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Preface

Domain decomposition, a form of divide and conquer for mathematical problems
posed over a physical domain, as in partial differential equations, is the most com-
mon paradigm for large-scale simulation on massively parallel distributed, hierarchi-
cal memory computers. In domain decomposition, a large problem is reduced to a
collection of (typically many) smaller problems, each of which is easier to solve com-
putationally than the undecomposed problem and most or all of which can be solved
independently and concurrently. Typically, it is necessary to iterate over the collec-
tion of smaller problems, and much of the theoretical interest in domain decomposi-
tion algorithms lies in ensuring that the number of iterations required is very small.
Indeed, the best domain decomposition methods share with their cousins, multigrid
methods, the property that the total computational work is linearly proportional to the
size of the input data or that the number of iterations required is at most logarithmic
in the number of degrees of freedom of individual subdomains. Algorithms whose
work requirements are linear in the size of the input data in this context are said to
be “optimal.” Optimal domain decomposition algorithms are now known for many,
but certainly not all, important classes of problems that arise from science and engi-
neering. Much of the practical interest in domain decomposition algorithms lies in
extending the classes of problems for which optimal algorithms are known. Domain
decomposition algorithms can be tailored to the properties of the physical system
as reflected in the mathematical operators, the number of processors available, and
even to specific architectural parameters, such as cache size and the ratio of memory
bandwidth to floating-point processing rate.

Since the first meeting was held in Paris in 1987, the International Conference
on Domain Decomposition Methods is the only regularly occurring international fo-
rum dedicated to interdisciplinary technical interactions between theoreticians and
practitioners working in the creation, analysis, software implementation, and appli-
cation of domain decomposition methods. The conferences have now been held in
12 countries in the Far East, Europe, the Middle East, and North America. To date,
there are essentially no real alternatives to domain decomposition as a strategy for
parallelization on petascale computers and beyond, with hundreds of thousands or
even millions of processor cores. Domain decomposition has proved to be an ideal
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paradigm not only for execution on advanced architecture computers but also for the
development of reusable, portable software. The most complex operation in a typical
domain decomposition method is the application of a preconditioner that carries out
in each subdomain step nearly identical to those required to apply a conventional pre-
conditioner to the global domain. Hence, software developed for the global problem
can readily be adapted to the local problem, instantly presenting wealth of “legacy”
scientific code to be harvested for parallel implementations. Furthermore, since the
majority of data sharing between subdomains in domain decomposition codes oc-
curs in two archetypal communication operations – ghost point updates in overlap-
ping zones between neighboring subdomains and global reduction operations, as in
forming an inner product – domain decomposition methods map readily onto opti-
mized, standardized message-passing environments, such as MPI. Finally, it should
be noted that domain decomposition is often a natural paradigm for the modeling
community. Physical systems are often decomposed into two or more contiguous
subdomains based on phenomenological considerations, such as the importance or
negligibility of viscosity or reactivity, or any other feature, and the subdomains are
discretized accordingly, as independent tasks. This physically based domain decom-
position may be mirrored in the software engineering of the corresponding code, and
leads to threads of execution that operate on contiguous subdomain blocks, which
can either be further subdivided or aggregated to the granularity of an available par-
allel computer, and have the correct topological and mathematical characteristics for
scalability. Much of the reputation of this conference series results from the close
interaction between experts in mathematics, computer science, and large-scale com-
putational science in various application areas.

This volume contains a selection of 83 papers presented at the 20th International
Conference on Domain Decomposition, DD20, hosted by the Center for Compu-
tational Mathematics at the University of California at San Diego, held at the San
Diego Supercomputer Center on the UCSD campus during the week of February
9–13, 2011. The conference featured 16 plenary lectures delivered by leaders in the
field, 18 minisymposiums, as well as contributed talks and a poster session. In ad-
dition, Olof Widlund gave an introductory short course on domain decomposition
on Sunday February 8 to a packed room of more than 40 participants in the Cen-
ter for Computational Mathematics, a short walk from the San Diego Supercom-
puter Center. Attending the regular conference during the week were 199 scientists
from 21 countries, giving a total of 173 presentations, which accentuates the inter-
national scope and relevance of this meeting. To add a unique local flavor to the
UCSD meeting, three special plenary talks were scheduled for Tuesday, given by
world-renowned local UCSD computational scientists in fields spanning computa-
tional chemistry to galaxy collision simulation. In addition to the scientific talks dur-
ing the day throughout the week, participants gathered for a poster session with wine
and cheese in the early evening on Monday, and the plenary speakers gathered for a
small dinner in Del Mar on Tuesday evening. The Scientific Committee met with the
local organizing committee and discussed plans for the next conference in the series
on Wednesday evening, aided by samplings from local San Diego microbreweries.
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The large conference banquet for all the participants was held in the UCSD Faculty
Club on Thursday evening, and the conference came to a close at noon on Friday.

For further information, we recommend the homepage of International Domain
Decomposition Conferences, www.ddm.org, maintained by Martin Gander. This
site features free online access to the proceedings of all previous DD conferences,
information about past and future meetings, as well as bibliographic and personal
information pertaining to domain decomposition. A bibliography with all previous
proceedings is provided below, along with some major review articles and mono-
graphs. (We apologize for unintentional omissions to our necessarily incomplete
list.) No attempts have been made to supplement this list with the larger and closely
related literature of multigrid and general iterative methods, except for the books by
Hackbusch and Saad, which have significant domain decomposition components.

The editors wish to thank all members of the International Scientific Committee
for Domain Decomposition Conferences, chaired by Ralf Kornhuber, for their help
in setting the scientific direction of this conference. We are also grateful to the orga-
nizers of the minisymposiums for shaping the profile of the scientific program and
attracting high-quality presentations. The local organizers were Randolph Bank and
Michael Holst, aided by Rob Falgout, David Keyes, Rich Lehoucq, and Jinchao Xu.
We gratefully acknowledge administrative assistance from the San Diego Computer
Center (SDSC) and the California Institute for Telecommunications and Information
Technology (CalIT2).

DD20 was financially supported by the National Science Foundation, the US
Department of Energy, Lawrence Livermore and Sandia National Laboratories,
SDSC, CalIT2, the National Biomedical Computation Resource, and the University
of California at San Diego. Finally, we would like to thank Martin Peters and Thanh-
Ha Le Thi of Springer for their friendly and efficient collaboration in the production
of this proceedings volume.

Randolph E. Bank
University of California, San Diego, USA

Michael J. Holst
University of California, San Diego, USA

Olof B. Widlund
Courant Institute, New York, USA

Jinchao Xu
Pennsylvania State University, USA
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1 Introduction

Local adaptive grid refinement is an important technique in finite element methods.
Its study can be traced back to the pioneering work [2] in one dimension. In recent
years, mathematicians start to prove the convergence and optimal complexity of the
adaptive procedure in multi-dimensions. Dörfler [11] first proved an error reduction
in the energy norm for the Poisson equation provided the initial mesh is fine enough.
Morin et al. [15, 16] extended the convergence result without the constrain of the
initial mesh and they also reveal the importance of data oscillation. But results in
[11, 15, 16] only establish the qualitative convergence estimate by a proof of an error
reduction property. The number of elements generated by the adaptive algorithm
is not under control. A natural theoretical question is if a standard adaptive finite
element scheme would give an optimal asymptotic convergence rate in terms of the
number of elements. For linear finite element approximation to second order elliptic
boundary value problems in two dimensions, for example, an optimal asymptotic
error estimate would be something like

|u−uN|1,Ω ≤C(u)N−1/2, (1)

where uN is a finite element approximation of the Poisson equation with homogenous
Dirichlet boundary condition based on an adaptive grid with at most N elements.

An important progress has been made by Binev et al. [7] concerning the asymp-
totic estimate (1). In their algorithm, an additional coarsening step is required to
achieve optimal complexity. However in practice the nearly optimal complexity
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is obtained without the coarsening step. Such theoretical gap is filled by Steven-
son [18] which shows that the practical refinement without a recurrent coarsening
will also generate finite element solution with quasi-optimal computational com-
plexity. But marking for oscillation and refinement with interior nodes assumptions
are still needed. Recently, [8] presented the most standard AFEM and proved a con-
traction property and quasi-optimal cardinality without any additional assumptions.
Their results show that if the solution u ∈ As, where As is the approximation class
space of rate s, then |u−uN|1,Ω ≤ |u|As N

−s.
Another important theoretical and practical issue is to characterize the approx-

imation class A1/2 using the smoothness of u. A near characterization of A1/2 in
terms of Besov spaces Bk

p,q(Ω) in two dimensions can be found in [6, 7] which
shows that u ∈A1/2 implies that u ∈ B2

1,1(Ω) and u ∈ B2
p,p(Ω) for p > 1 implies that

u ∈A1/2.
In this paper, we shall provide a sharper result: We prove that

if u ∈W 2,L logL(Ω), i.e.,
∫
Ω
|D2u log |D2u| |dx < ∞,

then u∈A1/2. This is an improved result since, when p> 1, B2
p,p(Ω)⊂W 2,L logL(Ω)

from the Hölder inequality. With the regularity theory of elliptic equations, which
ensures u ∈W 2,L logL(Ω), we are led to conclude the following practical statement:
linear adaptive finite element approximation of second order elliptic equations in two
dimensions will achieve optimal rate of convergence.

Our contribution in this paper is further related with recent work on equidistribu-
tion and refinement strategies as follows:

1. The role of the equidistribution. In Sect. 2 we reveal that the equidistribution
principle can be severely violated but asymptoticly optimal error estimates can
still be maintained. The result (Theorem 1) is firstly presented in [9] and similar
idea can be also found in [8] around the same time.

2. The proof of the bound of the pollution of the local mesh refinement in the
completion is of its own interest. The estimate (Theorem 2) is a much sharper
constant comparing with existing results in [7]. The idea of the proof is borrowed
from [1] and the result is generalized from the uniform grids in [1] to compatibly
divisible unstructured grids.

The rest of the paper is organized as follows. In Sect. 2 we explain the equidis-
tribution principle for the case when the function to be approximated belongs to
W 2,1(Ω). The advantage of our approach is that only standard approximation for the
interpolation operator are used, and approximation theory for Besov spaces is not
needed. In Sect. 3, we review the newest vertex bisection refinement strategy and
provide a sharp estimate for the number of triangle needed for the completion of the
mesh after an arbitrary marking and bisection refinement is performed. In Sect. 4, we
present a new approach for the local grid refinement based on the error estimate and
the equidistribution principle.
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2 Error Estimate and Equidistribution Principle

We shall consider a simple elliptic boundary value problem

−Δu = f in Ω , u = 0 on ∂Ω , (2)

where, for simplicity, we assumeΩ is a polygon and is partitioned by a shape regular
conforming triangulation TN with N number of triangles. Let VN ⊂ H1

0 (Ω) be the
corresponding continuous piecewise linear finite element space associated with this
triangulation TN .

A finite element approximation of the above problem is to find uN ∈ VN such that

a(uN ,vN) = ( f ,vN) ∀vN ∈ VN , (3)

where
a(u,v) =

∫
Ω
∇u ·∇vdx, and ( f ,v) =

∫
Ω

f vdx.

For this problem, it is well known that for a fixed finite element space VN

|u−uN|1,Ω = inf
vN∈VN

|u− vN|1,Ω . (4)

We then present an H1 error estimate for linear triangular element interpolation
in two dimensions. We note that in two dimensions, the following two embeddings
are both valid:

W 2,1(Ω) ⊂W 1,2(Ω)≡ H1(Ω) and W 2,1(Ω)⊂C(Ω̄). (5)

Given u ∈W 2,1(Ω), let uI be the linear nodal value interpolant of u on TN . For any
triangle τ ∈ TN , thanks to (5) and the assumption that τ is shape-regular, we have

|u−uI|1,τ � |u|2,1,τ .

As a result,
|u−uI|21,Ω � ∑

τ∈TN

|u|22,1,τ .

To minimize the error, we can try to minimize the right hand side. By Cauchy-
Schwarz inequality,

|u|2,1,Ω = ∑
τ∈TN

|u|2,1,τ ≤ ( ∑
τ∈TN

1)1/2( ∑
τ∈TN

|u|22,1,τ)1/2 = N1/2( ∑
τ∈TN

|u|22,1,τ)1/2.

Thus, we have the following lower bound:

( ∑
τ∈TN

|u|22,1,τ)1/2 ≥ N−1/2|u|2,1,Ω . (6)

The equality holds if and only if
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|u|2,1,τ = 1
N
|u|2,1,Ω . (7)

The condition (7) is hard to be satisfied in general. But we can considerably relax
this condition to ensure the lower bound estimate (6) is still achieved asymptotically.
The relaxed condition is as follows:

|u|2,1,τ ≤ κτ,N |u|2,1,Ω (8)

and

∑
τ∈TN

κ2
τ,N ≤ c1N−1. (9)

When the above two inequalities hold, we have

|u−uI|1,Ω � N−1/2|u|2,1,Ω .
In summary, we have the following theorem.

Theorem 1. If TN is a triangulation with at most N triangles and satisfying (8) and
(9), then

|u−uN|1 ≤ |u−uI|1,Ω � N−1/2|u|2,1,Ω . (10)

In the above analysis, we see how equidistribution principle plays an important
role in achieving asymptotically optimal accuracy for adaptive grids. We would like
to further elaborate that, in the current setting, equidistribution is indeed a sufficient
condition for optimal error, but by no means this has to be a necessary condition.
Namely the equidistribution principle can be severely violated but asymptoticly opti-
mal error estimates can still be maintained. For example, the following mild violation
of this principle is certainly acceptable:

|u|2,1,τ ≤ c
N
|u|2,1,Ω . (11)

In fact, this condition can be more significantly violated on a finitely many elements
{τ}

|u|2,1,τ ≤ c√
N
|u|2,1,Ω . (12)

It is easy to see if a bounded number of elements satisfy (12) and the rest satisfy (11),
the estimate (9) is satisfied and hence the optimal error estimate (10) is still valid.

As we can see that the condition (12) is a very serious violation of equidistri-
bution principle, nevertheless, as long as such violations do not occur on too many
elements, asymptotically optimal error estimates are still valid. This simple obser-
vation is important from both theoretical and practical points of view. The marking
strategy proposed by Dörfler [11] may also be interpreted in this way in its relation-
ship with equidistribution principle. In [5], Binev and DeVore propose to use certain
penalty in using equidistribution principle. Such a modification certainly has similar
spirit.

We shall discuss how to generate a mesh TN to satisfy (8) and (9) in the next two
sections. To this end, we shall introduce the local refinement method: newest vertex
bisection, in the next section.
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3 Newest Vertex Bisection

In this section we shall give a brief introduction of the newest vertex bisection and
mainly concern the number of elements added by the completion process. We refer
to [14, 19] and [7] for detailed description of the newest vertex bisection refinement
procedure.

Given an initial shape regular triangulation T0 of Ω , it is possible to assign
to each τ ∈ T0 exactly one vertex called the newest vertex. The opposite edge of
the newest vertex is called refinement edge. The rule of the newest vertex bisection
includes:

1. A triangle is divided to two new children triangles by connecting the newest
vertex to the midpoint of the refinement edge;

2. The new vertex created at a midpoint of a refinement edge is assigned to be the
newest vertex of the children.

It is easy to verify that all the descendants of an original triangle fall into four similar-
ity classes (see Fig. 1) and hence the angles are bounded away from 0 and π and all
triangulations refined from T0 using newest vertex bisection forms a shape regular
class of triangulations.

1 2 3
1 1

4 4

2 3 2 3
3 2

2 3

Fig. 1. Four similarity classes of triangles generated by the newest vertex bisection

The triangulation obtained by the newest vertex might have hanging nodes. We
have to make additional subdivisions to eliminate the hanging nodes, i.e., complete
the new partition. The completion should also follow the bisection rules. We shall
consider more combinatory properties of the completion.

Let the triangles of the initial triangulation be assigned generation 0. We refer to
the two triangles obtained by splitting a triangle τ in two sub-triangles by the newest
vertex procedure as being the children of τ . For i = 1,2, . . . , we define the generation
of the children of τ to be i if the parent τ has the generation i− 1. It can be shown
that the completion will terminate in finite steps, due to the fact that the completion
process will not create new generations of triangles (see [3, 13]).

We ask more than the termination of the completion process. That is we want
to control the number of elements refined due to the completion. To this end, we
have to carefully assign the newest vertexs for the initial partition T0. A triangle is
called compatibly divisible if its refinement edge is either the refinement edge of the
triangle that shares that edge or an edge on the boundary. A triangulation T is called
compatibly divisible or compatibly labled if every triangle is compatibly divisible.
See Fig. 2 for an example of such compatible initial labeling.
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Fig. 2. A compatibly divisible labeling of the initial triangulation where edges in bold case are
refinement edges

It is obvious that the completion for a compatible triangulation is terminated
in one step. Mitchell [13] proves that for any conforming triangulation T , there
exist a compatible label scheme. Biedl et al. [4] present an O(N) algorithm to find a
compatible labeling for a triangulation T with N elements.

Let T0 be a compatible triangulation and let T 1
2

be a triangulation obtained by

the newest vertex bisection by performing m0 bisections starting from T0. Denote by
M0 the set of all m0 marked and split triangles. Note that not all the triangles of M0

have to be in T0. Let T1 be the (minimal) conforming refinement of T 1
2

and denote

by nk the number of triangles of Tk, k = 0,1 (Fig. 3).

(a) (b) (c)

Fig. 3. Marking, splitting, and completing. (a) T0. (b) T 1
2
. (c) T1

Theorem 2. Let T0 be a compatible triangulation and T1 be obtained as above.
Then there exists a constant C only depending on the minimal angle of T0 such that

n1 ≤ n0 +(C+ 1) m0. (13)

Remark 1. It is a temptation to repeat the Theorem 2 to conclude: for j = 1,2, . . . , p−
1, we have that T j+1 is obtained from T j, by m j markings and then minimal com-
pletion, then

np ≤ n0 +(C+ 1) (m0 +m1 + · · ·+mp−1). (14)
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Unfortunately this argument does not work since T1 may not be compatibly divisible
anymore. The inequality (14) still holds but the proof is much involved; See Theorem
2.4 in [7]. The bound (13) can be derived from that theorem; See Lemma 2.5 in [7].
However, careful tracing the argument in [7] would give a huge constant in (14) in the
magnitude of 10,000. We shall give another more direct and simpler proof based on
an improved technique in [1]. The constant in our proof is much smaller and usually
below 100. Note that numerically in the average case of the constant is around 4 and
in the worst case is around 14; see [1].

Let us introduce notation for uniform bisection by setting T k as the triangulation
obtained by bisecting each triangle in T0 completely up to the k-th generation. The
assumption: T0 is compatible divisible implies that T k is conforming and compat-
ible divisible for all k ≥ 1. Note that this may not hold if the initial labeling is not
compatibly divisible.

For a triangle τ , we define a neighbor of τ as another triangle sharing a common
edges of τ . By the definition, a triangle has at most three neighbors. Among them, for
τ ∈ T k, we define the refinement neighbor of τ as the triangle τ ′ ∈ T k such that τ
and τ ′ use the same edge as their refinement edges. We allow τ ′ = ∅ for τ touching
the boundary. We define the barrier of τ as all triangles in T g(τ) which intersect
τ ∪ τ ′ and denoted by B(τ), i.e.,

B(τ) = {τ̂ ∈T g(τ), τ̂ ∩ (τ ∪ τ ′) =∅}.

(a) (b)

Fig. 4. Barrier of a safe triangle. (a) Barrier 1. (b) Barrier 2

Definition 1. We say that τ is a safe triangle if none of the barrier elements of τ is
marked in going from T0 to T1, namely τ̂ /∈M0 for any τ̂ ∈ B(τ).

The following lemma will justify the name of safe triangles. They are triangles
that not touched going from T0 to T1.



10 Constantin Bacuta, Long Chen, and Jinchao Xu

Lemma 1. Any safe triangle τ in T0 or born in the marking and completion process
of going from T0 to T1 will never be bisected during the completion process.

Proof. We shall prove it by the induction over the generation of τ . Suppose g(τ) =
maxτ̃∈T 1

2

g(τ̃) and τ is safe. Then τ will not be bisected during the completion since

the completion will not increase the maximal generation.
Assume that our statement holds for all safe triangles of generation p+1. We will

show that the statement also holds for a safe triangle with generation p. Note that to
trigger the bisection of τ , one has to refine one of the two neighbors of τ (which
do not share the refinement edge with τ) twice or two such neighbors of τ ′ twice
(since τ and τ ′ share the refinement edge). Without loss of generality, let us say that
one of the neighbor τ ′ is bisected once in the completion process. Then it produces
a children triangle τ1 of generation p+ 1 which has a common edge with τ ′. It is
important to note that B(τ1)⊂ B(τ) and thus τ1 is safe; See Fig. 4 for an illustration.
By the inductive hypothesis τ1 will never be bisected anymore during the completion
process. Consequently, τ will never be bisected during the completion process.

Now we are in the position to prove Theorem 2.

Proof. (of Theorem 2) We denote by M 1
2

as the set of all triangles τ which are split

in the completion process of going from T 1
2

to T1. Let us choose a triangle τ ∈M 1
2
.

Since τ is split in the completion process, by the above Lemma, τ is not safe. It
implies that there should exist a same-generation triangle F(τ) in B(τ) such that
F(τ) ∈M0. In this way, we defined a map from F : M 1

2
→M0.

Note that F is not necessary a one-to-one map, but a triangle τ ∈M0 could be
in only finite number of barriers, due to the space limitation of the same-generation
assumption. Given a triangle τ , we define the first ring of τ as all triangles intersect
τ and the second ring of τ as the union of first rings of triangles in the first ring of τ .
Then τ can be only in the barrier of triangles in its second ring and thus the number
is bounded by the maximum number of triangles in the second ring of a triangle, say
C, which is usually below 100. Thus any triangle in M0 is the image of at most C
triangles from M 1

2
. This leads to the fact that the number of splittings needed for

completion can be bounded by Cm0. Since any splitting in the completion process
adds one more triangle towards the completed mesh T1, we have proved (13).

4 Local Grid Refinement Algorithm

In this section we shall propose a new approach for the local grid refinement based
on the error estimate and the equidistribution principle. We will use newest vertex
bisection to refine the grid and use |u|2,1,τ as an error indicator. With a little bit higher
regularity requirement of u, we are able to prove the effectiveness of our algorithm.
Namely, it will end with an optimal asymptotic error estimate similar to (1).
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4.1 Local Refinement Strategy

We will illustrate a way to find a nearly optimal grid for the solution of (2). We will
use the newest vertex bisection refinement procedure with the marking strategy given
by (11). For the later analysis, we will have to assume that the solution u is in W 2,1

and that the Hardy-Littlewood maximal function of D2u is in L1(Ω). Due to a result
of [17], this is equivalently D2u ∈ L logL(Ω). Such further assumption holds if for
example u ∈W 2,p for some p > 1.

The maximal function of an integrable function f on Ω is defined by

M̃ f (x) = sup
1
|Q|

∫
Q
| f (y)| dy,

where the supremum is taken over all square domains contained inΩ and containing
x.

For a triangulation obtained by the newest vertices bisection from T0. The simi-
larity classes are in fact completely represented by the children and grandchildren of
all triangles from T0. Let us denote by C0 the following family of triangles:

C0 = {τ| τ is a triangle contained in Ω and is similar with

a child or grandchild of a triangle from T0}
We define another maximal function

M f (x) = sup
1
|τ|

∫
τ
| f (y)| dy,

where the supremum is taken over all triangles τ ∈ C0 containing x. Then it is easy
to show that M̃ and M are equivalent in the sense that

c1M̃ f (x) ≤M f (x) ≤ c2M̃ f (x), ∀x ∈Ω

with c1 and c2 independent of x. Thus, for theoretical purposes, the two operators M
and M̃ are interchangeable.

The following result concerns the number of the new triangles added in the re-
finement procedure. The main idea of the proof for the 1-D case was showed to the
authors by DeVore and can be found in [10].

Theorem 3. Let f be an integrable function on Ω such that M f ∈ L1(Ω), and let
ε > 0 be given. Assume that the newest vertex bisection refinement procedure is
applied to an compatible initial triangulation T0 with n0 triangles. Let the marking
strategy be given by: a triangle τ is marked if

∫
τ
| f (x)| dx > ε.

Denote by M0 the set of all marked and split triangles. Then, the marking and re-
finement procedure will terminate in finite steps and we have
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n0 +m0 <
2
ε

∫
Ω

M f (x) dx, (15)

where m0 is the number of elements of M0. Assume that T 1
2

is the triangulation

obtained from T0 after the m0 bisections. Let T1 be the (minimal) conforming re-
finement of T 1

2
and denote by n1 the number of triangles of T1. Then,

n1 ≤ C1

ε

∫
Ω
|M f (x)| dx, (16)

with a constant C1 independent of the function f and the number ε . More precisely,
C1 = 2(C+ 1), with C the constant of Theorem 2.

Proof. Since lim|τ|→0
∫
τ | f (x)| dx = 0 and the areas of new triangles are exponen-

tially decreased, the refinement procedure will terminate in finite steps.
We can assume without loss of generality that each triangle in T 1

2
is not a triangle

in T0. Now, let τ ∈ T 1
2

and let τ̃ be its parent. Then τ̃ ∈M0. (Recall that M0 is
the collection of marked triangles in the refinement procedure.) By our refinement
strategy ∫

τ̃
| f (x)| dx > ε,

Thus,

M f (x) >
1
|τ̃ |

∫
τ̃
| f (y)| dy >

ε
|τ̃| , ∀x ∈ τ.

Integrating the above inequality on τ we have,
∫
τ

M f (x) dx >
ε
2
. (17)

Here we use fact |τ̃|= 2|τ|. If we sum up (17) over all n0 +m0 triangles τ ∈ T 1
2

we
obtain (15).

By using Theorem 2 we have that

n1 ≤ n0 +m0 +C m0 ≤ (C+ 1) (n0 +m0).

The estimate (16) follows now as a direct consequence of (15) and the above inequal-
ity.

An application of Theorem 1 and the estimate (16) for f = D2u and ε = 1/N,
leads to the proof of the existence of a nearly optimal grid. Starting from a coarse
grid T0, we define the approximation class A1/2 as

A1/2 = {u ∈ H1
0 (Ω) : |u|A1/2

:= sup
N≥#T0

N−1/2 inf
#T ≤N

inf
vh∈V (T )

|u− vh|1 < ∞}.

Corollary 1. If u ∈W 2,L logL(Ω), then u ∈A1/2.
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Remark 2. The (L logL) norm is needed only for proving the success of the algorithm
but is not effectively needed for the implementation of the algorithm. If we can find
good approximations or upper bound for

∫
τ D2udx on triangles using e.g., gradient

and Hessian recovery methods (from the discrete Galerkin approximation of u) or
using regularity result in [12], then the ideas presented in this paper can lead to new
and optimal adaptive methods.
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Summary. We present some recent domain decomposition tools and a BDDC algorithm for
3D problems in the space H(curl;Ω). Of primary interest is a face decomposition lemma
which allows us to obtain improved estimates for a BDDC algorithm under less restrictive as-
sumptions than have appeared previously in the literature. Numerical results are also presented
to confirm the theory and to provide additional insights.

1 Introduction

We investigate a BDDC algorithm for three-dimensional (3D) problems in the space
H0(curl;Ω). The subject problem is to obtain edge finite element approximations of
the variational problem: Find uuu ∈ H0(curl;Ω) such that

aΩ (uuu,vvv) = ( fff ,vvv)Ω ∀vvv ∈H0(curl;Ω),

where

aΩ (uuu,vvv) :=
∫
Ω
[(α∇×uuu ·∇× vvv)+ (βuuu · vvv)]dx, ( fff ,vvv)Ω =

∫
Ω

fff · vvvdx.

The norm of uuu∈H(curl;Ω), for a domain with diameter 1, is given by aΩ(uuu,uuu)1/2

with α = 1 and β = 1; the elements of H0(curl) have vanishing tangential compo-
nents on ∂Ω . We could equally well consider cases where this boundary condition
is imposed only on one or several subdomain faces which form part of ∂Ω . We will
assume that α ≥ 0 and β > 0 are constant in each of the subdomains Ω1, . . . ,ΩN .
Our results could be presented in a form which accommodates properties which are
not constant or isotropic in each subdomain, but we avoid this generalization for
purposes of clarity.
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In the pioneering work of [12], two different cases were analyzed for FETI-DP
algorithms:
Case 1:

αi = α for i = 1, . . . ,N

The condition number bound reported for the preconditioned operator is

κ ≤C max
i
(1+H2

i βi/α)(1+ log(H/h))4, (1)

where H/h := maxi Hi/hi.
Case 2:

βi = β for i = 1, . . . ,N

for which the reported condition number bound is

κ ≤C max
i
(1+H2

i β/αi)(1+ log(H/h))4. (2)

We address the following basic questions regarding [12] in this study.

1. Is is possible to remove the assumption of αi = α or βi = β for all i?
2. Is it possible to remove the factor of H2

i βi/αi from the estimates?
3. Is is possible to reduce the logarithmic factor from four powers to two powers as

is typical of other iterative substructuring algorithms?
4. Do FETI-DP or BDDC algorithms for 3D H(curl) problems have certain com-

plications not present for problems with just a single parameter?

We find in the following sections that the answers are yes to all four questions. How-
ever, due to page limitations, we only consider here the relatively rich coarse space
of Algorithm C of [12]. We remark that the analysis of 3D H(curl) problems with
material property jumps between subdomains is quite limited in the literature. A
comprehensive treatment of problems in 2D can be found in [3]. A different iterative
substructuring algorithm for 3D problems is given in [6], but the authors were un-
able to conclude whether their condition number bound was independent of material
property jumps. A related study on substructuring preconditioners can also be found
in [7].

2 Tools

We assume that Ω is decomposed into N non-overlapping subdomains, Ω1, . . . ,ΩN ,
each the union of elements of the triangulation of Ω . We denote by Hi the diameter
of Ωi. The interface of the domain decomposition is given by

Γ :=

(
N⋃

i=1

∂Ωi

)
\∂Ω ,



Some Recent Tools and a BDDC Algorithm for 3D Problems in H(curl) 17

and the contribution to Γ from ∂Ωi by Γi := ∂Ωi\∂Ω . These sets are unions of
subdomain faces, edges, and vertices. For simplicity, we assume that each subdomain
is a shape-regular and convex tetrahedron or hexahedron with planar faces.

We assume a shape-regular triangulation Thi of each Ωi with nodes matching
across the interfaces. The smallest element diameter of Thi is denoted by hi. Associ-

ated with the triangulation Thi are the two finite element spaces W hi
grad ⊂H(grad,Ωi)

and W hi
curl ⊂ H(curl,Ωi) based on continuous, piecewise linear, tetrahedral nodal ele-

ments and linear, tetrahedral edge (Nédeléc) elements, respectively. We could equally
well develop our algorithms and theory for low order hexahedral elements.

The energy of a vector function uuu ∈W hi
curl for subdomain Ωi is defined as

Ei(uuu) := αi(∇×uuu,∇×uuu)Ωi +βi(uuu,uuu)Ωi , (3)

where αi and βi are assumed constant in Ωi.
Let NNNe ∈W hi

curl and ttte denote the finite element shape function and unit tangent
vector, respectively, for an edge e of Thi . We assume that NNNe is scaled such that
NNNe ·ttte = 1 along e. The edge finite element interpolant of a sufficiently smooth vector
function uuu ∈ H(curl,Ωi) is then defined as

Π hi(uuu) := ∑
e∈MΩ̄i

ueNNNe, ue := (1/|e|)
∫

e
uuu · ttte ds, (4)

where MΩ̄i
is the set of edges of Thi , and |e| is the length of e. We will also make use

of other sets of edges of Thi . Namely, M∂Ωi
, ME , MF , and M∂F contain the edges

of ∂Ωi, subdomain edge E , subdomain face F , and ∂F , respectively. We denote
by GiF , GiE , and GiV sets of subdomain faces, subdomain edges, and subdomain
vertices for Ωi. The wire basket Wi is the union of all subdomain edges and vertices
for Ωi. We will also make use of the symbol ωi := 1+ log(Hi/hi), and bold faced
symbols refer to vector functions. We denote by p̄i the mean of pi over Ωi.

The estimate in the next lemma can be found in several references, see e.g.,
Lemma 4.16 of [13].

Lemma 1. For any pi ∈W hi
grad and subdomain edge E of Ωi,

‖pi‖2
L2(E ) ≤Cωi‖pi‖2

H1(Ωi)
. (5)

Lemma 2. For any pi ∈W hi
grad, there exist piV , piE , piF ∈W hi

grad such that

pi|∂Ωi
= ∑

V ∈GiV

piV |∂Ωi
+ ∑

E∈GiE

piE |∂Ωi
+ ∑

F∈GiF

piF |∂Ωi
, (6)

where the nodal values of piV , piE , and piF on ∂Ωi may be nonzero only at the
nodes of V , E , and F , respectively. Further,
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|piV |2H1(Ωi)
≤C‖pi‖2

H1(Ωi)
, (7)

|piE |2H1(Ωi)
≤Cωi‖pi‖2

H1(Ωi)
, (8)

|piF |2H1(Ωi)
≤Cω2

i ‖pi‖2
H1(Ωi)

. (9)

Proof. The estimates in (7)–(9) are standard, and follow from Corollary 4.20 and
Lemma 4.24 of [13] and elementary estimates.

We note that a Poincaré inequality allows us to replace the H1-norm of pi by its
H1-seminorm in Lemmas 1 and 2 if p̄i = 0.

The next lemma is stated without proof due to page restrictions.

Lemma 3. Let fi ∈W hi
grad have vanishing nodal values everywhere on ∂Ωi except on

the wire basket Wi of Ωi. For each subdomain face F of Ωi and Chi ≤ d ≤ Hi/C,
C > 1, there exists a vvvi ∈W hi

curl such that vie = ∇ fie for all e ∈MF , vie = 0 for all
other edges of ∂Ωi, and

‖vvvi‖2
L2(Ωi)

≤C(ωi‖ fi‖2
L2(∂F ) + d2‖∇ fi · ttt∂F‖2

L2(∂F )), (10)

‖∇× vvvi‖2
L2(Ωi)

≤C(τ(d)‖ fi‖2
L2(∂F )

+ ‖∇ fi · ttt∂F ‖2
L2(∂F )

), (11)

where ttt∂F is a unit tangent along ∂F , and

τ(d) =
{

0 if d > Hi/C
d−2 otherwise.

The Helmholtz-type decomposition and estimates in the next lemma will allow
us to make use of and build on existing tools for scalar functions in H1(Ωi). We refer
the reader to Lemma 5.2 of [4] for the case of convex polyhedral subdomains; this
important paper was preceded by Hiptmair et al. [5], which concerns other applica-
tions of the same decomposition.

Lemma 4. For a convex and polyhedral subdomainΩi and any uuui ∈W hi
curl, there is a

qqqi ∈W hi
curl,ΨΨΨ i ∈ (W hi

grad)
3, and pi ∈W hi

grad such that

uuui = qqqi +Π
hi(ΨΨΨ i)+∇pi, (12)

‖∇pi‖L2(Ωi)
≤C‖uuui‖L2(Ωi)

, (13)

‖ΨΨΨ i‖L2(Ωi)
≤C‖uuui‖L2(Ωi)

, (14)

‖h−1
i qqqi‖2

L2(Ωi)
+ ‖ΨΨΨ i‖2

H1(Ωi)
≤C‖∇×uuui‖2

L2(Ωi)
. (15)
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Lemma 5. For any uuui ∈W hi
curl with uie = 0 for all e∈M∂F , there exists a vvviF ∈W hi

curl
such that viFe = uie for all e ∈MF , viFe = 0 for all e ∈M∂Ωi

\MF , and

Ei(vvviF )≤Cω2
i Ei(uuui), (16)

where the energy Ei is defined in (3).

Proof. Let pi in (12) be chosen so p̄i = 0. This is possible since a constant can be
added to pi without changing its gradient. Because uie = 0 for all e∈M∂F , it follows
from Lemmas 1 and 4 and elementary estimates that

‖∇pi · tttE ‖2
L2(∂F ) = ‖(Π hi(ΨΨΨ iii)+ qqqi) · tttE ‖2

L2(∂F )

≤Cωi‖∇×uuui‖2
L2(Ωi)

. (17)

We then find from Lemmas 2 and 4 that

‖∇piF‖2
L2(Ωi)

≤Cω2
i ‖uuui‖2

L2(Ωi)
. (18)

Define

piW := ∑
V ∈GiV

piV + ∑
E∈GiE

piE , d :=

{
Hi if di ≥ Hi

max(di,Chi) otherwise,

where di :=
√
αi/βi. Further, let piW and pppiF denote the functions fi and vvvi, respec-

tively, of Lemma 3. We then find from Lemmas 1 and 3 and (17) that

Ei(pppiF )≤Cω2
i Ei(uuui), (19)

where piFe = ∇piW e ∀e ∈MF and piFe = 0 ∀e ∈M∂Ωi
\MF . With reference to

(12) and (4), we define
qqqiF := ∑

e∈MF

qieNNNe, (20)

and from elementary finite element estimates and Lemma 4 find

‖qqqiF ‖2
L2(Ωi)

≤Ch3
i ∑

e∈MF

q2
ie ≤C‖qqqi‖2

L2(Ωi)
≤C‖uuui‖2

L2(Ωi)
, (21)

‖∇×qqqiF ‖2
L2(Ωi)

≤Chi ∑
e∈MF

q2
ie ≤C‖∇×uuui‖2

L2(Ωi)
. (22)

It follows from Lemmas 2 and 4 that there exists aΨΨΨ iF ∈ (W hi
grad)

3 such thatΨΨΨ iF =
ΨΨΨ i at all nodes of F , that vanishes at all other nodes of ∂Ωi, and

‖ΨΨΨ iF‖2
L2(Ωi)

≤C‖ΨΨΨ i‖2
L2(Ωi)

≤C‖uuui‖2
L2(Ωi)

, (23)

‖∇×ΨΨΨ iF‖2
L2(Ωi)

≤Cω2
i ‖ΨΨΨ i‖2

H1(Ωi)
≤Cω2

i ‖∇×uuui‖2
L2(Ωi)

. (24)

From Lemmas 1 and 4, we obtain
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‖ΨΨΨ i‖2
L2(∂F ) ≤Cωi‖ΨΨΨ i‖2

H1(Ωi)
≤Cωi‖∇×uuui‖2

L2(Ωi)
. (25)

Let ΨΨΨ i∂F ∈ (W hi
grad)

3 be identical to ΨΨΨ i at all nodes of ∂F and vanish at all other

nodes of Ωi. For ggg :=Π hi(ΨΨΨ i∂F ), we define

gggiF := ∑
e∈MF

ghi
e NNNe. (26)

From elementary estimates and (25), we then obtain

‖gggiF ‖2
L2(Ωi)

≤Ch2
i |ΨΨΨ i‖2

L2(∂F ) ≤Cωih
2
i ‖∇×uuui‖2

L2(Ωi)
, (27)

‖∇×gggiF ‖2
L2(Ωi)

≤Cωi‖∇×uuui‖2
L2(Ωi)

. (28)

Defining
vvviF := ∇piF + pppiF + qqqiF +Π hi(ΨΨΨ iF )+ gggiF , (29)

we find that viFe = uie ∀e ∈MF and viFe = 0 ∀e ∈M∂Ωi
\MF . The estimate in

(16) then follows from the bounds for each of the terms on the right-hand-side of
(29) along with elementary estimates for Π hi(ΨΨΨ iF ). �

3 BDDC

Background information and related theory for BDDC can be found in several refer-
ences including [1, 2, 9–11]. Let ui and u denote vectors of finite element coefficients
associated with Γi andΓ . In general, entries in ui and u j are allowed to differ for j = i
even though they refer to the same finite element edge. Entries in the vector ũi are
partially continuous in the sense that specific edge values or edge averages over cer-
tain subsets of Γ are required to match for adjacent subdomains. In order to obtain
consistent entries, we define the weighted average

ûi = Ri

N

∑
j=1

RT
j D jũ j, (30)

where R j is a 0–1 (Boolean) matrix that selects the rows of u j from u and D j is a
weight matrix. The weight matrices form a partition of unity in the sense that

N

∑
i=1

RT
i DiRi = I, (31)

where I is the identity matrix. To summarize, ûi is fully continuous while ũi is only
partially continuous. The number of continuity constraints that must be satisfied by
all the ũi determines the dimension of the coarse space.

The energy of uuu for Ωi can be expressed as

Ei(uuu) = Ei(ui) = uT
i Siui, (32)
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where Si is the Schur complement matrix associated with Ωi and Γi. The system
operator for BDDC is the assembled Schur complement

S =
N

∑
i=1

RT
i SiRi. (33)

From Theorem 25 of [11], the condition number of the BDDC preconditioned oper-
ator is bounded above by

κ(M−1S)≤ sup
ũi

∑N
i=1 ûT

i Siûi

∑N
i=1 ũT

i Siũi
. (34)

This remarkably simple expression shows that the continuity constraints for ũi should
be chosen so that large increases in energy do not result from the averaging operation
in (30).

Let Ri∂Fi j
select the rows of ui corresponding to the edge coefficients on the

boundary of the face Fi j, the closure of which is ∂Ωi ∩ ∂Ω j. Similarly, let RiFi j

select the rows of ui corresponding to the interior of the face Fi j. We define the
vector of face edge coefficients by uiF := RiFi j ui and the face Schur complement
matrix by SiFF := RiFi j SiRT

iFi j
.

Because of page restrictions, we only consider a very rich coarse space which
includes every edge variable of each subdomain edge. This coarse space corresponds
to Algorithm C of [12]. For this case, we choose the weighted average of uiF and u jF

as
ûF = (SiFF + S jFF)

−1(SiFF uiF + S jFF u jF). (35)

Thus,
uiF − ûF = (SiFF + S jFF)

−1S jFF(uiF −u jF). (36)

Using the eigenvectors of the generalized eigenvalue problem SiFF x = λS jFF x as a
convenient basis, we find

uT
kF S̄iFFukF ≤ uT

kF SkFF ukF , ∀ukF k ∈ {i, j}, (37)

where
S̄iFF := S jFF(SiFF + S jFF)

−1SiFF(SiFF + S jFF)
−1S jFF (38)

Let us assume for the moment that there are vectors ui j, u ji, and a scalar Ĉ > 0 such
that

Ri∂Fi j
ui j = R j∂Fi j

u ji = u∂F , (39)

RiFi j ui j = R jFi j u ji, (40)

uT
i jSiui j + uT

jiS ju ji ≤ Ĉ(uT
i Siui + uT

j S ju j). (41)

In other words, ui j, u ji, ui and u j are all identical along the boundary of Fi j . Further,
ui j and u ji are identical in the interior of Fi j, and the sum of their energies is bounded
uniformly by the sum of the energies of ui and u j.
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In order to establish a condition number bound for Algorithm C, we need an esti-
mate for Ei(RT

iFi j
(uiF− ûF)); see (34). By construction, we have Ri∂Fi j

(ui−ui j) = 0

and R j∂Fi j
(u j−u ji) = 0. Since uiF−u jF =(uiF−ui jF)−(u jF−u jiF), it then follows

from (36), (37), (41), and Lemma 5 that

Ei(R
T
iFi j

(uiF − ûF)) =Ei(R
T
iFi j

(SiFF + S jFF)
−1S jFF(uiF −u jF))

≤2(uiF −ui jF)
T SiFF(uiF −ui jF)+

2(u jF −u jiF)
T S jFF(u jF −u jiF)

≤ ĈCω2
i (Ei(ui)+E j(u j)). (42)

We are able to show there exist ui j and u ji which satisfy the conditions in (39)–(41)
with Ĉ independent of mesh parameters and the material properties αi, βi, α j, and β j

under the assumption

αm ≤Cαn and βm ≤Cβn for {m,n}= {i, j} or {m,n}= { j, i}. (43)

This can be done using Lemma 4 together with an extension theorem for H1 func-
tions on Lipschitz domains. We note that numerical experiments suggest that no
assumptions on subdomain material properties are needed, other than them being
constant in each subdomain, for Ĉ in (41) to be uniformly bounded.

Our main result follows from the estimate in (42).

Theorem 1 (Condition Number Estimate). Under the assumption in (43), the con-
dition number of the BDDC preconditioned operator for this study is bounded by

κ ≤Cω2, (44)

where
ω = max

i
(1+ log(Hi/hi)). (45)

In summary, we have obtained a favorable condition number estimate with less re-
strictive assumptions on the material properties of the subdomains than in previous
studies. Comparing the condition number estimate of Theorem 1 with those in (1)
and (2), we see that the factor of H2

i βi/αi can be removed provided the assumption
in (43) holds. In addition, the logarithmic factor has been reduced from four pow-
ers to two. We note that the estimate in Theorem 1 also holds for FETI-DP due its
spectral equivalence with BDDC.

We note that the algorithm involves a non-standard averaging given by (35). This
averaging requires the solution of Dirichlet problems over the union of each pair of
subdomains sharing a face. The importance of this method of averaging for some
problems is shown in the next section.

4 Numerical Results

In this section, we present some numerical results to verify the theory and also to
provide some additional insights. The domain is a unit cube discretized into smaller
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cubic elements. All the examples are solved to a relative residual tolerance of 10−8

for random right-hand-sides using the conjugate gradient algorithm with BDDC as
the preconditioner. The number of iterations and condition number estimates from
conjugate gradients are under the headings of iter and cond in the tables. We con-
sider three different types of weights for the averaging operator. The first one, des-
ignated SC, is the one based on (35). Unless otherwise specified in the tables, this
is the weighting used. The second type, stiff, is based on a conventional approach
in which the weights are proportional to the entries on the diagonals of subdomain
matrices. The third, card, uses the inverse of the cardinality of an edge, i.e. the recip-
rocal of the number of subdomains sharing the edge, for the weight.

The results in Table 1 are consistent with theory, suggesting condition numbers
that are bounded independently of the number of subdomains, while the results in
Table 2 are consistent with the log(H/h)2 estimate of Theorem 1.

We also consider a checkerboard distribution of material properties in which
(α,β ) for a subdomain is either (α1,β1) or (α2,β2), and note that subdomains with
the same properties only share a subdomain vertex and no degrees of freedom. Re-
sults for 64 cubic subdomains each with H/h = 4 are shown in Table 3. Notice that
for only one choice of material properties in the table do all three types of weighting
lead to small condition numbers, and only the SC approach always gives condition
numbers which are independent of the material properties. We have also investigated
another type of weighting similar to card, but with weights γ , 0 < γ < 1 for faces of
subdomains with properties α1,β1 and 1− γ for faces of subdomains with proper-
ties α2,β2. Regardless of the choice of γ , large condition numbers were observed for
the coefficients of the final row of Table 3. We note also that the choice of material
properties in the final row is not covered by the theory of [12].

In the final example, we consider a cubic mesh of 203 elements that is partitioned
into different numbers of subdomains using the graph partitioner Metis [8]. Although
this example is not covered by our theory because the subdomains have irregular
shapes, the results in Table 4 indicate that the algorithm of this study continues to
perform well. The results in Tables 3 and 4 suggest that the SC weighting of this
study may be necessary in order to effectively solve problems with material property
jumps or with subdomains of irregular shape.

Table 1. Results for N cubic subdomains, each with β = 1 and H/h = 4.

N α = 102 α = 1 α = 10−2

iter (cond) iter (cond) iter (cond)

43 15 (2.70) 14 (2.63) 10 (1.77)
63 16 (2.88) 15 (2.81) 11 (2.05)
83 16 (2.95) 15 (2.87) 12 (2.23)
103 17 (2.98) 16 (2.91) 13 (2.33)



24 Clark R. Dohrmann and Olof B. Widlund

Table 2. Results for 64 cubic subdomains, each with β = 1.

H/h α = 102 α = 1 α = 10−2

iter (cond) iter (cond) iter (cond)

4 15 (2.70) 14 (2.63) 10 (1.77)
6 17 (3.30) 16 (3.21) 11 (2.14)
8 18 (3.77) 16 (3.66) 13 (2.46)
10 19 (4.16) 18 (4.03) 13 (2.72)

Table 3. Checkerboard material property results for 64 cubic subdomains with H/h = 4.

α1 β1 α2 β2 SC stiff card
iter (cond) iter (cond) iter (cond)

1 1 103 1 10 (1.59) 19 (4.57) 196 (1.64e3)
1 1 1 103 11 (1.96) 84 (2.69e2) 109 (4.72e2)
1 1 1 1.01 14 (2.63) 14 (2.63) 14 (2.63)
102 10−2 1 1 6 (1.07) 65 (3.17e2) 74 (1.65e2)

Table 4. Results for 203 elements partitioned into N subdomains using a graph partitioner.
Material properties are constant with α = 1 and β = 1.

N SC stiff card
iter (cond) iter (cond) iter (cond)

60 19 (4.30) 189 (6.31e2) 24 (9.06)
65 19 (4.40) 184 (6.34e2) 29 (1.55e3)
70 18 (3.89) 188 (6.47e2) 23 (7.48)
75 19 (4.16) 176 (6.12e2) 23 (6.49)
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1 Introduction

Some algorithmic aspects of systems of PDEs based simulations can be better clar-
ified by means of symbolic computation techniques. This is very important since
numerical simulations heavily rely on solving systems of PDEs. For the large-scale
problems we deal with in today’s standard applications, it is necessary to rely on
iterative Krylov methods that are scalable (i.e., weakly dependent on the number
of degrees on freedom and number of subdomains) and have limited memory re-
quirements. They are preconditioned by domain decomposition methods, incomplete
factorizations and multigrid preconditioners. These techniques are well understood
and efficient for scalar symmetric equations (e.g., Laplacian, biLaplacian) and to
some extent for non-symmetric equations (e.g., convection-diffusion). But they have
poor performances and lack robustness when used for symmetric systems of PDEs,
and even more so for non-symmetric complex systems (fluid mechanics, porous me-
dia. . . ). As a general rule, the study of iterative solvers for systems of PDEs as op-
posed to scalar PDEs is an underdeveloped subject.

We aim at building new robust and efficient solvers, such as domain decomposi-
tion methods and preconditioners for some linear and well-known systems of PDEs.
In particular, we shall concentrate on Neumann-Neumann and FETI type algorithms
which are very popular for scalar symmetric positive definite second order problems
(see, for instance, [9, 11]), and to some extent to different other problems, like the
advection-diffusion equations [1], plate and shell problems [16] or the Stokes equa-
tions [13]. This work is motivated by the fact that, in some sense, these methods
applied to systems of PDEs (such as Stokes, Oseen, linear elasticity) are less op-
timal than the domain decomposition methods for scalar problems. Indeed, in the
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case of two subdomains consisting of the two half planes, it is well-known that the
Neumann-Neumann preconditioner is an exact preconditioner (the preconditioned
operator is the identity operator) for the Schur complement equation for scalar equa-
tions like the Laplace problem. Unfortunately, this does not hold in the vector case.

In order to achieve this goal, we use algebraic methods developed in construc-
tive algebra, D-modules (differential modules) and symbolic computation such as the
so-called Smith or Jacobson normal forms and Gröbner basis techniques for trans-
forming a linear system of PDEs into a set of independent PDEs. These algebraic and
symbolic methods provide important intrinsic information (e.g., invariants) about the
linear system of PDEs to solve. These build-in properties need to be taken into ac-
count in the design of new numerical methods, which can supersede the usual ones
based on a direct extension of the classical scalar methods to linear systems of PDEs.

By means of these techniques, it is also possible to transform the linear system of
PDEs into a set of decoupled PDEs under certain types of invertible transformations.
One of these techniques is the so-called Smith normal form of the matrix of OD
operators associated with the linear system. This normal form was introduced by H.
J. S. Smith (1826–1883) for matrices with integer entries (see, e.g., [17], Theorem
1.4). The Smith normal form has already been successfully applied to open problems
in the design of Perfectly Matched Layers (PML). The theory of PML for scalar
equations was well-developed and the usage of the Smith normal form allowed to
extend these works to systems of PDEs. In [12], a general approach is proposed and
applied to the particular case of the compressible Euler equations that model aero-
acoustic phenomena and in [2] for shallow-water equations.

For domain decomposition methods, several results have been obtained on com-
pressible Euler equations [7], Stokes and Oseen systems [8] or in [10] where a new
method in the “Smith” spirit has been derived. Previously the computations were
performed heuristically, whereas in this work, we aim at finding a systematic way to
build optimal algorithms for given PDE systems.

Notations. If R is a ring, then Rp×q is the set of p× q matrices with entries in
R and GLp(R) is the group of invertible matrices of Rp×p, namely GLp(R) = {E ∈
Rp×p | ∃F ∈Rp×p : E F =F E = Ip}. An element of GLp(R) is called an unimodular
matrix. A diagonal matrix with elements di’s will be denoted by diag(d1, . . . ,dp). If k
is a field (e.g., k =Q, R, C), then k[x1, . . . ,xn] is the commutative ring of polynomials
in x1, . . . ,xn with coefficients in k. In what follows, k(x1, . . . ,xn) will denote the field
of rational functions in x1, . . . ,xn with coefficients in k. Finally, if r, r′ ∈ R, then r′ |r
means that r′ divides r, i.e., there exists r′′ ∈ R such that r = r′′ r′.

2 Smith Normal Form of Linear Systems of PDEs

We first introduce the concept of Smith normal form of a matrix with polynomial
entries (see, e.g., [17], Theorem 1.4). The Smith normal form is a mathematical
technique which is classically used in module theory, linear algebra, symbolic com-
putation, ordinary differential systems, and control theory. It was first developed to
study matrices with integer entries. But, it was proved to exist for any principal ideal
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domain (namely, a commutative ring R whose ideals can be generated by an element
of R) [15]. Since R = k[s] is a principal ideal domain when k is a field, we have the
following theorem only stated for square matrices.

Theorem 1. Let k be a field, R = k[s], p a positive integer and A ∈ Rp×p. Then, there
exist two matrices E ∈GLp(R) and F ∈ GLp(R) such that

A = E S F,

where S = diag(d1, . . . ,dp) and the di ∈ R satisfying d1 |d2 | · · · |dp. In particular,
we can take di = mi/mi−1, where mi is the greatest common divisor of all the i× i-
minors of A (i.e., the determinants of all i× i-submatrices of A), with the convention
that m0 = 1. The matrix S = diag(d1, . . . ,dp) ∈ Rp×p is called a Smith normal form
of A.

We note that E ∈GLp(R) is equivalent to det(E) is an invertible polynomial, i.e.,
det(E) ∈ k\{0}. Also, in what follows, we shall assume that the di’s are monic poly-
nomials, i.e., their leading coefficients are 1, which will allow us to call the matrix
S= diag(d1, . . . ,dp) the Smith normal form of A. But, the unimodular matrices E and
F are not uniquely defined by A. The proof of Theorem 1 is constructive and gives
an algorithm for computing matrices E , S and F . The computation of Smith normal
forms is available in many computer algebra systems such as Maple, Mathematica,
Magma. . .

Consider now the following model problem in R
d with d = 2,3:

Ld(w) = g in R
d , |w(x)| → 0 for |x| → ∞. (1)

For instance, Ld(w) can represent the Stokes/Oseen/linear elasticity operators in
dimension d. Moreover, if we suppose that the inhomogeneous linear system of PDEs
(1) has constant coefficients, then it can be rewritten as

Ad w = g, (2)

where Ad ∈ Rp×p, R = k[∂x,∂y] (resp., R = k[∂x,∂y,∂z]) for d = 2 (resp., d = 3) and
k is a field.

In what follows, we shall study the domain decomposition problem in which R
d

is divided into subdomains. We assume that the direction normal to the interface
of the subdomains is particularized and denoted by ∂x. If Rx = k(∂y)[∂x] for d =
2 or Rx = k(∂y,∂z)[∂x] for d = 3, then, computing the Smith normal form of the
matrix Ad ∈ Rp×p

x , we obtain Ad = E S F , where S ∈ Rp×p
x is a diagonal matrix, E ∈

GLp(Rx) and F ∈ GLp(Rx). The entries of the matrices E , S, F are polynomials in
∂x, and E and F are unimodular matrices, i.e., det(E), det(F) ∈ k(∂y)\ {0} if d = 2,
or det(E), det(F) ∈ k(∂y,∂z)\ {0} if d = 3. We recall that the matrices E and F are
not unique contrary to S. Using the Smith normal form of Ad , we get:

Ad w = g ⇔ {ws := F w, S ws = E−1 g}. (3)

In other words, (3) is equivalent to the uncoupled linear system:
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S ws = E−1 g. (4)

Since E ∈ GLp(Rx) and F ∈ GLp(Rx), the entries of their inverses are still poly-
nomial in ∂x. Thus, applying E−1 to the right-hand side g of Ad w = g amounts
to taking k-linear combinations of derivatives of g with respect to x. If Rd is split
into two subdomains R−×R

d−1 and R
+×R

d−1, where R
− = {x ∈ R | x < 0} and

R
+ = {x ∈ R | x > 0}, then the application of E−1 and F−1 to a vector can be done

for each subdomain independently. No communication between the subdomains is
necessary.

In conclusion, it is enough to find a domain decomposition algorithm for the
uncoupled system (4) and then transform it back to the original one (2) by means of
the invertible matrix F over Rx. This technique can be applied to any linear system
of PDEs once it is rewritten in a polynomial form. The uncoupled system acts on the
new dependent variables ws, which we shall further call Smith variables since they
are issued from the Smith normal form.

Remark 1. Since the matrix F is used to transform (4) to (2) (see the first equation of
the right-hand side of (3)) and F is not unique, we need to find a matrix F as simple
as possible (e.g., F has minimal degree in ∂x) so that to obtain a final algorithm
whose form can be used for practical computations.

Example 1 Consider the two dimensional elasticity operator defined by E2(u) :=
−μ Δ u− (λ + μ)∇divu. If we consider the commutative polynomial rings R =
Q(λ ,μ)[∂x,∂y], Rx =Q(λ ,μ)(∂y)[∂x] =Q(λ ,μ ,∂y)[∂x] and

A2 =

(
(λ + 2μ)∂ 2

x + μ ∂ 2
y (λ + μ)∂x ∂y

(λ + μ)∂x ∂y μ ∂ 2
x +(λ + 2μ)∂ 2

y

)
∈ R2×2

the matrix of PD operators associated with E2, i.e., E2(u) = A2 u, then the Smith
normal form of A2 ∈ R2×2

x is defined by:

SA2 =

(
1 0
0 Δ2

)
. (5)

The particular form of SA2 shows that, over Rx, the system of PDEs for the linear
elasticity in R

2 is algebraically equivalent to a biharmonic equation.

Example 2 Consider the two dimensional Oseen operator O2(w) = O2(v,q) :=
(cv− ν Δv+ b ·∇v+∇q,∇ · v), where b is the convection velocity. If b = 0, then
we obtain the Stokes operator S2(w) = S2(v,q) := (cv− ν Δv + ∇q,∇ · v). If
R =Q(b1,b2,c,ν)[∂x,∂y], Rx =Q(b1,b2,c,ν)(∂y)[∂x] =Q(b1,b2,c,ν,∂y)[∂x] and

O2 =

⎛
⎝−ν (∂

2
x + ∂ 2

y )+ b1∂x + b2∂y + c 0 ∂x

0 −ν (∂ 2
x + ∂ 2

y )+ b1∂x + b2∂y + c ∂y

∂x ∂y 0

⎞
⎠
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the matrix of PD operators associated with O2, i.e., O2(w) = O2 w, then the Smith
normal form of O2 ∈ R3×3

x is defined by:

SO2 =

⎛
⎝1 0 0

0 1 0
0 0 Δ L2

⎞
⎠ , L2 = c−ν Δ +b ·∇. (6)

From the form of SO2 we can deduce that the two-dimensional Oseen equations can
be mainly characterized by the scalar fourth order PD operator Δ L2. This is not
surprising since the stream function formulation of the Oseen equations for d = 2
gives the same PDE for the stream function.

Remark 2. The above applications of Smith normal forms suggest that one should
design an optimal domain decomposition method for the biharmonic operator Δ2

(resp., L2Δ ) in the case of linear elasticity (resp., the Oseen/Stokes equations) for
the two-dimensional problems, and then transform it back to the original system.

3 An Optimal Algorithm for the Biharmonic Operator

We give here an example of Neumann-Neumann methods in its iterative version
for Laplace and biLaplace equations. For simplicity, consider a decomposition of
the domain Ω = R

2 into two half planes Ω1 = R
− ×R and Ω2 = R

+×R. Let the
interface {0}×R be denoted by Γ and (ni)i=1,2 be the outward normal of (Ωi)i=1,2.
We consider the following problem:

−Δu = f in R
2, |u(x)| → 0 for |x| → ∞. (7)

and the following Neumann-Neumann algorithm applied to problem (7):
Let un

Γ be the interface solution at iteration n. We obtain un+1
Γ from un

Γ by the follow-
ing iterative procedure

{−Δui,n = f , in Ωi,
ui,n = un

Γ , on Γ ,

⎧⎨
⎩
−Δ ũi,n = 0, in Ωi,
∂ ũi,n

∂ni
= −1

2

(
∂u1,n

∂n1
+
∂u2,n

∂n2

)
, on Γ , (8)

and then un+1
Γ = un

Γ + 1
2

(
ũ1,n + ũ2,n

)
.

This algorithm is optimal in the sense that it converges in two iterations.
Since the biharmonic operator seems to play a key role in the design of a new

algorithm for both Stokes and elasticity problem in two dimensions, we need to build
an optimal algorithm for it. We consider the following problem:
Find φ : R2 →R such that:

Δ2φ = g in R
2, |φ(x)| → 0 for |x| → ∞. (9)

and the following “Neumann-Neumann” type algorithm applied to (9):
Let (φn

Γ ,Dφ
n
Γ ) be the interface solution at iteration n (suppose also that φ0

Γ =
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φ0|Γ , Dφ0
Γ = (Δφ0)Γ ). We obtain (φn+1

Γ ,Dφn
Γ ) from (φn

Γ ,Dφ
n
Γ ) by the following iter-

ative procedure

⎧⎨
⎩
−Δ2φ i,n = f , in Ωi,
φ i,n = φn

Γ , on Γ ,
Δφ i,n = Dφn

Γ , on Γ ,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δ2φ̃ i,n = 0, in Ωi,
∂ φ̃ i,n

∂ni
= −1

2

(
∂φ1,n

∂n1
+
∂φ2,n

∂n2

)
, on Γ ,

∂Δφ̃ i,n

∂ni
= −1

2

(
∂Δφ1,n

∂n1
+
∂Δφ2,n

∂n2

)
, on Γ ,

(10)

and then φn+1
Γ = φn

Γ + 1
2

(
φ̃1,n + φ̃2,n

)
, Dφn+1

Γ = Dφn
Γ + 1

2

(
Δ̃φ1,n + Δ̃φ2,n

)
.

This is a generalization of the Neumann-Neumann algorithm for the Δ operator
and is also optimal (the proof can be found in [8]).

Now, in the case of the two dimensional linear elasticity, φ represents the sec-
ond component of the vector of Smith variables, that is, φ = (ws)2 = (Fu)2, where
u = (u,v) is the displacement field. Hence, we need to replace φ with (Fu)2 into the
algorithm for the biLaplacian, and then simplify it using algebraically admissible op-
erations. Thus, one can obtain an optimal algorithm for the Stokes equations or linear
elasticity depending on the form of F . From here comes the necessity of choosing
in a proper way the matrix F (which is not unique), used to define the Smith normal
form, in order to obtain a “good” algorithm for the systems of PDEs from the optimal
one applied to the biharmonic operator. In [7] and [8], the computation of the Smith
normal forms for the Euler equations and the Stokes equations was done by hand or
using the Maple command Smith. Surprisingly, the corresponding matrices F have
provided good algorithms for the Euler equations and the Stokes equations even if
the approach was entirely heuristic.

4 Relevant Smith Variables: A Completion Problem

The efficiency of our algorithms heavily relies on the simplicity of the Smith vari-
ables, that is on the entries of the unimodular matrix F used to compute the Smith
normal form of the matrix A. In this section, within a constructive algebraic analysis
approach, we develop a method for constructing many possible Smith variables. Tak-
ing into account physical aspects, the user can then choose the simplest one among
them. We are going to show that the problem of finding Smith variables can be re-
duced to a completion problem. First of all, we very briefly introduce some notions
of module theory [15].

Given a ring R (e.g., R = k[∂1, . . . ,∂d ], where k is a field (e.g., Q, R, C)), the
definition of a R-module M is similar to the one of a vector space but where the
scalars are taken in the ring R and not in a field as for vector spaces. If A ∈ Rp×p,
then the kernel of the R-linear map (R-homomorphism) .A : R1×p −→ R1×p, defined
by (.A)(r) = rA, is the R-module defined by:

kerR(.A) = {r ∈ R1×p | rA = 0}.
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The image imR(.A) of .A, simply denoted by R1×p A, is the R-module defined by
all the R-linear combinations of the rows of A. The cokernel cokerR(.A) of .A is
the factor R-module defined by cokerR(.A) = R1×p/(R1×p A). To simplify the no-
tation, we shall denote this module by M. M is nothing more than the R-module
of the row vectors of R1×p modulo the R-linear combinations of rows of A. Let
R1 = k(∂2, . . . ,∂d)[∂1], Ri = k(∂1, . . . ,∂i−1,∂i+1, . . . ,∂d)[∂i], i = 2, . . . ,d − 1, and
Rd = k(∂1, . . . ,∂d−1)[∂d ] be the polynomial rings in ∂i with coefficients in the field
of rational functions in all other PD operators.

Since the R-module M = R1×p/(R1×p A) plays a fundamental role in what fol-
lows, let us describe it in terms of generators and relations. Let {fj} j=1,...,p be the
standard basis of R1×p, namely fj is the row vector of R1×p defined by 1 at the jth
position and 0 elsewhere, and m j the residue class of fj in M. Then, {m j} j=1,...,p

is a family of generators of the R-module M, i.e., for any m ∈ M, then there ex-
ists r = (r1, . . . ,rp) ∈ R1×p such that m = ∑p

j=1 r j m j [3]. The family of generators
{m j} j=1,...,p of M satisfies the relations ∑p

j=1 Ai j m j = 0 for all i = 1, . . . , p [3]. For
more details, see [3, 15].

Let E, F ∈ GLp(Ri) be two unimodular matrices such that A = E S F , where
S = diag(1, . . . ,1,dr+1, . . . ,dq) is the Smith normal form of A. Moreover, let us split
F ∈ GLp(Ri) into two parts row-wise, i.e., F = (FT

1 FT
2 )T , where F1 ∈ Rr×p

i , F2 ∈
R(p−r)×p

i , and r is the number of ones in S. Then:

A = E S F ⇔
(

F1

S2 F2

)
= E−1 A, S2 = diag(dr+1, . . . ,dp). (11)

Cleaning the denominators of the entries of S2 (resp., F2), we can assume without
loss of generality that the d j’s (resp., the entries of F2) belong to R. Then, (11) shows

that the jth row of F2 must be an element of the Ri-module Mi = R1×p
i /(R1×p

i A) an-
nihilated by d j. Consequently, the possible F2’s can be found by computing a family
of generators of the Ri-modules annMi(d j) = {m∈Mi | d j m = 0} for j = r+1, . . . , p.
These Ri-modules can be computed by means of Gröbner basis techniques (see, e.g.,

[6]). Hence, we get S2 F2 = G2 A for some G2 ∈ R(p−r)×p
i . Then, for each choice for

F2, we are reduced to the following completion problem:

Find F1 ∈ Rr×p
i such that F = (FT

1 FT
2 )T ∈ GLp(Ri) and F1 = G1 A

for some G1 ∈ Rr×p
i .

(12)

Example 3 Let R = Q(λ ,μ)[∂x,∂y,∂z] be the commutative polynomial ring of PD
operators in ∂x, ∂y and ∂z with coefficients in the field Q(λ ,μ),

A =

⎛
⎝−(λ + μ)∂ 2

x − μ Δ −(λ + μ)∂x ∂y −(λ + μ)∂x ∂z

−(λ + μ)∂x ∂y −(λ + μ)∂ 2
y − μ Δ −(λ + μ)∂y ∂z

−(λ + μ)∂x ∂z −(λ + μ)∂y ∂z −(λ + μ)∂ 2
z − μ Δ

⎞
⎠ ∈ R3×3

the matrix of PD operators defining the elastostatic equations in R
3, where Δ = ∂ 2

x +
∂ 2

y + ∂ 2
z , and the associated R-module M = R1×3/(R1×3 A). The Smith normal form
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of A with respect to x is given by S = diag(1,Δ ,Δ2). With the above notations, we get
r = 1 and S2 = diag(Δ ,Δ2)∈ R2×2. Let Rx =Q(λ ,μ)(∂y,∂z)[∂x], F1 ∈ R1×3

x and F2 ∈
R2×3

x . Then, the first (resp. second) row of F2 must be an element of the Rx-module
Mx = R1×3

x /(R1×3
x A) annihilated by Δ ∈ R (resp. Δ2 ∈ R). Using the OREMODULES

package [4], we find that families of generators of annMx(Δ) and annMx (Δ2) are
respectively defined by the residue classes of the rows of the following matrices in
Mx:

AΔ =

⎛
⎜⎜⎝

0 −∂z ∂y

∂z 0 −∂x

−∂y ∂x 0
∂x ∂y ∂z

⎞
⎟⎟⎠ , AΔ2 = I3.

That simply means that a family of generators of annMx(Δ) is given by the divergence
and the curl of the displacement field and for annMx(Δ2) by the components of the
displacement fields. Now, the first (resp., second) row of F2 must be a Rx-linear
combination of the rows of AΔ (resp., AΔ2). We thus have several choices and for
each of them, we are reduced to a completion problem (12). For instance, choosing
the first row of AΔ (resp., the third row of AΔ2 ) as first (resp., second) row of F2,
namely

F2 =

(
0 −∂z ∂y

0 0 1

)
,

we then have to find a row vector F1 ∈ R1×3
x such that F1 = G1 A for some G1 ∈ R1×3

x
and F = (FT

1 FT
2 )T ∈ GL3(Rx). If such a row vector F1 exists, then the matrix

F = (FT
1 FT

2 )T provides a good choice of Smith variables.

We first give two necessary conditions for a choice of F2 to provide a solution of the
completion problem (straightforward from the relation A = E S F):

Lemma 1. With the above notations, given F2 ∈ R(p−r)×p, necessary conditions for
the solvability of the completion problem (12) are:

1. F2 admits a right inverse over Ri, i.e. ∃ S2 ∈ Rp×(p−r)
i : F2 S2 = Ip−r.

2. There exists a matrix G2 ∈ R(p−r)×p
i such that S2 F2 = G2 A.

Since Ri is a principal ideal domain (namely, every ideal of Ri can be generated
by an element of Ri), Condition 1 of Lemma 1 is equivalent to the condition that

the Ri-module cokerRi(.F2) = R1×p
i /(R1×(p−r)

i F2) is free of rank r, i.e. cokerRi(.F2)
admits a basis of cardinality r [3, 15]. It is equivalent to the existence of two matrices

Q2 ∈ Rp×r
i and T2 ∈ Rr×p

i such that kerRi(.Q2) = R1×(p−r)
i F2 and T2 Q2 = Ir [3]. Such

a matrix Q2 is called an injective parametrization of cokerRi(.F2). Matrices Q2 and
T2 can be computed by Gröbner basis techniques [3]. The corresponding algorithms
are implemented in the OREMODULES package [4]. The next theorem characterizes
the solvability of the completion problem (12).
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Theorem 2. Let F2 ∈ R(p−r)×p admit a right inverse over Ri and satisfy S2 F2 = G2 A

for some G2 ∈ R(p−r)×p
i . If Q2 is an injective parametrization of the free Ri-module

cokerRi(.F2) of rank r, and T2 ∈ Rr×p
i a left inverse of Q2, then a necessary and

sufficient condition for the existence of a solution of the completion problem (12) is

the existence of two matrices H ∈Rr×(p−r)
i and G1 ∈Rr×p

i such that T2 =G1 A−H F2.
Then, F1 = T2 +H F2 = G1 A is a solution of the completion problem (12), i.e., F =
((T2+H F2)

T FT
2 )T ∈GLp(Ri) is such that A=E S F for some E ∈GLp(Ri), where

S is the Smith normal form of A.

From the explanations above, we deduce the following algorithm that, given
A, S2 = diag(dr+1, . . . ,dp), and a choice for F2 computed from the calculations of
annMi(d j) for d j ∈ R, find (if it exists) a completion of F2. The following algorithm

Input: A ∈ Rp×p, S2 ∈ R(p−r)×(p−r) and F2 ∈ R(p−r)×p.
Output: A completion F = (FT

1 FT
2 )T of F2 or “No completion exists”.

1. Compute a right inverse of F2 over Ri;
2. If no right inverse exists, then RETURN “No completion exists”, Else

(a) Factorize S2 F2 with respect to A over Ri;
(b) If no factorization exists, then RETURN “No completion exists”, Else

i. Compute an injective parametrization Q2 of cokerRi(.F2);
ii. Compute a left inverse T2 of Q2 over Ri;

iii. Factorize T2 with respect to (FT
2 AT )T over Ri;

iv. If no factorization exists, then RETURN “No completion exists”, Else

note T2 = (−H G1)

(
F2

A

)
and RETURN F =

(
T2 +H F2

F2

)
.

was implemented in Maple based on the OREMODULES package.

Example 4 Consider again the elastostatic equations introduced in Example 3. For
the choice of F2 given at the end of Example 3, our implementation succeeds in
finding a completion and we get the following completion of F2:

F =

⎛
⎜⎝

1 − ∂x ∂y

∂ 2
y +∂ 2

z
− ∂x ((λ+2μ) (∂ 2

x +∂ 2
y )+(2λ+3μ)∂ 2

z )

(λ+μ)∂z (∂ 2
y +∂ 2

z )

0 −∂z ∂y

0 0 1

⎞
⎟⎠ ∈GL3(Rx).

For more details and explicit computations, we refer the reader to [5].

5 Reduction of the Interface Conditions

In the algorithms presented in the previous sections, we have equations in the do-
mains Ωi and interface conditions on Γ obtained heuristically. We need to find an
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automatic way to reduce the interface conditions with respect to the equations in the
domains. In this section, we show how symbolic computations can be used to per-
form such reductions. The naïve idea consists in gathering all equations and compute
a Gröbner basis [6]. However, one has to keep in mind that the independent variables
do not play the same role. More precisely, the interface conditions cannot be dif-
ferentiated with respect to x since the border of the interface is defined by x = 0.
Consequently, we have developed and implemented an alternative method in Maple
using the OREMODULES package, which can be sketched as follows:

1. Compute a Gröbner basis of the polynomial equations inside the domain for a
relevant monomial order;

2. Compute the normal forms of the interface conditions with respect to the latter
Gröbner basis;

3. Write these normal forms in the jet notations with respect to the independent
variable x, i.e., rewrite the derivatives ∂ i

x yk of the dependent variables yk as new
indeterminates yk,i;

4. Perform linear algebra manipulations to simplify the normal forms.

For more details and explicit computations, we refer the reader to [5].

6 Some Optimal Algorithms

After performing the completion and the reduction of the interface conditions, we
can give examples of optimal algorithms (elasticity and Stokes equations).

Example 5 Consider the elasticity operator:

Ed u =− div σ (u), σ(u) = μ (∇u+(∇u)T )+λ div u Id .

If d = 2, then the completion algorithm gives two possible choices for F :

F =

(
− ∂x (μ ∂ 2

x −λ ∂ 2
y )

(λ+μ)∂ 3
y

1

1 0

)
, F =

(
1 − (λ+μ)∂x ((3μ+2λ )∂ 2

y +(2μ+λ )∂ 2
x )

∂ 3
y

0 1

)
. (13)

By replacing φ into the Neumann-Neumann algorithm for the biLaplacian by (Fu)2

and re-writing the interface conditions, using the equations inside the domain like in
[8], we get two different algorithms for the elasticity system. Note that, in the first
case of (13), φ = u, and, in the second one, φ = v (where u = (u,v)). Below, we shall
write in detail the algorithm in the second case. To simplify the writing, we denote
by uτ = u · τ , un = u ·n, σnn(u) = (σ(u) ·n) ·n, σnτ(u) = (σ(u) ·n) · τ .

Let (un
Γ ,σ

n
Γ ) be the interface solution at iteration n (suppose also that u0

Γ = (u0
τ)|Γ ,

σ0
Γ = (σsnn(u0))|Γ ). We obtain (un+1

Γ ,σn
Γ ) from (un

Γ ,σ
n
Γ ) by the following iterative

procedure
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⎧⎨
⎩

E2(ui,n) = f , in Ωi,

u1,n
τi = un

Γ , on Γ ,
σnini(u

i,n) = σn
Γ , on Γ ,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E2(ũi,n) = 0, in Ωi,

ũi,n
τi = −1

2

(
u1,n

n1
+u2,n

n2

)
, on Γ ,

σniτi(ũ
i,n) = −1

2

(
σn1τ1(u

1,n)+σn2τ2(u
2,n)

)
,

on Γ ,

(14)

and un+1
Γ = un

Γ + 1
2

(
ũ1,n
τ1 + ũ2,n

τ2

)
, σn+1

Γ = σn
Γ + 1

2

(
σn1n1(ũ

1,n)+σn2n2(ũ
2,n)

)
.

Remark 3. We found an algorithm with a mechanical meaning: Find the tangential
part of the normal stress and the normal displacement at the interface so that the nor-
mal part of the normal stress and the tangential displacement on the interface match.
This is very similar to the original Neumann-Neumann algorithm, which means that
the implementation effort of the new algorithm from an existing Neumann-Neumann
is negligible (the same type of quantities – displacement fields and efforts – are im-
posed at the interfaces), except that the new algorithm requires the knowledge of
some geometric quantities, such as normal and tangential vectors. Note also that,
with the adjustment of the definition of tangential quantities for d = 3, the algorithm
is the same, and is also similar to the results in [8].

7 Conclusion

All algorithms and interface conditions are derived for problems posed on the whole
space, since for the time being, this is the only way to treat from the algebraic point
of view these problems. The effect of the boundary condition on bounded domains
cannot be quantified with the same tools. All the algorithms are designed in the
PDE level and it is very important to choose the right discrete framework in order
to preserve the optimal properties. For example, in the case of linear elasticity a
good candidate would be the TDNNS finite elements that can be found in [14]. The
implementation and the impact of the discretizations on the algorithms is an ongoing
work.
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Scalable Domain Decomposition Algorithms for
Contact Problems: Theory, Numerical Experiments,
and Real World Problems
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Summary. We review our results related to the development of theoretically supported scal-
able algorithms for the solution of large scale contact problems of elasticity. The algorithms
combine the Total FETI/BETI based domain decomposition method adapted to the solution of
2D and 3D multibody contact problems of elasticity, both frictionless and with friction, with
our in a sense optimal algorithms for the solution of resulting quadratic programming and
QPQC problems. Rather surprisingly, the theoretical results are qualitatively the same as the
classical results on scalability of FETI/BETI for linear elliptic problems. The efficiency of the
method is demonstrated by results of parallel numerical experiments for contact problems of
linear elasticity discretized by more than 11 million variables in 3D and 40 million variables
in 2D.

1 Introduction

Contact problems are in the heart of mechanical engineering. Solving large multi-
body contact problems of linear elastostatics is complicated by the inequality bound-
ary conditions, which make them strongly non-linear, and, if the system of bodies
includes “floating” bodies, by the positive semi-definite stiffness matrices resulting
from the discretization of such bodies. Observing that the classical Dirichlet and
Neumann boundary conditions are known only after the solution has been found, it
is natural to assume the solution of contact problems to be more costly than the so-
lution of a related linear problem with the classical boundary conditions. Since the
cost of the solution of any problem increases at least linearly with the number of the
unknowns, it follows that the development of a scalable algorithm for contact prob-
lems is a challenging task which requires to identify the contact interface in a sense
for free.

The first promising results, at least for the frictionless problems, were obtained
by the researchers who tried to modify the methods that were known to be scalable
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for linear problems, in particular multigrid and domain decomposition. Experimental
evidence of scalability was achieved with the monotonic multigrid (see [11] and the
references therein). In spite of these nice results, the necessity to keep the coarse
grid away from the contact interface prevented the authors to prove the optimality
results similar to the classical results for linear problems. However, such result was
obtained by Schöberl who has developed an approximate variant of the projection
method using a domain decomposition preconditioner and a linear multigrid solver
on the interior nodes. An experimental evidence of scalability for the frictionless
problems was presented by Avery and Farhat [1]. The point of this paper is to report
our optimality results for contact problems of linear elasticity, both frictionless and
with friction.

The results are based on a combination of several ingredients. The first one is the
application of the TFETI (Total FETI) [8] or TBETI (Total BETI) [14] methods, vari-
ants of the duality based domain decomposition methods introduced by Farhat and
Roux [9] (finite elements) and Langer and Steinbach [13] (boundary elements). Since
the TFETI/TBETI methods treat all the subdomains as “floating”, the kernels of the
stiffness matrices of the subdomains are a priori known. This makes the method very
flexible and simplifies implementation of the multiplication of a vector by a gener-
alized inverse of the stiffness matrix. As any duality based method, TFETI/TBETI
reduces general inequality constraints to special separable ones.

The second ingredient is the “natural coarse grid preconditioning” introduced for
linear problems by Farhat, Mandel, and Roux [10] and Langer and Steinbach [13].
This preconditioned cost function has the spectrum of the Hessian confined to a pos-
itive interval independent of the discretization parameter h and the decomposition
parameter H provided the ratio H/h is uniformly bounded. Since our precondition-
ing uses a projector to the subspace with the solution, it follows that its application
to the solution of variational inequalities does not turn the separable constraints into
general constraints and can be interpreted as a variant of the multigrid method with
the coarse grid on the interface. This unique feature, as compared with the standard
multigrid preconditioning for the primal problem, reduces the development of scal-
able algorithms for the solution of variational inequalities to the solution of bound
and equality constrained quadratic programming or QPQC (quadratic programming
with quadratic constraints) problems with the rate of convergence in terms of bounds
on the spectrum.

The resulting QP and QPQC problems, arising in the solution of the frictionless
contact problems and the problems with the Tresca friction (an auxiliary problem for
Coulomb friction), respectively, are solved by our algorithms with the rate of conver-
gence in terms of the bounds on the spectrum, the third ingredient of our development
(see [7]). Putting the three ingredients together with a few simple observations, we
get theoretically supported algorithms for contact problems. The theoretical results
are illustrated by the results of numerical experiments which show that both numeri-
cal and parallel scalability can be observed in practice. Finally we report the solutions
of some real world problems. More details can be found in Dostál et al. [3–5], and
Sadowská et al. [14].



Scalable Domain Decomposition Algorithms for Contact Problems 41

2 Dual Formulation of Frictionless Contact Problems

To simplify our presentation, let us assume that the bodies are assembled from Ns

subdomains Ω (s) which are “glued” together by suitable equality constraints. After
the standard finite element discretization, the equilibrium of the system is described
as a solution u of the problem

minJ(v) subject to
Ns

∑
s=1

B(s)
N v(s) ≤ gN and

Ns

∑
s=1

B(s)
E v(s) = o, (1)

where o denotes the zero vector and J(v) is the energy functional defined by

J(v) =
Ns

∑
s=1

1
2

v(s)
T

K(s)v(s)− v(s)
T

f (s),

v(s) and f (s) denote the admissible subdomain displacements and the subdomain vec-

tor of prescribed forces, K(s) is the subdomain stiffness matrix, B(s)
N ∈ R

mC×n and

B(s)
E ∈ R

mE×n are the blocks of the matrix B =
[
BT

N ,B
T
E

]T
that correspond to Ω (s),

and gN is a vector collecting the normal gaps between the bodies in the reference
configuration. The matrix BN and the vector gN arise from the nodal or mortar de-
scription of the non-penetration conditions, while BE describes the “gluing” of the
subdomains into the bodies and the Dirichlet boundary conditions. Recall that if the
problem is discretized by the TBETI method, then we get the potential energy mini-
mization problem of the very same structure as (1), where all the objects correspond
only to the boundariesΓ (s) ofΩ (s) except the term with the prescribed volume forces
(if there is some); see [14] for more details. By contrast with TFETI, when the ma-
trices K(s) are sparse, in the case of TBETI these are fully populated.

To simplify the presentation of basic ideas, we can describe the equilibrium in
terms of the global stiffness matrix K, the vector of global displacements u, and the
vector of global loads f . In the TFETI/TBETI methods, we have

K = diag(K(1), . . . ,K(Ns)), u =

⎡
⎢⎣

u(1)

...
u(Ns)

⎤
⎥⎦ , and f =

⎡
⎢⎣

f (1)

...
f (Ns)

⎤
⎥⎦ ,

where K(s), s = 1, . . . ,Ns, is a positive semidefinite matrix. The energy function reads

j(v) =
1
2

vT Kv− f T v

and the vector of global displacements u solves

min j(v) s.t. BNv≤ gN and BEv = o.

Alternatively, the global equilibrium may be described by the Karush–Kuhn–
Tucker conditions (see, e.g., [6])
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Ku = f −BTλ , λN ≥ o, λ T (Bu−g) = o, (2)

where g =
[
gT

N ,o
T
]T

and λ =
[
λ T

N ,λ T
E

]T
denotes the vector of Lagrange multipliers

which may be interpreted as the reaction forces. The problem (2) differs from the
linear problem by the non-negativity constraint on the components of reaction forces
λN and by the complementarity condition.

We can use the first equation of (2) to eliminate the displacements. We shall get
the problem to find

minΘ(λ ) s.t. λN ≥ o and RT ( f −BTλ ) = o, (3)

where

Θ(λ ) =
1
2
λ T BK+BTλ −λ T (BK+ f −g)+

1
2

f K+ f , (4)

K+ denotes a generalized inverse that satisfies KK+K = K, and R denotes the full
rank matrix whose columns span the kernel of K. The action of K+ can be eval-
uated at the cost comparable with that of Cholesky’s decomposition applied to the
regularized K (see [2]). Denoting F = ‖BK+BT‖,

F = F−1BK+BT , e = SRT f , G = SRT BT , d̃ = F−1(BK† f −g),

with S denoting a nonsingular matrix that defines the orthonormalization of the rows
of RT BT , we can modify (3) to

min θ̃(λ ) s.t. λN ≥ 0 and Gλ = e, (5)

where

θ̃ (λ ) =
1
2
λ T Fλ −λ T d̃. (6)

Our next step is to replace the equality constraint in (5) by a homogeneous one.
To this end, it is enough to find any λ̃ such that

Gλ̃ = e,

denote λ = μ+ λ̃ , and substitute into (5). We get

θ̃ (λ ) =
1
2
μT Fμ− μT (d̃−Fλ̃ )+ const.

After returning to the old notation, problem (5) is reduced to

min
1
2
λ T Fλ −λ T d s.t. Gλ = o and λN ≥ �N (7)

with � = −λ̃ and d = d̃−Fλ̃ . Since G has orthonormal rows, we can use the least
square solution

λ̃ = GT e. (8)
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3 Dual Formulation of Contact Problems with Tresca Friction

If the Tresca friction is prescribed on the contact interface, then the equilibrium of
the system is described as a solution u of the problem

minJT (v) subject to
Ns

∑
s=1

B(s)
N v(s) ≤ gN and

Ns

∑
s=1

B(s)
E v(s) = o, (9)

where JT (v) is the energy functional defined by

JT (v) = J(v)+ j(v), j(v) =
mC

∑
i=1
Ψi‖Tiu‖,

Ψi denotes an a priori defined slip bound at node i, and Tiu denotes the jump of the
tangential displacement due to the displacement u. Using the standard procedure to
modify the non-differentiable term j (see [3, 5]), we get

j(v) =
mC

∑
i=1
Ψi‖Tiu‖=

mC

∑
i=1

max
‖τi‖≤Ψi

τT
i Tiu,

where τi can be considered as Lagrange multipliers. We assume that BN , BE , and T
are full rank matrices.

Let d denote the spatial dimension and let us introduce the Lagrangian with
three types of Lagrange multipliers, namely λN ∈ R

mC associated with the non-
interpenetration condition, λE ∈ R

mE associated with the “gluing” and prescribed
displacements, and

τ = [τT
1 ,τ

T
2 , . . . ,τ

T
mC

]T ∈R
(d−1)mC

which regularizes the non-differentiability. The Lagrangian associated with problem
(1) reads

L(u,λN ,λE ,τ) = J(u)+ τT Tu+λ T
N (BNu− cN)+λ T

E (BEu− cE). (10)

Using the convexity of the cost function and constraints, we can use the classical
duality theory [6] to reformulate problem (9) to get

min
u

sup
λE∈RmE , λN≥o
‖τi‖≤Ψi , i=1,...,mC

L(u,λN ,λE ,τ) = max
λE∈RmE , λN≥o
‖τi‖≤Ψi , i=1,...,mC

min
u

L(u,λN ,λE ,τ).

To simplify the notation, we denote

λ =

⎡
⎣ λE

λN

τ

⎤
⎦ , B =

⎡
⎣BE

BN

T

⎤
⎦ , c =

⎡
⎣ cE

cN

o

⎤
⎦ ,

and
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Λ(Ψ ) =
{
(λ T

E ,λ T
N ,τT )T ∈R

mE+dmC : λN ≥ o,‖τi‖ ≤Ψi, i = 1, . . . ,mC
}
,

so that we can write the Lagrangian briefly as

L(u,λ ) =
1
2

uT Ku− f T u+λ T (Bu− c)

and problem (9) is equivalent to the saddle point problem

L(û, λ̂ ) = max
λ∈Λ(Ψ )

min
u

L(u,λ ). (11)

Similarly to the frictionless case, we eliminate the primal variables from (11) and
carry out the homogenization to reduce the minimization problem to

min
1
2
λ T Fλ −λ T d s.t. Gλ = o and λ ∈Λ(Ψ ) (12)

with the notation of Sect. 2. Notice that we minimize exactly the same type of the cost
function as in the frictionless case, but with some additional quadratic constraints.

4 Preconditioning by Projector

Our final step is based on the observation that both the frictionless contact problem
and the contact problem with Tresca friction are equivalent to

minθ (λ ) s.t. λ ∈Ω , (13)

where

θ (λ ) =
1
2
λ T (PFP+ρQ)λ −λ T P d, Q = GT (GGT )−1G, P = I−Q,

ρ > 0, and Ω = {λ : Gλ = o and λN ≥ o} (without friction) or Ω = {λ : Gλ =o
and λ ∈ Λ(Ψ )} (Tresca). A good choice of the regularization parameter is given
by

ρ = ‖PFP‖,
as this is the largest value for which

‖PFP‖ ≥ ‖PFP+ρQ‖.
Problem (13) turns out to be a suitable starting point for development of an ef-

ficient algorithm for variational inequalities due to the following classical estimates
[10] of the extreme eigenvalues.

Theorem 1. If the decompositions and the discretizations of given contact problems
are sufficiently regular, then there are constants C1 > 0 and C2 > 0 independent of
the discretization parameter h and the decomposition parameter H such that

C1
h
H
≤ λmin(PFP|ImP) and λmax(PFP|ImP) = ‖PFP‖ ≤ C2, (14)

where λmin and λmax denote the extremal eigenvalues of the corresponding matrices.
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5 Optimality

Theorem 1 states that if we fix the regularization parameter ρ and keep H/h uni-
formly bounded, then problem (13) resulting from the application of various dis-
cretizations and decompositions has the spectrum of the Hessian matrices confined
to a positive interval. It follows that to develop a scalable algorithm for the contact
problems, it is enough to find an algorithm that is able to find an approximate so-
lution of (13) in a number of matrix–vector multiplications uniformly bounded in
terms of bounds on the spectrum of the cost function.

Here we propose to use SMALSE (semi-monotonic augmented Lagrangian
method for separable and equality constraints), our variant of the augmented La-
grangian method [7]. SMALSE enforces the equality constraints by the Lagrange
multipliers generated in the outer loop, while the auxiliary QPQC problems with sep-
arable constraints are solved approximately in the inner loop by the MPGP algorithm
proposed by Dostál and Kozubek [7]. MPGP is an active set based algorithm which
uses the conjugate gradient method to explore the current face, the fixed steplength
gradient projection to change the active set, and the adaptive precision control for
the solution of auxiliary linear problems. The unique feature of SMALSE with the
inner loop implemented by MPGP when used to (13) is the bound on the number of
iterations whose cost is proportional to the number of variables, so that it can return
an approximate solution for the cost proportional to the number of variables. It fol-
lows that SMALSE/MPGP is a scalable algorithm for the solution of (13) provided
the cost of decomposition of K and application of the projectors P and Q is not too
large.

Theorem 2. If the decompositions and the discretizations of a given contact prob-
lem are sufficiently regular, then there is a constant C > 0 independent of the dis-
cretization parameter h and the decomposition parameter H such that the algorithm
SMALSE/MPGP (or SMALBE/MPRGP for the frictionless problems) with fixed pa-
rameters specified in [7] can find the solution of (13) in a number of iterations
bounded by C provided the initial approximation satisfies

‖λ 0‖ ≤ c‖Pd‖,
where c > 0 is an a priori chosen constant.

6 Numerical Experiments

The algorithms reported in this paper were implemented into our MatSol software
[12] and tested with the aim to verify their optimality and capability to solve the real
world problems.

6.1 Scalability of TFETI: 2D Cantilever Beams with Tresca Friction

We first tested the scalability on a 2D problem of Fig. 1 with varying discretiza-
tions and decompositions using structured grids. We kept the ratio H/h of the
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decomposition and the discretization parameters approximately constant so that the
assumptions of Theorem 1 were satisfied.

The results of computations carried out to the relative precision 10−4 are in
Table 1. We can observe that the number of matrix–vector multiplications varies only
mildly with the increasing dimension of the problem in agreement with the theory.
We conclude that the scalability can be observed in practice.

Fig. 1. Geometry of 2D cantilever
beams

Fig. 2. Geometry of 3D cantilever beams

Table 1. Numerical scalability of TFETI: 2D cantilever beams.

Number of subdomains 1936 4096 7744
Number of CPUs 48 48 48
Primal variables 10,071,072 21,307,392 40,284,288
Dual variables 384,473 817,793 1,551,089
Null space dimension 5808 12,288 23,232
SMALSE-M iterations 8 8 8
Hessian multiplications 119 134 180
Solution time [s] 839 1665 7825

6.2 Scalability of TFETI/TBETI: 3D Cantilever Beams with Tresca Friction

The second problem was a 3D alternative to the previous example (see Fig. 2). The
results of computations carried out for both TFETI and TBETI methods are in Ta-
bles 2 and 3, respectively. We can see that the number of matrix–vector multiplica-
tions again varies only mildly with the increasing problem size as predicted by the
theory.
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Table 2. Numerical scalability of TFETI: 3D cantilever beams.

Number of subdomains 108 500 1372 2916
Number of CPUs 48 48 48 48
Primal variables 431,244 1,996,500 5,478,396 11,643,588
Dual variables 88,601 444,927 1,261,493 2,728,955
Null space dimension 648 3000 8232 17,496
SMALSE-M iterations 3 4 4 4
Hessian multiplications 78 97 93 119
Solution time [s] 60 374 1663 7745

Table 3. Numerical scalability of TBETI: 3D cantilever beams.

Number of subdomains 108 500 1372 2916
Number of CPUs 48 48 48 48
Primal variables 195,045 903,000 2,477,830 5,266,300
Dual variables 88,601 444,927 1,261,493 2,728,955
Null space dimension 648 3000 8232 17,496
SMALSE-M iterations 7 8 9 9
Hessian multiplications 160 161 160 260
Solution time [s] 46 301 2211 7949

6.3 Applications of TFETI/TBETI to Real World Problems

We have also tested our algorithms on real world problems. First we consider the
analysis of the stress in the roller bearings of Fig. 3. The problem is difficult because
it consists of 73 bodies in mutual contact and only one is fixed in space. The solution
of the problem discretized by 2,730,000/459,800 primal/dual variables and decom-
posed into 700 subdomains required 4,270 matrix–vector multiplications. The von
Mises stress distribution is in Fig. 3.

Second we consider the analysis of the yielding clamp connection of steel arched
supports depicted in Fig. 4. This type of construction is used to support the min-
ing openings. It is a typical multibody contact, where the yielding connection plays
the role of the mechanical protection against destruction, i.e., against the total de-
formation of the supporting arches. We consider contact with the Coulomb friction,
where the coefficient of friction was F = 0.5. The problem was decomposed into
250 subdomains using METIS and discretized by 1,592,853 and 216,604 primal and
dual variables, respectively. The total displacements for both TFETI and TBETI are
depicted in Fig. 4. The solution required 1,922 matrix-vector multiplications.

7 Comments and Conclusions

The TFETI method turns out to be a powerful engine for the solution of contact prob-
lems of elasticity. The results of numerical experiments comply with the theoretical
results and indicate high efficiency of the method reported here. Future research will
include adaptation of the standard preconditioning strategies.



48 Z. Dostál et.al.

Fig. 3. Frictionless roller bearing of wind generator

Fig. 4. Steel support with Coulomb friction
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plementable variant of the FETI method for numerical solution of elliptic PDE.
Comm. Numer. Methods Engrg., 22(12):1155–1162, 2006. ISSN 1069-8299.
doi: 10.1002/cnm.881. URL http://dx.doi.org/10.1002/cnm.881.

[9] Charbel Farhat and François-Xavier Roux. A method of finite element tearing
and interconnecting and its parallel solution algorithm. Internat. J. Numer.
Methods Engrg., 32(6):1205–1227, 1991. ISSN 1097-0207. doi: 10.1002/nme.
1620320604. URL http://dx.doi.org/10.1002/nme.1620320604.

[10] Charbel Farhat, Jan Mandel, and François-Xavier Roux. Optimal conver-
gence properties of the FETI domain decomposition method. Comput.
Methods Appl. Mech. Engrg., 115(3–4):365–385, 1994. ISSN 0045-7825.
doi: 10.1016/0045-7825(94)90068-X. URL http://dx.doi.org/10.1016/
0045-7825(94)90068-X.

[11] Ralf Kornhuber. Adaptive monotone multigrid methods for nonlinear varia-
tional problems. Advances in Numerical Mathematics. B. G. Teubner, Stuttgart,
1997. ISBN 3-519-02722-4.

[12] T. Kozubek, A. Markopoulos, T. Brzobohatý, R. Kučera, V. Vondrák, and
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Robust Coarsening in Multiscale PDEs
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1 Introduction

Consider a variationally–posed second–order elliptic boundary value problem

a(u,v) ≡
∫
Ω

A (x) ∇u ·∇v =

∫
Ω

f (x)v(x), for all v ∈H1
0 (Ω), (1)

with solution u ∈ H1
0 (Ω) and domain Ω ⊂ R

d , d = 2,3, where the coefficient ten-
sor A (x) is highly heterogeneous (possibly in a spatially complicated way). We as-
sume that A (x) is symmetric, uniformly positive definite and mildly anisotropic, i.e.
λmin(A (x))� λmax(A (x)) uniformly in x. We are particularly interested in the case
when the contrast maxx,y∈Ω λmax(A (x))/λmax(A (y)) is large. Many examples of
this type arise in subsurface flow modelling or in material science. The space H1

0 (Ω)
is the usual Sobolev space of functions with vanishing trace on ∂Ω and f ∈H−1(Ω).
For simplicity we assume for the remainder that A (x) =α(x)I, i.e. a scalar diffusion
coefficient.

Let Th be a simplicial triangulation ofΩ and let (1) be discretised in Vh⊂H1
0 (Ω),

the space of continuous, piecewise linear FE functions with respect to Th that vanish
on ∂Ω . For simplicity let Th be quasi-uniform. The a-orthogonal projection of u to
Vh is denoted by uh. In the usual nodal basis {ϕi}n

i=1 for Vh, the problem of finding
uh reduces to the n×n linear system

Au = b (2)

with stiffness matrix A = (a(ϕi,ϕ j))
n
i, j=1. Since the matrix A depends on α only

through element averages, we can assume (w.l.o.g.) that α is piecewise constant with
respect to Th. For simplicity we assume that α is piecewise constant with respect to
some non-overlapping partitioning of Ω into open, connected Lipschitz polyhedra
(polygons) {Ym}M

m=1 and set αm = α|Ym .
Especially for d = 3 and for problems where α varies on a small length scale

ε � diam(Ω), and thus the mesh size h needs to be very fine, multilevel itera-
tive solvers (multigrid, domain decomposition, etc.) are usually essential to solve
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this problem efficiently. Their scalability and robustness with respect to mesh re-
finement, as well as other discretisation parameters has been studied extensively.
Here we will focus on their robustness with respect to coefficient variation. We will
show that coefficient robustness is inherently linked to a judicious choice of coarse
space VH (related to some coarse mesh TH with resolution H). If ε � H and if we
can choose a coarse mesh such that all coefficient jumps are aligned with the mesh,
then the coefficient robustness of standard coarse spaces has been analysed in the
1990s (cf. [3, 4, 10, 16, 21, 22, 25] and the references therein). For certain methods
the robustness may depend on the quasi-monotonicity of the coefficient with respect
to the coarse mesh (in the sense of [3]). Substructuring-type (“exotic”) coarse spaces
are usually used to achieve uniform coefficient robustness. A certain amount of ro-
bustness can be recovered for standard piecewise linear coarse spaces by using the
multilevel solver as a preconditioner within CG (e.g. [24]). The key tool in all these
analyses is the weighted L2–projection of Bramble and Xu [1]. It requires a piece-
wise constant weight with respect to the coarse mesh, an assumption that is often far
too stringent in real applications. We want to move away from this and crucially here
make no assumptions that the underlying coarse grids resolve the coefficients.

A lot of effort in the last 25 years has gone into the development of algebraic
methods to construct coarse spaces, such as algebraic multigrid (AMG), rather than
analytic/geometric ones. It has been confirmed numerically that AMG methods are
in practice robust to coefficient variation when applied to (2) (i.e. the number of
iterations is unaffected), and they are therefore extremely popular. However, they are
built on several heuristics and so a rigorous analysis of their coefficient-robustness
is difficult (see [22] for a review of existing theoretical results). Nevertheless, the
key principle of these algebraic coarse spaces, namely energy minimisation [11],
also underlies many other coarse spaces. To obtain rigorous coefficient–independent
convergence results we will need to work in the following energy and weighted L2-
norms on D⊂Ω , ‖v‖a,D =

∫
Dα|∇v|2 and ‖v‖0,α ,D =

∫
Dαv2 ,

respectively. When D =Ω we will usually not specify the domain explicitly.
A convenient framework to analyse most multilevel methods is the Schwarz or

subspace correction framework [21, 23]. We restrict attention to the two-level over-
lapping additive Schwarz method and focus on the robustness of various coarse
spaces for this method. We review some recent papers on the topic mainly by the
author (jointly with co-workers), as well as by Efendiev et al. All the results ap-
ply immediately also to multiplicative, hybrid and non-overlapping versions of the
Schwarz method (see [9, 19] for some explicit comments). Many of the results can
be extended to a multilevel theory [5, 19].

2 Schwarz Framework and Abstract Coarse Spaces

Let us assume that {Ωk}K
k=1 is an overlapping partitioning of Ω and let Ω ◦k be the

overlap of subdomainΩk, i.e. the set of points x∈Ωk that are contained in at least one
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other subdomain. We assume that Th is aligned with this partitioning. Furthermore,
let {χk}K

k=1⊂Vh be an arbitrary partition of unity (POU) of FE functions subordinate
to {Ωk}K

k=1 such that ‖χk‖∞ � 1 and ‖∇χk‖∞ ≤ δ−1
k , for all k = 1, . . . ,K. Note that

(due to quasi-uniformity of Th) we always have δk � h, and there is a partition of
unity such that δk is proportional to the (minimal) width of Ω ◦k . We assume as usual
that each point x ∈Ω is contained in at most N0 subdomains (finite covering).

We associate with each Ωk the space Vk = {v ∈Vh : Supp(v)⊂ Ω k} and assume
that we have an additional coarse space

V0 =VH = span{Φ j ∈Vh : j = 1, . . . ,N} ⊂Vh .

Letω j = interior(Supp(Φ j)) and set Hj = diam(ω j). Then H =max j Hj is the coarse
mesh size associated with VH .

The two-level additive Schwarz preconditioner is now simply

M−1
AS = RT

0 A−1
0 R0 + ∑K

k=1 RT
k A−1

k Rk with Ak = RkART
k .

Rk is the matrix representation of a restriction operator from V to Vk: the simple
injection operator for k≥ 1, and for k = 0 induced by the coarse space basis {Φ j}N

j=1

so that the coarse space stiffness matrix is A0 = (a(Φ j,Φ�))
N
j,�.

The following result can be proved in the same way as [19, Theorem 2.5]. Since
it is instructive, we give an outline of the proof.

Theorem 1. If there exists an operatorΠ : Vh →V0 such that for all v ∈Vh

‖Πv‖2
a ≤ C1 ‖v‖2

a and ∑K
k=1 ‖(v−Πv)∇χk‖2

0,α ≤ C2 ‖v‖2
a , (3)

then κ(M−1
ASA)�C1 +C2. The hidden constant depends on N0.

Proof. Let v0 = Πv be such that (3) holds and choose vk = Ih(χk(v− v0)), where Ih

is the standard nodal interpolant on Vh. This interpolant is stable for all piecewise
quadratic functions in the energy norm and in the weighted L2-norm (independently
of α) (cf. [19, Lemma 2.3]), and so we get

∑K
k=0 ‖vk‖2

a � ‖v0‖2
a +∑K

k=1 ‖χk(v− v0)‖2
a

� ‖v0‖2
a +∑K

k=1 ‖χk‖2
∞‖v− v0‖2

a,Ωk
+ ‖(v− v0)∇χk‖2

0,α .

Now, the boundedness of the POU functions, the finite cover assumption, as well as
(3) lead to the stability estimate ∑K

k=0 ‖vk‖2
a � (C1 +C2)‖v‖2

a. Since v = ∑K
k=0 vk, the

result follows from the abstract Schwarz theory (cf. [21]).

This result shows the importance of the choice of coarse space. Provided we have
a good coarse space approximation in the weighted L2-norm that is moreover stable
in the energy norm, independently of variations in α , then the bound on the condition
number for two-level additive Schwarz is also robust with respect to these variations.
Note that it is crucial to use the weighted L2 and the energy norm here to achieve
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coefficient-robustness, and that we only require weak L2–approximation in regions
where ∇χk = 0.

Several approaches have been studied in [2, 5–9, 17–19] to provide constants
in (3) that are independent of α (or at least of the contrast in α) for various coarse
spaces. However, in most cases the constants are not independent of H

ε , where ε
is the minimal length scale at which α varies in the regions where ∇χk = 0. So
unfortunately in general, to be also independent of H

ε , restrictions on the coarse mesh
size are needed, at least locally.

Let us discuss the assumptions (3) a bit further. Let Πv = ∑ j f j(v)Φ j , where
f j : Vh → R is a suitable functional. Then

‖Πv‖a =
∥∥∑ j f j(v)Φ j

∥∥
a ≤ ∑ j | f j(v)|‖Φ j‖a .

We see that a set of coarse basis functions with bounded energy (independent of α)
is beneficial. The first approaches in [8, 9, 17] attacked this target directly and aimed
at bounding ‖Φ j‖a. In that case, it suffices to use the standard quasi-interpolant.
Alternatively, a weighted quasi-interpolant with f j(v) =

∫
ω j
αv/

∫
ω j
α can be used.

For certain (locally quasi-monotone) coefficients α this leads to a constant C1 that
is independent of the contrast in α , even if the energy of the basis functions is not
bounded (see below).

Similar comments can be made about the second assumption in (3). Note that

‖(v−Πv)∇χk‖2
0,α ≤

{‖α|∇χk|2‖∞‖v−Πv‖2
0,Ω◦k

, or

‖∇χk‖2
∞‖v−Πv‖2

0,α ,Ω◦k
.

We can either try to choose a partition of unity {χk} such that ‖α|∇χk|2‖∞ is bounded
independently of α , which is again related to energy minimisation, or we can try to
bound ‖v−Πv‖0,α ,Ω◦k directly. As above, it is possible for certain (locally quasi-
monotone) coefficients to achieve this and to obtain a constant C2 that does not de-
pend on the contrast in α (see below).

When the coefficient is not locally quasi-monotone, then it is in general necessary
to enrich the coarse space, by either refining the coarse mesh locally, or by choosing
more than one basis function per subdomain Ωk, with the key tool to achieve coarse
space robustness being again energy minimisation.

To highlight some of the key issues we will use a number of representative model
problems shown in Fig. 1. For the rest of the paper, we will only focus on cases, such
as Fig. 1c–h, where it is impossible or impractical that the subdomains {Ωk} and
the supports {ω j} of the coarse basis functions resolve the coefficient jumps. The
resolved cases in Fig. 1a, b have already been studied extensively, see e.g. [3, 4, 10,
16, 21, 22, 24, 25].

3 Analysis of Coefficient–Robustness

We present three possible approaches to try and prove coefficient robustness rigor-
ously and thus to design robust coarse spaces. For simplicity, we assume that for
each j = 1, . . . ,N, there exists a k = 1, . . . ,K such that ω j ⊂Ωk.
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(c)(b)(a)

(h)(g)(f)(e)

(d)

Fig. 1. Typical coefficient distributions (a) resolved; (b) not quasi-monotone; (c) neither quasi-
monotone nor resolved; (d) channelised; (e) flow barriers; (f) low permeability inclusions; (g)
high permeability inclusions; (h) high permeability inclusions and channels

3.1 Standard Quasi-interpolant and Energy Minimisation

The first approach makes use of the standard quasi-interpolant

Πv = ∑N
j=1 vω jΦ j , where vω j = 1

|ω j |
∫
ω j

v .

Let {Φ j}N
j=1 be a set of bounded coarse basis functions that form a partition

of unity, except in a boundary layer of width O(H) near ∂Ω . Since each support
ω j ⊂ Ωk, for some k, the supports have finite overlap. The constants C1 and C2 can
now be bounded independent of the contrast in α , if either

γ2(α,{Φ j}) = N
max
j=1

H2−d
j ‖Φ j‖2

a and γ∞(α,{χk}) = K
max
k=1

δ 2
k ‖α1/2∇χk‖2

∞

(the so-called coarse space and partitioning robustness indicators) can be bounded
independent of α , for some choice of the partition of unity {χk}K

k=1 subordinate to
{Ωk}K

k=1 (cf. [8]), or if γ∞(α,{Φ j}) can be bounded independent of α (cf. [17]).
As mentioned above, this leads to the aim to construct coarse basis functions with
minimal or bounded energy. It is also at the heart of matrix-dependent prolongation
operators in multigrid methods.

For certain binary coefficient distributions, e.g. for high-permeability inclusions
in a low-permeability medium as depicted in Fig. 1g, it was then possible in [8] to
show (rigorously) under the assumptionα � 1 that multiscale FEs (w.r.t. some coarse
mesh TH ) can provide such a basis {Φ j}, and that the indicators can be bounded
independent of the contrast in α . However, they depend on H/ε , where ε is the
minimum width of any island/gap.

Similarly, it was possible in [17] to show (again assuming α � 1) that aggrega-
tion based on a strong connection criterion (originally designed for AMG methods)
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leads to a coarse basis {Φ j} for which the robustness indicators can be bounded in-
dependent of the contrast in α . Here the bounds depend on H/h, since the overlap
between any two supports is only O(h).

However, this approach to analyse robustness fails even for the simpler, re-
verse situation of a high-permeability medium with low-permeability inclusions (e.g.
Fig. 1f), since in this case γ2(α,{Φ j}) and γ∞(α,{Φ j}) depend on the contrast in α
for any choice of {Φ j}. Clearly a different quasi-interpolantΠ is needed in general.

3.2 Weighted Quasi-interpolant and Poincaré’s Inequality

The next approach to try to prove the assumptions in Theorem 1 makes use of the
weighted quasi-interpolant

Πv = ∑N
j=1 vαω j

Φ j , where vαω j
=

∫
ω j
αv
/∫

ω j
α .

We describe this approach for one of the simplest coarse spaces, the piecewise
linear one. The following is taken from [19] (see also [6] for earlier results). Let
VH be the continuous, piecewise linear FE space associated with a shape-regular
simplicial triangulation TH of Ω , such that Th is a refinement of TH . The func-
tions {Φ j}N

j=1 are the standard nodal basis for VH . For simplicity, we assume that

{Ωk}K
k=1 = {ω j}N

j=1, and choose χk = Φk (suitably modified near ∂Ω ), so that the
assumptions on {χk} are satisfied with δk ∼ Hk.

The key observation in [19] is now that one further assumption suffices to fully
describe the dependency of the constants C1 and C2 in (3) on α:

Assumption 1 Let ωT =
⋃
{k:ωk∩T = /0}ωk and HT = diam(ωT ), for T ∈ TH , and as-

sume that there exists a C∗T > 0 such that, for all v ∈Vh, either

inf
c∈R

∫
ωT

α(v− c)2 dx � C∗T H2
T

∫
ωT

α|∇v|2 dx, or (4)

∂ωT ∩∂Ω = /0 and
∫
ωT

αv2 dx � C∗T H2
T

∫
ωT

α|∇v|2 dx . (5)

Proposition 1. Let Assumption 1 hold. Then C1 +C2 � C∗ = max
T∈TH

C∗T .

Proof. Let v ∈Vh and v0 = ∑N
j=1 vαω j

Φ j . By the Cauchy-Schwarz inequality we have

|vαω j
|2 ≤ ∫

ω j
αv2

/∫
ω j
α , and so, using the fact that Φ j ≤ 1,

∫
T
αv2

0 ≤ ∑ j:ω j∩T = /0

∫
ω j
αv2

∫
ω j
α

∫
T
αΦ2

j ≤
∫
ωT

αv2 ,

which also implies
∫

T α(v− v0)
2 �

∫
ωT
αv2. Now, multiplying the left hand side by

|∇χk|2T (which is a constant ∼H−2
T ) and summing over k≥ 1, we get

∑K
k=1 ‖(v− v0)∇χk‖2

0,α ,T � H−2
T

∫
ωT

αv2 . (6)
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If {Φ j} forms a partition of unity on all of ωT (i.e. if ∂ωT ∩ ∂Ω = /0), we can
replace v in (6) by v̂ = v− c, for any c ∈R, without changing the integral on the left
hand side. Otherwise we set v̂ = v. In both cases, by Assumption 1∫

ωT

α v̂2 � C∗T H2
T

∫
ωT

α|∇v|2 . (7)

Combining (6) and (7) and summing over all T ∈ TH gives the bound for C2.
The bound for C1 can be established in a similar way (cf. [19, Lemma 4.1]).

Assumption 1 postulates the existence of a discrete weighted Poincaré/ Fried-
richs–type inequality on each ωT . It always holds, but in general the constants C∗T
will not be independent of α|ωT and HT/h. As described in detail in [19, Sect. 3]
(see also [13–15]), to obtain independence of α , we require a certain local quasi–
monotonicity of α on each of the regions ωT .

Weighted Poincaré Inequalities. Let us consider a generic coarse element T ∈ TH

and define the following subsets of ωT where α is constant:

ωm = ωT ∩Ym, m = 1, . . . ,M.

By IT ⊂ {1, . . . ,M} we denote the index set of all regions ωm that are non-empty.
Let us assume w.l.o.g. that each of these subregions is connected. We generalise
now the notion of quasi-monotonicity coined in [3] by considering the following
three (two) directed combinatorial graphs Γ (k) = (N,E (k)), 0 ≤ k ≤ d − 1, where
N = {ωm : m ∈ IT } and the edges are ordered pairs of vertices. We distinguish
between three (two) different types of connections.

Definition 1. Suppose that γm,m2 = ωm∩ωm2 is a non-empty manifold of dimension
k, for 0 ≤ k ≤ d− 1. The ordered pair (ωm,ωm2) is an edge in E (k), if and only if
αm � αm2 . The edges in E (k) are said to be of type-k.

In addition, for 1≤ k ≤ d−1, we assume that

• meas(γm,m2)∼meas(ωm∪ωm2)k/d , and

• γm,m2 is sufficiently regular, i.e. it is a finite union of shape–regular k-dimensional
simplices of diameter ∼meas(γm,m2)1/k.

Quasi-monotonicity is related to the connectivity in Γ (k). Let m∗ ∈ IT be the
index of the region ωm∗ with the largest coefficient: αm∗ = maxm∈IT αm.

Definition 2. The coefficient α is type-k quasi-monotone on ωT , if there is a path in
Γ (k) from any vertex ωm to ωm∗ .

The following lemma summarises the results in [13–15]. The existence of a
benign constant C∗T that is independent of α is directly linked to quasi-monotonicity,
the way in which C∗T depends on HT/h to the type.

Lemma 1. Let ωT ⊂ R
d, d = 2,3. If α is type-k quasi-monotone on ωT , then (4)

holds with

C∗T =

⎧⎪⎨
⎪⎩

1, if k = d−1,

1+ log
(

HT
h

)
, if k = d−2,

HT
h , if k = d−3.

(8)
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A similar result can also be established in the case where ∂ωK ∩ ∂Ω = /0, i.e. the
case of Friedrichs inequality (5), see e.g. [19, Sect. 3] for details.

Quasi–monotonicity is crucial. If the coefficient is not quasi-monotone, e.g. the
situation in Fig. 1d, then C∗ cannot be bounded independent of α . See [19, Exam-
ple 3.1] for a counter example. If the coarse mesh is not adjusted in certain critical
areas of Ω , then VH is in general not robust. The numerical results in [19] show
that this is indeed the case and that quasi–monotonicity is necessary and sufficient.
However, a few simple adjustments suffice, namely TH has to be sufficiently fine in
certain “critical” areas of Ω :

1. Choose HT ≤ εm, for all T ∈ TH that intersect a region Ym that is bordered by
two regions Ym′ and Ym′′ with αm′ � αm and αm′′ � αm. Here εm denotes the
width of Ym at its narrowest point. This ensures that α is quasi-monotone on all
regions ωT that intersect Ym.

2. Choose HT � h, near any point or edge where α is only type-(d− 2) or type-
(d−3) quasi–monotone, i.e. near any cross point.

Usually a logarithmic growth C∗ ∼ maxT log(HT/h) is acceptable, and so even re-
gions where the coefficient is type-(d− 2) quasi-monotone do not require any par-
ticular attention.

For an arbitrary piecewise constant coefficient functionα there will often only be
a relatively small (fixed) number of regions ωT where α is not quasi-monotone (see
e.g. Fig. 1b, e). Therefore it is very easy to ensure through some local refinement of
TH near these regions that C∗ ∼ 1 (or C∗ ∼ log(H/h)). Note that crucially, this local
refinement does not mean that TH has to be aligned with coefficient jumps anywhere
in Ω . The coarse grid merely has to be sufficiently fine in regions where α is not
quasi-monotone. Ideas on how to adapt TH in such a way are suggested in [19].

“Exotic” coarse spaces. Substructuring–type (“exotic”) coarse spaces (as suggested
in [3, 4, 16]) can be analysed in a similar way. Here the coarse basis functions are
constructed as a-harmonic extensions of face, edge or vertex “cut” functions associ-
ated with a non-overlapping decomposition TH of the domain. This decomposition
may be related to the overlapping partitioning {Ωk}, or it may come from a separate
coarse grid (not necessarily simplicial). If the coefficient does not vary along any of
the edges/faces of TH , then the space can be analysed like the piecewise linear one
above, using in addition the energy minimising property of the a-harmonic exten-
sion (cf. [13]). If the coefficient does vary along an edge/face, then special weighted
Poincaré inequalities for functions with vanishing weighted averages across edges/-
faces are required. These have recently been introduced in the context of FETI-DP
methods in [12], which also analyses the robustness of the “cut” functions. An ex-
plicit analysis in the context of overlapping Schwarz does not yet exist.

3.3 Abstract Minimisation with Functional Constraints

An alternative to refining the coarse mesh in regions where α is not type–(d− 1)
or type–(d− 2) quasi-monotone, is to associate more than one basis function (with
possibly identical supports) with each subdomain Ωk. Let
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V0 = span{Φk, j = Ih
(
χkΨk, j

)
: j = 1, . . . ,Nk, k = 1, . . . ,K},

whereΨk, j, j = 1, . . . ,Nk, are suitable FE functions in Vh(Ω k) (that do not vanish on
∂Ωk) such that the functions {Φk, j} ⊂Vh are linearly independent. Good choices for
the functionsΨk, j are the lowest modes of local eigenproblems, or more generally,
energy minimising functions that satisfy suitable constraints. The following analysis
is from [18] (see [2, 7] for related work).

In particular, let us assume that, for every Ωk, we have a collection of linear
functionals { fk, j}Nk

j=1 ⊂Vh(Ω k)
′ and let

Ψk, j = arg min
v∈Vh(Ω k)

|v|2a, subject to fk,l(Ψk, j) = δ jl j, l = 1, . . . ,Nk . (9)

Now, for any v ∈Vh, choose the following quasi-interpolant

Πv =∑K
k=1 Ih

(
χkΠΩk v

)
, where ΠΩk v =∑Nk

j=1 fk, j(v|Ωk)Ψk, j ,

i.e. a linear combination of the basis functions Φk, j with weights fk, j(v|Ωk). Then
the bounds on C1 and C2 in Theorem 3 depend only on the stability and on the local
L2-approximation properties of ΠΩk on each Ωk.

Theorem 1. For all k = 1, . . . ,K and for all v ∈Vh(Ω k), let

‖ΠΩk v‖2
a,Ωk

≤ ‖v‖2
a,Ωk

and ‖v−ΠΩkv‖2
0,α ,Ωk

� diam(Ωk)
2‖u‖2

a,Ωk
. (10)

Then C1 = O(1) and C2 � (diam(Ωk)/δk)
2.

Proof. See [18, Theorem 5.1].

Note that the minimisation problems in (9) are local to each subdomain. There are
suitable choices for the functionals fk, j that guarantee (10) and that lead to practical
algorithms to construct the functionsΨk, j, j = 1, . . . ,Nk:

• fk, j(v) = (Ψk, j,v)0,α ,Ωk where Ψk, j is the jth eigenfunction corresponding to the
variational eigenproblem: Find η ∈Vh(Ω k) and λ ≥ 0, such that

a(η ,w) = λ (η ,w)0,α ,Ωk , for all w ∈Vh(Ω k). (11)

This has first been suggested and analysed in [7].

• fk, j(v) = (Ψk, j,v)0,α ,∂Ωk
where Ψk, j is the jth eigenfunction corresponding to a

variational eigenproblem similar to (11), but with (η ,w)0,α ,∂Ωk
instead of

(η ,w)0,α ,Ωk on the right hand side of (11), i.e. an eigenproblem of Steklov-
Poincaré type. This has been analysed in [2].

• fk, j(v) = vαDk, j
where {Dk, j}Nk

j=1 is a suitable non-overlapping partitioning of Ωk

such that the weighted Poincaré inequality (4) holds on each Dk, j (e.g. Dk, j =
Ωk ∩Y j). The construction of {Ψk, j} requires the solution of Nk local saddle
point systems and was suggested and analysed in [18].
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It has been shown in [2, 7] how (10) can be proved (directly) in the first two cases, es-
sentially based on the observation that the coarse space consists of the lowest modes
corresponding to the operator pencil associated to the energy and to the weighted
L2-norm. But the assumptions can be proved for a much wider class of functionals
using the following abstract approximation result in [18]. This result is related to the
classical Bramble-Hilbert lemma.

Abstract Approximation Result. Consider an abstract symmetric and continuous
bilinear form a(·, ·) : V ×V �→ IR, as well as a collection of linear functionals
{ fl}m

l=1 ⊂ V ′, where V ⊂H and H is a Hilbert space with norm ‖ · ‖. We make
the following assumptions on a(·, ·), V , H , ‖ · ‖ and { fl}:
A1. a(·, ·) is positive semi-definite and defines a semi-norm | · |a on V , i.e.

|v|2a = a(v,v)≥ 0, for all v ∈V.

In addition, for v ∈V , the expression
√‖v‖2 + |v|2a defines a norm on V .

A2. Let cq be a generic constant. For all q ∈ IRm there exists a vq ∈V with

fl(vq) = ql , and ‖vq‖� cq‖q‖l2(IRm).

A3. There are two constants ca and c f such that

‖v‖2 ≤ ca|v|2a + c f∑m
l=1 | fl(v)|2 , for all v ∈V. (12)

Now, as in the specific case above, define for all v ∈V ,

πv =
m

∑
l=1

fl(v)ψl , where ψl = argmin
v∈V
|v|2a, subject to fl(ψ j) = δ jl .

Then the following inequalities hold; see [18, Theorem 3.3].

Theorem 3. Let Assumptions A1–A3 be satisfied. Then, for all u ∈V:

|πu|a ≤ |u|a and ‖u−πu‖≤ √ca|u|a . (13)

(Note that they are independent of the constants cq and c f in A2 and A3.)

In the specific case considered above, on an arbitrary subdomain Ωk, Assump-
tion A1 is naturally satisfied with H = L2(Ωk) and ‖ · ‖ = ‖ · ‖0,α ,Ωk . Assumption
A2 merely ensures that the linear functionals are linearly independent. Thus, the
question of coarse space robustness is reduced to verifying Assumption A3. For one
functional, i.e. for m= 1, this reduces to the weighted Poincaré inequality in Sect. 3.2
and to the restrictions on the coefficients made there. For more than one functional,
it opens the possibility to get coefficient robustness even in the case of non-quasi-
monotone coefficients, such as those depicted in Fig. 1b, d and even h. See [2, 7, 18]
for the complete analysis and some numerical experiments that confirm the robust-
ness for the functionals defined on the previous page. See also [20] for a more recent
extension to systems of elliptic PDEs (such as linear elasticity).
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1 Introduction

The approximation of high-dimensional functions, whether they be given explic-
itly or implicitly as solutions of differential equations, represents one of the grand
challenges of applied mathematics. High-dimensional problems arise in many fields
of application such as data analysis and statistics, but first of all in the sciences.
One of the most notorious and complicated problems of this type is the Schrödinger
equation. The Schrödinger equation forms the basis of quantum mechanics and is
of fundamental importance for our understanding of atoms and molecules. It links
chemistry to physics and describes a system of electrons and nuclei that interact by
Coulomb attraction and repulsion forces. As proposed by Born and Oppenheimer in
the nascency of quantum mechanics, the slower motion of the nuclei is mostly sepa-
rated from that of the electrons. This results in the electronic Schrödinger equation,
the problem to find the eigenvalues and eigenfunctions of the Hamilton operator

H = − 1
2

N

∑
i=1

Δi −
N

∑
i=1

K

∑
ν=1

Zν
|xi−aν | +

1
2

N

∑
i, j=1
i= j

1
|xi−x j| . (1)

It acts on functions with arguments x1, . . . ,xN ∈ R
3, which are associated with the

positions of the considered electrons. The aν are the fixed positions of the nuclei and
the values Zν the charges of the nuclei in multiples of the absolute electron charge.

The high dimensionality of the equation immediately rules out classical dis-
cretization methods for partial differential equations as numerical analysts are
familiar with. To overcome this curse of dimensionality, procedures like the Hartree-
Fock method and its many variants and successors or density functional theory based
methods have been developed over the decades. They are used with much success and
form the basis of a steadily expanding branch of chemistry. See [6] for an overview
on the present state of the art in quantum chemistry, and [3, 10], and [11] for mathe-
matically oriented expositions. All these methods suffer, however, either from a priori
modeling errors or from the fact that it is not clear how the accuracy can be system-
atically improved without the effort truly exploding for larger numbers of electrons.
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It is therefore rather surprising that simple sparse grid-like multi-level expansions of
the electronic wave functions can be constructed whose convergence rate, measured
in terms of the number of basis functions involved, is independent of the number of
electrons and does not much differ from that for a two- or even one-electron system.
The purpose of this note is to explain these results and the effects behind them. For
details we refer to the references.

2 Regularity and Decay of the Wave Functions

The at least asymptotically, in relation to the high space dimension rapid conver-
gence of these expansions is based on very particular properties of the solutions of
the electronic Schrödinger equation: their regularity, that surprisingly increases with
the number of electrons, the decay behavior of their mixed derivatives, and their
antisymmetry enforced by the Pauli principle.

The solution space of the electronic Schrödinger equation is first the Hilbert
space H1 that consists of the square integrable functions

u : (R3)N→ R : (x1, . . . ,xN)→ u(x1, . . . ,xN) (2)

with square integrable first-order weak derivatives; the dimension of their domain
increases with the number N of electrons. The norm ‖ · ‖1 on H1 is composed of the
L2-norm ‖ · ‖0 induced by the L2-inner product and the L2-norm of the gradient. In
the language of physics, the space H1 is the space of the wave functions for which
the total position probability remains finite and the expectation value of the kinetic
energy can be given a meaning. It can be shown that the second-order differential op-
erator (1) induces a bounded bilinear form on H1 that satisfies a Garding inequality.
The mathematically precise formulation of the eigenvalue problem is therefore the
corresponding weak form of the equation on the space H1, the same kind of weak
form that one knows from the finite element method. The physically admissible so-
lutions are components u(x) = ψ(x,σσσ) of a full, spin-dependent wave function. By
the Pauli principle, they are therefore antisymmetric with respect to the exchange of
the positions xi of electrons of the same spin σi =±1/2.

To describe the regularity properties of the eigenfunctions, we need to introduce
a scale of norms that are defined in terms of Fourier transforms. We first introduce
the polynomials

Piso(ωωω) = 1+
N

∑
i=1
|ωωω i|2, Pmix(ωωω) =

N

∏
i=1

(
1+ |ωωω i|2

)
. (3)

The ωωω i ∈ R
3 forming together the variable ωωω ∈ (R3)N can be associated with the

momentums of the electrons. The expressions |ωωω i| are their euclidean norms. The
norms describing the smoothness of the solutions are now given by

|||u|||2ϑ,m =

∫
Piso(ωωω)mPmix(ωωω)ϑ |û(ωωω)|2 dωωω. (4)
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They are defined on the Hilbert spaces Hϑ,m
mix that consist of the square integrable

functions (2) for which these expressions remain finite. For nonnegative integer
values m and ϑ , the norms measure the L2-norm of weak partial derivatives. The
parameter m measures the isotropic smoothness that does not distinguish between
different directions, and the parameter ϑ the mixed smoothness in direction of the
three-dimensional coordinate spaces of the electrons. The spaces L2 and H1 are spe-
cial cases of such spaces.

It has been proved in [12] and [13] that the physically admissible eigenfunctions u
of the electronic Schrödinger operator (1) are at least contained in Hϑ ,1

mix for ϑ = 1/2.
Recently we were able to improve this result substantially. We have shown in [9] that
the eigenfunctions u of the electronic Schrödinger operator are, independent of their
symmetry properties, contained in

H1,0
mix ∩

⋂
ϑ<3/4

Hϑ ,1
mix . (5)

The bound 3/4 is optimal and can, except for special cases, neither be reached nor
improved further. The proof is based on a representation of the eigenfunctions that
has been derived in [15] and for the two-electron case in [1]. It has been shown in
[15] that the eigenfunctions can be written as products

u(x) = exp

(
∑
i< j

φ(xi−x j)

)
v(x) (6)

of more regular functions v ∈ H1,1
mix and a universal factor that covers their singulari-

ties. This kind of splitting can be traced back to the work of Hylleraas [8] in the early
years of quantum mechanics. It has been used in [4] and [7] to study the Hölder regu-
larity of the eigenfunctions. There is a lot of freedom in the choice of the function φ .
It needs only to be of the form

φ(x) = φ̃ (|x|), φ̃ ′(0) =
1
2
, (7)

where φ̃ : [0,∞)→ R is an infinitely differentiable function behaving sufficiently
well at infinity. The regularity is therefore determined by that of the explicitly known
factor from (6) that describes the behavior of the solutions at the singular points of
the electron-electron interaction potential.

The splitting (6) is of independent interest since it is obviously possible to obtain
better convergence rates for the regular part of the solutions than for the solutions
themselves. We will restrict ourselves, however, here to the direct approximation
of the eigenfunctions. The domain of the eigenfunctions is infinitely extended. The
eigenfunctions are, however, strongly localized. It is known for a long time that an
eigenfunction u for an eigenvalue below the ionization threshold of the given atom or
molecule decays exponentially in the L2-sense. That means there is a constant γ > 0
such that the function

x → exp

(
γ

N

∑
i=1
|xi|
)

u(x), (8)
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is square integrable. This constant depends on the distance of the eigenvalue under
consideration to the bottom of the essential spectrum. More details and references to
the literature can be found in [14]. It has been shown in [15] that these exponentially
weighted eigenfunctions admit the same kind of representation (6) as the eigenfunc-
tions themselves. Thus they share with them the described regularity properties [9].
The convergence analysis is based on this observation.

3 Sparse Grids and Antisymmetry

To explain the meaning of these results for the approximation of the solutions of the
Schrödinger equation, we consider a simple model problem, the approximation of
functions u of the variables x1, . . . ,xd that are odd and 2π-periodic in every coordi-
nate direction on the cube Q = [0,π ]d by tensor products

φ(k,x) =
d

∏
i=1
φki(xi) (9)

of the one-dimensional trigonometric polynomials

φki(ξ ) =
√

2
π

sin(kiξ ) (10)

labeled by the components ki = 1,2, . . . of the multi-indices k. Our presentation
closely follows [14]. Functions of the given kind that are square integrable over Q
can be expanded into a multivariate Fourier series

u(x) = ∑
k

û(k)φ(k,x), (11)

where the expansion coefficients are given by

û(k) =
∫

Q
u(x)φ(k,x)dx. (12)

We measure the speed of convergence of this series in the sense of the L2-norm which
reads in terms of the expansion coefficients

‖u‖2
0 = ∑

k
|û(k)|2. (13)

The speed of convergence of the series is therefore determined by the speed with
which the expansion coefficients decay. Assume that all partial derivatives of u of
order s exist and are square integrable. This implies that

|u |2s = ∑
k
|k |2s |û(k)|2 (14)

remains finite, where |k | is defined by
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|k |2 =
d

∑
i=1

k2
i . (15)

Consider now the finite part uε of the series (11) that extends over the multi-indices k
inside the ball of radius 1/ε around the origin, for which

|k | < 1
ε
. (16)

Due to the orthonormality of the functions (9), uε is the best approximation of u by
a linear combination of the selected basis functions. It holds

‖u−uε‖2
0 ≤ ε2s∑

k
|k |2s |û(k)|2 = ε2s |u |2s . (17)

The number n of these basis functions grows like

n ∼ 1
εd (18)

as ε goes to zero. This is out of every reach for higher space dimensions d, the
curse of dimensionality. It can only be broken if one restricts oneself to a class of
functions whose smoothness increases sufficiently fast with the space dimension d.
At this place the mixed regularity comes into play. Consider functions u that possess
corresponding weak partial derivatives and set

|u |21,mix =

∫
Q

∣∣∣ ∂ du
∂x1 . . .∂xd

∣∣∣2 dx (19)

or, in terms of the expansion coefficients,

|u |21,mix = ∑
k

( d

∏
i=1

ki

)2

|û(k)|2. (20)

Let u∗ε be the function represented by the finite part of the series (11) that extends
over the multi-indices k inside the hyperboloid given by

d

∏
i=1

ki <
1
ε
, (21)

instead of the ball (16). The L2-error can then be estimated as

‖u−u∗ε‖0 ≤ ε |u |1,mix (22)

and tends like O(ε) to zero. The dimension n of the space spanned by the functions
(9) for which (21) holds, now increases, however, only like

n ∼ | logε |d−1ε−1. (23)
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This shows that a comparatively slow growth of the smoothness can help to reduce
the complexity substantially, an observation that forms the basis of the sparse grid or
hyperbolic cross techniques; see [2] for an overview. Due to the presence of the loga-
rithmic term, the applicability of such methods is, however, still limited to moderate
space dimensions.

The rescue comes from the symmetry properties of the wave functions enforced
by the Pauli principle. They represent a possibility to escape from this dilemma with-
out forcing up the smoothness requirements further, which has first been noted by
Hackbusch [5]. Consider functions u that are antisymmetric with respect to the ex-
change of their variables, i.e., that

u(Px) = sign(P)u(x) (24)

holds for all permutation matrices P. It is not astonishing that such symmetry prop-
erties are immediately reflected in the expansion (11). Let

φ̃ (k,x) =
1√
d!
∑
P

sign(P)φ(k,Px) (25)

be the renormalized, antisymmetric parts of the functions (9), where the sums extend
over the d! permutation matrices P of order d. The antisymmetrized functions (25)
can be written as determinants

1√
d!

∣∣∣∣∣∣∣

φk1(x1) . . . φkd (x1)
...

. . .
...

φk1(xd) . . . φkd (xd)

∣∣∣∣∣∣∣
(26)

and evaluated in this way. For the functions u in the given symmetry class, many
terms in the expansion (11) can be combined. It finally collapses into

u(x) = ∑
k1>...>kd

(
u, φ̃ (k, ·))φ̃(k,x), (27)

where the expansion coefficients are the L2-inner products of u with the correspond-
ing functions (25). The number of basis functions needed to reach a given accuracy
is reduced by more than the factor d!, a very significant gain for larger dimensions d.

It remains to count the number of the sequences k1 > k2 > .. . > kd of natural
numbers that satisfy the condition (21) and with that also the number of basis func-
tion (25) needed to reach the accuracy O(ε). To study the asymptotic behavior of
the number of these sequences in dependence of the dimension d and the accuracy ε ,
it suffices when we restrict ourselves to the case ε = 1/2L, with positive integers L.
That is, we have to give bounds for the number of sequences k1 > .. . > kd for which

d

∏
i=1

ki ≤ 2L. (28)

The problem to estimate this number has to do with the prime factorization of inte-
gers. To simplify this problem, we group the numbers ki into levels and decompose
the space of the trigonometric polynomials correspondingly. Let
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Fig. 1. The numbers a∗(L) and a(d,L) for d = 10,15,20, . . . ,175

�(ki) = max
{
� ∈ Z

∣∣ 2� ≤ ki
}
. (29)

An upper bound for the number of these sequences is then the number a(d,L) of the
sequences k1 > k2 > .. . > kd of natural numbers for which

d

∏
i=1

2�(ki) ≤ 2L. (30)

The numbers a(d,L) can be calculated recursively; see [14] for details. A crude esti-
mate yields a(d,L) = 0 if L+ 1 < d. Thus

a∗(L) := max
d≥1

a(d,L) = max
d≤L+1

a(d,L). (31)

Figure 1 shows, in logarithmic scale, how the a(d,L) behave compared to their joint
least upper bound a∗(L). It becomes obvious from this picture that this upper bound
exceeds the actual dimensions for larger d by many orders of magnitude, the more
the more the number d of variables increases. The joint least upper bound that is
independent of d for the number of the sequences k1 > .. . > kd of natural numbers
ki for which (28) holds grows at least like ∼2L since already for the case d = 1,
there are 2L such “sequences”, namely those with values k1 = 1, . . . ,2L. Figure 1
suggests conversely that the upper bound (31) for the number of these sequences
does not grow much faster than ∼2L. This is in fact the case since the number of the
decreasing infinite sequences k1 ≥ k2 ≥ k3 ≥ . . . of natural numbers for which

∞

∏
i=1

2�(ki) ≤ 2L, (32)

with L a given nonnegative integer, is bounded by

L

∑
�=0

p(�)2�, (33)
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where p(�) denotes the partition number of �, the number of possibilities of repre-
senting � as sum of nonnegative integers without regard to the order. To show this, we
observe that the number of these sequences is bounded by the number of sequences
k1,k2,k3, . . . of natural numbers for which at least their levels �(k1), �(k2), . . . de-
crease and that satisfy (32). We show that the expression (33) counts the number of
these sequences. Let the integers �i = �(ki) first be given. As there are 2�i natural
numbers ki for which �(ki) = �i, namely ki = 2�i , . . . ,2�i+1−1, there are

∞

∏
i=1

2�i = 2�, � =
∞

∑
i=1

�i, (34)

sequences k1,k2,k3, . . . for which the �(ki) attain the prescribed values �i. The prob-
lem thus reduces to the question how many decreasing sequences of nonnegative
integers �i exist that sum up to values �≤ L, i.e., for which

∞

∑
i=1

�i = �. (35)

This number is by definition the partition number p(�) of the nonnegative integer �.
Every sequence k1 > k2 > .. . > kd of natural numbers for which (28) holds can
obviously be expanded to an infinite, decreasing sequence k1 ≥ k2 ≥ k3 ≥ . . . of
natural numbers that satisfies the condition (32) by setting all ki = 1 for i > d. The
sum (33) represents therefore also an upper bound for the number of these sequences.

The partition number plays a big role in combinatorics. Hardy and Ramanujan
have shown that it behaves asymptotically like

p(�) ∼ exp
(
π
√

2�/3
)

�
(36)

as � goes to infinity. We conclude that the upper bound (31) for the number of deter-
minants needed to reach an error ≤ 2−L|u|1,mix behaves like

a∗(L) = (2L)1+δ (L), 0≤ δ (L)≤ cL−1/2, (37)

where c is a constant that depends neither on L nor on the space dimension d or the
function u. Using the representation of a∗(L) from (31) and the recursively calculated
values a(d,L), the exponents 1+ δ (L) can be calculated exactly. They decay for L
ranging from 10 to 1,000 monotonely from 1.406 to 1.079. For L = 100, 1+δ (L) =
1.204. That is, the error tends faster to zero in the number n of determinants than

∼ 1
n1−ϑ (38)

for any given ϑ in the interval 0 < ϑ < 1. Not only does the convergence rate de-
teriorate neither with the dimension nor the number of variables, it behaves asymp-
totically almost as in the one-dimensional case. Similar results hold for partially
antisymmetric functions as they occur in quantum mechanics.
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4 Eigenfunction and Wavelet Expansions

The constructions sketched in the previous section transfer to the more complicated
case of the expansion of the solutions of the electronic Schrödinger equation into cor-
respondingly antisymmetrized tensor products of three-dimensional Hermite func-
tions or other eigenfunctions of three-dimensional Schrödinger-like operators as in
[14] or wavelets as in [16]. Indeed, it finally turns out that the convergence rate mea-
sured in terms of the number of basis functions involved does not deteriorate with the
number of electrons and comes close to that for the two- or even one-particle case.
We do not explicate the partly technical details here but explain how one can utilize
the intermediate smoothness of the exponentially weighted solutions (8) to obtain
optimal convergence rates.

Let eψ be exponential factor in (8). The argumentation starts from functions v
whose exponentially weighted counterparts eψv are located in H1,1

mix, that is, have in
contrast to the solutions of the Schrödinger equation full mixed regularity. The es-
sential observation is that the norm |||eψv|||1,1 can be estimated by the sum of the
weighted L2-norms ‖eψDαααv‖0 of the involved derivatives Dαααv of v and vice versa.
This comes from the special structure of the function ψ . The norm |||eψv|||1,1 mea-
sures therefore the exponentially weighted L2-norms of the involved derivatives of v.
It is therefore reasonable to start from a sequence Tn : H1 → H1, n = 1,2, . . . , of
linear approximation operators that are uniformly H1-bounded and to require that

‖v−Tnv‖1 � n−q |||eψv|||1,1 (39)

for all functions v∈H1 for which eψv∈H1,1
mix. The constant q> 0 is an unspecified

convergence rate also depending on what n means. These assumptions form a proper
framework for sparse grid-like approximation methods as those mentioned above
modeled after the example from the last section. Another example is the expansion
into tensor products of three-dimensional functions with given angular parts; see
[14]. The range of the Tn is in this case infinite dimensional. The exponential factor
is the tribute paid to the infinite extension of the domain. The assumption (39) implies
for the functions u ∈H1 for which eψu∈Hϑ ,1

mix for some 0<ϑ<1, the error estimate

‖u−Tnu‖1 � n−ϑq |||eψu|||ϑ ,1. (40)

The proof utilizes that the spaces Hϑ ,1
mix , 0<ϑ<1, are interpolation spaces between

the spaces H1 = H0,1
mix and H1,1

mix.
We conclude that for the case of the solutions u of the Schrödinger equation

the H1-error ‖u−Tnu‖1 tends faster to zero as n−ϑq for any ϑ < 3/4. An estimate
directly based on an estimate of their K-functional even shows that

‖u−Tnu‖1 �
√

ln(n) n−3/4q (41)

so that up to the logarithmic term only the factor 3/4 gets lost compared to the case
of full mixed regularity. The estimate is optimal, at least up to the logarithmic factor,
and can in general not be improved further.
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Summary. We propose a new nonoverlapping domain decomposition preconditioner for
the discrete system arising from the edge element discretization of the three-dimensional
Maxwell’s equations. This preconditioner uses the simplest coarse edge element space in-
duced by the coarse triangulation. We will show that the rate of the PCG convergence with
this substructuring preconditioner is quasi-optimal, and is independent of large variations of
the coefficients across the local interfaces.

1 Introduction

When the time-dependent Maxwell’s equations are solved numerically, we need to
solve the following curlcurl-system at each time step [4, 6, 8, 12]:

curl(αcurlu)+βu = f in Ω (1)

where Ω is assumed to be an open polyhedral domain in R3, and the coefficients
α(x) and β (x) are two positive bounded functions in Ω . We shall complement the
Eq. (1) with the perfect conductor condition u× n = 0 on ∂Ω , where n is the unit
outward normal vector on ∂Ω .

Edge finite element methods have been widely applied in the numerical solution
of the system (1), see, for example, [5, 6, 8, 11]. Compared to the standard nodal
finite element methods, the discrete systems resulting from the edge element dis-
cretization are essentially different in nature. The non-overlapping domain decom-
position preconditioners have been well developed for the nodal element systems for
the standard second order elliptic problems in the past two decades, and proved both
numerically and theoretically to perform nearly optimally in terms of the fine mesh
size and subdomain size; see, e.g., the monograph [15]. But these preconditioners,
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or their natural generalizations turn out to perform mostly very poorly for the edge
element systems for the curlcurl-system (1), especially in three dimensions.

A lot of important efforts have been made in the construction of effective do-
main decomposition methods for the system (1). A substructuring type method was
analysed in [16] for two dimensions, and in [2] for three dimensions with two sub-
domains. In [7], a novel substructuring type method was proposed for general two-
dimensional multiple subdomains with quite irregular boundaries, and it was proved
to be nearly optimal in terms of a variety of mesh decompositions and distributions
of physical material properties. However, it has been a challenge how to construct an
efficient non-overlapping domain decomposition preconditioner for the Maxwell’s
equations in three dimensions with general multiple subdomains. A first important
attempt to this problem was made in [9] where a wire basket type algorithm was pro-
posed and analysed. Then a substructuring preconditioner and a dual-primal FETI
algorithm were introduced and fully analysed for three dimensions in [10] and [14],
respectively. These three methods have their respective advantages and disadvan-
tages: the algorithms in [9] and [14] both involve smaller coarse solvers but they are
difficult to implement; the method in [10] is easier to implement but it involves a
relatively large coarse solver.

This work intends to construct a new substructuring type preconditioner for the
three-dimensional curlcurl-system (1) for general multiple subdomains. In this pre-
conditioner, the coarse space is chosen to be the edge element space induced by
the coarse triangulation, so the resulting coarse solver is very cheap and simple to
implement. It is shown that the rate of the PCG convergence with this substructur-
ing preconditioner is quasi-optimal, and more importantly, independent of the large
variations of the coefficients in the system (1) across the local interfaces.

2 Domain Decompositions and Discretizations

This section introduces the non-overlapping domain decomposition of domain Ω ,
the weak form of the system (1) and the edge element spaces.

2.1 Initial Domain Decomposition Based on the Distribution of the Coefficients

We assume that the entire domainΩ is decomposed into N0 open convex polyhedral
subdomains D1,D2, · · · ,DN0 such that Ω̄ = ∪N0

r=1D̄r and α(x) and β (x) are positive
constants on each subdomain Dr, namely for r = 1,2, . . . ,N0,

α(x) = αr, β (x) = βr ∀x ∈ Dr .

Clearly such a decomposition is always possible when the domain Ω is occupied by
multiple media. In fact, if for some medium we have an irregular nonconvex subre-
gion in Ω , we can further split each nonconvex medium subregion into smaller con-
vex subdomains. This means that our assumption does cover many practical cases,
especially considering the fact that the domain Ω on which we solve the original
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Maxwell system (1) by a finite element method is often obtained by approximating
the original physical domain by a polyhedral domain. Note that N0 typically is a fixed
constant in applications, so diam(Dr) = O(1).

Let Fnm denote the common face of two neighboring subdomains Dn and Dm, and
set Dnm = Dn∪Dm∪Fnm. For simplicity of the analysis, we assume

βr � αr � d−2αr, r = 1, · · · ,N0. (2)

2.2 Domain Decomposition

For a number d ∈ (0, 1), let each polyhedron Dl be decomposed into the union
of some non-overlapping tetrahedra (or hexahedra) {Ωk} of size d (see [3, 15] and

[18]), which results in a non-overlapping domain decomposition for Ω : Ω̄ =
N⋃

k=1
Ω̄k.

Naturally we further assume thatΩi∩Ω j = /0 when i = j; if i = j and ∂Ωi∩∂Ω j = /0,
∂Ωi∩∂Ω j is a common face (or edge or vertex) of Ωi and Ω j. Now the subdomains
Ω1, · · · ,ΩN constitute our desired coarse triangulation Td of Ω . The faces and ver-
tices of the subdomains are always denoted by F and V, while the common (open)
face of the subdomainsΩi andΩ j are denoted by Γi j, and the union of all such com-
mon faces by Γ , i.e., Γ = ∪Γ̄i j. Γ will be called the interface. By Γk we denote the
intersection of Γ with the boundary of the subdomain Ωk. So we have Γk = ∂Ωk if
Ωk is an interior subdomain of Ω . We shall set Ωi j =Ωi∪Ω j ∪Γi j.

2.3 Weak Formulation

Let H(curl;Ω) be the Sobolev space consisting of all square integrable functions
whose curl’s are also square integrable in Ω , and H0(curl;Ω) be a subspace of
H(curl;Ω) of all functions whose tangential components vanish on ∂Ω . Then by
writing the scalar product in (L2(Ω))3 as (·, ·), we can state the variational problem
for system (1) as follows:

Find u ∈ H0(curl;Ω) such that

A (u,v) = (f,v), ∀v ∈H0(curl;Ω) (3)

where A (·, ·) is a bilinear form given by

A (u,v) = (α curl u,curl v)+ (βu,v), u,v ∈ H(curl;Ω).

2.4 Fine Triangulation and Their Associated Finite Element Spaces

We further divide each Ωk into smaller tetrahedral elements of size h so that ele-
ments from two neighboring subdomains have an intersection which is either empty
or a single nodal point or an edge or a face on the interfaceΓ . Let Th be the resulting
triangulation of the domain Ω , which we assume is quasi-uniform. Then we intro-
duce the Nédélec edge element space of the lowest order defined on Th (cf. [12] and
[13]):
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Vh(Ω) =
{

v ∈ H0(curl;Ω); v |K∈ R(K), ∀K ∈ Th

}
,

where R(K) is a subset of all linear polynomials on the element K of the form:

R(K) =
{

a+b×x; a,b ∈R3, x ∈ K
}
.

In an analogous way, we can define the coarse edge element space Vd(Ω) ⊂ Vh(Ω),
associated with the coarse triangulation Td .

It is well-known that for any v∈Vh(Ω), its tangential components are continuous
on all edges of each element in the triangulation Th. Moreover, each edge element
function v in Vh(Ω) is uniquely determined by its moments on each edge e of Th:

{
λe(v) =

∫
e
v · teds; e ∈ Eh

}
,

where Eh denotes the set of the fine edges from the triangulation Th, and te denotes
the unit vector on the edge e.

By Zh(Ω) we denote the continuous piecewise linear finite element subspace of
H1

0 (Ω) associated with the triangulation Th. Similarly, let Zd(Ω) denote the contin-
uous piecewise linear finite element subspace of H1

0 (Ω) associated with the triangu-
lation Td .

2.5 Discrete Variational Problem

Using the edge element space Vh(Ω), the system (3) may be approximated as fol-
lows: Find uh ∈Vh(Ω) such that

(αcurl uh,curl vh)+ (βuh,vh) = (f,vh), ∀vh ∈Vh(Ω). (4)

Define the operator A : Vh(Ω)→Vh(Ω) by

(Auh,vh) = (αcurl uh,curl vh)+ (βuh,vh), ∀uh,vh ∈Vh(Ω),

Then, (4) can be written in the operator form

Auh = fh (5)

where fh is the L2-projection of f onto Vh(Ω).

3 A Nearly Optimal Preconditioner for A

3.1 Construction of the Preconditioner

We first introduce some useful sets and subspaces.
Eh: the set of all edges from the triangulations Th;
EΓ ,h: the set of edges which belong to Eh and have two endpoints on the interface

Γ ;
Ed : the set of all (coarse) edges from the triangulations Td ;
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WE: the union of all the coarse edges E′ ∈ Ed , which have a common endpoint
with the coarse edge E ∈ Ed . And WE is called E-basket.

E b
E,h: the set of all (fine) edges which belong to Eh and have at least one endpoint

on WE;
Let D be either a subdomain Dr or a subdomainΩk or a subdomainΩi j or a sub-

domain Dmn. The restrictions of Vh(Ω) (resp. Zh(Ω)) on D is denoted by Vh(D) (resp.
Zh(D)). The following local subspaces of Vh(D) will be important to our analysis:

V 0
h (D) =

{
v ∈Vh(D); v×n = 0 on ∂D

}
,

and
Z0

h(D) =
{
ϕ ∈ Zh(Ω); supp ϕ ⊂ D

}
.

We define subspaces of Vh(Ω):

V H
h (Ω) =

{
v ∈Vh(Ω); v is the discrete A-extension of v|∂Ωk

in each Ωk

}
,

V H
h (Ωi j) =V H

h (Ω)
⋂

V 0
h (Ωi j),

and for E ∈ Ed ,

V E
h (Ω) =

{
v ∈V H

h (Ω); λe(v) = 0 for each e ∈ EΓ ,h\E b
E,h

}
.

It is well known that a suitable coarse subspace plays a key role in the construc-
tion of an effective domain decomposition preconditioner, and it is generally rather
technical and problem-dependent to choose such a coarse subspace. Surprisingly we
are going to choose the coarse subspace to be the simplest one, namely the subspace
Vd(Ω) induced by the coarse triangluation Td .

It is easy to see that the space Vh(Ω) has the (non-direct sum) decomposition

Vh(Ω) =Vd(Ω)+
N

∑
k=1

V 0
h (Ωk)+∑

E
V E

h (Ω)+∑
Γi j

V H
h (Ωi j). (6)

Next, we define the corresponding solvers on the subspaces V 0
h (Ωk), V E

h (Ω),
V H

h (Ωi j) and Vd(Ω).
As usual, we denote the restriction of A on V 0

h (Ωk) by Ak, i.e.,

(Akv,u)Ωk = (Av,u) = A (v,u), v ∈V 0
h (Ωk), ∀u ∈V 0

h (Ωk).

Let Bk : V 0
h (Ωk)→V 0

h (Ωk), Bd : Vd(Ω)→Vd(Ω) and Bi j : V H
h (Ωi j)→V H

h (Ωi j)
be the symmetric and positive definite operators such that

(Bkv,v)� (Akvk,vk)Ωk , ∀v ∈V 0
h (Ωk),

where vk = v|Ωk for k = 1,2, · · · ,N, and



78 Q.Y. Hu, S. Shu, J. Zou

(Bdvd,vd) � A (vd ,vd), ∀vd ∈Vd(Ω),

(Bi jv,v) � A (v,v), ∀v ∈V H
h (Ωi j).

The symbol � above means each of the two quantities involved is bounded by the
other up to a constant independent of h, d and functions involved in the two quanti-
ties.

The local solvers on V E
h (Ω) should be solvable in an efficient manner, and their

constructions are much more tricky and technical than the others. To do so, we intro-
duce more notation.

For any face F from the triangulations Td , we use Fb to denote the union of all
Th-induced (closed) triangles on F, which have either one single vertex or one edge
lying on ∂ F, and F∂ to denote the open set F\Fb. For any subdomainΩk, define

Δk =
⋃

F⊂Γk

Fb, k = 1, · · · ,N.

We will also need the so-called tangential divergence divτΦ = curlSΦ for Φ ∈
Vh(Γk), which is defined here as in [1, 2]. Then we can introduce our local solver
BE : V E

h (Ω)→V E
h (Ω) as follows:

(BEv,u) = h[1+ log(d/h)]
N

∑
k=1

{
αk〈divτ(v×n)|Γk ,divτ (u×n)|Γk〉Δk

+ βk〈v×n,u×n〉Δk

}
, v ∈V E

h (Ω), ∀u ∈V E
h (Ω). (7)

For convenience, we call BE an E-basket local solver.
Let Qk : Vh(Ω)→ V 0

h (Ωk), Qd : Vh(Ω)→ Vd(Ω), QE : Vh(Ω)→ V E
h (Ω) and

Qi j : Vh(Ω)→V H
h (Ωi j) be the standard L2-projections. Then we are ready to propose

our new preconditioner for A as follows:

B−1 = B−1
d Qd +

N

∑
k=1

B−1
k Qk +ω∑

E
B−1

E QE +∑
Γi j

B−1
i j Qi j, (8)

where ω is a (constant) relaxation parameter, which is introduced to obtain a balance
between the local solvers BE and other remaining solvers.

3.2 Algorithm Based on the New Preconditioner and Main Results

The action of the preconditioner B−1 which is needed in each PCG iteration can be
described in the following algorithm.

Algorithm 4.1. For g ∈Vh(Ω), we can compute u = B−1g in five steps.

Step 1. Solve the system for ud ∈Vd(Ω):

(Bdud ,vd) = (g,vd), ∀vd ∈Vd(Ω);
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Step 2. Solve the following system for uk ∈V 0
h (Ωk) in each subdomain in paral-

lel:
(Bkuk,v) = (g,v), ∀v ∈V 0

h (Ωk), k = 1, · · · ,N;

Step 3. Solve the following system for ui j ∈ V 0
h (Ωi j) in each subdomain Ωi j in

parallel:

(Bi jui j,v) = (g,v)− (Aiui,v)Ωi− (A ju j,v)Ω j , ∀v ∈V 0
h (Ωi j);

Step 4. Solve the system for uE ∈V E
h (Ω):

(BEuE,v) = (g, ṽ)−
N

∑
k=1

(Akuk, ṽ), v ∈V E
h (Ω),

where ṽ ∈Vh(Ω) is a natural extension of (v×n)|Γ by zero.
Step 5. Set Φh = (∑

Γi j

ui j +∑
E

uE)× n|Γ and compute the A-extension of Φh on

each Ωk to obtain uH ∈V H
h (Ω). This leads to

u = ud +
N

∑
k=1

uk +uH .

Remark 1. For the local solver Bi j on each face Γi j, we may use the face extended
domain formed by, e.g., one half of each of the two neighboring subdomains Ωi

and Ω j. Such definition of Bi j’s can reduce the computational complexity in their
numerical realization.

Let E denote a coarse edge of the subdomain Dr. Define

V⊥h (Ω) = {vh : vh ∈Vh(Ω),
∫

E
vh · tEds = 0 for each E}.

We shall use κ⊥(B−1A) to denote the induced condition number of the precondi-
tioned system B−1A associated with the subspace V⊥h (Ω), namely the condition
number of B−1A restricted on the subspace V⊥h (Ω) (cf. [17]). At this moment we
are able to establish only the following estimate of the induced condition number. As
the estimate is quite lengthy and technical, we cannot include it here due to the page
limitation.

Theorem 1. Under the assumptions (2), the preconditioner B given in (8) is nearly
optimal in the sense that

κ⊥(B−1A)≤C[1+ log(d/h)]2[1+ log(1/h)]2 (9)

where the constant C is independent of h, d and the jumps of the coefficients.

As we see from the above theorem that the induced condition number grows
logarithmically with the degrees of freedom in each subdomain, but also with the
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degrees of freedom of the entire fine mesh. We believe this is mainly due to the re-
striction of our current analysis technique, namely the estimate must be done for the
induced condition number in the subspace V⊥h (Ω) associated with the coarse trian-
gulation formed by the material subdomains Dr. We expect the estimate should be
finally carried out directly in the entire edge element space Vh(Ω), that will remove
the logarithmic factor of 1/h in the estimate (9). This expectation has already been
confirmed by our three-dimensional numerical experiments; see the next section.

4 Numerical Experiments

In this section we shall conduct some numerical experiments to check the conver-
gence of the newly proposed preconditioner, and find out whether they are consistent
with the prediction of the convergence theory developed in the previous sections.

In our experiments, we take the domain to be the unit cube Ω = (0,1)3, while
the right-hand side f of the system (1) is selected such that the exact solution u =
(u1,u2,u3)

T is given by

u1 = xyz(x−1)(y−1)(z−1) ,

u2 = sin(πx)sin(πy)sin(πz) ,

u3 = (1− ex)(1− ex−1)(1− ey)(1− ey−1)(1− ez)(1− ez−1) ,

when the coefficients α(x) and β (x) are both constant 1. This right-hand side f is
then fixed in all our experiments, but the coefficients α(x) and β (x) may be taken
differently.

We then need to triangulate the domain Ω into subdomains {Ωk}. For this, we
first partition the three edges of Ω on x-, y- and z-axis into n equal subintervals from
which one can naturally generate n3 equal smaller cubes of size d = 1/n. This yields
the desired subdomain decomposition in our experiments.

Next, we further triangulate each subdomain Ωk to get a fine triangulation Th of
size h over the domain Ω . To generate Th, we divide each subdomain into m3 equal
smaller cubes of size h = 1/(mn), in the same manner as done in the previous subdo-
main generation. Then Th is obtained by triangulating each cube into six tetrahedra.
For easy identification, we may denote the triangulation Th as m3(n3) below.

