

Lecture Notes in Computer Science 7676
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Kun-Mao Chao
Tsan-sheng Hsu
Der-Tsai Lee (Eds.)

Algorithms
and Computation
23rd International Symposium, ISAAC 2012
Taipei, Taiwan, December 19-21, 2012
Proceedings

13

Volume Editors

Kun-Mao Chao
National Taiwan University
No. 1, Sec. 4, Roosevelt Road
Taipei 106, Taiwan
E-mail: kmchao@csie.ntu.edu.tw

Tsan-sheng Hsu
Academia Sinica
128 Academia Road, Section 2
Taipei 115, Taiwan
E-mail: tshsu@iis.sinica.edu.tw

Der-Tsai Lee
National Chung Hsing University
250 Kuo Kuang Road
Taichung 402, Taiwan
E-mail: dtlee@nchu.edu.tw

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-35260-7 e-ISBN 978-3-642-35261-4
DOI 10.1007/978-3-642-35261-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012952397

CR Subject Classification (1998): F.2, I.3.5, E.1, C.2, G.2, F.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The papers in this volume were presented at the 23rd International Symposium on
Algorithms and Computation (ISAAC 2012), held at National Taiwan University,
Taipei, Taiwan, on December 19–21, 2012. In the past, ISAAC was held in Tokyo
(1990), Taipei (1991), Nagoya (1992), Hong Kong (1993), Beijing (1994), Cairns
(1995), Osaka (1996), Singapore (1997), Taejon (1998), Chennai (1999), Taipei
(2000), Christchurch (2001), Vancouver (2002), Kyoto (2003), Hong Kong (2004),
Hainan (2005), Kolkata (2006), Sendai (2007), Gold Coast (2008), Hawaii (2009),
Jeju (2010), and Yokohama (2011).

The mission of the ISAAC series is to provide a top-notch forum for re-
searchers working in algorithms and theory of computation. Papers presenting
original research in all areas of algorithms and theory of computation are sought.
In response to the call-for-papers, ISAAC 2012 received 174 submissions from
33 countries. The Program Committee selected 68 papers for oral presentation.
“Algorithmica,” “Theoretical Computer Science,” and the “International Jour-
nal of Computational Geometry and Applications” will publish a special issue
dedicated to selected papers from ISAAC 2012.

The best student paper awards were presented to Nanao Kita for her paper
“A Partially Ordered Structure and a Generalization of the Canonical Partition
for General Graphs with Perfect Matchings” and to Norie Fu for her paper “A
Strongly Polynomial-Time Algorithm for the Shortest Path Problem on Coherent
Planar Periodic Graphs.”

We thank the invited speakers, John E. Hopcroft from Cornell University,
USA, Timothy M. Chan from the University of Waterloo, Canada, and Erik D.
Demaine from MIT, USA, for their distinguished lectures.

We thank all Program Committee members and external reviewers for their
excellent work in the review process. We thank the Organizing Committee,
chaired by Hung-Lung Wang, and conference volunteers for their extraordinary
engagement in the conference preparation. We also thank the Advisory Com-
mittee, chaired by Takeshi Tokuyama, for their valuable guidance. Finally, we
thank our sponsoring institutions for their support.

December 2012 Kun-Mao Chao
Tsan-sheng Hsu

Der-Tsai Lee

Organization

Symposium Chair

Der-Tsai Lee National Chung Hsing University/Academia Sinica,
Taiwan

Program Committee

Greg Aloupis Université Libre de Bruxelles, Belgium
Lars Arge Aarhus University, Denmark
Tetsuo Asano JAIST, Japan
Franz Aurenhammer Technische Universität Graz, Austria
Giorgio Ausiello Università di Roma ‘La Sapienza’, Italy
Timothy M. Chan University of Waterloo, Canada
Kun-Mao Chao National Taiwan University, Taiwan (Co-chair)
Siu-Wing Cheng Hong Kong University of Science and Technology,

Hong Kong
Richard Cole New York University, USA
Bhaskar DasGupta University of Illinois at Chicago, USA
Rudolf Fleischer GUtech, Muscat, Oman
Cyril Gavoille Université de Bordeaux, France
Seok-Hee Hong University of Sydney, Australia
John E. Hopcroft Cornell University, USA
Tsan-sheng Hsu Academia Sinica, Taiwan (Co-chair)
Hiroshi Imai University of Tokyo, Japan
Kazuo Iwama Kyoto University, Japan
Tao Jiang University of California, Riverside, USA
Rolf Klein University of Bonn, Germany
Gad M. Landau University of Haifa, Israel and NYU-Poly, USA
Martin Middendorf University of Leipzig, Germany
Heejin Park Hanyang University, Korea
Peter Rossmanith RWTH Aachen University, Germany
Xiaoming Sun China Academy of Sciences, China
Chuan Yi Tang Providence University, Taiwan
Takeshi Tokuyama Tohoku University, Japan
Hsu-Chun Yen National Taiwan University, Taiwan
Ke Yi Hong Kong University of Science and Technology,

Hong Kong
Louxin Zhang National University of Singapore, Singapore

VIII Organization

Organizing Committee

Kun-Mao Chao National Taiwan University, Taiwan
Feipei Lai National Taiwan University, Taiwan
Yuh-Dauh Lyuu National Taiwan University, Taiwan
Hung-Lung Wang National Taipei College of Business, Taiwan (Chair)
Yue-Li Wang National Taiwan University of Science and

Technology, Taiwan

External Reviewers

Faisal Abu-Khzam
Peyman Afshani
Luca Castelli Aleardi
Cyril Allauzen
Aris Anagnostopoulos
Sang Won Bae
Luca Becchetti
Oren Ben-Zwi
Guillaume Blin
Cecilia Bohler
Vincenzo Bonifaci
Flavia Bonomo
Franz J. Brandenburg
Broňa Brejová
Gerth Stølting Brodal
Jin-Yi Cai
Jean Cardinal
Jou-Ming Chang
Danny Z. Chen
Ho-Lin Chen
Xi Chen
Yongxi Cheng
Otfried Cheong
Mahdi Cheraghchi
Man-Kwun Chiu
Sunghee Choi
Morgan Chopin
Jinhee Chun
Paolo Codenotti
Ivan Damgaard
Pooya Davoodi
Frank Dehne
Camil Demetrescu
Andrew Drucker

Edith Elkind
Irene Finocchi
Donatella Firmani
Johannes Fischer
Fabrizio Frati
Norie Fu
Toshihiro Fujito
Hiroshi Fujiwara
Song Gao
Stefan Gasten
Emilio Di Giacomo
Alexander Gilbers
Petr Golovach
Joachim Gudmundsson
Vladimir Gurvich
Xin Han
Sariel Har-Peled
Frederic Havet
Danny Hermelin
Hiroshi Hirai
Wing-Kai Hon
Chien-Chung Huang
Zengfeng Huang
Zhiyi Huang
Toshimasa Ishii
Hiro Ito
Takehiro Ito
Jiongxin Jin
Gwenaël Joret
Hossein Jowhari
Marcin Kaminski
Naoki Katoh
Jae-Hoon Kim
Jin Wook Kim

Sung-Ryul Kim
Karsten Klein
Ton Kloks
Dennis Komm
Christian Komusiewicz
Matias Korman
Robin Kothari
Richard Kralovic
David Kriesel
Oded Lachish
Chi Kit Lam
Alexander Langer
Elmar Langetepe
Kasper Green Larsen
Luigi Laura
Francois Le Gall
Che-Rung Lee
Inbok Lee
Erik Jan van Leeuwen
Asaf Levin
Minming Li
Shi Li
Hongyu Liang
Chung-Shou Liao
Mathieu Liedloff
Ching-Chi Lin
Chun-Cheng Lin
Giuseppe Liotta
Chin Lung Lu
Pinyan Lu
Kazuhisa Makino
Igor L. Markov
Kitty Meeks
George Mertzios

Organization IX

Shuichi Miyazaki
Matthias Mnich
Thomas Mølhave
Gabriel Moruz
Tobias Mueller
Joong Chae Na
Mogens Nielsen
Kang Ning
Harumichi Nishimura
Pascal Ochem
Yoshio Okamoto
Hirotaka Ono
Yota Otachi
Jung-Heum Park
Vangelis Paschos
Matthew Patitz
Sheng-Lung Peng
Rainer Penninger
Marcin Pilipczuk
Michal Pilipczuk
Alexander Pilz
Sheung-Hung Poon
R. Ravi

Dror Rawitz
Liat Rozenberg
Ignaz Rutter
Toshiki Saitoh
Jayalal Sarma M.N.
Baruch Schieber
Alex Scott
Kazuhisa Seto
Devavrat Shah
Chan-Su Shin
Akiyoshi Shioura
Somnath Sikdar
Nodari Sitchinava
Michiel Smid
Christian Sommer
Hisao Tamaki
Suguru Tamaki
Ioan Todinca
Ming-Jer Tsai
Ryuhei Uehara
Kenya Ueno
Yann Vaxès
Rossano Venturini

Antoine Vigneron
Fernando S. Villaamil
Haitao Wang
Hung-Lung Wang
Yajun Wang
Zhewei Wei
Renato Werneck
Andreas Wiese
Stefanie Wuhrer
Hiroki Yanagisawa
Jonathan Yaniv
Yitong Yin
Juyoung Yon
Fang Yu
Hung-I Yu
Nengkun Yu
Tian-Li Yu
Wei Yu
Raphael Yuster
Guochuan Zhang
Qin Zhang
Yuan Zhou

Sponsoring Institutions

National Taiwan University, Taiwan
National Chung Hsing University, Taiwan
Academia Sinica, Taiwan
Institute of Information and Computing Machinery, Taiwan
National Science Council, Taiwan
Ministry of Education, Taiwan

Table of Contents

Invited Talk (I)

Future Directions in Computer Science Research . 1
John E. Hopcroft

Invited Talk (II)

Combinatorial Geometry and Approximation Algorithms 2
Timothy M. Chan

Invited Talk (III)

Origami Robots and Star Trek Replicators . 3
Erik D. Demaine

Graph Algorithms (I)

Strong Conflict-Free Coloring for Intervals . 4
Panagiotis Cheilaris, Luisa Gargano, Adele A. Rescigno, and
Shakhar Smorodinsky

Closing Complexity Gaps for Coloring Problems on H -Free Graphs 14
Petr A. Golovach, Daniël Paulusma, and Jian Song

Randomly Coloring Regular Bipartite Graphs and Graphs with
Bounded Common Neighbors . 24

Ching-Chen Kuo and Hsueh-I Lu

Reconfiguration of List L(2,1)-Labelings in a Graph 34
Takehiro Ito, Kazuto Kawamura, Hirotaka Ono, and Xiao Zhou

Online and Streaming Algorithms

An 8/3 Lower Bound for Online Dynamic Bin Packing 44
Prudence W.H. Wong, Fencol C.C. Yung, and Mihai Burcea

Computing k -center over Streaming Data for Small k 54
Hee-Kap Ahn, Hyo-Sil Kim, Sang-Sub Kim, and Wanbin Son

Precision vs Confidence Tradeoffs for �2-Based Frequency Estimation
in Data Streams . 64

Sumit Ganguly

XII Table of Contents

Competitive Design and Analysis for Machine-Minimizing Job
Scheduling Problem . 75

Mong-Jen Kao, Jian-Jia Chen, Ignaz Rutter, and Dorothea Wagner

Combinatorial Optimization (I)

A Partially Ordered Structure and a Generalization of the Canonical
Partition for General Graphs with Perfect Matchings 85

Nanao Kita

Fast and Simple Fully-Dynamic Cut Tree Construction 95
Tanja Hartmann and Dorothea Wagner

Green Scheduling, Flows and Matchings . 106
Evripidis Bampis, Dimitrios Letsios, and Giorgio Lucarelli

Popular and Clan-Popular b-Matchings . 116
Katarzyna Paluch

Computational Complexity (I)

Kernelization and Parameterized Complexity of Star Editing and Union
Editing . 126

Jiong Guo and Yash Raj Shrestha

On the Advice Complexity of Buffer Management . 136
Reza Dorrigiv, Meng He, and Norbert Zeh

On the Complexity of the Maximum Common Subgraph Problem
for Partial k -Trees of Bounded Degree . 146

Tatsuya Akutsu and Takeyuki Tamura

Speeding Up Shortest Path Algorithms . 156
Andrej Brodnik and Marko Grgurovič

Computational Geometry (I)

How Many Potatoes Are in a Mesh? . 166
Marc van Kreveld, Maarten Löffler, and János Pach

On Higher Order Voronoi Diagrams of Line Segments 177
Evanthia Papadopoulou and Maksym Zavershynskyi

On the Farthest Line-Segment Voronoi Diagram . 187
Evanthia Papadopoulou and Sandeep Kumar Dey

Table of Contents XIII

String Algorithms

Computing the Longest Common Subsequence of Two Run-Length
Encoded Strings . 197

Yoshifumi Sakai

Efficient Counting of Square Substrings in a Tree . 207
Tomasz Kociumaka, Jakub Pachocki, Jakub Radoszewski,
Wojciech Rytter, and Tomasz Waleń

A General Method for Improving Insertion-Based Adaptive Sorting 217
Riku Saikkonen and Eljas Soisalon-Soininen

Computational Complexity (II)

Counting Partitions of Graphs . 227
Pavol Hell, Miki Hermann, and Mayssam Mohammadi Nevisi

Constant Unary Constraints and Symmetric Real-Weighted Counting
CSPs . 237

Tomoyuki Yamakami

Interval Scheduling and Colorful Independent Sets 247
René van Bevern, Matthias Mnich, Rolf Niedermeier, and
Mathias Weller

More on a Problem of Zarankiewicz . 257
Chinmoy Dutta and Jaikumar Radhakrishnan

Graph Algorithms (II)

Efficient Dominating and Edge Dominating Sets for Graphs and
Hypergraphs . 267

Andreas Brandstädt, Arne Leitert, and Dieter Rautenbach

On the Hyperbolicity of Small-World and Tree-Like Random Graphs . . . 278
Wei Chen, Wenjie Fang, Guangda Hu, and Michael W. Mahoney

On the Neighbourhood Helly of Some Graph Classes and Applications
to the Enumeration of Minimal Dominating Sets . 289

Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and
Lhouari Nourine

Induced Immersions . 299
Rémy Belmonte, Pim van ’t Hof, and Marcin Kamiński

XIV Table of Contents

Computational Geometry (II)

Rectilinear Covering for Imprecise Input Points (Extended Abstract) . . . 309
Hee-Kap Ahn, Sang Won Bae, and Shin-ichi Tanigawa

Robust Nonparametric Data Approximation of Point Sets via Data
Reduction . 319

Stephane Durocher, Alexandre Leblanc, Jason Morrison, and
Matthew Skala

Optimal Point Movement for Covering Circular Regions 332
Danny Z. Chen, Xuehou Tan, Haitao Wang, and Gangshan Wu

Solving Circular Integral Block Decomposition in Polynomial Time 342
Yunlong Liu and Xiaodong Wu

Approximation Algorithms

The Canadian Traveller Problem Revisited . 352
Yamming Huang and Chung-Shou Liao

Vehicle Scheduling on a Graph Revisited . 362
Wei Yu, Mordecai Golin, and Guochuan Zhang

A 4.31-Approximation for the Geometric Unique Coverage Problem on
Unit Disks . 372

Takehiro Ito, Shin-ichi Nakano, Yoshio Okamoto, Yota Otachi,
Ryuhei Uehara, Takeaki Uno, and Yushi Uno

The Minimum Vulnerability Problem . 382
Sepehr Assadi, Ehsan Emamjomeh-Zadeh, Ashkan Norouzi-Fard,
Sadra Yazdanbod, and Hamid Zarrabi-Zadeh

Graph Algorithms (III)

A Strongly Polynomial Time Algorithm for the Shortest Path Problem
on Coherent Planar Periodic Graphs . 392

Norie Fu

Cubic Augmentation of Planar Graphs . 402
Tanja Hartmann, Jonathan Rollin, and Ignaz Rutter

On the Number of Upward Planar Orientations of Maximal Planar
Graphs . 413

Fabrizio Frati, Joachim Gudmundsson, and Emo Welzl

Table of Contents XV

Universal Point Subsets for Planar Graphs . 423
Patrizio Angelini, Carla Binucci, William Evans, Ferran Hurtado,
Giuseppe Liotta, Tamara Mchedlidze, Henk Meijer, and
Yoshio Okamoto

Computational Complexity (III)

Abstract Flows over Time: A First Step towards Solving Dynamic
Packing Problems . 433

Jan-Philipp W. Kappmeier, Jannik Matuschke, and Britta Peis

Extending Partial Representations of Subclasses of Chordal Graphs 444
Pavel Klav́ık, Jan Kratochv́ıl, Yota Otachi, and Toshiki Saitoh

Isomorphism for Graphs of Bounded Connected-Path-Distance-Width . . 455
Yota Otachi

Algorithmic Aspects of the Intersection and Overlap Numbers
of a Graph . 465

Danny Hermelin, Romeo Rizzi, and Stéphane Vialette

Graph Drawing

Linear Layouts in Submodular Systems . 475
Hiroshi Nagamochi

Segmental Mapping and Distance for Rooted Labeled Ordered Trees . . . 485
Tomohiro Kan, Shoichi Higuchi, and Kouichi Hirata

Detecting Induced Minors in AT-Free Graphs . 495
Petr A. Golovach, Dieter Kratsch, and Daniël Paulusma

Degree-Constrained Orientations of Embedded Graphs 506
Yann Disser and Jannik Matuschke

Interval Graph Representation with Given Interval and Intersection
Lengths . 517

Johannes Köbler, Sebastian Kuhnert, and Osamu Watanabe

Data Structures

Finger Search in the Implicit Model . 527
Gerth Stølting Brodal, Jesper Sindahl Nielsen, and Jakob Truelsen

A Framework for Succinct Labeled Ordinal Trees over Large
Alphabets . 537

Meng He, J. Ian Munro, and Gelin Zhou

XVI Table of Contents

A Space-Efficient Framework for Dynamic Point Location 548
Meng He, Patrick K. Nicholson, and Norbert Zeh

Selection in the Presence of Memory Faults, with Applications to
In-place Resilient Sorting . 558

Tsvi Kopelowitz and Nimrod Talmon

An Improved Algorithm for Static 3D Dominance Reporting in the
Pointer Machine . 568

Christos Makris and Konstantinos Tsakalidis

Combinatorial Optimization (II)

The Multi-Service Center Problem . 578
Hung-I Yu and Cheng-Chung Li

Computing Minmax Regret 1-Median on a Tree Network with
Positive/Negative Vertex Weights . 588

Binay Bhattacharya, Tsunehiko Kameda, and Zhao Song

Fence Patrolling by Mobile Agents with Distinct Speeds 598
Akitoshi Kawamura and Yusuke Kobayashi

Computational Geometry (III)

Weak Visibility Queries of Line Segments in Simple Polygons 609
Danny Z. Chen and Haitao Wang

Beyond Homothetic Polygons: Recognition and Maximum Clique. 619
Konstanty Junosza-Szaniawski, Jan Kratochv́ıl, Martin Pergel, and
Pawe�l Rz ↪ażewski

Area Bounds of Rectilinear Polygons Realized by Angle Sequences 629
Sang Won Bae, Yoshio Okamoto, and Chan-Su Shin

Randomized Algorithms

A Time-Efficient Output-Sensitive Quantum Algorithm for Boolean
Matrix Multiplication . 639

François Le Gall

On Almost Disjunct Matrices for Group Testing . 649
Arya Mazumdar

Parameterized Clique on Scale-Free Networks . 659
Tobias Friedrich and Anton Krohmer

Table of Contents XVII

Algorithmic Game Theory

Multi-unit Auctions with Budgets and Non-uniform Valuations 669
H.F. Ting and Xiangzhong Xiang

Efficient Computation of Power Indices for Weighted Majority
Games . 679

Takeaki Uno

Revenue Maximization in a Bayesian Double Auction Market 690
Xiaotie Deng, Paul Goldberg, Bo Tang, and Jinshan Zhang

Author Index . 701

Future Directions in Computer Science Research

John E. Hopcroft

Cornell University
jeh@cs.cornell.edu

Over the last 40 years the computer science research was focused on making
computers useful. Areas included programming languages, compilers, operating
systems, data structures and algorithms. These are still important topics but
with the merging of computing and communication, the emergence of social
networks, and the large amount of information in digital form, focus is shifting
to applications such as the structure of networks and extracting information
from large data sets. This talk will give a brief vision of the future and then an
introduction to the science base that needs to be formed to support these new
directions.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Combinatorial Geometry and Approximation

Algorithms

Timothy M. Chan

School of Computer Science, University of Waterloo
tmchan@uwaterloo.ca

In this talk, I will discuss some recent applications of combinatorial geometry
to the analysis of approximation algorithms—specifically, approximation algo-
rithms for geometric versions of set cover, hitting set, and independent set prob-
lems, for different types of objects such as disks and rectangles (both unweighted
and weighted). These problems turn out to be related, via LP rounding, to a num-
ber of well-known combinatorial problems: ε-nets, union complexity, (≤ k)-levels,
and conflict-free coloring. I will attempt to explain all these inter-relationships,
survey some of the latest results, and mention open problems.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, p. 2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Origami Robots and Star Trek Replicators

Erik D. Demaine

Computer Science and Artificial Intelligence Laboratory, MIT
edemaine@MIT.EDU

Science fiction is a great inspiration for science. How can we build reconfigurable
robots like Transformers or Terminator 2? How can we build replicators that
mass-produce a given shape at the nano scale? Recently we’ve been exploring
possible answers to these questions through computational geometry.

One approach to reconfigurable robots, based on computational origami de-
sign, is to build a sheet of material that can fold itself into desired shapes. We
show that one pattern of hinges in the sheet lets us fold any orthogonal 3D shape
up to a desired resolution–without an origamist to manually fold it. A second ap-
proach to reconfigurable robots, based on hinged dissections, is to build a chain
of identical parts connected by actuated hinges. Again we show that such a chain
can fold into any orthogonal 3D shape up to a desired resolution. Both of these
approaches offer possible answers to programmable matter: a single piece of ma-
terial that can dynamically change its shape into anything desired, in principle
allowing us to download and execute geometry in the same way we download
and execute software.

Going down to the nano scale, we need to work with much simpler parts,
actuated by Brownian motion, van der Waal forces, etc. Tile self-assembly is
one theoretical approach to manufacturing shapes within this world. A recent
direction in this theory allows the use of multiple stages– operations performed
by the experimenter, such as mixing two self-assembling systems together. This
flexibility transforms the experimenter from a passive entity into a parallel al-
gorithm, and vastly reduces the number of distinct parts required to construct
a desired shape, possibly making the systems practical to build. The staged-
assembly perspective also enables the possibility of additional operations, such
as adding an enzyme that destroys all tiles with a special label. By enabling
destruction in addition to the usual construction, we can perform tasks impos-
sible in a traditional self-assembly system, such as replicating many copies of a
given object’s shape, without knowing anything about that shape, and building
an efficient nano computer.

I will describe the algorithms and geometry underlying all of these ideas, as
well as our early attempts at implementing them in practice.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, p. 3, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Strong Conflict-Free Coloring for Intervals

Panagiotis Cheilaris1, Luisa Gargano2,
Adele A. Rescigno2, and Shakhar Smorodinsky3

1 Faculty of Informatics, Università della Svizzera italiana, Switzerland
2 Dipartimento di Informatica, University of Salerno, 84084 Fisciano (SA), Italy
3 Mathematics Department, Ben-Gurion University, Be’er Sheva 84105, Israel

Abstract. We consider the k-strong conflict-free (k-SCF) coloring of a
set of points on a line with respect to a family of intervals: Each point
on the line must be assigned a color so that the coloring is conflict-free
in the following sense: in every interval I of the family there are at least
k colors each appearing exactly once in I .

We first present a polynomial time algorithm for the general prob-
lem; the algorithm has approximation ratio 2 when k = 1 and 5 − 2

k

when k > 1 (our analysis is tight). In the special case of a family that
contains all possible intervals on the given set of points, we show that a
2-approximation algorithm exists, for any k ≥ 1. We also show that the
problem of deciding whether a given family of intervals can be 1-SCF
colored with at most q colors has a quasipolynomial time algorithm.

1 Introduction

A coloring of the vertices of a hypergraph is said to be conflict-free if every
hyperedge contains a vertex whose color is unique among those colors assigned
to the vertices of the hyperedge. We denote by Z+ the set of positive integers
and by N the set of non-negative integers.

Definition 1. (CF coloring) A conflict-free vertex coloring of a hypergraph
H = (V, E) is a function C : V → Z+ such that for each e ∈ E there exists a
vertex v ∈ e such that C(u) �= C(v) for any u ∈ e with u �= v.

Conflict-free coloring was first considered in [7]. It was motivated by a frequency
assignment problem in cellular networks. Such networks consist of fixed-position
base stations, each assigned a fixed frequency, and roaming clients. Roaming
clients have a range of communication and come under the influence of different
subsets of base stations. This situation can be modeled by means of a hyper-
graph whose vertices correspond to the base stations and whose hyperedges
correspond to the different subsets of base stations corresponding to ranges of
roaming agents. A conflict-free coloring of such a hypergraph corresponds to
an assignment of frequencies to the base stations, which enables any client to
connect to one of the base stations (holding the unique frequency in the client’s
range) without interfering with the other base stations. The goal is to minimize
the number of assigned frequencies. Due to both its practical motivations and its

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 4–13, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Strong Conflict-Free Coloring for Intervals 5

theoretical interest, conflict-free coloring has been the subject of several papers;
a survey of results in the area is given in [13].

CF-coloring also finds application in RFID (Radio Frequency Identification)
networks. RFID allows a reader device to sense the presence of a nearby object
by reading a tag attached to the object itself. To improve coverage, multiple
RFID readers can be deployed in an area. However, two readers trying to access
a tagged device simultaneously might cause mutual interference. It can be shown
that CF-coloring of the readers can be used to assure that every possible tag
will have a time slot and a single reader trying to access it in that time slot [13].

The notion of k-strong CF coloring (k-SCF coloring), first introduced in [2],
extends that of CF-coloring. A k-SCF coloring is a coloring that remains conflict-
free after an arbitrary collection of k − 1 vertices is deleted from the set [1]. In
the context of cellular networks, a k-SCF coloring implies that for any client in
an area covered by at least k base stations, there always exist at least k different
frequencies the client can use to communicate without interference. Therefore,
up to k clients can be served at the same location, or the system can deal
with malfunctioning of at most k − 1 base stations per location. Analogously,
in the RFID networks context, a k-SCF coloring corresponds to a fault-tolerant
activation protocol, i.e., every tag can be read as long as at most k − 1 readers
are broken. A CF-coloring is just a 1-SCF coloring.

We will allow the coloring function C : V → Z+ to be a partial function (i.e.,
some vertices are not assigned a color). Alternatively, we can use a special color
‘0’ given to vertices that are not assigned any positive color and obtain a total
function C : V → N. Then, we arrive at the following definition.

Definition 2. (k-SCF coloring) Let H = (V, E) be a hypergraph and k ∈ Z+.
A coloring C : V → N is called a k-strong conflict-free coloring if for every
e ∈ E at least min{|e|, k} positive colors are unique in e, namely there exist
c1, . . . , cmin{|e|,k} ∈ Z+ such that |{v | v ∈ e, C(v) = ci}| = 1, for i = 1, . . . ,
min{|e|, k}. The goal is to minimize the number of positive colors in the range
of the k-SCF coloring function C. We denote by χ∗k(H) the smallest number of
positive colors in any possible k-SCF coloring of H.

Remark 1. We claim that this variation of conflict-free coloring, with the partial
coloring function or the placeholder color ‘0’, is interesting from the point of
view of applications. A vertex with no positive color assigned to it can model
a situation where a base station is not activated at all, and therefore the base
station does not consume energy. One can also think of a bi-criteria optimization
problem where a conflict-free assignment of frequencies has to be found with
small number of frequencies (in order to conserve the frequency spectrum) and
few activated base stations (in order to conserve energy). It is not difficult to
see that a partial SCF coloring with q positive colors implies always a total SCF
coloring with q + 1 positive colors.

SCF-Coloring Points with Respect to Intervals. Several authors recently
focused on the special case of CF coloring n collinear points with respect to the
family of all intervals. The problem can be modeled in the hypergraph.

6 P. Cheilaris et al.

Hn = ([n], I [n]) with [n] = {1, . . . , n} and I [n] = {{i, . . . , j} | 1 ≤ i ≤ j ≤ n},

where each (discrete) interval is a set of consecutive points.
Conflict-free coloring for intervals models the assignment of frequencies in a

chain of unit disks; this arises in approximately unidimensional networks as in
the case of agents moving along a road. Moreover, it is important because it
plays a role in the study of conflict-free coloring for more complicated cases, as
for example in the general case of CF coloring of unit disks [7,10].

While some papers require the conflict-free property for all possible intervals
on the line, in many applications good reception is needed only at some locations,
i.e., it is sufficient to supply only a given subset of the cells of the arrangement of
the disks [9]. In the context of channel assignment for broadcasting in a wireless
mesh network, it can occur that, at some step of the broadcasting process, sparse
receivers of the broadcast message are within the transmission range of a linear
sequence of transmitters. In this case only part of the cells of the linear arrange-
ments of disks representing the transmitters are involved [11,14]. In this work we
consider the k-strong conflict-free coloring of points with respect to an arbitrary
family of intervals. Hence, in the remainder, we consider subhypergraphs of Hn.
We shall refer to these subhypergraphs of the form H = ([n], I), where I ⊆ I [n],
as interval hypergraphs and to Hn as the complete interval hypergraph.

Conflict-free coloring the complete interval hypergraph was first studied in
[7], where it was shown that χ∗1(Hn) = �logn�+ 11. The on-line version of the
CF coloring problem for complete interval hypergraphs, where points arrive one
by one and the coloring needs to remain CF all the time, has been subsequently
considered in [3,4,5].

The problem of CF-coloring the points of a line with respect to an arbitrary
family of intervals is studied in [9]. The k-SCF coloring problem was first con-
sidered in [2] and has since then been studied in various papers under different
scenarios, we refer the reader to [13] for more details on the subject. Recently,
the minimum number of colors needed for k-SCF coloring the complete interval
hypergraph Hn has been studied in [6], where the exact number of needed colors
for k = 2 and k = 3 has been obtained. Horev et al. show that Hn admits a
k-SCF coloring with k log2 n colors, for any k [8].

Our Results. In Section 2, we give an algorithm which outputs a k-SCF col-
oring of the points of the input interval hypergraph H , for any fixed value of
k ≥ 1. The algorithm has an approximation factor 5 − 2/k in the case k ≥ 2
(approximation factor 2 in the case k = 1); moreover, it optimally uses k colors
if for any I, J ∈ I, interval I is not a subset of J and they differ in at least k
points. In Section 3, we consider the problem of k-SCF coloring the complete
interval hypergraph Hn. We give a very simple k-SCF coloring algorithm for
Hn that uses k

(⌊
log

⌈
n
k

⌉⌋
+ 1

)
colors and show a lower bound of

⌈
k
2

⌉ ⌈
log n

k

⌉
colors. In section 4, we show that the decision problem whether a given interval
hypergraph can be CF-colored with at most q colors has a quasipolynomial time
algorithm.

1 Unless otherwise specified, all logarithms are in base 2.

Strong Conflict-Free Coloring for Intervals 7

Notation. Through the rest of this paper we consider interval hypergraphs on
n points. Given I ∈ I, we denote the leftmost (minimum) and the rightmost
(maximum) of the points of the interval I by �(I) = min{p | p ∈ I} and r(I) =
max{p | p ∈ I}, respectively. We will use the following order relation on the
intervals of I.

Definition 3. (Intervals ordering) For all I, J ∈ I,

I ≺ J ⇐⇒ (r(I) < r(J)) or (r(I) = r(J) and �(I) > �(J)).

I ∈ I is called the i-th interval in I if I = {I1, . . . , Im}, I1 ≺ I2 ≺ · · · ≺ Im,
and I = Ii.

Given a family I, the subfamily of intervals of I that are not contained in I and
whose rightmost (resp. leftmost) point belongs to I is denoted by LI(I) (resp.
RI(I)), that is

LI(I) = {J ∈ I | J �⊆ I, r(J) ∈ I} and RI(I) = {J ∈ I | J �⊆ I, �(J) ∈ I}

Clearly, J ≺ I (resp. I ≺ J) for any J ∈ LI(I) (resp. J ∈ RI(I)) with J �= I.
We denote by MI(I) the subfamily of all the intervals contained in I ∈ I

MI(I) = {J | J ∈ I, J ⊂ I}.

2 A k-SCF Coloring Algorithm

We present an algorithm for k-SCF coloring any interval hypergraph H =
([n], I). We prove that our algorithm achieves an approximation ratio 2 if k = 1
and an approximation ratio 5− 2

k if k ≥ 2; we show that the algorithm is optimal
when I consists of intervals differing in at least k points and not including any
other interval in I. We say that an interval I ∈ I is k-colored under coloring
C if its points are colored with at least min{|I|, k} unique positive colors, where
a color c is unique in I if there is exactly one point p ∈ I such that C(p) = c.
The k-SCF coloring algorithm, k-COLOR(I), is given in Fig. 1. The number of
colors is upper bounded by the number of iterations performed by the algorithm
times c(k), where c(k) = 2k + �k/2� − 1.

At each step t of the algorithm a subset Pt of points of [n] is selected (through
algorithm SELECT), then c(k) colors are assigned in cyclic sequence to the
ordered sequence (from the minimum to the maximum) of the selected points.
The intervals that are k-colored at the end of the step t are inserted in the set
Xt and discarded. The algorithm ends when all the intervals in I have been
discarded. At each step t a new set of c(k) colors is used.

A point p ∈ [n] can be re-colored several times during different steps of the
k-COLOR algorithm; its color at the end of algorithm is the last assigned one.

The algorithm SELECT(It) considers intervals in It according to the ≺ rela-
tion and selects points so that Pt has at least min{|I|, k} points in each interval.
Namely, if I is the i-th interval, then it is considered at the i-th iteration of

8 P. Cheilaris et al.

k-COLOR(I):
Set t = 1.
I1 = I. [It is the set of intervals not k-colored by the beginning of step t]
X1 = ∅. [Xt ⊂ It contains the intervals that become k-colored during step t]
while It �= ∅

Execute the following step t
1. Let Pt = {p0, p1, . . . , pnt} be the set returned by SELECT(It)
2. for i = 0 to nt

Assign to pi color ci = (t− 1)c(k) + (i mod c(k)) + 1
3. for each I ∈ It

if I is k-colored then Xt = Xt ∪ {I}
4. It+1 = It \ Xt

5. t = t+ 1

SELECT(It):
Set Pt = ∅. [Pt represents the set of selected points at step t]
for each I ∈ It by increasing order according to relation ≺ [see Def.3]

if |I ∩ Pt| < min{|I |, k} then
1. Let Pt(I) be the set of largest min{|I |, k} − |I ∩ Pt| points of I \ Pt

2. Pt = Pt ∪ Pt(I)
Return Pt

Fig. 1. The k-SCF coloring algorithm for H = ([n], I)

the for loop and if less than min{|I|, k} points of I have been already selected,
then the algorithm adds the missing min{|I|, k}− |I∩Pt| points of I to Pt (such
points are the largest unselected ones of I).

Example 1. Consider H = ([23], I), where I is the set of 13 intervals given in
Fig. 2. Run k-COLOR(I) with k = 2; hence c(2) = 4 colors are used at each
iteration. Initially, I1 = I and SELECT(I1) returns P1 = {3, 4, 7, 8, 9, 11, 12, 14,
15, 17, 18, 19, 20, 22, 23} whose points are colored with c1, c2, c3, c4 in cyclic
sequence. Only 3 intervals remain in I2; all the others are in X1, being 2-colored
at the end of step 1. SELECT(I2) returns P2 = {14, 15, 23} and these points are
colored with c5, c6, c7. Now I3 = I2 \ X2 = ∅ and the algorithm ends.

In the following, we will sketch a proof of the following theorem.

Theorem 1. Algorithm k-COLOR(I) is a polynomial k-SCF coloring algorithm

that uses less than c(k)
�k/2�χ

∗
k(H) colors on the interval hypergraph H = ([n], I).

2.1 Correctness of Algorithm k-COLOR

We denote by Pt the set of points returned by SELECT(It).

Lemma 1. Let I ∈ It, t ≥ 1.
a) |I ∩ Pt| ≥ min{|I|, k}; b) I ∈ Xt if |I ∩ Pt| ≤ 4k − 2; c) |I| ≥ k, for t ≥ 2.

Strong Conflict-Free Coloring for Intervals 9

1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 237

c1 c2 c3 c4

c6

c1 c2 c3 c3c4 c1 c2 c4 c1 c2 c3

X1

X2

step 1

step 2c5 c7

Fig. 2. Example coloring by k-COLOR for k = 2

Lemma 2. If I ∈ Xt then MIt(I) ⊆ Xt.

Lemma 3. If MIt(I) = ∅, then |I ∩ Pt| ≤ 2k − 1.

With the help of the above, we can prove correctness of the algorithm.

Theorem 2. Given interval hypergraph H = ([n], I), algorithm k-COLOR(I)
produces a k-SCF coloring of H.

Proof. We show by induction the following statement for each t ≥ 1: At the end
of step t of algorithm k-COLOR(I), each interval I ∈

⋃t
i=1 Xi is k-colored.

For t = 1, the statement trivially follows. Assume the statement be true for each
i ≤ t − 1 and t ≥ 2. We prove that it holds for t. Notice that, by c) of Lemma
1, for any I ∈ It it holds min{|I|, k} = k. Clearly, if I ∈ Xt, then I is k-colored
by definition of Xt. Consider then I ∈ Xi for some i ≤ t − 1. By the inductive
hypothesis I is k-colored at the end of step t − 1. By Lemma 2 we know that
MIi(I) ⊆ Xi; which implies that MIt(I) = ∅. Moreover, by Lemma 3, we have
|I ∩ Pt| ≤ 2k − 1 < c(k). This means that even if some points are recolored, all
the assigned colors will be unique in I. �

2.2 Analysis of Algorithm k-COLOR(I)
In this section we evaluate the approximation factor of the algorithm k-COLOR.
We first give a lower bound tool (see also [6]). Since the vertex set [n] is usually
implied, we use the shorthand notation χ∗k(I) = χ∗k(([n], I)).

Theorem 3. Let I1, I2, I ∈ I with I1, I2 ⊂ I and I1 ∩ I2 = ∅. Let χ1 (resp.
χ2) be the number of colors used by an optimal k-SCF coloring of MI(I1) (resp.
MI(I2)). Then the number of colors used by any optimal k-SCF coloring of
MI(I) is

χ∗k(MI(I)) ≥
{
max{χ1, χ2} if k ≤ |χ2 − χ1|,
max{χ1, χ2}+

⌈
k−|χ2−χ1|

2

⌉
otherwise.

10 P. Cheilaris et al.

Corollary 1. Let I1, I2, I ∈ I with I1 ⊂ I, I2 ⊂ I and I1 ∩ I2 = ∅. If both
χ∗k(MI(I1)) and χ∗k(MI(I2)) are at least χ, then the number of colors used in
any optimal k-SCF coloring of MI(I) is χ∗k(MI(I)) ≥ χ+ �k/2�.

In order to assess the approximation factor of the k-COLOR algorithm, we need
the following result on the family It of intervals that still need to be k-colored
after step t of the algorithm.

Lemma 4. For each I ∈ It, there exist at least two intervals I ′, I ′′ ∈ It−1 such
that I ′, I ′′ ⊂ I and I ′ ∩ I ′′ = ∅.

In the following we assume that there exists at least an interval I ∈ I with
|I| ≥ k. Notice that if |I| < k for each I ∈ I, then each interval in I is k-colored
after the first step of the algorithm k-COLOR(I) (even using for c(k) the smaller
value max{|I| | I ∈ I}).

Lemma 5. Any k-SCF coloring algorithm on It needs k + (t− 1)
⌈
k
2

⌉
colors.

We remark that the algorithm can be implemented in time O(kn 2n), since in
each step SELECT(It) can be implemented in O(kn) time (one does not actually
need to separately consider all the intervals having the same right endpoint but
only the k shortest ones) and the number of steps is upper bounded by O(log2 n),
the worst case being the complete interval hypergraph. This together with the
following Theorem 4 and Theorem 2, proves the desired Theorem 1.

Theorem 4. Consider the interval hypergraph H = ([n], I). Then the total

number of colors used by k-COLOR(I) is less than c(k)
�k/2�χ

∗
k(I).

For a special class of interval hypergraphs, we show that the algorithm is optimal.

Theorem 5. If for any I, J ∈ I such that J ≺ I and I ∩ J �= ∅ it holds I �⊆ J
and |I \ J | ≥ k, then the algorithm k-COLOR(I), running with c(k) = k on
interval hypergraph H = ([n], I), optimally uses k colors.

3 A k-SCF Coloring Algorithm for Hn

In this section we present a k-SCF-coloring algorithm for the complete interval
hypergraph Hn = ([n], I [n]). When k = 1 the algorithm reduces to the one in
[7]. We assume that n = hk for some integer h ≥ 1. If (h − 1)k < n < hk then
we can add the points n+ 1, n+ 2, . . . , hk.

A simple k-SCF-coloring algorithm for Hn can be obtained by partitioning
the n = hk points of V in blocks B(1), B(2), · · · , B(h) of k points and color-
ing their points recursively with the colors in the sets C1, · · · , C�log h�+1, where
Ct = {k(t − 1) + 1, · · · , kt}, for 1 ≤ t ≤ �log h�+ 1. The points in the median
block B(�h+1

2 �) are colored with colors in C1, then the points in the blocks

B(1), · · · , B(�h+1
2 � − 1) and in the blocks B(�h+1

2 � + 1), · · · , B(h) are recur-
sively colored with the same colors in the sets C2, · · · , C�log h�+1. Formally, the
algorithm is given in Fig. 3. It starts calling (k, n)-COLOR(1, h, 1).

Strong Conflict-Free Coloring for Intervals 11

The proof that algorithm (k, n)-COLOR(1, h, 1) provides a k-SCF coloring
for Hn can be easily derived by that presented in [7,13]. Furthermore, since at
each of the �log h�+ 1 recursive steps of algorithm (k, n)-COLOR a new set of
k colors is used, we have that the number of colors is at most k(�log h� + 1).
Hence, we get the following result.

Lemma 6. At the end of algorithm (k, n)-COLOR(1, �n/k�, 1) each I ∈ I is
k-SCF colored and the number of used colors is at most k

(⌊
log

⌈
n
k

⌉⌋
+ 1

)
.

(k, n)-COLOR(a, b, t):
if a ≤ b then

m = �a+b
2

�
Color the k points in B(m) with the k colors in Ct.
(k, n)-COLOR(1,m− 1, t+ 1).
(k, n)-COLOR(m+ 1, b, t+ 1).

Fig. 3. The k-SCF coloring algorithm for Hn

We remark that [8] shows that χ∗k(Hn) ≤ k logn (as a specific case of a more
general framework); however, we present the (k, n)-COLOR algorithm since it
is very simple and gives a slightly better bound.

By Corollary 1 and considering that, for the complete interval hypergraph
Hn, for each I ∈ I, any of its subintervals I ′ ⊂ I also belongs to I, we get the
following lower bound on χ∗(Hn).

Corollary 2. χ∗k(Hn) ≥
⌈
k
2

⌉ ⌈
log n

k

⌉
.

Lemma 6 together with Corollary 2 proves that (k, n)-COLOR uses at most
twice the minimum possible number of colors.

4 A Quasipolynomial Time Algorithm

Consider the decision problem CFSubsetIntervals: “Given an interval hyper-
graph H and a natural number q, is it true that χ∗1(H) ≤ q?” Notice that the
above problem is non-trivial only when q < �logn� + 1; if q ≥ �logn� + 1 the
answer is always yes, since χ∗1(Hn) = �logn�+ 1.

Algorithm DECIDE-COLORS (Fig. 4) is a non-deterministic algorithm for
CFSubsetIntervals. The algorithm scans points from 1 to n, tries for every
point non-deterministically every color in {0, . . . , q}, and checks if all intervals
in I ending at the current point have the conflict-free property. If some interval
in I has not the conflict-free property under a non-deterministic assignment, the
algorithm answers ‘no’. If all intervals in I have the conflict-free property under
some non-deterministic assignment, the algorithm answers ‘yes’.

We check if an interval in I that ends at the current point, say t, has the
conflict-free property in the following space-efficient way. For every color c in

12 P. Cheilaris et al.

{0, . . . , q}, we keep track of:
(a) the closest point to t colored with c in variable pc, and
(b) the second closest point to t colored with c in variable sc.
Then, color c is occurring exactly one time in [j, t] ∈ I if and only if sc < j ≤ pc.

DECIDE-COLORS(q, I)
for c = 0 to q

sc = 0, pc = 0.
for t = 1 to n

Choose c non-deterministically from {0, . . . , q}.
sc = pc, pc = t.
for j ∈ {j | [j, t] ∈ I}

IntervalConflict = True.
for c = 1 to q

if sc < j ≤ pc then IntervalConflict = False
if IntervalConflict then return NO

return YES

Fig. 4. A non-deterministic algorithm deciding whether χ∗
1(H) ≤ q

Lemma 7. The space complexity of algorithm DECIDE-COLORS is O(log2 n).

Proof. Since q = O(log n) and each point position can be encoded with O(log n)
bits, the arrays p and s (indexed by color) take space O(log2 n). All other vari-
ables in the algorithm can be implemented in O(log n) space. Therefore the above
non-deterministic algorithm has space complexity O(log2 n).

Theorem 6. CFSubsetIntervals has a quasipolynomial time deterministic
algorithm.

Proof. By standard computational complexity theory arguments (see, e.g., [12]),
we can transform DECIDE-COLORS to a deterministic algorithm solving the
same problem with time complexity 2O(log2 n), i.e., CFSubsetIntervals has a
quasipolynomial time deterministic algorithm.

5 Conclusions, Further Work, and Open Problems

The exact complexity of computing an optimal k-SCF-coloring for an interval
hypergraph remains an open problem. We have presented an algorithm with
approximation ratio 5 − 2/k when k ≥ 2 and 2 when k = 1. In a longer ver-
sion of our work, we will include a proof that our analysis of the approximation
ratio is tight when k = 1 and k = 2; when k ≥ 3, we have an instance that
forces the algorithm to use (5− 1/k)/2 > 2 times the optimal number of colors.
One might try to improve the approximation ratio, find a polynomial time ap-
proximation scheme, or even find a polynomial time exact algorithm. The last
possibility is supported by the fact that the decision version of the 1-SCF prob-
lem, CFSubsetIntervals, is unlikely to be NP-complete, unless NP-complete

Strong Conflict-Free Coloring for Intervals 13

problems have quasipolynomial time algorithms. Furthermore, we have shown
that the algorithm optimally uses k colors if for any I, J ∈ I, interval I is not
contained in J and they differ for at least k points. For the complete interval
hypergraph Hn, we have presented a k-SCF coloring using at most two times
the optimal number of colors. It would be interesting to close this gap.

Finally, we introduced a SCF-coloring function C : V → N, for which vertices
colored with ‘0’ can not act as uniquely-colored vertices in a hyperedge. Natu-
rally, one could try to study the bi-criteria optimization problem, in which there
two minimization goals: (a) the number of colors used, maxv∈V C(v) (minimiza-
tion of frequency spectrum use) and (b) the number of vertices with positive
colors, |{v ∈ V | C(v) > 0}| (minimization of activated base stations).

References

1. Abam, M.A., de Berg, M., Poon, S.H.: Fault-tolerant conflict-free coloring. In:
Proc. 20th Canadian Conference on Computational Geometry, CCCG (2008)

2. Abellanas, M., Bose, P., Garcia, J., Hurtado, F., Nicolas, M., Ramos, P.A.: On
properties of higher order Delaunay graphs with applications. In: Proc. 21st Euro-
pean Workshop on Computational Geometry (EWCG), pp. 119–122 (2005)

3. Bar-Noy, A., Cheilaris, P., Olonetsky, S., Smorodinsky, S.: Online conflict-free
colouring for hypergraphs. Combin. Probab. Comput. 19, 493–516 (2010)

4. Bar-Noy, A., Cheilaris, P., Smorodinsky, S.: Deterministic conflict-free coloring for
intervals: from offline to online. ACM Trans. Alg. 4(4) (2008)

5. Chen, K., Fiat, A., Levy, M., Matoušek, J., Mossel, E., Pach, J., Sharir, M.,
Smorodinsky, S., Wagner, U., Welzl, E.: Online conflict-free coloring for intervals.
SIAM J. Comput. 36, 545–554 (2006)

6. Cui, Z., Hu, Z.C.: k-conflict-free coloring and k-strong-conflict-free coloring for
one class of hypergraphs and online k-conflict-free coloring. ArXiv abs/1107.0138
(2011)

7. Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple
geometric regions with applications to frequency assignment in cellular networks.
SIAM J. Comput. 33, 94–136 (2003)

8. Horev, E., Krakovski, R., Smorodinsky, S.: Conflict-Free Coloring Made Stronger.
In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 105–117. Springer, Heidel-
berg (2010)

9. Katz, M., Lev-Tov, N., Morgenstern, G.: Conflict-free coloring of points on a line
with respect to a set of intervals. Comput. Geom. 45, 508–514 (2012)

10. Lev-Tov, N., Peleg, D.: Conflict-free coloring of unit disks. Discrete Appl.
Math. 157(7), 1521–1532 (2009)

11. Nguyen, H.L., Nguyen, U.T.: Algorithms for bandwidth efficient multicast rout-
ing in multi-channel multi-radio wireless mesh networks. In: Proc. IEEE Wireless
Communications and Networking Conference (WCNC), pp. 1107–1112 (2011)

12. Papadimitriou, C.: Computational Complexity. Addison Wesley (1993)
13. Smorodinsky, S.: Conflict-free coloring and its applications. ArXiv abs/1005.3616

(2010)
14. Zeng, G., Wang, B., Ding, Y., Xiao, L., Mutka, M.: Efficient multicast algorithms

for multichannel wireless mesh networks. IEEE Trans. Parallel Distrib. Systems 21,
86–99 (2010)

Closing Complexity Gaps

for Coloring Problems on H-Free Graphs�

Petr A. Golovach1, Daniël Paulusma2, and Jian Song2

1 Department of Informatics, Bergen University,
PB 7803, 5020 Bergen, Norway
petr.golovach@ii.uib.no

2 School of Engineering and Computing Sciences, Durham University,
Science Laboratories, South Road, Durham DH1 3LE, United Kingdom

{daniel.paulusma,jian.song}@durham.ac.uk

Abstract. If a graph G contains no subgraph isomorphic to some graph
H , then G is called H-free. A coloring of a graph G = (V,E) is a mapping
c : V → {1, 2, . . .} such that no two adjacent vertices have the same
color, i.e., c(u) �= c(v) if uv ∈ E; if |c(V)| ≤ k then c is a k-coloring. The
Coloring problem is to test whether a graph has a coloring with at most
k colors for some integer k. The Precoloring Extension problem is
to decide whether a partial k-coloring of a graph can be extended to a
k-coloring of the whole graph for some integer k. The List Coloring

problem is to decide whether a graph allows a coloring, such that every
vertex u receives a color from some given set L(u). By imposing an
upper bound � on the size of each L(u) we obtain the �-List Coloring

problem. We first classify the Precoloring Extension problem and the
�-List Coloring problem for H-free graphs. We then show that 3-List
Coloring is NP-complete for n-vertex graphs of minimum degree n−2,
i.e., for complete graphs minus a matching, whereas List Coloring is
fixed-parameter tractable for this graph class when parameterized by the
number of vertices of degree n− 2. Finally, for a fixed integer k > 0, the
List k-Coloring problem is to decide whether a graph allows a coloring,
such that every vertex u receives a color from some given set L(u) that
must be a subset of {1, . . . , k}. We show that List 4-Coloring is NP-
complete for P6-free graphs, where P6 is the path on six vertices. This
completes the classification of List k-Coloring for P6-free graphs.

1 Introduction

Graph coloring involves the labeling of the vertices of some given graph by inte-
gers called colors such that no two adjacent vertices receive the same color. The
corresponding decision problem is called Coloring and is to decide whether a
graph can be colored with at most k colors for some given integer k. Because
Coloring is NP-complete for any fixed k ≥ 3, its computational complexity has
been widely studied for special graph classes, see e.g. the surveys of Randerath

� This work has been supported by EPSRC (EP/G043434/1).

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 14–23, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Closing Complexity Gaps for Coloring Problems on H-Free Graphs 15

and Schiermeyer [17] and Tuza [20]. In this paper, we consider the Coloring

problem together with two natural and well-studied variants, namely Precol-

oring Extension and List Coloring for graphs characterized by some for-
bidden induced subgraph. Before we summarize related results and explain our
new results, we first state the necessary terminology.

Terminology. We only consider finite undirected graphs G = (V,E) without
loops and multiple edges. The graph Pr denotes the path on r vertices. The
disjoint union of two graphs G and H is denoted G+H , and the disjoint union
of r copies of G is denoted rG. Let G be a graph and {H1, . . . , Hp} be a set
of graphs. We say that G is (H1, . . . , Hp)-free if G has no induced subgraph
isomorphic to a graph in {H1, . . . , Hp}; if p = 1, we sometimes write H1-free
instead of (H1)-free. The complement of a graph G denoted by G has vertex set
V (G) and an edge between two distinct vertices if and only if these vertices are
not adjacent in G.

A coloring of a graph G = (V,E) is a mapping c : V → {1, 2, . . .} such that
c(u) �= c(v) whenever uv ∈ E. We call c(u) the color of u. A k-coloring of G is
a coloring c of G with 1 ≤ c(u) ≤ k for all u ∈ V . The problem k-Coloring

is to decide whether a given graph admits a k-coloring. Here, k is fixed, i.e.,
not part of the input. If k is part of the input, then we denote the problem as
Coloring. A list assignment of a graph G = (V,E) is a function L that assigns
a list L(u) of so-called admissible colors to each u ∈ V . If L(u) ⊆ {1, . . . , k}
for each u ∈ V , then L is also called a k-list assignment. The size of a list
assignment L is the maximum list size |L(u)| over all vertices u ∈ V . We say
that a coloring c : V → {1, 2, . . .} respects L if c(u) ∈ L(u) for all u ∈ V . The
List Coloring problem is to test whether a given graph has a coloring that
respects some given list assignment. For a fixed integer k, the List k-Coloring

problem has as input a graph G with a k-list assignment L and asks whether
G has a coloring that respects L. For a fixed integer �, the �-List Coloring

problem has as input a graph G with a list assignment L of size at most �
and asks whether G has a coloring that respects L. In precoloring extension we
assume that a (possibly empty) subsetW ⊆ V of G is precolored by a precoloring
cW : W → {1, 2, . . . k} for some integer k, and the question is whether we can
extend cW to a k-coloring of G. For a fixed integer k, we denote this problem
as k-Precoloring Extension. If k is part of the input, then we denote this
problem as Precoloring Extension.

Note that k-Coloring can be viewed as a special case of k-Precoloring
Extension by choosing W = ∅, and that k-Precoloring Extension can be
viewed as a special case of List k-Coloring by choosing L(u) = {cW (u)} if
u ∈ W and L(u) = {1, . . . , k} if u ∈ W \V . Moreover, List k-Coloring can be
readily seen as a special case of k-List Coloring. Hence, we can make the fol-
lowing two observations for a graph class G. If k-Coloring is NP-complete for G,
then k-Precoloring Extension is NP-complete for G, and consequently, List
k-Coloring and hence k-List Coloring are NP-complete for G. Conversely, if
k-List Coloring is polynomial-time solvable on G, then List k-Coloring is
polynomial-time solvable on G, and consequently, k-Precoloring Extension

16 P.A. Golovach, D. Paulusma, and J. Song

is polynomial-time solvable on G, and then also k-Coloring is polynomial-time
solvable on G.

Related and New Results.Král’, Kratochv́ıl, Tuza andWoeginger [11] showed
the following dichotomy for Coloring for H-free graphs.

Theorem 1 ([11]). Let H be a fixed graph. If H is a (not necessarily proper)
induced subgraph of P4 or of P1+P3, then Coloring can be solved in polynomial
time for H-free graphs; otherwise it is NP-complete for H-free graphs.

In Section 2 we use Theorem 1 and a number of other results from the liter-
ature to obtain the following two dichotomies, which complement Theorem 1.
Theorem 3 shows amongst others that Precoloring Extension is polynomial-
time solvable on (P1+P3)-free graphs, which contain the class of 3P1-free graphs,
i.e., complements of triangle-free graphs. As such, this theorem also generalizes
a result of Hujter and Tuza [8] who showed that Precoloring Extension is
polynomial-time solvable on complements of bipartite graphs.

Theorem 2. Let � be a fixed integer, and let H be a fixed graph. If � ≤ 2 or
H is a (not necessarily proper) induced subgraph of P3, then �-List Coloring

is polynomial-time solvable on H-free graphs; otherwise �-List Coloring is
NP-complete for H-free graphs.

Theorem 3. Let H be a fixed graph. If H is a (not necessarily proper) induced
subgraph of P4 or of P1 + P3, then Precoloring Extension can be solved
in polynomial time for H-free graphs; otherwise it is NP-complete for H-free
graphs.

In Section 3 we consider the List Coloring problem for (3P1, P1 + P2)-free
graphs, i.e., graphs that are obtained from a complete graph after removing the
edges of some matching. We also call such a graph a complete graph minus a
matching. Our motivation to study this graph class comes from the fact that
List Coloring is NP-complete on almost all non-trivial graph classes, such as
can be deduced from Theorem 2 and from other results known in the literature.
For example, List Coloring is NP-complete for complete bipartite graphs [10],
complete split graphs [10], line graphs of complete graphs [14], and more over,
even for (not necessarily vertex-disjoint) unions of two complete graphs [9]; we
refer to Table 1 in the paper by Bonomo, Durán and Marenco [1] for an overview.
It is known that List Coloring can be solved in polynomial time for block
graphs [9], which contain the class of complete graphs and trees. Our aim was to
extend this positive result. However, as we show, already 3-List Coloring is
NP-complete for complete graphs minus a matching. As a positive result, we show
that List Coloring is fixed-parameter tractable for complete graphs minus a
matching when parameterized by the number of matching edges removed.

In Section 4, we consider the List k-Coloring problem. As we explained, this
problem is closely related to the problems k-Coloring and k-Precoloring
Extension. In contrast toColoring and Precoloring Extension (cf. Theo-
rems 1 and 3), the complexity classifications of k-Coloring and k-Precoloring

Closing Complexity Gaps for Coloring Problems on H-Free Graphs 17

Table 1. The complexity of k-Coloring, k-Precoloring Extension and List k-
Coloring on Pr-free graphs for fixed k and r. The bold entry is our new result.

k-Coloring k-Precoloring Extension List k-Coloring

r k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6

r ≤ 5 P P P P P P P P P P P P
r = 6 P ? ? ? P ? NP-c NP-c P NP-c NP-c NP-c
r = 7 ? ? ? NP-c ? NP-c NP-c NP-c ? NP-c NP-c NP-c
r ≥ 8 ? NP-c NP-c NP-c ? NP-c NP-c NP-c ? NP-c NP-c NP-c

Extension for H-free graphs are yet to be completed, even when H is a path.
Hoàng et al. [6] showed that for any k ≥ 1, the k-Coloring problem can be
solved in polynomial time for P5-free graphs. Randerath and Schiermeyer [16]
showed that 3-Coloring can be solved in polynomial time for P6-free graphs.
These results are complemented by the following hardness results: 4-Coloring

is NP-complete for P8-free graphs [3] and 6-Coloring is NP-complete for P7-free
graphs [2]. Also the computational complexity of the List k-Coloring problem
is still open for Pr-free graphs. Hoàng et al. [6] showed that their polynomial-time
result on k-Coloring for P5-free graphs is in fact valid for List k-Coloring

for any fixed k ≥ 1. Broersma et al. [2] generalized the polynomial-time result
of Randerath and Schiermeyer [16] for 3-Coloring on P6-free graphs to List

3-Coloring on P6-free graphs. In addition, they showed that 5-Precoloring
Extension is NP-complete for P6-free graphs [2], whereas 4-Precoloring Ex-

tension is known to be NP-complete for P7-free graphs [3]. Table 1 summarizes
all existing results for these three problems restricted to Pr-free graphs. We
prove that List 4-Coloring is NP-complete for P6-free graphs. Because List

3-Coloring is polynomial-time solvable on P6-free graphs [2], we completely
characterized the computational complexity of List k-Coloring for P6-free
graphs. In Table 1 we indicate this result in bold. All cases marked by “?” in
Table 1 are still open.

2 Classifying Precoloring Extension and 3-List Coloring

The following well-known lemma (cf. [1]) is obtained by modeling the List Col-

oring problem on n-vertex complete graphs with a k-list assignment as a max-
imum matching problem for an (n + k)-vertex bipartite graph; as such we may
apply the Hopcroft-Karp algorithm [7] to obtain the bound on the running time.

Lemma 1. List Coloring can be solved in O((n + k)
5
2) time on n-vertex

complete graphs with a k-list assignment.

We are now ready to state the proofs of Theorems 2 and 3.

The proof of Theorem 2. Early papers by Erdös, Rubin and Taylor [4] and Viz-
ing [21] already observed that 2-List Coloring is polynomial-time solvable on
general graphs. Hence, we can focus on the case � ≥ 3. Because the �-Coloring

18 P.A. Golovach, D. Paulusma, and J. Song

problem is a special case of the �-List Coloring problem, the following results
are useful. Kamiński and Lozin [13] showed that for any k ≥ 3, the k-Coloring

problem is NP-complete for the class of graphs of girth (the length of a shortest
induced cycle) at least p for any fixed p ≥ 3. Their result implies that for any
� ≥ 3, the �-Coloring problem, and consequently, the �-List Coloring prob-
lem is NP-complete for the class of H-free graphs whenever H contains a cycle.
The proof of Theorem 4.5 in the paper by Jansen and Scheffler [10] is to show
that 3-List Coloring is NP-complete on P4-free graphs but as a matter of
fact shows that 3-List Coloring is NP-complete on complete bipartite graphs,
which are (P1+P2)-free. The proof of Theorem 11 in the paper by Jansen [9] is to
show that List Coloring is NP-complete for (not necessarily vertex-disjoint)
unions of two complete graphs but as a matter of fact shows that 3-List Col-

oring is NP-complete for these graphs. As the union of two complete graphs is
3P1-free, this means that 3-List Coloring is NP-complete for 3P1-free graphs.
This leaves us with the case when H is a (not necessarily proper) induced sub-
graph of P3. By Lemma 1 we can solve List Coloring in polynomial time on
complete graphs. This means that we can solve �-List Coloring in polynomial
time on P3-free graphs for any � ≥ 1. Hence we have proven Theorem 2. ��
The proof of Theorem 3. Let H be a fixed graph. If H is not an induced subgraph
of P4 or of P1 + P3, then Theorem 1 tells us that Coloring, and consequently,
Precoloring Extension is NP-complete for H-free graphs. Jansen and Schef-
fler [10] showed that Precoloring Extension is polynomial-time solvable for
P4-free graphs. Hence, we are left with the case H = P1 + P3.

Let (G, k, cW) be an instance of Precoloring Extension, where G is a
(P1 + P3)-free graph, k is an integer and cW : W → {1, . . . , k} for some W ⊆
V (G) is a precoloring. We first prove how to transform (G, k, cW) in polynomial
time into a new instance (G′, k′, cW ′) with the following properties:

(i) G′ is a 3P1-free subgraph of G, k′ ≤ k and cW ′ : W ′ → {1, . . . , k} for some
W ⊆W ′ ⊆ V (G) is a precoloring;

(ii) (G′, k′, cW ′) is a yes-instance if and only if (G, k, cW) is a yes-instance.

Suppose that G is not 3P1-free already. Then G contains at least one triple T
of three independent vertices. Let u ∈ T . Here we make the following choice if
possible: if there exists a triple of three independent vertices that intersects with
W , then we choose T to be such a triple and pick u ∈ T ∩W .

Let S = V (G)\ ({u}∪N(u)). Because G is (P1+P3)-free, G[S] is the disjoint
union of a set of complete graphs D1, . . . , Dp for some p ≥ 2; note that p ≥ 2
holds, because the other two vertices of T must be in different graphs Di and
Dj . We will use the following claim.

Claim 1. Every vertex in V (D1) ∪ · · · ∪ V (Dp) is adjacent to exactly the same
vertices in N(u).

We prove Claim 1 as follows. First suppose that w and w′ are two vertices in two
different graphs Di and Dj , such that w is adjacent to some vertex v ∈ N(u).
Then w′ is adjacent to v, as otherwise w′ and u, v, w form an induced P1+P3 in

Closing Complexity Gaps for Coloring Problems on H-Free Graphs 19

G, which is not possible. Now suppose that w and w′ are two vertices in the same
graph Di, say D1, such that w is adjacent to some vertex v ∈ N(u). Because
p ≥ 2, the graph D2 is nonempty. Let w∗ be in D2. As we just showed, the fact
that w is adjacent to v implies that w∗ is adjacent to v as well. By repeating
this argument with respect to w∗ and w′, we then find that w′ is adjacent to v.
Hence, we have proven Claim 1.

We now proceed as follows. First suppose that u ∈ W . By symmetry we may
assume that cW (u) = k. Then we assign color k to an arbitrary vertex of every
Di that does not contain a vertex colored with k already and that contains at
least one vertex outside W . If u /∈ W , then by our choice of u no vertex from
V (D1)∪ · · · ∪ V (Dp) belongs to W . Either cW (W) = {1, . . . , k}, and we find (in
polynomial time) that (G, k, cW) is a no-instance, or cW (W) ⊂ {1, . . . , k}, and
then we may assume that cW (W) ⊆ {1, . . . , k − 1} by symmetry. In that case
we assign color k to u and also to an arbitrary vertex of every Di. Afterward,
in both cases, we remove all vertices colored k from G. In both cases this leads
to a new instance (G′, k− 1, cW ′) that satisfies condition (i) except that G′ may
not be 3P1-free, and that satisfies condition (ii) due to Claim 1. We repeat this
step until the graph is 3P1-free as claimed. Note that this takes polynomial time
in total, because every step takes polynomial time and in every step the number
of vertices of the graph reduces by at least 1.

Due to the above, we may assume without loss of generality that G is 3P1-
free. We now apply the same algorithm as Hujter and Tuza [8] used for solving
Precoloring Extension on complements of bipartite graphs. Because G is
3P1-free, G has no three mutually nonadjacent vertices. Suppose that u and v
are two nonadjacent vertices in W . Then every vertex of V (G)\{u, v} is adjacent
to at least one of {u, v}. This means that we can remove u, v if they are both
colored alike by cW in order to obtain a new instance (G−{u, v}, k−1, cW\{u,v})
that is a yes-instance of Precoloring Extension if and only if (G, k, cW) is
a yes-instance. If u and v are colored differently by cW , then we add an edge
between them. We perform this step for any pair of non-adjacent vertices in
W . Afterward, we have found in polynomial time a new instance (G∗, k∗, cW∗)
with the following properties. First, |V (G∗)| ≤ |V (G)|, k∗ ≤ k and cW∗ : W ∗ →
{1, . . . , k} is a precoloring defined on some cliqueW ∗ ofG∗. Second, (G∗, k∗, cW∗)
is a yes-instance if and only if (G, k, cW) is a yes-instance. Hence, we may consider
(G∗, k∗, cW∗) instead. Because W ∗ is a clique, we find that (G∗, k∗, cW∗) is a yes-
instance if and only if G∗ is k∗-colorable. Because G∗ is 3P1-free, we can solve the
later problem by using Theorem 1 (which in this case comes down to computing
the size of a maximum matching in the complement of G∗). This completes the
proof for the case H = P1 + P3. Consequently, we have proven Theorem 3. ��

3 List Coloring for Complete Graphs Minus a Matching

We prove that 3-List Coloring is NP-complete for complete graphs
minus a matching. In order to this we use a reduction from a variant of Not-

All-Equal 3-Satisfiability with positive literals only, which we denote as

20 P.A. Golovach, D. Paulusma, and J. Song

Not-All-Equal (≤ 3, 2/3)-Satisfiability with positive literals. The Not-

All-Equal 3-Satisfiability problem is NP-complete [18] and is defined as
follows. Given a set X = {x1, x2, ..., xn} of logical variables, and a set C =
{C1, C2, ..., Cm} of three-literal clauses over X in which all literals are posi-
tive, does there exist a truth assignment for X such that each clause contains
at least one true literal and at least one false literal? The variant Not-All-

Equal (≤ 3, 2/3)-Satisfiability with positive literals asks the same question
but takes as input an instance I that has a set of variables {x1, . . . , xn} and a
set of literal clauses {C1, . . . , Cm} over X with the following properties. Each
Ci contains either 2 or 3 literals, and these literals are all positive. Moreover,
each literal occurs in at most three different clauses. One can prove that Not-

All-Equal (≤ 3, 2/3)-Satisfiability is NP-complete by a reduction from
Not-All-Equal-3-Satisfiability via a well-known folklore trick.

Let I be an arbitrary instance ofNot-All-Equal (≤ 3, 2/3)-Satisfiability
with positive literals. We let x1, x2, . . . , xn be the variables of I, and we let
C1, C2, . . . , Cm be the clauses of I. We define a graph GI with a list assignment
L of size three in the following way. We represent every variable xi by a vertex
with L(xi) = {1i, 2i} inGI . We say that these vertices are of x-type and these col-
ors are of 1-type and 2-type, respectively. For every clause Cp with two variables
we fix an arbitrary order of its variables xh, xi and we introduce a set of ver-
tices Cp, ap,h, ap,i, bp,h, bp,i that have lists of admissible colors {3p, 4p}, {1h, 3p},
{1i, 4p}, {2h, 4p}, {2i, 3p}, respectively, and we add edges Cpap,h, Cpbp,h, Cpap,i,
Cpbp,i, ap,hxh, bp,hxh, ap,ixi, bp,ixi. For every clause Cp with three variables we
fix an arbitrary order of its variables xh, xi, xj and we introduce a set of vertices
Cp, ap,h, ap,i, ap,j, bp,h, bp,i, bp,j that have lists of admissible colors {3p, 4p, 5p},
{1h, 3p}, {1i, 4p}, {1j, 5p}, {2h, 5p}, {2i, 3p}, {2j, 4p}, respectively, and we add
edges Cpap,h, Cpbp,h, Cpap,i, Cpbp,i, Cpap,j , Cpbp,j, ap,hxh, bp,hxh, ap,ixi, bp,ixi,
ap,jxj , bp,jxj . We say that the new vertices are of C-type, a-type and b-type,
respectively. We say that the new colors are of 3-type, 4-type and 5-type, re-
spectively. For each variable xj that occurs in three clauses we fix an arbitrary
order of the clauses Cp, Cq, Cr, in which it occurs. Then we do as follows. First,
we modify the lists of ap,j , aq,j , bp,j and bq,j . In L(ap,j) we replace color 1j
with a new color 1′j . In L(aq,j) we replace color 1j with a new color 1′′j . In
L(bp,j) we replace color 2j with a new color 2′j. In L(bq,j) we replace color 2j
with a new color 2′′j . Next we introduce four vertices a

′
p,j , a

′
q,j , b

′
p,j, b

′
q,j with lists

of admissible colors {1j, 1′j}, {1′j, 1′′j }, {2j, 2′j}, {2′j, 2′′j }, respectively. We say that
these vertices are of a′-type or b′-type, respectively. We say that the new colors
are also of 1-type or 2-type, respectively. We add edges ap,ja

′
p,j , a

′
p,ja

′
q,j , a

′
p,jxj ,

aq,ja
′
q,j , bp,jb

′
p,j, b

′
p,jb
′
q,j , b

′
p,jxj , bq,jb

′
q,j . We add an edge between any two not

yet adjacent vertices of GI whenever they have no common color in their lists. In
Figure 1 we give an example, where in order to increase the visibility we display
the complement graph GI of GI instead of GI itself.

As can be seen from Figure 1, the graph GI is isomorphic to the disjoint union
of a number of P1s and P2s. This means that GI is a complete graph minus a

Closing Complexity Gaps for Coloring Problems on H-Free Graphs 21

C1
Cp Cq Cr

ap,h bp,hap,i bp,iap,j bp,jaq,j bq,jar,j br,j

a′p,j b′p,ja′q,j b′q,j

x1 xh xi xj xn

Cm

{31, 41, 51} {3p, 4p, 5p} {3q, 4q, 5q} {3r, 4r, 5r}

{1h, 3p} {2h, 5p}{1i, 4p} {2i, 3p}{1′j, 5p} {2′j, 4p}{1′′j , 4q} {2′′j , 3q}{1j, 5r} {2j, 4r}

{1j, 1
′

j}

{2j, 2
′

j}{1′j, 1
′′

j}

{2′j, 2
′′

j}

{11, 22} {1h, 2h} {1i, 2i} {1j, 2j} {1n, 2n}

{3m, 4m, 5m}

Fig. 1. An example of a graph GI in which a clause Cp and a variable xj are highlighted.
Note that in this example Cp is a clause with ordered variables xh, xi, xj , and that xj

is a variable contained in ordered clauses Cp, Cq and Cr.

matching. This leads us to Lemma 2, whereas the hardness reduction is stated
in Lemma 3. The proofs of both lemmas have been omitted.

Lemma 2. The graph GI is a complete graph minus a matching.

Lemma 3. The graph GI has a coloring that respects L if and only if I has a
satisfying truth assignment in which each clause contains at least one true and
at least one false literal.

Recall that complete graphs minus a matching are exactly those graphs that are
(3P1, P1 + P2)-free, or equivalently, graphs of minimum degree at least n − 2,
where n is the number of vertices. By observing that 3-List Coloring belongs
to NP and using Lemmas 2 and 3, we have proven Theorem 4.

Theorem 4. The 3-ListColoring problem isNP-complete for complete graphs
minus a matching.

To complement Theorem 4 we finish this section with the next result, which
has as a consequence that List Coloring problem is fixed-parameter tractable
on complete graphs minus a matching when parameterized by the number of
removed matching edges, or equivalently, for n-vertex graphs G of minimum
degree at least n − 2 when parameterized by the number of vertices of degree
n− 2. The proof of Theorem 5 uses Lemma 1; we omit the details.

Theorem 5. The List Coloring problem can be solved in O(2p(n+k)
5
2) time

on pairs (G,L) where G is an n-vertex graph with p pairs of non-adjacent vertices
and L is a k-list assignment.

22 P.A. Golovach, D. Paulusma, and J. Song

4 List 4-Coloring for P6-Free Graphs

To prove that List 4-Coloring is NP-complete for P6-free graphs we reduce
from Not-All-Equal 3-Satisfiability with positive literals. From an ar-
bitrary instance I of Not-All-Equal 3-Satisfiability with variables x1,
x2, . . . , xn and clauses C1, C2, . . . , Cm that contain positive literals only, we build
a graph GI with a 4-list assignment L. Next we show that GI is P6-free and that
GI has a coloring that respects L if and only if I has a satisfying truth assign-
ment in which each clause contains at least one true and at least one false literal.
To obtain the graph GI with its 4-list assignment L we modify the construc-
tion of the (P7-free but not P6-free) graph used to prove that 4-Precoloring
Extension is NP-complete for P7-free graphs [3]; proof details are omitted.

5 Concluding Remarks

The main tasks are to determine the computational complexity of Coloring

for AT-free graphs and to solve the open cases marked “?” in Table 1. This table
shows that so far all three problems k-Coloring, k-Precoloring Extension

and List k-Coloring behave similarly on Pr-free graphs. Hence, our new NP-
completeness result on List 4-Coloring for P6-free graphs may be an indication
that 4-Coloring for P6-free graphs is NP-complete, or otherwise at least this
result makes clear that new proof techniques not based on subroutines that solve
List 4-Coloring are required for proving polynomial-time solvability.

Another open problem, which is long-standing, is to determine the computa-
tional complexity of the Coloring problem for the class of asteroidal triple-free
graphs, also known as AT-free graphs. An asteroidal triple is a set of three mu-
tually non-adjacent vertices such that each two of them are joined by a path
that avoids the neighborhood of the third, and AT-free graphs are exactly those
graphs that contain no such triple. We note that unions of two complete graphs
are AT-free. Hence NP-completeness of 3-List Coloring for this graph class [9]
immediately carries over to AT-free graphs. Stacho [19] showed that 3-Coloring

is polynomial-time solvable on AT-free graphs. Recently, Kratsch and Müller [12]
extended this result by proving that List k-Coloring is polynomial-time solv-
able on AT-free graphs for any fixed positive integer k. Marx [15] showed that
Precoloring Extension is NP-complete for proper interval graphs, which
form a subclass of AT-free graphs. An asteroidal set in a graph G is an indepen-
dent set S ⊆ V (G), such that every triple of vertices of S forms an asteroidal
triple. The asteroidal number is the size of a largest asteroidal set in G. Note
that complete graphs are exactly those graphs that have asteroidal number at
most one, and that AT-free graphs are exactly those graphs that have asteroidal
number at most two. We observe that Coloring is NP-complete for the class
of graphs with asteroidal number at most three, as this class contains the class
of 4P1-free graphs and for the latter graph class one may apply Theorem 1.

Closing Complexity Gaps for Coloring Problems on H-Free Graphs 23

References

1. Bonomo, F., Durán, G., Marenco, J.: Exploring the complexity boundary between
coloring and list-coloring. Ann. Oper. Res. 169, 3–16 (2009)

2. Broersma, H., Fomin, F.V., Golovach, P.A., Paulusma, D.: Three Complexity Re-
sults on Coloring Pk-Free Graphs. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.)
IWOCA 2009. LNCS, vol. 5874, pp. 95–104. Springer, Heidelberg (2009)

3. Broersma, H.J., Golovach, P.A., Paulusma, D., Song, J.: Updating the complexity
status of coloring graphs without a fixed induced linear forest. Theoretical Com-
puter Science 414, 9–19 (2012)

4. Erdös, P., Rubin, A.L., Taylor, H.: Choosabilty in graphs. In: Proc. West Coast
Conference on Combinatorics, Graph Theory and Computing, pp. 125–157 (1979)

5. Golovach, P.A., Paulusma, D., Song, J.: 4-Coloring H-Free Graphs When H Is
Small. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G.
(eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 289–300. Springer, Heidelberg (2012)

6. Hoàng, C.T., Kamiński, M., Lozin, V., Sawada, J., Shu, X.: Deciding k-colorability
of P5-free graphs in polynomial time. Algorithmica 57, 74–81 (2010)

7. Hopcroft, J.E., Karp, R.M.: An n
5
2 algorithm for maximum matchings in bipartite

graphs. SIAM J. Comput. 2, 225–231 (1973)
8. Hujter, M., Tuza, Z.: Precoloring extension. II. Graph classes related to bipartite

graphs. Acta Math. Univ. Comenianae LXII, 1–11 (1993)
9. Jansen, K.: Complexity Results for the Optimum Cost Chromatic Parti-

tion Problem. Universität Trier, Mathematik/Informatik, Forschungsbericht,
pp. 96–41 (1996)

10. Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. Discrete Appl.
Math. 75, 135–155 (1997)

11. Král’, D., Kratochv́ıl, J., Tuza, Z., Woeginger, G.J.: Complexity of Coloring Graphs
without Forbidden Induced Subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG
2001. LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001)

12. Kratsch, D., Müller, H.: Colouring AT-Free Graphs. In: Epstein, L., Ferragina, P.
(eds.) ESA 2012. LNCS, vol. 7501, pp. 707–718. Springer, Heidelberg (2012)

13. Kamiński, M., Lozin, V.V.: Coloring edges and vertices of graphs without short or
long cycles. Contributions to Discrete Math. 2, 61–66 (2007)

14. Kubale, M.: Some results concerning the complexity of restricted colorings of
graphs. Discrete Applied Mathematics 36, 35–46 (1992)

15. Marx, D.: Precoloring extension on unit interval graphs. Discrete Applied Mathe-
matics 154, 995–1002 (2006)

16. Randerath, B., Schiermeyer, I.: 3-Colorability ∈ P for P6-free graphs. Discrete
Appl. Math. 136, 299–313 (2004)

17. Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs - a sur-
vey. Graphs Combin. 20, 1–40 (2004)

18. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. STOC 1978, pp.
216–226 (1978)

19. Stacho, J.: 3-Colouring AT-free graphs in polynomial time. Algorithmica 64, 384–
399 (2012)

20. Tuza, Z.: Graph colorings with local restrictions - a survey. Discuss. Math. Graph
Theory 17, 161–228 (1997)

21. Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Diskret. Analiz.,
no. 29, Metody Diskret. Anal. v. Teorii Kodov i Shem 101, 3–10 (1976)

Randomly Coloring Regular Bipartite Graphs

and Graphs with Bounded Common Neighbors

Ching-Chen Kuo1 and Hsueh-I Lu2,�

1 Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan

r96922074@ntu.edu.tw
2 Department of Computer Science and Information Engineering,

National Taiwan University, Taipei, Taiwan
hil@csie.ntu.edu.tw

Abstract. Let G be an n-node graph with maximum degree Δ. The
Glauber dynamics for G, defined by Jerrum, is a Markov chain over the
k-colorings of G. Many classes of G on which the Glauber dynamics
mixes rapidly have been identified. Recent research efforts focus on the
important case that Δ ≥ d log2 n holds for some sufficiently large con-
stant d. We add the following new results along this direction, where ε
can be any constant with 0 < ε < 1.

– Let α ≈ 1.645 be the root of (1 − e−1/x)2 + 2xe−1/x = 2. If G is
regular and bipartite and k ≥ (α+ ε)Δ, then the mixing time of the
Glauber dynamics for G is O(n log n).

– Let β ≈ 1.763 be the root of x = e1/x. If the number of common

neighbors for any two adjacent nodes of G is at most ε1.5Δ
360e

and
k ≥ (1 + ε)βΔ, then the mixing time of the Glauber dynamics is
O(n log n).

1 Introduction

For any finite set S, let |S| denote the cardinality of S. Let G be a simple
undirected graph on a set V of n nodes. For each node v of G, let N(v) consist
of the neighbors of v in G. For each node subset S of G, let N(S) =

⋃
v∈S N(v).

Let Δ = maxv∈V |N(v)|. Let k be a positive integer. Let K = {1, 2, . . . , k}. A
k-coloring of G is a mapping from V to a color in K such that any two adjacent
nodes of G map to different colors. Let Ω consist of all k-colorings of G.

Markov Chain Monte Carlo is an important tool in sampling from complex
distributions such as the uniform distribution on k-coloring. It has been suc-
cessfully applied in several areas of Computer Science and more details can be
found in Frieze and Vigoda [6]. Adopting terminology from statistical physics,

� This author also holds joint appointments in the Graduate Institute of Net-
working and Multimedia and the Graduate Institute of Biomedical Elec-
tronics and Bioinformatics, National Taiwan University, Taipei, Taiwan. Web:
www.csie.ntu.edu.tw/∼hil

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 24–33, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Randomly Coloring Regular Bipartite Graphs and Graphs 25

Table 1. The currently known classes of G on which the Glauber dynamics for the
k-colorings of G mixes rapidly, where α, β, and γ are some constants with β > α > γ
and ε can be any constant with 0 < ε < 1. An asymptotic bound x = Ω(f(n)) stands
for the condition that there exists a sufficiently large constant c such that x ≥ c · f(n)
holds.

degree Δ girth g number k of colors additional constraints

Hayes et al. [11] Ω(1) g ≥ 3 k = Ω(Δ
logΔ

) G is planar

Frieze and Vera [5] Ω(log n) g ≥ 3 k ≥ (β + ε)Δ χ ≤ ε2Δ/10

Hayes and Vigoda [13] Ω(log n) g ≥ 4 k ≥ (1 + ε)βΔ

Hayes [9]
Ω(log n) g ≥ 5 k > βΔ

Ω(log n) g ≥ 6 k > γΔ

Hayes and Vigoda [7] Ω(log n) g ≥ 9 k ≥ (1 + ε)Δ

Lau and Molloy [19] Ω(log3 n) g ≥ 5 k ≥ (α+ ε)Δ

This paper
Ω(log n) g ≥ 4 k ≥ (α+ ε)Δ G is bipartite and regular

Ω(log n) g ≥ 3 k ≥ (1 + ε)βΔ ξ ≤ ε1.5Δ
360e

Jerrum [14] defined the Glauber dynamics on G as the Markov chain over Ω
whose transition is (1) choosing a node v uniformly at random from V , and then
(2) choosing a color uniform at random from K \K ′ for v, where K ′ consists of
the colors ofN(v). Themixing time τ(G) for the Glauber dyanmicsX on G is the
time until the Glauber dynamics is close enough to its stationary distribution.
We define this formally in the next section. Hayes and Sinclair [10] established a
lower bound Ω(n logn) on the mixing time τ(G) of the Glauber dynamics for G.
If the Glauber dynamics mixes rapidly on G, i.e., τ(G) is bounded by a polyno-
mial in the number n of nodes in G for sufficiently large n, then the number of
k-colorings of G can be estimated in polynomial time (see, e.g., Jerrum, Valiant,
and Vazirani [16].)

The classes of G on which the Glauber dynamics mixes rapidly have been ex-
tensively studied in the literature. Jerrum [14] proved τ = O(n log n) for G with
k > 2Δ, whose proof was later simplified by Bubley and Dyer [1]. Vigoda [22]
showed τ = O(n2) for G with k > 11Δ/6.

Dyer and Frieze [2] initiated the study for the important case that Δ ≥ d logn
holds for some sufficiently large constant d. Let β ≈ 1.763 be the root of x = e1/x,
Let α ≈ 1.645 be the root of (1 − e−1/x)2 + 2xe−1/x = 2. Let γ ≈ 1.489 be the
root of (1 − e−1/x)2 + xe−1/x = 1. Let ξ be the number of common neighbors
for any adjacent nodes of G. Let χ be the average degree of the subgraph G
induced by N(v) over all nodes v of G. Let g be the girth of G, i.e., the length
of a shortest cycle of G. Table 1 compares our results, as stated in the following
theorem, with the best currently known results on the problem.

Theorem 1. Let G be an n-node graph such that the maximum degree Δ of
G is at least d log2 n for some sufficiently large constant d. Let k be a positive

26 C.-C. Kuo and H.-I. Lu

number. The mixing time of the Glauber dynamics for the k-colorings of G is
O(n log n) for the following cases, where ε can be any constant with 0 < ε < 1.

1. G is bipartite and regular and satisfies k ≥ (α+ ε)Δ.

2. G satisfies ξ ≤ ε1.5Δ
360e and k ≥ (1 + ε)βΔ.

Technical Overview. For the rest of our paper, we use X to denote the sequence
Xt, with t ≥ 0, of random variables of the Glauber dynamics over the k-colorings
Ω of G. Let [·] denote the event indicator, i.e., [true] = 1 and [false] = 0. Let
v ∈ V and y is a k-coloring of G. We define y(v) as the color assigned to v under
y coloring and

y(S) = {y(v) | v ∈ S}.

Let v ∈ V , c ∈ K,
A(y, v) = K \ y(N(v)),

i.e., the set of available colors for v, and

Ty(v, c) =
∑

w∈N(v)

[c ∈ A∗v(y, w)]

|A∗v(y, w)|
,

where A∗v(y, w) = K \ y(N(w) \ {v}). Ignoring the color of v, Ty(v, c) is the
expected number of occurences of a color c in the neighborhood of v. Note that
for every coloring y and vertex v,∑

c∈K
Ty(v, c) = |N(v)|.

For a k-coloring y of G, suppose that we recolor v ∈ V by c ∈ A(y, v). Define

Ry(v, c) = {w ∈ N(v) | {y(v), c} ⊆ y(N(w) \ {v})}

as the set of v’s neighbors and some of their neighbors were assigned with colors
c or y(v) under y coloring. Let Ry = minv∈V,c∈A(y,v) |Ry(v, c)|. For the first part
of Theorem 1, we show that with high probability, Ty(v, c) ≈ |N(v)|/k, for all
y ∈ Ω, v ∈ V , and c ∈ K also holds when G is regular and bipartite. With
this property, we can estimate the lower bound of |A(y, v)| and Ry with high
probability for any y ∈ Ω and v ∈ V . These two bounds help to prove the rapid
mixing of X on G and we show how to improve Hayes and Vigoda [13] by less
colors used. For the second part of Theorem 1, we utilize the procedure of Frieze
and Vera [5] to analyze the bound of |A(y, v)| and show that the colors assigned
to the neighbors are nearly independent. Note that

|A(y, v)| =
∑
j∈K

∏
w∈N(v)

(1− [y(w) = j]).

Randomly Coloring Regular Bipartite Graphs and Graphs 27

In a triangle-free graph, the neighbors of v receive colors independently since each
neighbor of v is not adjacent to any one else. Therefore, Vigoda and Hayes [13] can
compute the expectation of |A(y, v)| directly because of the independence of ran-
dom variables y(w), for all w ∈ N(v). However, even if only a bit more neighbors
are adjacent, the random variables y(w), for all w ∈ N(v) are no longer indepen-
dent. As a result, the technique of Vigoda and Hayes cannot bound the available
colors of v in this situation. In this paper, we show how to handle the above situ-
ation if any two adjacent nodes of G do not have many common neighbors.

Related Work. See [18,15,12] for more results on the Glauber dynamics for the
k-colorings of G. Vigoda [22] also introduced an alternative Markov chain whose
mixing time is O(n log n) for G with k > 11Δ/6. Hayes [8] provided useful
techniques for proving that the Glauber dynamics mixes rapidly. The Glauber
dynamics is also studied on different models, such as Potts model, Ising model,
and solid-on-solid model (see, e.g., [20,21]).

In this paper, we omit some proofs due to the page limit. Those omitted proofs
can be found in the full version.

2 Preliminaries

Frist of all, we introduce the notion of Markov chain. For a finite state space
Ω, a sequence of random variables(Xt) on Ω is a Markov chain if for all t, all
x0, ..., xt, y ∈ Ω,

Pr(Xt+1 = y)|X0 = x0, X1 = x1, ..., Xt = xt) = Pr(Xt+1 = y|Xt = xt).

A Markov chain is called ergodic if there exists t such that for all x, y ∈ Ω,
P t(x, y) > 0, where P t(x, y) is the t-step distribution from x to y. Ergodic
Markov chains are useful algorithmic tools because they eventually reach a
unique stationary distribution. Therefore, we can design a approximate sam-
plers by designing Markov chains with appropriate stationary distribution. Jer-
rum [14] showed that the uniform distribution over Ω is the unique stationary
distribution of the Glauber dynamics. Next, we introduce several tools used in
our work. For any distributions u and v, variance distance between u and v is
defined as

dTV (u, v) =
1

2

∑
x∈Ω

|u(x)− v(x)|.

Let π be the stationary distribution of u. The mixing time of u, τ(ε), is defined as

τ(ε) = maxx0∈Ωmin{t : dTV (P
t(x0, x), π) ≤ ε},

for any x ∈ Ω and ε > 0 is a sufficiently small. Consider two processes X and
Y , where X0 is chosen arbitrary and Y0 is chosen uniformly at random from Ω.
We define the set of disagreements between Xt and Yt as

Dt = {v ∈ V | Xt(v) �= Yt(v)}

28 C.-C. Kuo and H.-I. Lu

Algorithm 1. The transition of Jerrum’s coupling in [17].

1. Choose a node v from V uniformly at random.
2. Choose a pair of colors (c1, c2) according to the joint distribution σ over

(K \Xt(N(v)))× (K \Yt(N(v))). The joint distribution σ should satisfy the
following two conditions.
(a) The distribution of c1 (respectively, c2) should be uniform over K \

Xt(N(v)) (respectively, K \ Yt(N(v))).
(b) σ should be chosen so as to maximize Pr[c1 = c2] =

1
max{|A(Xt,v))|,|A(Yt,v)|} .

3. Let Xt+1(v) = c1 and Yt+1(v) = c2.

and the Hamming distance between Xt and Yt is ρ(Xt, Yt) = |Dt|. Let exp(x) =
ex. Let Pv(x, y) = A(x, v) \A(y, v) for any x, y ∈ Ω.

Lemma 1 (Lau and Molloy [19, Lemma 1]). If G is regular, then∑
v∈V max{|Pv(x, y)|, |Pv(y, x)|} ≤

(
1− Ry

2Δ

)
Δρ(x, y) holds for any two color-

ings x and y in Ω.

In our paper, we use Jerrum’s coupling on k-colorings [17, Figure 2 of Chapter 4]
and it has been a primary tool for bounding the mixing time of X for sampling
k-colorings (see e.g., [6,13,5,14,9,4,2,3,19]). Starting from (X0, Y0), Jerrum’s cou-
pling for X moves from (Xt, Yt) to (Xt+1, Yt+1) by the transition shown in Algo-
rithm 1. For 0 < δ < 1, we say that a pair (x, y) ∈ Ω ×Ω is δ distance decreasing
if there exist X and Y over Ω such that

E[ρ(Xt+1, Yt+1) | Xt = x, Yt = y] ≤ (1− δ) · ρ(x, y)

holds for all t ≥ 0. The following property is useful in bounding mixing time ofX .

Lemma 2 (Hayes and Vigoda [13, Theorem 1.2]). Let
diam(Ω) = maxx,y∈Ω ρ(x, y), and 0 < ε, δ < 1. Suppose that S ⊆ Ω such that

every (x, y) ∈ Ω × S is δ distance decreasing, where |S||Ω| ≥ 1− δ
16diam(Ω) . Then,

τmix(ε) ≥ �log(32diam(Ω))��log(1/ε)�
δ .

According to Lemm 2, we can achieve the rapid mixing time of X by finding a
coupling over Ω × S of X and the uniform stationary distribution π such that
every pair (x, y) ∈ Ω × S is δ distance decreasing as well as the requirement of
S is satisfied.

3 Rapid Mixing on Regular Bipartite Graphs

Lemma 3. Let y be chosen uniformly at random from Ω and k ≥ (α+ε)Δ. Let η

be a number with η ≤ ln(α+ε)
10 . Let δ be a number with δ ≤ min{ (1−e

−η2
)e−e

α+ε ,
√
5η
ε }.

Randomly Coloring Regular Bipartite Graphs and Graphs 29

Let t be a number with

t ≥ max

{
2eηe

−Δ
k +

2

k
·
(
e

−Δ
k −η +

e · (100 + 100η(α+ ε))

α+ ε

)
,
2√
5
· δε√

α+ ε

}
.

Let
m =

(
e(−(

k−Δ
k−Δ−1−1)·

2Δ
k −2η·

k−Δ
k−Δ−1) − 1

)
· e−2Δ

k −(
eη+

1
k−Δ − 1

)
· 2e−Δ

k − Δ− 1

2(k −Δ− 1)2
· 2e

−(Δ−1)
k−Δ−1 .

If there exists a positive constant d ≥ 50/δ2ε2 such that Δ ≥ d lnn, then for all
v ∈ V and c ∈ A(y, v), with probability at least 1− n−4, we have

1. ||A(y, v)| − ke−Δ/k| ≤ tk,
2. |Ry(v, c)| ≥ ((1 − exp(−Δ

k))
2 +m− δ

2)Δ.

3.1 Proof of the First Part of Theorem 1

Proof. Let

η = min

{
e−100,

ln(α+ ε)

10

}
;

δ = min

{
(1− e−η

2

)e−e

α+ ε
,

√
5η

ε

}
;

t = max

⎧⎨⎩2(eη − 1)e
−Δ
k +

2
(
e

−Δ
k −η − 1 + e·(100+100η(α+ε))

α+ε

)
k

,
2√
5
· δε√

α+ ε

⎫⎬⎭ ;

m =
(
e−(

k−Δ
k−Δ−1−1)·

2Δ
k −2η·

k−Δ
k−Δ−1 − 1

)
· e−2Δ

k −
(
eη+

1
k−Δ − 1

)
· 2e−Δ

k

− Δ− 1

2(k −Δ− 1)2
· 2e

−(Δ−1)
k−Δ−1 .

Let S consist of the colorings y in Ω such that the following conditions hold for
any node v ∈ V and any color c ∈ A(y, v):

– |A(y, v)| ≥ ke−Δ/k − tk.

– |Ry(v, c)| ≥ ((1 − e−
Δ
k)2 +m− δ

2Δ.

According to Lemma 3, if there exists a positive constant d ≥ 50/δ2ε2 such that
Δ ≥ d lnn, then for any constant ζ > 0,

|S|
|Ω| ≥ 1− 1

n4
≥ 1− ζ

16n2
= 1−

ζ
n

16 · diam(Ω)

holds for sufficiently large n. It remains to prove that there exists a constant
ζ > 0 such that every pair (x, y) ∈ Ω×S is ζ

n -distance decreasing under Jerrum’s

30 C.-C. Kuo and H.-I. Lu

coupling. Let Ly = minv∈V |A(y, v)|. Let v ∈ V be the node chosen at step t+1.
By Step 2(b) in Algorithm 1,

Pr[Xt+1(v) = Yt+1(v)] =
1

max{|A(Xt, v))|, |A(Yt, v)|}
.

Therefore, the probability that X and Y assign different colors to v is

Pr[Xt+1(v) �= Yt+1(v)] =
max{|Pv(Xt, Yt)|, |Pv(Yt, Xt)|}
max{|A(Xt, v))|, |A(Yt, v)|}

,

where the last equality is by definition of Pv. Hence,

E[ρ(Xt+1, Yt+1) | Xt = x, Yt = y]

=
∑
u∈V

Pr[Xt+1(u) �= Yt+1(u) | Xt = x, Yt = y]

=
n− 1

n
ρ(x, y) +

∑
u∈V

1

n
· max{|Pv(x, y)|, |Pv(y, x)|}
max{|A(x, v))|, |A(y, v)|}

≤ n− 1

n
ρ(x, y) +

1

nLy

(
1− Ry

2Δ

)
Δρ(x, y) (1)

≤ n− 1

n
ρ(x, y) +

1

n
·
2−

(
1− e−

1
α+ε

)2

−m+ δ
2

2(α+ ε)e
−1
α+ε − 2t(α+ ε)

ρ(x, y),

where (1) follows from Lemma 1. Recall that α is the root of (1 − e−1/x)2 +
2xe−1/x = 2 and (1− e−1/x)2 + 2xe−1/x > 2 for all x > α. Since Δ ≥ d lnn and
k ≥ (α + ε)Δ, we have

2t(α+ ε)−m+
δ

2
< 2(α+ ε)e

−1
α+ε − (2− (1− e

−1
α+ε)2),

where the inequality holds for all n ≥ n0, for some sufficiently large constant n0.
Therefore,

2− (1 − e
−1
α+ε)2 −m+

δ

2
< 2(α+ ε)e−

1
α+ε − 2t(α+ ε).

When n = n0,

2(α+ ε)e−
1

α+ε − 2t(α+ ε)− 2 + (1 − e
−1
α+ε)2 +m− δ

2

is a positive constant, and 2(α + ε)e−
1

α+ε − 2t(α + ε) − 2 + (1 − e
−1
α+ε)2 − δ

2 is
independent of n and m is increasing in n. It follows that there exists a constant

Randomly Coloring Regular Bipartite Graphs and Graphs 31

ζ > 0, such that

E[ρ(Xt+1, Yt+1) | Xt = x, Yt = y] ≤ n− 1

n
ρ(x, y) +

1− ζ

n
ρ(x, y).

Then,

E[ρ(Xt+1, Yt+1) | Xt = x, Yt = y] ≤
(
1− ζ

n

)
ρ(x, y).

By Lemma 2, the mixing time of X is O(n log n) .

4 Rapid Mixing on Graphs with Bounded Common
Neighbors

Let y be chosen from Ω uniformly at random. Let v ∈ V be the node chosen
at this step with degree d ≤ Δ. Let w1, . . . , wd be the nodes in the subgraph
induced by N(v). Let Y0 = y, we obtain Yi, for each i = 1, . . . , d, according to
the following procedure of Frieze and Vera [5].

1. Choose a color c from A(Yi−1, wi) uniformly at random.
2. Let Yi(wj) = Yi−1(wj), for all j �= i.
3. Let Yi(wi) = c.

Lemma 4. Let η be a constant with 0 < η < 1. Let G = (V,E) be the graph and

any two adjacent nodes of G have at most ξ common neighbors with ξ ≤ η1.5Δ
360e .

Let q = η
6 , k ≥ (1+ ε)βΔ, and y be chosen uniformly at random from Ω. If there

exists d ≥ 6/q such that Δ ≥ d logn, then with probability at least 1 − n−6, for
all v ∈ V ,

|A(y, v)| ≥ (1 + q)Δ.

4.1 Proof of the Second Part of Theorem 1

Proof. Let S consist of colorings y ∈ Ω with |A(y, v)| ≥ (1 + q)Δ, for all v ∈ V .
Let 0 < q < 1

6 . According to Lemma 4, if there exists a positive constant d ≥ 6/q
such that Δ ≥ d lnn, then for any constant ζ > 0,

|S|
|Ω| ≥ 1− n−6 ≥ 1− ζ

16n2
= 1−

ζ
n

16diam(Ω)

hold for sufficiently large n. It remains to prove that there exists a constant ζ >
0 such that every pair (x, y) ∈ Ω × S is ζ

n -distance decreasing under Jerrum’s
coupling. Let v ∈ V be the node chosen at step t+1. By Step 2(b) in Algorithm 1,

Pr[Xt+1(v) = Yt+1(v)] =
1

max{|A(Xt, v))|, |A(Yt, v)|}
.

32 C.-C. Kuo and H.-I. Lu

Therefore, the probability that X and Y assign different colors to v is

Pr[Xt+1(v) �= Yt+1(v)] = 1− |A(Xt, v)) ∩ A(Yt, v)|
max{|A(Xt, v))|, |A(Yt, v)|}

=
max{|A(Xt, v))|, |A(Yt, v)|} − |A(Xt, v)) ∩ A(Yt, v)|

max{|A(Xt, v))|, |A(Yt, v)|}

≤ |N(v) ∩Dt|
max{|A(Y, v)|, |A(Y, v)|} .

We have

E[ρ(Xt+1, Yt+1) | Xt = x, Yt = y] =
∑
u∈V

Pr[Xt+1(u) �= Yt+1(u) | Xt = x, Yt = y]

≤ n− 1

n
ρ(X,Y) +

1

n

∑
v∈V

|N(v) ∩Dt|
|A(Y, v)|

≤ n− 1

n
ρ(Xt, Yt) +

1

n(1 + q)Δ

∑
v∈V

|N(v) ∩Dt|

≤ (
n− 1

n
+

1

(1 + q)n
)ρ(Xt, Yt)

≤ (1− q

(1 + q)n
)ρ(Xt, Yt).

Therefore, every pair (x, y) ∈ Ω×S is q
(1+q)n distance decreasing. By Lemma 2,

the mixing time of X is O(n log n).

References

1. Bubley, R., Dyer, M.: Path coupling: a technique for proving rapid mixing in
Markov chains. In: Proceedings of the 38th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 223–231 (1997)

2. Dyer, M., Frieze, A.: Randomly colouring graphs with lower bounds on girth and
maximum degree. In: Proceedings of the 42nd IEEE Symposium on Foundations
of Computer Science, pp. 579–587 (2001)

3. Dyer, M., Frieze, A., Hayes, T.P., Vigoda, E.: Randomly coloring constant degree
graphs. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science, pp. 582–589 (2004)

4. Dyer, M., Greenhill, C., Molloy, M.: Very rapid mixing of the Glauber dynam-
ics for proper colorings on bounded-degree graphs. Random Structure and Algo-
rithms 20(1), 98–114 (2002)

5. Frieze, A., Vera, J.: On randomly colouring locally sparse graphs. Discrete Math-
ematics and Theoretical Computer Science 8(1), 121–128 (2006)

6. Frieze, A., Vigoda, E.: A survey on the use of Markov chains to randomly sample
colorings. In: Grimmett, G., McDiarmid, C. (eds.) Combinatorics, Complexity, and
Chance — A Tribute to Dominic Welsh, ch. 4. Oxford University Press (2007)

7. Hayes, T., Vigoda, E.: A non-Markovian coupling for randomly sampling colorings.
In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science, pp. 618–627 (2003)

Randomly Coloring Regular Bipartite Graphs and Graphs 33

8. Hayes, T.P.: Local uniformity properties for Glauber dynamics on graph colorings
(in submission)

9. Hayes, T.P.: Randomly coloring graphs of girth at least five. In: Proceedings of the
35th Annual ACM Symposium on Theory of Computing, pp. 269–278 (2003)

10. Hayes, T.P., Sinclair, A.: A general lower bound for mixing of single site dynamics
on graphs. In: Proceedings of the 46th Annual IEEE Symposium on Foundations
of Computer Science, pp. 511–520 (2005)

11. Hayes, T.P., Vera, J.C., Vigoda, E.: Randomly coloring planar graphs with fewer
colors than the maximum degree. In: Proceedings of the 39th Annual ACM Sym-
posium on Theory of Computing, pp. 450–458 (2007)

12. Hayes, T.P., Vigoda, E.: Variable length path coupling. In: Proceedings of the 15th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 103–110 (2004)

13. Hayes, T.P., Vigoda, E.: Coupling with stationary distribution and improved sam-
pling for colorings and independent sets. In: Proceedings of the 16th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 971–979 (2005)

14. Jerrum, M.: A very simple algorithm for estimating the number of k-colorings of
a low-degree graph. Random Structure and Algorithms 7(2), 157–166 (1995)

15. Jerrum, M., Sinclair, A.: The Markov chain Monte Carlo method: an approach to
approximate counting and integration. In: Hochbaum, D.S. (ed.) Approximation
Algorithms for NP-hard Problems, pp. 482–520. PWS Publishing Co. (1996)

16. Jerrum, M., Valiant, L., Vazirani, V.: Random generation of combinatorial struc-
tures from a uniform distribution. Theoretical Computer Science 43, 169–188
(1986)

17. Jerrum, M.R.: Counting, Sampling and Integrating: Algorithms and Complexity.
Birkhauser Verlag, Basel (2003)

18. Kenyon, C., Mossel, E., Peres, Y.: Glauber dynamics on trees and hyperbolic
graphs. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations
of Computer Science, pp. 568–578 (2001)

19. Lau, L.C., Molloy, M.: Randomly Colouring Graphs with Girth Five and Large
Maximum Degree. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS,
vol. 3887, pp. 665–676. Springer, Heidelberg (2006)

20. Martinelli, F., Sinclair, A.: Mixing time for the solid-on-solid model. In: Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, pp. 571–580
(2009)

21. Sly, A.: Reconstruction for the Potts model. In: Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, pp. 581–590 (2009)

22. Vigoda, E.: Improved bounds for sampling colorings. Journal of Mathematical
Physics 41(3), 1555–1569 (2000)

Reconfiguration

of List L(2, 1)-Labelings in a Graph

Takehiro Ito1, Kazuto Kawamura1, Hirotaka Ono2, and Xiao Zhou1

1 Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan

{takehiro,kazuto,zhou}@ecei.tohoku.ac.jp
2 Faculty of Economics, Kyushu University,

Hakozaki 6-19-1, Higashi-ku, Fukuoka, 812-8581, Japan
hirotaka@en.kyushu-u.ac.jp

Abstract. For an integer k ≥ 0, suppose that each vertex v of a graph
G has a set C(v) ⊆ {0, 1, . . . , k} of labels, called a list of v. A list L(2, 1)-
labeling of G is an assignment of a label in C(v) to each vertex v of
G such that every two adjacent vertices receive labels which differ by
at least 2 and every two vertices of distance two receive labels which
differ by at least 1. In this paper, we study the problem of reconfiguring
one list L(2, 1)-labeling of a graph into another list L(2, 1)-labeling of
the same graph by changing only one label assignment at a time, while
at all times maintaining a list L(2, 1)-labeling. First we show that this
decision problem is PSPACE-complete, even for bipartite planar graphs
and k ≥ 6. In contrast, we then show that the problem can be solved in
linear time for general graphs if k ≤ 4. We finally consider the problem
restricted to trees, and give a sufficient condition for which any two list
L(2, 1)-labelings of a tree can be transformed into each other.

1 Introduction

Consider the graph in Fig.1 that models a wireless local area network (WLAN)
in which each vertex corresponds to an access point (AP) and each edge rep-
resents the physical proximity and hence the two corresponding APs have the
high potential of interference. The WLAN standard (802.11/a/b/g) divides the
frequency spectrum into particular channels, and we wish to find an assignment
of channels to the APs without any interference [16,17]. This kind of constraints
in channel assignment have been formulated as L(2, 1)-labelings of graphs, in
which each label corresponds to a channel [3,6,14].

However, a practical issue in channel assignment requires that the formula-
tion should be considered in more dynamic situations: in order to maintain high
throughput performance, we sometimes need to change the current channel as-
signment to a newly found better assignment [16,17]. This reassignment must
be done by individual channel changes to keep the network functionality and to
prevent the need for any coordination. Furthermore, we certainly do not wish

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 34–43, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Reconfiguration of List L(2, 1)-Labelings in a Graph 35

{0, 3}

{0 ,1,2}

{2 ,3}{4, 5}

{1 ,5}

{0, 3}

{0 ,1,2}{1 ,5}

{2 ,3}{4 ,5}

f0

{0, 3}

{0 ,1,2}{1 ,5}

{2, 3}{4, 5}

ft
Fig. 1. A sequence of 5-list L(2, 1)-labelings of a graph

users to be out of service during the reassignment. This situation can be for-
mulated by the concept of reconfiguration problems that have been extensively
studied in recent literature [1,2,4,5,7,8,9,10,11,12,13,15].

[L(p, q)-Labeling and its List Version]
For an integer k ≥ 0, let L = {0, 1, . . . , k} be the label set. Then, for a pair
of integers p ≥ 0 and q ≥ 0, a k-L(p, q)-labeling of a graph G = (V,E) is an
assignment f : V → L such that, for every two vertices x and y in V ,

(i) |f(x)− f(y)| ≥ p if x and y are adjacent (i.e., at distance 1); and
(ii) |f(x)− f(y)| ≥ q if x and y are at distance 2,

where the distance between two vertices is defined as the number of edges in a
shortest path between them. Therefore, an ordinary vertex-coloring of G using
k + 1 colors is a k-L(1, 0)-labeling of G. (Note that there are k + 1 distinct
labels in L.) Given a graph G and an integer k, the k-L(p, q)-labeling problem
is to determine whether G has at least one k-L(p, q)-labeling. This problem
is known to be NP-complete [3]. The k-L(p, q)-labeling problem appears in
several practical situations [3,6], especially in the channel assignments in WLANs
(and traditionally in multi-hop radio networks), where “very close” APs must
receive channels that are at least p channels apart and “close” APs must receive
channels that are at least q channels apart so that they can avoid interference.

The “list” version is one of the most important and practical generaliza-
tion [14], in which each vertex (AP) has a list of labels (channels) allowed to be
assigned. Formally, in list L(p, q)-labeling, each vertex v of G has a set C(v) ⊆ L
of labels, called a list of v. Then, a k-L(p, q)-labeling f of G is called a k-list
L(p, q)-labeling of G if f(v) ∈ C(v) for each vertex v ∈ V . Figure 1 illustrates
three 5-list L(2, 1)-labelings of the same graph with the same lists C(v); the
label assigned to each vertex is surrounded by a box in the list. Clearly, k-
L(p, q)-labeling is a specialization of k-list L(p, q)-labeling for which C(v) = L
for every vertex v of G.

[Our Problem and Related Known Results]
Suppose that two k-list L(p, q)-labelings of a graph G are given as input. (For
example, the leftmost and rightmost ones in Fig.1, where k = 5, p = 2 and
q = 1.) Then, we consider the problem of determining whether we can transform
one into the other via k-list L(p, q)-labelings of G such that each differs from the
previous one in only one label assignment. We call this decision problem the

36 T. Ito et al.

k-list L(p, q)-labeling reconfiguration problem. For the particular in-
stance of Fig.1, the answer is “yes,” as illustrated in Fig.1, where the vertex
whose label assignment was changed from the previous one is depicted by a
thick circle. Thus, this reconfiguration problem suitably formulates dynamic and
practical situations in channel assignment [16,17].

This kind of reconfiguration problems arises when wewish to find a step-by-step
transformation between two feasible solutions of a problem such that all interme-
diate results are also feasible. Ito et al. [9] proposed a framework of reconfiguration
problems, and several reconfiguration problems have been studied such as SAT
reconfiguration [5,15], independent set reconfiguration [7,9,13], sub-
set sum reconfiguration [8], shortest path reconfiguration [12], etc.

In particular, reconfiguration problems for graph colorings have been
intensively studied [1,2,4,10,11]. Bonsma and Cereceda [2] proved that k-L(1, 0)-
labeling reconfiguration (i.e., the reconfiguration problem for (k + 1)-
vertex-colorings) is PSPACE-complete even for k ≥ 3, while Cereceda et al. [4]
proved that the problem is solvable in polynomial time for general graphs if
k ≤ 2. The reconfiguration problem for list edge-colorings has been studied and
shown to be PSPACE-complete [10]. They [10] also gave a sufficient condition for
which any two list edge-colorings of a tree can be transformed into each other,
which was improved by [11].

[Our Contribution]
Among several possible settings of p and q, the k-L(2, 1)-labeling problem has
been intensively and extensively studied due to its practical importance [3,6].
Therefore, we deal with the case where p = 2 and q = 1 in this paper, and give
mainly three results for k-list L(2, 1)-labeling reconfiguration. First, we
show that the problem is PSPACE-complete, even for bipartite planar graphs
and k ≥ 6. In contrast, as our second result, we show that the problem can
be solved in linear time for general graphs if k ≤ 4. Third, we give a sufficient
condition for which there exists a transformation between any two k-list L(2, 1)-
labelings of a tree.

These results have many implications due to the generality of “list” L(2, 1)-
labeling. For example, our proof of PSPACE-completeness can be modified so
that we can prove that k-L(2, 1)-labeling reconfiguration (i.e., the non-
list version) remains PSPACE-complete for bipartite planar graphs and k ≥ 8.
Furthermore, our proof for the sufficient condition is constructive, and hence
yields a polynomial-time algorithm that actually finds a transformation between
two given k-list L(2, 1)-labelings of a tree.

