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1 Introduction

In recent years, attention has been devoted to the development of efficient iterative
solvers for the solution of the linear system of equations arising from the discon-
tinuous Galerkin (DG) discretization of a range of model problems. In the frame-
work of two level preconditioners, scalable non-overlapping Schwarz methods have
been proposed and analyzed for the h–version of the DG method in the articles
[1, 2, 6, 7, 9]. Recently, in [3] it has been proved that the non-overlapping Schwarz
preconditioners can also be successfully employed to reduce the condition number
of the stiffness matrices arising from a wide class of high–order DG discretizations
of elliptic problems. In this article we aim to validate the theoretical results derived
in [3] for the multiplicative Schwarz preconditioner and for its symmetrized variant
by testing their numerical performance.

2 Model Problem and DG Discretization

In this section we introduce the model problem under consideration and its DG ap-
proximation, working, for the sake of simplicity, with the SIPG formulation proposed
in [4].

We consider, for simplicity, the weak formulation of the Poisson problem with
homogeneous Dirichlet boundary conditions: find U ∈ H1

0 (Ω) such that

(∇U ,∇v)Ω = ( f ,v)Ω ∀v ∈ H1
0 (Ω), (1)

where Ω is a bounded polygonal domain in R
d , d = 2,3, f ∈ L2(Ω) is a given source

term and (·, ·)Ω is the standard inner product in [L2(Ω)]d .
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Let Th be a shape-regular, not necessarily matching partition of Ω into disjoint
open elements K (with diameter hK ), where each K is the affine image of a fixed
master element ̂K , i.e., K =FK ( ̂K ), where ̂K is either the open unit d-simplex or
the d-hypercube in R

d , d = 2,3. We define the mesh-size h by h := maxK ∈Th hK ,
and assume that Th satisfies a bounded local variation property: for any pair of
neighboring elements K1,K2 ∈ Th, hK1 ≈ hK2 .

For a given approximation order p ≥ 1, we define the DG space

Vh,p := {v ∈ L2(Ω) : v|K ◦ FK ∈ M p( ̂K ) ∀K ∈ Th},

where M p( ̂K ) is either the space of polynomials of degree at most p on ̂K , if ̂K
is the reference d-simplex, or the space of polynomials of degree at most p in each
variable on ̂K , if ̂K is the reference d-hypercube.

Next, for any internal face F = ∂K + ∩∂K − shared by two adjacent elements
K ±, with outward unit normal vectors n±, respectively, we define

[[τ]] := τ+ ·n++ τ− ·n−, [[v]] := v+n++ v−n−,

{{τ}} := (τ++ τ−)/2, {{v}} := (v++ v−)/2,

where τ± and v± denote the traces on ∂K ± taken from the interior of K ± of the
(sufficiently regular) functions τ and v, respectively (cf. [5]). On a boundary face
F = ∂K ∩∂Ω , we set [[τ]] := τ ·n, [[v]] := vn, {{τ}} := τ , and {{v}} := v.

We collect all interior (respectively, boundary) faces in the set F I
h (respectively,

FB
h ), define Fh := F I

h ∪FB
h , and introduce on Vh,p ×Vh,p the following the bilinear

form

A (u,v) := ∑
K ∈Th

∫

K
∇u ·∇v dx+ ∑

K ∈Th

∫

K
∇u ·R([[v]]) dx

+ ∑
K ∈Th

∫

K
R([[u]]) ·∇v dx+ ∑

F∈Fh

∫

F
α

p2

|F | [[u]] · [[v]] ds,

where α > 0 is a parameter at our disposal. The lifting operator R(·) is defined as:
R(τ) := ∑F∈Fh

rF(τ), where rF : [L2(F)]d → [Vh,p]
d is given by

∫

Ω
rF(τ) ·η dx := −

∫

F
τ · {{η}} ds ∀η ∈ [Vh,p]

d ∀F ∈ Fh.

