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Summary. Domain decomposition methods were first developed for elliptic problems, taking
advantage of the strong regularity of their solutions. In the last two decades, many investiga-
tions have been devoted to improve the performance of these methods for elliptic and parabolic
problems. The situation is less clear for hyperbolic problems with possible singular solutions.
In this paper, we will discuss a nonoverlapping domain decomposition method for nonlinear
hyperbolic problems. We use the finite volume method and an implicit version of the Roe
approximate Riemann solver, and propose a new interface variable inspired by Dolean and
Lanteri [1]. The new variable makes the Schur complement approach simpler and allows the
treatment of diffusion terms. Numerical results for the compressible Navier-Stokes equations
in various 2D and 3D configurations such as the Sod shock tube problem or the lid driven
cavity problem show that our method is robust and efficient. Comparisons of performances on
parallel computers with up to 512 processors are also reported.

1 Introduction

When solving a nonlinear partial differential equation by an implicit scheme, one
classically ends by solving a nonlinear algebraic system using a Newton method.
At each step of this method we have to solve a linear system A (Uk)Uk+1 = b(Uk).
This task is computationally expensive in particular since the matrix A is usually
non-symmetric and very ill-conditioned. It is therefore necessary to find an efficient
preconditioner.

When the size of the system is large (as in the case of 3D computations), the par-
allel solution on multiple processors is essential to obtain reasonable computation
times. Currently in the thermal hydraulic code, FLICA-OVAP (see [2]), the matrix
A and the right hand side b are stored on multiple processors and the system is
solved in parallel with a Krylov solver (classical incomplete factorization). Unfor-
tunately, the parallel preconditioners of FLICA-OVAP only perform well on a few
processors. In contrast, if we want to increase the number of processors these par-
allel preconditioners perform poorly. Tests were run on different test cases and led

R. Bank et al. (eds.), Domain Decomposition Methods in Science and Engineering XX,
Lecture Notes in Computational Science and Engineering 91,
DOI 10.1007/978-3-642-35275-1 64, © Springer-Verlag Berlin Heidelberg 2013

543

mailto:thu-huyen.dao@cea.fr
mailto:michael.ndjinga@cea.fr
mailto:frederic.magoules@hotmail.com


544 Thu-Huyen Dao, Michael Ndjinga, and Frédéric Magoulès

us to conclude that it is often better not to use these parallel preconditioners, espe-
cially for 3D problems. This strategy does not make an optimal use of the available
computational power. Hence we seek for more efficient methods to distribute the
computations. We study and use a domain decomposition method as an alternative
to the classical distribution.

The paper is organized as follows. In Sects. 2 and 3, we present the mathematical
model and its numerical schemes. In Sect. 4, we first review the domain decomposi-
tion method proposed by Dolean and Lanteri [1] based on a Schwarz algorithm. We
then introduce a new interface variable which makes the Schur complement approach
simpler and allows for the treatment of diffusion terms. Section 5 presents a set of
numerical experiments to validate our method, compares it with that of [1] concern-
ing the robustness and efficiency and presents the scalability and the performance of
different preconditioners.

2 Mathematical Model

The simplest model of FLICA-OVAP consists of the following three balance laws
for the mass, the momentum and the energy:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ρ
∂ t + ∇ ·q = 0

∂q
∂ t + ∇ ·

(
q⊗ q

ρ + pId

)
− νΔ( q

ρ ) = 0

∂ (ρE)
∂ t + ∇ ·

[
(ρE + p) q

ρ

]
− λ ΔT = 0

(1)

where ρ is the density, v the velocity, q = ρv the momentum, p the pressure, ρe the

internal energy, ρE = ρe+ ||q||2
2ρ the total energy, T the absolute temperature, ν the

viscosity and λ the thermal conductivity. We close the system (1) by the ideal gas
law p = (γ − 1)ρe. For the sake of simplicity, we consider constant viscosity and
conductivity, and neglect the contribution of viscous forces in the energy equation.
By denoting U = (ρ ,q,ρE)t the vector of conserved variables, the Navier–Stokes
system (1) can be written as a nonlinear system of conservation laws:

∂U
∂ t

+∇ · (F conv(U))+∇ ·
(
F di f f (U)

)
= 0, (2)

where F conv(U) =

⎛

⎝

q
q⊗ q

ρ + pId

(ρE + p) q
ρ

⎞

⎠ , F di f f (U) =

⎛

⎝
0

−ν∇( q
ρ )

−λ ∇T

⎞

⎠ .