Bonsma and Cereceda [2] also dealt with the list version, and proved that k-
list L(1, 0)-labeling reconfiguration is PSPACE-complete even for k ≥ 3.
Their proof can be easily modified so that we can prove that k-list L(2, 1)-
labeling reconfiguration is PSPACE-complete for general k. However, it is
not straightforward to prove that the problem remains PSPACE-complete even
for a small constant k. Notice that k = 5 is only the case where the complexity
status remains open for k-list L(2, 1)-labeling reconfiguration.

Reconfiguration of List L(2, 1)-Labelings in a Graph 37

We finally remark that NP-hardness of the original problem does not imply
computational hardness of its reconfiguration problem. It is interesting that k-
list L(2, 1)-labeling reconfiguration is solvable in linear time for k ≤ 4,
although k-L(2, 1)-labeling is NP-complete already for k = 4 [3].

Due to the page limitation, we omit proofs from this extended abstract.

2 Definitions

In this section, we define some terms which will be used throughout the paper.
We may assume without loss of generality that a given graph G is simple and

connected. We sometimes call a k-list L(2, 1)-labeling of a graph simply a k-list
labeling, and also call a k-L(2, 1)-labeling a k-labeling. For two integers i and j
with 0 ≤ i ≤ j, we denote by [i, j] the set of labels i, i+1, . . . , j. Then, L = [0, k].
We say that two k-list labelings f and f ′ of G are adjacent if |{v ∈ V : f(v) �=
f ′(v)}| = 1, that is, f ′ can be obtained from f by changing the label assignment
of a single vertex v; we say that the vertex v is reassigned between f and f ′. For
two k-list labelings f0 and ft, a sequence 〈f0, f1, . . . , ft〉 is called a reconfiguration
sequence between f0 and ft if f1, f2, . . . , ft are k-list labelings of G such that
fi−1 and fi are adjacent for i = 1, 2, . . . , t. We also say that two k-list labelings f
and f ′ are connected if there exists a reconfiguration sequence between f and f ′.
Clearly, any two adjacent k-list labelings are connected. Given two k-list labelings
f0 and ft of a graphG, the k-list L(2, 1)-labeling reconfiguration problem
is to determine whether f0 and ft are connected. We call the problem simply
k-L(2, 1)-labeling reconfiguration if C(v) = [0, k] for all vertices v of G.
For a reconfiguration sequence between two k-list labelings, its length is defined
as the number of k-list labelings contained in the reconfiguration sequence.

For a graph G, we denote by V (G) and E(G) the vertex set and edge set of
G, respectively. The maximum degree of G is denoted by Δ(G). For a vertex
v, we denote by N1(v) the set of all vertices that are adjacent to v, that is,
N1(v) = {w ∈ V (G) | (v, w) ∈ E}. For a subgraphG′ of G, we define N1(v;G

′) =
N1(v) ∩ V (G′). Note that v is not necessarily a vertex of G′. We clearly have
N1(v;G) = N1(v) and |N1(v)| = d(v), where d(v) denotes the degree of v.
Similarly, let N2(v) = {w ∈ V (G) | dist(v, w) = 2}, where dist(v, w) denotes
the distance between v and w. For a subgraph G′ of G, we define N2(v;G

′) =
N2(v) ∩ V (G′). Note that v �∈ V (G′) may hold.

Let f be a k-list labeling of a graph G. For a vertex v of G and a subgraph
G′ of G, we define the subset Lav(f, v;G

′) ⊆ C(v), as follows: Lav(f, v;G
′) =

C(v) \
(
{f(x) − 1, f(x), f(x) + 1 | x ∈ N1(v;G

′)} ∪ {f(y) | y ∈ N2(v;G
′)}

)
.

Therefore, we can reassign v from the label f(v) to any label in Lav(f, v;G).

3 PSPACE-Completeness

The main result of this section is the following theorem.

Theorem 1. The k-list L(2, 1)-labeling reconfiguration problem is
PSPACE-complete for bipartite planar graphs of maximum degree 3 and k ≥ 6.

38 T. Ito et al.

(a)

{ 0 ,1}

{0, 1 } { 0 ,1}{0, 1 } { 0 ,1}

{ 0 ,1}

{0, 1 }

{ 0 ,1}

{0, 1 }{ 0 ,1}

{0, 1 }

{ 0 ,1}
{0, 1 }

{ 0 ,1}

{0, 1 }{ 0 ,1}

{0, 1 }

{ 0 ,1}

(b)

Fig. 2. (a) Graph Gs consisting of token triangles and token edges, where link edges
are depicted by thin dotted lines and the vertices in a standard token configuration
(namely, with tokens) are surrounded by circles, and (b) image of the corresponding
graph G together with label assignments to the connectors

It is obvious that k-list L(2, 1)-labeling reconfiguration can be solved in
polynomial space, and hence is in PSPACE. Therefore, we prove that 6-list
L(2, 1)-labeling reconfiguration is PSPACE-hard.

[Sliding tokens]
For a graph Gs, a subset T of V (Gs) is called a token configuration of Gs if
T forms an independent set of Gs; we may imagine that a token is placed on
each vertex in T . A move from a token configuration to another one is to replace
exactly one token from a vertex to its adjacent vertex, that is, we slide a token
along an edge. Note that a move must result in a feasible token configuration.
In the sliding tokens problem, we are given a graph G and two token con-
figurations T0 and Tt of G, both have the same number of tokens, and we are
asked whether there is a sequence of moves starting from T0 and ending in Tt.
This decision problem is known to be PSPACE-complete [7].

Bonsma and Cereceda [2] showed that sliding tokens remains PSPACE-
complete even for very restricted graphs and token configurations. Every vertex
of a graph Gs is part of exactly one of token triangles (i.e., copies of K3) and
token edges (i.e., copies of K2), as illustrated in Fig.2(a). Token triangles and
token edges are all mutually disjoint, and joined together by edges called link
edges. Moreover, each vertex in a token triangle is of degree exactly 3, and Gs has
a planar embedding such that every token triangle forms a face. The maximum
degree of Gs is 3. We say that a token configuration T of Gs is standard if each of
token triangles and token edges contains exactly one token (vertex) in T . Then,
any move from a standard token configuration results in another standard token
configuration; any token will never leave its token triangle or token edge, and will
never slide along a link edge. The sliding tokens problem remains PSPACE-
complete even if Gs is such a restricted graph and both T0 and Tt are standard
token configurations [2]; this restricted problem is called the standard sliding

tokens problem. We thus give a polynomial-time reduction from standard

sliding tokens to 6-list L(2, 1)-labeling reconfiguration.

Reconfiguration of List L(2, 1)-Labelings in a Graph 39

u

v w

(a)

u'

v' w'
{0,1} {0,1}

{0,1}

(b)

Fig. 3. (a) Token triangle and (b) image of the corresponding triangle gadget

u v

(a)

u'
{0,1}

v'
{0,1}

(b)

Fig. 4. (a) Token edge and (b) image of the corresponding edge gadget

[Overview of our Reduction]
We now give an overview of our reduction together with its ideas.

For a given graph Gs of standard sliding tokens, we replace each token
triangle (and each token edge) with a “triangle gadget” having three degree-1
vertices, called connectors (resp., with an “edge gadget” having two degree-1 ver-
tices which are also called connectors.) Each connector u′ in a gadget corresponds
to one vertex u in the corresponding token triangle/edge; let C(u′) = {0, 1}. (See
Figs. 3 and 4.) Assume in our reduction that, if the label 1 is assigned to a con-
nector u′, then a token is placed on the corresponding vertex u; while a token is
not placed on u if the label 0 is assigned to u′. (See Fig.2.) Therefore, for each
link edge of Gs connecting two vertices in different token triangles/edges, we re-
place it with a “link gadget” which joins the two corresponding connectors and
forbids the label 1 to be assigned to the two connectors at the same time; this
ensures that the corresponding subset of vertices in Gs forms a feasible token
configuration.

What about a move between two (standard) token configurations of Gs? Con-
sider, for example, a token sliding along a token edge (u, v) in Gs, say from u
to v. In the edge gadget having two corresponding connectors u′ and v′, this
token sliding corresponds to reassigning u′ and v′ from (1, 0) to (0, 1), where
(i, j) denotes a pair of labels i ∈ {0, 1} and j ∈ {0, 1} that are assigned to u′

and v′, respectively. However, since we can reassign only a single vertex at a
time, such a reassignment is not allowed. Therefore, in order to simulate a token
sliding along (u, v), our idea is to regard the label assignment (1, 1) as also fea-
sible; then (1, 0) and (0, 1) are connected via (1, 1). It should be noted that this
keeps the feasibility of token configurations, because no token must be placed
on any vertex in

(
N1(u) ∪ N1(v)

)
\ {u, v} when we can slide the token along

(u, v). Thus, for an edge gadget, we wish to forbid the assignment (0, 0) only.
By similar arguments, we wish to forbid the label 0 to be assigned to the three
connectors of a triangle gadget at the same time. Indeed, we can construct such

40 T. Ito et al.

triangle/edge gadgets using seven labels 0, 1, . . . , 6. Moreover, the constructed
graph G is a bipartite planar graph of maximum degree 3.

[Non-List Version]
We can give the following theorem for the non-list version.

Theorem 2. The k-L(2, 1)-labeling reconfiguration problem is PSPACE-
complete for bipartite planar graphs of maximum degree 7 and k ≥ 8.

4 Linear-Time Algorithm

The main result of this section is the following theorem.

Theorem 3. For a nonnegative integer k ≤ 4, the k-list L(2, 1)-labeling
reconfiguration problem can be solved in linear time.

To prove Theorem 3, we give several properties of k-list labelings of a graph
when k ≤ 4, based on which, we can determine in linear time whether two given
k-list labelings are connected. We first remark that the following lemma holds.

Lemma 1. For an integer k ≥ 1, if a graph G has a k-list labeling, then
Δ(G) ≤ k − 1.

We first consider the case where k ≤ 3. In this case, it suffices to consider a
connected graph G consisting of a constant number of vertices, and hence the
problem can be clearly solved in linear time. More specifically, if G has a k-list
labeling for k ≤ 3, then Lemma 1 implies that G is either a path or a cycle. It
is known that any cycle and any path of more than four vertices has no k-list
labeling if k ≤ 3 [3]. Since G has at least two k-list labelings f0 and ft, the graph
must consist of a constant number of vertices.

In the remainder of this section, we thus consider the case where k = 4. Then,
by Lemma 1 it suffices to consider a graph G with Δ(G) ≤ 3. We now give the
following lemma, which implies that we cannot reassign any vertex of degree 3
and its neighbors.

Lemma 2. Let f be any 4-list labeling of a graph G with Δ(G) ≤ 3, and let u be
a vertex of degree 3. Then, Lav(f, x;G) = {f(x)} for all vertices x ∈ N1(u)∪{u}.
Since a given graph G is connected, we may assume without loss of generality
that Δ(G) ≥ 2; because, if Δ(G) = 1, then G consists of a single edge. We say
that a vertex v is flexible if one of the following conditions (i) and (ii) holds:

(i) d(v) = 1, and d(z) = 2 for the vertex z in N1(v); and
(ii) d(v) = 2, and d(x) = 1 and d(y) �= 3 for the two vertices x, y ∈ N1(v) with

d(x) ≤ d(y).

The other vertices are said to be inflexible. We then give the following lemma,
which implies that only flexible vertices are candidates for reassignments.

Lemma 3. Let f be an arbitrary 4-list labeling of a graph G with 2 ≤ Δ(G) ≤ 3,
and let v be any vertex of G. If |Lav(f, v;G)| ≥ 2, then v is flexible.

Reconfiguration of List L(2, 1)-Labelings in a Graph 41

Lemma 3 implies that all inflexible vertices v satisfy |Lav(f, v;G)| = 1 for any 4-
list labeling f . Therefore, there is no reconfiguration sequence between two 4-list
labelings f0 and ft if there is an inflexible vertex v in G such that f0(v) �= ft(v).

Let v be a vertex of degree 1, and let w be the vertex adjacent to v. Then, we
call the pair (v, w) an active pair if v is flexible. It should be noted that w is not
necessarily flexible. We now suppose that there exists a reconfiguration sequence
between f0 and ft. Then, we say that an active pair (v, w) is independently
reconfigurable if we can reassign the vertices v and w to their target labels without
reassigning any other vertices in G. The following lemma shows that we do not
care about the order of reassignments of active pairs if G has more than five
vertices.

Lemma 4. For a graph G with more than five vertices, let f0 and ft be any
two connected 4-list labelings of G. Then, all active pairs are independently
reconfigurable.

[Proof of Theorem 3]
If a given graphG consists of at most five vertices, a simple brute-force algorithm
can solve the problem. If G has more than five vertices, we first check whether
f0(u) = ft(u) for all inflexible vertices u in G. Then, by Lemmas 3 and 4, it
suffices to check each active pair independently whether the two vertices in the
active pair can be reassigned to their target labels. Therefore, 4-list L(2, 1)-
labeling reconfiguration can be solved in linear time. ��

5 Sufficient Condition for Trees

In this section, we give a sufficient condition for which any two k-list labelings
of a tree are connected. Suppose that we are given a tree T together with a
list C(v) for each vertex v of T . The main result of this section is the following
theorem.

Theorem 4. Every two k-list labelings f and f ′ of a tree T are connected if

|C(v)| ≥ max{d(w) | w ∈ N1(v)} + 6 (1)

for each vertex v of T . Moreover, there is a reconfiguration sequence of length
O(n2) between f and f ′, where n is the number of vertices in T .

Remember that L = [0, k], and hence L contains k + 1 distinct labels. Since
Δ(T) ≥ max{d(w) | w ∈ N1(v)} for all vertices v of a tree T , Theorem 4
immediately implies the following sufficient condition for the non-list version.

Corollary 1. Every two k-labelings f and f ′ of a tree T are connected if k ≥
Δ(T)+ 5. Moreover, there is a reconfiguration sequence of length O(n2) between
f and f ′, where n is the number of vertices in T .

42 T. Ito et al.

As in Eq. (1), our concern is only the number of labels in each list C(v), and
we do not care about the maximum label k in the lists. Therefore, from now on,
we call a k-list labeling of G simply a list labeling. Note that any list labeling
of G is a k-list labeling of G such that k ≥ max{c ∈ C(v) | v ∈ V (G)}. For a
given tree T , we choose an arbitrary vertex r as the root of T , and regard T as
a rooted tree. For a vertex v in T , we denote by Tv the subtree of T which is
rooted at v and is induced by v and all descendants of v in T . Then, Tr = T ,
and Tv consists of a single vertex v if v is a leaf of T .

We give a constructive proof, that is, we give an algorithm which actually
finds a reconfiguration sequence of length O(n2) between two given list labelings
f0 and ft. Our algorithm is outlined as follows. Let T be a tree with a list C(v)
satisfying Eq. (1) for each vertex v of T . We say that a vertex v in T is fixed
if our algorithm decides not to reassign v anymore. Therefore, the target label
ft(v) must be assigned to v when it is fixed. The algorithm fixes the vertices
one by one, and terminates when all the vertices are fixed. More specifically,
by a breadth-first search starting from the root r of T , we order all vertices
v1, v2, . . . , vn of T . At the i-th step, 1 ≤ i ≤ n, we reassign the vertex vi to its
target label ft(vi) via a reconfiguration (sub-)sequence Si of length O(n) which
does not reassign any vertex vj with j < i. Indeed, we reassign vertices in V (Tvi)
only, as follows.

Lemma 5. Let v be any vertex in T , and fsi be any list labeling of T . Let c
be an arbitrary label in Lav(fsi , v;T \ Tv). Then, there exists a reconfiguration
sequence Si = 〈fsi , fsi+1, . . . , fti〉 from fsi to a list labeling fti of T such that

(i) fti(v) = c;
(ii) for each list labeling f ∈ Si, f(u) = fsi(u) if u ∈ V (T \ Tv); and
(iii) |Si| = O(|V (Tv)|).

In this way, we eventually obtain the list labeling ft. Since each reconfiguration
sub-sequence Si is of length O(n), we can obtain a reconfiguration sequence of
total length O(n2).

6 Concluding Remarks

In this paper, we analyzed complexity statuses of k-list L(2, 1)-labeling re-

configuration with respect to the maximum label k in the lists. We remark
that only the case where k = 5 remains open. We also remark that only three
cases where k = 5, 6, 7 remain open for the non-list version.

Acknowledgments. We are grateful to Shinya Kumagai for interesting and
fruitful discussions. This work is partially supported by JSPS KAKENHI Grant
Number 21680001, 22650004, 22700001, 23500001.

Reconfiguration of List L(2, 1)-Labelings in a Graph 43

References

1. Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: On the diameter of
reconfiguration graphs for vertex colourings. Electronic Notes in Discrete Mathe-
matics 38, 161–166 (2011)

2. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoretical Computer Science 410,
5215–5226 (2009)

3. Calamoneri, T.: The L(h, k)-labelling problem: An updated survey and annotated
bibliography. The Computer Journal 54, 1344–1371 (2011)

4. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colourings.
In: Proc. of IWOCA 2008, pp. 182–196 (2008)

5. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectiv-
ity of Boolean satisfiability: computational and structural dichotomies. SIAM J.
Computing 38, 2330–2355 (2009)

6. Hasunuma, T., Ishii, T., Ono, H., Uno, Y.: A linear time algorithm for L(2, 1)-
labeling of trees. To appear in Algorithmica, doi:10.1007/s00453-012-9657-z

7. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theoretical Computer Science 343, 72–96 (2005)

8. Ito, T., Demaine, E.D.: Approximability of the Subset Sum Reconfiguration Prob-
lem. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 58–69.
Springer, Heidelberg (2011)

9. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara,
R., Uno, Y.: On the complexity of reconfiguration problems. Theoretical Computer
Science 412, 1054–1065 (2011)

10. Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a
graph. Discrete Applied Mathematics 160, 2199–2207 (2012)

11. Ito, T., Kawamura, K., Zhou, X.: An improved sufficient condition for reconfigura-
tion of list edge-colorings in a tree. IEICE Trans. on Information and Systems E95-
D, 737–745 (2012)

12. Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths.
Theoretical Computer Science 412, 5205–5210 (2011)

13. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfig-
urability problems. Theoretical Computer Science 439, 9–15 (2012)

14. Kohl, A., Schreyer, J., Tuza, Z., Voigt, M.: List version of L(d, s)-labelings. Theo-
retical Computer Science 349, 92–98 (2005)

15. Makino, K., Tamaki, S., Yamamoto, M.: An exact algorithm for the Boolean con-
nectivity problem for k-CNF. Theoretical Computer Science 412, 4613–4618 (2011)

16. Marias, G.F., Skyrianoglou, D., Merakos, L.: A centralized approach to dynamic
channel assignment in wireless ATM LANs. In: Proc. of INFOCOM 1999, vol. 2,
pp. 601–608 (1999)

17. Matsumura, Y., Kumagai, S., Obara, T., Yamamoto, T., Adachi, F.: Channel seg-
regation based dynamic channel assignment for WLAN (preprint)

doi:10.1007/s00453-012-9657-z

An 8/3 Lower Bound for Online Dynamic Bin

Packing

Prudence W.H. Wong, Fencol C.C. Yung, and Mihai Burcea�

Department of Computer Science, University of Liverpool, UK
{pwong,m.burcea}@liverpool.ac.uk, ccyung@graduate.hku.hk

Abstract. We study the dynamic bin packing problem introduced by
Coffman, Garey and Johnson. This problem is a generalization of the bin
packing problem in which items may arrive and depart dynamically. The
objective is to minimize the maximum number of bins used over all time.
The main result is a lower bound of 8/3 ∼ 2.666 on the achievable com-
petitive ratio, improving the best known 2.5 lower bound. The previous
lower bounds were 2.388, 2.428, and 2.5. This moves a big step forward
to close the gap between the lower bound and the upper bound, which
currently stands at 2.788. The gap is reduced by about 60% from 0.288 to
0.122. The improvement stems from an adversarial sequence that forces
an online algorithm A to open 2s bins with items having a total size
of s only and this can be adapted appropriately regardless of the current
load of other bins that have already been opened by A. Comparing with
the previous 2.5 lower bound, this basic step gives a better way to derive
the complete adversary and a better use of items of slightly different
sizes leading to a tighter lower bound. Furthermore, we show that the
2.5-lower bound can be obtained using this basic step in a much simpler
way without case analysis.

1 Introduction

Bin packing is a classical combinatorial optimization problem [6,8,9]. The ob-
jective is to pack a set of items into a minimum number of unit-size bins such
that the total size of the items in a bin does not exceed the bin capacity. The
problem has been studied extensively both in the offline and online settings. It is
well-known that the problem is NP-hard [11]. In the online setting [14,15], items
may arrive at arbitrary time; item arrival time and item size are only known
when an item arrives. The performance of an online algorithm is measured using
competitive analysis [3]. Consider any online algorithm A. Given an input I, let
OPT (I) and A(I) be the maximum number of bins used by the optimal offline
algorithm and A, respectively. Algorithm A is said to be c-competitive if there
exists a constant b such that A(I) ≤ cOPT (I) + b for all I.

Online Dynamic Bin Packing. Most existing work focuses on “static” bin
packing in the sense that items do not depart. In some potential applications like

� Supported by EPSRC Studentship.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 44–53, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Online Dynamic Bin Packing 45

warehouse storage, a more realistic model takes into consideration of dynamic
arrival and departures of items. In this natural generalization, known as dynamic
bin packing [7], items arrive over time, reside for some period of time, and may
depart at arbitrary time. Each item has to be assigned to a bin from the time
it arrives until it departs. The objective is to minimize the maximum number
of bins used over all time. Note that migration to another bin is not allowed. In
the online setting, the size and arrival time is only known when an item arrives
and the departure time is only known when the item departs.

In this paper, we focus on online dynamic bin packing. It is shown in [7] that
First-Fit has a competitive ratio between 2.75 and 2.897, and a modified first-fit
algorithm is 2.788-competitive. A lower bound of 2.388 is given for any deter-
ministic online algorithm. This lower bound has later been improved to 2.428 [4]
and then 2.5 [5]. The problem has also been studied in two- and three-dimension
as well as higher dimension [10,16]. Other work on dynamic bin packing consid-
ered a restricted type of items, namely unit-fraction items [2,4,12]. Furthermore,
Ivkovic and Lloyd [13] studied the fully dynamic bin packing problem, which
allows repacking of items for each item arrival or departure and they gave a
1.25-competitive online algorithm for this problem. Balogh et al. [1] studied the
problem when a limited amount of repacking is allowed.

Our Contribution.We improve the lower bound of online dynamic bin packing
for any deterministic online algorithm from 2.5 to 8/3 ∼ 2.666. This makes a big
step forward to close the gap with the upper bound, which currently stands at
2.788 [7]. The improvement stems from an adversarial sequence that forces an
online algorithm A to open 2s bins with items having a total size of s only and
this can be adapted appropriately regardless of the load of current bins opened
by A. Comparing with the previous 2.5 lower bound, this basic step gives a
better use of items of slightly different sizes leading to a tighter lower bound.
Furthermore, we show in Section 3.3 that the 2.5-lower bound can be obtained
using this basic step in a much simpler way without case analysis. It is worth
mentioning that we consider optimal packing without migration at any time.

The adversarial sequence is composed of two operations, namely Op-Inc and
Op-Comp. Roughly speaking, Op-Inc uses a load of at most s to make A open s
bins, this is followed by some item departure such that each bin is left with only
one item and the size is increasing across the bins. Op-Comp then releases items
of complementary size such that for each item of size x, items of size 1 − x are
released. The complementary size ensures that the optimal offline algorithm O
is able to pack all these items using s bins while the sequence of arrival ensures
that A has to pack these complementary items into separate bins.

2 Preliminaries

In dynamic bin packing, items arrive and depart at arbitrary time. Each item
comes with a size. We denote by s-item an item of size s. When an item arrives,
it must be assigned to a unit-sized bin immediately without exceeding the bin
capacity. At any time, the load of a bin is the total size of items currently

46 P.W.H. Wong, F.C.C. Yung, and M. Burcea

assigned to that bin that have not yet departed. We denote by �-bin a bin of
load �. Migration is not allowed, i.e., once an item is assigned to a bin, it cannot
be moved to another bin. This also applies to the optimal offline algorithm. The
objective is to minimize the maximum number of bins used over all time.

When we discuss how items are packed, we use the following notations:

– Item configuration ψ: y∗z describes a load y with y
z items of size z, e.g., 1

2∗ε
means a load 1

2 with 1
2ε items of size ε. We skip the subscript when y = z.

– Bin configuration π: (ψ1, ψ2, · · ·), e.g., (13 ,
1
2∗ε) means a bin has a load of

5
6 , with a 1

3 -item and an addition load 1
2 with ε-items. In some cases, it is

clearer to state the bin configuration in other ways, e.g., (12 ,
1
2), instead of

1∗ 1
2
. Similarly, we will use 6× 1

6 instead of 1∗ 1
6
.

– Packing configuration ρ: {x1:π1, x2:π2, · · · } a packing where there are x1 bins
with bin configuration π1, x2 bins with π2, and so on. E.g., {2k:1∗ε, k:(13 ,

1
2∗ε)}

means 2k bins are each packed with load 1 with ε-items and another k bins
are each packed with a 1

3 -item and an addition load 1
2 with ε-items.

– It is sometimes more convenient to describe a packing as x:f(i), for 1 ≤ i ≤ x,
which means that there are x bins with different load, one bin with load f(i)
for each i. E.g., k: 12−iδ, for 1 ≤ i ≤ k, means that there are k bins and one
bin with load 1

2−iδ for each i.

3 Op-Inc and Op-Comp

In this section, we discuss a process that the adversary uses to force an online
algorithm A to open new bins. The adversary releases items of slightly different
sizes in each stage and uses items of complementary sizes in different stages.
Two operations are designed, namely, Op-Inc and Op-Comp. Op-Inc forces A to
open some bins each with one item (of size < 1

2) and the size of items is strictly
increasing. Op-Comp then bases on the bins opened by Op-Inc and releases items
of complementary size. This is to ensure that an item released in Op-Inc can be
packed with a corresponding item released in Op-Comp into the same bin by an
optimal offline algorithm. In the adversary, a stage of Op-Inc is associated with
a corresponding stage of Op-Comp, but not necessarily consecutive, e.g., in one
of the cases, Op-Inc is in Stage 1 and the corresponding Op-Comp is in Stage 4.

3.1 Operation Op-Inc

The aim of Op-Inc is to make A open at least s more bins, for some s > 0, such
that each new bin contains one item with item size increasing over the s bins.

Pre-condition. Consider any value 0 < x < 1
2 . Let h be the number of x-items

that can be packed in existing bins.

Items to Be Involved. The items to be released have size in the range [x, x+ε],
for some small ε, such that x+ ε < 1

2 . A total of h+� sx� items are to be released.

Outcome. A opens at least s more new bins with increasing load in each new
bin and the load of current bins remains unchanged.

Online Dynamic Bin Packing 47

< <<< <<�1 �2 �s�s−1

ss

1−�s 1−�s−1 1−�11−�2

Fig. 1. Op-Comp: Assuming k = 0. The s bins on the left are bins created by Op-Inc.
The s new bins on the right are due to Op-Comp. Note that each existing item has a
complementary new item such that the sum of size is 1.

The Adversary. The adversary releases items of size x, x+ ε
s , x+ 2ε

s , · · · . Let
zi = x+ iε

s . In each step i, the adversary releases zi-items until A opens a new
bin. We stop releasing items when h+ � sx� items have been released in total. By
the definition of h, s and x, A would have opened at least s new bins. We then
let zi-items depart except exactly one item of size zi, for 0 ≤ i < s, in the i-th
new bin opened by A.
Using Op-Inc. When we use Op-Inc later, we simply describe it as Op-Inc
releasing h+ � sx� items with the understanding that it works in phases and that
items depart at the end.

3.2 Operation Op-Comp

Op-Comp is designed to work with Op-Inc and assumes that there are s existing
bins each with load in the range [x, y] where x < y < 1

2 . The outcome of
Op-Comp is that A opens s more bins. Figure 1 gives an illustration.

Pre-condition. Consider two values x < y < 1
2 . Suppose A uses s bins with

load x = �1 < �2 < · · · < �s = y. Let � =
∑

1≤i≤s �i. Furthermore, suppose
there are some additional bins with load smaller than x. Let h be the number
of (1−y)-items that can be packed in other existing bins with load less than x.

Items to Be Involved. The items to be released have size in the range [1 −
y, 1− x]. Note that 1− x > 1− y > 1

2 . In each step i, for 1 ≤ i ≤ s, the number
of (1 − �s+1−i)-items released is at most h+ s+ 2− i.

Outcome. A opens s more bins, each with an item 1− �s+1−i, for 1 ≤ i ≤ s.

The Adversary. Starting from the largest load �s, we release items of size 1−�s
until A opens a new bin. At most h + s + 1 items are needed. Then we let all
(1−�s)-items depart except the one packed in the new bin. In general, in Step i,
for 1 ≤ i ≤ s, we release items of size 1−�s+1−i until A opens a new bin. Note
that such items can only be packed in the first s + 1 − i bins and so at most
h+ s+ 2− i items are required to force A to open another bin. We then let all
(1−�s+1−i)-items depart except the one packed in the new bin.

Using Op-Comp. Similar to Op-Inc, when we use Op-Comp later, we describe
it as Op-Comp with h and s and the understanding is that it works in phases
and there are items released and departure in between. Note that the �i- and

48 P.W.H. Wong, F.C.C. Yung, and M. Burcea

(1− �i)-items are complementary and the optimal offline algorithm would pack
each pair of complementary items in the same bin.

3.3 A 2.5 Lower Bound Using Op-Inc and Op-Comp

We demonstrate how to use Op-Inc and Op-Comp by showing that we can obtain
a 2.5 lower bound as in [5] using the two operations in a much simpler way.

Let k be some large even integer, ε = 1
k , and δ = ε

k+1 . The adversary works in

stages. In Stage 1, we release k
ε items of size ε. Any online algorithm A uses at

least k bins. Let items depart until the configuration is {k:ε}. In Stage 2, we aim
to force A to use k

2 new bins. We use Op-Inc to release at most 2k items of size in

[12−
k
2 δ,

1
2−δ]. For each existing ε-bin, at most one such new items can be packed

because 1−kδ+ε > 1. The parameters for Op-Inc are therefore x = 1
2−

k
2 δ, h = k

and s = k
2 . The configuration of A becomes {k:ε, k

2 :
1
2−iδ}, for 1 ≤ i ≤ k

2 . In

Stage 3, we aim to force A to use k
2 new bins. We use Op-Comp to release items

of size in the range x = 1
2+δ to y = 1

2+
k
2δ. At most one such item can be packed

in the bins with an ε-item, i.e., h = k. The second k
2 bins contains items of

complementary size to the items released in Stage 3, i.e., s = k
2 . Note that at

any time during Op-Comp, at most 3k
2 +1 items are released. A needs to open

at least k
2 new bins with the configuration {k:ε, k2 :

1
2−iδ,

k
2 :

1
2+iδ}, for 1 ≤ i ≤ k

2 .

In the final stage, we release k
2 items of size 1 and A needs a new bin for each

of these items. The total number of bins used by A becomes 5k
2 .

On the other hand, the optimal algorithm O can use k + 2 bins to pack all
items as follows and hence the competitive ratio is at least 2.5. In Stage 1, all
the ε-items that never depart are packed in one bin and the rest in k − 1 bins.
In Stage 2, the new items are packed in k bins, with the k

2 bins with size 1
2−iδ,

for 1 ≤ i ≤ k
2 , that never depart each packed in one bin, and the remaining 3k

2
items in the remaining space. At the end of the stage, only one item is left in
each of the first k

2 bins and the second k
2 bins are freed for Stage 3. In Stage 3,

the complementary items that do not depart are packed in the corresponding k
2

bins, and the remaining in at most k
2 + 1 bins. Finally in Stage 4, the 1-items

are packed in the k
2 bins freed in Stage 3.

4 The 8/3 Lower Bound

We give an adversary such that at any time, the total load of items released and
not departed is at most 6k +O(1), for some large integer k. We prove that any
online algorithm A uses 16k bins, while the optimal offline algorithm O uses
at most 6k + O(1) bins. Then, the competitive ratio of A is at least 8

3 . The
adversary works in stages and uses Op-Inc and Op-Comp in pairs. Let ni be
the number of new bins used by A in Stage i. Let ε = 1

6k and δ = ε
16k .

In Stage 0, the adversary releases 6k
ε items of size ε, with total load 6k. It is

clear that A needs at least 6k bins, i.e., n0 ≥ 6k. We distinguish between two

Online Dynamic Bin Packing 49

cases: n0 ≥ 8k and 8k > n0 ≥ 6k. We leave the details of the easier first case in
the full paper, and we consider only the complex second case in this paper.

Case 2: 6k ≤ n0 < 8k.

This case involves three subcases. We make two observations about the load of
the n0 bins. If less than 4k bins have load at least 1

2 + ε, then the total load of
all bins is at most (4k − 1) + 4k/2 = 6k − 1, contradicting the fact that total
load of items released is 6k. Similarly, if less than 5k bins have load at least
1
4 + ε, then the total load of all bins is at most (5k − 1) + 3k/4 < 6k, leading to
a contradiction.

Observation 1. At the end of Stage 0 of Case 2, (i) at least 4k bins have load
at least 1

2 + ε; (ii) at least 5k bins have load at least 1
4 + ε.

Stage 1. We aim at n1 ≥ 2k. We let ε-items depart until the configuration of A
becomes

{4k:(1
2
+ε)∗ε, k:(

1

4
+ε)∗ε, k:ε} ,

with 6k bins and a total load of 9k/4+O(1). We then use Op-Inc with x = 1
4+δ,

h = 8k, and s = 2k. The first 4k bins can pack at most one x-item, the next
k bins at most two, and the last k bins at most three, i.e., h = 9k. Any new
bin can pack at most three items, implying that Op-Inc releases 15k = h + 3s
items of increasing sizes, from 1

4+δ to at most 1
4+15kδ. According to Op-Inc, A

opens at least 2k bins, i.e., n1 ≥ 2k. We consider two subcases: n1 ≥ 4k and
2k ≤ n1 < 4k.

Case 2.1: 6k ≤ n0 < 8k and n1 ≥ 4k. In this case, we have 10k ≤ n0 + n1.

Stage 2. We aim at n2 ≥ 4k. The configuration after Op-Inc becomes

{4k:(1
4
+ε)∗ε, k:(

1

4
+ε)∗ε, k:ε, 4k:

1

4
+iδ} , for 1 ≤ i ≤ 4k,

with 10k bins and a total load of 9k/4+O(1). Note that in the last 4k bins, the
load increases by δ from 1

4+δ to 1
4+4kδ. We now use Op-Comp with x = 1

4+δ,
y = 1

4+4kδ, h = k, and s = 4k. I.e., Op-Comp releases items of sizes from 3
4−4kδ

to 3
4−δ and at any time, at most 5k + 1 items are needed. None of these items

can be packed in the first 5k bins, and only one can be packed in the next k
bins, i.e., h = k as said. According to Op-Comp, A requires 4k new bins.

Stage 3.We aim at n3 = 2k. We let items depart until the configuration becomes

{4k:ε, k:ε, k:ε, 4k:1
4
+iδ, 4k:

3

4
−iδ} , for 1 ≤ i ≤ 4k,

with 14k bins and a load of 4k +O(1). We further release 2k items of size 1. A
needs to open 2k new bins. In total, A uses 6k + 4k + 4k + 2k = 16k bins.

We note that each item with size 1
4+iδ has a corresponding item 3

4−iδ such
that the sum of sizes is 1. This allows the optimal offline algorithm to have a
better packing. The details will be given in the full paper.

Lemma 1. If A uses [6k, 8k) bins in Stage 0 and at least 4k bins in Stage 1,
then A uses 16k bins at the end while O uses 6k + 4 bins.

50 P.W.H. Wong, F.C.C. Yung, and M. Burcea

Case 2.2: 6k ≤ n0 < 8k and 2k ≤ n1 < 4k. In this case, the Op-Inc
in Stage 1 is paired with an Op-Comp in Stage 4 (not consecutively), and in
between, there is another pair of Op-Inc and Op-Comp in Stages 2 and 3, re-
spectively. Let m be the number of bins among the n1 new bins that have been
packed two items. We further distinguish two subcases: m ≥ 2k and m < 2k.

Case 2.2.1: 6k ≤ n0 < 8k, 2k ≤ n1 < 4k and m ≥ 2k. In this case, we
have 8k ≤ n0 + n1 < 10k and m ≥ 2k. We make an observation about the bins
containing some ε-items. In particular, we claim that there are at least k bins
that are packed with

– either one ε-item and at least two (14+iδ)-items,
– or one (14+iδ)-item plus at least a load of (14+ε)∗ε.

We note that in Stage 1, 15k items are released, at most three items can be
packed in any of the n1 < 4k new bins, i.e., at most 12k items. So, at least 3k
of them have to been packed in the first 6k bins. Let a and b be the number
of bins in the first 5k bins (with load at least 1

4+ε) that are packed at least
one (14+iδ)-item; z1, z2, z3 be the number of bins in the next k bins (with one
ε-item) that are packed one, two, and three (14+iδ)-items, respectively. Note
that z1 + z2 + z3 = k. Since 3k items have to be packed in these bins, we have
a+ 2b+ z1 + 2z2 + 3z3 ≥ 3k, hence a+ 2b+ z2 + 2z3 ≥ 2k. The last inequality
implies that a+ b+ z2 + z3 ≥ k and the claim holds.

Observation 2. At the end of Stage 1 of Case 2.2.1, at least k bins are packed
with either one ε-item and at least two (14+iδ)-items, or one (14+iδ)-item plus
at least a load of (14+ε)∗ε.

Stage 2. We aim at n2 ≥ 2k. Let z = z2 + z3. We let items depart until the
configuration becomes

{3k:(1
2
+ε)∗ε, k−z:((

1

4
+ε)∗ε,

1

4
+iδ), z:(ε,

1

4
+iδ,

1

4
+iδ), 2k:ε, 2k:(

1

4
+iδ,

1

4
+iδ)} ,

with 8k bins and a total load of 3k +O(1).
Let δ′ = δ

16k . We use Op-Inc with x = 1
2−6kδ′, h = 2k, and s = 2k. The x-

items can only be packed in the 2k bins with load ε, at most one item in one bin,
i.e., h = 2k. Any new bin can pack at most two, implying that Op-Inc releases
6k = h+ 2s items of increasing sizes, from 1

2−6kδ′ to at most 1
2−δ′. According

to Op-Inc, A has to open at least 2k new bins, i.e., n2 ≥ 2k.

Stage 3. In this stage, we aim at n3 ≥ 2k. We use Op-Comp which corresponds
to Op-Inc in Stage 2. We let items depart until the configuration becomes

{3k:(12+ε)∗ε, k−z:((14+ε)∗ε,
1
4+iδ), z:(ε, 1

4+iδ, 14+iδ), 2k:ε, 2k:(14+iδ, 14+iδ), 2k:12−iδ′} ,

with 10k bins and a total load of 4k + O(1). We then use Op-Comp with x =
1
2−6kδ′, y = 1

2−5kδ′, h = 2k, and s = 2k. I.e., we release items of increasing
size from 1

2+5kδ′ to 1
2+6kδ′, and at any time, at most 4k+ 1 items are needed.

The 2k bins of load ε can pack one such item. Suppose there are w, out of 2k,

Online Dynamic Bin Packing 51

ε-bins that are not packed with a 1
2+iδ′-item. According to Op-Comp, A has to

open 2k+w new bins.

Stage 4. In this stage, we aim at n4 ≥ 2k−w. We use Op-Comp which corre-
sponds to Op-Inc in Stage 1. We let items depart until the configuration is

{3k:(14+ε)∗ε, k−z:(14+ε)∗ε, z:(ε,
1
4+iδ), 2k−w:(ε, 1

2+iδ′), w:ε, 2k:14+iδ, 2k:12−iδ′, 2k+w: 12+iδ′, } ,

with 12k+w bins and a total load of 9k/2+O(1). We then use Op-Comp with
x = 1

4+δ, y = 1
4+2kδ, h = w, and s = 2k−w. I.e., we release items of sizes from

3
4−2kδ to 3

4−δ and at any time, at most 2k+1 items are needed. Only w ε-bins
can pack such item, i.e., h = w as said. According to Op-Comp, A has to open
2k−w new bins.

Stage 5. In this final stage, we aim at n5 = 2k. We let items depart until the
configuration is

{3k:ε, k−z:ε, z:ε, 2k−w:ε, w:ε, 2k:1
4
+iδ, 2k:

1

2
−iδ′, 2k+w:

1

2
+iδ′, 2k−w: 3

4
−iδ, } ,

with 14k bins and a total load of 4k− w
4 +O(1). Finally, we release 2k items of

size 1 and A has to open 2k new bins. In total, A uses 3k+ (k − z) + z + (2k −
w) + w + 2k + 2k + (2k + w) + (2k − w) + 2k = 16k. The packing of O will be
given in the full paper.

Lemma 2. If A uses [6k, 8k) bins in Stage 0, [2k, 4k) bins in Stage 1, and
m ≥ 2k, then A uses 16k bins at the end while O uses 6k + 3 bins.

Case 2.2.2: 6k ≤ n0 < 8k, 2k ≤ n1 < 4k and m < 2k. We recall that
in Stage 1, 15k items of size 1

4+iδ are released and A uses [2k, 4k) new bins for
these items.

Observation 3. (i) At most 8k items of size 1
4+iδ can be packed to the n1 new

bins. (ii) At least k of the {k: 14+iδ, k:ε} bins have load more than 1
2 . (iii) At

least 2k of the {4k:(12+ε)∗ε} bins are packed with at least one (12+iδ)-item.

Let z1 and z2 be the number of new bins that are packed one and at least two,
respectively, (14+iδ)-items The following observation gives a bound on z.

Observation 4. (i) At most 9k items of size 1
4+iδ can be packed in existing

bins. (ii) z2 ≥ k. (iii) z1 ≥ 3(2k − z2).

Stage 2.We target n2 ≥ z2. We let items depart until the configuration becomes

– 2k:(12+ε)∗ε,

– 2k:((14+ε)∗ε,
1
4+iδ), this is possible because of Observation 3(iii),

– x:(ε, 14+iδ, 14+iδ),

– k−x:((14+ε)∗ε,
1
4+iδ), this is possible because of Observation 3(ii),

– k:ε,

52 P.W.H. Wong, F.C.C. Yung, and M. Burcea

– z2:(
1
4+iδ, 14+iδ), this is possible because of Observation 4(ii),

– 2(2k−z2):(14+iδ), this is possible because of Observation 4(iii),

with 10k − z2 bins and a total load of 7k/2 + O(1). We then use Op-Inc with
x = 1

2−5kδ′, h = 5k − 2z2 and s = z2. The x-items can only be packed in k of
ε-bins and 2(2k− z2) of (

1
4+iδ)-bins, i.e., h = k+2(2k− z2) = 5k− 2z2 as said.

Any new bin can pack at most two, implying that Op-Inc releases 5k = h+ 2s
items of increasing sizes from 1

2−5kδ′ to
1
2−δ′. According to Op-Inc, A has to

open at least z2 bins, i.e., n2 ≥ z2.

Stage 3.We target n3 ≥ z2. We let items depart until the configuration becomes

{2k:(1
2
+ε)∗ε, 2k:((

1

4
+ε)∗ε,

1

4
+iδ), x:(ε,

1

4
+iδ,

1

4
+iδ), k−x:((1

4
+ε)∗ε,

1

4
+iδ), k:ε,

z2:(
1

4
+iδ,

1

4
+iδ), 2(2k−z2):

1

4
+iδ, z2:

1

2
−iδ′} ,

with 10k bins and a total load of 7k/2 + z2/2 + O(1). We use Op-Comp with
s = z2 to release items of increasing size from 1

2+δ′. These items can only be
packed in ε-bins (k of them) and (14+iδ)-bins (2(2k− z2) of them). At any time,
at most (5k − z2) + 1 items are needed. According to Op-Comp, A has to open
z2 bins, i.e., n3 ≥ z2.

Stage 4. We target n4 ≥ (4k − z2). We let items depart until the configuration
becomes

{4k−x:(1
4
+ε)∗ε, k+x:(ε,

1

4
+iδ), k:ε, 4k−z2:

1

4
+iδ, z2:

1

2
−iδ′, z2:

1

2
+iδ′} ,

with 10k+z2+O(1) bins and a total load of 9k/4+3z2/4. We then use Op-Comp
with s = 4k−z2 and items of increasing size 3

4−iδ. Using similar ideas as before,
A has to open (4k − z2) new bins.

Stage 5.We target n5 = 2k. We let items depart until the configuration becomes

{4k−x:ε, k+x:ε, k:ε, 4k−z2:
1

4
+iδ, z2:

1

2
−iδ′, z2:

1

2
+iδ′, 4k−z2:

3

4
−iδ, } ,

with 14k bins and a total load of 4k + O(1). We finally release 2k items of size
1 and A has to open 2k new bins. In total A uses 6k+8k+2k = 16k bins. The
packing of O will be given in the full paper.

Lemma 3. If A uses [6k, 8k) bins in Stage 0, [2k, 4k) bins in Stage 1, and
m < 2k, then A uses 16k bins at the end while O uses 6k + 5 bins.

Theorem 5. No online algorithm can be better than 8/3-competitive.

5 Conclusion

We have derived a 8/3 ∼ 2.666 lower bound on the competitive ratio for dy-
namic bin packing, improving the best known 2.5 lower bound [5]. We designed

Online Dynamic Bin Packing 53

two operations that release items of slightly increasing sizes and items with com-
plementary sizes. These operations make a more systematic approach to release
items: the type of item sizes used in a later case is a superset of those used in an
earlier case. This is in contrast to the previous 2.5 lower bound in [5] in which
rather different sizes are used in different cases. Furthermore, in each case, we use
one or two pairs of Op-Inc and Op-Comp, which makes the structure clearer and
the proof easier to understand. We also show that the new operations defined
lead to a much easier proof for a 2.5 lower bound. An obvious open problem is
to close the gap between the upper and lower bounds.

References

1. Balogh, J., Békési, J., Galambos, G., Reinelt, G.: Lower bound for the online bin
packing problem with restricted repacking. SIAM J. Comput. 38, 398–410 (2008)

2. Bar-Noy, A., Ladner, R.E., Tamir, T.: Windows scheduling as a restricted version
of bin packing. In: Munro, J.I. (ed.) SODA, pp. 224–233. SIAM (2004)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

4. Chan, J.W.-T., Lam, T.W., Wong, P.W.H.: Dynamic bin packing of unit fractions
items. Theoretical Computer Science 409(3), 172–206 (2008)

5. Chan, J.W.-T., Wong, P.W.H., Yung, F.C.C.: On dynamic bin packing: An im-
proved lower bound and resource augmentation analysis. Algorithmica 53(2), 172–
206 (2009)

6. Coffman Jr., E.G., Galambos, G., Martello, S., Vigo, D.: Bin packing approxi-
mation algorithms: Combinatorial analysis. In: Du, D.-Z., Pardalos, P.M. (eds.)
Handbook of Combinatorial Optimization. Kluwer Academic Publishers (1998)

7. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Dynamic bin packing. SIAM J.
Comput. 12(2), 227–258 (1983)

8. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Bin packing approximation algo-
rithms: A survey. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-
Hard Problems, pp. 46–93. PWS (1996)

9. Csirik, J., Woeginger, G.J.: On-line Packing and Covering Problems. In: Fiat, A.,
Woeginger, G.J. (eds.) Online Algorithms 1996. LNCS, vol. 1442, pp. 147–177.
Springer, Heidelberg (1998)

10. Epstein, L., Levy, M.: Dynamic multi-dimensional bin packing. Journal of Discrete
Algorithms 8, 356–372 (2010)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, San Francisco (1979)

12. Han, X., Peng, C., Ye, D., Zhang, D., Lan, Y.: Dynamic bin packing with unit
fraction items revisited. Information Processing Letters 110, 1049–1054 (2010)

13. Ivkovic, Z., Lloyd, E.L.: A fundamental restriction on fully dynamic maintenance
of bin packing. Inf. Process. Lett. 59(4), 229–232 (1996)

14. Seiden, S.S.: On the online bin packing problem. J. ACM 49(5), 640–671 (2002)
15. van Vliet, A.: An improved lower bound for on-line bin packing algorithms. Infor-

mation Processing Letters 43(5), 277–284 (1992)
16. Wong, P.W.H., Yung, F.C.C.: Competitive Multi-dimensional Dynamic Bin Pack-

ing via L-Shape Bin Packing. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS,
vol. 5893, pp. 242–254. Springer, Heidelberg (2010)

Computing k-center over Streaming

Data for Small k�

Hee-Kap Ahn, Hyo-Sil Kim, Sang-Sub Kim, and Wanbin Son

Pohang University of Science and Technology, Korea
{heekap,allisabeth,helmet1981,mnbiny}@postech.ac.kr

Abstract. The Euclidean k-center problem is to compute k congru-
ent balls covering a given set of points in Rd such that the radius is
minimized. We consider the k-center problem in Rd for k = 2, 3 in a
single-pass streaming model, where data is allowed to be examined once
and only a small amount of information can be stored in a device. We
present two approximation algorithms whose space complexity does not
depend on the size of the input data. The first algorithm guarantees a
(2+ε)-factor using O(d/ε) space in arbitrary dimensions, and the second
algorithm guarantees a (1+ε)-factor using O(1/εd) space in constant di-
mensions. The same algorithms can be used to compute a k-center under
any Lp metric for k = 2, 3.

1 Introduction

A clustering, one of the fundamental problems in computer science, is to partition
a given set into subsets, called clusters, subject to various objective functions.
In the past, most of the clustering problems are considered in the static setting
(off-line), that is, the data is known in advance. In recent decades, massive data
set made a streaming model extremely popular as the size of memory is much
smaller than the size of data. In this paper, we consider a single-pass streaming
model [4], where data is allowed to be examined once and only a limited amount
of information can be stored in a device. In this model, it is important to develop
an algorithm whose space complexity does not depend on the size of input, since
the input size in data streams is typically huge.

Among various clustering problems, we consider the minmax radius clustering,
also known as the (metric) k-center problem: Given a set P of n points in d-
dimensional metric space, find k points called centers such that the maximum
distance between a point in P and its nearest center is minimized. The metric k-
center problem can be formulated to find k congruent balls covering P such that
the radius is minimized. The discrete k-center problem requires that obtained
k centers be a subset of P .

In this paper, we study the Euclidean k-center problem in a single-pass stream-
ing model for k = 2, 3. We show that our approach can be used to compute a
k-center under any Lp metric for k = 2, 3.

� This research is supported by the NRF grant 2011-0030044 (SRC-GAIA) funded by
the government of Korea.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 54–63, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Computing k-center over Streaming Data for Small k 55

Previous Work in the Static Setting. If k is a part of input, the k-center
problem is np-hard [11], even in the plane [17]. In fact, it is known to be np-hard
to approximate within factor 2 for arbitrary metric spaces, and within factor
1.822 for the Euclidean space [5]. For fixed k and d, Agarwal and Procopiuc [2]

gave an exact algorithm that runs in nO(k1−1/d) time for any Lp metric.
If k and d are small, there exist more efficient algorithms. For the Euclidean

1-center problem (computing the smallest ball enclosing P), there exists a linear
time algorithm for any fixed dimension [10]. For the Euclidean 2-center prob-
lem in the plane, the best known algorithm is given by Chan [6] and it runs
deterministically in O(n log2 n log2 logn) time using O(n) space.

Previous Work on Data Streams. The coreset framework is one of the
fundamental tools for designing streaming algorithms since it captures an ap-
proximate “shape” of input in small size; see [1,7,19]. For the k-center problem,
Zarrabi-Zadeh [14] shows that one can maintain an ε-coreset using O(k/εd) space
under any Lp metric, which is, to authors’ knowledge, the only known result of
obtaining ε-coresets for the k-center problem whose space does not depend on n.

While the coreset framework guarantees an ε-approximate solution to the
problem, its exponential dependency on d is not so attractive in high dimensions.
Some work which uses polynomial space in d has been presented independently;
Charikar et al. [9] gave an 8-approximation algorithm using O(dk) space and
Guha [12] gave a (2+ε)-approximation algorithm using O((dk/ε) log(1/ε)) space
to the k-center problem for any metric space. (see also [15] for an algorithm
similar to Guha [12]).

For small k, especially for the Euclidean 1-center, the problem is well stud-
ied. In fixed dimensions, one can devise a (1 + ε)-approximation algorithm
using O(1/ε(d−1)/2) space by maintaining extreme points along a number of
different directions (a generalization of the algorithm given by Hershberger and
Suri [13]). For arbitrary dimensions, Zarrabi-Zadeh and Chan [20] gave a 1.5-
approximation algorithm maintaining only one center and one radius, which is
the minimal amount of storage to compute a 1-center. Agarwal and Sharathku-
mar [3] developed a (1 +

√
3)/2 + ε ≈ 1.3661-approximation algorithm using

O((d/ε3) log(1/ε)) space, showing that any algorithm in the one-pass streaming
algorithm with space polynomially bounded in d cannot approximate an optimal
1-center within factor (1 +

√
2)/2 > 1.207. Chan and Pathak [8] improved the

approximation factor to 1.22 by analysing their algorithm more carefully.
For the Euclidean 2-center problem, Poon and Zhu [18] propose a 5.708-

approximation algorithm for d > 1 (for d = 1, the same algorithm guarantees a
factor of 2) using the minimum space, that is, two centers and one radius.

We are not aware of any other result on the k-center problem for the special
case of k > 2.

Our Results. We present two approximation algorithms for computing a Eu-
clidean 2-center in a single-pass streaming model. Both of our algorithms improve
the previous known results for the k-center problem for k = 2 in approximation
factor, space or update time.

56 H.-K. Ahn et al.

The first algorithm melp guarantees a (2 + ε)-approximation that works in
arbitrary dimensions using O(d/ε) space and O(d/ε) update time. In fact, one
can easily show that melp can be used in any metric space using oracle dis-
tance model and also in the discrete setting. While Guha’s algorithm [12], when
plugged in k = 2, usesO(d/ε log(1/ε)) space andO((dn/ε) log(1/ε)+(1/ε) log r∗)
time in total, where r∗ is the optimal radius of the two clusters, melp uses less
space and less running time. Especially, note that the running time of our algo-
rithm does not depend on the optimal radius. Compared to Poon and Zhu [18],
melp improves their approximation factor by relaxing the (too strict) restriction
that maintains only two centers and one radius.

Our second algorithm medg guarantees a (1 + ε)-approximation to the Eu-
clidean 2-center problem using O(1/εd) space and O(1) amortized update time
(through a certain lazy update procedure) for constant dimensions. The run-
ning time and space complexity of medg is asymptotically same as the one by
Zarrabi-Zadeh [14], where the proof for the time complexity is not given clearly.
In this paper, we provide a complexity analysis and a correctness proof of our
algorithm.

In the full version of this paper, we show that our algorithms can be applied
to the Euclidean 3-center problem. Its extension to the Lp-metric for p � 1 is
rather straightforward and we omit the proof. See Table 1 for summary.

Table 1. Our results for computing a k-center under Lp for k = 2, 3

approx. factor space update time remarks

melp 2 + ε O(d/ε) O(d/ε) in arbitrary dimensions

medg 1 + ε O(1/εd) O(1) amortized in constant dimensions

2 Preliminaries

Let P be a set of n points in d-dimensional Euclidean space Rd. In a single-
pass streaming model, a point in P is arriving one by one, and is allowed to be
examined only once. The points in P are labeled in order of their arrivals. That
is, pi is a point in P that has arrived at the i-th step. We denote by Pi a subset
of points in P that have arrived until the i-th step, that is, Pi = {p1, p2, . . . , pi}.

An optimal solution is a solution of the 2-center problem in Rd, when all the
points in P are assumed to be known in advance.

Let B∗1 and B∗2 denote the two congruent balls in an optimal solution, c∗1
and c∗2 denote their centers, r∗ denote their radius, and δ∗ denote the distance
between B∗1 and B∗2 , that is, ‖c∗1c∗2‖ = 2r∗ + δ∗. Let P ∗1 and P ∗2 be subsets of
P such that P ∗1 = P ∩ B∗1 and P ∗2 = P ∩ B∗2 . If B

∗
1 and B∗2 are disjoint, so are

P ∗1 and P ∗2 . If the notations are used without ∗, they denote an approximate
solution generated by our algorithms.

Let B(c, r) denote a ball of radius r centered at c, and r(B) denote the radius
of a ball B.

Computing k-center over Streaming Data for Small k 57

pi

c1 c2

B1 B2

BU

‖c2pi‖
‖c1pi‖

⇒

BU → new B1

pi → new c2

new B2

new BU

c1r(BU)

Fig. 1. When pi arrives, merge occurs if r(BU) � min{‖c1pi‖, ‖c2pi‖}

Overview. The rest of the paper is organized as follows. In Section 3 we consider
when the point set P is well-separated, that is, δ∗ is relatively big compared to the
optimal radius r∗. We consider δ∗ > 2r∗ and devise an algorithm MergeExpand
which partitions P optimally. We prove that this algorithm guarantees a 2-factor
to the Euclidean 2-center problem using O(d) space for δ∗ > 2r∗. By maintaining
each partition using O(1/εd) grid cells, the algorithm guarantees a (1+ε)-factor
using O(1/εd) space in fixed dimensions.

In Section 4 we consider the case δ∗ � 2r∗. Unlike δ∗ > 2r∗, it is tricky
to partition P optimally in the single-pass streaming setting. We present two
algorithms. In Section 4.1 we develop an algorithm LayerPartition which main-
tains O(1/ε) partitions and guarantees a (2+ε)-factor to the Euclidean 2-center
problem. To obtain a (1 + ε)-approximation, in Section 4.2, we introduce an-
other algorithm DoublingGrid which maintains O(1/εd) grid cells and computes
a 2-center over those grid cells when needed1.

3 The Case δ∗ > 2r∗

We here introduce an algorithm MergeExpand that can be used for δ∗ > 2r∗.
MergeExpand always maintains a ball BU centered at p1 and whose radius

is determined by the distance between p1 and its farthest point in Pi−1. The
basic procedure of MergeExpand is as follows: When a new point pi arrives,
if pi is contained in one of the current two balls B1 and B2, we just update
BU if pi /∈ BU . Otherwise, we enter an update-stage where either merge- or
expand-operation occurs. merge replaces the current two balls B1 and B2 into
BU and B(pi, r(BU)), respectively. See Figure 1. expand replaces B1 and B2

to two new balls such that the centers remain the same but the radius becomes
min{‖c1pi‖‖c2, pi‖}. Then we update BU if pi /∈ BU . We choose the operation

1 Note that DoublingGrid works only for constant dimensions, since the 2-center prob-
lem is np-complete if d is not fixed [16].

58 H.-K. Ahn et al.

which makes the updated radius smaller. The precise description of the algorithm
is given as follows:

Algorithm MergeExpand
Input: P
Output: Two balls B1 and B2 of radius r
1. B1 ← B(p1, 0)
2. B2 ← B(p2, 0)
3. BU ← B(p1, ‖p1p2‖)
4. for i ←3 to n
5. if pi /∈ B1 ∪B2

6. then if r(BU) � min{‖c1pi‖, ‖c2pi‖}
7. then merge B1 ← BU , B2 ← B(pi, r(BU)).
8. else expand B1 ← B(c1, ‖cjpi‖) and B2 ← B(c2, ‖cjpi‖),

where j = 1 if ‖c1pi‖ � ‖c2pi‖ and j = 2 otherwise.
9. BU ← B(p1, ‖p1pi‖) if pi /∈ BU .
10. return B1 and B2

Note that MergeExpand computes discrete two centers, which means that the
two centers of B1 and B2 are the input points of P . Especially, B1 and BU always
take p1 as their centers. The algorithm sets the radii of B1 and B2 the same.
The space that the algorithm maintains is then the coordinates of the centers of
B1 and B2 and the radii of B1 and BU .

We now show that for δ∗ > 2r∗, MergeExpand guarantees an optimal partition
of P , which means that P ∗1 ⊂ B1, P

∗
2 ⊂ B2, P

∗
1 ∩B2 = ∅, and P ∗2 ∩B1 = ∅.

Lemma 1. For δ∗ > 2r∗, MergeExpand guarantees an optimal partition.

Proof. Without loss of generality, assume that Pi−1 ⊂ B∗1 , and pi is the first
point that lies in B∗2 . We claim that this moment is the last moment when a
merge-operation occurs. Indeed, at the ith-step, merge occurs since r(BU) �
2r∗ and ‖cjpi‖ � δ∗ > 2r∗ for j = 1, 2. For any l > i, we have r(BU) >
min{‖c1pl‖, ‖c2pl‖} since r(BU) � δ∗ and ‖cjpl‖ � 2r∗ < δ∗ for at least one of
j = 1, 2, and the claim follows.

Since after ith-step only expand-operations occur, this proves lemma. ��
Corollary 1. For δ∗ > 2r∗, MergeExpand computes a 2-approximation to the
2-center problem using O(d) space and update time.

Proof. By Lemma 1, P ∗1 ⊂ B1 and P ∗2 ⊂ B2, P
∗
1 ∩B2 = ∅, and P ∗2 ∩B1 = ∅. As

noted, c1 and c2 are the input points of P and so c1 ∈ P ∗1 and c2 ∈ P ∗2 . Since
the distance between any two points lying in B∗1 is at most 2r∗ and the radius
of B1 is determined by one of those distances, we have r(B1) � 2r∗. The same
holds for B2. An update takes O(d) to compute the distances and the corollary
follows. ��
MergeExpand can be modified to use O(1/εd) grid cells to maintain each par-
tition of P using a technique called a doubling, which will be described in Sec-
tion 4.2. Let us call it MergeExpand ε. Due to the space limit we omit the proof
and only state the result.

Computing k-center over Streaming Data for Small k 59

Corollary 2. For δ∗ > 2r∗, MergeExpand ε computes a (1 + ε)-approximation
to the 2-center problem using O(1/εd) space and O(1) amortized time per update
in fixed dimensions under any Lp metric.

4 The Case δ∗ � 2r∗

For the case δ∗ � 2r∗, it is not so easy to partition the point set optimally,
since the optimal two balls are too close and we cannot keep enough information
in the single-pass streaming setting. Indeed, one can show that any algorithm
that assigns the partition of a point pi definitively (like MergeExpand) cannot
guarantee an approximation factor within 2. In this section, we suggest two
algorithms that choose the best partition upon request.

4.1 LayerPartition

The first algorithm LayerPartition always maintains layered m = �12/ε� balls
centered at p1. Let Bi = {b1, b2, . . . , bm} denote such m balls for Pi. For each
ball, we define a partition which divides the point set into two, one lying in bj
and the other lying in Rd \ bj. For each partition of bj, we maintain two balls
Bj1 and Bj2 of discrete centers to enclose the partitioned points. See Figure 2.

The algorithm starts from two input points p1 and p2. Initially it creates lay-
ered m balls centered at p1 and whose radii are (j/m)·‖p1p2‖ for j = 1, 2, . . . ,m.
When a new point pi ∈ P arrives, if it is contained in bm then we update each
partition by expanding Bj1 if pi ∈ bj or Bj2 if pi ∈ Rd \ bj for j = 1, . . . ,m. If
pi is not contained in bm, we create new m layered balls. Let x be the smallest
integer satisfying 2xr(bm) � ‖p1pi‖ > 2x−1r(bm). The new balls b′j have radius
(j/m) · 2xr(bm) for j = 1, . . . ,m. If the new ball b′j coincides with the old ball,
we keep its partitioning information and update for pi. Otherwise we create the
new partitions; B′j1 has p1 as its center. B

′
j2 has pi as its center if pi lies in Rd\b′j

and otherwise we let Bj2 = ∅. Let r(j) denote max{r(Bj1), r(Bj2)}.

Algorithm LayerPartition
Input: P , ε
Output: Two balls B1 and B2 of radius r
1. Accept two input points p1, p2.
2. m← �12/ε�
3. Make m layered balls bj whose radii are (j/m) · ‖p1p2‖ for j = 1, 2, . . . ,m.
4. Make a partition of bj , {Bj1 = B(p1, 0), Bj2 = B(p2, 0)} for j = 1, 2, . . . ,m.
5. for i ←3 to n
6. if pi ∈ bm
7. then Update each partition of bj for j = 1, . . . ,m
8. else Make new m layered balls whose radii are (j/m) · 2xr(bm) for

j = 1, 2, . . . ,m, and update information.
9. Take j such that r(j) is the smallest among m partitions.
10. return Bj1 and Bj2

60 H.-K. Ahn et al.

b3

For b1: B11 = B(p1, 0), B12 = B(p2, ‖p2p3‖).

For b2: B21 = B(p1, ‖p1p3‖), B22 = B(p2, ‖p2p4‖)

For b3: B31 = B(p1, ‖p1p4‖), B32 = B(p2, 0).

p2

p3

p4

b2

p1

b1

Fig. 2. Three layered balls and their corresponding partitions

Lemma 2. For δ∗ � 2r∗, LayerPartition guarantees a (2+ ε)-approximation to
the 2-center problem using O(d/ε) space and update time.

Proof. Let B∗1 be the ball in an optimal solution which contains p1. We look at
Bn, the final layered m balls. To bound the radius of bj ∈ Bn for j = 1, . . . ,m,
we think about the moment when pi, which causes creating Bn, arrives. Note
that we have Bi−1 �= Bi and Bi = Bi+1 = · · · = Bn.

Let us denote the balls in Bi−1 by bj for j = 1, . . . ,m. By definition r(bm) =
2xr(bm), where x satisfies 2x−1r(bm) < ‖p1pi‖. Since δ∗ � 2r∗, any pairwise
distance in P cannot exceed 6r∗, and thus ‖p1pi‖ � 6r∗ and r(bm) = 2xr(bm) <
2‖p1pi‖ � 12r∗. Since m = �12/ε�, r(bj) = (j/m) · r(bm) < j · εr∗ for j =
1, . . . ,m.

Consider now the smallest ball bj that contains P ∗1 = B∗1 ∩ P . If j = 1,
r(b1) < εr∗, and b1 gives a (2+ ε)-approximation. Otherwise, look at bj−1. Note
that bj−1 contains a proper subset of P ∗1 . Since the distance between any pair of
points in P ∗1 is at most 2r∗ and p1 is the center of bj−1, r(bj−1) < 2r∗. Therefore,

r(bj) = (j/m) · r(bm) = r(bj−1) + (1/m)r(bm) < 2r∗ + εr∗ = (2 + ε)r∗.

Since bj contains all the points in P ∗1 , the points lying in Rd\bj must be contained
in P ∗2 and thus have radius at most r∗. Since the center of Bj2 is one of the input
points, its radius can be at most 2r∗, which proves the lemma. ��

By running MergeExpand and LayerPartition together and taking the minimum
radius of the balls obtained by these subroutines, we have an algorithm melp:

Theorem 1. melp works in arbitrary dimensions and guarantees a (2 + ε)-
approximation to the 2-center problem using O(d/ε) space and update time.

Computing k-center over Streaming Data for Small k 61

pi

The current grid The new grid

pi

⇒
h

w

w′ = 2w

h′ = 2h

Fig. 3. Create a new grid by doubling the width and the height of the current grid
upon arrival of pi; gray grid cells are marked and do not contain any actual point

4.2 DoublingGrid

To obtain a (1 + ε)-approximation factor, we develop an algorithm called Dou-
blingGrid. We first explain the algorithm in the plane and its extension to the
general dimensions is straightforward.

It initially makes a �c/ε�×�c/ε� grid for the bounding box of p1 and p2, where
c = 24

√
2. If a new point pi is contained in the current grid, we mark the cell

which contains pi, and otherwise, we perform an operation called a doubling : we
make a new grid by doubling the width or the height or both of the current grid
so that the new grid contains pi. See Figure 3. Let w and h be the width and
the height of the current grid, respectively. Then the width w′ and the height h′

of the new grid is 2jw and 2kh, where j and k is the smallest integer such that
the new grid contains pi.

Algorithm DoublingGrid2D
Input: P , ε
Output: Two balls B1 and B2 of radius r
1. Make a bounding box of p1 and p2
2. c← 24

√
2

3. Make a �c/ε� × �c/ε� grid G on the bounding box of p1 and p2.
4. Mark the cells that contains p1 and p2.
5. for i← 3 to n
6. if pi ∈ G
7. then Mark the cell containing pi.
8. else Make a new grid by doubling G such that it contains pi.
9. Mark cells in the new grid if it contains points.
10. Compute an exact 2-center for marked grid cells.
11. return B1 and B2

Computing an exact 2-center in the plane can be done in O((1/ε2) log2(1/ε)
log2 log (1/ε)) time by Chan [6].

62 H.-K. Ahn et al.

Lemma 3. For δ∗ � 2r∗, DoublingGrid2D guarantees a (1 + ε)-approximation
to the Euclidean 2-center problem in the plane using �(24

√
2/ε)�2 space and

update time.

Proof. Let w denote the width of the bounding box of B∗1 ∪B∗2 , and h denote its
height. Then w, h � 6r∗. By the algorithm, the width (resp. height) of the final
grid can enlarge up to 4w (resp. 4h). Since we will compute an exact 2-center for
the marked grid cells, it is enough to show that every grid cell has its diagonal
length bounded by εr∗. Let D be the length of the diagonal of a cell in the final
grid. Then

D =
(
4w/�c/ε�)2 + (4h/�c/ε�)2

)1/2 � (4ε/c)(w2 + h2)1/2 � εr∗,

since (w2 + h2)1/2 � 6
√
2r∗ and c = 24

√
2. For each update, we may need to

update every cell, which yields the time complexity. ��

Note that DoublingGrid2D works for any Lp metric by replacing c = 24
√
2 by

c = 24 ·21/p. Note also that since we use O(1/ε2) space anyway, we can postpone
an update of the grid until we have O(1/ε2) new points. We know that which
point will cause the last doubling so we can compute the side-length of the new
grid and update the cell information once for the O(1/ε2) points, in which we
spend O(1) amortized time per update.

The generalization of DoublingGrid2D to a d-dimensional Lp-metric space
is straightforward, which we call DoublingGrid (here, we can use Agarwal and
Procopiuc’s algorithm to compute an exact 2-center [2]).

By running DoublingGrid and MergeExpand ε, we obtain an algorithm medg:

Theorem 2. medg guarantees a (1+ε)-approximation to the Euclidean 2-center
problem by using O(1/εd) space and O(1) amortized time per update in fixed
dimensions under any Lp metric.

Due to the limit of space, we only state the results on the 3-center problem and
postpone the proofs in the full version of this paper.

Theorem 3. The streaming 3-center problem can be approximated by a factor
of (2 + ε) using O(d/ε) space and update time in arbitrary dimensions, and by
a factor of (1 + ε) using O(1/εd) space and O(1) amortized time per update in
fixed dimensions under any Lp metric.

5 Conclusions

In this paper, we mainly consider computing a Euclidean 2-center in a single-
pass streaming setting. Because of the limitation that we are not allowed to
see the streaming data more than twice, it is not so easy to devise algorithms
that guarantees a good approximation factor using as small space as possible.
Nevertheless, we have provided two algorithms: for any given constant ε > 0,
melp guarantees a (2 + ε)-factor using O(d/ε) space for arbitrary dimensions
and medg guarantees a (1 + ε)-factor using O(1/εd) in fixed dimensions.

Computing k-center over Streaming Data for Small k 63

We do not know any better lower bound than (1 +
√
2)/2 ≈ 1.207 for the

worst-case approximation ratio of streaming algorithms using space polynomi-
ally bounded in d (this lower bound can be achieved from Agarwal and Shrathku-
mar’s [3]); we suspect that the tight lower bound is higher. Another interesting
question is whether we really need Ω(1/εd) space to obtain a (1 + ε)-factor.

References
1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures

of points. Journal of the ACM 51(4), 606–635 (2004)
2. Agarwal, P.K., Procopiuc, C.M.: Exact and approximation algorithms for cluster-

ing. Algorithmica 33, 201–226 (2002)
3. Agarwal, P.K., Sharathkumar, R.: Streaming algorithms for extent problems in

high dimensions. In: Proc. of the 21st ACM-SIAM Sympos. Discrete Algorithms,
pp. 1481–1489 (2010)

4. Aggarwal, C.C.: Data streams: models and algorithms. Springer (2007)
5. Bern, M., Eppstein, D.: Approximation algorithms for geometric problems. In:

Approximation Algorithms for NP-Hard Problems. PWS Publishing Co. (1996)
6. Chan, T.M.: More planar two-center algorithms. Computational Geometry 13(3),

189–198 (1999)
7. Chan, T.M.: Faster core-set constructions and data-stream algorithms in fixed

dimensions. Computational Geometry 35, 20–35 (2006)
8. Chan, T.M., Pathak, V.: Streaming and Dynamic Algorithms for Minimum Enclos-

ing Balls in High Dimensions. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS
2011. LNCS, vol. 6844, pp. 195–206. Springer, Heidelberg (2011)

9. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and
dynamic information retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004)

10. Chazelle, B., Matoušek, J.: On linear-time deterministic algorithms for optimiza-
tion problems in fixed dimension. Journal of Algorithms 21, 579–597 (1996)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

12. Guha, S.: Tight results for clustering and summarizing data streams. In: Proc. of
the 12th Int. Conf. on Database Theory, pp. 268–275. ACM (2009)

13. Hershberger, J., Suri, S.: Adaptive sampling for geometric problems over data
streams. Computational Geometry 39(3), 191–208 (2008)

14. Zarrabi-Zadeh, H.: Core-preserving algorithms. In: Proc. of 20th Canadian Conf.
on Comput. Geom. (CCCG), pp. 159–162 (2008)

15. McCutchen, R.M., Khuller, S.: Streaming Algorithms for k-Center Clustering with
Outliers and with Anonymity. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld,
R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 165–178. Springer,
Heidelberg (2008)

16. Megiddo, M.: On the complexity of some geometric problems in unbounded dimen-
sion. J. Symbolic Comput. 10, 327–334 (1990)

17. Megiddo, M., Supowit, K.J.: On the complexity of some common geometric location
problems. SIAM J. Comput. 13(1), 182–196 (1984)

18. Poon, C.K., Zhu, B.: Streaming with Minimum Space: An Algorithm for Covering
by Two Congruent Balls. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp.
269–280. Springer, Heidelberg (2012)

19. Zarrabi-Zadeh, H.: An almost space-optimal streaming algorithm for coresets in
fixed dimensions. Algorithmica 60, 46–59 (2011)

20. Zarrabi-Zadeh, H., Chan, T.M.: A simple streaming algorithm for minimum en-
closing balls. In: Proc. of 18th CCCG, pp. 139–142 (2006)

Precision vs Confidence Tradeoffs for �2-Based

Frequency Estimation in Data Streams

Sumit Ganguly

Indian Institute of Technology

Abstract. We consider the data stream model where an n-dimensional
vector x is updated coordinate-wise by a stream of updates. The fre-
quency estimation problem is to process the stream in a single pass
and using small memory such that an estimate for xi for any i can
be retrieved. We present the first algorithms for �2-based frequency es-
timation that exhibit a tradeoff between the precision (additive error)
of its estimate and the confidence on that estimate, for a range of pa-
rameter values. We show that our algorithms are optimal for a range of
parameters for the class of matrix algorithms, namely, those whose state
corresponding to a vector x can be represented as Ax for some m × n
matrix A. All known algorithms for �2-based frequency estimation are
matrix algorithms.

1 Introduction

The problem of estimating frequencies is one of the most basic problems in data
stream processing. It is used for tracking heavy-hitters in low space and real
time, for example, finding popular web-sites accessed, most frequently accessed
terms in search-engines, popular sale items in supermarket transaction database,
etc.. In the general turnstile data streaming model, an n-dimensional vector
x is updated by a sequence of update entries of the form (i, v). Each update
(i, v) transforms xi ← xi + v. The frequency estimation problem is to design
a data structure and an algorithm A that (i) processes the input stream in
a single pass using as little memory as possible, and, (ii) given any i ∈ [n],
uses the structure to return an estimate x̂i for xi satisfying, |x̂i − xi| ≤ ErrA,
with confidence 1 − δ, where, C is a space parameter of A and ErrA denotes
the precision or the additive error of the estimation. We consider frequency
estimation algorithms whose error guarantees are in terms of the �2-norm. The
Countsketch algorithm by Charikar et. al. [1] is the most well-known �2-based
frequency estimation and has precision ErrCSK = ‖xres(C)‖2/

√
C and confidence

1−n−Ω(1). Here, ‖xres(C)‖2 is the second norm of x calculated after removing the
top-C absolute frequencies from it. The residual norm is often smaller than the
standard norm, since in many scenarios, much of the energy of xmay concentrate
in the top few frequencies.

Precision-Confidence Trade-offs. Let us associate with a randomized estima-
tion algorithm A running on an input x, a pair of numbers namely, (1) its

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 64–74, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Precision vs Confidence Tradeoffs for �2-Based Frequency Estimation 65

Work Precision Failure Space Update Esti-
mation

Probability O(words) time O(·) Time O(·)
Countsketch[1] ‖xres(C)‖2/

√
C n−Ω(1) C log n log n n

acsk-I ‖xres(C)‖2 n−Ω(1) (C + log n) log2 n n

4 ≤ d ≤ O(log n) ×
√

d/(C log n) +2−d × log n

acsk-ii ‖xres(C)‖2 1/16 (C + log n) logO(1) n C×
4 ≤ d ≤ O(log(n/C)) ×

√
d/(C log(n/C)) +2−d × log n

C
logO(1) n

Fig. 1. Precision-Confidence tradeoffs for �2-based frequency estimation. For acsk-

i and acsk-ii , the parameter d ≥ 4 controls the precision-confidence tradeoff.

precision ErrA(x), and (2) the confidence denoted 1 − δA with which the pre-
cision holds. We say that A exhibits a precision-confidence tradeoff if for each
fixed input x, the set of feasible non-dominating (ErrA(x), δA) pairs is at least
2 and preferably, is a large set. A point (ErrA(x), δA) dominates (Err′A(x), δ

′
A)

if ErrA(x) < Err′A(x) and δA(x) < δ′A(x). For example, Countsketch has

the single point (‖xres(C)‖2/
√
C, 1 − n−Ω(1)) and does not exhibit a tradeoff.

Why are algorithms with precision-confidence tradeoffs useful? To illustrate,
suppose that an application requires frequency estimation of items in some
input set H of a-priori unknown size t with high constant probability. Using
Algorithm acsk-i (see Figure 1) with d = log(t) + O(1) gives a precision of
‖xres(C)‖2

√
log t/(C logn) and confidence of 1− t2−c log t = 1− t1−c. If t = O(1),

the precision is superior to that of Countsketch by a factor of
√
logn. If t = n

this matches the Countsketch guarantees. The important property is that no
changes or re-runs of the algorithm are needed. The same output simultaneously
satisfies all the precision-confidence pairs in its tradeoff set.

Contributions. We present a frequency estimation algorithm acsk-i (Averaged
CountSketch-I) that has precision O(‖xres(C)‖2

√
d/(C logn)) and confidence

1 − 2−d, where, 4 ≤ d ≤ Θ(log n). A second frequency estimation algorithm
acsk-ii has precision O(‖xres(C)‖2

√
d/(C log(n/C))) and confidence 1 − 2−d.

Both algorithms show precision-confidence tradeoff by tuning the value of d in
the allowed range. Figure 1 compares the algorithms along different measures.
We also show that the algorithms are optimal up to constant factors for a wide
range of the parameters among the class of algorithms whose state on input x
can be represented as Ax, for some m× n matrix A.

Summary. We build on the Countsketch algorithm of Charikar et.al. in [1].
Instead of taking the median of estimates for xi from the individual tables, we
take the averages over the estimates for xi from those tables where a set of
heavy-hitters do not collide with i. The analysis uses the 2dth moment method
which requires O(d)-wise independence of the random variables. This degree of
independence d parameterizes the precision-confidence tradeoff.

66 S. Ganguly

2 The ACSK Algorithms

Notation. Let Countsketch(C, s) denote the structure consisting of s hash ta-
bles T1, . . . , Ts, each having 8C buckets, using independently chosen pair-wise
independent hash functions h1, . . . , hs respectively. The bucket Tl[b] is the sketch:
Tl[b] =

∑
hl(i)=b xiξil, where the family {ξil}i∈[n] for each l ∈ [s] is four-wise inde-

pendent and the families use independent seeds across the tables. The estimated
frequency is the median of the table estimates, that is, x̂i = medians

l=1Tl[hl(i)]ξil.
Then, |x̂i − xi| ≤ ‖xres(C)‖2/

√
C, with probability 1− 2−Ω(s).

For an n-dimensional vector x and H ⊂ [n], let xH denote the sub-vector of
x with coordinates in H .

The acsk-i (C, s0, s, d) structure with space parameter C, number of tables
parameters s0 and s, and degree of independence parameter d, maintains two
structures, namely, (1) Countsketch(2C, s0), where, s0 = c logn for some
constant c > 0, and, (2) Countsketch(C′, s), where, C′ = �3eC�, that uses
(a) 2d + 1-wise independent Rademacher families {ξil}i∈[n] for each l ∈ [s],
and, (b) the hash functions h1, . . . , hs corresponding to the tables T1, . . . , Ts

are independently drawn from a d+ 3-wise independent hash family that maps
[n] to [C′]. Both structures are updated as in the classical case. The frequency
estimation algorithm is as follows.

1. Use the first Countsketch structure to obtain a set H of the top-2C items
by absolute values of their estimated frequencies (by making a pass over [n]).

2. Let S(i,H) be the set of table indices in the second Countsketch structure
where i does not collide with any item in H \ {i}. Return the average of the
estimates for xi obtained from the tables in S(i,H).

x̂i = averagel∈S(i,H)Tl[hl(i)] · ξil .

Analysis. Let x′i denote the estimated frequency obtained from the first struc-
ture. By property of precision of Countsketch[1] we have, |x′i − xi| ≤ Δ,
where, Δ = ‖xres(2C)‖2/

√
2C. Let GoodH denote the event GoodH ≡ ∀i ∈

[n], |x′i−xi| ≤ Δ. So by union bound, Pr
[
GoodH

]
≥ 1−n2−Ω(s0). We first prove

simple upper bounds for (a) the maximum frequency of an item in H̄ , and, (b)
‖xres(H)‖22 =

∑
j∈[n]\H x2

j . Let TH denote the maximum absolute frequency of

an item not in H . Lemma 1 (a) is proved in Appendix A. Lemma 1 (b) follows
variants proved in [3,2].

Lemma 1. Conditional on GoodH, (a) TH ≤ (1 +
√
2)‖xres(C)‖2/

√
C, and, (b)

‖xres(H)‖22 ≤ 9‖xres(2C)‖22.

Consider the second Countsketch structure of acsk-I. Let p = 1/(8C′) =
1/(8�3eC�) ≤ 1/(24eC), which is the probability that a given item maps to a
given bucket in a hash table. For i, j ∈ [n], j �= i and table index l ∈ [s], let
χijl be 1 if hl(i) = hl(j) and 0 otherwise. Lemma 2 shows that given sufficient
independence of the hash functions, S(i,H) = Θ(s) with high probability.

Precision vs Confidence Tradeoffs for �2-Based Frequency Estimation 67

Lemma 2. Suppose the hash functions h1, . . . , hs of a Countsketch structure
are each chosen from a pair-wise independent family. Let C′ ≥ �1.5et�+1. Then,
for any given set H with |H | = t, |S(i,H)| ≥ 3s/5 with probability 1− e−s/3.

Lemma 3 presents an upper bound on the 2dth moment for the sum of 2d-wise
independent random variables, each with support in the interval [−1, 1] and
having a symmetric distribution about 0. Its proof, given in the Appendix, uses
ideas from the proof of Theorem 2.4 in [6] but gives a slightly stronger result in
comparison.

Lemma 3. Suppose X1, X2, . . . , Xn are 2d-wise independent random variables
such that the Xi’s have support in the interval [−1, 1] and have a symmetric
distribution about 0. Let X = X1 +X2 + . . .+Xn. Then,

E
[
X2d

]
≤
√
2

(
2dVar [X]

e

)d(
1 +

d

Var [X]

)d−1
.

For a suitable normalization value T1 and j ∈ [n] \ (H ∪ {i}), let Xijl =
(xj/T1)ξjlξilχijl and let

Xi = (x̂i − xi)|S(i,H)|/T1 =
∑

l∈S(i,H)

∑
j �∈H∪{i}

Xijl .

We wish to calculate E
[
X2d

i

]
and use it to obtain a concentration of measure

for Xi. However, the Xijl’s contributing to Xi are conditioned on the event that
l ∈ S(i,H), a direct application of Lemma 3 is not possible. Lemma 4 gives
an approximation for E

[
X2d

i

]
in terms of E[X2d

i], where, E[X2d
i] is the 2dth

moment of the same random variable but under the assumption that the ξjl’s
and the hash functions hl’s for each l are fully independent.

Lemma 4. Let C′ = �3eC�, the hl’s be d + 1 + t-wise independent, t ≥ 2 and
{ξil}i∈[n] be 2d+ 1-wise independent. Then E

[
X2d

i

]
≤ (1 + 8(12t)−t)dE[X2d

i].

The proof of Lemma 4 requires the following Lemma 5, which is an application
of the principle of inclusion-exclusion and Bayes’ rule.

Lemma 5. For any s ≥ 1 and t ≥ 2, let X1, . . . , Xn be s+ t-wise independent
and identically distributed Bernoulli (i.e., 0/1) random variables with t ≥ 2 and
p = Pr

[
Xi = 1

]
≤ 1/(12e). Then, for disjoint sets S,H ⊂ [n], with |S| = s and

|H | ≤ 1/(12pe),
∣∣Pr[∀j ∈ S,Xj = 1 | ∀j ∈ H,Xj = 0

]
− ps

∣∣ ≤ 8(12t)−t .

The proof of Lemma 5 is given in the Appendix. We can now prove Lemma 4.

Proof (Of Lemma 4.).

E
[
X2d

i

]
= E

[(∑
l∈S(i,H),j �=i

(xj/T1)ξjlξilχijl

)2d
]

=
∑

∑
l∈S(i,H),j �=i ejl=2d

ejl ’s even

(
2d

e11, . . . , ens

) ∏
l∈S(i,H)

E
[∏
j:ejl>0

(xj/T1)
ejlχijl | l ∈ S(i,H)

]

68 S. Ganguly

Let e denote the vector (e11, . . . , ens) that satisfies the constraints in the summa-
tion, that is, (1)

∑
l∈S(i,H),j �=i ejl = 2d, (2) ejl = 0 for each l ∈ [s] \ S(i,H), j ∈

[n], and, (3) each ejl is even. Let Sile = {j : ejl > 0}. Define the events:

E1(i, l, e) : ∀j ∈ Sile, χijl = 1 and E2(i, l, H) : ∀j ∈ H \ {i}, χijl = 0.

Then,

E
[∏

j:ejl>0 χijl | l ∈ S(i,H)
]
= Pr

[
E1(i, l, e) | E2(i, l, H)

]
.

Since the product is taken over positive ejl’s, for each such l, Sile is non-empty.
A bound on Pr

[
E1(i, l, e)) | E2(i, l, H)

]
can now be obtained using Lemma 5,

where, p = Pr [χijl = 1] = 1/C′ ≤ 1/(24eC). Further, |Sile| ≤ d and |H | =
2C ≤ 1/(12pe). So the premises of Lemma 5 are satisfied. Also, since the hash
function hl is drawn from a d + 1 + t-wise independent family, the family of
random variables {χijl : j ∈ [n], j �= i}, for each fixed i and l, is d + t-wise
independent, and across the l’s is fully independent. Applying Lemma 5, we
obtain Pr

[
E1(i, l, e) | E2(i, l, H)

]
∈ p|Sile|(1± 8(12t)−t) . Hence,

E
[
X2d

i

]

≤
∑

∑
l∈S(i,H),j �=i ejl=2d

e′jls even

(
2d

e11 . . . ens

) ∏
l∈S(i,H)

[(
p|Sile|(1 + 8(12t)−t)

) ∏
j:ejl>0

(xj/T1)
ejl
]

≤ (1 + 8(12t)−t)d
∑

∑
l∈S(i,H),j �=i ejl=2d

ejl ’s even

(
2d

e11 . . . ens

) ∏
l∈S(i,H)

p|Sile|
∏

j:ejl>0

(xj/T1)
ejl

≤ (1 + 8(12t)−t)dE[X2d
i]

since, the RHS, discounting the multiplicative factor of (1 + 8(12t)−t)d, is the
expansion of E[X2d

i]. ��
We now prove the main theorem regarding the acsk-i algorithm.

Theorem 6. For C ≥ 2, s0 = Θ(log n) and s ≥ 20d, there is an algorithm
that for any i ∈ [n] returns x̂i satisfying |x̂i − xi| ≤ ‖xres(C)‖2

√
3d/(sC) with

probability at least 1−2−Ω(s)−2−d−n2−s0 . Moreover, E
[
x̂i

]
= xi. The algorithm

uses space O(C(s+ s0)) words.

Proof. Consider the acsk-i algorithm. For l ∈ [s], E
[
Tl[hl(i)] · ξil

]
= xi. Hence

the average of Tl[hl(i)] ·ξil’s over some subset of the l’s has the same expectation.
Fix i ∈ [n]. Let T1 ≥ TH which will be chosen later. Recall that for j ∈

[n] \ (H ∪{i}) and l ∈ S(i,H), Xijl = (xj/T1)ξilξjlχijl. Since, j �∈ H , |Xijl| ≤ 1
and Xijl has 3-valued support {−xj/T1, 0, xj/T1} with a symmetric distribution
over it. Let p = Pr

[
χijl = 1

]
= 1/(8C′) = 1/(24eC). By direct calculation,

Var [Xi] =
∑

l∈S(i,H)

∑
j �=i

(xj

T1

)2

p = |S(i,H)| ‖x
res(H∪{i})‖22
24eCT 2

1

(1)

Precision vs Confidence Tradeoffs for �2-Based Frequency Estimation 69

By Lemma 3 and assuming full independence we have,

E[X2d
i] ≤

√
2

(
2dVar [Xi]

e

)d (
1 +

2d

9Var [Xi]

)d−1
.

Let t = 2. Sine the hash functions are d + 3 = d + t + 1-wise independent and
the Rademacher variables are 2d+ 1-wise independent, by Lemma 4 we have,

E
[
X2d

i

]
≤ (1 + 8(12t)−t)dE[X2d

i] ≤ (1 + 1/72)dE[X2d
i], for t = 2.

By 2dth moment inequality, Pr
[
|Xi| >

√
2
(
E
[
X2d

i

])1/(2d)] ≤ 2−d. Therefore,

Pr

[
|Xi| >

√
2(1 + 1/72)

(
2dVar [Xi]

e

(
1 +

d

Var [Xi]

))1/2
]
≤ 2−d (2)

Let Ed,i denote the event whose probability is given in (2). Consider the
intersection of the following three events: (1) GoodH, (2) |S(i,H)| ≥ 3s/5,
and, (3) Ed,i. By union bound, the above three events hold with probabil-
ity 1 − n2−Ω(s0) − e−s/3 − 2−d = 1 − δ (say). Since, GoodH holds, we can
choose T1 = (1 +

√
2)‖xres(C)‖2/

√
C. Then, (1) TH ≤ T1, by Lemma 1, and, (2)

‖xres(H∪{i})‖22 ≤ 9‖xres(2C)‖22, by Lemma 1 (b). Substituting in (1),

Var [Xi] ≤
|S(i,H)|‖xres(H∪{i})‖22

(24eC)T 2
1

≤ s · 9‖xres(2C)‖22
(24eC)(1 +

√
2)2(‖xres(C)‖22/C)

≤ s

20
(3)

The deviation for |Xi| in (2) is an increasing function of Var [X]. Hence, replacing
Var [Xi] by its upper bound gives us an upper bound on the deviation for the
same tail probability. Hence, with probability 1− δ, we have from (2) that

|Xi| ≤
√
2.5

(
2ds
20e

(
1 + 20d

s

))1/2 ≤√
ds
2e

since, s ≥ 20d. Since, |x̂i − xi| = |Xi|T1/|S(i,H)|, we have,

|x̂i − xi| ≤
√

ds

2e
· (1 +

√
2)‖xres(C)‖2√

C
· 1

(3s/5)
≤

√
3d

sC
‖xres(C)‖2 . ��

Precision-Confidence Tradeoff. Theorem 6 can be applied using any value
of d in the range 4 ≤ d ≤ s/4 = Θ(log n) (even after the estimate has been
obtained). One can choose d to match the confidence to the desired level and
minimize the precision (for e.g., choose d = O(log r), where r is the number of
estimates taken).

The ACSK-II Algorithm. The acsk-ii algorithm uses the heavy-hitter al-
gorithm by Gilbert et. al. in [4], denoted byHHglps, to find the heavy hitters.

70 S. Ganguly

Theorem 7 ([4]). There is an algorithm and distribution on matrices Φ such
that, given Φx and a concise description of Φ, the algorithm returns x̂ such that
‖x− x̂‖22 ≤ (1 + ε)‖xres(C)‖22 holds with probability 3/4. The algorithm runs in

time C logO(1) n and Φ has O((C/ε) log(n/C)) rows.

The only difference in the acsk-ii (C, s) algorithm is that it uses an
HHglps(2C, 1/2) structure to obtain a setH of heavy-hitters. The secondCount-

sketch(C′, s) structure of acsk-i , and the estimation algorithm is otherwise
identical. Here, C′ = �6eC� and s = O(log(n/C)). acsk-ii has significantly
faster estimation time than acsk-i due to the efficiency of Gilbert et. al.’s al-
gorithm. However its guarantee holds only with high constant probability. We
have the following theorem.

Theorem 8. For each C ≥ 2, s ≥ 20d and r ≥ 1, there is an algorithm that
given any set of distinct indices i1, . . . , ir from [n], returns x̂ij corresponding

to xij satisfying |x̂ij − xij | ≤ ‖xres(C)‖2
√
2d/(C log(n/C)) for all j ∈ [r], with

probability 15/16 − r2−d. Moreover, E
[
x̂ij

]
= xij , j ∈ [r]. The algorithm uses

space O(C log(n/C)) words and has update time O
(
logO(1) n

)
. The estimation

time is O(C logO(1)(n) + rCd log(n)).

Proof. It follows from Theorem 7 that ‖xres(H)‖22 ≤ (1+1/2)‖xres(C)‖22. Further,
the Loop Invariant in [4] ensures that upon termination, (a) the largest element
not in H has frequency at most T 2

H < ‖xres(C)‖22/C, and, (b) |H | = ‖x̂‖0 ≤
4C. We have upper bounds on all the parameters as needed, and the proof of
Theorem 6 can be followed. ��

3 Lower Bound on Frequency Estimation

We say that a streaming algorithm has a matrix representation with m rows
if the state of the structure on any input vector x can always be represented
as Ax, where, A is some m × n matrix. All known data streaming algorithms
for �2-based frequency estimation have a matrix representation. We show a
lower bound on the number of rows in the matrix representation of a frequency
estimation algorithm.

Theorem 9. Suppose that a frequency estimation algorithm has a matrix rep-
resentation with m rows. Let it have precision ‖xres(C)‖2

√
d/(C log(n/C)) such

that for any number r of estimations, all the estimates satisfy the precision with
probability 15/16 − r · 2−d. Then, for d = Ω(1), 2 + logC ≤ d ≤ log n

C and

n = Ω(C log(n
C) log(C log n

C)), m = Ω(C log
(
n
C

)
·
(
1− logC

d

)
).

Proof. Let D = [2d−3] and C = 4k. Given a vector x with coordinates in
D we make a pass over D and obtain the estimated frequency vector x̂. Let
H be the set of the top-2k coordinates by absolute values of estimated fre-

quency. Then, ∀i ∈ D, |x̂i − xi| ≤ ‖xres(4k)‖2
√

d
4k log(n/C) holds with probability

Precision vs Confidence Tradeoffs for �2-Based Frequency Estimation 71

15/16 − 2d−32−d > 2/3. Following the proof of Theorem 3.1 in [5]), the re-
sulting vector satisfies ‖x− x̂H‖22 ≤

(
1 + d

log(n/C)

)
‖xres(k)‖22. Thus we have an

�2/�2 k-sparse recovery algorithm with approximation factor 1 + d/ log(n/C)
that succeeds with probability 2/3. Since, n = Ω(C log(n

C) log(C log n
C)) and

n = Ω(C log2(n/C)(1d −
log(C)

d)), by the Price-Woodruff lower bound for (1+ ε)-
approximate k-sparse recovery [5], such a matrix A has number of rows

m = Ω
(

k
ε log

2d−3

k

)
= Ω

(
C log

(
n
C

)
·
(
1− logC

d

))
. ��

Clearly, both acsk algorithms have a matrix representation. Also acsk-ii sat-
isfies the premise regarding precision and confidence of Theorem 9 and uses
O(C log(n/C)) rows. acsk-i does too provided C = n1−Ω(1). Hence, they are
optimal up to constant factors in the range d

100 ≤ logC ≤ d− 2 and d ≤ log n
C

along with the other constraints of Theorem 9 on d, n and C.

References

1. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
Theoretical Computer Science 312(1), 3–15 (2004)

2. Cormode, G., Muthukrishnan, S.: Combinatorial Algorithms for Compressed Sens-
ing. In: Flocchini, P., G ¸asieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp.
280–294. Springer, Heidelberg (2006)

3. Ganguly, S., Kesh, D., Saha, C.: Practical Algorithms for Tracking Database Join
Sizes. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 297–
309. Springer, Heidelberg (2005)

4. Gilbert, A.C., Li, Y., Porat, E., Strauss, M.J.: Approximate sparse recovery: opti-
mizing time and measurements. In: Proceedings of ACM Symposium on Theory of
Computing, STOC, pp. 475–484 (2010)

5. Price, E., Woodruff, D.: (1 + ε)-approximate Sparse Recovery. In: Proceedings of
IEEE Foundations of Computer Science (FOCS) (2011)

6. Schmidt, J., Siegel, A., Srinivasan, A.: Chernoff-Hoeffding Bounds with Applica-
tions for Limited Independence. In: Proceedings of ACM Symposium on Discrete
Algorithms (SODA), pp. 331–340 (1993)

A Proofs

Proof (Of Lemma 1). Assume GoodH holds. Let |xi| = TH = maxj �∈H |xj |. So
if |xj | < TH − 2Δ, then, j �∈ H . Hence, H ⊂ J = {j : xj ≥ TH − 2Δ}. Now,
|J \Top(C)| ≥ |H \Top(C)| ≥ C. Thus,

‖xres(C)‖22 ≥
∑

j∈J\Top(C) x
2
j ≥ |J \Top(C)|(TH − 2Δ)2 ≥ C(TH − 2Δ)2

or, TH ≤
(‖xres(C)‖22

C

)1/2
+ 2Δ = (1 +

√
2)‖xres(C)‖2/

√
C. ��

72 S. Ganguly

Proof (Of Lemma 2.). Assume t > 0, otherwise the lemma trivially holds. Since
8C′ ≥ 8�1.5et� ≥ 12et, we have, Pr

[
χijl = 1

]
= p = 1/(8C′) ≤ 1/(12et). Let

w = |H \ {i}|. Denote by Pr[·] the probability measure under the assumption
that the hash functions are fully independent. By inclusion-exclusion applied for
Pr
[∨

j(χijl = 1)
]
and Pr[

∨
j(χijl = 1)] respectively, where, j runs over H \ {i}),

d + 1-wise independence of the hash function hl for Pr
[
·
]
and using triangle

inequality once, we have,
∣∣Pr[∨j χijl = 1

]
− Pr

{∨
j χijl = 1

}∣∣ ≤ 2
(
w
d

)
pd.

Since, Pr
[∧

j(χijl = 0)
]
= 1 − Pr

[∨
j(χijl = 1)

]
, and Pr[

∧
j(χijl = 0)] =

(1− p)w, we have,
∣∣Pr[∧j χijl = 0

]
− (1 − p)w

∣∣ ≤ 2
(
w
d

)
pd. Further since w ≤ t,

we have,
(
w
d

)
pd ≤ (pet/d)d ≤ (12d)−d. Also (1− p)w ≥ 1− tp ≥ 1− 1/(12e).

Therefore, Pr
[∧

j χijl = 0
]
≥ 1 − 1/(12e) − 2(12d)−d ≥ 24/25, for d ≥ 2.

Since the hash functions are independent across the tables, applying Chernoff’s
bounds, we have, Pr

[
|S(i,H)| ≥ (3/5)s

]
≥ 1− exp{−s/3}. ��

Proof (of Lemma 3.). We have, X2j
i ≤ X2

i and so E
[
X2j

i

]
≤ E

[
X2

i

]
. Also

Var [X] =
∑n

j=1 E
[
X2

i

]
. So for X = X1 + . . .+Xn, and since all odd moments

of Xi’s are 0, by symmetry of the individual distributions, we have,

E
[
X2d

]
=
∑d

r=1

∑
t1+...+tr=d

tj ’s > 0

(
2d

2t1,2t2,...,2tr

)∑
1≤j1<...<jr≤n

∏r
u=1 E

[
X2tu

ju

]
=
∑d

r=1

∑
t1+...+tr=d

tj ’s > 0

(
2d

2t1,2t2,...,2tr

)∑
1≤j1<...<jr≤n

∏r
u=1 E

[
X2

ju

]
≤
∑d

r=1

∑
t1+...+tr=d

tj ’s > 0

(
2d

2t1,2t2,...,2tr

) (Var[X])r

r!

=
∑d−1

l=0 Tl, where, Tl =
∑

t1+...+td−l=d, tj ’s>0

(
2d

2t1,2t2,...,2td−l

) (Var[X])d−l

(d−l)!

Since
(

2d
2t1,2t2,...,2td−l

)
≤

(
2d

2,2,...,2

)
, we have,

Tl ≤
∑

t1+...+td−l=d, tj ’s>0

(
2d

2,2,...,2

) (Var[X])d−l

(d−l)! ≤
(

d−1
d−l−1

)(
2d

2,2,...,2

) (Var[X])d−l

(d−l)!

=
(

d−1
d−l−1

)(
1

Var[X]

)l
d!

(d−l)!T0

since, there are
(

d−1
d−l−1

)
assignments for t1, . . . , td−l, all positive with sum d.

Therefore,

E
[
X2d

]
≤
∑d−1

l=0 Tl ≤
∑d−1

l=0

(
d−1

d−l−1
)(

1
Var[X]

)l
d!

(d−l)!T0

≤ T0

∑d−1
l=0

(
d−1
l

)(
1

Var[X]

)l

dl = T0

(
1 + d

Var[X]

)d−1

Since,

T0 =
(

2d
2,2,...,2

) (Var[X])d

d! = (2d)!
2dd!

(Var [X])d ≤ 2d+1/2dd

ed
(Var [X])d

by Stirling’s approximation, we have,

E
[
X2d

]
≤
√
2
(

2dVar[X]
e

)d (
1 + d

Var[X]

)d−1
. ��

Precision vs Confidence Tradeoffs for �2-Based Frequency Estimation 73

Proof (Of Lemma 5.). Define events E1 ≡ ∀j ∈ S,Xj = 1 and E2 ≡ ∀j ∈
H,Xj = 0. We have to bound the probability Pr

[
E1 | E2

]
. Let |H | = w. Since,

|S| = s, Pr
[
E1

]
= ps. By inclusion and exclusion,

∣∣∣∣Pr[∃j ∈ H,Xj = 1 | E1

]
−

t−1∑
r=1

(−1)r−1
∑

j1,...,jr∈H
j1<...<jr

Pr
[
Xj1 = 1 ∧ . . . ∧Xjr = 1 | E1

]∣∣∣∣

≤
∑

j1,...,jt∈H
j1<...<jt

Pr
[
Xj1 = 1 ∧ . . . Xjt = 1 | E1

]

Since the Xj ’s are s+ t-wise independent and the event E1 is a property of the
Xj ’s for j ∈ S and |S| = s, we have for distinct elements j1, . . . , jr from H (given
H ∩ S is empty) and 1 ≤ r ≤ t, Pr

[
Xj1 = 1 ∧ . . . Xjr = 1 | E1

]
= Pr

[
Xj1 =

1
]
· . . . · Pr

[
Xjr = 1

]
= pr. Let |H | = w. The above equation is equivalently,∣∣∣∣Pr[∃j ∈ H,Xj = 1 | E1

]
−

t−1∑
r=1

(−1)r−1
(
w

r

)
pr
∣∣∣∣ ≤ (

w

t

)
pt (4)

Suppose we denote by Pr [E] the probability of an event E = E(X1, . . . , Xn)
assuming that the Xj ’s are fully independent. Then, by inclusion-exclusion, we
have ∣∣∣∣Pr [∃j ∈ H,Xj = 1 | E1]−

t−1∑
r=1

(−1)r−1
(
w

r

)
pr
∣∣∣∣ ≤ (

w

t

)
pt (5)

Since, Pr
[
Xj = 1

]
= Pr [Xj = 1] = p, combining (4) and (5), we have by

triangle inequality,∣∣Pr[∃j ∈ H,Xj = 1 | E1

]
− Pr [∃j ∈ H,Xj = 1 | E1]

∣∣ ≤ 2

(
w

t

)
pt

Also, Pr
[
E2 | E1

]
= 1 − Pr

[
∃j ∈ H,Xj = 1 | E1

]
and Pr [E2 | E1] = 1 −

Pr [∃j ∈ H,Xj = 1 | E1] = (1− p)w. Hence,∣∣Pr[E2 | E1

]
− (1− p)w

∣∣ ≤ 2

(
w

t

)
pt (6)

Further, Pr
[
E1

]
= Pr [∀j ∈ S,Xj = 1] = ps. Using s + t-wise independence of

the Xj ’s for j ∈ H , we can show similarly that∣∣Pr[E2

]
− (1− p)w

∣∣ ≤ 2

(
w

s+ t

)
ps+t .

Combining,

Pr
[
E1 | E2

]
=

Pr
[
E2 | E1

]
Pr
[
E1

]
Pr
[
E2

] ∈ ps

(
1±

2
(
w
t

)
pt + 2

(
w
s+t

)
ps+t

(1− p)w − 2
(

w
s+t

)
ps+t

)
(7)

74 S. Ganguly

Since, pw ≤ 1/(12e), (1 − p)w ≥ 1 − wp ≥ 1 − 1/(12e),
(
w
t

)
pt ≤ (wep/t)t ≤

1/(12t)t and
(

w
s+t

)
ps+t ≤ 1/(12(s+ t))s+t. Thus, for t ≥ 2, we have,

2
(
w
t

)
pt + 2

(
w
s+t

)
ps+t

(1− p)w − 2
(

w
s+t

)
ps+t

≤ 2(12t)−t + 2(12(s+ t))−t−s

(1 − 1/(12e))− 2(12(s+ t))−s−t
≤ 8(12t)−t .

since t ≥ 2. Hence, (7) becomes

Pr
[
E1 | E2

]
∈ ps

[
1± 8(12t)−t

]
. ��

Competitive Design and Analysis

for Machine-Minimizing Job
Scheduling Problem�

Mong-Jen Kao2, Jian-Jia Chen1, Ignaz Rutter1, and Dorothea Wagner1

1 Faculty for Informatics, Karlsruhe Institute of Technology (KIT), Germany
2 Research Center for Infor. Tech. Innovation, Academia Sinica, Taiwan

mong@citi.sinica.edu.tw, {j.chen,rutter,dorothea.wagner}@kit.edu

Abstract. We explore the machine-minimizing job scheduling problem,
which has a rich history in the line of research, under an online setting.
We consider systems with arbitrary job arrival times, arbitrary job dead-
lines, and unit job execution time. For this problem, we present a lower
bound 2.09 on the competitive factor of any online algorithms, followed
by designing a 5.2-competitive online algorithm. We would also like to
point out a false claim made in an existing paper of Shi and Ye regarding
a further restricted case of the considered problem. To the best of our
knowledge, what we present is the first concrete result concerning online
machine-minimizing job scheduling with arbitrary job arrival times and
deadlines.

1 Introduction

Scheduling jobs with interval constraints is one of the most well-known mod-
els in classical scheduling theory that provides an elegant formulation for nu-
merous applications and which also has a rich history in the line of research
that goes back to the 1950s. For example, assembly line placement of circuit
boards [12, 17], time-constrained communication scheduling [1], adaptive rate-
controlled scheduling for multimedia applications [15, 18], etc.

In the basic framework, we are given a set of jobs, each associated with a
set of time intervals during which it can be scheduled. Scheduling a job means
selecting one of its associated time interval. The goal is to schedule all the jobs
on a minimum number of machines such that no two jobs assigned to the same
machine overlap in time. Two variations have been considered in the literature,
differing in the way how the time intervals of the jobs are specified. In the discrete
machine minimization, the time intervals are listed explicitly as the input, while
in the continuous version, the set of time intervals for each job is specified by a
release time, a deadline, and an execution time.

� This work was supported in part by National Science Council (NSC), Taiwan, under
Grants NSC99-2911-I-002-055-2, NSC98-2221-E-001-007-MY3, and Karlsruhe House
of Young Scientists (KHYS), KIT, Germany, under a Grant of Visiting Researcher
Scholarship.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 75–84, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

76 M.-J. Kao et al.

In terms of problem complexity, it is known that deciding whether one machine
suffices to schedule all the jobs is already strongly NP-complete [13]. Ragha-
van and Thompson [14] gave an O(logn/log logn)-approximation via random-
ized rounding of linear programs for both versions. This result is also the best
known approximation for the discrete version. An Ω(log logn)-approximation
lower-bound is given by Chuzhoy and Naor [9]. For the continuous machine
minimization, Chuzhoy et al. [8] improved the factor to O

(√
log n

)
. When the

number of machines used by the optimal schedule is small, they provided an
O
(
k2
)
-approximation, where k is the number of machines used by the optimal

schedule. Recently, Chuzhoy et al. [7] further improved their previous result to
a (large) constant.

In addition, results regarding special constraints have been proposed as well.
Cieliebak et al. [11] studied the situation when the lengths of the time intervals
during which the jobs can be scheduled are small. Several exact algorithms and
hardness results were presented. Yu and Zhang [19] considered two special cases.
When the jobs have equal release times, they provided a 2-approximation. When
the jobs have equal execution time, they showed that the classical greedy best-fit
algorithm achieves a 6-approximation.

From the perspective of utilization-enhancing, a problem that can be seen as
dual to machine minimization is the throughput maximization problem, whose
goal is to maximize the number of jobs that can be scheduled on a single machine.

Chuzhoy et al. [10] provided anO
(

e
e−1 + ε

)
-approximation for any ε > 0 for both

discrete and continuous settings, where e is the Euler’s number. Spieksma [17]
proved that the discrete version of this problem is MAX-SNP hard, even when
the set of time intervals for each job has cardinality two.

Several natural generalizations of this problem have been considered. Bar-Noy
et al. [4] considered the weighted throughput maximization problem, in which
the objective is to maximize the weighted throughput for a set of weighted
jobs, and presented a 2-approximation. Furthermore, when multiple jobs are al-
lowed to share the time-frame of the same machine, i.e., the concept of context
switch is introduced to enhance the throughput, Bar-Noy et al. [3] presented

a 5-approximation and a
(

2e−1
e−1 + ε

)
-approximation for both weighted and un-

weighted versions. When the set of time intervals for each job has cardinality
one, i.e., only job selection is taken into consideration to maximize the weighted
throughput, Calinescu et al. [6] presented a (2 + ε)-approximation while Bansal
et al. [2] presented a quasi-PTAS.

Our Focus and Contribution. This paper explores the design and competitive
analysis for the continuous machine-minimizing job scheduling problem. We con-
sider a real-time system in which we do not have prior knowledge on the arrival
of a job until it arrives to the system, and the scheduling decisions have to be
made online. As an initial step to exploring the general problem complexity, we
consider the case for which all the jobs have unit execution time.

Competitive Design and Analysis for Machine-Minimizing Job 77

In this paper, we provide for this problem:
– a lower bound of 2.09 on the competitive factor of any online algorithm, and
– a 5.2-competitive online algorithm.

To the best of our knowledge, this is the first result presented under the concept
of real-time machine minimization with arbitrary job arrival times and deadlines.

We would also like to point out a major flaw in a previous paper [16] in which
the authors claimed to have an optimal 2-competitive algorithm for a restricted
case where the jobs have a universal deadline. In fact, our lower bound proof
is built exactly under this restricted case, thereby showing that even when the
jobs have a universal deadline, any feasible online algorithm has a competitive
factor no less than 2.09.

2 Notations and Problem Model

This section describes the job scheduling model adopted in this paper, followed
by a formal problem definition.

Job Model. We consider a set of real-time jobs, arriving to the system dynam-
ically. When a job j arrives to the system, say, at time t, its arrival time aj is
defined to be t and the job is put into the ready queue. The absolute deadline,
or, deadline for simplicity, for which j must finish its execution is denoted by dj .
The amount of time j requires to finish its execution, also called the execution
time of j, is denoted by cj . We consider systems with discretized timing line
and unit jobs, i.e., aj and dj are non-negative integers, and cj = 1. When a job
finishes, it is removed from the ready queue. For notational brevity, for a job j,
we implicitly use a pair j = (aj , dj) to denote the corresponding properties.

Job Scheduling. A schedule S for a set of jobs J is to decide for each job j ∈ J
the time at which j starts its execution. S is said to be feasible if each job
starts its execution no earlier than its arrival and has its execution finished at
its deadline. Moreover, we say that a schedule S follows the earliest-deadline-first
(EDF) principle if whenever there are multiple choices on the jobs to schedule,
it always gives the highest priority to the one with earliest deadline.

Let #S(t) be the number of jobs which are scheduled for execution at time t
in schedule S. The number of machines S requires to finish the execution of the
entire job set, denoted by M(S), is then maxt≥0 #S(t). For any 0 ≤ � < r, let

J (�, r) = |{j : j ∈ J , � ≤ aj , dj ≤ r}|
denote the total amount of workload, i.e., the total number of jobs due to the
unit execution time of the jobs in our setting, that arrives and has to be done
within the time interval [�, r]. The following lemma provides a characterization
of a feasible EDF schedule for any job set.

Lemma 1. For any set J of unit jobs, a schedule S following the earliest-
deadline-first principle is feasible if and only if for any 0 ≤ � < r,∑

�≤t<r

#S(t) ≥ J (�, r).

