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Summary. We present hybrid finite element methods for the Helmholtz equation and the time
harmonic Maxwell equations, which allow us to reduce the unknowns to degrees of freedom
supported only on the element facets and to use efficient iterative solvers for the resulting
system of equations. For solving this system, additive and multiplicative Schwarz precondi-
tioners with local smoothers and a domain decomposition preconditioner with an exact sub-
domain solver are presented. Good convergence properties of these preconditioners are shown
by numerical experiments.

1 Introduction

When solving the Helmholtz equation with a standard finite element method (FEM),
due to the oscillatory behaviour of the solution and the pollution error [8] a large
number of degrees of freedom (DoFs) is needed to resolve the wave, especially for
high wave numbers. To overcome this difficulty, many methods have been developed
during the last years. Apart from hp FEM [8], Galerkin Least Square Methods [7] or
Discontinuous Galerkin Methods [6], some methods make use of problem adapted
functions like plane waves. The most popular among them are the Partition of Unity
Method [9], the Discontinuous Enrichment Approach [5] or the UWVF [2, 10]. All
these techniques end up with large, complex valued, indefinite, possible symmetric
linear systems. Although some advances have been made [3, 4], efficient precondi-
tioners for wave type problems are still a big challenge.

In the present work the hybrid FEM from [11] is used for the Helmholtz equation
and extended to the Maxwell case. This method allows us to use efficient iterative
methods for solving the resulting linear system of equations. Following hybridiza-
tion techniques from [1], the tangential continuity of the flux field is broken across
element interfaces. In order to impose continuity again, Lagrange multipliers sup-
ported only on the facets, which can be interpreted as the tangential component of the
unknown field, are introduced. Adding a second set of Lagrange multipliers,
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representing the tangential component of the flux field, allows us, due to local Robin
boundary conditions, to eliminate the volume DoFs. Because, after hybridization,
there is no coupling between volume basis functions of different elements, elimina-
tion of the volume DoFs can be done cheaply element by element, and the system
of equation is reduced onto the smaller set of Lagrange multipliers. For the reduced
system we present additive (AS) and multiplicative Schwarz (MS) block precondi-
tioners with blocks related to DoFs of one facet and element, respectively. Addi-
tionally a domain decomposition (DD) preconditioner, which directly solves for the
DoFs belonging to one subdomain, is investigated. This preconditioner is especially
advantageous for domains contains cavity like structures. Numerical tests show, that
a preconditioned CG iteration has good convergence properties combined with these
preconditioners.

2 Hybridization of the Wave Equations

In the sequence, we will stick to the following settings. As computational domain we
consider a Lipschitz polyhedron Ω ⊂ R

d with d = 2,3 and the boundary Γ = ∂Ω .
In the scalar case, we search for a function u : Ω → C and a vector valued field
v : Ω → C

d , which fulfills the Helmholtz equation in mixed form

gradu = iωv and divv = iωu in Ω

with absorbing boundary conditions v · n+ u = g on Γ , where ω is the angular fre-
quency and n the outer normal vector. From [9] we know, that the solution u exists
and is unique.

In the vectorial case, i.e. the harmonic Maxwell’s equations, we search for a
vector valued function E : Ω → C

3 and a flux field H : Ω → C
3, which solves

curlH+ iωE = 0 and curlE− iωH = 0 in Ω

under the boundary condition −n× H+E‖ = g on Γ , where E‖ represents the tan-
gential component of E, i.e. n× E× n.
When deriving the hybrid formulation, we use a regular finite element mesh T with
elements T , and the set of facets is called F . The vector nT is the outer normal
vector of the element T , and nF represents the normal vector onto a facet F . Further-
more, we denote a volume integral as

(
u,v

)
T :=

∫
T uv dx, and a surface integral as〈

u,v
〉

∂T :=
∫

∂T uv ds.

