
Segmental Mapping and Distance

for Rooted Labeled Ordered Trees�

Tomohiro Kan1, Shoichi Higuchi1, and Kouichi Hirata2

1 Graduage School of Computer Science and Systems Engineering
2 Department of Artificial Intelligence & Biomedical Informatics R&D Center

Kyushu Institute of Technology Kawazu 680-4, Iizuka 820-8502, Japan
{kan,syou hig,hirata}@dumbo.ai.kyutech.ac.jp

Abstract. In this paper, as a variation of a Tai mapping between trees,
we introduce a segmental mapping to preserve the parent-children rela-
tionship as possible. Then, we show that the segmental mapping provides
a new hierarchy for the classes of Tai mappings in addition to a well-
known one. Also we show that the segmental distance as the minimum
cost of segmental mappings is a metric. Finally, we design the algorithm
to compute the segmental distance in quadratic time and space.

1 Introduction

Comparing tree-structured data such as HTML and XML data for web mining
or DNA and glycan data for bioinformatics is one of the important tasks for
data mining. In this paper, we formulate such data as rooted labeled ordered
trees (trees , for short) and then focus on distance measures between trees.

The most famous distance measure between trees is the edit distance [5]. The
edit distance is formulated as the minimum cost to transform from a tree to
another tree by applying edit operations of a substitution, a deletion and an
insertion to trees. It is known that the edit distance is closely related to the
notion of a Tai mapping (Tai) [5], which is a one-to-one node correspondence
between trees preserving ancestor and sibling relations. The minimum cost of
possible mappings coincides with the edit distance [5]. After introducing the
edit distance, the time complexity to compute it has been improved as O(n3)
time [2], where n is the maximum number of nodes in given two trees.

While the edit distance is the standard measure for comparing trees, it is too
general for several applications. Therefore, more structural sensitive variations
of the edit distance such as the top-down (or degree-1) distance [1,4], the degree-
2 distance [10], the accordant distance [3], the isolated-subtree (or constrained)
distance [7,9] and the bottom-up distance [6] are required for these applications.
Such variations are formulated as the minimum cost of restricted mappings such

� This work is partially supported by Grand-in-Aid for Scientific Research 22240010,
24240021 and 24300060 from the Ministry of Education, Culture, Sports, Science
and Technology, Japan.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 485–494, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

486 T. Kan, S. Higuchi, and K. Hirata

as top-down (Top), degree-2 (Dg2), accordant (Acc), isolated-subtree (IsSt)
and bottom-up (Bot) mappings, respectively, and computed in O(n2) time1.

It is known that these mappings provide the hierarchy described in Figure 1
(left) [3,7] as a Hasse diagram. This diagram claims that if M ∈ A then M ∈ B
for a mapping M , a lower class A and an upper class B in Figure 1 (left).

���

����

�		

��

�� ��

��

���

���� ��

	

��� ����

��������� ��

���

Fig. 1. A mapping hierarchy [3,7] (left) and a new mapping hierarchy (right)

In the above mappings, the parent-children relationship is just preserved by
both top-down and bottom-up mappings, which are too restricted. On the other
hand, it is sometimes important in several applications such as the function
determination of glycan data, the parse trees of programs, the trace patterns of
procedure calls and the change detection of XML documents (cf., [1,3,6]).

As the generalization of top-down and bottom-up mappings, we introduce a
segmental mapping (Sg) preserving the parent-children relationship as possible.
The segmental mapping requires that, for every pair of nodes in a mapping, if
the mapping contains a pair of the ancestors of the nodes, then it always contains
the pair of the parents of the nodes. Also we formulate top-down and bottom-up
segmental mappings (TopSg and BotSg) that are segmental mappings always
containing the pair of the roots and the pair of leaves as descendants, respectively.

In this paper, first we show that Sg, TopSg and BotSg provide a new
hierarchy in Figure 1 (right). Next, we show that the segmental distance and
the bottom-up segmental distance as the minimum cost of Sg and BotSg are
metrics. Finally, we design the algorithm to compute the segmental distance in
O(n2) time and space.