78 M.-J. Kao et al.

In the offline machine-minimizing job scheduling problem, we wish to find a
schedule SJ for a given set of jobs J such that M(SJ) is minimized. For a
better depiction of this notion, for any 0 ≤ � < r, let

ρ(J , �, r) =
J (�, r)

r − �

denote the density of workload J (�, r), and let OPT (J) denote the number of
machines required by an optimal schedule for J . The following lemma shows
that, when the jobs have unit execution time, there is a direct link between
OPT (J) and the density of workload.

Lemma 2. For any set of jobs J , we have OPT (J) = �max0≤�<r ρ(J , �, r)�.

Online Job Scheduling. We consider the case where the jobs are arriving in an
online setting, i.e., at any time t, we only know the job arrivals up to time t, and
the scheduling decisions have to be made without prior knowledge on future job
arrivals. To be more precise, let J (t) = {j : j ∈ J , aj ≤ t} be the subset of J
which contains jobs that have arrived to the system up to time t. In the online
machine-minimizing job scheduling problem, we wish to find a feasible schedule
for a given set of jobs J such that the number of machines required up to time
t is small with respect to OPT (J (t)) for any t ≥ 0.

Definition 1 (Competitive Factor of an Online Algorithm [5]). An on-
line algorithm Γ is said to be c-competitive for an optimization problem Π if for
any instance I of Π, we have Γ (I) ≤ c · Opt(I) + x, where Γ (I) and OPT (I)
are the values computed by Γ and the optimal solution for I, respectively, and x
is a constant. The asymptotic competitive factor of Γ is defined to be

lim sup
n→∞

{
Γ (I)
n

: I is an instance of Π such that Opt(I) = n.

}
.

Other Notations and Special Job Sets. Let J be a set of jobs. For any t ≥
0, we use ρ̂(J , t) to denote the maximum density among those time intervals
containing t with respect to J , i.e.,

ρ̂(J , t) = max
0≤�≤t<r

ρ(J , �, r).

Furthermore, we use def(J , t) = [�(J , t), r(J , t)] to denote the specific time
interval that achieves the maximum density in the defining domain of ρ̂(J , t).
If there are more than one such an interval, def(J , t) is defined to be the one
with the smallest left-end. We call def(J , t) the defining interval of ρ̂(J , t). In
addition, we define �̂(J) = maxt≥0 ρ̂(J , t) to denote the maximum density for a
job set J . Notice that, by Lemma 2, �̂(J) is an alternative definition of OPT (J).

For ease of presentation, throughout this paper, we use a pair (d, σ) to denote
a special problem instance for which the jobs have a universal deadline d, where
σ = (σ(0), σ(1), σ(2), . . . , σ(d− 1)) is a sequence of length d such that σ(t) is the
number of jobs arriving at time t. Note that, under this setting, every defining
interval has a right-end d.

Competitive Design and Analysis for Machine-Minimizing Job 79

3 Problem Complexity

This section presents a lower bound of the competitive factor for the studied
problem. We consider a special case for which the jobs have a universal deadline,
which will later serve as a basis to our main algorithm. In §3.1, we show why the
online algorithm, provided in [16] for this special case and claimed to be optimally
2-competitive, fails to produce feasible schedules. Built upon the idea behind the
counter-example, we then prove a lower bound of 2.09 for the competitive factor
of any online algorithm in §3.2. We begin with the following lemma, which draws
up the curtain on the difficulty of this problem led by unknown job arrivals.

Lemma 3 (2-competitivity lower bound [16]). Any online algorithm for
the machine-minimizing job scheduling problem with unit jobs and a universal
deadline has a competitive factor of at least 2.

Proof. Below we sketch the proof provided in [16]. Let d ≥ 1 be an arbitrary in-
teger. Consider the job set J ∗2 = (d, σ∗2), where σ

∗
2 = (d, d, d, . . . , d) is a sequence

containing d elements of value d. Notice that, we have OPT(J ∗2 (t)) = t+ 1 for
all 0 ≤ t < d. Therefore any online algorithm with competitive factor R uses
at most R · (t+ 1) machines at time t. Taking the summation over 0 ≤ t < d,
we know that any online algorithm with competitive factor R can schedule at
most

∑
0≤t<d R · (t+ 1) = 1

2d(d+ 1)R jobs. Since there are d2 jobs in total, we
conclude that R ≥ 2 when d goes to infinity. ��

3.1 Why the Known Algorithm Fails to Produce Feasible Schedules

This section presents a counter-example for the online algorithm provided in [16],
which we will also refer to as the packing-via-density algorithm in the following.
Given a problem instance J = (d, σ), packing-via-density works as follows.

At any time t, t ≥ 0, the algorithm computes the maximum density with
respect to the current job set J (t). More precisely, it computes ρ̂(J (t), t). Then
the algorithm assigns 2 · �ρ̂(J (t), t)� jobs for execution.

Intuitively, in the computation of density, the workload of each job is equally
distributed to the time interval from its arrival till its deadline, or, possibly to
a larger super time interval containing it if this leads to a higher density. The
algorithm uses another factor of ρ̂(J (t), t) in order to cover the unknown future
job arrivals, which seems to be a good direction for getting a feasible scheduling.

However, in [16], the authors claimed that the job set J ∗2 represents one of the
worst case scenarios, followed by sketching the feasibility of packing-via-density
on J ∗2 . Although from intuition this looks promising, and, by suitably defining
the potential function, one can indeed prove the feasibility of packing-via-density
for J ∗2 and other similar job sets, the job set J ∗2 they considered is in fact not a
worst scenario. The main reason is that, for each t with 0 ≤ t < d, the left-end
of the defining interval for t is always zero. That is, we have def(J ∗2 (t), t) =
[0, d] for all 0 ≤ t < d. This implicitly takes all job arrivals into consideration
when computing the densities. When the sequence is more complicated and the
defining intervals change over time, using 2 · �ρ̂(J (t), t)� machines is no longer

80 M.-J. Kao et al.

α
20 2α2 iα

2

h α(k − 1)h
α

2(k − 1)·
(k − 2)h

α
i
h ·

(k−1)!
(k−i−1)!

α
2 + α 2α2 + α

iα
2 + α

Fig. 1. An illustration for the arrival sequence σ∗
k,α of J ∗

k,α and the changes of the
left-ends of defining intervals over time

able to cover the unpaid debt created before �(J (t), t), i.e., the jobs which are
not yet finished but no longer contributing to the computation of �̂(J (t)). This
is illustrated by the following example.

Consider the job set J ∗ = (32, σ∗), where σ∗ is defined as

σ∗ =

⎛⎝75, 75, . . . , 75︸ ︷︷ ︸
0∼15

, 1200, 0, 0, 0, 300, 300, . . . , 300︸ ︷︷ ︸
20∼31

⎞⎠
Notice that, for 0 ≤ t ≤ 19, we have def(J ∗(t), t) = [0, 32], and for 20 ≤ t ≤ 31,
we have def(J ∗(t), t) = [16, 32]. A direct calculation shows that packing-via-
density results in deadline misses of 10 jobs.

3.2 Lower Bound on the Competitive Factor

In fact, by further generalizing the construction of J ∗, we can design an online
adversary that proves a lower bound strictly greater than 2 for the competitive
factor of any online algorithm. In the job set J ∗, the debt is created by making
a one-time change of the defining interval at time 20. Below, we construct an
example whose defining intervals can alter for arbitrarily many times, thereby
creating sufficiently large debts. Then, we present our online adversary.

Let h, k, α ∈ N be three constants to be decided later. We define the job set

J ∗k,α =
(
kα2, σ∗k,α

)
as follows. For each 0 ≤ i < k and each 0 ≤ j < α2,

σ∗k,α
(
iα2 + j

)
=

{
h, if i = 0,

α(k − i) · σ∗k,α
(
(i − 1)α2 + j

)
, otherwise.

Also refer to Fig. 1 for an illustration of the sequence. The following lemma
shows the changes of the defining intervals over time.

Lemma 4. For each time t = iα2 + j, where 0 ≤ i < k, 0 ≤ j < α2, we have

�
(
J ∗k,α(t), t

)
=

⎧⎪⎨⎪⎩
0, for i = 0,

(i− 1)α2, for i > 0 and 0 ≤ j < α,

iα2, for i > 0 and α ≤ j < α2.

Competitive Design and Analysis for Machine-Minimizing Job 81

Below we present our online adversary, which we denote by A∗(c), where c > 0
is a constant. Let Γ be an arbitrary feasible online scheduling algorithm for this
problem. The adversary works as follows. At each time t with 0 ≤ t < kα2,
A∗(c) releases σ∗k,α(t) jobs with deadline kα2 for algorithm Γ and observes the

behavior of Γ . If Γ uses more than c·�̂
(
J ∗k,α(t)

)
machines, then A∗(c) terminates

immediately. Otherwise, A∗(c) proceeds to time t + 1 and repeats the same
procedure. This process continues till time kα2.

Theorem 1. Any feasible online algorithm for machine-minimizing job schedul-
ing problem has a competitive factor at least 2.09, even for the case when the
jobs have a universal deadline.

4 5.2-Competitive Packing-via-Density

As indicated in Lemma 2, to come up with a good scheduling algorithm for online
machine-minimizing job scheduling with unit jobs, it suffices to compute a good
approximation of the offline density for the entire job set, as this corresponds
directly to the number of machines required by any optimal schedule. From the
proofs for the problem complexity in Section 3.2, for any job set J and t ≥ 0,
the gap between �̂(J), which is the maximum offline density for the entire job
set, and �̂(J (t)), which is the maximum density the online algorithm for the
jobs arrived before and at time t, can be arbitrarily large. For instance, in the
simple job set J ∗2 , we have �̂(J ∗2) = d while �̂(J ∗2 (t)) = t+ 1 for all 0 ≤ t < d.

In [16], the authors proved that, simply using ��̂(J (t))� to approximate the
offline density as suggested in the classical mainstream any fit algorithms, such
as best fit, first fit, etc., can results in the deadline misses of Θ(logn) jobs even
for the job set J ∗2 , meaning that we will have to use Θ(logn) machines in the
very last moment in order to prevent deadline misses if we apply these classical
packing algorithms. Therefore, additional space sparing at each moment is nec-
essary for obtaining a better approximation guarantee on the offline density in
later times. One natural question to ask is:

Is there a constant c such that c · �̂(J (t)) is an approximation of �̂(J)
for all t ≥ 0?

In this section, we give a positive answer to the above question in a slightly more
general way. We show that, with a properly chosen constant c, using �c · �̂(J (t))�
machines at all times gives a feasible scheduling which is also c-competitive
for the machine-minimizing job scheduling with unit job execution time and
arbitrary job deadlines.

The packing-via-density(c) algorithm. At time t, t ≥ 0, the algorithm computes
the maximum density it has seen so far, i.e., �̂(J (t)). Then the algorithm assigns
�c · �̂(J (t))� jobs with earliest deadlines form the ready queue for execution.

Since �̂(J (t)) ≤ �̂(J) for all t ≥ 0, by Lemma 2, we have �̂(J (t)) ≤ OPT(J)
for all t ≥ 0. Hence, we know that the schedule produced by packing-via-
density(c) is c-competitive as long as it is feasible. In the following, we show

82 M.-J. Kao et al.

that, for a properly chosen constant c, packing-via-density(c) always produces
a feasible schedule for any upcoming job set. To this end, for any job set, we
present two reductions to obtain a sequence whose structure is relatively sim-
ple in terms of the altering of defining intervals, followed by providing a direct
analysis on the potential function of that sequence.

Feasibility of packing-via-density(c). For any job set J , any t1, t2 with 0 ≤ t1 <
t2, and any c > 0, consider the potential function Φc(J , t1, t2) defined as

Φc(J , t1, t2) =

⎛⎝ ∑
t1≤t<t2

c · �̂(J (t))

⎞⎠− J (t1, t2).

Literally, in this potential function we consider the sum of maximum densities
over each moment between time t1 and time t2, subtracted by the total amount of
workload which arrives and has to be done within the time interval [t1, t2]. Since
packing-via-density(c) assigns �c · �̂(J (t))� jobs for execution for any moment t,
by Lemma 1, we have the feasibility of this algorithm if and only if Φc(J , t1, t2) ≥
0 for all 0 ≤ t1 < t2.

Below, we present our first reduction and show that, it suffices to prove the
non-negativity of this potential function for any job set with a universal deadline.
For any d ≥ 0, consider the job set Jd defined as follows. For each (i, j) ∈ J
such that j ≤ d, we create a job (i, d) and put it into Jd.

Lemma 5 (Reduction to the case of equal deadlines). For any c ≥ 0,
d ≥ 0, and 0 ≤ t < d, we have Φc(Jd, t, d) ≤ Φc(J , t, d).

As the mapping from J to Jd is well-defined for each d ≥ 0, by Lemma 5,
the non-negativity of the potential function with respect to any job set with a
universal deadline will in turn imply the non-negativity of that with respect to
the given job set J . Therefore, it suffices to show that, for any job set Jd =
(d, σd), we have Φc(Jd, 0, d) ≥ 0.

Next, we make another reduction and show that, it suffices to consider job
sets with non-decreasing arrival sequences: (i) If σd is already a non-decreasing
sequence, then there is nothing to argue. (ii) Otherwise, let k, 0 ≤ k < d− 1, be
the largest integer such that σd(k) > σd(k+1). Furthermore, let m, k < m < d,
be the largest integer such that σd(m) is under the average of σd(k), σd(k +
1), . . . , σd(m), i.e.,

σd(m) <

∑
k≤i≤m σd(i)

m− k + 1
, and, σd(m+ 1) ≥

∑
k≤i≤m+1 σd(i)

m− k + 2
if m < d− 1.

Consider the job set Jd,k,m = (d, σd,k,m) defined as follows. For each i with
0 ≤ i < k or m < i < d, we set σd,k,m(i) = σd(i). Otherwise, for i with

k ≤ i ≤ m, we set σd,k,m(i) =
(∑

k≤i≤m σd(i)
)
/(m− k + 1). The following

lemma shows that the effect of this change on the potential of the resulting job
set is non-increasing.

Competitive Design and Analysis for Machine-Minimizing Job 83

σ
↑

d
(d− 1)

Si

Si+1

σ
↑

d
(d− 2i)σ

↑

d
(d− 2i+1)σ

↑

d
(0)

Fig. 2. The subsequence Si, 0 ≤ i ≤ �log2 d�

Lemma 6 (Reduc. to non-decreasing seq.). Φc(Jd,k,m, 0, d) ≤ Φc(Jd, 0, d).

Repeating the process described in (ii) above, we get a non-decreasing sequence

σ↑d for the job set Jd. By Lemma 6, we know that the non-negativity of the

potential function with respect to (d, σ↑d) will in turn imply the non-negativity
of that with respect to Jd.

Now, we consider the job set J ↑d = (d, σ↑d) and provide a direct analysis on

the value of Φc(J ↑d , 0, d). To take the impact of unknown job arrivals and the

unpaid-debt excluded implicitly in the computation of �̂(J ↑d (t)), we exploit the
non-decreasing property of the sequence and use a backward analysis. More
precisely, starting from the tail, for each 0 ≤ i ≤ �log2 d�, we consider the
sequence

Si =
(
σ↑d(d− 2i), σ↑d(d− 2i + 1), . . . , σ↑d(d− 1)

)
,

whose length grows exponentially as i increases. Also refer to Fig. 2 for an
illustration. The following lemma shows that a simple argument, which takes
eight times the sum of densities over Si to cover the total workload in Si+1,
already asserts the feasibility of packing-via-density(8).

Lemma 7 (Feasibility of packing-via-density(8)). Φ8

(
J ↑d , 0, d

)
≥ 0.

The basic argument gives a hint on the reason why the potential function can be
made positive-definite by a carefully chosen constant c. Below we show that, a
further generalized approach gives a better bound. The idea is to further exploit
the densities generated by Si+1 itself: when the amount of workload in Si+1 is
relatively low, then a smaller factor from Si suffices, and when the amount of
workload in Si+1 becomes higher, then most of the workload can be covered by
the densities Si+1 itself generates. In addition, we use the exponential base of 3
to define the subsequences instead of 2.

Lemma 8.

Φ5.2

(
J ↑d , 0, d

)
≥ 0.

We conclude our result by the following theorem.

Theorem 2. The packing-via-density(5.2) algorithm computes a feasible 5.2-
competitive schedule for the machine-minimizing job scheduling problem with
unit job execution time.

84 M.-J. Kao et al.

5 Conclusion

This paper presents online algorithms and competitive analysis for the machine-
minimizing job scheduling problem with unit jobs. We disprove a false claim
made by a previous paper regarding a further restricted case. We also provide a
lower bound on the competitive factor of any online algorithm for this problem.

References

1. Adler, M., Sitaraman, R., Rosenberg, A., Unger, W.: Scheduling time-constrained
communication in linear networks. In: SPAA 1998, NY, pp. 269–278 (1998)

2. Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-ptas for unsplittable
flow on line graphs. In: STOC 2006, pp. 721–729. ACM, NY (2006)

3. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J.S., Schieber, B.: A unified ap-
proach to approximating resource allocation and scheduling. J. ACM 48, 1069–1090
(2001)

4. Bar-Noy, A., Guha, S.: Approximating the throughput of multiple machines in
real-time scheduling. SIAM J. Comput. 31, 331–352 (2002)

5. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cam-
bridge University Press, New York (1998)

6. Calinescu, G., Chakrabarti, A., Karloff, H., Rabani, Y.: An improved approxima-
tion algorithm for resource allocation. ACM Trans. Algorithms 7, 48:1–48:7 (2011)

7. Chuzhoy, J., Codenotti, P.: Resource Minimization Job Scheduling. In: Dinur,
I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS,
vol. 5687, pp. 70–83. Springer, Heidelberg (2009)

8. Chuzhoy, J., Guha, S., Khanna, S., Naor, J.S.: Machine minimization for scheduling
jobs with interval constraints. In: FOCS 2004, Washington, pp. 81–90 (2004)

9. Chuzhoy, J., Naor, J.S.: New hardness results for congestion minimization and
machine scheduling. J. ACM 53, 707–721 (2006)

10. Chuzhoy, J., Ostrovsky, R., Rabani, Y.: Approximation algorithms for the job
interval selection problem and related scheduling problems. Math. Oper. Res. 31,
730–738 (2006)

11. Cieliebak, M., Erlebach, T., Hennecke, F., Weber, B., Widmayer, P.: Scheduling
with release times and deadlines on a minimum number of machines. IFIP, vol. 155,
pp. 209–222. Springer, Boston

12. Crama, Y., Flippo, O., Klundert, J., Spieksma, F.: The assembly of printed circuit
boards: A case with multiple machines and multiple board types (1998)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman & Co., New York (1979)

14. Raghavan, P., Tompson, C.D.: Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica 7, 365–374 (1987)

15. Rajugopal, G., Hafez, R.: Adaptive rate controlled, robust video communication
over packet wireless networks. Mob. Netw. Appl. 3, 33–47 (1998)

16. Shi, Y., Ye, D.: Online bin packing with arbitrary release times. Theoretical Com-
puter Science 390, 110–119 (2008)

17. Spieksma, F.: On the approximability of an interval scheduling problem. Journal
of Scheduling 2, 215–225 (1999)

18. Yau, D., Lam, S.: Adaptive rate-controlled scheduling for multimedia applications.
In: MULTIMEDIA 1996, pp. 129–140. ACM, New York (1996)

19. Yu, G., Zhang, G.: Scheduling with a minimum number of machines. Operations
Research Letters 37, 97–101 (2009)

A Partially Ordered Structure

and a Generalization of the Canonical Partition
for General Graphs with Perfect Matchings

Nanao Kita

Keio University, Yokohama, Japan
kita@a2.keio.jp

Abstract. This paper is concerned with structures of general graphs
with perfect matchings. We first reveal a partially ordered structure
among elementary components of general graphs with perfect matchings.
Our second result is a generalization of Kotzig’s canonical partition to
a decomposition of general graphs with perfect matchings. It contains a
short proof for the theorem of the canonical partition. These results give
decompositions which are canonical, that is, unique to given graphs. We
also show that there are correlations between these two and that these
can be computed in polynomial time.

1 Introduction

This paper is concerned with matchings on graphs. For general accounts on
matching theory we refer to Lovász and Plummer’s book [1].

A matching of a graph G is a set of edges F ⊆ E(G) no two of which have
common vertices. A matching of cardinality |V (G)|/2 (resp. |V (G)|/2 − 1) is
called a perfect matching (resp. a near-perfect matching). We call a graph with a
perfect matching factorizable. An edge of a factorizable graph is called allowed if
it is contained in a perfect matching. Generally, in a factorizable graph, the sub-
graph induced by the union of all the allowed edges has several components, and
these are called elementary components. In this paper, we denote the family of
elementary components of a factorizable graph G as G(G). A factorizable graph
that has only one elementary component is called an elementary graph.

Matching theory is of central importance in graph theory and combinatorial
optimization [2], with numerous practical applications [3]. Structure theorems
that give decompositions which are canonical, namely, unique to given graphs,
play important roles in matching theory. Only three theorems, i.e. the canoni-
cal partition [4–6], the Dulmage-Mendelsohn decomposition [1], and the Gallai-
Edmonds structure theorem [1] have been known as such. The first two are not
applicable for general graphs with perfect matchings, and the last one treats
them as irreducible and does not decompose them properly, which means noth-
ing has been known that tells non-trivial canonical structures of general graphs
with perfect matchings. Therefore, in this paper, we give new canonical structure
theorems for them.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 85–94, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

86 N. Kita

By the definitions, we can view factorizable graphs as being “built” up by
combining elementary components with additional edges. However it does not
mean that all combinations result in graphs with desired elementary components.
Thus the family of elementary components must have a certain non-trivial struc-
ture. For bipartite factorizable graphs, the Dulmage-Mendelsohn decomposition
(in short, the DM-decomposition) reveals the ordered structure of their elemen-
tary components. However, as for non-bipartite graphs, no counterpart has been
known.

In this paper, as our first contribution, we reveal a partially ordered structure
between elementary components of general graphs with perfect matchings. It
has some similar natures to the DM-decomposition, however they are distinct.

The second contribution is a generalization of the canonical partition [4–6]; see
also [1], which is originally a decomposition of elementary graphs. Kotzig [4–6]
first investigated the canonical partition of elementary graphs as the quotient set
of a certain equivalence relation, and later, Lovász redefined it from the point of
view of maximal barriers [1]. In this paper we generalize the canonical partition
to a decomposition of general graphs with perfect matchings, based on Kotzig’s
way. It contains a short proof for the theorem of the canonical partition.

Note that these two results of us give canonical decompositions of graphs. We
also show that there are correlations between these two and that these can be
computed in polynomial time.

Any of the three existing canonical structure theorems plays significant roles in
combinatorics including matching theory. The canonical partition plays a crucial
role in matching theory, especially from the polyhedral point of view, that is, in
the study of the matching polytope and the matching lattice [7–9]. The Dulmage-
Mendelsohn decomposition is known for its application to the efficient solution
of linear equations determined by large sparse matrices [1]. Additionally, it is
an origin of a series of studies on submodular functions, that is, the field of the
principal partition [10,11]. The Gallai-Edmonds structure theorem is essential to
the optimality of the maximummatching [1,12]. Thus it also underlies reasonable
generalizations of maximum matching problem [13, 14].

By combining the results in this paper with the Gallai-Edmonds structure
theorem, we can easily obtain a refinement of the Gallai-Edmonds structure
theorem, which gives a consistent view of graphs, whether they are factorizable
or not, or, elementary or not [15]. Hence, we are sure that our structure theorems
should be powerful tools in matching theory. In fact, the cathedral theorem [1]
can be obtained from our results in a quite natural way [15].

2 Preliminaries

In this section, we list some standard definitions and well-known properties.
Basics on sets, graphs, digraphs, and algorithms mostly conform to [2].

Let G be a graph and X ⊆ V (G). The subgraph of G induced by X is
denoted by G[X]. G −X means G[V (G) \X]. Given F ⊆ E(G), we define the
contraction of G by F as the graph obtained from contracting all the edges in

A Partially Ordered Structure and a Generalization 87

F , and denote as G/F . Additionally, We define the contraction of G by X as
G/X := G/E(G[X]). We say H ⊆ G if H is a subgraph of G. If it is clear from
the context, we sometimes regard a subgraph H ⊆ G as the vertex set V (H), a
vertex v as a graph ({v}, ∅).

The set of edges that has one end vertex in X ⊆ V (G) and the other vertex
in Y ⊆ V (G) is denoted as EG[X,Y]. We denote EG[X,V (G)\X] as δG(X). We
define the set of neighbors ofX as the set of vertices in V (G)\X that are adjacent
to vertices in X , and denote as NG(X). We sometimes denote EG[X,Y], δG(X),
NG(X) as just E[X,Y], δ(X), N(X) if they are apparent from the context.

For two graphs G1 and G2, G1 + G2 := (V (G1) ∪ V (G2) , E (G1) ∪E (G2))
is called the union of them, and G1 ∩G2 := (V (G1) ∩ V (G2) , E (G1) ∩E (G2))
the intersection of them.

Let Ĝ be a graph such that G ⊆ Ĝ. For e = uv ∈ E(Ĝ), G + e means
(V (G) ∪ {u, v}, E(G) ∪ {e}), and G− e means (V (G), E(G) \ {e}). For a set of
edges F = {ei}ki=1, G+ F and G− F means respectively G+ e1 + · · ·+ ek and
G− e1 − · · · − ek.

For a path P and x, y ∈ V (P), xPy means the subpath on P between x and
y. For a circuit C with an orientation that makes it a dicircuit, and x, y ∈ V (C)
where x �= y, xCy means the subpath in C that can be regarded as a dipath
from x to y.

A vertex v ∈ V (G) satisfying δ(v) ∩M = ∅ is called exposed by M . For a
matching M of G and u ∈ V (G), u′ denote the vertex to which u is matched by
M . For X ⊆ V (G), MX denotes M ∩ E(G[X]).

Let M be a matching of G. For Q ⊆ G, which is a path or circuit, we call Q
M -alternating if E(Q) \M is a matching of Q. Let P ⊆ G be an M -alternating
path with end vertices u and v. If P has an even number of edges and starts
with an edge in M if it is traced from u, we call it an M -balanced path from u to
v. We regard a trivial path, that is, a path composed of one vertex and no edges
as an M -balanced path. If P has an odd number of edges and M ∩E(P) (resp.
E(P) \M) is a perfect matching of P , we call it M -saturated (resp. M -exposed).

Let H ⊆ G. We say a path P ⊆ G is an ear relative to H if both end vertices
of P are in H while internal vertices are not. So do we to a circuit if exactly
one vertex of it is in H . For simplicity, we call the vertices of V (P) ∩ V (H) end
vertices of P , even if P is a circuit. For an ear R ⊆ G relative to H , we call it
an M -ear if P − V (H) is an M -saturated path.

A graph is called factor-critical if any deletion of its single vertex leaves a
factorizable graph. A subgraph G′ ⊆ G is called nice if G−V (G′) is factorizable.
The next two propositions are well-known and might be regarded as folklores.

Proposition 1. Let M be a near-perfect matching of a graph G that exposes
v ∈ V (G). Then, G is factor-critical if and only if for any u ∈ V (G) there exists
an M -balanced path from u to v.

Proposition 2. Let G be a graph. Then G is factor-critical if and only if each
block of G is factor-critical.

88 N. Kita

Proposition 3 (implicitly stated in [16]). Let G be a factor-critical graph, v ∈
V (G), and M be a near-perfect matching that exposes v. Then for any non-loop
edge e = vu ∈ E(G), there is a nice circuit C of G which is an M -ear relative
to v and contains e.

Theorem 1 (implicitly stated in [16]). Let G be a factor-critical graph. For any
nice factor-critical subgraph G′ of G, G/G′ is factor-critical.

Let us denote the number of odd components (i.e. connected components with
odd numbers of vertices) of a graph G as oc(G), and the cardinality of a maxi-
mum matching of G as ν(G). It is known as the Berge formula [1] that for any
graph G, |V (G)|−2ν(G) = max{oc(G−X)−|X | : X ⊆ V (G)}. A set of vertices
that attains the maximum in the right side of the equation is called a barrier.

The canonical partition is a decomposition for elementary graphs and plays a
crucial role in matching theory. First Kotzig introduced the canonical partition as
a quotient set of a certain equivalence relation [4–6], and later Lovász redefined
it from the point of view of barriers [1]. In fact, these are equivalent. For an
elementary graph G and u, v ∈ V (G), we say u ∼ v if u = v or G− u− v is not
factorizable.

Theorem 2 (Kotzig [4–6], Lovász [1]). Let G be an elementary graph. Then
∼ is an equivalence relation on V (G) and the family of equivalence classes is
exactly the family of maximal barriers of G.

The family of equivalence classes of ∼ is called the canonical partition of G, and
denoted by P(G). From this theorem, following is derived for elementary graphs:
For an arbitrary perfect matching M of an elementary graph G, there is a u-v
M -saturated path if and only if u �∼ v. Thus, uv ∈ E(G) is allowed if and only
if u �∼ v.

An ear-decomposition of graph G is a sequence of subgraphs G0,⊆, · · · ,⊆
Gk = G such that G0 = ({r}, ∅) for some r ∈ V (G) and for each i ≥ 1, Gi is
obtained from Gi−1 by adding an ear Pi relative to Gi−1. We sometimes regard
an ear-decomposition as a family of ears P = {P1, . . . , Pk}. An ear-decomposition
is called odd if any of its ears has an odd number of edges.

Theorem 3 (Lovász [16]). A graph is factor-critical if and only if it has an
odd ear-decomposition.

For a factor-critical graph G and its near-perfect matching M , we call an ear-
decomposition alternating with respect to M , or just M -alternating, if each ear
is an M -ear.

Proposition 4 (Lovász [16]). Let G be a factor-critical graph. Then for any
near-perfect matching M of G, there is an M -alternating ear-decomposition of G.

Later on this paper, note the following fundamental properties; for a factorizable
graph G and its perfect matching M , e ∈ E(G) is allowed if and only if there is
an M -alternating circuit containing e; for u, v ∈ V (G), G−u−v is factorizable if
and only if there is an M -saturated path between u and v; for two M -alternating
path P and Q, a segment of P ∩Q is a M -saturated paths if it contains no end
vertices of P nor Q.

A Partially Ordered Structure and a Generalization 89

3 A Partially Ordered Structure in Factorizable Graphs

In this section we show our first result: a partially ordered structure among
elementary components of factorizable graphs. For a factorizable graph G and
G1 ∈ G(G), we call X ⊆ V (G) a separable set for G1 if each H ∈ G(G) satisfies
V (H) ⊆ X or V (H) ∩X = ∅, and G[X]/G1 is factor-critical.

Definition 1. Let G be a factorizable graph and G1, G2 ∈ G(G). We say G1�G2

if there exists a separable set X ⊆ V (G) for G1 that contains G2.

Lemma 1. Let G be a factorizable graph and M be a perfect matching of G.
Let G1, G2 ∈ G(G) such that G1 � G2 and X ⊆ V (G) be a separable set for G1

that contains G2. Then for any u ∈ V (G2) there exists v ∈ V (G1) such that
there is an M -balanced path from u to v whose vertices except v are contained
in X \ V (G1).

Proof. Since MX\V (G1) is a near-perfect matching of G[X]/G1 that exposes the
contracted vertex g1 corresponding to G1, we are done by Proposition 1. ��

Proposition 5. Let G be an elementary graph and M be a perfect matching of
G. Then for any two vertices u, v ∈ V (G) there is an M -saturated path between
u and v, or an M -balanced path from u to v.

Let G be a factorizable graph and M be a perfect matching of G. We call
a sequence of elementary components H0, . . . , Hk ∈ G(G) an M -ear sequence
from H0 to Hk if there is an M -ear relative to Hi−1 and through Hi for each
i = 1, . . . , k − 1. The next theorem gives an equivalent definition of �.

Theorem 4. Let G be a factorizable graph, M be a perfect matching of G, and
G1, G2 ∈ G(G). Then, G1 �G2 if and only if there exists an M -ear sequence from
G1 to G2.

Theorem 5. � is a partial order.

Proof. The reflexivity is obvious from the definition. The transitivity obviously
follows from Theorem 4. Hence, we will prove the antisymmetry. Let G1, G2 ∈
G(G) be such that G1�G2 and G2�G1. Suppose the claim fails, that is, G1 �= G2.
Let X ⊆ V (G) be a separable set for G1 that contains G2, and let M be a perfect
matching of G. Let g1 be the contracted vertex of G[X]/G1, and take an M -ear
P relative to g1 in G[X]/G1 by Proposition 3, whose corresponding end vertices
in G are p and q. Since G2 � G1, by Lemma 1, there is an M -balanced path Q
from p to some vertex in V (G2). Trace Q from p and let x be the first vertex
we encounter that is in X \ V (G1). Since G[X]/G1 is factor-critical, there is
an M -balanced path R from x to q whose vertices except q are contained in
X \ V (G1). Trace R from x and let y be the first vertex we encounter that is on
P . If pPy has an even number of edges, pQx+ xRy + yPp is an M -alternating
circuit containing non-allowed edges, a contradiction.

Hence hereafter we assume pPw has an odd number of edges. By Proposi-
tion 5, there is an M -saturated or balanced path L from q to p which is contained

90 N. Kita

in G1. Trace L from q and let w be the first vertex on Q. If pQw has an odd
number of edges, then wQp+P + qLw is an M -alternating circuit, a contradic-
tion. If pQw has an even number of edges, then qLw+wQx+ xRy + yPq is an
M -alternating circuit, which is also a contradiction. Thus we get G1 = G2, and
the claim follows. ��

4 A Generalization of the Canonical Partition

For non-elementary graphs, the family of maximal barriers never gives a parti-
tion of its vertex set [1]. Therefore, to analyze the structures of general graphs
with perfect matchings, we generalized the canonical partition based on Kotzig’s
way [4–6].

Definition 2. Let G be a factorizable graph and H ∈ G(G). For u, v ∈ V (H),
we say u ∼g v if u = v or G− u− v is not factorizable.

Theorem 6. ∼g is an equivalence relation.

Proof. Since the reflexivity and the symmetry are obvious from the definition,
we prove the transitivity. Let u, v, w ∈ V (H) be such that u ∼g v and v ∼g w.
If any two of them are identical, clearly the claim follows. Therefore it suffices
to consider the case that they are mutually distinct. Suppose that the claim
fails, that is, u �∼g w. Then there is an M -saturated path P between u and w.
By Proposition 5, there is an M -balanced path Q from v to u. Trace Q from
v and let x be the first vertex we encounter that in V (Q) ∩ V (P). If uPx has
an odd number of edges, vQx + xPu is an M -saturated path between u and
v, a contradiction. If uPx has an even number of edges, then xPw has an odd
number of edges, and by the same argument we have a contradiction. ��

We call the family of equivalence classes of ∼g as the generalized canonical par-
tition and denote as PG(H) for each elementary component H ∈ G(G) of a
factorizable graph G. Note that the notions of the canonical partition and the
generalized one are coincident for an elementary graph. Thus we denote the
union of equivalence classes of all the elementary components of G as P(G),
and call it just as the canonical partition. Moreover our proof for Theorem 6
contains a short proof for the existence of the canonical partition. Kotzig takes
three papers to prove it, thus to prove that ∼ is an equivalence relation “from
scratch” is considered to be hard [1]. However, in fact, it can be shown in a sim-
ple way even without the premise of the Gallai-Edmonds structure theorem nor
the notion of barriers. Note also that the generalized canonical partition PG(H)
is a refinement of P(H) for each H ∈ G(G).

5 Correlations between � and ∼g

In this section we further analyze properties of factorizable graphs. We denote
all the upper bounds of H ∈ G(G) in (G(G), �) as up∗G(H) and define upG(H)

A Partially Ordered Structure and a Generalization 91

as up∗G(H) \ {H}. We sometimes omit the subscripts if they are apparent from
the context. For simplicity, we sometimes denote the subgraph induced by the
vertices in up(H) (resp. up∗(H)) just as G[up(H)] (resp. G[up∗(H)]).

Lemma 2. Let G be a factorizable graph, M be a perfect matching of G, and
H ∈ G(G). Let P be an M -ear relative to H with end vertices u, v ∈ V (H). Then
u ∼g v.

Proof. Suppose the claim fails, that is, u �= v and there is anM -saturated path Q
between u and v. Trace Q from u and let x be the first vertex we encounter that
is on P −u. If uPx has an even number of edges, uQx+xPu is an M -alternating
circuit containing non-allowed edges, a contradiction. Hence we suppose uPx has
an odd number of edges. Let I ∈ G(G) be the elementary component such that
x ∈ V (I). Then one of the components of uQx+xPu−V (I) is an M -ear relative
to I and through H , a contradiction by Theorem 4. ��

Theorem 7. Let H be an elementary component of a factorizable graph G. Then
for each connected component K of G[up(H)], there exists S ∈ PG(H) such that
N(K) ∩ V (H) ⊆ S.

By Theorem 7, we can see that upper bounds of an elementary component are
each “attached” to an equivalence class of the generalized canonical partition.

Remark 1. There are factorizable graphs where � does not hold for any two
elementary components, in other words, where all the elementary components
are minimal in the poset. For example, we can see by Theorem 4 and Theorem 7
that bipartite factorizable graphs are such, which means Theorem 5 is not a
generalization of the DM-decomposition, even though they have similar natures.

The following theorem shows that most of the factorizable graphs with |G(G)| ≥
2, in a sense, have non-trivial structures as posets.

Theorem 8. Let G be a factorizable graph, G1, G2 ∈ G(G) be elementary com-
ponents for which G1 � G2 does not hold, and let G1 be minimal in the poset
(G(G), �). Then there are possibly identical complement edges e, f of G between
G1 and G2 such that G(G+ e + f) = G(G) and G1 � G2 in (G(G + e+ f), �).

6 Algorithmic Result

In this section, we discuss the algorithmic aspects of the partial order and the
generalized canonical partition. We denote by n and m respectively the number
of vertices and edges of input graphs. As we work on factorizable graphs and
graphs with near-perfect matchings, we can assume m = Ω(n).

We start with some materials from Edmonds’ maximum matching algo-
rithm [12], referring mainly to [1, 17]. For a tree T with a specified root vertex
r, we call a vertex v ∈ V (T) inner (resp. outer) if the unique path in T from
r to v has an odd (resp. even) number of edges. Let G be a graph and M be
a matching of G. A tree T ⊆ G is called M -alternating if exactly one vertex

92 N. Kita

of it, the root, is exposed by M in G, and each inner vertex v ∈ V (T) satisfies
|δ(v) ∩ E(T)| = 2 and one of the edges of δ(v) ∩E(T) is contained in M .

A subgraph S ⊆ G is called a special blossom tree with respect to M (M -SBT)
if there is a partition V (C1)∪̇ · · · ∪̇V (Ck) = V (S) such that

1. S′ := S/C1/ · · · /Ck is an M -alternating tree,
2. MCi is a near-perfect matching of Ci,
3. Ci is a maximal factor-critical subgraph of G if it corresponds to an outer

vertex of S′, and called an outer blossom, and
4. |V (Ci)| > 1 only if Ci is an outer blossom, for each i = 1, . . . , k.

Edmonds’ maximum matching algorithm tells us the following facts. Let G be a
graph, M be a near-perfect matching of G, and r ∈ V (G) be the vertex exposed
by M . Then an M -SBT S, with root r, can be computed, if it is carefully
implemented [18,19], in O(m) time. Additionally, the set of vertices from which
r can be reached by an M -balanced path is exactly the set of vertices contained
in the outer blossoms of S.

Thus, due to an easy reduction of the above facts, the following proposition
holds; they can be regarded as a folklore. See [3]. (In [3] they are presented
as those for elementary graphs, but in fact, they can be applicable for general
factorizable graphs.)

Proposition 6. Let G be a factorizable graph, M be a perfect matching of G,
and u ∈ V (G).

1. The set of vertices that can be reached from u by an M -saturated path can
be computed in O(m) time.

2. All the allowed edges adjacent to u can be computed in O(m) time.
3. All the elementary components of G can be computed in O(nm) time.

Proposition 7. Given a factorizable graph G, one of its perfect matchings M
and G(G), we can compute the generalized canonical partition of G in O(nm)
time.

Let G be a factorizable graph and M be a perfect matching of G. We say two
distinct elementary components G1, G2 of G with G1 � G2 are non-refinable if
G1 � H � G2 yields G1 = H or G2 = H for any H ∈ G(G). Note that if G1 and
G2 are non-refinable, then there is an M -ear relative to G1 and through G2 by
Theorem 4. Note also that the converse of the above fact does not hold.

Lemma 3. Let G be a factorizable graph, M be a perfect matching of G, and
H ∈ G(G). Let S be a maximal M -SBT in G/H and let C be the blossom of T
containing the contracted vertex h corresponding to H. Then any non-refinable
upper bound of H in (G(G), �) has common vertices with C. Additionally, if an
elementary component I ∈ G(G) has some common vertices with C, then H � I.

Proposition 8. Given a factorizable graph G, its perfect matching M , and
G(G), we can compute the poset (G(G), �) in O(nm) time.

A Partially Ordered Structure and a Generalization 93

Proof. It is sufficient to list all the non-refinable upper bounds for each elemen-
tary component of G by the following procedure:

1: D := (G(G), ∅); A := ∅;
2: for all H ∈ G(G) do
3: compute a maximal M -SBT T ; let C be the blossom of T corresponding

to its root;
4: for all x ∈ V (C), which satisfies x ∈ V (I) for some I ∈ G(G) do
5: A := A ∪ {(H, I)};
6: end for
7: end for
8: D := (G(G), A); STOP.

By Lemma 3, the partial order on V (D) determined by the reachability corre-
sponds to � after the above procedure. That is, if we define a binary relation ≺
on V (D) so that H ′ � I ′ if there is a dipath from H ′ to I ′ in D, then ≺ and
� coincide. For each H ∈ G(G), the above procedure costs O(m) time, thus it
costs O(nm) time over the whole computation. ��

Remark 2. Given the digraph D after the procedure in Proposition 8, we can
compute all the upper bounds of an elementary component in O(n2) time. Thus,
an efficient data structure that represents the poset, for example, a boolean-
valued matrix L where L[i, j] = true if and only if Gi � Gj , can be obtained in
additional O(n3) time.

As a maximum matching of a graph can be computed in O(
√
nm) time [20,21],

we have the following, combining Propositions 6, 7, and 8.

Theorem 9. Let G be a factorizable graph. Then the poset (G(G), �) and the
generalized canonical partition P(G) can be computed in O(nm) time.

Acknowlegements. The author is grateful to Yusuke Kobayashi and Richard
Hoshino for carefully reading the paper, and Akihisa Tamura for useful
discussions.

References

1. Lovász, L., Plummer, M.D.: Matching Theory. Elsevier Science (1986)
2. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer

(2003)
3. Carvalho, M.H., Cheriyan, J.: An O(V E) algorithm for ear decompositions of

matching-covered graphs. ACM Transactions on Algorithms 1(2), 324–337 (2005)
4. Kotzig, A.: Z teórie konečných grafov s lineárnym faktorom. I. Mathematica Slo-

vaca 9(2), 73–91 (1959) (in Slovak)
5. Kotzig, A.: Zteórie konečných grafov s lineárnym faktorom. II. Mathematica Slo-

vaca 9(3), 136–159 (1959) (in Slovak)
6. Kotzig, A.: Z teórie konečných grafov s lineárnym faktorom. III. Mathematica

Slovaca 10(4), 205–215 (1960) (in Slovak)
7. Edomonds, J., Lovász, L., Pulleyblank, W.R.: Brick decompositions and the match-

ing rank of graphs. Combinatorica 2(3), 247–274 (1982)

94 N. Kita

8. Lovász, L.: Matching structure and the matching lattice. Journal of Combinatorial
Theory, Series B 43, 187–222 (1987)

9. Carvalho, M.H., Lucchesi, C.L., Murty, U.S.R.: The matching lattice. In: Reed,
B., Sales, C.L. (eds.) Recent Advances in Algorithms and Combinatorics. Springer
(2003)

10. Nakamura, M.: Structural theorems for submodular functions, polymatroids and
polymatroid intersections. Graphs and Combinatorics 4, 257–284 (1988)

11. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Elsevier Science
(2005)

12. Edmonds, J.: Paths, trees and flowers. Canadian Journal of Mathematics 17, 449–
467 (1965)

13. Pap, G., Szegő, L.: On the maximum even factor in weakly symmetric graphs.
Journal of Combinatorial Theory, Series B 91(2), 201–213 (2004)

14. Spille, B., Szegő, L.: A gallai-edmonds type structure theorem for path-matchings.
Journal of Graph Theory 46(2), 93–102 (2004)

15. Kita, N.: Another proof for Lovász’s cathedral theorem (preprint)
16. Lovász, L.: A note on factor-critical graphs. Studia Scientiarum Mathematicarum

Hungarica 7, 279–280 (1972)
17. Korte, B., Vygen, J.: Combinatorial Optimization; Theory and Algorithms, 4th

edn. Springer (2007)
18. Tarjan, R.E.: Data Structures and Network Algorithms. Society for Industrial and

Applied Mathematics (1983)
19. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint

set union. Journal of Computer and System Sciences 30, 209–221 (1985)
20. Micali, S., Vazirani, V.V.: An O(

√
|v| · |E|) algorithm for finding maximum match-

ing in general graphs. In: Proceedings of the 21st Annual IEEE Symposium on
Foundations of Computer Science, pp. 17–27 (1980)

21. Vazirani, V.V.: A theory of alternating paths and blossoms for proving correctness
of the O(

√
V E) general graph maximum matching algorithm. Combinatorica 14,

71–109 (1994)

Fast and Simple Fully-Dynamic Cut Tree Construction�

Tanja Hartmann and Dorothea Wagner

Department of Informatics, Karlsruhe Institute of Technology (KIT)
{t.hartmann,dorothea.wagner}@kit.edu

Abstract. A cut tree of an undirected weighted graph G = (V,E) encodes a min-
imum s-t-cut for each vertex pair {s, t} ⊆V and can be iteratively constructed by
n− 1 maximum flow computations. They solve the multiterminal network flow
problem, which asks for the all-pairs maximum flow values in a network and at
the same time they represent n− 1 non-crossing, linearly independent cuts that
constitute a minimum cut basis of G. Hence, cut trees are resident in at least two
fundamental fields of network analysis and graph theory, which emphasizes their
importance for many applications. In this work we present a fully-dynamic al-
gorithm that efficiently maintains a cut tree for a changing graph. The algorithm
is easy to implement and has a high potential for saving cut computations under
the assumption that a local change in the underlying graph does rarely affect the
global cut structure. We document the good practicability of our approach in a
brief experiment on real world data.

1 Introduction

A cut tree is a weighted tree T (G) = (V,ET ,cT) on the vertices of an undirected
(weighted) graph G = (V,E,c) (with edges not necessarily in G) such that each
{u,v} ∈ ET induces a minimum u-v-cut in G (by decomposing T (G) into two con-
nected components) and such that cT ({u,v}) is equal to the cost of the induced cut. The
cuts induced by T (G) are non-crossing and for each {x,y} ⊆ V each cheapest edge on
the path π(x,y) between x and y in T (G) corresponds to a minimum x-y-cut in G. If G
is disconnected, T (G) contains edges of cost 0 between connected components.

Cut trees were first introduced by Gomory and Hu [1] in 1961 in the field of mul-
titerminal network flow analysis. Shortly afterwards, in 1964, Elmaghraby [3] already
studied how the values of multiterminal flows change if the capacity of an edge in the
network varies. Elmaghraby established the sensitivity analysis of multiterminal flow
networks, which asks for the all-pairs maximum flow values (or all-pairs minimum cut
values) in a network considering any possible capacity of the varying edge. According
to Barth et al. [4] this can be answered by constructing two cut trees. In contrast, the
parametric maximum flow problem considers a flow network with only two terminals
s and t and with several parametric edge capacities. The goal is to give a maximum
s-t-flow (or minimum s-t-cut) regarding all possible capacities of the parametric edges.
Parametric maximum flows were studied, e.g., by Gallo et al. [5] and Scutellà [6].

However, in many applications we are neither interested in all-pairs values nor in
one minimum s-t-cut regarding all possible changes of varying edges. Instead we face

� This work was partially supported by the DFG under grant WA 654/15-2 and by the Concept
for the Future of Karlsruhe Institute of Technology within the German Excellence Initiative.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 95–105, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

96 T. Hartmann and D. Wagner

a concrete change on a concrete edge and need all-pairs minimum cuts regarding this
single change. This is answered by dynamic cut trees, which thus bridge the two sides
of sensitivity analysis and parametric maximum flows.

Contribution and Outline. In this work we develop the first algorithm that efficiently
and dynamically maintains a cut tree for a changing graph allowing arbitrary atomic
changes. To the best of our knowledge no fully-dynamic approach for updating cut trees
exists. Coming from sensitivity analysis, Barth et al. [4] state that after the capacity of
an edge has increased the path in T (G) between the vertices that define the changing
edge in G is the only part of a given cut tree that needs to be recomputed, which is rather
obvious. Besides they stress the difficulty for the case of decreasing edge capacities.

In our work we formulate a general condition for the (re)use of given cuts in an (iter-
ative) cut tree construction, which directly implies the result of Barth et al. We further
solve the case of decreasing edge capacities showing by an experiment that this has a
similar potential for saving cut computations like the case of increasing capacities. In
the spirit of Gusfield [2], who simplified the pioneering cut tree algorithm of Gomory
and Hu [1], we also allow the use of crossing cuts and give a representation of interme-
diate trees (during the iteration) that makes our approach very easy to implement.

We give our notational conventions and a first folklore insight in Sec. 1. In Sec. 2 we
revisit the static cut tree algorithm [1] and the key for its simplification [2], and construct
a first intermediate cut tree by reusing cuts that obviously remain valid after a change
in G. We also state several lemmas that imply techniques to find further reusable cuts in
this section. Our update approach is described in Sec. 3. In Sec. 4 we finally discuss the
performance of our algorithm based on a brief experiment. Proofs omitted due to space
constraints can be found in the full paper [7].

Preliminaries and Notation. In this work we consider an undirected, weighted graph
G=(V,E,c) with vertices V , edges E and a positive edge cost function c, writing c(u,v)
as a shorthand for c({u,v}) with {u,v} ∈ E . We reserve the term node for compound
vertices of abstracted graphs, which may contain several basic vertices of a concrete
graph; however, we identify singleton nodes with the contained vertex without further
notice. Contracting a set N ⊆ V in G means replacing N by a single node, and leaving
this node adjacent to all former adjacencies u of vertices of N, with an edge cost equal
to the sum of all former edges between N and u. Analogously we contract a set M ⊆ E
or a subgraph of G by contracting the corresponding vertices.

A cut in G is a partition of V into two cut sides S and V \ S. The cost c(S,V \ S) of
a cut is the sum of the costs of all edges crossing the cut, i.e., edges {u,v} with u ∈ S,
v ∈ V \ S. For two disjoint sets A,B ⊆ V we define the cost c(A,B) analogously. Note
that a cut is defined by the edges crossing it. Two cuts are non-crossing if their cut sides
are pairwise nested or disjoint. Two vertices u,v∈V are separated by a cut if they lie on
different cut sides. A minimum u-v-cut is a cut that separates u and v and is the cheapest
cut among all cuts separating these vertices. We call a cut a minimum separating cut if
there exists an arbitrary vertex pair {u,v} for which it is a minimum u-v-cut; {u,v} is
called a cut pair of the minimum separating cut. We further denote the connectivity of
{u,v} ⊆V by λ (u,v), describing the cost of a minimum u-v-cut.

Since each edge in a tree T (G) on the vertices of G induces a unique cut in G,
we identify tree edges with corresponding cuts without further notice. This allows for

Fast and Simple Fully-Dynamic Cut Tree Construction 97

saying that a vertex is incident to a cut and an edge separates a pair of vertices. We
consider the path π(u,v) between u and v in T (G) as the set of edges or the set of
vertices on it, as convenient.

A change in G either involves an edge {b,d} or a vertex b. If the cost of {b,d} in G
descreases by Δ > 0 or {b,d} with c(b,d) = Δ > 0 is deleted, the change yields G .
Analogously, inserting {b,d} or increasing the cost yields G⊕. We denote the cost func-
tion after a change by c and c⊕, the connectivity by λ and λ⊕, respectively. We as-
sume that only degree-0 vertices can be deleted from G. Hence, inserting or deleting
b changes neither the cost function nor the connectivity. We start with a fundamental
insight on the reusability of cuts. Recall that T (G) = (V,ET ,cT) denotes a cut tree.

Lemma 1. If c(b,d) changes by Δ > 0, then each {u,v} ∈ ET remains a minimum u-
v-cut (i) in G⊕ with cost λ (u,v) if {u,v} /∈ π(b,d), (ii) in G with cost λ (u,v)−Δ if
{u,v} ∈ π(b,d).

2 The Static Algorithm and Insights on Reusable Cuts

The Static Algorithm. As a basis for our dynamic approach, we briefly revisit the static
construction of a cut tree [1,2]. This algorithm iteratively constructs n−1 non-crossing
minimum separating cuts for n− 1 vertex pairs, which we call step pairs. These pairs
are chosen arbitrarily from the set of pairs not separated by any of the cuts constructed
so far. Algorithm 1 briefly describes the cut tree algorithm of Gomory and Hu.

Algorithm 1. CUT TREE

Input: Graph G = (V,E,c)
Output: Cut tree of G

1 Initialize tree T∗ := (V∗,E∗,c∗) with V∗ ← {V},E∗ ← /0 and c∗ empty
2 while ∃S ∈V∗ with |S|> 1 do // unfold all nodes

3 {u,v} ← arbitrary pair from
(S

2

)
4 forall the S j adjacent to S in T∗ do Nj ← subtree of S in T∗ with S j ∈ Nj

5 GS = (VS,ES,cS)← in G contract each Nj to [Nj] // contraction

6 (U,V \U)← min-u-v-cut in GS, cost λ (u,v), u ∈U
7 Su ← S∩U and Sv ← S∩ (VS \U) // split S = Su ·∪Sv

8 V∗ ← (V∗ \{S})∪{Su ,Sv}, E∗ ← E∗ ∪{{Su,Sv}}, c∗(Su,Sv)← λ (u,v)
9 forall the former edges e j = {S,S j} ∈ E∗ do

10 if [Nj] ∈U then e j ←{Su,S j} ; // reconnect S j to Su

11 else e j ←{Sv,S j} ; // reconnect S j to Sv

12 return T∗

The intermediate cut tree T∗ = (V∗,E∗,c∗) is initialized as an isolated, edgeless node
containing all original vertices. Then, until each node of T∗ is a singleton node, a node
S ∈ V∗ is split. To this end, nodes S′ �= S are dealt with by contracting in G whole
subtrees Nj of S in T∗, connected to S via edges {S,S j}, to single nodes [Nj] before
cutting, which yields GS. The split of S into Su and Sv is then defined by a minimum
u-v-cut (split cut) in GS, which does not cross any of the previously used cuts due to
the contraction technique. Afterwards, each Nj is reconnected, again by S j, to either Su

98 T. Hartmann and D. Wagner

y

x

u Su

Sj

v Sv
S

(a) If x∈ Su, {x,y} is still a cut pair of {Su,S j}

y

x

u Su

Sj

v Sv
S

(b) If x /∈ Su, {u,y} is a cut pair of {Su,S j}

Fig. 1. Situation in Lemma 2. There always exists a cut pair of the edge {Su,S j} in the nodes
incident to the edge, independent of the shape of the split cut (dashed).

or Sv depending on which side of the cut [Nj] ended up. Note that this cut in GS can be
proven to induce a minimum u-v-cut in G.

The correctness of CUT TREE is guaranteed by Lemma 2, which takes care for the
cut pairs of the reconnected edges. It states that each edge {S,S′} in T∗ has a cut pair
{x,y} with x ∈ S, y ∈ S′. An intermediate cut tree satisfying this condition is valid.
The assertion is not obvious, since the nodes incident to the edges in T∗ change when-
ever the edges are reconnected. Nevertheless, each edge in the final cut tree represents
a minimum separating cut of its incident vertices, due to Lemma 2. The lemma was
formulated and proven in [1] and rephrased in [2]. See Figure 1.

Lemma 2 (Gus. [2], Lem. 4). Let {S,S j} be an edge in T∗ inducing a cut with cut pair
{x,y}, w.l.o.g. x∈ S. Consider step pair {u,v}⊆ S that splits S into Su and Sv, w.l.o.g. S j

and Su ending up on the same cut side, i.e. {Su,S j} becomes a new edge in T∗. If x ∈ Su,
{x,y} remains a cut pair for {Su,S j}. If x ∈ Sv, {u,y} is also a cut pair of {Su,S j}.

While Gomory and Hu use contractions in G to prevent crossings of the cuts, as a sim-
plification, Gusfield introduced the following lemma showing that contractions are not
necessary, since any arbitrary minimum separating cut can be bent along the previous
cuts resolving any potential crossings. See Figure 2.

Lemma 3 (Gus. [2], Lem. 1). Let (X ,V \ X) be a minimum x-y-cut in G, with x ∈
X. Let (H,V \H) be a minimum u-v-cut, with u,v ∈ V \ X and x ∈ H. Then the cut
(H ∪X ,(V \H)∩ (V \X)) is also a minimum u-v-cut.

x

V \X X

H
V \H

H

V \H

x deflects cut
downwards

x deflects cut
upwards

u

v

Fig. 2. Depending on x Lem. 3
bends the cut (H,V \H) upwards
or downwards

We say that (X ,V \X) shelters X , meaning that each
minimum u-v-cut with u,v /∈ X can be reshaped, such
that it does no longer split X .

Representation of Intermediate Trees. In the re-
mainder of this work we represent each node in T∗,
which consists of original vertices in G, by an arbi-
trary tree of thin edges connecting the contained ver-
tices in order to indicate their membership to the node.
An edge connecting two nodes in T∗ is represented by
a fat edge, which we connect to an arbitrary vertex in
each incident compound node. Fat edges represent minimum separating cuts in G. If
a node contains only one vertex, we color this vertex black. Black vertices are only

Fast and Simple Fully-Dynamic Cut Tree Construction 99

incident to fat edges. The vertices in non-singleton nodes are colored white. White ver-
tices are incident to at least one thin edge. In this way, T∗ becomes a tree on V with two
types of edges and vertices. For an example see Figure 3.

Conditions for Reusing Cuts. Consider a set K of k ≤ n− 1 cuts in G for example
given by a previous cut tree in a dynamic scenario. The following theorem states suffi-
cient conditions for K, such that there exists a valid intermediate cut tree that represents
exactly the cuts in K. Such a tree can then be further processed to a proper tree by CUT

TREE, saving at least |K| cut computations compared to a construction from scratch.

Theorem 1. Let K denote a set of non-crossing minimum separating cuts in G and let F
denote a set of associated cut pairs such that each cut in K separates exactly one pair
in F. Then there exists a valid intermediate cut tree representing exactly the cuts in K.

Proof. Theorem 1 follows inductively from the correctness of CUT TREE. Consider a
run of CUT TREE that uses the elements in F as step pairs in an arbitrary order and the
associated cuts in K as split cuts. Since the cuts in K are non-crossing each separating
exactly one cut pair in F , splitting a node neither causes reconnections nor the separa-
tion of a pair that was not yet considered. Thus, CUT TREE reaches an intermediate tree
representing the cuts in K with the cut pairs located in the incident nodes. ��
With the help of Theorem 1 we can now construct a valid intermediate cut tree from
the cuts that remain valid after a change of G according to Lemma 1. These cuts are
non-crossing as they are represented by tree edges, and the vertices incident to these
edges constitute a set of cut pairs as required by Theorem 1. The resulting tree for an
inserted edge or an increased edge cost is shown in Figure 3(a). In this case, all but the
edges on π(b,d) can be reused. Hence, we draw these edges fat. The remaining edges
are thinly drawn. The vertices are colored according to the compound nodes indicated
by the thickness of the edges. Vertices incident to a fat edge correspond to a cut pair.

For a deleted edge or a decreased edge cost, the edges on π(b,d) are fat, while the
edges that do not lie on π(b,d) are thin (cp. Figure 3(b)). Furthermore, the costs of the
fat edges decrease by Δ , since they all cross the changing edge {b,d} in G. Compared
to a construction from scratch, starting the CUT TREE routine from these intermediate
trees already saves n− 1−|π(b,d)| cut computations in the first case and |π(b,d)| cut
computations in the second case, where |π(b,d)| counts the edges on π(b,d). Hence,
in scenarios with only little varying path lengths and a balanced number of increasing
and decreasing costs, we can already save about half of the cut computations. We fur-
ther remark that the result of Barth et. al. [4], who costly prove the existence of the
intermediate cut tree in Figure 3(a), easily follows by Theorem 1 applied to the cuts in
Lemma 1 as seen above. In the following we want to use even more information from
the previous cut tree T (G) when executing CUT TREE unfolding the intermediate tree
to a proper cut tree of (n−1) fat edges. The next section lists further lemmas that allow
the reuse of cuts already given by T (G).

Further Reusable Cuts. In this section we focus on the reuse of those cuts that are
still represented by thin edges in Figure 3. If {b,d} is inserted or the cost increases, the
following corollary obviously holds, since {b,d} crosses each minimum b-d-cut.

100 T. Hartmann and D. Wagner

d
b

(a) Intermediate cut tree for G⊕.

b
d

(b) Intermediate cut tree for G .

Fig. 3. Intermediate cut trees in dynamic scenarios. Fat edges represent valid minimum cuts,
thin edges indicate compound nodes. Contracting the thin edges yields nodes of white vertices
(indicated by dotted lines). Black vertices correspond to singletons.

Corollary 1. If {b,d} is newly inserted with c⊕(b,d) = Δ or c(b,d) increases by Δ ,
any minimum b-d-cut in G remains valid in G⊕ with λ⊕(b,d) = λ (b,d)+Δ .

Note that reusing a valid minimum b-d-cut as split cut in CUT TREE separates b and d
such that {b,d} cannot be used again as step pair in a later iteration step. This is, we
can reuse only one minimum b-d-cut, even if there are several such cuts represented
in T (G). Together with the following corollary, Corollary 1 directly allows the reuse of
the whole cut tree T (G) if {b,d} is an existing bridge in G (with increasing cost).

Corollary 2. An edge {u,v} is a bridge in G iff c(u,v) = λ (u,v) > 0. Then {u,v} is
also an edge in T (G) representing the cut that is given by the two sides of the bridge.

While the first part of Corollary 2 is obvious, the second part follows by the fact that
a bridge induces a minimum separating cut for all vertices on different bridge sides,
while it does not cross any minimum separating cut of vertices on a common side. If G
is disconnected and {b,d} is a new bridge in G⊕, reusing the whole tree is also possible
by replacing a single edge. Such bridges can be easily detected having the cut tree T (G)
at hand, since {b,d} is a new bridge if and only if λ (b,d) = 0. New bridges particularly
occur if newly inserted vertices are connected for the first time.

Lemma 4. Let {b,d} be a new bridge in G⊕. Then replacing an edge of cost 0 by {b,d}
with cost c⊕(b,d) on π(b,d) in T (G) yields a new cut tree T(G⊕).

If {b,d} is deleted or the cost decreases, handling bridges (always detectable by Corol-
lary 2) is also easy.

Lemma 5. If {b,d} is a bridge in G and the cost decreases by Δ (or {b,d} is deleted),
decreasing the edge cost on π(b,d) in T (G) by Δ yields a new cut tree T (G).

If {b,d} is no bridge, at least other bridges in G can still be reused if {b,d} is deleted
or the edge cost decreases. Observe that a minimum separating cut in G only becomes
invalid in G if there is a cheaper cut in G that separates the same vertex pair. Such
a cut necessarily crosses the changing edge {b,d} in G, since otherwise it would have
been already cheaper in G. Hence, an edge in ET corresponding to a bridge in G cannot
become invalid, since any cut in G that crosses {b,d} besides the bridge would be
more expensive. In particular, this also holds for zero-weighted edges in ET .

Corollary 3. Let {u,v} denote an edge in T (G) with cT (u,v) = 0 or an edge that cor-
responds to a bridge in G. Then {u,v} is still a minimum u-v-cut in G .

Fast and Simple Fully-Dynamic Cut Tree Construction 101

π(b, d)
v

u

v

u

before after
V \U U V \U U

(a) Edges in U remain valid, cp. Lemma 6.

π(b, d)
v

u

v u

before after

x x

(b) Reshaping new cut by reconnecting edges.

Fig. 4. (a) cut {u,v} remains valid, subtree U can be reused. (b) new cheaper cut for {u,v} (black)
can be reshaped by Theo. 2, Lem. 3 (dashed), {u,v} becomes a fat edge.

Lemma 6 shows how a cut that is still valid in G may allow the reuse of all edges
in ET that lie on one cut side. Figure 4(a) shows an example. Lemma 7 says that a cut
that is cheap enough, cannot become invalid in G . Note that the bound considered in
this context depends on the current intermediate tree.

Lemma 6. Let (U,V \U) be a minimum u-v-cut in G with {b,d}⊆V \U and {g,h}∈
ET with g,h ∈U. Then {g,h} is a minimum separating cut in G for all its previous cut
pairs within U.

Lemma 7. Let T∗ = (V,E∗,c∗) denote a valid intermediate cut tree for G , where all
edges on π(b,d) are fat and let {u,v} be a thin edge with v on π(b,d) such that {u,v}
represents a minimum u-v-cut in G. Let Nπ denote the set of neighbors of v on π(b,d).
If λ (u,v)< minx∈Nπ {c∗(x,v)}, then {u,v} is a minimum u-v-cut in G .

3 The Dynamic Cut Tree Algorithm

In this section we introduce one update routine for each type of change: inserting a
vertex, deleting a vertex, increasing an edge cost or inserting an edge, decreasing an
edge cost or deleting an edge. These routines base on the static iterative approach but
involve the lemmas from Sec. 2 in order to save cut computations. We again represent
intermediate cut trees by fat and thin edges, which simplifies the reshaping of cuts.

We start with the routines for vertex insertion and deletion, which trivially abandon
cut computations. We leave the rather basic proofs of correctness to the reader. A ver-
tex b inserted into G forms a connected component in G⊕. Hence, we insert b into T (G)
connecting it to the remaining tree by an arbitrary zero-weighted edge. If b is deleted
from G, it was a single connected component in G before. Hence, in T (G) b is only
incident to zero-weighted edges. Deleting b from T (G) and reconnecting the resulting
subtrees by arbitrary edges of cost 0 yields a valid intermediate cut tree for G .

The routine for increasing an edge cost or inserting an edge first checks if {b,d}
is a (maybe newly inserted) bridge in G. In this case, it adapts cT (b,d) according to
Corollary 1 if {b,d} already exists in G, and rebuilds T (G) according to Lemma 4 oth-
erwise. Both requires no cut computation. If {b,d} is no bridge, the routine constructs
the intermediate cut tree shown in Figure 3(a), reusing all edges that are not on π(b,d).
Furthermore, it chooses one edge on π(b,d) that represents a minimum b-d-cut in G⊕

and draws this edge fat (cp. Corollary 1). The resulting tree is then further processed by
CUT TREE, which costs |π(b,d)|− 1 cut computations and is correct by Theorem 1.

102 T. Hartmann and D. Wagner

Algorithm 2. DECREASE OR DELETE

Input: T (G), b,d, c(b,d), c (b,d), Δ := c(b,d)−c (b,d)
Output: T (G)

1 T∗ ← T (G)
2 if {b,d} is a bridge then apply Lemma 5; return T (G)← T∗
3 Construct intermediate tree according to Figure 3(b)
4 Q← thin edges non-increasingly ordered by their costs
5 while Q �= /0 do
6 {u,v} ← most expensive thin edge with v on π(b,d)
7 Nπ ← neighbors of v on π(b,d); L←minx∈Nπ{c∗(x,v)}
8 if L > λ (u,v) or {u,v} ∈ E with λ (u,v) = c(u,v) then // Lem. 7 and Cor. 3

9 draw {u,v} as a fat edge
10 consider the subtree U rooted at u with v /∈U , // Lem. 6 and Fig. 4(a)

11 draw all edges in U fat, remove fat edges from Q
12 continue loop

13 (U,V \U)← minimum u-v-cut in G with u ∈U
14 draw {u,v} as a fat edge, remove {u,v} from Q
15 if λ (u,v) = c (U,V \U) then goto line 10 // old cut still valid

16 c∗(u,v)← c (U,V \U) // otherwise

17 N ← neighbors of v
18 forall the x ∈ N do // bend split cut by Theo. 2 and Lem. 3

19 if x ∈U then reconnect x to u

20 return T (G)← T∗

The routine for decreasing an edge cost or deleting an edge is given by Algorithm 2.
We assume G and G to be available as global variables. Whenever the intermediate
tree T∗ changes during the run of Algorithm 2, the path π(b,d) is implicitly updated
without further notice. Thin edges are weighted by the old connectivity, fat edges by
the new connectivity of their incident vertices. Whenever a vertex is reconnected, the
newly occurring edge inherits the cost and the thickness from the disappearing edge.

Algorithm 2 starts by checking if {b,d} is a bridge (line 2) and reuses the whole cut
tree T (G) with adapted cost cT (b,d) (cp. Lemma 5) in this case. Otherwise (line 3), it
constructs the intermediate tree shown in Figure 3(b), reusing all edges on π(b,d) with
adapted costs. Then it proceeds with iterative steps similar to CUT TREE. However, the
difference is, that the step pairs are not chosen arbitrarily, but according to the edges in
T (G), starting with those edges that are incident to a vertex v on π(b,d) (line 6). In this
way, each edge {u,v} which is found to remain valid in line 8 or line 15 allows to retain
a maximal subtree (cp. Lemma 6), since {u,v} is as close as possible to π(b,d). The
problem however is that cuts that are no longer valid, must be replaced by new cuts,
which not necessarily respect the tree structure of T (G). This is, a new cut possibly
separates adjacent vertices in T (G), which hence cannot be used as a step pair in a later
step. Thus, we potentially miss valid cuts and the chance to retain further subtrees.

We solve this problem by reshaping the new cuts in the spirit of Gusfield. Theorem 2
shows how arbitrary cuts in G (that separate b and d) can be bend along old minimum
separating cuts in G without becoming more expensive (see Figure 5).

Fast and Simple Fully-Dynamic Cut Tree Construction 103

b

d
y

XV \X
U

V \U
x

(a) Deflected by x, Theorem 2(i) bends
(U,V \U) downwards along X .

b

d
y

XV \X
U

V \U
x

(b) Deflected by x, Theorem 2(ii)
bends (U,V \U) upwards along X .

Fig. 5. Situation of Theorem 2. Reshaping cuts in G along previous cuts in G.

Theorem 2. Let (X ,V \X) denote a minimum x-y-cut in G with x ∈ X, y ∈ V \X and
{b,d} ⊆ V \X. Let further (U,V \U) denote a cut that separates b,d. If (i) (U,V \U)
separates x,y with x ∈U, then c (U ∪X ,V \ (U ∪X))≤ c (U,V \U). If (ii) (U,V \U)
does not separate x,y with x ∈V \U, then c (U \X ,V \ (U \X))≤ c (U,V \U).

Since any new cheaper cut found in line 13 needs to separate b and d, we can apply
Theorem 2 to this cut regarding the old cuts that are induced by the other thin edges
{x,v} incident to v. As a result, the new cut gets reshaped without changing its cost
such that each subtree rooted at a vertex x is completely assigned to either side of the
reshaped cut (line 19), depending on if the new cut separates x and v (cp. Figure 4(b)).
Furthermore, Lemma 3 allows the reshaping of the new cut along the cuts induced by
the fat edge on π(b,d) that are incident to v. This ensures that the new cut does not cross
parts of T∗ that are beyond these flanking fat edges. Since after the reshaping exact one
vertex adjacent to v on π(b,d) ends up on the same cut side as u, u finally becomes a
part of π(b,d).

It remains to show that after the reconnection the reconnected edges are still incident
to one of their cut pairs in G (for fat edges) and G (for thin edges), respectively. For
fat edges this holds according to Lemma 2. For thin edges the order in line 4 guarantees
that an edge {x,v} that will be reconnected to u in line 19 is at most as expensive
as the current edge {u,v}, and thus, also induces a minimum u-x-cut in G. This allows
applying Lemma 6 and 7 as well as the comparison in line 15 to reconnected thin edges,
too. Observe that an edge corresponding to a bridge never crosses a new cheaper cut,
and thus, gets never reconnected. In the end all edges in T∗ are fat, since each edge is
either a part of a reused subtree or was considered in line 6. Note that reconnecting a
thin edge makes this edge incident to a vertex on π(b,d) and decrements the hight of
the related subtree.

4 Performance of the Algorithm

Unfortunately we cannot give a meaningful guarantee on the number of saved cut
computations. The saving depends on the length of the path π(b,d), the number of
{u,v} ∈ ET for which the connectivity λ (u,v) changes, and the shape of the cut tree. In
a star, for example, there exist no subtrees that could be reused by Lemma 6 (see Fig-
ure 6 (left) for a bad case example for edge deletion). Nevertheless, a first experimental
proof of concept promises high practicability, particularly on graphs with less regular
cut structures. The instance we use is a network of e-mail communications within the

104 T. Hartmann and D. Wagner

b d
b

d

4 4

4
4

(3)(3)

delete {b, d},T (G) = T (G�)

0.04

0.00

0.01

0.03

0.02

time steps

curves from top to down: edgeDel
costsDecr
total
edgeIns
costsIncr

ra
ti
o:

d
y
n
/s

ta
t

100K 200K 800K700K

Fig. 6. left: T (G) could be reused (new cost on π(b,d) in brackets), but Alg. 2 computes n− 3
cuts. right: Cumulative ratio of dynamic and static cut computations.

Department of Informatics at KIT [8]. Vertices represent members, edges correspond
to e-mail contacts, weighted by the number of e-mails sent between two individuals
during the last 72 hours. We process a queue of 924 900 elementary changes, which
indicate the time steps in Figure 6 (right), and 923031 of which concern edges. We start
with an empty graph, constructing the network from scratch. Figure 6 shows the ratio
of cuts computed by the update algorithm and cuts needed by the static approach until
the particular time step. The ratio is shown in total, and broken down to edge inser-
tions (151 169 occurrences), increasing costs (310473), edge deletions (151 061) and
decreasing costs (310 328). The trend of the curves follows the evolution of the graph,
which slightly densifies around time step 100000 due to a spam-attack; however, the
update algorithm needs less than 4% of the static computations even during this period.
We further observe that for decreasing costs, Theorem 2 together with Lemma 3 allows
to contract all subtrees incident to the current vertex v on π(b,d), which shrinks the un-
derlying graph to deg∗(v) vertices, with deg∗(v) the degree of v in T∗. Such contractions
could further speed up the single cut computations. Similar shrinkings can obviously be
done for increasing costs, as well.

5 Conclusion

We introduced a simple and fast algorithm for dynamically updating a cut tree for a
changing graph. In a first prove of concept our approach allowed to save over 96%
of the cut computations and it provides even more possibilities for effort saving due
to contractions. A more extensive experimental study is given in the full paper [7].
Recently, we further succeeded in improving the routine for an inserted edge or an
increased cost such that it guarantees that each cut that remains valid is also represented
by the new cut tree. This yields a high temporal smoothness, which is desirable in many
applications. Note that the routine for a deleted edge or a decreased cost as presented in
this work already provides this temporal smoothness.

References

1. Gomory, R.E., Hu, T.: Multi-terminal network flows. Journal of the Society for Industrial and
Applied Mathematics 9(4), 551–570 (1961)

2. Gusfield, D.: Very simple methods for all pairs network flow analysis. SIAM Journal on Com-
puting 19(1), 143–155 (1990)

Fast and Simple Fully-Dynamic Cut Tree Construction 105

3. Elmaghraby, S.E.: Sensitivity Analysis of Multiterminal Flow Networks. Operations Re-
search 12(5), 680–688 (1964)

4. Barth, D., Berthomé, P., Diallo, M., Ferreira, A.: Revisiting parametric multi-terminal prob-
lems: Maximum flows, minimum cuts and cut-tree computations. Discrete Optimization 3(3),
195–205 (2006)

5. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and
applications. SIAM Journal on Computing 18(1), 30–55 (1989)

6. Scutellà, M.G.: A note on the parametric maximum flow problem and some related reopti-
mization issues. Annals of Operations Research 150(1), 231–244 (2006)

7. Hartmann, T., Wagner, D.: Fast and Simple Fully-Dynamic Cut Tree Construction. Karlsruhe
Reports in Informatics 2012-18, KIT Karlsruhe Institute of Technology (2012),
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000030004

8. Görke, R., Holzer, M., Hopp, O., Theuerkorn, J., Scheibenberger, K.: Dynamic network of
email communication at the Department of Informatics at Karlsruhe Institute of Technology,
KIT (2011), http://i11www.iti.kit.edu/projects/spp1307/emaildata

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000030004
http://i11www.iti.kit.edu/projects/spp1307/emaildata

Green Scheduling, Flows and Matchings�

Evripidis Bampis1, Dimitrios Letsios1,2, and Giorgio Lucarelli1,2

1 LIP6, Université Pierre et Marie Curie, France
{Evripidis.Bampis,Giorgio.Lucarelli}@lip6.fr

2 IBISC, Université d’ Évry, France
dimitris.letsios@ibisc.univ-evry.fr

Abstract. Recently, optimal combinatorial algorithms have been pre-
sented for the energy minimization multi-processor speed scaling problem
with migration [Albers et al., SPAA 2011], [Angel et al., Euro-Par 2012].
These algorithms are based on repeated maximum-flow computations al-
lowing the partition of the set of jobs into subsets in which all the jobs are
executed at the same speed. The optimality of these algorithms is based
on a series of technical lemmas showing that this partition and the corre-
sponding speeds lead to the minimization of the energy consumption. In
this paper, we show that both the algorithms and their analysis can be
greatly simplified. In order to do this, we formulate the problem as a con-
vex cost flow problem in an appropriate flow network. Furthermore, we
show that our approach is useful to solve other problems in the dynamic
speed scaling setting. As an example, we consider the preemptive open-
shop speed scaling problem and we propose a polynomial-time algorithm
for finding an optimal solution based on the computation of convex cost
flows. We also propose a polynomial-time algorithm for minimizing a lin-
ear combination of the sum of the completion times of the jobs and the
total energy consumption, for the multi-processor speed scaling problem
without preemptions. Instead of using convex cost flows, our algorithm is
based on the computation of a minimum weighted maximum matching
in an appropriate bipartite graph.

1 Introduction

In the last few years, a series of papers deal with the minimization of the energy
consumption in the area of scheduling (see the recent surveys [2] and [3] and
the references therein). One of the most studied models in this context is the
speed scaling model in which a set of tasks has to be executed on one or more
processors whose speed may change dynamically during the schedule. Hence, the
scheduler has to decide not only the job to execute at any given time, but also
the speed of the processor(s) in order to satisfy some level of Quality of Service
(QoS), while at the same time to minimize the overall energy consumption. In
speed scaling, power is usually defined as a convex function of the speed and

� Research supported by the French Agency for Research under the DEFIS program
TODO, ANR-09-EMER-010, by GDR-RO of CNRS, and by THALIS-ALGONOW.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 106–115, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Green Scheduling, Flows and Matchings 107

the energy is power integrated over time. Intuitively, the higher is the speed, the
better is the performance in terms of QoS, but the higher is the consumption of
energy.

The first theoretical result in this area has been proposed in the seminal paper
of Yao et al. [14], where the authors considered the energy minimization problem
when a set of jobs, each one specified by its processing volume (work), its release
date and its (strict) deadline, has to be scheduled on a single speed-scalable
processor. They proposed an algorithm that solves the problem optimally in
polynomial time, when the preemption of the jobs, i.e. the possibility to inter-
rupt the execution of a job and resume it later, is allowed. Since then, different
problems have been studied taking into account the energy consumption, mainly
in the single processor case (e.g., [5,13]), but more recently in the multiprocessor
case as well (e.g. [4,6,7,11]). Different algorithmic techniques have been used in
order to optimally solve different speed-scaling scheduling problems, including
the use of greedy algorithms, dynamic programming, convex programming, and
more recently, maximum flows.

In this paper, we show that the use of convex cost flow computations may
lead to polynomial-time algorithms for basic speed scaling scheduling problems.
This adds a new tool for solving speed scaling scheduling problems. More pre-
cisely, we first revisit the multiprocessor speed scaling with migration problem,
studied in [4,6,7], and we show that it can be solved easily using a convex cost
flow formulation, simplifying both the existing algorithms and their proofs of
optimality. This problem is the same as the one considered in [14], except that
now there are m processors on which the jobs have to be executed and that
the execution of an interrupted job maybe continued on the same or on another
processor (i.e. the migration of jobs is allowed).

We also consider the preemptive open-shop speed scaling problem and we show
how it can be solved using a series of convex cost flow computations. In this
problem, there are m speed-scalable processors and n jobs, but every job is
composed by a set of operations, at most one per processor, and every operation
is characterized by its processing volume. There is no order in the execution
of the operations and two operations of the same job cannot be executed in
parallel. The jobs are all available at the same time and there is a common
deadline. This is the first attempt to study a speed scaling problem in a shop
scheduling environment.

Finally, we propose a polynomial-time algorithm for minimizing a linear com-
bination of the sum of the completion times of the jobs and the total energy
consumption, for the multi-processor speed scaling problem without preemptions.
Here, we are given m processors and n jobs, each one characterized by its pro-
cessing volume, while the preemption of the jobs is not allowed. The proposed
algorithm is based on the computation of a minimum weighted maximum match-
ing in an appropriate bipartite graph. Notice that in [13] the complexity of the
single-processor speed scaling problem with preemptions where the jobs are sub-
ject to release dates has been left open. Our result makes progress towards
answering this challenging question.

108 E. Bampis, D. Letsios, and G. Lucarelli

In Section 1.1 we present the notation concerning the convex cost flow and
the minimum weighted maximum matching problems. In Sections 2, 3 and 4 we
deal with the three speed-scaling scheduling problems mentioned above. In each
section, we formally define the studied problem and we give the related work
and our approach for it. Due to space constraints the proofs are omitted.

1.1 Preliminaries

An instance of the convex cost flow problem consists of a network N = (V,A),
where V is a set of nodes and A ⊆ V ×V is a set of arcs between the nodes. Each
arc (u, v) ∈ A is associated with a capacity cu,v ≥ 0 and a cost function κu,v(f) ≥
0, where f ≥ 0. The function κu,v(f) is convex w.r.t. f and it represents the
cost incurred if f units of flow pass through the arc (u, v). Moreover, we are
given an amount of flow F , a source node s ∈ V and a destination node t ∈ V .
The objective is to route the amount of flow F from s to t so that the total
cost is minimized and the amount of flow that crosses each edge (u, v) does not
exceed the capacity cu,v, for each (u, v) ∈ A. The convex cost flow problem can
be efficiently solved in O(|A| log(max{F , cmax})(|A| + |V | log |V |)) time, where
cmax = max(u,v)∈A{cu,v} (see for example [1]).

An instance of a minimum weighted maximum bipartite matching problem
consists of a bipartite graph G = (V, U ;E), where each edge e ∈ E has a weight
we ≥ 0. A matching M in G is a subset of edges, i.e. M ⊆ E, such that no
two edges in M have a common endpoint, while the weight of the matching M
is equal to

∑
e∈M we. A matching of maximum cardinality is a matching that

contains the maximum number of edges among all the possible matchings in
G. The objective is to find the matching with the minimum weight among the
matchings of maximum cardinality. There exists an algorithm for finding such a
matching in O(|V |(|E|+ |V | log |V |)) time (see for example [1]).

Using a standard exchange argument and based on the convexity of the speed-
to-power function, it can be shown that each job/operation runs at a constant
speed in any optimal schedule for the considered scheduling problems.

2 Energy Minimization on Parallel Processors

The problem. We consider the scheduling problem of minimizing the energy
consumption of a set of n jobs that have to be executed on m parallel processors,
where each job Jj is characterized by a processing volume (or work) wj , a release
date rj and a deadline dj . In this setting, preemption and migration of jobs are
allowed, i.e., a job may suspend its execution and continue on the same or another
processor, later from the point of suspension. Moreover, if any processor operates
at a speed s, then its energy consumption rate is equal to P (s), where P is a
convex function of the speed s. By extending the Graham’s classical three-field
notation [10], we denote this problem as S|pmtn, rj , dj |E.

Green Scheduling, Flows and Matchings 109

Previous Results. This problem is an extension in the speed scaling setting of one
basic problem in scheduling theory, the well-known P |pmtn, rj , dj |− problem.
In this problem, we are given a set of n jobs that have to be executed on a set
of m parallel identical processors, while preemption and migration of jobs are
permitted. Each job Jj has a processing time pj , a release date rj and a deadline
dj . The objective is to either construct a feasible schedule in which every job Jj
is executed during its interval [rj , dj], or decide that such a schedule does not
exist. The P |pmtn, rj , dj |− problem can be solved in polynomial time (see [8]).

Polynomial-time algorithms for finding an optimal solution for S|pmtn, rj ,
dj |E, known as the multi-processor speed scaling with migration problem, have
been proposed by Bingham and Greenstreet [7], Albers et al. [4] and Angel et
al. [6]. The algorithm in [7] is based on the use of the Ellipsoid method. As the
complexity of the Ellipsoid algorithm is high for practical applications, [4] and [6]
proposed purely combinatorial algorithms. These algorithms use repeated com-
putations of maximum flows in appropriate flow networks, in order to determine
a partition of the set of jobs into subsets in which all the jobs are executed with
the same speed. When the speed of such a subset of jobs is determined, these jobs
as well as the corresponding time-intervals and processors are removed from the
flow network and the process continuous until no job remains unscheduled. At
the end, every job is associated with a unique speed and thus an execution time.
The final schedule can be produced by applying the algorithm of McNaughton
[12]. The optimality of the algorithms in [4] and [6] is based on a series of tech-
nical lemmas showing that this partition and the corresponding speeds lead to
the minimization of the energy consumption.

Our Approach. The rough idea of our algorithm is the following: we first
formulate S|pmtn, rj , dj |E as a convex cost flow problem. An optimal convex
cost flow allows us to get the optimal speed sj for every job Jj , and thus its
total execution time tj =

wj

sj
. Then, given the execution times of the jobs, the

algorithm constructs a feasible schedule by applying a polynomial-time algorithm
for P |pmtn, rj , dj |−.

Convex Cost Flow Formulation. We consider that the time is partitioned into
intervals defined by the release dates and the deadlines of jobs. That is, we define
the time points t0, t1, . . . , tk, in increasing order, where each ti corresponds to
either a release date or a deadline, so that for each release date and deadline of
job there is a corresponding ti. Then, we define the intervals Ii = [ti−1, ti], for
1 ≤ i ≤ k, and we denote by |Ii| the length of Ii. We call a job Jj alive in a given
interval Ii, if Ii ⊆ [rj , dj]. The number of alive jobs in interval Ii is denoted by
A(Ii).

Then, in the flow network Ns for S|pmtn, rj, dj |E, we introduce a source node
s, a destination node t, a node for each job Jj , 1 ≤ j ≤ n, and a node for each
interval Ii, 1 ≤ i ≤ k. For each j, 1 ≤ j ≤ n, we add an arc (s, Jj) and, for each
i, 1 ≤ i ≤ k, we add an arc (Ii, t). If the job Jj , 1 ≤ j ≤ n, is alive during the
interval Ii, 1 ≤ i ≤ k, we introduce an arc from the node Jj to the node Ii. The
capacity of the arc (u, v) is

110 E. Bampis, D. Letsios, and G. Lucarelli

cu,v =

⎧⎨⎩
+∞ if u = s and v = Jj
|Ii| if u = Jj and v = Ii
m|Ii| if u = Ii and v = t

If an amount of flow fu,v passes through the arc (u, v) of Ns, then the cost
function of the arc is defined as

κu,v(fu,v) =

⎧⎨⎩
fu,v · P (

wj

fu,v
) if u = s and v = Jj

0 if u = Jj and v = Ii
0 if u = Ii and v = t

In the network Ns, if an amount fu,v of flow passes through the arc (u, v) =
(s, Jj), then fu,v corresponds to the execution time of job Jj ,

wj

fu,v
corresponds

to the speed of Jj and fu,v · P (
wj

fu,v
) is the energy consumed for the execution

of Jj . Furthermore, the flow passing through an edge (Jj , Ii) (resp. an edge
(Ii, t)) represents the execution time of the job Jj (resp. the execution time of
all jobs) during the interval Ii. Hence, the total flow that leaves the source node
corresponds to the total execution time of all jobs. In [4], it was shown that
the total execution time of all jobs in an optimal schedule for S|pmtn, rj , dj |E
can be easily computed using the following lemma, whose proof is based on the
convexity of the speed-to-power function.

Lemma 1. [4] In an optimal schedule for S|pmtn, rj , dj |E, where each job Jj
is executed with speed sj, 1 ≤ j ≤ n, the total execution time, T , of all jobs is

T =

n∑
j=1

wj

sj
=

k∑
i=1

(
min{m,A(Ii)} · |Ii|

)
The above lemma gives the total amount of flow that has to be sent from the
source node to the destination node, concluding the formulation of S|pmtn, rj ,
dj |E as a convex cost flow problem.

The Algorithm and Its Optimality. Our algorithm for S|pmtn, rj, dj |E can be
summarized as follows.

Algorithm. GREEN-PP

1: Construct the flow network Ns;
2: Find a convex cost flow F of value

∑k
i=1(min{m,A(Ii)} · |Ii|) in Ns;

3: Determine the execution time of each job;
4: Apply a polynomial-time algorithm for P |pmtn, rj , dj |− to find a feasible schedule;

Theorem 1. Algorithm GREEN-PP finds an optimal schedule for S|pmtn,
rj , dj |E in O(n4m logL) time, where L = max1≤j≤n{dj}.

Green Scheduling, Flows and Matchings 111

3 Energy Minimization in an Open Shop

The Problem. We consider the scheduling problem of minimizing the energy
consumed in an open shop setting. We are given a set of n jobs that have to be
executed in a prespecified time interval [0, d] on a set of m parallel processors.
Each job Jj consists of m operations O1,j , O2,j , . . . , Om,j. Each operation Oi,j ,
1 ≤ i ≤ m and 1 ≤ j ≤ n, has an amount of work wi,j ≥ 0 and can only
be executed on the processor Mi. The preemption of the operations is allowed,
while the parallel execution of operations of the same job is not permitted. A
convex speed-to-power function P (s) defines the energy consumption rate of any
processor running at speed s ≥ 0. The goal is to schedule the jobs within the
interval [0, d] so that the total energy consumption is minimized. We denote this
problem as OS|pmtn, rj = 0, dj = d|E.

Previous Results. This problem is an extension of the preemptive open shop
problem O|pmtn, rj = 0, dj = d|− [8] in the speed scaling setting. In this prob-
lem, we are given a set of n jobs and a set ofm processors. Each job Jj consists of
a set ofm operations, where the processing time of the operation Oi,j , 1 ≤ i ≤ m
and 1 ≤ j ≤ n, is pij ≥ 0. The open shop constraint enforces that no pair of
operations of a job are executed at the same time. The goal is to find a feasible
schedule such that all operations are preemptively scheduled during the interval
[0, d] or decide that such a schedule does not exist. A polynomial algorithm for
this problem can be found in [8].

Up to the best of our knowledge, no results were known for this problem in
the speed scaling setting until now.

Our Approach. As in the previous section, we first give a formulation of
OS|pmtn, rj = 0, dj = d|E as a convex cost flow problem. In order to compute
the total execution time of all operations in an optimal schedule for OS|pmtn,
rj = 0, dj = d|E, we use a search algorithm that repeatedly computes convex cost
flows. Given the optimal value of the total execution time of all operations, an
optimal convex cost flow gives the speeds, and hence the execution times, of the
operations in an optimal schedule for OS|pmtn, rj = 0, dj = d|E. To compute
a feasible schedule, we solve the corresponding instance of O|pmtn, rj = 0, dj =
d|− (see for example [8]).

Convex Cost Flow Formulation.We construct the flow networkNs which consists
of a source node s, a destination node t, a job-node Jj , for each 1 ≤ j ≤ n, and a
processor-node Mi, for each 1 ≤ i ≤ m. The network Ns contains an arc (s, Jj)
for each job Jj , 1 ≤ j ≤ n, an arc (Mi, t) for each processor Mi, 1 ≤ i ≤ m, and
an arc (Jj ,Mi), 1 ≤ j ≤ n and 1 ≤ i ≤ m if wi,j > 0. The capacity of the arc
(u, v) is

cu,v =

⎧⎨⎩
d if u = s and v = Jj
+∞ if u = Jj and v = Mi

d if u = Mi and v = t

112 E. Bampis, D. Letsios, and G. Lucarelli

Assuming that flow fu,v passes through the arc (u, v), the cost of this arc is

κu,v(fu,v) =

⎧⎨⎩
0 if u = s and v = Jj
fJj ,Mi · P (

wj

fJj ,Mi
) if u = Jj and v = Mi

0 if u = Mi and v = t

As in the network for S|pmtn, rj, dj |E presented in the previous section, in
the network Ns for OS|pmtn, rj = 0, dj = d|E, the flow traversing the arcs
corresponds to execution time. More specifically, if an amount fu,v of flow passes
through the arc (u, v) = (Jj ,Mi), then fu,v corresponds to the execution time
of operation Oi,j ,

wi,j

fu,v
corresponds to the speed of Oi,j and fu,v · P (

wi,j

fu,v
) is

the energy consumed for the execution of Oi,j . Furthermore, the flow passing
through an edge (s, Jj) (resp. an edge (Mi, t)) represents the total execution
time of the job Jj (resp. the total time that Mi operates). Hence, the total
flow that leaves the source node corresponds to the total execution time of all
operations. However, the total execution time of all operations in an optimal
schedule for OS|pmtn, rj = 0, dj = d|E, and thus the total amount of flow that
has to be sent from the source node to the destination node, cannot be easily
computed as in the previous section. At the end of this section, we describe how
to compute it in polynomial time.

The Algorithm and Its Correctness.Our algorithm forOS|pmtn, rj = 0, dj = d|E
can be summarized as follows.

Algorithm. GREEN-OS

1: Construct the flow network Ns;
2: Determine the total execution time of all operations T in an optimal schedule;
3: Find a convex cost flow F of value T in Ns;
4: Determine the execution time of each operation;
5: Apply a polynomial-time algorithm for O|pmtn, rj = 0, dj = d|− to find a feasible

schedule;

We will initially assume that the total execution time of all operations T
in an optimal schedule for OS|pmtn, rj = 0, dj = d|E can be computed in
polynomial time. Then, the proof of the following theorem is similar with the
proof of Theorem 1.

Theorem 2. Algorithm GREEN-OS finds an optimal schedule for OS|pmtn,
rj = 0, dj = d|E.

Computing the Total Execution Time of Operations. It remains to show how we
algorithmically determine the total execution time of all operations in an optimal
schedule for OS|pmtn, rj = 0, dj = d|E.

First, we introduce some additional notation. Henceforth, we denote by T ∗

the sum of execution times of all operations in an optimal schedule for OS|pmtn,

Green Scheduling, Flows and Matchings 113

rj = 0, dj = d|E. Let S be any feasible schedule for the problem and assume that
ti,j is the execution time of the operation Oi,j in S, 1 ≤ i ≤ m and 1 ≤ j ≤ n.
We denote by t = (t1,1, t2,1, . . . , tm,1, t1,2, . . . , tm,n) the vector that contains the
execution times of all the operations. Then, let T (t) =

∑m
i=1

∑n
j=1 tij and E(t) =∑m

i=1

∑n
j=1 tij ·P (

wij

tij
) be the functions that map any vector of execution times

t to the total execution time and the total energy consumption of the schedule
S. Note that, E(t) is convex w.r.t. the vector t as a sum of convex functions.
Furthermore, we define the function E∗(T) = min{E(t) : T (t) = T } which
indicates the minimum energy consumption when the sum of execution times of
all operations has to be equal to T .

Proposition 1. E∗(T) is convex w.r.t. T .

Next, we give the search algorithm that finds the value T ∗ = argminT {E∗(T)}
with accuracy 1/ε. Consider any T1, T2, T3 > 0 such that T1 < T2 =

T1+T3

2 < T3.

As E∗(T) is convex, we have that E∗(T2) ≤ E∗(T1)+E∗(T3)
2 . Therefore, it follows

that either E∗(T2) ≤ E∗(T1) or E∗(T2) ≤ E∗(T3) (or both). If only the first is
true, then we reduce our search space to [T2, T3]. Accordingly, if only the second
is true, then we reduce our search space to [T1, T2]. Finally, if both are true, then
we reduce our search space to one of the following intervals: [T1, T2], [T2, T3] or
[T1+T2

2 , T2+T3

2]. If E∗(T1+T2

2) ≤ E∗(T2), then the search space is reduced to

[T1, T2]. If E
∗(T2+T3

2) ≤ E∗(T2), then the search space is reduced to [T2, T3].

Finally, if E∗(T1+T2

2) > E∗(T2) and E∗(T2+T3

2) > E∗(T2), then the search space

is reduced to [T1+T2

2 , T2+T3

2]. The correctness of all the cases is based on the fact
that E∗(T) is convex. We call this procedure Algorithm FIND-FLOW and
we initialize T1, T2 and T3 with 0, T2 and T , respectively, where T is an upper
bound on the sum of execution times for all operations, i.e., T = m · d.

Lemma 2. Algorithm FIND-FLOW returns a value T ∗ such that the term
E∗(T ∗) is minimized among all T ∗ > 0. The complexity of the algorithm is
O(nm log(md)(nm+(n+m) log(n+m))(logmd+log(1/ε)), where ε is the inverse
of the desired accuracy.

4 Mean Completion Time Plus Energy Minimization on
Parallel Processors

The Problem. We consider the multiprocessor scheduling problem of minimizing
a linear combination of the sum of completion times of a set of n jobs and their
total energy consumption. The jobs have to be executed by a set of m parallel
processors where the preemption and migration of jobs are not allowed. Each job
Jj , 1 ≤ j ≤ n, has an amount of work wj to accomplish and all jobs are released
at time t = 0. We denote by Cj the completion time of job Jj , 1 ≤ j ≤ n. A
convex speed-to-power function P (s) defines the energy consumption rate when
a job is executed with speed s > 0 on any processor. The goal is to minimize
the sum of completion times of all the jobs plus β times their total energy con-
sumption. The parameter β > 0 is used to specify the relevant importance of the

114 E. Bampis, D. Letsios, and G. Lucarelli

mean completion time criterion versus the total energy consumption criterion.
We denote this problem as S||

∑
Cj + β ·E.

Known Results. This problem is an extension in the speed scaling setting of
the problem P ||

∑
Cj of scheduling non-preemptively a set of n jobs, each one

characterized by its processing time pj , on a set ofm machines such that the sum
of the completion times of all jobs is minimized. A polynomial-time algorithm
has been proposed for P ||

∑
Cj [9].

The single-processor speed scaling problem without preemptions of minimiz-
ing the jobs’ mean completion time has been studied by Albers et al. [5] and
Pruhs et al. [13] in the presence of release dates and unit work jobs. In [13] the
objective is the minimization of the sum of the flow times of the jobs1 under a
given budget of energy, while in [5] the goal is to minimize the sum of the flow
times of the jobs and of the consumed energy.

Our Approach. The main idea is to formulate S||
∑

Cj + β · E as a problem
of searching for a minimum weighted maximum matching in an appropriate
bipartite graph. This formulation is based on two observations. Firstly, the fact
that preemption and migration of jobs is not allowed means that there is an
order of the jobs executed by any processor in any feasible schedule. Given such
a schedule, if � jobs are executed by the processor Mi, then we can consider
that there are � available positions on Mi, one for the execution of each of the
� jobs. If the job Jj is executed in the k-th position of the processor Mi, then
k− 1 jobs precede Jj and �− k jobs succeed Jj . Clearly, there can be at most n
such positions for each processor. Secondly, the contribution of a job Jj to the
objective function depends only on its position on the processor by which it is
executed and it is independent of where the other jobs are executed. Overall,
our problem reduces to assigning every job to a position of a machine so that
our objective is minimized.

Minimum Weighted Maximum Matching Formulation. In order to formulate the
S||

∑
Cj + β ·E problem as a minimum weighted maximum matching problem,

we define a bipartite graph Gs whose edges are weighted. The following lemma is
our guide for assigning weights on the edges of Gs and fixes the cost of executing
a job Jj to the k-th position of any processor.

Lemma 3. Assume that in an optimal schedule for S||
∑

Cj + β ·E the job Jj,
1 ≤ j ≤ n, is executed at speed sj on processor Mi in the k-th position from
the end of Mi. Then, the total contribution of Jj to the objective function is
minimized if it holds that sjP

′(sj)−P (sj) =
k
β , where P ′(s) is the derivative of

the power function P w.r.t. the speed s.

Based on the above lemma, we create the complete bipartite graphGs = (V, U ;E)
as follows: (i) for each job Jj , 1 ≤ j ≤ n, we add a vertex in V , (ii) for each
processor Mi, 1 ≤ i ≤ m, and each position k, 1 ≤ k ≤ n, (counting from the

1 The flow time of a job is defined as the amount of time that the job spends in the
system, i.e., the difference between its completion time and its release date.

Green Scheduling, Flows and Matchings 115

end) we add a vertex in U , and (iii) for each edge (Jj , (Mi, k)), we set its weight
ci,j,k = k · wj

sj
+ β · wj

sj
P (sj) where sj is computed according to Lemma 3.

The Algorithm and Its Optimality. Recall that each job Jj runs at a constant
speed sj in any optimal schedule for S||

∑
Cj + β · E. Moreover, based on a

similar argument, it holds that there is no idle period on any processor between
the common release date of the jobs and the date at which the last job completes
its execution, in any optimal schedule. A description of our algorithm follows.

Algorithm. GREEN-(F+E)

1: Construct the bipartite graph Gs;
2: Find a minimum weighted maximum matching M in Gs;
3: for each (Jj , (Mi, k)) ∈ M do
4: Schedule Jj to the position k of Mi with speed sj such that sjP

′(sj)−P (sj) =
k
β
;

Theorem 3. S||
∑

Cj + β ·E can be solved in O(n3m2) time.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms and
applications. Prentice Hall (1993)

2. Albers, S.: Energy-efficient algorithms. Commun. ACM 53, 86–96 (2010)
3. Albers, S.: Algorithms for dynamic speed scaling. In: STACS. LIPIcs, vol. 9, pp.

1–11. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)
4. Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with

migration: extended abstract. In: SPAA, pp. 279–288. ACM (2011)
5. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization.

ACM Trans. on Algorithms 3(4), Article 49 (2007)
6. Angel, E., Bampis, E., Kacem, F., Letsios, D.: Speed Scaling on Parallel Processors

with Migration. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-
Par 2012. LNCS, vol. 7484, pp. 128–140. Springer, Heidelberg (2012)

7. Bingham, B.D., Greenstreet, M.R.: Energy optimal scheduling on multiprocessors
with migration. In: ISPA, pp. 153–161. IEEE (2008)

8. Brucker, P.: Scheduling algorithms, 4th edn. Springer (2004)
9. Bruno, J., Coffman Jr., E.G., Sethi, R.: Scheduling independent tasks to reduce

mean finishing time. Commun. ACM 17, 382–387 (1974)
10. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization

and approximation in deterministic sequencing and scheduling. Annals of Discrete
Mathematics 5, 287–326 (1979)

11. Lam, T.W., Lee, L.-K., To, I.K.-K., Wong, P.W.H.: Competitive non-migratory
scheduling for flow time and energy. In: SPAA, pp. 256–264 (2008)

12. McNaughton, R.: Scheduling with deadlines and loss functions. Management Sci-
ence 6, 1–12 (1959)

13. Pruhs, K., Uthaisombut, P., Woeginger, G.: Getting the best response for your erg.
ACM Trans. on Algorithms 4(3), Article 38 (2008)

14. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
FOCS, pp. 374–382 (1995)

Popular and Clan-Popular b-Matchings

Katarzyna Paluch�

Institute of Computer Science, University of Wroc�law

Abstract. Suppose that each member of a set of agents has a preference
list of a subset of houses, possibly involving ties, and each agent and
house has their capacity denoting the maximum number of houses/agents
(respectively) that can be matched to him/her/it. We want to find a
matching M , called popular, for which there is no other matching M ′

such that more agents prefer M ′ to M than M to M ′, subject to a
suitable definition of ”prefers”. In the above problem each agent uses
exactly one vote to compare two matchings. In the other problem we
consider in the paper each agent has a number of votes equal to their
capacity. Given two matchings M and M ′, an agent compares their best
house in matchingM\(M∩M ′) to their best house in matchingM ′\(M∩
M ′) and gives one vote accordingly, then their second best houses and so
on. A matching M for which there is no matching M ′ such that M ′ gets
a bigger number of votes than M , when M and M ′ are compared in the
way described above, is then called clan-popular. Popular matchings have
been studied quite extensively, especially in the one-to-one setting. In the
many-to-many setting we provide a characterisation of popular and clan-
popular matchings, show NP -hardness results for very restricted cases
of the above problems and for certain versions describe novel polynomial
algorithms. The given characterisation is also valid for popular matchings
in the one-to-one setting.

1 Introduction

In the paper we study popular and clan-popular b-matchings, which in other
words are popular many-to-many matchings. The problems can be best described
in graph terms: We are given a bipartite graph G = (A ∪ H,E), a capacity
function on vertices b : A ∪H → N and a rank function on edges r : E → N . A
stands for the set of agents and H for the set of houses. For a ∈ A and h ∈ H
r((a, h)) = i means that house h belongs to (one of) agent a’s ith choices. We say
that a prefers h1 to h2 (or ranks h1 higher than h2) if r((a, h1)) < r((a, h2)).
If r(e1) < r(e2) we say that e1 has a higher rank than e2. If there exist a ∈ A
and h1, h2 ∈ Ha, h1 �= h2 such that r(e1) = r((a, h1)) = r(e2) = r((a, h2)), then
we say that e1, e2 belong to a tie and graph G contains ties. Otherwise we say
that G does not contain ties. A b-matching M of G is such a subset of edges
that degM (v) ≤ b(v) for every v ∈ A ∪ H , meaning that every vertex v has at
most b(v) edges of M incident with it. For every v ∈ A ∪H by M(v) we mean

� Supported by MNiSW grant number N N206 368839, 2010-2013.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 116–125, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Popular and Clan-Popular b-Matchings 117

the set {w ∈ A ∪H : (v, w) ∈ M}. With each agent a and each b-matching M
we associate a signature denoted as sigM (a) defined as follows.

Definition 1. Let s denote the greatest rank (i.e. the largest number) given
to any edge of E. Let (y1, y2, . . . , yt) denote the ranks of all edges (a, h) such
that h ∈ M(a) sorted non-decreasingly. By sigM (a) we will denote a b(a)-tuple
(x1, x2, . . . xb(a)) such that xi = yi for 1 ≤ i ≤ t and xi = s+ 1 for i > t.

We introduce a lexicographic order % on signatures as follows. We will say
that (x1, x2, . . . , xd) % (y1, y2, . . . , yd) if there exists j such that 1 ≤ j ≤ d and
for each 1 ≤ i ≤ j − 1 we have xi = yi and xj < yj . We say that an agent a
prefers b-matching M to M ′ if sigM(a) % sigM ′(a). M ′ is more popular than
M , denoted by M ′ % M , if the number of agents that prefer M ′ to M exceeds
the number of agents that prefer M to M ′.

Definition 2. A b-matching M is popular if there exists no b-matching M ′

that is more popular than M . The popular b-matching problem is to deter-
mine if a given triple (G, b, r) admits a popular b-matching and find one if it
exists.

The popular b-matching problem has applications in one-sided markets, where
agents are allowed to have more than one house and one house can be owned by
more than one agent. The problem is a generalisation of the one considered in
[19] in which each agent is allowed to have at most one house, but each house
can be owned by more than one agent. Clearly the version we consider is no less
natural than the one in [19].

In the popular b-matching problem we assume that each agent has one vote
and given two b-matchings M and M ′, they vote +1,−1 or 0 depending on the
case being respectively that they prefer M to M ′ or M ′ to M or are indifferent
between M and M ′.

In the clan-popular b-matching problem we will assume that each
agent has a number of votes equal to their capacity. Given two b-matchings
M and M ′ agent a compares their best house in matching M \ (M ∩M ′) to
their best house in matching M ′ \ (M ∩ M ′) and gives one vote accordingly
(1,−1 or 0), then their second best houses and so on. More formally, for two
b-matchings M and M ′ and agent a we define votea(M,M ′) as votea(M,M ′) =∑b(a)−|M(a)∩M ′(a)|

i=1 signum(sigM ′\(M∩M ′)(a)i − sigM\(M∩M ′)(a)i), where
signum(x) = 1, 0 or −1 if correspondingly x > 0, x = 0 or x < 0 and sigM (a)i
denotes the i-th position in sigM(a). We will say that a b-matching M is more
clan-popular than M ′ if

∑
a∈A votea(M,M ′) > 0. A b-matching M will be

called clan-popular if there does not exist a b-matching M ′ that is more
clan-popular than M .

Another application of the clan-popular b-matching problem is as follows.
Suppose we are given a set of agents and a set of houses. Each agent has capacity
1 and each house has an arbitrary capacity. Agents are partitioned into clans and
all agents from the same clan have the same preferences over houses. In graph
terms it means we are given a graph G = (A ∪H,E), a capacity function b and

118 K. Paluch

a rank function r. Before voting between two b-matchings M and M ′, one of the
b-matchings, say M ′, is changed within clans as follows. If h ∈ V (M ∩M ′), then
M ′(h) = M(h). (The same house is given to the same agent. V (M ∩M ′) denotes
the set of end vertices of edges of M ∩M ′.) Also b-matchings M \ (M ∩M ′) and
M ′\(M∩M ′) are such that the person who gets the best house in M \(M∩M ′),
gets also the best house in M ′ \ (M ∩M ′) and the person who gets the second
best house in M \(M∩M ′), gets also the second best house in M ′\(M∩M ′) and
so on. The ties are broken arbitrarily. The task is to find the popular matching
in the standard sense, if it exists.

Previous Work. The notion of popularity was first introduced by Gärdenfors
[4] in the one-to-one and two-sided context, where two-sided means that both
agents and houses express their preferences over the other side and a matching
M is popular if there is no other matching M ′ such that more participants (i.e.
agents plus houses) prefer M ′ to M than prefer M to M ′. (He used the term
of a majority assignment.) He proved that every stable matching is a popular
matching if there are no ties.

One-sided popular matchings were first studied in the one-to-one setting by
Abraham et al. in [1]. They proved that a popular matching need not exist
and described fast polynomial algorithms to compute a popular matching, if it
exists. Manlove and Sng in [14] extended an algorithm from [1] to the one-to-
many setting (notice that this not equivalent to the many-to-one setting.) Other
results concerning popular matchings appeared in [2], [3], [9], [13], [15], [16], [17].

Our Contribution. We provide a characterisation of popular b-matchings and
prove that the popular b-matching problem is NP -hard even when agents use
only two ranks and have capacity at most 2 and houses have capacity 1. This
in particular answers the question about many-to-one popular matchings asked
in [14]. Next we modify the notion of popularity and consider clan-popular b-
matchings. We give their characterisation and show that finding a clan-popular
b-matching or reporting that it does not exist is NP -hard even if all agents use at
most three ranks, there are no ties and houses have capacity 1. The given char-
acterisations allow checking whether a given b-matching is popular or corresp.
clan-popular in time polynomial in the number of edges. The characterisation
remains valid in the one-to-one setting (both characterisations denote the same
thing then) and thus provides an alternative way of checking whether a given
matching is popular, moreover in linear (in the number of edges) time. (In the
presence of ties an algorithm in [1] computing a popular matching, if it exists,
runs inO(

√
nm) time, where n,m denote the number of vertices and edges resp..)

Algorithmically, the most interesting (in our opinion) part concerns polynomial
algorithms for clan-popular b-matchings. We construct a novel polynomial algo-
rithm computing a clan-popular b-matching, if it exists, for the version in which
agents have capacity 2 and use two ranks, houses have arbitrary capacities and
there are no ties.

Popular and Clan-Popular b-Matchings 119

2 Characterisations

First we introduce some terminology and recall a few facts from the matching
theory.

By a path P we will mean a sequence of edges. Usually a path P will be
denoted as (v1, v2, . . . , vk), where v1, . . . , vk are vertices from the graph G =
(V,E), not necessarily all different, and for each i (1 ≤ i ≤ k − 1) (vi, vi+1) ∈ E
and no edge of G occurs twice in P . We will sometimes treat a path as a sequence
of edges and sometimes as a set of edges.

Let M be a b-matching. Then we will say that v is unsaturated, if degM (v) <
b(v) and we will say that v is saturated if degM (v) = b(v). If b(v) = 1, then
we will also use the terms matched and unmatched instead of saturated and
unsaturated. If e ∈M we will call e an M-edge and otherwise – a non-M-edge.
A path is said to be alternating (with respect to M) or M-alternating if its
edges are alternately M -edges and non-M -edges. An alternating path is said to
be (M-)augmenting if its end vertices are unsaturated and both its first and
last edge is a non-M -edge.

For two sets Z1, Z2 a symmetric difference Z1 ⊕ Z2 is defined as (Z1 \ Z2) ∪
(Z2 \ Z1). If M is a b-matching and P is an alternating path with respect to M
such that (1) its beginning edge (v1, v2) is an M -edge or v1 is unsaturated and
(2) its ending edge (vk−1, vk) is an M -edge or vk is unsaturated, then M ⊕ P is
a also a b-matching. If P is M -augmenting, then M ⊕ P has more edges than
M . A b-matching of maximum size is called a maximum b-matching.

We will also need a notion of an equal path: a path (v1, v2, . . . , vk) is de-
fined to be equal if it is alternating, (v1, v2) is a non-M -edge and for each
i, 1 < i < k such that vi ∈ A edges (vi−1, vi), (vi, vi+1) have the same rank.
An equal cycle is an equal path of the form (a1, h1, a2, h2, . . . , hk, a1) and
such that edges (hk, a1), (a1, h1) have the same rank. We will call an equal
path (v1 = a1, v2, . . . , vk) smooth if a1 is unsaturated or there exists a house
h ∈M(a1) such that r((a1, h)) > r((a1, v2)).