The edge finite element space of the lowest order is used for the discretization
of (3). The resulting system (5) is solved by PCG method with the newly proposed
preconditioners B defined in Sect. 4. We shall choose the balancing parameter ω in
front of the E-basket local solvers BE in (8) as ω = 1 or ω = 2.5.

We consider various distributions of the coefficients α(x) and β (x) and report
the corresponding numbers of PCG iterations, and the condition numbers of B−1A
for some representative cases. The PCG iteration is terminated in our experiments
when the relative residual is less than 10−6.

Case (i): coefficients α(x) = β (x) = 1, with no jumps. The PCG iterations and the
condition numbers (in brackets) for ω = 2.5 are listed in Table 1.



A Substructuring Preconditioner for Maxwell’s Equations 81

ω = 1.0 ω = 2.5
m \n 4 6 8 10 4 6 8 10

4 34 33 32 32 31 (34.24) 31 (36.31) 31 (36.94) 30 (37.40)
8 41 40 39 38 39 (52.15) 38 (53.78) 37 (54.21) 37 (54.61)

12 48 47 44 42 43 (64.29) 43 (65.91) 41 (66.19) 41 (66.62)
16 51 50 49 45 47 (74.40) 46 (75.69) 44 (75.82) 44 (76.39)

Table 1. Iterations (and condition numbers) with smooth coefficients

We observe from the above table that the number of PCG iterations grows slowly
when m = d/h increases but n = 1/d is fixed, and that these numbers vary stably
when m is fixed but n increases. This justifies our early expection that the condition
number of the preconditioned system B−1A should grow logarithmically with d/h
only, not with 1/h.

One important issue we like to draw the readers’ attention to is the large-scale of
the discrete system we are solving. For instance, when m = 16 and n = 10, the total
number of degrees of freedom for the fine edge element system is about 28,672,000.

Case (ii): coefficients α(x) and β (x) have large jumps:

α(x) = β (x) = α0 in D; α(x) = β (x) = 1 in Ω\D.

where D ⊂ Ω is a union of several subdomains Ωk. We choose α0 = 10−5 or α0 =
105, and consider two choices of D, where one does not have cross-points, while the
other has one cross-point.

Example 1:

D = [
1
4
,

1
2
]3 .

Example 2:

D = [
1
4
,

1
2
]3
⋃
[
1
2
,

3
4
]3.

The numerical results are given in Tables 2 and 3, from which we can make some
similar observations about the PCG convergence in terms of the mesh and subdomain
quantities d/h and d as we did for Case (i).

Example 1 Example 2
ω = 1.0 ω = 2.5 ω = 1.0 ω = 2.5

m \n 4 8 4 8 4 8 4 8
4 29 31 26 (32.00) 29 (35.97) 28 30 26 (35.51) 30 (35.97)
8 35 38 32 (44.88) 37 (52.97) 35 38 32 (45.88) 37 (52.59)

12 38 45 36 (56.02) 42 (64.96) 37 45 35 (55.66) 41 (63.81)
16 40 49 37 (64.65) 45 (74.68) 40 49 37 (65.65) 45 (74.31)

Table 2. Iterations (and condition numbers) with α0 = 10−5
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Example 1 Example 2
ω = 1.0 ω = 2.5 ω = 1.0 ω = 2.5

m \n 4 8 4 8 4 8 4 8
4 42 42 36 (40.47) 36 (42.71) 42 44 38 (40.55) 37 (42.72)
8 49 48 45 (61.08) 44 (62.89) 52 51 46 (60.20) 45 (62.89)

12 55 54 50 (74.04) 49 (76.28) 56 56 50 (76.24) 51 (76.28)
16 59 57 54 (91.51) 52 (86.45) 59 59 53 (83.35) 54 (86.45)

Table 3. Iterations (and condition numbers) with α0 = 105

Case (iii): coefficients α(x) and β (x) have large jumps:

α(x) =

⎧⎨
⎩
α0, in D

1, in Ω\D,
β (x) =

⎧⎨
⎩
β0, in D

1, in Ω\D,

where D ⊂ Ω is a union of several subdomains Ωk. We choose α0 = 10−5 or α0 =
105, but β0 = α0. We still consider two different regions D from Examples 1 and 2 in
the previous Case (ii), but choose the balancing parameter ω in front of the E-basket
local solvers BE in (8) as ω = 2.5.

The numerical results are given in Tables 4 and 5. Again, we can make simi-
lar observations about the PCG convergence in terms of the mesh and subdomain
quantities d/h and d as we did for Case (i).

Example 1 Example 2
β0 = α0×102 β0 = α0×10−2 β0 = α0×102 β0 = α0×10−2

m \n 4 8 4 8 4 8 4 8
4 30 36 46 47 30 36 45 47
8 39 43 56 56 39 45 56 56

16 49 52 65 65 49 52 63 65

Table 4. Iterations with α0 = 10−5

Example 1 Example 2
β0 = α0×102 β0 = α0×10−2 β0 = α0×102 β0 = α0×10−2

m \n 4 8 4 8 4 8 4 8
4 31 37 38 41 31 37 39 46
8 37 47 46 49 37 47 53 58

16 48 56 55 57 48 56 66 73

Table 5. Iterations with α0 = 105

We may also observe from the previous numerical experiments that appropriate
choices of the parameter ω can significantly improve the efficiency of the precon-
ditioner B. It is important to see that the choices of ω seem independent of the fine
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and coarse meshsizes h and d, so we may determine ω by solving some small scale
systems, e.g., a system with m = n = 4.
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1 Introduction

Coarse space correction is essential to achieve algorithmic scalability in domain de-
composition methods. Our goal here is to build a robust coarse space for Schwarz–
type preconditioners for elliptic problems with highly heterogeneous coefficients
when the discontinuities are not just across but also along subdomain interfaces,
where classical results break down [3, 6, 9, 15].

In previous work, [7], we proposed the construction of a coarse subspace based
on the low-frequency modes associated with the Dirichlet-to-Neumann (DtN) map
on each subdomain. A rigorous analysis was recently provided in [2]. Similar ideas
to build stable coarse spaces, based on the solution of local eigenvalue problems on
entire subdomains, can be found in [4], and even traced back to similar ideas for
algebraic multigrid methods in [1]. We will argue below that the DtN coarse space
presented here is unaffected by coefficient variations that are strictly interior to the
subdomain, being as robust as the coarse space analysed in [4].

The robustness result that we obtain, generalizes the classical estimates for over-
lapping Schwarz methods to the case where the coarse space is richer than just the
constant mode per domain [8], or other classical coarse spaces (cf. [15]). The analysis
is inspired by that in [4, 13] and crucially uses the framework of weighted Poincaré
inequalities, introduced in [10, 11] and successfully applied also to other methods in
[12, 14].

2 Two-Level Schwarz Method with DtN Coarse Space

We consider the variational formulation of a second order, elliptic boundary value
problem with Dirichlet boundary conditions: Find u∗ ∈ H1

0 (Ω), for a given domain

R. Bank et al. (eds.), Domain Decomposition Methods in Science and Engineering XX,
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Ω ⊂ R
d (d = 2 or 3) and a source term f ∈ L2(Ω), such that

a(u∗, v)≡
∫
Ω
α(x) ∇u∗ ·∇v =

∫
Ω

f v≡ ( f , v) , ∀v ∈H1
0 (Ω), (1)

and the diffusion coefficient α = α(x) is a positive piecewise constant function that
may have large variations within Ω .

We consider a discretization of the variational problem (1) with continuous,
piecewise linear finite elements (FE). For a shape regular, simplicial triangulation
Th of Ω , the standard space of continuous and piecewise linear functions (w.r.t Th)
is then denoted by Vh. The subspace of functions from Vh that vanish on the bound-
ary of Ω is denoted by Vh,0. The discrete FE problem that we want to solve is: Find
uh ∈Vh,0 such that

a(uh,vh) = ( f ,vh), ∀vh ∈Vh,0. (2)

Given the usual nodal basis {φi}n
i=1 for Vh,0 consisting of “hat” functions with n :=

dim(Vh,0), (2) can be compactly written as

Au = f, with Ai j := a(φ j,φi) and fi = ( f ,φi), i, j = 1, . . . ,n, (3)

where u and f are respectively the vector of coefficients corresponding to the un-
known FE function uh in (2) and to the r.h.s function f .

Two-level Schwarz type methods for (2) are now constructed by choosing an
overlapping decomposition {Ω j}J

j=1 of Ω with a subordinate partition of unity

{χ j}J
j=1, as well as a suitable coarse subspace VH ⊂ Vh,0. In practice the overlap-

ping subdomainsΩ j can be constructed automatically given the system matrix A by
using a graph partitioner, such as METIS, and adding on a number of layers of fine
grid elements to the resulting nonoverlapping subdomains. A suitable partition of
unity can be constructed from the geometric information of the fine grid. For more
details see e.g. [15] or [2]. We assume that each point x ∈ Ω is contained in at most
N0 subdomainsΩ j.

The crucial ingredient to obtain robust two-level methods for problems with het-
erogeneous coefficients is the choice of coarse space VH ⊂Vh,0. Let us assume for the
moment that we have such a space VH and a restriction operator R0 from Vh,0 to VH

and define restriction operators R j from functions in Vh,0 to functions in Vh,0(Ω j), or
from vectors in R

n to vectors in R
dimVh,0(Ω j), by setting (R ju)(xi) = u(xi) for every

grid point xi ∈ Ω j. The two-level overlapping additive Schwarz preconditioner for
(3) is then simply

M−1
AS,2 =∑J

j=0 RT
j A−1

j R j where A j := R jART
j , j = 0, . . . ,J. (4)

In the classical algorithm VH consists simply of FEs on a coarser triangulation
TH of Ω and RH is the canonical restriction from Vh,0 to VH , leading to a fully scal-
able iterative method with respect to mesh/problem size (provided the overlap size is
proportional to the coarse mesh size H). However, unfortunately this preconditioner
is not robust to strong variations in the coefficient α . We will now present a new,
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completely local approach to construct a robust coarse space, as well as an asso-
ciated restriction operator using eigenvectors of local Dirichlet-to-Neumann maps,
proposed in [7].

We start by constructing suitable local functions on each subdomainΩ j that will
then be used to construct a basis for VH . To this end, let us fix j ∈ {1, . . . ,J} and
first consider at the continuous level the Dirichlet-to-Neumann map DtN j on the
boundary of Ω j. Let Γj := ∂Ω j and let vΓ : Γj → R be a given function, such that
vΓ |∂Ω = 0 if Γj ∩∂Ω = /0. We define

DtN j(vΓ ) := α
∂v
∂ν j

∣∣∣∣
Γj

,

where ν j is the unit outward normal to Ω j on Γj, and v satisfies

−div(α∇v) = 0 in Ω j, v = vΓ on Γ . (5)

The function v is the α–harmonic extension of the boundary data vΓ to the interior
of Ω j.

To construct the (local) coarse basis functions, we now find the low frequency
modes of the Dirichlet-to-Neumann operator DtN j with respect to the weighted L2–
norm on Γj, i.e. the smallest eigenvalues of

DtN j(v
( j)
Γ ) = λ ( j)αv( j)

Γ . (6)

Then we extend each of these modes v( j)
Γ α–harmonically to the whole domain and

let v( j) be its extension. This is equivalent to the Steklov eigenvalue problem of
looking for the pair (v( j),λ ( j)) which satisfies:

−div(α∇v( j)) = 0 in Ω j and α
∂v( j)

∂ν j
= λ αv( j) on Γj. (7)

The variational formulation of (7) is to find (v( j),λ ( j)) ∈ H1(Ω j)×R such that
∫
Ω j

α∇v( j) ·∇w = λ ( j)
∫
Γj

tr jα v( j)w , ∀w ∈H1(Ω j), (8)

where tr jα(x) :=limy∈Ω j→xα(y). To discretize this generalized eigenvalue problem,
we consider for all v,w ∈H1(Ω j) the bilinear forms

a j(v,w) :=
∫
Ω j

α∇v ·∇w and m j(v,w) :=
∫
Γj

tr jαvw

and restrict (8) to the FE space Vh(Ω j). The coefficient matrices associated with the
variational forms a j and m j are

A( j)
kl :=

∫
Ω j

α∇φk ·∇φl and M( j)
kl :=

∫
Γj

tr jαφk φl ,
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where φk and φl are any two nodal basis functions for Vh(Ω j) associated with vertices
of Th contained in Ω j. Then the FE approximation to (8) in matrix notation is

A( j)v( j) = λ ( j)M( j)v( j) (9)

where v( j) ∈ R
n j , n j := dimVh(Ω j), denotes the degrees of freedom of the FE ap-

proximation to v( j) in Vh(Ω j).

Let the n j eigenpairs (λ ( j)
� ,v�)

n j
�=1 corresponding to (9) be numbered in increasing

order of λ ( j)
� . Since M( j)

kl = 0 only if φk and φl are associated with the nΓ vertices

of Th that lie on Γj, it is easy to see that at most nΓ of the eigenvalues λ ( j)
� are

finite. Moreover, the smallest eigenvalue λ ( j)
1 = 0 with constant eigenvector and the

set of eigenvectors {v�}n j
�=1 can be chosen so that they are A( j)–orthonormal. The

local coarse space is now defined as the span of the FE functions v( j)
� ∈ Vh(Ω j),

� ≤ m j ≤ nΓ , corresponding to the first m j eigenpairs of (9). For each subdomain

Ω j, we choose the value of m j such that λ ( j)
� < diam(Ω j)

−1, for all � ≤ m j, and

λ ( j)
mj+1 ≥ diam(Ω j)

−1. We will see in the analysis in the next section why this is a
sensible choice.

Using the partition of unity {χ j}J
j=1, we now combine the local basis functions

constructed in the previous section to obtain a conforming coarse space VH ⊂Vh,0 on
all of Ω . The new coarse space is defined as

VH := span
{

Ih

(
χ jv

( j)
�

)
: 1≤ j ≤ J and 1≤ �≤ m j

}
, (10)

where Ih is the standard nodal interpolant onto Vh,0(Ω). The dimension of VH is

∑J
j=1 m j. By construction each of the functions Ih

(
χ jv

( j)
�

) ∈ Vh0 , so that as required
VH ⊂ Vh,0. The transfer operator R0 from Vh0 to VH is defined in a canonical way by
setting RT

0 uH(xi) = uH(xi), for all uH ∈VH and for all vertices xi of Th.
We will see in the next section that under some mild assumptions on the variabil-

ity of α this choice of coarse space leads to a scalable and coefficient-robust domain
decomposition method with supporting theory.

3 Conditioning Analysis

To analyse this method let us first define the boundary layerΩ ◦j := {x∈Ω j : χ j(x)<
1} for each Ω j that is overlapped by neighbouring domains, i.e. We assume that this
layer is uniformly of width ≥ δ j, in the sense that it can be subdivided into shape
regular regions of diameter δ j, and that the triangulation Th resolves it. This also
guarantees that it is possible to find a partition of unity such that |χ j| = O(1) and
|∇χ j|= O(δ−1

j ).
We now state the key assumption on the coefficient distribution α(x).

Assumption 1 We assume that, for each j = 1, . . . ,J, there exists a set Xj ⊂ Γj (not

necessarily connected) such that (i) maxx,y∈Xk
α(x)
α(y) =O(1) and (ii) there exists a path
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Py from each y ∈Ω j to Xj, such that α(x) is an increasing function along Py (from y
to Xj).

Lemma 1 (weighted Poincaré inequality [10]). Let Assumption 1 hold.∫
Ω◦j
α|v− vXj |2 ≤ CP δ j

∫
Ω◦j
α|∇v|2, for all v ∈Vh(Ω j),

where vXj := 1
|Xj |

∫
Xj

v.

Remark 1. Note that Assumption 1 is related to the classical notion of quasi-mono-
tonicity coined in [3]. It ensures that the constant CP in the Poincaré-type inequality
in Lemma 1, as well as all the other (hidden) constants below are independent of the
values of the coefficient function α(x). The constants may however depend logarith-
mically or linearly on δ j/h. This depends on the geometry and shape of the paths Py

and on the size and shape of the set Xj. For more details see [2] and [10, 11].

The following proposition [2, Theorem 3.1] is the central result in our analysis.
It proves the stability and a weak approximation property for a local projection onto
the span of the first m j eigenvectors.

Proposition 1. Let Assumption 1 hold, and for any u ∈Vh(Ω j), define the projection

Π ju := ∑
mj
�=1 a j(v

( j)
� ,u)v( j)

� . Then

|Π ju|a,Ω j ≤ |u|a,Ω j and (11)

‖u−Π ju‖0,α ,Ω◦j �
√

c j(m j)δ j |u|a,Ω j . (12)

where c j(m j) :=C2
P +

(
δ jλ

( j)
mj+1

)−1
.

As usual (cf. [15]), the following condition number bound can then be obtained
via abstract Schwarz theory by constructing a stable splitting.

Theorem 1. Let Assumption 1 be satisfied. Then the condition number of the two-
level Schwarz algorithm with the coarse space VH based on local DtN maps and
defined in (10) can be bounded by

κ(M−1
AS,2A) � J

max
j=1
{c j(m j)} � C2

P +
J

max
j=1

(
δ jλ

( j)
mj+1

)−1
.

The hidden constant is independent of h, δ j , diam(Ω j), and α .

Proof. We construct a stable splitting for a function u ∈ Vh,0 using the projections
Π j, j = 1, . . . ,J, in Proposition 1 to define the coarse quasi-interpolant

u0 := Ih

(
∑J

j=1 χ jΠ ju|Ω j

)
∈VH . (13)

If we now choose u j := Ih(χ j(u−Π ju)) ∈Vh,0(Ω j), then

u =∑J
j=0 u j and ∑J

j=0

∫
Ω
α|∇u j|2 � J

max
j=1
{c j(m j)}

∫
Ω
α|∇u|2

For details see the proof of [2, Theorem 3.3].
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Remark 2. Note that by choosing the number m j of modes per subdomain such that

λ ( j)
mj+1 ≥ diam(Ω j)

−1, as stated in Sect. 2, we have

κ(M−1
AS,1A)�

(
C2

P +max j diam(Ω j)/δ j
)
.

Hence, provided the constant CP is uniformly bounded, independently of any jumps
in the coefficients, we retrieve the classical estimate for the two-level additive
Schwarz method independently of any variations of coefficients across or along sub-
domain boundaries.

4 Numerical Results

We choose Ω = (0,1)2 and discretize (1) on a uniform grid with 2m2 elements,
setting u = 0 on the left hand boundary and ∂u

∂ν = 0 on the remainder. We use METIS
to split the domain into 16 irregular subdomains as shown in Fig. 1 and construct the
overlapping partition by extending each subdomain by one layer of fine grid elements
using Freefem++ [5].

As the coarse space we use the DtN coarse space described in Sect. 2 with m j

chosen such that λ ( j)
mj < diam(Ω j)

−1 ≤ λ ( j)
mj+1, for all j = 1, . . . ,16 (labelled D2N).

We compare this preconditioner with the one-level additive Schwarz method (la-
belled NONE) and the two-level method with partition of unity coarse space, i.e.
choosing m j = 1 for all j (labelled POU). To confirm in some sense the optimality
of our choice for m j, we also include results with the DtN coarse space choosing
m j +1 and max{1,m j−1} basis functions per subdomain (labelled D2N+ and D2N-,
respectively). We use the preconditioners within a conjugate gradient iteration with
tolerance 10−7.

In the first test case (Example 1), we choose m = 160 and α as depicted in
Fig. 2, i.e. 25 high permeability inclusions and one channel. In the second test case
(Example 2), we choose m= 80 and α to be a realization of a log-normal distribution
with exponential covariance function (variance σ2 = 4 and correlation length λ =
4/m) and mean of logα equal 3 (cf. Fig. 3).

In Fig. 4 we plot ‖u− ū‖∞ for Example 1 against the iteration count, where ū is
the solution of (3) obtained via a direct solver. Clearly both the one-level and the
two-level preconditioner with POU coarse space are not robust. The POU coarse
space seems to have hardly any influence at all (520 versus 619 iterations), whereas
the new DtN coarse space leads to a robust convergence and a significantly reduced
number of iterations of 64.

Finally, in Table 1 we compare the different preconditioners and show that the
criterion for the number m j of eigenmodes that we select in each subdomain is in
some sense optimal. Adding one more functions has hardly any impact on the perfor-
mance while removing one has a strong negative impact. See [2] for more extensive
numerical experiments.
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Fig. 1. Partition into 16 subdomains

IsoValue
-99998.9
50001
150001
250001
350001
450001
550001
650001
750001
850001
950000
1.05e+06
1.15e+06
1.25e+06
1.35e+06
1.45e+06
1.55e+06
1.65e+06
1.75e+06
2e+06

Fig. 2. Example 1 (maxx,y
α(x)
α(y) = 2 ·106)
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1.49376
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2.99041
3.73873
4.48706
5.23539
5.98371
6.73204
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8.22869
8.97702
10.8478

Fig. 3. Example 2 (maxx,y
α(x)
α(y) = 7 ·106)
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Fig. 4. Convergence history (Example 1)

Coarse space size dimVH # PCG Iterations (tol= 10−7)
NONE POU D2N- D2N D2N+ NONE POU D2N- D2N D2N+

Example 1 0 16 32 46 62 619 520 446 64 37
Example 2 0 16 82 98 114 89 92 50 38 36

Table 1. Comparison of DtN coarse space against simple POU coarse space and no coarse
space, as well as demonstration of “optimality” of automatic criterion for choosing {m j}.
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Summary. The usual setting of an eddy current problem distinguishes between a conduct-
ing region and an air region (non-conducting) surrounding the conductor. For the numerical
approximation of this heterogeneous problem it is very natural to use iterative substructur-
ing methods based on transmission conditions at the interface. We analyze the convergence
of the Dirichlet-Neumann iterative method for two different formulations of the eddy current
problem: the one that consider as main unknown the electric field and the one based on the
magnetic field.

1 Introduction

To model the electromagnetic phenomena concerning alternating currents at low fre-
quencies it is often used the time-harmonic eddy current model (see e.g. [2]). The
main equations of this model are Faraday’s law

curl E =−iωμH in Ω , (1)

and Ampère’s law
curl H = σE+ Je in Ω , (2)

where E, H and Je denote the electric field, the magnetic field and the applied current
density respectively. For the sake of simplicity we assume that the computational do-
main Ω ⊂ R

3 is a simply connected Lipschitz polyhedron with connected boundary
that contains a conducting region ΩC ⊂⊂ Ω and that both ΩC and its complement
ΩI :=Ω \ΩC are connected Lipschitz polyhedra. Let us denote Γ :=ΩC ∩ΩI . The
magnetic permeability μ is assumed to be a symmetric uniformly positive definite
3×3 matrix with entries in L∞(Ω), whereas the electric conductivity σ is supposed
to be a bounded symmetric positive definite matrix in the conducting regions, and to
be null in non-conducting regions. The real scalar constant ω = 0 is a given angu-
lar frequency. In ∂Ω suitable boundary conditions must be assigned. Most often the
tangential component of either the electric field E×n or the magnetic field H×n are
given (here n denotes the unit outward normal vector on ∂Ω ).
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Let us introduce some notations that will be used in the following. The space
H(curl ;Ω) indicates the set of real or complex vector valued functions v∈ (L2(Ω))3

such that curl v ∈ (L2(Ω))3 and H0(curl ;Ω) its subspace constituted by curl-free
functions. Given a certain subset Λ ⊂ ∂Ω , we denote by H0,Λ (curl ;Ω) the sub-
space of functions in H(curl ;Ω) such that their tangential trace is null on Λ , and in
particular we write H0(curl ;Ω) := H0,∂Ω (curl ;Ω).

We recall the spaces H−1/2(curlτ ;∂Ω) :=
{
(n×v×n)|∂Ω |v ∈ H(curl ;Ω)

}
,

and H−1/2(divτ ;∂Ω) :=
{
(v×n)|∂Ω |v ∈ H(curl ;Ω)

}
, (see [4]). These two spaces

are in duality and the following formula of integration by parts holds true
∫
Ω
(w · curl v− curl w ·v) = 〈w×n,n×v×n〉∂Ω ∀w, v ∈ H(curl ;Ω) .

2 One Field Formulations

First we notice that Eqs. (1) and (2) do not completely determine the electric field in
ΩI and it is necessary to require the gauge condition

divEI = 0 in ΩI . (3)

(Here and in the sequel, given any vector field v defined in Ω , we denote vL its
restriction to ΩL, L =C, I.) When imposing electric boundary conditions, E×n = 0
on ∂Ω , in order to have a unique solution we need to impose the additional gauge
condition

∫
Γ EI ·n = 0.

From Faraday law μ−1curl E = −iωH and replacing in Ampère law one has
curl (μ−1curl E) = −iω(σE+ Je). So the E-based formulation of the eddy current
problem with electric boundary conditions reads

curl (μ−1curl E)+ iωσE =−iωJe in Ω
divEI = 0 in ΩI∫
Γ EI ·n = 0

E×n = 0 on ∂Ω .

Since σ ≡ 0 in the non-conducting region, the generator current has to satisfy the
compatibility conditions divJe,I = 0 in ΩI and, when imposing E× n = 0 on ∂Ω ,∫
Γ Je,I ·n = 0.

Notice that the two gauge conditions divEI = 0 and
∫
Γ EI ·n = 0 are equivalent

to
∫
ΩI

EI ·∇φ I = 0 for all φI ∈ H1∗ (ΩI) being H1∗ (ΩI) = {φI ∈ H1(ΩI) : φI|∂Ω ≡
0 and φI|Γ is constant}. Hence the weak form of the E-based formulation is

Find E ∈W such that∫
Ω (μ−1curl E · curl w+ iωσE ·w) =−iω

∫
Ω Je ·w

for all w ∈W

where W := {w ∈ H0(curl ;Ω) :
∫
ΩI

wI ·∇φ I = 0 ∀φI ∈ H1∗ (ΩI)}.
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Remark 1. The gauge conditions can be imposed by means of a Lagrange multiplier.
(See [2], Sect. 4.6.)

Due to the heterogeneous nature of the problem, it is natural to consider an it-
erative procedure by subdomains in order to deal with homogeneous problem. A
procedure of this kind is the following:

Given λλλ (0) ∈H−1/2(curl τ ;Γ ) for n≥ 0

find E(n+1)
I ∈WI such that

n×E(n+1)
I ×n = λλλ (n) on Γ∫

ΩI
μ−1curl E(n+1)

I · curl wI =−iω
∫
ΩI

Je,I ·wI ∀wI ∈WI ∩H0(curl ;ΩI) ;

find E(n+1)
C ∈H(curl ;ΩC) such that∫

ΩC
(μ−1curl E(n+1)

C · curl wC + iωσE(n+1)
C ·wC) =−iω

∫
ΩC

Je,C ·wC

−〈μ−1curl E(n+1)
I ×nI,n×wC×n〉Γ ∀wC ∈H(curl ;ΩC) ;

set

λλλ (n+1) = (1−θ )λλλ (n) +θ (n×E(n+1)
C ×n)|Γ ,

where WI := {wI ∈ H0,∂Ω (curl ;ΩI) :
∫
ΩI

wI ·∇φ I = 0 ∀φI ∈ H1∗ (ΩI)}, nI denotes
the unit normal vector on Γ pointing outwards ΩI and θ is a positive acceleration
parameter.

Another possibility is to eliminate the electric field. Multiplying Faraday law by
a function v ∈ H0(curl ;Ω) with curl vI = 0;

iω
∫
Ω μH ·v = −∫Ω curl E ·v =−∫Ω E · curl v

= −∫ΩC
σ−1(curl HC−Je,C) · curl vC .

Given gI ∈ (L2(ΩI))
3 let V (gI) denotes the space V (gI) := {v ∈ H0(curl ;Ω) :

curl vI = gI}. The weak form of H-based formulation of the eddy current problem
with magnetic boundary conditions H×n = 0 on ∂Ω reads

Find H ∈V (Je,I) such that∫
ΩC
σ−1curl H · curl v+ iω

∫
Ω μH ·v =

∫
ΩC
σ−1Je,C · curl vC

for all v ∈V (0) .
(4)

Since σ ≡ 0 in the non-conducting region, when imposing H×n = 0 on ∂Ω the
generator current has to satisfy the compatibility conditions divJe,I = 0 in ΩI and
Je,I ·n = 0 on ∂Ω . Hence there exists H∗

e,I ∈ H0,∂Ω (curl ;ΩI) such that curl H∗
e,I =

Je,I . Then we can write HI = H∗
e,I +ZI with ZI ∈H0

0,∂Ω (curl ;ΩI). Let H∗
e be a func-

tion in H(curl ;Ω) such that H∗
e|ΩI

=H∗
e,I and let us denote Z :=H−H∗

e ∈V (0). Mul-

tiplying Eq. (4) by −iω−1 and setting F̂(v) :=
∫
Ω μH∗

e · v− iω−1 ∫
ΩC
σ−1curl H∗

e ·
curl v, we can consider the equivalent problem
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Find Z ∈V (0) such that∫
Ω μZ ·v− iω−1 ∫

ΩC
σ−1curl Z · curl v =−iω−1 ∫

ΩC
σ−1Je,C · curl vC− F̂(v)

for all v ∈V (0) .

For the sake of simplicity we will assume that Je,I ·n = 0 onΓ . Then it is possible
to take H∗

e,I ∈ H0(curl ;ΩI) and H∗
e,C equal zero.

Remark 2. Notice that H0
0,∂Ω (curl ;ΩI) = ∇H1

0,∂Ω (ΩI)⊕H (ΩI) where H (ΩI) :=

{vI ∈ H0
0,∂Ω (curl ;ΩI) : divvI = 0 and vI · n = 0 on Γ } that is a space of finite di-

mension. In this geometrical setting the dimension of H (ΩI) coincides with the
first Betti number of ΩI . (See [2], Sect. 5.1.)

We propose an iterative procedure for the solution of the H-based formulation
that start from a data in the trace space

H−1/2
0 (curl τ ;Γ ) := {(n×wI×n)|Γ : wI ∈ H0

0,∂Ω (curl ;ΩI)} .

It reads:

Given λλλ (0) ∈ H−1/2
0 (curl τ ;Γ ) for n≥ 0

find H(n+1)
C ∈ H(curl ;ΩC) such that

n×H(n+1)
C ×n = λλλ (n) on Γ∫

ΩC
(μH(n+1)

C ·vC− iω−1σ−1curl H(n+1)
C · curl vC)

=−iω−1 ∫
ΩC
σ−1Je,C · curl vC ∀vC ∈ H0(curl ;ΩC) ;

find Z(n+1)
I ∈ H0

0,∂Ω (curl ;ΩI) such that∫
ΩI
μZ(n+1)

I ·vI = iω−1〈σ−1(curl H(n+1)
C −Je,C)×nC,n×vI×n〉Γ

−∫ΩI
μH∗

e,I ·vI ∀vI,h ∈ H0
0,∂Ω (curl ;ΩI);

set

λλλ (n+1) = (1−θ )λλλ (n) +θ (n×Z(n+1)
I ×n)|Γ ,

being nC the unit normal vector on Γ pointing outwards ΩC and θ a positive accel-
eration parameter.

3 Convergence Analysis

Both the H-based formulation and the E-based formulation are of the form: find
u ∈V ⊂ H(curl ;Ω) such that

a(u,v) = F(v) ∀v ∈V , (5)

where a(·, ·) is a sesquilinear form continuous and coercive in V ×V and F(·)
is a continuous linear functional on the Hilbert space V . The proposed iterative
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procedures are preconditioned Richardson methods for the Steklov-Poincare equa-
tion obtained in the following way (see e.g. [8]): for L = C, I let us define the
spaces VL := {v|ΩL

: v ∈ V}, X := {(n× v× n)Γ : v ∈ V} and VL,0 := {vL ∈
VL : (n× vL × n)Γ = 0}; the sesquilinear forms aL(·, ·) : VL ×VL → C and the
linear functionals FL : VL → C such that a(v,w) = aC(vC,wC) + aI(vI,wI) and
F(v) = FC(vC)+FI(vI) ∀v , w ∈ V . If the sesquilinear forms aL(·, ·) are contin-
uous and coercive in VL,0 for both L = C, I we can define the extension operators
RL : X →VL in the following way: for any ηηη ∈ X , RLηηη is the unique function in VL

such that
(n×RLηηη×n)|Γ = ηηη
aL(RLηηη ,vL) = 0 ∀vL ∈VL,0 .

Let us consider the Steklov-Poincare operators SL : X → X ′ given by

〈SLηηη ,ννν〉Γ = aL(RLηηη ,RLννν) ∀ηηη , ννν ∈ X .

Moreover we can define the functions ûL ∈VL,0 such that

aL(ûL,vL) = FL(vL) ∀vL ∈VL,0

and χχχL ∈ X ′ given by 〈χχχL,ηηη〉Γ = FL(RLηηη)−aL(ûL,RLηηη) ∀ηηη ∈ X . Let us denote
χχχ = χχχ I + χχχC. The Steklov-Poincare equation reads: find λλλ ∈ X such that

(SI + SC)λλλ = χχχ . (6)

If λλλ is solution of (6) then u =

{
RCλλλ + ûC in ΩC

RIλλλ + ûI in ΩI
is solution of (5).

If for one of the two subdomains the sesquilinear form aL(·, ·) is also continuous
and coercive in VL then for each ξξξ ∈ X ′ there exist a unique FLξξξ ∈ VL such that
aL(FLξξξ ,wL) = 〈ξξξ ,n×wL×n〉Γ ∀wL ∈ VL. It is easy to see that 〈SL(n×FLξξξ ×
n),ηηη〉Γ = 〈ξξξ ,ηηη〉Γ for all ηηη ∈ X hence S−1

L (ξξξ ) = n×FLξξξ ×n. It is well known that
the Dirichlet-Neumann iterative method is equivalent to the preconditioned Richard-
son method for the Steklov-Poincare equation

λλλ (n+1) = λλλ (n) +θS−1
L

[
χχχ− (SI + SC)λλλ (n)

]
.

In the H-based formulation the preconditioner is SI while in the E-based formulation
the preconditioner is SC.

We are interested in the finite element approximation of these problems using the
Nédélec curl-conforming edge elements of degree k, Nk

L,h ⊂H(curl ;ΩL) (see [7]) for
L=C, I. Let us denote ¶k, k≥ 0, the space of polynomials of degree less than or equal
k in the three variables x1, x2, x3, and by ¶̃k the space of homogeneous polynomials of
degree k. For k ≥ 1 we define the polynomial spaces Mk := {q ∈ (¶̃k)

3 |q(x) ·x = 0}
and Rk := (¶k−1)

3⊕Mk. Let us consider a tetrahedral triangulation of Ω , Th, such
that its restriction to ΩL, TL,h, induces a triangulation of ΩL. Then

NL,h := {wh ∈ H(curl ;ΩL) |wh|K ∈ Rk ∀K ∈ TL,h} .
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We want to show that in the discrete setting the iterative procedure converges and
that the convergence rate is independent of h.

The discrete H-based formulation is stated in the space

Vh(0) := {vh ∈ Nk
h : vI,h ∈ H0

0,∂Ω (curl ;ΩI)} ⊂V (0) .

The space X for the Dirichlet-Neumann procedure is

χ0
h = {(n×vh×n)|Γ : vh ∈Vh(0)} ⊂ H−1/2

0 (curl τ ;Γ ) .

In ΩC we use the standard Nédélec finite elements Nk
C,h, while in ΩI we have the

finite element space
VI,h(0) = Nk

I,h∩H0
0,∂Ω (curl ;ΩI) .

Remark 3. Let Lk
I,h ⊂ H1(ΩI) be the space of standard Lagrange finite elements of

degree k and HI,h,0 = Lk
I,h∩H1

0,∂Ω (ΩI). Then

VI,h(0) = ∇HI,h,0 +HI,h

where HI,h is a space whose dimension coincides with nΓ , the first Betti number of
ΩI . More precisely, there exits a system of cutting surfaces Ξl , l = 1, . . . ,nΓ with
∂Ξl ⊂ Γ such that every function vI ∈ H0,∂Ω (curl ;ΩI) restricted to ΩI \∪nΓ

l=1Ξl is
the gradient of a function belonging to H1(ΩI \∪nΓ

l=1Ξl) (see e.g. [3, 5, 6]). If the
triangulation TI,h induces a triangulation on each surface Ξl the space HI,h is the
one generated by the (L2(ΩI))

3-extension of the gradient of the piecewise linear
function taking value one at the node on one side of Ξl and value zero at all the other
nodes including those on the other side of Ξl (see [2], Sect. 5.4).

Concerning the E-based formulation, for its finite element approximation we
consider the space

Wh := {wh ∈ Nk
h :

∫
ΩI

wh ·∇∇∇φ I,h = 0 ∀φI,h ∈ Hk
I,h,∗}

where Hk
I,h,∗ = Lk

I,h ∩H1∗ (ΩI). (Notice that Wh is not a subspace of W .) The space X
where the Steklov-Poincare operators are defined is the space of discrete traces

χh = {(n×wh×n)|Γ : wh ∈ Nk
h} ⊂ H−1/2(curl τ ;Γ ) .

Also in this case we use the standard Nédélec finite elements Nk
C,h in ΩC while in ΩI

we consider the finite element space

WI,h := {wI,h ∈ Nk
I,h :

∫
ΩI

wI,h ·∇φ I,h = 0 ∀φI,h ∈ Hk
I,h,∗} .

In order to prove the convergence of the iterative procedure let us proceed as in
[1]. If k ∈ C is an eigenvalue of the map TL : X → X , TLηηη := ηηη − θS−1

L (SI + SC)ηηη
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with L = I or L = C, then k = 1− θ 〈(SI+SC)ηηη,ηηη〉Γ
〈SLηηη,ηηη〉Γ = (1− θ )− θ 〈SMηηη,ηηη〉Γ

〈SLηηη,ηηη〉Γ for any
eigenvector ηηη ∈ X . Here M = I or M =C but M = L. If

Re[〈SIηηη ,ηηη〉Γ ]Re[〈SCηηη ,ηηη〉Γ ]+ Im[〈SIηηη ,ηηη〉Γ ]Im[〈SCηηη ,ηηη〉Γ ]≥ 0 (7)

and 0≤ θ ≤ 1 then

|k|2 ≤ (1−θ )2 +θ 2 |〈SMηηη ,ηηη〉Γ |2
|〈SLηηη ,ηηη〉Γ |2 ≤ (1−θ )2 +θ 2β 2

M

α2
L

being βM the continuity constant of SM and αL the coercivity constant of SL. Choos-

ing 0 < θ < min
(

1, 2α2
L

α2
L+β

2
M

)
on has |k|< 1 for each k eigenvalue of T , hence in the

discrete setting the Dirichlet-Neumann procedures converges and, if αL and βM are
independent of the mesh size, h, also the convergence rate is independent of h.

In the H-based formulation we have L = I and M =C. The sesquilinear form

aC(vC,wC) :=
∫
ΩC

(−iω−1σ−1curl vC · curl wC + μvC ·wC
)

is clearly continuous and coercive in H(curl ;ΩC) hence in Nk
C,h. In the insulator

aI(vI ,wI) :=
∫
ΩI
μvI ·wI is continuous and coercive in H0(curl ;ΩI) then also in

V 0
I,h. The coercivity of SI with a constant αI independent of h follows from the co-

ercivity of aI(·, ·) and the continuity of the trace operator while the continuity of SC

with a constant βC independent of h follows from the continuity of aC(·, ·) and the ex-
istence of a continuous extension operator EC,h : χh → Nk

C,h with continuity constant
independent of h. Such an extension has been constructed in [1]. Moreover (7) clearly

holds because it reduces to
(∫

ΩC
μRCηηη ·RCηηη

)(∫
ΩI
μRIηηη ·RIηηη

)
≥ 0. Hence taking

θ small enough the iterative Dirichlet-Neumann procedure for the H-based formula-
tion converges with a rate independent of the mesh size.

On the other hand for the E-based formulation we have L =C and M = I. Again
the sesquilinear form

aC(vC,wC) :=
∫
ΩC

(
μ−1curl vC · curl wC + iωσvC ·wC

)

is clearly continuous and coercive in H(curl ;ΩC) hence in Nk
C,h. The coercivity of SC

(the preconditioner in this case) with a constantαC independent of h follows from the
uniform coercivity of aC(·, ·) and the continuity of the trace operator. In the insulator
we have aI(vI,wI) :=

∫
ΩI
μ−1curl vI ·curl wI that is continuous in H(curl ;ΩI), hence

in WI,h. Proceeding as in [2], Sect. 5.5, it can be proved that it is coercive in WI,h ∩
H0(curl ;ΩI). In order to prove the continuity of SI with a constant βI independent
of h we need a continuous extension operator EI,h : χh →WI,h∩H0,∂Ω (curl ;ΩI). We

know that there exists a continuous extension ÊI,h : χh → Nk
I,h∩H0,∂Ω (curl ;ΩI) (see

again [1]). Given ηηηh ∈ χh let ΦI,h ∈ Hk
I,h,∗ be such that
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∫
ΩI

∇∇∇ΦI,h ·∇∇∇ψI,h =
∫
ΩI

ÊI,hηηηh ·∇∇∇ψI,h ∀ψI,h ∈ Hk
I,h,∗ .

Then EI,hηηηh := ÊI,hηηηh−∇∇∇ΦI,h is a continuous extension from χh in the space WI,h∩
H0,∂Ω (curl ;ΩI) with continuity constant independent of h. Condition (7) reduce

in this case to
(∫

ΩC
μ−1curl RCηηη · curl RCηηη

)(∫
ΩI
μ−1curl RIηηη · curl RIηηη

)
≥ 0 that

clearly holds true.

4 Conclusion

We proposed two iterative substructuring methods for two different formulations of
the eddy current problem based on the electric field and magnetic field, respectively,
and provided the convergence analysis. Both formulations use a constrained space
in the insulator. In the E-based formulation the constrain is imposed introducing a
Lagrange multiplier while in the H-based formulation a finite element approximation
VI,h(0) of the constrained space H0,∂Ω (curl ;ΩI) is used. The dimension of VI,h(0) is
equal to nΓ , the dimension of the HI,h, plus the dimension of HI,h,0, that is a space
of scalar functions. So the subproblem in the insulator is smaller for the H-based
formulation than for the E-based formulation. However the construction of a base of
HI,h requires the determination of a system of cutting surfaces. This procedure can
be cumbersome in complex geometry configurations (for instance if the conductor is
a trefoil knot) an the E based formulation avoids this difficult.
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1 Introduction

In this work, we study mesh regularization in Bank-Holst parallel adaptive paradigm
when adaptive enrichment in both h (geometry) and p (degree) is used. The paradigm
was first introduced by Bank and Holst in [1–3] and later extended to hp-adaptivity
in [5]. In short, the paradigm can be summarized in the following steps.

Step 1 – Load Balancing: The problem is solved on a coarse mesh, and avail-
able a posteriori error estimates are used to partition the mesh into subregions. The
partition is such that each subregion has approximately the same error although sub-
regions may vary considerably in terms of number of elements, number of degrees
of freedom, and polynomial degree.

Step 2 – Adaptive Meshing: Each processor is provided with complete data for
the coarse problem and instructed to sequentially solve the entire problem, with the
stipulation that its adaptive enrichment (in h or p) should be limited largely to its
own subregion. The target number of degrees of freedom for each processor is the
same.

Step 3 – Mesh Regularization: The local mesh on each processor is regularized
such that the mesh for the global problem described in Step 4 is conforming in both
h and p.

Step 4 – Global Solve: The final global problem consists of the union of the
refined partitions provided by each processor. A final solution is computed using
domain decomposition.

This paradigm is attractive as it requires low communication and allows existing
sequential adaptive finite element codes to run in parallel environment without much
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effort in recoding. However, it also poses some challenges in mesh regularization
(Step 3). Since the adaptive enrichment on each processor (Step 2) is completely in-
dependent of what happens on other processors, the global refined mesh, constructed
from the meshes associated with the refined regions on each of the processors, is
initially non-conforming along the interface system.3 Thus, we need to efficiently
identify and resolve these nonconformities, and ultimately to establish links between
degrees of freedom on the fine mesh interface system on a given processor and the
corresponding degrees of freedom on the other processors which share its interface.
These tasks are challenging due to the fact that the meshes are unstructured in geom-
etry (in h), have variable degree (variable p), no element refinement tree is available,
and nonconformity exists in both h and p.

2 Data Structures

In our implementation of Bank-Holst paradigm in PLTMG, a relaxed version of
longest edge bisection h-refinement and a rather flexible p-refinement strategy are
used for hp-refinement, see [7].

2.1 Boundary Edge Data Structure

Each boundary edge is represented by a column in the 6×NBF integer array IB-
NDRY, where NBF is the number of boundary edges. For the Ith column of IBNDRY
(see Table 1), four of the six entries contain information about the endpoint vertices,
and indication of whether the edges is curved or straight, and a user-defined label.
One entry indicates edge type (various boundary condition types, or internal inter-
face), and the fifth entry, nonzero only for edges defining the interface system used
in the parallel computation, encodes information which is used in the regularization
process. This entry is described in more detail in Sect. 2.2.

Table 1. Boundary edge information

IBNDRY(1,I) First vertex number
IBNDRY(2,I) Second vertex number
IBNDRY(3,I) Curved edge
IBNDRY(4,I) Edge type
IBNDRY(5,I) Parallel information
IBNDRY(6,I) User label

3 The term “interface” is used to refer to the system of edges that are shared by two subre-
gions, and the term “boundary” is used to refer to the union of the physical boundary of the
domain and the interface.
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2.2 Interface Edge Labeling

One approach to solve the nonconformities in the global refined mesh is to build and
store refinement trees for all elements. However, such trees lose some of their attrac-
tiveness if procedures such as mesh moving and edge flipping destroy their prop-
erties. In addition, we only need the information about the edges on the interface
system, which typically is a very small fraction of the total information describing
the mesh. Thus, instead of creating refinement trees for all elements, during the regu-
larization phase we recover a refinement tree for each interface edge that defines the
initial interface system. To insure that subregions remain geometrically conforming
on all processors, we forbid mesh moving and edge flipping for all vertices and edges
lying on the interface system.

Only minimal information needed to recover the edge refinement tree is stored
for each interface edge. In particular, for each interface edge E , we need the index
of its original edge r(E) in the interface system of the broadcast coarse mesh (after
Step 1) and its position in the refinement binary tree s(E). Because the original (in-
terface) edges are the same on all processors, we can first match them, and then their
descendants based on their positions in the refinement trees. These two pieces of in-
formation are combined to make a single integer, label(E), the parallel information
for edge E stored in the fifth row of the IBNDRY array:

label(E) = r(E)+ (s(E)−1)∗ base.

Here base is an integer which is larger than the number of boundary edges NBF in
the broadcast coarse mesh. For edge Eorg in the broadcast mesh, r(Eorg) is its number
in the IBNDRY system and s(Eorg) = 1. When an edge E is refined into two children
E1 and E2, their labels are determined from label(E) and the following identities:

r(E1) = r(E2) = r(E)

s(E1) = 2 ∗ s(E)

s(E2) = 2 ∗ s(E)+ 1

For consistency, E1 and E2 are ordered in the counterclockwise traversal defined by
vertices of E .

2.3 Interface Data Structure

When a boundary edge is refined, its entries in IBNDRY are replaced by those of
one of its children. Thus IBNDRY contains only refined boundary edges. To recover
the refinement trees of the interface edges, first all of the refined edges are sorted
in groups according to r(E). The refined edges in each group are then ordered in
a counterclockwise traversal of the interface based on their vertices (end points).
Edges in each group will be used to recover a refinement tree whose leaves and root
represent themselves and their original edge respectively.

In order to illustrate the construction of the refinement tree of edges sharing the
same ancestor, we consider the group of all refined edges associated with the original
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edge E as shown in Fig. 1. These edges have the same index r(E) and have been
ordered via a counterclockwise traversal. For simplicity, only positions of these edges
in the binary tree are shown. First, leaf nodes for the refined edges are created. Since
the two nodes with largest keys (nodes 15 and 14 in our example) are siblings, their
s(E) values are used to create the node of their parent (node 7). Then the parent
node for the two nodes with the next largest keys (nodes 10 and 11 in our example)
are created and so on. The process is completed when the root node (with key 1) is
created.

1

2

4 5

10 11

3

6 7

14 15

4 10 11 6 14 15

Fig. 1. Refinement tree associated with an original edge

Following the above procedure, we construct the interface data IPATH outlined
in Table 2. Each interface edge, including those associated with internal nodes in
refinement trees, is represented by a column with six entries in IPATH array. The
first entry contains the index r(E) if the edge is original (root) and zero otherwise.
When edges from the two sides of the interface are matched, this entry is updated
with the index of the corresponding edge. The second entry stores either the index
of the edge’s first child or its number in IBNDRY array (with minus sign) if it has
no child. Sibling edges are put consecutively in IPATH array so storing the index for
the second child edge is not necessary. Depending on the stage in the construction
of IPATH array, the third and forth entries accommodate the indices of either edges,
vertices or degrees of freedom of the two ends of the edge. The fifth entry is either
the first or last (with minus sign) index of the interior degree(s) of freedom of the
edge. This information together with the degree of the edge stored in the last entry
are sufficient to recover all indices of the edge’s interior degrees of freedom as they
are numbered consecutively. The sign of the fifth entry indicates if they are increase
or decrease along the counterclockwise traversal of the interface.
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Table 2. Interface data structure: tree section

tree section
type root root/leaf internal leaf

IPATH(1,*) -l/n -l/n 0/n 0/n
IPATH(2,*) child -e child -e
IPATH(3,*) e1/v1/d1 v1/d1 e1/v1/d1 v1/d1
IPATH(4,*) e2/v2/d2 v2/d2 e2/v2/d2 v2/d2
IPATH(5,*) +-d +-d +-d +-d
IPATH(6,*) degree degree degree degree
l=label, n=neighbor, e = edge k, v = vertex, d = dof

3 Mesh Regularization

The regularization phase requires two all-to-all communication steps. The first de-
scribes the initial (non-conforming in h and p) interface system, and the second de-
scribes the final conforming system.

3.1 Data Reordering

At the beginning of the regularization step, each processor reorders its data struc-
tures. For processor I, edges, vertices and degrees of freedom on the interface be-
tween subregion I and the rest of the domain (fine interface) appear first in their
respective arrays. These data are also arranged in a counterclockwise traversal of the
interface to aid in the creation of the parallel interface data structure IPATH. Next,
in all arrays, appears data corresponding to the interior of subregion I (fine interior);
typically this is the majority of the data on processor I. Then appears data corre-
sponding to the coarse part of the interface system on processor I (the interface not
bounding region I). Finally appears data corresponding to the interiors of subregions
other than I. Note that the first two blocks of this data (fine interface and fine interior)
represent the contribution of processor I to the global fine mesh.

The parallel interface data structure IPATH is arranged in two sections; at the
beginning is a pointer section with pointers for each processor’s contribution to the
fine interface system, and then two special sets of pointers, one for the local coarse
interface system and one for the global fine mesh as a whole (see Table 3). The
second section contains the tree data for individual edges on the interface system.
After regularization, each processor has an IPATH array that contains complete data
of the two-sided global fine interface system appended with data of local coarse
interface system.

3.2 Fine Mesh Regularization

After reordering and a global exchange of interface data, each processor has com-
plete information of the fine interface system. Then each process matches its in-
terface edges against those of it neighbors. First original coarse edges are matched
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Table 3. Interface data structure: pointer section

pointer section: 1→p+2
IPATH(1,I) first interface tree entry for subregion I
IPATH(2,I) last interface tree entry for subregion I
IPATH(3,I) first interface vertex/dof for subregion I
IPATH(4,I) last interface vertex/dof for subregion I

I = p+ 1: pointers for local coarse system
I = p+ 2: pointers for global fine system

based on their labels. Then their descendants are matched following the refinement
tree structures. We note here that for two neighboring processors, counterclockwise
traversals of the interface are in opposite directions. An example of descendants of
two original edges (from two different processors) is shown in Fig. 2.
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Fig. 2. Edge matching

When a pair of matching edges is determined, their first entries in IPATH are
updated to store the indices (also in IPATH array) of their neighbors (change status
from “−l” or “0” to “n” as in Table 2). If edges without corresponding neighbors
are found, this indicates nonconformity in h. This is resolved by the processor with
the less refined interface; it executes appropriate steps of h-refinement to make its
interface match that of it neighbor. Although we must allow for arbitrary differences
in refinement, it is typical to see at most one level of refinement difference on the fine
portion of the interface. An example in Fig. 2 is edge 4 on the left that corresponds
to edge 7 on the right with two child edges 14 and 15. In this case, edge 4 on the left
will be h-refined one level.

When issues of h-conformity are resolved, the edges are re-examined to elimi-
nate nonconformity in degree. Since the mesh is now h-conforming, each leaf edge
on the fine interface system should have exactly one matching neighbor (from an-
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other processor). If the degrees of a matching pair are different, this nonconformity
is resolved by the processor with the edge of lower degree; it executes appropriate
steps of p-refinement in order to achieve the same degree as its neighbor on the in-
terface edge. However, if red-green like refinement rules are applied as in [6], fixing
the degree for one interface edge might also change the degree of another interface
edge and cause further nonconformity. Thus, multiple communication steps might
be required to eliminate nonconformity in degree. This issue was the main motiva-
tion for us to find a more flexible p-refinement algorithm and more general nodal
basis functions for transition elements, allowing the mesh to be made both h and p
conforming with just one communication step. Such approach is described in [5–7].

When the global mesh is conforming, a second reordering as described above is
carried out locally on each processor, followed by a second all-to-all broadcast of the
new IPATH array. This time no nonconforming edges will be encountered during the
matching process.

3.3 Coarse Mesh Regularization

The coarse part of the local mesh on processor I allows a complete conforming mesh
of the whole domain on each processor, thus avoiding otherwise necessary commu-
nication steps. Due to constraints of shape regularity, the coarse mesh will typically
be reasonably fine in areas near the fine subregion ΩI and become more coarse in
regions more distant from ΩI . However, in some special situations such as having
a singularity outside of ΩI , the coarse mesh on processor I might be refined [8]. In
very unusual circumstances, it is possible for the coarse mesh on some processors to
be more refined (in h or in p) than the global fine mesh in some areas. Although this
does not influence the global fine mesh solution directly, our DD solver assumes that
the coarse mesh on each processor is not more refined than the global fine mesh, see
[4, 9].

As described in Sect. 3.1, the IPATH array on each processor has a section for the
coarse interface edges; this part of the data structure is local and different on every
processor. Following the second and final broadcast of the IPATH data structure,
each coarse interface edge is matched with one of the global fine edges. Here, the
matching is one-way from a coarse edge to a fine edge only. Based on this type of
matching, over-refined coarse edges are identified and then unrefined in either h or p.

We have also observed empirically [5, 9] that the convergence properties of our
DD solver are enhanced when elements in the coarse regions having edges on the
coarse interface system are more refined than those in the interior parts of the coarse
region. To capture this effect, we also allow some limited refinement of elements
lying along the coarse interface. The level of refinement on the interface boundary of
ΩJ is determined by its distance from ΩI ; distance is measured in a graph in which
the ΩJ correspond to vertices and the edge betweenΩI andΩJ is present if and only
if they have a shared interface boundary. The level of allowed refinement decays as
2−K , where K is the distance from ΩI to ΩJ .
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Summary. We consider a linear-quadratic elliptic control problem (LQECP). For the problem
we consider here, the control variable corresponds to the Neumann data on the boundary of
a convex polygonal domain. The optimal control unknown is the one for which the harmonic
extension approximates best a specified target in the interior of the domain. We propose a
multilevel preconditioner for the reduced Hessian resulting from the application of the Schur
complement method to the discrete LQECP. In order to derive robust stabilization parameters-
free preconditioners, we first show that the Schur complement matrix is associated to a linear
combination of negative Sobolev norms and then propose preconditioner based on multilevel
methods. We also present numerical experiments which agree with the theoretical results.

1 Introduction

The problem of solving linear systems is central in numerical analysis. Systems aris-
ing from the discretization of PDEs and control problems have received special atten-
tion since they appear in many applications, such as in fluid dynamics and structural
mechanics. Typically, as the dimension of the discrete space increases, the resulting
system becomes very ill-conditioned. To avoid the large cost of LU factorizations of
KKT saddle point linear systems, we consider instead the reduced Hessian systems.
To build efficient solvers, the spectral properties of these systems must be taken into
account. In this paper, we develop the mathematical tools necessary to analyze and to
design solvers for a model control problem. We believe that the proposed framework
can be extended to more complex control problems.

2 Setting Out the Problem

Consider the following LQECP:

Minimize J(u,λ ) := ‖u−u∗‖2
L2(Ω)

+ α
2 ‖λ‖2

H−1/2(Γ ) +
β
2 ‖λ‖2

L2(Γ )

subject to

{−Δu(x) = f (x) in Ω ⊂ R
2,

γ ∂u
∂η (s) =−λ (s) on Γ := ∂Ω ,

(1)
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where u∗ and f are given functions in L2(Ω)\R, γ is the trace operator on Γ , and α
and β are nonnegative given stabilization parameters. The minimization is taken on
u∈H1(Ω)\R and λ ∈ L2(Γ )\R. Here, “\R” stands for functions with zero average
on Ω or Γ . We assume that the domain Ω is a convex polygonal domain, hence,
H2-regularity of u is assumed. The norm H−1/2(Γ ) is defined as

‖λ‖2
H−1/2(Γ ) := |vλ |2H1(Ω), (2)

where vλ ∈ H1(Ω)\R is the harmonic extension of λ in Ω . We remark that the
assumption α + β > 0 is necessary for the well-posedness of the problem (1), see
[7, 9, 11] and references therein. The case α = β = 0 can also be treated by en-

larging the minimizing space for λ from H−1/2(Γ )\R to H−3/2
t,00 (Γ )\R; see [6] for

details. To make the notation less cumbersome, we sometimes drop “\R” below.

We consider the following discretization for the LQECP (1). We consider the
space of piecewise linear and continuous functions Vh(Ω)⊂ H1(Ω) to approximate
u and p, andΛh(Γ )⊂H1/2(Γ ) (the restriction of Vh(Ω) to Γ ) to approximate λ . The
underlying triangulationτ h(Ω) is assumed to be quasi-uniform with mesh size O(h).
Let {φ1(x), . . . ,φn(x)} and {ϕ1(x), . . . ,ϕm(x)} denote the standard hat nodal basis
functions for Vh(Ω) and Λh(Γ ), respectively. The corresponding discrete problem
associated to (1) results in⎡

⎢⎣
M 0 AT

0 G QT ET

A EQ 0

⎤
⎥⎦
⎡
⎢⎣

u

λ
p

⎤
⎥⎦=

⎡
⎢⎣

f1

f2

f3

⎤
⎥⎦ , (3)

where the matrices M and A are the mass and stiffness matrices on Ω , and Q is the
mass matrix on Γ . We define Qexti j = (φi,ϕ j)L2(Γ ); φi ∈Vh(Ω) and ϕ j ∈Λh(Γ ). It is
easy to see that Qext = EQ, where E ∈R

n×m is the trivial zero discrete extension op-
erator defined fromΛh(Γ ) to Vh(Ω). We define G∈R

m×m as be the matrix associated
to the norm α

2 ‖ · ‖2
H−1/2

h (Γ )
+ β

2 ‖ · ‖2
L2(Γ ) on Λh(Γ ), where ‖λ‖

H
−1/2
h (Γ )

:= |vh
λ |H1(Ω)

with vh
λ :=A†Qextλ , i.e., vh

λ is the discrete harmonic extension version of (2) with λ ∈
Λh(Γ ). Hence, we have G = α(QT

extA
†)A(A†Qext )+βQ= QT (αET A†E+βQ−1)Q.

Here and the following A† is the pseudo inverse of A. The discrete forcing terms are
defined by (f1)i =

∫
Ω u∗(x)φi(x)dx, for 1≤ i≤ n, f2 = 0 and (f3)i =

∫
Ω f (x)φi(x)dx.

3 The Reduced Hessian H

In this paper we propose and analyze preconditioners for the reduced Hessian
associated to (3). Eliminating the variables u and p from Eq. (3), and denoting
S†

1 := ET A† E and S†
3 := ET A†MA†E , we obtain

H λ := Q(αS†
1 +βQ−1 + S†

3)Qλ = b := QT
extA

†MA†f3−QT
extA

†f1. (4)

The matrix H is known as the Schur complement (reduced Hessian) with respect
to the discrete control variable λ . We observe that the state variable u can be obtained
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by solving (4) and using the third equation of (3). We note that the Reduced matrix
H is a symmetric positive definite matrix on

Λh(Γ )\QR := {λ ∈Λh(Γ );(λ ,1)L2(Γ ) = (Qλ ,1m)�2 = 0},

hence, we consider the Preconditioned Conjugate Gradient (PCG) with a precon-
ditioner acting on Λh(Γ )\QR. Note also that A† is also symmetric positive definite
matrix on

Vh(Ω)\MR := {u ∈Vh(Ω);(u,1)L2(Ω) = (Mu,1n)�2 = 0}.

The main goal of this paper is to develop robust preconditioned multilevel methods
for the matrix H such that the condition number estimates that do not depend on α
and β , and depend on log2(h).

We point out that several block preconditioners for solving systems like (3) were
proposed in the past; see [1, 8, 11, 14] and references therein. These preconditioners
depend heavily on the availability of a good preconditioner for the Schur complement
matrix. To the best of our knowledge, no robust and mathematically sounded pre-
conditioner was systematically carried out for the reduced Hessian (4). Most of the
existing work is toward problems where the control variable is f rather than λ , and
even for these cases, condition number estimates typically deteriorate when all the
stabilization parameters go to zero. Related work to ours is developed in [13] where
it is proposed a preconditioner for the first biharmonic problem discretized by the
mixed finite element method introduced by Ciarlet and Raviart [4]. Using techniques
developed in [5], Peisker transforms the discrete problem to an interface problem and
a preconditioner based on FFT is proposed and analyzed. This approach can also be
interpreted as a control problem like (1), however, replacing the Neumann control
by a Dirichlet control. We note that Dirichlet control problems are much easier to
handle and to study since in (4) the operator S†

3 is replaced by S†
1, and therefore, a

multilevel method such as in [2], can be applied. An attempt to precondition the Neu-
mann control problem via FFT was considered in [7], however, such as in Peisker’s
work, it holds only for special meshes where the Schur complement matrix and the
mass matrix on Γ share the same set of eigenvectors.

4 Theoretical Remarks on the Reduced Hessian H

In this section we associate the Reduced Hessian H to a linear combination of
Sobolev norms. Here and below we use the notation a � (�) b to indicate that
a ≤ (≥)C b, where the positive constant C depends only on the shape of Ω and
τ h(Ω). When a� b� a, we say a� b.

First we observe that G is associated to the norm α
2 ‖ · ‖2

H
−1/2
h (Γ )

+ β
2 ‖ · ‖2

L2(Γ ) in

Λh(Γ ). It is well known that for λ ∈Λh(Γ )\QR we have
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λ T QS†
1Qλ = ‖λ‖2

H−1/2
h (Γ )

� ‖λ‖2
H−1/2(Γ ). (5)

What is not obvious is how to associate the matrix QS†
3Q to a Sobolev norm, and this

is given in the following result (see [6]):

Theorem 1. Let Ω ⊂ R
2 be a convex polygonal domain. Let vh

λ := A†Qext λ ∈
Vh(Ω)\MR be the discrete harmonic function with Neumann data λ ∈ Λh(Γ )\QR.
Then, λ T QS†

3Qλ = ‖vh
λ‖2

L2(Ω) � ‖λ‖2
H−3/2

t,00 (Γ )
+ h2‖λ‖2

H−1/2(Γ ). (6)

Using these results we conclude that H is associated to the following linear
combination of Sobolev norms

λ T H λ � (α+ h2)‖λ‖2
H−1/2(Γ ) +β ‖λ‖2

L2(Γ ) + ‖λ‖2
H−3/2

t,00 (Γ )
. (7)

Remark 1. We next hint why the norm ‖ · ‖2
H
−3/2
t,00 (Γ )

is fundamental for this problem.

Let {Γk}1≤k≤K and {δk}1≤k≤K be the edges and the vertices of the polygonal Γ ,
respectively. Let C∞t,00(Γk) := {λ ∈ C∞(Γk);∂λ/∂τk ∈ C∞0 (Γk)}, where τk stands for

the tangential unit vector on Γk. Define H2
t,00(Γk) by the closure of C∞t,00(Γk) in the

H2(Γk)-norm, that is,

H2
t,00(Γk) := {λ ∈ H2(Γk);

∂λ
∂τk

(δk−1) =
∂λ
∂τk

(δk) = 0}. (8)

Using interpolation theory of operators and a characterization of H3/2
t,00(Γk), see [10],

it is possible to show that

H3/2
t,00(Γk) :=

[
H2

t,00(Γk),H
1(Γk)

]
1/2

=
{
λ ∈ H3/2(Γk);∂λ/∂τk ∈ H1/2

00 (Γk)
}
.

We define H3/2
t,00(Γ ) = H1/2(Γ )∩∏K

k=1 H3/2
t,00(Γk) endowed with the norm

‖λ‖
H3/2

t,00(Γ )
:= ‖λ‖2

H1/2(Γ ) +
K

∑
k=1

∥∥ ∂λ
∂τk

∥∥2
H1/2

00 (Γk)
, (9)

and define H−3/2
t,00 (Γ ) = (H3/2

t,00(Γ ))
′. The fundamental property of this space is that

‖λ‖
H
−3/2
t,00 (Γ )

� ‖vλ‖L2(Ω),

where vλ is defined by (2); see [6].

5 Preconditioning Sobolev Norms Using Multilevel Methods

In this section, using multilevel based preconditioners, we develop spectral approx-
imations for matrices associated to several Sobolev norms; see [2, 3, 12, 15], and
references therein.
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5.1 Notation and Technical Tools

From now on, we assume that the triangulation τ h of Γ has a multilevel structure.
More precisely, denoting τ h as the restriction of τ h(Ω) to Γ , we assume that the
triangulation τ h is obtained from (L−1) successive refinements of an initial coarse
triangulation τ 0 with initial grid size h0. We assume also that h� = h�−1/2 is the grid
size on the �-th triangulation τ � and associate the standard P1 finite element space
V�(Γ ) generated by continuous and piecewise linear basis functions {ϕ�

i }m�
i=1. Hence,

we have
V0(Γ )⊂V1(Γ )⊂ ·· · ⊂VL(Γ ) :=Vh(Γ )⊂ L2(Γ ).

Let P� denote the L2(Γ )-orthogonal projection onto V�(Γ ), and let ΔP� := (P�−
P�−1), that is, the L2(Γ )-orthogonal projection onto V�(Γ )∩V�−1(Γ )⊥. We have that
P0, (P1−P0), . . . ,(PL−PL−1) restricted to VL(Γ ) are mutually L2-orthogonal projec-
tions which satisfy:

I = P0 +(P1−P0)+ · · ·+(PL−PL−1). (10)

Note that PL = I. The matrix form of P� restricted to VL(Γ ) is given by

P� = RT
� Q−1

� R�Q, (11)

where R� is the m�×mL restriction matrix, that is, the i-th row of R� is obtained by
interpolating the basis function ϕ�

i ∈V� :=V�(Γ ) at the nodes of the finest triangula-
tion τL :=τ h.

It follows from [2, 12], that for −3/2 < s < 3/2

‖v‖2
Hs(Γ ) �

L

∑
�=0

h−2s
� ‖(P�−P�−1)v‖2

L2(Γ ), for all v ∈VL. (12)

This constraint for s comes from the fact that for s ≥ 3/2 we have Vh(Γ ) ⊂ Hs(Γ ),
therefore, the equivalence deteriorates when s tends to 3/2. Results for negative
norms are obtained by duality.

We now describe how to represent the splitting∑L
�=0μ�‖(P�−P�−1)v‖2

L2(Γ ) into a

matrix form. Let Δ� := (P�−P�−1)Q−1 = RT
� Q−1

� R�−RT
�−1Q−1

�−1R�−1. Then we have

ΔkQΔ� = δk�Δ� and
L

∑
�=0

μ�‖(P�−P�−1)v‖2
L2(Γ ) =

L

∑
�=0

μ�vT Q(P�−P�−1)v, (13)

where P−1 = 0. We observe that Q(P�−P�−1) = QΔ�Q is symmetric semi-positive
definite. By (12) and (13), for all v ∈VL we have

‖v‖2
H−1/2(Γ ) � (

L

∑
�=0

h�Δ�Qv,Qv). (14)

To invert a matrix of the form ∑L
k=0 μ

−1
k ΔkQ, we first assume that μk > 0, 0 ≤

k ≤ L. Then, from (10) and (13) we obtain

(
L

∑
k=0

μ−1
k ΔkQ)(

L

∑
�=0

μ�Δ�Q) = I. (15)
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5.2 Multilevel Preconditioner for the Reduced Hessian H

In this subsection we analyze a multilevel preconditioner for Reduced Hessian H .
We first present a preconditioner for G as follows. Using (2), (14) and (15) we obtain{

S1 � Q∑L
�=0 h−1

� Δ�Q,

QS†
1Q � Q∑L

�=0 h�Δ�Q.
(16)

The above equivalences yield simultaneous approximation for the spectral repre-
sentations of G := βQ+αQS†

1Q in terms of the Δ� and Q. More precisely,

G � Q∑L
�=1 (β +αh�)Δ�Q, (17)

and using (15) and (17), the following spectral equivalency holds

G−1 � ∑L
�=0 (β +αh�)−1Δ�. (18)

We next establish that ∑L
�=0 (h

−3
� )Δ� is a quasi-optimal preconditioner for QS†

3Q.
More precisely, we have the following result (see [6]):

Theorem 2. For all vL ∈ VL, the following inequalities hold:

‖vL‖2
H
−3/2
t,00 (Γ )

�
L

∑
�=1

h3
�‖ΔP�vL‖2

L2 � (L+ 1)2‖vL‖2
H
−3/2
t,00 (Γ )

. (19)

From Theorems 1 and 2 and (15), we establish the main result, the quasi-
optimality for a preconditioner for H .

Theorem 3. Let PC := ∑L
�=0 (αh�+β + h3

�)
−1Δ�. Then

(L+ 1)−2PC � H −1 � PC . (20)

6 Numerical Results

In this section we show numerical results conforming the theory developed. For all
tests presented, Ω is the square domain [0,1]× [0,1]. The triangulation of Ω is con-
structed as follows. We divide each edge of ∂Ω into 2N parts of equal length, where
N is an integer denoting the number of refinements. In all tests (cond) means con-
dition number, (it) indicates the number of iterations of the PCG, (eig min) means
the lowest eigenvalue for preconditioned system. To calculate the eigenvalues we
build the preconditioned system and use the function eig of MATLAB. We can see
from tables below the asymptotic log2(h) behavior for the case α = β = 0, i.e.,
cond(N + 1)− cond(N) grows linearly with N. As expected, larger is α or β , better
conditioned are the preconditioned systems (Tables 1–4).

Remark 2. Numerical experiments show (not reported here) that the largest eigen-
value of

(
∑L
�=0 Δ�

) ∗Q divided by the largest eigenvalue of
(
∑L
�=0 h−3

� Δ�

) ∗QS†
3Q

converges to 36 when h decreases to zero. In tables above, we considered the rescaled
preconditioner
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PC r ∗H with β = 1 PC r ∗H with β = (0.1)3

N ↓ cond eig min it cond eig min it
4 1.04237 0.02756 2 4.94294 0.01622 7
5 1.04222 0.02757 2 4.87258 0.01655 7
6 1.04218 0.02757 2 4.85515 0.01663 7
7 1.04217 0.02757 2 4.85084 0.01665 7

Table 1. Equivalence between H and PC r with r = 36 and α = 0.

PC r ∗H with β = (0.1)6 PC r ∗H with β = 0
N ↓ cond eig min it cond eig min it
4 28.1662 0.004747 15 33.5522 0.004016 16
5 24.3303 0.005739 20 41.9737 0.003407 25
6 20.3042 0.006984 22 50.5193 0.002930 35
7 18.9576 0.007514 20 59.2085 0.002550 44

Table 2. Equivalence between H and PC r with r = 36 and α = 0.

PC r ∗H with α = 1 PC r ∗H with α = (0.1)3

N ↓ cond eig min it cond eig min it
4 4.62312 0.11893 10 13.7601 0.010698 14
5 5.12018 0.11826 10 18.3917 0.012503 19
6 5.33402 0.11798 11 26.2878 0.013139 22
7 5.45327 0.11788 12 35.6393 0.013312 26

Table 3. Equivalence between H and PC r with r = 36 and β = 0.

PC r ∗H with α = (0.1)6 PC r ∗H with α = 0
4 33.4363 0.004031 16 33.5522 0.0040164 16
5 41.4318 0.003452 25 41.9737 0.0034074 25
6 48.1852 0.003073 33 50.5193 0.0029301 35
7 50.8326 0.002973 43 59.2085 0.0025501 44

Table 4. Equivalence between H and PC r with r = 36 and β = 0.

PC r :=
L

∑
�=0

(αh�+ rβ + h3
�)
−1Δ�,

with r = 36, instead of PC := ∑L
�=0 (αh�+ β + h3

�)
−1Δ�. This change improves

considerably the condition number of preconditioners and improve slightly the num-
ber of iterations.
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Summary. In this paper, an overlapping domain decomposition method is developed to sim-
ulate the water management of the polymer exchange membrane fuel cell on the local struc-
tured grids. Numerical experiments demonstrate that our methods are effective to deal with
the simulation on the non-matching grids with low mass balance error.

1 Introduction

Polymer exchange membrane fuel cells (PEMFCs) have been used in a large number
of industries worldwide because of their advantages such as low environmental im-
pact, rapid start-up and high power density [15, 16]. The performance of fuel cell is
affected by many factors, such as material parameters, operating conditions, different
channel structures and so on [2, 9, 10].

For better performance, different structures for the anode and cathode gas chan-
nels are used in the PEMFC practical design. This asymmetrical structure can keep
the balance of pressures on both sides of the membrane. Thus the water manage-
ment in cathode can be improved and the duration of fuel cell can be prolonged. An
unstructured grid partitioned by tetrahedra or triangles can be used for this asymmet-
rical fuel cell in single domain approach, but structured grids, such as hexahedron
and quadrilateral, are easily implemented and have super convergence [1, 4, 14].
However, non-matching grids would be generated when partitioning with structured
grids in numerical simulations. Besides, since oxygen reduction reaction occurs in
cathode, the variation of physical quantities such as water concentration are more
significant in cathode than in anode. So it is necessary for cathode to simulate these
phenomena accurately by a refined grid. The objective of this paper is to provide an
overlapping domain decomposition method for the simulation of a 3D single-phase
PEMFC model with local structured grid in anode and cathode respectively.
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1.1 Governing Equations

Based on [5, 16], a fundamental fuel cell model consists of five principles of con-
servation: mass, momentum, species, charge, and thermal energy. Typically the fuel
cell is divided into seven subregions: the anode gas channel, anode gas diffusion
layer (GDL), anode catalyst layer (CL), membrane, cathode gas channel, cathode
GDL, and cathode CL. In the following we specifically focus our interests on mass,
momentum conservation and water concentration arising in all seven subregions.

Flow equations. For flow field with velocity u and pressure P as unknowns, we
have the following modified Navier-Stokes equations

∇ · (ρu) = 0, (1)
1
ε2∇ · (ρuu) =−∇P+∇ · (μ∇u)+ Su, (2)

where ε is porosity, ρ is density, and μ is effective viscosity. In (2) we indicate that
the additional source term Su in GDL and CL is named as Darcy’s drag and defined
by Su =− μ

K u, where K is hydraulic permeability.
Species concentration equation. Water management is critical to achieve high

performance for PEMFC. Therefore, without loss of generality, in order to focus on
water management topics, we typically consider water as the only component in the
following simplified species concentration equation. Water concentration equation in
single gaseous phase is defined as follows with respect to concentration C

∇ · (uC) = ∇ · (De f f
g ∇C)+ SH2O, (3)

where De f f
g = ε1.5Dgas is the effective water vapor diffusivity. The source term SH2O

is given as follows.

SH2O =

⎧⎨
⎩
−∇ · ( nd

F ie)− j
2F in cathode CL

−∇ · ( nd
F ie) in anode CL

0 otherwise,
(4)

where nd , the electro-osmotic drag coefficient, is a constant value in our simulation.
∇ · ie = − j which is derived from the continuity equation of proton potential. ie is
the current density vector and j is the volumetric transfer current of the reaction (or
transfer current density) defined by j = j1−( j1− j2)z/lcell . This is an approximation
of transfer current density for our simplified single-phase PEMFC model due to the
absence of proton and electron potentials [12].

1.2 Computational Domain and Boundary Conditions

The computational domain and its geometric sizes are schematically shown in Fig. 1
and Table 1.

For flow field (1), (2) and water concentration equation (3), the following bound-
ary conditions are imposed:
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Fig. 1. Geometry of a single straight-channel PEMFC

Table 1. Physical coefficients and parameters

Parameter Symbol Parameter Symbol
Anode/cathode channel width δCH 6.180mm Anode/cathode GDL width δGDL 0.235mm

Anode/cathode CL width δCL 0.010mm Membrane width δmem 0.018mm
Cell length lcell 70mm Cell depth hcell 6.360mm

Porosity of membrane ε 0.26 Effective viscosity μ 3.166×10−5kg/(m · s)
Porosity of GDL and CL ε 0.6 Water vapor diffusivity Dgas 2.6×10−5m2/s

Vapor density ρ 0.882 kg/m3 Permeability of GDL and CL K 2×10−12m2

Electro-osmotic drag coefficient nd 1.5 Transfer current density j1/ j2 20000/10000A/m2

u1 = u2 = 0,u3 = u3|inlet ,C =Cin on inlet (∂Ω)1,(∂Ω)2, (5)

(PI− μ∇u) ·n = 0 on outlet (∂Ω)3,(∂Ω)4, (6)

u1 = u2 = u3 = 0,
∂C
∂n

= 0 on other boundaries. (7)

2 Numerical Algorithm

2.1 Domain Decomposition Method and Weak Forms

First, we split the domain (Ω ), shown in Fig. 1, to two overlapping subdomains:
one is the anode and membrane (Ωa), the other is the cathode and membrane (Ωc).
The interface between anode CL and membrane is denoted as Sa, and the inter-
face between cathode CL and membrane is denoted as Sc. The classical overlapping
Schwarz alternating method [13] is used in these two subdomains. Thus we are able
to reformulate Eqs. (1)–(3) to two Dirichlet-type interfacial boundary value subprob-
lems.
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(Problem A)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (ρua) = 0 in Ωa
1
ε2∇ · (ρuaua) =−∇Pa +∇ · (μ∇ua)− μ

K ua in Ωa

∇ · (uaCa) = ∇ · (De f f
g ∇Ca)+ SH2O in Ωa

u1,a = u2,a = 0,u3,a = u3|inlet ,Ca =Ca,in on (∂Ω)1

(PaI− μ∇ua) ·n = 0 on (∂Ω)3

Ca =Cc on Sc

u1,a = u2,a = u3,a = 0, ∂C
∂n = 0 on other boundaries.

(Problem C)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (ρuc) = 0 in Ωc
1
ε2∇ · (ρucuc) =−∇Pc +∇ · (μ∇uc)− μ

K uc in Ωc

∇ · (ucCc) =∇ · (De f f
g ∇Cc)+ SH2O in Ωc

u1,c = u2,c = 0,u3,c = u3|inlet ,Cc =Cc,in on (∂Ω)2

(PcI− μ∇uc) ·n = 0 on (∂Ω)4

Cc =Ca on Sa

u1,c = u2,c = u3,c = 0, ∂C
∂n = 0 on other boundaries.

Considering various nonlinearities of equations, we particularly employ Picard’s
scheme to linearize the nonlinear source term. Define

Va := {va = (v1,a,v2,a,v3,a)
� ∈ [H1]3 | v1,a|(∂Ω)1

= v2,a|(∂Ω)1
= 0,v3,a|(∂Ω)1

= u3,a|inlet},
Ṽa := {va = (v1,a,v2,a,v3,a)

� ∈ [H1]3 | v1,a|(∂Ω)1
= v2,a|(∂Ω)1

= v3,a|(∂Ω)1
= 0},

Qa := {w ∈H1 | w|(∂Ω)1
=Cin,a and w|Sc =Cc}, Q̃a := {w ∈ H1 | w|(∂Ω)1

= 0 and w|Sc = 0},
Pa := L2(Ωa).

Then for any (va,qa,wa) ∈ Ṽa×Pa× Q̃a, find (uk+1
a ,Pk+1

a ,Ck+1
a ) ∈Va×Pa×Qa,

such that
⎧⎨
⎩

(μ∇uk+1
a ,∇va)Ωa +( ρε2∇uk

auk+1
a ,va)Ωa − (Pk+1

a ,∇va)Ωa +( μK uk+1
a ,va)Ωa = 0

(∇uk+1
a ,qa)Ωa = 0

(De f f
g ∇Ck+1

a ,∇wa)Ωa +(∇ · (uk
aCa),wa)Ωa = (SH2O,wa)Ωa ,

(8)
which (·, ·)Ωi stands for the L2 inner product in Ωi. And in subdomain Ωc, we have
the same weak form with (8).

2.2 An Overlapping Domain Decomposition Algorithm

Firstly, the subdomainsΩa andΩc are partitioned into cuboids independently, which
implies that the grids are local structured in anode and cathode. Define a partition
Thi in Ωi (i, j represent a or c), and Σi, j is the set of mesh points of Thi on S j.

To discretize weak form (8), we introduce the finite element space Vhi ×Phi ⊆
Vi×Pi on Thi , where Vhi ×Phi denotes the Q2Q1 (triquadratic velocity and trilinear
pressure) finite element spaces. Qha denotes the triquadratic finite element space for
water concentration whose members equal fa on Sc, where fa represents the values
of points in the sets of Σa,c, which are obtained from the previous alternating step Ck



An Overlapping Domain Decomposition Method for a 3D PEMFC Model 123

by lagrange interpolation. Moreover, let Q̃ha ⊆ Q̃a be the triquadratic finite element
space and Ṽha ⊆ Ṽa be the triquadratic finite element space. In subdomain Ωc, Qhc

and Ṽhc are defined in the same ways.
For flow and water concentration equations, we introduce the following com-

bined finite element-upwind finite volume schemes [11].
For any given (uk

hi
,Pk

hi
,Ck

hi
) ∈ Vhi ×Phi ×Qhi (k = 0,1,2, . . .), find (uk+1

hi
,Pk+1

hi
,

Ck+1
hi

) ∈Vhi×Phi×Qhi(k = 0,1,2, . . .), such that

(μ∇uk+1
hi

,∇vhi)Ωi +(
ρ
ε2∇uk

hi
uk+1

hi
,vhi)Ωi − (Pk+1

hi
,∇vhi)Ωi +(

μ
K

uk+1
hi

,vhi)Ωi = 0

(∇uk+1
hi

,qhi)Ωi = 0 ∀(vhi ,qhi) ∈ Ṽhi×Phi, (9)

(De f f
g ∇Ck+1

hi
,∇whi)Ωi +(∇ · (uk+1

hi
Ck+1

hi
),whi)Ωi + δ (hi)uk+1

hi
· (∇Ck+1

hi
,∇whi)Ωi

= (SH2O,whi)Ωi ∀whi ∈ Q̃hi , (10)

where the last term in the left hand side of (10) is a stabilizing term, derived from
streamline-diffusion scheme [3, 6–8]. Basically we hold δ (h) = Ch, C is a certain
constant parameter, which is chosen artificially with least possible on the premise of
optimal stability. Usually starting with small ones, we gradually increase the value of
C and compute the corresponding finite element equation (10) until gained numerical
solutions are not oscillating any more in convection-dominated gas channel.

Now, we are in position to describe the overlapping domain decomposition algo-
rithm with the finite element discretizations.

Algorithm: Given u0
h,C

0
h , the following procedures are successively executed

(k > 0):
Step 1. Solve (9) in Ωa and Ωc for (uk+1

hi
,Pk+1

hi
), respectively, until

‖uk+1
hi
−uk

hi
‖

L2(Ωi)
+ ‖Pk+1

hi
−Pk

hi
‖

L2(Ωi)
< tolerance. (11)

Step 2. Solve (10) for Ck+1
ha

, and construct the finite element space Q̃hc for Ωc.

Step 3. Solve (10) for Ck+1
hc

, and construct the finite element space Q̃ha for Ωa.
Step 4. Compute the following stopping criteria:

‖Ck+1
ha
−Ck

ha
‖

L2(Ωa)
< tolerance. (12)

If yes, then numerical computation is complete. Otherwise, go back to the step 2
and continue.

3 Numerical Results

In this section, we will carry out the following numerical experiments which indi-
cate that our methods are effective to deal with the non-matching grids, see Fig. 2
for example, in the simulation of the PEMFC. The velocity u3|inlet is defined as a
paraboloidal-like function given in (13).
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u3|inlet =

{
0.2sin xπ

δCH
sin yπ

δCH
on anode inlet (∂Ω)1

0.3sin xπ
δCH

sin (y−ladd)π
δCH

on cathode inlet (∂Ω)2
, (13)

where ladd = δCH + δGDL + δCL + δmem.

Fig. 2. An example of non-matching grids

Figures 3 and 4 show the velocity field in anode and cathode of fuel cell at the
face of x = 3.18 mm with this two method. As expected, there is a large difference
in the velocity scale between the porous media and the open channel. The velocity
in porous GDL is at least two orders of magnitude smaller than that in the open gas
channel, indicating that gas diffusion is the dominant transport mechanism in porous
GDL. Porous CL has a smaller velocity than GDL due to the inferior diffusion ability.

Fig. 3. Velocity with DDM Fig. 4. Velocity with single domain

Figure 5 displays the water concentration distribution, presenting in the phase of
water vapor, in anode and cathode. As shown in the figure, significant variations are
displayed in both anode and cathode; in the porous media there is an increased water
vapor concentration along the channel.

In order to verify the correctness of our numerical solutions, we compute the
relative error of mass balance in terms of the numerical fluxes at the inlet and outlet.

mass balance error =
|∫(∂Ω)outlet

Cu3dS− ∫(∂Ω)inlet
Cinu3|inletdS− ∫Ω SH2OdV |∫

(∂Ω)inlet
Cinu3|inlet dS.

(14)
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Fig. 5. Distributions of water concentration with DDM

The tolerance of our stopping criteria (12) for Schwarz alternating iteration is
10−20. By plugging the assigned and the computed concentration C as well as hor-
izontal velocity u3 in Eq. (14), we attain a convergent mass balance error for our
numerical solutions along with the continuously refining grids, shown in Table 2. A
more accurate mass balance error is attained for the numerical solutions with DDM.

Table 2. Convergent mass balance error for with different grids

Grids Unknowns Error with DDM Error with single domain
Mesh1 720 36260 9.731×10−3 8.112×10−3

Mesh2 1440 58660 8.338×10−3 6.909×10−3

Mesh3 2880 115884 3.774×10−3 2.233×10−3

Mesh4 3600 139840 1.528×10−3 Overflow

4 Conclusions and Future Work

In this paper, a simplified single-phase 3D steady PEMFC model is introduced
by a modified Navier-Stokes equations for mass and momentum, and a conser-
vation equation for water concentration. Based on the combined finite element-
upwind finite volume methods and the overlapping domain decomposition method,
a new discretization scheme is designed and implemented for the PEMFC model.
Numerical experiments demonstrate that our methods are effective to deal with the
non-matching grids and obtain a relatively accurate numerical solution with low mass
balance error. The derived discretization scheme will be also studied for two-phase
unsteady and/or fuel cell stack model in our further work.
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1 Introduction

Let Ω ⊂ R
2 be a bounded polygonal domain, V = {v ∈ H2(Ω) : ∂v/∂n = 0 on

∂Ω} and f ∈ L2(Ω). In this paper we consider multigrid methods for the following
biharmonic problem: Find u ∈V such that

∫
Ω
∇2u : ∇2vdx =

∫
Ω

f vdx ∀v ∈V, (1)

where ∇2w : ∇2v =∑2
i, j=1 wxix j vxix j is the inner product of the Hessian matrices of w

and v. Under the (assumed) compatibility condition,
∫
Ω

f dx = 0, (2)

the biharmonic problem (1) is solvable and the solution is unique up to an additive
constant. Furthermore we have an elliptic regularity estimate

‖û‖H2+α (Ω) ≤C‖ f‖L2(Ω) (3)

for the solution û of (1) that satisfies
∫
Ω ûdx = 0. Note that, unlike the biharmonic

problem with the boundary conditions of clamped plates, the index of elliptic regu-
larity α in (3), which is determined by the angles of Ω , can be close to 0 even if Ω
is convex (cf. [2]).

The essential boundary condition ∂u/∂n = 0 and the natural boundary condition
∂ (Δu)/∂n = 0 satisfied by the solution u of (1) appear in the Cahn-Hilliard model
for phase separation phenomena (cf. [8]). In particular, the boundary value problem
(1) appears when the Cahn-Hilliard equation is discretized in time by an implicit
method and the resulting nonlinear fourth order elliptic boundary value problem is
solved by an Newton iteration.
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We will describe a C0 interior penalty method for (1) in Sect. 2 and introduce in
Sect. 3 multigrid methods that are based on a new smoother. The convergence prop-
erties of the multigrid methods are briefly discussed in Sect. 4, followed by numerical
results in Sect. 5.

2 A Quadratic C0 Interior Penalty Method

C0 interior penalty methods (cf. [6, 9]) are discontinuous Galerkin methods for fourth
order problems. Let Th be a simplicial triangulation ofΩ , Vh⊂H1(Ω) be the associ-
ated P2 Lagrange finite element space (cf. [5]), and V̂h be the subspace of Vh consist-
ing of functions with zero mean, i.e., v ∈Vh belongs to V̂h if and only if

∫
Ω vdx = 0.

The quadratic C0 interior penalty method for (1) is to find ûh ∈ V̂h such that

ah(ûh,v) =
∫
Ω

f vdx ∀v ∈ V̂h, (4)

where

ah(w,v) = ∑
T∈Th

∫
T
∇2w : ∇2vdx+ ∑

e∈Eh

∫
e

{{
∂ 2w
∂n2

}}[[
∂v
∂n

]]
ds

+ ∑
e∈Eh

∫
e

{{
∂ 2v
∂n2

}}[[
∂w
∂n

]]
ds+ ∑

e∈Eh

σ
|e|

∫
e

[[
∂w
∂n

]][[
∂v
∂n

]]
ds. (5)

Here Eh is the set of the edges in Th, {{∂ 2v/∂n2}} (resp. [[∂v/∂n]]) is the average of
the second normal derivative of v (resp. the jump of the first normal derivative of v)
across an edge, |e| is the length of the edge e, and σ > 0 is a penalty parameter.

The quadratic C0 interior penalty method is consistent. It is also stable if σ is
sufficiently large, which is assumed to be the case. (The magnitude of σ is related to
certain inverse estimates. It can be taken to be 5 in practice.) It can be shown (cf. [3])
that the solution ûh of (4) satisfies the following error estimate:

‖û− ûh‖h ≤Chα‖ f‖L2(Ω), (6)

where û is the zero mean solution of (1), α is the index of elliptic regularity in (3),
and the norm ‖ · ‖h is given by

‖v‖2
h = ∑

T∈Th

|v|2H2(T) + ∑
e∈Eh

|e|−1‖[[∂v/∂n]]‖2
L2(e)

.

C0 interior penalty methods have certain advantages over other finite element
methods for fourth order problems. They are simpler than conforming methods
which require C1 elements. They come in a natural hierarchy that can capture smooth
solutions efficiently, which is not the case for classical nonconforming methods. Un-
like mixed methods they preserve the positive definiteness of the continuous problem
and are easier to develop for more complicated problems (cf. [9]).
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Another significant advantage of C0 interior penalty methods comes from the
fact that the underlying finite element spaces are standard spaces for second order
problems. (Note that the essential boundary condition for (1) is only enforced weakly
in (4) and the finite element space Vh does not involve any boundary condition.)
Therefore multigrid solves for second order problems can be easily implemented as
a preconditioner. By using such a preconditioner in the smoothing steps of multigrid
algorithms for fourth order problems, the performance of the smoother and hence
the overall performance of the multigrid algorithms can be significantly improved.
This approach was carried out in [7] for the biharmonic problem with the boundary
conditions of clamped plates. Below we will use this approach to develop multigrid
methods for (4).

3 Multigrid Methods

Let Tk (k = 0,1, · · · ) be a sequence of simplicial triangulations obtained from the
initial triangulation T0 by uniform refinement. We will use Vk (resp. ak(·, ·)) to denote
the finite element space (resp. the bilinear form for the C0 interior penalty method)
associated with Tk.

Let V ′k be the dual space of Vk and V̂k = {v ∈ Vk :
∫
Ω vdx = 0} be the zero-mean

subspace of Vk. We can identify V̂ ′k with the subspace of V ′k whose members annihilate
the constant functions, i.e., V̂ ′k = {γ ∈ V ′k : 〈γ,1〉 = 0}, where 〈·, ·〉 is the canonical
bilinear form between a vector space and its dual.

Let the operator Ak : Vk −→ V̂ ′k be defined by 〈Akv,w〉= ak(v,w) for all v,w ∈Vk.
We can then rewrite the discrete problem (4) as Akûk = φk, where ûk ∈ V̂k and φk ∈ V̂ ′k
satisfies 〈φk,v〉=

∫
Ω f vdx for all v∈Vk. Below we will develop multigrid algorithms

for equations of the form
Akz = ψ (7)

where z ∈ V̂k and ψ ∈ V̂ ′k .
There are two ingredients in the design of multigrid algorithms. First of all, we

need intergrid transfer operators to move data between consecutive levels. Since
the finite element spaces are nested, we can take the coarse-to-fine operator Ik

k−1 :

Vk−1 −→Vk to be the natural injection and the fine-to-coarse operator Ik−1
k : V ′k −→

V ′k−1 to be the transpose of Ik
k−1 with respect to the canonical bilinear forms, i.e.,

〈Ik−1
k γ,v〉= 〈γ, Ik

k−1v〉 for all γ ∈V ′k , v ∈Vk−1. Note that Ik
k−1 maps V̂k−1 into V̂k and

consequently Ik−1
k maps V̂ ′k into V̂ ′k−1.

The second ingredient is a good smoother that can damp out the highly oscillatory
part of the error of an approximate solution so that the remaining part of the error
can be captured accurately on a coarser grid. Here we take advantage of the fact that
the P2 Lagrange finite element space is a standard space for second order problems
to incorporate a multigrid Poisson solve in the smoother. Let Lk : V̂k −→ V̂ ′k be the
discrete Laplace operator defined by

〈Lkv,w〉=
∫
Ω
∇v ·∇wdx ∀v,w ∈ V̂k.
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We take S−1
k : V̂ ′k −→ V̂k to be an approximate inverse of Lk obtained from a multigrid

Poisson solve such that

〈Skv,v〉 ≈ |v|2H1(Ω)
∀v ∈ V̂k. (8)

The smoothing step in our multigrid algorithms for (7) is then given by

znew = zold +λkS−1
k (ψ−Akzold), (9)

where λk is a damping factor chosen so that the spectral radius ρ(λkS−1
k Ak) is <2. It

follows from (8) and standard inverse estimates (cf. [5]) that we can take λk =Ch2
k .

Note that the computational cost of (9) is proportional to the dimension of V̂k, which
implies that the overall computational costs of the multigrid algorithms in Sects. 3.1
and 3.2 are also proportional to the dimension of V̂k.

We can now describe the V -cycle and W -cycle algorithms (cf. [10, 11]) in terms
of the intergrid transfer operators and the smoothing scheme.

3.1 V -Cycle Algorithm

The V -cycle algorithm computes an approximate solution MGV (k,ψ ,z0,m) of (7)
with initial guess z0 ∈ V̂k and m pre-smoothing and m post-smoothing steps. For
k = 0, we take MGV (0,ψ ,z0,m) to be the output of a direct solve. For k ≥ 1, we
compute MGV (k,ψ ,z0,m) recursively in three steps.

Pre-smoothing For 1≤ �≤ m, compute z� recursively by

z� = z�−1 +λkS−1
k (ψ−Akz�−1).

Coarse Grid Correction Compute

zm+1 = zm + Ik
k−1MGV (k−1,ρk−1,0,m),

where ρk−1 = Ik−1
k (ψ−Akzm) ∈ V̂ ′k−1 is the transferred residual of zm.

Post-smoothing For m+ 2≤ �≤ 2m+ 1, compute z� recursively by

z� = z�−1 +λkS−1
k (ψ−Akz�−1).

The final output is MGV (k,ψ ,z0,m) = z2m+1.

3.2 W -Cycle Algorithm

The W -cycle algorithm computes an approximate solution MGW (k,ψ ,z0,m) of (7)
with initial guess z0 ∈ V̂k and m pre-smoothing and m post-smoothing steps. The only
difference between the V -cycle algorithm and the W -cycle algorithm is in the coarse
grid correction step, where the coarse grid algorithm is applied twice to the coarse
grid residual equation. More precisely, we have

zm+ 1
2
= MGW (k−1,ρk−1,0,m),

zm+1 = zm +MGW (k−1,ρk−1,zm+ 1
2
,m).
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Remark 1. For simplicity we have described the multigrid algorithms in terms of the
space V̂k where the bilinear form ak(·, ·) is nonsingular. But the multigrid Poisson
solve S−1

k (and hence the V -cycle and W -cycle algorithms) can be implemented on
Vk for k ≥ 1. The implementation of multigrid algorithms for the singular Neumann
problem is discussed for example in [1].

4 Convergence Properties

Let z0 ∈ V̂k be the initial guess and z† ∈ V̂k be the output of the V -cycle or W -cycle
algorithm for (7). Numerical results indicate that

‖z− z†‖ah ≤Cm−α‖z− z0‖ah , (10)

where α is the index of elliptic regularity in (3) and ‖ · ‖ah =
√

ah(·, ·) is the energy
norm, provided that the number of smoothing steps m≥m∗. Here m∗ is a sufficiently
large positive integer independent of k. In particular the multigrid algorithms are
contractions for sufficiently large m and the contraction numbers are bounded away
from 1 uniformly. A similar estimate was obtained in [7] for the boundary conditions
of clamped plates. The derivation of (10) for the Cahn-Hilliard boundary conditions
will be carried out in [4] where general fourth order problems are considered.

A significant benefit of including a multigrid Poisson solve in the smoothing step
(9) is that the resulting smoothing property is similar to that for second order prob-
lems (cf. [7]) so that the contraction number estimate (10) is also similar to that for
second order problems. Indeed, because of the estimate (8), we can derive a smooth-
ing property for (9) with respect to a family of mesh dependent norms ||| · |||s,k such
that ||| · |||0,k≈ |·|H1(Ω) and ||| · |||1,k≈ |·|H2(Ω) on the space V̂k. Note that the smoothing
properties of standard smoothers for second order problems are described in terms
of mesh dependent norms ||| · |||s,k such that ||| · |||0,k ≈ ‖·‖L2(Ω) and ||| · |||1,k ≈ |· |H1(Ω)

on the finite element spaces. The good performance of the smoothing step (9) is due
to the similarity between the Hilbert scales [H1(Ω),H2(Ω)] and [L2(Ω),H1(Ω)].

If we use a standard smoother such as the Richardson relaxation in a multigrid
algorithm for (7), then the smoothing property will be determined by the Hilbert
scale [L2(Ω),H2(Ω)]. In this case the estimate (10) will be replaced by the estimate

‖z− z†‖ah ≤Cm−α/2‖z− z0‖ah , (11)

which means that the effect of 100 smoothing steps without the preconditioner is
roughly equivalent to the effect of 10 smoothing steps with the preconditioner. As
far as we know, all existing multigrid methods for fourth order problems (except
those in [6]) use standard smoothers and their convergence is governed by (11).

5 Numerical Results

The numerical experiments were performed on sienna@IMA (Intel P4, 3.4 GHz
CPU, 2 G memory) at the Institute for Mathematics and its Applications. In the nu-
merical experiments we take σ = 5 and the preconditioner to be a V -cycle Poisson
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solve with one pre-smoothing step and one post-smoothing step. (Other multigrid
Poisson solves can also be used, but the V (1,1) solve appears to be the most effi-
cient.) The contraction numbers for the V -cycle and W -cycle algorithms on the unit
square (with two elements in the initial mesh) are reported in Tables 1 and 2. It is
observed that the V -cycle (resp. W -cycle) algorithm is a contraction for m≥ 4 (resp.
m≥ 2).

Table 1. Contraction numbers for the V-cycle algorithm on the unit square.

k
m

4 5 6 7 8 9 10 11 12 13

1 0.212 0.126 0.0813 0.0594 0.0442 0.0332 0.0252 0.0192 0.0147 0.0114
2 0.329 0.223 0.190 0.164 0.142 0.124 0.109 0.0967 0.0861 0.0771
3 0.412 0.342 0.308 0.279 0.255 0.234 0.217 0.203 0.190 0.179
4 0.479 0.420 0.386 0.357 0.334 0.314 0.296 0.282 0.266 0.257
5 0.537 0.467 0.434 0.408 0.386 0.367 0.351 0.336 0.324 0.312
6 0.578 0.494 0.462 0.436 0.415 0.396 0.380 0.366 0.353 0.341
7 0.619 0.503 0.472 0.446 0.425 0.406 0.391 0.376 0.364 0.351

Table 2. Contraction numbers for the W-cycle algorithm on the unit square.

k
m

2 3 4 5 6 7 8 9 10 11

1 0.661 0.368 0.212 0.126 0.0813 0.0594 0.0442 0.0332 0.0252 0.0192
2 0.483 0.360 0.291 0.241 0.203 0.172 0.148 0.128 0.112 0.0983
3 0.475 0.375 0.335 0.282 0.263 0.229 0.215 0.195 0.182 0.171
4 0.455 0.383 0.335 0.308 0.287 0.270 0.256 0.244 0.233 0.223
5 0.456 0.384 0.344 0.315 0.297 0.279 0.267 0.255 0.245 0.237
6 0.455 0.384 0.344 0.316 0.297 0.280 0.268 0.256 0.248 0.239
7 0.455 0.384 0.344 0.317 0.297 0.281 0.269 0.258 0.248 0.240

For comparison we report in Table 3 the contraction numbers for the V -cycle
algorithm that does not use a preconditioner in the smoothing steps. The smoothing
step in this algorithm is the standard Richardson relaxation scheme.

We have also carried out numerical experiments for the L-shaped domain with
vertices (0,0), (1,0), (1,1), (−1,1), (−1,−1) and (0,−1). The initial mesh consists
of six isosceles triangles sharing (0,0) as a common vertex. The contraction numbers
for the W -cycle algorithm with/without the preconditioner are presented in Tables 4
and 5.

We note that the contraction numbers in Table 1 (resp. Table 4) for m smoothing
steps are comparable to the contraction numbers in Table 3 (resp. Tables 5) for m2

smoothing steps.
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Table 3. Contraction numbers for the V-cycle algorithm without a preconditioner on the unit
square.

k
m

21 22 23 24 25 26 27 28 29 30

1 0.428 0.410 0.392 0.376 0.361 0.346 0.332 0.320 0.307 0.296
2 0.646 0.614 0.583 0.555 0.529 0.504 0.481 0.459 0.439 0.420
3 0.770 0.728 0.690 0.654 0.621 0.591 0.562 0.535 0.510 0.487
4 0.844 0.797 0.753 0.713 0.676 0.641 0.609 0.579 0.551 0.525
5 0.895 0.843 0.795 0.752 0.711 0.674 0.639 0.607 0.577 0.548
6 0.931 0.876 0.826 0.780 0.737 0.697 0.661 0.627 0.595 0.565
7 0.960 0.902 0.849 0.801 0.757 0.715 0.677 0.642 0.609 0.578

Table 4. Contraction numbers for the W-cycle algorithm with a preconditioner on the L-shaped
domain.

k
m

3 5 7 9 11 13 15 17 19 21 23

1 0.319 0.187 0.125 0.105 0.0913 0.0798 0.0699 0.0614 0.0540 0.0476 0.0420
2 0.383 0.273 0.206 0.161 0.139 0.132 0.125 0.119 0.113 0.108 0.103
3 0.390 0.302 0.238 0.208 0.182 0.163 0.152 0.148 0.144 0.141 0.137
4 0.386 0.309 0.271 0.245 0.224 0.208 0.193 0.181 0.170 0.161 0.153
5 0.384 0.315 0.279 0.255 0.237 0.222 0.209 0.198 0.189 0.180 0.172
6 0.384 0.316 0.281 0.257 0.240 0.226 0.213 0.203 0.193 0.185 0.177
7 0.387 0.317 0.281 0.258 0.240 0.226 0.214 0.203 0.194 0.186 0.178

Table 5. Contraction numbers for the W-cycle algorithm without a preconditioner on the
L-shaped domain.

k
m

5 7 9 11 13 15 17 19 21 23

1 0.943 0.788 0.680 0.600 0.537 0.486 0.443 0.407 0.375 0.347
2 0.790 0.585 0.505 0.459 0.426 0.394 0.375 0.358 0.342 0.328
3 0.666 0.512 0.469 0.456 0.434 0.416 0.400 0.386 0.373 0.362
4 0.580 0.519 0.484 0.454 0.434 0.418 0.405 0.394 0.385 0.376
5 0.581 0.527 0.491 0.465 0.444 0.427 0.414 0.402 0.392 0.384
6 0.587 0.531 0.494 0.467 0.446 0.429 0.415 0.404 0.394 0.386
7 0.587 0.530 0.493 0.467 0.446 0.429 0.415 0.404 0.394 0.386

Finally we compare the computational cost between the preconditioned schemes
and the un-preconditioned schemes. On the unit square, the contraction numbers for
the preconditioned V-cycle algorithm with m = 4 (cf. Table 1) are about the same as
the contraction numbers for the un-preconditioned V-cycle algorithm with m = 29
(cf. Table 3). For k = 7, the former takes 1.4× 108 floating point operations and
0.55 s while the latter takes 3.2×108 floating point operations and 1.2 s.
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On the L-shaped domain, the contraction numbers for the preconditioned W-cycle
algorithm with m = 3 (cf. Table 4) are about the same as the contraction numbers
for the un-preconditioned W-cycle algorithm with m = 23 (cf. Table 5). For k = 7,
the former takes 4.7× 108 floating point operations and 2.1 s while the latter takes
1.1×109 floating point operations and 4.7 s.
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Summary. We study a two-level additive Schwarz preconditioner for C0 interior penalty
methods for a biharmonic problem with essential and natural boundary conditions with Cahn-
Hilliard type. We show that the condition number of the preconditioned system is bounded
by C(1+(H3/δ 3)), where H is the typical diameter of a subdomain, δ measures the overlap
among the subdomains, and the positive constant C is independent of the mesh sizes and the
number of subdomains.

1 Introduction

Let Ω be a bounded polygonal domain in R
2, and V= {v ∈ H2(Ω) : ∂v/∂n = 0 on

∂Ω}, where ∂/∂n denotes the outward normal derivative. Consider the following
model problem which is the weak form of the biharmonic problem with boundary
conditions of Cahn-Hilliard type:

Find u ∈ H2(Ω) such that

a(u,v) = ( f ,v) ∀v ∈ V, (1)

∂u
∂n

= 0 on ∂Ω , (2)

where f ∈ L2(Ω), (·, ·) is the L2(Ω) inner product, and

a(w,v) =
2

∑
i, j=1

∫
Ω

∂ 2w
∂xi∂x j

∂ 2v
∂xi∂x j

dx

is the inner product of the Hessian matrices of w and v.
Let p∗ be a corner of Ω , and

V
∗ = {v ∈V : v(p∗) = 0}.

Then by elliptic regularity [1], the unique solution u ∈ V ∗ of our model problem
belongs to H2+α(Ω), where 0 < α ≤ 2 is the index of elliptic regularity.
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C0 interior penalty methods are discontinuous Galerkin methods for fourth order
problems. These approaches for our model problem have recently been analyzed in
[5]. Let Th be a simplicial or convex quadrilateral triangulation of Ω , and Vh be a
Lagrange (triangular or tensor product) finite element space associated with Th. Let

V ∗h = {v ∈Vh : v(p∗) = 0}.
Then the C0 interior penalty method for (1) and (2) is to find uh ∈V ∗h such that

Ah(uh,v) = ( f ,v) ∀v ∈V ∗h , (3)

where for w,v ∈V ∗h ,

Ah(w,v) = ∑
D∈Th

2

∑
i, j=1

∫
D

∂ 2w
∂xi∂x j

∂ 2v
∂xi∂x j

dx+ ∑
e∈Eh

η
|e|

∫
e

[[
∂w
∂n

]][[
∂v
∂n

]]
ds

+ ∑
e∈Eh

∫
e

({{
∂ 2w
∂n2

}}[[
∂v
∂n

]]
+

{{
∂ 2v
∂n2

}}[[
∂w
∂n

]])
ds, (4)

Eh denotes the set of edges of the triangulation Th, and η is a penalty parameter. The
jumps and averages are defined as follows.

For interior edges e ∈ Eh shared by two elements D± ∈ Th, we take ne to be the
unit normal of e pointing from D− into D+, and define

[[
∂v
∂n

]]
=
∂v+
∂ne

− ∂v−
∂ne

and

{{
∂ 2v
∂n2

}}
=

1
2

(
∂ 2v+
∂n2

e
+
∂ 2v−
∂n2

e

)
,

where v± = v
∣∣
D± . Note that the definitions of [[∂v/∂n]] and

{{
∂ 2v/∂n2

}}
are inde-

pendent of the choice of e.
For e ∈ Eh which is on the boundary of Ω , we take ne to be the unit normal of e

pointing outside Ω and define
[[
∂v
∂n

]]
=− ∂v

∂ne
and

{{
∂ 2v
∂n2

}}
=
∂ 2v
∂n2

e
.

Remark 1. The discrete problem (3) resulting from the C0 interior penalty method is
consistent, and for the penalty parameter η large enough, it is also stable [3].

For fourth order problems, C0 interior penalty methods have certain advantages
over classical finite element methods. However, due to the nature of fourth order
problems, the discrete system resulting from the C0 interior penalty method is very
ill-conditioned. Therefore, it is necessary to develop modern fast solvers to overcome
this drawback. In this paper, we construct a two-level additive Schwarz precondi-
tioner and extend the results in [4] for biharmonic problems with essential Dirichlet
boundary conditions to the ones with the essential and natural boundary conditions.

The rest of this paper is organized as follows. We first introduce the framework
of a two-level additive Schwarz preconditioner in Sect. 2, followed by the condition
number estimates of the preconditioned system in Sect. 3. Section 4 demonstrates
some numerical results.
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2 A Two-Level Additive Schwarz Preconditioner

For simplicity, we will focus on the case where Th is a rectangular mesh. The results
obtained in this paper are also true for triangular and general convex quadrilateral
meshes.

Let V ∗h = {v : v ∈C(Ω̄ ),v(p∗) = 0,vD = v
∣∣
D =Q2(D) ∀D ∈Th} be the standard

quadratic Lagrange finite element space associated with Th, and the operator Ah :
V ∗h −→V ∗′h can then be defined by

〈Ahv,w〉= Ah(v,w) ∀v,w ∈V ∗h ,

where 〈·, ·〉 is the canonical bilinear form between a vector space and its dual.
Note that for η sufficiently large, the following relation [3] is true.

C1|v|2H2(Ω ,Th)
≤ 〈Ahv,v〉 ≤C2|v|2H2(Ω ,Th)

∀v ∈V ∗h ,

where

|v|2H2(Ω ,Th)
= ∑

D∈Th

|v|2H2(D) + ∑
e∈Eh

1
|e| ‖[[∂v/∂n]]‖2

L2(e)
,

and the constants C1 and C2 depend only on the shape regularity of Th.
We now construct a two-level additive Schwarz preconditioner for the operator

Ah which involves a coarse grid solve and subdomain solves.
First of all, let TH be a coarse rectangular mesh for Ω , and V0 ⊂ H1(Ω) be the

Q1 finite element space associated with TH . We define A0 : V ∗0 −→V ∗′0 by

〈A0v,w〉= AH(v,w) ∀v,w ∈V ∗0 ,

where AH is the analog of Ah for the coarse grid TH , and V ∗0 = {v : v ∈ V0,v(p∗) =
0}.

Let Ω j,1 ≤ j ≤ J, be overlapping subdomains of Ω such that Ω = ∪J
j=1Ω j, and

the boundaries of Ω j are aligned with the edges of Th. We assume that there exist
nonnegative θ j ∈C∞(Ω̄) for 1≤ j ≤ J such that

θ j = 0 on Ω\Ω j,

J

∑
j=1
θ j = 1 on Ω̄ ,

‖∇θ j‖L∞(Ω) ≤
C
δ
, ‖∇2θ j‖L∞(Ω) ≤

C
δ 2 ,

where ∇2θ j is the Hessian of θ j,δ > 0 measures the overlap among the subdomains,
and C is a positive constant independent of h,H and J.

Remark 2. Suppose Th is a refinement of TH . We can construct Ω j by enlarging the
elements of TH by the amount of δ so that the boundaries of Ω j,1 ≤ j ≤ J, are
aligned with the edges of Th (cf. Fig. 1). The construction of θ j,1 ≤ j ≤ J, is then
standard.
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δ

Fig. 1. Th,TH and Ω j

Moreover, we assume that the maximum number of subdomains Ω j that share a
common point is bounded by a constant Nc.

Let Vj = {v : v ∈ V ∗h ,v = 0 on Ω̄� if � = j} be the Q2 finite element space asso-
ciated with Th on Ω̄ j. Then we define the operator A j : Vj −→V ′j by

〈A jv,w〉= A j(v,w) ∀v,w ∈Vj,

where A j,1 ≤ j ≤ J, are the analogs of Ah restricted on Ω̄ j. Similarly, we obtain
that

C3|v|2H2(Ω j ,Th)
≤ 〈A jv,v〉 ≤C4|v|2H2(Ω j ,Th)

∀v ∈Vj,

where
|v|2H2(Ω j ,Th)

= ∑
D∈Th
D⊂Ω j

|v|2H2(D) + ∑
e∈Eh
e⊂Ω̄ j

‖[[∂v/∂n]]‖2
L2(e)

,

and C3,C4 are constants independent of h,H,J,Nc and δ .
For simplicity, from now on, we will use C to denote a generic positive constant

independent of h,H,δ , and J that will take different values in different occurrences.
The subdomain finite element space Vj,1 ≤ j ≤ J, is connected to V ∗h by the

natural injection operator I j which satisfies the following inequality.

|I jv|H2(Ω ,Th)
≤C|v|H2(Ω j ,Th)

∀v ∈Vj.

Furthermore, the coarse space V ∗0 and the fine space V ∗h are connected by the
operator I0 which is defined as follows.

Let Ṽ0 ⊂ H2(Ω) be the Q3 Bogner-Fox-Schmit finite element space associated
with TH , and Ṽ ∗0 = {v : v ∈ Ṽ0,v(p∗) = 0}. The Q1 Lagrange element and the Q3

Bogner-Fox-Schmit element are depicted in Fig. 2, where we use the solid dot • to
denote pointwise evaluation of the shape functions, the circle ◦ and the arrow to
denote pointwise evaluation of all the first order derivatives and the mixed second
order derivative of the shape functions, respectively.

Fig. 2. Q1 element and Q3 Bogner-Fox-Schmit element
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We define EH : V ∗0 −→ Ṽ ∗0 to be the operator that for all p ∈ TH ,

(EHv)(p) = v(p),

∇(EHv)(p) =

⎧⎨
⎩

1
|Tp| ∑D∈Tp

∇vD(p), if p ∈Ω ,

0, if p ∈ ∂Ω ,

∂ 2(EHv)
∂x1∂x2

(p) =

⎧⎪⎨
⎪⎩

1
|Tp| ∑D∈Tp

∂ 2vD

∂x1∂x2
(p), if p ∈Ω ,

0, if p ∈ ∂Ω ,

where Tp is the set of rectangles in TH sharing p as a vertex, |Tp| is the number of
elements in Tp, and vD = v

∣∣
D.

Then for all v ∈ V ∗0 , we take I0v ∈ V ∗h to be the one whose nodal values are
identical with the corresponding nodal values of EHv.

Remark 3. Instead of using the operator EH , if we define the operator I0 as the natural
injection operator from V ∗0 to V ∗h , then the performance of the preconditioner will be
affected by the different scalings that appear in the penalty terms for Ah and AH .
However, this problems can be avoided by defining I0 as above since EHv ∈H2(Ω).

We can now define the two-level additive Schwarz preconditioner B : V ∗′h −→V ∗h
by

B =
J

∑
j=0

I jA
−1
j It

j,

where It
j : V ∗′h −→V ′j is the transpose of I j, i.e.,

〈It
jΨ ,v〉= 〈Ψ , I jv〉 ∀Ψ ∈V ∗

′
h ,v ∈Vj.

From the additive Schwarz theory [2, 6], the preconditioner B is symmetric pos-
itive definite and therefore the eigenvalues of BAh are positive. Moreover, the maxi-
mum and minimum eigenvalues of BAh are given by the following formulas, which
will be used to estimate the condition number of the preconditioned system.

λmax(BAh) = max
v∈Vh
v=0

〈Ahv,v〉

min
v=∑J

j=0 Ijv j

v j∈Vj

J

∑
j=0
〈A jv j,v j〉

,

λmin(BAh) = min
v∈Vh
v=0

〈Ahv,v〉

min
v=∑J

j=0 Ij v j
v j∈Vj

J

∑
j=0

〈A jv j,v j〉
.
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3 Condition Number Estimates

From the construction of our two-level additive Schwarz preconditioner, by the sim-
ilar arguments as we did in [4], it is not difficult to derive the following results on the
estimates of the eigenvalues of the preconditioned system.

Theorem 1. The following upper bound for the eigenvalues of BAh holds:

λmax(BAh)≤C,

where the positive constant C depends on the shape regularity of Th and TH but not
h,H,δ nor J.

Theorem 2. The following lower bound for the eigenvalues of BAh holds:

λmin(BAh)≥C

(
1+

H4

δ 4

)
,

where the positive constant C depends on the shape regularity of Th and TH but not
h,H,δ nor J.

Finally, from Theorems 1 and 2, the following estimate on the condition number of
the preconditioned system can be obtained immediately.

Theorem 3. It holds that

κ(BAh) =
λmax(BAh)

λmin(BAh)
≤C

(
1+

H4

δ 4

)
,

where the positive constant C depends on the shape regularity of Th and TH but not
h,H,δ nor J.

Remark 4. In the case of a small overlap, i.e. δ � H, the estimate on the condition
number of the preconditioned system can be improved to (1+(H/δ )3), provided
with more assumptions on the subdomainsΩ j [4].

4 Numerical Results

In this section, we present some numerical results for the biharmonic problem with
Cahn-Hilliard type of boundary conditions on the unit square. We choose the penalty
parameter in Ah,AH and A j to be 5, which guarantees the coerciveness of the vari-
ational form (4) on V ∗h .

First of all, for different choices of H and h, we generate a vector vh ∈V ∗h , com-
pute the right-hand side vector g = Ahvh, and apply the preconditioned conjugate
gradient algorithm to the system Ahz = g using our two-level additive Schwarz pre-
conditioner. We compute the iteration numbers needed for reducing the energy norm
error by a factor of 10−6 for five random choices of vh and then average them. The
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numbers are collected in Tables 1 and 2. Also, to illustrate the practical performance
of our preconditioner, such iteration numbers needed for reducing the energy norm
error by a factor of 10−2 with 16 subdomains are reported in Table 3. They show that
the bound for the condition number of BAh is independent of h.

We also compute, in the case of 4 and 16 subdomains, the maximum eigenvalue,
the minimum eigenvalue, and the condition number of the preconditioned system for
the fine mesh h = 2−6 and various overlaps among subdomains by using Lanczos
methods. The results are tabulated in Tables 4 and 5. They show that the maximum
eigenvalue is bounded and the minimum eigenvalue increases as the overlap among
subdomains decreases.

Table 1. Average number of iterations for reducing the energy norm error by a factor of 10−6

with H = 1/2 and J = 4

h = 2−2 h = 2−3 h = 2−4 h = 2−5 h = 2−6

δ = 2−2 17 17 17 15 15
δ = 2−3 - 20 20 19 17
δ = 2−4 - - 26 25 24
δ = 2−5 - - - 47 45
δ = 2−6 - - - - 93

Table 2. Average number of iterations for reducing the energy norm error by a factor of 10−6

with H = 1/4 and J = 16

h = 2−3 h = 2−4 h = 2−5 h = 2−6

δ = 2−3 27 29 27 24
δ = 2−4 - 28 26 24
δ = 2−5 - - 42 39
δ = 2−6 - - - 83
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1 Introduction

We present an Algebraic Multigrid (AMG) method for graph Laplacian problems.
The coarse graphs are constructed recursively by pair-wise aggregation, or matching
as in [3] and we use an Algebraic Multilevel Iterations (AMLI) [1, 6] for the solution
phase.

The two-level method constructs a splitting of the underlying vector space into
two subspaces VS and VP and then corrects the error successively on VS and VP. The
coarse space VP is obtained using matching on the underlying graph. Such a two-level
method is shown to be uniformly convergent. In the AMLI method (multilevel), m
coarse level corrections are applied on each level. For large m, while the conver-
gence rate of the method is comparable to that of the two-level method and, hence,
uniformly convergent, it is clear that the overall complexity of such method could
be too high for large values of m. In our approach, the AMLI convergence rate is
estimated solely based on the underlying two-level method, which allows us to show
that m = 2 gives a balance between the complexity and the desired convergence rate,
thus, resulting in an efficient algorithm.

The paper is organized as follows. In Sect. 2 the graph Laplacian problem is de-
scribed. In Sect. 3, the graph matching algorithm is introduced and it is indicated
that the �2 projection on the coarse space is the key quantity for obtaining the mul-
tilevel estimates of the AMLI method. In Sect. 4, an analysis of a specific two-level
method is presented and in Sect. 5 its convergence and complexity are estimated. In
the following section, numerical results are reported.

2 Graph Laplacian Problems

Graph Laplacian solvers can be used as preconditioners for various discrete numeri-
cal models, e.g., ones arising from discretizations of partial differential equations,

R. Bank et al. (eds.), Domain Decomposition Methods in Science and Engineering XX,
Lecture Notes in Computational Science and Engineering 91,
DOI 10.1007/978-3-642-35275-1 15, © Springer-Verlag Berlin Heidelberg 2013

143

mailto:johannes.kraus@oeaw.ac.at


144 James Brannick, Yao Chen, Johannes Kraus, and Ludmil Zikatanov

machine learning algorithms, and spectral clustering of images. Consider a con-
nected unweighted graph G = (V ,E ) where V and E are the sets of vertices and
edges. The graph Laplacian A ∈ IRn×n, where n = |V | (cardinality of V ), corre-
sponding to the graph G , can be defined as follows:

(Au,v) = ∑
k=(i, j)∈E

(ui−u j)(vi− v j).

The matrix A is symmetric and positive semi-definite. The null space of A is one
dimensional, and its basis is given by {1}, where 1 is a vector whose components are
all equal to 1. Our aim here is to solve graph Laplacian problems, or to find u, such
that (u,1) = 0 and

Au = f ,

for a given f satisfying ( f ,1) = 0.
We want to find an AMG method to solve graph Laplacians with simple settings,

so that we can estimate the performance of the AMG method, with as few assump-
tions introduced as possible. The construction of this AMG method can also help
us to derive similar methods for weighted graph Laplacian problems, which come
from finite element or finite difference discretizations of elliptic partial differential
equations, circuit simulations, and in general, network flow simulations.

3 Graph Matching

Given a graph G , assume that we can find a set of aggregates M called a matching,
where each aggregate contains exactly two vertices, and every vertex of G is con-
tained in exactly one aggregate. For a certain aggregate that contains vertices i and
j, we merge the two vertices, and the newly formed vertex, named k, is considered
connected to the vertex l if and only if l is connected to i or j on graph G . By merg-
ing vertices in each aggregate, a reduced graph of the graph G is formed. Applying
such a matching algorithm recursively will result in a sequence of graphs. We then
construct a solver for the graph Laplacian of G based on the sequence of reduced
graphs.

In the matching M , we consider the k-th aggregate as a graph Gk = (Vk,Ek). Let
Q be the �2-orthogonal projection on the coarse space, which consists of vectors that
are piecewise constant on each set Vk. An alternative definition of Q is as follows.

(Qu)i =
1
|Vk| ∑j∈Vk

u j, i ∈ Vk.

Classical AMG theory suggests that the coarse space should cover, or approx-
imate algebraically smooth error components. Detailed explanations can be found,
e.g., in the appendix of [5]. In the following section, we will compute how well piece-
wise constant vectors can approximate smooth vectors and will discuss the properties
of two-level and multilevel methods using the subspace(s) associated with the pro-
jection Q.
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4 A Two-Level Method

Define matrices P and S for a given matching M , such that

P · ek = ei + e j, S · ek = ei− e j, (i, j) ∈ Vk,

where ei and e j are Euclidean basis vectors. Since a prerequisite for designing an
efficient AMLI method is an efficient two-level method, in this section we focus on
two-level methods and their convergence rates. Given an initial guess u0, a typical
two-level algorithm which takes as input uk and returns the next iterate uk+1 is as
follows:

1. v = uk + SR−1ST ( f −Auk),
2. w = v+PA−1

c PT ( f −Av),
3. uk+1 = w+ SR−T ST ( f −Aw).

Here the matrix R is a preconditioner of ST AS, which is the restriction of A on the
space range(S) = [range(P)]⊥. The matrix Ac is an approximation of the restriction
of A on the coarse space Vc = range(P). In our algorithm, Ac is first defined as the
graph Laplacian of the unweighted coarse graph and thus Ac = PT AP. We then scale
Ac such that (vT Acv)/(vT PT APv) ∈ [1,cc]. A proper scaling results in cc = 2 for
P that corresponds to an aligned matching and A that is a structured grid of any
dimension. The matrix representation of this two-level method, denoted by G, can
be deduced via the error propagation matrix given as follows.

E = (I−SR−T ST A)(I−PA−1
c PT A)(I−SR−1ST A) = I−G−1A. (1)

We now derive an estimate on the angle between the spaces range(S) and
range(P), which in our setting amounts to obtaining a bound on the energy norm
of Q, the �2-orthogonal projection onto range(P). Let γ be the C.B.S. constant such
that it is the smallest number satisfying (Sw,Pv)A ≤ γ|Sw|A|Pv|A, then (cf. [6, Corol-
lary 3.7]):

|Q|2A = 1/(1− γ2).

Using [2, Theorem 4.2] we can show that, if the symmetrized smoother R̃ = R+
RT −ST AS is positive definite, and (wT R̃w)/(wT ST ASw) ∈ [1,κs], then

vT Gv
vT Av

∈ [1, |Q|2A(κs + cc−1)].

If a two-level method using a certain matching is already given, then both |Q|A
and κs can be estimated using the properties of the underlying graph. The norm |Q|A
is estimated as follows:

uT QAQu = ∑
(i, j)∈E

((Qu)i− (Qu) j)
2 ≤ 2d ∑

(i, j)∈E

(ui−u j)
2 ≤ (2d)uT Au

where d is the maximum degree of the graph. This implies that |Q|2A ≤ 2d. Assuming
that the matching M is perfect, we show that the smallest eigenvalue of ST AS is
larger or equal to 4, by computing
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wT ST ASw≥ ∑
(i, j)∈M

((Sw)i− (Sw) j)
2 = ∑

(i, j)∈M

4(Sw)2
i = 4‖w‖2

�2
.

According to the Gershgorin theorem, the largest eigenvalue of ST AS is bounded
by a function of d and for a simple smoother R, such as Richardson iteration, κs is
also bounded by a function of d. From the above results (i.e, the stability estimate
of Q in the A-seminorm and the lower bound on the smallest eigenvalue of ST AS) it
follows that the two-level method is uniformly convergent with respect to the size of
the matrix A. Based on the two-level convergence estimate, AMLI cycles with low
complexity and predictable convergence is then constructed.

5 Algebraic Multilevel Iterations

An estimate of the two-level convergence rate does not automatically carry over to an
estimate of the convergence of a multilevel V-cycle, and in general, for piece-wise
constant coarse spaces, it can be shown that the convergence rate degrades expo-
nentially with respect to the number of levels. A remedy for this issue is to use more
complicated cycles such as AMLI, and keep a balance between complexity of a cycle
and its convergence rate so that the resulting algorithm is optimal or nearly optimal.

We describe an AMLI method by first rewriting the two-level preconditioner G,
as well as Ĝ which is G under the hierarchical basis (S,P), in block form:

Ĝ−1 = L̂−T
(
(R+RT −ST AS)−1 0

0 A−1
c

)
L̂−1,

G = (S,P)−1Ĝ(S,P)−T ,

where

L̂ =

(
I 0

PT ASR−1 I

)
.

Then define an AMLI preconditioner B as follows.

B̂−1 = L̂−T
(
(R+RT −ST AS)−1 0

0 B−1
c q(AcB−1

c )

)
L̂−1,

B−1 = (S,P)T B̂−1(S,P).

Here Ac is the scaled unweighted graph Laplacian of the coarse graph and Bc is a
preconditioner of Ac, and q(t) is a polynomial. When q(t) = 1, the action B̂−1 stands
for a V-cycle with an inexact solver B−1

c on the coarse level. In the case of a W-cycle,
we have q(t) = 2− t.

The following lemma shows how well the AMLI preconditioner B approximates
the two-level preconditioner G.

Lemma 1. If λ1 ≤ λ (B−1
c Ac)≤ λ2 and tq(t)> 0 for t ∈ [λ1,λ2], then

min(1, min
λ1≤t≤λ2

1
tq(t)

)≤ vT G−1v
vT B−1v

≤max(1, max
λ1≤t≤λ2

1
tq(t)

).
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This lemma suggests that, the AMLI method is spectrally equivalent to a two-
level method, given that the coarse-level preconditioner is spectrally equivalent to
the coarser-level matrix. The upper and lower bounds in the lemma above are related
to estimates on |tq(t)| for t in a given interval. As shown in [1, 6], using higher
order polynomials q(t), the matrix B−1 can approximate G−1 arbitrarily well and
thus we will have a method with excellent convergence rate. However, a higher order
polynomial q(t) leads to a much more expensive computation of the coarser level
correction, and the resulting multilevel methods can have a very high complexity
and one should be careful in the choice of the polynomial degree.

Assume that a multilevel hierarchy is formed by a recursive application of the
matching algorithm. Denote the graph Laplacians on each level, and the correspond-
ing two-level preconditioners by Ak and Gk. Following the ordering of levels in [1, 6]
we set A = A0 and denote by AJ the coarsest matrix. Define a sequence of solvers as

B̂−1
J = Â†

J = (SJ,PJ)
−T A†

J(SJ,PJ)
−1,

B−1
k = (Sk,Pk)

T B̂−1
k (Sk,Pk), k = 0, . . . ,J,

B̂−1
k = L̂−T

k

(
(Rk +RT

k −ST
k AkSk)

−1 0
0 B−1

k+1q(Ak+1B−1
k+1)

)
L−1

k , k = 0 . . .J−1.

Then, a multilevel proof of convergence follows.

Lemma 2. Assume that there is a constant cg, 1 ≤ cg < 4, such that the following
relation holds.

vT Âkv≤ vT Ĝkv≤ cgvT Âkv, ∀v and k = 0, . . . ,J.

Then there exists a linear function q(t), such that

2√
cg
−1≤ vT B−1

k v

vT A−1
k v

≤ 1, ∀v and k = 0, . . . ,J.

Here q(t) is a scaled and shifted Chebyshev type polynomial (see [1]).
This lemma shows that, if cg is strictly less than 4, then the action B−1

0 is an
uniformly convergent AMLI cycle with O(n logn) complexity. Even if cg = 4 on all
levels, one may prove that the condition number of B−1

J AJ for the case of second
order q(t) (similar to a W-cycle) grows linearly with respect to the number of lev-
els J = logn. This results in a convergence factor 1− 1/ logn at a complexity of
O(n logn) for each cycle.

The two-level method we suggest is based on graph matching, thus cg≤ |Q|2A(κs+
cc− 1). In a simple case where the graph G is a two-dimensional uniform grid, an
aligned regular matching yields |Q|2A ≤ 2, κs = 1+ε for arbitrary small ε , and cc≤ 2.

This yields cg ≤ 4 and thus the W-cycle AMLI preconditioner will result in
a nearly optimal order method (cf. Lemma 2 and the discussion below). For un-
structured or higher dimensional grids, numerical experiments indicate that random
matching may still result in two-level methods for which cg ≤ 4.
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6 Numerical Results

We use the matching based AMLI method to solve a family of unweighted graph
Laplacians, corresponding to graphs that represent structured grids or unstructured
triangulations.

Structured grids. In the structured grid case on a rectangular domain, we match
in a fixed direction. After several levels of matching the graph corresponding to the
coarsest grid is a line. For the test on L-shaped domain, we still use matching in a
fixed direction until a part of the coarsest graph becomes a tree. In such case, the
unknowns can be ordered so that the fill-in during LU factorization on the coarsest
grid is small.

A similar strategy can be used for graph Laplacians corresponding to three-
dimensional structured grids. The matching procedure is applied only in two fixed
directions.

Convergence analysis indicates that, choosing as a smoother R−1 = (ST AS)−1

guarantees the bound cg ≤ 4, for a matching based two-level method on structured
grids. In the numerical experiments, we instead use a Gauss-Seidel smoother for all
structured grid problems. Using such a smoother retains a convergence rate ∼(1−
1/ logn) and O(n logn) computational complexity.

Unstructured grids. Each of the unstructured grids in our tests are constructed
by first perturbing the coordinates of vertices of a structured grid, followed by De-
launay triangulation of the resulting set of vertices. For unstructured grids, we use
a random matching algorithm. Numerical results show that the maximum degree of
the coarser graphs grow only during the first few coarsening steps. Hence, smoothers
such as Gauss-Seidel can approximate well (ST

k AkSk)
−1 on all levels and the ap-

plication of such a smoother has a complexity proportional to the number of de-
grees of freedom (DOF) on level k. We use the CG method to perform the action
of (ST

k AkSk)
−1 on a vector. Such approach is practical since ST AS is equally well

conditioned on all levels.
Instead of using the same AMLI polynomial q(t) on all levels, we determine the

polynomials qk(t) on each level recursively, starting from the second coarsest level.
After constructing a multilevel hierarchy, we use 6 AMLI two level cycles (level
(J− 1) and level J) and a Lanczos algorithm to estimate the condition number of
B−1

J−1AJ−1. We apply this procedure recursively (and with 6 AMLI multilevel cycles
from level (k+ 1) to J) to estimate the condition number of B−1

k Ak on level k, for
k = 1, . . . ,J− 2. When all polynomials are determined, they are used in the AMLI
cycle during the solving phase.

Numerical tests. We use the AMLI cycle as a preconditioner of Conjugate Gra-
dient (CG) method. We stop the iterations when the relative residual becomes smaller
than 10−10. The results are summarized in Table 1. The number of CG iterations is
denoted by M, and the average convergence rate of the last five iterations is denoted
by ra. The CG coefficients are also used to estimate the condition number κ(B−1

0 A0),
as suggested in [4]. The operator and grid complexities are less than 2 in all the
examples presented below.
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(a) 2D unit square

DOF κ ra M
2562 18.4 0.55 32
5122 24.8 0.61 36

10242 32.9 0.69 40

(b) 3D unit cube

DOF κ ra M
323 7.8 0.36 21
643 11.4 0.45 25

1283 19.2 0.51 29

(c) 2D L-Shaped

DOF κ ra M
(3/4) ·2562 17.8 0.56 33
(3/4) ·5122 23.9 0.64 36
(3/4) ·10242 31.7 0.69 38

(d) 3D Fichera

DOF κ ra M
(7/8) ·323 7.5 0.40 22
(7/8) ·643 11.1 0.48 25

(7/8) ·1283 15.8 0.55 29

(e) 2D unit square (ug)

DOF κ ra M
2562 31.4 0.58 35
5122 36.7 0.63 39

10242 42.0 0.58 41

(f) 3D unit cube (ug)

DOF κ ra M
323 29.5 0.51 35
643 37.6 0.68 46

1283 48.3 0.72 52

Table 1. Results for structured grids on square, cubic, L-shaped and Fichera domain, and for
unstructured grids (ug) on square and cubic domain. Here, κ is an estimate (from CG) of
κ(B−1

0 A0).

Note that for the 2D and 3D unstructured grid problems, the number of levels
for a given unstructured grid is the same as that of a structured grid with the same
degrees of freedom. We observe a logarithmic growth of the condition numbers with
respect to the size of the grids, and fast convergence rates of the preconditioned CG
method in all cases.

7 Conclusions

We present an AMLI (AMG) method based on graph matching with a nearly optimal
convergence rate and computational complexity. We have also presented numerical
tests which confirming our estimates. Our ongoing research is on extending the es-
timates to general aggregation algorithms and aggregates configurations and we are
also investigating improvements of the AMLI method components.
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1 Introduction

We consider the Helmholtz equation:

−Δu∗− k2u∗ = f in Ω (1)

u∗ = gD on ∂ΩD,
∂u∗

∂n
= gN on ∂ΩN ,

∂u∗

∂n
+ iku∗ = gS on ∂ΩS

where Ω is a bounded polygonal region in ℜ2, and the ∂ΩD, ∂ΩN and ∂ΩS corre-
spond to subsets of ∂Ω where the Dirichlet, Neumann and Sommerfeld boundary
conditions are imposed.

The main purpose of this paper is to introduce novel two-level overlapping
Schwarz methods for solving the Helmholtz equation. Among the most effective par-
allel two-level domain decomposition solvers for the Helmholtz equation on general
unstructured meshes, we mention the FETI-H method introduced by Farhat et al. [5],
and the WRAS-H-RC method introduced by Kimn and Sarkis [10]. FETI-H type pre-
conditioners belong to the class of nonoverlapping domain decomposition methods.
FETI-H methods can be viewed as a modification of the original FETI method in-
troduced by Farhat et al. [6]. The local solvers in FETI-H are based on Sommerfeld
boundary conditions, see [3], while the coarse problem is based on plane waves.
WRAS-H-RC type preconditioners belong to the class of overlapping Schwarz
methods. They can be viewed as a miscellaneous of several methods to enhance the
effectiveness of the solver for Helmholtz problems. The first ingredient of WRAS-
H-RC preconditioners is the use of Sommerfeld boundary conditions for the local
solvers on overlapping subdomains. This idea is similar to what was done in FETI-
H, however, now for the overlapping case. This idea can be found for instance in the
work of Cai et al. [2] and Kimn [8]. The second ingredient is the use of the Weighted
Restricted Additive Schwarz (WRAS) method introduced by Cai and Sarkis [1] in
order to average the local overlapping solutions. The third ingredient is the use of
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partition of unity coarse spaces, see [13]. Here we consider the multiplication of a
partition of unity times plane waves; see [12]. The fourth ingredient is how to define
the coarse problem. It was discovered in [10] that a dramatic gain in performance
can be obtained if WRAS techniques are applied to the fine-to-coarse restriction op-
erator and the coarse-to-fine prolongation operator. The idea is to force the to act
more locally on the fine-to-coarse transference of information and globally on the
coarse-to-fine phase. The last ingredient is to put all these pieces together. The idea
is to extend the Balancing Domain Decomposition (BDD) methods of Mandel [11],
which were originally developed for the nonoverlapping case, to the overlapping
case. This extension was introduced in [9] and the methods there were denoted by
Overlapping Balancing Domain Decomposition (OBDD) methods. The WRAS-H-
RC methods in [10] stand for “WRAS” for the local solvers, “H” for the FETI-H
ingredients included in the methods, and “RC” for the restricted flavor of coarse
problem.

Here in this paper we investigate numerically new techniques to improve further
the performance of the WRAS-H-RC. More precisely, the shifted Laplacian tech-
niques introduced in [7] and [4], are used to construct novel local solvers. We inves-
tigate how the various kinds of shifts affect the performance of the algorithms. As
a result, we discover novel preconditioners that are more effective than the existing
ones.

2 Discrete Formulation of the Problem

From a Green’s formula, (1) can be reduced to: Find u∗ −u∗D ∈ H1
D(Ω) such that,

a(u∗,v) =
∫
Ω
(∇u∗ ·∇v̄− k2u∗v̄)dx+ ik

∫
∂ΩS

u∗v̄ ds (2)

=

∫
Ω

f v̄ dx+
∫
∂ΩN

gNv̄ds+
∫
∂ΩS

gSv̄ = F(v), ∀v ∈ H1
D(Ω),

where u∗D is an extension of gD to H1(Ω), and H1
D(Ω) is the space of H1(Ω) func-

tions vanishing on ∂ΩD.

Let Th(Ω) be a quasi-uniform triangulation of Ω and let V ⊂ H1
D(Ω) be the

finite element space of continuous piecewise linear functions vanishing on ∂ΩD. We
assume that gD on ∂ΩD is a piecewise linear continuous function on T h(∂ΩD) and
we have eliminated gD by a discrete trivial zero extension inside Ω . We then obtain
a discrete problem of the following form: Find u ∈V such that

a(u,v) = f (v), ∀ v ∈V. (3)

Using the standard hat basis functions, (3) can be rewritten as a linear system of
equations of the form

Au = f . (4)
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3 Description of the WRAS-H-RC Methods

3.1 Partitioning and Subdomains

Given the triangulation T h(Ω), we assume that a domain partition by elements has
been applied and resulted in N nonoverlapping subdomainsΩi, i = 1, . . .N, such that

Ω = ∪N
i=1Ω i and Ωi∩Ω j = /0, for j = i.

Let δ be a nonnegative integer. Define Ω 0
i = Ωi. For δ ≥ 1, define the overlapping

subdomains Ωδ
i as follows: let Ω 1

i be the one-overlap element extension of Ω 0
i by

including all the immediate neighboring elements τh ∈T h(Ω) such that τh∩Ω 0
i = /0.

Using this idea recursively, we can define a δ -extension overlapping subdomainsΩδ
i

Ωi =Ω 0
i ⊂Ω 1

i ⊂ ·· · ⊂Ωδ
i · · ·

3.2 Partition of the Unity

Let w be a nonnegative integer. For nodes x on ∂Ω 0
i define ϑ̂w

i (x) = 1, for nodes x on

∂Ω 1
i \Ω

0
i define ϑ̂w

i (x) = 1−1/(w+1), for nodes x on ∂Ω 2
i \Ω

1
i define ϑ̂w

i (x) = 1−
2/(w+1), and recursively until ϑ̂w

i (x) = 0. For nodes x in Ω\Ωw
i define ϑ̂w

i (x) = 0.
The partition of unity ϑw

i is defined as

ϑw
i = Ih(

ϑ̂w
i

∑N
j=1 ϑ̂w

j

) i = 1, · · · ,N,

where Ih is the nodal piecewise linear interpolant on T h(Ω ). Note that the support
of ϑw

i isΩw+1
i and |∇ϑw

i | ≤O((w+1)/h). We define the weighting diagonal matrix
Dw

i as equal to ϑw
i (x) at the nodes x of Ω .

3.3 Local Problems

Let us denote by V δ
i , i = 1, · · · ,N, the local space of functions in H1(Ωδ

i ) which are
continuous piecewise linear and vanishes only on ∂Ωδ

i ∩∂ΩD. For each subdomain
Ωδ

i , let Rδi : V → V δ
i be the regular restriction operator on V δ

i , that is, vi(x) = v(x)

for nodes x ∈Ωδ
i .

For the local solvers, we respect the original boundary condition and impose
Sommerfeld boundary condition on the interior boundaries ∂Ωδ

i \∂Ω . The associ-
ated local projections in matrix form are defined by

T δi,W RAS−H = (Rδi Dδ
i )

T (Ãδi )
−1Rδi A i = 1, · · · ,N (5)

where Ãδi are the matrix form of

ãδi (ui,vi) =

∫
Ωδ

i

(∇ui ·∇vi− k2uivi)dx+ ik
∫
∂Ωδ

i \(∂ΩD∪∂ΩN)
uivi ds. (6)
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3.4 Coarse Problem

Let c be a nonnegative integer. The coarse space V c,p
0 ∈ V is defined as the space

spanned by Dc
i QD

j for i = 1, . . . ,N and j = 1, · · · ,p. Here, Q j := eikηT
j x, where

η j = (cos(θ j),sin(θ j)), with θ j = ( j−1)× π
p , j = 1, · · · ,p, while QD

j (x) :=Q j(x) for

nodes x ∈ Ω\∂ΩD and QD
j (x) := 0 for nodes x on ∂ΩD. The coarse-to-fine prolon-

gation matrix (Ec,p
0 ) consists of columns Dδ

i QD
j , while the fine-to-coarse restriction

matrix Rδ ,p0 consists of rows (Rδi )
T Rδi QD

j . The first coarse problem we consider in
this paper is given by

Pδ ,c,p0,RC = Ec,p
0 [Rδ ,p0 AEc,p

0 ]−1Rδ ,p0 . (7)

3.5 Hybrid Preconditioners

The first preconditioner we consider is given by

T δ ,c,pWRAS−H−RC := Pδ ,c,p0,RC +(I−Pδ ,c,p0,RC )(
N

∑
i=1

T δi,W RAS−H)(I−Pδ ,c,p0,RC ). (8)

Because Pδ ,c,p0,RC is a projection, only one coarse problem solver is necessary per itera-
tion of the iterative method.

Other hybrid preconditioners can also be designed. For instance, we can replace
the local problem T δi,WRAS by

Pδi,OBDD−H := (Rδi Dδ
i )

T (Ãδi )
−1Rδi Dδ

i A

or/and replace the coarse problem Pδ ,c,p0,RC by something more classical such as

Pc,p
0 = Ec,p

0 [(Ec,p
0 )T AEc,p

0 ]−1(Ec,p
0 )T .

Inserting these operators properly into (7) we obtain preconditioners which we
denote by T δ ,c,pW RAS−H , T δ ,c,pOBDD−H or T δ ,c,pOBDD−H−RC. An interesting structure that

T δ ,c,pWRAS−H−RC has, and the others do not, is that the same restriction operators Rδi are
used to compute the right-hand side for both the local and coarse problems, therefore,
computational efficiency can be explored.

4 Shifted Local Operators

The matrix Ãδi obtained from the bilinear form (6) can be written as

Ãδi = Aδi − k2Mδ
i + ikBδi ,

where Aδi , Mδ
i , and Bδi are the corresponding matrices associated to
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∫
Ωδ

i

∇ui ·∇vi dx+ ik
∫
∂Ωδ

i ∩∂ΩS

uivi ds,
∫
Ωδ

i

uivi dx and
∫
∂Ωδ

i \∂Ω
uivi ds,

respectively. We note that the local matrix Aδi −k2Mδ
i is singular if k2 is a generalized

eigenvalue of Aδi . Alternatively, if we enforce zero Dirichlet boundary condition on
the interior boundaries ∂Ωi∩Ωδ

i , singularities also might occurs, specially when the
subdomains are not small enough. The Sommerfeld term plays the rule of shifting
the real spectrum of Aδi − k2Mδ

i to the upper part of the complex plane, therefore,
elliminating possible zero eigenvalues. More general shifts were introduced recently
by Gijzen et al. [7] and Erlangga et al. [4] to move the spectrum to a disk on the first
quadrant. Inspired by this work, we now consider shifts to define the local solvers as

Ãδi (αr,αi,βr,βi) = Aδi +(αr + iαi)k
2Mδ

i +(βr + iβi)kBδi , (9)

that is, the local Laplacians Aδi are shifted by a complex combination of Mδ
i and Bδi .

Note that Ãδi (−1,0,0,1) reduces to the original local solver (6), while Ãδi (−1,0,0,0)
to Aδi − k2Mδ

i .

5 Numerical Results

As a numerical test, we consider a wave guided problem for solving the Helmholtz
equation on the unit square. We consider homogeneous Neumann boundary condi-
tion on the horizontal sides, homogeneous Sommerfeld on the right vertical side, and
a constant identical to one Dirichlet on the left vertical side. The stopping criteria for
the PGMRES is to reduce the initial residual by a factor of 10−6. In all tests the right
preconditioner is applied.

The triangulation is composed of Courant elements of mesh size h = 1/256. The
nonoverlapping subdomains Ω 0

i are squares of size 1/M, and the number of subdo-
mains is denoted by nsub = M×M. The pair (δ ,c) refers to how many layers of
elements are used to define the extension of the overlapping subdomainsΩδ

i and the
extension of the support of the coarse basis functions, respectively. The constant k
refers to the wave number and p denotes the number of local plane waves used in
the coarse space. Table 1 shows that the method PWRAS−H−RC is the most effective
method among those introduced in Sect. 3.5. Table 2 shows that we should select
the support for the coarse basis functions larger enough, larger than the size of the
extended subdomains. Tables 1 and 2 show that the number of iterations decreases
when we increase the size of the overlap.

We now test the effectiveness of PWRAS−H−RC for several combinations of local
solvers Ãδi (αr,αi,βr,βi). Table 3 shows results for δ = 2 and Table 4 for δ = 0.
We can see from Tables 3 and 4 that the number of iterations using the original
local problem are 13 and 34, respectively. It is very surprising and interesting to ob-
serve that the number of iterations are 9 and 18 for the combination (0,1,1,0), a
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respectable gain in efficiency. Tables 3 and 4 reveal that there exist more effective
choices for local solvers rather than the common choice approach of adding a Som-
merfeld term on the interior boundary of the subdomains. These preliminary results
are very inspiring and encouraging for further numerical and theoretical investiga-
tions.

Table 1. The Guided Wave Problem, Sommerfeld boundary condition on interior subdomain
boundaries, n = 257, nsub = 64(8×8), Tol=10−6, k = 20

(δ ,c,p) (0,7,4) (1,7,4) (2,7,4)
OBDD−H 158 85 43
WRAS−H 150 74 36
OBDD−H−RC 40 23 16
WRAS−H−RC 34 19 13

Table 2. WRAS-H-RC The Guided Wave Problem, Sommerfeld boundary condition on in-
terior subdomain boundaries, n = 257, nsub = 64(8×8), p = 4, Tol=10−6, k = 20

WRAS-H-RC
c= 1 2 3 4 5 6 7 8
δ =0 78 67 54 46 40 37 34 32
δ =1 190 36 31 25 22 21 19 18
δ =2 181 181 19 18 16 14 13 12

Table 3. The Guided Wave Problem, WRAS-H-RC algorithm with Shifted Laplacian local
problems, n = 257, nsub = 64, Tol=10−6, p = 4, k = 20, c = 7, δ = 2

αr = -1 -1 -1 0 0 0 1 1 1
αi = -1 0 1 -1 0 1 -1 0 1

βr =−1 βi =−1 37 53 116 22 28 210 17 22 48
βr =−1 βi = 0 236 123 199 154 275 139 105 300* 138
βr =−1 βi = 1 66 34 28 227 24 16 55 22 17
βr = 0 βi =−1 20 23 62 14 14 20 12 11 12
βr = 0 βi = 0 19 16 13 17 300* 12 14 13 10
βr = 0 βi = 1 55 13 13 23 13 11 15 12 11
βr = 1 βi =−1 15 12 12 13 10 10 12 10 9
βr = 1 βi = 0 13 17 11 12 10 9 12 10 8
βr = 1 βi = 1 17 10 11 12 10 9 11 10 9
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Table 4. The Guided Wave Problem, WRAS-H-RC algorithm with Shifted Laplacian local
problems, n = 257, nsub = 64, Tol=10−6, p = 4, k = 20, c = 7, δ = 0

αr = -1 -1 -1 0 0 0 1 1 1
αi = -1 0 1 -1 0 1 -1 0 1

βr =−1 βi =−1 168 213 300* 99 168 300* 69 106 300*
βr =−1 βi = 0 291 207 243 238 300* 209 221 300* 300*
βr =−1 βi = 1 300* 137 101 300* 130 63 300* 107 67
βr = 0 βi =−1 55 69 289 38 42 80 34 30 32
βr = 0 βi = 0 45 31 30 38 300* 27 34 24 24
βr = 0 βi = 1 279 34 33 94 39 30 40 35 31
βr = 1 βi =−1 34 31 39 29 25 22 27 24 21
βr = 1 βi = 0 27 22 21 24 20 18 24 21 20
βr = 1 βi = 1 51 23 21 25 21 20 23 21 21
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1 Introduction

The focus of this work is on constructing a robust (uniform in the problem param-
eters) iterative solution method for the system of linear algebraic equations arising
from a nonconforming finite element discretization based on reduced integration. We
introduce a specific space decomposition into two overlapping subspaces that serves
as a basis for devising a uniformly convergent subspace correction algorithm. We
consider the equations of linear elasticity in primal variables. For nearly incompress-
ible materials, i.e., when the Poisson ratio ν approaches 1/2, this problem becomes
ill-posed and the resulting discrete problem is nearly singular.

Subspace correction methods for nearly singular systems have been studied
in [10] leading to robust multigrid methods for planar linear elasticity problems
(see [11]). In [13] a multigrid method has been presented for a finite element dis-
cretization with P2−P0 elements. This approach relies on a local basis for the weakly
divergence-free functions.

In this setting, presently known (multilevel) iterative solution methods are opti-
mal or nearly optimal for the pure displacement problem only, i.e., when Dirichlet
boundary conditions are imposed on the entire boundary, see, e.g., [1, 4]. For pure
traction or mixed boundary conditions the problem gets more involved. It is known,
that standard (conforming and nonconforming) finite element methods then require
certain stabilization techniques, see, e.g., [3, 6]. We employ a discretization scheme
introduced in [3] which achieves the stabilization via reduced integration. Note that
based on an appropriate discrete version of Korn’s second inequality optimal error
estimates have been shown for this method (see [3]).

The remainder of this paper is organized as follows: The formulation of the lin-
ear elasticity problem with pure traction boundary conditions and its finite element
discretization are given in Sect. 2. We briefly recall some convergence results for the
Method of Successive Subspace Correction (MSSC) in Sect. 3. In Sect. 4 we present
a specific space decomposition which defines an MSSC preconditioner. Finally, we
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present a numerical test illustrating the optimal performance of the preconditioner in
Sect. 5.

2 Problem Formulation

For the sake of simplicity we consider only two-dimensional problems in this paper.
Let Ω be a bounded, connected and open subset of R2, denoting the reference con-
figuration of an elastic body. The boundary of Ω is denoted by ∂Ω . Following [3]
we consider the pure traction problem of linear elasticity which reads

σσσ = μ
[
εεε(u)+

ν
1−2ν

divuI

]
inΩ , (1a)

−divσσσ = f inΩ , (1b)

σσσ ·n = g on ∂Ω . (1c)

where σσσ denotes the stress tensor and εεε(u):= ∇(s)u is the symmetric gradient, i.e.,

εi j(u):= 1
2

(
∂ui
∂x j

+
∂u j
∂xi

)
. Further u denotes the vector of displacements, f denotes

the body forces, n is the outwards pointing unit normal vector on Γ = ∂Ω and g is
the applied load on Γ . The properties of the material depend on the Poisson ratio
ν ∈ [0,1/2), and the shear modulus μ := E

1+ν where E is the modulus of elasticity.

We consider the space VVV RBM:= {v : v = (a1 + by, a2− bx)t , a1, a2, b ∈ R} of
rigid body motions and define the subspace V̂VV of H1-functions orthogonal to VVV RBM,
i.e.,

V̂VV := {v ∈ [H1(Ω)]2 :
∫
Ω

vdx = 0 and
∫
Ω

v1y− v2xdx = 0} . (2)

Let TH be a quasi-uniform triangulation ofΩ . Moreover, we subdivide each triangle
T ∈TH into four congruent triangles by adding the midpoints of the edges to the set
of vertices. The obtained refined triangulation Th of Ω has a mesh size h = H/2.
We introduce the vector space VVV := [V ]2:= [H1(Ω)]2 and the subspace VVV h:= [Vh]

2,
which consists of the vector-valued continuous piecewise linear functions on the fine
mesh Th. Next we define V̂VV h := VVV h ∩ V̂VV and denote the space of piecewise constant
functions on TH by SH . Then we consider the problem: Find uh ∈ V̂VV h such that

a(uh, vh) = L(vh):= (f , vh)0 +

∫
∂Ω

g ·vh ds ∀vh ∈ V̂h , (3)

a(uh, vh):= μ
(
(εεε(uh) , εεε(vh))0 +

ν
1−2ν

(P0 divuh , P0 divvh)0

)
, (4)

where f ∈ [L2(Ω)]2 and g ∈ [L2(∂Ω)]2. P0 is the L2-projection onto SH , that is,

P0(v)|TH =
1
|TH |

∫
TH

vdx ∀TH ∈ TH , (5)

for any scalar function v ∈ L2(Ω). It is known that under the compatibility condition
L(v) = 0 for all v ∈VVV RBM problem (3) has a unique solution uh ∈ V̂VV h, see, e.g., [1].
In [3] optimal order error estimates have been shown for this approximation, which
are robust with respect to the Poisson ratio ν .
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3 Subspace Correction Framework

The general framework of subspace correction methods is closely related to the ab-
stract Schwarz theory, see, e.g., [5, 14].

Let us consider the variational problem: Find u ∈V such that

a(u, v) = f (v) ∀v ∈V , (6)

with V ⊂ H being a closed subset of the Hilbert space H. Moreover, we assume that
the bilinear form a(., .) : H×H → R is continuous, symmetric, and H-elliptic. If f
is a continuous linear functional on H, then this problem is well-posed.

Now, let us split V into a–not necessarily direct–sum of closed subspaces Vi ⊂
V , i = 1, . . . , J, i.e., V = ∑J

i=1 Vi. With each subspace Vi we associate a symmetric,
bounded, and elliptic bilinear form ai(., .) approximating a(., .) on Vi. The MSSC
(see [16, Algorigthm 2.1]) solves the residual equation for i = 1, . . . ,J with ul = ul:
Find ei ∈Vi such that for all vi ∈Vi, there holds:

a(ei, vi) = f (vi)−a(ul+i−1, vi), and set ul+i = ul+i−1 + ei, (7)

Finally, the next iterate is ul+1 = ul+J . Let Ti : V →Vi be defined as

ai(Tiv, vi) = a(v, vi), for all vi ∈Vi.

The assumptions on ai(., .) imply that Ti is well-defined, R(Ti) =Vi, and Ti : Vi→Vi

is an isomorphism. The error after l iterations of the MSSC is given by u−ul =E(u−
ul−1) = . . .= El(u−u0), where the error propagation operator E can be represented
in product form , i.e.,

E = (I−TJ)(I−TJ−1) · · · (I−T1) . (8)

In the following we consider the case of exact subspace solves, i.e., ai(., .) = a(., .)
on Vi, in which Ti reduces to the idempotent, a-adjoint operator Pi defined by

a(Piv, vi) = a(v, vi) ∀vi ∈Vi . (9)

For a proof of the following identity for the energy norm of the error propagation
operator we refer the reader to [16].

Theorem 1. Under the assumptions (9) and V = ∑J
i=1 Vi we have

‖E‖2
a = ‖(I−PJ)(I−PJ−1) · · · (I−P1)‖2

a =
c0

1+ c0
(10)

where c0 = sup‖v‖a=1 inf∑i vi=v∑J
i=1 ‖Pi∑J

j=i+1 v j‖2
a < ∞ .

Let EH be the set of edges of TH and VH be the set of (coarse) vertices of the mesh
TH . Then for any vertex vi ∈ VH we denote the set of edges sharing vi by N E

i .
For any edge E = (vE,1, vE,2) ∈ EH by ϕE we denote the scalar nodal basis function
corresponding to the midpoint of the edge E , and by ϕE,1 and ϕE,2 the nodal basis
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functions corresponding to the vertices vE,1 and vE,2 of E . The corresponding vector-
valued degrees of freedom (dof) of any function vh ∈VVV h are denoted by vE , vE,1 and
vE,2, respectively. We further use ϕi and vi to denote the basis functions and dof
associated with the vertices from VH .

For any edge E ∈ EH we assume that vE,1 < vE,2 and that the globally defined
tangential vector τE points from vE,1 to vE,2. The global edge normal vector nE is
orthogonal to τE and is obtained from τE by a clockwise rotation. By VVV RT

H we denote
the lowest order Raviart Thomas space (cf. [2]), i.e.,

VVV RT
H := {v ∈ [L2(Ω)]2 : v = a+(bx, by)t on each T ∈TH , a ∈R

2, b ∈ R} (11)

where the degrees of freedom are the normal fluxes over the edges E , i.e., FRT
E (v):=

1
|E|
∫

E v · nE ds. The basis functions ϕRT
E corresponding to an edge E of an element

T ∈ TH are such that FRT
E ′ (ϕ

RT
E ):= δEE ′ . We also use the projection ΠRT : VVV �→

VVV RT
H defined by ΠRT (v) = ∑E∈EH

FRT
E (v)ϕRT

E , for which the commuting property
P0 divvh = divΠRT (vh) holds for any vh ∈VVV h (cf. [2, p. 131]).

4 Space Decomposition

Let us consider the following unique decomposition of any function vh ∈VVV h:

vh = ∑
i∈VH

ϕivi + ∑
E∈EH

ϕEvE

= ∑
i∈VH

[
ϕivi− 1

2 ∑
E∈N E

i

(vi ·nE)ϕE nE

]

︸ ︷︷ ︸
=:vV

+ ∑
E∈EH

(vE · τE)ϕEτE

︸ ︷︷ ︸
=:vτ

+ ∑
E∈EH

([
vE +

1
2
(vE,1 + vE,2)

]
·nE

)
ϕEnE

︸ ︷︷ ︸
=:vn

.

Next we define the splitting VVV h =VVVV ⊕VVV τ ⊕VVV n , where

VVVV := {vh ∈VVV h : vh = ∑
i∈VH

[
ϕivi− 1

2 ∑
E∈N E

i

(vi ·nE)ϕE nE

]
} ,

VVV τ := {vh ∈VVV h : vh = ∑
E∈EH

αEϕEτE}, VVV n:= {vh ∈VVV h : vh = ∑
E∈EH

αEϕEnE} .