2.1 The Mixed Hybrid Formulation for the Helmholtz Equation

The mixed hybrid formulation for the Helmholtz equation was already introduced in
[11]. For completeness, we repeat the problem formulation:
Find (u,v,uF ,vF)∈ L2(Ω)×H(div,T )×L2(F )×L2(F ) =: X ×Ỹ ×XF ×Y F , such
that for all (σ ,w,σF ,wF) ∈ X × Ỹ × XF ×Y F
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∑
T∈T

((
iωu,σ

)
T − (

iωv,w
)

T − (
divv,σ

)
T − (

u,divw
)

T +
〈
uF ,nT ·w

〉
∂T

+
〈
nT ·v,σF〉

∂T +
〈
nF ·v− vF ,nF ·w− wF〉

∂T

)
+
〈
uF ,σF〉

Γ =
〈
g,σF〉

Γ .

2.2 The Mixed Hybrid Formulation for the Maxwell Problem

We will now concentrate on the derivation of the mixed hybrid formulation for the
vectorial wave equation. We start from the mixed system of equations from above,
multiply the first equation with a test function e ∈ U := (L2(Ω))3 and the second one
with a function h ∈ V := H(curl,Ω) and integrate over the domain Ω . Performing
integration by parts elementwise leads to

∑
T∈T

((
curlH,e

)
T +

(
iωE,e

)
T

)
= 0 ∀e ∈ U

∑
T∈T

((
E,curlh

)
T − (

iωH,h
)

T − 〈
E,nT × h

〉
∂T

)
= 0 ∀h ∈ V.

Note that for a tangential continuous field E, i.e. n×E×n is continuous on element
interfaces, the boundary integrals for inner facets cancel due to the tangential conti-
nuity of h, and inserting the absorbing boundary condition into the boundary facet
integrals leads to the standard mixed finite element formulation for our problem.

Next, the tangential continuity of the flux field H is broken across element inter-
faces, thus we search for H ∈ Ṽ :=

{
v ∈ (L2(Ω))3 : v|T ∈ H(curl,T ) ∀T ∈ T

}
. In

order to reinforce continuity, Lagrange multipliers EF , which are only supported on
the element facets, i.e. they are from the space UF := (L2(F ))3, are introduced. The
continuity of the tangential fluxes is reached via an additional equation, which forces
the jump of [n×H] := nT1 ×H|T1 +nT2 ×H|T2 for inner facets F ∈ FI with adjacent
elements T1 and T2 to zero, thus

∑
F∈FI

〈
[n× H],e

〉
F = ∑

T∈T

(〈
nT × H,e

〉
∂T − 〈

nT × H,e
〉

∂T∩Γ

)
= 0, ∀e ∈ UF .

The resulting system of equations for (E,H,EF) ∈ U × Ṽ ×UF reads as

∑
T∈T

((
curlH,e

)
T +

(
iωE,e

)
T

)
= 0 ∀e ∈ U

∑
T∈T

((
E,curlh

)
T − (

iωH,h
)

T − 〈
EF ,nT × h

〉
∂T

)
= 0 ∀h ∈ Ṽ

− ∑
T∈T

〈
nT × H,eF〉

∂T +
〈
EF ,eF〉

Γ =
〈
g,eF〉

Γ ∀eF ∈ UF .

In this system of equations, the Lagrange parameter EF plays the role of the tangen-
tial component of E, evaluated on the facets. Because there is no coupling between
volume DoFs belonging to different elements, it is possible to eliminate the volume
unknowns E and H, cheaply by static condensation (compare [1]). The resulting sys-
tem of equations needs now to be solved only for the Lagrange multipliers.
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In order to eliminate the inner DoFs, one has to solve the first two equations
of the system from above for some function EF element by element. But this is
equivalent to solving a Dirichlet problem, and uniqueness of the solution can not
be guaranteed. This drawback can be compensated by adding a new facet unknown
HF ∈V F :=(L2(F ))3 representing nF ×H on the facets via a consistent stabilization
term ∑T

〈
nF × H− HF ,nF × h− hF

〉
∂T . We obtain

∑
T∈T

((
curlH,e

)
T +

(
iωE,e

)
T

)
= 0 ∀e ∈ U (1)

∑
T∈T

((
E,curlh

)
T − (

iωH,h
)

T − 〈
EF ,nT × h

〉
∂T

−〈
nT × H,nT × h

〉
∂T +

〈
HF ,nF × h

〉
∂T

)
= 0 ∀h ∈ Ṽ (2)

∑
T∈T

(〈
nF × H,hF〉

∂T − 〈
HF ,hF〉

∂T

)
= 0 ∀hF ∈ V F (3)