Theorem 1. A b-matching M is popular iff graph G does not contain a path of
one of the following four types:

1. (a1, . . . , hk−1, ak, hk, ak+1), where (a) the path is alternating, (b) a path
(a1, . . . , hk−1) is smooth, (c) r((hk−1, ak)) > r((ak, hk)) and (d) agents
a1, ak, ak+1 are pairwise different or a1 �= ak, a1 = ak+1 and r((a1, h1)) <
r((a1, hk)),

2. (a1, h1, . . . , hk, a, h
′
k′ , a′k′ , h′k′−1, . . . , a

′
1), where paths (a1, h1, . . . , hk, a) and

(a′1, h
′
1, . . . , h

′
k, a) are smooth and agents a1, a, a

′
1 are pairwise different,

3. (a1, h1, . . . , hk), where the path is smooth and hk is unsaturated,
4. (a1, h1, . . . , hk, a1), where the path (a1, h1, . . . , hk) is equal and r((hk, a1)) >

r((a1, h1)).

Proof. Let M be a popular b-matching. Suppose the graph contains a path P1 of
type (1). If a1 is saturated let P ′1 = P1∪e, where e denotes edge (a1, h) ∈M \M ′
having lower rank than (a1, h1) (notice that e /∈ P1), otherwise let P ′1 = P1.

120 K. Paluch

M ′ = M ⊕ P ′1 is a b-matching such that sigM ′(a1) % sigM (a1), sigM ′(ak) %
sigM (ak), sigM (ak+1) % sigM ′(ak+1) and for each a different from a1, ak, ak+1

we have sigM ′(a) = sigM (a). Therefore M ′ is more popular than M .
Suppose the graph contains a path P3 of type (3). If a1 is saturated let

P ′3 = P3 ∪ e, where again e denotes edge (a1, h) ∈ M \ M ′ having lower
rank than (a1, h1), otherwise let P ′3 = P3. M ′ = M ⊕ P ′3 is a b-matching
such that sigM ′(a1) % sigM (a1) and for each a different from a1 we have
sigM ′(a) = sigM (a). Therefore M ′ is more popular than M .

If the graph contains a path of type (2) or (4), we proceed analogously.
For the other direction suppose now that M is not popular. There exists then

a b-matching M ′ which is more popular than M . This means that the set A1

of agents who prefer M ′ to M outnumbers the set A2 of agents who prefer M
to M ′.

As a preprocessing step, we remove from M ⊕M ′ all equal cycles. Therefore
from now on, we will assume that M ⊕M ′ does not contain equal cycles. For
each a ∈ A1 we build a path Pa in the following way. We will use only edges of
M ⊕M ′. We start with an edge (a, h1) ∈ M ′ having the highest possible rank
(i.e. lowest possible number) and such that it has not been used in any other
path Pa′ (a �= a′, a′ ∈ A1). Now assume that our so far built path Pa ends
on hi. If hi is unsaturated in M , we end. Otherwise we consider edges (hi, ai)
belonging to M and not already used by other paths P ′a (a′ ∈ A1). (The set of
such unused edges is nonempty as hi is saturated in M and thus there are at least
as many M -edges as M ′-edges incident with hi and each time we arrive at hi

while building some path Pa (a ∈ A1) we use one M -edge and one M ′-edge.) If
among these edges, there is such one that ai ∈ A1, we proceed as follows. If there
exists an edge (ai, hi+1) ∈M ′ (not necessarily unused) having higher rank than
edge (hi, ai), we add edge (hi, ai) to Pa and stop; otherwise since ai ∈ A1, there
exists an unused edge (ai, hi+1) of the same rank as (hi, ai) and we add edges
(hi, ai) and (ai, hi+1) to Pa. Otherwise if among unused edges (hi, ai) there is
such one that ai ∈ A2, we add it to Pa and stop. Otherwise consider any unused
edge (hi, ai) ∈M . ai belongs neither to A1 nor to A2 and therefore has the same
signature in M and in M ′. There exists then an unused edge (ai, hi+1) ∈ M ′

having the same rank as (hi, ai) (it is so because the number of edges of a given
rank incident with ai is the same in M and in M ′) and we add any such edge
(ai, hi+1) as well as edge (hi, ai) to Pa.

Clearly we stop building Pa at some point because we either arrive at an
unsaturated vertex h ∈ H or at a vertex of A1 ∪ A2, which may be a itself.
Suppose there exists a ∈ A1 such that Pa ends on a. Since Pa starts with an
edge e of M ′ having the highest rank and M ⊕M ′ does not contain equal cycles,
the ending edge of Pa must have a lower rank than e, hence Pa is a path of type
(4). If there exists a path Pa ending on an unsaturated vertex, it is of type (3).
If there exists a ∈ A1 such that Pa ends on a1 ∈ A1, a1 �= a, then let e = (h′, a1)
denote the ending edge of Pa and let e0 = (a, h1) denote the starting edge of
Pa. Because we have stopped building Pa on e, it means that there exists edge
e′ = (a1, h) ∈ M ′ having higher rank than e. If e′ already belongs to Pa or h

Popular and Clan-Popular b-Matchings 121

is already on Pa, then Pa ∪ e′ contains a path of type (4). Otherwise if there
exists an edge e3 = (h, a) ∈ M , Pa ∪ e′ ∪ e3 forms a path of type (1) or (4)
depending on whether e3 has the same rank as e0 or higher. Otherwise there
exists an edge e3 = (h, a2) ∈ M , where a2 �= a and of course a2 �= a1 and path
Pa ∪ e′ ∪ e3 forms a path of type (1). If none of the paths Pa ends on un unsatu-
rated vertex or on a vertex in A1, each Pa ends on some agent a2 ∈ A2. Because
A2 outnumbers A1 there exist a1, a

′
1 ∈ A1, a1 �= a′1 and a2 ∈ A2 such that

Pa1 and Pa′
1
both end on a2. These paths are edge-disjoint and together form

a path of type (2). �

The second part of the above proof indicates a polynomial time algorithm for
checking the popularity of a given b-matching. In case of popular matchings (i.e.
1-matchings) the algorithm runs in time linear in the number of edges.

Next we give a characterisation of clan-popular b-matchings.

Theorem 2. A b-matching M is clan-popular iff graph G does not contain a
path of type (3) or (4) from Theorem 1 or a path of type (1′), which is any
path (a1, . . . , hk−1, ak, hk, ak+1), where (a) the path is alternating, (b) path
(a1, . . . , hk−1) is smooth, (c) r((hk−1, ak)) > r((ak, hk)) and (d) if ak+1 = a1,
then r((hk, ak+1)) > r((a1, h1)).

The proof is similar to that of Theorem 1.
Notice that a popular b-matching need not be clan-popular.

3 Polynomial Algorithms for Clan-Popular b-matchings

First we state the following NP-hardness results.

Theorem 3. The problem of deciding whether a given triple (G, b, r) has a pop-
ular b-matching is NP -hard, even if all edges are of one of two ranks, each agent
a ∈ A has capacity at most 2 and each house h ∈ H has capacity 1.

Theorem 4. The problem of deciding whether a given triple (G, b, r) admits a
clan-popular b-matching is NP -hard, even if all edges are of one of three ranks,
each agent a ∈ A has capacity at most 3, each house h ∈ H has capacity 1 and
there are no ties.

The proofs are omitted due to space constraints.
We will now give an algorithm for the version in which there are no ties, each

agent uses two ranks and has capacity 2, and houses have arbitrary capacities.
(This algorithm can be easily extended to the one where we allow agents to have
capacity 1 and use only one rank.) The underlying graph is J = (A ∪ H,E).
Without loss of generality we can assume that agents use rank 1 and rank 2
edges.

Let J1 denote (A ∪ H,E1) and b1 : A ∪ H → N be defined as b1(a) = 1 for
a ∈ A and b1(h) = b(h). Let J2 = (A∪H,E2) and b2 be defined as b2(a) = 1 for
a ∈ A and b2(h) = b(h)− degE1(h) for h ∈ H .

First we observe the following.

122 K. Paluch

Lemma 1. If J contains a clan-popular b-matching M , then J contains a clan-
popular b-matching M ′ that contains some maximum b1-matching of J1.

Proof. Assume, that a clan-popular b-matching M restricted to rank 1 edges
(called M1) is not a maximum b1-matching of J1. Then in J1 there exists an M1-
augmenting path, which must be of the form (a, h), where a is not matched inM1.
Since M is clan-popular, h is saturated in M . Therefore there exists a′ such that
(a′, h) ∈M and (a′, h) ∈ E2. It is not difficult to see that M \ {(a′, h)}∪{(a, h)}
must also be a clan-popular b-matching of J . We can proceed in this way until
we have a clan-popular b-matching of J that contains a maximum b1-matching
of J1. �

From Lemma 1 we know that if J contains a clan-popular b-matching, then there
exists a clan-popular b-matching M = M1∪M2 of J such that M1 is a maximum
b1-matching of J1 and M2 is a maximum b2-matching of J2.

The key property of clan-popular b-matchings is stated in

Lemma 2. If J has a clan-popular b-matching, then there exists such a clan-
popular b-matching M = M1∪M2 that M1 is a maximum b1-matching of J1 and
M2 is a b2-matching of J2 and M has the following property. Let h ∈ H be such
that degE2(h) > b2(h) and N2(h) = {a ∈ A : (a, h) ∈ E2}. Then if a ∈ N2(h) is
matched in M2, then a is also matched in M1.

Proof. The first part of the lemma follows from Lemma 1. Suppose that some
a ∈ N2(h) is matched in M2 and unmatched in M1. Since degE2(h) > b2(h),
there exists some a′ ∈ N2(h) that is unmatched in M2. Let h′, a′′ be such that
(a, h′) ∈ E1 and (h′, a′′) ∈ M1 (such (h′, a′′) exists because M1 has maximum
cardinality.) If a′ �= a′′, then (a′, h, a, h′, a′′) forms a path of type (1′) and thus
M is not clan-popular. Therefore a′ = a′′. But we can remove from M edge
(a′, h′) and add (a, h′) and obtain another clan-popular b-matching of J . This
way we diminish the number of agent vertices in N2(h), who are matched in M2

but not in M1. Proceeding in this way we obtain the wanted b-matching. �

We are going to use the algorithm for the following problem. In the two level-
matching problem we are given a graph G consisting of two bipartite graphs
G1 = (A∪B1, E1), G2 = (A∪B2, E2), where sets B1, B2 are disjoint. We want to
find M1,M2, where M1 is a matching of G1, M2 is a matching of G2 such that if
a ∈ A is matched in M2, it is also matched in M1. Such two matchings M1,M2

are called a two-level matching of G. In the maximum two-level matching
problem we want to find a two-level matching of maximum cardinality, i.e. such
one that |M1∪M2| is maximised. The algorithm for computing a maximum two-
level matching is given in [18].

Fact 1. If M1,M2 is a maximum two-level matching of G, then M1 is a maxi-
mum cardinality matching of G1.

Popular and Clan-Popular b-Matchings 123

(The above algorithm extends in an obvious way to b-matchings i.e. to the version
in which each vertex of B1, B2 can be incident with more than one edge.)

Because of Lemma 1 we can assume that J1, J2 are such that J1 = (A ∪
H1, E1), J2 = (A ∪ H2, E2) and H1, H2 are disjoint. (We split each h ∈ H into
h1 and h2, h1 goes to H1, h2 goes to H2 and b(h1) = b1(h), b(h2) = b2(h).)

Let J+
2 be a subgraph of J2 induced on vertices A+ ∪H+

2 , where h ∈ H+
2 iff

degE2(h) > b2(h) and A+ = N(H+
2) contains neighbours of H+

2 in J2.

Theorem 5. A b-matching of J of the form M = M ′ ∪M ′′, where M ′′ consists
of all edges of E2 incident with A\A+ and M ′ is a maximum two-level matching
of J1, J

+
2 such that each h ∈ H+

2 is saturated in M ′ is clan-popular. Moreover,
if J contains a clan-popular b-matching, then it contains one of the above form.

Proof. Suppose that M = M ′ ∪M ′′ is such that M ′′ consists of all edges of
E2 incident with A \ A+ and M ′ is a maximum two-level matching of J1, J

+
2

such that each h ∈ H+
2 is saturated in M ′. We prove that M is a clan-popular

b-matching of J .
First we show that J does not contain a path of type (1′). Suppose to the

contrary that J contains some path P = (a1, h1, a2, h2, a3) of type (1′). Then
edges (a1, h1), (h1, a2) must be of rank 2 and edges (a2, h2), (h2, a3) of rank 1.
Therefore a1 is unsaturated in M . Also a1 �= a2 (since a2 has a rank 2 edge
incident with him/her and a1 does not). Since a1 �= a2 and h1 is saturated
(otherwise P would be a path of type (3)), we get that a1, a2 ∈ A+. However
from the fact that M ′ is a two-level matching we know that since a2 has a rank 2
edge incident with him/her, he/she has also a rank 1 edge incident with him/her.
Therefore no path of type (1′) occurs in the graph.

J cannot contain a path of type (3) because each h ∈ H+
2 is saturated in M ′

and a path of type (3) ending on some h ∈ (H1 ∪ H2) \ H+
2 would have to be

contained in J1. This would mean that M ′ ∩ E1 is not a maximum cardinality
b1-matching of J1 and this that M ′ is not a maximum two-level matching of J .

Because there are no ties, a path of type (4) does not exist in the graph either.
For the other part of the lemma, suppose J contains a clan-popular b-matching

M . LetM ′′ denote all edges of E2 incident with A\A+ and letM ′ denoteM\M ′′.
If some h ∈ H+

2 is unsaturated in M ′ or an edge of E2 incident with some vertex
of A \ A+ does not belong to M , then J contains a path of type (3) beginning
with some unsaturated a ∈ A and M is not clan-popular. By Lemma 2 we can
assume that M ′ is a two-level matching. If M ′ were not a maximum two-level
matching, it would mean that M ′ ∩E1 is not a maximum b1-matching of J1. It
is so because of the following. Since each h ∈ H+

2 is saturated in M ′, we cannot
increase the number of E2-edges in M ′ and thus if M ′ is not a maximum two-
level matching, then we can increase the number of E1-edges in M ′. If M ′ ∩E1

is not a maximum b1-matching of J1, then M is not a clan-popular b-matching
of J , because J contains a path of type (3). �

124 K. Paluch

Algorithm CPBM (short for Clan-Popular b-Matching)

Input: graph J consisting of two bipartite graphs J1 = (A ∪ H1, E1), J2 =
(A ∪H2, E2) such that H1, H2 are disjoint, function b : A ∪H1 ∪H2 → N

Output: a clan-popular b-matching M of J or a report that it does not exist

Compute a maximum two-level b-matching M ′ of J1, J
+
2 .

If M ′ does not saturate each h ∈ H+
2 , write ”does not exist” and halt.

Otherwise let M ′′ denote all edges of E2 incident with A \A+.
Output M = M ′ ∪M ′′.

Theorem 6. Algorithm CPBM solves the clan-popular b-matching problem for
the cases when each agent has capacity 2 and uses two ranks, houses have arbi-
trary capacities and there are no ties.

Proof. If the algorithm outputs a b-matching M , by Theorem 5 we know that
it is clan-popular. If the algorithm does not output a b-matching, it is because
a computed maximum two-level b-matching M ′ does not saturate all houses in
H+

2 . LetM1 denoteM
′∩E1. By Fact 1M1 is a maximum cardinality b1-matching

of J1. A maximum cardinality two-level matching has cardinality |M1| plus the
number of edges incident with H+

2 . Therefore if a maximum cardinality two-level
matching does not saturate each h ∈ H+

2 , then there does not exist a two-level
matching which does. Hence by Theorem 5 a clan-popular b-matching does not
exist in J . �

Algorithm CPBM runs in O(
√
nn) time, where n is the number of vertices in

the graph. (The number of edges is O(n) since there are no ties.)
In the extended version of the paper we present also the algorithm for the

setting in which ties among rank 2 edges are allowed.

References

1. Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings.
SIAM Journal on Computing 37, 1030–1045 (2007)

2. Abraham, D.J., Kavitha, T.: Voting Paths. SIAM J. Discrete Math. 24(2), 520–537
(2010)

3. Biró, P., Irving, R.W., Manlove, D.F.: Popular Matchings in the Marriage and
Roommates Problems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS,
vol. 6078, pp. 97–108. Springer, Heidelberg (2010)

4. Gärdenfors, P.: Match making: Assignments based on bilateral preferences. Be-
havioural Sciences 20, 166–173 (1975)

5. Cornuejols, G.: General factors of graphs. J. Comb. Theory, Ser. B 45(2), 185–198
(1988)

6. Dyer, M.E., Friese, A.M.: Planar 3DM is NP-complete. J. Algorithms 7, 174–184
(1986)

Popular and Clan-Popular b-Matchings 125

7. Huang, C.-C., Kavitha, T., Michail, D., Nasre, M.: Bounded Unpopularity Match-
ings. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 127–137.
Springer, Heidelberg (2008)

8. Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Rank-maximal
matchings. ACM Transactions on Algorithms 2(4), 602–610 (2006)

9. Kavitha, T., Nasre, M.: Optimal popular matchings. Discrete Applied Mathemat-
ics 157(14), 3181–3186 (2009)

10. Kavitha, T., Shah, C.D.: Efficient Algorithms for Weighted Rank-Maximal Match-
ings and Related Problems. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp.
153–162. Springer, Heidelberg (2006)

11. Kavitha, T., Mestre, J., Nasre, M.: Popular Mixed Matchings. In: Albers, S.,
Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP
2009, Part I. LNCS, vol. 5555, pp. 574–584. Springer, Heidelberg (2009)

12. Lovasz, L., Plummer, M.D.: Matching Theory. Ann. Discrete Math., vol. 29. North-
Holland, Amsterdam (1986)

13. Mahdian, M.: Random popular matchings. In: Proceedings of EC 2006: the 7th
ACM Conference on Electronic Commerce, pp. 238–242. ACM (2006)

14. Manlove, D.F., Sng, C.T.S.: Popular Matchings in the Capacitated House Alloca-
tion Problem. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp.
492–503. Springer, Heidelberg (2006)

15. McCutchen, R.M.: The Least-Unpopularity-Factor and Least-Unpopularity-
Margin Criteria for Matching Problems with One-Sided Preferences. In: Laber,
E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957,
pp. 593–604. Springer, Heidelberg (2008)

16. McDermid, E., Irving, R.W.: Popular Matchings: Structure and Algorithms. In:
Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 506–515. Springer, Heidel-
berg (2009)

17. Mestre, J.: Weighted Popular Matchings. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006, Part I. LNCS, vol. 4051, pp. 715–726. Springer,
Heidelberg (2006)

18. Paluch, K.: Balanced Matchings, Unbalanced Ones and Related Problems (2011)
(manuscript)

19. Sng, C.T.S., Manlove, D.F.: Popular matchings in the weighted capacitated house
allocation problem. J. Discrete Algorithms 8(2), 102–116 (2010)

Kernelization and Parameterized Complexity
of Star Editing and Union Editing

Jiong Guo� and Yash Raj Shrestha��

Universität des Saarlandes,
Campus E 1.7, D-66123 Saarbrücken, Germany

{jguo,yashraj}@mmci.uni-saarland.de

Abstract. The NP-hard Star Editing problem has as input a graph
G = (V, E) with edges colored red and black and two positive integers k1

and k2, and determines whether one can recolor at most k1 black edges
to red and at most k2 red edges to black, such that the resulting graph
has an induced subgraph whose edge set is exactly the set of black edges.
A generalization of Star Editing is Union Editing, which, given a hy-
pergraph H with the vertices colored by red and black and two positive
integers k1 and k2, determines whether one can recolor at most k1 black
vertices to red and at most k2 red vertices to black, such that the set of
red vertices becomes exactly the union of some hyperedges. Star Edit-
ing is equivalent to Union Editing when the maximum degree of H
is bounded by 2. Both problems are NP-hard and have applications in
chemical analytics. Damaschke and Molokov [WADS 2011] introduced
another version of Star Editing, which has only one integer k in the
input and asks for a solution of totally at most k recolorings, and pro-
posed an O(k3)-edge kernel for this new version. We improve this bound
to O(k2) and show that the O(k2)-bound is basically tight. Moreover,
we also derive a kernel with O((k1 + k2)

2) edges for Star Editing.
Fixed-parameter intractability results are achieved for Star Editing
parameterized by any one of k1 and k2. Finally, we extend and complete
the parameterized complexity picture of Union Editing parameterized
by k1 + k2.

1 Introduction

In this paper we study the Star Editing problem and its general cases. The
problem is defined as follows.
Problem: Star Editing(SE)

Input: A graph G = (V,E) with edges colored red and black and two positive
integers k1 and k2.
Parameter: k1 + k2

Question: Can we recolor at most k1 black edges to red and at most k2 red
edges to black such that the resulting graph has an induced subgraph whose
edge set is exactly the set of black edges?
� Supported by the DFG Excellence Cluster MMCI.

�� Supported by the DFG research project DARE GU 1023/1.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 126–135, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Kernelization and Parameterized Complexity 127

A generalization of Star Editing is Union Editing which can be defined as
follows:

Problem: Union Editing(UE)

Input: A hypergraph H = (V, S) whose vertices are colored red and black, and
two positive integers k1 and k2

Parameter: k1 + k2

Question: Can we recolor at most k1 black vertices to red and at most k2 red
vertices to black such that the set of red vertices becomes exactly the union of
some hyperedges in S?
Star Editing and Union Editing arise from chemical analytics; for more
details of the applications we refer to [6,2]. Star Editing is equivalent to Union

Editing when each vertex in V appears in at most 2 hyperedges [2]. Another
equivalent formulation of the question of Star Editing concerning the red edges
is as follows: We say that there is a red star at a vertex v, if all edges incident
to v are red. Then, the Star Editing problem asks for recoloring at most k1

black edges and at most k2 red edges such that in the resulting graph, all red
edges are contained in red stars. Our algorithms are mainly based on this red
star formulation.

Damaschke and Molokov [1,2] initialized the study of the computational com-
plexity of Star Editing and Union Editing. They proved that both problems
are NP-hard and revealed the relation between Star Editing and some general-
izations of Vertex Cover. Moreover, they also studied Star Editing from the
viewpoint of parameterized algorithms. However, the algorithms given in [1,2]
are not for Star Editing, but for a slightly modified version of Star Edit-

ing, which we call Star Editing with Total Recoloring defined as follows:

Problem: Star Editing with Total Recoloring (SETR)

Input: A graph G = (V,E) with edges colored red and black and a positive
integer k.

Parameter: k

Question: Can we recolor at most k edges such that all red edges are contained
in red stars?
With k as parameter, Damaschke and Molokov [1,2] showed that SETR can
be solved in O∗(1.84k) time1 by a bounded search tree algorithm. Moreover,
a problem kernel with O(k3) edges is proposed for SETR [1]. However, these
algorithms do not work for Star Editing [1,2]; for instance, the search tree
algorithm could end up with a solution with at most k1 + k2 total recolorings
which recolors more than k1 black edges.

We first improve the problem kernel for SETR toO(k2) edges and prove that this
bound is basically tight. Moreover, we study Star Editing and derive a problem
kernel with O((k1 + k2)2) edges. We then present intractability results for Star

1 O∗() notation hides factors that are polynomial in the input size.

128 J. Guo and Y.R. Shrestha

Editing: Star Editing remains NP-hard even with k2 = 0; this means the pa-
rameterization with k2 alone is not in XP. With only k1 as parameter, this problem
becomes W[1]-hard. Finally, we extend and complete the parameterized complex-
ity picture of Union Editing. If the maximum degree of the hypergraphH is not
bounded, Union Editing becomes W[2]-hard with k1 + k2 as parameter, even
with all hyperedges containing at most 2 vertices. Moreover, if the maximum de-
gree of the hypergraph H is bounded, Union Editing becomes fixed-parameter
tractable with k1 + k2 as parameter.

2 Preliminaries

Parameterized complexity theory is a two-dimensional framework for studying
the computational complexity of problems [3,7]. A core tool in the development of
fixed-parameter algorithms is polynomial-time preprocessing by data reduction
rules, often yielding a reduction to a problem kernel (kernelization). Herein,
the goal is, given any problem instance x with parameter k, to transform it in
polynomial time into a new instance x′ with parameter k′ such that the size of x′
is bounded from above by some function only depending on k, k′ ≤ k, and (x, k)
is a yes-instance iff (x′, k′) is a yes-instance.

We mostly deal with vertex-colored or edge-colored, simple, and undirected
graphs. Given a graph G with edges colored red and black, let Eb denote the set
of black edges and Er denote the set of red edges. We use degb,G(v) and degr,G(v)
to denote the numbers of black and red edges in G incident to v, respectively.
Then, the degree degG(v) of v is equal to degb,G(v) + degr,G(v). We say that
a vertex v is degree-1 if degG(v) = 1. An edge is called a degree-1 edge if it is
incident to at least one degree-1 vertex. For a subset of vertices, the subgraph
of G induced by V ′, denoted by G[V ′], has the vertex set V ′ and the edge
set {(u, v) ∈ E | u, v ∈ V ′}. Breaking a black edge (u, v) means to delete the
edge (u, v) and to add two degree-1 vertices u′ and v′ and two black edges (u, u′)
and (v, v′). If all edges incident to a vertex v are black (or red), we say that there
is a black (or red) star at v. We break the black star at v, if we delete v and
add to each of v’s neighbours a degree-1 neighbour with a black edge between
them. Given a set S of recolorings, we use G� S to denote the graph resulting
by applying S to G. We say S creates a necessary red star at v ∈ V , if in G�S,
there is a red star at v and there is a red edge which is contained only in the red
star at v.

3 Improved Kernel for Star Editing with Total

Recoloring

Damaschke and Molokov [1] proved that Star Editing with Total Recol-

oring with the total number of recolorings k as parameter has a problem kernel
with O(k3) edges. In this section we improve this bound to O(k2). We derive a
completely different approach than in [1]. We apply the following six rules to an
instance (G = (V,E), k) in the given order.

Kernelization and Parameterized Complexity 129

v1

v2

v3

v4v5

v6

v7

Fig. 1. A subset of vertices to which Rule 6 can be applied (black edges are denoted
by solid lines and red edges are denoted by dashed lines)

Rule 1. If there is a red star at v ∈ V , then remove v.
Rule 2. Remove all black edges which are not adjacent to any red edge.
Rule 3. Break all black stars.
Rule 4. If there is a v ∈ V with degb,G(v) > k, then break all black edges
incident to v and remove the newly added degree-1 black edges until only k + 1
remain.
Rule 5. If there is a v ∈ V such that degr,G(v) > 2k, then remove v and
decrease k by degb,G(v).
Rule 6. If there is a non-empty set V ′ ⊆ V such that degb,G[V ′](v) ≥ 2degr,G(v)
for all v ∈ V ′, then break all black edges in G[V ′] as shown in Fig 1.
The correctness of Rules 1 and 2 is obvious, as edges in red stars and black edges
which are not incident to any red edges will never be recolored by any optimal
solution. Clearly, these two rules can be applied in O(|E| + |V |) time. To prove
the correctness of other rules, we need the following lemmas:

Lemma 1. [∗]2 Let (u, v) be a black edge in G. If there exists an optimal solu-
tion S for G which does not create a necessary red star at v, then we can safely
break (u, v). That is, G has a solution of size at most k iff G′ has such a solution,
where G′ is the graph resulting by breaking (u, v).

Lemma 2. Rules 3, 4, and 5 are correct and executable in O(|E| + |V |) time.

Proof. Rule 3. Breaking a black star at a vertex v can be seen as breaking all
incident black edges to v and then removing the isolated black star at v. Then,
by Lemma 1, it suffices to prove that there is an optimal solution S that does
not create a necessary red star at v. If an optimal solution S creates a red star
at v, then it has to recolor all edges incident to v to red. The only reason for S
2 Due to lack of space proofs of results marked [*] are given in the full version of the

paper.

130 J. Guo and Y.R. Shrestha

to recolor these edges is to create red stars at the other endpoints of these edges.
Therefore, the red star at v is not a necessary red star and Rule 3 is correct.
Rule 4. If there is a vertex v with degb,G(v) > k, then it will never be converted
to a red star by a size-≤ k solution. Thus, we can safely break the black edges
incident to v due to Lemma 1. Further, we need only k+ 1 black edges incident
to v to enforce that v will not become a red star. Thus, other black edges can
be safely removed.
Rule 5. Suppose there is a vertex v with degr,G(v) > 2k. Since we already
removed all red stars according to Rule 1, there is no red star at v. To satisfy the
required condition for the red edges incident to v, we either need to convert v into
a red star or we need to recolor k′ ≤ k red edges incident to v and recolor all the
black edges incident to the other endpoints than v of the remaining degr,G(v)−k′
red edges. The latter is not allowed, since we would need more than k recolorings
in this case. Hence, the only feasible way is to recolor the black edges incident
to v and decrease k by degb,G(v).

It is easy to see that all these rules can be applied in O(|E| + |V |) time. �	

Lemma 3. If there is a non-empty set V ′ ⊆ V such that degb,G[V ′](v) ≥ 2degr,G

(v) for all v ∈ V ′, then it is safe to break all black edges in G[V ′]. We can identify
such a set V ′ and break all black edges in G[V ′] in O(|E| · |V |) time.

Proof. Suppose that there is a set of vertices V ′ = {v1, v2, . . . , vm} such that
for each vi ∈ V ′, degb,G[V ′](vi) ≥ 2degr,G(vi). By Lemma 1, it suffices to show
that there exists an optimal solution S that creates no necessary red star at
vertices in V ′. Let S be an arbitrary optimal solution which creates some nec-
essary red stars at vertices v1, v2, . . . , vt ∈ V ′. Then S needs to recolor at
least

∑t
i=1 degb,G[V ′](vi)/2 many black edges. Let X denote the set of the red

edges in G which are contained only in the necessary red stars at vi’s. Clearly
|X | ≤

∑t
i=1 degr,G(vi). Then we can construct another optimal solution S′

from S by recoloring the red edges in X and keeping the edges in G[V ′] black.
For each of the red edges which are not in X , there is a red star in G � S
at a vertex outside of V ′ containing this red edge. Since the red stars outside
of V ′ cannot be affected by recoloring edges in G[V ′], we have S′ as a solution.
Obviously, |S′| ≤ |S|.

Now, we present an algorithm which can find a vertex subset V ′ satisfying
the condition of Rule 6. First, it computes degr,G(v) for each vertex v and stores
the value in xv. Then, the algorithm iteratively removes all vertices v having less
than 2xv many black edges incident to it in the current graph. Finally, it outputs
the remaining vertices as V ′. Note that xv’s remain unchanged during the whole
iteration but after some iterations, some vertices may have less incident black
edges than in G. On the one side, the output of the algorithm clearly satisfies
the condition of Rule 6. On the other side, if there exists some non-empty vertex
subset satisfying the condition of Rule 6, then the algorithm can find one. To
show this, observe that, if a vertex subset V ′ satisfies the condition of Rule 6, then
the vertices v in V ′ have degb,G[V ′′](v) ≥ 2degr,G(v) for all sets V ′′ with V ′ ⊆ V ′′.
This implies that, if there are two vertex subsets V ′ and V ′′ that both satisfy

Kernelization and Parameterized Complexity 131

the condition of Rule 6, then V ′ ∪ V ′′ satisfies the condition of Rule 6 as well.
In other words, there is exactly one maximal vertex subset V ′ satisfying the
condition of Rule 6 (V ′ could be empty). Let V ′ be the maximal subset of the
input graph G. The algorithm starts with the whole vertex set V and iteratively
removes vertices. And only those vertices are removed, which cannot satisfy the
condition of Rule 6 in the supersets of V ′. Thus, the algorithm will never remove
vertices in V ′. Due to the uniqueness of V ′, the algorithm terminates with the
output V ′. Finally, it is easy to see that this algorithm runs in O(|E| · |V |) time

�	
From the algorithm in the proof of Lemma 3, we observe the following lemma,
which is crucial for upper-bounding the number of black edges in the problem
kernel.

Lemma 4. If |Eb| ≥ 4|Er|, then there exists a non-empty set V ′ ⊆ V such
that degb,G[V ′](v) ≥ 2degr,G(v) for all v ∈ V ′.

Proof. Each iteration of the algorithm in the proof of Lemma 3 removes a ver-
tex v which has less than 2degr,G(v) incident black edges in the current graph.
By deleting this vertex, we remove also the incident black edges. Then the total
number of black edges removed in all iterations is less than 2·

∑
v∈V \V ′ degr,G(v),

where V ′ is the set of remaining vertices after all iterations. If G has no non-
empty subset V ′ satisfying the condition of Rule 6, then, by the proof of Lemma 3,
the algorithm will remove all vertices, i.e., |V ′| = 0, and then, G has less
than 2

∑
v∈V degr,G(v) = 4|Er| black edges, contradicting |Eb| ≥ 4|Er|. �	

In the following, we call an instance reduced if none of the above rules can be
applied.

Theorem 1. Star Editing with Total Recoloring has a problem kernel
with O(k2) edges parameterized by the total number k of allowed recolorings.

Proof. If a reduced instance G = (V,E) has a solution S with at most k recol-
orings, then let V (S) be the set of vertices that are incident to the recolored
edges. Let V1 be the set of vertices in V \ V (S) that are adjacent to V (S)
and V2 := V \ (V (S) ∪ V1). By Lemma 4, it suffices to show that the number
of red edges in G can be upper-bounded by O(k2). It is clear that all red edges
in G � S will have at least one of its endpoints in V (S), since all red stars
in G have been removed by Rule 1. Clearly, |V (S)| ≤ 2k and there are O(k2)
edges in G[V (S)]. Next consider the red edges between V (S) and V1. Rule 5
implies that there exists no vertex v such that degr,G(v) ≥ 2k. Hence, we have
at most 4k2 red edges between V (S) and V1. This gives a bound of O(k2) on the
number of red edges and completes the proof. �	

4 Kernelization for Star Editing

In this section we derive a quadratic kernel for Star Editing with the numbers
of recolorings k1 and k2 as parameters. The kernelization in Section 3 cannot

132 J. Guo and Y.R. Shrestha

be applied directly to Star Editing, since the correctness of some rules and
the proof of the kernel size are heavily based on the argument that in order to
create red stars for l red edges, we never recolor more than l black edges. How-
ever,this argument is no longer true for Star Editing as we have two separate
bounds on the two types of recolorings. The first three rules from Section 3 can
be directly applied here. The other three rules need some modifications. Addi-
tionally, we introduce a new reduction rule. To present the rules, we need some
new notations. We define Nr,G(v) := {x | (x, v) ∈ Er} and Nb,G(v) := {x |
(x, v) ∈ Eb} as sets of red and black neighbours of v respectively. Moreover, we
define Er,G(v) := {(x, y) ∈ Eb | (v, x) ∈ Er or (v, y) ∈ Er}. Let N1

b,G(v) = {x |
x ∈ Nb,G(v) and degG(x) = 1} denote th set of degree-1 black neighbours of v
and deg1

b,G(v) := |N1
b,G(v)|. We have the following seven rules which must be

applied in the given order:
Rule 1. If there is a red star at v, then remove v.
Rule 2. Remove all black edges which are not adjacent to any red edge.
Rule 3. Break all black stars.
Rule 4. If there is a v ∈ V with degb,G(v) > k1, then break all black edges
incident to v and remove the newly added degree-1 black edges until only k1 +1
remain.
Rule 5. If there is a v ∈ V with degr,G(v) > 2k1 + k2, then remove v and
reduce k1 by degb,G(v).
Rule 6. If there is a non-empty vertex set V ′ ⊆ V such that for each vertex v ∈
V ′, it holds that degb,G[V ′](v) ≥ 2|Er,G(v)|, then break all black edges in G[V ′].

Rule 7. If there is a vertex v with deg1
b,G(v) > |Er,G(v)| + 1, then keep arbi-

trary |Er,G(v)| + 1 degree-1 black edges incident to v and remove the others.
The first two rules are clearly correct and run in linear time. It is easy to verify
that Lemma 1 holds also for Star Editing. Therefore, the correctness of Rules 3
and 4 follows directly from the correctness proofs in Section 3. The following
three lemmas prove the correctness of Rules 5 to 7.

Lemma 5. [∗] Rule 5 is correct and executable in O(|E| + |V |) time.

Lemma 6. [∗] If there is a non-empty vertex set V ′ ⊆ V such that for each
vertex v ∈ V ′, it holds that degb,G[V ′](v) ≥ 2|Er,G(v)|, then it is safe to break
all black edges in G[V ′]. We can identify such V ′ and break all the black edges
in G[V ′] in O(|E| · |V |) time.

Lemma 7. [∗] Rule 7 is correct and can be applied in O(|E| · |V |) time.

Next we prove the problem kernel.
Theorem 2. Star Editing has a problem kernel with O((k1 + k2)2) edges,
parameterized by k1 + k2 where k1 and k2 denote the number bounds for the
recolorings of black and red edges, respectively.

Proof. Again, we use V (S) to denote the set of endpoints of the edges recolored
by a solution S satisfying both bounds k1 and k2. The set V1 contains all vertices

Kernelization and Parameterized Complexity 133

in V \ V (S) that are adjacent to V (S) and V2 := V \ (V (S) ∪ V1). We bound
the numbers of red and black edges in the reduced instance, separately. By
Rule 1, red edges can only be in G[V (S)] or between V (S) and V1. Clearly, as
in Theorem 1, there are totally O((k1 + k2)2) edges in G[V (S)]. Moreover, We
know that |V (S)| ≤ 2 · (k1 +k2) and in particular, there are at most 2k1 vertices
incident to recolored black edges. Rule 5 implies that there exists no vertex v such
that degr,G(v) > 2k1+k2. Hence, since each red edge between V (S) and V1 must
be adjacent to at least one recolored black edge, we have at most 2·k1·(2k1+k2) =
O((k1 + k2)2) red edges between S and V1.

We partition the black edges into four different subsets and bound their sizes
individually. As already observed, the number of black edges in G[V ′] is clearly
bounded by O((k1 + k2)2). Consider the black edges between V (S) and V1. We
know that |V (S)| ≤ 2 ·(k1 +k2). Rule 4 implies that there exists no vertex v such
that degb,G(v) > k1 +1. Hence, we have at most 2 · (k1 +k2) · (k1 +1) black edges
between V (S) and V1. Due to Rules 1 to 3, there is no edge in G[V2], all vertices
in V2 are degree-1 vertices, and they are directly connected to V1 by black edges.
Therefore, the remaining black edges are either between V1 and V2 or in G[V1].
Consider the black edges between V2 and V1 which are all degree-1 edges. By
Rule 7, we know N1

b,G(v) ≤ |Er,G(v)|+ 1 for each vertex v ∈ V1. Thus, the num-
ber of the black edges between V1 and V2 is bounded by

∑
v∈V1

(|Er,G(v)| + 1).
Moreover, since v ∈ V1, all black edges in Er,G(v) have been recolored by S. A
recolored black edge can be in Er,G(v) of at most 2(2k1 + k2) vertices v ∈ V1,
since each of its two endpoints can be adjacent to at most 2k1 + k2 many red
edges between V (S) and V1. Therefore,

∑
v∈V1

(|Er,G(v)| + 1) ≤ 4k1(2k1 + k2)
and thus, there are O((k1 + k2)2) black edges between V1 and V2. Finally, we
bound the number of the black edges in G[V1]. By Rule 6, there exists no set
of vertices V ′ such that degb,G[V ′](v) ≥ 2|Er,G(v)| for each vertex v ∈ V ′.
Then, there exists in V1 a vertex v1 with degb,G[V1](v1) < 2|Er,G(v1)|. More-
over, this arguments also applies for every subset of V1. This means that there
exists v2 ∈ V1 with degb,G[V1\{v1}](v2) ≤ 2|Er,G(v2)| and so on, until all vertices
in V1 have been considered. Then, the number of edges in G[V1] is bounded
by

∑
v∈V1

2|Er,G(v)|. As for the edges between V1 and V2, the black edges
in Er,G(v) for all vertices v ∈ V1 are recolored by S. And each recolored black
edge can be in Er,G(v) for at most 2(2k1 + k2) many vertices v ∈ V1. There-
fore,

∑
v∈V1

2|Er,G(v)| ≤ 4k1(2k1 + k2), which completes the proof of the bound
on black edges. �	

5 Hardness Results for Star Editing

In this section we present several hardness results concerning the parameter-
ized complexity of Star Editing. First, we show that Star Editing becomes
fixed-parameterized intractable, parameterized by only one of k1 and k2. More
precisely, we show that the parameterization with k2 of Star Editing is not in
XP and the one with k1 is W[1]-hard.

Theorem 3. Star Editing is NP-hard even when k2 = 0.

134 J. Guo and Y.R. Shrestha

Proof. To this end, we reduce Vertex Cover to Star Editing with k2 = 0.
Vertex Cover (VC) asks for a given undirected graph G = (V,E) and an
integer l ≥ 0, whether there is a subset C ⊆ V with |C| ≤ l such that each
edge e ∈ E has at least one endpoint in C. Vertex Cover is NP-complete [4].
For each vertex v ∈ V of a given VC-instance (G = (V,E), l), we create a
black edge (v, v′) in the corresponding Star Editing-instance G′ and for each
edge (u, v) ∈ E we add two red edges (u, v) and (u′, v′). Then, set k2 = 0
and k1 = l. We claim that G′ has a solution recoloring at most k1 black edges if
and only if G = (V,E) has a size-≤ l vertex cover. Let C ⊆ V be the solution
of Vertex Cover on G = (V,E). It is clear to see that recoloring the black
edges in G′ corresponding to vertices in C gives a solution for Star Editing

with k2 = 0. For the reversed direction, Star Editing with k2 = 0 is equivalent
to finding the minimum-size subset of black edges that covers all red edges, which
in turn is equivalent to finding a minimum vertex cover in the graph obtained
by contracting all black edges, i.e., finding a minimum vertex cover in G. �	

The reduction given in the proof of Theorem 3 implies also a lower bound of the
kernel size for Star Editing with Total Recoloring.

Corollary 1. [∗] Star Editing with Total Recoloring does not have
kernels with O(k2−ε) edges for any ε > 0 unless coNP ⊆ NP/poly, where k
denotes the number of allowed recolorings.

Theorem 4. Star Editing is W[1]-hard with respect to k1.

Proof. We prove the theorem by reducing from the Partial Vertex Cover

(PVC) problem, which, given an undirected graph G = (V,E) and two inte-
gers l ≥ 0 and t ≥ 0, asks for a subset C ⊆ V such that |C| ≤ l and C covers
at least t edges. PVC is W[1]-hard with l as parameter [5]. Given an input in-
stance (G = (V,E), l, t) of PVC, we construct an instance G′ = (V ′, E′) for
Star Editing as follows. First, set G′ := G and color all edges in G′ with red.
Then for each vertex v add a new degree-1 vertex v′ with the black edge (v, v′)
in G′. Finally, set k1 = l and k2 = |E|− t. It is obvious that a size-≤ l vertex set
in G which covers ≥ t edges one-to-one corresponds to a solution for the Star

Editing instance. �	

6 Union Editing

In this section, we consider the Union Editing problem and extend and com-
plete its parameterized complexity picture. A hypergraph H = (V, S) is a vertex
set H equipped with a family S of subsets of vertices called hyperedges, i.e.,
S = {S1, . . . , Sm}. The degree deg(v) of a vertex v is the number of hyper-
edges it belongs to, and the degree deg(H) of a hypergraph is the maximum
vertex degree. Union Editing with the maximum degree deg(H) bounded by 2
and |Si| ≤ 2 for all 1 ≤ i ≤ m is clearly solvable in polynomial time. Star Edit-

ing is the special case of Union Editing with deg(H) ≤ 2. First we consider
Union Editing with bounded |Si| for all i’s.

Kernelization and Parameterized Complexity 135

Theorem 5. [∗] If deg(H) is unbounded, then Union Editing is W[2]-hard
with respect to the total number k1 + k2 of recolorings even with all hyperedges
satisfying |Si| ≤ c for a constant c ≥ 2.

Next, we consider Union Editing with bounded maximum degree deg(H).

Theorem 6. If deg(H) is bounded by some constant c, then Union Editing

with respect to the total number k1+k2 of recolorings is fixed-parameter tractable.

Proof. Given a hypergraph with its maximum degree bounded by a constant c,
we can find the solution for Union Editing by a simple branching algorithm.
Here, we use red hyperedge to denote a hyperedge which contains only red ver-
tices. As long as there is a red vertex v that is not contained in any red hyperedge,
branch into the following cases: The first case is that if k2 > 0, then recolor v to
black and decrease k2 by one. Then for each hyperdege e containing v, recolor
all black vertices in e and decrease k1 by the number of such recolored black
vertices as long as k1 ≥ 0. The algorithm is correct, since it considers all feasi-
ble possibilities creating red hyperedge containing a red vertex. The number of
children of each node in the search tree is clearly bounded by c + 1. Moreover,
the height of the tree is bounded by k1 + k2 as in each level we decrease it by at
least one, and hence the search tree size is of O∗((c+ 1)(k1+k2)). We can further
observe that Union Editing remains fixed-parameter tractable when in addi-
tion to k1 + k2 the maximum degree of the hypergraph deg(H) is also taken as
parameter. �	

References

1. Damaschke, P., Molokov, L.: Parameterized reductions and algorithms for a graph
editing problem that generalizes vertex cover (2011), Extended version of [2],
http://www.cse.chalmers.se/~ptr/vcgj.pdf

2. Damaschke, P., Molokov, L.: Parameterized Reductions and Algorithms for Another
Vertex Cover Generalization. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS
2011. LNCS, vol. 6844, pp. 279–289. Springer, Heidelberg (2011)

3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
4. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory

of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)
5. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover

variants. Theory Comput. Syst. 41(3), 501–520 (2007)
6. Molokov, L.: Application of combinatorial methods to protein identification in pep-

tide mass fingerprinting. In: KDIR, pp. 307–313. SciTePress (2010)
7. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press

(2006)

http://www.cse.chalmers.se/~ptr/vcgj.pdf

On the Advice Complexity of Buffer

Management

Reza Dorrigiv�, Meng He��, and Norbert Zeh� � �

Faculty of Computer Science, Dalhousie University,
Halifax, NS, B3H 1W5, Canada

{rdorrigiv,mhe,nzeh}@cs.dal.ca

Abstract. We study the advice complexity of online buffer manage-
ment. Advice complexity measures the amount of information about the
future that an online algorithm needs to achieve optimality or a good
competitive ratio. We study the 2-valued buffer management problem in
both preemptive and nonpreemptive models and prove lower and upper
bounds on the number of bits required by an optimal online algorithm in
either model. We also provide results that shed light on the ineffective-
ness of advice to improve the competitiveness of the best online algorithm
for nonpreemptive buffer management.

1 Introduction

Buffer management is an important online problem with applications in net-
work communication [13]. It models admission policies for the buffers of packet
switches in networks that support the QoS (Quality of Service) feature. In this
problem, packets have different values corresponding to their importance or pri-
ority, and the packet switch has a FIFO buffer of size B. Packets arrive at
arbitrary times and are placed at the end of the buffer. In each time unit, the
switch retrieves a packet from the front of the buffer and transmits it, unless the
buffer is empty. Multiple packets may arrive in the same time unit. If the buffer
is full when a packet arrives, the switch’s buffer management algorithm must
reject the packet. Otherwise it may choose to accept or reject the packet. The
goal of the algorithm is to maximize the total value of the transmitted packets,
which, in the absence of preemption, are exactly the packets it accepts. We con-
sider the 2-valued model here, where there are two types of packets: low-priority
packets (L-packets) of value 1 and high-priority packets (H-packets) of value
α > 1. We use p1, p2, . . . , pn to denote the sequence of packets, and we assume
for simplicity that transmission occurs at integral times, no two packets arrive
at the same time, and no packets arrive at integral times. Time starts at 0. For
an integer j ≥ 0, we define time unit j to be the time interval [j, j + 1).

� Research supported by an NSERC postdoctoral fellowship.
�� Research supported by NSERC.

� � � Research supported by NSERC and the Canada Research Chairs programme.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 136–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On the Advice Complexity of Buffer Management 137

There are two main models for buffer management. In the nonpreemptive
model all packets accepted into the buffer are eventually transmitted, that is,
accepted packets cannot be dropped at a later time. In the preemptive model,
accepted packets can be dropped as long as they have not been transmitted yet.
Online buffer management algorithms are usually analyzed using competitive
analysis [19]: Let OPT be an optimal offline buffer management algorithm, and
A an online algorithm. We use OPT(S) and A(S) to denote the solutions pro-
duced by these algorithms on an input sequence S, or the total values of the
packets in these solutions. Which will be clear from the context. Algorithm A
has competitive ratio c if OPT (S) ≤ c · A(S), for every request sequence S.

Competitive analysis of buffer management algorithms was initiated by Aiello
et al. [1], Mansour et al. [17], and Kesselman et al. [16]. Since then, various al-
gorithms have been proposed. We briefly review the results most relevant to
our work and refer the reader to surveys by Azar [5], Epstein and van Stee
[12], and Goldwasser [13] for a more comprehensive coverage. Aiello et al. [1]
introduced the nonpreemptive 2-valued model and proved a lower bound of
(2− 1

α) on the competitiveness of any deterministic or randomized online algo-
rithm in this model. The Ratio Partition algorithm by Andelman, Mansour,
and Zhu [4] achieves this bound. This algorithm accepts each H-packet if possible
and, for each accepted H-packet, marks the earliest α

α−1 unmarked L-packets in
the buffer. It accepts an L-packet only if, after accepting it, the number of un-
marked L-packets in the buffer is at most α

α−1 times the number of empty buffer
slots. Mansour et al. introduced the preemptive model in the context of video
streaming [17]. Kesselman et al. proved a lower bound of 1.282 on the compet-
itiveness of any deterministic preemptive online algorithm [16]. The Account

Strategy algorithm by Englert and Westermann [4] achieves this bound.
These results completely characterize the competitiveness achievable for non-

preemptive or preemptive online buffer management without information about
future requests. They do not, however, provide any insight into how much an al-
gorithm may benefit from partial information about future requests that may be
available in some applications. Various models have been proposed to facilitate
the analysis of online algorithms that have access to such partial information,
e.g., the finite lookahead model [15,14,2,3,9]. A more recent model, and the one
we adopt in this paper, is advice complexity [10,11,7]. It measures the amount of
information about the future that an online algorithm needs in order to achieve
optimality or a certain competitive ratio. Two variants of this model have been
proposed [11,7]. In the model by Böckenhauer et al. [7], the online algorithm A
has access to a tape of advice bits produced by an oracle. The oracle has un-
limited computational power and has access to the whole input. No restrictions
are placed on how A uses the advice bits. The performance of A is expressed as
a combination of its competitive ratio and the number of advice bits it uses on
an input of size n. In the model by Emek et al. [11], the oracle provides a fixed
number of advice bits with each request, and the algorithm has access only to
the advice bits associated with the requests that have arrived so far. Previous
work on advice complexity of online algorithms has focused on paging [10,11],

138 R. Dorrigiv, M. He, and N. Zeh

ski rental [10], metrical task systems [11], the k-server problem [11,6,18], job
shop scheduling and routing [7], and the knapsack problem [8]. To the best of
our knowledge, the advice complexity of online buffer management has not been
studied so far. This is the focus of this paper.

It is trivial even for a nonpreemptive buffer management algorithm to achieve
optimality with one bit of advice per request: the oracle runs an offline op-
timal buffer management algorithm on the given request sequence and tells
the online algorithm for each packet whether the optimal algorithm accepts or
rejects this packet. Since one bit of advice per request is the minimum possible
in the model of [11], online buffer management is not interesting in this model,
and we adopt the model of [7]. Our main result is that Θ((n/B) logB) bits of
advice are necessary and sufficient for a preemptive or nonpreemptive online
buffer management algorithm to produce an optimal solution. In this paper all
logarithms are base 2. We also prove that a generalization of the Ratio Parti-

tion algorithm, which uses advice to choose the optimal ratio between unmarked
L-packets and empty buffer slots, cannot outperform Ratio Partition without
advice. We conjecture that an algorithm that chooses different ratios for differ-
ent parts of the input can outperform Ratio Partition, but we were unable
to prove this.

2 Optimal Preemptive Online Buffer Management

We focus on preemptive buffer management first, as our results for the nonpre-
emptive case are extensions of the ones for the preemptive case. We prove that,
for a preemptive buffer management algorithm, Θ((n/B) logB) bits of advice
are sufficient and necessary to achieve optimality.

2.1 The Lower Bound

Theorem 1. Any optimal preemptive online buffer management algorithm re-
quires at least (n/(3B)) log(B + 1) bits of advice.

Proof. Consider the following family of request sequences of length between 2B
and 3B: In time unit 0, B L-packets arrive. Between times 1 and B + 1, one
H-packet arrives per time unit. In time unit B + 1, k H-packets arrive, where
0 ≤ k ≤ B. In the next B time units, no packets arrive. The optimal solution
accepts B − k of the L-packets that arrive in time unit 0 and rejects the other
L-packets. It then accepts all H-packets that arrive in subsequent time units.

The online algorithm also has to accept exactly B−k L-packets in time unit 0.
To see this, observe that, no matter how many of the L-packets are accepted, the
algorithm will not preempt them. This is true because between times 1 and B,
the buffer does not overflow, which implies that by time B+1, all L-packets have
been transmitted and the buffer contains h H-packets, where h is the number
of L-packets we accepted in time unit 0. Now, if h > B − k, we are forced to
reject one of the k H-packets that arrive in time unit B + 1, which leads to a

On the Advice Complexity of Buffer Management 139

suboptimal solution. If h < B − k, we could have accepted at least one more
L-packet in time unit 0 without forcing us to reject an H-packet in time unit
B + 1, which is again suboptimal.

Since at time 0 the algorithm needs to know the number, k, of H-packets that
arrive in time unit B+1, and k can assume any value between 0 and B, we need
log(B + 1) bits of advice for this sequence of length between 2B and 3B.

We can construct arbitrarily long inputs of this type by concatenating a num-
ber, q, of such request sequences S1, S2, . . . , Sq. The last B time units of each
sequence Si during which no packets arrive guarantee that the algorithm needs
to behave on each Si as if Si were the whole request sequence. Thus, at least
log(B + 1) bits of advice are needed for each Si, for a total of q log(B + 1) bits.
The length of the entire sequence S1S2 . . . Sq is 2qB ≤ n ≤ 3qB. Thus, we need
at least (n/(3B)) log(B + 1) bits of advice. ��

2.2 The Upper Bound

We now describe an optimal preemptive online buffer management algorithm
that matches the lower bound of Theorem 1 up to a constant factor.

Theorem 2. There exists an optimal preemptive online buffer management
algorithm that uses �n/B��log(B + 1)� bits of advice.

To prove Theorem 2, we consider a request sequence S and a “canonical” opti-
mal solution OPTC(S) for S, and we propose an online algorithm A that uses
�n/B��log(B+1)� bits of advice to produce this solution. Note that an optimal
offline algorithm cannot benefit from preemption because it can immediately re-
ject any packets it would preempt later. Thus, we define OPTC(S) by describing
a nonpreemptive optimal offline algorithm that produces OPTC(S).

We divide S into contiguous subsequences U0, U1, . . . , UT , where Ut is the
subsequence of requests that arrive in time unit t. Let Ht and Lt respectively
be the numbers of H- and L-packets in Ut; let H ′t and L′t respectively be the
numbers of H- and L-packets in Ut that we accept; and let Yt = 1 if we transmit
a packet at time t, and Yt = 0 otherwise. Since the buffer has capacity B, any
feasible solution satisfies

t′∑
t=0

(H ′t + L′t) ≤ B +

t′∑
t=0

Yt, (1)

for all 0 ≤ t′ ≤ T . Since we can transmit a packet only if we have not already
transmitted all the accepted packets, a feasible solution must also satisfy

t′−1∑
t=0

(H ′t + L′t) ≥
t′∑

t=0

Yt, (2)

for all 0 ≤ t′ ≤ T . Conversely, any set of values of H ′t, L′t and Y ′t , 0 ≤ t ≤ T ,
that satisfy (1) and (2) (as well as the trivial constraints that 0 ≤ H ′t ≤ Ht,
0 ≤ L′t ≤ Lt, and Yt ∈ {0, 1}, for all 0 ≤ t ≤ T) yields a feasible solution.

140 R. Dorrigiv, M. He, and N. Zeh

The construction of OPTC(S) starts with Yt = H ′t = L′t = 0, for all 0 ≤ t ≤ T .
Next we greedily increase the number of H-packets accepted in each time unit
and then greedily increase the number of L-packets accepted in each time unit,
given the set of accepted H-packets. More precisely, we proceed in two rounds.

In the first round, we iterate over t′ := 0, 1, . . . , T and set Yt′ := 1 if
∑t′−1

t=0 H ′t >∑t′−1
t=0 Yt, and Yt′ := 0 otherwise; then we set H ′t′ := min(Ht′ , B +

∑t′

t=0 Yt −∑t′−1
t=0 H ′t). Before the second round, we set Y0 := 0 and Yt := 1, for all 1 ≤ t ≤ T .

Now we iterate over t′ := 0, 1, . . . , T again. For time t′, we update Yt′ so that

Yt′ := 1 if
∑t′−1

t=0 (H ′t + L′t) >
∑t′−1

t=0 Yt, and Yt′ := 0 otherwise. Next we choose

L′t′ maximally so that L′t′ ≤ Lt′ and
∑t′′

t=0(H
′
t + L′t) ≤ B +

∑t′′

t=0 Yt, for all
t′ ≤ t′′ ≤ T . OPTC(S) accepts the first H ′t H-packets and the first L′t L-packets
in each subsequence Ut, and rejects all other packets. It transmits a packet at
time t if and only if Yt = 1. The proof of the following lemma is omitted due to
lack of space.

Lemma 1. OPTC(S) is an optimal solution for the request sequence S.

Next we describe a preemptive online algorithm with advice, A, that computes
OPTC(S). We divide the request sequence S into q := �n/B� subsequences
S1, S2, . . . , Sq, which we call phases. For 1 ≤ i < q, |Si| = B. Sq contains the re-
maining n−(q−1)B requests. For each phase Si, the advice given to the algorithm
is the number, ai, of L-packets OPTC(S) accepts from Si. Since |Si| ≤ B, this
requires �log(B+1)� bits of advice for each Si, and thus �n/B��log(B + 1)� bits
in total. The online algorithm now processes the packets in S one by one. While
processing the requests in Si, it keeps a count, ci, of the number of L-packets
in Si that it has accepted and not preempted. Immediately before processing
the first request in Si, we set ci := 0. For each L-packet in Si, if the buffer is
not full and ci < ai, we accept the packet and increase ci by one; otherwise we
reject the packet. For each H-packet in Si, if the buffer is not full, we accept
the packet. If the buffer is full but contains an L-packet, we preempt the most
recently queued L-packet, decrease ci by one, and accept the H-packet. If the
buffer is full and contains only H-packets, we reject the packet. Let A(S) be the
solution this algorithm produces on input S. Together with Lemma 1, the next
lemma implies that A(S) is an optimal solution.

Lemma 2. A(S) = OPTC(S).

Proof sketch. We use induction on i to prove: (i) The set of packets from Si

accepted and not preempted by A(S) by the end of phase Si is the set of packets
OPTC(S) accepts (and does not preempt) from Si. (ii) While processing the
packets in Si, A(S) does not preempt any packets from S1S2 . . . Si−1. These two
claims together imply that A(S) and OPTC(S) transmit the same set of packets.

For i = 0, the two claims hold vacuously, so assume i > 0 and the two claims
hold for phases S0, S1, . . . , Si−1. Then the buffer states of A(S) and OPTC(S) at
the beginning of phase Si are identical. First we prove that A(S) and OPTC(S)
accept the same H-packets from Si. Since OPTC(S) and A(S) accept H-packets

On the Advice Complexity of Buffer Management 141

greedily, this follows if no L-packet accepted by A(S) forces it to reject an
H-packet accepted by OPTC(S). Any L-packet accepted but not yet transmit-
ted by A(S) can be preempted if necessary to make room for an H-packet and
thus does not force the rejection of an H-packet. After transmitting the first
L-packet pj from Si and before processing the last packet from Si, the buffer
contains a subset of the packets pj+1, pj+2, . . . , piB and thus is not full. Thus,
after transmitting pj , no H-packet from Si is rejected by A(S).

Next we show that A(S) does not preempt any packets from S0, S1, . . . , Si−1
while processing the packets in Si. Let pj once again be the first L-packet from
Si transmitted by A(S). We have just proved that A(S) and OPTC(S) accept
the same set of H-packets from Si. We also argued that no H-packet pk in Si that
succeeds pj forces any preemption because A(S)’s buffer cannot be full when pk
arrives. If pk precedes pj , it can force a preemption only if A(S)’s buffer is full
when pk arrives. Since the buffer states of A(S) and OPTC(S) are identical at
the beginning of the ith phase and OPTC(S) can accept pk without preempting
any packet, A(S)’s buffer must contain an L-packet ph from Si that is not in
OPTC(S)’s buffer. Thus, A(S) preempts ph ∈ Si to make room for pk.

It remains to prove that, by the end of phase Si, the set of L-packets from Si

accepted but not preempted byA(S) is the same as the set of L-packets OPTC(S)
accepts from Si. Since none of these packets are preempted in subsequent phases,
these are exactly the L-packets from Si transmitted by A(S). We prove here that
A(S) and OPTC(S) transmit the same number of L-packets from Si. This is the
first part of the proof. The second part of the proof uses this fact to prove that
A(S) and OPTC(S) transmit the same set of L-packets from Si. The proof of
this second part is omitted due to lack of space.
A(S) cannot transmit more L-packets than OPTC(S) because it bounds the

number of L-packets from Si it has accepted and not preempted by ai. Next we
prove that, after processing each packet pj in Si, the number of L-packets from
Si that A(S) has accepted and not preempted so far is no less than the number
of L-packets OPTC(S) has accepted up to that point. We use induction on the
position of pj in Si. Before processing the first packet in Si, the claim holds. If
A(S) accepts pj without preempting any other packet or if it rejects pj because
ci = ai, the invariant is maintained. If pj is an H-packet and A(S) preempts an
L-packet in favour of pj or pj is an L-packet and A(S) rejects it, then A(S)’s
buffer is full when pj arrives. SinceA(S) had accepted and not preempted at least
as many packets as OPTC(S) after processing each of the packets p1, p2, . . . , pj−1,
A(S) also transmitted at least as many packets as OPTC(S) by the time each of
these packets was processed. The number of packets any algorithm can accept up
to a certain point is B plus the number of packets it has transmitted so far. Since
A(S)’s buffer is full after processing pj, A(S) has accepted and not preempted
exactly this number of packets so far, while OPTC(S) cannot have accepted more
packets by this time. Since we already proved that A(S) and OPTC(S) accept
the same set of H-packets, this shows that the number of L-packets accepted
and not preempted by A(S) by the time pj has been processed is at least the
number of L-packets accepted by OPTC(S) by this time. ��

142 R. Dorrigiv, M. He, and N. Zeh

3 Optimal Nonpreemptive Online Buffer Management

In this section, we prove the somewhat surprising result that, up to constant
factors, the same number of bits of advice required for an optimal preemptive
online buffer management algorithm suffice for a nonpreemptive online buffer
management algorithm to achieve optimality. Our lower bound for nonpreemp-
tive online buffer management is slightly stronger than for the preemptive case.

Theorem 3. There exists an optimal nonpreemptive online buffer management
algorithm that achieves optimality using �n/B�(3�logB� + 4) bits of advice.
Moreover, any optimal nonpreemptive online buffer management algorithm re-
quires at least (n log(B + 1))/(2B) bits of advice.

The lower bound proof is similar to the lower bound proof for the preemptive
case and is thus omitted. In the remainder of this subsection, we prove the
upper bound. We describe an online algorithm A that accepts the same number
of H-packets and L-packets as the canonical optimal solution OPTC(S) from
Section 2, even though the sets of accepted packets may differ.
A accepts H-packets greedily, that is, it accepts each H-packet when it arrives

unless the buffer is full. This does not require any advice. To define the advice
that determines the behaviour of A for L-packets, we divide the request sequence
S into q := �n/B� phases S1, S2, . . . , Sq as in Section 2. For 1 ≤ i ≤ q, let si
and ei be the time units during which the first and last packets in Si arrive,
respectively, and let fi be the number of packets in OPTC(S)’s buffer just before
the arrival of the first packet in Si. Observe that f0 = 0. We distinguish between
three different cases depending on the behaviour of OPTC(S) in phase Si.

– If OPTC(S)’s buffer is never full during phase Si, we call Si a type-I phase. In
this case, A’s advice consists of the number, ai, of L-packets in Si OPTC(S)
accepts. A(S) accepts the first ai L-packets in Si it can accept and rejects
the remaining L-packets in Si.

– If OPTC(S)’s buffer is full at least once during phase Si and all packets in Si

arrive over at most fi time units (i.e., ei − si + 1 ≤ fi), we call Si a type-II
phase. In this case, A’s advice consists of the number, ri, of L-packets in
Si OPTC(S) rejects. A(S) rejects the first ri packets in Si and accepts the
remaining L-packets in Si. (We prove below that it can accept these packets.)

– If OPTC(S)’s buffer is full at least once during phase Si and the packets
in Si arrive over more than fi time units (i.e., ei − si + 1 > fi), we call Si

a type-III phase. Let ti be the last time unit in Si when OPTC(S)’s buffer
is full. We divide Si into two subphases: S1

i contains the packets in Si that
arrive between time units si and ti, inclusive, and S2

i contains the remaining
packets in Si. A’s advice consists of ti, the number, r′i, of L-packets in S1

i

rejected by OPTC(S), and the number, a′i, of L-packets in S2
i accepted by

OPTC(S). A(S) then treats S1
i as a type-II phase and S2

i as a type-I phase.

To encode this advice, we use one bit per phase to indicate whether it is a type-
III phase. If it is, then the next 3(�logB� + 1) bits represent xi, r′i and a′i. If

On the Advice Complexity of Buffer Management 143

not, we use another bit to indicate whether this phase is of type I or II and
accordingly encode ai or ri using �logB� + 1 bits. In the worst case, we use
1 + 3(�logB� + 1) = 3�logB� + 4 bits per phase and �n/B�(3�logB� + 4) bits
for the whole sequence. It remains to show that A(S) is an optimal solution.

Lemma 3. A(S) is an optimal solution.

Proof. It suffices to prove the following three claims for every phase Si: (i) The
buffers of A(S) and OPTC(S) contain the same number of packets at the end of
phase Si. (ii) A(S) and OPTC(S) accept the same number of H-packets in Si.
(iii) A(S) and OPTC(S) accept the same number of L-packets in Si.

For i = 0, these claims hold vacuously, so assume i > 0 and (i)–(iii) hold
for phases S0, S1, . . . , Si−1. By the induction hypothesis, A(S)’s and OPTC(S)’s
buffers both contain fi packets at the beginning of phase Si. We prove that
(i)–(iii) hold for phase Si by considering the three possible types of Si.

If Si is of type I, OPTC(S) does not reject any H-packet in Si because
OPTC(S)’s buffer is never full during Si. Moreover, the L-packets in Si ac-
cepted by OPTC(S) are exactly the first ai L-packets in Si. To see this, observe
that OPTC(S) rejects an L-packet pj in Si and accepts a subsequent L-packet
pk in Si only if its buffer is full when pj arrives or accepting pj forces OPTC(S)
to reject an H-packet pl in Si. (If accepting pj forces the rejection of an H-packet
after phase Si, so does accepting pk. Since OPTC(S) never accepts an L-packet
that forces the rejection of an H-packet, accepting pj can only force the rejection
of an H-packet in Si.) Then, however, OPTC(S)’s buffer must be full either when
pj arrives or when pl arrives, a contradiction because Si is of type I. Now, since
A(S) and OPTC(S) have the same number of packets in their buffers at the be-
ginning of Si, A(S) can also accept the first ai L-packets and all the H-packets
in this phase without filling its buffer. Therefore, A(S) and OPTC(S) accept the
same set of packets in Si and claims (i)–(iii) hold.

Next consider the case when Si is of type II. Since all packets of Si arrive over
at most fi time units and the buffers of A(S) and OPTC(S) contain fi packets at
the beginning of Si, A(S)’s and OPTC(S)’s buffers are never empty during this
phase. Thus, A(S) and OPTC(S) transmit the same number of packets during
phase Si, and claim (i) follows if we can prove claims (ii) and (iii).

First (ii). We observe that, at any time during Si, the number of L-packets
from Si that A(S) has accepted so far cannot be larger than the number of
L-packets from Si that OPTC(S) has accepted so far. This is true because A(S)
rejects the first ri L-packets it receives during Si, while OPTC(S) rejects a total
of ri L-packets from Si. Since A(S)’s buffer and OPTC(S)’s buffer contain the
same number of packets at the beginning of Si and A(S) accepts H-packets
greedily, this implies that, at any time during Si, the number of H-packets from
Si accepted by A(S) so far is no less than the number of such packets accepted by
OPTC(S) so far. Conversely, OPTC(S) accepts H-packets greedily and accepts
an L-packet only if this does not prevent it from accepting an H-packet it could
otherwise have accepted. Thus, the number of H-packets from Si accepted by
A(S) up to some point during Si is no greater than the number of such packets
accepted by OPTC(S) up to this point.

144 R. Dorrigiv, M. He, and N. Zeh

To show that A(S) and OPTC(S) accept the same number of L-packets,
we prove that A(S) rejects only the first ri L-packets in Si. Assume the con-
trary. Among the L-packets after the first ri L-packets in Si, let pj be the first
L-packet rejected by A(S). This means that the buffer of A(S) is full when pj
arrives. As shown in the previous paragraph, we know that up to this point, A(S)
and OPTC(S) have accepted the same number of H-packets from Si, and A(S)
has accepted no more L-packets from Si than OPTC(S) has. This implies that
OPTC(S)’s buffer is also full when pj arrives, and OPTC(S) has to reject pj .
Since both algorithms have fi packets in their buffers at the beginning of Si,
they transmit the same number of packets up to the arrival of pj, and both
algorithms’ buffers are full when pj arrives, they must both have rejected the
same number of L-packets from Si before the arrival of pj . Since A(S) rejects ri
L-packets from Si before pj, so does OPTC(S), and pj is the (ri +1)st L-packet
from Si rejected by OPTC(S), which is a contradiction.

Finally, consider the case when Si is a type-III phase. Since there are at most
B packets in Si and OPTC(S)’s buffer is full at time ti, the buffer can never run
empty during subphase S1

i . Thus, OPTC(S) transmits a packet in each time unit
between si and ti, and OPTC(S)’s buffer contains at most fi+|S1

i |−(ti−si+1) ≤
fi +B − (ti − si +1) packets at the end of time unit ti. Since OPTC(S)’s buffer
is full at the end of time unit ti, this implies that ti − si + 1 ≤ fi. Thus, the
argument for type-II phases shows that A(S) and OPTC(S) accept the same
number of packets from S1

i , and the argument for type-I phases shows that they
accept the same number of packets from S2

i . This completes the proof. ��

4 Advice Does Not Help Ratio Partition

The final question we investigate is whether using advice to adjust the ratio in
the Ratio Partition algorithm helps. More precisely, we consider a class of
algorithms Γ (τ). For a fixed parameter τ , Γ (τ) accepts each H-packet whenever
possible and marks the τ earliest unmarked L-packets in the buffer. It accepts
an L-packet only if after accepting it, the number of unmarked L-packets in
the buffer is at most τ times the number of empty slots in the buffer. Ratio

Partition is the same as Γ (α
α−1). Let Best-Threshold be an algorithm that

uses advice to choose the best possible threshold τ for the given input and then
runs Γ (τ). The following result shows that this use of advice is ineffective, that
is, that Best-Threshold is no better than Ratio Partition.

Theorem 4. The competitive ratio of Best-Threshold is at least 2− 1/α.

To prove Theorem 4, we ask the reader to verify that Γ (τ), for any τ ∈ [0,∞),
achieves a competitive ratio of exactly 2−1/α on the following input S. S consists
of α subsequences, each spanning B + 1 time units. In the first subsequence,
B L-packets arrive in time unit 0, followed immediately by B H-packets in the
same time unit. No further packets arrive in the remaining B time units of this
subsequence. For each of the remaining α− 1 subsequences, B L-packets arrive
in time unit 0, and no further packets arrive in the remaining B time units. The
key to this proof is that any threshold that is good for the first subsequence of

On the Advice Complexity of Buffer Management 145

S is bad for the remaining α subsequences and vice versa. We conjecture that
an adaptive threshold algorithm, which chooses different thresholds for different
portions of the input, can achieve a better competitive ratio.

Acknowledgements. We would like to thank Marc Renault and two
anonymous reviewers for noticing an error in the original lower bound proof for
nonpreemptive online buffer management and for suggesting a way to correct it.

References
1. Aiello, W., Mansour, Y., Rajagopolan, S., Rosen, A.: Competitive queue policies

for differentiated services. In: INFOCOM, pp. 414–420 (2000)
2. Albers, S.: On the influence of lookahead in competitive paging algorithms. Algo-

rithmica 18(3), 283–305 (1997)
3. Albers, S.: A competitive analysis of the list update problem with lookahead. The-

oretical Computer Science 197(1-2), 95–109 (1998)
4. Andelman, N., Mansour, Y., Zhu, A.: Competitive queueing policies for QoS

switches. In: SODA, pp. 761–770 (2003)
5. Azar, Y.: Online Packet Switching. In: Persiano, G., Solis-Oba, R. (eds.) WAOA

2004. LNCS, vol. 3351, pp. 1–5. Springer, Heidelberg (2005)
6. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the Advice Com-

plexity of the k-Server Problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)

7. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
Advice Complexity of Online Problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

8. Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: On the Advice Com-
plexity of the Knapsack Problem. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS,
vol. 7256, pp. 61–72. Springer, Heidelberg (2012)

9. Breslauer, D.: On competitive on-line paging with lookahead. Theoretical Com-
puter Science 209(1-2), 365–375 (1998)

10. Dobrev, S., Královic, R., Pardubská, D.: Measuring the problem-relevant informa-
tion in input. ITA 43(3), 585–613 (2009)

11. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online Computation with Advice.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP2009, Part I. LNCS, vol. 5555, pp. 427–438. Springer, Heidelberg (2009)

12. Epstein, L., van Stee, R.: Buffer management problems. ACM SIGACTNews 35(3),
58–66 (2004)

13. Goldwasser, M.H.: A survey of buffer management policies for packet switches.
SIGACT News 41(1), 100–128 (2010)

14. Grove, E.F.: Online bin packing with lookahead. In: SODA, pp. 430–436 (1995)
15. Kao, M., Tate, S.R.: Online matching with blocked input. Information Processing

Letters 38(3), 113–116 (1991)
16. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,

M.: Buffer overflow management in QoS switches. In: STOC, pp. 520–529 (2001)
17. Mansour, Y., Patt-Shamir, B., Lapid, O.: Optimal smoothing schedules for real-

time streams (extended abstract). In: PODC, pp. 21–29 (2000)
18. Renault, M.P., Rosén, A.: On Online Algorithms with Advice for the k-Server

Problem. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp.
198–210. Springer, Heidelberg (2012)

19. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

On the Complexity of the Maximum Common

Subgraph Problem for Partial k-Trees
of Bounded Degree

Tatsuya Akutsu� and Takeyuki Tamura��

Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Gokasho, Uji, Kyoto 611-0011, Japan

{takutsu,tamura}@kuicr.kyoto-u.ac.jp

Abstract. This paper considers two versions of the maximum common
subgraph problem for vertex-labeled graphs: the maximum common con-
nected edge subgraph problem and the maximum common connected in-
duced subgraph problem. The former is to find a connected graph with
the maximum number of edges that is isomorphic to a subgraph of each
of the two input graphs. The latter is to find a common connected in-
duced subgraph with the maximum number of vertices. This paper shows
that both problems are NP-hard even for labeled partial k-trees of
bounded degree. It also presents some exponential-time algorithms for
both problems.

Keywords: maximum common subgraph, partial k-tree, treewidth,
NP-hard.

1 Introduction

Graph isomorphism and subgraph isomorphism are fundamental concepts in
computer science and thus have been extensively studied. As a related problem,
the maximum common subgraph problem is also important because it has ap-
plications in pattern recognition [6,19] and chemistry [17]. Although there exist
several variants, this paper considers the maximum common connected edge sub-
graph problem (MCCES) and the maximum common connected induced subgraph
problem (MCCIS) because these two variants have been well studied.

Due to its importance in pattern recognition and chemistry, many practical
algorithms have been developed for various variants of the maximum common
subgraph problem [6,17,19]. Some exponential-time algorithms have also been
developed for the maximum common induced subgraph problem (MCIS) [1,11].
Kann studied the approximability of the maximum common subgraph problem
and related problems [13].

Polynomially solvable subclasses of graphs have also been studied for MC-
CES and MCCIS. It is well-known that if input graphs are trees, both MCCES

� Partially supported by JSPS, Japan: Grant-in-Aid 22650045.
�� Partially supported by JSPS, Japan: Grant-in-Aid 23700017.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 146–155, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Maximum Common Subgraph for Partial k-Trees 147

and MCCIS can be solved in polynomial time using maximum weight bipartite
matching [8].1 Akutsu showed that MCCES can be solved in polynomial time
if input graphs are almost trees of bounded degree whereas it remains NP-hard
for almost trees of unbounded degree [2], where a graph is called almost tree
if it is connected and the number of edges in each biconnected component is
bounded by the number of vertices plus some constant. Yamaguchi et al. devel-
oped a polynomial-time algorithm for MCCIS and MCCES between a degree
bounded partial k-tree and a graph with a polynomially bounded number of
spanning trees, where k is a constant [21]. However, the latter condition seems
too strong. Schietgat et al. developed a polynomial-time algorithm for outerpla-
nar graphs under the block-and-bridge preserving subgraph isomorphism [18].
However, they modified the definition of the problem by this restriction. Al-
though it was announced that MCCIS can be solved in polynomial time if input
graphs are partial k-trees and the common subgraph must be k-connected (for
example, see [5]), the restriction that subgraphs are k-connected is too strict
from a practical viewpoint. On the subgraph isomorphism problem, polynomial-
time algorithms have been developed for biconnected outerplanar graphs [14,20]
and for partial k-trees with some constraints as well as their extensions [9,16].
We recently showed that MCCES for outerplanar graphs of bounded degree can
be solved in polynomial time [3].

Since it is known that subgraph isomorphism problems can be solved in poly-
nomial time for partial k-trees of bounded degree, it is reasonable to try to de-
velop polynomial-time algorithms for MCCES and MCCIS for partial k-trees of
bounded degree. Surprisingly, despite its practical importance,2 the complexity
of MCCES or MCCIS for partial k-trees of bounded degree has not been known.
In this paper, we clarify the complexity of both problems: we show that both
MCCES and MCCIS are NP-hard for vertex-labeled partial k-trees of bounded
degree. This result implies under the assumption of P �=NP that we cannot de-
velop fixed-parameter algorithms for MCCES or MCCIS when the treewidth is
used as the parameter. It also suggests that the maximum common subgraph
problems are harder than the subgraph isomorphism problems. As positive re-
sults, we present exponential-time algorithms for MCCES and MCCIS for partial
k-trees of bounded degree. In particular, we show that MCCIS can be solved in
O((2−ε)min(n1,n2)poly(n1, n2)) time for partial k-trees of bounded degree, where
ε is a constant depending on the maximum degree (and ε = 0 for the case of
MCIS), and n1 and n2 denote the number of vertices of the two input graphs.
It is much better (when c is not small) than an existing algorithm for MCIS
[1] that works in O(3max(n1,n2)/3(max(n1, n2) + 1)c) time where c is the size of
smaller minimum vertex cover between the two input graphs. Therefore, this
result suggests that the maximum common subgraph problems may be solved
much faster for partial k-trees of bounded degree than for general graphs.

1 For trees, MCCES and MCCIS become the same problem.
2 The maximum degree of almost all chemical compounds is bounded by a constant
(e.g., 8). It is reported that most chemical compounds have treewidth at most 3
[10,21].

148 T. Akutsu and T. Tamura

2 Preliminaries

If a graph Gc(Vc, Ec) is isomorphic to a subgraph of G1 and a subgraph of G2,
we call Gc a common subgraph of G1 and G2. In addition, if a graph Gc(Vc, Ec)
is isomorphic to an induced subgraph of G1 and an induced subgraph of G2, we
call Gc a common induced subgraph of G1 and G2.

In this paper, we consider the following problems.

Maximum Common Connected Edge Subgraph Problem (MCCES).
Given two undirected graphs G1 and G2, find a common connected subgraph Gc

with the maximum number of edges.

Maximum Common Connected Induced Subgraph Problem (MCCIS).
Given two undirected graphs G1 and G2, find a common connected induced
subgraph Gc with the maximum number of vertices.

In the following, we use MCS to denote the maximum common connected sub-
graph in both MCCES and MCCIS, where the distinction (i.e., for MCCES or
MCCIS) is clear from the context.

Since we mainly consider partial k-trees, or equivalently trees of treewidth k,
we briefly review it (see also Fig. 1). To define treewidth, we need the notion
of tree decomposition [7]. A tree decomposition of a graph G(V,E) is a pair
〈T (VT , ET), (Bt)t∈VT 〉, where T (VT , ET) is a rooted tree and (Bt)t∈VT is a family
of subsets of V such that (see Fig. 1).

– for every v ∈ V , B−1(v) = {t ∈ VT |v ∈ Bt} is nonempty and connected in
T , and

– for every edge {u, v} ∈ E, there exists t ∈ VT such that u, v ∈ Bt.

The width of the decomposition is defined as maxt∈VT (|Bt|−1) and the treewidth
of G is the minimum of the widths among all the tree decompositions of G.
Graphs with treewidth at most k are also known as partial k-trees [7].

G(V,E) T(,)VT ETa
a, b, c

b c

d e

f

g

h

At

Btb, c, g

b, f, g c, e, g
Ct

Ft

b, d, f f, g, h
Dt Et

Fig. 1. Example of tree decomposition with treewidth 2

Maximum Common Subgraph for Partial k-Trees 149

3 Hardness Results

In this section, we show that both MCCES and MCCIS are NP-hard even for
partial k-trees of bounded degree.3 For both MCCES and MCCIS, we use re-
ductions from the maximum clique problem.

These reductions are based on a reduction from the maximum clique problem
to the longest common subsequence problem (LCS) [12] although we consider
the following variant of LCS (Even-Odd-LCS) here: given an integer h and n
strings s1, . . . , sn of length 2m, find subsequences s′1, . . . , s

′
n of these strings such

that s′1 = s′2 = · · · = s′n, |s′i| ≥ h, and each s′i consists of either letters in
odd positions of si or letters in even positions of si, where s′i is called an odd
subsequence in the former case and an even subsequence in the latter case.

Proposition 1. Even-Odd-LCS is NP-hard.

Proof. Let G(V,E) be an instance (i.e., an undirected graph) of the maximum
clique problem, where V = {v1, . . . , vn}.

We construct from this graph n strings s1, . . . , sn of length 2n over
Σ = {a1, . . . , an} ∪ {b1, . . . , bn} as follows (see Fig. 2):

si[2j − 1] =

{
aj , if {vi, vj} ∈ E or j = i,
bj , otherwise,

si[2j] =

{
aj , if j �= i,
bj , otherwise,

where j = 1,n. From the definition of Even-Odd-LCS, each s′i is a subse-
quence of either si[1]si[3] . . . si[2n − 1] (odd subsequence) or si[2]si[4] . . . si[2n]
(even subsequence).

v1

v2

v3

v4

a1 b1 a2 a2 b3 a3 a4 a4s1 =

a1 a1 a2 b2 a3 a3 a4 a4s2 =

b1 a1 a2 a2 a3 b3 a4 a4s3 =

a1 a1 a2 a2 a3 a3 a4 b4s4 =

Fig. 2. Reduction from maximum clique to Even-Odd-LCS

We consider the following correspondence: vi is in a clique ⇐⇒ s′i is a subse-
quence of si[1]si[3] . . . si[2n−1]. Then, we can see that there exists a clique (i.e.,
a complete subgraph) of size h in G(V,E) if and only if there exists a common
subsequence s′ of length h. Since all the constructions can be done in polynomial
time, the proposition holds. ��
3 Although it seems that the same NP-hardness results hold for unlabeled graphs by
using appropriate encoding, we are not yet successful to get proofs.

150 T. Akutsu and T. Tamura

Theorem 1. MCCIS is NP-hard even for vertex-labeled graphs of treewidth at
most 11 and maximum degree 6.

Proof. We simulate the reduction given in the proof of Proposition 1 using
MCCIS.

Let G(V,E) be an instance of the maximum clique problem, where
V = {v1, . . . , vn} and we assume without loss of generality that n is even. We
construct gadgets F0, F1, F2, . . . , Fn, Fn+1 (see Fig. 3). Let A, B, and C be paths
respectively consisting of c1n

4, c2n
3, and c3n

2 vertices of label e.4 In the follow-
ing, X i and viX respectively denote a copy of X and one of the endpoints of
the path of the copy where X ∈ {A,B,C}, and edges in X is are omitted in the
description.

F0 is very simple and is defined as follows.

V (F0) = {v0j | j = 1, . . . , n+ 1} ∪ A0,

E(F0) = {{v0j , v0j+1} | j = 1, . . . , n} ∪ {{v01 , v0A}},
�(v0j) = c for j = 1, . . . , n, �(v0n+1) = e.

F1 is defined as follows.

V (F1) = {v1k,j | k = 1, . . . , 6, j = 1, . . . , n} ∪ {v1k,n+1 | k = 1, 2, 3}
∪A1 ∪B1 ∪ C1,

E(F1) = {{v1k,j , v1k,j+1} | k = 1, . . . , 6, j = 1, . . . , n− 1}
∪ {{v1k,j , v1k+1,j+1} | k = 1, 3, 5, j = 1, . . . , n− 1}
∪ {{v1k+1,j , v

1
k,j+1} | k = 1, 3, 5, j = 1, . . . , n− 1}

∪ {{v11,j, v14,j} | j = 1, . . . , n} ∪ {{v12,j , v13,j} | j = 1, . . . , n}
∪ {{v13,j, v16,j} | j = 1, . . . , n} ∪ {{v14,j , v15,j} | j = 1, . . . , n}
∪ {{v11,1, v1A}, {v12,1, v1A}, {v13,1, v1B}, {v14,1, v1B}}
∪ {{v15,1, v1C}, {v16,1, v1C}, {v11,n+1, v

1
2,n+1}, {v12,n+1, v

1
3,n+1}}

∪ {{v12k−1,n, v1k,n+1}, {v12k,n, v1k,n+1} | k = 1, 2, 3},
�(v1k,j) = c for k = 1, 2, 3, j = 1, . . . , n, �(v14,j) = d for j = 1, . . . , n,

�(v15,j) = a if {v1, vj} ∈ E or j = 1, otherwise b ,

�(v16,j) = a if j �= i, otherwise b , �(v1k,n+1) = e for k = 1, 2, 3.

Each Fi (i = 2, . . . , n) is defined as follows.

V (Fi) = {vik,j | k = 1, . . . , 7, j = 1, . . . , n} ∪ {vik,n+1 | k = 1, . . . , 4}
∪B2i−2 ∪C2i−2 ∪B2i−1 ∪ C2i−1,

E(Fi) = {{vik,j , vik,j+1} | k = 1, . . . , 7, j = 1, . . . , n− 1}
∪ {{vik,j , vik+1,j+1} | k = 1, 4, 6, j = 1, . . . , n− 1}

4 We can use c1 = 1000000, c2 = 10000, c3 = 100 where these are too large estimates.

Maximum Common Subgraph for Partial k-Trees 151

∪ {{vik+1,j , v
i
k,j+1} | k = 1, 4, 6, j = 1, . . . , n− 1}

∪ {{vi1,j, vi5,j} | j = 1, . . . , n} ∪ {{vi2,j , vi4,j} | j = 1, . . . , n}
∪ {{vi4,j, vi7,j} | j = 1, . . . , n} ∪ {{vi5,j , vi6,j} | j = 1, . . . , n}
∪ {{vi1,1, v2i−2B }, {vi2,1, v2i−2B }, {vi3,1, v2i−2C }}
∪ {{vi4,1, v2i−1B }, {vi5,1, v2i−1B }, {vi6,1, v2i−1C }, {vi7,1, v2i−1C }}
∪ {{vi1,n+1, v

i
2,n+1}, {vi2,n+1, v

i
3,n+1}, {vi3,n+1, v

i
4,n+1}}

∪ {{vi1,n, vi1,n+1}, {vi2,n, vi1,n+1}, {vi3,n, vi2,n+1}}
∪ {{vi4,n, vi3,n+1}, {vi5,n, vi3,n+1}, {vi6,n, vi4,n+1}, {vi7,n, vi4,n+1}},

�(vik,j) = c for k = 1, 4, j = 1, . . . , n, �(vi3,j) = a for j = 1, . . . , n,

�(vik,j) = d for k = 2, 5, j = 1, . . . , n,

�(vi6,j) = a if {vi, vj} ∈ E or j = i, otherwise b ,

�(vi7,j) = a if j �= i, otherwise b , �(vik,n+1) = e for k = 1, . . . , 4.

Fn+1 is a subgraph of the above Fi (2 ≤ i ≤ n) induced by vn+1
k,j s (k = 1, 2, 3),

B2n, C2n, vn+1
1,n+1, and vn+1

2,n+1.
We construct G1(V1, E1) by connecting F1, F3, . . . , Fn−1, and Fn+1, and

construct G2(V2, E2) by connecting F0, F2, . . . , Fn−2, and Fn, as in Fig. 3.
Clearly, this construction can be done in polynomial time.

The purpose of this construction is to establish the following correspondence in
the optimal solutions among MCCIS, Even-Odd-LCS, and the maximum clique
problem:

– for i = 1, . . . , n, Fi ⇐⇒ sj [2i− 1]sj [2i] (j = 1, . . . , n) ⇐⇒ vi,
– v11,j , v

1
3,j and v15,j appear in MCS ⇐⇒ s′j is an odd subsequence ⇐⇒ vj is in

the clique,
– v12,j , v14,j and v16,j appear in MCS ⇐⇒ s′j is an even subsequence, ⇐⇒ vj is

not in the clique,
– for i = 2, . . . , n, vi1,j , vi4,j and vi6,j appear in MCS ⇐⇒ s′j is an odd subse-

quence ⇐⇒ vj is in the clique,
– for i = 2, . . . , n, vi2,j , vi5,j and vi7,j appear in MCS ⇐⇒ s′j is an even subse-

quence ⇐⇒ vj is not in the clique,
– all Ais and Bis are included in MCS,
– C1 and C2 are included in MCS ⇐⇒ a1 appears in LCS ⇐⇒ v1 is in the

clique,
– for i = 2, . . . , n, C2i−1 and C2i are included in MCS ⇐⇒ ai appears in LCS
⇐⇒ vi is in the clique.

With the above correspondence in mind, we show that G(V,E) has a clique of
size at least h if and only if the number of vertices in MCS is at least

c1n
4 + nc2n

3 + h(c3n
2 + n) + n2 + 3n+ 1.

Since ‘only if’ part is not difficult to prove, we prove ‘if’ part. Observe that A
must be included in MCS because the size of A is very large. Then, for each

152 T. Akutsu and T. Tamura

j = 1, . . . , n, either v11,j or v12,j must correspond to v0j . Since Bs are very large,
Bs must be included in MCS too. Therefore, since MCS must be an induced
subgraph, either vi1,j or vi2,j (resp. vi4,j or vi5,j , vi6,j or vi7,j) can be included in

MCS for each i, j (except for i = 0, 1, n+ 1). Furthermore, if v11,j (resp. v12,j) is

selected for MCS, vi1,j , v
i
4,j , v

i
6,j (resp. vi2,j , v

i
5,j , v

i
7,j) must be selected for MCS

for all i. That is, in order to match all As and Bs, matching paths from As and
Bs to bottom es are determined uniquely once a path P from A to the leftmost
bottom e in F1 is determined, where P corresponds to choices of even/odd in
the proof of Proposition 1. As a result, matching paths from bottom es to Cs are
also uniquely determined, where some paths may not reach Cs. Then, there exist
c1n

4 pairs of matching vertices in copies of A, c2n
3 pairs of matching vertices in

copies of B, (n + 1)n pairs of matching vertices with label c or d, 2n + 1 pairs
of matching bottom vertices with label e. Therefore, if the number of vertices in
MCS is at least c1n

4 + nc2n
3 + h(c3n

2 + n) + n2 + 3n+ 1, there exist h pairs of
matching paths from bottom es to Cs, which means that there exists a clique of
size at least h in G(V,E).

Finally, we can see that G1 and G2 constructed above have treewidth at most
11 by making each connecting component in consecutive two layers of a gadget
as a bag (Bt). Since the maximum degree of these graphs is bounded by 6, the
theorem holds. ��

A

e

c

c

c

c

c

c

c

c

B

e

d

d

d

d

c

c

c

c

a

a

a

a

e

C

c

c

c

c

e

A

B

e

d

d

d

d

c

c

c

c

C

e

b

a

a

a

a

a

b

a

B

e

d

d

d

d

c

c

c

c

a

a

a

a

e

C B

e

d

d

d

d

c

c

c

c

C

e

a

a

b

a

b

a

a

a

B

e

d

d

d

d

c

c

c

c

a

a

a

a

e

C B

e

d

d

d

d

c

c

c

c

C

e

a

b

a

a

a

a

a

a

B

e

d

d

d

d

c

c

c

c

a

a

a

a

e

C B

e

d

d

d

d

c

c

c

c

C

e

a

a

a

b

a

a

a

a

F0 F2 F4

F1 F5F3

Fig. 3. Reduction from maximum clique (shown in Fig. 2) to MCCIS. Bold lines
correspond to MCS.

Maximum Common Subgraph for Partial k-Trees 153

We can also prove the following, where the proof is omitted here.

Theorem 2. MCCES is NP-hard even for vertex-labeled graphs of treewidth at
most 11 and maximum degree 5.

4 Exponential-Time Algorithms

In this section, we present several exponential-time algorithms for MCCIS and
MCCES. Although the following result is almost trivial and may be a folklore, it
has a better worst case time complexity (measured by the size of the two input
graphs) than an existing one (for MCIS) [1].

Proposition 2. Both MCCIS and MCIS can be solved in

2n1+n2+
√

O(min(n1,n2) log min(n1,n2)) time for general graphs, and in
O(2n1+n2poly(n1, n2)) time for graphs of bounded degree.

Proof. It is known that isomorphism of graphs with n vertices can be tested in

2
√

O(n logn) time [4,22]. Since an induced subgraph is uniquely determined from
a subset of vertices, we can solve both MCCIS and MCIS by examining all com-
binations of 2n1 induced subgraphs from G1 and 2n2 induced subgraphs from G2.
For graphs of bounded degree, we can employ a polynomial-time isomorphism
algorithm for graphs of bounded degree [15]. ��

It is known that the induced subgraph isomorphism problem can be solved in
polynomial time if both treewidth and degree are bounded by a constant [9,16].
Therefore, we can solve MCCIS by examining all 2n1 induced subgraphs of G1

or all 2n2 induced subgraphs of G2.

Proposition 3. MCCIS can be solved in O(2min(n1,n2)poly(n1, n2)) time for
graphs of bounded degree and bounded treewidth.

We can slightly improve this result. The basic idea is that each vertex v has at
most d neighbors and thus we need not consider the case where d neighbors are
not selected in MCS but v is selected in MCS. Then, it is enough to examine
2d+1 − 1 assignments instead of 2d+1 assignments. Repeated application of this
procedure leads to an o(2min(n1,n2)poly(n1, n2)) time algorithm as shown below.

Theorem 3. For graphs of bounded degree d and bounded treewidth, MCCIS
can be solved in O((2d+1− 1)n/(d

2+1) ·2n(1−(d+1)/(d2+1))poly(n1, n2)) time where
n = min(n1, n2).

Proof. As mentioned above, if we choose a vertex v (we call it as a star-center)
and its neighboring vertices, we only need to examine 2d+1 − 1 assignments. In
order to repeat this procedure, some special care is needed because the next
star-center should not be adjacent to those neighbors. That is, the next star-
center should be chosen from the vertices that are not neighbors of neighbors of
v. Then, the number h of possible star-centers is given by

h ≥ � n

d(d− 1) + d + 1
� = � n

d2 + 1
�.

154 T. Akutsu and T. Tamura

Since we will discuss the order of the time complexity, we assume without loss
of generality that n

d2+1 is an integer.
Let vi1 , vi2 , . . . , vih be the star-centers selected in this order. Let dj be the

number of neighbors of vij . Then, the number of assignments to be examined is
bounded by(∏

(2di+1 − 1)
)
· 2n−

∑
(di+1) ≤ (2d+1 − 1)h · 2n−h(d+1)

≤ (2d+1 − 1)n/(d
2+1) · 2n(1−(d+1)/(d2+1)).

��

We can see that the above number is O((2 − ε)npoly(n1, n2)) for some ε > 0 by
taking logarithm (with base 2) of (2d+1 − 1)h · 2n−h(d+1) as follows:

log((2d+1 − 1)h · 2n−h(d+1)) = n+ h
[
log(2d+1 − 1)− (d + 1)

]
≤ n

[
1− 1

d2 + 1
· (d + 1− log(2d+1 − 1))

]
< n.

For example, the complexity is O(1.9872npoly(n1, n2)) for d = 3.
For MCCES, we only have the following results as in Propositions 2 and 3.

Proposition 4. MCCES can be solved in O(2|E1|+|E2|poly(n1, n2)) time for
graphs of bounded degree, and in O(2min(|E1|,|E2|)poly(n1, n2)) time for graphs
of bounded degree and bounded treewidth.

5 Concluding Remarks

In this paper, we have shown that both the maximum common connected edge
subgraph problem and the maximum common connected induced subgraph prob-
lem are NP-hard even for partial k-trees of bounded degree where k = 11. On the
other hand, it is known that the former problem is solved in polynomial time
for outerplanar graphs of bounded degree [3]. Since outerplanar graphs have
treewidth 2 and most chemical compounds have treewidth at most 3 [10,21],
it remains as an interesting open problem to decide whether the problems are
NP-hard even for k = 3. It is also interesting to study whether the problems are
NP-hard for unlabeled partial k-trees of bounded degree.

Although we have presented several exponential-time algorithms, it seems
that there are many rooms for improvement. Therefore, faster exponential-time
algorithms should be developed.

References

1. Abu-Khzam, F.N., Samatova, N.F., Rizk, M.A., Langston, M.A.: The maximum
common subgraph problem: faster solutions via vertex cover. In: Proc. 2007
IEEE/ACS Int. Conf. Computer Systems and Applications, pp. 367–373. IEEE
(2007)

Maximum Common Subgraph for Partial k-Trees 155

2. Akutsu, T.: A polynomial time algorithm for finding a largest common subgraph
of almost trees of bounded degree. IEICE Trans. Fundamentals E76-A, 1488–1493
(1993)

3. Akutsu, T., Tamura, T.: A Polynomial-Time Algorithm for Computing the Max-
imum Common Subgraph of Outerplanar Graphs of Bounded Degree. In: Rovan,
B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 76–87.
Springer, Heidelberg (2012)

4. Babai, L.: Luks. E. M.: Canonical labeling of graphs. In: Proc. 15th ACM Symp.
Theory of Computing, pp. 171–183. ACM Press (1983)

5. Bachl, S., Brandenburg, F.-J., Gmach, D.: Computing and drawing isomorphic
subgraphs. J. Graph Algorithms and Applications 8, 215–238 (2004)

6. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching
in pattern recognition. Int. J. Pattern Recognition and Artificial Intelligence 18,
265–298 (2004)

7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
8. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York

(1979)
9. Hajiaghayi, M., Nishimura, N.: Subgraph isomorphism, log-bounded fragmentation

and graphs of (locally) bounded treewidth. J. Comput. Syst. Sci. 73, 755–768 (2007)
10. Horváth, T., Ramon, J.: Efficient frequent connected subgraph mining in graphs

of bounded tree-width. Theoret. Comput. Sci. 411, 2784–2797 (2010)
11. Huang, X., Lai, J., Jennings, S.F.: Maximum common subgraph: some upper bound

and lower bound results. BMC Bioinformatics 7(suppl. 4), S-4 (2006)
12. Jiang, T., Li, M.: On the approximation of shortest common supersequences and

longest common subsequences. SIAM J. Comput. 24, 1122–1139 (1995)
13. Kann, V.: On the Approximability of the Maximum Common Subgraph Prob-

lem. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 375–388.
Springer, Heidelberg (1992)

14. Lingas, A.: Subgraph isomorphism for biconnected outerplanar graphs in cubic
time. Theoret. Comput. Sci. 63, 295–302 (1989)

15. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci. 25, 42–65 (1982)

16. Matoušek, J., Thomas, R.: On the complexity of finding iso- and other morphisms
for partial k-trees. Discrete Math. 108, 343–364 (1992)

17. Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms
for the matching of chemical structures. J. Computer-Aided Molecular Design 16,
521–533 (2002)

18. Schietgat, L., Ramon, J., Bruynooghe, M.: A polynomial-time metric for outerpla-
nar graphs. In: Proc. Workshop on Mining and Learning with Graphs (2007)

19. Shearer, K., Bunke, H., Venkatesh, S.: Video indexing and similarity retrieval by
largest common subgraph detection using decision trees. Pattern Recognition 34,
1075–1091 (2001)

20. Syslo, M.M.: The subgraph isomorphism problem for outerplanar graphs. Theoret.
Comput. Sci. 17, 91–97 (1982)

21. Yamaguchi, A., Aoki, K.F., Mamitsuka, H.: Finding the maximum common sub-
graph of a partial k-tree and a graph with a polynomially bounded number of
spanning trees. Inf. Proc. Lett. 92, 57–63 (2004)

22. Zemlyachenko, V.M., Kornienko, N.M., Tyshkevich, R.I.: Graph isomorphism prob-
lem. J. Soviet Math. 29, 1426–1481 (1985)

Speeding Up Shortest Path Algorithms

Andrej Brodnik1,2 and Marko Grgurovič1

1 University of Primorska, Department of Information Science and Technology,
Slovenia

andrej.brodnik@upr.si, marko.grgurovic@student.upr.si
2 University of Ljubljana, Faculty of Computer and Information Science, Slovenia

Abstract. Given an arbitrary, non-negatively weighted, directed graph
G = (V,E) we present an algorithm that computes all pairs shortest
paths in time O(m∗n + m lg n + nTψ(m

∗, n)), where m∗ is the number
of different edges contained in shortest paths and Tψ(m

∗, n) is a run-
ning time of an algorithm to solve a single-source shortest path problem
(SSSP). This is a substantial improvement over a trivial n times appli-
cation of ψ that runs in O(nTψ(m,n)). In our algorithm we use ψ as a
black box and hence any improvement on ψ results also in improvement
of our algorithm.

Furthermore, a combination of our method, Johnson’s reweighting
technique and topological sorting results in an O(m∗n+m lgn) all-pairs
shortest path algorithm for arbitrarily-weighted directed acyclic graphs.

In addition, we also point out a connection between the complexity
of a certain sorting problem defined on shortest paths and SSSP.

Keywords: all pairs shortest path, single source shortest path.

1 Introduction

Let G = (V,E) denote a directed graph where E is the set of edges and V is the
set of vertices of the graph and let �(·) be a function mapping each edge to its
length. Without loss of generality, we assumeG is strongly connected. To simplify
notation, we define m = |E| and n = |V |. Furthermore, we define d(u, v) for two
vertices u, v ∈ V as the length of the shortest path from u to v. A classic problem
in algorithmic graph theory is to find shortest paths. Two of the most common
variants of the problem are the single-source shortest path (SSSP) problem and
the all-pairs shortest path problem (APSP). In the SSSP variant, we are asked
to find the path with the least total length from a fixed vertex s ∈ V to every
other vertex in the graph. Similarly, the APSP problem asks for the shortest
path between every pair of vertices u, v ∈ V . A common simplification of the
problem constrains the edge length function to be non-negative, i.e. � : E → R+,
which we assume throughout the rest of the paper, except where explicitly stated
otherwise. Additionally, we define ∀(u, v) /∈ E : �(u, v) =∞.

It is obvious that the APSP problem can be solved by n calls to an SSSP algo-
rithm. Let us denote the SSSP algorithm as ψ. We can quantify the asymptotic
time bound of such an APSP algorithm as O(nTψ(m,n)) and the asymptotic

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 156–165, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Speeding Up Shortest Path Algorithms 157

space bound as O(Sψ(m,n)), where Tψ(m,n) is the time required by algorithm
ψ and Sψ(m,n) is the space requirement of the same algorithm. We assume that
the time and space bounds can be written as functions of m and n only, even
though this is not necessarily the case in more “exotic” algorithms that depend
on other parameters of G. Note, that if we are required to store the computed
distance matrix, then we will need at least Θ(n2) additional space. If we account
for this, then the space bound becomes O(Sψ(m,n) + n2).

In this paper we are interested in the following problem: what is the best way
to make use of an SSSP algorithm ψ when solving APSP? There exists some prior
work on a very similar subject in the form of an algorithm named the Hidden
Paths Algorithm [1]. The Hidden Paths Algorithm is essentially a modification of
Dijkstra’s algorithm [2] to make it more efficient when solving APSP. Solving the
APSP problem by repeated calls to Dijkstra’s algorithm requiresO(mn+n2 lg n)
time using Fibonacci heaps [3]. The Hidden Paths Algorithm then reduces the
running time to O(m∗n + n2 lg n). The quantity m∗ represents the number of
edges (u, v) ∈ E such that (u, v) is included in at least one shortest path. In the
Hidden Paths Algorithm this is accomplished by modifying Dijkstra’s algorithm,
so that it essentially runs in parallel from all vertex sources in G, and then reusing
the computations performed by other vertices. The idea is simple: we can delay
the inclusion of an edge (u, v) as a candidate for forming shortest paths until
vertex u has found (u, v) to be the shortest path to v. However, the Hidden
Paths Algorithm is limited to Dijkstra’s algorithm, since it explicitly sorts the
shortest path lists by path lengths, through the use of a priority queue. As a
related algorithm, we also point out that a different measure |UP | related to
the number of so-called uniform paths has also been exploited to yield faster
algorithms [4].

In Sections 3, 4 and 5 we show that there is a method for solving APSP which
produces the shortest path lists of individual vertices in sorted order according
to the path lengths. The interesting part is that it can accomplish this without
the use of priority queues of any form and requires only an SSSP algorithm to be
provided. This avoidance of priority queues permits us to state a time complexity
relationship between a sorted variant of APSP and SSSP. Since it is very difficult
to prove meaningful lower bounds for SSSP, we believe this connection might
prove useful.

As a direct application of our approach, we show that an algorithm with a
similar time bound to the Hidden Paths Algorithm can be obtained. Unlike the
Hidden Paths Algorithm, the resulting method is general in that it works for any
SSSP algorithm, effectively providing a speed-up for arbitrary SSSP algorithms.
The proposed method, given an SSSP algorithm ψ, has an asymptotic worst-case
running time of O(m∗n+m lg n+nTψ(m

∗, n)) and space O(Sψ(m,n)+n2). We
point out that the m∗n term is dominated by the nTψ(m

∗, n) term, but we feel
that stating the complexity in this (redundant) form makes the result clearer to
the reader. For the case of ψ being Dijkstra’s algorithm, this is asymptotically
equivalent to the Hidden Paths Algorithm. However, since the algorithm ψ is
arbitrary, we show that the combination of our method, Johnson’s reweighting

158 A. Brodnik and M. Grgurovič

technique [5] and topological sorting gives an O(m∗n+m lgn) APSP algorithm
for arbitrarily-weighted directed acyclic graphs.

2 Preliminaries

Throughout the paper and without loss of generality, we assume that we are not
interested in paths beginning in v and returning back to v. We have previously
defined the edge length function �(·), which we now extend to the case of paths.
Thus, for a path π, we write �(π) to denote its length, which corresponds to the
sum of the length of its edges.

Similar to the way shortest paths are discovered in Dijkstra’s algorithm, we
rank shortest paths in nondecreasing order of their lengths. Thus, we call a path π
the k-th shortest path if it is at position k in the length-sorted shortest path list.
The list of paths is typically taken to be from a single source to variable target
vertices. In contrast, we store paths from variable sources to a single target.
By reversing the edge directions we obtain the same lists, but it is conceptually
simpler to consider the modified case. Thus, the k-th shortest path of vertex v
actually represents the k-th shortest incoming path into v. We will now prove
a theorem on the structure of shortest paths, which is the cornerstone of the
proposed algorithm.

Definition 1. (Ordered shortest path list Pv)
LetPv = (π1, π2, ..., πn−1) denote the shortest path list for each vertex v ∈ V . Then,
let Pv,k denote the k-th element in the list Pv. The shortest path lists are ordered
according to path lengths, thus we have ∀i, j : 0 < i < j < n⇒ �(πi) ≤ �(πj).

Theorem 1. To determine Pv,k we only need to know every edge {(u, v) ∈ E |
∀u ∈ V } and the first k elements of each list Pu, where (u, v) ∈ E.

Proof. We assume that we have found the first k shortest paths for all neighbors
of v, and are now looking for the k-th shortest path into v, which we denote as
πk. There are two possibilities: either πk is simply an edge (u, v), in which case
we already have the relevant information, or it is the concatenation of some path
π and an edge (u, v). The next step is to show that π is already contained in
Pu,i where i ≤ k.

We will prove this by contradiction. Assume the contrary, that π is either not
included in Pu, or is included at position i > k. This would imply the existence
of some path π′ for which �(π′) ≤ �(π) and which is contained in Pu at position
i ≤ k. Then we could simply take πk to be the concatenation of (u, v) and
π′, thereby obtaining a shorter path than the concatenation of (u, v) and π.
However, this is not yet sufficient for a contradiction. Note that we may obtain
a path that is shorter, but connects vertices that have an even shorter path
between them, i.e. the path is not the shortest path between the source s and
target v.

To show that it does contradict our initial assumption, we point out that Pu

contains k shortest paths, therefore it contains shortest paths from k unique

Speeding Up Shortest Path Algorithms 159

sources. In contrast, the list Pv contains at most k − 1 shortest paths. By a
counting argument we have that there must exist a path π′, stored in Pu with
an index i ≤ k, which originates from a source vertex s that is not contained in
Pv, thereby obtaining a contradiction. ��

3 The Algorithm

Suppose we have an SSSP algorithm ψ and we can call it using ψ(V,E, s) where V
and E correspond to the vertex and edge sets, respectively and s corresponds to
the source vertex. The method we propose works in the fundamental comparison-
addition model and does not assume a specific kind of edge length function,
except the requirement that it is non-negative. However, the algorithm ψ that
is invoked can be arbitrary, so if ψ requires a different model or a specific length
function, then implicitly by using ψ, our algorithm does as well.

First we give a simpler variant of the algorithm, resulting in bounds O(mn +
nTψ(m

∗, n)). We limit our interaction with ψ only to execution and reading its
output. To improve the running time we construct a graphG′ = (V ′, E′) on which
we run ψ. There are two processes involved: the method for solving APSP which
runs onG, and the SSSPalgorithmψwhich runs onG′. Letn′ = |V ′| andm′ = |E′|.
We will maintain m′ ≤ m∗ + n and n′ = n + 1 throughout the execution. There
are n− 1 phases of the main algorithm, each composed of three steps: (1) Prepare
the graph G′; (2) Run ψ on G′; and (3) Interpret the results of ψ.

Although the proposed algorithm effectively works on n−1 new graphs, these
graphs are similar to one another. Thus, we can consider the algorithm to work
only on a single graph G′, with the ability to modify edge lengths and introduce
new edges into G′. Initially we define V ′ = V ∪ {i}, where i is a new vertex
unrelated to the graph G. We create n new edges from i to every vertex v ∈ V ,
i.e. E′ =

⋃
v∈V {(i, v)}. We set the cost of these edges to some arbitrary value in

the beginning.

Definition 2. (Shortest path list for vertex v, Sv) The shortest path list of some
vertex v ∈ V is denoted by Sv. The length of Sv is at most n + 1 and contains
pairs of the form (a, δ) where a ∈ V ∪ {null} and δ ∈ R+. The first element of
Sv is always (v, 0), the last element plays the role of a sentinel and is always
(null,∞). For all inner (between the first and the last element) elements (a, δ),
we require that δ = d(a, v). A list with k ≤ n− 1 inner elements:

Sv =
(
(v, 0), (a1, δ1), (a2, δ2), ..., (ak, δk), (null,∞)

)
.

Next we describe the data structures. Each vertex v ∈ V keeps its shortest path
list Sv, which initially contains only two pairs (v, 0) and (null,∞). For each edge
(u, v) ∈ E, vertex v keeps a pointer p[(u, v)], which points to some element in
the shortest path list Su. Initially, each such pointer p[(u, v)] is set to point to
the first element of Su.

Definition 3. (Viable pair for vertex v) A pair (a, δ) is viable for a vertex v ∈ V
if ∀(a′, δ′) ∈ Sv : a �= a′. Alternatively, if a = null we define the pair as viable.

160 A. Brodnik and M. Grgurovič

Definition 4. (Currently best pair for vertex v, (av, δv)) A pair (av, δv) ∈ Sw,
where (w, v) ∈ E is the currently best pair for vertex v if and only if (av, δv) is
viable for v and: ∀(u, v) ∈ E : ∀(a′, δ′) ∈ Su : (a′, δ′) viable for v and δ′+�(u, v) ≥
δv + �(w, v).

We now look at the first step taken in each phase of the algorithm: preparation
of the graph G′. In this step, each vertex v finds the currently best pair (av, δv).
To determine the currently best pair, a vertex v inspects the elements pointed
to by its pointers p[(u, v)] for each (u, v) ∈ E in the following manner: For each
pointer p[(u, v)], vertex v keeps moving the pointer to the next element in the
list Su until it reaches a viable pair, and takes the minimum amongst these as
per Definition 4. We call this process reloading.