Note that ΠRT (VVVV ) =ΠRT (VVV τ) = {0}. Next, we introduce the spaces

VVV curl := {vh ∈VVV h : vh = ∑
i∈VH

βi ∑
E∈N E

i

δE,i

|E| ϕEnE} ,

VVV∇h
:= {vh ∈VVV h : vh = ∑

T∈TH

γT ∑
E⊂T

(nE ·nE,T )ϕEnE} .
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Here δE,i is defined by

δE,i =

{−1 if i = vE,1

1 if i = vE,2
. (12)

Note that VVV curl ⊂VVV n, and VVV∇h
⊂VVV n, and the following properties hold:

P0 div(vcurl) = divΠRT (vcurl) = 0 ∀vcurl ∈VVV curl ,

P0 div(v∇h
) = divΠRT (v∇h

) = 0 ∀v∇h
∈VVV∇h

.

Moreover, dim(VVV curl) = nv,H −1 and dim(VVV∇h
) = nT,H , and thus, using Euler’s for-

mula, i.e., nv,H −1+ nT,H = nE,H , we find that VVV n =VVV curl⊕VVV∇h
. Hence we obtain

VVV h =VVVV ⊕VVV τ ⊕VVV curl⊕VVV∇h
. (13)

Finally, we decompose VVV h into two overlapping subspaces VVV I and VVV II :

VVV I = VVVV ⊕VVV τ ⊕VVV curl (14)

VVV II = VVV τ ⊕VVV curl⊕VVV∇h
(15)

The overlap of VVV I and VVV II is given by VVV τ +VVV curl, and any element vII ∈ VVV II can
be uniquely decomposed into vII = vτ + vcurl + v∇h

, with vτ ∈ VVV τ , vcurl ∈ VVV curl and
v∇h

∈VVV∇h
. However, finding the components vcurl ∈VVV curl and v∇h

∈VVV∇h
for a given

function vn ∈VVV n requires a solution of a system with an M-matrix corresponding to
the lowest order mixed method for Laplace equation with lumped mass [2].

Note that since P0 div(VVV I) = divΠRT (VVV I) = {0} the bilinear form a(., .) satisfies

a(uI , vI) = μ(εεε(uI) , εεε(vI))0 ∀uI , vI ∈VVV I , (16)

and in the limit case ν = 0 we have a(uh,vh) = μ(εεε(uh) , εεε(vh))0 for all uh, vh ∈VVV h.
In the following, we use the operator representations A : V →V and Aε : V →V

for the bilinear forms a(., .) and μ(εεε(.) , εεε(.))0. If we symmetrize the MSSC, we
obtain the following error propagation ĒMSSC, compare with (8) in case of J = 2 and
exact subsolves, i.e.,

ĒMSSC = (I−PI)(I−PII)(I−PI) .

The error propagation operator can be rewritten as ĒMSSC = I− B̄MSSCA, with sym-
metric B̄MSSC . Further, B̄MSSC is positive definite, since ĒMSSC is non-expansive. Note
that even though B̄MSSC = (I− ĒMSSC)A−1 formally involves the inverse of A, we do
not need A−1 in order to apply B̄MSSC.

If ν is bounded away from the incompressible limit 1/2, we know that Aε is
spectrally equivalent to A. Further, there are efficient preconditioners for Aε . We now
define the additive preconditioner B by

B:=
1−2ν
1−ν A−1

ε +
ν

1−ν B̄MSSC . (17)

Note that B is a convex combination of A−1
ε and B̄MSSC.
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Remark 1. It has been shown in [14, 16] that an inexact solution of the subprob-
lems (7) results in a uniform preconditioner under reasonable assumptions. The sub-
problems on the spaces VVV I and VVV h involve the bilinear form

ā(ui, vi) = μ(εεε(ui) , εεε(vi))0 ∀ui, vi ∈WWW =VVV I ,VVV h . (18)

Any efficient preconditioning technique for the vector-Laplace equation can be em-
ployed in these steps, e.g., classical AMG (see [12]) or AMGm (see [8]).

The problem on VVV II = VVV E := {vh ∈ VVV h : vh(xi) = 0 vi ∈ VH} is more involved.
First, by using Korn’s inequality, Poincarè’s inequality and the inverse inequality one
can show that

‖εεε(vE)‖2
0 ≈ ‖∇∇∇vE‖2

0 ≈ H−2‖vE‖2
0 .

Second, any function vE ∈VVV E can be uniquely decomposed into vE = vn+vτ where
vn ∈VVV n and vτ ∈VVV τ . Moreover, by locally estimating the angle between VVV n and VVV τ
in the a(·, ·)-inner product, it can be shown that

‖vE‖2
0 = ‖vn + vτ‖2

0 ≈ ‖vn‖2
0 + ‖vτ‖2

0 (19)

holds uniformly with respect to the mesh size h. Furthermore ΠRT (vτ) = 0 for all
vτ ∈VVV τ . Hence, the relation a(uE , vE)≈ ã(uE , vE) holds on VVV II where

ã(uE , vE) := μ
{

H−2(uτ , vτ )0

+H−2(un , vn)0 +
ν

1−2ν
(P0 divun , P0 divvn)0

}
. (20)

Now, using the interpolation operator Ih
RT : VVV RT

H → VVV h, defined by Ih
RT (ϕRT

E ) =
2ϕEnE ∈VVV n, one can show that VVV n is isomorphic to VVV RT

H . Thus solving a variational
problem with ã(., .) on VVV n is equivalent to solving a problem with the bilinear form

aRT (uRT , vRT ):= μ
{

H−2(uRT , vRT )0 +
ν

1−2ν
(divuRT , divvRT )0

}
, (21)

on VVV RT
H (see [7, 15]). An efficient solver for the latter problem can be designed by

using the auxiliary space preconditioner of [7], or by using the robust algebraic mul-
tilevel iteration method developed in [9].

5 Numerical Experiment

We now perform a numerical test to show that the preconditioner (17) is an effi-
cient and robust preconditioner. We consider the problem with homogenous Dirichlet
boundary conditions on the unit square Ω = (0,1)2. The number of PCG iterations
for a residual reduction by a factor 108 are shown in Table 1. The subproblems on
VI and VII are solved exactly. Additionally, we list the estimated condition numbers
κ(BA), obtained from the Lanczos process.
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Table 1. Iteration numbers (#it.) and condition numbers (κ(BA)) of the pcg-cycle.

#DOF 242 1058 4418 18050 72962 293378

#it. κ #it. κ #it. κ #it. κ #it. κ #it. κ

ν = 0: 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00
ν = 0.25: 8 1.41 8 1.48 8 1.53 9 1.55 9 1.57 9 1.57
ν = 0.4: 10 1.90 11 2.19 12 2.38 12 2.49 13 2.57 13 2.62
ν = 0.45: 11 2.11 12 2.61 14 3.01 15 3.25 15 3.41 15 3.52
ν = 0.49: 10 1.90 11 2.54 14 3.31 16 3.97 17 4.39 17 4.69
ν = 0.499: 9 1.98 10 1.98 11 2.13 14 2.99 15 3.83 17 4.51
ν = 0.4999: 9 1.99 9 1.99 9 1.99 10 1.99 12 2.43 13 3.34
ν = 0.49999: 9 1.99 9 1.99 9 2.00 9 2.00 9 2.00 10 2.00
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1 Introduction

In this article we study adaptive finite element methods (AFEM) with inexact solvers
for a class of semilinear elliptic interface problems. We are particularly interested in
nonlinear problems with discontinuous diffusion coefficients, such as the nonlinear
Poisson-Boltzmann equation and its regularizations. The algorithm we study con-
sists of the standard SOLVE-ESTIMATE-MARK-REFINE procedure common to
many adaptive finite element algorithms, but where the SOLVE step involves only a
full solve on the coarsest level, and the remaining levels involve only single Newton
updates to the previous approximate solution. We summarize a recently developed
AFEM convergence theory for inexact solvers appearing in [3], and present a se-
quence of numerical experiments that give evidence that the theory does in fact pre-
dict the contraction properties of AFEM with inexact solvers. The various routines
used are all designed to maintain a linear-time computational complexity.

An outline of the paper is as follows. In Sect. 2, we give a brief overview of the
Poisson-Boltzmann equation. In Sect. 3, we describe AFEM algorithms, and intro-
duce a variation involving inexact solvers. In Sect. 4, we give a sequence of numerical
experiments that support the theoretical statements on convergence and optimality.
Finally, in Sect. 5 we make some final observations.

2 Regularized Poisson-Boltzmann Equation

We use standard notation for Sobolev spaces. In particular, we denote ‖ · ‖0,G the L2

norm on any subset G⊂ R
3, and denote ‖ · ‖1,2,G the H1 norm on G.
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Fig. 1. Schematic of a molecular domain

Let Ω := Ωm∪Γ ∪Ωs be a bounded Lipschitz domain in R
3, which consists of

the molecular region Ωm, the solvent region Ωs and their interface Γ := Ωm ∩Ω s

(see Fig. 1). Our interest in this paper is to solve the following regularized Poisson-
Boltzmann equation in the weak form: find u ∈ H1

g (Ω) := {u ∈ H1(Ω) : u|∂Ω = g}
such that

a(u,v)+ (b(u),v) = ( f ,v) ∀v ∈H1
0 (Ω), (1)

where a(u,v) =
∫
Ω ε∇u ·∇vdx, (b(u),v) =

∫
Ω κ2 sinh(u)vdx. Here we assume that

the diffusion coefficient ε is piecewise positive constant ε|Ωm = εm and ε|Ωs = εs. The
modified Debye-Hückel parameter κ2 is also piecewise constant with κ2(x)|Ωm = 0
and κ2(x)|Ωs > 0. The equation (1) arises from several regularization schemes (cf.
[5, 6]) of the nonlinear Poisson-Boltzmann equation:

−∇ · (ε∇u)+κ2 sinhu =
N

∑
i=1

ziδ (xi),

where the right hand side represents N fixed points with charges zi at positions xi,
and δ is the Dirac delta distribution.

It is easy to verify that the bilinear form in (1) satisfies:

c0‖u‖2
1,2 ≤ a(u,u), a(u,v)≤ c1‖u‖1,2‖v‖1,2, ∀u,v ∈ H1

0 (Ω),

where 0 < c0 ≤ c1 < ∞ are constants depending only on ε . These properties imply
the norm on H1

0 (Ω) is equivalent to the energy norm ||| · ||| : H1
0 (Ω)→ R,

|||u|||2 = a(u,u), c0‖u‖2
1,2 ≤ |||u|||2 ≤ c1‖u‖2

1,2.

Let Th be a shape-regular conforming triangulation ofΩ , and let Vg(Th) := {v∈
H1

g (Ω) : v|τ ∈ P1(τ) ∀τ ∈Th} be the standard piecewise linear finite element space
defined on Th. For simplicity, we assume that the interfaceΓ is resolved by Th. Then
the finite element approximation of (1) reads: find uh ∈Vg(Th) such that

a(uh,v)+ (b(uh),v) = ( f ,v), ∀v ∈V0(Th). (2)



Inexact AFEM for Nonlinear PBE 169

We close this section with a summary of a priori L∞ bounds for the solution u
to (1) and the discrete solution uh to (2), which play a key role in the finite element
error analysis of (2) and adaptive algorithms. For interested reader, we refer to [5, 9]
for details.

Theorem 1. There exist u+,u− ∈ L∞(Ω) such that the solution u of (1) satisfies the
following a priori L∞ bounds:

u− ≤ u≤ u+, a.e. in Ω . (3)

Moreover, if the triangulation Th satisfies that

a(φi,φ j)≤− σh2 ∑
ei, j⊂τ

|τ|, for some σ > 0, (4)

for all the adjacent vertices i = j with the basis function φi and φ j , then the discrete
solution uh of (2) also has the a priori L∞ bound

‖uh‖L∞(Ω) ≤C, (5)

where C is a constant independent of h.

We note that the mesh condition is generally not needed practically, and in fact can
also be avoided in analysis for certain nonlinearites [2].

3 Adaptive FEM with Inexact Solvers

Given a discrete solution uh ∈Vg(Th), let us define the residual based error indicator
η(uh,τ):

η2(uh,τ) = h2
τ‖b(uh)− f‖2

0,τ+ ∑
e⊂∂τ

he‖[(ε∇uh) ·ne]‖2
0,e,

where [(ε∇uh) · ne] denote the jump of the flux across a face e of τ. For any subset
S ⊂ Th, we set η2(uh,S ) := ∑τ∈S η2(uh,τ). By using the a priori L∞ bounds
Theorem 1, we can show (cf. [9]) that the error indicator satisfies:

|||u−uh|||2 ≤C1η2(uh,T̂h); (6)

and
|η(v,τ)−η(w,τ)| ≤C2|||v−w|||ωτ , ∀v,w ∈Vg(Th) (7)

where ωτ = ∪τ ′∈Th,τ̄ ′∩τ̄ = /0τ ′ and |||v|||2ωτ =
∫
ωτ ε|∇v|2dx.

Given an initial triangulation T0, the standard adaptive finite element method
(AFEM) generates a sequence

[
uk,Tk,{η(uk,τ)}τ∈Tk

]
based on the iteration of the

form:
SOLVE→ ESTIMATE→MARK→ REFINE.
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Here the SOLVE subroutine is usually assumed to be exact, namely uk is the exact
solution to the nonlinear equation (2); the ESTIMATE routine computes the element-
wise residual indicator η(uk,τ); the MARK routine uses standard Dörfler marking
(cf. [7]) where Mk ⊂Tk is chosen so that

η(uk,Mk)≥ θη(uk,Tk)

for some parameter θ ∈ (0,1]; finally, the routine REFINE subdivide the marked
elements and possibly some neighboring elements in certain way such that the new
triangulation preserves shape-regularity and conformity.

During last decade, a lot of theoretical work has been done to show the conver-
gence of the AFEM with exact solver (see [11] and the references cited therein for
linear PDE case, and [10] for nonlinear PDE case). To the best of the authors knowl-
edge, there are only a couple of convergence results of AFEM for symmetric linear
elliptic equations (cf. [1, 12]) which take the numerical error into account. To distinct
with the exact solver case, we use ûk and T̂k to denote the numerical approximation
to (2) and the triangulation obtained from the adaptive refinement using the inexact
solutions.

Due to the page limitation, we only state the main convergence result of the
AFEM with inexact solver for solving (1) below. More detailed analysis and exten-
sion are reported in [3].

Theorem 2. Let {T̂k, ûk}k≥0 be the sequence of meshes and approximate solutions
computed by the AFEM algorithm. Let u denote the exact solution and uk denote
the exact discrete solutions on the meshes T̂k. Then, there exist constants μ > 0,
ν ∈ (0,1), γ > 0, and α ∈ (0,1) such that if the inexact solutions satisfy

μ |||uk− ûk|||2 + |||uk+1− ûk+1|||2 ≤ νη2(ûk,T̂k) (8)

then
|||u−uk+1|||2 + γη2(ûk+1,T̂k+1)≤ α2(|||u−uk|||2 + γη2(ûk,T̂k)). (9)

Consequently, limk→∞ uk = limk→∞ ûk = u.

The proof of this theorem is based on the upper bound (6) of the exact solution,
the Lipschitz property (7) of the error indicator, Dörfler marking, and the following
quasi-orthogonality between the exact solutions:

|||u−uk+1|||2 ≤Λ |||u−uk|||2−|||uk+1−uk|||2 (10)

whereΛ can be made close to 1 by refinement. For a proof of the inequality (10), see
for example [9].

To achieve the optimal computational complexity, we should avoid solving the
nonlinear system (2) as much as we could. The two-grid algorithm [13] shows that a
nonlinear solver on a coarse grid combined with a Newton update on the fine grid still
yield quasi-optimal approximation. Motivated by this idea, we propose the follow-
ing AFEM algorithm with inexact solver, which contains only one nonlinear solver
on the coarsest grid, and Newton updates on each follow-up steps: In Algorithm 1,



Inexact AFEM for Nonlinear PBE 171

Algorithm 1 :
[
ûk,T̂k,{η(ûk,τ)}τ∈T̂k

]
:= Inexact_AFEM(T0,θ )

1 û0 = u0 := NSOLVE(T0) %Nonlinear solver on initial triangulation
2 for k := 0,1, · · · do
3 {η(ûk,τ)}τ∈T̂k

:= ESTIMATE(ûk,T̂k)

4 Mk := MARK({η(ûk,τ)}τ∈T̂k
,T̂k,θ )

5 T̂k+1 := REFINE(T̂k,Mk)
6 ûk+1 := UPDATE(ûk,T̂k+1) %One-step Newton update
7 end

the NSOLVE routine is used only on the coarsest mesh and is implemented using
Newton’s method run to certain convergence tolerance. For the rest of the solutions,
a single step of Newton’s method is used to update the previous approximation. That
is, UPDATE computes ûk+1 such that

a(ûk+1− ûk,φ)+ (b′(ûk)(ûk+1− ûk),φ) = 0 (11)

for every φ ∈V (T̂k+1). We remark that since (11) is only a linear problem, we could
use the local multilevel method to solve it in (near) optimal complexity (cf. [4]).
Therefore, the overall computational complexity of the Algorithm 1 is nearly opti-
mal.

We should point out that it is not obvious how to enforce the required approxima-
tion property (8) that ûk must satisfy for the theorem. This is examined in more detail
in [3]. However, numerical evidence in the following section shows Algorithm 1 is an
efficient algorithm, and the results matches the ones from AFEM with exact solver.

4 Numerical Experiments

In this section we present some numerical experiments to illustrate the result in The-
orem 2, implemented with FETK [8]. The software utilizes the standard piecewise-
linear finite element space for discretizing (1). Algorithm 1 is implemented with care
taken to guarantee that each of the steps runs in linear time relative to the number
of vertices in the mesh. The linear solver used is Multigrid preconditioned Conju-
gate Gradients. The estimator is computed using a high-order quadrature rule, and,
as mentioned above, the marking strategy is Dörfler marking where the estimated
errors have been binned to maintain linear complexity while still marking the ele-
ments with the largest error. Finally, the refinement is longest edge bisection, with
refinement outside of the marked set to maintain conformity of the mesh.

We present two sets of results in order to explore the effects of the inexact solver
in multiple contexts. For each problem, we present a convergence plot using both
inexact and exact solvers (including a reference line of order N−

1
3 ) as well as a

representative cut-away of a mesh with around 30,000 vertices. The exact discrete
solution is computed using the standard AFEM algorithm where the solution on each
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mesh is computed by allowing Newton’s method to continue running to convergence
with the tolerance 10−7. For the exact solution, one could choose to start with an
arbitrary initial guess, such as the zero solution, or, as we’ve chosen, use the solution
computed on the previous mesh. Making this choice can drastically decrease the
number of Newton steps needed to achieve convergence. For each problem below,
we discuss the amount of time/computation saved using the inexact solver over this
exact solver.

Note that using the inexact solver modifies not only the solution on a given mesh,
but also the sequence of meshes generated, since the algorithm may mark different
simplices. However, as shown in the examples below, the inexact solutions still main-
tain optimal convergence rates.

The first result uses constant coefficients across the entire domainΩ = [0,1]3, an
exponential nonlinearity, and a right hand side chosen so that the derivative of the
exact solution is large near the origin. The boundary conditions chosen for this prob-
lem are homogeneous Dirichlet boundary conditions. Specifically, the exact solution
is given by u = u1u2 where

u1 = sin(πx)sin(πy)sin(πz)

is chosen to satisfy the boundary condition and

u2 = 3(x2 + y2 + x2 + 10−4)−1.5.

The results can be seen in Fig. 2.
For this problem, the number of iterations in Newton’s method by the exact solver

varied between 3 and 7, depending on the refinement level. Because all steps of
the algorithm are designed to be linear, this suggests that the inexact solver runs
at least three times faster for this problem, while still maintaining optimal order of
convergence.

In order to test the robustness to the addition of jump coefficients, the second
result uses the domainΩ = [−1,1]3 and Ωm =

[− 1
4 ,

1
4

]
with constants εs = 80,εm =

2,κs = 1, and κm = 0. Homogeneous Neumann conditions are chosen for the bound-
ary and the right hand side is simplified to a constant. Because an exact solution is
unavailable for this (and the following) problem, the error is computed by compar-
ing to a discrete solution on a mesh with around ten times the number of vertices
as the finest mesh used in the adaptive algorithm. Figure 3 shows the results for this
problem. As can be seen the refinement favors the interface and the inexact and exact
solvers perform as expected.

Once again, for this problem, the exact solver required between 3 and 9 iterations
of Newton’s method to reach convergence, depending on the refinement level. Since
the run time is linear is the number of iterations, this result gives a speedup of at least
three times using the inexact solver, without causing a loss in convergence rate.

5 Conclusion

In this article we have studied AFEM with inexact solvers for a class of semilinear
elliptic interface problems with discontinuous diffusion coefficients. The algorithm
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Fig. 2. Convergence plot and mesh cut-away for the corner singularity problem
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Fig. 3. Convergence plot and mesh cut-away for the Poisson-Boltzmann problem

we studied consisted of the standard SOLVE-ESTIMATE-MARK-REFINE proce-
dure common to many adaptive finite element algorithms, but where the SOLVE step
involves only a full solve on the coarsest level, and the remaining levels involve only
single Newton updates to the previous approximate solution. Our numerical results
indicate that the recently developed AFEM convergence theory for inexact solvers
in [3] does predict the actual behavior of the methods and can allow for significant
speedup in the approximation of solutions.
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Summary. In this paper, we discuss a preconditioning technique for mixed finite element
discretizations of elliptic equations. The technique is based on a block-diagonal approximation
of the mass matrix which maintains the sparsity and positive definiteness of the corresponding
Schur complement. This preconditioner arises from the multipoint flux mixed finite element
method and is robust with respect to mesh size and is better conditioned for full permeability
tensors than a preconditioner based on a diagonal approximation of the mass matrix.

1 Introduction

Consider the mixed formulation of a second order linear elliptic equation. Introduc-
ing a flux variable, we solve for a scalar potential p and a vector function u that
satisfy

u =−K∇p in Ω , (1)

∇ ·u = f in Ω , (2)

p = 0 on ∂Ω , (3)

where Ω is a polygonal domain with Lipschitz continuous boundary and K is a
symmetric and uniformly positive definite tensor with L∞(Ω) components. Homo-
geneous Dirichlet boundary conditions are considered for the simplicity of the pre-
sentation.

Mixed finite element methods lead to the non-singular indefinite system:

M

(
U
P

)
:=

(
A B

T

B 0

)(
U
P

)
=

(
0
F

)
, (4)

where the matrix A is a symmetric and positive definite.
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In this paper, we consider preconditioners of the form:

M̃ :=

(
Ã B

T

B 0

)
. (5)

The applicability of this type preconditioner is due to the fact that

• Ã is easily invertible.
• The Schur complement of the preconditioner M̃ is sparse and positive definite,

and can be solved easily.

One way is choosing Ã as a diagonal matrix. In [1], Ã is given as ωI. The global
parameter ω is chosen to minimize the spectral radius of I− M̃

−1
M. In [5], the di-

agonal matrix is optimally scaled at element level and a precise upper bound of the
spectral radius has been shown: ρ(I− M̃

−1
M) ≤ 1/2. In other words, the precon-

ditioner is independent of both the mesh size and the tensor K. This uniformity is
derived when the problem has a diagonal K and is discretized by the lowest order
Raviart-Thomas [8] mixed finite element on rectangular grids. For other mixed fi-
nite element spaces or full tensor K, the uniformity result is not clearly understood.
Alternatively, a simple parameter-free choice for Ã, Ã= Diag(A), can be used.

Another approach is to take Ã as a block-diagonal matrix which guarantees that
the corresponding Schur complement matrix is sparse and positive definite. Multi-
point flux mixed finite element (MFMFE) methods [6, 9–12] give matrices of the
form (5), where the flux variable can be locally eliminated due to the block-diagonal
structure of Ã. The corresponding Schur complement gives a cell-centered stencil
for the scalar variable. In this paper, we study the performance of this MFMFE
operator as a preconditioner. The Schur complement of MFMFE has a 9-point
stencil on logically rectangular grids and with full tensor K in contrast to 5-point
stencil which arises if Ã is a diagonal matrix. Our numerical result indicates that
the MFMFE method gives a better preconditioner than the diagonal preconditioner
(Ã = Diag(A)). A natural extension of this work is the use of approximate precon-
ditioners based on algebraic multigrid for MFMFE as described in [2, 7] and will be
the subject of future work.

The rest of the paper is organized as follows. Mixed finite element formulation
is described in Sect. 2. A block type preconditioner is discussed in Sect. 3. Finally in
Sect. 4, numerical experiments are given.

2 Mixed Finite Element Formulation

Define H(div;Ω) :=
{

v ∈ (L2(Ω))d : ∇ ·v ∈ L2(Ω)
}

and let (·, ·) denote the inner
product in L2(Ω). Let X � (�) Y denote that there exists a constant C, independent
of the mesh size h, such that X ≤ (≥)CY . The notation X �Y means that both X �Y
and X � Y hold.

Let Th be a finite element partition of the domainΩ consisting of either triangles
or quadrilaterals. We assume that Th is shape-regular in the sense of Ciarlet [4].
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The finite element spaces on any physical element E ∈ Th are defined via the Piola
transformation

v↔ v̂ : v̂ =
1
JE

DFE v̂◦F−1
E ,

and the scalar transformation

w↔ ŵ : w = ŵ◦F−1
E ,

where FE denotes a mapping from the reference element Ê to the physical element
E , DFE is the Jacobian of FE , and JE is its determinant. The finite element spaces Vh

and Wh on Th are given by

Vh =
{

v ∈H(div;Ω) : v|E ↔ v̂, v̂ ∈ V̂ (Ê), ∀E ∈ Th
}
,

Wh =
{

w ∈ L2(Ω) : w|E ↔ ŵ, ŵ ∈ Ŵ (Ê), ∀E ∈Th
}
,

where V (Ê) and Ŵ (Ê) are the lowest order Brezzi-Douglas-Marini (BDM1) spaces
on the reference element Ê . Definitions of Piola transformation and BDM1 spaces
yield Vh ⊂ H(div;Ω) and Wh ⊂ L2(Ω).

The finite element method reads: find uh ∈Vh and ph ∈Wh, such that

(K−1uh,v)− (ph,∇ ·v) = 0, ∀v ∈Vh, (6)

−(∇ ·uh,w) =−( f ,w) ∀w ∈Wh. (7)

The method (6) and (7) can have a second order convergence for the flux and first
order convergence for the scalar potential [3] if u and p are sufficiently regular.

3 Preconditioning the Mixed Finite Element System

3.1 Multipoint Flux Mixed Finite Element

A family of multipoint flux mixed finite element (MFMFE) methods on various grids
has been developed and analyzed [6, 9–12]. The method is defined as: find uh ∈ Vh

and ph ∈Wh, such that

(K−1uh,v)Q− (ph,∇ ·v) = 0, ∀v ∈Vh, (8)

−(∇ ·uh,w) =−( f ,w) ∀w ∈Wh, (9)

where the finite element spaces are BDM1 on triangular and rectangular meshes.
Compared to the BDM1 finite element method, a specific numerical quadrature rule
is employed. It is defined as:

(K−1q,v)Q = ∑
E∈Th

(K−1q,v)Q,E ≡ ∑
E∈Th

Trap(K q̂, v̂)Ê , (10)

where K on each Ê is defined as
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K =
1
JE

DF
T
EK

−1(FE(x̂))DFE , (11)

and the trapezoidal rule on Ê is denoted as

Trap(q̂, v̂)Ê ≡
|Ê|
m

m

∑
i=1

q̂(r̂i) · v̂(r̂i), (12)

with {r̂i}m
i=1 being vertices of Ê and m being the number of vertices of Ê .

The degrees of freedom for the flux variable are chosen as the normal components
at two vertices on each edge. More specifically, denote the basis functions associated
with r̂i by v̂i j , j = 1,2: (v̂i j · n̂i j)(r̂i) = 1, (v̂i j · n̂ik)(r̂i) = 0,k = j, and (v̂i j · n̂lk)(r̂l) =
0, l = i, k = 1, 2. As a consequence, the quadrature rule (10) couples only the two
basis functions associated with a vertex. For example, on the unit square

(K v̂11, v̂11)Q̂,Ê =
K11(r̂1)

4
, (K v̂11, v̂12)Q̂,Ê =

K21(r̂1)

4
,

(K v̂11, v̂i j)Q̂,Ê = 0, i = 1, j = 1,2.
(13)

where Ki j denotes i-th row and j-th column of the matrix function K . This local-
ization property on interactions between the flux basis functions gives the assembled
mass matrix in (8) has a block diagonal structure with one block per grid vertex.

We denote the algebraic system arising from (8) and (9) as
(
AQ B

T

B 0

)(
U
P

)
=

(
0
F

)
, (14)

where AQ is block diagonal. The approximate flux, U , can be easily eliminated via

U =−A−1
Q B

T P. (15)

The resulting Schur complement system

BA
−1
Q B

T P =−F, (16)

is symmetric positive definite and sparse. On rectangular grids, Eq. (16) has a
5-point stencil for a diagonal tensor K and 9-point stencil for the full tensor. The
Schur complement system can be solved using classical algebraic multigrid methods.
The flux variable is then obtained easily by (15) due to the block diagonal structure
of AQ.

The following result concerns the convergence of the MFMFE methods. Let W k,∞
Th

consist of functions φ such that φ |E ∈W k,∞(E) for all E ∈ Th.

Theorem 1 ([6, 10–12]). Let Th consist of simplices, h2-parallelograms, h2-parallel-
epipeds or triangular prisms. If K−1 ∈W 1,∞

Th
, then, the flux uh and scalar ph of the

MFMFE method (8)–(9) satisfies

‖u−uh‖� h‖u‖1, ‖∇ · (u−uh)‖� h‖∇ ·u‖1, ‖p− ph‖� h(‖u‖1 + ‖p‖1).
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Compared to the second order L2 convergence of the flux variable in the BDM1

mixed method, the MFMFE has a first order convergence for the flux variable due to
the numerical quadrature. However the MFMFE method is a solver friendly scheme
since the MFMFE method can be reduced to a cell-centered stencil in terms of the
scalar variable without solving a saddle-point problem.

3.2 Multipoint Flux Mixed Finite Element as a Preconditioner

The MFMFE method may be used as a preconditioner to the BDM1 mixed finite
element method by choosing Ã= AQ.

Lemma 1. The condition number of Ã−1
A is independent of the mesh size.

Proof. It has been shown [6, 11, 12] that the bilinear form (K−1·, ·)Q is an inner

product in Vh and (K−1q,q)1/2
Q is a norm equivalent to the L2 norm. Thus

(K−1q,q)Q � ‖q‖2
� (K−1q,q), ∀q ∈ Vh. #$ (17)

The preconditioner of the form (5) has been analyzed by Ewing, Lazarov, Lu and
Vassilevski.

Theorem 2 ([5]). The eigenvalues of M̃−1
M are real and positive and lie in the

interval [λmin,λmax], where λmin and λmax are the extreme eigenvalues of Ã−1
A.

By Lemma 1 and Theorem 2, we have the following corollary.

Corollary 1. The preconditioned system of BDM1 mixed finite element method with
MFMFE as a preconditioner is positive definite. The condition number is indepen-
dent of the mesh size.

4 Numerical Results

4.1 Example 1

In this example, we consider (1)–(3) on the computational domain shown in Fig. 1
(left) with p = 0 on ∂Ω and f = 1.

First, we use the MFMFE method as a preconditioner for the BDM1 mixed finite
element method with K = I. The result is presented in Table 1 where we can clearly
see that the preconditioner is robust with respect to the mesh size h. Next, we consider
the heterogeneous permeability field shown in Fig. 1 (right) which is generated using
geostatistical techniques (kriging) with a longer correlation length in the horizontal
direction. In Table 2 we see that the preconditioner is not only robust with respect to
mesh size, but also with respect to the heterogeneities in the permeability.
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Fig. 1. The triangular mesh used in Example 1 with h ≈ 1/16 (left) and the log of the hetero-
geneous permeability field (right)

h Degrees of Freedom cond(M̃−1
M)

1/8 512 13.43
1/16 2048 15.84
1/32 8192 15.61
1/64 32768 15.63

Table 1. Performance of the MFMFE preconditioner with a homogeneous permeability field.

h Degrees of Freedom cond(M̃−1
M)

1/8 512 20.07
1/16 2048 21.61
1/32 8192 16.61
1/64 32768 14.27

Table 2. Performance of the MFMFE preconditioner with a heterogeneous permeability field.

4.2 Example 2

In this example, we consider (1)–(3) with Ω = [0,1]× [0,1] and

K=

(
1+α 1−α
1−α 1+α

)
,

with 0 < α ≤ 1. We use uniform rectangular meshes and our objective is to demon-
strate that the MFMFE preconditioner is more robust as α→ 0. In Tables 3 and 4 we
present the results using the diagonal preconditioner (Ã=Diag(A)) and the MFMFE
preconditioner respectively. We see that both preconditioners are robust with respect
to h, but degrade as α → 0, but the MFMFE preconditioner degrades at a much
slower rate.
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α h = 1/4 h = 1/8 h = 1/16 h = 1/32
1 22.43 22.32 22.32 22.32

1E-1 1.06E2 9.95E2 1.06E2 1.06E2
1E-2 7.00E2 6.97E2 6.97E2 6.97E2
1E-3 9.51E3 9.41E3 9.75E3 8.42E3

Table 3. Performance of a diagonal preconditioner with respect to h and α .

α h = 1/4 h = 1/8 h = 1/16 h = 1/32
1 22.42 22.32 22.32 22.32

1E-1 32.07 32.09 32.26 32.09
1E-2 51.01 50.06 50.39 50.39
1E-3 5.20E2 6.96E2 8.10E2 8.21E2

Table 4. Performance of the MFMFE preconditioner with respect to h and α .

5 Conclusions

The purpose of this paper is to investigate the performance of the multipoint flux
mixed finite element as a preconditioner for the saddle-point system for the full
BDM1 mixed finite element approximation. Numerical results indicate that the
MFMFE preconditioner is robust with respect to the mesh size and performs bet-
ter than the preconditioner based on the diagonal mass matrix.
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Summary. In this paper, we present a multigrid preconditioner for solving the linear system
arising from the piecewise linear nonconforming Crouzeix-Raviart discretization of second
order elliptic problems with jump coefficients. The preconditioner uses the standard conform-
ing subspaces as coarse spaces. Numerical tests show both robustness with respect to the jump
in the coefficient and near-optimality with respect to the number of degrees of freedom.

1 Introduction

The purpose of this paper is to present a multigrid preconditioner for solving the lin-
ear system arising from the P1 nonconforming Crouzeix-Raviart (CR) discretization
of second order elliptic problems with jump coefficients. The multigrid precondi-
tioner we consider here uses pointwise relaxation (point Gauss-Seidel/Jacobi itera-
tive methods) as a smoother, followed by a subspace (coarse grid) correction which
uses the standard multilevel structure for the nested P1 conforming finite element
spaces. The subspace correction step is motivated by the observation that the stan-
dard P

1 conforming space is a subspace of the CR finite element space.
The idea of using conforming subspaces to construct preconditioners for CR dis-

cretization has been used in [6, 9, 11] in the context of smooth coefficients. To deal
with the jump coefficient problems, multilevel methods using conforming subspaces
were proposed and analyzed in [7, 8]. In particular, in [5] it was shown that if the
coefficients satisfy the quasi-monotonicity condition then the preconditioned sys-
tems have condition numbers independent of the coefficients and depending on the
mesh size logarithmically. It was also shown in [5] that the same conclusions hold for
multilevel preconditioners utilizing a correction in an additional exotic coarse space
in case of general coefficient distributions with cross points.
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We take a different approach in this paper, and without adding additional coarse
space, we show that the multigrid method is a robust preconditioner for PCG algo-
rithm. In particular, we show that the preconditioned system has only a few “bad
eigenvalues” (depending on the jumps of the coefficients), and the asymptotic con-
vergence rate of the PCG algorithm is uniform with respect to the coefficient. The
analysis follows closely [12] with the help of special technical tools developed in [2].
Due to space limitation we only state the main result (Theorem 1 in Sect. 3), and pro-
vide numerical results that support it. Detailed analyses and further discussion of the
algorithm are presented in [13]. One of the main benefits of this algorithm is that it is
very easy to implement in practice. The procedure is the same as the standard multi-
grid algorithm on conforming spaces, and the only difference is the prolongation and
restriction matrices on the finest level. Since the spaces are nested, the prolongation
matrix is simply the matrix representation of the natural inclusion operator from the
conforming space to the CR space.

The paper is organized as follows. In Sect. 2, we give basic notation and the finite
element discretizations. In Sect. 3, we present the multigrid algorithm and discuss its
implementation and convergence. Finally, in Sect. 4 we verify numerically the the-
oretical results by presenting several numerical tests for two and three dimensional
model problems.

2 Preliminaries

LetΩ ⊂R
d (d = 2,3) be an open polygonal domain. Given f ∈ L2(Ω), we consider

the following model problem: Find u ∈ H1
0 (Ω) such that

a(u,v) := (κ∇u,∇v) = ( f ,v) ∀v ∈ H1
0 (Ω) , (1)

where the diffusion coefficient κ ∈ L∞(Ω) is assumed to be piecewise constant,
namely, κ(x)|Ωm = κm is a constant for each (open) polygonal subdomain Ωm satis-
fying ∪M

m=1Ωm =Ω and Ωm∩Ωn = /0 for m = n.
We assume that there is an initial (quasi-uniform) triangulation T0, with mesh

size h0, such that for all T ∈T0 κT := κ(x)|T is constant. Let T j :=Th j ( j = 1, · · · ,J)
be a family of uniform refinement of T0 with mesh size h j. Without loss of generality,
we assume that the mesh size h j % 2− jh0 ( j = 0, · · · ,J) and denote h = hJ .

On each level j = 0, · · · ,J, we define Vj as the standard P
1 conforming finite ele-

ment space defined on T j. Then the standard conforming finite element discretization
of (1) reads:

Find u j ∈Vj such that a(u j,v j) = ( f ,v j), ∀v j ∈Vj. (2)

For each j = 0, · · · ,J, we define the induced operator for (2) as

(A jv j,wj) = a(v j,wj), ∀v j,wj ∈Vj.

We denote Eh the set of all edges (in 2D) or faces (in 3D) of Th. Let VCR
h be the

piecewise linear nonconforming Crouzeix-Raviart finite element space defined by:
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VCR
h =

{
v ∈ L2(Ω) : v|T ∈ P

1(T )∀T ∈ Th and
∫

e
[[v]]eds = 0 ∀e ∈ Eh

}
,

where P1(T ) denotes the space of linear polynomials on T and [[v]]e denotes the jump
across the edge/face e ∈ Eh with [[v]]e = v when e⊂ ∂Ω . In the sequel, let us denote
VJ+1 :=VCR

h for simplicity. We remark that all these finite element spaces are nested,
that is,

V0 ⊂ ·· · ⊂VJ ⊂VJ+1.

The P1-nonconforming finite element approximation to (1) reads:

Find u ∈VCR
h : ah(u,w) := ∑

T∈TJ

∫
T
κT∇u ·∇w = ( f ,w),∀w ∈VCR

h . (3)

The bilinear form ah(·, ·) induced a natural energy norm: |v|h,κ :=
√

ah(v,v) for any
v ∈VCR

h . In operator form, we are going to solve the linear system

Au = f , (4)

where A is the operator induced by (3), namely

(Av,w) = ah(v,w), ∀v,w ∈VCR
h .

3 A Multigrid Preconditioner

The action of the standard multigrid V -cycle preconditioner B := BJ+1 : VJ+1 �→VJ+1

on a given g ∈VJ+1 is recursively defined by the following algorithm (cf. [3]):

V -cycle
Let gJ+1 = g, and B0 = A−1

0 . For j = 1, · · · ,J + 1, we define recursively B jg j for
any g j ∈Vj by the following three steps:

1. Pre-smoothing : w1 = R jg j;
2. Subspace correction: w2 = w1 +B j−1Q j−1(g j−A jw1);
3. Post-smoothing: B jg j := w2 +R∗j(g j−A jw2).

In this algorithm, R j corresponds to a Gauss-Seidel or a Jacobi iterative method
known as a smoother; and Q j is the standard L2 projection on Vj:

(Q jv,wj) = (v,wj), ∀wj ∈Vj, ( j = 0, · · · ,J).

The implementation of Algorithm 3 is almost identical to the implementation of
the standard multigrid V -cycle (cf. [4]). Between the conforming spaces, we use the
standard prolongation and restriction matrices (for conforming finite elements). The
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corresponding matrices between VJ and VJ+1, are however different. The prolonga-
tion matrix on VJ can be viewed as the matrix representation of the natural inclusion
IJ : VJ →VJ+1, which is defined by

(IJv)(x) = ∑
e∈Eh

v(me)ψe(x),

where ψe is the CR basis on the edge/face e ∈ Eh and me is the barycenter of e.
Therefore, the prolongation matrix has the same sparsity pattern as the edge-to-vertex
(in 2D), or face-to-vertex (in 3D) connectivity, and each nonzero entry in this matrix
equals the constant 1/d where d is the space dimension. The restriction matrix is
simply the transpose of the prolongation matrix.

The efficiency and robustness of this preconditioner can be analyzed in terms of
the effective condition number (cf. [12]) defined as follows:

Definition 1. Let V be a real N dimensional Hilbert space, and S : V → V be a
symmetric positive definition operator with eigenvalues 0 < λ1 ≤ ·· · ≤ λN . The m-th
effective condition number of S is defined by

Km(S) := λN(S)/λm+1(S).

Note that the standard condition number K (BA) of the preconditioned system BA
will be large due to the large jump in the coefficient κ . However, there might be only
a small (fixed) number of small eigenvalues of BA, which cause the large condition
number; and the other eigenvalues are bounded nearly uniformly. In particular, we
have the following main result:

Theorem 1. Let B be the multigrid V-cycle preconditioner defined in Algorithm 3.
Then there exists a fixed integer m0 < M, depending only on the distribution of the
coefficient κ , such that

Km0(BA)≤C2| logh|2 =C2J2 ,

where the constant C > 0 is independent of the coefficients and mesh size.

The analysis is based on the subspace correction framework [10], but some technical
tools developed in [2] are needed to deal with nonconformity of the finite element
spaces. Due to space restriction, a detailed analysis will be reported somewhere else.

Thanks to Theorem 1 and a standard PCG convergence result (cf. [1, Sect. 13.2]),
the PCG algorithm with the multigrid V -cycle preconditioner defined in Algorithm 3
has the following convergence estimate:

|u−ui|h,κ ≤ 2(K (BA)−1)m0

(
CJ−1
CJ+ 1

)i−m0

|u−u0|h,κ ,

where u0 is the initial guess, and ui is the solution of i-th PCG iteration. Although the
condition number K (BA) might be large, the convergence rate of the PCG algorithm
is asymptotically dominated by CJ−1

CJ+1 , which is determined by the effective condition
number Km0(BA). Moreover, this bound of asymptotic convergence rate convergence
is independent of the coefficient κ , but depends on the mesh size logarithmically.
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4 Numerical Results

In this section, we present several numerical tests in 2D and 3D which verify the
result in Theorem 1 on the performance of the multigrid V -cycle preconditioner de-
scribed in the previous sections. The numerical tests show that the effective condi-
tion numbers of the preconditioned linear systems (with V -cycle preconditioner) are
nearly uniformly bounded.

4.1 A 2D Example

As a first model problem, we consider Eq. (1) in the squareΩ = (−1,1)2 with coef-
ficient such that, κ(x) = 1 for x ∈Ω1 = (−0.5,0)2∪ (0,0.5)2, and κ(x) = ε for x in
the remaining subdomain, x ∈ Ω \Ω1 (see Fig. 1). By decreasing the value of ε we
increase the contrast in the PDE coefficients.

Our initial triangulation on level 0 has mesh size h0 = 2−1 and resolves the inter-
faces where the coefficients have discontinuities. Then on each level, we uniformly
refine the mesh by subdividing each element into four congruent children. In this
example, we use 1 forward/backward Gauss-Seidel iteration as pre/post smoother
in the multigrid preconditioner, and the stopping criteria of the PCG algorithm is
‖rk‖/‖r0‖< 10−7 where rk is the residual at k-th iteration.
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Fig. 1. 2D computational domain
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Fig. 2. Eigenvalue distribution of BA

Figure 2 shows the eigenvalue distribution of the multigrid V -cycle precondi-
tioned system BA when h = 2−5 (level = 4) and ε = 10−5. As we can see from this
figure, there is only one small eigenvalue that deteriorates with respect to the jump
in the coefficient and the mesh size.

Table 4.1 shows the estimated condition number K and the effective condition
number K1 of BA. It can be observed that the condition number K increases rapidly
with respect to the increase of the jump in the coefficients and the number of de-
grees of freedom. On the other hand, the number of PCG iterations increases only a
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small amount, and the corresponding effective condition number is nearly uniformly
bounded, as predicted by Theorem 1.

ε levels 0 1 2 3 4

1
K 1.65 (8) 1.83 (10) 1.9 (10) 1.9 (10) 1.89 (10)
K1 1.44 1.78 1.77 1.78 1.76

10−1 K 3.78 (10) 3.69 (11) 3.76 (12) 3.79 (12) 3.88 (12)
K1 1.89 1.87 1.93 1.92 1.95

10−2 K 23.4 (12) 23.6 (13) 24.6 (13) 25.1 (14) 26 (15)
K1 2.15 1.96 1.99 1.97 2.24

10−3 K 218 (13) 223 (14) 232 (15) 238 (16) 246 (16)
K1 2.19 1.98 2 1.98 2.29

10−4 K 2.17e+3 (14) 2.21e+3 (15) 2.31e+3 (16) 2.37e+3 (18) 2.45e+3 (18)
K1 2.2 1.98 2 1.98 2.3

10−5 K 2.17e+4 (15) 2.21e+4 (16) 2.31e+4 (17) 2.37e+4 (19) 2.76e+4 (19)
K1 2.2 1.98 2 1.98 2.64

Table 1. Estimated condition number K (number of PCG iterations) and the effective condi-
tion number K1

4.2 A 3D Example

In this second example, we consider the model problem (1) in the open unit cube in
3D with a similar setting for the coefficient. We set κ(x) = 1 for x∈Ω1 =(0.25,0.5)3

or x ∈ Ω2 = (0.5,0.75)3, and κ(x) = ε for the remaining subdomain (that is, for
x ∈Ω \ (Ω1∪Ω2)). The domain Ω and the subdomains just described are shown in
Fig. 3. The coarsest partition has mesh size h0 = 2−2, and it is set in a way so that it
resolves the interfaces where the coefficient has jumps.

To test the effects of the smoother, in this example we use 5 forward/backward
Gauss-Seidel as smoother in the multigrid preconditioner. In order to test more severe
jumps in the coefficients, we set the stopping criteria ‖rk‖/‖r0‖< 10−12 for the PCG
algorithm in this experiment.

Figure 4 shows the eigenvalue distribution of the multigrid V -cycle precondi-
tioned system BA when h = 2−5 (level = 3) and ε = 10−5. As before, this figure
shows that there is only one small eigenvalue that even deteriorates with respect to
the jump in the coefficients and the mesh size.

Table 2 shows the estimated condition number K (with the number of PCG
iterations), and the effective condition number K1. As is easily seen from the results
in this table, the condition number K increases when ε decreases, i.e. the condition
number grows when the jump in the coefficients becomes larger. On the other hand,
the results in Table 2 show that the effective condition number K1 remains nearly
uniformly bounded with respect to the mesh size and it is robust with respect to the
jump in the coefficient, thus confirming the result stated in Theorem 1: a PCG with
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Fig. 3. 3D computational domain
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Fig. 4. Eigenvalue distribution of BA

ε levels 0 1 2 3

1
K 1.19 (8) 1.34 (11) 1.37 (11) 1.36 (11)
K1 1.16 1.26 1.31 1.29

10−1 K 2.3 (10) 1.94(13) 1.75 (13) 1.67 (14)
K1 1.60 1.56 1.45 1.43

10−3 K 86.01 (11) 63.07 (16) 52.67 (17) 48.19(17)
K1 2.4 2.12 1.89 1.78

10−5 K 8.39+3 (13) 6.15e+3 (18) 5.13e+3 (19) 4.70e+3(19)
K1 2.44 2.14 1.91 1.80

10−7 K 8.39+5 (14) 6.15e+5 (21) 5.13e+5 (23) 4.70e+5(21)
K1 2.45 2.14 1.91 1.80

Table 2. Estimated condition number K (number of PCG iterations) and effective condition
number K1.

multigrid V -cycle preconditioner provides a robust, nearly optimal solver for the CR
approximation to (3).
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1 Introduction

In conjunction with modern high performance computing systems, domain decom-
position algorithms permit simulation of PDEs with extremely high resolution nu-
merical models. Such computational models substantially reduce discretization er-
rors. In realistic simulation of certain physical systems, it is however necessary to
consider the heterogeneities of the model parameters. Whenever sufficient statistical
information is available, such heterogeneities can be modeled by stochastic processes
(e.g. [2]). For uncertainty propagation, the traditional Monte Carlo simulation may
be impractical for these high resolution models. As an alternative, a domain decom-
position algorithm for stochastic PDEs (SPDEs) is proposed [4] using the spectral
stochastic finite element method (SSFEM). The SSFEM discretization leads to a lin-
ear system with a block sparsity structure, and the size of the resulting system grows
rapidly with the spatial mesh resolution and the order of the stochastic dimension
[2]. The solution of this large-scale system constitutes a computationally challeng-
ing task and therefore efficient solvers are required. Extending the formulation in
[4], the iterative substructuring based non-overlapping domain decomposition meth-
ods are proposed to solve the large-scale linear system arising in the SSFEM. The
methodology is based on domain decomposition in the geometric space and a func-
tional decomposition in the stochastic space [4]. Firstly, we describe a primal version
of iterative substructuring methods of SPDEs. The method offers a straightforward
approach to formulate a two-level scalable preconditioner. In the proposed precondi-
tioner, the continuity of the solution field is strictly enforced on the corner nodes of
the interface boundary, but weakly satisfied over the remaining interface nodes. This
approach naturally leads to a coarse grid connecting the subdomains globally and
provides a mechanism to propagate information across the subdomains which makes
the algorithm scalable. The proposed preconditioner may be viewed as an extension
of BDDC [3] for SPDEs. Secondly, a dual-primal iterative substructuring method is
introduced for SPDEs. In this approach, the continuity condition on the corner nodes
is strictly satisfied and Lagrange multipliers are used to weakly enforce the continu-
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ity on the remaining nodes of the interface boundary. This method may be construed
to be an extension of FETI-DP [1] for SPDEs.

2 Uncertainty Representation by Stochastic Processes

We briefly review the theories of stochastic processes, relevant to subsequent theoret-
ical developments, by closely following [2, 4–6]. Assuming the input data (contain-
ing sufficient statistical information) permits a representation of the model parame-
ters as stochastic processes that span the Hilbert space HG. Using Karhunen-Loeve
expansion (KLE), a set of basis functions {ξi(θ )} for the Hilbert space HG is iden-
tified. The KLE of a stochastic process α(x,θ ) is based on the spectral expansion of
its covariance function Cαα(x,y), and takes the following form [2]

α(x,θ ) = ᾱ(x)+
∞

∑
i=1

√
λiξi(θ )φi(x), (1)

where ᾱ(x) is the mean of the stochastic process, {ξi(θ )} is a set of uncorrelated ran-
dom variables and {λi,φi(x)} are the eigenpairs of the covariance function, obtained
from the following integral equation

∫
Ω

Cαα(x,y)φi(y)dy = λiφi(x). (2)

For a smooth stochastic process, only a finite number of KLE basis is sufficient to
represent the stochastic process. Given the covariance function of the solution is not
known a priori, the KLE cannot be used to represent solution process. Assuming the
solution process u(x,θ ) belong to the Hilbert space HL, a generic basis of this space
can be identified using the Polynomial Chaos (PC) [2]. Consequently, the solution
process can be approximated as

u(x,θ ) =
N

∑
j=0
Ψj(θ )u j(x), (3)

where the polynomials Ψj(θ ) are orthogonal in the statistical sense, meaning
〈Ψj,Ψk〉 = 〈Ψ 2

j 〉δ jk where 〈·〉 denotes the expectation operator and δ jk is the Kro-
necker delta, and u j(x) are the PC coefficients to be determined by Galerkin projec-
tion.

3 Review of Schur Complement Based Domain Decomposition
Method of SPDEs

A review of the domain decomposition method for SPDEs based on [4–6] is pro-
vided in this section. For an elliptic SPDE defined on a domain Ω with a prescribed
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boundary condition on ∂Ω , the finite element discretization leads to the following
linear system

A(θ )u(θ ) = f, (4)

where A(θ ) is the random stiffness matrix, u(θ ) is the stochastic response and f is
the applied force. The physical domain Ω is split into ns non-overlapping subdo-
mains {Ωs}ns

s=1. For a typical subdomain Ωs the nodal vector us(θ ) is partitioned
into interior us

I(θ ) and interface us
Γ (θ ) unknowns. This decomposition leads to the

following subdomain equilibrium equation[
As

II(θ ) As
IΓ (θ )

As
Γ I(θ ) As

ΓΓ (θ )

]{
us

I(θ )
us
Γ (θ )

}
=

{
fs
I

fs
Γ

}
. (5)

Enforcing the transmission conditions and expanding the solution vector by the PCE
(as in Eq. (3)) and then performing Galerkin projection, we obtain the following
block linear systems of equations [4–6]:

〈
L

∑
i=0
Ψi(θ )

⎡
⎢⎢⎢⎢⎢⎢⎣

A1
II,i . . . 0 A1

IΓ ,iR1
...

. . .
...

...
0 . . . Ans

II,i Ans
IΓ ,iRns

RT
1 A1

Γ I,i . . . RT
ns

Ans
Γ I,i

ns

∑
s=1

RT
s As

ΓΓ ,iRs

⎤
⎥⎥⎥⎥⎥⎥⎦

N

∑
j=0
Ψj(θ )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1
I, j
...

uns
I, j

uΓ , j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
Ψk(θ )〉

= 〈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f1
I
...

fns
I

ns

∑
s=1

RT
s fs
Γ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
Ψk(θ )〉, k = 0, . . . ,N. (6)

where the restriction operator Rs maps the global interface vector uΓ (θ ) to the local
interface unknown us

Γ (θ ) as us
Γ (θ ) =RsuΓ (θ ). Compactly, Eq. (6) can be expressed

as ⎡
⎢⎢⎢⎢⎢⎣

A 1
II . . . 0 A 1

IΓR1
...

. . .
...

...
0 . . . A ns

II A ns
IΓ Rns

RT
1 A 1

Γ I . . . RT
ns

A ns
Γ I

ns

∑
s=1

RT
s A s

ΓΓRs

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U 1
I
...

U ns
I

UΓ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F 1
I

...
F ns

I
ns

∑
s=1

RT
s F s

Γ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
, (7)

where [A s
αβ ] jk =

L

∑
i=0
〈ΨiΨjΨk〉As

αβ ,i, F s
α ,k = 〈Ψkfs

α〉, U m
I = (um

I,0, . . . ,u
m
I,N)

T and

Rs = blockdiag(R0
s , . . . ,R

N
s ). The subscripts α and β represent the index I and Γ .

Performing Gaussian elimination in Eq. (7), we obtain the global extended Schur
complement system as

S UΓ = GΓ , (8)

where S=
ns

∑
s=1

RT
s [A

s
ΓΓ−A s

Γ I(A
s

II)
−1A s

IΓ ]Rs, GΓ=
ns

∑
s=1

RT
s [F

s
Γ −A s

Γ :I(A
s

II)
−1F s

I ].
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4 Primal Iterative Substructuring Method of SPDEs

In this section, a two-level domain decomposition method is formulated in the con-
text of SPDEs. The subdomain nodal vector, namely the primal variable, is parti-
tioned into interior, remaining interface and corner nodes as schematically shown in
Fig. 1 [3]. Using PCE to represent the random coefficients of the system parame-
ters and performing Galerkin projection, lead to the following coupled deterministic
system ⎡

⎣A s
ii A s

ir A s
ic

A s
ri A s

rr A s
rc

A s
ci A s

cr A s
cc

⎤
⎦
⎧⎨
⎩

U s
i

U s
r

U s
c

⎫⎬
⎭=

⎧⎨
⎩

F s
i

F s
r

F s
c

⎫⎬
⎭ . (9)

Fig. 1. Partitioning domain nodes into: interior ( ), remaining ( ) and corner ( )

Enforcing the transmission conditions along the boundary interfaces, the subdo-
main equilibrium equation can be written as
⎡
⎢⎢⎢⎢⎢⎣

A s
ii A s

irB
s
r A s

icB
s
c

ns

∑
s=1

Bs
r

T A s
ri

ns

∑
s=1

Bs
r

T A s
rrB

s
r

ns

∑
s=1

Bs
r

T A s
rcB

s
c

ns

∑
s=1

Bs
c

T A s
ci

ns

∑
s=1

Bs
c

T A s
crB

s
r

ns

∑
s=1

Bs
c

T A s
ccB

s
c

⎤
⎥⎥⎥⎥⎥⎦

⎧⎨
⎩

U s
i

Ur

Uc

⎫⎬
⎭=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F s
i

ns

∑
s=1

Bs
r

T F s
r

ns

∑
s=1

Bs
c

T F s
c

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
,

(10)
where Bs

r and Bs
c are Boolean rectangular matrices that extract the subdomain re-

maining interface and corner degrees of freedom from the corresponding global vec-
tors Ur and Uc as U s

r = Bs
rUr and U s

c = Bs
cUc. Eliminating U s

i from Eq. (10), we
obtain

⎡
⎢⎢⎢⎣

ns

∑
s=1

Bs
r

T S s
rrB

s
r

ns

∑
s=1

Bs
r

T S s
rcB

s
c

ns

∑
s=1

Bs
c

T S s
crB

s
r

ns

∑
s=1

Bs
c

T S s
ccB

s
c

⎤
⎥⎥⎥⎦
{

Ur

Uc

}
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ns

∑
s=1

Bs
r

T G s
r

ns

∑
s=1

Bs
c

T G s
c

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (11)
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where S s
αβ = A s

αβ −A s
α i[A

s
ii ]
−1A s

iβ and G s
α = F s

α −A s
α i[A

s
ii ]
−1F s

i . Eliminating
Uc from Eq. (11) leads to the following symmetric positive definite reduced interface
problem

(Frr−Frc[Fcc]
−1Fcr)Ur = dr−Frc[Fcc]

−1dc, (12)

where Fαβ =
ns

∑
s=1

Bs
α

T S s
αβB

s
β and dα =

ns

∑
s=1

Bs
α

T G s
α .

4.1 Two-Level Primal Preconditioner

The Preconditioned Conjugate Gradient Method (PCGM) can be used to solve the
reduced interface problem in Eq. (12). At each iteration of the PCGM, the continuity
of the solution field is enforced strictly on the corner nodes, but weakly satisfied
on the remaining interface nodes. Consequently we obtain the following partially
assembled Schur complement system:

⎡
⎣

S s
rr S s

rcB
s
c

ns

∑
s=1

Bs
c

T S s
crB

s
r

ns

∑
s=1

Bs
c

T S s
ccB

s
c

⎤
⎦
{

U s
r

Uc

}
=

{
F s

r
0

}
, (13)

where F s
r = D s

r B
s
rr j, and r j is the residual of the jth iteration of PCGM, and D s

r is

a block diagonal weighting matrix which satisfies
ns

∑
s=1

Bs
r

T D s
r B

s
r = I. Next, U s

r can

be eliminated from Eq. (13) leading to the following coarse problem

F̃ccUc = d̃c, (14)

where F̃cc =
ns

∑
s=1

Bs
c

T (S s
cc−S s

cr[S
s

rr]
−1S s

rc)B
s
c and d̃c = −

ns

∑
s=1

Bs
c

T S s
cr[S

s
rr]
−1F s

r .

The two-level preconditioner can be expressed as

M−1 =
ns

∑
s=1

Bs
r

T D s
r [S

s
rr]
−1D s

r B
s
r +RT

0 [F̃cc]
−1R0, (15)

where R0 =
ns

∑
s=1

Bs
c

T S s
cr[S

s
rr]
−1D s

r B
s
r .

5 Dual-Primal Iterative Substructuring of SPDEs

In the dual-primal method [1], the continuity condition on the corner nodes is en-
forced strictly while Lagrange multipliers are used to weakly enforce the continuity
on the remaining interface. Partial assembly of the corner node unknowns leads to
the following system
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A s
ii A s

ir A s
icB

s
c 0

A s
ri A s

rr A s
rcB

s
c Bs

r
T

ns

∑
s=1

Bs
c

T A s
ci

ns

∑
s=1

Bs
c

T A s
cr

ns

∑
s=1

Bs
c

T A s
ccB

s
c 0

0
ns

∑
s=1

Bs
r 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

U s
i

U s
r

Uc

Λ

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F s
i

F s
r

ns

∑
s=1

Bs
c

T F s
c

0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
,

(16)

where
ns

∑
s=1

Bs
rU

s
r = 0 and ΛT = {λλλ 0, · · · ,λλλN}. The matrix Bs

r is a block diagonal

signed Boolean continuity operator and λλλ j is the nodal force vector required to
satisfy continuity on the remaining interface nodes. Eliminating U s

i and U s
r from

Eq. (16) leads to the following interface problem
[

F̄cc −F̄cr

F̄rc F̄rr

]{
Uc

Λ

}
=

{
d̄c

d̄r

}
, (17)

where

F̄cc =
ns

∑
s=1

Bs
c

T (S s
cc−S s

cr[S
s

rr]
−1S s

rc)B
s
c, F̄cr =

ns

∑
s=1

Bs
c

T S s
cr[S

s
rr]
−1Bs

r
T

F̄rc =
ns

∑
s=1

Bs
r [S

s
rr]
−1S s

rcB
s
c, F̄rr =

ns

∑
s=1

Bs
r [S

s
rr]
−1Bs

r
T

d̄c =
ns

∑
s=1

Bs
c

T (G s
c −S s

cr[S
s

rr]
−1G s

r ), d̄r =
ns

∑
s=1

Bs
r [S

s
rr]
−1G s

r

Solving for Uc from Eq. (17) gives the following coarse problem

F̄ccUc = (d̄c + F̄crΛ) (18)

Substituting Uc into Eq. (17) leads to the following symmetric positive definite La-
grange multiplier system

(F̄rr + F̄rc[F̄cc]
−1F̄cr)Λ = d̄r− F̄rc[F̄cc]

−1d̄c. (19)

The Lagrange multiplier system in Eq. (19) is solved using PCGM equipped with a

Dirichlet precondtioner defined as M̄ =
ns

∑
s=1

Bs
rD

s
r S

s
rrD

s
r B

s
r

T .

6 Numerical Results

For numerical illustrations, we consider the following elliptic SPDE

∇ · (κ(x,θ )∇u(x,θ )) = f (x), x ∈Ω , (20)

u(x,θ ) = 0, x ∈ ∂Ω . (21)
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The coefficient κ(x,θ ) is modeled as a lognormal stochastic process, obtained from
the underlying Gaussian process with an exponential covariance function given as

Cαα(x,y) = σ2 exp

(
−|x1− y1|

b1
− |x2− y2|

b2

)
. (22)

The lognormal process is approximated using four-dimensional second order PC
expansion (L = 15). Finite element discretization results in 375,444 elements and
186,925 nodes. The response is expressed using third order PCE (N = 34) leading to
a linear system of order 6,542,375. The mean and standard deviation of the solution
process are shown in Fig. 2. The PCGM iteration counts for the primal and dual-
primal methods for fixed problem size in the spatial domain is reported in Table 1 for
1st, 2nd and 3rd order of PCE. The results suggest that the methods are numerically
scalable with respect to number of subdomains. Table 2 shows the iteration counts of
the methods when we fix spatial problem size per subdomain and increase the overall
problem size by adding more subdomains. Again these results suggest that both the
methods are numerically scalable with respect to fixed problem size per subdomain.

(a) (b)

Fig. 2. The mean and standard deviation of the solution field. (a) Mean. (b) Standard deviation

Table 1. Iteration counts for fixed problem size in geometric space

Subdomain PP-DDM DP-DDM

1st 2nd 3rd 1st 2nd 3rd

8 11 12 12 9 9 9
16 12 13 13 10 10 10
32 14 14 14 11 11 11
64 13 14 14 10 10 10
128 14 14 14 10 10 10
256 14 14 14 10 10 10
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Table 2. Iteration counts for fixed problem size per subdomain in geometric space

Subdomain PP-DDM DP-DDM

1st 2nd 3rd 1st 2nd 3rd

8 9 9 9 8 8 8
16 12 12 12 10 10 10
32 12 13 13 10 10 10
64 13 14 14 10 10 10
128 14 14 14 10 10 10
256 15 15 15 11 11 11

7 Conclusion

Primal and dual-primal domain decomposition methods are proposed to solve the
large-scale linear system arising from the finite element discretization of SPDEs.
The proposed techniques exploit a coarse grid in the geometric space which makes
the methods numerically scalable with respect to fixed geometric problem size, fixed
geometric size per subdomain and the order of PCE.
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1 Introduction

Various domain decomposition methods have been proposed for the Helmholtz equa-
tion, with the Optimized Schwarz Method (OSM) being one of them (see e.g. [7]
for a review of various domain decomposition methods, and [3] for the details of
OSM). In this paper, we focus on OSM, which is based on the idea of using approx-
imated half-space Dirichlet-to-Neumann (DtN) maps to improve the convergence of
the Schwarz methods; current version of the OSM is based on polynomial approx-
imation of the half-space DtN map. See [8] for a review of various approaches to
approximating the half-space DtN map (more commonly referred to as Absorbing
Boundary Conditions (ABCs)).

There are two approximations in the OSM that affect its convergence rate – the
first being the approximation of the rest of the domain as unbounded and the second
being the approximation of the half-space stiffness (square-root operator) as a poly-
nomial. In contrast with the polynomial approximation used in OSM, we utilize the
method of Perfectly Matched Discrete Layers (PMDL), which has close links to the
well-known Perfectly Matched Layers (PML) (see [1]) and the rational approxima-
tion of the square-root operator. The resulting PMDL-Schwarz method is shown to
converge faster than the second-order OSM. The rest of the paper contains a brief
review of OSM and PMDL concepts, followed by an outline of the new PMDL-
Schwarz method and illustration of its effectiveness with the help of convergence
factor analysis and a numerical example.

Model Problem. We consider the governing equation,

−∂
2û
∂x2 −

∂ 2û
∂y2 −ω2û = f̂ , (x,y) ∈ (−∞,∞)× [0,L], (1a)

û(·,0) = û(·,L) = 0 . (1b)

Applying Fourier Sine transform along the y direction, the above equation reduces
to a 1-D form:
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−∂
2u
∂x2 − k2u = f , x ∈ (−∞,∞), (2)

where k =
√
ω2− k2

y , ky is the wavenumber along y and u, f are the Fourier sym-

bols corresponding to û, f̂ respectively. For simplicity, we shall use the above 1-D
equation to discuss the main ideas in this paper, but note that the proposed method is
applicable to more complex equations and geometries. Also, since the focus of this
paper is to improve the treatment of the transmission condition at an interface, it is
sufficient to consider the case of two subdomains. Thus the domain is decomposed
into two subdomains:Ω1 ≡ (−∞,0) and Ω2 ≡ (0,∞), with the interface at x = 0.

2 Optimized Schwarz Methods

Optimized Schwarz Method is a domain decomposition method that is a variant of
the Schwarz Alternating Method (see e.g. [7]). In the Schwarz Alternating Method,
the displacement and traction continuity across the artificial interface are enforced by
applying a mixed boundary condition of the form B(·)≡ ∂ (·)/∂n+Λ(·) where n is
the normal vector at the interface and the operator Λ is a parameter of the method.
The Schwarz iteration scheme for solving (2) is given by:

−∂
2u j+1

1

∂x2 − k2u j+1
1 = f1 , x ∈Ω1 , −∂

2u j+1
2

∂x2 − k2u j+1
2 = f2 , x ∈Ω2 , (3a)

B1u j+1
1 = B1u j

2, x = 0 , B2u j+1
2 = B2u j

1, x = 0 , (3b)

B1(·)≡ ∂ (·)
∂n1

+Λ1(·) , B2(·)≡ ∂ (·)
∂n2

+Λ2(·) , (3c)

where the operators Λ1,2 are the parameters of the iteration that determine the con-
vergence rate. The problem now reduces to choosing the parameters that lead to
optimal convergence of the iteration scheme. The parameters are commonly chosen
to be scalars but they can be operators that are optimized for convergence [3]. The
dependence of the convergence on the choice of parameters is better understood by
looking at the convergence factor ρ , which is defined as

∣∣êi
j+1
∣∣= ρ

∣∣êi
j
∣∣ , (4)

where ê j
i = |u− u j

i | is the error in the solution in subdomain i at iteration j. Thus,
after one cycle of iteration, the error in solution reduces by ρ and the iterative scheme
converges to a solution as long as ρ < 1.

For the Schwarz method in (3), the convergence factor can be shown to be (see
for e.g. [3])

ρ =

∣∣∣∣
(
Λ1−K2

Λ1 +K1

)(
Λ2−K1

Λ2 +K2

)∣∣∣∣ , (5)

where K1 and K2 are the DtN maps of the subdomains Ω1 and Ω2 respectively.
It is clear from (5) that the iterative scheme does not converge (because ρ = 1) for
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a pure Neumann (Λi = 0) or Dirichlet (Λi = ∞) interface condition. Also, if Λ1 =
K2 or Λ2 = K1, then ρ = 0 and the Schwarz iterative scheme converges in two
iterations, i.e., the parameters are optimal. However, DtN maps are known only for
special cases and even then are usually non-local operators that are expensive to
compute accurately. Thus we look for local approximations to these DtN maps that
are accurate and computationally efficient.

Optimized Schwarz Methods [3] essentially approximate the DtN map of the sub-
domains by polynomial approximations of the DtN map of an unbounded domain,
e.g. the second-order OSM makes the approximation

K1 =−i
√
ω2− k2

y ≈ p+ qk2
y , (6)

where p, q are parameters that are found by minimizing the convergence factor over
the entire range of allowed vertical wavenumbers ky. Note that there are other variants
of OSM based on zeroth-order approximation; in this paper, we focus on the best
available OSM, namely the second-order OSM.

3 A Schwarz Method with Improved Convergence

It appears to us that OSM uses polynomial approximation for reasons of imple-
mentability. A better approximation would be to use higher order rational approx-
imations, which have been investigated extensively in the context of Absorbing
Boundary Conditions (ABCs); it is now possible to implement these resulting ABCs
and can also be used in the context of Schwarz methods. In this paper, we propose
the use of a rational approximation in a recent ABC called Perfectly Matched Dis-
crete Layers (formerly known as Continued Fraction ABCs – see [4]) instead of the
polynomial approximation in (6).

The rational approximation corresponding to PMDL is given by:

K1 =−i
√
ω2− k2

y ≈S pmdl
n , (7)

where

S pmdl
n = pn−

q2
n

pn +

⎛
⎜⎜⎜⎜⎝pn−1 +

q2
n−1

pn−1 +

(
pn−2−

q2
n−2

pn−2 +(. . . )

)

⎞
⎟⎟⎟⎟⎠

, (8)

pi =
1

4Li

(
4− k2L2

i

)

qi =
1

4Li

(−4− k2L2
i

)

⎫⎪⎪⎬
⎪⎪⎭

i = 1 . . .n . (9)
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where Li are the parameters that determine the accuracy of the approximation.
The error in the approximation (7) is typically analyzed through the so-called

reflection coefficient, which has been shown to be (for details, see [4])

R =
n

∏
i=1

∣∣∣∣K1− pi

K1 + pi

∣∣∣∣
2

. (10)

If R = 0, then the approximation is exact, and the deviation from zero indicates mag-
nitude of error in the approximation; smaller the value of R, better the approximation.
So from (10) and (9), it is clear that the accuracy of proposed approximation hinges
on the choice of Li.

In general, Li are chosen to be complex or imaginary to better approximate the
DtN map for propagating wave modes and are chosen to be real when evanescent
modes are important. While the parameters Li can be optimized using the concepts
discussed in [5], in this paper we choose Li based on the OSM parameters (see
Sect. 4).

Implementation of PMDL. While the rational form of the PMDL approxima-
tion in (8) is useful for analysis, the following matrix form proves to be useful for
implementation:

⎡
⎢⎢⎢⎢⎢⎣

S pmdl
n ub

0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

p1 q1 0 · · · 0
q1 p1 + p2 q2 0

0
. . .

. . .
. . . 0

... qn−1 pn−1 + pn qn

0 · · · 0 qn pn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ub

ua,1

ua,2
...

ua,n−1

⎤
⎥⎥⎥⎥⎥⎦
, (11)

where pi,qi are given by (9) and ua,i are auxiliary variables that are introduced to
facilitate the implementation and have no direct physical relevance to the problem.
The equivalence between (8) and (11) can be easily seen by eliminating the auxil-
iary dof ua,i from (11) to recover (8). The matrix form of PMDL enables an easy
implementation of the rational approximation as a simple tri-diagonal matrix.

PMDL, a link between Rational ABCs and Perfectly Matched Layers. While
the matrix form of the PMDL approximation in (11) is based on the rational approx-
imation in (8), it is intimately linked to impedance-preserving discretization of PML
proposed in [4]. Unlike PML, the impedance is preserved even after discretization
and thus the approximation is named perfectly matched discrete layers, PMDL. This
link is substantial in that it provides a way to derive and easily implement PMDL ap-
proximations for more complex cases such as corners [4] and anisotropic elasticity
[6].

The ease of implementation of PMDL is in fact the impetus behind proposed
method. As implied by (10), the accuracy of approximation can be easily increased
by adding auxiliary variables, which is equivalent to adding lines of nodes parallel
to the interface. As will be shown in Sect. 4, addition of just one auxiliary variable,
which has minimal increase in computational cost per iteration, significantly reduces
the convergence factor and the number of iterations needed.
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Implementation of the PMDL-Schwarz method. The proposed PMDL-
Schwarz method is essentially the Schwarz Alternating method with the operator
Λ1 chosen to be the DtN map obtained using PMDL, i.e.,Λ1 = S pmdl

n where S pmdl
n

is given by (11). Thus the interface condition in (3) for Ω1 can be written as

∂
∂n1

(u j+1
1 −u j

2)+S pmdl
n (u j+1

1 −u j
2) = 0 . (12)

Substituting (11) in (12), we get the PMDL-Schwarz formulation as
⎡
⎢⎢⎢⎢⎢⎢⎣

∂u j+1
1
∂n1

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

p1 q1 0 · · · 0
q1 p1 + p2 q2 0

0
. . .

. . .
. . . 0

... qn−1 pn−1 + pn qn

0 · · · 0 qn pn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u j+1
1

ua,1

ua,2
...

ua,n−1

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

− ∂u j
2

∂n2
+ p1u j

2

q1u j
2

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(13)

Note that the formulation of the interface condition for Ω2 can be derived in an
identical manner and hence is not repeated here.

4 Comparison Between OSM and PMDL-Schwarz Methods

In this section, we compare the performance of OSM and PMDL-Schwarz method
both theoretically (using convergence factors) and in a numerical simulation involv-
ing multiple domains and closed boundaries.

Convergence Factors: Consider the stiffness approximation of the second-order
OSM (see [3]),

Sosm =
ab−ω2

a+ b
+

1
a+ b

k2
y . (14)

Substituting Λ1 =Λ2 = Sosm in (5), we get the convergence factor of OSM to be

ρosm =

∣∣∣∣∣∣
ab+ k2

y−ω2 + i(a+ b)
√
ω2− k2

y

ab+ k2
y−ω2− i(a+ b)

√
ω2− k2

y

∣∣∣∣∣∣

2

.

To compare, we use a two-layer PMDL-Schwarz method with L1 = 2/a, and
L2 = 2/b, where a,b are the OSM parameters in (14). The stiffness approximation
of the two-layer PMDL-Schwarz method is then given by
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S pmdl
n = p2− q2

2

p2 + p1
,

p2 =
1
L2
− (ω2− k2

y)L2

4
, q2 =− 1

L2
− (ω2− k2

y)L2

4
,

p1 =
1
L1
− (ω2− k2

y)L1

4
.

Substituting Λ1 = Λ2 = S pmdl
n in (5), we get the convergence factor of PMDL-

Schwarz that can be simplified to

ρpmdl =

⎛
⎜⎝
∣∣∣∣∣∣
ab+ k2

y−ω2 + i(a+ b)
√
ω2− k2

y

ab+ k2
y−ω2− i(a+ b)

√
ω2− k2

y

∣∣∣∣∣∣

2⎞
⎟⎠

2

.

Clearly ρpmdl = ρ2
osm, and so the parameters of PMDL-Schwarz are chosen such

that its convergence factor is the square of that of OSM and the method performs
uniformly better over the entire range of wavenumbers ky.

It is easy to numerically verify the above result for the model problem (1a), with
the domain Ω decomposed into two semi-infinite layers. We take a = 20.741i and
b = 47.071 to be the OSM parameters as these were shown in [3] to be optimal
over the allowed wavenumber range ky ∈ [π ,60π ]. Figure 1a compares the conver-
gence factors of OSM and PMDL-Schwarz method (with L1 = 2/a and L2 = 2/b)
and shows clearly that the proposed method performs better over the entire range of
wavenumbers for a slightly increased computational cost (there is only one auxiliary
variable introduced, which is similar to one line of nodes in 2-D).
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Fig. 1. Comparison between OSM (dotted line) and PMDL-Schwarz method (solid line).
(a) Convergence Factor. (b) Convergence of Solution
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Numerical Example: In this example, Eq. (1a) is solved on a square domain
(Ω ≡ [0,1]× [0,1]) with ω = 10π and a point source f = 1/2 is applied at (0,0.5).
Homogeneous Neumann boundary condition is applied on the left (x = 0), Dirichlet
condition at the top (y = 1) and bottom (y = 0), and an ABC on the right (x = 1).
The computational domain is discretized using 60 bilinear finite elements along each
direction. The domain is decomposed into nine subdomains with three subdomains
along each dimension. The convergence plot is shown in Fig. 1b. As expected, the
PMDL-Schwarz method converges twice as fast as the conventional OSM.

5 Discussion

We proposed a Schwarz method for Helmholtz equation based on the concepts of
perfectly matched discrete layers (PMDL), a recently developed absorbing boundary
condition that is related to the higher order rational approximations and the Per-
fectly Matched Layers. By examining the convergence factor and with the help of a
numerical example, PMDL-Schwarz method is shown to converge faster than exist-
ing Optimized Schwarz Methods. Although not treated in this paper, it is important
to mention that the PMDL is not just limited to the Helmholtz equation, but also
to more complicated vector equations such as the elastic and electromagnetic wave
equations. Thus, it is expected that the PMDL-Schwarz method would provide ac-
celerated convergence in frequency domain computations in these contexts. Further-
more, as Waveform Relaxation Method in time domain share similar ideas with OSM
(see e.g. [2]), PMDL ideas can also be used to improve the convergence of existing
waveform relaxation methods. These extensions are subjects of ongoing research.
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1 Introduction

The discontinuous enrichment method (DEM) [4] for the Helmholtz equation ap-
proximates the solution as a sum of a piecewise polynomial continuous function and
element-wise supported plane waves [5]. A weak continuity of the plane wave part
is enforced using Lagrange multipliers. The plane wave enrichment improves the ac-
curacy of solutions considerably. In the mid-frequency range, severalfold savings in
terms of degrees of freedom over comparable higher order polynomial discretizations
have been observed, which translates into even larger savings in compute time [6, 9].
The partition of unity method [8] and the ultra weak variational formulation [1] also
employ plane waves in the construction of discretizations. It was shown recently in
[10] that DEM without the polynomial field is computationally more efficient than
these methods.

So far only direct solution methods have been used with DEM. This paper de-
scribes an iterative domain decomposition method which will enable to solve much
larger problems with DEM. The method is a generalization of the FETI-H version [3]
of the FETI method [2] and the domain decomposition method for DEM without the
polynomial part described in [7]. It is based on a non-overlapping decomposition of
the domain into subdomains. On the subdomain interfaces Lagrange multipliers are
introduced to enforce the continuity of the polynomial part strongly and the con-
tinuity of the enrichment weakly. An efficient iterative solution procedure with a
two-level preconditioner resembling that of the FETI-H method is constructed for
the Lagrange multipliers on the interfaces between the subdomains.

2 Problem Formulation and Discretization

The solution u ∈ H1(Ω) of a Helmholtz problem modeling acoustic scattering from
a rigid obstacle, for example, satisfies the equations
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−Δu− k2u = f in Ω
∂u
∂ν

= g1 on Σ1

∂u
∂ν

= iku+ g2 on Σ2,

(1)

where k is the wavenumber, Σ1 is the boundary of a sound-hard scatterer, Σ2 is the
far-field boundary, and ν denotes the unit outward normal.

Let the domain Ω be split into ne elements, Ω = ∪ne
e=1Ωe. In DEM, the solution

is sought in the form u = uP + uE , where uP is a standard continuous piecewise
polynomial finite element function, and uE is an enrichment function discontinuous
across element interfaces. A weak inter-element continuity of the solution is enforced
by Lagrange multipliers λE . The following hybrid variational formulation is used:
Find u ∈ V and λE ∈W E such that

a(u,v)+ b(λE,v) = r(v) ∀v ∈ V

b(μE ,u) = 0 ∀μE ∈W E .

The forms a, b, and r are defined by

a(u,v) =
∫
Ω
(∇u ·∇v− k2uv)dΩ −

∫
Σ2

ikuvdΓ ,

b(λE ,v) =
ne

∑
e=1

e−1

∑
e′=1

∫
Γe,e′

λE (vΩ ′e − v|Ωe

)
dΓ , and

r(v) =
∫
Ω

f vdΩ +

∫
Σ1

g1 vdΓ +

∫
Σ2

g2 vdΓ ,

where Γe,e′ = ∂Ωe∩∂Ωe′ . For the considered discretization, the space V consists of
functions of the form u = uP + uE , where uE is a superposition of nθ planar waves,
i.e.

uE(x) =
nθ

∑
p=1

eikθ p·xuE
e,p, x ∈Ωe.

In two dimensions, θ p = (cosϑp,sinϑp)
T ,ϑp = 2π(p− 1)/nθ , p = 1, . . . ,nθ . The

Lagrange multipliers space W E is then chosen using functions of the form

λE(x) =
nλ

∑
p=1

eikηpτe,e′ ·xλe,e′ ,p, x ∈ Γe,e′ ,

where τe,e′ is a unit tangent vector and ηp is a scalar. This choice yields a family
of quadrilateral elements, denoted by Q-nθ -nλ . In particular, the elements Q-8-2
and Q-16-4 used in the numerical experiments in this paper use η1 =−η2 = 0.5 and
{ηp}4

p=1 = {±0.2,±0.75}, respectively. For details on stability, implementation, and
accuracy, the reader is referred to [5, 6].
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3 Domain Decomposition Formulation

The elements are divided into nd disjoint subsets E j defining subdomains Ω j such
that Ω̄ j = ∪e∈E j Ω̄e. Subdomain problems are given by regularized bilinear forms

ã j(u j,v j) =

∫
Ω j

(∇u j ·∇v j− k2u jv j)dΩ −
∫
Σ2∩∂Ω j

iku jv j dΓ

− γ
nd

∑
j′=1
j′ = j

∫
Γ j, j′

s j, j′ iku jv j dΓ ,

where Γ j, j′ = ∂Ω j ∩ ∂Ω j′ . The functions u j and v j belong to the restriction of V
into Ω j and the last term ensures the subdomain problems cannot be singular; for
details see [7]. The coefficients s j, j′ are chosen so that the regularization terms cancel
out for a continuous function. The continuity of the polynomial part of the solution

ũP =
nd

∑
j=1

uP, j across the subdomain interfaces is enforced using a Lagrange multiplier

λP. For this purpose, a bilinear form

c(λP, ṽ) =
nd

∑
j=1

j−1

∑
j′=1
∑

l

λP
j, j′,l

(
ṽP|Ω j′ − ṽP|Ω j

)
(x j, j′,l)

is defined, where x j, j′,l is the location of the lth mesh node on Γ j, j′ . The mesh nodes
are given by the Lagrange interpolation points of the piecewise polynomial functions.
The domain decomposition formulation then reads:

Find ũ ∈ Ṽ , λE , and λP such that

ã(ũ, ṽ)+ b(λE , ṽ)+ c(λP, ṽ) = r̃(ṽ) ∀ṽ ∈ Ṽ

b(μE , ũ) = 0 ∀μE ∈W E

c(μP, ũ) = 0 ∀μP ∈W P,

(2)

where Ṽ is spanned by
nd

∑
j=1

v j, ã(ũ, ṽ) =
nd

∑
j=1

a j(u j,v j), and r̃ is the sum of subdomain

contributions of r.

4 Linear Systems and Condensations

The formulation (2) leads to the saddle point system of linear equations
⎛
⎜⎜⎝

rAPP rAPE 0 CPL

rAEP rAEE BEL 0
0 BLE 0 0

CLP 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

uuuP

uuuE

λλλE

λλλP

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

rP

rE

0
0

⎞
⎟⎟⎠ , (3)
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where the superscripts P, E , and L refer to the polynomial part, the enrichment
part, and the Lagrange multiplier, respectively, and uuuP,uuuE ,λλλE ,λλλP are vectors of the
subdomain-by-subdomain polynomial degrees of freedom (depicted by black dots
in Fig. 1), the element-by-element enrichment degrees of freedom (magenta arrows),
the enrichment element-to-element continuity Lagrange multipliers (red arrows), and
the polynomial subdomain-to-subdomain continuity Lagrange multipliers (black ar-
rows), respectively. The enrichment unknowns uuuE can be condensed out on the ele-
ment level (Fig. 1 top and left) to obtain

⎛
⎝

¯rA B̄T C̄T

B̄ D̄ 0
C̄ 0 0

⎞
⎠
⎛
⎝

uuuP

λλλE

λλλP

⎞
⎠=

⎛
⎝ r̄
μ̄μμ
0

⎞
⎠ , (4)

where

¯rA = rAPP− rAPE (rAEE)−1
rAEP, B̄ =−BLE

(
rAEE)−1

rAEP,

C̄ = CLP, D̄ =−BLE
(
rAEE)−1

BEL,

r̄ = rP− rAPE (rAEE)−1
rE , μ̄μμ =−BLE

(
rAEE)−1

rE .

The enrichment Lagrange multipliers λλλE can be divided into two parts—those on
the boundaries between the subdomains and those inside the subdomains, denoted by
the subscript B and I, respectively. The system (4) can then be written in the block
form ⎛

⎜⎜⎝
¯rA B̄II

T ¯BBB
T C̄T

B̄II D̄II D̄IB 0
B̄BB D̄BI D̄BB 0
C̄ 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

uuuP

λλλE
I

λλλE
B

λλλP

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

r̄
μ̄μμ I
μ̄μμB
0

⎞
⎟⎟⎠ .

Finally, the elimination on the subdomain level of the unknowns uuuP and the interior

Fig. 1. 2×1 domain decomposition of a DEM discretization with bilinear polynomials and Q-
8-2 elements resulting in the system (3) (top); variables left after condensation of enrichment
dofs (4) (left); and elimination of the subdomain interior dofs (5) (right)
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enrichment Lagrange multipliers λλλE
I gives the Schur complement system (cf. Fig. 1

right)

F

(
λλλE

B

λλλP

)
= b. (5)

It is noted that the matrix F is a sum of subdomain matrices. Once the Lagrange mul-
tipliers λλλE

B and λλλP have been solved from (5), the rest of the unknowns is recovered
by post-processing, first to obtain uuuP and λλλE

I , then to obtain uuuE .

5 Preconditioning

The system (5) is solved efficiently using a Krylov iterative method with a two-level
preconditioner which is a generalization of those described in [3, 7].

Here, the subdomain preconditioners are based on the bilinear forms

â j(u j,v j) =
∫
Ω j

(∇u j ·∇v j− k2u jv j)dΩ −
∫
∂Ω j\Σ1

iku jv j dΓ ,

b̂ j(λE ,v j) = ∑
e∈E j

ne

∑
e′=e+1

∫
Γe,e′

λEv|ΩedΓ − ∑
e∈E j

e−1

∑
e′=1

∫
Γe,e′

λEv|ΩedΓ , and

ĉ j(λP,v j) =
nd

∑
j′= j+1

∑
l

λP
j, j′,lv

P|Ω j (x j, j′,l)−
j−1

∑
j′=1
∑

l

λP
j, j′,lv

P|Ω j (x j, j′,l).

Repeating the same steps described above for obtaining F in (5) but with matrices
based on â j, and restricting the resulting matrix to the unknowns corresponding to
the interfaces of the subdomain Ω j, a matrix denoted by F j is obtained (cf. [7]). An
additive subdomain-by-subdomain preconditioner is then defined by

K =
nd

∑
j=1

(
R j)T (

F j)−1
R j,

where R j is the restriction on the interfaces associated with Ω j. Linear systems with
F j can be solved efficiently using an LU decomposition.

The system (5) is solved iteratively on the orthogonal complement of a coarse
space spanned by the columns of a matrix Q (cf. [3, 7]). A projector to the orthogonal
complement of the coarse space is given by

P = I−Q(QT FQ)−1QT F.

The solution λλλ = [λλλE
B ,λλλ

P]T of (5) can be decomposed into two parts λλλ = λλλ 0 +Pλλλ 1,
where λλλ 0 = Q(QT FQ)−1QT b and λλλ 1 satisfies

PT Fλλλ 1 = PT b.
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Including the preconditioner K leads to the following equation

PKPT Fλλλ 1 = PKFλλλ 1 = PKPT b,

which is solved by GMRES.
The coarse space is based on plane waves propagating in nq uniformly distributed

directions. Each set of nq plane waves are supported by one subdomain interfaceΓ j, j′

and their normal derivatives on the interface are approximated using an L2-projection
into the space of Lagrange multipliers giving rise to nq columns of Q. Currently, the
coarse space acts only on the interface enrichment Lagrange multipliers λE

B . The
maximum dimension of the coarse space is nqni, where ni is the number of nonzero
measure interfaces Γ j, j′ . A QR factorization is used to remove nearly linearly de-
pendent vectors. More details are given in Sect. 3.4 of [7].

6 Numerical Results

The model problem considered here is given by (1) with the computational domain
Ω = {x ∈ R

2 : 1 < ‖x‖ < 2}, and the boundaries Γ1 = {x ∈ R
2 : ‖x‖= 1} and Γ2 =

{x ∈ R
2 : ‖x‖ = 2}. The right-hand side function and the boundary functions are

chosen as

f (x) = (−Δ − k2)(x2
1 + x2

2) =−4− k2(x2
1− x2

2),

g1(x) =−∂e−ikx1

∂ν
+
∂ (x2

1 + x2
2)

∂ν
=−ikx1eikx1 −2(x2

1 + x2
2), and

g2(x) =
∂ (x2

1 + x2
2)

∂ν
− ik(x2

1 + x2
2) = (1− ik)(x2

1 + x2
2).

The solution is a sum of that given by the scattering of the plane wave e−ikx1 by
a sound-hard disk inside Γ1 and the polynomial x2

1 + x2
2. Two wavenumbers, k =

8π and 16π are considered, in which case the diameter of the scatterer is 8 and
16 wavelengths, respectively. The solution at k = 16π is shown in Fig. 2. Meshes
of 96× 8 (k = 8π) and 192× 16 (k = 16π) elements result in two elements per
wavelength in the radial direction.

Fig. 2. The 24×2 domain decomposition for the 192×16 mesh (left) and the real part of the
solution at k = 16π (right)
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Table 1. Results for the 96×8 mesh with the wavenumber k = 8π .

12 x 1 subdomains 24 x 2 subdomains
nq = 0 nq = 8 nq = 0 nq = 8

poly enrich N iter. iter. N iter. iter. error
Q1 none 108 49 336 213 0.683405
Q2 none 204 33 624 195 0.141341

none Q-8-2 192 35 31 576 163 7 0.438341
Q1 Q-8-2 300 34 31 912 184 28 0.004677
Q2 Q-8-2 396 34 31 1200 206 48 0.004472

none Q-16-4 384 35 30 1152 151 39 0.019767
Q1 Q-16-4 492 36 31 1488 160 54 0.000024
Q2 Q-16-4 588 36 31 1776 176 73 0.000013

Table 2. Results for the 192×16 mesh with the wavenumber k = 16π .

12 x 1 subdomains 24 x 2 subdomains
nq = 0 nq = 16 nq = 0 nq = 16

poly enrich N iter. iter. N iter. iter. error
Q1 none 204 79 624 350 0.568750
Q2 none 396 40 1200 368 0.174451

none Q-8-2 384 44 34 1152 264 16 0.478914
Q1 Q-8-2 588 42 34 1776 281 31 0.007441
Q2 Q-8-2 780 42 34 2352 295 56 0.007826

none Q-16-4 768 42 33 2304 233 42 0.021694
Q1 Q-16-4 972 42 35 2928 238 52 0.000011
Q2 Q-16-4 1164 42 33 3504 253 123 0.000010

Bilinear (Q1) and biquadratic (Q2) bases are used for the polynomial part uuuP.
Q-8-2 and Q-16-4 elements are used for the enrichment uuuE and its Lagrange multi-
pliers λλλE . The domain is decomposed into 12× 1 and 24× 2 subdomains (Fig. 2).
The GMRES iterations are terminated once the norm of the residual is reduced by
10−8. Tables 1 and 2 summarize the performance results obtained for various element
types. In these tables, N is the size of the system (5), i.e. the number of Lagrange mul-
tipliers enforcing continuity between subdomains. The error is the relative l2 error of
the averaged nodal values with respect to the analytical solution of the problem.

The errors in the last column of Tables 1 and 2 clearly show the benefit of dis-
cretizations with both polynomial and enrichment fields for this problem. The com-
bined discretizations increase the accuracy by at least two orders of magnitude. The
iteration counts without a coarse space (nq = 0) are roughly the same for all dis-
cretizations and not quite satisfactory for the 24×2 decomposition. However, these
are reduced substantially when the coarse space is added.



214 Charbel Farhat, Radek Tezaur, and Jari Toivanen

Bibliography

[1] Olivier Cessenat and Bruno Despres. Application of an ultra weak variational
formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM
J. Numer. Anal., 35(1):255–299, 1998.

[2] Charbel Farhat and Francoise-Xavier Roux. A method of finite element tearing
and interconnecting and its parallel solution algorithm. Internat. J. Numer.
Meths. Engrg., 32(6):1205–1227, 1991.

[3] Charbel Farhat, Antonini Macedo, and Michel Lesoinne. A two-level do-
main decomposition method for the iterative solution of high frequency exterior
Helmholtz problems. Numer. Math., 85(2):283–308, 2000.

[4] Charbel Farhat, Isaac Harari, and Leopoldo P. Franca. The discontinuous en-
richment method. Comput. Methods Appl. Mech. Engrg., 190(48):6455–6479,
2001.

[5] Charbel Farhat, Isaac Harari, and Ulrich Hetmaniuk. A discontinuous Galerkin
method with Lagrange multipliers for the solution of Helmholtz problems in
the mid-frequency regime. Comput. Methods Appl. Mech. Engrg., 192(11–12):
1389–1419, 2003.

[6] Charbel Farhat, Radek Tezaur, and Paul Weidemann-Goiran. Higher-order
extensions of a discontinuous Galerkin method for mid-frequency Helmholtz
problems. Internat. J. Numer. Methods Engrg., 61(11):1938–1956, 2004.

[7] Charbel Farhat, Radek Tezaur, and Jari Toivanen. A domain decomposition
method for discontinuous Galerkin discretizations of Helmholtz problems with
plane waves and Lagrange multipliers. Internat. J. Numer. Methods Engrg., 78
(13):1513–1531, 2009.

[8] Jens M. Melenk and Ivo Babuška. The partition of unity finite element method:
basic theory and applications. Comput. Methods Appl. Mech. Engrg., 139(1–4):
289–314, 1996.

[9] Radek Tezaur and Charbel Farhat. Three-dimensional discontinuous Galerkin
elements with plane waves and Lagrange multipliers for the solution of mid-
frequency Helmholtz problems. Internat. J. Numer. Methods Engrg., 66(5):
796–815, 2006.

[10] Dalei Wang, Radek Tezaur, Jari Toivanen, and Charbel Farhat. Overview of the
discontinuous enrichment method, the ultra-weak variational formulation, and
the partition of unity method for acoustic scattering in the medium frequency
regime and performance comparisons. Internat. J. Numer. Methods Engrg., 89
(4):403–417, 2012.



Domain Decomposition Methods for the Helmholtz
Equation: A Numerical Investigation

Martin J. Gander and Hui Zhang

University of Geneva martin.gander@unige.ch, hui.zhang@unige.ch

1 Introduction

We are interested in solving the Helmholtz equation
{−&u(x,y,z)− k2(x,y,z) u(x,y,z) = g(x,y,z), (x,y,z) ∈Ω ,

∂nu(x,y,z)− ik(x,y,z) u(x,y,z) = 0, (x,y,z) ∈ ∂Ω ,
(1)

where k := 2π f/c is the wavenumber with frequency f ∈ R and c := c(x,y,z) is
the velocity of the medium, which varies in space. The geophysical model SEG–
SALT is used as a benchmark problem on which we will test some existing domain
decomposition methods in this paper. In this model, the domain Ω is defined as
(0,13,520)× (0,13,520)× (0,4,200)m3, the velocity is described as piecewise con-
stants on 676×676×210 cells and varies from 1,500 to 4,500 m/s, and the source
g is a Dirac function at the point (6,000,6,760,10).

To discretize the problem (1) on a coarser mesh, the velocity is sub-sampled to
less number of cells such that every cell has a constant velocity and contains one
or more mesh elements. Then the problem (1) is discretized with Q1 finite elements
(i.e. trilinear local basis functions on brick elements).

We first test the direct solver A\b in Matlab; the results are listed in Table 1 where
nw is the number of wavelength along the x-direction at the lowest velocity. At f = 2,
the direct solver runs out of memory after 6 h on a computer with 64 GB of mem-
ory. The inefficiency in both memory and time of the direct solver for large scale
problems calls for cheaper iterative methods. For a review of current iterative meth-
ods for the Helmholtz equation, we refer to [6]. In this work, we focus on domain
decomposition methods which are easily parallelized.

2 Overview of Some Existing Methods

Due to the indefiniteness of the Helmholtz equation, the classical Schwarz method
with Dirichlet transmission conditions fails to converge. As a remedy, [5] introduced
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Table 1. Test of the direct solver (backslash in Matlab)

f 1/4 1/2 1 2

nw 2.25 4.5 9 18
mesh 24×24×8 48×48×16 96×96×32 192×192×64
CPU 1.28s 27.51s 829.91s > 6h

first-order absorbing transmission conditions to replace the Dirichlet transmission
conditions. This type of interface condition was also adopted in [7] to regularize
subdomain problems. More general local transmission conditions of zero or second
order were proposed and analyzed in [10, 11] with parameters optimized for acceler-
ating convergence. More advanced and even non-local transmission conditions can
be used, see [3, 12, 18], and also [2, 13] in this volume. In this paper, however, we
will restrict ourselves to local transmission conditions.

Another remedy is to modify the usual coarse problem, which probably origi-
nated from the multigrid context, first suggested by Achi Brandt and presented in
[19]. In their paper [7], Farhat et al. used plane waves on the interface as basis of the
coarse space. The idea turns out to be very successful and was followed by Farhat
et al. [8], Kimn and Sarkis [15], and Li and Tu [17], and will also be used for the
optimized Schwarz methods in this paper. Note that, however, the coarse problem
does not change the underlying subdomain problems.

In the following paragraphs, we will give a brief introduction to these methods at
the (almost) continuous level.

2.1 The Non-overlapping Methods

We partition the domain into non-overlapping subdomains denoted by Ω := ∪iΩi,
and we call the set of points shared by more than two subdomains (or shared by two
subdomains and the outer boundary ∂Ω ) corners. In three dimensions, this includes
vertices and edges. We call all the points shared by exactly two subdomains the
interface Γ , and in particular a connected component of the interface shared by Ωi

and Ω j is called interface segment Γi j.
If we know the Neumann, Dirichlet or Robin data (denoted by λ ) of the exact

solution on the interface, then we can recover the exact solution from the corre-
sponding boundary value problems defined on subdomains (as long as they are well-
posed) with continuous constraints at corners. Since on every subdomain there is a
recovered solution that gives Dirichlet, Neumann or Robin traces on the interface,
we expect for each interface segment Γi j the traces from Ωi and Ω j to be equal. The
above process indeed sets up an equation, denoted by Fλ = d, for the interface data
λ of the exact solution. For the Helmholtz equation, an additional coarse problem is
introduced such that (I−FQ(Q∗FQ)−1Q∗)Fλ = (I−FQ(Q∗FQ)−1Q∗)d is solved,
where the columns of Q are traces of plane waves on the interface.

From the above point of view, we summarize some existing non-overlapping
domain decomposition methods in Table 2. The (first-order) absorbing boundary data
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is defined as λ := ∂nu− iku. The lumped preconditioner is the stiffness submatrix
AΓΓ corresponding to the interface. The first three methods share interface data (up
to a sign for the normal derivative) on their common interface segments, and are
therefore one-field methods. This is in contrast to the last method, since optimized
Schwarz methods have two sets of unknowns on each interface segment, and thus
belong to the class of two-field methods. Note also that we do not have suitable
preconditioners for the last two methods, which can be a subject for future study.

Table 2. The non-overlapping methods

Algorithms Unknowns Matching Precond.

FETI-DPH ([8]) Neumann Dirichlet DtN/lumped
BDDC-H ([17]) Dirichlet Neumann NtD
FETI-H ([7]) Absorbing Dirichlet (none)
Optimized Schwarz ([10]) two-field Robin two-field Robin (none)

2.2 The Overlapping Methods

We partition the domain into overlapping subdomains. We will use the substructured
form3 as for the non-overlapping methods in Sect. 2.1. Note that in an overlapping
setting, subdomains can not share the same interface data, since the interfaces are
in different locations, and therefore all overlapping methods are in some sense two
field methods, like the non-overlapping optimized Schwarz methods. The interface
data used (both as unknowns and matching conditions) and related references are:
Dirichlet [16], absorbing [4, 15], Neumann [14], Robin [9]. A coarse problem as in
Sect. 2.1 is adopted but without corner constraints.

3 Numerical Experiments

All the experiments were done in Matlab with sequential codes. We use GMRES with
zero initial guess to solve the substructured systems until the relative residual is less
than 10−6 or the maximum iteration number is attained. The domain is partitioned in
a Cartesian way. If we vary the mesh size, then the velocity in (1) is sub-sampled on
the coarsest mesh of 24×24×8.

We introduce the following acronyms:

FL/FD: FETI-DPH with the lumped/DtN preconditioner
FH: FETI-H with corner constraints
O0/O2: non-overlapping optimized Schwarz of zero/second order

3 Though most of the overlapping methods in the literature are not in this form, we found by
numerical experiments it may be cheaper in both time and memory.
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OD/ON/OR: overlapping method with Dirichlet/Neumann/absorbing data
OO0/OO2: overlapping optimized Schwarz of zero/second order

For the overlapping methods, the overlapping region has a thickness of two mesh
elements and the matching conditions are imposed on faces, edges and vertices, re-
spectively, without repeats on any degrees of freedom. Due to the absence of relevant
results, the parameters for the optimized Schwarz methods are not respecting over-
lapping (except OO0), coarse problem and medium heterogeneity. The plane waves
used are along six directions that are normal to the x-y, y-z and z-x planes, respec-
tively.

We found that all the methods outperform the direct solver in CPU time (see
Table 1) on the 96×96×32 mesh. We are interested in how the convergence of these
methods depends on the frequency f in (1), the mesh size h, the partition Nx×Ny×Nz

or the subdomain size H and medium heterogeneity. At f = 1 the domain contains
nine wavelength along the x-direction, which corresponds to the problem on the unit
cube with the wavenumber 18π .

In the following tables, the numbers outside/inside parentheses are the iteration
numbers with/without plane waves, respectively, and a bar is used instead of 200
when the maximum iteration number is reached. We use e/w to represent the number
of elements per wavelength at the lowest velocity. The smallest iteration numbers
among the non-overlapping methods and those among the overlapping methods are
in bold. Note that for the FETI-DPH method with DtN preconditioner the amount
of work per iteration is about 1.5 times that for the others, and construction of the
preconditioner also leads to double LU factorizations in the setup stage.

In Tables 3 and 4, we increase the frequency with f h or f 3h2 [1] kept constant.

Table 3. Dependence on the frequency ( f h =constant)

f FL FD FH O0 O2 OD OR ON OO0 OO2

partition 3×3×1
1
4 6 (15) 4 (8) 9 (15) 15 (21) 8 (14) 8 (20) 8 (12) 9 (20) 7 (15) 6 (14)
1
2 15 (30) 9 (12) 18 (33) 29 (34) 19 (20) 23 (34) 12 (15) 24 (37) 12 (17) 11 (13)
1 44 (51) 20 (23) 75 (93) 43 (48) 25 (25) 51 (58) 17 (17) 57 (66) 22 (25) 14 (15)

partition scaling with mesh: H/h = 8 (see also the first row for f = 1
4 )

1
2 8 (46) 5 (30) 10 (73) 17 (71) 10 (50) 14 (73) 11 (33) 21 (103) 8 (55) 8 (51)
1 9 (183) 7 (-) 11 (-) 21 (-) 12 (-) 27 (-) 15 (74) 152 (-) 16 (-) 15 (-)

partition scaling with mesh: H/h = 16 (see also the second row for f = 1
2 )

1 39 (127) 32 (103) 74 (-) 59 (113) 27 (39) 76 (171) 26 (38) 114 (-) 26 (53) 22 (32)

We see that more iterations are usually needed for larger frequency except in the
middle of Table 4.

In Table 5, the frequency is fixed and the mesh is refined. From the table, the
iteration numbers with plane waves almost remain constant.
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Table 4. Dependence on the frequency ( f 3h2=constant)

f FL FD FH O0 O2 OD OR ON OO0 OO2

partition 3×3×1 (see also the first row in Table 3 for f = 0.25)
0.40 12 (25) 6 (11) 14 (25) 30 (33) 18 (21) 18 (29) 11 (14) 19 (32) 9 (15) 9 (13)
0.63 27 (41) 11 (15) 33 (49) 37 (42) 25 (26) 38 (46) 16 (17) 39 (50) 15 (20) 13 (14)

partition scaling with mesh: H/h = 8(see also the first row in Table 4 for f = 0.25)
0.40 7 (36) 5 (23) 10 (54) 15 (58) 9 (40) 12 (60) 10 (29) 13 (73) 7 (40) 7 (40)
0.63 7 (127) 5 (100) 9 (149) 14 (156) 8 (112) 14 (160) 11 (65) 20 (-) 7 (123) 7 (117)

partition scaling with mesh: H/h = 16 (see also the first row for f = 0.40)
0.63 15 (89) 8 (53) 18 (119) 43 (125) 18 (75) 33 (113) 16 (35) 36 (112) 13 (75) 13 (75)

Table 5. Dependence on the mesh size ( f = 1
4 )

e/w FL FD FH O0 O2 OD OR ON OO0 OO2

partition 3×3×1 (see also the first row in Table 4 for e/w = 10)
20 10 (19) 5 (9) 13 (20) 17 (26) 9 (17) 14 (28) 11 (15) 13 (27) 8 (16) 6 (16)
40 15 (25) 6 (10) 18 (25) 21 (32) 11 (20) 21 (39) 15 (19) 19 (36) 9 (17) 8 (17)

partition H/h = 8 (see also the first row in Table 4 for e/w = 10)
20 7 (21) 5 (12) 10 (32) 14 (47) 8 (32) 10 (46) 9 (25) 10 (44) 7 (29) 6 (30)
40 6 (19) 4 (13) 9 (36) 14 (92) 7 (63) 9 (90) 9 (46) 9 (91) 7 (56) 6 (59)

partition H/h = 16 (see also the first row for e/w = 20)
40 11 (34) 6 (15) 14 (47) 17 (60) 10 (38) 15 (63) 12 (28) 13 (52) 7 (33) 7 (35)

Next, we compare the iteration numbers for different partitions with both the
frequency and the mesh size fixed in Table 6. One can see that with plane waves

Table 6. Dependence on the partition

FL FD FH O0 O2 OD OR ON OO0 OO2

H
H0

f = 1
2 , mesh and velocity 48×48×16 and H0 partition 3×3×1

1 15 (30) 9 (12) 18 (33) 28 (35) 19 (21) 22 (34) 12 (15) 23 (37) 11 (17) 11 (14)
1
2 8 (47) 5 (30) 10 (73) 16 (72) 9 (51) 14 (75) 11 (34) 21 (105) 8 (62) 7 (57)
1
4 4 (22) 4 (21) 7 (48) 10 (95) 7 (72) 7 (97) 8 (52) 11 (-) 6 (83) 5 (78)

f = 1, mesh and velocity 96×96×32 and H0 partition 3×3×1
1 46 (54) 22 (24) 79 (97) 45 (49) 26 (26) 54 (61) 17 (18) 60 (69) 22 (26) 15 (16)
1
2 43 (133) 35 (109) 82 (-) 63 (117) 28 (40) 82 (176) 27 (39) 136 (-) 28 (56) 24 (34)
1
4 10 (184) 8 (-) 14 (-) 26 (-) 16 (40) 32 (-) 17 (-) - (-) 25 (-) 22 (-)
Nx f = 1, mesh and velocity 96×96×32 and partition Nx×1×1
8 117 (125) 79 (75) 171 (184) 66 (70) 28 (28) 94 (99) 23 (24) 100 (104) 51 (46) 23 (25)

16 184 (-) 192 (199) - (-) 131 (137) 45 (47) - (-) 46 (47) - (-) 72 (81) 43 (45)
32 - (-) - (-) - (-) 172 (173) 87 (90) - (-) 86 (90) 182 (88) 148 (136) 84 (87)
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using more subdomains can both increase and decrease the iteration numbers. It is
interesting that for the strip-wise partition only the methods based on transmission
conditions (O0, O2, OR, OO0 and OO2) work reliably, though with substantial iter-
ation numbers, and the plane waves do not help much.

Last, we study the influence of the heterogeneity in the velocity. The experiments
are carried out on artificial velocity models to have high contrasts. The frequency is
fixed as f = 1

2 . The lowest velocity is fixed as cmin = 1,500 and different levels of
highest velocity cmax = ρcmin are considered. It can be seen from Table 7 that the
iteration numbers vary only little.

Table 7. Influence of medium heterogeneity

ρ FL FD FH O0 O2 OD OR ON OO0 OO2

mesh 48×48×16, partition 8×1×1 and c = cmin,cmax on subdomains
1 58 (76) 37 (46) 83 (94) 60 (64) 28 (29) 70 (81) 27 (26) 69 (79) 37 (44) 24 (24)
102 28 (36) 42 (58) 30 (37) 37 (55) 26 (31) 37 (53) 27 (29) 63 (75) 15 (26) 13 (22)
104 32 (36) 49 (58) 33 (37) 45 (55) 26 (31) 43 (53) 29 (30) 71 (75) 19 (26) 17 (22)

as above except partition 6×6×2
1 9 (90) 7 (62) 12 (124) 26 (79) 15 (39) 18 (97) 14 (35) 22 (117) 10 (46) 12 (34)
102 12 (59) 10 (104) 17 (51) 25 (78) 15 (46) 17 (67) 12 (34) 29 (100) 8 (42) 9 (37)
104 14 (58) 11 (104) 19 (51) 27 (79) 17 (47) 19 (68) 12 (34) 33 (100) 8 (42) 10 (37)

mesh 48×48×16, partition 1×8×1 and c = cmin,cmax on 8×1×1 cells
1 70 (81) 40 (50) 105 (114) 73 (75) 27 (28) 74 (80) 28 (27) 62 (66) 34 (37) 24 (24)
102 51 (59) 30 (34) 69 (84) 58 (67) 26 (28) 56 (67) 23 (26) 51 (59) 26 (28) 23 (26)
104 52 (59) 30 (34) 70 (85) 58 (67) 26 (28) 56 (68) 23 (26) 51 (59) 26 (28) 23 (26)

mesh 84×84×24, partition 6×6×2 and c = cmin,cmax on 7×7×3 cells
1 12 (105) 8 (65) 16 (144) 34 (96) 19 (41) 24 (121) 17 (37) 25 (111) 12 (46) 15 (34)
102 10 (68) 7 (34) 14 (107) 29 (109) 17 (48) 26 (111) 13 (45) 21 (106) 11 (47) 12 (40)
104 11 (68) 7 (34) 15 (107) 31 (109) 18 (48) 26 (110) 14 (45) 21 (107) 11 (47) 12 (40)

mesh 48×48×16, partition 6×6×2 and c random constants on elements
102 7 (16) 5 (10) 10 (21) 14 (61) 9 (41) 14 (60) 11 (37) 12 (59) 7 (35) 8 (38)
104 8 (15) 6 (9) 11 (20) 12 (67) 8 (46) 14 (67) 15 (61) 25 (86) 8 (39) 8 (42)

as above except partition 3×3×1
1 22 (38) 10 (16) 26 (45) 28 (37) 19 (21) 26 (36) 13 (15) 27 (36) 15 (21) 12 (14)
102 11 (17) 6 (8) 15 (20) 18 (33) 11 (21) 16 (35) 15 (23) 16 (42) 7 (17) 8 (19)
104 12 (17) 6 (8) 16 (21) 15 (39) 9 (24) 18 (40) 16 (31) 17 (52) 8 (20) 9 (22)

4 Conclusions

For the SEG–SALT model on the cube domain, we get the following conclusions:
among the non-overlapping methods, the FETI-DPH method with DtN precondi-
tioner performs best in terms of iteration numbers. Among the overlapping methods,
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the optimized Schwarz method of second order is usually the best. With a fixed num-
ber of plane waves, all the methods can slow down for larger frequencies on properly
refined meshes. They also deteriorate for fixed frequency on finer meshes, unless
when using plane waves and more subdomains. A smaller subdomain size can both
increase and decrease the iteration numbers, and the experiments indicate the exis-
tence of some optimal choice. For strip-wise partitions, only the methods based on
transmission conditions work well, and plane waves do not help much. We also find
the performance of all the method is only little affected by the heterogeneity in the
velocity we considered, but other kinds of heterogeneity still need to be investigated.
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Summary. In this paper we present a stable boundary element tearing and interconnecting
domain decomposition method for the parallel solution of the electromagnetic wave equation
with piecewise constant wave numbers. In particular we consider stable boundary integral
formulations and generalized Robin type transmission conditions to ensure unique solvability
of the local subproblems. Numerical results confirm the robustness of the proposed approach.

1 Introduction

The application of standard finite and boundary element tearing and interconnecting
domain decomposition methods [4, 5] may fail in the case of the acoustic or elec-
tromagnetic wave equation due to a possible occurence of spurious modes which
are related to local Dirichlet or Neumann boundary value problems. For the acous-
tic wave equation we have introduced in [9, 10] a boundary element tearing and
interconnecting domain decomposition approach which is stable for all local wave
numbers. The aim of this paper is to extend these results when considering the elec-
tromagnetic wave equation. Although the general concept is rather similar in both
cases, the numerical analysis of boundary integral equations and boundary element
methods for the Maxwell system requires advanced techniques, in particular appro-
priate space splitting approaches. For the definition of Sobolev spaces which are
related to the Maxwell equation, see, e.g., [2], for the analysis of Maxwell boundary
integral equations, see, for example, [7], and for related boundary element methods,
see, e.g., [1].

2 Formulation of the Domain Decomposition Approach

As a model problem we consider the Neumann boundary value problem of the elec-
tromagnetic wave equation

curlcurlU(x)− [k(x)]2U(x) = 0 for x ∈Ω , (1)

γNU(x) := curlU(x)×n = f(x) for x ∈ Γ , (2)
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where Ω ⊂ R
3 is a Lipschitz polyhedron with boundary Γ = ∂Ω . We assume that

the boundary value problems (1) and (2) admits a unique solution. Since the wave
number k(x) is assumed to be piecewise constant, i.e. k(x) = ki for x ∈Ωi, instead of
(1) and (2) we consider local boundary value problems to find Ui = U|Ωi

satisfying

curlcurlUi(x)− k2
i Ui(x) = 0 for x ∈Ωi, γNUi(x) = g(x) for x ∈ Γi∩Γ

with respect to a non–overlapping domain decomposition

Ω =
p⋃

i=1

Ω i, Ωi∩Ω j = /0 for i = j, Γi = ∂Ωi,

together with the transmission or interface boundary conditions

γD,iUi(x) = γD, jU j(x) for x ∈ Γi j = Γi∩Γj, (3)

γN,iUi(x)+ γN, jU j(x) = 0 for x ∈ Γi j, (4)

where the Dirichlet trace operator is given by

γDU = n× (U|Γ ×n).

Since the local Dirichlet or Neumann boundary value problems may exhibit spu-
rious modes, instead of the Neumann transmission condition in (4) we consider a
generalized Robin interface condition

γN,iUi(x)+ γN, jU j(x)+ iηi jRi j[γD,iUi(x)− γD, jU j(x)] = 0 for x ∈ Γi j, i < j. (5)

The operators Ri j are assumed to be strictly positive, i.e. 〈Ri ju,u〉Γi j > 0 for all u ∈
H−1/2
⊥ (curlΓ ,Γi j), and ηi j ∈ R\{0}. We define

(Riu|Γi
)(x) := (Ri ju|Γi j

)(x) for x ∈ Γi j

and

ηi(x) :=

⎧⎪⎨
⎪⎩

ηi j for x ∈ Γi j, i < j,

−ηi j for x ∈ Γi j, i > j,

0 for x ∈ Γi∩Γ ,

where we assume that ηi(x) for x ∈ Γi does not change its sign, see also [9]. In
this case we can ensure unique solvability [11] of the local Robin boundary value
problems

curlcurlUi(x)− k2
i Ui(x) = 0 for x ∈Ωi, (6)

γNUi(x)+ iηiRγDUi(x) = g(x) for x ∈ Γi∩Γ . (7)

For the solution of local Dirichlet and Robin boundary value problems we will apply
boundary element methods which are based on the use of the Stratton–Chu represen-
tation formula for x ∈Ω , see [3],
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U(x) =ΨM
k (γDU)(x)+ΨA

k (γNU)(x)+
1
k2 gradΨS

k divΓ (γNU)(x).

Here,

ΨA
k (λ )(x) :=

∫

Γ

gk(x,y)λ (y)dsy for x /∈ Γ , gk(x,y) =
1

4π
eik|x−y|

|x− y| ,

is the vector–valued single layer potential with the fundamental solution of the
Helmholtz equation, and

ΨM
k (λ )(x) := curlΨA

k (λ ×n)(x) for x /∈ Γ

is the Maxwell double layer potential. In addition,

ΨV
k (λ )(x) :=

∫

Γ

gk(x,y)λ (y)dsy for x /∈ Γ

is the scalar single layer potential. By introducing the Maxwell single layer potential

ΨS
k (λ )(x) :=ΨA

k (λ )(x)+
1
k2 gradΨS

k divΓ (λ )(x) for x /∈ Γ ,

we can write the Straton–Chu representation formula as

U(x) =ΨM
k (γDU(x))+ΨS

k (γNU(x)) for x ∈Ω . (8)

The application of the Maxwell trace operators gives the boundary integral equations
[7, 11]

γNU = Nk(γDU)+ (
1
2

I+Bk)(γNU),

γDU = (
1
2

I+Ck)(γDU)+Sk(γNU).

(9)

Now we are in a position to derive different approaches to solve local boundary
value problems with generalized Robin boundary conditions. Here we consider an
approach which is based on the use of the Steklov–Poincaré operator

Tk = N+(
1
2

I+Bk)S
−1
k (

1
2

I+Ck) = S−1
k (

1
2

I+Ck) (10)

which requires the invertibility of the single layer operator Sk. Since Sk is not in-
vertible for all wave numbers k, instead of (10) we consider a system of boundary

integral equations to find u ∈H−1/2
‖ (divΓ ,Γ ) and t ∈H−1/2

⊥ (curlΓ ,Γ ) such that

(
Nk + iηR 1

2 I +Bk

− 1
2 I+Ck Sk

)(
u
t

)
=

(
g
0

)
(11)
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is satisfied. The unique solvability of (11) follows from a generalized Garding in-
equality

Re

(〈(
Nk + iηR 1

2 I +Bk

− 1
2 I+Ck Sk

)(
u
t

)
,

(
Y u
X t

)〉
Γ
+C((u, t),(u, t))

)

≥ c

(
‖u‖2

H−1/2
⊥ (curlΓ ,Γ )

+ ‖t‖2
H−1/2
‖ (divΓ ,Γ )

)

for some appropriate bijective operators X and Y , and from injectivity which is in
fact related to the unique solvability of the local Robin boundary value problems (6)
and (7), see [11]. Since the proof of the generalized Garding inequality requires a

comprehensive study of the trace spaces H−1/2
⊥ (curlΓ ,Γ ) and H−1/2

‖ (divΓ ,Γ ), and
of the corresponding Hodge–type splittings, we refer to [2, 11] for a detailed presen-
tation.

By summing up all local boundary integral equation systems with respect to the
transmission conditions (5) we finally obtain the following variational formulation

to find u ∈H−1/2
⊥ (curlΓ ,ΓS) and ti ∈H−1/2

‖ (divΓ ,Γi) satisfying

p

∑
i=1

[
〈Niu|Γi

,v|Γi
〉Γi + 〈(

1
2

I+Bi)ti,v|Γi
〉Γi + iηi〈Riu|Γi

,v|Γi
〉Γi

]
= 〈f,v〉Γ (12)

for all v ∈H−1/2
‖ (divΓ ,ΓS) and

〈Siti,μ i〉Γi + 〈(−
1
2

I+Ci)u|Γi
,μ i〉Γi = 0 (13)

for all μ i ∈ H−1/2
‖ (divΓ ,Γi), i = 1, . . . , p. The variational formulation (12), (13) ad-

mits a unique solution iff the orginal problems (1) and (2) has a unique solution, see
[11].

A boundary element discretization of the Sobolev spaces H−1/2
⊥ (curlΓ ,ΓS) and

H−1/2
‖ (divΓ ,Γi) by using Raviart–Thomas elements [8, 11], i.e.

Eh := Eh(ΓS) = span{φ k}MS
k=1 ⊂H−1/2

⊥ (curlΓ ,ΓS)

and

Fi,h = span{ψ i
k}Ni

k=1 ⊂H−1/2
‖ (divΓ ,Γi),

then results in a linear system of algebraic equations,
⎛
⎜⎜⎜⎜⎜⎝

S1,h C̃1,hAi

. . .
...

Sp,h C̃p,hAp

A�1 B̃1,h . . . A�p B̃p,h

p

∑
i=1

A�i [Ni,h + iηiRi,h]Ai

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

t1
...

t p
u

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

0
...
0

p
∑

i=1
A�i f

i

⎞
⎟⎟⎟⎟⎟⎠
, (14)
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where the block matrices are given by

Si,h[�,k] = 〈Siψ i
k,ψ

i
�〉Γi ,

C̃i,h[�,n] = 〈(−1
2

I+Ci)φ i
n,ψ

i
�〉Γi ,

B̃i,h[m,k] = 〈(1
2

I +Bi)ψ i
k,φ

i
m〉Γi ,

Ni,h[m,n] = 〈Niφ i
n,φ

i
m〉Γi ,

Ri,h[m,n] = 〈Riφ i
n,φ

i
m〉Γi

for k, � = 1, . . . ,Ni, m,n = 1, . . . ,Mi, and i = 1, . . . , p.
In what follows we will discuss an efficient and parallel solution of the linear

system (14). Although the computation of all block matrices can be done in parallel,
the construction of an appropriate preconditioner is more challenging. A possible ap-
proach is to design preconditioners as in tearing and interconnecting methods which
are well established for a wide range of applications. A first step into this direction
is the formulation of stable tearing and interconnecting methods.

The idea of the tearing and interconnecting approach is to tear the global degrees
of freedom, which are given by u, into local degrees of freedom ui. To ensure global
continuity, we need to glue them together by using Lagrange multipliers [10, 11],
see also Fig. 1. Note, that instead of Neumann transmission condition we use the
generalized Robin transmission conditions as given in (5). As in the standard tearing
and interconnecting approach this leads to the extended linear system

Ω1Ω2

Ω3 Ω4

Ω5

Fig. 1. Tearing and Interconnecting for edge based trial functions
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

N1,h + iη1Ri,h B̃1,h −B�1
C̃1,h S1,h

. . .
...

Np,h + iηpRp,h B̃p,h −B�p
C̃p,h Sp,h

B1 . . . Bp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u1
t1
...

up
t p
λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f
1

0
...

f
p

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(15)

where the sparse and Boolean matrices Bi ensure the continuity of the global solution.
Since the local Robin boundary value problems (6) and (7) are uniquely solvable,
the local block matrices are invertible, and we can consider the Schur complement
system

p

∑
i=1

(
0 Bi

)(Ni,h + iηiRi,h B̃i,h

C̃i,h Si,h

)−1(
B�i λ

0

)

=−
p

∑
i=1

(
Bi 0

)(Ni,h + iηiRi,h B̃i,h

C̃i,h Si,h

)−1(
f

i
0

)
.

(16)

Note that (16) corresponds to the adjoint system of standard tearing and intercon-
necting approaches [4, 5].

3 Numerical Results

As a first example we consider the Neumann boundary value problem

curlcurlU− k2U = 0 in Ω ,

γNU = f on Γ
(17)

where the domainΩ is given by (−1.0,1.5)×(0.0,1.0)×(0.0,1.0), andΩ is divided
into two subdomainsΩi by the yz–plane, see Fig. 2.

Ω1 Ω2

Fig. 2. Computational domain Ω and domain decomposition

As an analytical solution for both examples we use

U(x) =

⎡
⎣1+ ikr− k2r2

r3

⎛
⎝1

0
0

⎞
⎠− 3+ 3ikr− k2r2

r5 (x1− x̂1)

⎛
⎝x1− x̂1

x2− x̂2

x3− x̂3

⎞
⎠
⎤
⎦eikr
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with r = |x− x̂| and x̂ = (−3.0,2.1,1.1)�. The boundary element discretization of
the coupled variational formulation (12) and (13) is done with respect to a globally
uniform boundary element mesh with Ei edges per subdomainΩi, and by using first
order Raviart–Thomas elements. The number of Lagrange multipliers is denoted by
Λ . The linear system (16) is solved by a GMRES method with a relative residuum
reduction of ε = 10−7. For our numerical tests we consider two different wave num-
bers: The first one is k = 1.0 and the second one is the first Dirichlet and Neumann
eigenfrequency of the unit cubeΩ1, k =

√
2π ≈ 4.44288. The results are given in Ta-

ble 1, where the error is the relative L2(Γ1) error of the lowest order Raviart–Thomas
approximation of the local Dirichlet datum u1.

Ei Λ iter error
36 8 5 0.1824189

144 28 17 0.0895037
576 104 49 0.0440296

2304 400 142 0.0234164

Ei Λ iter error
36 8 5 0.7042192

144 28 19 0.3055468
576 104 47 0.1472184

2304 400 104 0.0772003

Table 1. Iteration numbers and errors for k = 1 (left) and k =
√

2π (right).

In a second example we consider the Neumann boundary value problem (17) for the
unit cube Ω = (0,1)3 which is divided into eight subcubes Ωi. The results for two
different wave numbers k = 1.0,8.0 are given in Table 2.

Ei Λ iter error
36 90 60 0.1133393

144 324 147 0.0550944
576 1224 476 0.0266769

Ei Λ iter error
36 90 60 0.9432815

144 324 153 0.3776120
576 1224 397 0.1769975

Table 2. Iteration numbers and errors for k = 1 (left) and k = 8 (right).

Both numerical experiments confirm the stability and robustness of the proposed
approach, and the theoretical error estimate as given in [11], i.e. we expect a linear
order of convergence when using lowest order Raviart–Thomas elements. Note that
the linear system (16) is solved by a GMRES method without preconditioner. Hence
we observe a rapidly increasing number of required iterations. Therefore, the use
of local and global preconditioners is mandatory for the solution of problems of
practical interest. Probably, possible preconditioners can be constructed as in the
acoustic scattering case, see [11]. Another possibility is to consider a dual–primal
approach as in [6].
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1 Introduction

In recent years, attention has been devoted to the development of efficient iterative
solvers for the solution of the linear system of equations arising from the discon-
tinuous Galerkin (DG) discretization of a range of model problems. In the frame-
work of two level preconditioners, scalable non-overlapping Schwarz methods have
been proposed and analyzed for the h–version of the DG method in the articles
[1, 2, 6, 7, 9]. Recently, in [3] it has been proved that the non-overlapping Schwarz
preconditioners can also be successfully employed to reduce the condition number
of the stiffness matrices arising from a wide class of high–order DG discretizations
of elliptic problems. In this article we aim to validate the theoretical results derived
in [3] for the multiplicative Schwarz preconditioner and for its symmetrized variant
by testing their numerical performance.

2 Model Problem and DG Discretization

In this section we introduce the model problem under consideration and its DG ap-
proximation, working, for the sake of simplicity, with the SIPG formulation proposed
in [4].

We consider, for simplicity, the weak formulation of the Poisson problem with
homogeneous Dirichlet boundary conditions: find U ∈ H1

0 (Ω) such that

(∇U ,∇v)Ω = ( f ,v)Ω ∀v ∈ H1
0 (Ω), (1)

whereΩ is a bounded polygonal domain in R
d , d = 2,3, f ∈ L2(Ω) is a given source

term and (·, ·)Ω is the standard inner product in [L2(Ω)]d .
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Let Th be a shape-regular, not necessarily matching partition of Ω into disjoint
open elements K (with diameter hK ), where each K is the affine image of a fixed
master element K̂ , i.e., K =FK (K̂ ), where K̂ is either the open unit d-simplex or
the d-hypercube in R

d , d = 2,3. We define the mesh-size h by h := maxK ∈Th hK ,
and assume that Th satisfies a bounded local variation property: for any pair of
neighboring elements K1,K2 ∈Th, hK1 ≈ hK2 .

For a given approximation order p≥ 1, we define the DG space

Vh,p := {v ∈ L2(Ω) : v|K ◦FK ∈M p(K̂ ) ∀K ∈ Th},

where M p(K̂ ) is either the space of polynomials of degree at most p on K̂ , if K̂
is the reference d-simplex, or the space of polynomials of degree at most p in each
variable on K̂ , if K̂ is the reference d-hypercube.

Next, for any internal face F = ∂K +∩∂K − shared by two adjacent elements
K ±, with outward unit normal vectors n±, respectively, we define

[[τ]] := τ+ ·n++ τ− ·n−, [[v]] := v+n++ v−n−,

{{τ}} := (τ++ τ−)/2, {{v}} := (v++ v−)/2,

where τ± and v± denote the traces on ∂K ± taken from the interior of K ± of the
(sufficiently regular) functions τ and v, respectively (cf. [5]). On a boundary face
F = ∂K ∩∂Ω , we set [[τ]] := τ ·n, [[v]] := vn, {{τ}} := τ , and {{v}} := v.

We collect all interior (respectively, boundary) faces in the set F I
h (respectively,

FB
h ), define Fh := F I

h ∪FB
h , and introduce on Vh,p×Vh,p the following the bilinear

form

A (u,v) := ∑
K ∈Th

∫
K
∇u ·∇v dx+ ∑

K ∈Th

∫
K
∇u ·R([[v]]) dx

+ ∑
K ∈Th

∫
K

R([[u]]) ·∇v dx+ ∑
F∈Fh

∫
F
α

p2

|F | [[u]] · [[v]] ds,

where α > 0 is a parameter at our disposal. The lifting operator R(·) is defined as:
R(τ) := ∑F∈Fh

rF(τ), where rF : [L2(F)]d → [Vh,p]
d is given by

∫
Ω

rF(τ) ·η dx :=−
∫

F
τ · {{η}} ds ∀η ∈ [Vh,p]

d ∀F ∈Fh.

The DG discretization of problem (1) reads:

Find u ∈Vh,p such that A (u,v) =
∫
Ω

f v dx ∀v ∈Vh,p. (2)

Let ϕ j, j = 1, . . . ,N p
h := dim(Vh,p), be a set of basis functions that span Vh,p, then

(2) can be written in the following equivalent form: Find u ∈ R
N p

h such that Au = f,
where here (and in the following) we use the bold notation to denote the spaces of
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degrees of freedom (vectors) and discrete linear operators (matrices). The following
result provides an estimate for the spectral condition number of A; we refer to [3] for
the proof.

Proposition 1 ([3]). For a set of basis functions which are orthonormal on the refer-
ence element K̂ ⊂R

d, d = 2,3, the condition number κ(A) of the stiffness matrix A
can be bounded by

κ(A)� α
p4

h2 .

Remark 1. We are working, for the sake of simplicity, with the SIPG formulation
proposed in [4], but the results shown in Proposition 1 and in Theorem 1 below also
hold for a wide class of DG methods; we refer to [3] for details.

3 Two Level Non-overlapping Schwarz Preconditioners

In this section we introduce the non-overlapping Schwarz preconditioners.

Subdomain partition. We decompose the domain Ω into N non-overlapping sub-
domains Ωi, i.e., Ω = ∪N

i=1Ω i. Next, we consider two levels of nested partitions of
the domain Ω : (i) a coarse partition TH (with mesh-size H); (ii) a fine partition Th

(with mesh-size h). We will suppose that the subdomain partition does not cut any
element of TH (and therefore of Th).

Local solvers. For i = 1, . . . ,N, we define the local DG spaces as

V i
h,p := {v ∈ L2(Ωi) : v|K ◦FK ∈M p(K̂ ) ∀K ∈ Th,K ⊂Ωi}.

Denoting by RT
i : V i

h,p −→Vh,p the classical injection operator from V i
h,p to Vh,p, the

local solvers Ai : V i
h,p×V i

h,p −→ R are defined as

Ai(ui,vi) := A (RT
i ui,R

T
i vi) ∀ui,vi ∈V i

h,p, i = 1, . . . ,N. (3)

Coarse solver. For an integer 0≤ q≤ p, we define the coarse space V 0
H,q as

V 0
H,q := {v ∈ L2(Ω) : v|D ◦FD ∈M

qD (K̂ ) ∀ D ∈TH},

and the coarse solver A0 : V 0
H,q×V 0

H,q −→R as

A0(u0,v0) := A (RT
0 u0,R

T
0 v0) ∀u0,v0 ∈V 0

H,q, (4)

where RT
0 : V 0

H,q −→Vh,p is the classical injection operator from V 0
H,q to Vh,p.

Let the local projection operators be defined as
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P̃i : Vh,p →V i
h,p : Ai(P̃iu,R

T
i vi) := A (u,RT

i vi) ∀vi ∈V i
h,p, i = 1, . . . ,N,

P̃0 : Vh,p →V 0
H,q : A0(P̃0u,RT

0 v0) := A (u,RT
0 v0) ∀v0 ∈V 0

H,q,
(5)

and define the projection operators as Pi := RT
i P̃i : Vh,p −→Vh,p, i = 0,1, . . . ,N. The

multiplicative Schwarz operator and its symmetrized variant are then defined as

Pmu := I− (I−PN)(I−PN−1) · · · (I−P0), (6)

PS
mu := I− (I−P0)

T · · · (I−PN)
T (I−PN) · · · (I−P0), (7)

respectively (cf. [10]). The Schwarz method consists in solving either Pmuu = gmu

or PS
muu = gS

mu, for suitable right hand sides gmu and gS
mu, respectively. It can be

shown that the operator defined in (7) is symmetric and positive definite; we therefore
consider the conjugate gradient (CG) algorithm for the solution of PS

muu = gS
mu. An

estimate of the condition number of PS
mu is

κ(PS
mu) :=

λmax(PS
mu)

λmin(PS
mu)

,

where λmax(PS
mu) and λmin(PS

mu) are the extremal eigenvalues of the operator PS
mu.

On the other hand, the multiplicative operator Pmu is non-symmetric; we therefore
consider a Richardson iteration applied to Pmuu = gmu, and show that the norm of
the error propagation operator Emu := (I−PN)(I−PN−1) · · · (I−P0) is strictly less
than one, i.e.,

‖Emu‖2
A := sup

v∈Vh,p
v=0

A (Emuv,Emuv)
A (v,v)

< 1,

and therefore a Richardson iteration applied to the preconditioned system converges.
The following result provides a bound for the norm of the error propagation op-
erator of the multiplicative Schwarz operator, and for the condition number of the
symmetrized Schwarz operator (we refer to [3] for the proof).

Theorem 1 ([3]). There exists constants C1,C2 ≥ 1, independent of the mesh-size
and the polynomial degree, such that

‖Emu‖2
A ≤ 1− h

C1α p2H
, κ(PS

mu)≤C2α p2 H
h
.

Theorem 1 also guarantees that the multiplicative Schwarz method can be accel-
erated with the GMRES iterative solver. Indeed, according to [8], the GMRES
method applied to the preconditioned system Pmuu = gmu does not stagnate (i.e.,
the iterative method makes some progress in reducing the residual at each iteration
step) provided that: (i) ‖Pmu‖A is bounded; (ii) the symmetric part of Pmu is pos-
itive definite, i.e., there exists cp > 0 such that A (v,Pmuv) >= cpA (v,v) for all
v ∈ Vh,p. Condition (i) follows directly from the definition of Pmu and Theorem 1:
‖Pmu‖A = ‖I−Emu‖A ≤ 1+ ‖Emu‖A < 2. To prove condition (ii), it can be shown
that
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(a) (b)

Fig. 1. Initial Cartesian and triangular coarse and fine grids on a 16 subdomain partition.
(a) Initial coarse grids (mesh-size H0) and (b) initial fine grids (mesh-size h0)

A (Pmuv,v) = A (v,v)−A (Emuv,v)≥ (1−‖Emu‖A ) A (v,v).

Therefore, condition (ii) holds true with cp = 1−‖Emu‖A which is positive due to
Theorem 1.

4 Numerical Results

In this section we present some numerical experiments to highlight the practical per-
formance of the multiplicative and symmetrized non-overlapping Schwarz precon-
ditioners. From the algebraic point of view, the Schwarz operators (6) and (7) can
be written as the product of a suitable preconditioner, namely Bmu, BS

mu, respec-
tively, and A. Indeed, the local components can be constructed as Ai = RiART

i , see
(3) for i = 1 . . . ,N, and (4) for i = 0. From the definition (5) of the local projection
P̃i = A−1

i RiA, and therefore Pi = RT
i P̃i = RT

i A−1
i RiA. In practice, only the action

of the preconditioner on a vector is needed. Algorithm 2 shows how to compute
the action of Bmu on a vector x ∈ R

N p
h . Throughout this section we have set the

Algorithm 2 z = Bmux

z = RT
0 A−1

0 R0x
for i = 1→ N do

z = z+RT
i A−1

i Ri(x−Az)
end for

penalty parameter α := 10 (see (2)). We consider a subdomain partition consisting
of N = 16 squares, and consider the initial Cartesian and unstructured triangular par-
titions shown in Fig. 1, and denote by H0 and h0 the corresponding initial coarse and
fine mesh-sizes, respectively. We consider n successive global uniform refinements
of these initial grids so that the resulting mesh-sizes are Hn = H0/2n and hn = h0/2n,
with n = 0,1,2,3, respectively. The (relative) tolerance is set equal to 10−9 (respec-
tively, 10−6) for the CG (respectively, GMRES) iterative solver. We first address
the performance of the multiplicative Schwarz preconditioner by keeping the mesh
fixed, and varying the polynomial approximation degree p. In Table 1 we compare
the GMRES iteration counts for both the preconditioned and non-preconditioned (in
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Table 1. GMRES iteration counts. Multiplicative Schwarz preconditioner with a piecewise
constant coarse solver (q = 0). Unstructured triangular grids.

h = h0/2 h = h0/4 h = h0/4

H = H0 H = H0 H = H0/2

p = 1 23 (94) 33 (199) 25 (199)
p = 2 45 (259) 64 (540) 49 (540)
p = 3 66 (470) 93 (996) 74 (996)
p = 4 85 (713) 124 (1546) 97 (1546)
p = 5 105 (1004) 153 (2187) 123 (2187)
p = 6 124 (1342) 183 (2924) 144 (2924)
p = 7 143 (1727) 209 (3742) 167 (3742)
p = 8 162 (2148) 235 (4673) 189 (4673)

p− rate 0.93 (1.63) 0.88 (1.66) 0.93 (1.66)

parenthesis) systems, for different polynomial approximation degrees and different
mesh configurations. These results have been obtained on unstructured triangular
grids (cf. Fig. 1). Comparing the iteration counts of the preconditioned systems with
the unpreconditioned ones for a fixed p, it is clear that the proposed preconditioner is
very efficient. Indeed, we observe a reduction in the number of iterations needed to
achieve convergence of around one order of magnitude when the proposed precon-
ditioner is employed. The last row of Table 1 shows the computed growth rate in the
number of iterations: we observe that the number of iterations needed to obtain con-
vergence increases linearly as a function of p for the preconditioned system of equa-
tions, whereas this quantity grows almost quadratically for the non-preconditioned
problem. In Fig. 2 we report the condition number estimates of the symmetrized
Schwarz operator and the corresponding iteration counts versus the polynomial de-
gree p. The solid lines refer to the mesh configuration h = h0/2, H = H0, whereas
the dashed lines refer to the mesh configuration h = h0/4, H = H0/2. This set of nu-
merical experiments has been obtained on Cartesian meshes, employing a piecewise
linear coarse solver. As predicted by the theoretical estimates, the condition num-
ber of the preconditioned system grows quadratically as a function of p. Moreover,
we clearly observe that, for fixed p, by refining both the fine and the coarse grid,
but keeping the ratio of the fine and coarse mesh-sizes constant, the condition num-
ber (and therefore the number of iterations needed to obtain convergence) remains
constant.

Next, we consider the performance of the symmetrized Schwarz preconditioner
when varying the coarse and fine mesh-size, and keeping the polynomial approxima-
tion degree p fixed. In Table 2 (left) we report the condition number estimates for the
symmetrized Schwarz operator employing piecewise biquadratic elements (p = 2)
and a piecewise constant coarse solver (q = 0); whereas, in Table 2 (right) the analo-
gous results obtained with piecewise bicubic elements (p = 3) and a piecewise linear
coarse solver (q= 1) are shown. We clearly observe that the condition number grows
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Fig. 2. Condition number estimates of the symmetrized Schwarz operator and corresponding
iteration counts versus the polynomial degree p on Cartesian grids for different discretization
steps (solid line: h = h0/2, H =H0; dashed line h = h0/4, H =H0/2). Piecewise linear coarse
solver

Table 2. Condition number estimates for the symmetrized Schwarz operator with p= 2, q = 0
(left) and p = 3, q = 1 (right). Cartesian grids.

h ↓ H → H0 H0/2 H0/4 H0/8 H0 H0/2 H0/4 H0/8

h0 5.32e2 1.12e3 4.01e3 7.08e3 4.81e1 9.5925e1 1.92e2 3.91e2
h0/2 2.74e2 4.71e2 2.80e3 5.59e3 2.14e1 4.35e1 8.70e1 1.75e2
h0/4 – 2.60e2 1.18e3 3.42e3 – 2.09e1 4.24e1 8.44e1
h0/8 – – 3.45e2 1.75e3 – – 2.05e1 4.26e1

κ(A) 2.88e5 1.18e6 4.89e6 1.99e7 7.44e5 2.81e6 1.11e7 4.55e7

as O(Hh−1), as predicted by Theorem 1. Moreover, we clearly observe that employ-
ing a piecewise linear coarse solver (q = 1) rather than a piecewise constant coarse
solver (q = 0) significantly improves the performance of the preconditioner. Indeed,
comparing the condition number estimates of the preconditioned system with the
analogous ones obtained for the non-preconditioned problem (last row of Table 2)
we clearly observe that the condition number of the non-preconditioned system is
reduced with respect to the condition number of the preconditioned system by ap-
proximately 5 orders of magnitude for q = 1 and 4 orders of magnitude for q = 0.
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Summary. We consider an exponentially fitted discontinuous Galerkin method for advection
dominated problems and propose a block solver for the resulting linear systems. In the case of
strong advection the solver is robust with respect to the advection direction and the number of
unknowns.

1 Introduction

Let Ω ⊂ IR2 be a polygon, f ∈ L2(Ω),g ∈ H1/2(∂Ω) and let ε > 0 be constant. We
consider the advection-diffusion problem

−div(ε∇u−βu) = f in Ω , u = g on ∂Ω , (1)

where β ∈ [W 1,∞(Ω)]2 derives from a potential β =∇ψ . In applications to semicon-
ductor devices, u is the electron density, ψ the electrostatic potential and the electric
field |∇ψ | might be fairly large in some parts of Ω , so that (1) becomes advection
dominated. Its robust numerical approximation and the design of efficient solvers,
are still a challenge. Exponential fitting [2] and discontinuous Galerkin (DG) are two
approaches that have been combined in [3] to develop exponentially fitted DG meth-
ods (in primal and mixed formulation). In this note, we consider a variant of these
schemes, based on the use of the Incomplete Interior Penalty IIPG-0 method and
propose an efficient solver for the resulting linear systems.

The change of variable ρ := e−
ψ
ε u in the problem (1) leads to

−∇ · (κ∇ρ) = f in Ω , ρ = χ on ∂Ω , (2)

where κ := εe
ψ
ε and χ := e−

ψ
ε g. An IIPG-0 approximation to (2) gives rise to the EF-

IIPG-0 scheme for (1). We propose a block solver that uses ideas from [1] and reduce
the solution to that of an exponentially fitted Crouziex-Raviart (CR) discretization,
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which has much less degrees of freedom. The associated (CR) matrix is further re-
duced to an approximate block lower triangular form, which is efficiently solved by
a block Gauss-Siedel algorithm.

In our description we focus on the case β = ∇ψ piecewise constant; although
we include some numerical results for a more general case (cf. Test 2). Extensions
of the method (allowing ψ to be discontinuous) and further analysis of the proposed
solvers are topics of current research.

2 The Exponentially Fitted IIPG-0 Method

Let Th be a shape-regular family of partitions of Ω into triangles T and let h =
maxT∈Th hT with hT denoting the diameter of T for each T ∈ Th. We assume Th

does not contain hanging nodes. We denote by E o
h and E ∂

h the sets of all interior and
boundary edges, respectively, and we set Eh = E o

h ∪E ∂
h .

Let T+ and T− be two neighboring elements, and n+, n− be their outward normal
unit vectors, respectively (n± = nT±). Let ζ± and τττ± be the restriction of ζ and τττ to
T±. We define the average and jump trace operators:

2{ζ}= (ζ++ ζ−), [[ζ ]] = ζ+n++ ζ−n− on E ∈ E o
h ,

2{τττ}= (τττ++ τττ−), [[τττ ]] = τττ+ ·n++ τττ− ·n− on E ∈ E o
h ,

and on e ∈ E ∂
h we set [[ζ ]] = ζn and {τττ}= τττ . We will also use the notation

(u,w)Th = ∑
T∈Th

∫
T

uwdx 〈u,w〉Eh = ∑
e∈Eh

∫
e
uwds ∀u,w,∈ V DG ,

where V DG is the discontinuous linear finite element space defined by:

V DG =
{

u ∈ L2(Ω) : u|T ∈ P
1(T ) ∀T ∈ Th

}
,

Here, P1(T ) is the space of linear polynomials on T . Similarly, P0(T ) and P
0(e) are

the spaces of constant polynomials on T and e, respectively. For each e∈ Eh, let P0
e :

L2(e) �→ P
0(e) (resp. P0

T : L2(T ) �→ P
0(T ), for each T ∈ Th) be the L2-orthogonal

projections defined by

P0
e (u) :=

1
|e|

∫
e
u, ∀u ∈ L2(e) , P0

T (v) :=
1
|T |

∫
T

v, ∀v ∈ L2(T ) .

We denote by VCR the classical Crouziex-Raviart (CR) space:

VCR=
{

v ∈ L2(Ω) : v|T ∈ P
1(T )∀T ∈ Th and P0

e [[v ]] = 0 ∀e ∈ Eh
}
.

Note that v = 0 at the midpoint me of each e ∈ E ∂
h . To represent the functions in V DG

we use the basis {ϕe,T}T∈Th,e∈Eh , defined by
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∀T ∈ Th ϕe,T (x) ∈ P
1(T ) e⊂ ∂T ϕe,T (me′) = δe,e′ ∀e′ ∈ Eh . (3)

In particular, any w ∈ P
1(T ) can be written as w = ∑e⊂∂T w(me)ϕe,T .

We first consider the IIPG-0 approximation to the solution of (2): Find ρ ∈V DG

such that A (ρ ,w) = ( f ,w)Th for all w ∈V DG with

A (ρ ,w) = (κ∗T∇ρ ,∇w)Th −〈{κ∗T∇ρ}, [[w ]]〉Eh + 〈Se{[[ρ ]]},P0([[w ]])〉Eh . (4)

Here, Se is the penalty parameter and κ∗T ∈ P
0(T ) the harmonic average approxima-

tion to κ = εeψ/ε both defined in [3] by:

κ∗T :=
1

P0
T (κ−1)

=
ε

P0
T (e

−ψ
ε )

, Se := αeh−1
e {κ∗T}e , (5)

Next, following [3] we introduce the local operator T : V DG �→ V DG that approxi-
mates the change of variable introduced before (2):

Tw := ∑
T∈Th

(Tw)|T = ∑
T∈Th

∑
e⊂∂T

P0
e (e

−ψ
ε )w(me)ϕe,T ∀w ∈V DG . (6)

By setting ρ := Tu in (4), we finally get the EF-IIPG-0 approximation to (1):

Find uh ∈V DG s.t. B(uh,w) := A (Tuh,w) = ( f ,w)Th ∀w ∈V DG with

B(u,w)=(κ∗T∇Tu,∇w)Th−〈{κ∗T∇Tu}, [[w ]]〉Eh+ 〈Se{[[Tu ]]},P0[[w ]]〉Eh . (7)

It is important to emphasize that the use of harmonic average to approximate κ =
εeψ/ε as defined in (5) together with the definition of the local approximation of the
change of variables prevents possible overflows in the computations when |∇ψ | is
large and ε is small. (See [3] for further discussion).

Also, these two ingredients are essential to ensure that the resulting method has
an automatic upwind mechanism built-in that allows for an accurate approximation
of the solution of (1) in the advection dominated regime. We will discuss this in more
detail in Sect. 3.

Prior to close this section, we define for each e ∈ Eh and T ∈ Th:

ψm,e := min
x∈e

ψ(x) ψm,T := min
x∈T

ψ(x); ψm,T ≤ ψm,e for e⊂ ∂T .

In the advection dominated regime ε� |β |h = |∇ψ |h

P0
T (e

−(ψ/ε))% ε2e−
ψm,T
ε P0

ei
(e−ψ/ε)% ε e−

ψm,e
ε . (8)

The first of the above scalings together with the definitions in (5) imply

κ∗T %
1
ε

e
ψm,T
ε , Se % α

2ε
|e|−1 exp

(
ψm,T1 +ψm,T2

ε

)
e = ∂T1∩∂T2 . (9)
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3 Algebraic System and Properties

Let A and B be the operators associated to the bilinear forms A (·, ·) (4) and B(·, ·)
(7), respectively. We denote by A and B their matrix representation in the basis
{ϕe,T}T∈Th,e∈Eh (3). In this basis, the operator T defined in (6) is represented as a
diagonal matrix, D, and B= AD. Thus, the approximation to (2) and (1) amounts to
solve the linear systems (of dimension 2ne−nb; with ne and nb being the cardinality
of Eh and E ∂

h , respectively):

Aρρρ = FFF , and Duuu = ρρρ or Buuu = F̃FF , (10)

where ρρρ ,uuu,FFF and F̃FF are the vector representations of ρ ,u and the right hand sides
of the approximate problems. From the definition (6) of T it is easy to deduce the
scaling of the entries of the diagonal matrix D= (di,i)

2ne−nb
i=1 .

D= (di, j)
2ne−nb
i, j=1 di,i = P0

ei
(e−ψ/ε)% ε e−

ψm,e
ε , di, j ≡ 0 i = j .

We now revise a result from [1]:

Proposition 1. Let Z ⊂V DG be the space defined by

Z =
{

z ∈ L2(Ω) : z|T ∈ P
1(T ) ∀T ∈Th and P0

e {v}= 0 ∀e ∈ E o
h

}
.

Then, for any w ∈ V DG there exists a unique wcr ∈ VCR and a unique wz ∈Z such
that w = wcr +wz , that is: V DG =VCR⊕Z . Moreover, A (wcr,wz) = 0 ∀wcr ∈VCR,
and ∀wz ∈Z .

Proposition 1 provides a simple change of basis from {ϕe,T} to canonical basis in
VCR and Z that results in the following algebraic structure for (10):

ρρρ =

[
ρρρ z

ρρρcr

]
, A=

[
A

zz 000
A

vz
A

vv

]
, B=

[
B

zz 0
B

vz
B

vv

]
. (11)

Due to the assumed continuity of ψ , D is still diagonal in this basis. The algebraic
structure (11) suggests the following exact solver:

The solution u = uz + ucr satisfying B(u,w) = ( f ,w)Th , for all w ∈ V DG is then
obtained by

1. Solve for uz: B(uz,wz) = ( f ,wz)Th ∀wz ∈Z .
2. Solve for ucr: B(ucr,wcr) = ( f ,wcr)Th−B(uz,wcr) ∀wcr ∈VCR.

Next, wet discuss how to solve efficiently each of the above steps.
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Step 1: Solution in the Z -space. In [1] it was shown that Azz is a diagonal posi-
tive definite matrix. This is also true for Bzz since it is the product of two diagonal
matrices. The continuity of ψ implies

B(uz,wz) = 〈SeT[[u
z ]],P0

e ([[w
z ]])〉Eh ∀ uz, wz ∈Z . (12)

Using (8) and (5) we observe that the entries of Bzz scale as:

B
zz = (bi, j)

ne
i=1 bi, j = Sei |ei|d jδi, j % δi, j

α
2

e−(ψm,e−ψm,T1−ψm,T2)/ε

which are always positive, so in particular Bzz it is also an M-matrix.

Step 2: Solution in VCR. In [1] it was shown that the block A
vv coincides with the

stiffness matrix of a CR discretization of (2), and so it is an s.p.d. matrix. However,
this is no longer true for Bvv which is positive definite but non-symmetric.

B(ucr,wcr) = (κ∗T∇Tucr,∇wcr)Th ∀ ucr ,wcr ∈VCR .

In principle, the sparsity pattern of Bvv is symmetric. Using (8) and (5), we find that
the entries of the matrix scale as:

B
vv =

(
bcr

i, j

)ncr :=ne−nb

i, j
bcr

i, j := κ∗T
|ei||e j|
|T | nei ·ne j d j % e−

(ψm,e−ψm,T )

ε (13)

Since ψ is assumed to be piecewise linear, for each T , it attains its minimum (and
also its maximum) at a vertex of T , say xxx000 and ψm,e is attained at one of the vertex
of the edge e, say xxxeee. In particular, this implies that

ψm,e−ψm,T ≈ ∇ψ · (xxxeee− xxx000) = β · (xxxeee− xxx000) =

{
0 xxxeee = xxx000
|β |h xxxeee = xxx000

Hence, in the advection dominated case ε � |β |h some of the entries in (13) van-
ish (up to machine precision) for ε small; this is the automatic upwind mechanism
intrinsic of the method. As a consequence, the sparsity pattern of Bvv is no longer
symmetric and this can be exploited to re-order the unknowns so that Bvv can be
reduced to block lower triangular form.

Notice also that for Th acute, the block A
vv being the stiffness matrix of the

Crouziex-Raviart approximation to (2), is an M-matrix. Hence, since the block B
vv

is the product of a positive diagonal matrix and A
vv, it will also be an M-matrix if the

triangulation is acute (see [2]).

4 Block Gauss-Siedel Solver for VCR-Block

We now consider re-orderings of the unknowns (dofs), which reduce B
vv to block

lower triangular form. For such reduction, we use the algorithm from [4] which
roughly amounts to partitioning the set of dofs into non-overlapping blocks. In the
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strongly advection dominated case the size of the resulting blocks is small and a
block Gauss-Seidel method is an efficient solver. Such techniques have been studied
in [5] for conforming methods.

The idea is to consider the directed graph GGG = (VVV ,EEE) associated with B
vv ∈

IRncr×ncr ; GGG has ncr vertices labeled VVV = {1, . . . ,ncr} and its set of edges EEE has car-
dinality equal to the number of nonzero entries5 of Bvv. By definition, (i, j) ∈ EEE iff
bcr

i j = 0. Note that in the advection dominated case, the built-in upwind mechanism
results in a non-symmetric sparsity pattern for Bvv (see the last two paragraphs of
Sect. 3). Thus, we may have (i, j) ∈ EEE , while ( j, i) /∈ EEE . Then, the problem of re-
ducing B

vv to block lower triangular form of Bvv is equivalent to partitioning GGG as a
union of strongly connected components.
Such partitioning induces non-overlapping partitioning of the set of dofs, VVV =

∪Nb
i=1ωi. For i = 1, . . . ,Nb, let mi denote the cardinality of ωi; let Ii ∈ IRncr×mi be

the matrix that is identity on dofs in ωi and zero otherwise; and B
vv
i = I

T
i B

vv
Ii is the

block corresponding to the dofs in ωi. The block Gauss–Seidel algorithm reads: Let
uuucr

0 be given, and assume uuucr
k has been obtained. Then uuucr

k+1 is computed via: For
i = 1, . . .Nb

uuucr
k+i/Nb

= uuucr
k+(i−1)/Nb

+ Ii(B
vv
i )−1

I
T
i

(
FFF−B

vvuuucr
k+(i−1)/Nb

)
. (14)

As we report in Sect. 5, the action of (Bvv
i )−1 can be computed exactly since in the

advection dominated regime the size of the blocks Bvv
i is small.

5 Numerical Results

We present a set of numerical experiments to assess the performance of the pro-
posed block solver. The tests refer to problem (2) with ε = 10−3,10−5,10−7, and Ω
is triangulated with a family of unstructured triangulations Th. In the tables given
below J = 1 corresponds to the coarsest grid and each refined triangulation on level
J, J = 2,3,4 is obtained by subdividing each of the T ∈Th on level (J−1) into four
congruent triangles. From the number of triangles nT the total number of dofs for the
DG approximation is 3nT .

Test 1. Boundary Layer: Ω = (−1,1)2, β = [1,1]t , nT = 112 for the coarsest mesh
and f is such that the exact solution is given by

u(x,y) =

(
x+

1+ e−2/ε−2e(x−1)/ε

1− e−2/ε

)(
y+

1+ e−2/ε−2e(y−1)/ε

1− e−2/ε

)
.

Test 2. Rotating Flow: Ω = (−1,1)×(0,1), f = 0 and curlβ = 0,

5 Each dof corresponds to a vertex in the graph; each nonzero entry to an edge.
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β =

[
2y(1− x2)

−2x(1− y2)

]t

g(x,y) =

{
1+ tanh(10(2x+ 1)) x≤ 0, y = 0,
0 elsewhere .

We stress that this test does not fit in the simple description given here, and special
care is required (see [3]). For the approximation, for each T ∈ Th, with barycenter
(xT ,yT ), we use the approximation

β |T ≈ ∇ψ |T with ψ |T = 2yT (1− x2
T )x−2xT (1−2y2

T )y ,

and so ψ is discontinuous. The coarsest grid has nT = 224 triangles. In Fig. 1 are

Test 1: 58 blocks 156 Dofs
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Test 2: 126 blocks 316 Dofs
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Fig. 1. Plot of the connected components (blocks) of Bvv created during Tarjan’s algorithm:
Test 1 with ε = 10−5 (left); Test 2 with ε = 10−7 (right)

represented the plot of the strongly connected components of the graph depicting the
blocks for Bvv created during Tarjan’s algorithm, on the coarsest meshes; for Test 1
with ε = 10−5 (left figure) and for Test 2 with ε = 10−7 (right figure). In Table 1
we report the number of blocks Nb created during Tarjan’s algorithm; the maximum
size of the largest such block (Mb); the average block size (nav); and the number of
block-Gauss-Seidel iterations. After Tarjan’s algorithm is used to re-order the matrix
B

vv, we use the block Gauss-Seidel algorithm (14) where each small block is solved
exactly. In the tests that we report here and also in all other similar tests that we
have done (with similar advection dominance) the number of block-Gauss-Seidel
iterations and the size of the blocks is uniformly bounded with respect to the number
of dofs when the advection strongly dominates. Thus, the computational cost for one
block Gauss-Seidel iteration in the advection dominated regime is the same as the
cost of performing a fixed number of matrix vector multiplications and the algorithm
is optimal in such regime.
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Test 1

ε
J

1 2 3 4

10−3

Nb 44 150 484 1182
Mb 23 47 95 191
nav 3.55 4.32 5.45 9.02
iters 7 19 43 166

10−5

Nb 50 210 866 3474
Mb 23 47 95 191
nav 3.12 3.08 3.05 3.07
iters 4 4 4 14

10−7

Nb 50 210 866 3522
Mb 23 47 95 191
nav 3.12 3.08 3.05 3.03
iters 4 4 4 4

Test 2

ε
J

1 2 3 4

10−3

Nb 31 1 1 1
Mb 211 1304 5296 21344
nav 10.19 1304 5296 21344
iters 10 1 1 1

10−5

Nb 122 468 1822 7106
Mb 4 4 7 37
nav 2.59 2.78 2.91 3.00
iters 4 4 7 24

10−7

Nb 122 468 1832 7247
Mb 4 4 4 6
nav 2.59 2.78 2.89 2.95
iters 4 4 4 4

Table 1. Number of blocks (Nb) created during the Tarjan’s ordering algorithm, size of largest
block (Mb), average size of blocks (nav) and number of block-Gauss-Seidel iterations (iters)
for Test 1 (left) and Test 2 (right).
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1 Introduction

In this paper we present a nonoverlapping domain decomposition preconditioner for
a weakly over-penalized symmetric interior penalty method that is based on balanc-
ing domain decomposition by constraints (BDDC) methodology (cf. [2, 5, 7, 8]). The
full analysis of the preconditioner can be found in [4].