The DG discretization of problem (1) reads:

Find u ∈ Vh,p such that A (u,v) =
∫

Ω
f v dx ∀v ∈ Vh,p. (2)

Let ϕ j, j = 1, . . . ,N p
h := dim(Vh,p), be a set of basis functions that span Vh,p, then

(2) can be written in the following equivalent form: Find u ∈ R
N p

h such that Au = f,
where here (and in the following) we use the bold notation to denote the spaces of
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degrees of freedom (vectors) and discrete linear operators (matrices). The following
result provides an estimate for the spectral condition number of A; we refer to [3] for
the proof.

Proposition 1 ([3]). For a set of basis functions which are orthonormal on the refer-
ence element ̂K ⊂ R

d, d = 2,3, the condition number κ(A) of the stiffness matrix A
can be bounded by

κ(A)� α
p4

h2 .

Remark 1. We are working, for the sake of simplicity, with the SIPG formulation
proposed in [4], but the results shown in Proposition 1 and in Theorem 1 below also
hold for a wide class of DG methods; we refer to [3] for details.

3 Two Level Non-overlapping Schwarz Preconditioners

In this section we introduce the non-overlapping Schwarz preconditioners.

Subdomain partition. We decompose the domain Ω into N non-overlapping sub-
domains Ωi, i.e., Ω = ∪N

i=1Ω i. Next, we consider two levels of nested partitions of
the domain Ω : (i) a coarse partition TH (with mesh-size H); (ii) a fine partition Th

(with mesh-size h). We will suppose that the subdomain partition does not cut any
element of TH (and therefore of Th).

Local solvers. For i = 1, . . . ,N, we define the local DG spaces as

V i
h,p := {v ∈ L2(Ωi) : v|K ◦ FK ∈ M p( ̂K ) ∀ K ∈ Th,K ⊂ Ωi}.

Denoting by RT
i : V i

h,p −→ Vh,p the classical injection operator from V i
h,p to Vh,p, the

local solvers Ai : V i
h,p ×V i

h,p −→ R are defined as

Ai(ui,vi) := A (RT
i ui,R

T
i vi) ∀ui,vi ∈ V i

h,p, i = 1, . . . ,N. (3)

Coarse solver. For an integer 0 ≤ q ≤ p, we define the coarse space V 0
H,q as

V 0
H,q := {v ∈ L2(Ω) : v|D ◦ FD ∈ M

qD ( ̂K ) ∀ D ∈ TH},

and the coarse solver A0 : V 0
H,q ×V 0

H,q −→ R as

A0(u0,v0) := A (RT
0 u0,R

T
0 v0) ∀u0,v0 ∈ V 0

H,q, (4)

where RT
0 : V 0

H,q −→ Vh,p is the classical injection operator from V 0
H,q to Vh,p.

Let the local projection operators be defined as
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˜Pi : Vh,p → V i
h,p : Ai(˜Piu,R

T
i vi) := A (u,RT

i vi) ∀vi ∈ V i
h,p, i = 1, . . . ,N,

˜P0 : Vh,p → V 0
H,q : A0(˜P0u,RT

0 v0) := A (u,RT
0 v0) ∀v0 ∈ V 0

H,q,
(5)

and define the projection operators as Pi := RT
i
˜Pi : Vh,p −→ Vh,p, i = 0,1, . . . ,N. The

multiplicative Schwarz operator and its symmetrized variant are then defined as

Pmu := I − (I − PN)(I − PN−1) · · · (I − P0), (6)

PS
mu := I − (I − P0)

T · · · (I − PN)
T (I − PN) · · · (I − P0), (7)

respectively (cf. [10]). The Schwarz method consists in solving either Pmuu = gmu

or PS
muu = gS

mu, for suitable right hand sides gmu and gS
mu, respectively. It can be

shown that the operator defined in (7) is symmetric and positive definite; we therefore
consider the conjugate gradient (CG) algorithm for the solution of PS

muu = gS
mu. An

estimate of the condition number of PS
mu is

κ(PS
mu) :=

λmax(PS
mu)

λmin(PS
mu)

,

where λmax(PS
mu) and λmin(PS

mu) are the extremal eigenvalues of the operator PS
mu.