Once reloaded we modify the edges in the graph G′. Let (av, δv) ∈ Sw where
(w, v) ∈ E be the currently best pair for vertex v, then we set �(i, v) ← δv +
�(w, v). Now we call ψ(V ′, E′, i). Suppose the SSSP algorithm returns an array
Π [] of length n. Let each element Π [v] be a pair (c, δ) where δ is the length of
the shortest path from i to v, and c is the first vertex encountered on this path.
When determining the first vertex on the path we exclude i, i.e. if the path is
πv = {(i, v)} then Π [v].c = v. The inclusion of the first encountered vertex is a
mere convenience, and can otherwise easily be accomodated by examining the
shortest path tree returned by the algorithm. For each vertex v ∈ V we append
the pair (aΠ[v].c, Π [v].δ) to its shortest path list. Note, that the edges (i, v) ∈ E′

are essentially shorthands for paths in G. Thus, aΠ[v].c represents the source of
the path in G. We call this process propagation.

After propagation, we modify the graph G′ as follows. For each vertex v ∈ V
such that Π [v].c = v, we check whether the currently best pair (av, δv) ∈ Su

that was selected during the reloading phase is the first element of the list Su. If
it is the first element, then we add the edge (u, v) into the set E′. This concludes
the description of the algorithm. We formalize the procedure in pseudocode and
obtain Algorithm 1. To see why the algorithm correctly computes the shortest
paths, we prove the following two lemmata.

Lemma 1. For each vertex v ∈ V whose k-th shortest path was found during
the reloading step, ψ(V ′, E′, i) finds the edge (i, v) to be the shortest path into v.

Proof. For the case when the k-th shortest path depends only on a path at
position j < k in a neighbor’s list, the path is already found during the reloading
step. What has to be shown is that this is preserved after the execution of the
SSSP algorithm. Consider a vertex v ∈ V which has already found the k-th
shortest path during the reloading step. This path is represented by the edge
(i, v) of the same length as the k-th shortest path. Now consider the case that
some path, other than the edge (i, v) itself, would be found to be a better path
to v by the SSSP algorithm. Since each of the outgoing edges of i represents
a path in G, this would mean that taking this path and adding the remaining
edges used to reach v would consistute a shorter path than the k-th shortest
path of v. Let us denote the path obtained by this construction as π′. Clearly

Speeding Up Shortest Path Algorithms 161

Algorithm 1. All-pairs shortest path

1: procedure APSP(V, E, ψ)
2: V ′ := V ∪ {i}
3: E′ :=

⋃
∀v∈V {(i, v)}

4: best[] := new array [n] of pairs (a, δ)
5: solved[][] := new array [n][n] of boolean values
6: Initialize solved[][] to false
7: for all v ∈ V do
8: Sv.append((v, 0))
9: end for
10: for k := 1 to n− 1 do
11: for all v ∈ V do � Reloading
12: best[v] := (null,∞)
13: for all u ∈ V s.t. (u, v) ∈ E do
14: while solved[v][p[(u, v)].a] do
15: p[(u, v)].next() � An end-of-list element is always viable
16: end while
17: if p[(u, v)].δ + �(u, v) < best[v].δ then
18: best[v].a := p[(u, v)].a
19: best[v].δ := p[(u, v)].δ + �(u, v)
20: end if
21: end for
22: �(i, v) := best[v].δ � Considering only k − 1 neighboring paths
23: end for
24: Π [] := ψ(V ′, E′, i)
25: for all v ∈ V do � Propagation
26: Sv.append((best[Π [v].c].a, Π [v].δ))
27: solved[v][best[Π [v].c].a] := true
28: if Π [v].c = v and best[v] was the first element of some list Su then
29: E′ := E′ ∪ (u, v)
30: end if
31: end for
32: end for
33: end procedure

162 A. Brodnik and M. Grgurovič

this is a contradiction unless π′ is not the k-th shortest path, i.e. a shorter path
connecting the two vertices is already known.

Without loss of generality, assume that π′ = {(i, u), (u, v)}. However, �(π′)
can only be shorter than �(i, v) if v could not find a viable (non-null) pair in the
list Su, since otherwise a shorter path would have been chosen in the reloading
phase. This means that all vertex sources (the a component of a pair) contained
in the list Su are also contained in the list Sv. Therefore a viable pair for u must
also be a viable pair for v. This concludes the proof by contradiction, since the
path obtained is indeed the shortest path between the two vertices. ��

Lemma 2. ψ(V ′, E′, i) correctly computes the k-th shortest paths for all vertices
v ∈ V given only k − 1 shortest paths for each vertex.

Proof. The case when the k-th path requires only k− 1 neighboring paths to be
known has already been proven by the proof of Lemma 1. We now consider the
case when the k-th path depends on a neighbor’s k-th path. If the k-th path of
vertex v requires the k-th path from the list of its neighbor u, then we know the
k-th path of u must be the same as that of v except for the inclusion of the edge
(u, v). The same argument applies to the dependency of vertex u on its neighbor’s
list. Thus, the path becomes shorter after each such dependency, eventually
becoming dependent on a path included at position j < k in a neighbor’s list
(this includes edges), which has already been found during the reloading step
and is preserved as the shortest path due to Lemma 1.

We now proceed in the same way that we obtained the contradiction in the
proof of Lemma 1, except it is not a contradiction in this case. What follows is
that any path from i to v in G′ which is shorter than �(i, v) must represent a
viable pair for v. It is easy to see, then, that the shortest among these paths is
the k-th shortest path for v in G and also the shortest path from i to v in G′. ��

3.1 Time and Space Complexity

First, we look at the time complexity. The main loop of Algorithm 1 (lines 7–29)
performs n − 1 iterations. The reloading loop (lines 8–20) considers each edge
(u, v) ∈ E which takes m steps. This amounts to O(mn). Since each shortest
path list is of length n+1, each pointer is moved to the next element n times over
the execution of the algorithm. There are m pointers, so this amounts to O(mn).
Algorithm ψ is executed n− 1 times. In total, the running time of Algorithm 1
is O(mn + nTψ(m

∗, n)).
The space complexity of Algorithm 1 is as follows. Each vertex keeps track

of its shortest path list, which is of size n + 1 and amounts to Θ(n2) space
over all vertices. Since there are exactly m pointers in total, the space needed
for them is simply O(m). On top of the costs mentioned, we require as much
space as is required by algorithm ψ. In total, the combined space complexity for
Algorithm 1 is O(n2 + Sψ(m

∗, n)).

Speeding Up Shortest Path Algorithms 163

3.2 Implications

We will show how to further improve the time complexity of the algorithm in
Section 4, but already at its current stage, the algorithm reveals an interesting
relationship between the complexity of non-negative SSSP and a stricter variant
of APSP.

Definition 5. (Sorted all-pairs shortest path SAPSP)
The problem SAPSP(m,n) is that of finding shortest paths between all pairs of
vertices in a non-negatively weighted graph with m edges and n vertices in the
form of Pv for each v ∈ V (see Definition 1).

Theorem 2. Let TSSSP denote the complexity of the single-source shortest path
problem on non-negatively weighted graphs with m edges and n vertices. Then
the complexity of SAPSP is at most O(nTSSSP).

Proof. Given an algorithm ψ which solves SSSP, we can construct a solution to
SAPSP in time O(nTψ(m,n)) according to Algorithm 1, since the lists Sv found
by the algorithm are ordered by increasing distance from the source. ��

What Theorem 2 says is that when solving APSP, either we can follow in the
footsteps of Dijkstra and visit vertices in increasing distance from the source
without worrying about a sorting bottleneck, or that if such a sorting bottleneck
exists, then it proves a non-trivial lower bound for the single-source case.

4 Improving the Time Bound

The algorithm presented in the previous section has a running time of O(mn+
nTψ(m

∗, n)). We show how to bring this down to O(m∗n+m lgn+nTψ(m
∗, n)).

We sort each set of incoming edges Ev =
⋃

(u,v)∈E{(u, v)} by edge lengths in
non-decreasing order. By using any off-the-shelf sorting algorithm, this takes
O(m lg n) time.

We only keep pointers p[(u, v)] for the edges which are shortest paths between
u and v, and up to one additional edge per vertex for which we do not know
whether it is part of a shortest path. Since edges are sorted by their lengths, a
vertex v can ignore an edge at position t in the sorted list Ev until the edge at
position t− 1 is either found to be a shortest path, or found not to be a shortest
path. For some edge (u, v) the former case simply corresponds to using the first
element, i.e. u, provided by p[(u, v)] as a shortest path. The latter case on the
other hand, is not using the first element offered by p[(u, v)], i.e. finding it is not
viable during the reloading phase. Whenever one of these two conditions is met,
we include the next edge in the sorted list as a pointer, and either throw away
the previous edge if it was found not to be a shortest path, or keep it otherwise.
This means the total amount of pointers is at most m∗ + n at any given time,
which is O(m∗), since m∗ is at least n. The total amount of time spent by the
algorithm then becomes O(m∗n + m lgn+ nTψ(m

∗, n)).

164 A. Brodnik and M. Grgurovič

Theorem 3. Let ψ be an algorithm which solves the single-source shortest path
problem on non-negatively weighted graphs. Then, the all-pairs shortest path
problem on non-negatively weighted graphs can be solved in time O(m∗n+m lgn+
nTψ(m

∗, n)) and space O(n2 + Sψ(m
∗, n)) where Tψ(m,n) is the time required

by algorithm ψ on a graph with m edges and n nodes and Sψ(m,n) is the space
required by algorithm ψ on the same graph.

Proof. See discussion above and in Section 3. ��

5 Directed Acyclic Graphs

A combination of a few techniques yields an O(m∗n + m lgn) APSP algorithm
for arbitrarily weighted directed acyclic graphs (DAGs). The first step is to
transform the original (possibly negatively-weighted) graph into a non-negatively
weighted graph through Johnson’s [5] reweighting technique. Instead of using
Bellman-Ford in the Johnson step, we visit nodes in their topological order,
thus obtaining a non-negatively weighted graph in O(m) time. Next, we use
the improved time bound algorithm as presented in Section 4. For the SSSP
algorithm, we again visit nodes according to their topological order. Note that if
the graph G is a DAG then G′ is also a DAG. The reasoning is simple: the only
new edges introduced in G′ are those from i to each vertex v ∈ V . But since i
has no incoming edges, the acyclic property of the graph is preserved. The time
bounds become O(m) for Johnson’s step and O(m∗n+m lg n+nTψ(m

∗, n)) for
the APSP algorithm where Tψ(m

∗, n) = O(m∗). Thus, the combined asymptotic
running time is O(m∗n+m lgn). The asymptotic space bound is simply Θ(n2).

Theorem 4. All-pairs shortest path on directed acyclic graphs can be solved in
time O(m∗n + m lgn) and Θ(n2) space.

Proof. See discussion above. ��

6 Discussion

In this paper we have shown that the “standard” approach to solving APSP via
independent SSSP computations can be improved upon even if we know virtually
nothing about the SSSP algorithm itself. However, we should mention that in
recent years, asymptotically efficient algorithms for APSP have been formulated
in the so-called component hierarchy framework. These algorithms can be seen
as computing either SSSP or APSP. Our algorithm is only capable of speeding
up SSSP hierarchy algorithms, such as Thorup’s [6], but not those which reuse
the hierarchy, such as Pettie’s [7], Pettie-Ramachandran [8] or Hagerup’s [9]
since our SSSP reduction requires modifications to the graph G′. These modi-
fications would require the hierarchy to be recomputed, making the algorithms
prohibitively slow. This raises the following question: is there a way to avoid

Speeding Up Shortest Path Algorithms 165

recomputing the hierarchy at each step, while keeping the number of edges in
the hierarchy O(m∗)?

Further, if there exists an o(mn) algorithm for the arbitrarily-weighted SSSP
problem, then by using Johnson’s reweighting technique, our algorithm might
become an attractive solution for that case. For the general case, no such algo-
rithms are known, but for certain types of graphs, there exist algorithms with
an o(mn) asymptotic time bound [10,11].

Furthermore, we can generalize the approach used on DAGs. Namely, in Al-
gorithm 1 we can use an SSSP algorithm ψ that works on a specialized graph G,
as long our constructed graph G′ has these properties. Therefore, our algorithm
can be applied to undirected graphs, integer-weighted graphs, etc., but it cannot
be applied, for example, to planar graphs, since G′ is not necessarily planar.

Finally, we have shown a connection between the sorted all-pairs shortest
path problem and the single-source shortest path problem. If a meaningful lower
bound can be proven for SAPSP, then this would imply a non-trivial lower bound
for SSSP. Alternatively, if SAPSP can be solved in O(mn) time, then this implies
a Dijkstra-like algorithm for APSP, which visits vertices in increasing distance
from the source.

References

1. Karger, D., Koller, D., Phillips, S.J.: Finding the hidden path: time bounds for
all-pairs shortest paths. SIAM Journal on Computing 22(6), 1199–1217 (1993)

2. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

3. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34(3), 596–615 (1987)

4. Demetrescu, C., Italiano, G.F.: Experimental analysis of dynamic all pairs shortest
path algorithms. ACM Transactions on Algorithms 2(4), 578–601 (2006)

5. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J.
ACM 24(1), 1–13 (1977)

6. Thorup, M.: Undirected single-source shortest paths with positive integer weights
in linear time. J. ACM 46(3), 362–394 (1999)

7. Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs.
Theor. Comput. Sci. 312(1), 47–74 (2004)

8. Pettie, S., Ramachandran, V.: A shortest path algorithm for real-weighted undi-
rected graphs. SIAM J. Comput. 34(6), 1398–1431 (2005)

9. Hagerup, T.: Improved Shortest Paths on the Word RAM. In: Welzl, E., Monta-
nari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 61–72. Springer,
Heidelberg (2000)

10. Goldberg, A.V.: Scaling algorithms for the shortest paths problem. In: Proceedings
of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1993,
pp. 222–231. Society for Industrial and Applied Mathematics, Philadelphia (1993)

11. Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems. SIAM
J. Comput. 18(5), 1013–1036 (1989)

How Many Potatoes Are in a Mesh?�

Marc van Kreveld1, Maarten Löffler1, and János Pach2

1 Dept. of Information and Computing Sciences, Utrecht University, The Netherlands
2 Ecole Polytechnique Féderale de Lausanne and Rényi Institute, Budapest

Abstract. We consider the combinatorial question of how many con-
vex polygons can be made at most by using the edges taken from a
fixed triangulation of n vertices. For general triangulations, there can
be exponentially many: Ω(1.5028n) and O(1.62n) in the worst case. If
the triangulation is fat (every triangle has its angles lower-bounded by a

constant δ > 0), then there can be only polynomially many: Ω(n
1
2
� 2π

δ
�)

and O(n� π
δ
). If we count convex polygons with the additional property

that they contain no vertices of the triangulation in their interiors, we

get the same exponential bounds in general triangulations, and Ω(n� 2π
3δ

�)
and O(n� 2π

3δ
�) in fat triangulations.

Fig. 1. AmeshM . Three convex poly-
gons that respect M are marked.

1 Introduction

It is a common task in combinatorial ge-
ometry to give lower and upper bounds
for the number of occurrences of a certain
subconfiguration in a geometric structure.
Well-known examples are the number of
vertices in the lower envelope or single face
in an arrangement of line segments, the
number of triangulations that have a given
set of points as their vertices, etc. [10].

In this paper we analyze how many
convex polygons (potatoes) can be con-
structed by taking unions of triangles from a fixed triangulation (mesh) M with
n vertices. Equivalently, we analyze how many convex polygon boundaries can
be made using the edges of a fixed triangulation, see Figure 1. For general trian-
gulations there can be exponentially many. However, the lower-bound examples
use many triangles with very small angles. When n → ∞, the smallest angles
tend to zero. To understand if this is necessary, we also study the number of
convex polygons in a triangulation, where all angles are bounded from below by
a fixed constant. It turns out that the number of convex polygons is polynomial
in this case. We also study the same questions when the convex polygons cannot
have vertices of M interior to them (carrots). This is the same as requiring that
the submesh bounded by the convex polygon is outerplanar.

� A preliminary version of this work was presented at EuroCG 2012. A full version is
available on arXiv under number 1209.3954. http://arxiv.org/abs/1209.3954

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 166–176, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://arxiv.org/abs/1209.3954

How Many Potatoes Are in a Mesh? 167

Table 1. Results in this paper; open spaces are directly implied by other bounds

input mesh output vegetable lower bound upper bound source

general fat carrots Ω(1.5028n) Section 3
general any potato O(1.62n) Section 3

δ-fat fat potatoes Ω(n
1
2
� 2π

δ
�) Section 4

δ-fat any potato O(n� π
δ
) Section 4

δ-fat fat carrots Ω(n� 2π
3δ

�) Section 5

δ-fat any carrot O(n� 2π
3δ

�) Section 5
compact fat any carrot Ω(n2) O(n2) Full version
compact fat fat carrots Ω(n) O(n) Full version

Related Work. This paper is motivated by the potato peeling problem: Find
a maximum area convex polygon whose vertices and edges are taken from the
triangulation of a given point set [2] or a given polygon [4,7].

In computational geometry, realistic input models have received considerable
attention in the last two decades. By making assumptions on the input, many
computational problems can be solved provably faster than what is possible
without these assumptions. One of the early examples concerned fat triangles: a
triangle is δ-fat if each of its angles is at least δ, for some fixed constant δ > 0.
Matousek et al. [8] show that the union of n δ-fat triangles has complexity
O(n log logn) while for n general triangles this is Ω(n2). As a consequence, the
union of fat triangles can be computed more efficiently as well.

In [1,5,6,9], fat triangulations were used as a realistic input model motivated
by polyhedral terrains, sometimes with extra assumptions. Fat triangulations
are also related to the meshes computed in the area of high-quality mesh gen-
eration. The smallest angle of the elements of the mesh is a common quality
measure [3]. In graph drawing, an embedded planar straight-line graph is said
to have constant angular resolution if any two edges meeting at a vertex make
at least a constant angle. Hence, fatness and constant angular resolution are the
same for triangulations. The original definition of realistic terrains applied to
meshes has stronger assumptions than fatness [9]. It also assumes that any two
edges in the triangulation differ in length by at most a constant factor, and the
outer boundary of the triangulation is a fat convex polygon.

Results.We present lower and upper bounds on the maximum number of convex
polygons in a mesh in several settings. The input can be either a general mesh,
a fat mesh (where every angle of each triangle is at least δ), or a compact fat
mesh (where additionally, the ratio between the shortest and longest edge is
at most ρ). The output can be either a potato (general convex submesh) or a
carrot (outerplanar convex submesh, that is, one that contains no vertex of the
underlying mesh in its interior), and each can additionally be required to be fat
(where the ratio between the largest inscribed disk and the smallest containing
disk is at most γ). Table 1 summarizes our results. Note that ρ and γ do not
show up; the bounds hold for any constant values of ρ and γ.

168 M. van Kreveld, M. Löffler and J. Pach

2 Preliminaries

A mesh is a plane straight-line graph with a finite set of vertices, such that all
bounded faces are triangles, the interiors of all triangles are disjoint and the inter-
section of any pair of triangles is either a vertex or a shared edge. We also denote
the set of vertices of a graphG by V (G) and the set of edges by E(G), and say the
size of G is n = |V (G)|. We say a mesh M is maximal if its triangles completely
cover the convex hull of its vertices.1 A polygon P is said to respect a graph G if
all of its edges belong to G.

We assume a mesh M is given. We call M δ-fat, for some δ ∈ (0, 2
3π], if every

angle of every triangle of M is at least δ.
Let S = [0, 2π). We define cyclic addition and subtraction (+,−) : S×R→ S

in the usual way, modulo 2π. We call the elements of S directions and implicitly
associate an element s ∈ S with the vector (sin s, cos s).

3 Potatoes in General Meshes

Q

M

Fig. 2. A set Q of n points on a half-circle, tri-
angulated such that the dual tree is a balanced
binary tree

Lower Bound. Let Q be a set of
m points evenly spaced on the up-
per half of a circle. Assume m =
2k + 1 for some integer k, and let
the points be v0, . . . , vm−1, clock-
wise. Let M consist of the convex
hull edges, then connect v0 and
vm−1 to v(m−1)/2, and recursively
triangulate the subpolygons by al-
ways connecting the furthest pair
to the midpoint. Figure 2 illus-
trates the construction.

Let N(k) be the number of different convex paths in M from v0 to vm−1.
Then we have N(k) = 1 + (N(k − 1))2, N(0) = 1, because we can combine
every path from v0 to v(m−1)/2 with every path from v(m−1)/2 to vm−1, and the
extra path is v0, vm−1 itself. Using this recurrence, we can relate the number
m of vertices used to the number P (m) of convex paths obtained: P (3) = 2;
P (5) = 5; P (9) = 26; P (17) = 677; etc.

Now we place n points evenly spaced on the upper half of a circle. We trian-
gulate v0, . . . , v16 as above, and also v16 . . . , v32, and so on. We can make n/16
groups of 17 points where the first and last point of each group are the same.
Each group is triangulated to give 677 convex paths; the rest is triangulated ar-
bitrarily. In total we get 677n/16 = Ω(1.5028n) convex paths from v0 to vn−1. We
omit the one from v0 directly to vn−1, and use this edge to complete every convex
path to a convex polygon. The number of convex polygons is Ω(1.5028n).2

1 A maximal mesh is also called a triangulation.
2 We can, of course, make larger groups of vertices to slightly improve the lower bound,
but this does not appear to affect the given 4 significant digits.

How Many Potatoes Are in a Mesh? 169

M

p

(a)

G

p

(b)

Fig. 3. (a) We project each interior vertex of M from p onto the next edge. An example
potato is marked in blue. (b) The graph G obtained by removing the marked edges
and orienting the others around p. The potato becomes a cycle.

Theorem 1. There exists a mesh M with n vertices such that the number of
convex polygons that respect M is Ω(1.5028n). This is true even if M is the
Delaunay triangulation of its vertices.

Upper Bound. First, fix a point p inside some triangle of M , not collinear
with any pair of vertices of M . We count only the convex polygons that contain
p for now.

For every vertex v of M , let ev be the first edge of the mesh beyond v that is hit
by a ray from p and through v. Let G be the graph obtained from M by removing
all such edges ev, v ∈ V (M). Figure 3 shows an example.We turnG into a directed
graphby orienting every edge such that p lies to the left of its supporting line.Weare
interested in the number of simple cycles that respect G. Note that G has exactly
2n−3 edges, since every vertex not on the convex hull causes one edge to disappear.

Lemma 1. The number of convex polygons in M that have p in their interior
is bounded from above by the number of simple cycles in G.

Proof. With each convex polygon, we associate a cycle by replacing any edges ev
that were removed by the two edges via v, recursively. This results in a proper
cycle because the convex polygon was already a monotone path around p, and
this property is maintained. Each convex polygon results in a different cycle
because the angle from the vertices of ev via v is always concave. �

Observation 1. The complement of the outer face of G is star-shaped with p
in its kernel.

Observation 2. Let e be an edge on the outer face of G from u to v. Then u
has outdegree 1, or v has indegree 1 (or both).

If F ⊂ E(G) is a subset of the edges of G, we also consider the subproblem of
counting all simple cycles in G that use all edges in F , the fixed edges. For a
triple (M,G,F), we define the potential ρ to be the number of vertices of M (or
G) minus the number of edges in F , i.e., ρ(M,G,F) = |V (G)|− |F |. Clearly, the

170 M. van Kreveld, M. Löffler and J. Pach

potential of a subproblem is an upper bound on the number of edges that can
still be used in any simple cycle.

We will now show that the number of cycles in a subproblem can be expressed
in terms of subproblems of smaller potential. Let Q(k) be the maximum number
of simple cycles in any subproblem with potential k.

u ve

u v
w

e e′

Fig. 4. Two cases for e

Lemma 2. The function Q(·) satisfies
Q(k) ≤ Q(k − 1) + Q(k − 2), Q(0) = Q(1) = 1.

Proof. Let (M,G,F) be a subproblem and let k =
ρ(M,G,F). If k = 1 then |F | = |V (G)| − 1, so the
number of fixed edges on the cycle is one less than the
number of vertices available. Therefore the last edge
is also fixed, if any cycle is possible. If k = 0, all edges
are fixed.

For the general case, suppose all edges on the outer face of G are fixed. Then
there is only one possible cycle. If any vertex on the outer face has degree 2 and
only one incident edge fixed, we fix the other incident edge too. Suppose there is
at least one edge, e = uv, on the outer face that is not fixed. By Observation 2,
one of its neighbors must have degree 1 towards e. Assume without loss of
generality that this is v. We distinguish two cases, see Figure 4.

(i) The degree of v is 2. Any cycle in G either uses v or does not use v. If
it does not use v we have a subproblem of potential k − 1. If it uses v, it must
also use its two incident edges, so we can include these edges in F to obtain a
subproblem of potential k−2. So, the potential ρ(M,G,F) ≤ Q(k−1)+Q(k−2).

(ii) The degree of v is larger than 2. Any cycle in G either uses e or does not
use e. If it uses e, we can add e to F to obtain a subproblem of potential k − 1.
If it does not use e, then consider v and the edge e′ = vw that leaves v on the
outer face. Since v has indegree 1 but total degree greater than 2, it must have
outdegree greater than 1. Therefore, by Observation 2, w must have indegree 1.
Therefore, w will not be used by any cycle in G that does not use e, and we can
remove v and w to obtain a smaller graph. We also remove all incident edges; if
any of them was fixed we have no solutions. We obtain a subproblem of potential
k − 2 in this case. Again, the potential ρ(M,G,F) ≤ Q(k − 1) + Q(k − 2). �

This expression grows at a rate of the root of x2 − x− 1 = 0, which is approxi-
mately 1.618034.

Because every convex polygon must contain at least one triangle of M , we
just place p in each triangle and multiply the bound by 2n. Since 1.62 is a slight
overestimate (by rounding) of the root, we can ignore the factor 2n in the bound.

Theorem 2. Any mesh M with n vertices has O(1.62n) convex polygons that
respect M .

How Many Potatoes Are in a Mesh? 171

(a) (b)

Fig. 5. (a) Essential part of the construction, allowing lk convex polygons. (b) Final
mesh.

4 Potatoes in Fat Meshes

Lower Bound. Let k = � 2πδ �, and let l =
√

n
2k . Let Q be a regular k-gon, and

for each edge e of Q consider the intersection point of the supporting lines of the
neighboring edges. Let Q′ be a scaled copy of Q that goes through these points.
Now, consider a sequence Q = Q1, Q2, . . . , Ql = Q′ of l scaled copies of Q such
that the difference in the radii of consecutive copies is equal. We extend the
edges of each copy until they touch Q′. Figure 5(a) illustrates the construction.3

Observation 3. The constructed graph has at least lk different convex polygons.

We now add vertices and edges to build a δ-fat mesh. We use
(
l−1
2

)
more vertices

per sector, placing l− i vertices on each edge of Qi to ensure that all angles are
bounded by δ. We need O(lk) vertices to triangulate the interior using some
adaptive mesh generation method. The final mesh can be seen in Figure 5(b).
The construction uses 3

2kl
2 + O(kl) vertices, and since we have l =

√
n
2k , there

are 3
2kl

2 + O(kl) = 3
2k

n
2k + O(k

√
n
2k) =

3
4n+ O(

√
nk) ≤ n vertices in total.

Observe that the triangles of the outer ring are Delaunay triangles. The in-
ner part can also be triangulated with Delaunay triangles, since the Delaunay
triangulation maximizes the smallest angle of any triangle.

Theorem 3. There exists a δ-fat mesh M of size n such that the number of
convex polygons that respect M is Ω(n

1
2 �

2π
δ �). This is true even if M is required

to be the Delaunay triangulation of its vertices.

Upper Bound.We consider paths in M that have roughly consistent directions.

Lemma 3. Let u, v ∈ V (M) be two vertices, and let c, d ∈ S be two directions
such that d − c ≤ 2δ. Then there is at most one convex path in M from u to v
that uses only directions in [c, d).

3 Our lower bound constructions use collinear points. We show in the full version that
this is not essential, and the same bounds apply to “strictly convex” potatoes.

172 M. van Kreveld, M. Löffler and J. Pach

u v

δ

Fig. 6. Two vertices u and v that need to be extreme in two directions that differ by
at most 2δ (indicated by red and blue) define a unique potential convex chain since
there can be at most one edge in each sector

Proof. Let m = c + 1
2 (d − c) be the direction bisecting c and d. Because M is

δ-fat, for any vertex in V (M) there is at most one incident edge with outgoing
direction in [c,m), and also at most one with direction in [m, d). Because the
path needs to be convex, it must first use only edges from [c,m) and then switch
to only edges from [m, d). We can follow the unique path of edges with direction
in [c,m) from u and the unique path of edges with direction in [m + π, d + π)
from v. If these paths intersect, the concatenation may be a unique convex path
from u to v as desired (clearly, the path is not guaranteed to be convex, but for
an upper bound this does not matter). Figure 6 illustrates this. �

Given a convex polygon P that respects M , a vertex v of P is extreme in direction
s ∈ S if there are no other vertices of P further in that direction, that is, if P
lies to the left of the line through v with direction s + 1

2π.
Let Γδ = {0, 2δ, 4δ, . . . , 2π} be a set of directions. As an easy corollary of

Lemma 3, the vertices of a convex polygon P respecting M that are extreme
in the directions of Γδ uniquely define P . There are at most n choices for each
extreme vertex, so the number of convex polygons is at most n|Γδ|. Substituting
|Γδ| = �πδ � we obtain the following theorem.

Theorem 4. Any δ-fat mesh M of size n has at most O(n�
π
δ �) convex polygons

that respect M .

5 Carrots in Fat Meshes

Recall that carrots are potatoes that have no interior vertices from the mesh. So
we expect fewer carrots than potatoes. However, our lower bound construction
for general meshes only has potatoes that are also carrots. In this section we
therefore consider carrots in fat meshes.

Lower Bound. Let k = �2π/3δ�, and consider a regular k-gon Q. On each edge
of Q, we place a triangle with angles δ, 2δ, and π − 3δ. Then, we subdivide

How Many Potatoes Are in a Mesh? 173

(a)

δ

δ

δ
δ

(b)

Fig. 7. (a) An example of a δ-fat mesh obtained from a k-gon (k = 5), which has
Ω(nk) carrots. (b) A tower of δ-δ-(π − 2δ) triangles.

(a) (b)

Fig. 8. (a) A carrot and its dual tree. (b) The skeleton (shown bold) of the dual tree
is the spanning tree of all vertices of degree 2.

each such triangle into n−k
k smaller triangles with angles δ, δ, and π − 2δ, as

illustrated in Figure 7(b). Finally, we triangulate the internal region of Q in any
way we want, giving a mesh M .

Lemma 4. M is convex, δ-fat, and contains Ω(n�
2π
3δ �) carrots.

Proof. M is convex because δ +2δ ≤ 2π
k . Every angle in the triangles outside Q

is at least δ, and the angles in the interior of Q are multiples of π
k > δ. Therefore,

every connected subset of M is a carrot. The dual tree T of M has a central
component consisting of k vertices, and then k paths of length n

k − 1. Hence, the

number of subtrees of T is at least (nk − 1)k, which is Ω(n�
2π
3δ
�). �

Theorem 5. There exists a δ-fat mesh M of size n such that the number of
convex outerplanar polygons that respect M is Ω(n�

2π
3δ �).

Upper Bound. We will next show that given any δ-fat mesh M , the number
of carrots that respect M can be at most O(n�

2π
3δ �).

Consider any carrot. We inspect the dual tree T of the carrot and make some
observations. Each node of T is either a branch node (if it has degree 3), a path
node (if it has degree 2), or a leaf (if it has degree 1). Path nodes have one edge
on the boundary of the carrot, and leaves have two edges on the boundary of
the carrot. Figure 8(a) shows an example.

174 M. van Kreveld, M. Löffler and J. Pach

≥ δ

≥ 2δ

≥ δ

(a)

≥ 2δ

≥ 3δ

≥ δ

(b)

Fig. 9. (a) Every leaf gives rise to a turning angle of 2δ. (b) Every leaf that is an only
child gives rise to a turning angle of 3δ.

Observation 4. Let v be a leaf node of T . The turning angle between the two
external edges of v is at least 2δ.

Proof. The triangle for node v is δ-fat, so all three angles are ≥ δ. Therefore,
the angles are ≤ π − 2δ, and the turning angles are ≥ 2δ (Figure 9(a)). �

Observation 5. Let v be a leaf node of T and u a path node adjacent to v. The
turning angle between the external edge of the triangle for u and the furthest
external edge of the triangle for v is at least 3δ.

Proof. Consider the quadrilateral formed by the two triangles of u and v. The
edge in M separating u from the rest of T has two δ-fat triangles incident to
one of its endpoints, and one to its other endpoint. This means that the turning
angle between the edges in the observation is ≥ 3δ (Figure 9(b)). �

By Observation 4, the number of leaves in a carrot is bounded by �πδ �, and
therefore, also the number of branch nodes is bounded by �πδ � − 2. However,
the number of path nodes can be unbounded. Consider subtree S of T that is
the spanning tree of all the path nodes. We call S the skeleton of the carrot.
Figure 8(b) shows an example. By Observation 5, the number of leaves of S is
bounded by � 2π3δ �.

We will charge the carrot to the set of leaves of S, and we will argue that every
set of � 2π3δ � triangles in M is charged only constantly often
(for constant δ).

Observation 6. Let Δ be any set of triangles of M . If there exists a carrot that
contains all triangles in Δ, then there is a unique smallest such carrot.

Lemma 5. Let Δ be any set of triangles in M . The number of carrots that
charge Δ is at most 2�

2π
δ �.

Proof. Consider the tree S that is the dual of the unique smallest carrot that
contains Δ, as per Observation 6. Any carrot that chargesΔ has S as its skeleton.
First, we argue that the set of path nodes in any carrot that charges Δ is a subset
of S. Indeed, if there was any path node in T outside S, then there would be at
least one leaf component of T that is disconnected from S, and there would be
an edge outside Δ that gets charged by the carrot of T . Therefore, only branch
nodes and leaves can still be added to S to obtain a carrot that charges Δ.

How Many Potatoes Are in a Mesh? 175

Then, we argue that there are at most 2�
2π
δ � other nodes that can be part of a

carrot that charges Δ. We can augment S by adding on components consisting
of only k leaves and k−1 branch nodes. By Observation 4, each such component
consumes a turning angle of 2kδ. Therefore, they can only be added on edges of
S which have a cap angle of at least 2kδ. Therefore, there can be at most 2π/δ

potential leaves, leading to 2�
2π
δ � choices.4 �

Theorem 6. Any δ-fat mesh M of size n has at most O(n�
2π
3δ �) convex outer-

planar polygons that respect M .

When the mesh is not only fat, but the edge length ratio is also bounded by
a constant, we can prove better bounds. We call such meshes compact fat. We
state the results here but defer the proofs to the full version.

Theorem 7. Any compact fat mesh M of size n has at most O(n) convex fat
outerplanar polygons that respect M .

Theorem 8. Any compact fat mesh M of size n has at most O(n2) convex
outerplanar polygons that respect M .

Acknowledgements. We thank Stefan Langerman and John Iacono for detect-
ing an error in an earlier version of this paper.

M.L. was supported by the Netherlands Organisation for Scientific Research
(NWO) under grant 639.021.123. J.P. was supported by NSF Grant CCF-08-
30272, by NSA, by OTKA under EUROGIGA project GraDR 10-EuroGIGA-
OP-003, and by Swiss National Science Foundation Grant 200021-125287/1.

References

1. Aronov, B., de Berg, M., Thite, S.: The Complexity of Bisectors and Voronoi
Diagrams on Realistic Terrains. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008.
LNCS, vol. 5193, pp. 100–111. Springer, Heidelberg (2008)

2. Aronov, B., van Kreveld, M., Löffler, M., Silveira, R.I.: Peeling meshed potatoes.
Algorithmica 60(2), 349–367 (2011)

3. Bern, M., Eppstein, D., Gilbert, J.: Provably good mesh generation. J. Comput.
Syst. Sci. 48(3), 384–409 (1994)

4. Chang, J.S., Yap, C.K.: A polynomial solution for the potato-peeling problem.
Discrete Comput. Geom. 1, 155–182 (1986)

5. de Berg, M., Cheong, O., Haverkort, H.J., Lim, J.-G., Toma, L.: The complexity
of flow on fat terrains and its I/O-efficient computation. Comput. Geom. 43(4),
331–356 (2010)

6. de Berg, M., van der Stappen, A.F., Vleugels, J., Katz, M.J.: Realistic input models
for geometric algorithms. Algorithmica 34(1), 81–97 (2002)

7. Goodman, J.E.: On the largest convex polygon contained in a non-convex n-gon
or how to peel a potato. Geom. Dedicata 11, 99–106 (1981)

4 Not all potential leaves can be chosen independently, but we ignore this issue since
the factor is dominated by the dependency on n anyway.

176 M. van Kreveld, M. Löffler and J. Pach

8. Matousek, J., Pach, J., Sharir, M., Sifrony, S., Welzl, E.: Fat triangles determine
linearly many holes. SIAM J. Comput. 23(1), 154–169 (1994)

9. Moet, E., van Kreveld, M., van der Stappen, A.F.: On realistic terrains. Comput.
Geom. 41(1-2), 48–67 (2008)

10. Pach, J., Sharir, M.: Combinatorial Geometry and Its Algorithmic Applications:
The Alcala Lectures. Mathematical Surveys and Monographs. AMS (2009)

On Higher Order Voronoi Diagrams

of Line Segments�

Evanthia Papadopoulou and Maksym Zavershynskyi

Faculty of Informatics, Università della Svizzera Italiana, Lugano, Switzerland
{evanthia.papadopoulou,maksym.zavershynskyi}@usi.ch

Abstract. We analyze structural properties of the order-k Voronoi dia-
gram of line segments, which surprisingly has not received any attention
in the computational geometry literature. We show that order-k Voronoi
regions of line segments may be disconnected; in fact a single order-
k Voronoi region may consist of Ω(n) disjoint faces. Nevertheless, the
structural complexity of the order-k Voronoi diagram of non-intersecting
segments remains O(k(n − k)) similarly to points. For intersecting line
segments the structural complexity remains O(k(n− k)) for k ≥ n/2.

Keywords: computational geometry, Voronoi diagrams, line segments,
higher order Voronoi diagrams.

1 Introduction

Given a set of n simple geometric objects in the plane, called sites, the order-k
Voronoi diagram of S is a partitioning of the plane into regions, such that every
point within a fixed order-k region has the same set of k nearest sites. For k = 1
this is the nearest-neighbor Voronoi diagram, and for k = n− 1 the farthest-site
Voronoi diagram. For n point sites in the plane, the order-k Voronoi diagram
has been well studied, see e.g [9,1,4,6]. Its structural complexity has been shown
to be O(k(n − k)) [9]. Surprisingly, order-k Voronoi diagrams of more general
sites, including simple line segments, have been largely ignored. The farthest
line segment Voronoi diagram was only recently considered in [3], showing prop-
erties surprisingly different than its counterpart for points. The nearest neigh-
bor Voronoi diagram of line segments has received extensive attention, see e.g.
[10,14,8] or [4] for a survey.

In this paper, we analyze the structural properties of the order-k Voronoi di-
agram of line segments. We first consider disjoint line segments and then extend
our results to line segments that may share endpoints, such as line segments
forming simple polygons or line segments forming a planar straight-line graph,
and intersecting line segments. Unlike points, order-k Voronoi regions of line
segments may be disconnected; in fact a single order-k Voronoi region may dis-
connect to Ω(n) disjoint faces. However, the structural complexity of the order-k

� Supported in part by the Swiss National Science Foundation grant 200021-127137
and the ESF EUROCORES program EuroGIGA/VORONOI, SNF 20GG21-134355.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 177–186, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

178 E. Papadopoulou and M. Zavershynskyi

line segment Voronoi diagram remains O(k(n − k)), assuming non-intersecting
line segments, similarly to points, despite the disconnected regions. For intersect-
ing line segments the dependency of the structural complexity on the number of
intersections reduces as k increases and it remains O(k(n−k)) for k ≥ n/2. The
case of line segments involving polygonal objects is important for applications
such as [11] that motivated our study.

For points, the derivation of the O(k(n − k)) bound relies on three facts: 1.
an exact formula in [9] that relates Fk, the total number of faces on the order-
k Voronoi diagram, with n, k and the number of unbounded faces in previous
diagrams, 2. a symmetry property stating that Sk = Sn−k, where Sk denotes
the number of unbounded faces in the order-k Voronoi diagram, and 3. an upper
bound result from k-set theory [2,6]. In the case of line segments we first show
that the formula of [9] remains valid, despite the presence of disconnected regions.
However, the symmetry property no longer holds and results available from k-set
theory are not directly applicable. Thus, a different approach has to be derived.

2 Preliminaries

Let S = {s1, s2, . . . , sn} be a set of n line segments in IR2. Each segment consists
of three elementary sites: two endpoints and an open line segment. We make a
general position assumption that no more than three elementary sites can touch
the same circle.

The Euclidean distance between two points p, q is denoted as d(p, q). The
distance between point p and a line segment s is the minimum Euclidean distance
d(p, s) = minq∈s d(p, q). The bisector of two segments si and sj is the locus of
points equidistant from both, i.e., b(si, sj) = {x | d(x, si) = d(x, sj)}. If si and
sj are disjoint their bisector is a curve that consists of a constant number of line
segments, rays and parabolic arcs. If segments intersect at point p the bisector
consists of two such curves intersecting at point p. If segments share a common
endpoint the bisector contains a two-dimensional region. In the following, we
assume that segments are disjoint. We deal with segments that share endpoints
in Section 5 and segments that intersect in Section 6.

Let H ⊂ S. The generalized Voronoi region of H , V(H,S) is the locus of
points that are closer to all segments in H than to any segment not in H .

V(H,S) = {x | ∀s ∈ H, ∀t ∈ S \H d(x, s) < d(x, t)} (1)

For |H | = k, V(H,S) is the order-k Voronoi region of H , denoted Vk(H,S).

Vk(H,S) = V(H,S) for |H | = k (2)

The order-k Voronoi diagram of S, Vk(S), is the partitioning of the plane into
order-k Voronoi regions. A maximal interior-connected subset of a region is called
a face. The farthest Voronoi diagram of S is denoted as Vf (S) (Vf (S) = Vn−1(S))
and a farthest Voronoi region as Vf (s, S) (Vf (s, S) = Vn−1(S \ {s}, S)).

On Higher Order Voronoi Diagrams of Line Segments 179

An order-k Voronoi region Vk(H,S) can be interpreted as the locus of points
closer to H than to any other subset of S of size k, where the distance be-
tween a point x and a set H is measured as the farthest distance d(x,H) =
maxs∈H d(x, s).

The following lemma is a simple generalization of [3] for 1 ≤ k ≤ n− 1.

Lemma 1. Consider a face F of region Vk(H,S). F is unbounded (in the direc-
tion r) iff there exists an open halfplane (normal to r) that intersects all segments
in H but no segment in S \H.

Corollary 1. There is an unbounded Voronoi edge separating regions Vk(H ∪
{s1}, S) and Vk(H∪{s2}, S) iff a line through the endpoints of s1 and s2 induces
an open halfplane r(s1, s2) such that r(s1, s2) intersects all segments in H but
no segment in S \H.

3 Disconnected Regions

The order-k line segment Voronoi diagram may have disconnected regions, unlike
its counterpart of points, see e.g., Fig. 1. This phenomenon was first pointed out
in [3] for the farthest line segment Voronoi diagram, where a single region was
shown possible to be disconnected in Θ(n) faces.

s1 s2

F1 ⊂ V2({s1, s2}, S)

F2 ⊂ V2({s1, s2}, S)

Fig. 1. V2(S) with two disconnected faces, induced by the same pair of sites

Lemma 2. An order-k region of Vk(S) can have Ω(n) disconnected faces, in
the worst case, for k > 1.

Proof. We describe an example where an order-k Voronoi region is disconnected
in Ω(n − k) bounded faces. Consider k almost parallel long segments H . These
segments induce a region Vk(H,S). Consider a minimum disk, that intersects
all segments in H , and moves along their length. We place the remaining n− k
segments of S \H in a such way that they create obstacles for the disk. While
the disk moves along the tree of Vf (H) it intersects the segments of S \H one
by one, and creates Ω(n− k) disconnectivities (see Fig. 2 (a)).

180 E. Papadopoulou and M. Zavershynskyi

s1
s2

s3

s1

s2

s3
s4s5, s6, s7

Fig. 2. (a) While the circle moves it encounters 5 obstacles, which induce Ω(n−k) dis-
connectivities of the region V3(H,S); (b) V4({s1, s2, s3, s4}, S) has k = 4 disconnected
unbounded faces. The dashed arrows represent the rotation of the directed line g.

We now follow [3] and describe an example where an order-k Voronoi region is
disconnected in Ω(k) unbounded faces. Consider n−k segments in S \H degen-
erated into points placed close to each other. The remaining k non-degenerate
segments in H are organized in a cyclic fashion around them (see Fig. 2 (b)).
Consider a directed line g through one of the degenerate segments s′. Rotate g
around s′ and consider the open halfplane to the left of g. During the rotation,
the positions of g in which the halfplane intersects all k segments, alternate with
the positions in which it does not. The positions in which the halfplane touches
endpoints of non-degenerate segments, correspond to unbounded Voronoi edges.
Each pair of consecutive unbounded Voronoi edges bounds a distinct unbounded
face. Following [3], the line segments in H can be untangled into non-crossing
segments while the same phenomenon remains.

Note that for small k, 1 < k ≤ n/2, Ω(n − k) = Ω(n), while for large k,
n/2 ≤ k ≤ n− 1, Ω(k) = Ω(n). ��

Lemma 3. An order-k region Vk(H,S) has O(k) unbounded disconnected faces.

Proof. We show that an endpoint p of a segment s ∈ H may induce at most two
unbounded Voronoi edges bordering Vk(H,S) (see Fig. 3). Consider two such
unbounded Voronoi edges. By Corollary 1 there are open halfplanes r(s, t1),
r(s, t2), for s ∈ H and t1, t2 ∈ S \ H , that intersect all segments in H but no
segments in S \H . Thus, any halfplane r(s, t3), t3 ∈ S \H must intersect either
t1 or t2. Since |H | = k and a segment has two endpoints, the lemma follows. ��

t1 t2
s

r(s, t2) r(s, t1)

p

t3

r(s, t3)

Fig. 3. Every endpoint of a segment s ∈ H can induce at most 2 halfplanes

On Higher Order Voronoi Diagrams of Line Segments 181

4 Structural Complexity

In this section we prove that the structural complexity of the order-k Voronoi
diagram of n disjoint line segments is O(k(n− k)) despite disconnected regions.
We first prove Theorem 1 which is a generalization of [9] for line segments ex-
ploiting the fact that the farthest line segment Voronoi diagram remains a tree
structure [3]. Then in Lemma 7 we analyze the number of unbounded faces of
the order-k Voronoi diagram in dual setting using results on arrangements of
wedges [3,7] and (≤k)-level in arrangements of Jordan-curves [13]. Combining
Theorem 1 and Lemma 7 we derive the O(k(n− k)) bound.

Voronoi vertices in Vk(S) are classified into new and old. A Voronoi vertex of
Vk(S) is called new (respectively old) if it is the center of a disk that touches 3 line
segments and its interior intersects exactly k−1 (respectively k−2) segments. By
the definition of the order-k Voronoi diagram we have the following properties:

1. Every Voronoi vertex of Vk(S) is either new or old.
2. A new Voronoi vertex in Vk(S) is an old Voronoi vertex in Vk+1(S).
3. Under a general position assumption, an old Voronoi vertex in Vk(S) is a

new Voronoi vertex in Vk−1(S).

Lemma 4. Consider a face F of the region Vk+1(H,S). The portion of Vk(S)
enclosed in F is exactly the farthest Voronoi diagram Vf (H) enclosed in F .

Proof. Let x be a point in F . Suppose that among all segments in H , x is
farthest from si. Then x ∈ Vf (si, H). Let Hi = H \ {si}. Since x ∈ Vk+1(H,S),
x is farthest from si among all segments in H , and |Hi| = k, x ∈ Vk(Hi, S). ��
Regions in the farthest line segment Voronoi diagram have the following visibility
property: Let x be a point in Vf (s,H) of Vf (H) for a set of segments H . Let
r(s, x) be the ray realizing the distance d(s, x), emanating from point p ∈ s such
that d(p, x) = d(s, x), extending to infinity (see Fig. 4). Ray r(s, x) intersects
the boundary of Vf (s,H) at a point ax and the part of the ray beyond ax is
entirely in Vf (s,H). Using this property we derive the following lemma.

Lemma 5. Let F be a face of region Vk+1(H,S) in Vk+1(S). The graph structure
of Vk(S) enclosed in F is a connected tree that consists of at least one edge. Each
leaf of the tree ends at a vertex of face F (see Fig. 4).

Proof. (Sketch) Assume that the tree of Vf (H) in F is disconnected. Consider a
point x on the path that connects two disconnected parts and bounds Vf (s,H)
such that x �∈ F . Using the visibility property we derive a contradiction. ��

Corollary 2. Consider a face F of the Voronoi region Vk+1(H,S). Let m be the
number of Voronoi vertices of Vk(S) enclosed in its interior. Then F encloses
e = 2m+ 1 Voronoi edges of Vk(S).

Let Fk, Ek, Vk and Sk denote respectively the number of faces, edges, vertices
and unbounded faces in Vk(S). By Euler’s formula we derive

Ek = 3(Fk − 1)− Sk, Vk = 2(Fk − 1)− Sk (3)

182 E. Papadopoulou and M. Zavershynskyi

Fi

Fi−1
. . .

Fi+1

x

p

Vf (s,H)

s

y
Dy

Dx

ax

Fig. 4. The part of the ray r(s, x) beyond ax entirely belongs to Vf (s,H)

Lemma 6. The total number of unbounded faces in the order-k Voronoi diagram
for all orders is

∑n−1
i=1 Si = n(n− 1)

Theorem 1. The number of Voronoi faces in order-k Voronoi diagram of n
disjoint line segments is:

Fk = 2kn− k2 − n+ 1−
k−1∑
i=1

Si, Fk = 1− (n− k)2 +

n−1∑
i=k

Si (4)

Proof. (Sketch) Corollary 2 implies that Ek+1 = 2V ′k + Fk+2, where V ′k is the
number of new Voronoi vertices in Vk(S). Combining Corollary 2 and (3) we
obtain a recursive formula Fk+3 = 2Fk+2 − Fk+1 − 2 − Sk+2 + Sk+1. Using as
base cases F1 = n and F2 = 3(n−1)−S1 we prove the first part of (4). Lemma 6

implies
∑k−1

i=1 Si+
∑n−1

i=k Si =
∑n−1

i=1 Si = n(n−1). Combining this with the first
part of (4) we derive the second part. ��

Lemma 7. For a given set of n segments,
∑n−1

i=k Si is O(k(n−k)), for k ≥ n/2.

Proof. Following [3], we use the well-known point-line duality transformation T ,
which maps a point p = (a, b) in the primal plane to a line T (p) : y = ax− b in
the dual plane, and vice versa. We call the set of points above both lines T (p)
and T (q) the wedge of s = (p, q). Consider a line l and a segment s = (p, q).
Segment s is above line l iff point T (l) is strictly above lines T (p) and T (q) [3].

Consider the arrangement W of wedges wi, i = 1, . . . , n, as defined by the seg-
ments of S = {s1, . . . , sn}. For our analysis we need the notions of r-level and
(≤r)-level. The r-level of W is a set of edges such that every point on it is above r
wedges. The r-level shares its vertices with the (r− 1)-level and the (r +1)-level.
The (≤r)-level of W is the set of edges such that every point on it is above at most
r wedges. The complexity of the r-level and the (≤r)-level is the number of their
vertices, excluding the wedge apices. We denote the maximum complexity of the
r-level and the (≤r)-level of n wedges as gr(n) and g≤r(n), respectively.

Claim: The number of unbounded Voronoi edges of Vk(S), unbounded in direc-
tion φ ∈ [π, 2π], is exactly the number of vertices shared by the (n− k− 1)-level
and the (n− k)-level of W . Thus Sk = O(gn−k(n)).

On Higher Order Voronoi Diagrams of Line Segments 183

Proof of claim: Consider a vertex p (see Fig. 5) of the r-level and (r + 1)-level.
Let wi, wj be the wedges, that intersect at p, and let si, sj be their correspond-
ing segments. Let Wp, |Wp| = n − r − 2, be the set of wedges strictly above
p, and let Sp be the set of the corresponding segments. Then T (p) induces
the unbounded Voronoi edge that separates regions Vn−r−1(Sp ∪ {si}, S) and
Vn−r−1(Sp ∪ {sj}, S) of Vn−r−1(S). Let r = n− k − 1 to derive the claim.

The claim implies the following.

n−1∑
i=k

Si = O(g≤n−k(n)) (5)

Since the arrangement of wedges is a special case of arrangements of Jordan
curves, we use the formula from [13] to bound the complexity of the (≤r)-level:

g≤r(n) = O

(
(r + 1)2g0

(⌊
n

r + 1

⌋))
(6)

It is known that the complexity of the lower envelope of such wedges is g0(x) =
O(x) [7,3]. (Note that [13] implies a weaker g0(x) = O(x log x))). Therefore,

g≤r(n) = O(n(r + 1)). Substituting into formula (5) we obtain
∑n−1

i=k Si =

O(n(n− k)). Since n/2 ≤ k ≤ n− 1,
∑n−1

i=k Si = O(k(n− k)). ��

w1

w2

w3

w4
w5

p q

T (p)

T (q)
s5s1

s2

s3
s4

r(s2, s3)

Fig. 5. (a) In the dual plane point p belongs to the 2-level and the 3-level of the
arrangement W . (b) In the primal plane the halfplane r(s2, s3) below T (p) defines the
unbounded Voronoi edge that separates V2({s2, s4}, S) and V2({s3, s4}, S).

Combining Lemma 7 and Theorem 1 we obtain the following theorem.

Theorem 2. The number of Voronoi faces in order-k Voronoi diagram of n
disjoint line segments is Fk = O(k(n − k)).

184 E. Papadopoulou and M. Zavershynskyi

5 Line Segments Forming a Planar Straight-Line Graph

In this section we consider line segments that may touch at endpoints, such as
line segments forming a simple polygon, more generally line segments forming a
planar straight-line graph. This is important for applications involving polygonal
shapes such as [11].

When line segments share endpoints, bisectors may contain 2-dimensional
portions. The standard approach to avoid this issue for k = 1 is to consider S as
a set of distinct elementary sites. Our goal is to extend this notion for the order-k
Voronoi diagram without altering the structure of the order-k Voronoi diagram
for disjoint line segments. Note that we cannot simply consider elementary sites
as distinct when defining an order-k Voronoi region as this will lead to a different
type of order-k Voronoi diagram for disjoint segments that is not very interesting.
We first extend the notion of a subset of S of cardinality k as follows.

Definition 1. A set H, H ⊆ S, is called an order-k subset iff

1. |H | = k (type 1) or
2. H = H ′ ∪ I(p), where H ′ ⊆ S, |H ′| < k, p is a segment endpoint incident to

set of segments I(p), and |H ′ ∪ I(p)| > k (type 2). Set rep(H) = {p} ∪ {H \
I(p)} is called the representative of the order-k subset.

An order-k Voronoi region is now defined as

Vk(H,S) = V(H,S), where H is an order-k subset of S

Note that for disjoint segments all order-k subsets are of type 1 and the definition
of Vk(H,S) is equivalent to (2). The following lemma clarifies Def. 1.

Lemma 8. An order-k subset H induces a non-empty order-k Voronoi region
iff there exists a disk that intersects or touches all segments in H but it does not
intersect nor touch any segment in S \H.

The order-k Voronoi diagram defined in this way has some differences from the
standard order-k Voronoi diagram of disjoint objects. In the standard case, any
two neighboring order-k regions belong to two order-k subsets, H1 and H2, which
are of type 1 and differ by exactly two elements, i.e. |H1&H2| = 2, where & de-
notes the symmetric difference. The bisector of these two elements defines exactly
the Voronoi edge separating the two regions. Here, two neighboring regions of
order-k subsets H1 and H2 that are not both type 1, may differ as |H1&H2| ≥ 1,
see e.g., regions V (6, 5) and V (3, 4) or regions V (5, 7, 8) and V (7, 8) in Fig. 6.
However, the representatives of H1 and H2 may differ in exactly one or two
elements. If |rep(H1)&rep(H2)| = 1 then the bisector bounding the two regions
is b(p, h), where H1 = H ′1 ∪ I(p), h ∈ H2 \H1, and |H2 \H1| = 1. (For a type
1 subset, rep(H) = H). Voronoi edges bounding the regions of order-k subsets,
which are not both of type 1, may remain in the order-k Voronoi diagram for
severaf orders, while |H1 ∪H2| > k.

On Higher Order Voronoi Diagrams of Line Segments 185

1

2

3

45
6

7

8

V (6, 5)

V (1, 6, 7)

V (1, 2) V (2, 3, 8)

V (3, 4)
V (5) V (4)

V (3)

V (2)

V (1)

V (6)

V (7)

V (8)

V (4, 5)

V (7, 8)

1

2

3

456

7

8

V (1, 2)

V (6, 5) V (3, 4)

V (3, 8)

V (2, 8)

V (4, 5)

V (7, 5)

V (7, 8)

V (3, 4, 5)

V (8, 4, 5)

V (5, 7, 8)

V (1, 8)

V (1, 6, 7)

V (2, 3, 8)

V (1, 7)

V (6, 7)

Fig. 6. (a) V1(S) of a planar straight-line graph. The bold regions are induced by
order-k subsets of type-2; (b) V2(S) of a planar-straight line graph. For brevity we use
V (s1, . . . , sm) notation instead of Vk({s1, . . . , sm}, S).

6 Intersecting Line Segments

Let S be a set of line segments that may intersect in a total I intersection points.
For simplicity we assume that no two segments share an endpoint and that no
more than two segments intersect at a common point. Intuitively, intersections
influence Voronoi diagrams of small order and the influence grows weaker as
k increases. Recall that the number of faces, edges and vertices of Vk(S) are
denoted Fk, Ek and Vk, respectively.

Lemma 9. The total number of unbounded faces in all orders is
∑n−1

i=1 Si =
n(n− 1) + 2I

Lemma 10. F1 = n+2I, F2 = 3n−3−S1+2I, and F3 = 5n−8−S1−S2+2I.

Following the induction scheme of Theorem 1 and using Lemma 10 as the base
case we derive

Fk = 2kn− k2 − n+ 1−
k−1∑
i=1

Si + 2I, Fk = 1− (n− k)2 +
n−1∑
i=k

Si

Lemma 7 is valid for arbitrary segments including intersecting ones.

186 E. Papadopoulou and M. Zavershynskyi

Theorem 3. The number of Voronoi faces in order-k Voronoi diagram of n
intersecting line segments with I intersections is

Fk = O(k(n− k) + I), for 1 ≤ k < n/2

Fk = O(k(n− k)), for n/2 ≤ k ≤ n− 1

7 Concluding Remarks

Any standard iterative approach can be adapted to compute the order-k Voronoi
diagram of non-crossing line segments in time O(k2n logn). The conventions of
Section 5 are important for line segments forming a planar straight-line graph.
We are currently considering more efficient algorithmic techniques.

References

1. Agarwal, P., de Berg, M., Matousek, J., Schwarzkopf, O.: Constructing levels in
arrangements and higher order Voronoi diagrams. SIAM J. Comput. 27(3), 654–667
(1998)

2. Alon, N., Györi, E.: The number of small semispaces of a finite set of points in the
plane. J. Comb. Theory, Ser. A 41(1), 154–157 (1986)

3. Aurenhammer, F., Drysdale, R., Krasser, H.: Farthest line segment Voronoi dia-
grams. Inf. Process. Lett. 100(6), 220–225 (2006)

4. Aurenhammer, F., Klein, R.: Voronoi Diagrams. In: Sack, J.-R., Urrutia, J. (eds.)
Handbook of Computational Geometry. North-Holland Publishing Co. (2000)

5. Boissonnat, J.-D., Devillers, O., Teillaud, M.: A Semidynamic Construction of
Higher-Order Voronoi Diagrams and Its Randomized Analysis. Algorithmica 9(4),
329–356 (1993)

6. Edelsbrunner, H.: Algorithms in combinatorial geometry. EATCS Monographs on
Theoretical Computer Science, ch. 13.4. Springer (1987)

7. Edelsbrunner, H., Maurer, H.A., Preparata, F.P., Rosenberg, A.L., Welzl, E.,
Wood, D.: Stabbing Line Segments. BIT 22(3), 274–281 (1982)

8. Karavelas, M.I.: A robust and efficient implementation for the segment Voronoi
diagram. In: Proc. 1st Int. Symp. on Voronoi Diagrams in Science and Engineering,
Tokyo, pp. 51–62 (2004)

9. Lee, D.T.: On k-Nearest Neighbor Voronoi Diagrams in the Plane. IEEE Trans.
Computers 31(6), 478–487 (1982)

10. Lee, D.T., Drysdale, R.L.S.: Generalization of Voronoi Diagrams in the Plane.
SIAM J. Comput. 10(1), 73–87 (1981)

11. Papadopoulou, E.: Net-Aware Critical Area Extraction for Opens in VLSI Circuits
Via Higher-Order Voronoi Diagrams. IEEE Trans. on CAD of Integrated Circuits
and Systems 30(5), 704–717 (2011)

12. Shamos, M.I., Hoey, D.: Closest-point problems. In: Proc. 16th IEEE Symp. on
Foundations of Comput. Sci., pp. 151–162 (1975)

13. Sharir, M., Agarwal, P.: Davenport-Schinzel Sequences and their Geometric Ap-
plications, ch. 5.4. Cambridge University Press (1995)

14. Yap, C.-K.: An O(n log n) Algorithm for the Voronoi Diagram of a Set of Simple
Curve Segments. Discrete & Computational Geometry 2, 365–393 (1987)

On the Farthest Line-Segment Voronoi Diagram

Evanthia Papadopoulou� and Sandeep Kumar Dey

Faculty of Informatics, USI - Università della Svizzera Italiana, Lugano, Switzerland
{evanthia.papadopoulou,deys}@usi.ch

Abstract. The farthest line-segment Voronoi diagram shows properties
surprisingly different from the farthest point Voronoi diagram: Voronoi
regions may be disconnected and they are not characterized by convex-
hull properties. In this paper we introduce the farthest line-segment hull
and its Gaussian map, a closed polygonal curve that characterizes the re-
gions of the farthest line-segment Voronoi diagram similarly to the way
an ordinary convex hull characterizes the regions of the farthest-point
Voronoi diagram. We also derive tighter bounds on the (linear) size of
the farthest line-segment Voronoi diagram. With the purpose of unify-
ing construction algorithms for farthest-point and farthest line-segment
Voronoi diagrams, we adapt standard techniques for the construction of
a convex hull to compute the farthest line-segment hull in O(n log n)
or output-sensitive O(n log h) time, where n is the number of segments
and h is the size of the hull (number of Voronoi faces). As a result,
the farthest line-segment Voronoi diagram can be constructed in output
sensitive O(n log h) time.

1 Introduction

Let S be a set of n simple geometric objects in the plane, such as points or line
segments, called sites. The farthest-site Voronoi diagram of S is a subdivision
of the plane into regions such that the region of a site s is the locus of points
farther away from s than from any other site. Surprisingly, the farthest line-
segment Voronoi diagram illustrates properties different from its counterpart
for points [1]. For example, Voronoi regions are not characterized by convex-
hull properties and they may be disconnected; a Voronoi region may consist
of Θ(n) disconnected faces. Nevertheless, the graph structure of the diagram
remains a tree and its structural complexity is O(n). An abstract framework
on the farthest-site Voronoi diagram (which does not include the case of inter-
secting line-segments) was given in [11]. Related is the farthest-polygon Voronoi
diagram, later addressed in [4].

In this paper we further study the structural properties of the farthest line-
segment Voronoi diagram. We introduce the farthest line-segment hull and its

� Research supported in part by the Swiss National Science Foundation, grant 200021-
127137 and the ESF EUROCORES program EuroGIGA/VORONOI, SNF 20GG21-
134355.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 187–196, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

188 E. Papadopoulou and S.K. Dey

Gaussian map, a closed polygonal curve that characterizes the regions of the far-
thest line-segment Voronoi diagram similarly to the way an ordinary convex hull
characterizes the regions of the farthest-point Voronoi diagram. Using the far-
thest line-segment hull we derive tighter upper and lower bounds on the (linear)
structural complexity of the diagram improving the bounds in [1] by a constant
factor. We provide O(n log n) and output sensitive O(n log h)-time algorithms for
the construction of the farthest line-segment hull, where h, h ∈ O(n), is the size
of the hull, by adapting standard approaches for the construction of an ordinary
convex hull. Then the farthest line-segment Voronoi diagram can be constructed
in additional O(h log h) time as given in [1] or in additional expected-O(h) time
by adapting the randomized incremental construction for points in [5]. The con-
cept of the farthest hull is applicable to the entire Lp metric, 1 ≤ p ≤ ∞, and it
is identical for 1 < p <∞.

The farthest line-segment Voronoi diagram finds applications in computing
the smallest disk that overlaps all given line-segments. It is necessary in defining
and computing the Hausdorff Voronoi diagram of clusters of line segments, which
finds applications in VLSI design automation, see e.g., [12] and references therein.

2 Definitions and the Farthest Hull

Let S = {s1, . . . , sn} be a set of n arbitrary line-segments in the plane. Line-
segments may intersect or touch at single points. The distance between a point
q and a line-segment si is d(q, si) = min{d(q, y), ∀y ∈ si}, where d(q, y) denotes
the ordinary distance between two points q, y in the Lp metric 1 ≤ p ≤ ∞. The
farthest Voronoi region of a line-segment si is

freg(si) = {x ∈ R2 | d(x, si) ≥ d(x, sj), 1 ≤ j ≤ n}

The collection of all farthest Voronoi regions, together with their bounding
edges and vertices, constitute the farthest line-segment Voronoi diagram of S,
denoted as FVD(S) (see Fig. 1). Any maximally connected subset of a region in
FVD(S) is called a face.

Any Voronoi edge bounding two neighboring regions, freg(si) and freg(sj),
is portion of the bisector b(si, sj), which is the locus of points equidistant from si
and sj . For line-segments in general position that are non-intersecting, b(si, sj)
is an unbounded curve that consists of a constant number of simple pieces as
induced by elementary bisectors between the endpoints and open portions of
si, sj . If segments intersect at a point p the bisector consists of two such curves
intersecting at point p. If segments share a common endpoint the bisector may
contain two dimensional regions in which case standard conventions get applied.
Typically, a single line-segment is treated as three entities: two endpoints and
an open line-segment; the entire equidistant area is assigned to the common
endpoint. For more information on line-segment bisectors, see e.g., [9,10] for the
L2 metric, [14] for the L∞ metric, and [8] for points in Lp.

The farthest line-segment hull, for brevity the farthest hull, is a closed polyg-
onal curve that encodes the unbounded bisectors of FVD(S) maintaining their

On the Farthest Line-Segment Voronoi Diagram 189

S5
S1

S4

S3

15

5

4

3

S2

Fig. 1. A farthest line-segment Voronoi diagram in the Euclidean plane

cyclic order. In the following, we assume the ordinary Euclidean distance, how-
ever, definitions remain identical in the entire Lp, 1 < p < ∞, metric. For the
L∞ (L1) version of the farthest hull see [6].

Definition 1. A line l through the endpoint p of a line-segment s, s ∈ S, is
called a supporting line of S if and only if an open halfplane induced by l, de-
noted H(l), intersects all segments in S, except s (and possibly except additional
segments incident to p). Point p is said to admit a supporting line and it induces
a vertex on the farthest hull. The unit normal of l pointing away from H(l), is
called the unit vector of l and is denoted ν(l). A line-segment s, s ∈ S, such that
the line l through s is a supporting line of S and H(l) intersects all segments in
S \ {s}, is called a hull segment; the unit vector of l is also denoted ν(s).

A single line-segment s may result in two hull segments of two opposite unit
vectors if the supporting line through s intersects all segments in S.

Definition 2. The line segment pq joining the endpoints p, q, of two line seg-
ments si, sj ∈ S is called a supporting segment if and only if an open halfplane
induced by the line l through pq, denoted H(pq), intersects all segments in S,
except si, sj (and possibly except additional segments incident to p, q). The unit
normal of pq pointing away from H(pq) is called the unit vector of pq, ν(pq).

As shown in [1], a segment s has a non-empty Voronoi region in FVD(S) if and
only if s or an endpoint of s admits a supporting line. The unbounded bisectors
of FVD(S) correspond exactly to the supporting segments of S.

Theorem 1. Let f-hull(S) denote the sequence of the hull segments and the
supporting segments of S, ordered according to the angular order of their unit
vectors. f-hull(S) forms a closed, possibly self intersecting, polygonal curve, which
is called the farthest line-segment hull of S (for brevity, the farthest hull).

Proof. (Sketch). The unit vector of any supporting line, hull segment, or sup-
porting segment of S must be unique (by Definitions 1, 2). Thus, f-hull(S) admits

190 E. Papadopoulou and S.K. Dey

a well defined ordering as obtained by the angular order of the unit vectors of its
edges. Given a farthest hull edge ei of unit vector νi = ν(ei), let νi+1 = ν(ei+1)
be the unit vector following νi in a clockwise traversal of the circular list of all
unit vectors of S. It is not hard to argue that ei+1 must be incident to an end-
point of ei, m, by considering a supporting line through m, lm, which starts as
the line through ei and rotates clockwise around m until it hits ei+1. During the
rotation lm always remains a supporting line of S. Vertex m is chosen between
the endpoints of ei according to whether ei is a hull or a supporting segment.

Thus, f-hull(S) forms a polygonal chain, which may self intersect and may
visit a vertex multiple times. The uniqueness of unit vectors implies that edges
are visited only once, hence the polygonal chain must be closed. ��

S3

S5

e

g

c
h

d

S1

a

S4

b

b
c

d

h
g f

e

a
f

Fig. 2. The farthest line-segment hull for Fig. 1 and its Gaussian map

Fig. 2 illustrates the farthest hull and its angular ordering for the Voronoi di-
agram of Fig. 1. If line-segments in S degenerate to points, the farthest hull
corresponds exactly to the convex hull of S. The vertices of the farthest hull are
exactly the endpoints of S that admit a supporting line. The edges are of two
types: supporting segments and hull segments. A supporting line of S is exactly
a supporting line of the farthest hull. Any maximal chain of supporting segments
between two consecutive hull segments must be convex.

Consider the Gaussian map of the farthest hull of S, for short Gmap, denoted
Gmap(S), which is a mapping of the farthest hull onto the unit circle Ko, such
that every edge e is mapped to a point on the circumference of Ko as obtained by
its unit vector ν(e), and every vertex is mapped to one or more arcs as delimited
by the unit vectors of the incident edges (see Fig. 2). For more information on
the Gaussian map see e.g., [3,13]. The Gaussian map can be viewed as a cyclic
sequence of vertices of the farthest hull, each represented as an arc along the
circumference of K0. Each point along an arc of K0 corresponds to the unit
vector of a supporting line through the corresponding hull-vertex. The Gaussian
map provides an encoding of all the supporting lines of the farthest hull as well
as an encoding of the unbounded bisectors and the regions of the farthest line-
segment Voronoi diagram. The portion of the Gaussian map above (resp. below)
the horizontal diameter of Ko is referred to as the upper (resp. lower) Gmap.
Thus, we can define the upper (resp. lower) farthest hull as the portion that
corresponds to the upper (resp. lower) Gmap, similarly to an ordinary upper
(resp. lower) convex hull.

On the Farthest Line-Segment Voronoi Diagram 191

Corollary 1. FVD(S) has exactly one unbounded bisector for every supporting
segment s of f-hull(S), which is unbounded in the direction opposite to ν(s).
Unbounded bisectors in FVD(S) are cyclically ordered following exactly the cyclic
ordering of Gmap(S).

In [1] the unbounded bisectors of FVD(S) are identified through the point-line
duality transformation T , which maps a point p = (a, b) in the primal plane to a
line T (p) : y = ax−b in the dual plane, and vice versa. A segment si = uv is sent
into the wedge wi that lies below (resp. above) both lines T (u) and T (v) (see Fig.
3 of [1]), referred to as the lower (resp. upper) wedge. Let E (resp. E′) be the
boundary of the union of the lower (resp. upper) wedges w1, . . . , wn. As shown
in [1], the edges of E (in x-order) correspond to the faces of FVD(S), which are
unbounded in directions 0 to π (in cyclic order). Respectively for the edges in E′

and the Voronoi faces unbounded in directions π to 2π. In this paper we point
out the equivalence between E and the lower Gmap. The edges of E in increasing
x-order correspond exactly to the arcs of the lower Gmap in counterclockwise
order; the vertices of E are exactly the unit vectors of the Gmap; the apexes
of wedges in E are the unit vectors of hull segments. Respectively for E′ and
the upper Gmap. As pointed out in [1], E forms a Davenport-Schinzel sequence
of order 3, thus the same holds for the lower Gmap. This observation does not
imply a linear complexity bound, however. A 4n + 2 upper bound on the size
of E was shown in [1] based on [7]. For non-crossing segments, the order of the
sequence is 2, which directly implies a linear complexity bound (see also [4]).

3 Improved Combinatorial Bounds

In this section we give tighter upper and lower bounds on the number of faces
of the farthest line-segment Voronoi diagram for arbitrary line segments. Let
a start-vertex and an end-vertex respectively stand for the right and the left
endpoint of a line segment. Let an interval [ai, ai+1] denote the portion of the
lower Gmap between two consecutive (but not adjacent) occurrences of arcs for
segment sa = (a′, a), where a, a′ denote the start-vertex and end-vertex of sa
respectively. Interval [ai, ai+1] is assumed to be non-trivial i.e., it contains at
least one arc in addition to a, a′. The following lemma is easy to derive using
the duality transformation of [1].

Lemma 1. Let [ai, ai+1] be a non-trivial interval of segment sa = (a′, a) on
lower Gmap(S). We have the following properties: 1. The vertex following ai
(resp. preceding ai+1) in [ai, ai+1] must be a start-vertex (resp. end-vertex). 2. If
ai is a start-vertex (resp. ai+1 is end-vertex), no other start-vertex (resp. end-
vertex) in the interval [ai, ai+1] can appear before ai or past ai+1 on the lower
Gmap, and no end-vertex (resp. start-vertex) in [ai, ai+1] can appear before ai
(resp. past ai+1) on the lower Gmap.

We use the following charging scheme for a non-trivial interval [ai, ai+1]: If ai
is a start-vertex, let u be the vertex immediately following ai in [ai, ai+1]; the

192 E. Papadopoulou and S.K. Dey

appearance of ai+1 is charged to u, which must be a start-vertex by Lemma 1.
If ai+1 is an end-vertex, let u be the vertex in [ai, ai+1] immediately preceding
ai+1; the appearance of ai is charged to u, which by Lemma 1, must be an
end-vertex.

Lemma 2. The re-appearance along the lower Gmap of any endpoint of a seg-
ment sa is charged to a unique vertex u of the lower f-hull, such that no other
re-appearance of a segment endpoint on the lower Gmap can be charged to u.

Proof. Let [ai, ai+1] be a non-trivial interval of the lower Gmap and let u be
the vertex charged the re-appearance of ai+1 (or ai) as described in the above
charging scheme. By Lemma 1, all occurrences of u are in [ai, ai+1]. Suppose (for
a contradiction) that u can be charged the re-appearance of some other vertex
c. Assuming that u is a start vertex, c must be a start vertex and an interval
[cu...c] must exist such that cu ∈ [ai, ai+1], and thus [cu...c] ∈ [ai, ai+1]. But
then u could not appear outside [cu...c], contradicting the fact that u has been
charged the reappearance of ai+1. Similarly for an end vertex u. ��

By Corollary 1, the number of faces of FVD(S) equals the number of supporting
segments of the farthest hull, which equals the number of maximal arcs along the
Gmap between consecutive pairs of unit vectors of supporting segments. There
are two types of maximal arcs: segment arcs, which consist of a segment unit
vector and its two incident arcs of the segment endpoints, and single-vertex arcs,
which are single arcs bounded by the unit vectors of the two incident supporting
segments.

Lemma 3. The number of maximal arcs along the lower (resp. upper) Gmap,
and thus the number of faces of FVD(S) unbounded in directions 0 to π (resp. π
to 2π), is at most 3n-2. This bound is tight.

Proof. Consider the sequence of all occurrences of a single segment sa = (a′, a)
on the lower Gmap. It is a sequence of the form

. . . a . . . aa′ . . . a′ . . . or . . . a . . . a . . . a′ . . . a′ . . .

The number of maximal arcs involving sa is exactly one plus the number of
(non-trivial) intervals involving the endpoints of sa. Summing over all segments,
the total number of maximal arcs on the lower Gmap is at most n plus the total
number of vertices that may get charged due to a non-trivial interval (i.e., the
re-appearance of a vertex). By Lemma 2, a vertex can be charged at most once
and there are 2n vertices in total. However, the first and last vertex along the
lower Gmap cannot be charged at all. Thus, in total 3n − 2. Similarly for the
upper Gmap.

Figure 3a illustrates an example, in dual space, of n line segments (lower
wedges) whose lower Gmap (boundary of the wedge union) consists of 3n-2
maximal arcs. There are exactly 2n-2 charges for vertex (wedge) re-appearances
and exactly n hull segments. ��

On the Farthest Line-Segment Voronoi Diagram 193

Theorem 2. The total number of faces of the farthest line-segment Voronoi
diagram of a set S of n arbitrary line segments is at most 6n−6. A corresponding
lower bound is 5n-4.

Proof. The upper bound is derived by Lemma 3 and Corollary 1. A lower bound
of 5n-4 faces can be derived by the example, in dual space, of Figure 3b. In
Figure 3b, n line segments are depicted as lower and upper wedges using the
point-line duality. There are 2n hull segments, 2(n − 2) + 1 charges for vertex
reappearances on lower wedges, and n− 1 charges on upper wedges. ��

(a) (b)

Fig. 3. (a)Lower Gmap of 3n-2 arcs. (b)Gmap of 5n-4 arcs.

Theorem 2 improves the 8n + 4 upper bound and the 4n − 4 lower bound on
the number of faces of the farthest line-segment Voronoi diagram given in [1], as
based on [7]. For disjoint segments the corresponding bound is 2n− 2 [4].

4 Algorithms for the Farthest Line-Segment Hull

Using the Gmap, we can adapt most standard techniques to compute a con-
vex hull with the ability to compute the farthest line-segment hull, within the
same time complexity. Our goal is to unify techniques for the construction of
farthest-point and farthest line-segment Voronoi diagrams. By adapting Chan’s
output sensitive algorithm we derive an O(n log h) output-sensitive algorithm
to compute the farthest line-segment Voronoi diagram. A two-phase O(n log n)
algorithm in dual space, which is based on divide and conquer paired with plane
sweep is outlined in [1].

4.1 Divide and Conquer or Incremental Constructions

We list properties that lead to a linear-time merging scheme for the farthest hulls
of two disjoint sets of segments, L,R, and their Gaussian maps. The merging
scheme leads to an O(n logn) divide-and-conquer approach and to an O(n log n)
two-stage incremental construction. Recall that there may be Θ(|L| + |R|) sup-
porting segments between the two farthest hulls. Given a unit vector ν(e) of

194 E. Papadopoulou and S.K. Dey

Gmap(L), let its R-vertex be the vertex v in R such that ν(e) falls along the
arc of v in Gmap(R). Respectively for Gmap(R). A supporting line, an edge or
a vertex of the farthest hull of L (resp. R) and their corresponding unit vector
or arc are called valid if they remain in the farthest hull of L ∪R.

Lemma 4. An edge e of f-hull(L) and its unit vector ν(e) remain valid if and
only if the R-vertex of ν(e) in Gmap(R) lies in H(e).

Proof. Let q, in segment sq, be the R-vertex of ν(e). The line parallel to e passing
through q, lq(e), must be a supporting line of f-hull(R). H(e) must intersect all
segments in L except those inducing e. If q ∈ H(e) then lq(e) ∈ H(e) and thus
H(e) must intersect all segments in R, thus e must remain valid. If q �∈ H(e)
then lq(e) lies entirely outside H(e) and sq does not intersect H(e), thus e must
be invalid. ��

Lemma 5. A vertex m of f-hull(L) remains valid if and only if either an in-
cident farthest hull edge remains valid, or m is the L-vertex of an invalid unit
vector in Gmap(R).

Proof. A vertex incident to a valid farthest hull edge must clearly remain valid.
By Lemma 5, if m is the L-vertex of an invalid edge in f-hull(R) then m must
be valid. Conversely, suppose that m is valid but both edges ei, ei+1 in f-hull(L)
incident to m are invalid. Since m is valid, there is a supporting line of L ∪ R
passing through m, denoted lm, such that ν(lm) is between ν(ei) and ν(ei+1).
Let u be the R-vertex of ν(lm), where ν(lm) is between ν(fj) and ν(fj+1) in
Gmap(R). Since lm is valid, u is in H(lm). Since ν(lm) is between ν(fj) and
ν(fj+1), m cannot belong in H(fj) ∩H(fj+1). This implies that at least one of
fj and fj+1 must be invalid. ��

Let Gmap(LR) denote the circular list of unit vectors and arcs derived by su-
perimposing Gmap(L) and Gmap(R). After determining valid and invalid unit
vectors using Lemmas 4 and 5, Gmap(LR) represents a circular list of the vertices
in f-hull(L∪R) (by Lemma 5). Thus, supporting segments between the two hulls
can be easily derived by the pairs of consecutive valid vertices in Gmap(LR) that
belong to different sets. In particular, to derive Gmap(L∪R) from Gmap(LR) do
the following: For any two consecutive valid vectors, one in Gmap(L) and one
in Gmap(R), insert a new unit vector (see Fig. 4). For any valid vertex m of
Gmap(L) (resp. Gmap(R)) between two consecutive valid vectors of Gmap(R)
(resp. Gmap(L)), insert new unit vectors for the corresponding supporting seg-
ments incident to m.

For R = {s}, the merging process can be refined as follows: Let ν1(s) be the
unit vector of s in its upper Gmap. 1. Perform binary search to locate ν1(s) in
upper-Gmap(L). 2. Sequentially move counterclockwise along upper-Gmap(L) to
test the validity of the encountered unit vectors until either a valid start-vertex
of x-coordinate smaller than the start-vertex of s is found or the beginning of
upper-Gmap(L) is reached. 3. Move clockwise along upper-Gmap(L) until either
a valid end-vertex of x-coordinate larger than the end-vertex of s is found or
the end of upper-Gmap(L) is reached. In the process, all relevant supporting

On the Farthest Line-Segment Voronoi Diagram 195

h

a
bcd

e

f

g

i
j

k
l

m

n

o

p

X X

X

X
X
XX

h

d
e

f

g

i
l

m

n

il

nd

Fig. 4. Merging of two Gmaps

segments in the upper Gmap are identified. Similarly for the lower Gmap. This
insertion procedure can give an alternative O(n logn) algorithm to compute
the farthest hull by independently considering start-vertices and end-vertices in
increasing x-coordinate followed by a merging step for the two Gmaps: First
compute a partial Gmap of start vertices by inserting start-vertices in order
of increasing x-coordinate. (Recall that insertion starts with a binary search).
Then compute a partial Gmap of end-vertices by considering end-vertices in
decreasing x-coordinate. Finally, merge the two partial Gmaps to obtain the
complete Gmap. Because of the order of insertion, any portion of the partial
Gmap traversed during an insertion phase gets deleted as invalid, thus the time
complexity bound is achieved.

4.2 Output Sensitive Approaches

Using the Gmap, Jarvis march and quick hull are simple to generalize to con-
struct the farthest hull within O(nh) time, where h is the size of the farthest hull.
For Jarvis march, unit vectors are identified one by one in say counterclockwise
order starting at a vertex in some given direction, e.g., the bottommost horizontal
supporting line. By combining an O(n logn) construction algorithm and Jarvis
march as detailed in [2], we can obtain an O(n log h) output sensitive algorithm
to construct the farthest hull. There is one point in [2] that needs modification
to be applicable to the farthest hull, namely computing the tangent (here a sup-
porting segment) between a given point and a convex hull (here a farthest hull,
f-hull(L)). Note that unlike the ordinary convex hull, Θ(|L|) such supporting
segments may exist, complicating a binary search. However, sequential search to
compute those tangents can work within the same overall time complexity for
one wrapping phase of the Jarvis march (see [2]). During a wrapping phase, a set
T of at most hr tangents are computed, where r is the number of groups that
partition the initial set of n points (here segments), each group being of size at
most m, m = �n/r�. The set of tangents T can be computed in O(n) time. In
particular, given Gmap(Si), Si ⊆ S, a hull vertex p incident to segment s, and a
supporting segment of unit vector ν, we can compute the next unit vector νnext
in Gmap(Si ∪{s}) in counterclockwise order by sequentially scanning Gmap(Si)
starting at ν, applying the criteria of Lemmas 4 and 5 until νnext is encoun-
tered. No portion of Gmap(Si) between ν and νnext needs to be encountered
again during this wrapping phase. Thus, the O(hr) supporting segments of one

196 E. Papadopoulou and S.K. Dey

wrapping phase can be computed in O(n) time. Note that if s is a hull segment,
a supporting line through s may be included in T .

5 Concluding Remarks

Once the farthest hull is derived, the farthest line segment Voronoi diagram
can be computed similarly to its counterpart for points. For example, one can
use the simple O(h log h) algorithm of [1] or adapt the randomized incremental
construction for the farthest-point Voronoi diagram of [5] in expected O(h)-
time. The randomized analysis in [5] remains valid simply by substituting points
along a convex hull with the elements of the farthest hull, where elements of
the farthest hull are independent objects even when they refer to the same line
segment. Adapting Chan’s algorithm [2] for the construction of the farthest hull
results in an output sensitive O(n log h) algorithm for the farthest line-segment
Voronoi diagram.

References

1. Aurenhammer, F., Drysdale, R.L.S., Krasser, H.: Farthest line segment Voronoi
diagrams. Information Processing Letters 100(6), 220–225 (2006)

2. Chan, T.M.: Optimal output-sensitive convex-hull algorithms in two and three
dimensions. Discrete and Computational Geometry 16, 361–368 (1996)

3. Chen, L.L., Chou, S.Y., Woo, T.C.: Parting directions for mould and die design.
Computer-Aided Design 25(12), 762–768 (1993)

4. Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S.,
Lee, M., Na, H.S.: Farthest-Polygon Voronoi Diagrams. arXiv:1001.3593v1 (cs.CG)
(2010)

5. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications, 3rd edn. Springer (2008)

6. Dey, S.K., Papadopoulou, E.: The L∞ farthest line segment Voronoi diagram. In:
Proc. 9th Int. Symposium on Voronoi Diagrams in Science and Engineering (2012)

7. Edelsbrunner, H., Maurer, H.A., Preparata, F.P., Rosenberg, A.L., Welzl, E.,
Wood, D.: Stabbing Line Segments. BIT 22(3), 274–281 (1982)

8. Lee, D.T.: Two-dimensional Voronoi diagrams in the Lp metric. J. ACM 27(4),
604–618 (1980)

9. Lee, D.T., Drysdale, R.L.S.: Generalization of Voronoi Diagrams in the Plane.
SIAM J. Comput. 10(1), 73–87 (1981)

10. Karavelas, M.I.: A robust and efficient implementation for the segment Voronoi
diagram. In: Proc. 1st. Int. Symposium on Voronoi Diagrams in Science and En-
gineering, pp. 51–62 (2004)

11. Mehlhorn, K., Meiser, S., Rasch, R.: Furthest site abstract Voronoi diagrams. Int.
J. of Comput. Geometry and Applications 11(6), 583–616 (2001)

12. Papadopoulou, E.: Net-aware critical area extraction for opens in VLSI circuits via
higher-order Voronoi diagrams. IEEE Trans. on CAD 30(5), 704–716 (2011)

13. Papadopoulou, E., Lee, D.T.: The Hausdorff Voronoi diagram of polygonal objects:
A divide and conquer approach. Int. J. of Computational Geometry and Applica-
tions 14(6), 421–452 (2004)

14. Papadopoulou, E., Lee, D.T.: The L∞ Voronoi Diagram of Segments and VLSI
Applications. Int. J. Comp. Geom. and Applications 11(5), 503–528 (2001)

Computing the Longest Common Subsequence

of Two Run-Length Encoded Strings

Yoshifumi Sakai

Graduate School of Agricultural Science, Tohoku University,
1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai 981-8555, Japan

sakai@biochem.tohoku.ac.jp

Abstract. The present article reveals that the problem of finding
the longest common subsequence of two strings given in run-length
encoded form can be solved in O(mn log logmin(m,n,M/m,N/n,X))
time, where one input string is of length M with m runs, the other is
of length N with n runs, and X is the average difference between the
length of a run from one input string and that of a run from the other.

1 Introduction

A maximal-length substring of a string that consists of common symbols is re-
ferred to as a run of the string. A sting is run-length encoded if the string is
decomposed into a sequence of runs, and each run is represented as a pair of its
common symbol and length. This form of a string can compactly represent the
string, if the string consists of a small number of long runs.

Let A and B be strings of length M with m runs, and of length N with
n runs, respectively. The problem of computing the similarity between A and
B, which is given in run-length encoded form, has been investigated with re-
spect to various scoring metrics. This problem was first shown to be solvable in
O(mnmax(M/m,N/n)) time for the longest common subsequence (LCS) met-
ric by Bunke and Csirik [3]. The same time bound was then achieved for more
relaxed scoring metrics, such as the weighted edit distance metric [5,9] and the
affine gap penalty metric [7]. Basically, these algorithms process any pair of
runs, one from A and the other from B, in O(max(M/m,N/n)) amortized time,
where M/m and N/n are the average run lengths of A and B, respectively. For
restricted metrics, algorithms that perform each run pair in time depending only
on the number of runs were also proposed. The recent algorithm due to Chen
and Chao [4], which processes each run pair in O(max(m,n)) amortized time
for the edit distance metric, is one such algorithm. This algorithm performs in
O(mnmax(m,n)) time.

For the LCS metric, further faster algorithms have been developed for the
problem. Apostolico et al. [2] and Mitchell [10] proposed algorithms that perform
in time O(mn logmax(m,n)). In particular, the algorithm of Apostolico et al. [2]
processes each run pair in O(logmax(m,n)) amortized time using a balanced bi-
nary search tree. This process time can be improved to O(log logmax(m,n))

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 197–206, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

198 Y. Sakai

amortized time if the balanced binary search tree is replaced by a data struc-
ture given by van Emde Boas [11] after a certain preprocessing based on
the integer sorting due to Han [6]. According to this observation, the algo-
rithm of Apostolico et al. [2] can immediately be modified so as to perform
in O(mn log logmax(m,n)) time without changing its outline. About a decade
later, another best previous time bound was achieved by Liu et al. [8] and Ann
et al. [1]. They improved the amortized process time for each run pair from
O(max(M/m,N/n)) due to Bunke and Csirik [3] to O(min(M/m,N/n)), and
hence, their algorithms perform in O(mnmin(M/m,N/n)) time. Whether the
problem can be solved in O(mn) time remains an open question.

Although Apostolico et al. [2] and Mitchell [10] have achieved an almost
quadratic-time computation of the problem for the LCS metric, the asymp-
totic time bound given by Liu et al. [8] and Ann et al. [1] naturally poses two
theoretical issues about process time of each run pair: whether each run pair
can be processed in amortized time depending only on the number of runs in
any of the input strings, and whether each run pair can be processed in amor-
tized time logarithmic or further less in the average run length of any of the
input strings. The present article settles these issues positively, by showing that
a variant of the algorithm of Apostolico et al. [2] with the modification men-
tioned earlier can process each run pair in O(log logmin(m,n,M/m,N/n,X))
amortized time, where X is the average difference between the length of a run
from A and that of a run from B. The execution time of the proposed variant is
hence O(mn log logmin(m,n,M/m,N/n,X)), improving the previous best time
bounds of the problem for the LCS metric.

2 Preliminaries

Let Σ be a finite set of symbols. For any string A, let A[I] denote the Ith symbol
of A. For any strings A and B, let AB denote the concatenation of A followed
by B. For any symbol a and any positive integer K, let aK denote the string
aa · · ·a of length K. The run-length encoded (RLE) form representing string
A is the shortest sequence (α(1),M(1))(α(2),M(2)) · · · (α(m),M(m)) such that
A = α(1)M(1)α(2)M(2) · · ·α(m)M(m), where α(i) and M(i) are a symbol in Σ
and a positive integer, respectively. Each substring α(i)M(i) is referred to as the
ith run of A. The ith run of A is denoted by A(i). Let A[G..I] and A(g..i) denote
strings A[G]A[G + 1] · · ·A[I] and A(g)A(g + 1) · · ·A(i), respectively.

A subsequence of string A is a string obtained from A by deleting zero or more
symbols at any position. A longest common subsequence (LCS) of strings A and
B is one of the longest subsequences common to A and B. Given strings A and
B over Σ, the LCS problem consists of finding an arbitrary LCS of A and B.
The present article considers the LCS problem for the case in which two input
strings, A of length M and B of length N , are given in run-length encoded form
as (α(1),M(1)) · · · (α(m),M(m)) and (β(1), N(1)) · · · (β(n), N(n)), respectively.
The solution of this problem is the RLE form representing an arbitrary LCS of
A and B. This problem is referred to as the LCS problem in RLE form.

Computing the LCS of Two RLE Strings 199

For any symbol a in Σ, let ma be the number of indices i with 1 ≤ i ≤ m such
that α(i) = a, and let ia(u) denote the uth least such index i. For convenience,
let ia(0) = 0. Let Ma(u) denote the value M(ia(u)), and let Ma(w..u) denote
the sum Ma(w) + Ma(w + 1) + · · ·+ Ma(u). Note that Ma(w..u) = Ma(1..u)−
Ma(1..w − 1). For simplicity, Ma(1..ma) is denoted by Ma. Define na, ja(v),
Na(v), Na(x..v), and Na analogously with respect to B. Let Ra(u, v) denote the
difference Na(1..v)−Ma(1..u). Hence, for example, Ra(w−1, x−1) ≤ Ra(u, v) if
and only if Ma(w..u) ≤ Na(x..v). The present article assumes that any algorithm
has a constant-time access to any value introduced above, which can be achieved
by a straightforward O(m + n)-time preprocessing.

Let La(u, v) = min(Ma(u), |Na(v) −Ma(u)|, Na(v)), and let La be the sum
of La(u, v), where (u, v) ranges over all index pairs such that 1 ≤ u ≤ ma and
1 ≤ v ≤ na. Let L be the sum of La with a ranging over all symbols in Σ.

3 Algorithm

This section proposes an O(mn log logmin(m,n, L/(mn)))-time algorithm for
the LCS problem in RLE form based on the dynamic programming technique.
This algorithm should be regarded as a variant of the algorithm of Apostolico
et al. [2], because the algorithm performs well depending on a recurrence similar
to (but not exactly the same as) that used in their algorithm.

3.1 Outline of the Algorithm

This subsection presents an outline of the proposed algorithm. (Due to limitation
of space, the present article does not present proofs of the lemmas introduced in
this subsection. The proofs will be presented in the full paper.)

For any index pair (I, J) with 0 ≤ I ≤ M and 0 ≤ J ≤ N , let C[I, J] denote
an arbitrary LCS of prefixes A[1..I] and B[1..J]. Similarly, for any index pair
(i, j) with 0 ≤ i ≤ m and 0 ≤ j ≤ n, let C(i, j) denote an arbitrary LCS of
A(1..i) and B(1..j). It is easy to verify that concatenation C[I − 1, J − 1]a is an
LCS of A[1..I] and B[1..J] if both A[I] and B[J] are identical to a; otherwise,
at least one of C[I, J − 1] or C[I − 1, J] is an LCS of A[1..I] and B[1..J]. Using
the dynamic programming technique based on this simple recurrence, the LCS
problem can be solved in O(MN) time by constructing a table of the length
of strings C[I, J] for all index pairs (I, J) with 0 ≤ I ≤ M and 0 ≤ J ≤ N
in O(MN) time, and then performing a traceback process in O(M + N) time
[12]. The proposed algorithm for the LCS problem in RLE form also follows this
outline, but instead uses a table of the length of strings C(i, j) for all index pairs
(i, j) with 0 ≤ i ≤ m and 0 ≤ j ≤ n.

Let any index pair (I, J) with A[I] = B[J] be referred to as a match. Let
any match (I, J) such that both C[I, J − 1] and C[I − 1, J] are shorter than
C[I, J] be referred to as dominant. In other words, a match (I, J) is dominant
if and only if C[I, J] is a subsequence of neither A[1..I − 1] nor B[1..J − 1]. One
important property of dominant matches is that, for any match (G,H), there

200 Y. Sakai

exists a dominant match (I, J) with I = G or J = H such that C[I, J] is an
LCS of A[1..G] and B[1..H]. Due to this property, for any index pair (i, j) with
α(i) = β(j), at least one of C[M(1..i), J(i, j)] or C[I(i, j), N(1..j)] is an LCS of
A(1..i) and B(1..j), where J(i, j) is the greatest index J less than or equal to
N(1..j) such that (M(1..i), J) is dominant, and I(i, j) is the greatest index I less
than or equal to M(1..i) such that (I,N(1..i)) is dominant. Furthermore, in the
above observation, C[M(1..i), J(i, j)] can be replaced by C(i, j−1) if there exist
no such indices J with N(1..j − 1) < J , and similarly, C[I(i, j), N(1..j)] can be
replaced by C(i− 1, j) if there exist no such indices I with M(1..i− 1) < I. The
proposed algorithm constructs the table of the length of strings C(i, j) based on
these observations.

The (i, j)th entry of the table for each index pair (i, j) is determined in row-by-
row order (i.e., in ascending order with respect to (i−1)n+j). If α(i) �= β(j), then
at least one of C(i, j − 1) or C(i− 1, j) is an LCS of A(1..i) and B(1..j). Hence,
the (i, j)th entry of the table can be determined in constant time by referring
to the (i, j− 1)th and the (i− 1, j)th entries. In contrast, the (i, j)th entry with
α(i) = β(j) is determined, after obtaining a list L(i, j) of dominant matches
defined as follows. Let J (i, j) be the list of all dominant pairs (M(1..i), J) with
N(1..j − 1) < J < N(1..j) in ascending order with respect to J . Let K(i, j)
be the list consisting of a single element (M(1..i), N(1..j)) if it is dominant;
otherwise, let K(i, j) be the empty list. Let I(i, j) be the list of all dominant
pairs (I,N(1..j)) with M(1..i − 1) < I < M(1..i) in descending order with
respect to I. Then, L(i, j) is defined as the concatenation of J (i, j), K(i, j), and
I(i, j) in this order. It follows from this definition that, if L(i, j) is non-empty,
then C[M(1..i), N(1..j)] is an LCS of A(1..i) and B(1..j). Otherwise, at least
one of C(i, j− 1), C[M(1..i), J], C[I,N(1..j)], or C(i− 1, j) is an LCS of A(1..i)
and B(1..j), where (M(1..i), J) is the last element of J (i, j), and (I,N(1..j)) is
the first element of I(i, j).

The length of C(i, j) and the entry of the table to which the backward
pointer from the (i, j)th entry points are determined according to the follow-
ing lemma based on the observations presented by Apostolico et al. [2]. For any
dominant match (I, J), let p(I, J) denote the index pair argmax(w,x) w (hence,
argmax(w,x) x), where M(1..ia(u) − 1) < I ≤ M(1..ia(u)), N(1..ja(v) − 1) <
J ≤ N(1..ja(v)), and (w, x) ranges over all index pairs such that 1 ≤ w ≤ u,
1 ≤ x ≤ v, and Ra(w−1, x−1) = Ra(u, v)−(N(1..ja(v))−J)+(M(1..ia(u))−I)
(i.e., Ma(w..u)− (M(1..ia(u))− I) = Na(x..v)− (N(1..ja(v))− J)). The lemma
claims that p(I, J) recursively specifies an LCS of A[1..I] and B[1..J].

Lemma 1 (Apostolico et al. [2]). For any dominant match (I, J), C(ia(w)−
1, ja(x) − 1)aK is an LCS of A[1..I] and B[1..J], where (w, x) = p(I, J),
M(1..ia(u) − 1) < I ≤ M(1..ia(u)), N(1..ja(v) − 1) < J ≤ N(1..ja(v)), and
K = Ma(w..u)− (M(1..ia(u))− I) = Na(x..v) − (N(1..ja(v))− J).

Based on this lemma, it is useful to introduce the following lists. Let Ja(u, v),
Ka(u, v), Ia(u, v), and La(u, v) be the lists obtained from J (i, j), K(i, j), I(i, j),
and L(i, j) with i = ia(u) and j = ja(v), respectively, by replacing each ele-
ment (I, J) by the index pair p(I, J). It follows from Lemma 1 that, if Ka(u, v)

Computing the LCS of Two RLE Strings 201

is non-empty, then C(ia(w) − 1, ja(x) − 1)aK is an LCS of A(1..ia(u)) and
B(1..ja(v)), and the entry to which the backward pointer points is set to
the (ia(w) − 1, ja(x) − 1)th entry, where (w, x) is the only element belonging
to Ka(u, v), and K = Ma(w..u) = Na(x..v). Otherwise, if the longest one
of C(ia(w) − 1, ja(x) − 1)aMa(w..u) for the last element (w, x) of Ja(u, v), or
C(ia(w) − 1, ja(x) − 1)aNa(x..v) for the last element (w, x) of Ia(u, v) is longer
than both C(i, j − 1) and C(i − 1, j), then this string is an LCS of A(1..ia(u))
and B(1..ja(v)), and the entry to which the backward pointer points is set to
the (ia(w) − 1, ja(x) − 1)th entry.

When determining the (ia(u), ja(v))th entry of the table, instead of explicitly
obtaining L(ia(u), ja(v)), the algorithm obtains La(u, v), because of the existence
of a simple recurrence, which is presented in the following two lemmas.

Lemma 2. For any symbol a in Σ and any index pair (u, v) with 1 ≤ u ≤ ma

and 1 ≤ v ≤ na, La(u, v) is identical to the concatenation of

– the prefix of Ia(u, v − 1) with v ≥ 2 consisting of all elements (w, x) such
that C(ia(w)− 1, ja(x)− 1)aNa(x..v−1) is longer than C(ia(u)− 1, ja(v)− 1),

– (u, v), if (u, v) belongs to La(u, v), and
– the suffix of Ia(u, v − 1) with u ≥ 2 consisting of all elements (w, x) such

that C(ia(w)−1, ja(x)−1)aMa(w..u−1) is longer than C(ia(u)−1, ja(v)−1),

in this order.

Lemma 3. For any symbol a in Σ, any index pair (u, v) with 1 ≤ u ≤ ma and
1 ≤ v ≤ na does not belong to La(u, v) if and only if

1. C(ia(u), ja(v)− 1) is exactly Ma(u) longer than C(ia(u)− 1, ja(v)− 1),
2. C(ia(w)−1, ja(x)−1)aMa(w..u−1) is as long as C(ia(u)−1, ja(v)−1), where

(w, x) is the last element of non-empty Ia(u, v − 1) with v ≥ 2,
3. C(ia(u)− 1, ja(v)) is exactly Na(v) longer than C(ia(u)− 1, ja(v)− 1), or
4. C(ia(w)− 1, ja(x)− 1)aNa(x..v−1) is as long as C(ia(u)− 1, ja(v)− 1), where

(w, x) is the first element of non-empty Ja(u− 1, v) with u ≥ 2.

It follows from the outline and lemmas given above that, in order to present
the proposed algorithm, it suffices to show how to implement Ja(u, v), Ka(u, v),
and Ia(u, v) so that they can be obtained from Ia(u, v − 1) and Ja(u − 1, v)
according to Lemmas 2 and 3 in O(log logmin(ma, na, La/(mana))) amortized
time. The implementation is presented in the following three subsections. Sec-
tion 3.2 introduces a simple implementation that allows the algorithm to obtain
Ja(u, v), Ka(u, v), and Ia(u, v) in O(La(u, v)) amortized time. Section 3.3 mod-
ifies this implementation so that the algorithm can obtain these data structures
in O(log logmin(ma, na, La/(mana))) amortized time, if a certain preprocess-
ing has been performed. The method by which to perform the preprocessing
in O(mana log logmin(ma, na, La/(mana))) time is then presented in Sect. 3.4.
Based on these considerations, the following theorem immediately holds.

Theorem 1. The longest common subsequence problem in run-length encoded
form can be solved in O(mn log logmin(m,n, L/(mn))) time.

202 Y. Sakai

1: Examine whether (u, v) belongs to La(u, v), based on Lemma 3;
2: delete the last element (w, x) from Ia(u), while Ia(u) is non-empty, and

C(ia(w)−1, ja(x)−1)aNa(x..v−1) is not longer than C(ia(u)−1, ja(v)−1);
3: delete the first element (w, x) from Ja(v), while Ja(v) is non-empty, and

C(ia(w)−1, ja(x)−1)aMa(w..u−1) is not longer than C(ia(u)−1, ja(v)−1);
4: construct La(u, v) by concatenating Ia(u), (u, v) if it belongs to La(u, v), and

Ja(v) in this order;
5: let Ja(v) be the prefix of La(u, v) consisting of all index pairs (w, x) such that

Ra(w − 1, x − 1) < Ra(u, v), and let Ia(u) be the suffix of La(u, v)
consisting of all index pairs (w, x) such that Ra(u, v) < Ra(w−1, x−1).

Fig. 1. Procedure that updates Ia(u) and Ja(v)

3.2 Simple Implementation

This subsection introduces a simple implementation that allows the algorithm
to obtain Ja(u, v), Ka(u, v), and Ia(u, v) from Ia(u, v − 1) and Ja(u − 1, v) in
O(La(u, v)) amortized time.

In the implementation, the algorithm uses ma + na doubly-linked lists,
Ia(1), . . . , Ia(ma) and Ja(1), . . . ,Ja(na). These lists initially contain no ele-
ments, and when determining the (ia(u), ja(v))th entry of the dynamic pro-
gramming table, Ia(u) and Ja(v) are updated so as to contain Ia(u, v) and
Ja(u, v), respectively. It can be verified, by induction, that, just before being
updated, Ia(u) and Ja(v) contain Ia(u − 1, v) and Ja(u, v − 1), respectively.
Therefore, according to Lemma 2, updating Ia(u) and Ja(v) from Ia(u, v − 1)
and Ja(u − 1, v) to Ia(u, v) and Ja(u, v) can be performed by executing the
procedure given in Fig. 1. Statement 5 is valid because all elements (w, x) in
La(u, v) are in ascending order with respect to Ra(w − 1, x− 1).

The amortized execution time of the procedure for any index pair (u, v) is
estimated as follows. Since no index pair is added to the ma+na lists more than
once, the total number of index pairs deleted from the lists by statements 2 and
3 throughout the entire algorithm is O(mana). This implies that statements 1
through 4 for each execution of the procedure can be performed in a constant
amortized time. Just before the execution of statement 5, Ia(u) and Ja(v) con-
tain at most Ma(u) and Na(v) elements, respectively. Hence, if Ma(u) ≥ Na(v),
then statement 5 can be executed in O(min(Na(v),Ma(u)−Na(v))) time, by per-
forming a linear search of Ia(u) from the first element, if Na(v) ≤Ma(u)−Na(v),
or from the last element, otherwise, for the last element of Ja(u, v). Otherwise,
statement 5 can be executed in O(min(Ma(u), Na(v)−Ma(u))) time analogously.
Thus, the procedure in Fig. 1 can be performed in O(La(u, v)) amortized time.

3.3 Proposed Implementation

This subsection proposes an implementation that allows the algorithm to obtain
Ja(u, v), Ka(u, v), and Ia(u, v) in O(log logmin(ma, na, La/(mana))) amortized
time, if a certain preprocessing has been performed.

Computing the LCS of Two RLE Strings 203

In order to present the implementation, it is necessary to introduce a data
structure that can efficiently maintain a set of integers in a short interval and
integers in a short interval that preserve a certain property of integers Ra(w, x).
A van Emde Boas data structure [11] represents a set S of integers between 0 and
s and supports any of the following operations in O(log log s) time: inserting r in
S, deleting r from S, reporting the greatest integer in S that is less than r, and
reporting the least integer in S that is greater than r, where r is an arbitrary
integer between 0 and s. For any index pair (w, x) with 0 ≤ w ≤ ma and
0 ≤ x ≤ na, let ra(w, x) denote the number of integers R less than Ra(w, x) such
that R = Ra(y, z) for some index pair (y, z) with 0 ≤ y ≤ ma and 0 ≤ z ≤ na,
so that 0 ≤ ra(w, x) < (ma + 1)(na + 1). It is easy to verify that, for any index
pairs (w, x) and (y, z), Ra(w, x) ≤ Ra(y, z) if and only if ra(w, x) ≤ ra(y, z).

The proposed implementation is strictly follows the outline of that introduced
in the previous subsection. However, the proposed implementation also exploits
the technique used in the algorithm of Apostolico et al. [2] (with the modifi-
cation mentioned in Sect. 1) to efficiently search Ia(u) for the last element of
Ja(u, v), or Ja(v) for the first element of Ia(u, v), when executing statement 5
of the procedure in Fig. 1. Ignoring the details, the algorithm of Apostolico et
al. [2] can be thought of as the algorithm that obtains Ja(u, v), Ka(u, v), and
Ia(u, v), without separately maintaining the ma + na lists, Ia(1), . . . , Ia(ma)
and Ja(1), . . . ,Ja(na). Instead, access to any element of the lists is provided
by searching a van Emde Boas data structure that represents a set of integers
ra(w − 1, x − 1) labeled by (w, x) for all index pairs (w, x) in the ma + na lists
for that in O(log log(mana)) time.

Recall that statements 1 through 4 of the procedure in Fig. 1 can be executed
in constant amortized time, while statement 5 takes O(La(u, v)) time due to the
linear search of La(u, v). The main idea underlying the proposed implementation
is to treat the ma+na lists as consisting of sets of index pairs so that each linear
search can be performed by traversing at most a constant number of elements on
average. The details of the proposed implementation are presented in the proof of
the following lemma. Let la(u, v) = min(ρ∗−ra(u, v−1), ρ∗−ρ∗, ra(u−1, v)−ρ∗),
where ρ∗ = min(ra(u−1, v−1), ra(u, v)) and ρ∗ = max(ra(u−1, v−1), ra(u, v)),
and let la be the sum of la(u, v), where (u, v) ranges over all index pairs such
that 1 ≤ u ≤ ma and 1 ≤ v ≤ na. It is not difficult to verify that la/(mana) =
O(min(ma, na, La/(mana))).

Lemma 4. If the value ra(w, x) is available for any symbol a in Σ, and any
index pair (w, x) with 0 ≤ w ≤ ma and 0 ≤ x ≤ na, then Ia(u) and Ja(v) are
updated from Ia(u, v− 1) and Ja(u− 1, v) to Ia(u, v) and Ja(u, v), respectively,
in O(log log(la/(mana))) amortized time when determining the (ia(u), ja(v))th
entry of the dynamic programming table.

Proof. Let s be the least power of two that is greater than or equal to la/(mana).
This value can be determined in O(mana) time.

The proposed implementation can be obtained by modifying the procedure
in Fig. 1 so that both statements 1 through 4 and statement 5 can be per-
formed in O(log log s) amortized time. To do this, each of the ma + na lists,

204 Y. Sakai

Ia(1), . . . , Ia(ma) and Ja(1), . . . ,Ja(na), is represented as a list of van Emde
Boas data structures as follows. For any index k with 0 ≤ k ≤ �(ma + 1)(na +
1)/s�, let Ta(k) be a van Emde Boas data structure that maintains at most
s integers ra(w − 1, x − 1) − ks, each of which is labeled by (w, x), for all in-
dex pairs (w, x) with ks ≤ ra(w − 1, x − 1) < (k + 1)s that belong to union
Ia(1) · · · Ia(ma)Ja(1) · · · Ja(na). Let Îa(y) be the list of all indices k such that
ra(w−1, x−1) belongs to Ta(k) for some index pair (w, x) in Ia(y) in ascending
order and define Ĵa(z) analogously with respect to Ja(z). Simulating the proce-
dure in Fig. 1 using lists Îa(1), . . . , Îa(ma) and Ĵa(1), . . . , Ĵa(na), together with
van Emde Boas data structures Ta(k), in a straightforward manner, statements
1 through 4 of the procedure can be performed in O(log log s) amortized time.
Furthermore, since s = O(min(ma, na, La/(mana))), statement 5 can also be
executed in O(log log s) amortized time. ��

3.4 Preprocessing

In order to complete the proposed algorithm, this subsection presents a method
to determine values ra(w, x) for all index pairs (w, x) with 0 ≤ w ≤ ma and
0 ≤ x ≤ na in O(mana log logmin(ma, na, La/(mana))) time.

Let R′a(w, x) denote an integer 2�log2(ma+1)(na+1)�(Ra(w, x) + Ma) +
2�log2(na+1)�w + x for any index pair (w, x), so that integers R′(w, x) pre-
serve the order of integers Ra(w, x), and so that (w, x) can be recovered
from R′a(w, x) in constant time. A naive use of the integer sorting algo-
rithm of Han [6] that takes integers R′a(w, x) for all index pairs (w, x) with
0 ≤ w ≤ ma and 0 ≤ x ≤ na in an arbitrary order as input yields only
an O(mana log logmax(ma, na))-time method. However, exploiting facts that
Ra(w, 0) < Ra(w, 1) < · · · < Ra(w, na) for any index w with 0 ≤ w ≤ ma,
and that Ra(ma, x) < Ra(ma + 1, x) < · · · < Ra(0, x) for any index x with
0 ≤ x ≤ na, an O(mana log logmin(ma, na, La/(mana)))-time method can also
be obtained as shown in the following lemmas.

Lemma 5. The values ra(w, x) for all index pairs (w, x) with 0 ≤ w ≤ ma and
0 ≤ x ≤ na can be determined in O(mana log logmin(ma, na)) time.

