannot rely on any particular features of the
data but rather is forced to concentrate more and more on the general underlying
structure. Interestingly, this part of the procedure can be viewed as being the
opposite of learning until the minimal training error. There the network is forced
by the cleaning noise to learn the global structures first before trying to extract
specific characteristics from the data.

17.8.5 Final Stopping Criteria of the Training

The last question we have to answer is the definition of the final stopping point.
Obviously, after many weight pruning and training iterations, the error will
increase for the training and the validation set. Thus, the minimal error on the
validation set should give us an estimate of when to stop the optimization. In
practice, the error curves during learning are not smooth and monotonic curves
with only one minimum. The most simple advice is to prune until all weights
are eliminated while keeping a trace to store the best intermediate solution
on the validation set. Fig. 17.24 displays the error behavior in the different
phases of the training procedure assuming the worst situation from the viewpoint
of an early stopping method due to the immediately increasing error on the
validation set.

Instability-Pruning offers an alternative definition of a final stopping point. If
we substitute EBD by this pruning method for applying Occam’s Razor, each
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Fig. 17.24. The error behavior during the training. Region (1) describes the way to
a minimal training error, (2) is the typical behavior during the input pruning on the
validation set and (3) shows the consequence of Occam’s razor in form of the pruning.
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pruning / retraining iteration will increase the stability of the model because
Instability-Pruning deletes unstable weights (see section 17.7.2).

17.8.6 Diagram of the Training Procedure

The following diagram in fig. 17.25 shows the training steps combined into a
unified training procedure.

Initialization: Activate a small weight decay
and the cleaning / cleaning noise procedure

Data preprocessing and separation
in training, validation and test setSelection of a network architecture

Structural correct learning using pattern by pattern learning to stop conditions *.

Adjust the learning rate such that the implied curvature penalty function is active.

Activate a trace of the weights on the validation set.

Fast learning by VarioEta to stop conditions *

Falsify the time stability of the model by input pruning (one input at each time step) or

Retraining after each pruning using pattern by pattern learning to stop conditions *.

Instability Pruning (5% of the weights) as long as the validation set error drops at least for 5%.

Delete encapsulated artefacts in the network structure by Inverse-Kurtosis pruning.

3.7 , 5

8.3

Define the best intermediate solution on the validation set (stored in the trace) as the resulting model.

Retraining after each pruning using pattern by pattern learning to stop conditions *.

Eliminate 10% (5%) of the effective weights per iteration.

Occam’s Razor: Decrease the memory by weight pruning EBD (or Instability-Pruning) on the training set.

8.5

6.3

2, 8.2

6.2, 8.3

7.2

8.4

7.1, 7.2

7.2

8.4

Fig. 17.25. The diagram of the training procedure. The marks (∗) indicates the stop-
ping points (section 17.8.3 and 17.8.4). Box numbers correspond to sections.
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17.9 Experiments

In a research project sponsored by the European Community we are using the
proposed approach to estimate the returns of 3 financial markets for each of
the G7 countries [12]. These estimations will be subsequently used in an asset
allocation scheme to create a Markowitz-optimal portfolio. In this paper, we only
report the results of the estimation of the German bond rate, which is one of
the more difficult tasks due to the reunification of Germany and GDR. Here, we
have to predict the return of the bond rate 6 months ahead. The inputs consist
of 39 variables obtained by preprocessing 16 relevant financial time series6. The
training set covers the time from April 1974 to December 1991, the validation set
from January 1992 to May 1994. The results are collected using the out-of-sample
data which runs from June 1994 to May 1996. To demonstrate the behavior of the
algorithms, we compare our approach with a standard neural network with one
hidden layer (20 neurons, tanh transfer function) and one linear output (eq. 17.30
as error function). First, we trained the neural network until convergence with
pattern-by-pattern learning using a small batch size of 20 patterns. We refer
to this network as a classical approach. Then, we trained the 11-layer network
(fig. 17.8) using the unified approach as described in section 4.1. Due to small
data sets we used pattern-by-pattern learning without VarioEta. The data were
manipulated by the cleaning and noise method of eq. 17.50. We compare the
resulting predictions of the networks on the basis of three performance measures
(see tab. 17.3). First, the hit rate counts how often the sign of the return of
the bond has been correctly predicted. As for the other measures, the step from
the forecast model to a trading system is here kept very simple. If the output
is positive, we buy shares of the bond, otherwise we sell them. The potential
realized is the ratio of the return to the maximum possible return over the
training (test) set. The annualized return is the average yearly profit of the
trading systems. Our approach turns out to be superior. For example, we almost
doubled the annualized return from 4.5% to 8.5% on the test set. In fig. 17.26,
we compare the accumulated return of the two approaches on the test set. The
unified approach not only shows a higher profitability, but also has by far a less
maximal draw down.

Table 17.3. Comparison of the hit rate, the realized potential and the annualized
return of the two networks for the training (test) data

network hit rate realized potential annualized return

our approach 96% (81%) 100% (75%) 11.22% (8.5%)

classical approach 93% (66%) 96% (44%) 10.08% (4.5%)

6 At the moment, we are not allowed to be more specific on the actual data we used.
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Fig. 17.26. Comparison of the accumulated profit&loss curve of the two approaches

17.10 Conclusion

A typical regression analysis by neural networks begins with the statement:
“In principal a neural network can model everything”. If the data is not very
reliable due to noise or missing factors, learning is only one part of the model
building procedure. Often, task-independent regularization is used as weapon
to reduce the uncertainty introduced by the data. More generally, the model
building process demands more information (prior knowledge) about the specific
task.

We have shown that there are a large number of techniques for including ad-
ditional constraints which depend on the problem. Consequently, the resulting
model is not only based on the training data but also on the additional con-
straints and also on the exact steps of the training procedure. From a Bayesian
viewpoint, this can be described as an integration of priors in the model build-
ing process. Thus, this article can also be interpreted as a discussion of valuable
priors and of how to combine them in order to achieve a maximal synergy.

The authors believe that the additional features are an outstanding advantage
of neural networks and will lead to more robust and successful models. This
paper gives an overview about some of the features we experienced as useful in
our applications.

Finally, the unified training procedure is a recipe for building a model with
neural networks by way of a relatively simple sequence of steps. An important
aspect of this paper has been the study of the interactions between the different
techniques. The described algorithms are integrated in the Simulation Environ-
ment for Neural Networks, SENN, a product of Siemens AG. More information
can be found on the web page http://www.senn.sni.de.
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Big Learning and Deep Neural Networks

Preface

More data and compute resources opens the way to “big learning”, that is, scaling
up machine learning to large data sets and complex problems. In order to solve
these new problems, we need to identify the complex dependencies that interre-
late inputs and outputs [1]. Achieving this goal requires powerful algorithms in
terms of both representational power and ability to absorb and distill information
from large data flows. More and more it becomes apparent that neural networks
provide an excellent toolset to scale learning. This holds true for simple linear
systems as well as today’s grand challenges where the underlying application
problem requires high nonlinearity and complex structured representations.

The following four chapters introduce the basic toolbox for solving these
complex learning problems. They include first and second-order optimization
methods, the best practice of training neural networks and an introduction to
Torch7, a neural network library for implementing large-scale learning problems.

A first challenge is to feed the model with enough data in order to prop-
erly identify the rich set of dependencies. Chapter 18 [2] presents the stochastic
gradient descent algorithm (learning one example at the time), showing that it
can minimize the objective function at a rate that is under certain conditions
asymptotically optimal.

Neural networks are a useful framework to carry out such optimization.
The correspondence principle for neural networks that will be detailed later in
Chapter 28 [7] states that we can associate to an equation or an optimization
problem, a neural network architecture that reduces the learning problem to an
exchange of local signals between neighboring units of the network. Therefore,
the tractability of the optimization problem is much dependent on the neural
network architecture and its multiple hyperparameters [3]. These hyperparame-
ters and the methods to choose them are dissected in Chapter 19 [5].

In some cases, the multiple hyperparameters of the neural network are insuf-
ficient to produce a well-conditioned optimization problem. Difficult optimiza-
tion problems include, for example, recurrent neural networks or deep neural
networks, both involving long-range dependencies. Exploiting second order in-
formation (i.e. the second derivatives of the objective function) can lead to faster
convergence. Second-order methods are much more sensitive to noise than first
order methods and require carefully tuned optimization parameters in order to
achieve a good speed-stability tradeoff. Second-order methods for deep and re-
current neural networks are discussed in much depth in Chapter 20 [6].
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Finally, algorithms must be translated into code that can be run by the
machine. Chapter 21 [4] presents Torch7, an efficient and easy to use software
for building and training neural networks. The software provides a large number
of neural network primitives and is highly modular so that it can be applied to a
wide range of problems including computer vision, natural language processing,
speech recognition and many more.
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Abstract. Chapter 1 strongly advocates the stochastic back-propagation
method to train neural networks. This is in fact an instance of a
more general technique called stochastic gradient descent (SGD). This
chapter provides background material, explains why SGD is a good
learning algorithm when the training set is large, and provides useful
recommendations.

18.1 Introduction

Chapter 1 strongly advocates the stochastic back-propagation method to train
neural networks. This is in fact an instance of a more general technique called
stochastic gradient descent (SGD). This chapter provides background material,
explains why SGD is a good learning algorithm when the training set is large,
and provides useful recommendations.

18.2 What Is Stochastic Gradient Descent?

Let us first consider a simple supervised learning setup. Each example z is a pair
(x, y) composed of an arbitrary input x and a scalar output y. We consider a loss
function �(ŷ, y) that measures the cost of predicting ŷ when the actual answer is
y, and we choose a family F of functions fw(x) parametrized by a weight vector
w. We seek the function f ∈ F that minimizes the loss Q(z, w) = �(fw(x), y)
averaged on the examples. Although we would like to average over the unknown
distribution dP (z) that embodies the Laws of Nature, we must often settle for
computing the average on a sample z1 . . . zn.

E(f) =

∫
�(f(x), y) dP (z) En(f) =

1

n

n∑

i=1

�(f(xi), yi) (18.1)

The empirical risk En(f) measures the training set performance. The expected
risk E(f) measures the generalization performance, that is, the expected
performance on future examples. The statistical learning theory [25] justifies
minimizing the empirical risk instead of the expected risk when the chosen family
F is sufficiently restrictive.
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18.2.1 Gradient Descent

It has often been proposed (e.g., [18]) to minimize the empirical risk En(fw)
using gradient descent (GD). Each iteration updates the weights w on the basis
of the gradient of En(fw) ,

wt+1 = wt − γ
1

n

n∑

i=1

∇w Q(zi, wt) , (18.2)

where γ is an adequately chosen learning rate. Under sufficient regularity
assumptions, when the initial estimate w0 is close enough to the optimum,
and when the learning rate γ is sufficiently small, this algorithm achieves linear
convergence [6], that is, − log ρ ∼ t, where ρ represents the residual error.1

Much better optimization algorithms can be designed by replacing the scalar
learning rate γ by a positive definite matrix Γt that approaches the inverse of
the Hessian of the cost at the optimum :

wt+1 = wt − Γt
1

n

n∑

i=1

∇w Q(zi, wt) . (18.3)

This second order gradient descent (2GD) is a variant of the well known Newton
algorithm. Under sufficiently optimistic regularity assumptions, and provided
that w0 is sufficiently close to the optimum, second order gradient descent
achieves quadratic convergence. When the cost is quadratic and the scaling
matrix Γ is exact, the algorithm reaches the optimum after a single iteration.
Otherwise, assuming sufficient smoothness, we have − log log ρ ∼ t.

18.2.2 Stochastic Gradient Descent

The stochastic gradient descent (SGD) algorithm is a drastic simplification.
Instead of computing the gradient of En(fw) exactly, each iteration estimates
this gradient on the basis of a single randomly picked example zt :

wt+1 = wt − γt∇wQ(zt, wt) . (18.4)

The stochastic process {wt, t=1, . . . } depends on the examples randomly picked
at each iteration. It is hoped that (18.4) behaves like its expectation (18.2)
despite the noise introduced by this simplified procedure.

Since the stochastic algorithm does not need to remember which examples
were visited during the previous iterations, it can process examples on the fly in
a deployed system. In such a situation, the stochastic gradient descent directly
optimizes the expected risk, since the examples are randomly drawn from the
ground truth distribution.
1 For mostly historical reasons, linear convergence means that the residual error

asymptotically decreases exponentially, and quadratic convergence denotes an even
faster asymptotic convergence. Both convergence rates are considerably faster than
the SGD convergence rates discussed in section 18.2.3.
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Table 18.1. Stochastic gradient algorithms for various learning systems

Loss Stochastic gradient algorithm

Adaline [26]
Qadaline =

1
2

(
y −w�Φ(x)

)2
Features Φ(x) ∈ R

d, Classes y = ±1
w← w + γt

(
yt − w�Φ(xt)

)
Φ(xt)

Perceptron [17]
Qperceptron = max{0,−y w�Φ(x)}
Features Φ(x) ∈ R

d, Classes y = ±1
w← w + γt

{
yt Φ(xt) if yt w�Φ(xt) ≤ 0
0 otherwise

K-Means [12]
Qkmeans = min

k

1
2
(z − wk)

2

Data z ∈ R
d

Centroids w1 . . . wk ∈ R
d

Counts n1 . . . nk ∈ N, initially 0

k∗ = argmink(zt −wk)
2

nk∗ ← nk∗ + 1
wk∗ ← wk∗ + 1

nk∗ (zt −wk∗)

(counts provide optimal learning rates!)

SVM [5]
Qsvm = λw2 +max{0, 1− y w�Φ(x)}
Features Φ(x) ∈ R

d, Classes y = ±1
Hyperparameter λ > 0

w← w − γt
{
λw if ytw�Φ(xt) > 1,
λw − yt Φ(xt) otherwise.

Lasso [23]
Qlasso = λ|w|1 + 1

2

(
y − w�Φ(x)

)2
w = (u1 − v1, . . . , ud − vd)
Features Φ(x) ∈ R

d, Classes y = ±1
Hyperparameter λ > 0

ui ←
[
ui − γt

(
λ− (yt − w�Φ(xt))Φi(xt)

)]
+

vi ←
[
vi − γt

(
λ+ (yt − w�Φ(xt))Φi(xt)

)]
+

with notation [x]+ = max{0, x}.

Table 18.1 illustrates stochastic gradient descent algorithms for a number
of classic machine learning schemes. The stochastic gradient descent for the
Perceptron, for the Adaline, and for k-Means match the algorithms proposed in
the original papers. The SVM and the Lasso were first described with traditional
optimization techniques. Both Qsvm and Qlasso include a regularization term
controlled by the hyper-parameter λ. The K-means algorithm converges to a
local minimum because Qkmeans is nonconvex. On the other hand, the proposed
update rule uses second order learning rates that ensure a fast convergence. The
proposed Lasso algorithm represents each weight as the difference of two positive
variables. Applying the stochastic gradient rule to these variables and enforcing
their positivity leads to sparser solutions.

18.2.3 The Convergence of Stochastic Gradient Descent

The convergence of stochastic gradient descent has been studied extensively
in the stochastic approximation literature. Convergence results usually require
decreasing learning rates satisfying the conditions

∑
t γ

2
t <∞ and

∑
t γt =∞.

The Robbins-Siegmund theorem [16] provides the means to establish almost sure
convergence under surprisingly mild conditions [3], including cases where the loss
function is non smooth.
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The convergence speed of stochastic gradient descent is in fact limited by
the noisy approximation of the true gradient. When the learning rates decrease
too slowly, the variance of the parameter estimate wt decreases equally slowly.
When the learning rates decrease too quickly, the expectation of the parameter
estimate wt takes a very long time to approach the optimum.

– When the Hessian matrix of the cost function at the optimum is strictly
positive definite, the best convergence speed is achieved using learning rates
γt ∼ t−1 (e.g. [14]). The expectation of the residual error then decreases with
similar speed, that is, E(ρ) ∼ t−1. These theoretical convergence rates are
frequently observed in practice.

– When we relax these regularity assumptions, the theory suggests slower
asymptotic convergence rates, typically like E(ρ) ∼ t−1/2 (e.g., [28]). In
practice, the convergence only slows down during the final stage of the
optimization process. This may not matter in practice because one often
stops the optimization before reaching this stage (see section 18.3.1.)

Second order stochastic gradient descent (2SGD) multiplies the gradients by a
positive definite matrix Γt approaching the inverse of the Hessian :

wt+1 = wt − γtΓt∇w Q(zt, wt) . (18.5)

Unfortunately, this modification does not reduce the stochastic noise and
therefore does not significantly improve the variance of wt. Although constants
are improved, the expectation of the residual error still decreases like t−1, that
is, E(ρ) ∼ t−1 at best, (e.g. [1], appendix).

Therefore, as an optimization algorithm, stochastic gradient descent is asymp-
totically much slower than a typical batch algorithm. However, this is not the
whole story. . .

18.3 When to Use Stochastic Gradient Descent?

During the last decade, the data sizes have grown faster than the speed
of processors. In this context, the capabilities of statistical machine learning
methods is limited by the computing time rather than the sample size. The
analysis presented in this section shows that stochastic gradient descent performs
very well in this context.

Use stochastic gradient descent
when training time is the bottleneck.

18.3.1 The Trade-Offs of Large Scale Learning

Let f∗ = argminf E(f) be the best possible prediction function. Since we
seek the prediction function from a parametrized family of functions F , let
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f∗F = argminf∈F E(f) be the best function in this family. Since we optimize
the empirical risk instead of the expected risk, let fn = argminf∈F En(f)
be the empirical optimum. Since this optimization can be costly, let us stop
the algorithm when it reaches a solution f̃n that minimizes the objective
function with a predefined accuracy En(f̃n) < En(fn) + ρ. The excess error
E = E

[
E(f̃n)− E(f∗)

]
can then be decomposed in three terms [2] :

E = E
[
E(f∗

F)− E(f∗)
]

︸ ︷︷ ︸
Eapp

+ E
[
E(fn)− E(f∗

F )
]

︸ ︷︷ ︸
Eest

+ E
[
E(f̃n)− E(fn)

]
︸ ︷︷ ︸

Eopt

. (18.6)

– The approximation error Eapp = E
[
E(f∗F )− E(f∗)

]
measures how closely

functions in F can approximate the optimal solution f∗. The approximation
error can be reduced by choosing a larger family of functions.

– The estimation error Eest = E
[
E(fn)− E(f∗F )

]
measures the effect of

minimizing the empirical risk En(f) instead of the expected risk E(f). The
estimation error can be reduced by choosing a smaller family of functions or
by increasing the size of the training set.

– The optimization error Eopt = E
[
E(f̃n)− E(fn)

]
measures the impact of the

approximate optimization on the expected risk. The optimization error can
be reduced by running the optimizer longer. The additional computing time
depends of course on the family of function and on the size of the training
set.

Given constraints on the maximal computation time Tmax and the maximal
training set size nmax, this decomposition outlines a trade-off involving the size
of the family of functions F , the optimization accuracy ρ, and the number of
examples n effectively processed by the optimization algorithm.

min
F ,ρ,n

E = Eapp + Eest + Eopt subject to
{

n ≤ nmax

T (F , ρ, n) ≤ Tmax
(18.7)

Two cases should be distinguished:

– Small-scale learning problems are first constrained by the maximal number
of examples. Since the computing time is not an issue, we can reduce the
optimization error Eopt to insignificant levels by choosing ρ arbitrarily small,
and we can minimize the estimation error Eest by choosing n = nmax. We
then recover the approximation-estimation trade-off that has been widely
studied in statistics and in learning theory.

– Large-scale learning problems are constrained by the maximal computing
time, usually because the supply of training examples is very large. Approx-
imate optimization can achieve better expected risk because more training
examples can be processed during the allowed time. The specifics depend on
the computational properties of the chosen optimization algorithm.
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18.3.2 Asymptotic Analysis of the Large-Scale Case

Solving (18.7) in the asymptotic regime amounts to ensuring that the terms of the
decomposition (18.6) decrease at similar rates. Since the asymptotic convergence
rate of the excess error (18.6) is the convergence rate of its slowest term, the
computational effort required to make a term decrease faster would be wasted.

For simplicity, we assume in this section that the Vapnik-Chervonenkis
dimensions of the families of functions F are bounded by a common constant. We
also assume that the optimization algorithms satisfy all the assumptions required
to achieve the convergence rates discussed in section 18.2. Similar analyses can
be carried out for specific algorithms under weaker assumptions (e.g. [22]).

A simple application of the uniform convergence results of [25] gives then the
upper bound

E = Eapp + Eest + Eopt = Eapp + O
(√

logn

n
+ ρ

)
.

Unfortunately the convergence rate of this bound is too pessimistic. Faster
convergence occurs when the loss function has strong convexity properties [9]
or when the data distribution satisfies certain assumptions [24]. The equivalence

E = Eapp+Eest+Eopt ∼ Eapp +
(
logn

n

)α

+ ρ , for some α ∈
[1
2
, 1
]
, (18.8)

provides a more realistic view of the asymptotic behavior of the excess error (e.g.
[13, 4]). Since the three components of the excess error should decrease at the
same rate, the solution of the trade-off problem (18.7) must then obey the
multiple asymptotic equivalences

E ∼ Eapp ∼ Eest ∼ Eopt ∼
(
logn

n

)α

∼ ρ . (18.9)

Table 18.2 summarizes the asymptotic behavior of the four gradient algorithms
described in section 18.2. The first three rows list the computational cost of each
iteration, the number of iterations required to reach an optimization accuracy
ρ, and the corresponding computational cost. The last row provides a more
interesting measure for large scale machine learning purposes. Assuming we
operate at the optimum of the approximation-estimation-optimization trade-
off (18.7), this line indicates the computational cost necessary to reach a
predefined value of the excess error, and therefore of the expected risk. This
is computed by applying the equivalences (18.9) to eliminate the variables n and
ρ from the third row results.2

Although the stochastic gradient algorithms, SGD and 2SGD, are clearly
the worst optimization algorithms (third row), they need less time than the

2 Note that ε1/α ∼ log(n)/n implies both α−1 log ε ∼ log log(n) − log(n) ∼ − log(n)
and n ∼ ε−1/α log n. Replacing log(n) in the latter gives n ∼ ε−1/α log(1/ε).
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Table 18.2. Asymptotic equivalents for various optimization algorithms: gradient
descent (GD, eq. 18.2), second order gradient descent (2GD, eq. 18.3), stochastic
gradient descent (SGD, eq. 18.4), and second order stochastic gradient descent (2SGD,
eq. 18.5). Although they are the worst optimization algorithms, SGD and 2SGD achieve
the fastest convergence speed on the expected risk. They differ only by constant factors
not shown in this table, such as condition numbers and weight vector dimension.

GD 2GD SGD 2SGD
Time per iteration : n n 1 1
Iterations to accuracy ρ : log 1

ρ log log 1
ρ 1/ρ 1/ρ

Time to accuracy ρ : n log 1
ρ n log log 1

ρ 1/ρ 1/ρ

Time to excess error E : 1

E1/α log
2 1
E

1

E1/α log 1
E log log 1

E 1/E 1/E

other algorithms to reach a predefined expected risk (fourth row). Therefore,
in the large scale setup, that is, when the limiting factor is the computing time
rather than the number of examples, the stochastic learning algorithms performs
asymptotically better !

18.4 General Recommendations

The rest of this contribution provides a series of recommendations for using
stochastic gradient algorithms. Although some of these recommendations seem
trivial, experience has shown again and again how easily they can be overlooked.

18.4.1 Preparing the Data

Randomly shuffle the training examples.

Although the theory calls for picking examples randomly, it is usually faster to
zip sequentially through the training set. But this does not work if the examples
are grouped by class or come in a particular order. Randomly shuffling the
examples eliminates this source of problems. Section 1.4.2 provides an additional
discussion.

Use preconditioning techniques.

Stochastic gradient descent is a first-order algorithm and therefore suffers
dramatically when it reaches an area where the Hessian is ill-conditioned.
Fortunately, many simple preprocessing techniques can vastly improve the
situation. Sections 1.4.3 and 1.5.3 provide many useful tips.
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18.4.2 Monitoring and Debugging

Monitor both the training cost
and the validation error.

Since stochastic gradient descent is useful when the training time is the primary
concern, we can spare some training examples to build a decent validation set. It
is important to periodically evaluate the validation error during training because
we can stop training when we observe that the validation error has not improved
in a long time.

It is also important to periodically compute the training cost because
stochastic gradient descent is an iterative optimization algorithm. Since the
training cost is exactly what the algorithm seeks to optimize, the training cost
should be generally decreasing.

A good approach is to repeat the following operations:

1. Zip once through the shuffled training set and perform the stochastic gradient
descent updates (18.4).

2. With an additional loop over the training set, compute the training cost.
Training cost here means the criterion that the algorithm seeks to optimize.
You can take advantage of the loop to compute other metrics, but the
training cost is the one to watch

3. With an additional loop over the validation set, to compute the validation
set error. Error here means the performance measure of interest, such as
the classification error. You can also take advantage of this loop to cheaply
compute other metrics.

Computing the training cost and the validation error represent a significant
computational effort because it requires additional passes over the training and
validation data. But this beats running blind.

Check the gradients using finite differences.

When the computation of the gradients is slightly incorrect, stochastic gradient
descent often works slowly and erratically. This has led many to believe that
slow and erratic is the normal operation of the algorithm.

During the last twenty years, I have often been approached for advice in setting
the learning rates γt of some rebellious stochastic gradient descent program.
My advice is to forget about the learning rates and check that the gradients
are computed correctly. This reply is biased because people who compute the
gradients correctly quickly find that setting small enough learning rates is easy.
Those who ask usually have incorrect gradients. Carefully checking each line of
the gradient computation code is the wrong way to check the gradients. Use
finite differences:



18. Stochastic Gradient Descent Tricks 429

1. Pick an example z.
2. Compute the loss Q(z, w) for the current w.
3. Compute the gradient g = ∇w Q(z, w).
4. Apply a slight perturbation w′ = w+ δ. For instance, change a single weight

by a small increment, or use δ = −γg with γ small enough.
5. Compute the new loss Q(z, w′) and verify that Q(z, w′) ≈ Q(z, w) + δg .

This process can be automated and should be repeated for many examples
z, many perturbations δ, and many initial weights w. Flaws in the gradient
computation tend to only appear when peculiar conditions are met. It is not
uncommon to discover such bugs in SGD code that has been quietly used for
years.

Experiment with the learning rates γt

using a small sample of the training set.

The mathematics of stochastic gradient descent are amazingly independent of
the training set size. In particular, the asymptotic SGD convergence rates [14] are
independent from the sample size. Therefore, assuming the gradients are correct,
the best way to determine the correct learning rates is to perform experiments
using a small but representative sample of the training set. Because the sample
is small, it is also possible to run traditional optimization algorithms on this
same dataset in order to obtain reference point and set the training cost target.

When the algorithm performs well on the training cost of the small dataset,
keep the same learning rates, and let it soldier on the full training set. Expect the
validation performance to plateau after a number of epochs roughly comparable
to the number of epochs needed to reach this point on the small training set.

18.5 Linear Models with L2 Regularization

This section provides specific recommendations for training large linear models
with L2 regularization. The training objective of such models has the form

En(w) =
λ

2
‖w‖2 + 1

n

n∑

i=1

�(ytwxt) (18.10)

where yt = ±1, and where the function �(m) is convex. The corresponding
stochastic gradient update is then obtained by approximating the derivative of
the sum by the derivative of the loss with respect to a single example

wt+1 = (1− γtλ)wt − γtytxt�′(ytwtxt) (18.11)

Examples:

– Support Vector Machines (SVM) use the non differentiable hinge loss [5] :

�(m) = max{0, 1−m} .
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– It is often more convenient in the linear case to use the log-loss :

�(m) = log(1 + e−m) .

The differentiable log-loss is more suitable for the gradient algorithms dis-
cussed here. This choice leads to a logistic regression algorithm: probability
estimates can be derived using the logistic function:

P (y = +1|x) ≈ 1

1 + e−wx
.

– All statistical models with linear parametrization are in fact amenable to
stochastic gradient descent, using the log-likelihood of the model as the loss
function Q(z, w). For instance, results for Conditional Random Fields (CRF)
[8] are reported in Sec. 18.5.4.

18.5.1 Sparsity

Leverage the sparsity of the training examples {xt}.
– Represent wt as a product stWt where st ∈ IR.

The training examples often are very high dimensional vectors with only a few
non zero coefficients. The stochastic gradient update (18.11)

wt+1 = (1− γtλ)wt − γtytxt�′(ytwtxt)

is then inconvenient because it first rescales all coefficients of vector w by factor
(1−γtλ). In contrast, the rest of the update only involves the weight coefficients
corresponding to a nonzero coefficient in the pattern xt.

Expressing the vector wt as the product stWt, where s is a scalar, provides
a workaround [21]. The stochastic gradient update (18.11) can then be divided
into operations whose complexity scales with the number of nonzero terms in xt:

gt = �
′(ytstWtxt) ,

st+1 = (1 − γtλ)st ,
Wt+1 =Wt − γtytgtxt/st+1 .

18.5.2 Learning Rates

Use learning rates of the form γt = γ0 (1 + γ0λt)
−1

– Determine the best γ0 using a small training data sample.
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When the Hessian matrix of the cost function at the optimum is strictly positive,
the best convergence speed is achieved using learning rates of the form (λmint)

−1

where λmin is the smallest eigenvalue of the Hessian [14]. The theoretical analysis
also shows that overestimating λmin by more than a factor two leads to very
slow convergence. Although we do not know the exact value of λmin, the L2

regularization term in the training objective function means that λmin ≥ λ.
Therefore we can safely use learning rates that asymptotically decrease like
(λt)−1.

Unfortunately, simply using γt = (λt)−1 leads to very large learning rates in
the beginning of the optimization. It is possible to use an additional projection
step [21] to contain the damage until the learning rates reach reasonable values.
However it is simply better to start with reasonable learning rates. The formula
γt = γ0(1 + γ0λt)

−1 ensures that the learning rates γt start from a predefined
value γ0 and asymptotically decrease like (λt)−1.

The most robust approach is to determine the best γ0 as explained earlier,
using a small sample of the training set. This is justified because the asymptotic
SGD convergence rates [14] are independent from the sample size. In order to
make the method more robust, I often use a γ0 slightly smaller than the best
value observed on the small training sample.

Such learning rates have been found to be effective in situations that far
exceed the scope of this particular analysis. For instance, they work well with
nondifferentiable loss functions such as the hinge loss [21]. They also work well
when one adds an unregularized bias term to the model. However it is then wise
to use smaller learning rates for the bias term itself.

18.5.3 Averaged Stochastic Gradient Descent

The stochastic gradient descent!averaged SGD (ASGD) algorithm [19] performs
the normal stochastic gradient update (18.4) and computes the average

w̄t =
1

t− t0

t∑

i=t0+1

wt .

This average can be computed efficiently using a recursive formula. For instance,
in the case of the L2 regularized training objective (18.10), the following weight
updates implement the ASGD algorithm:

wt+1 = (1 − γtλ)wt − γtytxt�′(ytwtxt)

w̄t+1 = w̄t + μt(wt+1 − w̄t)

with the averaging rate
μt = 1/max{1, t− t0} .

When one uses learning rates γt that decrease slower than t−1, the theoretical
analysis of ASGD shows that the training error En(w̄t) decreases like t−1 with
the optimal constant [15]. This is as good as the second order stochastic gradient
descent (2SGD) for a fraction of the computational cost of (18.5).
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Unfortunately, ASGD typically starts more slowly than the plain SGD and can
take a long time to reach the optimal asymptotic convergence speed. Although
an adequate choice of the learning rates helps [27], the problem worsens when
the dimension d of the inputs xt increases. Unfortunately, there are no clear
guidelines for selecting the time t0 that determines when we engage the averaging
process.

Try averaged stochastic gradient with
– Learning rates γt = γ0(1 + γ0λt)−3/4

– Averaging rates μt = 1/max{1, t− d, t− n}

Similar to the trick explained in Sec. 18.5.1, there is an efficient method to
implement averaged stochastic gradient descent for sparse training data. The
idea is to represent the variables wt and w̄t as

wt = stWt

w̄t = (At + αtWt)/βt

where ηt, αt and βt are scalars. The average stochastic gradient update equations
can then be rewritten in the manner that only involve scalars or sparse
operations [27] :

gt = �
′(ytstWtxt) ,

st+1 = (1− γtλ)st
Wt+1 =Wt − γtytxtgt/st+1

At+1 = At + γtαtytxtgt/st+1

βt+1 = βt/(1− μt)
αt+1 = αt + μtβt+1st+1

18.5.4 Experiments

This section briefly reports experimental results illustrating the actual perfor-
mance of SGD and ASGD on a variety of linear systems. The source code is
available at http://leon.bottou.org/projects/sgd. All learning rates were
determined as explained in section 18.5.2.

Figure 18.1 reports results achieved using SGD for a linear SVM trained for
the recognition of the CCAT category in the RCV1 dataset [10] using both
the hinge loss and the log loss. The training set contains 781,265 documents
represented by 47,152 relatively sparse TF/IDF features. SGD runs considerably
faster than either the standard SVM solvers SVMLight and SVMPerf [7] or
the super-linear optimization algorithm TRON [11].

Figure 18.2 reports results achieved for a linear model trained on the ALPHA
task of the 2008 Pascal Large Scale Learning Challenge using the squared hinge
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Algorithm Time Test Error
Hinge loss SVM, λ = 10−4.

SVMLight 23,642 s. 6.02 %
SVMPerf 66 s. 6.03 %
SGD 1.4 s. 6.02 %

Log loss SVM, λ = 10−5.
TRON (-e0.01) 30 s. 5.68 %
TRON (-e0.001) 44 s. 5.70 %
SGD 2.3 s. 5.66 %
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Training time (secs)

1e−06

Optimization accuracy (trainingCost−optimalTrainingCost) 
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0.25 Expected risk
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Fig. 18.1. Results achieved with a L2 regularized linear model trained on the RCV1
task using both the hinge loss and the log loss. The lower half of the plot shows the time
required by SGD and TRON to reach a predefined accuracy ρ on the log loss task. The
upper half shows that the expected risk stops improving long before the super-linear
optimization algorithm TRON overcomes SGD.
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Fig. 18.2. Comparison of the test set performance of SGD, SGDQN, and ASGD for a
L2 regularized linear model trained with the squared hinge loss on the ALPHA task
of the 2008 Pascal Large Scale Learning Challenge. ASGD nearly reaches the optimal
expected risk after a single pass.

loss �(m) = max{0, 1−m}2. For reference, we also provide the results achieved
by the SGDQN algorithm [1] which was one of the winners of this competition,
and works by adapting a separate learning rate for each weight. The training set
contains 100,000 patterns represented by 500 centered and normalized variables.
Performances measured on a separate testing set are plotted against the number
of passes over the training set. ASGD achieves near optimal results after one
epoch only.

Figure 18.3 reports results achieved using SGD, SGDQN, and ASGD for
a CRF [8] trained on the CONLL 2000 Chunking task [20]. The training
set contains 8936 sentences for a 1.68 × 106 dimensional parameter space.
Performances measured on a separate testing set are plotted against the number
of passes over the training set. SGDQN appears more attractive because ASGD
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Fig. 18.3. Comparison of the test set performance of SGD, SGDQN, and ASGD on a L2

regularized CRF trained on the CONLL Chunking task. On this task, SGDQN appears
more attractive because ASGD does not fully reach its asymptotic performance.

does not reach its asymptotic performance. All three algorithms reach the best
test set performance in a couple minutes. The standard CRF L-BFGS optimizer
takes 72 minutes to compute an equivalent solution.

18.6 Conclusion

Stochastic gradient descent and its variants are versatile techniques that have
proven invaluable as a learning algorithms for large datasets. The best advice
for a successful application of these techniques is (i) to perform small-scale
experiments with subsets of the training data, and (ii) to pay a ruthless attention
to the correctness of the gradient computation.
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Practical Recommendations for Gradient-Based

Training of Deep Architectures

Yoshua Bengio

Université de Montréal

Abstract. Learning algorithms related to artificial neural networks and
in particular for Deep Learning may seem to involve many bells and
whistles, called hyper-parameters. This chapter is meant as a practical
guide with recommendations for some of the most commonly used hyper-
parameters, in particular in the context of learning algorithms based
on back-propagated gradient and gradient-based optimization. It also
discusses how to deal with the fact that more interesting results can be
obtained when allowing one to adjust many hyper-parameters. Overall,
it describes elements of the practice used to successfully and efficiently
train and debug large-scale and often deep multi-layer neural networks.
It closes with open questions about the training difficulties observed with
deeper architectures.

19.1 Introduction

Following a decade of lower activity, research in artificial neural networks was
revived after a 2006 breakthrough [61, 14, 95] in the area of Deep Learning,
based on greedy layer-wise unsupervised pre-training of each layer of features.
See [7] for a review. Many of the practical recommendations that justified the
previous edition of this book are still valid, and new elements were added, while
some survived longer by virtue of the practical advantages they provided. The
panorama presented in this chapter regards some of these surviving or novel
elements of practice, focusing on learning algorithms aiming at training deep
neural networks, but leaving most of the material specific to the Boltzmann
machine family to another chapter [60].

Although such recommendations come out of a living practice that emerged
from years of experimentation and to some extent mathematical justification,
they should be challenged. They constitute a good starting point for the exper-
imenter and user of learning algorithms but very often have not been formally
validated, leaving open many questions that can be answered either by theo-
retical analysis or by solid comparative experimental work (ideally by both). A
good indication of the need for such validation is that different researchers and
research groups do not always agree on the practice of training neural networks.

G. Montavon et al. (Eds.): NN: Tricks of the Trade, 2nd edn., LNCS 7700, pp. 437–478, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Several of the recommendations presented here can be found implemented
in the Deep Learning Tutorials1 and in the related Pylearn2 library2, all based
on the Theano library (discussed below) written in the Python programming
language.

The 2006 Deep Learning breakthrough [61, 14, 95] centered on the use of
unsupervised representation learning to help learning internal representations3
by providing a local training signal at each level of a hierarchy of features4.
Unsupervised representation learning algorithms can be applied several times
to learn different layers of a deep model. Several unsupervised representation
learning algorithms have been proposed since then. Those covered in this chap-
ter (such as auto-encoder variants) retain many of the properties of artificial
multi-layer neural networks, relying on the back-propagation algorithm to esti-
mate stochastic gradients. Deep Learning algorithms such as those based on the
Boltzmann machine and those based on auto-encoder or sparse coding variants
often include a supervised fine-tuning stage. This supervised fine-tuning as well
as the gradient descent performed with auto-encoder variants also involves the
back-propagation algorithm, just as like when training deterministic feedforward
or recurrent artificial neural networks. Hence this chapter also includes recom-
mendations for training ordinary supervised deterministic neural networks or
more generally, most machine learning algorithms relying on iterative gradient-
based optimization of a parametrized learner with respect to an explicit training
criterion.

This chapter assumes that the reader already understands the standard algo-
rithms for training supervised multi-layer neural networks, with the loss gradient
computed thanks to the back-propagation algorithm [103]. It starts by explain-
ing basic concepts behind Deep Learning and the greedy layer-wise pretraining
strategy (Section 19.1.1), and recent unsupervised pre-training algorithms (de-
noising and contractive auto-encoders) that are closely related in the way they
are trained to standard multi-layer neural networks (Section 19.1.2). It then re-
views in Section 19.2 basic concepts in iterative gradient-based optimization and
in particular the stochastic gradient method, gradient computation with a flow
graph, automatic differentation. The main section of this chapter is Section 19.3,
which explains hyper-parameters in general, their optimization, and specifically
covers the main hyper-parameters of neural networks. Section 19.4 briefly de-
scribes simple ideas and methods to debug and visualize neural networks, while
Section 19.5 covers parallelism, sparse high-dimensional inputs, symbolic inputs

1 http://deeplearning.net/tutorial/
2 http://deeplearning.net/software/pylearn2
3 A neural network computes a sequence of data transformations, each step encoding

the raw input into an intermediate or internal representation, in principle to make
the prediction or modeling task of interest easier.

4 In standard multi-layer neural networks trained using back-propagated gradients, the
only signal that drives parameter updates is provided at the output of the network
(and then propagated backwards). Some unsupervised learning algorithms provide
a local source of guidance for the parameter update in each layer, based only on the
inputs and outputs of that layer.
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and embeddings, and multi-relational learning. The chapter closes (Section 19.6)
with open questions on the difficulty of training deep architectures and improv-
ing the optimization methods for neural networks.

19.1.1 Deep Learning and Greedy Layer-Wise Pretraining

The notion of reuse, which explains the power of distributed representations [7], is
also at the heart of the theoretical advantages behind Deep Learning. Complexity
theory of circuits, e.g. [54, 55], (which include neural networks as special cases)
has much preceded the recent research on deep learning. The depth of a circuit is
the length of the longest path from an input node of the circuit to an output node
of the circuit. Formally, one can change the depth of a given circuit by changing
the definition of what each node can compute, but only by a constant factor [7].
The typical computations we allow in each node include: weighted sum, product,
artificial neuron model (such as a monotone non-linearity on top of an affine
transformation), computation of a kernel, or logic gates. Theoretical results [54,
55, 13, 10, 9] clearly identify families of functions where a deep representation
can be exponentially more efficient than one that is insufficiently deep. If the
same set of functions can be represented from within a family of architectures
associated with a smaller VC-dimension (e.g. less hidden units5), learning theory
would suggest that it can be learned with fewer examples, yielding improvements
in both computational efficiency and statistical efficiency.

Another important motivation for feature learning and Deep Learning is that
they can be done with unlabeled examples, so long as the factors (unobserved
random variables explaining the data) relevant to the questions we will ask later
(e.g. classes to be predicted) are somehow salient in the input distribution itself.
This is true under the manifold hypothesis, which states that natural classes and
other high-level concepts in which humans are interested are associated with
low-dimensional regions in input space (manifolds) near which the distribution
concentrates, and that different class manifolds are well-separated by regions
of very low density. It means that a small semantic change around a particular
example can be captured by changing only a few numbers in a high-level abstract
representation space. As a consequence, feature learning and Deep Learning are
intimately related to principles of unsupervised learning, and they can work in
the semi-supervised setting (where only a few examples are labeled), as well as
in the transfer learning and multi-task settings (where we aim to generalize to
new classes or tasks). The underlying hypothesis is that many of the underlying
factors are shared across classes or tasks. Since representation learning aims to
extract and isolate these factors, representations can be shared across classes and
tasks.

One of the most commonly used approaches for training deep neural net-
works is based on greedy layer-wise pre-training [14]. The idea, first introduced
in Hinton et al. [61], is to train one layer of a deep architecture at a time using

5 Note that in our experiments, deep architectures tend to generalize very well even
when they have quite large numbers of parameters.
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unsupervised representation learning. Each level takes as input the representa-
tion learned at the previous level and learns a new representation. The learned
representation(s) can then be used as input to predict variables of interest, for
example to classify objects. After unsupervised pre-training, one can also per-
form supervised fine-tuning of the whole system6, i.e., optimize not just the
classifier but also the lower levels of the feature hierarchy with respect to some
objective of interest. Combining unsupervised pre-training and supervised fine-
tuning usually gives better generalization than pure supervised learning from
a purely random initialization. The unsupervised representation learning algo-
rithms for pre-training proposed in 2006 were the Restricted Boltzmann Machine
or RBM [61], the auto-encoder [14] and a sparsifying form of auto-encoder similar
to sparse coding [95].

19.1.2 Denoising and Contractive Auto-encoders

An auto-encoder has two parts: an encoder function f that maps the input x to a
representationh = f(x), and a decoder function g that maps h back in the space of
x in order to reconstructx. In the regular auto-encoder the reconstruction function
r(·) = g(f(·)) is trained to minimize the average value of a reconstruction loss on
the training examples. Note that reconstruction loss should be high for most other
input configurations7. The regularization mechanism makes sure that reconstruc-
tion cannot be perfect everywhere, while minimizing the reconstruction loss at
training examples digs a hole in reconstruction error where the density of training
examples is large. Examples of reconstruction loss functions include ||x− r(x)||2
(for real-valued inputs) and −

∑
i xi log ri(x) + (1 − xi) log(1 − ri(x)) (when

interpreting xi as a bit or a probability of a binary event). Auto-encoders cap-
ture the input distribution by learning to better reconstruct more likely input
configurations. The difference between the reconstruction vector and the input
vector can be shown to be related to the log-density gradient as estimated by
the learner [114, 16] and the Jacobian matrix of the reconstruction with respect
to the input gives information about the second derivative of the density, i.e.,
in which direction the density remains high when you are on a high-density
manifold [99, 16]. In the Denoising Auto-Encoder (DAE) and the Contractive
Auto-Encoder (CAE), the training procedure also introduces robustness (insen-
sitivity to small variations), respectively in the reconstruction r(x) or in the
representation f(x). In the DAE [115, 116], this is achieved by training with
stochastically corrupted inputs, but trying to reconstruct the uncorrupted in-
puts. In the CAE [99], this is achieved by adding an explicit regularizing term
in the training criterion, proportional to the norm of the Jacobian of the en-
coder, ||∂f(x)∂x ||2. But the CAE and the DAE are very related [16]: when the
6 The whole system composes the computation of the representation with computation

of the predictor’s output.
7 Different regularization mechanisms have been proposed to push reconstruction error

up in low density areas: denoising criterion, contractive criterion, and code sparsity.
It has been argued that such constraints play a role similar to the partition function
for Boltzmann machines [96].
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noise is Gaussian and small, the denoising error minimized by the DAE is equiv-
alent to minimizing the norm of the Jacobian of the reconstruction function
r(·) = g(f(·)), whereas the CAE minimizes the norm of the Jacobian of the
encoder f(·). Besides Gaussian noise, another interesting form of corruption has
been very successful with DAEs: it is called the masking corruption and consists
in randomly zeroing out a large fraction (like 20% or even 50%) of the inputs,
where the zeroed out subset is randomly selected for each example. In addition
to the contractive effect, it forces the learned encoder to be able to rely only on
an arbitrary subset of the input features.

Another way to prevent the auto-encoder from perfectly reconstructing every-
where is to introduce a sparsity penalty on h, discussed below (Section 19.3.1).

19.1.3 Online Learning and Optimization of Generalization Error

The objective of learning is not to minimize training error or even the train-
ing criterion. The latter is a surrogate for generalization error, i.e., performance
on new (out-of-sample) examples, and there are no hard guarantees that min-
imizing the training criterion will yield good generalization error: it depends
on the appropriateness of the parametrization and training criterion (with the
corresponding prior they imply) for the task at hand.

Many learning tasks of interest will require huge quantities of data (most of
which will be unlabeled) and as the number of examples increases, so long as
capacity is limited (the number of parameters is small compared to the num-
ber of examples), training error and generalization approach each other. In the
regime of such large datasets, we can consider that the learner sees an unending
stream of examples (e.g., think about a process that harvests text and images
from the web and feeds it to a machine learning algorithm). In that context, it
is most efficient to simply update the parameters of the model after each exam-
ple or few examples, as they arrive. This is the ideal online learning scenario,
and in a simplified setting, we can even consider each new example z as being
sampled i.i.d. from an unknown generating distribution with probability density
p(z). More realistically, examples in online learning do not arrive i.i.d. but in-
stead from an unknown stochastic process which exhibits serial correlation and
other temporal dependencies. Many learning algorithms rely on gradient-based
numerical optimization of a training criterion. Let L(z, θ) be the loss incurred
on example z when the parameter vector takes value θ. The gradient vector for
the loss associated with a single example is ∂L(z,θ)

∂θ .
If we consider the simplified case of i.i.d. data, there is an interesting obser-

vation to be made: the online learner is performing stochastic gradient descent
on its generalization error. Indeed, the generalization error C of a learner with
parameters θ and loss function L is

C = E[L(z, θ)] =

∫
p(z)L(z, θ)dz
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while the stochastic gradient from sample z is

ĝ =
∂L(z, θ)

∂θ

with z a random variable sampled from p. The gradient of generalization error
is

∂C

∂θ
=
∂

∂θ

∫
p(z)L(z, θ)dz =

∫
p(z)

∂L(z, θ)

∂θ
dz = E[ĝ]

showing that the online gradient ĝ is an unbiased estimator of the generalization
error gradient ∂C

∂θ . It means that online learners, when given a stream of non-
repetitive training data, really optimize (maybe not in the optimal way, i.e., using
a first-order gradient technique) what we really care about: generalization error.

19.2 Gradients

19.2.1 Gradient Descent and Learning Rate

The gradient or an estimator of the gradient is used as the core part the computa-
tion of parameter updates for gradient-based numerical optimization algorithms.
For example, simple online (or stochastic) gradient descent [102, 28] updates the
parameters after each example is seen, according to

θ(t) ← θ(t−1) − εt
∂L(zt, θ)

∂θ

where zt is an example sampled at iteration t and where εt is a hyper-parameter
that is called the learning rate and whose choice is crucial. If the learning rate
is too large8, the average loss will increase. The optimal learning rate is usually
close to (by a factor of 2) the largest learning rate that does not cause divergence
of the training criterion, an observation that can guide heuristics for setting the
learning rate [8], e.g., start with a large learning rate and if the training criterion
diverges, try again with 3 times smaller learning rate, etc., until no divergence
is observed.

See [26] for a deeper treatment of stochastic gradient descent, including sug-
gestions to set learning rate schedule and improve the asymptotic convergence
through averaging.

In practice, we use mini-batch updates based on an average of the gradients9
inside each block of B examples:

θ(t) ← θ(t−1) − εt
1

B

B(t+1)∑

t′=Bt+1

∂L(zt′, θ)

∂θ
. (19.1)

8 Above a value which is approximately 2 times the largest eigenvalue of the average
loss Hessian matrix.

9 Compared to a sum, an average makes a small change in B have only a small effect on
the optimal learning rate, with an increase in B generally allowing a small increase
in the learning rate because of the reduced variance of the gradient.
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With B = 1 we are back to ordinary online gradient descent, while with B equal
to the training set size, this is standard (also called “batch”) gradient descent.
With intermediate values of B there is generally a sweet spot. When B increases
we can get more multiply-add operations per second by taking advantage of
parallelism or efficient matrix-matrix multiplications (instead of separate matrix-
vector multiplications), often gaining a factor of 2 in practice in overall training
time. On the other hand, as B increases, the number of updates per computation
done decreases, which slows down convergence (in terms of error vs number of
multiply-add operations performed) because less updates can be done in the
same computing time. Combining these two opposing effects yields a typical
U-curve with a sweet spot at an intermediate value of B.

Keep in mind that even the true gradient direction (averaging over the whole
training set) is only the steepest descent direction locally but may not point
in the right direction when considering larger steps. In particular, because the
training criterion is not quadratic in the parameters, as one moves in parameter
space the optimal descent direction keeps changing. Because the gradient direc-
tion is not quite the right direction of descent, there is no point in spending a lot
of computation to estimate it precisely for gradient descent. Instead, doing more
updates more frequently helps to explore more and faster, especially with large
learning rates. In addition, smaller values of B may benefit from more explo-
ration in parameter space and a form of regularization both due to the “noise”
injected in the gradient estimator, which may explain the better test results
sometimes observed with smaller B.

When the training set is finite, training proceeds by sweeps through the train-
ing set called an epoch, and full training usually requires many epochs (iterations
through the training set). Note that stochastic gradient (either one example at a
time or with mini-batches) is different from ordinary gradient descent, sometimes
called “batch gradient descent”, which corresponds to the case where B equals
the training set size, i.e., there is one parameter update per epoch). The great
advantage of stochastic gradient descent and other online or minibatch update
methods is that their convergence does not depend on the size of the training
set, only on the number of updates and the richness of the training distribution.
In the limit of a large or infinite training set, a batch method (which updates
only after seeing all the examples) is hopeless. In fact, even for ordinary datasets
of tens or hundreds of thousands of examples (or more!), stochastic gradient de-
scent converges much faster than ordinary (batch) gradient descent, and beyond
some dataset sizes the speed-up is almost linear (i.e., doubling the size almost
doubles the gain)10. It is really important to use the stochastic version in order
to get reasonable clock-time convergence speeds.

As for any stochastic gradient descent method (including the mini-batch case),
it is important for efficiency of the estimator that each example or mini-batch
be sampled approximately independently. Because random access to memory
(or even worse, to disk) is expensive, a good approximation, called incremental

10 On the other hand, batch methods can be parallelized easily, which becomes an
important advantage with currently available forms of computing power.
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gradient [21], is to visit the examples (or mini-batches) in a fixed order corre-
sponding to their order in memory or disk (repeating the examples in the same
order on a second epoch, if we are not in the pure online case where each example
is visited only once). In this context, it is safer if the examples or mini-batches
are first put in a random order (to make sure this is the case, it could be useful
to first shuffle the examples). Faster convergence has been observed if the order
in which the mini-batches are visited is changed for each epoch, which can be
reasonably efficient if the training set holds in computer memory.

19.2.2 Gradient Computation and Automatic Differentiation

The gradient can be either computed manually or through automatic differen-
tiation. Either way, it helps to structure this computation as a flow graph, in
order to prevent mathematical mistakes and make sure an implementation is
computationally efficient. The computation of the loss L(z, θ) as a function of θ
is laid out in a graph whose nodes correspond to elementary operations such as
addition, multiplication, and non-linear operations such as the neural networks
activation function (e.g., sigmoid or hyperbolic tangent), possibly at the level
of vectors, matrices or tensors. The flow graph is directed and acyclic and has
three types of nodes: input nodes, internal nodes, and output nodes. Each of its
nodes is associated with a numerical output which is the result of the applica-
tion of that computation (none in the case of input nodes), taking as input the
output of previous nodes in a directed acyclic graph. Example z and parameter
vector θ (or their elements) are the input nodes of the graph (i.e., they do not
have inputs themselves) and L(z, θ) is a scalar output of the graph. Note that
here, in the supervised case, z can include an input part x (e.g. an image) and
a target part y (e.g. a target class associated with an object in the image). In
the unsupervised case z = x. In a semi-supervised case, there is a mix of labeled
and unlabeled examples, and z includes y on the labeled examples but not on
the unlabeled ones.

In addition to associating a numerical output oa to each node a of the flow
graph, we can associate a gradient ga = ∂L(z,θ)

∂oa
. The gradient will be defined and

computed recursively in the graph, in the opposite direction of the computation
of the nodes’ outputs, i.e., whereas oa is computed using outputs op of predecessor
nodes p of a, ga will be computed using the gradients gs of successor nodes s of
a. More precisely, the chain rule dictates

ga =
∑

s

gs
∂os
∂oa

where the sum is over immediate successors of a. Only output nodes have no
successor, and in particular for the output node that computes L, the gradient
is set to 1 since ∂L

∂L = 1, thus initializing the recursion. Manual or automatic
differentiation then only requires to define the partial derivative associated with
each type of operation performed by any node of the graph. When implementing
gradient descent algorithms with manual differentiation the result tends to be
verbose, brittle code that lacks modularity – all bad things in terms of software



19. Recommendations for Training Deep Architectures 445

engineering. A better approach is to express the flow graph in terms of objects
that modularize how to compute outputs from inputs as well as how to compute
the partial derivatives necessary for gradient descent. One can pre-define the
operations of these objects (in a “forward propagation” or fprop method) and
their partial derivatives (in a “backward propagation” or bprop method) and
encapsulate these computations in an object that knows how to compute its
output given its inputs, and how to compute the gradient with respect to its
inputs given the gradient with respect to its output. This is the strategy adopted
in the Theano library11 with its Op objects [18], as well as in libraries such as
Torch12 [37] and Lush13.

Compared to Torch and Lush, Theano adds an interesting ingredient which
makes it a full-fledged automatic differentiation tool: symbolic computation. The
flow graph itself (without the numerical values attached) can be viewed as a
symbolic representation (in a data structure) of a numerical computation. In
Theano, the gradient computation is first performed symbolically, i.e., each Op
object knows how to create other Ops corresponding to the computation of the
partial derivatives associated with that Op. Hence the symbolic differentiation
of the output of a flow graph with respect to any or all of its input nodes can
be performed easily in most cases, yielding another flow graph which specifies
how to compute these gradients, given the input of the original graph. Since
the gradient graph typically contains the original graph (mapping parameters to
loss) as a sub-graph, in order to make computations efficient it is important to
automate (as done in Theano) a number of simplifications which are graph trans-
formations preserving the semantics of the output (given the input) but yielding
smaller (or more numerically stable or more efficiently computed) graphs (e.g.,
removing redundant computations). To take advantage of the fact that com-
puting the loss gradient includes as a first step computing the loss itself, it is
advantageous to structure the code so that both the loss and its gradient are
computed at once, with a single graph having multiple outputs. The advantages
of performing gradient computations symbolically are numerous. First of all, one
can readily compute gradients over gradients, i.e., second derivatives, which are
useful for some learning algorithms. Second, one can define algorithms or training
criteria involving gradients themselves, as required for example in the Contrac-
tive Auto-Encoder (which uses the norm of a Jacobian matrix in its training
criterion, i.e., really requires second derivatives, which here are cheap to com-
pute). Third, it makes it easy to implement other useful graph transformations
such as graph simplifications or numerical optimizations and transformations
that help making the numerical results more robust and more efficient (such as
working in the domain of logarithms of probabilities rather than in the domain
of probabilities directly). Other potential beneficial applications of such sym-
bolic manipulations include parallelization and additional differential operators
(such as the R-operator, recently implemented in Theano, which is very useful to

11 http://deeplearning.net/software/theano/
12 http://www.torch.ch
13 http://lush.sourceforge.net
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compute the product of a Jacobian matrix ∂f(x)
∂x or Hessian matrix ∂2L(x,θ)

∂θ2 with
a vector without ever having to actually compute and store the matrix itself [90]).

19.3 Hyper-parameters

A pure learning algorithm can be seen as a function taking training data as input
and producing as output a function (e.g. a predictor) or model (i.e. a bunch
of functions). However, in practice, many learning algorithms involve hyper-
parameters, i.e., annoying knobs to be adjusted. In many algorithms such as
Deep Learning algorithms the number of hyper-parameters (ten or more!) can
make the idea of having to adjust all of them unappealing. In addition, it has
been shown that the use of computer clusters for hyper-parameter selection can
have an important effect on results [91]. Choosing hyper-parameter values is
formally equivalent to the question of model selection, i.e., given a family or set
of learning algorithms, how to pick the most appropriate one inside the set? We
define a hyper-parameter for a learning algorithm A as a variable to be set prior
to the actual application of A to the data, one that is not directly selected by the
learning algorithm itself. It is basically an outside control knob. It can be discrete
(as in model selection) or continuous (such as the learning rate discussed above).
Of course, one can hide these hyper-parameters by wrapping another learning
algorithm, say B, around A, to selects A’s hyper-parameters (e.g. to minimize
validation set error). We can then call B a hyper-learner, and if B has no hyper-
parameters itself then the composition of B over A could be a “pure” learning
algorithm, with no hyper-parameter. In the end, to apply a learner to training
data, one has to have a pure learning algorithm. The hyper-parameters can be
fixed by hand or tuned by an algorithm, but their value has to be selected. The
value of some hyper-parameters can be selected based on the performance of
A on its training data, but most cannot. For any hyper-parameter that has an
impact on the effective capacity of a learner, it makes more sense to select its
value based on out-of-sample data (outside the training set), e.g., a validation
set performance, online error, or cross-validation error. Note that some learning
algorithms (in particular unsupervised learning algorithms such as algorithms
for training RBMs by approximate maximum likelihood) are problematic in this
respect because we cannot directly measure the quantity that is to be optimized
(e.g. the likelihood) because it is intractable. On the other hand, the expected
denoising reconstruction error is easy to estimate (by just averaging the denoising
error over a validation set).

Once some out-of-sample data has been used for selecting hyper-parameter
values, it cannot be used anymore to obtain an unbiased estimator of generaliza-
tion performance, so one typically uses a test set (or double cross-validation14, in

14 Double cross-validation applies recursively the idea of cross-validation, using an outer
loop cross-validation to evaluate generalization error and then applying an inner loop
cross-validation inside each outer loop split’s training subset (i.e., splitting it again
into training and validation folds) in order to select hyper-parameters for that split.
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the case of small datasets) to estimate generalization error of the pure learning
algorithm (with hyper-parameter selection hidden inside).

19.3.1 Neural Network Hyper-parameters

Different learning algorithms involve different sets of hyper-parameters, and it
is useful to get a sense of the kinds of choices that practitioners have to make in
choosing their values. We focus here mostly on those relevant to neural networks
and Deep Learning algorithms.

Hyper-parameters of the Approximate Optimization. First of all, several
learning algorithms can be viewed as the combination of two elements: a train-
ing criterion and a model (e.g., a family of functions, a parametrization) on the
one hand, and on the other hand, a particular procedure for approximately opti-
mizing this criterion. Correspondingly, one should distinguish hyper-parameters
associated with the optimizer from hyper-parameters associated with the model
itself, i.e., typically the function class, regularizer and loss function. We have al-
ready mentioned above some of the hyper-parameters typically associated with
gradient-based optimization. Here is a more extensive descriptive list, focusing
on those used in stochastic (mini-batch) gradient descent (although number of
training iterations is used for all iterative optimization algorithms).

– The initial learning rate (ε0 below, Eq.(19.2)). This is often the single
most important hyper-parameter and one should always make sure that it
has been tuned (up to approximately a factor of 2). Typical values for a
neural network with standardized inputs (or inputs mapped to the (0,1)
interval) are less than 1 and greater than 10−6 but these should not be taken
as strict ranges and greatly depend on the parametrization of the model. A
default value of 0.01 typically works for standard multi-layer neural networks
but it would be foolish to rely exclusively on this default value. If there is
only time to optimize one hyper-parameter and one uses stochastic gradient
descent, then this is the hyper-parameter that is worth tuning.

– The choice of strategy for decreasing or adapting the learning rate sched-
ule (with hyper-parameters such as the time constant τ in Eq. (19.2) below).
The default value of τ →∞ means that the learning rate is constant over
training iterations. In many cases the benefit of choosing other than this
default value is small. An example of O(1/t) learning rate schedule, used
in Bergstra and Bengio [17] is

εt =
ε0τ

max(t, τ)
(19.2)

which keeps the learning rate constant for the first τ steps and then decreases
it in O(1/tα), with traditional recommendations (based on asymptotic anal-
ysis of the convex case) suggesting α = 1. See Bach and Moulines [2] for
a recent analysis of the rate of convergence for the general case of α ≤ 1,
suggesting that smaller values of α should be used in the non-convex case,
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especially when using a gradient averaging or momentum technique (see be-
low). An adaptive and heuristic way of automatically setting τ above is to
keep εt constant until the training criterion stops decreasing significantly (by
more than some relative improvement threshold) from epoch to epoch. That
threshold is a less sensitive hyper-parameter than τ itself. An alternative to
a fixed schedule with a couple of (global) free hyper-parameters like in the
above formula is the use of an adaptive learning rate heuristic, e.g., the sim-
ple procedure proposed in [26]: at regular intervals during training, using
a fixed small subset of the training set (what matters is only the number
of examples used, not what fraction of the whole training set it represents),
continue training with N different choices of learning rate (all in parallel),
and keep the value that gave the best results until the next re-estimation of
the optimal learning rate. Other examples of adaptive learning rate strategies
are discussed below (Sec. 19.6.2).

– The mini-batch size (B in Eq. (19.1)) is typically chosen between 1 and a
few hundreds, e.g. B = 32 is a good default value, with values above 10 tak-
ing advantage of the speed-up of matrix-matrix products over matrix-vector
products. The impact of B is mostly computational, i.e., larger B yield faster
computation (with appropriate implementations) but requires visiting more
examples in order to reach the same error, since there are less updates per
epoch. In theory, this hyper-parameter should impact training time and not
so much test performance, so it can be optimized separately of the other
hyper-parameters, by comparing training curves (training and validation er-
ror vs amount of training time), after the other hyper-parameters (except
learning rate) have been selected. B and ε0 may slightly interact with other
hyper-parameters so both should be re-optimized at the end. Once B is se-
lected, it can generally be fixed while the other hyper-parameters can be
further optimized (except for a momentum hyper-parameter, if one is used).

– Number of training iterations T (measured in mini-batch updates). This
hyper-parameter is particular in that it can be optimized almost for free using
the principle of early stopping: by keeping track of the out-of-sample error
(as for example estimated on a validation set) as training progresses (every
N updates), one can decide how long to train for any given setting of all the
other hyper-parameters. Early stopping is an inexpensive way to avoid strong
overfitting, i.e., even if the other hyper-parameters would yield to overfitting,
early stopping will considerably reduce the overfitting damage that would
otherwise ensue. It also means that it hides the overfitting effect of other
hyper-parameters, possibly obscuring the analysis that one may want to do
when trying to figure out the effect of individual hyper-parameters, i.e., it
tends to even out the performance obtained by many otherwise overfitting
configurations of hyper-parameters by compensating a too large capacity
with a smaller training time. For this reason, it might be useful to turn
early-stopping off when analyzing the effect of individual hyper-parameters.
Now let us turn to implementation details. Practically, one needs to continue
training beyond the selected number of training iterations T̂ (which should be
the point of lowest validation error in the training run) in order to ascertain
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that validation error is unlikely to go lower than at the selected point. A
heuristic introduced in the Deep Learning Tutorials15 is based on the idea
of patience (set initially to 10000 examples in the MLP tutorial), which is
a minimum number of training examples to see after the candidate selected
point T̂ before deciding to stop training (i.e. before accepting this candidate
as the final answer). As training proceeds and new candidate selected points
T̂ (new minima of the validation error) are observed, the patience parameter
is increased, either multiplicatively or additively on top of the last T̂ found.
Hence, if we find a new minimum16 at t, we save the current best model,
update T̂ ← t and we increase our patience up to t+constant or t× constant.
Note that validation error should not be estimated after each training update
(that would be really wasteful) but after every N examples, where N is at
least as large as the validation set (ideally several times larger so that the
early stopping overhead remains small)17.

– Momentum β. It has long been advocated [56, 59] to temporally smooth
out the stochastic gradient samples obtained during the stochastic gradi-
ent descent. For example, a moving average of the past gradients can be
computed with ḡ ← (1 − β)ḡ + βg, where g is the instantaneous gradient
∂L(zt,θ)

∂θ or a minibatch average, and β is a small positive coefficient that
controls how fast the old examples get downweighted in the moving aver-
age. The simplest momentum trick is to make the updates proportional to
this smoothed gradient estimator ḡ instead of the instantaneous gradient g.
The idea is that it removes some of the noise and oscillations that gradient
descent has, in particular in the directions of high curvature of the loss func-
tion18. A default value of β = 1 (no momentum) works well in many cases
but in some cases momentum seems to make a positive difference. Polyak
averaging [93] is a related form of parameter averaging19 that has theoretical
advantages and has been advocated and shown to bring improvements on
some unsupervised learning procedures such as RBMs [110]. More recently,
several mathematically motivated algorithms [88, 75] have been proposed
that incorporate some form of momentum and that also ensure much faster
convergence (linear rather than sublinear) compared to stochastic gradient

15 http://deeplearning.net/tutorial/
16 Ideally, we should use a statistical test of significance and accept a new minimum

(over a longer training period) only if the improvement is statistically significant,
based on the size and variance estimates one can compute for the validation set.

17 When an extra processor on the same machine is available, validation error can
conveniently be recomputed by a processor different from the one performing the
training updates, allowing more frequent computation of validation error.

18 Think about a ball coming down a valley. Since it has not started from the bottom of
the valley it will oscillate between its sides as it settles deeper, forcing the learning
rate to be small to avoid large oscillations that would kick it out of the valley.
Averaging out the local gradients along the way will cancel the opposing forces from
each side of the valley.

19 Polyak averaging uses for predictions a moving average of the parameters found in
the trajectory of stochastic gradient descent.
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descent, at least for convex optimization problems. See also [26] for an exam-
ple of averaged SGD with successful empirical speedups in the convex case.
Note however that in the pure online case (stream of examples) and under
some assumptions, the sublinear rate of convergence of stochastic gradient
descent with O(1/t) decrease of learning rate is an optimal rate, at least for
convex problems [87]. That would suggest that for really large training sets
it may not be possible to obtain better rates than ordinary stochastic gra-
dient descent, albeit the constants in front (which depend on the condition
number of the Hessian) may still be greatly reduced by using second-order
information online [28, 27].

– Layer-specific optimization hyper-parameters: although rarely done,
it is possible to use different values of optimization hyper-parameters (such
as the learning rate) on different layers of a multi-layer network. This is
especially appropriate (and easier to do) in the context of layer-wise unsu-
pervised pre-training, since each layer is trained separately (while the layers
below are kept fixed). This would be particularly useful when the number of
units per layer varies a lot from layer to layer. See the paragraph below enti-
tled Layer-wise optimization of hyper-parameters (Sec. 19.3.3). Some
researchers also advocate the use of different learning rates for the different
types of parameters one finds in the model, such as biases and weights in the
standard multi-layer network, but the issue becomes more important when
parameters such as precision or variance are included in the lot [38].

Up to now we have only discussed the hyper-parameters in the setup where
one trains a neural network by stochastic gradient descent. With other opti-
mization algorithms, some hyper-parameters are typically different. For exam-
ple, Conjugate Gradient (CG) algorithms typically have a number of line search
steps (which is a hyper-parameter) and a tolerance for stopping each line search
(another hyper-parameter). An optimization algorithm like L-BFGS (limited-
memory Broyden-Fletcher-Goldfarb-Shanno) also has a hyper-parameter con-
trolling the memory usage of the algorithm, the rank of the Hessian approxima-
tion kept in memory, which also has an influence on the efficiency of each step.
Both CG and L-BFGS are iterative (e.g., one line search per iteration), and the
number of iterations can be optimized as described above for stochastic gradient
descent, with early stopping.

19.3.2 Hyper-parameters of the Model and Training Criterion

Let us now turn to “model” and “criterion” hyper-parameters typically found in
neural networks, especially deep neural networks.

– Number of hidden units nh. Each layer in a multi-layer neural network
typically has a size that we are free to set and that controls capacity. Because
of early stopping and possibly other regularizers (e.g., weight decay, discussed
below), it is mostly important to choose nh large enough. Larger than op-
timal values typically do not hurt generalization performance much, but of
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course they require proportionally more computation (in O(n2h) if scaling all
the layers at the same time in a fully connected architecture). Like for many
other hyper-parameters, there is the option of allowing a different value of
nh for each hidden layer20 of a deep architecture. See the paragraph below
entitled Layer-wise optimization of hyper-parameters (Sec. 19.3.3).
In a large comparative study [70], we found that using the same size for
all layers worked generally better or the same as using a decreasing size
(pyramid-like) or increasing size (upside down pyramid), but of course this
may be data-dependent. For most tasks that we worked on, we find that an
overcomplete21 first hidden layer works better than an undercomplete one.
Another even more often validated empirical observation is that the opti-
mal nh is much larger when using unsupervised pre-training in a supervised
neural network, e.g., going from hundreds of units to thousands of units.
A plausible explanation is that after unsupervised pre-training many of the
hidden units are carrying information that is irrelevant to the specific super-
vised task of interest. In order to make sure that the information relevant to
the task is captured, larger hidden layers are therefore necessary when using
unsupervised pre-training.

– Weight decay regularization coefficient λ. A way to reduce overfitting is
to add a regularization term to the training criterion, which limits the ca-
pacity of the learner. The parameters of machine learning models can be
regularized by pushing them towards a prior value, which is typically 0.
L2 regularization adds a term λ

∑
i θ

2
i to the training criterion, while L1

regularization adds a term λ
∑

i |θi|. Both types of terms can be included.
There is a clean Bayesian justification for such a regularization term: it is
the negative log-prior − logP (θ) on the parameters θ. The training criterion
then corresponds to the negative joint likelihood of data and parameters,
− logP (data, θ) = − logP (data|θ)− logP (θ), with the loss function L(z, θ)
being interpreted as − logP (z|θ) and − logP (data|θ) = −

∑T
t=1 L(zt, θ) if

the data consists of T i.i.d. examples zt. This detail is important to note
because when one is doing stochastic gradient-based learning, it makes sense
to use an unbiased estimator of the gradient of the total training criterion
(including both the total loss and the regularizer), but one only considers
a single mini-batch or example at a time. How should the regularizer be
weighted in this sum, which is different from the sum of the regularizer and
the total loss on all examples? On each mini-batch update, the gradient of
the regularization penalty should be multiplied not just by λ but also by B

T ,
i.e., one over the number of updates needed to go once through the training
set. When the training set size is not a multiple of B, the last mini-batch
will have size B′ < B and the contribution of the regularizer to the mini-
batch gradient should therefore be modified accordingly (i.e. scaled by B′

B
compared to other mini-batches). In the pure online setting (there is no fixed
ahead training set size nor iterating again on the examples), it would then

20 A hidden layer is a group of units that is neither an input layer nor an output layer.
21 Larger than the input vector.
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make sense to use B
t at example t, or one over the number of updates to

date. L2 regularization penalizes large values more strongly and corresponds
to a Gaussian prior ∝ exp(− 1

2
||θ||2
σ2 ) with prior variance σ2 = 1/(2λ). Note

that there is a connection between early stopping (see above, choosing the
number of training iterations) and L2 regularization [34], with one basically
playing the same role as the other (but early stopping allowing a much more
efficient selection of the hyper-parameter value, which suggests dropping L2
regularization altogether when early-stopping is used). However, L1 regular-
ization behaves differently and can sometimes be useful, acting as a form of
feature selection. L1 regularization makes sure that parameters that are not
really very useful are driven to zero (i.e. encouraging sparsity of the param-
eter values), and corresponds to a Laplace density prior ∝ e− |θ|

s with scale
parameter s = 1

λ . L1 regularization often helps to make the input filters22
cleaner (more spatially localized) and easier to interpret. Stochastic gradi-
ent descent will not yield actual zeros but values hovering around zero. If
both L1 and L2 regularization are used, a different coefficient (i.e. a differ-
ent hyper-parameter) should be considered for each, and one may also use a
different coefficient for different layers. In particular, the input weights and
output weights may be treated differently.

One reason for treating output weights differently (i.e., not relying only
on early stopping) is that we know that it is sufficient to regularize only the
output weights in order to constrain capacity: in the limit case of the number
of hidden units going to infinity, L2 regularization corresponds to Support
Vector Machines (SVM) while L1 regularization corresponds to boosting [12].
Another reason for treating inputs and outputs differently from hidden units
is because they may be sparse. For example, some input features may be 0
most of the time while others are non-zero frequently. In that case, there are
fewer examples that inform the model about that rarely active input feature,
and the corresponding parameters (weights outgoing from the correspond-
ing input units) should be more regularized than the parameters associated
with frequently observed inputs. A similar situation may occur with target
variables that are sparse (e.g., trying to predict rarely observed events). In
both cases, the effective number of meaningful updates seen by these pa-
rameters is less than the actual number of updates. This suggests to scale
the regularization coefficient of these parameters by one over the effective
number of updates seen by the parameter. A related formula turns up in
Bayesian probit regression applied to sparse inputs [53]. Some practitioners
also choose to penalize only the weights w and not the biases b associated
with the hidden unit activations w′z+b for a unit taking the vector of values
z as input. This guarantees that even with strong regularization, the predic-
tor would converge to the optimal constant predictor, rather than the one
corresponding to 0 activation. For example, with the mean-square loss and
the cross-entropy loss, the optimal constant predictor is the output average.

22 The input weights of a 1st layer neuron are often called “filters” because of analogies
with signal processing techniques such as convolutions.
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– Sparsity of activation regularization coefficient α. A common practice in
the Deep Learning literature [95, 97, 81, 82, 3, 49, 33, 52] consists in adding
a penalty term to the training criterion that encourages the hidden units to
be sparse, i.e., with values at or near 0. Although the L1 penalty (discussed
above in the case of weights) can also be applied to hidden units activations,
this is mathematically very different from the L1 regularization term on
parameters. Whereas the latter corresponds to a prior on the parameters,
the former does not because it involves the training distribution (since we
are looking at data-dependent hidden units outputs). Although we will not
discuss this much here, the inspiration for a sparse representation in Deep
Learning comes from the earlier work on sparse coding [89]. As discussed
in Goodfellow et al. [51] sparse representations may be advantageous because
they encourage representations that disentangle the underlying factors of
representation. A sparsity-inducing penalty is also a way to regularize (in
the sense of reducing the number of examples that the learner can learn
by heart) [97], which means that the sparsity coefficient is likely to interact
with the many other hyper-parameters which influence capacity. In general,
increased sparsity can be compensated by a larger number of hidden units.
Several approaches have been proposed to induce a sparse representation (or
with more hidden units whose activation is closer to 0). One approach [97,
72, 120] is simply to penalize the L1 norm of the representation or another
function of the hidden units’ activation (such as the student-t log-prior). This
typically makes sense for non-linearities such as the sigmoid which have a
saturating output around 0, but not for the hyperbolic tangent non-linearity
(whose saturation is near the -1 and 1 interval borders rather than near
the origin). Another option is to penalize the biases of the hidden units,
to make them more negative [95, 81, 51, 69]. Note that penalizing the bias
runs the danger that the weights could compensate for the bias23, which
could hurt the numerical optimization of parameters. When directly penal-
izing the hidden unit outputs, several variants can be found in the literature,
but no clear comparative analysis has been published to evaluate which one
works better. Although the L1 penalty (i.e., simply α times the sum of out-
put elements hj in the case of sigmoid non-linearity) would seem the most
natural (because of its use in sparse coding), it is used in few papers involv-
ing sparse auto-encoders. A close cousin of the L1 penalty is the Student-t
penalty (log(1 + h2j)), originally proposed for sparse coding [89]. Several
researchers penalize the average output h̄j (e.g. over a mini-batch), and in-
stead of pushing it to 0, encourage it to approach a fixed target ρ. This
can be done through a mean-square error penalty such as

∑
j(ρ − h̄j)2, or

maybe more sensibly (because hj behaves like a probability), a Kullback-
Liebler divergence with respect to the binomial distribution with probability
ρ, −ρ log h̄j − (1− ρ) log(1− h̄j)+constant, e.g., with ρ = 0.05, as in [59]. In
addition to the regularization penalty itself, the choice of activation function

23 Because the input to the layer generally has a non-zero average, that when multiplied
by the weights acts like a bias.
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can have a strong impact on the sparsity obtained. In particular, rectifying
non-linearities (such as max(0, x), instead of a sigmoid) have been very suc-
cessful in several instances [64, 86, 49, 84, 50]. The rectifier also relates to the
hard tanh [35], whose derivatives are also 0 or 1. In sparse coding and sparse
predictive coding [65] the activations are directly optimized and actual zeros
are the expected result of the optimization. In that case, ordinary stochastic
gradient is not guaranteed to find these zeros (it will oscillate around) and
other methods such as proximal gradient are more appropriate [21].

– Neuron non-linearity. The typical neuron output is s(a) = s(w′x + b),
where x is the vector of inputs into the neuron, w the vector of weights and
b the offset or bias parameter, while s is a scalar non-linear function. Sev-
eral non-linearities have been proposed and some choices of non-linearities
have been shown to be more successful [64, 48, 49]. The most commonly
used by the author, for hidden units, are the sigmoid 1/(1 + e−a), the hy-
perbolic tangent ea−e−a

ea+e−a , the rectifier max(0, a) and the hard tanh [35]. Note
that the sigmoid was shown to yield serious optimization difficulties when
used as the top hidden layer of a deep supervised network [48] without
unsupervised pre-training, but works well for auto-encoder variants24. For
output (or reconstruction) units, hard neuron non-linearities like the recti-
fier do not make sense because when the unit is saturated (e.g. a < 0 for
the rectifier) and associated with a loss, no gradient is propagated inside the
network, i.e., there is no chance to correct the error25. In the case of hid-
den layers the gradient manages to go through a subset of the hidden units,
even if the others are saturated. For output units a good trick is to obtain
the output non-linearity and the loss by considering the associated negative
log-likelihood and choosing an appropriate (conditional) output probability
model, usually in the exponential family. For example, one can typically take
squared error and linear outputs to correspond to a Gaussian output model,
cross-entropy and sigmoids to correspond to a binomial output model, and
− log output[target class] with softmax outputs to correspond to multino-
mial output variables. For reasons yet to be elucidated, having a sigmoidal
non-linearity on the output (reconstruction) units (along with target inputs
normalized in the (0,1) interval) seems to be helpful when training the con-
tractive auto-encoder.

– Weights initialization scaling coefficient. Biases can generally be ini-
tialized to zero but weights need to be initialized carefully to break the

24 The author hypothesizes that this discrepency is due to the fact that the weight
matrix W of an auto-encoder of the form r(x) =W T sigmoid(Wx) is pulled towards
being orthonormal since this would make the auto-encoder closer to the identity
function, because W TWx ≈ x when W is orthonormal and x is in the span of the
rows of W .

25 A hard non-linearity for the output units non-linearity is very different from a hard
non-linearity in the loss function, such as the hinge loss. In the latter case the
derivative is 0 only when there is no error.
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symmetry between hidden units of the same layer26. Because different out-
put units receive different gradient signals, this symmetry breaking issue
does not concern the output weights (into the output units), which can
therefore also be set to zero. Although several tricks [79, 48] for initializing
the weights into hidden layers have been proposed (i.e. a hyper-parameter
is the discrete choice between them), Bergstra and Bengio [17] also inserted
as an extra hyper-parameter a scaling coefficient for the initialization range.
These tricks are based on the idea that units with more inputs (the fan-
in of the unit) should have smaller weights. Both LeCun et al. [79] and
Glorot and Bengio [48] recommend scaling by the inverse of the square
root of the fan-in, although Glorot and Bengio [48] and the Deep Learn-
ing Tutorials use a combination of the fan-in and fan-out, e.g., sample a
Uniform(−r, r) with r =

√
6/(fan-in+ fan-out) for hyperbolic tangent units

and r = 4
√
6/(fan-in + fan-out) for sigmoid units. We have found that we

could avoid any hyper-parameter related to initialization using these formu-
las (and the derivation in Glorot and Bengio [48] can be used to derive the
formula for other settings). Note however that in the case of RBMs, a zero-
mean Gaussian with a small standard deviation around 0.1 or 0.01 works
well [59] to initialize the weights, while visible biases are typically set to
their optimal value if the weights were 0, i.e., log(x̄/(1− x̄)) in the case of a
binomial visible unit whose corresponding binary input feature has empirical
mean x̄ in the training set.

An important choice is whether one should use unsupervised pre-training
(and which unsupervised feature learning algorithm to use) in order to ini-
tialize parameters. In most settings we have found unsupervised pre-training
to help and very rarely to hurt, but of course that implies additional training
time and additional hyper-parameters.

– Random seeds. There are often several sources of randomness in the train-
ing of neural networks and deep learners (such as for random initializa-
tion, sampling examples, sampling hidden units in stochastic models such
as RBMs, or sampling corruption noise in denoising auto-encoders). Some
random seeds could therefore yield better results than others. Because of the
presence of local minima in the training criterion of neural networks (except
in the linear case or with fixed lower layers), parameter initialization matters.
See Erhan et al. [44] for an example of histograms of test errors for hundreds
of different random seeds. Typically, the choice of random seed only has a
slight effect on the result and can mostly be ignored in general or for most
of the hyper-parameter search process. If computing power is available, then
a final set of jobs with different random seeds (5 to 10) for a small set of
best choices of hyper-parameter values can squeeze a bit more performance.
Another way to exploit computing power to push performance a bit is model
averaging, as in Bagging [29] and Bayesian methods. After training them,

26 By symmetry, if hidden units of the same layer share the same input and output
weights, they will compute the same output and receive the same gradient, hence
performing the same update and remaining identical, thus wasting capacity.
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the outputs of different networks (or in general different learning algorithms)
can be averaged. For example, the difference between the neural networks
being averaged into a committee may come from the different seeds used for
parameter initialization, or the use of different subsets of input variables, or
different subsets of training examples (the latter being called Bagging).

– Preprocessing. Many preprocessing steps have been proposed to massage
raw data into appropriate inputs for neural networks and model selection
must also choose among them. In addition to element-wise standardization
(subtract mean and divide by standard deviation), Principal Components
Analysis (PCA) has often been advocated [79, 17] and also allows dimen-
sionality reduction, at the price of an extra hyper-parameter (the number of
principal components retained, or the proportion of variance explained). A
convenient non-linear preprocessing is the uniformization [84] of each feature
(which estimates its cumulative distribution Fi and then transforms each fea-
ture xi by its quantile F−1

i (xi), i.e., returns an approximate normalized rank
or quantile for the value xi). A simpler to compute transform that may help
reduce the tails of input features is a non-linearity such as the logarithm or
the square root, in an attempt to make them more Gaussian-like.