On the other hand, the multiplicative operator Pmu is non-symmetric; we therefore
consider a Richardson iteration applied to Pmuu = gmu, and show that the norm of
the error propagation operator Emu := (I − PN)(I − PN−1) · · · (I − P0) is strictly less
than one, i.e.,

‖Emu‖2
A := sup

v∈Vh,p
v�=0

A (Emuv,Emuv)
A (v,v)

< 1,

and therefore a Richardson iteration applied to the preconditioned system converges.
The following result provides a bound for the norm of the error propagation op-
erator of the multiplicative Schwarz operator, and for the condition number of the
symmetrized Schwarz operator (we refer to [3] for the proof).

Theorem 1 ([3]). There exists constants C1,C2 ≥ 1, independent of the mesh-size
and the polynomial degree, such that

‖Emu‖2
A ≤ 1 − h

C1α p2H
, κ(PS

mu) ≤ C2α p2 H
h
.

Theorem 1 also guarantees that the multiplicative Schwarz method can be accel-
erated with the GMRES iterative solver. Indeed, according to [8], the GMRES
method applied to the preconditioned system Pmuu = gmu does not stagnate (i.e.,
the iterative method makes some progress in reducing the residual at each iteration
step) provided that: (i) ‖Pmu‖A is bounded; (ii) the symmetric part of Pmu is pos-
itive definite, i.e., there exists cp > 0 such that A (v,Pmuv) >= cpA (v,v) for all
v ∈ Vh,p. Condition (i) follows directly from the definition of Pmu and Theorem 1:
‖Pmu‖A = ‖I − Emu‖A ≤ 1+ ‖Emu‖A < 2. To prove condition (ii), it can be shown
that
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(a) (b)

Fig. 1. Initial Cartesian and triangular coarse and fine grids on a 16 subdomain partition.
(a) Initial coarse grids (mesh-size H0) and (b) initial fine grids (mesh-size h0)

A (Pmuv,v) = A (v,v)−A (Emuv,v) ≥ (1 −‖Emu‖A ) A (v,v).

Therefore, condition (ii) holds true with cp = 1 −‖Emu‖A which is positive due to
Theorem 1.

4 Numerical Results

In this section we present some numerical experiments to highlight the practical per-
formance of the multiplicative and symmetrized non-overlapping Schwarz precon-
ditioners. From the algebraic point of view, the Schwarz operators (6) and (7) can
be written as the product of a suitable preconditioner, namely Bmu, BS

mu, respec-
tively, and A. Indeed, the local components can be constructed as Ai = RiART

i , see
(3) for i = 1 . . . ,N, and (4) for i = 0. From the definition (5) of the local projection
˜Pi = A−1

i RiA, and therefore Pi = RT
i
˜Pi = RT

i A−1
i RiA. In practice, only the action

of the preconditioner on a vector is needed. Algorithm 2 shows how to compute
the action of Bmu on a vector x ∈ R

N p
h . Throughout this section we have set the

Algorithm 2 z = Bmux

z = RT
0 A−1

0 R0x
for i = 1 → N do

z = z+RT
i A−1

i Ri(x − Az)
end for

penalty parameter α := 10 (see (2)). We consider a subdomain partition consisting
of N = 16 squares, and consider the initial Cartesian and unstructured triangular par-
titions shown in Fig. 1, and denote by H0 and h0 the corresponding initial coarse and
fine mesh-sizes, respectively. We consider n successive global uniform refinements
of these initial grids so that the resulting mesh-sizes are Hn = H0/2n and hn = h0/2n,
with n = 0,1,2,3, respectively. The (relative) tolerance is set equal to 10−9 (respec-
tively, 10−6) for the CG (respectively, GMRES) iterative solver. We first address
the performance of the multiplicative Schwarz preconditioner by keeping the mesh
fixed, and varying the polynomial approximation degree p. In Table 1 we compare
the GMRES iteration counts for both the preconditioned and non-preconditioned (in
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Table 1. GMRES iteration counts. Multiplicative Schwarz preconditioner with a piecewise
constant coarse solver (q = 0). Unstructured triangular grids.