2 Preliminaries

A tree is a connected graph without cycles. For a tree T = (V,E), we denote V
and E by V (T) and E(T), respectively. Also the size of T is |V | and denoted by
|T |. We sometime denote v ∈ V (T) by v ∈ T . We denote an empty tree by ∅.
1 While Valiente [6] has first introduced a bottom-up distance, his distance does not
allow the substitution. Then, his distance is an indel distance, which runs in O(n)
time, rather than an edit distance, which runs in O(n2) time. See [8].

Segmental Mapping and Distance for Rooted Labeled Ordered Trees 487

A rooted tree is a tree with one node r chosen as its root . We denote the root
of a rooted tree T by r(T). For each node v in a rooted tree with the root r, let
UPr(v) be the unique path from v to r. The parent of v(�= r), which we denote
by par(v), is its adjacent node on UPr(v) and the ancestors of v(�= r) are the
nodes on UPr(v) − {v}. We denote the set of all ancestors of v by anc(v). We
say that u is a child of v if v is the parent of u, and u is a descendant of v if v
is an ancestor of u. In this paper, we use the ancestor orders < and ≤, that is,
u < v if v is an ancestor of u and u ≤ v if u < v or u = v. We say that w is the
least common ancestor of u and v, denoted by u � v, if u ≤ w, v ≤ w and there
exists no w′ such that w′ ≤ w, u ≤ w′ and v ≤ w′.

A leaf is a node having no children. We denote the set of all leaves in T by
lv(T). The degree of a node v ∈ V (T), denoted by deg(v), is the number of
children of v. A (complete) subtree of T rooted by v, denoted by T (v), is a tree
consisting of v and all of the descendants of v.

We say that a rooted tree is ordered if a left-to-right order among siblings
is given. For a rooted ordered tree T , a node v in T and its children v1, . . . , vi,
the preorder traversal of T (v) is obtained by visiting v and then recursively
visiting T (vk) (1 ≤ k ≤ i) in order. Similarly, the postorder traversal of T (v) is
obtained by first visiting T (vk) (1 ≤ k ≤ i) and then visiting v. The preorder
(resp., postorder) number of v ∈ T is the number of nodes preceding v in the
preorder (resp. postorder) traversal of T and denote it by pre(v) (resp., post(v)).
The nodes to the left of v ∈ T is the set of nodes u ∈ T satisfying that (1)
pre(u) ≤ pre(v) and (2) post(u) ≤ post(v). If u is to the left of v, then v is to
the right of u. We denote that u is to the left of v by u � v.

We say that a rooted tree is labeled if each node is assigned a symbol from
a fixed finite alphabet Σ. For a node v, we denote the label of v by l(v), and
sometimes identify v with l(v). In this paper, we call a rooted labeled ordered
tree a tree simply. A(n ordered) forest is a sequence of trees. We denote a forest
consisting of trees T1, . . . , Tm by [T1, . . . , Tm].

Definition 1 (Edit operations). We define edit operations of a tree T as
follows. See Figure 2.

1. Substitution: Change the label of the node v in T .
2. Deletion: Delete a non-root node v in T with parent v′, making the children

of v become the children of v′. The children are inserted in the place of v as
a subsequence in the left-to-right order of the children of v′.

3. Insertion: The complement of deletion. Insert a node v as a child of v′ in T
making v the parent of a consecutive subsequence of the children of v′.

Let ε �∈ Σ denote a special blank symbol and define Σε = Σ ∪ {ε}. Then, we
represent each edit operation by (l1 	→ l2), where (l1, l2) ∈ (Σε ×Σε − {(ε, ε)}).
The operation is a substitution if l1 �= ε and l2 �= ε, a deletion if l2 = ε, and an
insertion if l1 = ε. For nodes v and w, we also denote (l(v) 	→ l(w)) by (v 	→ w).

We define a cost function γ : (Σε ×Σε −{(ε, ε)}) 	→ R on pairs of labels. We
often constrain a cost function γ to be a metric, that is, γ(l1, l2) ≥ 0, γ(l1, l2) = 0
iff l1 = l2, γ(l1, l2) = γ(l2, l1) and γ(l1, l3) ≤ γ(l1, l2) + γ(l2, l3).