Let Ω be a bounded polygonal domain in R
2 and f ∈ L2(Ω). Consider the fol-

lowing model problem:
Find u ∈ H1

0 (Ω) such that

∫
Ω
∇u ·∇vdx =

∫
Ω

f vdx ∀v ∈H1
0 (Ω). (1)

Let Th be a quasi-uniform triangulation of Ω , where the mesh parameter h mea-
sures the maximum diameter of the triangles in Th, and let

Vh = {v ∈ L2(Ω) : v|T ∈ P1(T ) ∀T ∈Th}

be the discontinuous P1 finite element function space associated with Th. The model
problem (1) can be discretized by the following weakly over-penalized symmetric
interior penalty (WOPSIP) method (cf. [3, 9]):
Find uh ∈Vh such that

ah(uh,v) =
∫
Ω

f vdx v ∈Vh,

where
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ah(v,w) = ∑
T∈Th

∫
T
∇v ·∇wdx+ ∑

e∈Eh

1
|e|3

∫
e
Π 0

e [[v ]] ·Π 0
e [[w ]]ds, (2)

Eh is the set of the edges of Th, |e| is the length of the edge e, [[v ]] denotes the jump of
v across the edges, and Π 0

e is the orthogonal projection from [L2(e)]2 onto [P0(e)]2.
P0(e) denotes the space of constant functions on the edge e.

For simplicity in presentation, we consider the Poisson model on conforming
meshes. But the results can be extended to heterogeneous elliptic problems on non-
conforming meshes (cf. [4]). We note that BDDC technique was used in [6] to couple
conforming finite element spaces from different subdomains that allows nonmatch-
ing meshes across subdomain boundaries, where condition number estimates inde-
pendent of the coefficients were obtained for heterogeneous elliptic problems. The
main difference between [6] and this paper is that the finite element functions in this
paper can be discontinuous at the element boundaries.

The rest of the paper is organized as follows. In Sect. 2 we introduce a subspace
decomposition. We then design a BDDC preconditioner for the reduced problem in
Sect. 3. The condition number estimate is also presented. In Sect. 4 we report numeri-
cal results that illustrate the performance of the proposed preconditioner and confirm
the theoretical estimates.

Throughout the paper we will use A � B and A � B to represent the statements
that A≤ (constant)B and A≥ (constant)B, where the positive constant is independent
of the mesh size, the subdomain size, and the number of subdomains. The statement
A≈ B is equivalent to A � B and A � B.

2 A Subspace Decomposition

In this section we propose an intermediate preconditioner for the WOPSIP method,
which is based on a subspace decomposition.

Let Ω1, . . . ,ΩJ be a nonoverlapping partition of Ω aligned with Th and Γ =(⋃J
j=1 ∂Ω j

) \ ∂Ω be the interface of the subdomains. We assume that the subdo-
mains are shape regular polygons (cf. [1, Sect. 7.5]). We denote the diameter of Ω j

by Hj and define H to be max1≤ j≤J Hj. Eh,Γ is the subset of Eh containing the edges
on Γ .

First we decompose Vh into two subspaces as follows:

Vh =Vh,C⊕Vh,D,

where

Vh,C = {v ∈Vh : [[v ]] = 0 at the midpoints of the edges on the boundaries

of the subdomains} ,
Vh,D =

{
v ∈Vh : {{v}}= 0 at the midpoints of the edges in Eh,Γ and

v = 0 at the midpoints of the edges in Ω \Γ } .
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Here {{v}} denotes the average of v from the two sides of an edge in Eh,Γ .
Let Ah : Vh −→Vh

′ be the symmetric positive-definite (SPD) operator defined by

〈Ahv,w〉= ah(v,w) ∀v,w ∈Vh,

where 〈·, ·〉 is the canonical bilinear form between a vector space and its dual. Simi-
larly, we define Ah,D : Vh,D −→V ′h,D and Ah,C : Vh,C −→V ′h,C by

〈Ah,Dv,w〉= ah(v,w) ∀v,w ∈Vh,D, (3)

〈Ah,Cv,w〉= ah(v,w) ∀v,w ∈Vh,C. (4)

Given any v ∈Vh, we have a unique decomposition v = vD + vC where vD ∈ Vh,D

and vC ∈Vh,C. Then based on the definitions of the subspaces Vh,D and Vh,C, it can be
shown that

〈Ahv,v〉 ≈ 〈Ah,DvD,vD〉+ 〈Ah,CvC,vC〉 ∀v ∈Vh. (5)

Remark 1. Since functions in Vh,C are continuous at the midpoints of the edges in
Eh,Γ , we have

ah(v,w) =
J

∑
j=1

ah, j(v j,wj) ∀v,w ∈Vh,C, (6)

where v j = v
∣∣
Ω j

, wj = w
∣∣
Ω j

and

ah, j(v j,wj) = ∑
T∈Th
T⊂Ω j

∫
T
∇v j ·∇wj dx+ ∑

e∈Eh
e⊂Ω j

1
|e|3

∫
e
Π 0

e [[v j ]] ·Π 0
e [[wj ]]ds. (7)

Note that the second sum on the right-hand side of (7) is over the edges interior toΩ j

and therefore ah, j(·, ·) is a localized bilinear form. The introduction of the subspace
decomposition where the bilinear form can be localized as shown in (6) and (7) is
the key ingredient in designing our preconditioner in Sect. 3.

Next we decompose Vh,C into two subspaces Vh,C(Ω \Γ ) and Vh,C(Γ ) defined as
follows:

Vh,C(Ω \Γ ) = {v ∈Vh,C : v = 0 at all the midpoints of the edges in Eh,Γ },
Vh,C(Γ ) = {v ∈Vh,C : ah(v,w) = 0 ∀w ∈Vh,C(Ω \Γ )}.

The space Vh,C(Γ ) is the space of discrete harmonic functions, which are uniquely
determined by their values at the midpoints of the edges in Eh,Γ .

Let the SPD operators Ah,Ω\Γ :Vh,C(Ω \Γ )−→Vh,C(Ω \Γ )′ and Sh :Vh,C(Γ )−→
Vh,C(Γ )′ be defined by

〈Ah,Ω\Γ v,w〉= ah(v,w) ∀v,w ∈Vh,C(Ω \Γ ),
〈Shv,w〉= ah(v,w) ∀v,w ∈Vh,C(Γ ).
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Note that given any vC ∈ Vh,C, we have a unique decomposition vC = vC,Ω\Γ + vC,Γ

where vC,Ω\Γ ∈ Vh,C(Ω \Γ ) and vC,Γ ∈ Vh,C(Γ ). It follows from the definitions of
Vh,C(Ω \Γ ) and Vh,C(Γ ) that

〈Ah,CvC,vC〉= 〈Ah,Ω\Γ vC,Ω\Γ ,vC,Ω\Γ 〉+ 〈ShvC,Γ ,vC,Γ 〉 ∀vC ∈Vh,C. (8)

Based on the relations (5) and (8), we define a preconditioner B1 : Vh
′ −→Vh for

Ah by
B1 = IDA−1

h,DIt
D + Ih,Ω\ΓA−1

h,Ω\Γ It
h,Ω\Γ + IΓ S−1

h It
Γ ,

where ID : Vh,D −→ Vh, Ih,Ω\Γ : Vh,C(Ω \Γ ) −→ Vh, and IΓ : Vh,C(Γ ) −→ Vh are
natural injections.

It follows from (5) and (8) that

κ(B1Ah) =
λmax(B1Ah)

λmin(B1Ah)
≈ 1. (9)

Remark 2. Let us observe the properties of the preconditioner B1 from the imple-
mentational point of view. First it is easy to implement the solve A−1

h,D because Ah,D

is a block diagonal matrix with small blocks. Next in view of (6) and (7), the solve
A−1

h,Ω\Γ can be implemented by solving independent subdomain problems in paral-
lel. On the other hand, noting that Sh is a global solve, we need to design a good
preconditioner for Sh in order to obtain a good parallel preconditioner for Ah.

3 A BDDC Preconditioner

In this section we propose a preconditioner for the Schur complement operator Sh

based on the BDDC methodology.
Let Vh, j be the space of discontinuous P1 finite element functions on Ω j that

vanish at the midpoints of the edges on ∂Ω j ∩ ∂Ω , and Vh(Ω j) be the subspace of
Vh, j whose members vanish at the midpoints of the edges on ∂Ω j. We denote by H j

the space of local discrete harmonic functions defined by

H j =
{

v ∈Vh, j : ah, j(v,w) = 0 ∀w ∈Vh(Ω j)
}
.

The space Hm is defined by gluing the spaces H j together along the interface
Γ through enforcing the continuity of the mean values on the common edges of
subdomains:

Hm = {v ∈ L2(Ω) : v j = v|Ω j ∈H j for 1≤ j ≤ J

and
∫
∂Ω j∩∂Ωk

v j ds =
∫
∂Ω j∩∂Ωk

vk ds for 1≤ j,k ≤ J},

and we equip Hm with the bilinear form

am
h (v,w) = ∑

1≤ j≤J

ah, j(v j,wj).
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Let EH be the set of the edges of the subdomainsΩ1, · · · ,ΩJ . The BDDC precon-
ditioner is based on a decomposition of Hm into orthogonal subspaces with respect
to am

h (·, ·):
Hm = H̊ ⊕H0, (10)

where

H̊ =

{
v ∈Hm :

∫
E

vds = 0 ∀E ∈ EH

}

and
H0 =

{
v ∈Hm : am

h (v,w) = 0 ∀w ∈ H̊
}
. (11)

Then we equip H0 and the localized subspaces H̊ j (1≤ j ≤ J) of H̊ :

H̊ j =

{
v ∈H j :

∫
E

vds = 0 for all the edges E of Ω j

}
,

with the SPD operators S0 : H0 −→H ′
0 and S j : H̊ j −→ H̊ ′

j defined by

〈S0v,w〉= am
h (v,w) ∀v,w ∈H0, (12)

〈S jv,w〉= ah, j(v,w) ∀v,w ∈ H̊ j. (13)

Note that Vh,C(Γ ) is a subspace of Hm and there exists a projection PΓ : Hm →
Vh,C(Γ ) defined by averaging:

(PΓ v)(me) = {{v}}(me) ∀e ∈ Eh,Γ ,

where me is the midpoint of e. The operator PΓ connects the BDDC preconditioner
based on Hm to the Schur complement operator Sh on Vh,C(Γ ).

We can now define the BDDC preconditioner BBDDC : Vh,C(Γ )′ −→ Vh,C(Γ ) for
the Schur complement operator Sh : Vh,C(Γ )−→Vh,C(Γ )′ as follows:

BBDDC = (PΓ I0)S−1
0 (PΓ I0)

t +
J

∑
j=1

(PΓE j)S−1
j (PΓE j)

t ,

where I0 is the natural injection of H0 into Hm and E j : H̊ j −→ H̊ is the trivial
extension defined by

E j v̊ j =

{
v̊ j on Ω j

0 on Ω \Ω j
∀ v̊ j ∈ H̊ j .

We then obtain the preconditioner B2 : V ′h −→ Vh for Ah by replacing the global
solve S−1

h in (2) with the preconditioner BBDDC:

B2 = IDA−1
h,DIt

D + Ih,Ω\ΓA−1
h,Ω\Γ It

h,Ω\Γ + IΓBBDDCIt
Γ .

We can analyze the condition number of BBDDCSh by the theory of additive
Schwarz preconditioners (cf. [1, 10, 11], and the references therein). The proof of
the following result can be found in [4].
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Lemma 1. We have the following bounds for the eigenvalues of BBDDCSh

λmin(BBDDCSh)≥ 1,

λmax(BBDDCSh)�
(

1+ ln
H
h

)2

.

Combining (5), (8) and Lemma 1, we have the following estimate of the condition
number of the preconditioned system B2Ah.

Theorem 1. There exists a positive constant C, independent of h,H and J, such that

κ(B2Ah) =
λmax(B2Ah)

λmin(B2Ah)
≤C

(
1+ ln

H
h

)2

.

4 Numerical Results

In this section we present some numerical results that illustrate the performance of
the preconditioners B1 and B2.

We consider the model problem (1) on the unit square (0,1)2 with the exact solu-
tion u(x,y) = y(1− y)sin(πx). We use a uniform triangulation Th of isosceles right
triangles, where the mesh parameter h represents the length of the horizontal/verti-
cal edges. The domain Ω is divided into J nonoverlapping squares aligned with Th

and the length of the horizontal/vertical edges of the squares is denoted by H. The
discrete problem obtained by the WOPSIP method is solved by the preconditioned
conjugate gradient method. The iteration is stopped when the relative residual is less
than 10−6.

Numerical results for the preconditioners B1 and B2 are presented in Table 1,
which confirm the theoretical estimates in (9) and Theorem 1.

Table 1. Results for the preconditioners B1 and B2 with J = 42

h H/h
B1Ah B2Ah

κ λmin λmax κ λmin λmax

2−3 2 1.4206 8.2624e-1 1.1738 1.4478 8.2623e-1 1.1962
2−4 4 1.1916 9.1258e-1 1.0874 1.7782 9.1300e-1 1.6235
2−5 8 1.0919 9.5608e-1 1.0439 2.3215 9.5673e-1 2.2211
2−6 16 1.0433 9.7880e-1 1.0212 3.0490 9.7994e-1 2.9879

We present in Table 2 the iteration counts and total time to solution for a parallel
implementation of our preconditioner. For comparison, results on a single processor
of the same machine without preconditioning are also presented for J = 1. The three
operations A−1

h,D,A
−1
h,Ω\Γ , and BBDDC are performed one after the other, sequentially,
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but each of these operators is evaluated in parallel on the decomposed domain with
one subdomain per processor. Iteration counts are consistent with our theory and
confirm again that the method is scalable, and the running times show good parallel
speedup for large problems.

Table 2. Parallel performance of the preconditioner B2

h
J = 1 J = 42,H = 2−2 J = 82,H = 2−3 J = 162,H = 2−4

Its Wall clock time Its Wall clock time Its Wall clock time Its Wall clock time

2−6 235 0.46 7 0.37 7 0.5 5 1.14
2−7 450 3.75 8 2.22 8 1.06 6 1.96
2−8 884 35.45 9 20.12 8 4.35 6 2.71
2−9 1786 319.0 8 126.15 8 27.15 7 7.81

The numbers κ (B2Ah)/(1+ ln(H/h))2 and κ (BBDDCSh)/(1+ ln(H/h))2 are
plotted against H/h in Fig. 1. As H/h increases these two numbers settle down to
around 0.2, which indicates that the estimates in Lemma 1 and Theorem 1 are sharp.
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Fig. 1. Left figure: the behavior of C = κ (BBDDCSh)/(1+ ln(H/h))2 for the BDDC precon-
ditioner; right figure: the behavior of C = κ (B2Ah)/(1+ ln(H/h))2 for the preconditioner
B2
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Summary. Domain decomposition methods are used to find the numerical solution of large
boundary value problems in parallel. In optimized domain decomposition methods, one solves
a Robin subproblem on each subdomain, where the Robin parameter a must be tuned (or opti-
mized) for good performance. We show that the 2-Lagrange multiplier method can be analyzed
using matrix analytical techniques and we produce sharp condition number estimates.

1 Introduction

Consider the model problem

−Δu = f in Ω and u = 0 on ∂Ω , (1)

whereΩ is the domain, f is a given forcing and u ∈H1
0 (Ω) is the unknown solution.

In the present paper, we describe a symmetric 2-Lagrange multiplier (S2LM) domain
decomposition method to solve elliptic problems such as (1). When we discretize (1)
using e.g. piecewise linear finite elements, we obtain a linear system of the form

Au = f, (2)

where u ∈ R
n is the finite element coefficient vector of the approximation to the

solution u of (1).
We now consider the domain decomposition [9] Ω = Γ ∪Ω1 ∪ . . .∪Ωp, where

Ω1, . . . ,Ωp are the (open, disjoint) “subdomains” and Γ =Ω ∩⋃p
k=1 ∂Ωk is the “ar-

tificial interface”. We introduce the “local problems”
⎧⎪⎨
⎪⎩
−Δuk = f in Ωk, (PDE)

uk = 0 on ∂Ωk ∩∂Ω , (natural b.c.)

(a+Dν)uk = λk on ∂Ωk ∩Γ , (artificial b.c.)

(3)

where a > 0 is the Robin tuning parameter and k = 1, . . . , p and Dν denotes the
directional derivative in the outwards pointing normal ν of ∂Ωk. The interface Γ is
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artificial in that it is not a natural part of the “physical problem” (1) but instead is
introduced purely for the purpose of calculation.

We again discretize the systems (3) using a finite element method. The Robin b.c.
in (3) gives rise to a mass matrix on the interface Γ ∩ ∂Ωk , which we lump. If the
grid is uniform, this mass matrix is aI (we absorb any h factors into the a coefficient)
– we make this simplification for the remainder of the present paper.

[
AIIk AIΓ k

AΓ Ik AΓΓ k + aI

] uk︷ ︸︸ ︷[
uIk

uΓ k

]
=

fk︷ ︸︸ ︷[
fIk

fΓ k

]
+

[
0
λλ k

]
. (4)

Here, we have used the suggestive subscripts I for interior nodes and Γ for the arti-
ficial interface nodes.

The FETI-2LM algorithm was introduced in [4] for cases without cross-points,
while the general case including cross points was introduced and analyzed in [7].
The method consists of finding the value of λλ = [λλ T

1 , . . . ,λλ
T
p ]

T which yields solutions
u1, . . . ,up to (4) in such a way that u1, . . . ,up meet continuously across Γ and glue
together into the unique solution u of (2).

The main result of the present paper is a new estimate of the condition number
of FETI-2LM algorithms using matrix analytical techniques. This new idea produces
sharp condition number estimates with much more straightforward proof techniques
than the techniques used in [7] (where the estimates are not sharp). As a result, the
present paper is a logical follow-up to [7].

The present paper focuses on 1-level algorithms which are known not to scale.
Scalable algorithms are considered in [8] and [3].

Our paper is organized as follows. In Sect. 2, we give the symmetric 2-Lagrange
multiplier method for general domains with cross points. In Sect. 3, we give spectral
estimates including our main result, Theorem 1, on the condition number of the sym-
metric 2-Lagrange multiplier system. In Sect. 4, we verify this Theorem with some
numerical experiments.

2 The Symmetric 2-Lagrange Multiplier Method

We now describe the 2-Lagrange multiplier method that we analyze in the present
paper. Consider the local problems (4) and eliminate the interior degrees of freedom
to obtain the relation

a

uG︷ ︸︸ ︷⎡
⎢⎣

uΓ 1
...

uΓ p

⎤
⎥⎦=

Q︷ ︸︸ ︷⎡
⎢⎣

a(S1 + aI)−1

. . .
a(Sp + aI)−1

⎤
⎥⎦
⎛
⎜⎝

g︷ ︸︸ ︷⎡
⎢⎣

g1
...

gp

⎤
⎥⎦+

λλ︷ ︸︸ ︷⎡
⎢⎣
λλ 1
...
λλ p

⎤
⎥⎦
⎞
⎟⎠ , (5)

where
Sk = AΓΓ k−AΓ IkA−1

IIkAIΓ k and gk = fΓ k−AΓ IkA−1
IIk fIk
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are the “Dirichlet-to-Neumann maps” and “accumulated right-hand-sides” and where
uΓ j denotes those degrees of freedom of the local solution u j associated with the ar-
tificial interface Γ .

The matrices Sk are symmetric and semidefinite. Since Q = a(S+aI)−1, we find
that the spectrum σ(Q) is contained in the set [ε,1− ε]∪{1} for some ε > 0. The
eigenvalue 1 of Q comes from the kernel of S and hence the kernel of Q− I is spanned
by the indicating functions of the subdomains that “float”.

2.1 Relations Between (4) and (2) and Continuity

We define the boolean restriction matrix Rk by selecting rows of the n× n identity
matrix corresponding to those vertices of Ω that are in Ω̄k ∩Ω . As a result, from
a finite element coefficient vector v corresponding to a finite element function v ∈
H1

0 (Ω), we can define a finite element coefficient vector vk =Rkv, which corresponds
to a finite element function v ∈ H1(Ωk)∩H1

0 (Ω), which is obtained by restricting v
to Ωk.

The identity
∫
Ω = ∑p

k=1

∫
Ωk

induces the following relations between (4) and (2):

A =
p

∑
k=1

RT
k

ANk︷ ︸︸ ︷[
AIIk AIΓ k

AΓ Ik AΓΓ k

]
Rk and f =

p

∑
k=1

RT
k fk. (6)

Each interface vertex xi ∈ Γ is adjacent to mi ≥ 2 subdomains. As a result, the
“many-sided trace” uG defined by (5) contains mi entries corresponding to xi, one per
subdomain adjacent to xi. We define the orthogonal projection matrix K which aver-
ages function values for each interface vertex xi. A many-sided trace uG corresponds
to local functions u1, . . . ,up that meet continuously across Γ if and only if

KuG = uG. (7)

2.2 A Problem in λλ

The symmetric 2-Lagrange multiplier (S2LM) system is given by

(Q−K)λλ =−Qg. (8)

We further let E be the orthogonal projection onto the kernel of Q− I.

Lemma 1. Assume that ‖EK‖< 1. The problem (2) is equivalent to (8).

Proof. In order to solve (2) using local problems (4), one should find Robin bound-
ary values λλ 1, . . . ,λλ p which result in local solutions u1, . . . ,up that meet continu-
ously across Γ . As a result, we impose the condition (7), which we multiply by
a > 0 and convert to an expression in λλ using (5) to obtain Ka(S+ aI)−1(λλ + g) =
a(S+ aI)−1(λλ + g) or
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(I−K)Qλλ = (K− I)Qg (9)

With this continuity condition, there is clearly a unique u which restricts to the u j:

u j = R ju, j = 1, . . . , p. (10)

Imposing continuity is not sufficient, we must also ensure that the “fluxes” match.
Indeed, if we impose on the solution u of (10) that the Eq. (2) should hold, one
obtains

f = Au
(6)
=

p

∑
j=1

RT
j AN jR ju

(10)
=

p

∑
j=1

RT
j AN ju j (11)

(4),(6)
= f+

p

∑
j=1

RT
j

(
0

λλ j−auΓ j

)
(12)

Canceling the f terms on each side and multiplying by K, we obtain Kλλ −KauG = 0.
Using (5), we obtain

K(Q− I)λλ =−KQg. (13)

We add (9) and (13) to obtain (8).
To see that the solution of (8) is unique, observe that the ranges of E and K

intersect trivially by the hypothesis that ‖EK‖< 1. As a result, the eigenspace of Q
of eigenvalue 1 intersects trivially with the range of K and Q−K is nonsingular. #$

We will further discuss the choice of the parameter a in Sect. 3.1.

3 Spectral Estimates

If we use GMRES or MINRES on the symmetric indefinite system (8), the residual
norm can be estimated as a function of the condition number of Q−K, cf. [2]. In
order to estimate the condition number of Q−K, we begin by giving a canonical
form for the pair of projections E and K.

Lemma 2. Let E and K be orthogonal projections. There is a choice of orthonormal
basis that block diagonalizes E and K simultaneously and such that the blocks Ek

and Kk of E and K satisfy

Ek ∈
{

0,1,

[
1 0
0 0

]}
and Kk ∈

{
0,1,

[
c2

k cksk

cksk s2
k

]}
, (14)

where ck = cosθk > 0, sk = sinθk > 0 and θk ∈ (0,π/2) is a “principal angle”
relating E and K.

The canonical form (14) can be obtained from the CS decomposition [1] by start-
ing from E = diag(I,0) and picking orthonormal bases for the range and kernel of
K. Due to space constraints, we omit this argument.

We also give a technical lemma which describes the spectrum of a sum of certain
symmetric matrices.
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Lemma 3. Let X, Y be symmetric matrices of dimensions m×m. Let 0< ymin < ymax

and assume that |σ(Y )| ⊂ [ymin,ymax]. Denote by ρ(X) the spectral radius of X and
assume that ρ(X)< ymin. Then,

|σ(X +Y)| ⊂ [ymin−ρ(X),ymax +ρ(X)]. (15)

Proof. This follows from a Theorem of Weyl [5, Theorem 4.3.1, pp. 181–182]. #$

3.1 Condition Number of Q−K

We now come to our main result.

Theorem 1. Let ε > 0. Assume that σ(Q)⊂ [ε,1− ε]∪{1}. Let E,K be orthogonal
projections and assume that ‖EK‖< 1. Then we have the sharp estimates

|σ(Q−K)| ⊂
[
ε+

√
(1+ ε)2 −4‖EK‖2ε−1

2
,1

]
, and (16)

κ(Q−K)≤ 2

ε+
√
(1+ ε)2 −4‖EK‖2ε−1

= O((1−‖EK‖)−1ε−1). (17)

Proof. Let X = Q− 1
2 I−εE and Y = 1

2 I+εE−K. Then, Q−K = X +Y and we are
in a position to use Lemma 3. We now estimate the spectral properties of X and Y .

Spectral properties of X: Recall that E projects onto the eigenspace of Q with
eigenvalue 1. As a result, after some orthonormal change of basis, we find that Q =
diag(Q0, I) and E = diag(0, I) and hence

ρ(X)≤ 1
2
− ε. (18)

Spectral properties of Y : Lemma 2 shows that E and K block diagonalize si-
multaneously and Y is also block diagonal in the same basis. Using (14), we find that
the kth block Yk of Y is given by

Yk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2 if Ek = Kk = 0,

− 1
2 if Ek = 0, Kk = 1,

1
2 + ε if Ek = 1, Kk = 0,[

1
2 + ε− c2

k −cksk

−cksk
1
2 − s2

k

]
otherwise;

(19)

where the case Ek =Kk = 1 is excluded by the hypothesis that ‖EK‖< 1. As a result,
the eigenvalues of Yk are in the set {± 1

2 ,
1
2 + ε,λ±(c

2
k)}, where

λ±(c2
k) =

ε±
√
(1+ ε)2−4c2

kε

2
. (20)
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Fig. 1. Comparing random Q−K (points) versus the estimate (17) (solid). Left: ε = 0.1,
varying ‖EK‖, 3,000 repetitions. Right: ‖EK‖ = 0.99, varying ε , 3,000 repetitions

Note that ‖EK‖=√
ρ(EKE)=maxk ck and that the functions λ±(c2

k) are mono-
tonic in c2

k . Hence, we find the following bounds for the modulus of an eigenvalue of
Y :

|σ(Y )| ⊂
[ ymin︷ ︸︸ ︷√

(1+ ε)2−4‖EK‖2ε− ε
2

,

ymax︷ ︸︸ ︷
1
2
+ ε

]
. (21)

Combining (15), (18), and (21) gives (16).

The examples Q = diag(1,1− ε) and K =

[
c2 c

√
1− c2

c
√

1− c2 1− c2

]
for c = 0 and

c = ‖EK‖ give the extreme eigenvalues of (21) and hence our estimates are sharp.
#$

In view of Theorem 1, the Robin parameter a should be chosen so as to make
ε as large as possible. This occurs precisely when a is the geometric mean of the
extremal positive eigenvalues of S. More details can be found in [7].

4 Numerical Verification

We verify numerically the validity of Theorem 1 by generating random 5×5 matrices
Q and E as follows. We set Q = diag(ε,q,1− ε,1,1) where q is chosen randomly
between ε and 1−ε . We generate randomly a 2-dimensional space and set K to be the
orthogonal projection onto that space. We compare the resulting condition number
κ = κ(Q−K) against (17), cf. Fig. 1.

We observe that our estimates are correct and sharp for such “generic” random
matrices, although some “lucky” random matrices produce much milder condition
numbers than our estimates.
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5 Conclusions

We have analyzed a domain decomposition method with optimized Robin boundary
conditions. Our estimates rely on new matrix analytical techniques and are sharp. By
further estimating the quantities ‖EK‖ and ε (cf. [7]) our estimates are consistent
with and generalize the estimates calculated using Fourier transforms in the opti-
mized Schwarz literature (e.g. [6]). An upcoming paper [8] will further analyze the
weak scaling property of a 2-level algorithm and large-scale implementations are
being developed. There are also several remaining open problems, such as the anal-
ysis of FETI-2LM for nonsymmetric and/or nonlinear problems and the analysis of
substructuring preconditioners.
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1 Introduction

It is very natural to solve time dependent problems with Domain Decomposition
Methods by using an implicit scheme for the time variable and then applying a clas-
sical iterative domain decomposition method at each time step. This is however not
what the Schwarz Waveform Relaxation (SWR) methods do. The SWR methods
are a combination of the Schwarz Domain Decomposition methods, see [10], and
the Waveform Relaxation algorithm, see [7]. Combined, one obtains a new method
which decomposes the domain into subdomains on which time dependent problems
are solved. Iterations are then introduced, where communication between subdo-
mains is done at artificial interfaces along the whole time window.

This new approach has been introduced by Bjørhus [1] for hyperbolic problems
with Dirichlet boundary conditions and was analyzed for the heat equation by Gan-
der and Stuart [5]. Giladi and Keller [6] analyzed this same approach applied to the
advection diffusion equation with constant coefficients. For the wave equation and
SWR see [3] in which they treat the one-dimensional case with overlapping sub-
domains and for the n-dimensional case [4], again with overlap. In this paper, we
analyze for the first time the SWR algorithm applied to the time domain Maxwell
equations.

2 Maxwell Equations and the Schwarz Waveform Relaxation
Algorithm

The global domain Ω is decomposed into non overlapping subdomains Ω̃i. We de-
note by Ωi the domain Ω̃i enlarged by a band of width δ inside of Ω . The part of
∂Ωi in Ω̃ j is denoted Γi j, i.e. Γi j := ∂Ωi ∩ Ω̃ j. If Ωi possesses a part of the bound-
ary of the global domain Ω , we denote it by Γi0 := ∂Ωi ∩∂Ω . The SWR algorithm
with characteristic transmission conditions for the time domain Maxwell equations
is given by
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ε∂tEi,n +∇×Hi,n−σEi,n = J, Ωi× (0,T),
μ∂tHi,n +∇×Ei,n = 0, Ωi× (0,T),

Bni(E
i,n,Hi,n) = 0, Γi0× (0,T ),

(Ei,n,Hi,n)(x,0) = (E0,H0), Ωi,
Bni(E

i,n,Hi,n) = Bni(E
j,n−1,H j,n−1), Γi j× (0,T ),

(1)

where ε is the electric permittivity, μ the magnetic permeability and σ the conductiv-
ity. The indices i and j, always different, range over the indices of all subdomains, i.e.
i, j ∈ {1,2, . . . , I} with i = j and I being the number of subdomains. In the algorithm
ni is the unit outward normal vector to Ωi. The impedance

Bn(E,H) :=
E
Z
×n+n× (H×n),

plays the role of the Dirichlet value for this hyperbolic system [2] and corresponds
to the inward characteristic variables of the Maxwell equations. The last line of (1),
which is called the characteristic transmission condition, establishes how the subdo-
mains communicate with each other.

3 Convergence in a Finite Number of Steps

From now on, we restrict our analysis to the specific situation where Ω = R
3 which

is subdivided into two subdomains

Ω1 = (−∞,L]×R
2, Ω2 = [0,+∞)×R

2. (2)

The artificial boundaries are therefore given by Γ12 = {L}×R
2 and Γ21 = {0}×R

2

with an overlap of width L. We also choose the coefficients ε , μ and σ to be constant.
Maxwell equations describe the motion of electromagnetic waves which prop-

agate at finite speed, namely the speed of light in the vacuum. This fact has been
proven for a broad class of hyperbolic systems, see for instance [8]; the Maxwell
equations are simply one such example. The speed of propagation is given by
c := 1/

√εμ , which is constant.

Remark 1. The next result also holds when the coefficients are non constant and with
a domain Ω decomposed into many subdomains Ωi having a more complicated ge-
ometry and non constant overlap width.

Proposition 1 (Convergence in a finite number of steps). The SWR algorithm (1)
for two subdomains defined in (2) with overlap L converges as soon as the number
of iterations n satisfies

n >
Tc
L
,

where T is the length of the time interval and c= 1/
√εμ is the speed of propagation.
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Proof. The Maxwell equations are linear and thus allow us to restrict our attention to
the error equations, i.e. (1) where J = 0 and (E0,H0) = 0. We prove in the following
that for t < tn := n L

c ,

Supp(Ei,n+1,Hi,n+1)(t) = /0, t < tn. (3)

The error of the Maxwell equations is non-zero at iteration one only because the
initial guesses (Ei,0,Hi,0) are non-zero on the artificial boundaries Γi j. The speed
of propagation is finite and thus the error propagates from the artificial boundaries
inside the domain Ωi. For the first iteration we have that

Supp(Ei,1,Hi,1)(t)⊂ {x ∈Ωi|dist(x,Γi j)< tc, j = i, j ∈ {1,2}},
since after a time t, the electromagnetic wave can only have propagated on a distance
tc from the artificial boundaries. The overlap is of width L, hence (E1,1,H1,1)(0,y,z, t)
and (E2,1,H2,1)(L,y,z, t) are zero unless tc> L, i.e. unless the time is greater or equal
to t1 := L

c .
For the next iteration we have that the trace of (E1,1,H1,1) at Γ21 and (E2,1,H2,1)

at Γ12 are zero for times t < t1, i.e. Bni(E
j,n−1,H j,n−1) = 0 at Γi j for n = 2 and t < t1.

Therefore, when solving for (Ei,2,Hi,2) we see that for t < t1, we have zero boundary
conditions and zero initial condition, hence

(Ei,2,Hi,2)(x, t) = 0, for t < t1.

For times t > t1, we have a similar result as for the first iteration, namely

Supp(Ei,2,Hi,2)(t)⊂ {x ∈Ωi|dist(x,Γi j)< (t− t1)c, j = i, j ∈ {1,2}}.
We define t2 := L

c + t1 = 2t1, such that Supp(Ei,2,Hi,2)(t) = 0 on Γji for t < t2. And
so forth for the following iterations, which proves (3).

Hence, if T , the length of the time window, is finite and tn := n L
c > T , the solution

(Ei,n+1,Hi,n+1) is zero and the algorithm has converged.

4 Convergence of the SWR Algorithm

Under the same setting (2) as in previous section, we prove that the SWR algorithm
(1) also has a contraction factor.

Theorem 1. The convergence factor of the classical Schwarz Waveform Relaxation
algorithm (1) in the frequency domain with domain decomposition (2) is given by

ρ(s,ky,kz,L,σ) =

∣∣∣∣∣
√
|k|2 + μs2ε+ μsσ − s

√με√
|k|2 + μs2ε+ μsσ + s

√με e−L
√
|k|2+μs2ε+μsσ

∣∣∣∣∣ ,

where s is the Laplace variable,ℜ(s)≥ 0, and |k|2 = k2
y +k2

z is the sum of the squares
of the Fourier frequencies in the y and z directions.
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Proof. We consider the error equations for which J and the initial condition are zero.
We first apply the Laplace transform to (1) which transforms the time t into a com-
plex frequency s with ℜ(s)≥ 0 and transforms the derivative with respect to t into a
multiplication by s. Then we apply a Fourier transform in the y and z directions and
obtain,

∂
∂x

⎡
⎢⎢⎣

Ě2

Ě3

Ȟ2

Ȟ3

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

0 0 − kykz
εs+σ

k2
y

εs+σ + μs

0 0 − k2
z

εs+σ − μs kykz
εs+σ

kykz
μs − k2

y
μs − (εs+σ) 0 0

k2
z
μs + εs+σ − kykz

μs 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

Ě2

Ě3

Ȟ2

Ȟ3

⎤
⎥⎥⎦= 0 (4)

For components Ě1 and Ȟ1, we have two algebraic equations

−εsĚ1 + ikyȞ3− ikzȞ2−σ Ě1 = 0,

μsȞ1 + ikyĚ3− ikzĚ2 = 0.

The solution of (4) is given by a linear combination of the eigenvectors times an
exponential of the corresponding eigenvalue,

(Ě1,n
2 , Ě1,n

3 , Ȟ1,n
2 , Ȟ1,n

3 )T = (αn
1 v1 +αn

2 v2)e
−λ (x−L) + (αn

3 v3 +αn
4 v4)e

λ (x−L),

(Ě2,n
2 , Ě2,n

3 , Ȟ2,n
2 , Ȟ2,n

3 )T = (β n
1 v1 +β n

2 v2)e
−λ x +(β n

3 v3 +β n
4 v4)e

λ x.
(5)

where λ =
√
|k|2 + μs2ε+ μsσ and the eigenvalues are λ1,2 = −λ and λ3,4 = λ .

The corresponding eigenvectors are

v1 =

⎛
⎜⎜⎜⎝

kykz
λ (εs+σ)

k2
z+μs2ε+μsσ
λ (εs+σ)

1
0

⎞
⎟⎟⎟⎠ ,v2 =

⎛
⎜⎜⎜⎝
− k2

y+μs2ε+μsσ
λ (εs+σ)

− kykz
λ (εs+σ)

0
1

⎞
⎟⎟⎟⎠ ,

v3 =

⎛
⎜⎜⎜⎝

− kykz
λ (εs+σ)

− k2
z+μs2ε+μsσ
λ (εs+σ)

1
0

⎞
⎟⎟⎟⎠ ,v4 =

⎛
⎜⎜⎜⎝

k2
y+μs2ε+μsσ
λ (εs+σ)

kykz
λ (εs+σ)

0
1

⎞
⎟⎟⎟⎠ .

(6)

The speed of propagation is finite. The wave of the error equations propagates start-
ing from the interfaces. Therefore, no wave is coming from the infinite boundary
and then the growing exponential term of (5) is not present in the solution, i.e.
α1 = α2 = β3 = β4 = 0. Hence,

(Ě1,n
2 , Ě1,n

3 , Ȟ1,n
2 , Ȟ1,n

3 )T = (αn
3 v3 +αn

4 v4)e
λ (x−L),

(Ě2,n
2 , Ě2,n

3 , Ȟ2,n
2 , Ȟ2,n

3 )T = (β n
1 v1 +β n

2 v2)e
−λ x.

(7)
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To determine the values of αi and βi, we need to use the transmission conditions.

They are, for the first subdomain, Bn(Ě
1,n
,Ȟ

1,n
) = Bn(Ě

2,n−1
,Ȟ

2,n−1
) with n =

(1,0,0)T , i.e. [
1
Z Ě1,n

3 + Ȟ1,n
2

− 1
Z Ě1,n

2 + Ȟ1,n
3

]
=

[
1
Z Ě2,n−1

3 + Ȟ2,n−1
2

− 1
Z Ě2,n−1

2 + Ȟ2,n−1
3 .

]

We substitute the values of the electric and magnetic fields by their values given in
(7). This gives an equation relating αααn = (αn

3 ,α
n
4 )

T and βββ n = (β n
1 ,β

n
2 )

T ,

A1αααn = A2e−λLβββ n−1, (8)

where matrices A1 and A2 are given by

A1 =

[−(k2
z + μs2ε+ μsσ)+Zλ (εs+σ) kykz

kykz −(k2
y + μs2ε+ μsσ)+Zλ (εs+σ)

]
,

A2 =

[
k2

z + μs2ε+ μsσ+Zλ (εs+σ) −kykz

−kykz k2
y + μs2ε+ μsσ+Zλ (εs+σ)

]
.

(9)
We do the same computations for the second subdomain for which we have the trans-

mission conditions B−n(Ê
2,n
,Ĥ

2,n
) = B−n(Ê

1,n−1
,Ĥ

1,n−1
), and obtain

A1βββ n = A2e−λLαααn−1. (10)

We isolate αααn and βββ n in (8) and (10) and iterate one more time to obtain

αααn = (A−1
1 A2)

2e−2λLαααn−2, βββ n = (A−1
1 A2)

2e−2λLβββ n−2. (11)

The parameters αααn and βββ n characterize completely the solution of (4), therefore
the effective contraction factor after two iterations is given by the spectral radius of
(A−1

1 A2)
2e−2λL. This matrix has eigenvalues

ν1 :=

(
λ − s

√εμ
λ + s

√εμ
)2

e−2λL, ν2 :=

(
λ − s

√εμ−Zσ
λ + s

√εμ+Zσ

)2

e−2λL.

The largest eigenvalue in modulus is given by the first one which concludes the proof.

Corollary 1. The SWR algorithm (1) with non-zero conductivity, σ > 0, converges
in the L2 norm, i.e. if we denote by ei,n := (Ei,n

2 ,Ei,n
3 ,Hi,n

2 ,Hi,n
3 ), then

||ei,n(Γi j, t)||2 −→ 0 (n→+∞),

where Γi j is defined in (2) and || · ||2 denotes the norm in L2(0,T ;L2(R2)).

Proof. We use the notation ěi,n = (Ěi,n
2 , Ěi,n

3 , Ȟi,n
2 , Ȟi,n

3 ) for the solution in the Fourier
Laplace variables. From relations (11) with the notation R := A−1

1 A2e−λL and iterat-
ing 2n times we obtain
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ααα2n = R2nααα0, βββ 2n = R2nβββ 0.

The matrix R has eigenvalues ν1 and ν2 and therefore can be diagonalized using
the matrix of eigenvectors S, i.e. D = S−1RS. The following argument, for the first
subdomainΩ1, is similar also for the second one.

We define γγγn := S−1αααn for all n = 0,1, . . ., and from (7) we can reconstruct the
solution of ě1,2n from the initial iterate,

ě1,2n(x,ky,kz,s) = eλ (x−L)[v3 v4]R
2nααα0 = eλ (x−L)[v3 v4]SS−1R2nSγγγ0

= eλ (x−L)[v3 v4]SD2nγγγ0.

The diagonal matrix is of the form D = diag(ν1,ν2), hence we obtain a new form for
the solution evaluated at x = L,

ě1,2n(L,ky,kz,s) = ν2n
1 γ

0
1 w1 +ν2n

2 γ
0
2 w2, (12)

where [w1 w2] := [v3 v4]S.
Finally Theorem 7.23 of [9] shows that the limit ěi,n(L,ky,kz,s) when s = ξ +

iω → iω is the Fourier transform of ei,n in the y, z and t variables. Therefore the
Plancherel theorem applies and

||ei,n(L,y,z, t)||2 = ||ěi,n(L,ky,kz, iω)||2,

which implies by (12)

||ei,n(L,y,z, t)||2 = ||ν2n
1 γ

0
1 w1 +ν2n

2 γ
0
2 w2||2

By the dominated convergence theorem we can insert the limit, when n goes to
infinity, into the norm and, since limn→∞ νi is almost everywhere zero for i = 1,2,
it concludes the proof.

5 Numerical Experiments

For this section we restrict the geometry of the global domain to Ω = [0,1]3 and to
subdomains

Ω1 = [0,
1
2
+ 2Δx]× [0,1]× [0,1], Ω2 = [

1
2
,1]× [0,1]× [0,1],

where Δx is the spatial mesh size in the direction x. We consider a time window
of length T = 1. The parameters ε , μ and σ are constant and equal to one. On the
physical domain we set boundary conditions for perfectly conducting medium.

The discretization is done with the Yee scheme which is explicit in time. We
set a global grid on the whole domain Ω having 24 grid points in each direction x,
y and z. The overlap is of 2 mesh points. The number of grid points for the time
variable is N = 144 which guarantees that the CFL condition is satisfied. Since the
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domain is bounded, only a finite number of discrete frequencies are possible. Since
the domain is of width one, the minimum frequency in space is given by kmin = π and
the maximum by kmax =

π
Δy . Equivalently for the time frequencies we have ωmax =

π
Δ t . Since there is no finite value imposed, we take ωmin = π

2T = π
2 . The discrete

frequencies are therefore given by

ky,kz ∈ {π ,2π , . . . , πΔy
}, ω ∈ {π

2
,π , . . . ,

π
Δ t
}.

From Corollary 1 we have that

||ei,n(L,y,z, t)||2 ≤C max
(ky,kz,ω)

|ν1|n, (13)

where the constant C is the maximum over all frequencies of ||γ0
1 w1 +

ν2
ν1
γ0

2 w2||2.
We also expect the solution to converge in a finite number of iterations as shown in
Fig. 1.

0 2 4 6 8 10 12 14

10–15

10–10

10–5

100

error

nc=12

Cmaxlk2ne–(2n–1) L|

er
ro

r 
in

 L
2

iterations

Fig. 1. The plain blue line is the upper bound in (13), and the dashed line is the error ||E1,n
2 || in

the L2 norm evaluated at the interface x = b with respect to the iterations. The error converges
before the relation of Proposition 1 is satisfied (vertical line)
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1 Introduction

Transmission conditions between subdomains have a substantial influence on the
convergence of iterative domain decomposition algorithms. For Maxwell’s equa-
tions, transmission conditions which lead to rapidly converging algorithms have been
developed both for the curl-curl formulation of Maxwell’s equation, see [1–3], and
also for first order formulations, see [6, 7]. These methods have well found their
way into applications, see for example [9] and the references therein. It turns out
that good transmission conditions are approximations of transparent boundary con-
ditions. For each form of approximation chosen, one can try to find the best remain-
ing free parameters in the approximation by solving a min-max problem. Usually
allowing more free parameters leads to a substantially better solution of the min-
max problem, and thus to a much better algorithm. For a particular one parameter
family of transmission conditions analyzed in [4], we investigate in this paper a two
parameter counterpart. The analysis, which is substantially more complicated than
in the one parameter case, reveals that in one particular asymptotic regime there is
only negligible improvement possible using two parameters, compared to the one
parameter results. This analysis settles an important open question for this family
of transmission conditions, and also suggests a direction for systematically reducing
the number of parameters in other optimized transmission conditions.

2 Schwarz Methods for Maxwell’s Equations

We consider in this paper a boundary value problem associated to three time-
harmonic Maxwell equations with an impedance condition on the boundary of the
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computational domainΩ ,

−iωεE+ curl H−σE = J, iωμH+ curl E = 0,Ω
Bn(E,H) := n× E

Z +n× (H×n) = s, ∂Ω .
(1)

with E,H being the unknown electric and magnetic fields and ε,μ ,σ being respec-
tively the electric permittivity, magnetic permeability and the conductivity of the
propagation medium and n the outward normal to ∂Ω .
A family of Schwarz methods for (1) with a possibly non-overlapping decomposition
of the domainΩ into Ω1 and Ω2, with interfaces Γ12 := ∂Ω1∩Ω2 and Γ21 := ∂Ω2∩
Ω1, is given by

−iωεE1,n+curl H1,n−σE1,n = J in Ω1,
iωμH1,n + curl E1,n = 0 in Ω1,

(Bn1+S1Bn2)(E
1,n,H1,n) = (Bn1+S1Bn2)(E

2,n−1,H2,n−1) on Γ12,
−iωεE2,n+curl H2,n−σE2,n = J in Ω2,

iωμH2,n + curl E2,n = 0 in Ω2,
(Bn2+S2Bn1)(E

2,n,H2,n) = (Bn2+S2Bn1)(E
1,n−1,H1,n−1) on Γ21,

(2)

where S j, j = 1,2 are tangential operators. For the case of constant coefficients
and the domain Ω = R

2, with the Silver-Müller radiation condition limr→∞ r
(H×n−E)= 0 and the two subdomainsΩ1 = (0,∞)×R,Ω2 =(−∞,L)×R, L≥ 0,
the following convergence result was obtained in [4] using Fourier analysis:

Theorem 1. For σ > 0, if S j , j = 1,2 have the constant Fourier symbol

σ j = F (S j) =− s− iω̃
s+ iω̃

, ω̃ = ω
√
εμ , s ∈C, (3)

then the optimized Schwarz method (2), has the convergence factor

ρ(k, ω̃ ,Z,σ ,L,s) =

∣∣∣∣∣
(√

k2− ω̃2 + iω̃σZ− s√
k2− ω̃2 + iω̃σZ + s

)
e−
√

k2−ω̃2+iω̃σZL

∣∣∣∣∣ . (4)

In order to obtain the most efficient algorithm, we choose σ j, j = 1,2 such that ρ is
minimal over the range of numerical frequencies k ∈ K = [kmin,kmax], e.g. kmin = 0
and kmax = C

h with h the mesh size and C a constant. We look for s of the form
s = p+ iq, such that (p,q) is solution of the min-max problem

ρ∗ := min
p,q≥0

(
max
k∈K

ρ(k, ω̃ ,Z,σ ,L, p+ iq)

)
. (5)

In [4] we have solved this min-max problem for the case p = q without overlap, and
we have obtained the following result:

Theorem 2. For σ > 0 and L= 0, the solution of the min-max problem (5) with p= q
is for h small given by

p∗ =
(ωσμ)

1
4
√

C

2
1
4
√

h
and ρ∗1 = 1− 2

3
4 (ωσμ)

1
4
√

h√
C

+O(h). (6)
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For the overlapping case, we obtained in [8]:

Theorem 3. For σ > 0 and L = h, a local minimum of the min-max problem (5) with
p = q is for h small given by

p∗ =
(2ωσμ)

1
3

2h
1
3

and ρ∗1L = 1−2
7
6 (ωσμ)

1
6 h

1
3 +O(h

2
3 ). (7)

3 Analysis of the Two Parameter Family of Transmission
Conditions

As before, we set kmin = 0, kmax =
C
h and denote by (p∗,q∗) a local minimum of (5).

We first consider the non-overlapping case.

Theorem 4. For σ > 0 and L = 0, a local minimum (p∗,q∗) of (5) is for h small
given by

p∗ =
3

3
8 (ωσμ)

1
4
√

C

2
3
4
√

h
, q∗ =

3
7
8 (2ωσμ)

1
4
√

C

6
√

h
, ρ∗2 = 1− 3

3
8 (2ωσμ)

1
4
√

h√
C

+O(h).

(8)

Proof. By solving the min-max problem (5) numerically for different parameter val-
ues and different mesh sizes h, we observe that the solution of (5) equioscillates once,
i.e. (p∗,q∗) is solution of

ρ(k̄, ω̃ ,σ ,Z,0, p∗+ iq∗) = ρ(kmax, ω̃ ,σ ,Z,0, p∗+ iq∗), (9)

where k̄ is an interior local maximum of ρ . We also observe the asymptotic behavior

k̄ ∼ C̄, p∗ ∼Cph−
1
2 , q∗ ∼Cqh−

1
2 .

In order to determine the constants C̄, Cp and Cq, it is necessary to have three equa-
tions. The first is (9), the second describes the interior local maximum of ρ in k,

∂ρ
∂k

(k̄, ω̃ ,σ ,Z,0, p∗+ iq∗) = 0,

and the third is the necessary condition for a local minimum of the min-max problem,

dρ
dq (kmax, ω̃ ,σ ,Z,0, p∗+ iq∗) =
∂ρ
∂q (kmax, ω̃ ,σ ,Z,0, p∗+ iq∗)+ ∂ρ

∂ p (kmax, ω̃ ,σ ,Z,0, p∗+ iq∗) ∂ p
∂q = 0.

Since dρ
dq (kmax, ω̃ ,σ ,Z,0, p∗+ iq∗) = dρ

dq (k̄, ω̃ ,σ ,Z,0, p∗+ iq∗) a similar expansion
together with the previous one, gives



274 M. El Bouajaji, V. Dolean, M. J. Gander and S. Lanteri

∂ p
∂q

=−
∂ρ
∂q (kmax, ω̃ ,σ ,Z,0, p∗+ iq∗)− ∂ρ

∂q (k̄, ω̃ ,σ ,Z,0, p∗+ iq∗)
∂ρ
∂ p (kmax, ω̃ ,σ ,Z,0, p∗+ iq∗)− ∂ρ

∂ p (k̄, ω̃ ,σ ,Z,0, p∗+ iq∗)
,

and thus asymptotically, the three equations lead to the system

(
√

A1 + C̄2− ω̃2)(ACp +BCq)−2
√

A1BCq = 0,

2Cp(C
2
p +C2

q)−C(BCp+ACq) = 0,

A(C2
q −C2

p)+ 2CpCqB = 0,

where A =
√

2
√

A1−A2, B =
√

2
√

A1 +A2, A1 = C̄4−2(C̄ω̃)2+ ω̃4+(ω̃σZ)2 and
A2 = 2(C̄2− ω̃2). The solution of this system is

C̄ =

√
ω̃
(−Zσ

√
3+ 3ω̃

)
√

3
, Cp =

3
3
8 (ω̃σZ)

1
4
√

C

2
3
4

, Cq =
3

7
8 (2ω̃σZ)

1
4
√

C
6

,

from which (8) follows. It remains to show that (p∗,q∗) is a local minimum, i.e. for
any variation (δ p,δq) and k ∈ {k̄,kmax}, we must have

ρ(k, ω̃ ,σ ,Z,0, p∗+ δ p+ i(q∗+ δq))≥ ρ(k, ω̃ ,σ ,Z,0, p∗+ iq∗).

By the Taylor formula, it suffices to prove that there is no variation (δ p,δq) such
that for k ∈ {k̄,kmax}

δ p
∂ρ
∂ p

(k, ω̃ ,σ ,Z,0, p∗+ iq∗)+ δq
∂ρ
∂q

(k, ω̃ ,σ ,Z,0, p∗+ iq∗)< 0. (10)

We prove this by contradiction, and it is necessary to obtain the next higher order
terms in the expansions of p∗, q∗ and k̄. After a lengthy computation, we find that
asymptotically

k̄∼ C̄+ C̃h, p∗ ∼Cph−
1
2 + C̃ph

3
2 , q∗ ∼Cqh−

1
2 + C̃qh

1
2 .

The computation of these new three constants allows us to obtain the partial deriva-
tives of ρ

∂ρ
∂ p (k̄)∼ 2

C h, ∂ρ∂q (k̄)∼− 3
1
4 (2ωσμ)

1
2

C2 h2,

∂ρ
∂ p (kmax)∼− 2

C h, ∂ρ∂q (kmax)∼ 3
1
4 (2ωσμ)

1
2

C2 h2.

Introducing these results into (10), we get δ p 2
C h−δq 3

1
4 (2ωσμ)

1
2

C2 h2 < 0 and -δ p 2
C h+

δq 3
1
4 (2ωσμ)

1
2

C2 h2 < 0, clearly a contradiction, and thus (p∗,q∗) is a local minimum.

We see that for h small, both the one parameter and two parameter transmission
conditions can be written as ρ∗1 = 1−α1

√
h+O(h) and ρ∗2 = 1−α2

√
h+O(h). The

ratio α2
α1

is equal to 3
3
8 /
√

2 ≈ 1.067, which shows that the convergence factors are
almost equal. Hence the hypothesis p = q, used in [4] to simplify the analysis, is
justified.

We treat now the overlapping case of (5), with an overlap of one mesh size.
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Theorem 5. For σ > 0 and L = h, a local minimum (p∗,q∗) of (5) is for h small
given by

p∗ =
3

1
2 (ωσμ)

1
3

2
4
3 h

1
3

, q∗ =
(ωσμ)

1
3

2
4
3 h

1
3

, ρ∗2L = 1−2
5
6 3

3
8 (ωσμ)

1
6 h

1
3 +O(h

2
3 ). (11)

Proof. As in the proof of Theorem 4, we first observe numerically that the solution
of (5) equioscillates once, i.e. (p∗,q∗) is solution of

ρ(k̄1, ω̃ ,σ ,Z,h, p∗+ iq∗) = ρ(k̄2, ω̃ ,σ ,Z,h, p∗+ iq∗),

where k̄1 and k̄2 are interior local maxima of ρ , and we obtain asymptotically for h
small

k̄1 ∼Cb1 , k̄2 ∼Cb2h−
2
3 , p∗ ∼Cph−

1
3 and q∗ ∼Cqh−

1
3 .

It remains to find Cb1 , Cb2 , Cp and Cq. Proceeding as before, we obtain four equations
from the necessary conditions of a minimum, with solution

Cp =
3

1
2 (2ωσμ)

1
2

2
,Cq =

Cp√
3
,Cb1 =

√
ω̃
(−Zσ

√
3+ 3ω̃

)
√

3
,Cb2 =

√
2Cp,

which leads to (11). To prove that (p∗,q∗) is a local minimum, proceeding as before,
we obtain after a lengthy computation the higher order expansion

k̄1 ∼Cb1 + C̃b1h
2
3 , k̄2 ∼Cb2h−

2
3 + C̃b2 , p∗ ∼Cph−

1
3 + C̃ph

1
3 ,q∗ ∼Cqh−

1
3 + C̃qh

1
3 .

The computation of these four new constants allows us then to obtain the partial
derivatives of ρ ,

∂ρ
∂ p (k̄1)∼ 8·2 1

6 h
2
3

3
1
4 (ωσμ)

1
6
, ∂ρ∂q (k̄1)∼− 2·2 5

6 (ωσμ)
1
6 h

4
3

3
1
4

,

∂ρ
∂ p (k̄2)∼− 4·2 1

6 h
2
3

3
1
4 (ωσμ)

1
6
, ∂ρ∂q (k̄2)∼ 2

5
6 (ωσμ)

1
6 h

4
3

3
1
4

.

(12)

In order to reach a contradiction, we assume again there exists, by the Taylor theo-
rem, a variation (δ p,δq) such that δ p ∂ρ∂ p (k, ω̃ ,σ ,Z,h,
p∗+ iq∗) + δq ∂ρ∂q (k, ω̃ ,σ ,Z,h, p∗ + iq∗) < 0, for k ∈ {k̄1,k2}. Using (12), we get

8 2
1
6 h

2
3

3
1
4 (ωσμ)

1
6
δ p− 2 2

5
6 (ωσμ)

1
6 h

4
3

3
1
4

δq < 0 and −4 2
1
6 h

2
3

3
1
4 (ωσμ)

1
6
δ p + 2

5
6 (ωσμ)

1
6 h

4
3

3
1
4

δq < 0,

clearly a contradiction, and thus (p∗,q∗) is a local minimum.

We also observe in this case that for h small, both convergence factors can be written
as ρ∗1L = 1−α1L h

1
3 +O(h

2
3 ) and ρ∗2L = 1−α2Lh

1
3 +O(h

2
3 ), and the ratio α2L

α1L
is

equal to 3
1
4 /2

1
3 ≈ 1.044, hence both convergence factors are almost equal. We show

an example of these convergence factors in Fig. 1.
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Fig. 1. Convergence factor comparison of algorithms with one and two parameters for ω = 2π ,
σ = 2 and μ = ε = 1, for the non-overlapping case, L = 0, on the left, and the overlapping
case, L = h = 1

100 , on the right

4 Numerical Results

We present now a numerical test in order to compare the performance of both the
one and two parameter algorithms. We compute the propagation of a plane wave in
a heterogeneous medium. The domain isΩ = (−1,1)2. The relative permittivity and
the conductivity of the background media is ε1 = 1.0 and σ1 = 1.8, while that of
the square material inclusion is ε2 = 8.0 and σ2 = 7.5, see the left picture of Fig. 2.
The magnetic permeability μ is constant in Ω and we impose on the boundary an
incident field (Hinc

x ,Hinc
y ,Einc

z ). The domain Ω is decomposed into two subdomains
Ω1 = (−1,L)× (−1,1) and Ω2 = (0,1)× (−1,1); L is the overlapping size and is
equal to the mesh size. We use, in each subdomain, a discontinuous Galerkin method
(DG) with a uniform polynomial approximation of order one, two and three, denoted
by DG-P1, DG-P2 and DG-P3, see [5]. The results are shown in Fig. 3, and are in
good agreement with our analytical results.

Y

X

e1

e2

 (Einc
, H

inc)

Fig. 2. Configuration of our test problem on the left, and the numerical solution on the right
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Fig. 3. Number of iterations against the mesh size h, to attain a relative residual reduction of
10−8

5 Conclusion

We compared in this paper a one and a two parameter family of transmission
conditions for optimized Schwarz methods applied to Maxwell’s equations. Our
asymptotic analysis reveals that the addition of a second parameter does not lead
to a significant improvement of the algorithm, and it is therefore justified to consider
only the simpler case of a one parameter family of transmission conditions. These
results are also confirmed by our numerical experiments.
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Summary. We present hybrid finite element methods for the Helmholtz equation and the time
harmonic Maxwell equations, which allow us to reduce the unknowns to degrees of freedom
supported only on the element facets and to use efficient iterative solvers for the resulting
system of equations. For solving this system, additive and multiplicative Schwarz precondi-
tioners with local smoothers and a domain decomposition preconditioner with an exact sub-
domain solver are presented. Good convergence properties of these preconditioners are shown
by numerical experiments.

1 Introduction

When solving the Helmholtz equation with a standard finite element method (FEM),
due to the oscillatory behaviour of the solution and the pollution error [8] a large
number of degrees of freedom (DoFs) is needed to resolve the wave, especially for
high wave numbers. To overcome this difficulty, many methods have been developed
during the last years. Apart from hp FEM [8], Galerkin Least Square Methods [7] or
Discontinuous Galerkin Methods [6], some methods make use of problem adapted
functions like plane waves. The most popular among them are the Partition of Unity
Method [9], the Discontinuous Enrichment Approach [5] or the UWVF [2, 10]. All
these techniques end up with large, complex valued, indefinite, possible symmetric
linear systems. Although some advances have been made [3, 4], efficient precondi-
tioners for wave type problems are still a big challenge.

In the present work the hybrid FEM from [11] is used for the Helmholtz equation
and extended to the Maxwell case. This method allows us to use efficient iterative
methods for solving the resulting linear system of equations. Following hybridiza-
tion techniques from [1], the tangential continuity of the flux field is broken across
element interfaces. In order to impose continuity again, Lagrange multipliers sup-
ported only on the facets, which can be interpreted as the tangential component of the
unknown field, are introduced. Adding a second set of Lagrange multipliers,
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representing the tangential component of the flux field, allows us, due to local Robin
boundary conditions, to eliminate the volume DoFs. Because, after hybridization,
there is no coupling between volume basis functions of different elements, elimina-
tion of the volume DoFs can be done cheaply element by element, and the system
of equation is reduced onto the smaller set of Lagrange multipliers. For the reduced
system we present additive (AS) and multiplicative Schwarz (MS) block precondi-
tioners with blocks related to DoFs of one facet and element, respectively. Addi-
tionally a domain decomposition (DD) preconditioner, which directly solves for the
DoFs belonging to one subdomain, is investigated. This preconditioner is especially
advantageous for domains contains cavity like structures. Numerical tests show, that
a preconditioned CG iteration has good convergence properties combined with these
preconditioners.

2 Hybridization of the Wave Equations

In the sequence, we will stick to the following settings. As computational domain we
consider a Lipschitz polyhedron Ω ⊂ R

d with d = 2,3 and the boundary Γ = ∂Ω .
In the scalar case, we search for a function u : Ω → C and a vector valued field
v : Ω →C

d , which fulfills the Helmholtz equation in mixed form

gradu = iωv and divv = iωu in Ω

with absorbing boundary conditions v ·n+ u = g on Γ , where ω is the angular fre-
quency and n the outer normal vector. From [9] we know, that the solution u exists
and is unique.

In the vectorial case, i.e. the harmonic Maxwell’s equations, we search for a
vector valued function E : Ω → C

3 and a flux field H : Ω → C
3, which solves

curlH+ iωE = 0 and curlE− iωH = 0 in Ω

under the boundary condition −n×H+E‖ = g on Γ , where E‖ represents the tan-
gential component of E, i.e. n×E×n.
When deriving the hybrid formulation, we use a regular finite element mesh T with
elements T , and the set of facets is called F . The vector nT is the outer normal
vector of the element T , and nF represents the normal vector onto a facet F . Further-
more, we denote a volume integral as

(
u,v

)
T :=

∫
T uv dx, and a surface integral as〈

u,v
〉
∂T :=

∫
∂T uv ds.

2.1 The Mixed Hybrid Formulation for the Helmholtz Equation

The mixed hybrid formulation for the Helmholtz equation was already introduced in
[11]. For completeness, we repeat the problem formulation:
Find (u,v,uF ,vF)∈ L2(Ω)×H(div,T )×L2(F )×L2(F ) =: X×Ỹ×XF×Y F , such
that for all (σ ,w,σF ,wF) ∈ X× Ỹ ×XF ×Y F
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∑
T∈T

((
iωu,σ

)
T −

(
iωv,w

)
T −

(
divv,σ

)
T −

(
u,divw

)
T +

〈
uF ,nT ·w

〉
∂T

+
〈
nT ·v,σF〉

∂T +
〈
nF ·v− vF ,nF ·w−wF〉

∂T

)
+
〈
uF ,σF〉

Γ =
〈
g,σF〉

Γ .

2.2 The Mixed Hybrid Formulation for the Maxwell Problem

We will now concentrate on the derivation of the mixed hybrid formulation for the
vectorial wave equation. We start from the mixed system of equations from above,
multiply the first equation with a test function e∈U := (L2(Ω))3 and the second one
with a function h ∈ V := H(curl,Ω) and integrate over the domain Ω . Performing
integration by parts elementwise leads to

∑
T∈T

((
curlH,e

)
T +

(
iωE,e

)
T

)
= 0 ∀e ∈U

∑
T∈T

((
E,curlh

)
T −

(
iωH,h

)
T −

〈
E,nT ×h

〉
∂T

)
= 0 ∀h ∈V.

Note that for a tangential continuous field E, i.e. n×E×n is continuous on element
interfaces, the boundary integrals for inner facets cancel due to the tangential conti-
nuity of h, and inserting the absorbing boundary condition into the boundary facet
integrals leads to the standard mixed finite element formulation for our problem.

Next, the tangential continuity of the flux field H is broken across element inter-
faces, thus we search for H ∈ Ṽ :=

{
v ∈ (L2(Ω))3 : v|T ∈ H(curl,T ) ∀T ∈ T

}
. In

order to reinforce continuity, Lagrange multipliers EF , which are only supported on
the element facets, i.e. they are from the space UF := (L2(F ))3, are introduced. The
continuity of the tangential fluxes is reached via an additional equation, which forces
the jump of [n×H] := nT1×H|T1 +nT2×H|T2 for inner facets F ∈FI with adjacent
elements T1 and T2 to zero, thus

∑
F∈FI

〈
[n×H],e

〉
F = ∑

T∈T

(〈
nT ×H,e

〉
∂T −

〈
nT ×H,e

〉
∂T∩Γ

)
= 0, ∀e ∈UF .

The resulting system of equations for (E,H,EF) ∈U× Ṽ ×UF reads as

∑
T∈T

((
curlH,e

)
T +

(
iωE,e

)
T

)
= 0 ∀e ∈U

∑
T∈T

((
E,curlh

)
T −

(
iωH,h

)
T −

〈
EF ,nT ×h

〉
∂T

)
= 0 ∀h ∈ Ṽ

− ∑
T∈T

〈
nT ×H,eF〉

∂T +
〈
EF ,eF〉

Γ =
〈
g,eF〉

Γ ∀eF ∈UF .

In this system of equations, the Lagrange parameter EF plays the role of the tangen-
tial component of E, evaluated on the facets. Because there is no coupling between
volume DoFs belonging to different elements, it is possible to eliminate the volume
unknowns E and H, cheaply by static condensation (compare [1]). The resulting sys-
tem of equations needs now to be solved only for the Lagrange multipliers.
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In order to eliminate the inner DoFs, one has to solve the first two equations
of the system from above for some function EF element by element. But this is
equivalent to solving a Dirichlet problem, and uniqueness of the solution can not
be guaranteed. This drawback can be compensated by adding a new facet unknown
HF ∈V F :=(L2(F ))3 representing nF×H on the facets via a consistent stabilization
term ∑T

〈
nF ×H−HF ,nF ×h−hF

〉
∂T . We obtain

∑
T∈T

((
curlH,e

)
T +

(
iωE,e

)
T

)
= 0 ∀e ∈U (1)

∑
T∈T

((
E,curlh

)
T −

(
iωH,h

)
T −

〈
EF ,nT ×h

〉
∂T

−〈nT ×H,nT ×h
〉
∂T +

〈
HF ,nF ×h

〉
∂T

)
= 0 ∀h ∈ Ṽ (2)

∑
T∈T

(〈
nF ×H,hF〉

∂T −
〈
HF ,hF〉

∂T

)
= 0 ∀hF ∈V F (3)

− ∑
T∈T

〈
nT ×H,eF〉

∂T +
〈
EF ,eF〉

Γ =
〈
g,eF〉

Γ ∀eF ∈UF . (4)

Now, by static condensation the time harmonic Maxwell’s equation with absorbing
boundary conditions has to be solved on the element level, where uniqueness is guar-
anteed, and the resulting system contains only the facet unknowns EF and HF . Thus
we search for a function w ∈W :=UF ×V F such that

s(w,v) = f (v) ∀v ∈W,

where the Schur complement bilinearform s and the linearform f are obtained
from (1) to (4) by eliminating the unknowns E and H. Elimination of the inner DoFs
can be also seen as calculating for a given incoming impedance trace EF −HF the
resulting outgoing impedance trace EF +HF on the element level. By exchanging the
Dirichlet and Neumann traces EF ,HF by incoming and outgoing impedance traces,
one obtains an equivalent formulation which fits well into the context of the UWVF
of [2].

3 Iterative Solvers

In this section, we focus on solving the system of equations. As already mentioned,
the volume DoFs can be eliminated cheaply element by element, and the resulting
system of equation just has to be solved for the much smaller number of facet DoFs.
Because volume DoFs of one element couple apart from themselves only to facet
DoFs of the surrounding facets, the Schur complement matrix S obtained by static
condensation is sparse, and it just has nonzero entries between facet DoFs belong-
ing to facets of the same element. Due to the hybrid formulation, efficient iterative
solvers can be used for the reduced system of equations.

Because the Schur complement matrix is complex symmetric, a preconditioned
CG-iteration together with an AS or MS block preconditioner, MAS and MMS is used,
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although convergence for complex symmetric matrices is not guaranteed. The itera-
tion matrices of these two preconditioners are given as

I−M−1
AS S = I−

n

∑
i=1

Pi,

I−M−1
MSS =

( 1

∏
i=n

(I−Pi)
)( n

∏
i=1

(I−Pi)
)
,

where Pi is the matrix representation of the variational projector Pi : W →Wi ⊂W
with respect to the bilinearform s. In the scalar case W = XF ×Y F . We will use two
different choices of subspaces Wi, functions supported on the facet Fi or on facets,
which are boundary facets of the element Ti. Note that the first strategy leads to
nonoverlapping blocks, while the blocks of the second choice overlap.

Apart from an AS or MS Preconditioner, a DD preconditioner compareable to
[12] was used, which is based on a partitioning of the domain Ω into N subdomains
Ωi. The iteration matrix of this preconditioner can be described by

I−M−1
DDS =

( 1

∏
i=n

(I−PI,i)
)(

I−
N

∑
i=1

PΩi

)( n

∏
i=1

(I−PI,i)
)
,

where PΩi and PI,i are matrices corresponding to variational projection operators
which project to the spaces WΩi and WI,i. The space WΩi contains functions which
are supported only on facets in the interior of the subdomainΩi, while the space WI,i

is choosen such that it contains functions which are only supported on facets of an
element Ti such that ∂Ti ∩∂Ω j = /0. Again a nonoverlapping option is to collect the
functions supported on a facet Fi which is located on Γ or the subdomain interfaces
in WI,i. Thus, in each preconditioner step a forward block Gauss Seidel iteration is
carried out, followed by a direct inversion of each subdomain block and a backward
block Gauss Seidel step. Note that solving directly for the unknowns in a subdomain
is equivalent to solve a problem with robin boundary conditions on the subdomain,
and uniqueness and existence are guaranteed.

One big advantage of the DD preconditioner is, that it can cope with problems
containing cavity like structures. For such problems other preconditioners suffer
from internal reflections, which leads to high iteration numbers. If the whole cavity
is contained in one single subdomain Ωi , the DD preconditioner inverts the whole
matrix block related to the cavity, and internal reflections are treated exactly. Thus
they do not influence the iteration number.

4 Numerical Results

In order to demonstrate the dependence of the number of iterations on polynomial
order, wavelength and meshsize h for the presented preconditioners, we choose a
simple two dimensional model problem with a wave of Gaussian amplitude and
wavelength λ propagating through a unit square domain (compare Fig. 1). For a
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meshsize h = λ = 0.1 the lefthand plot shows the number of iterations for differ-
ent polynomial orders. For the three preconditioners, the DoFs of an element were
collected in one block. In addition, for the DD preconditioner, the computational
domain was divided into nine subdomains. If the polynomial order is large enough
to resolve the wave, i.e. larger than four, the number of iterations stays constant or
is only slightly growing with growing polynomial order, while the number of facet
unknowns grows linearly in 2D.

Fig. 1. Iterations depending on the polynomial order (left) for the 2D model problem (right)

Table 1. Iterations depending on wavelength and mesh size for the MS/DD Preconditioner
(p = 6).

λ 0.64 0.32 0.16 0.08 0.04 0.02 0.01

h = 0.16 35/40 35/38 32/33 31/31
h = 0.08 52/42 48/38 50/36 47/33 50/38
h = 0.04 88/55 76/47 74/43 76/39 65/35 97/59
h = 0.02 147/75 129/55 113/48 117/44 118/42 115/38 199/82
h = 0.01 246/107 236/80 226/60 203/53 228/49 271/50 291/45

Next we investigate the dependence on h and λ for a fixed polynomial order of
6. The results are presented in Table 1. For λ smaller than h

2 , which corresponds
to less than three unknowns per wavelength, the solution can not be resolved, and
the solvers show large iteration numbers. Fixing h, the iteration number is mini-
mal at about h ≈ λ , i.e. at about six unknowns per wavelength, and it increases for
growing wavelength. For h = 0.16 every subdomain consists of only a small number
of elements, and an inversion of the DoFs subdomain by subdomain is compare-
able to an inversion element by element. Therefore the two preconditioners show
about the same performance. If h decreases, it is more and more advantageous to
collect the unknowns in subdomain blocks. While the iteration number almost dou-
bles for the MS preconditioner if the mesh size is divided by 2, the increase is much
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less for the DD preconditioner. Table 2 shows, that the DD preconditioner also per-
forms better than the MS preconditioner with respect to time, although one iteration
is more expensive.

Table 2. Iteration times for λ =
0.08 and a polynomial order of 6.

h DoFs MS DD

0.16 69980 0.35 0.37
0.08 217900 1.73 1.33
0.04 701228 9.30 5.15
0.02 2518524 53.5 22.4
0.01 9857920 367 111

Table 3. Iteration numbers and computa-
tional times for the cavity and the square.

cavity square
its. time(s) its. time(s)

DD (element) 35 40.4 34 31.2
DD (facet) 64 69.7 61 59.7
MS (element) 1612 1720 102 88.9
AS (element) > 105 > 1h 575 186

Fig. 2. A resonator (right) is compared with the domain without cavity (left)

Now we compare the preconditioners for a resonator and the domain without
cavity (compare Fig. 2). From the top of the square an incident wave with λ = 0.01
is prescribed. The DD-preconditioner uses, depending on the presence of the cavity
six and seven subdomains, respectively, where all cavity DoFs, including the cavity
boundary are collected in one single block. Table 3 shows the iteration numbers
and computational times for different preconditioners and for the two examples. For
the domain without cavity the performance of the preconditioners is compareable.
When the cavity is added, reflections inside the cavity lead to an enormous increase
in iteration numbers and computational times for the AS and the MS preconditioner.
Because of direct inversion of the cavity DoFs, the DD preconditioner does not suffer
from internal reflections and the iteration number stays almost constant, which leads
together with a larger number of unknowns to a moderate increase in computational
time.

We finish the numerical results section with an example from optics. A small
sphere with radius 0.3 and refractive index 2 is placed (not exactly in the center) in
a spherical computational domain with radius 1 and background refractive index 1.
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Fig. 3. Real part of Ey (left) and |E| (right) evaluated at a cross section parallel to the xy plane

We prescribe an incident wave from the left with a Gaussian amplitude and wave-
length 0.35, such that the diameter of the computational domain is approximately six
wavelength in free space. In order to resolve the wave we used 3,256 elements with
a polynomial order of 6, which results in 1.66 millions of unknowns. The solution
(compare Fig. 3) was obtained by 258 cg-iterations with a Block AS preconditioner.
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1 Summary

In this paper, we study robust two-level domain decomposition preconditioners for
highly anisotropic multiscale problems. We present a construction of coarse spaces
that emploies initial multiscale basis functions and discuss techniques to achieve
smaller dimensional coarse spaces without sacrificing the robustness of the precon-
ditioner. We also present numerical results and consider possible extensions of these
approaches where the dimension of the coarse space can be reduced further.

2 Introduction

Anisotropy in the diffusion arises in many applications in geosciences and engi-
neering. In flows porous media, high anisotropy can be due to the presence of frac-
tures that may have preferred high-conductivity directions. Because of high varia-
tions among the matrix and fracture conductivities, the permeability can have high
anisotropy at the fine-scale. This is the case when fracture network conducts only in
some preferred directions (e.g., in one direction in 2D problems and one or two di-
rections in 3D problems). This preferred direction is the direction of high anisotropy
and it can have heterogeneous spatial variations. For example, the presence of frac-
ture pockets can create highly anisotropic isolated regions, while fracture corridors
can form long highly anisotropic channels that span a rich hierarchy of scales. It is a
challenging task to design robust preconditioners for such problems (e.g., [4]) or to
solve them on a coarse grid (e.g., [2]).

In this paper, we discuss robust preconditioners for highly anisotropic multiscale
diffusion problems. We assume that the high-anisotropy is also highly heterogeneous
over the problem domain and these spatial variations cannot be captured within a
coarse block. In the paper, robust two-level domain decomposition preconditioners
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are constructed by designing coarse spaces that contain essential features of the fine-
scale solution. The construction of the coarse spaces is based on recently introduced
methods [1, 3]. We show that, for anisotropic problems, the coarse spaces can have
a large dimension because fine-scale features within high-anisotropy regions need
to be represented on a coarse grid. In this paper, we propose a number of remedies
for this problem. Note that the proposed methods differ from existing methods for
anisotropic problems [4].

The coarse spaces used in two-level domain decomposition preconditioners are
constructed based on local spectral problems with a pre-computed scalar weight
function. The computation of the weight function uses an initial coarse space where
one basis function per coarse node is defined. We show that the local eigenvalue
problem can contain many small eigenvalues, which are asymptotically vanishing as
the contrast increases. One needs to include all eigenvectors that correspond to these
small, asymptotically vanishing, eigenvalues. Because the number of these small
eigenvalues defines the dimension of the coarse space, it is important to choose a
weight function such that the dimension of the coarse space is as small as possible.
If we consider the initial space as the span of piecewise (bi)linear functions, then the
dimension of the coarse space can be very large. In particular, the coarse space con-
tains all fine-scale functions with respect to the slow variable (defined as the variable
representing the direction of slow conductivity) within high-anisotropy regions. On
the other hand, using multiscale basis functions [2] in the initial space allows cap-
turing the effects of high-conductivity inclusions (cf. [1, 3]) that are isolated within
coarse grid blocks. As a result, the coarse space contains all fine-scale functions
with respect to slow variables within high-anisotropy channels. This can lead to a
substantial dimension reduction; however, unlike to the isotropic high-conductivity
case, the dimension of the coarse space can still be very large as discussed in the
paper. Numerical results are presented. We also discuss techniques that allow us to
use smaller dimensional coarse spaces at the expenses of solving several lower di-
mensional problems in the channels of high-anisotropy.

3 Problem Setting and Domain Decomposition Framework

Let D⊂R
2 (or R3) be a polygonal domain which is the union of a disjoint polygonal

subregions {Di}N
i=1. We seek u ∈ H1

0 (D)

a(u,v) :=
∫

D
κ(x)∇u ·∇vdx =

∫
D

f vdx, where κ(x) =
(
η(x) 0

0 1

)
. (1)

Here η(x) is a heterogeneous field with high contrast, η(x)≥ 1. More general cases
where the direction of anisotropy can change continuously in space will be consid-
ered elsewhere. Next, we introduce some notations following [1].

We assume that {Di}N
i=1 form a quasiuniform triangulation of D and denote H =

maxi diam(Di). Let T h be a fine triangulation which refine {Di}N
i=1. We denote by

V h(D) the usual finite element discretization of piecewise linear continuous functions
with respect to the fine triangulation T h. Denote also by V h

0 (D) the subset of V h(D)
with vanishing values on ∂D. Similar notations, V h(Ω) and V h

0 (Ω), are used for
subdomainsΩ ⊂ D.
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The Galerkin finite element approximation of (1) is to find u ∈ V h
0 (D) with

a(u,v) =
∫

D f v for all v ∈V h
0 (D), or in matrix form

Au = b, (2)

where for all u,v ∈V h(D) (considered as vectors) we have vT Au = a(u,v) and vT b =∫
D f v. We assume that κ is piecewise constant coefficient in T h with value κ = κe =
(ηe,0;0,1) on each fine triangulation element e ∈T h.

We denote by {D′i}N
i=1 the overlapping decomposition obtained from the original

nonoverlapping decomposition {Di}N
i=1 by enlarging each subdomain Di to D′i =

Di∪{x∈D,dist(x,Di)< δi}, i= 1, . . . ,N, where dist is some distance function and
let δ = max1≤i≤N δi. Let V h

0 (D
′
i) be the set of finite element functions with support

in D′i. We also denote by RT
i : V h

0 (D
′
i)→V h(D) the extension by zero operator.

We use a partition of unity {ξi}N
i=1 subordinated to the covering {D′i}N

i=1 such
that

N

∑
i=1

ξi = 1, ξi ∈V h(D), 0≤ ξi ≤ 1 and Supp(ξi)⊂ D′i, i = 1, . . . ,N, (3)

where Supp(ξi) stands for the support of the function ξi. This partition of unity is
used to truncate global functions to local conforming functions, an essential property
in the construction of a stable splitting of the space.

Given a coarse triangulation T H , we introduce Nc coarse basis functions {Φi}Nc
i=1.

We define the coarse space by V H
0 = span{Φi}Nc

i=1, and the coarse matrix A0 =R0ART
0

where RT
0 = [Φ1, . . . ,ΦNc ]. We use a two level additive preconditioner of the form

B−1 = RT
0 A−1

0 R0 +
N

∑
i=1

RT
i A−1

i Ri = RT
0 A−1

0 R0 +B−1
1L , (4)

where B−1
1L = ∑N

i=1 RT
i A−1

i Ri and the local matrices are defined by vAiw = a(v,w) for
all v,w ∈V h

0 (D
′
i), i = 1, . . . ,N (see [5]).

We denote by {yi}Nv
i=1 the vertices of the coarse mesh T H and define

ωi =
⋃
{K ∈ T H ; yi ∈ K}, ωK =

⋃
{ω j; y j ∈ K}. (5)

Additionally, we use a partition of unity {χi}Nv
i=1 subordinated to the covering

{ωi}Nv
i such that

Nv

∑
i=1
χi = 1, χi ∈V h(D), 0≤ χi ≤ 1 and Supp(χi)⊂ ωi, i = 1, . . . ,Nv. (6)

4 Coarse Space Construction and Dimension Reduction

In this section we define a local spectral multiscale coarse space using eigenvectors of
high-anisotropy eigenvalue problems. First we introduce the notation for eigenvalue
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problems following [1]. For i = 1, . . . ,Nv, define the matrix Aωi and the modified
mass matrix of same dimension Mωi by

vT Aωiw =

∫
ωi

κ∇v ·∇wdx and vT Mωiw =

∫
ωi

κ̃vwdx ∀v,w ∈ Ṽ h(ωi), (7)

where Ṽ h(ωi) = {v∈V h(ωi) : v= 0 on ∂ωi∩∂D}. Here κ̃ is an scalar weight derived
from the high-anisotropy coefficient matrix κ = [κi j] and contains the relevant infor-
mation we need for the construction of the coarse basis functions. Several possible
choices for κ̃ can be considered. Here κ̃ is defined by

κ̃ = max

{
N

∑
i=1

κ∇ξi ·∇ξi,
Nv

∑
j=1

κ∇χ j ·∇χ j

}
, (8)

where {ξ j}N
j=1 and {χi}Nv

i=1 are the partition of unity introduced in (3) and (6), re-
spectively. From now on, we assume that the overlapping decomposition is con-
structed from the coarse mesh and then ξi = χi and D′i = ωi for all i = 1, . . . ,N = Nv,
and δ � H. We consider the finite dimensional symmetric eigenvalue problems
Aωiψ = λ̃Mωiψ , with Aωi and Mωi defined by (7) and (8), i = 1, . . . ,N. Denote its
eigenvalues and eigenvectors by {λ̃ ωi

� } and {ψωi
� }, respectively. Note that the eigen-

vectors {ψωi
� } form an orthonormal basis of Ṽ h(ωi) with respect to the Mωi inner

product. Assume that λ̃ ωi
1 ≤ λ̃ ωi

2 ≤ ·· · ≤ λ̃ ωi
� ≤ . . . , and note that λ̃ ωi

1 = 0 for all
interior subdomains. In particular, ψωi

� denotes the �-th eigenvector of the matrix
associated to the neighborhood of yi, i = 1, . . . ,Nv.

Let {χi}Nv
i=1 be a partition of unity (3). Define the coarse basis functions

Φi,� = Ih(χiψωi
� ) for 1≤ �≤ Li and 1≤ i≤ Nv, (9)

where Ih is the fine-scale nodal value interpolation and Li is an integer number for
each i = 1, . . . ,Nv. Denote by V H

0 the spectral multiscale space

V H
0 = span{Φi,� : 1≤ �≤ Li and 1≤ i≤ Nv}. (10)

The idea is to use only eigenvectors of contrast dependent eigenvalues. Next, we
discuss how the choice of κ̃ affects the eigenvalues. If we choose χi to be piece-
wise linear functions on the coarse grid, then, it is easy to see that we have
κ̃(x1,x2) = ∑iη(x1,x2)|∂x1χi(x1,x2)|2 + |∂x2χi(x1,x2)|2 and κ̃ will have similar be-
havior as η(x). In this case, one can show that the number of small eigenvalues is
the same as the fine degrees of freedom in the form of discrete functions that de-
pend on x2 within high-anisotropy inclusions and channels. Indeed, if we consider
the associated Rayleigh quotient, R(v) = vT Aωi w

vT Mωi w
, we have

R(v) =

∫
ωi
κ∇v ·∇v∫
ωi
κ̃v2 =

∫
ωi
η(x1,x2)|∂x1v(x1,x2)|2 + |∂x2v(x1,x2)|2∫

ωi
(∑iη(x1,x2)|∂x1χi(x1,x2)|2 + |∂x2χi(x1,x2)|2)v(x1,x2)2 .

Then, for functions that depends only on x2 inside the region R where η is high,
the numerator reduces to

∫
ωi\R

(|∂x1v(x1,x2)|2 + |∂x2v(x1,x2)|2
)
+
∫

R |∂x2 v(x1,x2)|2



Preconditioners for High-Contrast Anisotropic Problems 293

(which is independent of the high value of η(x) in R) and the quotient will go to zero
as the value of η in R goes to infinity. Including all fine grid functions of x2 into the
coarse space can lead to a high dimensional coarse spaces. Note that the dimension
of the coarse space will be much higher than the case with scalar coefficient κ where
the number of small eigenvalues is equal to the number of isolated inclusions and
channels within a coarse block; see [1, 3]. To reduce the dimension of the coarse
space, we propose the use of multiscale basis functions.

We are interested in partition of unity functions that can reduce the number of
degrees of freedom associated with isolated high-anisotropy inclusions. This can be
achieved by minimizing high-conductivity components for the scalar function κ̃ . In
particular, by choosing multiscale finite element basis functions or energy minimiz-
ing basis functions (e.g., [6]), we can eliminate all isolated high-conductivity inclu-
sions. This can be observed in our numerical experiments. We recall the definition of
the “standard” multiscale finite element basis functions that coincide with (the piece-
wise linear functions on the coarse grid) χ0

i on the boundaries of the coarse partition.
They are denoted by χms

i and satisfy:

−div(κ∇χms
i ) = 0 in K ∈ ωi, χms

i = χ0
i in ∂K, ∀ K ∈ ωi, (11)

where K is a coarse grid block within ωi, see [2] for more details and more general
multiscale basis functions constructions. In Fig. 1, we depict η(x) (left picture) and κ̃
(right picture) using multiscale basis functions on the coarse grid. One can observe
that isolated inclusions are removed in κ̃ . The coarse space contains functions de-
pending only on x2 within long channels. The situation is more complicated if high-
anisotropy regions form complex channel patterns. For example, if high-anisotropy
region is vertical for the coefficients considered in our numerical example, then ini-
tial multiscale spaces can represent them and no additional degrees are needed. More
complex channel shapes will be studied elsewhere.

We note that for the proposed methods, in each ωi, i = 1, . . . ,Nv, we only need to
specify the number of eigenvectors Li based on the quantities {1/λ̃ ωi

l }. These eigen-
vectors are used to construct the coarse space. In practice, one only needs to compute
the first Li eigenvalues. Hierarchical approximation with several triangulations can
also be considered for the eigenvalues and eigenvectors.

Weighted L2 approximation and weighted H1 stability properties of the coarse
space V H

0 in (10) hold (as in [1, 3]). In order to describe better these properties of
V H

0 , we need to introduce a relevant interpolation operator. Given v ∈V h(ωi), set

Iωi
Li

v =
Li

∑
�=1

(∫
ωi

κ̃vψωi
� dx

)
ψωi
� , i = 1, . . . ,Nv, (12)

and define the coarse interpolation I0 : V h(D)→V H
0 by

I0v =
Nv

∑
i=1

Li

∑
�=1

(∫
ωi

κ̃vψωi
� dx

)
Ih(χiψωi

� ) =
Nv

∑
i=1

Ih
(
χi(I

ωi
Li

v)
)
, (13)

where Ih is the fine-scale nodal value interpolation.
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Lemma 1. For each coarse element K we have

•
∫

K κ̃(v− I0v)2 � λ̃−1
K,L+1

∫
ωK
κ∇v ·∇vdx

•
∫

K κ∇I0v ·∇I0vdx�max{1, λ̃−1
K,L+1}

∫
ωK
κ∇v ·∇vdx,

where λ̃K,L+1 = minyi∈K λ̃ ωi
Li+1 and ωK is defined in (5).

Using Lemma 1, we can estimate the condition number of the preconditioned
operator B−1A with B−1 defined in (4) using the coarse space V H

0 in (10). Following
[1, 3], one has the following result.

Theorem 1. The condition number, cond(B−1A), of the preconditioned operator
B−1A with B−1 defined in (4) satisfies

cond(B−1A)� 1+ λ̃−1
L+1, where λ̃L+1 = min

1≤i≤Nv
λ̃ ωi

Li+1.

Recall that we assumed ξi = χi, i = 1, . . . ,N = Nv. It can be easily shown that
if we choose Li as the number of contrast dependent eigenvalues, then λ̃L+1 scales
as O(1), i.e., independent of the contrast. The dependency of the condition number
on δ and H is controlled by the partition of unity {χi}. The condition number is
independent of h and it is, in the general case of different partitions of unity, {χi}
and {ξi}, of order O(H2/δ 2), see [3].

5 Numerical Results

In this section, we show representative 2D numerical results for the additive precon-
ditioner (4) with the local spectral multiscale coarse space defined in (10). We take
D = [0,1]× [0,1] that is divided into 10×10 equal square coarse blocks to construct
the coarse mesh. Inside each coarse block we use a fine-scale triangulation where
triangular elements constructed from 10×10 squares are used.

We test our approach on a permeability field that contains inclusions and channels
on a background of conductivity one (see the left picture of Fig. 1 for η(x) in (1)).
We use multiscale finite element basis functions as the initial partition of unity. From
the right picture of Fig. 1 we see that the modified weight κ̃ does not contain any iso-
lated inclusions and only contains long high-anisotropy channels connecting bound-
aries of coarse-grid blocks. This is automatically achieved from the choice of the
partition of unity functions. There are fewer small (asymptotically vanishing) eigen-
values when local eigenvalue problem is solved with the modified weight κ̃ . Thus,
a good choice of partition of unity functions χi in (8) will ensure fewer new multi-
scale basis functions needed to achieve an optimal convergence with respect to the
contrast. Numerical results are presented in Table 1. We observe that using the pro-
posed coarse spaces, the number of iterations is independent of contrast. In Table 1
we also show the dimension of the coarse spaces. The dimension of the local spectral
coarse space is smaller if we use κ̃ in (10) with multiscale basis functions instead of
piecewise linear basis functions.
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Fig. 1. Left: Coarse mesh and coefficient (we plot η(x) = 106 and recall that η(x) = 1 else-
where). Right: Coefficient κ̃ in (8) using multiscale basis functions (we plot κ̃(x)≥ 106). See
Table 1

η LIN MS EMF LSM (bilin. χi) LSM (MS χi)
103 113(1.48e+2) 122(1.51e+2) 115(1.81e+2) 53(23.21) 55(26.9)
104 257(1.35e+3) 258(1.28e+3) 231(9.70e+2) 41(53.63) 28(5.82)
105 435(1.34e+4) 483(1.26e+4) 416(9.64e+3) 28(5.642) 29(6.02)
106 627(1.34e+5) 709(1.27e+5) 599(9.63e+4) 30(5.753) 29(6.04)

Dim 81=0.79% 81=0.79% 81=0.79% 732=7.19% 497=4.87%

Table 1. Number of iterations and estimated condition number for the PCG and various val-
ues of η with the coefficient depicted in Figure 1. We set the tolerance to 1e−10, H = 1/10,
h = 1/100, and dim(Vh) = 10201. The notation MS stands for the (linear boundary condition)
multiscale (MS) coarse space, EMF is the energy minimizing coarse space, see e.g., [6], and
LSM is the local spectral multiscale coarse space defined in (10). We select the first L eigen-
values such that λ̃L− λ̃L−1 > 0.05 (which is and easy way to select the small eigenvalues- in
this example, the value 0.05 was chose by trial-and-error).

6 Discussion on Coarse Space Dimension Reduction

Now we discuss approaches to avoid the use of high-dimensional coarse spaces with-
out sacrificing the efficiency of the preconditioner at the expense of solving problems
in high-anisotropy channels. As was observed in the presented numerical tests, the
strongly anisotropic channels cause a substantial increase of the size of the coarse
space and the complexity of the method. To avoid this, we can replace the coarse
solve RT

0 A−1
0 R0 in (4) by RT

0 Ã−1
0 R0 + RT

anA−1
an Ran. Here the matrix Ã0 is a small

dimensional coarse matrix. The matrix Aan is acting on the fine-mesh degrees re-
stricted to subdomain of high-anisotropy channels Ωan. It is based on the original
matrix A and is constructed locally (element-by-element) by preserving the strongest
links (off-diagonal entries) of the element stiffness matrices in the channels. To
illustrate this idea, which was developed in [4] for Crouzeix-Raviart elements, we
write an element stiffness matrix Ae for e⊂Ωan: Ae = [be+ce, −ce, −be;−ce, ae+
ce, −ae;−be, −ae, ae +be], where |ae| ≤ be ≤ ce. Then the matrix Aan is defined as
assembly of the matrices Be = [ce, −ce, 0;−ce, ce, 0;0, 0, 0], e ⊂ Ωan. It is easy
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to see that Aan is a stiffness matrix corresponding to a diffusion problem defined
on a carcass of piecewise linear lines in Ωan following the directions of dominating
anisotropy.

In the case of apparent dominant anisotropy direction (i.e., when Aan is block
diagonal with tridiagonal blocks), inverting Aan will involve solving block-diagonal
problems with tridiagonal blocks (in 2-D only). In this case optimal complexity is
achieved by using a sparse direct solver. In general, one may consider including
some of the degrees of freedom associated with high-anisotropy regions into the
coarse space while using A−1

an to handle the others. Another possibility is to use an
auxiliary space of Crouzeix-Raviart elements combined with the technique from [4].
These issues will be studied in our subsequent work.
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Summary. This paper is devoted to the construction and analysis of robust solution tech-
niques for time-harmonic eddy current problems in unbounded domains. We discretize the
time-harmonic eddy current equation by means of a symmetrically coupled finite and boundary
element method, taking care of the different physical behavior in conducting and non-
conducting subdomains, respectively. We construct and analyse a block-diagonal precondi-
tioner for the system of coupled finite and boundary element equations that is robust with
respect to the space discretization parameter as well as all involved “bad” parameters like the
frequency, the conductivity and the reluctivity. Block-diagonal preconditioners can be used
for accelerating iterative solution methods such like the Minimal Residual Method.

1 Introduction

In many practical applications, the excitation is time-harmonic. Switching from the
time domain to the frequency domain allows us to replace expensive time-integration
procedures by the solution of a system of partial differential equations for the am-
plitudes belonging to the sine- and to the cosine-excitation. Following this strat-
egy, [7, 13] and [4, 5] applied harmonic and multiharmonic approaches to parabolic
initial-boundary value problems and the eddy current problem, respectively. Indeed,
in [13], a preconditioned MinRes solver for the solution of the eddy current problem
in bounded domains was constructed that is robust with respect to both the discretiza-
tion parameter h and the frequency ω . The key point of this parameter-robust solver
is the construction of a block-diagonal preconditioner, where standard H(curl) FEM
magneto-static problems have to be solved or preconditioned. The aim of this con-
tribution is to generalize these ideas to the case of unbounded domains in terms of
a coupled Finite Element (FEM) – Boundary Element (BEM) Method. In this case
we are also able to construct a block-diagonal preconditioner, where now standard
coupled FEM-BEM H(curl) problems, as arising in the magneto-static case, have
to be solved or preconditioned. We mention, that this preconditioning technique fits
into the framework of operator preconditioning, see, e.g. [1, 11, 16, 19].
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The paper is now organized as follows. We introduce the frequency domain
equations in Sect. 2. In the same section, we provide the symmetrically coupled
FEM-BEM discretization of these equations. In Sect. 3, we construct and analyse our
parameter-robust block-diagonal preconditioner used in a MinRes setting for solving
the resulting system of linear algebraic equations. Finally, we discuss the practical
realization of our preconditioner.

2 Frequency Domain FEM-BEM

As a model problem, we consider the following eddy current problem:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ ∂u
∂ t + curl (ν1 curl u) = f in Ω1× (0,T),

curl(curl u) = 0 in Ω2× (0,T),
divu = 0 in Ω2× (0,T),

u = O(|x|−1) for |x| → ∞,
curlu = O(|x|−1) for |x| → ∞,

u = u0 on Ω1×{0},
u1×n = u2×n on Γ × (0,T ),

ν1curlu1×n = curlu2×n on Γ × (0,T ),

(1)

where the computational domain Ω = R
3 is split into the two non-overlapping sub-

domains Ω1 and Ω2. The conducting subdomain Ω1 is assumed to be a simply
connected Lipschitz polyhedron, whereas the non-conducting subdomain Ω2 is the
complement of Ω1 in R

3, i.e R3\Ω 1. Furthermore, we denote by Γ the interface be-
tween the two subdomains, i.e. Γ =Ω 1∩Ω 2. The exterior unit normal vector of Ω1

onΓ is denoted by n, i.e. n points fromΩ1 toΩ2. The reluctivity ν1 is supposed to be
independent of |curlu|, i.e. we assume the eddy current problem (1) to be linear. The
conductivity σ is zero in Ω2, and piecewise constant and uniformly positive in Ω1.

We assume, that the source f is given by a time-harmonic excitation with the
frequency ω > 0 and amplitudes fc and fs in the conducting domain Ω1. Therefore,
the solution u is time-harmonic as well, with the same base frequency ω , i.e.

u(x, t) = uc(x)cos(ωt)+us(x)sin(ωt). (2)

In fact, (2) is the real reformulation of a complex time-harmonic approach u(x, t) =
û(x)eiωt with the complex-valued amplitude û = uc− ius. Using the time-harmonic
representation (2) of the solution, we can state the eddy current problem (1) in the
frequency domain as follows:

Find u = (uc,us) :

⎧⎪⎪⎨
⎪⎪⎩

ωσ us + curl (ν1 curl uc) = fc in Ω1,
curlcurl uc = 0 in Ω2,

−ωσ uc + curl (ν1 curl us) = fs in Ω1,
curlcurl us = 0 in Ω2,

(3)

with the corresponding decay and interface conditions from (1).
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Remark 1. In practice, the reluctivity ν1 depends on the inductivity |curlu| in a non-
linear way in ferromagnetic materials. Having in mind applications to problems with
nonlinear reluctivity, we prefer to use the real reformulation (3) instead of a complex
approach. For overcoming the nonlinearity the preferable way is to apply Newton’s
method due to its fast convergence. It turns out, that Newton’s method cannot be ap-
plied to the nonlinear complex-valued system (see [4]), but it can be applied to the
reformulated real-valued system. Anyhow, the analysis of the linear problem also
helps to construct efficient solvers for the nonlinear problem.

Deriving the variational formulation and integrating by parts once more in the exte-
rior domain yields: Find (uc,us) ∈H(curl,Ω1)

2 such that

{
ω(σus,vc)L2(Ω1) + (ν1curluc,curlvc)L2(Ω1)−〈γNuc,γDvc〉τ = 〈fc,vc〉,
−ω(σuc,vs)L2(Ω1) + (ν1curlus,curlvs)L2(Ω1)−〈γNus,γDvs〉τ = 〈fs,vs〉,

for all (vc,vs) ∈ H(curl,Ω1)
2. Here γD and γN denote the Dirichlet trace γD := n×

(u×n) and the Neumann trace γN := curlu×n on the interfaceΓ . 〈·, ·〉τ denotes the
L2(Γ )-based duality product. In order to deal with the expression on the interface
Γ , we use the framework of the symmetric FEM-BEM coupling for eddy current
problems (see [10]). So, using the boundary integral operators A, B, C and N, as
defined in [10], we end up with the weak formulation of the time-harmonic eddy

current problem: Find (uc,us) ∈ H(curl,Ω1)
2 and (λ c,λ s) ∈ H

− 1
2

‖ (divΓ 0,Γ )2 such
that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω(σus,vc)L2(Ω1)+(ν1curluc,curlvc)L2(Ω1),

−〈N(γDuc),γDvc〉τ + 〈B(λ c),γDvc〉τ = 〈fc,vc〉,
〈μc,(C− Id)(γDuc)〉τ −〈μc,A(λ c)〉τ = 0,

−ω(σuc,vs)L2(Ω1)+(ν1curlus,curlvs)L2(Ω1),

−〈N(γDus),γDvs〉τ + 〈B(λ s),γDvs〉τ = 〈fs,vs〉,
〈μ s,(C− Id)(γDus)〉τ −〈μ s,A(λ s)〉τ = 0,

(4)

for all (vc,vs) ∈H(curl,Ω1)
2 and (μc,μ s) ∈H

− 1
2

‖ (divΓ 0,Γ )2. This variational form
is the starting point of the discretization in space. Therefore, we use a regular trian-
gulation Th, with mesh size h > 0, of the domain Ω1 with tetrahedral elements. Th

induces a mesh Kh of triangles on the boundary Γ . On these meshes, we consider
Nédélec basis functions of order p yielding the conforming finite element subspace
N D p(Th) of H(curl,Ω1), see [17]. Further, we use the space of divergence free
Raviart-Thomas basis functions RT 0

p(Kh) := {λh ∈RT p(Kh),divΓ λh = 0} being

a conforming finite element subspace of H
− 1

2
‖ (divΓ 0,Γ ). Let {ϕi} denote the basis

of N D p(Th), and let {ψi} denote the basis of RT 0
p(Kh). Then the matrix entries

corresponding to the operators in (4) are given by the formulas
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(K)i j := (ν curlϕi,curlϕj)L2(Ω1)−〈N(γDϕi),γDϕj〉τ ,
(M)i j := ω(σϕi,ϕj)L2(Ω1),

(A)i j :=
〈
ψi,A(ψj)

〉
τ ,

(B)i j := 〈ψi,(C− Id)(γDϕj)〉τ .

The entries of the right-hand side vector are given by the formulas (fc)i :=
(fc,ϕi)L2(Ω1) and (fs)i := (fs,ϕi)L2(Ω1). The resulting system A x = f of the coupled
finite and boundary element equations has now the following structure:

⎛
⎜⎜⎝

M 0 K BT

0 0 B −A
K BT −M 0
B −A 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

us

λ s

uc

λ c

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

fc

0
fs

0

⎞
⎟⎟⎠ . (5)

In fact, the system matrix A is symmetric and indefinite and obtains a double
saddle-point structure. Since A is symmetric, the system can be solved by a Min-
Res method, see, e.g., [18]. Anyhow, the convergence rate of any iterative method
deteriorates with respect to the meshsize h and the “bad” parameters ω , ν and σ ,
if applied to the unpreconditioned system (5). Therefore, preconditioning is a chal-
lenging topic.

3 A Parameter-Robust Preconditioning Technique

In this section, we investigate a preconditioning technique for double saddle-point
equations with the block-structure (5). Due to the symmetry and coercivity properties
of the underlying operators, the blocks fulfill the following properties: K = KT ≥ 0,
M = MT > 0 and A = AT > 0.

In [19] a parameter-robust block-diagonal preconditioner for the distributed opti-
mal control of the Stokes equations is constructed. The structural similarities to that
preconditioner gives us a hint how to choose the block-diagonal preconditioner in
our case. Therefore, we propose the following preconditioner

C = diag (IFEM,IBEM,IFEM,IBEM) ,

where the diagonal blocks are given by IFEM =M+K and IBEM =A+BI −1
FEMBT .

Being aware that IFEM and IBEM are symmetric and positive definite, we conclude
that C is also symmetric and positive definite. Therefore, C induces the energy norm
‖u‖C =

√
uT C u. Using this special norm, we can apply the Theorem of Babuška-

Aziz [3] to the variational problem:

Find x ∈ R
N : wT A x = wT f, ∀w ∈R

N .

The main result is now summarized in the following lemma.
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Lemma 1. The matrix A satisfies the following norm equivalence inequalities:

1√
7
‖x‖C ≤ sup

w=0

wT A x
‖w‖C

≤ 2‖x‖C ∀x ∈ R
N .

Proof. Throughout the proof, we use the following notation: x = (x1,x2,x3,x4)
T

and y = (y1,y2,y3,y4)
T . The upper bound follows by reapplication of Cauchy’s in-

equality several time. The expressions corresponding to the Schur complement can
be derived in the following way:

y1
T BT x4 = y1I

1/2
FEMI

−1/2
FEM BT x4 ≤ ‖I 1/2

FEMy1‖l2‖I −1/2
FEM BT x4‖l2 .

Therefore, we end up with an upper bound with constant 2.
In order to compute the lower bound, we use a linear combination of special test

vectors. For the choice w1 = (x1,x2,−x3,−x4)
T , we obtain

w1
T A x = x1

T Mx1 + x3
T Mx3;

for w2 = (x3,−x4,x1,−x2)
T , we get

w2
T A x = x1

T Kx1 + x3
T Kx3 + x2

T Ax2 + x4
T Ax4;

for w3 = ((x4
T B(K+M)−1)T ,0,(x2

T B(K+M)−1)T ,0)T , we have

w3
T A x = x4

T B(K+M)−1BT x4 + x2
T B(K+M)−1BT x2

+ x4
T B(K+M)−1Mx1 + x4

T B(K+M)−1Kx3

+ x2
T B(K+M)−1Kx1−x2

T B(K+M)−1Mx3;

for w4 = (−(x3
T K(K+M)−1)T ,0,−(x1

T K(K+M)−1)T ,0)T , we get

w4
T A x =−x3

T K(K+M)−1Mx1−x3
T K(K+M)−1Kx3

−x3
T K(K+M)−1BT x4−x1

T K(K+M)−1Kx1

−x1
T K(K+M)−1BT x2 + x1

T K(K+M)−1Mx3;

and, finally, for the choice w5 =(−(x1
T M(K+M)−1)T ,0,(x3

T M(K+M)−1)T ,0)T ,
we obtain

w5
T A x =−x1

T M(K+M)−1Mx1−x1
T M(K+M)−1Kx3

−x1
T M(K+M)−1BT x4 + x3

T M(K+M)−1Kx1

+ x3
T M(K+M)−1BT x2−x3

T M(K+M)−1Mx3.

Therefore, we end up with the following expression
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(w1 +w2 +w3 +w4 +w5)
T A x = x1

T Mx1 + x3
T Mx3

+ x1
T Kx1 + x3

T Kx3 + x2
T Ax2 + x4

T Ax4

+ x4
T B(K+M)−1BT x4 + x2

T B(K+M)−1BT x2

−x3
T K(K+M)−1Kx3−x1

T K(K+M)−1Kx1

−x3
T M(K+M)−1Mx3−x1

T M(K+M)−1Mx1

−2x3
T K(K+M)−1Mx1 + 2x1

T K(K+M)−1Mx3.

For estimating the non-symmetric terms, we use the following result:

−2x3
T K(K+M)−1Mx1 ≥−2‖(K+M)−1/2Kx3‖l2‖(K+M)−1/2Mx1‖l2

≥−‖(K+M)−1/2Kx3‖2
l2−‖(K+M)−1/2Mx1‖2

l2

=−x3
T K(K+M)−1Kx3−x1

T M(K+M)−1Mx1.

Analogously, we obtain

2x1
T K(K+M)−1Mx3 ≥−x1

T K(K+M)−1Kx1−x3
T M(K+M)−1Mx3.

Hence, putting all terms together, we have

(w1 +w2 +w3 +w4 +w5)
T A x≥ xT C x

−2x3
T K(K+M)−1Kx3−2x1

T K(K+M)−1Kx1

−2x3
T M(K+M)−1Mx3−2x1

T M(K+M)−1Mx1.

In order to get rid of the four remaining terms, we use, for i = 1,3,

xi
T K(K+M)−1Kxi ≤ xi

T Kxi and xi
T M(K+M)−1Mxi ≤ xi

T Mxi.

Hence by adding w1 and w2 twice more, we end up with the desired result

(3w1 + 3w2 +w3 +w4 +w5)
T︸ ︷︷ ︸

:=wT

A x≥ xT C x+ x2
T Ax2 + x4

T Ax4 ≥ xT C x.

The next step is to compute (and estimate) the C norm of the special test vector.
Straightforward estimations yield

‖w‖2
C = ‖3w1 + 3w2 +w3 +w4 +w5‖2

C ≤ 7‖x‖2
C .

This completes the proof.

Now, from Lemma 1, we obtain that the condition number of the preconditioned
system can be estimated by the constant c = 2

√
7 that is obviously independent of

the meshsize h and all involved parameters ω , ν and σ , i.e.

κC (C
−1A ) := ‖C−1A ‖C ‖A −1C ‖C ≤ 2

√
7. (6)

The condition number defines the convergence behaviour of the MinRes method
applied to the preconditioned system (see e.g. [9]), as stated in the following theorem:



A Robust FEM-BEM Solver for Time-Harmonic Eddy Current Problems 303

Theorem 1 (Robust solver). The MinRes method applied to the preconditioned sys-
tem C−1A u = C −1f converges. At the 2m-th iteration, the preconditioned residual
rm = C −1f−C−1A um is bounded as

∥∥∥r2m
∥∥∥

C
≤ 2qm

1+ q2m

∥∥∥r0
∥∥∥

C
, where q =

2
√

7−1

2
√

7+ 1
. (7)

4 Conclusion, Outlook and Acknowledgments

The method developed in this work shows great potential for solving time-harmonic
eddy current problems in an unbounded domain in a robust way. The solution of a
fully coupled 4×4 block-system can be reduced to the solution of a block-diagonal
matrix, where each block corresponds to standard problems. We mention, that by
analogous procedure, we can state another robust block-diagonal preconditioner C̃ =
diag (ĨFEM,ĨBEM,ĨFEM,ĨBEM), with ĨFEM = M+K+BT Ĩ −1

BEMB and ĨBEM =
A, leading to a condition number bound of 4, see e.g. [15].

Of course this block-diagonal preconditioner is only a theoretical one, since the
exact solution of the diagonal blocks corresponding to a standard FEM discretized
stationary problem and the Schur-complement of a standard FEM-BEM discretized
stationary problem are still prohibitively expensive. Nevertheless, as for the FEM
discretized version in [13], this theoretical preconditioner allows us replace the solu-
tion of a time-dependent problem by the solution of a sequence of time-independent
problems in a robust way, i.e. independent of the space and time discretization pa-
rameters h and ω and all additional “bad” parameters. Therefore, the issue of finding
robust solvers for the fully coupled time-harmonic system matrix A can be reduced
to finding robust solvers for the blocks IFEM and IBEM, or ĨFEM and ĨBEM. By
replacing these diagonal blocks by standard preconditioners, it is straight-forward
to derive mesh-independent convergence rates, see, e.g., [8]. Unfortunately, the con-
struction of fully robust preconditioners for the diagonal blocks is not straightforward
and has to be studied. Candidates are H matrix, multigrid multigrid and domain de-
composition preconditioners, see, e.g. [2, 6] and [12], respectively.

The preconditioned MinRes solver presented in this paper can also be generalized
to eddy current optimal control problems studied in [14] for the pure FEM case in
bounded domains.
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Fund (FWF) under the grants P19255 and W1214-N15, project DK04. Furthermore,
the authors also thank the Austria Center of Competence in Mechatronics (ACCM),
which is a part of the COMET K2 program of the Austrian Government, for support-
ing our work on eddy current problems.
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Domain Decomposition Methods for Auxiliary Linear
Problems of an Elliptic Variational Inequality

Jungho Lee
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Summary. Elliptic variational inequalities with multiple bodies are considered. It is assumed
that an active set method is used to handle the nonlinearity of the inequality constraint, which
results in auxiliary linear problems. We describe two domain decomposition methods for solv-
ing such linear problems, namely, the FETI-FETI (finite element tearing and interconnecting)
and hybrid methods, which are combinations of already existing domain decomposition meth-
ods.

Estimates of the condition numbers of both methods are provided. The FETI-FETI method
has a condition number which depends linearly on the number of subdomains across each body
and polylogarithmically on the number of element across each subdomain. The hybrid method
is a scalable alternative to the FETI-FETI method, and has a condition number with two poly-
logarithmic factors depending on the number of elements across each subdomain and across
each body. We present numerical results confirming these theoretical findings.

1 Introduction

Consider the following inequality constrained minimization problem,

min
N

∑
i=1

(
1
2

∫
Ωi

ρ(x)|∇ui(x)|2dx−
∫
Ωi

f (x)ui(x)dx

)
,

where ui ∈H1(Ωi), ui = 0 on Γ i
u , i = 1, · · · ,N,

ui−u j ≤ 0 on ∂Ωi∩∂Ω j,∀ i < j, (1)

with variable coefficients and multiple bodies Ωi ⊂ R
2 with their boundaries and

the Dirichlet boundaries denoted by ∂Ωi and Γ i
u , respectively, for i = 1, · · · ,N. The

bodies are decomposed into subdomains,

Ωi =
Ni⋃
j=1

Ωi, j, i = 1, · · · ,N.

Here, bodies mean separate physical entities; for instance, two rubber balls in contact
with each other are considered two bodies. Subdomains, on the other hand, is artifi-
cially introduced for convenience; a rubber ball can consist of as many subdomains
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as the modeler wants. We assume that the coefficient ρ varies moderately within
each body,Ωi, i = 1, · · · ,N. The diameters ofΩi andΩi, j are denoted by Hi and Hi, j,
respectively. The smallest diameters of any element in Ωi and Ωi, j are denoted by
hi and hi, j, respectively. Also, Hb := max

i
Hi, Hs := max

i, j
Hi, j,

Hb
h := max

i

Hi
hi
, Hs

h :=

max
i, j

Hi, j
hi, j

. We introduce the following:

Γgl :=
⋃
i= j

∂Ωi∩∂Ω j, potential contact surface between bodies,,

Γ (i)
loc :=

⋃
j =k

(∂Ωi, j ∩∂Ωi,k), interface between subdomains, i = 1, · · · ,N. (2)

Here, the subscripts gl and loc stand for global and local, respectively, referring to
nature of the interfaces. For each body, Ωi, i = 1, · · · ,N, two kinds of finite ele-
ment spaces are introduced: Ŵ (i) is a standard finite element space of continuous,

piecewise linear functions and, as such, is continuous across Γ (i)
loc ; W̃ (i) is a more

general space, consisting of finite element functions required to be continuous only

at the primal nodes (i.e., the vertex nodes of Γ (i)
loc in this two-dimensional case; more

sophisticated continuity couplings, i.e., primal constraints, are required in W̃ (i) for
three-dimensional problems; see [9, 10]), as in the FETI-DP (dual-primal FETI)

method. The trace spaces of W̃ (i) and Ŵ (i) on Γ (i)
loc ∪ (∂Ωi ∩Γgl) are denoted by Ṽ (i)

and V̂ (i), respectively. The trace space of Ŵ (i) on ∂Ωi∩Γgl is denoted by V (i)
OL, where

OL stands for “one level.” The Schur complements of the stiffness matrices for W̃ (i)

and Ŵ (i), obtained by eliminating unknowns corresponding to the subdomain inte-

riors, that is, those not associated with Γ (i)
loc ∪ (∂Ωi ∩Γgl), are denoted by S̃(i)Γ and

Ŝ(i)Γ , respectively. The Schur complement S(i)OL of the stiffness matrix for Ŵ (i), on the
other hand, is obtained by eliminating unknowns corresponding to the body interior,

i.e., those not associated with ∂Ωi ∩Γgl. Therefore S̃(i)Γ , Ŝ(i)Γ , and S(i)OL can be viewed

as operators on Ṽ (i),V̂ (i), and V (i)
OL, respectively. We note that applying S(i)OL requires

solving a Dirichlet problem on Ωi.

Let Ṽ :=∏N
i=1 Ṽ (i),V̂ :=∏N

i=1 V̂ (i),VOL:=∏N
i=1 V (i)

OL, S̃=diagN
i=1S̃(i)Γ , Ŝ=diagN

i=1Ŝ(i)Γ ,

and SOL := diagN
i=1S(i)OL. We also introduce matrices B̃, B̂, and BOL, with elements

of {0,−1,1}: B̃u ⇔ u ∈ Ṽ is continuous across Γ (i)
loc ,∀ i, as well as Γgl; B̂v ⇔ v ∈

V̂ is continuous across Γgl; BOLw⇔ w ∈VOL is continuous across Γgl.

2 Algorithms

With the matrices defined in Sect. 1, we can consider the following algorithm for
solving (1):
Algorithm: Active set method + Krylov subspace method
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1. Initialize u0. Set k = 0. Set Ak, a subset of the index set {1, · · · ,#(rows(B̃))}
(resp. #(rows(B̂))), according to the active set method of choice.

2. Solve

min
u∈Ṽ

1
2

uT S̃u− g̃T u, with ZkB̃u = 0 (3)

(
resp. min

u∈V̂

1
2

uT Ŝu− ĝT u, with ẐkB̂u = 0
)

(4)

approximately to a given precision, using a Krylov subspace method. Set uk+1

to the resulting approximate solution. Find Ak+1 accordingly.
3. Set k = k+ 1. Stop if Ak−1 = Ak; return to Step 2 otherwise.

Note that the linear problem in the kth iteration of the active set method is formu-
lated as a minimization problem in terms of the interface variables in Ṽ or V̂ . Here,
g̃ ∈ Ṽ and ĝ ∈ V̂ are appropriate load vectors. The square, diagonal matrix Zk, with
all elements equal to 0 or 1, is chosen such that ZkB̃ = B̃Ak , where B̃Ak is obtained
by replacing the ith row of B̃ with zeros for ∀ i /∈Ak. The matrix Ẑk is defined analo-
gously. The minimization problems (3) and (4) are equivalent to the following saddle
point problems, [

S̃ (ZkB̃)T

ZkB̃ 0

][
u
λ

]
=

[
g̃
0

]
, (5)

and [
Ŝ (ẐkB̂)T

ẐkB̂ 0

][
u
λ

]
=

[
ĝ
0

]
, (6)

respectively. We now consider the preconditioning of (5) and (6).
The FETI-FETI method is a combination of the one-level FETI method with a
Dirichlet preconditioner [4] and the FETI-DP method [5], and was used in [1, 2]
to solve frictionless contact problems. For (6), it is natural to follow the approach in
the one-level and FETI-DP methods and form a Schur complement equation

ZkB̃S̃†B̃T Zk︸ ︷︷ ︸
:=F

λ = ZkB̃S̃†g̃+ZkB̃Rα, (7)

where S̃† is a pseudoinverse of S̃, range(R) = null(S̃), and the vector α is to be
determined. We solve (7) with the preconditioned conjugate gradient (PCG) method,
using the following preconditioner:

P−1
F := ZkB̃DS̃B̃T

DZk. (8)

If S̃ is singular, then the PCG method needs to be confined to the following subspace:

V k := {λ : ZkB̃λ ∈ range(S̃)}. (9)

Most of the computational work in each iteration of the PCG method goes into the ap-
plications of S̃† and S̃, in the applications of F and P−1

F , respectively. The application
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of S̃ involves solving a Dirichlet problem on each subdomain, Ωi, j, i = 1, · · · ,N, j =
1, · · · ,Ni. The application of S̃† involves solving a Dirichlet problem in each sub-
domain, with the Dirichlet boundary condition imposed only at subdomain vertices,
plus solving a coarse problem on each body, associated with the set of vertices of

Γ (i)
loc , i = 1, · · · ,N; for details, see, e.g., [13],[14, Chap. 6].

The hybrid method is a combination of the one-level FETI method with a Dirich-
let preconditioner and the BDDC (balancing domain decomposition by constraints)
method [3]. For (6), forming a Schur complement equation similar to (7) is much
more expensive because of the dense structure of Ŝ. Hence we keep the saddle point
formulation (6) as is and solve it with the preconditioned conjugate residual (PCR)
method. As in the FETI-FETI method, the PCR method needs to be confined to the
following subspace:

V̂ k := {λ : ẐkB̂λ ∈ range(Ŝ)}.
Letting Pk denote an orthogonal projection onto V k, we rewrite (6) as

[
Ŝ (PkẐkB̂)T

PkẐkB̂ 0

]

︸ ︷︷ ︸
:=A

[
u
μ

]
=

[
ĝ− B̂Tλ0

0

]
, (10)

with λ0 satisfying (ẐkB̂T )λ0 ∈ range(Ŝ). For details on how to recover a solution
of (6) from a solution of (10), see [8]. Letting PR denote an orthogonal projection
onto range(Ŝ), we introduce the preconditioner B, where

B−1 =

[
PRM−1

BDDCPR 0
0 PkM−1

D Pk

]
. (11)

Here, MBDDC is a block diagonal matrix consisting of the BDDC preconditioners [3]
for the bodies:

M−1
BDDC = diagN

i=1M(i)−1

BDDC = diagN
i=1R̃(i)T

D,Γ S̃(i)
†

Γ R̃(i)
D,Γ ,

where R̃(i)T

D,Γ , i = 1, · · · ,N, is a scaled restriction from Ṽ (i) to V̂ (i), with the scaling
factors determined by the material coefficients; similarly, BOL,D is a scaled version
of BOL. For details on the definition of these matrices, see, for instance, [11, 13].
Then MD can be viewed as a Dirichlet preconditioner of the one-level FETI method,
obtained by viewing each body,Ωi, as a subdomain:

M−1
D = ẐkBOL,DSOLBT

OL,DẐkT
.

Most of the computational work in each iteration of the PCR method goes into the

application of Ŝ, in the application of A , and the application of S̃(i)
†

Γ , i = 1, · · · ,N
and SOL, in the application of B−1. The application of Ŝ requires solving a Dirich-
let problem on each subdomain, Ωi, j, i = 1, · · · ,N, j = 1, · · · ,Ni. The application of
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S̃(i)
†

Γ , i = 1, · · · ,N, which is carried out in the FETI-FETI method as well, requires
solving a Dirichlet problem on Ωi, j, j = 1, · · · ,Ni with the Dirichlet boundary con-
dition imposed only at the vertices, plus solving a coarse problem on Ωi associated

with the vertices of Γ (i)
loc . The application of SOL, however, requires solving a Dirich-

let problem on each body, which is expensive; therefore in practice such a Dirich-
let problem needs only to be solved inexactly, for instance with a Krylov subspace
method. A preconditioner for solving such a Dirichlet problem is proposed and tested
in [11].

3 Theory

We now present condition number estimates for the FETI-FETI and hybrid methods.
Because of space limitations, details and proofs are given elsewhere; see [11, 12].

Theorem 1. Let F,PF, and V k be defined as in (7) and (9), respectively. For any
λ ∈V k, we have

〈PFλ ,λ 〉 ≤ 〈Fλ ,λ 〉 ≤C(Hb/Hs)(1+ log(Hs/h))2〈PFλ ,λ 〉,

where C > 0 is a constant independent of the sizes of the bodies, subdomains, and
elements.

Convergence of the PCR method for the hybrid method is determined by

K (B−1A ) :=
μmax

μmin
=

max{|λ | : λ ∈ σ(B−1A )}
min{|λ | : λ ∈ σ(B−1A )} , (12)

where σ(B−1A ) is the spectrum of B−1A on range(PR)× V̂ k.

Theorem 2. Let B−1,A , and K (B−1A ) be defined as in (11)–(12), respectively.
We then have the following bound:

K (B−1A )≤C(1+ log(Hb/h))2(1+ log(Hs/h))2,

where C > 0 is a constant independent of the sizes of the bodies, subdomains, and
elements.

4 Numerical Results: Auxiliary Linear Problems

We solve the following equality-constrained minimization problem:

min
Nb×Nb

∑
i=1

(
1
2

∫
Ωi

|∇ui|2dx−
∫
Ωi

f uidx

)
,

with equality constraints to be specified, (13)
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Table 1. Results of FETI-FETI and hybrid.

FETI-FETI Hybrid
I II I II

1/Hb Hb/Hs Hs/h cond iter cond iter iter iter
2 fixed fixed 2.89 7 2.31 7 10 10
4 at 2 at 2 4.41 12 2.85 10 11 8
6 4.51 13 2.91 10 11 9
8 4.55 14 2.93 10 11 8

10 4.56 14 2.94 10 11 8
12 4.57 13 2.95 10 11 7
14 4.58 14 2.96 10 11 7
16 4.58 14 2.96 10 11 7

fixed 4 fixed 7.68 10 5.02 9 10 10
at 2 6 at 2 12.70 12 7.46 10 10 10

8 17.80 13 8.12 10 10 10
10 22.93 15 10.96 11 10 8
12 28.08 16 13.43 12 10 8
14 33.25 17 14.01 12 9 8
16 38.41 17 16.90 12 8 7

fixed fixed 4 4.71 9 4.73 9 12 11
at 2 at 2 6 5.90 10 6.37 10 13 13

8 6.90 10 7.08 10 13 13
10 7.79 11 8.27 11 14 14
12 8.55 11 9.25 11 14 14
14 9.23 12 9.71 12 14 14
16 9.83 12 10.52 12 14 14

where Ωi ⊂ R
2, i = 1, · · · ,Nb×Nb are square bodies with side length Hb := 1/Nb,

which collectively form the domain Ω̄ =
Nb×Nb⋃

i=1

Ω̄i = [0,1]× [0,1]. We require ui ∈

H1(Ωi),ui|∂Ωi∩∂Ω = 0. Each Ωi is decomposed into Ns ×Ns square subdomains,
each of which is discretized by square bilinear elements of side length h. Also, Γ :=
∪i= j∂Ωi∩∂Ω j denotes the interface between the bodies.

We supplement (13) with two different equality constraints, associated with dif-
ferent contact areas between the bodies. In the first problem, the entire Γ is con-
sidered as the contact area, that is, we require the continuity of the displacement
vector across the entire Γ . This case has already been considered by Klawonn and
Rheinbach [6] and Klawonn and Rheinbach [7]. In the second problem, continuity
is imposed only on the middle third of the faces between the bodies. We solve these
problems with both the FETI-FETI and hybrid methods. The PCG and PCR iter-
ations are stopped when the norm of the residual has been reduced by a factor of
10−6.

The results are shown in Table 1. We have three parameters to vary: the num-
ber of bodies across Ω (Nb = 1/Hb), the number of subdomains across each body
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(Ns = Hb/Hs), and the number of elements across each subdomain (Hs/h). We vary
one parameter while keeping the other two fixed. The results for the first set of ex-
periments, with the entire Γ as the contact surface, are shown in column I; those for
the second set of experiments with a reduced contact area are shown in column II.

Note the linear dependence of the condition number on the number of subdo-
mains across each body, Hb/Hs, for the FETI-FETI method, which confirms our
theoretical finding. Note also that the iteration counts of the hybrid method do not
increase as the number of subdomains is increased. Similar numerical results for
the FETI-FETI method have been obtained independently by Klawonn and Rhein-
bach [6] and Klawonn and Rheinbach [7].
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1 Introduction

In this short note, we present new weighted Poincaré inequalities (WPIs) with
weighted averages that allow a robustness analysis of dual-primal finite element tear-
ing and interconnecting (FETI-DP) methods in certain cases where jumps of coeffi-
cients are not aligned with the subdomain partition.

Let Ω be a bounded Lipschitz domain in R
2 or R3. We consider the weak form

of the scalar elliptic PDE

−div(α∇u) = f in Ω , (1)

with a uniformly positive diffusion coefficient α ∈ L∞(Ω) that is piecewise constant
with respect to a (possibly rather fine) partitioning of Ω . The discretization by con-
tinuous and piecewise linear finite elements (FEs) on a mesh T (Ω) leads to the
sparse (but in general large) linear system

Ku = f.

We consider FETI-DP solvers (see [2, 4, 5]) for the fast (and parallel) solution
of this system, and we follow the structure described in [12, Sect. 6.4]. To this end,
we partition the domain Ω into non-overlapping subdomains Ωi, i = 1, . . . ,N such
that the global mesh T (Ω) resolves the interface

⋃
i= j ∂Ωi ∩ ∂Ω j. The interface

itself can be divided into subdomain vertices, edges, and faces (for d = 3), cf. [12,
Sect. 4.2].

Without loss of generality, we assume that α is constant on each element of
T (Ω). Crucially, we do not assume that α is constant on each subdomain. However,
we need assumptions on the kind of jumps. Let αi denote the restriction of α to Ωi

and note that it has a well-defined trace in L2(∂Ωi). For each subdomain edge (face)
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(c)(b)(a)

Fig. 1. Different types of coefficient jumps along an edge between two subdomains: (a) across
(b) along (c) both across and along

E onΩi, let V h(E ) denote the restriction of the global FE space to E and let us define
the weighted average

vE ,αi :=

∫
E αi v∫
E αi

for v ∈V h(E ). (2)

Assumption A1. Whenever two Ωi and Ω j share an edge (face) E , the weighted
averages of any function v ∈V h(E ) coincide: vE ,αi = vE ,α j .

A sufficient condition for Assumption A1 is that the coefficient jumps either
across or along, but not both at the same time. For an illustration see Fig. 1. Our
assumptions rules out situations of type (c).

Following [12, Algorithm B], we define the primal space ŴΠ spanned by the
vertex nodal basis functions at subdomain vertices, the subdomain edge cut-off
functions and subdomain face cut-off functions (all of them extended discrete α-
harmonically from the interface to the subdomain interiors). The dual space WΔ
contains FE functions that are discontinuous across the subdomain interfaces with
vanishing α-weighted averages over the subdomain faces, edges, and vertices. We
formally perform a change of basis, such that we have a splitting of the degrees of
freedom (DOFs) into primal and dual ones, and work in the space W̃ = ŴΠ ⊕WΔ .

Let B : W̃ →U be the usual jump operator. The FETI-DP system

F λ = BK̂−1 f̂ (3)

is solved by preconditinioned conjugate gradients, where F := BK̂−1B� and where
K̂, f̂ denote the stiffness matrix and load vector partially assembled at the primal
DOFs, respectively. The overall solution is then given by

u = K̂−1( f̂ −B�λ ).

Next, we define a FETI-DP preconditioner that is slightly modified to allow for
certain coefficient jumps (cf. [3, 7]). Let i = 1, . . . ,N be fixed and let T (Ωi) denote
the mesh restricted to subdomainΩi. For each mesh node xh on Ω i, we set

α̂i(x
h) := max

T∈T (Ωi):xh∈T
α|T . (4)

Furthermore, if Nxh denotes the index set of subdomains sharing the mesh node xh,
we define the weighted counting function
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δ †
i (x

h) :=

⎧⎪⎨
⎪⎩

α̂i(xh)

∑ j∈N
xh
α̂ j(xh)

, if xh lies on Ω i ,

0, otherwise.

Using these counting functions we define the scaled jump operator BD according
to [12, Sect. 6.4.1] (for details see also [9] where the same scaled jump operator
was used to define a one-level FETI preconditioner). The FETI-DP preconditioner is
finally given by

M−1 := BD S B�D , (5)

where S = diag(Si)
N
i=1 is the block-diagonal Schur complement of the block stiffness

matrix K = diag(Ki)
N
i=1, eliminating the interior DOFs in each subdomain. Alterna-

tively, one may replace B and BD in (3), (5) by the respective operators which only
act on the dual DOFs, which reduces the number of redundancies in λ .

2 Weighted Poincaré Inequalities with Weighted Averages

Let D be a bounded Lipschitz polytope and let {Y�}n
�=1 be a subdivision of D into

open Lipschitz polytopes such that

α|Y� = α� = const. (6)

Furthermore, let X ⊂ ∂D be a manifold of dimension 0 ≤ dX ≤ d− 1 (usually a
vertex, an open subdomain edge or an open face, or a union of these). We define

X� := Y�∩X .

Some of these sets may be empty or have lower dimension than X . However, with
the index set IX := {� : measdX

(X�)> 0} we can write

X =
⋃

k∈IX
X k .

In general, for different indices k, � ∈ IX , the manifolds Xk and X� may have a
non-trivial intersection or even coincide. For simplicity, we assume that

k = � ∈ IX =⇒ measdX
(Xk ∩X�) = 0.

The general case needs more formalism and will be treated in an upcoming paper
[10]. Finally, we can define a meaningful trace αtr ∈ L∞(X ) of α by

αtr(x) = αk for x ∈Xk .

Let {V h(D)}h be a family of H1-conforming FE spaces associated with a quasi-
uniform family of triangulations of D. For v ∈ V h(D), we define the weighted
(semi)norms and the weighted average on X by
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‖v‖2
L2(D),α :=

∫
D
α v2 , |v|2H1(D),α :=

∫
D
α |∇v|2 and vX ,αtr :=

∫
X αtr v∫
X αtr

.

We are interested in the following WPI with weighted average:

‖u−uX ,αtr‖2
L2(D),α ≤ CP,α(D,X ;h)diam(D)2 |u|2H1(D),α ∀u ∈V h(D). (7)

In particular, we are interested under which assumptions the parameter CP,α (D,X ;h)
is independent of the values {α�}.
Sufficient conditions for robustness. We need two crucial assumptions for (7) to
be independent of the values {α�}. The first assumption is a quasi-monotonicity
assumption on α . It has been introduced in [1] and generalized in [4, 8]. The second
assumption states that X “sees” the largest coefficient.

Definition 1. Let 0 ≤ m < d and let �∗ := argmax
1≤�≤s

α� denote the index of the largest

coefficient.4

(a) We call the region P�1,�s := (Y�1 ∪ . . .∪Y�s)
◦, 1 ≤ �1, . . . , �s ≤ n a type-m quasi-

monotone path from Y�1 to Y�s (with respect to α), if
(i) the regions Y�i and Y�i+1 share a common m-dimensional manifold, and

(ii) α�1 ≤ α�2 ≤ . . .≤ α�s .
(b) We say that α is type-m quasi-monotone on D, if for all k = 1, . . . ,n there exists

a quasi-monotone type-m path from Yk to Y�∗ .

Assumption A2. α is type-m quasi-monotone on D for some 0≤ m < d.

Assumption A3. measdX
(X ∩Y�∗)> 0.

In order to formulate our main theorem, we first need some definitions of gener-
alized Poincaré constants/parameters.

Definition 2. (i) For any bounded Lipschitz domain Y ⊂R
d let CP(Y ) be the small-

est constant such that

‖v− vY‖2
L2(Y ) ≤ CP(Y )diam(Y )2 |v|2H1(Y ) ∀v ∈H1(Y ).

(ii) Let Z be the finite union of bounded Lipschitz polytopes such that Z is con-
nected, and let {T h(Z)}h be a quasi-uniform family of triangulations of Z
with the associated continuous piecewise linear FE spaces {V h(Z)}h. Let X,
W ⊂ Z be manifolds/subdomains of (possibly different) dimension ∈ {0, . . . ,d}.
Let CP(Z,X ,W ;h) be the best parameter such that

‖v− vX‖2
L2(W) ≤ CP(Z,X ,W ;h)

|W |
|Z| diam(Z)2 |u|2H1(Z) ∀v ∈V h(Z).

|W | and |Z| denote the measures of W and Z (in the respective dimension).

4 We can assume without loss of generality that �∗ is unique. By definition, type-m quasi-
monotonicity implies that otherwise all maximal subregions can be combined into a single
subregion.
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If Z is connected and if the dimensions of X and W are ≥ d − 1, we can define
a constant CP(Z,X ,W ) independent of the discretization parameter h such that the
inequality in Definition 2(ii) holds for all functions in H1(Z).

Theorem 1. Let Assumptions A2 and A3 be satisfied. Then the parameter
CP,α(D,X ;h) in formula (7) is independent of the values {α�}n

�=1 and

CP,α (D,X ;h) ≤ 2
[
C∗,1(h)+C∗,2(h)

]
(8)

with

C∗,1(h) :=
n

∑
�=1

|Y�|diam(P�,�∗)2

|P�,�∗|diam(D)2 CP(P�,�∗ ,X�∗ ,Y�;h),

C∗,2(h) :=
|D|
|X�∗ | ∑k∈IX

|Xk|diam(Pk,�∗)
2

|Pk,�∗|diam(D)2 CP(Pk,�∗ ,X�∗ ,Xk;h).

Proof. Without loss of generality, we may assume that uX ,αtr = 0. For each index
�= 1, . . . ,n,

1
2 ‖u‖2

L2(Y�)
≤ ‖u−uX�∗ ‖2

L2(Y�)
+ |Y�|

(
uX�∗ )2 .

Due to Assumption A2, there is a quasi-monotone path from Y� to Y�∗ . With c�,�∗ :=
CP(P�,�∗ ,X�∗ ,Y�;h), summation over �= 1, . . . ,n yields

1
2 ‖u‖2

L2(D),α ≤
n

∑
�=1

c�,�∗
|Y�|
|P�,�∗| diam(P�,�∗)

2 α�|u|2H1(P�,�∗)︸ ︷︷ ︸
≤ |u|2H1(D),α

+
n

∑
�=1

α� |Y�|
︸ ︷︷ ︸
≤ α�∗ |D|

(
uX�∗ )2,

where we have used Definition 2(ii) and the quasi-monotonicity of P�,�∗. The first
sum is bounded by C∗,1(h)diam(D)2 |u|2

H1(D),α . To bound the remaining term, we
use Cauchy’s inequality and the definition of αtr:

α�∗ |D|
(
uX�∗

)2 ≤ |D|
|X�∗ | α�

∗‖u‖2
L2(X�∗)

≤ |D|
|X�∗ | ‖u‖

2
L2(X ),αtr

.

A variational argument yields

‖u‖2
L2(X ),αtr

≤ ‖u−uX ,αtr︸ ︷︷ ︸
=0

‖2
L2(X ),αtr

= inf
c∈R
‖u− c‖2

L2(X ),αtr

≤ ‖u−uX�∗ ‖2
L2(X ),αtr

= ∑
k∈IX

αk ‖u−uX�∗ ‖2
L2(Xk)

.

Now, we have

αk ‖u−uX�∗ ‖2
L2(Xk)

≤ CP(Pk,�∗ ,X�∗ ,Xk;h)
|Xk|
|Pk,�∗ | diam(Pk,�∗)

2αk |u|2H1(Pk,�∗ )
.

Using the quasi-monotonicity of α on Pk,�∗ finally leads to (8).
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Necessity of the conditions. As discussed in [8, Sect. 3.1], Assumption A2 is neces-
sary to ensure that CP,α(D,X ;h) is independent of the values {α�}.

To see that A3 is necessary as well, assume that measdX
(X ∩Y�∗) = 0. We

choose a function u which is one on Y�∗ . Since the average functional v �→ vX ,αtr is
independent of α�∗ , we can prescribe values of u on X such that uX ,αtr = 0 and
continuously extend u into D ⊂ Y�∗ . The whole construction of u is independent
of α�∗ , Since ∇u = 0 on Y�∗ , the seminorm |u|H1(D),α is independent of α�∗ as well.

However, ‖u‖2
L2(D),α ≥α�∗ |Y�∗ |. Therefore, if α ≤αk on D\Y�∗ , then CP,α(D,X ;h)=

O
(α�∗
αk

)
for α�∗/αk → ∞. This means that Assumptions A2 and A3 in some sense

characterize the robustness of the WPI with weighted average.

3 Robustness Proof of FETI-DP

To analyze the robustness of FETI-DP, we need the following assumption.

Assumption A4. For each subdomain Ωi and for each subdomain edge (face) E of
Ωi, there is a Lipschitz domain Di,E ⊂Ωi, such that E ⊂ ∂Di,E and Assumptions A2
and A3 are satisfied for D = Di,E and X = E . The union of all the regions Di,E

covers a boundary layer Ωi,ηi of width ηi ≥ h of Ωi (see e.g. [6, Definition 2.6]).

Theorem 2. Let Assumptions A1 and A4 hold. Then the condition number κ(M−1 F)
for the FETI-DP method is independent of the values of the coefficient α , in partic-
ular of any non-resolved jumps.

Due to space limitations we only give a sketch of the proof. A detailed proof will
be given in [10], together with a more detailed statement of Theorem 2 that makes
precise the dependence of κ(M−1 F) on geometric parameters, such as the ratios
diam(Ωi)/h and diam(Ωi)/ηi.

Let Hi denote the discrete α-harmonic extension from ∂Ωi to Ωi and let

|w|2S :=
N

∑
i=1

|Hiw|2H1(Ωi),α
.

Then, following [12, Sect. 6.4.3], a bound of the kind

|PD w|2S ≤ ω |w|2S ∀w ∈ W̃ , (9)

where PD := B�D B, implies that κ(M−1 F)≤ ω .
As in the proof of [9, Lemma 5.6; formula (5.24)], we can introduce a set of

cut-off functions associated with each subdomain edge (face) E whose support is
contained in Di,E . It then follows that, for any w ∈ ŴΠ ⊕WΔ ,

|PD w|2S ≤ C
N

∑
i=1

[
|Hiwi|2H1(Ωi),α

+∑
E

1
diam(Ωi)2 ‖Hiwi−wi

E ‖2
L2(Di,E ),α

]
,

where C depends on diam(Ωi)/h and diam(Ωi)/ηi, but it is independent of the values
{α�}. By Theorem 1, we can bound each of the weighted L2 norms by the weighted
H1 seminorm of Hiwi, and thus obtain (9).
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α1

α1

1 α

−1α

α 2
−1

Fig. 2. Edge-island (left), cross-point island (middle), complicated coefficient (right)

α condition #iterations
1 1.58 10

101 1.57 10
103 1.56 10
105 1.56 10
107 1.56 10

10−1 1.70 10
10−3 1.74 10
10−5 1.74 10
10−7 1.74 11

α condition #iterations
1 1.58 10

101 1.59 10
103 1.59 10
105 1.59 10
107 1.59 10

10−1 1.57 10
10−3 1.57 10
10−5 1.57 10
10−7 1.57 10

α condition #iterations
1 1.58 10

101 1.61 11
102 1.62 11
103 1.62 11
104 1.62 11

10−1 1.62 11
10−2 1.60 11
10−3 1.59 11
10−4 1.59 11

Table 1. Edge-island (left), crosspoint-island (middle), complicated coefficient (right), H/h=
32.

4 Numerical Results

We provide results for the three examples shown in Fig. 2. Note that in the last
example, the coefficient is not quasi-monotone on one of the subdomains, but sat-
isfies Assumptions A1 and A4. In our implementation we used PARDISO [11].
The estimated condition numbers and the number of PCG iterations are displayed
in Table 1. They clearly confirm Theorem 2.

5 Conclusion

We analyse a FETI-DP method for the scalar elliptic PDE (1) with possible jumps in
the diffusion coefficient alpha. We show that provided weighted edge/face averages
are used, the condition number of the preconditioned system is independent of coef-
ficient jumps. The essential assumptions are A1 and A4, i.e., the coefficient does not
jump both across and along any interfaces between two subdomains and the coeffi-
cient is quasi-monotone in the vicinity of any edge/face within each subdomain. The
key theoretical tool that is of interest in itself is a novel weighted Poincaré inequality
for functions with suitably chosen vanishing weighted face/edge averages. We are
able to show that under Assumption A4, the Poincare constant of each neighborhood
Di,E can be bounded independent of jumps.
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As in our previous work [8], the Poincaré constants (and thus also the condition
number) will also depend on the “geometry” of the coefficient variation. In partic-
ular, for piecewise constant coefficients it will in general depend on the geometry
of the subregions where the coefficient is constant. We did not give details of this
dependence here, but this will be done in an upcoming paper [10] (using [8]). Cases
where the coefficient jumps both along and across subdomain interfaces appear to be
substantially harder to be treated and are also the subject of our future investigations.

Acknowledgments The authors would like to thank Clark Dohrmann for the fruitful discus-
sions during and after the DD20 conference.
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Summary. In this paper, a particular technique for the application of elementary multilevel
ideas to problems with warped boundaries is studied in the context of the numerical simulation
of elastic contact problems. Combining a general multilevel setting with a different perspec-
tive, namely an advanced geometric modeling point of view, we present a (monotone) multi-
grid method based on a hierarchy of parametric finite element spaces. For the construction, a
full-dimensional parameterization of high order is employed which accurately represents the
computational domain.

The purpose of the volume parametric finite element discretization put forward here is
two-fold. On the one hand, it allows for an elegant multilevel hierarchy to be used in precon-
ditioners. On the other hand, it comes with particular advantages for the modeling of con-
tact problems. After all, the long-term objective lies in an increased flexibility of hp-adaptive
methods for contact problems.

1 Introduction

In the numerical simulation of elastic contact problems, the treatment of the non-
penetration conditions at the potential contact boundary is of particular importance
for both the quality of a finite element approximation and the overall efficiency of the
algorithms. A vital challenge is to achieve an accurate description of geometric fea-
tures, e.g., of warped surfaces, often incorporated in three-dimensional models from
computer-aided design (CAD). Here, we investigate a new connection of different
numerical methods, namely modern discretization techniques for partial differential
equations on complex geometries on the one side and fast multilevel solvers for con-
strained minimization problems on the other side.

It is fair to say that the development of hp-adaptive methods for contact prob-
lems has not yet reached a mature state; see, e.g., [2] and the references therein.
Partly, this is due to the difficulties concerning the geometric representation of the
computational domain. A generally accepted paradigm is, though, that high order (fi-
nite element or boundary element) methods need high order meshes [11, 14]. This is
especially difficult for three-dimensional multi-body contact problems. In this case,
the application of non-conforming domain decomposition techniques [16] to realize
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an optimal information transfer across geometrically non-matching warped contact
interfaces is a highly demanding task. For low order finite elements, this has been
achieved, among others, by the authors; see [6].

The perspective we offer here is a parametric finite element method. For hp-
adaptive methods, it is convenient to have a parameterization describing the geometry
accurately ready to hand. This is because a change of the computational domain
due to locally altered polynomial degree is not desirable. Therefore, it is reasonable
to uncouple the representation of the geometry on the one hand and of a scale of
approximation spaces for the discrete solution on the other hand. These two purposes
are usually not separated properly. But of course, one can find curved elements of
other than isoparametric structure in some form or another in the literature; see, e.g.,
[8, 17] or the monograph [3] and the references therein. Note that, for similar reasons,
an “isogeometric” concept, which uses NURBS bases for both the description of the
geometry and the discrete solution of the differential equation, has been introduced
in [11].

For practical computations, the development of fast and robust solvers is equally
important. As this issue has not yet been in the main focus of, e.g., the isogeometric
analysis [11], we would like to contribute ideas from the field of multilevel meth-
ods for variational inequalities. More precisely, we show how to use a monotone
multigrid method to efficiently solve the non-linear contact problem discretized with
low order parametric finite elements. Note that the actual treatment of higher order
elements is beyond the scope of the present discussion.

To obtain multilevel parametric finite element spaces in case d = 3, we use a
full-dimensional parameterization, constructed by tetrahedral transfinite interpola-
tion [15] of CAD data, to lift standard Lagrange elements to the computational do-
main. Note that, similarly, a surface parameterization has been used in a wavelet
Galerkin scheme for boundary integral equations; see [10]. Such a procedure may
serve as an essential prerequisite to tackle the problems mentioned above. In par-
ticular, many of the issues arising in the generation of p-version meshes for curved
boundaries [14] can be avoided in a quite elegant way. In this sense, although rather
expensive, the use of a high order parameterization permits maximal freedom in an
hp-adaptive discretization scheme. We presume that the present concept can also be
combined with the ideas in [6].

All in all, our results constitute real progress made in the development of an
efficient hp-adaptive simulation environment for elastic contact problems in case of
complex three-dimensional geometries.

2 Parametric Finite Elements

In this section, we introduce a parametric finite element discretization. On the one
hand, this method uses much more geometric information from a CAD model than
standard finite elements; on the other hand, we do not use the same functions for the
discrete approximation of the displacement field as for the representation of the ge-
ometry, which is done in the so-called “isogeometric analysis” introduced in [11]. We
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use the associated space hierarchy in Sect. 3 to build a monotone multigrid method
for low order elements.

In the following, the symbols ϕ with some indices stand for certain full-dimen-
sional parameterizations or finite element transformations. We denote the (closed)
d-simplex by Δd and its faces by Δd

j , j ∈ {1, . . . ,d + 1}. To describe the elastic
body (here, d = 3) by a practicable parameterization, we consider a non-overlapping
simplicial decomposition of the computational domain Ω ⊂ R

d into a fixed number
of K ≥ 1 subdomains. Formally this reads as

Ω =
K⋃

k=1

Ω k =
K⋃

k=1

ϕk(Δd),

where the notation already indicates that the subdomains (Ωk)k=1,...,K appear as par-
ticular images of the simplex Δd under suitable parameterizations (ϕk)k=1,...,K . This
is illustrated in Fig. 1 (right).

Let us assume that the faces of the simplicial cells Ωk, namely the surfaces
ϕk(Δd

j ), k ∈ {1, . . . ,K}, j ∈ {1, . . . ,d + 1}, are given as B-patches. This way to rep-
resent polynomial surfaces is analyzed in [4]. In this case, the author of [15] pro-
poses to construct the full-dimensional mappings ϕk : Δd → R

d , k ∈ {1, . . . ,K}, as
transfinite interpolations of the surface values from the CAD model using certain
blending functions. Particularly, the single parameterizations are smooth and they
match across these B-patch surfaces if the surfaces themselves match. This gives rise
to a consistent global parameterization which we do not write down explicitly. We
note that this global mapping is continuous but not necessarily differentiable across
the interior interfaces. In addition, one can guarantee that each parameterization ϕk

satisfies the regularity assumption

det(∇∇∇ϕk)> 0 in Δd . (1)

In fact, this is one of the main results of [15].
In the following, we define the parametric finite element spaces in a rather

straightforward way via a lift of standard Lagrange finite elements. For this purpose,
let (T k

� )�∈N be a family of nested simplicial meshes of Δd for each k ∈ {1, . . . ,K}.
To keep the global finite element spaces conforming, we assume that, at each level
� ∈N, the meshes meeting at the faces of the simplicial subdomainsΩk of Ω match.
Let T̂ be the reference element; here, T̂ = Δd . Then, for each TΔ ∈ T k

� , there is an
affine mapping ϕTΔ : T̂ → Δd such that ϕTΔ (T̂ ) = TΔ .

Now, we give a concise description of the parametric elements in Ω by employ-
ing the special finite element transformations

ϕT := ϕk ◦ϕTΔ : T̂ → R
d , (2)

which are diffeomorphisms between the reference element T̂ and the actual elements.
That way, the parametric elements at level �∈N are identified as the images of the el-
ements of the meshes (T k

� )k=1,...,K ; see Fig. 1. More precisely, a family of parametric
meshes (T�)�∈N of Ω can be defined by
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T k

Fig. 1. From left to right: the reference element T̂ = Δ 3; a mesh of the simplex Δ 3; a para-
metric mesh (here, K = 1) where each element is an image of an affine element; a tetrahedral
decomposition of a cylinder with K = 8

T� :=
{

T = ϕT (T̂ ) = ϕk(ϕTΔ (T̂ )) | 1≤ k≤ K, TΔ ∈ T k
�

}
, ∀ � ∈N.

Assume that this family of global meshes is shape regular and quasi-uniform. Note
that assumption (1), combined with the continuous differentiability of the mappings
(ϕk)k=1,...,K in the compactum Δd , implies that it is sufficient to ensure these regu-
larity conditions for each sequence (T k

� )�∈N separately as far as we keep K fixed.
Finally, let P := Pr(T̂ ) be the space of polynomials of degree r in T̂ . Then, for

� ∈N, the parametric finite element space associated with the parametric mesh T� is

X� :=
{

v ∈ C 0(Ω) | ∀ T ∈ T� ∃ w ∈ P : v(xxx) = w(ϕ−1
T (xxx)), ∀ xxx ∈ T

}
=
{

v ∈ C 0(Ω) | v◦ϕT ∈ P, ∀ T ∈ T�

}
.

(3)

Note that, in principle, the above definition makes sense for any reasonable set of
finite element transformations (ϕT )T∈T�

. In case the mappings are constructed as
in (2) via the high order parameterization from [15], this is a “superparametric” con-
cept if the degree r is small. This is in contrast to the subparametric or isoparametric
finite elements which are usually considered in the literature; see [3].

From a practical point of view, virtually every kind of parameterization can be
employed with the following qualification. For an efficient assembly of the stiffness
matrix and the right hand side via sufficiently accurate (at best exact) numerical
quadrature, the derivatives of the resulting finite element transformations (2) and the
mappings themselves must be easy to evaluate; see, e.g., [1].

Discretization of Signorini’s Problem

Let us now apply the above concept to a contact problem in elasticity to find the
deformation of a linear elastic body Ω in contact with a rigid obstacle. For this
purpose, let the boundary be decomposed into pairwise disjoint parts: ∂Ω = ΓD ∪
Γ N ∪ΓC. Assume that the Dirichlet boundary ΓD is of positive Lebesgue measure in
dimension d−1. Moreover, the condition ΓC ∩ΓD = /0 may hold.

Let nnn be the outer normal vector field on ∂Ω ∈ C 1; the initial gap to the rigid
obstacle in this direction is given as a function g : ΓC → R≥0. Then, for sufficiently
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smooth prescribed volume and surface force densities fff = ( fi) and ppp = (pi), the
displacement field uuu :Ω →R

d solves the boundary value problem

−σi j(uuu), j = fi in Ω ,
uuu = 000 on ΓD,

σi j(uuu)n j = pi on ΓN ,
uuu ·nnn ≤ g on ΓC,

(4)

where σi j(uuu) = Ai jlmul,m are the stresses and A = (Ai jlm) is Hooke’s tensor. The
existence of a unique weak solution follows from Lions’ and Stampacchia’s lemma.

We use the vector-valued parametric finite element space XXX� := (X�)
d defined

by (3) with r = 1 and denote the set of nodes by N�. As usual, the non-penetration
conditions on the possible contact boundary ΓC are merely enforced at the potential
contact nodes N C

� = N�∩ΓC; see below. Then, a discretization of Signorini’s prob-
lem (4) with one-sided constraints is obtained by specifying a variational inequality

find uuu� ∈ KKK� such that a(uuu�,vvv−uuu�)≥ f (vvv−uuu�), ∀vvv ∈ KKK�, (5)

on a suitable set of admissible displacements

KKK� :=
{

vvv ∈ XXX � |vvv = 000 on ΓD, (vvv ·nnn)(p)≤ g(p), ∀ p ∈N C
�

}
.

In the discrete variational inequality (5), the (bi-)linear forms a and f represent-
ing the elastic energy and the applied forces, respectively, are given by a(uuu,vvv) :=∫
Ω Ai jlmul,mvi, j dxxx and f (vvv) :=

∫
Ω fivi dxxx+

∫
ΓN

pivi daaa.
Although, from a modeling point of view, as much geometric information as

possible should be used for an accurate description of contact phenomena, we re-
mark that a strong pointwise non-penetration condition everywhere on ΓC is usually
not suitable for the variational formulation on which the (parametric) finite element
method relies. Besides, a decoupled set of constraints is preferable for a variety of
reasons. The common remedy is to prescribe the contact constraints with respect to
a suitable cone of Lagrange multipliers. This requires the introduction of appropri-
ate sets of functionals in (H

1
2 (ΓC))

′. To retain inequality constraints which can be
enforced merely by looking at the nodes, one can employ discontinuous test spaces
described, e.g., in [7].

The quality of a priori error estimates for the above discretization certainly de-
pends on a number of aspects which have to be examined more closely. Beside reg-
ularity assumptions for the continuous solution, the balance of the primal degrees of
freedom and the constraints by means of an inf-sup condition and certain properties
of the parameterization, e.g., the regularity (1), influence the error analysis.

3 Monotone Multigrid Method for Parametric Elements

Similarly to some of the approaches reviewed in [5, Chap. 4], the scale of paramet-
ric finite element spaces constitutes an adjusted discretization technique which al-
lows for an almost straightforward application of multilevel ideas. In this section, we
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examine the constructed space hierarchy, which we presume to possess the required
approximation properties, and the corresponding natural transfer operators in a little
more detail.

For the solution of the discrete variational inequality, we propose a monotone
multigrid method [12]; see [13] for an overview of this and other solution strategies
for contact problems and more references. Here, the non-penetration conditions at
the potential contact nodes are treated by a non-linear block Gauß–Seidel smoother
at the finest level L. Let ũuu∈ KKKL be a preliminary approximate solution (i.e., a current
admissible iterate). Then, in the next step, a linear multilevel preconditioner depend-
ing on ũuu is employed, which acts only on the space {vvv ∈ XXXL |(vvv · nnn)(p) = 0, ∀ p ∈
N C

L with (ũuu · nnn)(p) = g(p)}. The construction of the required coarse spaces from
the spaces (XXX�)�<L involves local modifications of the coarse level matrices resulting
from recursively truncated basis functions; see, e.g., [13].

By construction, the spaces defined by (3) are nested. This is an immediate con-
sequence of the fact that the parameterization is fixed and does not change with the
index �. Still, let us formulate this statement in the following lemma and give an
elementary proof of the assertion.

Lemma 1. The parametric finite element spaces (X�)�∈N are nested.

Proof . For �≥ 1, let v ∈ X�−1 be arbitrary. Then, for T ∈ T�−1 there is a unique ele-
ment TΔ ∈T k

�−1 for some k∈{1, . . . ,K} such thatϕk(TΔ )= T . Let (T i
Δ )i=1,...,N be the

children of TΔ in T k
� . In general, 1≤N ≤ 2d; in case of standard uniform refinement

of the simplices, it is N = 2d . We have the corresponding set of elements (T i)i=1,...,N

in T� with T i = ϕk(T i
Δ ) for i ∈ {1, . . . ,N}. By assumption, v◦ϕT = v◦ϕk ◦ϕTΔ ∈ P.

Therefore, it is v ◦ϕT i = v ◦ϕk ◦ϕT i
Δ
∈ P because T i

Δ ⊂ TΔ and the finite element
transformations are affine. As each element of T� appears as the child of an element
in T�−1 in the above fashion, we obtain v∈ X�. Consequently, X�−1⊂ X� for all �≥ 1.

Therefore, no advanced transfer concepts need to be studied here as the canonical
inclusion I �

�−1 : X�−1 → X� is the most natural operator to be used as prolongation.
Note that these operators only depend on the logical structure; as in the standard
nested case, the representing matrices contain the entries 0, 0.5 and 1 and may be
computed from the neighborhood relations in and between the simplicial meshes
(T k

�−1)k=1,...,K and (T k
� )k=1,...,K . This is because the respective multilevel basis is

defined via a lift by proceeding as in (3). As a result, for a fixed finest level L, the
computation of the matrices I��−1 ∈R

|N�|×|N�−1| for �∈ {1, . . . ,L} between the nested
spaces (X�)�=0,...,L does not need the parameterization. However, the computation of
the outer normals (nnn(p))p∈N C

L
and also of the values (g(p))p∈N C

L
for the prescription

of the contact constraints may require access to the mappings (ϕk)k=1,...,K .
We anticipate that the constructed coarse spaces have the desired multilevel ap-

proximation properties. More precisely, under mild assumptions on the employed
parameterization mappings (ϕk)k=1,...,K , the relevant Jackson- and Bernstein-type in-
equalities transfer from the standard finite element spaces to the parametric spaces;
see also [9].
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L #elements #dof #steps ρ̃ |AL|
0 96 107 8 (2) 0.032 3
1 768 615 10 (3) 0.031 15
2 6,144 3,915 11 (4) 0.065 58
3 49,152 27,795 13 (6) 0.091 199
4 393,216 209,187 14 (6) 0.102 753
5 3,145,728 1,622,595 15 (8) 0.114 2,984

Fig. 2. Contact problem of a parameterized cylinder with a rigid obstacle shaped like a broad
channel. The colors indicate the displacement in eee3-direction. Problem (5) is solved by a
conjugate gradient method preconditioned by the monotone multigrid method (V (3,3)-cycle)

Finally, we point out that no modifications are necessary in the code of the solver
provided that the local normal/tangential coordinate systems can be computed from
the parameterization. Consequently, a monotone multigrid method can be employed
for contact problems discretized with parametric finite elements in the quite straight-
forward way outlined above. Figure 2 shows a numerical example illustrating the
performance of the method for d = 3. The number of active nodes where the con-
straints are binding is denoted by |AL|. We report on the asymptotic convergence rate
ρ̃ of a conjugate gradient method preconditioned by the monotone multigrid method
(V (3,3)-cycle). Starting with the initial iterate zero at each refinement level (i.e.,
no nested iteration), we list the number of total steps needed to reduce the norm of
the residual to less than 10−10. The count of included non-linear steps is given in
brackets (e.g., for L = 5, the active set is found after 8 of the 15 cycles such that the
remaining 7 steps are linear). Note that the pcg error reduction rate ρ̃ corresponds to
this linear iteration phase where the active set has already been identified.