Proof. By symmetry, it suffices to present an O(mana log logma)-time method
that can obtain a list of all index pairs (w, x) with 0 ≤ w ≤ ma and 0 ≤ x ≤ na

in ascending order with respect to Ra(w, x).
An outline of the method is as follows. Let Qa be a set initially containing

all index pairs (w, x) with 0 ≤ x ≤ ma and 0 ≤ x ≤ na. The method iteratively
executes the following two steps until Qa becomes empty:

1. extract all elements (w, x) such that Ra(w, x) is less than or equal to a certain
threshold R from Qa in O(s) time, and

2. execute the algorithm of Han [6] to obtain a list of the extracted elements
(w, x) in ascending order with respect to Ra(w, x) in O(s log log s) time,

where s is the number of extracted elements. Since the threshold R is set such
that s is polynomial in ma, this method performs in O(mana log logma) time.

Computing the LCS of Two RLE Strings 205

The details of how to execute step 1 of the above method is described below.
Let Ha be a list of all index pairs (w, x) in Qa such that (w, x − 1) does not
belong to Qa. Since Ra(w, 0) < Ra(w, 1) < · · · < Ra(w, na) for any index w
with 0 ≤ w ≤ ma, Ha strictly represents Qa. Hence, the method uses this list
to maintain Qa. In each iteration of the method, the extracted elements from
Qa are as follows. Let t be the number of elements in Ha, which is less than or
equal to ma+1. If the number of elements in Qa is less than t2, then let R =∞.
Otherwise, let R be the minimum value of Ra(w, x+ t), where (w, x) ranges over
all index pairs in Ha such that x+t ≤ na. Recall that s is the number of elements
(w, x) in Qa such that Ra(w, x) ≤ R. It follows from the above definitions that
t ≤ s ≤ t2. After determining threshold R in O(t) time, all elements (w, x) with
Ra(w, x) ≤ R can successively be extracted from Qa in O(s) time. ��

Lemma 6. The values ra(w, x) for all index pairs (w, x) with 0 ≤ w ≤ ma and
0 ≤ x ≤ na can be determined in O(mana log log(La/(mana))) time.

Proof. The lemma is proven by presenting a method that lists all index pairs
(w, x) in ascending order with respect to Ra(w, x).

An outline of the method is as follows. Let s be the least power of two greater
than or equal to La/(mana). The method classifies all index pairs (w, x) into
O(mana) groups Qa(k), each of which consists of all index pairs (w, x) such that
ks ≤ Ra(w, x) + Ma < (k + 1)s. All index pairs (w, x) in each group Qa(k)
are then listed in ascending order with respect to Ra(w, x) in O(t log log s) time
using the algorithm of Han [6], if t < s, and, otherwise, in O(t) time using the
bucket sort algorithm, where t is the number of index pairs belonging to Qa(k).

In order to classify index pairs into O(mana) groups Qa(k), a naive use of
the bucket sort algorithm requires O((Ma + Na)/s) space, because the values
Ra(w, x) vary between −Ma and Na. The method reduces the required space to
O(mana) based on a graph introduced below. Let Ga be an undirected graph
having all index pairs (w, x) with 0 ≤ w ≤ ma and 1 ≤ x ≤ na as its vertices.
The set of edges in Ga consists of

– edges between (w − 1, x − 1) and (w, x − 1), and edges between (w − 1, x)
and (w, x), for all index pairs (w, x) with Ma(w) = La(w, x),

– edges between (w−1, x−1) and (w, x), for all index pairs (w, x) with |Na(x)−
Ma(w)| = La(w, x), and edges between (w − 1, x− 1) and (w − 1, x), and

– edges between (w, x− 1) and (w, x), for all index pairs (w, x) with Na(w) =
La(w, x),

where 1 ≤ w ≤ ma and 1 ≤ x ≤ na. Based on this definition, it is not difficult
to verify that any index pair (w, x) is connected to at least one of ma + na + 1
vertices, (ma, 0), (ma − 1, 0), . . . , (0, 0), (0, 1), . . . , (0, na). Therefore, Ga can be
partitioned into at most ma+na+1 connected subgraphs, each of which contain
one of the ma + na + 1 vertices. Let Ga(1), Ga(2), . . . , Ga(f) be a list of all
such subgraphs of Ga in ascending order with respect to Rmin

a (e), and hence,
with respect to Rmax

a (e), where Rmin
a (e) and Rmax

a (e) denote the minimum value
and the maximum value of Ra(w, x), respectively, with (w, x) ranging over all

206 Y. Sakai

vertices of Ga(e). By visiting all vertices in Ga in breadth-first order, subgraphs
Ga(e), together with values Rmin

a (e) and Rmax
a (e), for all indices e from 1 to

f can be obtained in O(mana) time. Recall that any vertex (w, x) in Ga(e) is
classified so as to belong to Qa(�(Ra(w, x) + Ma)/s�), which lies in a series of
O((Rmax

a (e)−Rmin
a (e))/s) groups, Qa(�(Rmin

a (e)+Ma)/s�), . . . , Qa(�(Rmax
a (e)+

Ma)/s�). Therefore, if the sum of differences between Rmin
a (e) and Rmax

a (e) for
all indices e from 1 to f is O(La), then all index pairs (w, x) can be classified into
groups Qa(k) in O(mana) time and O(mana) space in a straightforward manner
using the bucket sort algorithm, because La/s = O(mana) due to the setting
of s. Based on the definition of the set of edges in Ga, the sum of differences
between Ra(w, x) and Ra(y, z) is O(La), where ((w, x), (y, z)) ranges over all
vertex pairs such that Ga has an edge between (w, x) and (y, z). This implies
that the sum of differences between Rmin

a (e) and Rmax
a (e) for all indices e from

1 to f is O(La), because Ga(e) is a connected graph. ��

References

1. Ann, H.Y., Yang, C.B., Tseng, C.T., Hor, C.Y.: A fast and simple algorithm for
computing the longest common subsequence of run-length encoded strings. Inform.
Process. Lett. 108, 360–364 (2008)

2. Apostolico, A., Landau, G.M., Skiena, S.: Matching for run-length encoded strings.
J. Complexity 15, 4–16 (1999)

3. Bunke, H., Csirik, J.: An improved algorithm for computing the edit distance of
run-length coded strings. Inform. Process. Lett. 54, 93–96 (1995)

4. Chen, K.-Y., Chao, K.-M.: A Fully Compressed Algorithm for Computing the Edit
Distance of Run-Length Encoded Strings. In: de Berg, M., Meyer, U. (eds.) ESA
2010, Part I. LNCS, vol. 6346, pp. 415–426. Springer, Heidelberg (2010)

5. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A subquadratic sequence align-
ment algorithm for unrestricted scoring matrices. SIAM J. Comput. 32, 1654–1673
(2003)

6. Han, Y.: Deterministic sorting in O(n log log n) time and linear space. J. Algo-
rithms 50, 96–105 (2004)

7. Kim, J.W., Amir, A., Landau, G.M., Park, K.: Computing similarity of run-length
encoded strings with affine gap penalty. Theor. Comput. Sci. 395, 268–282 (2008)

8. Liu, J.J., Wang, Y.L., Lee, R.C.T.: Finding a longest common subsequence between
a run-length-encoded string and an uncompressed string. J. Complexity 24, 173–
184 (2008)

9. Mäkinen, V., Navarro, G., Ukkonen, E.: Approximate Matching of run-length com-
pressed strings. Algorithmica 35, 347–369 (2003)

10. Mitchell, J.: A geometric shortest path problem, with application to computing
a longest common subsequence in run-length encoded strings. Technical Report,
Department of Applied Mathematics, Suny Stony Brook, NY (1997)

11. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and
linear space. Inform. Process. Lett. 6, 80–82 (1977)

12. Wagner, R.A., Fischer, M.J.: The string to string correction problem. J. ACM 21,
168–173 (1974)

Efficient Counting of Square Substrings in a Tree

Tomasz Kociumaka1, Jakub Pachocki1, Jakub Radoszewski1,
Wojciech Rytter1,2,�, and Tomasz Waleń3,1

1 Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland

{kociumaka,jrad,pachocki,rytter,walen}@mimuw.edu.pl
2 Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University, Toruń, Poland

3 Laboratory of Bioinformatics and Protein Engineering,
International Institute of Molecular and Cell Biology in Warsaw, Poland

Abstract. We give an algorithm which in O(n log2 n) time counts all
distinct squares in labeled trees. There are two main obstacles to over-
come. Crochemore et al. showed in 2012 that the number of such squares
is bounded by Θ(n4/3). This is substantialy different from the case of
classical strings, which admit only a linear number of distinct squares.
We deal with this difficulty by introducing a compact representation of
all squares (based on maximal cyclic shifts) that requires only O(n log n)
space. The second obstacle is lack of adequate algorithmic tools for la-
beled trees. Consequently we develop several novel techniques, which
form the most complex part of the paper. In particular we extend Imre Si-
mon’s implementation of the failure function in pattern matching
machines.

1 Introduction

Various types of repetitions play an important role in combinatorics on words
with particular applications in pattern matching, text compression, computa-
tional biology etc., see [3]. The basic type of repetitions are squares: strings of
the form ww. Here we consider square substrings corresponding to simple paths
in labeled unrooted trees. Squares in trees and graphs have already been consid-
ered e.g. in [2]. Recently it has been shown that a tree with n nodes can contain
at most Θ(n4/3) distinct squares, see [4], while the number of distinct squares
in a string of length n does not exceed 2n, as shown in [7]. This paper can be
viewed as an algorithmic continuation of [4].

Despite the linear upper bound, enumerating squares in ordinary strings is
already a difficult problem. Complex O(n) time solutions using suffix trees [8]
or runs [5] are known.

Assume we have a tree T whose edges are labeled with symbols from an
integer alphabet Σ. If u and v are two nodes of T , then let val(u, v) denote the
sequence of labels of edges on the path from u to v (denoted as u � v). We
� The author is supported by grant no. N206 566740 of the National Science Centre.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 207–216, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

208 T. Kociumaka et al.

call val(u, v) a substring of T . (Note that a substring is a string, not a path.)
Also let dist(u, v) = |val(u, v)|. Fig. 1 presents square substrings in a sample
tree. We consider only simple paths, that is the vertices of a path do not repeat.
Denote by sq(T) the set of different square substrings in T . Our main result is
computing |sq(T)| in O(n log2 n) time.

� � � � � �

�

� �

�

�

� � �

�

��

�

�

� � � �

�

��

�

� � �

�

��

Fig. 1. We have here |sq(T)| = 31. There are 10 groups of cyclically equiva-
lent squares, the representatives (maximal cyclic shift of of a square half) are:
a, a2, a3, ba, ba2, ba3, ba4, ba5, ba6, (ba3)2. For example, the equivalence class
of u2 = (ba6)2 contains the strings rot(u, q)2 for q ∈ [0, 3] ∪ [5, 6], this is a single cyclic
interval modulo 7 (see Section 3).

2 Algorithmic Toolbox for Trees

In this section we apply several well known concepts to design algorithms and
data structures for labeled trees.

Navigation in Trees. Recall two widely known tools for rooted trees: the LCA
queries and the LA queries. The LCA query given two nodes x, y returns their
lower common ancestor LCA(x, y). The LA query given a node x and an integer
h ≥ 0 returns the ancestor of x at level h, i.e. with distance h from the root.
After O(n) preprocessing both types of queries can be answered in O(1) time
[9,1]. We use them to efficiently navigate also in unrooted trees. For this purpose,
we root the tree in an arbitrary node and split each path x � y in LCA(x, y).
This way we obtain the following result:

Fact 1. Let T be a tree with n nodes. After O(n) time preprocessing we answer
the following queries in constant time:
(a) for any two nodes x, y compute dist(x, y),
(b) for any two nodes x, y and a nonnegative integer d ≤ dist(x, y) compute

jump(x, y, d) — the node z on the path x � y with dist(x, z) = d.

Dictionary of Basic Factors. The dictionary of basic factors (DBF , in short)
is a widely known data structure for comparing substrings of a string. For a
string w of length n it takes O(n log n) time and space to construct and enables
lexicographical comparison of any two substrings of w in O(1) time, see [6]. The

Efficient Counting of Square Substrings in a Tree 209

DBF can be extended to arbitrary labeled trees. Due to the lack of space the
proof of the following (nontrivial) fact will be presented in the full version of the
paper.

Fact 2. Let T be a labeled tree with n nodes. After O(n logn) time preprocessing
any two substrings val(x1, y1) and val(x2, y2) of T of the same length can be
compared lexicographically in O(1) time (given x1, y1, x2, y2).

Centroid Decomposition. The centroid decomposition enables to consider
paths going through the root in rooted trees instead of arbitrary paths in an
unrooted tree. Let T be an unrooted tree with n nodes and T1, T2, . . . , Tk be the
connected components obtained after removing a node r from T . The node r is
called a centroid of T if |Ti| ≤ n/2 for each i. The centroid decomposition of T ,
CDecomp(T), is defined recursively:

CDecomp(T) = {(T, r)} ∪
k⋃

i=1

CDecomp(Ti).

The centroid of a tree can be computed in O(n) time. The recursive definition
of CDecomp(T) implies an O(n logn) bound on its total size.

Fact 3. Let T be a tree with n nodes. The total size of all subtrees in CDecomp(T)
is O(n log n). The decomposition CDecomp(T) can be computed in O(n log n)
time.

Determinization. Let T be a tree rooted at r. We write val(v) instead of
val(r, v), valR(v) instead of val(v, r) and dist(v) instead of dist(r, v).

We say that T is deterministic if val(v) = val(w) implies that v = w. We
say that T is semideterministic if val(v) = val(w) implies that v = w unless
r � v and r � w are disjoint except r. Informally, T is semideterministic if it is
“deterministic anywhere except for the root”.

For an arbitrary tree T an “equivalent” deterministic tree dtr(T) can be ob-
tained by identifying nodes v and w if val(v) = val(w). If we perform such
identification only when the paths r � v and r � w share the first edge, we get
a semideterministic tree semidtr (T). This way we also obtain functions ϕ map-
ping nodes of T to corresponding nodes in dtr(T) (in semidtr(T) respectively).
Additionally we define ψ(v) as an arbitrary element of ϕ−1(v) for v ∈ dtr(T)
(v ∈ semidtr(T) respectively). Note that ϕ and ψ for semidtr (T) preserve the
values of paths going through r; this property does not hold for dtr(T).

The details of efficient implementation are left for the full version of the
paper:

Fact 4. Let T be a rooted tree with n nodes. The trees dtr(T) and semidtr(T)
together with the corresponding pairs of functions ϕ and ψ can be computed in
O(n) time.

210 T. Kociumaka et al.

3 Compact Representations of Sets of Squares

For a string u, let rot(u) denote the string u with its first letter moved to the
end. For an integer q, let rot(u, q) denote rotq(u), i.e., the result of q iterations
of the rot operation on the string u. If v = rot(u, c) then u and v are called
cyclically equivalent, we also say that v is a cyclic rotation of u and vice-versa. Let
maxRot(u) denote the lexicographically maximal cyclic rotation of u. Let T be a
labeled tree and let x, y be nodes of T such that val(x, y) = maxRot(val(x, y)).
Moreover let I be a cyclic interval of integers modulo dist(x, y). Define a package
as a set of cyclically equivalent squares:

package(x, y, I) = {rot(val(x, y), q)2 : q ∈ I}.

A family of packages which altogether represent the set of square substrings of T
is called a cyclic representation of squares in T . Such a family is called disjoint
if the packages represent pairwise disjoint sets of squares.

Anchored Squares. Let v be a node of T . A square in T is called anchored
in v if it is the value of a path passing through v. Let sq(T, v) denote the set of
squares anchored in v. Assume that T is rooted at r and let v �= r be a node
of T with dist(v) = p. Let sq(T, r, v) denote the set of squares of length 2p that
have an occurrence passing through both r and v. Note that each path of length
2p passing through r contains a node v with dist(v) = p. Hence sq(T, r) is the
sum of sq(T, r, v) over all nodes v �= r.

We introduce two tables, defined for all v �= r, similar to the tables used
in the Main-Lorenz square-reporting algorithm for strings [11]. In Section 5 we
sketch algorithms computing these tables in linear time (for PREF under the
additional assumption that the tree is semideterministic).

r

v

PREF [v]

r

v

SUF [v]

– [Prefix table] PREF [v] is a lowest node x in the subtree rooted at v such
that val(v, x) is a prefix of val(v), see figure above.

– [Suffix table] SUF [v] is a lowest node x in T such that val(x) is a prefix of
valR(v) and LCA(v, x) = r.

We say that a string s = s1 . . . sk has a period p if si = si+p for all i = 1, . . . , k−p.
Let x and y be nodes of T . A triple (x, y, p) is called a semirun if val(x, y) has
a period p and dist(x, y) ≥ 2p. All substrings of x � y and y � x of length 2p
are squares. We say that these squares are induced by the semirun. Let us fix

Efficient Counting of Square Substrings in a Tree 211

v �= r with dist(v) = p. Note that val(PREF [v],SUF [v]) is periodic with period
p. By the definitions of PREF [v] and SUF [v], if dist(PREF [v],SUF [v]) < 2p
then sq(T, r, v) = ∅. Otherwise (PREF [v],SUF [v], p) is a semirun anchored in r
and the set of squares it induces is exactly sq(T, r, v), see also Figure 2.

val(v)

rSUF [v] PREF [v]v

suffix of val(v) suffix of val(v)

prefix of val(v) prefix of val(v)

Fig. 2. The semirun (SUF [v], PREF [v], |val(v)|) induces sq(T, r, v)

For a set of semiruns S, let sq(S) denote the set of squares induced by at least
one semirun in S. The following lemma summarizes the discussion on semiruns.

Lemma 5. Let T be a tree of size n rooted at r. There exists a family S of O(n)
semiruns anchored in r such that sq(S) = sq(T, r).

Packages and Semiruns. Semiruns can be regarded as a way to represent sets
of squares. Nevertheless, this representation cannot be directly used to count the
number of different squares and needs to be translated to a cyclic representation
(packages). The key tools for performing this translation are the following two
tables defined for any node v of T .

1. [Shift Table] SHIFT [v] is the smallest nonnegative integer r such that
rot(val(v), r) = maxRot(val(v)).

2. [Reversed Shift Table] SHIFTR[v] is the smallest nonnegative integer r
such that rot(valR(v), r) = maxRot(valR(v)).

In Section 5 we sketch algorithms computing these tables for a tree with n nodes
in O(n logn) time.

Using these tables and the jump queries (Fact 1) we compute the cyclic rep-
resentation of the set of squares induced by a family of semiruns.

Lemma 6. Let T a be tree of size n rooted at r and let S be a family of semiruns
(x, y, p) anchored in r. There exists a cyclic representation of the set of squares
induced by S that contains O(|S|) packages and can be computed in O(n logn+
|S|) time.

Proof. Let (x, y, p) ∈ S. We have LCA(x, y) = r and dist(x, y) ≥ 2p, conse-
quently there exists a node z on x � y such that dist(z) = p and all squares
induced by (x, y, p) are cyclic rotations of val(z)2 and valR(z)2. Observe that
maxRot(val(z)) and maxRot(valR(z)), as any cyclic rotation of val(z) or valR(z),

212 T. Kociumaka et al.

occur on the path x � y. The SHIFT and SHIFTR tables can be used to locate
these occurrences, then jump queries allow to find their exact endpoints, nodes
x1, y1 and x2, y2 respectively. This way we also obtain the cyclic intervals I1 and
I2 that represent the set of squares induced by (x, y, p) as package(x1, y1, I1) and
package(x2, y2, I2). �	

The Set of All Squares. As a consequence of Lemmas 5 and 6 and Fact 3
(centroid decomposition) we obtain the following combinatorial characterization
of the set of squares in a tree:

Theorem 7. Let T be a labeled tree with n nodes. There exists a cyclic repre-
sentation of all squares in T of O(n log n) size.

Proof. Note that sq(T) =
⋃
{sq(T, r) : (T, r) ∈ CDecomp(T)}. The total size of

trees in CDecomp(T) is O(n logn) and for each of them the squares anchored
in its root have a linear-size representation. This gives a representation of all
squares in T that contains O(n log n) packages. �	

4 Main Algorithm

Computing Semiruns. Let T ′ = semidtr (T). The following algorithm com-
putes the set S = {(ψ(x), ψ(y), p) : (x, y, p) ∈ semiruns(T ′, r)}. This set of
semiruns induces sq(T, r), since sq(T, r) = sq(T ′, r).

Algorithm 1. Compute semiruns(T, r)
S := ∅; T ′ := semidtr(T)
Compute the tables PREF (T ′),SUF (T ′)
foreach v ∈ T ′ \ {r} do

x := PREF [v]; y := SUF [v]
if dist(x, y) ≥ 2 · dist(v) then

S := S ∪ {(ψ(x), ψ(y), dist(v))}
return S

Computing a Disjoint Representation of Packages. In this phase we com-
pute a compact representation of distinct squares. For this, we group packages
(x, y, I) according to val(x, y), which is done by sorting them using Fact 2 to
implement the comparison criterion efficiently. Finally in each group by elemen-
tary computations we turn a union of arbitrary cyclic intervals into a union of
pairwise disjoint intervals. For a group of g packages this is done in O(g log g)
time, which makes O(n log2 n) in total.

General Structure of the Algorithm. The structure is based on the centroid
decomposition. In total, precomputing DBF, jump and CDecomp and computing
semiruns takes O(n logn) time, whereas transforming semiruns to packages and
computing a disjoint representation of packages takes O(n log2 n) time.

Efficient Counting of Square Substrings in a Tree 213

Theorem 8. The number of distinct square substrings in an (unrooted) tree
with n nodes can be found in O(n log2 n) time.

Algorithm 2. Count-Squares(T)

Compute DBF and jump data structure for T; {Facts 1 and 2}
foreach (T, r) ∈ CDecomp(T) do

Semiruns := semiruns(T, r)
Transform Semiruns into a set of packages in T ; {Lemma 6}
Insert these packages to the set Packages

Compute (interval) disjoint representation of Packages
return |sq(T)| as the total length of intervals in Packages

5 Construction of the Basic Tables

The PREF and SUF tables for ordinary strings are computed by a single simple
algorithm, see [6]. This approach fails to generalize for trees, so we develop novel
methods, interestingly, totally different for both tables. In order to construct
a PREF table we generalize the results of Simon [13] originally developed for
string pattern matching automata. For the SUF table, we use the suffix tree of
a tree, originally designed by Kosaraju [10] for tree pattern matching.

5.1 Computation of PREF

We compute a slightly modified array PREF ′ that allows for an overlap of the
considered paths. More formally, for a node v �= r, we define PREF ′[v] as the
lowest node x in the subtree rooted at v such that val(v, x) is a prefix of val(x).
Note that having computed PREF ′, we can obtain PREF by truncating the
result so that paths do not overlap. This can be implemented with a single jump
query.

Observe that PREF ′[v] depends only on the path r � v and the subtree
rooted at v. Hence, instead of a single semideterministic tree with n nodes, we
may create a copy of r for each edge going out from r and thus obtain several
deterministic trees of total size O(n). For the remainder of this section we assume
T is deterministic.

Recall that a border of a string w is a string that is both a prefix and a suffix
of w. The PREF function for strings is closely related to borders, see [6]. This
is inherited by PREF ′ for deterministic trees, see Figure 3.

�= c
r

c

v x

Fig. 3. PREF ′[v] = x if and only if val(v, x)c is a border of val(x)c and no edge labeled
with c leaves x

214 T. Kociumaka et al.

For a node x of T and c ∈ Σ, let π(x, c) (transition function) be a node y such
that val(y) is the longest border of val(x)c. We say that π(x, c) is an essential
transition if it does not point to the root. Let us define the transition table π
and the border table P . For a node x let π[x] be the list of pairs (c, y) such that
π(x, c) = y is an essential transition. For x �= r we set P [x] as the node y such
that val(y) is the longest border of val(x). The following lemma generalizes the
results of [13] and gives the crucial properties of essential transitions. The proof
is left for the full version of the paper.

Lemma 9. Let T be a deterministic tree with n nodes. There are no more than
2n− 1 essential transitions in T . Moreover, the π and P tables can be computed
in O(n) time.

In the algorithm computing the PREF ′ table, for each x we find all nodes v such
that PREF [v] = x. This is done by iterating the P table starting from π(x, c),
see also Fig. 3.

Lemma 10. For a deterministic tree T , the table PREF ′(T) can be computed
in linear time.

5.2 Computation of SUF

Let T be a deterministic tree rooted at r and v �= r be a node of T . We define
SUF ′[v] as the lowest node x of T such that val(x) is a prefix of valR(v). Hence,
we relax the condition that LCA(v, x) = r and add a requirement that T is
deterministic. The technical proof of the following lemma is left for the full
version of the paper.
Lemma 11. Let T be an arbitrary rooted tree with n nodes. The SUF (T) table
can be computed in O(n) time from SUF ′(dtr(T)).
Observe that tries are exactly the deterministic rooted trees. Let S1 = {val(x) :
x ∈ T } and S2 = {valR(x) : x ∈ T }. Assume that we have constructed a trie
T of all the strings S1 ∪ S2 and that we store pointers to the nodes in T that
correspond to elements of S1 and S2. Then for any v ∈ T , SUF ′[v] corresponds
to the lowest ancestor of valR(v) in T which comes from S1. Such ancestors can
be computed for all nodes by a single top-bottom tree traversal, so the SUF ′

table can be computed in time linear in T .
Unfortunately, the size of T can be quadratic, so we store its compacted

version in which we only have explicit nodes corresponding to S1∪S2 and nodes
having at least two children. The trie of S1 is exactly T , whereas the compacted
trie of S2 is known as a suffix tree of the tree T . This notion was introduced in
[10] and a linear time construction algorithm for an integer alphabet was given
in [12]. The compacted trie T can therefore be obtained by merging T with its
suffix tree, i.e. identifying nodes of the same value. Since T is not compacted, this
can easily be done in linear time. Hence, we obtain a linear time construction of
the compacted T , which yields a linear time algorithm constructing the SUF ′

table for T and consequently the following result.

Lemma 12. The SUF table of a rooted tree can be computed in linear time.

Efficient Counting of Square Substrings in a Tree 215

5.3 Computation of SHIFT and SHIFTR

Recall that the maximal rotation of w corresponds to the maximal suffix of ww,
see [6]. We develop algorithms based on this relation using a concept of redundant
suffixes. A redundant suffix of w cannot become maximal under any extension
of w, regardless of the direction we extend, see Observation 14.

Definition 13. A suffix u of the string w is redundant if for every string z there
exists another suffix v of w such that vz > uz. Otherwise we call u nonredundant.

Observation 14. If u is a redundant suffix of w, then for any string z it holds
that uz is a redundant suffix of wz and u is a redundant suffix of zw.

In the following easy fact and subsequent lemmas we build tools, which allow to
focus on a logarithmic number of suffixes, discarding others as redundant.

Fact 15. If u is a nonredundant suffix of w, then u is a prefix, and therefore a
border, of maxSuf (w), the lexicographically maximum suffix of w.

Lemma 16. Let i be a position in a string w. Assume i is a square center, i.e.
there exists a square factor of w whose second half starts at i. Then the suffix
of w starting at i is redundant.

Proof. Let w = uxxv, where |ux| = i−1. We need to show that xv is a redundant
suffix of w. Let z be an arbitrary string. Consider three suffixes of wz: vz, xvz
and xxvz. If vz < xvz, then xvz < xxvz, otherwise xvz < vz. Hence, for each z
there exists a suffix of wz greater than xvz, which makes xv redundant. �	

Lemma 17. If u, v are borders of maxSuf (w) such that |u| < |v| ≤ 2|u| then u
is a redundant suffix of w.

Proof. Due to Fine & Wilf’s periodicity lemma [6] such a pair of borders induces
a period of v of length |v| − |u| ≤ |u|. This concludes that there is a square in w
centered at the position |w| − |u| + 1. Hence, by Fact 16, u is redundant. �	

Above lemmas do not give a full characterization of nonredundant suffixes, hence
our algorithm maintains a carefully defined set that might be slightly larger.

Definition 18. We call a set C a small candidate set for a string w if C is
a subset of borders of maxSuf (w), contains all nonredundant suffixes of w and
|C| ≤ max(1, log |w|+1). Any small candidate set for w is denoted by Cand(w).

Lemma 19. Assume we are given a string w and we are able to compare factors
of w in constant time. Then for any a ∈ Σ, given small candidate set Cand(w)
(Cand(wR)) we can compute Cand(wa) (resp. Cand((wa)R)) in O(log |w|) time.

Proof. We represent the sets Cand as sorted lists of lengths of the corresponding
suffixes. For Cand(wa) we apply the following procedure.

1. C := {va : v ∈ Cand(w)} ∪ {ε}, where ε is an empty string.

216 T. Kociumaka et al.

2. Determine the lexicographically maximal element of C, which must be equal
to maxSuf (wa) by definitions of redundancy and small candidate set.

3. Remove from C all elements that are not borders of maxSuf (wa).
4. While there are u, v ∈ C such that |u| < |v| ≤ 2|u|, remove u from C.
5. Cand(wa) := C

All steps can be done in time proportional to the size of C. It follows from
Observation 14, Fact 15 and Lemma 17 that the resulting set Cand(wa) is a
small candidate set. Cand((wa)R) is computed in a similar way. �	
Lemma 20. For a labeled rooted tree T the tables SHIFT and SHIFTR can be
computed in O(n logn) time.

Proof. We traverse the tree in DFS order and compute maxSuf (ww) for each
prefix path as: maxSuf (ww) = max{yw : y ∈ Cand(w)}. Here we use tree
DBF and jump queries for lexicographical comparison. If we know maxSuf (ww),
maximal cyclic shift of w is computed in constant time. �	

References

1. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor.
Comput. Sci. 321(1), 5–12 (2004)

2. Bresar, B., Grytczuk, J., Klavzar, S., Niwczyk, S., Peterin, I.: Nonrepetitive color-
ings of trees. Discrete Mathematics 307(2), 163–172 (2007)

3. Crochemore, M., Ilie, L., Rytter, W.: Repetitions in strings: Algorithms and com-
binatorics. Theor. Comput. Sci. 410(50), 5227–5235 (2009)

4. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Radoszewski, J.,
Rytter, W., Tyczyński, W., Waleń, T.: The Maximum Number of Squares in a
Tree. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 27–40.
Springer, Heidelberg (2012)

5. Crochemore, M., Iliopoulos, C.S., Kubica, M., Radoszewski, J., Rytter, W., Waleń,
T.: Extracting Powers and Periods in a String from Its Runs Structure. In: Chavez,
E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 258–269. Springer, Hei-
delberg (2010)

6. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific (2003)
7. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. of Combi-

natorial Theory Series A 82, 112–120 (1998)
8. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the

tandem repeats in a string. J. Comput. Syst. Sci. 69(4), 525–546 (2004)
9. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.

SIAM J. Comput. 13(2), 338–355 (1984)
10. Kosaraju, S.R.: Efficient tree pattern matching (preliminary version). In: FOCS,

pp. 178–183. IEEE Computer Society (1989)
11. Main, M.G., Lorentz, R.J.: An O(n log n) algorithm for finding all repetitions in a

string. J. Algorithms 5(3), 422–432 (1984)
12. Shibuya, T.: Constructing the Suffix Tree of a Tree with a Large Alphabet. In:

Aggarwal, A., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 225–
236. Springer, Heidelberg (1999)

13. Simon, I.: String Matching Algorithms and Automata. In: Karhumäki, J., Rozen-
berg, G., Maurer, H.A. (eds.) Results and Trends in Theoretical Computer Science.
LNCS, vol. 812, pp. 386–395. Springer, Heidelberg (1994)

A General Method for Improving

Insertion-Based Adaptive Sorting�

Riku Saikkonen and Eljas Soisalon-Soininen

Aalto University, School of Science and Technology, Department of Computer Science
and Engineering, P.O. Box 15400, FI-00076 Aalto, Finland

{rjs,ess}@cs.hut.fi

Abstract. A presortedness measure describes to which extent a se-
quence of key values to be sorted is already partially sorted. We introduce
a new natural measure of presortedness, which is a composition of two
existing ones: Block that gives the number of already sorted disjoint sub-
sequences of the input, and Loc defined as

∏n
i=2 di, where di denotes the

distance between the (i − 1)th and the ith element of the input in the
ordered sequence up to the ith element. We also give a general method
for improving insertion-based adaptive sorting, applying it to Splaysort
to produce an algorithm that is optimal with respect to the new com-
posite measure. Our experiments are performed for splay-tree sorting
which has been reported to be among the most efficient adaptive sorting
algorithms. Our experimental results show that, in addition to the the-
oretical superiority, our method improves standard Splaysort by a large
factor when the input contains blocks of reasonable size.

Keywords: Adaptive sorting, Measures of presortedness, Search trees.

1 Introduction

One natural measure of presortedness is Block [2], defined as the number of
maximal contiguous segments of the input X = 〈x1, . . . , xn〉 that remain as such
in the sorted sequence, or only change the order from descending to ascending1.

The number of blocks, Block (X), in a sequence X does not care of the order in
which the blocks appear in X . In this sense Block does not fully demonstrate the
level of presortedness in X : for example, sequence X1 = 〈1, 2, 5, 6, 3, 4, . . . , n −
1, n, n− 3, n− 2〉 has the same number of blocks as X2 = 〈1, 2, n− 1, n, 5, 6, n−
5, n − 4, . . . , 7, 8, n − 3, n − 2, 3, 4〉, which is obviously much farther from the
sorted sequence than X1.

In this paper we apply the adaptivity measures Inv [3] and Loc [4] to blocks in-
stead of single elements. The measure Inv (number of inversions) gives the num-
ber of pairs of any two input elements that are in wrong order, and Loc is defined

� This research was partially supported by the Academy of Finland. A preliminary
version of some of the results is published in the doctoral dissertation [1].

1 The original definition of Block only considers ascending blocks. For this article we
use the natural extended definition that also includes descending blocks.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 217–226, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

218 R. Saikkonen and E. Soisalon-Soininen

as
∏n

i=2 di, where di is the distance between the (i − 1)th and the ith element
in the sorted prefix containing keys from x1 to xi. We can then define compos-
ite measures Inv ◦Block rep(X) = Inv(Block rep(X)) and Loc ◦Block rep(X) =
Loc(Block rep(X)), where Block rep(X) denotes the projection of X onto the
largest elements (or any fixed representative elements) of the blocks it is com-
posed of.

Such a composite measure is quite natural; it captures the notion that a
sequence containing fewer blocks is closer to being sorted, and also Inv- or Loc-
adaptivity of the sequence of representatives of blocks. As is intuitive, the com-
posite measures are strictly superior to the measures they are composed of, in
the sense that a sorting algorithm optimal with respect to the composite mea-
sures is never asymptotically worse than an algorithm only optimal with respect
to the measures which are used in defining the composition, but is asymptoti-
cally faster for an infinite number of inputs. These properties are easy to show in
the framework defined by Petersson and Moffat [4]. It is also straightforward to
see that Loc ◦Block rep is strictly superior to Inv ◦Block rep, but Inv ◦Block rep is
independent with Loc, that is, there is no superiority relation between the two.

Our main result is to show how a general class of adaptive tree-sorting algo-
rithms can be devised such that they are optimal with respect to M ◦Block rep ,
where M is a suitable adaptiveness measure such as Inv or Loc. Especially we
present a variation of Splaysort which is optimal with respect to Loc ◦Block rep .

Our results are based on a new search-tree structure, called the bulk tree,
that stores “bulks” that are blocks of the portion of input currently stored in
the tree. An important feature of the tree is that it contains only one element
for each bulk, stored as a pair (p, l), where p is a pointer to the first element of
the bulk and l its length. Observe that we let the elements of the bulk stay in
the input array and do not at all copy them into the bulk tree.

Our previous article [5] introduced the idea of tree sorting by bulks of the
input, and the composite measure Inv ◦Block rep . But at that time the con-
cept of the bulk tree was not yet invented, and thus we could not produce an
Inv ◦Block rep-optimal sorting algorithm.

Apart from the optimality results, we include a detailed experimental study
that compares the new bulk-tree-based Splaysort with standard Splaysort and
others (Splaysort [6] is known to be one of the most versatile adaptive sorting
algorithms), using Loc-, Block - and Loc ◦Block rep-adaptive input data. The main
result of our experiments is that our algorithm was much faster than Splaysort or
any of the others for all inputs with reasonably large block size. More specifically,
whenever Block (X) ≤ 106 (for |X | ≈ 3.4 ·107 in our experiments), Bulk-tree sort
was at least 2.3 and up to 9.1 times faster than Splaysort, which used 2.3–5.0
times as many comparisons.

This paper is organized as follows. Section 2 contains the definiton of the
bulk tree structure and proves our main result that using bulk trees instead
of standard trees indeed yields an M ◦Block rep-optimal sorting algorithm, if
sorting using the underlying non-bulk tree is M -optimal. In Sect. 3 we report
our experimental work, and Sect. 4 gives the conclusion.

A General Method for Improving Insertion-Based Adaptive Sorting 219

2 The Bulk Tree

How can a sorting algorithm be made optimal to Loc ◦Block rep? It is not feasible
to first find Block rep(X) using a Block -optimal algorithm and then sort it with
a Loc-optimal algorithm: Since the Loc ◦Block rep measure is superior to Block ,
an algorithm that finds Block rep(X) spends too much time doing it (for some
inputs), unless that algorithm by itself is already Loc ◦Block rep-optimal. There-
fore, a Loc ◦Block rep-optimal algorithm cannot be made by simply combining
Block - and Loc-optimal algorithms.

Here we present a general class of tree-sorting algorithms that are able to
process whole blocks as if they were single keys. This method, which we call the
bulk tree, is applicable to at least Splaysort [6], various avl-tree-based sorting
algorithms (e.g., [5]), and Local Insertion Sort which uses B-tree-based finger
trees [7]. We present the general method and apply it to enhance Splaysort,
which appears to be one of the most practical adaptive sorting algorithms. The
enhanced algorithm will be Loc ◦Block rep-optimal, since Splaysort by itself is
Loc-optimal [8].

The idea behind the bulk tree is to store each block as a single key in the
tree (where a normal tree would store each individual element of the block sepa-
rately). Then the tree traversal takes time proportional to the number of blocks
traversed, independent of the block sizes.

However, before sorting is complete (i.e., when only part of the input sequence
has been inserted into the tree), it is not possible to know the actual blocks:
later elements in the input sequence may split a previous “block” in parts. For
instance, if X = 〈7, 8, 1, 2, 5, 6, 3, 4〉 and only the prefix X ′ = 〈7, 8, 1, 2, 5, 6〉 has
yet been inserted, the blocks of X ′ are 〈7, 8〉 and 〈1, 2, 5, 6〉. After the sorting is
complete, it is seen that X has the blocks 〈1, 2〉, 〈3, 4〉, 〈5, 6〉 and 〈7, 8〉; and the
block 〈1, 2, 5, 6〉 of X ′ has been split in two.

Our bulk tree always stores the blocks of the currently-inserted prefix X ′ of
the input X ; we call these blocks bulks. Since appending additional keys to a
sequence X ′ can split but not merge its blocks, the bulks represent a subset of
the actual blocks of X ; more formally:

Lemma 1. If X ′ = 〈x1, x2, . . . , xi−1〉 is a prefix of X = 〈x1, x2, . . . , xn〉 so that
1 < i ≤ n is at a block boundary, then Block rep(X

′) ⊆ (Block rep(X) ∩X ′).

2.1 Inserting Bulks

Each element of the bulk tree (each node in a binary search tree) contains a
pointer to the first key of the bulk in the input sequence X , the number of keys,
and a flag that notes whether the bulk is in ascending or descending order. The
first bulk is the longest ascending or descending prefix of X .

A new bulk is inserted into the bulk tree as follows, when the prefix X ′ =
X [1..i − 1], 2 ≤ i ≤ n, has already been inserted. Search in the tree for X [i];
it belongs either between two existing bulks, or inside an existing bulk which
needs to be split in two. An efficient way of searching in the tree is to compare

220 R. Saikkonen and E. Soisalon-Soininen

X [i] only to the minimum key of each bulk, keeping track of the bulk X [a..b]
with largest minimum key a (this is in the last visited node which is not the
leftmost child of its parent). When the search finishes at a leaf – always at the
location where the immediate successor of X [a..b] would be inserted – compare
X [i] with b (the maximum key of X [a..b]) to find out whether X [a..b] needs to
be split.

The new bulk X [i..j] is the longest ascending or descending prefix of X [i..n]
with keys between the next-smaller and next-larger keys in the tree (these are
found during the tree traversal or, in the bulk-split case, are the keys surrounding
the split position). A few optimizations for finding the end j of the bulk are
discussed in [1, 5].

If no split is needed, the new bulk X [i..j] is simply inserted in the tree in
the current position. Otherwise, when the new keys X [i..j] belong inside the
existing bulk X [a..b], the latter is split into X [a..s] and X [s+1..b], where X [s] <
X [i] < X [s + 1]. Then X [a..b] in the tree is replaced by one of the three bulks
(say X [a..s]), and the other two (X [i..j] and X [s + 1..b]) are inserted in the
tree as new elements. (The above assumes that X [a..b] is an ascending bulk; a
descending X [a..b] is symmetric.)

We use the name bulk-tree sort for the algorithm that sorts an input se-
quence X by inserting it into the bulk tree and reading the sorted result from
the tree. After all of X has been inserted, the bulk tree contains one element for
each block in Block rep(X):

Lemma 2. After every insertion of a new bulk during bulk-tree sort, the bulk
tree stores the blocks of the currently-inserted prefix X ′ of the input sequence X.

Proof. Assume that the bulk tree currently stores the bulks of the prefix X [1..i−
1]. The next bulk X [i..j], 1 < i < j ≤ n is a block of X [1..j] (and X [i..j + 1] is
not a block of X [1..j+1] or we would have increased j). An existing bulk (which
is a block of X [1..i− 1]) is split exactly when it forms two blocks in X [1..j]. ��

2.2 Analysis

The work done in sorting using the bulk tree can be divided in five parts: (i) tree
traversal for finding each insertion position; (ii) the insertions and possible re-
balancing; (iii) for each new bulk, finding the prefix of the remaining keys that
forms the bulk; (iv) splitting previous bulks; (v) O(|X |) time to read the sorted
result by traversing the final tree in in-order. We begin with (iii) and (iv), which
are independent of the underlying search tree.

Lemma 3. Assume that n keys that form k bulks are inserted into the bulk tree
during sorting. Determining the keys that belong to each new bulk can be done
in total time O(n).

Proof. Except for the first key of each bulk, each key is compared once to the
previous one (to see if the sequence continues to be ascending or descending)
and to a minimum or maximum value (the next-smaller or next-larger key in the

A General Method for Improving Insertion-Based Adaptive Sorting 221

currently-inserted keys). It is actually possible to avoid most of the comparisons
to the minimum or maximum: see [5, Theorem 2]. ��

Since the bulks are stored only as pointers to the actual keys (which are con-
secutive in the input array), the only non-constant-time operation involved in
splitting a bulk is finding the split position. We obviously cannot use standard bi-
nary search for this, since it would use O(Block (X) logBlock (X)) comparisons,
which is only enough for Block -optimality. But using exponential and binary
search as defined by Fredman [9] we have:

Lemma 4. Assume that the keys of sequence X = 〈x1, x2, . . . , xn〉 are inserted
as k bulks into an initially empty bulk tree T . Then the total time needed for all
searches in the bulks of T for finding their split positions is O(n).

We have now shown that parts (iii), (iv) and (v) all take O(|X |) time. It remains
to analyze the tree traversal and insertion costs, which depend on the search tree
used as the basis of the bulk tree.

Lemma 5. Let A be a tree-insertion-based sorting algorithm and A′ be the same
algorithm augmented to use bulk trees. The total time taken by tree traversals
for finding the positions of new bulks, when using A′ to sort a sequence X, is
O(tA(Block rep(X))), where tA(Block rep(X)) is the time taken by algorithm A to
sort Block rep(X).

Proof. This would be trivial if the tree always contained exactly the blocks of
the input X that are present in the currently-inserted prefix X ′. In reality, the
tree contains representative bulks for some but not necessarily all of these blocks
(Lemmas 1 and 2). But the fact that some of the actual blocks of X ′ are missing
from the tree can only decrease the cost of the tree traversals. ��

We then need to consider rebalancing done after insertions, and the additional
tree traversal required in the bulk-split case for inserting a second element in the
next-larger position. The latter is slightly different in various underlying trees:

Lemma 6. Assume that the search tree underlying bulk-tree sort has amortized
constant rebalancing cost for a sequence of insertions, and that the next-larger
position from the previous insertion can be found in amortized constant time.
When sorting X with bulk-tree sort, all insertions, with rebalancing but without
tree traversals for finding the positions of new bulks, take total time O(Block (X)).

Proof. There are exactly Block (X) insertions (Lemma 2), so all rebalancing is
O(Block (X)) by the assumption of amortized constant rebalancing cost.

For traversal in the second insertion of the bulk-split case, we need to analyze
the distance between the insertion position of a new bulk and its successor
position. All search trees except splay trees insert a new element in a leaf (where
the next-larger position is its rightmost child), but in some trees the leaf may
propagate upward during rebalancing. (For instance in an avl tree, a rotation
done in the parent of the inserted leaf moves the inserted leaf up.) But this
propagation is limited by the (amortized constant) amount of rebalancing that

222 R. Saikkonen and E. Soisalon-Soininen

was done, so the distance is O(1) per insertion when amortized over all the
insertions.

Splay trees place a newly-inserted element at the root, so the next-larger
position can be far away in the worst case. But Cole [8] shows that the amortized
cost of traversal to the next-larger position is constant (this is a special case of
what is required for Loc-optimal sorting: traversal to a distance d should take
amortized time O(log(d + 1))). ��

We have:

Theorem 1. Let A be a sorting algorithm that sorts by insertion into a search
tree and that can be augmented to use bulk trees. If A is M -optimal for any
presortedness measure M , then the augmented algorithm A′ will be M ◦Block rep-
optimal.

Proof. By Lemmas 3–6 the time bound of A′ is O(|X |+tA(Block rep(X))), where
X is the input sequence and tA(Block rep(X)) is the time taken by A to sort
Block rep(X). Thus, tA′(X) is M ◦Block rep-optimal if tA(Block rep(X)) is M -
optimal. ��

Since Splaysort is Loc-optimal [8], Bulk-tree sort using splay trees is
Loc ◦Block rep-optimal (and thus Loc-, Block - and Inv ◦Block rep-optimal
due to the superiority relationships of the measures, as well as Inv-, Osc-, Rem-,
Exc-, Max - and Runs-optimal using the hierarchy defined by Petersson and
Moffat [4]).

2.3 Optimization: Making Small Bulks Larger

Tree insertion-based sorting is known to be slow with inputs that are close to
random [5, 6, 10]. Even though large blocks are not present (Block (X) is large),
using the bulk tree can still make sorting these inputs faster: we can enforce a
minimum size for the bulks in the bulk tree by adding the keys of a new small
bulk to its neighbor instead of creating a new bulk.

We merge a newly-inserted bulk with its neighbors whenever the resulting
bulk has at most u elements (u is a constant). It is possible to maintain the
invariant that, except for the two bulks at the edges of the tree, every pair of
consecutive bulks has at least u/2 keys in total, giving an average bulk size of
at least u/4. When a new bulk is inserted between existing bulks, the new keys
are added to either the predecessor or successor bulk if the result has at most u
elements. In the bulk-split case, we look at the new bulk, the halves produced
by the split and the predecessor and successor bulks, merging any combinations
that result in bulks of at most u elements.

To merge bulks that are not adjacent in the input sequence, we need to make
copies of their elements (instead of only storing pointers to the input sequence).
When a bulk takes part in a merge for the first time, we allocate u elements of
temporary space for it, which is enough for all subsequent merges involving this
bulk.

A General Method for Improving Insertion-Based Adaptive Sorting 223

The choice of u is arbitrary; a large value increases the cost of the actual
insertion (because of merging), but greatly decreases search times (the bulk tree
has at most 4|X |/u+2 bulks). Our experiments indicate that values of u even up
to 200 work well; we used u = 100 in the ones reported below. Any constant u
preserves the optimality properties of bulk-tree sort, since this optimization does
not affect bulks with more than u elements.

The optimization needs access to the predecessor and successor bulks at each
insertion point. In some search trees they are immediately available; otherwise
pointers can be added to the nodes as necessary. (We needed to add a pointer
to the predecessor in our implementation of bulk-tree sort with splay trees.)

3 Experiments

We compared our implementation of Bulk-tree sort using splay trees to normal
Splaysort and some other sorting algorithms, using randomly generated input
data. We use Block -, Loc- and Loc ◦Block rep-adaptive input data, which best
capture the theoretical adaptivity of the Bulk-tree sort algorithm.

All of our implementations were written in C, and run under gnu/Linux on
a 4-core 64-bit Intel Core2 Quad running at 2.6 GHz (only one cpu core was
used, since the algorithms are not concurrent). Each experiment was repeated
10 times using newly generated input; we report averages. The keys were simple
4-byte integers in the range [1, n] with n = |X | = 225. We measured both the
number of comparisons and actual running time.

3.1 Other Sorting Algorithms

Since we based Bulk-tree sort on splay trees, the most interesting comparison
will be to normal Splaysort, which is known to be efficient especially in the
number of comparisons [6,10]. To give a more complete picture, we included the
Inv -optimal merge-sort-like Splitsort [11], which is not based on tree insertion
and is efficient especially in running time [10,12]. In addition, we used the Merge
sort and Quicksort implementations from the gnu C library (version 2.11.3) –
the latter is an engineered implementation that cites [13].

We also tried our avl-tree bulk-insertion sort algorithm [5]. It was slower than
Bulk-tree sort in all cases (understandably since it is not Loc ◦Block rep- or even
Loc-optimal), so we omit it from the figures shown here.

We reimplemented Splaysort with a space optimization: instead of storing
64-bit pointers in nodes, we stored all nodes in an array so that pointers were
32-bit indices to this array. We also tried the Splaysort implementation from [6]:
it performed the same number of comparisons as our own, but was much slower
(probably because it was engineered for 32-bit computers in 1995). Our Splitsort
implementation used 2n pointers of extra space and not the n-pointer space
optimization of [11], which we had previously [5] found to be slower.

All tree-based algorithms wrote the sorted result back into the original array
(unpacking any bulks into single elements).

224 R. Saikkonen and E. Soisalon-Soininen

0

10

20

30

40

50

60

100 101 102 103 104 105 106 107

Block(X)

(a) Block data, comparisons per element

0

2

4

6

8

10

12

14

16

100 101 102 103 104 105 106

Block(X)

0

10

20

30

40

50

60

106 107

Block(X)

(b) Block data, running time (s)

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18

log2 Loc(X)/|X|
(c) Loc data, comparisons per element

0

10

20

30

40

50

0 2 4 6 8 10 12 14 16 18

log2 Loc(X)/|X|

Splaysort
Bulk-tree sort
Splitsort
C library quicksort
C library merge sort

(d) Loc data, running time (s)

Fig. 1. Results for (a–b) Block and (c–d) Loc data, n = 225 ≈ 3.4 · 107. For clarity,
the plot legend is given only in (d), and the plot for (b) has been divided in two
horizontally.

0

5

10

15

20

25

30

0 2 4 6 8 10 12

log2 Loc(Blockrep(X))/Block(X)

(a) Comparisons per elemt, fixed block size

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

0 2 4 6 8 10 12

log2 Loc(Blockrep(X))/Block(X)

(b) Running time (s), fixed block size

0

5

10

15

20

25

30

103 104 105 106 107

Block(X)

(c) Comparisons per elemt, fixed distance

0
1
2
3
4
5
6
7
8
9

103 104 105 106 107

Block(X)

Splaysort
Bulk-tree sort
C library quicksort
C library merge sort

(d) Running time (s), fixed distance

Fig. 2. Results for Loc ◦Block rep data, n = 225 ≈ 3.4 ·107 . (a–b) With a fixed number
of blocks (Block(X) ≈ 9.8–10 · 105, or 8.7 at the leftmost data point). (c–d) With
fixed distance between blocks (log2 Loc(Block rep(X))/Block(X) ≈ 5.8–5.9, or 4.5 and
5.6 at the two leftmost data points). For clarity, the plot legend is given only in (d),
and Splitsort is not drawn since it was much slower (26–54 compar., 8–16 seconds).

A General Method for Improving Insertion-Based Adaptive Sorting 225

3.2 Results

Figures 1 and 2 show results from our experiments. The x-axis of each figure ranges
from almost sorted sequences at the left to almost random ones at the right.

For Block data, Figs. 1(a–b), the leftmost data point is fully sorted and the
rightmost fully random (i.e., every permutation is equally likely). With this
data, Bulk-tree sort was always faster than standard Splaysort, and used fewer
comparisons except when Block (X) > 2 · 107. For fully sorted data, both used
the minimum number of comparisons, but Splaysort required 4.3 times as much
running time. For the large range 10 ≤ Block (X) ≤ 105, Splaysort used 3.6–5.0
times as many comparisons and 5.7–9.1 times as much time.

In the Loc-adaptive inputs of Figs. 1(c–d), large blocks are never present.
The bulk tree is thus at a disadvantage, and Bulk-tree sort performed slightly
worse than Splaysort: it used 1.1–1.8 times as many comparisons (2.8 at the
leftmost data point) and up to 1.9 times as much time as Splaysort. But when
the input was close to random (both here and for Block data, i.e., the right-hand
side of Figs. 1(b,d)), the optimization of Sect. 2.3 improved running times: then
Splaysort used 1.3 times as much time as Bulk-tree sort.

Finally, Fig. 2 shows our results for Loc ◦Block rep-adaptive data, for which
Splaysort is not even optimal. This type of input data has two parameters: for
Figs. 2(a–b) we fixed the block size (Block) and altered the distance between
blocks (Loc ◦Block rep), and then did vice versa for Figs. 2(c–d). Except for close-
to-random data (Block (X) > 106 in Figs. 2(c–d)), Splaysort performed 2.3–4.8
times as many comparisons as Bulk-tree sort and used 2.4–7.7 times as much
time.

Summarizing from all the experiments, our main result is that for all inputs
with reasonably large blocks (Block (X) ≤ 106), Bulk-tree sort was the fastest al-
gorithm, and standard Splaysort needed 2.3–5.0 times as many comparisons and
2.3–9.1 times as much time as Bulk-tree sort (except for fully sorted sequences
where both used the minimum number of comparisons). Even with small blocks,
the optimization of Sect. 2.3 improved upon standard Splaysort for close-to-
random data, though here the non-adaptive algorithms are much faster.

4 Conclusions

Splaysort is known to be an efficient algorithm, yet in our experiments we were
able to improve its running time by a factor of at least 5 for a large range of
Block - and Loc ◦Block rep-adaptive inputs. Our algorithm was consistently more
efficient than the others for all inputs that contained reasonably large bulks.
The reason is twofold: (i) fewer comparisons are required, because the bulk tree
allows insertion-based sorting to jump over large bulks while looking only at
their endpoints, and (ii) the search tree is much smaller when it only stores
one element per bulk (especially with our optimization that merges small bulks
together), so more of the tree fits in the hardware cache.

The bulk tree can also be used as a general-purpose search tree optimized for
bulk insertion. The best bulk-insertion algorithms for traditional search trees

226 R. Saikkonen and E. Soisalon-Soininen

require O(logm) amortized time for rebalancing when inserting a bulk of m keys
to a specific position. In the bulk tree, because inserting a bulk only requires
inserting one or two new elements, rebalancing is done in amortized O(1) time
independent of the bulk size.

Our ongoing research applies the bulk-tree idea to a completely different appli-
cation: to serve as an index structure for databases stored on solid-state drives.
In addition to optimizing bulk operations, our storage method can take advan-
tage of the small physical size of the bulk tree, when a minimum bulk size is
enforced.

References

1. Saikkonen, R.: Bulk Updates and Cache Sensitivity in Search Trees. PhD thesis,
Helsinki University of Technology (2009)

2. Carlsson, S., Levcopoulos, C., Petersson, O.: Sublinear merging and natural merge-
sort. Algorithmica 9(6), 629–648 (1993)

3. Mehlhorn, K.: Sorting Presorted Files. In: Weihrauch, K. (ed.) GI-TCS 1979.
LNCS, vol. 67, pp. 199–212. Springer, Heidelberg (1979)

4. Petersson, O., Moffat, A.: A framework for adaptive sorting. Discrete Applied
Mathematics 59(2), 153–179 (1995)

5. Saikkonen, R., Soisalon-Soininen, E.: Bulk-Insertion Sort: Towards Composite
Measures of Presortedness. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526,
pp. 269–280. Springer, Heidelberg (2009)

6. Moffat, A., Eddy, G., Petersson, O.: Splaysort: Fast, versatile, practical. Software,
Practice and Experience 126(7), 781–797 (1996)

7. Mannila, H.: Measures of presortedness and optimal sorting algorithms. IEEE
Transactions on Computers C-34, 318–325 (1985)

8. Cole, R.: On the dynamic finger conjecture for splay trees, part II: The proof.
SIAM Journal on Computing 30(1), 44–85 (2000)

9. Fredman, M.L.: Two applications of a probabilistic search technique: Sorting X+Y
and building balanced search trees. In: 7th Annual ACM Symposium on Theory
of Computing (STOC 1975), pp. 240–244. ACM Press (1975)

10. Elmasry, A., Hammad, A.: An Empirical Study for Inversions-Sensitive Sorting
Algorithms. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 597–601.
Springer, Heidelberg (2005)

11. Levcopoulos, C., Petersson, O.: Splitsort – an adaptive sorting algorithm. Informa-
tion Processing Letters 39, 205–211 (1991)

12. Estivill-Castro, V., Wood, D.: A survey of adaptive sorting algorithms. ACM Com-
puting Surveys 24(4), 441–476 (1992)

13. Bentley, J.L., McIlroy, M.D.: Engineering a sort function. Software, Practice and
Experience 23(11), 1249–1265 (1993)

Counting Partitions of Graphs

Pavol Hell1,�, Miki Hermann2,��, and Mayssam Mohammadi Nevisi1,∗

1 School of Computing Science, Simon Fraser University, Burnaby, Canada
{pavol,maysamm}@sfu.ca

2 LIX CNRS UMR 7161, École Polytechnique, Palaiseau, France
hermann@lix.polytechnique.fr

Abstract. Recently, there has been much interest in studying certain
graph partitions that generalize graph colourings and homomorphisms.
They are described by a pattern, usually viewed as a symmetric {0, 1, ∗}-
matrixM . Existing results focus on recognition algorithms and characteri-
zation theorems for graphs that admit suchM -partitions, orM -partitions
in which vertices of the input graphG have lists of admissible parts. In this
paper we study the complexity of counting M -partitions. The complex-
ity of counting problems for graph colourings and homomorphisms have
been previously classified, and most turned out to be #P-complete, with
only trivial exceptions where the counting problems are easily solvable in
polynomial time. By contrast, we exhibitmanyM -partition problemswith
interesting non-trivial counting algorithms; moreover these algorithms ap-
pear to depend on highly combinatorial tools. In fact, our tools are suffi-
cient to classify the complexity of counting M -partitions for all matrices
M of size less than four. It turns out that, among matrices not acccounted
for by the existing results on counting homomorphisms, all matrices which
do not contain the matrices for independent sets or cliques yield tractable
counting problems.

Keywords: partitions, polynomial algorithms, #P-completeness,
dichotomy, counting problems.

1 Introduction

It is well known that the number of bipartitions of a graph G can be computed in
polynomial time. Indeed, we can first check, in polynomial time, if G is bipartite,
and if not, the answer is 0. If G is bipartite, we can find, in polynomial time,
the number c of connected components of G. Since each such component admits
exactly two bipartitions, the answer in this case is 2c. Interestingly, the number of
bipartitions can also be counted using linear algebra: if each vertex v is associated
with a variable xv over the field F2 = {0, 1}, and each edge uv with the equation
xu + xv = 1 in F2 (i.e., modulo 2), then the number solutions of this system
is precisely the number of bipartitions of G. Thus 2-colourings of graphs can

� Supported by NSERC Canada.
�� Supported by ANR Blanc International ALCOCLAN.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 227–236, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

228 P. Hell, M. Hermann, and M.M. Nevisi

be counted in polynomial time. It is also known that the counting problem for
m-colourings of G with m > 2 is #P-complete [5]. This is the dichotomy of the
counting problems for graph colourings.

A homomorphism f of G to H is a mapping V (G) → V (H) such that uv ∈
E(G) implies f(u)f(v) ∈ E(H). If H = Km, a homomorphism of G to H is an
m-colouring of G. Dichotomy of counting homomorphisms to graphs H has been
established by Dyer and Greenhill [6]. Namely, if each connected component of
H is either a reflexive complete graph, or an irreflexive complete bipartite graph,
then counting homomorphisms to H can be solved by trivial methods, as in the
above example (or, once again, by linear algebra). In all other cases, counting
homomorphisms to H is #P-complete [6]. Other dichotomies for homomorphism
counting problems, in bounded degree graphs, or for homomorphisms with lists,
are discussed in [18]. (In the list version of the problem, the graph G has a list
L(v) ⊆ V (H) for each vertex v ∈ V (G) and only homomorphisms f that satisfy
f(v) ∈ L(v), for all v ∈ V (G), are counted.) In particular, it is proved in [18],
that, as without lists, if each connected component of H is either a reflexive
complete graph, or an irreflexive complete bipartite graph, then counting list
homomorphisms to H can be solved by easy polynomial time methods, and in
all other cases counting list homomorphisms to H is #P-complete [18].

Homomorphisms to H can be viewed as partitions of the input graph G into
parts corresponding to the vertices of H . Specifically, if x ∈ V (H) has no loop,
the corresponding part Px is an independent set in G, and if xy �∈ E(H), then
there are no edges between the parts Px and Py. A further generalization of
homomorphisms allows us to specify that certain parts Px must be cliques, and
between certain parts Px and Py there must be all possible edges.

Throughout the paper, M will always be assumed to be a symmetric m by
m matrix over 0, 1, ∗. An M -partition of a graph G is a partition P1, P2, . . . , Pm

of V (G), such that two distinct vertices in (possibly equal) parts Pi and Pj are
adjacent if M(i, j) = 1, and nonadjacent if M(i, j) = 0; the entry M(i, j) =
∗ signifies no restriction. Since we admit i = j, a part Pi is independent if
M(i, i) = 0, and a clique if M(i, i) = 1. (We usually refer to Pi as the i-th
part.) Note that when M has no 1’s, the matrix M corresponds to an adjacency
matrix of a graph H , if we interpret ∗ as adjacent and 0 as non-adjacent; and
in this case an M -partition of G is precisely a homomorphism of G to H . Thus
M -partitions generalize homomorphisms and hence also graph colourings. They
are frequently encountered in the study of perfect graphs. A simple example is
the matrix M =

(
0 ∗
∗ 1

)
: in this case a graph G is M -partitionable if and only

if it is a split graph. Other examples of matrices M such that M -partitions are
of interest in the study of perfect graphs can be found in [8]. They include the
existence of a homogeneous set [13] (M has size three, see the next section), the
existence of a clique cutset (M has size three), the existence of a skew cutset
(M has size four), and many other popular problems [3,8,10,15,22]. (If M has a
diagonal ∗, it is usual for the existence problems to focus on M -partitions with
all parts non-empty, otherwise the problems become trivial; this is in particular
the case in the previous three examples.) In any event, we emphasize the fact

Counting Partitions of Graphs 229

that M -partition problems tend to be difficult and interesting even for small
matrices M .

We note for future reference the following complementarity of M -partitions.
Denote by M the matrix obtained from M be replacing each 0 by 1 and vice
versa. Then an M -partition of a graph G is precisely an M -partition of the
complement G.

In the literature there are several papers dealing with algorithms and char-
acterizations of graphs admiting M -partitions (or list M -partitions) [4,7,8,10];
these are detailed in a recent survey [14], cf. also a slightly older survey [19], or
the book [16]. We focus on the counting problem for M -partitions. Recall that
for homomorphism problems, except for trivial cases, counting homomorphisms
turned out to be #P-complete [6]. More generally, in constraint satisfaction
problems [9,20], the situation is similar, and only the counting problems that
can be solved using algebraic methods turned out to be tractable [1]. We con-
trast these facts by exhibiting several counting problems for M -partitions, where
highly combinatorial methods seem to be needed. In the process, we completely
classify the complexity of counting the number of M -partitions for all matrices
of size less than four.

Given a matrix M , we want to know how hard it is to count the number of
M -partitions. As a warm-up, we prove the following classification for two by two

matrices M =

(
a c
c b

)
.

Theorem 1. If c and exactly one of a, b is ∗, then the problem of counting
the number of M -partitions is #P-complete. Otherwise there is a polynomial
algorithm to count the number of M -partitions.

Proof. If, say, a = c = ∗ and b = 0, then the number of M -partitions of G
is precisely the number of independent sets in G, which is known to be #P-
complete [21]. Similarly, if a = c = ∗ and b = 1, we are counting the number of
cliques in G, which is also #P-complete [21] (or by complementarity).

If M has no 1, the result follows by [6], so we assume that M contains at
least one 1, and, by complementarity, also at least one 0. If c = 0, the two parts
have no edges joining them, and at least one part is a clique. The number of
M -partitions can easily be determined once the connected components of G have
been computed. (For instance if a = 1, b = ∗, and t connected components of G
are cliques, then G has t M -partitions. When a = 1, b = 0, the counting is even
easier.) If c = 1, the result follows by complementation.

Thus we assume that c = ∗. By symmetry, we may assume without loss of
generality that a = 0 and b = 1. Such an M -partition of G is called a split
partition. It follows from [8] that the number of split partitions is polynomial,
and can be found in polynomial time (see Theorem 3.1 in [8]). Therefore they
can also be counted in polynomial time. ��

The two matrices
(∗ ∗
∗ 0

)
and

(∗ ∗
∗ 1

)
from the first paragraph of the proof will play

a role in the sequel, and we will refer to the as the matrices for independent sets,
and cliques.

230 P. Hell, M. Hermann, and M.M. Nevisi

2 Decomposition Techniques

The last two by two matrix, corresponding to split partitions, illustrates the fact
that there are interesting combinatorial algorithms for counting M -partitions.
In this section we examine a few other examples, in this case of three by three
matrices, documenting this fact.

In the remainder of the paper, we assume we have the matrix M =

⎛⎝a d e
d b f
e f c

⎞⎠ .

We begin by discussing some cases related to the example of split partitions
at the end of the previous section. In fact, the general technique of Theorem
3.1 from [8] is formulated in the language of so-called sparse-dense partitions. If
S and D are two families of subsets of V (G), and if there exists a constant c
such that all intersections S ∩ D with S ∈ S, D ∈ D, have at most c vertices,
then G with n vertices has at most n2c sparse-dense partitions V (G) = S ∪D,
with S ∈ S, D ∈ D, and they can be generated in polynomial time [8]. For
split partitions, we take S to be all independent sets, D all cliques, and c = 1.
If we take for S all bipartite induced subgraphs, for D all cliques, and c = 2,
we can conclude that any graph G has only a polynomial number of partitions
V (G) = B ∪ C, where B induces a bipartite graph and C induces a clique, and
all these partitions can be generated in polynomial time. This result is sufficient
to cover a number of polynomial cases.

Theorem 2. If a, b, c are not all the same and none is ∗, then the number of
M -partitions can be counted in polynomial time.

Proof. Up to symmetry and complementarity we may assume that a = b =
0, c = 1. For each sparse-dense partition V (G) = S ∪D, we shall test how many
partitions of the subgraph induced by S, into the first part and the second part,
satisfy the constraints induced by the entries d, e, and f of the matrix M . We
impose the constraints due to e and f by introducing lists on the vertices in S.
(If, say, e = 1, then only vertices completely adjacent to D will have the third
part in their lists, and similarly for other values of e and f .) If d is 0 or ∗, this
corresponds to counting list homomorphisms to a complete bipartite graph (K2),
which is polynomial by [18], as noted above. When d = 1, there are at most two
different partitions of S to consider, so we can check these as needed. ��

The next result deals with a class of problems related to homogeneous sets and
modular decomposision [13]. A module (or a homogeneous set) in a graph G is
a set S ⊆ V (G) such that every vertex not in S is either adjacent to all vertices
of S or to none of them. Trivially, each singleton vertex, as well as V (G) and
∅, are modules. For most applications, these trivial modules are ignored, but we
will be counting all modules. In fact, we will show that modules can be counted
in polynomial time, even under some additional restrictions.

For our purposes, we will only use the following basic theorem of Gallai [11].

Theorem 3 ([11]). For any graph G one of the following three cases must
occur.

Counting Partitions of Graphs 231

1. G is disconnected, with components G1, G2, . . .Gk.
Each union of the sets V (Gi) is a module of G, and the other modules of G
are precisely all the modules of individual components Gi.

2. The complement of G is disconnected, with components H1, H2, . . . , H�.
Each union of the sets V (Hj) is a module of G, and the other modules of G
are precisely all the modules of individual subgraphs Hj.

3. Both G and its complement are connected. There is a partition S1, S2, . . . , Sr

of V (G) (which can be computed in linear time), such that all the modules
of G are precisely all the modules of individual subgraphs induced by the sets
St, t = 1, . . . , r, plus the module V (G).

Based on this theorem, one can recursively decompose any graph into modules;
this decomposition produces a tree structure called the modular decomposition
tree of G. Even though the number of modules of G can be exponential (for
instance if G = Kn), the modular decomposition tree has polynomial size and
can be computed in linear time [12].

We will count modules of G, or modules of G with special properties, recur-
sively, using the theorem. This will suffice to provide a polynomial time counting
algorithm for these modules. We note however, that there is a natural linear time
algorithm that counts these modules directly on the modular decomposition tree.
We will describe this algorithm in the full journal version of our paper.

We will call the sets V (Gi), V (Hj), and St from the theorem the blocks of
G. According to the theorem, all modules are modules of the blocks, except for
modules that are unions of (at least two) blocks. We call these latter modules
cross modules.

We illustrate the technique on a polynomial time algorithm to count the
total number T (G) of non-empty modules of a graph G. (This turns out to be
more convenient, and one can add 1 for the empty module at the end of the
computation.) We first compute the decompositions (1, 2, or 3) in Theorem 3.
In cases 1 and 2, we have T (G) = 2t− t− 1+

∑
T (B), where t is the number of

blocks, and the sum is over all blocks B. In case 3, we have T (G) = 1+
∑

T (B).
Indeed the number of cross modules is 1 in the case 3 (only the module V (G)
is a cross module), and is 2t − t− 1 in the other two cases (subtracting one for
the empty set and the individual blocks). Since the sizes of the blocks for the
recursive calls sum up to n, this yields a recurrence for the running time whose
solution in polynomial in n. This shows that counting the number of modules of
G is polynomial.

We note that a number of variants can be counted the same way. Consider,
for instance, the number of modules that are independent sets. In case 1, if s of
the blocks consist of a single vertex, then the number of cross modules changes
to 2s − s − 1. In case 2, as well as 3, there are no cross module in this case
(unless G has no edges). Moreover, it is easy to see that the number of non-empty
independent modules of G inside a block B is precisely the number of non-empty
independent modules of the graph induced by B, in all three cases. Thus the
number of independent non-empty modules of G is T (G) = 2s− s− 1+

∑
T (B)

in case 1, and T (G) =
∑

T (B) in cases 2 and 3. Of course, the number of

232 P. Hell, M. Hermann, and M.M. Nevisi

modules that are cliques can be counted in a similar way, or by looking at the
complement.

We can in fact handle all restrictions of this type on the module S, its set of
neighbours R, and its set of non-neighbours Q. The above examples are respec-
tively: (i) S,R,Q unrestricted; (ii) S independent, R,Q unrestricted. It turns
out that all the remaining combinations of restrictions (independent, clique, or
unrestricted) for the sets S,Q,R can be treated in similar ways.

Note that the arguments are written so as to count the number of non-empty
modules of the various kinds. Of course by adding 1, we can count all such
modules.

Theorem 4. There is a polynomial time algorithm to count the number of mod-
ules satisfying any combination of restrictions where the module itself, its set of
neighbours, and its set of non-neighbours are an independent set, a clique, or
unrestricted.

It is easy to see that each restricted kind of module corresponds to an M -
partition in which d = 1, e = 0, f = ∗, and a is determined by the constraint on
S (a = 0 if R is to be independent, a = 1 if it is to be a clique, and a = ∗ if S
is unrestricted), b is determined by the constraint on R, and c by the constraint
on Q.

Corollary 5. If d = 1, e = 0, f = ∗, then the number of M -partitions with
non-empty first part can be counted in polynomial time.

However, the number of M -partitions must also take into account the partitions
with the first part empty. By applying Theorem 1, we conclude that the number
of M -partitions with empty first part can also be counted in polynomial time,
unless the second and third part form the matrix for independent sets or cliques.

Theorem 6. If d, e, f are all different, and M does not contain, as a principal
submatrix, the matrix for independent sets or cliques, then the number of M -
partitions can be counted in polynomial time.

The last kind of decomposition refers to the matrix M . Namely, if two of d, e, f
are 0, then the matrix M can be viewed as consisting of two submatrices and
the M -partition problem can be reduced to the corresponding problems for these
two matrices.

Theorem 7. Assume that two of d, e, f are 0 and M does not contain as prin-
cipal submatrix the matrix for independent sets or cliques. Then counting the
number of M -partitions is polynomial.

3 A Special Polynomial Case

Our final example of a polynomial counting problem deals with the following

matrix M =

⎛⎝0 ∗ ∗
∗ 0 1
∗ 1 0

⎞⎠.

We first consider bipartite input graphs G.

Counting Partitions of Graphs 233

Theorem 8. The number of M -partitions of bipartite input graphs G can be
computed in polynomial time.

Proof. (Sketch) Let G be a bipartite graph with parts X and Y . We again call
the three parts of an M -partition A,B,C, in that order. Each part X,Y is an
independent set, and thus, must be placed either entirely in A ∪ B or entirely
in A ∪ C. The number of M -partitions of G with B or C is empty is easily
counted, according to Theorem 1. We will add the number of M -partitions with
the vertices of X placed in A∪B, and the vertices of Y placed in A∪C and the
number of M -partitions with the opposite assignment (and subtract 1 when G
has no edges, because in that case we are counting the one possible solution that
places all vertices to A twice.) Thus consider the M -partitions of G with the
vertices of X placed in A∪B, and the vertices of Y placed in A∪C: a vertex of
X∩A has no neighbours in B and a vertex of Y ∩A has no neighbours in C. Thus
G has some possible edges between A∩X and C∩Y , all edges between C∩Y = C
and B∩Y = B, and some possible edges between B∩Y and A∩Y , and no other
edges. Such a partition is called a split [2]. (In general graphs splits can have
edges inside the parts, in our case of bipartite graphs, the parts are independent
sets.) Each M -partition of G gives a split, and each split corresponds to two
unique M -partitions of G. Thus it will suffice to count the number of splits.
Splits form a recursive structure called a split decomposition tree [2], akin to the
modular decomposition tree discussed earlier. Even though the number of splits
can be exponential, the split decomposition tree has polynomially many vertices,
and can be computed in linear time [2]. It can be shown that the number of splits
of a graph can be computed in linear time from the split decomposition tree. ��

We are ready to prove the main result of this section, Theorem 9.

Theorem 9. The number of M -partitions of any graph G can be computed in
polynomial time.

Proof. By Theorem 8, we may assume that G is not bipartite. If it does not
contain a triangle, then the shortest odd cycle has at least five vertices. In such
a case, the number of M -partitions of G is zero. Indeed, the largest complete
bipartite subgraph of the cycle has three (consecutive) vertices, and hence at
least two adjacent vertices of the cycle must be placed in A in any M -partition
of G, which is impossible.

Otherwise, we find a triangle uvw in G, in polynomial time, and then add
the numbers of M -partitions of G with the six possible assignments of u, v, w
to A,B,C. (Since the parts are independent, u, v, w must be placed in distinct
parts.) For each such assignment, we shall first extend the assignment by placing
vertices that are forced to certain parts uniquely.

In the first phase, we proceed as follows:

– a vertex with neighbours in two different parts is placed in the third part;
– a vertex with a non-neighbour in B as well as a non-neighbour in C is placed

in A;

234 P. Hell, M. Hermann, and M.M. Nevisi

– a vertex with both a neighbour and a non-neighbour in B (respectively C)
is placed in A.

It is clear that these are forced assignments in any M -partition of G extending
the given assignment on u, v, w. If at any time these assignments (or those below)
violate the requirements of an M -partition, the corresponding count is zero.

After the first phase, every vertex is either fully adjacent to B and not adjacent
to any vertex of A∪C, forming a set called X , or is fully adjacent to C and not
adjacent to any vertex of A ∪B, forming a set called Y . Note that the vertices
of X must be placed in A ∪ C and the vertices of Y in A ∪B.

In the second phase, we extend the assignment using the following rules. (In
brackets we explain why these rules are forced.)

Assume uv is an edge with u, v ∈ X , and w ∈ Y . (Symmetric rules apply for
u, v ∈ Y , and w ∈ X .)

– If w is adjacent to both u and v then w will be placed in B. (This is forced
because u and v must be in different parts A and C, and w is adjacent to
both of them.)

– if w is nonadjacent to both u and v, then w is placed in A. (This is forced
because u and v must be in different parts A and C, and w is not adjacent
to either of them, so it is nonadjacent to at least one vertex in C.)

– if w is adjacent to u but not to v, then u is placed in C and v is placed in A.
(This is forced because if v ∈ C then u ∈ A and w ∈ B, which is impossible
as vw is not an edge of G.)

When there are no more choices remaining, either we have X or Y empty, or the
graph induced by X ∪ Y is bipartite. The former case corresponds to partitions
of the remaining vertices into two of the three parts, counted by Theorem 1. The
latter case is counted by Theorem 8. ��

4 Dichotomy

Our main result is the following dichotomy. Notice that when M does not contain
any 1’s (or does not contain any 0’s), then the dichotomy follows from [6].

Theorem 10. Suppose M is an m by m matrix with m < 4, and assume M
contains both a 0 and a 1.

If M contains, as a principal submatrix, the matrix for independent sets, or the
matrix for cliques, then the counting problem for M -partitions is #P-complete.

Otherwise, counting M -partitions is polynomial.

Proof. We first derive the polynomial cases from our existing results. We assume
throughout that M contains both a 0 and a 1.

For m = 2 this follows from Theorem 1. Thus we assume that m = 3, say

M =

⎛⎝a d e
d b f
e f c

⎞⎠, and M does not contain as a principal submatrix the matrix for

Counting Partitions of Graphs 235

independent sets, or the matrix for cliques. If at least two of d, e, f are 0 (or at
least two are 1), then M -partitions are counted by Theorem 7. If d, e, f are all
different, then the number of M -partitions are counted by Theorem 6.

Hence, in all the remaining cases, we may assume that d = e = ∗, f �= 0 by
symmetry and complementarity. Notice that M contains both a 0 and a 1; hence,
f = 1 implies that at least one of a, b, c is 0, and f = ∗ implies that at least one
of a, b, c is 0 and one is 1. Thus, we note that none of a, b, c is ∗, because M does
not contain the forbidden principal submatrices, and we conclude by Theorem 9
(f = 1, a = b = c = 0) or Theorem 2 (otherwise).

It remains to show that if M contains, as a principal submatrix, the matrix
for independent sets or cliques, then counting M -partitions is #P-complete. We
shall again use the notation M ′ =

(b f
f c

)
. We shall assume that M ′ is the matrix

for independent sets, without loss of generality, say, that b = f = ∗, c = 0.
We consider two distinct cases, depending on the value of a. Our proof is

completed by the following two lemmas. ��

For the purposes of the lemmas we introduce two constructions. The universal
vertex extension G∗ of a graph G is a graph obtained from G by adding a new
vertex u, adjacent to all vertices of G. The isolated vertex extension Go of G is
a graph obtained from G by adding a new isolated vertex u.

Lemma 11. If a �= 0, b = f = ∗, c = 0, then counting the number of M -
partitions is #P-complete.

Proof. In this case, we reduce from the number of independent sets in graph
G using the isolated vertex extension of G. Let #I(G) denote the number of
independent sets of G, and #M(G) the number of M -partitions of G. As before,
we will write A,B,C for the first, second, and third part of an M -partition.

Given an input graph G, we first construct Go. We count the number of M -
partitions of Go according to the placement of the isolated vertex u. When a = 1,
we consider the two following cases:

We illustrate the proofs on the case when d, e are different from 1. In this case
we can show that #M(Go) = #I(G)+2#M(G). This implies that counting the
number of M -partitions is #P-complete. In all other cases, #I(G) can also be
reduced in polynomial time to #M(G). ��

Lemma 12. If a = 0, b = f = ∗, c = 0, then counting the number of M -
partitions is #P-complete.

In this case the proofs use the universal vertex extension.

References

1. Bulatov, A.A.: Tractable conservative constraint satisfaction problems. In: LICS,
pp. 321–330 (2003)

2. Charbit, P., de Montgolfier, F., Raffinot, M.: Linear time split decomposition re-
visited. SIAM J. Discrete Math. 26, 499–514 (2012)

236 P. Hell, M. Hermann, and M.M. Nevisi

3. Chvátal, V.: Star-cutsets and perfect graphs. J. Comb. Th. B 39, 189–199 (1985)
4. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: The stubborn problem

is stubborn no more. In: SODA 2011, pp. 1666–1674 (2011)
5. Linial, N.: Hard enumeration problems in geometry and combinatorics. SIAM Jour-

nal on Algebraic and Discrete Methods 7, 331–335 (1986)
6. Dyer, M., Greenhill, C.: The complexity of counting graph homomorphisms. In:

SODA 1999, pp. 246–255 (1999)
7. de Figueiredo, C.M.H.: The P versus NP-complete dichotomy of some challenging

problems in graph theory. Discrete Applied Math. (in press)
8. Feder, T., Hell, P., Klein, S., Motwani, R.: List partitions. SIAM J. Discrete

Math. 16, 449–478 (2003)
9. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP

and constraint satisfaction. SIAM J. Comput. 28, 57–104 (1999)
10. de Figueiredo, C.M.H., Klein, S., Kohayakawa, Y., Reed, B.: Finding skew parti-

tions efficiently. J. Algorithms 37, 505–521 (2000)
11. Gallai, T.: Transitiv orientierbare Graphen. Acta Mathematica Hungarica 18, 25–

66 (1967)
12. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition.

Computer Science Review 4, 41–59 (2010)
13. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,

New York (1980)
14. Hell, P.: Graph partitions with prescribed patterns (to appear)
15. Hell, P., Klein, S., Protti, F., Tito, L.: On generalized split graphs. Electronic Notes

in Discrete Math. 7, 98–101 (2001)
16. Hell, P., Nešetřil, J.: On the complexity of H–colouring. J. Combin. Theory B 48,

92–110 (1990)
17. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford Univ. Press (2004)
18. Hell, P., Nešetřil, J.: Counting list homomorphisms and graphs with bounded de-

grees. In: Nešetřil, J., Winkler, P. (eds.) Graphs, Morphisms and Statistical Physics.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol.
63, pp. 105–112 (2004)

19. Hell, P., Nešetřil, J.: Colouring, constraint satisfaction, and complexity. Computer
Science Review 2, 143–163 (2008)

20. Jeavons, P.: On the structure of combinatorial problems. Theoretical Comp. Sci-
ence 200, 185–204 (1998)

21. Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM Journal on Computing 12, 777–788
(1983)

22. Tarjan, R.E.: Decomposition by clique separators. Discrete Math. 55, 221–232
(1985)

Constant Unary Constraints and Symmetric

Real-Weighted Counting CSPs

Tomoyuki Yamakami

Department of Information Science, University of Fukui
3-9-1 Bunkyo, Fukui 910-8507, Japan

Abstract. In a discussion on the computational complexity of approx-
imately solving Boolean counting constraint satisfaction problems (or
#CSPs), we demonstrate the approximability of two constant unary con-
straints by an arbitrary nonempty set of real-valued constraints. A use
of auxiliary free unary constraints has proven to be useful in establishing
a complete classification of weighted #CSPs. Using our approximability
result, we can clarify the role of such auxiliary free unary constraints by
constructing approximation-preserving reductions from #SAT to #CSPs
with symmetric real-valued constraints of arbitrary arities.

Keywords: counting constraint satisfaction problem, AP-reducible, T-
constructible, constant unary constraint.

1 Roles of Constant Unary Constraints

Constraint satisfaction problems (or CSPs, in short) are combinatorial problems
that have been ubiquitously found in real-life situations. The importance of these
problems have led recent intensive studies from various aspects: for instance,
decision CSPs [5,9], optimization CSPs [3,12], and counting CSPs [1,4,7,10].
Driven by theoretical and practical interests, in this paper, we are particularly
focused on counting CSPs (abbreviated as #CSPs) whose goal is to count the
number of variable assignments satisfying all given Boolean constraints defined
over a fixed series of Boolean variables. Since, in most real-life applications, all
available constraints are pre-determined, we naturally fix a collection of allowed
constraints, say, F and wish to compute solutions of a #CSP whose constraints
are all chosen from F . Such a problem is conventionally denoted #CSP(F).
Dyer, Goldberg, and Jerrum [8] first examined the computational complexity of
approximately computing the solutions of unweighted #CSPs using a technical
tool of polynomial-time randomized approximation-preserving reductions (or AP-
reductions, hereafter) whose formulation is originated from [6].

In the case of weighted #CSPs, constraints are expanded to output more
general values than Boolean values, and the goal of each weighted #CSP is
to calculate the sum, over all possible Boolean assignments, of products of the
output values of given constraints. By further allowing a free use of auxiliary
unary constraints besides input constraints, Cai, Lu, and Xia [2] pioneered a
study on a classification of the complexity of exactly solving complex-weighted

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 237–246, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

238 T. Yamakami

#CSPs for a given set F of constraints. Similarly, in the presence of auxiliary
unary constraints, a classification of the complexity of approximately solving
complex-weighted #CSPs was presented first in [10]. In this classification, the
free use of auxiliary unary constraints provide enormous power that makes it
possible to obtain a “dichotomy” theorem rather than a “trichotomy” theorem
of Dyer et al. [8] for Boolean-valued constraints (or simply, Boolean constraints).
A key to the proof of their trichotomy theorem is an effective approximation of
so-called constant unary constraints,1 Δ0 = [1, 0] and Δ1 = [0, 1]. When F is
composed of real-valued constraints, we can claim that either Δ0 or Δ1 is always
approximated effectively using F .

Theorem 1. For any nonempty set F of real-valued constraints, there exists a
constant unary constraint h ∈ {Δ0, Δ1} for which #CSP(h,F) is AP-equivalent
to #CSP(F) (i.e., #CSP(h,F) is AP-reducible to #CSP(F) and vice versa).

When the values of constraints in F are all limited to Boolean values, the theorem
was already proven in [8] based on basic properties of Boolean arithmetic. For
real-valued constraints, however, we cannot rely on those properties and thus
we need to develop a quite different argument. An important ingredient of our
proof is an efficient estimation of a lower bound of an arbitrary polynomial in the
values of given constraints. However, since our constraints can output negative
real values, the polynomial may produce arbitrary small values. To deal with
those values, we restrict our attention onto algebraic numbers.

With Theorem 1 as a technical tool, we will be ale to demonstrate an ap-
proximation classification of real-weighted #CSPs when arbitrary free unary
constraints are permitted to assist standard inputs. In our proof, the constant
unary constraints are quite valuable in “reducing” constraints of high arity to
those of low arity. In an exact counting model, both Δ0 and Δ1 are naturally
available to use; however, in our approximate counting model, Theorem 1 guar-
antees the availability of only one of them. Even with a help of a single constant
unary constraint, it is still possible to reduce the arities of target constraints.
Moreover, we can build the reduction with no use of auxiliary unary constraint.

More precisely, let us denote by U the set of all unary constraints. Given each
constraint f , the free use of auxiliary unary constraints makes #SAT (counting
satisfiability problem) AP-reducible to #CSP(f,U) unless f is factored into three
categories of constraints: the equality, the disequality, and unary constraints [10].
Notice that all constraints factored into basic constraints in those categories form
a special set ED. The aforementioned fact establishes the following complete clas-
sification of the approximation complexity of weighted #CSPs in the presence
of U .

Theorem 2. [10, Theorem 1.1] Let F be any set of complex-valued constraints.
If F ⊆ ED, then #CSP(F ,U) is solvable in polynomial time; otherwise, it is
AP-reduced from #SAT.

1 A bracket notation [x, y] denotes a unary function g satisfying g(0) = x and g(1) = y.
Similarly, [x, y, z] expresses a binary function g for which g(0, 0) = x, g(0, 1) =
g(1, 0) = y, and g(1, 1) = z.

Constant Unary Constraints and Counting CSPs 239

The proof of this dichotomy theorem in [10] employed two technical notions
of “factorization” and “T-constructibility” of constraints. Because the proof is
rather complicated and thus lengthy, it is not immediately clear what roles free
auxiliary unary constraints play in the theorem. Toward a complete classifica-
tion of the approximation complexity of #CSPs without any auxiliary unary
constraint, it is therefore beneficial to clarify the roles of those extra constraints.
With a careful use of Theorem 1, we can precisely locate a point where the free
auxiliary unary constraints are imperatively required in establishing the desired
dichotomy theorem. For this purpose, we will present a new alternative proof
in which the use of auxiliary unary constraints is made only at the very end
of the proof. To simplify our proof, we intend to restrict our attention only on
symmetric real-weighted #CSPs in the subsequent sections.

Our proof proceeds as follows. In the first step, we must recognize constraints
g of the following special forms: [0, x, z] and [x, y, z] with xyz �= 0 and xz �= y2.
Those constraints g become crucial elements of our later analysis because, when
auxiliary unary constraints are available for free, #CSP(g,U) is known to be
computationally at least as hard as #SAT with respect to AP-reducibility [10].
In the second step, we must isolate a set F of constraints whose corresponding
counting problem #CSP(F) is AP-reduced from a certain #CSP(g) with no use
of the auxiliary unary constraints. To be more exact, we wish to establish the
following specific AP-reduction.

Theorem 3. Let F be any set of symmetric real-valued constraints of arity at

least 2. If both F � DG∪ED(+)
1 and F � DG(−)∪ED1∪AZ hold, then #CSP(F)

is AP-reduced from #CSP(g), where g is an appropriate constraint of the special
form described above.

Here, the constraint set DG consists of degenerate constraints, ED1 indicates a
“generalized” ED, and AZ contains specific symmetric constraints having alter-

nating zeros. Two additional sets DG(−) and ED(+)
1 are naturally induced from

DG and ED1, respectively. For their precise definitions, refer to Section 4. Al-

though #CSP(DG∪ED(+)
1) and #CSP(DG(−)∪ED1∪AZ) are polynomial-time

solvable, they behave quite differently in the presence of auxiliary unary con-

straints. The counting problem #CSP(DG ∪ED(+)
1 ,U) remains solvable in poly-

nomial time; on the contrary, #CSP(DG(−) ∪ED1 ∪AZ,U) is AP-reduced from
#SAT. These facts immediately prove Theorem 2 for symmetric real-weighted
#CSPs.

Comparison of Proof Techniques: In [8], the approximation of the constant unary
constraints by any set of Boolean constraints was proven with a notion of “simu-
latability.” Instead, our proof of Theorem 1 employs a direct arity reduction and
applies an estimation result in [10]. While a key proof technique used to prove
Theorem 2 is the factorization of constraints, our proof of Theorem 3 (which
leads to Theorem 2) makes a heavy use of the constant unary constraints. This
fact makes the proof cleaner and more straightforward to follow.

240 T. Yamakami

2 Fundamental Notions and Notations

We will explain basic concepts that are necessary to read through the rest of
this paper. First, let N denote the set of all natural numbers (i.e., nonnegative
integers) and let R be the set of all real numbers. For convenience, define N+ =
N−{0} and, for each number n ∈ N+, [n] stands for the integer set {1, 2, . . . , n}.

Because our results rely on Lemma 1(3), we need to limit our attention within
algebraic real numbers. For this purpose, we introduce a special notation A to in-
dicate the set of all algebraic real numbers. To simplify our terminology through-
out the paper, whenever we refer to “real numbers,” we actually mean “algebraic
real numbers” as long as there is no confusion from the context.

2.1 Constraints and #CSPs

The term “constraint of arity k” always refers to a function mapping {0, 1}k to
A. Assuming a standard lexicographic order on {0, 1}k, we conveniently express
f as a column-vector consisting of its output values; for instance, if f has arity
2, then it is expressed as (f(00), f(01), f(10), f(11)). For a k-ary constraint f =
(f1, f2, . . . , f2k) in a vector form, ‖f‖∞ means maxi∈[2k]{|fi|}. A k-ary constraint

f is called symmetric if, for every input x ∈ {0, 1}k, the value f(x) depends only
on the Hamming weight (i.e., the number of 1’s in x) of the input x; otherwise, f
is called asymmetric. When f is a symmetric constraint of arity k, we use another
succinct notation f = [f0, f1, . . . , fk], where each fi expresses the value of f on
inputs of Hamming weight i. In particular, we recognize two special constraints,
Δ0 = [1, 0] and Δ1 = [0, 1], which are called constant unary constraints.

Restricted to a set F of constraints, a real-weighted (Boolean) #CSP, con-
ventionally denoted #CSP(F), takes a finite set Ω composed of elements of the
form 〈h, (xi1 , xi2 , . . . , xik)〉, where h ∈ F is a function on k Boolean variables
xi1 , xi2 , . . . , xik in X = {x1, x2, . . . , xn} with i1, . . . , ik ∈ [n], and its goal is to
compute the real value cspΩ =def

∑
x1,x2,...,xn∈{0,1}

∏
〈h,x〉∈Ω h(xi1 , xi2 , . . . , xik),

where x denotes (xi1 , xi2 , . . . , xik). To illustrate Ω graphically, we tend to view
it as a labeled bipartite graph G = (V1|V2, E) whose left-hand nodes in V1 are
labeled distinctively by x1, x2, . . . , xn and right-hand nodes in V2 are labeled by
constraints h in F such that, for each 〈h, (xi1 , xi2 , . . . , xik)〉, there are k edges
between an associated node labeled h and the nodes labeled xi1 , xi2 , . . . , xik . The
labels of nodes are formally specified by a labeling function π : V1 ∪ V2 → X ∪F
with π(V1) = X and π(V2) ⊆ F but we often omit it from the description of G.
When Ω is viewed as this bipartite graph, it is called a constraint frame [10,11].

To simplify later descriptions, we wish to use the following simple abbreviation
rule. For instance, when f is a constraint and both F and G are constraint sets,
we write #CSP(f,F ,G) to mean #CSP({f} ∪ F ∪ G).

2.2 FPA and AP-Reducibility

To connect our results to Theorem 2, we will follow notational conventions used
in [10,11]. First, FPA denotes the collection of all A-valued functions that can
be computed deterministically in polynomial time.

Constant Unary Constraints and Counting CSPs 241

Let F be any function mapping {0, 1}∗ to A and let Σ be any nonempty
finite alphabet. A randomized approximation scheme (or RAS, in short) for F
is a randomized algorithm that takes a standard input x ∈ Σ∗ together with an
error tolerance parameter ε ∈ (0, 1), and outputs values w with probability at
least 3/4 for which min{2−εF (x), 2εF (x)} ≤ w ≤ max{2−εF (x), 2εF (x)}.

Given two real-valued functions F and G, a polynomial-time randomized
approximation-preserving reduction (or AP-reduction) from F to G [6] is a ran-
domized algorithm M that takes a pair (x, ε) ∈ Σ∗ × (0, 1) as input, uses an
arbitrary randomized approximation scheme N for G as an oracle, and satisfies
the following three conditions: (i) using N , M is an RAS for F ; (ii) every oracle
call made by M is of the form (w, δ) ∈ Σ∗ × (0, 1) with 1/δ ≤ poly(|x|, 1/ε)
and its answer is the outcome of N on (w, δ); and (iii) the running time of M
is upper-bounded by a certain polynomial in (|x|, 1/ε), which is not dependent
of the choice of N . If such an AP-reduction exists, then we also say that F is
AP-reducible to G and we write F ≤AP G. If F ≤AP G and G ≤AP F , then F
and G are said to be AP-equivalent and we use the special notation F ≡AP G.

2.3 Effective T-Constructibility

Our goal in the subsequent sections is to prove Theorems 1 and 3. For the desired
proofs, we will introduce a fundamental notion of effective T-constructibility,
whose underlying idea is borrowed from a graph-theoretical formulation of lim-
ited T-constructibility in [11].

We say that an undirected bipartite graph G = (V1|V2, E) (together with a
labeling function π) represents f if V1 consists only of k nodes labeled x1, . . . , xk,
which may have a certain number of dangling2 edges, and V2 contains only a
node labeled f to whom each node xi is adjacent. Given a set G of constraints,
a graph G = (V1|V2, E) is said to realize f by G if the following four condi-
tions are met simultaneously: (i) π(V2) ⊆ G, (ii) G contains at least k nodes
having the labels x1, . . . , xk, possibly together with nodes associated with other
variables, say, y1, . . . , ym; namely, V1 = {x1, . . . , xk, y1, . . . , ym}, (iii) only the
nodes x1, . . . , xk are allowed to have dangling edges, and (iv) f(x1, . . . , xk) equals
λ
∑

y1,...,ym∈{0,1}
∏

w∈V2
fw(z1, . . . , zd), where λ ∈ A− {0} and z1, . . . , zd ∈ V1.

We say that f is effectively T-constructible from G if the following condition
holds: for any integer m ≥ 2 and for any graph G representing f with distinct
variables x1, . . . , xk, there exists another graph G′ such that (i’) G′ realizes f
by G and (ii’) G′ maintains the same dangling edges as G does. In this case, we
write f ≤e-con G. When G is a singleton {g}, we succinctly write f ≤e-con g.

An infinite series Λ = (g1, g2, g3, . . .) of arity-k constraints is called a p-
convergence series for a target constraint f of arity k if there exist a constant
λ ∈ (0, 1) and a deterministic Turing machine (or a DTM, in short) M running
in polynomial time such that, for every number m ∈ N, (1) M takes an input

2 A dangling edge is obtained from an edge by deleting exactly one end of the edge.
These dangling edges are treated as “normal” edges, and therefore the degree of a
node counts dangling edges as well.

242 T. Yamakami

of the form 1m and outputs the complete description of the constraint gm in a
vector form (z1, z2, . . . , z2k) and (2) ‖gm − f‖∞ ≤ λm. A p-convergence series
Λ = (f1, f2, . . .) of arity-k constraints is said to be effectively T-constructible
from a finite set G = {g1, g2, . . . , gd} of constraints (denoted Λ ≤e-con G) if there
exists a polynomial-time DTM M such that, for every number m ∈ N+, M takes
an input of the form (1m, G, (g1, g2, . . . , gd)), where G represents fm with dis-
tinct variables x1, . . . , xk, and outputs a bipartite graph Gm such that (i’) Gm

realizes fm by G and (ii’) Gm maintains the same dangling edges as G does.

Lemma 1. Let f and g be any constraints. Let F and G be any constraint sets.

1. It holds that f ≤e-con f and that f ≤e-con g and g ≤e-con h imply f ≤e-con h.
2. If f ≤e-con G, then #CSP(f,F) ≤AP #CSP(G,F).
3. Let Λ be any p-convergence series for f . If Λ ≤e-con G and G is finite, then

#CSP(f) ≤AP #CSP(Λ,F) ≤AP #CSP(G,F).

In particular, Lemma 1(3) can be proven by modifying (and slightly generalizing)
the proof of [10, Lemma 5.2] given for complex-valued constraints. It is important
to note that, since we allow constraints to output negative values, the use of
algebraic real numbers may be necessary in the proof of Lemma 1(3) because the
proof heavily relies on a lower bound estimation of arbitrary polynomials over
algebraic numbers.

In the subsequent sections, we will use the following notations. Let f
be any constraint of arity k ∈ N+. Given any index i ∈ [k] and any
bit c ∈ {0, 1}, the notation fxi=c stands for the function g satisfying
that g(x1, . . . , xi−1, xi+1, . . . , xk) = f(x1, . . . , xi−1, c, xi+1, . . . , xk). For any
two distinct indices i, j ∈ [k], we denote by fxi=xj the function g de-
fined as g(x1, . . . , xi−1, xi+1, . . . , xk) = f(x1, . . . , xi−1, xj , xi+1, . . . , xk). Finally,
let fxi=∗ express the function g defined by g(x1, . . . , xi−1, xi+1, . . . , xk) =∑

c∈{0,1} f(x1, . . . , xi−1, c, xi+1, . . . , xk).

3 Approximation of the Constant Unary Constraints

In this section, we will prove our first main theorem—Theorem 1—which states
that we can effectively approximate one of the constant unary constraints. The
theorem thus suggests that we can freely use such a constant unary constraint
for a further application presented in Section 4.

3.1 Notion of Complement Stability

To obtain Theorem 1, we will first introduce two new notions. A k-ary constraint
f is said to be complement invariant if f(x1, . . . , xk) = f(x1 ⊕ 1, . . . , xk ⊕ 1)
holds for every input tuple (x1, . . . , xk) ∈ {0, 1}k, where the notation ⊕ means
the bitwise XOR. In contrast, we say that f is complement anti-invariant if,
for every input (x1, . . . , xk) ∈ {0, 1}k, f(x1, . . . , xk) = −f(x1 ⊕ 1, . . . , xk ⊕ 1)
holds. For instance, f = [1, 1] is complement invariant and f ′ = [1, 0,−1] is
complement anti-invariant. In addition, we say that f is complement stable if f

Constant Unary Constraints and Counting CSPs 243

is either complement invariant or complement anti-invariant. A constraint set F
is complement stable if every constraint in F is complement stable. Whenever f
(resp., F) is not complement stable, we conveniently call it complement unstable.

We split Theorem 1 into two separate statements, depending on whether or
not a given nonempty set of constraints is complement stable.

Lemma 2. 1. If a nonempty set F of constraints is complement stable, then
#CSP(Δi,F) ≡AP #CSP(F) holds for every index i ∈ {0, 1}.

2. For any set F of constraints, if F is complement unstable, then there exists
an index i ∈ {0, 1} such that #CSP(Δi,F) ≡AP #CSP(F).

Since Lemma 2(1) can be proven rather easily, in the next subsections, we
will concentrate our attention on the proof of Lemma 2(2). First, let F de-
note any set of constraints. Obviously, #CSP(F) AP-reduces to #CSP(Δi,F)
for every index i ∈ {0, 1}. It therefore suffices to show the other direction
(i.e., #CSP(Δi,F) ≤AP #CSP(F)) for an appropriately chosen index i. Here-
after, we suppose that F is complement unstable and we choose a constraint
f in F that is complement unstable. Furthermore, we assume that f has the
smallest arity k within F ; that is, there is no complement unstable constraint
of arity smaller than k. Our proof of Lemma 2(2) proceeds by induction on this
index k in Sections 3.2–3.3.

3.2 Basis Case: k = 1, 2

In the proof of Lemma 2(2), we will consider the basis case where k ∈ {1, 2}.
(1) Assuming k = 1, let f = [x, y]. Note that x �= ±y. This is because, if

x = ±y, then f has the form x · [1,±1] and thus f is complement stable, a
contradiction. Hence, it must hold that |x| �= |y|. To appeal to Lemma 1(3), it is
enough to assert that a certain p-convergence series is effectively T-constructible
from f . This assertion comes from the following observation.

Claim 1. Let x and y be any two algebraic real numbers with |x| > |y|. A
p-convergence series Λ = {[1, |y|n/|x|n] | n ∈ N+} for Δ0 is effectively T-
constructible from [1, |y|/|x|]. In the case of Δ1, a similar statement holds if
|x| < |y| (in place of |x| > |y|).

Using the above claim, Lemma 1(3) clearly leads to the desired lemma for the
case of k = 1.

(2) Assuming k = 2, for f = (x, y, z, w), it suffices to examine two cases,
x = ±w and x �= ±w, separately. Here, we omit the details.

3.3 General Case: k ≥ 3

We will examine the remaining case of k ≥ 3. As the next lemma indicates, given
a complement unstable constraint f of arity k, we can effectively T-construct a
complement unstable constraint g of arity less than k.

244 T. Yamakami

Lemma 3. Let k ≥ 3 and let f be any k-ary constraint. If f is complement
unstable, then there exists another constraint g of arity less than k for which
g ≤e-con f and g is also complement unstable.

Assuming that Lemma 3 is true, we take a complement unstable constraint g of
arity < k. Instead of working on the originally given set F , let us concentrate
on another set F ′ = F ∪ {g}. Since g has arity less than k, the induction hy-
pothesis asserts that a certain constant unary constraint Δi (i ∈ {0, 1}) satisfies
#CSP(Δi,F ′) ≡AP #CSP(F ′). It follows from both g ≤e-con f and f ∈ F that
#CSP(Δi,F) ≤AP #CSP(g,F) ≤AP #CSP(f,F) ≤AP #CSP(F). Therefore,
the remaining task of ours is to give the proof of Lemma 3.

Let f = (z1, z2, . . . , z2k). Since f is complement unstable, there exists an index
� ∈ [2k] satisfying z� �= 0. For each pair of indices i, j ∈ [k] with i < j, we define
a new constraint g(i,j) to be fxi=xj and then we set G = {g(i,j) | 1 ≤ i < j ≤ k}.
If G contains a complement unstable constraint g, then the lemma immediately
follows. In what follows, we assume that every constraint in G is complement
stable.

Let us begin with a simple observation.

Claim 2. Let k ≥ 3. For any index j ∈ [2k], there exist a constraint g ∈ G and
k − 1 bits a1, a2, . . . , ak−1 satisfying zj = g(a1, a2, . . . , ak−1).

Since f is complement unstable, either of the following two cases must occur. (1)
There exists an index i ∈ [2k−1] satisfying |zi| �= |z2k−i+1|. (2) For every index
i ∈ [2k−1], |zi| = |z2k−i+1| holds, but there are two distinct indices i, j ∈ [2k−1]
for which zi = z2k−i+1 �= 0 and zj = −z2k−j+1 �= 0.

(1) Let us consider the first case. Choose an index i ∈ [2k−1] satisfying
|zi| �= |z2k−i+1|. Claim 2 ensures the existence of a constraint g in G such
that zi = g(a1, a2, . . . , ak−1) for certain k − 1 bits a1, a2, . . . , ak−1. This im-
plies that z2k−i+1 = g(a1 ⊕ 1, a2 ⊕ 1, . . . , ak−1 ⊕ 1). By the choice of i, g cannot
be complement stable. This is a contradiction against our assumption that G
is complement stable. (2) In the second case, take two indices i0, j0 ∈ [2k−1]
satisfying that zi0 = z2k−i0+1 �= 0 and zj0 = −z2k−j0+1 �= 0. We will examine
two separate cases.

(i) Assume that a certain constraint g in G satisfies both zi0 =
g(a1, a2, . . . , ak−1) and zj0 = g(b1, b2, . . . , bk−1) for 2(k − 1) bits
a1, a2, . . . , ak−1, b1, b2, . . . , bk−1. Obviously, g is complement unstable, and this
leads to a contradiction.

(ii) Finally, assume that Case (i) does not hold. A close analysis can draw
a conclusion that each of the cases, k = 3, k = 4, and k ≥ 5, leads to a
contradiction.

4 AP-Reductions without Auxiliary Unary Constraints

We will discuss a direct application of Theorem 1. What we wish to show in
this section is our second main theorem—Theorem 3—presented in Section 1.
To clarify the meaning of this theorem, we need to introduce the following sets

Constant Unary Constraints and Counting CSPs 245

of constraints. Recall that all constraints in this paper are assumed to output
only algebraic real values.

1. Let DG denote the set of all constraints f that are expressed by products of
unary functions. A constraint in DG is called degenerate. When f is symmet-
ric, f must have one of the following three forms: [x, 0, . . . , 0], [0, . . . , 0, x],

and y · [1, z, z2, . . . , zk] with yz �= 0. By restricting DG, we define DG(−) as
the set of constraints of the forms [x, 0, . . . , 0], [0, . . . , 0, x], y · [1, 1, . . . , 1],
and y · [1,−1, 1, . . . ,−1 or1], where y �= 0. Both Δ0 and Δ1 belong to DG(−).

2. The notation ED1 denotes the set of the following constraints: [x,±x],
[x, 0, . . . , 0,±x] of arity ≥ 2, and [0, x, 0] with x �= 0. As a natural extension

of ED1, let ED(+)
1 consist of [x, y], [x, 0, . . . , 0, y] of arity ≥ 2, and [0, x, 0]

with x, y �= 0.
3. Let AZ be composed of all constraints of arity at least 3 having the forms

[0, x, 0, x, . . . , 0 orx] and [x, 0, x, 0, . . . , x or 0] with x �= 0.
4. Let OR denote the set of all constraints of the form [0, x, y] with x, y > 0.

A constraint OR = [0, 1, 1], for instance, belongs to OR.
5. Let NAND be the set of all constraints of the form [x, y, 0] with x, y > 0.

A constraint NAND = [1, 1, 0] is in NAND.
6. Let B contain all constraints of the form [x, y, z] with xyz �= 0 and xz �= y2.

Note that, for every constraint g in OR ∪ B, #SAT ≤AP #CSP(g,U) holds
[10]. Moreover, using an argument for #CSP(OR,U) ≡AP #CSP(NAND,U) in
[10], it is possible to prove that NAND and OR are similar in approximation
complexity; more precisely, for any f ∈ NAND (resp., OR) , there exists a
constraint g ∈ OR (resp., NAND) such that #CSP(g) ≤AP #CSP(f).

Concerning the tractability of #CSPs, when either F ⊆ DG ∪ ED(+)
1 or F ⊆

DG(−) ∪ ED1 ∪ AZ holds, #CSP(F) can be easily solved.

Proposition 1. Let F be any set of symmetric real-valued constraints. If either

F ⊆ DG ∪ ED(+)
1 or F ⊆ DG(−) ∪ ED1 ∪AZ, then #CSP(F) belongs to FPA.

Finally, we come to the point of proving Theorem 3. Let us analyze the approxi-
mation complexity of #CSP(f) for an arbitrary symmetric constraint f that are

not in DG ∪ ED(+)
1 ∪AZ. Note that, when f is in DG ∪ ED(+)

1 ∪AZ, #CSP(f)
belongs to FPA by Proposition 1. A key claim required for the proof of Theorem
3 is the following assertion.

Lemma 4. Let f be any symmetric real-valued constraint of arity at least 2. If

f �∈ DG ∪ ED(+)
1 ∪ AZ, then there exists a constraint g ∈ OR ∪ B such that

#CSP(g) ≤AP #CSP(f).

The proof of Lemma 4 is relatively lengthy, and thus we exclude it from the cur-
rent extended abstract. Theorem 3 then follows directly by combining Theorem
1 and Proposition 1 with a help of Lemma 4.

Proof of Theorem 3. Assume that F �⊆ DG ∪ED(+)
1 and F �⊆ DG(−)∪ED1∪

AZ. Note that F should contain a constraint whose entries are not all zero.

246 T. Yamakami

If there exists a constraint f in F satisfying f �∈ DG ∪ ED(+)
1 ∪ D1, then

we apply Lemma 4 to obtain the theorem. Hereafter, we assume that F ⊆
DG∪ED(+)

1 ∪AZ. From this assumption, we can choose two constraints f1, f2 ∈
DG ∪ED(+)

1 ∪AZ in F for which f1 �∈ DG(−) ∪ED1 ∪AZ and f2 �∈ DG ∪ED(+)
1 .

Note that f1 ∈ DG − ED1 and f2 ∈ AZ. Since f2 ∈ AZ, there are two cases,
f2 = [0, 1, 0, 1, . . . , 0 or 1] and f2 = [1, 0, 1, 0, . . . , 1 or 0], to study; however, since
either Δ0 or Δ1 is available by Theorem 1, f2 can be reduced to either [1, 0, 1, 0]
or [0, 1, 0, 1]. Here, we will consider the case where f2 = [1, 0, 1, 0]. The other
case is similarly handled.

(1) Assume that f1 = [x, y] with xy �= 0. From f1 �∈ ED1, it follows
that x �= ±y. Define g(x1, x2, x3) = f1(x1)f2(x1, x2, x3) and h(x1, x2, x3) =
g(x1, x2, x3)g(x2, x3, x1)g(x3, x1, x2). A simple calculation shows that h equals

[x2, 0, y2, 0]. Since x2 �= y2, we conclude that h �∈ DG ∪ ED(+)
1 ∪ AZ. We apply

Lemma 4 and then obtain the desired consequence.
(2) Assume that f1 = y · [1, z, z2, . . . , zk] with y �= 0 and z �= ±1. Using either

Δ0 or Δ1, we can assume that f1 is of the form [1, z]. Thus, this case is reduced
to (1). �

References

1. Cai, J., Lu, P.: Holographic algorithms: from arts to science. J. Comput. System
Sci. 77, 41–61 (2011)

2. Cai, J., Lu, P., Xia, M.: Holant problems and counting CSP. In: STOC 2009, pp.
715–724 (2009)

3. Creignou, N.: A dichotomy theorem for maximum generalized satisfiability prob-
lems. J. Comput. System Sci. 51, 511–522 (1995)

4. Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting prob-
lems. Inform. Comput. 125, 1–12 (1996)

5. Dalmau, V., Ford, D.K.: Generalized Satisfiability with Limited Occurrences per
Variable: A Study through Delta-Matroid Parity. In: Rovan, B., Vojtáš, P. (eds.)
MFCS 2003. LNCS, vol. 2747, pp. 358–367. Springer, Heidelberg (2003)

6. Dyer, M., Goldberg, L.A., Greenhill, C., Jerrum, M.: The relative complexity of
approximating counting problems. Algorithmica 38, 471–500 (2004)

7. Dyer, M., Goldberg, L.A., Jerrum, M.: The complexity of weighted Boolean #CSP.
SIAM J. Comput. 38, 1970–1986 (2009)

8. Dyer, M., Goldberg, L.A., Jerrum, M.: An approximation trichotomy for Boolean
#CSP. J. Comput. System Sci. 76, 267–277 (2010)

9. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC 1978, pp. 216–
226 (1978)

10. Yamakami, T.: Approximate counting for complex-weighted Boolean constraint
satisfaction problems. Inform. Comput. 219, 17–38 (2012)

11. Yamakami, T.: A dichotomy theorem for the approximation complexity of complex-
weighted bounded-degree Boolean #CSPs. Thoer. Comput. Sci. 447, 120–135
(2012)

12. Yamakami, T.: Optimization, Randomized Approximability, and Boolean Con-
straint Satisfaction Problems. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watan-
abe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 454–463. Springer, Heidelberg
(2011)

Interval Scheduling

and Colorful Independent Sets

René van Bevern1,�, Matthias Mnich2, Rolf Niedermeier1,
and Mathias Weller1,��

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
{rene.vanbevern,rolf.niedermeier,mathias.weller}@tu-berlin.de

2 Cluster of Excellence, Universität des Saarlandes, Germany
mmnich@mmci.uni-saarland.de

Abstract. TheNP-hard IndependentSet problem is to determine for a
given graphG and an integer k whetherG contains a set of k pairwise non-
adjacent vertices. The problem has numerous applications in scheduling,
including resource allocation and steel manufacturing. There, one encoun-
ters restricted graph classes such as 2-union graphs, which are edge-wise
unions of two interval graphs on the same vertex set, or strip graphs, where
additionally one of the two interval graphs is a disjoint union of cliques.

