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1 Introduction

The discontinuous enrichment method (DEM) [4] for the Helmholtz equation ap-
proximates the solution as a sum of a piecewise polynomial continuous function and
element-wise supported plane waves [5]. A weak continuity of the plane wave part
is enforced using Lagrange multipliers. The plane wave enrichment improves the ac-
curacy of solutions considerably. In the mid-frequency range, severalfold savings in
terms of degrees of freedom over comparable higher order polynomial discretizations
have been observed, which translates into even larger savings in compute time [6, 9].
The partition of unity method [8] and the ultra weak variational formulation [1] also
employ plane waves in the construction of discretizations. It was shown recently in
[10] that DEM without the polynomial field is computationally more efficient than
these methods.

So far only direct solution methods have been used with DEM. This paper de-
scribes an iterative domain decomposition method which will enable to solve much
larger problems with DEM. The method is a generalization of the FETI-H version [3]
of the FETI method [2] and the domain decomposition method for DEM without the
polynomial part described in [7]. It is based on a non-overlapping decomposition of
the domain into subdomains. On the subdomain interfaces Lagrange multipliers are
introduced to enforce the continuity of the polynomial part strongly and the con-
tinuity of the enrichment weakly. An efficient iterative solution procedure with a
two-level preconditioner resembling that of the FETI-H method is constructed for
the Lagrange multipliers on the interfaces between the subdomains.

2 Problem Formulation and Discretization

The solution u ∈ H1(Ω) of a Helmholtz problem modeling acoustic scattering from
a rigid obstacle, for example, satisfies the equations
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−Δu − k2u = f in Ω
∂u
∂ν

= g1 on Σ1

∂u
∂ν

= iku+ g2 on Σ2,

(1)

where k is the wavenumber, Σ1 is the boundary of a sound-hard scatterer, Σ2 is the
far-field boundary, and ν denotes the unit outward normal.

Let the domain Ω be split into ne elements, Ω = ∪ne
e=1Ωe. In DEM, the solution

is sought in the form u = uP + uE , where uP is a standard continuous piecewise
polynomial finite element function, and uE is an enrichment function discontinuous
across element interfaces. A weak inter-element continuity of the solution is enforced
by Lagrange multipliers λ E . The following hybrid variational formulation is used:
Find u ∈ V and λ E ∈ W E such that

a(u,v)+ b(λ E,v) = r(v) ∀v ∈ V

b(μE ,u) = 0 ∀μE ∈ W E .

The forms a, b, and r are defined by

a(u,v) =
∫

Ω
(∇u ·∇v − k2uv)dΩ −

∫
Σ2

ikuvdΓ ,

b(λ E ,v) =
ne

∑
e=1

e−1

∑
e′=1

∫
Γe,e′

λ E (vΩ ′
e
− v|Ωe

)
dΓ , and

r(v) =
∫

Ω
f vdΩ +

∫
Σ1

g1 vdΓ +

∫
Σ2

g2 vdΓ ,

where Γe,e′ = ∂Ωe ∩∂Ωe′ . For the considered discretization, the space V consists of
functions of the form u = uP + uE , where uE is a superposition of nθ planar waves,
i.e.

uE(x) =
nθ

∑
p=1

eikθ p·xuE
e,p, x ∈ Ωe.

In two dimensions, θ p = (cosϑp,sinϑp)
T ,ϑp = 2π(p − 1)/nθ , p = 1, . . . ,nθ . The

Lagrange multipliers space W E is then chosen using functions of the form

λ E(x) =
nλ

∑
p=1

eikηpτe,e′ ·xλe,e′ ,p, x ∈ Γe,e′ ,

where τe,e′ is a unit tangent vector and ηp is a scalar. This choice yields a family
of quadrilateral elements, denoted by Q-nθ -nλ . In particular, the elements Q-8-2
and Q-16-4 used in the numerical experiments in this paper use η1 = −η2 = 0.5 and
{ηp}4

p=1 = {±0.2,±0.75}, respectively. For details on stability, implementation, and
accuracy, the reader is referred to [5, 6].
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3 Domain Decomposition Formulation