4 Conclusion

The results described in this paper certainly have preliminary character; the perfor-
mance of the presented algorithms needs to be studied in more detail. This is work in
progress. However, the experiments so far show that (monotone) multigrid methods
based on parametric finite elements work as expected; see Fig. 2. Still, the effort of
constructing a (high order) parameterization by the methodology developed in [15]
especially pays if there is also a considerable gain on the modeling side. Here, the
effect of this special resolution of the boundary on the discrete approximation of con-
tact phenomena or general boundary effects needs to be investigated more closely.
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Summary. We review our results obtained by application of the TFETI domain decomposi-
tion method to implement the time step of the Newmark scheme for the solution of transient
contact problems without friction. If the ratio of the decomposition and discretization param-
eters is kept uniformly bounded as well as the ratio of the time and space discretization, then
the cost of the time step is proved to be proportional to the number of nodal variables. The
algorithm uses our MPRGP algorithm for the solution of strictly convex bound constrained
quadratic programming problems with optional preconditioning by the conjugate projector
to the subspace defined by the trace of the rigid body motions on the artificial subdomain
interfaces. The optimality relies on our results on quadratic programming, the theory of the
preconditioning by a conjugate projector for nonlinear problems, and the classical bounds
on the spectrum of the mass and stiffness matrices. The results are confirmed by numerical
solution of 3D transient contact problems.

1 Introduction

The transient multibody contact problems are important in many applications aris-
ing in mechanical or civil engineering. However, it is not easy to provide a useful
solution to realistic problems. The reasons include the lack of smoothness, which
puts high demand on the construction of effective time discretization schemes, the
strong nonlinearity arising from the non-interpenetration boundary conditions, and
large dimension of the problems resulting from the space discretization. These com-
plications stimulated extensive research activities both from the theoretical point of
view (see, e.g., [4]), or the numerical point of view (see, e.g., [10], or [11]).

Numerical solution of transient contact problems usually comprises several steps.
Starting from a week formulation of the conditions of equilibrium and boundary
conditions, the problem is first discretized in space by the finite element method in
a similar way as the related static problem. The resulting semidiscrete problem is then
discretized by a suitable time discretization scheme. The time integration requires a
special attention to guarantee stability of the algorithm and to avoid non-physical
oscillations that result from application of the standard time discretization methods
for unconstrained problems. Such schemes were proposed by many authors (see [6,
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7, 9, 10]). In our approach, we use a combination of the standard finite element space
discretization with the contact stabilized Newmark scheme introduced by Krause and
Walloth [9] that reduces the solution of the transient contact problem to a sequence
of strictly convex quadratic programming (QP) problems with inequality constraints
that describe the non-interpenetration conditions.

The final step amounts to the solution of QP problems of large dimension, pos-
sibly with millions of nodal variables and many inequality constraints. In this paper
we propose to resolve the auxiliary problems by our variant of the FETI domain de-
composition method called TFETI (total finite element tearing and interconnecting,
Dostál et al. [1]). Our research has been motivated by our recent results in develop-
ment of optimal algorithms for the frictionless static problems [1] that combine ef-
fective FETI preconditioning of both linear and nonlinear steps with our algorithms
for the solution of bound constrained QP problems [3]. An important feature of our
QP algorithms is the error estimate in terms of the bound on the condition number of
the Hessian matrix of the cost function.

2 Transient Contact Problem and Its Discretization Using TFETI

The starting point of our exposition is the discretized transient multibody contact
problem resulting from application of our TFETI domain decomposition. The reason
is that a little is known about the solvability of the weak formulation of the transient
contact problem (see, e.g., [4]), so we shall assume in what follows that its solution
u exists. Moreover, we shall assume that u is sufficiently smooth so that ü exists in
some reasonable sense and can be approximated by finite differences. More specific
choice of the solution space can be found, e.g., in [4] or in [6].

To discretize the multibody contact problem using TFETI, we tear each body
from the part of the boundary with the Dirichlet boundary conditions, decompose
each body into subdomains, assign each subdomain a unique number, and introduce
new “gluing” conditions on the artificial subdomain interfaces and on the boundaries
with imposed Dirichlet conditions. We denote the subdomains and their number by
Ω p and s, respectively. The gluing conditions require continuity of the displacements
and of their normal derivatives across the subdomain interfaces. The procedure is the
same as that for the static problem, [1].

Using finite element discretization in space we get the following semidiscrete
problem at time τ

Mü+Ku = f−BT
I λλλ

T
I −BT

EλλλE , (1)

BIu≤ cI, BE u = cE , λλλ I ≥ o, λλλ T (Bu− c) = 0, (2)

with the discrete Newton equation of motion (1) and the equality and inequality con-
straints (2) resulting from the gluing, Dirichlet, and non-interpenetration conditions
enforced by Lagrange multipliers.

The TFETI based finite element semi-discretization in space of the subdomains
Ω p, p = 1, . . . ,s, results in the block diagonal stiffness matrix K = diag(K1, . . . ,Ks)
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of the order n with the sparse positive semidefinite diagonal blocks Kp that corre-
spond to the subdomainsΩ p. The same structure has a positive definite mass matrix
M = diag(M1, . . . ,Ms). The decomposition induces also the block structure of the
vector of nodal forces f = fτ ∈ R

n at time τ and the vector of nodal displacements
u = uτ ∈ R

n at time τ .
The matrix BI ∈ R

mI×n and the vector cI ∈ R
mI describe the linearized non-

interpenetration conditions and the matrix BE ∈ R
mE×n and the vector cE ∈ R

mE

enforce the prescribed zero displacements on the part of the boundary with imposed
Dirichlet condition and the continuity of the displacements across the auxiliary in-
terfaces.

Finally, λλλ I ∈R
mI and λλλE ∈R

mE denote the components of the vector of Lagrange
multipliers λλλ = λλλτ ∈ R

m, m = mI +mE at time τ . We use the notation

λλλ =

[
λλλ I

λλλE

]
, B =

[
BI

BE

]
, and c =

[
cI

cE

]
. (3)

For the time discretization, we use the contact-stabilized Newmark scheme intro-
duced by Krause and Walloth [9] with the regular partition of the time interval [0,T ],
0 = τ0 < τ1 . . . < τnT = T, τk = kΔ , Δ = T/nT , k = 0, . . . ,nT . The scheme
assumes that the acceleration vector is split at time τk into two components

ük = üint
k + ücon

k , üint
k = M−1 (fk−Kuk) , and ücon

k =−M−1BTλλλ k. (4)

We obtain the solution algorithm in the form

Algorithm 2.1 Contact-stabilized Newmark algorithm.

Step 0. {Initialization}
Set u0, u̇0, K̃ = 4

Δ2 M+K, T > 0, nT ∈N, and Δ = T/nT .

for k = 0, . . . ,nT −1 do

Step 1. {Predictor displacement computation}

min

[
1
2

(
upred

k+1

)T
Mupred

k+1 −
(

Muk +ΔMu̇k−BTλλλ pred
k

)T
upred

k+1

]

subject to BIu
pred
k+1 ≤ cI, and BE upred

k+1 = cE

Step 2. {Contact-stabilized displacement computation}

min

[
1
2 uT

k+1K̃uk+1−
(

4
Δ2 Mupred

k+1 −Kuk + fk + fk+1−BTλλλ k

)T
uk+1

]

subject to BIuk+1 ≤ cI and BE uk+1 = cE

Step 3. {Velocity evaluation}

u̇k+1 = u̇k +
2
Δ

(
uk+1−upred

k+1

)
end

The matrix K̃ introduced in Step 0 is called an effective stiffness matrix. Let us
note that we omit the factor ‘1/2’ in the term BTλλλ pred

k in the predictor step.
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3 Optimal Solver with Bound on the Condition Number of the
Hessian of the Dual Energy Function

The favorable distribution of the spectrum of the mass matrix M is sufficient to
implement Step 1 by using the dual theory and the standard MPRGP algorithm des-
cribed in [3] with asymptotically linear complexity. To develop an optimal algorithm
for Step 2, we shall distinguish two cases. If the time steps are sufficiently short, then
the effective stiffness matrix can be considered as a perturbation of the well condi-
tioned mass matrix, so it is enough to use again our MPRGP algorithm to prove
the numerical scalability and demonstrate it by numerical experiments. On the other
hand, if we use longer time steps, the effective stiffness matrix has very small eigen-
values which obviously correspond to the eigenvectors that are near the kernel of K.
This observation was fully exploited for linear problems by Farhat et al. [5] who used
the conjugate projectors to the natural coarse grid to achieve scalability with respect
to the time step. Unfortunately, this idea can not be applied in full extent to the con-
tact problems as we do not know a priori which boundary conditions are applied to
the subdomains associated with the contact interface. However, we can still define
the preconditioning by the trace of the rigid body motions on the artificial subdomain
interfaces. To implement this observation, we use our preconditioning by conjugate
projector for partially constrained strictly convex quadratic programming problems
of the form

min
λλλ

1
2
λλλ T F̃λλλ − λλλ T d subject to λλλI ≥ o (5)

which arises directly from the application of the dual theory on the problem in Step
2 of Algorithm 2.1. Such a method complies with our MPRGP-P algorithm for the
solution of strictly convex bound constrained problems described in [3]. We keep the
iterations in the subspace with the solution which is defined by the trace of the rigid
body motions on the artificial interfaces between subdomains excluding the contact
interface. Even though the necessity to keep the coarse grid away from the contact
interface prevented us from proving the optimality with respect to the time step, we
give the proof of optimality of our algorithm provided the ratio of the time step and
the space discretization parameter is kept uniformly bounded and show that the opt-
imality can be observed by numerical experiments (see [2] for details). Moreover,
MPRGP-P algorithm has the rate of convergence in terms of the norm of the pro-
jected gradient and the bound on the condition number of the Hessian matrix of the
cost functional. Therefore all we need to guarantee optimality is a uniform bound on
the condition number of the Hessian.

In [2], we used the standard arguments to prove the following lemma which gives
the required bound.

Lemma 1. Let B1‖λλλ‖2 ≤ ‖BTλλλ‖2 ≤ B2‖λλλ‖2 and let the elements have a regular
shape and size. Then

C1
h2Δ2

hd (h2 +Δ2)
‖λλλ‖2 ≤ λλλ T F̃λλλ ≤C2

Δ2

hd ‖λλλ‖2, (6)
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with constants B1, B2, C1, and C2 independent of h, H, and Δ . Moreover, if C > 0 is
any constant, then for any 0 < Δ ≤Ch the condition number κ(F̃) satisfies κ(F̃) ≤
C2
C1
(1+C2).

4 Numerical Experiments

The described algorithms were implemented in MatSol library [8] developed in Mat-
lab environment and tested on the solution of 3D frictionless transient contact prob-
lems. For all computations we used the HP Blade system, model BLc7000 and as
parallel programming environment we used Matlab Distributed Computing Engine.
All the computations were carried out with the relative stopping tolerance ε = 10−4.

a) Von Mises stress in 1 [MPa] 1 [MPa]b)Contact pressure in 

Fig. 1. Results of 3D benchmark
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3D impact problem
Our first academic benchmark is a 3D impact between the curved 3D elastic boxes
of size 10 (mm) depicted in Fig. 1. Material constants are defined by the Young mod-
ulus E = 2.1 ·105 (MPa), the Poisson ratio ν = 0.3, and the density ρ = 7.85 ·10−9

(ton/mm3). The initial gap between the curved boxes is set to 0.001 (mm). We pre-
scribe the initial velocity −1,000 (mm/s) on the upper body in the x3 direction. The
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upper body is floating in space and the lower body is fixed along the bottom side. The
linearized non-interpenetration condition was imposed on the contact interface. For
the time discretization, we use Algorithm 2.1 with the constant time step Δ = 4 ·10−7

and solve the impact of bodies in the time interval τ = [0,45Δ ].
The von Mises stress distribution and the normal contact pressure along the con-

tact interface in time τ1 = 22Δ are depicted in Figs. 1a, b, respectively. The energy
development is shown in Fig. 2. We can see the constant total energy curve as ex-
pected.

In Table 1, we report the numerical scalability of our algorithm for the constant
time step Δ1 = 1 ·10−3 and Δ2 = 1 ·10−5 and with or without conjugate projectors.
We kept H/h = 10. Moreover, in last two lines of the table, we report the same
characteristics but with the time step dependent on the discretization step h, i.e.,
Δ1,h = 3hΔ1.

We can observe that the number of matrix-vector multiplications, the most ex-
pensive component of our algorithm, stays constant for the smaller time step Δ2 as
expected and increases only mildly in agreement with the theory for the case of the
larger time step Δ1 if we use conjugate projectors. If we simultaneously choose the
time step Δ proportional to h, i.e., Δ = Δh, then the number of matrix-vector multi-
plications stays the same as predicted by the theory.

Parallel scalability of our algorithm is depicted in Fig. 3, where we keep the num-
ber of elements fixed and increase the number of CPUs (subdomains).

Number of subdomains 16 54 128 250
Primal variables 196 608 663 552 1 572 864 3 072 000
Dual variables 21 706 81 652 214 699 443 920

Hessian multiplications
MPRGP Δ1 67 86 113 191
MPRGP - P Δ1 60 67 85 112
MPRGP Δ2 39 40 40 42
MPRGP - P Δ2 40 40 40 42
MPRGP Δ1,h 67 72 76 78
MPRGP - P Δ1,h 60 63 67 69

Table 1. Numerical scalability of 3D impact problem - Δ constant or dependent on h

Impact of three bodies
We have also tested our algorithms on the impact of three bodies. We considered the
transient analysis of three elastic bodies in mutual contact (see Fig. 4). We prescribe
the initial velocity 5,000 (mm/s) on the sphere in the x1 direction. The L-shape body
is fixed along the bottom side. Material constants are defined by the Young mod-
ulus E = 2.1 · 103 (MPa), the Poisson ratio ν = 0.3, and the density ρ = 6 · 10−9

(ton/mm3). For the time discretization, we use the constant time step Δ = 1 ·10−3 (s)
and solve the impact of bodies in the time interval τ = [0,150Δ ] (s). The total dis-
placement in times τ1 = 20Δ and τ2 = 80Δ (s) of the problem discretized by 1.2 ·105
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primal and 8.5 ·103 dual variables and decomposed into 32 subdomains using METIS
is depicted in Fig. 4.

a) Total displacement in ¿1 b) Total displacement in ¿2

Fig. 4. Impact of bodies in time
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Summary. Analysis of material interfaces in composite materials is in the center of atten-
tion of many material engineers. The material interface influences significantly the overall
behaviour of composite materials. While the perfect bond on material interface is modelled
without larger difficulties, the imperfect bond between different components of composite ma-
terials still causes some obstacles. This contribution concentrates on application of the FETI
method to description of the imperfect bond.

1 Introduction

The overall behavior of the engineering materials and structures is significantly af-
fected or even dominated by the presence of interfaces, i.e. internal boundaries aris-
ing from material discontinuities. Therefore, considerable research efforts within the
engineering community have been focused to adequately describe and simulate the
interfacial behavior under general loading conditions. A successful approach to this
problem is offered by the cohesive zone concept published in reference [3], in which
the bulk material is assumed to be damage-free, whereas the interface response is
described by means of inelastic damage law. The interface model itself is formulated
in terms of displacement jumps and cohesive tractions bridging the interface, with
the elastic stiffness as the basic constitutive parameter. Initially, the stiffness is set
to a large value (modeling almost perfect bonding) that gradually decreases with in-
creasing load. For the standard displacement-based finite element approximations,
this gives a rise to numerical difficulties manifested in oscillations of interfacial trac-
tions for stiff interfaces and non-physical penetration of adjacent bodies for imperfect
bonding. The purpose of this contribution is to demonstrate that these limitations can
be overcome by duality solvers based on FETI method.

2 Interface Model

The constitutive description adopted in this work is based on the Ortiz-Pandolfi
model proposed in [7]. Detailed description of the model of the imperfect material
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interface can be found in reference [2]. The model is based on three state variables,
namely the domain displacement field, u( j)(x), the interfacial displacement jump,
[[u(i, j) ]](x), and the interfacial damage parameter, ω(i, j)(x). The superscript ( j) de-
notes the subdomain number while the two superscripts (i, j) denote the interface
between the i-th and j-th subdomains.

The kinematics of the interface is quantified by the normal and tangential com-
ponent of the displacement jump, provided by

[[u(i, j)n ]](x) = [[u(i, j) ]](x) ·n( j)(x), (1)

where n( j)(x) denotes the normal vector and the tangential component is in the form

[[u(i, j)
t ]](x) = [[u(i, j) ]](x)− [[u(i, j)n ]](x)n( j)(x). (2)

Note that the non-penetration condition hold, i.e. the normal component must remain
non-negative. Following [3], these quantities are combined into an effective opening

δ (x, [[u(i, j) ]](x)) =
√

[[u(i, j)n ]]2(x)+β 2‖[[u(i, j)
t ]](x)‖2 (3)

in which β denotes a constitutive parameter, also called the mode mixity parameter,
to be determined. This gives rise to an equivalent effective traction, σ , see [7]. In
addition, the state of an interface is quantified by an internal damage variable, ω ,
with ω(x) = 0 corresponding to a perfect bonding at x, whereas ω(x) = 1 indicates
a fully damaged interface point.

In order to assemble the functional of energy, several energy densities are needed.
The density of internal energy has the form

e( j)
vol(x,u

( j)(x)) =
1
2

(
ε(u( j)(x))

)T
Dε(u( j)(x)), (4)

where ε ( j)(u( j)(x)) denotes the strain, D denotes the stiffness matrix of the material.
The internal energy functional can be written as

E( j)
vol (u

( j)(x)) =
∫
Ω ( j)

e( j)
vol(x,u

( j)(x))dΩ . (5)

The potential energy of external forces has the form

E( j)
ext (u

( j)(x), t) =−
∫
Ω ( j)

u( j)(x) ·b(x, t)dΩ −
∫
Γ ( j)

t

u( j)(x) · t(x, t)dΓ , (6)

where b(x, t) denotes the vector of volume forces, t(x, t) denotes the vector of surface

traction and Γ ( j)
t is the part of the boundary of the j-th subdomain where the surface

tractions are prescribed. The energy-based description involves the stored energy
function defined as

eint(x, [[u ]](x),ω(x)) =
1
2

G
Δ2

1−ω(x)
ω(x)

δ 2, (7)
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where Δ is the critical interface opening and G is the fracture toughness of an inter-
face. This form is consistent with the linear softening law drawn in Fig. 1. Note that
the stiffness associated with a partially damaged interface with the damage parame-
ter, ω , is obtained as a slope of the line 0A. The energy dissipated by changing the
internal variable from ω1 to ω2 is given by

d =

{
G(x)(ω2(x)−ω1(x)) ∀x ∈ Γint : ω1(x)≤ ω2(x),
∞ otherwise,

(8)

where the term ∞ refers to the fact that the damage variable cannot decrease during
the loading process. The interfacial dissipation distance is defined

D(ω1(x),ω2(x)) =
∫
Γint

d(x,ω1(x),ω2(x))dΓ . (9)

The interfacial energy functional has the form

Eint([[u ]](x),ω(x)) =
∫
Γint

eint(x, [[u ]](x),ω(x))dΓ , (10)

where Γint denotes the interface between subdomains.

Δ Δ

G

A

2G=Δ

0

Fig. 1. Interfacial constitutive law

The description of the material interface is based on incremental solution where
the state variables at the k-th step uk−1(x), [[u ]]k−1(x), ωk−1(x) are known. Then,
the energy functional has the form

Πk(u(x), [[u ]](x),ω(x)) =
n

∑
j=1

E( j)
vol (u

( j)(x))+ (11)

n

∑
j=1

E( j)
ext (u

( j)(x))+Eint([[u ]](x),ω(x))+D(ωk−1(x),ω(x))

and the following minimization problem is solved

(uk(x), [[u ]]k(x),ωk(x)) = arg min
(u(x),[[u ]](x),ω(x))

Πk(u(x), [[u ]](x),ω(x)). (12)
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The discretization of displacements and strains has the form

u( j)(x)≈ u( j)
h (x) = N( j)

u,h(x)u
( j)
h , (13)

ε ( j)(x)≈ ε( j)
h (x) = B

( j)
u,h(x)u

( j)
h , (14)

where N( j)
u,h(x) denotes the matrix of basis functions and B

( j)
u,h(x) denotes the strain-

displacement matrix. The displacement jump is discretized in the form

[[u(i, j) ]](x)≈ [[u(i, j)
h ]](x) = N(i, j)

[[u ]],h(x)[[u
(i, j) ]]h (15)

and the damage parameter can be expressed

ω(i, j)(x)≈ ω(i, j)
h (x) = N(i, j)

ω,h (x)ω
(i, j)
h . (16)

After discretization, the functional of energy (11) has the form

Πk(uh, [[u ]]h,ωh) =
1
2

n

∑
j=1

u( j)
h

T
K( j)u( j)

h −
n

∑
j=1

u( j)
h

T
f( j)
h + (17)

+
1
2
[[u ]]Th Kint(ωh)[[u ]]h +ωT

h ph,

where the stiffness matrix has the classical form

K( j) =
∫
Ω ( j)

B
( j)
u,h

T
DB

( j)
u,hdΩ (18)

and the vector of prescribed forces is defined as

f( j)
h =

∫
Ω ( j)

N( j)
u,h

T
(x)b(x)dΩ +

∫
Γ ( j)

t

N( j)
u,h

T
(x)t(x, t)dΓ . (19)

The stiffness matrix of the interface has the form

Kint(ωh) =
∫
Γint

G
Δ2

(
1

Nω,h(x)ωh
−1

)
NT
[[u ]],h(x)βN[[u ]],h(x)dΓ (20)

and the vector ph is expressed as

ph =

∫
Γint

G(x)Nω,h(x)dΓ . (21)

The minimization (12) is done by the alternate minimization approach which can
be written as

(uk(x), [[u ]]k(x),ωk(x)) = argmin
ω(x)

(
min

(u(x),[[u ]](x))
Πk(u(x), [[u ]](x),ω(x))

)
. (22)

The minimization with respect to u(x) and [[u(x) ]] is associated with the Lagrangian
function in the form
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Lk,h(uh, [[u ]]h,λ h) =
1
2

n

∑
j=1

u( j)
h

T
K( j)u( j)

h −
n

∑
j=1

u( j)
h

T
f( j)
h + (23)

+
1
2
[[u ]]Th Kint(ωh)[[u ]]h +λT

h (Bhuh− [[u ]]h).

Note that the displacement jumps [[u ]]h are subject to the non-penetration condition
Bh[[u ]]h ≥ 0. In the current implementation, these constraints are converted to equal-
ities by adopting a simple active set strategy based on the values of the Lagrange
multipliers λ h. There are three stationary conditions

∂Lk,h

∂u( j)
h

= K( j)u( j)
h − f( j)

h +B( j)
u,h

T
λ h = 0, (24)

∂Lk,h

∂λ h
=

n

∑
j=1

B( j)
u,hu( j)

h − [[u ]]h = 0, (25)

∂Lk,h

∂ [[u ]]h
= Kint(ωh)[[u ]]h−λh = 0. (26)

Equation (24) is the equilibrium equation for the j-th subdomain, (25) expresses the
interface conditions and (26) defines the relationship between the Lagrange multipli-
ers and the displacement jumps on the interface.

3 FETI Method

This section summarizes the notation and the basic relationships of the FETI method
which is a non-overlapping domain decomposition method. More details can be
found in references [1, 4] or [5]. The vector of unknowns is denoted by u, the vector
of prescribed forces is denoted by f and the stiffness matrix is denoted by K. Interface
conditions for perfect and imperfect interaction have the form

Bu =

(
Bc

Bs

)
u =

(
0
s

)
= c, (27)

where s denotes the jump between subdomain displacements.
After space discretization, the functional of energy has the form

Π =Π(u,λ ) =
1
2

uT Ku−uT f+λT (Bu− c), (28)

where λ denotes the vector of Lagrange multipliers.
The interface condition and the solvability condition define the coarse problem

(
F G

GT 0

)(
λ
α

)
=

(
d− c

e

)
, (29)

where the well-known notation
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F = BK+BT , G =−BR, d = BK+f, e =−RT f (30)

is used.
In reference [6], a constitutive law for the Lagrange multipliers and the disconti-

nuity was introduced in the form
c = Hλ , (31)

where the compliance matrix, H, was defined. The coarse problem can be rewritten
to the form (

F+H G
GT 0

)(
λ
α

)
=

(
d
e

)
. (32)

The system of equations (32) is solved by the modified preconditioned conjugate
gradient method.

Comparison of (26) and (31) reveals the following equalities

c = [[u ]]h = Hλ = K−1
int (ωh)λ h. (33)

4 Numerical Examples

The proposed strategy is applied to the end-notched flexure (ENF) test and the mixed-
mode flexure (MMF) test used in reference [8]. The set up of the tests is depicted in
Fig. 2. The material parameters are the following: Young’s modulus of elasticity E =

ENF

MMF

60 mm

120mm

17 mm

10 mm 13 mm

initial crack

prescribed displacement

Fig. 2. End-notched flexure (ENF) and mixed-mode flexure (MMF) tests

75 GPa, Poisson’s ratio ν = 0.3, critical stress σmax = 3.602 MPa, critical opening
Δ = 0.011 mm, fracture toughness G = 0.02 N/mm, mode mixity parameter β =
0.472. The structures are discretized by quadrilateral finite elements with bi-linear
basis functions. They are loaded by prescribed displacements in the center.

The load-deflection curves for both tests are depicted in Figs. 3 and 4 Very good
agreement with results published in [8] and [7] is obtained.
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Fig. 3. Load-deflection curves for ENF test
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Fig. 4. Load-deflection curves for MMF test

5 Conclusions

Description of the imperfect material interface based on the compliance matrix H
introduced in [6] was generalized with help of the energy-based delamination model
described in [2]. This formulation uses piecewise constant approximation of damage
variables and as such it allows to express the interfacial stiffness matrix easily.
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A Comparison of TFETI and TBETI for Numerical
Solution of Engineering Problems of Contact
Mechanics
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Summary. Since the introduction of Finite Element Tearing and Interconnecting (FETI) by
Farhat and Roux in 1991, the method has been recognized to be an efficient parallel technique
for the solution of partial differential equations. In 2003 Langer and Steinbach formulated its
boundary element counterpart (BETI), which reduces the problem dimension to subdomain
boundaries. Recently, we have applied both FETI and BETI to contact problems of mechanics.
In this paper we numerically compare their variants bearing the prefix Total (TFETI/TBETI)
on a frictionless Hertz contact problem and on a realistic problem with a given friction.

1 Introduction

One of the leading representatives of domain decomposition methods is the Finite
Element Tearing and Interconnecting (FETI) proposed by Farhat and Roux [8]. It re-
lies on a finite element discretization of a linear elliptic boundary value problem and
a nonoverlapping decomposition of the related geometric computational domain into
subdomains. Resulting local subproblems are glued by means of Lagrange multipli-
ers. The dual coarse problem is solved for the Lagrange multipliers by the method of
conjugate gradients. Farhat et al. [9] proved that the condition number of the Schur
complement, which arises from the elimination of the interior degrees of freedom,
preconditioned by a projector orthogonal to the kernel is proportional to H/h, where
H denotes the maximal subdomain diameter and h is the finite element discretization
parameter. Moreover, [15] proved a polylogarithmic bound on the condition num-
ber of the Schur complement preconditioned by the Dirichlet preconditioner. This
result was extended by Klawonn and Widlund [10] to the case of a redundant set of
Lagrange multipliers and the correct (multiplicity or stiffness) scaling.

As the Lagrange multipliers live on the skeleton of the decomposition, it is
very natural to employ a boundary integral representation of solutions to the local
subproblems. This is the Boundary Element Tearing and Interconnecting (BETI)
method, which was formulated and analyzed by Langer and Steinbach [13]. The
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resulting discretized Steklov-Poincaré operators, which relate the local Cauchy data,
are proved to be spectrally equivalent to the finite element Schur complements which
eliminate interior degrees of freedom. An application of fully populated boundary
element (BE) matrices can be sparsified to a linear complexity (up to a logarithmic
factor), cf. [18]. Steinbach and Wendland [21] proposed a preconditioning of the BE
matrices by related opposite order BE operators. The latter two accelaration tech-
niques were exploited by Langer et al. [14] within the BETI method formulated in
a twofold saddle-point system. It turned to be natural to impose additional Lagrange
multipliers along the Dirichlet boundary, which was independently introduced as
Total FETI (TFETI) by Dostál et al. [6] and as All-Floating BETI by Of [16], see
also [17].

An extension of FETI and BETI methods to contact problems is a challenging
task due to the strong nonlinearity of the variational inequality under consideration.
To name a few of many research groups attacking this problem, see [1, 11, 20, 22].
The base for our development is a theoretically supported scalable algorithm for
both coercive and semicoercive contact problems presented by Dostál et al. [7] and
in the monograph by Dostál [5]. The first scalability results using TBETI for the
scalar variational inequalities and the coercive contact problems were presented only
recently by Bouchala et al. [2, 3], respectively. We also refer to [19].

The aim of this paper is to numerically compare TFETI and TBETI for two realis-
tic problems. In Sect. 2 we recall the algebraic formulation of the TFETI and TBETI
methods for contact problems. In Sect. 3 we describe different representations of the
Schur complement. In Sect. 4 we compare the methods for the 3-dimensional (3d)
Hertz contact problem without a friction and for a 3d contact problem of a ball bear-
ing with a given friction. In Sect. 5 we conclude.

2 TFETI/TBETI Formulations

Both TFETI and TBETI methods for contact problems of mechanics lead, after a
discretization, to the following problem:

min
u

1
2
〈Su,u〉− 〈 f ,u〉 subject to BI u≤ cI and BE u = cE ,

where we search for the local boundary displacement fields u := (u1, . . . ,up) with
p being the number of subdomains. The Hessian S := diag(S1, . . . ,Sp) consists of
the Schur complements which are local Neumann finite element stiffness matrices
eliminated to subdomain boundaries in the case of TFETI, and which are symmet-
ric boundary element discretizations of local Steklov-Poincaré operators in the case
of TBETI. Note that KerSi is the space spanned by six linearized local rigid body
modes. In f := ( f1, . . . , fp) we cummulate local boundary tractions. Further, BE is
a full rank sign matrix, the first part of which interconnects teared degrees of free-
dom with corresponding first part of cE to be zero, while the second parts of BE

and cE realize the Dirichlet boundary condition. Finally, the inequality with BI , cI

prescribes linearized non-penetration conditions.
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Due to expensive projections onto the linear inequality constraints, we switch to
the dual formulation with simple bound and equality constraints

min
λI≥0

1
2
〈BS+BT λ ,λ 〉− 〈BS+ f − c,λ 〉 s.t. (BTλ − f )⊥KerS,

where we introduce Lagrange multipliers λ := (λI ,λE ) with I and E referring to
the inequality and equality constraints, respectively. Further, we cover BI , BE by B
and similarly c := (cI ,cE ). Let S+ be a pseudoinverse of S, i.e., S S+g = g for any
g⊥KerS. Let us denote by R := diag(R1, . . . ,Rp) the column basis of KerS consist-
ing of local rigid body modes Ri and by P the orthogonal projector from ImB onto
KerRT BT = (KerS)⊥. To homogenize the linear (orthogonality) constraint, assume
we are given a feasible λ0 and search for λ := λ̃ +λ0. Returning to the old notation,
we arrive at the following constrained quadratic programming problem precondi-
tioned by the projector P and regularized by the complementary projector Q := I−P:

min
λI≥−(λ0)I

1
2

〈(
1
ρ

PFP+Q

)
λ ,λ

〉
−
〈

1
ρ

P(BS+ f0− c),λ
〉

s.t. RT BTλ = 0, (1)

where F := BS+BT and f0 := f −BTλ0. Finally, we scale the cost function by ρ ≈
‖PFP‖. Now from Theorem 3.2 of [9] and from the spectral equivalence of local
boundary element and finite element Schur complements Si, see Lemma 3.2 of [13],
we have the following optimality result valid for both TFETI and TBETI.

Theorem 1. Denote H := (1/ρ)PFP+Q. There exist c,C > 0 independent of h, H
so that

λmin(H |ImP)≥ c
h
H

and λmax(H |ImP) = ‖H ‖ ≤C.

We are now in the position to use the augmented Lagrangian algorithm developed by
Dostál [4], see also [5], for the solution of our constraint minimization problem (1).
We mention that this algorithm is in some sense optimal.

3 Schur Complements

The local Schur complements Si represent symmetric discretizations of the Steklov-
Poincaré operator S̃i mapping the Dirichlet data to the Neumann data. In particular,
S̃i(ui) := σi(ε(ũi)) ·ni in the case of elastostatics, where ni is the outward unit normal
to the subdomain Ωi, σi(ε(ũi)) denotes the elastostatic stress evaluated using the
local linearized Hooke’s law between the stress σi and the strain ε(ũi), and where ũi

solves the following inhomogeneous Dirichlet boundary value problem:

divσi(ε(ũi(x))) = 0 in Ωi, ũi(x) = ui(x) on ∂Ωi. (2)

In the case of TFETI we solve (2) approximately by the finite element method.
The approximation of S̃i is then as follows:
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Si := (Ai)BB− (Ai)BI(Ai)
−1
II (Ai)IB,

where (Ai) jk :=
∫
Ωi
σi(ε(ϕ

(i)
j (x))) : ε(ϕ(i)

k (x))dx is the Neumann finite element ma-

trix assembled in the vector lowest order nodal basis functions ϕ(i)
j , and where B and

I are the sets of indices of boundary and interior degrees of freedom, respectively.
In the case of TBETI the interior degrees of freedom are already eliminated in the

continuous formulation via a boundary integral representation of ũi(x) while making
use of the known elastostatic fundamental solution. After the lowest order Galerkin
boundary element discretization, we arrive at the following relation between the ap-
proximated nodal based Dirichlet data, still denoted by ui, and the element-based
Neumann data, denoted by ti ≈ σi(ε(ũi)) ·ni:

(
ui

ti

)
=

(
(1/2)Mi−Ki Vi

Di ((1/2)Mi +Ki)
T

)(
ui

ti

)

with fully populated boundary element matrices Vi, Ki, and Di, which are referred
to as single-layer, double-layer, and hypersingular matrix, respectively, and with the
boundary mass matrix Mi. We then employ the following symmetric approximation
of the Schur complement S̃i:

Si := Di +((1/2)Mi +Ki)
T V−1

i ((1/2)Mi +Ki) .

4 Numerical Comparison

All the presented simulations are performed using a parallel Matlab within our Mat-
Sol library, see [12]. The implementations of TFETI and TBETI are consistent. The
only point where they differ is assembling of FEM and BEM matrices and subsequent
Cholesky factorizations. In the preprocessing phase times for the BEM matrices as-
sembling dominate. Our simulations were run on a cluster of 48 cores with 2.5 GHz
and the infiband interface, which are equipped with licences of Matlab parallel com-
puting engine.

First we consider a frictionless 3–dimensional Hertz problem, as depicted in
Fig. 1, with the Young modulus 2.1 · 105 MPa and the Poisson ratio 0.3, where the
ball is loaded from top by the force 5,000 N. ANSYS discretization of the two bod-
ies is decomposed by METIS into 1,024 subdomains. The comparison of TFETI
and TBETI in terms of computational times and number of Hessian multiplications
is given in Table 1. In Fig. 2 we can see a fine correspondence of contact pressures
computed by TFETI and TBETI to the analytical solution. The convergence criterion
was the decay of the dual error to 10−6 relatively to the initial dual residuum.

In the second example we solve the contact problem of ball bearing, which
consists of 10 bodies. We impose Dirichlet boundary condition along the outer
perimeter and load the opposite part of the inner diameter with the force 4,500 N as
depicted in Fig. 3. The Young modulus and the Poisson ratio of the balls and rings are
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Fig. 1. Geometry of the Hertz problem

number of number of preprocessing solution number of
method primal DOFs dual DOFs time time Hessian applications

TFETI 4,088,832 926,435 21 min 1 h 49 min 593
TBETI 1,849,344 926,435 1h 33 min 1 h 30 min 667

Table 1. Numerical performance of TFETI and TBETI applied to the Hertz problem

Fig. 2. Correspondence of numerical Hertz contact pressures to the analytic solution
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2.1 ·105 MPa and 0.3, respectively. Those of the cage are 2 ·104 MPa and 0.4, respec-
tively. To get rid of the rigid body modes in the solution we introduce a small bound-
ary gravitation term for each of the bodies. The discretized geometry was decom-
posed into 960 subdomains. Numerical comparison of TFETI and TBETI is shown
in Table 2 and the resulting vertical displacement field is depicted in Fig. 4.

outer ring

inner ring

cage

ball

load

fixation

4500N

26

19 13
18

24

30
.7

5

Fig. 3. Ball bearing: geometry, applied force and the Dirichlet boundary

Fig. 4. Ball bearing: vertical component of the computed displacement field

number of number of preprocessing solution number of
method primal DOFs dual DOFs time time Hessian applications

TFETI 1,759,782 493,018 129 s 2 h 5 min 3203
TBETI 1,071,759 493,018 715 s 1 h 52 min 2757

Table 2. Numerical performance of TFETI and TBETI applied to the ball bearing problem
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5 Conclusion

In the paper we compared TFETI and TBETI and numerically documented their
performance for two engineering problems. Concerning timings and numbers of it-
erations it was shown that the methods are rather equal up to the assembling phase,
which is more expensive in TBETI case. On the other hand, the accuracy of the
boundary element discretization is usually much higher than the corresponding finite
element discretization. This statement is supported by the theory provided that the
solution is sufficiently regular. It can be also seen from Fig. 2, where one can guess
that the TFETI relative error of 1.1759 % can be obtained with much less TBETI
degrees of freedom.
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1 Introduction

The purpose of this article is to present convergence bounds and some preliminary
numerical results for a special category of problems of compressible and almost in-
compressible linear elasticity when using FETI-DP or BDDC domain decomposition
methods.

We consider compressible and almost incompressible elasticity on the compu-
tational domain Ω ⊂ IR3 which is partitioned into a number of subdomains. We
introduce nodes in the interior of the subdomains and on the interface. We distribute
the material parameters such that in a neighborhood of the interface we have com-
pressible and in the interior of a subdomain we have almost incompressible linear
elasticity. Thus, each subdomain may contain an almost incompressible component
in its interior surrounded by a hull of compressible material. We will also refer to
this component as the incompressible inclusion.

By performing our analysis on the compressible hull, we can prove new condition
number bounds. Such bounds will depend on the variation of the Poisson ratio ν in
a neighborhood of the interface of the subdomains. More precisely, for compressible
linear elasticity in a neighborhood of the interface and almost incompressible linear
elasticity in the interior of the subdomains, we can prove a polylogarithmic condition
number bound for the preconditioned FETI-DP system, which also depends on the
thickness η of the compressible hull.

The condition number estimate presented in this contribution is based on the the-
ory developed in [8] for compressible linear elasticity. It can be seen as an extension
to certain configurations of incompressible components. For an algorithmic descrip-
tion of the FETI-DP method and the primal constraints applied in this paper, we refer
to [5, 6]. The current work can also be seen as an extension of the work of [13–15].
There, the one-level FETI method for scalar elliptic problems is analyzed for special
cases of coefficient jumps inside subdomains.

Coarse spaces for iterative substructuring methods that are robust either with
respect to exact incompressibility constraints or with respect to almost incompress-
ibility have been known for some time. For earlier work on Neumann-Neumann,
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FETI-DP, and BDDC methods for (almost) incompressible elasticity, see, e.g.,
[4, 9, 10, 12].

2 Almost Incompressible Linear Elasticity

LetΩ ⊂ IR3 be a polytope, which can be decomposed into smaller cubic subdomains.
We can allow also for subdomains that are images of cubes under a reasonable map-
ping.

The domain is fixed on ∂ΩD ⊂ ∂Ω , i.e., we impose Dirichlet boundary con-
ditions, and the remaining part ∂ΩN = ∂Ω \ ∂ΩD is subject to a surface force g.
Let H1

0 (Ω ,∂ΩD) :=
{

v ∈ (H1(Ω))3 : v |∂ΩD
= 0

}
be the Sobolev space which is ap-

propriate for the variational formulation. Furthermore, the linearized strain tensor
ε = (εi j)i j is defined as ε(u) = 1

2 (∇u+(∇u)T ) with u ∈ (H1(Ω))3.
Then, the linear elasticity problem is defined as follows.

Find the displacement u ∈ H1
0 (Ω ,∂ΩD), such that for all v ∈ H1

0 (Ω ,∂ΩD)

∫
Ω

G ε(u) : ε(v) dx+
∫
Ω

G β div(u) div(v) dx =< F,v >

with the material parameters G, β , and the right hand side

< F,v > =

∫
Ω

f T v dx+
∫
∂ΩN

gT v dσ .

The material parameters G and β can also be expressed using Young’s modulus
E and the Poisson ratio ν by G = E

1+ν and β = ν
1−2ν . We analyze linear elasticity

problems with different material components. For the compressible part we use the
standard displacement formulation, i.e., we discretize the displacement by piecewise
quadratic tetrahedral finite elements.

For almost incompressible linear elasticity, i.e., when ν→ 1
2 , the value of β tends

to infinity, and the discretization of the standard displacement formulation of linear
elasticity by low order finite elements leads to locking effects and slow convergence.
As a remedy the displacement problem is replaced by a mixed formulation. There-
fore, we introduce the pressure p := G β div(u) ∈ L2(Ω) as an auxiliary variable.

We consider the problem: Find (u, p) ∈ H1
0 (Ω ,∂ΩD)×L2(Ω), such that

∫
Ω

G ε(u) : ε(v) dx+
∫
Ω

div(v) p dx = 〈F,v〉 ∀v ∈ H1
0 (Ω ,∂ΩD)

∫
Ω

div(u) q dx−
∫
Ω

1
G β

p q dx = 0 ∀q ∈ L2(Ω).

It is well-known that in the case of almost incompressible linear elasticity, the solu-
tion of this mixed formulation exists and is unique.

For the discretization of this mixed problem we can in principle use any inf-sup
stable mixed finite element method. For simplicity we use Q2−P0 mixed finite el-
ements, i.e., we discretize the displacement with piecewise triquadratic hexahedral
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finite elements and the pressure with piecewise constant elements. This discretization
is known to be inf-sup stable, which, in 3D, can be derived from the results in [11].
To obtain again a symmetric positive definite problem, the pressure is statically con-
densated element-by-element. We assume that a triangulation τh of Ω is given with
shape regular finite elements, having a typical diameter h. Additionally, we assume
that Ω can be represented exactly as a union of finite elements.

The domain Ω is now decomposed into N nonoverlapping subdomains Ωi, i =
1, . . . ,N,with diameter Hi. The resulting interface is given byΓ :=

⋃
i= j (∂Ωi∩∂Ω j)\

∂ΩD. We assume matching finite element nodes on the neighboring subdomains
across the interface Γ .

Then, for each subdomain we assemble the corresponding linear system

K(i)u(i) = f (i).

From the local linear systems, we obtain the FETI-DP saddle point problem,
which is solved using a FETI-DP algorithm; see e.g., [1, 2, 5–8] for references on
this algorithm. In this article we consider in particular the algorithm given in [5, 6, 8];
see the latter references for an algorithmic description of parallel FETI-DP methods
using primal edge constraints and a transformation of basis. Here, in particular, we
assume that all vertices are primal and all edge averages over all subdomain edges
are the same across the interface Γ .

In our analysis, each of the N subdomains may contain an almost incompressible
part, here also called an inclusion or a component, surrounded by a compressible
hull. We will specify the definitions of a hull as follows.

Definition 1. The hull of a subdomainΩi with width η is defined as

Ωi,η := {x ∈Ωi : dist(x,∂Ωi)< η} ; see Fig. 1.

Fig. 1. Ωi,η : hull of Ωi; see Definition 1

3 Convergence Analysis

In this section we provide a condition number estimate for the preconditioned FETI-
DP matrix M−1F, where F is the FETI-DP system matrix obtained from K(i) and
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M−1 is the standard Dirichlet preconditioner; see [16]. We expand the convergence
analysis, given in [8] for compressible linear elasticity, to the case where each subdo-
main can contain an almost incompressible inclusion surrounded by a compressible
hull of thickness η . For the analysis, we make the following assumption; see [3]
where the full details are provided.

Assumption 1 For each subdomain, we have an inclusion which can be either al-
most incompressible or compressible, surrounded by a hullΩi,η of compressible ma-
terial. The material coefficients G(x) and β (x) have a constant value in the interior
inclusion and in the hull respectively, i.e.,

G(x) =

{
G1,i x ∈Ω i,η
G2,i x ∈Ωi \Ωi,η

β (x) =
{
β1,i x ∈Ω i,η
β2,i x ∈Ωi \Ωi,η .

Remark 1. Note that Assumption 1 allows that the Young modulus in the inclusion
can be different from the one in the hull and that their quotient can be arbitrarily
small or large.

The following assumption allows for the improved bound (2) in Theorem 1,
which contains a linear factor H/η compared to the factor (H/η)4 in (1).

Assumption 2 For each subdomainΩi, i = 1, . . . ,N, we assume that G1,i ≤ ki ·G2,i,
where ki > 0 is a constant independent of h,H,η ,G1,i, and G2,i.

In the analysis provided in [3], for the edge term estimate, we need a further
assumption.

Assumption 3 For any pair of subdomains (Ωi,Ωk) which have an edge in common,
we assume that there exists an acceptable path (Ωi,Ω j1 , . . . ,Ω jn ,Ωk) fromΩi to Ωk,
via a uniformly bounded number of other subdomainsΩiq , q = 1, . . .n, such that the
coefficients G1, jq of the Ωiq satisfy the condition

TOL ·G1, jq ≥min(G1,i,G1,k), q = 1, . . . ,n.

For a detailed description of the concept of acceptable paths, see [8, Sect. 5].
The following theorem is proven in [3].

Theorem 1. Under the Assumptions 1 and 3, the condition number of the precondi-
tioned FETI-DP system satisfies

κ(M−1F)≤C max(1,TOL)

(
1+ log

(
H
h

))(
1+ log

(η
h

))(H
η

)4

, (1)

where C > 0 is independent of h,H,η , and the values of Gi and βi, i = 1, . . . ,N and
hence also of Ei and νi.

If additionally Assumption 2 is satisfied, we have

κ(M−1F)≤C max(1,TOL)

(
1+ log

(
H
h

))2(H
η

)
, (2)

where C > 0 is independent of h,H,η , and the values of Gi and βi, i = 1, . . . ,N and
hence also of Ei and νi.
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4 Numerical Results

In this section, we present our numerical results for a linear elasticity problem in
three dimensions. We consider almost incompressible inclusions in the interior of
the subdomains. The inclusions are always surrounded by a compressible hull with
ν = 0.3. We use a FETI-DP algorithm with vertices and edge averages as primal
constraints to control the rigid body modes. For the algorithmic concept, see for
example [8]. The numerical results confirm our theoretical estimates.

Our tests are divided into different categories.

4.1 Variable Thickness of the Compressible Hull

Here, we present results for 3× 3× 3 subdomains, a fixed H/h = 11, and a fixed
Poisson ratio ν = 0.499999 in each inclusion and ν = 0.3 in each hull. For these
computations we vary the thickness of the hull, i.e., η = 0,h, . . . ,5h; see Table 1.
For the case η = 0, we obtain a large condition number of κ =1,597.8. This is not
surprising since we use a coarse space designed for compressible linear elasticity. In
this case using a different, larger coarse space in 3D is the remedy; see, e.g., [10]
or [12].

It is striking that already a hull with a thickness of one element, i.e., η = h, is
sufficient to obtain a good condition number which is then not improved significantly
by further increasing η . As a result, the number of iteration steps does not change for
η = h, . . . ,5h. In our theory, see Theorem 1, for this configuration of coefficients, our
bound is linear in H/η . From the numerical results in Table 1 we cannot conclude
that the bound is sharp. This might be due to the fact, that in 3D we cannot choose
our mesh fine enough. However, for 2D problems using very fine meshes the linear
dependence on H/η can be observed numerically; see Table 2.

Table 1. Growing η; H/h = 11; 1/H = 3.

η iterations condition number
0 50 1597.8
1h 32 12.366
2h 32 12.250
3h 32 12.230
4h 32 12.231
5h 32 12.233

Growing η for 3×3×3 subdomains, E = 210 on the whole domain, ν = 0.499999
in each inclusion, and ν = 0.3 in each hull. The results show only a weak dependence
on η .
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Table 2. Growing η; 2D; H/h = 200; 1/H = 3

η iterations condition number
1/100 47 199.906
2/100 41 102.081
3/100 42 70.719
4/100 36 54.674

Linear elasticity in 2D with Ω = [0,1]2, discretized with Q1− P0 stabilized finite
elements; for a description of the discretization, see, e.g., [9]. The domain is decom-
posed into square subdomains with sidelength H, having square inclusions and a hull
of thickness η . The Poisson ratio in each inclusion is chosen as ν = 0.4999999 and
in each hull as ν = 0.3. The Young modulus is chosen as E = 1 on the whole domain.
The results confirm the linear dependence on H/η .

4.2 Variable Incompressibility in the Inclusions

In Table 3, we vary the Poisson ratio in the inclusions from ν = 0.4 up to ν =
0.499999 while choosing a fixed number of elements in each subdomain, i.e., H/h=
7, and a thickness of the hull of η = h. We see that the condition number is indeed
bounded independently of the almost incompressibility in the inclusions as expected
from Theorem 1.

Table 3. Growing ν; H/h = 7; 1/H = 3; η = h.

ν iterations condition number
0.4 27 9.4841
0.49 28 9.5038
0.499 28 9.5063
0.4999 28 9.5049
0.49999 28 9.5066
0.499999 29 9.5066

Growing ν for 3×3×3 subdomains, η = h, ν = 0.3 in the hulls, and E = 210 on the
whole domain. A hull with a thickness of one element is clearly sufficient to obtain
a good condition number.

4.3 Variable Young’s Modulus in the Inclusions Combined with Variable
Incompressibility in the Inclusions

In a last set of experiments, see Table 4, we consider subdomains with inclusions of
a high and low Young modulus, i.e., E = 1e+ 4 and E = 1e− 4, either combined
with a Poisson ratio of ν = 0.4 or ν = 0.499999; see Fig. 2. The Young modulus of
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the hull is always E = 1 and its Poisson ratio is always ν = 0.3. The four different
parameter settings are determined by the number of the subdomain modulo four; see
Fig. 2. In our theory, the condition number bound for such a configuration contains a
factor (H/η)4. However, the results in Table 4 are not worse than in the configura-
tions where bound (1) of Theorem 1 applies, which contains only a linear H/η . The
condition number is surprisingly low even if the thickness of the hull is only η = h.
While this is a favorable result it also means that it is difficult to confirm numerically
whether our theoretical bounds are sharp with respect to η .

Fig. 2. Types of subdomains, see Table 4, identified by color

Table 4. Growing η; H/h = 7; 1/H = 3.

distance η iterations condition number
0 > 250 13426

1h 36 11.956
2h 29 9.2575
3h 29 9.4767
4h 27 9.4812

Growing η for 3×3×3 subdomains. Four different kind of material parameter set-
tings in the inclusions: E = 1e+4 and ν = 0.4; E = 1e−4 and ν = 0.4; E = 1e+4
and ν = 0.499999; E = 1e−4 and ν = 0.499999; for all hulls: E = 1,ν = 0.3.
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Summary. The purpose of this paper is to introduce an overlapping Schwarz method for
vector field problems discretized with the lowest order Raviart-Thomas finite elements. The
coarse component of the preconditioner is based on energy-minimizing discrete harmonic
extensions and the local components consist of traditional solvers on overlapping subdomains.
The approach has a couple of benefits compared to the previous methods. The algorithm can
be implemented in an algebraic manner. Moreover, the method leads to a condition number
independent of the values and jumps of the coefficients across the interface between the sub-
structures. Supporting numerical examples to demonstrate the effectiveness are also presented.

1 Introduction

Domain decomposition methods can be categorized in two classes: overlapping
Schwarz methods with overlapping subdomains and iterative substructuring methods
with nonoverlapping subdomains. In this paper, we consider two level overlapping
Schwarz algorithms. Such methods were originally developed for scalar elliptic prob-
lems; see [11, 15] and references therein. Later these methods have also been consid-
ered for solving vector fields problems posed in H(div) and H(curl); see [1, 9, 13].
Other types of algorithms, such as multigrid methods, classical iterative substruc-
turing methods, balancing Neumann-Neumann, and FETI methods, have also been
suggested in [3, 8, 12, 14, 16, 17]. Many nonoverlapping methods have been stud-
ied for discontinuous coefficients cases for vector fields problems. However, only
few methods were introduced for the overlapping Schwarz methods in case of coef-
ficients which have jumps.

In the domain decomposition theory, methods can often provide good scalability,
i.e., the condition number of the preconditioned system will depend only on the size
of the subdomain problems and not on any other parameters, e.g., the number of sub-
domains and jumps of the coefficients. For the purpose of handling the discontinuity,
we borrow the advanced coarse space techniques of [6, 7] based on discrete harmonic
extensions of coarse trace spaces developed for almost incompressible elasticity.
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The rest part of this paper is organized as follows. We introduce a model prob-
lem and its finite element approximation in Sect. 2. In Sects. 3 and 4, we recall the
overlapping Schwarz method and we suggest the alternative coarse algorithm, re-
spectively. We next present the numerical results in Sect. 5. Finally, the conclusion
of this paper is given in Sect. 6.

2 Discretized Problem

We consider the following second order partial differential equation for vector field
problem posed in H(div) in a bounded polyhedral domain Ω with a homogeneous
boundary condition:

Lu :=−grad(α divu)+β u = f inΩ , (1)

u ·n = 0 on ∂Ω .

Here we have positive coefficientsα,β∈L∞(Ω) and assume that f is in (L2(Ω))3.
The main focus of our work is on the coefficients α and β which have jumps across
between the substructures.

The model problem (1) has many important applications, such as a mixed and
least-squares formulation of certain types of second order partial differential equa-
tions [5, 17]. There are other types of applications related to H(div), e.g., iterative
solvers for the Reissner-Mindlin plate and the sequential regularization method for
the Navier-Stokes equations. For more detail, see [2, 10].

We next consider a variational formulation of (1):

a(u,v) :=
∫
Ω
α divudivvdx+β u ·vdx =

∫
Ω

f ·vdx, v ∈ H0(div;Ω). (2)

We consider the lowest order Raviart-Thomas elements, conforming in H(div),
to obtain a discretized problem; see [4, Chap. 3]. We note that the degrees of freedom
of the Raviart-Thomas elements are defined by the average values of the normal
components over the faces.

Let us consider the variational problem (2). Restricting to the finite element space
of the lowest order Raviart-Thomas elements with shape regular and quasi-uniform
meshes, we obtain the following linear system:

Au = f , (3)

where the matrix A is a stiffness matrix, u is a vector of degrees of freedom, and f is
a known vector obtained from f. We note that A is symmetric and positive definite.

3 Overlapping Schwarz Preconditioner

We consider a decomposition of the domain Ω into N nonoverlapping subdomains
Ωi, i = 1, · · · ,N. We next introduce extended subregions Ω ′i obtained from Ωi by
adding layers of elements and the interface Γ which is given by
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Γ =

(
N⋃

i=0

∂Ωi

)
\∂Ω .

We consider a two-level overlapping Schwarz algorithm to solve the linear sys-
tem (3). An overlapping Schwarz preconditioner usually has the following form:

P−1 = RT
0 A−1

0 R0 +
N

∑
i=1

RT
i A−1

i Ri, (4)

where A0 is the matrix of the global coarse problem, the Ai’s are obtained from local
subproblems related to the extended subdomains Ω ′i , and R0 and Ri’s are restriction
operators to the coarse space and local spaces, respectively; see [11, 15] for more
details.

In [9, 13], model problems were designed for constant coefficients and convex
domains to analyze the methods. In our work, we use more general assumptions:
convex subdomains and coefficients which have jumps across the interface Γ .

In order to deal with this situation, we consider an alternative coarse space
approach instead of traditional coarse interpolations. The basis functions for the
new algorithm are based on energy-minimizing discrete harmonic extensions with
given interface values. We use the corresponding discrete harmonic extensions of
the boundary values of standard basis functions to construct new basis functions. We
remark that this process can be performed locally and in parallel due to the fact that
the basis functions are supported in just two subdomains. We also note that we do
not need any coarse triangulation and this work can be done algebraically. With new
alternative basis functions, we obtain the operator R0 which defines the new basis
and the matrix A0 = R0ART

0 associated with the global coarse problem.
For the local components, we follow the traditional way. Each Ri is a rectangular

matrix with elements equal to 0 and 1 and provides the indices relevant to an indi-
vidual extended subdomain Ω ′i . Each Ai = RiART

i is just the principal minor of the
original stiffness matrix A defined by Ri. By using these matrices, we can build the
local component ∑N

i=1 RT
i A−1

i Ri of the Schwarz preconditioner.

4 The Coarse Component

In this section, we explain our approach in detail. We focus on the restriction operator
R0 onto the coarse space. Before we consider the alternative method, we introduce
the conventional method in [9, 13]. The restriction operator is obtained by the in-
terpolation from the subspaces defining the coarse component to the global space.
More precisely, R0 are exactly the coefficients obtained by interpolating the tradi-
tional coarse basis functions onto the fine mesh. We note that we need geometric
information, e.g., coordinate information, to construct R0.

Instead of the conventional coarse basis, we will use discrete harmonic exten-
sions to define the new coarse basis functions. We first consider two adjacent subdo-
mains Ωi and Ω j. We then have a coarse face Fi j = ∂Ωi ∩ ∂Ω j. We note that each
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coarse degree of freedom of our coarse component is related to each coarse face. Let
u denote the vector of degrees of freedom for the original problem. Similarly, we

consider the vectors of degrees of freedom u(i)I , u( j)
I , and uFi j associated with Ωi\Γ ,

Ω j\Γ , and Fi j, respectively. We then have restriction matrices R(i)
I , R( j)

I , and RFi j , i.e.,

u(i)I = R(i)
I u, u( j)

I = R( j)
I u, and uFi j = RFi j u. We note that each restriction matrix has

only one nonzero entry of unity per each row. We next introduce a submatrix of the
stiffness matrix A. It corresponds to the two subdomains which have Fi j in common:

⎡
⎢⎢⎣

A(i)
II 0 A(i)

IFi j

0 A( j)
II A( j)

IFi j

A(i)
Fi jI

A( j)
Fi jI

AFi jFi j

⎤
⎥⎥⎦ .

We choose uT
Fi j

= [1,1, · · · ,1] and introduce the local subproblems A(i)
II u(i)I + A(i)

IFi j

uFi j = 0 and A( j)
II u( j)

I +A( j)
IFi j

uFi j = 0 to consider discrete harmonic extensions; see [15,

Chap. 4.4]. Then, u(i)I and u( j)
I are completely determined by uFi j , i.e., u(i)I = EiuFi j

and u( j)
I = E juFi j , where Ei := −A(i)

II

−1
A(i)

IFi j
and E j :=−A( j)

II

−1
A( j)

IFi j
. We then obtain

a coarse basis ui j = R(i)
I

T
u(i)I +R( j)

I

T
u( j)

I +RT
Fi j

uFi j corresponding to Fi j. We can then
construct the following form of our coarse interpolation matrix R0 after the similar
process:

R0 :=

⎡
⎢⎢⎣

...
− uT

i j −
...

⎤
⎥⎥⎦ .

As we mentioned earlier, we can obtain the coarse matrix A0 by the Galerkin product
R0ART

0 . We remark that our alternative approach can be implemented in an algebraic
manner and in parallel. However, we need to solve additional local Dirichlet-type
subproblems to construct the coarse component compared to the conventional meth-
ods.

5 Numerical Experiments

We apply the overlapping Schwarz method with the energy-minimizing coarse space
to our model problem. We use Ω = (0,1)× (0,1)× (0,1) and the lowest order hex-
ahedral Raviart-Thomas elements. We decompose the domain into N×N×N iden-
tical subdomains. In each subdomain, we assume that the coefficients α and β are
constant. We consider cases where the coefficients have jumps across the interface
between the subdomains, in particular, a checkerboard distribution pattern. Each sub-
domain Ωi has side length H = 1/N and each mesh cube has h as a minimum side
length. We also introduce extended subdomains whose boundaries do not cut any
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mesh elements with an overlap parameter δ between subdomains. We use the pre-
conditioned conjugate gradient method to solve the preconditioned linear system

P−1Au = P−1 f . (5)

We stop the iteration when the residual l2-norm has been reduced by a factor of 10−6.
We perform two different kinds of experiments. We first fix the overlap parameter

H/δ and vary H/h. We next fix the size of H/h and use various size of H/δ . We
report the condition numbers estimated by the conjugate gradient method and the
number of iterations. Tables 1 and 3 show the first results and Tables 2 and 4 show
the results of the second experiments.

In the first set of experiments, we see that the condition numbers and the itera-
tion counts do not depend on the size of H/h. In the second set, we can conclude
that the condition numbers grow linearly with H/δ . For both cases, the condition
numbers and iteration counts are quite independent of coefficients and the jumps of
coefficients between the subdomains.

Table 1. Condition numbers and iteration counts. αi = 1 or specified values as indicated in a
checkerboard pattern, βi ≡ 1 , H

δ = 4, H = 1
3 , and h = 1

12 ,
1
24 ,

1
48

αi = 0.01 αi = 0.1 αi = 1 αi = 10 αi = 100
H
h cond iters cond iters cond iters cond iters cond iters

4 8.23 15 8.90 16 9.16 17 8.92 16 8.25 15
8 8.39 16 9.01 17 9.20 18 9.00 17 8.28 16

16 8.23 16 8.99 17 9.22 19 8.98 17 8.28 16

Table 2. Condition numbers and iteration counts. αi = 1 or specified values as indicated in a
checkerboard pattern, βi ≡ 1 , H

h = 16, H = 1
3 , and h = 1

48

αi = 0.01 αi = 0.1 αi = 1 αi = 10 αi = 100
H
δ cond iters cond iters cond iters cond iters cond iters

4 8.23 16 8.99 17 9.22 19 8.98 17 8.28 16
8 10.86 16 13.27 18 14.06 22 14.16 18 14.10 16
16 16.22 18 22.94 22 25.03 24 25.30 22 25.32 20

6 Conclusion

An alternative coarse space technique based on energy-minimizing discrete harmonic
extensions for overlapping Schwarz algorithm for vector field problems posed in
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Table 3. Condition numbers and iteration counts. βi = 1 or specified values as indicated in a
checkerboard pattern, αi ≡ 1 , H

δ = 4, H = 1
3 , and h = 1

12 ,
1

24 ,
1

48

βi = 0.01 βi = 0.1 βi = 1 βi = 10 βi = 100
H
h cond iters cond iters cond iters cond iters cond iters

4 8.18 15 8.36 16 9.16 17 8.68 17 8.36 16
8 8.18 17 8.46 18 9.20 18 8.65 18 8.37 18

16 8.18 17 8.45 18 9.22 19 8.62 18 8.37 18

Table 4. Condition numbers and iteration counts. βi = 1 or specified values as indicated in a
checkerboard pattern, αi ≡ 1 , H

h = 16, H = 1
3 , and h = 1

48

βi = 0.01 βi = 0.1 βi = 1 βi = 10 βi = 100
H
δ cond iters cond iters cond iters cond iters cond iters

4 8.18 17 8.45 18 9.22 19 8.62 18 8.37 18
8 8.50 17 9.98 18 14.06 22 13.48 21 9.43 19

16 9.34 17 13.13 21 25.03 24 24.79 22 12.56 19

H(div) has been introduced and implemented. The numerical results show the use-
fulness of our method even in the presence of jumps of the coefficients between the
substructures.
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Summary. In this paper, we consider the elastic deformation of arterial walls as occurring,
e.g., in the process of a balloon angioplasty, a common treatment in the case of atherosclero-
sis. Soft biological tissue is an almost incompressible material. To account for this property
in finite element simulations commonly used free energy functions contain terms penalizing
volumetric changes. The incorporation of such penalty terms can, unfortunately, spoil the con-
vergence of the nonlinear iteration scheme, i.e., of Newton’s method, as well as of iterative
solvers applied for the solution of the linearized systems of equations. We show that the aug-
mented Lagrange method can improve the convergence of the linear and nonlinear iteration
schemes while, at the same time, implementing a guaranteed bound for the volumetric change.
Our finite element model of an atherosclerotic arterial segment, see Fig. 1, is constructed from
intravascular ultrasound images; for details see [4].

Fig. 1. Finite element model of an atherosclerotic arterial segment 1.3M unknowns
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1 Nonlinear Model and Algorithm

Biological tissues, such as arteries, are fiber enforced materials composed of an
almost incompressible matrix substance with embedded collagen fibers. The arrange-
ment of the fibers in arterial walls is characterized by two preferred directions heli-
cally wound along the artery. The material behavior of the collagen fiber bundles
is represented by the superposition of two transversely isotropic models; see [12].
Thus, the strain energies are given by

ψ = ψ iso(C)+ψ ti,(1)(C,M(1))+ψ ti,(2)(C,M(2)) . (1)

Here, F :=∇ϕ is the deformation gradient, C := FT F the right Cauchy-Green-tensor,
and M(a) := a(a)⊗ a(a), a = 1,2 are the structural tensors characterizing the fiber
directions. There exist different possibilities to model the mechanical response of soft
biological tissue; see, e.g., [2, 12]. We are interested in polyconvex energy functions.
For the construction of anisotropic, polyconvex functions, see, e.g., [18]. Here, we
use the model due to [12], which was denoted model ψB in [3],

ψ = c1

(
I1I−1/3

3 −3
)
+

2

∑
a=1

k1

2k2

{
exp

(
k2

〈
J(a)4 I−1/3

3 −1
〉2
)
−1

}

+ ε1

(
Iε2
3 + I−ε2

3 −2
)α

,

with the invariants I1 = trC, I2 = tr[Cof(C)], I3 = detC,J(a)4 = tr[CM(a)], J(a)5 =

tr[C2M(a)]. Here, 〈•〉 denote the Macauly brackets, 〈•〉 = (| • |+ •)/2. The penalty

term ε1

(
Iε2
3 + I−ε2

3 −2
)α

models the incompressibility.

We adjust our parameters to experimental results in [11]; for details, see [5]. The
adjustment results in the parameters c1 = 7.17 [kPa],k1 = 3.69e− 3 [kPa],k2 = 51.2
for the adventitia and c1 = 9.23 [kPa],k1 = 193 [kPa],k2 = 2.627e3 for the media.

In the augmented Lagrange approach [10, 20] a Lagrange multiplier is introduced
on each finite element and μT (detF−1) is added to the energyψ . Here, we mean by
detF the vector of element-wise determinants of F. The Lagrange multiplier will be
computed iteratively by an Uzawa-like iteration μk+1 = μk +ξk(detF−1), where in
our computations in Sect. 3 the series ξk will be chosen as a constant ξk = ξ = 499.0.
We have chosen ξ by hand from the set {99,499,999,1999,9999}.

Our parameter fit is performed assuming incompressibility of the material. When
using the penalty approach we have to choose sufficiently large penalty parameters.
Here, our penalty parameters are ε1 = 70.0 [kPa],ε2 = 8.5,α = 1 for the adventitia
and ε1 = 360.0 [kPa],ε2 = 9.0,α = 1 for the media. Also in the augmented Lagrange
approach we need to choose our penalty parameters but here the penalty may be
relaxed significantly, i.e., we choose ε1 = 10.0 [kPa],ε2 = 4.0,α = 1 for adventitia
and media. The relaxation becomes evident when the penalty function is plotted for
the different sets of parameters. A sufficiently accurate stopping criterion has to be
chosen for the augmented Lagrange loop; here we chose a tolerance of |det(F)−1| ≤
0.01 on each element.
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In our discretization, we have to avoid locking effects. We therefore replace
point-wise penalization by the penalization of the average volumetric change on
every finite element. This is accomplished, as in [3, 16], by applying a three-field
formulation, known as the F̄-approach; see [19]. We use 10-noded tetrahedral ele-
ments for the displacement.

In our nonlinear scheme we solve a sequence of linear problems obtained from
Newton’s method, see, e.g., Fig. 2. This is also referred to as (pseudo) time stepping
or load stepping. To obtain a fair comparison, we have chosen an automatic time step-
ping strategy. For the penalty approach we increase Δ t when the number of Newton
iterations is smaller than 6 and decrease Δ t when it is larger than 9. This choice pro-
duced the best results. The simultaneous Augmented Lagrange approach, where the
iteration for the Lagrange multiplier simultaneously to the Newton correction, can
be viewed as an inexact Newton method see Fig. 3. Thus, a quadratic convergence
cannot be expected. We therefore have chosen the bounds for the auto time step-
ping as 18 and 36. For all approaches the maximal time step size was bounded by
Δ tmax = 0.4.

Fig. 2. Penalty for the incompressibility

2 FETI-DP Method

We briefly introduce the well-known FETI-DP method. For a more detailed intro-
duction, see, e.g., [13, 16, 17, 21]. For algorithms of the Finite Element Tearing and
Interconnecting-type (FETI); see [6–9]. Using FETI-DP methods linear systems with
billions of unknowns have been solved, e.g., in [14, 16] on large parallel machines.

We decompose the domainΩ into N nonoverlapping subdomainsΩi. For all sub-
domainsΩi, we assemble the local stiffness matrices K(i) and local load vectors f(i),
i = 1, . . . ,N,
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Fig. 3. Simultaneous augmented Lagrange for the incompressibility [10, 20]

K =

⎡
⎢⎣

K(1)

. . .
K(N)

⎤
⎥⎦ , u =

⎡
⎢⎣

u(1)

...
u(N)

⎤
⎥⎦ , f =

⎡
⎢⎣

f(1)
...

f(N)

⎤
⎥⎦ .

The interface is Γ = ∪N
i=1∂Ωi \ ∂Ω . The discrete problem can be formulated as

minimization problem with the interface continuity constraint Bu = 0, where B =
[B(1), . . . ,B(N)] with entries from 0,1,−1. By introducing Lagrange multipliers λ to
enforce the continuity along the subdomain interface we obtain the problem: Find
(u, λ), such that

Ku + BTλ = f
Bu = 0 .

This problem can be solved by eliminating the displacement variables u and solving
the resulting Schur complement system by conjugate gradients.

In FETI-DP methods some continuity constraints are enforced on primal dis-
placement variables ũΠ throughout iterations to enforce invertibility of the local
problems. This yields a saddle point problem of the form

K̃ũ + BTλ = f̃
Bũ = 0 ,

where the matrix K̃ and right hand side f̃ are partially assembled in the primal vari-
ables, i.e.,
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K̃ =

⎡
⎢⎢⎢⎢⎢⎣

K(1)
BB K̃

(1)T
ΠB

. . .
...

K(N)
BB K̃

(N)T
ΠB

K̃
(1)
ΠB · · · K̃

(N)
ΠB K̃ΠΠ

⎤
⎥⎥⎥⎥⎥⎦
, f̃ =

⎡
⎢⎢⎢⎢⎣

f(1)B
...

f(N)
B
f̃Π

⎤
⎥⎥⎥⎥⎦ .

The coupling also provides the coarse problem for the method. Reducing the system
of equations to an equation in λ , it remains to solve iteratively

M−1
D Ffetiλ = M−1

D d ,

where Ffeti = BK̃
−1

BT , and M−1
D = BDRT

Γ SRΓBT
D is the Dirichlet preconditioner.

Here, S is the Schur complement obtained by eliminating the interior variables in

every subdomain, i.e., S =

⎡
⎢⎣

S(1)

. . .
S(N)

⎤
⎥⎦ . The operator RΓ is a restriction matrix,

consisting of zeros and ones, that, when applied to a vector ũ, removes the interior
variables from ũ. The matrices BD are scaled variants of the jump operator B where,
in the simplest case, the contribution from and to each interface node is scaled by
the inverse of the multiplicity of the node. We define the multiplicity of a node as
the number of subdomains it belongs to. For heterogeneous problems a more elab-
orate scaling, using an appropriate scaling factor, defined by the coefficients ρi, is
necessary; see, e.g., [17, p. 1532, Formula (4.3)] and [15, p. 1403, Formula (6)].

3 Numerical Results

A pressure of 200 mmHg is applied to the inside of the artery, see Fig. 1. The
FETI-DP iteration is stopped when the absolute residual is reduced to 5× 10−9;
we have 224 subdomains. The total cost can be estimated by multiplying the number
of Newton steps by the corresponding average number of (inner) FETI-DP Krylov
iterations, see Tables 1 and 2.

Our results show that the use of the augmented Lagrange method can signifi-
cantly improve the properties of the linearized systems occurring in the nonlinear
solution scheme. The convergence of the nonlinear scheme is also improved, i.e., in
our nonlinear scheme larger pseudo time steps Δ t can be chosen. Of course, an addi-
tional iteration process for the Lagrange multiplier is introduced. Here, this iteration
process is carried out simultaneously with the Newton iteration.

The results in Tables 1 and 2 show that the additional cost for the augmented
Lagrange iteration is more than amortized by the faster convergence of the nonlin-
ear scheme and the linear iterative solver. Moreover, in the augmented Lagrange
approach the volumetric change is exactly controlled during the iteration process,
i.e., we have satisfied element-wise the condition |det(F)−1| ≤ 0.01. In the penalty
approach the volumetric change produced by the chosen penalty parameters is only
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Table 1. Newton iteration for the penalty formulation. Pseudo-time t, number of Newton steps,
average number of Krylov iterations per Newton step.

t Newton steps ∅ Krylov its

0.010 9 172.2
0.020 5 173.0
0.036 5 175.8
0.061 5 179.4
0.101 6 189.3
0.141 5 187.0
0.204 6 201.8
0.267 5 195.6
0.367 7 208.0
0.467 7 204.1
0.567 5 207.4
0.725 6 217.8
0.884 5 225.4
1.135 6 242.0
1.386 6 253.8
1.637 7 266.3
1.889 5 279.4
2.000 4 285.8

Σ 104 Total ∅ 213.3

Table 2. Simultaneous Newton and augmented Lagrange (AL) iteration. Pseudo-time t, num-
ber of Newton-AL steps, average number of Krylov iterations per Newton-AL step.

t Newton-AL steps ∅ Krylov its

0.010 9 99.3
0.026 4 100.5
0.051 5 101.4
0.091 6 101.3
0.154 6 102.8
0.254 7 104.3
0.412 11 105.4
0.664 14 109.4
1.062 14 119.0
1.462 16 139.7
1.862 17 167.0
2.000 15 180.8

Σ 124 Total ∅ 138.6
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known ex-post. In our example the solution using the penalty approach only satisfies
|det(F)−1| ≤ 0.021.

In the results in Table 2, we see that the number of Newton-AL-iterations
increases during the simulation. This is due to the fact that in the beginning of the
simulation only a very small number of finite elements violate the element-wise con-
dition |det(F)−1| ≤ 0.01.

The results in, both, Tables 1 and 2 also show an increase of the FETI-DP itera-
tions during the simulation. We believe that this may in part be due to an increasing
influence of the incompressibility constraint during the simulation but also result
from the exponential stiffening behavior of the fibers. In [1], we have observed that
the anisotropies introduced to the material wall models by the terms modeling the
fibers can have a visible impact on the convergence of the nonlinear iteration scheme
as well as the convergence of the iterative linear solver. Ideas described in [16] may
improve the convergence of domain decomposition solvers for such anisotropic prob-
lems.
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Adaptive mesh refinement techniques are well established and widely used for space
discretizations. In contrast, local time stepping is much less used, and the corre-
sponding techniques are less mature, needing delicate synchronization steps, which
involve interpolation, extrapolation or projection. These operations can have adverse
effects on the stability, and can also destroy important geometric properties of the
scheme, like for example the conservation of invariants. We give here a survey on
the intensive research performed in this direction over the last two decades.

1 Methods from the ODE Community

Local time stepping started in the ODE community with the development of split
Runge-Kutta methods with Rice [34]. Nowadays called multirate Runge-Kutta meth-
ods, these methods were first developed for naturally split systems of ordinary dif-
ferential equations y′ = b(y,z, t) and z′ = c(y,z, t), in which the z components need
to be integrated on a finer time mesh than the y components. One then uses a Runge-
Kutta method for the fast, so called active components with a small time step, and
another one for the slow, so called latent components, with a large time step, and uses
either interpolation or extrapolation for the missing values, depending on which of
the components are computed first, see [27].

Multirate time integration methods were also proposed for linear multistep meth-
ods in [22], with two main approaches: fastest-first and slowest-first. Suppose an
implicit linear multistep method is used. In the fastest-first approach, one advances
the z components with small time steps h, and whenever one needs a component of
the slow part y, one uses a predictor step for it. Once the fine stepping scheme arrives
at a coarse step H, the slow solution component y is also computed. The major disad-
vantage of this approach is that it is very difficult to do adaptive time stepping. This
is easier in the slowest-first approach, where first the slow component is doing an
adaptive integration step, until one is accepted with step size H. Then the adaptive
fine integration is tried with small steps h, until one reaches with several accepted
small steps the coarse level H. For the slow adaptive step H however, one needs also
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an approximation of the fast component for coupled components, and the authors in
[22] say: “There are several possible ways to control the fast extrapolation error, none
of which is entirely satisfactory”. The stability properties of such multirate schemes
were analyzed in [35] for Backward Euler multirate schemes; see also [23].

In contrast to the multirate methods, multirate extrapolation methods aim at
integrating systems of ODEs without a priori knowledge of which components need
finer time integration steps than others. A method based on Richardson extrapolation
was proposed in [13]: one computes approximations for all components for a time
step sequence {h1,h2,h3, . . .}, e.g. h2 =

h1
2 , h3 =

h1
3 ,. . . , and then builds the Richard-

son extrapolation table. As soon as a component has reached the desired accuracy
at step hk (an error estimate is available automatically in the Richardson table),
extrapolation for this component is marked inactive, and only components needing
further accuracy continue the extrapolation. Inactive components must then however
be approximated in order for the extrapolation to continue. Using interpolation from
the continuous approximation obtained from the Richardson extrapolation can com-
pletely destroy the extrapolation process, which is based on the same error expansion
for all the components. The authors in [13] propose instead an elegant approximation
from the asymptotic expansion assumption itself, and also introduce a defect control
to avoid that inactivation fails in certain situations.

2 Methods from the PDE Community

Local time stepping schemes in the PDE community started with experimental work,
see for example [28]. Such ad hoc solutions were quite different for parabolic and
hyperbolic PDEs.

Hyperbolic Problems: a first complete mathematical analysis of two space-time
adaptive schemes for the wave equation ut = ux, an interpolation based variant, and
the so called coarse mesh approximation method were given by Berger [2] (see also
[3], and an early analysis for a different technique based on finite volumes in [31]).
Using for example a three point explicit scheme, the interpolation based approach
starts with a coarse step at the interface, shown in red in Fig. 1 on the left, followed
by an interpolation for the fine grid values, shown in blue. In the coarse mesh ap-
proximation, one uses the coarse spatial mesh to compute small time steps Δ t, 2Δ t,
3Δ t, . . . at the interface, instead of interpolating these values, as indicated in Fig. 1 on
the right for the second step 2Δ t in red, where the blue value at Δ t has already been

interpolate

0

¢T

t

x

compute

0

¢t

¢X ¢x

¢T ¢t

¢X ¢x

t

x

Fig. 1. Interpolation based approach on the left, and the coarse mesh method on the right
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Fig. 2. First energy-preserving local time stepping for the wave equation on the left, and sym-
plectic scheme for Maxwell’s equation on the right

computed. The author proves for the hyperbolic model problem ut = ux that both
approaches are stable for the Lax-Wendroff scheme, but stability for the Leapfrog
scheme can only be achieved with overlap. Elegant recursive versions of such algo-
rithms are in [33].

A key new ingredient to obtain stability for a Leapfrog type scheme for the
locally adaptive solution of the wave equation can be found in the seminal papers
by Collino et al. in [7, 8]: the introduction of a discrete energy conservation. In pre-
sentations, this approach was always introduced with an impressive movie, where a
wave passes a locally refined patch, and everything looks fine for quite a long time
after the wave has passed, until suddenly an instability forms at the boundary of the
patch, and the numerical solution explodes, if a simple interpolation based scheme
is used. The method was first described for the 1d Maxwell system ut + vx = 0,
vt + ux = 0, which is equivalent to the 1d second order wave equation utt = uxx, and
can best be described with the original picture from [7] shown in Fig. 2 on the left.
Thinking just about the second order wave equation, discretized with a centered fi-
nite difference scheme both in space and time, we get the five point star, well visible
with the black squares in Fig. 2 (the triangles would be for the unknowns v we do not
consider here). Now all points can be computed with this star at time levels t2n+1 and
t2n+2, given the values at earlier time levels, except for the values in the dashed box.
The key idea of the energy preserving scheme is now to permit two different values
at x = 0 at even time levels t2n, and to introduce as additional equation the discrete
energy, which needs to be preserved. This leads naturally to a stable scheme, but it
requires the solution of a small linear system at the interface. Energy conservation
turned out to be a key tool for stability analysis, and is used now for other space-
time adaptive methods, see for example [11], where the authors introduce an unusual
energy, in order to analyze the stability of their space-time locally adaptive scheme.

A very elegant way of generalizing a symplectic integrator (which naturally pre-
serves a nearby energy) for variable step size integration was presented in [26], and
adapted to Maxwell’s system in [32]. The Störmer-Verlet scheme is symplectic for
these equations, and is shown in Fig. 2 on the right. Without refinement, the scheme
is visible in the right part under H2,E2: we see that first a half step denoted by 4
is performed for the magnetic field H, followed by a full step denoted by 5 for the
electric field E , and concluded by a second half step for H denoted by 6. In each of
these steps, the Störmer-Verlet scheme uses for H the newest values available from
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the other field E , and vice versa. It turns out that doing the same over the locally
refined region shown in Fig. 2 on the right, and performing the steps in the given
order, starting with 1 and ending with 9, and using each time the newest information
available, is still symplectic! Since symplectic schemes preserve a nearby energy,
this scheme has all the good stability properties needed.

In a finite volume or discontinuous Galerkin in the time domain setting (DGTD),
on unstructured meshes in space, the scheme in each subdomain with given time step
can be advanced until the new time value reaches that of its neighbor, according to
the stability constraint, see [12] for elastodynamics computations in the context of
ADER methods (Arbitrary high order, using high order DERivatives of polynomials).

Parabolic Problems are often integrated using implicit methods, which require
the solution of large systems of equations. These systems are obtained using the
same time step over the entire domain, and it is thus a priori not possible to use a
local time step. The first ideas to change this are based on domain decomposition
methods, where then interface values have to be predicted in some way, before the
subdomain problems are advanced in time by an implicit method.

A first interesting way to explicitly predict the interface values appeared in [9],
where a third spatial discretization size H is introduced, in addition to hl and hr, see
Fig. 3 on the left. The method then first does an explicit prediction step over the big
Δ t, stable because the corresponding spatial step H is big, as indicated in red. This
is followed by interpolation (in blue) to obtain all needed values at the interface, and
then on each side one can do implicit solves to advance the method. It is proved in
[9] that this scheme is stable for the heat equation with a centered finite difference
discretization in space, and forward/backward Euler in time, if Δ t ≤ 1

2 H2, and the
error satisfies the estimate max |err| ≤ C(h2

l + h2
r +H3 + Δ tl + Δ tr +HΔ t), which

shows impressively that the big prediction step Δ t, H only affects the accuracy in
higher order terms!

A different approach was proposed by Blum et al. [4], as shown in Fig. 3 on the
right. The authors do not consider local refinement in time and space, their main
interest is to break up a large linear system from the implicit time integration into
smaller ones, but their idea can also be used for local adaptation in time and space.
The key idea is to use overlap, predict all values needed at the interfaces using a
higher order extrapolation method, and then solve implicitly on the corresponding
subdomains to advance the method. The authors prove for the heat equation without
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Fig. 3. Explicit prediction of the interface values on an intermediate spatial grid on the left,
and by extrapolation with overlap on the right
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Fig. 4. A completely general space time mesh on the left, and the one-way and two way
approaches on the right

local refinement, hl = hr = h and Δ tl = Δ tr = Δ t, that the Crank-Nicolson scheme

is stable, provided that Δ t ≤C
(

L
logL

)2
h2, where Lh is the overlap, and an error esti-

mate of the form O(Δ t2 +h2). So here increasing the overlap can lessen the stability
constraint on the time step.

If one wants to avoid any time step constraints, one can perform the coupling
fully implicitly, as proposed in [16]. Here, one simply writes the implicit scheme on
the fine and coarse subdomain, and the interpolation conditions into one big system
of linear equations, which is then solved. The authors show for a linear advection
reaction diffusion equation that a standard centered scheme with backward Euler in
time is unconditionally stable, and satisfies for Δ t = O(h) the error estimate O(Δ t +

h2) in 1d, but in 2d there is a loss of | logh| 1
2 , and in 3d a loss of 1√

h
in accuracy.

A more general approach based on domain decomposition can be found in [17].
For the heat equation ut = uxx, and the decomposition of the domain Ω = (−1,1)
into two subdomainsΩ1 = (−1,0) andΩ2 = (0,1), the authors propose to discretize
the coupling conditions u1(0) = u2(0), ∂xu1(0) = ∂xu2(0) using a conservative finite
volume discretization over non-matching time grids. They also obtain, for each vari-
ant of the method, a very large system of equations to solve, but propose to solve it
using one or several steps of an iterative Dirichlet-Neumann algorithm. They show
that these schemes are conservative, provided one stops the iteration after a Neumann
step, and satisfy an error estimate O(Δ t +h) under certain conditions. One can show
that one of their methods corresponds to the approach in [16].

Space-Time Finite Element Methods consider the time direction like one of the
spatial directions, and discretize the problem directly in space-time by a finite ele-
ment method, which leads to a large discrete problem in space-time. These methods
have their roots in the work of C. Johnson and co-authors, see for instance [15] for
a review. Discontinuous Galerkin methods were used, and the adaptation was done
through a posteriori estimates. In the first versions of the method, the space-time
finite elements were still special, since they always had boundaries in time aligned
with the time direction, for example prisms. Completely general triangular meshes
in space time require special meshing techniques, since they need to satisfy certain
angle constraints, in order to avoid total global coupling in space-time, see [36] for
applications to Burger’s equation and elastodynamics. An impressive example of
such a mesh from [14] is reproduced in Fig. 4 on the left. A very recent contribution
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using discontinuous Galerkin methods can be found in these proceedings, see [30].
One-Way and Two-Way Methods are in principle very different from all the

methods we considered earlier, since they have both a coarse and a fine mesh in parts
of the domain. They have their roots in weather and climate simulations, which of-
ten use a global model over a large region, for example the entire planet, and then
refined models over a small region, for example a country. The question is then how
to compute a refined solution based on the solution of the global coarse problem. In
[10] and [6], the so called one-way (or “offline”) and two-way (or “online”) meth-
ods are proposed. In the one-way method, the coarse model is first solved once and
for all, and stored. Then boundary data is extracted to be imposed on the boundary
of the smaller refined region. The simplest approach is to use Dirichlet conditions,
which can however lead to large errors. A more refined approach is to use so called
open boundary conditions, which are related to absorbing boundary conditions, but
different, see [6, 29]. Open boundary conditions lead in general to substantially more
accurate fine models. In the two way approach, one only performs one or a few time
steps of the coarse model, then solves the fine model in the refined region as before,
but updates the coarse result whenever a more accurate fine result is available, before
continuing the next coarse time step, see Fig. 4 on the right. If one simulates only one
time step of the coarse model before solving the fine model and uses Dirichlet condi-
tions, this approach is very much related to the first approach for hyperbolic problems
described earlier.

Schwarz waveform relaxation methods are the most flexible methods for solv-
ing evolution problems locally adaptively in space time, since they permit not only
refined time steps, but even different numerical methods, or different models in dif-
ferent regions. They were first described in [20] and are based on a decomposition
in space of the domain over which the evolution problem is posed and a subdomain
iteration in space-time: starting with an initial guess on each space-time interface
between subdomains, on each subdomain the evolution problem is solved over an
entire so called time window. Then information is exchanged between subdomains
using transmission conditions, and the subdomain problems are solved again and
again until a suitable matching is reached. So the price to pay for this flexibility and
generality is the iteration. The method from [17] we have seen earlier is in this class
of methods, but much faster convergence can be obtained when optimized transmis-
sion conditions are used, see [1, 18, 21, 24, 25], and references therein. Very general
non-matching space-time grids can be coupled like this using a projection algorithm
with optimal linear complexity from [19]. For recent realistic applications in a com-
plex setting, see [5].
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1 Introduction

Krylov-type methods are widely used in order to accelerate the convergence of
Schwarz-type methods in the linear case. Authors in [2] have shown that they ac-
celerate without overhead cost the convergence speed of Schwarz methods for dif-
ferent types of transmission conditions. In the nonlinear context, the well-known
class of Newton-Krylov-Schwarz methods (cf. [5]) for steady-state problems or time-
dependent problems uses the following strategy: time-dependent problems are dis-
cretised uniformly in time first and then one proceeds as for steady-state problems,
i.e. the nonlinear problem is solved by a Newton method where the linear system
at each iteration is solved by a Krylov-type method preconditioned by an algebraic
Schwarz method. The major limitation is that NKS methods do not allow different
time discretisations in the subdomains since the problem is discretised in time uni-
formly up from the beginning.

In this work, we are interested in applying the well-established technique from
the linear case in the context of Schwarz Waveform Relaxation methods (SWR, cf.
[8]) to nonlinear time-dependent problems in order to benefit from its accelerating
properties. We emphasise the use of SWR methods since within this approach, it is
possible to use different discretisations in time and space in the subdomains, even the
coupling of different models is possible. In many applications, time step restrictions
in implicit approaches are highly localised in space due to heterogeneity and SWR
methods are perfectly suited to localise and isolate them in subdomains which are
treated with different time discretisations.

Our motivation of balancing time step restrictions in the time-dependent nonlin-
ear case on subdomains is close to the approach in [6, 11] where the balancing of
nonlinearities on subdomains in the steady-state case is achieved using the permuta-
tion of domain decomposition methods and Newton’s method in combination with
Krylov accelerators.

The paper is organised as follows: In Sect. 2 we set up the problem to solve.
In Sect. 3 we describe the Schwarz waveform relaxation (SWR) algorithm and the
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reduction to the interface variables. The new approach is described in Sect. 4. Nu-
merical issues and results are given in Sect. 5.

2 Problem Description

In this paper we consider the following model in Ω × (0,T ), Ω ⊂ R
d :

∂t(φw)+L w+F (w) = q in Ω × (0,T), (1)

w(·,0) = w0 in Ω , G w = g on ∂Ω × (0,T ). (2)

where φ(x)> 0 is the porosity, w∈R
s the vector containing the concentrations of the

s chemical species. L [·] =∇ ·(−a∇+b) is a linear operator which models diffusion
described by a positive scalar diffusion coefficient a > 0 and advection described by
a Darcy field b ∈ R

d . The transport operator can be zero for non-mobile species. F
is a nonlinear chemical coupling operator. We impose initial conditions on Ω given
by w0 and linear boundary conditions represented by G , for instance Neumann or
Dirichlet conditions. The data g and q are source terms depending on space and time.

3 The Schwarz Waveform Relaxation Algorithm
and the Classical Approach

We decompose the domain Ω into two non-overlapping domains Ω1 and Ω2 and
call the common boundary Γ = ∂Ω1 ∩ ∂Ω2 the interface between the subdomains.
We introduce the following SWR algorithm with Robin transmission conditions to
approximate the solution of (1): given the iterate wk−1

i which is equal to an initial
guess for the first iteration, then one step of the algorithm consists in computing
in parallel wk

i for subdomains Ωi = 1,2, with data coming from the neighbouring
subdomainΩ×, with 1̃ = 2 and 2̃ = 1.

∂t(φwk
i )+L wk

i +F (wk
i ) = q in Ωi× (0,T ), (3)

(∂ni + p)wk
i = (∂ni + p)wk−1

× on Γ × (0,T ), (4)

wk
i (·,0) = w0 in Ωi, G wk

i = g on ∂Ωi \Γ × (0,T ), (5)

with ni the unit outward normal of Ωi on Γ and p ∈ R, p > 0 a constant.
It is possible to reduce algorithm (3)–(5) to the so-called interface variables. De-

fine the operators Mi : (λ i, f ) �→ wi solution of

∂t(φwi)+L wi +F (wi) = q in Ωi× (0,T ), (6)

(∂ni + p)wi = λi on Γ × (0,T ), (7)

wk
i (·,0) = w0 in Ωi, G wk

i = g on ∂Ωi \Γ × (0,T ). (8)

Here f = (q,w0,g) represents all source terms except the ones on the interface Γ that
are represented separately by λi. With these definitions, the transmission conditions
(4) can be written as λ k+1

i =−λ k×+ 2pM×(λ k×, f ), and as a system
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(
λ k

1
λ k

2

)
=

(−λ k−1
2 + 2pM2(λ k−1

2 , f )
−λ k−1

1 + 2pM1(λ k−1
1 , f )

)
. (9)

The SWR algorithm (3) is therefore a fixed point algorithm for the nonlinear
interface problem (

λ1

λ2

)
=

(−λ2 + 2pM2(λ2, f )
−λ1 + 2pM1(λ1, f )

)
. (10)

Each iterate requires solving the nonlinear problem (6)–(8). This can be achieved
by a Newton method, or a semi-implicit discretisation in time. The latter method
has been implemented in [4] for the advection diffusion reaction equation, where the
convergence of the fixed point algorithm has been proved. The extension of the proof
to the system (1) should be easy.

4 Newton-Schwarz Optimised Waveform Relaxation

The new approach consists first in solving the system (10) by a Newton algorithm. If
the interface problem is well-posed, and if the initial data for Newton is sufficiently
closed to the solution, the algorithm converges to that solution. According to the
interface problem (10), we seek the zeros of the nonlinear function

Θ(λ ) :=−(λ1 +λ2)

(
1
1

)
+ 2pϒ (λ ), ϒ (λ ) :=

(
M2(λ2, f )
M1(λ1, f )

)
.

One step k− 1 → k of Newton’s algorithm consists in solving the linear system
Θ ′(λ k−1) · (λ k − λ k−1) = −Θ(λ k−1). To evaluate the derivative of Θ , we must
calculate the derivative of the functions λi �→ Mi(λi, f ). If wi = Mi(λi, f ) and
Wi = Mi(λi + λ̃i, f ), we see by subtracting equations (6) for wi and Wi, that Wi−wi

is solution of

∂t(φ(Wi−wi))+L (Wi−wi)+F (Wi)−F (wi) = 0.

Introducing the derivative of F , F (Wi)−F (wi) = F ′(wi)(Wi −wi) +O((Wi −
wi)

2), and therefore Wi−wi = w̃i+o(w̃2
i ), where w̃i is solution of the linear equation

∂t(φ w̃i)+L w̃i +F ′(wi)w̃i = 0. (11)

(∂ni + p)w̃i = λ̃i (12)

w̃i(x,0) = 0 in Ωi, G w̃i = 0 on ∂Ωi \Γ × (0,T). (13)

Therefore ∂λi
Mi(λi, f ) · λ̃i = w̃i := M lin(F ′(wi); λ̃i), and

Θ ′(λ ) · λ̃ =−(λ̃1 + λ̃2)

(
1
1

)
+ 2p

(
M lin(F ′(w2); λ̃2)

M lin(F ′(w1); λ̃1)

)
.

After these computations, the algorithm takes the form
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wk−1
i = Mi(λ k−1

i , f ),

−
2

∑
i=1

(λ k
i −λ k−1

i )

(
1
1

)
+ 2p

(
M lin

2 (F ′(wk−1
2 );λ k

2 −λ k−1
2 )

M lin
1 (F ′(wk−1

1 );λ k
1 −λ k−1

1 )

)
=

−
2

∑
i=1
λ k

i

(
1
1

)
+ 2p

(
M2(λ k−1

2 , f )
M1(λ k−1

1 , f )

)
(14)

The approach requires in every iteration to solve two nonlinear problems in the
subdomains. Therefore, a nested iterative procedure is necessary (Newton, or semi-
implicit time stepping). Once this is done, λ n+1−λ n is a solution of a linear problem
solved in parallel in the subdomains.

5 Implementation Using Newton-Krylov Methods
and Numerical Results

We have implemented both the classical and the new approach for a special case
of problem (1). We assume that s = 2 and w = (u,v) where u denotes a mobile
species and v denotes a fixed species. The nonlinear function F is given by F (w) =
(R(u,v),−R(u,v)) where R(u,v) is the overall reaction rate of the reversible reaction
u � v.

For the computation of Mi(λ k−1
i , f ), we use an implicit Euler scheme in time

and a hybrid finite volume scheme (based on [7]) in space. The nonlinear systems
are then treated with a global implicit approach by means of Newton’s method with
exact LU-decomposition. The linear interface problems (14) for λ k

i are solved using
GMRES as Krylov-type method with a precision strategy in the spirit of inexact
Newton methods: we adapt the precision of the linear solver with respect to the
residuals of the Newton iterates and save therefore costly subdomain evaluations.

Concerning the stopping criterion for the Newton-Schwarz optimised algorithm,
it is classically controlled by both the residual and the correction (Δλ ) norm. The
Schwarz optimised algorithm is only controlled by the correction norm.

For all tests, we set the simulation domain to Ω = [0, 1]× [0, 1] ⊂ R
2 with

the subdomains Ω1 = [0, 0.5]× [0, 1] and Ω2 = [0.5, 1]× [0, 1]. The time win-
dow considered is t ∈ [0, 1]. Physical parameters are φ = 1, a = 1.5, (bx, by) =
(5 ·10−2, 1 ·10−3). The nonlinear coupling term is defined by R(u,v) = k(v−Ψ(u))
where the functionΨ is a BET isotherm law defined by

Ψ(u) =
QsKLu

(1+KLu−KSu)(1−KSu)
.

BET theory is a rule for the physical adsorption of gas molecules on a solid surface
and serves as the basis for an important analysis technique for the measurement of
the specific surface area of a material (cf. [3]). This law is insofar mathematically
interesting as it is neither convex nor concave (cf. Fig. 1) and is therefore a challeng-
ing problem for standard nonlinear solvers like Newton’s method. We set k = 100,
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Fig. 1. BET Isotherm law functionΨ with QS = 2, KS = 0.7, KL = 100

QS = 2, KS = 0.7 and KL = 100. Initial values are set to (u0,v0) = ( 1
2 ,

1
3 ). By defin-

ing the function g(x,y, t) = (sin(πx)cos(πy)cos(2πt)+ cos(πx)sin(πy)cos(2πt)+
cos(πx)cos(πy)sin(2πt)+ 1)/2 we impose Dirichlet boundary conditions with val-
ues set to u(x,y, t) = g(x,y, t) for (x,y) ∈ ∂Ω .

As a first experiment, we are interested in the sensitivity of the new approach with
respect to the parameter p of the Robin transmission condition. Indeed the theory of
optimised Schwarz waveform relaxation for linear problem relies on the fact that the
convergence properties of the algorithm heavily depend on this parameter. A best
parameter for the advection diffusion reaction equation can be found analytically by
solving a best approximation problem, see [1, 8]. No such analysis is available for
the nonlinear problem, it is therefore interesting to study the issue numerically.

We discretise the numerical domain with Δx=Δy= 1/40 and Δ t = 1/10 and im-
pose a random initial guess on the interface for the first iteration. As both subdomains
are the same size, the number of overall matrix inversions is a meaningful criterion
for measuring the numerical performance. We run the two approaches for different
parameters p of the Robin transmission condition and plot in Fig. 2 (left) the num-
ber of matrix inversions as a function of the parameter p in the Robin transmission
condition. One observes first that the performance of the classical approach depends
highly on the parameter p of the Robin transmission condition, as in the linear case.
The best parameter is p∗ ≈ 40. We observe that the new approach also shows the best
performance at p∗ but is much less sensitive to the choice of the parameter. The loss
of sensitivity with respect to the parameter is still an open question.

It turns out that the new method has a cost overhead, that becomes non negli-
gible if space discretisations are chosen too coarse. For this reason, we study the
asymptotic behaviour of the two approaches using always the optimal parameter of
the classical approach. We refine the problem in space using always Δx = Δy. Note
that we keep the time step constant at Δ t = 0.1. Refining the discretisation also in
time would lead to a problem that is quasi stationary at every time step since we use a
global implicit approach. We measure again the overall number of matrix inversions
in the two approaches and plot them in Fig. 2 (right) versus the discretisation size.
One observes that the overhead cost of the new approach compared to the classical
approach becomes negligible starting at a discretisation with about 150 grid points
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per dimension for the new method. For problems finer than the respective thresholds,
the new approach is always faster than the classical approach with the best parameter
for the transmission condition. Moreover, the finer the discretisation, the larger the
problem, the more important the accelerating property of the new approach. Note that
the new approaches has a slope of O(N1/7) in the asymptotic behaviour which is con-
siderably less than the slope of the classical approach which behaves like O(N1/2.75).
The slopes have been determined graphically, no theoretical justification is available.
However, this plot shows that the method is much less dependent of the size of the
problems than the classical one.

In order to exemplify the accelerating property of the new approach, we perform a
simulation with Nx = Ny = 200 points in each dimension keeping the number of time
steps constant and compare the convergence behaviour of the stopping criteria of the
two methods. In Fig. 3 we plot the convergence criterion versus the number of matrix
inversions. Note that, for a better comparison, we set the residual norm of the nonlin-
ear interface problem evaluated at the initial guess for both methods at zero matrix
inversions. The classical approach exhibit a linear convergence followed by a super-
linear convergence, similar to the behaviour of the linear algorithm. We observe the
quadratic convergence of the new approach, the characteristic feature of the Newton
algorithm.
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Fig. 2. Number of matrix inversions for the classical approach and new approach, synthetic test
case. Left: Varying parameter p of the Robin transmission conditions with fixed discretisation
in space and time. Right: Varying the number of discrete points per dimension (Nx=Ny) with
fixed discretisation in time and optimal parameter for the Robin transmission condition

Finally, we want to apply the new approach to a benchmark test case in the con-
text of CO2 geological storage. The 3D test case is based on the benchmark for
the SHPCO2 project (Simulation haute performance pour le stockage géologique
du CO2) which is described in [10]. The global domain is set to Ω = [0, 4,750]×
[0, 3,000]× [−1,100,−1,000]with (38, 24, 8) grid cells in (x, y, z)-direction. The do-
main is decomposed into the two nonoverlapping subdomainsΩ1 = [1,000, 2,500]×
[0, 3,000]× [−1,050,−1,000] and Ω2 =Ω \Ω1. We call Ω1 the reactive subdomain
since in this subdomain an injection of the mobile species u is modelled by a source
term. The initial state is zero for the mobile and immobile species. We consider
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cal approach and new approach, SHPCO2
benchmark case

again the BET isotherm law as nonlinear coupling term. The injected mobile species
is partially adsorbed by the reaction and partially transported by mainly advection.
Simulation time is [0, 100]. The SWR approach allows us to use different discretisa-
tions in the subdomains. We choose to use ten time steps in the reactive subdomain
Ω1 and only five time steps in the subdomain Ω2. This choice is insofar justified
since the rapid injection in the reactive subdomain restricts the time step size by im-
posing a maximum number of Newton iterates of ten. As in the subdomain Ω2, the
mobile species appears only by transport processes on a slower time scale than the
injection, one can choose a larger time step in order to respect the maximum number
of Newton iterations. Concerning the parameter of the Robin transmission condition,
we use a low frequency approximation of the optimal parameter. The initial guess on
the interface is zero for both subdomain interfaces. In Fig. 4 we plot the convergence
histogram, i.e. the stopping criterion in a logarithmic scale versus the CPU time (nor-
malised to the CPU time of the classical approach). Note that both subdomains have
a different size of unknowns and therefore the number of matrix inversions, as used
in the previous examples, is no longer a valid tool to measure the effort. One ob-
serves that the new approach needs only about 20 % of the CPU time of the classical
approach.

6 Conclusion

Based on a nonlinear coupled reactive transport system we have developed a new
approach for solving the interface problem in the nonlinear case using Krylov-
accelerators. In contrast to NKS methods the use of SWR methods allows us to use
different time discretisations in the subdomains and so to localise time stepping con-
straints. We have implemented and tested the method, comparative results with the
classical approach have been provided.

The numerical tests showed that, besides an overhead cost for coarse space dis-
cretisations, the method has an accelerating property and shows much less sensitiv-
ity with respect to the choice of the parameter of the Robin condition. The quadratic
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convergence behaviour of the new approach outperforms the superlinear convergence
behaviour of the classical approach. Nevertheless, the new approach does have sig-
nificant overhead costs that are not negligible in the case of coarse problems. Note
that a third approach is possible, namely to start with a Newton algorithm for the
nonlinear problem, and to solve the so obtained linear problem by a Schwarz-Krylov
algorithm (cf. [9]).
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1 Introduction

The solution of partial differential equations (PDEs) with disparate space and time
scales often benefit from the use of nonuniform meshes and adaptivity to successfully
track local solution features.

In this paper we consider the problem of grid generation using the so–called
equidistribution principle (EP) [3] and domain decomposition (DD) strategies. In
the time dependent case, the EP is used to evolve an initial (often uniform) grid by
relocating a fixed number of mesh nodes. This leads to a class of adaptive meth-
ods known as r–refinement or moving mesh methods. A thorough recent review of
moving mesh methods for PDEs can be found in the book [11].

In general, the appropriate grid for a particular problem depends on features of
the (typically unknown) solution of the PDE. Here we will focus on the grid genera-
tion problem for the time independent, given function u(x) of a single spatial variable
x ∈ [0,1]. Given some positive measure M(x) of the error or difficulty in the solution
u(x), the EP requires that the mesh points are chosen so that the error contribution on
each interval [xi−1,xi] is the same. The function M is known as the monitor or mesh
density function. Mathematically, we may write this as

∫ xi

xi−1

M(x̃)dx̃≡ 1
N

∫ 1

0
M(x̃)dx̃ or

∫ x(ξi)

0
M(x̃)dx̃ =

i
N
θ ≡ ξiθ , (EP)

where x(ξi) = xi and θ ≡ ∫ 1
0 M(x̃)dx̃ is the total error in the solution. The EP defines

a one–to–one co-ordinate transformation between the physical co–ordinate x and
underlying computational co–ordinate ξ . This will naturally concentrate mesh points
where the error in the solution is large.

Differentiating the continuous formulation of EP gives the required mesh trans-
formation, x(ξ ), as the solution of the nonlinear boundary value problem

d
dξ

{
M(x(ξ ))

d
dξ

x(ξ )
}
= 0, x(0) = 0 and x(1) = 1. (1)
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If M is chosen properly, we expect the solution u(x) to be easy to represent on
a uniform grid in ξ . In general, the physical solution u is not known and instead
satisfies a PDE. In that case, the mesh transformation, satisfying (1), and the physical
PDE, are coupled and often solved in an iterative fashion.

We will assume (1) has a unique solution, see [8] for details. In [8], the authors
consider the solution of (1) and time dependent extensions using classical parallel,
optimized and optimal Schwarz methods. In this paper we continue the work of [8]
by providing details of the nonlinear and linearized alternating Schwarz approaches.
The reader is also referred to the experimental papers [7, 9, 10], which proposed
various strategies to couple DD and moving meshes. See [1, 2, 4–6, 12–15] for a
discussion of DD methods applied to other nonlinear PDEs.

In Sect. 2 we propose a new nonlinear alternating Schwarz method to solve (1)
and prove convergence in L∞. In Sect. 3 we avoid the nonlinear subdomain problems
and propose and analyze a linearized alternating Schwarz algorithm. Brief numerical
results are presented in the final section.

2 A Nonlinear Alternating Schwarz Method

In [8] we consider the solution of (1) by a parallel, classical nonlinear Schwarz it-
eration. On each subdomain a nonlinear BVP is solved and Dirichlet transmission
conditions are used at the subdomain interfaces. Convergence of the iteration can be
accelerated if we are willing to compute sequentially. Consider the nonlinear alter-
nating Schwarz iteration

(M(xn
1)x

n
1,ξ )ξ = 0, ξ ∈Ω1, (M(xn

2)x
n
2,ξ )ξ = 0, ξ ∈Ω2,

xn
1(0) = 0, xn

2(α) = xn
1(α), (2)

xn
1(β ) = xn−1

2 (β ), xn
2(1) = 1,

where Ω1 = (0,β ) and Ω2 = (α,1) with α < β .
Direct integration and enforcing the boundary conditions gives the following im-

plicit representation of the subdomain solutions.

Lemma 1. The subdomain solutions on Ω1 and Ω2 of (2) are given implicitly as

∫ xn
1(ξ )

0
M(x̃)dx̃ =

ξ
β

∫ xn−1
2 (β )

0
M(x̃)dx̃, (3)

and ∫ xn
2(ξ )

0
M(x̃)dx̃ =

1− ξ
1−α

∫ xn
1(α)

0
M(x̃)dx̃+

ξ −α
1−α

∫ 1

0
M(x̃)dx̃. (4)

Let ‖ · ‖∞ denote the usual L∞ norm. We now relate xn
1,2 to xn−1

1,2 and obtain the fol-
lowing result.
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Theorem 1. Assume M is differentiable and there exist positive constants a and A
satisfying 0 < a ≤ M(x) ≤ A < ∞. Then the alternating Schwarz iteration (2) con-
verges for any initial guess x0

2(β ) and we have the error estimates

||x− xn+1
1 ||∞ ≤ ρn A

a
|x(β )− x0

2(β )|, ||x− xn+1
2 ||∞ ≤ ρn A

a
|x(α)− x0

1(α)|, (5)

with contraction factor ρ := α
β

1−β
1−α < 1.

Proof. Evaluating (3) at ξ = α and using the expression for xn−1
2 (β ) from (4) we

have ∫ xn
1(α)

0
M dx̃ =

α
β

{
β −1
α−1

∫ xn−1
1 (α)

0
M dx̃+

β −α
1−α

∫ 1

0
M dx̃

}
.

Defining the two quantities

Kn
1 =

∫ xn
1(α)

0
M(x̃)dx̃ and C =

∫ 1

0
M(x̃)dx̃,

we obtain the linear iteration

Kn
1 =

α
β
β −1
α−1

Kn−1
1 +

α
β
β −α
1−α C. (6)

This iteration converges with rate ρ := α
β

1−β
1−α < 1, and has the limit

K∗1 =
α
β

1−β
1−αK∗1 +

α
β
β −α
1−α C =⇒ K∗1 = αC. (7)

Since the monodomain solution also satisfies
∫ x(α)

0
M(x̃)dx̃ = αC,

and M(x) ≥ a > 0, we have convergence at the interface to the correct limit.
Subtracting (6) from (7) we have

∫ x(α)

xn
1(α)

M(x̃)dx̃ = ρn
∫ x(α)

x0
1(α)

M(x̃)dx̃. (8)

Subtracting (4) from the equivalent expression for the exact solution and using (8)
we obtain

∫ x(ξ )

xn+1
2 (ξ )

M(x̃)dx̃ =
1− ξ
1−α

∫ x(α)

xn
1(α)

M(x̃)dx̃ =
1− ξ
1−α ρ

n
∫ x(α)

x0
1(α)

M(x̃)dx̃.

Taking the modulus and using the boundedness of M we obtain, for all ξ ∈ [α,1],

|x(ξ )− xn+1
2 (ξ )| ≤ 1− ξ

1−αρ
n A

a
|x(α)− x0

1(α)|.

Taking the supremum gives the second estimate in (5). The estimate on subdomain
one is obtained similarly. #$
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3 A Linearized Alternating Schwarz Method

We may avoid nonlinear solves on each subdomain in (2) by considering a linearized
alternating Schwarz iteration,

(M(xn−1
1 )xn

1,ξ )ξ = 0, ξ ∈Ω1 (M(xn−1
2 )xn

2,ξ )ξ = 0, ξ ∈Ω2

xn
1(0) = 0, xn

2(α) = xn
1(α), (9)

xn
1(β ) = xn−1

2 (β ), xn
2(1) = 1.

At iteration n we evaluate the nonlinear diffusion coefficient M using the solution
obtained from the previous iterate and obtain the updated solution by a single linear
BVP solve on each subdomain. A simple calculation yields the following represen-
tation of the subdomain solutions.

Lemma 2. The subdomain solutions of (9) are given by

xn
1(ξ ) = xn−1

2 (β )

∫ ξ
0

dξ̃
M(xn−1

1 (ξ̃ ))∫ β
0

dξ̃
M(xn−1

1 (ξ̃ ))

, (10)

and

xn
2(ξ ) = xn

1(α)+ (1− xn
1(α))

∫ ξ
α

dξ̃
M(xn−1

2 (ξ̃ ))∫ 1
α

dξ̃
M(xn−1

2 (ξ̃ ))

. (11)

Convergence of the linearized alternating Schwarz iteration (9) follows by proving
convergence at the interior interfaces and showing we have converged to the correct
limit.

Theorem 2. Under the assumptions of Theorem 1, the linearized alternating Schwarz
iteration (9) converges for any smooth initial guesses x0

1(ξ ) and x0
2(ξ ).

Proof. Evaluating the subdomain solutions (10) and (11) at the interfaces, we obtain
for the interface values the iterations

xn
1(α) = C n

αxn−1
1 (α)+Dn

α and xn
2(β ) = C n

β xn−1
2 (β )+Dn

β ,

where

C n
α =

∫ 1
β

dξ̃
M(xn−2

2 (ξ̃ ))∫ 1
α

dξ̃
M(xn−2

2 (ξ̃ ))

∫ α
0

dξ̃
M(xn−1

1 (ξ̃ ))∫ β
0

dξ̃
M(xn−1

1 (ξ̃ ))

, Dn
α =

∫ β
α

dξ̃
M(xn−2

2 (ξ̃ ))∫ 1
α

dξ̃
M(xn−2

2 (ξ̃))

∫ α
0

dξ̃
M(xn−1

1 (ξ̃ ))∫ β
0

dξ̃
M(xn−1

1 (ξ̃))

,

and

C n
β =

∫ 1
β

dξ̃
M(xn−1

2 (ξ̃ ))∫ 1
α

dξ̃
M(xn−1

2 (ξ̃ ))

∫ α
0

dξ̃
M(xn−1

1 (ξ̃ ))∫ β
0

dξ̃
M(xn−1

1 (ξ̃))

, Dn
β =

∫ β
α

dξ̃
M(xn−1

2 (ξ̃))∫ 1
α

dξ̃
M(xn−1

2 (ξ̃ ))

.
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It is possible to show the quantities C n
α ,D

n
α ,C

n
β and Dn

β satisfy

0 < C n
α ,C

n
β ≤ ρ < 1, 0 < Dn

α ≤ Dα < 1, and 0 < Dn
β ≤ Dβ < 1,

where

ρ :=
1

1+ a
A
β−α
1−β

1

1+ a
A
β−α
α

, Dα :=
1

1+ a
A
β−α
α

1

1+ a
A

1−β
β−α

, and Dβ :=
1

1+ a
A

1−β
β−α

.

To establish these bounds let F(x) := 1/M(x). The assumptions on M imply 1
A ≤

F(x)≤ 1
a . As an example, the upper and lower bounds on F then imply

∫ α
0 F(x(ξ ))dξ∫ β
0 F(x(ξ ))dξ

≤ 1

1+ a
A
β−α
α

and

∫ 1
β F(x(ξ ))dξ∫ 1
α F(x(ξ ))dξ

≤ 1

1+ a
A
β−α
1−β

.

Consider now the iteration for xn
1(α) only. Using the recursion, we have

xn
1(α) =

n

∏
k=1

C k
αx0

1(α)+
n

∑
k=1

Dk
α

(
n

∏
l=k+1

C l
α

)
,

where the product in the k–th term of the sum is assumed to be one if the lower index
of the product exceeds the upper index. Since ρ < 1, the product multiplying x0

1(α)
must go to zero as n → ∞. The infinite series converges by direct comparison with
∑∞k=1 Dαρk−1. A corresponding argument applies to show convergence of xn

2(β ).
Denote the limits of {xn

1(α)} and {xn
2(β )} as x̃α and x̃β respectively. Since the in-

terface values converge, the subdomain solutions defined by (9) converge to functions
x̃1 and x̃2 both satisfying the nonlinear PDE. Since x̃1(α) = x̃2(α) and x̃1(β )= x̃2(β ),
both x̃1 and x̃2 satisfy the same PDE in the overlap with the same two boundary con-
ditions, and by assumption of uniqueness, x̃1 and x̃2 must coincide in the overlap. One
can therefore simply glue these two solutions together in order to obtain a function
which satisfies the PDE everywhere, and also the two original boundary conditions
at 0 and 1. Again by uniqueness, this must now be the desired solution. #$

4 Numerical Results

In this section we numerically demonstrate the results above using a simple finite
difference discretization of the BVP (1) and iterations (2) and (9). We also include
results using nonlinear and linearized parallel Schwarz algorithm from [8] for com-
parison. Details of the numerical approach and convergence of the discrete DD algo-
rithm will be considered elsewhere.

We solve EP for u(x) = (1− eλ x)/(1− eλ ) on the interval x ∈ [0,1]. For large
values of λ this function exhibits a boundary layer at x = 1. We use the arc–length
monitor function M(x,u(x)) =

√
1+ u2

x and choose λ = 20. The errors reported in
Figs. 1 and 2 are the differences between the single domain numerical solution and
the domain decomposition solution over the first subdomain.
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Fig. 1. Error versus # of DD iterations
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Fig. 2. Error versus # of linear solves

In Fig. 1 we solve (1) on two subdomains with a 5 % overlap using linearized and
nonlinear, parallel and alternating Schwarz iterations. We see that the convergence
of the alternating iteration is faster than the parallel algorithms for both the nonlin-
ear and linearized versions of the algorithms. In terms of number of iterations the
nonlinear algorithms outperform the linearized variants. It is important, however, to
keep in mind that each nonlinear DD iteration is more expensive than its linearized
counterpart. In Fig. 2 we repeat the convergence history as a function of a work unit
which we take to be the cost of a linear solve. Each iteration of a linearized Schwarz
algorithm requires one linear solve while each iteration of a nonlinear Schwarz al-
gorithm requires many linear solves – one for each Newton step. Each linear solve
required by both algorithms has roughly the same cost due to the structure of the Ja-
cobian matrix. As a function of the work effort the efficacy of the linearized Schwarz
algorithms is obvious for this example.

In Table 1 we demonstrate the quality of the computed grids by calculating the
‖ · ‖∞ error between u(x) and the piecewise linear interpolant for u(x) on grids ob-
tained by the nonlinear and linearized alternating Schwarz algorithms, as a function
of the number of iterations. The last column shows the interpolation error obtained
with the single domain grid: the solution of (1) computed on a uniform ξ grid con-
sisting of 101 points. All interpolation errors are computed using a very fine grid. The
results show that the nonlinear Schwarz method is quickly able to find an appropriate
grid transformation after a few DD iterations. The linearized Schwarz algorithm, as
expected, requires more DD iterations but is able to find a quality grid efficiently due
to the smaller relative cost per iteration.

Iterations 1 3 5 7 9 11 ∞
Nonlinear 0.3625 0.0498 0.0462 0.0436 0.0449 0.0517 0.0366
Linearized 0.3625 0.1290 0.1019 0.0625 0.0453 0.0435 0.0366

Table 1. Interpolation errors for the grids obtained by Schwarz iterations.
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Fig. 3. Linearized Schwarz: error for vary-
ing C
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Fig. 4. Non-linear versus linearized
Schwarz with varying C

The quantities ρ ,Dα and Dβ corresponding to iteration (9) and the error estimates
in Theorem 1 indicate a dependence on the shape of M for the linearized alternating
Schwarz iteration. To test this effect, we consider the performance of (9) for M(x) =
C(x−0.5)2+1. The parameter C controls the ratio a/A. As C→∞, a/A→ 0, and the
contraction rate could diminish. This is demonstrated in Fig. 3. Figure 4 illustrates
the effect of changing the value of C on both the nonlinear and linearized Schwarz
algorithms. We see that the linearized Schwarz algorithm is affected more by an
increase in C.

In summary, we have proposed, analyzed and provided brief numerical com-
parisons for two alternating Schwarz algorithms to solve the steady grid generation
problem using the EP. Ongoing work includes the analysis of DD approaches to
moving mesh PDEs for the time dependent mesh generation problem, the discrete
analysis and extensions to higher dimensions.
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Summary. Implicit time stepping methods are useful for the simulation of large scale PDE
systems because they avoid the time step limitations imposed by explicit stability conditions.
To alleviate the challenges posed by computational and memory constraints, many applica-
tions solve the resulting linear systems by iterative methods where the Jacobian-vector prod-
ucts are approximated by finite differences. This paper explains the relation between a linearly
implicit Euler method, solved using a Jacobian-free Krylov method, and explicit Runge-Kutta
methods. The case with preconditioning is equivalent to a Rosenbrock-W method where the
approximate Jacobian, inverted at each stage, corresponds directly to the preconditioner. The
accuracy of the resulting Runge-Kutta methods can be controlled by constraining the Krylov
solution. Numerical experiments confirm the theoretical findings.

1 Introduction

Large systems of time dependent partial differential equations (PDEs), arising in
multi-physics simulations, are often discretized using the method of lines approach.
The independent time and space numerical schemes allow the coupling of multiple
physics modules, and provide maximum flexibility in choosing appropriate algo-
rithms. After the semi-discretization in space the system of PDEs is reduced to a
system of ordinary differential equations (ODEs)

y′ = f (y) , t0 ≤ t ≤ t f , y(t0) = y0 . (1)

Here y(t) ∈ R
d is the solution vector and y0 the initial condition. We denote the

Jacobian of the ODE function by J(y) = fy(y) ∈ R
d×d , and the identity matrix by

I ∈R
d×d .

Stability requirements (e.g., the CFL condition for discretized hyperbolic PDEs)
limit the time steps allowable by explicit time discretizations of (1). When the fastest
time scales in the system (1) are short, e.g., in the presence of fast waves, the stability
condition imposes time steps much smaller then those required to achieve the target

R. Bank et al. (eds.), Domain Decomposition Methods in Science and Engineering XX,
Lecture Notes in Computational Science and Engineering 91,
DOI 10.1007/978-3-642-35275-1 47, © Springer-Verlag Berlin Heidelberg 2013

403

mailto:sandu@cs.vt.edu
mailto:amik@ucar.edu


404 Adrian Sandu and Amik St-Cyr

accuracy. The step size limitation by linear stability conditions is referred to as stiff-
ness. In order to overcome this computational inefficiency, it is desirable to use im-
plicit, unconditionally stable discretizations which allow arbitrarily large time steps
[2]. Implicit methods have a high cost per step due to the need to solve a (non)linear
system of equations.

To reduce the computational and memory costs of direct linear system solvers,
and to aid parallelization, iterative Krylov space methods are employed. Further-
more, matrix-free implementations approximate Jacobian vector products by finite
differences [4]. This approach avoids additional coding for the Jacobian, preserves
the parallel scalability of the explicit model, and has become popular in many appli-
cations, e.g., [1, 5, 6]. The hope is that the properties of the implicit time discretiza-
tion remain unaltered, provided that the iterative solutions are carried out to sufficient
accuracy. We show here that the matrix-free approach does alter the properties of the
underlying implicit time stepping method.

This study treats a linearly implicit method, together with the Krylov subspace
iterations for solving the linear system, as a single numerical scheme. The analysis
reveals that matrix-free implementations of linearly implicit methods are equivalent
to explicit Runge Kutta methods. Consequently, the unconditional stability property
of the base method is lost. When preconditioning is used, the matrix-free implicit
methods are equivalent to Rosenbrock-W (ROS-W) methods where the approximate
Jacobians correspond directly to the preconditioners.

2 The Matrix-Free Linearly Implicit Euler Method

Consider the linearly implicit Euler (LIE) method applied to (1)
(
I−Δ t J(yn)

) ·w = f (yn) , yn+1 = yn +Δ t ·w . (2)

When the linear system is solved exactly (modulo roundoff errors) by LU factoriza-
tion the method (2) is unconditionally stable, and thus suitable for the solution of
stiff systems. For many PDEs semi-discretized in the method of lines framework,
however, the dimension of the linear system (2) is very large, and the computational
and memory costs associated with a direct solution are prohibitive. Moreover, the
construction of the explicit Jacobian matrix J is difficult when the space discretiza-
tion is based on a domain decomposition approach. To alleviate these problems, a
popular approach is to solve (2) by matrix-free iterative methods. We seek to analyze
the impact that this approximate solutions have on the stability and accuracy of the
implicit time stepping scheme. Our approach is to treat the original discretization
(2) together with the iterations as a single numerical method applied to solve the
ODE (1).

To be specific, we solve the linear system in (2) by a Krylov space method. The
initial guess is yn+1 = yn, i.e., w = 0. After m iterations the following m-dimensional
Krylov space is built:

Km = span
{

f (yn) , . . . ,
(
I−Δ t J(yn)

)m−1
f (yn)

}
.
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In the matrix-free approach, the basis is constructed recursively and the Jacobian-
vector products are approximated by finite differences

�i = �i−1−Δ t ε−1 f (yn + ε �i−1)+Δ t ε−1 �1 , i = 2, . . . ,m . (3)

We assume that the same scaling factor ε is used to compute the finite differences in
all iterations. (The analysis can be easily extended to the case where a different ε is
used in each iteration.) Denote

k1 = f (yn) ; ki = f (yn + ε�i−1) , i = 2, · · · ,m . (4)

The recurrence (3) can be expressed in terms of ki as:

ki = f

(
yn +Δ t

(
Δ t −1 ε +(i−2)

)
k1−Δ t

i−1

∑
j=2

k j

)
, i = 2, . . . ,m. (5)

The solution w = ∑m
i=1αi �i ∈Km can be expressed in terms of ki’s:

w =

(
m

∑
i=1

αi +Δ t ε−1
m

∑
i=2

(i−1)αi

)
k1−Δ t ε−1

m

∑
i=2

(
m

∑
j=i

α j

)
ki . (6)

Equations (5) and (6), together with the relation yn+1 = yn+Δ t w, are compared with
the m-stage explicit Runge Kutta (ERK) method [3]

ki = f

(
yn +

i−1

∑
j=1

ai j k j

)
, i = 1, . . . ,m ; yn+1 = yn +Δ t

m

∑
i=1

bi ki .

The comparison reveals the following.

Theorem 1. The matrix-free LIE (2) method is equivalent to an explicit Runge Kutta
method. The number m of Krylov iterations defines the number of Runge Kutta stages.

Equations (5) and (6) define the coefficients of the ERK method:

ai,1 = Δ t −1 ε +(i−2) ; ai, j =−1 , for i = 2, · · · ,m , j = 2, · · · , i−1;

b1 =
m

∑
j=1

α j +Δ t ε−1
m

∑
j=2

( j−1)α j ; bi =−Δ t ε−1
m

∑
j=i

α j , i = 2, . . . ,m .

2.1 Stability Considerations

The solution of the linear system (under the initial guess w = 0) is part of the Krylov
space Km and can be represented by a matrix polynomial

w = pm−1
(
I−Δ t J(yn)

) · f (yn) .

The matrix-free LIE method applied to the Dahlquist test problem y′ = λ y, y(0) = 1,
gives the following solution:

yn+1 = yn +Δ t w = (1+ z pm−1 (1− z)) yn = R(z)yn ,

with z = Δ t λ . The stability function of the equivalent ERK method is the degree m
polynomial R(z) = 1+ z pm−1 (1− z).
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Theorem 2. The stability region of the LIE method, with a Krylov matrix-free linear
solver, is necessarily finite. The unconditional stability of the original LIE method is
lost.

Similar considerations hold for Krylov space methods that use an orthogonal basis
of the Krylov space, built by Arnoldi iterations [7].

2.2 Accuracy Considerations

The method accuracy is difficult to assess, as the coefficients depend on the time
step. The relation between the finite difference scaling factor ε and the time step Δ t
is important in determining accuracy.

Assume that the finite difference scaling factor is a constant fraction of the time
step, ε/Δ t = const. This is a reasonable assumption: in order to increase accuracy
one decreases both Δ t , to reduce the truncation error, and ε , to reduce the finite
difference error. (Of course, for very small ε the finite difference error becomes again
large due to roundoff.) Also assume that the coefficients α1, . . . ,αm do not depend
on ε or Δ t .

In this case the accuracy can be assessed using the classical approach. The order
conditions depend on the Krylov space coefficients α as follows:

Order 1:
m

∑
i=1

bi =
m

∑
j=1

α j = 1 , (7a)

Order 2:
m

∑
i=1

bi ci =−
m

∑
i=2

(i−1)αi =
1
2
. (7b)

Neither condition (7a) nor (7b) are automatically satisfied by the Krylov iterative
methods. In particular,

Lemma 1. The first order accuracy of the matrix-free LIE is not automatic when
ε/Δ t = const. Additional constraints need to be imposed on the Krylov solution
coefficients.

Consider now the case where ε is constant (does not depend on Δ t ). Assume
that the coefficients α1, . . . ,αm do not depend on ε or Δ t . A necessary condition for
the method to be accurate of order p is that its stability function approximates the
exponential, R(z) = ez +O

(
zp+1

)
. The stability function does not depend on either

ε or Δ t . The conditions (7a) and (7b) on the Krylov solution coefficients α1, . . . ,αm,
which are sufficient when ε = const ·Δ t , seem to be necessary in the case ε = const.

In the general case the Krylov solution coefficients α1, . . . ,αm do depend on Δ t .
For Δ t → 0 we have that w→ f (yn) and therefore α1 → 1, α2,α3, . . .→ 0. Asymp-
totically the condition (7a) holds. Moreover, the number of iterations m also depends
on Δ t through the convergence speed. Consequently, it is difficult to extend the clas-
sical accuracy analysis to matrix-free linearly implicit methods. It seems reasonable,
however, to modify the Krylov method and impose at least condition (7a) on the
Krylov coefficients.
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3 Preconditioned Iterations

Consider the case where a preconditioner matrix M is used to speed up the iterations.
The linear system (2) becomes

M−1 (
I−Δ t J(yn)

) · k = M−1 f (yn) .

The Krylov space constructed in this case is

Km = span
{

f (yn) . . . ,
(
M−1 (I−Δ t J(yn))

)m−1
M−1 f (yn)

}
.

In the matrix-free approach the following basis is constructed recursively

�1 = M−1 f (yn) ,

�i = M−1 �i−1−Δ t ε−1 M−1 f (yn + ε �i−1)+Δ t ε−1 �1 , i = 2, . . . ,m .

Denote k1 = Δ t �1 and ki = Δ t �1− ε �i for i = 2, · · · ,m. We have

M k1 = Δ t f (yn) (8)

M ki = Δ t f (yn + k1− ki−1)+ ki−1− k1 , i = 2, . . . ,m .

Consider, for comparison, a Rosenbrock-W (ROW) method in the implementation-
friendly formulation [2, Sect. IV.7]

[
I−Δ t γ Ĵn

]
ki = Δ t γ f

(
yn +

i−1

∑
j=1

ai j k j

)
+ γ

i−1

∑
j=1

ci j k j ,

yn+1 = yn +
s

∑
i=1

mi ki . (9)

Here Ĵn ≈ J (yn) is an approximation of the exact Jacobian at the current step. We
identify the method coefficients γ = 1 and

ci,1 = −1; ci,i−1 = 1; ai,1 = 1; ai,i−1 =−1 , i = 2, · · · ,m .

From the solution w = ∑m
i=1αi �i = ∑m

i=1 bi ki ∈Km we identify the weights

b1 = α1Δ t −1 + ε−1
m

∑
j=2

α j ; bi =−ε−1αi , i = 2, . . . ,m .

The preconditioner defines the Jacobian approximation in the ROW method,

M = I−Δ t γ Ĵn ⇒ Ĵn = Δ t −1 (I−M) .

Theorem 3. The preconditioned matrix-free LIE is equivalent to a linearly-implicit
ROW method. The choice of the preconditioner, besides accelerating convergence,
improves the stability of the matrix-free LIE method. The preconditioner defines the
Jacobian approximation in the ROW method.

Note that the general approach can be applied to ROW methods [2, Sect. IV.7]
by solving the linear system of each stage with an iterative matrix free algorithm.
The resulting scheme is an explicit Runge Kutta method (or a ROW method) with
∑s

i=1 mi stages.
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4 Numerical Results

Consider the one dimensional scalar advection-diffusion equation

ut +(au)x = Duxx, u(x, t = 0) = u0(x) . (10)

A spectral discontinuous Galerkin spatial discretization is used with 20 elements and
polynomials of order 8. The diffusive term discretization is stabilized using the inter-
nal penalty method [8]. The LIE time stepping is used with the matrix-free GMRES
solver [7].
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Fig. 1. (a) and (b) The ERK stability regions for different numbers of GMRES iterations. (c)
The accuracy of the LIE scheme using various approaches to invert the Jacobian matrix. The
GMRES weights are restricted by (7b) such as to obtain a second order method. Advection-
diffusion equation (10), Δ t =CFL, ε = 10−6 Δ t

In Fig. 1a, b, the stability regions generated by the GMRES iterations are plotted
for a varying number of Krylov vectors. The regions grow quickly and encompass
the eigenvalues of the discrete advection-diffusion operator. Subsequent iterations
improve solution accuracy but do not improve linear stability. Additional experi-
ments (not reported here due to space constraints) reveal that the stability region of
the resulting ERK method adapts to the eigenvalues of different discrete operators.

To verify the analysis in (7), we consider three different ways of computing the
inverse of the linear Jacobian. The first is by Gauss elimination (LU), the second
uses GMRES with the full Jacobian, and the third employs matrix-free GMRES it-
erations. In the last approach the GMRES coefficients are restricted by (7b) such
as to obtain a second order time discretization method. Figure 1c shows the work-
precision diagram for these approaches. The Gaussian elimination and traditional
GMRES solutions display first order converge, while the constrained GMRES solu-
tion displays second order convergence.

5 Conclusions

Implicit time integration methods are becoming widely used in the the simulation of
time dependent PDEs, as they do not suffer from CFL stability restrictions. While
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implicit methods can use much larger time steps than explicit methods, their com-
putational cost per step is also higher. The computational time is dominated by the
solutions of (non)linear systems of equations that define each stage of a (linearly)
implicit method. The implicit code is more effective only when the gains in step size
offset the extra cost.

To reduce the computational overhead of LU decomposition, to alleviate memory
requirements, and to aid parallelization, iterative Krylov space methods are used
to solve the large linear systems. A matrix-free implementation approximates the
required Jacobian vector products by finite differences.

This paper studies the effect of the matrix-free iterative solutions on the proper-
ties of the numerical integration method. The analysis reveals that matrix-free lin-
early implicit methods can be viewed as explicit Runge Kutta methods. Their stabil-
ity region is finite, and the unconditional stability property of the original implicit
method is lost. The equivalent Runge Kutta method is nonlinear, in the sense that
its weights depend on the time step and on the stage vectors. This makes the ac-
curacy analysis difficult. Order conditions of the equivalent explicit Runge Kutta
method can be fulfilled by imposing additional conditions on the Krylov solution
coefficients. For preconditioned matrix-free iterations the overall time stepping pro-
cess is equivalent to a Rosenbrock-W method, where the preconditioner determines
the Jacobian approximation. Future work will address the effect of a finite number
of Krylov iterations on the stability and accuracy of the overall scheme, in the case
where an analytical Jacobian is used.
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Summary. In this paper we study interface equations associated to the Darcy-Stokes problem
using the classical Steklov-Poincaré approach and a new one called augmented. We compare
these two families of methods and characterize at the discrete level suitable preconditioners
with additive and multiplicative structures. Finally, we present some numerical results to as-
sess their behavior in presence of small physical parameters.

1 Introduction and Problem Setting

Let Ω ⊂ R
d (d = 2,3) be a bounded domain decomposed into two non intersect-

ing subdomains: Ω f , filled by a viscous incompressible fluid, and Ωp, formed by a
porous medium, separated by an interface Γ = Ω̄ f ∩ Ω̄p. The fluid in Ω f has no free
surface and it can filtrate through the adjacent porous medium. The motion of the
fluid in Ω f is described by the Stokes equations:

−ν&u+∇p = f, div u = 0 in Ω f (1)

where ν > 0 is the kinematic viscosity, while u and p are the velocity and pressure.
In Ωp we describe the fluid motion by the equations:

up =−K∇ϕ , div up = 0 in Ωp (2)

where up is the fluid velocity, ϕ the piezometric head and K the hydraulic conductiv-
ity tensor. The first equation is Darcy’s law that provides the simplest linear relation
between velocity and pressure in porous media. We can equivalently rewrite (2) as
the elliptic equation involving only the piezometric head:

−div(K∇ϕ) = 0 in Ωp. (3)

Besides suitable boundary conditions on ∂Ω , we supplement the Darcy-Stokes
problem (1), (3) with the following coupling conditions on Γ :

−K∇ϕ ·n = u ·n, −n ·T(u, p) ·n = gϕ , −ετττ ·T(u, p) ·n = νu · τττ, (4)
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where T(u, p) is the fluid stress tensor, τττ denotes a set of linear independent unit
tangential vectors to Γ and ε is a coefficient related to the characteristic length of
the pores of the porous medium. Conditions (4)1 and (4)2 impose the continuity of
the normal velocity and of the normal component of the normal stress on Γ . The
so-called Beavers-Joseph-Saffman condition (4)3 does not yield any coupling but
provides a boundary condition for the Stokes problem since it involves only quanti-
ties in the domain Ω f . For more details we refer to [9, 11, 12, 14].

2 Interface Equations Associated to the Darcy-Stokes Problem

In [7, 8], we showed that the coupled Darcy-Stokes problem can be reformulated
in terms of the solution of equations defined only on the interface Γ involving suit-
able Steklov-Poincaré operators associated to the subproblems in Ω f and Ωp. We
formally briefly review this approach referring to the cited works for more details.

If we select as interface variable λ ∈ H1/2
00 (Γ ) to represent the normal velocity

across Γ : λ = u · n = −K∇ϕ · n on Γ , we can express the solution of the Darcy-

Stokes problem in terms of the solution of the interface equation: find λ ∈ H1/2
00 (Γ )

such that

〈Ssλ ,μ〉+ 〈Sdλ ,μ〉= 〈χs,μ〉+ 〈χd,μ〉 ∀μ ∈ H1/2
00 (Γ ). (5)

Equation (5) imposes the continuity condition (4)2. The linear continuous operators
χs and χd depend on the data of the problem and 〈·, ·〉 denotes the duality pairing

between H1/2
00 (Γ ) and its dual (H1/2

00 (Γ ))′. Concerning Ss and Sd , we remark that

• The operator Ss : H1/2
00 (Γ )→ (H1/2

00 (Γ ))′ maps the space of normal velocities on
Γ to the space of normal stresses on Γ through the solution of a Stokes problem
in Ω f with boundary condition u ·n = λ on Γ .

• Sd maps the space of fluxes of ϕ on Γ to the space of traces of ϕ on Γ via the
solution of a Darcy problem in Ωp with the boundary condition −K∇ϕ ·n = λ
on Γ . The operator Sd should be a map between H−1/2(Γ ) and H1/2(Γ ), but in

(5) we are applying it to H1/2
00 (Γ ), a space with a higher regularity than needed

where we cannot guarantee the coercivity of the operator.

On the other hand, if we choose as interface unknown η ∈ H1/2(Γ ) the trace
of the piezometric head on Γ : η = gϕ|Γ = −n ·T(u, p) ·n on Γ , the Darcy-Stokes

problem can be equivalently reformulated as find η ∈ H1/2(Γ ):

〈〈S fη ,μ〉〉+ 〈〈Spη ,μ〉〉= 〈〈χ f ,μ〉〉+ 〈〈χp,μ〉〉 ∀μ ∈ H1/2(Γ ), (6)

where χ f and χp are linear continuous operators depending on the data of the prob-
lem. Equation (6) imposes the coupling condition (4)1. Here:

• The operator S f maps the space of normal stresses on Γ to the space of normal
velocities on Γ via the solution of a Stokes problem with the boundary condi-
tion −n ·T(u, p) · n = η on Γ . This operator would naturally be defined from
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H−1/2(Γ ) to H1/2
00 (Γ ) so that in (6) we are applying it to functions with a higher

regularity than needed.
• The operator Sp : H1/2(Γ )→ (H1/2(Γ ))′ maps the space of traces of ϕ on Γ

to the space of fluxes of ϕ on Γ by solving a Darcy problem in Ωp with the
Dirichlet boundary condition gϕ = η on Γ .

3 Augmented Interface Equations

The classical approach summarized in Sect. 2 leads to reformulate the Darcy-Stokes
problem as interface equations depending on a single interface unknown: either λ ,
the normal velocity across Γ , or η , the piezometric head on Γ . We have remarked
that the Steklov-Poincaré operators Sd and S f are not acting on their natural func-
tional spaces, but they are assigned functions with higher regularity than expected.
This prevents us from guaranteeing their coerciveness (see [7]). In this section we
present a different approach based on [3–6] consisting in writing the coupled Darcy-
Stokes problem as a system of linear equations on Γ involving both variables λ
and η .
3.1 The Augmented Dirichlet-Dirichlet Problem

To obtain the augmented Dirichlet-Dirichlet (aDD) formulation assume that λ ∈
H1/2

00 (Γ ) is equal to the normal velocity u ·n on Γ , but not necessarily to the conor-
mal derivative of ϕ on Γ . On the other hand, let η ∈H1/2(Γ ) be equal to the trace of
ϕ on Γ but not to the normal component of the Cauchy stress of the Stokes problem
on Γ . Then, to recover the solution of the original Darcy-Stokes problem we have to
impose both the continuity of normal velocity and of normal stresses:

−∫Γ n ·T(u(λ ), p(λ )) ·nμ =
∫
Γ ημ ∀μ ∈ H1/2

00 (Γ )

−∫Γ K∇ϕ(η) ·nξ =
∫
Γ λξ ∀ξ ∈H1/2(Γ ).

Using the definition of the Steklov-Poincaré operators, we can rewrite these con-
ditions as: find (λ ,η) ∈H1/2

00 (Γ )×H1/2(Γ ) such that

〈Ssλ ,μ〉+ 〈η ,μ〉= 〈χs,μ〉 ∀μ ∈H1/2
00 (Γ )

〈〈Spη ,ξ 〉〉− 〈〈λ ,ξ 〉〉= 〈〈χp,ξ 〉〉 ∀ξ ∈ H1/2(Γ ),
(7)

or, in operator form: (
Ss I
−J Sp

)(
λ
η

)
=

(
χs

χp

)
(8)

where I : H1/2(Γ )→ (H1/2
00 (Γ ))′ and J : H1/2

00 (Γ )→ (H1/2(Γ ))′ are linear con-
tinuous maps.

We call (8) augmented Dirichlet-Dirichlet (aDD) formulation because both func-
tions λ and η play the role of Dirichlet boundary conditions for the Stokes and the
Darcy subproblems, respectively. Notice that we are imposing the equalities (8) in
the sense of dual spaces and that the operators Ss and Sp still act on their natural
functional spaces.
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3.2 The Augmented Neumann-Neumann Problem

We follow now a similar approach to Sect. 3.1, but we assume that λ ∈ H−1/2(Γ )
is equal to the conormal derivative of the piezometric head −K∇ϕ ·n on Γ and η ∈
H−1/2(Γ ) is equal to the normal component of the fluid Cauchy stress on Γ . Then,
to recover the solution of the original problem we impose the following equalities:

∫
Γ u(η) ·nμ =

∫
Γ λμ ∀μ ∈H−1/2(Γ )∫

Γ ϕ(λ )ξ =−∫Γ η ξ ∀ξ ∈ H−1/2(Γ ).

Using the definition of the Steklov-Poincaré operators, we can rewrite these con-
ditions as: find (λ ,η) ∈H−1/2(Γ )×H−1/2(Γ ) such that

〈S fη ,μ〉∗ − 〈λ ,μ〉∗ = 〈χ f ,μ〉∗ ∀μ ∈H−1/2(Γ )
〈〈Sdλ ,ξ 〉〉∗+ 〈〈η ,ξ 〉〉∗ = 〈〈χd ,ξ 〉〉∗ ∀ξ ∈ H−1/2(Γ ),

(9)

corresponding to the operator form:
(

Sd I∗
−J∗ S f

)(
λ
η

)
=

(
χd

χ f

)
. (10)

Here I∗ : H−1/2(Γ )→H1/2(Γ ) and J∗ : H−1/2(Γ )→H1/2
00 (Γ ) are linear continu-

ous maps, while 〈·, ·〉∗ and 〈〈·, ·〉〉∗ denote the corresponding pairing.
We call this formulation augmented Neumann-Neumann (aNN) because both

functions λ and η play the role of Neumann boundary conditions for the Darcy
and the Stokes subproblems, respectively.

The aNN formulation may be regarded as the “dual” of the aDD approach. Notice
that the operators S f and Sd are now acting on their natural spaces, differently form
the classical setting of Sect. 2. The analysis of problems (8) and (10) can be carried
out following the guidelines of [5].

4 Algebraic Formulation of the Interface Problems

We consider a finite element discretization of the coupled problem using conforming
grids across the interface Γ . The discrete spaces for the Stokes problem satisfy the
inf-sup condition. In this way we obtain the linear system:

⎛
⎜⎜⎝

F D 0 0
DT AΓΓ 0 −MΓ
0 0 Cii CiΓ
0 MT

Γ CΓ i CΓΓ

⎞
⎟⎟⎠

⎛
⎜⎜⎝

uuui

uuuΓ
ϕϕϕ i
ϕϕϕΓ

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

fff f i
fff fΓ
fff pi
fff pΓ

⎞
⎟⎟⎠ (11)

where uuuΓ is the vector of the nodal values of the normal velocity on Γ while uuui is
the vector of the remaining degrees of freedom (velocity and pressure) inΩ f . On the
other hand, ϕϕϕΓ is the vector of the (unknown) values of ϕ onΓ while ϕϕϕ i corresponds
to the remaining degrees of freedom in Ωp.
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The discrete counterpart of the Steklov-Poincaré operators can be found comput-
ing the Schur complement systems corresponding to either uuuΓ or ϕϕϕΓ . Precisely, we
find:

Σs = AΓΓ −DT F−1D, Σ f = MT
Γ Σ

−1
s MΓ ,

Σp =CΓΓ −CΓ iC
−1
ii CiΓ , Σd = MΓ Σ−1

p MT
Γ .

(12)

The characterization of these discrete operators in terms of the associated Darcy or
Stokes problems in Ωp and Ω f allows us to provide upper and lower bounds for
their eigenvalues. Assuming ν and K constants in Ω f and Ωp, respectively, and the
computational mesh to be uniform and regular, we can find (see [7, 13, 15]) (�
indicates that the inequalities hold up to constants independent of h, ν , K):

hν � σ(Σs)� ν, h2ν−1 � σ(Σ f )� hν−1

hK� σ(Σp)� K, h2K−1 � σ(Σd)� hK−1 (13)

The discrete counterparts of the interface problems (5), (6), (8), and (10) read:

• Discrete interface equation for the normal velocity: find uuuΓ such that

ΣsuuuΓ +ΣduuuΓ = χχχs + χχχd . (14)

• Discrete interface equation for the piezometric head: find ϕϕϕΓ such that

Σ fϕϕϕΓ +ΣpϕϕϕΓ = χχχ f + χχχ p. (15)

• Discrete aDD problem: find (uuuΓ ,ϕϕϕΓ ) such that

(
Σs −MΓ
MT
Γ Σp

)(
uuuΓ
ϕϕϕΓ

)
=

(
χχχ s
χχχ p

)
. (16)

• Discrete aNN problem: find (uuuΓ ,ϕϕϕΓ ) such that

(
Σd MΓ
−MT

Γ Σ f

)(
uuuΓ
ϕϕϕΓ

)
=

(
χχχd
χχχ f

)
. (17)

The augmented approach allows to compute both interface variable at once but it
requires to solve a system whose dimension is twice the one of the classical methods.

5 Iterative Solution Methods and Numerical Results

We present now some numerical methods to solve problems (14)–(17) focusing on
cases where the fluid viscosity ν and the hydraulic conductivity K are small. These
are indeed situations of interest for most practical applications. In [10] a Robin-
Robin method was proposed to solve effectively (14). Here we adopt the generalized
Hermitian/skew-Hermitian splitting (GHSS) method of [2] for (14) and (15) and the
HSS method of [1] for (16) and (17). We start considering (14).

The matrix Σs+Σd has no skew-symmetric component being symmetric positive
definite, but thanks to the estimates (13) we can mimick the splitting proposed in [2]
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considering Σs as a matrix multiplied by a coefficient (ν) which may become small.
Thus, we can characterize the preconditioner for (14):

P1 = (2α1)
−1(Σs +α1I)(Σd +α1I). (18)

Proceeding analogously for (15), we can characterize the preconditioner
P2 = (2α2)

−1(Σp +α2I)(Σ f +α2I). (19)
Preconditioners P1 and P2 involve suitable acceleration parameters α1 and α2

and can be used within GMRES iterations. Remark that they can be regarded as
generalizations of the Robin-Robin method introduced in [7, 10].

On the other hand, as the matrices in (16) and (17) are positive skew-symmetric
with symmetric positive definite diagonal blocks, we apply the HSS splitting pro-
posed in [1] separating the symmetric and the skew-symmetric parts of the matrices.
Thus, we can characterize the following preconditioners for GMRES iterations for
(16) and (17), respectively, with α3, α4 suitable acceleration parameters:

P3 = (2α3)
−1
(
Σs +α3I 0

0 Σp +α3I

)(
α3I −MΓ
MT
Γ α3I

)
(20)

P4 = (2α4)
−1
(
Σd +α4I 0

0 Σ f +α4I

)(
α4I MΓ
−MT

Γ α4I

)
. (21)

According to [2] these preconditioners are effective when either the skew-symmetric
or the symmetric part dominates. Thanks to (13) we can expect that for small ν and
K the skew-symmetric part dominates in (16) and the symmetric one in (17).

All preconditioners Pi require the solution of a Stokes problem in Ω f and of a
Darcy problem in Ωp. However, P1 and P2 have a multiplicative structure while in
P3 and P4 the two subproblems may be solved in a parallel fashion. They are all
effective when ν and K become small. A thorough study of these preconditioners
will make the object of a future work, where also the choice of the parameters αi

will be analyzed. For the tests reported in Table 1, following [2], we set α1,α3 %
√
ν ,

α2 %
√
K and α4 % 10−1. However, a better characterization of such parameters is

necessary to have a more robust behavior of the preconditioners, independent of both
the mesh size and of the coefficients ν and K.

In the numerical tests, both the Stokes and the Darcy subproblems are solved
via direct methods. The matrices in (20) and (21) involving MΓ and I are assem-
bled explicitly and the associated linear systems are solved using direct methods.
We consider Ω f = (0,1)× (1,2), Ωp = (0,1)2 with interface Γ = (0,1)×{1} and
the analytic solution: u = ((y− 1)2 + (y− 1) + 1,x(x− 1)), p = 2ν(x + y− 1),
ϕ = K−1(x(1− x)(y− 1)+ (y− 1)3/3)+ 2νx. A comparison with preconditioners
Σs for (14) and Σp for (15) studied in [7] is also presented. Although such precon-
ditioners are optimal with unitary ν and K, they perform quite poorly when small
viscosities and permeabilities are considered.
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1 Introduction

We are interested in the approximation of 2D elliptic equations with dominated ad-
vection and featuring boundary layers. In order to reduce the computational complex-
ity, the domain is split into two subregions, the first one far from the layer, where
we can neglect the viscosity effects, and the second one next to the layer. In the
latter domain the original elliptic equation is solved, while in the former one, the
pure convection equation obtained by the original one by dropping the diffusive term
is approximated. The interface coupling is enforced by the non-conforming mortar
method. We consider two different sets of interface conditions and we compare them
for what concerns both computational efficiency and stability. One of the two sets of
interface conditions turns out to be very effective, especially for very small viscosity
when the mortar formulation of the original elliptic problem on the global domain
can fail.

2 The Heterogeneous Problem

We consider an open bounded domain Ω ⊂ R
2 with Lipschitz boundary ∂Ω , split

into two open subsets Ω1 and Ω2 such that Ω = Ω 1 ∪Ω 2,Ω1 ∩Ω2 = /0. Then, we
denote by Γ = ∂Ω1 ∩ ∂Ω2, the interface between the sub domains and we assume
that Γ is of class C1,1. Given f ∈ L2(Ω), b0 ∈ L∞(Ω), ν ∈ L∞(Ω2 ∪Γ ) and b ∈
[W 1,∞(Ω)]2 satisfying the following inequalities:

∃ν0 ∈ R such that ν(x)≥ ν0 > 0, ∀x ∈Ω2∪Γ ,
∃σ0 ∈ R such that b0(x)+ 1

2 divb(x)≥ σ0 > 0, ∀x ∈Ω ,

we look for two functions u1 and u2 (defined in Ω 1 and Ω 2, respectively) solutions
of the heterogeneous problem
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⎧⎪⎪⎨
⎪⎪⎩

div(bu1)+ b0u1 = f in Ω1,
div(−ν∇u2 +bu2)+ b0u2 = f in Ω2,
u1 = 0 on (∂Ω1 \Γ )in

u2 = 0 on ∂Ω2 \Γ
(1)

and satisfying the interface conditions

u1 = u2 on Γ in, b ·nΓ u1 +ν
∂u2

∂nΓ
−b ·nΓ u2 = 0, on Γ . (2)

nΓ denotes the normal unit vector to Γ oriented from Ω1 to Ω2, while for any non-
empty subset S ⊆ ∂Ω1, Sin = {x ∈ S : b(x) · n1(x) < 0} and Sout = {x ∈ S : b(x) ·
n1(x)≥ 0} are the inflow and the outflow parts of S, respectively.

Equations (2) (named IC1) express the continuity of the velocity field across the
inflow part of the interface and the continuity of the fluxes across the whole interface.
They can be equivalently expressed as (named IC2):

u1 = u2, ν
∂u2

∂nΓ
= 0 on Γ in, −b ·nΓ u1 = ν

∂u2

∂nΓ
−b ·nΓ u2 on Γ out . (3)

Problem (1) with either interface conditions (2) or (3) is well-posed, see [5].
The heterogeneous problem (1), with either interface conditions IC1 or IC2, can

formally be written as an interface problem by means of Steklov-Poincaré opera-
tors (see, e.g., [3, 5]). Let us define the trace spaces Λ1 = L2

b(Γ in) = {v : Γ in →
R :

√|b ·nΓ |v ∈ L2(Γ in)} and Λ2 = H1/2
00 (Γ in) = {v : L2(Γ in) : ∃ṽ ∈ H1/2(∂Ω2) :

ṽ|Γ in = v, ṽ|∂Ω2\Γ in = 0}.
Solving (1) - (2) is equivalent to seeking λk ∈Λk for k = 1,2, such that

{
S1λ1 +S2λ2 = χ1 + χ2 in Λ ′2,
λ1 = λ2|Γ in in Λ2,

(4)

where

S1λ1 =−b ·n1uλ1
1 , S2λ2 = ν

∂uλ2
2

∂n2
−b ·n2uλ2

2 , on Γ , (5)

are the local Steklov-Poincaré operators, while uλ1
1 and uλ2 are the solution of

{
div(buλ1

1 )+ b0uλ1
1 = 0 in Ω1,

uλ1
1 = 0 on (∂Ω1 \Γ )in, uλ1

1 = λ on Γ in,
(6)

and
{

div(−ν∇uλ2
2 +buλ2

2 )+ b0uλ2
2 = 0 in Ω2

uλ2
2 = 0 on ∂Ω2 \Γ , uλ2

2 = λ2 on Γ ,
(7)

respectively. Finally,
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χ1 = b ·n1u f
1 , χ2 =−ν ∂u f

2

∂n2
+b ·n2u f

2 =−ν ∂u f
2

∂n2
, (8)

where u f
1 and u f

2 are the solutions of problems like (6) and (7), respectively, with null
trace on the interface and external load f . Note that χ1|Γ in = 0.

If interface conditions IC2 are considered instead of IC1, the resulting Steklov-
Poincaré equation reads: seek λk ∈Λk, for k = 1,2 such that

{
S 0

1 λ1 +S 0
2 λ2 = χ1 + χ2 in Λ ′2

λ1 = λ2|Γ in in Λ2
(9)

where

S 0
1 λ1 =

{
0 on Γ in

−b ·n1uλ1
1 on Γ out ,

S 0
2 λ2 =

⎧⎪⎪⎨
⎪⎪⎩
ν
∂uλ2

2

∂n2
on Γ in

ν
∂uλ2

2

∂n2
−b ·n2uλ2

2 on Γ out .

(10)

Remark 1. It is straightforward to prove that the operator S 0
2 is always coercive on

Λ2, whereas S2 is coercive only if smallness assumption on b is assumed. If, e.g.,

‖b‖L∞(Γ ) ≤ ε0, with 0≤ ε0 ≤ 2min{ν0,σ0}/C2
∗ , (11)

(where C∗ is the constant of the trace inequality ‖v‖L2(∂Ω2)
≤ C∗‖v‖H1(Ω2)

) is sat-
isfied then S2 is coercive on Λ2. For this reason, the solution of problem (4) may
produce oscillations around Γ in when advection dominates (i.e. the global Péclet
number is large), as will be shown later in our numerical results.

3 Mortar Coupling for Spectral Element Discretization

The discretization of the differential equation within each sub domain is performed
by the quadrilateral conforming Spectral Element Method (SEM). We refer to [4]
for a detailed description of this method. For k = 1,2, let Tk = {Tk,m}Mk

m=1 be a par-
tition of the computational domain Ωk ⊂ R

2. The SEM finite dimensional space on
Ω k is denoted by Xk,δk

and it is the set of functions in C0(Ω k) whose restriction to
Tk,m is a polynomial of degree Nk in each direction. δk is an abridged notation for
“discrete”, that accounts for the local geometric sizes hk,m of Tk,m and the local poly-
nomial degrees Nk along each direction. Both geometric and polynomial conformity
is guaranteed inside Ω k.
The finite dimensional spaces in which we look for the SEM solution of either (4)
or (9) are: Λ1,δ1

⊂ Λ1 and Λ2,δ2
⊂ Λ2. Their elements are globally continuous func-

tions on Γ in and Γ , respectively, and local polynomials of degree Nk on each edge
induced by the partition Tk.

For k = 1,2, we denote by Nk,Γ the set of nodes of Tk ∩Γ whose cardinality is
Nk,Γ . Similar notations are used for the nodes lying on either Γ in or Γ out .
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The finite dimensional basis {μ (i)
1 }

N1,Γ in

i=1 of Λ1,δ1
({μ (i)

2 }
N2,Γ
i=1 of Λ2,δ2

, resp.) is
composed by the characteristic Lagrange polynomials in Ω1 (Ω2, resp.) associated
to the Legendre-Gauss-Lobatto (LGL) nodes of N1,Γ in (N2,Γ , resp.). Then we set

(S2,δ2
)i j =

∫
Γ S2μ

( j)
2 μ (i)

2 dΓ for i, j = 0, . . . ,N2,Γ , and analogous notations are used
to define matrices S0

2,δ2
, S1,δ1

and S0
1,δ1

. Because of the high cost to compute integrals
exactly, all integrals are approximated by Legendre-Gauss-Lobatto (LGL) quadrature
rules.

We consider non-conforming couplings, i.e. we suppose that either the two par-
titions T1 and T2 do not share the same edges on Γ and/or the polynomial degrees
do not coincide in the hyperbolic domain Ω1 and in the elliptic one Ω2. We adopt
mortar methods (see, e.g., [2]) to glue non-conforming discretization across Γ .

The endpoints of the edges of T1 ∩Γ in are denoted by v(i)1 , for i = 1, . . . ,N1,v.
Λ̃1,δ1

is a suitable finite dimensional space of functions living on Γ in and its basis
functions ψl are characterized by being L2 functions on Γ in and local polynomials
of degree N1 − 2 on each edge of T1 ∩Γ in. Therefore, the dimension of Λ̃1,δ1

is
NΛ̃1

= N1,Γ in −N1,v. By choosing Ω2 as the master domain and Ω1 as the slave, the
continuity constraint λ1 = λ2|Γ in is imposed weakly, i.e. by requiring that

∫
Γ in

(λ1,δ1
−λ2,δ2

)ψldΓ = 0 ∀ψl ∈ Λ̃1,δ1
, (12)

jointly with the strong continuity at the nodes v(i)1 of T1∩Γ in, for i= 1, . . . ,N1,v. This

leads us to define a new set of mortar functions in Λ1,δ1
, which are denoted by μ̃ (k)

1
(for k = 1, . . . ,N2,Γ in) and satisfy the constraints:

⎧⎪⎪⎨
⎪⎪⎩
μ̃ (k)

1 (v(i)1 ) = μ (k)
2 (v(i)1 ), i = 1, . . . ,N1,v and v(i)1 being endpoint

of at least one edge of T1∩Γ in∫
Γ in

(μ̃ (k)
1 − μ (k)

2 )ψldΓ = 0, l = 1, . . . ,NΛ̃1
and for all ψl ∈ Λ̃1,δ1

.