− ∑
T∈T

〈
nT × H,eF〉

∂T +
〈
EF ,eF〉

Γ =
〈
g,eF〉

Γ ∀eF ∈ UF . (4)

Now, by static condensation the time harmonic Maxwell’s equation with absorbing
boundary conditions has to be solved on the element level, where uniqueness is guar-
anteed, and the resulting system contains only the facet unknowns EF and HF . Thus
we search for a function w ∈ W :=UF ×V F such that

s(w,v) = f (v) ∀v ∈ W,

where the Schur complement bilinearform s and the linearform f are obtained
from (1) to (4) by eliminating the unknowns E and H. Elimination of the inner DoFs
can be also seen as calculating for a given incoming impedance trace EF − HF the
resulting outgoing impedance trace EF +HF on the element level. By exchanging the
Dirichlet and Neumann traces EF ,HF by incoming and outgoing impedance traces,
one obtains an equivalent formulation which fits well into the context of the UWVF
of [2].

3 Iterative Solvers

In this section, we focus on solving the system of equations. As already mentioned,
the volume DoFs can be eliminated cheaply element by element, and the resulting
system of equation just has to be solved for the much smaller number of facet DoFs.
Because volume DoFs of one element couple apart from themselves only to facet
DoFs of the surrounding facets, the Schur complement matrix S obtained by static
condensation is sparse, and it just has nonzero entries between facet DoFs belong-
ing to facets of the same element. Due to the hybrid formulation, efficient iterative
solvers can be used for the reduced system of equations.

Because the Schur complement matrix is complex symmetric, a preconditioned
CG-iteration together with an AS or MS block preconditioner, MAS and MMS is used,
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although convergence for complex symmetric matrices is not guaranteed. The itera-
tion matrices of these two preconditioners are given as

I − M−1
AS S = I −

n

∑
i=1

Pi,

I − M−1
MSS =

( 1

∏
i=n

(I − Pi)
)( n

∏
i=1

(I − Pi)
)
,

where Pi is the matrix representation of the variational projector Pi : W → Wi ⊂ W
with respect to the bilinearform s. In the scalar case W = XF ×Y F . We will use two
different choices of subspaces Wi, functions supported on the facet Fi or on facets,
which are boundary facets of the element Ti. Note that the first strategy leads to
nonoverlapping blocks, while the blocks of the second choice overlap.

Apart from an AS or MS Preconditioner, a DD preconditioner compareable to
[12] was used, which is based on a partitioning of the domain Ω into N subdomains
Ωi. The iteration matrix of this preconditioner can be described by

I − M−1
DDS =

( 1

∏
i=n

(I − PI,i)
)(

I −
N

∑
i=1

PΩi

)( n

∏
i=1

(I − PI,i)
)
,

where PΩi and PI,i are matrices corresponding to variational projection operators
which project to the spaces WΩi and WI,i. The space WΩi contains functions which
are supported only on facets in the interior of the subdomain Ωi, while the space WI,i

is choosen such that it contains functions which are only supported on facets of an
element Ti such that ∂Ti ∩∂Ω j �= /0. Again a nonoverlapping option is to collect the
functions supported on a facet Fi which is located on Γ or the subdomain interfaces
in WI,i. Thus, in each preconditioner step a forward block Gauss Seidel iteration is
carried out, followed by a direct inversion of each subdomain block and a backward
block Gauss Seidel step. Note that solving directly for the unknowns in a subdomain
is equivalent to solve a problem with robin boundary conditions on the subdomain,
and uniqueness and existence are guaranteed.

One big advantage of the DD preconditioner is, that it can cope with problems
containing cavity like structures. For such problems other preconditioners suffer
from internal reflections, which leads to high iteration numbers. If the whole cavity
is contained in one single subdomain Ωi , the DD preconditioner inverts the whole
matrix block related to the cavity, and internal reflections are treated exactly. Thus
they do not influence the iteration number.