In addition to the above somewhat generic choices, more choices arise with dif-
ferent architectures and learning algorithms. For example, the denoising auto-
encoder has a hyper-parameter scaling the amount of input corruption and the
contractive auto-encoder has as hyper-parameter a coefficient scaling the norm of
the Jacobian of the encoder, i.e., controlling the importance of the contraction
penalty. The latter seems to be a rather sensitive hyper-parameter that must
be tuned carefully. The contractive auto-encoder’s success also seems sensitive
to the weight tying constraint used in many auto-encoder architectures: the
decoder’s weight matrix is equal to the transpose of the encoder’s weight ma-
trix. The specific architecture used in the contractive auto-encoder (with tied
weights, sigmoid non-linearies on hidden and reconstruction units, along with
squared loss or cross-entropy loss) works quite well but other related variants do
not always train well, for reasons that remain to be understood.

There are also many architectural choices that are relevant in the case of
convolutional architectures (e.g. for modeling images, time-series or sound) [78,
80, 71] in which hidden units have local receptive fields.

19.3.3 Manual Search and Grid Search

Many of the hyper-parameters or model choices described above can be ignored
by picking a standard trick suggested here or in some other paper. Still, one
remains with a substantial number of choices to be made, which may give the
impression of neural network training as an art. With modern computing fa-
cilities based on large computer clusters, it is however possible to make the
optimization of hyper-parameters a more reproducible and automated process,
using techniques such as grid search or better, random search, or even hyper-
parameter optimization, discussed below.



19. Recommendations for Training Deep Architectures 457

General Guidance for the Exploration of Hyper-parameters. First of
all, let us consider recommendations for exploring hyper-parameter settings,
whether with manual search, with an automated procedure, or with a combi-
nation of both. We call a numerical hyper-parameter one that involves choosing
a real number or an integer (where order matters), as opposed to making a
discrete symbolic choice from an unordered set. Examples of numerical hyper-
parameters are regularization coefficients, number of hidden units, number of
training iterations, etc. One has to think of hyper-parameter selection as a diffi-
cult form of learning: there is both an optimization problem (looking for hyper-
parameter configurations that yield low validation error) and a generalization
problem: there is uncertainty about the expected generalization after optimizing
validation performance, and it is possible to overfit the validation error and get
optimistically biased estimators of performance when comparing many hyper-
parameter configurations. The training criterion for this learning is typically the
validation set error, which is a proxy for generalization error. Unfortunately,
the relation between hyper-parameters and validation error can be complicated.
Although to first approximation we expect a kind of U-shaped curve (when con-
sidering only a single hyper-parameter, the others being fixed), this curve can
also have noisy variations, in part due to the use of finite data sets.

– Best value on the border. When considering the validation error ob-
tained for different values of a numerical hyper-parameter one should pay
attention as to whether or not the best value found is near the border of the
investigated interval. If it is near the border, then this suggests that better
values can be found with values beyond the border: it is recommended in
that case to explore further, beyond that border. Because the relation be-
tween a hyper-parameter and validation error can be noisy, it is generally
not enough to try very few values. For instance, trying only 3 values for a
numerical hyper-parameter is insufficient, even if the best value found is the
middle one.

– Scale of values considered. Exploring values of a numerical
hyper-parameter entails choosing a starting interval to be searched, which
is therefore a kind of hyper-hyper-parameter. By choosing the interval large
enough to start with, but based on previous experience with this hyper-
parameter, we ensure that we do not get completely wrong results. Now
instead of choosing the intermediate values linearly in the chosen interval,
it often makes much more sense to consider a linear or uniform sampling
in the log-domain (in the space of the logarithm of the hyper-parameter).
For example, the results obtained with a learning rate of 0.01 are likely to
be very similar to the results with 0.011 while results with 0.001 could be
quite different from results with 0.002 even though the absolute difference is
the same in both cases. The ratio between different values is often a better
guide of the expected impact of the change. That is why exploring uniformly
or regularly-spaced values in the space of the logarithm of the numerical
hyper-parameter is typically preferred for positive-valued numerical hyper-
parameters.
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– Computational considerations. Validation error is actually not the only
measure to consider in selecting hyper-parameters. Often, one has to con-
sider computational cost, either of training or prediction. Computing re-
sources for training and prediction are limited and generally condition the
choice of intervals of considered values: for example increasing the number
of hidden units or number of training iterations also scales up computation.
An interesting idea is to use computationally cheap estimators of validation
error to select some hyper-parameters. For example, Saxe et al. [105] showed
that the architecture hyper-parameters of convolutional networks could be
selected using random weights in the lower layers of the network (filters of
the convolution). While this yields a noisy and biased (pessimistic) esti-
mator of the validation error which would otherwise be obtained with full
training, this cheap estimator appears to be correlated with the expensive
validation error. Hence this cheap estimator is enough for selecting some
hyper-parameters (or for keeping under consideration for further and more
expensive evaluation only the few best choices found). Even without cheap
estimators of generalization error, high-throughput computing (e.g., on clus-
ters, GPUs, or clusters of GPUs) can be exploited to run not just hundreds
but thousands of training jobs, something not conceivable only a few years
ago, with each job taking on the order of hours or days for larger datasets.
With computationally cheap surrogates, some researchers have run on the
order of ten thousands trials, and we can expect future advances in paral-
lelized computing power to boost these numbers.

Coordinate Descent and Multi-resolution Search. When performing a
manual search and with access to only a single computer, a reasonable strategy
is coordinate descent: change only one hyper-parameter at a time, always making
a change from the best configuration of hyper-parameters found up to now.
Instead of a standard coordinate descent (which systematically cycles through
all the variables to be optimized) one can make sure to regularly fine-tune the
most sensitive variables, such as the learning rate.

Another important idea is that there is no point in exploring the effect of
fine changes before one or more reasonably good settings have been found. The
idea of multi-resolution search is to start the search by considering only a few
values of the numerical hyper-parameters (over a large range), or considering
large changes each time a new value is tried. One can then start from the one
or few best configurations found and explore more locally around them with
smaller variations around these values.

Automated and Semi-automated Grid Search. Once some interval or set
of values has been selected for each hyper-parameter (thus defining a search
space), a simple strategy that exploits parallel computing is the grid search.
One first needs to convert the numerical intervals into lists of values (e.g., K
regularly-spaced values in the log-domain of the hyper-parameter). The grid
search is simply an exhaustive search through all the combinations of these
values. The cross-product of these lists contains a number of elements that



19. Recommendations for Training Deep Architectures 459

is unfortunately exponential in the number of hyper-parameters (e.g., with 5
hyper-parameters, each allowed to take 6 different values, one gets 65 = 7776
configurations). In section 19.3.4 below we consider an approach that works more
efficiently than the grid search when the number of hyper-parameters increases
beyond 2 or 3.

The advantage of the grid search, compared to many other optimization strate-
gies (such as coordinate descent), is that it is fully parallelizable. If a large com-
puter cluster is available, it is tempting to choose a model selection strategy that
can take advantage of parallelization. One practical disadvantage of grid search
(especially against random search, Sec. 19.3.4), with a parallelized set of jobs on
a cluster, is that if only one of the jobs fails27 then one has to launch another
volley of jobs to complete the grid (and yet a third one if any of these fails, etc.),
thus multiplying the overall computing time.

Typically, a single grid search is not enough and practitioners tend to pro-
ceed with a sequence of grid searches, each time adjusting the ranges of values
considered based on the previous results obtained. Although this can be done
manually, this procedure can also be automated by considering the idea of multi-
resolution search to guide this outer loop. Different, more local, grid searches can
be launched in the neighborhood of the best solutions found previously. In ad-
dition, the idea of coordinate descent can also be thrown in, by making each
grid search focus on only a few of the hyper-parameters. For example, it is com-
mon practice to start by exploring the initial learning rate while keeping fixed
(and initially constant) the learning rate descent schedule. Once the shape of
the schedule has been chosen, it may be possible to further refine the learning
rate, but in a smaller interval around the best value found.

Humans can get very good at performing hyper-parameter search, and having
a human in the loop also has the advantage that it can help detect bugs or
unwanted or unexpected behavior of a learning algorithm. However, for the sake
of reproducibility, machine learning researchers should strive to use procedures
that do not involve human decisions in the middle, only at the outset (e.g.,
setting hyper-parameter ranges, which can be specified in a paper describing the
experiments).

Layer-Wise Optimization of Hyper-parameters. In the case of Deep Learn-
ing with unsupervised pre-training there is an opportunity for combining coor-
dinate descent and cheap relative validation set performance evaluation associ-
ated with some hyper-parameter choices. The idea, described by Mesnil et al.
[84], Bengio [8], is to perform greedy choices for the hyper-parameters associ-
ated with lower layers (near the input) before training the higher layers. One
first trains (unsupervised) the first layer with different hyper-parameter values
and somehow estimates the relative validation error that would be obtained from
these different configurations if the final network only had this single layer as
internal representation. In the common case where the ultimate task is super-
vised, it means training a simple supervised predictor (e.g. a linear classifier) on

27 For all kinds of hardware and software reasons, a job failing is very common.
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top of the learned representation. In the case of a linear predictor (e.g. regres-
sion or logistic regression) this can even be done on the fly while unsupervised
training of the representation progresses (i.e. can be used for early stopping as
well), as in [70]. Once a set of apparently good (according to this greedy evalu-
ation) hyper-parameters values has been found (or possibly using only the best
one found), these good values can be used as starting point to train (and hyper-
optimize) a second layer in the same way, etc. The completely greedy approach is
to keep only the best configuration up to now (for the lower layers), but keeping
the K best configurations overall only multiplies computational costs of hyper-
parameter selection by K for layers beyond the first one, because we would
still keep only the best K configurations from all the 1st layer and 2nd layer
hyper-parameters as starting points for exploring 3rd layer hyper-parameters,
etc. This procedure is formalized in the Algorithm 19.1 below. Since greedy
layer-wise pre-training does not modify the lower layers when pre-training the
upper layers, this is also very efficient computationally. This procedure allows
one to set the hyper-parameters associated with the unsupervised pre-training
stage, and then there remains hyper-parameters to be selected for the supervised
fine-tuning stage, if one is desired. A final supervised fine-tuning stage is strongly
suggested, especially when there are many labeled examples [67].

19.3.4 Random Sampling of Hyper-parameters

A serious problem with the grid search approach to find good hyper-parameter
configurations is that it scales exponentially badly with the number of hyper-
parameters considered. In the above sections we have discussed numerous hyper-
parameters and if all of them were to be explored at the same time it would be
impossible to use only a grid search to do so.

One may think that there are no other options simply because this is an in-
stance of the curse of dimensionality. But like we have found in our work on Deep
Learning [7], if there is some structure in a target function we are trying to dis-
cover, then there is a chance to find good solutions without paying an exponential
price. It turns out that in many practical cases we have encountered, there is
a kind of structure that random sampling can exploit [17]. The idea of random
sampling is to replace the regular grid by a random (typically uniform) sam-
pling. Each tested hyper-parameter configuration is selected by independently
sampling each hyper-parameter from a prior distribution (typically uniform in
the log-domain, inside the interval of interest). For a discrete hyper-parameter,
a multinomial distribution can be defined according to our prior beliefs on the
likely good values. At worse, i.e., with no prior preference at all, this would be
a uniform distribution across the allowed values. In fact, we can use our prior
knowledge to make this prior distribution quite sophisticated. For example, we
can readily include knowledge that some values of some hyper-parameters only
make sense in the context of other particular values of hyper-parameters. This
is a practical consideration for example when considering layer-specific hyper-
parameters when the number of layers itself is a hyper-parameter.
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Algorithm 19.1 Greedy layer-wise hyper-parameter optimization.
input K: number of best configurations to keep at each level.
input NLEV ELS: number of levels of the deep architecture
input LEV ELSETTINGS: list of hyper-parameter settings to be considered
for unsupervised pre-training of a level
input SFTSETTINGS: list of hyper-parameter settings to be considered for
supervised fine-tuning

Initialize set of best configurations S = ∅
for L = 1 to NLEV ELS do

for C in LEV ELSETTINGS do
for H in (S or {∅}) do

* Pretrain level L using hyper-parameter setting C for level L and
the parameters obtained with setting H for lower levels.

* Evaluate target task performance L using this depth-L pre-trained
architecture (e.g. train a linear classifier on top of these layers and estimate
validation error).

* Push the pair (C∪H,L) into S if it is among theK best performing
of S.

end for
end for

end for
for C in SFTSETTINGS do

for H in S do
* Supervised fine-tuning of the pre-trained architecture associated with

H , using supervised fine-tuning hyper-parameter setting C.
* Evaluate target task performance L of this fine-tuned predictor (e.g.

validation error).
* Push the pair (C ∪H,L) into S if it is among the K best performing

of S.
end for

end for
output S the set of K best-performing models with their settings and vali-
dation performance.
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The experiments performed [17] show that random sampling can be many
times more efficient than grid search as soon as the number of hyper-parameters
goes beyond the 2 or 3 typically seen with SVMs and vanilla neural networks.
The main reason why faster convergence is observed is because it allows one to
explore more values for each hyper-parameter, whereas in grid search, the same
value of a hyper-parameter is repeated in exponentially many configurations (of
all the other hyper-parameters). In particular, if only a small subset of the hyper-
parameters really matters, then this procedure can be shown to be exponentially
more efficient. What we found is that for different datasets and architectures, the
subset of hyper-parameters that mattered most was different, but it was often
the case that a few hyper-parameters made a big difference (and the learning rate
is always one of them!). When marginalizing (by averaging or minimizing) the
validation performance to visualize the effect of one or two hyper-parameters,
we get a more noisy picture using a random search compared to a grid search,
because of the random variations of the other hyper-parameters but one with
much more resolution, because so many more different values have been consid-
ered. Practically, one can plot the curves of best validation error as the number
of random trials28 is increased (with mean and standard deviation, obtained by
considering, for each choice of number of trials, all possible same-size subsets of
trials), and this curve tells us that we are approaching a plateau, i.e., it tells
us whether it is worth it or not to continue launching jobs, i.e., we can per-
form a kind of early stopping in the outer optimization over hyper-parameters.
Note that one should distinguish the curve of the “best trial in first N trials”
with the curve of the mean (and standard deviation) of the “best in a subset
of size N”. The latter is a better statistical representative of the improvements
we should expect if we increase the number of trials. Even if the former has a
plateau, the latter may still be on the increase, pointing for the need to more
hyper-parameter configuration samples, i.e., more trials [17]. Comparing these
curves with the equivalent obtained from grid search we see faster convergence
with random search. On the other hand, note that one advantage of grid search
compared to random sampling is that the qualitative analysis of results is eas-
ier because one can consider variations of a single hyper-parameter with all the
other hyper-parameters being fixed. It may remain a valid option to do a small
grid search around the best solutions found by random search, considering only
the hyper-parameters that were found to matter or which concern a scientific
question of interest29.

Random search maintains the advantage of easy parallelization provided by
grid search and improves on it. Indeed, a practical advantage of random search
compared to grid search is that if one of the jobs fails then there is no need to
re-launch that job. It also means that if one has launched 100 random search

28 Each random trial corresponding to a training job with a particular choice of hyper-
parameter values.

29 This is often the case in machine learning research, e.g., does depth of architecture
matter? then we need to control accurately for the effect of depth, with all other
hyper-parameters optimized for each value of depth.
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jobs, and finds that the convergence curve still has an interesting slope, one can
launch another 50 or 100 without wasting the first 100. It is not that simple to
combine the results of two grid searches because they are not always compatible
(i.e., one is not a subset of the other).

Finally, although random search is a useful addition to the toolbox of the
practitioner, semi-automatic exploration is still helpful and one will often iterate
between launching a new volley of jobs and analysis of the results obtained with
the previous volley in order to guide model design and research. What we need
is more, and more efficient, automation of hyper-parameter optimization. There
are some interesting steps in this direction [62, 19, 63, 109] but much more needs
to done.

19.4 Debugging and Analysis

19.4.1 Gradient Checking and Controlled Overfitting

A very useful debugging step consists in verifying that the implementation of
the gradient ∂L

∂θ is compatible with the computation of L as a function of θ. If
the analytically computed gradient does not match the one obtained by a finite
difference approximation, this signals that a bug is probably present somewhere.
First of all, looking at for which i one gets important relative change between ∂L

∂θi
and its finite difference approximation, we can get hints as to where the problem
may be. An error in sign is particularly troubling, of course. A good next step is
then to verify in the same way intermediate gradients ∂L

∂a with a some quantities
that depend on the faulty θ, such as intervening neuron activations.

As many researchers know, the gradient can be approximated by a finite
difference approximation obtained from the first-order Taylor expansion of a
scalar function f with respect to a scalar argument x:

∂f(x)

∂x
=
f(x+ ε)− f(x)

ε
+ o(ε)

But a less known fact is that a second order approximation can be achieved by
considering the following alternative formula:

∂f(x)

∂x
≈ f(x+ ε)− f(x− ε)

2ε
+ o(ε2).

The second order terms of the Taylor expansion of f(x+ ε) and f(x− ε) cancel
each other because they are even, leaving only 3rd or higher order terms, i.e.,
o(ε2) error after dividing the difference by ε. Hence this formula is twice more
expensive (not a big deal while debugging) but provides quadratically more
precision.

Note that because of finite precision in the computation, there will be a differ-
ence between the analytic (even correct) and finite difference gradient. Contrary
to naive expectations, the relative difference may grow if we choose an ε that is
too small, i.e., the error should first decrease as ε is decreased, and then may
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worsen when numerical precision kicks in, due to non-linearities. We have often
used a value of ε = 10−4 in neural networks, a value that is sufficiently small to
detect most bugs.

Once the gradient is known to be well computed, another sanity check is that
gradient descent (or any other gradient-based optimization) should be able to
overfit on a small training set30. In particular, to factor out effects of SGD hyper-
parameters, a good sanity check for the code (and the other hyper-parameters)
is to verify that one can overfit on a small training set using a powerful second
order method such as L-BFGS. For any optimizer, though, as the number of
examples is increased, the degradation of training error should be gradual while
validation error should improve. And one typically sees the advantages of SGD
over batch second-order methods like L-BFGS increase as the training set size
increases. The break-even point may depend on the task, parallelization (multi-
core or GPU, see Sec.19.5 below), and architecture (number of computations
compared to number of parameters, per example).

Of course, the real goal of learning is to achieve good generalization error,
and the latter can be estimated by measuring performance on an independent
test set. When test error is considered too high, the first question to ask is
whether it is because of a difficulty in optimizing the training criterion or because
of overfitting. Comparing training error and test error (and how they change
as we change hyper-parameters that influence capacity, such as the number of
training iterations) helps to answer that question. Depending on the answer, of
course, the appropriate ways to improve test error are different. Optimization
difficulties can be fixed by looking for bugs in the training code, inappropriate
values of optimization hyper-parameters, or simply insufficient capacity (e.g.
not enough degrees of freedom, hidden units, embedding sizes, etc.). Overfitting
difficulties can be addressed by collecting more training data, introducing more
or better regularization terms, multi-task training, unsupervised pre-training,
unsupervised term in the training criterion, or considering different function
families (or neural network architectures). In a multi-layer neural network, both
problems can be simultaneously present. For example, as discussed in Bengio
et al. [14], Bengio [7], it is possible to have zero training error with a large top-
level hidden layer that allows the output layer to overfit, while the lower layer
are not doing a good job of extracting useful features because they were not
properly optimized.

Unless using a framework such as Theano which automatically handles the
efficient allocation of buffers for intermediate results, it is important to pay
attention to such buffers in the design of the code. The first objective is to
avoid memory allocation in the middle of the training loop, i.e., all memory
buffers should be allocated once and for all. Careless reuse of the same memory

30 In principle, bad local minima could prevent that, but in the overfitting regime,
e.g., with more hidden units than examples, the global minimum of the training
error can generally be reached almost surely from random initialization, presumably
because the training criterion becomes convex in the parameters that suffice to get
the training error to zero [12], i.e., the output weights of the neural network.
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buffers for different uses can however lead to bugs, which can be checked, in
the debugging phase, by initializing buffers to the NaN (Not-A-Number) value,
which propagates into downstream computation (making it easy to detect that
uninitialized values were used)31.

19.4.2 Visualizations and Statistics

The most basic statistics that should be measured during training are error
statistics. The average loss on the training set and the validation set and their
evolution during training are very useful to monitor progress and differentiate
overfitting from poor optimization. To make comparisons easier, it may be useful
to compare neural networks during training in terms of their “age” (number of
updates made times mini-batch size B, i.e., number of examples visited) rather
than in terms of number of epochs (which is very sensitive to the training set
size).

When using unsupervised training to learn the first few layers of a deep ar-
chitecture, a very common debugging and analysis tool is the visualization of
filters, i.e., of the weight vectors associated with individual hidden units. This is
simplest in the case of the first layer and where the inputs are images (or image
patches), time-series, or spectrograms (all of which are visually interpretable).
Several recipes have been proposed to extend this idea to visualize the preferred
input of hidden units in layers that follow the first one [81, 43]. In the case of the
first layer, since one often obtains Gabor filters, a parametric fit of these filters to
the weight vector can be done so as to visualize the distribution of orientations,
positions and scales of the learned filters. An interesting special case of visualiz-
ing first-layer weights is the visualization of word embeddings (see Section 19.5.3
below) using a dimensionality reduction technique such as t-SNE [113].

An extension of the idea of visualizing filters (which can apply to non-linear or
deeper features) is that of visualizing local (arount the given test point) leading
tangent vectors, i.e., the main directions in input space to which the represen-
tation (at a given layer) is most sensitive to [100].

In the case where the inputs are not images or easily visualizable, or to get
a sense of the weight values in different hidden units, Hinton diagrams [58] are
also very useful, using small squares whose color (black or white) indicates a
weight’s sign and whose area represents its magnitude.

Another way to visualize what has been learned by an unsupervised (or joint
label-input) model is to look at samples from the model. Sampling procedures
have been defined at the outset for RBMs, Deep Belief Nets, and Deep Boltz-
mann Machines, for example based on Gibbs sampling. When weights become
larger, mixing between modes can become very slow with Gibbs sampling. An
interesting alternative is rates-FPCD [112, 30] which appears to be more robust
to this problem and generally mixes faster, but at the cost of losing theoretical
guarantees.

31 Personal communication from David Warde-Farley, who learned this trick from Sam
Roweis.
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In the case of auto-encoder variants, it was not clear until recently whether
they were really capturing the underlying density (since they are not optimized
with respect to the maximum likelihood principle or an approximation of it). It
was therefore even less clear if there existed appropriate sampling algorithms for
auto-encoders, but a recent proposal for sampling from contractive auto-encoders
appears to be working very well [101], based on arguments about the geometric
interpretation of the first derivative of the encoder [16], showing that denoising
and contractive auto-encoders capture local moments (first and second) of the
training density.

To get a sense of what individual hidden units represent, it has also been
proposed to vary only one unit while keeping the others fixed, e.g., to the value
obtained by finding the hidden units representation associated with a particular
input example.

Another interesting technique is the visualization of the learning trajectory in
function space [44]. The idea is to associate the function (as opposed to simply
the parameters) computed by a neural network with a low-dimensional (2-D
or 3-D) representation, e.g., with the t-SNE [113] or Isomap [111] algorithms,
and then plot the evolution of this function during training, or the population
of such trajectories for different initializations. This provides visualization of
effective local minima32 and shows that no two different random initializations
ended up in the same effective local minimum.

Finally, another useful type of visualization is to display statistics (e.g., his-
togram, mean and standard deviation) of activations (inputs and outputs of the
non-linearities at each layer), activation gradients, parameters and parameter
gradients, by groups (e.g. different layers, biases vs weights) and across training
iterations. See Glorot and Bengio [48] for a practical example. A particularly in-
teresting quantity to monitor is the discriminative ability of the representations
learnt at each layer, as discussed in [85], and ultimately leading to an analysis of
the disentangled factors captured by the different layers as we consider deeper
architectures.

19.5 Other Recommendations

19.5.1 Multi-core Machines, BLAS and GPUs

Matrix operations are the most time-consuming in efficient implementations of
many machine learning algorithms and this is particularly true of neural net-
works and deep architectures. The basic operations are matrix-vector products
(forward propagation and back-propagation) and vector times vector outer prod-
ucts (resulting in a matrix of weight gradients). Matrix-matrix multiplications
can be done substantially faster than the equivalent sequence of matrix-vector
products for two reasons: by smart caching mechanisms such as implemented in
the BLAS library (which is called from many higher-level environments such as
32 It is difficult to know for sure if it is a true local minima or if it appears like one

because the optimization algorithm is stuck.
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python’s numpy and Theano, Matlab, Torch or Lush), and thanks to parallelism.
Appropriate versions of BLAS can take advantage of multi-core machines to dis-
tribute these computations on multi-core machines. The speed-up is however
generally a fraction of the total speedup one can hope for (e.g. 4× on a 4-core
machine), because of communication overheads and because not all computa-
tion is parallelized. Parallelism becomes more efficient when the sizes of these
matrices is increased, which is why mini-batch updates can be computationally
advantageous, and more so when more cores are present.

The extreme multi-core machines are the GPUs (Graphics Processing Units),
with hundreds of cores. Unfortunately, they also come with constraints and spe-
cialized compilers which make it more difficult to fully take advantage of their
potential. On 512-core machines, we are routinely able to get speed-ups of 4×
to 40× for large neural networks. To make the use of GPUs practical, it re-
ally helps to use existing libraries that efficiently implement computations on
GPUs. See Bergstra et al. [18] for a comparative study of the Theano library
(which compiles numpy-like code for GPUs). One practical issue is that only the
GPU-compiled operations will typically be done on the GPU, and that trans-
fers between the GPU and CPU considerably slow things down. It is important
to use a profiler to find out what is done on the GPU and how efficient these
operations are in order to quickly invest one’s time where needed to make an
implementation GPU-efficient and keep most operations on the GPU card.

19.5.2 Sparse High-Dimensional Inputs

Sparse high-dimensional inputs can be efficiently handled by traditional super-
vised neural networks by using a sparse matrix multiplication. Typically, the
input is a sparse vector while the weights are in a dense matrix, and one should
use an efficient implementation made for just this case in order to optimally take
advantage of sparsity. There is still going to be an overhead on the order of 2×
or more (on the multiply-add operations, not the others) compared to a dense
implementation of the matrix-vector product.

For many unsupervised learning algorithms there is unfortunately a difficulty.
The computation for these learning algorithms usually involves some kind of
reconstruction of the input (like for all auto-encoder variants, but also for RBMs
and sparse coding variants), as if the inputs were in the output space of the
learner. Two exceptions to this problem are semi-supervised embedding [117]
and Slow Feature Analysis [119, 20]. The former pulls the representation of
nearby examples near each other and pushes dissimilar points apart, while also
tuning the representation for a supervised learning task. The latter maximizes
the learned features’ variance while minimizing their covariance and maximizing
their temporal auto-correlation.

For algorithms that do need a form of input reconstruction, an efficient ap-
proach based on sampled reconstruction [39] has been proposed, successfully
implemented and evaluated for the case of auto-encoders and denoising auto-
encoders. The first idea is that on each example (or mini-batch), one samples
a subset of the elements of the reconstruction vector, along with the associated
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reconstruction loss. One only needs to compute the reconstruction and the loss
associated with these sampled elements (or features), as well as the associated
back-propagation operations into hidden units and reconstruction weights. That
alone would multiplicatively reduce the computational cost by the amount of
sparsity but make the gradient much more noisy and possibly biased as well, if
the sampling distribution was chosen not uniform. To reduce the variance of that
estimator, the idea is to guess for which features the reconstruction loss will be
larger and to sample with higher probability these features (and their loss). In
particular, the authors always sample the features with a non-zero in the input
(or the corrupted input, in the denoising case), and uniformly sample an equal
number of those with a zero in the input and corrupted input. To make the
estimator unbiased now requires introducing a weight on the reconstruction loss
associated with each sampled feature, inversely proportional to the probability
of sampling it, i.e., this is an importance sampling scheme. The experiments
show that the speed-up increases linearly with the amount of sparsity while the
average loss is optimized as well as in the deterministic full-computation case.

19.5.3 Symbolic Variables, Embeddings, Multi-task Learning and
Multi-relational Learning

Parameter sharing [68, 77, 68, 31, 4, 5] is an old neural network technique for
increasing statistical power: if a parameter is used in N times more contexts
(different tasks, different parts of the input, etc.) then it may be as if we had N
times more training examples for tuning its value. More examples to estimate a
parameter reduces its variance (with respect to sampling of training examples),
which is directly influencing generalization error: for example the generalization
mean squared error can be decomposed as the sum of a bias term and a variance
term [46]. The reuse idea was first exploited by applying the same parameter
to different parts of the input, as in convolutional neural networks [68, 77].
Reuse was also exploited by sharing the lower layers of a network (and the
representation of the input that they capture) across multiple tasks associated
with different outputs of the network [31, 4, 5]. This idea is also one of the key
motivations behind Deep Learning [7] because one can think of the intermediate
features computed in higher (deeper) layers as different tasks that can share the
sub-features computed in lower layers (nearer the input). This very basic notion
of reuse is key to improving generalization in many settings, guiding the design
of neural network architectures in practical applications as well.

An interesting special case of these ideas is in the context of learning with
symbolic data. If some input variables are symbolic, taking value in a finite
alphabet, they can be represented as neural network inputs by a one-hot sub-
vector of the input vector (with a 0 everywhere except at the position associated
with the particular symbol). Now, sometimes different input variables refer to
different instances of the same type of symbol. A patent example is with neu-
ral language models [11, 6], where the input is a sequence of words. In these
models, the same input layer weights are reused for words at different positions
in the input sequence (as in convolutional networks). The product of a one-hot



19. Recommendations for Training Deep Architectures 469

sub-vector with this shared weight matrix is a generally dense vector, and this
associates each symbol in the alphabet with a point in a vector space33, which
we call its embedding. The idea of vector space representations for words and
symbols is older [40] and is a particular case of the notion of distributed repre-
sentation [57, 58] central to the connectionist approaches. Learned embeddings of
symbols (or other objects) can be conveniently visualized using a dimensionality
reduction algorithm such as t-SNE [113].

In addition to sharing the embedding parameters across positions of words
in an input sentence, Collobert et al. [36] share them across natural language
processing tasks such as Part-Of-Speech tagging, chunking and semantic role
labeling. Parameter sharing is a key idea behind convolutional nets, recurrent
neural networks and dynamic Bayes nets, in which the same parameters are used
for different temporal or spatial slices of the data. This idea has been generalized
from sequences and 2-D images to arbitrary graphs with recursive neural net-
works or recursive graphical models [92, 45, 25, 108], Markov Logic Networks [98]
and relational learning [47]. A relational database can be seen as a set of objects
(or typed values) and relations between them, of the form (object1, relation-
type, object2). The same global set of parameters can be shared to characterize
such relations, across relations (which can be seen as tasks) and objects. Object-
specific parameters are the parameters specifying the embedding of a particular
discrete object. One can think of the elements of each embedding vector as im-
plicit learned attributes. Different tasks may demand different attributes, so that
objects which share some underlying characteristics and behavior should end
up having similar values of some of their attributes. For example, words ap-
pearing in semantically and syntactically similar contexts end up getting a very
close embedding [36]. If the same attributes can be useful for several tasks, then
statistical power is gained through parameter sharing, and transfer of informa-
tion between tasks can happen, making the data of some task informative for
generalizing properly on another task.

The idea proposed in Bordes et al. [23, 24] is to learn an energy function that
is lower for positive (valid) relations present in the training set, and parametrized
in two parts: on the one hand the symbol embeddings and on the other hand the
rest of the neural network that maps them to a scalar energy. In addition, by
considering relation types themselves as particular symbolic objects, the model
can reason about relations themselves and have relations between relation types.
For example, ‘To be’ can act as a relation type (in subject-attribute relations)
but in the statement “ ‘To be’ is a verb” it appears both as a relation type and
as an object of the relation.

Such multi-relational learning opens the door to the application of neural
networks outside of their traditional applications, which was based on a single
homogeneous source of data, often seen as a matrix with one row per example
and one column (or group of columns) per random variable. Instead, one often
has multiple heterogeneous sources of data (typically providing examples seen

33 The result of the matrix multiplication, which equals one of the columns of the
matrix.
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as a tuple of values), each involving different random variables. So long as these
different sources share some variables, then the above multi-relational multi-
task learning approaches can be applied. Each variable can be associated with its
embedding function (that maps the value of a variable to a generic representation
space that is valid across tasks and data sources). This framework can be applied
not only to symbolic data but to mixed symbolic/numeric data if the mapping
from object to embedding is generalized from a table look-up to a parametrized
function (the simplest being a linear mapping) from its raw attributes (e.g.,
image features) to its embedding. This has been exploited successfully to design
image search systems in which images and queries are mapped to the same
semantic space [118].

19.6 Open Questions

19.6.1 On the Added Difficulty of Training Deeper Architectures

There are experimental results which provide some evidence that, at least in
some circumstances, deeper neural networks are more difficult to train than
shallow ones, in the sense that there is a greater chance of missing out on bet-
ter minima when starting from random initialization. This is borne out by all
the experiments where we find that some initialization scheme can drastically
improve performance. In the Deep Learning literature this has been shown with
the use of unsupervised pre-training (supervised or not), both applied to super-
vised tasks — training a neural network for classification [61, 14, 95] — and
unsupervised tasks — training a Deep Boltzmann Machine to model the data
distribution [104].

The learning trajectories visualizations of Erhan et al. [44] have shown that
even when starting from nearby configurations in function space, different initial-
izations seem to always fall in a different effective local minimum. Furthermore,
the same study showed that the minima found when using unsupervised pre-
training were far in function space from those found from random initialization,
in addition to giving better generalization error. Both of these findings highlight
the importance of initialization, hence of local minima effects, in deep networks.
Finally, it has been shown that these effects were both increased when consider-
ing deeper architectures [44].

There are also results showing that specific ways of setting the initial dis-
tribution and ordering of examples (“curriculum learning”) can yield better so-
lutions [42, 15, 66]. This also suggest that very particular ways of initializing
parameters, very different from uniformly sampled, can have a strong impact
on the solutions found by gradient descent. The hypothesis proposed in [15] is
that curriculum learning can act similarly to a continuation method, i.e., starting
from an easier optimization task (e.g. convex) and tracking the local minimum
as the learning task is gradually made more difficult and closer to the real task
of interest.

Why would training deeper networks be more difficult? This is clearly still
an open question. A plausible partial answer is that deeper networks are also
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more non-linear (since each layer composes more non-linearity on top of the
previous ones), making gradient-based methods less efficient. It may also be
that the number and structure of local minima both change qualitatively as we
increase depth. Theoretical arguments support a potentially exponential gain in
expressive power of deeper architectures [7, 9] and it would be plausible that
with this added expressive power coming from the combinatorics of composed
reuse of sub-functions could come a corresponding increase in the number (and
possibly quality) of local minima. But the best ones could then also be more
difficult to find.

On the practical side, several experimental results point to factors that may
help training deep architectures:

– A local training signal. What many successful procedures for training
deep networks have in common is that they involve a local training signal that
helps each layer decide what to do without requiring the back-propagation
of gradients through many non-linearities. This includes of course the many
variants of greedy layer-wise pre-training but also the less well-known semi-
supervised embedding algorithm [117].

– Initialization in the right range. Based on the idea that both activations
and gradients should be able to flow well through a deep architecture without
significant reduction in variance, Glorot and Bengio [48] proposed setting up
the initial weights to make the Jacobian of each layer have singular values
near 1 (or preserve variance in both directions). In their experiments this
clearly helped greatly reducing the gap between purely supervised and pre-
trained deep networks.

– Choice of non-linearities. In the same study [48] and a follow-up [49]
it was shown that the choice of hidden layer non-linearities interacted with
depth. In particular, without unsupervised pre-training, a deep neural net-
work with sigmoids in the top hidden layer would get stuck for a long time
on a plateau and generally produce inferior results, due to the special role
of 0 and of the initial gradients from the output units. Symmetric non-
linearities like the hyperbolic tangent did not suffer from that problem, while
softer non-linearities (without exponential tails) such as the softsign func-
tion s(a) = a

1+|a| worked even better. In Glorot et al. [49] it was shown
that an asymmetric but hard-limiting non-linearity such as the rectifier
(s(a) = max(0, a), see also [86]) actually worked very well (but should not
be used for output units), in spite of the prior belief that the fact that when
hidden units are saturated, gradients would not flow well into lower layers.
In fact gradients flow very well, but on selected paths, possibly making the
credit assignment (which parameters should change to handle the current
error) sharper and the Hessian condition number better. A recent heuristic
that is related to the difficulty of gradient propagation through neural net
non-linearities is the idea of “centering” the non-linear operation such that
each hidden unit has zero average output and zero average slope [107, 94].
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19.6.2 Adaptive Learning Rates and Second-Order Methods

To improve convergence and remove learning rates from the list of
hyper-parameters, many authors have advocated exploring adaptive learning
rate methods, either for a global learning rate [32], a layer-wise learning rate,
a neuron-wise learning rate, or a parameter-wise learning rate [22] (which then
starts to look like a diagonal Newton method). LeCun [76], LeCun et al. [79]
advocate the use of a second-order diagonal Newton (always positive) approxi-
mation, with one learning rate per parameter (associated with the approximated
inverse second derivative of the loss with respect to the parameter). Hinton [59]
proposes scaling learning rates so that the average weight update is on the order
of 1/1000th of the weight magnitude. LeCun et al. [79] also propose a simple
power method in order to estimate the largest eigenvalue of the Hessian (which
would be the optimal learning rate). An interesting alternative to variants of
Newton’s method are variants of the natural gradient method [1], but like the
basic Newton method it is computationally too expensive, requiring operations
on a too large square matrix (number of parameters by number of parame-
ters). Diagonal and low-rank online approximations of natural gradient [73, 74]
have been proposed and shown to speed-up training in some contexts. Several
adaptive learning rate procedures have been proposed recently and merit more
attention and evaluations in the neural network context, such as adagrad [41]
and the adaptive learning rate method from Schaul et al. [106] which claims to
remove completely the need for a learning rate hyper-parameter.

Whereas stochastic gradient descent converges very quickly initially it is gen-
erally slower than second-order methods for the final convergence, and this may
be important in some applications. As a consequence, batch training algorithms
(performing only one update after seeing the whole training set) such as the
Conjugate Gradient method (a second order method) have dominated stochas-
tic gradient descent for not too large datasets (e.g. less than thousands or tens
of thousands of examples). Furthermore, it has recently been proposed and suc-
cessfully applied to use second-order methods over large mini-batches [72, 83].
The idea is to do just a few iterations of the second-order methods on each mini-
batch and then move on to the next mini-batch, starting from the best previous
point found. A useful twist is to start training with one or more epoch of SGD,
since SGD remains the fastest optimizer early on in training.

At this point in time however, although the second-order and natural gradient
methods are appealing conceptually, have demonstrably helped in the studied
cases and may in the end prove to be very important, they have not yet become
a standard for neural networks optimization and need to be validated and maybe
improved by other researchers, before displacing simple (mini-batch) stochastic
gradient descent variants.

19.7 Conclusion

In spite of decades of experimental and theoretical work on artificial neural
networks, and with all the impressive progress made since the first edition of
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this book, in particular in the area of Deep Learning, there is still much to
be done to better train neural networks and better understand the underlying
issues that can make the training task difficult. As stated in the introduction, the
wisdom distilled here should be taken as a guideline, to be tried and challenged,
not as a practice set in stone. The practice summarized here, coupled with the
increase in available computing power, now allows researchers to train neural
networks on a scale that is far beyond what was possible at the time of the first
edition of this book, helping to move us closer to artificial intelligence.
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Abstract. In this chapter we will first describe the basic HF approach,
and then examine well-known performance-improving techniques such as
preconditioning which we have found to be beneficial for neural network
training, as well as others of a more heuristic nature which are harder to
justify, but which we have found to work well in practice. We will also
provide practical tips for creating efficient and bug-free implementations
and discuss various pitfalls which may arise when designing and using
an HF-type approach in a particular application.

20.1 Introduction

Hessian-Free optimization (HF) is an approach for unconstrained minimization
of real-valued smooth objective functions. Like standard Newton’s method, it
uses local quadratic approximations to generate update proposals. It belongs
to the broad class of approximate Newton methods that are practical for prob-
lems of very high dimensionality, such as the training objectives of large neural
networks. Different algorithms that use many of the same key principles have
appeared in the literatures of various communities under different names such
as Newton-CG, CG-Steihaug, Newton-Lanczos, and Truncated Newton [27, 28],
but applications to machine learning and especially neural networks, have been
limited or non-existent until recently. With the work of Martens [22] and later
Martens and Sutskever [23] it has been demonstrated that such an approach,
if carefully designed and implemented, can work very well for optimizing non-
convex functions such as the training objective for deep neural networks and
recurrent neural networks (RNNs), given sensible random initializations. This
was significant because gradient descent methods have been observed to be very
slow and sometimes completely ineffective [17, 4, 18] on these problems, unless
special non-random initializations schemes like layer-wise pre-training [17, 16, 3]
are used. HF, which is a general optimization-based approach, can be used in
conjunction with or as an alternative to existing pre-training methods and is
more widely applicable, since it relies on fewer assumptions about the specific
structure of the network.

In this report we will first describe the basic HF approach, and then examine
well-known general purpose performance-improving techniques as well as others
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that are specific to HF (versus other Truncated-Newton type approaches) or
to neural networks. We will also provide practical tips for creating efficient and
correct implementations, and discuss the pitfalls which may arise when designing
and using an HF-based approach in a particular application.

Table 20.1. A summary of the notation used. Note we will occasionally use some of
these symbols to describe certain concepts that are local to a given sub-section. The
subscripts “k” and “k−1”, will often be dropped for compactness where they are implied
from the context.

Notation Description
[x]i The i-th entry of a vector x
[A]i,j The (i, j)-th entry a matrix A
1m A vector of length m whose entries are 1
sq(·) The element-wise square of a vector or a matrix
vec(A) The vectorization of a matrix A
f The objective function
fi The objective function on case i
k the current iteration of HF
θk The parameter setting at the k-th HF iteration
n The dimension of θ
δk The variable being optimized by CG at the k-th HF iteration
Mk−1 A local quadratic approximation of f at θk−1

M̂k−1 A “damped” version of the above
Bk−1 The curvature matrix of Mk−1

B̂k−1 The curvature matrix of M̂k−1

h′, ∇h The gradient of a scalar function h
h′′, ∇2h The Hessian of a scalar function h
L(·) The loss function

ρ The reduction ratio
f(θk)− f(θk−1)

Mk−1(δk)
F (θ) A function that maps parameters to predictions on all training cases
D A damping matrix
P A preconditioning matrix
Ki(A, r0) The subspace span{r0, Ar0, . . . , Ai−1r0}
� The number of layers of a feedforward net
z The output of the network
m The dimension of z
T The number of time-steps of an RNN
λ Strength constant for penalty damping terms
λj j-th eigenvalue of curvature matrix
diag(A) A vector consisting of the diagonal of the matrix A
diag(v) A diagonal matrix A satisfying [A]i,i = [v]i
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20.2 Feedforward Neural Networks

We now formalize feedforward neural networks (FNNs). Given an input x and
setting of the parameters θ that determine weight matrices and the biases
(W1, . . . ,W�−1, b1, . . . , b�−1), the FNN computes its output y� by the following
recurrence:

yi+1 = si(Wiyi + bi)

where y1 = x. The vectors yi are the activations of the neural network, and the
activation functions si(·) are some nonlinear functions, typically sigmoid or a
tanh functions applied coordinate-wise.

Given a matching target t, the FNN’s training objective on a single case
f(θ; (x, t)) is given by

f(θ; (x, t)) = L(y�; t)

where L(z; t) is a loss function which quantifies how bad z is at predicting the
target t. Note that Lmay not compare z directly to t, but instead may transform
it first into some prediction vector p.

Finally, the training error, which is the objective of interest for learning, is
obtained by averaging the losses f(θ; (x, t)) over a set S of input-output pairs
(aka training cases):

f(θ) =
1

|S|
∑

(x,t)∈S

f(θ; (x, t))

Algorithm 20.1 . An algorithm for computing the gradient of a feedforward
neural network

input: y0; θ mapped to (W1, . . . ,W�−1, b1, . . . , b�−1).
for all i from 1 to �− 1 do
xi+1 ←Wiyi + bi
yi+1 ← si+1(xi+1)

end for
dy� ← ∂L(y�; t�)/∂y� (t� is the target)
for all i from �− 1 downto 1 do
dxi+1 ← dyi+1s

′
i+1(xi+1)

dWi ← dxi+1y
�
i

dbi ← dxi+1

dyi ←W�
i dxi+1

end for
output: ∇f(θ) as mapped from (dW1, . . . , dW�−1, db1, . . . , db�−1).
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20.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are the time-series analog of feed-forward
neural networks. RNNs model the mapping from an input sequence to an output
sequence, and possess feedback connections in their hidden units that allow them
to use information about past inputs to inform the predictions of future outputs.
They may also be viewed as a special kind of feed-forward net with a “layer” for
each time-step of the sequence. But unlike in a feed-forward network where each
layer has its own parameters, the “layers” of an RNN share their parameters.

Their high-dimensional hidden state and nonlinear dynamics allow RNNs to
learn very general and versatile representations, and to express highly complex
sequential relationships. This representational power makes it possible, in prin-
ciple, for RNNs to learn compact solutions for very difficult sequence modeling
and labeling tasks. But despite their attractive qualities, RNNs did not enjoy
widespread adoption after their initial discovery due to the perception that they
were too difficult to properly train. The vanishing gradients problem [4, 18],
where the derivative terms can exponentially decay to zero or explode during
back-propagation through time is cited as one of the main reasons for this dif-
ficultly. In the case of decay, important back-propagated error signals from the
output at future time-steps may decay nearly to zero by the time they have
been back-propagated far enough to reach the relevant inputs.This makes the
unmodified gradient a poor direction to follow if the RNN is to learn to exploit
long-range input-output dependencies in the certain datasets.

Recent work by Martens & Sutskever [23] has demonstrated that HF is a viable
method for optimizing RNNs on datasets that exhibit pathological long range
dependencies that were believed difficult or impossible to learn with gradient
descent. These problems were first examined by Hochreiter & Schmidhuber [19]
where the proposed solution was to modify the RNN architecture with special
memory units.

Basic RNNs are parameterized by three matrices and a special initial hidden
state vector, so that θ ≡ (Wxh,Whh,Wzh, h0), where Wxh are the connections
from the inputs to the hidden units, Whh are the recurrent connections, and
Wzh are the hidden-to-output connections. Given a sequence of vector-valued
inputs x = (x1, . . . , xT ) and vector-valued target outputs t = (t1, . . . , tT ), the
RNN computes a sequence of hidden states and predictions according to:

hτ = s(Wxhxτ +Whhhτ−1)

zτ =Wzhhτ

where h0 is a special parameter vector of the initial state and s(·) is a nonlinear
activation function (typically evaluated coordinate-wise).

The RNN learning objective for a single input-output pair of sequences (x, t)
is given by:

f(θ; (x, t)) = L(z; t) ≡
T∑

τ=1

Lτ (zτ ; tτ )
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where Lτ is a loss function as in the previous section. As with FNNs, the objective
function is obtained by averaging the loss over the training cases:

f(θ) =
1

|S|
∑

(x,t)∈S

f(θ; (x, t))

20.4 Hessian-Free Optimization Basics

We consider the setting of unconstrained minimization of a twice-differentiable
objective function f : R

n → R w.r.t. to a vector of real-valued parameters
θ ∈ R

n. 2nd-order optimizers such as HF are derived from the classical New-
ton’s method (a.k.a. the Newton-Raphson method), an approach based on the
idea of iteratively optimizing a sequence of local quadratic models/approxima-
tions of the objective function in order to produce updates to θ. In the simplest
situation, given the previous setting of the parameters θk−1, iteration k produces
a new iterate θk by minimizing a local quadratic model Mk−1(δ) of the objective
f(θk−1 + δ), which is formed using gradient and curvature information local to
θk−1. More precisely, we define

Mk−1(δ) = f(θk−1) +∇f(θk−1)
�δ +

1

2
δ�Bk−1δ (20.1)

where Bk−1 is the “curvature matrix”, and is chosen to be the Hessian H(θk−1)
of f at θk−1 in the case of standard Newton’s method. The new iterate θk is
computed as θk−1 + αkδk where δ∗k is the minimizer of 20.1, and αk ∈ [0, 1]
is chosen typically chosen via a line-search, with a preference for αk = 1. A
standard efficient method for performing this kind of line search will be briefly
discussed in section 20.8.8. The multiplication of δk by αk can be viewed as a
crude instance of a general technique called “update damping”, which we will
introduce next, and later discuss in depth in section 20.8.

When Bk−1 is positive definite (PD), M(δk) will be bounded below and so its
minimizer will exist, and will be given by δ∗k = xk−B−1

k−1∇f(θk−1), which is the
standard Newton step. Unfortunately, for many good choices of Bk−1, such as
the Hessian at θk−1, even computing the entire n×n curvature matrix Bk−1, let
alone inverting it/solving the system Bk−1δk = −f(θk−1) (at a cost of O(n3)),
will be impractical for all but very small neural networks.

The main idea in Truncated-Newton methods such as HF is to avoid this
costly inversion by partially optimizing the quadratic functionM using the linear
conjugate gradient algorithm (CG) [15], and using the resulting approximate
minimizer δk to update θ. CG is a specialized optimizer created specifically for

quadratic objectives of the form q(x) =
1

2
x�Ax−b�x where A ∈ R

n×n is positive
semi-definite (PSD), and b ∈ R

n. CG works by constructing the update from
a sequence of vectors which have the property that they are “A-conjugate” and
can thus be optimized independently in sequence. To apply CG to eqn. 20.1 we
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take x = δ, A = Bk−1 and b = ∇f(θk−1), noting that the constant term f(θk−1)
can be ignored.

Note: From this point forward, we will abbreviate Mk−1 with M
and Bk−1 with B when the subscript is implied by the context.

CG has the nice property that it only requires access to matrix-vectors prod-
ucts with the curvature matrix B (which can be computed much more efficiently
than the entire matrix in many cases, as we will discuss in section 20.5), and
it has a fixed-size storage overhead of a few n-dimensional vectors. Moreover,
CG is a very powerful algorithm, which after i iterations, will find the provably
optimal solution of any convex quadratic function q(x) over the Krylov sub-
space Ki(A, r0) ≡ span{r0, Ar0, A2r0, ..., A

i−1r0}, where r0 = Ax0 − b and x0 is
the initial solution [32]. Any other gradient based method applied directly to a
quadratic function like M , even a very powerful one like Nesterov’s accelerated
gradient descent [29], can also be shown to produce solutions which lie in the
Krylov subspace, and thus will always be strictly outperformed by CG given the
same number of iterations1.

Fortunately, in addition to these strong optimality properties, CG works ex-
tremely well in practice and may often converge in a number of iterations i n,
depending on the structure of B. But even when it does not converge it tends to
make very good partial progress.

The preconditioned CG algorithm is given in alg. 20.2. Note that Api only
needs to be computed once in each iteration of the main loop, and the quadratic

objective q(xi) can be cheaply computed as q(xi) =
1

2
(ri − b)�xi. Also note

that any notation such as αi or yi should not be confused with the other uses of
these symbols that occur elsewhere in this report. The preconditioning matrix
P allows CG to operate within a transformed coordinate system and a good
choice of P can substantially accelerate the method. This is possible despite the
previously claimed optimality of CG because P induces a transformed Krylov
subspace. Preconditioning, methods for implementing it, its role within HF, and
its subtle interaction with other parts of the HF approach, will be discussed in
section 20.11.

With practicality in mind, one can terminate CG according to various criteria,
balancing the quality of the solution with the number of iterations required to
obtain it (and hence number of matrix vector products – the main computational
expense of the method). The approach taken by Martens [22] was to terminate
CG based on a measure of relative progress optimizing M , computed as:

sj =
M(xj)−M(xj−k)

M(xj)

1 This being said, it is possible to construct quadratic optimization problems where
CG will perform essentially no better than accelerated gradient descent. Although
it is also possible to construct ones where CG converge in only a few iteration while
accelerated gradient descent will take much longer.
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Algorithm 20.2 . Preconditioned conjugate gradient algorithm (PCG)
inputs: b, A, x0, P
r0 ← Ax0 − b
y0 ← solution of Py = r0
p0 ← −y0
i← 0
while termination conditions do not apply do

αi ←
r�i yi
p�i Api

xi+1 ← xi + αipi
ri+1 ← ri + αiApi
yi+1 ← solution of Py = ri+1

βi+1 ←
r�i+1yi+1

r�i yi
pi+1 ← −yi+1 + βi+1pi
i← i+ 1

end while
output: xi

where xj is the j-th iterate of CG and k is the size of the window over which the
average is computed, which should be increased with j. A reasonable choice that
works well in practice is k = max(10, j/10). CG can be terminated at iteration
j when

sj < 0.0001 (20.2)

or some other such constant. Depending on the situation it may make more sense
to truncate earlier to find a more economical trade-off between relative progress
and computation.

However, deciding when to terminate CG turns out to be a much more com-
plex and subtle issue than implied by the above discussion, and in section 20.8.7
of this paper we will discuss additional reasons to terminate CG that have noth-
ing directly to do with the value of M . In particular, earlier truncations may
sometimes have a beneficial damping effect, producing updates that give a bet-
ter improvement in f than would be obtained by a fully converged solution (or
equivalently, one produced by exact inversion of the curvature matrix).

When f is non-convex (as it is with neural networks), B will sometimes be
indefinite, and so the minimizer of M may not exist. In particular, progressively
larger δ’s may produce arbitrarily low values of M , leading to nonsensical or
undefined updates. This issue can be viewed as an extreme example of the general
problem that the quadratic model M is only a crude local approximation to
f , and so its minimizer (assuming it even exists), might lie in a region of R

n

where the approximation breaks down, sometimes catastrophically. While the
aforementioned line-search can remedy this problem to some degree, this is a
general problem with 2nd-order optimization that must be carefully addressed.
Ways to do this are sometimes called “damping methods”, a term which we shall
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use here, and include such techniques as restriction of the optimization over
M(·) to a “trust-region”, and the augmentation of M by penalty terms which
are designed to encourage the minimizer of M to be somewhere in R

n where M
remains a good approximation to f . Such approaches must be used with care,
since restricting/penalizing the optimization of M too much will result in very
reliable updates which are nonetheless useless due to being too “small”. In section
20.8 we will discuss various general damping methods in 2nd-order optimization,
and some which are more specific to HF.

While the damping methods such as those mentioned above allow one to op-
timize M even when B is indefinite, there is another way to deal with the indef-
initeness problem directly. The classical Gauss-Newton algorithm for non-linear
least squares uses a positive semi-definite curvature matrix which is viewed as an
approximation to the Hessian, and Schraudolph [11] was able to generalize this
idea to cover a much larger class of objective functions that include most neural
network training objectives. This “generalized Gauss-Newton matrix” (GGN),
is also guaranteed to be positive semi-definite, and tends to work much better
than the Hessian in practice as a curvature matrix when optimizing non-convex
objectives. While using the GGN matrix will not eliminate the need for damp-
ing, Martens [22] nonetheless found that it was easier to use than the Hessian,
producing better updates and requiring less damping. The computational and
theoretical aspects of the GGN matrix and its use within HF will be discussed
in detail in section 20.6.

Objective functions f(θ) that appear in machine learning are almost always
defined as arithmetic averages over a training set S, and thus so can the gradient
and the curvature-matrix vector products:

f(θ) =
1

|S|
∑

(x,t)∈S

f(θ; (x, t))

∇f(θ) = 1

|S|
∑

(x,t)∈S

∇f(θ; (x, t))

B(θ)v =
1

|S|
∑

(x,t)∈S

B(θ; (x, t))v

where f(θ; (x, t)) is the objective and B(θ; (x, t)) the curvature matrix associated
with the training pair (x, t).

In order to make HF practical for large datasets it is necessary to estimate
the gradient and curvature matrix-vector products using subsets of the train-
ing data, called “minibatches.” And while it may seem natural to compute the
matrix-vector products required by CG using a newly sampled minibatch at each
iteration of alg. 20.2, CG is unfortunately not designed to handle this kind of
“stochasticity” and its theory depends very much on a stable definition of B for
concepts like B-conjugacy to even make sense. And in practice, we have found
that such an approach does not seem to work very well, and results in CG itself
diverging in some cases. The solution advocated by Martens [22] and indepen-
dently by Byrd et al. [8] is to fix the minibatch used to define B for the entire
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run of CG. Minibatches and the practical issues which arise when using them
will be discussed in more depth in section 20.12.

Algorithm 20.3. High-level outline for the basic Hessian-free approach. Various
details have been purposefully left unstated, and some aspects will be subject to
change throughout this report.

inputs: θ0, λ
Set δ0 ← 0

k← 1

while solution is not satisfactory do
Select a set of points S for the gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sec. 20.12
b← −∇f(θk−1) on S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sec. 20.2
Select a set of points S′ for the curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . sec. 20.12
Compute a preconditioner P at θk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .sec. 20.11
Compute a damping matrix Dk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .sec. 20.8
Define A(v) ≡ G(θk−1)v + λDkv on S′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sec. 20.6
Choose a decay constant ζ ∈ [0, 1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sec. 20.10
δk ← PCG(b, A, ζδk−1, P ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .alg. 20.2
Update λ with the Levenberg-Marquardt method . . . . . . . . . . . . . . . . . . . sec. 20.8.5
Choose/compute a step-size α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sec. 20.8.8
θk ← θk−1 + αδk

k← k + 1

end while

20.5 Exact Multiplication by the Hessian

To use the Hessian H of f as the curvature matrix B within HF we need an
algorithm to efficiently compute matrix-vector products with arbitrary vectors
v ∈ R

n. Noting that the Hessian is the Jacobian of the gradient, we have that
the Hessian-vector product H(θ)v is the directional derivative of the gradient
∇f(θ) in the direction v, and so by the definition of directions derivatives,

H(θ)v = lim
ε→0

∇f(θ + εv)−∇f(θ)
ε

This equation implies a finite-differences algorithm for computing Hv at the
cost of a single extra gradient evaluation. But in practice, and in particular
when dealing with highly nonlinear functions like neural network training objec-
tives, methods that use finite differences suffer from significant numerical issues,
which can make them generally undesirable and perhaps even unusable in some
situations.
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Fortunately, there is a method for computing the sought-after directional
derivative in a numerically stable way that does not resort to finite differ-
ences. In the optimization theory literature, the method is known as “forward-
differentiation” [34, 30], although we follow the exposition of Pearlmutter [31],
who rediscovered it for neural networks and other related models. The idea is
to make repeated use of the chain rule, much like in the backpropagation al-
gorithm, to differentiate the value of every node in the computational graph of
the gradient. We formalize this notion by introducing the Rv-notation. Let RvX
denote the directional derivative of X in direction v:

RvX = lim
ε→0

X(θ + εv)−X(θ)

ε
=
∂X

∂θ
v (20.3)

Being a derivative, the Rv(·) operator obeys the usual rules of differentiation:

Rv(X + Y ) = RvX +RvY linearity (20.4)
Rv(XY ) = (RvX)Y +XRvY product rule (20.5)

Rv(h(X)) = (RvX)h′(X) chain rule (20.6)

where h′ denotes the Jacobian of h. From this point on we will abbreviate Rv as
simply “R” to keep the notation compact.

Noting that Hv = R{∇f(θ)}, computing the Hessian-vector product amounts
to computing R{∇f(θ)} by applying these rules recursively to the computational
graph for ∇f(θ), in a way analogous to back-propagation (but operating forward
instead of backwards).

To make this precise, we will formalize the notion of a computational graph
for an arbitrary vector-valued function h(θ), which can be thought of as a spe-
cial kind of graph which implements the computation of a given function by
breaking it down as a collection of simpler operations, represented by M nodes,
with various input-output dependencies between the nodes indicated by directed
edges. The nodes of the computational graph are vector valued, and each node i
computes an arbitrary differentiable functions ai = γi(zi) of their input zi. Each
input vector zi is formally the concatenation the output of each of its parent
nodes aj ∈ Pi. The input θ is distributed over a set of input nodes I ⊂ {1, ...,M}
and the outputs are computed at output nodes O ⊂ {1, ...,M}.

In summary, the function h(θ) is computed according to the following proce-
dure:

1. For each i ∈ I set ai according to entries of θ
2. For i from 1 to M such that i �∈ I:

zi = concatj∈Piaj

ai = γi(zi)

3. Output h(θ) according to the values in {ai}i∈O

where Pi is the set of parents of node i.
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Fig. 20.1. An example of
a computational graph of
the loss of a neural network
objective. The weights are
considered the inputs here.

The advantage of the computational graph formal-
ism is that it allows the application of the R-operator
to be performed in a fool-proof and mechanical way
that can be automated. In particular, our function
R(h(θ)) can be computed as follows:

1. For each i ∈ I set Rai according to entries of v
(which correspond to entries of θ)

2. For i from 1 to M such that i �∈ I:

Rzi = concatj∈PiRaj (20.7)
Rai = γ

′
i(zi)Rzi (20.8)

3. Set output R(h(θ)) according to the values in
{Rzi}i∈O

where γ′i(zi) is the Jacobian of γi.
In general, computing γ′i(zi) (or more simply mul-

tiplying it by a vector) is simple2 and is of compara-
ble cost to computing γi(zi), which makes computing
the Hessian-vector product using this method com-
parable to the cost of the gradient. Notice however
that we need to have each zi available in order to
evaluate γ′i(zi) in general, so all of the zi’s (or equiv-
alently all of the ai’s) must either be computed in
tandem with the Rai’s and Rzi’s (making the cost
of the Hessian-vector product roughly comparable to
the cost of two evaluations of the gradient), or be precomputed and cached (e.g.
during the initial computation of the gradient).

When using an iterative algorithm like CG that requires multiple Hessian-
vector products for the same θ, caching can save considerable computation, but
as discussed in section 20.7 may require considerable extra storage when com-
puting matrix-vector products over large minibatches.

Algorithm 20.5 gives the pseudo-code for computing the Hessian-
vector product associated with the feedforward neural network defined
in section 20.2. The parameter vector θ defines the weight matrices
and the biases (W1, . . . ,W�−1, b1, . . . , b�−1) and v maps analogously to
(RW1, . . . ,RW�−1,Rb1, . . . ,Rb�−1). This algorithm was derived by applying the
rules 20.4–20.6 to each line of alg. 20.2, where various required quantities such
as yi are assumed to be available either because they are cached, or by running
the corresponding lines of alg. 20.2 in tandem.

20.6 The Generalized Gauss-Newton Matrix

The indefiniteness of the Hessian is problematic for 2nd-order optimization of
non-convex functions because an indefinite curvature matrix B may result in a
2 If this is not the case then node i should be split into several simpler operations.
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Algorithm 20.4 . An algorithm for computing H(θ)v in feedforward neural
networks.

input: v mapped to (RW 1, . . . ,RW �−1,Rb1, . . . ,Rb�−1)
Ry0 ← 0 (since y0 is not a function of the parameters)
for all i from 1 to �− 1 do

Rxi+1 ← RWiyi +WiRyi +Rbi (product rule)
Ryi+1 ← Rxi+1s

′
i+1(xi+1) (chain rule)

end for

Rdy� ← R

(
∂L(y�; t�)

∂y�

)
=
∂{∂L(y�; t�)/∂y�}

∂y�
Ry� =

∂2L(y�; t�)

∂y2�
Ry�

for all i from �− 1 downto 1 do
Rdxi+1 ← Rdyi+1s

′
i+1(xi+1) + dyi+1R

{
s′i+1(xi+1)

}
(product rule)

= dyi+1s
′′
i+1(xi+1)Rxi+1 (chain rule)

RdWi ← Rdxi+1y
�
i + dxi+1Ry

�
i (product rule)

Rdbi ← Rdyi
Rdyi ← RW�

i dxi+1 +W
�
i Rdxi+1 (product rule)

end for
output: H(θ)v as mapped from (RdW1, . . . ,RdW�−1,Rdb1, . . . , Rdb�−1).

quadratic M which is not bounded below and thus does not have a minimizer to
use as the update δ. This problem can be addressed in a multitude of ways. For
example, imposing a trust-region (sec. 20.8.6) will constrain the optimization,
or a penalty-based damping method (sec. 20.8.1) will effectively add a positive
semi-definite (PSD) contribution to B which may render it positive definite (PD).
Another solution specific to truncated Newton methods is to truncate CG as
soon as it generates a conjugate direction with negative curvature (i.e., when
p�i Api < 0 in alg. 20.2), a solution which may be useful in some applications
but which we have not found to be particularly effective for neural network
training.

Based on our experience, the best solution to the indefiniteness problem is to
instead use the generalized Gauss-Newton (GGN) matrix proposed by Schrau-
dolph [11], which is a provably positive semidefinite curvature matrix that can
be viewed as an approximation to the Hessian. We will denote this matrix as G.

The generalized Gauss-Newton matrix can be derived in at least two ways,
and both require that the objective f(θ) be expressed as the composition of two
functions as f(θ) = L(F (θ)) where L is convex. In a neural network setting,
F maps the parameters θ to a m-dimensional vector of the neural network’s
outputs z ≡ F (θ), and L(z) is a convex “loss function” which typically measures
the difference between the network’s outputs (which may be further transformed
within L to produce “predictions” p) and the targets. For RNNs, z will be a vector
of the outputs from all the time-steps and L computes the sum over losses at
each one of them.
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One way to view the GGN matrix is as an approximation of H where we drop
certain terms that involve the 2nd-derivatives of F . Applying the chain rule to
compute the Hessian of f (at θk−1), we get:

f = L(F (θ))

∇f(θ) = J�∇L

f ′′(θ) = J�L′′J +

m∑

i=1

[∇L]i([F ]i)′′

where J denotes the Jacobian of F , ∇L is the gradient of L(z) w.r.t. z, and
all 1st and 2nd derivatives are evaluated at θk−1. The first term J�L′′J is a
positive definite matrix whenever L(z) is convex in z, and is defined as the GGN

matrix. Note that in the special case where L(z) =
1

2
‖z‖2 (so that L′′ = I)

we recover the standard Gauss-Newton matrix usually seen in the context of
non-linear least squares optimization and the Levenberg-Marquardt algorithm
[25].

Martens and Sutskever [23] showed that the GGN matrix can also be viewed as
the Hessian of a particular approximation of f constructed by replacing F with
its 1st-order approximation. Consider a local convex approximation f̂ to f at
θk−1 that is obtained by taking the first-order approximation F (θ) ≈ F (θk−1)+
Jδ (where δ = θ − θk−1):

f̂(δ) = L(F (θk−1) + Jδ) (20.9)

The approximation f̂ is convex because it is a composition of a convex function
and an affine function. It is easy to see that f̂ and f have the same derivative
when δ = 0, because

∇f̂ = J�∇L = J�∇L
which is precisely the derivative of f at θk−1. And the Hessian of f̂ at δ = 0 is
precisely the GGN matrix:

f̂ ′′ = J�L′′J = G

Note that it may be possible to represent a function f with multiple distinct
compositions of the form L(F (θ)), and each of these will give rise to a slightly
different GGN matrix. For neural networks, a natural choice for the output vector
z is often just to identify it as the output of the final layer (i.e., y�), however this
may not always result in a convex L.As a rule of thumb, it is best to define L and
F in way that L performs “as much of the computation of f as possible” (but
this is a problematic concept due to the existence of multiple distinct sequences
of operations for computing f). For the case of neural networks with a softmax
output layer and cross-entropy error, it is best to define L so that it performs
both the softmax and then the cross-entropy, while F computes only the inputs
to the soft-max function. This is also the recommendation made by Schraudolph
[11]. A possible reason that this choice works best is due to the fact that F
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is being replaced with its first-order approximation whose range is unbounded.
Hence the GGN matrix makes sense only when L’s input domain is R

m (as
opposed to [0, 1]m for the cross-entropy error), since this is the range of the
1st-order approximation of F .

20.6.1 Multiplying by the Gauss-Newton Matrix

For the GGN matrix to be useful in the context of HF, we need an efficient algo-
rithm for computing the Gv products. Methods for multiplying by the classical
Gauss-Newton matrix are well-known in the optimization literature [30], and
these methods were generalized by Schraudolph [11] for the GGN matrix, using
an approach which we will now describe.

We know from the previous section that the GGN matrix can be expressed as
the product of three matrices: Gv = J�L′′Jv. Thus multiplication of a vector
v by the GGN matrix amounts to the sequential multiplication of that vector
by these 3 matrices. First, the product Jv is a Jacobian times vector and is
therefore precisely equal to the directional derivative Rv{F (θ)}, and thus can
be efficiently computed with the R-method as in section 20.5. Next, given that
the loss function L is usually simple, multiplication of Jv by L′′ is also simple
(sec. 20.6.2). Finally, we multiply the vector L′′Jv by the matrix J� using the
backpropagation algorithm. Note that the backpropagation algorithm takes the
derivatives w.r.t. the predictions (∇L) as inputs, and returns the derivative
w.r.t. the parameters, namely J�∇L, but we can replace ∇L with any vector
we want.

Algorithm 20.5 . An algorithm for computing Gv of a feedforward neural
network.

input: RW1, . . . ,RW�−1,Rb1, . . . ,Rb�−1.
Ry0 ← 0 (y0 is not a function of the parameters)
for all i from 1 to �− 1 do

Rxi+1 ← RWiyi +WiRyi +Rbi (product rule)
Ryi+1 ← Rxi+1s

′
i+1(xi+1)

end for

Rdy� ←
∂2L(y�; t�)

∂y2�
Ry�

for all i from �− 1 downto 1 do
Rdxi+1 ← Rdyi+1s

′
i+1(xi+1)

RdWi ← Rdxi+1y
�
i

Rdbi ← Rdxi+1

Rdyi ← RW�
i dxi+1

end for
output: (RdW1, . . . ,RdW�−1,Rb1, . . . ,Rb�−1).

As observed by Martens and Sutskever [23], the second interpretation of the
GGN matrix given in the previous section immediately implies an alternative
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method for computing Gv products. In particular, we can use the R method
from sec. 20.5 to efficiently multiply by the Hessian of f̂ , given a computational
graph for ∇f̂ . While doing this would require one to replace the part of the
forward pass corresponding to F with a multiplication by the analogous Jacobian
evaluated at θk−1 (which can be done using the R operator method applied to
f), a simpler approach is just to modify the algorithm for computing ∇f so that
all derivative terms involving intermediate quantities in the back-propagation
through F are treated as “constants”, which while they are computed from θk−1,
are formally independent of θ. This version will only compute f̂ properly for
θ = θk−1, but this is fine for our purposes since this is the point at which we
wish to evaluate the GGN matrix.

Algorithm 20.5 multiplies by the GGN matrix for the special case of a feed-
forward neural network and is derived using this second technique.

20.6.2 Typical Losses

In this section we present a number of typical loss functions and their Hessians
(table 20.2). The function p(z) computes the predictions p from the network
outputs z. These losses are convex and it is easy to multiply by their Hessians

Table 20.2. Typical losses with their derivatives and Hessians. The loss L and the
nonlinearity p(z) are “matching”, which means that the Hessian is independent of the
target t and is PSD.

Name L(z; t) ∇L(z; t) L′′(z; t) p

Squared error 1
2
‖p− t‖2 −(p− t) I p = z

Cross-entropy error −t log p− (1− t) log(1− p) −(p− t) diag(p(1− p)) p = Sigmoid(z)
Cross-entropy error (multi-dim) −

∑
i[t]i log[p]i −(p− t) diag(p)− pp� p = Softmax(z)

without explicitly forming the matrix, since they are each either diagonal or the
sum of a diagonal and a rank-1 term.

When applying this formulation to FNNs, tote that because it formally in-
cludes the computation of the predictions p from the network outputs z (assumed
to lie anywhere in R

m) in the loss function itself (instead of in the activation
function s� at the output layer), s� should be set to the identity function.

20.6.3 Dealing with Non-convex Losses

We may sometimes want to have a non-convex loss function. The generalized
Gauss-Newton matrix construction will not produce a positive definite matrix in
this case because the GGN matrix J�L′′J will usually be PSD only when L′′ is,
which is a problem that can be addressed in one of several ways. For example, if our
loss is L(y; t) = ‖ tanh(y) − t‖2/2, which is non-convex, we could formally treat
the tanh nonlinearity as being part of F (replacing F with tanh ◦F ), and redefine
the loss L as ‖y − t‖2/2. Another trick which may work would be to approximate
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the loss-Hessian L′′ with a positive definite matrix, which could be done, say,
by adding a scaled multiple of the diagonal to L′′, or by taking the eigen-
decomposition of L′′ and discarding the eigenvectors that have negative eigenval-
ues.

20.7 Implementation Details

20.7.1 Efficiency via Parallelism

A good implementation of HF can make fruitful use of parallelization in two
ways.

First, it can benefit from model parallelism, which is the ability to perform
the input and output computations associated with each neuron in a given layer
parallel. Although model parallelism accelerates any optimization algorithm that
is applied to neural networks, current hardware is incapable of fully taking ad-
vantage of it, mostly because weights are stored in a centralized memory with
very limited bandwidth.

Second, an implementation of HF can benefit from data parallelism, where the
computation of the gradient or curvature matrix vector products is performed
independently and in parallel across the training cases in the current minibatch.
Data parallelism is much easier to exploit in current hardware because it requires
minimal communication, in stark contrast to model parallelism, which requires
frequent and rapid communication of unit activations. The potential speedup
offered by data parallelism is limited by the gains that can be derived from
using larger minibatches to compute updates in HF, as well as the sheer amount
of parallel computing power available.

HF tends to benefit from using relatively large minibatches, especially com-
pared to first-order methods like stochastic gradient descent, and so exploiting
data parallelism may bring significant reductions in computation time. Nonethe-
less, there is a point of diminishing returns after which making the minibatch
larger provides limited or no benefit in terms of the quality of the update pro-
posals (as measured by how much they reduce f).

Data parallelism is typically implemented using vectorization, which is a way
of specifying a single computational process that is independently performed on
every element of a vector. Since most implementations that use vectorization
(e.g. GPU code) become more efficient per case as the size of the minibatch
increases, there is a distinct benefit to using larger minibatches (up until the
aforementioned point of diminishing returns, or the point where the implemen-
tations parallel computing resources are fully utilized).

Most of the computation performed by HF consists of computing the GGN
vector products and fortunately it is possible to obtain a 50% speedup over a
naive implementation of the GGN vector products using activity caching. Recall
that a multiplication by the GGN matrix consists of a multiplication by J which
is followed by a multiplication by J�, both of which require the neural network’s
unit activations (the yi’s in FNNs or yτ ’s in RNNs). However, given that the
network’s activations are a function of only θ, and that CG multiplies different
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vectors by the same GGN matrix (so its setting of θ is fixed), it is possible to
cache the network’s activations yi and to reuse them for all the GGN-vector
products made during an entire run of CG.

When a model is very large, which is the case for a large RNN with a large
number of time-steps T , the unit activations produced by even a modestly-sized
minibatch may become too numerous to fit in memory. This is especially a
problem for GPU implementations since GPUs typically have much less mem-
ory available than CPUs. This has two undesirable consequences. First, activ-
ity caching becomes impossible, and second, it necessitates the splitting of a
large minibatch into many smaller “computational minibatches” (the results from
which will be summed up after each has been processed), which can greatly re-
duce the cost-effectiveness of vectorization.

The problem can be addressed in at least 2 ways. One is to cache the ac-
tivations in a larger but slower memory storage (e.g. the CPU memory), and
to retrieve them as needed. This is often faster than the use of many smaller
minibatches.

Another way involves reducing the storage requirements at the cost of per-
forming re-computation of some of the states. In particular, we store the hidden
states at every multiple of

√
T time-steps (thus reducing the storage requirement

by a factor of
√
T ), and recompute sequences of

√
T between these “check-points”

as they become needed, discarding them immediately after use. Due to the way
the forward and backwards passes involved in computing gradients and matrix-
vector products go through the time-steps in linear order, the state at each
time-step needs to be recomputed at most once in the case of the gradient, and
twice in the case of the matrix-vector product.

Fig. 20.2. An illustration of the method for conserving the memory of the RNN. Each
column represents a hidden state of an RNN, and only the highlighted columns reside
in memory at any given time.

20.7.2 Verifying the Correctness of G Products

A well-known pitfall for neural networks practitioners is an incorrect imple-
mentation for computing the gradient, which is hard to diagnose without hav-
ing a correct implementation to compare against. The usual procedure is to
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re-implement the gradient computation using finite differences and verify that
the two implementations agree, up to some reasonable precision.

To verify the correctness of an implementation of Truncated Newton optimizer
like HF, as we must also verify the correctness of the curvature-matrix vector
products. When B = H , there are well-known black-box finite differentiation
implementations available which can be used for this purpose. Thus we will
concentrate on how to verify the correctness of the Gv products.

Given that G = J�L′′J so Gv = J�(L′′(Jv)), computing the G-vector prod-
ucts via finite differences reduces to doing this for Jw, L′′w and J�w for arbitrary
vectors w of appropriate dimension (not necessarily the same for each).

1. For Jw we compute (F (θ + εw)− F (θ − εw))/(2ε) for a small ε.
2. For L′′w we can simply approximate L′′ using one of the aforementioned

finite-differences implementations that are available for approximating Hes-
sians.

3. For J�w we exploit [J ]�j,i = [Jej ]i where ej is the j-th standard basis vector,
and use the method in point 1 to approximate Jej

To be especially thorough, one should probably test that Gej agrees with its
finite differences version for each j, effectively constructing the whole matrix G.

For this kind of finite-differences numerical differentiation to be practical it
is important to use small toy versions of the target networks, with much fewer
units in each layer, and smaller values for the depth � or sequence length T (such
as 4). In most situations, a good value of ε is often around 10−4, and it is possible
to achieve a relative estimation error from the finite differences approximation
of around 10−6, assuming a high-precision floating point implementation (i.e.
float64 rather than float32).

It is also important to use random θ’s that are of a reasonable scale. Param-
eters that are too small will fail to engage the nonlinearities, leaving them in
their “linear regions” and making them behave like linear functions, while pa-
rameters that are too large may cause “saturation” of the units of the network,
making them behave like step-functions (the opposite extreme). In either case, a
proposed implementation of some exact derivative computation could match the
finite differences versions to high precision despite being incorrect, as the local
derivatives of the activation functions may be constant or even zero.

Another option to consider when implementing complex gradient/matrix com-
putations is to use an automatic differentiation system package such as Theano
[5]. This approach has the advantage of being mostly fool proof, at the possible
cost of customization and efficiency (e.g. it may be hard to cache the activities
using previously discussed techniques).

20.8 Damping

While unmodified Newton’s method may work well for certain objectives, it tends
to do very poorly if applied directly to highly nonlinear objective functions, such
as those which arise when training neural networks. The reason for this failure
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has to do with the fact that the minimizer δ∗ of the quadratic approximation
M may be very large and “aggressive” in the early and the intermediate stages
of the optimization, in the sense that it is often located far beyond the region
where the quadratic approximation is reasonably trust-worthy.

The convergence theory for non-convex smooth optimization problems (which
include neural net training objectives) describes what happens only when the
optimization process gets close enough to a local minimum so that the steps taken
are small compared to the change in curvature (e.g. as measured by the Lipschitz
constant of the Hessian). In such a situation, the quadratic model will always be
highly accurate at δ∗, and so one can fully optimizeM and generate a sequence of
updates which will converge “quadratically” to the local minimum of f . And for
some very simply optimization problems which can arise in practice it may even
be possible to apply unmodified Newton’s method without any trouble, ignoring
the theoretical requirement of proximity to a local minimum. However, for neural
network training objectives, and in particular deep feed-forward networks and
RNNs, the necessity of these proximity assumptions quickly becomes clear after
basic experiments, where such naive 2nd-order optimization tends to diverge
rapidly from most sensible random initializations of θ.

The solution that is sometimes advocated for this problem is to use a more sta-
ble and reliable method, like gradient-descent for the beginning of optimization,
and then switch later to 2nd-order methods for “fine convergence”. Optimization
theory guarantees that as long as the learning rate constant is sufficiently small,
gradient descent will converge from any starting point. But precise convergence
is often not necessary, or even undesirable (due to issues of overfitting). Instead,
if we believe that making use of curvature information can be beneficial in con-
structing updates long before the “fine convergence” regime described by local
convergence theory sets in, it may be worthwhile to consider how to make more
careful and conservative use of curvature information in order to construct large
but still sensible update proposals, instead of defaulting to 1st-order ones out of
necessity.

“Damping”, a term used mostly in the engineering literature, and one which we
will adopt here, refers to methods which modifyM or constrain the optimization
over it in order to make it more likely that the resulting update δ will lie in a
region where M remains a reasonable approximation to f and hence yield a
substantial reduction. The key difficulty with damping methods is that if they
are overused or improperly calibrated, the resulting updates will be “reliable”
but also be too small and insignificant (as measured by the reduction in f).

An effective damping method is of critical importance to the performance of a
2nd-order method, and obtaining the best results will likely require the use of a
variety of different techniques, whose usefulness depends both on the particular
application and the underlying 2nd-order method. In this section we will discuss
some generic damping methods that can be used in 2nd-order optimizers and
how to apply them in HF (either separately or in some combination) along with
methods which are specific to neural networks and HF.



498 J. Martens and I. Sutskever

One thing to keep in mind when reading this section is that while the im-
mediate goal of damping methods is to increase the quality of the parameter
update produced by optimizing M (as measured by the immediate improvement
in the objective f), damping methods can and will have an important influence
on the global optimization performance of 2nd-order optimizers when applied to
multimodal objectives functions, in ways that are sometimes difficult to predict
or explain, and will be problem dependent. For example, we have observed em-
pirically that on difficult neural-net training objectives, damping schemes which
tend to produce updates that give the best reductions in f in the short term,
may not always yield the best global optimization performance in the long term.

20.8.1 Tikhonov Damping

“Tikhonov regularization” or Tikhonov damping 3 is arguably the most well-
known damping method, and works by penalizing the squared magnitude ‖δ‖2
of the update δ by introducing an additional quadratic penalty term into the
quadratic model M . Thus, instead of minimizing M , we minimize a “damped”
quadratic

M̂(δ) ≡M(δ) +
λ

2
δ�δ = f(θ) +∇f(θ)�δ + 1

2
δ�B̂δ

where B̂ = B+λI, where λ ≥ 0 is a scalar parameter determining the “strength”
of the damping. Computing the matrix-vector product with B̂ is straightforward
since B̂v = (B + λI)v = Bv + λv.

As λ→∞, the damped curvature matrix B̂ tends to a multiple of the identity
and the minimizer δ∗ has the property that δ∗ → ∇f(θ)/λ, meaning the overall
optimization process reduces to gradient descent with a particular learning rate.

To better understand the effect of the Tikhonov damping, note that the ad-
dition of a scalar multiple of the identity matrix to B has the effect of increas-
ing each of the eigenvalues by precisely λ. This can be seen by noting that if
B = V ΣV � where V = [v1|v2| . . . |vn] are eigenvectors of B (which are orthonor-
mal since B is symmetric), and Σ ≡ diag(λ1, λ2, . . . , λn) the diagonal matrix of
eigenvalues, then B̂ = V ΣV � + λI = V ΣV � + λV V � = V (Σ + λI)V �. Thus
the curvature associated with each eigenvector vj in the damped matrix is given
by v�j B̂vj = λj + λ.

This modulation of the curvature has profound effect on the in-
verse of B̂ since B̂ = V �(Σ + λI)−1V , where (Σ + λI)−1 =
diag

(
(λ1 + λ)

−1, (λ2 + λ)
−1, . . . , (λn + λ)−1

)
and this will be particularly sig-

nificant for λj ’s that are small compared to λ, since (λj +λ)
−1 will generally be

much smaller than λ−1
j in such cases.

3 A name which we will use to avoid confusion with the other meaning of term regu-
larization in the learning context.
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The effect on the minimizer δ∗ of M̂ can be seen by noting that

δ∗ = −
∑

j

v�j ∇f(θk−1)

λj + λ
vj

so the distance v�j δ∗ that δ∗ moves θ in the direction vj will be effectively

multiplied by
λj

λj + λ
. Thus, Tikhonov damping should be appropriate when the

quadratic model is most untrustworthy along directions of very low-curvature
(along which δ∗ will tend to travel very far in the absence of damping).