h = h0/2 h = h0/4 h = h0/4

H = H0 H = H0 H = H0/2

p = 1 23 (94) 33 (199) 25 (199)
p = 2 45 (259) 64 (540) 49 (540)
p = 3 66 (470) 93 (996) 74 (996)
p = 4 85 (713) 124 (1546) 97 (1546)
p = 5 105 (1004) 153 (2187) 123 (2187)
p = 6 124 (1342) 183 (2924) 144 (2924)
p = 7 143 (1727) 209 (3742) 167 (3742)
p = 8 162 (2148) 235 (4673) 189 (4673)

p − rate 0.93 (1.63) 0.88 (1.66) 0.93 (1.66)

parenthesis) systems, for different polynomial approximation degrees and different
mesh configurations. These results have been obtained on unstructured triangular
grids (cf. Fig. 1). Comparing the iteration counts of the preconditioned systems with
the unpreconditioned ones for a fixed p, it is clear that the proposed preconditioner is
very efficient. Indeed, we observe a reduction in the number of iterations needed to
achieve convergence of around one order of magnitude when the proposed precon-
ditioner is employed. The last row of Table 1 shows the computed growth rate in the
number of iterations: we observe that the number of iterations needed to obtain con-
vergence increases linearly as a function of p for the preconditioned system of equa-
tions, whereas this quantity grows almost quadratically for the non-preconditioned
problem. In Fig. 2 we report the condition number estimates of the symmetrized
Schwarz operator and the corresponding iteration counts versus the polynomial de-
gree p. The solid lines refer to the mesh configuration h = h0/2, H = H0, whereas
the dashed lines refer to the mesh configuration h = h0/4, H = H0/2. This set of nu-
merical experiments has been obtained on Cartesian meshes, employing a piecewise
linear coarse solver. As predicted by the theoretical estimates, the condition num-
ber of the preconditioned system grows quadratically as a function of p. Moreover,
we clearly observe that, for fixed p, by refining both the fine and the coarse grid,
but keeping the ratio of the fine and coarse mesh-sizes constant, the condition num-
ber (and therefore the number of iterations needed to obtain convergence) remains
constant.

Next, we consider the performance of the symmetrized Schwarz preconditioner
when varying the coarse and fine mesh-size, and keeping the polynomial approxima-
tion degree p fixed. In Table 2 (left) we report the condition number estimates for the
symmetrized Schwarz operator employing piecewise biquadratic elements (p = 2)
and a piecewise constant coarse solver (q = 0); whereas, in Table 2 (right) the analo-
gous results obtained with piecewise bicubic elements (p = 3) and a piecewise linear
coarse solver (q= 1) are shown. We clearly observe that the condition number grows
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Fig. 2. Condition number estimates of the symmetrized Schwarz operator and corresponding
iteration counts versus the polynomial degree p on Cartesian grids for different discretization
steps (solid line: h = h0/2, H =H0; dashed line h = h0/4, H =H0/2). Piecewise linear coarse
solver

Table 2. Condition number estimates for the symmetrized Schwarz operator with p= 2, q = 0
(left) and p = 3, q = 1 (right). Cartesian grids.

h ↓ H → H0 H0/2 H0/4 H0/8 H0 H0/2 H0/4 H0/8

h0 5.32e2 1.12e3 4.01e3 7.08e3 4.81e1 9.5925e1 1.92e2 3.91e2
h0/2 2.74e2 4.71e2 2.80e3 5.59e3 2.14e1 4.35e1 8.70e1 1.75e2
h0/4 – 2.60e2 1.18e3 3.42e3 – 2.09e1 4.24e1 8.44e1
h0/8 – – 3.45e2 1.75e3 – – 2.05e1 4.26e1

κ(A) 2.88e5 1.18e6 4.89e6 1.99e7 7.44e5 2.81e6 1.11e7 4.55e7

as O(Hh−1), as predicted by Theorem 1. Moreover, we clearly observe that employ-
ing a piecewise linear coarse solver (q = 1) rather than a piecewise constant coarse
solver (q = 0) significantly improves the performance of the preconditioner. Indeed,
comparing the condition number estimates of the preconditioned system with the
analogous ones obtained for the non-preconditioned problem (last row of Table 2)
we clearly observe that the condition number of the non-preconditioned system is
reduced with respect to the condition number of the preconditioned system by ap-
proximately 5 orders of magnitude for q = 1 and 4 orders of magnitude for q = 0.
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