3 Numerical Method

The conservation form (2) allows for the definition of weak solutions, which can
be discontinuous ones. Discontinuous solutions such as shock waves are of great
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importance in transient calculations. In order to correctly capture shock waves, one
needs a robust, low diffusive conservative scheme. The finite volume framework is
the most appropriate setup to write discrete equations that express the conservation
laws at each cell (see [3]).

We decompose the computational domain into N disjoint cells Ci with volume
vi. Two neighboring cells Ci and Cj have a common boundary ∂Ci j with area si j. We
denote N(i) the set of neighbors of a given cell Ci and ni j the exterior unit normal
vector of ∂Ci j . Integrating the system (2) over Ci and setting Ui(t) = 1

vi

∫

Ci
U(x, t)dx

and Un
i =Ui(nΔ t), the discretized equations can be written:

Un+1
i −Un

i

Δ t
+ ∑

j∈N(i)

si j

vi

(−→
Φ conv

i j +
−→
Φ di f f

i j

)
= 0. (3)

with:
−→
Φ conv

i j = 1
si j

∫

∂Ci j
F conv(Un+1) ·ni jds,

−→
Φ di f f

i j = 1
si j

∫

∂Ci j
F di f f (Un+1) ·ni jds.

To approximate the convection numerical flux
−→
Φ conv

i j we solve an approximate
Riemann problem at the interface ∂Ci j . Using the Roe local linearisation of the fluxes
[4], we obtain the following formula:

−→
Φ conv

i j =
F conv(Un+1

i )+F conv(Un+1
j )

2
·ni j −D(Un+1

i ,Un+1
j )

Un+1
j −Un+1

i

2
(4)

= F conv(Un+1
i )ni j +A−(Un+1

i ,Un+1
j )(Un+1

j −Un+1
i ), (5)

where D is an upwinding matrix, A(Un+1
i ,Un+1

j ) the Roe matrix and A± = A±D
2 .

The choice D = 0 gives the centered scheme, whereas D = |A| gives the upwind
scheme. For the Euler equations, we can build A(Un+1

i ,Un+1
j ) explicitly using the

Roe averaged state (see [3]).
The diffusion numerical flux

−→
Φ di f f

i j is approximated on structured meshes using
the formula:

−→
Φ di f f

i j = D(
Un+1

i +Un+1
j

2
)(Un+1

j −Un+1
i ) (6)

with the matrix D(U) =

⎛

⎜
⎝

0 0 0
νq
ρ2

−ν
ρ Id 0

λ
cv

(
cvT
ρ − ||q||2

2ρ3

)
q t λ
ρ2cv

− λ
cvρ

⎞

⎟
⎠, where cv is the heat

capacity at constant volume.

3.1 Newton Scheme

Finally, since ∑ j∈N(i)F
conv(Un+1

i ).ni j = 0, using (5) and (6) the Eq. (3) of the nu-
merical scheme becomes:

Un+1
i −Un

i

Δ t
+ ∑

j∈N(i)

si j

vi
{(A−+D)(Un+1

i ,Un+1
j )}(Un+1

j −Un+1
i ) = 0. (7)
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The system (7) is nonlinear, hence we use the following Newton iterative method to
obtain the required solutions:

δUk+1
i

Δ t
+ ∑

j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j )
](

δUk+1
j − δUk+1

i

)

= −Uk
i −Un

i

Δ t
− ∑

j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j )
]
(Uk

j −Uk
i ), (8)

where δUk+1
i =Uk+1

i −Uk
i is the variation of the k-th iterate that approximates the

solution at time n+ 1.