488 T. Kan, S. Higuchi, and K. Hirata

Substitution (v �→ w)

v �→ v

Deletion (v �→ ε) Insertion (ε �→ v)

v′

v
�→ v′ v′ �→ v′

v

Fig. 2. Edit operations for trees

Definition 2 (Edit distance). For a cost function γ, the cost of an edit opera-
tion e = l1 	→ l2 is given by γ(e) = γ(l1, l2). The cost of a sequence E = e1, . . . , ek
of edit operations is given by γ(E) =

∑k
i=1 γ(ei). Then, an edit distance τ(T1, T2)

between trees T1 and T2 is defined as follows:

τ(T1, T2) = min

{

γ(E)

∣
∣
∣
∣
E is a sequence of edit operations
transforming T1 to T2

}

.

Definition 3 (Mapping). Let T1 and T2 be trees. We say that a
triple (M,T1, T2) (or simply M when there is no confusion) is a Tai mapping
(a mapping, for short) between T1 and T2, which we denote by M ∈ Tai, if
M ⊆ V (T1) × V (T2) and every pair (v1, w1) and (v2, w2) in M satisfies the
following three conditions.

1. v1 = v2 iff w1 = w2. 2. v1 ≤ v2 iff w1 ≤ w2. 3. v1 � v2 iff w1 � w2.

Let M be a mapping between T1 and T2. Let I and J be the sets of nodes in T1

and T2 but not in M . Then, the cost of M is given as follows.

γ(M) =
∑

(v,w)∈M

γ(v 	→ w) +
∑

v∈I

γ(v 	→ ε) +
∑

w∈J

γ(ε 	→ w).

Theorem 1 (Tai [5]). τ(T1, T2) = min{γ(M) | M ∈ Tai}.
Trees T1 and T2 are isomorphic, denoted by T1 ≡ T2, if there exists a mapping
M between T1 and T2 such that γ(M) = 0, which we denote by M ∈ Iso.

Definition 4 (Variations). Let T1 and T2 be trees and M ⊆ V (T1)×V (T2) a
mapping between T1 and T2. Also we denote M − {(r(T1), r(T2))} by M−.

1. We say that M is an isolated-subtree mapping [7] (or a constrained map-
ping [9]), denoted by M ∈ IlSt, if M satisfies the following condition.

∀(v1, w1), (v2, w2), (v3, w3) ∈ M
(
v3 < v1 � v2 ⇐⇒ w3 < w1 � w2

)
.

2. We say that M is an accordant mapping [3], denoted by M ∈ Acc, if M
satisfies the following condition.

∀(v1, w1), (v2, w2), (v3, w3) ∈ M

(
v1 � v2 = v1 � v3
⇐⇒ w1 � w2 = w1 � w3

)

.

Segmental Mapping and Distance for Rooted Labeled Ordered Trees 489

3. We say that M is a degree-2 mapping [10], denoted by M ∈ Dg2, if M
satisfies the following condition.

∀(v1, w1), (v2, w2) ∈ M−
(
(v1 � v2, w1 �w2) ∈ M

)
.

4. We say that M is a top-down mapping [1,4], denoted by M ∈ Top, if M
satisfies the following condition.

∀(v, w) ∈ M−
(
(par (v), par (w)) ∈ M

)
.

5. We say that M is a bottom-up mapping [3,6,8]2, denoted by M ∈ Bot, if M
satisfies the following condition.

∀(v, w) ∈ M

⎛

⎝
∀v′ ∈ T1(v)∃w′ ∈ T2(w)

(
(v′, w′) ∈ M

)

∧∀w′ ∈ T2(w)∃v′ ∈ T1(v)
(
(v′, w′) ∈ M

)

⎞

⎠ .

Also we define the top-down distance τ�(T1, T2) as min{γ(M) | M ∈ Top}.

Example 1. Consider the mappings Mi (1 ≤ i ≤ 6) in Figure 3. Then, it holds
that M1 ∈ Top; M2 �∈ Top but M2 ∈ Dg2; M3 �∈ Dg2 but M3 ∈ Acc;
M4 �∈ Acc but M4 ∈ IlSt; M5 �∈ IlSt but M5 ∈ Tai. Also it holds that
M6 ∈ Bot but M6 �∈ IlSt. Furthermore, it holds that Mi �∈ Bot (1 ≤ i ≤ 5).