(13)

Remark 2. We choose Ω2 as the master domain because the nature of the heteroge-
neous problem requires to work with the trace of the elliptic solution on the whole
interface and with the trace of the hyperbolic one only on Γ in. Therefore it is more
convenient to have the master trace at disposal on the whole Γ , instead of on a part
of it.

The matrix form of system (13) reads

PΞ =Φ, (14)

where Ξ = [ξ jk] ∈ R
N1,Γ in×N2,Γ in is defined by the relations

μ̃ (k)
1 =

N1,Γ in

∑
j=1

ξ jkμ
( j)
1 , k = 1, . . . ,N2,Γ in , (15)
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while P ∈ R
N1,Γ in×N1,Γ in and Φ ∈ R

N1,Γ in×N2,Γ in , are defined starting from (13). The
matrix P is non-singular in view of the inf-sup condition for QN −QN−2 [2]. Once
the discretization in Ω1 and Ω2 has been chosen, the matrix Ξ can be explicitly
computed by solving (14).

The matrix Ξ enforces the gluing between degrees of freedom defined on N2,Γ in

and N1,Γ in . Therefore, Steklov-Poincaré equations (4) and (9) can be written in a
nonconforming setting, by the use of matrix Ξ .

On Γ out no continuity constraint, neither strong nor weak, is imposed, since the
continuity of fluxes is a natural consequence of the interface equation. Nevertheless,
on Γ out we have to compute integrals of basis functions associated to two different
meshes. To this aim we introduce the matrix Q ∈ R

N2,Γ out×N1,Γ out for the evaluations
of functions of Λ1,δ1

at the nodes of T2 ∩Γ , and the matrix D = Mout
2,δ2

Q(Mout
1,δ1

)−1,

where Mout
k,δk

are the mass matrices induced by the LGL quadrature formulas on Γ out ,
for k = 1,2.

The nonconforming finite dimensional counterpart of (4) reads: find λk,δk
∈Λk,δk

for k = 1,2, such that
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
S2,δ2

+

[
ΞT Sin

1,δ1
Ξ 0

DSout
1,δ1
Ξ 0

])

︸ ︷︷ ︸
Sδ

[
λ in

2,δ2

λ out
2,δ2

]
=

[
Min

2,δ2
χ in

2,δ2

Mout
2,δ2
χout

2,δ2
+Dχout

1,δ1

]

λ1,δ = Ξλ in
2,δ2

(16)

whereas that of (9) becomes: find λk,δk
∈Λk,δk

for k = 1,2, such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
S0

2,δ2
+

[
0 0
DSout

1,δ1
Ξ 0

])

︸ ︷︷ ︸
S0
δ

[
λ in

2,δ2

λ out
2,δ2

]
=

[
Min

2,δ2
χ in

2,δ2

Mout
2,δ2

χout
2,δ2

+Dχout
1,δ1

]

λ1,δ = Ξλ in
2,δ2

.

(17)

The upper scripts in and out denote the restriction to Γ in and Γ out , resp.
The numerical solutions of these linear systems is carried out by preconditioned

Bi-CGStab iterations (see, [6]).
When conforming discretization is used across the interface (i.e. δ1 = δ2), matrix

Ξ reduces to the identity matrix. In this situation, it is well known (see, e.g. [5])
that S0

2,δ2
is an optimal preconditioner for the matrix S0

δ , i.e. ∃C0 > 0 independent of

δ such that its spectral condition number K ((S0
2,δ2

)−1S0
δ ) is bounded by C0. When

δ1 = δ2, S0
2,δ2

is an optimal preconditioner also for Sδ (see [3]), i.e. there exists C1 > 0

independent of δ such that K ((S0
2,δ2

)−1Sδ ) ≤ C1, and numerical results show that
C0 ≤C1.

We extend here the use of the preconditioner S0
2,δ to the non-conforming case.
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Fig. 1. Preconditioned Bi-CGStab iterations. The viscosity is ν = 10−2. At left, N2 = 14 is
fixed, at right, N1 = 14 is fixed. 4×4 equal spectral elements are taken in each Ωk

4 Numerical Results

Test case: the computational domain Ω = (−1,1)2 is split in Ω1 = (−1,0.8)×
(−1,1) and Ω2 = (0.8,1)× (−1,1). The interface is Γ = {0.8}× (−1,1). The
data of the problem are: b = [5y,1− x]t , b0 = 1, f = 1 and the inflow interface
is Γ in = {0.8}× (−1,0). The imposed Dirichlet boundary conditions are: u1 = 1
on ((−1,0.8)× {−1}) ∪ ({−1} × (0,1)), u2 = 0 on {1} × (−1,1), u2 = 1 on
(0.8,1)×{−1}, while the homogeneous Neumann condition ∂u2

∂n2
= 0 is imposed

on (0.8,1)×{1}.
Because of the presence of a boundary layer near the right vertical side, the mesh

is refined there (without losing the conformity inside Ω2) to prevent the numerical
solution to be affected by spurious oscillations.

In Fig. 1 the number of Preconditioned Bi-CGStab (PBi-CGStab) iterations (with
preconditioner S2,δ2

) required to reduce the relative norm of the residual of 12 orders
of magnitude is plotted versus the polynomial degrees N1 and N2 of the mortar dis-
cretization. These results refer to ν = 10−2 and show that the Steklov-Poincaré for-
mulation (9) performs better than (4). The analysis of this and other test cases leads
us to conjecture that K ((S0

2,δ2
)−1S0

δ ) ≤C0 still holds for non-conforming coupling
(δ1 = δ2), while

K ((S0
2,δ2

)−1Sδ )%C1K (ΞΞT )%C1

{
(N2−N1 + 1)3/2 if N1 < N2

C2 if N1 ≥ N2,
(18)

where C1 is the constant defined in the previous section, and C2 is another positive
constant independent of δ .

Therefore, formulation (17) corresponding to IC2 is optimally preconditioned by
S0

2,δ2
and it is better than (16) (corresponding to IC1) for what concerns the compu-

tational efficiency.
Moreover, when the viscosity vanishes (see Table 1), the performance of the SP0

approach (17) does not downgrade, as the number of PBi-CGStab iterations keeps
bounded: three or four iterations are enough to satisfy the stopping test independently
of both viscosity and discretization parameters.
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Fig. 2. Zoom on the numerical solution for ν = 10−3 and: (9) (left), (4) (right) with N1 = 8
and N2 = 24. The elliptic solution u2 is in front, while the hyperbolic one u1 is behind

On the contrary, the number of PBi-CGStab iterations required by SP approach
(16) noticeably grows up when ν→ 0 and behaves like (N2−N1 +1)3/4 when N1 <
N2, in agreement with (18).

The large number of PBi-CGStab iterations required by SP is due to the presence
of instabilities across Γ in which develop when advection dominates and the larger
N2−N1 is, the more they are pronounced.

We verified that the same instability occurs when mortar methods are applied
to solve the pure elliptic-elliptic couplings with dominated advection and interface
condition ν ∂u1

∂nΓ
−b ·nΓ u1 = ν ∂u2

∂nΓ
−b ·nΓ u2 on the whole interface Γ . Indeed, the

local Steklov-Poincaré operators associated to the latter interface condition behaves
like operator S2 introduced in (5), and they can lose the coercivity when ‖b‖L∞(Ω)

is large. This is the subject of a work in progress. (See also [1].)
In conclusion, the heterogeneous approach (1) with interface conditions IC2 and

non-conforming mortar coupling turns out to be the most efficient and accurate one
for vanishing viscosity and it is also a valid way to overcome instabilities arising
from the mortar discretization of elliptic equations with dominated advection.

In Fig. 2 the heterogeneous solutions obtained by solving both (17) and (16) with
ν = 10−4, N1 = 8 and N2 = 24 are shown. The elliptic solution u2 provided by (16)
(Fig. 2, right) exhibits non-trivial oscillations, while that provided by (17) (Fig. 2,
left) does not.

Table 1. PBi-CGStab iterations to solve systems SP0 (17) and SP (16) with P = S0
2,δ2

versus
the viscosity. At left, N1 = 8, at right, N1 = 20, N2 = 24. 4× 4 equal spectral elements are
taken in each Ωk. N2 = 64 along x-direction in the elements next to the layer

ν 10−1 10−2 10−3 10−4

SP0 3 4 3 3
SP 10 45 262 587

ν 10−1 10−2 10−3 10−4

SP0 3 3 3 4
SP 7 17 35 86
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1 Introduction

The exchange of ground- and surface water plays a crucial role in a variety of prac-
tically relevant processes ranging from flood protection measures to preservation of
ecosystem health in natural and human-impacted water resources systems.

Commonly accepted models are based on the shallow water equations for over-
land flow and the Richards equation for saturated–unsaturated subsurface flow with
suitable coupling conditions. Continuity of mass flow across the interface is natu-
ral, because it directly follows from mass conservation. Continuity of pressure is
typically imposed for simplicity. Mathematically, this makes sense for sufficiently
smooth height of surface water as occurring, e.g., in filtration processes [9, 14]. Here
we impose Robin-type coupling conditions modelling a thin, nearly impermeable
layer at the bottom of the river bed that may cause pressure discontinuities; an effect
which is known in hydrology as clogging (see [16] or [8, p. 1376]). From a mathe-
matical perspective, clogging can be regarded as a kind of regularization, because,
in contrast to Dirichlet conditions, Robin conditions can be straightforwardly formu-
lated in a weak sense.

Existence and uniqueness results for the Richards equation and the shallow wa-
ter equations are rare and hard to obtain, and nothing seems to be known about
solvability of coupled problems. Extending the general framework of heteroge-
neous Steklov–Poincaré formulations and iterative substructuring [10, 13] to time-
dependent problems, we introduce a Robin–Neumann iteration for the continuous
coupled problem and motivate its feasibility by well-known existence results for the
linear case. As surface and subsurface flow are only weakly coupled by clogging and
continuity of mass flux, different discretizations with different time steps and differ-
ent meshes can be used in a natural way. This is absolutely necessary, to resolve the
vastly different time and length scales of surface and subsurface flow. Discrete mass
conservation can be proved in a straightforward way.

Finally, we illustrate our considerations by coupling a finite element discretiza-
tion of the Richards equation based on Kirchhoff transformation [4] with a simple
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upwind discretization of surface flow. Numerical experiments confirm discrete mass
conservation and show fast convergence of the Robin–Neumann iteration for real-life
soil data.

2 Coupled Surface and Subsurface Flow

Saturated–unsaturated subsurface flow during a time interval (0,Tend) in a porous
medium occupying a bounded domainΩ ⊂R

d , d = 2,3, is described by the Richards
equation

nθ (p)t + div v(p) = 0 , v(p) =−K
μ

kr(θ (p))∇(p−ρgz) . (1)

The porosity n, permeability K, viscosity μ , and density ρ are given parameters, and
g is the earth’s gravitational acceleration. The unknown capillary pressure p is related
to saturation θ (p) and relative permeability kr(θ (p)) by equations of state [6, 7]

θ (p) =

⎧⎨
⎩
θm +(θM−θm)

(
p
pb

)−λ
for p≤ pb

θM for p≥ pb

kr(θ ) =
(
θ −θm

θM−θm

)3+ 2
λ
, θ ∈ [θm,θM]⊂ [0,1] ,

with residual saturation θm, maximal saturation θM , bubbling pressure pb < 0, and
pore size distribution factor λ > 0. Let Γ ⊂ ∂Ω denote the coupling boundary of the
porous medium with a surface flow, and denote the outward normal vector ofΓ by n.
We impose the coupling by Robin conditions p|Γ −αv ·n ∈ L2((0,Tend),H−1/2(Γ ))
on Γ and homogeneous Neumann conditions on ∂Ω \Γ . With compatible initial
conditions θ0 ∈ L1(Ω) we assume that (1) admits a unique weak solution p ∈
L2((0,Tend),H1(Ω)). This assumption is motivated by known existence results [1]
for the Kirchhoff transformed Richards equation (see also [4]) and is, obviously, sat-
isfied in the case of saturated flow θ ≡ θM .

The surface flow on Γ is described by the shallow water equations

ht + div q = r, (2a)

qt + div F(h,q) =−gh∇φ (2b)

where φ : Γ0 →Γ is a parametrization of the surface topography of Γ . The unknown
water height h and discharge q, as well as a given mass source r are functions on
(0,Tend)×Γ0. For ease of presentation, we assume Γ =Γ0 so that Γ is an open subset
of Rd−1. For d = 3, i.e., Γ ⊂ R

2, the flux function F takes the form

F =

(
F1

F2

)
, F1(h,q) =

(
q2

1/h+ 1
2 gh2

q1q2/h

)
, F2(h,q) =

(
q1q2/h

q2
2/h+ 1

2 gh2

)
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with q = (q1,q2). It degenerates to F(h,q) = q2/h+ 1
2 gh2 for Γ ⊂ R. For suitable

initial conditions and inflow conditions on ∂Γin ⊂ ∂Γ we assume that (2) has a weak
solution (h,q) ∈ L∞((0,Tend),L∞(Γ ))d in the sense of distributions D ′((0,Tend)×
Γin) where Γin = Γ ∪ ∂Γin. Since regularity results for nonlinear hyperbolic systems
(2) do not seem to be available we note that this assumption is satisfied in the linear
case [15, Theorem 2.2].

Mass conservation provides the Neumann coupling condition

r = v ·n .

Following, e.g. [16], we postulate a nearly impermeable river bed with thickness
ε � 1 and permeability Kε (clogging). Then Darcy’s law provides the flux v =
−Kε

μ ∇pε . Setting ∇pε = ε−1(ρgh− p|Γ )n, we obtain the Robin coupling condition

p|Γ −αv ·n = ρgh (3)

with leakage coefficient α = με
Kε

. Note that (3) generally implies a pressure disconti-
nuity across the interface Γ between ground and surface water.

Remark 1. In light of the above regularity assumptions on pressure p and surface
water height h coupling surface and subsurface flow by continuity p|Γ = ρgh of cap-
illary and hydrostatic pressure is generally not possible, because there is a regularity
gap between the trace p|Γ ∈ L2((0,Tend),H1/2(Γ )) and h ∈ L∞((0,Tend),L∞(Γ )) ⊂
L2((0,Tend),H1/2(Γ )) (see, e.g., [5, p. 148]) However, sufficient smoothness is avail-
able in special cases like, e.g., in- and exfiltration processes [14].

3 Steklov–Poincaré Formulation and Substructuring

We introduce the Robin-to-Neumann map

SΩ (h) = v(h) ·n = α−1(p|Γ −ρgh)

for h ∈ L∞((0,Tend),L∞(Γ )) ⊂ L2((0,Tend),H−1/2(Γ )). Here, p is the solution of
the Richards equation (1) with Robin conditions (3). Assuming that for given
h ∈ L∞((0,Tend),L∞(Γ )) and corresponding inflow boundary conditions, the sec-
ond part (2b) of the shallow water equations has a unique weak solution q(h) ∈
L∞((0,Tend),L∞(Γ ))d−1, we set

SΓ (h) =−div q(h) .

The Steklov–Poincaré formulation of the coupled Richards equation and shallow
water equations then reads

ht = SΩ (h)+ SΓ (h) . (4)

Just as (2a), the equality (4) is understood in the sense of distributions D ′((0,Tend)×
Γin).
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In complete analogy to the stationary case [10, 13] we introduce a damped
Robin–Neumann iteration

hν+1/2
t −SΓ (h

ν+1/2) = SΩ (h
ν) , hν+1 = hν +ω(hν+1/2−hν) , (5)

with a suitable damping parameter ω ∈ (0,∞) and with an initial iterate given by
h0 ∈ L∞((0,Tend),L∞(Γ )). Each step amounts to the solution of the Richards equa-
tion with Robin boundary conditions (3) to evaluate the source term SΩ (hν ), and the
subsequent solution of the shallow water equations (2) to evaluate hν+1/2. The feasi-
bility of (5) requires existence and uniqueness of these solutions. Note the similarity
to waveform relaxation methods [11].

After selecting a step size ΔT = Tend/N with suitable N ∈ N and correspond-
ing time levels Tk = kΔT , the Robin–Neumann iteration (5) can also be applied on
subintervals [Tk−1,Tk], k = 1, . . . ,N.

4 Discretization and Discrete Robin–Neumann Iteration

We first derive a discrete version of the Steklov–Poincaré formulation (4) on a fixed
time interval [Tk,Tk+1] with 0 ≤ Tk < Tk+1 = Tk +ΔT ≤ Tend. To this end, we intro-
duce intermediate time levels ti = Tk + iτ , i = 0, . . . ,M, with step size τ = ΔT/M and
suitable M ∈ N. Spatial discretization is based on a partition TΓ of Γ into simplices
T that is regular in the sense that the intersection of two simplices T , T ′ ∈ TΓ is
either a common face, edge, vertex, or empty. We introduce the corresponding space
of discontinuous finite elements of order q≥ 0 by

VΓ = {v ∈ L2(Γ ) | vT is a polynomial of degree at most q ∀T ∈ TΓ } ,
and let h = (hi)

M
i=0 denote approximations hi ∈ VΓ at ti, i = 0, . . . ,M.

Then, utilizing the forward difference quotient ∂t hi = (hi+1− hi)/τ , a discrete
Steklov–Poincaré formulation reads

∂t hi = SΓ (h)i + SΩ (h)i, i = 0, . . . ,M−1 . (6)

Here and in the rest of this section, subscripts i indicate approximations taken at
time ti.

For given h = (hi)
M
i=0, the discrete surface flow

(SΓ (h)i,v)Γ = ∑
T∈TΓ

(
(q(h)i,∇v)T +(Gh(hi,q(h)i) ·nT ,v)∂T

) ∀v ∈ VΓ (7)

results from an explicit discontinuous Galerkin discretization of (2a), characterized
by the discrete flux function Gh. Here, (·, ·)U stands for the L2 scalar product on U =
Γ , T , ∂T , respectively; nT is the outward normal on T , and the discrete discharge
qi = q(h)i is obtained from an explicit discontinuous Galerkin discretization of (2b)

(∂tqi,v)Γ = ∑
T∈TΓ

(
(F(hi,qi),∇v)T +(Gq(hi,qi) ·nT ,v)∂T

) ∀v ∈ (VΓ )
d−1 . (8)
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Since we expect the dynamics of subsurface flow to be much slower than the
surface water dynamics, we use the macro time step ΔT for an implicit time dis-
cretization of SΩ (h). The spatial discretization is based on conforming piecewise
linear finite elements

VΩ = {v ∈C(Ω ) | v|T is affine linear ∀T ∈TΩ}
with respect to a regular partition TΩ of Ω . No compatibility conditions on TΩ and
TΓ are required. For given pk ∈ VΩ and hk+1 ∈ VΓ , the discrete capillary pressure
pk+1 ∈ VΩ is then obtained from the variational equality

n〈θk+1,v〉Ω +ΔT
(
(vk+1,∇v)Ω

+α−1(〈pk+1|Γ ,v〉Γ − (ρghk+1,v)Γ )
)
= n〈θk,v〉Ω ∀v ∈ VΩ .

(9)

Here 〈·, ·〉Ω denotes the lumped L2 scalar product on Ω , 〈·, ·〉Γ is the corresponding
lumped L2 scalar product on Γ , θk = θ (pk), and vk+1 is a discretization of the flux v
at Tk+1. Once pk+1 ∈ VΩ is available, we set for all i = 0, . . . ,M

(SΩ (h)i,v)Γ = α−1(pk+1|Γ −ρghk+1,v)Γ ∀v ∈ VΓ . (10)

Note that SΩ (h)i is constant on the macro interval [Tk,Tk+1] and only depends on
hk+1.

Testing (6) and (9) with constant functions 1 ∈ VΓ and 1 ∈ VΩ , respectively, and
using 〈pk+1|Γ ,1〉Γ = (pk+1|Γ ,1)Γ we obtain discrete mass conservation.

Proposition 1. The discrete Steklov–Poincaré formulation (6) with SΓ and SΩ de-
fined by (7) and (10) is mass conserving in the sense that

(hk+1,1)Γ + n〈θk+1,1〉Ω = (hk,1)Γ + n〈θk,1〉Ω + τ
M−1

∑
i=0

(Gh(hi,qi) ·n∂Γ ,1)∂Γ

holds for k = 0,1, . . . , with n∂Γ denoting the outward normal on ∂Γ .

We emphasize that this result holds for arbitrary discretizations of the Richards
flux v.

The discrete Steklov–Poincaré formulation (6) gives rise to the discrete damped
Robin–Neumann iteration

∂t h
ν+1/2
i −SΓ (h

ν+1/2)i = SΩ (h
ν)i , hν+1

i = hνi +ω(h
ν+1/2
i −hνi ) , (11)

with suitable damping parameter ω ∈ (0,∞), and an initial iterate h0
i ∈ VΓ for i =

0, . . . ,M. Each step amounts to the solution of the discretized Richards equation (9) to
obtain SΩ (hν)i from (10) with pk+1 = pν+1

k+1 , and to M time steps of the discontinuous

Galerkin discretization of (2) described by (7) and (8) to obtain hν+1/2
i , i = 1, . . . ,M.

For k> 0 the initial iterate h0 is the solution of the preceding time step. We emphasize
that no compatibility conditions on the different meshes TΓ and TΩ are necessary,
because only weak coupling conditions are involved.
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5 Numerical Experiments

We consider a model problem on a square Ω ⊂ R
2 of side length 10m and select Γ

as the upper part of its boundary. The soil parameters are n = 0.437, θm = 0.0458,
θM = 1, pb = −712.2 Pa, λ = 0.694, and K = 6.66 · 10−9 m2 (sandy soil). The vis-
cosity and density of water is μ = 1 m Pa s and ρ = 1,000kgm−3, respectively. In
accordance with measurements [16] we select the leakage coefficient as α = ρgL−1

with L = 10−6 s−1 allowing for large pressure jumps across the interface.
We choose the initial conditions θ0 ≡ θ (−20Pa) = 0.1401, h(0) ≡ 1 m, q(0) ≡

10m2 s−1, and inflow boundary conditions for h(0, t) and q(0, t) alternating between
2 and 1 m and 20 and 10m2 s−1, respectively, with a period of 10 s. This leads to
a supercritical water flow from left to right, which can result, for example, from
opening a flood gate.

Fig. 1. The water height hi at times ti = iτ , i = 30,150,250,500

Fig. 2. The pressure p at times Tk = kΔT , k = 200,1000,2000,3000

For the porous media flow onΩ we use the uniform time step size ΔT = 50 s and
a triangulation TΩ resulting from six uniform refinement steps applied to a partition
ofΩ into two triangles with hypotenuse from lower left to upper right. The Richards
equation (1) is discretized by the implicit scheme based on Kirchhoff transformation
suggested in [4], and truncated monotone multigrid [12] is used as the algebraic
solver. For the surface flow we use the time step size τ = γΔT with γ = 3−1 ·10−4,
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and the partition TΓ consists of 400 elements of equal length. Note that TΓ does not
match with TΩ |Γ . The shallow water equations (2) are discretized by a discontinuous
Galerkin method (7) with VΓ consisting of piecewise constant functions, and we use
simple upwind flux functions Gh and Gq in (7) and (8), respectively. The final time
is Tend = 3.5 ·104 s. For the implementation we used the DUNE libraries [2] and the
domain decomposition module dune-grid-glue [3].

Figure 1 shows the evolution of the surface water height h over the first period
of the boundary conditions. The porous medium flow is much slower, as expected.
Figure 2 shows the evolution of the pressure. Water enters the domain from the top,
and after about 3,600 macro time steps or, equivalently, 3,000 m, the soil saturation
is constant at about 75 %. Then, the domain gets fully saturated starting from the
bottom. Hydrostatic pressure builds up and is fully reached at time step 4,700.

At each time step we observe discrete mass conservation up to machine precision.
The total relative mass loss over the entire evolution is about 10−10. Our numerical
computations thus nicely reproduce the theoretical findings of Proposition 1.

In order to investigate the convergence behavior of the Robin–Neumann iteration
(11), we consider the algebraic error ‖hM−hνM‖L1(Γ ) at the end of the first time inter-

val [0,T1] with T1 =Mτ . It turns out that for the given leakage coefficientα = ρg106 s
(cf. [16]), the convergence rates are in the range of 10−4. They remain there during
the entire evolution. For each time step only two or three iterations were necessary
to reduce the estimated algebraic error below the threshold 10−12. This is explained
by the weak (in the physical sense) coupling of surface water and subsurface flow
associated with large values of α .

The convergence speed of (11) decreases for decreasing α . This is illustrated in
Fig. 3 which shows convergence rates ρ of (11) for various α together with the cor-
responding optimal damping factors ω determined numerically. Convergence rates

Fig. 3. Convergence rates ρ and associated optimal damping parameter ω over leakage coef-
ficient α

deteriorate for α < 4 · 10−2. Moreover, for α < 2 · 10−3 ill-conditioning of the dis-
cretized Richards equation (9) leads to severe problems in the numerical solution.
Hence, using the Robin coupling (3) to enforce continuity of pressure by penaliza-
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tion rather than for modelling the clogging effect would require the construction of
suitable preconditioners and a careful selection of α .
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1 Introduction

In many applications the viscous terms become only important in parts of the compu-
tational domain. A typical example is the flow of air around the wing of an airplane.
It can then be desirable to use an expensive viscous model only where the viscosity is
essential for the solution and an inviscid one elsewhere. This leads to the interesting
problem of coupling partial differential equations of different types.

The purpose of this paper is to explain several coupling strategies developed over
the last decades, and to introduce a systematic way to compare them. We will use the
following simple model problem to do so:

Ladu :=−νu′′+ au′+ cu = f in Ω = (−L1,L2),
B1u = g1 on x =−L1,
B2u = g2 on x = L2,

(1)

where ν and c are strictly positive constants, a,g1,g2 ∈ R, f ∈ L2(Ω), L1,L2 > 0
and B j , j = 1,2 are suitable boundary operators of Dirichlet, Neumann or Robin
type. If in part of Ω , the diffusion plays only a minor role, one would like to replace
the viscous solution u by an inviscid approximation, which leads to two separate
problems: a viscous problem on, say, Ω− := (−L1,x0 + δ ), where δ stands for the
size of the overlap and x0 the position of the interface,

Laduad = f in Ω−,
B1uad = g1 on x =−L1,

(2)

and a pure advection reaction problem on Ω+ := (x0,L2),

Laua := au′a + cua = f in Ω+. (3)

Coupling conditions for (2) and (3) need then to be chosen to connect the two sub-
problems, and there are many coupling strategies in the literature to choose from.
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These strategies have been developed over the last decades for various applications,
and sometimes the two different models are really due to different physical phe-
nomena, like in fluid-structure interaction problems. In those cases, the coupling
conditions are given by the physics, and they are in general unique. We are how-
ever interested in problems where the different equations are only chosen in order to
achieve computational savings, as for example in [5]:

The main goal of this paper is to present a computational method for the
coupling of two distinct mathematical models describing the same physical
phenomenon.

For such couplings, it is quite difficult to decide which coupling strategy from the lit-
erature to choose, since every coupling strategy leads to a different solution, and it is
not clear a priori which one is the best one. Furthermore, there are neither guidelines
nor quantitative comparisons in the literature in order to help with this decision. In
order to compare the quality of the various coupling strategies, we propose in this
paper a first very natural measure to compare different coupling strategies in such
situations, namely to investigate how close the coupled solution for (2) and (3) is to
the fully viscous solution of (1). The idea behind this quality measure is that in prin-
ciple the viscosity should be taken into account everywhere, and hence it is the more
expensive viscous solution that we are interested in. However, for computational sav-
ings, one would like to use a simpler, non-viscous model whenever the viscosity does
not play an important role. In a more general situation, we thus would propose as a
natural quality measure to compare the coupled solution to the solution of the expen-
sive model used throughout the entire domain, and the closer the coupled solution is
to this expensive one, the better the coupling conditions are.

We describe in this paper in detail several coupling strategies for the viscous/in-
viscid coupling, and compare them by testing how close the coupled solution is to
the fully viscous one: in Sect. 2 we present an overlapping coupling method based on
optimization. In Sect. 3 we present several non-overlapping coupling strategies based
on coupling conditions at the interface between the two regions. In both sections, the
position of the interface needs to be known a priori. This is in contrast to Sect. 4,
where we present an adaptive coupling strategy which detects the partition into vis-
cous and non-viscous regions automatically. We will see that our quality measure
allows us to effectively compare these different strategies, and we find that the best
coupled solutions are obtained by judiciously chosen transmission conditions.

2 Methods Based on Overlap and Optimization

In this section, we present a very general overlapping coupling strategy that was pro-
posed in [5], where the authors considered as the viscous model the incompressible
Navier-Stokes equations, while the inviscid model was the potential equation (the
assumption of a small vorticity is made).

For the model problem (1), the coupling strategy works as follows: in each subdo-
main, we solve the corresponding equation with a Dirichlet condition at the artificial
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interface,
uad(x0 + δ ) = λ1 and if a > 0, ua(x0) = λ2,

and then determine (λ1,λ2) to be a solution of the optimization problem

J(λ1,λ2) := ‖uad−ua‖2
L2(x0,x0+δ )

−→ min .

The authors in [5] solve this optimization problem using a gradient type method, so
that the adjoint equation also needs to be computed.

This coupling strategy based on optimization has been studied mathematically in
[10] and [2] for our model problem in 2D, see also [6] for a complete description
of the algorithms for the model problem, and also for the coupling of Navier-Stokes
equations with a Darcy model, or the coupling of the Stokes and potential equations.
In [2] other cost functionals to be minimized are proposed.

In order to evaluate the quality of this coupling strategy, we compute numerically
the error between the viscous and the coupled solution as a function of the viscosity
for the case L1 = L2 = 1, x0 =−0.6, f (x) = e−1,000(x+1)2

and c= 1. We use a centered
finite difference scheme to discretize the two differential operators, with mesh size
2×10−5. We consider the case of a positive velocity, a= 1, with g1 = 0, g2 = 0, B1 =
Id and B2 = ∂x− (a−√a2 + 4νc)/2ν (the absorbing boundary operator) and the
case of a negative velocity, a=−1, with g1 = 0, g2 = 0, B1 = Id and B2 = Id. In all
experiments presented in this paper, the error in the advection domain ‖u−ua‖Ω+ is
O(ν) whatever is the coupling strategy, which is natural, since the advection equation
is used instead of the advection-diffusion equation. The numerical error estimate for
this overlapping technique in the viscous domainΩ− is given in Table 1. We see that

a > 0 a < 0
Minimization of J O(ν3/2) O(ν)

Table 1. Overlapping coupling with optimization: numerically computed error estimate for
‖u−uad‖Ω−

for a < 0, this coupling strategy (like most of the ones presented in this paper) gives
a result O(ν), since information is coming from the inviscid approximation in Ω+

to Ω−, and in Ω+ the error ‖u−ua‖Ω+ is O(ν).
The non overlapping case δ = 0 is also considered in [10], namely

G(λ1,λ2) = σ(a)(uad(x0)−ua(x0))
2 +(φ1−φ2)

2,

where φ1 = −νu′ad(x0)+ auad(x0) and φ2 = aua(x0) (see Sect. 3.1) and σ(a) = 1 if
a > 0, 0 otherwise. Using the same numerical setting, we obtain for ν small the error
estimates shown in Table 2.
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a > 0 a < 0
Minimization of G O(ν3/2) O(ν)

Table 2. Non overlapping case with optimization: numerically computed error estimates for
‖u−uad‖Ω−

3 Methods Based on Coupling Conditions

From now on we assume that there is no overlap, δ = 0. The coupling techniques in
this section are based on coupling conditions, and we will present three strategies:
the first one is based on singular perturbation, the second one on boundary layer
corrections, and the last one on the factorization of the operator.

3.1 Coupling Conditions from Singular Perturbation

In [9] the authors propose to find coupling conditions for (2) and (3) by introducing
a regularization of the inviscid problem using a small artificial viscosity ε . They thus
consider

−νw′′ε + aw′ε + cwε = f on (−L1,x0),

−εv′′ε + av′ε+ cvε = f on (x0,L2).
(4)

This coupling problem which involves two elliptic equations needs to be completed
by two boundary conditions. The first one simply states continuity of the solution:
wε(x0) = vε(x0). For the second one, two choices are possible : we can impose the
continuity of the normal flux, νwε ′(x0) = εvε ′(x0) (such boundary conditions are
called variational conditions) or we impose the continuity of the normal derivative,
wε ′(x0) = vε ′(x0) (called non variational conditions). Letting ε tend to 0, it has been
rigorously proved in [9] that wε (resp. vε ) tends to uad (resp. ua). At the boundary,
with the variational conditions, the limiting solution satisfies

(−νu′ad + auad)(x0) = aua(x0), uad(x0) = ua(x0) for a > 0,

(−νu′ad + auad)(x0) = aua(x0), for a < 0,
(5)

while the non variational conditions lead to

uad(x0) = ua(x0), u′ad(x0) = u′a(x0), for a > 0,

uad(x0) = ua(x0), for a < 0.
(6)

Rigorous error estimates comparing the coupled solutions obtained with these ap-
proaches were obtained in [7], and they are summarized in Table 3, where we ob-
serve that the non variational conditions lead to a better coupled solution for positive
advection than the variational ones, while for negative advection, again there is no
difference between the two approaches. Finally, it has been proved in [6] that the
coupling problem with variational conditions is equivalent to the problem using op-
timization on σ(a)(uad(0)−ua(0))2 +(φ1−φ2)

2; our observation is thus consistent.
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a > 0 a < 0
Variational Conditions O(ν3/2) O(ν)
Non Variational Conditions O(ν5/2) O(ν)

Table 3. Variational versus non-variational coupling conditions: theoretical error estimates for
‖u−uad‖Ω−

3.2 Coupling Through Boundary Layer Correction

A different approach, only adding a correction for the boundary layer (in the case
a < 0), was proposed in [4]. Here, the authors define the coupled solution of interest
to be the solution of the regularized problem (4), and they consider the variational
solution obtained from (5) as a first approximation of the regularized one. More pre-
cisely the coupled solution is represented as a perturbation of the variational solution
in the form

wε(x) = uad(x)+ rε(x),

vε(x) = ua(x)+ lε(x)+ sε(x),

where lε is a boundary layer function and rε and sε are the remainders of the asymp-
totic expansion. The boundary layer term can be computed analytically, but integrals
that are involved are then approximated numerically. The numerical solution does
not take into account the remainders rε and sε and thus, compared to the solution
obtained with (5), the pure advection solution in Ω+ is the only one to be corrected.

3.3 Coupling Conditions from Operator Factorization

A very accurate set of coupling conditions can be derived from an operator factor-
ization, see [7], and requires the solution of a modified advection equation: if we
introduce λ± = (a±√a2 + 4νc)/2ν , the advection diffusion equation can be fac-
tored, i.e.

Ladu = (∂x−λ+)(∂x−λ−)u = f ,

which gives after integration on (x0,L2)

(∂x−λ−)u(x0) = (∂x−λ−)u(L2)e
−λ+L2 +

∫ L2

x0

f (σ)e−λ
+σdσ .

Introducing the new advection equation (∂x− λ+)ũa = f , we find that the viscous
solution satisfies

(∂x−λ−)u(x0) = ũa(x0)+ ((∂x−λ−)u(L2)− ũa(L2))e
−λ+L2 . (7)

Solving the advection-diffusion equation in Ω− with the boundary condition (7) (re-
placing u by uad on the left hand side) would thus yield the exact coupled solution,
i.e. u|Ω− = uad . However the term in L2 can not be used directly, and one chooses
instead ũa(L2) to be an expansion of (∂x−λ−)u(L2) for ν small, so that the proposed
coupling condition is
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(∂x−λ−)uad(x0) = ũa(x0). (8)

This leads to the coupling procedure

1. Solve the new advection equation (∂x −λ+)ũa = f on (x0,L2) with ũa(L2) =
z0 + z1ν+ · · ·+O(νm).

2. Solve the advection-diffusion equation on (−L1,x0) with the transmission
condition (8).

3. Solve the advection equation (3) on (x0,L2) with the condition uad(x0) = ua(x0)
if a > 0.

For our model problem, rigorous error estimates obtained in [7] are shown in Table 4.
We see that this coupling strategy leads to a coupled solution which is much closer
to the fully viscous one than any of the other strategies. Even in the case of negative
advection, one can now obtain approximations more accurate than O(ν). Note how-
ever that λ± are simple constants only in the stationary one dimensional case. In the
case of evolution, or for higher dimensions, the λ± need to be approximated (see for
example [8]).

4 The χ-Formulation

A very different approach for coupling viscous and inviscid problems is proposed in
[3]: the method called χ-formulation decides automatically where the viscous model
and where the inviscid one needs to be used, and solves the equation

−νχ(u′′)+ au′+ cu = f on (−L1,L2),
u = g1 on x =−L1,

Bu = 0 on x = L2,

where the χ function is defined by

χ(s) =

⎧⎨
⎩

0 0≤ s < δ −σ ,
(s− δ +σ) δσ δ −σ ≤ s≤ δ ,
s s > δ ,

so that the diffusion term is neglected as soon as it is small enough. This leads how-
ever to a non-linear equation, even if the underlying models are linear, which requires
a Newton type algorithm.

In [3], the method is studied for the model problem at the continuous level, and
well posedness is proved. Several years later, in [1] and [11], this strategy is used
to solve the Navier-Stokes equations. Note that other cut-off functions can also be
considered. We show in Table 5 numerically computed error estimates for the χ-
formulation applied to our model problem.

a > 0 a < 0
Factorization of the operator O(e−a/ν) O(νm)

Table 4. Coupling based on factorization: theoretical error estimates for ‖u−uad‖Ω−
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a > 0 a < 0
χ-formulation O(ν5/2) O(ν)

Table 5. χ-formulation: numerically computed error estimate for ‖u−uad‖Ω−

5 Conclusions

For a positive velocity a, among all the strategies presented in this paper, the best
coupling condition is provided by the factorization of the operator in the non overlap-
ping case: the error between the corresponding coupled solution and the fully viscous
solution is exponentially small. Note that in the unstationary case or in higher dimen-
sions the exponential convergence will be replaced by a polynomial one, because of
approximations, an issue we currently investigate. Good algebraically small errors
of O(ν5/2) can also be obtained using the non variational conditions (6), or with the
χ-formulation. The other strategies yield less accurate error estimates. When a < 0,
the factorization method is the only one to provide a better estimate than O(ν).
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Summary. We consider the mechanical coupling of a geometrically exact Cosserat rod to a
linear elastic continuum. The coupling conditions are formulated in the nonlinear rod config-
uration space. We describe a Dirichlet–Neumann algorithm for the coupled system, and use it
to simulate the static stresses in a human knee joint, where the Cosserat rods are models for
the ligaments.

1 Cosserat Rods and Linear Elasticity

Cosserat rods are models for long slender objects. Let SE(3) = R
3
� SO(3) be the

group of orientation-preserving rigid body motions of R
3 (the special Euclidean

group). A configuration of a Cosserat rod is a map ϕ : [0,1] → SE(3). For each
s∈ [0,1], the value ϕ(s) = (ϕr(s),ϕq(s)) is interpreted as the position ϕr(s)∈R

3 and
orientation ϕq(s)∈ SO(3) of a rigid rod cross section. Strain measures (vϕ(s),uϕ (s))
at ϕ(s) live in the tangent space Tϕ(s)SE(3), and are defined by

vϕ(s) = ϕ ′r(s) and ϕ ′q(s) = u×ϕ (s)ϕq(s),

where u×ϕ is the skew-symmetric matrix corresponding to uϕ . On each cross section
s of the rod act a resultant force and torque. These are given by a tuple (n(s),m(s)),
which is an element of the cotangent space T ∗ϕ(s)SE(3). In the absence of external
forces and torques we have the equations of equilibrium [6]

m′+ϕ ′r×n = 0 on [0,1],

n′ = 0 on [0,1].

We assume there to be an energy functional W such that n = ∂W/∂v and
m = ∂W/∂u. Existence of solutions for this model has been shown in [12], but
note that solutions may be nonunique.

We will couple the rod model to a linear elastic continuum. Let Ω be a domain
in R

3. Its boundary ∂Ω is supposed to be Lipschitz and to consist of disjoint parts
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ΓN and ΓD such that ∂Ω = Γ N ∪ΓD and ΓD has positive two-dimensional measure.
We use νννΩ to denote the outward unit normal of Ω . For any displacement function
u ∈ H1(Ω) = (H1(Ω))3 we set εεε = 1

2(∇u+∇uT ) the linear strain tensor and the
stress σσσ = σσσ(εεε), with a St. Venant–Kirchhoff-type material law

σσσ(εεε) =
Eν

(1+ν)(1−2ν)
(trεεε)Id+

E
1+ν

εεε .

The parameters E and ν are the Young’s modulus and Poisson ratio, respectively.
The boundary value problem of elasticity is then

−divσσσ(u) = f in Ω ,

u = 0 on ΓD,

σσσ(u)νννΩ = t on ΓN ,

with volume forces f :Ω → R
3 and surface force t : ΓN → R

3.

2 Coupling Conditions

We will now derive conditions for the coupling of a Cosserat rod and a linear elastic
three-dimensional object. The two main difficulties are the difference in dimensions
between the rod and the continuum, and the nonlinear nature of the rod configuration
space.

Previous work has mainly focused on coupling linear models of different
dimensions. Lagnese et al. [7] have studied the coupling of beams to plates exten-
sively. Modeling of 3d–2d junctions between linear elastic objects using a method of
asymptotic expansion has been carried out by Ciarlet et al. [4]. Monaghan et al. [8]
describe a 3d–1d coupling between linear elastic elements in the discrete setting. A
general framework which encompasses these cases is given in [3]. We are not aware
of previous work on the coupling of Cosserat rods.

Fig. 1. Left: Coupling between a two-dimensional domain and a rod. Right: In the stress-free
configuration the rod may meet the body at an arbitrary spatial angle ϕ̂q(0)

Consider again a linear elastic continuum defined on a reference configuration
Ω . This time, the boundary ∂Ω is supposed to consist of three disjoint parts ΓD, ΓN ,
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and Γ such that ∂Ω = ΓD ∪Γ N ∪Γ . We assume that ΓD and Γ have positive two-
dimensional measure. The three-dimensional object represented by Ω will couple
with the rod across Γ , which we call the coupling boundary. The boundary of the
parameter domain [0,1] of a Cosserat rod consists only of the two points 0 and 1, and
the respective domain normals are νννr,0 =−1 and νννr,1 = 1. To be specific, we pick 0 as
the coupling boundary. We assume a stress-free rod configuration ϕ̂ : [0,1]→ SE(3)
such that ϕ̂r(0) = |Γ |−1 ∫

Γ xds, i.e., the coupling interface of the rod in its stress-free
state is placed at the center of gravity of the coupling interface of Ω . The orientation
ϕ̂q(0) of the stress-free state does not need to be in any relation with the shape of the
coupling boundary Γ (Fig. 1).

We define our coupling using a set of conditions for the primal variables. These
variables are the configuration ϕ of the rod and the displacement field u of the con-
tinuum. It is well known that when coupling two continuum models of the same type,
the solution has to be continuous [9]. Since the position ϕr(0) ∈ R

3 of the coupling
cross-section can be seen as an averaged position it is natural to couple it to the
averaged position of Γ

ϕr(0)
!
=

1
|Γ |

∫
Γ
(u(x)+ x)ds. (1)

To obtain a complete set of primal conditions we also need to relate the orien-
tations at the interface. This requires some technical preparations. Using the defor-
mation gradient F(u) = ∇∇∇(u + Id) we first define the average deformation of the
interface boundary Γ as F (u) = |Γ |−1 ∫

Γ ∇∇∇(u(x)+ x)ds. If u stays within the lim-
its of linear elasticity the matrix F (u) has a positive determinant. Using the polar
decomposition it can then be split into a rotation polar(F (u)) and a stretching. We
define the average orientation of Γ induced by a deformation u as the rotational part
of F (u). This corresponds to the definition of the continuum rotation used in the
theory of Cosserat continua. In particular, if u≡ 0 then polar(F (u)) = Id.

The average orientation polar(F (u)) can now be set in relation to ϕq(0), the
orientation of the rod cross-section at s = 0. We require the coupling condition to be
fulfilled by the stress-free configuration u = 0, ϕ = ϕ̂ . This leads to the condition

ϕq(0)
!
= polar(F (u))ϕ̂q(0), (2)

which is an equation in the nonlinear three-dimensional space SO(3).
For ease of writing we will introduce the averaging operator Av : H1(Ω)→ SE(3)

by setting

Av(u) =
( 1
|Γ |

∫
Γ
(u(x)+ x)ds, polar(F (u))ϕ̂q(0)

)
, (3)

where we have used (·, ·) to denote elements of the product space SE(3) = R
3
�

SO(3). It is a nonlinear generalization of the restriction operator used in [3]. Then (1)
and (2) can be written concisely as

ϕ(0) !
= Av(u). (4)

Note that we do not assume thatΓ has the same shape or area as the rod cross-section
at s = 0. Also, since the coupling conditions relate only finite-dimensional quantities



446 Oliver Sander

they remain the same when the subdomain problems are replaced by finite element
approximations.

The coupling problem is made complete by conditions for the dual variables.
For the continuum these variables are the normal stresses at the boundary Γ . For
the rod the dual variables are the total force n(0)νννr,0 and the total moment m(0)νννr,0

about ϕr(0) transmitted in normal direction across the cross-section at s = 0. We
expect these to match the total force and torque exerted by the continuum across the
coupling boundary Γ in the direction of −νννΩ

∫
Γ
σσσ (u)νννΩ ds =−n(0)νννr,0 (5)

∫
Γ
(x−ϕr(0))× (σσσ(u)νννΩ )ds =−m(0)νννr,0. (6)

Together, these equations relate quantities in the six-dimensional space T ∗ϕ(0)SE(3).

Remark 1. A variational formulation suggests that (5) and (6) are not the dual con-
ditions of (4) (cf. to [3] for the linear case). Together with (10), however, they are
sufficient to construct a working solution algorithm.

3 A Dirichlet–Neumann Algorithm

In this section we present a Dirichlet–Neumann algorithm for the coupled problem.
It can be interpreted as a fixed-point iteration for an equation on the trace space of the
rod configuration space at s = 0, i.e. on SE(3). Each iteration consists of three steps:
a Dirichlet problem for the rod, a Neumann problem for the body, and a damped
update along geodesics on SE(3). Let λ 0 ∈ SE(3) be the initial interface value and
k ≥ 0 the iteration number. In more detail, the steps are as follows.

1. Dirichlet problem for the Cosserat rod
Let λ k,ϕD ∈ SE(3) be the current interface value and a Dirichlet boundary value,
respectively. Find a solution ϕk+1 of the Dirichlet rod problem

(mk+1)′+(ϕk+1
r )′ ×nk+1 = 0 on [0,1]

(nk+1)′ = 0 on [0,1]

ϕk+1(0) = λ k

ϕk+1(1) = ϕD.

2. Neumann problem for the continuum
The new rod iterate ϕk+1 exerts a resultant force nk+1(0)νννr,0 and moment
mk+1(0)νννr,0 across its cross-section at s = 0. Construct a Neumann data field
τττk+1 : Γ →R

3 such that
∫
Γ
τττk+1(x)ds =−nk+1(0)νννr,0 (7)
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and

∫
Γ
(x−ϕk+1

r (0))× τττk+1(x)ds =−mk+1(0)νννr,0. (8)

Then solve the three-dimensional linear elasticity problem with Neumann data
τττk+1 on Γ

−divσσσ(uk+1) = f in Ω

σσσ(uk+1)νννΩ = τττk+1 on Γ (9)

uk+1 = 0 on ΓD

σσσ(uk+1)νννΩ = t on ΓN .

3. Damped geodesic update
From the solution uk+1 compute the average interface displacement and orien-
tation Av(uk+1) as defined in (3). With a damping parameter θ > 0, the new
interface value λ k+1 is then computed as a geodesic combination in SE(3) of the
old value λ k and Av(uk+1),

λ k+1 = expλ k θ
[

exp−1
λ k Av(uk+1)

]
.

It remains to say how to construct suitable fields of Neumann data τττk+1 that
satisfy the conditions (7) and (8). Let us drop the index k for simplicity. In principle,
any function τττ : Γ → R

3 of sufficient regularity fulfilling (7) and (8) can be used as
Neumann data in (9). It has been shown in [10] that such functions exist.

The theory of Cosserat rods assumes that forces and moments are transmitted
evenly across cross-sections. We therefore construct τττ to be ‘as constant as possible’.
More formally, we introduce the functional

T : L2(Γ )×R
3 →R, T (h,c) =

∫
Γ
‖h(x)− c‖2 ds,

and construct τττ as the solution of the minimization problem

(τττ ,cτττ) = argmin
h∈L2(Γ ),c∈R3

T (h,c) (10)

under the constraints that
∫
Γ
τττ ds =−n(0)νννr,0 and

∫
Γ
(x−ϕr(0))× τττ ds =−m(0)νννr,0. (11)

Problem (10) and (11) is a convex minimization problem with linear equality
constraints. In [10, Lemma 5.3.4] it was shown that there exists a unique solution. In
a finite element setting the problem size is given by the number of grid vertices on
Γ times 3. A minimization problem of this type can be solved, e.g., with an interior-
point method.
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Fig. 2. Left: Problem setting. Tibia and fibula are rotated 15◦ in valgus direction to put addi-
tional stress on the MCL. Center: Deformed grids after two adaptive refinement steps. Right:
Two sagittal cuts through the von Mises stress field

4 Numerical Results

We close with a simulation result for a knee model which combines femur, tibia, and
fibula bones modeled as three-dimensional linear elastic objects, and the cruciate and
collateral ligaments, modeled as Cosserat rods. The model additionally includes the
contact between femur and tibia. To obtain a test case where the contact stresses do
not entirely predominate the stresses created in the bone by pulling ligaments, we
applied a valgus rotation of 15◦ to tibia and fibula. This leads to a high strain in
the medial collateral ligament (MCL) and can be interpreted as an imminent MCL
rupture (Fig. 2).

The geometry was obtained from the Visible Human data set. We modeled bone
with an isotropic, homogeneous, linear elastic material with E = 17 GPa and ν = 0.3.
The distal horizontal sections of tibia and fibula were clamped, and a prescribed
downward displacement of 2 mm was applied to the upper section of the femur. We
used first-order finite elements for the discretization of the linear elasticity problem.
DUNE [2] was used for the implementation.

The four ligaments were each modeled by a single Cosserat rod with a circular
cross-section of radius 5 mm. The rod equations were discretized using geodesic
finite elements [11]. We chose a linear material law (see, e.g., [6]) with parameters
E = 330 MPa and ν = 0.3. On the bones, the coupling boundariesΓ for the different
ligaments were marked by hand using a graphical editor. We modeled all ligaments
to be straight in their stress-free configurations and to have 8 % in situ strain.

We solved the combined problem using the Dirichlet–Neumann algorithm
described in Sect. 3. At each iteration, a pure Dirichlet problem had to be solved
for each of the rods and a contact problem with mixed Dirichlet–Neumann bound-
ary conditions had to be solved for the bones. The contact problem was solved using
the Truncated Nonsmooth Newton Multigrid (TNNMG) algorithm [5]. The TNNMG
method solves linear contact problems with the efficiency of linear multigrid. For the
ligaments we used a Riemannian trust-region solver [1, 11], and we used IPOpt [13]
to solve the minimization problems (10) and (11). Figure 2 shows the deformed con-
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Fig. 3. Left: Stress plot on the tibial plateau. Right: Convergence rates of the Dirichlet–
Neumann method as a function of the damping parameter for up to four grid levels

figuration on a grid obtained by two steps of adaptive refinement and cuts through
the von Mises stress field. In Fig. 3, left, a caudal view onto the tibial plateau can be
seen, which is colored according to the von Mises stress. The peaks due to contact
and the pull of the cruciate ligaments can be clearly observed.

We measured the Dirichlet–Neumann convergence rates with bone grids obtained
by up to three steps of adaptive refinement using the hierarchical error estimator pre-
sented in [10]. Rod grids in turn were refined uniformly. On each new set of grids
we started the computation from the reference configuration. That way identical ini-
tial iterates for all grid refinement levels were obtained. Details on the measuring
setup can be found in [10]. Figure 3, right, shows the Dirichlet–Neumann conver-
gence rates plotted as a function of the damping parameter θ for up to four levels
of refinement. For each further level of refinement, the optimal convergence rate
is slightly worse than for the previous, and obtained for a slightly lower damping
parameter. This behavior seems typical for Dirichlet–Neumann methods. Neverthe-
less the optimal convergence rates stay around 0.4. This makes the algorithm well
usable in practice.
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1 Introduction

Solving an evolution problem in parallel is naturally undertaken by trying to paral-
lelize the algorithm in space, and then still follow a time stepping method from the
initial time t = 0 to the final time t = T . This is especially easy to do when an explicit
time stepping method is used, because in that case the time step for each component
is only based on past, known data, and the time stepping can be performed in an
embarrassingly parallel way. If one uses implicit time stepping however, one obtains
a large system of coupled equations, and thus the linear or non-linear solver needs to
be parallelized, e.g. using a domain decomposition method.

Over the last decades, people have however also tried to parallelize algorithms
in the time direction. One example is Womble’s algorithm [22], where the systems
arising from an implicit time discretization are solved using an iterative method, and
the iteration of the next time level is started, before the iteration on the current time
level has converged. It is then possible to iterate several time levels simultaneously,
but the possible gain using a parallel computer is only small, see for example [3].

A different approach to obtain small scale parallelism in time is to use predictor-
corrector methods, where the prediction step and the correction step can be per-
formed by two (or several) processors in parallel, if organized properly. An entire
class of such methods has been proposed in [19], and good small scale parallelism
can be achieved.

A third, very different approach are the waveform relaxation algorithms, invented
in [15], which are based on a decomposition of the system to be solved into subsys-
tems. An iteration is then used, which solves time dependent problems in each sub-
system and communicates information at interfaces to neighboring subsystems to
converge to the overall solution in space-time [12, 13]. Substantial progress has been
made on such methods for evolution PDEs, see for example [5, 6, 14], and references
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therein. If a multi-grid decomposition is used, instead of a domain decomposition,
one obtains the so called parabolic multi-grid methods [11], which are also called
multi-grid waveform relaxation methods. For further results, see [17, 21].

Finally, the last class of methods, which focuses entirely on the parallelization in
the time direction, are based on shooting methods in time. A first historical step in
this direction is [20], and for an early analysis see [2]. The newest algorithm in this
class is the parareal algorithm, invented in [16]. For a complete historical overview of
such methods, further references, and a precise convergence estimate of the parareal
algorithm see [4, 9].

We propose here a space time parallel algorithm for solving evolution partial
differential equations, and use as a model problem

∂tu = ∂xxu in Ω = (0,1)× (0,T),
B−u(0, t) = g0(t) t ∈ (0,T ),
B+u(1, t) = g1(t) t ∈ (0,T ),

u(x,0) = u0(x) x ∈Ω .

(1)

Here B± represent some boundary operators, like the identity for a Dirichlet con-
dition, or a normal derivative for a Neumann condition. The algorithm is based on
a decomposition of the space-time domain into space-time subdomains, as indicated
in Fig. 1. In order to solve an evolution problem by only solving problems in small
space-time domains, one has to iteratively calculate more and more accurate ini-
tial and boundary conditions for each space-time subdomain. The parareal Schwarz
waveform relaxation algorithm does this by using a parareal approximation for the
initial conditions, and a Schwarz waveform relaxation algorithm for the boundary
conditions. For a different variant of combining a spatial and a time decomposition,
see [18].

t

x

Ωin

Tn

Tn+1

xi−1 xi

x−
i x+

i

Fig. 1. Space time decomposition for the parareal Schwarz waveform relaxation algorithm
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2 Parareal Schwarz Waveform Relaxation Algorithms

The parareal algorithm for the model problem (1) is based on a decomposition of the
time interval (0,T ) into subintervals, given by 0 = T0 < T1 < T2 < .. . < TN = T ,
and the algorithm is defined using two propagation operators: a coarse operator
G(t2, t1,u1,g0,g1) which provides a rough approximation of the solution u(x, t2)
of (1) with a given initial condition u(x, t1) = u1(x) and boundary conditions g0

and g1, and a fine operator F(t2, t1,u1,g0,g1), which gives a more accurate ap-
proximation of the same solution with initial condition u(x, t1) = u1(x) and bound-
ary conditions g0 and g1. Starting with a first approximation U0

n at the time points
T0,T1,T2, . . . ,TN−1, the parareal algorithm performs for k = 0,1,2, . . . the correction
iteration

Uk+1
n+1 = F(Tn+1,Tn,U

k
n ,g0,g1)+G(Tn+1,Tn,U

k+1
n ,g0,g1)−G(Tn+1,Tn,U

k
n ,g0,g1),

(2)
which is nothing else than a multiple shooting method with an approximate Jacobian
in the Newton step, see for example [9], which also contains a precise convergence
estimate for the case of the heat equation, or [4] for a similar precise convergence
estimate for the case of nonlinear problems.

In contrast to the parareal algorithm, a Schwarz waveform relaxation method
for the model problem (1) is based on a spatial decomposition only, in the most
general case into overlapping subdomains Ω = ∪I

i=1(x
−
i ,x

+
i ), as shown in Fig. 1.

Here the boundaries x±i of the overlapping subdomains are constructed from a non-
overlapping decomposition given by the decomposition 0 =: x0 < x1 < .. . < xI := 1,
by adding and subtracting half the overlap, x−i := xi−1− L

2 , x+i := xi +
L
2 , except for

the first and last point, x−1 = x0 and x+I = xI . Given an initial guess at the interfaces,
say B±

i u0
i , the Schwarz waveform relaxation algorithm solves iteratively for k =

1,2, . . . the subdomain problems

∂t uk
i = ∂xxuk

i in Ωi× (0,T ),
uk

i (x,0) = u0 in Ωi,

B−
i uk

i (x
−
i , t) = B−

i uk−1
i−1 (x

−
i , t) t ∈ (0,T ),

B+
i uk

i (x
+
i , t) = B+

i uk−1
i+1 (x

+
i , t) t ∈ (0,T ).

(3)

Here again, the operators B±
i are transmission operators: in the case of the identity,

we have the classical Schwarz waveform relaxation algorithm; for Robin or higher
order transmission conditions, one would obtain an optimized Schwarz waveform
relaxation algorithm, if the parameters in the transmission conditions are chosen to
optimize the convergence of the algorithm, see [1, 5].

Parareal Schwarz waveform relaxation algorithms combine the two techniques
for a general space-time decomposition given in Fig. 1. We propose among the many
possibilities the following one: given initial conditions uk

0,i,n(x) and boundary condi-

tions B−
i uk

i−1,n(t) and B+
i uk

i+1,n(t) for i = 1,2, . . . , I and n = 1,2, . . . ,N we compute

1. All accurate approximations uk+1
i,n (x, t) :=Fi,n(uk

0,i,n,B
−
i uk

i−1,n,B
+
i uk

i+1,n) in par-
allel using the more accurate evolution operator.
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Fig. 2. Illustration how the parareal Schwarz waveform relaxation algorithm removes the error
over several iterations: each plot pair shows on the left the approximation and on the right
the error (i.e. the difference between the monodomain solution and the current iterate) for
k = 1,5,10,20

2. For n = 0,1, . . ., new initial conditions using a parareal integration step both in
space and time,

uk+1
0,i,n+1 = uk+1

i,n (·,Tn+1)+Gi,n(u
k+1
0,i,n,B

−
i uk+1

i−1,n,B
+
i uk+1

i+1,n)

−Gi,n(u
k
0,i,n,B

−
i uk

i−1,n,B
+
i uk

i+1,n).

An example on how this algorithm converges is given in Fig. 2.
We present now a first convergence result for the parareal Schwarz waveform

relaxation algorithm:

Theorem 1 (Superlinear Convergence). Let Fi,n be the exact solution, Gi,n be a
backward Euler approximation in time, and the exact solution in space, and assume
a decomposition of the spatial domain into two overlapping subdomains. If the al-
gorithms uses Dirichlet transmission conditions, i.e. B±

i = I, the identity, then it
converges superlinearly to the solution of the underlying problem.
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The proof of this theorem is too long and technical for this short paper, and will
appear in [7]. We present however a detailed numerical study of how the algorithm
depends on the various parameters in the following section.

3 Numerical Results

In all our experiments, except otherwise mentioned, we use the domain Ω = (0,6)
and the time interval (0,T ) with T = 3, and discretize the heat equation with a cen-
tered finite difference discretization in space with Δx = 1

10 , and a backward Euler
discretization in time, with Δ t = 3

100 , and we use a decomposition into 6 equal spa-
tial subdomains with overlap 2Δx.

We start with the dependence on the number of time subintervals. In Fig. 3 on the
left, we show the convergence of the algorithm when 1 (classical Schwarz waveform
relaxation), 2, 4 and 10 time subintervals are used. This shows that the algorithm
is quite insensitive to the number of time subintervals used. We also observe the
typical superlinear convergence behavior of all waveform relaxation algorithms, see
for example [8].

We next investigate how the convergence depends on the total time interval
length T . For this experiment, leaving all other parameters the same, we choose
T ∈ {0.1,0.2,0.4,0.8,1.6,3.2},Δ t = T

100 , and ten time subintervals for each simula-
tion. The results are shown in Fig. 3 on the right. We clearly see that convergence is
much faster on short time intervals, compared to long time intervals.

In order to test the dependence on the number of spatial subdomains, we use
again all parameters as before, but now decompose the domain into 2, 3, 6 and
12 spatial subdomains, and again 10 time subintervals. We see in Fig. 4 on the left
that using more spatial subdomains makes the algorithm converge more slowly. This
can however be remedied by using smaller global time intervals, as for the Schwarz
waveform relaxation algorithm, see [10].
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Fig. 3. Dependence of the parareal Schwarz waveform relaxation algorithm on the number of
time subintervals on the left, and the total time window length on the right
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Fig. 4. Dependence of the parareal Schwarz waveform relaxation algorithm on the number of
spatial subdomains on the left, and the overlap on the right

We finally test the dependence on the overlap, using 2Δx, 4Δx, 8Δx and 16Δx
for the overlap. We see on the right in Fig. 4 that increasing the overlap substantially
improves the convergence speed of the algorithm. This increases however also the
cost of the method, since bigger subdomain problems need to be solved.

A better approach is to use optimized transmission conditions, see for example
[1, 5]. Using the same configuration as in the previous experiment, and 2Δx overlap,
we obtain with first order transmission conditions and choosing the parameters p= 1,
q= 1.75 (for terminology, see [1]) the result shown in Fig. 5. This illustrates well that
using optimized transmission conditions can lead to even better performance of the
algorithm than very generous overlap, at no additional cost, since the subdomain size
and matrix sparsity is the same as for the case of Dirichlet transmission conditions.
In addition we observe that now the convergence has become more linear, and the
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Fig. 5. Comparison of the parareal Schwarz waveform relaxation algorithm with Dirichlet and
optimized transmission conditions
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algorithm does not depend significantly any more on the superlinear convergence
mechanism essential with Dirichlet transmission conditions.

4 Conclusion

We presented a general parareal Schwarz waveform relaxation algorithm, which is
based on a decomposition in space and time of a given evolution problem, in order
to increase parallelism. We stated a theoretical convergence result, whose proof will
appear elsewhere, and then illustrated the dependence of the algorithm on the space-
time decomposition configuration, which revealed that for fast convergence, either
short time intervals, large overlap, or optimized transmission conditions need to be
used. We are currently working on precise convergence factor estimates, a variant
of the algorithm which also uses a coarse spatial mesh, and the addition of a coarse
propagation mechanism over many spatial subdomains.
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Summary. We introduce an overlapping time-domain decomposition for linear initial-value
problems which gives rise to an efficient solution method for parallel computers without
resorting to the frequency domain. This parallel method exploits the fact that homogeneous
initial-value problems can be integrated much faster than inhomogeneous problems by using
an efficient Arnoldi approximation for the matrix exponential function.

1 Introduction

We are interested in the parallel solution of a linear initial-value problem

u′(t) = Au(t)+ g(t), t ∈ [0,T ], u(0) = u0, (1)

where A ∈ R
N×N is a possibly large (and sparse) matrix and u,g : t �→ R

N . Through-
out this paper we assume that the function g(t) is a source term which is difficult
to integrate numerically (e.g., highly oscillating or given by a slow computer sub-
routine). For example, if (1) arises from the space discretization of a heat-diffusion
problem, then A represents a diffusion operator and g(t) is a time-dependent heat
source.

Problems of the above form arise often in scientific computing, and various solu-
tion methods for parallel computers have been proposed in the literature. A popular
approach (see, e.g., [1, 8]) is based on the Laplace-transformed equation

sû(s)−u0 = Aû(s)+ ĝ(s)

and the contour integral representation of the inverse transformation

u(t) =
1

2π i

∫
Γ

etsû(s)ds,

with a suitable contour Γ surrounding the singularities of û(s) (which are the eigen-
values of A and all singularities of ĝ(s)). Discretization of this integral by a quadra-
ture formula with complex nodes s j and weights wj yields
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u(t)≈
p

∑
j=1

wjû(s j) =
p

∑
j=1

wj(s jI−A)−1(u0 + ĝ(s j)).

This method is suitable for parallel computation because the p complex shifted linear
systems are decoupled. On the other hand, there are obvious drawbacks such as the
introduction of complex arithmetic into a real problem and the need for calculating
ĝ(s j). Moreover, many nodes s j may be required to represent a stiff source g(t) to
prescribed accuracy.

Another approach, perhaps closest in spirit to the method described here, is
known as exponential quadrature. It is based on the variation-of-constants formula

u(t) = etAu0 +

∫ t

0
e(t−τ)Ag(τ)dτ

and the approximation of the integrand by a quadrature rule in nodes τ1, . . . ,τp. This
yields p+ 1 independent matrix exponentials

etAu0 and e(t−τ j)Ag(τ j) for j = 1, . . . , p,

each of which may be approximated efficiently by a Krylov method (see the discus-
sion in Sect. 3). However, exponential quadrature is impractical if the source term
g(t) is stiff enough so that too many quadrature nodes are needed.

To overcome the problems mentioned above, we propose in Sect. 2 a decom-
position of (1) into subproblems on overlapping time intervals. These subproblems
are decoupled and can be assigned to independent processors. Our method requires
almost no communication or synchronization between the processors, except a sum-
mation step at the end of the algorithm. Another advantage of our method is its
ease of implementation; any available serial integrator for (1) can be used in black-
box fashion. Because the efficiency of our method relies on the fast integration of
homogeneous linear initial-value problems, Sect. 3 contains a brief discussion of the
Arnoldi method for computing the matrix exponential function. In Sect. 4 we discuss
the error control and parallel efficiency of our method. In Sect. 5 we present results
of a numerical experiment.

2 Overlapping Time-Domain Decomposition

On a time grid {Tj = jT/p : j = 0, . . . , p} we decompose (1) into the following
subproblems of two types.

Type 1 : For j = 1, . . . , p solve

v′j(t) = Av j(t)+ g(t), v j(Tj−1) = 0, t ∈ [Tj−1,Tj ],

using some serial integrator.
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Type 2 : For j = 1, . . . , p solve

w′j(t) = Awj(t), wj(Tj−1) = v j−1(Tj−1), t ∈ [Tj−1,T ],

using exponential propagation (we set v0(T0) := u0).

Note that the p subproblems of Type 1 are completely decoupled due to the
homogeneous initial values. The same is true for each subproblem of Type 2, the
exact solution of which can be computed as

wj(t) = e(t−Tj−1)Av j−1(Tj−1) (2)

as soon as the initial value v j−1(Tj−1) is available. Therefore it is natural to assign the
integrations for v j−1 and wj to the same processor so that there is no need for com-
munication and synchronization between the two types of subproblems. Note that the
time intervals [Tj−1,T ] for the wj are overlapping (see also Fig. 1). By superposition,
the solution of (1) is

u(t) = vk(t)+
k

∑
j=1

wj(t) with k such that t ∈ [Tk−1,Tk].

Only the computation of this sum requires communication between the processors.
Our parallel algorithm is given by simultaneously integrating the subproblems of
Type 1 and Type 2, and finally forming the sum for u(t) at the required time points t.

Fig. 1. Time-domain decomposition of an initial-value problem into inhomogeneous subprob-
lems with zero initial value (Type 1, solid red curves) and overlapping homogeneous subprob-
lems (Type 2, dashed blue curves). The solution is obtained as the sum of all curves

3 Computing the Matrix Exponential

The overlapping propagation of the linear homogeneous subproblems of Type 2 is
clearly redundant. To obtain an efficient parallel method, we require that the com-
putation of the matrix exponentials in (2) is fast compared to the integration of the
subproblems of Type 1.
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For scalar problems (N = 1) the computation of the exponential is a trivial task.
For computing the exponential of small to medium-sized dense matrices (N � 500)
there are various methods available, see the review [5] and the monograph [4].

The computations become more challenging when the problem size N gets large,
in which case the matrix A should be sparse. Then one has to make use of the
fact that not the matrix exponential exp(tA) itself is required, but only the prod-
uct exp(tA)v0 with a vector v0, by using a polynomial or rational Krylov method
(see [3] and the references therein). For brevity we will only describe a variant of
the restricted-denominator Arnoldi method described in [6] (see also [9]), which
extracts an approximation fn(t) ≈ exp(tA)v0 from a Krylov space built with the
matrix S = (I−A/σ)−1A,

Kn(S,v0) = span{v0,Sv0, . . . ,S
n−1v0},

the choice of the parameter σ ∈ (R∪{∞}) \ (Λ(A)∪{0}) being dependent on the
spectral properties of A. For σ = ∞ we obtain a standard Krylov space with the ma-
trix A, i.e., Kn(S,v0) = Kn(A,v0). If Kn(S,v0) is of full dimension n, as we assume
in the following, we can compute an orthonormal basis Vn = [v1,v2, . . . ,vn] by using
the well-known Arnoldi orthogonalization process (see, e.g., [2, Sect. 9.3.5]). The
Arnoldi approximation of exp(tA)v0 is then defined as

fn(t) :=Vn exp(t (S−1
n + In/σ)−1)V ∗n v0, Sn :=V ∗n SVn.

Provided that n is small, the computation of fn(t) requires the evaluation of a n× n
matrix function which is small compared to the original N×N matrix exponential.
Moreover, the matrix Sn can be constructed without explicit projection from quanti-
ties computed in the Arnoldi process.

In Fig. 2 we show the error norm ‖exp(A)v0− fn(1)‖2 of the Arnoldi approxi-
mations with parameters σ = ∞ and σ = 40 (a rather arbitrary choice) as a function
of n, for the matrices

A1 = tridiag(30,−40,10)∈ R
199×199, A2 = tridiag(60,−90,30)∈R

299×299

arising from the finite-difference discretization of the same 1D advection–diffusion
problem, and a random vector v0. We have also plotted the error of orthogonal pro-
jection of the exact solution onto the space Kn(S,v0), namely VnV ∗n eAv0, and observe
that the Arnoldi method is capable of extracting an approximation nearby this projec-
tion. For comparison we show the error of the result produced by n steps of various
explicit and implicit integrators for the initial-value problem v′ = Av, v(0) = v0, inte-
grated to t = 1. For this linear homogeneous problem all integrators actually compute
approximations from some Krylov space Kn(S,v0) (for the explicit integrators with
shift σ =∞ and for implicit Euler with σ = n), but the Arnoldi methods extract much
better approximations in the same number of iterations. Note also that the Arnoldi
method with finite shift σ = 40 converges almost independently of the problem size
N, a property often referred to as mesh-independence.

Because the error of Arnoldi approximations decays usually very fast (i.e.,
‖etAv0− fn+1(t)‖ is considerably smaller than ‖etAv0− fn(t)‖), it is often sufficient
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to use the difference of two consecutive iterates as an estimate for the approximation
error:

‖etAv0− fn(t)‖ ≤ ‖etAv0− fn+1(t)‖+ ‖ fn+1(t)− fn(t)‖
≈ ‖ fn+1(t)− fn(t)‖. (3)
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Fig. 2. Error (2-norm) of various time-stepping methods and Krylov methods for a linear
homogeneous advection–diffusion problem v′ = Av, v(0) = v0, of size N = 199 (left) and
N = 299 (right) as a function of time steps or Krylov space dimension n, respectively

4 Error Control and Parallel Efficiency

Many ODE solvers, for example those of MATLAB, use an error control criterion like

‖e(t)‖∞ ≤max{reltol · ‖ũ(t)‖∞,abstol}, t ∈ [0,T ],

where e(t) = u(t)− ũ(t) is the (estimated) error of the computed solution ũ(t).
Because the inhomogeneous subproblems of Type 1 for v j(t) are solved with zero
initial guess, it is not advisable to use an error criterion which is relative to the norm
of the solution. Hence we assume that all of these subproblems are solved with an
absolute error ‖e j(t)‖∞ ≤ abstol/p over the time interval [Tj−1,Tj]. This error is
then propagated exponentially over the remaining interval [Tj,T ], hence we have to
study the transient behavior of

‖etAe j(Tj)‖∞ ≤ ‖etA‖∞abstol/p (4)

for t ∈ [0,T −Tj]. It is well known that for a stable matrix A (i.e., all eigenvalues lie
in the left complex half-plane) the limit limt→∞ ‖etA‖∞ is finite. Unfortunately, the
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norm may initially grow arbitrarily large before convergence sets in, a phenomenon
usually referred to as hump (see [5]). However, for a diagonally dominant matrix
A = (ai j) with aii ≤ 0 this cannot happen, as one can show as follows (cf. [7]):
Define ρ = maxi{aii+∑ j =i |ai j|} ≤ 0. By the formula exp(tA) = limk→∞(I+ tA/k)k

we have ‖etA‖∞ ≤ limk→∞ ‖I+ tA/k‖k
∞. For k sufficiently large we have

‖I+ tA/k‖∞ = max
i

{
1+ t

(
aii +∑

j =i

|ai j|
)
/k
}
= 1+ tρ/k,

hence
‖etA‖∞ ≤ lim

k→∞
(1+ tρ/k)k = etρ ≤ 1 for all t ≥ 0.

Of course, it is possible to estimate the behavior of ‖etA‖ for general matrices and in
other norms (see, e.g., [10]), but for brevity we will only consider a diagonally dom-
inant A. In this case the errors e j(t) of the subproblem solutions v j(t) ( j = 1, . . . , p)
are non-increasing when being exponentially propagated, and if we assume that
the subproblems of Type 2 are solved exactly (or with sufficiently high accuracy),
then the overall error e(t) is bounded1 by the sum of subproblem errors (4), hence
‖e(t)‖∞ ≤ abstol. If the integrator is a time-stepping method of order q, it is rea-
sonable to assume that the computation time for one subproblem of Type 1 is at
most τ1(p) = (τ0 · p1/q)/p, where τ0 is the computation time for serial integration
over [0,T ]. If each subproblem of Type 2 takes at most τ2 units of computation time,
the expected efficiency of our parallel algorithm is at least

efficiency =
speedup

p
=

1
p
· τ0

τ1(p)+ τ2
=

(
p1/q +

p · τ2

τ0

)−1

. (5)

The efficiency becomes large if the serial computation time τ0 is long compared to
p · τ2, and if the integration order q is high.

5 Numerical Example

As a simple model problem we consider the 1D heat equation

∂tu(t,x) = α ∂xxu(t,x)+ g(t,x) on x ∈ (0,1),

u(t,0) = u(t,1) = 0,

u(0,x) = u0(x) = 4x(1− x),

g(t,x) = emax{1−|c− x|/d,0}, where c = .5+(.5−d)sin(2π f t).

The source term g(t,x) is a hat function centered at c with half-width d = 0.05 and
height e = 100 ·α1/2, oscillating with frequency f . Finite-difference discretization

1 This worst-case bound is sharp only if all errors e j are collinear, which is rather unlikely.
Probabilistic error estimation would give ‖e(t)‖∞ � abstol/

√
p. This explains why the

observed parallel efficiency of our algorithm is usually better than predicted by (5). We
plan to investigate this in a sequel.
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at N = 100 points x j = j/(N + 1) ( j = 1, . . . ,N) yields an initial-value problem (1),
where A = α(N + 1)2 tridiag(1,−2,1) ∈ R

N×N . This problem is integrated over the
time interval [0,T = 1]. For the serial integration we have used the classical Runge–
Kutta method of order q = 4 (implemented in MATLAB) with constant step size

h0 = min{5 ·10−5/α,10−2/ f},
chosen to avoid instability of the time-stepping method caused by the stiff linear
term Au(t) and to capture the oscillations of g(t). As shown in Table 1, the absolute
error (∞-norm) is at most 5 · 10−4 for all diffusion coefficients α = 0.01,0.1,1 and
frequencies f = 1,10,100. These parameters determine the stiffness of Au(t) and
g(t), respectively. We have also tabulated the serial integration times τ0. As expected,
these are roughly proportional to h−1

0 .
For our parallel algorithm we have partitioned the interval [0,T ] in p = 4 subin-

tervals, and computed the solution u(t) at all time points Tj = jT/p ( j = 1, . . . , p).
The subproblems of Type 1 are integrated with step size h1 = h0/

√
p1/q (based on

a probabilistic error assumption, see the footnote on p. 464). In Table 1 we list the
maximal computation time τ1 for all subproblems of Type 1 among all processors.

For the subproblems of Type 2 we have used the Arnoldi method described in
Sect. 3 with shift σ = 5.3, in combination with the ∞-norm error estimate (3) for an
accuracy of 10−4 (for more details on the selection of σ we refer to [9]). In Table 1
we list the maximal computation time τ2 for all subproblems of Type 2 among all
processors.

The errors of the final solutions computed with our parallel algorithm are shown
in the second-last column, and they are all below the errors obtained by sequential
integration. This indicates that our choice for the step size h1 is reasonable. The par-
allel efficiency of our algorithm is above 50 % for all nine tests, and it increases with
frequency f because smaller time steps are required to integrate the inhomogene-
ity accurately. We finally note that for large-scale computations our algorithm could
also be used to further speed up a saturated space parallelization (e.g., by domain
decomposition).

Acknowledgments I am grateful to Martin J. Gander for many helpful discussions and valu-
able comments.
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Summary. The distributed control of unsteady incompressible flows has been the focus of
intense research in scientific computing in the past few years. Most of the existing approaches
for distributed control problems are based on the so-called reduced space method which is
easier to implement but may have convergence issues in some situations. In this paper we
investigate some fully coupled parallel two-grid Lagrange-Newton-Krylov-Schwarz (LNKSz)
algorithms for the implicit solution of distributed control problems. In the full space approach
we couple the control variables, the state variables and the adjoint variables in a single large
system of nonlinear equations. Numerical experiments are presented to show the efficiency
and scalability of the algorithm on supercomputers with more than one thousand processors.

1 Introduction

Flow optimal control problems have many important applications in science and eng-
ineering and many attempts have been made in the past few years to mathematically
understand and numerically solve flow control problems in various forms; see e.g.,
[3, 6]. Popular approaches for solving unsteady flow control problems are explicit or
semi-implicit methods, both are limited by a Courant-Friedrichs-Lewy (CFL) condi-
tion. Recently, the class of full space Lagrange-Newton-Krylov-Schwarz (LNKSz)
algorithms was introduced for solving the steady state flow control problem [4, 5].
The methods include two parts: a Lagrange-Newton method for the nonlinear sys-
tem obtained from the optimization problem and a Krylov subspace method for the
Jacobian system arising from the Newton method. In this paper we propose a class
of fully coupled parallel two-grid Lagrange-Newton-Krylov-Schwarz (LNKSz) alg-
orithms for the distributed control of unsteady incompressible flows. Since we use a
fully implicit scheme, the CFL condition can be completely relaxed. We show num-
erically that the proposed LNKSz is stable and converges well with relatively large
times steps, and it is robust with respect to some of the physical parameters, such as
the Reynolds number.

The rest of the paper is organized as follows. In Sect. 2, we present the unsteady
distributed control problems and introduce a fully implicit discretization scheme.
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Section 3 includes the main components and features of LNKSz. Some numeri-
cal results are given in Sect. 4. We end the paper with some concluding remarks
in Sect. 5.

2 Mathematical Model and Discretization

We consider the two-dimensional unsteady incompressible Navier-Stokes equations
in the velocity-vorticity formulation:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Δv1− ∂ω∂y
= 0 in [0,T ]×Ω ,

−Δv2 +
∂ω
∂x

= 0 in [0,T ]×Ω ,

∂ω
∂ t
− 1

Re
Δω+ v1

∂ω
∂x

+ v2
∂ω
∂y
− curl f = 0 in [0,T ]×Ω ,

(1)

where Ω is the computational domain and [0,T ] is the time interval. In the above
equations the velocity field v = (v1,v2) and the vorticity ω are the state variables,
f = ( f1, f2) is the external force, curl f =−∂ f1/∂y+∂ f2/∂x, and Re is the Reynolds
number.

In the distributed control problem we try to find an external force f over the
control domain Ω f ⊆Ω in order to achieve the goal

min F (v,ω , f) =
1
2

∫ T

0
G (v,ω) dt +

γ
2

∫ T

0

∫
Ω f

‖f‖2
2 dΩ dt (2)

subject to the constraints (1) with some initial and boundary conditions. Here,
G (v,ω) is the objective function of the optimal control problem, γ > 0 is a regu-
larization parameter used to restrict the magnitude of the external force so that it is
not unrealistically large.

For solving unsteady distributed control problems, it typically requires a combi-
nation of a discretization in space and time with an optimization method. In this paper
we follow the discretize-then-optimize approach with a finite difference method for
the space discretization and a second-order backward differentiation formula for the
time discretization. The original full-time-interval problem is too expensive to solve
even on the latest supercomputers, we therefore replace it by a sequence of subopti-
mal problems, which are similar to the original problem but only defined on the time
interval [t(k−1), t(k)], k = 1,2, . . . ,kmax, with t(0) = 0 and t(kmax) = T . Let x = (v,ω , f).
Then on each time interval we write the discrete suboptimzation problem as follows:

{
min F

(k)
h (x)

s.t. C(k)
h (x) = 0,

(3)

where F
(k)
h (x) is the restriction of F on the interval [t(k−1), t(k)], and C(k)

h (x) are the
constraints defined on the time interval [t(k−1), t(k)].
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By introducing the Lagrange multipliers λ with respect to the state and control
variables, we define the following Lagrangian functional

L (k)(x,λ )≡F
(k)
h (x)+

(
λ ,C(k)

h (x)
)
. (4)

Let X ≡ (x,λ ). Then, for k = 1,2, . . . ,kmax, the KKT system obtained by differentiat-
ing (4) becomes

G(k)(X) =

(
∇xL (k)(x,λ )
∇λL (k)(x,λ )

)
= 0. (5)

The optimality system (5) is a large, nonlinear, coupled, and muti-components
system. Moreover, the corresponding Jacobian matrix is indefinite and very ill-
conditioned. Hence, a good preconditioner is essential to solve the optimality system
efficiently.

3 Two-Grid Newton Method and Schwarz Preconditioners

The class of full space LNKSz method includes the following steps: the Lagrangian
functional is formed and differentiated to obtain the KKT system; then the inexact
Newton method with line search is applied; and at each Newton iteration the linear
system is solved with a one-level or two-level Schwarz preconditioned Krylov sub-
space method. We refer to LNKSz combined with the one-level (two-level) Schwarz
preconditioner as one-level (two-level) LNKSz method.

When using Newton’s method to solve the nonlinear system (5) on a grid, one
of the major problems is the deterioration of the convergence rate when the grid is
refined, specially for the first time step, since in this case the initial guess is not good
enough for the Newton iterations. After many experiments, we find that a solution to
the problem is “grid-sequencing”, which is quite effective in keeping the number of
nonlinear iterations small. In order to use grid-sequencing, we assume there are two
grids covering Ω , a coarse grid of size H and a fine grid of size h. We first use the
one-level method to solve the nonlinear problem on the coarse grid with the initial
guess obtained as a restriction of the fine grid solution from the previous timestep.
Of course, at the first time step, we choose the initial condition as the initial guess.
Then, we interpolate the solution to the fine grid and use it as an initial guess for the
nonlinear problem on the fine grid. We refer to this LNKSz method combined with
the grid-sequencing technique as the two-grid LNKSz method in which the same
coarse grid is also used to build the two-level Schwarz preconditioner for solving the
Jacobian problem.

We assume that Ω is covered by a non-overlapping and an overlapping partition
as in [2]. Let J be the Jacobian matrix of the nonlinear problem (5) on the fine grid
and let Rδi and R0

i be the restriction operator from Ω to its overlapping and non-
overlapping subdomains, respectively. Here δ is the size of the overlap. Then the
one-level restricted additive Schwarz (RAS) preconditioner [2] is defined as
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M−1
RAS =

Np

∑
i=1

(R0
i )

T J−1
i Rδi . (6)

with Ji = Rδi J (Rδi )
T and Np is the number of subdomains, which is the same as

the number of processors. Let Jc be the Jacobian matrix on the coarse grid and IH
h a

restriction operator from the fine grid to the coarse grid. Then a multiplicative type
two-level Schwarz preconditioner [8, 9] is defined as

M−1 =
(

I− (I−M−1
RASJ)(I−M−1

c J)(I−M−1
RASJ)

)
J−1 (7)

with M−1
c = (IH

h )T J−1
c IH

h and I is the identity matrix.

4 Numerical Experiments

Our algorithms are implemented based on the Portable Extensible Toolkit for Scien-
tific computing (PETSc) [1]. All computations are performed on an IBM BlueGene/L
supercomputer.

In the following, we describe a backward-facing step flow control problem [7].
Let Ω = (0,6)× (0,1), Ω f = (0,1)× (0,0.5), T = 1, Γ be the boundary of the
domainΩ , Γ2 = {(x,y) ∈ Γ : 0 < y < 1,x = 6}, Γ4 = {(x,y) ∈ Γ : 0 < y < 1,x = 0},
andΓ4,a = {(x,y)∈Γ4 : 0.5≤ y< 1}. Then the backward-facing step control problem
consists of finding (v1,v2,ω , f1, f2) such that the minimization

minF (ω , f) =
1
2

∫ T

0

∫
Ω
ω2 dΩ dt +

γ
2

∫ T

0

∫
Ω f

‖f‖2
2 dΩ dt (8)

is achieved subject to the constraints (1) with the following boundary conditions:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 = vin on [0,T ]×Γ4,a,
v1 = vout on [0,T ]×Γ2,
v1 = 0 on [0,T ]×Γu,
v2 = 0 on [0,T ]×Γ ,
ω+

∂v1

∂y
− ∂v2

∂x
= 0 on [0,T ]×Γ ,

v(0,x,y)−v0 = 0 in Ω ,

ω(0,x,y)+
∂v0,1

∂y
− ∂v0,2

∂x
= 0 in Ω ,

(9)

where Γu = Γ \(Γ4,a∪Γ2). At the inflow boundary, a parabolic velocity profile vin =
8(1− y)(y− 1

2)cos(t) is imposed. At the outflow boundary, vout = y(1− y)cos(t) is
applied. The following initial velocity is defined by v0 = (v0,1,v0,2) with

v0,1 =

⎧⎪⎪⎨
⎪⎪⎩

y(1− y)+
1
16

y if 0≤ y≤ 1
2
,

y(1− y)+
1
16

(1− y) if
1
2
≤ y≤ 1,
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and v0,2(x,y) = 0. The parameter γ = 0.1.
In the experiments, we compare the following algorithms which are introduced

in Sect. 3:

• One-level LNKSz: one-level additive Schwarz is used as the Jacobian solve, and
inexact Newton is carried out on the fine grid;

• Two-level LNKSz: two-level multiplicative Schwarz is used as the Jacobian
solve, and inexact Newton is carried out on the fine grid;

• Two-grid LNKSz: two-level multiplicative Schwarz is used as the Jacobian solve
on the fine grid, inexact Newton is used on the coarse grid to generate the initial
guess for the inexact Newton on the fine grid.

In all the experiments, all Jacobian matrices are constructed approximately using a
multi-colored finite difference method. The size of the coarse grid H is taken as 4h,
where h is the size of the fine grid. GMRES(90) and FGMRES(90) are used to solve
the linear system at each Newton step on the coarse and the fine grids, respectively.
In the one-level method, the overlapping size is δ = 6. In the two-level and two-grid
methods, the overlapping sizes of the coarse grid and the fine grids are δc = 4 and
δ = 6, respectively. There are several nested iterative procedures in the proposed
algorithms, and each requires a proper stopping condition. We use 10−10 (10−6) as
the absolute (relative) condition for all linear and nonlinear solves, except for the
linear coarse solve of the two-level preconditioner, for which we use 10−4 (10−2) as
the absolute (relative) condition. The subdomain problems are solved with a sparse
LU factorization.

Next, we present results for the test problem and discuss some details of the
two-grid LNKSz. First, we compare the three methods in Table 1. Note that, the one-
level method doesn’t converge when Np = 1,024, which is caused by the divergence
of GMRES. Moreover, we note that: (1) for the linear solver, the number of GMRES
iterations for the one-level LNKSz is much larger than that for the two-level and two-
grid methods; (2) for the nonlinear solver, the numbers of Newton iterations for the
one-level and two-level methods are also larger than that for the two-grid method;
and (3) compared with the one-level and two-level methods, the total computing time
for the two-grid method is much smaller. When the Reynolds number increases from
200 to 400, for one-level and two-level methods, the average number of Newton iter-
ations and the total computing time become larger. With the help of grid-sequencing,
the convergence of the two-grid method is less sensitive to the Reynolds number.
Based on the results of Table 1, it is clear that the two-grid method is better than the
others.

An important implementation detail to consider in designing two-grid LNKSz is
to balance the quality of the initial guess for the fine grid Newton iterations and the
computing time on the coarse solver. In Table 2, we present a comparison of the com-
puting time for the two-level and two-grid methods. In this table, we report the total
time spent on the Newton iterations at some time steps, the time spent on the Newton
iterations on the coarse solver, and the percentage between these two computational
costs. We observe that the cost of Newton iterations on the coarse grid is very small
compared with the total computational cost. It is important to note that the coarse
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Table 1. A comparison of three methods. 768× 128 grid, and Δ t = 0.1 (i.e., there are 10
time steps). “Np" stands for the number of processors which is the same as the number of
subdomains, “IN” is the average number of inexact Newton iterations per time step on the fine
grid, “RAS” is the average number of RAS preconditioned GMRES iterations per Newton
iteration, and “Time” is the total computing time in seconds. “ ∗ ∗” means the divergence of
GMRES.

Np Method IN RAS Time IN RAS Time

Re=200 Re=400
64 One-level 3.2 165.4 1370.4 3.7 158.9 1557.5
64 Two-level 3.2 20.4 1342.8 3.7 19.2 1528.0
64 Two-grid 2.1 18.7 898.2 2.0 18.0 836.4
256 One-level 3.2 531.3 795.5 3.7 632.9 1052.3
256 Two-level 3.2 27.4 479.9 3.7 27.1 560.1
256 Two-grid 2.1 25.5 317.5 2.0 26.1 313.2
1024 One-level ∗∗ ∗∗
1024 Two-level 3.2 66.3 314.3 3.7 67.9 376.9
1024 Two-grid 2.1 64.2 208.5 2.0 68.5 209.8

grid has to be sufficiently fine so that the coarse solution has a reasonable accuracy,
otherwise, it won’t be able to provide a good initial guess for the fine grid nonlinear
solver.

Table 2. A comparison of the computing time for the test problem at several different time
steps. Re = 400, 768× 128 grid, and Δ t = 0.1 (i.e., there are 10 time steps). The heading
“Timestep(k)" represents the time step k, “Time" is the total time spent on the Newton itera-
tions at the time step k, “Coarse_time" is the time spent on the Newton iterations on the coarse
solver at the time step k, and “Percent(%)" is (“Coarse_time"/“Time").

Np Timestep(k) Time Coarse_time Percent(%) Time

Two-grid Two-level
64 k = 1 110.0 3.87 3.52% 458.9
64 k = 2 80.0 2.39 2.99% 117.0
64 k = 5 82.5 2.50 3.03% 118.0
64 k = 10 84.7 2.51 2.96% 119.0
256 k = 1 38.6 1.71 4.43% 172.8
256 k = 2 29.7 0.99 3.33% 41.4
256 k = 5 30.0 1.04 3.43% 41.6
256 k = 10 30.8 1.06 3.44% 42.3
1024 k = 1 23.3 1.37 5.88% 115.1
1024 k = 2 20.6 0.68 3.30% 28.1
1024 k = 5 21.2 0.72 3.39% 28.4
1024 k = 10 21.5 0.74 3.44% 30.8
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One of the difficulties in the nonlinear solver is the choice of the initial guess.
In Fig. 1, we show the nonlinear residual history by using three different methods at
the first time step (i.e., k = 1). One can see that the nonlinear system is difficult to
solve by using one-level or two-level method. In fact, it takes 11 iterations for the
one-level or two-level method to converge. By using the two-grid method only three
Newton iterations are required to satisfy the desired stopping condition.
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Fig. 1. Nonlinear residual history by using three different methods at the first time step, for
Re = 200, 768×128 grid and 64 processors, and Δ t = 0.1

5 Conclusions

In this paper, we developed a family of two-grid algorithms for distributed control
of unsteady incompressible flows. With the help of the two-grid Newton method and
the two-level Schwarz preconditioner, we showed numerically that these strategies
provide substantial improvement of the overall method in terms of the total com-
puting time, the number of linear iterations, and the number of Newton iterations,
especially when the number of processors is large.
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1 Introduction

For a bounded open subset Ω ⊂ R
2, suppose we want to solve

(η−Δ)u = f on Ω , u = g on ∂Ω , (1)

for η ≥ 0 using the optimized Schwarz method (OSM)

(η−Δ)uk
i = f |Ωi on Ωi, uk

i = g|∂Ωi
on ∂Ωi∩∂Ω ,

∂uk
i

∂ni
+ pi ju

k
i =

∂uk−1
j

∂ni
+ pi ju

k−1
j on Γi j for all Γi j = /0,

(2)

for k = 1,2, . . . and i = 1, . . . ,n, where Ωi ⊂ Ω are non-overlapping subdomains,
Γi j = ∂Ωi ∩Ω j is the interface between Ωi and an adjacent subdomain Ω j, j = i,
and pi j > 0 are Robin parameters along Γi j. In [7], the powerful technique of en-
ergy estimates is used to show convergence of (2) for η = 0 under very general
conditions. Similar techniques have been used to prove convergence results for other
types of equations, cf. [2] for the Helmholtz equation and [5] for the time-dependent
wave equation. While one often assumes that the proof carries over trivially to finite-
element discretizations, it has been reported in the literature (cf. [8, 9]) that discrete
OSMs can diverge when the domain decomposition contains cross points, i.e., when
more than two subdomains share a common point. This is in apparent contradiction
to Lions’ proof, and such difficulties contribute to the limited use of OSMs in prac-
tice. The goal of this paper is to explain why the presence of cross points makes
it possible for the discrete OSM to diverge despite the proof of convergence at the
continuous level, and why this difference in behavior is generally unavoidable.

The remainder of the paper proceeds as follows. In Sect. 2, we recall Lions’ en-
ergy estimate argument. In Sect. 3, we explain why it is impossible to convert the
continuous energy estimate into a discrete one in a generic way, without sacrificing
continuity of the solutions across subdomain boundaries. In Sect. 4, we show two
modifications that preserve continuity of the discrete solutions, but both must be used
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with Krylov methods to avoid divergent iterations. Finally, we show in Sect. 5
that a Lions-type discrete estimate can only hold under very stringent conditions;
thus, continuous estimates generally do not predict the behavior of discrete OSMs.

2 Continuous Energy Estimates

We briefly recall the argument in [7] proving the convergence of (2). We assume
pi j = p ji to be a positive function that is bounded away from zero and defined on
Γi j = Γji. To show that (2) converges for all initial guesses, we first write the error
equations

(η−Δ)ek
i = 0 on Ωi, ek

i = 0 on ∂Ω ∩∂Ωi,

∂ek
i

∂ni
+ pi je

k
i =

∂ek−1
j

∂ni
+ pi je

k−1
j on Γi j for all Γi j = /0,

(3)

where ei = uk
i −u|Ωi with u being the exact solution to (1). We then multiply the first

equation in (3) by ek
i and integrate to get

0 = ai(e
k
i ,e

k
i )−

∫
∂Ωi

ek
i
∂ek

i

∂ni
= ai(e

k
i ,e

k
i )− ∑

(i, j)∈E

∫
Γi j

ek
i
∂ek

i

∂ni
,

where the last sum is over all pairs of subdomains (i, j) that share an interface, and
ai(ui,vi) =

∫
Ωi
(∇u ·∇v+ηuv)dx is the energy bilinear form defined on subdomain

Ωi, so that ai(ek
i ,e

k
i ) =

∫
Ωi
η |ek

i |2 + |∇ek
i |2 dx≥ 0 is the energy of the error on subdo-

main Ωi. We now rewrite the product term as

ek
i
∂ek

i

∂ni
=

1
4pi j

[(∂ek
i

∂ni
+ pi je

k
i

)2−
(
−∂ek

i

∂ni
+ pi je

k
i

)2
]
=:
(
T k
+i j

)2− (T k
−i j

)2
,

where T k±i j =
1√
4pi j

(± ∂ek
i

∂ni
+ pi jek

i ). Since
∂ek

j
∂ni

=− ∂ek
j

∂n j
on Γi j, the interface condition

in (3) can be written as T k
+i j = T k−1

− ji , which means

ai(e
k
i ,e

k
i ) = ∑

(i, j)∈E

∫
Γi j

[(
T k
+i j

)2− (T k
−i j

)2
]

ds = ∑
(i, j)∈E

∫
Γi j

[(
T k−1
− ji

)2− (T k
−i j

)2
]

ds.

Thus,

ai(e
k
i ,e

k
i )+ ∑

(i, j)∈E

∫
Γi j

(
T k
−i j

)2
ds = ∑

(i, j)∈E

∫
Γi j

(
T k−1
− ji

)2
ds. (4)

If we sum (4) through all subdomains i, we get

N

∑
i=1

ai(e
k
i ,e

k
i )+

N

∑
i=1
∑

(i, j)∈E

∫
Γi j

(
T k
−i j

)2
ds =

N

∑
i=1
∑

(i, j)∈E

∫
Γi j

(
T k−1
− ji

)2
ds. (5)

We can now sum (5) over k and simplify to get
K

∑
k=0

N

∑
i=1

ai(e
k
i ,e

k
i )+BK = B0, (6)
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where Bk := ∑N
i=1∑(i, j)∈E

∫
Γi j

(
T k
−i j

)2
ds ≥ 0. Since BK ≥ 0 and each ai(ek

i ,e
k
i ) ≥ 0,

we see that ∑K
k=0 ai(ek

i ,e
k
i ) ≤ B0 for all i and all K; hence ai(ek

i ,e
k
i )→ 0 as k → ∞

for all i. This implies that ‖ek
i ‖H1(Ωi)

→ 0 when η > 0, so ui → u|Ωi in the H1 norm.
A similar argument holds for η = 0. Note that the possible presence of cross points
does not cause any difficulty in the proof, since they form a subset of measure zero
in ∂Ωi and thus do not contribute to the boundary terms when integrating by parts.

3 Finite Element Discretization

We now try to mimic Lions’ proof in the finite element case. The finite element
method uses the weak form of (2), i.e., we must multiply the PDE by a test function
φ and integrate by parts. The problem becomes

Find ui ∈V h ⊂ H1(Ωi) s.t. for all φ ∈W h ⊂ H1
0 (Ω)∩H1(Ωi),∫

Ωi

(∇φ ·∇uk
i +ηφuk

i )−
∫
∂Ωi

φ
∂uk

i

∂ni
=

∫
Ωi

φ f . (7)

We now suppose that φ is a basis function corresponding to a degree of freedom
along Γi j, whose support does not contain any cross points, see Fig. 1a To obtain an

expression for
∫
∂Ωi

φ ∂uk
i

∂ni
, we multiply the interface condition by φ and integrate to

get ∫
Γi j

φ(
∂uk

i

∂ni
+ puk

i ) =

∫
Γi j

φ(
∂uk−1

j

∂ni
+ puk−1

j ). (8)

Substituting into (7) gives

ai(φ ,uk
i )+

∫
Γi j

φ puk
i −

∫
Γi j

φ
∂uk−1

j

∂ni
=

∫
Ωi

φ f +
∫
Γi j

φ puk−1
j . (9)

Thus, we are faced with the same problem of finding an expression for
∫
Γi j
φ
∂uk−1

j
∂ni

.
Fortunately, we can use the weak form of the PDE from Ω j

a j(φ ,uk−1
j )−

∫
∂Ω j

φ
∂uk−1

j

∂n j
=

∫
Ω j

φ f . (10)

Since ni =−n j on Γi j, adding (9) and (10) and rearranging gives

ai(φ ,uk
i )+

∫
Γi j

φ puk
i =

∫
Ωi

φ f −a j(φ ,uk−1
j )+

∫
Γi j

φ puk−1
j , (11)

which is just the usual block-Jacobi splitting of the stiffness matrix along Γi j.
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(a) (b)

Fig. 1. Finite element discretization (a) without cross points and (b) with a cross point

Now assume that the support of φ contains cross points, see Fig. 1b. Here Ωi is
adjacent to two distinct subdomainsΩ j and Ωl , j = l, and φ is non-zero on all three
subdomains. Since the two parts of the interface, Γi j and Γil , must satisfy different

interface conditions, we must separate
∫
∂Ωi

φ ∂uk
i

∂n into contributions along Γi j and Γil ,

ai(φ ,uk
i )−

∫
Γi j

φ
∂uk

i

∂ni
−
∫
Γil

φ
∂uk

i

∂ni
=

∫
Ωi

φ f .

The boundary term along Γi j can be replaced by the interface condition
∫
Γi j

φ(
∂uk

i

∂ni
+ puk

i ) =

∫
Γi j

φ(
∂uk−1

j

∂ni
+ puk−1

j ),

but now if we try to use the PDE on Ω j to eliminate the term
∫
Γi j
φ
∂uk−1

j
∂ni

, we would
get ∫

Γi j

φ
∂uk−1

j

∂n j
= a j(φ ,uk−1

j )−
∫
Γj j′
φ
∂uk−1

j

∂n j
−
∫
Ω j

φ f ,

so we get a new term representing the trace along Γj j′ , where Ω j′ is another subdo-
main adjacent to j (see Fig. 1b). The same problem occurs when we try to eliminate
the trace along Γil . Note that, in the discrete FEM setting, the Robin traces are in-
tegrated along a subset of ∂Ωi of non-zero measure straddling both interfaces Γi j

and Γil , and piecewise interface quantities are not available. Thus, the traces cannot
be transmitted separately along Γi j and Γil , unlike in the continuous case; one must
introduce extra unknowns to represent the piecewise Robin traces (integrated against
a test function) for each subdomain at the cross point.

One way of circumventing the problem is to use mortar methods [1, 6], which
are designed for non-conforming grids. In these methods, the interface conditions
are imposed using mortar functions, which have one degree of freedom less at the
ends of intervals. Thus, there is no equation at the cross point, and the problem of
unavailable Robin traces goes away. However, since the interface conditions are only
enforced weakly, the method does not generally converge to the exact solution of the
global FEM problem, but rather to a discontinuous solution (Fig. 2) that is O(hp)-
accurate, where p is the order of the finite element method.
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Fig. 2. (a) The solution of −Δu = f with four subdomains on Ω = [−1,1]2, with right-hand
side f (x,y) = sin(xy). The interface conditions are imposed using a mortar space. (b) Discon-
tinuity of the composite solution near the origin

4 Two Lagrange Multiplier and Primal-Dual Methods

If we want to formulate subdomain problems that are equivalent to the discrete global
FEM problem, we need to introduce extra variables to represent the total Robin
traces. Thus, at the cross point, we impose for each Ωi

ai(φ ,uk
i )+

∫
∂Ωi

pφ ·uk
i +λ

k
i =

∫
Ωi

φ f , (12)

where λ k
i are Lagrange multipliers for ensuring consistency with the global problem.

A cross point touching r subdomains requires r such Lagrange multipliers, so we also
need r constraints to be satisfied at convergence:

• Continuity constraints (r− 1 equations): at the cross point, we must have u1 =
u2 = · · ·= ur.

• PDE constraint (1 equation): if we sum (12) over the r subdomains and then
subtract the global PDE ∑r

i=1 ai(φ ,ui) =
∫
Ω φ f from the result, we get

N

∑
i=1

∫
∂Ωi

pφui +
N

∑
i=1

λi = 0.

This gives two types of algorithms:

1. Primal-Dual methods: the continuity constraints are enforced for every iteration.
Thus, it suffices to introduce one extra variable (typically a coarse-grid basis
function that has the value one at the cross point), and the PDE constraint is
used as part of the coarse problem. This approach is similar to FETI-DP [3],
except it is usually formulated with Neumann rather than Robin traces.

2. Two-Lagrange Multiplier methods: the λ k
i are retained, but the uk

i are eliminated
using the PDE in the interior of the subdomains. This leads to a substructured
problem formulated on the interface, which is then solved using a preconditioned
Krylov method such as GMRES. This is known as the Two-Lagrange Multiplier
(2LM) method and has been studied in detail in [8].
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Fig. 3. Eigenvalues of the 2LM-preconditioned system for Poisson’s equation (η = 0), using
a 4×4 decomposition of the unit square with mesh size h = 1/64 and Robin parameter p =
C/
√

h for all interface nodes

Note that neither formulation is an exact discretization of (2) at cross points; thus,
Lions’ convergence analysis does not apply there. In fact, one can show [4] that the
eigenvalues of the iteration matrix of the 2LM method may lie outside the unit disc
when cross points are present, as seen in the 4×4 example shown in Fig. 3. In such
cases, the method diverges. However, convergence can be restored if one uses Robin
parameters with a different scaling at the cross points [4].

5 Conditions for Existence of Discrete Energy Estimates

To see what conditions are needed for Lions’ estimates to hold in the discrete case,
let us consider solving −Δu = f on Ω = [−1,1]2 using P1 finite elements on a
structured triangular mesh. This yields the system Au = f , where A is identical to the
matrix obtained from finite differences. If we now divide Ω into four subdomains
corresponding to the four quadrants of the plane, then an optimized Schwarz method
must solve

(Ai +Li)uk
i = gk

i on each Ωi.

Here, Ai is the partially assembled stiffness matrix for Ωi, Li corresponds to trans-
mission conditions, and gk

i is a function of f and uk−1
j for j = i. To define the discrete

error function, let us write u∗i = u∗|Ωi , where u∗ is the exact solution to Au = f . Then
the error onΩi is ek

i = uk
i −u∗i , with discrete energy ai(ek

i ,e
k
i ) = (ek

i )
T Aiek

i > 0 when-
ever ek

i = 0, since each subdomain touches a Dirichlet boundary. Now observe that

Aie
k
i = Aiu

k
i −Aiu

∗
i = Aiu

k
i − fi at interior nodes.

Since the stencils of Ai and A coincide at interior nodes, we see that Aiek
i must be

zero away from the interfaces. Thus, we in fact have

ai(e
k
i ,e

k
i ) = ∑

v∈∂Ωi\∂Ω
ek

i (v) · (Aie
k
i )(v) = ∑

v∈∂Ωi\∂Ω
[(T k

+i(v))
2− (T k

−i(v))
2],

where T k
±i(v) are the “Robin traces” at an interface point v:
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T k
+i(v) =

1√
4p

[
(Aie

k
i )(v)+ pek

i (v)
]
, T k

−i(v) =
1√
4p

[−(Aie
k
i )(v)+ pek

i (v)
]
.

Hence, if we let T k
+i(v) = T k−1

− j (v) at every point v on the interface, then the energy
estimate holds exactly the same way as in the continuous case, and we have conver-
gence of the method. This allows us to deduce the correct interface conditions for v
away from the cross point. Using the definition ek

i = uk
i −u∗i , we have

(Ai(u
k
i −u∗i ))(v)+ p(uk

i (v)−u∗i (v)) =−(A j(u
k−1
j −u∗j))(v)+ p(uk−1

j (v)−u∗j(v)).
(13)

But since
(Aiu

∗
i )(v)+ (A ju

∗
j)(v) = f (v), (14)

we can simplify (13) to get

(Aiu
k
i )(v)+ puk

i (v) = f (v)− (A ju
k−1
j )(v)+ puk−1

j (v).

In other words, we need

(Liu
k
i )(v) = puk

i (v), gk
i (v) = f (v)− (A ju

k−1
j )(v)+ puk−1

j (v).

On the other hand, if v is a cross point, then (14) is no longer valid, since f (v) is the
sum of many subdomain contributions. Thus, it is in general impossible to find Li

and gk
i such that the relation T k

+i(v) = T k−1
− j (v) holds at the cross point for some j. In

our model problem, however, the stencil at the cross point has a special form for the
first and third quadrant:

(A1u∗1)(0,0) = u∗(0,0)− 1
2 u∗(0,h)− 1

2 u∗(h,0),

(A3u∗3)(0,0) = u∗(0,0)− 1
2 u∗(0,−h)− 1

2 u∗(−h,0).

Thus, we actually have (A1u∗1)(0,0)+ (A3u∗3)(0,0) =
1
2 f (0,0), a known quantity! A

similar relation holds between Ω2 and Ω4, so it is actually possible to find transmis-
sion conditions at the cross point that satisfy the discrete energy estimate. For Ω1,
this reads

(A1uk
1)(v)+ puk

1(v) =
1
2 f (v)− (A3uk−1

3 )(v)+ puk−1
3 (v).

Figure 4 shows the convergence of the method for p = π
2
√

h
, which gives the optimal

contraction factor ρ = 1−O(
√

h), just as in the two-subdomain case. Since the dis-
crete energy estimate holds, the converged subdomain solutions always coincide with
the exact discrete solution u∗, unlike in the mortar case. In general, discrete energy
estimates can only be derived if for every cross point v, its set of neighbors can be
partitioned into disjoint pairs (i, j) such that (Aiu∗i )(v)+ (A ju∗j)(v) = fi j(v) can be
calculated without knowing u∗. For cross points with wide stencils or an odd number
of neighbors, this is not possible. In such cases, the methods in Sect. 4 are still excel-
lent choices in practice, but one cannot use Lions’ estimates to deduce convergence
for arbitrary positive Robin parameters p.
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Fig. 4. (a) Convergence for different grid spacing h; (b) Contraction rate versus h
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Summary. In this paper, we establish the existence of a stable decomposition in the Sobolev
space H1

0 for domain decompositions which are not shape regular in the usual sense. In partic-
ular, we consider domain decompositions where the largest subdomain is significantly larger
than the smallest subdomain. We provide an explicit upper bound for the stable decomposition
that is independent of the ratio between the diameter of the largest and the smallest subdomain.

1 Introduction

One of the great success stories in domain decomposition methods is the invention
and analysis of the additive Schwarz method by Dryja and Widlund in [2]. Even
before the series of international conferences on domain decomposition methods
started, Dryja and Widlund presented a variant of the historical alternating Schwarz
method invented by Schwarz in [5] to prove the Dirichlet principle on general
domains. This variant, called the additive Schwarz method, has the advantage of
being symmetric for symmetric problems, and it also contains a coarse space compo-
nent. In a fully discrete analysis in [2], Dryja and Widlund proved, based on a stable
decomposition result for shape regular decompositions, that the condition number of
the preconditioned operator with a decomposition into many subdomains only grows
linearly as a function of H

δ , where H is the subdomain diameter, and δ is the over-
lap between subdomains. This analysis inspired a generation of numerical analysts,
who used these techniques in order to analyze many other domain decomposition
methods, see the reference books [4, 6, 7], or the monographs [1, 8], and references
therein.

The key assumption that the decomposition is shape regular is, however, often
not satisfied in practice: because of load balancing, highly refined subdomains are
often physically much smaller than subdomains containing less refined elements,
and it is therefore of interest to consider domain decompositions that are only
locally shape regular, i.e., domain decompositions where the largest subdomain can
be considerably larger than the smallest subdomain, and therefore the subdomain
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diameter and overlap parameters depend strongly on the subdomain index. In such
a domain decomposition, the generic ratio H

δ from the classical convergence result
of the additive Schwarz method can be given at least two different meanings: let Hi

refer to the diameter of subdomain number i and δi refer to the width of the over-
lap around subdomain number i. Then in the classical convergence result from [2],
one could replace the generic ratio H

δ by maxi(Hi)
mini(δi)

, but this is likely to lead to a very
pessimistic estimate for the condition number growth. The general analysis of the
additive Schwarz method based on a shape regular decomposition does unfortunately
not permit to answer the question if the condition number growth for a locally shape
regular decomposition is in fact only linear in the quantity maxi(

Hi
δi
), which is much

smaller than maxi(Hi)
mini(δi)

in the case of subdomains and overlaps of widely different sizes,
a case of great interest in applications.

In [3], we established the existence of a stable decomposition in the continuous
setting with an explicit upper bound and a quantitative definition of shape regular-
ity in two spatial dimensions. The explicit upper bound is also linear in the generic
quantity H

δ , and the result is limited to shape regular domain decompositions where
all subdomains have similar size and where the overlap width is uniform over all
subdomains. Having explicit upper bounds, however, allows us now, using simi-
lar techniques, to establish the existence of a stable decomposition in the continu-
ous setting with explicit upper bounds when maxi(Hi)� mini(Hi), and we provide
an explicit upper bound which is linear in maxi(Hi/δi) for problems in two spatial
dimensions. To get this result, only a few of the inequalities established in [3] need to
be reworked, and it would be very difficult to obtain such a result without the explicit
upper bounds from the continuous analysis in [3].

We state first in Sect. 2 our main theorem along with the assumptions we make on
the domain decomposition. We then prove the main theorem in Sect. 3 in two steps:
first, we show in Lemma 1 how to construct the fine component in Sect. 3.1, which
is an extension of the result [3, Theorem 4.6] for the case where subdomain sizes
Hi and overlaps δi can strongly depend on the subdomain index i. The major contri-
bution is however in the second step, presented in Lemma 2 in Sect. 3.2, where we
show how to construct the coarse component in the case of strongly varying Hi and δi

between subdomains. This result is a substantial generalization of [3, Lemma 5.7].
Using these two new results, and the remaining estimates from [3] which are still
valid, we can prove our main theorem. We finally summarize our results in the con-
clusions in Sect. 4.

2 Geometric Parameters and Main Theorem

In the remainder of this paper, we always consider a domain decomposition that has
the following properties:

• Ω is a bounded domain of R2.
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• The (Ui)1≤i≤N are a non-overlapping domain decomposition of Ω , i.e., satisfy⋃N
i=1 Ui = Ω and Ui ∩Uj = /0 when i = j . The Ui are bounded connected open

sets of R2 and for all subdomains Ui the measure of Ui \Ui is zero.
• We set Hi := diam(Ui).
• Two distinct subdomains Ui and Uj are said to be neighbors if Ui∩U j = /0.
• For each subdomain Ui, let δi > 0 be such that 2δi ≤min j,Ui∩U j= /0(dist(Ui,Uj)).

We set Ωi := {xxx ∈ Ω , dist(xxx,Ui) < δi}. The Ωi form an overlapping domain
decomposition of Ω . When subdomains Ui and Uj are neighbors, then the over-
lap between Ωi and Ω j is δi + δ j wide. The intersection Ωi∩Ω j is empty if and
only if the distance between Ui and Uj is positive.

• We set δ s
i = min j =i,Ui∩U j = /0 δ j and δ l

i = max j =i,Ui∩U j = /0 δ j.

• The domain decomposition has Nc colors: there exists a partition of N∩ [1,N]
into Nc sets Ik such that Ωi∩Ω j is empty whenever i = j and i and j belong to
the same color Ik.

• T is a coarse triangular mesh ofΩ : one node xxxi per subdomainΩi (not counting
the nodes located on ∂Ω ). By P1(T ), we denote the standard finite element
space of continuous functions that are piecewise linear over each triangular cell
of T .

• Let θmin be the minimum of all angles of mesh T .
• No node (including the nodes located on ∂Ω ) of the coarse mesh has more than

K neighbors.
• Let di be the length of the largest edge originating from node xxxi in the mesh T .
• Let Hh,i be the length of the shortest height through xxxi of any triangle in the

coarse mesh T that connects to xxxi. We also set H ′
h,i as the minimum of Hh, j over

i and its direct neighbors in mesh T .
• We suppose that for each subdomain Ui, there exists ri > 0 such that Ui is star-

shaped with respect to any point in the ball B(xxxi,ri). We also suppose ri ≤ Hh,i
4K+1

and ri ≤ H ′
h,i/2.

• We also assume the existence of both a pseudo normal XXXi and of a pseudo cur-
vature radius R̃i for the domain Ui, i.e., we suppose that for each Ui there exists
an open layer Li containing ∂Ui, a vector field XXXi continuous on Li∩Ui, C ∞ on
Li ∩Ui such that DXXXi(xxx)(XXXi(xxx)) = 0, ‖XXXi(xxx)‖ = 1, and ε0 > 0 such that for all
positive ε < ε0 and for all x̂xx in ∂Ui, x̂xx+εXXXi(x̂xx)∈Ui and x̂xx−εXXXi(x̂xx) /∈Ui. We set,
for all positive δ ′, Uδ ′

i = {xxx∈Ui, dist(xxx,∂Ui)< δ ′}, and V δ ′
i = {x̂xx+ sXXXi(x̂xx), x̂xx ∈

∂Ui,0 < s < δ ′}. We assume there exist R̂i > 0, θXXX , 0 < θXXX ≤ π/2, and δ0i,
0 < δ0i ≤ R̂i sinθXXX such that V R̂

i ⊂ Li ∩Ui and Uδ ′
i ⊂ V δ ′/ sinθXXX for all positive

δ ′ ≤ δ0i. Set R̃i := 1/‖divXXXi‖∞. We suppose δ0i > δ l
i .

We finally define, for all i, the linear form on H1
0 (Ω) by

�i(u) :=
1

πr2
i

∫
B(xxxi,ri)

u(xxx)dxxx =
1
π

∫
B(000,1)

u(xxxi + riyyy)dyyy.

We can now state our main theorem, namely the existence of a stable decomposi-
tion of H1

0 (Ω) whose upper bound is independent of maxi(Hi)
mini(Hi)

. This theorem there-
fore leads to a substantially sharper condition number estimate in the important case
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of an only locally shape regular decomposition, and is a major improvement of [3,
Theorem 5.12], which only considered shape regular decompositions, albeit at the
continuous level, in contrast to [2].

Theorem 1. For u in H1
0 (Ω), there exists a stable decomposition (ui)0≤i≤N of u, i.e.,

u = ∑N
i=0 ui, u0 in P1(T )∩H1

0 (Ω) and ui ∈ H1
0 (Ωi) such that

N

∑
i=0
‖∇ui‖2

L2(Ωi)
≤C‖∇u‖2

L2(Ω),

where C = 2C1 + 2(1+C1)C2 and

C1 =
1

tanθmin

(
1+ 2maxi(

ri
Hh,i

)
)
K( 25

6π maxi(
di
ri
)+ 2π

)
1− ((2K + 1)+ (4K+ 1)maxi(

ri
Hh,i

)
)

maxi(
ri

Hh,i
)
,

C2 = 2+ 8λ 2
2 (Nc−1)2(1+max

i

R̂i

R̃i
)max

i

δ l
i

δ s
i

max
i

R̂i

δ s
i sinθXXX

+
8
3
λ 2

2 (Nc−1)2(1+max
i

R̂i

R̃i
)max

i

δ l
i

δ s
i

max
i

r2
i

δ s
i R̂i sinθXXX

×

×max
i

⎛
⎜⎝
⎛
⎝
(

H2
i

r2
i

+
1
2

) 1
4

+
Hi

4
√

2ri

⎞
⎠

4

− 1
2
− H2

i

r2
i

− H4
i

2r4
i

⎞
⎟⎠ ,

with λ2 a universal constant depending only on the dimension, and being smaller
than 6 in the two dimensional case we consider here.

Note that the condition ri ≤ Hh,i
4K+1 implies that the denominator of C1 is positive. The

value of C2 is also always positive.

3 Proof of Theorem 1

The proof is based on the continuous analysis in [3], but two results must be
adapted to the situation of only locally shape regular decompositions: we first show
in Sect. 3.1 how to construct the fine component, which is a technical extension of
the result [3, Theorem 4.6] for the case where subdomain sizes Hi and overlaps δi can
strongly depend on the subdomain index i. Second, we explain in Sect. 3.2 the con-
struction of the coarse component in the case of strongly varying Hi and δi between
subdomains, which is a non-trivial generalization of [3, Lemma 5.7]. With these two
new results, and the remaining estimates from [3], the proof can be completed.

3.1 Constructing the Fine Component

We begin by establishing a stable decomposition when there is no coarse mesh.
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Lemma 1. Let u be in H1
0 (Ω). Then, there exist (ui)1≤i≤N, ui in H1

0 (Ωi) such that
u = ∑N

i=1 ui, and

N

∑
i=1
‖∇ui‖2

L2(Ω) ≤ 2‖∇u‖2
L2(Ω) + 8λ 2

2 (Nc−1)2

(
N

∑
i=1

(1+
R̂i

R̃i
)
δ l

i

δ s
i

R̂i

δ s
i sinθXXX

‖∇u‖2
L2(Ui)

)

+ 8λ 2
2 (Nc−1)2

(
N

∑
i=1

(1+
R̂i

R̃i
)
δ l

i

δ s
i

1

δ s
i R̂i sinθXXX

‖u‖2
L2(Ui)

)
,

(1)

where λ2 is the universal constant of Theorem 1. We further have, for all η > 0,

N

∑
i=1

‖∇ui‖2
L2(Ω) ≤ 2‖∇u‖2

L2(Ω) + 8λ 2
2 (Nc−1)2

N

∑
i=1

(1+
R̂i

R̃i
)
δ l

i

δ s
i

R̂i

δ s
i sinθXXX

‖∇u‖2
L2(Ui)

+
8(1+η)

3
λ 2

2 (Nc−1)2
N

∑
i=1

(1+
R̂i

R̃i
)
δ l

i

δ s
i

r2
i

δ s
i R̂i sinθXXX

×

×

⎛
⎜⎝
⎛
⎝
(

H2
i

r2
i

+
1
2

) 1
4

+
Hi

4
√

2ri

⎞
⎠

4

− 1
2
− H2

i

r2
i

− H4
i

2r4
i

⎞
⎟⎠‖∇u‖2

L2(Ui)

+ 8(1+
1
η
)πλ 2

2 (Nc−1)2
N

∑
i=1

(1+
R̂i

R̃i
)
δ l

i

δ s
i

H2
i

δ s
i R̂i sinθXXX

|�i(u)|2.
(2)

Proof. We follow the proof of [3, Theorem 4.6]. Let ρ be a C ∞ non-negative func-
tion whose support is included in the closed unit ball of R

2 and whose L1 norm
is 1. Let ρε(xxx) = ρ(xxx/ε)/ε2 for all ε > 0. Let hi be the characteristic function of
the set {xxx ∈ R

2,dist(xxx,Ui) < δi/2}. Let φi = ρδi/2 ∗ hi. The function φi is equal
to 1 inside Ui, vanishes outside of {xxx ∈ R

2,dist(xxx,Ui) < δi}, and ‖∇φi‖L∞(R2) ≤
2‖∇ρ‖L1(R2;(R2,‖·‖2))

/δi. Here, ‖∇ρ‖L1(R2;(R2,‖·‖2))
means

∫
R2

√
∑2

i=1|∂iρ |2dxxx.

For i in N∩ [1,N], letψi = φi∏i−1
k=1(1−φk). We have 0≤ψi≤ 1,ψi zero inΩ \Ωi

and ∑iψi = 1 inΩ . Set ui = ψiu. The function ui is in H1
0 (Ωi) and u =∑i ui. Follow-

ing the proof of [3, Lemma 4.3], we get ∑N
i=1‖∇ψi(xxx)‖2

2 ≤ 2(NC−1)∑N
i=1‖∇φi(xxx)‖2

2.
Therefore, for all xxx in Ω ,

N

∑
i=1

‖∇ψi(xxx)‖2
2 ≤ 8(Nc−1)‖∇ρ‖2

L1(R2;(R2,‖·‖2))

N

∑
i=1

1Ωi\Ui
(xxx)

δ 2
i

,

where1O is the indicator function for the set O . Since∑i‖∇ui‖2
L2(Ω)

≤ 2‖∇u‖2
L2(Ω)

+

2
∫
Ω |u(xxx)|2∑i|∇ψi(xxx)|2dxxx, we get

N

∑
i=1
‖∇ui‖2

L2(Ω) ≤ 2‖∇u‖2
L2(Ω) + 4λ 2

2 (Nc−1)2
N

∑
i=1

∫
Ui

1{dist(xxx,∂Ui)<δ l
i }
|u(xxx)|2
(δ s

i )
2 dxxx,
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with λ2 := 2‖∇ρ‖L1(R2;(R2,‖·‖2))
. Using the W 1,1(R2) function ρ(xxx) = 1−‖xxx‖2, we

obtain the estimate λ2 = 6. To get (1), we apply Lemma 4.5 in [3] to each Ui, and to
obtain (2), we apply Lemma 5.10 from the same reference. #$

To obtain a stable decomposition with a coarse component, we want to construct
u0 in P1(T ) such that for all i, �i(u0) = �i(u).

3.2 Constructing the Coarse Component

To construct u0, we follow the ideas of [3, Sect. 5.2]. First, we define a special norm.

Definition 1. Let T be the coarse mesh of the domainΩ . Let B′ be the set of indices
of the nodes of T located on the boundary4 ∂Ω . Let B be the set of the indices of
the nodes that are neighbors to the nodes with index in B′. Let V be the set of pairs
of indices of neighboring nodes in T which are not on ∂Ω . We define

‖·‖V ,B : RN →R
+,

yyy �→
√
∑

(i, j)∈V

|yi− y j|2 + ∑
i∈B

|yi|2.

When u is in P1(T )∩H1
0 (Ω), set ‖u‖V ,B := ‖(u(xxxi))1≤i≤N‖V ,B , where the xxxi are

the interior nodes of the mesh T .

Lemma 2. For u in H1
0 (Ω), there exists u0 in P1(T )∩H1

0 (Ω) such that, for all i in
{1, . . . ,N}, �i(u0) = �i(u) and

‖∇u0‖2
L2(Ω) ≤

1
tanθmin

(
1+ 2maxi(

ri
Hh,i

)
)
K
(

25
6π maxi(

di
ri
)+ 2π

)
1− ((2K + 1)+ (4K+ 1)maxi(

ri
Hh,i

)
)

maxi(
ri

Hh,i
)
‖∇u‖2

L2(Ω).

Proof. The results of [3, Lemmas 5.6 and 5.8] stand without modifications. There-
fore u0 exists, and we have

‖∇u0‖2
L2(Ω) ≤

1
tanθmin

1+2maxi(
ri

Hh,i
)

1−((2K +1)+(4K +1)maxi(
ri

Hh,i
)
)

maxi(
ri

Hh,i
)
‖(�i(u))1≤i≤N‖2

V ,B .

Note that the condition ri ≤ Hh,i
4K+1 implies the second denominator in the above equa-

tion is positive.
It remains to compare ‖u‖2

V ,B and ‖∇u‖2
L2(Ω)

. We need to adapt the proof of [3,

Lemma 5.7]. We can suppose without any loss of generality that u is in C ∞(Ω).
Let i, j in {1, . . . ,N} be indices of neighboring nodes of T . Let dddi j = xxxi− xxx j, and
di j = ‖dddi j‖. We have for all (i, j) ∈ V

4 Because of the homogenous Dirichlet condition on the boundary ∂Ω , the nodes whose
indices are in B′ are not associated to a degree of freedom, therefore B′ and {1, . . . ,N}
have empty intersection.
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|�i(u)− � j(u)|2 = 1
π2

(∫
B(000,1)

(u(xxxi + riyyy)−u(xxx j + r jyyy))dyyy

)2

≤ 1
π

∫
B(000,1)

∫ 1

0
‖∇u

(
t(xxxi + riyyy)+ (1− t)(xxxj + r jyyy)

)‖2
2‖xxxi− xxx jjj +(ri− r j)yyy‖2

2dtdyyy

≤ (di j + |ri− r j|)2

π

∫
B(000,1)

∫ 1

0
‖∇u

(
t(xxxi + riyyy)+ (1− t)(xxxj + r jyyy)

)‖2
2dtdyyy

≤ (di j + |ri− r j|)2

π

∫
Ti, j

‖∇u(yyy′)‖2
2

∫ 1

0

1{‖yyy′−txxxi−(1−t)xxx j‖≤tri+(1−t)r j}
(tri +(1− t)r j)2 dtdyyy′,

where the tube Ti, j is the convex hull of B(xxxi,ri)∪B(xxx j,r j). We get

max
yyy′∈R2

∫ 1

0

1{‖yyy′−txxxi−(1−t)xxx j‖≤tri+(1−t)r j}
(tri +(1− t)r j)2 dt

= max
(s,s′)∈R2

∫ 1

0

1{
√
(s−tdi j)2+s′2≤tri+(1−t)r j}
(tri +(1− t)r j)2 dt

= max
s∈[−r j ,di j+ri]

∫ 1

0

1{|s−tdi j |≤tri+(1−t)r j}
(tri +(1− t)r j)2 dt

≤ max
s∈[−r j ,di j+ri]

∫ s+r j
di j−(ri−r j )

s−r j
di j+(ri−r j )

1
(tri +(1− t)r j)2 dt

= max
s∈[−r j ,di j+ri]

− 1
ri− r j

[
1

(tri +(1− t)r j)

] s+r j
di j−(ri−r j )

s−r j
di j+(ri−r j )

= max
s∈[−r j ,di j+ri]

(
2

di jr j + s(ri− r j)

)

=
2

min(ri,r j)(di j−|ri− r j|) .

Since di j ≥ Hh,i ≥ 4max(ri,r j), we have

|�i(u)− � j(u)|2 ≤ 25di j

6πmin(ri,r j)
‖∇u‖2

L2(Ti j)
. (3)

If i is in the boundary set of the coarse mesh, then the node xxxi is neighbor to a
node xxxi′ located on ∂Ω . Note that i′ lies outside of the range {1, . . . ,N}. Using [3,
Eqs. (5.7) and (5.9)], we get

∑
i∈B

|�i(u)|2 ≤
(
∑
i∈B

4‖xxxi− xxxi′ ‖
πri

∫
T ′i
‖∇u(xxx)‖2dxxx

)
+ 2Kπ‖∇u‖2

L2(Ω), (4)

where T ′i is the convex hull of B(xxxi,ri)∪B(xxxi′ ,ri). We sum inequality (3) over all
i, j in the neighbor set and combine the resulting inequality with Eq. (4). Since



492 Martin J. Gander, Laurence Halpern, and Kévin Santugini Repiquet

max(ri,r j) ≤ H ′
h,i/2 ≤ min(Hh,i,Hh, j)/2, no point can belong to more than K tubes

Ti, j or T ′i . Therefore, ‖(�i(u))1≤i≤N‖2
V ,B ≤K

(
25maxi(di/ri)/(6π)+2π

)‖∇u‖2
L2(Ω)

.
This concludes the proof. #$
To prove Theorem 1, we use Lemma 2 to construct the coarse component u0. We then
apply Lemma 1 to u−u0 to get the fine components ui. The terms in �i(u) vanish.

4 Conclusion

We have proved the existence of a stable decomposition of the Sobolev space H1
0 (Ω)

in the presence of a coarse mesh when the domain decomposition is only guaran-
teed to be locally shape regular. We provided an explicit upper bound for the stable
decomposition that depends neither on maxi(Hi)/mini(Hi), nor on the number of
subdomains. This would not have been possible without the explicit upper bounds
provided in [3]. This shows that deriving such explicit upper bounds can be important
for problems arising naturally in applications, e.g., load balanced domain decompo-
sitions with local refinement.
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1 Introduction

During the last two decades many domain decomposition algorithms have been con-
structed and lot of techniques have been developed to prove the convergence of the
algorithms at the continuous level. Among the techniques used to prove the conver-
gence of classical Schwarz algorithms, the first technique is the maximum principle
used by Schwarz. Adopting this technique M. Gander and H. Zhao proved a conver-
gence result for n-dimensional linear heat equation in [4]. The second technique is
that of the orthogonal projections, used by P. L. Lions in [7], and his convergence
results are for linear Laplace equation and linear Stokes equation. In the same pa-
per, P. L. Lions also proved that the Schwarz sequences for linear elliptic equations
are related to classical minimization methods over product spaces and this technique
was then used by L. Badea in [1] for nonlinear monotone elliptic problems. Another
technique is the Fourier and Laplace transforms used in the papers [3, 5] for some
1-dimensional evolution equations, with constant coefficients. In [10, 11], S. H. Lui
used the idea of upper-lower solutions methods to study the convergence problem for
some PDEs, with initial guess to be an upper or lower solution of the equations and
monotone iterations. For nonoverlapping optimized Schwarz methods, P. L. Lions
in [8] proposed to use an energy estimate argument to study the convergence of the
algorithm. The energy estimate technique was then developed in [2] for Helmholtz
equation and it has then become a very powerful tool to study nonoverlapping prob-
lems. J.-H. Kimn in [6] proved the convergence of an overlapping optimized Schwarz
method for Poisson’s equation with Robin boundary data and S. Loisel and D. B.
Szyld in [9] extended the technique of J.-H. Kimn to linear symmetric elliptic equa-
tion. Another technique is to use semiclassical analysis, which works for overlapping
optimized Schwarz methods with rectangle subdomains, linear advection diffusion
equations on the half plane (see [12]). This paper is devoted to the study of the con-
vergence of Schwarz methods at the continuous level. We give a sketch of the proof
of the convergence of optimized Schwarz methods for semilinear parabolic equa-
tions, with multiple subdomains. Complete convergence proofs for both classical
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and optimized Schwarz methods, both semilinear parabolic and elliptic equations,
with multiple subdomains could be found in [13].

2 Convergence for Semilinear Parabolic Equations

Consider the following parabolic equation

⎧⎪⎪⎨
⎪⎪⎩

∂u
∂ t (x, t)−∑n

i, j=1 ai, j(x) ∂ 2u
∂xi∂x j

(x, t)+∑n
i=1 bi(x) ∂u

∂xi
(x, t)

+c(x)u(x, t) = F(x, t,u(x, t)), in Ω × (0,∞),
u(x, t) = g(x, t), on ∂Ω × (0,∞),
u(x,0) = g(x,0), on Ω ,

(1)

where Ω is a bounded and smooth enough domain in R
n. The following conditions

are imposed on 1).
(A1) For all i, j in {1, . . . , I}, ai, j(x) = a j,i(x). There exist strictly positive numbers
λ ,Λ such that A = (ai, j(x))≥ λ I in the sense of symmetric positive definite matrices
and ai, j(x)<Λ in Ω .
(A2) The functions ai, j, bi, c are in C∞(Rn) and g is in C∞(Rn+1).
(A3) There exists C > 0, such that ∀ t ∈ R, ∀ x ∈ R

n, |F(x, t,z)− F(x, t,z′)| ≤
C|z− z′|, ∀ z, z′ ∈ R. We now describe the way that we decompose the domain Ω :
The domainΩ is divided into I smooth overlapping subdomains {Ωl}l∈{1,I}:

(∂Ωl\∂Ω)∩ (∂Ωl′ \∂Ω) = , ∀ l, l′ ∈ {1, . . . , I}, l = l′;

∀l ∈ {1, . . . , I},∀l′, l′′ ∈ Jl , l
′′ = l′, Ωl′ ∩Ωl′′ = ,

where
Jl = {l′|Ωl′ ∩Ωl = };

∪n
l=1Ωl =Ω .

This decomposition means that we do not consider cross-points in this paper.
Denote by Γl,l′ , for l′ ∈ Jl , the set (∂Ωl\∂Ω)∩Ω l′ . The transmission operator Bl,l′

is of Robin type Bl,l′v = ∑n
i, j=1 ai, j

∂v
∂xi

nl,l′, j + pl,l′v and nl,l′, j is the j-th component
of the outward unit normal vector of Γl,l′ ; pl,l′ is positive and belongs to L∞(Γl,l′).
The iterate #k in the l-th domain, denoted by uk

l of the Schwarz waveform relaxation
algorithm is defined by:

{
∂uk

l
∂ t −∑n

i, j=1 ai, j
∂ 2uk

l
∂xi∂x j

+∑n
i=1 bi

∂uk
l

∂xi
+ cuk

l = F(t,x,uk
l ), in Ωl× (0,∞),

Bl,l′u
k
l =Bl,l′u

k−1
l′ , on Γl,l′ × (0,∞),∀l′ ∈ Jl ,

(2)

where
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uk
l (x, t) = g(x, t) on (∂Ωl ∩∂Ω)× (0,∞), uk

l (x,0) = g(x,0) in Ωl .

The initial guess u0 is bounded in C∞(Ω × (0,∞)); and at step 0, the Eq. (2) is solved
with boundary data

Bl,l′u
1
l (x, t) = u0(x, t) on Γl,l′ × (0,∞),∀l′ ∈ Jl .

A compatibility condition on u0(x, t) is also assumed

Bl,l′g(x,0) = u0(x,0) on Γl,l′ ,∀l′ ∈ Jl .

By an induction argument, the algorithm is well-posed. Let ek
l be uk

l −u

⎧⎪⎨
⎪⎩

∂ek
l

∂ t −∑n
i, j=1 ai, j(x)

∂ 2ek
l

∂xi∂x j
+∑n

i=1 bi(x)
∂ek

l
∂xi

+c(x)ek
l = F(t,x,uk

l )−F(t,x,u), in Ωl× (0,∞),
Bl,l′e

k
l (x, t) =Bl,l′e

k−1
l′ (x, t), on Γl,l′ × (0,∞),∀l′ ∈ Jl .

(3)

Moreover,

ek
l (x, t) = 0 on (∂Ωl ∩∂Ω)× (0,∞), ek

l (x,0) = 0 in Ωl .

For any function f in L2(0,∞), define
∫ ∞

0
f (x)exp(−yx)dx.

For any fixed positive number α , define

| f |α = sup
α ′>α

[∫ α ′+1

α ′

(∫ ∞

0
f (x)exp(−yx)dx

)2

dy

] 1
2

,

and
L

2
α (0,∞) = { f : f ∈ L2(0,∞), | f |α < ∞}.

Thus (L2
α(0,∞), |.|α ) is a normed subspace of L2(0,∞).

Theorem 1. Consider the Schwarz algorithm with Robin transmission conditions
and the initial guess u0 in C∞c (Ω × (0,∞)). There exists a constant α large enough
such that

lim
k→∞

I

∑
l=1

∫
Ωl

|ek
l |2αdx = 0.

Proof. Let gl be a function bounded and greater than 1 in C∞(Rn,R), α be a positive
constant, we define

Φk
l (x) :=

(∫ ∞

0
ek

l exp(−αt)dt

)
gl(x),
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then Φk
l (x) belongs to H1(Ωl). Let Bl

i and Cl be functions in L∞(Rn) defined by

Bl
i := bi +

n

∑
j=1

(
ai, j

∂ jgl

gl

)
,

Cl =

[
α
2
+

n

∑
i, j=1

(
−ai, j

2∂igl∂ jgl

(gl)2 − ∂ jai, j
∂ig
g

+ ai, j
∂i, jgl

gl

)
−

n

∑
i=1

bi
∂igl

gl

]
.

Define

LlR(Φk
l ) = −

n

∑
i, j=1

∂ j(ai, j∂iΦk
l )+

n

∑
i=1

Bl
i∂iΦk

l +ClΦk
l

+

{∫ ∞

0

[(α
2
+ c

)
ek

l −F(uk
l )+F(u)

]
exp(−αt)dt

}
gl .

It is possible to suppose α to be large such that Cl belongs to (α4 ,α).

Lemma 1. Choose gl, gl′ such that ∇gl =∇gl′ = 0 on Γl,l′ and
gl′
gl

> 1 on Γl,l′ , for all

l′ in Jl. Φk
l is then a solution of the following equation{

LlR(Φk
l ) = 0, in Ωl× (0,∞),

βlBl,l′(Φk
l ) =Bl,l′(Φk−1

l′ ) on Γl,l′ × (0,∞),∀l′ ∈ Jl .
(4)

where βl =
gl′
gl

on Γl,l′ , for all l′ in Jl .

For all l in {1, I}, denote by Ω̃l the open set Ωl\∪l′∈Jl
Ωl′ . For all l in I such that

ϕk+1
l =ϕk

l′ onΓl,l′ for all l′ in Jl , let ϕk
l and ϕk+1

l be functions in H1(Ω̃l) and H1(Ωl) .
Use the test functions ϕk+1

l and ϕk
l , and take the sum (with respect to l in {1, I}) of∫

Ω̃l
LlR(Φk+1

l )ϕk+1
l and

∫
Ω̃l
LlR(Φk

l )ϕ
k
l to get

−
I

∑
l=1

{∫
Ω̃l

ClΦk
l ϕ

k
l dx+

+

∫
Ω̃l

n

∑
i, j=1

ai, j∂iΦk
l ∂ jϕk

l dx+
n

∑
i=1

∫
Ω̃l

Bl
i∂iΦk

l ϕ
k
l dx− ∑

l′∈Jl

∫
Γl′ ,l

pl′,lΦk
l ϕ

k
l dσ

+

∫
Ω̃l

{∫ ∞

0

[(α
2
+ c

)
ek

l −F(uk
l )+F(u)

]
exp(−αt)dt

}
glϕk

l dx

}
(5)

=
I

∑
l=1

βl

{∫
Ωl

ClΦk+1
l ϕk+1

l dx+

+

∫
Ωl

n

∑
i, j=1

ai, j∂iΦk+1
l ∂ jϕk+1

l dx+ ∑
l′∈Jl

∫
Γl,l′

pl,l′Φk+1
l ϕk+1

l dσ

+

∫
Ωl

n

∑
i=1

Bl
i∂iΦk+1

l ϕk+1
l dx+

+
∫
Ωl

{∫ ∞

0

[(α
2
+ c

)
ek+1

l −F(uk+1
l )+F(u)

]
exp(−αt)dt

}
glϕk+1

l dx

}
.
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In (5), chooseϕk+1
l to beΦk+1

l , then there existsϕk
l , such that for all l′ in Jl ϕk

l =ϕ
k+1
l′

on Γl,l′ and

||ϕk
l ||H1(Ωl)

≤C ∑
l′∈Jl

||ϕk+1
l′ ||H1(Ωl′ )

and ||ϕk
l ||L2(Ωl)

≤C ∑
l′∈Jl

||ϕk+1
l′ ||L2(Ωl′ )

,

where C is a positive constant.
The right hand side of (5) is then greater than or equal to

I

∑
l=1

βl

{∫
Ωl

λ |∇Φk+1
l |2dx−

n

∑
i=1

∫
Ωl

||Bl
i ||L∞(Ωl)

∣∣∣∂iΦk+1
l

∣∣∣ |Φk+1
l |dx

}
.

≥
I

∑
l=1

βl

{∫
Ωl

λ
2
|∇Φk+1

l |2dx+
α
8

∫
Ωl

|Φk+1
l |2

}
. (6)

Similarly, the left hand side of (5) is less than or equal to

I

∑
l=1

{∫
Ω̃l

Λ |∇Φk
l ||∇ϕk

l |dx+
n

∑
i=1

∫
Ω̃l

||Bl
i||L∞(Ω̃l)

∣∣∣∂iΦk
l

∣∣∣ |ϕk
l |dx

+ ∑
l′∈Jl

||pl′,l ||L∞(Γl′ ,l)(||Φk
l ||2H1(Ω̃l)

+ ||ϕk
l ||2H1(Ω̃l)

)

}

≤
I

∑
l=1

M1

{
1
2
(||∇Φk

l ||2L2(Ω̃l)
+ ( max

i∈{1,I}
||Bl

i||L∞(Ω̃l)
)2||ϕk

l ||2L2(Ω̃l)
)

+
∫
Ω̃l

2α|Φk
l ||ϕk

l |dx+ ∑
l′∈Jl

∫
Γl′ ,l

pl′,l |Φk
l ||ϕk

l |dσ (7)

+Λ
(
||∇Φk

l ||2L2(Ω̃l )
+ ||∇ϕk

l ||2L2(Ω̃l)

)
+
α
2
||Φk

l ||2L2(Ω̃l)
+
α
2
||ϕk

l ||2L2(Ω̃l)

}
,

where M1 depends only on {Ωl}l∈{1,I} and the Eq. (3). Choose α such that α >

(maxi∈{1,I} ||Bl
i||L∞(Ω̃l)

)2, there exists M2 positive, depending only on {Ωl}l∈{1,I}
and (3) such that the right hand side of (7) is dominated by

I

∑
l=1

M2

{∫
Ω̃l

(
λ
2
|∇Φk

l |2dx+
α
8
|Φk

l |2 +
λ
2
|∇Φk+1

l |2 + α
8
|Φk+1

l |2
)

dx

}
(8)

≤
I

∑
l=1

M2

(
λ
2
||∇Φk

l ||2L2(Ωl)
+
α
8
||Φk

l ||2L2(Ωl)
+
λ
2
||∇Φk+1

l ||2L2(Ωl)
+
α
8
||Φk+1

l ||2L2(Ωl)

)
.

Define

Ek :=
I

∑
l=1

(
λ
2
||∇Φk

l ||2L2(Ωl)
+
α
8
||Φk

l ||2L2(Ωl)

)
, (9)

then (6), (7), and (8) imply
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(β −M2)Ek+1 ≤M2Ek, (10)

where β = min{β1, . . . ,βI}.
Since M2 depends only on {Ωl}l∈{1,I} and (3), β can be chosen such that

M3 :=
M2

β −M2
< 1.

We get

Ek ≤ Mk
3E0

≤ Mk
3

I

∑
l=1

(
λ
2
||∇Φ0

l ||2L2(Ωl)
+
α
8
||Φ0

l ||2L2(Ωl)

)
.

That deduces

||Φk
l ||2L2(Ωl)

≤Mk
3

I

∑
l=1

(
4λ
α
||∇Φ0

l ||2L2(Ωl)
+ ||Φ0

l ||2L2(Ωl)

)
. (11)

Since (11) still holds if M3 and λ are fixed, and α is replaced by y > α , then

I

∑
l=1

∫
Ωl

(∫ ∞

0
ek

l exp(−yt)dtgl

)2

dx (12)

≤ Mk
3

[
4λ
y

I

∑
l=1

∫
Ωl

(∫ ∞

0
|∇e0

l |exp(−yt)dt

)2

g2
l dx

+
4λ
y

I

∑
l=1

∫
Ωl

(∫ ∞

0
e0

l exp(−yt)dt

)2

|∇gl|2dx

+
I

∑
l=1

∫
Ωl

(∫ ∞

0
e0

l exp(−yt)dt

)2

g2
l dx

]
.

Let α ′ be a constant larger than or equal to α , (12) implies

I

∑
l=1

∫
Ωl

∫ α ′+1

α ′

(∫ ∞

0
ek

l exp(−yt)dt

)2

g2
l dydx (13)

≤ Mk
3

[
I

∑
l=1

∫
Ωl

∫ α ′+1

α ′
4λ
y

(∫ ∞

0
|∇e0

l |exp(−yt)dt

)2

g2
l dydx

+
I

∑
l=1

∫
Ωl

∫ α ′+1

α ′
4λ
y

(∫ ∞

0
e0

l exp(−yt)dt

)2

|∇gl|2dydx

+
I

∑
l=1

∫
Ωl

∫ α ′+1

α ′

(∫ ∞

0
e0

l exp(−yt)dt

)2

g2
l dydx

]
.

Since u0 belongs to C∞c (Ω × (0,∞)), the right hand side of (13) is bounded by a
constant Mk

3M4(α). The fact that gl is greater than 1 implies



Overlapping Domain Decomposition: Convergence Proofs 499

I

∑
l=1

∫
Ωl

∫ α ′+1

α ′

(∫ ∞

0
ek

l exp(−yt)dt

)2

dydx≤Mk
3M4(α). (14)

Inequality (14) deduces

lim
k→∞

I

∑
l=1

∫
Ωl

|ek
l |2αdx = 0. (15)
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Summary. In this paper we describe the application of finite element tearing and intercon-
necting methods for the simulation of biological tissues, as a particular application we con-
sider the myocardium. As most other tissues, this material is characterized by anisotropic and
nonlinear behavior.

1 Modeling Biological Tissues

In this paper we consider the numerical simulation of biological tissues, that can be
described by the stationary equilibrium equations

divσ(u,x)+ f (x) = 0 for x ∈Ω ⊂ R
3, (1)

to find a displacement field u where we have to incorporate boundary conditions to
describe the displacements or the boundary stresses on Γ = ∂Ω .

In the case of biological tissues the material is assumed to be hyperelastic, i.e. we
have to incorporate large deformations and a non-linear stress-strain relation. For the
derivation of the constitutive equation we introduce the strain energy functionΨ(C)
which represents the elastic stored energy per unit reference volume. From this we
obtain the constitutive equation as in [1]

σ = J−1F
∂Ψ (C)

∂C
F�,

where J = detF is the Jacobian of the deformation gradient F=∇ϕ , and C= F�F is
the right Cauchy-Green tensor. In what follows we make use of the Rivlin-Ericksen
representation theorem to find a representation of the strain energy function Ψ in
terms of the principal invariants of C= F�F.

The cardiac muscle, the so-called myocardium, is the most significant layer for
the modeling of the elastic behavior of the heart wall. Muscle fibers are arranged in
parallel, in different sheets within the tissue. Although this fiber type is predominant,
we have also collagen that is arranged in a spatial network connecting the muscle
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fibers. We denote by f0 the fiber axis which is referred to as the main direction of
the cardiac muscle fibers. The sheet axis s0 is defined to be perpendicular to f0 in
the plane of the layer. This direction coincides with the collagen fiber orientation. As
many other biological tissues we treat the myocardium as a nearly incompressible
material. It shows a highly nonlinear and, due to the muscle and collagen fibers, an
anisotropic behavior.

To capture the specifics of this fiber-reinforced composite, Holzapfel and Og-
den proposed a strain-energy function Ψ that is decomposed into a volumetric, an
isotropic and an anisotropic part, which consists of a transversely isotropic and an
orthotropic response, see [7, 11],

Ψ(C) =Ψvol(J)+Ψiso(C)+Ψtrans(C, f0)+Ψtrans(C,s0)+Ψortho(C, f0,s0). (2)

Following [11], we describe the volume changing part by

Ψvol(J) =
κ
2
(logJ)2. (3)

The bulk modulus κ > 0 serves as a penalty parameter to enforce the (almost) incom-
pressibility constraint. To model the isotropic ground substance we use a classical
exponential model, see [2],

Ψiso(C) =
a

2b

{
exp[b(J−2/3I1−3)]−1

}
, (4)

where a > 0 is a stress-like and b is a dimensionless material parameter. I1 = tr(C)
is the first principal invariant of the right Cauchy-Green tensor C. In (2), Ψtrans is
associated with the deformations in direction of the fiber directions. Following [7]
we describe the transversely isotropic response by using

Ψtrans(C, f0) =
a f

2b f

{
exp[b f (J

−2/3I4 f −1)2]−1
}
,

Ψtrans(C,s0) =
as

2bs

{
exp[bs(J

−2/3I4s−1)2]−1
}
,

(5)

with the invariants I4 f := f0 · (Cf0) and I4s := s0 · (Cs0) and the material parameters
a f , b f , as and a f which are all assumed to be positive. It is worth to mention, that
in this model the transversely isotropic responsesΨtrans only contribute in the cases
I4 f > 1, I4s > 1, respectively. This corresponds to a stretch in a fiber direction, and
this is explained by the wavy structure of the muscle and collagen fibers. In par-
ticular, the fibers are not able to support compressive stress. Moreover, the fibers
are not active at low pressure, and the material behaves isotropically in this case.
In contrast, at high pressure the collagen and muscle fibers straighten and then they
govern the resistance to stretch of the material. This behavior of biological tissues
was observed in experiments and this is fully covered by the myocardium model as
described above. The stiffening effect at higher pressure also motivates the use of the
exponential function in the anisotropic responses of the strain energyΨ .

Finally a distinctive shear behavior motivates the inclusion of an orthotropic part
in the strain energy function in terms of the invariant I8 f s = f0 · (Cs0)
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Ψortho(C) =
a f s

2b f s

{
exp(b f sJ

−2/3I2
8 f s)−1

}
. (6)

Here a f s > 0 is a stress-like and b f s > 0 a dimensionless material constant.
Note that the material parameters can be fitted to an experimentally observed

response of the biological tissue. In the case of the myocardium, experimental data
and, consequently, parameter sets are very rare. Following [7] and [11], we use the
slightly adapted material parameters to be found in Table 1.

κ = 3333.33 kPa, a = 33.445 kPa, b = 9.242 (-),
a f = 18.535 kPa, bs = 10.446 (-), b f = 15.972 (-),
a f s = 0.417 kPa, as = 2.564 kPa, b f s = 11.602 (-).

Table 1. Material parameters used in the numerical experiments [7, 11].

Note that similar models can also be used for the description of other biological
materials, e.g., arteries, cf. [6, 8].

2 Finite Element Approximation

In this section we consider the variational formulation of the equilibrium equations
(1) with Dirichlet boundary conditions u = gD on ΓD, Neumann boundary conditions
t := σ(u)n = gN on ΓN , Γ = Γ D ∪Γ N , ΓD ∩ΓN = /0, and n is the exterior normal
vector of Γ = ∂Ω . In particular we have to find u ∈ [H1(Ω)]3, u = gD on ΓD, such
that

a(u,v) :=
∫
Ω
σ(u) : e(v)dx =

∫
Ω

f · vdx+
∫
ΓN

gN · vdsx =: F(v) (7)

is satisfied for all v ∈ [H1(Ω)]3, v = 0 on ΓD.
By introducing an admissible decomposition of the computational domainΩ into

tetrahedra and by using piecewise quadratic basis functions ϕ�, the Galerkin finite el-
ement discretization of the variational formulation (7) results in a nonlinear system
of algebraic equations, to find uh satisfying an approximate Dirichlet boundary con-
dition uh = QhgD on ΓD, and

K�(uh) =

∫
Ω
σ(uh) : e(ϕ�)dx =

∫
Ω

f ·ϕ�dx+
∫
ΓN

gN ·ϕ�dsx = F�. (8)

For the solution of the nonlinear system (8), i.e. of G(uh) :=K(uh)−F = 0, we apply
Newton’s method to obtain the recursion

uk+1
h = uk

h +Δuk
h, G′h(u

k
h)Δuk

h =−G(uk
h),

or, by using the definition of G(·),
uk+1

h = uk
h +Δuk

h, K′h(u
k
h)Δuk

h =−K(uk
h). (9)
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For the computation of the linearized stiffness matrix K′h(u
k
h) we need to evaluate the

derivative of the nonlinear material model as described in the previous section. For a
detailed presentation how to compute K′h(u

k
h) in this particular case, see [5].

3 Finite Element Tearing and Interconnecting

For the parallel solution of (9) we will use a finite element tearing and interconnect-
ing approach [4], see also [8, 14] and references given therein. For a bounded domain
Ω ⊂ R

3 we introduce a non-overlapping domain decomposition

Ω =
p⋃

i=1

Ω i withΩi∩Ω j = /0 for i = j, Γi = ∂Ωi. (10)

The local interfaces are given byΓi j :=Γi∩Γj for all i< j. The skeleton of the domain
decomposition (10) is denoted as

ΓC :=
p⋃

i=1

Γi = Γ ∪
⋃
i< j

Γ i j.

Instead of the global problem (1) we now consider local subproblems to find the local
restrictions ui = u|Ωi

satisfying partial differential equations

div(σ(ui))+ f (x) = 0 for x ∈Ωi,

the Dirichlet and Neumann boundary conditions ui = gD on Γi∩ΓD, σ(ui)ni = gN on
Γi∩ΓN , and the transmission conditions ui = u j, ti+t j = 0 onΓi j, where ti =σ(ui)ni is
the local boundary stress, and ni is the exterior normal vector of the local subdomain
boundary Γi = ∂Ωi. Note that the local stress tensors σ(ui) are defined locally by
using the stress-strain function Ψ as introduced in Sect. 1, and by using localized
parameters κ ,k1,k2,c and fiber directions β1, β2. Hence, by reordering the degrees
of freedom, the linearized system (9) can be written as

⎛
⎜⎜⎜⎜⎜⎝

K′11(u
k
1,h) K′1C(u

k
1,h)A1

· ·
K′pp(u

k
p,h) K′pC(u

k
p,h)Ap

A�1 K′C1(u
k
1,h) · A�p K′Cp(u

k
p,h)

p
∑

i=1
A�i K′CC(u

k
i,h)Ai

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Δuk
1,I

·
Δuk

p,I

Δuk
C

⎞
⎟⎟⎟⎠=−

⎛
⎜⎜⎜⎜⎜⎝

K1(uk
1,h)

·
Kp(uk

p,h)
p
∑

i=1
A�i KC(uk

i,h)

⎞
⎟⎟⎟⎟⎟⎠
,

where the increments Δuk
i,I correspond to the local degrees of freedom within the

subdomain Ωi, and Δuk
C is related to all global degrees of freedom on the coupling

boundary ΓC. By introducing the tearing

wi =

(
Δuk

i,I

AiΔuk
C

)
, K′i =

(
K′ii(uk

i,h) K′iC(u
k
i,h)

K′Ci(u
k
i,h) K

′
CC(u

k
i,h)

)
, fi =−

(
Ki(uk

i,h)

KC(uk
i,h)

)
,
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by applying the interconnecting
p
∑

i=1
Biwi = 0, and by using discrete Lagrange multi-

pliers, we finally have to solve the system
⎛
⎜⎜⎜⎝

K′1 B�1
. . .

...
K′p B�p

B1 . . . Bp

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

w1
...

wp

λ

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

f1
...

fp

0

⎞
⎟⎟⎟⎠ . (11)

For the solution of the linear system (11) we follow the standard approach of tearing
and interconnecting methods. In the case of a floating subdomain Ωi, i.e. Γi ∩ΓD =
/0, the local matrices K′i are not invertible. Hence we introduce the Moore-Penrose
pseudo inverse K†

i to represent the local solutions as

wi = K†
i (fi−B�i λ )+

6

∑
k=1

γk,ivk,i, (12)

where vk,i ∈ ker K′i correspond to the rigid body motions of elasticity. Note that in
this case we also require the solvability conditions

(fi−B�i λ ,vk,i) = 0 for i = 1, . . . ,6.

In the case of a non-floating subdomain, i.e. ker Ki = /0, we may set K†
i = K−1

i . As
in [10] we may also consider an all-floating approach where also Dirichlet boundary
conditions are incorporated by using discrete Lagrange multipliers.

In general, we consider the Schur complement system of (11) to obtain

p

∑
i=1

BiK
†
i B
�
i λ −

p

∑
i=1

6

∑
k=1

γk,iBivk,i =
p

∑
i=1

BiK
†
i fi, (fi−B�i λ ,vk,i) = 0,

which can be written as (
F −G
G�

)(
λ
γ

)
=

(
d

e

)
(13)

with

F=
p

∑
i=1

BiK
†
i B
�
i , G=

p

∑
i=1

6

∑
k=1

Bivk,i, d =
p

∑
i=1

BiK
†
i fi, ek,i = (fi,vk,i).

For the solution of the linear system (13) we use the projectionP� := I−G(G�G)−1G�
and it remains to consider the projected system

P�Fλ = P�d (14)

which can be solved by using a parallel GMRES method with suitable precondition-
ing. Note that the initial approximate solution λ 0 satisfies the compatibility condi-
tion G�λ 0 = e. In a post processing we finally recover γ = (G�G)−1G� (Fλ −d),
and subsequently the desired solution (12).
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Following [3] we are going to apply either the lumped preconditioner

PM−1 :=
p

∑
i=1

BiK
′
iB
�
i , (15)

or the Dirichlet preconditioner

PM−1 :=
p

∑
i=1

Bi

(
0 0

0 Si

)
B�i , (16)

where
Si = K′CC(u

k
i,h)−K′Ci(u

k
i,h)K

′−1
ii (uk

i,h)K
′
iC(u

k
i,h)

is the Schur complement of the local finite element matrix K′i. Alternatively, one
may also use the scaled hypersingular boundary integral operator preconditioner as
proposed in [9].

4 Numerical Results

In this section we present some examples to show the applicability of the FETI ap-
proach for the simulation of the myocardium, see Fig. 3. We consider a mesh of
the left and the right ventricle of a rabbit heart with given fiber and sheet direc-
tions, see Fig. 1, which is decomposed in 480 subdomains, see Fig. 2. To describe
the anisotropic and nonlinear cardiac tissue, we use the material model (2) with the
parameters given in Table 1. Dirichlet boundary conditions are imposed on the top of
the myocardium mesh. The interior wall of the right ventricle is exposed to the pres-
sure of 1 mmHg which is modeled with Neumann boundary conditions. Although
this pressure is rather low, the material model as used is orthotropic. To simulate a
higher pressure, an appropriate time stepping scheme has to be used. However, this
does not affect the number of local iterations significantly. The local Moore Penrose
pseudo inverse matrices are realized with a sparsity preserving regularization and the
direct solver package Pardiso [12, 13]. The global nonlinear finite element system
with 12.188.296 degrees of freedom is solved by a Newton scheme, where the FETI
approach is used in each Newton step. For this specific example the Newton scheme
needed six iterations. Due to the non-uniformity of the subdomains the efficiency of a
global preconditioner becomes more important. We consider both the classical FETI
approach, as well as the all–floating formulation. Besides no preconditioning we use
the simple lumped preconditioner (15) and the Dirichlet preconditioner (16). It turns
out that the number of iterations for the all–floating formulation is approximately
half the number of iterations for the standard approach. Moreover, the Dirichlet pre-
conditioner within the all–floating formulation requires only 108 iterations, with a
computing time of approximately 5 min. All computations were done at the Vienna
Scientific Cluster (VSC2).
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Fig. 1. Left and right ventricle of the rabbit heart. Mesh
consists of 3.073.529 tetrahedrons and 547.680 vertices.
Black lines indicate fiber directions f0. Point of view is
from above showing the interior of the left and right ven-
tricle

preconditioner iterations

classical FETI

none 941
lumped, (15) 916
Dirichlet, (16) 215

all-floating FETI

none 535
lumped, (15) 401
Dirichlet, (16) 108

Fig. 2. The picture shows the displacement field of the rabbit heart with pressure applied in
the right ventriculum. Point of view is from below showing the apex of the heart at the bottom.
In the table the iteration numbers of the global GMRES method for different preconditioners
are given

Fig. 3. Von Mises stress in the right
ventricle. Point of view is from above
looking inside the right ventricle
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Summary. This paper considers the hp-finite element discretization of an elliptic boundary
value problem using tetrahedral elements. The discretization uses a polynomial basis in which
the number of nonzero entries per row is bounded independently of the polynomial degree.
The authors present an algorithm which computes the nonzero entries of the stiffness matrix
in optimal complexity. The algorithm is based on sum factorization and makes use of the
nonzero pattern of the stiffness matrix.