4 Numerical Results

In order to demonstrate the dependence of the number of iterations on polynomial
order, wavelength and meshsize h for the presented preconditioners, we choose a
simple two dimensional model problem with a wave of Gaussian amplitude and
wavelength λ propagating through a unit square domain (compare Fig. 1). For a
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meshsize h = λ = 0.1 the lefthand plot shows the number of iterations for differ-
ent polynomial orders. For the three preconditioners, the DoFs of an element were
collected in one block. In addition, for the DD preconditioner, the computational
domain was divided into nine subdomains. If the polynomial order is large enough
to resolve the wave, i.e. larger than four, the number of iterations stays constant or
is only slightly growing with growing polynomial order, while the number of facet
unknowns grows linearly in 2D.

Fig. 1. Iterations depending on the polynomial order (left) for the 2D model problem (right)

Table 1. Iterations depending on wavelength and mesh size for the MS/DD Preconditioner
(p = 6).

λ 0.64 0.32 0.16 0.08 0.04 0.02 0.01

h = 0.16 35/40 35/38 32/33 31/31
h = 0.08 52/42 48/38 50/36 47/33 50/38
h = 0.04 88/55 76/47 74/43 76/39 65/35 97/59
h = 0.02 147/75 129/55 113/48 117/44 118/42 115/38 199/82
h = 0.01 246/107 236/80 226/60 203/53 228/49 271/50 291/45

Next we investigate the dependence on h and λ for a fixed polynomial order of
6. The results are presented in Table 1. For λ smaller than h

2 , which corresponds
to less than three unknowns per wavelength, the solution can not be resolved, and
the solvers show large iteration numbers. Fixing h, the iteration number is mini-
mal at about h ≈ λ , i.e. at about six unknowns per wavelength, and it increases for
growing wavelength. For h = 0.16 every subdomain consists of only a small number
of elements, and an inversion of the DoFs subdomain by subdomain is compare-
able to an inversion element by element. Therefore the two preconditioners show
about the same performance. If h decreases, it is more and more advantageous to
collect the unknowns in subdomain blocks. While the iteration number almost dou-
bles for the MS preconditioner if the mesh size is divided by 2, the increase is much
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less for the DD preconditioner. Table 2 shows, that the DD preconditioner also per-
forms better than the MS preconditioner with respect to time, although one iteration
is more expensive.

Table 2. Iteration times for λ =
0.08 and a polynomial order of 6.

h DoFs MS DD

0.16 69980 0.35 0.37
0.08 217900 1.73 1.33
0.04 701228 9.30 5.15
0.02 2518524 53.5 22.4
0.01 9857920 367 111

Table 3. Iteration numbers and computa-
tional times for the cavity and the square.

cavity square
its. time(s) its. time(s)

DD (element) 35 40.4 34 31.2
DD (facet) 64 69.7 61 59.7
MS (element) 1612 1720 102 88.9
AS (element) > 105 > 1h 575 186

Fig. 2. A resonator (right) is compared with the domain without cavity (left)

Now we compare the preconditioners for a resonator and the domain without
cavity (compare Fig. 2). From the top of the square an incident wave with λ = 0.01
is prescribed. The DD-preconditioner uses, depending on the presence of the cavity
six and seven subdomains, respectively, where all cavity DoFs, including the cavity
boundary are collected in one single block. Table 3 shows the iteration numbers
and computational times for different preconditioners and for the two examples. For
the domain without cavity the performance of the preconditioners is compareable.
When the cavity is added, reflections inside the cavity lead to an enormous increase
in iteration numbers and computational times for the AS and the MS preconditioner.
Because of direct inversion of the cavity DoFs, the DD preconditioner does not suffer
from internal reflections and the iteration number stays almost constant, which leads
together with a larger number of unknowns to a moderate increase in computational
time.

We finish the numerical results section with an example from optics. A small
sphere with radius 0.3 and refractive index 2 is placed (not exactly in the center) in
a spherical computational domain with radius 1 and background refractive index 1.
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Fig. 3. Real part of Ey (left) and |E| (right) evaluated at a cross section parallel to the xy plane

We prescribe an incident wave from the left with a Gaussian amplitude and wave-
length 0.35, such that the diameter of the computational domain is approximately six
wavelength in free space. In order to resolve the wave we used 3,256 elements with
a polynomial order of 6, which results in 1.66 millions of unknowns. The solution
(compare Fig. 3) was obtained by 258 cg-iterations with a Block AS preconditioner.
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