We prove NP-hardness of Independent Set on a very restricted sub-
class of 2-union graphs and identify natural parameterizations to chart
the possibilities and limitations of effective polynomial-time preprocess-
ing (kernelization) and fixed-parameter algorithms. Our algorithms ben-
efit from novel formulations of the computational problems in terms of
(list-)colored interval graphs.

1 Introduction

Many scheduling problems can be formulated as finding maximum independent
sets in certain generalizations of interval graphs [14]. Intuitively, finding a max-
imum number of pairwise non-adjacent vertices in a graph (this is the Inde-

pendent Set problem) corresponds to scheduling a maximum number of jobs
(represented by intervals) without conflicts. In this context, we consider two pop-
ular and practically motivated graph models, namely 2-union interval graphs [2]
(also called 2-union graphs) and strip graphs [8].

A graph G = (V,E) is a 2-union graph if it can be represented as the union
of two interval graphs G1 = (V,E1) and G2 = (V,E2) on the same vertex set V ,
that is, G = (V,E1∪E2). There are numerous applications of solving (weighted)
Independent Set on 2-union graphs, including scheduling problems such as
resource allocation [2] or coil coating in steel manufacturing [9].

2-Union Independent Set:
Input: Two interval graphs G1 = (V,E1), G2 = (V,E2) and an integer k.
Question: Does G = (V,E1 ∪ E2) have an independent set of size k?

� Supported by the DFG, projects DAPA, NI 369/12, and AREG, NI 369/9.
�� Supported by the DFG, project DARE, NI 369/11.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 247–256, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

248 R. van Bevern et al.

We found a helpful natural embedding of 2-Union Independent Set into
a more general problem by replacing 2-union graphs with list-colored interval
graphs and searching for colorful independent sets:1

Colorful Independent Set:
Input: An interval graphG = (V,E), a multicoloring col : V → 2{1,...,γ},

and an integer k.
Question: Does G have a colorful independent set of size k?

An advantage of this model is that we only have to deal with one interval graph
instead of two merged ones. Indeed, the modeling proved very useful when study-
ing Independent Set on strip graphs, an important subclass of 2-union graphs.
We believe that introducing our colorful view on finding independent sets and
scheduling is of independent interest and might be useful in further studies. This
“colored view on scheduling” leads to a useful reformulation of the classic Job

Interval Selection problem [8, 15]. The task is to find a maximum set of jobs
that can be executed, where each job has multiple possible execution intervals,
each job is executed at most once, and a machine can only execute one job at a
time. We state this problem using its classical name, but formulate it in terms
of colored interval graphs, where the colors correspond to jobs and intervals of
the same color correspond to multiple possible execution times of this job:

Job Interval Selection:
Input: An interval graph G = (V,E), a coloring col : V → {1, 2, . . . , γ}

and an integer k.
Question: Does G have a colorful independent set of size k?

Here, the definition of “colorful”1 degenerates to “no two intervals in the inde-
pendent set have the same color”.

Previous results. For 2-Union Independent Set, the following results are
known. The problem remains NP-hard even when the two interval graphs are
proper (unit interval) [1]. When restricted to so-called 5-claw-free graphs (which
comprises the case that both input interval graphs are proper), Bafna et al. [1]
provided a polynomial-time ratio-3.25 approximation. Bar-Yehuda et al. [2]
showed that the vertex-weighted optimization version of 2-Union Indepen-

dent Set has a polynomial-time ratio-4 approximation (indeed, they showed a
ratio-2t approximation for the generalization to t-union graphs). Recently, Höhn
et al. [9] considered so-called m-composite 2-union graphs (which has applica-
tions in coil coating) and developed a dynamic programming algorithm running
in polynomial time with the polynomial degree depending on m. This generalizes
a result of Jansen [11], who gave such an algorithm for a subclass of m-composite
2-union graphs. Concerning parameterized complexity, Jiang [13] answered an
open question of Fellows et al. [6] by proving 2-Union Independent Set to be
W[1]-hard for the parameter “solution size k”. This W[1]-hardness result holds
even when both input interval graphs are proper.

Introduced by Nakajima and Hakimi [15] (using a different notion), Job In-

terval Selection was shown APX-hard by Spieksma [17], who also provided

1 We call an independent set colorful if no two of its vertices share a color.

Interval Scheduling and Colorful Independent Sets 249

a ratio-2 greedy approximation algorithm. Chuzhoy et al. [5] improved this ra-
tio to 1.582. Halldórsson and Karlsson [8] introduced the equivalent notion of
Job Interval Selection as Independent Set on strip graphs, which are
2-union graphs where one of the two input interval graphs is a cluster graph.
They showed fixed-parameter tractability for a structural parameter and for the
parameter “total number of jobs”. In related work, Jansen [12] considered Inde-

pendent Set on unions of cographs and cluster graphs (the latter being disjoint
unions of cliques).

New results. The main focus of this work is on initiating a systematic param-
eterized complexity study (particularly featuring kernelization results) for the
three NP-hard problems Colorful Independent Set, 2-Union Indepen-

dent Set, and Job Interval Selection (here listed in descending degree
of generality). Doing so, we also discuss the relevance and interrelationships
of several parameterizations. For Colorful Independent Set, we provide
an O(2γ · n3)-time dynamic-programming algorithm for the parameter “num-
ber γ of colors”. For 2-Union Independent Set, this result translates to
a O(2#mCmin · n3)-time algorithm, where #mCmin denotes the minimum of the
numbers of maximal cliques in the two input interval graphs. Moreover, we
provide an NP-hardness proof for 2-Union Independent Set, even when re-
stricted to the case that one input graph is a collection of paths on three vertices
and the other is a collection of edges and triangles. In contrast, if both input
graphs are cluster graphs, we show that, 2-Union Independent Set can be
solved in O(n1.5) time, improving on the O(n3) time algorithm [16] implied by the
claw-freeness of unions of two cluster graphs. Next, stimulated by Jiang’s [13]
W[1]-hardness result for the parameter “solution size k”, we discuss natural
structural parameters that are lower-bounded by or closely related to k. Sys-
tematically exploring these parameters, we chart the border between tractability
and intractability for 2-Union Independent Set. In particular, we initiate the
study of the power of polynomial-time data reduction (known as kernelization
in parameterized algorithmics) and show that 2-Union Independent Set has
a cubic-vertex problem kernel with respect to the parameter “maximum number
of maximal cliques in one of the two input interval graphs”. This improves to
a quadratic-vertex kernel if both input interval graphs are proper. We remark
that parameterizing by the number(s) of maximal cliques allows for generaliz-
ing previous results of Halldórsson and Karlsson [8]. Our results for 2-Union

Independent Set carry over to the vertex-weighted case.
For Job Interval Selection (or, equivalently, Independent Set restricted

to strip graphs), our main result refers to polynomial-time preprocessing: while
we prove the nonexistence (assuming a standard complexity-theoretic conjec-
ture) of polynomial-size problem kernels even for Job Interval Selection

with respect to the combination of the parameters “maximum clique size ω”
and “number γ of colors”, we also show that, while still NP-hard, Job Inter-

val Selection restricted to proper interval graphs has a problem kernel with
O(k2 · ω) intervals that can be computed in linear time. Here, notably, k ≤ γ.

Due to the lack of space, most technical details are deferred to a full version.

250 R. van Bevern et al.

Preliminaries. When speaking of interval graphs, we state our running times un-
der the assumption that an interval representation is given in which the intervals
are sorted with respect to their starting or ending points. Given a graph G that
allows for such an interval representation, the representation can be computed in
O(n+m) time [4]. A graph is a proper interval graph if it allows for an interval
representation such that for no two intervals v and w it holds that v ⊆ w. Every
interval graph allows for a total and linear-time computable clique ordering ≺ of
its maximal cliques such that, for each vertex, the maximal cliques containing it
occur consecutively [7]. Moreover, all maximal cliques of an interval graph can
be listed in linear time.

A problem is fixed-parameter tractable (FPT) with respect to a parameter k
if there is an algorithm solving any problem instance of size n in f(k) · nO(1)

time for some computable function f . A problem kernelization is a polynomial-
time transformation of a problem instance x with a parameter k into a new
instance x′ with parameter k′ such that |x′| is bounded by a function in k
(ideally, a polynomial in k), k′ ≤ k, and (x, k) is a yes-instance if and only if
(x′, k′) is a yes-instance. We call (x′, k′) the problem kernel and |x′| its size.

2 Independent Set and 2-Union Graphs

This section mainly investigates the standard and parameterized complexity of
2-Union Independent Set. We start by discussing a complexity dichotomy
and thereafter consider various parameterizations of the problem. Finally, we
provide parameterized tractability results with respect to number of maximal
cliques in the input graphs.

A complexity dichotomy. 2-Union Independent Set is known to be NP-
hard [1] and APX-hard for 2-union graphs of maximum degree three [2] and for
graphs that are the union of an interval graph with pairwise disjoint edges [17].
Using a reduction from 3-Sat, we can impose further restrictions on NP-hard in-
stances, which are important for showing kernelization lower bounds in Section 3.

Theorem 1. 2-Union Independent Set is NP-hard, even if one of the input
graphs is restricted to be a disjoint union of altogether k edges and triangles and
the other is restricted to contain only paths of length two.

In the context of Theorem 1, note that paths of length two are the simplest
graphs that are not cluster graphs. If, in contrast, G would be the union of two
cluster graphs, then G is claw-free. Independent Set on claw-free graphs is
solvable in O(n3) time [16]. However, for the union of two cluster graphs, we can
provide a O(n1.5) time algorithm based on computing a matching of the cliques
in the two input cluster graphs.

Proposition 1. 2-Union Independent Set is solvable in O(n1.5) time if both
input interval graphs are cluster graphs.

Theorem 1 and Proposition 1 give rise to a complexity dichotomy, stating that
2-Union Independent Set is polynomial-time solvable if both inputs are re-
stricted to be cluster graphs, and NP-complete otherwise, even in the simplest

Interval Scheduling and Colorful Independent Sets 251

case of non-cluster graphs. Amore detailed investigation of our proof of Theorem 1
together with a result of Impagliazzo et al. [10] yields that, even in the restricted
case covered by Theorem 1, there is no algorithm with running time 2o(k) ·poly(n)
for 2-Union Independent Set unless the Exponential Time Hypothesis2 fails.

Corollary 1. Under the prerequisites of Theorem 1, there is no algorithm with
running time 2o(k) · poly(n) for 2-Union Independent Set unless the Expo-

nential Time Hypothesis2 fails.

Parameter identification. We now consider suitable parameters for 2-Union

Independent Set. Since we have two input graphs, we often consider the max-
imum or minimum value of parameters taken over the two input graphs. For
example, considering the maximum degrees Δ1 and Δ2 of G1 and G2, respec-
tively, natural parameters are Δmin := min{Δ1, Δ2} and Δmax := max{Δ1, Δ2}.
However, Theorem 1 implies that 2-Union Independent Set is NP-hard even
if Δmax ≤ 2.

A second view on the parameterized landscape is

k

αmin

αmax #mCmin

#mCmax centered around the fact that 2-Union Independent

Set is W[1]-hard with respect to the parameter
“solution size k” [13]. We therefore consider parame-
ters that are lower-bounded by k. Unfortunately, the
W[1]-hardness proof for parameter k due to Jiang [13]
also shows that 2-Union Independent Set is W[1]-
hard for the the maximum αmax of the respective in-
dependence numbers α1 and α2 of G1 and G2. In in-
terval graphs, a parameter that is lower bounded by
the independence number α is the number of maxi-

mal cliques #mC. Indeed, we can show fixed-parameter tractability with respect
to #mCmin and #mCmax, denoting the minimum, respspectively the maximum,
of the numbers of maximal cliques in the two input interval graphs. For the
parameter #mCmin, we exploit an alternative problem formulation, addition-
ally allowing us to obtain results for the well-known Job Interval Selection

problem [15]. An overview of the parameters that are lower-bounded by k is
shown above.

Parameterized tractability. In the quest for polynomial-time preprocessing for
2-Union Independent Set, we considered simple-to-implement reduction rules.
Surprisingly, a single twin-type reduction rule is sufficient to provide a polynomial-
size problemkernelwith respect to the parameter#mCmax.We reduce the number
of vertices having a given “signature” and then bound the number of signatures in
a 2-union graph.

Definition 1. Let (G1, G2, k) denote an instance of 2-Union Independent

Set and let v be a vertex of G1 and G2. The signature sig(v) of v is the set of
all vertex sets C that contain v and form a maximal clique in either G1 or G2.

2 TheExponential-Time Hypohesis basically states that there is no 2o(n)-time algorithm
for n-variable 3SAT.

252 R. van Bevern et al.

Reduction Rule 1. Let (G1, G2, k) denote an instance of 2-Union Indepen-

dent Set. For each pair of vertices u, v of G1 and G2 such that sig(v) ⊆ sig(u),
delete u from G1 and G2.

Theorem 2. 2-Union Independent Set admits a cubic-vertex problem kernel
with respect to the parameter “larger number of maximal cliques #mCmax”. A
quadratic-vertex problem kernel can be shown if one of the input graphs is a
proper interval graph. Both kernels can be computed in O(n log2 n) time.

We can generalize Theorem 2 for the problem of finding an independent set of
weight at least k: we keep the vertex with highest weight for each signature
in the graph. Since each signature is uniquely determined by its first and last
maximal cliques in G1 and G2 with respect to a clique ordering, there are at
most #mC2

min · #mC2
max different signatures and we obtain a problem kernel

with O(#mC2
min ·#mC2

max) vertices for the weighted variant.
In the following, we describe a dynamic programming algorithm that solves

2-Union Independent Set in O(2#mCmin · #mCmin · #mCmax · n) time. To
this end, we reformulate the problem in terms of interval graphs in which each
vertex has a list out of at most #mCmin colors. We call a subset of vertices
colorful if their color sets are pairwise disjoint. Recall the definition of Colorful

Independent Set in Section 1. We reduce 2-Union Independent Set to
Colorful Independent Set by assigning a color to each maximal clique
in G2 and giving G1 as input to Colorful Independent Set such that each
vertex has the colors of the maximal cliques of G2 containing it. Since the color
lists generated in this reduction form intervals with respect to a clique ordering
of G2, Colorful Independent Set can be considered a more general problem
than 2-Union Independent Set. Regarding parameters, the numbers #mCmin

and #mCmax of maximal cliques in the input interval graphs translate to the
number γ of colors and the number |C| of maximal cliques in G, respectively.

Given a list-colored interval graph G, the algorithm computes a table T in-
dexed by pairs in {0, . . . , |C|}×2{1,...,γ} using the clique ordering ≺ of G. Let C[j]
denote the j’th element in the ordering ≺, and let Gi = G −

⋃
1≤�≤i C[�]. We

define T [i, C] so that it contains the maximum cardinality of a colorful inde-
pendent set of G minus the first i maximal cliques (with respect to ≺) using
only colors in C. For the base case, we set T [|C|, C] = 0 for all C ⊆ {1, . . . , γ}.
Next, observe that for each interval v, there is a unique maximal clique with
largest index iv (according to the ordering ≺ of C) containing v. The dynamic
programming table can now be filled according to the following recursion:

T [i− 1, C] = max
{
T [i, C],max

v∈C[i]

col(v)⊆C

{1 + T [iv, C \ col(v)]}
}
. (1)

The cardinality of a maximum colorful independent set of G can be read from
T [0, {1, . . . γ}]. This approach is easily-modifiable to also compute a maximum
weighted independent set if the input graph is vertex-weighted.

Interval Scheduling and Colorful Independent Sets 253

Theorem 3. Colorful Independent Set can be solved in O(2γ · γ · |C| ·
n) time3, even if all vertices are integer-weighted.

In terms of 2-Union Independent Set, Theorem 3 can be stated as follows.

Corollary 2. 2-Union Independent Set can be solved in O(2#mCmin ·
#mCmax ·#mCmin · n) time.

3 Colorful Independent Sets and Strip Graphs

In Section 2 we reformulated 2-Union Independent Set in terms of finding
a maximum colorful independent set in an interval graph and gave a fixed-
parameter algorithm for the more general problem Colorful Independent

Set. We now consider the variant of Colorful Independent Set where each
vertex (resp. interval) has only one color instead of a list of colors. This re-
striction is equivalent to 2-Union Independent Set for input graphs that are
the edge-wise union of an interval graph and a cluster graph,4 a class of graphs
called strip graphs by Halldórsson and Karlsson [8]. They interpreted each clique
in the input cluster graph as an equivalence class of vertices of the input interval
graph; we reinterpret these equivalence classes in a natural way: as colors. In
the literature, this problem is known as Job Interval Selection [15] (see the
definition in Section 1). In our model, colors represent jobs and intervals of the
same color in the input graph are possible execution intervals for one job. A
solution then shows how to execute at least k jobs.

Jansen [11] showed a polynomial-time algorithm for Job Interval Selec-

tion for a constant number γ of colors. The dynamic programming algorithm
given by Höhn et al. [9] can be seen as a generalization of this algorithm, since
strip graphs are a special case of m-composite graphs. In both cases, the degree
of the polynomial depends on γ. Halldórsson and Karlsson [8] gave a fixed-
parameter algorithm running in O(2Q · n) time with Q denoting the “maximum
number of live intervals”. Omitting the detailed description of the parameter Q,
we note that, in instances of the underlying scheduling problem in which there is
more than one machine, Q equals the number γ of colors in our interpretation.

Fixed-parameter algorithms for combinations with k. As 2-Union Indepen-

dent Set is W[1]-hard for the single parameter “solution size k” [13], we
combine k with the maximum clique size ω in the input interval graph G, the
maximum number φ of cliques in G that have a vertex in common, and the num-
ber γ of colors in G. These combinations allow for fixed-parameter tractability
and kernelization results. In the following, let C1, C2, . . . denote the maximal
cliques of G in order of the clique ordering of G. We will reuse the notion of
“signatures” (see Definition 1). In the context of colored interval graphs, the
signature sig(v) of an interval v is the pair of its color and the set of maximal
cliques it is contained in.

3 Assuming that adding, subtracting, and comparing of integers work in O(1) time.
4 Recall that 2-Union Independent Set is solvable in O(n1.5) time if both input
graphs are cluster graphs (see Proposition 1).

254 R. van Bevern et al.

x1 x2 x3 . . . xt

log t

Fig. 1. Schematic view of the construction of the cross-composition. Circles at the
bottom represent the t input instances. Bars at the top represent the newly added
intervals spanning over the input instances. Here, each of the log t rows stands for a
new color. A solution (black intervals) for the instance must select one interval in each
row, thereby selecting one of the t input instances (x3 in this example).

The algorithms presented in this section rely on the observation that an op-
timal solution can be assumed to contain an interval v of the first maximal
clique C1. In the following, assume that there is an interval v ∈ C1 that is in the
sought colorful independent set. Our fixed-parameter algorithms branch on prop-
erties of v that allow us to either identify v or remove intervals from G so that
an isolated clique containing v is created. These properties are (a) the size of C1,
(b) the last clique containing v, and (c) the color of v. After at most k branchings,
we end up with a cluster graph, on which the problem can be solved in polynomial
time using Proposition 1. Depending on what property of v we branched on, the
exponential components of the running times can be bounded in ωk, φk, or γk.

Proposition 2. Job Interval Selection can be solved in O(ωk · n), O(φk ·
n1.5), and O(γk · n2 log2 n) time.

Non-existence of polynomial-size kernels for Job Interval Selection. We show that
Job Interval Selection is unlikely to admit polynomial-size problem kernels
with respect to various parameters. To this end, we employ the technique of “cross-
composition” introduced by Bodlaender et al. [3] using a bitmasking approach as
standard in previous publications that exclude polynomial-size kernels for other
problems. A cross-composition is a polynomial-time algorithm that, given t in-
stances xi with 0 ≤ i < t of an NP-hard starting problem A, outputs an in-
stance (y, k) of a parameterized problem B such that k ∈ poly(maxi{|xi|}+log t)
and (y, k) ∈ B if and only if there is some 0 ≤ i < t with xi ∈ A. A theorem by
Bodlaender et al. [3] states that if a problem B admits such a cross-composition,
then there is no polynomial-size kernel for B unless coNP ⊆ NP/poly.

We use an operation on binary-encoded numbers: shifting a number i by j
bits to the right, denoted by shift(i, j) := �i/2j�. In the following, we present a
cross-composition for Job Interval Selection with respect to (ω, γ). For the
NP-hard starting problem we use the unparameterized version of Job Interval

Selection with the restriction that k = c. The NP-hardness of this problem
is a direct consequence of Theorem 1. We assume, without loss of generality,
that log t is an integer. The framework of Bodlaender et al. [3] allows us to force
the input instances to all have the same value for k and, thus, each instance uses
the same color set {1, 2, . . . , k}. The steps of the composition are as follows (see
Figure 1):

Interval Scheduling and Colorful Independent Sets 255

Step 1. Place the t input instances in order of their index on the real line such
that no interval of one instance overlaps an interval of another instance.

Step 2. Introduce log t more colors k+1, k+2, . . . , k+log t (the resulting instance
then asks for an independent set of size k + log t).

Step 3. For each 1 ≤ i ≤ log t, introduce 2i new intervals vi0, v
i
1, . . . , v

i
2i−1, each

with color k+ i, such that the new interval vij spans over all instances x�

with shift(�, log t− i) = j.

It is easy to see that both the number of colors γ and the maximum clique size ω
of the constructed instance are at most maxi |xi| + log t. In order to show that
the presented algorithm constitutes a cross-composition, it remains to prove that
the resulting instance has a colorful independent set of size k + log t if and only
if there is an input instance xi that has a colorful independent set of size k. The
presented cross-composition implies the following theorem [3].

Theorem 4. Job Interval Selection does not admit a polynomial-size prob-
lem kernel with respect to the combination of the parameters “number of colors γ”
and “maximum clique size ω” unless coNP ⊆ NP/poly.

Polynomial-size kernel for proper interval graphs. We further restrict Job In-

terval Selection to proper interval graphs, on which it is still NP-hard, as
evident from Section 2. Surprisingly, simple data reduction rules enable us to
construct a problem kernel comprising 2ωk(k− 1) intervals in this case, sharply
contrasting Theorem 4, which excludes a polynomial-size problem kernel with
respect to the combined parameter (k, ω) (since γ ≥ k).

Reduction Rule 2. Delete from G every interval that has a color that appears
more than 2ω(k − 1) times and decrease k by the number of removed colors.

Reduction Rule 3. If G contains more than 2ωk(k− 1) intervals, then return
a trivial yes-instance.

Reduction Rule 2 can be applied exhaustively in O(n) time. Thereafter executing
Reduction Rule 3 immediately yields the following theorem.

Theorem 5. Job Interval Selection on proper interval graphs admits a prob-
lem kernel with at most 2ωk(k − 1) intervals that can be computed in O(n) time.

4 Outlook

Besides hardness results, we also developed encouraging algorithmic results which
might find use in practical applications, so future empirical studies seem worth-
while (also see the strong practical results of Höhn et al. [9] with respect to
steel manufacturing). As a future challenge, it is interesting to know whether 2-
Union Independent Set admits a polynomial-size problem kernel with respect
to the parameter #mCmin, denoting the smaller number of maximal cliques in
one of the input interval graphs. Furthermore, we conjecture that Job Interval

Selection with respect to the parameter “solution size k” is fixed-parameter
tractable, whereas 2-Union Independent Set is known to be W[1]-hard for
this parameter [13].

256 R. van Bevern et al.

Acknowledgment. We are grateful to Michael Dom and Hannes Moser for
earlier discussions on coil coating.

References

[1] Bafna, V., Narayanan, B.O., Ravi, R.: Nonoverlapping local alignments (weighted
independent sets of axis-parallel rectangles). Discrete Appl. Math. 71(1-3), 41–53
(1996)

[2] Bar-Yehuda, R., Halldórsson, M.M., Naor, J., Shachnai, H., Shapira, I.: Scheduling
split intervals. SIAM J. Comput. 36(1), 1–15 (2006)

[3] Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new tech-
nique for kernelization lower bounds. In: Proc. 28th STACS. LIPIcs, vol. 9, pp.
165–176. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2011)

[4] Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3),
335–379 (1976)

[5] Chuzhoy, J., Ostrovsky, R., Rabani, Y.: Approximation algorithms for the job in-
terval selection problem and related scheduling problems. Math. Oper. Res. 31(4),
730–738 (2006)

[6] Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized
complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61
(2009)

[7] Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J.
Math. 15(3), 835–855 (1965)

[8] Halldórsson, M.M., Karlsson, R.K.: Strip Graphs: Recognition and Scheduling. In:
Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 137–146. Springer, Heidelberg
(2006)

[9] Höhn, W., König, F.G., Möhring, R.H., Lübbecke, M.E.: Integrated sequencing
and scheduling in coil coating. Manage. Sci. 57(4), 647–666 (2011)

[10] Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

[11] Jansen, K.: Generalizations of assignments of tasks with interval times. Technical
report, Universität Trier (1991)

[12] Jansen, K.: Transfer flow graphs. Discrete Math. 115(1-3), 187–199 (1993)
[13] Jiang, M.: On the parameterized complexity of some optimization problems related

to multiple-interval graphs. Theor. Comput. Sci. 411, 4253–4262 (2010)
[14] Kolen, A.W., Lenstra, J.K., Papadimitriou, C.H., Spieksma, F.C.R.: Interval

scheduling: A survey. Nav. Res. Log. 54(5), 530–543 (2007)
[15] Nakajima, K., Hakimi, S.L.: Complexity results for scheduling tasks with discrete

starting times. J. Algorithms 3(4), 344–361 (1982)
[16] Sbihi, N.: Algorithme de recherche d’un stable de cardinalite maximum dans un

graphe sans etoile. Discrete Math. 29(1), 53–76 (1980)
[17] Spieksma, F.C.R.: On the approximability of an interval scheduling problem. J.

Sched. 2(5), 215–227 (1999)

More on a Problem of Zarankiewicz

Chinmoy Dutta1,� and Jaikumar Radhakrishnan2

1 Northeastern University, Boston, USA
chinmoy@ccs.neu.edu

2 Tata Institute of Fundamental Research, Mumbai, India
jaikumar@tifr.res.in

Abstract. We show tight necessary and sufficient conditions on the sizes
of small bipartite graphs whose union is a larger bipartite graph that has
no large bipartite independent set. Our main result is a common gener-
alization of two classical results in graph theory: the theorem of Kővári,
Sós and Turán on the minimum number of edges in a bipartite graph that
has no large independent set, and the theorem of Hansel (also Katona
and Szemerédi, Krichevskii) on the sum of the sizes of bipartite graphs
that can be used to construct a graph (non-necessarily bipartite) that has
no large independent set. Our results unify the underlying combinatorial
principles developed in the proof of tight lower bounds for depth-two
superconcentrators.

1 Introduction

Consider a bipartite graph G = (V,W,E), where |V |, |W | = n. Suppose every
k element subset S ⊆ V is connected to every k element subset T ⊆ W by at
least one edge. How many edges must such a graph have? This is the celebrated
Zarankiewicz problem.

Definition 1 (Bipartite independent set). A bipartite independent set of
size k × k in a bipartite graph G = (V,W,E) is a pair of subsets S ⊆ V and
T ⊆ W of size k each such that there is no edge connecting S and T , i.e.,
(S × T) ∩ E = ∅.

The Zarankiewicz problem asks for the minimum number of edges in a bipartite
graph that does not have any bipartite independent set of size k × k. We may
think of an edge as a complete bipartite graph where each side of the bipartition
is just a singleton. This motivates the following generalization where we con-
sider bipartite graphs as formed by putting together not just edges, but, more
generally, small complete bipartite graphs.

Definition 2. A bipartite graph G = (V,W,E) is said to be a union of complete
bipartite graphs Gi = (Vi,Wi, Ei = Vi×Wi), i = 1, 2, . . . , r, if each Vi ⊆ V , each
Wi ⊆W , and E = E1 ∪ · · · ∪ Er.

� Chinmoy Dutta is supported in part by NSF grant CCF-0845003 and a Microsoft
grant to Ravi Sundaram.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 257–266, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

258 C. Dutta and J. Radhakrishnan

Definition 3. We say that a sequence of positive integers (n1, n2, . . . , nr) is
(n, k)-strong if there is a bipartite graph G = (V,W,E) that is a union of graphs
Gi = (Vi,Wi, Ei = Vi ×Wi), i = 1, 2, . . . , r, such that

– |V |, |W | = n;

– |Vi| = |Wi| = ni;

– G has no bipartite independent set of size k × k.

What conditions must the ni’s satisfy for (n1, n2, . . . , nr) to be (n, k)-strong?
Note that the Zarankiewicz problem is a special case of this question where each
ni is 1 and

∑
i ni corresponds to the number edges in the final graph G.

Remark. The Zarankiewicz problem is more commonly posed in the following
form: What is the maximum number of edges in a bipartite graph with no
k× k bipartite clique. By interchanging edges and non-edges, we can ask for the
maximum number of non-edges (equivalently the minimum number of edges)
such that there is no k × k bipartite independent set. This complementary form
is more convenient for our purposes.

The Kővári, Sós and Turán bound
The following classical theorem gives a lower bound on the number of edges in
a bipartite graph that has no large independent set.

Theorem 1 (Kővári, Sós and Turán [1]; see, e.g., [2], Page 301, Lemma
2.1.). If G does not have an independent set of size k × k, then

n

(
n− d

k

)(
n

k

)−1
≤ k − 1,

where d is the average degree of G.

The above theorem implies that

n ≤ (k − 1)

(
n− d

k

)−1(
n

k

)
≤ (k − 1)

(
n− k + 1

n− d− k + 1

)k

= (k − 1)

(
1 +

d

n− d− k + 1

)k

≤ (k − 1) exp

(
dk

n− d− k + 1

)
,

which yields,

d ≥ (n− k + 1) log(n/(k − 1))

k + log(n/(k − 1))
.

In this paper, we will mainly be interested in k ∈ [n1/10, n9/10], in which case we
obtain

|E(G)| = nd = Ω

(
n2

k
logn

)
.

More on a Problem of Zarankiewicz 259

For the problem under consideration, this immediately gives the necessary con-
dition

r∑
i=1

n2
i = Ω

(
n2

k
logn

)
. (1)

It will be convenient to normalize ni and define αi =
ni

n/k . With this notation,

the inequality above can be restated as follows.

r∑
i=1

α2
i = Ω(k logn). (2)

The Hansel bound
The same question can also be asked in the context of general graphs. In that
case, we have the following classical theorem.

Theorem 2 (Hansel [3], Katona and Szemerédi [4], Krichevskii [5]).
Suppose it is possible to place one copy each of Kni,ni , i = 1, 2, . . . , r, in a vertex
set of size n such that the resulting graph has no independent set of size k. Then,

r∑
i=1

ni ≥ n log

(
n

k − 1

)
.

Although this result pertains to general graphs and is not directly applicable to
the bipartite graph setting, it can be used (details omitted as we will use this
bound only to motivate our results, not to derive them) to derive a necessary
condition for bipartite graphs as well. In particular, normalizing ni by setting
ni = αi

n
k as before, one can obtain the necessary condition

r∑
i=1

αi = Ω(k logn). (3)

Note that neither of the two bounds above strictly dominates the other: if all αi

are small (say (1), then the first condition derived from the Kővári, Sós and
Turán bound is stronger, wheras if all αi are large () 1), then the condition
derived from the Hansel bound is stronger.

In our applications, we will meet situations where the αi’s will not be confined
to one or the other regime. To get optimal results, one must, therefore, devise
a condition appropriate for the entire range of values for the αi’s. Towards this
goal, we start by trying to guess the form of this general inequality by asking
a dual question: what is a sufficient condition on ni’s (equivalently αi’s) for
(n1, n2, . . . , nr) to be (n, k)-strong? We derive the following (proof omitted).

Theorem 3 (Sufficient condition). Suppose k ∈ [n1/10, n9/10], and let αi ∈
[n−1/100, n1/100], i = 1, 2 . . . , r. Then, there is a constant A > 0 such that if∑

i:αi≤1
α2
i +

∑
i:αi>1

αi ≥ Ak logn,

then (n1, n2, . . . , nr) is (n, k)-strong, where ni = αi(n/k).

260 C. Dutta and J. Radhakrishnan

We might ask if this sufficient condition is also necessary. The Kővári, Sós and
Turán bound (Inequality 2) explains the first term in the LHS of the above
sufficient condition, and the Hansel bound (Inequality 3) explains the second
term. We thus have explanations for both the terms using two classical theorems
of graph theory. However, neither of them implies in full generality that the
sufficient condition derived above is necessary. In this work, we show that this
sufficient condition is indeed also necessary upto constants.

Theorem 4 (Necessary condition). Suppose k ∈ [n1/10, n9/10], and let αi ∈
[n−1/100, n1/100], i = 1, 2 . . . , r. Then, there is a constant B > 0 such that if
(n1, n2, . . . , nr) is (n, k)-strong where ni = αi(n/k), then∑

i:αi≤1
α2
i +

∑
i:αi>1

αi ≥ Bk logn.

Our proof of Theorem 4 uses refinement of the ideas used in Radhakrishnan
and Ta-Shma [6]. In a later section, we also show that our necessary condition
leads to a modular proof of their tight lower bound on the size of depth-two
superconcentrators.

A tradeoff result for depth-two superconcentrators was shown by Dutta and
Radhakrishnan [7]. Their main argument leads one to consider situations where
the small bipartite graphs used to build the bigger one are not symmetric, instead
of being of the form Kni,ni , they are of the form Kmi,ni (with perhaps mi �= ni).

Definition 4. We say that a sequence ((m1, n1), (m2, n2), . . . , (mr, nr)) of pairs
of positive integers is (n, k)-strong if there is a bipartite graph G = (V,W,E) that
is a union of graphs Gi = (Vi,Wi, Ei = Vi ×Wi), i = 1, 2, . . . , r, such that

– |V |, |W | = n;
– |Vi| = mi and |Wi| = ni.
– G has no bipartite independent set of size k × k.

We refine our lower bound argument for the symmetric case and provide neces-
sary condition for this asymmetric setting as well.

Theorem 5 (Necessary condition: asymmetric case). Suppose αi, βi ∈
[n−1/100, n1/100], i = 1, 2 . . . , r, and k ∈ [n1/10, n9/10]. Then, there is a constant
C > 0 such that if the sequence ((m1, n1), (m2, n2), . . . , (mr, nr)) is (n, k)-strong
where mi = αi(n/k) and ni = βi(n/k), then∑

i∈X
αiβi +

∑
i∈{1,2,...,r}\X

(αi + βi)H(pi) ≥ Ck logn

for every X ⊆ {1, 2, . . . , r}, where pi = αi

αi+βi
and H(pi) = −pi log(pi) − (1 −

pi) log(1− pi).

As applications of our lower bounds, we provide modular proofs of two known
lower bounds for depth-two superconcentrators which are important combina-
torial objects useful in both algorithms and complexity (formal definition in

More on a Problem of Zarankiewicz 261

Section 4): the first one is a lower bound on the number of edges in such graphs
(Theorem 6 in Section 4) shown in [6] which we reprove here using Theorem 4;
the second one is a tradeoff result between the number of edges at different levels
of such graphs (Theorem 7 in Section 4) shown in [7] which we reprove using
Theorem 5.

2 Building a Bipartite Graph from Smaller Symmetric
Bipartite Graphs

Proof of Theorem 4
Let k ∈ [n

1
10 , n

9
10] and αi ∈ [n−1/100, n1/100], i = 1, 2, . . . , r. Suppose we are

given a bipartite graph G = (V,W,E) which is a union of complete bipartite
graphs G1, G2, . . . , Gr and has no bipartite independent set of size k× k, where
Gi = (Vi,Wi, Ei = Vi ×Wi) with |Vi| = |Wi| = ni = αi(n/k). We want to show
that for some constant B > 0,∑

i:αi≤1
α2
i +

∑
i:αi>1

αi ≥ Bk logn.

We will present the argument for the case when k =
√

n; the proof for other k is
similar, and focussing on this k will keep the notation and the constants simple.
We will show that if the second term in the LHS of the above inequality is small,
say,

SecondTerm =
∑

i:αi>1

αi ≤
1

100
k logn,

then the first term must be large, i.e.,

FirstTerm =
∑

i:αi≤1
α2
i ≥

1

100
k logn.

Assume SecondTerm ≤ 1
100k logn. Let us call a Gi for which αi > 1 as large and

a Gi for which αi ≤ 1 as small. We start as in [6] by deleting one of the sides
of each large Gi independently and uniformly at random from the vertex set of
G. For a vertex v ∈ V , let dv be number of large Gi’s such that v ∈ Vi. The
probability that v survives at the end of the random deletion is precisely 2−dv .
Now, ∑

v

dv =
∑

i:αi>1

ni ≤
1

100
n logn,

where the inequality follows from our assumption that SecondTerm ≤ 1
100k logn.

That is, the average value of dv is 1
100 logn, and by Markov’s inequality, at least

half of the vertices have their dv’s at most d = 1
50 logn. We focus on a set V ′ of

n/2 such vertices, and if they survive the first deletion, we delete them again with
probability 1 − 2−(d−dv), so that every one of these n/2 vertices in V ′ survives
with probability exactly 2−d = n−1/50. Let X be the vertices of V ′ that survive.
Similarly, we define W ′ ⊆W , and let Y ⊆W ′ be the vertices that survive.

262 C. Dutta and J. Radhakrishnan

Claim. With probability 1− o(1), |X |, |Y | ≥ n
4 2
−d.

The claim can be proved as follows. For v ∈ V ′, let Iv be the indicator variable
for the event that v survives. Then, Pr[Iv = 1] = 2−d = n−1/50 for all v ∈ V ′.
Furthermore, Iv and Iv′ are dependent precisely if there is a common large Gi

such that both v, v′ ∈ Vi. Thus, any one Iv is dependent on at most Δ =
dv × max{ni : αi > 1} ≤ (1/50)(logn)n1/100(n/k) = (1/50)n51/100 logn such
events (recall k =

√
n). We thus have (see Alon-Spencer [8])

E[|X |] =
∑
v∈V ′

Iv =
n

2
2−d =

1

2
n49/50;

Var[|X |] ≤ E[|X |]Δ.

By Chebyshev’s inequality, the probability that |X | is less than E[|X|]
2 is at most

4Var[X]

E[|X |]2
≤ 4Δ

E[|X |]
= o(1).

A similar calculation can be done for |Y |. (End of Claim.)
The crucial consequence of our random deletion process is that no large Gi

has any edge between X and Y . Since G does not have any independent set
(S, T) of size k × k, the small Gi’s must provide the necessary edges to avoid
such independent sets between X and Y . Consider an edge (v, w) of a small Gi.
The probability that this edge survives in X × Y is precisely the probability of
the event Iv ∧ Iw . Note that the two events Iv and Iw are either independent
(when v and w do not belong to a common large Gi), or they are mutually
exclusive. Thus, the expected number of edges supplied between X and Y by
small Gi’s is at most∑

i:αi≤1
α2
i (n/k)22−2d = FirstTerm× (n/k)22−2d,

and by Markov’s inequality, with probability 1/2 it is at most twice its ex-
pectation. Using the Claim above we conclude that the following three events
happen simultaneously: (a) |X | ≥ n

4 2
−d, (b) |Y | ≥ n

4 2
−d, (c) the number of

edges conecting X and Y is at most 2× FirstTerm× (n/k)22−2d. Using (1), this

number of edges must be at least 1
3
(n2−d)2

16k (4950 logn− 2). (Note that 1
3 suffices as

the constant in (1) for the case |X |, |Y | ≥ n49/50

4 and k =
√

n.) Comparing the
upper and lower bounds on the number of edges thus established, we obtain the
required inequality

FirstTerm ≥ 1

100
k logn.

3 Building a Bipartite Graph from Smaller Asymmetric
Bipartite Graphs

Proof of Theorem 5
Let k ∈ [n

1
10 , n

9
10] and αi, βi ∈ [n−

1
100 , n

1
100], i = 1, 2, . . . , r. Suppose we are

given a bipartite graph G = (V,W,E) which is a union of complete bipartite

More on a Problem of Zarankiewicz 263

graphs G1, G2, . . . , Gr and has no bipartite independent set of size k× k, where
Gi = (Vi,Wi, Ei = Vi ×Wi) with |Vi| = mi = αi(n/k) and |Wi| = ni = βi(n/k).
As stated in Theorem 5, we let pi = αi

αi+βi
and H(pi) = −pi log(pi) − (1 −

pi) log(1− pi). We wish to show that there is a constant C > 0, such that∑
i∈X

αiβi +
∑
i/∈X

(αi + βi)H(pi) ≥ Ck logn

for every X ⊆ {1, 2, . . . , r}.
The proof is similar to but more subtle than the proof of Thereom 4 and

again we present the argument for the case when k =
√

n. Fix a subset X ⊆
{1, 2, . . . , r}. Our plan is to assume that the second term in the LHS of the above
inequality is small,

SecondTerm =
∑
i/∈X

(αi + βi)H(pi) ≤
1

100
k logn, (4)

and from this conclude that the first term must be large,

FirstTerm =
∑
i∈X

αiβi ≥
1

100
k logn. (5)

Assume SecondTerm ≤ 1
100k logn. Graphs Gi where i ∈ X will be called marked

and graphs Gi where i /∈ X will be called unmarked. As before, we will delete
one of the sides of each unmarked Gi independently at random from the vertex
set of G. However, since this time there are different number of vertices on the
two sides of Gi, we need to be more careful and choose the deletion probabilities
carefully. For every unmarked Gi independently, we delete all the vertices in Wi

with probability pi and all the vertices in Vi with probability 1− pi.
For a vertex v ∈ V , let Sv be the set of i /∈ X such that v ∈ Vi. Define dv to be

the quantity
∑

i∈Sv
log(1/pi). The probability that v survives the random dele-

tion process is 2−dv . Using the fact that pi =
αi

αi+βi
and plugging the expression

for H(pi) in the assumption (4), we obtain∑
i/∈X

(αi log(1/pi) + βi log(1/(1− pi))) ≤
1

100
k logn.

Multiplying both sides by (n/k), this implies∑
i/∈X

mi log(1/pi) ≤
1

100
n logn, (6)

and ∑
i/∈X

ni log(1/(1− pi)) ≤
1

100
n logn. (7)

Since ∑
v∈V

dv =
∑
i/∈X

mi log(1/pi),

264 C. Dutta and J. Radhakrishnan

the average value of dv is at most 1
100 logn, and by Markov’s inequality, at

least 3n/4 vertices v ∈ V have their dv at most d = 1
25 logn. Moreover, since

αi, βi ∈ [n−1/100, n1/100], we have

pi ≤
n1/100

n1/100 + n−1/100
≤ 1− n−1/100

n−1/100 + n1/100
≤ exp

(
− n−1/100

n1/100 + n−1/100

)
,

and thus
1

pi
≥ exp

(
n−1/100

n1/100 + n−1/100

)
≥ exp

(
1

2
n−1/50

)
.

The above implies log(1/pi) ≥ 1
2n
−1/50, which combined with (6) yields∑

i/∈X
mi ≤

1

50
n51/50 logn.

Since ∑
v∈V

|Sv| =
∑
i/∈X

mi,

the average value of |Sv| is at most 1
50n

1/50 logn, and again by Markov’s inequal-

ity, at least 3n/4 vertices v ∈ V satisfy |Sv| ≤ d′ = 4
50n

1/50 logn.
We focus on a set V ′ of n/2 vertices v ∈ V such that dv ≤ d and |Sv| ≤ d′. If

any vertex v ∈ V ′ survives the first deletion, we delete it further with probability
1 − 2−(d−dv), so that the survival probability of each vertex in V ′ is exactly
2−d = n−1/25. Let X be the set of vertices in V ′ that survive. Similarly, we
define W ′ ⊆W , and let Y be the set of vertices in W ′ that survive.

Claim. With probability 1− o(1), |X |, |Y | ≥ n
4 2
−d.

The proof of the claim is exactly like the previous time.
Since no unmarked Gi has any edge between X and Y , the marked Gi’s must

provide enough edges to avoid all independent sets of size k× k between X and
Y . As in the proof of Theorem 4, we can argue that an edge of a marked Gi

survives in X × Y with probability at most 2−2d. Thus the expected number of
edges supplied between X and Y by marked Gi’s is at most∑

i∈X
mini2

−2d =
∑
i∈X

αiβi(n/k)22−2d = FirstTerm× (n/k)22−2d,

and by Markov’s inequality with probability 1/2 it is at most twice its expec-
tation. Thus the event where both X and Y are of size at least n

4 2
−d and

the number of edges connecting them is at most 2 × FirstTerm × (n/k)22−2d

occurs with positive probability. From (1), this number of edges must be at

least 1
3
(n2−d)2

16k (2425 logn − 2). (Note that 1
3 suffices as the constant in (1) when

|X |, |Y | ≥ n24/25

4 and k =
√

n.) Thus we get

FirstTerm ≥ 1

100
k logn.

More on a Problem of Zarankiewicz 265

4 Depth-two Superconcentrators

Definition 5 (Depth-two superconcentrators). Let G = (V,M,W,E) be a
graph with three sets of vertices V , M and W , where |V |, |W | = n, such that all
edges in E go from V to M or M to W . Such a graph is called a depth-two n-
superconcentrator if for every k ∈ {1, 2, . . . , n} and every pair of subsets S ⊆ V
and T ⊆W , each of size k, there are k vertex disjoint paths from S to T .

We reprove two known lower bounds for depth-two superconcentrators.

Theorem 6 (Radhakrishnan and Ta-Shma [6]). If the graph G(V,M,W,E)

is a depth-two n-superconcentrator, then |E(G)| = Ω(n (logn)2

log logn).

Proof. Assume that the number of edges in a depth-two n-superconcentrator G

is at most (B/100)n (logn)2

log logn , where B is the constant in Theorem 4. By increasing
the number of edges by a factor at most two, we assume that each vertex in M has
the same number of edges coming from V and going to W . For a vertex v ∈M ,
let deg(v) denote the number of edges that come from V to v (equivalently the
number of edges that go from v to W). For k ∈ [n1/4, n3/4], define

High(k) = {v ∈M : deg(v) ≥ n

k
(log n)2};

Medium(k) = {v ∈M :
n

k
(log n)−2 ≤ deg(v) <

n

k
(logn)2};

Low(k) = {v ∈M : deg(v) <
n

k
(log n)−2}.

Claim. For each k ∈ [n1/4, n3/4], the number of edges incident on Medium(k) is
at least B

2 n logn.

Fix a k ∈ [n1/4, n3/4]. First observe that |High(k)| < k, for otherwise, the number
of edges in G would already exceed n(logn)2, contradicting our assumption.
Thus, every pair of subsets S ⊆ V and T ⊆ W of size k each has a common
neighbour inMedium(k)∪Low(k). We are now in a position to move to the setting
of Theorem 4. For each vertex v ∈ Medium(k) ∪ Low(k), consider the complete
bipartite graph between its in-neighbours in V and out-neighbours in W . The
analysis above implies that the union of these graphs is a bipartite graph between
V and W that has no independent set of size k×k. For v ∈ Medium(k)∪Low(k),
let αv = deg(v)

n/k . Using Theorem 4, it follows that∑
v∈Medium(k)∪Low(k):αv≤1

α2
v +

∑
v∈Medium(k)∪Low(k):αv>1

αv ≥ Bk logn. (8)

For αv ≤ 1, α2
v ≤ αv and thus we can replace α2

v by αv when (logn)−2 ≤ αv ≤ 1
and conclude ∑

v∈Low(k)
α2
v +

∑
v∈Medium(k)

αv ≥ Bk logn. (9)

266 C. Dutta and J. Radhakrishnan

One of the two terms in the LHS is at least half the RHS. If it is the first term
then noting that αv < (log n)−2 for all v ∈ Low(k), we obtain∑

v∈Low
deg(v) =

n

k

∑
v∈Low

αv ≥
n

k
(logn)2

∑
v∈Low

α2
v ≥

B

2
n(log n)3.

Since the left hand side is precisely the number of edges entering Low(k), this
contradicts our assumption that G has few edges. So, it must be that the second
term in the LHS of (9) is at least B

2 k logn. Then, the number of edges incident
on Medium(k) is ∑

v∈Medium

deg(v) =
n

k

∑
v∈Medium

αv ≥
B

2
n logn.

This completes the proof of the claim.
Now, consider values of k of the form n1/4(logn)4i in the range [n1/4, n3/4].

Note that there are at least (1
10) logn/ log logn such values of k and the sets

Medium(k) for these values of k are disjoint. By the claim above, each such
Medium(k) has at least B

2 n logn edges incident on it, that is G has a total of at

least B
20n

(log n)2

log logn edges, again contradicting our assumption.

Theorem 7 (Dutta and Radhakrishnan [7]). If the graph G = (V,M,W,E)
is a depth-two n-superconcentrator with average degree of nodes in V and W
being a and b respectively and a ≤ b, then

a log

(
a+ b

a

)
log b = Ω(log2 n).

The proof of the above theorem is omitted due to lack of space.

References

1. Kővári, T., Sós, V., Turán, P.: On a problem of k. zarankiewicz. Colloquium Math-
ematicum 3, 50–57 (1954)

2. Bollobás, B.: Extremal Graph Theory. Academic Press (1978)
3. Hansel, G.: Nombre minimal de contacts de fermature nécessaires pour réaliser une

fonction booléenne symétrique de n variables. C. R. Acad. Sci. Paris 258, 6037–6040
(1964)

4. Katona, G., Szemerédi, E.: On a problem of graph theory. Studia Sci. Math. Hun-
gar. 2, 23–28 (1967)

5. Krichevskii, R.E.: Complexity of contact circuits realizing a function of logical al-
gebra. Sov. Phys. Dokl. 8, 770–772 (1964)

6. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors and depth-two
superconcentrators. SIAM J. Disc. Math. 13(1), 2–24 (2000)

7. Dutta, C., Radhakrishnan, J.: Tradeoffs in Depth-Two Superconcentrators. In: Du-
rand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 372–383. Springer,
Heidelberg (2006)

8. Alon, N., Spencer, J.H.: The probabilistic method. Wiley-Interscience (2000)

Efficient Dominating and Edge Dominating Sets

for Graphs and Hypergraphs

Andreas Brandstädt1, Arne Leitert1, and Dieter Rautenbach2

1 Institut für Informatik, Universität Rostock, Germany
ab@informatik.uni-rostock.de, arne.leitert@uni-rostock.de

2 Institut für Optimierung und Operations Research, Universität Ulm, Germany
dieter.rautenbach@uni-ulm.de

Abstract. Let G = (V,E) be a graph. A vertex dominates itself and all
its neighbors, i.e., every vertex v ∈ V dominates its closed neighborhood
N [v]. A vertex set D in G is an efficient dominating (e.d.) set for G if for
every vertex v ∈ V , there is exactly one d ∈ D dominating v. An edge
set M ⊆ E is an efficient edge dominating (e.e.d.) set for G if it is an
efficient dominating set in the line graph L(G) of G. The ED problem
(EED problem, respectively) asks for the existence of an e.d. set (e.e.d.
set, respectively) in the given graph.

We give a unified framework for investigating the complexity of these
problems on various classes of graphs. In particular, we solve some open
problems and give linear time algorithms for ED and EED on dually
chordal graphs.

We extend the two problems to hypergraphs and show that ED re-
mains NP-complete on α-acyclic hypergraphs, and is solvable in polyno-
mial time on hypertrees, while EED is polynomial on α-acyclic hyper-
graphs and NP-complete on hypertrees.

Keywords: efficient domination, efficient edge domination, graphs and
hypergraphs, polynomial time algorithms.

1 Introduction and Basic Notions

Packing and covering problems in graphs and their relationships belong to the
most fundamental topics in combinatorics and graph algorithms and have a wide
spectrum of applications in computer science, operations research and many
other fields. Recently, there has been an increasing interest in problems com-
bining packing and covering properties. Among them, there are the following
variants of domination problems:

Let G be a finite simple undirected graph with vertex set V and edge set E. A
vertex dominates itself and all its neighbors, i.e., every vertex v ∈ V dominates
its closed neighborhood N [v] = {u | u = v or uv ∈ E}. A vertex set D in G is an
efficient dominating (e.d.) set for G if for every vertex v ∈ V , there is exactly one
d ∈ D dominating v (sometimes called independent perfect dominating set) [1,2].
An edge set M ⊆ E is an efficient edge dominating (e.e.d.) set for G if it is an

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 267–277, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

268 A. Brandstädt, A. Leitert, and D. Rautenbach

efficient dominating set in the line graph L(G) of G (sometimes called dominating
induced matching). The ED problem (EED problem, respectively) asks for the
existence of an e.d. set (e.e.d. set, respectively) in the given graph. Note that both
problems are NP-complete. The complexity of ED (EED, respectively) (and their
variants) with respect to special graph classes was studied in various papers; see
e.g. [2,6,20,31,32,35,36,37,38] for ED and [9,12,18,27,33,34] for EED. The main
contributions of our paper are:

(i) a unified framework for the ED and EED problems solving some open
questions,

(ii) linear time algorithms for ED and EED on dually chordal graphs, and
(iii) an extension of the two problems to hypergraphs, in particular to α-acyclic

hypergraphs and hypertrees: We show that ED remains NP-complete on
α-acyclic hypergraphs, and is solvable in polynomial time on hypertrees,
while EED is polynomial on α-acyclic hypergraphs and NP-complete on
hypertrees.

Our approach has the advantage that it unifies the proofs of various results ob-
tained in numerous papers. Our proofs are typically very short since we exten-
sively use some theoretical background on the relations of the considered graph
and hypergraph classes, and in particular closure properties of graph classes with
respect to squares of their graphs, and polynomial time algorithms for Maximum
Weight Independent Set and Minimum Weight Dominating Set on some graph
classes. The consequences are some new cases where the corresponding problems
can be efficiently solved.

Due to space limitations, all proofs are omitted; see [11] for a full version.

2 Further Basic Notions

2.1 Basic Notions and Properties of Graphs

Let G be a finite undirected graph without loops and multiple edges. Let V
denote its vertex (or node) set and E its edge set; let |V | = n and |E| = m.
A vertex v is universal in G if it is adjacent to all other vertices of G. Let
G2 = (V,E ∪ {uv | ∃w ∈ V : uw,wv ∈ E}) be the square of G.

A chordless path Pk (chordless cycle Ck, respectively) has k vertices, say
v1, . . . , vk, and edges vivi+1, 1 ≤ i ≤ k − 1 (and vkv1, respectively). A hole is a
chordless cycle Ck for k ≥ 5. G is chordal if no induced subgraph of G is isomor-
phic to Ck, k ≥ 4. See e.g. [10] for the many facets of chordal graphs. A vertex
set U ⊆ V is independent if for all x, y ∈ U , xy /∈ E holds. For a graph G and
a vertex weight function on G, let the Maximum Weight Independent Set

(MWIS) problem be the task of finding an independent vertex set of maximum
weight.

Let Ki denote the clique with i vertices. Let K4− e or diamond be the graph
with four vertices and five edges, say vertices a, b, c, d and edges ab, ac, bc, bd, cd;
its mid-edge is the edge bc. Let gem denote the graph consisting of five vertices,

Efficient Dominating and Edge Dominating Sets 269

four of which induce a P4, and the fifth is universal. Let W4 denote the graph
with five vertices consisting of a C4 and a universal vertex.

For U ⊆ V , let G[U] denote the subgraph induced by U . For a set F of graphs,
a graph G is called F-free if G contains no induced subgraph from F . Thus, it is
hole-free if it contains no induced subgraph isomorphic to a hole. A graph G is
weakly chordal if G and its complement graph is hole-free. Three pairwise non-
adjacent distinct vertices form an asteroidal triple (AT) in G if for each choice
of two of them, there is a path between the two avoiding the neighborhood of
the third. A graph G is AT-free if G contains no AT.

2.2 Basic Notions and Properties of Hypergraphs

Throughout this paper, a hypergraph H = (V, E) has a finite vertex set V and
for all e ∈ E , e ⊆ V (E possibly being a multiset). For a graph G, let N (G)
denote the closed neighborhood hypergraph, i.e., N (G) = (V, {N [v] | v ∈ V }),
and let C(G) = (V, {K ⊆ V | K is an inclusion-maximal clique}) denote the
clique hypergraph of G.

A subset of edges E ′ ⊆ E is an exact cover of H if for all e, f ∈ E ′ with e �= f ,
e ∩ f = ∅ and

⋃
E ′ = V . The Exact Cover problem asks for the existence of

an exact cover in a given hypergraph H . It is well known that this problem is
NP-complete even for 3-element hyperedges (problem X3C [SP2] in [24]). Thus,
the ED problem on a graph G is the same as the Exact Cover problem on N (G).

For defining the class of dually chordal graphs, whose properties will be con-
trasted with those of chordal graphs, as well as for extending the ED and the
EED problems to hypergraphs, we need some basic definitions: For a hyper-
graph H = (V, E), let 2sec(H) denote its 2-section (also called representative
or primal) graph, i.e., the graph having the same vertex set V in which two
vertices are adjacent if they are in a common hyperedge. Let L(H) denote the
line graph of H , i.e., the graph with the hyperedges E as its vertex set in which
two hyperedges are adjacent in L(H) if they intersect each other.

A hypergraph H = (V, E) has the Helly property if the total intersection of
every pairwise intersecting family of hyperedges of E is nonempty. H is conformal
if every clique of the 2-section graph 2sec(H) is contained in a hyperedge of E
(see e.g. [5,22]).

The notion of α-acyclicity [22] is one of the most important and most fre-
quently studied hypergraph notions. Among the many equivalent conditions de-
scribing α-acyclic hypergraphs, we take the following: For a hypergraph H =
(V, E), a tree T with node set E and edge set ET is a join tree of H if for all
vertices v ∈ V , the set of hyperedges containing v induces a subtree of T . H is
α-acyclic if it has a join tree. For a hypergraph H = (V, E) and vertex v ∈ V ,
let Ev := {e ∈ E | v ∈ e}. Let H∗ := (E , {Ev | v ∈ V }) be the dual hypergraph of
H . H = (V, E) is a hypertree if there is a tree T with vertex set V such that for
all e ∈ E , T [e] is connected.

Theorem 1 (Duchet, Flament, Slater, see [10]). H is a hypertree if and
only if H has the Helly property and its line graph L(H) is chordal.

270 A. Brandstädt, A. Leitert, and D. Rautenbach

The following facts are well known:

Lemma 1. Let H be a hypergraph.

(i) H is conformal if and only if H∗ has the Helly property.
(ii) L(H) is isomorphic to 2sec(H∗).

Thus:

Corollary 1. H is α-acyclic if and only if H is conformal and its 2-section
graph is chordal.

It is easy to see that the dual N (G)∗ of N (G) is N (G) itself, and for any graph
G:

G2 is isomorphic to L(N (G)). (1)

In [8], the notion of dually chordal graphs was introduced: For a graphG = (V,E)
and a vertex v ∈ V , a vertex u ∈ N [v] is a maximum neighbor of v if for all
w ∈ N [v], N [w] ⊆ N [u] holds. (Note that by this definition, a vertex can be its
own maximum neighbor.) Let σ = (v1, . . . , vn) be a vertex ordering of V . Such an
ordering σ is amaximum neighborhood ordering of G if for every i ∈ {1, 2, . . . , n},
vi has a maximum neighbor in Gi := G[{vi, . . . , vn}]. A graph is dually chordal
if it has a maximum neighborhood ordering. The following is known:

Theorem 2 ([7,8,21]). Let G be a graph. Then the following are equivalent:

(i) G is a dually chordal graph.
(ii) N (G) is a hypertree.
(iii) C(G) is a hypertree.
(iv) G is the 2-section graph of some hypertree.

Thus, Theorems 1 and 2 together with (1) and the duality properties in Lemma
1 imply:

Corollary 2 ([7,8,21]). Let G be a graph and H be a hypergraph.

(i) G is dually chordal if and only if G2 is chordal and N (G) has the Helly
property.

(ii) If H is α-acyclic then its line graph L(H) is dually chordal.
(iii) If H is a hypertree then its 2-section graph 2sec(H) is dually chordal.

3 Efficient (Edge) Domination in General

Recall that a subset D ⊆ V of vertices is an efficient dominating set if for all
v ∈ V , there is exactly one d ∈ D such that v ∈ N [d]. Also a subset M ⊆ E of
edges is an efficient edge dominating set in G if for all e ∈ E, there is exactly
one e′ ∈M intersecting the edge e.

Both definitions can be extended to hypergraphs: A subset D ⊆ V is an
efficient dominating set for a hypergraph H if it is an efficient dominating set
for its 2-section graph 2sec(H). A subset M ⊆ E of hyperedges is an efficient
edge dominating set for H if for all e ∈ E , there is exactly one e′ ∈M intersecting
the edge e.

Efficient Dominating and Edge Dominating Sets 271

Corollary 3. A vertex set D is an efficient dominating set in H if and only if
D is an efficient edge dominating set in H∗.

The following approach developed in [30] and [36] gives a tool for showing that
for various classes of graphs, the ED problem can be solved in polynomial time.
For a graph G = (V,E), we define the following vertex weight function: Let
ω(v) := |NG[v]| (i.e., ω(v) := deg(v) + 1), and for D ⊆ V , let ω(D) := Σd∈D
ω(d). Obviously, the following holds:

Proposition 1. Let G = (V,E) be a graph and D ⊆ V .

(i) If D is a dominating vertex set in G then ω(D) ≥ |V |.
(ii) If D is an independent vertex set in G2 then ω(D) ≤ |V |.

Lemma 2. Let G = (V,E) be a graph and ω(v) := |N [v]| a vertex weight func-
tion for G. Then the following are equivalent for any subset D ⊆ V :

(i) D is an efficient dominating set in G
(ii) D is a minimum weight dominating vertex set in G with ω(D) = |V |.
(iii) D is a maximum weight independent vertex set in G2 with ω(D) = |V |.

Note that D is not any independent (dominating) set, but a maximum (mini-
mum) weight one. This implies:

Corollary 4. For every graph class C for which the MWIS problem is solvable
in polynomial time on squares of graphs from C, the ED problem for C is solvable
in polynomial time.

Corollary 5. Let H be a hypergraph, L(H) = (V,E) its line graph and ω(v) :=
|N [v]| a vertex weight function for L(H) as above. Then the following are equiv-
alent for any subset D ⊆ V :

(i) D is an efficient edge dominating set in H
(ii) D is an efficient dominating set in L(H).
(iii) D is a minimum weight dominating vertex set in L(H) with ω(D) = |V |.
(iv) D is a maximum weight independent vertex set in L(H)2 with ω(D) = |V |.

4 Efficient Domination in Graphs

This section presents results for the ED problem on some graph classes.

Theorem 3 ([35,38]). The ED problem is NP-complete for bipartite graphs,
for chordal graphs as well as for chordal bipartite graphs.

By Corollary 2 (i), the square of a dually chordal graph is chordal. Thus, based
on Lemma 2, ED for dually chordal graphs can be solved in polynomial time by
solving the MWIS problem on chordal graphs. However, the MWIS problem is
solvable in linear time for chordal graphs with the following algorithm:

272 A. Brandstädt, A. Leitert, and D. Rautenbach

Algorithm 1 ([23]).
Input: A chordal graph G = (V,E) with |V | = n and a vertex weight function ω.
Output: A maximum weight independent set I of G.

(1) Find a perfect elimination ordering (v1, . . . , vn) and set I := ∅.
(2) For i := 1 To n

If ω(vi) > 0, mark v and set ω(u) := max(ω(u)−ω(vi), 0) for all vertices
u ∈ N(vi).

(3) For i := n DownTo 1
If vi is marked, set I := I ∪ {vi} and unmark all u ∈ N(vi).

By using the following lemmas, the algorithm can be modified in such a way,
that it solves the ED problem for dually chordal graphs in linear time.

Lemma 3 ([7]). A maximum neighborhood ordering of G which simultaneously
is a perfect elimination ordering of G2 can be found in linear time.

The algorithm given in [7] not only finds a maximum neighborhood ordering
(v1, . . . , vn). It also computes the maximum neighbors mi for each vertex vi
with the property that for all i < n no vertex vi is its own maximum neighbor
(vi �= mi). This is necessary for the following lemma.

Lemma 4. Let G = (V,E) be a graph with G2 = (V,E2) and a maximum
neighborhood ordering (v1, . . . , vn) where mi is the maximum neighbor of vi with
vi �= mi and 1 ≤ i < j ≤ n. Then: vivj ∈ E2 ⇔ mivj ∈ E.

This allows to modify Algorithm 1 in a way, that it is no longer necessary to
compute the square of the given dually chordal graph G. Instead, a maximum
weight independent set of G2 can be computed on G in linear time.

Algorithm 2 ([30]).
Input: A dually chordal graph G = (V,E).
Output: An efficient dominating set D (if existing).

(1) D = ∅.
(2) For All v ∈ V

Set ω(v) := |N(v)| and ωp(v) := 0. v is unmarked and not blocked.
(3) Find a maximum neighborhood ordering (v1, . . . , vn) with the corresponding

maximum neighbors (m1, . . . ,mn) where vi �= mi for 1 ≤ i < n.
(4) For i := 1 To n

For all u ∈ N [vi] set ω(vi) := ω(vi)− ωp(u).
If ω(vi) > 0, mark vi and set ωp(mi) := ωp(mi) + ω(vi).

(5) For i := n DownTo 1
If vi is marked and mi is not blocked, set D := D ∪ {vi} and block all
u ∈ N(vi).

(6) D is an efficient dominating set if and only if
∑

v∈D |N [v]| = |V |.

Theorem 4. Algorithm 2 works correctly and runs in linear time.

Efficient Dominating and Edge Dominating Sets 273

Note that strongly chordal graphs are dually chordal [8]. In [35] one of the open
problems is the complexity of (weighted) ED for strongly chordal graphs which
is solved by Theorem 4 (for the weighted case see [30]).

Theorem 5. For AT-free graphs, the ED problem is solvable in polynomial time.

This partially extends the result of [20] showing that the (weighted) ED problem
for co-comparability graphs is solvable in polynomial time.

In [35], one of the open problems is the complexity of ED for convex bipartite
graphs. This class of graphs is contained in interval bigraphs, and a result of
[29] shows that the boolean width of interval bigraphs is at most 2 logn, based
on a corresponding result for interval graphs [3]. By a result of [4], this leads
to a polynomial time algorithm for Minimum Weight Domination on interval
bigraphs.

Corollary 6. For interval bigraphs, the ED problem is solvable in polynomial
time.

This solves the open question from [35] for convex bipartite graphs.

5 Efficient Edge Domination in Graphs

Lemma 5 ([9,12]). Let G be a graph that has an e.e.d. set M .

(i) M contains exactly one edge of every triangle of G.
(ii) G is K4-free.
(iii) If xy is the mid-edge of an induced diamond in G then M necessarily

contains xy. Thus, in particular, G is W4-free and gem-free.

In [33], it was shown that the EED problem is solvable in linear time on chordal
graphs. This allows us to solve the EED problem for dually chordal graphs using
the following lemma:

Lemma 6. Let G be a graph that has an e.e.d. set. Then G is chordal if and
only if G is dually chordal.

Corollary 7. The EED problem can be solved in linear time for dually chordal
graphs.

Efficient edge dominating sets are closely related to maximum induced match-
ings; it is not hard to see that every efficient edge dominating set is a maximum
induced matching but of course not vice versa. However, when the graph has an
efficient edge dominating set and is regular then every maximum induced match-
ing is an efficient edge dominating set [17]. On the other hand, the complexity
of the two problems differs on some classes such as claw-free graphs where the
Maximum Induced Matching (MIM) problem is NP-complete [28] (even on line
graphs) while the EED problem is solvable in polynomial time [18]. While every
graph has a maximum induced matching, this is not the case for efficient edge
dominating sets. Thus, if the graph G has an efficient edge dominating set, this

274 A. Brandstädt, A. Leitert, and D. Rautenbach

gives also a maximum induced matching but in the other case, the MIM problem
is hard for claw-free graphs.

For the MIM problem, there is a long list of results of the following type:
If a graph G is in a graph class C then also L(G)2 is in the same class (see
e.g. [15,16]), and if the MWIS problem is solvable in polynomial time for the
same class, this leads to polynomial algorithms for the MIM problem on the
class C. A very large class of this type are interval-filament graphs [25] which
include co-comparability graphs and polygon-circle graphs; the latter include
circle graphs, circular-arc graphs, chordal graphs, and outerplanar graphs. AT-
free graphs include co-comparability graphs, permutation graphs and trapezoid
graphs (see [10]).

Theorem 6 ([15,19]). Let G = (V,E) be a graph, L(G) its line graph, and
L(G)2 its square. Then the following conditions hold:

(i) If G is an interval-filament graph then L(G)2 is an interval-filament graph.
(ii) If G is an AT-free graph then L(G)2 is an AT-free graph.

The MWIS problem for interval-filament graphs is solvable in polynomial time
[25]; as a consequence, it is mentioned in [15] that the MIM problem is efficiently
solvable for interval-filament graphs. In [13] it is shown that the MWIS problem
is solvable for AT-free graphs in time O(n4). For the EED problem, it follows:

Corollary 8. The EED problem is solvable in polynomial time for interval-
filament graphs and for AT-free graphs.

This generalizes the corresponding result for bipartite permutation graphs in
[33]; bipartite permutation graphs are AT-free. It also generalizes a correspond-
ing result for MIM on trapezoid graphs [26] (which are AT-free).

In [18], the complexity of the EED problem for weakly chordal graphs was
mentioned as an open problem; in [9], however, it was shown that the EED
problem (DIM problem, respectively) is solvable in polynomial time for weakly
chordal graphs. It is easy to see that long antiholes (i.e., complements of Ck,
k ≥ 6) have no e.e.d. set, i.e., a hole-free graph having an e.e.d. set is weakly
chordal. Thus, for hole-free graphs, the EED problem is solvable in polynomial
time [9]. Corollary 5 leads to an easier way of solving the EED problem on weakly
chordal graphs:

Corollary 9. The EED problem is solvable in polynomial time for weakly chordal
graphs.

The next result contrasts to the fact that the MIM and the EED problem are
solvable in polynomial time on chordal graphs:

Proposition 2. The MIM problem is NP-complete for dually chordal graphs.

6 Some Results for Hypergraphs

Theorem 3 and the fact that every chordal graph is the 2-section graph of an
α-acyclic hypergraph (namely, of its clique hypergraph C(G)) implies:

Efficient Dominating and Edge Dominating Sets 275

Corollary 10. The ED problem is NP-complete for α-acyclic hypergraphs.

This situation is better for hypertrees:

Corollary 11. For hypertrees, the ED problem is solvable in polynomial time.

Based on Corollary 3 and the duality of hypertrees and α-acyclic hypergraphs
it follows:

Corollary 12. The EED problem for hypertrees is NP-complete.

Corollary 13. For α-acyclic hypergraphs, the EED problem is solvable in poly-
nomial time.

For the MIM problem we show:

Theorem 7. The MIM problem is solvable in polynomial time for α-acyclic
hypergraphs.

Theorem 8. The MIM problem for hypertrees is NP-complete.

Theorem 9. The Exact Cover problem is NP-complete for α-acyclic hyper-
graphs and solvable in polynomial time for hypertrees.

7 Conclusion

The subsequent scheme summarizes some of our results;NP-c.meansNP-complete,
pol. (linear) means polynomial-time (linear-time) solvable, and XCmeans the Ex-
act Cover problem.

chordal gr. dually chordal gr. α-acyclic hypergr. hypertrees

ED NP-c. [38] linear NP-c. pol.
EED linear [33] linear pol. NP-c.
MIM pol. [14] NP-c. pol. NP-c.
XC NP-c. pol.

Acknowledgement. The first author is grateful to J. Mark Keil and Haiko
Müller for stimulating discussions and related results.

References

1. Bange, D.W., Barkauskas, A.E., Slater, P.J.: Efficient dominating sets in graphs. In:
Ringeisen, R.D., Roberts, F.S. (eds.) Applications of Discrete Math., pp. 189–199.
SIAM, Philadelphia (1988)

2. Bange, D.W., Barkauskas, A.E., Host, L.H., Slater, P.J.: Generalized domination
and efficient domination in graphs. Discrete Math. 159, 1–11 (1996)

276 A. Brandstädt, A. Leitert, and D. Rautenbach

3. Belmonte, R., Vatshelle, M.: Graph Classes with Structured Neighborhoods and
Algorithmic Applications. In: Kolman, P., Kratochv́ıl, J. (eds.) WG 2011. LNCS,
vol. 6986, pp. 47–58. Springer, Heidelberg (2011)

4. Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: Boolean width of graphs. Theor. Com-
puter Science 412, 5187–5204 (2011)

5. Berge, C.: Graphs and Hypergraphs. North-Holland (1973)
6. Biggs, N.: Perfect codes in graphs. J. of Combinatorial Theory (B) 15, 289–296

(1973)
7. Brandstädt, A., Chepoi, V.D., Dragan, F.F.: The algorithmic use of hypertree

structure and maximum neighbourhood orderings. Discrete Applied Math. 82, 43–
77 (1998)

8. Brandstädt, A., Dragan, F.F., Chepoi, V.D., Voloshin, V.I.: Dually chordal graphs.
SIAM J. Discrete Math. 11, 437–455 (1998)

9. Brandstädt, A., Hundt, C., Nevries, R.: Efficient Edge Domination on Hole-
Free Graphs in Polynomial Time. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS,
vol. 6034, pp. 650–661. Springer, Heidelberg (2010)

10. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Mono-
graphs on Discrete Math. Appl., vol. 3. SIAM, Philadelphia (1999)

11. Brandstädt, A., Leitert, A., Rautenbach, D.: Efficient Dominating and Edge
Dominating Sets for Graphs and Hypergraphs. Technical report CoRR,
arXiv:1207.0953v2, cs.DM (2012)

12. Brandstädt, A., Mosca, R.: Dominating Induced Matchings for P7-free Graphs
in Linear Time. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.)
ISAAC 2011. LNCS, vol. 7074, pp. 100–109. Springer, Heidelberg (2011)

13. Broersma, H.J., Kloks, T., Kratsch, D., Müller, H.: Independent sets in asteroidal-
triple-free graphs. SIAM J. Discrete Math. 12, 276–287 (1999)

14. Cameron, K.: Induced matchings. Discrete Applied Math. 24, 97–102 (1989)
15. Cameron, K.: Induced matchings in intersection graphs. Discrete Mathematics 278,

1–9 (2004)
16. Cameron, K., Sritharan, R., Tang, Y.: Finding a maximum induced matching in

weakly chordal graphs. Discrete Math. 266, 133–142 (2003)
17. Cardoso, D.M., Cerdeira, J.O., Delorme, C., Silva, P.C.: Efficient edge domination

in regular graphs. Discrete Applied Math. 156, 3060–3065 (2008)
18. Cardoso, D.M., Korpelainen, N., Lozin, V.V.: On the complexity of the dominat-

ing induced matching problem in hereditary classes of graphs. Discrete Applied
Math. 159, 521–531 (2011)

19. Chang, J.-M.: Induced matchings in asteroidal-triple-free graphs. Discrete Applied
Math. 132, 67–78 (2003)

20. Chang, G.J., Pandu Rangan, C., Coorg, S.R.: Weighted independent perfect dom-
ination on co-comparability graphs. Discrete Applied Math. 63, 215–222 (1995)

21. Dragan, F.F., Prisacaru, C.F., Chepoi, V.D.: Location problems in graphs and the
Helly property. Discrete Mathematics, Moscow 4, 67–73 (1992) (in Russian); The
full version appeared as preprint: Dragan, F.F., Prisacaru, C.F., Chepoi, V.D.: r-
Domination and p-center problems on graphs: special solution methods and graphs
for which this method is usable, Kishinev State University, preprint MoldNIINTI,
N. 948–M88 (1987) (in Russian)

22. Fagin, R.: Degrees of Acyclicity for Hypergraphs and Relational Database Schemes.
Journal ACM 30, 514–550 (1983)

23. Frank, A.: Some polynomial algorithms for certain graphs and hypergraphs. In:
Proceedings of the 5th British Combinatorial Conf. (Aberdeen 1975). Congressus
Numerantium, vol. XV, pp. 211–226 (1976)

Efficient Dominating and Edge Dominating Sets 277

24. Garey, M.R., Johnson, D.S.: Computers and Intractability – A Guide to the Theory
of NP-completeness. Freeman, San Francisco (1979)

25. Gavril, F.: Maximum weight independent sets and cliques in intersection graphs of
filaments. Information Processing Letters 73, 181–188 (2000)

26. Golumbic, M.C., Lewenstein, M.: New results on induced matchings. Discrete Ap-
plied Math. 101, 157–165 (2000)

27. Grinstead, D.L., Slater, P.L., Sherwani, N.A., Holmes, N.D.: Efficient edge domi-
nation problems in graphs. Information Processing Letters 48, 221–228 (1993)

28. Kobler, D., Rotics, U.: Finding maximum induced matchings in subclasses of claw-
free and P5-free graphs, and in graphs with matching and induced matching of
equal maximum size. Algorithmica 37, 327–346 (2003)

29. Keil, J.M.: The dominating set problem in interval bigraphs, abstract. In: Pro-
ceedings of the 3rd Annual Workshop on Algorithmic Graph Theory, Nipissing
University, North Bay, Ontario (2012)

30. Leitert, A.: Das Dominating Induced Matching Problem für azyklische Hyper-
graphenl. Diploma Thesis, University of Rostock, Germany (2012)

31. Liang, Y.D., Lu, C.L., Tang, C.Y.: Efficient Domination on Permutation Graphs
and Trapezoid Graphs. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS,
vol. 1276, pp. 232–241. Springer, Heidelberg (1997)

32. Lin, Y.-L.: Fast Algorithms for Independent Domination and Efficient Domination
in Trapezoid Graphs. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS,
vol. 1533, pp. 267–275. Springer, Heidelberg (1998)

33. Lu, C.L., Ko, M.-T., Tang, C.Y.: Perfect edge domination and efficient edge dom-
ination in graphs. Discrete Applied Math. 119, 227–250 (2002)

34. Lu, C.L., Tang, C.Y.: Solving the weighted efficient edge domination problem on
bipartite permutation graphs. Discrete Applied Math. 87, 203–211 (1998)

35. Lu, C.L., Tang, C.Y.: Weighted efficient domination problem on some perfect
graphs. Discrete Applied Math. 117, 163–182 (2002)

36. Milanič, M.: A hereditary view on efficient domination, extended abstract. In: Pro-
ceedings of the 10th Cologne-Twente Workshop, pp. 203–206 (2011); Full version
to appear under the title “Hereditary efficiently dominatable graphs”

37. Yen, C.-C.: Algorithmic aspects of perfect domination. Ph.D. Thesis, Institute of
Information Science, National Tsing Hua University, Taiwan (1992)

38. Yen, C.-C., Lee, R.C.T.: The weighted perfect domination problem and its variants.
Discrete Applied Math. 66, 147–160 (1996)

On the Hyperbolicity of Small-World
and Tree-Like Random Graphs

Wei Chen1, Wenjie Fang2, Guangda Hu3, and Michael W. Mahoney4

1 Microsoft Research Asia
weic@microsoft.com

2 Ecole Normale Supérieure de Paris
Wenjie.Fang@ens.fr

3 Princeton University
guangdah@cs.princeton.edu

4 Stanford University
mmahoney@cs.stanford.edu

Abstract. Hyperbolicity is a property of a graph that may be viewed as being a
“soft” version of a tree, and recent empirical and theoretical work has suggested
that many graphs arising in Internet and related data applications have hyperbolic
properties. Here, we consider Gromov’s notion of δ-hyperbolicity, and we estab-
lish several positive and negative results for small-world and tree-like random
graph models. In particular, we show that small-world random graphs built from
underlying grid structures do not have strong improvement in hyperbolicity, even
when the rewiring greatly improves decentralized navigation. On the other hand,
for a class of tree-like graphs called ringed trees that have constant hyperbolicity,
adding random links among the leaves in a manner similar to the small-world
graph constructions may easily destroy the hyperbolicity of the graphs, except
for a class of random edges added using an exponentially decaying probability
function based on the ring distance among the leaves. Our study provides the
first significant analytical results on the hyperbolicity of a rich class of random
graphs, which shed light on the relationship between hyperbolicity and naviga-
bility of random graphs, as well as on the sensitivity of hyperbolic δ to noises in
random graphs.

Keywords: Graph hyperbolicity, complex networks, small-world networks,
random graphs, decentralized navigation.

1 Introduction

Hyperbolicity, a property of metric spaces that generalizes the idea of Riemannian man-
ifolds with negative curvature, has received considerable attention in both mathematics
and computer science. When applied to graphs, one may think of hyperbolicity as char-
acterizing a “soft” version of a tree—trees have hyperbolicity zero, and graphs that “look
like” trees in terms of their metric structure have “small” hyperbolicity. Since trees are
an important class of graphs and since tree-like graphs arise in numerous applications,
the idea of hyperbolicity has received attention in a range of applications. For exam-
ple, it has found usefulness in the visualization of the Internet, the Web, and other large

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 278–288, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On the Hyperbolicity of Small-World and Tree-Like Random Graphs 279

graphs [22,26,31]; it has been applied to questions of compact routing, navigation, and
decentralized search in Internet graphs and small-world social networks [11,19,1,20,8];
and it has been applied to a range of other problems such as distance estimation, sensor
networks, and traffic flow and congestion minimization [2,13,27,10].

The hyperbolicity of graphs is typically measured by Gromov’s hyperbolic δ [12,4]
(see Section 2). The hyperbolic δ of a graph measures the “tree-likeness” of the graph
in terms of the graph distance metric. It can range from 0 up to the half of the graph
diameter, with trees having δ = 0, in contrast of “circle graphs” and “grid graphs”
having large δ equal to roughly half of their diameters.

In this paper, we study the δ-hyperbolicity of families of random graphs that intu-
itively have some sort of tree-like or hierarchical structure. Our motivation comes from
two angles. First, although there are a number of empirical studies on the hyperbolicity
of real-world and random graphs [2,13,24,23,27,10], there are essentially no systematic
analytical study on the hyperbolicity of popular random graphs. Thus, our work is in-
tended to fill this gap. Second, a number of algorithmic studies show that good graph hy-
perbolicity leads to efficient distance labeling and routing schemes [6,11,9,7,21,8], and
the routing infrastructure of the Internet is also empirically shown to be hyperbolic [2].
Thus, it is interesting to further investigate if efficient routing capability implies good
graph hyperbolicity.

To achieve our goal, we first provide fine-grained characterization of δ-hyperbolicity
of graph families relative to the graph diameter: A family of random graphs is (a) con-
stantly hyperbolic if their hyperbolic δ’s are constant, regardless of the size or diameter
of the graphs; (b) logarithmically (or polylogarithmically) hyperbolic if their hyper-
bolic δ’s are in the order of logarithm (or polylogarithm) of the graph diameters; (c)
weakly hyperbolic if their hyperbolic δ’s grow asymptotically slower than the graph di-
ameters; and (d) not hyperbolic if their hyperbolic δ’s are at the same order as the graph
diameters.

We study two families of random graphs. The first family is Kleinberg’s grid-based
small-world random graphs [16], which build random long-range edges among pairs
of nodes with probability inverse proportional to the γ-th power of the grid distance of
the pairs. Kleinberg shows that when γ equals to the grid dimension d, decentralized
routing can be improved from Θ(n) in grid to O(polylog(n)), where n is the number
of vertices in the graph. Contrary to the improvement in decentralized routing, we show
that when γ = d, with high probability the small-world graph is not polylogarithmically
hyperbolic. We further show that when 0 ≤ γ < d, the random small-world graphs is
not hyperbolic and when γ > 3 and d = 1, the random graphs is not polylogarithmically
hyperbolic. Although there still exists a gap between hyperbolic δ and graph diameter
at the sweetspot of γ = d, our results already indicate that long-range edges that enable
efficient navigation do not significantly improve the hyperbolicity of the graphs.

The second family of graphs is random ringed trees. A ringed tree is a binary tree
with nodes in each level of the tree connected by a ring (Figure 1(d)). Ringed trees can
be viewed as an idealized version of hierarchical structure with local peer connections,
such as the Internet autonomous system (AS) topology. We show that ringed tree is
quasi-isometric to the Poincaré disk, the well known hyperbolic space representation,
and thus it is constantly hyperbolic. We then study how random additions of long-range

280 W. Chen et al.

links on the leaves of a ringed tree affect the hyperbolicity of random ringed trees. Note
that due to the tree base structure, random ringed trees allow efficient routing within
O(log n) steps using tree branches. Our results show that if the random long-range
edges between leaves are added according to a probability function that decreases ex-
ponentially fast with the ring distance between leaves, then the resulting random graph
is logarithmically hyperbolic, but if the probability function decreases only as a power-
law with ring distance, or based on another tree distance measure similar to [17], the
resulting random graph is not hyperbolic. Furthermore, if we use binary trees instead of
ringed trees as base graphs, none of the above versions is hyperbolic. Taken together,
our results indicate that δ-hyperbolicity of graphs is quite sensitive to both base graph
structures and probabilities of long-range connections.

To summarize, we provide the first significant analytical results on the hyperbolicity
properties of important families of random graphs. Our results demonstrate that effi-
cient routing performance does not necessarily mean good graph hyperbolicity (such as
logarithmic hyperbolicity).

Related Work. There has been a lot of work on decentralized search subsequent to
Kleinberg’s original work [16,17], much of which has been summarized in the re-
view [18]. In a parallel with this, there has been empirical and theoretical work on
hyperbolicity of real-world complex networks as well as simple random graph mod-
els. On the empirical side, [2] showed that measurements of the Internet are negatively
curved; [13,24,23] provided empirical evidence that randomized scale-free and Internet
graphs are more hyperbolic than other types of random graph models; [27] measured the
average δ and related curvature to congestion; and [10] measured treewidth and hyper-
bolicity properties of the Internet. However, on theoretical analysis of δ-hyperbolicity,
the only prior work we are aware of is [28], which proves that with non-zero probabil-
ity extremely sparse Erdős-Rényi random graphs are not δ-hyperbolic for any positive
constant δ.

There are a number of works that connect graph hyperbolicity with efficient distance
labeling and routing schemes [6,11,9,7,21,8]. Understanding the relationship between
graph hyperbolicity and the ability of efficient routing is one motivation of our research.
Our analytical results show, however, that the ability of efficient routing does not nec-
essarily mean low hyperbolicity δ.

Ideas related to hyperbolicity have been applied in numerous other networks appli-
cations, e.g., to problems such as distance estimation, sensor networks, and traffic flow
and congestion minimization [30,14,15,27,3], as well as large-scale data visualization
[22,26,31]. The latter applications typically take important advantage of the idea that
data are often hierarchical or tree-like and that there is “more room” in hyperbolic
spaces of a given dimension than corresponding Euclidean spaces.

The full version of this conference paper, including detailed proofs and additional
results, is available as the technical report [5].

2 Preliminaries on Hyperbolic Spaces and Graphs

We provide basic concepts concerning hyperbolic spaces and graphs used in this paper.
For more comprehensive coverage on hyperbolic spaces, see, e.g., [4].

On the Hyperbolicity of Small-World and Tree-Like Random Graphs 281

(a) Poincaré disk (b) Tessellation of
Poincaré disk

(c) Binary tree (d) Ringed tree

Fig. 1. Poincaré disk, its tessellation, a binary tree, and a ringed tree

2.1 Gromov’s δ-Hyperbolicity

In this paper, we use the following four-point condition originally introduced by Gro-
mov [12] as the hyperbolicity measure of a metric space.

Definition 1 (Gromov’s four-point condition). In a metric space (X, d), given
u, v, w, x with d(u, v) + d(w, x) ≥ d(u, x) + d(w, v) ≥ d(u,w) + d(v, x) in X ,
we denote δ(u, v, w, x) = (d(u, v) + d(w, x) − d(u, x) − d(w, v))/2. (X, d) is called
δ-hyperbolic for some non-negative real number δ if for any four points u, v, w, x ∈ X ,
δ(u, v, w, x) ≤ δ. Let δ(X, d) be the smallest possible value of such δ, which can also
be defined as δ(X, d) = supu,v,w,x∈X δ(u, v, w, x).

An undirected, unweighted and connected graph G = (V,E) can be viewed as a metric
space (V, dG) with the standard graph distance metric dG. We then apply the four-point
condition defined above to define the δ-hyperbolicity of graph G, denoted as δ(G) =
δ(V, dG). Trees are 0-hyperbolic, and it is often helpful to view graphs with a low
hyperbolic δ as tree-like when viewed at large-size scales.

Let D(G) denote the diameter of the graph G. By the triangle inequality, we have
δ(G) ≤ D(G)/2. We will use the asymptotic difference between the hyperbolicity
δ(G) and the diameter D(G) to characterize the hyperbolicity of the graph G.

Definition 2 (Hyperbolicity of a graph). For a family of graphs G with diameter
D(G), G ∈ G going to infinity, we say that graph family G is constantly (resp.
logarithmically, polylogarithmically, or weakly) hyperbolic, if δ(G) = O(1) (resp.
O(logD(G)), O((logD(G))c) for some constant c > 0, or o(D(G))) when D(G)
goes to infinity; and G is not hyperbolic if δ(G) = Θ(D(G)), where G ∈ G.

The above definition provides more fine-grained characterization of hyperbolicity of
graph families than one typically sees in the literature, which only discusses whether or
not a graph family is constantly hyperbolic.

2.2 Poincaré Disk

The Poincaré disk is a well-studied hyperbolic metric space. In this paper, we use the
Poincaré disk to mainly convey some intuition about hyperbolicity and tree-like behav-
iors, and thus we defer its technical definition to [5]. Visually, the Poincaré disk is an

282 W. Chen et al.

open disk with unit radius, and a (hyperbolic) line in the Poincaré disk is the segment
of a circle in the disk that is perpendicular to the circular boundary of the disk, and thus
all lines bend inward towards the origin (Figure 1(a)). For two points maintaining the
same Euclidean distance on the disk, their hyperbolic distance increases exponentially
fast when they move from the center to the boundary of the disk, meaning that there are
“more room” towards the boundary. This can be seen from a tessellation of the Poincaré
disk shown in Figure 1(b).

3 δ-Hyperbolicity of Grid-Based Small-World Random Graphs

In this section, we consider the δ-hyperbolicity of random graphs constructed according
to the small-world graph model of Kleinberg [16], in which long-range edges are added
on top of a base grid, which is a discretization of a low-dimensional Euclidean space.
The model starts with n vertices forming a d-dimensional base grid (with wrap-around).
More precisely, given positive integers n and d such that n1/d is also an integer, let
B = (V,E) be the base grid, with V = {(x1, x2, . . . , xd) | xi ∈ {0, 1, . . . , n1/d −
1}, i ∈ [d]}, E = {((x1, x2, . . . , xd), (y1, y2, . . . , yd)) | ∃j ∈ [d], yj = xj + 1
mod n1/d or yj = xj − 1 mod n1/d, ∀i �= j, yi = xi}. Let dB denote the graph
distance metric on the base grid B. We then build a random graph G on top of B,
such that G contains all vertices and all edges (referred to as grid edges) of B, and
for each node u ∈ V , it has one long-range edge (undirected) connected to some node
v ∈ V , with probability proportional to 1/dB(u, v)

γ , where γ ≥ 0 is a parameter.
We refer to the probability space of these random graphs as KSW (n, d, γ); and we
let δ(KSW (n, d, γ)) denote the random variable of the hyperbolic δ of a randomly
picked graph G in KSW (n, d, γ). Recall that Kleinberg showed that the small-world
graphs with γ = d allow efficient decentralized routing (with O(log2 n) routing hops
in expectation), whereas graphs with γ �= d do not allow any efficient decentralized
routing (with Ω(nc) routing hops for some constant c) [16]; and note that the base grid
B has large hyperbolic δ, i.e., δ(B) = Θ(n1/d) = Θ(D(B)). Intuitively, the structural
reason for the efficient routing performance at γ = d is that long-range edges are added
“hierarchically” such that each node’s long-range edges are nearly uniformly distributed
over all “distance scales”.

Results and Their Implications. The following theorem summarizes our main techni-
cal results on the hyperbolicity of small-world graphs.

Theorem 1. With probability 1− o(1) (when n goes to infinity), we have

1. δ(KSW (n, d, γ)) = Ω((log n)
1

1.5(d+1)+ε) when d ≥ 1 and γ = d, for any ε > 0
independent of n;

2. δ(KSW (n, d, γ)) = Ω(log n) when d ≥ 1 and 0 ≤ γ < d; and

3. δ(KSW (n, d, γ)) = Ω(n
γ−2
γ−1−ε) when d = 1 and γ > 3, for any ε > 0 indepen-

dent of n.

This theorem, together with the results of [16] on the navigability of small-world graphs,
have several implications. The first result shows that when γ = d, with high proba-

bility the hyperbolic δ of the small-world graphs is at least c(logn)
1

1.5(d+1) for some

On the Hyperbolicity of Small-World and Tree-Like Random Graphs 283

constant c. We know that the diameter is Θ(log n) in expectation when γ = d [25].
Thus the small-world graphs at the sweetspot for efficient routing is not polylogarith-
mically hyperbolic, i.e., δ is not O(logc logn)-hyperbolic for any constant c > 0. How-
ever, there is still a gap between our lower bound and the upper bound provided by
the diameter, and thus it is still open whether small-world graphs are weakly hyper-
bolic or not hyperbolic. Overall, though, our result indicates no drastic improvement
on the hyperbolicity (relative to the improvement of the diameter) for small-world
graphs at the sweetspot (where a dramatic improvement was obtained for the efficiency
of decentralized routing).

The second result shows that when γ < d, then δ = Ω(log n). The diameter of the
graph in this case is Θ(log n) [25]; thus, we see that when γ < d the hyperbolic δ is
asymptotically the same as the diameter, i.e., although δ decreases as edges are added,
small-world graphs in this range are not hyperbolic. The third result concerns the case
γ > d, in which case the random graph degenerates towards the base grid (in the sense
that most of the long-range edges are very local), which itself is not hyperbolic. For the
general γ, we show that for the case of d = 1 the hyperbolic δ is lower bounded by
a (low-degree) polynomial of n; this also implies that the graphs in this range are not
polylogarithmically hyperbolic. Our polynomial exponent γ−2

γ−1−ε matches the diameter
lower bound proven in [29].

Outline of the Proof of Theorem 1. In our analysis, we use two different techniques,
one for the first two results in Theorem 1, and the other for the last result. For the first
two results, we further divide the analysis into two cases d ≥ 2 and d = 1.

When d ≥ 2 and 0 ≤ γ ≤ d, we first pick an arbitrary square grid with �0 nodes
on each side. We know that when only grid distance is considered, the four corners
of the square grid have the Gromov δ value equal to �0. We will show that, as long
as �0 is not very large (to be exact, O((log n)

1
1.5(d+1)+ε) when γ = d and O(log n)

when 0 ≤ γ < d), the probability that any pair of vertices on this square grid have
a shortest path shorter than their grid distance after adding long-range edges is close
to zero. Therefore, with high probability, the four corners selected have Gromov δ as
desired in the lower bound results.

To prove this result, we study the probability that any pair of vertices u and v at grid
distance � are connected with a path that contains at least one long-range edge and has
length at most �. We upper bound such �’s so that this probability is close to zero. To do
so, we first classify such paths into a number of categories, based on the pattern of paths
connecting u and v: how it alternates between grid edges and long-range edges, and the
direction on each dimension of the grid edges and long-range edges (i.e., whether it
is the same direction as from u to v in this dimension, or the opposite direction, or
no move in this dimension). We then bound the probability of existing a path in each
category and finally bound all such paths in aggregate. The most difficult part of the
analysis is the bounding of the probability of existing a path in each category.

For the case of d = 1 and 0 ≤ γ ≤ d, the general idea is similar to the above. The
difference is that we do not have a base square to start with. Instead, we find a base ring
of length Θ(�0) using one long-range edges e0, where �0 is fixed to be the same as the
case of d ≥ 2. We show that with high probability, (a) such an edge e0 exists, and (b)

284 W. Chen et al.

the distance of any two vertices on the ring is simply their ring distance. This is enough
to show the lower bound on the hyperbolic δ.

For the case of γ > 3 and d = 1, a different technique is used to prove the lower
bound on hyperbolic δ. We first show that, in this case, with high probability all long-
range edges only connect two vertices with ring distance at most some �0 = o(

√
n).

Next, on the one dimensional ring, we first find two vertices A and B at the two opposite
ends on the ring. Then we argue that there must be a path P+

AB that only goes through
the clockwise side of ring from A to B, while another path P−AB that only goes through
the counter-clockwise side of the ring from A to B, and importantly, the shorter length
of these two paths are at most O(�0) longer than the distance between A and B. We
then pick the middle point C and D of P+

AB and P−AB , respectively, and argue that the
δ value of the four points A, B, C, and D give the desired lower bound.

Extensions to Other Models. We further study several extensions of the KSW model,
including base grid without wrap-around, constant number of long-range links per node,
and independent linking probabilities of each edge. We show that Theorem 1 still holds
in all these models (except the case of d = 1 and γ > 3 for the grid with no wrap-around
extension) and their combinations.

4 δ-Hyperbolicity of Ringed Trees
In this section, we consider the δ-hyperbolicity of graphs constructed according to a
variant of the small-world graph model, in which long-range edges are added on top of
a base binary tree or tree-like low-δ graph. In particular, we consider as based graphs
both binary trees (Figure 1(c)) and ringed trees (Figure 1(d)), which contain concentric
rings connecting all nodes in the same level of the binary tree, and adding long range
links on these base graphs. The ringed tree is formally defined as follows.

Definition 3 (Ringed tree). A ringed tree of level k, denoted RT (k), is a fully binary
tree with k levels (counting the root as a level), in which all vertices at the same level
are connected by a ring. More precisely, we can use a binary string to represent each
vertex in the tree, such that the root (at level 0) is represented by an empty string, and
the left child and the right child of a vertex with string σ are represented as σ0 and σ1,
respectively. Then, at each level i = 1, 2, . . . , k − 1, we connect two vertices u and v
represented by binary strings σu and σv if (σu + 1) mod 2i = σv , where the addition
treats the binary strings as the integers they represent. As a convention, we say that a
level is higher if it has a smaller level number and thus is closer to the root.

Note that the diameter of the ringed tree RT (k) is Θ(log n), where n = 2k − 1 is the
number of vertices in RT (k), and we will use RT (∞) to denote the infinite ringed
tree when k in RT (k) goes to infinity. Thus, a ringed tree may be thought of as a
soft version of a binary tree. To some extent, a ringed tree can also be viewed as an
idealized picture reflecting the hierarchical structure in real networks coupled with local
neighborhood connections, such as Internet autonomous system (AS) networks, which
has both a hierarchical structure of different level of AS’es, and peer connections based
on geographical proximity.

Results and Their Implications. A visual comparison of the ringed tree of Figure 1(d)
with the tessellation of Poincaré disk (Figure 1(b)) suggests that the ringed tree can been

On the Hyperbolicity of Small-World and Tree-Like Random Graphs 285

seen as an approximate tessellation or coarsening of the Poincaré disk, just as a two-
dimensional grid can been seen as a coarsening of a two dimensional Euclidean space.
Quasi-isometry is a technical concept making it precise what coarsening means. We
show that the infinite ringed tree RT (∞) is indeed quasi-isometric to the Poincaré disk.
This also implies that ringed tree RT (k) for any k is constantly hyperbolic (technical
definition of quasi-isometry and the above results are included in [5]).

We now consider random ringed trees constructed by adding random edges between
two vertices at the outermost level, i.e., level k− 1, such that the probability connecting
two vertices u and v is determined by a function g(u, v). Let Vk−1 denote the set of
vertices at level k − 1. Given a real-valued positive function g(u, v), let RRT (k, g)
denote a random ringed tree constructed as follows. We start with the ringed tree RT (k),
and then for each vertex v ∈ Vk−1, we add one long-range edge to a vertex u with
probability proportional to g(u, v), that is, with probability g(u, v)ρ−1v where ρv =∑

u∈Vk−1
g(u, v).

We study three families of functions g, each of which has the characteristic that
vertices closer to one another (by some measure) are more likely to be connected by a
long-range edge. The first two families use the ring distance dR(u, v) as the closeness
measure: the first family uses an exponential decay function g1(u, v) = e−αdR(u,v),
and the second family uses a power-law decay function g2(u, v) = dR(u, v)

−α, where
α > 0. The third family uses the height of the lowest common ancestor of u and v,
denoted as h(u, v), as the closeness measure, and the function is g3 = 2−αh(u,v). Note
that this last probability function matches the function used in a tree-based small-world
model of Kleinberg [17]. The following theorem summarizes the hyperbolicity behavior
of these three families of random ringed trees.

Theorem 2. Considering the follow families of functions (with u and v as the variables
of the function) for random ringed trees RRT (k, g), for any positive integer k and
positive real number α, with probability 1− o(1) (when n tends to infinity), we have

1. δ(RRT (k, e−αdR(u,v))) = O(log logn);
2. δ(RRT (k, dR(u, v)

−α)) = Θ(log n);
3. δ(RRT (k, 2−αh(u,v))) = Θ(log n);

where n = 2k − 1 is the number of vertices in the ringed tree RT (k).

Theorem 2 states that, when the random long-range edges are selected using exponen-
tial decay function based on the ring distance measure, the resulting graph is logarithmi-
cally hyperbolic, i.e., the constant hyperbolicity of the original base graph is degraded
only slightly; but when a power-law decay function based on the ring distance measure
or an exponential decay function based on common ancestor measure is used, then hy-
perbolicity is destroyed and the resulting graph is not hyperbolic. Intuitively, when it is
more likely for a long-range edge to connect two far-away vertices, such an edge cre-
ates a shortcut for many internal tree nodes so that many shortest paths will go through
this shortcut instead of traversing through tree nodes. In Internet routing paths going
through such shortcuts are referred to as valley routes.

As a comparison, we also study the hyperbolicity of random binary trees RBT (k, g),
which are the same as random ringed trees RRT (k, g) except that we remove all
ring edges.

286 W. Chen et al.

Theorem 3. Considering the follow families of functions (with u and v as the variables
of the function) for random binary trees RBT (k, g), for any positive integer k and
positive real number α, with probability 1− o(1) (when n tends to infinity), we have

δ(RBT (k, e−αdR(u,v))) = δ(RBT (k, dR(u, v)
−α)) = δ(RBT (k,2−αh(u,v))) = Θ(log n),

where n = 2k − 1 is the number of vertices in the binary tree RBT (k, g).

Thus, in this case, the original hyperbolicity of the base graph (δ = 0 for the binary tree)
is destroyed. Comparing with Theorem 2, our results above suggest that the “softening”
of the hyperbolicity provided by the rings is essential in maintaining good hyperbol-
icity: with rings, random ringed trees with exponential decay function (depending on
the ringed distance) are logarithmically hyperbolic, but without the rings the resulting
graphs are not hyperbolic.

Extensions of the Random Ringed Tree Model. We further show that all our results in
this section apply to extended models that allow a constant number of long-range edges
per node, or independent selection of long-range edges for each node, or both.

5 Discussions and Open Problems

Perhaps the most obvious extension of our results is to close the gap in the bounds on the
hyperbolicity in the low-dimensional small-world model when γ is at the “sweetspot”,
as well as extending the results for large γ to dimensions d ≥ 2. Also of interest is char-
acterizing in more detail the hyperbolicity properties of other random graph models, in
particular those that have substantial heavy-tailed properties. Finally, exact computation
of δ by its definition takes O(n4) time, which is not scalable to large graphs, and thus
the design of more efficient exact or approximation algorithms would be of interest.

From a broader perspective, however, our results suggest that δ is a measure of tree-
like-ness that can be quite sensitive to noise in graphs, and in particular to randomness
as it is implemented in common network generative models. Moreover, our results for
the δ hyperbolicity of rewired trees versus rewired low-δ tree-like metrics suggest that,
while quite appropriate for continuous negatively-curved manifolds, the usual definition
of δ may be somewhat less useful for discrete graphs. Thus, it would be of interest to
address questions such as: does there exist a measure other than Gromov’s δ that is
more appropriate for graph-based data or more robust to noise/randomness as it is used
in popular network generation models; is it possible to incorporate in a meaningful way
nontrivial randomness in other low δ-hyperbolicity graph families; and can we construct
non-trivial random graph families that contain as much randomness as possible while
having low δ-hyperbolicity comparing to graph diameter?

References

1. Abraham, I., Balakrishnan, M., Kuhn, F., Malkhi, D., Ramasubramanian, V., Talwar, K.:
Reconstructing approximate tree metrics. In: PODC (2007)

2. Baryshnikov, Y.: On the curvature of the Internet. In: Workshop on Stochastic Geometry and
Teletraffic, Eindhoven, The Netherlands (April 2002)

3. Baryshnikov, Y., Tucci, G.H.: Asymptotic traffic flow in an hyperbolic network I: Definition
and properties of the core. Technical Report Preprint: arXiv:1010.3304 (2010)

On the Hyperbolicity of Small-World and Tree-Like Random Graphs 287

4. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Springer (1999)
5. Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world and tree-

like random graphs. Technical Report Preprint: arXiv:1201.1717v2 (2012)
6. Chepoi, V., Dragan, F.: A note on distance approximating trees in graphs. European Journal

of Combinatorics 21(6), 761–766 (2000)
7. Chepoi, V., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers, and approx-

imating trees of δ-hyperbolic geodesic spaces and graphs. In: SoCG (2008)
8. Chepoi, V., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y., Xiang, Y.: Additive spanners and

distance and routing labeling schemes for hyperbolic graphs. Algorithmica 62(3-4), 713–732
(2012)

9. Chepoi, V., Estellon, B.: Packing and Covering δ-Hyperbolic Spaces by Balls. In: Charikar,
M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) APPROX and RANDOM 2007. LNCS,
vol. 4627, pp. 59–73. Springer, Heidelberg (2007)

10. de Montgolfier, F., Soto, M., Viennot, L.: Treewidth and hyperbolicity of the internet. In:
IEEE Networks Computing and Applications 2011. IEEE (2011)

11. Gavoille, C., Ly, O.: Distance Labeling in Hyperbolic Graphs. In: Deng, X., Du, D.-Z. (eds.)
ISAAC 2005. LNCS, vol. 3827, pp. 1071–1079. Springer, Heidelberg (2005)

12. Gromov, M.: Hyperbolic groups. Essays in Group Theory 8, 75–263 (1987)
13. Jonckheere, E., Lohsoonthorn, P.: Hyperbolic geometry approach to multipath routing. In:

MED (2002)
14. Jonckheere, E., Lou, M., Bonahon, F., Baryshnikov, Y.: Euclidean versus hyperbolic conges-

tion in idealized versus experimental networks. Technical Report Preprint: arXiv:0911.2538
(2009)

15. Jonckheere, E.A., Lou, M., Hespanha, J., Barooah, P.: Effective resistance of Gromov-
hyperbolic graphs: Application to asymptotic sensor network problems. In: CDC (2007)

16. Kleinberg, J.: The small-world phenomenon: an algorithm perspective. In: STOC (2000)
17. Kleinberg, J.: Small-world phenomena and the dynamics of information. In: NIPS (2002)
18. Kleinberg, J.: Complex networks and decentralized search algorithms. In: ICM (2006)
19. Kleinberg, R.: Geographic routing using hyperbolic space. In: Infocom (2007)
20. Krioukov, D., Claffy, K.C., Fall, K., Brady, A.: On compact routing for the Internet. Com-

puter Communication Review 37(3), 41–52 (2007)
21. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic geometry

of complex networks. Physical Review E 82, 036106 (2010)
22. Lamping, J., Rao, R.: Laying out and visualizing large trees using a hyperbolic space. In:

UIST (1994)
23. Lohsoonthorn, P.: Hyperbolic Geometry of Networks. PhD thesis, University of Southern

California (2003)
24. Lou, M.: Traffic pattern in negatively curved network. PhD thesis, University of Southern

California (2008)
25. Martel, C.U., Nguyen, V.: Analyzing Kleinberg’s (and other) small-world models. In: PODC

(2004)
26. Munzner, T., Burchard, P.: Visualizing the structure of the World Wide Web in 3D hyperbolic

space. In: Web3D-VRML (1995)
27. Narayan, O., Saniee, I.: The large scale curvature of networks. Technical Report Preprint:

arXiv:0907.1478 (2009)

288 W. Chen et al.

28. Narayan, O., Saniee, I., Tucci, G.H.: Lack of spectral gap and hyperbolicity in asymptotic
Erdős-Rényi random graphs. Technical Report Preprint: arXiv:1009.5700 (2010)

29. Nguyen, V., Martel, C.U.: Analyzing and characterizing small-world graphs. In: SODA
(2005)

30. Shavitt, Y., Tankel, T.: Hyperbolic embedding of Internet graph for distance estimation and
overlay construction. IEEE/ACM Transactions on Networking 16(1), 25–36 (2008)

31. Walter, J.A., Ritter, H.: On interactive visualization of high-dimensional data using the hy-
perbolic plane. In: KDD (2002)

On the Neighbourhood Helly of Some Graph
Classes and Applications to the Enumeration

of Minimal Dominating Sets

Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary,
and Lhouari Nourine

Clermont-Université, Université Blaise Pascal, LIMOS, CNRS, France
{mamadou.kante,limouzy,mary,nourine}@isima.fr

Abstract. We prove that line graphs and path graphs have bounded
neighbourhood Helly. As a consequence, we obtain output-polynomial
time algorithms for enumerating the set of minimal dominating sets of
line graphs and path graphs. Therefore, there exists an output-polynomial
time algorithm that enumerates the set of minimal edge-dominating sets
of any graph.

1 Introduction

A hypergraph H is a pair (V (H), E(H)) where E(H), its set of hyperedges, is
a family of subsets of V (H), its set of vertices. A hypergraph is called Sperner
if there is no hyperedge that is contained in another hyperedge. In [1] Berge
defined the notion of k-conformality of hypergraphs. A hypergraph H is called
k-conformal if X ⊆ V (H) is contained in a hyperedge of H whenever each
subset of X of size at most k is contained in a hyperedge. The conformality
of a hypergraph H is defined as the least k such that H is k-conformal. An
interesting property of the conformality notion is that it leads to an output
polynomial time algorithm for the Transversal problem in Sperner hypergraphs
of bounded conformality [14]. A transversal in a hypergraph H is a subset T of
V (H) such that T intersects any hyperedge of H. If we denote by Tr(H) the
set of (inclusionwise) minimal transversals, the Transversal Problem consists in
given a hypergraph H to compute Tr(H). This problem has applications in
graph theory, database theory, data mining, . . . (see, e.g., [5,6,7,8]). It is an open
question whether we can compute Tr(H) in time O((‖H‖+ |Tr(H)|)k) for some
constant k, where ‖H‖ is defined as |V (H)| + |E(H)| (an algorithm achieving
such a time is called an output-polynomial time algorithm). The best known
algorithm for the Transversal problem is the one by Fredman and Khachiyan [9]
which runs in time O(N log(N)) where N = ‖H‖+ |Tr(H)|.

In this paper, we are interested in the conformality of the closed neighbourhood
hypergraphs of graphs. Let us give some preliminary definitions and notations. A
graph is a hypergraph where each hyperedge has size two (and are called edges).
An edge of a graph is written xy (equivalently yx) instead of {x, y}. We refer to [3]
for graph terminologies not defined in this paper. The neighbourhood of a vertex

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 289–298, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

290 M.M. Kanté et al.

x in a graph G, i.e. , {y | xy ∈ E(G)}, is denoted by NG(x) and we let NG[x], the
closed neighbourhood of x, be NG(x)∪{x}. The closed neighbourhood hypergraph
N (G) of a graph G is the hypergraph (V (G), {NG[x] | x ∈ V (G)}). A graph
is called k-conformal if N (G) is k-conformal. The k-conformality of a graph
is also known in the literature under the name of k-neighbourhood Helly [2,4].
Dually chordal graphs, chordal bipartite graphs, ptolemaic graphs are examples
of graphs that have conformality at most 3.

A cycle of length n is denoted by Cn. A claw is a graph with four vertices
isomorphic to the graph ({x1, . . . , x4}, {x1x2, x1x3, x1x4}). A chordal graph is a
graph without an induced cycle of length greater or equal to 4. The line graph
of a graph G, denoted by L(G), is the graph with vertex-set E(G) and edge-set
{ef | e, f ∈ E(G) and e ∩ f �= ∅}.

Let F be a family of subsets of some ground set. A graph G is an intersection
graph of F if there exists a bijection between V (G) and F and such that there
exists an edge between x and y if and only if their corresponding images in F
intersect. A path graph is an intersection graph of paths in a tree. Path graphs
constitute a subclass of chordal graphs [10].

We let Min(N (G)) be the hypergraph obtained fromN (G) by removing those
hyperedges that contain a hyperedge. It is clear that Min(N (G)) is Sperner.
Notice that the conformality of a hypergraph H may be different from that of
Min(H). In this paper, we prove the following.

Theorem 1. Line graphs are 6-conformal, path graphs and (C4, C5, claw)-free
graphs are 3-conformal. Moreover, if we let ML := {Min(N (G)) | G is a line
graph} and MP := {Min(N (G)) | G is a path graph or a (C4, C5, claw)}-free,
then ML and MP have conformality bounded by 6 and 3 respectively.