1 Introduction

hp-finite element methods (hp-FEM), see e.g. [6, 9], have become very popular for
the approximation of solutions of boundary value problems with more regularity. In
order to obtain the approximate finite element solution numerically stable and fast,
the functions have to be chosen properly in hp-FEM. For quadrilateral and hexahe-
dral elements, tensor products of integrated Legendre polynomials are the prefered
basis functions, see [2]. For triangular and tetrahedral elements, the element can be
considered as collapsed quadrilateral or hexahedron. This allows us to use tensor
product functions. In order to obtain sparsity in the element matrices and a moder-
ate increase of the condition number, integrated Jacobi polynomials can be used, see
[3, 5, 7]. Then, it has been shown that the element stiffness and mass matrix have a
bounded number of nonzero entries per row, see [3–5] which results in a total number
of O(pd), d = 2,3, nonzero entries in two and three space dimensions, respectively.
However, the explicit computation of the nonzero entries is very involved.

This paper presents an algorithm which computes the element stiffness and mass
matrices in O(p3) operations in two and three space dimensions. The algorithm com-
bines ideas based on sum factorization, [8], with the sparsity pattern of the matrices.
One other important ingredient is the fast evaluation of the Jacobi polynomials.

The outline of this paper is as follows. Section 2 defines H1-conforming, i.e.
globally continuous piecewise polynomials, basis functions on the tetrahedron. The
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sum factorization algorithm is presented in Sect. 3. Section 4 is devoted to the eval-
uation of the Jacobi polynomials. The complexity of the algorithm is estimated in
Sect. 5.

2 Definition of the Basis Functions

For the definition of our basis functions Jacobi polynomials are required. Let

pαn (x) =
1

2nn!(1− x)α
dn

dxn

(
(1− x)α(x2−1)n) n ∈ N0, α,β >−1 (1)

be the nth Jacobi polynomial with respect to the weight function (1− x)α . The func-
tion pαn is a polynomial of degree n, i.e., pαn ∈ Pn((−1,1)), where Pn(I) is the space
of all polynomials of degree n on the interval I. In the special case α = 0, the func-
tions p0

n(x) are called Legendre polynomials. Moreover, let

p̂αn (x) =
∫ x

−1
pαn−1(y) dy n≥ 1, p̂α0 (x) = 1 (2)

be the nth integrated Jacobi polynomial. Several relations are known between the
different families of Jacobi polynomials, see e.g. [1]. In this paper, the relations

pα−1
n (x) =

1
α+ 2n

[
(α+ n)pαn (x)−npαn−1(x)

]
, (3)

p̂αn+1(x) =
2n+α−1

(2n+ 2)(n+α)(2n+α−2)

×((2n+α−2)(2n+α)x+α(α−2)) p̂αn (x)

− (n−1)(n+α−2)(2n+α)
(n+ 1)(n+α)(2n+α−2)

p̂αn−1(x), n≥ 1. (4)

are required.
Let &̂ be the reference tetrahedron with the four vertices at (−1,−1,−1),

(1,−1,−1), (0,1,−1) and (0,0,1). On this element, the interior bubble functions

φi jk(x,y,z) = ui(x,y,z)vi j(y,z)wi jk(z), i≥ 2, j,k ≥ 1, i+ j+ k≤ p (5)

are proposed for H1 elliptic problems in [3, (29)], where the auxiliary functions are

ui(x,y,z) = p̂0
i

(
4x

1−2y− z

)(
1−2y− z

4

)i

,

vi j(y,z) = p̂2i−1
j

(
2y

1− z

)(
1− z

2

) j

,

wi jk(z) = p̂2i+2 j−2
k (z).

In addition, there are vertex, face and edge based basis functions which can be
regarded as special cases of the above functions (5) for limiting cases of the indices
i, j and k, see [3] for more details.
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Then, the element stiffness matrix for the Laplacian on the reference element &̂
with respect to the interior bubbles reads as

K =

[∫
&̂
∇φi jk(x,y,z) ·∇φi′ j′k′(x,y,z) d(x,y,z)

]
i, j,k≤p,i′+ j′+k′≤p

. (6)

The transformation to the unit cube (−1,1)3 (Duffy trick) and the evaluation of the
nabla operation results in the integration of 21 different summands. More precisely,

K =
21

∑
m=1

κmÎ (m)

with known numbers κm ∈ R (see Table 2) and

Î (m) =

[∫ 1

−1
px,1(x)px,2(x) dx

×
∫ 1

−1

(
1− y

2

)γy
py,1(y)py,2(y) dy

×
∫ 1

−1

(
1− z

2

)γz
pz,1(z)pz,2(z) dz

]
i+ j+k<p;i′+ j′+k′<p

.

The structure of the functions and coefficients is displayed in Table 1.
One summand is the term

Î (6) =
(
mi jk,i′ j′k′

)
i+ j+k≤p,i′+ j′+k′≤p (7)

which corresponds (before the Duffy trick) to

mi jk,i′ j′k′ =
∫
&̂

p̂0
i

(
4x

1−2y− z

)
p̂0

i′

(
4x

1−2y− z

)(
1−2y− z

4

)i+i′

× p̂2i−1
j

(
2y

1− z

)
p̂2i′−1

j′

(
2y

1− z

)(
1− z

2

) j+ j′

×p2i+2 j−2
k−1 (z)p2i′+2 j′−2

k′−1 (z) d(x,y,z).

The Duffy transformation applied to (7) gives

mi jk,i′ j′k′ =
∫ 1

−1
p̂0

i (x)p̂0
i′(x) dx

∫ 1

−1

(
1− y

2

)i+i′+1

p̂2i′−1
j′ (y)p̂2i−1

j (y) dy

×
∫ 1

−1

(
1− z

2

)i+ j+i′+ j′+2

p2i+2 j−2
k−1 (z)p2i′+2 j′−2

k′−1 (z) dz. (8)

It has been shown in [3], this matrix has the sparsity pattern

mi jk,i′ j′k′ = 0 if (i, j,k, i′, j′,k′) ∈ Sp
re f (i jk, i′ j′k′) (9)
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px,1 px,2 γy py,1 py,2 γz pz,1 pz,2

Î (1) p0
i−1 p0

i′−1 i+ i′ −1 p̂2i−1
j p̂2i′−1

j′ β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

Î (2) p̂0
i p̂0

i′ i+ i′+ 1 p2i−1
j−1 p2i′−1

j′−1 β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

Î (3) p0
i−2 p̂0

i′ i+ i′ p̂2i−1
j p2i′−1

j′−1 β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

Î (4) p̂0
i p0

i′−2 i+ i′ p2i−1
j−1 p̂2i′−1

j′ β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

Î (5) p0
i−2 p0

i′−2 i+ i′ −1 p̂2i−1
j p̂2i′−1

j′ β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

Î (6) p̂0
i p̂0

i′ i+ i′+ 1 p̂2i−1
j p̂2i′−1

j′ β +β ′+ 2 p−2+2β
k−1 p−2+2β ′

k′−1

Î (7) p̂0
i p̂0

i′ i+ i′+ 1 p2i−1
j−2 p̂2i′−1

j′ β +β ′+ 1 p̂−2+2β
k p−2+2β ′

k′−1

Î (8) p̂0
i p̂0

i′ i+ i′+ 1 p2i−1
j−1 p̂2i′−1

j′ β +β ′+ 1 p̂−2+2β
k p−2+2β ′

k′−1

Î (9) p0
i−2 p̂0

i′ i+ i′ p̂2i−1
j p̂2i′−1

j′ β +β ′+ 1 p̂−2+2β
k p−2+2β ′

k′−1

Î (10) p̂0
i p̂0

i′ i+ i′+ 1 p̂2i−1
j p2i′−1

j′−2 β +β ′+ 1 p−2+2β
k−1 p̂−2+2β ′

k′

Î (11) p̂0
i p̂0

i′ i+ i′+ 1 p̂2i−1
j p2i′−1

j′−1 β +β ′+ 1 p−2+2β
k−1 p̂−2+2β ′

k′

Î (12) p̂0
i p̂0

i′ i+ i′+ 1 p2i−1
j−2 p2i′−1

j′−2 β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

Î (13) p̂0
i p̂0

i′ i+ i′+ 1 p2i−1
j−1 p2i′−1

j′−2 β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

Î (14) p̂0
i p̂0

i′ i+ i′+ 1 p2i−1
j−2 p2i′−1

j′−1 β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

Î (15) p̂0
i p̂0

i′ i+ i′+ 1 p2i−1
j−1 p2i′−1

j′−1 β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

Î (16) p0
i−2 p̂0

i′ i+ i′ p̂2i−1
j p2i′−1

j′−2 β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

Î (17) p0
i−2 p̂0

i′ i+ i′ p̂2i−1
j p2i′−1

j′−1 β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

Î (18) p̂0
i p0

i′−2 i+ i′ p̂2i−1
j p̂2i′−1

j′ β +β ′+ 1 p−2+2β
k−1 p̂−2+2β ′

k′

Î (19) p̂0
i p0

i′−2 i+ i′ p2i−1
j−2 p̂2i′−1

j′ β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

Î (20) p̂0
i p0

i′−2 i+ i′ p2i−1
j−1 p̂2i′−1

j′ β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

Î (21) p0
i−2 p0

i′−2 i+ i′ −1 p̂2i−1
j p̂2i′−1

j′ β +β ′ p̂−2+2β
k p̂−2+2β ′

k′

Table 1. Integrands for K , where β = i+ j, β ′ = i′+ j′

where

Sp
re f (i jk, i′ j′k′) = {i+ j+ k≤ p, i′+ j′+ k′ ≤ p, |i− i′| ∈ {0,2}

∨ |i− i′+ j− j′|> 4 ∨ |i− i′+ j− j′+ k− k′|> 4}
cf. [3, Theorem 3.3]. In the following the more general case

Sp(i jk, i′ j′k′) = {i+ j+ k≤ p, i′+ j′+ k′ ≤ p, |i− i′|> 2

∨ |i− i′+ j− j′|> 4 ∨ |i− i′+ j− j′+ k− k′|> 4} (10)

is considered, e.g. the orthogonalities for |i− i′|= 1 are not assumed.
All 21 integrals give rise to a similar band structure as detailed above for Î (6)

and can thus be treated in the same way as explained below for the particular case
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m κm

1,6,9,19 1

5,21 5
4

4,8,20 c1(i, j)

7,19 c2(i, j)

3,11,17 c1(i′, j′)

2,15 c1(i, j)c1(i′, j′)

13 c1(i, j)c2(i′, j′)

10,16 c2(i′, j′)

14 c1(i′, j′)c2(i, j)

21 c2(i, j)c2(i′, j′)

Table 2. Coefficients κm for K , where c1(i, j) =−1
2

2i−1
2i+2 j−3

and c2(i, j) =
j−1

2i+2 j−3
.

of Î (6). The only difference are shifts in the weights α of the Jacobi polynomials or
changes of the weight functions.

3 Sum Factorization

In this section, we present an algorithm for the fast numerical generation of the local
element matrices (6) for tetrahedra. The methods are based on fast summation tech-
niques presented in [7, 8] and are carried out in detail for the example of the matrix
Î (6) (8).

All one dimensional integrals in (8) are computed numerically by a Gaussian
quadrature rule with points xk, k = 1, . . . , p+ 1 and corresponding weights ωk. The
points and weights are chosen such that

∫ 1

−1
f (x) dx =

p+1

∑
l=1

ωl f (xl) ∀ f ∈P2p. (11)

Since only polynomials of maximal degree 2p are integrated in (8), these integrals
are evaluated exactly. Therefore, we have to compute
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mi jk,i′ j′k′ =
p+1

∑
l=1

ωl p̂0
i (xl)p̂0

i′(xl)

×
p+1

∑
m=1

ωm

(
1− xm

2

)i+i′+1

p̂2i′−1
j′ (xm)p̂2i−1

j (xm)

×
p+1

∑
n=1

ωn

(
1− xn

2

)i+ j+i′+ j′+2

p2i+2 j−2
k (xn)p2i′+2 j′−2

k′ (xn),

i.e., for all (i, j,k, i′, j′,k′) ∈Sp(i jk, i′ j′k′), cf. (10), (9). This is done by the following
algorithm.

Algorithm 3.1 1. Compute

h(1)i;i′ =
p+1

∑
l=1

ωl p̂0
i (xl)p̂0

i′(xl)

for all i, i′ ∈ N satisfying |i− i′| ≤ 2 and i, i′ ≤ p.
2. Compute

h(2)i, j;i′, j′ =
p+1

∑
m=1

ωm

(
1− xm

2

)i+i′+1

p̂2i−1
j (xm)p̂2i′−1

j′ (xm)

for all i, j, i′, j′ ∈ N satisfying |i− i′| ≤ 2, |i + j− i′ − j′| ≤ 4, i + j ≤ p and
i′+ j′ ≤ p.

3. Compute

h(3)β ,k;β ,′k′ =
p+1

∑
n=1

ωn

(
1− xn

2

)β+β ′+2

p2β−2
k (xn)p2β ′−2

k′ (xn)

for all k,k′,β ,β ′ ∈ N satisfying |β − β ′| ≤ 4, |β + k− β ′ − k′| ≤ 4, β + k ≤ p
and β ′+ k′ ≤ p.

4. For all (i, j,k, i′, j′,k′) ∈ Sp(i jk, i′ j′k′), set

mi jk,i′ j′k′ = h(1)i;i′ h
(2)
i, j;i′, j′h

(3)
i+ j,k;i′+ j′,k′ .

The algorithm requires the numerical evaluation of Jacobi and integrated Jacobi
polynomials at the Gaussian points xl , l = 1, . . . , p+ 1. In the next subsection, we
present an algorithm which computes the required values p̂αk (xl), m = 1, . . . , p+ 1,
k = 1, . . . , p, α = 1, . . . ,2p in O(p3) operations.

4 Fast Evaluation of Integrated Jacobi Polynomials

The integrated Jacobi polynomials needed in the computation of mi jk,i′ j′k′ (7) are
p̂0

i (x), p̂2i−1
j (x) (progressing in odd steps with respect to the parameter α) and
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p̂2i+2 j−2
k (x) (progressing in even steps with respect to the parameter α). For i+ j+

k ≤ p with i≥ 2 and j,k ≥ 1 this means that

[
p̂0

i (x)
]

2≤i≤p ,[p̂
3
j(x)]1≤ j≤p, . . . , [p̂

2p−3
j (x)]1≤ j≤p,

[p̂4
k(x)]1≤k≤p, . . . , [p̂

2p−4
k (x)]1≤k≤p

are needed. Since one group proceeds in even, the other one in odd steps, the total of
integrated Jacobi polynomials that are needed is

p̂a
n(x), 1≤ n≤ p−3, 3≤ a≤ 2p−3,

if we consider the integrated Legendre polynomials separately. However, integrating
both sides of (3) yields

p̂α−1
n+1 (x) =

1
2n+α

(
(n+α)p̂αn+1(x)−np̂αn (x)

)
,

valid for all n≥ 0. Using this relation starting from the integrated Jacobi polynomials
of highest degree, i.e., α = 2i− 1 = 2p− 3, the remaining Jacobi polynomials can
be computed using only two elements of the previous row. Note that for the initial
values n = 1 we have p̂α1 (x) = 1+ x for all α . For assembling the polynomials of
highest degree the three term recurrence (4) is used. Summarizing, the evaluation of
the functions at the Gaussian points can be done in O(p3) operations. This is optimal
in the three-dimensional case, but not in the two-dimensional case.

5 Complexity of the Algorithm

The cost of the last three steps is O(p3), the first step requires O(p2) operations.
Together with the evaluation of the Jacobi polynomials, the algorithm requires in
total O(p3) flops.

This algorithm uses only the sparsity structure (10). Since all matrices Î (m),
m= 1, . . . ,21, have a similar sparsity structure of the form (10), this algorithm can be
extended to all ingredients which are required for assembling/computing the element
stiffness matrix (6) for the Laplacian, see [3]. The algorithm can also be extended
to mass matrices or matrices arising from the discretization of elliptic problems in
H(curl ) and H(div), see [4]. For two-dimensional problems, the third step of the

algorithm is not necessary. However, the values h(2)i, j;i′, j′ have to be computed. Since

this requires O(p3) floating point operations, the total cost in 2D is also O(p3).

Acknowledgments The work has been supported by the FWF projects P20121, P20162, and
P23484.
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1 Introduction

In this paper, we present a new non-overlapping domain decomposition algorithm
for the Helmholtz equation. We are particularly interested in the method introduced
by P.-L. Lions [6] for the Laplace equation and extended to the Helmholtz equa-
tion by B. Després [3]. However, this latest approach provides slow convergence
of the iterative method due to the choice of the transmission conditions. Thus, in
order to improve the convergence, several methods were developed [4, 5, 9, 10].
The main idea in [5, 9] consists in computing a more accurate approximation of the
Dirichlet-to-Neuman (DtN) operator than the one proposed in [3] by using partic-
ular local transmission conditions. We propose in this work a different approach to
approximate the DtN map. We mainly use Padé approximants to suitably localize the
nonlocal representation of the DtN operator [8, 11]. This results in an algorithm with
quasi-optimal convergence properties.

2 Model Problem and Non-overlapping Domain Decomposition
Method

For the sake of simplicity, we limit ourselves to the evaluation of the two-dimensional
time-harmonic scattering wave by an obstacle denoted by K. The three-dimensional
case is treated similarly without adding any difficulty. We consider the model prob-
lem given by the system

R. Bank et al. (eds.), Domain Decomposition Methods in Science and Engineering XX,
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Ωj
Ωi

Σ

Γ

Σij = Σji

ni

nj

Fig. 1. Example of 2D non-overlapping domain decomposition method

⎧⎪⎪⎨
⎪⎪⎩

Δu+ k2u = 0 in R
2\K,

u = f on Γ = ∂K,

lim
|x|→∞

|x|1/2(∂|x|u− iku) = 0,
(1)

composed of the Helmholtz equation, the Dirichlet condition on Γ (TE polariza-
tion in electromagnetics) where f = −eikα ·x describes the incident plane wave with
|α| = 1 and k is the wavenumber, and the Sommerfeld radiation condition. To
solve (1), we combine the absorbing boundary condition method [1, 2] with non-
overlapping domain decomposition methods. The absorbing boundary conditions
method consists of truncating the computational domain using an artificial interface
Σ , and reducing the system (1) to the following one

⎧⎪⎨
⎪⎩
Δu+ k2u = 0 in Ω ,

u = f on Γ ,
∂nu+Bu = 0 on Σ ,

(2)

whereΩ is the bounded domain enclosed by Σ andΓ , B indicates the approximation
of the Dirichlet-to-Neuman (DtN) operator, and n is the outward normal to Σ . We are
interested in the domain decomposition method introduced in [3, 6]. The first step of
this approach consists in splitting Ω into several subdomains Ωi, i = 1, . . . ,N, such
that

• Ω =
⋃N

i=1 Ω i (i = 1, . . . ,N),
• Ωi∩Ω j = /0, if i = j, (i, j = 1, . . . ,N),
• ∂Ωi∩∂Ω j = Σ i j = Σ ji (i, j = 1, . . . ,N) is the artificial interface (see Fig. 1) sep-

arating Ωi from Ω j as long as its interior Σi j is not empty.

Then, applying the Lions-Després algorithm, the solution of the initial problem (1)
is reduced to an iterative procedure, where each iteration is performed by solving the
local problems
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⎧⎪⎪⎨
⎪⎪⎩

Δu(n+1)
i + k2u(n+1)

i = 0 in Ωi,

u(n+1)
i = fi on Γi,

∂niu
(n+1)
i +Bu(n+1)

i = 0 on Σi

(3a)

∂niu
(n+1)
i +S u(n+1)

i = g(n)i j on Σi j, (3b)

and forming the quantities to be transmitted through the interfaces

g(n+1)
i j =−∂n j u

(n+1)
j +S u(n+1)

j =−g(n)i j + 2S u(n+1)
j on Σi j , (4)

where ui = u|Ωi , ni (resp. n j) is the outward unit normal of the boundary of Ωi

(resp. Ω j), i = 1, . . . ,N, j = 1, . . . ,N , Γi = ∂Ωi ∩Γ and Σi = ∂Ωi ∩Σ . Note that
the boundary condition on Γi (resp. Σi) does not take place if the interior of ∂Ωi∩Γ
(resp. ∂Ωi∩Σ ) is the empty set.

3 New Transmission Conditions

It is well established that the convergence of the domain decomposition algorithms
depends on the choice of the transmission operator S . In the original method pro-
posed by B. Després [3], the usual approximation of the DtN operator S u = −ıku
is used. The resulting algorithm does not treat efficiently the evanescent modes of
the iteration operator which impairs the iterative method [9]. In order to improve the
convergence, two techniques, based on the modification of the operator S , were
proposed. First, the optimized Schwarz method introduced by Gander et al. [5].
It consists of using local second-order approximations of the DtN operator S u =
δu + γ∂ 2

s u, where ∂s is the tangential derivative operator, and the coefficients δ
and γ are optimized using the rate of convergence obtained in the case of the
half-plane. The second method, called the “evanescent modes damping algorithm”
(EMDA), was introduced by Boubendir et al. [9, 10]. In this case, S is chosen as
S u = −ıku+X u where X is a self-adjoint positive operator. We only consider
here the usual case where X is a real-valued positive coefficient. In this paper we
propose a new “square-root” transmission operator [7, 8, 11] that takes the following
form:

S u =−ıkOp

(√
1− ξ

2

k2
ε

)
u, (5)

where
kε = k+ ıε (6)

is a complexified wavenumber, and the notation
√

z designates the principal deter-
mination of the square-root of a complex number z with branch-cut along the nega-
tive real axis. This choice of the square-root operator is motivated by developments
of absorbing boundary conditions (ABC) for scattering problems [1, 2]. Generally
speaking, the usual techniques to develop absorbing boundary conditions consists
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mainly in using Taylor expansions to approximate the symbol of the DtN operator.
However, these approximations prevent the modelling of the three parts describing
the wave (propagating, evanescent and transition) at the same time, which affects, in
return, the final accuracy of the solution. This problem can be solved by high-order
local ABC introduced in [7, 8], which uses (5) to model all the scattering modes:
propagating, evanescent as well as (in an approximate way) grazing. The localiza-
tion is performed with complex Padé approximants, and the coefficient ε in (6) can
then be chosen to minimize spurious reflections at the boundary. In the context of
domain decomposition methods, this optimization of ε improves the spectrum of the
iteration operator on these grazing modes. As it is shown in [8], the optimal value of
this parameter is given by ε = 0.4k1/3H 2/3, where H is the mean curvature on the
interface.

4 Localization of the Square-Root Operator Using Padé
Approximants

Because the square-root operator (5) is nonlocal, its use in the context of finite
element method is ineffective since it would lead to consider full matrices for the
transmission boundaries. A localization process of this operator can be efficiently
done by using partial differential (local) operators and obtain sparse matrices. This
is performed [7, 8, 11] in rotating branch-cut approximation of the square-root and
then applying complex Padé approximants of order Np,

√
1− ξ

2

k2
ε

u≈ RαNp
(−ξ

2

k2
ε
)u

=C0u+
Np

∑
�=1

A�(
−ξ 2

k2
ε

)(1+B�(
−ξ 2

k2
ε

))−1u,

(7)

which correspond to the complex Padé approximation

√
1+ z≈ RαNp

(z) =C0 +
Np

∑
�=1

A�z
1+B�z

, (8)

and where the complex coefficients C0, A� and B� are given by

C0 = eı α2 RNp(e
−ıα −1),A� =

e−
ıα
2 a�

(1+ b�(e−ıα −1))2 ,B� =
e−ıαb�

1+ b�(e−ıα −1)
.

Here, α is the angle of rotation, (a�,b�), � = 1, . . . ,Np, are the standard real Padé
coefficients

a� =
2

2Np + 1
sin2(

�π
2Np + 1

) , b� = cos2(
�π

2Np + 1
), (9)

and RNp is the real Padé approximant of order Np
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√
1+ z≈ RNp(z) = 1+

Np

∑
�=1

a�z
1+ b�z

. (10)

For a variational representation, the approximation of the Padé-localized square-
root transmission operators is realized by using auxiliary coupled functions [7, 11]

S u =−ık(C0u+
Np

∑
�=1

A�divΣd (
1
k2
ε
∇Σdϕ�)) on Σd , (11)

where the functions ϕ�, � = 1, ..,Np, are defined on any artificial interface Σd as the
solutions of the surface PDEs

(1+B�divΣd (
1
k2
ε
∇Σd ))ϕ� = u. (12)

The resulting transmitting condition is a Generalized Impedance Boundary Condi-
tion, and is denoted by GIBC(Np,α,ε) for the Padé approximation with Np auxiliary
functions, for an angle of rotation α and a damping parameter ε . The lowest-order
approximation S = −ıkI (resp. S = −ıku + X u) is denoted by IBC(0) (resp.
IBC(X )).

5 Numerical Results

k
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E

S
it

er
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circle-pie, N
dom 

= 5

IBC(k=2) nλ = 20
IBC(k=2) nλ = 10

GIBC(2,¼=4,k=4) nλ = 10
GIBC(2,¼=4,k=4) nλ = 20
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GIBC(8,¼=4,k=4) nλ = 20
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Fig. 2. Left: decomposition of the computational domain. Right: iteration number with respect
to the wavenumber k for two densities of discretization nλ
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The numerical tests presented here concern the scattering of a plane wave by
a unit sound-soft circular cylinder. We truncate the computational domain using a
circle of radius equal to 4, on which the second-order Bayliss-Turkel absorbing con-
dition [1] is set (see problem (2)). We perform these numerical tests on partitions
of the type displayed in Fig. 2, and we refer to them as “circle-pie”. We use a finite
element method with linear (P1) basis functions to approximate the solution in each
subdomain. The implementation of this method with Padé approximants is described
in [11]. The iterative problem is solved using GMRES and the iterations are stopped
when the initial residual has decreased by a factor of 10−6.

We begin by testing the iterative method with respect to the wavenumber k. Let
us consider the number of subdomains Ndom = 5. Because the interfaces are straight,
as depicted on the left picture of Fig. 2, ε cannot be optimized as described in Sect. 3.
However, numerical simulations show that ε = k/4 is an appropriate choice for this
kind of interfaces. On the right picture of Fig. 2, we represent the behavior of the
number of iterations. We choose two densities of discretization points per wave-
length nλ . We compare the new algorithm noted GIBC(Np, π/4, ε), where Np is the
Padé number and π/4 the angle of rotation, with the EMDA algorithm designated by
IBC(k/2). In this latest case, the number of iterations clearly increases with respect
to k and nλ . However, for GIBC(Np, π/4, ε), the convergence rate is almost inde-
pendent of both the wavenumber and density of discretization points per wavelength.
In particular, the convergence for Np = 2 and Np = 8 is similar. This means that the
cost of the solution when solving local problems is comparable to the other methods
with usual local transmission conditions (see [11] for more details).
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Fig. 3. Number of iterations with respect to the density of discretization nλ and the number of
subdomains Ndom

In Fig. 3, we show the number of iterations with respect to: (i) the density of dis-
cretization points per wavelength nλ for two wavenumbers k, and (ii) the number of
subdomains Ndom. We can see that for a small Padé number (Np = 2), the conver-
gence is almost independent of the mesh size. A larger choice of Np will provide an
optimal result. We also see that the number of iterations with respect to the number
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of subdomains does not deteriorate with increasing values of Np or k, contrary to
IBC(k/2).

6 Conclusion

We designed in this paper a new non-overlapping domain decomposition algorithm
for the Helmholtz equation with quasi-optimal convergence properties. It is based on
a suitable approach which consists in using Padé approximants to approximate the
DtN operator. The analysis of this new approach can be found in [11], as well as
several numerical tests including the three-dimensional case.
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A Continuous Approach to FETI-DP Mortar
Methods: Application to Dirichlet and Stokes Problem
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Summary. In this contribution we extend the FETI-DP mortar method for elliptic problems
introduced by Bernardi et al. [2] and Chacón Vera [3] to the case of the incompressible Stokes
equations showing that the same results hold in the two dimensional setting. These ideas
extend easily to three dimensional problems. Finally some numerical tests are shown as a
conclusion. This contribution is a condensed version of a more detailed forthcoming paper.
We use standard notation, see for instance [1].

1 Incompressible Stokes Equations

Let Ω ⊂ R
2 be a polygonal domain. We look for u ∈ H1

0(Ω) = (H1
0 (Ω))2 and p ∈

L2(Ω) such that
∫
Ω p = 0 and

(∇u,∇v)Ω − (p,div(v))Ω = ( f ,v)Ω , ∀v ∈H1
0(Ω)

−(q,div(u))Ω = 0, ∀q ∈ L2(Ω).

We better accomodate the restriction on the pressure by adding a new scalar
unknown: we look for a pair of values (u,τ) ∈ H1

0(Ω)×R and p ∈ L2(Ω) such
that

(∇u,∇v)Ω − (p,div(v))Ω + t (τ−
∫
Ω

p) = ( f ,v)Ω , ∀(v, t) ∈H1
0(Ω)×R

−(q,div(u))Ω − τ
∫
Ω

q = 0, ∀q ∈ L2(Ω).

Set W =H1
0(Ω)×R normed by ‖v‖2

W = ‖(v, t)‖2
W = ‖∇v‖2

0,Ω+ t2 for any v = (v, t)∈
W , let (·, ·)W be the scalar product on W and b : W ×L2(Ω) �→ R given by

b(q,(v, t)) =−(q,div(v))Ω − t
∫
Ω

q.

Then, we look for u = (u,τ) ∈W and p ∈ L2(Ω) such that
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(u,v)W + b(p,v) = ( f ,v)Ω , ∀v ∈W (1)

b(q,u) = 0, ∀q ∈ L2(Ω). (2)

It is quite straightforward to see that:

Lemma 1. There exists a positive constant β > 0 such that for all p ∈ L2(Ω)

sup
(v,t)∈W

b(p,(v, t))
‖(v, t)‖W

≥ sup
v∈H1

0(Ω),t∈R

b(p,(v, t))

(‖∇v‖2
0,Ω + t2)1/2

≥ β‖p‖0,Ω . (3)

As a consequence, problem (1)–(2) is well posed and its unique solution is the one of
the original Stokes problem with Dirichlet homogeneous boundary conditions.

Next, we splitΩ =∪S
s=1Ω

s with nonoverlaping polygonal subdomains, suppose that

Γs,t = ∂Ω s∩∂Ω t

is either an edge (i.e., a segment), a crosspoint or empty and, finally, consider E0 =
{Γe}e=1,..,E the sorted set of all edges inside Ω . We suppose that each Ω s is of area
O(H2) and shape regular while each Γe is of length O(H) for some fixed H > 0.
The set of all vertices of the polygonal subdomains Ω s that are not on ∂Ω will be
called cross points and denoted by C . Finally, we denote by [v]Γe the jump across
any interface Γe.

We take

Xδ = {v ∈ L2(Ω);vs = v|Ωs ∈ H1(Ω s)∩H1
0 (Ω), 1≤ s≤ S},

X = {v ∈ Xδ , [v]Γe ∈H1/2
00 (Γe), ∀Γe ∈ E0}.

With X = X ×X we construct V = X×R and represent by v = (v, t) any element
of V where v ∈ X and t ∈ R. V is Hilbert space with norm ‖v‖2

V = |v|2X + t2 where,
thanks to Poincaré’s inequality, the norm of v is

|v|X = {
S

∑
s=1
‖∇vs‖2

0,Ω s +
E

∑
e=1
‖[v]Γe‖2

1/2,00,Γe
}1/2.

Here, ‖·‖1/2,00,Γe is the norm induced by the scalar product (·, ·)1/2,00,Γe on H1/2
00 (Γe),

see [5]. To simplify, let {·, ·}Γe = (·, ·)1/2,00,Γe . For the pressure space we consider
M =∏S

s=1 L2(Ω s)(≈ L2(Ω)) and define the continuous bilinear form b : M×V �→R

given by

b(q,v) = −
S

∑
s=1

(qs,div(vs))Ω s − t
S

∑
s=1

∫
Ω s

qs, ∀qs ∈ L2(Ω s).

Next, for each Γe ∈ E0 we take H1/2
00 (Γe) = (H1/2

00 (Γe))
2, and handle the Lagrange

multipliers for the jumps with the space N =∏E
e=1 H1/2

00 (Γe).
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We propose to look for u = (u,τ) ∈ V, p = {ps}s ∈M and λ = {λe}e ∈ N such
that

S

∑
s=1

(∇us,∇vs)Ω s +
E

∑
e=1
{[u]Γe , [v]Γe}Γe + τ t

−
S

∑
s=1

(ps,div(vs))Ω s − t
S

∑
s=1

∫
Ω s

ps +
E

∑
e=1
{λe, [v]Γe}Γe =

S

∑
s=1

( f ,vs)Ω s ,

−
S

∑
s=1

(qs,div(us))Ω s − τ
S

∑
s=1

∫
Ω s

qs = 0,

E

∑
e=1

{μe, [u]Γe}Γe = 0

for all v = (v, t) ∈ V, q = {qs}s ∈M and μ = {μe}e ∈ N.
We see that we added the jumps to the elliptic terms and replaced the pair-

ings H−1/2
00 (Γ )−H1/2

00 (Γ ) for the normal fluxes on the edges by the scalar product

in H1/2
00 (Γ ). As a consequence, we have made a regularization of order 1 for the

Lagrange multipliers and now all terms are suitable to compute in a Galerkin ap-
proach. Moreover, the solution to this problem is that of the incompressible Stokes
equations on Ω .

Next, we elliminate via a standard Schur process the primal variables u and p
in terms of the dual variable λ , and obtain a dual problem that once solved will
give the correct boundary data for the primal variables. Thanks to the fact that the
elliptic part is the scalar product on V, that the inf-sup condition for the bilinear form
b is achieved with velocities without jumps and that the inf-sup condition for c is
achieved with velocities with jumps, our dual problem is a well posed symmetric
positive definite problem.

2 Finite Dimensional Approach

We consider a conforming triangulation Th, h is the mesh size, of Ω that contains
the skeleton E0 as union of edges of triangles and such that on each edge only one
partition is inherited from both sides. As Th is also compatible with the subdivision
ofΩ , its restriction to eachΩs gives a mesh T s

h onΩ s. We use the Taylor-Hood finite
element for the velocity and pressure pair on each subdomain. Define the family of
subspaces {Yh}h ⊂ H1

0 (Ω) and {Qh}h ⊂ H1(Ω) given by

Yh = {v ∈ H1
0 (Ω); v|κ ∈ P2(κ), ∀κ ∈ Th},

Qh = {p ∈ H1(Ω); p|κ ∈ P1(κ), ∀κ ∈Th}

where Pr(κ) is the space of polynomials of degree less or equal to r in the two
variables x and y. On each subdomain, we take also
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Yh(Ω s) = Yh∩H1(Ω s), Qh(Ω s) = Qh∩H1(Ω s), s≤ S.

Consider now Xh = Xh×Xh, where Xh is the broken version of Yh given by

Xh = {v ∈ L2(Ω); vs ∈ Y s
h , ∀ s = 1,2, . . . ,S,

and v is continuous at every cross point in C } ⊂ X ,

define Vh = Xh×R, Mh =∏S
s=1 Qh(Ω s) and finally Nh ⊂ N is given by the restric-

tion of functions in Xh to the skeleton E0.
The discrete uniform inf-sup condition for c on the pair Vh and Nh is by now a

well known result and the discrete uniform inf-sup condition for b is a consequence
of Theorem 1.12 pp. 130 in [4]. The idea is to use locally on each subdomainΩ s the
stability of the pair P2−P1 and that of the pair P2−P0 globally on the substructures
Ω s of Ω . This inf-sup condition is achieved with a discrete continuous function
in the wohle of Ω and, as a consequence, the continuous setting is replicated and
the equation for the multiplier can be solved via Conjugate Gradient Method (CG)
without preconditioner. Then, we have

1. An external computational cicle, the CG for the Lagrange multiplier with a fixed
number of iterations independent of the discretization parameter h and

2. At each iteration of this external cicle, the resolution of a primal problem of the
form:
Find (wh,qh) ∈Vh×Mh such that

(wh,vh)V + b(qh,vh) = (ξ ,vh) ∀vh ∈ Vh,

b(p,wh) = 0 ∀p ∈Mh

where for the initial residuous r0 we have (ξ ,vh) = ∑S
s=1( f ,vs

h)Ω s and for the
iteration m≥ 0 we have (ξ ,vh) = ∑E

e=1{{dm}e, [vh]Γe}Γe = 0

A closer inspection to the general form of this saddle point problem for the primal
variables shows that the solution can be obtained by means of independent solves
per subdomain. Ordering the unknows per subdomains, xs = (us, ps) and xC = uC,
the linear system for the primal variables is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M11 M1,2 . . . . . . . . . M1,S M1,C D1

M21 M2,2 M2,3 . . . . . . . . . M2,C D2

M31 M3,2 M3,3 M3,4 . . . . . . M3,C D3
...

. . .
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
. . .

...
...

...
... . . . . . . . . . MS,S−1 MS,S MS,C DS

Mt
1,C Mt

2,C . . . . . . Mt
S−1,C Mt

S,C MC,C 0
Dt

1 Dt
2 . . . . . . Dt

S−1 Dt
S 0t 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...

...
xS

xC

τ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

b2

b3

...

...
bS

bC

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the different blocks are of the form
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Ms,s =

(
As,s Bs,s

Bt
s,s 0

)
, Ms,s′ =

(
As,s′ 0

0 0

)
, Ms,C =

(
As,C

Bt
s,C

)
, MC,C = AC,C

here each block Ms,s is similar to a standard Stokes matrix on the subdomain Ω s,
but with our interface contributions, each block Ms,s′ is sparse and contains the

interaction through interfaces of the domainΩ s withΩ s′ , the rectangular blocks Ms,C

contains the interaction with the crosspoints and MC,C contains the interaction of the
crosspoints with themselves. Although this linear system couples all the subdomains
it can be solved by means of the Preconditioned Conjugate Gradient Method using
as a preconditioner the matrix P formed by the main blocks

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M11 0 . . . . . . 0 M1,C D1

0 M2,2 0 . . . 0 M2,C D2

0 0 M3,3 0
. . . M3,C D3

...
. . .

. . .
. . .

. . .
...

...
. . . . . . . . . 0 MS,S MS,C DS

Mt
1,C Mt

2,C . . . Mt
S−1,C Mt

S,C MC,C 0
Dt

1 Dt
2 . . . Dt

S−1 Dt
S 0t 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, the main task here is the resolution of a linear system of the form Px = b
which is done using a Schur complement process for the variables xC and τ . The
equations are

(MC,C−
S

∑
s=1

Mt
s,CM−1

s,s Ms,C)xC−
S

∑
s=1

Mt
s,CM−1

s,s Ds τ = bC−
S

∑
s=1

Mt
s,CM−1

s,s bs,

S

∑
s=1

Dt
sM

−1
s,s Ms,C xC +(

S

∑
s=1

Dt
sM

−1
s,s Ds−1)τ =

S

∑
s=1

Dt
sM

−1
s,s bs.

We finally write xC in terms of τ and solve first for τ , next xC and finally compute all
the xs. As a consequence, the main job is performed with independent solves of the
matrices Ms,s that can be performed independently, i.e., computations of the form

M−1
s,s bs, M−1

s,s Ms,C, M−1
s,s Ds.

3 Some Numerical Tests

For L = 1,2,3, . . . integer we consider on ΩL = [0,L]× [0,1] the exact solution

u(x,y) =

( −sin3(π xL−1)sin2(πy)cos(πy)

−L−1 sin2(π xL−1)sin3(πy)cos(πxL−1)

)
, p(x,y) =

x2

L2 − y2

and partitionΩL into Ω s
L = (s−1,s)× (0,1) for s = 1,2, . . . ,L. For the dual problem

we start our iteration process with λ0,e = 0 on eachΓe and stop all iterations according
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to a relative residual less than 10−6. In this example the gradients control the jumps
and there is no need to introduce them in the elliptic part; then the blocks Ms,t are
null for s = t. Then, there is no need for a PCG in the internal cycle. The following
Table 1 shows that the iteration count for the dual problem is mesh independent on
different configurations Table 2 shows relative errors with respect to the true solution

h = 1/24 h = 1/48 h = 1/96
L = 4 17 17 17
L = 8 23 24 24
L = 16 37 39 39

Table 1. Mesh independent iteration count for the dual problem on different configurations
and for different values of h on ΩL = [0,L]× [0,1]. The number of subdomains is L given by
Ω s = [s−1,s]× [0,1] for s = 1,2,3, . . . ,L

u and p on ΩL Finally, we take on Ω = (0,1)2 the exact solution

eu(h) h = 1/24 h = 1/48 h = 1/96
L = 4 2.1e−04 2.6e−05 3.5e−06
L = 8 1.8e−04 2.3e−05 3.0e−06
L = 16 1.7e−04 2.2e−05 2.9e−06

ep(h) h = 1/24 h = 1/48 h = 1/96
L = 4 6.7e−04 1.6e−04 4.0e−05
L = 8 6.8e−04 1.6e−04 4.2e−05
L = 16 6.8e−04 1.7e−04 4.3e−05

Table 2. Relative errors in velocity field and pressure for different values of h onΩL = [0,L]×
[0,1] and with the same configuration as in Table 1

u(x,y) =

(
−sin3(π x)sin2(πy)cos(πy)

−sin2(π x)sin3(πy)cos(πx)

)
, p(x,y) = (x−0.25)2(y−0.25)2

and partition Ω into 4 equal subdomains with a cross point at (0.5,0.5). Table 3
shows the results and we see that the number of iterations is independent of the mesh
size again (Fig. 1).

Dual Initial PCG Final PCG
h # Iters # Iters # Iters eu(h) ep(h)

1/12 7 22 20 6.9e−4 4.2e−03
1/24 7 21 20 8.8e−5 1.0e−03
1/48 7 23 21 1.2e−5 2.5e−04
1/96 7 23 23 1.4e−6 8.3e−05

Table 3. Results obtained when subdividing the domain Ω = (0,1)2 into four subdomains
with a cross point at (0.5,0.5)



A Continuous Approach to FETI-DP Mortar Methods 533

Fig. 1. Inital iteration with the underlying mesh and some contiguous iterations for the com-
puted pressure

4 Conclusions

We presented a FETI-DP Mortar method applied to incompressible Stokes equations.
Continuity at crosspoints is retained and the jumps across interfaces are included in
the continuous formulation. The Lagrange multipliers are represented by their Riesz-

canonical isometry, which improves their regularity from H−1/2
00 (Γ ) to H1/2

00 (Γ ), and

the mortaring is performed using the H1/2
00 (Γ ) scalar product for each interfaceΓ . As

a consequence, continuous bounds are replicated at the discrete level and no stabi-
lization is required. In this setting we solve a dual problem by a CG that has a mesh
independent condition number. The primal problems involved include the effect of
the coupling between neighboring subdomains at interfaces and are solved by PCG.
Still independent solves per subdomains are possible.

The advantage of the continuous framework introduced is the clear sight of the
effect of condensing all information on subdomains and interfaces before the discrete
work starts and the use of, to our belief, the most appropriated norms on subdomains
and interfaces that make no necessary the use of mesh dependent norms for obtaining
stability.
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1 Introduction

Shape optimization aims to optimize an objective function by changing the shape of
the computational domain. In recent years, shape optimization has received consid-
erable attentions. On the theoretical side there are several publications dealing with
the existence of solution and the sensitivity analysis of the problem; see e.g., [6] and
references therein. On the practical side, optimal shape design has played an impor-
tant role in many industrial applications, for example, aerodynamic shape design [7],
artery bypass design [1, 10], and so on. In this paper, we propose a general frame-
work for the parallel solution of shape optimization problems, and study it in detail
for the optimization of an artery bypass problem.

For PDE constrained optimization problems, there are two basic approaches:
nested analysis and design and simultaneous analysis and design (one-shot meth-
ods). As computers become more powerful in processing speed and memory capac-
ity, one-shot methods become more attractive due to their higher degree of paral-
lelism, better scalability, and robustness in convergence. The main challenges in the
one-shot approaches are that the nonlinear system is two to three times larger, and
the corresponding indefinite Jacobian system is a lot more ill-conditioned and also
much larger. So design a preconditioner that can substantially reduce the condition
number of the large fully coupled system and, at the same time, provides the scalabil-
ity for parallel computing becomes a very important stage in the one-shot methods.
There are several recent publications on one-shot methods for PDE constrained op-
timization problems. In [5], a reduced Hessian sequential quadratic programming
method was introduced for an aerodynamic design problem. In [4], a parallel full
space method was introduced for the boundary control problem where a Newton-
Krylov method is used together with Schur complement type preconditioners. In [9]
and [8], an overlapping Schwarz based Lagrange-Newton-Krylov approach (LNKSz)
was investigated for some boundary control problems. As far as we know no one has
studied shape optimization problems using LNKSz, which has the potential to solve
very large problems on machines with a large number of processors (np). The previ-
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ous work on LNKSz doesn’t consider the change of the computational domain which
makes the study much more difficult and interesting.

2 Shape Optimization on a Moving Mesh

We consider a class of shape optimization problems governed by the stationary in-
compressible Navier-Stokes equations defined in a two dimensional domainΩα . Our
goal is to computationally find the optimal shape for part of the boundary ∂Ωα such
that a given objective function Jo is optimized. We represent the part of the boundary
by a smooth function α(x) determined by a set of parameters a = (a1,a2, . . . ,ap). By
changing the shape defined by α(x), one can optimize certain properties of the flow.
In this paper, we focus on the minimization of the energy dissipation in the whole
flow field and use the integral of the squared energy deformation as the objective
function [6]

min
u,α

Jo(u,α) = 2μ
∫
Ωα
ε(u):ε(u)dxdy+

β
2

∫
I
(α ′′)2dx

subject to⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−μΔu+u ·∇u+∇p = f in Ωα ,
∇ ·u = 0 in Ωα ,

u = g on Γinlet ,
u = 0 on Γwall ,

μ
∂u
∂n
− p ·n = 0 on Γoutlet ,

α(a) = z1, α(b) = z2,

(1)

where u = (u,v) and p represent the velocity and pressure, n is the outward unit
normal vector on ∂Ωα and μ is the kinematic viscosity. Γinlet , Γoutlet and Γwall rep-
resent the inlet, outlet and wall boundaries, respectively; see Fig. 1. f is the given
body force and g is the given velocity at the inlet Γinlet . ε(u) = 1

2 (∇u+(∇u)T) is the
deformation tensor for the flow velocity u and β is a nonnegative constant. I = [a,b]
is an interval in which the shape function α(x) is defined. In the constraints, the first
five equations are the Navier-Stokes equations and boundary conditions and the last
two equations indicate that the optimized boundary should be connected to the rest
of the boundary and z1 and z2 are two given constants. The last term in the objective
function is a regularization term providing the regularity of ∂Ωα .

The optimization problem (1) is discretized with a LBB-stable (Ladyzhenskaya-
Babuška-Brezzi) Q2−Q1 finite element method. Since the computational domain of
the problem changes during the optimization process, the mesh needs to be modified
following the computational domain. Generally speaking, there are two strategies to
modify the mesh. One is mesh reconstruction which often guarantees a good new
mesh but is computationally expensive. The other strategy is moving mesh which
is cheaper but the deformed mesh may become ill-conditioned when the boundary
variation is large. In our test case the boundary variations are not very large, so we
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Γinlet

Γwall

Γoutlet

Γwall
α0(x)

Γ
optimized

α(x)

Γwall

A B

CD

EF

Fig. 1. The initial domain Ωα0 (dashed line) and deformed domain Ωα (solid line) over a
simple mesh. The boundary Γoptimized (ED) denotes the part of the boundary whose shape is
computed by the optimization process

use the latter strategy. The moving of the mesh is simply described by Laplace’s
equations. { −Δδx = 0 in Ωα0 ,

δx = gα on ∂Ωα0 ,
(2)

where δx is the mesh displacement and gα = (gx
α ,g

y
α) is the displacement on the

boundary determined by α(x). Note that gα is obtained automatically during the
iterative solution process. For example, in Fig. 1, gx

α = 0 and gy
α = α(x)−α0(x).

The Eqs. (2) are discretized with a Q2 finite element method. The discretized shape
optimization problem is given as follows

min
u,a,δx

Jo(u,a,δx) = μuTJu+
β
2

Jα

subject to⎧⎪⎪⎨
⎪⎪⎩

Ku+B(u)u−Qp = Ff +Fu,
QTu = 0,
Dδx = Fx,
Aa = Fa.

(3)

Here Ff refers to the discretized body force, Fu and Fx refer to the Dirichlet boundary
condition for u and δx, respectively, and Aa and Fa are the geometric constrains. Note
that K, B(u), Q and J depend on the grid displacement δx, while D is independent of
δx. Here δx is treated as an optimization variable and the moving mesh equations are
viewed as constraints of the optimization problem which are solved simultaneously
with the other equations.

3 One-Shot Lagrange-Newton-Krylov-Schwarz Methods

We use a Lagrange multiplier method to transform the optimization problem (3)
to a nonlinear system G(X) = 0 which is solved by an inexact Newton method.
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Given an initial guess X0, at each iteration, k = 0,1, · · · , we use a GMRES method
to approximately solve the preconditioned system

Hk(Mk)−1(Mkdk) =−Gk, (4)

to find a search direction dk, where Hk = ∇X G(Xk) is the Jacobian matrix of the
nonlinear function, Gk = G(Xk) and (Mk)−1 is an additive Schwarz preconditioner
[11] defined as

(Mk)−1 =
Np

∑
l=1

(Rδl )
T(Hk

l )
−1Rδl ,

where Hk
l = Rδl Hk (Rδl )

T, Rδl is a restriction operator from Ωα to the overlapping
subdomain, δ is the size of the overlap which is understood in terms of the number
of elements; i.e., δ = 8 means the overlapping size is 8 layers of elements, and Np

is the number of subdomains which is equal to np in this paper. After approximately
solving (4), the new approximate solution is defined as Xk+1 = Xk + τkdk, and the
step length τk is selected by a cubic line search.

4 Numerical Experiments

The algorithm introduced in the previous sections is applicable to general shape op-
timization problems governed by incompressible Navier-Stokes equations. Here we
study an application of the algorithm for the incoming part of a simplified artery by-
pass problem1 [2] as shown in Fig. 2. Our solver is implemented using PETSc [3].
All computations are performed on an IBM BlueGene/L supercomputer at the Na-
tional Center for Atmospheric Research. Unstructured meshes, which are generated
with CUBIT and partitioned with ParMETIS, are used in this paper.

A

B

A

D

C

H

G

E

F
y

2

1
0.8

410-2-5 x

Fig. 2. The incoming part of a simplified bypass model; The red boundary Γoptimized denotes
the part of the boundary whose shape is to be determined by the optimization process

1 This is the incoming part of a bypass: www.reshealth.org/images/greystone/
em\delimiter"026E30F_2405.gif

www.reshealth.org/images/greystone/emdelimiter "026E30F _2405.gif
www.reshealth.org/images/greystone/emdelimiter "026E30F _2405.gif
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Without the blockage, the flow is supposed to go from AB to CD, but now we
assume that AB is blocked and the flow has to go through EF. For simplicity, we let
the thickness EF be fixed and the body force f = 0 in the Navier-Stokes equations.
The shape of the bypass is determined by the curve GH as in Fig. 2. The boundary
conditions on the inletΓintlet are chosen as a constant vin, no-slip boundary conditions
are used on the walls Γwall . On the outlet section Γoutlet , the free-stress boundary
conditions are imposed; see (1). We use a polynomial α(x) =∑p

i=1 aixi with p = 7 to
represent the part of the boundary that needs to be optimized. Other shape functions
can be used, but here we simply follow [1]. The goal is to compute the coefficients
a = (a1, . . . ,ap), such that the energy loss is minimized.

In all experiments, we use a hand-coded Jacobian matrix. The Jacobian system
in each Newton step is solved by a right-preconditioned restarted GMRES with an
absolute tolerance of 10−10, a relative tolerance of 10−3, and a restart at 100. We stop
the Newton iteration when the nonlinear residual is decreased by a factor of 10−6.

Fig. 3. Velocity distribution of the initial (left) and optimal shapes (right). The initial shape is
given by a straight line. β = 0.01 and Re = 100

Fig. 4. Velocity distribution of the initial (left) and optimal shapes (right). The initial shape is
given as α(x) = 0.4+0.45x2 +0.15x3. β = 0.01 and Re = 100

In the first test case, we set the Reynolds number Re = Lvin
μ to 100, where L =

1.0 cm is the artery diameter, vin = 1.0 cm/s is the inlet velocity and μ = 0.01 cm2/s.
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We solve the problem on a mesh with about 18,000 elements. β = 0.01 and the de-
grees of freedom (DOF) is 589,652. The initial shape is given by a straight line, and
Fig. 3 shows the velocity distribution of the initial (left) and optimal shapes (right).
The energy dissipation of the optimized shape is reduced by about 5.13 % compared
to the initial shape. Figure 4 is the velocity distribution of another initial shape (left)
which is given as α(x) = 0.4+0.45x2+0.15x3 and the corresponding optimal shape
(right). The reduction of the energy dissipation of this case is about 11.96 %. Fig-
ures 3 and 4 show that we can obtain nearly the same optimal shape from different
initial shapes.

In the test case showed in Fig. 3, if we add a small inlet velocity at the boundary
AB, which is equal to that the blood flow is not totally blocked, the computed optimal
shape would be different from what is shown in Fig. 3. If we move the boundary
AB towards CD (A from (−5,0) to (−3,0) and B from (−5,0.8) to (−3,0.8)), the
optimal shape is nearly the same as Fig. 3 since the flow in the “dead area” doesn’t
impact much of the optimal solution.

−2 −1.5 −1 −0.5 0 0.5 1
1

1.2

1.4
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2.2

x

α
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)

 

 

Initial

β = 0.5

β = 0.1
β = 0.05
β = 0.01

β = 0.005
β = 0.001

Fig. 5. The initial shape and optimal shapes with different values of parameter β . DOF =
589,652 and Re = 100

The regularization parameter β in the objective function is very important for
shape optimization problems. From Table 1 we see that reducing β can increase the
reduction of the energy dissipation (“Init.”, “Opt.” and “Reduction” are the initial,
optimized and reduction of the energy dissipation in the table), but the number of
Newton (Newton) and the average number of GMRES iterations per Newton (GM-
RES) and the total compute time in seconds (Time) increase, which means that the
nonlinear algebraic system is harder to solve when β is small. This is because the
boundary ofΩα is more flexible and may become irregular when β is too small. Fig-
ure 5 shows the initial shape and the optimized shapes obtained with different values
of β . From this figure we see that β controls the boundary deformation.

To show the parallel scalability of the algorithm, two meshes with DOF =
589,652 and DOF = 928,572 are considered. The strong scalability of our algorithm
is good; see Fig. 6 and Table 2, which show that the speedup is almost linear when
np is small. As expected in one-level Schwarz methods, the preconditioner becomes
worse as the number of subdomains increases.

Table 3 shows some results for different Re. Judging from the increase of the
number of linear and nonlinear iterations, it is clear that the problem becomes harder
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Table 1. Effect of the parameter β . DOF = 589,652, Re = 100.

β Newton GMRES Time
Energy Dissipation

Init. Opt. Reduction
0.05 4 386.00 477.89 1.17 1.12 4.27%
0.01 5 441.40 600.86 1.17 1.11 5.13%

0.005 5 439.00 599.77 1.17 1.10 5.98%
0.001 6 510.67 747.78 1.17 1.10 5.98%

Table 2. Parallel scalability for two different size grids. β = 0.1, overlap = 6 and Re = 100.

np
DOF = 589,652 DOF = 928,572

Newton GMRES Time Newton GMRES Time
32 4 124.50 2959.73 — —— ——
64 4 179.25 980.48 4 146.50 2121.52
128 4 346.75 455.69 4 330.00 844.62
256 4 533.25 280.96 4 520.75 541.97
512 4 917.50 282.07 4 861.00 361.08
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Fig. 6. The speedup and the total compute time for two different mesh sizes. Re = 100

as we increase the Re. On the other hand, we achieve higher percentage of reduction
of energy dissipation in the harder to solve situations.

Table 3. The impact of Re. β = 0.1, overlap = 8, DOF = 589,652, np = 128.

Re Newton GMRES Time
Energy Dissipation

Init. Opt. Reduction
100 4 346.75 456.83 1.17 1.13 3.42%
200 4 372.00 470.16 0.65 0.62 4.62%
300 6 671.00 871.19 12.56 11.80 6.05%
600 7 721.71 1035.84 7.43 6.97 6.19%
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5 Conclusions and Future Work

We developed a parallel one-shot LNKSz for two-dimensional shape optimization
problems governed by incompressible Navier-Stokes equations. We tested the algo-
rithms for an artery bypass design problem with more than 900,000 DOF and up to
512 processors. The numerical results show that our method is quite robust with re-
spect to the Re and the regularization parameter. The strong scalability is almost ideal
when np is not too large. In the future, we plan to study some multilevel Schwarz
methods which may improve the scalability when np is large.
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Summary. Domain decomposition methods were first developed for elliptic problems, taking
advantage of the strong regularity of their solutions. In the last two decades, many investiga-
tions have been devoted to improve the performance of these methods for elliptic and parabolic
problems. The situation is less clear for hyperbolic problems with possible singular solutions.
In this paper, we will discuss a nonoverlapping domain decomposition method for nonlinear
hyperbolic problems. We use the finite volume method and an implicit version of the Roe
approximate Riemann solver, and propose a new interface variable inspired by Dolean and
Lanteri [1]. The new variable makes the Schur complement approach simpler and allows the
treatment of diffusion terms. Numerical results for the compressible Navier-Stokes equations
in various 2D and 3D configurations such as the Sod shock tube problem or the lid driven
cavity problem show that our method is robust and efficient. Comparisons of performances on
parallel computers with up to 512 processors are also reported.

1 Introduction

When solving a nonlinear partial differential equation by an implicit scheme, one
classically ends by solving a nonlinear algebraic system using a Newton method.
At each step of this method we have to solve a linear system A (Uk)Uk+1 = b(Uk).
This task is computationally expensive in particular since the matrix A is usually
non-symmetric and very ill-conditioned. It is therefore necessary to find an efficient
preconditioner.

When the size of the system is large (as in the case of 3D computations), the par-
allel solution on multiple processors is essential to obtain reasonable computation
times. Currently in the thermal hydraulic code, FLICA-OVAP (see [2]), the matrix
A and the right hand side b are stored on multiple processors and the system is
solved in parallel with a Krylov solver (classical incomplete factorization). Unfor-
tunately, the parallel preconditioners of FLICA-OVAP only perform well on a few
processors. In contrast, if we want to increase the number of processors these par-
allel preconditioners perform poorly. Tests were run on different test cases and led
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us to conclude that it is often better not to use these parallel preconditioners, espe-
cially for 3D problems. This strategy does not make an optimal use of the available
computational power. Hence we seek for more efficient methods to distribute the
computations. We study and use a domain decomposition method as an alternative
to the classical distribution.

The paper is organized as follows. In Sects. 2 and 3, we present the mathematical
model and its numerical schemes. In Sect. 4, we first review the domain decomposi-
tion method proposed by Dolean and Lanteri [1] based on a Schwarz algorithm. We
then introduce a new interface variable which makes the Schur complement approach
simpler and allows for the treatment of diffusion terms. Section 5 presents a set of
numerical experiments to validate our method, compares it with that of [1] concern-
ing the robustness and efficiency and presents the scalability and the performance of
different preconditioners.

2 Mathematical Model

The simplest model of FLICA-OVAP consists of the following three balance laws
for the mass, the momentum and the energy:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ρ
∂ t + ∇ ·q = 0

∂q
∂ t + ∇ ·

(
q⊗ q

ρ + pId

)
− νΔ( q

ρ ) = 0

∂ (ρE)
∂ t + ∇ ·

[
(ρE + p) q

ρ

]
− λΔT = 0

(1)

where ρ is the density, v the velocity, q = ρv the momentum, p the pressure, ρe the

internal energy, ρE = ρe+ ||q||2
2ρ the total energy, T the absolute temperature, ν the

viscosity and λ the thermal conductivity. We close the system (1) by the ideal gas
law p = (γ − 1)ρe. For the sake of simplicity, we consider constant viscosity and
conductivity, and neglect the contribution of viscous forces in the energy equation.
By denoting U = (ρ ,q,ρE)t the vector of conserved variables, the Navier–Stokes
system (1) can be written as a nonlinear system of conservation laws:

∂U
∂ t

+∇ · (F conv(U))+∇ ·
(
F di f f (U)

)
= 0, (2)

where F conv(U) =

⎛
⎝

q
q⊗ q

ρ + pId

(ρE + p) q
ρ

⎞
⎠ , F di f f (U) =

⎛
⎝ 0
−ν∇( q

ρ )

−λ∇T

⎞
⎠ .

3 Numerical Method

The conservation form (2) allows for the definition of weak solutions, which can
be discontinuous ones. Discontinuous solutions such as shock waves are of great



A Schur Complement Method for Compressible Navier-Stokes Equations 545

importance in transient calculations. In order to correctly capture shock waves, one
needs a robust, low diffusive conservative scheme. The finite volume framework is
the most appropriate setup to write discrete equations that express the conservation
laws at each cell (see [3]).

We decompose the computational domain into N disjoint cells Ci with volume
vi. Two neighboring cells Ci and Cj have a common boundary ∂Ci j with area si j. We
denote N(i) the set of neighbors of a given cell Ci and ni j the exterior unit normal
vector of ∂Ci j . Integrating the system (2) over Ci and setting Ui(t) = 1

vi

∫
Ci

U(x, t)dx
and Un

i =Ui(nΔ t), the discretized equations can be written:

Un+1
i −Un

i

Δ t
+ ∑

j∈N(i)

si j

vi

(−→
Φ conv

i j +
−→
Φ di f f

i j

)
= 0. (3)

with:
−→
Φ conv

i j = 1
si j

∫
∂Ci j

F conv(Un+1) ·ni jds,
−→
Φ di f f

i j = 1
si j

∫
∂Ci j

F di f f (Un+1) ·ni jds.

To approximate the convection numerical flux
−→
Φ conv

i j we solve an approximate
Riemann problem at the interface ∂Ci j . Using the Roe local linearisation of the fluxes
[4], we obtain the following formula:

−→
Φ conv

i j =
F conv(Un+1

i )+F conv(Un+1
j )

2
·ni j−D(Un+1

i ,Un+1
j )

Un+1
j −Un+1

i

2
(4)

= F conv(Un+1
i )ni j +A−(Un+1

i ,Un+1
j )(Un+1

j −Un+1
i ), (5)

where D is an upwinding matrix, A(Un+1
i ,Un+1

j ) the Roe matrix and A± = A±D
2 .

The choice D = 0 gives the centered scheme, whereas D = |A| gives the upwind
scheme. For the Euler equations, we can build A(Un+1

i ,Un+1
j ) explicitly using the

Roe averaged state (see [3]).
The diffusion numerical flux

−→
Φ di f f

i j is approximated on structured meshes using
the formula:

−→
Φ di f f

i j = D(
Un+1

i +Un+1
j

2
)(Un+1

j −Un+1
i ) (6)

with the matrix D(U) =

⎛
⎜⎝

0 0 0
νq
ρ2

−ν
ρ Id 0

λ
cv

(
cvT
ρ − ||q||2

2ρ3

)
q tλ
ρ2cv

− λ
cvρ

⎞
⎟⎠, where cv is the heat

capacity at constant volume.

3.1 Newton Scheme

Finally, since ∑ j∈N(i)F
conv(Un+1

i ).ni j = 0, using (5) and (6) the Eq. (3) of the nu-
merical scheme becomes:

Un+1
i −Un

i

Δ t
+ ∑

j∈N(i)

si j

vi
{(A−+D)(Un+1

i ,Un+1
j )}(Un+1

j −Un+1
i ) = 0. (7)
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The system (7) is nonlinear, hence we use the following Newton iterative method to
obtain the required solutions:

δUk+1
i

Δ t
+ ∑

j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j )
](
δUk+1

j − δUk+1
i

)

= −Uk
i −Un

i

Δ t
− ∑

j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j )
]
(Uk

j −Uk
i ), (8)

where δUk+1
i =Uk+1

i −Uk
i is the variation of the k-th iterate that approximates the

solution at time n+ 1.

4 Domain Decomposition Method

The principle of the domain decomposition method by Schur complement is to de-
compose the global problem into independent subproblems solved on each processor.
More precisely, if we want to solve the problem:

{ ∂U
∂ t +∇ ·F (U) = 0 inΩ

BU = g on ∂Ω (9)

on a partition of the original domainΩ =∪K
I=1ΩI , defining UI as the restriction of the

solution U in the subdomainΩI , the algorithm of the domain decomposition method
is then written as: ⎧⎪⎨

⎪⎩
∂UI

∂ t
+∇ ·F (UI) = 0 inΩ

BUI = g on ∂Ω ∩∂ΩI

CIUI =CIUJ on ∂ΩI ∩∂Ω j

(10)

where CI is an interface operator which we will clarify later.

4.1 Dolean and Lanteri Interface Variable

In the article [1], in order to make the subsystem (10) solution independent, Dolean
et al introduced a redundant variable ΦDL

i j at the domain interface between two cells
i and j : ΦDL

i j = A+
Roe,ni, j

Ui−A−Roe,ni, j
Uj and then defined the orthogonal projectors

P± on the eigenvectors subspaces such that
P−(Ui,Uj)δφDo

i j = A−Roe,ni, j
δUk+1

j , P+(Ui,Uj)δφDo
i j =−A+

Roe,ni, j
δUk+1

i

This strategy can only be applied to the Euler equations (Eq. (2) with no viscosity
and heat conductivity terms) using the upwind scheme. In order to include diffusion
terms in the model and to use various schemes, we introduce a new interface variable
Φi j at the domain interface between two cells i and j:

Φi j =Uj−Ui (11)
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4.2 A New Interface Variable

In the case where the cell i of the subdomain I is at the boundary and has to commu-
nicate with the neighboring subdomains, we can rewrite the system (8) as:

δUk+1
i

Δ t
+ ∑

j∈I, j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j )
](
δUk+1

j − δUk+1
i

)

= −Uk
i −Un

i

Δ t
− ∑

j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j )
]
(Uk

j −Uk
i )

− ∑
j ∈I, j∈N(i)

[
(A−+D)(Uk

i ,U
k
j )
]
δφi j

By defining UI = (U1, . . . ,Um)
t the unknown vector of the subdomain I and

δφIJ = (δφi j)i∈I, j∈J, j∈N(i) (12)

and by denoting P = A−+D, we can write the linear system as:

A (U k
I )δU k+1

I = bI(U
n,U k)− ∑

J∈N(I)

P(U k
I ,U

k
J )δφIJ (13)

By taking into account Eqs. (11)–(13), we can build an extended system that distin-
guishes the internal unknowns from the interface ones:

⎛
⎜⎜⎜⎜⎝

A1 0 . . . . . . P1

0 A2 0 . . . P2

. . . . . . . . . . . . . . .
0 0 . . . AN PN

M1 . . . . . . MN I

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δU1

δU2

. . .
δUN

δΦ

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

b1

b2

. . .
bN

bφ

⎞
⎟⎟⎟⎟⎠ (14)

where AI is the matrix that couples the unknowns associated with internal cells of
ΩI whereas MI enables us to build δΦ , the interface unknown on all coupling sub-
domain interfaces, from the δUI . The internal unknowns can be eliminated in favor
of the interface ones to yield the following interface system:

Sδφ = bφ (15)

with

(Sδφ)IJ = δφIJ +MIJAI
−1 ∑

K∈N(I)

PIKδφIK +MJIAJ
−1 ∑

K∈N(J)

PJKδφJK

(bφ )IJ = MIJAI
−1bI +MJIAJ

−1bJ

The Eq. (15) can be solved by, e.g., GMRES, BICGStab, or the Richardson methods.



548 Thu-Huyen Dao, Michael Ndjinga, and Frédéric Magoulès

5 Numerical Results

5.1 Validation

Figures 1 and 2 present the profile of the pressure after 10 time steps using the upwind
scheme with CFL = 10 for the Euler equations. Our initial state is a pressurized ball
at the center of a closed box and for t > 0 there are waves which propagate and reflect
all over the box. The gas expands in the box and we can see the shock waves and the
rarefaction waves. The solution is solved on a cartesian mesh of 200×200 cells.

Figures 3 and 4 show the streamlines of the steady state obtained using centered
scheme to solve a lid driven cavity flow at Reynolds number 400 on a cartesian
50× 50 mesh. The lid speed is 1 m/s, the maximum Mach number of the flow is
0.008. According to these results, we obtain the same solutions by using single or

Fig. 1. Profile of the pressure at time step
10 on one processor

Fig. 2. Profile of the pressure at time step
10 on four processors

Fig. 3. Streamlines of Vx on one processor Fig. 4. Streamlines of Vx on four processors

multiple domains.

5.2 Scalability

We now study the robustness and the scalability of our numerical method using the
same test as presented in Sect. 5.1. In Figs. 5 and 6, we compare the parallel efficiency
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of different preconditioners on 2D and 3D computations and with two and four pro-
cessors. We see that without the preconditioner the solver is scalable. However, when

Fig. 5. Parallel efficiency for 2D Lid driven
cavity

Fig. 6. Parallel efficiency for 3D Lid driven
cavity

we use the Incomplete LU preconditioner, the scalability is not optimal especially for
3D problems. Our method proves better than ILU when we increase the number of
cells in each subdomain. In Fig. 7, we compare the robustness of different methods

Fig. 7. Comparisons of parallelism in 3D
Detonation, global mesh = 50×50×50

Fig. 8. Time of computation, 1 time step,
global mesh = 96×96×96

using the detonation problem. This problem is solved on a catersian 50× 50× 50
cell mesh on two processors. The computation time of Dolean and Lanteri method
increases rapidly because it needs many Newton iterations for convergence at each
time step. In Fig. 8, we compare the scalability of the ILU preconditioner and of our
method using the lid driven cavity problem solved on a global catersian 96×96×96
cell mesh. The computation time of the domain decomposition method is higher than
that of the ILU preconditioner due to the large number of Schur complement itera-
tions.

6 Conclusion

We have presented a new interface variable which allows for the treatment of dif-
fusion terms and the use of various numerical schemes. We also compared the effi-
ciency and the scalability of our method with the classical distributed computations
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and the method of Dolean and al. Our approach seems promising but we still need
to find an efficient preconditioner for the Schur complement in order to reduce its
computational time.
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Summary. Partial differential equations in complex domains are very flexibly discretized by
finite elements with unstructured meshes. For such problems, the challenging task to construct
coarse level spaces for efficient multilevel preconditioners can in many cases be solved by a
semi-geometric approach, which is based on a hierarchy of non-nested meshes. In this paper,
we investigate the connection between the resulting semi-geometric multigrid methods and the
truly geometric variant more closely. This is done by considering a sufficiently simple com-
putational domain and treating the geometric multigrid method as a special case in a family of
almost nested settings. We study perturbations of the meshes and analyze how efficiency and
robustness depend on a truncation of the interlevel transfer. This gives a precise idea of which
results can be achieved in the general unstructured case.

1 Introduction

This paper is about multilevel methods for an efficient solution of partial differential
equations in complicated domains. Our particular purpose is to provide additional
insight into the design of coarse spaces in case of unstructured finite element meshes.
We study an approach of semi-geometric preconditioning based on non-nested mesh
hierarchies motivated by Cai [2], Chan et al. [3, 4], Griebel and Schweitzer [6],
Toselli and Widlund [8], and Xu [9]. This is a concept with rather weak requirements
(yet still in a variational setting) compared with other geometry-based methods. The
main contribution of the present paper is a numerical study of the almost nested
case, which establishes a connection between the multilevel methods based on non-
nested meshes and the standard variant. Combined with our investigations of mesh
perturbations, this allows for the determination of a suitable truncation parameter for
the interlevel transfer. As a result, the efficiency of the completely nested case is in
large part retained.
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2 Multilevel Preconditioners Based on Non-nested Meshes

This section aims at a semi-geometric preconditioning framework. We introduce a
multiplicative multilevel preconditioner based on a hierarchy of non-nested meshes.
This is done in a way which allows for a powerful convergence analysis as well as
an efficient implementation.

Let Ω ⊂ R
d be a Lipschitz domain of dimension d ∈ {2,3}. For a right hand

side F ∈ H−1(Ω) and a positive function α ∈ L∞(Ω) bounded away from zero, we
consider the variational model problem

u ∈ H1
0 (Ω) : a(u,v) := (α∇u,∇v)L2(Ω) = F (v), ∀ v ∈ H1

0 (Ω). (1)

For a Galerkin discretization of problem (1), let (T�)�∈N be a family of non-nested
shape regular meshes of domains (Ω�)�∈N. We denote the set of nodes of T� by N�

and abbreviate n� := |N�|. At each level �, we consider the space X� of Lagrange
conforming finite elements of first order and denote its nodal basis as Λ� = (λ �

p)p∈N�

with λ �
p(q)= δpq, p,q∈N�. For simplicity, we assume thatΩL =Ω and XL⊂H1

0 (Ω)
for a fixed finest level L ≥ 2. In addition, let Ω� ⊃ Ω for all � ∈ {0, . . . ,L−1}. The
basic idea how the setting can be chosen is exemplarily illustrated in Fig. 1 (left) for
an unstructured fine mesh with structured coarse meshes.

In the following, we consider an iterative method to efficiently solve the discrete
problem, namely the ill-conditioned equation

AAALuuuL = FFFL in R
nL .

Here, AAAL ∈R
nL×nL is the stiffness matrix associated with XL, i.e., (AAAL)pq := a(λ L

p ,λ L
q )

for p,q ∈ NL, and the right hand side FFFL ∈ R
nL is given by (FFFL)p := F (λ L

p ) for
p ∈NL.

For the construction of an appropriate coarse space hierarchy, let the spaces
(X�)�=0,...,L be connected by the prolongation operators (Π �

�−1)�=1,...,L, namely

Π �
�−1 : X�−1 → X�, ∀ � ∈ {1, . . . ,L}.

The choice of a concrete transfer concept generating a set of suitable linear operators
(Π �

�−1)�=1,...,L in practice is discussed in full detail in [5]. An example is nodal inter-
polation. Now, let VL := XL; we emphasize that the fine space will not be touched in
the present framework. We construct a nested sequence of spaces (V�)�=0,...,L via

V� := ΠL
L−1 · · ·Π �+1

� X�, ∀ � ∈ {0, . . . ,L−1}.

The images of the compositions of the given operators determine the coarse spaces.
With the nodal bases (Λ�)�=0,...,L, matrix representations ΠΠΠ �

�−1 ∈ R
n�×n�−1 of

Π �
�−1 can be computed for � ∈ {1, . . . ,L} via ΠΠΠ �

�−1vvv := Φ−1
� (Π �

�−1Φ�−1(vvv)) for all
vvv ∈ R

n�−1 with the coordinate isomorphisms Φ� : Rn� → X�. Assume that these ma-
trices have full rank. Then, bases of (V�)�=0,...,L−1 can recursively be defined by
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λ̃ �
q := ∑

p∈N�+1

(ΠΠΠ �+1
� )pqλ̃ �+1

p , ∀ q ∈N�,

starting with λ̃ L
q := λ L

q for q ∈NL. The new coordinate isomorphisms with respect

to the bases Λ̃� := (λ̃ �
p)p∈N�

, �∈ {0, . . . ,L}, will be denoted by Φ̃� : Rn� →V�. More-

over, MMM� ∈R
n�×n� is the mass matrix with respect to Λ̃�, i.e., (MMM�)pq := (λ̃ �

p, λ̃ �
q)L2(Ω)

for p,q ∈N�, � ∈ {0, . . . ,L}.
Note that the mapping Π �

�−1 between the given spaces X�−1 and X� usually does

not act on V�−1 directly. Still, the matrix ΠΠΠ �
�−1 determines a linear transfer operator

Π̃ �
�−1 : V�−1 →V� by

v �→ Π̃ �
�−1v := Φ̃�(ΠΠΠ �

�−1Φ̃
−1
�−1(v)), ∀ v ∈V�−1, ∀ � ∈ {1, . . . ,L}.

One can easily see that Π̃ �
�−1 is the natural embedding because it interpolates the

respective basis exactly. Thus, we can regard the matrix ΠΠΠ �
�−1 as an algebraic repre-

sentation of the natural embedding of V�−1 into V�. Consequently, the L2-projection
from V� to V�−1 is represented by the matrix MMM−1

�−1(ΠΠΠ
�
�−1)

T MMM� ∈ R
n�−1×n� . This

holds true for any imaginable set of operators between the original non-nested spaces
(X�)�=0,...,L; no special structure is required.

With this information we can summarize our efforts as follows. From the com-
pletely unrelated finite element spaces (X�)�=0,...,L we have constructed a sequence of
nested spaces (V�)�=0,...,L such that the given prolongation operators (Π �

�−1)�=1,...,L
induce the natural embeddings (V�−1 ↪→ V�)�=1,...,L by their matrix representations
(ΠΠΠ �

�−1)�=1,...,L with respect to the original bases (Λ�)�=0,...,L. In particular, the coarse

level matrices for the nested spaces with the respective bases Λ̃�, as customary in a
variational approach, can be written as

AAA�−1 = (ΠΠΠ �
�−1)

T AAA�ΠΠΠ �
�−1 ∈ R

n�−1×n�−1 , ∀ � ∈ {1, . . . ,L}. (2)

If AAAL is symmetric positive definite and if ΠΠΠ �
�−1 has full rank for all � ∈ {1, . . . ,L},

the respective coarse level matrices (AAA�)�=0,...,L−1 are symmetric positive definite,
too. Note that the bandwidth of the coarse matrices depends on the transfer concept
employed to obtain the prolongation operators.

The multiplicative Schwarz method studied in this paper is the symmetric multi-
grid V -cycle in the novel space hierarchy (V�)�=0,...,L, which combines (Gauß–
Seidel) smoothing and coarse level correction in the standard way. Naturally, only
multiplications with the matrices (ΠΠΠ �

�−1)�=1,...,L and their transposes appear in the
interlevel transfer of the algorithm; no mass matrices need to be inverted. Given the
meshes (T�)�=0,...,L and a suitable transfer concept, we can compute all auxiliary
matrices in a setup phase.

For a complete convergence analysis of this class of algorithms, which puts the
semi-geometric approach into the well-known context of [1], we refer to [5]. There,
we carefully distinguish between the generally different domains (Ω�)�=0,...,L and
elaborate requirements for the meshes and the interlevel transfer to obtain a quasi-
optimal result.
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Fig. 1. Simplified sketch in d = 2. Basic idea of the coarse space construction based on non-
nested meshes (left). Concerning the experiments: scaling (center) and translation (right) of
the coarse meshes keeping the respective fine mesh fixed. We emphasize that all computations
are in d = 3

The geometric nature of the construction usually requires some modifications of
the meshes and operators, e.g., to ensure full rank. Moreover, a prevalent technique
to keep the operator complexity Cop := ∑L

�=0 nA
� /nA

L small, where nA
� is the number

of non-zero entries of AAA�, is truncation of the prolongation operators by deleting the
entries of (ΠΠΠ �

�−1)�=1,...,L which are less than a truncation parameter εtr > 0 times the
maximal entry in the respective row. Afterwards, the modified rows are rescaled such
that the row totals remain unchanged; see [7]. All this is done in the setup before the
computation of the respective Galerkin products (2). In this paper, we chooseΠ �

�−1 as
standard nodal interpolation in X� for �∈ {1, . . . ,L}, namelyΠ �

�−1v :=∑p∈N�
v(p)λ �

p
for all v ∈ X�−1, and refer to [5] for a detailed discussion.

3 Numerical Studies

3.1 The Almost Nested Limiting Case

We consider a hierarchy of four nested meshes (T�)�=0,...,3 of the unit cube in R
3

where the coarsest mesh consists of 768 elements with 189 nodes. Throughout the
study, we keep the finest mesh TL = T3 with 393,216 elements and 68,705 nodes
fixed. In contrast, the coarse domains (Ω�)�<3 and the corresponding coarse meshes
(T�)�<3 are scaled around the center with a different factor between 0.95 and 1.05
for each set of tests; see Fig. 1 (center).

In the semi-geometric framework, it is absolutely necessary to perform a trun-
cation procedure to retain the optimality of the algorithms. Otherwise, one can in
general not prevent the appearance of very small and thus irrelevant entries in the
prolongation matrices. We study the complexity of the constructed space hierarchy
and the convergence of the semi-geometric multigrid method (stand-alone or in a
preconditioned conjugate gradient method) for a variety of values for the parame-
ter εtr in [0.01,0.49]. Note that, for linear finite elements associated with simplicial
meshes, it does generally not make sense to choose εtr greater than or equal to 0.5.



The Almost Nested Case in a Multilevel Method Based on Non-nested Meshes 555

O
p

er
at

or
co

m
pl

ex
ity

0.95 1.00 1.05
1.1

1.2

1.3

1.4

1.5

1.6

Scaling factor

0.95 1.00 1.05
0

0.05

0.10

0.15

0.20

0.25

0.30

Scaling factor

C
on

ve
rg

en
ce

ra
te

s
of

-c
yc

le

0.95 1.00 1.05
0

0.05

0.10

Scaling factor

C
on

ve
rg

en
ce

ra
te

s
of

p
cg

Fig. 2. The complexity measure Cop (top) and the convergence rates ρ̄V (2,2) (left) and ρ̄pcg
V (2,2)

(right) of a semi-geometric multigrid method, plotted versus the scale of the coarse meshes.
Each line represents a different parameter εtr ∈ [0.01,0.49]. The marked lines correspond to
the values 0.01 (∇), 0.20 (◦) and 0.49 (&), respectively

This is because such a choice would result in deleting entries even in case of perfectly
nested meshes, leaving nodes without direct coupling to the next coarser level.

The results of the experiments with scaled (Ω�)�<3 are illustrated in Fig. 2. Each
single line represents either the complexity Cop or one of the asymptotic convergence
rates ρ̄V (2,2) and ρ̄pcg

V (2,2) for a fixed parameter εtr plotted versus the scale of the
coarse meshes. The lines corresponding to the extreme εtr-values 0.01 and 0.49 are
marked by downward and upward triangles, respectively; an intermediate value of
0.20 is marked by circles. Table 1 contains the numbers for these three values. We
stop with the scales 0.95 and 1.05, respectively. For smaller factors, the convergence
rates further increase quite fast as less and less of the computational domain Ω =
ΩL is covered by the coarse meshes; the complexity measures do not change much
in this case. For larger factors, the convergence rates slowly increase whereas the
complexity measures decrease. This is due to the fact that more and more elements
of the coarse meshes lie completely outside the computational domain.
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scale Cop ρ̄V (2,2) ρ̄
pcg
V (2,2) Cop ρ̄V (2,2) ρ̄

pcg
V (2,2) Cop ρ̄V (2,2) ρ̄

pcg
V (2,2)

0.95 1.52 0.169 0.054 1.33 0.168 0.055 1.20 0.256 0.089
0.96 1.52 0.118 0.041 1.34 0.142 0.043 1.19 0.268 0.091
0.97 1.53 0.018 0.008 1.32 0.048 0.020 1.18 0.235 0.076
0.98 1.53 0.026 0.009 1.25 0.047 0.018 1.16 0.112 0.037
0.99 1.52 0.031 0.012 1.16 0.041 0.015 1.15 0.041 0.016
1.00 1.15 0.044 0.016 1.15 0.044 0.016 1.15 0.044 0.016
1.01 1.50 0.031 0.012 1.16 0.048 0.017 1.15 0.048 0.018
1.02 1.51 0.025 0.009 1.25 0.047 0.019 1.15 0.122 0.047
1.03 1.51 0.020 0.008 1.31 0.048 0.019 1.16 0.273 0.085
1.04 1.50 0.020 0.008 1.30 0.037 0.017 1.18 0.256 0.089
1.05 1.46 0.024 0.009 1.29 0.045 0.017 1.18 0.269 0.088

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
εtr = 0.01 εtr = 0.20 εtr = 0.49

Table 1. Studying the convergence behavior for a family of almost nested meshes associated
with the unit cube. The middle row (scale 1.00) corresponds to the completely nested case in
which the approach coincides with the standard geometric multigrid method

3.2 Robustness of the Coarse Level Hierarchy

The second experiment is to further investigate the influence of perturbations of the
meshes on the coarse level hierarchy and the multigrid performance. Here, we con-
sider different translations of the coarse meshes associated with the cube of scale 1.05
in direction of the unit vector ( 2

3 ,
2
3 ,

1
3 )

T ∈ R
3 by sizes up to 0.12. In this case, the

computational domainΩ =ΩL is covered by the domains (Ω�)�<L for almost the en-
tire range of translations; see Fig. 1 (right). Basic robustness of the semi-geometric
construction is demonstrated by the results in Fig. 3 where the parameter εtr again
varies in the interval [0.01,0.49].

4 Discussion of the Results

As expected and observed in the vast majority of experiments, the convergence rates
principally increase with increasing truncation parameter, which indicates that the
constructed coarse spaces have adequate approximation power. Note that the deteri-
oration of the convergence behavior is usually rather slow, though. It is evident that
the semi-geometric methods, which leave the coarse meshes flexible, coincide with
the standard geometric variants in the special case of nested meshes. In addition, an
important observation from Sect. 3.1 is that both the complexities Cop and the con-
vergence rates of the geometric multigrid methods are retained in case the meshes
are almost nested if a suitable parameter εtr is applied; see the discussion below.
This also indicates that our construction is robust in the sense that the coarse level
hierarchy (and with it the multigrid convergence) only varies slightly if the coarse
meshes themselves change slightly. Perturbations of the meshes are irrelevant for the
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Fig. 3. The numbers Cop (top), ρ̄V (2,2) (left), and ρ̄pcg
V (2,2) (right). Each line represents a dif-

ferent parameter εtr ∈ [0.01,0.49] plotted versus the size of the coarse mesh translation

efficiency of the methods. This can also be seen clearly in the experiments described
in Sect. 3.2.

As a general rule, we observe the following effects in Sect. 3.1. The larger the pa-
rameter εtr the less sensitive is the complexity Cop to changes of the coarse meshes.
The smaller εtr the less sensitive are the convergence rates to changes of the coarse
meshes. In our examples, the convergence actually improves in case of small pertur-
bations for sufficiently small εtr. This is of course accompanied by a rapid increase of
Cop. The choice εtr = 0.20 (which is, interestingly enough, a standard value in many
algebraic multigrid algorithms) is a reasonable attempt to achieve the two competing
goals. It manages to keep the convergence rates almost constant for a rather broad
range of different problem sizes while leading to an only moderate increase of Cop.

Finally, let us compare to the general semi-geometric case. For an unstructured
mesh with similar size (64,833 nodes) approximating a ball, the measured rates,
ρ̄V (2,2) = 0.060 and ρ̄pcg

V (2,2) = 0.024, are not much worse than the ones produced by
the geometric method on the cube with completely nested meshes, ρ̄V (2,2) = 0.044
and ρ̄pcg

V (2,2) = 0.016. However, for unstructured meshes without natural coarse level
hierarchy, it seems impossible to achieve this fast convergence with an opera-
tor complexity as small as 1.15 which is easily obtained in the structured case.
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For comparison, we have Cop = 1.38 for the ball. A whole series of experiments
studying the asymptotics of the semi-geometric preconditioners can be found in [5].

5 Conclusion

In this paper, we reported on numerical studies of a class of preconditioners based on
non-nested meshes. Considering the almost nested case, we determined a truncation
parameter εtr = 0.20 of the interlevel transfer to be reasonable in order to ensure that
the efficiency of the completely nested case is in large part retained. Moreover, per-
turbations of the meshes turned out to be irrelevant for the efficiency of the methods.

Our results also show that, in the variational coarse space construction, it is ap-
propriate to choose auxiliary meshes mimicking geometric coarsening, which leads
to particularly small hierarchical overhead (less than 40%). This is in contrast to the
non-variational variant of the auxiliary space method [9] where both analysis and ex-
periments indicate that the sizes of the original space and of the auxiliary space need
to be comparable in a quite restrictive sense such that Cop is usually clearly larger
than two.
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Summary. The BDDC algorithm is extended to a large class of discontinuous Galerkin (DG)
discretizations of second order elliptic problems in two spatial dimensions. An estimate of
C(1+ log(p2H/h))2 is obtained for the condition number of the preconditioned system where
C is a constant independent of p, h or H. Numerical simulations are presented which confirm
the theoretical results

1 Introduction

A Balancing Domain Decomposition by Constraints (BDDC) method is presented
for the solution of a discontinuous Galerkin (DG) discretization of a second-order
elliptic problem in two dimensions. BDDC was originally introduced in [8] for the
solution of continuous finite element discretizations. Mandel and Dohrmann [13]
later proved a condition number bound of κ ≤ C(1 + log(H/h))2 for precondi-
tioned system of a continuous finite element discretization of second order ellip-
tic problems. Pavarino [15] and Klawonn et al. [11] extended the BDDC algorithm
to higher-order finite element methods and proved a condition number bound of
κ ≤C(1+ log(p2H/h))2. Further analysis of BDDC methods and their connection
to FETI methods has been presented in [12, 14].

While domain decomposition methods have been widely studied for continu-
ous finite element discretizations, relatively little work has been performed for dis-
continuous Galerkin discretizations. Previous work on domain decomposition meth-
ods for DG discretizations include [1, 10] and [9]. This work presents a BDDC
method applied to a large class of DG methods considered in the unified analysis
of [2]. A key component for the development and analysis of the BDDC algorithm
involves presenting the DG discretization as the sum of element-wise “local” bilinear
forms. The element-wise perspective leads naturally to the appropriate choice for the
subdomain-wise local bilinear forms. Additionally, this perspective enables a con-
nection to be drawn between the DG discretization and a related continuous finite
element discretization. As a result of this connection, the condition number bound
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for the BDDC preconditioned system for a large class of conservative and consistent
DG methods is identical to that for continuous finite element methods.

2 DG Discretization

Consider the second order elliptic equation in a domain Ω ⊂R2:

−∇ · (ρ∇u) = f in Ω , u = 0 on ∂Ω (1)

with positive ρ > 0∈ L∞(Ω), f ∈ L2(Ω). Let the triangulation T be a partition ofΩ
into triangles or quadrilaterals. In order to simplify the presentation we assume that
ρ takes on a constant value, ρκ on each element κ . Define E to be the union of edges
of elements κ . Additionally, define E i ⊂ E and E ∂ ⊂ E to be the set of interior,
respectively boundary edges. Note that any edge e ∈ E i is shared by two adjacent
elements κ+ and κ− with corresponding outward pointing normal vectors nnn+ and
nnn−. Let P p(κ) denote the space of polynomials of order at most p on κ and define
the following finite element space W p

h := {wh ∈ L2(Ω) : wh|κ ∈P p(κ) ∀κ ∈Ω}.
Note that traces of functions uh ∈W p

h are in general double valued on each edge,
e ∈ E i, with values u+h and u−h corresponding to traces from elements κ+ and κ−

respectively. On e∈ E ∂ , associate u+h with the trace taken from the element, κ+ ∈Th,
neighbouring e. The weak form of (1) on each element is given by: ∀wh ∈P p(κ)

(ρ∇uh,∇wh)κ −
〈
ρ(u+h − ûh)nnn

+,∇w+
h

〉
∂κ +

〈
q̂qqh,w

+
h nnn+

〉
∂κ = ( f ,wh)κ (2)

where (·, ·)κ :=
∫
κ and 〈·, ·〉∂κ :=

∫
∂κ . Superscript + is used to explicitly denote val-

ues on ∂κ , taken from κ . For all wh ∈W p
h , ŵh = ŵh(w

+
h ,w

−
h ) is a single valued

numerical trace on e ∈ E i, while ŵh = 0 for e ∈ E ∂ . Note that ûh = 0 on e ∈ E ∂ , cor-
responds to weakly enforced homogeneous boundary conditions on ∂Ω . Similarly
q̂qq = q̂qq(ρ+,ρ−,∇u+h ,∇u−h ,u

+
h ,u

−
h ) is a single valued numerical flux approximating

qqq = ρ∇u on e ∈ E . Summing over all elements gives:

a(uh,wh) = ( f ,wh)Ω ∀wh ∈W p
h (3)

A key component, required for the development and analysis of the algorithms pre-
sented, is to express the global bilinear form a(uh,wh) as the sum of element-wise
contributions aκ(uh,wh) such that

a(uh,wh) = ∑
κ∈T

aκ(uh,wh) (4)

where aκ(uh,wh) is a symmetric, positive semi-definite “local bilinear form”. In par-
ticular, the local bilinear form should have a compact stencil, such that aκ(uh,wh) is
a function of only uh, ∇uh in κ , and u+h , ∇u+h and ûh on ∂κ . The local bilinear form
is written as:

aκ(uh,wh) = (ρ∇uh,∇wh)κ −
〈
ρ(u+h − ûh)nnn

+,∇w+
h

〉
∂κ +

〈
q̂qq+h ,(w

+
h − ŵh)nnn

+
〉
∂κ

= (ρ∇uh,∇wh)κ −
〈
ρ �u�+h ,∇w+

h

〉
∂κ +

〈
q̂qq+h ,�wh�

+〉
∂κ (5)
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where q̂qq+h = q̂qq+h (ρ
+,∇u+h ,u

+
h , ûh) is a “local numerical flux”. The choice of the

numerical trace ûh and flux q̂qqh define the particular DG method considered. Table 1
lists the numerical traces and fluxes for the DG methods considered in this paper,
while Table 2 lists the corresponding local bilinear forms.

DG Method ûh q̂qqh q̂qq+h
IP {uh} −{ρ∇uh}+ ηe

h

{
ρ �uh�

±} −ρ+∇u+h + ηe
h ρ

+ �ρuh�
+

BR2 {uh} −{ρ∇uh}+ηe
{
ρre(�uh�

±)
} −ρ+∇u+h +ηeρ+re(�uh�

+)

Brezzi {uh} {qqqh}+ηe
{
ρre(�uh�

±)
}

qqq+h +ηeρ+re(�uh�
+)

LDG {uh}−β · �uh� {qqqh}+β �qqqh�+
2ηe
h

{
ρ �uh�

±} qqq+h + ηe
h ρ

+ �uh�
+

CDG {uh}−β · �uh�
{

qqqe
h

}
+β

�
qqqe

h

�
+ 2ηe

h

{
ρ �uh�

±} qqqe+
h + ηe

h ρ
+ �uh�

+

Table 1. Numerical fluxes for different DG methods. (IP: Interior Penalty, BR2: [3],
Brezzi: [4], LDG: [5] CDG: [16])

Method aκ(uh,wh)

IP g+∑e∈∂κ
ηe
he

〈
ρ �uh�

+ ,�wh�
+〉

e
BR2 g+∑e∈∂κ ηe

(
ρre(�uh�

+),re(�wh�
+)
)
κ

Brezzi g+
(
ρrκ(�uh�

+),rκ (�wh�
+)
)
κ +∑e∈∂κ ηe

(
ρre(�uh�

+),re(�wh�
+)
)
κ

LDG g+
(
ρrκ(�uh�

+),rκ (�wh�
+)
)
κ +∑e∈∂κ

ηe
he

〈
ρ �uh�

+ ,�wh�
+〉

e
CDG g+∑e∈∂κ

(
ρre(�uh�

+),re(�wh�
+)
)
κ +∑e∈∂κ

ηe
he

〈
ρ �uh�

+ ,�wh�
+〉

e

Where g = (ρ∇uh,∇wh)κ −
〈
ρ �uh�

+ ,∇w+
h

〉
∂κ −

〈
ρ∇uh,�wh�

+〉
∂κ

Table 2. Elementwise bilinear form for different DG methods

In the definition of the different DG methods, {uh} = 1
2 (u

+
h + u−h ) and �uh� =

u+h nnn+ + u−h nnn− are average and jump operators on e ∈ E i. Additionally, a second set
of jump operators involving the numerical trace û are given by �uh�

+ = u+h nnn++ ûhnnn−

and �uh�
− = ûhnnn++u−h nnn−. Define qqqh =−ρ(∇uh− rκ(�uh�

+)) and qqqe
h =−ρ(∇uh−

re(�u�+)) where rκ(φ) and re(φ) ∈ [P p(κ)]n are lifting operators defined such that:
(rκ(φ),vvvh)κ =

〈
φ ,vvv+h

〉
κ and (re(φ),vvvh)κ =

〈
φ ,vvv+h

〉
e, ∀vvvh ∈ [P p(κ)]n. Additionally,

on each edge in E , ηe is a penalty parameter, while β = 1
2 Sκ

−
κ+nnn++Sκ

+

κ−nnn− is a vector

where Sκ
−
κ+ ∈ {0,1} is a switch defined, such that Sκ

−
κ+ + Sκ

+

κ− = 1.
Consider using a nodal basis on each element κ to define W p

h . Figure 1 shows
graphically the nodal degrees of freedom involved in defining the local bilinear form.
For the IP, BR2 and Brezzi schemes, the numerical trace ûh on an edge/face depends
on both u+h and u−h . Hence the local bilinear form corresponds to all nodal degrees
of freedom defining uh on κ as well as nodal values on all edge/faces of ∂κ ∩ E i
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corresponding to the trace of uh from elements neighbouring κ . On the other hand,
for the LDG and CDG methods, the numerical trace ûh takes on the value of u+h if

Sκ
−
κ+ = 0 or u−h if Sκ

−
κ+ = 1. Hence the local bilinear form corresponds only to degrees

of freedom defining uh on κ and nodal values corresponding to the trace of uh on
neighbouring elements across edge/faces of ∂κ ∩E i for which Sκ

−
κ+ = 1.

IP, BR2, Brezzi CDG, LDG

Element Node
Neighbor Node
Switch (b) 

Fig. 1. Degrees of freedom involved in “local” bilinear form

The element-wise bilinear form aκ(uh,uh) satisfies

aκ(uh,uh) ≥ 0 (6)

with aκ(uh,uh) = 0 iff uh = ûh = K for some constant K. The proof of (6) closely
follows the proof of boundedness and stability of the different DG methods presented
in [2]. As a result it is possible to show that the bilinear form is equivalent to a
quadratic form based on the value of uh at the nodes xxx:

caκ(uh,uh) ≤ ρκ p4hn−2∑xxxi,xxx j∈κ∪κ ′ (uh(xxxi)−uh(xxx j))
2 ≤ Caκ(uh,uh) (7)

where c and C are constants independent of h, p and ρ , while xxxi,xxx j are the nodes
on κ defining the basis for uh and nodes on ∂κ ′ defining a basis for the trace u−h
from neighbours κ ′ of κ . Using the quadratic form in (7) a connection may be drawn
between the DG discretization a continuous finite element discretization on a subtri-
angulation (See for example [6] Lemma 4.3). Further details are given in [7].

3 Domain Decomposition

Consider a partition of the domain Ω into substructures Ωi such that Ω̄ = ∪N
i=1Ω̄i.

The substructuresΩi are disjoint shape regular polygonal regions of diameter O(H),
consisting of a union of elements in T . Assume that ρ(xxx) takes on a constant value,
ρi, within each subdomain Ωi. Additionally, assume that each element κ in Ωi with
an edge e on ∂Ωi∩∂Ω j has neighbours only in Ωi∪Ω j.

Define the local interface Γi = ∂Ωi\∂Ω and global interface Γ by Γ = ∪N
i=1Γi.

Denote by W (i)
Γ the space of discrete nodal values on Γi which correspond to degrees
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of freedom shared betweenΩi and neighbouring subdomainsΩ j, while W (i)
I denotes

the space of discrete unknowns local to a single substructure Ωi. In particular, note

that for the IP, BR2 and Brezzi et al. methods W (i)
Γ includes for each edge e ∈ Γi

degrees of freedom defining two sets of trace values u+ from κ+ ∈ Ωi and u− for

κ− ∈Ω j. Thus, W (i)
I corresponds to nodal values strictly interior toΩi or on ∂Ωi\Γi.

On the other hand, for the CDG and LDG methods W (i)
Γ includes for each edge e∈Γi

degrees of freedom defining a single trace value corresponding to either u+ from

κ+ ∈ Ωi if Sκ
−
κ+ = 0 or u− from κ− ∈ Ω j if Sκ

−
κ+ = 1. Hence, W (i)

I corresponds to
nodal values interior to Ωi and on ∂Ωi\Γi as well as nodal values defining u+ on
e ∈ Γi for which Sκ

−
κ+ = 1.

Similarly, define ŴΓ as the space of degrees of freedom shared among multiple
subdomains and WI as the space of degrees of freedom which correspond only to a

single subdomain. Note that WI is equal to the product space WI :=ΠN
i=1W (i)

I , while

in general ŴΓ ⊂WΓ := ΠN
i=1W (i)

Γ . Define local operators R(i)
Γ : ŴΓ →W (i)

Γ which
extract the local degrees of freedom on Γi from those on Γ . Additionally define a

global operator RΓ : ŴΓ →WΓ which is formed by a direct assembly of R(i)
Γ . The

discrete form of (3) is written as:
[

AII AT
Γ I

AΓ I AΓΓ

][
uI

uΓ

]
=

[
bI

bΓ

]
. (8)

where uI and uΓ corresponds to degrees of freedom associated with WI and ŴΓ
respectively. Since the degrees of freedom associated with WI are local to a particular
substructure they may be locally eliminated to obtain a system

ŜΓ uΓ = gΓ (9)

where ŜΓ = AΓΓ − AΓ IA
−1
II AT

Γ I and gΓ = bΓΓ − AΓ IA
−1
II bΓ I . ŜΓ and gΓ may be

formed by a direct assembly:

ŜΓ =
N

∑
i=1

R(i)T

Γ S(i)Γ R(i)
Γ gΓ =

N

∑
i=1

R(i)T

Γ g(i)Γ (10)

where S(i)Γ = A(i)
ΓΓ −A(i)

Γ IA
(i)−1

II A(i)T

Γ I and g(i)Γ = b(i)Γ −A(i)
Γ IA

(i)−1

II b(i)I .

4 BDDC

A BDDC preconditioner is used to solve the Schur complement problem (9). A full
description of the BDDC preconditioner is given by Li and Widlund [12]. In order to

define the BDDC preconditioner W (i)
Γ is reparameterize into two orthogonal spaces

W (i)
Π and W (i)

Δ . The primal space W (i)
Π is the space of discrete unknowns correspond-

ing to functions with a constant value of û on each edge of substructure Ωi. The
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dual space, W (i)
Δ is the space of discrete unknowns corresponding to functions which

have zero mean value of û on Γi. For continuous finite element discretizations, dif-
ferent primal degrees of freedom such as subdomain corners have also been used,
however these are not explored in this work. The BDDC algorithm is implemented
using a change of basis as described in [12]. The partially assembled space is defined

as W̃Γ = ŴΠ ⊕
(
ΠN

i=1W (i)
Δ

)
, where ŴΠ , single valued on Γ , is formed by assem-

bling the local primal spaces, W (i)
Π . Define additional local operators R̄(i)

Γ : W̃Γ →W (i)
Γ

which extract the degrees of freedom in W̃Γ corresponding to Γi. The global operator

R̄Γ : W̃Γ →WΓ is formed by a direct assembly of R̄(i)
Γ . Also define the global operator

R̃Γ : ŴΓ → W̃Γ . The partially assembled Schur complement matrix S̃, is given by:

S̃Γ =
N

∑
i=1

R̄(i)T

Γ S(i)Γ R̄(i)
Γ (11)

The scaled operator R̃D,Γ : ŴΓ → W̃Γ is obtained by multiplying the entries of R̃Γ
corresponding to W (i)

Δ by δ †
i (x), where δ †

i (x) defined for each nodal degree of free-

dom in W (i)
Γ on ∂Ωi and ∂Ω j as δ †

i =
ργi

ργi +ρ
γ
j
, γ ∈ [1/2,∞). The BDDC preconditioner

M−1
BDDC : ŴΓ → ŴΓ is given by:

M−1
BDDC = R̃T

D,Γ S̃−1
Γ R̃D,Γ (12)

The condition number of the preconditioner operator M−1
BDDCŜ is bounded by

C(1+ log(p2H/h))2 where C is a constant independent of p, h, H or ρ . This is the
same condition number bound as obtained by Klawonn et al. [11] for a continuous
finite element discretization. Proof of this condition number bound closely follows
that presented by Tu [17] for mixed finite element methods, which in turn builds upon
the work of [6]. The key idea is to connect the DG discretization to a related con-
tinuous finite element discretization on a subtriangulation of T . The ability to con-
nect the DG discretization to the continuous finite element discretization is a direct
result of (7) (see [6]). The existing theory for continuous finite elements developed
in [13, 15] and [11] is then leveraged to obtain the desired condition number bound.
Further details are provided in [7].

5 Numerical Results

This section presents numerical results using the BDDC preconditioner introduced
in Sect. 4. For each numerical experiment the linear system resulting from the DG
discretization is solved iteratively using a Preconditioned Conjugate Gradient (PCG)
method, starting from zero initial condition until l2 norm of the residual is decreased
by a factor of 1010. The domain Ω = (0,1)2 is partitioned into N×N square subdo-
mainsΩi with side lengths H such that N = 1

H . Each subdomain is the union of trian-
gular elements obtained by bisecting squares of side length h. In the first numerical
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experiment (1) is solved onΩ with ρ = 1 and f chosen such that the exact solution is
given by u = sin(πx)sin(πy). Table 3 shows the number of PCG iteration required to
converge varying N, H

h and p for each of the DG discretization considered. Table 3
also gives the Lanczos estimate of the maximum eigenvalue of the preconditioned
system. The minimum eigenvalue is bounded below by unity as with continuous
finite element methods. As expected the number of iterations is independent of the
number of subdomains and only weakly dependent on the number of elements per
subdomain or the solution order.

1
H

H
h p IP BR2 Brezzi LDG CDG

2 12 (12.1) 15 (12.0) 15 (7.7) 11 (6.1) 12 (5.9)
4 22 (14.3) 27 (14.0) 23 (9.2) 24 (7.4) 24 (7.1)
8 8 4 31 (15.2) 34 (14.8) 30 (9.8) 28 (7.7) 27 (7.5)
16 33 (15.3) 36 (14.9) 32 (9.9) 29 (8.0) 28 (7.8)
32 33 (15.3) 36 (14.9) 32 (9.9) 29 (7.9) 27 (7.7)

2 25 (10.9) 29 (10.9) 26 (6.9) 23 (5.2) 23 (5.3)
4 29 (13.0) 34 (12.8) 28 (8.3) 26 (6.4) 25 (6.2)

8 8 4 31 (15.2) 34 (14.8) 30 (9.8) 28 (7.8) 27 (7.5)
16 33 (17.6) 36 (17.1) 33 (11.5) 29 (9.3) 29 (9.1)
32 35 (20.2) 38 (19.4) 34 (13.4) 32 (11.0) 31(10.7)

1 32 (11.1) 36 (13.8) 28 (8.1) 26 (5.9) 25 (5.6)
2 31 (12.9) 34 (14.1) 29 (8.7) 26 (6.4) 26 (6.3)

8 8 4 31 (15.2) 34 (14.8) 30 (9.8) 28 (7.8) 27 (7.5)
8 34 (18.4) 37 (16.2) 34 (11.7) 31 (9.9) 32 (9.6)
16 36 (22.5) 38 (18.6) 38 (14.4) 34 (12.8) 36 (12.2)

Table 3. Iteration count (λmax) for BDDC preconditioner using different DG methods

In the second numerical experiment the behaviour of the preconditioner for large
jumps in the coefficient ρ is examined. For this numerical experiment only the CDG
discretization is used. The domain is partitioned in a checkerboard pattern with ρ = 1
on half of the subdomains and ρ = 1,000 in the remaining subdomains. Initially set
δ †

i = 1
2 , which corresponds to setting γ = 0, which does not satisfy the assumption

γ ∈ [1/2,∞). Poor convergence of the BDDC algorithm is seen in Table 4a. Next δ †
i

is set to δ †
i = ρi

ρi+ρ j
which corresponds to γ = 1. With this choice of δ †

i the good
convergence properties of the BDDC algorithm is recovered as shown in Table 4b.

6 Conclusions

The BDDC preconditioner has been extended to a large class of DG discretizations
for second-order elliptic problems. The condition number of the BDDC precondi-
tioned system is bounded by C(1+ log(p2H/h))2, with constant C independent of
p, h, H or the coefficient ρ . This is the same condition number bound previously
proven for continuous finite element methods. Numerical results confirm the theory.
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(a) δ †
i = 1

2 , H
h = 8

1
H

p 2 4 8 16 32
1 51 119 179 215 232
3 55 133 207 267 316
5 59 153 242 306 361

(b) δ †
i = ρi

ρi+ρ j
, H

h = 8

1
H

p 2 4 8 16 32
1 4 7 14 18 19
3 4 7 15 18 19
5 4 7 14 19 20

Table 4. Iteration count for BDDC preconditioner using the CDG method with ρ=1 or 1000.
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1 Introduction

The convergence rate of a Krylov method such as the Generalized Conjugate Resid-
ual (GCR) [6] method, to solve a linear system Au = f , A = (ai j) ∈ R

m×m,u ∈
R

m, f ∈ R
m, decreases with increasing condition number κ2(A) = ||A||2||A−1||2

of the non singular matrix A. Left preconditioning techniques consist of solving
M−1Au=M−1 f such that κ2(M−1A)<<κ2(A). The Additive Schwarz (AS) precon-
ditioning is built from the adjacency graph G =(W,E) of A, where W = {1,2, . . . ,m}
and E = {(i, j) : ai j = 0} are the edges and vertices of G. Starting with a non-
overlapping partition W =∪p

i=1Wi,0 and δ ≥ 0 given, the overlapping partition {Wi,δ}
is obtained defining p partitions Wi,δ ⊃Wi,δ−1 by including all the immediate neigh-
boring vertices of the vertices in the partition Wi,δ−1. Then the restriction opera-
tor Ri,δ from W to Wi,δ defines the local operator Ai,δ = Ri,δART

i,δ ,Ai,δ ∈ R
mi,δ×mi,δ

on Wi,δ . The AS preconditioning writes: M−1
AS,δ =

p

∑
i=1

RT
i,δA−1

i,δ Ri,δ . Introducing R̃i,δ

the restriction matrix on a non-overlapping subdomain Wi,0, the Restricted Additive
Schwarz (RAS) iterative process [2] writes:

uk = uk−1 +M−1
RAS,δ

(
f −Auk−1

)
, withM−1

RAS,δ =
p

∑
i=1

R̃T
i,δA−1

i,δ Ri,δ (1)

The RAS exhibits a faster convergence than the AS, as shown in [5], leading to a
better preconditioning that depends of the number of subdomains. When it is applied
to linear problems, the RAS has a pure linear rate of convergence/divergence that can
be enhanced with optimized boundary conditions giving the ORAS method of [11].
The RAS method’s linear convergence allows its acceleration of the convergence by
the Aitken’s process as done in [8] for the Schwarz method.

In [4] the present authors designed the ARAS2 preconditioning technique based
on the Aitken’s acceleration of the convergence technique. This paper presents an
approach to solve linear systems coming from CFD industrial cases. The choice of an
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approximation space based on the Singular Value Decomposition of the interface’s
solutions of the RAS iterative process presented in [14] is done. This provides a
preconditioning technique that depends on the Right Hand Side but with a very low
computational time and totally algebraic.

2 The ARAS2 Preconditioning Method

In what follows, we write the Aitken Restricted Additive Schwarz (ARAS) iterative
process and the associated preconditioner. This preconditioner belongs to the fam-
ily of the two-level preconditioner techniques (see [10, 13] and references) but the
coarse grid operator uses only parts of the artificial interfaces contrary to the patch
substructuring method of [7]. In this way, it can be seen as similar as the SchurRAS
method of [9] but it differs because the discrete Steklov-Poincaré operator connects
the coarse artificial interfaces of all the subdomains.

2.1 The ARAS and ARAS2 Preconditioner’s Formulation

Let Γi =Wi,δ+1 \Wi,δ be the interface associated to Wi,δ and Γ =∪p
i=1Γi be the global

interface. Then u|Γ ∈ R
n is the restriction of the solution u ∈ R

m on the Γ interface
and ek

|Γ = uk
|Γ − u∞|Γ is the error of (1) at the interface Γ . Taking into account that

there exists a matrix P ∈ R
n×n independent of the iterate k such that ek

|Γ = Pek−1
|Γ ,

we can apply the Aitken’s acceleration of the convergence process [8] (if ||P||< 1 to
ensure existence of (In−P)−1 for example) as follows:

u∞|Γ = (In−P)−1
(

uk
|Γ −Puk−1

|Γ
)
. (2)

P can be computed analytically or numerically for a separable operator on separable
geometry [8] or numerically approximated in other cases [14]. Using this property
on the RAS method, we would like to write a preconditioner which includes the
Aitken’s acceleration process. We introduce a restriction operator RΓ ∈ R

n×m from
W to the global artificial interface Γ , with RΓRT

Γ = In.
The Aitken Restricted Additive Schwarz (ARAS) must generate a sequence of

solutions on the interface Γ , and accelerate the convergence of the Schwarz process
from this original sequence. Then the accelerated solution on the interface replaces
the last one. This could be written combining an AS or RAS process Eq. (3a) with
the Aitken process written in R

m×m Eq. (3b) and substracting the Schwarz solution
which is not extrapolated on Γ Eq. (3c). We can write the following approximation
u∗ of the solution u:

u∗ = uk−1 +M−1
RAS,δ( f −Auk−1) (3a)

+RT
Γ (In−P)−1

(
uk
|Γ −Puk−1

|Γ
)

(3b)

−RT
Γ InRΓ

(
uk−1 +M−1

RAS,δ ( f −Auk−1)
)

(3c)
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We would like to write u∗ as an iterated solution derived from an iterative process
of the form u∗ = uk−1 + M−1

ARAS,δ
(

f −Auk−1
)
, where M−1

ARAS,δ is the Aitken-RAS
preconditioner.

Hence the formulation Eq. (3) leads to an expression of an iterated solution u∗:

u∗ = uk−1 +
(

Im +RT
Γ

(
(In−P)−1− In

)
RΓ
)

M−1
RAS,δ

(
f −Auk−1

)

This iterated solution u∗ can be seen as an accelerated solution of the RAS it-
erative process. Drawing our inspiration from the Stephensen’s method, we build a
new sequence of iterates from the solutions accelerated by the Aitken’s acceleration
method. Such a process is done in [12]. Then, one considers u∗ as a new uk and writes
the following ARAS iterative process:

uk = uk−1 +
(

Im +RT
Γ

(
(In−P)−1− In

)
RΓ
)

M−1
RAS,δ

(
f −Auk−1

)
(4)

Then we defined the ARAS preconditioner as

M−1
ARAS,δ =

(
Im +RT

Γ

(
(In−P)−1− In

)
RΓ
) p

∑
i=1

R̃T
i,δA−1

i,δ Ri,δ (5)

If P is known exactly, the ARAS process written in Eq. (4) needs two steps to
converge to the solution u with an initial guess u0 = 0. Then we have:

Proposition 1. If P is known exactly then we have

A−1 =
(

2M−1
ARAS,δ −M−1

ARAS,δAM−1
ARAS,δ

)
that leads

(
I−M−1

ARAS,δA
)

to be a nilpo-

tent matrix of degree 2.

The previous proposition leads to an approximation of A−1 written from the 2 first
iterations of the ARAS iterative process (4). Those 2 iterations compute the Schwarz
solutions sequence on the interface needed in order to accelerate the Schwarz method
by the Aitken’s acceleration. We now write 2 iterations of the ARAS iterative pro-
cess (4) for any initial guess and for all uk−1 ∈ R

m.

uk+1 = uk−1 +
(

2M−1
ARAS,δ −M−1

ARAS,δAM−1
ARAS,δ

)(
f −Auk−1

)

Then we defined the ARAS2 preconditioner as

M−1
ARAS2,δ = 2M−1

ARAS,δ −M−1
ARAS,δAM−1

ARAS,δ (6)

Hence, if P is known exactly there is no need to use ARAS as a preconditioning tech-
nique. Nevertheless, when P is approximated, the Aitken’s acceleration of the con-
vergence depends on the local domain solving accuracy, and the cost of the building
of an exact P depends on the size n. This is why P is numerically approximated by
PUq , defining q≤ n orthogonal vectors Uq ∈ Rn×q, that are able to approximate most
of the solution at the interface Γ . Then ARAS(Uq) and ARAS2(Uq) can be defined
as:
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M−1
ARAS(Uq),δ =

(
Im +RT

ΓUq

((
Iq−PUq

)−1− Iq

)
U

T
q RΓ

) p

∑
i=1

R̃T
i,δA−1

i,δ Ri,δ (7)

and
M−1

ARAS2(Uq),δ = 2M−1
ARAS(Uq),δ −M−1

ARAS(Uq),δAM−1
ARAS(Uq),δ (8)

As the basis Uq can only give an approximation of the searched solution at the inter-
face, it make sense to use M−1

ARAS(Uq),δ and M−1
ARAS2(Uq),δ as preconditioners.

2.2 Orthogonal Basis Uq Arising from SVD of the Interface’s Solutions of
Richardson Process

The objective is to compute PUq saving as much computing as possible. The singular
value decomposition offers a tool to concentrate the effort only on the main parts of
the solution. A singular-value decomposition of a real n× q (n > q) matrix Y is its
factorization into the product of three matrices Y =UqΣV∗, where Uq = [U1, . . . ,Uq]
is an n× q matrix with orthonormal columns, Σ is an n× q nonnegative diagonal
matrix with Σii =σi, 1≤ i≤ q and the q×q matrixV= [V1, . . . ,Vq] is orthogonal. The
left Uq and right V singular vectors are the eigenvectors of YY ∗ and Y ∗Y respectively.
It readily follows that Avi = σiui, 1 ≤ i ≤ q. We are going to recall some properties
of the SVD. Assume that the σi,1 ≤ i ≤ q are ordered in decreasing order and there
exists an r such that σr > 0 while σr +1 = 0. Then A can be decomposed in a dyadic
decomposition:

Y = σ1U1V ∗1 +σ2U2V ∗2 + . . .+σrUrV
∗
r . (9)

This means that SVD provides a way to find optimal lower dimensional approxima-
tions of a given series of data. More precisely, it produces an orthonormal basis for
representing the data series in a certain least squares optimal sense.

The orthogonal “basis” Uq is obtained as follows. q iterations of the Richardson
process uk = uk−1 +M−1

RAS,δ ( f − Auk−1) are performed and RΓ uk ∈ R
n,1 ≤ k ≤ q

belonging to the interface Γ are stored in a matrix Y ∈ R
n×q. Then the SVD of Y

is computed to obtain the matrix Uq with an arithmetic cost less than the one of a
local solution. It leads to efficiency and low computational cost as illustrated in [1].
Nevertheless, the preconditioner ARAS2(Uq) obtained is solution dependent.

2.3 Building of the PUq Matrix

The matrix PUq can be computed as follows keeping the q+1 first singular values of
the SVD greater than a set tolerance, we writes:

Y1:q,1:q+1 = Σ1:q,1:qV
T
1:q,1:q+1 (10)

E1:q,1:q+1 = Y1:q,2:q+1−Y1:q,1:q (11)

If E1:q,1:q is invertible then (12)

PUq = E1:q,2:q+1 E−1
1:q,1:q (13)
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The previous building requires the inversion of the matrix E1:q,1:q which can be ill
conditioned. It is why the second building of matrix PUq that follows is prefered.
Selecting the q first singular values of the SVD greater than a set tolerance, one
iteration of the RAS algorithm is applied on the q the homogeneous problems where
Ui,1≤ i≤ q is set as boundary condition on the interface Γ . The result of this RAS
iterate with M−1

RAS,δ on the boundary Γ is the column of PUq associated with the
component Ui of the basis. Let us notice that this q computing can be made in the
same time considering the q right hand sides in a matrix form.

3 Numerical Experiments on 2D and 3D Industrial Problems
from Navier-Stokes Equations

In this section we focus on solving linear systems coming from industrial problems
with the ARAS2 preconditioning technique. The sparse matrices correspond to the
assemblage of all the elementary Jacobian matrices resulting from the partial first-
order derivations with respect to the conservative fluid variables of the discrete steady
(real) Reynolds-averaged Navier-Stokes equations. We note here that the Jacobian
matrix is non-symmetric and is non positive definite.

Table 1 summarizes the main features of the linear systems from the two cases
solved. Those cases are available in the sparse matrix collection [3]. Turbulence is
considered in the 2D and 3D cases. We partition the system with PARMETIS into
p subdomains. We must notice that for such problems with non-elliptic operators,
the ILU factorization is hazardous. Then, the preconditioner is computed from exact
factorization of local operators.

Figure 1 presents for the case PR02 the convergence behaviour of the Richard-
son and the GMRES preconditioned by the ARAS2 preconditioner where the PUq

is approximated by SVD. For this matrix the RAS Richardson process diverges. If
the number of singular values kept is not sufficient, the ARAS2 process diverges as
well. If we used 60 iterates of RAS Richardson process then the “full” PUq makes
the ARAS2 Richardson process converge in one iterate. Nevertheless ARAS2 works
quite well in both cases as a preconditioner of the GMRES method. We must notice
that here we have an effective gain to use the ARAS2 instead of RAS as Richardson
process. The same behavior is also retrieved when ARAS2 is used as preconditioner.

For a 3D case the number of non-zero and the band profile increase. Then solving
local problems by LU factorization begins to be expensive in terms of memory. A
better approach consists of solving subproblems by an iterative method. For the case
RM07, we choose to solve subproblems by a GMRES preconditioned by ILU. The
idea to save computational time is to approximate the Aitken’s acceleration with the
basis arising from SVD and solving subproblems with less accuracy for the comput-
ing of the preconditioner. Table 2 shows the good strong numerical scalability of the
ARAS2 preconditioning compare to the RAS.
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case ID order dim nn nnz
PR02 161 070 2D 23 010 8 185 136
RM07 381 689 3D 54 527 37 464 962

Table 1. Main features of the linear systems with order the size of the matrix with real coeffi-
cients, dim the dimension of the problem, nn is the number of mesh nodes, nnz is the number
of non-zero elements in the matrix
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Fig. 1. Solving 2D Navier Stokes equation with turbulence (CASE PR02), PARMETIS par-
titioning, p = 4, overlap 2, ARAS2 is built with a SVD basis, (left) Convergence of Iterative
Schwarz Process, (right) convergence of GMRES method preconditioned by RAS and ARAS2

p RAS ARAS(36) ARAS2(36)
3 87 (1.) 77 (1.1299) 53 (1.6415)
6 112 (1.) 93 (1.2043) 63 (1.7778)

12 171 (1.) 124 (1.3790) 84 (2.0357)

Table 2. CASE RM07 : Number of GMRES iterations (ratio of iterations with RAS over
iterations with ARAS or ARAS2) for a tolerance 1e-10, overlap 1.
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1 Introduction

The Chimera Method developed originally in [1, 19, 20] simplifies the construction
of computational meshes about complex geometries. This is achieved by breaking
the geometries into components and generating independently a series of different
meshes. This enables one a great flexibility on the choice of the type of elements,
their orientations and local mesh refinement. The components are further coupled by
transmitting information from one mesh to the other to obtain a global solution.

The Chimera Method is a very efficient tool to treat moving objects [3, 16] as the
different meshes can move as rigid bodies in an independent way. Nevertheless, we
will focus in this work on fixed subdomains. The main application in this context is
optimization analysis, where different configurations can be tested without having to
remesh the whole geometry. In order to achieve this, we have developed a versatile
strategy based on the Chimera Method.

Usually, in the Chimera Method, the mesh is divided into a background mesh,
which covers all the computational domain, and patch (overset) meshes attached to
the different components (objects) which are located upon the background mesh.
First, we apply a proper preprocessing consisting in removing elements of the back-
ground mesh located inside the patch meshes to create apparent interfaces between
the background and the patches. The present algorithm requires in addition to smooth
the interfaces. This is achieved using a smoothing strategy of the interfaces and the
neighboring volume mesh. Then a new coupling algorithm is carried out in order to
obtain a “continuous solution” across the interfaces. In the literature, the Chimera
coupling has generally been implemented as an iterative algorithm (see [2] for a
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Schwarz coupling or [9] for a Dirichlet/Neumann coupling). Here the coupling is
implicit. The implementation properties of the proposed coupling facilitate its paral-
lel implementation and makes it a versatile method to be used on general PDE’s.

In the following we explain the two basic steps of the Chimera method. The
preprocessing step which consists in creating the interfaces between the subdomains.
This is a purely geometrical task. We then present the coupling step which couples
the solution from the different meshes. Finally we show a numerical examples.

2 Interface Creation Process

The first task of the Chimera method is to create apparent interfaces between the
background and the patch meshes. This is achieved by the hole cutting step of the
Chimera method. As will be explained in next section, our coupling strategy requires
smooth interfaces. After the hole cutting, smoothing of the interfaces are also neces-
sary. We now explain these two points.

2.1 Hole Cutting

The hole cutting tasks consists in removing elements (the hole elements) from the
background mesh to form interfaces with the patches. We start by identifying the hole
nodes. The hole nodes are those nodes of the background mesh that are located inside
the patch mesh. To do this we have used a skd-tree strategy, as explained in [12]. Skd-
trees are used to find efficiently the signed shortest distance between a point and a
surface. In our case, the surfaces are the patch outer boundaries. In practice we obtain
a better efficiency if we use the search algorithm described in [18], which is a slightly
modified version of the above reference. Having found the hole nodes, we identify
the hole elements which are the background elements of which all nodes are hole
nodes. The fringe nodes are defined as the nodes located on the outer boundaries
of the hole elements. They are the hole nodes having non-hole neighbor nodes. The
fringe nodes are used to form the interface of the backgound with the patches.

2.2 Smoothing

The domain decomposition coupling we propose is geometrical, as will be shown in
next section. It is therefore important to ensure a minimum regularity of the interfaces
and the mesh nearby, as this will affect the quality of the results. Figure 1 (Left)
shows an example of typical background interface resulting from the previous hole
cutting process. The proposed strategy consists in smoothing first the interface and
then the volume mesh in the vicinity.

In this article, we are interested in mesh smoothing techniques that relocate the
nodes to improve the mesh without changing its topology. The particular method we
consider here is based on local mesh smoothing algorithms, since they have shown
to be efficient in repairing distorted elements. The most common smoothing tech-
nique is Laplacian smoothing (see [13]), which moves a given node to the barycenter
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of all its connected nodes. This method is not computationally expensive but does
not guarantee an improvement in mesh quality. In addition, it can create invalid ele-
ments or poor quality elements resulting in convergence and shrinkage problems. To
overcome this shortcoming, different variations of Laplacian smoothing have been
proposed like [5, 22].

Optimization-based smoothing algorithms are alternative local smoothing strate-
gies. These algorithms depend on the type of mesh, the optimization method used
and a measure of the mesh quality, and require an objective function to be optimized.
The objective function should include a good representation of the mesh quality.
A good summary of measures for the quality of tetrahedra and a global definition
of the tetrahedron shape measure is given in [4]. Besides the geometrical objective
functions described in the above reference, there exist other quality interpretations
based on matrices and matrix norms. This matrix perspective suggests several differ-
ent objective functions as, for example, the smoothness objective function in terms
of the condition number of the Jacobian matrix; see [6].

Our smoothing process consists first of a surface Laplacian-smoothing algorithm
based on [21] for the interface. An example is shown in Fig. 1. As a consequence,

Fig. 1. (Left) Original interface after hole cutting. (Right) Smoothed interface

we need to relocate the volume nodes in order to repair the bad quality elements.
To tackle this problem, we have applied a tetrahedra mesh improvement via opti-
mization of the element condition number developed in [6]. This optimization uses
a steepest descent method with a modified line search adapted to the geometrical
constraints of the sub-mesh associated to the node we want to move. The imple-
mented line search satisfies the Armijo rule which guarantees the local convergence
of the method. For more details about this issue the reader can refer to [14]. Besides,
a structured strategy is applied to perform the line search. The descent direction is
obtained using the gradient of the objective function f (x), in which the free vertex

(node) x is the unknown: f (x) = ‖K(x)‖2 =
[
∑M−1

m=0 κm(x)2
]1/2

, where κm represents
the condition number associated to the tetrahedron m, the moving node having M
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sub-mesh elements. We then compute the steepest descent p = −∇ f and find the
position which gives minimum f (x).

3 DD-Coupling

The Chimera method can be viewed as an overlapping domain decomposition tech-
nique, where transmission conditions are imposed on the interfaces of the subdo-
mains, see [17]. A key point of the Chimera method is the way the information
on the artificial boundaries is transferred, that is, the coupling. The different clas-
sical options depends on the type of the transmission conditions imposed on the
interfaces. The most typical are Dirichlet/Dirichlet (D/D) coupling, also known as
Schwarz’ method, Dirichlet/Neumann (D/N) coupling, Dirichlet/Robin (D/R) cou-
pling, Robin/Robin(R/R) coupling. In the litterature, the coupled system is usu-
ally solved iteratively. In each subdomain Ωi local problems are solved by using
as boundary conditions (of Dirichlet or Robin type) the values form its neighbours
Ω j until convergence is achieved. Relaxation is often needed to obtain this conver-
gence and depends on the local character of the equation. In [8], the equivalence be-
tween the one-domain formulation and overlapping domain decomposition methods
of Dirichlet/Neumann(Robin) type is shown at the continuous level. The equivalence
is no longer true at the discrete level.

We have developed in this work a new way of coupling the subdomains that we
refer to as Extension-Dirichlet (Ext+D). The advantage of the method is that it is im-
plicit and parallel. Therefore, no additional iterative loop is introduced and a-fortiori
the convergence of the method has no relation with the overlap. The idea consists
in extending the subdomains from their interfaces to their neighboring subdomains,
and imposing the Dirichlet condition implicitly, by connecting their extension to the
nodes of the neighbors. This method is equivalent, in practice, to imposing Dirichlet
boundary condition and eliminating it.

To illustrate the method, let us solve a diffusion equation, Δu = 0 using the
Galerking method in domain [0,1] discretized in 4 linear elements, with the bound-
ary conditions, u(0) = 1 and u(1) = 3. The analytical solutions is u =−2x+ 1. Fig-
ure 2 (Left) shows the two unconnected subdomains and the corresponding assem-
bled global matrix. Then, Fig. 2 (Center) shows, for the same example, the results of
an implicit Dirichelt/Dirichlet coupling. To achieve this, u3−u5 = 0 substitutes line
3 and u4−u2 = 0 subsitutes line 4. The (Ext+D)2 method we propose is illustrated
in Fig. 2 (Right). Starting with the matrix of Fig. 2 (Left), we perform the following:

• Extend node 3 shape function to node 6 of the second subdomain. This provides
additional terms in the equation for node 3.

• Extend node 4 shape function to node 1 of the second subdomain. This provides
additional terms in the equation for node 4.

We can observe that in practice the (Ext+D)2 method creates new elements. In this
example the new elements are 3–6 and 4–1. The element matrices and RHS’s are



An Implicit and Parallel Chimera Type Domain Decomposition Method 581

Fig. 2. (Left) Problem statement and domain. (Center) Dirichlet/Dirichlet assembled. (Right)
(Ext+D)2

computed as any other elements of the mesh, but only the lines of node 3 and node 4
of these matrices and RHS’s are assembled into the global matrix, respectively.

The main difficulty of the method is to be able to construct a proper extension
from one interface node to the other subdomain. This task is specially complex in
the 3D case, mainly due to the restriction that the extension must be closed. In vari-
ational terms, this means that the extension has a compact support. We are going to
describe the way to create the extensions on the interface Γi j between subdomainΩi

and subdomain Ω j in the 2D case. The process, illustrated in Fig. 3, consists in the

Fig. 3. 2D extensions

following.

• For a fringe node of Ωi, identify the host element in Ω j.
• The nodes connected to this host element are the possible candidates to create

the triangles that form the associated extension. They are the black nodes.
• Construct two triangles (blue and yellow) connected to the boundaries of the

fringe node.
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• Close the result with a third one (purple).

The choice of the extension nodes (blue and yellow circled) is based on a quality
criterion of the resulting triangles [7], among all the possibilities for the previous list.
The third node of the triangle is the other node that forms the interface boundary.

4 Numerical Example

Figure 4 shows some results obtained for a flow around a boat. The Navier-Stokes
equations are solved together with a level set function and one-equation Spalart-
Allmaras turbulence model. The space discretization is a variational multiscale finite
element method. The complete description of the algorithm can be found in [10, 11,
15] This complex case computed with 256 CPU’s reflects the versatile property of
our method and its parallel capacity. The first figure shows the extension elements
while the second one the velocity module.

Fig. 4. (Top) Extension elements. (Bottom) Level set

5 Conclusions

We have devised in this paper a domain decomposition method, referred as (Ext+D)2

which is based on the explicit construction of extension elements assembled almost
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as any other element so that the implementation is straightforward. It consists in
imposing implicitly Dirichlet transmission conditions and does not introduce any
additional iterative loop to the algorithm. Another strength of the method is that it is
naturally parallel. However, aspects like conservation should be treated in order to
complete the analysis of the method.
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1 Introduction

Far field simulations of underground nuclear waste disposal involve a number of
challenges for numerical simulations: widely differing lengths and time-scales,
highly variable coefficients and stringent accuracy requirements. In the site under
consideration by the French Agency for Nuclear Waste Management (ANDRA), the
repository would be located in a highly impermeable geological layer, whereas the
layers just above and below have very different physical properties (see [1]). It is
then natural to use different time steps in the various layers, so as to match the time
step with the physics. To do this, we propose to adapt a global in time domain de-
composition method, based on Schwarz waveform relaxation algorithms, to prob-
lems in heterogeneous media. This method has been introduced and analyzed for
linear advection-reaction-diffusion problems with continuous coefficients [2, 6] and
extended to discontinuous coefficients [3, 4], with asymptotically optimized Robin
transmission conditions in [3]. The method is extended to higher dimension in [4]
with convergence results and error estimates for rectangular or strip subdomains.

This method is extended to problems with discontinuous porosity in [5]. A new
aproach is proposed to determine optimized transmission conditions for domains
with highly variable lengths. In this paper we analyse this approach in 1d.

Our model problem for the radionuclide transport is the one dimensional
advection-diffusion-reaction equation

ϕ∂t u+ a∂xu− ∂x(ν∂xu)+ bu = f , on R× (0,T),
u(0,x) = u0(x), x ∈ R.

(1)

We focus on a model problem to show the effect of subdomains with widely differing
sizes. We consider a decomposition in Ω1 = (−∞,0), Ω2 = (0,L), Ω3 = (L,∞) with
L << 1. The reaction coefficient b is taken constant and the coefficients a, ν , and ϕ
are assumed constant on each Ωk, but may be discontinuous at x = 0 and x = L,
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DOI 10.1007/978-3-642-35275-1 69, © Springer-Verlag Berlin Heidelberg 2013

585

mailto:japhet@math.univ-paris13.fr
mailto:pascal.omnes@cea.fr


586 Caroline Japhet and Pascal Omnes

ϕ = ϕk, a = ak, ν = νk, x ∈Ωk.

We introduce the notations

Lkv := ϕk∂tv+ ak∂xv− ∂x(νk∂xv)+ bv, on Ωk× (0,T),
ϕϕϕ := (ϕ1,ϕ2,ϕ3), aaa := (a1,a2,a3), ννν := (ν1,ν2,ν3).

Problem (1) is equivalent to solving problems in subdomainsΩk

Lkuk = f , on Ωk× (0,T ),
uk(0,x) = u0(x), x ∈Ωk.

with coupling conditions on the interface Γk,� between two neighboring subdomains
Ωk and Ω� given by

uk = u�,
(
νk∂x−ak

)
uk =

(
ν�∂x−a�

)
u�, on Γk,�× (0,T ). (2)

2 Domain Decomposition Algorithm

A simple algorithm based on relaxation of the coupling conditions (2) does not con-
verge in general (see [7]). Following previous works [2–4], we introduce the Schwarz
waveform relaxation algorithm

Lkun
k = f , on Ωk× (0,T ),

un
k(0,x) = u0(x), x ∈Ωk,(

νk∂x−ak
)

un
k +Sk,�un

k =
(
ν�∂x−a�

)
un−1
� +Sk,�u

n−1
� , on Γk,�× (0,T ),

(3)

where Sk,� are linear operators in time and space, defined by

Sk,�ψ = p̄k,�ψ+ q̄k,�∂tψ .

The case q̄k,� = 0 corresponds to Robin transmission conditions, while the case
q̄k,� = 0 corresponds to first order transmission conditions. The well-posedness and
convergence have been analyzed for constant porosity in [3] and in higher dimension
in [4]. The transmission conditions in (3) imply the coupling conditions (2) at con-
vergence, and lead at the same time to an efficient algorithm, for suitable parameters
p̄k,� and q̄k,� obtained from an optimization of the convergence factor.

Similarly, Sk,� are approximations of the best operators related to transparent
boundary operators. They can be found using Fourier analysis in the two half-spaces
case. This analysis has been done for discontinuous coefficients [3], and in higher
dimension and continuous coefficients [2]. The min-max problem has been analysed
in one dimension in [3] with asymptotical Robin parameters.

In the field of nuclear waste computations, domains of meter scale are embedded
in domains of kilometer scale. The previous optimization of the convergence factor
does not take into account the high variability of the domains lengths. Following
[5], we determine optimized transmission conditions through the minimization of a
convergence factor that takes into account this variability.
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2.1 Optimal Transmission Conditions

In order to determine the optimal transmission operators Sk,�, we compute the con-
vergence factor of the algorithm. Since the problem is linear, we consider the algo-
rithm (3) on the error (i.e. with f = 0 and u0 = 0). In order to use a Fourier transform
in time, we assume that all functions are extended by 0 for t < 0.

Let en
k = un

k−u be the error in Ωk at iteration k. The operators Sk,� are related to
their symbols σk,�(ω) by

Sk,�u(t) =
1

2π

∫
σk,�(ω)û(ω)eiωt dω .

The Fourier transforms ên
k in time of en

k are solutions of the ordinary differential
equation in the x variable

−νk∂ 2
xxê+ ak∂xê+(iϕkω+ b)ê = 0.

The characteristic roots are

r±(ak,νk,ϕk,b,ω) =
ak±

√
dk

2νk
, dk = a2

k + 4νk(iϕkω+ b). (4)

Since ℜr+ > 0, ℜr− < 0, and since we look for solutions which do not increase
exponentially in |x|, we obtain

ên
1(x,ω) = αn

1 (ω)e
r+(a1,ν1,ϕ1,b,ω)x, ên

3(x,ω) = αn
3 (ω)e

r−(a3,ν3,ϕ3,b,ω)x,

ên
2(x,ω) = αn

2 (ω)e
r+(a2,ν2,ϕ2,b,ω)x +β n

2 (ω)e
r−(a2,ν2,ϕ2,b,ω)x.

(5)

We set ξ n = (αn
1 ,α

n
2 ,β

n
2 ,α

n
3 )

t , and r±k = r±(ak,νk,ϕk,b,ω). We define the variables
sk = sk(ω ,L), 1≤ k≤ 8, by

s1 =
ν2r−2 −σ1,2

ν1r−1 −σ1,2
, s2 =

ν2r+2 −σ1,2

ν1r−1 −σ1,2
, s3 =

ν2r+2 −σ2,3

ν2r−2 −σ2,3
· e(r−2 −r+2 )L,

s5 =
ν2r−2 +σ2,1

ν2r+2 +σ2,1
, s7 =

ν2r−2 +σ3,2

ν3r+3 +σ3,2
e(r

+
2 −r−3 )L, s8 =

ν2r+2 +σ3,2

ν3r+3 +σ3,2
e(r

−
2 −r−3 )L,

s4 =
ν1r−1 +σ2,1

ν2r+2 +σ2,1
· 1

D , s6 =
ν3r+3 −σ2,3

ν2r−2 −σ2,3
· e(r

−
3 −r+2 )L

D , with D = s3s5−1.

We insert (5) into the transmission conditions in (3), and obtain for n≥ 2,

ξ n = Mξ n−1,

where the matrix M = M(ω ,L) is defined by

M =

⎛
⎜⎜⎝

0 s1 s2 0
s3s4 0 0 −s6

−s4 0 0 s5s6

0 s7 s8 0

⎞
⎟⎟⎠ .

The convergence factor ρ(ω ,L) for each ω ∈ R is the spectral radius of M.
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Remark 1. The choice for the symbols σk,�

σ1,2 = ν2r+2 , σ2,1 =−ν1r−1 , σ2,3 = ν3r+3 , σ3,2 =−ν2r−2 , (6)

leads to M2 = 0 and thus to optimal convergence in three iterations.

Proposition 1. The convergence factor is given by

ρ(ω ,L) =
√

max(|λ−|, |λ+|),
where λ± = λ±(ω ,L) is defined by

λ± =
α+β ±√(α −β )2 + 4γζ

2
,

with

α = s1s3s4− s2s4, β =−s6s7 + s5s6s8, γ = s3s4s7− s4s8, ζ =−s1s6 + s2s5s6.

This follows from the computation of the roots of the characteristic polynomial of
M, which is biquadratic. The corresponding operators to (6) are non-local in time. In
the next subsection, we therefore approximate the optimal operators by local ones.

2.2 Local Transmission Conditions

We approximate the optimal choice σk,� in (6) by polynomials in ω :

σ app
1,2 =

p1,2 + a2

2
+

q1,2

2
iω , σ app

2,1 =
p2,1−a1

2
+

q2,1

2
iω ,

σ app
2,3 =

p2,3 + a3

2
+

q2,3

2
iω , σ app

3,2 =
p3,2−a2

2
+

q3,2

2
iω .

In order to simplify the min-max problem, we will consider the following cases for
the choice of pk,� and qk,�:

1. (Robin) pk,� = p, qk,� = 0,
2. (Zeroth order) p1,2 = p3,2 = p1, p2,1 = p2,3 = p2, qk,� = 0,
3. (First order) pk,� = p, qk,� = q,
4. (First order scaled) pk,� = p, q1,2 = ϕ2q, q2,1 = ϕ1q, q2,3 = ϕ3q, q3,2 = ϕ2q.

Then, the parameters are chosen in order to minimize the convergence factor, i.e. we
solve, for ppp = p in case 1, ppp = (p1, p2) in case 2, and ppp = (p,q) in cases 3 and 4, the
min-max problem

δm(L) = min
ppp

(
max

ω0≤ω≤ωmax
ρ(ω ,ppp,ϕϕϕ ,aaa,ννν ,b,L)

)
, (7)

where ρ is the spectral radius of M, in which we have replaced σk,� by σ app
k,� , and m

is the order of the approximation. In numerical computations, the frequencies can be
restricted to ωmax =

π
Δ t , where Δ t is the time step, and ω0 =

π
T .
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Theorem 1. We suppose that ak = a, ϕk = ϕ and νk = ν , 1 ≤ k ≤ 3, thus dk = d in
(4). Let us consider the Robin case (ppp = p) and the first order case (ppp= (p,q)). Then
the convergence factor reduces to

ρ(ω ,ppp,ϕ ,a,ν,b,L) =

√√√√
∣∣∣∣∣
σ −√d

σ +
√

d

∣∣∣∣∣max

(∣∣∣∣σ − μσ + μ

∣∣∣∣ ,
∣∣∣∣σ −ησ +η

∣∣∣∣
)

with

μ =
√

d

(
1+ e−

√
d

2ν L

1− e−
√

d
2ν L

)
, η =

√
d
μ

,

and with σ = p in the Robin case, and σ = p+qiω in the first order case. Let L > 0
given. Let δ0(L) (resp. δ1(L) ) be the solution of (7) for the Robin case (resp. the first
order case). For m = 0 and m = 1, we have |δm(L)|< 1.

3 Numerical Results

We use the DG-OSWR method in [4] based on a discontinuous Galerkin method in
time, with P1 finite elements in space in each subdomain. We present an example
inspired from nuclear waste simulations, with discontinuous coefficients, and dif-
ferent time and space steps in the subdomains Ω2 = (0.4954,0.5047) (repository),
Ω1 = (0,0.4954) and Ω3 = (0.5047,1) (host rock). The parameters for the three
subdomains are shown in Table 1. The final time is T = 0.04.

ϕ ν a b Δx Δ t
Ω1∪Ω3 0.06 0.06 1 0 510−3 T (510−3)
Ω2 0.1 1 1 0 510−4 T (110−3)

Table 1. Physical and numerical parameters

Let ppp�3 (resp. ppp�2) be the parameters derived from a numerical minimization of the
three domains convergence factor in (7) (resp. from the two half-spaces convergence
factor in [3]). Figure 1 shows ρ(ω ,p�3p�3p�3,L) (solid line) and ρ(ω ,p�2p�2p�2,L) (dashed line)
versus ω for Δ t = T (5 10−3). We observe that the solution of (7) is characterized
by an equioscillation property (at the star marks), as in the two half-spaces case (see
[2]). Moreover, for first order transmission conditions, we see that a scaling with
the porosity is important only when the parameters are computed from the two half-
spaces analysis.

On Fig. 2 we show the error after 20 iterations when running the algorithm on the
discretized problem, with u0 = f = 0 and random initial guess on the interfaces, for
various values of the Robin parameter p (left) and the zeroth order parameters p1, p2

(right) (in that case, the values obtain with the two half-spaces analysis is not in the
range values of the figure).
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Fig. 1. Convergence factor ρ(ω, ppp∗3,L) (solid line) and ρ(ω, ppp∗2,L) (dashed line) versus ω: Top
left: Robin, top right: zeroth order, left bottom: first order, right bottom: first order scaled
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Fig. 2. Error after 20 iterations: Left: for various values of the Robin parameter p (the lower
left star marks p�3 whereas the upper right circle shows p�2), Right: the level curves for various
values of the zeroth order parameters p1, p2 (the star marks the parameter ppp�3)
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Fig. 4. Asymptotic behavior as the mesh is refined: on the left R(Δ t) and on the right where
Δ t = O(Δx), the rate for the optimized Schwarz waveform relaxation algorithm with opti-
mized first order (scaled) transmission conditions

On Fig. 3, the solution, with first order (scaled) conditions, at iteration 4 is shown
for an initial condition equal to 1 in Ω2 and 0 elsewhere.

Figure 4 shows, on the left, R(Δ t) = 1−maxπ/T≤ω≤π/Δ t ρ(ω ,ppp�3,L) versus Δ t,

i.e. the convergence factor behaves like 1−O(Δ t)1/16, with first order (scaled) opti-
mized transmission conditions. On the right, we run the OSWR algorithm until the
error becomes smaller than 10−11, and count the number of iterations. We start with
Δ t = T/100 in each subdomain, and repeat this experiment dividing Δx and Δ t by 2
several times. We observe that the asymptotic result on the left predicts very well the
numerical behavior of the algorithm given on the right.
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University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland;
piotr.krzyzanowski@mimuw.edu.pl

1 Introduction

We consider a symmetric system of linear equations with a block structure,

M

(
u
p

)
≡
(

A BT

B −C

)(
u
p

)
=

(
F
G

)
. (1)

We assume that A is n×n and C is an m×m matrix. Many such systems arise from
the discretization of (systems of) partial differential equations. For example, Stokes
equations discretized with stable finite elements or a mixed finite element method
for second order elliptic PDEs lead to a positive definite matrix A and to C = 0, so
that (1) has a genuine saddle point structure. Certain other PDE problems may result
in an indefinite matrix A, or a semidefinite matrix A with a large kernel, which gives
(1) the structure of a so called generalized saddle point problem. Linear elasticity
equations modelling nearly incompressible materials discretized with mixed finite
elements result in both matrices A and C being positive definite, having thus a nature
of a penalized saddle point problem. All systems mentioned above have a common
feature that the matrix of (1) is indefinite.

The specific structure of (1) makes it possible to design efficient solution methods
which intensively exploit the properties of the system, see the recent survey of [4]
on the state-of-the-art in this field. Systems derived from the discretization of PDEs
are usually very large and sparse, and typically are solved by some iterative method.
Unfortunately, these systems are ill-conditioned with respect to the mesh size h, so
preconditioning is necessary in order to keep the number of iterations within a rea-
sonable limit. Applying a left preconditioner P , one then solves a problem with a
preconditioned matrix P−1M . We shall consider preconditioners of the form

Pd =

(
I

cBA−1
0 I

)(
A0

S0

)(
I d A−1

0 BT

I

)
(2)

or

Pp =

(
I d BT S−1

0
I

)(
A0

S0

)(
I

cS−1
0 B I

)
, (3)
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where A0 and S0 are symmetric, positive (or negative) definite matrices whose in-
verses are easy to apply and c,d ∈ {−1,+1}. In accordance with [8], we will refer
to Pd as the family of dual block preconditioners and to Pp as the family of primal
block preconditioners.

Many popular block preconditioners can be formed by choosing appropriate val-
ues of c and d in the formulas above. For example, a block diagonal preconditioner,
cf. e.g. [2, 6, 9, 13, 19, 21] corresponds to c = d = 0 above. Block triangular pre-
conditioners considered e.g. in [7, 14, 22] and the Bramble–Pasciak preconditioner
as well, see [5], are obtained with either c or d equal to zero. The choice c = d = 1
in (2) produces a symmetric indefinite preconditioner, see [3, 20, 24, 25], while the
same choice in (3) leads to a primal based penalty preconditioner, [1, 8].

It is straightforward that solving a system with Pd requires one solve with S0 and
at most two solves with A0, while applying Pp to a vector takes one solve with A0

and at most two solves with S0. When cd = 0, both types of preconditioners require
only one solve with A0 and one with S0.

Let us stress that when (1) arises from finite element discretization of PDEs, there
is a possibility to use other than block preconditioning approaches. On the other
hand, for many types of discretizations and problems, specialized methods based
on direct construction of a multigrid or domain decomposition preconditioner—
although usually outperforming block preconditioners, [15]—may take a consid-
erable effort to develop, implement and analyse. Since the block preconditioning
approach as discussed here turns out to be based on preconditioners for symmet-
ric positive definite matrices, this property makes it a viable and robust alternative to
custom methods, as in this case one can efficiently reuse existing theory and software
to solve more complex problems. This feature has been recognized in the software
package PETSc, see [23], where a family of so called field-splitting preconditioners
has recently been implemented.

2 Eigenvalue Estimates of the Preconditioned System

Eigenvalue clustering is vital for the convergence of a Krylov method, so it is im-
portant to bound the spectrum of P−1M , where P stands for either Pd or Pp.
Inspired by the block nature of the problem, which imposes a decomposition of the
unknowns into two parts (u, p) ∈ Rn×Rm, let us define a block diagonal, symmetric,
positive definite matrix

J =

(
Ã0

S̃0

)
,

where Ã0 is either A0, if A0 is positive definite, or (−A0), if A0 is negative definite;
S̃0 is defined in the same way. We assume there exist positive constants m0 and m1

such that
m0||x||J ≤ ||M x||J−1 ≤ m1||x||J ∀x ∈ Rn×Rm,

where
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||
(

u
p

)
||2J = ||u||2Ã0

+ ||p||2S̃0
,

This is nothing but a stability and continuity assumption in an appropriate norm, see
also [18]. At the same time we suppose there exists a constant b0 such that for any
u ∈ Rn and p ∈ Rm,

|pT Bu| ≤ b0||u||Ã0
||p||S̃0

.

Finally, we assume that for some δ ∈ {−1,+1}, the matrix H is positive definite,
where H is equal to either Hd or Hp (depending on whether we are addressing Pd

or Pp), with

Hd = δ
(

A0− cA
S0 + cdBA−1

0 BT + dC

)
,

Hp = δ
(

A0 + cdBT S−1
0 B− cA

S0 + dC

)
.

It turns out that then both HdPd
−1M and HpPp

−1M are symmetric and the
eigenvalues of the preconditioned matrix are bounded as stated in the following the-
orem, whose proof appeared in [16]:

Theorem 1. Suppose the above assumptions are fulfilled. If λ is an eigenvalue of
Pd

−1M or of Pp
−1M , then it is real and satisfies

m0

2(1+ b2
0)
≤ |λ | ≤ 2m1(1+ b2

0).

Let us mention that earlier Klawonn [12] proved a similar result for block diago-
nal preconditioning matrices.

2.1 Example Application: Stabilized Stokes Equations

Theorem 1 relies on the stability of (1) and therefore indicates that block precondi-
tioners can be used also in the case when the inf-sup condition is not satisfied and one
uses a so called stabilized method. As a model example let us consider a stabilized
Q1−Q1 discretization of Stokes equations

−Δu+∇p= f ,

∇ ·u = 0.

Let Th denote a shape-regular, quasi-uniform triangulation of a polygonal Ω ⊂
R2 into quadrilaterals. Define the finite dimensional spaces of bilinear finite elements:

Vh = {v ∈ [H1
0 (Ω)]2 : v|κ ∈ [Q1(κ)]2 ∀κ ∈ Th}

and
Wh = {q ∈ L2

0(Ω)∩C(Ω) : q|κ ∈ Q1(κ) ∀κ ∈ Th},
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where Q1(κ) denotes the space of bilinear functions on κ . Since Vh and Wh do not
satisfy the inf-sup condition the following stabilized discretization has been intro-
duced in [11]:

{
(∇uh, ∇vh)L2(Ω)− (divvh, ph)L2(Ω) = ( f , vh)L2(Ω) ∀vh ∈Vh,

−(divuh, qh)L2(Ω)− c(ph,qh) =−τ ∑κ∈Th
h2
κ( f , ∇qh)L2(κ) ∀qh ∈Wh,

(4)

where
c(ph,qh) = τ ∑

κ∈Th

h2
κ(∇ ph, ∇qh)L2(κ)

and τ > 0 is some prescribed parameter, independent of h. As the above system

is stable and continuous in the norm
(
||u||2

H1
0
+ ||p||2

L2

)1/2
, one concludes that an

optimal preconditioner (with respect to the mesh size h) can be obtained with either
Pd or Pp, where Ã0 is spectrally equivalent to the discrete Lapacian operator and
S̃0 is spectrally equivalent to the pressure mass matrix. These operators may require
some pre-scaling in order to make either Hd or Hd positive definite.

Numerical Experiments

We confirm the above findings running experiments for a stabilized Q1−Q1 dis-
cretization of the Stokes system on a unit square, obtained under MATLAB with the
software package IFISS 2.2, see [10].

We investigated the number of iterations of the preconditioned conjugate resid-
ual method required to reduce the residual norm by a factor of 106. We experimented
with Pd having one of the following forms: block diagonal (c = 1, d = 0), upper tri-
angular (c = 0, d = 1) and lower triangular (c = d = 0) (see [17] for implementation
details) for varying mesh size h. The results for the case when A0 = A and S0 = M
(as suggested by the above analysis) are provided below, confirming a convergence
rate independent of h:

n+m 243 867 3,267 12,675 49,923
Lower triangular 17 21 21 22 23
Upper triangular 16 16 16 16 16
Diagonal 32 35 37 39 39

In order to show a more realistic choice of A0, we used A−1
0 defined by means of

the incomplete Cholesky factorization of A, with drop tolerance 10−3. Since for our
model problem the quality of the incomplete Cholesky factorization degrades slowly
with increasing size of the system, this is also reflected in an increase of the iteration
counts:

n+m 243 867 3,267 12,675 49,923
Lower triangular 18 20 24 35 113
Upper triangular 17 17 20 33 —
Diagonal 33 38 48 74 132
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It has been observed that (at least in our implementation) the best solution times
were obtained mostly for triangular preconditioners.

3 Conclusions

We have presented two classes of block preconditioners for symmetric saddle point
problems and provided eigenvalue estimates of the preconditioned system P−1M
under a quite general assumption of the stability and continuity of the problem being
solved. In the context of PDEs, based upon this result, an iterative method, optimal
with respect to the mesh size h, can be designed, which may reuse existing state-of-
the-art preconditioners or fast solvers for certain elliptic problems.
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Summary. In this study we present a non-overlapping Schwarz waveform relaxation method
applied to the one dimensional unsteady diffusion equation. We derive efficient interface con-
ditions using an optimal control approach once the problem is discretized. Those conditions
are compared to the usual optimized conditions derived at the PDE level by solving a min-max
problem. The performance of the proposed methodology is illustrated by numerical experi-
ments.

1 Introduction

Schwarz-like domain decomposition methods are very popular in mathematics, com-
putational sciences, and engineering notably for the implementation of coupling
strategies. This type of method, originally introduced for stationary problems, can
be extended to evolution problems by adapting the waveform relaxation algorithms
to provide the so-called Schwarz waveform relaxation method [2, 4]. The idea behind
this method is to separate the spatial domain, over which the time-evolution problem
is defined, into subdomains. The resulting time-dependent problems are then solved
separately on each subdomains. An iterative process with an exchange of boundary
conditions at the interface between the subdomains is then applied to achieve the
convergence to the solution of the original problem. To accelerate the convergence
speed of the iterative process, it is possible to derive efficient interface conditions by
solving an optimization problem related to the convergence rate of the method [e.g.;
1, 5].

In this study, we specifically address the optimization problem arising from the
use of Robin type transmission conditions in the framework of a non-overlapping
Schwarz waveform relaxation. For this type of problem, the existing work has been
achieved mainly at the PDE level, giving rise to the optimized Schwarz waveform
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relaxation algorithm [1, 2, 5]. The objective here is to use the optimal control theory
paradigm [9] to find parameters optimized at the discrete level, and thus to system-
atically make a comparison with the parameters determined at the PDE level. This
paper is organized as follows : in Sect. 2 we briefly recall the basics of optimized
Schwarz methods in the framework of a time evolution problem. Section 3 is dedi-
cated to the determination of the optimal control problem that we intend to address.
Finally, in Sect. 4 we apply our approach to a diffusion problem.

2 Optimization of the Convergence at the PDE Level

2.1 Model Problem and Optimized Schwarz Methods

Let us considerΩ a bounded open set of R. The model problem is to find u such that
u satisfies over a time period [0,T ]

L u = f , in Ω × [0,T ], (1)

Bu = g, on ∂Ω × [0,T ], (2)

where L and B are two partial differential operators, and f the forcing. This prob-
lem is complemented by an initial condition

u(x,0) = u0(x), x ∈Ω . (3)

We consider a splitting of the domain Ω into two non-overlapping domains Ω1 and
Ω2 communicating through their common interface Γ . The operator L introduced
previously is split into two operators L j restricted to Ω j ( j = 1,2). By noting F1,
F2, G1 and G2 the operators defining the interface conditions, the alternating form
of the Schwarz waveform relaxation algorithm reads

⎧⎪⎪⎨
⎪⎪⎩

L1uk
1 = f1, in Ω1× [0,T ],

uk
1(x,0) = uo(x), x ∈Ω1,

B1uk
1(x, t) = g1, in [0,T ]×∂Ω1,

F1uk
1(0, t) = F2uk−1

2 (0, t), in Γ × [0,T ],

⎧⎪⎪⎨
⎪⎪⎩

L2uk
2 = f2, in Ω2× [0,T ],

uk
2(x,0) = uo(x), x ∈Ω2,

B2uk
2(x, t) = g2, in [0,T ]×∂Ω2,

G2uk
2(0, t) = G1uk

1(0, t), in Γ × [0,T ],
(4)

where k = 1,2, . . . is the iteration number, and the initial guess u0
2(0, t) must be given.

The operators F j and G j must be chosen to impose the desired consistency of the
solution on the interfaceΓ . We consider here the one-dimensional diffusion equation
with constant (possibly discontinuous) diffusion coefficients κ j (κ j > 0, j = 1,2). We
define L j = ∂t −κ j∂ 2

x ,Ω1 =(−L1,0),Ω2 =(0,L2) (L1,L2 ∈R
+ ), andΓ = {x= 0}.

In this context, we require the equality of the subproblems solutions and of their
normal fluxes on the interface Γ ,

u1(0, t) = u2(0, t), κ1∂xu1(0, t) = κ2∂xu2(0, t), t ∈ [0,T ]. (5)

To obtain such a consistency we use mixed boundary conditions of Robin type
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F j =−κ j∂x + p1, G j = κ j∂x + p2, ( j = 1,2),

where p1 and p2 are two parameters that can be optimally chosen to improve the
convergence speed of the Schwarz method. Algorithm (4) with two-sided Robin
conditions (i.e. for p1 = p2) is well-posed for any choice of p1 and p2 such that
p1 + p2 > 0. This result can be shown using a priori energy estimates, as described
in [4].