�

� �

�

� �

�

�

� � �

�

�

� �

�

�

� �

�

�

� �

M1 M2 M3

�

� �

�

�

� �

�

� � �

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

M4 M5 M6

Fig. 3. Mappings Mi (1 ≤ i ≤ 6) in Example 1

3 Segmental Mapping and Distance

In this section, we introduce a segmental mapping and a segmental distance.

Definition 5 (Segmental mapping). Let T1 and T2 be trees andM ⊆ V (T1)×
V (T2) a mapping between T1 and T2.

2 While Valiente [6] has introduced a bottom-up mapping that requires an isolated-
subtree mapping, his algorithm computes one that is not an isolated-subtree distance.
Then, we adopt the revised definition of a bottom-up mapping [3,8].

490 T. Kan, S. Higuchi, and K. Hirata

1. We say that M is a segmental mapping, denoted by M ∈ Sg, if M satisfies
the following condition.

∀(v, w) ∈ M−

(((
(v′, w′) ∈ M

)
∧
(
v′ ∈ anc(v)

)
∧
(
w′ ∈ anc(w)

))

=⇒ (par (v), par (w)) ∈ M

)

.

2. We say that M is a top-down segmental mapping, denoted by M ∈ TopSg,
if M is a segmental mapping such that (r(T1), r(T2)) ∈ M .

3. We say that M is a bottom-up segmental mapping, denoted by M ∈ BotSg,
if M is a segmental mapping satisfying the following condition.

∀(v, w) ∈ M

⎛

⎜
⎜
⎜
⎝

∃(v′, w′) ∈ M

⎛

⎝

(
v ∈ anc(v′)

)
∧
(
w ∈ anc(w′)

)

∧
(
v′ ∈ lv(T1)

)
∧
(
w′ ∈ lv (T2)

)

⎞

⎠

∨
((

v ∈ lv(T1)
)
∧
(
w ∈ lv (T1)

))

⎞

⎟
⎟
⎟
⎠
.

Example 2. Consider the mappings Mi (7 ≤ i ≤ 9) in Figure 4. For M7, it holds
that M7 ∈ Top, M7 ∈ TopSg, M7 ∈ BotSg and M7 ∈ Sg but M7 �∈ Bot. For
M8, it holds that M8 ∈ BotSg and M8 ∈ Sg but M8 �∈ Top and M8 �∈ TopSg.
For M9, it holds that M9 ∈ Sg but M9 �∈ BotSg, M9 �∈ TopSg and M9 �∈ Top.
Also it holds that M9 �∈ IlSt. Furthermore, for M3 and M6 in Example 1, it
holds that M3 ∈ IlSt but M3 �∈ Sg; M6 ∈ BotSg andM6 ∈ Sg but M6 �∈ IlSt.

�

� �

�

�

�

� �

�

�

�

� �

�

�

�

�

�

�

� �

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

M7 M8 M9

Fig. 4. Mappings Mi (7 ≤ i ≤ 9) in Example 2

Theorem 2 (Mapping hierarchy). The mapping hierarchy illustrated in Fig-
ure 1 (right) in Section 1 holds. that is:

1. Top = TopSg ⊂ Sg ⊂ Tai and Bot ⊂ BotSg ⊂ Sg ⊂ Tai.
2. A �⊆ B and B �⊆ A for A ∈ {BotSg,Sg} and B ∈ {Top,Dg2,Acc, IlSt}.
Proof. The formula in Definition 5 implies that Top = TopSg. Other inclusion,
properness and incomparability follow from Definition 5 and Example 2. ��
For segmental mappings Mi (i = 1, 2) between Ti and Ti+1, we define the com-
position M1 ◦M2 as {(u,w) | ∃v ∈ T2 s.t. (u, v) ∈ M1 and (v, w) ∈ M2}. Then,
we can show the following lemma from Definition 5 as similar as [9].

Lemma 1. 1. M1 ◦M2 is a segmental mapping between T1 and T3.
2. For a cost function γ that is a metric, γ(M1 ◦M2) ≤ γ(M1) + γ(M2).

Segmental Mapping and Distance for Rooted Labeled Ordered Trees 491

Definition 6 (Segmental distance). A segmental distance δ(T1, T2) and a
bottom-up segmental distance δ⊥(T1, T2) between T1 and T2 are defined as:

δ(T1, T2) = min{γ(M) | M ∈ Sg}, δ⊥(T1, T2) = min{γ(M) | M ∈ BotSg}.