The elements are divided into nd disjoint subsets E j defining subdomains Ω j such
that Ω̄ j = ∪e∈E j Ω̄e. Subdomain problems are given by regularized bilinear forms

ã j(u j,v j) =

∫
Ω j

(∇u j ·∇v j − k2u jv j)dΩ −
∫

Σ2∩∂Ω j
iku jv j dΓ

− γ
nd

∑
j′=1
j′ �= j

∫
Γ j, j′

s j, j′ iku jv j dΓ ,

where Γ j, j′ = ∂Ω j ∩ ∂Ω j′ . The functions u j and v j belong to the restriction of V
into Ω j and the last term ensures the subdomain problems cannot be singular; for
details see [7]. The coefficients s j, j′ are chosen so that the regularization terms cancel
out for a continuous function. The continuity of the polynomial part of the solution

ũP =
nd

∑
j=1

uP, j across the subdomain interfaces is enforced using a Lagrange multiplier

λ P. For this purpose, a bilinear form

c(λ P, ṽ) =
nd

∑
j=1

j−1

∑
j′=1

∑
l

λ P
j, j′,l
(
ṽP|Ω j′ − ṽP|Ω j

)
(x j, j′,l)

is defined, where x j, j′,l is the location of the lth mesh node on Γ j, j′ . The mesh nodes
are given by the Lagrange interpolation points of the piecewise polynomial functions.
The domain decomposition formulation then reads:

Find ũ ∈ Ṽ , λ E , and λ P such that

ã(ũ, ṽ)+ b(λ E , ṽ)+ c(λ P, ṽ) = r̃(ṽ) ∀ṽ ∈ Ṽ

b(μE , ũ) = 0 ∀μE ∈ W E

c(μP, ũ) = 0 ∀μP ∈ W P,

(2)

where Ṽ is spanned by
nd

∑
j=1

v j, ã(ũ, ṽ) =
nd

∑
j=1

a j(u j,v j), and r̃ is the sum of subdomain

contributions of r.

4 Linear Systems and Condensations

The formulation (2) leads to the saddle point system of linear equations
⎛
⎜⎜⎝

rAPP rAPE 0 CPL

rAEP rAEE BEL 0
0 BLE 0 0

CLP 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

uuuP

uuuE

λλλ E

λλλ P

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

rP

rE

0
0

⎞
⎟⎟⎠ , (3)
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where the superscripts P, E , and L refer to the polynomial part, the enrichment
part, and the Lagrange multiplier, respectively, and uuuP,uuuE ,λλλ E ,λλλ P are vectors of the
subdomain-by-subdomain polynomial degrees of freedom (depicted by black dots
in Fig. 1), the element-by-element enrichment degrees of freedom (magenta arrows),
the enrichment element-to-element continuity Lagrange multipliers (red arrows), and
the polynomial subdomain-to-subdomain continuity Lagrange multipliers (black ar-
rows), respectively. The enrichment unknowns uuuE can be condensed out on the ele-
ment level (Fig. 1 top and left) to obtain

⎛
⎝

¯rA B̄T C̄T

B̄ D̄ 0
C̄ 0 0

⎞
⎠
⎛
⎝

uuuP

λλλ E

λλλ P

⎞
⎠=

⎛
⎝ r̄

μ̄μμ
0

⎞
⎠ , (4)

where

¯rA = rAPP − rAPE (rAEE)−1
rAEP, B̄ = −BLE

(
rAEE)−1

rAEP,

C̄ = CLP, D̄ = −BLE
(
rAEE)−1

BEL,

r̄ = rP − rAPE (rAEE)−1
rE , μ̄μμ = −BLE

(
rAEE)−1

rE .