4 Domain Decomposition Method

The principle of the domain decomposition method by Schur complement is to de-
compose the global problem into independent subproblems solved on each processor.
More precisely, if we want to solve the problem:

{ ∂U
∂ t +∇ ·F (U) = 0 in Ω

BU = g on ∂Ω (9)

on a partition of the original domain Ω =∪K
I=1ΩI , defining UI as the restriction of the

solution U in the subdomain ΩI , the algorithm of the domain decomposition method
is then written as: ⎧

⎪⎨

⎪⎩

∂UI

∂ t
+∇ ·F (UI) = 0 in Ω

BUI = g on ∂Ω ∩∂ΩI

CIUI =CIUJ on ∂ΩI ∩∂Ω j

(10)

where CI is an interface operator which we will clarify later.

4.1 Dolean and Lanteri Interface Variable

In the article [1], in order to make the subsystem (10) solution independent, Dolean
et al introduced a redundant variable ΦDL

i j at the domain interface between two cells
i and j : ΦDL

i j = A+
Roe,ni, j

Ui − A−
Roe,ni, j

Uj and then defined the orthogonal projectors

P± on the eigenvectors subspaces such that
P−(Ui,Uj)δφDo

i j = A−
Roe,ni, j

δUk+1
j , P+(Ui,Uj)δφDo

i j = −A+
Roe,ni, j

δUk+1
i

This strategy can only be applied to the Euler equations (Eq. (2) with no viscosity
and heat conductivity terms) using the upwind scheme. In order to include diffusion
terms in the model and to use various schemes, we introduce a new interface variable
Φi j at the domain interface between two cells i and j:

Φi j =Uj −Ui (11)
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4.2 A New Interface Variable

In the case where the cell i of the subdomain I is at the boundary and has to commu-
nicate with the neighboring subdomains, we can rewrite the system (8) as:

δUk+1
i

Δ t
+ ∑

j∈I, j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j )
](

δUk+1
j − δUk+1

i

)

= −Uk
i −Un

i

Δ t
− ∑

j∈N(i)

si j

vi

[
(A− +D)(Uk

i ,U
k
j )
]
(Uk

j −Uk
i )

− ∑
j �∈I, j∈N(i)

[
(A− +D)(Uk

i ,U
k
j )
]

δφi j

By defining UI = (U1, . . . ,Um)
t the unknown vector of the subdomain I and

δφIJ = (δφi j)i∈I, j∈J, j∈N(i) (12)

and by denoting P = A−+D, we can write the linear system as:

A (U k
I )δU k+1

I = bI(U
n,U k)− ∑

J∈N(I)

P(U k
I ,U

k
J )δφIJ (13)

By taking into account Eqs. (11)–(13), we can build an extended system that distin-
guishes the internal unknowns from the interface ones:

⎛

⎜
⎜
⎜
⎜
⎝

A1 0 . . . . . . P1

0 A2 0 . . . P2

. . . . . . . . . . . . . . .
0 0 . . . AN PN

M1 . . . . . . MN I

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

δU1

δU2

. . .
δUN

δΦ

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

b1

b2

. . .
bN

bφ

⎞

⎟
⎟
⎟
⎟
⎠

(14)

where AI is the matrix that couples the unknowns associated with internal cells of
ΩI whereas MI enables us to build δΦ , the interface unknown on all coupling sub-
domain interfaces, from the δUI . The internal unknowns can be eliminated in favor
of the interface ones to yield the following interface system:

Sδφ = bφ (15)

with

(Sδφ)IJ = δφIJ +MIJAI
−1 ∑

K∈N(I)

PIKδφIK +MJIAJ
−1 ∑

K∈N(J)

PJKδφJK

(bφ )IJ = MIJAI
−1bI +MJIAJ

−1bJ

The Eq. (15) can be solved by, e.g., GMRES, BICGStab, or the Richardson methods.
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5 Numerical Results

5.1 Validation

Figures 1 and 2 present the profile of the pressure after 10 time steps using the upwind
scheme with CFL = 10 for the Euler equations. Our initial state is a pressurized ball
at the center of a closed box and for t > 0 there are waves which propagate and reflect
all over the box. The gas expands in the box and we can see the shock waves and the
rarefaction waves. The solution is solved on a cartesian mesh of 200 × 200 cells.