Picking a good value of λ is critical to the success of a Tikhonov damping
approach. Too high, and the update will resemble gradient descent with a very
small learning rate and most of the power of 2nd-order optimization will be lost,
with the low-curvature directions particularly affected. Conversely, if λ is too
small, the quadratic model M̂ will be too aggressively optimized by CG, resulting
in a very large parameter update (particular in directions of low curvature) which
may cause an increase in f instead of a decrease. Unfortunately, determining a
good value of λ is a nontrivial problem, which is sensitive to the overall scale of
the objective function (i.e. using λ = 1 for f gives the same update as λ = 2
would for 2f), and other more subtle properties of f , many of which will vary
over the parameter space. It is in fact very rarely the case that a single value of
λ will be appropriate at all θ’s.

A method for dynamically adapting λ during optimization, which we have
found works reasonably well in practice, will be discussed in section 20.8.5. Note
that Tikhonov damping is the method used by LeCun et al. [21], where the
constant “μ” (which is not adapted) plays the role of λ.

It is worth noting that Vinyals and Povey [33] have recently developed an alter-
native approach to Tikhonov damping, based on the idea of directly optimizing
f over aK-dimensional Krylov basis generated by CG (or equivalently a Lanczos
iteration). Because the Krylov subspace generated using a B̂ = B + λI doesn’t
depend on λ (assuming a CG initialization of x0 = 0), this method searches over
a space of solutions that contain all those which would be found by optimizing
a Tikhonov-damped M̂ for some λ. Because of this it can find solutions which
will give more reduction in f than CG could obtain for any value of λ. The
downsides of the approach are that the searching must be performed using a
general-purpose 2nd-order optimizer like BFGS, which will require extra gradi-
ent and function evaluations, that a basis for the entire Krylov subspace must
be stored in memory (which may not always be practical when n is large), and
finally that CG initializations cannot influence the construction of the Krylov
subspace.

20.8.2 Problems with Tikhonov Damping

For standard parameterizations of neural networks, where entries of the weight-
matrices and bias vectors are precisely the entries of θ, and the regularization
is the standard spherical L2 penalty β‖θ‖2, Tikhonov damping appears to be
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a natural choice, and works pretty well in practice. This is because for certain
nicely behaved and also useful areas of the parameter space, the effective scale
at which each parameter operates is (very) roughly equal. But imagine a simple
reparameterization of a FNN so that at some particular layer j, θ parameterizes
104Wj instead ofWj . Now the objective function is 104 times more sensitive than
it was before to changes in the parameters associated with layer j and only layer
j, and imposing a Tikhonov damping penalty consisting of an equally weighted
sum of squared changes over all entries of θ (given by λ/2‖δ‖2 = λ/2

∑n
i=1 δ

2
i )

no longer seems like a good idea.
For an even more extreme example, consider the case where we would like

to constrain some of the weights of the network to be positive, and do this by
a simple reparameterization via the exp function, so that for each component
[θ]i of θ corresponding to one of these weights w, we have w = exp([θ]i) instead
w = [θ]i. By applying the chain rule we see that in the new parameterization,
the i-th component of the gradient, and the i-th row and column of the GGN
matrix are both effectively multiplied by exp([θ]i), resulting in the update δ∗
changing by a factor exp([θ]i)

−1 in entry i.
More formally, if we define C ∈ R

n×n to be Jacobian of the function φ which
maps the new parameters back to the default ones, then the gradient and GGN
matrix in the new parameterization can be expressed in terms of those from
the original parameterization as C�∇f and C�GC respectively4. The optimal
update thus becomes:

δ∗ = (C�BC)−1C�∇f = C−�B−1∇f

For our particular example, C is a diagonal matrix satisfying [C]i,i = exp([θ]i)
for reparameterized entries of θ, and [C]i,i = 1 for the rest.

Assuming that the original 2nd-order update was a reasonable one in the
original parameterization, the 2nd-order update as computed in the new param-
eterization should also reasonable (when taken in the new parameterization). In
particular, a reparameterized weight w (and hence f) will become exponentially
more sensitive to changes in [θ]i as [θ]i itself grows, and exponentially less sen-
sitive as it shrinks, so an extra multiplicative factor of exp([θ]i)−1 compensates
for this nicely. This should be contrasted with gradient descent, where the up-
date will change in exactly the opposite way (being multiplied by exp([θ]i)) thus
further compounding the sensitivity problem.

Unfortunately, if we use standard Tikhonov damping directly in the repa-
rameterized space, the assumption that all parameters operate at similar scales
will be strongly violated, and we will lose the nice self-rescaling property of our
update. For example, the curvature associated with [θ]i, which is equal to the
curvature for w multiplied by exp([θ]i)

2, may be completely overwhelmed by the
addition of λ to the diagonal of G when [θ]i is below zero, resulting in an update
which will fail to make a substantial change in [θ]i. Conversely, if [θ]i is large

4 Note that this result holds for smooth and invertible φ, as long as we use the GGN
matrix. If we use the Hessian, it holds only if φ is affine.
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then the Tikhonov damping contribution won’t properly penalize large changes
to [θ]i which may lead to a very large and untrustworthy update.

We could hope that a sensible scheme for adapting λ would compensate by
adjusting λ in proportion with exp([θ]i), but the issue is that there are many
other components of θ, such as other exp-reparameterized weights, and these
may easily be small or larger than [θ]i, and thus operate at vastly different
scales. In practice, what will mostly likely happen is that any sensible scheme
for dynamically adjusting λ will cause it to increase until it matches the scale
of the largest of these reparameterized weights, resulting in updates which make
virtually no changes to the other weights of the network.

In general, Tikhonov and any of the other quadratic penalty based damping
methods we will discuss in the following sections, can all be made arbitrarily
strong through the choice of λ, thus constraining the optimization of M̂ to a
degree sufficient to ensure that the update will not leave the region where M is
a sensible approximation. What differentiates good approaches from bad ones
is how they weigh different directions relative to each other. Schemes that tend
to assign more weight to directions associated with more serious violations of
the approximation quality of M will get away with using smaller values of λ,
thus allowing the sub-optimization of M̂ to be less constrained and thus produce
larger and more useful updates to θ.

20.8.3 Scale-Sensitive Damping

The scale sensitivity of the Tikhonov damping is similar to the scale sensitivity
that plagues 1st-order methods, and is precisely the type of issue we would like
to avoid by moving to 2nd-order methods. Tikhonov damping makes the same
implicit assumptions about scale that are made by first-order methods: that the
default norm ‖ · ‖ on R

n is a reasonable way to measure change in θ and a
reasonable quantity to penalize when searching for a suitable update to θ. 1st-
order methods can even be viewed as a special case of 2nd-order methods where
the curvature term is given entirely by a Tikhonov-type damping penalty, so
that B̂ = λI and δ∗ = −1/λ∇f(θ).

One solution to this problem is to only use parameterizations which exhibit
approximately uniform sensitivity properties, but this is limiting and it may be
hard to tell at-a-glance if such a property holds for a particular network and
associated parameterization.

A potential way to address this problem is to use a quadratic penalty function
which depends on the current position in parameter space (θk−1) and is designed
to better respect the local scale properties of f at θk−1. In particular, instead
of adding the penalty term λ/2‖δ‖2 to M we may instead add λ/2‖δ‖2Dk−1

=

λ/2δ�Dk−1δ, where Dk−1 is some symmetric positive definite (PD) matrix that
depends on θk−1. Such a term may provide a more meaningful measure of change
in θ, by accounting for the sensitivity properties of f more precisely. We call the
matrix Dk−1, the damping matrix, and will drop the subscript k− 1 for brevity.
Scale sensitive damping is implemented in HF by working with a “damped”
curvature matrix given B̂ = B+ λD, where the required matrix-vector products
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can be computed using as B̂v = Bv + λDv, assuming an efficient algorithm for
computing matrix-vector products with D.

A specific damping matrix which may work well in the case of the exp-
reparameterized network discussed in the previous sub-section would be D =
C�C (for a definition of C, see the previous sub-section). With such a choice we
find that the update δ∗ produced by fully optimizing M̂ is equal to C−1 times
the update which would have been obtained with the original parameterization
and standard Tikhonov damping with strength λ. Similarly to the undamped
case, this is true because:

(C�BC + λC�C)−1C�g = C−1(B + λI)−1C−�C�g = C−1(B + λI)−1g

It should also be noted that this choice of damping matrix corresponds to a
penalty function 1

2‖δ‖2C�C which is precisely the Gauss-Newton approximation
of λ

2 ‖θ†‖2 = λ
2 ‖φ(θ)‖2 w.r.t. to the new parameters θ, where θ† = φ(θ) are the

default/original parameters. The interpretation is that we are penalizing change
in the original parameters (which are assumed to have a very roughly uniform
scale), despite performing optimization w.r.t. the new ones.

While we were able to design a sensible custom scheme in this example, ex-
ploiting the fact that the default parameterization of a neural network gives
parameters which tend to operate at approximately similar scales (in most ar-
eas of the parameter space anyway), it would be nice to have a more generic
and self-adaptive approach in the cases where we do not have such a property.
One possible approach is to set D to be the diagonal matrix formed by tak-
ing the diagonal of B (i.e. D = diag(diag(B))), a choice made in the classical
Levenberg-Marquardt algorithm. With this choice, the update δ†∗ produced by
fully optimizing the damped quadratic M̂ will be invariant to diagonal linear
reparameterizations of θ.

Another nice property of this choice of D is that it produces an update which
is invariant to rescaling of f (i.e. optimizing βf instead of f for some β > 0). By
contrast, a pure Tikhonov damping scheme would rely on the careful adjustment
of λ to achieve such an invariance.

One obvious way to overcome the deficiencies of a damping approach based
on a diagonal matrix would be to use a non-diagonal one, such as the original
curvature matrix B itself. Such a choice for D produces updates that share all
of the desirable invariance properties associated with a pure undamped Newton
approach (assuming full optimization of M̂), such as invariance to arbitrary
linear reparameterizations, and rescalings of f . This is because with this choice,
the damping-modified curvature matrix B̂ is simply (1 + λ)B, and if we assume
either full optimization of M̂ , or partial optimization via a run of CG initialized
from 0, this type of damping has the effect of simply rescaling the update δ by
a factor of 1/(1+ δ). In section 20.8.8 we will discuss line-search methods which
effectively accomplish the same type of rescaling.

Despite the nice scale invariance properties associated with these choices,
there are good reasons not to use either of them in practice, or at least to use
them only with certain modifications, and in conjunction with other approaches.
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While the Tikhonov approach arguably makes too few assumptions about the
local properties of f , damping approaches based on D = B or its diagonal may
make too many. In particular, they make the same modeling assumptions as the
original undamped quadratic approximation M itself. For example, B may not
even be full-rank, and in such a situation it may be the case that M will predict
unbounded improvement along some direction in B’s nullspace, a problem which
will not be handled by damping with D = B for any value of λ, no matter how
big. Even if B is full-rank, there may be directions of near-zero curvature which
can cause a less extreme version of the same problem. Since the diagonal B will
usually be full-rank even when B isn’t, or just better conditioned in general,
using it instead may give some limited immunity to these kinds of problems, but
it is far from an ideal solution, as demonstrated in fig. 20.8.3.

3 2 1 0 1 2
3

2

1

0

1

2

u v

update

Fig. 20.3. A 2D toy example of how using D = diag(B) results in an overly restricted
update. Let u = [−1, 1]� and v = [1, 1]�, and let B be uu�+avv� where a is large (e.g.
104, although we take a = 15 for display purposes). This matrix is full rank, and its
diagonal entries are given by [a+1, a+1]�, representing the fact that the quadratic is
highly sensitive to independent changes to the 2 parameters. The small circular region
is where the update will be effectively restricted to when we make λ large enough.

In order to explain such degeneracies and understand why choices like D = B
can be bad, it is useful to more closely examine and critique our original choices
for making them. The quadratic approximation breaks down due to higher-order
effects (and even certain unmodelled 2nd-order effects in the case of the GGN
matrix) and it is the goal of damping to help compensate for this. By taking
D = B we are penalizing directions according to their curvature, and so are in
some sense assuming that the relative strength of the contribution to f from
the high-order terms (and thus the untrustworthiness of M) along two different
directions can be predicted reasonably well by looking at the ratio of their re-
spective curvatures. And while there is a tendency for this to be true for certain
objective functions, making this assumption too strongly may be dangerous.
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Unfortunately, in the absence of any other information about the semi-local
behavior of the function f , it may not always be clear what kind of assumption
we should fall back on. To move towards the uniform scale assumption implied
by the Tikhonov approach by choosing D to be some interpolation between the
diagonal of B and a multiple of the identity (e.g. using the methods discussed in
20.11.2) seems like an arbitrary choice, since in general there may not be anything
particularly special or natural about whatever default parameterization of f
that we are given to work with. Despite this, such a strategy can be reasonably
effective in some situations, and a reasonable compromise between Tikhonov
damping and damping with B.

A conceivably better approach would be to collect information about higher-
order derivatives, or to use information collected and aggregated from previous
iterations of the optimization process to build a simple model of the coarse
geometric structure of f . Or perhaps some useful information could be gleaned
from examining the structure of the computational graph of f . Unfortunately
we are unaware of the existence of general methods for building D based on such
ideas, and so this remains a direction for future research.

In the next section we discuss a method called “structural damping” which
constructs D using knowledge of the particular structure of deep and recurrent
neural networks, in order to construct damping matrices which may be better
at selectively penalizing directions for the purposes of damping.

20.8.4 Structural Damping

Recurrent Neural Networks are known to be difficult to train with gradient
descent, so it is conceivable that problematic variations in scale and curvature are
responsible. Indeed, a direct application of the implementation of HF presented
by Martens [22] to RNNs can yield reasonable results, performing well on a
family of synthetic pathological problems [19, 23] designed to have very long-
range temporal dependencies of up to 100 time-steps. However Martens and
Sutskever [23] found that performance could be made substantially better and
more robust using an idea called “structural damping”.

Martens and Sutskever [23] found that a basic Tikhonov damping approach
performed poorly when applied to training RNNs. In particular, in order to
avoid very large and untrustworthy update proposals, they found λ needed to
be very high, and this in turn would lead to much slower optimization. This
need for a large λ can be explained by the extreme sensitivity of the RNN’s
long sequence of hidden states to changes in the parameters and in particular
the hidden dynamics matrix Whh. While these sorts of problems exist with deep
feed-forward neural networks like the autoencoders considered in Hinton and
Salakhutdinov [17] and Martens [22], the situation with RNNs is much more
extreme, since they have many more effective “layers”, and their parameters are
applied repeatedly at every time-step and can thus have a dramatic effect on the
entire hidden state sequence [4, 18]. Due to this extreme and highly non-linear
sensitivity, local quadratic approximations are likely to be highly inaccurate in
certain directions in parameter space, even over very small distances. A Tikhonov
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damping approach can only compensate for this by imposing a strict penalty
against changes in all directions, since it lacks any mechanism to be more selective.

Structural damping addresses this problem by imposing a quadratic penalty
not just to changes in parameters, but also to cetain intermediate quantities that
appear in the evaluation of f , such as the hidden state activities of an RNN.
This allows us to be more selective in the way we penalize directions of change
in parameter space, focusing on those that are more likely to lead to the large
changes in the hidden state sequence, which due to their highly nonlinear nature,
tend to correspond to catastrophic breakdowns in the accuracy of the quadratic
approximation.

Speculatively, structural damping may have another more subtle benefit for
RNN learning. It is known [20, 23] that good random initializations give rise to
nontrivial hidden state dynamics that can carry useful information about the
past inputs even before any learning has taken place. So if an RNN is initialized
carefully to contain such random dynamics, the inclusion of structural damping
may encourage the updates to preserve them at least until the hidden-to-output
weights have had some time to be adapted to the point where the long-range
information contained in the hidden activities actually gets used to inform future
predictions. After such a point, a locally greedy optimizer like HF will have more
obvious reasons to preserve the dynamics.

To formalize structural damping we first re-express the nonlinear objective
f(θ) as a composition of functions L(z(h(θ), θ)), where h(θ) computes the hidden
states (whose change we wish to penalize), z(h, θ) computes the outputs, and
L(z) computes the loss.

Given the current parameter setting θk−1, the local (undamped) quadratic
approximation is given byM(δ) and its curvature is B. We prevent large changes
in the hidden state by penalizing the distance between h(θk−1 + δ) and h(θk−1)
according to the penalty function

S(δ) = d(h(θk−1 + δ);h(θk−1))

where d is a distance function or loss function such as a squared error or the
cross-entropy5.

Ideally, we would define the damped local objective as:

M̂ †(δ) =M(δ) + μS(δ) + λI

where μ is a strength constant similar to λ. But since we cannot minimize a
non-quadratic objective with CG, we must resort to using a local quadratic
approximation to S(δ). This will be given by δ�Dk−1δ/2 where Dk−1 is the
Gauss-Newton matrix of the penalty function S(δ) at δ = 0. Note that the
quadratic approximation to S(δ) does not have a linear term because δ = 0 is a
minimum of S.

Fortunately, it is straightforward to multiply by the generalized Gauss-Newton
matrix of S using the techniques outlined in section 20.6. Thus we could compute
5 The cross-entropy is suitable when the hidden units use a logistic sigmoid nonlin-

earity
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the products Bv and μDk−1v using two separate Gauss-Newton matrix-vector
products, adding together the results, approximately doubling the computational
burden. In order to avoid this, we can instead compute the sum (Bk−1+μDk−1)v
directly by exploiting the fact that S(δ) can be computed much more efficiently
by reusing the h(θk + δ) which gets computed as an intermediate quantity for
f(θk + δ). Indeed, consider a neural network whose output units include the
hidden state as well as the predictions:

c(θ) ≡ [h(θ), z(h(θ), θ)]

and whose loss function is given by Lμ(h, y) = μd(h;h(θk−1) + L(y), so that
we have f(θ) + μS(θ) = Lμ(c(θ)). This “new” neural network includes struc-
tural damping in its loss, and any automatic routines computing the required
Jacobian-vector products for c will be no more expensive than the analogous
routines in the original network. Multiplication by the Hessian of the loss

L′′
μ =

(
L′′(y) 0
0 μd′′(h;h(θk−1))

)
is also easy and can be done block-wise.

20.8.5 The Levenberg-Marquardt Heuristic

For the penalty-based damping methods such as those described above to work
well, λ (and perhaps also μ, as defined in the previous sub-section) must be
constantly adapted to keep up with the changing local curvature properties of
f .

Fortunately, we have found that the well-known Levenberg-Marquardt (LM)
heuristic, which is usually used in the context of the LM method [25] to be
effective at adapting λ in a sensible way even in the context of the truncated
CG runs that are used in HF.

The key quantity behind the LM heuristic is the “reduction ratio”, denoted
by ρ, which is given by

ρ ≡ f(θk−1 + δk)− f(θk−1)

Mk−1(δk)
(20.10)

The reduction ratio measures the ratio of the reduction in the objective f(θk−1+
δk)− f(θk−1) produced by the update δk, to the amount of reduction predicted
by the quadratic model. When ρ is much smaller than 1, the quadratic model
overestimates the amount of reduction and so λ should be increased, encouraging
future updates to be more conservative and thus lie somewhere that the quadratic
model more accurately predicts the reduction. In contrast, when ρ is close to 1,
the quadratic approximation is likely to be fairly accurate near δ∗, and so we can
afford to reduce λ, thus relaxing the constraints on δk and allowing for “larger”
and more substantial updates.

The Levenberg-Marquardt heuristic is given by:

1. If ρ > 3/4 then λ← λ2/3
2. If ρ < 1/4 then λ← λ3/2
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Although the constants in the above description of the LM are somewhat arbi-
trary, we found them to work well in our experiments.

Note that the above heuristic is valid in the situation where ρ < 0,
which can arise in one of two ways. The first way is where Mk−1 < 0 and
f(θk−1 + δk) − f(θk−1) > 0, which means that the quadratic approximation is
very inaccurate around δ∗ and doesn’t even get the sign of the change right. The
other possibility is that Mk−1 > 0 and f(θk−1 + δk) − f(θk−1) < 0, which can
only occur if CG is initialized from a nonzero previous solution and doesn’t make
sufficient progress from that point to obtain a negative value Mk−1 before being
terminated/truncated. When this occurs one should either allow CG to use more
iterations or possibly initialize the next run of CG from 0 (as this will guarantee
that Mk−1 < 0, since Mk−1(0) = 0 and CG decreases Mk−1 monotonically).

While the definition of ρ in eqn. 20.10 uses the undamped quadratic in the
denominator, the damped quadratic approximation ˆMk−1 can also be used, and
in our experience will give similar results, favoring only slightly lower values of
λ.

Because of this tendency for M to lose accuracy as CG iterates (see subsec-
tion 20.8.7), the value of ρ tends to decrease as well (sometimes after an initial
up-swing caused by using a non-zero initialization as in section 20.10). If CG
were to run to convergence, the Levenberg-Marquardt heuristic would work just
as it does in the classical Levenberg-Marquardt algorithm, which is to say, very
effectively and giving provable strong local convergence guarantees. But the situ-
ation becomes more complicated when this heuristic is used in conjunction with
updates produced by unconverged runs of CG, because the “optimal” value of λ,
which the LM heuristic is trying to find, will be a function of how much progress
CG tends to make when optimizing M .

Fortunately, as long as the local properties of f change slowly enough, ter-
minating CG according to a fixed maximum number of steps should result in a
relatively stable and well-chosen value of λ.

But unfortunately, well intentioned methods which attempt to be smarter and
terminate CG based on the value of f , for example, can run into problems caused
by this dependency of the optimal λ on the performance of CG. In particular,
this “smart” decision of when to stop CG will have an affect on ρ, which will
affect the choice of λ via the LM heuristic, which will affect the damping and
hence how the value of f evolves as CG iterates (at the next HF iteration), which
will finally affect the decision of when to stop CG, bringing us full circle. It is
this kind of feed-back which may result in unexpected and undesirable behaviors
when using the LM heuristic, such as λ and the number of the length of the CG
runs both going to zero as HF iterates, or both quantities creeping upwards to
inappropriately large values.

20.8.6 Trust-Region Methods

In contrast to damping methods that are based on penalty terms designed to
encourage updates to be “smaller” according to some measure, trust region meth-
ods impose an explicit constraint on the optimization of the quadratic model
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M . Instead of performing unconstrained optimization on the (possibly damped)
quadratic M̂ , a constrained optimization is performed over M . This is referred
to as the trust-region sub-problem, and is defined by:

δ∗R = argminδ:δ∈RM(δ)

where R ⊆ R
n is some region localized around δ = 0 called the “trust-region”.

Ideally, R has the property that M remains a reasonable approximation to f
for any δ ∈ R, without being overly restrictive. Or perhaps more weakly (and
practically), that whatever update δ∗R is produced by solving the trust-region
sub-problem will produce a significant reduction in f . Commonly, R is chosen to
be a ball of radius r centered at 0, although it could just as easily be an ellipsoid
or something more exotic, as long as the required constrained optimization can
be performed efficiently enough.

There is a formal connection between trust region methods and penalty-based
damping methods such as Tikhonov damping, which states that when R is an
elliptical ball around 0 of radius r given R = {x : ‖x‖Q ≤ r} for some positive
definite matrix Q, then for each quadratic function M(δ) there exists a λ such
that

argminδ:δ∈RM(δ) = argminδM(δ) +
λ

2
‖δ‖2Q

This result is valid for all quadratic functions M , even when B is indefinite, and
can be proved using Lagrange multipliers.6

Trust-region methods have some appeal over the previously discussed penalty-
based damping methods, because it may be easier to reason intuitively, and
perhaps also mathematically, about the effect of an explicit trust-region (with a
particular radius r) on the update than a quadratic penalty. Indeed, the trust
region R is invariant to changes in the scale of the objective7, which may make
it easier to tune, either manually or by some automatic method.

However, the trust region optimization problem is much more difficult than
the unconstrained quadratic optimization of M̂ . It cannot be directly solved
either by CG or by matrix inversion. Even in the case where a spherical trust-
region with radius r is used, the previously discussed result is non-constructive
and merely guarantees the existence of an appropriate λ that makes the exact
minimizer of the Tikhonov damped M̂ equal to the solution of the trust region
sub-problem. Finding such a λ is a hard problem, and while there are algorithms
that do this [26], they involve expensive operations such as full decompositions of

6 For completeness, we present an outline of the proof here: Consider the Lagrangian
L(δ, λ) = M(δ) + (r − 1

2
δ�Qδ)λ. It is known that there exists a λ∗ such that the

minimizer of the trust region problem δ∗ satisfies ∂L(δ∗, λ∗)/∂(δ, λ) = 0. For M(δ) =
g�δ−δ�Bδ/2, this is equivalent to g−Bδ∗−λ∗Qδ∗ = 0, and thus (B+λ∗Q)δ∗ = g. If
the matrix B+λ∗Q is positive definite, then δ∗ can be expressed as the unconstrained
minimization of g�δ − δ�(B + λ∗I)δ/2.

7 If the objective is multiplied by 2, then λ also needs to be multiplied by 2 to achieve
the same effect when using a penalty method. By contrast, the trust region R is
unaffected by such a scale change.
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the B matrix, or finding the solutions of multiple Tikhonov-damped quadratics
of the form M̂ . When CG is used to perform partial optimization of the quadratic
model, there are also good approximation algorithms [13] based on examining
the tridiagonal decomposition of B (restricted to the Krylov subspace), but these
require either storing a basis for the entire Krylov subspace (which may be
impractical when n is large), or will require a separate run of CG once λ has
been found via the tridiagonal decomposition, effectively doubling the amount
of matrix-vector products that must be computed.

Even if we can easily solve (or partially optimize) the trust-region sub-
problem, we are still left with the problem of adjusting r. And while it is likely
that the “optimal” r will remain a more stable quantity than the “optimal” λ over
the parameter space, it still needs to be adjusted using some heuristic. Indeed,
one heuristic which is advocated for adjusting r [30] is precisely the Levenberg-
Marquardt heuristic discussed in section 20.8.5 which is already quite effective
(in our experience) at adjusting λ directly. This leaves us with the question: why
not just adjust λ directly and avoid the extra work required to compute λ by
way of r?

One method which is effective at finding reasonable approximate solutions of
the trust-region sub-problem, for the case where R is a ball of radius r, is to
run CG (initialized at zero) until the norm of the solution exceeds r (i.e. the
solution leaves the trust-region) and truncate CG at that iteration, with a possi-
ble modification to the α multiplier for the final conjugate direction to ensure a
solution of norm exactly r. This is known as the Steihaug-Toint method, and it
can be shown [13] that, provided CG is initialized from a zero starting solution
and no preconditioning is used, the norm of the solution will increase monoton-
ically and that if CG is truncated in the manner described above, the resultant
solution δ†k will satisfy M(δ†k) ≤ 1

2M(δ∗k) where δ∗k is the optimal solution to the
trust-region sub-problem. This seems like a good compromise, and it is more
economical than approaches that try to solve the trust region problem exactly
(or using better approximations, as discussed above). Unfortunately, the restric-
tion that CG must be initialized from zero cannot be easily removed, and in our
experience such initializations turn out to be very beneficial, as we will discuss
in section 20.10.

Another argument against using the Steihaug-Toint method is that if the
trust-region is left after only a few steps of CG, it will likely be the case that
few, if any, of the low-curvature directions have converged to a significant degree
(see section 20.9). And while we know that this will not affect the optimized
value ofM by more than a factor of 2, it will nonetheless produce a qualitatively
different type of update than one produced using a penalty method, which will
have a possibly negative effect on the overall optimization trajectory.

Another possible argument against using the Steihaug-Toint method is that
it cannot used with preconditioned CG. However, as long as we are willing to
enforce an elliptical trust-region of the form {x : ‖x‖P < r} where P is the
preconditioning matrix, instead of a spherical one, the method still works and
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its theory remains valid. And depending on the situation, this kind of elliptical
trust-region may actually be a very natural choice.

20.8.7 CG Truncation as Damping

Within HF, the main reason for terminating CG before it has converged is one
of a practical nature: the matrix-vector products are expensive and additional
iterations will eventually provide diminishing returns as far as optimizing the
quadratic model M . But there is another more subtle reason we may want to
truncate early: CG truncation may be viewed as special type of damping which
may be used in conjunction with (or as an alternative to) the various other
damping methods discussed in this section.

As CG iterates, the accuracy ofM(δ) tends to go down, even while f(θk−1+δ)
may still be improving. One way to explain this, assuming a zero initialization,
is that the norm of δ will increase monotonically with each step, and thus be
more likely to leave the implicit region around δ = 0 where M is a reasonable
approximation of f . There is also theory which suggests that CG will converge
to δ∗ first along directions of mostly higher curvature, and only later along direc-
tions of mostly low curvature (see section 20.9). While pursuing low curvature
directions seems to be important for optimization of deep networks and RNNs,
it also tends to be associated with large changes in θ which can lead to more
serious breakdowns in the accuracy of the local quadratic model.

The Steihaug-Toint method described in section 20.8.6 already makes use of
this phenomenon and relies exclusively on truncating the solution early to en-
force trust-region constraints. And it is well-known that truncating CG, which
effectively limits the size of the Krylov subspace, has certain regularizing prop-
erties in the context of solving noisy and ill-posed systems of linear equations
[14].

Although it wasn’t emphasize this in the paper, Martens [22] supplemented
the progress-based CG termination criteria with a maximum limit of 250 steps.
In practice, we have found that this maximum is consistently reached after the
first 100 (or so) iterations of HF when the approach is applied to problems
like the “CURVES” auto-encoder from Hinton and Salakhutdinov [17], and that
it plays an important role which is not limited to saving computation time.
Instead, we can observe that the improvement in the value of the objective f is
non-monotonic in the number of CG steps, and may peak long before condition
20.2 is satisfied (see fig. 20.4).

Martens [22] proposed “CG-backtracking” as a method to take advantage of
this tendency for earlier iterates to be more favorable as updates, by selecting
the “best” iterate among some manageable subset, as measured by the associated
reduction in f . One possible approach which is reasonably efficient is to compute
the objective f only on a small subset of the current minibatch or training set,
and only at every multiple of c steps for some fixed c, or every power of ν steps
(rounding to the nearest integer) for some fixed ν, and then terminate once it
appears that there will be no further possible improvement in the objective.
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Fig. 20.4. A plot of the objective function (solid) versus the quadratic approximation
(dotted) as a function of the number of CG steps. This was selected as a typical example
of a single run of CG performed by HF on a typical deep auto-encoder training task.

An important thing to keep in mind is that the damping effect of CG trun-
cation will depend on both the preconditioning scheme used within CG (as dis-
cussed in section 20.11), and on the particular manner in which CG is initialized
(as discussed in sec. 20.10). In the extreme case where P = B, the eigenvalues
will all be equal and CG will converge in one step, rendering CG truncation
trivial/useless. And for “stronger” preconditioners that let CG converge faster
it can be argued that truncation at a particular iteration i will have a smaller
effect than with “weaker” preconditioners. But this perspective oversimplies a
very complex issue.

Preconditioning is effectively reparameterizing the quadratic optimization
problem, which has the effect of creating new eigenvectors with new eigenvalues
and of changing the Krylov subspace (as discussed further in section 20.11.1).
This in turn affects the “order” in which CG tends to prioritize convergence along
different directions (see section 20.9). Thus, when CG is terminated long before
convergence, preconditioning will have an important effect on the nature of the
implicit damping and thus on the quality of the update.

From the perspective of the Steihaug-Toint method and trust-regions, CG
preconditioning can be thought of as determining the shape of the trust-region
that is being implicitly enforced through the use of truncation. In particular, the
trust region will be given by R = {x : ‖x‖P ≤ r}, for some r, where P is the
preconditioning matrix. Similarly, initializing CG from some non-zero point x0
can be thought of as shifting the center of said trust-region away from 0. In both
cases, the guarantee remains true that the solution found by truncated CG will
be at least half as good (in terms of the value of M), subject to the trust-region
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radius implied by the current iterate, as long as we the modify definition of the
trust region appropriately.

20.8.8 Line Searching

The most basic form of damping, which is present in almost every 2nd-order
optimization algorithm, is standard line searching applied to the update proposal
δk. In particular, we select a scalar αk to multiply the update δk before adding
it to θ so that θk = θk−1+αδk. Usually α is set to 1 as long as certain conditions
hold (see Nocedal et al. [30]), and decreased only as necessary until they do.
Doing this guarantees that certain local convergence theorems apply.

Provided that δk is a descent direction (δ�k ∇f(θk−1) < 0) we know that for a
sufficiently small (but non-zero) value of α, we will have:

f(θk−1) > f(θk) = f(θk−1 + αδk) (20.11)

δk will be descent direction as long as B̂k−1 is positive definite, ∇f is computed
on the entire training set, and M̂ is optimized either exactly, or partially with
CG (provided that we achieve M(δ) < 0). Thus, in many practical scenarios, a
line search will ensure that the update results in a decrease in f , although it may
be very small. And if we are content with the weaker condition that only the
terms of f corresponding to the minibatches used to estimate ∇f(θk−1) must
decrease, then we can drop the requirement that ∇f be computed using the
whole training set.

One easy way to implement line searching is via the back-tracking approach,
which starts at α = 1 and repeatedly multiplies this by some constant β ∈ (0, 1)
until the “sufficient-decrease condition” applies. This is given by

f(θk−1 + αδk) ≤ f(θk−1) + cα∇f(θk−1)
�δk

where c is some small constant like 10−2. It can be shown that this following
approach will produce an update which has strong convergence guarantees 8.

Unlike 1st-order methods where the total number of updates to θ can often
be on the order of 104 − 106 for a large neural network, powerful approximate
Newton methods like HF may only require on the order of 102 − 103, so the
expense of a line-search is much easier to justify.

Note also that it is also possible to view line searching as a special type of a
penalty based damping method, where we use a penalty term of the form 1

2αB.
In other words, we simply increase the scale of curvature matrix B by 1/α. This
interpretation is valid as long as we solve M̂ exactly, or partially by CG as long
as it is initialized from 0.

The line search is best thought of as a last line of defense to compensate for
occasional and temporary maladjustment of the various non-static parameters
of the other damping methods, such as λ or r, and not as a replacement for
8 But note that other possible ways of choosing an α that satisfies this condition may

make α too small.
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these methods. If the line search becomes very active (i.e., very often chooses an
α strictly less than 1) there are two probable causes, which should be addressed
directly instead of by relying on the line-search. The first is poorly designed/inap-
propriate damping methods and/or poor heuristics for adjusting their non-static
meta-parameters. The second probable cause is that the data used to estimate
the curvature and/or gradient is insufficient and the update has effectively “over-
fitted” the current minibatch.

The argument for not relying on line searches to fix whatever problems might
exist with the updates produced by optimizing M is that they work by rescaling
each eigen-component (or conjugate direction) of the update equally by the mul-
tiplicative factor α, which is a very limited and inflexible approach. It turns out
that in many practical situations, the type of scaling modification performed by
a penalty method like Tikhonov damping is highly preferable, such as when B
is very ill-conditioned. In such a situation, minimizing M results in an update
proposal δk which is scaled much too strongly in certain, possibly spurious, low-
curvature eigen-directions, by a factor of possibly 103 or more, and a line-search
will have to divide all components by this factor in order to make the update
viable, which results in an extremely small update. Meanwhile, a Tikhonov ap-
proach, because it effectively modifies the curvatures by the additive constant
λ (as discussed in section 20.8.1) can easily suppress these very low-curvature
directions while leaving the higher curvature directions relatively untouched,
which makes the update much bigger and more useful as a result.

20.9 Convergence of CG

In this section we will examine the theoretical convergence properties of CG
and provide justifications for various statements regarding its convergence made
throughout this report, such as how δ converges along different “directions” in
parameter space, and how CG prioritizes these directions according to their
“associated curvature”. This analysis has particularly important implications for
preconditioning (see section 20.11) and CG truncation damping (see section
20.8.7).

Before we begin it should be noted that due to inexact computer arithmetic,
in practice the conclusions of this analysis (which implicitly assume exact arith-
metic) will only hold approximately. Indeed, CG, unlike many other numerical
algorithms, is highly sensitive to numerical issues and after only 5−10 iterations
on a high-precision machine will produce iterates that can differ significantly
from those which would be produced by a hypothetical exact implementation.

We will analyze CG applied to a general quadratic objective of the form
q(x) = 1

2x
�Ax−b�x for a symmetric positive definite matrix A ∈ R

n×n, b ∈ R
n.

This can be related by to HF by taking A = B (or A = B̂ in the case of a damped
quadratic approximation) and b = −∇f .

Note that x as defined here is an n-dimensional vector and should not be
confused with its use elsewhere in this chapter as the input to a neuron.

Let {λj}nj=1 be the eigenvalues of A and {vj}nj=1 the corresponding (unit)
eigenvectors, x0 be the initialization of CG, and x∗ the minimizer of q. Since the



514 J. Martens and I. Sutskever

vj ’s are an orthonormal basis for Rn (because A is symmetric and invertible) for
any x we can express x0 − x∗ in terms of the vj ’s, giving x0 − x∗ =

∑n
j=1 ξjvj

for ξj = v�j (x0 − x∗).
It can be shown [30, 32] that:

‖xi − x∗‖2A = min
p

n∑

j=1

λjp(λj)
2ξ2j (20.12)

where ‖z‖2A ≡ 1
2z

�Az and where the minimum is taken over all polynomials of
degree i with constant term 1. This result can be used to prove various conver-
gence theorems for CG [30]. For example, CG will always converge to x∗ after a
number of iterations less than or equal to the number m of distinct eigenvalues
of A, since it is easy to design a polynomial of degree m with constant term 1
that satisfies p(λj) = 0 for all j.

To gain more insight into eqn. 20.12 we will re-derive and re-express it in a
way that implies an intuitive interpretation for each term. It is easy to show
that:

q(z + x0)− q(x0) =
1

2
z�Az + r�0 z

where r0 = Ax0 − b (i.e. the initial residual). And so q(z + x0) − q(x0) is a
quadratic in z with constant term equal to 0, and linear term r0.

Defining ηj = r�0 vj to be the size of eigenvector vj in direction r0 = Ax0 − b
(which is the initial residual), and observing that v�j Avj = λjv

�
j vj = λj , we

have for any α ∈ R:

q(αvj + x0)− q(x0) =
1

2
α2v�j Avj + αr

�
0 vj =

1

2
α2λj + αηj

Since the vj ’s are an orthonormal basis for R
n (because A is symmetric and

invertible), we can express x − x0 (for any x) in terms of the vj ’s, giving x =
x0 +

∑
j βjvj where βj = v�j (x − x0). Note that the vj ’s are also mutually

conjugate (which follows from them being both orthonormal and eigenvectors)
and that since q(z + x0)− q(x0) is quadratic in z with constant term 0 we have
that for any two conjugate vectors u and w:

q(u+ w + x0)− q(x0) = (q(u+ x0)− q(x0)) + (q(w + x0)− q(x0))

which is straightforward to show. Thus we have:

q(x)− q(x0) = q((x − x0) + x0)− q(x0)

=

n∑

j=1

(q(βjvj + x0)− q(x0)) =
n∑

j=1

(
1

2
β2j λj + βjηj

)

What this says is that the size βj of the contribution of each eigenvector/eigen-
direction to x, have an independent influence on the value of q(x)−q(x0), and so
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we can meaningfully talk about how each one of them independently “converges”
as CG iterates.

In a sense, each βj is being optimized by CG, with the ultimate goal of mini-
mizing the corresponding 1-D quadratic q(βjvj + x0) − q(x0), whose minimizer
is β∗j = − ηj

λj
= v�j (x

∗ − x0) with associated minimum value:

q(β∗j vj + x0)− q(x0) = −
1

2

η2j
λj

= −ωj

where we define ωj ≡
η2
j

λj
. The difference between the current value of q(βjvj+x0)

and its minimum has a particularly nice form:

q(βjvj + x0)− q(β∗j vj + x0) =
1

2
β2j λj + βjηj + ωj = ωj

(
λj
ηj
βj + 1

)2

Now suppose that x − x0 ∈ Ki(A, r0) so that there exists some (i − 1)-degree
polynomial s s.t. x− x0 = s(A)r0 and note that s(A)vj = s(λj)vj . Then,

βj = v
�
j (x− x0) = v�j s(A)r0 = (s(A)vj)

�r0 = (s(λj)vj)
�r0 = s(λj)ηj

so that:

q(βjvj + x0)− q(β∗j vj + x0) = ωj
(
λj
ηj
s(λj)ηj + 1

)2

= ωj(λjs(λj) + 1)2 = ωjp(λj)
2

where we define p(z) = zs(z)+ 1 (which is a general polynomial of degree i with
constant coefficient 1).

Summarizing, we have:

q(x) − q(x∗) = (q(x) − q(x0))− (q(x∗)− q(x0))

=
n∑

j=1

(q(βjvj + x0)− q(β∗j vj + x0)) =
n∑

j=1

ωjp(λj)
2 (20.13)

We now apply this results to CG. We know that after i steps, CG applied to
q with initialization x0, finds the iterate xi which minimizes q(xi) subject to
restriction xi−x0 ∈ Ki(A, r0). This is equivalent to minimizing over all possible
p with the requirement that p has degree i with constant coefficient 1, or in other
words:

q(xi)− q(x∗) = min
p

n∑

j=1

ωjp(λj)
2 (20.14)

Thus we see that CG is effectively picking a polynomial p to minimize the
weighted sum of p2 evaluated at the different eigenvalues.
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Fig. 20.5. This figure demonstrates geometrically how the contribution to the poly-
nomial p(z) of an additional root ν or ν′ in the vicinity of a small eigenvalue λ1 or a
large eigenvalue λ2 (resp.) affects the loss term associated with the other eigenvalue.
In particular, the distance of the lines above or below the horizontal axis is equal to
the factor whose square effectively multiplies the loss term associated with the given
eigenvalue.

As mentioned before, there are various results that make use of expressions
similar to this one in order to prove results about how the distribution of the
eigenvalues of A determine how quickly CG can make progress optimizing q. One
particularly interesting result states that if the eigenvalues cluster intom groups,
then since we can easily design a degree-m polynomial p which is relatively small
in the vicinity of each cluster by placing a root of p at each cluster center, the
error will be quite low by the m-th iteration [30].

However, the particular form of eqn. 20.14 and its derivation allow us to paint
a more intuitive picture of how CG operates. Each of the terms in the sum 20.13
correspond to a direction-restricted objective q(βjvj + x0) − q(β∗j vj + x0) =

ωjp(λj)
2 which are indirectly optimized by CG w.r.t. the βj ’s. The size each of

these “loss” terms negatively correlates with how much progress CG has made
in optimizing x along the corresponding eigen-directions, and by examining the
form of these terms, we can talk about how CG will “prioritize” these different
terms (and hence the optimization of their associated eigen-directions) through
its choice of an optimal polynomial p.

Firstly, consider the “weights” ωj = −(q(β∗j vj + x0) − q(x0)) =
1

2

η2j
λj

, which

measure the total decrease in q that can be obtained by fully optimizing along
the associated direction vj . Their effect is thus to shift the focus of CG towards
those eigen-directions which will give the most reduction. They are inversely
proportional to the curvature λj , and proportional to η2j = (v�j r0)

2, which is
the square of the size of the contribution of the eigen-direction within the initial
residual (which in HF will be the gradient of f when x0 = 0), and this makes
the ωj ’s “scale-invariant”, in the sense that any linear reparameterization which
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preserves the eigenvectors of A, while possibly rescaling the eigenvalues, will
have no effect on the ωj’s.

Secondly, we note the effect of the size of the λj ’s, or in other words, the
curvatures associated with vj ’s. If it weren’t for the requirement that p must
have a constant term of 1, the λj ’s probably wouldn’t have any influence on
CG’s prioritizing of directions (beyond for how they modulate the weights ωj).
But note that general polynomials of degree i with constant coefficient 1 must
have the form:

p(z) =

i∏

k=1

(
1− z

νk

)

for νk ∈ C. We will argue by illustrative example that this fact implies that CG
will favor high-curvature directions, everything else being equal. Suppose there
are two tight clusters of eigenvalues of A, a low-magnitude one located close
to zero and a large-magnitude one located further away. Suppose also that they
have equal total loss as measured by the sum of the associated ωjp(λj)2’s (for the
current p). Placing an additional root νk close to the large-magnitude cluster will
greatly reduce the associated ωjp(λj)2 loss terms in that cluster, by effectively

multiplying each by
(
1− λj

νk

)2
which will be small due to the closeness of νk to

each λj . Meanwhile, for the λj ’s in the small-magnitude cluster, the associated

loss terms will be multiplied by
(
1− λj

νk

)2
which won’t be greater than 1 since

0 < λj < νk, implying that these loss terms will not increase (in fact, they will
very slightly decrease).

Now contrast this with what would happen if we placed a root νk close to
the small magnitude cluster. As before, the loss terms associated with that clus-
ter will be greatly reduced. However, because λj ! νk for λj ’s in the large-

magnitude cluster, we will have
(
1− λj

νk

)2
! 1 for such λj ’s, and so the asso-

ciated loss terms will greatly increase, possibly even resulting in a net increase
in q. Thus CG, being optimal, will place the root near to the large-magnitude
cluster in this situation, versus the small magnitude-one, despite convergence of
either one yielding the same improvement in q.

20.10 Initializing CG

As in the previous section we will use the generic notation q(x) = 1
2x

�Ax− b�x
to refer to the quadratic objective being optimized by CG.

A useful property of CG is that it is able to make use of arbitrary initial
guesses x0 for x. This choice can have a strong effect on the performance of
CG, which is not surprising since xi depends strongly on the Krylov subspace
Ki(A, r0) (where r0 = Ax0 − b), which in turn depends strongly on x0. From
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the perspective of the previous section, an initial x0 may be “more converged”
than x = 0 along some eigen-directions and less converged along others, thus
affecting the corresponding weights ωj , which measure the total reduction that
can be obtained by fully optimizing eigen-direction vj (versus leaving it as it is
in x0). This “redistribution” of weights caused by taking a different x0 may make
the quadratic optimization easier or harder for CG to optimize, depending on
how the eigenvalues and associated weights are distributed.

Since the local geometry of the error surface of f (and hence the local damped
quadratic model q = M̂) changes relatively slowly between updates (at least
along some eigen-directions), this suggests using the previous update δk−1 as
the starting solution x0 for CG, as was done by Martens [22].

In practice, this choice can result in an initial value of q which is higher than
zero, and thus seemingly worse than just using x0 = 0, which satisfies q(x0) = 0.
x0 may not even be a descent direction, implying that q(εx0) > 0 for all ε > 0.
But these objections are based on the naive notion that the value of q tells us
everything there is to know about the quality of potential initialization. What
we observe in practice is that while CG runs initialized with x0 = δk−1 “start
slow” (as measured by the value of q(x)), they eventually catch up and then
surpass runs started from x0 = 0.

To make sense of this finding, we first note it is easy to design initializations
which will have arbitrarily high values of q, but which require only one CG step
to reach the minimum. To do this, we simply take the minimizer of q and add
a large multiple of one of the eigenvectors of A to it. This corresponds to the
situation where only one eigenvalue λj has non-zero weight ωj , so that to make
q(x) − q(x∗) = 0 CG can simply select the degree-1 polynomial which places a
root at λj .

More generally, x0 may be more converged than 0 along eigen-directions which
are more numerous, or which have have small and spread-out eigenvalues (i.e.
curvatures), and meanwhile less converged than 0 (perhaps severely so) only
along eigen-directions which are fewer in number, or have larger or more tightly
clustered eigenvalues. If the later group has a larger total weight (given by the
sum of the ωj ’s as defined in the previous section) this will cause q(x0) > 0.
But since the former directions will be easier for CG to optimize than the latter,
this implies that the given x0 will still be a highly preferable initialization over
“safer” choice of 0, as long as CG is given enough iterations to properly optimize
the later group of badly initialized but “easy-to-fix” eigen-directions.

We surmise that the choice x0 = δk−1 fits into the situation described above,
where the later group of eigen-directions correspond to the slowly optimized
low-curvature directions that tend to remain descent-directions across many HF
iterations. Consistent with this theory, is our observation that the number of
CG steps required to achieve q(x) < 0 from the initialization x0 = δk−1 tends to
grow linearly with the number of CG steps used at the previous HF iteration9.

9 This is, incidentally, one reason why it is good to use a fixed maximum number of
CG iterations at each HF step.



20. Training Deep and Recurrent Networks with Hessian-Free Optimization 519

Analogously to how the current update vector is “decayed” by a scalar constant
when using gradient descent with momentum, we have found that it is helpful to
slightly decay the initialization, taking x0 = ζδk−1 for some constant 0 ≤ ζ ≤ 1,
such as 0.95.

Choosing this decay factor for HF carefully is not nearly as important as it can
be for momentum methods. This is because while momentum methods modify
their current update vectors by a single gradient-descent step, HF uses an entire
run of CG, which can make much more significant changes. This allows HF to
more easily scale back x0 along eigen-directions, which while they may have been
helpful at the previous θ, are no longer appropriate to follow from the current θ.
In particular, x0 will be quickly “corrected” along turbulent directions of high-
curvature, reducing (but not completely eliminating) the need for a decay to
help “clean up” these directions.

Our experience suggests that properly tuning the decay constant becomes
more important as aggressive CG truncation, or other factors like weak precon-
ditioning, limit CG’s ability either to modify the update from its initial value
x0, or to make good progress along important low-curvature directions. While
the former problem calls for lowering ζ, the later calls for raising it. The optimal
value will likely depend on the amount of truncation, the type of precondition-
ing, and the local geometry of the objective being optimized. ζ = 0.95 seems to
be a good default value, but it may help to reduce it when using an approach
which truncates CG very early. It may also be beneficial to increase it in the
later stages of optimization where CG struggles much harder to optimize q along
low curvature directions.

20.11 Preconditioning

As powerful as CG is, there are quadratics optimization problems which can be
easily solved using more direct methods, that CG will struggle with. For exam-
ple, if the curvature matrix is diagonal, CG will in general require i iterations to
converge (where i is the number of distinct values on the diagonal) using a total
of O(in) time. Meanwhile, we could easily solve the entire system by straightfor-
ward inversion of the diagonal curvature matrix in time O(n). CG is, in a sense,
unaware of this special structure and unable to exploit it.

While the curvature matrix will in general not be diagonal or have any other
special form that makes it easy to invert, there may nevertheless be cheap oper-
ations which can exploit information about the course structure of the curvature
matrix to do some of the work in optimizing q, reducing the burden on CG.

In the context of HF, preconditioning refers to the reparameterization of M̂10

according to some linear transformation relatively easy to invert, with the idea
that CG will make more rapid progress per iteration optimizing w.r.t. the new
parameterization.

10 We will use the .̂ notation for the damped quadratic and associated damped curvature
matrix B̂ since this is what CG will actually optimize when used within HF.
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Formally, given some invertible transformation defined by a matrix C, we
transform the quadratic objective M̂(δ) by a change of coordinates δ = C−1γ
and optimize w.r.t. γ instead of δ.

M̂(C−1γ) =
1

2
γ�C−�B̂C−1γ +∇f�C−1γ

Applying preconditioning to CG is very easy and amounts to computing trans-
formed residual vectors yi at each iteration, by solving Pyi = ri, where P = C�C
(see alg. 20.2). This can be accomplished, say, by multiplication of ri by P−1,
which for many common choices of P (such as diagonal approximations of B̂) is
a cheap operation.

Preconditioning can be applied to other optimization methods, such as gra-
dient descent, where it corresponds to a non-static linear reparameterization of
the objective f that typically varies with each iteration, and amounts simply to
multiplication of the gradient update by P−1. In fact, one way to view 2nd-order
optimization is as a particular non-static preconditioning approach for gradient
descent, where P is given by the curvature matrix B (or some approximation or
Krylov subspace restriction of it).

20.11.1 The Effects of Preconditioning

In section 20.9, we saw how the eigenvalues of the curvature matrix and the
corresponding sizes of the contributions to the initial residual of each eigen-
direction effectively determine the convergence characteristics of CG, in terms of
the “order” in which the eigen-directions tend to converge, and how quickly. It was
found that each eigen-direction has an effective “weight” ωj (corresponding to the
total decrease in q which can be obtained by completely optimizing it), and that
CG prioritizes convergence along the eigen-directions both according to their
weights and their associated curvature/eigenvalue, preferring larger values of
both. Because CG is optimal, it will tend to make faster progress along directions
whose the eigenvalues are close proximity to many other ones that are associated
with directions of high-weight (due to its ability to make progress on many such
directions at once when their eigenvalues are closely packed).

Thus to understand how a potential preconditioning scheme affects the conver-
gence of CG we can look at the eigen-distribution of the transformed curvature
matrix C−�B̂C−1, and the associated weights, which depend on the transformed
initial residual C−�(B̂x0 −∇f). Choices for C (or equivalently P ) which yield
tight clusters of eigenvalues should lead to overall faster convergence, at least
along the directions which are contained in such clusters.

But as discussed in section 20.8.7, the eigenvectors and corresponding eigen-
value distribution will affect the order in which various directions converge, and
this will interact in a non-trivial way with CG truncation damping. In partic-
ular, certain directions which would otherwise never be touched by CG in the
original parameterization, either because their eigenvalues are located far away
from any high-weight eigenvalue clusters, or because they have very low curva-
ture (i.e., low eigenvalue), could, within the reparameterization, become part of
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eigen-directions with the opposite properties, and thus be partially optimized by
CG even when it is aggressively truncated.

This is a potential problem, since it is our experience that certain very low
curvature directions tend to be highly non-trustworthy for neural network train-
ing objectives (in the default parameterization). In particular, they often tend to
correspond to degeneracies in the quadratic model, such as those introduced by
using different sets of data to compute the gradient and curvature-matrix vector
products (see section 20.12.1), or to directions which yield small reductions in
q for the current minibatch but large increases on other training data (an issue
called “minibatch overfitting”, which is discussed in section 20.12.2).

20.11.2 Designing a Good Preconditioner

Designing a good preconditioner is an application specific art, especially for HF,
and it is unlikely that any one preconditioning scheme will be the best in all
situations. There will often be a trade-off between the computational efficiency
of implementing the preconditioner and its effectiveness, both in terms of how
it speeds of convergence of CG, and how it may reduce the effectiveness of CG
truncation damping.

While the previous section describes how a preconditioner can help in theory,
in practice it is not obvious how to design one based directly on insights about
eigen-directions and their prioritization.

An approach which is popular and often very effective in various domains
where CG is used is to design P to be some kind of easily inverted approxi-
mation of the curvature matrix (in our case, B̂). While the ultimate purpose of
preconditioning is to help CG optimize more effectively, which may conceivably
be accomplished by less obvious choices for P , approximating B̂ may be an easier
goal to approach directly. Justifying this idea is the fact that when P = B̂, the
preconditioned matrix is I, so CG will converge in one step.

Adopting the perspective that P should approximate B̂, the task of designing
a good preconditioner becomes one of balancing approximation quality with
practical concerns, such as the cost of multiplying by P−1.

Of course, “approximation quality” is a problematic concept, since the various
ways we might want to define it precisely, such as via various matrix norms, may
not correlate well with the effectiveness of P as a preconditioner. Indeed, CG is
invariant to the overall scale of the preconditioner, and so while βB̂ would be an
optimal preconditioner for any β > 0, it could be considered an arbitrarily poor
approximation to B̂ as β grows, depending on how we measure this.

Diagonal P ’s are a very convenient choice due to the many nice properties
they naturally possess, such as being full rank, easy to invert, and easy to store.
They also tend to be quite effective for optimizing deep feed-forward neural
networks, due to how the scale of the gradient and curvature w.r.t. the hidden
activities grows or shrinks exponentially as we proceed backwards through the
layers [4, 18], and how each parameter is associated with a single layer. Without
compensating for this with diagonal preconditioning, the eigenvalues of the ef-
fective curvature matrix will likely be much more “spread out” and thus harder
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for CG to deal with. By contrast, RNN optimization does not seem to benefit
as much from diagonal preconditioning, as reported by Martens and Sutskever
[23]. Despite how RNNs can possess per-timestep scale variations analogous to
the per-layer scale variations sometimes seen with feed-forward nets, these won’t
manifest as differences in scales between any particular parameters (i.e. diagonal
scale differences), due to the way each parameter is used at every time-step.

Many obvious ways of constructing non-diagonal preconditioners end up re-
sulting in P ’s which are expensive and cumbersome to use when n is large. For
example, if P or P−1 is the sum of a k-rank matrix and a diagonal, it will require
O((k + 1)n) storage, which for very large n will be a problem (unless k is very
small).

A well-designed diagonal preconditioner P should represent a conservative
estimate of the overall scale of each parameter, and while the diagonal of the
curvature matrix is a natural choice in many situations, such as when the curva-
ture matrix is diagonally dominant, it is seriously flawed for curvature matrices
with a strong non-diagonal component. Nonetheless, building a diagonal precon-
ditioner based on d = diag(B̂) (or an approximation of this) is a sensible idea,
and forms the basis of the approaches taken by Martens [22] and Chapelle and
Erhan [10]. However, it may be beneficial, as Martens [22] found, not to use d
directly, but to choose P to be somewhere between diag(d) and a scalar multiple
of the identity matrix. This has the effect of making it more gentle and conser-
vative, and it works considerably better in practice. One way to accomplish this
is by raising each entry of d (or equivalently, the whole matrix P ) to some power
0 < ξ < 1, which will make P tend to the identity as ξ approaches 0.

In situations where diagonal damping penalty terms like the Tikhonov term
are weak or absent, it may also be beneficial to include an additional additive
constant κ, which also has the effective of making P tend to a scalar multiple of
the identity as κ grows so that we have:

P = (diag(d) + κI)ξ

If there is information available about the coarse relative scale of the parameters,
in the form of some vector s ∈ R

n, such as the reparameterized neural network
example discussed in sec. 20.8.2, it may better to use κdiag(s) instead of κI.

It is important to emphasize that d should approximate diag(B̂) and not
diag(B), since it is the latter curvature matrix which is used in the quadratic
which CG actually optimizes. When D is a diagonal matrix, one should take

d = diag(B) + λD

where the latter contribution can be computed independently and exactly (and
not via the methods for approximating diag(B) which we will discuss next).
Meanwhile, if the damping matrix D is non-diagonal, then one should take

d = diag(B + λD)

where we might in fact use the aforementioned methods in order to approximate
the diagonal of B + λD together.
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So far the discussion ignored the cost of obtaining the diagonal of a curvature
matrix. Although it is easy to compute Hessian-vector products of arbitrary
functions, there exists no efficient exact algorithm for computing the diagonal
of the Hessian of a general nonlinear function (Martens et al. [24, sec. 4]), so
approximations must be used. Lecun et al. [2] report an efficient method for
computing the diagonal of the Gauss-Newton matrix, but close examination
reveals that it is mathematically unsound (although it can still be viewed as a
heuristic approximation).

In case of the Gauss-Newton matrix, it is possible to obtain the exact diagonal
at the cost of k runs of backpropagation, where k is the number of output
units [6]. This approach can be generalized in the obvious way to compute the
diagonal of the generalized Gauss-Newton matrix, and is feasible for classification
problems with small numbers of classes, although not feasible for problems such
as deep autoencoders or RNNs which have high-dimensional outputs. In the next
sections, we describe two practical methods for approximating the diagonal of
the GGN matrix regardless of the dimension of the output.

20.11.3 The Empirical Fisher Diagonal

One approach to approximating the diagonal of the GGN matrix G is to instead
compute the diagonal of a related matrix for which exact computation of the
diagonal is easier. For this purpose Martens [22] selected the Empirical Fisher
Information matrix F , which is an approximation to the well-known Fisher in-
formation matrix [1] (which is itself related to the generalized Gauss-Newton
matrix). The empirical Fisher Information matrix is given by

F ≡
∑

i

∇fi∇f�i

where ∇fi is the gradient on case i. However, because of its special low-rank
form, its diagonal is readily computable as:

diag(F) =
∑

i

sq(∇fi)

where sq(x) denotes coordinate-wise square.
Because the ∇fi’s are available from the gradient computation ∇f =

∑
i∇fi

over the minibatch, additionally computing diag(F) over the same minibatch in
parallel incurs no extra cost, save for the possible requirement of storing the
∇fi’s, which can be avoided for feed-forward networks but not RNNs. Algo-
rithm 20.11.3 computes the diagonal of the Empirical Fisher Information matrix
without the extra storage. In the algorithm, each yi is a matrix with B columns
which represent the activations of a minibatch with B cases, and sq(·) is the
coordinate-wise square. It differs from algorithm 20.2 only in lines 9 and 10.

In general, it is possible to compute the sum of squares of gradients in a
minibatch in parallel without storing the squares of the individual gradients
(which is often prohibitively expensive) whenever the computational graph of



524 J. Martens and I. Sutskever

Algorithm 20.6 . An algorithm for computing the diagonal diag(F ) of the
Empirical Fisher Information matrix of a feedforward neural network (includes
the standard forward pass)
1: input: y0, θ mapped to (W1, . . . ,W�−1, b1, . . . , b�−1)
2: for all i from 1 to �− 1 do
3: xi+1 ←Wiyi + bi
4: yi+1 ← si+1(xi+1)
5: end for
6: dy� ← ∂L(y�; t�)/∂y� (t� is the target)
7: for i from �− 1 downto 1 do
8: dxi+1 ← dyi+1s

′
i+1(xi+1)

9: Set entries of diag([F ]) corresponding to Wi to be sq(dxi+1)sq(yi)
�

10: Set entries of diag([F ]) corresponding to bi to be sq(dxi+1)1
�
B

11: dyi ←W�
i dxi+1

12: end for
13: output: diag(F )

the gradient makes precisely one additive contribution to every parameter for
each case. In this case, it possible to add [∇fi]2j to the appropriate entry of
diag(F ) as soon as it is computed, so we need not allocate temporary storage
for [∇fi]j for each i and j (rather, only each j).

However, when the computational graph of the derivative (for a given case i)
makes multiple additive contributions to each [∇fi]j , it is necessary to allocate
temporary storage for this quantity since we must square its total contribution
before summing over the cases. Interestingly, this issue does not occur for the
RNN’s gradient computation, since without the per-i squaring, each contribution
to [∇fi]j can be stored in a single vector for all the i’s.

20.11.4 An Unbiased Estimator for the Diagonal of G

Chapelle and Erhan [10] give a randomized algorithm for computing an unbiased
estimate of the diagonal of the generalized Gauss-Newton matrix, which requires
the same amount of work as computing the gradient. And just as with any
unbiased estimate, this approach can be repeatedly applied, and the results
averaged, to achieve more precise estimates.

The method of Chapelle and Erhan is described in algorithm 20.7 below:

Algorithm 20.7 . Computing an unbiased estimate of the diagonal of the GGN
matrix
1: Sample v ∈ R

m from a distribution satisfying E[vv�] = I

2: output sq
(
J�L′′1/2v

)
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As discussed in section 20.6, multiplication of an arbitrary v ∈ R
m by the

Jacobian J of F can be performed efficiently by the usual back-propagation
algorithm. The correctness of algorithm 20.7 is easy to prove:

E

[
sq

(
J�L′′1/2�v

)]
= E

[
diag

(
(J�L′′1/2�v)(J�L′′1/2�v)�

)]

= diag

(
J�L′′1/2�

E[vv�]L′′1/2J

)

= diag

(
J�L′′1/2�L′′1/2J

)
(as E[vv�] = I)

= diag(J�L′′J)

= diag(G)

where we have used the identity sq(x) = diag(xx�).
Martens et al. [24], following the work of Chapelle and Erhan [10], introduced

an efficient unbiased approximation method for estimating the entire Hessian
or GGN matrix of a given function (or just their diagonals, if this is desired)
with a cost also comparable to computing the gradient. In the special case of
estimating the diagonal of the GGN matrix, the two methods are equivalent. Of
practical import, Martens et el. [24] also proved that sampling the components
of v uniformly from −1, 1 will produce lower variance estimates than will be
obtained by sampling them from N(0, 1).

Computationally, the method of Chapelle and Erhan is very similar to the
method for computing the diagonal of the Empirical Fisher Information that was
described in the previous section. Indeed, while the latter compute sq

(
J�∇L

)
,

this method computes sq
(
J�L′′1/2v

)
for random v’s, and so the methods have

similar implementations. In particular, both estimates can be computed in par-
allel over cases in the minibatch, and they share the issue with temporary stored
discussed in the previous section, which can be overcome in for feed-forward
networks but not RNNs.

In our experience, both methods tend to produce preconditioners with similar
properties and performance characteristics, although Chapelle and Erhan [10]
found that in certain situations this unbiased estimate gave better results. One
clear advantage of this method is that it can correctly account for structural
damping, which is not done by using the empirical Fisher matrix, as the gradients
of the structural damping objective are equal to zero. The disadvantage of this
method is that due to the stochastic nature of the curvature estimates, there
could be parameters with non-zero gradients whose diagonal estimates could
nonetheless be very small or even zero (which will never happen with the diagonal
of the Fisher matrix). The diagonal of the Fisher matrix also has the additional
advantage that it can be computed in tandem with the gradient at virtually no
extra cost.
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20.12 Minibatching

In modern machine learning applications, training sets can be very large, and
a learning algorithm which processes all the examples in the training set to
compute each parameter update (called “batch processing”) will likely be very
slow or even totally impractical [7]. Some training datasets may even be infinite
and so it may not even make any sense to talk about an algorithm operating in
batch-mode at all.

“Online” or “stochastic” gradient algorithms like stochastic gradient descent
(SGD) can theoretically use gradient information computed on arbitrarily small
subsets of the training set, called “minibatches”, as long as the learning rate is
sufficiently small. HF, on the other hand, uses minibatches to estimate the curva-
ture matrix, which is used in a very strong way to produce large and sometimes
aggressive parameter updates. These curvature matrix estimates may become
increasingly low-rank and degenerate as the minibatch size shrinks (assuming
no contribution from damping or weight-decay), which in some cases (see sub-
section 20.12.1) may lead to unbounded and nonsensical updates, although the
damping mechanisms discussed in sec. 20.8 can compensate for this to some
extent.

But even without these more obvious degeneracy issues, it can be argued that,
intuitively, the matrix B captures “soft-constraints” about how far we can go in
any one direction before making things worse, and if the constraints relevant to
a particular training case are not well approximated in the curvature estimated
from the minibatch, the update δ obtained from optimizingM could easily make
the objective f worse on such a case, perhaps severely so.

Thus 2nd-order methods like HF which must estimate the curvature only from
the current minibatch, may not work nearly as well with very small minibatches.
And while there are several strategies to deal with minibatches that are “too
small”, (as we will discuss in subsection 20.12.2), the benefits of using a 2nd-
order method like HF may be diminished by their use.

Fortunately, in the case of neural networks, there are elegant and natural
implementations which exploit data-parallelism and vectorization to efficiently
compute gradients and curvature matrix-vector products over minibatches (see
section 20.7). For highly parallel architectures like GPUs, these tend to give
an increase in computational cost which remains sublinear (as a function of
minibatch size) up to and beyond minibatch sizes which are useful in HF.

20.12.1 Higher Quality Gradient Estimates

Unlike 1st order optimization schemes like SGD where the number of iterations
required to approach a good solution can reach as high as 105− 107, the number
of iterations required by a strong 2nd-order optimizer like HF is in our experi-
ence orders of magnitude smaller, and usually around 102−103. While the linear
term b = −∇f(θk−1) passed to CG needs to be computed only once for each
update, CG may require on the order of 102 − 103 matrix-vector products with
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the curvature matrix A = B to produce each update. These matrix-vector prod-
ucts are by far the most computationally costly part of any truncated Newton
approach.

It may therefore be cost-effective to compute the gradient on a much larger
minibatch than is used to compute the matrix-vector products. Martens [22]
recommended using this technique (as does Byrd et al. [8]), and in our experience
it can often improve optimization speed if used carefully and in the right contexts.
But despite this, there are several good theoretical reasons why it might be
better, at least in some situations, to use the same minibatch to compute gradient
and curvature matrix-vector products. These have been corroborated by our
practical experience.

We will refer to the minibatches used to compute the gradient and curvature
matrix-vector products as the “gradient minibatch” and “curvature minibatch”,
respectively.

When the gradient and curvature minibatches are equal, and the GGN cur-
vature matrix is used, the quadratic model M maintains its interpretation as
the local Taylor series approximation of a convex function, which will simply be
the approximation of f obtained by linearizing F (see eqn. 20.9), but restricted
to the data in the current minibatch. In such a situation, with some additional
reasonable assumptions about the convex function L (strong convexity would
be sufficient, but is more than what is needed), the quadratic model M can be
written as:

M(δ) =
1

2
δ�Bδ +∇f�k−1δ + f(θk−1) =

1

2
δ�J�L′′Jδ + δ�(J�∇L) + f(θk−1)

=
1

2
(Jδ)�L′′(Jδ) + (Jδ)�L′′L′′−1∇L+∇L�L′′−1

L′′L′′−1∇L

−∇L�L′′−1
L′′L′′−1∇L+ f(θk−1)

=
1

2
(Jδ +∇L)�L′′(Jδ +∇L)� + c

=
1

2
‖Jδ + L′′−1∇L‖2L′′ + c

where c = f(θk−1)−∇L�L′′−1∇L and all quantities are computed only on the
current minibatch. Here we have used the fact that L′′ is invertible, which follows
from the fact that L is strongly convex.

This result is interesting because it applies only when B is the generalized
Gauss-Newton matrix (instead of the Hessian), and it establishes a bound on
the maximum improvement in f that the quadratic model M can ever predict:
∇L�L′′−1∇L, a quantity which does not depend on the properties of the net-
work, only on its current predictions and the associated convex loss function.

Such a boundedness result does not exist whenever M is estimated using
different minibatches for the gradient and curvature. In this case, the estimated
gradient may easily lie outside the column space of the estimated curvature
matrix in the sense that there may exist directions d s.t. g�d < 0, ‖d‖ = 1, but
d�Bd = 0. In such a case it is easy to see that the quadratic model is unbounded
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and M(αd) → −∞ as α → ∞. While boundedness can be guaranteed with the
inclusion of damping penalty terms which ensure that the damped curvature
matrix B̂k is positive definite, and will also be guaranteed when the curvature
matrix B is full rank, it may be the case that the boundedness is “weak” in
the sense that d�Bd may be non-zero but extremely small, leading to a nearly
degenerate update δ. For example, when using Tikhonov damping then we know
that d�B̂kd ≥ λ, but in order for this to sufficiently constrain the update along
direction d, λ may have to be large enough that it would impose unreasonably
high constraints on optimization in all directions.

More intuitively, the gradient represents a linear reward for movement in
certain directions d (the strength of which is given by g�d) while the curvature
matrix represents a quadratic penalty. If we include the linear rewards associated
with a subset of cases without also including the corresponding quadratic penal-
ties, then there is a chance that this will lead to a degenerate situation where
some directions will have lots of reward (predicted linear reduction) without any
corresponding penalty (curvature). This can result in an update which makes f
worse even on cases contained in both the gradient and curvature minibatches,
for reasons that have nothing directly to do with a breakdown in the reliability
of the quadratic approximation to f . On the other hand, if the curvature and
gradient minibatches are equal and the quadratic approximation to f is oth-
erwise reliable (or properly damped), then using equal gradient and curvature
minibatches provides a minimal guarantee that f will improve on the current
minibatch after the proposed update is applied.

Another more subtle way in which using a smaller-sized curvature minibatch
than gradient minibatch could be counterproductive, is that in addition to caus-
ing a dangerous underestimation of the curvature associated with the left-out
cases, it may also lead to an overestimation of the curvature for the cases actu-
ally in the curvature-minibatch. This is because when we compute estimates of
the curvature by averaging, we must divide by the number of cases in the mini-
batch, and since this number will be smaller for the curvature estimate than
for the gradient, the gradient contributions from these cases will be smaller in
proportion to the corresponding curvature terms.

Byrd et al. [8] showed that if the eigenvalues of the curvature matrices (esti-
mated using any method) are uniformly bounded from below in the sense that
there exists μ > 0 s.t. B̂ − μI is PSD for all possible B̂’s which we might pro-
duce, then assuming the use of a basic line-search and other mild conditions, an
truncated Newton algorithm like HF which estimates the gradient on the full
training set will converge in the sense that the gradients will go to zero. But
this result makes no use of the particular form of B and is as a result very weak,
saying nothing about the rate of convergence, or how small the updates will have
to be. As far as theorem is concerned, B can be any λ dependent matrix with
the required boundedness property, and need not have anything to do with local
quadratic models of f at all.

Despite all of these objections, the higher quality estimates of the gradient
may nonetheless provide superior convergence properties in some situations. The
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best trade-off between these various factors is likely to be highly dependent on
the particular problem, the stage of the optimization (early versus late), and
the damping mechanisms being used. Our experience is that penalty and CG-
truncation damping become more active when there is a significant qualitative
mismatch between the gradient and curvature estimates, which is more likely to
happen when the training dataset, or the network’s responses to it, are particular
“diverse”.

20.12.2 Minibatch Overfitting and Methods to Combat It

As mentioned in the previous section, the updates produced by HF may be effec-
tively “overfit” to the current minibatch of training data. While a single update
of SGD has the same problem, this is less of an issue because the updates are
extremely cheap and numerous. HF, by contrast, performs a run of CG with
anywhere between 10 to 300+ iterations, which is a long and expensive process,
and must be performed using the same fixed estimates of the gradient and curva-
ture from a single minibatch. Ideally, we could use a stochastic algorithm when
optimizing the local quadratic models which would be able to see much more
data at no extra cost. Unfortunately we are not aware of any batch methods
which possess the same strongly optimal performance for optimizing quadratics
as CG does, while also working well as a stochastic method.

The simplest solution to dealing with the minibatch overfitting problem is
to increase the size of the minibatches, thus providing CG with more accurate
estimates of the gradient and curvature. When optimizing neural networks, we
have observed that the minibatch overfitting problem becomes gradually worse as
optimization proceeds, and so implementing this solution will require continually
growing the minibatches, possibly without bound. Fortunately, there are other
ways of dealing with this problem.

The damping methods discussed in section 20.8 were developed to compensate
for untrustworthiness of the local quadratic approximations M being made to
f , which exists due to the simple fact that f is not actually a convex quadratic,
and soM may fail to be a sensible approximation to f at its minimum δ∗. These
methods work by imposing various soft or hard constraints on the update δ in
order to keep it “closer” to 0 (where M trustworthy by construction), according
to some metric.

Using minibatches to compute the gradient and curvature imposes a different
kind of untrustworthiness on the quadratic model, arising from the fact that the
function being approximated is not actually the true objective but rather just an
unbiased sample-based approximation of it. But despite the differing nature of
the source of this untrustworthiness, the previously developed damping methods
turn out to be well suited to the task of compensating for it, in our experience.

Of these, decreasing the maximum number of CG steps, using larger min-
batches for the gradient, and decreasing the default learning rate (which is
equivalent to damping by adding multiples of B, as discussed in section 20.8.3)
according to some SGD-like schedule, seem to be the most effective approaches in
practice. If standard Tikhonov damping is used and its strength λ is increased to
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compensate for minibatch overfitting, this will make HF behave asymptotically
like SGD with a dynamically adjusted learning rate.

There is a compelling analogy between the minibatch overfitting which occurs
when optimizing δ with CG, and the general overfitting of a non-linear optimizer
applied to a conventional learning problem. And some of the potential solutions
to both of these problems turn out to be analogous as well. Tikhonov damping,
for example, is analogous to an L2 prior or “weight-decay” penalty (but centered
at δ = 0), and CG truncation is analogous to “early-stopping”.

Recall that damping approaches are justified as a method for dealing with
quadratic approximation error because as the “size” of the update shrinks (ac-
cording to any reasonable metric), it will eventually lie inside a region where this
source of error must necessarily be negligible. This is due to the simple fact that
any super-linear terms in the Taylor series expansion of f , which are unmodeled
by M , will approach zero much more rapidly than the size of the update. It
is important to keep in mind that a similar justification does not apply to the
handling of minibatch-related estimation errors with update damping methods.
Indeed, the negative gradient computed on a given minibatch may not even be a
descent direction for the total objective (as computed on the complete training
set), and even an infinitesimally small update computed from a given minibatch
may actually make the total objective worse.

Thus, when tuning damping mechanisms to handle minibatch overfitting (ei-
ther by hand, or dynamically using an automatic heuristic), one shouldn’t aim
for obtaining a reduction in the total f that is a fixed multiple of that which
is predicted by the minibatch-computed M (as is done in section 20.8.5), but
rather to simply obtain a more modest reduction which is proportional to the
relative contribution of the current minibatch to the entire training dataset.

It is also worthwhile noting that the practice of initializing CG from the up-
date computed at the previous iteration of HF (as discussed in section 20.10)
seems to bias CG towards finding solutions that generalize better to data out-
side of the current minibatch. We don’t have a good understanding for why this
happens, but one possible explanation is that by carrying δ over to each new
run of CG and performing an incomplete optimization on it using new data, δ
is allowed to slowly grow (as HF iterates) along low-curvature directions11 that
by necessity, must generalize across lots of training data. The reasoning is that
if such slowly optimized directions didn’t generalize well, then they would in-
evitably be detected as high-curvature ascent directions for some new minibatch
and quickly zeroed out by CG before ever having a chance grow large in δ.

Finally, Byrd et al. [9] has developed methods to deal with the minibatch
overfitting problem, which are based on heuristics that increase the minibatch
size and also terminate CG early, according to estimates of the variance of
the gradient and curvature-matrix vector products. While this is a potentially
effective approach (which we don’t have experience with), there are several
problems with it, in theory. First, variance is measured according to highly

11 Which get optimized much more slowly by CG than high-curvature directions, as
shown in section 20.9
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parameterization-dependent metrics which are not particularly meaningful. Sec-
ond, increasing the size of the minibatch, which is only one method to deal with
minibatch overfitting, is not a strategy which will remain practical for very long.
Thirdly, aggressive early termination heuristics for CG, similar to this one, tend
to interact badly with non-zero CG initializations12 and other forms of damping.
And finally, there are other more direct ways of measuring how well updates will
generalize, such as simply monitoring f on some training data outside of the
current minibatch.

20.13 Tricks and Recipes

There are many things to keep in mind when designing an HF-style optimization
algorithm for a particular application and it can be somewhat daunting even to
those of us that have lots of experience with the method. So in order to make
things easier in this regard, in this section we relate some of our experience in
designing effective methods, and describe several particular setups that seem
to work particularly well for certain deep neural network learning problems,
assuming the use of a standard parameterization.

Common elements to all successful approaches we have tried are:

• use of the GGN matrix instead of the Hessian
• the CG initialization technique described in section 20.10
• a well-designed preconditioner. When using Tikhonov damping, a reasonable

choice is an estimate of the diagonal of the GGN matrix, modified using the
technique described in section 20.11.2 with κ = 0 and ψ = 0.75. When
using one of the scale-sensitive methods described in section 20.8.3, it may
be necessary to increase κ to something like 10−2 times the mean of the
diagonal entries of D
• the use of one of diagonal damping methods, possibly in conjunction with

structure damping for certain RNN learning problems. For feedforward net-
work learning problems under the default parameterization, Tikhonov damp-
ing often works well, and usually so does using a modified estimate of the
diagonal of the GGN matrix, provided that κ is large enough (as in the
previous point)
• the use of the progress-based termination criterion for CG described in sec-

tion 20.4 in addition to some other condition which may stop CG sooner,
such as a fixed iteration limit
• dynamic adjustment of damping constants (e.g. λ) according to the LM

heuristic or a similar method

Now, we describe the particulars of each of these successful methods.
First, there is the original algorithm described in [22], which works pretty

well. Here, the “CG-backtracking” approach is used to select an iterate based
on the objective function value (see section 20.8.7), the gradient is computed

12 Because termination of CG may be forced before M̂(δ) < 0 is achieved.
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on a larger subset of the training data than the curvature, and CG is always
terminated before reaching a fixed maximum number of steps (around 50− 250,
depending on the problem).

Second, there is a subtle but powerful variation on the above method which
differs only in how CG is terminated, how the iterate used for the update δ is
selected, and how CG is initialized at the next iteration of HF. In particular,
CG is terminated as soon as the objective function, as evaluated on the data in
the “curvature minibatch” (see section 20.12.1) gets significantly worse than its
value from some number of steps ago (e.g. 10). The iterate used as the parameter
update δ is selected to minimize M (or perhaps f) as evaluated on some data
which is not contained in the curvature minibatch. Lastly, CG is initialized at
the next iteration k + 1, not from the previous update δk, but instead from the
CG iterate which gave the highest objective function value on the curvature
minibatch (which will be close to the last). In practice, the quantities used to
determine when to terminate CG, and how to select the best iterate, do not need
to be computed at every step of CG, and can also be computed on much smaller
(but representative) subsets of data.

Finally, an approach which has emerged recently as perhaps the most effi-
cient and effective, but also the most difficult to use, involves modifying HF to
behaving more like a tradition momentum method, thus making stronger use
of the CG initializations (see section 20.10) to better distribute work involved
in optimizing the local quadratics across many iterations. To do this, we use a
smaller maximum number of CG steps (around 25 to 50), smaller minibatches
of training-data, and we also pay more attention to the CG initialization decay-
constant ζ, which usually means increasing it towards the end of optimization.
Using shorter runs of CG helps with minibatch overfitting, and makes it feasible
to use smaller minibatches and also compute the gradient and curvature using
the same data. And as discussed in section 20.12.1, computing the gradient on
the same data as the curvature has numerous theoretical advantages, and in
practice seems to result in a reduced need for extra damping, thus resulting in a
λ that shrinks reliably towards 0 when adjusted by the LM heuristic. However,
this method tends to produce “noisy” updates, which while arguably beneficial
from the standpoint of global optimization, make it more difficult to obtain
finer convergence on some problems. So when nearing the end of optimization,
we adopt some of the methods described in section 20.12.2, such as lowering
the learning rate, using shorter CG runs, increasing the minibatch size, and/or
switching back to using larger minibatches to compute gradients (making sure
to raise the damping constant λ to compensate for this) in order to achieve fine
convergence.

One more piece of general advice we have is that using small amounts of
weight-decay regularization can be highly beneficial from the standpoint of global
optimization. In particular, to get the lowest training error possible, we have
observed that it helps to use such regularization at the beginning of optimization
only to disable it near the end. Also, using a good initialization is extremely
important in regards to global optimization, and methods which work well for
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deep networks include the sparse initialization scheme advocated in [22], and
the method of Glorot & Bengio [12], and of course the pre-training techniques
pioneered in [17].

20.14 Summary

We described various components of the Hessian-free optimization, how they
can interact non-trivially, and how their effectiveness (or possibly harmfulness)
is situation dependent. The main points to keep in mind are:

• for non-convex optimizations it is usually preferable to use the generalized
Gauss-Newton matrix which is guaranteed to be PSD
• updates must be “damped” due to the untrustworthiness of the quadratic

model
• there are various damping techniques that can be used, and their effectiveness

depends highly on f and how it is parameterized
• truncating CG before convergence, in addition to making HF practical, can

also provide a beneficial damping effect
• the strategy for terminating CG is usually a combination of progress-based

heuristic and a hard-limit anywhere between 10 and 300+ (which should be
considered an important meta-parameter)
• preconditioning can sometimes enable CG to make more rapid progress per

step, but only if used correctly
• simple diagonal preconditioning methods tend to work well for feed-forward

nets but not for RNNs
• preconditioning interacts non-trivially with certain forms of damping such

as CG truncation, which must be kept in mind
• initializing CG from the update computed by the previous run of CG can

have a beneficial “momentum-type effect”
• HF tends to require much larger minibatches than are used in SGD
• minibatch-overfitting can cause HF’s update proposals to be poor even for
δ’s where the quadratic model is trustworthy
• using more data to compute the gradients than the curvature matrix-vector

products is a low-cost method of potentially increasing the quality of the
updates, but it can sometimes do more harm than good
• minibatch-overfitting can also be combated using some of the standard

damping methods, along with simply increasing the minibatch size
• structural damping works well for training RNNs, particularly on problems

with pathological long-range dependencies
• exploiting data-parallelism is very important for producing an efficient im-

plementation
• correctness of curvature matrix-vector products should be checked using fi-

nite difference methods
• the extra memory costs associated with the parallel computation of gradients

and curvature matrix-vector products can be mitigated
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The difficulty of customizing an HF approach for particular application will
no doubt depend on the specifics of the model and the dataset. While in many
cases a generic approach can be used to good effect, some more difficult problems
like RNNs or feed-forward networks with non-standard parameterizations may
require additional care. And even on “easier” problems, a better designed ap-
proach may allow one to surpass performance barriers that may have previously
been mistaken for convergence.