The enrichment Lagrange multipliers λλλ E can be divided into two parts—those on
the boundaries between the subdomains and those inside the subdomains, denoted by
the subscript B and I, respectively. The system (4) can then be written in the block
form ⎛

⎜⎜⎝
¯rA B̄II

T ¯BBB
T C̄T

B̄II D̄II D̄IB 0
B̄BB D̄BI D̄BB 0
C̄ 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

uuuP

λλλ E
I

λλλ E
B

λλλ P

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

r̄
μ̄μμ I
μ̄μμB
0

⎞
⎟⎟⎠ .

Finally, the elimination on the subdomain level of the unknowns uuuP and the interior

Fig. 1. 2×1 domain decomposition of a DEM discretization with bilinear polynomials and Q-
8-2 elements resulting in the system (3) (top); variables left after condensation of enrichment
dofs (4) (left); and elimination of the subdomain interior dofs (5) (right)



DD Solver for DEM for Helmholtz 211

enrichment Lagrange multipliers λλλ E
I gives the Schur complement system (cf. Fig. 1

right)

F

(
λλλ E

B

λλλ P

)
= b. (5)

It is noted that the matrix F is a sum of subdomain matrices. Once the Lagrange mul-
tipliers λλλ E

B and λλλ P have been solved from (5), the rest of the unknowns is recovered
by post-processing, first to obtain uuuP and λλλ E

I , then to obtain uuuE .

5 Preconditioning

The system (5) is solved efficiently using a Krylov iterative method with a two-level
preconditioner which is a generalization of those described in [3, 7].

Here, the subdomain preconditioners are based on the bilinear forms

â j(u j,v j) =
∫

Ω j
(∇u j ·∇v j − k2u jv j)dΩ −

∫
∂Ω j\Σ1

iku jv j dΓ ,

b̂ j(λ E ,v j) = ∑
e∈E j

ne

∑
e′=e+1

∫
Γe,e′

λ Ev|ΩedΓ − ∑
e∈E j

e−1

∑
e′=1

∫
Γe,e′

λ Ev|ΩedΓ , and

ĉ j(λ P,v j) =
nd

∑
j′= j+1

∑
l

λ P
j, j′,lv

P|Ω j (x j, j′,l)−
j−1

∑
j′=1

∑
l

λ P
j, j′,lv

P|Ω j (x j, j′,l).

Repeating the same steps described above for obtaining F in (5) but with matrices
based on â j, and restricting the resulting matrix to the unknowns corresponding to
the interfaces of the subdomain Ω j, a matrix denoted by F j is obtained (cf. [7]). An
additive subdomain-by-subdomain preconditioner is then defined by

K =
nd

∑
j=1

(
R j)T (

F j)−1
R j,

where R j is the restriction on the interfaces associated with Ω j. Linear systems with
F j can be solved efficiently using an LU decomposition.

The system (5) is solved iteratively on the orthogonal complement of a coarse
space spanned by the columns of a matrix Q (cf. [3, 7]). A projector to the orthogonal
complement of the coarse space is given by

P = I− Q(QT FQ)−1QT F.

The solution λλλ = [λλλ E
B ,λλλ

P]T of (5) can be decomposed into two parts λλλ = λλλ 0 +Pλλλ 1,
where λλλ 0 = Q(QT FQ)−1QT b and λλλ 1 satisfies

PT Fλλλ 1 = PT b.
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Including the preconditioner K leads to the following equation

PKPT Fλλλ 1 = PKFλλλ 1 = PKPT b,

which is solved by GMRES.
The coarse space is based on plane waves propagating in nq uniformly distributed

directions. Each set of nq plane waves are supported by one subdomain interface Γ j, j′

and their normal derivatives on the interface are approximated using an L2-projection
into the space of Lagrange multipliers giving rise to nq columns of Q. Currently, the
coarse space acts only on the interface enrichment Lagrange multipliers λ E

B . The
maximum dimension of the coarse space is nqni, where ni is the number of nonzero
measure interfaces Γ j, j′ . A QR factorization is used to remove nearly linearly de-
pendent vectors. More details are given in Sect. 3.4 of [7].