2.2 Optimization of the Convergence Factor

To demonstrate the convergence of algorithm (4) a classical approach [e.g. 6] is to
define the error ek

j between the exact solution u� and the iterates uk
j. A Fourier anal-

ysis enables the transformation of the original PDEs into ODEs that can be solved
analytically. The analytical solution on each subdomain is then used to define a con-
vergence factor ρ of the corresponding Schwarz algorithm. For a diffusion problem,
defined on subdomains of infinite size (i.e. assuming L1,L2 → ∞), we get

ρ(p1, p2,ω) =
∣∣∣∣(p2−

√
iωκ2)

(p2 +
√

iωκ1)

(p1−
√

iωκ1)

(p1 +
√

iωκ2)

∣∣∣∣ , (6)

where p1 and p2 are two degrees of freedom which can be tuned to accelerate the
convergence speed. In (6), i =

√−1, and ω ∈R is the angular frequency arising from
a Fourier transform in time on ek

j. A general approach to choose the Robin parameters
p1 and p2 is to solve a minimax problem [2]

min
p1,p2∈R

(
max

ω∈[ωmin,ωmax]
ρ(p1, p2,ω)

)
. (7)

Because we work in practice on a discrete problem the frequencies allowed by the
temporal grid range from ωmin = π/T to ωmax = π/Δ t, where Δ t is the time step
of the temporal discretization. For the diffusion problem under consideration here,
the analytical solution of the optimization problem (7) has been derived in [8] in a
general two-sided case (i.e. with p1 = p2) with discontinuous coefficients κ1 = κ2.
For the sake of simplicity, we consider in the present study the continuous case (κ1 =
κ2 = κ) and we recall the result found in [8] in this case.

Theorem 1. Under the assumption κ1 = κ2 = κ , the optimal parameters p�1 and p�2
of the minmax problem (7) are given by

p�1 =
α
√

2κ
4

[√
8+ v2− v

]
, p�2 =

α
√

2κ
4

[√
8+ v2+ v

]
,

where α = (ωminωmax)
1/4, β = α−1(

√
ωmin +

√
ωmax) and

v =

⎧⎨
⎩

2
√
β −1 if β ≥ 1+

√
5,√

2β 2−12 if
√

6≤ β < 1+
√

5,
0 if 2 < β <

√
6.

It is worth mentioning that even if the diffusion coefficients are continuous the
two-sided case provides a faster convergence than the one-sided case studied in [4]
(Fig. 1).
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General Remarks :

• The usual methodology to optimize the convergence at the continuous level
comes with a few assumptions that may lead to inaccuracies once the prob-
lem is discretized. For example, as discussed in [7] (Sect. 5), the infinite domain
assumption used to determine the convergence factor (6) may lead to apprecia-
ble differences in the optimized parameters compared to an approach taking the
finiteness of the subdomains into account. We numerically found that the infi-
nite domain assumption is valid as long as the dimensionless Fourier number
Fo = κ j/(L

2
jω) (with Lj the size of subdomain Ω j) of the problem does not

exceed a critical value Foc = 0.02.
• The optimization problem (7) aims at minimizing the maximum value of
ρ(p1, p2,ω) over the entire interval [ωmin,ωmax]. This provides a very robust
method general enough to deal with the worst case scenario when all the tempo-
ral frequencies are present in the error. An even more efficient way to proceed
would be to adjust the values of p1 and p2 at each iteration so that those param-
eters are efficiently chosen to “fight” the remaining frequencies in the error.

1×10–4 5×10–4 0.001 0.005 0.010 0.050 0.100

0.2

0.4

0.6

0.8

1.0

opt

Fig. 1. Convergence factor optimized at the PDE level in the one-sided case (black line) [4] and
in the two-sided case (dashed black line) [8], for κ = 10−2 m s−1, Δ t = 10 s, and T = 213Δ t

3 Optimal Control of the Robin Parameters

To investigate the robustness of the optimized parameters once the problem is dis-
cretized, the use of the optimal control theory appears as a natural choice. We aim at
controlling the Robin parameter in order to get the best possible convergence speed
in the sense of a given cost function J . Moreover, following the approach of [3]
and the previous discussion, we consider the possibility to use different parameters
p j for different steps of the iterative process. It is easy to check that by choosing
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different parameters at each iteration we still converge to the solution of the global
problem. A first way to choose the parameters is to look, at each iteration k, for pk

1
and pk

2 minimizing the error at the interface. In this case the cost function that we
intend to minimize at each iteration would be

J (pk
1, pk

2) =
w
2

∫ T

0

(
uk

1(0, t)−uk
2(0, t)

)2
dt

+
w̃
2

∫ T

0

(
κ1∂xuk

1(0, t)−κ2∂xuk
2(0, t)

)2
dt.

(8)

The constants w and w̃ must be chosen to balance both terms, depending on the char-
acteristics of the problem (see Sect. 4). The cost function (8) is designed in agreement
with the consistency (5) we want to impose at the interface between subdomains. J
provides a measure of the “inconsistency” of the solution at each iteration k, and is,
thus, directly related to the order of magnitude of the errors ek

j of the algorithm (as
shown in Fig. 2). An other strategy could be to minimize the error at a given iteration
K. The cost function would thus be

J
(
(pk

1, pk
2)k=1,K

)
=

w
2

∫ T

0

(
uK

1 (0, t)−uK
2 (0, t)

)2
dt

+
w̃
2

∫ T

0

(
κ1∂xuK

1 (0, t)−κ2∂xuK
2 (0, t)

)2
dt,

(9)

leading to an optimization on 2K parameters. This latter approach is particularly
interesting when we intend to obtain the best possible approximation of the exact
solution after a number of iterations set in advance. We propose here to lead our
study with this kind of approach with K = 5. The optimal control approach does not
per se reduce the computational cost of the algorithm because many evaluations of
the cost function are required during the minimization process (see Algorithm 3). We
use this approach as a tool to improve our understanding of the behavior of the Robin
parameters in order to find new directions to further accelerate the convergence speed
when Robin-type interface conditions are used. We denote by p�,num

1 and p�,num
2

the parameters found numerically by solving the optimal control problem. Those
parameters correspond to two vectors of size K. Similarly we will denote by p�,ana

1
and p�,ana

2 the parameters found analytically (cf. Theorem 1).
We used Matlab for the computation (Algorithm 3). Note that the well-posedness

of the coupling problem (4) is not sufficient to ensure a well-posed optimal control
problem. Some additional requirements on the convexity and regularity of the cost
function are necessary. We do not provide here such a proof, however we empirically
checked that the same solution of the optimal problem is obtained for a wide range
of parameter values for the initial guess.

4 Numerical Experiments

We discretized problem (4) using a backward Euler scheme in time and a second
order scheme defined on a staggered grid in space (see [8] for more details). We
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Algorithm 3 Optimal control
%== Robin parameters found analytically : p1ana, p2ana

%== Solution of the optimal control problem : p1opt, p2opt

%== Initial guess ==%

x0(1:2:2*K-1)=p1ana;
x0(2:2:2*K )=p2ana;
%== Solve the optimal control problem ==%

%== the CalcJ function proceeds to K iterations of the

%== Schwarz algorithm using 2K Robin parameters,

%== and computes the associated cost function (9)

x = fminsearch( @CalcJ, x0 );
%== Retrieve the optimized parameters

p1opt(1:K)=x(1:2:2*K-1);
p2opt(1:K)=x(2:2:2*K );

decompose the domain Ω into two non-overlapping subdomains Ω1 = [−H,0] and
Ω2 = [0,H] with H = 500 m. The diffusion coefficient is κ = 10−2 m2 s−1 and the
total simulation time is T = 213Δ t with Δ t = 10 s. The parameter values lead to a
dimensionless Fourier number smaller than 0.02 so that the infinite domain assump-
tion is valid. We simulate directly the error equations, i.e. f1 = f2 = 0 in (4) and
u0(x) = 0. We start the iteration with a random initial guess u0

2(0, t) (t ∈ [0,T ]) so
that it contains a wide range of the temporal frequencies that can be resolved by
the computational grid. This is done to allow a fair comparison as the parameters
optimized at the PDE level are optimized assuming that the full range [ωmin,ωmax]
is present in the error. We first perform the Optimized non-overlapping Schwarz
Method (referred as to OSM case) using p�,ana

1 and p�,ana
2 and then using an optimal

control of the Robin parameters with K = 5 (referred as to OptCon case). We first
check that the minimization of cost function J consistently implies the reduction of
the errors ‖e j‖∞ of the associated algorithm (Fig. 2). For our experiments, we chose
w = 1 and w̃ = H/κ in (9). We notice that in the OptCon case the convergence speed
is significantly improved compared to the OSM case. Indeed, nine iterations of the
OSM are required to obtain the same accuracy than the OptCon case after only five
iterations. In order to have more insight on the way the parameters p�,num

1 and p�,num
2

evolve throughout the iterations we plot, in Fig. 3, the corresponding convergence
factor (6) at each iteration. It is striking to realize that the optimal convergence is
obtained through a combination of 2-point (equivalent to the one-sided case) and 3-
point (equivalent to the two-sided case) equioscillations sometimes shifted along the
ω-axis to adapt to the temporal frequencies still present in the error. The first two
iterations aim at working mainly on the high-frequency components while the last
three iterations are optimized to work on the low-frequency component. The adap-
tivity of the Robin parameters from one iteration to the other brings more flexibility
to the method enabling more scale selectivity.
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Fig. 2. Evolution of the L ∞-norm of the error (left) and of the cost function J (right) with
respect to the iterates k in the OSM and OptCon cases

Fig. 3. Sequence of convergence factors ρ(ω) resulting from the optimal control of the Robin
parameters determined to get the best possible convergence after K = 5 iterations

5 Conclusion

Due to its simplicity, the use of Robin-type transmission conditions is very attractive
when one wants to couple unsteady problems defined on non-overlapping subdo-
mains. Once the Robin parameters are properly chosen one can achieve a fast con-
vergence [2]. In the present study we showed that there is still room for improvement
in the design of the Robin conditions. If the Robin parameters are adjusted from one
iteration to the other we showed, thanks to an optimal control approach, that we can
significantly improve the convergence speed. It is important to emphasize that the
optimal control paradigm proposed in this study is general enough to be used with
any type of PDE and an arbitrary number of subdomains.
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1 Introduction

For decades, domain decomposition methods (DDM) have provided a way of solv-
ing large-scale problems by distributing the calculation over a number of processing
units. In the case of shape optimization, this has been done for each new design
introduced by the optimization algorithm. This sequential process introduces a bot-
tleneck.

Shape optimization is often done using gradient-based approaches because of
their superior efficiency. Adjoint methods provide a mathematical approach of com-
puting the gradients [4] using calculus of variations. Methods that combine the gov-
erning PDEs, their adjoints and shape parameters into one large system of equations
are called one-shot methods [1, 6]. The optimal shape can be acquired by solving the
system of equations only once. Evidently, this approach has several drawbacks. If
the objective function is not unimodal, the method does not guarantee capturing the
global optimal solution. Also, if the geometry changes are large, mesh deformation
is no longer possible and the mesh has to be regenerated which makes this approach
costly.

In this paper, a “distributed one-shot” method is introduced. It is based on ideas
originating from the fields of game theory, domain decomposition, and evolutionary
computing. The aim is to speed up convergence on one hand by decreasing compu-
tational time by intelligent parallelism using Nash game strategies and on the other
hand by eliminating the bottleneck caused by sequential “state–costate – gradient”
chain processing. The evolutionary approach allows the method to be used in global
or non-smooth optimization.

1.1 Nash Games in Geometry and Domain Decomposition

Competitive Nash games were introduced by J. Nash [5]. In a competitive game the
players maximize their payoff by taking into account the opponents’ strategies. Nash
games converge into a Nash equilibrium. For simplicity, let us consider a two-player
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game. Let S1 and S2 be the sets of available strategies of Players 1 and 2 and J1 and
J2 their payoff functions. A strategy pair (x̄1, x̄2) ∈ (S1,S2) is a Nash equilibrium if
and only if

J1(x̄1, x̄2) = inf
x1∈S1

J1(x1, x̄2)

J2(x̄1, x̄2) = inf
x2∈S2

J2(x̄1,x2)
(1)

The above definition can be easily generalized to a Nash game with N players.
Nash games can also be applied to single-objective optimization. If the ob-

jective function J is additively separable, i.e. J(x) = ∑N
i=1 Ji(xi) and minx J(x) =

minxi∑
N
i=1 Ji(xi) = 0, a “virtual” Nash game can be formed [3]. Since there are no

true conflicts between the criteria, the global Nash equilibrium is located at the global
optimum.

The Nash approach is well suited for inverse problems. The geometry can often
be decomposed into smaller subgeometries which can be optimized concurrently
[11]. Similarly, a domain decomposition problem for solving a partial differential
equation can be considered as an inverse problem with a Nash game approach where
the objective function is to minimize the discrepancy between the local overlapped
subdomain solutions,

JF1 (g1, ḡ2) =
∫
Ω1,2
|ϕ1 (g1, ḡ2)−ϕ2 (g1, ḡ2)|2

JF2 (ḡ1,g2) =
∫
Ω1,2
|ϕ2 (ḡ1,g2)−ϕ1 (ḡ1,g2)|2 (2)

where |·| is the L2 norm, ϕi is the solution in the subdomainΩi and gi is the vector of
values of ϕi on the subdomain interface boundary Γi, j. Ω1,2 is the overlapping region
(cf. Fig. 1).

In [3, 7], a hierarchical leader–follower Stackelberg game consisting of a pair of
Nash games was implemented for nozzle shape reconstruction. The shape players
reconstructed the target geometry using a “leader” Nash game, and the flow play-
ers reconstructed the flow using a “follower” Nash game. For each new geometry
candidate produced by the shape players, a Nash game was run between the flow
players. In this paper, a new Nash evolutionary approach is introduced. It replaces
the computationally expensive hierarchical game by a single parallel global Nash
game coalition.

1.2 Global Nash Game Coalition Algorithm (GNGCA)

The proposed method operates as follows. The geometry of the configuration is di-
vided into subgeometries allocated to shape players whose task is to optimize the
shape (or reconstruct the target geometry). Similarly, the flow players minimize the
deviation of local solutions on the overlapped region of subdomains. Each shape and
flow player evaluate deviation of local solutions or shape optimization with his own
Evolutionary Algorithm (EA). After some frequency period, for example a single
generation, shape and flow players exchange the elite values among each other. This
means the flow is reconstructed along with the geometry making this a “distributed
one-shot” method.
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This new method is inherently parallel and therefore especially suitable for dis-
tributed parallel environments. At the higher level, the flow and shape players operate
separately. Depending on the methods used, the optimization process can also be dis-
tributed. If an optimizer is used in flow reconstruction, it too can be parallelized. By
reducing dimensionality of the geometry problem, algorithmic convergence can be
significantly improved. For example, in the case of multi-modal problems splitting
the territory can reduce the number of local optima. However, the efficiency of vir-
tual Nash approach is highly dependent on the selected geometry decomposition.
Non-optimal splitting can lead in reduced efficiency of the algorithm [11].

2 Test Case Description

The method is validated using a simple position reconstruction problem from the
field of computational fluid dynamics. The geometry of the problem consists of a
large disk element (radius 1

2 units) surrounded by N ≥ 2 smaller disk elements (radii
1
8 units). The smaller elements are allowed to move in an area constrained by the
number of elements: using radial coordinates, rk = 2.0+0.5

−1.3675 and θk =−k 2π
N − π

N ±π
4N (see Fig. 1).

This geometry allows the study of a wide variety of different domain and geom-
etry decompositions (cf. Fig. 1 for a 3 element case). The test case can be made more
challenging for example by deforming the shapes of the elements. In this paper, 2
and 6 element cases were studied.

The flow is described by the steady compressible potential flow,

∇ ·ρ∇ϕk = 0 in Ωk

ϕk = v∞ on Γ∞
∂ϕk
∂n = 0 on Γ1,...,n

ϕk = ϕ j on Γ j

ϕk = ϕ� on Γ�

(3)

where k is the index of the subdomain, and j, � the right and left side neighbor
domain indexes. Free-flow velocity v∞ = (vx,vy) = (v∞ cosα,v∞ sinα), |v∞| = 1.
The angle of attack α = 0.0◦. The density ρ is calculated using the formula ρ ={

1+ γ−1
2 M2

∞

(
1−|v|2

)} 1
γ−1

. The constant γ = 1.4 is the ratio of specific heats for

air. With a free flow Mach number M∞= .3 the flow is subsonic in the whole domain.
The objective is to reconstruct the original positions of the elements by mini-

mizing the L2 norm of pressure difference between the computed and target surface

pressures: JSk (xk) =
1

npk
∑

npk
i=1

∣∣∣pki − ptarget
ki

∣∣∣2 where xk = (rk,θk) is the decomposed

design vector and npk is the number of pressure points in the region of the decom-
posed geometry. The vector pk includes the relevant surface pressure values. The
global objective function is the sum of local functions.The objective function for the
flow players is the L2 norm of the discrepancy on the overlapped subregion (Eq. 2).
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Fig. 1. Test case geometry and example decomposition

3 Test Setting

A variant of the popular Differential Evolution (DE) algorithm is used as the opti-
mization platform. The algorithm, differential evolution with adaptive control param-
eters (jDE) is described in detail in the original paper [2]. The difference compared to
the standard differential evolution is that the two control parameters, mutation factor
F and crossover rate CR are not kept fixed. Instead, each member of the population
has individual values which are allowed to change between given ranges. When a
new individual is formed, the offspring inherits the values from its progenitor, or
new random values are generated with probability of τ1 for F and τ2 for CR. In this
work the population size NP = 10ndim was used where ndim is the number of dimen-
sions in the decomposed design vector, i.e. each instance of algorithm uses an equal
number of individuals in order to make comparing them fair. Mutation factor is al-
lowed to vary within the range F = [0.1,1.0] and crossover rate CR = [0.0,1.0]. The
control parameter replacement probabilities are set to τ1,2 = 0.1. The algorithms end
when the stopping criteria JSk = 10−5 is reached.

Because the algorithms work in parallel, a generational approach would cause
bottlenecks because of the non-constant fitness function computation times. Instead,
a non-generational approach is used where the older individuals are replaced imme-
diately if the offspring is superior. In addition, the elite information exchange is done
asynchronously.

Three different approaches are tested. In the first one, the jDE algorithm is run
traditionally using full domain and design vector. For the second approach, a “geom-
etry decomposition” approach introduced in [9] is used (“Nash-jDE”). The design
vector x = (r1,θ1, . . . ,rN ,θN) is divided between the elements (xk = (rk,θk) ,k =
{1, . . . ,N}), which are then optimized using several jDE algorithms operating on
separate subpopulations. After each generation, the global design vector is updated
using elite values from each subpopulation. The proposed GNGCA algorithm is used
in the third case. For flow reconstruction, since the flow is subsonic, the additive
Schwarz domain decomposition algorithm is sufficient. The overlapped regions of
subdomains are made of one strip. The computational domain is divided radially so
that each subdomain contains one element (Fig. 1).

The FreeFEM++ v3.18 software is used as the solver [8]. The flow is computed
using finite element method with a preconditioned conjugate gradient algorithm.
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Table 1. Performance of the algorithms. The symbol nsl refers to the number of (shape player)
slave processes, t is the wall-clock time in seconds and nit to the number of objective function
evaluations required by the algorithm in order to reach the target precision.

jDE Nash-jDE GNGCA speed-up
case nsl t nit t nit t nit jDE N-jDE

2 1155.00s 815 390.83s 279 306.57s 514 3.77× 1.27×
2 elements 4 332.05s 474 210.97s 302 194.74s 652 1.70× 1.08×

6 190.42s 412 132.62s 279 174.60s 888 1.09× 0.76×
6 3632.85s 4387 971.17s 1175 171.61s 1894 21.17× 5.66×

6 elements 12 1742.23s 4226 333.90s 809 115.87s 2502 15.04× 2.88×
18 1201.11s 4369 244.53s 880 114.08s 3743 10.53× 2.14×

Since the flow is nonlinear, Eq. 3 is solved iteratively until the threshold value of
ερ = 10−10 for density is reached. The algorithms are run on a computer containing
64 Intel Xeon CPU cores clocked at 2.67 GHz.

The mesh is constructed using Triangle v1.6 Delaunay mesh generator [10]. Nu-
merical noise is minimized using mesh regeneration with the Laplacian. In order to
avoid inverse elements and maintain mesh quality, the mesh is regenerated over cer-
tain intervals (δ rk = 0.1, δθk = 10◦). An example decomposed mesh is illustrated in
Fig. 3. Computing one subdomain gives speed-ups ranging from 3.2× to 14.0×.

4 Results and Discussion

The elapsed wall-clock times and the number of objective function evaluations re-
quired by each of the algorithm are listed on Table 1. Convergence curves of the
algorithms are shown in Fig. 2. Final mesh and reconstructed global pressure field
are compared to the reference in Fig. 3.

The results demonstrate that the geometry decomposition method using virtual
Nash games can be used to increase algorithmic efficiency in geometry reconstruc-
tion problems. The proposed global Nash game approach shows that reconstructing
geometry and flow simultaneously the wall-clock time can be reduced dramatically,
provided the difference in the size of global and decomposed domains is sufficiently
large. In the case of six domains, the speed-up compared to the original method is
massive, over 20×. The increase compared to the pure geometry decomposition ap-
proach is also notable, over 5×. If the algorithms are compared a bit more fairly, i.e.
the flow players are considered equal to the shape players, the speed-ups are 10×
and 2×.

The efficiency of flow reconstruction is critical for the success of the proposed al-
gorithm. Finding the correct geometry in an incompletely reconstructed flow field is
not possible, which is evident in the large number of shape player objective function
iterations needed. Unlike in the case of the other methods, increasing the number of
slave processes brought only limited speed-ups for GNGCA. This was due the fact
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Fig. 2. Convergence curves of the tested algorithms. The onvergence according to the wall-
clock time spent is on the left and the algorithmic convergence based on the required number
of iterations is on the right

the flow players did not feed the shape players with accurate flow information fast
enough resulting in an increased number of shape player iterations and correspond-
ingly reduced efficiency improvement.

Algorithmic convergence can be improved by reducing the complexity of the
problem. A classical method where the boundary nodes are used as shape design
variables may be problematic due to a large number of variables. The situation can
be improved using parallel algorithms and Bézier spline parametrization. In cases
involving highly compressible potential flows where the flow is locally supersonic
the domain reconstruction has to be augmented with an optimizer. The flow can be
reconstructed using fast gradient methods on linearized equations coupled by DDM,
or analogously to the shape presentation, the number of variables on interface bound-
ary can be reduced using parametrization and the nonlinear flow can be reconstructed
with evolutionary algorithms (cf. [3]).

5 Conclusion and Future

In this paper first results for a new “distributed one-shot” method that applies vir-
tual Nash games, domain and geometry decomposition methods, are presented and
discussed. The feasibility of the method is validated using an academic test case
consisting of position reconstruction in a subsonic nonlinear flow.

In the forthcoming step, the Schwarz domain decomposition algorithm will be
replaced with more robust methods. The simple compressible potential flow equa-
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Final mesh (GNGCA) Final pressure field (GNGCA)

Reference

Fig. 3. Example final mesh and pressure field (GNGCA) compared to the reference

tion will be replaced with nonlinear systems of equations including Euler, Navier–
Stokes, and Maxwell equations. Further tests involve complex geometries such as
multi-element airfoils. The implementation of GPUs is also being studied. The ulti-
mate target is to extend the method to speed up the capture of solutions of complex
large scale problems which are frequently met in particular in 3D industrial detailed
design.
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1 Introduction

This study focuses on a construction of a parallel preconditioner for a FETI-DP
(dual primal Finite Element Tearing and Interconnecting) method for a mortar Hsieh-
Clough-Tocher (HCT) discretization of a model fourth order problem with discon-
tinuous coefficients.

FETI-DP methods were introduced in [8]. They form a class of fast and efficient
iterative solvers for algebraic systems of equations arising from the finite element
discretizations of elliptic partial differential equations of second and fourth order,
cf. [8, 10, 11, 16] and references therein. In a one-level FETI-DP method one has
to solve a linear system for a set of dual variables formulated by eliminating all
primal unknowns. The FETI-DP system contains in itself a coarse problem, while
the preconditioner is usually fully parallel and constructed only from local problems.

There are many works investigating iterative solvers for mortar method for sec-
ond order problem, e.g. cf. [1–3] and references therein. There have also been a few
FETI-DP type algorithms developed for mortar discretization of second order prob-
lems, cf. e.g. [6, 7, 9]. But there is only a small number of studies focused on fast
solvers for mortar discretizations of fourth order elliptic problems, cf. [12, 15, 17].
In this study we follow the approach of [9] which considers the case of a FETI-DP
method for mortar discretization of a second order problem.

In this paper we first present the construction of mortar discretization of a fourth
order elliptic problem which locally utilizes Hsieh-Clough-Tocher finite elements
in the subdomains. Next we introduce a FETI-DP problem and then a Neumann-
Dirichlet parallel preconditioner for a FETI-DP problem is proposed. Finally, we
present the almost optimal bounds of the condition number, namely, a bound which
grows like C(1+ log(H/h))2, where H is the maximal diameter of subdomains and
h is a fine mesh parameter.

∗ This work was partially supported by Polish Scientific Grant 2011/01/B/ST1/01179.
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2 Discrete Problem

In this section we focus on a mortar Hsieh-Clough-Tocher (HCT) finite element dis-
cretization for a model fourth order elliptic problem with discontinuous coefficients.

LetΩ be a polygonal domain in the plane. We assume that there exists a partition
of Ω into disjoint polygonal subdomains Ωk such that Ω =

⋃N
k=1Ω k with Ω k ∩Ω l

being an empty set, an edge or a vertex (crosspoint). We also assume that these
subdomains form a coarse triangulation of the domain which is shape regular in
the sense of [5]. We introduce a global interface Γ =

⋃
i ∂Ωi \ ∂Ω which plays an

important role in our study.
Our model differential problem is to find u∗ ∈ H2

0 (Ω) such that

a(u∗,v) =
∫
Ω

f v dx ∀v ∈H2
0 (Ω), (1)

where f ∈ L2(Ω), H2
0 (Ω) = {u ∈ H2(Ω) : u = ∂nu = 0 on ∂Ω} and a(u,v) =

∑N
k=1

∫
Ωk
ρk[ux1x1 vx1x1 + 2 ux1x2 vx1x2 + ux2x2vx2x2 ] dx. The coefficients ρk are positive

and constant. Here uxkxl := ∂ 2u
∂xk∂xl

for k, l = 1,2 and ∂nu is a unit normal deriva-
tive of u.

In each subdomain Ωk we introduce a quasiuniform triangulation Th(Ωk) made
of triangles with the parameter hk = maxτ∈Th(Ωk) diam(τ), cf. e.g. [4]. We can now

Fig. 1. Degrees of freedom of HCT element

introduce local finite element spaces. Let Xh(Ωk) be the Hsieh-Clough-Tocher (HCT)
macro finite element space defined as follows:

Xh(Ωk) = {u ∈C1(Ωk) : u ∈ P3(τi), τi ∈ Th(Ωk), for the subtriangles τi,

i = 1,2,3, formed by connecting the vertices of

any τ ∈ Th(Ωk) to its centroid, and

u = ∂nu = 0 on ∂Ωk ∩∂Ω},
where P3(τi) is the function space of cubic polynomials defined over τi. The degrees
of freedom of a function u∈ Xh(Ωk) over τ ∈ Th(Ωk) are defined as: {u(pk),∇u(pk),
∂nu(m j)}k, j=1,2,3, where pk is a vertex and m j is a midpoint of an edge of τ , cf. Fig. 1.
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Next a global space Xh(Ω) is defined as Xh(Ω) =∏N
i=1 Xh(Ωk). We also intro-

duce X̃h(Ω) – a subspace of Xh(Ω) formed by all functions in Xh(Ω), which has
all degrees of freedom continuous at the crosspoints, i.e. the common vertices of
substructures.

LetΓkl denote the interface between two subdomainsΩk andΩl i.e. the open edge
that is common to these subdomains. Note that each interface Γkl inherits two one
dimensional triangulations made of segments that are edges of elements of Th(Ωk)
and Th(Ωl), respectively. Thus there are two independent 1D triangulations on Γkl:
Th,k(Γkl) related to Ωk and another one associated with Ωl - Th,l(Γlk), cf. Fig. 2. Let
γkl be a mortar, i.e. the side corresponding to Ωk if ρk ≥ ρl and then let δlk be the
other side of Γlk associated to Ωl called a slave (nonmortar).

For each interface Γkl we introduce two test spaces associated with its slave tri-
angulation Th,l(δlk) (cf. [13, 14]): let Mh

t (δlk) be the space formed by C1 smooth
piecewise cubic functions on the slave triangulation of δlk, which are piecewise lin-
ear in the two end elements, and let Mh

n(δlk) be the space of continuous piecewise
quadratic functions on the elements of this triangulation, which are piecewise linear
in the two end elements.

Γ
ij

Ωi Ωj

γ
ij

δ ji

Fig. 2. Independent meshes on an interface Γi j

We also define a space M = ∏δlk⊂Γ Mlk with Mlk = Ml
t (δlk)×Ml

n(δlk) and a

bilinear form b(u,ψ): let u = (uk)
N
k=1 ∈ X̃h(Ω) and ψ = (ψlk)δlk

= (ψlk,t ,ψlk,n)δlk
∈

M, then b(u,ψ) = ∑δlk⊂Γ ∑s∈{t,n} blk,s(u,ψlk,s) with

blk,t(u,ψlk,t) =

∫
δlk

(uk−ul)ψlk,t ds,

blk,n(u,ψlk,n) =
∫
δlk

(∂nuk− ∂nul)ψlk,n ds.

Further we will use the same notation for a function and for the vector with the values
of degrees of freedom of this function.

We introduce discrete problem as the saddle point problem: find a pair (u∗h,λ
∗) ∈

X̃h(Ω)×M such that
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a(u∗h,v)+ b(v,λ ∗) = f (v) ∀v ∈ X̃h(Ω), (2)

b(u∗h,φ) = 0 ∀φ ∈M, (3)

where ah(u,v) = ∑N
k=1 ak(u,v) for

ak(u,v) =
∫
Ωk

ρk[ux1x1 vx1x1 + 2 ux1x2vx1x2 + ux2x2 vx2x2 ]dx.

This problem has a unique solution and error bounds are established, e.g. cf. [14].

3 Matrix Form of Mortar Conditions

Note that (3) is equivalent to two mortar conditions on each δlk = γkl = Γkl:
∫
δlk

(uk−ul)φ ds = 0 ∀φ ∈Ml
t (δlk), (4)

∫
δlk

(∂nuk− ∂nul)ψ ds = 0 ∀ψ ∈Ml
n(δlk). (5)

We introduce the following splitting of two vectors representing the tangential

and normal traces uδlk
and ∂nuδlk

: uδlk
= u(r)δlk

+ u(c)δlk
and ∂nuδlk

= ∂nu(r)δlk
+ ∂nu(c)δlk

on a
slave δlk ⊂ ∂Ωl , where superscript (c) refers to degrees of freedom related to cross-
points (ends of this edge) and superscript (r) refers to degrees of freedom related to
remaining nodes (vertices and midpoints) on this edge. We can now rewrite (4) and
(5) in a matrix form on each interface Γkl ⊂ Γ :

B(c)
t,δlk

u(c)δlk
+B(r)

t,δlk
u(r)δlk

= B(c)
t,γkl

u(c)γkl
+B(r)

t,γkl
u(r)γkl

,

B(c)
n,δlk

∂nu(c)δlk
+B(r)

n,δlk
∂nu(r)δlk

= B(c)
n,γkl

∂nu(c)γkl
+B(r)

n,γkl
∂nu(r)γkl

,
(6)

where the matrices Bt,δlk
= [B(c)

t,δlk
, B(r)

t,δlk
] and Bn,δlk

= [B(c)
n,δlk

,B(r)
n,δlk

] are mass matri-
ces obtained by substituting the traces of standard nodal basis functions of Xh(Ωl)
and nodal basis functions of Ml

t (δlk),Ml
n(δlk), respectively, into (4). The matrices

Bt,γkl = [B(c)
t,γkl

, B(r)
t,γkl

] and Bn,γkl = [B(c)
n,γkl

,B(r)
n,γkl

] are constructed analogously but utiliz-

ing traces onto γkl of standard nodal basis functions of Xh(Ωk). Note that B(r)
t,δlk

,B(r)
n,δlk

are positive definite square matrices, but that all other matrices in (6) are rectangular
in general.

4 FETI-DP Problem

Let Kl be a matrix of al(·, ·) in the standard basis of Xh(Ωl). Then let K̃ be the matrix
obtained from a block diagonal matrix K := diag(Kl)

N
l=1 by taking into account the

continuity of the degrees of freedom at crosspoints. We can partition K̃ into
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K̃ =

⎛
⎝ Kii Kic Kir

Kci Kcc Kcr

Kri Krc Krr

⎞
⎠ ,

where the superscript (i) refer to the degrees of freedom associated with nodal points
interior to subdomain, (c) to the degrees of freedom related to crosspoints, and (r) to
the degrees of freedom associated the remaining nodes on masters and slaves. Then
the matrix formulation of (2) and (3) is the following:

⎛
⎜⎜⎝

Kii Kic Kir 0
Kci Kcc Kcr (B(c))T

Kri Krc Krr (B(r))T

0 B(c) B(r) 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u(i)

u(c)

u(r)

λ ∗

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

fi

fc

fr

0

⎞
⎟⎟⎠ . (7)

Here B(c) is the matrix built from B(c)
t,δlk

,B(c)
n,δlk

,B(c)
t,γkl

,B(c)
n,γkl

for all Γkl = γkl = δlk ⊂
Γ and B(r) := diag([−B(r)

γkl
,B(r)
δlk
])Γkl⊂Γ is the block diagonal matrix with

B(r)
γkl

:=

(
B(r)

t,γkl
0

0 B(r)
n,γkl

)
, B(r)

δlk
:=

(
B(r)

t,δlk
0

0 B(r)
n,δlk

)
. (8)

Next we eliminate the unknowns related to the interior nodes and crosspoints i.e.
u(i), u(c) in (7) and we get

S̃u(r) + B̃Tλ ∗ = f̃r,

B̃u(r) + S̃ccλ ∗ = f̃c,
(9)

where the respective matrices are defined as follows:

S̃ := Krr− (Kri Krc)(K̃
(ic))−1

(
Kir

Kcr

)
,

B̃ := B(r)− (0 B(c))(K̃(ic))−1
(

Kir

Kcr

)
,

and S̃cc := −(0 B(c))(K̃(ic))−1

(
0

(B(c))T

)
with the nonsingular matrix K̃(ic) :=

(
Kii Kic

Kci Kcc

)
.

Eliminating u(r) we obtain the following FETI-DP problem: find λ ∗ ∈ M such
that

F(λ ∗) = d, (10)

where d := f̃c− B̃S̃−1 f̃r and F := S̃cc− B̃S̃−1B̃T .

5 Parallel Preconditioner

Let Wr = {w(r) : w ∈ X̃h(Ω)} i.e. Wr is the space of vectors representing all degrees
of freedom of functions from X̃h(Ω) associated with nodes (vertices and midpoints)
on Γ but are not associated with crosspoints.
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We can decompose any vector w(r) ∈ Wr into vectors related to masters and
slaves:

w(r) =
(

w(r)
Γ ,w(r)

Δ

)T
,

where w(r)
Γ is the vector with the values of degrees of freedom which are associated

with the nodes on the masters and w(r)
Δ is the vector with the values of degrees of

freedom which are related to the nodes on the slaves. We then introduce WΔ = {w(r)
Δ :

w(r) ∈Wr} i.e. the space formed by vectors in Wr which have only entries related to
the degrees of freedom which are associated with the nodes on the slaves. It is very
important to note that

dim M = dimWΔ .

Let SΔ be the matrix obtained by restricting S̃ : Wr →Wr to WΔ .
Note that this matrix is can be represented as a block diagonal matrix with non-

singular diagonal blocks Sk,Δ , i.e.

SΔ := diag(Sk,Δ )k,

where the subscript k runs over all subdomains that have at least one edge on Γ as a
slave. Naturally, we could also partitioned this matrix with respect to the slaves.

Define nonsingular block diagonal matrix BΔ : WΔ →WΔ :

BΔ := diag(B(r)
δlk
)δlk⊂Γ ,

where B(r)
δlk

are block diagonal matrices (with two nonsingular blocks) defined in (8).
Then we introduce our parallel preconditioner:

M−1
DN := B−T

Δ SΔB−1
Δ ,

which is nonsingular, or equivalently its inverse: MDN := BΔS−1
Δ BT

Δ . Note that SΔ
and thus MDN are dependent on the discontinuous coefficients ρk.

6 Condition Number Bounds

The main result of this paper is the following theorem which yields the bound of the
condition number of preconditioned problem:

Theorem 1. It holds that

〈MDNλ ,λ 〉 ≤ 〈Fλ ,λ 〉 ≤C

(
1+ log

(
H
h

))2

〈MDNλ ,λ 〉 ∀λ ∈M,

where H = maxk hk, h = mink hk, and C a positive constant independent of the coef-
ficients, or the parameters Hk and hk. Here 〈·, ·〉 is the standard l2 inner product.
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As a direct consequence of this theorem we see that the condition number of

M−1
DN F is bounded by C

(
1+ log

(
H
h

))2
.

The lower bound in the theorem is obtained by purely algebraic arguments. And
we get the upper bound by using several technical results of which the most important
one is the estimate of special trace norms of jumps of tangential and normal traces
over an interface Γkl ⊂ Γ .
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Summary. In this paper we present a hybrid domain decomposition approach for the parallel
solution of linear systems arising from a discontinuous Galerkin (DG) finite element approx-
imation of initial boundary value problems. This approach allows a general decomposition of
the space–time cylinder into finite elements, and is therefore applicable for adaptive refine-
ments in space and time.

1 A Space–Time DG Finite Element Method

As a model problem we consider the transient heat equation

∂tu(x, t)−Δu(x, t) = f (x, t) for (x, t) ∈ Q :=Ω × (0,T ), (1)

u(x, t) = 0 for (x, t) ∈ Σ := ∂Ω × (0,T), (2)

u(x,0) = u0(x) for (x, t) ∈Ω ×{0} (3)

where Ω ⊂ R
n,n = 1,2,3, is a bounded Lipschitz domain, and T > 0. Let TN be

a decomposition of the space–time cylinder Q = Ω × (0,T ) ⊂ R
n+1 into simplices

τk of mesh size h. For simplicity we assume that the space–time cylinder Q has a
polygonal (n = 1), a polyhedral (n = 2), or a polychoral (n = 3) boundary ∂Q. With
IN we denote the set of all interfaces (interior facets) e between two neighboring
elements τk and τ�. For an admissible decomposition the interior facets are edges
(n = 1), triangles (n = 2), or tetrahedrons (n = 3).

With respect to an interior facet e ∈IN we define for a function v the jump

[v]e(x, t) := v|τk
(x, t)− v|τ�(x, t) for all (x, t) ∈ e,

the average

〈v〉e(x, t) :=
1
2

[
v|τk

(x, t)+ v|τ�(x, t)
]

for all (x, t) ∈ e,

and the upwind in time direction by
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{v}up
e (x, t) :=

{
v|τk

(x, t) for nt ≥ 0,

v|τ�(x, t) for nt < 0
for all (x, t) ∈ e,

where n = (nx,nt) is the normal vector of the interior facet e.
For a decomposition TN of the space–time cylinder Q we introduce the discrete

function space of piecewise polynomials of order p

Sp
h,0(TN) :=

{
v : v|τk

∈ Pp(τk) for all τk ∈ TN and v|Σ = 0
}
.

The proposed space–time approach is based on the use of an interior penalty Galerkin
approximation of the Laplace operator and an upwind scheme for the approximation
of the time derivative, see, e.g., [3, 5]. Hence we have to find uh ∈ Sp

h,0(TN) such that

aDG(uh,vh) :=−
N

∑
k=1

∫
τk

uh∂t vh dxdt +
∫
ΣT

uh vh dx

+ ∑
e∈IN

∫
e
nt {uh}up

e [vh]e ds(x,t) +
N

∑
k=1

∫
τk

∇xuh ·∇xvh dxdt

− ∑
e∈IN

∫
e
[〈nx ·∇xuh〉e [vh]e− ε [uh]e〈nx ·∇xvh〉e] ds(x,t)

+
σ
h ∑e∈IN

∫
e
|nx|2 [uh]e [vh]e ds(x,t)

=

∫
Q

f vh dxdt +
∫
Σ0

u0 vh dx =: F(vh)

(4)

is satisfied for all vh ∈ Sp
h,0(TN). The parameters σ and ε have to be chosen appro-

priately. For vh ∈ Sp
h,0(TN) and σ > 0 the related energy norm is given by

‖vh‖2
DG := ‖vh‖2

A + ‖vh‖2
B,

where

‖vh‖2
A :=

N

∑
k=1

‖∇xvh‖2
τk
+
σ
h ∑e∈IN

‖|nx| [vh]e‖2
L2(e)

,

‖vh‖2
B := h

N

∑
k=1

‖∂tvh‖2
τk
+

1
2
‖vh‖2

L2(Σ0∪ΣT )
+

1
2 ∑e∈IN

‖
√
|nt | [vh]e‖2

L2(e)
.

The unique solvability of the variational formulation (4) is based on the following
stability result.

Lemma 1. Let ε ∈ {−1,0,1} and σ > 0. For ε ∈ {−1,0} let σ be sufficient large.
Then the stability estimate

sup
0 =vh∈Sp

h,0(TN)

aDG(uh,vh)

‖vh‖DG
≥ cA

1‖uh‖DG for all uh ∈ Sp
h,0(TN)
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is satisfied where the constant cA
1 depends on the shape of the finite elements, and

on the stabilization parameter σ . However, for a sufficient large choice of σ we can
ensure cA

1 = 1
2 .

Proof. The proof follows as in [5], by using the technique as in [2]; see also [3]. #$
By using standard arguments we can then conclude the energy error estimate

‖u−uh‖DG ≤ chmin{s,p+1}−1|u|Hs(Q)

when assuming u ∈ Hs(Q) for some s≤ p+ 1, and, by applying the Aubin–Nitsche
trick, for ε =−1,

||u−uh||L2(Ω) ≤ chmin{s,p+1} |u|Hs(Q) . (5)

To illustrate the proposed DG finite element method in space and time as well as the
given error estimates we consider a first numerical example for the initial boundary
value problem (1)–(3) for n = 1 andΩ = (0,1), T = 1. This implies Q = (0,1)2. The
given data f and u0 are chosen such that the solution is given as

u(x, t) = sin(πx)(1− t)3/4 ∈ H1.25−ε̄(Q) with ε̄ > 0.

Starting from a triangulation of Q = (0,1)2 into four triangles we consider a se-
quence of several uniform refinement steps to analyze the convergence behavior of
the presented method. Using piecewise linear basis functions, i.e. p = 1, ε =−1 and
σ = 10, the numerical results are given in Table 1 which confirm the convergence
rate of 1.25 as predicted by the error estimate (5).

level elements dof ||u−uh||L2(Q) eoc
0 4 8 2.2679−1 −
1 16 40 5.1354−2 2.14
2 64 176 1.3107−2 1.97
3 256 736 3.4813−3 1.91
4 1024 3008 9.7383−4 1.84
5 4096 12160 3.0406−4 1.68
6 16384 48896 1.0923−4 1.48
7 65536 196096 4.3315−5 1.33
8 262144 785408 1.7935−5 1.27
9 1048576 3143680 7.5278−6 1.25
10 4194304 12578816 3.1694−6 1.25
11 16777216 50323456 1.3345−6 1.25

Table 1. Numerical results for p = 1, ε =−1 and σ = 10.
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2 A Hybrid Space–Time Domain Decomposition Method

The presented space–time method (4) results in a large linear system of algebraic
equations. For its iterative solution we introduce a hybrid formulation as in [1, 2].
Therefore we subdivide the space–time domain Q into P non–overlapping subdo-
mains Qi, i = 1, . . . ,P,

Q =
P⋃

i=1

Qi, Qi∩Q j = /0 for i = j.

By

Γ :=
P⋃

i=1

Γi with Γi := ∂Qi \ ∂Q

we denote the interface of the space–time domain decomposition, see Fig. 1.

Fig. 1. Space–time decomposition of Q and the interface Γ

With respect to the interface Γ we introduce the discrete function space of piecewise
polynomials of order p,

Sp
h(Γ ) :=

{
v ∈ L2(Γ ) : v|e ∈ Pp(e) for all e ∈IN with e⊆ Γ} .

For the solution of the local partial differential equations in all subdomains Qi we
apply the space–time method as described by the variational formulation (4). For this

we denote by a(i)DG(·, ·) the restriction of the bilinear form aDG(·, ·) on the subdomain
Qi, i = 1, . . . ,P, i.e.

a(i)DG(uh,vh) :=−
N

∑
k=1

∫
τk∩Qi

uh ∂t vh dxdt +
∫
ΣT∩∂Qi

uh vh dx

+ ∑
e∈IN

∫
e∩Qi

nt {uh}up
e [vh]e ds(x,t) +

N

∑
k=1

∫
τk∩Qi

∇xuh ·∇xvh dxdt

− ∑
e∈IN

∫
e∩Qi

[〈nx ·∇xuh〉e [vh]e− ε [uh]e 〈nx ·∇xvh〉e]ds(x,t)

+
σ
h ∑e∈IN

∫
e∩Qi

|nx|2 [uh]e[vh]eds(x,t).
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Accordingly, the restriction of the linear form F(·) on a subdomain Qi is given by

F (i)(vh) :=
∫

Qi

f vh dxdt +
∫
Σ0∩∂Qi

u0 vh dx.

For the coupling of the local fields we first introduce a new unknown on the interface,

λ := 〈u〉e = 1
2

[
u|τk

+ u|τ�
]

on Γ ∩ e.

With this we can rewrite the jump of a function as

[u]e = u|τk
−u|τ� = 2

(
u|τk
−λ)= 2

(
λ −u|τ�

)
on Γ ∩ e.

Therefore we obtain for the coupling terms related to the Laplace operator

∑
e∈IN

∫
e∩Γ
〈nx ·∇xu〉e [v]e ds(x,t) =

N

∑
k=1

∫
∂τk∩Γ

nk,x ·∇xu(v− μ)ds(x,t),

∑
e∈IN

∫
e∩Γ

[u]e 〈nx ·∇xv〉e ds(x,t) =
N

∑
k=1

∫
∂τk∩Γ

(u−λ )nk,x ·∇xvds(x,t),

∑
e∈IN

∫
e∩Γ
|nx|2 [u]e [v]e ds(x,t) = 2

N

∑
k=1

∫
∂τk∩Γ

|nk,x|2 (u−λ )(v− μ)ds(x,t).

For the classical solution u of the transient heat equation (1)–(3) there obviously
holds for an interior facet e ∈IN

λ = 〈u〉e = 1
2

[
u|τk

+ u|τ�
]
= u|τk

= u|τ� on e.

Therefore the upwind in time can be written as

{u}up
e =

{
u|τk

for nt ≥ 0,

u|τ� for nt < 0
=

{
u|τk

for nk,t ≥ 0,

λ for nk,t < 0
=: {u/λ}up

∂τk
on Γ ∩ e.

The coupling containing the upwind part can now be expressed by

∑
e∈IN

∫
e∩Γ

nt {u}up
e [v]e ds(x,t) =

N

∑
k=1

∫
∂τk∩Γ

nk,t {u/λ}up
∂τk

(v− μ)ds(x,t).

With respect to each subdomain Qi we therefore can define the bilinear form

c(i)(uh,λh;vh,μh) :=
N

∑
k=1
τk⊆Qi

∫
∂τk∩Γ

nk,t {uh/λh}up
∂τk

(vh− μh)ds(x,t)

−
N

∑
k=1
τk⊆Qi

∫
∂τk∩Γ

[
nk,x ·∇xuh (vh− μh)− ε(uh−λh)nk,x ·∇xvh

]
ds(x,t)

+
2σ
h

N

∑
k=1
τk⊆Qi

∫
∂τk∩Γ

|nk,x|2 (uh−λh)(vh− μh)ds(x,t).
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Hence we can write the discrete hybrid space–time variational formulation to find
uh ∈ Sp

h,0(TN) and λh ∈ Sp
h(Γ ) satisfying

P

∑
i=1

[
a(i)DG(uh,vh)+ c(i)(uh,λh;vh,μh)

]
=

P

∑
i=1

F (i)(vh) (6)

for all vh ∈ Sp
h,0(TN) and μh ∈ Sp

h(Γ ). As in [2] we can prove unique solvability of the
hybrid scheme (6). Moreover, related error estimates as derived for the DG scheme
remain valid.

The discrete variational formulation (6) is equivalent to the solution of the linear
equations ⎛

⎜⎜⎜⎜⎜⎜⎝

A(1)
II A(1)

IΓ
A(2)

II A(2)
IΓ

. . .
...

A(P)
II A(P)

IΓ
A(1)
Γ I A(2)

Γ I · · · A(P)
Γ I AΓΓ

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

u(1)
I

u(2)
I
...

u(P)
I

λΓ

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

f(1)I

f(2)I
...

f(P)I

fΓ

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)

where the local block matrices A(i)
II correspond to the local bilinear forms a(i)DG(·, ·)

and c(i)(·,0; ·,0), while the remaining block matrices describe the coupling across the
interface. For an appropriate choice of the DG parameters, see Lemma 1, the local

matrices A(i)
II are invertible. Hence we obtain the Schur complement system

[
AΓΓ −

P

∑
i=1

A(i)
Γ I

(
A(i)

II

)−1
A(i)

IΓ

]
λΓ = fΓ −

P

∑
i=1

A(i)
Γ I

(
A(i)

II

)−1
f(i)I , (8)

with

u(i)
I =

(
A(i)

II

)−1 [
f(i)I −A(i)

IΓ λΓ
]

for i = 1, . . . ,P.

The inversion of the local matrices A(i)
II can be done in parallel either by using some

appropriate direct approach, or suitable iterative schemes. For the solution of the
global Schur complement system (8) we can use, for example the GMRES method.

3 Numerical Examples

To illustrate the hybrid domain decomposition approach we consider for n = 3 the
spatial domainΩ = (0,1)3 and T = 1, i.e. Q = (0,1)4. As initial triangulation for the
space–time domain we use 96 pentatopes of the same size, see also [4]. The initial
triangulation is used as a partition of the space–time domain into P= 96 subdomains,
which we keep fixed for all computations. As exact solution of the transient heat
equation (1) we now consider the smooth function

u(x, t) = sin(πx1)sin(πx2)sin(πx3)t
2.
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For the iterative solution of the Schur complement system (8) we use the GMRES
method without preconditioning with a relative error reduction of εGMRES = 10−8. In
the Tables 2 and 3 we present the iteration numbers of the GMRES method for dif-
ferent levels of a uniform refinement of the space–time mesh for p= 1 and p= 2. We
observe that the number of required iterations grows slightly indicating the need of
using an appropriate preconditioner. The results also show the optimal convergence
rates for the error in the L2(Q) norm when using linear and quadratic basis functions.

level elements dof u(i)
I dof λΓ iter. ||u−uh||L2(Q) eoc

0 96 192 768 68 6.120−2 −
1 1536 5376 6144 143 3.821−2 0.68
2 24576 104448 49152 197 1.356−2 1.49
3 393216 1818624 393216 294 4.024−3 1.75
4 6291456 30277632 3145728 475 1.111−3 1.86

Table 2. Numerical results with 96 subdomains for p = 1, ε =−1 and σ = 10.

level elements dof u(i)
I dof λΓ iter. ||u−uh||L2(Q) eoc

0 96 720 1920 404 4.199−2 −
1 1536 17280 15360 699 7.492−3 2.49
2 24576 322560 122880 900 1.005−3 2.90
3 393216 5529600 983040 1131 1.293−4 2.96

Table 3. Numerical results with 96 subdomains for p = 2, ε =−1 and σ = 10.

4 Conclusions

In this paper we have presented a hybrid DG domain decomposition approach for the
parallel solution of initial boundary value problems. Numerical examples for one–
and three–dimensional spatial domains indicate the accuracy and applicability of the
proposed method. However, the numerical results also indicate the need to use an
appropriate global preconditioner for the Schur complement system (8). Moreover,
when solving the coupled system (7) iteratively, suitable local preconditioners are
mandatory as well. A possible choice is to use space–time multigrid methods. Al-
though we have only considered uniform refinements in this paper, the proposed
approach is also applicable to non–uniform and adaptive refinements, see, for exam-
ple, [4]. For this we need to use suitable a posteriori error estimators, and the solution
algorithms need to be robust with respect to adaptive refinements. Although we have
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only considered the simple model problem of the transient heat equation, the pro-
posed approach can be extended to more complicated problems, see, e.g., [4] for a
first example for the transient Navier–Stokes system.
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Summary. Many scientific libraries are currently based on the GMRES method as a Krylov
subspace iterative method for solving large linear systems. The restarted formulation known as
GMRES(m) has been extensively studied and several approaches have been proposed to reduce
the negative effects due to the restarting procedure. A common effect in GMRES(m) is a slow
convergence rate or a stagnation in the iterative process. In this situation, it is less attractive
as a general solver in industrial applications. In this work, we propose an adaptive deflation
strategy which retains useful information at time of restart to avoid stagnation in GMRES(m)
and improve its convergence rate. We give a parallel implementation in the PETSc package.
The provided numerical results show that this approach can be effectively used in the hybrid
direct/iterative methods to solve large-scale systems.

1 Introduction

The GMRES method due to [11] is widely used, thanks to its monotonic convergence
properties, as a Krylov subspace method for solving large and sparse linear systems.
Due to memory and computational requirements, the restarted GMRES (noted as
GMRES(m)) is generally used. At the time of restart, information from the previ-
ous Krylov subspace is discarded and the orthogonality between successive Krylov
subspaces is not preserved. The worst case is when the successive generated Krylov
subspaces are very close. As a result, there is no significant reduction in the residual
norm and the iterative process may stagnate. Deflation techniques are a class of ac-
celeration strategies that collects useful information at the time of restart mainly to
avoid this stagnation and improve the convergence rate. The main idea behind these
methods is to remove the smallest eigencomponents from the residual vector as they
are known to slow down the convergence of GMRES.

In a practical use of a deflation strategy, it is necessary to define the number
of eigenvalues to deflate. As the deflation process induces additional operations to
GMRES(m), it is interesting as well to know a priori if the deflation will be benefi-
cial. In this work, we propose an adaptive deflated GMRES(m) which aims at enhanc-
ing the convergence of GMRES(m) by adaptively extracting the spectral information

R. Bank et al. (eds.), Domain Decomposition Methods in Science and Engineering XX,
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needed to speedup the convergence. The adaptive strategy is based on a (near) stag-
nation test which defines if the deflation process is needed or not and if more accurate
spectral information are required. Although we use a stagnation test similar to that
in [12], our approach is different since we assume that the restart length m is fixed.
This work is motivated by the convergence behavior of GMRES when it is used with
a Schwarz preconditioner. As the number of subdomains increases, the eigenvalues
are less and less clustered. The restarting may have the disadvantage to discard the
smallest eigenvalues before their convergence. The proposed adaptive strategy will
thus keep these spectral values in the Krylov subspace until their convergence.

The remaining part of this report is organized as follows: in Sect. 2, we first recall
the basis of the deflation technique applied as a preconditioner and we derive the
adaptive strategy. In Sect. 3, we discuss on the parallel implementation. Section 4
is focused on numerical experiments to show the benefits of this scheme on a real
industrial CFD test case.

2 Adaptive Preconditioner for the Deflated GMRES(m)

We are interested in the solution of the linear system

Ax = b (1)

The GMRES method is among the best methods to solve this system when the co-
efficient matrix A is nonsingular and nonsymmetric. For large linear systems, the
restarted version should always be used to reduce the memory and computational
requirements. The deflated GMRES has been proposed to reduce the negative ef-
fects of the restarting procedure. The general idea behind these methods is to add
to the Krylov subspace an approximation of the invariant subspace associated to the
smallest eigenvalues. In [7], this is carried out by defining a preconditioner that is
equal to the projected matrix onto the approximated invariant subspace and is taken
as the identity on the orthogonal subspace. Hence, given U = [u1, . . . ,ur] ∈R

n×r the
r-dimensional basis of the invariant subspace associated to the eigenvalues to deflate,
the preconditioner is defined as

M−1
D ≡ In +U(|λn|T−1

r − Ir)U
T , T =UT BU, (2)

where λn is the largest eigenvalue in magnitude, In and Ir are the identity matrices
and B the initial preconditioned matrix. Since M−1

D is nonsingular, the eigenvalues of
the resulted matrix M−1

D B or BM−1
D are λr+1, . . . ,λn, |λn|with a multiplicity at least r.

It is therefore expected to get a faster convergence rate with this preconditioner since
the r smallest eigencomponents that slow down the convergence are deflated. This
assumes that U is a good approximation of the basis of the selected invariant sub-
space. For large matrices however, the cost of accurately computing U (as suggested
in [7] and later in [4]) may induce a significant overhead. This process should be
carried out only when it is necessary, for instance to avoid stagnation.
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Algorithm 4 DGMRES(m,k,r): Restarted GMRES with adaptive deflation
1: input (m, itmax, ε , k, smv, bgv, rmax);
2: Set B≡ AM−1, M−1 is any external preconditioner
3: r0 = b−Ax0; U = [ ]; MD = I; it = 0; r = 0;
4: while (‖r0‖> ε)
5: Arnoldi process on B to get BM−1

D Vm =Vm+1H̄m. See [11]
6: xm = x0 +M−1

D M−1Vmym, ym solution of min‖βe1− H̄mym‖2;
7: rm = b−Axm, it ← it +m;
8: If (‖rm‖> ε and it < itmax) then

9: Iter = m∗ log(
ε
‖rm‖ )/log(

‖rm‖
‖r0‖ );

10: If( (Iter > smv∗ (itmax− it) and r < rmax) then
11: Compute k Schur vectors of B noted X . See [7]
12: Orthogonalize X against U

13: Compute T =
[

U X
]T

B
[

U X
]≡

(
UT BU UT BX
XT BU XT BX

)

14: Increase U by X ; r← r+k;
15: If(Iter > bgv∗ (itmax− it) ) then
16: Improve U as indicated in [4, Sect. 3]
17: EndIf
18: Factorize T Set M−1

D ≡ In +U(|λn|T−1− Ir)UT

19: End If
20: End If
21: x0 = xm, r0 = rm

22: end while

We thus propose here an adaptive strategy that detects a near-stagnation in the
iterative process or a slow reduction in the residual norm. This approach is based
upon the work by Sosonkina et al. [12] in which the Krylov subspace is adaptively
increased along the cycles of GMRES(m); Here, we find it natural to enrich the sub-
space with the eigencomponents that slow down the convergence. The main steps are
given in Algorithm 4. First, m steps of the Arnoldi process are performed to compute
the orthonormal basis Vm. It also creates an upper Hessenberg matrix Hm = V T

m BVm

which is the restriction of B onto the m−dimensional Krylov subspace. Then, a least-
squares problem is solved to minimize the residual norm in the Krylov subspace. At
the time of restart, if the desired residual norm is not achieved, a stagnation test
is computed to determine if a deflation process could be beneficial to accelerate the
convergence. This test considers the convergence rate over the previous restart cycles
and evaluates the number of iterations (Iter) needed to achieve the desired accuracy.
If Iter is greater than the remaining number of steps (bounded by a small multi-
ple smv of the number of iterations allowed), then data are computed to update the
preconditioner associated to the deflation process. This test is therefore used to re-
duce the iteration counts in GMRES(m). To detect a near-stagnation, we use another
test which considers a large multiple bgv of the remaining number of steps. In this
case, a harmonic projection is carried out to accurately compute the eigenvalues and
continuously update the previous estimation of U .
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3 Implementation Notes

We now give some details about the implementation of Algorithm 4 on distributed-
memory computers. The programming model is SPMD (Single Program Multiple
Data) and communications are done using the message-passing interface (MPI). The
adjacency graph of the input sparse matrix is first built. PARMETIS is then used
to partition the vertices of the graph into D disjoint vertices. From this partition-
ing, the matrix is distributed such that each processor holds a contiguous chunk of
rows corresponding to the vertices it owns. The right hand side and all other vectors
(Krylov basis, invariant basis) are distributed accordingly. Note that the goal of this
data distribution is to get a good load balance and to minimize communication during
matrix-vector multiply and preconditioning steps. When the additive Schwarz pre-
conditioner is used, an overlapping partitioning can be defined by taking recursively
adjacent vertices from the initial disjoint partitions.

The main parallel operations in Algorithm 4 so far are the matrix-vector multi-
ply, scalar products, and the application of M−1 and M−1

D . M−1 can be any parallel
preconditioner as long as it implements the basic operation v j ←M−1vi. In our tests,
the restricted additive Schwarz has been used as defined in [5]. It is then necessary
in the setup phase to factorize in each process the block matrices Ap corresponding
to the restriction of A onto the defined subdomains. M−1

D is applied to a distributed
vector v j in a straightforward manner given the data distribution described above.
This implies r all-to-all communications to compute the projection onto the invariant
subspace. There is no additional communication for the other terms since the r× r
dense matrix T is owned by each process.

We provide an implementation of this method using the PETSc package (see
[3]). The original implementation of the built-in KSP GMRES has been modified to
provide the data needed for the deflation and to apply the resulting preconditioner
to generate the Krylov basis. Although the current presentation does not discuss the
choice of side of preconditioning, the implementation does define left and right pre-
conditioning. Note that the current adaptive preconditioning can be associated with
any other preconditioner available in the package or defined by the end user since we
provide generic interface similar to the other Krylov subspace methods in the pack-
age. The resulted KSP module (named as DGMRES) is available in PETSc release
3.2.

4 Numerical Experiments

This section presents some numerical results to prove the efficiency of the proposed
approaches. The test problem arises from design optimization in computational fluid
dynamics. The physical model is a 3D flow simulation in a jet engine compressor
rotor. The physical equations are the Reynolds-Averaged Navier-Stokes for com-
pressible flows, discretized using the finite volume method as presented by Aubert
et al. [2]. The matrices have been extracted from the software Turb’OptyTM de-
signed by the FLUOREM company. They are also available in the University of
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Florida sparse matrix collection (see [6]) under the name RM07R in the FLUO-
REM group. The matrix is nonsymmetric and indefinite with a size 272,635 and
37,355,908 nonzero entries. Other test cases can be found in [8].

With this test case so far, previous studies have shown the limits of some existing
solvers in terms of memory usage and numerical accuracy (see [9]). Pacull et al. [10]
have proved as well the instability of the ILU factorization to approximate the solu-
tion of linear subsystems. In our hybrid approach, we therefore rely on a direct solver
within each subdomain, such as MUMPS [1].

4.1 Benefits of the Deflated Restarting

We now give the main benefits of using the deflated GMRES with the additive
Schwarz method (ASM). It is known that one level ASM is a weak preconditioner
when the number of subdomains D gets large. The size of the Krylov subspace m
could then be increased to enhance the robustness of the global method. However,
choosing a good size m of the Krylov subspace is a trial-and-error process. With the
adaptive deflation, we show experimentally that the method is robust for various val-
ues of m and D. Moreover, using a large number of subdomains reduces the memory
required to handle the submatrices by the direct solver. Hence it is expected that the
time to factorize these matrices and the memory required will get smaller as D in-
creases. This is reported in the last column of Table 1. We also report the number of
matrix-vector multiplies and the global CPU time with respect to the number of sub-
domains D. We then compare the restarted version (GMRES(m)) with the deflated
version (DGMRES(m,k)), where m = 48 and 64. A dash in a field means that the
relative residual norm of 10−8 is not reached after 2500 iterations. It can be observed
that DGMRES provides reliable and faster convergence than the classical restarted
GMRES. It also gives a faster method since significantly fewer iterations are needed.
Furthermore, the method reveals a substantial acceleration as the number of proces-
sors increases. Note that without the deflation, this acceleration will not be obtained
since the number of matrix-vector multiplies increases hugely with the subdomains.
For instance, this behavior can be seen with GMRES(64) when using D = 16 and
D = 32.

Table 1. RM07R : Benefits of using DGMRES with an additive Schwarz preconditioner and
an overlap of 1. The deflation process reduces the total number of iterations and helps to use
a large number of subdomains and thus a large number of processors. Here, the number of
processors is indeed equal to the number of subdomains.

D
GMRES(48) DGMRES(47,1) GMRES(64) DGMRES(63,1)

Matvecs Time Matvecs Time r Matvecs Time Matvecs Time r
16 551 230 212 173.4 3 355 193.8 208 168.9 2
32 - - 533 109.2 4 2217 244.6 455 94.6 7
64 - - 410 56.8 4 - - 453 50.8 7
128 - - 791 51.5 15 - - 638 44.3 8
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4.2 Adaptive DGMRES and Full GMRES

From the robustness standpoint, the full GMRES approach is more reliable than the
restarted version even with the deflation process. However as the size of the basis
grows, it should be more sensitive to round-off errors. To illustrate this behavior,
we consider two formulations of the Arnoldi process, namely the classical Gram-
Schmidt (CGS) and the modified Gram-Schmidt (MGS) algorithms. The former is
sometimes preferred since it provides good kernel operations in parallel environ-
ments. In the PETSc package, for instance, it is used by default in the GMRES im-
plementation as the orthogonalization method with a possible iterative refinement
strategy. In Fig. 1, the residual history is displayed with respect to the number of
matrix-vector products. The method stops when the relative residual norm is 10−10.
It can then be noticed that with CGS, stagnation occurs in the full GMRES (in solid
line) due to severe cancellation in the algorithm and consequently a loss of orthog-
onality. This does not happen when the basis is small since the round-off errors are
not propagated very far and DGMRES (dash-dotted line) converges at the desired
accuracy even with CGS. Note that although good accuracy is finally achieved in

Fig. 1. Convergence of full GMRES, GMRES(m) and DGMRES(m,k,r) with classical Gram-
Schmidt(CGS) and modified Gram-Schmidt (MGS) orthogonalization scheme. k is the number
of eigenvalues to extract at each detected stagnation and r is the total number of eigenvalues
extracted at the convergence. Thirty two subdomains are used in the additive Schwarz method
with a 1-overlap

full GMRES with MGS (dashed line), it will require much more memory to store all
the vectors of the growing Krylov basis (265 vectors in this case). In DGMRES, the
Krylov basis is stored just for one cycle. Only the invariant basis U is stored over
the restart cycles together with vectors M−1AU to reduce the matrix-vector counts.
Thus in this example, only 63+ 7× 2 = 77 vectors are stored. Note also that this
number can be further reduced by using a smaller Krylov basis since convergence is
still good, as shown in Table 1.
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5 Conclusion

We have designed an adaptive deflation strategy that can be used for preconditioned
GMRES. We show in this paper that the proposed algorithm can be used to improve
the robustness and reduce both CPU time and memory required by hybrid solvers
based on a one level additive Schwarz method. We have implemented this method in
the new module DGMRES of the PETSc library.
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1 Introduction

The goal of this paper is to improve a condition number bound proven in [5] for a
Balancing Domain Decomposition Method by Constraints (BDDC) for the Reissner-
Mindlin plate bending problem discretized with MITC elements. This BDDC pre-
conditioner is based on selecting the plate rotations and deflection degrees of freedom
at the subdomain vertices as primal continuity constraints. In [5], we proved that the
resulting BDDC algorithm is scalable in the number of subdomains N and indepen-
dent of the plate thickness t and that the condition number κ of the preconditioned
Reissner-Mindlin plate problem is bounded by

κ ≤C(H/h),

with C a constant independent of the plate thickness t, the mesh size h and the sub-
domain size H. In the present contribution, we prove the improved quasi-optimal
result

κ ≤C(1+ log3 (H/h)).

We remark that the MITC discretization of Reissner-Mindlin problems can lead to
very ill-conditioned discrete system, with condition number

κno ∼Ch−2t−2.

Introduced in [11] and analyzed in [17, 21, 22], BDDC methods have evolved from
previous domain decomposition work on Balancing Neumann-Neumann methods.
BDDC algorithm have been extended in recent years from scalar elliptic problems
to almost incompressible elasticity [12, 24], the Stokes system [18], flow in porous
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media [28], and spectral element discretizations [15, 23, 24]. BDDC and overlapping
Schwarz methods for Reissner-Mindlin plate problems discretized with Falk-Tu ele-
ments have been studied in the recent Ph.D. thesis [16], while multigrid method for
plates have been studied in [26]. Among the several finite element works for plates,
we mention [2, 3, 7–10, 13, 14, 19, 20, 27].

2 The MITC Reissner-Mindlin Plate Bending Problem

Continuous problem. Let Ω be a polygonal domain in R
2 representing the midsur-

face of the plate, for simplicity assumed to be clamped on the whole boundary ∂Ω .
The Reissner-Mindlin plate bending problem (see [1, 7]) reads
{

Find θθθ ex ∈ [H1
0 (Ω)]2,uex ∈ H1

0 (Ω) such that

a(θθθ ex,ηηη)+ μkt−2(θθθ ex−∇uex,ηηη−∇v) = ( f ,v) ∀ηηη ∈ [H1
0 (Ω)]2,v ∈H1

0 (Ω) ,
(1)

with μ the shear modulus, k is the shear correction factor, t the plate thickness, uex

the deflection, θθθ ex the rotation of the normal fibers and f the applied scaled normal
load. Moreover, (·, ·) stands for the standard scalar product in L2(Ω) and a(·, ·) is the
bilinear form

a(θθθ ex,ηηη) = (Cε(θθθ ex),ε(ηηη)),

with C the positive definite tensor of bending moduli and ε(·) the symmetric gradient
operator. Introducing the scaled shear stresses γγγex = μkt−2(θθθ ex−∇uex), problem (1)
can be written in terms of the following mixed variational formulation, where for
simplicity we have assumed μk = 1:

⎧⎪⎨
⎪⎩

Find θθθ ex ∈ [H1
0 (Ω)]2,uex ∈H1

0 (Ω),γγγex ∈ [L2(Ω)]2 such that

a(θθθ ex,ηηη)+ (γγγex,ηηη−∇v) = ( f ,v) ∀ηηη ∈ [H1
0 (Ω)]2,v ∈ H1

0 (Ω)

(θθθ ex−∇uex,sss)− t2(γγγ,sss) = 0 ∀sss ∈ [L2(Ω)]2 .

(2)

Discrete problem. We discretize the plate problem by MITC (Mixed Interpolation
of Tensorial Components) elements; see e.g. [1, 7, 8] for more details on this family
of elements. Let τh denote a triangular or quadrilateral conforming finite element
mesh on Ω , of characteristic mesh size h. LetΘΘΘ , U and ΓΓΓ be the discrete spaces for
rotations, deflections and shear stresses, respectively and define X=ΘΘΘ×U . Then the
Reissner-Mindlin plate bending problem (2) discretized with MITC elements reads

⎧⎪⎨
⎪⎩

Find (θθθ ,u) ∈ X, γγγ ∈ ΓΓΓ such that

a(θθθ ,ηηη)+ (γγγ,Π ηηη−∇v) = ( f ,v) ∀(ηηη ,v) ∈ X

(Π θθθ −∇u,sss)− t2(γγγ,sss) = 0 ∀sss ∈ ΓΓΓ ,

(3)

whereΠ : ([H1(Ω)]2+ΓΓΓ ) −→ ΓΓΓ is the MITC reduction operator. Using the second
equation of (3), shear stresses can be eliminated to obtain the following positive
definite discrete formulation:
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{
Find (θθθ ,u) ∈ X such that

b((θθθ ,u),(ηηη ,v)) = ( f ,v) ∀(ηηη ,v) ∈ X ,
(4)

where we have defined b((θθθ ,u),(ηηη ,v)) := a(θθθ ,ηηη)+ t−2(Π θθθ −∇u,Π ηηη −∇v). In
this paper, we address directly the positive definite problem (4), in the spirit of [4, 5],
instead of the mixed formulation (3). For the convergence analysis of the MITC
elements, see e.g. [3, 8, 13, 25]. The MITC elements perform optimally with respect
to the polynomial degree and regularity of the solution, and their rate of convergence
is independent of the thickness parameter t.

3 Iterative Substructuring and BDDC Preconditioning

Subspace decomposition and Schur complement. We decompose the domain Ω
into N open, nonoverlapping subdomains Ωi of characteristic size H forming a
shape-regular finite element mesh τH . This coarse triangulation τH is further refined
into a finer triangulation τh of characteristic size h; both meshes will typically be
composed of triangles or quadrilaterals. In the sequel, we assume that the material
tensor C is constant on the whole domain.

As it is standard in iterative substructuring methods, we first reduce the problem
to the interface Γ =

(⋃N
i=1 ∂Ωi

)\ ∂Ω , by implicitly eliminating the interior degrees
of freedom. In variational form, this process consists in a suitable decomposition of
the discrete space X =ΘΘΘ ×U . More precisely, let us define WWW = X|Γ , i.e. the space
of the traces of functions in X, as well as the local spaces Xi = X∩ [H1

0 (Ωi)]
3. The

space X can be decomposed as X = ⊕N
i=1Xi ⊕ H (WWW ). Here H : WWW −→ X is the

discrete “plate-harmonic” extension operator defined by solving the problem
{

Find H (wwwΓ ) ∈ X such that H (wwwΓ )|Γ = wwwΓ and

b(H (wwwΓ ),vvvI) = 0 ∀vvvI ∈ Xi i = 1,2, . . . ,N.

Defining the Schur complement bilinear form s(wwwΓ ,vvvΓ ) = b(H (wwwΓ ),H (vvvΓ )), the
Schur complement system reads s(uuuΓ ,vvvΓ ) =< f̃ff ,vvvΓ > ∀vvvΓ ∈WWW , for a suitable
right-hand side f̃ff .
The BDDC Reissner-Mindlin plate preconditioner. BDDC preconditioners, intro-
duced in [11] and analyzed in [21], can be regarded as an evolution of Balancing
Neumann-Neumann preconditioners for the Schur complement system. In this sec-
tion, we briefly recall the BDDC preconditioner of [5].

Define Γi := ∂Ωi, and Γi j = ∂Ωi ∩ ∂Ω j, i, j ∈ {1,2, . . . ,N}, the common edge
between two adjacent subdomains Ωi and Ω j. The local spaces WWW i are the spaces
of discrete functions defined by WWW i = WWW |Γi

, i = 1,2, . . . ,N. Let H i : WWW i −→ X|Ωi ,
i = 1,2, . . . ,N, represent the restriction of the operator H to the subdomainΩi{

Find H i(wwwi) ∈X|Ωi such that H (wwwi)|Γi = wwwi and

bi(H i(wwwi),vvvi) = 0 ∀vvvi ∈ Xi,
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where the bi(·, ·) are given by restricting the integrals in b(·, ·) to the domain Ωi,
i = 1,2, . . . ,N. The local bilinear forms are si(wwwi,vvvi) = bi(H iwwwi,H ivvvi),∀wwwi,vvvi ∈
WWW i. Let RT

i , i = 1,2, . . . ,N be the prolongation operators which extend any function
of WWW i to the function of WWW which is zero at all the nodes not on Γi. Note that for
www,vvv ∈WWW , ∑N

i=1 si(Riwww,Rivvv) = s(www,vvv). For x ∈ Γ , we also define the weight Nx =
#
{

j ∈ N | x ∈ ∂Ω j
}

and the weighted counting operators δi : WWW i −→WWW i (and their

inverses δ †
i ) by

δivvvi (x) = Nxvvvi(x), δ †
i vvvi (x) = N−1

x vvvi(x), ∀x node of Γi∩Γ .

Let Ci : WWW i → R
3cci be local constraint operators that read function values at the

corners of the subdomainΩi, with cci the number of corners of the subdomain. Then
we define the local constrained spaces

WWW i = {wwwi ∈WWW i |Ciwwwi = 0},

and a global coarse space WWW 0 ⊂WWW associated with the function values at the subdo-
main vertices. Given the number m of such subdomain vertices, let wc ∈ R

3m be a
vector representing the respective nodal values. Then the space WWW 0 is defined by

WWW 0 = {
N

∑
i=1

RT
i δ

†
i www0,i |Ciwww0,i = RC

i wc,wc ∈ R
3m,si(www0,i,www0,i)→min},

with RC
i the operator extracting the vertex values for the subdomain Ωi from the

global vector wc of all the subdomain vertex values. Any element www ∈WWW can be
uniquely decomposed as www = www0+∑N

i=1 wwwi, with www0 ∈WWW 0 , wwwi ∈WWW i for i = 1, . . . ,N.
We use inexact bilinear forms defined by

s̃i(wwwi,vvvi) = si(δiwwwi,δivvvi) ∀wwwi,vvvi ∈WWW i, i = 1,2, . . . ,N,

s̃0(www0,vvv0) =
N

∑
i=1

si(www0,i,vvv0,i) ∀www0,vvv0 ∈WWW 0.

Finally, we define the coarse operator P0 : WWW −→WWW 0 by

s̃0(P0uuu,vvv0) = s(uuu,vvv0) ∀vvv0 ∈WWW 0,

and the local operators Pi = RT
i P̃i : WWW −→ RT

i WWW i by

s̃i(P̃iuuu,vvvi) = s(uuu,RT
i vvvi) ∀vvvi ∈WWW i.

Then, our BDDC method is defined by the preconditioned operator

P =
N

∑
i=0

Pi . (5)

The matrix form of P and the associated preconditioner can be found in [5].
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4 A Quasi-optimal BDDC Convergence Bound

We start by recalling the following assumption from [5], using the same notations.

Assumption 4 Given any Γi, i = 1,2, . . . ,N, let Ei represent the set of the edges of
Γi. Then, we assume that there exist two positive constants k∗,k∗ and a boundary
seminorm | · |τ(Γi) on WWW i, i = 1,2, . . . ,N, such that

|wwwi|2τ(Γi)
≤ k∗si(wwwi,wwwi) ∀wwwi ∈WWW i, (6)

|wwwi|2τ(Γi)
≥ k∗si(wwwi,wwwi) ∀wwwi ∈WWW i, (7)

|wwwi|2τ(Γi)
= ∑

e∈Ei

|wwwi|2τ(e) ∀wwwi ∈WWW i, (8)

where | · |τ(e) is a given seminorm on the edge e.

We notice that we cannot adopt the obvious choice |wwwi|τ(Γi) = si(wwwi,wwwi), since it
can be shown that it does not satisfy (8), not even with a bound including a uniform
constant. We have the following main result.

Theorem 2. If Assumption 4 holds, then the condition number κ of the Reissner-
Mindlin BDDC preconditioned operator P in (5) satisfies the bound

κ(P)≤C
(
1+ log3 (H/h)

)
,

with the constant C depending only on the material constants and mesh regularity,
and not on the plate thickness t.

Here we can only outline the main steps of the proof; full details can be found
in [6]. The proof proceeds by showing that Assumption 4 holds for the MITC plate
bending problem (4) and by establishing the respective upper and lower bounds for
the constants k∗,k∗ in (6), (7). These bounds in turn will prove Theorem 2 since
κ(P)≤C(1+ 5k−1∗ k∗), see [5, 21] for a proof.
Upper bound (6). The upper bound is established exactly as in [5, Sect. 5.2].
Lower bound (7). To prove the lower bound, we note that the local spaces WWW i,
i = 1,2, . . . ,N, are composed of rotation and deflection parts, which we denote by
WWW i =ΘΘΘ i×Ui. Accordingly, we denote the rotation and deflection parts of the con-
strained space by WWW i = ΘΘΘ i ×Ui, where the functions of ΘΘΘ i and Ui vanish at the
subdomain corner nodes. We work with the following seminorm defined in [5]:
|wwwi|2τ(Γi)

= ∑e∈Ei
|wwwi|2τ(e) ∀wwwi = (θθθ i,ui) ∈WWW i, where for all edges e ∈ Ei

|wwwi|2τ(e) = |θθθ i|2γ(e) + ht−2||Π θθθ i · τττ−u′i||2L2(e),

|θθθ i|γ(e) := inf
ψψψ∈[H1(Ωi)]2,ψψψ|e=θθθ i|e

||εεε(ψψψ)||L2(Ωi)
,

τττ is the tangent unit vector at the boundary and the apex indicates the derivative,
in the direction of τττ , for functions defined on the (one dimensional) boundary. We
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now improve the lower bound proved in [5] by introducing a splitting of the plate

rotation variable. Consider wwwi = (θθθ i,ui) ∈WWW i and define the splitting θθθ (2)
i ∈ ΘΘΘ (2)

i :=
span

{
Bi

lτττ
}

l∈Γi
, by ∫

e
θθθ (2)

i · τττ =
∫

e
θθθ i · τττ−u′i ∀e ∈ Ei,

and let θθθ (1)
i = θθθ i−θθθ (2)i so that θθθ i = θθθ (1)

i +θθθ (2)
i . By construction, it holds∫

e
u′i−θθθ (1)

i · τττ = 0 ∀e ∈ Ei.

We introduce also the related splitting of wwwi

wwwi = www(1)
i +www(2)

i , www(1)
i = (ui,θθθ

(1)
i ), www(2)

i = (0,θθθ (2)
i ).

An improved lower bound can be obtained by estimating the split terms in the fol-
lowing two lemmas; see [6] for complete proofs.

Lemma 1. There exists a constant C > 0 independent of h such that for all edges e
of all subdomainsΩi

|wwwi|τ(e) = |(ui,θθθ i)|τ(e) ≥C
(|(ui,θθθ

(1)
i )|τ(e) + |(0,θθθ (2)i )|τ(e)

)
.

This lemma follows from the inequality ||(0,θθθ (2)
i )||τ(e) ≤C||wwwi||τ(e), that is derived

in [6] from the definition of θθθ (2)
i , a scaling argument and an inverse inequality. A sim-

ilar argument applied to the extension of θθθ2
i by zero inside Ωi leads to the following

lemma.

Lemma 2. There exists a constant C > 0 independent of h such that

si(www
(2)
i ,www(2)

i )≤C |www(2)
i |2τ(Γi)

.

The main step in the proof of Theorem 2 is the bound of the following proposition,

obtained by considering an auxiliary rotated Stokes problem with boundary data θθθ (1)
i

and several technical estimates, see [6, Proposition 5.5].

Proposition 1. There exists a constant C > 0 independent of h such that

si(www
(1)
i ,www(1)

i )≤C (1+ log3 (H/h)) |www(1)
i |2τ(Γi)

.

The upper bound then follows by combining the three previous results. Indeed, first

recalling the splitting wwwi = www(1)
i +www(2)

i and using a triangle inequality, then applying
Lemma 2 and Proposition 1, finally using Lemma 1 yields

si(wwwi,wwwi)≤ 2
(

si(www
(1)
i ,www(1)

i )+ si(www
(2)
i ,www(2)

i )
)

≤C
(
(1+ log3 (H/h)) |www(1)

i |2τ(Γi)
+ |www(2)

i |2τ(Γi)

)
≤C(1+ log3 (H/h))|wwwi|2τ(Γi)

.

Bound (7) is therefore proved with k−1∗ = C (1+ log3 (H/h)), with the constant C
depending only on the material constants and mesh regularity.

We remark that an extensive set of numerical tests, also including jump in the
coefficients, which are in complete accordance with Theorem 2, can be found in [5].
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1 Introduction

Many domain decomposition techniques for contact problems have been proposed
on discrete level, particularly substructuring and FETI methods [1, 4].

Domain decomposition methods (DDMs), presented in [2, 10, 11, 16] for unilat-
eral two-body contact problems of linear elasticity, are obtained on continuous level.
All of them require to solve the nonlinear one-sided contact problems for one or both
of the bodies in each iteration.

In works [6, 14, 15] we have proposed a class of penalty parallel Robin–Robin
domain decomposition schemes for unilateral multibody contact problems of linear
elasticity, which are based on penalty method and iterative methods for nonlinear
variational equations. In each iteration of these schemes we have to solve in a parallel
way some linear variational equations in subdomains.

In this contribution we generalize domain decomposition schemes, proposed in
[6, 14, 15] to the solution of unilateral and ideal multibody contact problems of non-
linear elasticity. We also present theorems about the convergence of these schemes.

2 Formulation of Multibody Contact Problem

Consider a contact of N nonlinear elastic bodies Ωα ⊂ R
3 with sectionally smooth

boundaries Γα , α = 1,2, . . . ,N (Fig. 1). Denote Ω =
⋃N
α=1Ωα .

A stress-strain state in point x = (x1,x2,x3)
� of each body Ωα is defined by the

displacement vector uα = uα i ei , the tensor of strains ε̂εεα = εα i j ei e j and the tensor
of stresses σ̂σσα = σα i j ei e j . These quantities satisfy Cauchy relations, equilibrium
equations and nonlinear stress-strain law [8]:

σα i j = λα δi jΘα + 2μα εα i j−2μα ωα(eα)eα i j , i, j = 1,2,3 , (1)

where Θα = εα 11 + εα 22 + εα 33 is the volume strain, λα(x) > 0, μα(x) > 0 are
bounded Lame parameters, eα i j = εα i j− δi jΘα

/
3 are the components of the strain
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Fig. 1. Contact of several bodies

deviation tensor, eα =
√

2gα
/

3 is the deformation intensity, gα = (εα11− εα22)
2 +

(εα22− εα33)
2 +(εα33− εα11)

2 +6(ε2
α12 + ε

2
α23+ ε

2
α31) , and ωα(z) is nonlinear dif-

ferentiable function, which satisfies the following properties:

0≤ ωα(z)≤ ∂ (zωα(z))
/
∂ z < 1 , ∂ (ωα(z))

/
∂ z≥ 0 . (2)

On the boundary Γα let us introduce the local orthonormal basis ξξξα , ηηηα , nα ,
where nα is the outer unit normal to Γα . Then the vectors of displacements and
stresses on the boundary can be written in the following way: uα = uα ξ ξξξα +
uαη ηηηα + uαn nα , σσσα = σ̂σσα ·nα = σαξ ξξξα +σαη ηηηα +σαn nα .

Suppose that the boundary Γα of each body consists of four disjoint parts: Γα =
Γ u
α
⋃
Γσα

⋃
Γ I
α
⋃

Sα , Γ u
α = /0, Γ u

α = Γ u
α , Γ I

α
⋃

Sα = /0, where Sα =
⋃
β∈Bα Sαβ , and

Γ I
α =

⋃
β ′∈Iα Γαβ ′ . Surface Sαβ is the possible unilateral contact area of bodyΩα with

body Ωβ , and Bα ⊂ {1,2, . . . ,N} is the set of the indices of all bodies in unilateral
contact with body Ωα . Surface Γαβ ′ = Γβ ′α is the ideal contact area between bodies
Ωα and Ωβ ′ , and Iα ⊂ {1,2, . . . ,N} is the set of the indices of all bodies which have
ideal contact with Ωα .

We assume that the areas Sαβ ⊂ Γα and Sβα ⊂ Γβ are sufficiently close (Sαβ ≈
Sβα), and nα(x)≈−nβ (x′), x ∈ Sαβ , x′ = P(x) ∈ Sβα , where P(x) is the projection
of x on Sαβ [12]. Let dαβ (x) = ±‖x−x′‖2 be a distance between bodies Ωα and
Ωβ before the deformation. The sign of dαβ depends on a statement of the problem.

We consider homogenous Dirichlet boundary conditions on the partΓ u
α , and Neu-

mann boundary conditions on the part Γσα :

uα(x) = 0, x ∈ Γ u
α ; σσσα(x) = pα(x), x ∈ Γσα . (3)

On the possible contact areas Sαβ , β ∈ Bα , α = 1,2, . . . ,N the following nonlin-
ear unilateral contact conditions hold:

σαn(x) = σβn(x
′)≤ 0 , σα ξ (x) = σβ ξ (x′) = σα η(x) = σβ η(x′) = 0 , (4)

uαn(x)+ uβn(x
′)≤ dαβ (x) , (5)
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(
uαn(x)+ uβn(x

′)−dαβ (x)
)
σαn(x) = 0 , x ∈ Sαβ , x′ = P(x) ∈ Sβα . (6)

On ideal contact areas Γαβ ′ = Γβ ′α , β ′ ∈ Iα , α = 1,2, . . . ,N we consider ideal
mechanical contact conditions:

uα(x) = uβ ′(x) , σσσα(x) =−σσσβ ′(x), x ∈ Γαβ ′ . (7)

3 Penalty Variational Formulation of the Problem

For each bodyΩα consider Sobolev space Vα = [H1(Ωα)]3 and the closed subspace
V 0
α = {uα ∈Vα : uα = 0 on Γ u

α }. All values of the elements from spaces Vα and V 0
α

on the parts of boundary Γα should be understood as traces [9].
Define Hilbert space V0 = V 0

1 × . . .×V 0
N with the scalar product (u ,v)V0

=

∑N
α=1 (uα ,vα)Vα and norm ‖u‖V0

=
√
(u ,u)V0

, u,v ∈ V0. Introduce the closed con-

vex set of all displacements in V0, which satisfy nonpenentration contact condi-
tions (5) and ideal kinematic contact conditions:

K =
{

u ∈V0 : uα n + uβ n ≤ dαβ on Sαβ , uα ′ = uβ ′ on Γα ′β ′
}
, (8)

where {α, β} ∈Q, Q = {{α,β} : α ∈ {1,2, . . . ,N} , β ∈ Bα}, {α ′, β ′} ∈QI , QI =

{{α ′,β ′} : α ′ ∈ {1,2, . . . ,N} , β ′ ∈ Iα}, and dαβ ∈ H1/2
00 (Ξα), Ξα = int(Γα \Γ u

α ).
Let us introduce bilinear form A(u,v) = ∑N

α=1 aα(uα ,vα), u,v ∈V0, which rep-
resents the total elastic deformation energy of the system of bodies, linear form
L(v) = ∑N

α=1 lα(vα), v ∈ V0, which is equal to the external forces work, and non-
quadratic functional H (v) =∑N

α=1 hα(vα), v∈V0, which represents the total nonlin-
ear deformation energy:

aα(uα ,vα) =
∫
Ωα

[λαΘα(uα)Θα(vα)+ 2μα∑
i, j
εα i j(uα)εα i j(vα) ] dΩ , (9)

lα(vα) =
∫
Ωα

fα ·vα dΩ +
∫
Γ σα

pα ·vα dS , (10)

hα(vα) = 3
∫
Ωα
μα

∫ eα (vα )

0
zωα (z) dz dΩ , (11)

where pα ∈ [H−1/2
00 (Ξα)]3, and fα ∈ [L2(Ωα)]3 is the vector of volume forces.

Using [12], we have shown that the original contact problem has an alternative
weak formulation as the following minimization problem on the set K:

F(u) = A(u,u)/2−H(u)−L(u)→ min
u∈K

. (12)

Bilinear form A is symmetric, continuous with constant MA > 0 and coercive
with constant BA > 0, and linear form L is continuous. Nonquadratic functional H is
doubly Gateaux differentiable in V0:
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H ′(u,v) =∑
α

h′α(uα ,vα), H ′′(u,v,w) =∑
α

h′′α(uα ,vα ,wα), u,v,w ∈V0, (13)

h′α(uα ,vα) = 2
∫
Ωα
μα ωα(eα(uα))∑

i, j

eα i j(uα)eα i j(vα) dΩ . (14)

Moreover, we have proved that the following conditions hold:

(∃C > 0)(∀u ∈V0) {(1−C)A(u,u)≥ 2H (u) } , (15)

(∀u ∈V0) (∃R > 0)(∀v ∈V0)
{∣∣H ′(u,v)

∣∣≤ R‖v‖V0

}
, (16)

(∃D > 0)(∀u,v,w ∈V0)
{∣∣H ′′(u,v,w)

∣∣≤ D‖v‖V0
‖w‖V0

}
, (17)

(∃B > 0)(∀u,v ∈V0)
{

A(v,v)−H ′′(u,v,v)≥ B‖v‖2
V0

}
. (18)

From these properties, it follows that there exists a unique solution ū ∈ K of min-
imization problem (12), and this problem is equivalent to the following variational
inequality on the set K:

A(u,v−u)−H ′(u,v−u)−L(v−u)≥ 0, ∀v ∈ K, u ∈ K . (19)

To obtain a minimization problem in the whole space V0, we apply a penalty
method [3, 7, 9, 13] to problem (12). We use a penalty in the form

Jθ (u) =
1

2θ ∑
{α , β}∈Q

∥∥∥(dαβ −uα n−uβ n
)−∥∥∥2

L2(Sαβ )
+

+
1

2θ ∑
{α ′, β ′}∈QI

∥∥uα ′ −uβ ′
∥∥2
[L2(Γα′β ′ )]3

, (20)

where θ > 0 is a penalty parameter, and y− = min{0,y}.
Now, consider the following unconstrained minimization problem in V0:

Fθ (u) = A(u,u)/2−H (u)−L(u)+ Jθ (u)→ min
u∈V0

. (21)

The penalty term Jθ is nonnegative and Gateaux differentiable in V0, and its dif-
ferential J′θ (u,v) =− 1

θ ∑{α , β}∈Q
∫

Sαβ

(
dαβ −uα n−uβ n

)− (
vα n + vβ n

)
dS+

1
θ ∑{α ′, β ′}∈QI

∫
Γα′β ′

(
uα ′ −uβ ′

) · (vα ′ −vβ ′
)

dS satisfies the following properties

[15]:

(∀u ∈V0)(∃R̃ > 0)(∀v ∈V0)
{∣∣J′θ (u,v)∣∣≤ R̃‖v‖V0

}
, (22)

(∃D̃ > 0)(∀u,v,w∈V0)
{∣∣J′θ (u+w,v)−J′θ (u,v)

∣∣≤ D̃‖v‖V0
‖w‖V0

}
, (23)

(∀u,v ∈V0)
{

J′θ (u+ v,v)− J′θ (u,v)≥ 0
}
. (24)

Using these properties and the results in [3], we have shown that problem (21)
has a unique solution ūθ ∈V0 and is equivalent to the following nonlinear variational
equation in the space V0:

F ′θ (u,v) = A(u,v)−H ′(u,v)+ J′θ (u,v)−L(v) = 0, ∀v ∈V0, u ∈V0. (25)

Using the results of works [7, 13], we have proved that ‖ūθ − ū‖V0
→
θ→0

0.
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4 Iterative Methods for Nonlinear Variational Equations

In arbitrary reflexive Banach space V0 consider an abstract nonlinear variational
equation

Φ (u,v) = L(v), ∀v ∈V0, u ∈V0, (26)

where Φ : V0×V0 → R is a functional, which is linear in v, but nonlinear in u,
and L is linear continuous form. Suppose that this variational equation has a unique
solution ū∗ ∈V0.

For the numerical solution of (26) we use the next iterative method [5, 6, 15]:

G(uk+1,v) = G(uk,v)− γ
[
Φ (uk,v)−L(v)

]
, ∀v ∈V0, k = 0,1, . . . , (27)

where G is some given bilinear form in V0, γ ∈ R is fixed parameter, and uk ∈ V0 is
the k-th approximation to the exact solution of problem (26).

We have proved the next theorem [5, 15] about the convergence of this method.

Theorem 1. Suppose that the following conditions hold

(∀u ∈V0) (∃RΦ > 0) (∀v ∈V0)
{
|Φ (u,v)| ≤ RΦ ‖v‖V0

}
, (28)

(∃DΦ>0)(∀u,v,w∈V0)
{
|Φ (u+w,v)−Φ (u,v)| ≤ DΦ‖v‖V0

‖w‖V0

}
, (29)

(∃BΦ > 0)(∀u,v ∈V0)
{
Φ (u+ v,v)−Φ (u,v)≥ BΦ ‖v‖2

V0

}
, (30)

bilinear form G is symmetric, continuous with constant MG > 0 and coercive with
constant BG > 0, and γ ∈ (0; 2γ∗) ,γ∗ = BΦBG/D2

Φ .

Then
∥∥uk− ū∗

∥∥
V0
→

k→∞
0, where {uk} ⊂V0 is obtained by method (27). Moreover,

the convergence rate in norm ‖·‖G =
√

G(·, ·) is linear, and the highest convergence
rate in this norm reaches as γ = γ∗.

In addition, we have proposed nonstationary iterative method to solve (26), where
bilinear form G and parameter γ are different in each iteration:

Gk(uk+1,v) = Gk(uk,v)− γk
[
Φ (uk,v)−L(v)

]
, ∀v ∈V0, k = 0,1, . . . . (31)

A convergence theorem for this method is proved in [15].

5 Domain Decomposition Schemes for Contact Problems

Now let us apply iterative methods (27) and (31) to the solution of nonlinear penalty
variational equation (25) of multibody contact problem. This penalty equation can
be written in form (26), where

Φ (u,v) = A(u,v)−H ′(u,v)+ J′θ (u,v), u,v ∈V0. (32)
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We propose such variants of methods (27) and (31), which lead to the domain
decomposition.

Let us take the bilinear form G in iterative method (27) as follows [6, 15]:

G(u,v) = A(u,v)+X(u,v), u,v ∈V0, (33)

X(u,v) =
1
θ

N

∑
α=1

[
∑
β∈Bα

∫
Sαβ

uα nvα nψαβ dS+ ∑
β ′∈Iα

∫
Γαβ ′

uα ·vα φαβ ′ dS

]
,

where ψαβ (x)= {1, x ∈ S1
αβ } ∨ {0, x ∈ Sαβ\S1

αβ } and φαβ ′(x)= {1, x ∈ Γ 1
αβ ′ } ∨

{0, x ∈ Γαβ ′\Γ 1
αβ ′ } are characteristic functions of arbitrary subsets S1

αβ ⊆ Sαβ ,

Γ 1
αβ ′ ⊆ Γαβ ′ of possible unilateral and ideal contact areas respectively.

Introduce a notation ũk+1 = [uk+1−uk]/γ+uk ∈V0. Then iterative method (27)
with bilinear form (33) can be written in such way:

A
(

ũk+1,v
)
+X

(
ũk+1,v

)
= L(v)+X

(
uk,v

)
+H ′(uk,v)− J′θ(u

k,v), (34)

uk+1 = γ ũk+1 +(1− γ)uk, k = 0,1, . . . . (35)

Bilinear form X is symmetric, continuous with constant MX > 0, and nonnegative
[15]. Due to these properties, and due to the properties of bilinear form A, it follows
that the conditions of Theorem 1 hold. Therefore, we obtain the next proposition:

Theorem 2. The sequence {uk} of the method (34)–(35) converges strongly to the
solution of penalty variational equation (25) for γ ∈ (0; 2BΦBG/D2

Φ), where BG =
BA, BΦ = B, DΦ = MA +D+ D̃. The convergence rate in norm ‖·‖G is linear.

As the common quantities of the subdomains are known from the previous iter-
ation, variational equation (34) splits into N separate equations for each subdomain
Ωα , and method (34)–(35) can be written in the following equivalent form:

aα(ũk+1
α ,vα)+ ∑

β∈Bα

∫
Sαβ

ψαβ
θ

ũk+1
α n vα n dS+ ∑

β ′∈Iα

∫
Γαβ ′

φαβ ′
θ

ũk+1
α ·vα dS

= lα(vα)+
1
θ ∑β ∈Bα

∫
Sαβ

[
ψαβ uk

α n +
(

dαβ −uk
α n−uk

β n

)−]
vα n dS

+
1
θ ∑β ′∈Iα

∫
Γαβ ′

[
φαβ ′ uk

α +
(

uk
β ′ −uk

α

)]
·vα dS+ h′α(u

k
α ,vα) , ∀vα ∈V 0

α , (36)

uk+1
α = γ ũk+1

α +(1− γ)uk
α , α = 1,2, . . . ,N, k = 0,1, . . . . (37)

In each iteration k of method (36)–(37) we have to solve N linear variational
equations in parallel, which correspond to some linear elasticity problems in sub-
domains with additional volume forces in Ωα and with Robin boundary conditions
on contact areas. Therefore, this method refers to parallel Robin–Robin type domain
decomposition schemes.
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Taking different characteristic functions ψαβ and φα ′β ′ , we can obtain different
particular cases of penalty domain decomposition method (36)–(37).

Thus, taking ψαβ (x)≡ 0, β ∈ Bα , φαβ ′(x) ≡ 0, β ′ ∈ Iα , α = 1,2, . . . ,N, we get
parallel Neumann–Neumann domain decomposition scheme.

Other borderline case is when ψαβ (x) ≡ 1, β ∈ Bα , φαβ ′(x) ≡ 1, β ′ ∈ Iα , α =

1,2, . . . ,N, i.e. S1
αβ = Sαβ , Γ 1

αβ ′ = Γαβ ′ .
Moreover, we can choose functions ψαβ and φαβ ′ differently in each iteration k.

Then we obtain nonstationary domain decomposition schemes, which are equivalent
to iterative method (31) with bilinear forms

Gk(u,v) = A(u,v)+Xk(u,v), u,v ∈V0, k = 0,1, . . . , (38)

Xk(u,v) =
1
θ

N

∑
α=1

[
∑
β∈Bα

∫
Sαβ

uα nvα nψk
αβ dS+ ∑

β ′∈Iα

∫
Γαβ ′

uα ·vα φ k
αβ ′ dS

]
.

If we take characteristic functions ψk
αβ and φ k

αβ ′ as follows [6, 14, 15]:

ψk
αβ (x) = χk

αβ (x) =

{
0, dαβ (x)−uk

α n(x)−uk
β n(x

′)≥ 0
1, dαβ (x)−uk

α n(x)−uk
β n(x

′)< 0
, x′ = P(x), x ∈ Sαβ ,

φ k
αβ ′(x)≡ 1, x ∈ Γαβ ′ , β ∈ Bα , β ′ ∈ Iα , α = 1,2, . . . ,N,

then we shall get the method, which can be conventionally named as nonstationary
parallel Dirichlet–Dirichlet domain decomposition scheme.

In addition to methods (27), (33) and (31), (38), we have proposed another family
of DDMs for the solution of (25), where the second derivative of functional H(u) is
used. These domain decomposition methods are obtained from (31), if we choose
bilinear forms Gk(u,v) as follows

Gk(u,v) = A(u,v)−H ′′(uk,u,v)+Xk(u,v), u,v ∈V0, k = 0,1, . . . . (39)

Numerical analysis of presented penalty Robin–Robin DDMs has been made
for plane unilateral two-body and three-body contact problems of linear elasticity
(ωα ≡ 0) using finite element approximations [6, 14, 15]. Numerical experiments
have confirmed the theoretical results about the convergence of these methods.

Among the positive features of proposed domain decomposition schemes are
the simplicity of the algorithms and the regularization of original contact problem
because of the use of penalty method. These domain decomposition schemes have
only one iteration loop, which deals with domain decomposition, nonlinearity of the
stress-strain relationship, and nonlinearity of unilateral contact conditions.
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1 Introduction

Development of numerical methods for the solution of Stokes system with slip
boundary conditions (Tresca friction conditions) is a challenging task whose diffi-
culty lies in the nonlinear conditions. Such boundary conditions have to be taken
into account in many situations arising in practice, in flow of polymers (see [10] and
references therein).

The paper is devoted to domain decomposition methods (DDM in short) for the
Stokes problem with the slip boundary conditions. The original domain is cut into
two sub-domains and the augmented Lagrangian formulation for separate resulting
Poisson problems in both domains is used for computations. To relate solutions of
these two sub-problems to the original solution, one has to introduce additional con-
straints “gluing“ them together. The domain decomposition formulation is based on
the Uzawa block relaxation method for the augmented Lagrangian involving three
supplementary conditions. The paper is concluded by preliminary several numerical
examples.

2 Setting Stokes Problem with Nonlinear Boundary Conditions

Let us consider a domainΩ ⊂R
2 with the Lipschitz boundary ∂Ω which is split into

two non-empty and non-overlapping parts Γ0 and Γ . We denote by n the outward
unit normal to ∂Ω and un, respectively ut , the normal, respectively the tangential,
component of u. We also make use of σt for the tangential component of the stress
vector σ(u)n. The problem consists in finding the velocity field u and the pressure
p for the following Stokes problem with nonlinear boundary condition of Tresca
friction type:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div(νε(u))+∇p = f in Ω

div(u) = 0 in Ω

u = 0 on Γ0

un = 0 on Γ

|σt | ≤ g on ∂Ω

|σt |< g⇒ ut = 0 on Γ

|σt |= g⇒∃k > 0 a constant such that ut = −kσt on Γ

(1)

where f is in L2(Ω), g ∈ L2(Γ ), g > 0 is the given slip bound on Γ and | · | is the
euclidean norm.

One can derive the variational formulation of (1):
{

Find u ∈Vdiv(Ω) such that :∀v ∈ Vdiv(Ω)

a(u,v−u)+ j(v)− j(u)≥ L(v−u),
(2)

with
V(Ω) =

{
v ∈H1(Ω), v|Γ0

= 0,vn = 0 on Γ
}
,

Vdiv(Ω) =
{

v ∈ V(Ω) , div(v) = 0 in Ω
}
,

a(u,v) =
∫
Ω
νε(u) : ε(v)dΩ , L(v) =

∫
Ω

fvdΩ , j(v) =
∫
Γ

g|vt |dΓ .
Problem (2) is an elliptic variational inequality of the second kind which has a unique
solution [3]. Moreover, since the bilinear form a(·, ·) is symmetric (2) is equivalent
to the following constrained non-differentiable minimization problem:

Find u ∈ Vdiv(Ω) such that : J (u)≤J (v) ∀v ∈ Vdiv(Ω), (3)

where J (v) =
1
2

a(v,v)+ j(v)−L(v) is the total potential energy functional.

3 Uzawa DDM for Stokes Problem with Tresca Friction

We now study the domain decomposition of (3). We first rewrite (3) in the following
more useful form. Suppose that ϕ = vt , then the minimization problem (3) becomes:

⎧⎨
⎩

Find (u,Φ) ∈Π such that:

Σ(u,Φ) ≤ Σ(v,ϕ)∀(v,ϕ) ∈Π ,
(4)

where
Π = {(v,ϕ) ∈Vdiv(Ω)×H

1
2 (Γ ) such that ϕ = vt},
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and Σ is the Lagrangian defined on Π by:

∀(ϕ ,v) ∈Π Σ(v,ϕ) =
1
2

a(v,v)−L(v)+ j(ϕ). (5)

Let {Ω1,Ω2} be a partition of Ω , as shown in Fig. 1, and let

Γ12 = Γ21 = ∂Ω1∩∂Ω2, Γi = Γ ∪∂Ωi, Γ 0
i = Γ0∪∂Ωi,

vi = v|Ωi , pi = p|Ωi ,

V(Ωi) =
{

vi ∈H1(Ωi), vi|Γ 0
i
= 0, vi.ni|Γi

= 0
}
,

Vdiv(Ωi) =
{

vi ∈V(Ωi) , div(vi) = 0 in Ωi

}
.

Restrictions of the functionals a and Σ overΩi are defined by ai and Σi respectively.
Inner products over a given part S of ∂Ωi, i = 1,2, and Ωi are defined by

(u,v)S =
∫

S
uvdΓ and (u,v)Ωi =

∫
Ωi

uvdx.

We treat the pressure as a Lagrange multiplier associated with the constraint div(u)=

1

120
1

1

1

2

0
2

2

2

Fig. 1. Decomposition of Ω into two subdomains

0. Using the decomposition of Fig. 1, the functional (5) becomes

Σ(v,ϕ) = Σ1(v1,ϕ1)+Σ2(v2,ϕ2). (6)

It is clear that problem (3) is equivalent to the following constrained minimization
problem:

∀(vi,ϕi) ∈V(Ωi) × H
1
2 (Γi), i = 1,2

Σ(u1,Φ1)+Σ(u2,Φ2) ≤ Σ1(v1,ϕ1)+Σ2(v2,ϕ2)

div(ui) = 0 in Ωi,

uit −Φi = 0 in Γi,

ui−Ψ = 0 in Γ12.

(7)
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The auxiliary interface unknown Ψ is added to the continuity constraint to avoid
coupling between u1 and u2 in the penalty term. This so-called three-field formula-
tion has been used in domain decomposition of elliptic problems [9]. To ensure the
uniqueness of the pressure, the following constraint can be added

∫
Ω1

p1 dΩ1 +

∫
Ω2

p2 dΩ1 = 0. (8)

Then, we introduce the set

P =

{
(q1,q2) ∈ L2(Ω1)×L2(Ω2) such that

∫
Ω1

q1 dΩ1 +

∫
Ω2

q2 dΩ1 = 0

}

We can associate to (7) the augmented Lagrangian functional Lr defined by

Lr (u,Φ,Ψ , p,μ ,λ ) = Σ(u1,Φ1)+Σ(u2,Φ2)

+
2

∑
i=1

[
(μi,Φi−uit)Γi − (pi,div(ui))Ωi +(λi,ui−Ψ)Γ12

]

+
2

∑
i=1

[ r1

2
||div(ui)||2L2(Ωi)

+
r2

2
||Φi−uit||2L2(Γi)

+
r3

2
||ui−Ψ ||2L2(Γ12)

]
.

(9)

where r1, r2 and r3 are the penalty parameters which are strictly positive.

Remark 1. The standard L2 scalar product (not equivalent to the H1/2 scalar product)
on the interface Γ12 and Γi is used in the definition of (9). This approach is easy to
implement but it has some negative effects on the convergence of our algorithm.

Then, problem (7) is equivalent to the following saddle-point problem:
⎧⎨
⎩

Find (u,Φ,Ψ , p,μ ,λ ) ∈H such that: ∀(v,Φ,Ψ ,q, μ̃ , λ̃ ) ∈H

Lr(u,Φ,Ψ ,q, μ̃ , λ̃ )≤Lr(u,Φ,Ψ , p,μ ,λ )≤Lr(v,Φ,Ψ , p,μ ,λ ).
(10)

where u=(u1,u2)∈V(Ω1)×V(Ω2),Φ=(Φ1,Φ2)∈ L2(Γ1)×L2(Γ2),Ψ ∈ (L2(Γ12))
2,

p = (p1, p2) ∈ P, μ = (μ1,μ2) ∈ L2(Γ1)× L2(Γ2) and λ ∈ (L2(Γ12))
2. H is the

Cartesian product of all these spaces.

3.1 Uzawa Block Relaxation Method: UBR2

In order to solve (10) we use Uzawa block relaxation algorithm based on ALG2, see
[4]. This leads to the following iterations:

Initialization: Φ−1, Ψ−1, p0, λ 0, μ0 and ri > 0 fixed.
Repeat until convergence:

1. Find uk ∈ V(Ω1)×V(Ω2) such that: ∀v ∈ V(Ω1)×V(Ω2)

Lr(u
k,Φk−1,Ψ k−1, pk,μk,λ k)≤Lr(v,Φk−1,Ψ k−1, pk,μk,λ k). (11)
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2. Find Φk ∈ L2(Γ1)×L2(Γ2) such that: ∀Φ ∈ L2(Γ1)×L2(Γ2)

Lr(u
k,Φk,Ψ k−1, pk,μk,λ k)≤Lr(u

k,Φ,Ψ k−1, pk,μk,λ k). (12)

3. Find Ψ k ∈ (L2(Γ12))
2 such that: ∀Ψ ∈ (L2(Γ12))

2.

Lr(u
k,Φk,Ψ k, pk,μk,λ k)≤Lr(u

k,Φk,Ψ , pk,μk,λ k). (13)

4. Lagrange multipliers update

pk+1
i = pk

i − r1div(uk
i ), (14)

λ k+1
i = λ k

i + r2(u
k
i|Γ12

−Ψ k), (15)

μk+1
i = μk

i + r3(u
k
it −Φk

i ). (16)

Subproblem (11) is equivalent to solving, in each subdomain, the following problem:

Find uk
i ∈ V(Ωi) such that

a(uk
i ,v)+ r1(∇.uk

i ,∇.vi)Ωi + r2(ui,vi)Γ12 + r3(u
k
t ,vt)Γ = (fi,vi)+ (pi,∇.vi)Ωi

+(r2Ψ k−λ k,vi)Γ12 +(r3Φk−1
i − μk

i ,vit)Γi ∀vi ∈ V(Ωi). (17)

The subproblems of steps 2 and 3 are uncoupled and consists in the following calcu-
lations:

Φk
i =

⎧⎪⎪⎨
⎪⎪⎩

||μk
i + r3 uk

it ||0,Γi −g

r3||μk
i + r3 uk

it ||0,Γi

(μk
i + r3uk

it) if ||μk
i + r3uk

it ||0,Γi ≥ g

0 unless

(18)

and

Ψ k =
1

2r2
(λ k

1 +λ
k
2 )+

1
2
(uk

1 + uk
2)|Γ12 . (19)

Remark 2. For sake of simplicity the given slip bound g is assumed to be non-
negative constant in (18).

Remark 3. After update (14), pk+1 must be projected onto P to ensure the uniqueness
of the pressure.

Remark 4. The main advantage of this formulation is that (17) reduces to 2D un-
coupled elliptic problems which can be solved in parallel. Moreover, the matrices
derived from discret problems are symmetric and positive definite.



660 Mohamed Khaled Gdoura, Jonas Koko, and Taoufik Sassi

4 Numerical Experiments

The domain decomposition algorithm UBR2, with r1 = r2 = r3, presented in the
previous section was implemented in Matlab V7.9 on a Core2 Duo-1.8 Ghz processor
PC. For discrete velocity-pressure-Lagrange multipliers spaces, we use the P1-iso-
P2/P1 finite element. These spaces are well known to satisfy the discrete Babuska-
Brezzi inf-sup condition [1].
For all the numerical experiments presented, the domain Ω is the square [0,0.1]2,
while Ω1 = [0,0.05]× [0,0.1] and Ω2 = [0.05,0.1]× [0,0.1]. The fluid can slip on
Γ1∪Γ2 = [0,0.1]×{0.1}∪ [0,0.1]×{0}, We set g = 0.015 which is consistent with
experimental values, see [5]. The viscosity is taken equal to 0.1 and the stopping
tolerance ε is 10−6. In addition we enforce parabolic profile on both Γ 0

1 = {0}×
[0,0.1] and Γ 0

2 = {0.1}× [0,0.1]:

u|Γ 0
1
= u|Γ 0

2
=

[
y(1− y)
−y(1− y)

]

Remark 5. We choose this profile to enforce shear stress near the solid wall to reach
the threshold without considering a complicated domain geometry.

In Fig. 2 we report the velocity field for the solution of Stokes problem with Tresca
friction (1) in Ω and in Ω1∪Ω2. We can see that we have the same velocity profile.
In Table 1 we report the discrete mesh size h, the corresponding number of degree
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−0.02

0

0.02

0.04

0.06

0.08

0.1
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−0.02
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0.08
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Fig. 2. Fluid flow with Tresca BC for one (left) and two domains (right)

of freedom (d.o.f) and number of elements on each subdomain in the follows exper-
iments. Table 2 shows the number of iterations IT, the sequential CPU (in seconds)
times and the parallel CPU* times (when subproblems (17) for i = 1,2 are solved in
parallel). For several mesh size and for NSD (Number of Sub-Domains) equal to 1
or 2. We notice that the UBR2 algorithm is a h-dependent algorithm and the domain
decomposition method to be preferable when dealing with parallel computing using
parallel solver.

Table 3 show how the number of iterations and the optimal value of the relax-
ation parameter ropt depend on h. We remark that the speed of convergence is very
sensitive to r; this explains the strong increase in the number of iterations for a finer
mesh.
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h = 0.02 h = 0.01 h = 0.0067 h = 0.005 h = 0,004
NSD n/n� n/n� n/n� n/n� n/n�

1 189/336 665/1284 1577/3032 2829/5496 4393/8548
2 112/188 370/676 806/1516 1396/2668 2220/4284

Table 1. h: mesh size; n: number of d.o.f. by domain n�: number of elements by domain.

h = 0.02 h = 0.01 h = 0.0067 h = 0.005 h = 0,004
NSD IT/CPU/CPU* IT/CPU/CPU* IT/CPU/CPU* IT/CPU/CPU* IT/ CPU/CPU*

1 199/0.41/- 349/2.8/- 453/10.8/- 509/30.36/- 595/67.3/-
2 486/1/0.81 769/4.8/3.27 993/15.3/7.96 1294/41.14/21.98 1599/99.34/51.59

Table 2. Standard speed-up for h: mesh size; IT: number of iterations; CPU & CPU*:
CPU times.

h = 0.02 h = 0.01 h = 0.0067 h = 0.005 h = 0,004
NSD ropt /IT ropt /IT ropt /IT ropt /IT ropt /IT
1 335/199 590/349 740/453 840/509 1010/595
2 116/486 124/769 175/993 230/1294 290/1599

Table 3. Convergence rate with respect ropt .

5 Conclusion

The augmented Lagrangian formulation (9) of domain decomposed Stokes problem
with Tresca friction leads to a numerical strategy which solves a classical Poisson
problem (17) (in each subdomain Ωi) and the contribution of Tresca friction (18) in
a decoupled way. Nevertheless, this algorithm has a mesh dependent convergence
and its practical implementation still facing the issue of the optimal choice of the
penalties, ri, i = 1,2,3. To improve this algorithm, different preconditioners will be
investigated, especially the Steklov-Poincaré operator on the interface (see e.g. [6–
8]) and the Cahouet-Chabard preconditioner [2] for the pressure multiplier.
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Summary. We propose and analyze a hybrid discontinuous Galerkin method for the solution
of incompressible flow problems, which allows to deal with pure Stokes, pure Darcy, and
coupled Darcy-Stokes flow in a unified manner. The flexibility of the method is demonstrated
in numerical examples.

1 Model Problem

Let Ω ⊂ R
d be a bounded Lipschitz domain in d = 2 or 3 dimensions. Given data

f ∈ [L2(Ω)]d and g ∈ L2(Ω), we consider the generalized Stokes problem

σu−2μ divε(u)+∇p = f and divu = g in Ω . (1)

As usual, u denotes the velocity, p the pressure, and ε(u) := 1
2 (∇u+∇uT ) is the

symmetric part of the velocity gradient tensor. We require that

σ ≥ 0, μ ≥ 0, and M ≥ σ + μ ≥ m > 0 in Ω .

For convenience, we assume that σ , the reciprocal of the permeability, and the vis-
cosity μ are constant, and consider homogeneous boundary conditions

u|∂Ω = 0 if μ > 0 or u ·n|∂Ω = 0 if μ = 0. (2)

The unique solvability of the boundary value problem (1)–(2) is guaranteed, if
the pressure p and the data g have zero average. For the case μ > 0, we then
have (u, p) ∈ H1

0(Ω)× L2
0(Ω), where H1

0(Ω) := {v ∈ [H1(Ω)]d : v|∂Ω = 0} and
L2

0 := {q ∈ L2(Ω) :
∫
Ω q dx = 0}. In the Darcy limit μ = 0, we only have u ∈

H0(div;Ω) := {v ∈ [L2(Ω)]d : divv ∈ L2(Ω), v ·n|∂Ω = 0}.
For the approximation of problem (1)–(2), we consider a hybrid discontinuous

Galerkin method, which is capable of treating incompressible flow in the Stokes
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and Darcy regimes, as well as coupled problems in a unified manner. Our analysis
extends the results of [7] for Stokes flow. Related work on stabilized non-conforming
and discontinuous Galerkin methods for Darcy-Stokes flow can be found in [4, 8] and
the references given there. We refer to [1, 5] for a unified treatment of discontinuous
Galerkin methods for elliptic problems and their hybridization.

2 Notation and Preliminaries

Let Th = {T} be a shape-regular quasi-uniform partition of Ω into affine families
of triangles and/or quadrilaterals (tetrahedra and/or hexahedra) of size h. By ∂Th :=
{∂T : T ∈Th}, we denote the set of element boundaries, and by Eh := {Ei j = ∂T i∩
∂T j : i > j}∪{Ei,0 = ∂T i∩∂Ω} the set of edges (faces) between elements or on the
boundary; E =

⋃
E∈Eh

E is called the skeleton.
For s≥ 0, let Hs(Th) := {v∈L2(Ω) : v|T ∈Hs(T ) for all T ∈Th} denote the bro-

ken Sobolev space with inner product (u,v)s,Th :=∑T∈Th
(u,v)s,T and norm ‖u‖s,Th;

the subindex is omitted for s = 0. Piecewise defined derivatives are denoted with
the standard symbols. The traces of functions in H1(Th) lie in L2(∂Th), which is
equipped with the scalar product 〈u,v〉∂Th

:= ∑T∈Th
〈u,v〉∂T and norm |v|∂Th

. Any
function in L2(E ) can be identified with a function in L2(∂Th) by doubling its values
on the element interfaces. Bold symbols are used for vector valued functions.

Let Pp(T ) denote the polynomials of degree≤ p over T , and recall that

|vp|2∂T ≤ cT p
2h−1‖vp‖2

T for all vp ∈Pp(T ). (3)

Explicit bounds for the constant cT in the discrete trace inequaliy (3) are known for
all elements under consideration. The parameter cT can be replaced by the shape
regularity parameter γ := max{cT : T ∈Th}, which is assumed to be independent of
h. We then choose a stabilization parameter α such that

4γp2h−1 ≤ α ≤ 4γ ′p2h−1, (4)

with γ ′ independent of p and h, and we define two norms on L2(∂Th) by

|v|±1/2,∂Th
:=
(
∑T∈Th

|v|2±1/2,∂T

)1/2
with |v|±1/2,∂T := α±1/2|v|∂T .

Similar norms are frequently used for the analysis of mixed, non-conforming and
discontinuous Galerkin methods; see e.g. [1].

3 The Hybrid DG Method

Let us fix p ≥ 1, and choose q = p− 1 or q = p. For the approximation of velocity
and pressure in (1)–(2), we will utilize the finite element spaces
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Vh := {vh ∈ L2(Th) : vh|T ∈ [Pp(T )]
d for all T ∈ Th},

Qh := {qh ∈ L2
0(Ω) : qh|T ∈Pq(T ) for all T ∈Th}.

We further choose p̂= p or p̂= q, and define a space

V̂h := {v̂h ∈ L2(E ) : v̂h|E ∈ [Pp̂(E)]
d for all E ∈ Eh, v̂h = 0 on ∂Ω},

of piecewise polynomials for representing velocities on the skeleton. The conditions
p−1 ≤ q ≤ p and q ≤ p̂ are explicitly used in the analysis of a Fortin operator; see
Proposition 5. In view of Lemma 1, we also require that p̂≥ 1. Note that the Dirichlet
boundary condition has been included explicitly in the definition of the hybrid space
V̂h. We further denote by πp : H1(Th)→Vh and π̂ p̂ : L2(E )→ V̂h, the L2 orthogonal
projections onto the discrete spaces. The boundary value problem (1)–(2) is then
approximated by the following finite element scheme.

Method 1. Find uh ∈ Vh, ûh ∈ V̂h, and ph ∈ Qh, such that
{

ah(uh, ûh;vh, v̂h)+bh(vh, v̂h; ph) = (f,vh)Th ,
bh(uh, ûh;qh) = (g,qh)Th ,

for all vh ∈ Vh, v̂h ∈ V̂h, and qh ∈ Qh. The bilinear forms are defined as

ah(u, û;v, v̂) := σdh(u, û;v, v̂)+ 2μsh(u, û;v, v̂),

bh(v, v̂;q) :=−(divv,q)Th + 〈v− v̂,qn〉∂Th
,

and the bilinear forms dh and sh are given by

dh(u, û;v, v̂) := (u,v)Th +α〈(π̂ p̂u− û) ·n,(π̂ p̂v− v̂) ·n〉∂Th
,

sh(u, û;v, v̂) := (ε(u),ε(v))Th −〈ε(u) ·n,v− v̂〉∂Th

−〈u− û,ε(v) ·n〉∂Th
+α〈π̂ p̂u− û, π̂ p̂v− v̂〉∂Th

.

One easily verifies that any regular solution of (1)–(2) also satisfies the discrete vari-
ational principle above.

Proposition 1 (Consistency). Let (u, p) denote a solution of (1)–(2), and assume
additionally that u ∈H2(Th) and p ∈ H1(Th). Then

ah(u,u;vh, v̂h)+bh(vh, v̂h; p) = (f,vh)Th and bh(u,u;qh) = (g,qh)Th

for all vh ∈Vh, v̂h ∈ V̂h, and qh ∈ Qh; thus, Method 1 is consistent.

In the Darcy limit μ = 0, it suffices to require u ∈H1(Th).

4 Stability and Error Analysis

An important ingredient for our analysis will be the following result.
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Lemma 1 (Discrete Korn inequality). Let p̂≥ 1. Then there is a κ > 0 independent
of h, such that for all v ∈H1(Th) and v̂ ∈ L2(E ), there holds

‖ε(v)‖2
Th

+ |π̂ p̂(v− v̂)|21/2,∂Th
≥ κ‖∇v‖2

Th
. (5)

Proof. The statement follows via the triangle inequality from Korn’s inequality for
piecewise H1 functions [3, Eq. (1.12)] established by Brenner. #$
Proposition 2. For any (vh, v̂h) ∈ Vh× V̂h there holds

sh(vh, v̂h;vh, v̂h)≥min{ 5
12 ,

κ
4 }
(‖∇u‖2

Th
+ |π̂ p̂(u− û)|21/2,∂Th

)
.

Proof. By Young’s inequality, Eq. (3) and (4), we obtain

−2〈ε(vh) ·n,vh− v̂h〉∂T ≥− 3
4‖ε(vh)‖2

T − 1
3 |π̂ p̂(vh− v̂h)|21/2,∂T .

The result then follows by Lemma 1, and the definition of sh. #$
For appropriately characterizing the coercivity of the bilinear form dh, let us intro-
duce the discrete kernel space for the bilinear form bh, namely

Kh := {(vh, v̂h) ∈ Vh× V̂h : bh(vh, v̂h;qh) = 0 ∀qh ∈ Qh}.

Proposition 3. For any pair of functions (vh, v̂h) ∈Kh there holds

dh(vh, v̂h;vh, v̂h)≥ ‖vh‖2
Th

+ ‖divvh‖2
Th

+ 3
4 |π̂ p̂(vh− v̂h) ·n|21/2,∂Th

.

Proof. Note that for every T ∈ Th we have divvh|T ∈Pq(T ). Testing with qh =
divvh and using (3) yields

‖divvh‖2
T = 〈(vh− v̂h) ·n,divvh〉∂T ≤ 1

2 |(π̂ p̂vh− v̂h) ·n|1/2,∂T‖divvh‖T ,

and hence ‖divvh‖Th ≤ 1
2 |(π̂ p̂vh− v̂h) ·n|1/2,∂Th

. The result then follows by adding
and subtracting ‖divvh‖2

∂Th
from the bilinear form dh. #$

The two coercivity estimates suggest to utilize the following energy norms for the
stability analysis of Method 1, namely, ‖q‖0,Th and

‖(v, v̂)‖2
1,Th

:= σ
(‖v‖2

Th
+ ‖divv‖2

Th
+ |π̂ p̂(v− v̂) ·n|21/2,∂Th

)
+ μ

(‖∇v‖2
Th

+ |π̂ p̂(v− v̂)|21/2,∂Th

)
.

Remark 1. If μ = 0, then ‖(·, ·)‖1,Th is only a semi-norm on Vh× V̂h. This deficiency
can be overcome by eliminating the tangential velocities in the definition of the hy-
brid space, or by penalizing also the jump of the tangential velocities in the bilinear
form dh. Both remedies do not affect our analysis.

A combination of Propositions 2 and 3 now yields the kernel ellipticity for ah.



A Hybrid Discontinuous Galerkin Method for Darcy-Stokes Problems 667

Proposition 4 (Coercivity). For any element (vh, v̂h) ∈Kh there holds

ah(vh, v̂h;vh, v̂h)≥min{ 3
4 ,
κ
2 }‖(vh, v̂h)‖2

1,Th
.

The constants Ci appearing in the following results depend on the bounds m and M,
but are else independent of the parameters μ , σ , and of h and p. Let us next consider
the operator (πp, π̂ p̂) : H1

0(Ω)→ Vh× V̂h.

Proposition 5 (Fortin operator). For any v ∈H1
0(Ω) there holds

bh(πpv, π̂ p̂v;qh) = b(v,qh) ∀qh ∈ Qh, (6)

and ‖(πpv, π̂ p̂v)‖1,Th ≤Cπ p
1/2‖v‖1,Ω . (7)

Proof. Equation (6) follows from the properties of the projections, and (7) results
from stability estimates for the L2 projections; cf. [7] for details. #$
The inf-sup stability of bh now follows directly from the previous result.

Proposition 6 (Inf-sup condition). For any qh ∈ Qh there holds

sup
(vh,v̂h)∈Vh×V̂h

bh(vh, v̂h;qh)

‖(vh, v̂h)‖1,Th

≥Cβ p
−1/2‖qh‖0,Th . (8)

As a consequence of Propositions 4 and 6, we obtain by Brezzi’s theorem that
Method 1 has a unique solution and thus is well-defined. Next, we show the bound-
edness of the bilinear forms with respect to a pair of stronger norms defined by
|||qh|||20,Th

:=‖qh‖2
Th
+|qh ·n|2−1/2,∂Th

and

|||(vh, v̂h)|||21,Th
:=‖(vh, v̂h)‖2

1,Th
+ μ |∂nvh|2−1/2,∂Th

,

The norms ‖ · ‖0,Th, ‖(·, ·)‖1,Th and |||·|||0,Th , |||(·, ·)|||1,Th are equivalent on the finite
element spaces with equivalence constants less than two. This yields coercivity and
inf-sup stability of ah and bh also with respect to the stronger norms. The following
bounds then follow from the Cauchy-Schwarz inequality.

Proposition 7 (Boundedness). For any û, v̂ ∈ V̂h ⊕L2(E ) and every function u,
v ∈ Vh⊕ (H1

0(Ω)∩H2(Th)), there holds

ah(u, û;v, v̂)≤Ca|||(u, û)|||1,Th |||(v, v̂)|||1,Th ,

and for all p ∈ Qh⊕ (L2
0(Ω)∩H1(Th)), there holds additionally

bh(u, û; p)≤Cb|||(u, û)|||1,Th |||p|||0,Th .

Standard polynomial approximation results [2] imply the following properties.
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Proposition 8 (Approximation). Assume s≥ 1. Then for any function u ∈H1
0(Ω)∩

Hs+1(Th) there exist elements vh ∈Vh and v̂h ∈ V̂h such that

|||(u−vh,u− v̂h)|||1,Th ≤Cap p
1/2−shmin{p,s}‖u‖s+1,Th,

and for any p ∈ L2
0(Ω)∩Hs(Th) there exists a qh ∈ Qh such that

|||p−qh|||0,Th ≤Capp
−shmin{s,q+1}‖p‖s,Th.

The a-priori estimates now follow by combination of the previous results.

Proposition 9 (Error estimate). Let (u, p) be the solution of (1)–(2), and let
(uh, ûh, ph) denote the approximation defined by Method 1. Then

|||(u−uh,u− ûh)|||1,Th +p−1/2|||p− ph|||0,Th

≤Cerr p
1/2hmin{p,s}(p1/2−s‖u‖s+1,Th +p−s‖p‖s,Th

)
.

Proof. The result follows with the usual arguments from the consistency, discrete
stability, and boundedness of the bilinear forms, and the approximation properties of
the finite element spaces; for details, see [7] or [9].

5 Remarks

The analysis of Sect. 4 applies almost verbatim to spatially varying material param-
eters μ and σ . In particular, a coupling of Darcy and Stokes equations in different
parts of the domain is possible and treated automatically. A numerical example for
such a case is presented in the next section.

Our results can be extended to shape regular meshes and varying polynomial
degree. Also meshes with a bounded number of hanging nodes on each edge or face,
and even more general non-conforming mortar meshes can be treated. We refer to
[6, 7] for a detailed discussion of conditions on the mesh and polynomial degree
distribution.

The coercivity and boundedness estimates also hold for more general finite
element spaces, but we explicitly utilized the complete discontinuity of the spaces
in the proof of the inf-sup condition. Other constructions of a Fortin-operator, cf.
e.g. [9], would allow to relax this assumption.

Our analysis also covers equal order approximations q= p, which are stabilized
sufficiently by the jump penalty terms.

All degrees of freedom except the piecewise constant pressure and the hybrid
velocities can be eliminated by static condensation on the element level. This leads
to small global systems, which for p̂ = 0 exhibit the same sparsity pattern as a non-
conforming P1−P0 discretization. For p̂ = 0, the discrete Korn inequality (5) is not
valid, so this choice had to be excluded here. If ε(u) in (1) is replaced by 1

2∇u, we
however obtain a stable scheme.
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6 Numerical Results

Let us now illustrate the capability of the proposed method to deal with incompress-
ible flow in various regimes. Our numerical results were obtained with an implemen-
tation of Method 1 in NGSolve.3

As a first example, we consider the generalized Stokes equation (1) on the unit
square Ω = (−1,1)2 with a known analytic solution given by

u =
(
20xy3,5x4−5y4) , p = 60x2y−20y3, .

The data f and g can be obtained from Eq. (1). For the numerical solution, we em-
ployed Method 1 with p = p̂ = 2 and q = 1 on a sequence of uniformly refined
meshes for different values of μ and σ . The analytic solution was used to compute
the errors listed in Table 1. As predicted by the theory, we can observe the optimal
quadratic convergence.

Table 1. Energy errors obtained by simulation on a sequence of uniformly refined meshes for
(σ ,μ) ∈ {(1,0),( 1

2 ,
1
2 ),(0,1)}, resembling Darcy, Brinkman, and Stokes flow.

level Darcy rate Brinkman rate Stokes rate

0 4.3996 – 3.4058 – 3.8578 –
1 1.1261 1.96 0.8628 1.98 0.9764 1.98
2 0.2799 2.00 0.2146 2.00 0.2428 2.00
3 0.0678 2.04 0.0533 2.00 0.0603 2.00

As a second test case, we consider a coupled Darcy-Stokes flow on a domain consist-
ing of two subdomainsΩD andΩS, as depicted in Fig. 1. The flow in the subdomains
is governed by

σiui−2μi divε(ui)+∇pi = 0 and divui = 0 in Ωi,

with μD = 0 in the Darcy domain ΩD, and σS = 0 in the Stokes domain ΩS, and the
subproblems are coupled across the interface ∂ΩD ∩∂ΩS through

uS ·n=uD ·n, pS−2μ(ε(uS) ·n) ·n= pD, uS · τ+ 2γ(ε(uS) ·n) · τ=0.

For γ = 0, these conditions arise naturally when considering the generalized Stokes
problem (1) with discontinuous coefficients. In the case γ = 0 the third Beaver-
Joseph-Saffman condition, which restricts the tangential components of the normal
stresses, gives rise to an additional interface term that has to be included in the defi-
nition of the bilinear form ah; for details see [8] and the references given there.
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Fig. 1. From left to right: problem setup, and isolines of x- and y-components of the velocity
for parameters μS = 1, σS = 0 and μD = 0, σD=1; γ = 0. A part of the flow soaks through
the porous medium. The normal component of the velocity is (almost) continuous across the
interface, while no continuity is obtained for the tangential component
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Summary. We develop a parallel scalable domain decomposition method for the simulation
of blood flows in compliant arteries in 3D, by using a fully coupled system of linear elasticity
equation and incompressible Navier-Stokes equations. The system is discretized with a finite
element method on unstructured moving meshes and solved by a Newton-Krylov algorithm
preconditioned with an overlapping additive Schwarz method. We focus on the accuracy and
parallel scalability of the algorithm, and report the parallel performance and robustness of the
proposed approach by some numerical experiments carried out on a supercomputer with a
large number of processors and for problems with millions of unknowns.

1 Introduction

Computer modeling of fluid-structure interaction (FSI) is a useful tool for the study
of hemodynamics of blood flows in human arteries. Accurate modeling helps the pre-
diction and treatment of, for example, vascular diseases. FSI problems are in general
difficult to study. One of the main challenges is the effective coupling of the fluid
and the structure. Two well-known formulations are iterative and monolithic. In iter-
ative approaches, the fluid and the structure equations are solved one after the other
repeatedly, until some desired tolerance is reached [7, 10]. The convergence of these
approaches is difficult to achieve in some situations [6], since the approaches are very
similar to nonlinear Gauss-Seidel with two large blocks. In contrast, we develop a
monolithic coupling similar to [2–4], where the fluid and the structure equations are
solved simultaneously in a fully coupled fashion and the coupling conditions are en-
forced strongly as part of the system. The monolithic approach has been shown to
be more robust. Many of the convergence problems encountered within the iterative
approaches can be avoided.

With the rapid advancement in high performance computing technologies, high
resolution blood flow simulations are expected to provide more details of the physics
of blood flows and the artery walls. To obtain highly accurate solutions on a very fine
mesh, the parallel performance and scalability of the solution algorithm is becoming
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a key issue in the simulation. In [2, 3], a class of parallel scalable Newton-Krylov-
Schwarz method was introduced for FSI in 2D. In this paper, we focus on solving
the fully coupled FSI system in 3D and also discuss the parallel performance and
robustness of the algorithms. The rest of the paper is organized as follows. In Sect. 2,
we describe the formulation and the discretization of the fully coupled FSI prob-
lem. In Sect. 3, we present the Newton-Krylov-Schwarz method for solving the fully
coupled nonlinear system. In Sect. 4, we first validate the method by comparing so-
lutions obtained with the new approach with published results for a straight cylinder
problem, then report the parallel performance of the algorithm. Finally, we provide
some concluding remarks in Sect. 5.

2 Mathematical Formulation and Discretization

Our fully coupled approach can be described by the coupling of three components,
the linear elasticity equation for the wall structure in the reference Lagrangian frame,
the incompressible Navier-Stokes equations for the fluid in the arbitrary Lagrangian-
Eulerian (ALE) framework, and the Laplace equation for the displacement of the
fluid domain.

Let Ωs ∈ R3 be the structure domain. The displacement xs of the artery walls is
described by

ρs
∂ 2xs

∂ t2 −∇ ·σs = fs in Ωs, (1)

where ρs is the density of the structure, and σs = λs(∇ · xs)I + μs(∇xs +∇xs
T )

is the Cauchy stress tensor. The Lamé parameters λs and μs are related to the
Young’s modulus E and the Poisson ratio νs by λs = νsE/((1+ νs)(1− 2νs)) and
μs = E/(2(1+νs)). We fix the structure displacement xs = 0 on the inlet and outlet
boundary Γs, and apply the zero normal traction condition σs ·n = 0 on the external
boundaries.

In order to model the fluid in a moving domain Ω f (t) ∈ R3, the displacement of
the fluid domain x f in the reference configuration Ω0 ∈ R3 is assumed to satisfy a
Laplace equation,

Δx f = 0 in Ω0.

We define an ALE mapping At from Ω0 to Ω f (t):

At :Ω0 →Ω f (t), At(Y) = Y+ xf(Y), ∀Y ∈Ω0,

where Y is referred to as the ALE coordinates. The incompressible Navier-Stokes
equations defined on the moving domain Ω f (t) are written in the ALE form as

ρ f
∂u f

∂ t

∣∣∣∣
Y
+ρ f [(u f −ωg) ·∇]u f = ∇ ·σ f in Ω f (t),

∇ ·u f = 0 in Ω f (t),
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where ρ f is the fluid density, u f is the fluid velocity, and σ f = −p f I + μ f (∇uf +
∇uf

T ) is the Cauchy stress tensor. ωg = ∂xf/∂ t is the velocity of the moving domain
and Y indicates that the time derivative is taken with respect to the ALE coordi-
nates. On the inlet boundary Γi, a given velocity profile is prescribed. On the outlet
boundary Γo, the zero traction condition σ f ·n = 0 is considered, where n is the unit
outward normal. These boundary conditions may be chosen differently, depending
on the problem at hand.

More importantly, three coupling conditions are strongly enforced on the fluid-
structure interface Γw

σs ·ns =−σ f ·n f , uf =
∂xs

∂ t
, x f = xs, (2)

where ns, n f are unit normal vectors on the fluid-structure interface.
By introducing the structure velocity ẋs as an additional unknown variable, we

can rewrite the structure momentum equation (1) as a first-order system of equations.
We define the variational space of the structure problem as

X =
{

xs ∈ [H1(Ωs)]
3 : xs = 0 on Γs

}
.

The weak form of the structure problem is stated as follows: Find xs ∈ X and ẋs ∈ X
such that ∀φs ∈ X and ∀ϕs ∈ X ,

Bs({xs, ẋs},{φs,ϕs};σ f ) = ρs
∂
∂ t

∫
Ωs

ẋs ·φs dΩ +
∫
Ωs

∇φs : σs dΩ

−
∫
Γw

φs ·
(
σ f ·ns

)
ds−

∫
Ωs

fs ·φs dΩ +

∫
Ωs

(
∂xs

∂ t
− ẋs

)
·ϕs dΩ = 0.

The variational spaces of the fluid subproblem are time dependent, and the so-
lution of the structure subproblem provides an essential boundary condition for the
fluid subproblem by (2). We define the trial and weighting function spaces as:

V =
{

u f ∈ [H1(Ω f (t))]
3 : u f = g on Γi,u f = ∂xs/∂ t on Γw

}
,

V0 =
{

u f ∈ [H1(Ω f (t))]
3 : u f = 0 on Γi∪Γw

}
,

P = L2 (Ω f (t)
)
.

The weak form of the fluid problem reads: Find u f ∈V and p f ∈P such that ∀φ f ∈V0

and ∀ψ f ∈ P,

B f ({u f ,p f },{φ f ,ψ f };x f ) = ρ f

∫
Ω f (t)

∂u f

∂ t

∣∣∣∣
Y
·φ f dΩ −

∫
Ω f (t)

p f (∇ ·φ f ) dΩ

+ρ f

∫
Ω f (t)

[
(u f −ωg) ·∇

]
u f ·φ f dΩ + 2μ f

∫
Ω f (t)

ε(u f ) : ε(φ f ) dΩ

+

∫
Ω f (t)

(∇ ·u f )ψ f dΩ = 0,
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where ε(u f ) = (∇u f +∇uT
f )/2.

The weak form of the domain movement problem reads: Find x f ∈ Z such that
∀ξ ∈ Z0,

Bm(x f ,ξ ) =
∫
Ω0

∇ξ : ∇x f dΩ = 0.

And the variational spaces are defined as

Z0 = {x f ∈ [H1(Ω0)]
3 : x f = 0 on Γi∪Γo∪Γw},

Z = {x f ∈ [H1(Ω0)]
3 : x f = xs on Γw,x f = 0 on Γi∪Γo}.

We discretize the fully coupled problem in space with a finite element method,
by using unstructured P1-P1 stabilized elements for the fluid, P1 elements for the
structure and P1 elements for the fluid domain motion. We denote the finite element
subspaces Xh, Vh, Vh,0, Ph, Zh, Zh,0 as the counterparts of their infinite dimensional
subspaces. Because the fluid problem requires that the pair Vh and Ph satisfy the LBB
inf-sup condition, additional SUPG stabilization terms are needed in the formulation
with equal-order interpolation of the velocity and the pressure as described in [11,
12]. The semi-discrete stabilized finite element formulation for the fluid problem
reads as follows: Find u f ∈Vh and p f ∈ Ph, such that ∀φ f ∈Vh,0 and ∀ψ f ∈ Ph,

B
({

u f , p f
}
,
{
φ f ,ψ f

}
;x f

)
= 0,

with

B
({

u f , p f
}
,
{
φ f ,ψ f

}
;x f

)
= B f

({
u f , p f

}
,
{
φ f ,ψ f

}
;x f

)
+ ∑

K∈T h
f

(
∇ ·u f ,τc∇ ·φ f

)
K

+ ∑
K∈T h

f

(
∂u f

∂ t

∣∣∣∣
Y
+(u f −ωg) ·∇u f +∇p f ,τm

(
(u f −ωg) ·∇φ f +∇ψ f

))
K

,

where T h
f = {K} is the given unstructured tetrahedral fluid mesh, and τc and τm are

stabilization parameters.
We form the finite dimensional fully coupled FSI problem as follows: Find xs ∈

Xh, ẋs ∈ Xh, u f ∈ Vh, p f ∈ Ph and x f ∈ Zh such that ∀φs ∈ Xh, ∀ϕs ∈ Xh, ∀φ f ∈ Vh,0,
∀ψ f ∈ Ph, and ∀ξ ∈ Zh,0,

Bs({xs, ẋs},{φs,ϕs};σ f )+B({u f , p f },{φ f ,ψ f };x f )+Bm(x f ,ξ ) = 0. (3)

The system (3) is further discretized in time with a second-order BDF2 scheme.
Since the temporal discretization scheme is fully implicit, at each time step, we ob-
tain the solution xn at the nth time step from the previous two time steps by solving
a sparse, nonlinear algebraic system

Fn(x
n) = 0, (4)



Domain Decomposition Method for Blood Flow Simulations in 3D 675

where xn corresponds to the nodal values of the fluid velocity u f , the fluid pressure
p f , the fluid mesh displacement x f , the structure displacement xs and the structure
velocity ẋs at the nth time step. For simplicity, we ignore the script n for the rest of
the paper.

3 Newton-Krylov-Schwarz Method

In the Newton-Krylov-Schwarz approach, the nonlinear system (4) is solved via the
inexact Newton method [8]. At each Newton step the new solution x(k+1) is obtained
from the current solution x(k) by x(k+1) = x(k) +θ (k)s(k), where the step length θ (k) is
determined by a cubic line search technique. The Newton correction s(k) is approxi-
mated by solving a preconditioned Jacobian system JkM−1

k Mks(k) = −F (x(k)) with
GMRES, where M−1

k is a one-level restricted additive Schwarz preconditioner [5].
To define the domain decomposition preconditioner, we first partition the finite

element mesh (which consists of the meshes for all components of the coupled sys-
tem) into non-overlapping subdomains Ω h

� , � = 1, . . . ,N, where the number of sub-
domain N is always the same as the number of processors np. Then, each subdomain
Ω h

� is extended to an overlapping subdomain Ω h,δ
� . Note that the decomposition of

the mesh is completely independent of which physical variables are defined on a
given mesh point. The number of variables at a given mesh point is considered for
the purpose of load balancing. The so-called one-level restricted additive Schwarz
preconditioner is defined by

M−1
k =

N

∑
�=1

(R0
�)

T J−1
� R�,

where R0
� and R� are restrictions to the degrees of freedom in the non-overlapping

subdomain Ω h
� and the overlapping subdomain Ω h,δ

� , respectively. J� is a restriction
of the Jacobian matrix defined by J� = R�JkRT

� .

4 Numerical Results

Our algorithm is implemented using PETSc [1]. All computations are performed on
an IBM BlueGene/L supercomputer.

A benchmark 3D FSI problem is used to study the efficiency and performance
of our fully-coupled algorithm and software. The geometry consists of a straight
cylinder representing the fluid domain with length 5 cm and radius 0.5 cm, and
the surrounding structure with thickness 0.1 cm. A constant traction σ f ·n = 1.33 ·
104 dynes/cm2 is imposed on the inlet boundary for 3 ms. A zero traction con-
dition is applied to the fluid at the outlet boundary. The fluid is characterized
with viscosity μ f = 0.03 poise, and density ρ f = 1.0 g/cm3. The Young’s mod-
ulus E = 3 · 106 g/(cm s2), the Poisson ratio νs = 0.3, and the structure density
ρs = 1.2 g/cm3 are the parameters of the structure model.
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The fluid and the structure are initially at rest and the simulation is run on a
mesh with 2.41 · 106 elements and 3.08 · 106 degrees of freedom, for a total time of
10 ms with a time step size Δ t = 0.1 ms. The simulation proceeds to the next time
step when the residual of the nonlinear system is less than 10−6. In Fig. 1, we show
the computed fluid pressure and the structure deformation at t = 2.5, 5.0, 10.0 ms. Our
results are similar to the published results in [7, 9]. We observe that the pressure wave
propagates along the cylinder and reaches the end of the cylinder at t = 10.0 ms. The
wall structure deforms in response to the propagation of the wall pressure, which is
a key feature of the fluid-structure interaction.

The strong scalability of the algorithm is presented in Table 1. The results show
superlinear scalability for a range of problem sizes and with up to 2,048 processors. It
is worth noting that the growth in GMRES iterations for large processor counts may
be a problem if we consider to solve the problem on a much larger mesh and with
a larger number of processors. In those situations, one possible solution to improve
the scalability is the use of a multilevel preconditioner.

Our algorithm is quite robust with respect to physical parameters. In some FSI
methods, the convergence becomes difficult to achieve if the density of the fluid and
the structure are close to each other. According to Table 2, our solver performs quite
well for a wide range of fluid density and structure density.

Fig. 1. Pressure wave propagation and structure deformation. The deformation is amplified by
a factor of 12 for visualization purpose only
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DOF np Newton GMRES time (s)
256 2.0 41.60 218.03

1.24 ·106 512 2.0 49.85 87.53
1024 2.0 55.65 37.88
512 2.0 57.60 442.44

3.07 ·106 1024 2.0 67.15 152.16
2048 2.0 77.55 65.64

Table 1. Performance with respect to the number of processors for two different mesh sizes.
“np” denotes the number of processors. “Newton” denotes the average Newton iteration per
time step. “GMRES” denotes the average GMRES iterations per Newton step. “time” refers
to the average compute time, in seconds, per time step.

ρ f ρs Newton GMRES time (s)
1.0 0.1 2.0 71.65 89.94
1.0 1.0 2.0 49.85 87.53
1.0 10.0 2.0 53.90 88.07
1.0 100.0 2.0 61.75 88.84
0.01 1.0 2.0 124.60 96.75
0.1 1.0 2.0 60.90 88.77
10.0 1.0 2.0 60.85 88.79

Table 2. Different combinations of fluid density ρ f and structure density ρs. μ f is kept at 0.03
poise. The tests are run for a problem with 1.25 ·106 unknowns and 512 processors.

5 Conclusion

In this paper, we developed and studied a parallel scalable overlapping Schwarz do-
main decomposition method for solving the fully coupled fluid-structure interaction
system in 3D. Our algorithm is shown to be scalable on a large scale supercomputer
and robust with respect to several important physical parameters.
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1 Introduction

Numerical methods for global atmospheric modeling have been widely studied in
many literatures [5, 7, 9]. It is well-recognized that the global atmospheric flows can
be modeled by fully compressible Euler equations with almost no approximations
necessary [7]. However, due to the multi-scale nature of the global atmosphere and
the high cost of computation, other simplified models have been favorably used in
most community codes.

There are two main difficulties in using fully compressible Euler equations in
atmospheric flow simulations. One is that the fast waves in the equations lead to
very restrictive stability conditions for explicit time-stepping methods; see, e.g., [11].
Another difficulty is that the flow is nearly compressible and the low Mach number
results in large numerical dissipation errors in many classical numerical schemes.

To deal with the fast acoustic and inertio-gravity waves in the fully compressible
model, we develop a fully implicit method so that the time step size is no longer
constrained by the stability condition. And to treat the low-Mach number flow, an
improved version of the Advection Upstream Splitting Method (AUSM+-up, [8]) is
adapted. This technique has been successfully employed for a shallow water model
in [12]. In the fully implicit solver, we use an inexact Newton method to solve the
nonlinear system arising at each time step; and the linear Jacobian system for each
Newton step is then solved by a Krylov subspace method with an additive Schwarz
preconditioner. We show by numerical experiments on a machine with thousands of
processors that the parallel Newton-Krylov-Schwarz approach works well for fully
compressible atmospheric flows.
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2 Governing Equations

Various formulations of the governing equations for mesoscale atmospheric models
can be found in, e.g., [6]. In this paper, we focus on the compressible Euler equations
by restricting the study on two dimensions (the x− z plane) and omitting the Coriolis
terms. The compressible Euler equations for the atmosphere take the following form

∂Q
∂ t

+
∂F
∂x

+
∂G
∂ z

+ S = 0,

where

Q =

⎛
⎜⎜⎝
ρ
ρu
ρw
ρθ

⎞
⎟⎟⎠ ,F =

⎛
⎜⎜⎝

ρu
ρu2 + p
ρuw
ρuθ

⎞
⎟⎟⎠ ,G =

⎛
⎜⎜⎝

ρw
ρwu

ρw2 + p
ρwθ

⎞
⎟⎟⎠ ,S =

⎛
⎜⎜⎝

0
0
ρg
0

⎞
⎟⎟⎠ , (1)

where g = 9.80665m/s2 is the effective gravity on the surface of the Earth. In the
equation, the prognostic variables are the density ρ , the velocity (u,w) and the po-
tential temperature θ of the atmosphere. The system is closed with the equation of
state

p = p00

(
ρRθ
p00

)γ
,

where p00 = 1013.25 hPa is the reference pressure on the surface, R = 287.04 J/
(kg ·K) is the gas constant for dry air and γ = 1.4. For the sake of brevity, we assume
the computational domain Ω is a rectangle and the boundary conditions are given in
Sect. 5. In some cases, a physical dissipation is added to the left-hand-side of the
momentum and velocity equations. The dissipation term is −∇ · (νρ∇φ) for φ = u,
w, and θ .

To recover the hydrostatic solution from the equation, instead of using (1) di-
rectly, the following shifted system is often preferred [6, 11]:

Q =

⎛
⎜⎜⎝

ρ ′
ρu
ρw
(ρθ )′

⎞
⎟⎟⎠ ,F =

⎛
⎜⎜⎝

ρu
ρu2 + p′
ρuw
ρuθ

⎞
⎟⎟⎠ ,G =

⎛
⎜⎜⎝

ρw
ρwu

ρw2 + p′
ρwθ

⎞
⎟⎟⎠ ,S =

⎛
⎜⎜⎝

0
0
ρ ′g
0

⎞
⎟⎟⎠ (2)

where
ρ ′ = ρ− ρ̄, p′ = p− p̄, (ρθ )′ = ρθ − ρ̄θ̄

and the variables with ‘bar’ satisfy the hydrostatic condition ∂ p̄
∂ z = −ρ̄g and θ̄ is

obtained from the equation of state. It is clear that the flux Jacobian of the shifted
system (2) in each spatial direction is, respectively,

∂F
∂Q

=

⎛
⎜⎜⎝

0 1 0 0
−u2 2u 0 c2/θ
−uw w u 0
−uθ θ 0 u

⎞
⎟⎟⎠ ,

∂G
∂Q

=

⎛
⎜⎜⎝

0 0 1 0
−wu w u 0
−w2 0 2w c2/θ
−wθ 0 θ w

⎞
⎟⎟⎠ ,

where c =
√
γ p/ρ is the sound speed.
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3 Discretizations

Suppose the computational domain is covered by a uniform rectangular Nx ×Nz

mesh. Mesh cell Ci j is centered at (xi,z j), for i = 1, . . . ,Nx and j = 1, . . . ,Nz, with
mesh size Δx×Δz. The solution in cell Ci j at time t is approximated as

Qi j ≈ 1
ΔxΔz

∫ z j+Δ z/2

z j−Δ z/2

∫ xi+Δx/2

xi−Δx/2
Q(x,z, t)dxdz.

We employ a cell-centered finite volume method for the spatial discretization of
the compressible Euler equations (2). Integrating (2) over Ci j leads to the follow-
ing semi-discrete system

∂Qi, j

∂ t
+

Fi+1/2, j−Fi−1/2, j

Δx
+

Gi, j+1/2−Gi, j−1/2

Δz
+ S(Qi, j) = 0,

where the numerical fluxes of F and G are averaged on the edges of each mesh cell.
To calculate the numerical fluxes on cell edges, we first employ a piecewise linear

formulation to reconstruct constant states in both left and right direction, i.e.,

Q−
i+ 1

2 , j
= Qi j +

1
4
(Qi+1, j−Qi−1, j), Q+

i− 1
2 , j

= Qi j− 1
4
(Qi+1, j−Qi−1, j),

Q−
i, j+ 1

2
= Qi j +

1
4
(Qi, j+1−Qi, j−1), Q+

i, j− 1
2
= Qi j− 1

4
(Qi, j+1−Qi, j−1).

Then we use an improved version of the Advection Upstream Splitting Method
(AUSM+-up, [8]) to approximate the numerical fluxes based on the reconstructed
states. The basic idea of AUSM+-up scheme is to split the flux into two parts, e.g.,

F = F (c) +F(p),

where the convective flux F (c) = ρu(1,u,w,θ )T and the pressure flux F (p) =
(0, p′,0,0)T are estimated separately, both in an upwinded manner. For instance,
denote the left and right reconstructed states for the prognostic variables on an edge
of a mesh cell as (ρ−,u−,w−,θ−) and (ρ+,u+,w+,θ+), the pressure flux is approx-
imated by F (p) ≈ (0, p̃′,0,0)T , where

p̃′ = P+
5 (M−)p′−+P−

5 (M+)p′+− (3/2)P+
5 (M−)P−

5 (M+)ρ̃ c̃(u+−u−),

and

ρ̃ = (ρ−+ρ+)/2, c̃ = (
√
γ p+/ρ++

√
γ p−/ρ−)/2, p′± = p±− p̄,

P±
5 (M) =

{
(1± sign(M))/2, if |M| ≥ 1,
M±

2 (M)
[
(±2−M)∓3MM∓

2 (M)
]
, otherwise,

M±
2 (M) = (M±1)2/4, M± = u±/c̃.

More details can be found in [8].
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For the temporal integration, instead of using explicit methods that suffer from
severe stability restriction on the time step size, we employ a fully implicit method.
Given a semi-discrete system

∂Q
∂ t

+L (Q) = 0,

we use the following second-order backward differentiation formula (BDF-2):

1
2Δ t

(
3Q(k)−4Q(k−1)+Q(k−2)

)
+L (Q(k)) = 0.

Here Q(k) denotes the solution vector Q evaluated at the k-th time step with a fixed
time step size Δ t. Only at the first time step, a first-order backward Euler method is
used.

4 Newton-Krylov-Schwarz Solver

The fully implicit method leads to a large sparse nonlinear algebraic system at each
time step. In this study, we use the Newton-Krylov-Schwarz (NKS) algorithm as the
nonlinear solver. Given a nonlinear system F (X) = 0, an inexact Newton method
is used to solve the system in the outer loop of the NKS approach. Let Xn be the
approximate solution for the n-th Newton iterate, we find the next solution Xn+1 as

Xn+1 = Xn +λnsn, n = 0,1, . . .

where λn is the steplength decided by a linesearch procedure and sn is the Newton
correction. We then use the right-preconditioned GMRES (restarted every 30 itera-
tions) method to solve the Jacobian system

JnM−1(Msn) =−F (Xn), Jn = F ′(Xn)

until the linear residual rn = Jnsn +F (Xn) satisfies

‖rn‖ ≤ η‖F (Xn)‖,

where η > 0 is the nonlinear forcing term that has been set to be a fixed value η =
1.0×10−6 in our test. A multi-coloring finite difference method [4] is used to form
the Jacobian Jn in the calculation. To achieve uniform residual error at each time
step, we use the same adaptive stopping conditions as in [13].

Given the computational domain Ω , we first decompose it into non-overlapping
subdomains Ωk, k = 1, . . . ,np, where np is the number of subdomains and also the
number of processor cores. Then each subdomain Ωk is extended to Ωδ

k within Ω
and the number of overlapping mesh layers between subdomains is δ . For the over-
lapping domain decomposition, a preconditioner M−1 is then constructed using the
one-level restricted additive Schwarz (RAS, [2]) method defined as follows
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M−1 =
np

∑
k=1

(R0
k)

T (Jn)
−1
k Rδk .

Here (Jn)k is the Jacobian matrix defined on subdomainΩδ
k and Rδk and (R0

k)
T are re-

striction and prolongation operators respectively. Given a solution vector defined on
Ω , Rδk restricts the vector to the overlapping subdomainΩδ

k while (R0
k)

T prolongates
the restricted vector back to the whole domain Ω by putting zeros not only outside
Ωδ

k but also within Ωδ
k \Ωk. In the implementation of the NKS solver, we use a

point-block ordering for both the unknowns and the nonlinear equations, resulting
in Jacobian matrices with 4× 4-block entries. A point-block version of sparse LU
factorization is then used to solve the subdomain problems.

5 Numerical Results

An IBM BlueGene/L supercomputer with 4,096 nodes is used to conduct our numer-
ical tests. Each node of the computer has a dual-core IBM PowerPC 440 processor
running at 700 MHz and 512 MB local memory. We implement the NKS algorithm
based on the Portable, Extensible Toolkits for Scientific computations (PETSc, [1])
library. In the numerical tests, the overlapping factor in the NKS solver is fixed at
δ = 2.

We study a test case describing a rising thermal bubble that is similar to those
studied in [3] and [10]. The computational domain is

Ω =
{
(x,z)

∣∣x ∈ [−10.0 km,10.0 km],z ∈ [0,10.0 km]
}
,

which is assumed to be horizontally periodic with rigid walls (zero normal velocity,
i.e., w = 0 here) at the bottom and top boundaries. The initial condition for the prob-
lem is obtained from a hydrostatic state with u = w = 0 and θ̄ = 300 K by adding a
perturbation

Δθ =

{
2.0cos(0.5πL)K if L≤ 1.0,

0.0 K otherwise,

where

L =

√(
x−0.0 km

2.0 km

)2

+

(
z−2.0 km

2.0 km

)2

.

A physical dissipation ν = 15.0 m2/s is employed in the calculation. The results on
a 1,000× 500 mesh using the fully implicit method with Δ t = 2.0 s are provided
in Fig. 1. We find that the results are in agreement with those provided in several
publications; see, e.g., [3, 10] and [6].

To investigate the performance of the preconditioner, we run a fixed size problem
on a 1,920×960 mesh for 50 time steps with Δ t = 2.0 s by using gradually doubled
numbers of processor cores (np). The results on the averaged number of Newton and
GMRES iterations per time step are provided in Fig. 2, from where we observe that
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Fig. 1. Contour plots of the potential temperature perturbation (contour interval: 0.2 K)

Fig. 2. Averaged numbers of Newton and GMRES iterations per time step

the number of Newton iterations is not sensitive to np but the number of GMRES it-
erations needed for each time step increases as np increases. The total compute time
and the parallel scalability are provided in Fig. 3, which clearly shows that as more
processors are used for the fixed size problem, the total compute time is reduced
accordingly and the parallel scalability from 512 to 8,192 processor cores is nearly
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Fig. 3. Total compute time (left) and parallel scalability (right) results

optimal, with the parallel efficiency reaching 90.38%. Because of the page limit,
we only present a one-level restricted addtive Schwarz method for the compressible
Euler problem and only provide some preliminary results in this paper. More ad-
vanced algorithms such as multilevel hybrid Schwarz methods will be investigated
in a forthcoming paper and more numerical experiments will be carried out in it.
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