This report has described many of the tricks and ideas, along with their theo-
retical justifications, which may useful in this regard. While we can try to predict
what combination of ideas will work best for a given problem, based on previous
experience and/or mathematical/intuitive reasoning, the only way to be sure is
with careful experimentation. Unfortunately, optimization theory has a long way
to go before being able to predict the performance of a method like HF applied
to the highly non-convex objectives functions associated with neural networks.
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Abstract. Neural networks and machine learning algorithms in gen-
eral require a flexible environment where new algorithm prototypes and
experiments can be set up as quickly as possible with best possible com-
putational performance. To that end, we provide a new framework called
Torch7, that is especially suited to achieve both of these competing goals.
Torch7 is a versatile numeric computing framework and machine learn-
ing library that extends a very lightweight and powerful programming
language Lua. Its goal is to provide a flexible environment to design,
train and deploy learning machines. Flexibility is obtained via Lua, an
extremely lightweight scripting language. High performance is obtained
via efficient OpenMP/SSE and CUDA implementations of low-level nu-
meric routines. Torch7 can also easily be interfaced to third-party soft-
ware thanks to Lua’s light C interface.

Runtime efficiency is probably perceived as the most important topic when
considering an efficient neural network implementation. One should however not
under-estimate the time spent in designing the right neural network for a given
task, or even the amount of work put into feeding data to the neural network
properly. Designing the right network for a given task in a short amount of
time requires a flexible development environment and a properly designed neural
network toolbox.

Several efficient (in terms of runtime execution) neural network libraries for
very specific needs are freely available. QuickNet1 is a good example in the speech
recognition community: it implements most commonly used algorithms, that
is multi-layer perceptrons with few layers. However, flexible libraries are quite
rare. It is not a trivial task to implement a library supporting a wide range of
complex networks (such as convolutional networks for images, text or speech...),
any type of connectivity (full connectivity, shared weights, order in layers...), or
several type of training algorithms (stochastic gradient, batch, second order like
1 http://www.icsi.berkeley.edu/Speech/qn.html

G. Montavon et al. (Eds.): NN: Tricks of the Trade, 2nd edn., LNCS 7700, pp. 537–557, 2012.
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LBFGS...). It is even more difficult to find a unified environment where one can
easily read, prepare, feed properly the data to the network, or debug the internals
of the architecture (for example when the network is not training properly).

In Section 21.1, we will consider efficient neural network implementation in
terms of efficient environment. We will then focus on the runtime efficiency and
analyze different state-of-the-art approaches to speed-up the network training
and testing phases in section 21.2. In this work, our analysis is built on the
experience we acquired with our own neural network implementation, Torch2,
and more particularly the last version Torch7.

21.1 Efficient Environment

An efficient environment for implementing neural networks should not be only
limited to neural networks themselves. It should provide all necessary tools for
efficient development of new numerical algorithms in general. Often one needs
various numerical algorithms to transform the data before feeding it to the neural
network. Algorithms will strongly vary from one research domain to the other.
Moreover, in the last few years, the research activity on neural networks started
to intersect with many other domains like optimization, linear algebra, parallel
processing to name a few. A successful framework should provide necessary tools
to cope with the variability in the development process. Only in that case the
framework would allow to not only easily investigate new types of models or new
training algorithms, but also to easily compare or combine neural networks with
other machine learning algorithms.

In order for a framework to provide necessary environment for development
of new numerical algorithms, its extension capabilities should be very advanced.
Machine learning researchers face many problems where there is need for using
existing libraries. As we will see in Section 21.2, this includes interfacing effi-
cient linear algebra libraries or even the neural network implementation itself.
The ability to interface these existing libraries with as little runtime and code
development overhead as possible is crucial for an efficient toolbox.

Finally, the neural network toolbox implementation itself should be modular
enough to allow for the creation of any kind of new neural network models or
implementation on different modalities of data, leaving the choice of the archi-
tecture as much as possible to the user.

In this section, we will cover the following three important points: efficiency
of development environment, extension capabilities and modular neural network
toolbox. The modular structure of Torch7 that fuses advantages of high-level
and low-level libraries is shown in Figure 21.1.

21.1.1 Scripting Language

A scripting (or interpreted) language is the most convenient solution for fast
prototyping and development of new algorithms. At the same time, it is crucial
2 http://www.torch.ch

http://www.torch.ch
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Fig. 21.1. Modular Structure of Torch7. Low level numerical libraries are interfaced
with TH to provide a unified tensor library. luaT provides essential data structures
for object/class manipulation in Lua. The core Torch package uses TH and luaT to
provide a numerical computing environment purely in Lua. All other packages can use
either Torch interface from inside Lua scripting environment or can interface low-level
C interfaces for increased performance optimizations.

for the interpreted language to have a lightweight C API, both in terms of
simplicity and efficiency. Simplicity in the C API encourages easier interfacing
to existing external libraries and efficiency is the single most important criterion
for large-scale applications.

In a complex development environment, the scripting language becomes the
“glue” between heterogeneous components: different structures of the same con-
cept (coming from different libraries) can be merged together using a high-level
language, while keeping all the functionalities that are exposed from all the dif-
ferent libraries.

Lua. Among existing scripting languages3 finding the ones that satisfy runtime
efficiency severely restricts the number of possibilities. In our machine learning
framework Torch7, we chose Lua, the fastest interpreted language (with also the
fastest Just In Time-JIT compiler4) we could find. Lua has also the advantage
that it is designed to be easily embedded in a C application, and provides a very
clean C API, based on a virtual stack to pass values and carry out function
evaluation from C. This unifies the interface to C/C++ and minimizes the effort
required for wrapping third party libraries.

Lua is intended to be used as a powerful, light-weight scripting language for
any program that needs one. It is implemented as a library, written in pure C
in the common subset of ANSI C and C++. Quoting Lua webpage5,

Lua combines simple procedural syntax with powerful data description
constructs based on associative arrays and extensible semantics. Lua is
dynamically typed, runs by interpreting bytecode for a register-based

3 E.g. on http://shootout.alioth.debian.org
4 http://luajit.org/
5 http://www.lua.org

http://shootout.alioth.debian.org
http://luajit.org/
http://www.lua.org
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virtual machine, and has automatic memory management with incre-
mental garbage collection, making it ideal for configuration, scripting,
and rapid prototyping.

Lua offers good support for object-oriented programming, functional program-
ming, and data-driven programming. As shown in Figure 21.2, it handles nu-
merical computations very efficiently (compared to C). This is a great asset for
rapid implementation of new numerical algorithms. Lua’s main type is table,
which implements associative arrays in a very efficient manner (see Figure 21.2).
An associative array is an array that can be indexed not only with numbers,
but also with strings or any other value of the language. Tables have no fixed
size, can be resized dynamically, and can be used as “virtual tables” over an-
other table, to simulate various object-oriented paradigms. Tables are the only
data structuring mechanism in Lua, yet a powerful one. One can use tables to
represent ordinary arrays, symbol tables, sets, records, queues, and other data
structures, in a simple, uniform, and efficient way. Lua uses tables to represent
packages as well. In addition, functions are first class citizens of the language. A
function, just like any other variable can be passed as a variable to or returned
from a function. Last, but not the least, Lua supports closures. Combined with
tables, closures provide a very powerful and efficient syntax for data handling
and programming complicated algorithms.
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Fig. 21.2. Comparison of runtime efficiency of the C language (with gcc 4.4), Lua 5.1.4
and Python 2.7. Lua and Python JIT implementations were LuaJIT and PyPy, respec-
tively. The Mandelbrot and Binary Trees benchmarks are taken from “The Computer
Language Benchmarks Game”. All benchmarks were run using a single CPU on a high-
end 12 cores Xeon server. The Mandelbrot benchmark makes a heavy use of numbers,
while the Binary Trees benchmark makes a heavy use of data structures (struct in C,
tables in Python and Lua). The execution time is reported (on a log-scale axis) for
each language.

Why Not Python? It is hard to talk about a programming language with-
out starting a flame war. While Lua is well known in the gaming programmer
community, mostly due to its speed advantage and great embedding capabilities,
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Python is more popular in more general public. With no doubt, Python ships
with more libraries and one can find support about almost any problem easily in
many different contexts. However, Lua offers at least two important advantages
over Python:

– First and foremost, the simplicity of integrating existing C/C++ libraries
is very important. Many efficient numerical algorithms are implemented in
specialized packages in BLAS, LAPACK, FFTW and similar libraries. A
lightweight interface to existing code is crucial for achieving a high per-
formance environment. In section 21.2.8 we show quantitative results on
efficiency of Lua compared to Python when wrapping BLAS function calls.

– Second, since Lua is embeddable in C/C++, any prototyped application can
be turned into a final system/product with very little extra effort. Since Lua
is written in pure C and does not have dependency to any external library, it
can be easily used in embedded applications like, Android, iOS 6, FPGAs 7

and DSPs.

There are also alternatives to writing a custom interface between interpreted lan-
guage and C/C++, like Simplified Wrapper and Interface Generator (SWIG) 8.
Although these might provide a simplified interface at first, writing a tensor li-
brary with several linear algebra backends requires a very fine-grained control
and we found it is harder to manage this interface rather than using the native
Lua API.

In addition to its performance advantage on number of operations (see Fig-
ure 21.2), Lua also provides other unique advantages – rarely found simultane-
ously in existing programming languages – for implementing a large-scale ma-
chine learning framework. In the following section we will show how we extended
Lua’s basic numerical capabilities to a rather complete framework for developing
complex numerical algorithms.

21.1.2 Multi-purpose Efficient N-Dimensional Tensor Object

Torch7 provides a generic Tensor library (called TH) that is written in pure
C. This library is interfaced in Lua, providing new efficient multi-dimensional
array types in the scripting language. Most packages in Torch7 (or third-party
packages that depend on Torch7 ) rely on this Tensor class to represent signals,
images, videos..., allowing Lua to nicely “glue” most libraries together. Fast pro-
totyping and creation of new packages is made possible, as the library is available
directly from both Lua and C. Interfacing or extending existing libraries is very
efficient. The following code demonstrates a few standard Tensor-based opera-
tions, from the Lua side:

6 https://github.com/clementfarabet/torch-ios
7 http://www.neuflow.org
8 www.swig.org

https://github.com/clementfarabet/torch-ios
http://www.neuflow.org
www.swig.org
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1 -- create a tensor of single-precision floats
2 t = torch.FloatTensor(100,100)
3
4 -- randomized: sampled from a normal distribution
5 l = torch.randn(100,100)
6
7 -- basic operators
8 r = t + l/2
9

10 -- in-place operators
11 r:add(0.5, t)
12
13 -- common operators
14 r = torch.log(torch.exp(-r)+10)

As in Matlab, multiple types can co-exist in Torch7, and it is easy to cast from
one to the other:

1 -- a single-precision tensor
2 tfloat = torch.FloatTensor(100)
3
4 -- converted to double-precision
5 tdouble = tfloat:double()
6
7 r = torch.FloatTensor(tdouble:size())
8
9 -- automatically casts from double->float

10 r:copy(tdouble)

A sample matrix, matrix multiplication operation is done as in the following
example.

1 x = torch.Tensor(1000,5000)
2 y = torch.Tensor(5000,3000)
3 z = torch.mm(x,y)
4 print(z:size())
5
6 1000
7 3000
8 [torch.LongStorage of size 2]

The Torch7 Tensor library provides a lot of classic operations (including linear
algebra operations), efficiently implemented in C, leveraging SSE instructions on
Intel’s platforms and optionally binding linear algebra operations to existing ef-
ficient BLAS/Lapack implementations (like Intel MKL, OpenBLAS or ATLAS).
As we will see in the next section, we also support OpenMP instructions and
CUDA GPU computing for certain subset of operations where these platforms
offer unique performance advantages.

Related Approaches. Our Tensor library implementation got mostly inspired
from SN [3] and Lush [5] toolboxes, which were one of the first to introduce
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the concept (in a LISP language framework). Matlab also supports N-dimension
arrays (even though early releases only supported 2D matrices). Compared to
Matlab, we put big emphasis on memory allocation control, as we will see in
Section 21.2.2. Numpy9 is another popular alternative, but only available for
the Python language. As mentioned before, Lua offers unique advantages for a
machine learning framework because of its speed and the simpler C interface.

21.1.3 Modular Neural Networks

Following [6], we view a neural network as a set of modules connected together
in a particular graph. In Torch7, the “nn” package provides a set of standard
neural network modules, as well as a set of container modules that can be used
to define arbitrary directed (acyclic or not) graphs. By explicitly describing the
graph’s architecture, using pluggable modules, we avoid the complexity of a
graph parser, or any other middle-ware compiler. In practice, most networks
are either sequential, or have simple branching patterns and recursions. The
following example shows how to describe a multi-layer perceptron:

1 mlp = nn.Sequential()
2 mlp:add(nn.Linear(100,1000))
3 mlp:add(nn.Tanh())
4 mlp:add(nn.Linear(1000,10))
5 mlp:add(nn.SoftMax())

Each module (or container) provides standard functions to compute its output
state, and back-propagate derivatives to its inputs, and to its internal parame-
ters. Given the previous network, an input X , and the gradient of some error E
with respect to the output Y—dE/dY—these three functions can be called like
this:

1 -- compute the activations Y = f(X)
2 Y = mlp:updateOutput(X)
3
4 -- compute some loss E = l(Y,T)
5 E = loss:updateOutput(Y,T)
6
7 -- compute the gradient dE/dY = dl(Y,T)/dY
8 dE_dY = loss:updateGradInput(Y,T)
9

10 -- back-propagate the gradients, down to dE/dX
11 dE_dX = mlp:updateGradInput(X,dE_dY)
12
13 -- compute the gradients wrt the weights: dE/dW
14 mlp:accGradParameters(X,dE_dY)

The “nn” package in Torch7 provides about 80 different neural network modules,
allowing the user to implement most existing neural networks with minimal effort
in pure Lua.
9 http://numpy.scipy.org

http://numpy.scipy.org
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Leveraging the TH Library. Neural network modules in Torch7 use Tensors
provided by the TH library (see Section 21.1.2) to represent their own input data,
output or internal states. Most modules are simply written in Lua, using the
Torch package for intensive numerical operations. Only packages which require
very specific operations have a dedicated C back-end. And, even in this case
many of them use the TH library interface from C. In any case, Tensors are used
as data containers to interact seamlessly with the rest of the library.

Training Algorithms. In Torch7, every neural network module, given the
partial derivatives with respect to its outputs, is able to compute the partial
derivative with respect to its parameters and its inputs. Thus, any complicated
network structure can be trained using gradient-based optimization methods.
Batch, mini-batch and stochastic gradient descent algorithms are supported.
More advanced algorithms, such as second-order gradient descent algorithms like
conjugate gradient or LBFGS are also possible, thanks to a numerical package
called “optim”. While this optimization package is designed to be used stand-
alone, it also provides second-order optimization capabilities for neural networks
when used with the “nn” package.

21.1.4 Additional Torch7 Packages

Torch7 comes with many built-in and third-party packages. In order to encour-
age collaborations and redistribution of machine learning algorithms, a built-in
package manager is provided. It can easily download, compile and install addi-
tional Torch7 packages from any package repository, when needed. At this time,
the most interesting packages related to numerical computation or numerical
analysis are:

– torch: Torch7 ’s main package: provides Tensors, easy serialization and other
basic functionalities. This package provides, Matlab-like functions to create,
transform and use Tensors.

– gnuplot: This package provides plotting interface to Gnuplot using Tensors.
– image: An image processing package. It provides all the standard image

processing functions such as loading and saving images, rescaling, rotating,
converting color spaces, filtering operations, . . .

– optim: A compact package providing steepest descent, conjugate gradient
and limited memory BFGS implementations.

– qt: Full bindings between Qt and Lua10, with transparent conversion of
Torch7 Tensors from/to QImages. Great for quickly developing interactive
demos with advanced GUIs (running natively on Linux, Mac or Windows
platforms).

The list of available packages is constantly growing, as Lua makes it easy to
interface any C library. Third-party packages include: unsup, which contains
several unsupervised learning algorithms like sparse coding and auto encoders.
10 Thanks to Léon Bottou for this huge piece of work.
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mattorch, which provides a two-way interface between Matlab’s matrix format
and Torch’s tensor; parallel, which provides simple routines to fork and execute
Lua code on local or remote machines, and exchange data using Torch7 ’s seri-
alization mechanism; camera, a simple wrapper to camera/webcam drivers on
Linux and MacOSX; imgraph, a package that provides lots of routines to create
edge-weighted graphs on images, and manipulate these graphs.

21.2 Efficient Runtime Execution

Torch7 has been designed with efficiency in mind, leveraging SSE when possible
and supporting two ways of parallelization: OpenMP and CUDA. The Tensor
library (which is interfaced to Lua using the “torch” package) makes heavy use
of these techniques. From the user viewpoint, enabling CUDA and OpenMP can
lead to great speedups in any “Lua” script, at zero implementation cost (because
most packages rely on the Tensor library). Other packages (like the “nn” package)
also leverage OpenMP and CUDA for more specific usages not covered by the
Tensor library. In the following we explain specific advantages of Torch7 for
achieving an excellent runtime performance.

21.2.1 Float or Double Representations

One of the major computational bottlenecks of modern computers is their mem-
ory bandwidth. When implementing any numerical algorithm, the number of
memory accesses should be always reduced by all means. This has an impact
not only on the coding style, but also on the floating point type we will choose
when implementing neural networks. A C “double” takes usually 8 bytes in mem-
ory, while C “float” takes only 4. Given that high precision is rarely required in
neural networks, one might consider using floating point precision in most cases.
On a simple matrix-matrix operation, speedups of ×2 are common when using
floats instead of doubles. In practice similar speedups are also observed in neural
networks using floating point precision. In that respect, in Torch7, the user can
easily choose (at runtime) the default floating point type.

21.2.2 Memory Allocation Control

One of the main complaints about using high level interfaces (such as Matlab)
for numerical programming is the loss of control over memory allocation. The
high-level abstraction makes it very hard for the researcher to know when a
copy of a tensor is created. Although this is not a major problem for small-
scale applications, as the data size grows, repeated copy and memory allocation
might become problematic and even a bottleneck for the algorithm. To avoid such
problems, Torch7 tensor library is designed to support complete control over new
memory allocation only when the user wants to use it. To better demonstrate
this point, we repeat the matrix multiplication example.
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1 x = torch.Tensor(1000,5000)
2 y = torch.Tensor(5000,3000)
3 z = torch.mm(x,y) print(z:size())
4
5 1000
6 3000
7 [torch.LongStorage of size 2]

One can see that the tensor z, which did not exist before, is newly allocated in
this context. One can imagine that these series of operations are done repeatedly
inside a loop. In this case, Torch7 allows the following intuitive syntax.

1 x = torch.Tensor(1000,5000)
2 y = torch.Tensor(5000,3000)
3 z = torch.Tensor(1000,3000)
4 torch.mm(z,x,y)

As it can be seen from the example, the torch.mm function also can take three
arguments, in which case the first argument becomes the result of the operation.
This syntax is implemented for all operations in the Tensor library consistently,
so that for every single operation, the user has the choice of passing in the
target Tensor or allocating a new one without any overhead and heavy syntax.
For example the following element-wise Sin operation can be represented in two
different ways.

1 x = torch.rand(1000)
2
3 -- a new tensor is created
4 tsin = torch.sin(x)
5
6 -- a scalar one is added to tensor x (x is reused)
7 x:add(1)
8
9 -- tsin is reused

10 torch.sin(tsin,x)

In this example, both scalar addition to tensor x and calculating the Sin of
resulting tensor did not allocate any new memory. In the above example, we
also hinted another use of tensor library, where one can make method calls on a
tensor object, as in any object oriented language. This syntax makes it explicit
that the operation is directly applied on the object that the method call is done.

21.2.3 BLAS/LAPACK Interfaces

The key to a successful numerical computation framework is to have efficient
implementations of linear algebra operations. This requires highly sophisticated
algorithms with very precise implementations. In order to be able to provide
the best experience, the C tensor library (TH) that is included in Torch7 in-
terfaces BLAS and LAPACK libraries.11 All the major Level 1, 2 and 3 BLAS
11 http://www.netlib.org.

http://www.netlib.org
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operations like matrix-vector products, matrix-matrix products and most major
linear algebra routines like singular value decomposition, matrix inverse, least
square solutions are interfaced to BLAS and LAPACK libraries respectively. This
interface provides the user with a rich experience of building block operations
where higher level algorithms can easily be implemented.

21.2.4 SIMD Instructions

Most computations involved in a neural network consist in applying the same
type of operations over (possibly large) vectors or matrices. Several CPU ar-
chitectures, such as PowerPC, Intel or ARM support SIMD (Single Instruction,
Multiple Data) operations which are perfectly suited for this kind of task: for
example with SSE (Streaming SIMD Extensions) on Intel processors one might
perform 4 additions over a vector with a unique instruction. Calling these in-
structions instead of regular CPU instructions might lead to great speedup. This
type of optimization is unfortunately CPU-specific. Fortunately, in many cases
one can rely on BLAS/LAPACK implementations specialized for a given plat-
form, which leverage SIMD instructions. For other neural network specific cases,
such as convolutions, one must implement specialized routines for each architec-
ture of choice. In Torch7, we try to leverage SSE (on Intel architectures) and
NEON (on ARM architectures) whenever possible. Compared to a non-SSE im-
plementation 1.5× speedup are common, as shown in Figure 21.3 in the case of
convolutional neural networks.
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Fig. 21.3. Comparison of several convolutional neural network implementations (with-
out SSE, with SSE or with BLAS). Tests were conducted using one core on a Intel bi-
Xeon X5690 server. Performance is given in number of examples processed by second
(higher is better). Three different architectures were tested, with input image sizes of
32x32, 96x96 and 256x256 respectively.

21.2.5 Ordering Memory Accesses

As already mentioned in Section 21.2.1 and Section 21.2.2, memory accesses
are one of the main bottleneck on today’s computers. In fact, not only the number
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of accesses is important, but also the order of these accesses. For example, op-
erations with tensors not contiguous in memory (say, with extra jumps between
each element of the tensor) should always be avoided. In many cases, it is better
to organize the tensor in a contiguous memory block (possibly at the cost of
the copy), before performing any intensive computations. A striking example for
neural networks is convolutions. When performing a convolution over an image,
successive dot products are done between the kernel and all possible patches of
the image. One can create a copy of all these patches beforehand (the drawback
being a huge memory cost for large convolutions or large images) and then apply
a matrix-matrix operation (using BLAS) to compute all dot products. The mem-
ory consumption increases proportional to the number of pixels of convolutional
kernel. As shown in Figure 21.3, this leads to unbeatable runtime performance,
even though the initial memory copy is quite large. Torch7 provides this imple-
mentation as part of the neural net package too. Whenever there is sufficient
memory available, it is advantageous to use this implementation which uses an
innovative design that takes advantage of multi-core CPU architectures.

21.2.6 OpenMP Support

Open Multi-Processing (OpenMP) provides a shared memory CPU paralleliza-
tion framework on C/C++ and Fortran languages on almost every operating
system and compiler toolset. It generally requires minimal modification for in-
tegrating into an existing project. Torch7 is designed and developed to use
OpenMP directives for various operations in its tensor library and neural net-
work package. Although the details of the OpenMP specification is beyond the
scope of this work, below we show one of the most commonly used OpenMP
directive, parallelization over for-loops:

1 // private makes a copy for each thread
2 #pragma omp parallel for private(i)
3 for (i=0; i<N; i++)
4 {
5 a[i] = i*i;
6 }

Without the omp parallel for directive at line 2, this piece of code will run to
completion using a single thread. However, since each loop iteration is indepen-
dent from each other, it becomes a trivial single line addition to existing code
that parallelizes this computation over many cores.

Torch7 automatically detects if the compiler supports OpenMP directives and
compiles a high level package that adds multi-threaded tensor operations, con-
volutions and several neural network classes. The switch from single threaded
code to multi-threaded code is completely transparent to the user and it only
requires -l openmp argument to be passed to torch executable. With this op-
tion, Torch7 by default uses the OpenMP enabled function calls when avail-
able. The number of threads to be used can be specified by either setting the
“OMP_NUM_THREADS” environment variable to desired number:
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1 bash# export OMP_NUM_THREADS=4

or from inside lua by

1 torch.setNumThread(4)

function. Moreover, openmp can even be temporarily enabled or disabled using
the following function calls.

1 torch.setNumThreads(1)
2 torch.setNumThreads(N)

Multi-threading of BLAS operations rely on the specific BLAS library that
Torch7 is linked against. For example Intel’s MKL library also uses OpenMP for
parallelizing Level 3 BLAS operations. In the neural network package nn, the
convolutional layers, most common non-linearity functions like tanh and sigmoid,
pooling operations like average, sum and max pooling and various other primi-
tive operations like sum, square modules are all parallelized. For all the models
that apply element-wise operations, the parallelization is almost as trivial as
shown in the example above. For more complicated modules like convolutional
layers with multiple input output feature maps, the function evaluation pass is
parallelized over output feature maps so that every output feature is calculated
in parallel. For calculating the gradient wrt kernels, operations are parallelized
over kernels and over input feature maps for gradient wrt inputs. Using this
strategy the convolutional network architecture can be sped up almost linearly.

21.2.7 CUDA Support

CUDA (Compute Unified Device Architecture) is nVidia’s framework for pro-
gramming their graphics processors to perform general purpose computations.
CUDA exposes the hierarchy of memories available to the graphics processor,
the two main ones being the external (large, high-latency) DRAM and the inter-
nal shared memory (a couple of kB, low-latency). It also exposes the hierarchy
of compute cores, and how they interact with each other, and with the different
types of memory.

Contrary to common belief, we found that writing CUDA code (kernels) can
be significantly simplified. It is very easy to obtain decent performance, and the
simplest kernels already yield satisfying speedups over regular C. The only three
things to know, and carefully handle are: understanding the interaction between
shared memory and threads; understand memory coalescing, to maximize band-
width to/from external DRAM; understand the hierarchy of processing units,
to efficiently divide the workload between blocks and threads. Once understood,
these concepts were sufficient to allow us to write our own 2D convolutions, which
are computed at about 200GFLOP/s on a GTX580, for large enough inputs.
For smaller inputs, our OpenMP+SSE implementation remains more efficient.
It is worth mentioning that Torch7 employs an efficient, yet general method
for implementing a wide variety of CUDA kernels. As it is shown in the upcoming
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sections, this strategy results in the best performance in most cases. However, it is
also possible to achieve superior performance by developing CUDA kernels under
specific assumptions, like particular input or operator shape and sizes. Despite
the performance advantage, these cases generally require significant development
effort and produce modules that can not be reused, thus they are not suitable
for a general machine learning library.

Once built with CUDA, software!Torch7 provides a new Tensor type: torch.
CudaTensor. Tensors with this particular type lives in the GPU’s DRAM mem-
ory. All operators defined on standard Tensors are also defined on CudaTensors,
which completely abstracts the use of the graphics processor. Here is a small
illustrative example, that demonstrates the simplicity of the interface:

1 -- lives in the CPU’s DRAM
2 tf = torch.FloatTensor(4,100,100)
3
4 -- lives in the GPU’s DRAM
5 tc = tf:cuda()
6
7 -- performed by the GPU
8 tc:mul(3)
9

10 -- res lives in the CPU’s DRAM
11 res = tc:float()

On top of the Tensors’ main operators, all the matrix-based operators are avail-
able, as well as most standard convolution routines.

21.2.8 Benchmarks

In this section we analyze the efficiency of Torch7 in two different setups: first in
the framework of a matrix-matrix multiplication benchmark, then when training
various neural networks. To that effect, we compare Torch7 with Numpy and
Theano. We chose Numpy as a reference because it is a widely-used numeri-
cal library for Python, the latter being itself a widely-used scripting language.
Theano [1] is a recent compiler for mathematical expressions, built upon Python
and Numpy, and which has been shown as over-performing many neural network
implementations, which makes it a very relevant baseline. In our experiments we
chose the latest version of each software, that is Theano 0.5, Numpy 1.6.1 and
Scipy 0.10.1.

Measuring the Overhead of Interpreted Languages. The majority of the
computation for neural networks and many numerical algorithms is spent in
BLAS calls for performing linear algebra operations. To that end, we demon-
strate the efficiency of the Torch7 and also the underlying C library TH.

The Torch7 numerical routines follow a simple design that contains layers.
The first layer is an efficient C library that provides a high level tensor package
(TH). TH library provides a templated design that enables the choice of dif-
ferent precisions. Available types are, Byte (unsigned char), Char (char), Short
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Fig. 21.4. Benchmarks of matrix multiplication performance using C, Torch7 torch
package, nn package in Torch7, Numpy and Theano. Tests were conducted on a machine
with two Intel Xeon X5690 CPUs with 6 computational cores in each CPU. Hyper-
threading was disabled. We considered multi-thread computation using 1, 2, 4, 8 and
12 CPU cores. Performance is given in seconds of time spent for processing, therefore
smaller is better.

(16 bit integer), Integer (32 bit integer), Long (64 bit integer), Float (32 bit
floating point) and Double (64 bit floating precision). TH library does not have
any dependencies to Lua or any other language other than standard C libraries,
therefore it is also suitable to be used by other projects that rely on efficient nu-
merical routines. The choice of C language was a careful choice as with Lua. Since
TH uses only C, it can be compiled in almost any programming environment like
cellphones, DSP, embedded systems, etc. TH provides interface to many BLAS
operations, but also contains hand-coded operations for all functions in case no
BLAS library is available. It also provides and interface to several most widely
used LAPACK routines for linear algebra. The second layer on top of TH is the
torch package that integrates TH into Lua. All of the TH mathematical oper-
ations are interfaced from the Lua language in the torch packages. Finally, the
nn package uses the torch package to provide a modular, yet fast and efficient,
neural network library.

One might argue that such a layered approach would introduce quite a bit of
overhead. In order to quantify the overhead coming from each layer, we selected
matrix-matrix multiplication as our test case since it is one of the most widely
used operations in linear algebra and ran tests using different sizes of matrices
and different layers of programming. We used 100×100 and 1000×1000, matrices
and benchmarked using a C only program that directly uses TH library, using
torch library, using linear layer (with no bias) from nn package in Torch7. We also
included tests using Numpy package and finally Theano. We compiled all pack-
ages using Intel MKL library to be able achieve the best possible performance
and maximize the advantages of using CPU threading. As it can be seen from
the results given in Figure 21.4, the overhead coming from TH, Torch7 or nn
libraries is minimal, even for small size matrices. Even though Python gets a bit
more overhead, for larger matrices the overhead is minimal in all configurations.
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Comparing Machine Learning Packages. In a recent paper [1], the authors
introduced a new compiler for mathematical expressions, built upon Python and
Numpy. As for Torch7, Theano is (at this time) mainly used in a neural network
framework. Theano can be either run on a CPU or a GPU. The authors of
Theano showed benchmarks (involving the training of various neural networks
architectures) comparing with other alternative implementations (when running
Theano over a GPU), including Torch5, Matlab with GPUmat (running over
a GPU) or EBLearn 12. Below, we reproduce these exact benchmarks, limiting
ourselves to Torch7 versus Theano, as Theano appears already faster than any
existing implementation.

Table 21.1. Convolutional Network Architectures used in the benchmark study

32× 32 96× 96 256× 256 # F. Maps
1.c Convolution 5× 5 7× 7 7× 7 6
1.p Max-pooling 2× 2 3× 3 5× 5 6
2.c Convolution 5× 5 7× 7 7× 7 16
2.p Max-pooling 2× 2 3× 3 4× 4 16
3.l Linear 120 output features
4.o Linear 10 output features

For a fair comparison, we compiled both Numpy and SciPy (on which Theano
relies) and Torch7 against MKL Intel library. Latest versions of Theano also sup-
port direct link against MKL for certain operations (without passing by Numpy),
which we setup carefully. We ran the experiments on a Intel Xeon X5690 with 12
cores. We optionally used a nVidia Tesla M2090 GPU. Following [1] benchmark
suite, we considered the training of three kinds of multi-layer Perceptrons. 1.
784 inputs, 10 classes, cross-entropy cost, and respectively no-hidden layer. 2.
One hidden layer of size 500. 3. Three hidden layers of size 1000. We also con-
sidered the training of three kinds of convolutional neural networks (as shown
in Table 21.1) on 32× 32, 96× 96, and 256× 256 input images, following exactly
the architectures given in [1]. The optimization algorithms we used were pure
stochastic gradient descent (SGD) and SGD with a mini-batch of 60 examples.
We compare all architectures running on a single CPU core, over multiple cores
using OpenMP, or on the GPU. Note that Theano does not support OpenMP.
However, it gets a speedup (on the multi-layer Perceptron benchmarks), since
the Intel MKL library (called through Numpy) supports multiple threads using
OpenMP.

As shown in Figure 21.5, Torch7 is faster than Theano on most benchmarks.
Interestingly, Theano underperforms for small architectures using pure SGD
training (left column in Figure 21.5), which might be explained by a Python
overhead, as mentioned in the previous section. Another interesting comment is

12 http://www.eblearn.sf.net

http://www.eblearn.sf.net
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the surprising performance of OpenMP implementations compared to the GPU
implementation. As it can be seen from the graphs only largest network architec-
tures will benefit from using the GPU. It is also worth mentioning that for CNN
with 32× 32 inputs using batch training, Theano’s GPU implementation is su-
perior than Torch 7. Under certain conditions, GPU optimizations might pay off
by providing significant speed-ups, however they also require significant devel-
opment effort for covering a small input domain. For CNN experiments a second
Torch7 benchmark, TorchMM is included. In this case matrix-matrix product
operations for performing convolutions as explained in section 21.2.5 are used.
It can be seen that this implementation significantly outperforms other models
from Theano and Torch7, including GPU implementations.

21.3 Efficient Optimization Heuristics

As pointed in Chapter 18, the size of datasets have grown faster than the speed
of processors in the last couple of years. When estimating the parameters of a
neural network, it is then crucial to use an optimization procedure that can scale
accordingly. Recently, research on optimization methods for neural networks has
become an important topic [2, 4, 8, 7]. Torch 7 provides a flexible framework
designed particularly to make it easy for developing optimization algorithms on
neural networks.

Let us consider the case of supervised learning, when one has a training set
of N examples (xn, yn), with xn an observed input vector and yn an output
target vector that we wish to predict. We consider a loss function l(ŷn, yn) that
measures the cost of predicting ŷn when the actual answer is yn. We also consider
a predictor fw(xn), with trainable parameters w. The task of learning can be
defined as finding the vector w that minimizes the loss function L over the entire
training set:

L(w) =
1

N

N∑

n=1

l(fw(xn), yn), (21.1)

w∗ = argmin
w

L(w). (21.2)

This general form of loss minimization can be easily carried out using one of a
variety of optimization methods like Conjugate Gradient Descent (CG), BFGS
or Limited Memory BFGS, Levenberg-Marquardt methods or simple SGD. In
Torch7, these heuristics and methods can be carried out simply, using one unify-
ing idea: decoupling the form of the function fw from the optimization procedure.
By grouping all the trainable parameters into a single parameter vector and
using a vector of gradients of the same size for gradients, the type and shape of
the neural network is completely abstracted from the developer. Combined with
powerful closure mechanism of Lua, one can develop optimization algorithms



554 R. Collobert, K. Kavukcuoglu, and C. Farabet

 0

 20000

 40000

 60000

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

ex
am

pl
es

/s

MLP 784/10

 0

 80000

 160000

 240000

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

MLP 784/10 (batch)

 0

 2000

 4000

 6000

 8000

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

ex
am

pl
es

/s

MLP 784/500/10

 0

 20000

 40000

 60000

 80000

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

MLP 784/500/10 (batch)

 0

 500

 1000

 1500

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

ex
am

pl
es

/s

MLP 784/1000x3/10

Torch
Theano

 0

 5000

 10000

 15000

 20000

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

MLP 784/1000x3/10 (batch)

 0

 1000

 2000

 3000

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

ex
am

pl
es

/s

CNN 32x32

 0

 5000

 10000

 15000

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

CNN 32x32 (batch)

 0

 200

 400

 600

 800

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

ex
am

pl
es

/s

CNN 96x96

 0

 250

 500

 750

 1000

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

CNN 96x96 (batch)

 0

 50

 100

 150

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

ex
am

pl
es

/s

CNN 256x256

Torch
TorchMM

Theano

 0

 50

 100

 150

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

CNN 256x256 (batch)

Fig. 21.5. Benchmarks of Torch7 versus Theano, while training various neural net-
works architectures with SGD algorithm. Tests were conducted on a machine with two
Intel Xeon X5690 CPUs and Nvidia M2090 GPU. We considered multi-thread compu-
tation using 1 to 12 CPU cores using OpenMP and GPU with Nvidia CUDA interface.
Performance is given in number of examples processed by second (higher is better).
“batch” means 60 examples at a time were fed when training with SGD. TorchMM uses
the convolutional neural network layer implementation introduced in Section 21.2.5.
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for most complicated neural network models as easy for the simplest ones. The
following code shows how this is done:

1 -- create an arbitrary model:
2 model = nn.Sequential()
3 model:add( nn.Linear(100,1000) )
4 model:add( nn.Tanh() )
5 model:add( nn.Linear(1000,10) )
6
7 -- and a loss function:
8 loss = nn.MSECriterion()
9

10 -- extract the parameters, and the gradient holder
11 w,dloss_dw = model:getParameters()
12
13 -- w and dl_dw are two vectors of the same size

Once the trainable parameter vector has been extracted, arbitrary, external op-
timization procedures can be used. Torch7 provides a few standard methods
(LBFGS, CG, SGD, ASGD) which simply require: (1) a function that computes
Lw and dL

dw and (2) the parameter vectors w and dL/dw. Of course, Lw can
be either the true loss, or any approximation of it. The function that is de-
fined is responsible for sampling from the training dataset, and estimating these
approximations.

With these two concepts in mind, one can easily define a loop over a training
dataset, and define a closure at each iteration, which computes Lw and dL

dw .
The following listing shows an example of such a loop, assuming a pre-shuffled
training dataset in which each entry is a tuple (xn, yn):

1 -- assuming a training dataset ’trainset’, and the model
2 -- defined above: ’model’, ’w’ and ’dL_dw’:
3 for e = 1,nepochs do
4 for i,sample in ipairs(trainset) do
5 -- next training pair:
6 x_n = sample[1]
7 y_n = sample[2]
8
9 -- create closure that estimates y_n_hat = f_w(x_n),

10 -- stochastically
11 feval = function()
12 -- estimate loss:
13 y_n_hat = model:forward(x_n)
14 f = loss:forward(y_n_hat, y_n)
15
16 -- estimate gradients:
17 dloss_dw:zero()
18 dloss_dy_n_hat = loss:backward(y_n_hat, y_n)
19 model:backward(x_n, dloss_dy_n_hat)
20
21 -- return loss, and gradients
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22 return f,dloss_dw
23 end
24
25 -- now that the closure is defined, pass it to an
26 -- optimization algorithm:
27 w,fs = optim.sgd(feval,w)
28
29 -- + the new w is returned, but as computations are
30 -- done in place, it is typically not necessary to
31 -- store it (the old w contains the new value)
32 -- + fs is a list of all the function (loss)
33 -- evaluations that were done during optimization.
34 -- SGD only returns one value, as it does not
35 -- perform any line search.
36 end

In the listing above, one can see that the loss and gradient estimation can be
easily changed at runtime, and estimated over arbitrary batch sizes. To use a
batch size different than 1 (as done above), one simply needs to create a list of
training pairs, and the feval function needs to loop over these training pairs to
estimate the approximate loss and gradients.

21.4 Conclusion

Compared to the early days of neural network training, the challenges towards
an efficient implementation did not change a lot, however the means changed
slightly. Already in the late 80’s, the SN [3] toolbox was providing a scripting
language (LISP) for building neural networks in a modular way. At the time,
memory bandwidth and processor speed were about the same order of mag-
nitude. Nowadays, we have to pay much more attention on memory accesses,
counting number of instructions for optimizing the code is not sufficient any-
more. Specific vectorized instructions can be easily integrated, but will not give
order of magnitude speedups. In the end, what brings most advantage is par-
allelization. As computers become more and more parallel, it becomes crucial
to leverage parallelization frameworks properly, such as OpenMP. On a more
extreme side, GPUs (e.g. running with CUDA) are not as attractive as some
could have expected: GPU-specific implementations require heavy extra work
for a speedup (see Figure 21.5) which can be quite disappointing compared to
what one can get with few extra lines of code with OpenMP.
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Better Representations: Invariant, Disentangled
and Reusable

Preface

In many cases, the amount of labeled data is limited and does not allow for fully
identifying the function that needs to be learned. When labeled data is scarce,
the learning algorithm is exposed to simultaneous underfitting and overfitting.
The learning algorithm starts to “invent” nonexistent regularities (overfitting)
while at the same time not being able to model the true ones (underfitting). In
the extreme case, this amounts to perfectly memorizing training data and not
being able to generalize at all to new data.

The following five chapters present various tricks to solve the underfitting/over-
fittingproblem.These includeapproaches to force invariance intothemodel inorder
to increase the signal-to-noise ratio, pretraining methods to disentangle the factors
of variation, and how to use auxiliary tasks to learn a shared representation.

In image recognition,we knowapriori that a good classifier should be translation
invariant, rotation invariant, scale invariant, etc. Convolutional neural networks
[7] are special networks composed of convolution and pooling layers that explicitly
implement the translation invariance at multiple scales. They can be trained using
standard backpropagation. One can also construct the convolutional network [9]
one layer at the time in an unsupervised fashion. Chapter 22 [3] shows that, in this
context, k-means is a particularly efficient method to learn the convolution filters.

Alternatively, the desired invariance can be injected in the model with arti-
ficial training samples that are translated, rotated or distorted versions of the
original samples. The idea is presented in Chapter 23 [2]. A well-engineered set of
transformations can produce a very large number of artificial samples and con-
siderably improve the generalization of the neural network. Things can become
complicated as invariance is not always absolute: For example, the handwritten
digit “1” is rotation-invariant only up to a certain angle, beyond which it can be
confused with the handwritten digit “7”.

Both convolutional networks and generating artificial samples yield excellent
results on problems such as handwritten digit recognition and classification of
small images. Combination of both techniques brings even higher performance.
Unfortunately, these methods are only applicable when invariance is known. In
the most general case, the invariance is unknown and other tricks are necessary
in order to improve the learned representation.

The representation can be improved by learning an unsupervised model as a
first step [5], using large amounts of unlabeled data. Unsupervised pretraining
aims to construct a network of disentangled factors of variation. As a second
step, the supervised learner only needs to choose in the set of disentangled
factors, those that best predict the task of interest. Unsupervised pretraining
transfers the burden of complex nonlinear modeling to unlabeled data which is
generally available in much larger amounts. This two-steps approach was shown

G. Montavon et al. (Eds.): NN: Tricks of the Trade, 2nd edn., LNCS 7700, pp. 559–560, 2012.
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to significantly reduce the underfitting/overfitting problem [5, 4] and improve
handwritten digit and phoneme recognition performance.

A well-established algorithm for learning the unsupervised representation is
the restricted Boltzmann machine. Chapter 24 [6] explains step by step how to
train it successfully and how to choose the multiple hyperparameters. Chapter
25 [8] shows how keeping the model centered throughout training facilitates
learning in the more sophisticated deep Boltzmann machine.

The series of five chapters terminates with the question of using auxiliary
tasks to improve the solution learned by a neural network. As it was shown in
Chapter 8 [1], this can be achieved by sharing an internal representation (and its
associated parameters) across multiple related tasks and training the resulting
multi-task network with backpropagation. A variant of multitask learning is
introduced in Chapter 26 [10] where the auxiliary task is not defined by a set
of labels but by a set of pairwise similarities between samples. This extension
considerably widens the domain of applicability of multi-task learning.
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Learning Feature Representations with K-Means
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Abstract. Many algorithms are available to learn deep hierarchies of
features from unlabeled data, especially images. In many cases, these
algorithms involve multi-layered networks of features (e.g., neural net-
works) that are sometimes tricky to train and tune and are difficult to
scale up to many machines effectively. Recently, it has been found that
K-means clustering can be used as a fast alternative training method.
The main advantage of this approach is that it is very fast and easily
implemented at large scale. On the other hand, employing this method
in practice is not completely trivial: K-means has several limitations, and
care must be taken to combine the right ingredients to get the system
to work well. This chapter will summarize recent results and technical
tricks that are needed to make effective use of K-means clustering for
learning large-scale representations of images. We will also connect these
results to other well-known algorithms to make clear when K-means can
be most useful and convey intuitions about its behavior that are useful
for debugging and engineering new systems.

22.1 Introduction

A major goal in machine learning is to learn deep hierarchies of features for other
tasks. For instance, given a set of unlabeled images, many current algorithms
seek to greedily learn successive layers of features that will make subsequent
classification tasks (e.g., object recognition) easier to accomplish. A typical ap-
proach taken in the literature is to use an unsupervised learning algorithm to
train a model of the unlabeled data and then use the results to extract interest-
ing features from the data [35, 21, 31]. Depending on the choice of unsupervised
learning scheme, it is sometimes difficult to make these systems work well. There
can be many hyper-parameters and not much intuition for how to tune them.
More recently, we have found that using K-means clustering as the unsupervised
learning module in these types of “feature learning” pipelines can lead to excel-
lent results, often rivaling state-of-the-art systems [11]. In this chapter, we will
review some of this work with added notes on useful tricks and observations that
are helpful for building large-scale feature learning systems.

K-means has already been identified as a successful method to learn fea-
tures from images by computer vision researchers. The popular “bag of features”
model [13, 28] from the computer vision community is very similar to the pipeline
that we will use in this chapter, and many conclusions here are similar to those
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identified by vision researchers [18, 1]. In this chapter, however, we will focus on
the ingredients needed to make K-means work well in a setting similar to that
used by other deep learning and feature learning systems: learning directly from
raw inputs (pixel intensities) and building multi-layered hierarchies, as well as
connecting K-means to other well-known feature learning systems.

The classic K-means clustering algorithm finds cluster centroids that minimize
the distance between data points and the nearest centroid. Also called “vector
quantization”, K-means can be viewed as a way of constructing a “dictionary”
D ∈ Rn×k of k vectors so that a data vector x(i) ∈ Rn, i = 1, . . . ,m can
be mapped to a code vector that minimizes the error in reconstruction. In this
chapter, we will use a modified version of K-means (sometimes called “gain shape”
vector quantization [41], or “spherical K-means” [14]) that finds D according
to:

minimize
D,s

∑

i

||Ds(i) − x(i)||22

subject to ||s(i)||0 ≤ 1, ∀i
and ||D(j)||2 = 1, ∀j

where s(i) is a “code vector” associated with the input x(i), and D(j) is the j’th
column of the dictionary D. The goal here is to find a dictionary D and a new
representation, s(i), of each example x(i) that satisfies several criteria. First, given
s(i) and D, we should be able to reconstruct the original x(i) well; in particular,
we aim to minimize the squared difference between x(i) and its corresponding
reconstruction Ds(i). This goal is optimized under two constraints. The first
constraint, ||s(i)||0 ≤ 1, means that each s(i) is constrained to have at most one
non-zero entry. Thus we are searching not only for a new representation of x(i)
that preserves it as well as possible, but also for a very simple or parsimonious
representation. The second constraint requires that each dictionary column have
unit length, preventing them from becoming arbitrarily large or small. Otherwise
we could arbitrarily rescale D(j) and the corresponding s(i)j without effect.

This algorithm is very similar in spirit to other algorithms for learning efficient
coding schemes, such as sparse coding [34, 17]:

minimize
D,s

∑

i

||Ds(i) − x(i)||22 + λ||s(i)||1

subject to ||D(j)||2 = 1, ∀j.

Sparse coding optimizes the same type of reconstruction objective, but constrains
the complexity of s(i) by adding a penalty λ||s(i)||1 that encourages s(i) to be
sparse. This is similar to the constraint used by K-means (||s(i)||0 ≤ 1), but
allows more than one non-zero entry in each s(i), enabling a much more accurate
representation of each x(i) while still requiring each s(i) to be simple.

From their descriptions above, it is no surprise that K-means and
more sophisticated dictionary-learning schemes like sparse coding are often
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interchangeable—differing in their optimization objectives, but producing code
vectors s(i) and dictionaries D that accomplish similar goals. Empirically though,
sparse coding appears to be a better performer in many applications. For in-
stance, replacing K-means with sparse coding in the classic bag-of-features model
has been shown to significantly improve image recognition results [39]. Despite
its simplicity, however, K-means is still a very useful algorithm for learning fea-
tures due to its speed and scalability. Sparse coding requires us to solve a convex
optimization problem [36, 15, 32] for every s(i) repeatedly during the learning
procedure and thus is very expensive to deploy at large scale. For K-means, by
contrast, the optimal s(i) used in the algorithm above is simply:

s
(i)
j =

⎧
⎨

⎩
D(j)�x(i) if j == argmax

l
|D(l)�x(i)|

0 otherwise.
(22.1)

Because this can be done very quickly (and solving for D given s is also easy), we
can train very large dictionaries rapidly by alternating optimization of D and s.
As well, K-means does not have any parameters requiring tuning other than k,
the number of centroids, making it relatively easy to get working. The surprise
is that large dictionaries learned by K-means often work very well in practice
provided we mix in a few other ingredients that are less commonly documented
in other works. This chapter is about what these ingredients are as well as some
intuition about why they are needed and how they affect results. For most of
this work, we will use images (or image patches) as input data to the algorithm,
but the basic principles are applicable to other types of data as well.

22.2 Data, Pre-processing and Initialization

We will begin with a dataset composed of small image patches. For concreteness,
we will work with 16-by-16 pixel grayscale patches represented as a vector of 256
pixel intensities (i.e., x(i) ∈ R256), but color patches can also be used similarly.
These patches can be collected from unlabeled imagery by cropping out random
16-by-16 chunks. In order to build a “complete” dictionary (i.e., a dictionary with
at least 256 centroids), we should ensure that there will be enough patches so
that each cluster can claim a reasonable number of inputs. For 16-by-16 gray
patches, m = 100, 000 patches is enough. In practice, we will often need more
data to train a K-means dictionary than is necessary for other algorithms (e.g.,
sparse coding), since each data point contributes to just 1 centroid in the end.
Usually the added expense is easily offset by the speed of training. For notational
convenience, we will assume that our data points are packed into the columns of
a matrix X ∈ Rn×m. (Similarly, we will denote by S the matrix whose columns
are the code vectors s(i) from Eq. (22.1).)

22.2.1 Pre-processing

Before running a learning algorithm on our input data points x(i), it is useful to
normalize the brightness and contrast of the patches. That is, for each x(i) we
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subtract out the mean of the intensities and divide by the standard deviation. A
small value is added to the variance before division to avoid divide by zero and
also suppress noise. For pixel intensities in the range [0, 255], adding 10 to the
variance is often a good starting point:

x(i) =
x̃(i) −mean(x̃(i))√

var(x̃(i)) + 10

where x̃(i) are unnormalized patches and “mean” and “var” are the mean and
variance of the elements of x̃(i).

(a) (b) (c)

Fig. 22.1. (a) Centroids learned by K-means from natural images without whiten-
ing. (b) A cartoon depicting the effect of whitening on the K-means solution. Left:
unwhitened data, where the centroids tend to be biased by the correlated data.
Right: whitened data, where centroids are more orthogonal. (c) Centroids learned from
whitened image patches.

After normalization, we can try to run K-means on the new input patches. The
centroids that are obtained (i.e., the columns of the dictionary D) are visualized
as patches in Figure 22.1a. It can be seen that K-means tends to learn low-
frequency edge-like centroids. This result has been reproduced many times in
the past [16, 37, 2]. Unfortunately, it turns out that these centroids tend to
work poorly in recognition tasks [11]. One explanation for this result is that the
correlations between nearby pixels (i.e., low-frequency variations in the images)
tend to be very strong even after brightness and contrast normalization. In the
presence of these correlations, K-means tends to generate many highly correlated
centroids rather than spreading the centroids out to span the data more evenly.
A cartoon depicting this problem is shown on the left of Figure 22.1b. To remedy
this situation, one should use whitening (also called “sphering”) to rescale the
input data to remove these correlations [22]. This tends to cause K-means to
allocate more centroids in the orthogonal directions, as shown on the right of
Figure 22.1b.

A simple choice of whitening transform is the ZCA whitening transform. If
V DV � = cov(x) is the eigenvalue decomposition of the covariance of the data
points x, then the whitened points are computed as V (D+εzcaI)

−1/2V �x, where
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εzca is a small constant. For contrast-normalized data, setting εzca to 0.01 for
16-by-16 pixel patches, or 0.1 for 8-by-8 pixel patches is a good starting point.
Note that setting this number too small can cause high-frequency noise to be
amplified and make learning more difficult. Since rotating the data does not alter
the behavior of K-means, one can also use other whitening transforms such as
PCA whitening (which differ from ZCA only by a rotation).

Running K-means on whitened image patches yields sharper edge features
similar to those discovered by sparse coding, ICA, and others as seen in Fig-
ure 22.1c. This procedure of normalization, whitening, and K-means clustering
is an effective “off the shelf” unsupervised learning module that can serve in
many feature-learning roles. From this point forward, we will assume that when-
ever we apply K-means to new data that they are normalized and whitened as
described here. But keep in mind that proper choices of the ε parameters for
normalization and whitening can sometimes require adjustment for new data
sources. Though these are likely best set by cross validation, they can often be
tuned visually (e.g., to yield image patches with high contrast, not too much
noise, and not too much low-frequency undulation).

22.2.2 Initialization

The usual K-means clustering algorithm is known to require a number of small
tweaks to avoid common problems like empty clusters. One important consid-
eration is the initialization of the centroids. Though it is common to initialize
K-means to randomly-chosen examples drawn from the data, this has been found
to be a poor choice. It is possible that images tend to group too densely in some
areas, and thus initializing K-means with randomly chosen patches leads to a
large number of centroids starting close together. Many of these centroids ul-
timately end up becoming near-empty clusters, as a single cluster accumulates
all of the data points located within a dense area. Instead, it is better to ran-
domly initialize the centroids from a Normal distribution and then normalize
them to unit length. Note that because of the whitening stage, we expect that
the important components of our data have already been rescaled to a more or
less spherical distribution, so initializing to random vectors on a sphere is not a
terrible starting point.

Other well-known heuristics for improving the behavior of K-means can be
useful. For instance, heuristics for reinitializing empty clusters are commonly
used in other implementations. In practice, the initialization scheme above works
relatively well for image data. When empty clusters do occur, reinitializing the
centroids with random examples is usually sufficient, but this is rarely neces-
sary.1 In fact, for a sufficiently scalable implementation, we can often train many
centroids and simply throw away clusters that have too few data points.

1 Often, a large number of empty clusters indicates that the whitening or normalization
parameters are improperly tuned, or the data is too high-dimensional for K-means
to be successful.
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Another minor tweak that improves behavior is to use damped updates of the
centroids. Specifically, at each iteration we compute new centroids according to:

Dnew := argmin
D
||DS −X ||22 + ||D − Dold||22

= (SS� + I)−1(XS� +Dold)

∝ XS� +Dold

Dnew := normalize(Dnew).

Note that this form of damping does not affect “big” clusters very much (the
j’th column of XS� will be large compared to D(j)

old) and only serves to prevent
small clusters from being pulled too far in a single iteration.

Including the initialization and pre-processing, the full K-means training rou-
tine presented above is summarized here:

1. Normalize inputs:

x(i) :=
x(i) −mean(x(i))√
var(x(i)) + εnorm

, ∀i

2. Whiten inputs:

[V,D] := eig(cov(x)); // So V DV � = cov(x)

x(i) := V (D + εzcaI)
−1/2V �x(i), ∀i

3. Loop until convergence (typically 10 iterations is enough):

s
(i)
j :=

⎧
⎨

⎩
D(j)�x(i) if j == argmax

l
|D(l)�x(i)|

0 otherwise.
∀j, i

D := XS� +D
D(j) := D(j)/||D(j)||2∀j

22.3 Comparison to Sparse Feature Learning

As was shown above, K-means learns oriented edge-like features when applied to
natural images, much like ICA [23] or sparse coding [34]. An important practical
question is whether this is accidental (e.g., because edges are so common that
learning “exemplars” from images is enough to find them) or whether this implies
that K-means can perform a type of sparse decomposition similar to ICA. When
we attempt to apply K-means to other types of data such as audio or features
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Fig. 22.2. The result of running spherical K-means on points sampled from a heavy-
tailed distribution. The K-means “centroids” tend to point in the directions of the
tails.

computed by lower layers in a deep network, it is important to understand to
what extent this clustering algorithm mimics well-known projection methods like
ICA and what the limitations are. It is clear that because each s(i) is allowed to
contain only a single non-zero entry, K-means tries to learn centroids that single-
handedly explain an entire input image. It is thus not guaranteed that the learned
centroids will always be like the filters produced by sparse coding or ICA. These
algorithms learn genuine “distributed” representations where a single image can
be explained jointly by multiple columns of the dictionary instead of just one.
Nevertheless, empirically it turns out that K-means does tend to discover sparse
projections of the data under the right conditions. Because of this property, we
can often use the learned dictionary in a manner similar to the dictionaries or
filters learned by other algorithms that explicitly search for sparse, distributed
representations.

One intuition for why this tends to occur can be seen in a simple low-
dimensional example. Consider the case where our data is sampled from two
independent, heavy-tailed (sparse) random variables. After normalization, the
data will be most dense near the coordinate axes, and less dense in the quad-
rants between them. As a result, while K-means will tend to represent many
points very badly, training 2 centroids on this distribution will tend to yield a
dictionary of basis vectors pointing in the direction of the tails (i.e., in the sparse
directions). This result is illustrated in Figure 22.2.

If the data dimensionality is not too high (e.g., a hundred or so) this “tail-
seeking” phenomenon also shows up in more complicated scenarios. Figure 22.3
shows examples of three sets of images generated from sparse sources. On the
left (at top), are 16-by-16 images with pixels sampled from independent Laplace
distributions (sparse pixel intensities). In the middle (top) are images composed
of a sparse combination of gratings and at right (top) a sparse combination of
non-orthogonal gabor filters. The bottom row shows the result of learning 256
centroids with K-means from 500000 examples drawn from each distribution. It
can be seen that K-means does, in fact, roughly recover the sparse projections we
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Fig. 22.3. Top: Three different sparse distributions of images. Bottom: Filters (cen-
troids) identified by K-means with a complete (256-centroid) dictionary.

would expect. A similar experiment appears in [34] to demonstrate the source-
separation ability of sparse coding—yet K-means tends to recover the same filters
even though these filters are clearly not especially similar to individual images.
That is, K-means can potentially do more than merely recover “exemplar” images
from the input distribution.

When applied to natural images, it is evident that the learned centroids
D(j) (as in Figure 22.1c) are relatively sparse projections of the data. Fig-
ure 22.4a shows a histogram of responses resulting from projecting randomly
chosen (whitened) image patches onto 4 different filters. The 4 filters used are:
(i) a centroid learned by K-means, (ii) a basis vector trained via sparse coding,
(iii) a randomly selected image patch, and (iv) a randomly initialized filter. In
the figure, it can be seen that using the K-means-trained centroid as a linear
filter gives us a very sparse projection of the data. Thus, it appears that relative
to other simple choices K-means does tend to seek out very sparse projections
of the data, even though its formulation as a clustering algorithm does not aim
to do this explicitly.

Despite this empirical similarity to ICA and sparse coding, K-means does have
a major drawback: it turns out that its ability to discover sparse directions in
the data depends heavily on the dimensionality of the input and the quantity of
data. In particular, as the dimensionality increases, we need increasingly large
quantities of data to get clean results. For instance, to obtain the results above
we had to use a very large number of examples. We can obtain similar results
easily with sparse coding with just 10000 examples. For very large patches, we
must use even more. Figure 22.4b shows the results of running K-means on
500000 64-by-64 patches—note that while we can capture a few edges, most of
the clusters are composed of a single patch from the dataset. At this scale, empty
or near-empty clusters become far more common and extremely large amounts of
data are needed to make K-means work well. This tradeoff is the main driver in
deciding when and how to employ K-means: depending on the dimensionality of
the input, a certain amount of data will be required (typically much more than is
needed for similar results from sparse coding). For modest dimensionalities (e.g.,
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(a) (b)

Fig. 22.4. (a) A comparison of the distribution of linear filter responses when filters
obtained by 4 different methods are applied to natural image patches. K-means tends to
learn filters with very sparse response characteristics similar to sparse coding—much
more sparse than randomly chosen patches or randomly initialized filters. (b) “Cen-
troids” learned from 64-by-64 pixel patches. At this scale, K-means becomes difficult
to apply as many clusters become empty or singletons.

hundreds of inputs), this tradeoff can be advantageous because the additional
data requirements do not outweigh the very large constant-factor speedup that
is gained by training with K-means. For very high dimensionalities, however, it
may well be the case that another algorithm like sparse coding works better or
even faster.

22.4 Application to Image Recognition

The above discussion has provided the basic ingredients needed to turn K-means
into a simple feature learning method. Given a batch of unlabeled data, we can
now learn a dictionary D whose columns yield more or less sparse projections
of the data points. Just as with sparse coding, we can use the learned dictio-
nary (centroids) to define features for a supervised learning task [35]. A typical
pipeline used for image recognition applications (that is easy to use with learned
features) is based on the classic spatial pyramid model developed in the computer
vision literature [13, 28, 39, 11]. It is similar in many ways to a single-layered
convolutional neural network [29, 30]. The main components of this pipeline are:
(i) the unsupervised training algorithm (in this case, K-means), which generates
a bank of filters D, (ii) a function f : Rn →Rk that maps an input image patch
x ∈ Rn to a feature vector y ∈ Rk given the dictionary of k filters. For instance,
we could choose f(x;D) = g(D�x) for an element-wise nonlinear function g(·).

Using the learned feature extractor f(x;D), given any p-by-p pixel image
patch, we can now compute a representation y ∈ Rk for that patch. We can thus
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Fig. 22.5. A standard image recognition pipeline used in conjunction with K-means
dictionary learning

define a (single layer) representation of the entire image by applying the function
f to many sub-patches. Specifically, given an image of w-by-w pixels, we define a
(w−p+1)-by-(w−p+1)-by-k array of features by computing the representation
y for every p-by-p “sub-patch” of the input image. For computational efficiency,
we may also “step” our p-by-p feature extractor across the image with some
step-size (or “stride”) greater than 1. This is illustrated in Figure 22.5.

Before classification, we typically reduce the dimensionality of the image rep-
resentation by pooling. For a step size of 1 pixel, our feature extractor produces
a (w−p+1)-by-(w−p+1)-by-k representation. We can reduce this by summing
(or applying some other reduction, e.g., max) over local regions of the feature
responses. Once we have the pooled responses, we could attempt to learn higher-
level features by applying K-means again (this is the approach pursued by [1]), or
just use all of the features directly with a standard linear classification algorithm
(e.g., SVM).

22.4.1 Parameters

The processing pipeline above has a large number of tunable parameters, such as
the patch size p, the choice of f(x;D), and the step size. It turns out that getting
these parameters set correctly can make a major difference in performance for
practical applications. In fact, these parameters often have a bigger influence
on classification performance than the training algorithm itself. When we are
unhappy with performance, searching for better choices of these parameters can
often be more beneficial than trying to modify our learning algorithm [11, 18].
Here we will briefly summarize current advice on how to choose these parameters.

First, when we use K-means to train the filter bank D, we noted previously
that the input dimensionality can significantly influence the data requirements
and success of training. Thus, in addition to other effects it may have on classi-
fication performance, it is important to choose the patch size p wisely. If p is too
large (e.g., 64 pixels, as in Figure 22.4b), then K-means may yield poor results.
Though this situation can be debugged visually for applications to image data,
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it is much more difficult to know when K-means is doing well when it is applied
to other kinds of data such as when training a multi-layered network where the
higher-level features are hard to visualize. For this reason, it is recommended
that p be chosen by cross validation or it should be set so that the dimension-
ality of the data passed to K-means is kept small (typically not more than a
few hundred, depending on the amount of data used). For image patches, 6-by-
6 or 8-by-8 pixel (color or gray) patches work consistently well in the pipeline
outlined above.

Depending on the choice of pooling method, the step size and pooling regions
may need to be chosen differently. There is a significant body of work covering
these areas [6, 5, 4, 12, 24, 18]. In our own experience, for single layers of features,
average pooling over a few equally-sized regions (e.g., a 2-by-2 or 3-by-3 grid)
can work very well in practice and is a good “first try” for image recognition.

Finally, the number of features k learned by the algorithm has a significant
influence on the results. It has been observed several times [18, 11] that learn-
ing large numbers of features can substantially improve supervised classification
results. Indeed, it is frequently best to set k as large as compute resources will
allow, considering data requirements. Though performance typically asymptotes
as k becomes extremely large, increasing the size of k is a very effective way
to squeeze out a bit of extra performance from an already-built system. This
trend, combined with the fact that K-means is especially effective for building
very large dictionaries, is the main advantage of the system presented above.

22.4.2 Encoders

The choice of the feature “encoding” function f(x;D) also has a major impact on
recognition performance. For instance, consider the “hard assignment” encoding
where we take f(x;D) = s, with s the standard “one-hot” code used during
K-means training (Eq. (22.1)). It is well-known that this scheme performs very
poorly compared to other choices [18, 1]. Thus, once we have run K-means to
train our filters, one should certainly make an effort to choose a better encoder
f . There are many encoding schemes present in the literature [34, 38, 40, 42,
19, 20, 7] and, while they often include their own training algorithms, one can
choose to use K-means-trained dictionaries in conjunction with many of them.

Unfortunately, many encoding schemes proposed for computer vision tasks are
potentially very expensive to compute. Many require us to solve a difficult opti-
mization problem in order to compute f(x;D) [34, 40, 20, 7]. On the other hand,
some encoders are simple nonlinear functions of the filter responses D�x that
can be computed extremely quickly. In previous work it has appeared that algo-
rithms like sparse coding are generally the best performers in benchmarks [39, 4].
However, in some cases we can manage to get away with much simpler encod-
ings. Specifically, when we use the single-layer architecture outlined above, it
turns out that algorithms like sparse coding and more sophisticated variants
(e.g., spike-slab sparse coding [20]) are difficult to top when we have very little
labeled data. But as can be seen in Figure 22.6, with much more labeled data
the disparity in performance between sparse coding and a very simple nonlinear
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Fig. 22.6. A comparison of the performance between two encoders on the CIFAR-
10 [25] benchmark as a function of the number of labeled examples. When labeled data
is scarce, an expensive encoder can be worthwhile. If labeled data is plentiful, a fast,
simple encoder such as a soft-threshold nonlinearity is sufficient.

encoder decreases significantly. We have found, not surprisingly, that as we use
increasing quantities of labeled data the supervised learning stage takes over and
works equally well with most reasonable encoders.

As a result of this observation, application designers should consider the quan-
tity of available labeled data. If labeled data is abundant, a fast feed-forward
encoder works well (and is the easiest to use on large datasets). If labeled
data is scarce, however, it can be worthwhile to use a more expensive encoding
scheme. In the large-scale case we have found that soft-threshold nonlinearities
(f(x;D, α) = max{0,D�x − α}, where α is a tunable constant) work very well.
By contrast, sigmoid nonlinearities (e.g., f(x;D, b) = (1 + exp(−D�x + b))−1)
appear to work significantly less well [33, 12] in similar instances.

22.5 Local Receptive Fields and Multiple Layers

Several times we have referred to the difficulties involved in applying K-means to
high-dimensional data. In Section 22.4.1 it was explained that we should choose
the image patch size p (“receptive field” size) carefully to avoid exceeding the
modeling capacity of K-means (as in Figure 22.4b). If we have a very large image
it is generally not effective to apply K-means to the entire input at once.2 In-
stead, applying K-means to p-by-p pixel sub-patches is a reasonable substitute,
since we expect that most learned features will be localized to a small region.
This “trick” allows us to keep the input size to K-means relatively small (e.g.,
just p2 input dimensions for grayscale patches), but still use the resulting filters

2 Note that for very large inputs it becomes impractical to perform whitening, which
requires solving a very large optimization problem (e.g., eigenvalue decomposition).
In the authors’ experience K-means starts giving poor results before this computa-
tional bottleneck is reached.
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on a much larger image by either reusing the filters for every p-by-p pixel sub-
patch of the image, or even by re-running K-means independently on each p-by-p
region (if, for some reason, the features present in other parts of the image differ
significantly). Though this approach is well-known from computer vision appli-
cations the same trick works more generally and in some cases is indispensable
for building working systems.

(a) (b)

(c) (d)

Fig. 22.7. (a) A dataset composed of concatenated pairs of independently sampled
image patches. (b) Centroids trained from pairs of image patches. Note that, as ex-
pected, K-means learns filters that only involve half of the input at a time. Due to
the increased dimensionality, significantly more data is needed compared to training
on each image separately. (c) A dataset composed of image-depth pairs. The left half
of each example is a whitened grayscale patch. The right half is a “depth image” [27]
where pixel intensity represents the distance of a surface from the camera. (d) Cen-
troids learned jointly from image-depth pairs learn only a few weak features that use
both modalities for similar reasons as in (b).

Consider a situation where our input is, in fact, a concatenation of two indepen-
dent signals. Concretely, let us take two image patches drawn at random from a
larger dataset and concatenate them side-by-side as in Figure 22.7a. When we run
K-means on this type of data we end up with the centroids in Figure 22.7b where
individual centroids tend to model just one of the two independent components,
much like we would expect from ICA. Unfortunately, as observed previously, to
achieve this result we actually need more data than if we had tried to model the
two patches separately. Hence, whenever we can determine a priori that our input
variables can be split into independent chunks, we should try to split them up im-
mediately and run K-means on each chunk separately. Note that the contrived ex-
ample here occurs in real applications, such as learning features from RGB-Depth
data [27]: Figure 22.7c shows examples of image intensity concatenated with depth
patches and Figure 22.7d shows centroids learned from them. Since at this scale
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depth tends to be only weakly related to raw pixel intensity, it might be better to
run K-means separately on each modality of the data.

22.5.1 Deep Networks

In Section 22.4 we presented a simple pipeline that enabled us to extract a
single layer of features from an image by taking a dictionary learned from small
patches and using it to extract features over a larger image (see Figure 22.5).
We then used a pooling stage to reduce the number of features before applying a
supervised learning algorithm. It would be nice if we could learn higher layers of
features by taking the resulting single-layer representation and passing it back
through our feature learning pipeline. For instance, one simple way we might try
to accomplish this is to compute the pooled feature values for all of the examples
in our unlabeled dataset X to give us a new dataset Z, then apply the exact
same learning pipeline to Z to learn new features. This simple approach has
been applied in [1], but it turns out that this straight-forward strategy can hit
a major snag: the inputs Z used for the second layer of features will often be
very high dimensional if, as is common, we use very large dictionaries of features
(e.g., k = 10000 or more).

Concretely, let’s consider a simple example.3 Suppose that our goal is to learn
features for a 20-by-20 pixel image patch. With the approach of Section 22.4
we train k = 10000 16-by-16 pixel filters with K-means from 16-by-16 patches
cropped out of our dataset. We then take the learned dictionary D and extract
feature responses with a step size of 4 pixels f(x;D) from the 20-by-20 pixel
images, yielding a 2-by-2-by-10000 image representation. Finally, we sum up the
responses over each 2-by-2 region (i.e., all responses produced by each filter) to
yield a 1-by-1-by-10000 “pooled representation” which we will take as Z. We can
think of each feature value zj as being a slightly translation-invariant version
of the feature detector associated with the filter D(j). Note that each vector in
Z now has 10000 dimensions to represent the original 400-dimensional patch.
At this scale, even learning a “complete” representation of 10000 features from
the 10000-dimensional inputs Z becomes challenging. Regrettably, there is no
obvious choice of local receptive field that can be made here: the 10000 features
are unorganized and we have no way to split them up by hand.

One proposed solution to this problem is to use a simple form of pair-wise
“dependency test” to help identify groups of dependent input variables in an
automated way. If we can do this, then we can break up the input vector coordi-
nates into small groups suitable for input to K-means instead of picking groups
by hand. This tool is most valuable for building multiple layers of features with
K-means.

As an example, we can use a type of dependency called “energy correlation”.
Given two whitened inputs (i.e., two inputs zj and zk that have no linear cor-
relation) their energy correlation is just the correlation between their squared

3 The numbers used in this example are chosen to illustrate the problem and its
solution. For a more detailed and realistic setup, see [10].
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responses. In particular, if we have E [z] = 0 and E
[
zz�
]
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the dependency between inputs zj and zk as:
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This metric is easy to compute by first whitening the input data Z with ZCA
whitening [3], then computing the pairwise similarities between all of the fea-
tures:
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This computation is practical for fewer than 10000 input features. It can still be
computed approximately for hundreds of thousands of features if necessary [10].
Thus, we now have a function d(j, k;Z) that can provide a measure of the de-
pendency between features zj and zk observed in a given dataset Z.

Fig. 22.8. Groups of features selected by an automated dependency test. The features
corresponding to each group of filters would be processed separately by K-means to
build a second layer of features.

Now we would like to try to learn some “higher level” features on top of the
Z representation. Using our dependency test we can find reasonable choices of
receptive fields in a relatively simple way: we pick one feature, say z0, and then
use the dependency test to find the R features with the strongest dependence on
z0 according to the test (i.e., find the indices j so that d(0, j;Z) is large). We then
run K-means using only these R features as input. If we pick R small enough
(e.g., 100 or 200) the usual normalization, whitening and K-means training steps
can be applied easily and require virtually no tuning to work well. Because of
the smaller input dimension we only need to train a few hundred centroids and
thus we can use much less data than would be required to run K-means on the
original 10000-dimensional dataset. This procedure can be repeated for many
choices of the “seed” feature (z0 above) until we have trained dictionaries from
receptive fields covering all of the input variables in z. Figure 22.8 shows the
first-layer filters from D corresponding to some of these groups of features (i.e.,
these are the D(j) whose pooled responses zj have high dependence according to
the energy correlation test).
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Table 22.1. Results on CIFAR-10
(full)

Architecture Accuracy (%)
1 Layer 78.3%
1 Layer (4800 maps) 80.6%
2 Layers (Single RF) 77.4%
2 Layers (Random RF) 77.6%
2 Layers (Learned RF) 81.2%
3 Layers (Learned RF) 82.0%
VQ (6000 maps) [12] 81.5%
Conv. DBN [26] 78.9%
Deep NN [8] 80.49%
Multi-column Deep NN [9] 88.79%

Table 22.2. Results on CIFAR-10 (400 ex. per
class)

Architecture Accuracy (%)
1 Layer 64.6% (±0.8%)
1 Layer (4800 maps) 63.7% (±0.7%)
2 Layers (Single RF) 65.8% (±0.3%)
2 Layers (Random RF) 65.8% (±0.9%)
2 Layers (Learned RF) 69.2% (±0.7%)
3 Layers (Learned RF) 70.7% (±0.7%)
Sparse coding (1 layer) [12] 66.4% (±0.8%)
VQ (1 layer) [12] 64.4% (±1.0%)

Table 22.3. Classification Results on STL-10

Architecture Accuracy (%)
1 Layer 54.5% (±0.8%)
1 Layer (4800 maps) 53.8% (±1.6%)
2 Layers (Single RF) 55.0% (±0.8%)
2 Layers (Random RF) 54.4% (±1.2%)
2 Layers (Learned RF) 58.9% (±1.1%)
3 Layers (Learned RF) 60.1% (±1.0%)
Sparse coding (1 layer) [12] 59.0% (±0.8%)
VQ (1 layer) [12] 54.9% (±0.4%)

The effectiveness of this sort of approach combined with K-means has been
shown in previous work [10]. Table 22.1 details results obtained on the full CIFAR
dataset with various settings and comparisons to other contemporary methods.
First, we can see in these results that learning 2 layers of features is essen-
tially fruitless when using naive choices of receptive fields: a single receptive
field that includes all of the inputs, or receptive fields that connect to random
inputs. Indeed, the results for 2 layer networks are worse (77.4% and 77.6%)
than obtained using a single layer alone (78.3%). This should be expected: using
a single receptive field, K-means is unable to build good features due to the
high-dimensional input (like Figure 22.4b), yet using a random receptive field
wastes representational power modeling unrelated inputs (like Figure 22.7). By
contrast, results obtained with the receptive field learning scheme above (with
2nd-order dependency measure) are significantly better: achieving a significant
improvement over the baseline single-layer results, and even out-performing a
much larger single-layer network. With 3 layers, this system improves further
to 82.0% accuracy. Achieving the best possible results (as reported in [9]) may
require supervised training of the entire network, but this result demonstrates
very clearly the importance of controlling the connectivity of features in order for



22. Learning Feature Representations with K-Means 577

K-means to work well in deep networks (where we typically use only unlabeled
data to construct features).

Training only from unlabeled data is much more useful in a scenario where
we have limited labeled training data. Tables 22.2 and 22.3 show results ob-
tained from similar experiments on the CIFAR-10 dataset when using only 400
labeled examples per class, and the STL-10 [11] dataset (where only 100 labels
are available per class). The results are very similar, even though we have less
supervision: poor choices of receptive fields almost entirely negate the benefits of
training multiple layers of features, but using the simple receptive field selection
technique above allows us to successfully build up to 3 layers of useful features
with K-means.

22.6 Conclusion

In this chapter we have reviewed many results, observations and tricks that are
useful for building feature-learning systems with K-means as a scalable unsuper-
vised learning module. The major considerations that we have covered, which
practitioners should keep in mind before embarking on a new application, are
summarized as:

1. Mean and contrast normalize inputs.
2. Use whitening to “sphere” the data, taking care to set the ε parameter ap-

propriately. If whitening cannot be performed due to input dimensionality,
one should split up the input variables.

3. Initialize K-means centroids randomly from Gaussian noise and normalize.
4. Use damped updates to help avoid empty clusters and improve stability.
5. Be mindful of the impact of dimensionality and sparsity on K-means. K-

means tends to find sparse projections of the input data by seeking out
“heavy-tailed” directions. Yet when the data is not properly whitened, the
input dimensionality is very high, or there is insufficient data, it may perform
poorly.

6. With higher dimensionalities, K-means will require significantly increased
amounts of data, possibly negating its speed advantage.

7. Exogenous parameters in the system (pooling, encoding methods, etc.) can
have a bigger impact on final performance than the learning algorithm itself.
Consider spending compute resources on more cross-validation for parame-
ters before concluding that a more expensive learning scheme is required.

8. Using more centroids almost always helps when using the image recognition
pipeline described in this chapter, provided we have enough training data.
Indeed, whenever more compute resources become available, this is the first
thing to try.

9. When labeled data is abundant, find a cheap encoder and let a supervised
learning system do most of the work. If labeled data is limited (e.g., hundreds
of examples per class), an expensive encoder may work better.
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10. Use local receptive fields wherever possible. Input data dimensionality is
the main bottleneck to the success of K-means and should be kept as low as
possible. If local receptive fields cannot be chosen by hand, try an automated
dependency test to help cut up your data into (overlapping) groups of inputs
with lower dimensionality. This is likely a necessity for deep networks!

The above recommendations cover essentially all of the tools, tricks and insights
that underlie recent feature-learning results based on K-means. Though it is
unclear how far K-means can be pushed in comparison to more expressive algo-
rithms, the tips above are enough to know when K-means is appropriate and to
get it working in many challenging scenarios.
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Abstract. The competitive MNIST handwritten digit recognition
benchmark has a long history of broken records since 1998. The most re-
cent advancement by others dates back 8 years (error rate 0.4%). Good
old on-line back-propagation for plain multi-layer perceptrons yields a
very low 0.35% error rate on the MNIST handwritten digits benchmark
with a single MLP and 0.31% with a committee of seven MLP. All we
need to achieve this until 2011 best result are many hidden layers, many
neurons per layer, numerous deformed training images to avoid overfit-
ting, and graphics cards to greatly speed up learning.

Keywords: NN (Neural Network), MLP (Multilayer Perceptron), GPU
(Graphics Processing Unit), training set deformations, MNIST1, com-
mittee, BP (back-propagation).

Note: This work combines three previously published papers [6, 7, 22].

23.1 Introduction

Automatic handwriting recognition is of academic and commercial interest. Cur-
rent algorithms are already pretty good at learning to recognize handwritten
digits. Post offices use them to sort letters; banks use them to read personal
checks. MNIST [21] is the most widely used benchmark for isolated handwritten
digit recognition. More than a decade ago, artificial neural networks called Mul-
tilayer Perceptrons or MLPs [35, 20, 29] were among the first classifiers tested on
MNIST. Most had few layers or few artificial neurons (units) per layer [21], but
apparently back then they were the biggest feasible MLPs, trained when CPU
cores were at least 20 times slower than today. A more recent MLP with a single
hidden layer of 800 units achieved 0.70% error [33]. However, more complex meth-
ods listed on the MNIST web page always seemed to outperform MLPs, and the
general trend went towards more and more complex variants of Support Vector

1 http://yann.lecun.com/exdb/mnist/

G. Montavon et al. (Eds.): NN: Tricks of the Trade, 2nd edn., LNCS 7700, pp. 581–598, 2012.
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Machines or SVMs [13] and combinations of NNs and SVMs [19] etc. Convolu-
tional neural networks (CNNs) achieved a record-breaking 0.40% error rate [33],
using novel elastic training image deformations. Recent methods pre-train each
hidden CNN layer one by one in an unsupervised fashion (this seems promising
especially for small training sets), then use supervised learning to achieve 0.39%
error rate [26, 27]. The biggest MLP so far [31] also was pre-trained without
supervision, then piped its output into another classifier to achieve an error of
1% without domain-specific knowledge. Deep MLPs initialized by unsupervised
pretraining were also successfully applied to speech recognition [23].

Are all these complexifications of plain MLPs really necessary? Can’t one sim-
ply train really big plain MLPs on MNIST? One reason is that at first glance
deep MLPs do not seem to work better than shallow networks [1]. Training them
is hard as back-propagated gradients quickly vanish exponentially in the number
of layers [16, 18, 15], just like in the first recurrent neural networks [17]. Indeed,
previous deep networks successfully trained with back-propagation (BP) either
had few free parameters due to weight-sharing [21, 33] or used unsupervised,
layer-wise pre-training [14, 1, 26]. But is it really true that deep BP-MLPs do
not work at all, or do they just need more training time? How to test this? Un-
fortunately, on-line BP for hundreds/thousands of epochs on large MLPs may
take weeks or months on standard serial computers. But can’t one parallelize it?
Well, on computer clusters this is hard due to communication latencies between
individual computers. Parallelization across training cases and weight updates
for mini-batches [24] might alleviate this problem, but still leaves the task of
parallelizing fully online-BP. Only GPUs are capable of such fine grained par-
allelism. Multi-threading on a multi-core processor is not easy either. We may
speed up BP using SSE (Streaming Single Instruction, Multiple Data Exten-
sions), either manually, or by setting appropriate compiler flags. The maximum
theoretical speedup under single precision floating-point, however, is four, which
is not enough. And MNIST is large - its 60,000 images take almost 50MB, too
much to fit in the L2/L3 cache of any current processor. This requires to con-
tinually access data in considerably slower RAM. To summarize, currently it is
next to impossible to train big MLPs on CPUs.

We showed how to overcome all these problems by training large, deep MLPs
on graphics cards [6] and obtained an error rate of 0.35% with a deep MLP.
Deformations proved essential to prevent MLPs with up to 12 million free pa-
rameters from overfitting. To let the deformation process keep up with network
training speed we had to port it onto the GPU as well.

At some stage in the classifier design process one usually has collected a set
of possible classifiers. Often one of them yields best performance. Intriguingly,
however, the sets of patterns misclassified by the different classifiers do not nec-
essarily overlap. This information could be harnessed in a committee. In the
context of handwritten recognition it was already shown [4] how a combination
of various classifiers can be trained more quickly than a single classifier yield-
ing the same error rate. Here we focus on improving recognition rate using a
committee of MLP. Our goal is to produce a group of classifiers whose errors on
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various parts of the training set differ (are uncorrelated) as much as possible [2].
We show that for handwritten digit recognition this can be achieved by training
identical classifiers on data normalized in different ways prior to training.