6 Numerical Results

The model problem considered here is given by (1) with the computational domain
Ω = {x ∈ R

2 : 1 < ‖x‖ < 2}, and the boundaries Γ1 = {x ∈ R
2 : ‖x‖ = 1} and Γ2 =

{x ∈ R
2 : ‖x‖ = 2}. The right-hand side function and the boundary functions are

chosen as

f (x) = (−Δ − k2)(x2
1 + x2

2) = −4 − k2(x2
1 − x2

2),

g1(x) = −∂e−ikx1

∂ν
+

∂ (x2
1 + x2

2)

∂ν
= −ikx1eikx1 − 2(x2

1 + x2
2), and

g2(x) =
∂ (x2

1 + x2
2)

∂ν
− ik(x2

1 + x2
2) = (1 − ik)(x2

1 + x2
2).

The solution is a sum of that given by the scattering of the plane wave e−ikx1 by
a sound-hard disk inside Γ1 and the polynomial x2

1 + x2
2. Two wavenumbers, k =

8π and 16π are considered, in which case the diameter of the scatterer is 8 and
16 wavelengths, respectively. The solution at k = 16π is shown in Fig. 2. Meshes
of 96 × 8 (k = 8π) and 192 × 16 (k = 16π) elements result in two elements per
wavelength in the radial direction.

Fig. 2. The 24×2 domain decomposition for the 192×16 mesh (left) and the real part of the
solution at k = 16π (right)
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Table 1. Results for the 96×8 mesh with the wavenumber k = 8π .

12 x 1 subdomains 24 x 2 subdomains
nq = 0 nq = 8 nq = 0 nq = 8

poly enrich N iter. iter. N iter. iter. error
Q1 none 108 49 336 213 0.683405
Q2 none 204 33 624 195 0.141341

none Q-8-2 192 35 31 576 163 7 0.438341
Q1 Q-8-2 300 34 31 912 184 28 0.004677
Q2 Q-8-2 396 34 31 1200 206 48 0.004472

none Q-16-4 384 35 30 1152 151 39 0.019767
Q1 Q-16-4 492 36 31 1488 160 54 0.000024
Q2 Q-16-4 588 36 31 1776 176 73 0.000013

Table 2. Results for the 192×16 mesh with the wavenumber k = 16π .

12 x 1 subdomains 24 x 2 subdomains
nq = 0 nq = 16 nq = 0 nq = 16

poly enrich N iter. iter. N iter. iter. error
Q1 none 204 79 624 350 0.568750
Q2 none 396 40 1200 368 0.174451

none Q-8-2 384 44 34 1152 264 16 0.478914
Q1 Q-8-2 588 42 34 1776 281 31 0.007441
Q2 Q-8-2 780 42 34 2352 295 56 0.007826

none Q-16-4 768 42 33 2304 233 42 0.021694
Q1 Q-16-4 972 42 35 2928 238 52 0.000011
Q2 Q-16-4 1164 42 33 3504 253 123 0.000010

Bilinear (Q1) and biquadratic (Q2) bases are used for the polynomial part uuuP.
Q-8-2 and Q-16-4 elements are used for the enrichment uuuE and its Lagrange multi-
pliers λλλ E . The domain is decomposed into 12 × 1 and 24 × 2 subdomains (Fig. 2).
The GMRES iterations are terminated once the norm of the residual is reduced by
10−8. Tables 1 and 2 summarize the performance results obtained for various element
types. In these tables, N is the size of the system (5), i.e. the number of Lagrange mul-
tipliers enforcing continuity between subdomains. The error is the relative l2 error of
the averaged nodal values with respect to the analytical solution of the problem.

The errors in the last column of Tables 1 and 2 clearly show the benefit of dis-
cretizations with both polynomial and enrichment fields for this problem. The com-
bined discretizations increase the accuracy by at least two orders of magnitude. The
iteration counts without a coarse space (nq = 0) are roughly the same for all dis-
cretizations and not quite satisfactory for the 24 × 2 decomposition. However, these
are reduced substantially when the coarse space is added.
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