Theorem 3. Both δ and δ⊥ are metrics.

Proof. It is sufficient to show the triangle inequality for δ. Let M1 (resp., M2)
be the minimum cost segmental mapping between T1 and T2 (resp., between T2

and T3). By Lemma 1, it holds that δ(T1, T3) ≤ γ(M1 ◦M2) ≤ γ(M1)+γ(M2) =
δ(T1, T2) + δ(T2, T3), so δ is a metric. Similarly, δ⊥ is also a metric ��

4 Computing Segmental Distance

In this section, we identify a node in T1 (resp., T2) with its postorder number
i (1 ≤ i ≤ |T1|) (resp., j (1 ≤ j ≤ |T2|)) of T1 (resp., T2), where 0 denotes
the empty tree. We denote the postorder number of the leftmost leaf of T1(i)
(resp., T2(j)) by ll (i) (resp., ll(j)). Also let F1(i) (resp., F2(j)) denote the forest
obtained by deleting i (resp., j) from T1(i) (resp., T2(j)). Let n = max{|T1|, |T2|}.

Let M be a segmental mapping between T1 and T2. Then, there exists at least
one pair (i, j) ∈ M such that (i′, j′) �∈ M for every ancestor i′ of i in T1 and every
ancestor j′ of j in T2. We call such a pair a maximal pair ofM and denote the set
of all maximal pairs of M by PM . Also, for every (i, j) ∈ PM , we can obtain the
subset M(i,j) ⊆ M such that M(i,j) = {(i′, j′) ∈ M | i′ ∈ T1(i), j

′ ∈ T2(j)}. We
denote the set of nodes that are not descendants of every i (resp., j) such that
(i, j) ∈ PM by R1

M (resp., R2
M). Then, the following equation is straightforward.

γ(M) =
∑

(i,j)∈PM

γ(M(i,j)) +
∑

v∈R1
M

γ(v 	→ ε) +
∑

w∈R2
M

γ(ε 	→ w). (1)

Lemma 2. For every (i, j) ∈ PM , M(i,j) is a top-down mapping between T1(i)
and T2(j). Hence, it holds that γ(M(i,j)) ≥ τ�(T1(i), T2(j)).

Proof. For (i′, j′) ∈ M(i,j), it holds that i
′ ≤ i in T1 and j′ ≤ j in T2. Since M(i,j)

is a segmental mapping, there exists a sequence (i′1, j
′
1), . . . , (i

′
a, j

′
a) of pairs in

M(i,j) such that i′1 = i, j′1 = j, i′a = i′, j′a = j′, i′b = par (i′b+1) and j′b = par (j′b+1)
for 1 ≤ b ≤ a− 1. This implies that M(i,j) is a top-down mapping. ��

Lemma 3. Let M∗ be the minimum cost segmental mapping between T1 and
T2. Then, the following equation holds.

δ(T1, T2) =
∑

(i,j)∈PM∗

τ�(T1(i), T2(j)) +
∑

v∈R1
M∗

γ(v 	→ ε) +
∑

w∈R2
M∗

γ(ε 	→ w). (2)

Proof. Since γ(M∗) = δ(T1, T2) and the minimality of γ(M∗) implies that
γ(M∗

(i,j)) = τ�(T1(i), T2(j)), the equation (2) follows from the equation (1). ��

492 T. Kan, S. Higuchi, and K. Hirata

procedure SegDist(T1, T2, γ)
/* T1, T2 : trees, γ : cost function */
for i = 1 to |T1| do1

for j = 1 to |T2| do2

TD [i, j]← TopDownPair(i, j, γ);3

D[0, 0]← 0;4

for i = 1 to |T1| do5

D[i, 0]← D[i − 1, 0] + γ(i �→ ε);6

for j = 1 to |T2| do7

D[0, j]← D[0, j − 1] + γ(ε �→ j);8

for i = 1 to |T1| do9

for j = 1 to |T2| do10

D[i, j]← min

{
D[i− 1, j] + γ(i �→ ε), D[i, j − 1] + γ(ε �→ j),
D[ll(i)− 1, ll(j) − 1] + TD [i, j]

}
;