23.2 Data

MNIST consists of two datasets, one for training (60,000 images) and one for
testing (10,000 images). Many studies divide the training set into two sets con-
sisting of 50,000 images for training and 10,000 for validation. Our network is
trained on slightly deformed images, continually generated in on-line fashion;
hence we may use the whole un-deformed training set for validation, without
wasting training images. Pixel intensities of the original gray scale images range
from 0 (background) to 255 (max foreground intensity). 28×28 = 784 pixels per
image get mapped to real values pixel intensity

127.5 − 1.0 in [−1.0, 1.0], and are fed
into the NN input layer.

23.3 Architectures

We train 5 MLPs with 2 to 9 hidden layers and varying numbers of hidden units.
Mostly but not always the number of hidden units per layer decreases towards
the output layer (Table 23.3). There are 1.34 to 12.11 million free parameters
(or weights, or synapses).

We use standard on-line BP [30] , without momentum, but with a variable
learning rate that shrinks by a multiplicative constant after each epoch, from
10−3 down to 10−6. Weights are initialized with a uniform random distribution
in [−0.05, 0.05]. Each neuron’s activation function is a scaled hyperbolic tangent:
y(a) = A tanhBa, where A = 1.7159 and B = 0.6666 [21], and a softmax output
layer is used. Weight initialization and annealing rate are not overly important
as long as sensible choices are made.

23.4 Deforming Images to Get More Training Instances

So far, the best results on MNIST were obtained by deforming training images
[33], thus greatly increasing their number. This allows for training networks
with many weights without overfitting. We combine affine (rotation, scaling and
horizontal shearing) and elastic deformations (Figure 23.1), characterized by the
following real-valued parameters:

– σ and α: for elastic distortions emulating uncontrolled oscillations of hand
muscles [33];

– β: a random angle from [−β,+β] describes either rotation or horizontal
shearing. In case of shearing, tanβ defines the ratio between horizontal dis-
placement and image height;

– γx, γy: for horizontal and vertical scaling, randomly selected from [1 −
γ/100, 1 + γ/100].
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Fig. 23.1. Original digit (top) and distorted digits (bottom). The digit was distorted
with four different displacement fields shown in the middle.

Each affine deformation is fully defined by the corresponding real-valued pa-
rameter that is randomly drawn from a uniform interval. Building the elastic
deformation field on the other hand consists of three parts: 1) create an initial
random distortion vector field, 2) smooth the random distortion field by con-
volving it with a Gaussian kernel defined by a standard deviation σ, and 3) scale
the smoothed deformation field with α, the elastic scaling parameter.

At the beginning of every epoch the entire original MNIST training set gets
deformed. Initial experiments with small networks suggested the following de-
formation parameters: σ = 5.0− 6.0, α = 36.0− 38.0, γ = 15− 20. Since digits
1 and 7 are similar they get rotated/sheared less (β = 7.5◦) than other digits
(β = 15.0◦).

It takes 83 CPU seconds to deform the 60,000 MNIST training images, most
of them (75 seconds) for elastic distortions. Only the most time-consuming part
of the latter—convolution with a Gaussian kernel—is ported to the GPU. The
MNIST training set is split into 600 sequentially processed minibatches of 100
samples each. MNIST digits are scaled from the original 28×28 pixels to 29×29
pixels, to get a proper center, which simplifies convolution. Each batch grid
(10 × 10 images) has 290 × 290 cells, zero-padded to 310 × 310, thus avoiding
margin effects when applying a Gaussian convolution kernel of size 21 × 21.
The GPU program groups many threads into a block, where they share the same
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Fig. 23.2. Mapping the thread grid of convolution onto the distortion field

Gaussian kernel and parts of the random field. All 29 × 290 blocks contain 21
(the kernel size) ×10 threads, each computing a vertical strip of the convolution
(Figure 23.2). Generating the elastic displacement field takes only 1.5 seconds.
Deforming the whole training set is more than 10 times faster, taking 6.5 instead
of the original 83 seconds. Further optimizations would be possible by porting all
deformations onto GPU, and by using the hardware’s interpolation capabilities
to perform the final bilinear interpolation. We omitted these since deformations
are already pretty fast (deforming all images of one epoch takes only 3-10 % of
total computation time, depending on MLP size).

23.5 Forming a Committee

The training procedure of a single network of the committee is summarized in
Figure 23.3. Each network is trained separately on normalized or original data.
The normalization is done for all digits in the training set prior to training
(normalization stage). For the network trained on original MNIST data the nor-
malization step is omitted. Normalization of the original MNIST data is mainly
motivated by practical experience. MNIST digits are already normalized such
that the width or height of the bounding box equals 20 pixels. The variation of
the aspect ratio for various digits is quite large, and we normalize the width of
the bounding box to range from 10 to 20 pixels with a step-size of 2 pixels prior
to training for all digits except ones. Normalizing the original MNIST training
data results in 6 normalized training sets. In total we perform experiments with
seven different data sets (6 normalized and the original MNIST).

We perform six experiments to analyze performance improvements due to
committees. Each committee consists of seven randomly initialized one-hidden-
layer MLPs with 800 hidden units, trained with the same algorithm on randomly
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Fig. 23.3. Training a committee member. Original MNIST training data (left digit)
is normalized (W10) prior to training (middle digit). The normalized data is distorted
(D) for each training epoch and used as input (right digit) to the network (NN). Each
depicted digit represents the whole training set.

Fig. 23.4. Testing with a committee. If required, the input digits are width-normalized
(W blocks) and then processed by the corresponding MLP. The committee is formed
by averaging the outputs of all MLPs.

selected batches. The six committees differ only in how the data are normalized
(or not) prior to training and on how the data are deformed during training.
The committees are formed by simply averaging the corresponding outputs as
shown in Figure 23.4.

The first two experiments are performed on undeformed original MNIST im-
ages. We train a committee of seven MLPs on original MNIST and we also
form a committee of MLPs trained on normalized data. In Table 23.1 the error
rates are listed for each of the individual nets and the committees. The improve-
ment of the committee with respect to the individual nets is marginal for the
first experiment. Adding normalization, the individual experts as well as the
corresponding committee of the second experiment achieve substantially better
recognition rates.

To study the combined effect of normalization and deformation, we per-
form four additional experiments on deformed MNIST (Tab. 23.2). Unless stated
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Table 23.1. Error rates of individual nets and of the two resulting committees. For ex-
periment 1 seven randomly initialized nets are trained on the original MNIST, whereas
for experiment 2 seven randomly initialized nets are trained on width-normalized data:
WN x - Width Normalization of the bounding box to be x pixels wide; ORIG - original
MNIST.

Error rate [%]
Exp. 1 Exp. 2

Net 1: init 1: 1.79 WN 10: 1.62
Net 2: init 2: 1.80 WN 12: 1.37
Net 3: init 3: 1.77 WN 14: 1.48
Net 4: init 4: 1.72 WN 16: 1.53
Net 5: init 5: 1.91 WN 18: 1.56
Net 6: init 6: 1.86 WN 20: 1.49
Net 7: init 7: 1.75 ORIG: 1.79
Average: 1.70 1.31

otherwise, default elastic deformation parameters σ = 6 and α = 36 are used.
All experiments with deformed images use independent horizontal and vertical
scaling of maximum 12.5% and a maximum rotation of ±12.5◦. Experiment 3 is
similar to Experiment 1, except that the data are continually deformed. Error
rates of the individual experts are much lower than without deformation (Tab.
23.1). In experiment 4 we randomly reselect training and validation sets for
each of the individual experts, simulating in this way the bootstrap aggregation
technique [3]. The resulting committee performs slightly better than that of
experiment 3. In experiment 5 we vary deformations for each individual network.
Error rates of some of the nets are bigger than in experiments 3 and 4, but the
resulting committee has a lower error rate. In the last experiment we train seven
MLPs on width-normalized images that are also continually deformed during
training. The error rate of the committee (0.43 %) is the best result ever reported
for such a simple architecture. We conclude that width-normalization is essential
for good committee performance, i.e. it is not enough to form a committee from
trained nets with different initializations (experiment 3) or trained on subsets of
the original dataset (experiment 4).

23.6 Using the GPU to Train Deep MLPs

Using simple tricks, such as creating a virtually infinite amount of training data
through random distortions at the beginning of every epoch and forming a com-
mittee of experts trained on differently preprocessed data, state-of-the art results
are obtained on MNIST with a relatively small (800 hidden units) single hidden
layer MLP. Here we report results using deep MLPs, with as many as 5 hidden
layers and up to 12 millions of free parameters, that are prohibitive to train on
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Table 23.2. Error rates of the individual nets and of the resulting committees. In
experiments 3 and 4 seven randomly initialized nets are trained on deformed (σ = 6,
α = 36) MNIST, whereas in experiment 4 training and validation sets are reselected.
In experiment 5 seven randomly initialized nets are trained on deformed (different σ,
α) MNIST, and in experiment 6 seven randomly initialized nets are trained on width-
normalized, deformed (σ = 6, α = 36) MNIST. WN x - Width Normalization of the
bounding box to be x pixels wide; ORIG - original MNIST.

Error rate [%]
Exp. 3 Exp. 4 Exp. 5 Exp. 6

Net 1: init 1: 0.72 0.68 σ = 4.5 α = 36: 0.69 WN 10: 0.64
Net 2: init 2: 0.71 0.82 σ = 4.5 α = 42: 0.94 WN 12: 0.78
Net 3: init 3: 0.72 0.73 σ = 6.0 α = 30: 0.55 WN 14: 0.70
Net 4: init 4: 0.71 0.69 σ = 6.0 α = 36: 0.72 WN 16: 0.60
Net 5: init 5: 0.62 0.71 σ = 6.0 α = 42: 0.60 WN 18: 0.59
Net 6: init 6: 0.65 0.70 σ = 7.5 α = 30: 0.86 WN 20: 0.70
Net 7: init 7: 0.69 0.75 σ = 7.5 α = 36: 0.79 ORIG: 0.71
Average: 0.56 0.53 0.49 0.43

current CPUs but can successfully be trained on GPUs in a few days. All sim-
ulations were performed on a computer with a Core i7 920 2.66GHz processor,
12GB of RAM, and a GTX 480 graphics card. The GPU accelerates the defor-
mation routine by a factor of 10 (only elastic deformations are GPU-optimized);
the forward propagation (FP) and BP routines are sped up by a factor of 50.
We pick the trained MLP with the lowest validation error, and evaluate it on
the MNIST test set.

23.6.1 Single MLP

We train various MLP and summarize the results in Table 23.3. Training starts
with a learning rate of 10−3 multiplied with 0.997 after every epoch until it
reaches 10−6, thus resulting in more than 2000 epochs, which can be computed
in a few days even for the biggest net. The best network has an error rate of
only 0.35% (35 out of 10,000 digits). This is better than the best previously
published results, namely, 0.39% [26] and 0.40% [33], both obtained by more
complex methods. The 35 misclassified digits are shown in Figure 23.5a. Many
of them are ambiguous and/or uncharacteristic, with obviously missing parts
or strange strokes etc. Interestingly, the second guess of the network is correct
for 30 out of the 35 misclassified digits. The best test error of this MLP is even
lower (0.32%) and may be viewed as the maximum capacity of the network, i.e.
what it can learn if we do not get the result for the lowest error on validation
set. Performance clearly profits from adding hidden layers and more units per
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Table 23.3. Error rates on MNIST test set. Architecture: 841 input neurons, hidden
layers containing 2500, 2000, 1500, 1000 and 500 neurons, and 10 outputs. TEfBV -
test error for best validation, BTE - best test error.

ID architecture TEfBV BTE simulation weights test error [%]
(number of neurons in each layer) [%] [%] time [h] [millions] no distortion

1 1000, 500, 10 0.49 0.44 23.4 1.34 1.78
2 1500, 1000, 500, 10 0.46 0.40 44.2 3.26 1.85
3 2000, 1500, 1000, 500, 10 0.41 0.39 66.7 6.69 1.73
4 2500, 2000, 1500, 1000, 500, 10 0.35 0.32 114.5 12.11 1.71
5 9 × 1000, 10 0.44 0.43 107.7 8.86 1.81

layer. For example, network 5 has more but smaller hidden layers than network
4 (Table 23.3).

Networks with up to 12 million weights can successfully be trained by plain
gradient descent to achieve test errors below 1% after 20-30 epochs in less than
2 hours of training. How can networks with so many parameters generalize well
on the unseen test set? Answer: the continual deformations of the training set
generate a virtually infinite supply of training examples, and the network rarely
sees any training image twice. Without any distortions, the error for all networks
is around 1.7-1.8% (last column in Table 23.3).

(a) (b)

Fig. 23.5. The misclassified digits, together with the two most likely predictions (bot-
tom, from left to right) and the correct label according to MNIST (top, right): (a) the
best network from Table 23.3. (b) the committee from Table 23.4.

23.6.2 Committee of MLP

Here we list results of a committee of MLP with the architecture that obtained
0.35% error rate on MNIST (841 neurons in the input layer, five hidden layers
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Table 23.4. Error rates of the individual nets and of the resulting committee. Archi-
tecture: 841 input neurons, hidden layers containing 2500, 2000, 1500, 1000 and 500
neurons, and 10 outputs. WN x—Width Normalization of the bounding box to be x
pixels wide.

WN 10 12 14 16 18 20 ORIGINAL MNIST
test error [%] 0.52 0.45 0.44 0.49 0.36 0.38 0.35

committee error [%] 0.31

containing 2500, 2000, 1500, 1000 and 500 neurons, and 10 outputs). We train
six additional nets with the same architecture on normalized data (the width of
the digits is normalized prior to training) and form a committee by averaging the
predictions of the individual nets (Table 23.4). The width-normalization is es-
sential for good committee performance as shown in Section 23.5. All committee
members distort their width-normalized training dataset before each epoch.

Interestingly, the error of the extremely simple committee (0.31%) is lower
than those of the individual nets. This is the best result ever reported on MNIST
using MLP. Many of the 31 misclassified digits (Figure 23.5b) are ambiguous
and/or uncharacteristic, with obviously missing parts or strange strokes etc.
Remarkably, the committee’s second guess is correct for 29 of the 31.

23.7 Discussion

In recent decades the amount of raw computing power per Euro has grown by
a factor of 100-1000 per decade. Our results show that this ongoing hardware
progress may be more important than advances in algorithms and software (al-
though the future will belong to methods combining the best of both worlds).
Current graphics cards (GPUs) are already more than 50 times faster than stan-
dard microprocessors when it comes to training big and deep neural networks
by the ancient algorithm, on-line back-propagation (weight update rate up to
7.5×109/s, and more than 1015 per trained network). On the competitive MNIST
handwriting benchmark, single precision floating-point GPU-based neural nets
surpass all previously reported results, including those obtained by much more
complex methods involving specialized architectures, unsupervised pre-training,
combinations of machine learning classifiers etc. Training sets of sufficient size
to avoid overfitting are obtained by appropriately deforming images. Of course,
the approach is not limited to handwriting, and obviously holds great promise
for many visual and other pattern recognition problems.

Although big deep MLP are very powerful general classifiers when combined
with an appropriate distortion algorithm to enhance the training set, they cannot
compete with dedicated architectures such as max-pooling convolutional neural
networks on complex image classification problems. For tasks more difficult than
handwritten digit recognition MLP are not competitive anymore, both in clas-
sification performance and required training time. We have recently shown [11]
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that large convolutional neural networks combined with max-pooling [32] im-
prove the state-of-the-art by 30-80% for a plethora of benchmarks like Latin
letters [8], Chinese characters [11], traffic signs [9, 12], stereo projection of 3D
models [10, 11] and even small natural images [11].
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Appendix - GPU Implementation

Graphics Processing Unit

Until 2007 the only way to program a GPU was to translate the problem-solving
algorithm into a set of graphical operations. Despite being hard to code and
difficult to debug, several GPU-based NN implementations were developed when
GPUs became faster than CPUs. Two layer MLPs [34] and CNNs [5] have been
previously implemented on GPUs. Although speedups were relatively modest,
these studies showed how GPUs can be used for machine learning. More recent
GPU-based CNNs trained in batch mode are two orders of magnitude faster
than CPU-based CNNs [32].

The GPU code is written using CUDA (Compute Unified Device Architec-
ture), a C-like general programming language. GPU speed and memory band-
width are vastly superior to those of CPUs, and crucial for fast MLP implemen-
tations. To fully understand our algorithm in terms of GPU / CUDA, please
visit the NVIDIA website [25]. According to CUDA terminology, the CPU is
called host and the graphics card device or GPU.

Deformations

Only the most time-consuming part of the latter – convolution with a gaussian
kernel [33] – is ported to the GPU. The MNIST training set is split into 600
sequentially processed batches. MNIST digits are scaled from the original 28×28
pixels to 29× 29 pixels, to get a proper center, which simplifies convolution. An
image grid has 290 × 290 cells, zero-padded to 300 × 300, thus avoiding margin
effects when applying a Gaussian convolution kernel of size 21× 21.

Our GPU program groups many threads into a block, where they share the
same gaussian kernel and parts of the random field. The blocks contain 21 (the
kernel size) ×10 threads, each computing a vertical strip of the convolution
operation (Listing 23.1).
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Listing 23.1. Convolution Kernel for elastic distortion

1 __global__ void ConvolveField(float ∗randomfield, int width, int height,
float ∗kernel, float ∗outputfield, float elasticScale){

2 float sum=0;
3 const int stride_k=GET_STRIDE(GAUSSIAN_FIELD_SIZE,pitch_x

>>2); //stride for gaussian kernel
4 __shared__ float K[GAUSSIAN_FIELD_SIZE][stride_k]; //kernel (21 x

32 values)
5 __shared__ float R[GAUSSIAN_FIELD_SIZE+9][

GAUSSIAN_FIELD_SIZE]; //random field (30 x 21 values)
6 __shared__ float s[10][GAUSSIAN_FIELD_SIZE]; //partial sums (10 x

21 values)
7 int stride_in=GET_STRIDE(width,pitch_x>>2); //random field stride as

a multiple of 32
8 int stride_out=GET_STRIDE(width−GAUSSIAN_FIELD_SIZE+1,

pitch_x>>2); //output stride as a multiple of 32
9

10 //loading gaussian kernel into K (21 x 21 values)
11 K[ 0+threadIdx.y][threadIdx.x] = kernel[( 0+threadIdx.y)∗stride_k +

threadIdx.x];//rows 0..9
12 K[10+threadIdx.y][threadIdx.x] = kernel[(10+threadIdx.y)∗stride_k +

threadIdx.x];//rows 10..19
13 if(threadIdx.y==0)
14 K[20+threadIdx.y][threadIdx.x] = kernel[(20+threadIdx.y)∗stride_k +

threadIdx.x];//row 20
15
16 //loading randomfield into R
17 //0..9 x 21 values
18 R[ 0+threadIdx.y][threadIdx.x] = randomfield[(10∗blockIdx.y+ 0+

threadIdx.y)∗stride_in + blockIdx.x + threadIdx.x];
19 //10..19 x 21 values
20 R[10+threadIdx.y][threadIdx.x] = randomfield[(10∗blockIdx.y+10+

threadIdx.y)∗stride_in + blockIdx.x + threadIdx.x];
21 //20..29 x 21 values
22 R[20+threadIdx.y][threadIdx.x] = randomfield[(10∗blockIdx.y+20+

threadIdx.y)∗stride_in + blockIdx.x + threadIdx.x];
23 __syncthreads(); //wait until everything is read into shared memory
24
25 //computing partial sums
26 #pragma unroll 21 //GAUSSIAN_FIELD_SIZE
27 for(int i=0;i<GAUSSIAN_FIELD_SIZE;i++)
28 sum += R[threadIdx.y + i][threadIdx.x] ∗ K[i][threadIdx.x];
29 s[threadIdx.y][threadIdx.x]=sum;
30 __syncthreads();
31
32 if(threadIdx.x==0){ //the first column of threads computes the final values

of the convolutions
33 #pragma unroll 20//GAUSSIAN_FIELD_SIZE−1
34 for(int i=1;i<GAUSSIAN_FIELD_SIZE;i++) sum+=s[threadIdx.y][i

];
35 outputfield[(blockIdx.y∗10+threadIdx.y)∗stride_out + blockIdx.x] =

sum ∗ elasticScale;
36 }
37 }
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Training Algorithm

We closely follow the standard BP algorithm [30], except that BP of deltas and
weight updates are disentangled and performed sequentially. This allows for more
parallelism within each routine.

Forward Propagation

The algorithm is divided into two kernels. The weight matrix W is partitioned
as illustrated in Figure 23.6.

Fig. 23.6. Forward propagation: a) mapping of kernel 1 grid onto the padded weight
matrix; b) mapping the kernel 2 grid onto the partial dot products matrix; c) output
of forward propagation

Kernel 1. Each block has 256 threads (Figure 23.6a), each computing a partial
dot product of 32 component vectors. The dot products are stored in a temporary
matrix (Figure 23.6b). This kernel has a very high throughput: average memory
bandwidth is 115GB/s. This is possible because many relatively small blocks
keep the GPU busy. Each block uses shared memory for storing the previous
layer activations, which are simultaneously read by the first 32 threads of each
block and then used by all 256 threads. After thread synchronization, the partial
dot products are computed in parallel (Listing 23.2). The number of instructions
is kept to a minimum by pre-computing all common index parts.

Kernel 2. The thread grid (Figure 23.6b) has only one row of blocks consisting
of warp threads, since each thread has to compute a complete dot product (Fig-
ure 23.6c) and then pipe it into the activation function. This kernel (Listing 23.2)
is inefficient for layers with fewer than 1024 incoming connections per neuron,
especially for the last layer which has only ten neurons, one for each digit. That
is, its grid will have only one block, occupying only 6% of the GTX 480 GPU.



594 D.C. Cireşan et al.

Listing 23.2. Forward propagation kernels

1 __global__ void MLP_FP_reduction_Kernel1(float ∗prevLN, float ∗W,
float ∗partialsum, unsigned int neurons, unsigned int prevneurons){

2 const int threads=256;
3 const int stride=GET_STRIDE(neurons,pitch_x>>2); //horizontal stride

of W matrix
4 int X=blockIdx.x∗threads + threadIdx.x; //precomputing expressions
5 int Y=X+stride∗blockIdx.y;
6 int Z=blockIdx.y∗pitch_y∗stride + X;
7 float sum=0.0f;
8 __shared__ float output[pitch_y];
9 if(blockIdx.y==0)

10 if(threadIdx.x==0) output[0]=1.0f;
11 else if(threadIdx.x<pitch_y) //there are only 32 values to read and

128 threads
12 output[threadIdx.x] = threadIdx.x−1<prevneurons ? prevLN[

threadIdx.x−1] : 0.0f;
13 else;
14 else if(threadIdx.x<pitch_y) //there are only 32 values to read and 128

threads
15 output[threadIdx.x] = blockIdx.y∗pitch_y+threadIdx.x−1<

prevneurons ?
16 prevLN[blockIdx.y∗pitch_y+threadIdx.x−1] : 0.0f;
17 else;
18 __syncthreads();
19 if(X<neurons){//compute partial sums
20 //#pragma unroll 32
21 int size=0;
22 if((blockIdx.y+1)∗pitch_y>=prevneurons+1)
23 size = prevneurons + 1 − blockIdx.y∗pitch_y;
24 else size=pitch_y;
25 for (int ic=0; ic<size; ic++){
26 sum += output[ic] ∗ W[Z];
27 Z+=stride;
28 }
29 partialsum[Y]=sum;
30 }
31 }
32
33 __global__ void MLP_FP_reduction_Kernel2(float ∗currLN, float ∗

partialsum, unsigned int neurons, unsigned int size){
34 float sum=0.0f;
35 int idx = blockIdx.x∗(pitch_x>>2) + threadIdx.x; //precomputed index
36 unsigned int stride = GET_STRIDE(neurons,pitch_x>>2); //stride for

partialsum matrix
37
38 if(idx>=neurons)return; //is this thread computing a true neuron?
39 for (int i=0; i<size; i++) sum += partialsum[i∗stride+idx]; //computing

the final dot product
40 currLN[idx] = SIGMOIDF(sum); //applying activation
41 }
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Backward Propagation

This is similar to FP, but we need WT for coalesced access. Instead of transpos-
ing the matrix, the computations are performed on patches of data read from
device memory into shared memory, similar to the optimized matrix transposi-
tion algorithm of [28]. Shared memory access is much faster, without coalesc-
ing restrictions. Because we have to cope with layers of thousands of neurons,
back-propagating deltas uses a reduction method implemented in two kernels
communicating partial results via global memory (Listing 23.3).

Listing 23.3. Backpropagating deltas kernels
1
2 __global__ void backPropagateDeltasFC_A(float ∗indelta, float ∗weights,

unsigned int ncon, unsigned int nrneur, float ∗partial){
3 const int px = pitch_x>>2;
4 unsigned int stride_x = GET_STRIDE(nrneur,px);
5 unsigned int stride_y = GET_STRIDE(ncon,pitch_y);
6 float outd = 0.0;
7 int idx = blockIdx.x∗px+threadIdx.x;
8 int X = blockIdx.y∗pitch_y∗stride_x + idx;
9 int Y = threadIdx.x;

10 __shared__ float w[32∗33]; //pitch_y and px should be equal ! +1 to
avoid bank conflict!

11 __shared__ float id[px]; //input delta
12 #pragma unroll 32 //read the weight patch in shared memory
13 for(int i=0;i<pitch_y;i++){w[Y]=weights[X]; X+=stride_x; Y+=33;}
14 //read the input delta patch in shared memory
15 if(idx>=nrneur) id[threadIdx.x]=0; //a fake input delta for inexistent

indelta
16 else id[threadIdx.x]=indelta[idx];
17 __syncthreads(); //not needed for block with warp number of threads:

implicit synchronization
18 #pragma unroll 32 //compute partial results
19 for(int i=0;i<px;i++) outd+=w[threadIdx.x∗33+i]∗id[i];
20 //write out the partial results
21 partial[blockIdx.x∗stride_y + blockIdx.y∗pitch_y + threadIdx.x] = outd;
22 }
23 __global__ void backPropagateDeltasFC_B(float ∗outdelta,float ∗instates,

unsigned int ncon, unsigned int nrneur, float ∗partial){
24 int px=pitch_x>>2;
25 unsigned int stride_x = GET_STRIDE(nrneur,px);
26 unsigned int stride_y = GET_STRIDE(ncon,pitch_y);
27 float outd = 0.0;
28 int size=stride_x/px;
29 int idx=blockIdx.x∗pitch_y+threadIdx.x;
30 if(idx==0); //true only for block and thread 0
31 else{
32 for(int i=0;i<size;i++)
33 outd+=partial[i∗stride_y + idx];
34 outdelta[idx−1] = outd ∗ DSIGMOIDF(instates[idx−1]); //−1 BIAS ...
35 }
36 }
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Kernel 1. The bi-dimensional grid is divided into blocks of warp (32) threads.
The kernel starts by reading a patch of 32 × 32 values from W. The stride
of the shared memory block is 33 (warp + 1), thus avoiding all bank conflicts
and significantly improving speed. Next, 32 input delta values are read and all
memory locations that do not correspond to real neurons (because of vertical
striding) are zero-padded to avoid branching in subsequent computations. The
number of elements is fixed to warp size, and the computing loop is unrolled for
further speedups. Before finishing, each thread writes its own partial dot product
to global memory.

Kernel 2. This kernel completes BP of deltas by summing up partial deltas
computed by the previous kernel. It multiplies the final result by the derivative
of the activation function applied to the current neuron’s state, and writes the
new delta to global memory.

Weight Updating

The algorithm (Listing 23.4) starts by reading the appropriate delta, and pre-
computes all repetitive expressions. Then the first 16 threads read the states from
global memory into shared memory. The “bias neuron” with constant activation
1.0 is dealt with by conditional statements, which could be avoided through
expressions containing the conditions. Once threads are synchronized, each single
thread updates 16 weights in a fixed unrolled loop.

Listing 23.4. Weights adjustment kernel

1 __global__ void adjustWeightsFC(float ∗states,float ∗deltas, float ∗weights,
float eta, unsigned int ncon, unsigned int nrneur){

2 const int pitch_y=16;
3 const int threads=256;
4 unsigned int px = pitch_x >> 2;
5 unsigned int stride_x = GET_STRIDE(nrneur,px);
6 float etadeltak = eta∗deltas[blockIdx.x∗threads+threadIdx.x],t;
7 int b=blockIdx.y∗stride_x∗pitch_y + threads∗blockIdx.x + threadIdx.x;
8 __shared__ float st[pitch_y]; //for states
9 int cond1 = blockIdx.y || threadIdx.x;

10 int cond2 = (blockIdx.y+1)∗pitch_y<=ncon;
11 int size = cond2 ∗ pitch_y + !cond2 ∗ (ncon%pitch_y);
12 if(threadIdx.x<pitch_y) st[threadIdx.x] = cond1 ∗ states[blockIdx.y∗

pitch_y + threadIdx.x − 1] + !cond1;
13 __syncthreads();
14
15 if (blockIdx.x∗threads + threadIdx.x < nrneur){
16 #pragma unroll 16
17 for (int j=0; j<16; j++){
18 t=weights[b];
19 t−= etadeltak ∗ st[j];
20 weights[b]=t;
21 b+=stride_x;}}
22 }
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Abstract. Restricted Boltzmann machines (RBMs) have been used as
generative models of many different types of data. RBMs are usually
trained using the contrastive divergence learning procedure. This requires
a certain amount of practical experience to decide how to set the val-
ues of numerical meta-parameters. Over the last few years, the machine
learning group at the University of Toronto has acquired considerable
expertise at training RBMs and this guide is an attempt to share this
expertise with other machine learning researchers.

24.1 Introduction

Restricted Boltzmann machines (RBMs) have been used as generative models of
many different types of data including labeled or unlabeled images [7], windows of
mel-cepstral coefficients that represent speech [12], bags of words that represent
documents [15], and user ratings of movies [17]. In their conditional form they
can be used to model high-dimensional temporal sequences such as video or
motion capture data [20] or speech [11]. Their most important use is as learning
modules that are composed to form deep belief nets [7].

RBMs are usually trained using the contrastive divergence learning procedure
[5]. This requires a certain amount of practical experience to decide how to set
the values of numerical meta-parameters such as the learning rate, the momen-
tum, the weight-cost, the sparsity target, the initial values of the weights, the
number of hidden units and the size of each mini-batch. There are also decisions
to be made about what types of units to use, whether to update their states
stochastically or deterministically, how many times to update the states of the
hidden units for each training case, and whether to start each sequence of state
updates at a data-vector. In addition, it is useful to know how to monitor the
progress of learning and when to terminate the training.

For any particular application, the code that was used gives a complete spec-
ification of all of these decisions, but it does not explain why the decisions were
made or how minor changes will affect performance. More significantly, it does
not provide a novice user with any guidance about how to make good decisions
for a new application. This requires some sensible heuristics and the ability to
relate failures of the learning to the decisions that caused those failures.

G. Montavon et al. (Eds.): NN: Tricks of the Trade, 2nd edn., LNCS 7700, pp. 599–619, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Over the last few years, the machine learning group at the University of
Toronto has acquired considerable expertise at training RBMs and this guide is
an attempt to share this expertise with other machine learning researchers.

24.2 An Overview of Restricted Boltzmann Machines
and Contrastive Divergence

Skip this section if you already know about RBMs
Consider a training set of binary vectors which we will assume are binary im-
ages for the purposes of explanation. The training set can be modeled using a
two-layer network called a “Restricted Boltzmann Machine” [18, 2, 5] in which
stochastic, binary pixels are connected to stochastic, binary feature detectors us-
ing symmetrically weighted connections. The pixels correspond to “visible” units
of the RBM because their states are observed; the feature detectors correspond
to “hidden” units. A joint configuration, (v,h) of the visible and hidden units
has an energy [9] given by:

E(v,h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑

i,j

vihjwij (24.1)

where vi, hj are the binary states of visible unit i and hidden unit j, ai, bj
are their biases and wij is the weight between them. The network assigns a
probability to every possible pair of a visible and a hidden vector via this energy
function:

p(v,h) =
1

Z
e−E(v,h) (24.2)

where the “partition function”, Z, is given by summing over all possible pairs of
visible and hidden vectors:

Z =
∑

v,h

e−E(v,h) (24.3)

The probability that the network assigns to a visible vector, v, is given by
summing over all possible hidden vectors:

p(v) =
1

Z

∑

h

e−E(v,h) (24.4)

The probability that the network assigns to a training image can be raised by
adjusting the weights and biases to lower the energy of that image and to raise
the energy of other images, especially those that have low energies and therefore
make a big contribution to the partition function. The derivative of the log
probability of a training vector with respect to a weight is surprisingly simple.

∂ log p(v)

∂wij
= 〈vihj〉data − 〈vihj〉model (24.5)
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where the angle brackets are used to denote expectations under the distribution
specified by the subscript that follows. This leads to a very simple learning rule
for performing stochastic steepest ascent in the log probability of the training
data:

Δwij = ε(〈vihj〉data − 〈vihj〉model) (24.6)

where ε is a learning rate.
Because there are no direct connections between hidden units in an RBM, it

is very easy to get an unbiased sample of 〈vihj〉data. Given a randomly selected
training image, v, the binary state, hj , of each hidden unit, j, is set to 1 with
probability

p(hj = 1 | v) = σ(bj +
∑

i

viwij) (24.7)

where σ(x) is the logistic sigmoid function 1/(1 + exp(−x)). vihj is then an
unbiased sample.

Because there are no direct connections between visible units in an RBM, it
is also very easy to get an unbiased sample of the state of a visible unit, given a
hidden vector

p(vi = 1 | h) = σ(ai +
∑

j

hjwij) (24.8)

Getting an unbiased sample of 〈vihj〉model, however, is much more difficult. It
can be done by starting at any random state of the visible units and perform-
ing alternating Gibbs sampling for a very long time. One iteration of alternating
Gibbs sampling consists of updating all of the hidden units in parallel using equa-
tion 24.7 followed by updating all of the visible units in parallel using equation
24.8.

A much faster learning procedure was proposed in [5]. This starts by setting
the states of the visible units to a training vector. Then the binary states of the
hidden units are all computed in parallel using equation 24.7. Once binary states
have been chosen for the hidden units, a “reconstruction” is produced by setting
each vi to 1 with a probability given by equation 24.8. The change in a weight
is then given by

Δwij = ε(〈vihj〉data − 〈vihj〉recon) (24.9)

A simplified version of the same learning rule that uses the states of individual
units instead of pairwise products is used for the biases.

The learning works well even though it is only crudely approximating the
gradient of the log probability of the training data [5]. The learning rule is much
more closely approximating the gradient of another objective function called the
Contrastive Divergence [5] which is the difference between two Kullback-Leibler
divergences, but it ignores one tricky term in this objective function so it is not
even following that gradient. Indeed, Sutskever and Tieleman have shown that
it is not following the gradient of any function [19]. Nevertheless, it works well
enough to achieve success in many significant applications.

RBMs typically learn better models if more steps of alternating Gibbs sam-
pling are used before collecting the statistics for the second term in the learning
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rule, which will be called the negative statistics. CDn will be used to denote
learning using n full steps of alternating Gibbs sampling.

24.3 How to Collect Statistics When Using Contrastive
Divergence

To begin with, we shall assume that all of the visible and hidden units are binary.
Other types of units will be discussed in section 24.13. We shall also assume that
the purpose of the learning is to create a good generative model of the set of
training vectors. When using RBMs to learn Deep Belief Nets (see the article on
Deep Belief Networks at www.scholarpedia.org) that will subsequently be fine-
tuned using backpropagation, the generative model is not the ultimate objective
and it may be possible to save time by underfitting it, but we will ignore that
here.

24.3.1 Updating the Hidden States

Assuming that the hidden units are binary and that you are using CD1, the
hidden units should have stochastic binary states when they are being driven by
a data-vector. The probability of turning on a hidden unit, j, is computed by
applying the logistic function σ(x) = 1/(1 + exp(−x)) to its “total input”:

p(hj = 1) = σ(bj +
∑

i

viwij) (24.10)

and the hidden unit turns on if this probability is greater than a random number
uniformly distributed between 0 and 1.

It is very important to make these hidden states binary, rather than using
the probabilities themselves. If the probabilities are used, each hidden unit can
communicate a real-value to the visible units during the reconstruction. This
seriously violates the information bottleneck created by the fact that a hidden
unit can convey at most one bit (on average). This information bottleneck acts
as a strong regularizer.

For the last update of the hidden units, it is silly to use stochastic binary states
because nothing depends on which state is chosen. So use the probability itself
to avoid unnecessary sampling noise. When using CDn, only the final update of
the hidden units should use the probability.

24.3.2 Updating the Visible States

Assuming that the visible units are binary, the correct way to update the visible
states when generating a reconstruction is to stochastically pick a 1 or 0 with a
probability determined by the total top-down input:

pi = p(vi = 1) = σ(ai +
∑

j

hjwij) (24.11)
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However, it is common to use the probability, pi, instead of sampling a binary
value. This is not nearly as problematic as using probabilities for the data-driven
hidden states and it reduces sampling noise thus allowing faster learning. There
is some evidence that it leads to slightly worse density models (Tijmen Tieleman,
personal communication, 2008). This probably does not matter when using an
RBM to pretrain a layer of hidden features for use in a deep belief net.

24.3.3 Collecting the Statistics Needed for Learning

Assuming that the visible units are using real-valued probabilities instead of
stochastic binary values, there are two sensible ways to collect the positive statis-
tics for the connection between visible unit i and hidden unit j:

〈pihj〉data or 〈pipj〉data

where pj is a probability and hj is a binary state that takes value 1 with prob-
ability pj . Using hj is closer to the mathematical model of an RBM, but using
pj usually has less sampling noise which allows slightly faster learning1.

24.3.4 A Recipe for Getting the Learning Signal for CD1

When the hidden units are being driven by data, always use stochastic binary
states. When they are being driven by reconstructions, always use probabilities
without sampling.

Assuming the visible units use the logistic function, use real-valued probabil-
ities for both the data and the reconstructions2.

When collecting the pairwise statistics for learning weights or the individual
statistics for learning biases, use the probabilities, not the binary states, and
make sure the weights have random initial values to break symmetry.

24.4 The Size of a Mini-batch

It is possible to update the weights after estimating the gradient on a single
training case, but it is often more efficient to divide the training set into small
“mini-batches” of 10 to 100 cases3. This allows matrix-matrix multiplies to be
used which is very advantageous on GPU boards or in Matlab.
1 Using hj always creates more noise in the positive statistics than using pj but it

can actually create less noise in the difference of the positive and negative statistics
because the negative statistics depend on the binary decision for the state of j that
is used for creating the reconstruction. The probability of j when driven by the
reconstruction is highly correlated with the binary decision that was made for j
when it was driven by the data.

2 So there is nothing random about the generation of the reconstructions given the
binary states of the hidden units.

3 The word “batch” is confusing and will be avoided because when it is used to contrast
with “on-line” it usually means the entire training set.
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To avoid having to change the learning rate when the size of a mini-batch is
changed, it is helpful to divide the total gradient computed on a mini-batch by
the size of the mini-batch, so when talking about learning rates we will assume
that they multiply the average, per-case gradient computed on a mini-batch, not
the total gradient for the mini-batch.

It is a serious mistake to make the mini-batches too large when using stochastic
gradient descent (see chapter 1 and 18 for more details). Increasing the mini-
batch size by a factor of N leads to a more reliable gradient estimate but it does
not increase the maximum stable learning rate by a factor of N, so the net effect
is that the weight updates are smaller per gradient evaluation4.

24.4.1 A Recipe for Dividing the Training Set into Mini-batches

For datasets that contain a small number of equiprobable classes, the ideal mini-
batch size is often equal to the number of classes and each mini-batch should
contain one example of each class to reduce the sampling error when estimat-
ing the gradient for the whole training set from a single mini-batch. For other
datasets, first randomize the order of the training examples then use minibatches
of size about 10.

24.5 Monitoring the Progress of Learning

It is easy to compute the squared error between the data and the reconstructions,
so this quantity is often printed out during learning. The reconstruction error
on the entire training set should fall rapidly and consistently at the start of
learning and then more slowly. Due to the noise in the gradient estimates, the
reconstruction error on the individual mini-batches will fluctuate gently after
the initial rapid descent. It may also oscillate gently with a period of a few
mini-batches when using high momentum (see section 24.9).

Although it is convenient, the reconstruction error is actually a very poor
measure of the progress of learning. It is not the function that CDn learning
is approximately optimizing, especially for n >> 1, and it systematically con-
founds two different quantities that are changing during the learning. The first
is the difference between the empirical distribution of the training data and the
equilibrium distribution of the RBM. The second is the mixing rate of the al-
ternating Gibbs Markov chain. If the mixing rate is very low, the reconstruction
error will be very small even when the distributions of the data and the model
are very different. As the weights increase the mixing rate falls, so decreases
4 The easy way to parallelize the learning on a cluster is to divide each mini-batch

into sub-mini-batches and to use different cores to compute the gradients on each
sub-mini-batch. The gradients computed by different cores must then be combined.
To minimize the ratio of communication to computation, it is tempting to make
the sub-mini-batches large. This usually makes the learning much less efficient, thus
wiping out much of the gain achieved by using multiple cores (Vinod Nair, personal
communication, 2007).
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in reconstruction error do not necessarily mean that the model is improving
and, conversely, small increases do not necessarily mean the model is getting
worse. Large increases, however, are a bad sign except when they are temporary
and caused by changes in the learning rate, momentum, weight-cost or sparsity
meta-parameters.

24.5.1 A Recipe for Using the Reconstruction Error

Use it but don’t trust it. If you really want to know what is going on during the
learning, use multiple histograms and graphic displays as described in section
24.15. Also consider using Annealed Importance Sampling [16] to estimate the
density on held out data. If you are learning a joint density model of labelled
data (see section 24.16), consider monitoring the discriminative performance on
the training data and on a held out validation set.

24.6 Monitoring the Overfitting

When learning a generative model, the obvious quantity to monitor is the prob-
ability that the current model assigns to a datapoint. When this probability
starts to decrease for held out validation data, it is time to stop learning. Unfor-
tunately, for large RBMs, it is very difficult to compute this probability because
it requires knowledge of the partition function. Nevertheless, it is possible to
directly monitor the overfitting by comparing the free energies of training data
and held out validation data. In this comparison, the partition function cancels
out. The free energy of a data vector can be computed in a time that is linear in
the number of hidden units (see section 24.16.1). If the model is not overfitting
at all, the average free energy should be about the same on training and valida-
tion data. As the model starts to overfit the average free energy of the validation
data will rise relative to the average free energy of the training data and this
gap represents the amount of overfitting5.

24.6.1 A Recipe for Monitoring the Overfitting

After every few epochs, compute the average free energy of a representative
subset of the training data and compare it with the average free energy of a
validation set. Always use the same subset of the training data. If the gap starts
growing, the model is overfitting, though the probability of the training data
may be growing even faster than the gap, so the probability of the validation
data may still be improving. Make sure that the same weights are used when
computing the two averages that you wish to compare.

5 The average free energies often change by large amounts during learning and this
means very little because the log partition function also changes by large amounts.
It is only differences in free energies that are easy to interpret without knowing the
partition function.
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24.7 The Learning Rate

If the learning rate is much too large, the reconstruction error usually increases
dramatically and the weights may explode.

If the learning rate is reduced while the network is learning normally, the
reconstruction error will usually fall significiantly. This is not necessarily a good
thing. It is due, in part, to the smaller noise level in the stochastic weight updates
and it is generally accompanied by slower learning in the long term. Towards
the end of learning, however, it typically pays to decrease the learning rate.
Averaging the weights across several updates is an alternative way to remove
some of the noise from the final weights.

24.7.1 A Recipe for Setting the Learning Rates for Weights and
Biases

A good rule of thumb for setting the learning rate (Max Welling, personal com-
munication, 2002) is to look at a histogram of the weight updates and a his-
togram of the weights. The updates should be about 10−3 times the weights (to
within about an order of magnitude). When a unit has a very large fan-in, the
updates should be smaller since many small changes in the same direction can
easily reverse the sign of the gradient. Conversely, for biases, the updates can be
bigger.

24.8 The Initial Values of the Weights and Biases

The weights are typically initialized to small random values chosen from a zero-
mean Gaussian with a standard deviation of about 0.01. Using larger random
values can speed the initial learning, but it may lead to a slightly worse final
model. Care should be taken to ensure that the initial weight values do not allow
typical visible vectors to drive the hidden unit probabilities very close to 1 or
0 as this significantly slows the learning. If the statistics used for learning are
stochastic, the initial weights can all be zero since the noise in the statistics will
make the hidden units become different from one another even if they all have
identical connectivities.

It is usually helpful to initialize the bias of visible unit i to log[pi/(1 − pi)]
where pi is the proportion of training vectors in which unit i is on. If this is not
done, the early stage of learning will use the hidden units to make i turn on with
a probability of approximately pi.

When using a sparsity target probability of t (see section 24.11), it makes
sense to initialize the hidden biases to be log[t/(1− t)]. Otherwise, initial hidden
biases of 0 are usually fine. It is also possible to start the hidden units with quite
large negative biases of about −4 as a crude way of encouraging sparsity.
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24.8.1 A Recipe for Setting the Initial Values of the Weights and
Biases

Use small random values for the weights chosen from a zero-mean Gaussian with
a standard deviation of 0.01. Set the hidden biases to 0. Set the visible biases
to log[pi/(1 − pi)] where pi is the proportion of training vectors in which unit i
is on. Look at the activities of the hidden units occasionally to check that they
are not always on or off.

24.9 Momentum

Momentum is a simple method for increasing the speed of learning when the
objective function contains long, narrow and fairly straight ravines with a gentle
but consistent gradient along the floor of the ravine and much steeper gradients
up the sides of the ravine. The momentum method simulates a heavy ball rolling
down a surface. The ball builds up velocity along the floor of the ravine, but
not across the ravine because the opposing gradients on opposite sides of the
ravine cancel each other out over time. Instead of using the estimated gradient
times the learning rate to increment the values of the parameters, the momentum
method uses this quantity to increment the velocity, v, of the parameters and
the current velocity is then used as the parameter increment.

The velocity of the ball is assumed to decay with time and the “momentum”
meta-parmeter, α is the fraction of the previous velocity that remains after
computing the gradient on a new mini-batch:

Δθi(t) = vi(t) = αvi(t− 1)− εdE
dθi

(t) (24.12)

If the gradient remains constant, the terminal velocity will exceed εdE/dθi by a
factor of 1/(1−α). This is a factor of 10 for a momentum of 0.9 which is a typ-
ical setting of this meta-parameter. The temporal smoothing in the momentum
method avoids the divergent oscillations across the ravine that would be caused
by simply increasing the learning rate by a factor of 1/(1− α).

The momentum method causes the parameters to move in a direction that is
not the direction of steepest descent, so it bears some resemblance to methods like
conjugate gradient, but the way it uses the previous gradients is much simpler.
Unlike methods that use different learning rates for each parameter, momentum
works just as well when the ravines are not aligned with the parameter axes.

An alternative way of viewing the momentum method (Tijmen Tieleman,
personal communication, 2008) is as follows: It is equivalent to increasing the
learning rate by a factor of 1/(1−α) but delaying the full effect of each gradient
estimate by dividing the full increment into a series of exponentially decaying
installments. This gives the system time to respond to the early installments
by moving to a region of parameter space that has opposing gradients before it
feels the full effect of the increment. This, in turn, allows the learning rate to be
larger without causing unstable oscillations.
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At the start of learning, the random initial parameter values may create very
large gradients and the system is unlikely to be in the floor of a ravine, so it is
usually best to start with a low momentum of 0.5 for a number of parameter
updates. This very conservative momentum typically makes the learning more
stable than no momentum at all by damping oscillations across ravines [4].

24.9.1 A Recipe for Using Momentum

Start with a momentum of 0.5. Once the large initial progress in the reduction
of the reconstruction error has settled down to gentle progress, increase the mo-
mentum to 0.9. This shock may cause a transient increase in the reconstruction
error. If this causes a more lasting instability, keep reducing the learning rate by
factors of 2 until the instability disappears.

24.10 Weight-Decay

Weight-decay works by adding an extra term to the normal gradient. The extra
term is the derivative of a function that penalizes large weights. The simplest
penalty function, called “L2”, is half of the sum of the squared weights times a
coefficient which will be called the weight-cost.

It is important to multiply the derivative of the penalty term by the learning
rate. Otherwise, changes in the learning rate change the function that is being
optimized rather than just changing the optimization procedure.

There are four different reasons for using weight-decay in an RBM. The first
is to improve generalization to new data by reducing overfitting to the training
data6. The second is to make the receptive fields of the hidden units smoother
and more interpretable by shrinking useless weights. The third is to “unstick”
hidden units that have developed very large weights early in the training and
are either always firmly on or always firmly off. A better way to allow such units
to become useful again is to use a “sparsity” target as described in section 24.11.

The fourth reason is to improve the mixing rate of the alternating Gibbs
Markov chain. With small weights, the Markov chain mixes more rapidly7. The
CD learning procedure is based on ignoring derivatives that come from later
steps in the Markov chain (Hinton, Osindero and Teh, 2006), so it tends to
approximate maximum likelihood learning better when the mixing is fast. The
ignored derivatives are then small for the following reason: When a Markov chain
is very close to its stationary distribution, the best parameters for modeling
samples from the chain are very close to its current parameters.

6 Since the penalty is applied on every mini-batch, Bayesians really ought to divide
the weight-cost by the size of the training set. They can then interpret weight-decay
as the effect of a Gaussian weight prior whose variance is independent of the size of
the training set. This division is typically not done. Instead, larger weight-costs are
used for smaller training sets.

7 With all zero weights, it reaches its rather boring stationary distribution in a single
full step.
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A different form of weight-decay called “L1” is to use the derivative of the sum
of the absolute values of the weights. This often causes many of the weights to
become exactly zero whilst allowing a few of the weights to grow quite large. This
can make it easier to interpret the weights. When learning features for images,
for example, L1 weight-decay often leads to strongly localized receptive fields.

An alternative way to control the size of the weights is to impose a maximum
allowed value on the sum of the squares or absolute values of the incoming
weights for each unit. After each weight update, the weights are rescaled if they
exceed this maximum value. This helps to avoid hidden units getting stuck with
extremely small weights, but a sparsity target is probably a better way to avoid
this problem.

24.10.1 A Recipe for Using Weight-Decay

For an RBM, sensible values for the weight-cost coefficient for L2 weight-decay
typically range from 0.01 to 0.00001. Weight-cost is typically not applied to the
hidden and visible biases because there are far fewer of these so they are less
likely to cause overfitting. Also, the biases sometimes need to be quite large.

Try an initial weight-cost of 0.0001. If you are using Annealed Importance
Sampling [16] to estimate the density on a held-out validation set, try adjusting
the weight-cost by factors of 2 to optimize density. Small differences in weight-
cost are unlikely to cause big differences in performance. If you are training
a joint density model that allows you to test discriminative performance on a
validation set this can be used in place of the density for optimizing the weight-
cost. However, in either case, remember that weight-decay does more than just
preventing overfitting. It also increases the mixing rate which makes CD learning
a better approximation to maximum likelihood. So even if overfitting is not a
problem because the supply of training data is infinite, weight-decay can still be
helpful.

24.11 Encouraging Sparse Hidden Activities

Hidden units that are only rarely active are typically easier to interpret than
those that are active about half of the time. Also, discriminative performance is
sometimes improved by using features that are only rarely active [13].

Sparse activities of the binary hidden units can be achieved by specifying
a “sparsity target” which is the desired probability of being active, p << 1.
An additional penalty term is then used to encourage the actual probability of
being active, q, to be close to p. q is estimated by using an exponentially decaying
average of the mean probability that a unit is active in each mini-batch:

qnew = λqold + (1− λ)qcurrent (24.13)

where qcurrent is the mean activation probability of the hidden unit on the cur-
rent mini-batch.
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The natural penalty measure to use is the cross entropy between the desired
and actual distributions:

Sparsity penalty ∝ −p log q − (1 − p) log(1− q) (24.14)

For logistic units this has a simple derivative of q − p with respect to the total
input to a unit. This derivative, scaled by a meta-parameter called “sparsity-
cost”, is used to adjust both the bias and the incoming weights of each hidden
unit. It is important to apply the same derivative to both. If the derivative
is only applied to the bias, for example, the bias will typically keep becoming
more negative to ensure the hidden unit is rarely on, but the weights will keep
becoming more positive to make the unit more useful.

24.11.1 A Recipe for Sparsity

Set the sparsity target to between 0.01 and 0.18. Set the decay-rate, λ, of the
estimated value of q to be between 0.9 and 0.99. Histogram the mean activities
of the hidden units and set the sparsity-cost so that the hidden units have mean
probabilities in the vicinity of the target. If the probabilities are tightly clustered
around the target value, reduce the sparsity-cost so that it interferes less with
the main objective of the learning.

24.12 The Number of Hidden Units

Intuitions derived from discriminative machine learning are a bad guide for deter-
mining a sensible number of hidden units. In discriminative learning, the amount
of constraint that a training case imposes on the parameters is equal to the num-
ber of bits that it takes to specify the label. Labels usually contain very few bits
of information, so using more parameters than training cases will typically cause
severe overfitting. When learning generative models of high-dimensional data,
however, it is the number of bits that it takes to specify a data vector that
determines how much constraint each training case imposes on the parameters
of the model. This can be several orders of magnitude greater than number of
bits required to specify a label. So it may be quite reasonable to fit a million
parameters to 10,000 training images if each image contains 1,000 pixels. This
would allow 1000 globally connected hidden units. If the hidden units are locally
connected or if they use weight-sharing, many more can be used.

24.12.1 A Recipe for Choosing the Number of Hidden Units

Assuming that the main issue is overfitting rather than the amount of computa-
tion at training or test time, estimate how many bits it would take to describe
8 If you are only using the sparsity target to revive hidden units that are never active

and suppress hidden units that are always active, a target value of 0.5 makes sense
(even though it makes nonsense of the name).
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each data-vector if you were using a good model (i.e. estimate the typical neg-
ative log2 probability of a datavector under a good model). Then multiply that
estimate by the number of training cases and use a number of parameters that
is about an order of magnitude smaller. If you are using a sparsity target that is
very small, you may be able to use more hidden units. If the training cases are
highly redundant, as they typically will be for very big training sets, you need
to use fewer parameters.

24.13 Different Types of Unit

RBM’s were developed using binary visible and hidden units, but many other
types of unit can also be used. A general treatment for units in the exponential
family is given in [24]. The main use of other types of unit is for dealing with
data that is not well-modeled by binary (or logistic) visible units.

24.13.1 Softmax and Multinomial Units

For a binary unit, the probability of turning on is given by the logistic sigmoid
function of its total input, x.

p = σ(x) =
1

1 + e−x
=

ex

ex + e0
(24.15)

The energy contributed by the unit is −x if it is on and 0 if it is off. Equation
24.15 makes it clear that the probability of each of the two possible states is
proportional to the negative exponential of its energy. This can be generalized
to K alternative states.

pj =
exj

∑K
i=1 e

xi

(24.16)

This is often called a “softmax” unit. It is the appropriate way to deal with
a quantity that has K alternative values which are not ordered in any way.
A softmax can be viewed as a set of binary units whose states are mutually
constrained so that exactly one of the K states has value 1 and the rest have
value 0. When viewed in this way, the learning rule for the binary units in a
softmax is identical to the rule for standard binary units. The only difference
is in the way the probabilities of the states are computed and the samples are
taken.

A further generalization of the softmax unit is to sample N times (with re-
placement) from the probability distribution instead of just sampling once. The
K different states can then have integer values bigger than 1, but the values
must add to N . This is called a multinomial unit and, again, the learning rule
is unchanged.
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24.13.2 Gaussian Visible Units

For data such as patches of natural images or the Mel-Cepstrum coefficients used
to represent speech, logistic units are a very poor representation. One solution
is to replace the binary visible units by linear units with independent Gaussian
noise. The energy function then becomes:

E(v,h) =
∑

i∈vis

(vi − ai)2
2σ2i

−
∑

j∈hid

bjhj −
∑

i,j

vi
σi
hjwij (24.17)

where σi is the standard deviation of the Gaussian noise for visible unit i.
It is possible to learn the variance of the noise for each visible unit but this

is difficult using CD1. In many applications, it is much easier to first normalise
each component of the data to have zero mean and unit variance and then to
use noise free reconstructions, with the variance in equation 24.17 set to 1. The
reconstructed value of a Gaussian visible unit is then equal to its top-down input
from the binary hidden units plus its bias.

The learning rate needs to be about one or two orders of magnitude smaller
than when using binary visible units and some of the failures reported in the
literature are probably due to using a learning rate that is much too big. A
smaller learning rate is required because there is no upper bound to the size of a
component in the reconstruction and if one component becomes very large, the
weights emanating from it will get a very big learning signal. With binary hidden
and visible units, the learning signal for each training case must lie between −1
and 1, so binary-binary nets are much more stable.

24.13.3 Gaussian Visible and Hidden Units

If both the visible and the hidden units are Gaussian, the instability problems
become much worse. The individual activities are held close to their means by
quadratic “containment” terms with coefficients determined by the standard de-
viations of the assumed noise levels:

E(v,h) =
∑

i∈vis

(vi − ai)2
2σ2i

+
∑

j∈hid

(hj − bj)2
2σ2j

−
∑

i,j

vi
σi

hj
σj
wij (24.18)

If any of the eigenvalues of the weight matrix become sufficiently large, the
quadratic interaction terms can dominate the containment terms and there is
then no lower bound to the energy that can be achieved by scaling up the
activities in the direction of the corresponding eigenvector. With a sufficiently
small learning rate, CD1 can detect and correct these directions so it is possible
to learn an undirected version of a factor analysis model [10] using all Gaussian
units, but this is harder than using EM [3] to learn a directed model.
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24.13.4 Binomial Units

A simple way to get a unit with noisy integer values in the range 0 to N is to
make N separate copies of a binary unit and give them all the same weights and
bias [21]. Since all copies receive the same total input, they all have the same
probability, p, of turning on and this only has to be computed once. The expected
number that are on is Np and the variance in this number is Np(1 − p). For
small p, this acts like a Poisson unit, but as p approaches 1 the variance becomes
small again which may not be desireable. Also, for small values of p the growth
in p is exponential in the total input. This makes learning much less stable than
for the rectified linear units described in section 24.13.5.

One nice thing about using weight-sharing to synthesize a new type of unit
out of binary units is that the mathematics underlying binary-binary RBM’s
remains unchanged.

24.13.5 Rectified Linear Units

A small modification to binomial units makes them far more interesting as
models of real neurons and also more useful for practical applications. All
copies still have the same learned weight vector w and the same learned bias,
b, but each copy has a different, fixed offset to the bias. If the offsets are
−0.5,−1.5,−2.5, ... − (N − 0.5) the sum of the probabilities of the copies is
extremely close to having a closed form:

∞∑

i=1

σ(x− i+ 0.5) ≈ log(1 + ex) (24.19)

where x = vwT + b. So the total activity of all of the copies behaves like a
smoothed version of a rectified linear unit that saturates for sufficiently large
input. Even though log(1+ ex) is not in the exponential family, we can model it
accurately using a set of binary units with shared weights and fixed bias offsets.
This set has no more parameters than an ordinary binary unit, but it provides
a much more expressive variable. The variance is σ(x) so units that are firmly
off do not create noise and the noise does not become large when x is large.

A drawback of giving each copy a bias that differs by a fixed offset is that the
logistic function needs to be used many times to get the probabilities required
for sampling an integer value correctly. It is possible, however, to use a fast
approximation in which the sampled value of the rectified linear unit is not
constrained to be an integer. Instead it is approximated by max(0, x + N(0, 1)
where N(0, 1) is Gaussian noise with zero mean and unit variance. This type of
rectified linear unit seems to work fine for either visible units or hidden units
when training with CD1 [14].

If both visible and hidden units are rectified linear, a much smaller learning
rate may be needed to avoid unstable dynamics in the activity or weight updates.
If the weight between two rectified linear units is greater than 1 there is no
lower bound to the energy that can be achieved by giving both units very high
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activities so there is no proper probability distribution. Nevertheless, contrastive
divergence learning may still work provided the learning rate is low enough to
give the learning time to detect and correct directions in which the Markov chain
would blow up if allowed to run for many iterations. RBM’s composed of rectified
linear units are more stable than RBM’s composed of Gaussian units because
the rectification prevents biphasic oscillations of the weight dynamics in which
units alternate between very high positive activity for one mini-batch followed
by very high negative activity for the next mini-batch.

24.14 Varieties of Contrastive Divergence

Although CD1 is not a very good approximation to maximum likelihood learn-
ing, this does not seem to matter when an RBM is being learned in order to
provide hidden features for training a higher-level RBM. CD1 ensures that the
hidden features retain most of the information in the data vector and it is not
necessarily a good idea to use a form of CD that is a closer approximation to
maximum likelihood but is worse at retaining the information in the data vector.
If, however, the aim is to learn an RBM that is a good density or joint-density
model, CD1 is far from optimal.

At the beginning of learning, the weights are small and mixing is fast so CD1

provides a good approximation to maximum likelihood. As the weights grow,
the mixing gets worse and it makes sense to gradually increase the n in CDn

[1, 17]. When n is increased, the difference of pairwise statistics that is used for
learning will increase so it may be necessary to reduce the learning rate.

A more radical departure from CD1 is called “persistent contrastive diver-
gence” [22]. Instead of initializing each alternating Gibbs Markov chain at a
datavector, which is the essence of CD learning, we keep track of the states of
a number of persistent chains or “fantasy particles”. Each persisitent chain has
its hidden and visible states updated one (or a few) times after each weight
update. The learning signal is then the difference between the pairwise statis-
tics measured on a mini-batch of data and the pairwise statistics measured on
the persistent chains. Typically the number of persistent chains is the same as
the size of a mini-batch, but there is no good reason for this. The persistent
chains mix surprisingly fast because the weight-updates repel each chain from
its current state by raising the energy of that state [23].

When using persistent CD, the learning rate typically needs to be quite a lot
smaller and the early phase of the learning is much slower in reducing the recon-
struction error. In the early phase of learning the persistent chains often have
very correlated states, but this goes away with time. The final reconstruction
error is also typically larger than with CD1 because persistent CD is, asymp-
totically, performing maximum likelihood learning rather than trying to make
the distribution of the one-step reconstructions resemble the distribution of the
data. Persistent CD learns significantly better models than CD1 or even CD10

[22] and is the recommended method if the aim is to build the best density model
of the data.
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Persistent CD can be improved by adding to the standard parameters an
overlay of “fast weights” which learn very rapidly but also decay very rapidly
[23]. These fast weights improve the mixing of the persistent chains. However,
the use of fast weights introduces yet more meta-parameters and will not be
discussed further here.

24.15 Displaying What Is Happening during Learning

There are many ways in which learning can go wrong and most of the common
problems are easy to diagnose with the right graphical displays. The three types
of display described below give much more insight into what is happening than
simply monitoring the reconstruction error.

Histograms of the weights, the visible biases and the hidden biases are very
useful. In addition, it is useful to examine histograms of the increments to these
parameters when they are updated, though it is wasteful to make these his-
tograms after every update.

For domains in which the visible units have spatial or temporal structure (e.g.
images or speech) it is very helpful to display, for each hidden unit, the weights
connecting that hidden unit to the visible units. These “receptive” fields are a
good way of visualizing what features the hidden units have learned. When dis-
playing the receptive fields of many hidden units it can be very misleading to use
different scales for different hidden units. Gray-scale displays of receptive fields
are usually less pretty but much more informative than false colour displays.

For a single minibatch, it is very useful to see a two-dimensional, gray-scale
display with a range of [0,1] that shows the probability of each binary hidden
unit on each training case in a mini-batch9. This immediately allows you to
see if some hidden units are never used or if some training cases activate an
unusually large or small number of hidden units. It also shows how certain the
hidden units are. When learning is working properly, this display should look
thoroughly random without any obvious vertical or horizontal lines. Histograms
can be used instead of this display, but it takes quite a few histograms to convey
the same information.

24.16 Using RBM’s for Discrimination

There are three obvious ways of using RBMs for discrimination. The first is to
use the hidden features learned by the RBM as the inputs for some standard
discriminative method. This will not be discussed further here, though it is
probably the most important way of using RBM’s, especially when many layers
of hidden features are learned unsupervised before starting on the discriminative
training.

The second method is to train a separate RBM on each class. After training,
the free energy of a test vector, t, is computed (see subsection 24.16.1)for each
9 If there are more than a few hundred hidden units, just use a subset of them.
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class-specific RBM. The log probability that the RBM trained on class c assigns
to the test vector is given by:

log p(t|c) = −Fc(t) − logZc (24.20)

where Zc is the partition function of that RBM. Since each class-specific RBM
will have a different, unknown partition function, the free energies cannot be
used directly for discrimination. However, if the number of classes is small it
is easy to deal with the unknown log partition functions by simply training a
“softmax” model (on a separate training set) to predict the class from the free
energies of all of the class specific RBMs:

log p(class = c|t) = e−Fc(t)−log Ẑc

∑
d e

−Fd(t)−log Ẑd

(24.21)

where the Ẑ are parameters that are learned by maximum likleihood training of
the softmax. Of course, equation 24.21 can also be used to learn the weights and
biases of each RBM but this requires a lot of data to avoid overfitting. Combining
the discriminative gradients for the weights and biases that come from equation
24.21 with the approximate gradients that come from contrastive divergence will
often do better than either method alone. The approximate gradient produced
by contrastive divergence acts as a strong regularizer to prevent overfitting and
the discriminative gradient ensures that there is some pressure to use the weights
and biases in a way that helps discrimination.

The third method is to train a joint density model using a single RBM that has
two sets of visible units. In addition to the units that represent a data vector,
there is a “softmax” label unit that represents the class. After training, each
possible label is tried in turn with a test vector and the one that gives lowest
free energy is chosen as the most likely class. The partition function is not a
problem here, since it is the same for all classes. Again, it is possible to combine
discriminiative and generative training of the joint RBM by using discriminative
gradients that are the derivatives of the log probability of the correct class [6]:

log p(class = c|t) = e−Fc(t)

∑
d e

−Fd(t)
(24.22)

24.16.1 Computing the Free Energy of a Visible Vector

The free energy of visible vector v is the energy that a single configuration would
need to have in order to have the same probability as all of the configurations
that contain v:

e−F (v) =
∑

h

e−E(v,h) (24.23)
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It is also given by the expected energy minus the entropy:

F (v) = −
∑

i

viai −
∑

j

pjxj +
∑

j

(pj log pj + (1− pj) log(1− pj)) (24.24)

where xj = bj +
∑

i viwij is the total input to hidden unit j and pj = σ(xj) is
the probability that hj = 1 given v. A good way to compute F(v) is to use yet
another expression for the free energy:

F (v) = −
∑

i

viai −
∑

j

log(1 + exj) (24.25)

24.17 Dealing with Missing Values

In a directed belief net it is very easy to deal with missing values for visible
variables. When performing inference, a missing value that is at the receiving
end of a directed connection has no effect on the units that send connections to
it. This is not true for the undirected connections used in an RBM. To perform
inference in the standard way, the missing value must first be filled in and there
are at least two ways to do this.

A particularly simple type of missing value occurs when learning a joint den-
sity for data in which each training case is composed of a vector v such as an
image plus a single discrete label. If the label is missing from a subset of the
cases, it can be Gibbs sampled from its exact conditional distribution. This is
done by computing the free energy (see section 24.16.1) for each possible value of
the label and then picking label l with probability proportional to exp(−F (l,v)).
After this, the training case is treated just like a complete training case.

For real-valued visible units, there is a different way to impute missing values
that still works well even if several values are missing from the same training
case [8]. If the learning cycles through the training set many times, the missing
values can be treated in just the same way as the other parameters. Starting
with a sensible initial guess, a missing value is updated each time the weights
are updated, but possibly using a different learning rate. The update for the
missing value for visible unit i on training case c is:

Δvci = ε

(
∂F

∂v̂ci
− ∂F
∂vci

)
(24.26)

where vci is the imputed value and v̂ci is the reconstruction of the imputed value.
Momentum can be used for imputed values in just the same way as it is used
for the usual parameters.

There is a more radical way of dealing with missing values that can be used
when the number of missing values is very large. This occurs, for example, with
user preference data where most users do not express their preference for most
objects [17]. Instead of trying to impute the missing values, we pretend they
do not exist by using RBM’s with different numbers of visible units for different
training cases. The different RBMs form a family of different models with shared
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weights. Each RBM in the family can now do correct inference for its hidden
states, but the tying of the weights means that they may not be ideal for any
particular RBM. Adding a visible unit for a missing value and then performing
correct inference that integrates out this missing value does not give the same
distribution for the hidden units as simply ommitting the visible unit which is
why this is a family of models rather than just one model. When using a family
of models to deal with missing values, it can be very helpful to scale the hidden
biases by the number of visible units in the RBM [15].
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Abstract. Deep Boltzmann machines are in theory capable of learning
efficient representations of seemingly complex data. Designing an algo-
rithm that effectively learns the data representation can be subject to
multiple difficulties. In this chapter, we present the “centering trick” that
consists of rewriting the energy of the system as a function of centered
states. The centering trick improves the conditioning of the underlying
optimization problem and makes learning more stable, leading to models
with better generative and discriminative properties.
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25.1 Introduction

Deep Boltzmann machines are undirected networks of interconnected units that
learn a joint probability density over these units by adapting connections between
them. They are in theory capable of learning statistically and computationally
efficient representations of seemingly complex data distributions.

Designing an algorithm that effectively learns the data representation can be
subject to multiple difficulties. Deep Boltzmann machines are sensitive to the
parameterization of their energy function. In addition, the gradient of the opti-
mization problem is not directly accessible and must instead be approximated
stochastically by continuously querying the model throughout training.

In this chapter, we present the “centering trick” that consists of rewriting the
energy function of the deep Boltzmann machine as a function of centered states.
We argue that centering improves the conditioning of the optimization prob-
lem and facilitates the emergence of complex structures in the deep Boltzmann
machine.

We demonstrate on the MNIST dataset that the centering trick allows mid-
sized deep Boltzmann machines to be trained faster and to produce a solution
which is a good generative model of data but also distills interesting discrimina-
tive features in the top layer.

G. Montavon et al. (Eds.): NN: Tricks of the Trade, 2nd edn., LNCS 7700, pp. 621–637, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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25.2 Boltzmann Machines

In this section, we give some background on the Boltzmann machine [6]. We will
use the following notation: The sigmoid function is defined as sigm(x) = ex

ex+1 ,
x ∼ B(p) denotes that the variable x is drawn randomly from a Bernoulli dis-
tribution of parameter p and 〈·〉P denotes the expectation operator with respect
to a probability distribution P . All these operations apply element-wise to the
input if the latter is a vector.

fully connected
Boltzmann machine

deep Boltzmann
machine (DBM)

locally connected
DBM (LC-DBM)

Fig. 25.1. Example of Boltzmann machines used in practice with visible units depicted
in gray and hidden units depicted in white. The layered structure of a DBM is interest-
ing because a particular representation of data forms at each layer, possibly enabling
the emergence of interesting statistics.

A Boltzmann machine is a network of Mx interconnected binary units that
associates to each state x ∈ {0, 1}Mx the probability

p(x; θ) =
e−E(x;θ)

∑
ξ e

−E(ξ;θ)
.

The term in the denominator is the called the partition function and makes
probabilities sum to one. The function

E(x; θ) = −1

2
x�Wx− x�b.

is the energy of the state x given the model parameters θ = (W, b). From these
equations, we can interpret a good model of data as a model θ that has low energy
in regions of high data density and high energy elsewhere. The matrix W of size
Mx ×Mx is symmetric and contains the connection strengths between units.
The vector b of sizeMx contains the biases associated to each unit. The diagonal
of W is constrained to be zero. Units are either visible units (representing the
sensory input) or hidden units (representing latent variables that are not directly
observable but contribute to explaining data).

From the equations above, we can derive the conditional probability of each
unit being activated given the other units

p(xi = 1|x−i; θ) = sigm(bi +
∑

j �=i

Wijxj)
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where x−i denotes the set of all units but xi. The gradient of the data log-
likelihood with respect to model parameters W and b takes the form

∂

∂W
〈log p(xvis; θ)〉data = 〈xx�〉data − 〈xx�〉model (25.1)

∂

∂b
〈log p(xvis; θ)〉data = 〈x〉data − 〈x〉model (25.2)

where xvis are the visible units (i.e. the subset of units that represent the sen-
sory input). The terms 〈·〉data and 〈·〉model are respectively the data-dependent
expectations (obtained by conditioning the joint distribution on the observed
state of the visible units) and the data-independent expectations obtained by
sampling freely from the joint probability distribution.

25.2.1 Deep Boltzmann Machines

It is often desirable to incorporate some predefined structure to the Boltzmann
machine. The most common way to achieve this is to remove certain connections
in the network, that is, forcing parts of the matrix W to zero. Example of Boltz-
mann machines with different structures are shown in Figure 25.1. For example,
in the deep Boltzmann machine (DBM) [12], units are organized in a deep lay-
ered manner where only adjacent layers communicate and where units within
the same layer are disconnected. Locally connected deep Boltzmann machines
add further constraints to the model by forcing the modeling of the interaction
between remote parts of the input to take place in the top layer.

The special layered structure of the DBM and its multiple variants has two
advantages: First, particular statistics can emerge at each layer that may capture
interesting features of data. Second, the layered structure of the DBM can be
folded into a bipartite graph (one side containing odd layers and the other side
containing even layers) where each side of the graph is conditionally independent
given the other side.

In the case of the deep Boltzmann machine shown in Figure 25.2 (left) with
Mx,My andMz units at each layer, the energy associated to each state (x, y, z) ∈
{0, 1}Mx+My+Mz is

E(x, y, z; θ) =− y�Wx− z�V y − x�a− y�b − z�c

where θ = {W,V, a, b, c} groups the model parameters. The bipartite graph
structure of the deep Boltzmann machine implies that an efficient alternating
Gibbs sampler can be derived:

x ∼ B(sigm(W�y + a))

z ∼ B(sigm(V y + c))

y ∼ B(sigm(Wx+ V �z + b)).

(25.3)
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A similar alternating Gibbs sampler can be used for sampling states when the
input units x are clamped to the data:

z ∼ B(sigm(V y + c))

y ∼ B(sigm(Wxdata + V
�z + b)).

(25.4)

These alternating Gibbs samplers are illustrated in Figure 25.2 (right) and allow
us to collect the data-independent and data-dependent statistics that intervene
in the computation of the gradient (see Equation 25.1 and 25.2).

x a

y b

z c

W

V

x

y

z
(i) (ii)

Fig. 25.2. On the left, diagram of a two-layer deep Boltzmann machine along with
its parameters. On the right, different sampling methods: (i) the path followed by the
alternating Gibbs sampler and (ii) the path followed by the alternating Gibbs sampler
when the input is clamped to data.

25.3 Training Boltzmann Machines

While Equation 25.1 and 25.2 provide an exact gradient for minimizing the
log-likelihood of data, keeping track of data statistics and model statistics is
computationally demanding. The mixing rate of the model (i.e. the speed at
which the alternating Gibbs sampler converges to the model’s true distribution)
is typically slow and implies that we need to resort to some approximation.

Collecting data-dependent statistics is relatively easy as the complexity of
the distribution is reduced by the clamping of visible units to the data. In the
case where hidden units are independent when conditioned on the visible units,
sampling can be achieved exactly in only one pass of the Gibbs sampler. This is
the case of the restricted Boltzmann machine [4] presented in Chapter 24 [5]. In
practice, when the number of hidden-to-hidden connections is relatively low or
the connections are not particularly strong, reasonable approximations can be
obtained by running a few steps of the alternating Gibbs sampler.

Collecting data-independent statistics is much harder and typically requires
hundreds or thousands of iterations before converging to the true probability
distribution. A workaround to the problem is to approximate these statistics
by a small set of persistent chains (or “free particles”) {x1, . . . , xn} that are
continuously updated throughout training. This idea called persistent contrastive
divergence has been proposed by Tieleman [19].
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The intuition behind persistent contrastive divergence is the following: let’s
first remember that the minima of the energy function correspond to high prob-
ability states and that the free particles are therefore inclined to descend the
energy function. As the model is trained, the energy of the free particles is
raised under the effect of the gradient update and free particles are encouraged
to slide down the “bump” created by the gradient update. The higher the learn-
ing rate, the higher the bumps, and the faster the particles are descending the
energy function. This implies that free particles are mixing much faster under
the effect of training than in a static setting.

When training a deep Boltzmann machine, at least two sources of instability
can be identified: (1) Approximation instability: The stochastic and approximate
nature of the learning algorithms described above implies that the estimation
of the gradient is noisy. The noise comes in part from the stochastic gradient
descent procedure, but principally from the approximate sampling procedure
that may cause systematically biased estimates of the gradient. (2) Structural
instability: As it has been identified by Cho et al. [3], in standard Boltzmann
machines, the weight matrix W tends to model in the first steps of the learn-
ing algorithm a global bias instead of co-dependencies between each units as
we would expect. This is particularly problematic in the case of a Boltzmann
machine with hidden-to-hidden connections such as the DBM, because hidden
units tend to conglomerate and form a bias that may speed up learning initially
but that eventually destroys the learning signal between pairs of hidden units.

25.3.1 The Centering Trick

The centering trick attempts to mitigate these sources of instability by ensur-
ing that units activations intervening in the computation of the gradient are
centered. Centering aims to produce a better conditioned optimization problem
that is more robust to the noise of the learning procedure and to avoid the use of
units as a global bias. Centering was already advocated in Chapter 1 [7] and 10
[17] in the context of backpropagation networks. Centering can be achieved by
rewriting the energy of the Boltzmann machine as a function of centered states:

Center the Boltzmann machine

E(x; θ) =− 1

2
(x − β)�W (x− β) − (x− β)�b

The new variable β represents the offset associated to each unit of the network
and must be set to the mean activation of x. Setting β = sigm(b0) where b0 is the
initial bias ensures that units are initially centered. A similar parameterization
of the energy function has been proposed by Tang and Sutskever [18] where
the offset parameters were restricted to visible units. As we will see later, the
Boltzmann machine also benefits from centering the hidden units. From this
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new energy function, we can derive the conditional probability of each unit in
the centered Boltzmann machine:

p(xi = 1|x−i; θ) = sigm(bi +
∑

j �=i

Wij(x− β)j).

Similarly, the gradient of the model log-likelihood with respect to W and b now
takes the form:

∂

∂W
〈log p(xvis; θ)〉data = 〈(x− β)(x− β)�〉data − 〈(x− β)(x − β)�〉model

(25.5)
∂

∂b
〈log p(xvis; θ)〉data = 〈x− β〉data − 〈x− β〉model. (25.6)

These gradients are similar to the enhanced gradients proposed by Cho et al. [3]
and to those arising from the parameterization proposed by Arnold et al. [1] at
the difference that our gradients do not account for the possibility that offsets
β deviate from the mean activations of units throughout training. If the latter
effect is problematic, it is possible to reparameterize the network continuously
or at regular intervals so that the offsets correspond to the new expected means
〈x〉data. The reparameterization θ → θ′ must leave the energy function invariant
up to a constant, that is, E(x; θ) = E(x; θ′) + const. Solving the equation under
the new centering constraints leads to the update equations W ′ = W , b′ =
b+W (〈x〉data − β) and β′ = 〈x〉data.

Update biases and offsets at regular intervals

b′ = b+W (〈x〉data − β)
β′ = 〈x〉data

Similar derivations can be made for the deep Boltzmann machine. The energy
function of the deep Boltzmann machine becomes E(x, y, z; θ) = −(y−β)�W (x−
α)− (z− γ)�V (y−β)− (x−α)�a− (y−β)�b− (z− γ)�c where α, β and γ are
the offsets associated to the units in each layer. A basic algorithm for training a
centered deep Boltzmann machine is given in Figure 25.3.

25.3.2 Understanding the Centering Trick

We look at the effect of centering on the stability of learning in a Boltzmann
machine. We argue that when the Boltzmann machine is centered, the optimiza-
tion problem is better conditioned (see Figure 25.5), more precisely, the ratio
between the highest and the lowest eigenvalue of the Hessian H is smaller. We
define ξ as the centered state ξ = x−β. Substituting x−β by ξ in Equation 25.5,
the derivative of the data log-likelihood with respect to the weight parameter
becomes

∂

∂W
〈log p(x; θ)〉data = 〈ξξ�〉W,data − 〈ξξ�〉W
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Training a centered deep Boltzmann machine

W,V = 0, 0
a, b, c = sigm−1(〈x〉data), b0, c0
α, β, γ = sigm(a), sigm(b), sigm(c)
initialize free particle (xm, ym, zm) = (α, β, γ)
loop

initialize data particle (xd, yd, zd) = (pick(data), β, γ)
loop

yd ∼ B(sigm(W (xd − α) + V �(zd − γ) + b))
zd ∼ B(sigm(V (yd − β) + c))

end loop
ym ∼ B(sigm(W (xm − α) + V �(zm − γ) + b))
xm ∼ B(sigm(W�(ym − β) + a))
zm ∼ B(sigm(V (ym − β) + c))

W =W + η · [(yd − β)(xd − α)� − (ym − β)(xm − α)�]
V = V + η · [(zd − γ)(yd − β)� − (zm − γ)(ym − β)�]
a = a+ η · (xd − xm) + ν ·W�(yd − β)
b = b+ η · (yd − ym) + ν ·W (xd − α) + ν · V �(zd − γ)
c = c+ η · (zd − zm) + ν · V (yd − β)
α = (1− ν) · α+ ν · xd

β = (1− ν) · β + ν · yd
γ = (1− ν) · γ + ν · zd

end loop

Fig. 25.3. Basic algorithm for training a two-layer centered deep Boltzmann machine.
The algorithm is based on persistent contrastive divergence and is kept minimal for
the sake of simplicity. The variable η is the learning rate and the variable ν is the rate
of the moving average necessary for the reparameterization. A Python implementation
of the algorithm is available at http://gregoire.montavon.name/code/dbm.py.

β = sigm(−2)

β = sigm(0)

β = sigm(2)

b = 2 b = 0 b = −2

Fig. 25.4. Example of sigmoids f(x) = sigm(x + b) − β with different biases b and
offsets β. This figure illustrates how setting β0 = sigm(b0) ensures that the sigmoid
crosses the origin initially and do not contribute to modeling a bias component.
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where 〈·〉W denotes the expectation with respect to the probability distribution
associated to a model of weight parameterW and 〈·〉W,data denotes the expecta-
tion of the same model with visible units clamped to data. Using the definition
of the directional derivative, the second derivative with respect to a random
direction V (which is equal to the projected Hessian HV ) can be expressed as:

HV =
∂

∂V

(
∂

∂W
〈log p(x;W )〉data

)

= lim
h→0

1

h

(
∂

∂W
〈log p(x;W + hV )〉data −

∂

∂W
〈log p(x;W )〉data

)

= lim
h→0

1

h

(
(〈ξξ�〉W+hV,data − 〈ξξ�〉W+hV )− (〈ξξ�〉W,data − 〈ξξ�〉W )

)

= lim
h→0

1

h

(
〈ξξ�〉W+hV,data − 〈ξξ�〉W,data

)
− lim

h→0

1

h

(
〈ξξ�〉W+hV − 〈ξξ�〉W

)

From the last line, we can see that the Hessian can be decomposed into a data-
dependent term and a data-independent term. A remarkable fact is that in ab-
sence of hidden units, the data-dependent part of the Hessian is zero, because
the model—and therefore, the perturbation of the model—have no influence on
the states. The conditioning of the optimization problem can therefore be ana-
lyzed exclusively from a model perspective. The data-dependent term is likely
to be small even in the presence of hidden variables due to the sharp reduction
of entropy caused by the clamping of visible units to data.