Figures 3 and 4 show the streamlines of the steady state obtained using centered
scheme to solve a lid driven cavity flow at Reynolds number 400 on a cartesian
50 × 50 mesh. The lid speed is 1 m/s, the maximum Mach number of the flow is
0.008. According to these results, we obtain the same solutions by using single or

Fig. 1. Profile of the pressure at time step
10 on one processor

Fig. 2. Profile of the pressure at time step
10 on four processors

Fig. 3. Streamlines of Vx on one processor Fig. 4. Streamlines of Vx on four processors

multiple domains.

5.2 Scalability

We now study the robustness and the scalability of our numerical method using the
same test as presented in Sect. 5.1. In Figs. 5 and 6, we compare the parallel efficiency
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of different preconditioners on 2D and 3D computations and with two and four pro-
cessors. We see that without the preconditioner the solver is scalable. However, when

Fig. 5. Parallel efficiency for 2D Lid driven
cavity

Fig. 6. Parallel efficiency for 3D Lid driven
cavity

we use the Incomplete LU preconditioner, the scalability is not optimal especially for
3D problems. Our method proves better than ILU when we increase the number of
cells in each subdomain. In Fig. 7, we compare the robustness of different methods

Fig. 7. Comparisons of parallelism in 3D
Detonation, global mesh = 50×50×50

Fig. 8. Time of computation, 1 time step,
global mesh = 96×96×96

using the detonation problem. This problem is solved on a catersian 50 × 50 × 50
cell mesh on two processors. The computation time of Dolean and Lanteri method
increases rapidly because it needs many Newton iterations for convergence at each
time step. In Fig. 8, we compare the scalability of the ILU preconditioner and of our
method using the lid driven cavity problem solved on a global catersian 96×96×96
cell mesh. The computation time of the domain decomposition method is higher than
that of the ILU preconditioner due to the large number of Schur complement itera-
tions.

6 Conclusion

We have presented a new interface variable which allows for the treatment of dif-
fusion terms and the use of various numerical schemes. We also compared the effi-
ciency and the scalability of our method with the classical distributed computations



550 Thu-Huyen Dao, Michael Ndjinga, and Frédéric Magoulès

and the method of Dolean and al. Our approach seems promising but we still need
to find an efficient preconditioner for the Schur complement in order to reduce its
computational time.

Bibliography

[1] V. Dolean and S. Lanteri. A domain decomposition approach to finite volume
solution of the Euler equations on unstructured triangular meshes. Int. J. Numer.
Meth. Fluids, 37(6), 2001.

[2] P. Fillion, A. Chanoine, S. Dellacherie, and A. Kumbaro. FLICA-OVAP: a new
platform for core thermal-hydraulic studies. In NURETH-13, 2009.

[3] E. Godlewski and P.A. Raviart. Numerical Approximation of Hyperbolic Systems
of Conservation Laws. Springer Verlag, 1996.

[4] P.L Roe. Approximate Riemann solvers, parameter vectors and difference
schemes. J. Comput. Phys., 43, 1981.


	A Schur Complement Method for Compressible Navier-Stokes Equations
	1 Introduction
	2 Mathematical Model
	3 Numerical Method
	3.1 Newton Scheme

	4 Domain Decomposition Method
	4.1 Dolean and Lanteri Interface Variable
	4.2 A New Interface Variable

	5 Numerical Results
	5.1 Validation
	5.2 Scalability

	6 Conclusion
	Bibliography