11

output D[|T1|, |T2|];12

procedure TopDownPair(i, j, γ)
/* i ∈ T1, F1(i) = [T1(i1), . . . , T1(im)], where i0 = 0 */
/* j ∈ T2, F2(j) = [T2(j1), . . . , T2(jn)], where j0 = 0 */
F [0, 0]← 0;13

for k = 1 to m do14

F [ik, 0]← F [ik−1, 0] + |T1(ik)| × γ(ik �→ ε);15

for l = 1 to n do16

F [0, jl]← F [0, jl−1] + |T2(jl)| × γ(ε �→ jl);17

for k = 1 to m do18

for l = 1 to n do19

F [ik, jl]← min

⎧⎨
⎩

F [ik−1, jl] + |T1(ik)| × γ(ik �→ ε),
F [ik, jl−1] + |T2(jl)| × γ(ε �→ jl),
F [ik−1, jl−1] + TD[ik, jl]

⎫⎬
⎭;

20

output F [im, jn] + γ(i �→ j);21

Algorithm 1. SegDist

The equation (2) claims that we can compute the segmental distance δ(T1, T2)
by first computing the top-down distance τ�(T1(i), T2(j)) for every pair (i, j) ∈
T1 × T2 and then combining pairs such that the total cost of a mapping is
minimum, which we achieve in O(n4) time by using a naive method [1,4]. In this
paper, we design an O(n2) time algorithm SegDist in Algorithm 1.

Lemma 4. For i ∈ T1 and j ∈ T2, the algorithm TopDownPair(i, j, γ) com-
putes the top-down distance τ�(T1(i), T2(j)) in O(deg(i)× deg(j)) time.

Proof. Let i1, . . . , im be the children of i in T1 and j1, . . . , jn the children of j
in T2, that is, let F1(i) = [T1(i1), . . . , T1(im)] and F2(j) = [T2(j1), . . . , T2(jn)].
Also let I = {i1, . . . , im} and J = {j1, . . . , jn}. Furthermore, since the for-loop
of lines 1 and 2 in SegDist executes in postorder traversal, we can suppose

Segmental Mapping and Distance for Rooted Labeled Ordered Trees 493

that TD [ia, jb](= τ�(T1(ia), T2(jb))) has been already computed for 1 ≤ ia < i
(1 ≤ a ≤ m) and 1 ≤ jb < j (1 ≤ b ≤ n) when computing τ�(T1(i), T2(j)).

Since γ(i 	→ j) in line 21 is the cost of the pair (i, j), which is contained from
every top-down mapping between T1(i) and T2(j), we can obtain the top-down
distance τ�(T1(i), T2(j)) by adding γ(i 	→ j) to the combination of I and J
providing the minimum cost. As the same discussion of [9], we can regard such
a combination as the string edit distance between i1 · · · im and j1 · · · jn under
the cost function c such that c(ia, ε) = |T1(ia)| × γ(ia 	→ ε) = τ�(T1(ia), ∅),
c(ε, jb) = |T2(jb)| × γ(ε 	→ jb) = τ�(∅, T2(ja)) and c(ia, jb) = τ�(T1(ia), T2(jb))
for 1 ≤ a ≤ m and 1 ≤ b ≤ n, each of which is a formula in line 20. It is obvious
that the algorithm TopDownPair(i, j, γ) runs in O(deg(i)× deg(j)) time. ��

Theorem 4. The algorithm SegDist computes the segmental distance δ(T1, T2)
between T1 and T2 in O(n2) time and space.

Proof. Let F1[i] (resp., F2[j]) be the forest of T1 (resp., T2) constructing the
nodes from 1 to i (resp., from 1 to j) in postorder of T1 (resp., T2). By the
definition of ll , ll(i)−1 and ll (j)−1 are the left siblings of i in F1[i] and j in F2[j],
that is, F1[i] = [. . . , T1(ll(i)− 1), T1(i)] and F2[j] = [. . . , T2(ll(j)− 1), T2(j)].