We can think of a well-conditioned model as a model for which a perturbation
of the model parameterW in any direction V causes a well-behaved perturbation
of state expectations 〈ξξ�〉W . Pearlmutter [11] showed that in a Boltzmann
machine with no hidden units, the projected Hessian can be further reduced to

HV = 〈ξξ�〉W · 〈D〉W − 〈ξξ�D〉W where D =
1

2
ξ�V ξ (25.7)

thus, getting rid of the limit and leading to numerically more accurate estimates.
Chapter 1 [7] shows that the stability of the optimization problem can be quanti-
fied by the condition number defined as the ratio between the largest eigenvalue
λ1 and the smallest eigenvalue λn of H. A geometrical interpretation of the
condition number is given in Figure 25.5 (left). A low rank approximation of the
Hessian can be obtained as

Ĥ = H(V0| . . . |Vn) = (HV0| . . . |HVn) (25.8)

where the columns of (V0| . . . |Vn) form a basis of independent unit vectors that
projects the Hessian on a low-dimensional random subspace. The condition num-
ber can then be estimated by performing a singular value decomposition of the
projected Hessian Ĥ and taking the ratio between the largest and smallest re-
sulting eigenvalues.

We estimate the condition number λ1/λn of a fully connected Boltzmann
machine of 50 units at initial state (W = 0) for different bias and offset pa-
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Centered BM

λ1/λn small

Standard BM

λ1/λn large

λ1/λn b = 2 b = 0 b = −2
β = sigm(2) 1.98 12.65 51.42
β = sigm(0) 22.97 1.82 22.20
β = sigm(−2) 52.72 13.40 1.94

Fig. 25.5. Left: relation between the condition number λ1/λn and the shape of the
optimization problem. Gradient descent is easier to achieve when the condition number
is small. Right: condition number obtained for centered Boltzmann machines (shown
in bold on the diagonal) and for non-centered deep Boltzmann machines (off-diagonal
elements). It can clearly be seen that the condition number is much smaller when the
Boltzmann machine is centered.

rameters b and β using Equation 25.7 and 25.8. The condition numbers are
obtained by drawing 100 random unit vectors for the projection matrix V and
for each of them, estimating the statistics by sampling 1000 independent states ξ.
Numerical estimates are given in Figure 25.5 (right) and clearly exhibit the bet-
ter conditioning occurring when the Boltzmann machine is centered (i.e. when
β = sigm(b)).

25.4 Evaluating Boltzmann Machines

In this section, we present two complementary approaches to evaluating a Boltz-
mann machine. The first method consists of looking at the discriminative com-
ponents built in different portions of the Boltzmann machine (e.g. layers of a
DBM) using kernels. The analysis is based on the work of Montavon et al. [8, 9]
that characterizes the representation that emerges from the learning algorithm
at each layer of a neural network. Second, we present a method introduced by
Salakhutdinov and Hinton [13] that measures the generative performance of the
Boltzmann machine in terms of log-likelihood of test data.

25.4.1 Discriminative Analysis

When Boltzmann machines incorporate a special structure, for example, via
restricted connectivity, it can be useful to measure the discriminative capability
of the representations emerging in specific portions of the network. Measuring
the discriminative capability of a group of units is non-trivial, because (1) the
meaningful information is not carried in a symbolic form but instead, distributed
across the multiple units of the group and (2) the mapping of each data point
onto these units is not deterministic but instead corresponds to the conditional
distribution over the units in the group given the input x. We present here a
method that exploits the insight that the projection of the input distribution
onto the group of units forms an kernel (with a well-defined feature space [16])
that can be analyzed with respect to certain properties (or labels) t. The method
was first introduced by Montavon et al. [8] in the context of backpropagation
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networks. The method is based on the observation that leading kernel principal
components can be approximated up to high accuracy from a finite, typically
small set of samples [2]. We propose a family of kernels for representing the top
layer of a DBM:

A family of kernels for deep Boltzmann machines:

k(x, x′) = Ez,z′ [f(z|x, z′|x′)]

where z|x and z′|x′ denote the random top-layer activities conditioned
respectively on data points x and x′ and where the function f(z, z′) is a
similarity metric between z and z′. Typical choices for f are:

linear: f(z, z′) = 〈z, z′〉

radial basis function: f(z, z′) = exp
(−||z − z′||

σ

)

equality: f(z, z′) = 1{z=z′}

These kernels are able to gracefully deal with multimodal posteriors in the top-
level distribution as the expectation operator lies outside the “detection function”
f and therefore, accounts for the all possible modalities of z|x and z′|x′. Note
that since the units of the Boltzmann machine are binary, norms || · ||11,. . . ,|| · ||pp
are equivalent. Also, the linear and equality functions correspond up to some
normalization to the extremal cases of the radial basis function kernel (with σ
very large or very small). Once a kernel has been chosen, the analysis proceeds
in four steps:

1. Collect a small test set X of size n ×m and its associated label matrix T
of size n × c and compute the empirical kernel K of size n × n. The kernel
can be built iteratively by running a Gibbs sampler on each data point and
taking the average of all kernels. Alternatively a moving average of the kernel
matrix can be maintained throughout training in order to keep track of the
discriminative performance.

2. Perform an eigendecomposition of the kernel matrix K = UΛU� where Λ
is a diagonal matrix representing the eigenvalues of K sorted by decreasing
order, and where the columns of U represent the eigenvectors associated to
each eigenvalue. These eigenvectors are the kernel principal components of
X with respect to the kernel k and form a non-linear subspace that spans
the main directions of variation in the data [15].

3. The representation is then evaluated by looking at how many kernel principal
components are capturing the task T . Let U1..d and Λ1..d be the matrices
containing respectively the d leading eigenvectors and eigenvalues. Compute
the projected outputs Yd = U1..dU

�
1..dT . These predictions are the optimal

fit in the least square sense based on the d kernel principal components1.
1 Alternatively, if we would like to focus on the discrimination boundary between

classes, a logistic model of type maxβ trace(log(softmax(Φ1..d ·β) ·T�)) can be fitted,
where Φ1..d = U1..dΛ

0.5
1..d is the empirical feature space and β of size d × c contains

the regression parameters.
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4. Compute the residuals curve e(d) and the AUC:

e(d) = ||T − Yd||2F AUC =
1

n

n∑

d=1

e(d) (25.9)

These two quantities serve as metrics for evaluating how well the task is
represented by the kernel. An interpretation of residuals curves e(d) is given
in Figure 25.6.

d

e(
d
)

Scenario 1

d

e(
d
)

Scenario 2

d

e(
d
)

Scenario 3

d

e(
d
)

Scenario 4

Fig. 25.6. Cartoon showing how to interpret residuals curves yield by various kernels
on a certain task. Scenario 1 : the kernel contains all label-relevant information in its
principal components. This is the optimal case. Scenario 2 : a large amount of label-
relevant information is contained in the leading components, but remaining information
is missing. Scenario 3 : the task relevant information is contained in a large number
of principal components but can be predicted accurately. Scenario 4 : the kernel is not
suited for the task of interest. Note that although Scenario 2 and 3 have similar AUC,
their residuals curves are qualitatively very different.

25.4.2 Generative Analysis

The generative performance, measured in terms of data likelihood is what the
Boltzmann machine is optimized for. Unfortunately, data likelihood can not
be measured easily as it involves the estimation of the partition function that
is generally intractable. As a consequence, we must recourse to sophisticated
approximation schemes. We present an analysis introduced by Salakhutdinov
and Murray [14] that estimates the likelihood of the learned Boltzmann machine
based on annealed importance sampling (AIS) [10]. We describe here the basic
analysis. Salakhutdinov and Hinton [13] introduced more elaborate procedures
for particular types of Boltzmann machines such as restricted, semi-restricted
and deep Boltzmann machines.

As we have seen in Section 25.2, a deep Boltzmann machine associates to each
input x a probability

p(x; θ) =
Ψ(θ, x)

Z(θ)

where Ψ(θ, x) =
∑

y,z

p�(x, y, z; θ) and Z(θ) =
∑

x,y,z

p�(x, y, z; θ)
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and where p�(x, y, z; θ) = e−E(x,y,z;θ) is the unnormalized probability of state
(x, y, z). Computing Ψ(θ, x) and Z(θ) analytically is intractable because of the
exponential number of elements involved in the sum. We must therefore resort
to approximation procedures. Let us first rewrite the ratio of partition functions
as follows:

p(x; θ) =
Ψ(θ, x)

Z(θ)
=

Ψ(θ,x)
Ψ(0,x)

Z(θ)
Z(0)

· Ψ(0, x)
Z(0)

(25.10)

It can be noticed that the ratio of base-rate partition functions (θ = 0) is easy
to compute as θ = 0 makes all units independent. It has the analytical form

Ψ(0, x)

Z(0)
=

1

2Mx
. (25.11)

The two other ratios in Equation 25.10 can be estimated using annealed impor-
tance sampling. The annealed importance sampling method proceeds as follows:

Annealed importance sampling (AIS) [10]:

1. Generate a sequence of states ξ1, . . . , ξT using a sequence of transi-
tion operators T (ξ, ξ′; θ0), . . . , T (ξ, ξ′; θK) that leave p(ξ) invariant,
that is,
– Draw ξ0 from the base model (e.g. a random vector of zero and ones)
– Draw ξ1 given ξ0 using T (ξ, ξ′; θ1)
– . . .
– Draw ξK given ξK−1 using T (ξ, ξ′; θK)

2. Compute the importance weight

ωAIS =
p�(ξ1; θ1)

p�(ξ1; θ0)
· p

�(ξ2; θ2)

p�(ξ2; θ1)
· · · · · p

�(ξK ; θK)

p�(ξK ; θK−1)

It can be shown that if the sequence of models θ0, θ1, . . . , θK where θ0 = 0 and
θK = θ evolves slowly enough, the importance weight obtained with the annealed
importance sampling procedure is an estimate for the ratio between the partition
function of the model θ and the partition function of the base rate model.

In our case, ξ denotes the state (x, y, z) of the DBM and the transition opera-
tor T (ξ, ξ′; θ) corresponds to the alternating Gibbs samplers defined in Equation
25.3 and 25.4. The sequence of parameters {θ0, . . . , θK} can, for example, lie on
the line between 0 and θ, that is, θk = αk · θK where α0 < · · · < αK . Alterna-
tively, the sequence of parameters can be those that are observed throughout
training. In that case, maintaining a moving average of the parameter throughout
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training is necessary as the learning noise creates unnecessarily large variations
between two adjacent parameters.

We can now compute the two ratios of partition functions of Equation 25.10
as

Z(θ)

Z(0)
≈ E[ωAIS] and

Ψ(θ, x)

Ψ(0, x)
≈ E[νAIS(x)] (25.12)

where ωAIS is the importance weight resulting from the annealing process with
the freely running Gibbs sampler and νAIS is the importance weight resulting
from the annealing with input units clamped to the data point. Substituting
Equation 25.11 and 25.12 into Equation 25.10, we obtain

p(x; θ) ≈ E[νAIS(x)]

E[ωAIS]
· 1

2Mx

and therefore, the log-likelihood of the model is estimated as:

EX [log(p(x; θ))] ≈ EX [logE[νAIS(x)]]− logE[ωAIS]−Mx log(2). (25.13)

Generally, computing an average of the importance weight νAIS for each data
point x can take a long time. In practice, we can approximate it with a single
AIS run for each data point. In that case, it follows from Jensen’s inequality that

EX [log νAIS(x)] − logE[ωAIS] ≤ EX [logE[νAIS(x)]]− logE[ωAIS]. (25.14)

Consequently, this approximation tends to produce slightly pessimistic estimates
of the model log-likelihood, however the variance of νAIS is low compared to the
variance of ωAIS because the clamping of visible units to data points reduces the
diversity of AIS runs.

25.5 Experiments

In this section, we present a few experiments that demonstrate the effectiveness
of the centering trick for learning deep Boltzmann machines. We use the MNIST
handwritten digits recognition dataset that consists of 60000 training samples
and 10000 test samples. Each sample is a 28 × 28 grayscale image representing
a handwritten digit along with its label. Grayscale values (between 0 and 1) are
treated as probabilities.

Architectures: We consider a deep Boltzmann machine (DBM) made of 28× 28
input units, 200 intermediate units and 25 top units and a locally-connected
DBM (LC-DBM) made of 28×28 input units, 400 intermediate units that connect
to random input patches of size 6× 6 and 100 top units. These architectures are
illustrated in Figure 25.7 (left). In the DBM, the modeling load is concentrated in
the first layer with the top layer serving merely to model global digit-like features.
On the other hand, in the LC-DBM, most of the modeling load is postponed
to the second layer and the first layer serves essentially as a low-level local
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preprocessor. The initial offsets and biases for visible units are set to α = 〈x〉data
and a0 = sigm−1(α). We consider different initial biases (b0, c0 = −2, b0, c0 = 0
and b0, c0 = 2) and offsets (β, γ = sigm(−2), β, γ = sigm(0) and β, γ = sigm(2))
for the hidden units. These offsets and initial biases correspond to the sigmoids
plotted in Figure 25.4.

Learning: We use persistent contrastive divergence [19] to train the network
and keep track of 25 free particles in background of the learning procedure. We
use a Gibbs sampler to collect both the data-independent and data-dependent
statistics. At each iteration of the learning procedure, we run 3 iterations of the
alternating Gibbs sampler for collecting the data-dependent statistics (from a
minibatch of 25 data points) and one iteration for updating the data-independent
statistics. We use a learning rate η = 0.0004 per sample for each layer.

Evaluation: Evaluating the DBM in an online fashion requires to keep track
of the model parameters throughout training. We reduce the learning noise by
maintaining a moving average of the sequence of parameters observed during
learning. The moving average is tuned to remember approximately 10% of the
training history. We keep track of 500 data-dependent chains running on the
smoothed sequence of parameters and from which top-layer statistics k(z, z′) and
ratios Ψ(θ, x)/Ψ(0, x) are estimated. We also keep track of 100 data-independent
chains on the same sequence of parameters and from which the ratio Z(θ)/Z(0) is
estimated. Discriminative performance is measured as the projection residuals of
the labels on the kernel principal components and the area under the error curve
(see Equation 25.9) using an exponential RBF kernel with σ set to the mean of
pairwise distances between z and z′. Generative performance is measured in
terms of data log-likelihood (see Equation 25.13).

Results: Figure 25.7 summarizes the results of our analysis and corroborates
the importance of centering for obtaining a better discriminative and genera-
tive model of data. The centered DBM systematically produces better top-layer
AUC errors and has higher log-likelihood. The importance of centering for im-
proving generative models is particularly marked for the locally-connected DBM
(LC-DBM) where the top-layer is crucial for modeling long-range dependencies.
These results suggest that the centering trick is particularly useful when deal-
ing with hierarchical architectures where global statistics are handled only in the
deep layers of the network. Figure 25.8 (left) shows that the centered DBM yields
a kernel that contains most of the label information in its leading components
and has a low level of noise in the remaining components. This corresponds to
Scenario 1 of Figure 25.6. On the other hand, in the case of the non-centered
DBM, the labels span a few leading components of the kernel, but the remaining
components have a high level of noise. This corresponds to Scenario 2 of Figure
25.6. As a comparison, the simple input-layer RBF kernel exhibits high dimen-
sionality and low noise and thus, corresponds to Scenario 3 of Figure 25.6. The
importance of centering for producing good top-layer kernels is further confirmed
by looking at the second layer filters, visualized in Figure 25.8 (right) using a
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Deep Boltzmann
machine (DBM)

x 28× 28

y 200

z 25

Locally-connected
DBM (LC-DBM)

x 28× 28

� �

. . .

y 400

z 100

Fig. 25.7. Evolution of the AUC error and log-likelihood throughout training. “Cen-
tered+” designates deep Boltzmann machines that are continuously recentered through-
out training. In the DBM, reasonable generative performance can be achieved without
centering as the top layer is simply ignored by the rest of the model. In the LC-DBM,
centering is important for both generative and discriminative performance as the top
layer is required for modeling long-range dependencies. Continuously recentering yields
the most robust performance.

Centered DBM Non-centered DBM

Fig. 25.8. Comparison of the top-layer representation produced by centered and non-
centered DBMs. Left: error residuals produced by centered DBMs and non-centered
DBMs. Right: 2D-PCA (with a linear kernel) and second-layer filters. Results suggest
richer top-layer representations for centered DBMs than for non-centered DBMs.
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linear back-projection, and observing that they are much richer for the centered
DBM than for the non-centered one.

25.6 Conclusion

Learning deep Boltzmann machines is a difficult optimization problem that can
be highly sensitive to the parameterization of its energy function. In this chap-
ter, we propose the centering trick that consists of rewriting the energy as a
function of centered states. The centering trick improves the stability of deep
Boltzmann machines and allows to learn models that exhibit both advantageous
discriminative and generative properties.

Our experiments have been most successful on mid-scale models (in the range
of a few hundred hidden units). The high representational power of deep Boltz-
mann machines makes it hard to extend our experiments to larger scale models
(of thousands of units) without using an explicit regularizer such as layer-wise
pretraining or limited connectivity. We believe that applying the centering trick
to large-scale models should be made in conjunction with a strong regularizer
that limits the effective dimensionality of the model.
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Abstract. We show how nonlinear semi-supervised embedding algo-
rithms popular for use with “shallow” learning techniques such as kernel
methods can be easily applied to deep multi-layer architectures, either
as a regularizer at the output layer, or on each layer of the architecture.
Compared to standard supervised backpropagation this can give signifi-
cant gains. This trick provides a simple alternative to existing approaches
to semi-supervised deep learning whilst yielding competitive error
rates compared to those methods, and existing shallow semi-supervised
techniques.

26.1 Introduction

In this chapter we describe a trick for improving the generalization ability of
neural networks by utilizing unlabeled pairs of examples for semi-supervised
learning. The field of semi-supervised learning [7] has the goal of improving gen-
eralization on supervised tasks using unlabeled data. One of the tricks they use
is the so-called embedding of data into a lower dimensional space (or the related
task of clustering) which are unsupervised dimensionality reduction techniques
that have been intensively studied. For example, researchers have used nonlinear
embedding or cluster representations as features for a supervised classifier, with
improved results. Many of those proposed architectures are disjoint and shal-
low, by which we mean the unsupervised dimensionality reduction algorithm is
trained on unlabeled data separately as a first step, and then its results are fed
to a supervised classifier which has a shallow architecture such as a (kernelized)
linear model. For example, several methods learn a clustering or a distance mea-
sure based on a nonlinear manifold embedding as a first step [8, 9]. Transductive
� Much of the work in this chapter was completed while Jason Weston and Ronan

Collobert were working at NEC labs, Princeton, USA, and while Frédéric Ratle
was affiliated with the University of Lausanne, Switzerland. See [28] and [18] for
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Support Vector Machines (TSVMs) [26] (which employs a kind of clustering) and
LapSVM [2] (which employs a kind of embedding) are examples of methods that
are joint in their use of unlabeled data and labeled data, while their architecture
is shallow. In this work we use the same embedding trick as those researchers,
but apply it to (deep) neural networks.

Deep architectures seem a natural choice in hard AI tasks which involve several
sub-tasks which can be coded into the layers of the architecture. As argued
by several researchers [14, 3] semi-supervised learning is also natural in such a
setting as otherwise one is not likely to ever have enough data to perform well.
This is both because of the dearth of label data, and because of the difficulty of
training the architectures. Secondly, intuitively one would think that training on
labeled and unlabeled data jointly should help guide the best use of the unlabeled
data for the labeled task compared to a two-stage disjoint approach. (However,
to our knowledge there is no systematic evidence of the latter, and there might
be reasons to train disjointly, for example label prediction tends to overfit faster
than the embedding because you have less data to fit them. Doing unsupervised
pretraining first and supervised fine-tuning afterwards might naturally solve this
problem. On the other hand, it is only because the problem is non-convex that
a two-stage approach does anything at all – all the learning from the first stage
may be “forgotten”).

Several authors have recently proposed methods for using unlabeled data in
deep neural network-based architectures. These methods either perform a greedy
layer-wise pre-training of weights using unlabeled data alone followed by super-
vised fine-tuning (which can be compared to the disjoint shallow techniques for
semi-supervised learning described before), or learn unsupervised encodings at
multiple levels of the architecture jointly with a supervised signal. Only consid-
ering the latter, the basic setup we advocate is simple:

1. Choose an unsupervised learning algorithm.
2. Choose a model with a deep architecture.
3. The unsupervised learning is plugged into any (or all) layers of the architec-

ture as an auxiliary task.
4. Train supervised and unsupervised tasks using the same architecture simul-

taneously (with a joint objective function).

Theaim is that theunsupervisedmethodwill improveaccuracyon the task athand.
In this chapter we advocate a simple way of performing deep learning by leveraging
existing ideas from semi-supervised algorithms developed in shallow architectures.
In particular, we focus on the idea of combining an embedding-based regularizer
with a supervised learner to perform semi-supervised learning, such as is used in
Laplacian SVMs [2]. We show that this method can be: (i) generalized to multi-
layer networks and trained by stochastic gradient descent; and (ii) is valid in the
deep learning framework given above.Experimentally,we also show that it seems to
work quite well. We expect this is due to several effects: firstly, the extra embedding
objective acts both as a data-dependent regularizer but secondly also as a weakly-
supervised task that is correlated well with the supervised task of interest. Finally,
adding this training objective at multiple layers of the network helps to train all
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the layers rather than just backpropagating from the final layer as in supervised
learning.

Although the core of this chapter focuses on a particular algorithm (embed-
ding) in a joint setup, we expect the approach would also work in a disjoint
setup too, and with other unsupervised algorithms, for example the approach of
Transductive SVM has also been generalized to the deep learning case [15].

26.2 Semi-supervised Embedding

Our method will adapt existing semi-supervised embedding techniques for shal-
low methods to neural networks. Hence, before we describe the method, let us
first review existing semi-supervised approaches. A key assumption in many semi-
supervised algorithms is the structure assumption1: points within the same struc-
ture (such as a cluster or a manifold) are likely to have the same label. Given this
assumption, the aim is to use unlabeled data to uncover this structure. In order to
do this many algorithms such as cluster kernels [8], LDS [9], label propagation [30]
and LapSVM [2], to name a few, make use of regularizers that are directly related
to unsupervised embedding algorithms. To understand these methods we will first
review some relevant approaches to linear and nonlinear embedding.

26.2.1 Embedding Algorithms

We will focus on a rather general class of embedding algorithms that can be de-
scribed by the following type of optimization problem: given the data x1, . . . , xU
find an embedding f(xi) of each point xi by minimizing

U∑

i,j=1

L(f(xi, α), f(xj , α),Wij)

w.r.t. the learning paramaters α, subject to

Balancing constraint.

This type of optimization problem has the following main ingredients:

– f(x) ∈ R
n is the embedding one is trying to learn for a given example

x ∈ R
d. It is parametrized by α. In many techniques f(xi) = fi is a lookup

table where each example i is assigned an independent vector fi.
– L is a loss function between pairs of examples.
– The matrixW of weightsWij specifies the similarity or dissimilarity between

examples xi and xj . This is supplied in advance and serves as a kind of label
for the loss function.

– A balancing constraint is often required for certain objective functions so
that a trivial solution is not reached.

1 This is often referred to as the cluster assumption or the manifold assumption [7].
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As is usually the case for such machine learning setups, one can specify the model
type (family of functions) and the loss to get different algorithmic variants. Many
well known methods fit into this framework, we describe some pertinent ones
below.

Multidimensional scaling (MDS) [16] is a classical algorithm that attempts to
preserve the distance between points, whilst embedding them in a lower dimen-
sional space, e.g. by using the loss function

L(fi, fj,Wij) = (||fi − fj || −Wij)
2

MDS is equivalent to PCA if the metric is Euclidean [29].

ISOMAP [25] is a nonlinear embedding technique that attempts to capture
manifold structure in the original data. It works by defining a similarity metric
that measures distances along the manifold, e.g. Wij is defined by the shortest
path on the neighborhood graph. One then uses those distances to embed using
conventional MDS.

Laplacian Eigenmaps [1] learn manifold structure by emphasizing the preserva-
tion of local distances. One defines the distance metric between the examples by
encoding them in the Laplacian L̃ = W −D, where Dii =

∑
jWij is diagonal.

Then, the following optimization is used:
∑

ij

L(fi, fj,Wij) =
∑

ij

Wij ||fi − fj ||2 = f�L̃f (26.1)

subject to the balancing constraint:

f�Df = I and f�D1 = 0. (26.2)

Siamese Networks [4] are also a classical method for nonlinear embedding. Neural
networks researchers think of such models as a network with two identical copies of
the same function, with the same weights, fed into a “distance measuring” layer to
compute whether the two examples are similar or not, given labeled data. In fact,
this is exactly the same as the formulation given at the beginning of this section.

Several loss functions have been proposed for siamese networks, here we de-
scribe a margin-based loss proposed by the authors of [13]:

L(fi, fj,Wij) =

{
||fi − fj||2 if Wij = 1,
max(0,m− ||fi − fj ||2)2 if Wij = 0

(26.3)

which encourages similar examples to be close, and dissimilar ones to have a
distance of at least m from each other. Note that no balancing constraint is
needed with such a choice of loss as the margin constraint inhibits a trivial
solution. Compared to using constraints like (26.2) this is much easier to optimize
by gradient descent.
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26.2.2 Semi-supervised Algorithms

Several semi-supervised classification algorithms have been proposed which take
advantage of the algorithms described in the last section. Here we assume the
setting where one is givenM+U examples xi, but only the firstM have a known
label yi.

Label Propagation [30] adds a Laplacian Eigenmap type regularization to a
nearest-neighbor type classifier:

min
f

M∑

i=1

||fi − yi||2 + λ
M+U∑

i,j=1

Wij ||fi − fj ||2 (26.4)

The algorithm tries to give two examples with large weighted edge Wij the same
label. The neighbors of neighbors tend to also get the same label as each other
by transitivity, hence the name label propagation.

LapSVM [2] uses the Laplacian Eigenmaps type regularizer with an SVM:

min
w,b
||w||2 + γ

M∑

i=1

H(yif(xi)) + λ
M+U∑

i,j=1

Wij ||f(xi)− f(xj)||2 (26.5)

where H(x) = max(0, 1 − x) is the hinge loss, and the final classifier will be
f(x) = w · x+ b.

Other Methods In [9] a method called graph is suggested which combines a
modified version of ISOMAP with an SVM. The authors also suggest to combine
modified ISOMAP with TSVMs rather than SVMs, and call it Low Density
Separation (LDS).

26.3 Semi-supervised Embedding for Deep Learning

We would like to use the ideas developed in semi-supervised learning for deep
learning. Deep learning consists of learning a model with several layers of non-
linear mapping. In this chapter we will consider multi-layer networks with N
layers of hidden units that give a C-dimensional output vector:

fi(x) =

d∑

j=1

wO,i
j hNj (x) + bO,i, i = 1, . . . , C (26.6)

where wO are the weights for the output layer, and typically the kth layer is
defined as

hki (x) = S
(∑

j

wk,i
j hk−1

j (x) + bk,i
)
, k > 1 (26.7)
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h1i (x) = S
(∑

j

w1,i
j xj + b

1,i
)

(26.8)

and S is a non-linear squashing function such as tanh. Here, we describe a stan-
dard fully connected multi-layer network but prior knowledge about a particular
problem could lead one to other network designs. For example in sequence and
image recognition time delay and convolutional networks (TDNNs and CNNs)
[17] have been very successful. In those approaches one introduces layers that
apply convolutions on their input which take into account locality information
in the data, i.e. they learn features from image patches or windows within a
sequence.

The general method we propose for deep learning via semi-supervised embed-
ding is to add a semi-supervised regularizer in deep architectures in one of three
different modes, as shown in Figure 26.1:

(a) Add a semi-supervised loss (regularizer) to the supervised loss on the entire
network’s output (26.6):

M∑

i=1

�(f(xi), yi) + λ

M+U∑

i,j=1

L(f(xi), f(xj),Wij) (26.9)

This is most similar to the shallow techniques described before, e.g. equation
(26.5).

(b) Regularize the kth hidden layer (26.7) directly:

M∑

i=1

�(f(xi), yi) + λ

M+U∑

i,j=1

L(fk(xi), f
k(xj),Wij) (26.10)

where fk(x) = (hk1(x), . . . , h
k
HUk

(x)) is the output of the network up to the
kth hidden layer (HUk is the number of hidden units on layer k).

(c) Create an auxiliary network which shares the first k layers of the original
network but has a new final set of weights:

gi(x) =
∑

j

wAUX,i
j hkj (x) + b

AUX,i (26.11)

We train this network to embed unlabeled data simultaneously as we train
the original network on labeled data.

One can use the loss function (26.3) for embedding, and the hinge loss

�(f(x), y) =

C∑

c=1

H(y(c)fc(x)),

for labeled examples, where y(c) = 1 if y = c and -1 otherwise. For neighboring
points, this is the same regularizer as used in LapSVM and Laplacian Eigenmaps.
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Fig. 26.1. Three modes of embedding in deep architectures

Algorithm 26.1 EmbedNN
Input: labeled data (xi, yi), i = 1, . . . ,M , unlabeled data xi, i =M+1, . . . , U ,
set of functions f(·), and embedding functions gk(·), see Figure 26.1 and equa-
tions (26.9), (26.10) and (26.11).
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize �(f(xi), yi)
for each embedding function gk(·) do

Pick a random pair of neighbors xi, xj .
Make a gradient step for λL(gk(xi), gk(xj), 1)
Pick a random unlabeled example xn.
Make a gradient step for λL(gk(xi), gk(xn), 0)

end for
until stopping criteria is met.

For non-neighbors, where Wij = 0, this loss “pulls” points apart, thus inhibiting
trivial solutions without requiring difficult constraints such as (26.2). To achieve
an embedding without labeled data the latter is necessary or all examples would
collapse to a single point in the embedding space. This regularizer is therefore
preferable to using (26.1) alone. Pseudocode of the overall approach is given in
Algorithm 26.1.

Some possible tricks to take into consideration are:

– The hyperparameter λ: in most of our experiments we simply set this to λ = 1
and it worked well due to the alternating updates in Algorithm 26.1. Note
however if you are using many embedding loss functions they will dominate
the objective in that case.

– We note that near the end of optimization it may be advantageous to re-
duce the learning rate of the regularizer more than the learning rate for the
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term that is minimizing the training error so that the training error can be
as low as possible on noiseless tasks (however we did not try this in our
experiments).

– If you use an internal embedding on the first layer of your network, it is
likely that this embedding problem is harder than an internal embedding on
a later layer, so you might not want to give them all the same learning rate
or margin, but that complicates the hyperparameter choices. An alternative
idea would be to use auxiliary layers on earlier layers, or even go through
two auxiliary layers, rather than one to make the embedding task easier.
Auxiliary layers are thrown away at test time.

– Embedding on the last output layer may not always be a good idea, de-
pending on the type of network. For example if you are using a softmax last
layer the 2-norm type embedding loss may not be appropriate for the log
probability representation in the last layer. In that case we suggest to do the
embedding on the last-but-one layer instead.

– Finally, although we did not try it, training in a disjoint fashion, i.e. doing
the embedding training first, and then continuing training with a fine tuning
step with only the labeled data, might simplify these hyperparameter choices
above.

26.3.1 Labeling Unlabeled Data as Neighbors (Building the Graph)

Training neural networks online using stochastic gradient descent is fast and can
scale to millions of examples. A possible bottleneck with the described approach
is computation of the matrix W , that is, computing which unlabeled examples
are neighbors and have valueWij = 1. Embedding algorithms often use k-nearest
neighbor for this task. Many methods for its fast computation do exist, for
example hashing and tree-based methods.

However, there are also many other ways of collecting neighboring unlabeled
data that do not involve computing k-nn. For example, if one has access to
unlabeled sequence data the following tricks can be used:

– For image tasks one can make use of the temporal coherence of unlabeled
video: two successive frames are very likely to contain similar content and
represent the same concept classes. Each object in the video is also likely
to be subject to small transformations, such as translation, rotation or de-
formation over neighboring frames. Hence, using this with semi-supervised
embedding could learn classes that are invariant to those changes. For exam-
ple, one can take images from two consecutive (or close) frames of video as a
neighboring pair with Wij = 1. Such pairs are likely to have the same label,
and are collected cheaply. Frames that are far apart are assigned Wij = 0.

– For text tasks one can use documents to collect unsupervised pairs. For
example, one could consider sentences (or paragraphs) of a document as
neighbors that contain semantically similar information (they are probably
about the same topic).

– Similarly, for speech tasks it might be possible to use audio streams in the
same way.
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26.3.2 When Do We Expect This Approach to Work?

One can see the described approach as an instance of multi-task learning [6] us-
ing unsupervised auxiliary tasks. In common with other semi-supervised learning
approaches, and indeed other deep learning approaches, given a k-nn type ap-
proach to building unlabeled pairs we only expect this to work if p(x) is useful
for the supervised task p(y|x), i.e. if the structure assumption is true. That is,
if the decision rule lies in a region of low density with respect to the distance
metric chosen for k-nearest neighbors. We believe many natural tasks have this
property.

However, if the graph is built using sequence data as described in the previous
section, it is then possible that the method does not rely on the low density
assumption at all. To see this, consider uniform two-dimensional data where the
class label is positive if it is above the y-axis, and negative if it is below. A nearest-
neighbor graph gives no information about the class label, or equivalently there
is no margin to optimize for TSVMs. However, if sequence data (analogous to a
video) only has data points with the same class label in consecutive frames then
this would carry information. Further, no computational cost is associated with
collecting video data for computing the embedding loss, in contrast to building
neighbor graphs. Finally, note that in high dimensional spaces nearest neighbors
might also perform poorly, e.g. in the pixel space of images.

26.3.3 Why Is This Approach Good?

There are a number of reasons why the deep semi-supervised embedding trick
might be useful compared to competing approaches:

– Deep embedding is very easy to optimize by gradient descent as it has a
very simple loss function. This means it can be applied to any kind of neu-
ral network architecture cheaply and efficiently. As well as being generally
applicable, it is also quite easy to implement.

– Compared to a reconstruction based loss function, such as used in an autoen-
coder, our approach can be much cheaper to do the gradient updates. In our
approach there is an encoding step, but no decoding step. That is, the loss
is measured in the usually relatively low-dimensional embedding space. For
high-dimensional input data (even if that data is sparse) e.g. text data, the
reconstruction can be very slow, e.g. a bag-of-words representation with a
dictionary of tens of thousands of words. Further, in a convolutional-pooling
network architecture it might be hard to reconstruct the original data, so
again an encoder-decoder system might be hard to do, but our method only
requires an encoder.

– Our approach does not necessarily require the so called low density assump-
tion which most other approaches depend upon. Many methods only work
on data when that assumption is true (which we do not know in advance
in general). Our method may still work, depending on how the pair-data is
collected. This point was elaborated in the previous subsection.



648 J. Weston et al.

Table 26.1. Datasets used in our experiments. The first three are small scale datasets
used in the same experimental setup as found in [9, 24, 10]. The following six datasets
are large scale. The Mnist 1h, 6h, 1k, 3k and 60k variants are MNIST with a labeled
subset of data, following the experimental setup in [10]. SRL is a Semantic Role La-
beling task [20] with one million labeled training examples and 631 million unlabeled
examples. COIL100 is an object detection dataset [19].

data set classes dims points labeled
g50c 2 50 500 50
Text 2 7511 1946 50
Uspst 10 256 2007 50
Mnist1h 10 784 70k 100
Mnist6h 10 784 70k 600
Mnist1k 10 784 70k 1000
Mnist3k 10 784 70k 3000
Mnist60k 10 784 70k 60000
SRL 16 - 631M 1M
COIL100 (30 objects) 30 72x72 pixels 7200 120
COIL100 (100 objects) 100 72x72 pixels 7200 400

26.4 Experimental Evaluation

We test the semi-supervised embedding approach on several datasets summa-
rized in Table 26.1.

26.4.1 Small-Scale Experiments

g50c, Text and Uspst are small-scale datasets often used for semi-supervised
learning experiments [9, 24, 10]. We followed the same experimental setup, aver-
aging results of ten splits of 50 labeled examples where the rest of the data is un-
labeled. In these experiments we test the embedding regularizer on the output of
a neural network (see equation (26.9) and Figure 26.1(a)). We define a two-layer
neural network (NN) with hu hidden units. We define W so that the 10 nearest
neighbors of i have Wij = 1, and Wij = 0 otherwise. We train for 50 epochs of
stochastic gradient descent and fixed λ = 1, but for the first 5 we optimized the
supervised target alone (without the embedding regularizer). This gives two free
hyperparameters: the number of hidden units hu = {0, 5, 10, 20, 30, 40, 50} and
the learning rate lr = {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}.

We report the optimum choices of these values optimized both by 5-fold cross
validation and by optimizing on the test set in Table 26.2. Note the datasets are
very small, so cross validation is unreliable. Several methods from the literature
optimized their hyperparameters using the test set (those that are not marked
with (cv)). Our EmbedNN is competitive with state-of-the-art semi-supervised
methods based on SVMs, even outperforming them in some cases.
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Table 26.2. Results on Small-Scale Datasets. We report the best test error over the
hyperparameters of our method, EmbedNN, as in the methodology of [9] as well as the
error when optimizing the parameters by cross-validation, EmbedNN(cv). LDS(cv) and
LapSVM(cv) also use cross-validation.

g50c Text Uspst
SVM 8.32 18.86 23.18
TSVM 5.80 5.71 17.61
LapSVM(cv) 5.4 10.4 12.7
LDS(cv) 5.4 5.1 15.8
Label propagation 17.30 11.71 21.30
Graph SVM 8.32 10.48 16.92
NN 10.62 15.74 25.13
EmbedNN 5.66 5.82 15.49
EmbedNN(cv) 6.78 6.19 15.84

Table 26.3. Results on MNIST with 100, 600, 1000 and 3000 labels. A two-layer
Neural Network (NN) is compared to an NN with Embedding regularizer (EmbedNN)
on the output (O), ith layer (Ii) or auxiliary embedding from the ith layer (Ai) (see
Figure 26.1). A convolutional network (CNN) is also tested in the same way. We com-
pare to SVMs and TSVMs. RBM, SESM, DBN-NCA and DBN-rNCA (marked with
(∗)) taken from [21, 23] are trained on a different data split.

Mnst1h Mnst6h Mnst1k Mnst3k
SVM 23.44 8.85 7.77 4.21
TSVM 16.81 6.16 5.38 3.45
RBM(∗) 21.5 - 8.8 -
SESM(∗) 20.6 - 9.6 -
DBN-NCA(∗) - 10.0 - 3.8
DBN-rNCA(∗) - 8.7 - 3.3
NN 25.81 11.44 10.70 6.04
EmbedONN 17.05 5.97 5.73 3.59
EmbedI1NN 16.86 9.44 8.52 6.02
EmbedA1NN 17.17 7.56 7.89 4.93
CNN 22.98 7.68 6.45 3.35
EmbedOCNN 11.73 3.42 3.34 2.28
EmbedI5CNN 7.75 3.82 2.73 1.83
EmbedA5CNN 7.87 3.82 2.76 2.07

Table 26.4. Mnist1h dataset with deep networks of 2, 6, 8, 10 and 15 layers; each
hidden layer has 50 hidden units. We compare classical NN training with EmbedNN
where we either learn an embedding at the output layer (O) or an auxiliary embedding
on all layers at the same time (ALL).

2 4 6 8 10 15
NN 26.0 26.1 27.2 28.3 34.2 47.7
EmbedONN 19.7 15.1 15.1 15.0 13.7 11.8
EmbedALLNN 18.2 12.6 7.9 8.5 6.3 9.3
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Table 26.5. Full Mnist60k dataset with deep networks of 2, 6, 8, 10 and 15 layers, using
either 50 or 100 hidden units. We compare classical NN training with EmbedALLNN
where we learn an auxiliary embedding on all layers at the same time.

2 4 6 8 10 15
NN (HUs=50) 2.9 2.6 2.8 3.1 3.1 4.2
EmbedALLNN 2.8 1.9 2.0 2.2 2.4 2.6
NN (HUs=100) 2.0 1.9 2.0 2.2 2.3 3.0
EmbedALLNN 1.9 1.5 1.6 1.7 1.8 2.4

26.4.2 MNIST Experiments

We compare our method in all three different modes (Figure 26.1) with conven-
tional semi-supervised learning (TSVM) using the same data split and validation
set as in [10]. We also compare to several deep learning methods: RBMs (Re-
stricted Boltzmann Machines), SESM (Sparse Encoding Symmetric Machine),
DBN-NCA and DBN-rNCA (Deep Belief Nets - (regularized) Neighbourhood
Components Analysis). (Note, however the latter were trained on a different
data split). In these experiments we consider 2-layer networks (NN) and 6-layer
convolutional neural nets (CNN) for embedding. We optimize the parameters
of NN ( hu = {50, 100, 150, 200, 400} hidden units and learning rates as before)
on the validation set. The CNN architecture is fixed: 5 layers of image patch-
type convolutions, followed by a linear layer of 50 hidden units, similar to [17].
The results given in Table 26.3 show the effectiveness of embedding in all three
modes, with both NNs and CNNs.

26.4.3 Deeper MNIST Experiments

We then conducted a similar set of experiments but with very deep architectures
– up to 15 layers, where each hidden layer has 50 hidden units. Using Mnist1h,
we first compare conventional NNs to EmbedALLNN where we learn an aux-
iliary nonlinear embedding (50 hidden units and a 10 dimensional embedding
space) on each layer, as well as EmbedONN where we only embed the outputs.
Results are given in Table 26.4. When we increase the number of layers, NNs
trained with conventional backpropagation overfit and yield steadily worse test
error (although they are easily capable of achieving zero training error). In con-
trast, EmbedALLNN improves with increasing depth due to the semi-supervised
“regularization”. Embedding on all layers of the network has made deep learning
possible. EmbedONN (embedding on the outputs) also helps, but not as much.

We also conducted some experiments using the full MNIST dataset, Mnist60k.
Again using deep networks of up to 15 layers using either 50 or 100 hidden
units EmbedALLNN outperforms standard NN. Results are given in Table 26.5.
Despite the lack of availability of extra unlabeled data, we still the same effect
as in the semi-supervised case that NN overfits with increasing capacity, whereas
EmbedNN is more robust (even if it exhibits some overfitting compared to the
optimal depth, it is nowhere near as pronounced.) Increasing the number of
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hidden units is likely to improve these results further, e.g. using 4 layers and
500 hidden units on each layer, one obtains 1.27% using EmbedALLNN. Overall,
these results show that the regularization in EmbedNNALL is useful in settings
outside of a semi-supervised learning.

Table 26.6. A deep architecture for Semantic Role Labeling with no prior knowledge
outperforms state-of-the-art systems ASSERT and SENNA that incorporate knowledge
about parts-of-speech and parse trees. A convolutional network (CNN) is improved
by learning an auxiliary embedding (EmbedA1CNN) for words represented as 100-
dimensional vectors using the entire Wikipedia website as unlabeled data.

Method Test Error
ASSERT [20] 16.54%
SENNA [11] 16.36%
CNN [no prior knowledge] 18.40%
EmbedA1CNN [no prior knowledge] 14.55%

26.4.4 Semantic Role Labeling

The goal of semantic role labeling (SRL) is, given a sentence and a relation
of interest, to label each word with one of 16 tags that indicate that word’s
semantic role with respect to the action of the relation. For example the sen-
tence "The cat eats the fish in the pond" is labeled in the following way:
"TheARG0 catARG0 eatsREL theARG1 fishARG1 inARGM−LOC theARGM−LOC

pondARGM−LOC" where ARG0 and ARG1 effectively indicate the subject and
object of the relation “eats” and ARGM-LOC indicates a locational modifier.
The PropBank dataset includes around 1 million labeled words from the Wall
Street Journal. We follow the experimental setup of [11] and train a 5-layer con-
volutional neural network for this task, where the first layer represents the input
sentence words as 50-dimensional vectors. Unlike [11], we do not give any prior
knowledge to our classifier. In that work words were stemmed and clustered us-
ing their parts-of-speech. Our classifier is trained using only the original input
words.

We attempt to improve this system by, as before, learning an auxiliary embed-
ding task. Our embedding is learnt using unlabeled sentences from the Wikipedia
web site, consisting of 631 million words in total using the scheme described in
Section 26.3. The same lookup table of word vectors as in the supervised task is
used as input to an 11 word window around a given word, yielding 550 features.
Then a linear layer projects these features into a 100 dimensional embedding
space. All windows of text from Wikipedia are considered neighbors, and non-
neighbors are constructed by replacing the middle word in a sentence window
with a random word. Our lookup table indexes the most frequently used 30,000
words, and all other words are assigned index 30,001.

The results in Table 26.6 indicate a clear improvement when learning an
auxiliary embedding. ASSERT [20] is an SVM parser-based system with many
hand-coded features, and SENNA is a NN which uses part-of-speech information
to build its word vectors. In contrast, our system is the only state-of-the-art
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Table 26.7. Test Accuracy on COIL100 in various settings. Both 30 and 100 objects
were used following [27]. The semi-supervised embedding algorithm using temporal
coherence of video (Embed CNN) on the last but one layer of an 8 layer CNN, with
various choices of video, outperforms a standard (otherwise identical) 8-layer CNN
and other baselines. (Note that with 100 objects this is a transductive approach, as
we use the test set as unlabeled data during training, whereas with 30 objects a semi-
supervised approach is used.)

Method 30 objects 100 objects
Nearest Neighbor 81.8 70.1
SVM 84.9 74.6
SpinGlass MRF 82.79 69.41
Eigen Spline 84.6 77.0
VTU 89.9 79.1
Standard CNN 84.88 71.49
Embed CNN 95.03 92.25

method that does not use prior knowledge in the form of features derived from
parts-of-speech or parse tree data. The use of neural network techniques for
this application is explored in much more detail in [12], although a different
semi-supervised technique is used in that work.

26.4.5 Object Recognition Using Unlabeled Video

Finally, we detail some experiments using unlabeled video for semi-supervised
embedding, more details of these experiments can be found in [18]. We used the
COIL100 image dataset [19] which contains color pictures of 100 objects, each
72x72 pixels. There are 72 different views for every object, i.e. there are 7200
images in total. The images were obtained by placing the objects on a turntable
and taking a shot for each 5 degree turn. Note that the rotation of the objects
can be viewed as an unlabeled video which we can use in our semi-supervised
embedding approach.

The setup of our experiments is as follows. First, we use a standard convo-
lutional neural network (CNN) without utilizing any temporal information to
establish a baseline. We used an 8-layer network consisting of three sets of con-
volution followed by subsampling layers, a final convolution layer and a fully
connected layer that predicts the outputs.

For comparability with the settings available from other studies on COIL100,
we choose two experimental setups. These are (i) when all 100 objects of COIL
are considered in the experiment and (ii) when only 30 labeled objects out of
100 are studied (for both training and testing). In either case, 4 out of 72 views
(at 0, 90, 180, and 270 degrees) per object are used for training, and the rest of
the 68 views are used for testing. The results are given in Table 26.7 compared
to some existing methods [22, 27, 5]. Note that using 100 objects is a harder
task than using 30 objects (classes).
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To use the semi-supervised embedding trick on our CNN for video, we treat
COIL100 as a continuous unlabeled video sequence of rotating objects with 72
consecutive frames per each object (after 72 frames the continuous video switches
object). We perform the embedding on the last but one layer of our 8 layer CNN,
i.e. on the representation yielded by the successive layers of the network just
before the final softmax. For the 100 object result, the test set is hence part of
the unlabeled video (a so-called “transductive” setting). Here we obtained 92.25%
accuracy (Embed CNN) which is much higher than the best alternative method
(VTU) and the standard CNN that we trained.

A natural question is what happens if we do not have access to test data
during training, i.e. the setting is a typical semi-supervised situation rather than
a “transductive” setting. To explore this, we used 30 objects as the primary
task, i.e. 4 views of each object in this set were used for training, and the rest
for test. The other 70 objects only were treated as an unlabeled video sequence
(again, images of each object were put in consecutive frames of a video sequence).
Training with 4 views of 30 objects (labeled data) and 72 views of 70 objects
(unlabeled video sequence) resulted in an accuracy of 95.03% on recognizing 68
views of the 30 objects. This is about 10% above the standard CNN performance.

26.5 Conclusion

In this chapter, we showed how one can improve supervised learning for deep
architectures if one jointly learns an embedding task using unlabeled data.
Researchers using shallow architectures already showed two ways of using em-
bedding to improve generalization: (i) embedding unlabeled data as a separate
pre-processing step (i.e., first layer training) and; (ii) using embedding as a reg-
ularizer (i.e., at the output layer). It appears similar techniques can also be used
for multi-layer neural networks as well, using the tricks described in this chapter.
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Identifying Dynamical Systems for Forecasting
and Control

Preface

Identifying dynamical systems from data is a promising approach to data fore-
casting and optimal control. Data forecasting is an essential component of ratio-
nal decision making in quantitative finance, marketing and planning. Optimal
control systems, that is, systems that can sense the environment and react ap-
propriately, enable the design of cost efficient gas turbines, smart grids and
human-machine interfaces.

A successful architecture for the task of modeling a dynamical system is the
recurrent neural network (RNN). The state of the dynamical system is repre-
sented by the set of units that compose the network and the transition between
two consecutive states is determined by the recurrent connection between these
units. The network can be trained with backpropagation through time, that is,
standard backpropagation on the RNN unfolded in time. Recurrent neural net-
works are notoriously difficult to train, specially, when the neural network has
to model long-term dependencies. Indeed, the local learning signal is of little use
when when local variations (high frequency components of the time series) do
not reflect global trends (low frequency components).

This state of affairs has led many to seek alternatives to backpropagation
through time. A radical departure from backpropagation is the Echo State Net-
work [2]. The idea behind echo state networks is simple: (1) Create a huge neural
network with random recurrent connections and (2) fit a linear model between
the activations of the network and the time series to predict. The huge random
RNN is called a “reservoir” and implements an overcomplete set of nonlinear
primitives, only a subset of which, are useful in order to model the time series
to predict. Tuning the reservoir to produce the most task-relevant primitives
requires some practical experience. Best practices for tuning echo state networks
are described in Chapter 27 [3].

An alternative approach for overcoming the inherent difficulties of backprop-
agation is to pay particular attention to the structure of the RNN. A carefully
designed RNN helps error derivatives to flow on larger time scales. Tricks such
as overshooting, error correction neural networks or variant-invariant separation
are introduced in Chapter 28 [6]. The same type of networks can be applied
to the identification of state-action representation for control systems. Chapter
29 [1] shows how to apply recurrent neural networks to the identification of a
full-fledged Markov decision process from the observation of an existing control
system. This so-called Markov decision process extraction network (MPEN) en-
courages the emergence of a joint state-action representation that best captures
the relevant information for the control task.

G. Montavon et al. (Eds.): NN: Tricks of the Trade, 2nd edn., LNCS 7700, pp. 657–658, 2012.
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Q-learning [5] is a popular reinforcement learning algorithm for control sys-
tems. It associates to each state-action pairs a Q-value that indicates how
close to the goal the action at a given state brings us. Q-values are deter-
mined dynamically by the Q-learning algorithm, as a result of the exploration
of the state-action space by the controller. The question remains how can Q-
values generalize in a continuous state space. Chapter 30 [4] answers this ques-
tion and provides a practical guide to set up step-by-step neural reinforcement
controllers.

Grégoire & Klaus
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Abstract. Reservoir computing has emerged in the last decade as an
alternative to gradient descent methods for training recurrent neural net-
works. Echo State Network (ESN) is one of the key reservoir computing
“flavors”. While being practical, conceptually simple, and easy to imple-
ment, ESNs require some experience and insight to achieve the hailed
good performance in many tasks. Here we present practical techniques
and recommendations for successfully applying ESNs, as well as some
more advanced application-specific modifications.

27.1 Introduction

Training Recurrent Neural Networks (RNNs) is inherently difficult. This (de-)
motivates many to avoid them altogether. RNNs, however, represent a very pow-
erful generic tool, integrating both large dynamical memory and highly adaptable
computational capabilities. They are the Machine Learning (ML) model most
closely resembling biological brains, the substrate of natural intelligence.

Error backpropagation (BP) [40] is to this date one of the most important
achievements in artificial neural network training. It has become the standard
method to train especially Feed-Forward Neural Networks (FFNNs). Many use-
ful practical aspects of BP are discussed in other chapters of this book and in
its previous edition, e.g., [26]. BP methods have also been extended to RNNs
[51, 52], but only with a partial success. One of the conceptual limitations of
BP methods for RNNs is that bifurcations can make training non-converging
[8]. Even when they do converge, this convergence is slow, computationally ex-
pensive, and can lead to poor local minima.

Ten years ago an alternative trend of understanding, training, and using RNNs
has been proposed with Echo State Networks (ESNs) [16, 21] in ML, and Liq-
uid State Machines (LSMs) [32] in computational neuroscience. It was shown
that RNNs often work well enough even without full adaptation of all network
weights. In the classical ESN approach the RNN (called reservoir) is generated
randomly, and only the readout from the reservoir is trained. It should be noted
that this basic idea was first clearly spelled out in a neuroscientific model of the
corticostriatal processing loop [7]. Perhaps surprisingly this approach yielded
excellent performance in many benchmark tasks, e.g., [16, 15, 19, 22, 47, 48].

G. Montavon et al. (Eds.): NN: Tricks of the Trade, 2nd edn., LNCS 7700, pp. 659–686, 2012.
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The trend started by ESNs and LSMs became lately known as Reservoir
Computing (RC) [49]. RC is currently a prolific research area, giving important
insights into RNNs, procuring practical machine learning tools, as well as en-
abling computation with non-conventional hardware [31]. RC today subsumes
a number of related methods and extensions of the original idea [29], but the
original ESN approach still holds its ground for its simplicity and power.

The latest developments in BP for RNNs, second-order gradient descent meth-
ods called Hessian-free optimization, presented in [34] and discussed in a chapter
[35] of this book, alleviate some of the mentioned shortcomings. In particular,
they perform better on problems which require long memory [34]. These are
known to be hard for BP RNN training [1], unless networks are specifically de-
signed to deal with them [13]. Structural damping of Hessian-free optimization
[34], an online adaptation of the learning process which penalizes big changes in
RNN activations, likely tends to drive the learning process away from passing
through many bifurcations (that are exactly big changes in activations and can
probably be anticipated and avoided to some extent). On a benchmark suite
designed to challenge long short-term memory acquisition, ESNs however still
outperform Hessian-free trained RNNs [23].

ESNs from their beginning proved to be a highly practical approach to RNN
training. It is conceptually simple and computationally inexpensive. It reinvigo-
rated interest in RNNs, by making them accessible to wider audiences. However,
the apparent simplicity of ESNs can sometimes be deceptive. Successfully apply-
ing ESNs needs some experience. There is a number of things that can be done
wrong. In particular, the initial generation of the raw reservoir network is influ-
enced by a handful of global parameters, and these have to be set judiciously. The
same, however, can be said about virtually every ML technique. Techniques and
recommendations on successfully applying ESNs will be addressed in this work.

We will try to organize the “best practices” of ESNs into a logical order despite
the fact that they are often non-sequentially interconnected. We will start with
defining the ESN model and the basic learning procedure in Section 27.2. Then
we will detail out guidelines on producing good reservoirs in Section 27.3, various
aspects of training different types of readouts in Section 27.4, and dealing with
output feedback in Section 27.5. We will end with a short summary in Section 27.6.

27.2 The Basic Model

ESNs are applied to supervised temporal ML tasks where for a given training
input signal u(n) ∈ R

Nu a desired target output signal ytarget(n) ∈ R
Ny is

known. Here n = 1, . . . , T is the discrete time and T is the number of data
points in the training dataset. In practice the dataset can consist of multiple
sequences of varying lengths, but this does not change the principles. The task is
to learn a model with output y(n) ∈ R

Ny , where y(n) matches ytarget(n) as well
as possible, minimizing an error measure E(y,ytarget), and, more importantly,
generalizes well to unseen data. The error measure E is typically a Mean-Square
Error (MSE), for example Root-Mean-Square Error (RMSE)
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E(y,ytarget) =
1

Ny

Ny∑

i=1

√√√√ 1

T

T∑

n=1

(
yi(n)− ytargeti (n)

)2
, (27.1)

which is also averaged over the Ny dimensions i of the output here.
The RMSE can also be dimension-wise normalized (divided) by the vari-

ance of the target ytarget(n), producing a Normalized Root-Mean-Square Error
(NRMSE). The NRMSE has an absolute interpretation: it does not depend on
the arbitrary scaling of the target ytarget(n) and the value of 1 can be achieved
with a simple constant output y(n) set to the mean value of ytarget(n). This sug-
gests that a reasonable model of a stationary process should achieve the NRMSE
accuracy between zero and one.

The normalization and the square root parts are more for human interpretabil-
ity, as the optimal output ytarget minimizing any MSE is equivalent to the one
minimizing (27.1), as long as no additional penalties or weighting are introduced
into the equation, such as discussed in Sections 27.4.2 and 27.4.6.

ESNs use an RNN type with leaky-integrated discrete-time continuous-value
units. The typical update equations are

x̃(n) = tanh
(
Win[1;u(n)] +Wx(n− 1)

)
, (27.2)

x(n) = (1− α)x(n − 1) + αx̃(n), (27.3)

where x(n) ∈ R
Nx is a vector of reservoir neuron activations and x̃(n) ∈ R

Nx

is its update, all at time step n, tanh(·) is applied element-wise, [·; ·] stands
for a vertical vector (or matrix) concatenation, Win ∈ R

Nx×(1+Nu) and W ∈
R

Nx×Nx are the input and recurrent weight matrices respectively, and α ∈ (0, 1]
is the leaking rate. Other sigmoid wrappers can be used besides the tanh, which
however is the most common choice. The model is also sometimes used without
the leaky integration, which is a special case of α = 1 and thus x̃(n) ≡ x(n).

Fig. 27.1. An echo state network

The linear readout layer is defined as

y(n) = Wout[1;u(n);x(n)], (27.4)
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where y(n) ∈ R
Ny is network output, Wout ∈ R

Ny×(1+Nu+Nx) the output weight
matrix, and [·; ·; ·] again stands for a vertical vector (or matrix) concatenation.
An additional nonlinearity can be applied to y(n) in (27.4), as well as feedback
connections Wfb from y(n− 1) to x̃(n) in (27.2). A graphical representation of
an ESN illustrating our notation and the idea for training is depicted in Figure
27.1.

The original method of RC introduced with ESNs [16] was to:

1. generate a large random reservoir RNN (Win,W, α);
2. run it using the training input u(n) and collect the corresponding reservoir

activation states x(n);
3. compute the linear readout weights Wout from the reservoir using linear

regression, minimizing the MSE between y(n) and ytarget(n);
4. use the trained network on new input data u(n) computing y(n) by employ-

ing the trained output weights Wout.

In subsequent sections we will delve deeper into the hidden intricacies of this
procedure which appears so simple on the surface, and spell out practical hints
for the concrete design choices that wait on the way. More specifically, Step 1
is elaborated on in Section 27.3; Step 2 is done by Equations (27.2) and (27.3),
with initialization discussed in Section 27.4.5; Step 3 is formally defined and
options explained in Section 27.4 with additional options for some particular
applications in Section 27.5; and Step 3 is again performed by Equations (27.2),
(27.3), and (27.4).

27.3 Producing a Reservoir

For producing a good reservoir it is important to understand what function it is
serving.

27.3.1 Function of the Reservoir

In practice it is important to keep in mind that the reservoir acts (i) as a
nonlinear expansion and (ii) as a memory of input u(n) at the same time.

There is a parallel between RC and kernel methods in ML. The reservoir can
be seen as (i) a nonlinear high-dimensional expansion x(n) of the input signal
u(n). For classification tasks, input data u(n) which are not linearly separable in
the original space RNu , often become so in the expanded space RNx of x(n), where
they are separated by Wout. In fact, employing the “kernel trick” to integrate
over all possible reservoirs is also possible in the context of RC, even though not
really practical [12].

At the same time, (ii) the reservoir serves as a memory, providing tempo-
ral context. This is a crucial reason for using RNNs in the first place. In the
tasks where memory is not necessary, non-temporal ML techniques implement-
ing functional mappings from current input to current output should be used.
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Both aspects (i) and (ii) combined, the reservoir, being an input-driven dy-
namical system, should provide a rich and relevant enough signal space in x(n),
such that the desired ytarget(n) could be obtained by linear combination from it.
There is however some trade-off between (i) and (ii) when setting the parameters
of the reservoir [50], which we will explain in more detail.

27.3.2 Global Parameters of the Reservoir

Given the RNN model (27.2),(27.3), the reservoir is defined by the tuple
(Win,W, α). The input and recurrent connection matrices Win and W are gen-
erated randomly according to some parameters discussed later and the leaking
rate α is selected as a free parameter itself.

In analogy to other ML, and especially NN, approaches, what we call “param-
eters” here could as well be called “meta-parameters” or “hyper-parameters”, as
they are not concrete connection weights but parameters governing their distri-
butions. We will call them “global parameters” to better reflect their nature, or
simply “parameters” for brevity.

The defining global parameters of the reservoir are: the size Nx, sparsity,
distribution of nonzero elements, and spectral radius of W; scaling(-s) of Win;
and the leaking rate α. We will now proceed in this order to give more details on
each of these design choices and intuitions on how to make them. Then, in Section
27.3.3, we will summarize by advising how to prioritize these global parameters
and tune the really important, or rather task-specific, ones in a principled way.

Size of the Reservoir. One obviously crucial parameter of the model
(27.2)(27.3) is Nx, the number of units in the reservoir.

The general wisdom is that the bigger the reservoir, the better the obtain-
able performance, provided appropriate regularization measures are taken against
overfitting (see Section 27.4.1). Since training and running an ESN is computa-
tionally cheap compared to other RNN approaches, reservoir sizes of order 104

are not uncommon [47]. The bigger the space of reservoir signals x(n), the easier
it is to find a linear combination of the signals to approximate ytarget(n). In our
experience the reservoir can be too big only when the task is trivial and there is
not enough data available T < 1 +Nu +Nx.

For challenging tasks use as big a reservoir as you can
afford computationally.

That being said, computational trade-offs are important. In academic settings,
when comparing different approaches instead of going for the best possible per-
formance, authors often limit their reservoir sizes for convenience and compat-
ibility of results. Even when going for the best performance, starting with the
biggest possible reservoir from the beginning is cumbersome.
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Select global parameters with smaller reservoirs, then
scale to bigger ones.

The tuning of global parameters (described below) often needs multiple trials,
thus each should not consume too much time. Good parameters are usually
transferable to bigger reservoirs, but some trials with big reservoirs can also be
done to confirm this.

A lower bound for the reservoir size Nx can roughly be estimated by consid-
ering the number of independent real values that the reservoir must remember
from the input to successfully accomplish the task. The maximal number of
stored values, called memory capacity, in ESN can not exceed Nx [17].

Nx should be at least equal to the estimate of
independent real values the reservoir has to remember

from the input to solve its task.

For i.i.d. inputs u(n), this estimate is Nu times a rough estimate of how many
time steps the inputs should be remembered to solve the task. While the re-
sult in [17] is precise for i.i.d. inputs, in practice there are often temporal and
inter-channel correlations in u(n), that make it somewhat “compressible”. Also,
the shapes of the “forgetting curves” of the reservoirs are typically not rectan-
gular (depend on other parameters), i.e., the forgetting is not instantaneous but
gradual. As a result, reservoir can often make do with smaller sizes.

Sparsity of the Reservoir. In the original ESN publications it is recommended
to make the reservoir connections sparse, i.e., make most of elements in Win

equal to zero. In our practical experience also sparse connections tend to give a
slightly better performance. In general, sparsity of the reservoir does not affect
the performance much and this parameter has a low priority to be optimized.
However, sparsity enables fast reservoir updates if sparse matrix representations
are used.

Connect each reservoir node to a small fixed number of
other nodes (e.g., 10) on average, irrespective of the

reservoir size. Exploit this reservoir sparsity to
speedup computation.

If regardless of reservoir size, a fixed fanout number is chosen, the computational
cost of network state updates grows only linearly with the network size instead
of quadratically. This greatly reduces the cost of running big reservoirs. The
computational savings require virtually no additional effort when the program-
ming environment supports efficient representation and operations with sparse
matrices, which many do.
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Distribution of Nonzero Elements. The matrix W is typically generated
sparse, with nonzero elements having an either a symmetrical uniform, discrete
bi-valued, or normal distribution centered around zero. Different authors prefer
different distributions. We usually prefer a uniform distribution for its continu-
ity of values and boundedness. Gaussian distributions are also popular. Both
distributions give virtually the same performance which depends on the other
parameters discussed here. The discrete bi-valued distribution tends to give a
slightly less rich signal space (there is a non-zero probability of identical neu-
rons), but might make analysis of what is happening in the reservoir easier. The
width of the distributions does not matter, as it is reset in a way explained in
the next section.

The input matrix Win is usually generated according to the same type of
distribution as W, but typically dense.

Spectral Radius. One of the most central global parameters of an ESN is
spectral radius of the reservoir connection matrix W, i.e., the maximal absolute
eigenvalue of this matrix. It scales the matrix W, or viewed alternatively, scales
the width of the distribution of its nonzero elements.

Typically a random sparse W is generated; its spectral radius ρ(W) is com-
puted; then W is divided by ρ(W) to yield a matrix with a unit spectral radius;
this is then conveniently scaled with the ultimate spectral radius to be deter-
mined in a tuning procedure.

For the ESN approach to work, the reservoir should satisfy the so-called echo
state property: the state of the reservoir x(n) should be uniquely defined by the
fading history of the input u(n) [16]. In other words, for a long enough input
u(n), the reservoir state x(n) should not depend on the initial conditions that
were before the input.

Large ρ(W) values can lead to reservoirs hosting multiple fixed point, peri-
odic, or even chaotic (when sufficient nonlinearity in the reservoir is reached)
spontaneous attractor modes, violating the echo state property.

ρ(W) < 1 ensures echo state property in most
situations.

Even though it is possible to violate the echo state property even with ρ(W) < 1,
this is unlikely to happen in practice. More importantly, the echo state property
often holds for ρ(W) ≥ 1 for nonzero inputs u(n). This can be explained by the
strong u(n) pushing activations of the neurons away from 0 where their tanh()
nonlinearities have a unitary slope to regions where this slope is smaller, thus
reducing the gains of the neurons and the effective strength of feedback con-
nections. Intuitively speaking, due to activation-squashing nonlinearities, strong
inputs “squeeze out” the autonomous activity from the reservoir activations. This
means, that for nonzero u(n) ρ(W) < 1 is not a necessary condition for the echo
state property and optimal ρ(W) values can sometimes be significantly greater
than 1.
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In practice ρ(W) should be selected to maximize the performance, with the
value 1 serving as an initial reference point.

As a guiding principle, ρ(W) should be set greater for tasks where a more
extensive history of the input is required to perform it, and smaller for tasks
where the current output y(n) depends more on the recent history of u(n).
The spectral radius determines how fast the influence of an input dies out in a
reservoir with time, and how stable the reservoir activations are [50].

The spectral radius should be greater in tasks
requiring longer memory of the input.

Input Scaling. The scaling of the input weight matrix Win is another key
parameter to optimize in an ESN. For uniformly distributed Win we usually
define the input scaling a as the range of the interval [−a; a] from which values
of Win are sampled; for normal distributed input weights one may take the
standard deviation as a scaling measure.

In order to have a small number of freely adjustable parameters, often all the
columns of Win are scaled together using a single scaling value. However, the
scaling of the first column of Win corresponding to the bias input to the reservoir
units in (27.2) can be optimized separately from the rest. If the remaining “active”
input channels contribute to the task in very different ways, it is also advised to
optimize their scalings separately.

Scale the whole Win uniformly to have few global
parameters in ESN. However, to increase the

performance:

– scale the first column of Win (i.e., the bias inputs)
separately;

– scale other columns of Win separately if channels of
u(n) contribute differently to the task.

This varies the number of free global parameters to set for Win from 1 up to
Nu + 1.

It was suggested in the original ESN publications to scale and shift the input
data, optimizing the magnitude of both. But the same effect can be achieved by
scaling the input weights of the active inputs and the bias, respectively.

Still, input data normalization is advisable for ESNs just as for any other
ML approach. This puts each learning task into a more standardized set-
ting. It may be helpful to have the range of the input data values bounded.
For example, apply the tanh(·) squashing to u(n) if its distribution is unbounded.
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Otherwise the outliers can throw the reservoir state x(n) into some “unfamiliar”
regions not well covered by the usual working trajectories of x(n) for which the
global parameters have been optimized or the outputs learned. This can lead to a
virtual loss of useful memory (due to saturations in the activation nonlinearities)
or unpredictable outputs at these points, respectively.

It is advisable to normalize the data and may help to
keep the inputs u(n) bounded avoiding outliers (e.g.,

apply tanh(·) to u(n) if it is unbounded).

Input scaling determines how nonlinear the reservoir responses are. For very lin-
ear tasks Win should be small, letting units operate around the 0 point where
their activation tanh(·) is virtually linear. For large Win, the units will get eas-
ily saturated close to their 1 and −1 values, acting in a more nonlinear, binary
switching manner. While ρ(W) also affects the nonlinearity, the reservoir acti-
vations become unstable when increasing ρ(W), as explained in Section 27.3.2,
before it can make the reservoir highly nonlinear.

The amount of nonlinearity the task requires is not easy to judge. Finding
a proper setting benefits from experience and intuitive insight into nonlinear
dynamics. But also the masters of RC (if there are such) use trial and error to
tune this characteristic.

Looking at (27.2), it is clear that the scaling of Win, together with the scaling
of W (i.e., ρ(W)) determines the proportion of how much the current state x(n)
depends on the current input u(n) and how much on the previous state x(n−1),
respectively. The respective sizes Nu and Nx should also be taken into account.

The input scaling regulates:

– the amount of nonlinearity of the reservoir represen-
tation x(n) (also increasing with ρ(W));

– the relative effect of the current input on x(n) as
opposed to the history (in proportion to ρ(W)).

It has been empirically observed that the representation of the different principle
components of u(n) in x(n) is roughly proportional to the square root of their
magnitudes in u(n) [11]. In other words, the reservoir tends to flatten the spec-
trum of principal components of u(n) in x(n) – something to keep in mind when
choosing the right representation or preprocessing of the data. For example, if
smaller principal components carry no useful information it might be helpful
to remove them from the data by Principal Component Analysis (PCA) before
feeding them to a reservoir, otherwise they will get relatively amplified there.

Leaking Rate. The leaking rate α of the reservoir nodes in (27.3) can be
regarded as the speed of the reservoir update dynamics discretized in time. We
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can describe the reservoir update dynamics in continuous time as an Ordinary
Differential Equation (ODE)

ẋ = −x+ tanh
(
Win[1;u] +Wx

)
. (27.5)

If we make an Euler’s discretization of this ODE (27.5) in time, taking

Δx

Δt
=

x(n+ 1)− x(n)

Δt
≈ ẋ, (27.6)

we arrive at exactly (up to some time indexing conventions) the discrete time
equations (27.2)(27.3) with α taking the place of the sampling interval Δt. Thus
α can be regarded as the time interval in the continuous world between two
consecutive time steps in the discrete realization. Also, empirically the effect of
setting α is comparable to that of re-sampling u(n) and ytarget(n) when the
signals are slow [27, 41]. The leaking rate α can even be adapted online to deal
with time wrapping of the signals [27, 22]. Equivalently, α can be introduced as
a time constant in (27.5), if keeping Δt ≡ 1.

While there are some slight variations alternative to those in (27.3), of how
to do leaky integration (e.g., [22]), the version (27.3) has emerged as preferred,
because it guarantees that x(n) never goes outside the (−1, 1) interval.

Set the leaking rate α in (27.3) to match the speed of
the dynamics of u(n) and/or ytarget(n).

This can, again, be difficult and subjective to determine in some cases. Especially
when the timescales of u(n) and ytarget(n) are quite different. This is one more
of the global parameters to be tuned by trial and error.

When the task requires modeling the time series producing dynamical system
on multiple time scales, it might be useful to set different leaking rates to different
units (making α a vector α ∈ R

Nx) [43], with a possible downside of having more
parameters to optimize.

Alternatively, the leaky integration (27.3) can be seen as a simple digital
low-pass filter, also known as exponential smoothing, applied to every node.
Some contributions even suggest applying more powerful filters for this purpose
[53, 14].

In some cases setting a small α, and thus inducing slow dynamics of x(n), can
dramatically increase the duration of the short-term memory in ESN [23].

27.3.3 Practical Approach to Reservoir Production

Prioritizing Parameters. While all the ESN reservoir parameters discussed
in Section 27.3.2 have their guiding intuitions in setting them, fixing some of
them is more straightforward than others.
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The main three parameters to optimize in an ESN
reservoir are:

– input scaling(-s);
– spectral radius;
– leaking rate(-s).

These three parameters, discussed in Sections 27.3.2, 27.3.2, and 27.3.2 respec-
tively, are very important for a good performance and are quite task-specific.

The reservoir size Nx almost comes as an external restriction (Section 27.3.2),
and the rest of the parameters can be set to reasonable default values: reservoir
sparseness (Section 27.3.2), weight distribution (Section 27.3.2), or details of the
model (27.2)(27.3). It is still worth investigating several options for them, as a
lower priority.

As explained before, the performance can also be additionally improved in many
cases by “splitting” a single parameter into several. Setting different scalings to
the columns of Win (corresponding to the bias input and possibly to different di-
mensions of input if they are of different nature) can go a long way. Also, setting
leaking rates α differently for different units (e.g., by splitting them to several sub-
populations with constant value) can help a lot in multi-timescale tasks.

Setup for Parameter Selection. One of the main advantages of ESNs is that
learning the outputs is fast. This should be exploited in evaluating how good a
reservoir generated by a particular set of parameters is.

The most pragmatic way to evaluate a reservoir is to
train the output (27.4) and measure its error.

Either validation or training error can be used. Validation is, of course, preferred
if there is a danger of overfitting. Training error has the advantage of using less
data and in some cases no need to rerun a trained network with it. If a validation
data set is necessary for the output training (as explained in Section 27.4), the
error on it might be utilized with no additional cost, as a compromise between
the training and a yet separate second validation set.

If training of the output and validation is not fast enough, smaller initial
reservoirs (as stated in Section 27.3.2), or a reduced representative data set can
be used. For the same reason it is often an overkill to use a k-fold cross-validation
in global parameter optimization, at least in initial stages, unless the data are
really scarce.

It is important to keep in mind that the randomly generated reservoirs even
with the same parameters vary slightly in their performance. This variance is
ever present but is typically more pronounced with smaller reservoirs than with
bigger ones; the random variations inside of a big reservoir tend to “average
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out”. It is nonetheless important to keep this random fluctuation of performance
separate from the one caused by different parameter values.

To eliminate the random fluctuation of performance,
keep the random seed fixed and/or average over several

reservoir samples.

Fixing a random seed in the programming environment before generating the
reservoirs makes the random aspect of the reservoirs identical across trials and
thus the experiments deterministically repeatable. Using a single reservoir is
faster, but with an obvious danger of below-average performance and/or overfit-
ting the parameters to a particular instance of a randomly generated reservoir:
good parameters might not carry over well to a different software implementa-
tion, or, e.g., different size of a reservoir.

Manual Parameter Selection. Manual selection of parameters is unavoid-
able to some extent in virtually all ML approaches. Even when parameters are
learned or selected through automated search, it is typically necessary to set
meta-parameters (or rather “meta-meta-parameters”) for these procedures.

When manually tuning the reservoir parameters,
change one parameter at a time.

Changes in several parameters at once often have opposing effects on perfor-
mance, but it is impossible to tell which contributed what. A reasonable approach
is to set a single parameter to a well enough value before starting changing an-
other one, and repeating this until the performance is satisfactory.

It is also advisable to take notes or log the performance automatically for
extended optimizations, in order not to “go in circles” when repeating the same
parameter values.

An empirical direction of a gradient can be estimated for a parameter, making
a small change to it and observing the change in performance. However, the error
landscapes are often non-convex and trying distant values of the parameters can
sometimes lead to dramatic improvements.

Always plot samples of reservoir activation signals
x(n) to have a feeling of what is happening inside the

reservoir.

This may reveal that x(n) are over-saturated, under-activated, exhibiting au-
tonomous cyclic or chaotic behavior, etc. Overall, plotting information additional
to the error rate helps a lot in gaining more insight into how the parameters
should be changed.

Typically, good average performance is not found in a very narrow parameter
range, thus a very detailed fine-tuning of parameters does not give a significant
improvement and is not necessary.



27. Practical ESNs 671

Automated Parameter Selection. Since manual parameter optimization
might quickly get tedious, automated approaches are often preferred.

Since ESNs have only a few parameters requiring more careful tuning, grid
search is probably the most straightforward option. It is easy enough to imple-
ment with a few nested loops, and high-level ML programming libraries, such
as Oger (mentioned in Section 27.6) in the case of RC, often have ready-made
routines for this.

A reasonable approach is to do a coarser grid search over wider parameter
intervals to identify promising regions and then do a finer search (smaller steps)
in these regions. As mentioned, typically the grid must not be very dense to
achieve a good performance.

The best performance being on a boundary of a covered grid is a good indi-
cation that the optimal performance might be outside the grid.

In general, meta-parameter or hyper-parameter optimization is a very com-
mon topic in many branches of ML and beyond. There are numerous generic
optimization methods applicable to this task described in the literature. They
are often coping with much larger search spaces than a grid search is effec-
tively capable of, such as random search, or more sophisticated methods trying
to model the error landscape (see, e.g., [2]). They are in principle just as well
applicable to ESNs with a possibility of also including in the optimization the
parameters of second importance.

There is also a way to optimize the global parameters of the reservoir through
a gradient descent [22]. It has, however, not been widely applied in the literature.

27.3.4 Pointers to Reservoir Extensions

There are also alternative ways of generating and adapting reservoirs suggested
in the literature, including deterministic, e.g., [39], and data-specific, e.g., [36],
ones. With a variety of such methods the modern field of RC has evolved from
using the initial paradigm of a fixed reservoir and only training a readout from
it, to also adapting the reservoir but differently from the readout, using generic,
unsupervised, or even supervised methods. In some cases a hardware system is
used as a reservoir and thus is predetermined by its specific features. See [29]
and updated in Chapter 2 of [30] for a classification and overview. The classical
ESN approach described here, however, still holds its ground for its simplicity
and performance.

27.4 Training Readouts

27.4.1 Ridge Regression

Since readouts from an ESN are typically linear and feed-forward, the Equation
(27.4) can be written in a matrix notation as

Y = WoutX, (27.7)
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where Y ∈ R
Ny×T are all y(n) and X ∈ R

(1+Nu+Nx)×T are all [1;u(n);x(n)]
produced by presenting the reservoir with u(n), both collected into respective
matrices by concatenating the column-vectors horizontally over the training pe-
riod n = 1, . . . , T . We use here a single X instead of [1;U;X] for notational
brevity.

Finding the optimal weights Wout that minimize the squared error between
y(n) and ytarget(n) amounts to solving a typically overdetermined system of
linear equations

Ytarget = WoutX, (27.8)

where Ytarget ∈ R
Ny×T are all y(n), with respect to Wout in a least-square

sense – i.e., a case of linear regression. In this context X can be called the design
matrix. The system is overdetermined, because typically T ! 1 +Nu +Nx.

There are standard well-known ways to solve (27.8), we will discuss a couple
of good choices here.

Probably the most universal and stable solution to (27.8) in this context is
ridge regression, also known as regression with Tikhonov regularization:

Wout = YtargetX
T
(
XX

T
+ βI

)−1

, (27.9)

where β is a regularization coefficient explained in Section 27.4.2, and I is the
identity matrix.

The most generally recommended way to learn linear
output weights from an ESN is ridge regression (27.9)

We start with this method because it should be the first choice, even though it
is not the most trivial one. We will explain different aspects of this method in
the coming sections together with reasons for why it should be preferred and
alternatives that in some cases can be advantageous.

27.4.2 Regularization

To assess the quality of the solution produced by training, it is advisable to
monitor the actual obtained output weights Wout. Large weights indicate that
Wout exploits and amplifies tiny differences among the dimensions of x(n), and
can be very sensitive to deviations from the exact conditions in which the network
has been trained. This is a big problem in the setups where the network receives
its output as the next input. The slight deviation of the output from the expected
value quickly escalates in subsequent time steps. Ways of dealing with such setup
are explained in Section 27.5.

Extremely large Wout values may be an indication of a
very sensitive and unstable solution.
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To counteract this effect is exactly what the regularization part βI in the ridge
regression (27.9) is for. Instead of just minimizing RMSE (27.1), ridge regression
(27.9) solves

Wout = argmin
Wout

1

Ny

Ny∑

i=1

(
T∑

n=1

(
yi(n)− ytargeti (n)

)2
+ β

∥∥wout
i

∥∥2
)
, (27.10)

where wout
i is the ith row of Wout and ‖·‖ stands for the Euclidean norm.

The objective function in (27.10) adds a regularization, or weight decay, term
β ‖wout

i ‖
2 penalizing large sizes of Wout to the square error between y(n) and

ytarget(n). This is a sum of two objectives, a compromise between having a small
training error and small output weights. The relative “importance” between these
two objectives is controlled by the regularization parameter β.

Use regularization (e.g., (27.9)) whenever there is a
danger of overfitting or feedback instability.

In (27.9) the optimal regularization coefficient β depends on the concrete in-
stantiation of the ESN. It should be selected individually for a concrete reservoir
based on validation data.

Select β for a concrete ESN using validation, without
rerunning the reservoir through the training data.

There is no need to rerun the model through the data with every value β,
because none of the other variables in (27.9) are affected by its changes. Memory
permitting, there is also no need to rerun the model with the (small) validation
dataset, if you can store X for it and compute the validation output by (27.7).
This makes testing β values computationally much less expensive than testing
the reservoir parameters explained in Section 27.3.

The optimal values of β can vary by many magnitudes of size, depending on
the exact instance of the reservoir and length of the training data. If doing a
simple exhaustive search, it is advisable to search on a logarithmic grid.

Setting β to zero removes the regularization: the objective function in (27.10)
becomes equivalent to RMSE (27.1), making the ridge regression a generalization
of a regular linear regression. The solution (27.9) with β = 0 becomes

Wout = YtargetX
T
(
XX

T
)−1

, (27.11)

known as normal equations method for solving linear regression (27.8). In prac-
tice, however, setting β = 0 often leads to numerical instabilities when inverting
(XX

T
) in (27.11). This too recommends using a logarithmic scale for selecting

β where it never goes to zero. The problem can in some cases also be alleviated
by using a pseudoinverse instead of the real inverse in (27.11).
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A Gaussian process interpretation of the linear readout gives an alternative
criterion for setting β directly [4].

A similar regularization effect to Tikhonov (27.9) can be achieved by adding
scaled white noise to x(n) in (27.3) – a method that predates ridge regression in
ESNs [16]. Like in ridge regression, i.i.d. noise emphasizes the diagonal of (XX

T
).

The advantage is that it is also propagated through W in (27.2), modeling better
the effects of noisy signals in the reservoir. The output learns to recover from
perturbed signals, making the model more stable with feedback loops (Section
27.5). The downside of this noise immunization is that the model needs to be
rerun with each value of the noise scaling.

27.4.3 Large Datasets

Ridge regression (27.9) (or the Wiener-Hopf solution (27.11) as a special case)
also allows a one-shot training with virtually unlimited amounts of data.

Notice that the dimensions of the matrices (YtargetX
T
) ∈ R

Ny×Nx and
(XX

T
) ∈ R

Nx×Nx do not depend on the length T of the training sequence
in their sizes. The two matrices can be updated by simply adding the corre-
sponding results from the newly incoming data. This one-shot training approach
in principle works with an unlimited amount of data – neither complexity of
working memory, nor time of the training procedure (27.9) itself depend on the
length of data T .

With large datasets collect the matrices
(
YtargetX

T
)

and
(
XX

T
)

incrementally for (27.9).

The eventual limitation of the straightforward summation comes from the finite
precision of floating point numbers – adding large (like in the so-far accumulated
matrix) and small (like the next update) numbers becomes inaccurate. A better
summation scheme, such as a hierarchical multi-stage summation where the two
added values are always of similar magnitude (e.g., coming from the same amount
of time steps), or Kahan summation [24] that compensates for the accumulating
errors, should be used instead.

With very large datasets, a more accurate summation
scheme should be used for accumulating

(
YtargetX

T
)

and
(
XX

T
)
.

Using extended precision numbers here could also help, as well as in other
calculations.
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27.4.4 Direct Pseudoinverse Solution

A straightforward solution to (27.8) is

Wout = YtargetX+, (27.12)

where X+ is the Moore-Penrose pseudoinverse of X. If (XX
T
) is invertible the

(27.12) in essence becomes equivalent to (27.11), but works even when it is not.
The direct pseudoinverse calculation typically exhibits high numerical stability.
As a downside, it is expensive memory-wise for large design matrices X, thereby
limiting the size of the reservoir Nx and/or the number of training samples T .
Since there is virtually no regularization, the system of linear equations (27.8)
should be well overdetermined, i.e., 1 +Nu +Nx  T . In other words, the task
should be difficult relatively to the capacity of the reservoir so that overfitting
does not happen.

Use direct pseudoinverse (27.12) to train ESNs with
high precision and little regularization when memory

and run time permit.

Many modern programming libraries dealing with linear algebra have implemen-
tations of a matrix pseudoinverse, which can be used “off the shelf”. However,
implementations vary in their precision, computational efficiency, and numerical
stability.

For high precision tasks, check whether the regression
(Ytarget −WoutX)X+ on the error Ytarget −WoutX is

actually all = 0, and add it to Wout if it is not.

This computational trick should not work in theory (the regression on the error
should be equal to zero), but sometimes does work in practice in Matlab [28],
possibly because of some internal optimizations.

Some high level linear algebra libraries have ready-made subroutines for doing
regression, i.e., solving linear least-squares as in (27.8), where the exact methods
are not made explicit and can internally be chosen depending on the conditioning
of the problem. The use of them has an obvious disadvantage of lacking the
control on the issues discussed here.

A powerful extension of the basic ESN approach is training (very) many (very
small) ESNs in parallel and averaging their outputs, which in some cases has
drastically improved performance [19, 22]. This might be not true for tasks re-
quiring large memory, where one bigger reservoir may still be better than several
smaller ones.

Averaging outputs from multiple reservoirs increases
the performance.
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27.4.5 Initial Transient

Usually x(n) data from the beginning of the training run are discarded (i.e., not
used for learning Wout) since they are contaminated by initial transients. To
keep notation simple let us assume they come before n = 1.

For long sequences discard the initial time steps of
activations x(n) for training that are affected by initial

transient.

The initial transient is in essence a result of an arbitrary setting of x(0), which is
typically x(0) = 0. This introduces an unnatural starting state which is not nor-
mally visited once the network has “warmed up” to the task. The amount of time
steps to discard depends on the memory of the network (which in turn depends
on reservoir parameters), and typically are in the order of tens or hundreds.

However, if the data consists of multiple short separate sequences (like in
sequence classification), “the initial transient” might be the usual working mode
of the ESN. In this case discarding the precious (possibly all!) data might be
disadvantageous. See Section 27.4.7 for more on this. Note, that you would want
to reset the state to some initial (the same) value before each sequence to make
the classification of sequences independent.

With multiple sequences of data the time steps on which the learning should
be performed should be concatenated in X and Ytarget, the same way as there
would only be a single long sequence.

A generalization of discarding data is presented in the next Section 27.4.6.

27.4.6 Regression Weighting

In the regression learning of ESNs it is easy to make some time steps count more
than others by weighting the minimized square error differently. For this, the
time steps of the square error are weighted with a weight vector s(n) ∈ R:

E(y,ytarget) =
1

Ny

Ny∑

i=1

T∑

n=1

s(n)
(
yi(n)− ytargeti (n)

)2
. (27.13)

This error is minimized with the same learning algorithms, but at each time
step n the vectors [1;u(n);x(n)] and ytarget(n) are element-wise multiplied with√
s(n) before collecting them into X and Ytarget. Higher values of s(n) put more

emphasis on minimizing the error between y(n) and ytarget(n). Putting a weight
s(n) on a time step n has the same effect as if [1;u(n);x(n)] and ytarget(n) have
appeared s(n) times in the training with a regular weight s(n) = 1. Setting
s(n) = 0 is equivalent to discarding the time steps from training altogether.

Use weighting to assign different importance to
different time steps when training.
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This weighted least squares scheme can be useful in different situations like dis-
carding or weighting down the signals affected by the initial transients, corrupted
or missing data, emphasizing the ending of the signal [6], etc. It is fully compat-
ible with ridge regression (27.9) where the weighting (27.13) is applied to the
square error part of the objective function in (27.10).

For an even more refined version different channels of y(n) can be trained
separately and with different s(n). The weighting can for example be used to
counter an imbalance between positive vs. negative samples in a classification or
detection task.

27.4.7 Readouts for Classification

When the task is to classify separate short time series, the training is typically
set up such that the output y(n) has a dimension for every class and ytarget(n)
is equal to one in the dimension corresponding to the correct class and zero
everywhere else. The model is trained to approximate ytarget(n) and the class
for single sequence u(n) is very often decided by

class (u(n)) = argmax
k

(
1

|τ |
∑

n∈τ

yk(n)

)
= argmax

k
((Σy)k) , (27.14)

where yk(n) is the kth dimension of y(n) produced by ESN from u(n), τ is some
integration interval (can be the length of the whole sequence u(n)), and Σy
stands for a shorthand notation of y(n) time-averaged over τ .

There is a better way to do this. Notice, that in this case

Σy =
1

|τ |
∑

n∈τ

y(n) =
1

|τ |
∑

n∈τ

Wout[1;u(n);x(n)] = (27.15)

= Wout 1

|τ |
∑

n∈τ

[1;u(n);x(n)] = WoutΣx, (27.16)

where Σx is a shorthand for [1;u(n);x(n)] time-averaged over τ . The form
(27.16) is a more efficient way to compute Σy, since there is only one multi-
plication with Wout.

More importantly, (27.16) can be used to make training more efficient and
powerful. For a given short sequence u(n), instead of finding Wout that min-
imizes E (ytarget(n),y(n)) for every n ∈ τ , it is better to find the one that
minimizes the error between the time-averaged values E(ytarget, Σy). In this
case y(n) (which is not actually explicitly computed) is allowed to deviate
from ytarget(n) as long as the time-averaged Σy is close to ytarget. Here
ytarget ≡ Σytarget = ytarget(n) = const for a single short sequence.

To classify sequences, train and use readouts from
time-averaged activations Σx (27.16), instead of x(n).
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Note that weighting is still possible both among the short sequences and inside
each sequence over the intervals τ , using weighted average instead of a simple
one. Actually, weighting over τ is often recommendable, emphasizing the ending
of the sequence where the whole information to make the classification decision
has been fed into the reservoir.

To retain information from different times in the short sequence, weighted
averages Σ1x, . . . , Σkx over several time intervals τ1, . . . , τk during the short
sequence can be computed and concatenated into an extended state Σ∗x =
[Σ1x; . . . ;Σkx]. This extended state Σ∗x can be used instead of Σx for an
even more powerful classification. In this case Wout is also extended to Wout

∗ ∈
R

Ny×k·(1+Nu+Nx).

Concatenate weighted time-averages over different
intervals to read out from for an even more powerful

classification.

Since the short sequences are typically of different lengths (the advantage of
using temporal classification methods), the intervals τ1, . . . , τk should be scaled
to match the length of each sequence.

The techniques so far described in this section effectively reduce the time series
classification to a static data classificationproblem by reducing the variable-length
inputsu(n) to fixed-size feature vectorsΣ∗x ∈ R

k·(1+Nu+Nx).There aremanypow-
erful machine learning methods available to solve the static classification problem
that can be employed at this point, such as logistic regression or maximum margin
classifiers. See, e.g., [3] for different options. These methods define the error func-
tion differently and offer different, mostly iterative, optimization algorithms.

Different powerful classification methods for static
data can be employed as the readout from the

time-averaged activations Σ∗x.

Among others, the same regression methods as for temporal data can be used
to train a linear readout y = Wout

∗ Σ∗x and decide the class by maximum as
in (27.14). In this case, for every short sequence u(n) only one pair of vectors
ytarget and Σ∗x is collected into Ytarget and X respectively for training by (27.9)
or (27.12). Since this reduces training data points from the total number of time
steps to the number of short sequences, precautions against overfitting should be
taken. Such regression training for classification has an advantage of the single-
shot closed form solution, however, it is not optimal because it does not directly
optimize the correct classification rates.

For temporal pattern recognition tasks in a long sequence (i.e., detection plus
classification), ytarget(n) should be designed cleverly. The shapes, durations, and
delays of the signals in ytarget(n) indicating patterns in u(n) are also parameters
that have to be optimized; as well as algorithms producing the final recognition
(in the form of discrete symbol sequences or annotations) from the continuous
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signals y(n). But this goes beyond the scope of this paper. Alternatively, dynamic
programming methods (such as Viterbi algorithm) can be used for trainable
recognizers at the output layer, see [10].

27.4.8 Online Learning

Some applications require online model adaptation, e.g., [19]. In such cases the
process generating the data is often not assumed to be stationary and is tracked
by the constantly adapting model. Wout here acts as an adaptive linear combiner.

The simplest way to train Wout is the method known as the Least Mean
Squares (LMS) algorithm [9], it has many extensions and modifications. It is a
stochastic gradient descent algorithm which at every time step n changes Wout in
the direction of minimizing the instantaneous squared error ‖ytarget(n)− y(n)‖2.
LMS is a first-order gradient descent method, locally approximating the error
surface with a hyperplane. This approximation is poor then curvature of the
error surface is very different in different directions, which is signified by large
eigenvalue spreads of XX

T
. In such a situation the convergence performance of

LMS is unfortunately severely impaired.
An alternative linear readout learning to LMS, known in linear signal pro-

cessing as the Recursive Least Squares (RLS) algorithm, is insensitive to the
detrimental effects of eigenvalue spread and boasts a much faster convergence.
It explicitly at each time step n minimizes a square error that is exponentially
discounted going back in time:

E(y,ytarget, n) =
1

Ny

Ny∑

i=1

n∑

j=1

λn−j
(
yi(j)− ytargeti (j)

)2
, (27.17)

where 0 < λ ≤ 1 is the error “forgetting” parameter. This weighting is not unlike
the one discussed in Section 27.4.6 where s(n)(j) = λn−j at time step n. RLS can
be seen as a method for minimizing (27.17) at each time step n similar to Wiener-
Hopf (27.11), but optimized by keeping and updating the estimate of (XX

T
)−1

from time n − 1 instead of recomputing it from scratch. The downside of RLS is
it being computationally more expensive (quadratic in number of weights instead
of linear like LMS) and notorious for numerical stability issues. Demonstrations of
RLS for ESNs are presented in [19, 18]. A careful and comprehensive comparison
of variants of RLS as ESN readouts is carried out in a Master’s thesis [25], which
may be helpful for practitioners.

The BackPropagation-DeCorrelation (BPDC) [44] and FORCE [46] learning
algorithms discussed in Section 27.5.3 are two other powerful methods for online
training of single-layer readouts with feedback connections from the reservoirs.

27.4.9 Pointers to Readouts Extensions

There are also alternative ways of training outputs from the reservoirs suggested
in the literature, e.g., Gaussian process [4], copula [5], or Support Vector Machine
[42] style outputs. See [29] and updated in Chapter 2 of [30] for an overview.
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27.5 Dealing with Output Feedbacks

27.5.1 Output Feedbacks

Even if the reservoir is kept fixed, for some tasks the trained readouts are fed
back to the reservoir and thus the training process changes its dynamics. In
other words, a recurrence exists between the reservoir and the trained readout.
Pattern generation is a typical example of such task. This can be realized in two
ways. Either by feedback connections Wfb ∈ R

Nx×Ny from the output to the
reservoir, replacing (27.2) with

x̃(n) = tanh
(
Win[1;u(n)] +Wx(n− 1) +Wfby(n− 1)

)
, (27.18)

or by looping the output y(n − 1) as an input u(n) for the next update step
n in (27.2), in effect turning a trained one step predictor ESN into a pattern
generator. Note that these two options are equivalent and are just a matter of
notation: u(n) and Win instead of y(n − 1) and Wfb, respectively. The same
principles thus apply to producing Wfb as to Win. In some cases, however, both
external input and output feedback can be present.

This extends the power of RC, because it no longer relies on fixed random
input-driven dynamics to construct the output, but the dynamics are adapted
to the task. This power has its price, because stability issues arise here.

Use output feedbacks to the reservoir only if they are
necessary for the task.

This may include tasks that simply cannot be learned well enough without feed-
backs. Feedbacks enable reservoirs to achieve universal computational capabil-
ities [33] and can in practice be beneficial even where they are not an integral
part of the task [28].

In order to avoid falling prey to the same difficulties as with full RNN training
algorithms, two strategies are used in RC when learning outputs with feedbacks:

– Breaking the feedback loop during the training, Section 27.5.2;
– Adapting Wout online with specialized algorithms in the presence of real

feedbacks, Section 27.5.3.

27.5.2 Teacher Forcing

The first strategy is to disengage the recurrent relationship between the reservoir
and the readout using teacher forcing and treat output learning as a feedfor-
ward task. This is done by feeding the desired output ytarget(n− 1) through the
feedback connections Wfb in (27.18) instead of the real output y(n − 1) while
learning (Figure 27.2a). The target signal ytarget(n) “bootstraps” the learning
process and if the output is learned with high precision (i.e., y(n) ≈ ytarget(n)),
the recurrent system runs much in the same way with the real y(n) in feedbacks
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after training as it did with ytarget(n) during training (Figure 27.2b). In a pure
pattern generator setup with no additional inputs, u(n) and Win may not be
present at all – after training the ESN is run to autonomously generate a pat-
tern, using teacher forcing initially to start the pattern. As noted before, this
is equivalent to training a one time step predictor without feedbacks Wfb and
looping its output y(n − 1) as input u(n) through Win.

(a) Training with teacher forcing (b) Running in a generative mode

Fig. 27.2. An ESN with output feedbacks trained with teacher forcing

For simple tasks, feed ytarget(n) instead of y(n) in
(27.18) while learning to break the recurrence.

This way Wout can be learned in the same efficient batch mode by linear regres-
sion, as explained before.

Teacher forcing applied to speedup error backpropagation RNN training is
also discussed in chapter [54] of this book.

There are some caveats here. The approach works very well if the output can
be learned precisely [16]. However, if this is not the case, the distorted feedback
leads to an even more distorted output and feedback at the next time step,
and so on, with the actual generated output y(n) quickly diverging from the
desired ytarget(n). Even with well-learned outputs the dynamical stability of the
autonomous running system is often an issue.

Stability with Feedbacks. In both cases regularization of the output by ridge
regression or/and noise immunization, as explained in Section 27.4.2, is the key
to success.

Regularization by ridge regression or noise is crucial to
make teacher-forced feedbacks stable.

Some additional options to the ones in Section 27.4.2 are available here. One
is adding scaled noise to the forced teacher signal ytarget(n), emulating an im-
perfectly learned ytarget(n) by y(n) and making the network robust to this. In
fact, a readout can be trained to ignore some inputs or feedbacks altogether by
feeding strong noise into them during training [20].
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Another is doing training in several iterations and feeding back the signals
that are in between the perfect ytarget(n) and the actual y(n) obtained from the
previous iteration. For example, a one time step prediction of the signal by the
ESN (as opposed to running with real feedbacks) can be used as teacher forcer
for the next iteration of training [19]. This way the model learns to recover from
the directions of deviations from the correct signal that it actually produces, not
from just random ones as in the case with noise; while at the same time the
teacher signal does not diverge from the target too far.

Another recently proposed option is to also regularize the recurrent connec-
tions W themselves. A one-shot relearning of W with regularization (similar to
ridge regression (27.9) for Wout) to produce the same x(n), as the one from the
initially randomly generated W, reduces the recurrent connection strengths and
helps making the ESN generator more stable [38, 37].

27.5.3 Online Learning with Real Feedbacks

The second strategy to deal with output feedbacks in ESNs is using online (in-
stead of one-shot) learning algorithms to train the outputs Wout while the feed-
backs are enabled and feed back the (yet imperfectly) learned output, not the
teacher signal. This way the model learns to stabilize itself in the real generative
setting.

General purpose online learning algorithms, such as discussed in Section
27.4.8, can be used for this. However, there exist a couple of online RC learning
algorithms that are specialized in training outputs with feedbacks, and in fact
would not work without them.

BackPropagation-DeCorrelation (BPDC) [44] is such a highly optimized RC
online learning algorithm which runs with a linear time complexity in the number
of connections. The algorithm is said to be insensitive to reservoir settings and
capable of tracking quickly changing signals. As a downside of the latter feature,
the trained network forgets the previously seen data and is highly biased by the
recent data. Some remedies for reducing this effect are reported in [45].

A recent RC approach named FORCE learning uses the RLS (Section 27.4.8)
online learning algorithm to vigorously adapt Wout in the presence of the real
feedbacks [46]. By the initial fast and strong adaptation of Wout the feedbacks
y(n) are kept close to the desired ytarget(n) already from the beginning of the
learning process, similar to teacher forcing. The algorithm benefits from initial
spontaneous chaotic activations inside the reservoir which are then subdued by
the feedbacks. It appears that FORCE learning is well suited to yield very stable
and accurate neural pattern generators.

27.6 Summary and Implementations

We have presented many practical aspects for successfully applying ESNs. Some
of them are not universal and should be filtered depending on a particular task.
They are also not the only possible approaches, and can most likely be improved
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upon. They collect, however, the best practices accumulated in the field over
the ten years from its start, and should serve well as guiding principles for ESN
researchers and practitioners.

Implementing an ESN is relatively straightforward – minimalistic one-page
self-contained code examples in several programming languages are avail-
able through http://reservoir-computing.org/software/minimal. There
is also a number of ready-made and expandable software libraries available which
incorporate many of the techniques described here. A collection of open source
RC toolboxes in different programming languages and varying degrees of so-
phistication can be found at http://reservoir-computing.org/software.
The most comprehensive of them is the Oger toolbox in Python
http://reservoir-computing.org/oger.

The http://reservoir-computing.org website is an overall good hub of
reservoir computing related resources, where new people can also register and
contribute.
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Abstract. Recurrent neural networks (RNNs) are typically considered
as relatively simple architectures, which come along with complicated
learning algorithms. This paper has a different view: We start from the
fact that RNNs can model any high dimensional, nonlinear dynamical
system. Rather than focusing on learning algorithms, we concentrate on
the design of network architectures. Unfolding in time is a well-known
example of this modeling philosophy. Here a temporal algorithm is trans-
ferred into an architectural framework such that the learning can be
performed by an extension of standard error backpropagation.

We introduce 12 tricks that not only provide deeper insights in the
functioning of RNNs but also improve the identification of underlying
dynamical system from data.

28.1 Introduction

In many business management disciplines, complex planning and decision-
making can be supported by quantitative forecast models that take into account
a wide range of influencing factors with non-linear cause and effect relationships.
Furthermore, the uncertainty in forecasting should be considered. The procure-
ment of raw materials or demand planning are prime examples: The timing of
copper purchases can be optimized with accurate market price forecasts, whereas
precise forecasts of product sales increase the deliver reliability and reduce costs.
Likewise technical applications, e.g. energy generation, also require the modeling
of complex dynamical systems.

In this contribution we deal with time-delay recurrent neural networks (RNNs)
for time series forecasting and introduce 12 tricks that not only ease the handling
of RNNs, but also improve the forecast accuracy. The RNNs and associated tricks
are applied in many of our customer projects from economics and industry.

RNNs offer significant benefits for dealing with the typical challenges associated
with forecasting. With their universal approximation properties [11], RNNs can
model high-dimensional, non-linear relationships. The time-delayed information
processing addresses temporal structures. In contrast, conventional econometrics
generally uses linear models (e.g. autoregressive models (AR), multivariate linear
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regression) which can be efficiently estimated from historical data, but provide
only an inadequate framework for non-linear dynamical systems [12].

In Section 28.2 we introduce the so-called correspondence principle for neural
networks (Trick 1). For us neural networks are a class of functions which can be
transformed into architectures. We will work only with algorithms that process
information locally within the architectures. As we will outline, for some prob-
lems it is easier to start off with the NN architecture and formulate the equations
afterwards and for other problems vice versa. The locality of the algorithms en-
ables us to model even large systems. The correspondence principle is the basis
for different RNN models and associated tricks.

We will start with a basic RNN in state space formulation for the modeling
of partly autonomous and partly externally driven dynamical systems (so-called
open systems). The associated parameter optimization task is solved by (finite)
unfolding in time, which can be handled by a shared weights extension of stan-
dard backpropagation. Dealing with state space models, we are able to utilize
memory effects. Therefore, there is no need of a complicated input preprocess-
ing in order to represent temporal relationships. Nevertheless, learning of open
dynamical systems tends to focus on the external drivers and, thus, neglects the
identification of the autonomous part. On this problem Trick 2 enforces the au-
tonomous flow of the dynamics and thus, enables long-term forecasting. Trick 3
finds a proper initialization for the first state vector of recurrent neural network
in the finite unfolding.

Typically we do not know all external drivers of the open dynamical system.
This may cause the identification of pseudo causalities. Trick 4 is the extension of
the RNN with an error correction term, resulting in a so-called error correction
neural network (ECNN), which enables us to handle missing information, hidden
external factors or shocks on the dynamics. ECNNs are an appropriate frame-
work for low-dimensional dynamical systems with less than 5 target variables.
For the modeling of high-dimensional systems on low dimensional manifolds as
in electrical load curves Trick 5 adds a coordinate transformation (so-called bot-
tleneck) to the ECNN.

Standard RNNs use external drivers in the past and assume constant envi-
ronmental conditions from present time on. For fast changing environments this
is a questionable assumption. Internalizing the environment of the dynamics
into the model, leads to Trick 6, so-called historically consistent neural networks
(HCNN). The special feature of the HCNN is that it not only models the in-
dividual dynamics of interest, but also models the external drivers. This leads
to a closed dynamical system formulation. Therefore, HCNNs are symmetric in
their input and output variables, i.e. the system description does not draw any
distinction between input, output and internal state variables.

In practice, HCNNs are difficult to train, because the models have no input
signals and are unfolded across the complete data horizon. This implies that we
learn from a single data pattern, which is the unique data history. In Trick 7 we
therefore introduce an architectural teacher forcing to make the best possible
use of the data from the observables and to accelerate training of the HCNN.
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The HCNN models the dynamics for all of the observables and their interac-
tion in parallel. For this purpose a high-dimensional state transition matrix is
required. A fully connected state transition matrix can, however, lead to a signal
overload during the training of the neural network using error backpropagation
through time (EBTT). With Trick 8 we solve this problem by introducing sparse
state transition matrices.

The information flow within a HCNN is from the past to present and future
time, i.e. we have a causal model to explain the highly-interacting non-linear
dynamical systems across multiple time scales. Trick 9 extends this modeling
framework with an information flow from the future into past. As we will show
this enables us to incorporate the effects of rational decision making and plan-
ning into the modeling. The resulting models are called causal-retro-causal his-
torically consistent neural networks (CRCNNs). Likewise to HCNNs, CRCNNs
are difficult to train. In Trick 10 we extend the basic CRCNN architecture by an
architectural teacher forcing mechanism, which allows us to learn the CRCNN
using the standard EBTT algorithm. Trick 11 introduces a way to improve the
modeling of deterministic chaotic systems.

Finally, Trick 12 is dedicated to the modeling of uncertainty and risk. We
calculate ensembles of either HCNNs or CRCNNs to forecast probability distri-
butions. Both modeling frameworks give a perfect description of the dynamic
of the observables in the past. However, the partial observability of the world
results in a non-unique reconstruction of the hidden variables and thus, different
future scenarios. Since the genuine development of the dynamics is unknown
and all paths have the same probability, the average of the ensemble is the best
forecast, whereas the ensemble bandwidth describes the market risk.

Section 28.3 summarizes the primary findings of this contribution and points
to future directions of research.

28.2 Tricks for Recurrent Neural Networks

Trick 1. The Correspondence Principle for Neural Networks

In order to gain a deeper understanding in the functioning and composition of
RNNs we introduce our first conceptual trick, which is called correspondence
principle between equations, architectures and local algorithms. The correspon-
dence principle for neural networks (NN) implies that any equation for a NN can
be portrayed in graphical form by means of an architecture which represents the
individual layers of the network in the form of nodes and the matrices between
the layers in the form of edges. This correspondence is most beneficial in combi-
nation with local optimization algorithms that provide the basis for the training
of the NNs. For example, the error back propagation algorithm needs only lo-
cally available information from the forward and backward flow of the network
in order to calculate the partial derivatives of the NN error function[13]. The
use of local algorithms here provides an elegant basis for the expansion of the
neural network towards the modeling of large systems. Used in combination with
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an appropriate (stochastic) learning rule, it is possible to use the gradients as a
basis for the identification of robust minima[8].

Now let us introduce a basic recurrent neural network (RNN) in state space
formulation. We start from the assumption that a vector time series yτ is created
by an open dynamical system, which can be described in discrete time τ using
a state transition and output equation[3]:

state transition sτ+1 = f(sτ , uτ )
output equation yτ = g(sτ )

(28.1)

The hidden time-recurrent state transition equation sτ+1 = f(sτ , uτ) describes
the upcoming state sτ+1 by means of a function of the current system state sτ
and of the external factors uτ . The system formulated in the state transition
equation can therefore be interpreted as a partially autonomous and partially
externally driven dynamic. We call this an open dynamical system.

The output, also called observer, equation yτ uses the non-observable system
state sτ in every time step τ to calculate the output of the dynamic system
yτ . The data-driven system identification is based on the selected parameterized
functions f() and g(). We chose the parameters in f() and g() such that an
appropriate error function is minimized (see Eq. 28.2).

1

T

T∑

τ=1

(
yτ − ydτ

)2 → min
f,g

. (28.2)

The two functions f() and g() are estimated using the quadratic error function
(Eq. 28.2) in such a way that the average distance between the observed data
ydτ and the system outputs yτ across a number of observations τ = 1, . . . , T is
minimal.

Thus far, we have given a general description of the state transition and
the output equation for open dynamical systems. Without loss of generality we
can specify the functions f() and g() by means of a recurrent neural network
(RNN)[11, 15]:

state transition sτ+1 = tanh(Asτ +Buτ )
output equation yτ = Csτ

(28.3)

Eq. 28.3 specifies an RNN with weight matrices A, B and C to model the open
dynamical system. The RNN is designed as a non-linear state-space model, which
is able to approximate any function f() and g(). We choose the hyperbolic tan-
gent tanh() as the activation function for the hidden network layer sτ+1. The
output equation is specified as a linear function. The RNN output is generated
by a superposition of two components: (i) the autonomous dynamics (coded in
A), which accumulates information over time (memory), and (ii) the influence
of external factors (coded in B).

Note, that the state transition in Eq. 28.3 does not need an additional matrix
leading the hyperbolic tangent tanh() activation function, since the additional
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matrix can be merged into matrix A. Furthermore, without loss of generality we
can use a linear output equation in Eq. 28.3. If we would have a non-linearity
in the output equation (Eq. 28.3), it could be merged in the state transition
equation (Eq. 28.3). For details see Schäfer et al. [11].

We use the technique of finite unfolding in time[10] to solve the temporal
system identification, i.e. for the selection of appropriate matrices A, B and C
to minimize the error function (Eq. 28.1). The underlying idea here is that any
RNN can be reformulated to form an equivalent feedforward neural network, if
matrices A, B and C are identical in the individual time steps (shared weights).
Fig. 28.1 depicts the resulting RNN.

Fig. 28.1. Basic RNN unfolded in time with shared weights A, B and C

One advantage of the shared matrices is the moderate number of free param-
eters (weights), which reduces the risk of over-fitting[18]. The actual training is
conducted using error backpropagation through time (EBTT) together with a
stochastic learning rule[13, 10]. For algorithmic solutions, the reader is referred
to the overview article by B. Pearlmutter[9].

Trick 2. Overshooting

In applications we often observed that RNNs tend to focus on only the most
recent external inputs in order to explain the dynamics. To balance the infor-
mation flow, we use a trick called overshooting. Overshooting extends the au-
tonomous system dynamics (coded matrix A) into the future (here t+ 2, t+ 3,
t+ 4)[18] (see Fig. 28.2). In order to describe the development of the dynamics
in one of these future time steps adequately, matrix A must be able to transfer
information over time. The different instances of matrix A refer to the same
prototype matrix A. Thus the shared weights principle allow us to maintain the
locality of the correspondence principle (see Trick 1). By this we can compute
consistent multi-step forecasts. A corresponding RNN architecture is depicted in
Fig. 28.2. For the RNN we typically use an input preprocessing uτ = xτ − xτ−1

as the transformation for the raw data x. This avoids trends in the input or
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Fig. 28.2. RNN incorporating overshooting

target variables of the RNN. The missing external inputs uτ>0 in the future can
be interpreted as a constant environment (uτ>0 ≈ 0). The effectiveness of over-
shooting depends on the strength of the autonomous dynamics. The stronger the
autonomous flow, the better is the forecast accuracy for the future overshoot-
ing time steps. Furthermore, overshooting has an implication for the learning
itself. Without overshooting, RNNs have the tendency to focus only on short-
term input-output relationships. With overshooting the learning has to work out
mid- to long-term input-output relationships.

Summarizing, it should be noted, that overshooting generates additional valu-
able forecast information about the analyzed dynamical system and acts as a
regularization method for the learning.

Trick 3. Handling the Uncertainty of the Initial State

One of the difficulties with finite unfolding in time is to find a proper initialization
for the first state vector of the RNN. Our next trick takes care of this problem.
An obvious solution is to set the first state s0 equal to zero. We assume that the
unfolding includes enough (past) time steps such that the misspecification of the
initialization phase is overwritten along the state transitions. In other words, the
network accumulates information over time and thus, may eliminate the impact
of the arbitrary initial state on the network outputs.

Beyond this the modeling can be improved if we are able to make the unfolded
RNN less sensitive from the unknown initial state s0. A first approach to stiff
the model against the unknown s0 is to apply a noise term Θ to the state s0.
A fixed noise term Θ which is drawn from a certain noise distribution is clearly
inadequate to handle the uncertainty of the initial state. Since we do not know
what is an appropriate level of noise, we have to find a way to estimate the noise
level. We propose to apply an adaptive noise Θ, which fits best to the level of
uncertainty of the unknown s0. The characteristic of the adaptive noise term
Θ is automatically determined as a by-product of the error backpropagation
algorithm.

The basic idea is as follows [8]: We use the residual error ε of the neural
network as computed by error backpropagation for s0. The residual error ε as
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measured at the initial state s0 can be interpreted as the uncertainty which is
due to the missing information about the true initial state vector s0. We disturb
the initial state s0 with a noise term Θ which follows the distribution of the
residual error ε. Given the uncertain initial states, learning tries to fulfill the
output-target relationships along the dynamics. As a result of the learning we
get a state transition matrix in form of a contraction, which squeezes out the
initial uncertainty. A corresponding network architecture is depicted in Fig. 28.3.

Fig. 28.3. Handling the uncertainty of the initial state s0 by applying adaptive noise

It is important to notice, that the noise term Θ is drawn from the observed
residual errors without any assumption on the underlying noise distribution. The
desensitization of the network to the initial state vector s0 can therefore be seen
as a self-scaling stabilizer of the modeling.

In general, a time discrete trajectory can be seen as a sequence of points over
time. Such a trajectory is comparable to a fine thread in the internal state space.
The trajectory is very sensitive to the initial state vector s0. If we apply noise
to s0, the trajectory becomes a tube in the internal state space. Due to the
characteristics of the adaptive noise term, the tube contracts over time. This
enforces the identification of a stable dynamical system.

Trick 4. Error Correction Neural Networks (ECNN)

A weakness of the RNN (see Fig. 28.1 or 28.2) is, that modeling might be dis-
turbed by unknown external influences or shocks. As a remedy, the next trick
called error correction neural networks (ECNN) introduces an additional term
zτ = tanh(yτ −ydτ ) in the state transition (28.4). The term can be interpreted as
a correctional factor: The model error (yτ − ydτ ) at time τ quantifies the misfit
and may help to adjust the model output afterwards.

state transition sτ+1 = tanh(Asτ +Buτ +D tanh(yτ − ydτ ))
output equation yτ = Csτ

(28.4)
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In Eq. 28.4 the model output yτ is computed by Csτ and compared with the
observation ydτ . The output clusters of the ECNN which generate error signals
during the learning phase are zτ (τ ≤ t) and yτ (τ > t). Have in mind, that
the target values of the sequence of output clusters zτ are zero, because we
want to optimize the compensation mechanism yτ − ydτ between the expected
value yτ and its observation ydτ . The additional non-linear squashing function
in zτ = tanh(yτ − ydτ ) absorbs large errors respectively shocks. A special case
occurs at all future time steps t+ 1: here we have no compensation ydt+1 of the
internal expected value, and thus the system is offering a forecast yt+1 = Cst+1.

The system identification task (see Eq. 28.2) is once again solved by finite
unfolding in time [3]. Fig. 28.4 depicts the resulting ECNN[15].

Fig. 28.4. ECNN incorporating overshooting. Note, that −Id is the fixed negative
of an identity matrix, while zt−τ are output clusters to model the error correction
mechanism.

The ECNN has two different inputs: (i) the externals uτ , which directly in-
fluence the state transition, and (ii) the targets ydτ . Only the difference between
yτ and ydτ has an impact on sτ+1. In the future τ > t, we have no compensa-
tion for yτ and thus compute forecasts yτ = Csτ . We have successfully applied
ECNN models to predict the demand of products and product groups within the
context of supply chain management.

Trick 5. Variant-Invariant Separation

For the modeling of high-dimensional dynamical systems, the next trick called
variant-invariant separation extends the architecture of the ECNN (Fig. 28.5) by
a coordinate transformation to reduce the dimensionality of the original forecast
problem. The dimension reduction is realized in form of a bottleneck sub-network
(Fig. 28.5, left). The compressor E removes time invariant structures from the
dynamics. The reconstruction of the complete dynamics (decompression) is done
by matrix F . The bottleneck is implicitly connected to the ECNN via the shared
matrices E and F [15]. We compress the high-dimensional vector ydt to a lower
dimensional vector xt using a bottleneck neural network. The vector xt contains
all relevant information about ydt . The ECNN predicts the low dimensional vector
xτ instead of the high dimensional vector yτ . The error correction compares



28. Forecasting with Recurrent Neural Networks 695

Fig. 28.5. ECNN with Variant-Invariant Separation

the expectations xτ = Csτ with the transformed observations −xdτ = E(−ydτ ).
Note, that the negative inputs −ydτ are required by the ECNN to generate the
transformed targets −xdτ . In our experience we found, that the training of the
extended ECNN (Fig. 28.5) is very robust, i.e. the coordinate transformation
and the forecasting can be trained in parallel. The time-invariant information
is not lost in the bottleneck network, but simply relegated to lower components
of variance of the representation. Furthermore, node pruning can be applied to
the middle layer. Due to shared weights the result of a pruning in the bottleneck
network is transfered to the ECNN branch as well.

We have successfully applied the ECNN depicted in Fig. 28.5 to forecast elec-
trical load curves and traffic flows. In load forecasting the typical application
scenario is that one has to forecast the load curve in 15 minute time buckets,
i.e. 96 observations per day. To avoid the error accumulation of a pure itera-
tive model it is more useful to forecast the load curve day-by-day. From our
experience a load curve (i.e. 96 observations per day) can be compressed to an
dim ≈ 8 dimensional indicator vector from which the load curve can in turn be
reconstructed. From a mathematical viewpoint this approach corresponds to the
modeling of dynamical systems on manifolds. More complicated manifolds can
be generated by deep bottleneck neural networks.

Trick 6. Historically Consistent Neural Networks (HCNNs)

Many real-world technical and economic applications can be seen in the context
of large systems in which various (non-linear) dynamics interact with one an-
other (in time). Unfortunately only a small sub-set of variables can be observed.
From the sub-set of observed variables we have to reconstruct the hidden vari-
ables of the large system in order to understand the dynamics. Here the term
observables includes the input and output variables in conventional modeling
approaches (i.e. yτ := (yτ , uτ )). This indicates a consistency problem in the
RNN (Fig. 28.1) or ECNN (Fig. 28.4) respectively: on the output side, the RNN
(ECNN) provides forecasts of the dynamics in the observables yτ , whereas the
input side assumes that the observables yτ will not change from present time
on. This lack of consistency represents a clear contradiction within the model
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framework. If, on the other hand, we are able to implement a model framework
in which common descriptions and forecasts can be used for the trend in all of
the observables, we will be in a position to close the open system – in other
words, we will model a closed large dynamic system.

The next trick called historically consistent neural networks (HCNNs) intro-
duces a model class which follows the design principles for modeling of large dy-
namic systems and overcomes the conceptual weaknesses of conventional models.
Equation 28.5 formulates the historically consistent neural network (HCNN).

state transition sτ+1 = A tanh(sτ )
output equation yτ = [Id, 0]sτ

(28.5)

The joint dynamics for all observables is characterized in the HCNN (28.5) by
the sequence of states sτ . The observables (i = 1, . . . , N) are arranged on the
first N state neurons sτ and followed by non-observable (hidden) variables as
subsequent neurons. The connector [Id, 0] is a fixed matrix which reads out the
observables. The initial state s0 is described as a bias vector. The bias s0 and
matrix A contain the only free parameters.

Like standard RNNs (Fig. 28.1) HCNNs also have universal approximation
capabilities. The proof for the RNN can be found in [11]. Fig. 28.6 outlines the
proof for HCNNs. As depicted in Fig. 28.6 the proof of the universal approxi-
mation capabilities for HCNN can be divided in six steps:
1. The output equation is shifted one time step into the future and the resulting
sτ+1 is substituted by the system transition equation.

2. By combining outputs and state variables into an extended state we get an
extended state transition equation. The output of the system is derived from
the first components of the extended internal state.

3. For the extended state transition equation we apply the feedforward universal
approximation theorem. At least for a finite time horizon this guarantees a
small approximation error. Note, that in RNNs at least one large component
of the state vector together with the hyperbolic tangent can mimic a bias
vector. Thus, we have omitted the explicit notation of a bias vector in the
NN equations.

4. In this step we remove one of the two matrices within the state transition
equation. We apply a state transformation rτ = Asτ . This results in two
state transition equations.

5. The two state transition equations can be reorganized in one state transition,
which has twice the dimensionality of the original equation.

6. Rewriting the matrix located on front of the tanh activation function results
in the claimed formulation for closed systems.

Instead of being applied inside the tanh activation function, matrix A is used
outside the tanh activation function. This has the advantage that the states and
thus, also the system outputs are not limited to the finite state space (−1; 1)n
created by the tanh(.) nonlinearity. The output equation has a simple and ap-
plication independent form. Note, that we can only observe the first elements of
the state vector.
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Fig. 28.6. Proof of the universal approximation capabilities for HCNNs

Fig. 28.7. Historically Consistent Neural Network (HCNN)

Fig.28.7 depicts the HCNN architecture. The HCNN states sτ are hidden
layers with tanh squashing. The forecasts are supplied by the output layers yτ .
There are no target values available for the future time steps. The expected values
yτ>t can be read out at the corresponding future time steps of the network.

Since the HCNN model has no inputs, we have to unfold the neural network
along the complete data history. This is different to small recurrent neural net-
works (see e.g. Fig. 28.2), where we construct training data patterns in form of
sliding windows. The HCNN learns the large dynamics from a single history of
observations (i.e. a single training data pattern). Forecasting commodity prices
with HCNN, we unfold the neural network over 440 trading days in the past to
predict the next 20 days.

Trick 7. Architectural Teacher Forcing (ATF) for HCNNs

In practice we observe that HCNNs are difficult to train since the models do not
have any input signals and are unfolded across the complete data set. Our next
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trick, architectural teacher forcing (ATF) for HCNNs, makes the best possible
use of the data from the observables and accelerates the training of the HCNN
[20, 14, 9]. The HCNN with integrated teacher forcing is shown in Fig. 28.8 below.
In the HCNN with ATF (Fig. 28.8) the expected values for all observables up

Fig. 28.8. HCNN with Architectural Teacher Forcing (ATF)

to time τ = t are replaced with the actual observations. The output layers of
the HCNN are given fixed target values of zero. The negative observed values
−ydτ for the observables are added to the output layer. This forces the HCNN
to create the expected values yτ to compensate for the negative observed values
−ydτ . The content of the output layer, i.e. yτ − ydτ , is now transferred to the first
N neurons of the hidden layer rτ on a component-by-component basis with a
minus symbol. In addition, we copy the expected values yτ from the state sτ
to the intermediate hidden layer rτ . As a result, the expected values yτ on the
first N components of the state vector sτ are replaced by the observed values
ydτ = yτ − (yτ −ydτ ) (Fig. 28.8). All connections of the ATF mechanism are fixed.
Following the ATF step, the state transition matrix A is applied, to move the
system into the next time step. By definition, we have no observations for the
observables in future time steps. Here, the system is iterated exclusively upon the
expected values. This turns an open into a closed dynamic system. The HCNN
in Fig. 28.8 is equivalent to the architecture in Fig.28.7, if it converges to zero
error in the training. In this case we have solved the original problem.

Trick 8. Sparsity, Dimensionality vs. Connectivity and Memory

HCNNs may have to model ten, twenty or even more observables in parallel over
time. It is clear that we have to work with high dimensional dynamical systems
(e.g. in our commodity price models we use dim(s) = 300). The iteration with
a fully connected state transition matrix A of such a dimension is dangerous:
Sometimes the matrix vector operations will produce large numbers which will
be spread in the recursive computation all over the network and will generate
an arithmetic overflow. To avoid this phenomena we can choose a sparse matrix
A. Thus, the linear algebra does not accumulate large numbers and the spread
of large numbers through the network is damped by the sparsity too.
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We have to answer the questions which dimensionality and which sparsity
we will choose. In [16] we have worked out that dimensionality and sparsity
are related to another pair of meta-parameters: Connectivity (con) and memory
length (mem). Connectivity is defined as the number of nonzero elements in
each row of matrix A. The memory length is the number of steps from which
we have to collect information in order to reach a Markovian state, i.e. the state
vector contains all necessary information from the past. We propose the following
parameterization for the state dimension (dim(s)) and sparsity [16]:

Dimension of A dim(s) = con ·mem (28.6)

Sparsity of A Sparsity = random
( con

mem · con

)
= random

(
1

mem

)
(28.7)

Eq. 28.7 represents the insight that a sparse system conserves information over a
longer time period before it diffuses in the network. For instance a shift register
is very sparse and behaves only as a memory, whereas in a fully connected matrix
the superposition of information masks the information sources. Let us assume
that we have initialized the state transition matrix with a uniform random sparse
matrix A. Following Eq. 28.7 the more dense parts of A will model the faster
sub-dynamics within the overall dynamics, while the highly sparse parts of A
will focus on slow subsystems. As a result a sparse random initialization allows
the combined modeling of systems on different time scales.

Unfortunately, Eq. 28.6 favors very large dimensions. Our earlier work on the
subject (see [16]) started with the predefinition of the systems memory length
mem, because for RNNs the memory length is equal to the length of the past
unfolding in time. On the other hand, connectivity has to be chosen larger than
the number of the observables. Working with HCNNs the memory length is less
important, because we unfold the neural network along the whole data horizon.
Here the connectivity plays the superior role. From our experience we know that
the EBTT algorithm works stably with a connectivity which is equal or smaller
than 50 (con ≤ 50). For computational performance we usually limit the state
dimensionality to dim(s) = 300. This implies a sparsity of 50/300 ≈ 17%. We
leave the fine tuning of the parameters to the EBTT learning.

We propose to initialize the neural network with a randomly chosen spar-
sity grid. The sparsity grid is therefore chosen arbitrary and not optimized by
e.g. pruning algorithms. This raises the question if a random sparse initializa-
tion biases the network towards inferior solutions. This is handled by ensemble
forecasts. We have performed ensemble experiments with different sparsity grids
versus ensembles based on the same sparsity grid. We found, that the average of
the ensemble as well as the ensemble width are unaffected by the initialization of
the sparsity grid (for more details on ensemble forecasting see Trick 12). These
considerations hold only for large systems.

Trick 9. Causal-Retro-Causal Neural Networks (CRCNNs)

The fundamental idea of the HCNN is to explain the joint dynamics of the
observables in a causal manner, i.e. with an information flow from the past to
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the future. However, rational planning is not only a consequence of a causal
information flow but also of anticipating future developments and responding
to them on the basis of a certain goal function. This is similar to the adjoint
equation in optimal control theory [6]. In other words a retro causal information
flow is equivalent to asking for the motivation of a behavior as a goal. In turn,
this is the anchor point for the reconstruction of the dynamics.

In order to incorporate the effects of rational decision making and planning
into the modeling, the next trick introduces causal-retro-causal neural networks
(CRCNNs). The idea behind the CRCNN is to enrich the causal information
flow within the HCNN, which is directed from the past to the future, by a retro-
causal information flow, directed from the future into the past. The CRCNN
model is given by the following set of equations 28.8.

causal state transition sτ = A tanh(sτ−1)
retro-causal state transition s′τ = A′ tanh(s′τ+1)
output equation yτ = [Id, 0]sτ + [Id, 0]s′τ .

(28.8)

The output equation yτ of the CRCNN (Eq. 28.8) is a mixture of causal and
retro-causal influences. The dynamics of all observables is hence explained by a
sequence of causal (sτ ) and retro-causal states s′τ using transition matrices A and
A′ for the causal and retro-causal information flow. Upon the basis of Eq. 28.8,
we draw the network architecture for the CRCNN as depicted in Fig. 28.9.

Fig. 28.9. A Causal-Retro-Causal Historically Consistent Neural Network (CRCNN)

Trick 10. Architectural Teacher Forcing (ATF) for CRCNNs

The CRCNN (Fig. 28.9) is also unfolded across the entire time path, i.e. we learn
the unique history of the system. Likewise to the training of the HCNN, CRCNNs
are difficult to train. Our next trick called architectural teacher forcing (ATF) for
CRCNNs formulates TF as a part of the CRCNN architecture, which allows us
to learn the CRCNN using the standard EBTT algorithm[3]. ATF enables us to
exploit the information contained in the data more efficiently and accelerates the
training itself. Fig. 28.10 depicts the CRCNN architecture incorporating ATF.
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Fig. 28.10. Extended CRCNN with an architectural Teacher Forcing (ATF)
mechanism

Let us explain the ATF mechanism in the extended CRCNN model
(Fig. 28.10): The extended CRCNN uses a causal-retro-causal network to correct
the error of the opposite part of the network in a symmetric manner. In every
time step τ ≤ t the expected values yτ are replaced by the observations ydτ using
the intermediate tanh() layers for the causal and for the retro-causal part. Since
the causal and the retro-causal part jointly explain the observables yτ , we have
to inject the causal into the retro-causal part and vice versa. This is done by
compensating the actual observations −ydτ with the output of the causal (Δτ )
and the retro-causal part (Δ′

τ ) within output layers with fixed target values of
zero. The resulting content (Δτ +Δ′

τ − ydτ = 0) of the output layers is negated
and transferred to the causal and retro-causal part of the CRCNN using the fixed
[−Id, 0]′ connector. Within the intermediate tanh() layers the expectations of yτ
are replaced with the actual observations ydτ , whereby the contribution to yτ
from the opposite part of the CRCNN is considered. Note, that ATF does not
lead to a larger number of free network parameters, since all new connections
are fixed and are used only to transfer data in the NN. In future direction τ > t
the CRCNN is iterated exclusively on the basis of expected values.

The usage of ATF does not reintroduce an input / output modeling, since
we replace the expected value of the observables with their actual observations,
while simultaneously considering the causal and retro-causal part of the dynam-
ics. For sufficiently large CRCNNs and convergence of the output error to zero,
the architecture in Fig. 28.10 converges towards the fundamental CRCNN ar-
chitecture shown in Fig. 28.9. The advantage of the CRCNN is, that it allows a
fully dynamical superposition of the causal and retro-causal information flows.

The CRCNN depicted in Fig. 28.10 describes a dynamics on a manifold. In ev-
ery time step the information flows incorporates closed loops, which technically
can be seen as equality constraints. These constraints are only implicitly defined
through the interaction of the causal and retro-causal parts. The closed loops
in the CRCNN architecture (Fig. 28.10) lead to fix-point recurrent substructures
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within the model, which are hard to handle with EBTT. As a remedy we propose
a solution concept similar to Trick 7: We embed the CRCNN model into a larger
network architecture, which is easier to solve and converges to the same solution
as the original system. Fig. 28.11 depicts an initial draft for such an embedding.

The extended architecture in Fig. 28.11 is a duplication of the original model
depicted in Fig. 28.10. The CRCNN architecture in Fig. 28.11 does not contain
closed loops, because we split the ATF mechanism for the causal and retro-
causal part into two branches. It is important to notice that these branches are
implicitly connected through the shared weights in the causal and retro-causal
part. If this architecture converges, the ATF is no longer required and we have
two identical copies of the CRCNN model depicted in Fig. 28.9. The solution
proposed for the embedding is not the only feasible way to handle the fix-point
loops. We will outline alternative solutions in an upcoming paper. The CRCNN
is the basis for our projects on forecasting commodity prices.

Fig. 28.11. Asymmetric split of ATF in CRC neural networks

Trick 11. Stable & Instable Information Flows in Dynamical Systems

Following Trick 3 it is natural to apply noise in the causal as well as in retro-
causal branch (see also Fig. 28.12). This should improve the stability of both time
directions resp. information flows. In CRCNNs this feature has a special inter-
pretation: Stability in the causal information flow means that the uncertainty
in the beginning is damped along the time path from past to future. Instability
in the causal system means that a small disturbance in the past diffuses to very
different future scenarios under a chaotic regime (see Fig. 28.12, upper part).
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Fig. 28.12. An instable causal dynamics is converted to a stable retro-causal dynamics

If the causal information flow of a sub-dynamics is instable, then the retro-
causal description of this sub-system is stable. On the other hand, an instable
retro-causal dynamics is stable from a causal perspective. In a combined causal-
retro-causal neural network the causal and the retro-causal branch can be simul-
taneously stable, even if the underlying dynamics is partially instable. In order
to enforce the stability of the causal and the retro-causal part we apply noise at
the origins of both branches.1

Trick 12. Uncertainty and Risk

The experience gained during the latest financial crisis has triggered a far-
reaching discussion on the limitations of quantitative forecasting models and
made investors very conscious of risk[2]. In order to understand risk distribu-
tions, traditional risk management uses diffusion models. Risk is understood as
a random walk, in which the diffusion process is calibrated by the observed past
error of the underlying model[7]. In contrast the next trick called uncertainty
and risk focuses on ensemble forecasts in order to provide important insights
into complex risk relationships, since internal model (unobserved) variables can
be reconstructed from the trend in observed variables (observables).

If the system identification is calculated repeatedly for HCNNs or CRCNNs,
an ensemble of solutions will be produced, which all have a forecast error of
zero in the past, but which differ from one another in the future. Since every
HCNN or CRCNN model gives a perfect description of the observed data, the
complete ensemble is the true solution. A way to simplify the forecast is to take
the arithmetical average of the individual ensemble members as the expected
value, provided the ensemble histogram is unimodal in every time step.

In addition to the expected value, we consider the bandwidth of the ensemble,
i.e. its distribution. The form of the ensemble is governed by differences in the re-
construction of the hidden system variables from the observables: for every finite
1 Thanks to Prof. Jürgen Jost, MPI Leipzig, for a fruitful discussion on this topic.
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volume of observations there is an infinite number of explanation models which
describe the data perfectly, but differ in their forecasts, since the observations
make it possible to reconstruct the hidden variables in different forms during the
training. In other words, our risk concept is based on the partial observability of
the world, leading to different reconstructions of the hidden variables and thus,
different future scenarios. Since all scenarios are perfectly consistent with the
history, we do not know which of the scenarios describes the future trend best
and risk emerges.

This approach directly addresses the model risk. For HCNN and CRCNN
modeling we claim that the model risk is equal to the forecast risk. The reasons
can be summarized as follows: First, HCNNs are universal approximators, which
are therefore able to describe every market scenario. Second, the form of the
ensemble distribution is caused by an underlying dynamics, which interpret the
market dynamics as the result of interacting decisions[17]. Third, in experiments
we have shown that the ensemble distribution is independent from the details of
the model configuration, if we use large models and large ensembles.

Let us exemplify our risk concept. The diagram below (Fig. 28.13, left) shows
the approach applied to the Dow Jones Industrial Index (DJX). For the ensem-
ble, a HCNN was used to generate 250 individual forecasts for the DJX. For
every forecast date, all of the individual forecasts for the ensemble represent
the empirical density function, i.e. a probability distribution over many possible
market prices at a single point in time (see Fig. 28.13, right). It is noticeable
that the actual development of the DJX is always within the ensemble channel
(see gray lines, Fig. 28.13, left). The expected value for the forecast distribution
is also an adequate point forecast for the DJX (see Fig. 28.13, right).

Fig. 28.13. HCNN ensemble forecast for the Dow Jones Index (12 weeks forecast hori-
zon), left, and associated index point distribution for the ensemble in time step t+12,
right

28.3 Conclusion and Outlook

Recurrent neural networks model dynamical systems in the form of non-linear
state space models. Just like any other NN, the equation of the RNNs, ECNNs,
HCNNs or CRCNNs can be expressed as an architecture which represents the
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individual layers in the form of nodes and the connections between the layers
in the form of links. In the graphical architecture we can apply local learning
algorithms like error back propagation and an appropriate (stochastic) learning
rule to train the NN[13, 17, 3]. This relationship is called the correspondence
principle between equations, architectures and the local algorithms associated
with them (Trick 1).

Finite unfolding in time of RNN using shared weight matrices enables us to
stick to the correspondence principle. Overshooting enforces the autonomous
dynamics and enables long-term forecasting (Trick 2), whereas an adaptive
noise term handles the uncertainty of the finite unfolding in time (Trick 3).

ECNN utilizes the previous model error as an additional input. Hence, the
learning can interpret the models misfit as an external shock which is used to
guide the model dynamics afterwards. This allows us to prevent the autonomous
part of the model to adapt misleading inter-temporal causalities. If we know
that a dynamical system is influenced by external shocks, the error correction
mechanism of the ECNN is an important prestructuring element of the networks
architecture to compensate missing inputs (Trick 4).

Extending the ECNN by variants-invariants separation, one is able to include
additional prior structural knowledge of the underlying dynamics into the model.
The separation of variants and invariants with a bottleneck coordinate transfor-
mation allows to handle high dimensional problems (Trick 5).

HCNNs model not just an individual dynamics, but complex systems made up
of a number of interacting sub-dynamics. HCNNs are symmetrical in their input
and output variables, i.e. the system description does not draw any distinction
between input, output and internal state variables. Thus, an open system be-
comes a closed system (Trick 6). Sparse transition matrices enable us to model
different time scales and stabilize the training (Trick 8). Causal and retro-causal
information flow within an integrated model (CRCNN) can be used to model ra-
tional planning and decision making in markets. CRCNNs dynamically combine
causal and retro-causal information to describe the prevailing market regime
(Trick 9). Architectural teacher forcing can be applied to efficiently train the
HCNN or CRCNN (Trick 7 and 10). An architectural extension (see Fig. 28.12)
enables us to balance the causal and retro-causal information flow during the
learning of the CRCNN (Trick 11).

We usually work with ensembles of HCNN or CRCNN to predict commodity
prices. All solutions have a model error of zero in the past, but show a different
behavior in the future. The reason for this lies in different ways of reconstructing
the hidden variables from the observations and is independent of different random
sparse initializations. Since every model gives a perfect description of the observed
data, we can use the simple average of the individual forecasts as the expected
value, assuming that the distribution of the ensemble is unimodal. The analysis
of the ensemble spread opens up new perspectives on market risks. We claim that
the model risk of a CRCNN or HCNN is equal to the forecast risk (Trick 12).

Work currently in progress aims to improve the embedding of the CRCNN
architecture (see Fig. 28.10) in order to simplify and stabilize the training. On
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the other hand, we analyze the micro-structure of the ensembles and implement
the models in practical risk management and financial market applications.

All NN architectures and algorithms are implemented in the Simulation En-
vironment for Neural Networks (SENN), a product of Siemens Corporate Tech-
nology. Work is partially funded by German Federal Research Ministry (BMBF
grant Alice, 01 IB10003 A-C).
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Abstract. The aim of this chapter is to provide a series of tricks and
recipes for neural state estimation, particularly for real world applica-
tions of reinforcement learning. We use various topologies of recurrent
neural networks as they allow to identify the continuous valued, possibly
high dimensional state space of complex dynamical systems. Recurrent
neural networks explicitly offer possibilities to account for time and mem-
ory, in principle they are able to model any type of dynamical system.
Because of these capabilities recurrent neural networks are a suitable
tool to approximate a Markovian state space of dynamical systems. In
a second step, reinforcement learning methods can be applied to solve
a defined control problem. Besides the trick of using a recurrent neural
network for state estimation, various issues regarding real world prob-
lems such as, large sets of observables and long-term dependencies are
addressed.

29.1 Introduction

In this chapter we present a state estimation approach to tackle partially ob-
servable reinforcement learning [26] problems in discrete time. Reinforcement
learning is the machine learning approach to the optimal control problem. In-
stead of designing the control strategy, reinforcement learning learns it from ac-
tual observations of the system to be controlled. Combined with powerful func-
tion approximators like neural networks, impressive results could be achieved
[28, 13, 19]. In most real world applications, some form of state estimation is
necessary to fulfill the requirements of reinforcement learning.

Consider the task to reduce the emissions of a gas turbine while keeping
humming, caused by combustion dynamics, low. A gas turbine consists of a
compressor, providing compressed air. Within the combustion chamber, this air
is burned with gas to drive the turbine and the coupled generator. The gas is
injected through multiple burners. At each burner, the fuel flow is split into
different fractions enabling control over the combustion process. The combus-
tion process results in emissions of NOx and CO, which have to be kept below
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legal limits. At the same time, the combustion process causes humming. This
humming reduces the life time of the machine and can cause fatal damage to
the turbine. Reinforcement learning can address the problem of optimizing the
combustion process by tuning fuel fractions in an elegant way. Reinforcement
learning can also account for seasonal effects and wear because these effects can
be found within sensor readings. Approaches that are based on (fixed) physical
models are usually unable to find such effects. To successfully develop a rein-
forcement learning agent, the problem of state estimation (see chapter 30 [23]
for other problem solutions to real world reinforcement learning applications)
has to be solved, in order to fulfill the requirements of the reinforcement learn-
ing framework. Since a gas turbine provides a vast number of sensor readings,
such as temperature and pressure readings, mass flows and actor settings such
as valve positions and set points of low level controllers, the state is very high
dimensional. Even experts cannot anticipate all effects that could be caused by
the various subsystems and their interactions. A state estimation approach can
overcome this problem.

Various topologies of recurrent neural networks (RNNs) are used for state
estimation as they allow to identify the continuous valued, possibly high dimen-
sional state space of real world applications. RNNs explicitly offer possibilities
to account for time and memory, in principle they are able to model any type
of dynamical system [9, 15, 11, 32]. Because of these capabilities RNNs are a
valuable tool for state estimation, especially for real world applications. Based
on these estimates, methods of reinforcement learning can be applied to solve a
defined control problem.

The chapter is divided into four parts. After a brief introduction to reinforce-
ment learning and its requirements, the main trick of modeling a Markovian
state space using an RNN is described in section 29.3. Section 29.4 proceeds
with tricks to extract a Markov decision process from a possibly large set of
observables and adapts a neural topology further towards the task of state es-
timation for reinforcement learning. To address the task to capture different
time scales of dynamical dependencies a solution to the long-term dependency
problem is provided in section 29.5. For all presented tricks, recipes as prac-
tical guides are introduced, to avoid potential pitfalls and to improve general
applicability. Further, some experiments to demonstrate the applicability of the
presented procedures are presented.

29.2 Background

Reinforcement learning usually requires the system of interest to be described as
a Markov decision process (MDP) M := (S,A,P ,R), where S and A denote the
state and action spaces, respectively, P : S ×A× S �→ [0, 1] the state transition
probabilities, i.e., the probability of entering a successor state s′t+1 by executing
an action at in state st, and R : S × A × S �→ R the reward function assigning
a transition its immediate cost or gain. The aim of reinforcement learning is to
derive a policy π : S �→ A mapping each state to an action that maximizes the
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return, i.e., the sum of all (discounted) future rewards. A central characteristic
of an MDP is the Markov property which states that the probability of reaching
a certain successor state st+1 depends on the current state st and action at only.

However, in many real-world control problems the current state is not directly
accessible. Instead, only a number of observables zt ∈ Z can be used as source of
information about the true current state st, rendering the MDP into a partially
observable Markov decision process (POMDP) M ′ := (S,Z,A,P ,R,O). In ad-
dition to the components of an MDP, a POMDP contains an observation space
Z and an (usually unknown) observation function O : S × A �→ Z, describing
the mapping from state-action pairs to observations.

In the gas turbine setting, presented in the introduction one also has to deal
with a POMDP. Various measurements as well as actor settings like valve posi-
tions are provided as observables z. The state of the turbine can be influenced by
changing the fuel flow valve positions. As a result, an immediate reward signal
is calculated, providing information about the quality of performed actions.

A common approach for dealing with POMDPs is to model a distribution of
possible current states [12], i.e., a belief state. When using such approaches, the
selection of action at is based on the most probable current state and additionally
its uncertainty [20]. When dealing with technical systems, the partial observabil-
ity mostly stems from the limited available measurements and the fact that one
time step is insufficient to describe the current system state, i.e., most technical
systems can also be described as MDPs of higher order. By simply aggregating a
sufficient number of prior time slices, such Markov processes can be reduced to
MDPs of first order, i.e., the type of MDPs required by reinforcement learning. In
many cases a simple aggregation leads to a high dimensional state space and there-
fore turns out to be impractical in most cases (Bellman’s "curse of dimensionality"
[2]). Either a deep understanding of the underlying system or, especially in more
autonomous settings, a state estimator can overcome this problem. In the follow-
ing, recurrent neural approaches to model a Markovian state space from partially
observable dynamics are derived. The modeled state allows to apply any well un-
derstood powerful reinforcement learning algorithms in the offline setting, such
as the neural fitted Q iteration [24], the recurrent control neural network [31], or
online approaches such as actor critic algorithms [21].

29.3 The Trick of Modeling a Markovian State Space
Using a Recurrent Neural Network

A reinforcement learning agent interacts with a system thereby commonly al-
tering its evolution. This development can be described as an open dynamical
system. Note that in comparison to the description found in chapter 28 [36],
the adjustable external drives of the system, a are explicitly disjoint from other
external drivers z. In practice a dynamical system like a gas turbine can be in-
fluenced by adjustable external drives like valve positions of fuel or cooling flows
but at the same time, other external driver such as ambient conditions might
also be relevant. For discrete time grids (t = 1, . . . , T and T ∈ N) this can be
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Fig. 29.1. A dynamics can be affected by actions a, performed by a (reinforcement
learning) controller but also by external drivers z, e.g., ambient conditions of a gas
turbine. Both alter the state s of the dynamics and cause a state transition, resulting
in a set of observables y. For a gas turbine, observables are sensor readings such as
temperatures or pressure levels as well as actor settings such as valve positions.

represented as a set of equations consisting of a state transition and an output
equation [9, 11]:

st+1 = f(st, at, zt) state transition
yt = g(st) output equation. (29.1)

Figure 29.1 illustrates equation 29.1. The state transition is a mapping from the
present internal state of the system st and the influence of external inputs at and
zt, to the new state st+1. In the context of reinforcement learning, the inputs zt
are the agent’s (partial) information about the system and at represents an action
that has been selected by a control strategy. The output equation determines the
observable output yt. In a basic framework, the output is equivalent to the resulting
change of the system, in other words the subsequent observables of the system zt+1.

The task of identifying a dynamical system of Eq. 29.1 can be stated as the
problem to find (parametrized) functions f and g such that a distance measure-
ment (Eq. 29.2) between the observed data ydt and the model output yt is minimal:

T∑

t=1

(
yt − ydt

)2 → min
f,g

(29.2)

The identification task of Eq. 29.1 and 29.2 can be formulated by an RNN of
the form

st+1 = tanh(Ast + c+Bzt + Cat) state transition
yt = Dst output equation (29.3)

where A, B, C, and D are weight matrices of appropriate dimensions and c is a
bias.

By approximating the functions f and g with an RNN using the weight matri-
ces A,B, C, D, and a bias vector c, of fixed dimensions, the system identification
task of Eq. 29.2 is transformed into a parameter optimization problem:

T∑

t=1

(
yt − ydt

)2 → min
A,B,C,D,c

(29.4)
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Fig. 29.2. A standard RNN used as state estimator during the training phase. Each
circle represents a hidden layer of neurons (called cluster). Each arrow depicts a weight
matrix, connecting all neurons between two layers. Note that all hidden clusters as well
as all output clusters are connected to a bias (not shown in the figure).

This parameter optimization problem is solved by an RNN with finite unfolding
in time using shared weight matrices A,B, C, and D [22, 9]. Fig. 29.2 depicts the
resulting spatial neural network architecture. The RNN is trained with backprop-
agation through time which is a shared weights extension of standard backprop-
agation [22, 9]. The training of an RNN using shared weights is straightforward
and delivers sound results. RNNs are—other than feed forward networks—able
to establish memory due to the temporal structure with unfolding towards the
past and the future. This allows to model inter-temporal dependencies and latent
variables. E.g., the emissions of a gas turbine are delayed multiple steps because
of sensor response characteristics and the distance between causing the emis-
sions (within the combustion chamber) and the point of measurement (within
the exhaust gas flow).

In order to map the state estimation to the RNN the hidden units s of the
RNN (Fig. 29.2) describe the state variables for the reinforcement learning task.
In other words, after training, these variables are used as outputs of the state es-
timation function. The externally available observables and the performed action
are used as input vector zt and action vector at, ydt = zt+1 defines the targets.

The RNN is extended into the future by so-called overshooting [35], i.e., the
network is unfolded beyond the present time into the future (Fig. 29.2). This
results in a whole sequence of forecasts as outputs. Overshooting regularizes the
learning and thus improves the model’s performance [35]. Overshooting does not
require additional network parameters as shared weight matrices A, B, C, and
D are used.

The resulting trained network models the state transition of the underlying
dynamical system with respect to the sequence of actions. If the system is able to
model the forecast horizon sufficiently well, the Markov property for the hidden
cluster s0 is arbitrarily well approximated [30, 27]. Therefore a sufficiently well
trained RNN results in a state estimator for a subsequent use in reinforcement
learning algorithms [29].

In this section the basic idea of using an RNN for state estimation was in-
troduced. Subsequent to the trick of using RNNs as state estimators, a series
of recipes to overcome various problems when designing neural state estimators
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will be presented. First, the important role of actions on the state estimation
task and the requirement to generalize over all actions within the action space
(Sec. 29.3.1, 29.3.2) is discussed. Next, data and pattern preprocessing meth-
ods to provide a suitable training and test set (Sec. 29.3.3, 29.3.4, 29.3.5) are
introduced. Thereafter, the learning process is introduced (Sec. 29.3.6, 29.3.7).
Finally, the reduced recall-topology of a trained state estimator (Sec. 29.3.8)
is presented. The applicability of the approaches is illustrated on the cart-pole
problem in Sec. 29.3.9.

29.3.1 Improving the Generalization Capabilities with Respect to
Actions

In contrast to the standard definition of an open dynamical system and the
description of overshooting [35], the known sequence of actions is used as past
and future inputs ap, ap−1, . . ., a0, a1, . . ., af , where p describes the number of
past and f the number of future steps (Fig. 29.2). This is crucial, since the data
might have been generated by an arbitrary, possibly unknown control strategy.
The resulting network should be capable to model the dynamics of the system
based on the influence of these external drivers at, rather than predict a sequence
of actions from the Markovian state. E.g., the data of a gas turbine might be
generated by an arbitrary control strategy. If this effect is neglected, the state
estimator is forced to encode the underlying policy within the network. The
resulting network is most likely useless since it does not generalize to different
action sequences as they occur when following a reinforcement learning policy. In
general, it is also recommended to test a trained state estimator for its general-
ization capabilities towards different actions sequences. This is possible for most
systems. E.g., for the gas turbine certain actions are known to reduce emissions,
applying them to the turbine should lead to a change of NOx or CO.

29.3.2 A Recipe to Improve the Modeling of State Transitions

The standard RNN shown in Fig. 29.2 uses a single hidden cluster of neurons
to encode a state s, the state transition is modeled by the matrix A. In case
of state estimation for reinforcement learning we are interested in modeling a
state transition, i.e., st

at−→ st+1. This can be explicitly expressed in the neural
topology, improving the overall performance of the estimator. Especially gener-
alization capabilities with respect to different actions are improved. Note that a
good state estimator not only minimizes the training error of the optimization
task described in Eq. 29.4, but also generalizes well to different sequences of
actions (Sec. 29.3.1). The neural representation of a state transition is shown in
Fig. 29.3.

29.3.3 Scaling of Inputs and Targets

Like in other supervised learning approaches scaling of input and target values
is an essential preprocessing step. Usually input scaling to receive a mean of
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zero and a standard deviation of one is preferred. Other scaling approaches can
be used as well, e.g., to encode prior knowledge about a dynamics. E.g., for
concentrations like the emissions of a gas turbine, a logarithm can be used to
avoid negative, implausible output values.

29.3.4 Block Validation

As the patterns for an RNN comprise a whole sequence of input and target
values, subsequent patterns are highly correlated. Each pattern differs from the
preceding one only by a single time slice. Consequently, assigning patterns to
the training (used to update weights) or validation set (not used to update
weights but to evaluate the performance of the current set of weights) at random
would lead to a strong correlation between training and validation set and hence
the training and validation error. In order to de-correlate the pattern sets an
increased granularity of the partitioning is achieved by using blocks of patterns
that do not contain overlapping information. A block is either used for training
or testing. Ideally, sets with identical statistical properties are generated.

The usage of blocks is motivated by the occurrence of new situations. E.g., a
gas turbine might operate at full load and change to a reduced load level. After
a transient period, the turbine reaches the new load level. Such processes take
minutes, whereas the controller is designed to perform an action every couple of
seconds. By grouping the patterns to blocks, the sets are de-correlated and still
capture all operational situations. Choosing an appropriate block size for the
given problem is essential for good results and a reliable test set. If one would
simply split a data set of, e.g., two days of operation into two sets, a complete
day each, both sets could have significantly different statistical properties and a
set might easily miss some operational situations.

The random block validation algorithm (Alg. 29.1) addresses these problems.
The algorithm uses a data file containing M observations, i.e., M time slices
of data vectors. First the size of a block j is determined randomly within pre-
defined limits minblocksize and maxblocksize. Next j patterns are generated from
subsequential time slices of observations. Each pattern is unfolded over its entire
time range. In other words, if the topology defines p past time slices and f future

y−1 y0 y1 y2

s−1 si−1 s0 si0 s1 si1 s2 si2

z−1 a−1 z0 a0 a1 a2

B A B A B A B

C D C D D D

E EEE

Fig. 29.3. An RNN modeling explicit state transitions depending on an applied action:
st

at−→ st+1. Note that all hidden clusters as well as all output clusters are connected
to a bias (not shown in the figure).
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Fig. 29.4. Pattern generated with the block validation procedure. All blocks are de-
correlated to provide reliable, uncorrelated test sets (i.e., for validation and generaliza-
tion tests).

time slices, the entire pattern covers p + f observations. Further each pattern
is scaled (see Sec. 29.3.3). The process is repeated until the block is filled or
one runs out of observations. Finally the type (training or test set) of a block is
determined according to predefined probabilities. A complete block is added to
the final pattern set. The resulting generated patterns are organized as shown
in Fig. 29.4. The resulting data set fulfills our requirement of a set of patterns,
where each pattern set (training set and test set) are de-correlated but have
similar properties, since the different operational situations are distributed over
all sets.

29.3.5 Removal of Invalid Data Patterns

In all applications with training data unfolded in time the problem of invalid
patterns can occur. An invalid data pattern contains data that does not fit into
a predefined time grid. E.g., every time the gas turbine is restarted, the stream
of data is restarted as well and causes a gap. Any pattern that is generated
and contains data from the previous shutdown, probably a couple of hours ago,
and the new start-up would be invalid. It does not describe the behavior of the
turbine and should therefore be removed from the used patterns.

A valid pattern contains, for each step unfolded in time, inputs that match
the defined time grid. E.g., if a time grid of t = τ is selected, a valid pattern
unfolds over n equidistant steps t = τ, 2τ, . . . , nτ , where n defines the number of
unfolded steps of the pattern. Any pattern that has gaps in the time line should
be excluded to avoid invalid training patterns. This problem occurs in many real
world applications but also for episodic benchmark problems such as a cart-pole
or the acrobot [26].

In practice this task can be solved by simply extending the block validation
algorithm (Alg. 29.1). Before the subroutine: generate(tm, ..., tm+n), each data
vector is tested to match the defined time grid. All data vectors violating the
grid are ignored.
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Algorithm 29.1 . Random block validation
Input: set of observations O = {tm = (zm, am, rm)|m = 1, . . . ,M}
Result: block validated set of patterns for training and testing
m := 1
while m ≤M do
j := rand(minblocksize,maxblocksize) " determine the block size

within given limits
i := 0
while (i < j) ∧ (m+ n) ≤M do " generate a block of patterns,

containing j patterns, where each
pattern covers n time slices,

break if insufficient data available
pattern := generate(tm, . . . , tm+n) " generate a valid pattern

using the selected scaling
block.add(pattern)
i := i+ 1
m := m+ 1

end while
type := rand(ptraining, ptest) " choose the type of the new block

according to the specified probabilities p
for training and test set

patternSet.add(block, type) " Add valid block to final pattern set
m := m+ n " Skip data to avoid overlapping pattern,

n depicts the network’s unfolding in time
end while
return patternSet

29.3.6 Learning Settings

We made good experience using standard backpropagation on the described neu-
ral network topologies. This effectively realizes backpropagation through time for
a fixed horizon, i.e., over all past and future time slices covered by the neural
network. Robust learning is achieved by small randomly chosen batches of pat-
terns with a batch size B of, e.g. B = 1/1000N , where N is the number of all
patterns. The weights updates Δw are calculated as

Δw = −η 1

B

B∑

i=1

∂Ei/∂w , (29.5)

where η is the learning rate and Ei is the error for pattern i. The learning rate
is chosen between 0.01 and 0.001 in most cases.

In many applications the learning process can be sped up significantly by an
extension to standard backpropagation called VarioEta [18]. VarioEta scales the
weight updates individually by the standard deviation over all patterns
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σw =

√√√√ 1

N

N∑

i=1

(∂Ei/∂w −Dw)2 , (29.6)

where

Dw =
1

N

N∑

i=1

∂Ei/∂w (29.7)

leading to the VarioEta update rule

Δw′ = −η 1

B

B∑

i=1

∂Ei/∂w
1

σw
. (29.8)

29.3.7 Double Rest Learning

The training process of RNNs with shared weights has proven empirically to be
reliable and robust. Nonetheless our goal is to get the best training result without
wasting time on unnecessary network training. For this purpose we developed
the double rest learning procedure (Alg. 29.2).

In principle the same network is trained multiple times on a constant data set
but different random initializations of the initial neural weights. If no better net-
work was found after multiple trials of training, the process terminates. A set of
pattern that contains a training set and at least one test set used for validation is
required. The algorithm is initialized with a maximum number of trials, tmax and

Algorithm 29.2 . Double rest learning
Input: maximal epochs per training emax, maximal training trials tmax, rest
epochs erest, rest trials trest
Result: trained neural network
t := 0
ttotal := 0
v :=∞
while t < trest ∧ ttotal < tmax do

net := restLearning(erest, emax)
vt := net.min()
if vt < v then
v := vt
bestNN := net
t := 0

end if
t := t+ 1;
ttotal := ttotal + 1

end while
return bestNN
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the number of trials one wants to try to find a better solution, trest. For the rest
learning algorithm (Alg. 29.3) the maximum number of epochs allowed for train-
ing a single network, emax and the number of epochs a single network is trained
beyond the epoch that achieved the best validation error erest is required.

Double rest learning starts training single networks using the rest learning
algorithm (Alg. 29.3). Whenever a new network is found to have a better vali-
dation error than a previous one, the number of rested trials t is reset to 0. The
algorithm terminates as soon as no better network was found for trest trials or
the maximum number of trials tmax is exceeded.

The rest learning process for a single network follows a similar approach
(Alg. 29.3). The algorithm allows us to select the best network according to
a validation set. A single network is trained for e epochs. If a better solution
is found within erest, the epoch i with the best validation error is determined.
The best set of weights, bestNN, from epoch i is stored, and the network is
trained for another erest − i epochs. If the validation error did not improve for
erest epochs or the maximum number of training epochs emax is exceeded, the
training process terminates.

Algorithm 29.3 . Rest learning
Input: maximal epochs per training emax, number of rest epochs erest
Result: trained neural network t := 0 vmin :=∞ ttotal := 0 e := erest
while t < erest ∧ ttotal < emax do

net.learn(e) " train the network for e epochs
ttotal := ttotal + e
v := net.min() " retrieve the minimal validation error
i := net.index(v) " retrieve the epoch resulting

in the minimal validation error
if v < vmin then
vmin := v
bestNN := net.weights(i) " retrieve the network with the weights,

resulting in the minimal validation error
t := i
e := erest

elset := t+ i e := erest − i
end if

end while
return bestNN

Double rest learning can be applied to any neural network training where
one wants to select the best network from multiple trials using a robust stopping
criterion. It is especially useful when the meta-parameters of the training process
are subject to optimization and are modified at each trial3. Another advantage
3 In case of identical meta-parameters for all trials, it is adequate (and even more

efficient) to use a fixed number of trials, i.e., tmax = trest.
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is the parametrization of the algorithm. Even though there are four parameters,
they can be assumed to be constant. For most applications we use: erest = 50,
emax = 5000, trest = 10, and tmax =∞. This parametrization has shown robust
results for a wide range of applications and 500 to 50000 training patterns.

29.3.8 A Recipe to Generate an Efficient State Estimation Function

After training an RNN the neural network is truncated to receive a function of
the form:

st = f(zt, zt−1, ..., zt−n, at, at−1, ..., at−n), (29.9)

where n denotes the length of the considered history of the network. The opti-
mal length n can be found by subsequentially reducing the length of the past
network until the error of the forecast, i.e., for outputs y0, y1, . . . , ym, increases.
An instantaneously increasing error either indicates a perfect choice of n or an
insufficient history. Another training with an increased past horizon ensures that
all prior required information is provided to the neural network.

The topology of the resulting network is shown in Fig. 29.5. This function can
be used to transform observations into tuples of {s, a, s′} and apply a reinforce-
ment learning method of choice to solve the control problem.

s−3 s−2 s−1 s0

(z−3, a−3)(z−2, a−2)(z−1, a−1)(z0, a0)

A A A

[B,C] [B,C] [B,C] [B,C]

Fig. 29.5. A finalized state estimator after training. The former hidden unit s0 is now
used as output of the function and provides a Markovian state representation for a
given sequence of observations and actions. Note that all hidden clusters are connected
to a bias (not shown in the figure).

29.3.9 Application of a Neural State Estimator

To demonstrate the capabilities of an RNN as state estimator, we chose the cart-
pole problem, which has been extensively studied in control and reinforcement
learning theory. Since more than 30 years it serves as a benchmark for new ideas,
because it is easy to understand and also quite representative for related questions.
The classical problem has been completely solved in the past. E.g., Sutton [26]
demonstrated that the pole can be balanced for an arbitrary number of time steps
within a remarkable short training sequence. There are two major directions to
make the cart-pole problem more challenging. One is to make the task itself more
difficult by taking for example two poles [8] or regarding a two dimensional cart
[7]. The other one is to make the original problem partially observable [17, 1, 8].
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We will focus on the latter, since all other variants provide a Markovian state rep-
resentation in the first place, and therefore do not require state estimation. A re-
inforcement learning solution to the original (simulated) benchmark problem, as
well as to a real cart-pole system can be found in chapter 30 [23].

Problem Description. The classical cart-pole problem consists of a cart mov-
ing on a bounded track and trying to balance a pole on its top. This cart-pole
system is illustrated in Fig. 29.6 [17].

x

θ

F

Fig. 29.6. The cart-pole problem system

The system is fully defined through four variables (t = 1, . . . , T ):

xt := horizontal cart position
ẋt := horizontal velocity of the cart
θt := angle between pole and vertical
θ̇t := angular velocity of the pole

(29.10)

The goal is to balance the pole for a preferably long sequence of time steps without
moving out of the limits. Possible actions are to push the cart left or right with a
constant force F . The pole tilts when its angle θt is higher than 12 degrees. Either
then or when the cart hits one of the boundaries, the system is punished with a
negative reinforcement signal. In all other cases the reward is zero.

As already mentioned the system has been extensively studied in its several
forms. When the system was studied as partially observable, one usually omitted
the two velocities, ẋt and θ̇t, i.e., only the cart’s position and the angle between
the pole and the vertical where given as inputs [17, 1, 8]. Solving this problem is
not difficult because the model or algorithm just needs the memory of one past
time step to calculate the missing information.

To demonstrate the advantages of RNNs (unfolded in time) only the horizontal
position of the cart, xt is observable [29]. All other information is unknown to
the system.
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Model Description. To solve the problem described above, an RNN (Sec. 29.3)
was used to develop the full dynamics of the cart-pole system. Input zt and tar-
get ydt consist of the horizontal cart position xt as well as the preprocessing
transformations xt − xt−1. The input at contains the agent’s action. No other
information is observable by the model. The internal state space st is limited
to four neurons, allowing the network to reconstruct the complete but only par-
tially observable dynamics (Eq. 29.10) in its internal state space. The network
is unfolded ten time steps into the past and future. Preceding experiments have
shown that this memory length is sufficient to identify the dynamics. To make
the network independent from the last unfolded time slice a technique called
cleaning noise is used as a start initialization [10]. The network is trained by
backpropagation through time [22, 9].

In a second step the evolved state space is extracted fromtheRNN, i.e., a state es-
timation functionwas exported to calculate estimated states fromobservations (see
Sec. 29.3.8). Then a generalized form of Samuel’s adaptive heuristic critic (AHC)
algorithm [25] was used to solve the control problem based on the state estimates.
Note, that the algorithm has to be started with an already filled lag structure, i.e,
the past lags of the state estimator need to be filled with observations in order to
provide a first state estimate. Otherwise there is a high probability that the al-
gorithm is faced with a tilted pole in its first learning step, as a minimum of ten
uncontrolled time steps would be necessary to fill all the lags.

Fig. 29.7. Correlation between the best quadratic combination of the reconstructed
state space variables (st)1, . . . , (st)4 of the RNN and the original ones (Eq. 29.10)
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Results. As a first result the estimation quality of the different state vari-
ables of the cart-pole is illustrated in Fig. 29.7. The four plots show the corre-
lation between the original state space variables of the dynamics, xt, ẋt, θt, θ̇t,
(Eq. 29.10) and the best linear combination of the reconstructed state space
variables (st)1, . . . , (st)4 and their squares (st)21, . . . , (st)24 in each case. The high
correlation for each state space variable demonstrates the reconstruction quality
of the RNN. It also supports the use of RNNs for partially observable reinforce-
ment learning problems.

We compared the results of our approach to a direct application of the AHC
algorithm to the problem, i.e., without using an RNN in the first step. Note,
that no adaptive binning has been used. In both cases the discretization of the
state space was chosen to yield the best results.

Fig. 29.8 plots the achieved number of steps, the pole could be balanced, to the
number of trials. The training process was stopped as soon as the first method
was able to balance the pole for a minimum of 1000 steps. Fig. 29.8 shows how
the RNN approach outperforms a direct application of the AHC algorithm.
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Fig. 29.8. Comparison of the performance in the partially observable cart-pole problem
of our RNN approach (upper curve) to a direct application of the AHC algorithm (lower
curve)

29.4 The Markov Decision Process Extraction Network

When applying reinforcement learning algorithms to real world problems such as
a gas turbine, one not only faces the problem of observations that do not provide
the Markov property but in many applications it is not even obvious which
variables to consider for the state definition. E.g., the measurements provided
by a gas turbine include information about various subsystems. In practice it is
often hard to determine if a certain variable has to be considered or a whole set
of variables from a certain subsystem can be dismissed.
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Fig. 29.9. The Markov decision process extraction network (MPEN) consists of a past
(left) and a future (right) subnetwork. The input variables are split into two groups:
Actions at are controllable by the reinforcement learning agent, zt denote observable
variables from the dynamics. The future subnetwork has outputs rt only. State tran-
sitions are modeled by sit as well as st. Note that all weight matrices in the past
(A, . . . ,D) are different from the future matrices (E, . . . ,H).