Suppose that D[k, l] is the segmental distance between F1[k] and F2[l] for
1 ≤ k ≤ i and 1 ≤ l ≤ j, and consider the segmental distance between F1[i] and
F2[j]. If j is inserted, then D[i, j] is the sum of the segmental distance D[i, j−1]
between F1[i] and F2[j − 1] and the cost γ(ε 	→ j) of the insertion of j. If i
is deleted, then D[i, j] is the sum of the segmental distance D[i − 1, j] between
F1[i−1] and F2[j] and the cost γ(i 	→ ε) of the deletion of i. If i is substituted to j,
then, by Lemma 3,D[i, j] is the sum of the segmental distanceD[ll (i)−1, ll(j)−1]
between F1[ll(i)−1] and F2[ll(j)−1] and the top-down distance TD [i, j] between
T1(i) and T2(j). Hence, δ(T1, T2) is given as D[|T1|, |T2|].

The algorithm SegDist uses O(|T1| × |T2|) space. Also, by Lemma 4, the

time complexity of the algorithm SegDist is given as
∑|T1|

i=1

∑|T2|
j=1 O(deg(i) ×

deg(j))+O(|T1|)+O(|T2|)+O(|T1|× |T2|) ≤ O
(∑|T1|

i=1 deg(i)×
∑|T2|

j=1 deg(j)
)
+

O(|T1| × |T2|) ≤ O(|T1| × |T2|). ��

Furthermore, we can design the algorithm to compute the bottom-up segmental
distance δ⊥(T1, T2) in O(n2) time and space, by adding the routine of determin-
ing that a current top-down mapping contains a pair of leaves when the third
statement of F [ik−1, jl−1] + TD [ik, jl] in line 20 is executed to SegDist.

Figure 5 illustrates distributions and the correlation diagrams to the edit dis-
tance τ of segmental, top-down and bottom-up distances for N-glycan data pro-
vided from KEGG3. Hence, the segmental distance preserves the parent-children
relationship more than the top-down and the bottom-up distances nearer to τ .

3 Kyoto Encyclopedia of Genes and Genomes, http://www.kegg.jp/. The number of
N-glycan data is 2142, the average number of nodes is 11.09, the average number of
labels is 5.43 and the average depth and degree are 5.38 and 2.07, respectively.

494 T. Kan, S. Higuchi, and K. Hirata

%

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40

tree-edit-distance
segmental-distance
bottom-up-distance
top-down-distance

segmental distance top-down distance bottom-up distance

0

20

40

60

80

100

0 10 20 30 40 50

0

20

40

60

80

100

0 10 20 30 40 50

0

20

40

60

80

100

0 10 20 30 40 50τ τ τ

Fig. 5. The distributions (upper) and the correlation diagrams (lower) of segmental,
top-down and bottom-up distances to an edit distance τ for N-glycan data

References

1. Chawathe, S.S.: Comparing hierarchical data in external memory. In: Proc. VLDB
1999, pp. 90–101 (1999)

2. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition
algorithm for tree edit distance. ACM Trans. Algorithms 6 (2009)

3. Kuboyama, T.: Matching and learning in trees. Ph.D thesis, University of Tokyo
(2007), http://tk.cc.gakushuin.ac.jp/doc/kuboyama2007phd.pdf

4. Selkow, S.M.: The tree-to-tree editing problem. Inform. Process. Lett. 6, 184–186
(1977)

5. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26, 422–433 (1979)
6. Valiente, G.: An efficient bottom-up distance between trees. In: Proc. SPIRE 2001,

pp. 212–219 (2001)
7. Wang, J.T.L., Zhang, K.: Finding similar consensus between trees: An algorithm

and a distance hierarchy. Pattern Recog. 34, 127–137 (2001)
8. Yamamoto, Y., Hirata, K., Kuboyama, T.: A bottom-up edit distance between

rooted labeled trees. In: Proc. LLLL 2011, pp. 26–33 (2011)
9. Zhang, K.: Algorithms for the constrained editing distance between ordered labeled

trees and related problems. Pattern Recog. 28, 463–474 (1995)
10. Zhang, K., Wang, J.T.L., Shasha, D.: On the editing distance between undirected

acyclic graph. Int. J. Found. Comput. Sci. 7, 43–58 (1995)

http://tk.cc.gakushuin.ac.jp/doc/kuboyama2007phd.pdf

	Segmental Mapping and Distance for Rooted Labeled Ordered Trees
	Introduction
	Preliminaries
	Segmental Mapping and Distance
	Computing Segmental Distance
	References