In addition to considering expert knowledge and methods for input selec-
tion we developed an approach, designed for optimal control problems, where
a reward signal is available. From a reinforcement learning point of view, the
performed action at, a possibly large set of observables zt as well as the reward
rt for the given tuple of observation and action is available for all steps in time
t. In many real world scenarios, the reward function rt = fr(zt, at) is known,
because it describes the desired goal of the problem to be addressed and was
most likely designed by us. This knowledge can be modeled in an advanced neu-
ral state estimator by splitting the network into past and future subnetworks to
match following equations:

st+1 = fpast(st, zt, at), t ≤ 0 (29.11)
st+1 = ffuture(st, at), t > 0. (29.12)

The split of the network addresses an inconsistency within the topology of the
RNN since observables z are not available for future time slices (t > 0). Another
topology to address this problem would be the dynamically consistent recurrent
neural network [34]. This topology however must predict all observables z which
can particularly cause problems when some variables are harder to predict than
others. Since the split into past and future allows us to use any target, variables
not included in the input set can also be considered. This allows to use the
reward signal or, in case of a known reward function, the arguments of the
reward function as targets:

rt = g(st, at), t ≥ 0 (29.13)

Note that the current state st and the applied action at are sufficient to de-
scribe the expectation value of all relevant reward functions, because the entire
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information about the successor state’s st+1 probability distribution must be
included in these two arguments. This target allows us to change the objective
of the neural network to the desired dynamics:

T∑

t=1

(rt − rdt )2 → min
f,g

(29.14)

The resulting topology allows the neural network to accumulate all information
required for the Markov property from the provided past observations in the
past network, while the future network remodels the state transitions.

It is also possible to encode prior knowledge about the distribution of relevant
information over the considered past horizon by adapting the topology of the past
network accordingly. A possible modification could be to add additional inputs
directly to the hidden cluster s0, for instance if they are known to be constant
over the considered past horizon. E.g., the ambient temperature, pressure, and
humidity for the combustion process of a gas turbine. Since these variables are
constant over the considered unfolded past network, they can directly be fed to
the cluster s0. The only constraint for any input of past information is that it has
to be passed through the hidden cluster s0 which is ultimately used as the output
of the Markovian state representation. Therefore, possibilities for topologies of
the past network are countless.

The representation of these findings leads to the Markov decision process
extraction network (MPEN) shown in Fig. 29.9. The subnetwork on the left
(past network) has no explicit target and provides information to the neural
branch on the right (future network). The two subnetworks are connected via
an arbitrary neural structure, e.g., a weight matrix or a multi-layer perceptron.
The future network uses the information provided by s0 as well as the future
actions to learn a system’s dynamic capable to predict the sequence of future
rewards. Note that future actions are important inputs preventing the network
to predict the sequence of actions which induced the state transitions. This is
important because action selection can be based on external information which
is not included in the set of observables, or might even be unpredictable due to
random exploration. See Sec. 29.3.1 for more details regarding this issue.

As proven in [27], an RNN can be used to approximate an MDP by predict-
ing all expected future successor states based on a history of observations. The
structure of an RNN forces each hidden cluster s to encode all necessary infor-
mation to estimate a successor state with respect to the influence of an action.
For this reason an RNN must be capable to estimate the expected rewards for
each future state because a reward function can only use a state, action, and
the resulting successor state as arguments. Therefore, it is sufficient to model a
dynamical system predicting the reward for all future time slices. Based on this
conclusion, the approach is designed to model the minimal required dynamics of
a regarded system [4].

The major advantage of the introduced neural topology over other RNN based
state estimators is the capability to model a minimal dynamics from a set of
observables without manual selection of variables. A further advantage is the
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capability to extract a minimal state space. Networks that need to forecast all
observables such as the dynamically consistent RNN [34] encode all information
into the state space and are therefore not minimal. This is of special interest if the
set of observables contains unimportant variables that are possibly difficult to
predict and therefore cause a drop in forecast performance. Additionally, such
variables interfere with the training process, since the validation error can be
highly influenced by these variables. In other words, resulting largest residuals
causing the training result of the entire neural network to be less robust.

29.4.1 Reward Function Design Influences the Performance of a
State Estimator

In contrast to the standard RNN, the difficulty to train the neural topology
depends on the reinforcement learning problem itself since the definition of the
reward function provides the target. We could show that for episodic problems
like a cart-pole it is possible to train the network with the standard reward
function that gives some positive or negative feedback at the end of trajectories
[4]. However, the problem becomes much easier to solve when more information
about the quality of the current state is provided. This is reflected in additional
gradient information speeding up the learning process. For most real world ap-
plications, such a reward function can be easily provided since we usually par-
ticipate in its design. In case the reward function is known, the arguments of the
reward function are usually preferred to be used as targets.

29.4.2 Choosing the Forecast Horizon of a State Estimator

When designing a neural state estimator network, the question about the number
of future steps, that should be included into the prediction, arises immediately.
Since the networks are unfolded in time towards the past and the future for a
limited number of steps, a practical answer to that problem has to be found.
Fortunately, the definition of the reinforcement learning problem itself provides
an answer. Using a discount factor γ to define the return, limits the significant
horizon of future time steps. The return, defining the performance of an agent’s
strategy, is defined by:

∞∑

t=1

rtγ
t. (29.15)

In practice one can safely limit the number of future time steps accordingly,
since the impact of the rewards decreases exponentially.

29.5 The Trick of Addressing Long Term Dependencies

Most state estimation approaches rely on Takens’s theorem [33] which states
that a sufficient number of past time slices contain all information necessary to
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Fig. 29.10. The Markov decision process extraction network with shortcuts (MPEN-S)
consists of a past (left) and a future (right) subnetwork. The input variables are split
into two groups: Actions at are controllable by the reinforcement learning agent, zt
denote observable variables from the dynamics. The future subnetwork has outputs rt.
State transitions are modeled by sit as well as st. Note that all weight matrices in the
past (A, . . . , E) are different from future matrices (G, . . . , L). All hidden clusters as
well as all output clusters are connected to a bias (not shown in the figure).

estimate a Markovian state. Recurrent state estimators show remarkable perfor-
mance in various applications such as state estimation for gas turbine control
[28], but despite the advantages of RNNs there have been concerns regarding
their capability to model long-term dependencies [3]. In a system exhibiting long-
term dependencies the system’s output at time T is dependent on the input at
time t T [14]. The problem was discovered by Mozer [16] who found RNNs to
be unable to capture global effects in classical music. The main reason for this
effect are vanishing gradients in gradient-based learning methods [6, 14]. Long-
term dependencies occur in many time series ranging from technical systems to
financial data. To overcome this issue the Markov decision process extraction
network with shortcuts (MPEN-S) [5] is introduced. It is an extension of the
previously introduced MPEN topology (Sec. 29.4), where additional shortcuts
connect clusters across a fixed number of time slices (Fig. 29.10). Examples are
shortcuts of length n in a network with p steps in the past and f steps into
the future that connect s−n → s0, s−n+1 → s1, . . . , sp → sp+n. In the future
part, shortcuts of the same length are added from s1 → sn+1, s2 → sn+2, . . . ,
sf−n → sf .

The resulting topology is successfully used for state estimation problems that
face the problem of delayed observables or actions that show a delayed effect
on a dynamics. For instance, gas turbine emission measurements are delayed
by about one to two minutes, whereas the combustion dynamics of the turbine
occurs almost instantaneously. Both effects are influenced by the same action
applied to a turbine, therefore the underlying state contains information about
both, the highly delayed as well as the short term effect.

After presenting a recipe to find a good shortcut length in Sec. 29.5.1, we
present experiments to demonstrate the capabilities of the MPEN-S topology.
Experiments include a gas turbine simulation with highly delayed effects of action
on the dynamics.
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29.5.1 A Recipe to Find a Good Shortcut Length

For selecting an adequate shortcut length n, the following heuristic can be con-
sidered: The severity of the vanishing-gradient problem is correlated with the
number of steps information has to be forwarded within the network. There-
fore, the value n is chosen to minimizes the total number of steps informa-
tion has to travel from any state in the past to the current state s0. I.e.,∑p

i=1 steps(s0, s−i, n)→n min, where steps(s0, s−i, n) gives the minimum num-
ber of steps to travel from s−i to s0, including possible shortcuts. E.g., if n = 2,
steps(s0, s−1) = 1, steps(s0, s−2) = 1, steps(s0, s−3) = 2, steps(s0, s−4) = 2. The
only information required for this heuristic is the maximum number of past time
slices that are assumed to influence the current state. Fig. 29.11 shows results
from experiments with different shortcut lengths indicating that the heuristic
leads to reasonable results.

29.5.2 Experiments on Long Term Dependencies Problems

To demonstrate the capabilities of the MPEN-S two benchmarks are used, a
sequence of random numbers as well as a gas turbine simulation. We compare
the MPEN-S with shortcuts of length n = 4 to the MPEN. The shortcut length
n = 4 was chosen according to a heuristic (Sec. 29.5.1). For each architecture
and benchmark, 10 networks are trained by online backpropagation with a learn-
ing rate of 0.001 on 10,000 observations, of which 30% are used for validation.
Evaluation is based on another set of the same size but without noise. To judge
the quality of the state estimate, represented by the activation values in s0, we
test the content of information within s0. To do so we feed the estimated states
as inputs to a feed forward neural network (two hidden layers with 150 neurons
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Fig. 29.11. Results from experiments with different shortcut lengths and a past of
p = 20. (a) shows the sum

∑p
i=1 steps(s0, s−i, n) of a network without shortcuts and

networks with shortcuts of different lengths (n ∈ {4, 5, 6} minimizes the sum). (b)
shows the validation errors of these networks for a random numbers experiment (Sec.
29.5.2). The correlation between the sum of steps and the validation error is obvious.
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each) whose targets are the true Markovian states of the benchmark applica-
tions. In the best case, the estimated states include all relevant information and
consequently allow a perfect mapping to the true Markovian states, i.e., the
correlation between the target and output is 1.

Random Numbers Experiment. In a first experiment, sequences of equally
distributed random numbers xi ∈ [0, 1] are used. The network with a past and
a future horizon of i steps receives a sequence xt, xt+1, . . . , xt+i as inputs in the
past part of the network. The sequence is also used as targets for the future part
of the network, introducing a delay between input and corresponding output.
This way, the network has to output an input given at time step t at time step
t+ i to minimize its error. In addition, equally distributed noise e ∈ [−0.05, 0.05]
is added to the target values for training. The goal of the state estimation for
the random numbers problem is to encode information about the past i random
numbers.

Gas Turbine Simulation. To demonstrate the capabilities of the presented
approach on a problem similar to the real-world application of our interest, a gas
turbine simulation is used. The simulation provides a controllable variable pilot
affecting the emissions and humming of the turbine. The pilot fraction is one of
the most important fuel fractions regarding the combustion control. In order to
keep the simulation as simple as possible, the combustion tuning is reduced to
this variable. The goal of a strategy is to minimize emissions and avoid critical
humming, which is reflected in the reward function. While humming reacts in-
stantaneously, the emissions, like in real world, have a long delay and a defined
blur over several steps in time. Each step, the simulator provides observations
about its current state. The only additional information for the state estimation
model is the maximal expected delay d of the simulation. The goal of the state
estimator is to encode all relevant information about the past d steps.

Results. Fig. 29.12 illustrates the correlation of the estimated and true Marko-
vian states of the random numbers experiment ((a) and (b)) and the results of
the gas turbine simulation experiment ((c) and (d)). Both benchmark results
indicate that the MPEN approach is capable of estimating the Markovian states
well for small delays. For longer dependencies however, the approximation quality
drops significantly, while the MPEN-S can maintain its performance. Table 29.1
shows the average correlation and validation errors of all state variables. The
numbers show that the MPEN-S outperforms the MPEN both in reconstruc-
tion quality of the Markovian state (resulting in a better correlation) as well
as raw forecast performance (lower validation error). The validation error is a
good indicator for estimation quality, which is especially relevant for real-world
applications.
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Fig. 29.12. Average correlations of true and estimated Markovian state. A higher vari-
able index indicates a variable closer to the present. (a) and (b) show the estimation
quality for the random numbers problem with a delay of 60 steps. (c) and (d) illustrate
the estimation quality for the gas turbine simulation with a delay of 30 steps.

Table 29.1. Comparison of the MPEN and the MPEN-S in terms of validation error
(MSE) as well as correlation between true and estimated Markovian state

architecture experiment delay correlation validation error

MPEN
random numbers 60 0.4 0.9

gas turbine 30 0.988 0.0160

MPEN-S
random numbers 60 0.99 0.012

gas turbine 30 0.995 0.0058

29.6 Conclusion

In this chapter we introduced methods for neural state estimation, particularly
for reinforcement learning applications. However, the methods can also be ap-
plied to other applications that require a Markovian state representation. Fur-
ther, a set of practical recipes to overcome problems especially relevant to real
world applications was presented.

Sec. 29.3 describes the usage of recurrent neural networks (RNNs) as state es-
timators. Thereafter, a series of recipes to improve the applicability and to over-
come possible pitfalls are introduced. A partially observable cart-pole is used to
demonstrate the approach in Sec. 29.3.9. In Sec. 29.4, the idea of state estimation
based on standard RNNs is further developed towards the Markov decision pro-
cess extraction network (MPEN). This topology is dynamically consistent and
is capable to autonomously model a minimal Markov decision process (MDP)
from a large number of observables. Finally, long-term effects are addressed by
the Markov decision process extraction network with shortcuts (MPEN-S) in
Sec. 29.5. This topology is especially relevant to real world applications where
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different effects can occur on various time scales. The capabilities of the MPEN-S
are demonstrated using benchmarks, including a gas turbine simulation. Results
on the benchmark applications indicate a significant improvement over previous
approaches. This is reflected in a smaller validation error of the forecast as well
as an improved estimation quality, especially for state variables dependent on
highly delayed observables. Another important conclusion to draw from the ex-
periments is the correlation between the validation error and estimation quality.
This information is of high value, since in any real-world application one can
only rely on the measure of the validation error.
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Abstract. The paper discusses the steps necessary to set up a neural
reinforcement controller for successfully solving typical (real world) con-
trol tasks. The major intention is to provide a code of practice of crucial
steps that show how to transform control task requirements into the
specification of a reinforcement learning task. Thereby, we do not neces-
sarily claim that the way we propose is the only one (this would require
a lot of empirical work, which is beyond the scope of the paper), but
wherever possible we try to provide insights why we do it the one way or
the other. Our procedure of setting up a neural reinforcement learning
system worked well for a large range of real, realistic or benchmark-style
control applications.
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30.1 Overview

The paper discusses the steps necessary to set up a neural reinforcement con-
troller for successfully solving typical (real world) control tasks. The major in-
tention is to provide a code of practice containing crucial steps necessary to
transform control task specifications into the specification and parameterization
of a reinforcement learning task. Thereby, we do not necessarily claim that the
way we propose is the only one (this would require a lot of empirical work, which
is beyond the scope of the paper). But, wherever possible we try to provide in-
sights why we do it the one way or the other. In that spirit, this paper is mainly
intended to be a subjective report on how we tackle control problems by rein-
forcement learning in practice. It is not meant as a general review article and
therefore, many related and alternative methods are not mentioned here.

When faced with a real world system, typically a very large number of ways
exist to formulate it as a learning problem. This is somewhat different from
the situation usually found in reinforcement learning papers, where all the main
settings (like state description, actions, control interval) are usually given. In
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the following we therefore carefully distinguish between the (real world) control
problem (which is given) and the learning problem (which we have to design). Of
course, ideally, when the learning task is solved, the resulting policy should fulfill
the original controller task. The goal of this paper is to show how we can use the
degrees of freedom in the modelling of the learning task to successfully solve the
original control task. Our procedure of setting up a neural reinforcement learning
system worked well for a large range of real, realistic or benchmark-style control
applications, e.g. [9, 24, 10, 26, 7, 19, 13, 6].

30.2 The Reinforcement Learning Framework

30.2.1 Learning in Markovian Decision Processes

The approach for learning controllers followed here tackles control problems as
discrete-time Markovian Decision Processes (MDPs). An MDP is described by
a set S of states, a set A of actions, a stochastic transition function p(s, a, s′)
describing the (stochastic) system behavior and an immediate reward or cost
function c : S ×A→ R. The goal is to find an optimal policy π∗ : S → A, that
minimizes the expected cumulated costs for each state. In particular, we allow
S to be continuous, assume A to be finite, and p to be unknown to our learning
system (model-free approach). Decisions are taken in regular time steps with a
constant cycle time "t.

The underlying learning principle is based on Q-learning [30], a model-free
variant of the value iteration idea from dynamic programming. The basic idea
is to iteratively learn a value function, Q, that maps state-action pairs to their
expected optimal path costs. In Q-learning, the update rule is given by

Qk+1(s, a) := (1− α)Q(s, a) + α(c(s, a) + γmin
b
Qk(s

′, b)).

Here, s denotes the state where the transition starts, a is the action that is
applied, and s′ is the resulting state. α is a learning rate that has to be de-
creased in the course of learning in order to fulfill the conditions of stochastic
approximation and γ is a discounting factor. It can be shown, that under mild
assumptions Q-learning converges for finite state and action spaces, as long as
every state action pair is updated infinitely often (see e.g. [3] ). Then, in the
limit, the optimal Q-function, Q∗, is reached. The optimal policy π∗ can then
be derived by greedily evaluating the optimal Q-function:

π∗(s) ∈ argmin
a∈A

Q∗(s, a)

For a detailed introduction to reinforcement learning the reader is referred to
the excellent textbooks [3, 27].



NFQ Tricks 737

30.2.2 Q-Learning with Function Approximation

When dealing with large or even continuous state spaces, a tabular representation
of the Q-function comes to its limits or is simply infeasible. A standard way to
tackle this, is the use of function approximation to represent the Q-function. We
focus on neural networks in the following, but other approximation schemes (like
e.g. Gaussian processes [4], CMACs [28, 29], . . . ) are being used as well.

One big advantage of using neural networks is their capability to generalize to
unseen situations - a fact particularly useful in large or continuous state spaces,
where one can not expect to experience all situations during training. However,
this positive feature has also a negative impact: when the standard Q-learning
rule is applied to a certain state transition, it will also influence the value at
other inputs in an unforeseeable manner.

To work against this effect, we developed a neural Q-learning framework, that
is based on updating batches of transitions instead of single transition updates
as in the original Q-learning rule. This approach has turned out to be an instance
of the Fitted Q Iteration family of algorithms [5], and was named ‘Neural Fitted
Q Iteration (NFQ)’ accordingly [23].

The basic idea underlying NFQ is simple but decisive: the update of the value
function is performed considering the complete set of transition experiences in-
stead of single transitions. Transitions are collected in triples of the form (s, a, s′)
by interacting with the environment. Here, s is the original state, a is the chosen
action and s′ is the resulting state. The set of experiences is called the sample
set D.

The algorithm is displayed in figure 30.1. It consists of two major steps: The
generation of the training set P and the training of these patterns within a
multilayer perceptron. The input part of each training pattern consists of the
state sl and action al of training experience l. The target value of each pattern
is computed as suggested by the Q-learning rule: it is the sum of the transition
costs c(sl, al) plus the expected minimal path costs for the successor state s′l.
The latter is computed on the basis of the current estimate of the Q−function,
Qk.

Since at this point, training the Q-function can be done as batch learning of a
fixed pattern set, we can use more advanced supervised learning techniques, that
converge more quickly and more reliably than ordinary gradient descent tech-
niques. In particular, NFQ uses the Rprop algorithm for fast supervised learning.
Rprop adapts its search step size based on the signs of the partial derivatives and
has proven to be very fast and yet robust with respect to the choice of its param-
eters. For a detailed description of Rprop see [17]. The training of the pattern set
is executed either for a predefined number of epochs (=complete sweeps through
the pattern set), or until the error is below a certain predefined limit. Although
simple and straight-forward, training for a fixed number of epochs works well
and therefore is our standard choice. For a more detailed discussion about NFQ,
please refer to [23].
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NFQ_main() {
input: a set of transition samples D; output: Q-value function QN

k=0
init_MLP() → Q0;
Do {

generate_pattern_set P = {(inputl, targetl), l = 1, . . . ,#D} where:
inputl = sl, al,
targetl = c(sl, al) + γ minbQk(s

′l, b)
Rprop_training(P ) → Qk+1

k:= k+1
} While (k < kmax)

Fig. 30.1. Main loop of NFQ . k counts the number of iterations, kmax denotes the
maximum number of iterations. init_MLP () returns a multilayer perceptron with
randomly initialized weights. Rprop_training(P ) takes pattern set P and returns a
mulitlayer perceptron that has been trained on P using Rprop as the supervised train-
ing method.

30.3 Characteristics of the Control Task

In this work, we consider control scenarios of the following type. The controller
has to control a technical system or process such that finally a desired target
situation is achieved. The current situation of the system is measured by sensors.
Thus, the control goal is usually defined by making one or more sensor values
equal to externally given reference values within some tolerance bounds. To do
so, the controller has to apply an appropriate sequence of control actions. The
control system is realized as a closed-loop system, that acts at discrete time
steps. At every time-step, the sensor values are measured, and the controller
computes a control action, which is then applied to the process.

Different types of control tasks exist within this framework. An important
characterization is if the control task has a defined termination or not. In the
first case, control terminates immediately, once a certain goal criterion has been
achieved. A typical example would be to drive a mobile robot to a certain target
location. The task is terminated, once the target location is reached.

The second case is more challenging: the control task does not end, if a target
condition is reached once. Instead, the controller has to actively keep the system
in a set of goal states, that all fulfill a certain success criterion. Typically, this
criterion is given by the sensor values being equal to their target reference values
within a small tolerance band. This is a very common scenario in the control
of technical systems. A typical example would be to achieve and hold a certain
temperature in a room. From a control perspective, this latter scenario is much
more challenging (since it contains the first one as a special case).
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30.4 Modeling the Learning Task

This section discusses how to model a given (real-world) control task appropri-
ately within the neural reinforcement learning framework. We discuss alterna-
tives and ‘tricks’ while always trying to stay as close as possible to the framework
proposed by the theory of dynamic programming.

30.4.1 State Information

The underlying reinforcement learning framework crucially depends on the as-
sumption of the Markov property of state transitions: the successor state is a
(probabilistic) function of the current state and action. As a consequence, state
information provided to the learning system must be ‘rich’ enough — ‘rich’ in
the sense that the observed state transition does not depend on additional his-
torical information. In a real application, we can not necessarily expect to get the
complete state information out of the values provided by the sensors. In classical
control theory, the concept of an observer is known to deduce state information
out of the sequence of observed sensor information. However, this requires the
availability of a system model, which we assume not to have in our learning
framework. A standard way to tackle this problem is to provide historical sensor
and action information from previous time steps. Since we are learning anyhow,
we do not rely on a particular semantic interpretability of the state information.
This allows for example to provide more information than necessary or redun-
dant information, to be on the safe side. As a tradeoff, state information should
be kept as small and concise as possible to support good generalization, which
will generally lead to faster learning and better control performance. In techni-
cal dynamical systems, we often use temporal differences of sensor values as an
approximation to physically meaningful values like velocity or acceleration.

Like in supervised learning, using meaningful features instead of raw sensor
values to enforce generalization is often helpful. However, also like in supervised
learning, the design of good features typically requires deep insight into the
application (here: knowledge about system behavior which in the strong sense
we assume not to have). A current research direction is to autonomously learn
meaningful state representations directly out of high-dimensional raw sensor data
(like e.g. cameras) [15, 16, 25, 2].

Summary:

– state information must be designed out of sensor information and must be
rich enough to support Markov property

– redundant information is not a problem, but it is preferable to keep the input
dimensionality as low as possible

– state representation can be transformed into features to enforce generaliza-
tion

– state information does not necessarily have a human understandable meaning
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30.4.2 Actions

The original control task often allows the application of (quasi) continuous con-
trol values, typically in a certain range between a minimum and a maximum
value. While in principle methods exist to learn continuous control actions (e.g.
[11, 22]), we will here focus on providing a discrete set of control actions to our
learning system. This is the most common framework in reinforcement learning
and corresponds to the framework as presented in section 30.2.

This means, for setting up the learning system, one has to explicitly choose a
discrete set of actions within the range of potential control signals. One potential
choice is a two action set, consisting out of the minimum and maximum control
action (‘bang-bang’-control). In classical control theory, such a two-value control
policy is the basis of time-optimal controllers. Of course, oscillating back and
forth between two extreme control signals, e.g. to keep the system close to a
desired sensor output, often is not acceptable when it comes to the control of
real hardware. Therefore it is often advisable, to add additional actions to the
learning set, e.g. a neutral action that does not put additional energy into the
system.

The search space of available policies increases exponentially with the number
of actions. Therefore, from the perspective of learning time, one should try to
keep the number of available actions limited. However, there is of course a trade-
off: a smaller number of actions leads to a coarser control behavior and the
learning controller might not be able to fulfill the required accuracy in control.

There is a close interplay with the length of the control interval "t: a larger
control interval might require a larger action set to achieve the same level of
controllability and vice-versa: the smaller the control interval, the coarser the
action set may be, since more frequent interaction (and thus correction) is pos-
sible. The dynamic output element framework exploits this close relationship
between temporal and structural aspects of the action set to enable more flexi-
ble control policies [22].

Trivially, a least requirement to the action set is that a policy must exist,
that transfers the system to the goal state and - in case of the non-terminal
state framework (see below, section 30.4.4) - keeps it within the goal area.

Summary:

– action set should be kept small to allow fast learning
– tradeoff: more actions can enhance quality or accuracy of control policy
– actions must allow to reach goal states and to keep the system within goal

area in the non-terminal goal state setting.

30.4.3 Choice of Control Interval �t

The control interval"t denotes the time between two control interventions of the
learning system. In classical control theory, controller design is often assuming
that interaction happens in continuous time (like e.g. in classical PID-control).
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Therefore one aims to make the control interval "t as small as possible to ap-
proximate the assumed continuous time scenario - otherwise, the controller will
not work as expected. This is no necessary requirement in the learning frame-
work proposed here. Instead, the controller learns to adapt its behavior to the
control interval given - therefore also larger control intervals can be managed.
This additional degree of freedom is a big advantage, since for example a slower
controller might be realized on less expensive hardware.

As a general tradeoff, learning gets easier, if the control interval is larger,
since there are less decision points. On the other hand, the smaller the control
interval, the more accurately the system can be controlled. If absolutely no
prior knowledge of the system behavior is available, then "t must be chosen
empirically. A potential strategy to determine "t is to start with a relatively
large time step, which helps to learn faster, and then to refine it until the desired
accuracy is achieved.

As already discussed in section 30.4.2 there is a close interplay between the
available action set, the control interval"t, and the potential accuracy in control.

Summary:

– the larger the control interval "t, the fewer decisions have to be taken to
reach the goal, therefore learning is generally faster

– tradeoff: a smaller control interval "t potentially allows more accurate con-
trol and better control quality

30.4.4 The Terminal Goal State and The Non-terminal Goal State
Setting

As already discussed in section 30.3, control tasks can either terminate once
a goal criterion is met, or (virtually) continue forever. In the latter case, the
control goal is not only to reach a state fulfilling certain success criteria, but
to actively keep the system in a set of goal states, that all fulfill these success
criteria. A typical success criterion for a state could be, for example, that all
sensor values correspond to their target values within some tolerance bound. In
the following we discuss, how these two control scenarios can be modeled in our
learning framework.

For control tasks, mainly two learning scenarios are most appropriate: the
terminal goal state and the non-terminal goal state framework. From the learning
perspective, the terminal goal state setting is the simpler one. The task is to
transfer the controlled system from an initial state to a terminal goal state by
an appropriate sequence of actions. Once the goal state is reached, the episode
is stopped, and the target Q-value of the last state action pair is set to the
transition costs plus final costs of the terminal state.

This can be implemented by computing the target Q values as follows

Q(s, u) =

{
c(s, u) + γ · terminal_costs(s′) , if s′ ∈ X+

c(s, u) + γ ·minbQ(s
′, b) , else (30.1)
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where c(s, u) denotes the immediate costs of a transition (see below). Here,
X+ denotes the set of all terminal goal states, that fulfill the success criteria
and by being reached, terminate the control task. For each terminal goal state,
terminal_costs() assigns the corresponding terminal costs.

On the other side, the non terminal goal state framework is particularly tai-
lored to control tasks, where the controller also has to actively keep the system
in a set of goal states. Here, X+ again denotes the set of all goal states, that
fulfill the success criteria, but in contrast to the above framework, the control
task is not terminated, when one of those states is reached.

This results in the following rule for the update of the Q-values

Q(s, u) =

{
0 + γ ·minbQ(s

′, b) , if s′ ∈ X+

c(s, u) + γ ·minbQ(s
′, b) , else (30.2)

where as before c(s, u) denotes the immediate costs of a transition outside the
goal region (see below).

This seemingly slight modification has two important consequences: the epi-
sode is not stopped, once a state in the goal area is reached, and secondly no
‘grounding’ of the Q values to a terminal value occurs. This has a nasty effect to
the value function, when a multilayer perceptron is used to approximate it. Due
to interpolation effects and the lack of grounding, the value function tends to
steadily increase. We will discuss this problem in further detail in section 30.5.3.

Since learning in the terminal goal state framework is usually easier, it some-
times makes sense to model a per-se non-terminal control problem as a terminal
state learning problem. The general idea is to consider goal states with a low
change-rate as pseudo terminal states. Then, the terminal goal state framework
according to equation 30.1 can be applied. During learning, the task is always
stopped, when one of these pseudo terminal states is reached. In the application
phase, the policy learned by this procedure is then applied without stopping.
The idea behind this is, that whenever the system drifts away from its goal re-
gion during application, then the controller immediately brings it back to its
goal region.

However, this method is only an approximation to the actually desired behav-
ior. It moreover requires to heuristically define what a ‘low change-rate’ means
within the particular setting. So for non terminal control tasks we recommend
to use the non terminal goal state learning framework whenever possible. We
only wanted to mention this possibility, because sometimes a control task might
be too difficult to learn within the non-terminal goal state framework. Then,
an approximation by a terminal goal state problem might constitute a practical
way to make it work.

Summary:

– in general, terminal goal states make learning easier
– for control applications, often the nonterminal goal state framework is ap-

propriate, since finding a control policy that also stabilizes the system within
the target region is required.
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30.4.5 Choice of X+

The set X+ comprises all states, which fulfill the goal criteria as defined by
the control tasks. One typical way to define X+ is to denote ranges for the
values of each state variable. For the state variables that we want to control, we
typically define a range around their specified target value, i.e. target value ±δ,
where δ > 0 denotes the allowed tolerance. For other state variables, the allowed
ranges might be infinitely large, denoting that we do not care what value they
have for judging membership to X+.

Again, there is a tradeoff: the smaller we choose X+, the more accurate the
successfully learned final controller will be. The larger X+, the easier it will be
to learn, but we also have to accept less accurate controllers as a result.

An important requirement from the perspective of the learning framework is
that X+ is large enough, so that a policy exists, that X+ can be reached from
every starting state. Therefore, the choice of X+ is highly related to the choice
of the action set and the choice of the control interval "t.

In the undiscounted (γ = 1) nonterminal goal state case, an additional re-
quirement applies for X+. It must be chosen such that a policy exists, that
keeps the system permanently within X+. This policy need not to be known
in advance. Again, this requirement implies the interplay between the choice of
X+, the control interval "t and the available action set.

Summary:

– the larger X+, the easier it is to learn
– the smaller X+, the more accurate the learned controller will be

30.4.6 Choice of X−

In many control problems, constraints on the state variables exist, that must not
be violated by a successful control policy. The definition of the set of undesired
states, X− constitutes a way to model this requirement within the proposed
learning framework. In a typical setting, a state is within X− whenever a con-
straint of the original control problem is violated. Whenever a state within X−

is encountered, the control episode is stopped. Below, we show the resulting
computation for the target of the Q-value as an extension of the equation for
the non-terminal goal state framework (equation 30.2). The application within
the terminal goal state framework is straightforward.

Q(s, u) =

⎧
⎨

⎩

0 + γ ·minbQ(s
′, b) , if s′ ∈ X+

c(s, u) + γ · terminal_costs(s′) , if s′ ∈ X−

c(s, u) + γ ·minbQ(s
′, b) , else

(30.3)

The terminal costs for a state within X− should ideally be larger than the
path costs for any successful policy. When using a multilayer perceptron with a
sigmoid output function, we typically use a value close to 1 as terminal costs of
a state within X−.
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Summary:

– the learning framework allows the modeling of hard constraints on state
variables

30.4.7 Choice of Immediate and Final Costs

The choice of the immediate cost function c(s, u) determines the course of the
control trajectory until the target region is reached. It is not uncommon in
reinforcement learning to make c(s, u) a function of the distance to the target
region. This has the advantage, that the immediate costs already contain a local
hint to the goal, which may help learning considerably. From the perspective
of the control task, however, one has to keep in mind, that the final controller
optimizes the path costs to the goal. Optimizing the integrated distances to
the goal might not always be the ideal realization of what is actually intended
(imagine a situation, where a policy first makes a large error but then reaches
the goal in a few time steps, instead of a policy that only makes small errors but
for a long period of time). The situation gets even more difficult, if one has to
design an immediate cost function that trades off between two or more sensor
values, that all have to finally achieve a certain target value.

We therefore prefer a cost formulation, that has the advantage of a very simple
and thus broadly applicable cost function:

c(s, u) =

{
0 , if s′ ∈ X+

c , else (30.4)

where c > 0 is a constant value. A reasonable choice of c is that c multiplied by
the estimated number of time steps of the optimal policy should be considerably
below the maximum path costs that can be represented by the neural network
(which, when using a the standard sigmoid output function, is 1).

The immediate cost function proposed above moreover has the advantage,
that the learned optimal policy has a clear interpretation: it is the minimum
time controller. As a side note: using this immediate cost function, one can also
check the ability of a learning system to learn correct value functions: within
this framework, learning can only be successful, if the learned value function is
actually meaningful, since no hint towards the goal is provided by the immediate
cost function.

The terminal cost function is simple as well: terminal costs are 0, if a terminal
goal state is reached, and 1, if a constraint is violated. Of course, these values
may depend on the potential range of the output values of the neural network.

Summary:

– costs should serve the purpose of meeting the specifications of the original
control task as close as possible

– immediate costs may reflect local hints to the goal to help learning but this
might not necessarily reflect the intention of the original control task
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30.4.8 Discounting

In the above equations, γ with 0 ≤ γ ≤ 1 denotes a discounting parameter. Using
γ < 1 may make learning the value function easier, since the horizon of the future
costs considered is reduced (consider e.g. the extreme case where γ = 0. Then
only the immediate costs are relevant). On the other hand, choosing a discount
rate also has an influence on the resulting optimal policies: if γ < 1, immediate
costs that occur later in the sequence are weighted less. One has to make sure,
that this is in accordance with the initial control task formulation. We therefore
usually prefer a formulation with no discounting, i.e. γ = 1 and therefore have to
make sure that for successful learning, additional assumptions are fulfilled (e.g.
the existence of proper policies, which basically means that X+ can be reached
from every state with non-zero probability. For a detailed discussion see e.g. [1]).

Summary:

– discounting requires less assumptions and therefore can make learning sim-
pler and/ or more robust

– it must be checked, whether introducing a discounting rate for the sake of
better learning still matches the intention of the original control task.

30.4.9 Choice of X0

In a typical setup, at the start of each episode, an initial starting state is ran-
domly drawn from the starting state set X0. Ideally X0 is chosen such that it
covers the whole range of initial conditions that occur in the original control
task.

In tasks, that in average require a large number of steps to reach the goal
states, the probability of hitting the goal region by chance can be pretty low.
Here, a method that we call the ‘growing-competence’-heuristic [21] might help:
First, start with initial states close to the goal area and then incrementally
increase the set of starting states until it finally covers the complete original
starting state area.

Summary:

– the set of initial starting states for learning should cover the intended working
space of the original control problem

– if applicable, then starting with simple states first and then increasing the
range might help to improve the learning process dramatically

30.4.10 Choice of the Maximal Episode Length N

Control episodes might take infinitely long — this is inherently the case in the
non-terminal goal state framework and can also occur in the terminal goal state
setting, if the policy neither finds to the goal region nor crashes. Therefore,
while learning, one typically stops the episode after some predefined number
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of time steps. This is called the maximal episode length N in the following.
Theoretically, within the fitted Q learning framework, N is not a critical choice.
It just denotes the number of transitions sampled in a row (this is different
from learning methods that rely on complete trajectories). Actually, N might be
as low as 2. Then, per episode only one transition sample is collected. From a
practical perspective, however, it typically makes more sense to consider longer
episodes — in particular, when the policy used to sample the transitions drives
the system closer towards the goal region and therefore allows to collect more
and more ‘interesting’ transitions.

A rough heuristic that we use is to make N double or three times as large as the
expected average time a successful controller will need to reach the target region.
If N is chosen too large, then a lot of useless information might be collected -
consider for example very long episodes that just contain cycles of ever the same
states.

Summary:

– theoretically, the choice of N is not critical
– practically,N can considerably influence learning behavior, since it influences

the distribution of the collected transitions.

30.5 Tricks

30.5.1 Scaling the Input Values

Like in normal supervised learning, scaling the input values is an important
preprocessing step. Various methods and according explanations are discussed
in [14]. As a standard method, in all our learning experiments, we normalize the
input values to have mean of 0 and a standard deviation of 1.

Summary:

– like in supervised learning, it is important that all input values have a similar
level

– a simple scaling to mean 0 and standard deviation 1 works well in all our
learning experiments so far

30.5.2 The X++-Trick

If no explicit terminal state exists (which is the case in the nonterminal goal state
framework), the output of the neural network tends to constantly increase from
iteration to iteration. This is due to the choice of the transition costs, which are
0 (within the target region) or positive (outside the target region). Therefore,
the target value of each state action pair is larger or at least equally large than
the evaluation of its successor state. Amplified by the generalization property of
the multilayer perceptron, this leads to the tendency to ever increase the output
values of all state action pairs.
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A simple but effective remedy against this effect is to actually fix the values of
some state action pairs to 0. We call the set of such states, for which we assume
this to be true, X++. This heuristic is in accordance with a correct working of
the value iteration scheme, as long as 0 is the expected optimal path costs for
the respective state action pairs in X++. Of course, usually state action pairs
for which this is true, cannot be assumed to be known a priori. Therefore, in
order to apply this trick, one has to rely on heuristics. One reasonable choice of
X++ are states, that lie in the center of X+, the region of zero transition costs.
The reasoning behind this is the following: if one starts at a state x at the center
of X+, then a good control policy has a very high chance of keeping the system
within X+ forever — which justifies to assign zero path costs to that starting
state.

If X++ is chosen too large, then for some states within X++ the assumption
of optimal path costs of 0 may be violated. As a consequence, the resulting
policy most likely will not fulfill the expected property of reliably keeping the
system within X+. On the other hand, if X++ is too small, the chance, that
a state actually falls into X++ is very low and therefore the heuristic becomes
ineffective. A remedy against this, is to actually force the learning system to face
states in X++. One possibility to do that, is to enforce starting episodes close
to X++, another possibility is to introduce artificial state transitions, which is
discussed in the context of the hint-to-goal heuristic in the next section 30.5.3.

Summary:

– the X++ heuristic is a method to prevent the value function to steadily
increase

– if applied carefully, it is in perfect accordance with the value iteration scheme

30.5.3 Artificial Training Transitions

In a certain sense, the learning process can be interpreted as spreading its knowl-
edge of the optimal value function from the goal states to the rest of the state
space. Therefore, it is crucially required to actually have a reasonable number
of state action pairs that lead to a goal state within the overall transition sam-
ple set. An obvious recipe would be to try to enforce the occurrence of such
goal states, e.g. by starting episodes close to the goal area. However, this is not
possible for all systems because they do not allow to set arbitrary initial states.

An unconventional method to cope with the situation is to add artificial state
transitions to the sample set. Then, the pattern set used for training consists of
actually collected transitions, as well as additionally added artificial transitions.
This method was first introduced as part of the hint-to-goal heuristic in our first
NFQ paper [23] and has meanwhile also been successfully applied by other re-
searchers using other function approximation schemes (e.g. Gaussian processes,
[4]). The idea of the hint-to-goal heuristic is to introduce artificial state transi-
tions, that start in X++ and end in X++. Those states have — by definition of
X++ — terminal costs of 0. As a consequence, the value function is ‘clamped’
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to zero at these input patterns. Supported by the generalization ability of the
function approximation, also the neighboring states will tend to have a low and
thus attractive value.

If for the artificially introduced state action pairs the optimal path costs
are actually zero, the hint-to-goal heuristic will not negatively interfere with
the correct working of the value iteration process. An obvious choice therefore
is a state action pair, where the state is well embedded in X+ such that the
assumption of optimal path costs of 0 is most likely fulfilled. We usually generate
such an artificial state action pair by combining such a state with every action
in the action set.

The number of artificial patterns should be chosen such that a ‘reasonable
balance’ between experience of success and regular state transitions exists (as a
rule of thumb, something between 1:100 and 1:10). This is of course a number,
that has to be determined empirically. We are currently working on methods
that automatically find such a balance, but this is ongoing work and beyond the
scope of this paper.

Summary:

– the hint-to-goal heuristic might help to establish a goal region in the value
function, if real experiences of success are difficult to achieve during regular
learning

30.5.4 Growing Batch

The fitted Q iteration framework originally works with a fixed set of transitions.
No particular assumption is made, how these transitions are collected. In the
extreme case, these experiences are randomly sampled all over the working space
of the controller in advance. In a practical setting, however, this is not always
feasible. One reason is, that arbitrary sampling all over the working space is not
realizable, since initial states can not be set arbitrarily. Another reason is, that
to sample transitions equally over the working space might just be infeasible due
to the huge amount of data required to cover the complete space.

Therefore it is desirable to concentrate on regions of the state space that are
relevant for the final controller. One method to realize this is the growing batch
method. The idea is, that one starts with an empty transition set. After the
first episode, the value function is updated and the new episode is controlled
by exploiting the new value function. Different variants exist, e.g. the value
function can only be updated after n episodes, or the number kmax of NFQ
iterations between two episodes can be varied. In most of our experiments so
far we successfully used this growing batch procedure with the choice of n =
kmax = 1.

Summary:

– the growing batch method aims at collecting more and more relevant transi-
tions when the performance of the policy increases.
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30.5.5 Training the Neural Q-Function

To represent the value function, we use a neural multilayer perceptron. Although
it is often believed that setting up such kind of networks is a black art and its
parameters are hard to find, we found that this is not particularly critical in
the proposed neural fitted Q framework. One crucial point however is to use a
powerful training algorithm to train the weights. The Rprop learning algorithm
combines the advantage of fast learning and uncritical parameter choice [17].
We always use Rprop with its standard parameters. Also we found, that the
number of epochs (sweeps through the training set) is not particularly critical.
We therefore always train for 300 epochs and get good results. One can also
think of ways to monitor the training error and find some stopping criterion
to make this more flexible (e.g. to adapt to different network sizes, to different
pattern set sizes, etc.), but for the applications we had so far, we found this a
minor issue for learning success.

Surprisingly, the same robustness is observed for the choice of the neural net-
work size and structure. In our experience, a multilayer perceptron with 2 hidden
layers and 20 neurons per layer works well over a wide range of applications. We
use the tanh activation function for the hidden neurons and the standard sigmoid
function at the output neuron. The latter restricts the output range of estimated
path costs between 0 and 1 and the choice of the immediate costs and terminal
costs have to be done accordingly. This means, in a typical setting, terminal
goal costs are 0, terminal failure costs are 1 and immediate costs are usually set
to a small value, e.g. c = 0.01. The latter is done with the consideration, that
the expected maximum episode length times the transition costs should be well
below 1 to distinguish successful trajectories from failures.

As a general impression, the success of learning depends much more on the
proper setting of other parameters of the learning framework. The neural network
and its training procedure work very robustly over a wide range of choices.

Summary:

– choice of multilayer perceptron is rather uncritical
– important to have a powerful learning algorithm to adjust the weights
– advantage, if the supervised learning algorithm is not particularly dependent

on the choice of its parameters.

30.5.6 Exploration

In reinforcement learning, exploration — the deviation from a greedy exploita-
tion of the current value function — is important to explore the state space.
Various suggestions for good exploration strategies have been proposed, e.g.
considering a safe control behavior in the learning phase [12]. From our expe-
rience with NFQ, a simple ε-greedy exploration scheme is often sufficient. This
means that in every time step, with a certain probability (e.g. 0.1), the action is
chosen randomly instead of greedily exploiting the value function.
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In many application cases, we also observe good results even with no explicit
exploration at all. This is due to the fact, that the learning process itself —
the randomly initialized neural value function, the growing experience, the ran-
domly distributed starting states — already bears a fair amount of randomness.
To learn without explicit exploration is also of practical interest. When always
acting greedily, the performance achieved in a training episode is already the
performance, that the final greedy controller will show. This reduces the effort
of additional testing and therefore is particularly interesting for real world tasks.

Summary:

– a simple ε greedy exploration scheme is often sufficient
– if the starting states are well distributed in the working space, then in con-

junction with the growing batch method, even an always greedy exploitation
of the current value function works in many cases

30.5.7 Delays

In practical systems delays play a crucial role. Delays may occur both on the
sensor side - i.e. a sensor value is available only n time steps later, or on the actor
side - a control action has an effect only some time steps later. Simply neglect-
ing these effects typically leads to bad control behavior or even failures. Various
methods exist, e.g. to use prediction or filter methods to synchronize the infor-
mation available to the controller with the current world situation. One simple
but effective method is to augment state information with historical information
about previous actions applied to the system [31, 20].

Summary:

– in practice, actuator and sensor delays may often be not neglectable
– a simple remedy is to add historical information about previous action values

to the current state information

30.6 Experiments

30.6.1 The Control Task

The control task tackled in the following is to control a real cart pole system.
While cart-pole is a well known benchmark [27], this real world task is charac-
terized by additional challenging features:

– the initial states can not be set to arbitrary values. We moreover assume,
that no human intervention is allowed, in particular, the system can initially
only be started with the pole hanging down
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Fig. 30.2. The real cart pole system

– the control task is to balance the pole upright with high accuracy and with
the cart at a given target position (here: in the middle of the track). The
controller therefore not only needs to learn to swing-up the pole from the
downright position, but also to do it in such a sophisticated manner, that
finally it can be balanced at the requested position.

– one cannot directly control the force applied to the cart, but only the voltage
given to the DC motor driving the car. This introduces additional dynamical
effects into the system.

– due to communication effects, the sensor information is delayed
– there is considerable noise in both actuation and sensor values.
– there is a discontinuity (jump) in sensor values from −π to +π when the

pole is in the downright position.
– there is a hard constraint: the position of the cart may not be less than

-0.25m and more than 0.25m, since the track is bounded.
– the final controller should be able to work from arbitrary initial start states,

not only from one position.

The range of control inputs is (quasi) continuous from -12 volt to 12 volt. Sensor
information provided by the system is the position of the cart and the pole; no
velocity information can be measured. The target values for the sensor values
should be reached as fast as possible. The minimum control interval allowed by
the hardware is "t = 0.01s.

Since on the real system we can only perform a limited number of exper-
iments, we also report some results on a reliable simulation of the real sys-
tem (section 30.6.5). The input and output interfaces are exactly the same
for both simulated and real plant. The simulation model was derived by pa-
rameterizing a physical model of the plant using real data. The accurate
match between real and simulated system behavior allowed us to do keep
all modelling decisions and learning parameter settings the same for both
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the simulated and the real system. Therefore in the following, we only de-
scribe the real system setup. An implementation of the simulated plant is
available within our open-source learning framework CLSquare available at
http://ml.informatik.uni-freiburg.de/research/clsquare.

30.6.2 Modeling as a Learning Task

State Description. State information provided to the learning system consists
of sensor values of position (pt), angle (αt), the normalized temporal difference
of these measurements pt−pt−1

t
and αt−αt−1

t
. The angle is zero, when the pole is

upright. The angular value has a discontinuity (a jump from −π to +π) when the
pole is hanging down. Nothing particularly is done to resolve this discontinuity.
Instead, we expect the learning algorithm to be able to deal with that. To cope
with the sensor delay, additionally the value of the previous control action at−1

is added to the state information.

Actions. The action set available for the learning system consists of the ‘stan-
dard’ choice of minimal and maximal control signal plus the ‘neutral’ action 0V.
Thus A = {−12V, 0V,+12V }.

Control Interval �t. As defined by the hardware, the minimum length of the
control interval is 0.01s. After some initial experiments, we found that a control
interval of "t = 0.05s is still sufficient for an acceptable control quality while at
the same time allowing a fast and successful learning process.

Non-terminal Goal State Framework. For the cart-pole task, control must
be continued once pole angle and cart position reached their target values to
actively keep the system within the goal states. This means, that the correct
formulation of the learning problem is the non-terminal goal state setting. As a
consequence, every episode is only interrupted, if the system state entered the
failure set X− or if the maximum number of steps per episode, N is reached.

Choice of X+. A state is in X+, if the following two conditions are fulfilled:
the cart position is at most 0.1m away from the target position (here: middle of
the track) and the pole angle deviates from 0 rad by maximally ±0.15 rad. The
rest of the state entries is not considered for judging membership to X+.

Choice of X−. A state is in X−, if the cart position is less than -0.25m or
more than 0.25m. This corresponds to the physical boundaries of the track. The
rest of the state entries is not considered for judging membership to X−.

http://ml.informatik.uni-freiburg.de/research/clsquare
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Immediate and Final Cost Functions. As immediate costs we use the stan-
dard minimum-time formulation with constant transition costs of 0.01. Thus,

c(s, u) =

{
0 , if |pt| ≤ 0.1m and |αt| ≤ 0.15rad

0.01 , else (30.5)

When a state from X− is observed, the episode is stopped and final costs of +1
are assigned.

Episode Length. Empirically, a good episode length was found to be N = 200.

30.6.3 Applied Tricks

Scaling. We applied our standard input scaling procedure as described in 30.5.1.

Choice of X++ and Artificial Transitions. X++ contains only one state,
namely if all state variables are exactly 0. This corresponds to the center of
X+. Of course, this state will most likely not occur by chance in the learning
process. Therefore, this definition makes only sense in conjunction with adding
artificial transitions in the spirit of the hint-to-goal heuristic. Here, we used 3
different artificial patterns, namely state (0,0,0,0,0) combined with all 3 actions.
These transitions were repeated 100 times in the training pattern set, in order
to establish some balance between the (huge) number of normal transitions and
those special transitions. The target values for those artificial patterns is 0.

Growing Batch. Learning was implemented as a ‘growing batch’ process. This
means, that after every episode, one NFQ iteration (new calculation of Q-target
values, supervised learning of the neural Q function) was performed. Then the
next episode was controlled by ε-greedy exploitation of this new Q function.

Training the Neural Q Function. The neural Q function is represented
by a multilayer perceptron with 6 input neurons, two hidden layers with 20
neurons each and one output neuron. Hidden neurons use the tanh activation
function, the output neuron uses the standard sigmoid function. Rprop with
standard parameters was used for weight updates. In every NFQ iteration step,
the network weights of the learning network were randomly initialized between
-0.5 and 0.5 before training. The network was trained for 300 epochs per NFQ
iteration.

Exploration. No explicit exploration scheme was used for the experiments done
here, i.e. the current Q function was always exploited greedily to determine the
action. This has the advantage, that the application performance can already be
determined during training.
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30.6.4 Measuring Quality

The quality of a learning control approach has two important aspects: the quality
of the learning process and the quality of the resulting controller. The quality of
the learning process is measured by the learning effort needed, usually measured
in the number of transitions (or the number of episodes) needed, the quality of
the achieved solution with respect to the used cost function, and the reliability
of the results over a number of learning trials.

The quality of the resulting controller is measured with respect to the specifi-
cation of the original control task. Relevant criteria are for example accuracy, ro-
bustness, working area, and performance measures like e.g. the time outside the
tolerated error zone. For a detailed discussion of different criteria also see [11].

Here, we first report results achieved in a realistic simulation. This allows us to
conduct a series of 10 experiments with different seeds of the random generator
in reasonable time. For learning on the real system, we used exactly the same
setup and parameters. The only difference we made was, that the controller was
allowed to learn for a maximum of 500 episodes on the simulated cart-pole and
- due to time restrictions - for a maximum of 300 episodes on the real cart-pole
system.

30.6.5 Results on the Simulated Cart Pole

For the simulated system, all 10 runs delivered a successful controller. ‘Suc-
cessful’ means, that for a test set of 100 random initial starting situations, the
controller was able to swing up the pole and then steadily keep the system within
the desired tolerance. A test run lasted 20s. In average over 10 runs, the best
controller was found after an average training of 392 episodes with a standard
deviation of 80. The average time needed by the best controllers was 3.23s with
a standard deviation of 0.16s.

Table 30.1. Results on the simulated cart-pole for the standard setup, averaged over
10 trials. Shown are the average number of episode to train the best controller and
its control performance, measured in time outside the target region. The number in
brackets shows the respective standard deviation.

setup successful trials best controller at episode time outside of X+

Default 10/10 392 (80.7) 3.23s (0.16s)

30.6.6 Results on the Real Cart Pole

The evaluation on the real cart-pole system was slightly different, due to the
effort it takes to do experiments with the real device. However, the overall picture
of the learning behavior on the simulated and real system was consistent.

We performed three learning trials with different initializations of the random
generator. Each learning trial lasted 300 episodes. Besides the reduced number
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of maximum episodes, the setup of the learning system was exactly the same as
for the simulated system. In all 3 trials performed, successful controllers were
learned within less than 300 episodes of training. In particular, the controllers
are very robust with respect to varying initial states or to disturbance from
outside.

A video documenting learning and final controller performance is available at
http://www.youtube.com/watch?v=Lt-KLtkDlh8

30.7 Conclusion

This paper discusses many of the basic modeling and methodological tricks to
set up a reinforcement learning task. These insights should help to successfully
handle a wide range of interesting control problems. The proposed method builds
on neural fitted Q iteration (NFQ), a method that considers the complete batch
of collected transitions to update the Q function. While the paper is written from
the perspective of using a neural network, it should also give useful insights when
using other kinds of function approximation schemes.

Current and future work is aiming to further improve the method in sev-
eral directions. One big direction is to improve NFQ with respect to resulting
controller quality (e.g. accuracy, continuous actions, interpretation of control
policies, increasing complexity of control tasks, etc). Some steps in this direction
have already been made and are discussed in [11]. Another area of ongoing and
future research is to further improve NFQ with respect to robustness and auton-
omy of the learning process. A third area is to improve efficiency with respect to
the data required for learning. Beyond that, distributed reinforcement learning
algorithms that cooperatively control a complex system in a multi-agent setting
is a vital research area. Distributed learning systems that are based on the neu-
ral learning framework presented here have been successfully applied in typical
multi-agent scenarios like distributed job-shop scheduling [18, 8]).

Acknowledgment. The author wants to especially thank Roland Hafner from
Cognit GmbH for the important initial ignition for writing this article.

References

[1] Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. I, II. Athena
Scientific, Belmont (1995)

[2] Blum, M., Springenberg, J.T., Wülfing, J., Riedmiller, M.: A Learned Feature
Descriptor for Object Recognition in RGB-D Data. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), St. Paul, Min-
nesota, USA (2012)

[3] Bertsekas, D.P., Tsitsiklis, J.N.: Neuro Dynamic Programming. Athena Scientific,
Belmont (1996)

[4] Deisenroth, M.P., Rasmussen, C.E., Peters, J.: Gaussian Process Dynamic Pro-
gramming. Neurocomputing 72(7–9), 1508–1524 (2009)

http://www.youtube.com/watch?v=Lt-KLtkDlh8


756 M. Riedmiller

[5] Ernst, D., Wehenkel, L., Geurts, P.: Tree-based batch mode reinforcement learn-
ing. Journal of Machine Learning Research 6, 503–556 (2005)

[6] Gabel, T., Lutz, C., Riedmiller, M.: Improved Neural Fitted Q Iteration Applied to
a Novel Computer Gaming and Learning Benchmark. In: Proceedings of the IEEE
Symposium on Approximate Dynamic Programming and Reinforcement Learning
(ADPRL 2011), Paris, France. IEEE Press (April 2011)

[7] Gabel, T., Riedmiller, M.: On Experiences in a Complex and Competitive Gaming
Domain: Reinforcement Learning Meets RoboCup. In: Proceedings of the IEEE
Symposium on Computational Intelligence and Games, Honolulu, USA (2007)

[8] Gabel, T., Riedmiller, M.: Adaptive Reactive Job-Shop Scheduling with Rein-
forcement Learning Agents. International Journal of Information Technology and
Intelligent Computing 24(4) (2008)

[9] Hafner, R., Riedmiller, M.: Reinforcement learning on an omnidirectional mobile
robot. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS 2003), Las Vegas (2003)

[10] Hafner, R., Riedmiller, M.: Neural Reinforcement Learning Controllers for a Real
Robot Application. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA 2007), Rome, Italy (2007)

[11] Hafner, R., Riedmiller, M.: Reinforcement learning in feedback control. Machine
Learning 27(1), 55–74 (2011), 10.1007/s10994-011-5235-x

[12] Hans, A., Schneegass, D., Schäfer, A.M., Udluft, S.: Safe exploration for reinforce-
ment learning. In: ESANN, pp. 143–148 (2008)

[13] Kietzmann, T., Riedmiller, M.: The Neuro Slot Car Racer: Reinforcement Learn-
ing in a Real World Setting. In: Proceedings of the Int. Conference on Machine
Learning Applications (ICMLA 2009), Miami, Florida. Springer (December 2009)

[14] LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backProp. In: Orr,
G.B., Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 9–50. Springer,
Heidelberg (1998)

[15] Lange, S., Riedmiller, M.: Deep auto-encoder neural networks in reinforcement
learning. In: International Joint Conference on Neural Networks (IJCNN 2010),
Barcelona, Spain (2010)

[16] Lange, S., Riedmiller, M.: Deep learning of visual control policies. In: European
Symposium on Artificial Neural Networks, Computational Intelligence and Ma-
chine Learning (ESANN 2010), Brugge, Belgium (2010)

[17] Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation
learning: The RPROP algorithm. In: Ruspini, H. (ed.) Proceedings of the IEEE
International Conference on Neural Networks (ICNN), San Francisco, pp. 586–591
(1993)

[18] Riedmiller, M., Gabel, T.: Distributed Policy Search Reinforcement Learning
for Job-Shop Scheduling Tasks. TPRS International Journal of Production Re-
search 50(1) (2012); Available online from (May 2011)

[19] Riedmiller, M., Gabel, T., Hafner, R., Lange, S.: Reinforcement Learning for Robot
Soccer. Autonomous Robots 27(1), 55–74 (2009)

[20] Riedmiller, M., Hafner, R., Lange, S., Lauer, M.: Learning to Dribble on a Real
Robot by Success and Failure. In: Proceedings of the 2008 International Conference
on Robotics and Automation (ICRA 2008), Pasadena CA. Springer (2008) (video
presentation)

[21] Riedmiller, M.: Learning to control dynamic systems. In: Trappl, R. (ed.) Pro-
ceedings of the 13th European Meeting on Cybernetics and Systems Research,
EMCSR 1996 (1996)



NFQ Tricks 757

[22] Riedmiller, M.: Generating continuous control signals for reinforcement controllers
using dynamic output elements. In: European Symposium on Artificial Neural
Networks, ESANN 1997, Bruges (1997)

[23] Riedmiller, M.: Neural Fitted Q Iteration - First Experiences with a Data Efficient
Neural Reinforcement Learning Method. In: Gama, J., Camacho, R., Brazdil, P.B.,
Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 317–328.
Springer, Heidelberg (2005)

[24] Riedmiller, M.: Neural reinforcement learning to swing-up and balance a real pole.
In: Proc. of the Int. Conference on Systems, Man and Cybernetics, 2005, Big
Island, USA (October 2005)

[25] Riedmiller, M., Lange, S., Voigtländer, A.: Autonomous reinforcement learning on
raw visual input data in a real world application. In: Proceedings of the Interna-
tional Joint Conference on Neural Networks, Brisbane, Australia (2012)

[26] Riedmiller, M., Montemerlo, M., Dahlkamp, H.: Learning to Drive in 20 Minutes.
In: Proceedings of the FBIT 2007 Conference, Jeju, Korea. Springer (2007) (Best
Paper Award)

[27] Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge (1998)
[28] Sutton, R.S.: Generalization in reinforcement learning: Successful examples using

sparse coarse coding. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.)
Advances in Neural Information Processing Systems, vol. 8, pp. 1038–1044. MIT
Press, Cambridge (1996)

[29] Timmer, S., Riedmiller, M.: Fitted Q Iteration with CMACs. In: Proceedings of
the IEEE International Symposium on Approximate Dynamic Programming and
Reinforcement Learning (ADPRL 2007), Honolulu, USA (2007)

[30] Watkins, C.J.: Learning from Delayed Rewards. Phd thesis, Cambridge University
(1989)

[31] Walsh, T.J., Nouri, A., Li, L., Littman, M.L.: Planning and Learning in Environ-
ments with Delayed Feedback. In: Kok, J.N., Koronacki, J., Lopez de Mantaras,
R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI),
vol. 4701, pp. 442–453. Springer, Heidelberg (2007)



Author Index

Andersen, Lars Nonboe 111

Back, Andrew 295
Bengio, Yoshua 437
Bottou, Léon 9, 419
Burns, Ian 295

Caruana, Rich 163
Cireşan, Dan Claudiu 581
Coates, Adam 561
Collobert, Ronan 537, 639

Denker, John S. 235
Duell, Siegmund 709

Farabet, Clément 537
Finke, Michael 311
Flake, Gary William 143
Fritsch, Jürgen 311

Gambardella, Luca Maria 581
Giles, C. Lee 295
Grothmann, Ralph 687

Hansen, Lars Kai 111
Hinton, Geoffrey E. 599
Hirzinger, Gerd 191
Horn, David 131

Intrator, Nathan 131

Kavukcuoglu, Koray 537

Larsen, Jan 111
Lawrence, Steve 295
LeCun, Yann A. 9, 235
Lukoševičius, Mantas 657
Lyon, Richard F. 271

Martens, James 479
Meier, Ueli 581

Mobahi, Hossein 639
Montavon, Grégoire 421, 559, 621, 659
Moody, John 339
Müller, Klaus-Robert 1, 7, 9, 49, 139,

231, 343, 421, 559, 621, 659

Naftaly, Ury 131
Neuneier, Ralph 369
Ng, Andrew Y. 561

Orr, Genevieve B. 1, 7, 9, 49, 139,
231, 343

Plate, Tony 91, 225
Prechelt, Lutz 53

Ratle, Frédéric 639
Riedmiller, Martin 735
Rögnvaldsson, Thorsteinn S. 69

Schmidhuber, Jürgen 581
Schraudolph, Nicol N. 205
Simard, Patrice Y. 235
Sterzing, Volkmar 709
Sutskever, Ilya 479
Svarer, Claus 111

Tietz, Christoph 687
Tsoi, Ah Chung 295

Udluft, Steffen 709

van der Smagt, Patrick 191
Victorri, Bernard 235

Webb, Brandyn J. 271
Weston, Jason 639

Yaeger, Larry S. 271

Zimmermann, Hans-Georg 369, 687



Subject Index

ACID, 324
ACID/HNN, 324
acoustic modeling, 318, 324
– connectionist, 322
Adaline, 423
adaptive heuristic critic (AHC), 722, 723
annealed importance sampling (AIS), 632
Apple Computer
– eMate, 271
– MessagePad, 271
– Newton, 271
architectural optimization, 401–406
asset allocation, 415
auto-encoder, 440
– contractive auto-encoder, 440
– denoising auto-encoder, 440
– sparse auto-encoder, 453
automatic differentiation, 444
Automatic Relevance Detection, 92
automatic relevance detection (ARD), 92
autoregressive model, 301
averaging, 377
– averaging rate, 432, 449
– weight averaging, 432, 449, 633

backpropagation, 11, 301, 583
– flatness, 196
backpropagation-decorrelation, 682
bag of features, 561, 569
Bayes rule, 312, 322
Bayesian
– a posteriori probabilities, 295–297
– framework, 91
– hyperparameters, 91
– model prior, 72
bias/variance, 71, 356
– decomposition, 134
– ensembles, 134
block validation, 715
Boltzmann machine, 599, 622
– centering, 625
– Hessian, 626
– parameterization, 625
– reparameterization, 626

CART, 321

centering
– Boltzmann machine, 621, 625
– neural network
– – activity, 207
– – error, 207
– – slope, 208
class
– equalizing class membership, 299
– frequencies, 296
– probabilities, 295
classification, 120, 311
– ECG, 299
– error, 316
– figure-of-merit, 297
– handwritten characters, 274
– k-nearest neighbor, 236
– LVQ, 236
– medical, 306
– memory based, 236
– modular, 312, 327
– networks, 92
– time series, 677
– trees, 315
cleaning, 395
clearning, 395
clustering, 317
– agglomerative, 324
committee
– committee of neural networks, 585, 589
computational graph, 487
conditional random field, 433
conditioning, 191, 626
– condition number, 27, 450, 471, 628
confusion matrix, 299, 317
conjugate gradient, 32, 304, 450, 484, 544,
553
– conjugate directions, 33
– conjugate gradient truncation, 510
– convergence, 513
– damping, 496
– Fletcher-Reeves, 33
– line search, 32, 512
– Polak-Ribiere, 33
– preconditioned, 484
– trust-region methods, 507
context



762 Subject Index

– context driven search, 283
– geometric, 286
– lexical, 284
contrastive divergence, 601, 614
– persistent contrastive divergence, 625
controller
– action, 710, 740
– closed-loop system, 738
– control interval, 735, 740
– cycle time, 736
– neural reinforcement controller, 735
– state, 710, 739
convergence, 304
– almost sure convergence, 423
– convergence of conjugate gradient, 513
– convergence speed, 423
convolutional neural network, 590
correspondence principle, 689
covariance, 26
covariance estimation, 390
credit assignment, 222
cross-validation, 113, 334, 357
– generalized (GCV), 356
– nonlinear, 357

damping, 496
– conjugate gradient truncation, 510
– K-means damped update, 566
– line search, 512
– scale-sensitive damping, 501
– structural damping, 504
– Tikhonov damping, 498
– trust-region methods, 507
data
– artificially generated, 304
– autonomous vehicle navigation, 177
– bilinear problem, 77
– CIFAR-10, 575, 577
– COIL100, 652
– combustion engine, 78
– data noise, 397
– dataset extension, 583
– Deterding’s vowel, 150, 215
– distribution, 179
– ECG, 299
– elastic distortions, 584
– German bond, 415
– hill-plateau, 146
– Index of Industrial Production, 344, 361
– Mackey-Glass, 123
– MIT-BIH Arrhythmia database, 300

– MNIST, 581, 583, 633, 650
– NETtalk, 181
– NIST1, 247
– NIST2, 247
– overlapping distributions, 305
– partitioning, 408
– Pascal Large Scale Challenge, 432
– Peterson and Barney, 120
– pneumonia, 171
– power load, 78
– Proben1, 59
– RCV1, 432
– riverflow, 78
– STL-10, 575, 577
– sunspots, 78, 132
– Switchboard, 329, 334
– two-spirals, 148
– US Postal Service, 247
– Wikipedia, 651
debugging, 463
– activation statistics, 466
– gradient verification, 428, 463
– layer-wise analysis, 466, 629, 636
– restricted Boltzmann machines, 615
– verifying Gauss-Newton products, 495
decimation
– of d.c. errors, 207
– of linear errors, 208
decision boundary, 304
decision tree, 313, 321
– phonetic, 326
deep network
– deep Boltzmann machine (DBM), 623
– – locally connected (LC-DBM), 623
– deep K-means, 574
– – dependency testing, 574
– – energy correlation, 574
– embedding, 639
deformable prototype, 237
dendrogram, 326
density estimation, 384, 622
– conditional, 384
dictionary, 562
dilemma
– Observer-Observation Dilemma, 391,

399
– Structure-Speed-Dilemma, 395
distance
– Euclidean, 237
– invariant, 239
– tangent, 238, 242
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divide & conquer, 312
Doonesbury effect, 271, 289
dynamic programming, 736
– value iteration, 736
dynamical system, 712, 713
– instable information flow, 702
– open dynamical system, 714
– risk, 703
– stable information flow, 702
– uncertainty, 703

early stopping, 73, 406, 448
– in MTL nets, 181
echo state network, 659
effectice number of parameters, 357
effective degrees of freedom, 94
efficiency
– of stopping criteria, 58
embedding, 468, 639
– deep embedding, 644
– ISOMAP, 642
– Laplacian eigenmaps, 642
– multidimensional scaling, 642
– neighbors graph, 646
– siamese networks, 642
– symbol embedding, 469
– temporal embedding, 646
empirical, 421
empirical fisher diagonal, 523
ensemble
– averaging, 131
– forecast, 349
error, 383, 388
– approximation error, 192, 425
– cross-entropy, 92, 228, 296
– cross-validation, 113
– error-in-variables, 396
– estimate, 55
– estimation error, 425
– evolution, 55
– – idealized, 54
– – realistic, 55
– generalization, 53
– generalized least square estimation, 387
– increase, 57
– Kullback-Leibler, 325
– Likelihood
– – log, 384
– – scaled, 322
– LnCosh, 383
– local minima, 55

– mean squared sensitivity error, 300
– metrics, 175
– normalized root mean square error, 661
– optimization error, 425
– prediction error, 355
– – final (FPE), 356
– – generalized (GPE), 357
– – squared (PSE), 356
– residual pattern, 192
– root mean square error, 660
– roundoff error, 225
– training, 53
– validation, 53
– word error rate, 334
error bar estimation, 388–390
estimation
– conditional density, 384
– covariance, 390
– density, 384
– error bar, 388–390
– generalization error, 55
– robust, 383–388
– – with CDEN, 384
– – with LnCosh, 383
evidence, 91
expected risk, 421

factoring posteriors, 323
false positive rate, 299
feature selection, 180
feed-forward network, 480
– Hessian, 194
– Jacobian, 194
– linearly augmented, 191–202
feedback, 680
– output feedback connections, 680
finite differences, 428
flat spots, 228
focus of attention, 177
forecasting, 687, 713, 720, 729, 730
function approximation, 709

GARCH, 387
Gauss-Newton matrix, 489
– generalized, 489
– multiplication, 492
generalization, 10, 56, 92, 113, 329, 334,
639
– reuse, 468
generalized Gauss-Newton
– estimating the diagonal, 524
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Gibbs sampling, 601, 623
– alternating Gibbs sampling, 601, 623
gradient descent, 422, 442
– convergence, 23
– divergence, 24
– regularization parameters, 116
graphics processing unit (GPU), 466, 542,
556, 582, 587
– convolution kernel, 591
– kernel, 591
– thread, 591

handwriting recognition, 246, 312
– architecture, 275
– online, 271
Hessian, 25, 194, 446
– backpropagating diagonal Hessian, 36
– Boltzmann machine, 626
– conditioning, 221
– eigenvalue spread, 38
– eigenvalues, 38
– exact multiplication by the Hessian, 487
– maximum eigenvalue, 27, 42
– – online computation, 43
– – power method, 42
– – Taylor expansion, 42
– minimum Eigenvalue, 22
– product of Hessian and vector, 37
– shape, 40
– singular, 195–196
– square Jacobian approximation, 34, 35
Hessian-free optimization, 479, 483
– damping, 496
– debugging, 495
– parallelism, 494
heteroscedasticity, 384, 387
hidden Markov models, 319
hidden units, 450, 610
– number of, 181, 302, 450
hierarchical, 313
– classifier, 333, 336
– features, 574
– hierarchy of neural networks, 323, 324,

327, 329
hint-to-goal heuristic, 747
hyperparameters, 91, 347, 446
– automated grid search, 458
– coordinate descent, 458
– grid search, 456
– layer-wise optimization, 459
– manual search, 456

– multi-resolution search, 458
– semi-supervised learning, 645

ill-conditioned, 191
ill-posed problem, 70
image recognition, 569
information divergence, 324
initialization
– conjugate gradient, 517
– K-means, 565
input
– contrast normalization, 564
– force, 370
– momentum, 370
– normalization, 16, 30
– – decorrelation, 17
– – equalization, 17
– – zero mean, 16
– preprocessing, 374, 563, 714, 716
– representation, 274
– scaling, 714
– sphering, 32
– squared inputs, 374
– symbolic, 468
– whitening, 32, 564
invariance transformations, 263
– diagonal hyperbolic transformation, 265
– elastic distortions, 584
– parallel hyperbolic transformation, 264
– rotation, 264
– scaling, 264
– thickening, 265
– X-translation, 263
– Y-translation, 264

Jacobian, 34, 35, 194, 441

K-means, 423, 561, 562, 566
– encoding, 571
– – hard assignment, 571
– hyperparameters, 570
– – patch size, 570
– – pooling, 571
– – receptive fields, 570
– initialization, 565
– receptive field, 572
– sparsity, 566
– spherical K-means, 562
– training procedure, 566
Kahan summation, 674
kernel principal component analysis, 630
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Krylov subspace, 484
Kullback-Leibler, 325

labeled data, 572
large-scale learning, 424
– trade-offs, 426
Lasso, 423
LBFGS, 544, 553
leaky integration, 661, 667
learning, 391
– batch, 13, 544
– – advantages, 14
– BFGS, 34
– bold driver, 213
– condition, 191–202
– conjugate gradient, 32, 148, 193, 225,

230
– curriculum learning, 470
– FORCE learning, 682
– Gauss-Newton, 34
– gradient descent, 296
– hierarchical, 180
– hill-climbing, 299
– hints, 179
– K-means, 561, 562
– Levenberg-Marquardt, 35, 193
– life-long, 163
– multi-relational, 468
– multitask, 164, 468
– Newton, 31, 148
– online learning, 13, 441, 679
– Perceptron, 28
– Quasi-Newton, 34, 193, 392
– rankprop, 172
– rate, 20, 185
– – adaptation, 21
– – annealing, 14
– – momentum, 21
– Rprop, 59, 737
– second order, 31, 193–194, 225, 230
– semi-supervised learning, 642
– single task, 164
– stochastic, 13
– – advantages, 13
– stochastic diagonal Levenberg Mar-

quardt, 40
– stopping criterion, 59
– tangent propagation, 256
– variable metric, 193
– vario-η, 212, 392, 717

learning rate, 332, 429, 430, 432, 447, 606,
717
– adaptive, 333, 448, 472
– annealing, 281
– individual, 40
– maximal, 25
– optimal, 25
Levenberg-Marquardt heuristic, 506
Lie group, 259
linear models, 429
linearly augmented feed-forward network,
191–202
– equivalence with feed-forward network,

198
– universal approximation, 198
liquid state machine, 659
local minimum, 191–202
local versus global features, 143, 155, 159
long-range dependencies, 713
long-term dependencies, 482, 691, 727, 730
loss function
– convex, 489
– non-convex, 493
– second derivative, 493
Lua, 539
– associative arrays, 539
– closures, 540
– performance, 541
LVCSR, 318, 319, 322

M-estimators, 386
macroeconomic forecasting, 343
Markov decision process, 710, 736
– extraction network (MPEN), 725, 727,

729
– – with shortcuts, 727, 729
– partially observable (POMDP), 711,

723
– policy, 736
Markov property, 711, 714, 723, 725, 729
Markov-chain Monte Carlo methods, 109
Markovian state, 727
mean-variance approach, 389
medical
– diagnosis, 171
– risk prediction, 171
memory allocation, 545
mini-batch, 443, 544, 603, 717
– Hessian-free optimization, 526
– size of the mini-batch, 448
missing values, 617
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mixture
– densities, 320, 324
– of Gaussians, 323, 385
model
– complexity, 329
– interpretation, 349
– selection, 316, 348, 353, 446
– – architecture, 354
– – input, 354
momentum, 449, 607
monitoring
– errors, 428
– overfitting, 605
– progress of learning, 604, 615, 630, 632
– reconstruction error, 605
Moore-Penrose pseudoinverse, 675
MTL, 164
multi-core machines, 466

network information criterion (NIC), 357
neural network
– architecture, 371–382
– bottleneck network, 372
– capacity, 181
– correspondence principle, 689
– efficient implementation, 538
– expert, 324
– feed-forward, 121, 123
– interaction layer, 375
– internal preprocessing, 371
– linear, 28
– multi-layer perceptron, 28, 313, 329, 581
– neural fitted Q-iteration, 737
– neural reinforcement controller, 735
– radial basis function, 374
– size, 181
– vanilla, 346
noise
– Gaussian, 383, 391
– Laplacian, 383
– parameter noise, 393
noise reduction, 221
noise/nonstationarity tradeoff, 345
non-linearity, 454
– hard-limiting, 471
– softsigm, 471
nonlinear calibration, 307

outliers, 372, 383, 386
– information shocks, 383
output representation, 176

overfitting, 53, 55, 91
– mini-batch overfitting, 529
overshooting, 714

partition function, 600, 622
– ratio of partition functions, 631
pattern generation, 680
penalty
– factors, 91
– implicit, 393
– implied curvature, 400
Perceptron, 423
performance
– criteria, 299
– measures, 299
polyphones, 321
portfolio management, 389
positive predictivity, 299
power method, 42
preconditioning, 427
– conjugate gradient, 519
– preconditioner design, 521
predicting
– posteriors, 313
preprocessing, 370–371, 456, 563
– by bottleneck network, 372
– by diagonal connector, 371
price-performance ratio, 56
prior, 72
– bias reduction, 289
– knowledge, 242, 317
– probabilities, 295
– scaling, 296
probabilistic sampling, 298
pronunciation graph, 319
pruning, 359, 401–406
– Early-Brain-Damage, 402
– input variables, 348, 359
– Instability-Pruning, 405
– Inverse-Kurtosis, 403
– of nodes, 401
– of weights, 401
– sensitivity-based (SBP), 359
– Stochastic-Pruning, 401
Python, 541

Q-learning, 736
– artificial training transitions, 747
– cost function, 744
– discounting, 736, 745
– growing batch, 748
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– maximal episode length, 745
– neural fitted Q-iteration, 737
– neural Q-function, 749
– policy, 736
– X++ trick, 746
quantized weights, 282

R operator, 445, 487
radial basis function network, 146, 155
random seeds, 455
recurrent neural network, 313, 482, 659,
687, 710, 712, 720, 721, 724
– causal-retro-causal (CRCNN), 699
– connectivity, 698
– dimensionality, 698
– dynamically consistent, 724
– echo state network, 659
– error correction (ECNN), 693
– historically consistent (HCNN), 695
– initial state problem, 692
– liquid state machine, 659
– memory, 698
– overshooting, 691, 713
– shortcut connections, 208
– sparsity, 698
– unfolding in time, 713
– variant-invariant separation, 694
regression, 676
– least mean squares, 679
– linear regression, 672
– recursive least squares, 679
– ridge regression, 672
– weighted least squares, 677
regularization, 54, 71, 91, 111, 114, 181,
241, 349, 639, 672
– adaptive, 115
– choice of, 115
– for recurrent networks, 351
– smoothing, 350
– Tikhonov regularization, 672
reinforcement learning, 709, 712, 735
– cart-pole problem, 750
– exploration, 749
– neural reinforcement controller, 735
representational capacity, 304
reservoir, 660
– parameters, 663
– size, 663
– sparsity, 664
– spectral radius, 665
rest learning, 719

– double rest learning, 718
restricted Boltzmann machine, 599
– discrimination, 615
risk, 390
robust estimation, 383–388
– with CDEN, 384
– with LnCosh, 383
robust learning, 717

scaling, 296
scripting language, 538
search
– for hyperparameters, 92
second order gradient descent, 422, 472,
479, 544
segmentation
– character, 273
– word, 287
semi-supervised learning, 642
– deep embedding, 643
– label propagation, 642
– LapSVM, 643
sensitivity, 299
– average absolute gradient, 360
– average gradient, 360
– delta output, 362
– evolution, 362
– output gradient, 362
– pruning, 359
– RMS gradient, 360
separation of structure and noise, 399
shuffle test, 167
shuffling, 427
SIMD operations, 547
– NEON, 547
– SSE, 542, 547, 582
softmax, 228, 331
software
– BLAS, 466, 541, 542, 546, 550, 551
– CUDA, 542, 545, 549, 556
– EBLearn, 552
– JanusRTk, 329
– Just In Time compiler, 539
– LAPACK, 541, 546
– Lush, 542
– Numpy, 543, 550
– OpenMP, 545, 548, 556
– SENN, 416
– SN, 542
– SWIG, 541
– Theano, 445, 550, 552
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– Torch5, 552
– Torch7, 537, 542
source separation, 568
sparsity, 430
– feature sparsity, 453
– input sparsity, 467
– K-means, 566
– sparse coding, 562
– sparsity of activation, 453, 609
– weight sparsity, 303
speech recognition, 296, 312, 318
– connectionist, 312
– statistical, 314, 318
– system, 330
squared inputs, 143
stability
– structural instability, 382
state estimation, 709, 714, 720, 724, 727,
729
state tying, 322
STL, 164
stochastic gradient descent, 332, 422, 442,
544, 553
– averaged SGD, 431
stopping criterion, 56, 719
– early stopping, 406
– effectiveness, 62
– efficiency, 56, 58, 62
– final stopping, 413
– late stopping, 407
– predicate, 56
– robustness, 58, 62
– rules for selecting, 57
– threshold
– – for stopping training, 56
– time versus error tradeoff, 63
– tradeoff
– – time versus error, 55, 58
– variance, 60
SVM, 423, 432
symbolic differentiation, 445

Takens’s theorem, 726
tangent propagation, 253
targets
– embeddings, 380
– forces, 380
– random, 378
teacher forcing, 680
– architectural teacher forcing, 697, 700
temporal pattern recognition, 678

time series
– linear models, 345
– noise, 345
– nonlinearity, 345
– nonstationarity, 345
– prediction, 123, 133, 176
Torch7, 537, 550, 552
– CUDA, 550
– neural networks, 543
– packages, 544
– Tensor, 542, 544
– TH, 551
training
– procedure, 406–414
transfer, 163
– inductive, 163
– sequential vs. parallel, 179
tricks
– backpropagating diagonal Hessian, 36
– backpropagating second derivatives, 36
– choice of targets, 19
– computing Hessian information, 35
– data warping, 279
– derivative roundoff error, 225
– ensemble with different initial weights,

131
– error emphasis, 281
– frequency balancing, 298
– Hessian
– – finite difference, 35
– – maximum eigenvalue, 42
– – minimum Eigenvalue, 22
– – square Jacobian approximation, 35
– hyperparameters, 91
– initializing the weights, 20
– multitask learning, 164
– negative training, 278
– nonlinear cross-validation, 357
– normalizing output errors, 276
– post scaling, 298
– prior frequency balancing, 280
– prior scaling, 296
– roundoff error, 225
– sensitivity-based pruning, 359
– shuffling examples, 15
– sigmoid, 17
– squared input units, 143
– tangent distance, 248
– – elastic tangent distance, 249
– – hierarchy of distances, 251
– – smoothing, 249
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– – speeding, 251
– tangent propagation, 259
– training big nets, 312
– variance reduction with ensembles, 131
– weight decay parameter estimate, 75, 77
triphone models, 321

unequal misclassification costs, 295
unit
– binomial, 613
– Gaussian, 612
– logistic, 226
– radial basis function, 22
– rectified linear, 613
– sigmoid, 17
– softmax, 611
– squared input, 143
– tanh, 229
user adaptation, 291

vanishing gradient, 728
variable metric, 193
VC dimension, 241
vector quantization, 562

ventricular contraction
– premature ventricular contraction, 301
– supraventricular contraction, 301
visualization, 349, 361, 465
– filters, 465, 636
– Hinton diagram, 465
– learning trajectory, 466
– local tangent vectors, 465
– sampling, 465
– t-SNE, 466

weight
– updates
– – magnitude of, 298
weight decay, 73, 118, 121, 123, 303, 451,
608, 673
– L1 regularization, 452
– L2 regularization, 452
– parameter estimate, 74, 75
– simulation, 79
weight sharing, 468, 713, 718
weights initialization, 454, 606
– fan-in, 454
well determined parameters, 94
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