A subset D of the vertex-set of a graph G is called a dominating set if every
vertex in V (G) \ D is adjacent to a vertex in D. We denote by D(G) the set
of (inclusionwise) minimal dominating sets of a graph G. The computation of
D(G) of every graph G, known as the DOM problem, in output-polynomial time
is a hard task and it was known for a while that D(G) = Tr(N (G)) for every
graph G. Therefore, an output polynomial-time algorithm for the Transversal
problem is also an output-polynomial time algorithm for the DOM problem. The
authors have proved in [13] that the other direction also holds, i.e. , an output-
polynomial time algorithm for DOM problem is also an output-polynomial time
algorithm for the Transversal problem.

Output-polynomial time algorithms for the DOM problem are only known for
few graph classes (see [12,13] for some of them). As a corollary of Theorem 1, we
obtain output-polynomial time algorithms for the DOM problem in line graphs,
path graphs and (C4, C5, claw)-free graphs, and to our knowledge this was not
known.

Theorem 2. 1. For every line graph G, one can compute D(G) in time O(‖G‖5·
|D(G)|6).

2. For every path graph or (C4, C5, claw)-free graph G, one can compute D(G)
in time O(‖G‖2 · |D(G)|3).

Neighbourhood Helly of Some Graph Classes and Applications 291

A subset F of the edge-set of G is called an edge-dominating set if every edge in
E(G) \D is incident to an edge in D. We denote by ED(G)) the set of (inclu-
sionwise) minimal edge-dominating sets of a graph G. It was open whether an
output-polynomial time algorithm for computing ED(G) exists. It is well estab-
lished that D is a dominating set of L(G) if and only if D is an edge-dominating
set of G. As a corollary of Theorem 2 we obtain the following theorem.

Theorem 3. For every graph G, one can compute ED(G) in time O(‖L(G)‖5 ·
|ED(G)|6).

2 Some Remarks on the k-conformality

Definition 1. Let H be a hypergraph and let k be a positive integer. A k-bad-set
in H is a subset S of V (H) with |S| > k and such that:

– for all subsets S′ ⊆ S of size k, there exists e ∈ E(H) such that S′ ⊆ e,
– for all hyperedges e ∈ E(G), S �⊆ e.

A graph G is said to have a k-bad-set if N (G) has one.

Remark that a k-bad-set is also a k′-bad-set for every k′ ≤ k. The proof of the
following is immediate from the definition of k-conformality.

Definition 2. Let k be a positive integer. A hypergraph is k-conformal if and
only if it has no k-bad-set.

A minimal k-bad-set in a hypergraph H is a k-bad-set in H of size k+1. Notice
that, for every vertex x of a minimal k-bad-set S, there exists a hyperedge e
which contains all S, but x.

Proposition 1. Let k be a positive integer. A hypergraph is k-conformal if and
only if it has no minimal k′-bad-set for every k′ ≥ k.

Proof. The first direction is straigtforward since a k′-bad-set with k′ ≥ k is also
a k-bad-set. Now assume that a hypergraph H has no minimal k′-bad-set with
k′ ≥ k but has a non minimal k-bad-set S. Assume that S is minimal with
respect to inclusion. Then, for every x ∈ S, S \ {x} is not a k-bad-set and since
S is a k-bad-set, there exists e ∈ E(H) such that S \ {x} ⊆ e. Therefore, S is
a minimal k′-bad-set with k′ := |S| − 1 ≥ k. This is a contradiction with the
assumption that H has no k′-bad-set with k′ ≥ k. ��

3 Line graphs

For a graph G we denote by G(F), for F ⊆ E(G), the graph with vertex-set
{x ∈ V (G) | x is incident with an edge in F} and F as edge-set. A clique is a
graph with pairwise adjacent vertices (it is denoted by Kn if it has n vertices).
A tree is an acyclic (without induced cycle) connected graph.

292 M.M. Kanté et al.

A vertex cover in a graph G is a subset S of V (G) such that every edge of G
intersects S and a matching is a subset M of E(G) such that for every e, f ∈M
we have e∩f = ∅. We denote by τ(G) and ν(G), respectively, the maximum size
of a vertex cover and of a matching. If e is an edge of a graph G, we define the
closed neighbourhood of e as NL(G)[e].

Lemma 1. Let k ≥ 3 be a positive integer. Let G be a graph and let S be a
subset of E(G). If S is a k-bad-set of L(G), then ν(G(S)) = 2.

Proof. Let S ⊆ E(G) be a k-bad-set of L(G) and assume that ν(G(S)) ≥ 3. Let
M be a maximum matching of G(S). Let S′ be a subset of M with |S′| = 3
(such a subset of M exists since ν(G(S)) ≥ 3). It is easy to see that no edge
of E(G) can be incident to all edges in S′ and then any subset of S of size k
and containing S′ is not included in the closed neighbourhood of an edge of G,
contradicting the fact that S is a k-bad-set of L(G). Therefore, ν(G(S)) ≤ 2.
Assume now that ν(G(S)) = 1. This implies that there exists an edge e ∈ S
incident to all edges in S, which contradicts again the fact that S is a k-bad-set.
We can thus conclude that ν(G(S)) = 2. ��

Lemma 2. Let k ≥ 3 be a positive integer. Let G be a bipartite graph and let S
be a subset of E(G). If S is a k-bad-set of L(G), then τ(G(S)) = 2.

Proof. By Lemma 1, we have ν(G(S)) = 2. By König’s Theorem, we have that
τ(G(S)) = ν(G(S)) = 2. ��

Proposition 2. Line graphs are 6-conformal.

Proof. Let G be a graph and assume that L(G) has a 6-bad-set S ⊆ E(G). By
Lemma 1, we have ν(G(S))) = 2. Let {x1x2, x3x4} be a maximum matching
of G(S). By definition of a maximum matching, we know that every edge of
S intersects {x1, x2, x3, x4}. For i ∈ {1, . . . , 4}, we let Pi be the set {e ∈ S |
e∩ {x1, . . . , x4} = {xi}}. One of P1 or P2 must be empty. Otherwise let e1 ∈ P1

and e2 ∈ P2, then {e1, e2, x3x4, x1x2} would not be in a closed neighbourhood,
contradicting the fact that S is a 6-bad-set. Similarly, one of P3 or P4 is empty.
Therefore, at most two sets among P1, . . . , P4 are non empty. We identify two
cases.

Case 1. Two sets among P1, . . . , P4 are non empty. Assume without loss of gen-
erality that they are P1 and P3. Let e1 ∈ P1 and e2 ∈ P3. Let S′ be a subset of
S of size 6 that contains {e, e′, x1x2, x3x4}. Since S is a 6-bad-set, there exists
an edge whose closed neighbourhood contains S′, and the only possible one is
x1x3. Moreover, there must exist an edge e that is neither incident to x1 nor
to x3, otherwise S would not be a 6-bad-set (the closed neighbourhood of x1x3

would contain S). Let again S′ be a subset of S of size 6 and that contains
{x1x2, x3x4, e1, e2, e}. But, the subset {x1x2, x3x4, e1, e2, e} of S cannot be con-
tained in the closed neighbourhood of any edge in E(G). So, we can conclude
that at most one set among P1, . . . , P4 is non empty.

Neighbourhood Helly of Some Graph Classes and Applications 293

Case 2. One set among P1, . . . , P4 is non empty, say P1 is this set. Let e ∈ P1.
Then, the set {x1x2, x3x4, e} must be included in the closed neighbourhood of
some edge. The only two possible such edges are x1x3 and x1x4. Assume without
loss of generality that x1x3 ∈ E(G). Since S is a 6-bad-set of L(G) there exists an
edge e in S which is not in the closed neighbourhood of x1x3. Since P2, P3 and P4

are empty, that edge must be x2x4. Then, {e, x1x2, x3x4, x2x4} must be included
in a closed neighbourhood of an edge, and that edge is clearly x1x4. Again, since
S is a 6-bad-set, there must exist an edge not in the neighboorhood of x1x4,
and the only possible choice is x2x3. Therefore, {e, x1x2, x3x4, x2x4, x2x3} is in-
cluded in S and since it has size 5, it is included in a closed neighbourhood of
an edge. But no such edge exists. So, we can conclude that P1 is also empty.

From the two cases above, we have that Pi is empty for all i ∈ {1, . . . , 4}, and
then V (G(S)) = {x1, x2, x3, x4}. Since S is a 6-bad-set, its size must be at least
7, which contradicts the fact that |V (G(S))| = 4 since the number of edges in a
graph with four vertices is at most 6. This completes the proof. ��

Since the line graph of K4 is 6-conformal and not 5-conformal, the bound from
Proposition 2 is tight. Therefore, line graphs of graphs that contain K4 as induced
subgraphs have conformality 6. By adapting the proof of Proposition 2, we can
prove the following.

Proposition 3. Line graphs of K4-free graphs are 5-conformal.

Proof. If we define the sets Pi, i ∈ {1, . . . , 4} as in the proof of Proposition 2
and follow the same proof with S being a 5-bad-set and not a 6-bad-set, the only
way for a line graph to have a 5-bad-set S is when all Pi’s are empty. But, in this
case |V (G(S))| = 4 and since a 5-bad-set must have at least 6 edges, we conclude
that the only possible 5-bad-set for a line graph L(G) is that G contains K4. ��

Even if the bound 6 is optimal in the class of line graphs, it is not at all in the
class of line graphs of bipartite graphs.

Proposition 4. Line graphs of bipartite graphs are 4-conformal.

Proof. Let G be a bipartite graph and let S be a 4-bad-set of L(G). By definition
of a 4-bad-set, |S| ≥ 5. From Lemma 2, τ(G(S)) = 2. Let {x, y} be a maximum
vertex cover of G(S). Then xy /∈ E(G), otherwise the edge xy will be incident to
all edges of S, contradicting the fact that S is a 4-bad-set of L(G). We identify
three cases.

Case 1. x has only one neighbour x′ in G(S). Let S′ be a subset of S of size 4
that contains the edge xx′. Since S is a 4-bad-set of L(G), there must exist an
edge e of E(G) whose closed neighbourhood contains S′. Since xy is not an edge,
e must be yx′. But, in this case the closed neighbourhood of yx′ will contain S,
contradicting the fact that S is a 4-bad-set of L(G).

294 M.M. Kanté et al.

Case 2. y has only one neighbour y′ in G(S). This case is similar to Case 1
(replace x by y and x′ by y′).

Case 3. Each of x and y has at least two neighbours in G(S). Let x1 and x2 (resp.
y1 and y2) be two neighbours of x (resp. y) in G(S). Let S′ := {xx1, xx2, yy1, yy2}
be a subset of S. There must exist an edge e in E(G) whose closed neighbourhood
contains S′. One can easily check that the only possible choice for e is xy which
is a contradiction with the fact that xy �∈ E(G). Since there is no edge whose
closed neighbourhood contains S′, we have a contradiction with the fact that S
is a 4-bad-set of L(G). This concludes the proof. ��

The bound in Proposition 4 is tight because the line graph of the cycle C4 is
4-conformal but not 3-conformal. One easily checks that if a graph contains C4

as an induced cycle, then its line graph is 4-conformal, but not 3-conformal.

4 Path Graphs

We now prove that path graphs are 3-conformal. A clique tree of a graph G is a
tree T whose vertices are in bijection with the (inclusionwise) maximal cliques of
G and such that those maximal cliques that contain a vertex x induce a subtree
of T , which we will denote by T x. Observe that G is the intersection graph of
these subtrees. It is well-known that a graph is chordal if and only if it has a
clique-tree [10] and path graphs are exactly those chordal graphs where for every
vertex x, T x is a path. (It is worth noticing that path graphs can be recognised
in polynomial time [11].)

A rooted tree is a tree with a distinguished vertex called its root. In a rooted
tree T we define the partial order +T where x +T y if and only if the path from
the root to x goes through y. For v a vertex of a rooted tree T , we let Tv be the
subtree of T rooted at v and induced by the vertices in {x ∈ V (T) | x +T v}.

Proposition 5. Path graphs are 3-conformal.

Proof. Let G be a path graph and let T be its clique-tree. Assume that G has
a minimal (k − 1)-bad-set S := {x1, x2, ..., xk} with k > 3. Since S is a minimal
(k − 1)-bad-set, there exists a vertex x such that {x1, x2, ..., xk−1} ⊆ NG[x].
Let T x = (t1, t2, . . . , t�). Since, {x1, x2, ..., xk−1} ⊆ NG[x], each subtree T xi, for
i ∈ {1, . . . , k−1}, must intersect T x and Pxi := T xi∩T x forms a sub-path of T x.
Let si := min{j | tj ∈ Pxi} and ei := max{j | tj ∈ Pxi} for i ∈ {1, . . . , k − 1}.
Assume without loss of generality that the vertices x1, . . . , xk−1 are ordered such
that i < j =⇒ si ≤ sj . Since S is a (k − 1)-bad-set, we know that T xk does not
intersect T x. We let tr be the unique vertex of T x such that every path from tr
to any vertex of T xk intersects T x only on tr. We root T at tr.We identify two
cases(see Fig. 1).

Case 1. For all j ∈ {1, . . . , k − 1}, T xj does not contain tr. Assume first that
for all i ∈ {1, . . . , k− 1}, ei < r, and let ej := min{ei | i ∈ {1, . . . , k− 1}}. Since

Neighbourhood Helly of Some Graph Classes and Applications 295

Txk

tr

t�t1

s1

s2

e1

e2

e4

e3

s4

s3

Tx

Px3

Px2

Px4
Px1

Txk

v

t�t1

Tx

tr

s1

s2

e3

m(xj′)

ej′

m(x2)

Fig. 1. The first case of the proof of Proposition 5, is illustrated on the left part. Case
two is described on the opposite side.

S is a (k− 1)-bad-set, there exists a vertex z such that {xj , xk} ⊆ NG[z]. But in
this case T z would intersect T xj for every xj ∈ S which leads to a contradiction.
Similarly, if for all j ∈ {1, . . . , k− 1}, we have sj > r, any vertex who is adjacent
to xk−1 and xk would also be adjacent to x1, . . . , xk−2, yielding a contradiction.
We can therefore assume that S \ {xk} = S1 ∪S2, with S1, S2 �= ∅ and such that
ej < r for every xj ∈ S1 and sj > r for every xj ∈ S2. Let us choose xi ∈ S1

and xj ∈ S2. Then since S is a (k − 1)-bad-set, there must exist a vertex z such
that {xi, xj , xk} ⊆ NG[z], but no path in T can intersect at the same time the
three paths T xi, T xj and T xk , which yields again a contradiction.

Case 2. There is at least one vertex xj ∈ S \ {xk} such that tr ∈ T xj (ie. sj ≤ r
and ej ≥ r). Note that in this case, for every vertex xi ∈ S \ {xk, xj}, we have
tr ∈ T xi otherwise, every vertex whose neighborhood contains xk and xi would
be adjacent to xj , which is in contradiction with the fact that S is a minimal
(k − 1)-bad-set. Hence, for every i ∈ {1, . . . , k − 1}, si ≤ r ≤ ei. Let v be the
vertex of Ttr which is the greatest vertex of T xk (greatest with respect to +T) and
let P be the path between tr and v. Note that for all i ∈ {1, . . . , k−1}, T xi must
intersect P on at least one different vertex from tr (which implies that si = tr
or ei = tr). Otherwise, for any vertex z such that {xk, xi} ∈ NG[z], T z would
contain tr and hence S would be included in NG[z]. For every i ∈ {1, . . . , k− 1},
let m(xi) be max

�T

{x ∈ T | x ∈ P∩T xi} (m(xi) is the greatest vertex, with respect

to +T , of P ∩T xi). Let j′ be such that m(xj′) := max
�T

{m(xi) | i ∈ {1, . . . , k−1}}.
Then any closed neighborhood that contains xk and xj′ will also contain S, which
yields a contradiction. ��

296 M.M. Kanté et al.

5 (C4, C5, claw)-Free Graphs

Now we show that (C4, C5, claw)-free graphs are 3-conformal.

Proposition 6. (C4, C5, claw)-free graphs are 3-conformal.

Proof. Let G be a (C4, C5, claw)-free graph and assume it is not 3-conformal.
Then, there exists a k-bad-set S with |S| > k for k ≥ 3. Since S is a k-bad-set,
the subgraph induced by S is not a clique and therefore there exist x1 and x2

such that x1x2 /∈ E(G). Let x3 ∈ S \ {x1, x2}. Then, x3x1 or x3x2 is an edge,
otherwise since S is k-bad-set for k ≥ 3, there exists z adjacent to x1, x2 and
x3 and this will induce a claw in G (which is claw-free). Assume therefore that
x3x1 ∈ E(G).

Since S is a k-bad-set, there exists z and z′ such that z is adjacent to x1 and
x2 and not to x3, and z′ is adjacent to x2 and x3 and not to x1. If x2x3 /∈ E(G)
and zz′ /∈ E(G) then {z, x1, x3, z

′, x2} induces a C5 which yields a contradiction
(G is C5-free). If x2x3 /∈ E(G) and zz′ ∈ E(G), then {z, x1, x3, z

′} induces a C4

which is a contradiction (G is C4-free). And if x2x3 ∈ E(G), then {z, x1, x3, x2}
induces a C4 which is again a contradiction. We can therefore conclude that no
k-bad-set for k ≥ 3 exists and hence G is 3-conformal. ��

6 Proofs of Theorems

We can now prove Theorems 1, 2 and 3.

Proof (Proof of Theorem 1). The first part of the theorem follows from Proposi-
tions 2, 5 and 6. For the second part, one easily checks that if we replace in the
arguments "there exists z such that S′ ⊆ NG[z]" by "there exists a closed neigh-
bourhood NG[z] ⊇ S′" the same arguments follow. So, the second statement is
also true. ��

It is clear that Theorems 2 and 3 follow from Theorem 1, and Theorem 4 and
Proposition 7 stated below.

Theorem 4 ([14]). Let H be a k-conformal Sperner hypergraph. Then one can
compute Tr(H) in time O(‖H‖k−1 · |Tr(H)|k).

Proposition 7 (Folklore). Let G be a graph and let D be a subset of E(G).
Then D is a dominating set of L(G) if and only if D is an edge-dominating set
of G.

7 Conclusion

We have proven that line graphs, path graphs and (C4, C5, claw)-free graphs
have bounded conformality. A direct consequence, using the result by Boros et al.

Neighbourhood Helly of Some Graph Classes and Applications 297

in [14] is that we can enumerate minimal dominating sets in output-polynomial
time in line graphs, path graphs and (C4, C5, claw)-free graphs. Path graphs was
one of the maximal subclasses of chordal graphs where no output-polynomial
time algorithm for the DOM problem was known. Chordal domination perfect
graphs, which form a subclass of chordal graphs, do not have bounded confor-
mality and therefore we cannot expect using the algorithm by Boros et al. to get
an output-polynomial time algorithm for the DOM problem in chordal graphs.
Notice that chordal claw-free graphs is a maximal subclass of chordal domina-
tion perfect graphs and have conformality at most 3 by Proposition 6. We leave
open the quest for an output-polynomial time algorithm for the DOM problem
in chordal graphs, or at least in its other subclasses such as chordal domination
perfect graphs.

Acknowledgement A. Mary and L. Nourine are partially supported by the
ANR (french National Research Agency) project DAG (ANR-09-DEFIS, 2009-
2012). M.M. Kanté and V. Limouzy are supported by the ANR junior project
DORSO (2011-2015).

References

1. Berge, C.: Hypergraphs. North Holland Mathematical Library, vol. 445. Elsevier-
North Holland, Amsterdam (1989)

2. Brandstädt, A., Bang Le, V., Spinrad, J.P.: Graph Classes: A Survey. SIAM Mono-
graphs on Discrete Mathematics and Applications. SIAM (1987)

3. Diestel, R.: Graph Theory, 3rd edn. Springer (2005)
4. Dourado, M.C., Protti, F., Szwarcfiter, J.L.: Complexity aspects of the helly prop-

erty: Graphs and hypergraphs. Electronic Journal of Combinatorics (2009); Dy-
namic Survey, DS17

5. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)

6. Eiter, T., Gottlob, G.: Hypergraph Transversal Computation and Related Problems
in Logic and AI. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002.
LNCS (LNAI), vol. 2424, pp. 549–564. Springer, Heidelberg (2002)

7. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and gen-
erating hypergraph transversals. SIAM J. Comput. 32(2), 514–537 (2003)

8. Eiter, T., Makino, K., Gottlob, G.: Computational aspects of monotone dualiza-
tion: A brief survey. Discrete Applied Mathematics 156(11), 2035–2049 (2008)

9. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone
disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)

10. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. J. Combinatorial Theory Ser. (B 16), 47–56 (1974)

11. Gavril, F.: A recognition algorithm for the intersection graphs of paths in trees.
Discrete Math. (23), 211–227 (1978)

298 M.M. Kanté et al.

12. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: Enumeration of Minimal Dom-
inating Sets and Variants. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011.
LNCS, vol. 6914, pp. 298–309. Springer, Heidelberg (2011)

13. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the enumeration of mini-
mal dominating sets and related notions. Technical report, Clermont-Université,
Université Blaise Pascal, LIMOS, CNRS (2012)

14. Khachiyan, L., Boros, E., Elbassioni, K.M., Gurvich, V.: On the dualization of
hypergraphs with bounded edge-intersections and other related classes of hyper-
graphs. Theor. Comput. Sci. 382(2), 139–150 (2007)

Induced Immersions�

Rémy Belmonte1, Pim van ’t Hof1, and Marcin Kamiński2,��

1 Department of Informatics, University of Bergen, Norway
{remy.belmonte,pim.vanthof}@ii.uib.no

2 Département d’Informatique, Université Libre de Bruxelles, Belgium
Marcin.Kaminski@ulb.ac.be

Abstract. A graph G contains a multigraph H as an induced immer-
sion if H can be obtained from G by a sequence of vertex deletions
and lifts. We present a polynomial-time algorithm that decides for any
fixed multigraph H whether an input graph G contains H as an induced
immersion. We also show that for every multigraph H with maximum
degree at most 2, there exists a constant cH such that every graph with
treewidth more than cH contains H as an induced immersion.

1 Introduction

A recurrent problem in algorithmic graph theory is to decide, given two graphs
G and H , whether the structure of H appears as a pattern within the structure
of G. The notion of appearing as a pattern gives rise to various graph contain-
ment problems depending on which operations are allowed. Maybe the most
famous example is the minor relation that has been widely studied, in particular
in the seminal Graph Minor series of papers by Robertson and Seymour (see,
e.g., [16,17]). A graph G contains a graph H as a minor if H can be obtained
from G by a sequence of vertex deletions, edge deletions and edge contractions.
One of the highlights of the Graph Minor series is the proof that, for every fixed
graph H , there exists a cubic-time algorithm that decides whether an input
graph G contains H as a minor [16].

If the contraction operation is restricted so that we may only contract an
edge if at least one of its endpoints has degree 2, then we obtain the operation
known as vertex dissolution. If H can be obtained from G by a sequence of vertex
deletions, edge deletions and vertex dissolutions, then H is a topological minor
of G. It is a trivial observation that if G contains H as topological minor, then it
also contains H as a minor. Numerous results on topological minors exist in the
literature, notable examples being the recent proof that testing for topological
minors is FPT by Grohe et al. [12] and the characterization of graphs excluding
a fixed graph as a topological minor by Grohe and Marx [13].

Grohe and Marx [13] also show that another containment relation can be de-
cided in FPT time, namely immersion. In order to define immersion, we first

� This work is supported by the Research Council of Norway (197548/F20).
�� Chargé de recherches du FNRS.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 299–308, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

300 R. Belmonte, P. van ’t Hof, and M. Kamiński

need to define another graph operation. The lift (or split-off) operation is de-
fined as follows: given three (not necessarily distinct) vertices u, v, w such that
uv, vw ∈ E(G), we delete uv and vw and replace them by a new edge uw, pos-
sibly creating a loop or multiple edges. A graph G contains H as an immersion
if H can be obtained from G by a sequence of vertex deletions, edge deletions,
and lifts. It is not hard to verify that if G contains H as a topological minor,
then G also contains H as an immersion, as a dissolution can be simulated by
a lift and a vertex deletion. The interest in the immersion relation has steadily
been growing [1,2,8,9,11,12,18,20].

Our Results. We introduce and study the induced immersion relation, which
is equivalent to the immersion relation where no edge deletions are allowed (see
Figure 1 for an overview of the different containment relations mentioned in
this paper). Our main result is that, for any fixed multigraph H , there exists a
polynomial-time algorithm deciding whether a simple graph G contains H as an
induced immersion. It is interesting to note that it is highly unlikely that a similar
result exists for the induced minor and induced topological minor relations, as
there exist fixed graphs H for which the problem of deciding whether a graph
contains H as an induced minor or as an induced topological minor is NP-
complete [7,15]. We complement this result by showing that, for every fixed
multigraph H of maximum degree at most 2, there exists a constant cH such that
every graph with treewidth more than cH contains H as an induced immersion.

induced
topological minor

topological minor

induced
immersion

induced
minor

immersion minor

Fig. 1. The relationship between the different containment relations mentioned in this
paper. An arrow from relation A to relation B indicates that if G contains H with
respect to relation A, then G also contains H with respect to relation B. For example,
if G contains H as an induced topological minor, then G also contains H as an induced
immersion, since a dissolution can be simulated by a lift and a vertex deletion.

2 Preliminaries

Following the terminology of Diestel [3], we define a multigraph to be a pair
G = (V,E), where V is a set, and E is a multiset such that every e ∈ E is a

Induced Immersions 301

multiset of two elements of V . The elements of V and E are called the vertices
and edges of G, respectively. For convenience, we write uv instead of {u, v} to
denote an edge between u and v; in particular, uu denotes a loop at u. The
multiplicity of an edge uv ∈ E, denoted by multG(uv), is the number of times
the element {u, v} appears in the multiset E. By slight abuse of notation, we
define mult(uv) = 0 whenever uv /∈ E. A graph is a multigraph without loops in
which the multiplicity of every edge is at most 1. We refer to the textbook by
Diestel [3] for graph terminology not defined below, and to the monograph by
Downey and Fellows [5] for a background on parameterized complexity.

Let G = (V,E) be a multigraph. For two vertices u, v ∈ V , we say that u is a
neighbor of v if {u, v} ∈ E. Note that if {u, u} ∈ E, then u is its own neighbor.
The degree of a vertex u ∈ V , denoted by dG(u), is the number of neighbors of u,
where a loop at u contributes 2 to the degree of u. A multigraph in which every
vertex has degree exactly k is called k-regular. Let P be a path in G from u to v
that has at least one edge. The length of P is its number of edges. The vertices
u and v are the endpoints of P , and every other vertex of P is an internal vertex
of P . By abuse of terminology, we will allow the endpoints u and v of a path to
be the same vertex, even though strictly speaking such a path is a cycle.

Let G be a multigraph. Let u, v, w be three (not necessarily distinct) vertices
in G such that uv, vw ∈ E(G). The lift (or split-off) {uv, vw} of the edges uv
and vw is the operation that deletes uv and vw and replaces them by a new
edge uw, thereby increasing the multiplicity of uw by exactly 1. In particular,
note that lifting two copies of an edge uv creates a loop either at u or at v, and
lifting a loop uu with any incident edge uv simply deletes the loop uu and leaves
uv unchanged. When we lift two edges uv and vw, we say that v is the pivot of
the lift {uv, vw}. The multigraph obtained from G by applying the lift {uv, vw}
is denoted by G ∨ {uv, vw}. Similarly, given a sequence of lifts L = (�1, . . . , �q),
we define G∨L = (((G∨ �1)∨ �2) · · · ∨ �q). Let P = p1 · · · p� be a path of length
at least 2 in G. When we say that we lift the path P , we mean that we perform
the lifts {p1pi, pipi+1} for i from 2 up to � − 1. Note that lifting the path P is
equivalent to deleting all the edges of P from G, and adding a new edge with
endpoints p1p�.

Let G and H be two multigraphs. Then G contains H as an immersion if
H can be obtained from G by a sequence of vertex deletions, edge deletions,
and lifts. Equivalently, G contains H as an immersion if there exists a subset S
of |V (H)| vertices in G and a bijection φ from V (H) to S such that, for each
edge uv ∈ E(H), there exists a path Puv in G from φ(u) to φ(v), and all these
paths Puv, uv ∈ E(H), are mutually edge-disjoint [18]. We point out that if
uu ∈ E(H), then the path Puu starts and ends in the same vertex; even though
strictly speaking Puu is a cycle, recall that Puu satisfies our definition of a path
(from u to u). If H can be obtained from G by a sequence of vertex deletions
and lifts, then G contains H as an induced immersion.

Observation 1. Let G and H be two multigraphs. Then G contains H as an
induced immersion if and only if there exists a sequence of lifts L such that G∨L
contains H as an induced subgraph.

302 R. Belmonte, P. van ’t Hof, and M. Kamiński

The definition of induced immersion gives rise to the following definition, which
will be used frequently throughout the paper.

Definition 1 (H-model). Let G and H be two multigraphs such that G con-
tains H as an induced immersion. Given a sequence of lifts L, a set of vertices
S ⊆ V (G) and a bijection φ from V (H) to S, we say that (S,L, φ) is an H-model
of G if φ is an isomorphism from H to G′[S], where G′ = G ∨ L.

Observation 2. Let G and H be two multigraphs. Then G contains H as an
induced immersion if and only if G has an H-model.

The Induced Immersion problem takes as input a graph G and a multigraph
H , and the task is to decide whether G contains H as an induced immersion.

The elementary wall of height r is the graph Wr whose vertex set is {(x, y) |
0 ≤ x ≤ 2r + 1, 0 ≤ y ≤ r} \ {(0, 0), (2r + 1, r)} if r is even and {(x, y) | 0 ≤
x ≤ 2r+1, 0 ≤ y ≤ r} \ {(0, 0), (0, r)} if r is odd, and such that there is an edge
between any vertices (x, y) and (x′, y′) if either |x′ − x| = 1 and y = y′, or if
x = x′, |y′ − y| = 1 and x and max{y, y′} have the same parity.

Robertson, Seymour and Thomas [19] proved that for r ≥ 1, every graph

with treewidth more than 202r
5

contains the r × r-grid as a minor. Note that
every r × r-grid contains an elementary wall of height �r/2� − 1 as a minor.
Since an elementary wall has maximum degree at most 3, and every minor with
maximum degree at most 3 is also a topological minor of the same graph, every
r × r-grid also contains W�r/2�−1 as a topological minor. As we pointed out in
the introduction, this means that W�r/2�−1 is also contained as an immersion
in an r × r-grid. Hence, the aforementioned result of Robertson, Seymour and
Thomas implies the following result.

Theorem 1 ([19]). For r ≥ 1, every graph with treewidth more than 2010(r+1)5

contains Wr as an immersion.

3 Finding a Fixed Multigraph as an Induced Immersion

The goal of this section is to show that, for every fixed multigraph H , there
exists a polynomial-time algorithm that decides whether a graph G contains H
as an induced immersion. We first show that if both G and H are given as input,
this problem cannot be solved in polynomial time, unless P = NP.

Lemma 1. (�)1 The Induced Immersion problem is NP-complete, even if G
is a planar graph of maximum degree at most 4 and H is a cycle.

Let G and H be two multigraphs such that G contains H as an induced immer-
sion, and let (S,L, φ) be an H-model of G. Lemma 3 below shows that we may
assume L to satisfy a property that will be exploited in the algorithm in the
proof of Theorem 2. The proof of Lemma 3 relies on the following result, which
states that we can “safely” swap certain consecutive pairs of lifts in L.
1 Proofs marked with a star have been omitted due to page restrictions.

Induced Immersions 303

Lemma 2. (�) Let G and H be two multigraphs such that G contains H as
an induced immersion, and let (S,L, φ) be an H-model of G. Let {xy, yz} and
{uv, vw} be two consecutive lifts in L, occurring at positions i − 1 and i in L,
respectively, such that xz �= uv and xz �= vw. Then G has an H-model (S,L′, φ)
where L′ is obtained from L by swapping {xy, yz} and {uv, vw}.

Lemma 3. (�) Let G and H be two multigraphs such that G contains H as an
induced immersion, and let (S,L, φ) be an H-model of G. For any edge uv of
G[S], there exists an H-model (S,L′, φ) of G such that uv appears in the first
lift in L′.

Informally speaking, the next lemma shows that given an H-model (S,L, φ)
of a graph G, there exists a short sequence of lifts L∗ whose application re-
moves any unwanted edges between vertices of S. Here, an edge between vertices
φ(u), φ(v) ∈ S is unwanted if the multiplicity of φ(u)φ(v) in G is strictly larger
than the multiplicity of uv in H .

Lemma 4. (�) Let G be a graph and let H be a multigraph such that G contains
H as an induced immersion, and let (S,L, φ) be an H-model of G. Then there
exists a sequence L∗ of lifts that satisfies the following four properties:

(i) |L∗| ≤ |E(G[S])|;
(ii) for every {uv, vw} ∈ L∗, we have v ∈ S and {u,w} ∩ S �= ∅;
(iii) for every u, v ∈ V (H), we have multG∨L∗(φ(u)φ(v)) ≤ multH(uv);
(iv) G ∨ L∗ contains H as an induced immersion.

The next lemma shows that after unwanted edges between vertices of S have
been removed by applying L∗, deciding whether G contains H as an induced
immersion is equivalent to finding a family of mutually edge-disjoint paths.

Lemma 5. Let G and H be two multigraphs. Suppose there is a set S ⊆ V (G)
and a bijection φ from V (H) to S such that multG(φ(u)φ(v)) ≤ multH(uv) for
every u, v ∈ V (H). Then G has an H-model (S,L, φ) for some sequence L if and
only if the following two properties are satisfied:

(i) for every u, v ∈ V (H), there is a set Puv of multH(uv) paths in G from
φ(u) to φ(v);

(ii) the paths in P =
⋃

u,v∈V (H) Puv are mutually edge-disjoint.

Proof. First suppose G has an H-model (S,L, φ) for some sequence L. Then G
contains H as an induced immersion by Observation 2, and hence G also contains
H as an immersion with respect to S and φ. The existence of the family P then
follows from the edge-disjoint paths definition of immersion.

Now suppose that there exists a family P of paths in G as mentioned in the
lemma. Among all such families P , let P ′ =

⋃
u,v∈V (H) P ′uv be one that contains

the largest number of paths of length 1.

Claim 1. For every φ(u), φ(v) ∈ V (G), each of the multG(φ(u)φ(v)) edges be-
tween φ(u) and φ(v) is the unique edge of a path of length 1 in P ′uv.

304 R. Belmonte, P. van ’t Hof, and M. Kamiński

Proof of Claim 1. For contradiction, suppose there exist φ(u), φ(v) ∈ V (G) such
that there is an edge e in G between φ(u) and φ(v) that is not the unique edge
of a path in P ′uv. Note that this means that e is not contained in any path of
P ′uv. We claim that P ′uv contains a path of length at least 2. For contradiction,
suppose that each of the multH(uv) paths in Puv has length 1. By assumption,
multG(φ(u)φ(v)) ≤ multH(uv). Since all the paths in P ′ are edge-disjoint and e
is not contained in any path of P ′uv, the number of paths in P ′uv can be at most
multH(uv)− 1, yielding the desired contradiction.

We now distinguish two cases, depending on whether or not e belongs to some
path in P ′. We obtain a contradiction in both cases, which will imply the validity
of the claim.

First suppose that there exists a path P ∈ P ′ such that e is an edge of
P . Observe that P must have length at least 2, and hence P ∈ P ′xy for some
{x, y} �= {u, v}. Recall that P ′uv contains a path P ′ from φ(u) to φ(v) of length at
least 2. Consider the two paths P ′ and P . Recall that P is a path between φ(x)
and φ(y) containing the edge e. Let Puv be the path that has e as its only edge,
and let Pxy be the path obtained from P by removing e and adding the internal
vertices and the edges of Puv. Observe that the paths Puv and Pxy use exactly
the same vertices and edges as P ′ and P . Let P ′′uv = P ′uv \ {P ′} ∪ {Puv} and
P ′′xy = P ′xy \ {P} ∪ {Pxy}, and let P ′′ab = P ′ab for every {a, b} �∈ {{u, v}, {x, y}}.
Then P ′′ =

⋃
u,v∈V (H) P ′′uv is a family of paths that satisfies properties (i) and

(ii), and contains one more path of length 1 than P ′, contradicting the choice
of P ′.

Now suppose that e is not contained in any path of P ′. Let P ′ ∈ P ′uv be a
path of length at least 2, and let Puv be the path that has e as its unique edge.
We define P ′′uv = P ′uv \ {P ′} ∪ {Puv} and P ′′xy = P ′xy for every {x, y} �= {u, v}.
Then P ′′ =

⋃
u,v∈V (H) P ′′uv is a family of paths that satisfies properties (i) and

(ii), and contains one more path of length 1 than P ′. As in the previous case,
this contradicts the choice of P ′. This concludes the proof of Claim 1. .
Consider the set P ′uv for some u, v ∈ V (H). By property (i), P ′uv consists of
multH(uv) mutually edge-disjoint paths in G from φ(u) to φ(v). By Claim 1,
at least multG(φ(u)φ(v)) many of these paths have length 1. By the definition
of multiplicity, there are exactly multG(φ(u)φ(v)) edges between φ(u) and φ(v),
which implies that P ′uv contains exactly multG(φ(u)φ(v)) paths of length 1.
This, together with property (ii), implies that no path in P ′ \ P ′uv contains
an edge between φ(u) and φ(v). By symmetry, no path in P ′uv contains an
edge between φ(x) and φ(y) for {x, y} �= {u, v}. Hence, if we lift each of the
multH(uv)−multG(φ(u)φ(v)) paths in P ′uv of length at least 2, then we create
multH(uv) − multG(φ(u)φ(v)) new edges between φ(u) and φ(v), and do not
change multG(φ(x)φ(y)) for any {x, y} �= {u, v}. Note that the number of edges
between φ(u) and φ(v) after lifting the paths in P ′uv is exactly multH(uv).

From the above arguments, it is clear that if we lift each of the paths of length
at least 2 in P ′, then we obtain a graph G′ such that for every u, v ∈ V (H), we
have that multG′(φ(u)φ(v)) = multH(uv). Hence φ is an isomorphism from H to

Induced Immersions 305

G′[S]. This shows that there exists a sequence of lifts L such that G∨L contains
H as an induced subgraph, implying that (S,L, φ) is an H-model of G. ��

We are now ready to state the main theorem of this section.

Theorem 2. For every fixed multigraph H, there is a polynomial-time algorithm
that decides for any graph G whether G contains H as an induced immersion.

Proof. Let H be a fixed multigraph, and let G be a graph. Deciding whether
G contains H as an induced immersion is equivalent to deciding whether G has
an H-model due to Observation 2. We describe an algorithm with running time
O(|V (G)||V (H)|2+2) that finds an H-model (S,L, φ) of G, or decides that such a
H-model does not exist. Note that this is a polynomial-time algorithm since H
is a fixed multigraph.

Suppose G has an H-model (S,L, φ). Then there exists a sequence of lifts L∗
that satisfies conditions (i)–(iv) of Lemma 4. Let us determine an upper bound
on the number of sequences of lifts L that satisfy conditions (i) and (ii). First
note that the number of possible triples u, v, w ∈ V (G) such that {uv, vw} is a
lift satisfying v ∈ S and {u,w}∩S �= ∅ is at most |V (H)|2 ·|V (G)|. Consequently,
the number of sequences of at most |E(G[S])| ≤ |V (H)|2 such lifts is at most

(|V (H)|2 · |V (G)|)|V (H)|2 . Hence, there are at most (|V (H)|2 · |V (G)|)|V (H)|2

sequences of lifts that satisfy conditions (i) and (ii) of Lemma 4, and all these

sequences can easily be generated in time (|V (H)|2 · |V (G)|)|V (H)|2 .
For all possible subsets S ⊆ V (G) of size |V (H)| and all possible bijections φ

from V (H) to S, our algorithm acts as follows. For all possible sequences of lifts
L that satisfy conditions (i) and (ii) of Lemma 4, the algorithm checks whether L
satisfies (iii). If L does not satisfy (iii), then L is not a valid candidate for L∗, and
we can safely discard it. If L satisfies condition (iii), then we determine whether
L satisfies (iv) as follows. We use the algorithm of Kawarabayashi, Kobayashi
and Reed [14] in order to decide whether conditions (i) and (ii) of Lemma 5 hold
for the graphs G∨L and H . If so, then Lemma 5 guarantees that G∨L contains
H as an induced immersion, i.e., L satisfies condition (iv) of Lemma 4. This
implies that G contains H as an induced immersion, so the algorithm outputs
“yes”. If L does not satisfy condition (iv), we proceed to the next sequence L.
If no sequence L yields a “yes”-answer, then Lemmas 4 and 5 ensure that G
has no H-model (S,L, φ) for this particular choice of S and φ, so the algorithm
chooses the next combination of S and φ. If none of the combinations of S and
φ yields a “yes”-answer, then we know from Lemma 4 that G does not have any
H-model, and the algorithm outputs “no”.

It remains to analyze the running time of the algorithm. There are at most
|V (G)||V (H)| subsets S ⊆ V (G) of size |V (H)|, and for each of these sets S,
there are |V (H)|! bijections from V (H) to S. As we saw earlier, there are at

most (|V (H)|2 · |V (G)|)|V (H)|2 different sequences of lifts L that satisfy con-
ditions (i) and (ii) of Lemma 4. This means the algorithm considers at most

O(|V (G)||V (H)|2) combinations of S, φ and L. For each of these combinations,
testing whether condition (iii) holds can be done in time O(|V (H)|2(|E(H)|+1)).

306 R. Belmonte, P. van ’t Hof, and M. Kamiński

It takes O(|V (G)|2) time [14] to test whether condition (iv) holds, as we ask for
edge-disjoint paths between at most |E(H)| pairs of terminals, and |E(H)| is a
constant due to the assumption that H is fixed. This yields an overall running
time of O(|V (G)||V (H)|2+2). ��

4 Excluding a Fixed Multigraph as an Induced Immersion

In this section, we show that every multigraph with large enough treewidth con-
tains every multigraph of maximum degree at most 2 as an induced immersion.
We first show that every multigraph H is contained as an induced immersion in
any multigraph G that contains a sufficiently large clique.

Lemma 6. (�) Let G and H be two multigraphs. If G contains K2(|V (H)|+|E(H)|)
as a subgraph, then G contains H as an induced immersion.

In an elementary wall W of height r, we define the i-th row of W to be the set
of vertices {(j, i) | 0 ≤ j ≤ 2r + 1}. Similarly, the set {(j, i) | 0 ≤ i ≤ r} is the
j-th column of W . We write Pi(j, k) to denote the unique path in W between
(j, i) and (k, i) that contains only vertices of row i.

Lemma 7. (�) Let G be a multigraph, and let H be a multigraph of maxi-
mum degree at most 2. If G contains an elementary wall W as a subgraph such
that G[V (W)] contains an independent set of size 4|V (H)|(|V (H)|+ 2), then G
contains H as an induced immersion.

We are now ready to prove the main result of this section.

Theorem 3. For every multigraph H of maximum degree at most 2, there exists
a constant cH such that every multigraph with treewidth more than cH contains
H as an induced immersion.

Proof. Let G and H be two multigraphs such that G does not contain H as
an induced immersion. Let r be the largest integer such that G contains the
elementary wall Wr as an immersion. Then there is a sequence X of vertex
deletions, edge deletions and lifts such that applying X to G yields Wr. Let
W ′ be the graph obtained from G by applying only the vertex deletions and
lifts in X . Then G contains W ′ as an induced immersion. Note that W ′ con-
tains Wr as a spanning subgraph. Since G does not contain H as an induced
immersion, Lemma 7 implies that W ′ does not have an independent set of size
4|V (H)|(|V (H)|+2). In addition, we know that W ′ does not contain a clique of
size 2(|V (H)| + |E(H)|) as a subgraph, as otherwise G would contain H as an
induced immersion as a result of Lemma 6. Ramsey’s Theorem (cf. [3]) states
that a graph that has neither a clique nor an independent set of size more than
k must have at most 22k−3 vertices. Hence, we know that W ′ has at most 22k−3

vertices, where k ≤ max{4|V (H)|(|V (H)| + 2), 2(|V (H)| + |E(H)|)}. Since H
has maximum degree at most 2, we have |E(H)| ≤ 2|V (H)| and consequently
k ≤ 4|V (H)|(|V (H)|+2). On the other hand, by the definition of an elementary

Induced Immersions 307

wall of height r, we know that W ′ has exactly 2(r+1)2−2 vertices. Therefore we
obtain that 2(r + 1)2 − 2 ≤ 22k−3, which implies r ≤ 2k. By the definition of r,
G does not contain Wr+1 as an immersion. Hence, by Theorem 1, the treewidth

of G is at most 2010(r+2)5 ≤ 2010(2
k+2)5 . We conclude that every multigraph

with treewidth more than 2010(2
4|V (H)|(|V (H)|+2)+2)5 contains H as an induced

immersion. ��

5 Concluding Remarks

It is not hard to show that every induced immersion of an elementary wall is a
planar graph with maximum degree at most 3, and that an elementary wall of
height c has treewidth at least c. This implies that we cannot replace “maximum
degree at most 2” in Theorem 3 by “maximum degree at most 4”. A natural
question is whether Theorem 3 holds for every planar multigraph H of maximum
degree at most 3.

Our results exhibit some interesting relations between induced immersions
and immersions. For example, Lemma 5 readily implies the following result.

Corollary 1. Let G and H be two multigraphs. If there is a set S ⊆ V (G) such
that G[S] is isomorphic to a spanning subgraph of H, then G contains H as an
induced immersion if and only if G contains H as an immersion.

We can also note the following corollary of Lemma 6.

Corollary 2. (�) Let G and H be two multigraphs. If G contains the graph
K2(|V (H)|+|E(H)|) as an immersion, then G contains H as an induced immersion.

Corollary 2 implies that forbidding a graph as an induced immersion also forbids
another graph as an immersion. In particular, the structure theorem for graphs
excluding a clique of fixed size as an immersion [20] can also be applied to
induced immersions, at the cost of larger constants. Moreover, every class of
graphs closed under taking induced immersions has bounded degeneracy [1].

Two very interesting and challenging questions on induced immersions re-
main. In terms of parameterized complexity [5], Theorem 2 states that Induced
Immersion is in XP when parameterized by the size of H , i.e., |V (H)|+ |E(H)|.
A natural question is whether the problem is fixed-parameter tractable (FPT)
when parameterized by the size of H . Very recently, Grohe et al. [12] established
fixed-parameter tractability of the closely related Immersion problem, thereby
resolving a longstanding open question by Downey and Fellows [4]. Interestingly,
the next lemma shows that an FPT algorithm for Induced Immersion would
immediately imply an FPT algorithm for Immersion, rendering the problem of
finding such an FPT algorithm a very challenging one.

Lemma 8. (�) There exists a parameterized reduction from Immersion to
Induced Immersion if both problems are parameterized by the size of H.

308 R. Belmonte, P. van ’t Hof, and M. Kamiński

Another celebrated result on immersions, due to Robertson and Seymour [18],
states that all graphs are well-quasi ordered with respect to the immersion re-
lation. Does the same hold for induced immersions? If so, then proving such a
statement seems to be a formidable task, as it would imply the aforementioned
result of Robertson and Seymour. An easier task, recently proposed by Fellows,
Hermelin and Rosamond [6], would be to identify interesting classes of graphs
that are well-quasi ordered under the induced immersion relation.

References

1. DeVos, M., Dvořák, Z., Fox, J., McDonald, J., Mohar, B., Scheide, D.: Minimum
degree condition forcing complete graph immersion (submitted for publication)

2. DeVos, M., Kawarabayashi, K., Mohar, B., Okamura, H.: Immersing small complete
graphs. Ars Math. Contemp. 3, 139–146 (2010)

3. Diestel, R.: Graph Theory. Electronic edn. Springer (2005)
4. Downey, R.G., Fellows, M.R.: Fixed-parameter intractability. In: Structure in Com-

plexity Theory Conference, pp. 36–49 (1992)
5. Downey, R.G., Fellows, R.: Parameterized Complexity. Monographs in Computer

Science. Springer (1999)
6. Fellows, M.R., Hermelin, D., Rosamond, F.A.: Well quasi orders in subclasses of

bounded treewidth graphs and their algorithmic applications. Algorithmica 64,
3–18 (2012)

7. Fellows, M.R., Kratochv́ıl, J., Middendorf, M., Pfeiffer, F.: The complexity of in-
duced minors and related problems. Algorithmica 13, 266–282 (1995)

8. Fellows, M.R., Langston, M.A.: On well-partial-order theory and its application to
combinatorial problems of VLSI design. SIAM J. Disc. Math. 5(1), 117–126 (1992)

9. Ferrara, M., Gould, R., Tansey, G., Whalen, T.: On H-immersions. J. Graph The-
ory 57, 245–254 (2008)

10. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem
is NP-complete. SIAM J. Computing 5(4), 704–714 (1976)

11. Giannopoulou, A., Kamiński, M., Thilikos, D.M.: Forbidding Kuratowski graphs
as immersions (manuscript)

12. Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological sugraphs
is fixed-parameter tractable. In: STOC 2011, pp. 479–488. ACM (2011)

13. Grohe, M., Marx, D.: Structure theorem and isomorphism test for graphs with
excluded topological subgraphs. In: STOC 2012, pp. 173–192. ACM (2012)

14. Kawarabayashi, K., Kobayashi, Y., Reed, B.: The disjoint paths problem in
quadratic time. J. Comb. Theory, Ser. B 102, 424–435 (2012)

15. Lévêque, B., Lin, D.Y., Maffray, F., Trotignon, N.: Detecting induced subgraphs.
Discrete Applied Math. 157(17), 3540–3551 (2009)

16. Robertson, N., Seymour, P.D.: Graph minors XIII: The disjoint paths problem. J.
Comb. Theory, Ser. B 63(1), 65–110 (1995)

17. Robertson, N., Seymour, P.D.: Graph minors XX: Wagner’s conjecture. J. Comb.
Theory, Ser. B 92(2), 325–357 (2004)

18. Robertson, N., Seymour, P.D.: Graph Minors XXIII: Nash-Williams’ immersion
conjecture. J. Comb. Theory, Ser. B 100(2), 181–205 (2010)

19. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J.
Comb. Theory, Ser. B 62(2), 323–348 (1994)

20. Seymour, P.D., Wollan, P.: The structure of graphs not admitting a fixed immersion
(manuscript)

Rectilinear Covering for Imprecise Input Points�

(Extended Abstract)

Hee-Kap Ahn1, Sang Won Bae2,��, and Shin-ichi Tanigawa3

1 Department of Computer Science and Engineering, POSTECH, Pohang, Korea
heekap@postech.ac.kr

2 Department of Computer Science, Kyonggi University, Suwon, Korea
swbae@kgu.ac.kr

3 Research Institute for Mathematical Science, Kyoto University, Kyoto, Japan
tanigawa@kurims.kyoto-u.ac.jp

Abstract. We consider the rectilinear k-center problem in the presence of im-
preciseness of input points. We assume that the input is a set S of n unit squares,
possibly overlapping each other, each of which is interpreted as a measured point
with an identical error bound under the L∞ metric on R2. Our goal, in this work,
is to analyze the worst situation with respect to the rectilinear k-center for a given
set S of unit squares. For the purpose, we are interested in a value λk(S) that is
the minimum side length of k congruent squares by which any possible true point
set from S can be covered. We show that, for k = 1 or 2, computing λk(S)
is equivalent to the problem of covering the input squares S completely by k
squares, and thus one can solve the problem in linear time. However, for k ≥ 3,
this is not the case, and we present an O(n log n)-time algorithm for comput-
ing λ3(S). For structural observations, we introduce a new notion on geometric
covering, namely the covering-family, which is of independent interest.

1 Introduction

Given a set P of points in the plane and a positive integer k, the rectilinear k-center
problem is to find k service points q1, . . . , qk in the plane that minimizes the maximum
L∞ (or equivalently L1) distance from each point of P to its nearest service points. The
problem is equivalent to a covering problem of finding k congruent squares of minimum
side length whose union covers all points in P .

The rectilinear k-center problem has been studied extensively [3, 6, 11, 15, 16, 18].
When k is a part of input, the problem has been proved to be NP-complete by Megiddo
and Supowit [15], and a polynomial-time approximation algorithm with approximation
ratio 2 is proposed by Ko et al. [10]. For small fixed k, efficient algorithms are known.
Drezner [3] presented O(n)-time algorithms for k = 1 or 2. For k = 3, Sharir and
Welzl [18] presented a first linear-time algorithm and Hoffmann [6] a simpler algorithm
based on the prune-and-search technique. Indeed, it is known that the rectilinear k-
center problem is of LP-type for k ≤ 3 [18]. For any fixed k > 3, exact algorithms

� Work by H.-K. Ahn was supported by NRF grant 2011-0030044 (SRC-GAIA) funded by the
government of Korea. Work by S.W.Bae was supported by National Research Foundation of
Korea(NRF) grant funded by the Korea government(MEST) (No. 2011-0005512).

�� Corresponding author.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 309–318, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

310 H.-K. Ahn, S.W. Bae, and S.-i. Tanigawa

are also known: O(n logn) time for k = 4 and k = 5 and O(nk−4 logn) time for
k ≥ 6 [16, 18]. In a viewpoint as covering problem, the rectilinear k-center problem
is extended to problems of covering a variant geometric objects by k squares. Among
those, Hoffmann [5] considered line segments or planar regions as input and showed
that, for k ≤ 3, it is possible in linear time to find k congruent squares of minimum side
length that completely cover such input objects.

Recently, how to handle imprecise data in geometric problems has received a remark-
able interest. Most of previous results on geometric problems, including the rectilinear
k-center problem and its variations, assume that the input points are given precisely.
This is, however, not necessarily true in many practical situations. For example, there
could be some imprecision arising when we measure real-world objects due to limited
precision of measuring devices. This impreciseness of geometric data has been studied
lately in computational geometry, and few algorithms that handle imprecise input data
have been presented for fundamental geometric problems: computing the axis-aligned
bounding box [12], smallest enclosing circle [7, 12], the Hausdorff distance [9], the
discrete Fréchet distance [1], Voronoi diagrams [17], planar convex hulls [14], and De-
launay triangulations [2, 8, 13].

In this paper, we consider the rectilinear k-center problem in the presence of impre-
ciseness of input points. In order to properly model the impreciseness, we assume that
the input is given a set S of n unit squares, possibly overlapping each other, each of
which is interpreted as a measured point with an identical error bound under the L∞
metric on R2. We thus assert that for every unit square s ∈ S, there should exist exactly
one true point lying in s. As done in most recent research on impreciseness in geomet-
ric problems, our goal is to specify the worst situation with respect to the rectilinear
k-center for a given set S of unit squares. More precisely, we call any point set R ⊂ R2

a realization of S if R chooses exactly one point p ∈ s from each s ∈ S. We are then
interested in the maximum value of side lengths of the optimal k squares for all such
realizations R of S, denoted by λk(S). In a worst case, to cover the true point set will
need k squares of side length exactly λk(S).

As our results, we show that, for k ≤ 2, specifying the worst case of the rectilinear
k-center problem for imprecise points is equivalent to the problem of covering the input
squares S completely by k squares. This means that the worst situation can be specified
in linear time by running any existing algorithm for covering unit squares by one or two
squares [5]. Interestingly, for k ≥ 3, the above relation does not hold any more. In this
paper, we mainly focus on the case of k = 3, and show that our problem can be solved
in O(n log n) time. For our purpose, we introduce a new notion on geometric covering,
namely the covering-family, which is defined to be a family of k-tuples of congruent
squares such that every realization of S is covered by one of its members.

Due to lack of space, almost all proofs are omitted from this extended abstract but
will be presented in a full version.

2 Preliminaries

Let d(p, q) be the L∞ distance between p ∈ R2 and q ∈ R2. Let B(A) denote the axis-
aligned bounding box of a subset A of R2, or a family of subsets of R2. For a rectangle

Rectilinear Covering for Imprecise Input Points 311

A, we denote the length of its horizontal side by w(A) and that of its vertical side by
h(A); its top-left, top-right, bottom-left, and bottom-right corner by �(A), �(A), �(A),
and 	(A); the top, bottom, left, and right side of A by /(A), ⊥(A), 1 (A), and 2 (A),
respectively.

Given a set P of points in the plane and a positive integer k, the rectilinear k-center
problem is to find k points q1, . . . , qk ∈ R2 that minimizesmaxp∈P mini=1,...,k d(p, qi).
We shall call a k-tuple of congruent closed squares a k-covering, or simply covering,
and the side length of a k-covering denotes that of its member squares. For a cov-
ering C, by an abuse of notation, we also mean C by the union of the k squares.
As known well, the rectilinear k-center problem is equivalent to finding a k-covering
C = (σ1, . . . , σk) of minimum side length that contains all the points in P . To see the
equivalence, note that the k squares σi can be specified by its center at qi and its side
length to be 2maxp∈P mini=1,...,k d(p, qi), and vice versa. We define ρk(P) to be the
side length of such a k-covering C.

The problem naturally extends to various type of input objects. In this paper, we
are interested in the case where input objects are given as squares. Let S be a set of n
unit closed squares in R2, possibly overlapping. Then, the value ρk(·) can be extended
to a set of squares: ρk(S) denotes the minimum side length of a k-covering C that
completely covers S, that is, S ⊆ C. Note that this problem of covering a set S of
squares is not equivalent to the original rectilinear k-center problem.

In this paper, we interpret each s ∈ S as a sampled input point with an identical error
bound under the L∞ metric. We thus assume that the original point lies in s but we do
not know its exact position. A realization R of S is a set of n points each of which is
chosen from a distinct input square in S. Under this assumption, we are interested in
the worst situation that the original point set yields the maximum ρk value among all
possible realizations of S. This can be defined as follows:

λk(S) := max
realization R of S

ρk(R).

The value λk(S) is well defined since we deal with closed squares only.
Note by definition that for any realization R of S there exists a k-covering C of

side length λk(S) such that R ⊂ C, that is, ρk(R) ≤ λk(S). This, however, does not
imply that such a k-covering C covers all realizations R of S. A witness for the value
λk(S) would be a family C of k-coverings such that for any realization R of S, there
exists a covering C ∈ C with R ⊂ C. We call such a family C a covering-family for
S. A covering-family is called optimal if all of its coverings are of side length exactly
λk(S). For a k-covering C ∈ C in a covering-family for S, a realization R of S is called
C-responsible if R ⊂ C but R � C′ for any other C′ ∈ C with C′ �= C. A covering-
family C is called minimal if for each covering C ∈ C there exists a C-responsible
realization R. The side length of a covering-family C denotes the maximum value of
those of all coverings in C.

One can find an easy bound λk(S) ≤ ρk(S): Since there exists a k-covering C
of side length ρk(S) that completely covers S, for any realization R of S, we have
R ⊂ C. If the equality λk(S) = ρk(S) holds, then the problem of computing λk(S)
and the corresponding optimal covering-family C∗ becomes equivalent to the rectilinear
k-covering problem for squares S.

312 H.-K. Ahn, S.W. Bae, and S.-i. Tanigawa

Lemma 1. For any given S and k, the equality λk(S) = ρk(S) holds if and only if
there is an optimal and minimal covering-family C∗ such that |C∗| = 1.

Also, observe that if k ≥ n = |S|, then λk(S) becomes trivially zero. In this case,
any realization R of S can be covered by a k-covering C of side length zero; that is,
C = R, so an optimal covering-familyC consists of all possible realizations themselves.
We thus assume that k < n throughout the paper. Then, we obtain a non-trivial lower
bound on λk(S).

Lemma 2. For any positive integer k and any set S of n unit squares with n > k,
possibly being overlapped, we have λk(S) ≥ 1

�
√
k� . Moreover, this bound is tight.

3 General Structure of Optimal Covering-Family

Our goal in the paper is to compute λk(S) and an optimal and minimal covering-family
for given S and small k. In this section, we investigate the general structure of optimal
covering-family for any k > 0.

Let C∗ be an optimal and minimal covering-family for given S and k. For s ∈ S,
an s-covering-group is a subfamily Gs ⊆ C∗ such that s ⊆

⋃
C∈Gs

C and s �⋃
C′∈Gs\{C}C

′ for each C ∈ Gs.
We then claim the following.

Lemma 3 (Grouping Lemma). For any s ∈ S and any C ∈ C∗, C belongs to an s-
covering-group Gs for which there exists a realization R0 of S \{s} such that R0∪{p}
is C-responsible for some p ∈ s and R0 ∪ {p′} ⊂ C′ is covered by some C′ ∈ Gs for
any p′ ∈ s.

Note that it is not always true that each covering C ∈ C∗ belongs to a unique s-
covering-group. One can construct an example where a covering belongs to two dif-
ferent covering-groups.

Consider any optimal and minimal covering-family C∗. Unless λk(S) is larger than
the length of the shorter side of B(S), we can assume that the bounding box B(C) of
each C ∈ C∗ is included in the bounding box B(S) of S; that is, B(C) ⊆ B(S). The
following lemma shows the reverse inclusion relation between them under a reasonable
condition.

Lemma 4 (Fitting Lemma). For given S, let C∗ be any optimal and minimal covering-
family and suppose that λk(S) ≥ 1. Then, for any covering C ∈ C∗, it holds that
B(S) ⊆ B(C).

4 Optimal Covering-Family for k ≤ 2

Now, we discuss the case of k ≤ 2. As aforementioned, we in general have that λk(S) ≤
ρk(S) for any S and k. In this section, we show that the equality λk(S) = ρk(S)
holds for k = 1, 2. By Lemma 1, we conclude that the problem of computing λk(S)
is equivalent to computing minimum covering that completely covers S. Computing
ρk(S) for k ≤ 2 and the corresponding k-covering can be done in linear time: for k = 1,
it can be done by computing the smallest square covering all in S, and Hoffmann [5]
reported a linear-time algorithm for k = 2. We therefore conclude the following.

Rectilinear Covering for Imprecise Input Points 313

Theorem 1. Let k = 1 or 2 and S be a set of n > k unit squares. Then, it holds that
λk(S) = ρk(S) and the corresponding covering-family can be computed in O(n) time.

Sketch of Proof. For k = 1, its proof is not difficult by exploiting Lemmas 2 and 4. We
focus on proving λ2(S) = ρ2(S).

Let C∗ be any optimal and minimal covering-family for S and k = 2. By Lemma 2,
we have λ2(S) ≥ 1 and thus for any 2-covering C ∈ C∗ we have B(S) ⊆ B(C) by
Lemma 4. Without loss of generality, we assume that the horizontal side of B(S) is not
shorter than its vertical side, that is, h(B(S)) ≤ w(B(S)). Let C = (σ1, σ2) ∈ C∗ be
a 2-covering. By a typical translation process, one can assume that either (1) �(σ1) =
�(B(S)) and 	(σ2) = 	(B(S)), or (2) its symmetric configuration; �(σ1) = �(B(S))
and �(σ2) = �(B(S)). This implies that C∗ consists of at most two coverings.

If |C∗| = 1, then we are done by Lemma 1. Suppose that |C∗| = 2. Then, no covering
in C∗ completely covers S. Let C = (σ1, σ2) ∈ C∗ be such that �(σ1) = �(B(S)) and
	(σ2) = 	(B(S)), and C′ = (σ′1, σ

′
2) ∈ C∗ be the other such that �(σ′1) = �(B(S))

and �(σ′2) = �(B(S)). There exists s ∈ S such that s � C since S � C. We claim
that at least one corner of s is not contained in C; if every corner of s lies in C though
s � C, then there exists a point p ∈ s between two squares σ1 and σ2. This leads to a
contradiction since we have p /∈ C′ either.

Without loss of generality, we assume that �(s) ∈ σ1 but �(s) /∈ σ1. The other cases
are symmetric to this configuration. By Lemma 3, C should belong to an s-covering-
group Gs ⊆ C∗ whose cardinality is more than one. Since |C∗| = 2, we have Gs = C∗.

Note that the left side 1 (σ′2) of σ′2 should be to the left of the right side 2 (σ1)
of σ1. (Otherwise, there is a point p ∈ s such that p /∈ C ∪ C′, a contradiction.)
Also, by the definition of s-covering-groups, we have that s � σ′2. This implies that
2λ2(S) − 1 < w(B(S)) ≤ 2λ2(S). We also observe that h(B(S)) > λ2(S) since,
otherwise, we have B(S) ⊆ σ1 ∪ σ2 = C, a contradiction to the minimality of C∗.

Moreover, both σ1 and σ′2 should touch the square s� ∈ S touching the top side
of B(S). However, since w(B(S)) > 2λ2(S) − 1, either σ1 or σ′2 cannot completely
cover s�. This implies that C or C′ cannot cover s� by h(B(S)) > λ2(S), and hence
Lemma 3 further implies that both C and C′ cannot cover s�, as they should form an
s�-covering-group. Now, consider a realization R in which p is chosen from s such
that p ∈ s \ C and p� is chosen from s� such that p� ∈ s� \ C′. Such points p and
p� exist by the definition of covering-groups. Then, we have that R � C and simulta-
neously R � C′, a contradiction to the assumption that C∗ is a covering-family for S.

5 Optimal Covering-Family for k = 3

Now, we discuss the case of k = 3. For ease of discussion, we assume a general position
on S that the center of each input square in S has a distinct x- and y-coordinate. We
call s ∈ S extremal if s touches the boundary of B(S). Let s�, s⊥, s�, and s� be
the extremal squares in S, each of which touches the top, bottom, left and right side of
B(S), respectively. Note that they may not be distinct when there is s ∈ S sharing a
corner with B(S). Also, let σ�, σ�, σ�, and σ� be squares of side length λ3(S) such
that �(σ�) = �(B(S)), �(σ�) = �(B(S)), �(σ�) = �(B(S)), and 	(σ�) = 	(B(S)),
respectively.

314 H.-K. Ahn, S.W. Bae, and S.-i. Tanigawa

(a) (b)

Fig. 1. (a) An example of 8 input squares S and (b) two 3-coverings that form an optimal and
minimal covering-family

Unlike the case of k ≤ 2, the equality λ3(S) = ρ3(S) does not always hold. We
start with introducing an example of input squares S where the strict inequality λ3(S) <
ρ3(S) holds, and thus any optimal and minimal covering-family consists of two or more
3-coverings. See Fig. 1: Let S be the set of 8 squares as shown in Fig. 1(a). Then, an
optimal and minimal covering-family C∗ consists of two coverings as in Fig. 1(b), while
ρ3(S) is strictly larger than the side length of C∗.

We first discuss some easy cases where the equality λ3(S) = ρ3(S) holds. As stated
above, in such a case, it is relatively easy to find an optimal covering-family: Lemma 1
states that there exists an optimal and minimal covering-family C∗ with |C∗| = 1, con-
sisting of a 3-covering C such that S ⊆ C. For k = 3, Hoffmann presented a linear
time algorithm to compute ρ3(S) and the corresponding 3-covering C.

Lemma 5. If min{h(B(S), w(B(S))} ≤ λ3(S) or max{h(B(S), w(B(S))} ≥
3λ3(S), then it holds that λ3(S) = ρ3(S).

In the remaining of the section, we investigate covering-families with good prop-
erties and bound the cardinality of such a covering-family, provided that λ3(S) <
h(B(S)), w(B(S)) < 3λ3(S), and thus λ3(S) < ρ3(S). These properties and ob-
servations based on them at last play a key role to discretize a class of coverings that we
should search for, even into a constant size. We then present an algorithm that computes
λ3(S) and its corresponding minimal covering-family in O(n log n) time.

5.1 Properties of Covering-Family for k = 3

From now, we focus on properties of optimal and minimal covering-family when
λ3(S) < ρ3(S). By Lemma 5, if the strict inequality holds, then we may assume that
λ3(S) < h(B(S)), w(B(S)) < 3λ3(S). We start with observing the existence of a
covering-family with specific properties.

Lemma 6. There exists an optimal and minimal covering-family C∗ for S and k = 3
such that any 3-covering C ∈ C∗ fulfills the following properties CF1–CF4, including
their symmetric analogues, provided that λ3(S) < h(B(S)), w(B(S)) < 3λ3(S):

CF1 B(C) = B(S).
CF2 If a square σ ∈ C touches the top side of B(S), then σ intersects s�.

Rectilinear Covering for Imprecise Input Points 315

CF3 If there is s ∈ S such that a side of σ ∈ C intersects s but s � C, then there is
s′ ∈ S with s′ �= s such that the opposite side of σ intersects s′ at a point that is
avoided by the other two squares in C.

CF4 Suppose that C contains σ� touching the top side of B(S). If there is p ∈ s ∈ S
such that d(p,/(B(S))) ≤ λ3(S) and p /∈ σ�, say p lies to the left of 1 (σ�), then
there is p′ ∈ s′ ∈ S with s′ �= s such that p′ ∈ s′ ∩ σ�, d(p, p′) > λ3(S), and the
other two squares in C than σ avoid p′.

Now, we focus only on optimal and minimal covering-families satisfying CF1–CF4 as
in Lemma 6. Property CF1, together with min{h(B(S)), w(B(S))} > λ3(S), implies
that each C ∈ C∗ includes at least one of the four cornered squares σ�, σ�, σ�, and σ�,
since C consists of three squares. Also, each side of B(S) touches at least one square
in C; we call a square σ ∈ C that touches a side of B(S) a touching square, and more
specifically, if σ touches the top, bottom, left, or right side of B(S), we call σ a top-
touching, bottom-touching, left-touching, or right-touching square of C, respectively.
Notice by definition that any cornered square is also a touching square. Observe that
there can be a square in C that touches none of the sides of B(S). We call such a square
in C the floating square of C.

For C ∈ C∗, σ ∈ C, and s ∈ S, we say that s is σ-reliable with respect to C if
s ∩ σ �

⋃
σ′∈C\{σ} σ

′ and there exists a C-responsible realization R in which a point
in s∩σ is chosen from s. Note that by definition there exists a C-responsible realization
R for any covering C in any minimal covering-family, and thus that for any s ∈ S there
is at least one σ ∈ C such that s is σ-reliable with respect to C.

We consider the set U(C) ⊆ S of input squares s ∈ S such that s � C. Indeed, it
will be shown later that its cardinality |U(C)| is a key for bounding |C∗|, thus we would
like to bound |U(C)| by a reasonable number.

For a square σ, a side e of σ is said to be aligned with s ∈ S if e intersects a side e′

of s in a segment of positive length and either e = /(σ) and e′ = /(s), e = ⊥(σ) and
e′ = ⊥(s), e = 1 (σ) and e′ = 1 (s), or e = 2 (σ) and e′ = 2 (s).

Lemma 7. There exists an optimal and minimal covering-family C∗ for S and k =
3 satisfying properties CF1–CF4 and CF5–CF6 in addition, provided that λ3(S) <
h(B(S)), w(B(S)) < 3λ3(S):

CF5 For any C ∈ C∗ and any σ ∈ C, at least one e of two opposite sides of σ is
aligned with some s ∈ S. Moreover, the side e′ of s touching e is not completely
contained in the union of the other two squares in C than σ.

CF6 For any C ∈ C∗, if C = (σ�, σ⊥, σ�) and σ� /∈ C, where σ⊥ is bottom-touching
and σ� is right-touching, then 1 (σ⊥) is aligned with some s ∈ S and /(σ�) is
aligned with some s′ ∈ S. This also holds for the other symmetric configurations.

By Lemma 7, we can assume that every σ ∈ C for any C ∈ C∗ has two adjacent
sides that are aligned. This implies that σ always has a corner located at an intersection
point between two lines extending two sides of input squares. Note that this observation
tells us that the number of possible positions of squares σ involved in C∗ is bounded
by O(n2). Property CF5 is also exploited to discretize a possible search space for the
exact value of λ3(S).

316 H.-K. Ahn, S.W. Bae, and S.-i. Tanigawa

(a) (b)

Fig. 2. An illustration to (a) a covering in C∗
�� and (b) a covering in C∗

� . Those in other subfamilies
have symmetric configurations.

Lemma 8. Let Λ be the set of real numbers λ such that λ is the distance d(c1, c2)
between a corner c1 of some s1 ∈ S and a corner c2 of another s2 ∈ S, or its half
d(c1, c2)/2. Then, λ3(S) ∈ Λ, provided that λ3(S) < h(B(S)), w(B(S)) < 3λ3(S).

5.2 Bounds on |U(C)| and |C∗|
We are then able to bound the cardinality of U(C) by a constant for any C ∈ C∗,
provided that C∗ fulfills CF1–CF6. In this paper, we focus on obtaining constant bounds
on the quantities but not on trying to get tight bounds since it suffices to devise an
efficient algorithm later.

Lemma 9. Suppose that C∗ fulfills properties CF1–CF6, and let C ∈ C∗. If C has a
floating square, then |U(C)| ≤ 12; otherwise, |U(C)| ≤ 14.

Now, we bound |C∗|. We consider following six subfamilies of C∗: Let C∗�� := {C ∈
C∗ | σ�, σ� ∈ C}, and C∗�� := {C ∈ C∗ | σ�, σ� ∈ C}. Let C∗� := {C ∈ C∗\(C∗��∪C∗��) |
σ� ∈ C}. Define C∗� , C∗� , and C∗� analogously. Note that any covering C ∈ C∗ falls into
at least one of the six subfamilies, but the subfamilies do not form a disjoint partition
of C∗. More specifically, each C ∈ C∗ having a floating square belongs to C∗�� or C∗��.
By CF5 and CF6, each covering C∗ is of shape described in Fig. 2. Then, Lemma 9
gives a constant bound on the number of those s ∈ S with which a square of C in each
subfamily may be aligned. Based on these observations, we obtain following bounds.

Lemma 10. Let C∗ be any optimal and minimal covering-family for S and k = 3
satisfying CF1–CF6. Then, |C∗| and |

⋃
C∈C∗ U(C)| are upper bounded by a constant.

More specifically, |C∗| ≤ 2252 and |
⋃

C∈C∗ U(C)| ≤ 304.

5.3 Algorithm

Now, we describe an algorithm that computes the exact value of λ3(S) and an optimal
and minimal covering-family C∗ for a given set S of input unit squares. We first present
a decision algorithm that determines if λ ≥ λ3(S) for an additional input λ ∈ R. In the
complete algorithm that computes λ3(S) and the corresponding covering-family C∗, we
search Λ for the exact value of λ3(S) based on a sorted matrix search technique and
our decision algorithm. As a preprocessing, we compute and maintain the sorted list of
input squares in S both in horizontal and vertical directions.

Rectilinear Covering for Imprecise Input Points 317

Decision Algorithm. Let λ > 0 be a given real number. We first compute ρ3(S) in
O(n) time using any existing algorithm such as [5]. If λ ≥ ρ3(S), then the answer is
yes since λ3(S) ≤ ρ3(S). In the following, we discuss only the case of λ < ρ3(S). To
decide whether λ ≥ λ3(S), we perform the following steps in order: (1) we construct a
set Cλ of all possible 3-coverings with side length λ that obey the properties CF1–CF6,
and then (2) test whether Cλ is a covering-family, that is, whether all realizations of S
is covered by one of its members C ∈ Cλ. If the answer is yes, then (3) we extract a
minimal covering-family C∗λ by removing redundant coverings from Cλ.

Let us give a sketch of the decision algorithm. In Step (1), we gather all candidate
coverings whose union form a covering-family Cλ for S if λ ≥ λ3(S). This can be done
by separately handling six subfamilies C��, C��, C�, C�, C�, and C�, which are analogous
to those defined above Lemma 10. By CF5–CF6, together with Lemma 9, it suffices
to consider a constant number of coverings to solve the decision problem. Thus, it is
shown that the number of coverings in Cλ is bounded by a constant as in Lemma 10.
Step (1) can be done in O(n) time after O(n log n) time preprocessing. Then, Steps (2)
and (3) can be performed in constant time since it is done by handling constant sized
data, Cλ and

⋃
C∈Cλ U(C).

Lemma 11. Given a set S of n unit squares and a real number λ ∈ R, one can decide
whether λ ≥ λ3(S) or not in O(n) time, provided that S is sorted both in horizontal
and vertical directions. Moreover, a minimal covering-family of side length λ can be
found in the same time bound when λ ≥ λ3(S).

Computing λ3(S) Let Λ be the set as defined in Lemma 8. We basically search Λ to
find λ3(S) ∈ Λ by exploiting our decision algorithm. Since |Λ| = Θ(n2), however, a
straightforward method would take Ω(n2) time. We thus adopt the selection algorithm
on sorted matrices by Frederickson and Johnson [4]. A matrix is said to be sorted if
each row and each column of it is in a nondecreasing order.

Let x1, . . . , x2n be the x-coordinates of all corners of the n input squares S, in a
nondecreasing order. Let MX be a 2n × 2n matrix such that its (i, j)-entry is defined
as MX(i, j) := xi − x2n−j+1 for each 1 ≤ i, j ≤ 2n. Also, let MX/2 be another
matrix with MX/2(i, j) := (xi − x2n−j+1)/2. Let y1, . . . , y2n be the y-coordinates of
all corners of s ∈ S in a nondecreasing order. Define MY and MY/2 in an analogous
way to MX and MX/2.

Observe that the four matrices are all sorted and Λ ⊂ MX ∪MX/2 ∪MY ∪MY/2.
This fulfills the precondition to apply the technique of Frederickson and Johnson [4],
together with our decision algorithm. Subsequently, one can find in O(n logn) time
a smallest value λX ∈ MX such that our decision algorithm reports “YES”. Note
that we do not explicitly compute the matrices. We perform the same procedure for
MX/2, MY , and MY/2 each, to get three more values λX/2, λY , and λY/2, respectively.
Then, the smallest one of the four obtained values is exactly λ3(S) by Lemma 8, if
λ3(S) < h(B(S)), w(B(S)) < 3λ3(S). Otherwise, it holds that λ3(S) = ρ3(S) by
Lemma 5, and we have in this case that ρ3(S) ≤ min{λX , λX/2, λY , λY/2}.
Theorem 2. Given a set S of n unit squares, the exact value of λ3(S) and a corre-
sponding covering-family C∗ for S of side length λ3(S) with |C∗| = O(1) can be com-
puted in O(n log n) time.

318 H.-K. Ahn, S.W. Bae, and S.-i. Tanigawa

References

1. Ahn, H.K., Knauer, C., Scherfenberg, M., Schlipf, L., Vigneron, A.: Computing the discrete
Fréchet distance with imprecise input. Int. J. Comput. Geometry Appl. 22(1), 27–44 (2012)

2. Buchin, K., Löffler, M., Morin, P., Mulzer, W.: Preprocessing imprecise points for Delaunay
triangulation: Simplified and extended. Algorithmica 61(3), 674–693 (2011)

3. Drezner, Z.: On the rectangular p-center problem. Naval Res. Logist. 34(2), 229–234 (1987)
4. Frederickson, G., Johnson, D.: Generalized selection and ranking: Sorted matrices. SIAM J.

Comput. 13(1), 14–30 (1984)
5. Hoffmann, M.: Covering polygons with few rectangles. In: Proc. 17th Euro. Workshop

Comp. Geom. (EuroCG 2001), pp. 39–42 (2001)
6. Hoffmann, M.: A simple linear algorithm for computing rectilinear 3-centers. Comput.

Geom. Theory Appl. 31, 150–165 (2005)
7. Jadhav, S., Mukhopadhyay, A., Bhattacharya, B.K.: An optimal algorithm for the intersection

radius of a set of convex polygons. J. Algo. 20, 244–267 (1996)
8. Khanban, A.A., Edalat, A.: Computing Delaunay triangulation with imprecise input data. In:

Proc. 15th Canadian Conf. Comput. Geom., pp. 94–97 (2003)
9. Knauer, C., Löffler, M., Scherfenberg, M., Wolle, T.: The directed Hausdorff distance be-

tween imprecise point sets. Theoretical Comput. Sci. 412(32), 4173–4186 (2011)
10. Ko, M., Lee, R., Chang, J.: An optimal approximation algorithm for the rectilinear m-center

problem. Algorithmica 5, 341–352 (1990)
11. Ko, M., Lee, R., Chang, J.: Rectilinear m-center problem. Naval Res. Logist. 37(3), 419–427

(1990)
12. Löffler, M.: Data Imprecision in Computational Geometry. Ph.D. thesis, Utrecht University

(2009)
13. Löffler, M., Snoeyink, J.: Delaunay triangulation of imprecise points in linear time after

preprocessing. Comput. Geom.: Theory and Appl. 43(3), 234–242 (2010)
14. Löffler, M., van Kreveld, M.J.: Largest and smallest tours and convex hulls for imprecise

points. In: Proc. 10th Scandinavian Workshop Algo. Theory, pp. 375–387 (2006)
15. Megiddo, M., Supowit, K.J.: On the complexity of some common geometric location prob-

lems. SIAM J. Comput. 13(1), 182–196 (1984)
16. Segal, M.: On piercing sets of axis-parallel rectangles and rings. Int. J. Comput. Geometry

Appl. 9(3), 219–234 (1999)
17. Sember, J., Evans, W.: Guaranteed Voronoi diagrams of uncertain sites. In: Proc. 20th Cana-

dian Conf. Comput. (2008)
18. Sharir, M., Welzl, E.: Rectilinear and polygonal p-piercing and p-center problems. In: Proc.

12th Annu. Sympos. Comp. Geom (SoCG 1996), pp. 122–132 (1996)

Robust Nonparametric Data Approximation

of Point Sets via Data Reduction�

Stephane Durocher, Alexandre Leblanc, Jason Morrison, and Matthew Skala

University of Manitoba, Winnipeg, Canada
{durocher,mskala}@cs.umanitoba.ca,

{alex leblanc,jason morrison}@umanitoba.ca

Abstract. In this paper we present a novel nonparametric method for
simplifying piecewise linear curves and we apply this method as a statis-
tical approximation of structure within sequential data in the plane. We
consider the problem of minimizing the average length of sequences of
consecutive input points that lie on any one side of the simplified curve.
Specifically, given a sequence P of n points in the plane that determine
a simple polygonal chain consisting of n − 1 segments, we describe al-
gorithms for selecting a subsequence Q ⊂ P (including the first and
last points of P) that determines a second polygonal chain to approxi-
mate P , such that the number of crossings between the two polygonal
chains is maximized, and the cardinality of Q is minimized among all
such maximizing subsets of P . Our algorithms have respective running
times O(n2

√
log n) when P is monotonic and O(n2 log4/3 n) when P is

any simple polyline.

1 Introduction

Given a simple polygonal chain P (a polyline) defined by a sequence of points
(p1, p2, . . . , pn) in the plane, the polyline approximation problem is to produce a
simplified polyline Q = (q1, q2, . . . , qk), where k < n. The polyline Q represents
an approximation of P that optimizes one or more functions of P and Q. For
P to be simple, the points p1, . . . , pn must be distinct and P cannot intersect
itself.

Motivation for studying polyline approximation comes from the fields of com-
puter graphics and cartography, where approximations are used to render vector-
based features such as streets, rivers, or coastlines onto a screen or a map at
appropriate resolution with acceptable error [1], as well as in problems involv-
ing computer animation, pattern matching and geometric hashing (see Alt and
Guibas’ survey for details [3]). Our present work removes the arbitrary parameter
previously required to describe acceptable error between P and Q, and provides
an approximation method that is robust to some forms of noise. While previous
work uses the Real RAM model, our analysis primarily assumes a Word RAM

� Work was supported in part by the Natural Science and Engineering Research Coun-
cil of Canada (NSERC).

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 319–331, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

320 S. Durocher et al.

model to ensure clarity in discussions of lower bounds on time complexity. We
comment on our results in both models. We further note that the Word RAM
model requires that non-integer coordinates (floats and rationals) be contained
in a constant number of words and be easily comparable. See the work of Han [8]
and of Chan and Pǎtraşcu [4] for more on this model.

Typical polyline approximation algorithms require that distance between two
polylines be measured using a function denoted here by ζ(P,Q). The specific
measure of interest differs depending on the focus of the particular problem or
article; however, three measures are popular: Chebyshev distance ζC , Hausdorff
distance ζH , and Fréchet distance ζF . In informal terms, the Chebyshev distance
is the maximum absolute difference between y-coordinates of P andQ (maximum
residual); the symmetric Hausdorff distance is the distance between the most iso-
lated point of P or Q and the other polyline; and the Fréchet distance is more
complicated, being the shortest possible maximum distance between two parti-
cles each moving forward along P and Q. Alt and Guibas [3] give more formal
definitions. We define a new measure of quality or similarity, to be maximized,
rather than an error to be minimized. Our crossing measure is a combinatorial
description of how well Q approximates P . It is invariant under a variety of geo-
metric transformations of the polylines, and is often robust to uncertainty in the
locations of individual points. Specifically, we consider the problem of minimiz-
ing the average length of sequences of consecutive input points that lie on any
one side of the simplified curve. Given a sequence P of n points in the plane that
determine a simple polygonal chain consisting of n − 1 segments, we describe
algorithms for selecting a subsequence Q ⊂ P (including the first and last points
of P) that determines a second polygonal chain to approximate P , such that the
number of crossings between the two polygonal chains is maximized, and the
cardinality of Q is minimized among all such maximizing subsets of P .

Our algorithm for minimizing |Q| while optimizing our nonparametric quality

measure requires O(n2
√
log n) time when P is monotonic in x, or O(n2 log4/3 n)

time when P is a non-monotonic simple polyline on the plane, both in O(n)
space. The near-quadratic times are slightly larger in their polylog exponents
for the Real RAM model (O(n2 logn) and O(n2 log2 n), respectively), and are
remarkably similar to the optimal times achieved in the parametric version of
the problem using Hausdorff distance [1,5], suggesting the possibility that the
problems may have similar complexities.

In Section 3, we define the crossing measure χ(Q,P) and relate the concepts
and properties of χ(Q,P) to previous work in both polygonal curve simplification
and robust approximation. In Section 4, we describe our algorithms to compute
approximations of monotonic and non-monotonic simple polylines that maximize
χ(Q,P).

2 Related Work

Previous work on polyline approximation is generally divided into four categories
depending on what property is being optimized and what restrictions are placed

Data Approximation of Point Sets 321

on Q [3]. Problems can be classified as requiring an approximating polyline Q
having the minimum number of segments (minimizing |Q|) for a given acceptable
error ζ(P,Q) ≤ ε, or a Q with minimum error ζ(P,Q) for a given value of |Q|.
These are called min-# problems and min-ε problems respectively. These two
types of problems are each further divided into “restricted” problems, where the
points of Q are required to be a subset of those in P and to include the first and
last points of P (q1 = p1 and qk = pn), and “unrestricted” problems, where the
points of Q may be arbitrary points on the plane. Under this classification, the
polyline approximation Q we examine is a restricted min-# problem for which a
subset of points of P is selected (including p1 and pn) where the objective mea-
sure is the number of crossings between P and Q and an optimal approximation
first maximizes the crossing number (rather than minimizing it), and then has
a minimum |Q| given the maximum crossing number.

While the restricted min-# problems find the smallest sized approximation
within a given error ε, an earlier approach was to find any approximation within
the given error. The cartographers Douglas and Peucker [6] developed a heuristic
algorithm where an initial (single segment) approximation was evaluated and the
furthest point was then added to the approximation. This technique remained
inefficient until Hershberger and Snoeyink [9] concluded that it could be applied
in O(n log∗ n) time and linear space.

The most relevant previous literature is on restricted min-# problems. Imai
and Iri [10] presented an early solution to the restricted polyline approximation
problem using O(n3) time and O(n) space. The version they study optimizes k =
|Q| while maintaining that the Hausdorff metric between Q and P is less than
the parameter ε. Their algorithm was subsequently improved by Melkman and
O’Rourke [11] to O(n2 logn) time and then by Chan and Chin [5] to O(n2) time.
Subsequently, Agarwal and Varadarajan [2] changed the approach from finding a
shortest path in an explicitly constructed graph to an implicit method that runs
in O(f(δ)n4/3+δ) time, where δ is an abritrarily chosen constant. Agarwal and
Varadarajan used the L1 Manhattan and L∞ Chebyshev metrics instead of the
previous works’ Hausdorffmetric. Finally, Agarwal et al. [1] study a variety of met-
rics and give approximations of the min-# problem in O(n) or O(n log n) time.

3 A Crossing Measure and Its Computation

3.1 Crossing Measure

The crossing measure χ(Q,P) is defined for a sequence of n distinct points P =
(p1, p2, . . . , pn) and a subsequence of k distinct points Q ⊂ P,Q = (q1, q2, . . . , qk)
with the same first and last values: q1 = p1 and qk = pn. For each pi let (xi, yi) =
pi ∈ R2. To understand the crossing measure, it is necessary to make use of the
idea of left and right sidedness of a point relative to a directed line segment. A
point pj is on the left side of a segment Si,i+1 = [pi, pi+1] if the signed area of
the triangle formed by the points pi, pi+1, pj is positive. Correspondingly, pj is
on the right side of the segment if the signed area is negative. The three points
are collinear if the area is zero.

322 S. Durocher et al.

pi pj pi pj q1

q2
q3

q4

Fig. 1. Crossings are indicated with a square and false crossings are marked with a
+. Crossings are only counted when the simplifying segment intersects the chain that
begins and ends with its own endpoints.

For any endpoint qj of a segment in Q it is possible to determine the side of P
on which qj lies. Since Q is a polyline using a subset of the points defining P , for
every segment Si,i+1 there exists a corresponding segment of Sπ(j),π(j+1) such
that 1 ≤ π(j) ≤ i < i+1 ≤ π(j+1) ≤ n. The function π : {1, . . . , n} → {1, . . . , k}
maps a point qj ∈ Q to its corresponding point pπ(j) ∈ P such that pπ(j)qj .
The endpoints of Sπ(j),π(j+1) are given a side based on Si,i+1 and vice versa.
Two segments intersect if they share a point. Such a point is interior to both
segments if and only if the segments change sides with respect to each other. The
intersection is at an endpoint if at least one endpoint is collinear to the other
segment [12, p. 566]. The crossing measure χ(Q,P) is the number of times that
Q changes sides from properly left to properly right of P due to an intersection
between the polylines, as shown in Figure 1. A single crossing can be generated
by any of five cases (see Figure 2):

1. A segment of Q intersects P at a point distinct from any endpoints;
2. two consecutive segments of P meet and cross Q at a point interior to a

segment of Q;
3. one or more consecutive segments of P are collinear to the interior of a

segment of Q with the previous and following segments of P on opposite
sides of that segment of Q;

4. two consecutive segments of P share their common point with two consecu-
tive segments of Q and form a crossing; or

5. in a generalization of the previous case, instead of being a single point, the
intersection comprises one or more sequential segments of P and possibly Q
that are collinear or identical.

In Section 3.2, we discuss how to compute the crossings for the first three cases,
which are all cases where crossings involve only one segment of Q. The remaining
cases involve more than one segment of Q, because an endpoint of one segment
of Q or even some entire segments of Q are coincident with one or more segments
of P ; those cases are discussed in Section 3.3.

In the case where the x-coordinates of P are monotonic, P describes a function
Y of x and Q is an approximation Ŷ of that function. The signs of the residuals
r = (r1, r2, . . . , rn) = YP − Ŷ are computed at the x-coordinates of P and are
equivalent to the sidedness described above. The crossing number is the number
of proper sign changes in the sequence of residuals. The resulting approxima-
tion maximizes the likelihood that adjacent residuals would have different signs,

Data Approximation of Point Sets 323

pi qj+1

pi+1qj

pi−1

pi

pi+1

qj+1

qj

pi−2

pi−1

pi+2

qj+1

qj
pi

pi+1

pi−1
pi = qj

pi+1

qj+1

qj−1

pi−2

pi−1

pi+2

qj+1

qj−1
pi = qj

pi+1

Fig. 2. Examples of the five cases generating a single crossing

while minimizing the number of original data points retained conditional on that
number of sign changes. Note that if r was independently and identically selected
at random from a distribution with median zero, then any adjacent residuals in
the sequence r would have different signs with probability 1/2.

3.2 Counting Crossings with a Segment

To compute an approximation Q with optimal crossing number for a given P , we
consider the optimal number of crossings for segments of P and combine them in
a dynamic programming algorithm. Starting from a point pi we compute optimal
crossing numbers for each of the n− i segments that start at point pi and end
at some pj with i < j ≤ n. Computing all n− i optimal crossing numbers for a
given pi simultaneously in a single pass is more efficient than computing them
for each (pi, pj) pair separately. These batched computations are performed for
each pi and the results used to find Q.

To compute a single batch, we will consider the angular order of points in
Pi+1,n = {pi+1, . . . , pn} with respect to pi. Let ρi(j) be a function on the indices
representing the angular order of segments (pi, pj) within this set with respect to
vertical, such that ρi(j) = 1 for all pj that are closest to the vertical line passing
through pi, and ρi(j) ≤ ρi(k) if and only if the clockwise angle for pj from the
vertical is less than or equal to the corresponding angle for pk. Note that within
axis-aligned quadrants that are centered on pi, a larger angle corresponds to
a smaller slope. This confirms that angular order comparisons are O(1) time
computable using basic arithmetic in the Word RAM Model. See Figure 3(a).
Using this angular ordering we partition Pi+1,n into chains and process the batch
of crossing number problems as discussed below.

We define a chain with respect to pi to be a consecutive sequence P�,�′ ⊂
Pi+1,n with non-decreasing angular order. That is, either ρi(�

′) ≥ ρi(j + 1) ≥
· · · ≥ ρi(�) or ρi(�) ≤ ρi(j + 1) ≤ · · · ≤ ρi(�

′), with the added constraint that
chains cannot cross the vertical ray above pi. Each segment that does cross is split
into two pieces using two artificial points on the ray per crossing segment. The
points on the low segment portions have rank ρi = 1 and the identically placed
other points have rank ρi = n+1. These points do not increase the complexities
by more than a constant factor and are not mentioned further. Processing Pi+1,n

into its chains is done by first computing the slope and quadrant for each point
and storing that information with the points. Then the points are sorted by
angular order around pi and ρi(j) is computed as the rank of pj in the sorted list.
This step requires O(n log logn) time and linear space in the Word RAM model

324 S. Durocher et al.

[7] with linear extra space to store the slopes, quadrants and ranks. Creating
a list of chains is then feasable in O(n) time and space by storing the indices
of the beginning and end of each chain encountered while checking points pj in
increasing order from j = i+1 to j = n. Identifying all chains involves two steps.
First, all segments are checked to determine whether they intersect the vertical
ray, each in O(1) time. Such an intersection implies that the previous chain
should end and the segment that crosses the ray should be a new chain (note
that an artificial index of i + 1

2 can denote the point that crosses the vertical).
The second check is to determine whether the most recent pair of points has
a different angular rank ordering from the previous pair. If so, the previous
chain ended with the previous point and the new chain begins with the current
segment. Each chain is oriented from lowest angular index to highest angular
index.

Lemma 1. Consider any chain P�,�′ (w.l.o.g. assume � < �′). With respect to
pi the segment Si,j : (i < j ≤ n) can have at most one crossing strictly interior
to P�,�′ .

Proof. Case 1. Suppose ρi(�) = ρi(j) or ρi(j) = ρi(�
′). If � = n then no crossing

can exist because at least one end (or all) of Pk,� is collinear with Si,j and no
proper change in sidedness can occur in this chain to generate a crossing.

Case 2. Suppose ρi(j) /∈ [ρi(�), ρi(�
′)]. These cases have no crossings with

the chain because Pk,� is entirely on one side of Si,j . A ray exists between either
ρi(j) < ρi(�) or ρi(m) < ρi(j) that separates Pk,l from Si,j and thus no crossings
can occur between the segment and the chain.

Case 3. Suppose ρi(j) ∈ (ρi(�), ρi(�
′)). Assume that the chain causes at least

two crossings. Pick the lowest index segment for each of the two crossings that
are the fewest segments away from pi. By definition there are no crossings of
segments between these two segments. Label the point with lowest index of
these two segments pλ and the point with greatest index pλ′ . Define a possibly
degenerate cone Φ with a base pi and rays through pλ and pλ′ . This cone, by
definition, separates the segments from pλ+1 to pλ′−1 from the remainder of the
chain. Since this sub-chain cannot circle pi entirely there must exist one or more
points that have a maximum (or minimum) angular order, which contradicts the
definition of the chain. Hence there must be at most one crossing. ��

The algorithm for computing the crossing measure on a batch of segments de-
pends on the nature of P . If P is x-monotone, then the chains can be ordered by
increasing x-coordinates or equivalently by the greatest index among the points
that define them. In this case, a segment Si,j intersects any chain P�,�′ exactly
once if its x-coordinates are less than pj and ρi(j) ∈ (ρi(�), ρi(�

′)) (i.e., Case 3
of Lemma 1).

The algorithm represents each of the O(n) segments Si,j as a blue
point (j, ρi(j)) and each chain P�,�′ as two red points: the start
(max(�, �′),min(ρi(�), ρi(�

′))) and end (max(�, �′),max(ρi(�), ρi(�
′))). For every

starting red point that is dominated (strictly greater than in both coordinates)

Data Approximation of Point Sets 325

by a single blue point a crossing is generated only if the corresponding red point
is not dominated. The count of red start points dominated by each blue point
is an offline counting query solvable in O(n

√
logn) time and linear space using

the Word RAM model [4, Theorem 2]. The count of red end points dominated
by each blue point must then be subtracted from the start domination counts
using the same method. Correctness of the result follows from x-monotonicity
and the proof of Lemma 1.

pn = p25

ρi(13.5) = 1

ρi(13) = 25

pi = p1

(a) An example of the rays’ angular or-
der of vertices in Pi+1,n and the result-
ing chains

pi = qj

pi+1

I

II

III
IV

pi−1

(b) Regions around pj that determine a
crossing at pj

Fig. 3. Angular ordering with chains around pi and regions local to pi

The problem becomes more difficult if we assume that P is simple but not
necessarily monotonic in x. While chains describe angular order nicely, a non-
monotonic P does not imply a consistent ordering of chain boundaries. Thus,
queries will be of a specific nature: for a given point pj , we must determine how
many chains are closer to i, have a lower maximum index than j, and are within
the angular order (as with the monotonic example). We use the same strategy of
two sets of dominance queries as in the monotonic case. The difference is that,
instead of using the maximum index on a chain both for the chain’s location
within the polyline and its distance from pi, we precompute a distance ranking
of chains from pi as well as the maximum index. Then, the start and end of each
chain is represented as a three-dimensional red point.

Chains do not cross, and can only intersect at their endpoints, due to the non-
overlapping definition of chains and the simplicity of P . Therefore, to compute
the closeness of chains, we sweep a ray from pi, initially vertical, in increasing
ρi order (increasing angle). This defines a partial order on chains with respect
to their distance from pi. Using a topological sweep [12, p. 481] it is possible
to determine a unique order that preserves this partial ordering of chains. Since
there are O(n) chains and changes in neighbours defining the partial order occur
only at chain endpoints, there are O(n) edges in the partial order. This further

326 S. Durocher et al.

implies that O(n logn) time is required to determine the events in a sweep and
O(n) time to compute the topological ordering.Without loss of generality assume
that the chains closest to pi have a lower topological index. This is a traditional
Real RAM approach, and while a more efficient Word RAM approach could be
found, it would be unnecessary given that this is a preprocessing step. Computing
each batch of domination queries requires O(n log4/3 n) time and linear space
using a result of Chan and Pǎtraşcu [4, Corollary 3.2].

3.3 Counting Crossings Due to Neighbouring Approximation
Segments

We now address the two cases of a crossing generated by more than one segment
of Q. Suppose that pi = qj . Then there is an intersection between P and Q at
this point, and we must detect whether a change in sidedness accompanies this
intersection. Assume initially that P does not contain any consecutively collinear
segments; we will consider the other case later.

Table 1. Left, right, and collinear labels applied to beginning or end of a segment
at pj

Categorization Conditions for End of Sπ(j−1),i Conditions for Beginning of Si,π(j+1)

collinear (1)
qj−1 = pi−1 qj−1 = pi−1

qj+1 = pi+1 qj+1 = pi+1

left (2)
qj−1 ∈ I qj+1 ∈ I

(qj−1 ∈ III)∧ (pi−2 ∈ II) (qj+1 ∈ III)∧ (pi−2 ∈ II)
(qj−1 ∈ IV) ∧ (pi+2 ∈ II) (qj+1 ∈ IV) ∧ (pi+2 ∈ II)

right (3)
qj−1 ∈ II qj+1 ∈ II

(qj−1 ∈ III) ∧ (pi−2 ∈ I) (qj+1 ∈ III)∧ (pi−2 ∈ I)
(qj−1 ∈ IV) ∧ (pi+2 ∈ I) (qj+1 ∈ IV) ∧ (pi+2 ∈ I)

We begin with the non-degenerate case where (pi−1, pi+1, qi−1, qi+1) are all
distinct points (i.e., case 4 in Figure 2). Each of the points qj−1 and qj+1 can
be in one of four locations: in the cone left of (pi−1, pi, pi+1); in the cone right
of (pi−1, pi, pi+1); on the ray defined by Si,i−1; or on the ray defined by Si,i+1.
These are labelled in Figure 3(b) as regions I through IV , respectively. In Cases
III and IV it may also be necessary to consider the location of qi−1 or qj+1

with respect to Si−2,i−1 or Si+1,i+2.
For the degenerate case where the points may not be unique, if pi = qj and

pi+1 �= qj+1, then any change in sidedness is handled at pi and can be detected
by verifying the previous side from the polyline. If, however, pi+1 = qj+1, then
any change in sidedness will be counted further along in the approximation.

By examining these points it is possible to assign a sidedness to the end
of Sπ(j−1),π(j) and the beginning of Sπ(j),π(j+1). Note that the sidedness of a
point qj−1 with respect to Si−2,i−1 can be inferred from the sidedness of pi−2
with respect to Sπ(j−1),i−1, and that property is used in the case of regions

Data Approximation of Point Sets 327

III and IV . The assumed lack of consecutive collinear segments requires that
{pi−2, pi+2} ∈ I∪II and thus Table 1 is a complete list of the possible cases when
|P | ≥ 5. Cases involving III or IV where i /∈ [3, n− 2] are labelled collinear. We
discuss the consequences of this choice later.

A single crossing occurs if and only if the end of Sπ(j−1),i is on the left or right
of P , while the beginning of Si,π(j+1) is on the opposite side. Furthermore, the
end of any approximation Q1,j of P1,i that ends in Sπ(j−1),i inherits the same
labelling as the end of Sπ(j−1),i. This labelling is consistent with the statement
that the approximation last approached the polyline P from the side indicated by
the labelling. To maintain this invariant in the labelling of the end of polylines,
if Sπ(j−1),i is labelled as collinear then the approximation Q1,j needs to have the
same labelling as Q1,j−1. As a basis case, the approximations of P1,2 and P1,1

are the result of the identity operation so they must be collinear. Note that an
approximation labelled collinear has no crossings.

The constant number of cases in Table 1, and the constant complexity of
the sidedness test, imply that we can compute the number of crossings be-
tween a segment and a chain, and therefore the labelling for the segment, in
constant time. Let η(Q1,j, Sπ(j−1),i) represent the number of extra crossings
(necessarily 0 or 1) introduced at pj by joining Q1,j and Sπ(j−1),i. We have
χ(Q1,j , P1,i) = χ(Q1,j−1, P1,π(j−1)) + χ(Sπ(j−1),i, Pπ(j−1),i) + η(Q1,j , Sπ(j−1),i),
which lends itself to computing the optimal approximation incrementally using
dynamic programming.

It remains to consider the case of sequential collinear segments (i.e., case 5
in Figure 2). The polyline P ′ can be simplified into P by merging sequential
collinear segments, effectively removing points of P ′ without changing its shape.
When joining two segments where p′i = qj , p′i−1 and p′i+1 define the regions as
before but there is no longer a guarantee regarding non-collinearity of p′i−2 or
p′i+2 with respect to the other points. The points qj−1 and qj−2 are now collinear
if and only if either of them are entirely collinear to the relevant segments of
P . Our check for equality is changed to a check for equality or collinearity. We
examine the previous and next points of P ′ that are not collinear to the two
segments [p′i−1, p

′
i] and [p′i, p

′
i+1]. We find such points for every p′i in a prepro-

cessing step requiring linear time and space, by scanning the polyline for turns
and keeping two queues of previous and current collinear points.

4 Finding a Polyline That Maximizes the Crossing
Measure

This section describes our dynamic programming approach to computing a poly-
line Q that is a subset of P that maximizes the crossing measure χ(Q,P). Our
algorithm returns a subset of minimum cardinality k among all such maximiz-
ing subsets. We compute χ(Si,j , Pi,j) in batches, as described in the previous
section. Our algorithm maintains the best known approximations of P1,i for all
i ∈ [1, n] and each of the three possible labellings of the ends. We refer to these
paths as Qσ,i where σ describes the labelling at i: σ = 1 for collinear, σ = 2 for
left, or σ = 3 for right.

328 S. Durocher et al.

To reduce the space complexity we do not explicitly maintain the (potentially
exponential-size) set of all approximations Qσ,i. Instead, for each approximation
corresponding to (σ, i) we maintain: χ(Qσ,i, P1,i) (initially zero); the size of the
approximation found, |Qσ,i| (initially n+1); the starting index of the last segment
added, βσ,i (initially zero); and the end labelling of the best approximation to
which the last segment was connected, τσ,i (initially zero). The initial values
described represent the fact that no approximation is yet known. The algorithm
begins by setting the values for the optimal identity approximation for P1,1 to
the following values (note σ = 1):

χ(Q1,1, P1,1) = 0, |Q1,1| = 1, β1,1 = 1, τ1,1 = 1.

A total of n − 1 iterations are performed, one for each i ∈ [1, n − 1], where
for each of a batch of segments Si,j : i < j ≤ n the algorithm considers a
possible approximation ending in that segment. Each iteration begins with the
set of approximations {∀σ,Qσ,� : � ≤ i} being optimal, with maximal values of
χ(Qσ,�, P1,�) and minimum size |Qσ,�| for each of the specified σ and � combina-
tions. The iteration proceeds to calculate the crossing numbers of all segments
starting at i and ending at a later index, {χ(Si,j , Pi,j)|j ∈ (i, n]}, using the
method from Section 3. For each of the segments Si,j we compute the sidedness
of both the end at j (σ′j) and the start at i (υ′j). Using υ′j and all values of
{σ : βσ,i ≥ 0} it is possible to compute η(Qσ,i, Si,j) using just the labellings
of the two inputs (see Table 2). It is also possible to determine the labelling of
the end of the concatenated polyline ψ(σ, σ′j) using the labelling of the end of
the previous polyline σ and the end of the additional segment σ′j (also shown in
Table 2).

Table 2. Crossings η(βσ,i, υ
′
j) due to concatenation, and the end labelling ψ(σ, σ′

j) of
the polyline

η(βσ,i, υ
′
j) βσ,i 1 2 3

υ′
j

1 0 0 0
2 0 0 1
3 0 1 0

ψ(σ, σ′
j) σ 1 2 3

σ′
j

1 1 2 3
2 2 2 2
3 3 3 3

With these values computed, the current value of χ(Qψ(σ,σ′
j),j

, P1,j) is com-

pared to χ(Qσ,i, P1,j) + χ(Si,j , Pi,j) + η(βσ,i, υ
′
j) and if the new approximation

has a greater or equal number of crossings, then we compute:

χ(Qψ(σ,σ′
j),j

, P1,j) = χ(Qσ,i) + χ(Si,j , Pi,j) + η(βσ,i, υ
′
j),

|Qψ(σ,σ′
j),j
| = |Qσ,i|+ 1, βψ(σ,σ′

j),j
= i, τψ(σ,σ′

j),j
= σ.

Correctness of this algorithm follows from the fact that each possible segment
ending at i + 1 is considered before the (i + 1)-st iteration. For each segment
and each labelling, at least one optimal polyline with that labelling and leading

Data Approximation of Point Sets 329

to the beginning of that segment must have been considered, by the inductive
assumption. Since the number of crossings in a polyline depends only on the
crossings within the segments and the labelings where the segments meet, the
inductive hypothesis is maintained through the (i+1)-st iteration. It is also triv-
ially true in the basis case i = 1. With the exception of computing the crossing
number for all of the segments, the algorithm requires O(n) time and space to
update the remaining information in each iteration. The final post-processing
step is to determine σmax = argmaxσ χ(Qσ,n), finding the approximation that
has the best crossing number. We use the β and τ information to reconstruct
Qσmax,n in O(k) time.

The algorithm requires O(n) space in each iteration and O(n log4/3 n) time
per iteration to compute crossings of each batch of segments dominates the
remaining time per iteration. Thus for simple polylines,Qσmax,n is computable in

O(n2 log4/3 n) time and O(n) space and for monotonic polylines it is computable
in O(n2

√
logn) time and O(n) space.

5 Results

Here we present results of applying our method to approximate x-monotonic
data with and without noise in a parameter-free fasion.

Our first point set is given by p = (x, x2 + 10 · sinx) for 101 equally spaced
points x ∈ [−10, 10]. The maximal-crossing approximation for this point set
has 5 points and 7 crossings. We generated a second point set by adding stan-
dard normal noise generated in Matlab with randn to the first point set. The
maximal-crossing approximation of the data with standard normal noise has 19
points and a crossing number of 54. We generated a third point set from the
first by adding heavy-tailed noise consisting of standard normal noise for 91
data points and standard normal noise multiplied by ten for ten points selected
uniformly at random without replacement. The maximal-crossing approximation
of the signal contaminated by heavy-tailed noise has 20 points and a crossing
number of 50, which is quite comparable to the results obtained with the uncon-
taminated normal noise. These results are shown in Figure 4.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−20

0

20

40

60

80

100

120

−10 −8 −6 −4 −2 0 2 4 6 8 10
−20

0

20

40

60

80

100

120

−10 −8 −6 −4 −2 0 2 4 6 8 10
−20

0

20

40

60

80

100

120

Fig. 4. The optimal crossing path for p = (x, x2 + 10 · sin x), without noise, with
standard normal noise and with heavy-tailed (mixed gaussian) noise

330 S. Durocher et al.

As can be seen in Figure 4, the crossing-maximization procedure gives a much
closer approximation to the signal when there is some nonzero amount of noise
present to provide opportunities for crossings. It is reasonable to conclude that,
in the case of a clean signal, we could obtain a more useful approximation by
artificially adding some noise centered at zero before computing our maximal-
crossing polyline. However, to do so requires choosing an appropriate distribution
for the added noise, and we wish to keep our procedure free of any parameters.

6 Discussion and Conclusions

The maximal-crossing approximation is robust to small changes of x- or y-
coordinates of any pi when the points are in general position. This robustness
can be seen by considering that the crossing number of every approximation de-
pends on the arrangement of lines induced by the line segments, and any point
in general position can be moved some distance ε without affecting the combina-
torial structure of the arrangement. The approximation is also invariant under
affine transformations because these too do not modify the combinatorial struc-
ture of the arrangement. For x-monotonic polylines, the approximation possesses
another useful property: the more a point is an outlier, the less likely it is to be
included in the approximation. To see this, consider increasing the y-coordinate
of any point pi to infinity while x-monotonicity remains unchanged. In the limit,
this will remove pi from the approximation. That is, if pi is initially in the ap-
proximation, then once pi moves sufficiently upward, the two segments of the
approximation adjacent to pi cease to cross any segments of P .

An additional improvement in speed is achievable by bounding sequence
lengths. If a parameter m is chosen in advance such that we require that the
longest segment considered can span at most m−2 vertices, with the appropriate
changes, the algorithm can then find the minimum sized approximation condi-
tional on maximum crossing number and having a longest segment of length at
most m in O(nm log4/3 m) time for simple polylines or O(nm

√
logm) time for

monotonic polylines, both with linear space. As it seems natural for long seg-
ments to be rare in good approximations, setting m to a relatively small value
should still lead to good approximations while significantly improving speed.

Acknowledgements. The authors are grateful to Timothy Chan for discussions
on the complexity of our solution in the Word RAM model that helped reduce
the running times.

References

1. Agarwal, P.K., Har-Peled, S., Mustafa, N.H., Wang, Y.: Near-Linear Time Approx-
imation Algorithms for Curve Simplification. In: Möhring, R.H., Raman, R. (eds.)
ESA 2002. LNCS, vol. 2461, pp. 29–202. Springer, Heidelberg (2002)

2. Agarwal, P.K., Varadarajan, K.R.: Efficient algorithms for approximating polygo-
nal chains. Discrete and Computational Geometry 23, 273–291 (2000)

Data Approximation of Point Sets 331

3. Alt, H., Guibas, L.J.: Discrete geometric shapes: Matching, interpolation, and ap-
proximation. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Ge-
ometry, pp. 121–153. Elsevier (2000)

4. Chan, T.M., Pǎtraşcu, M.: Counting inversions, offline orthogonal range counting
and related problems. In: SODA, pp. 161–173 (2010)

5. Chan, W.S., Chin, F.: Approximation of Polygonal Curves with Minimum Number
of Line Segments. In: Ibaraki, T., Iwama, K., Yamashita, M., Inagaki, Y., Nishizeki,
T. (eds.) ISAAC 1992. LNCS, vol. 650, pp. 378–387. Springer, Heidelberg (1992)

6. Douglas, D., Peucker, T.: Algorithms for the reduction of points required to rep-
resent a digitised line or its caricature. The Canadian Cartographer 10, 112–122
(1973)

7. Han, Y.: Deterministic sorting in o(n log log n) time and linear space. J. of Algo-
rithms 50, 96–105 (2004)

8. Han, Y., Thorup, M.: Integer sorting in o(n
√
log log n) expected time and linear

space. In: FOCS, pp. 135–144 (2002)
9. Hershberger, J., Snoeyink, J.: Cartographic line simplification and polygon csg

formulae in o(n log∗ n) time. Computational Geometry: Theory and Applica-
tions 11(3-4), 175–185 (1998)

10. Imai, H., Iri, M.: Polygonal approximation of curve-formulations and algorithms.
In: Toussaint, G.T. (ed.) Computational Morphology, pp. 71–86. North-Holland
(1988)

11. Melkman, A., O’Rourke, J.: On polygonal chain approximation. In: Toussaint, G.T.
(ed.) Computational Morphology, pp. 87–95. North-Holland (1988)

12. Skiena, S.S.: The Algorithm Design Manual, 2nd edn. Springer (2008)

Optimal Point Movement for Covering Circular

Regions�

Danny Z. Chen1, Xuehou Tan2, Haitao Wang3,��, and Gangshan Wu4

1 Department of Computer Science and Engineering
University of Notre Dame, Notre Dame, IN 46556, USA

dchen@cse.nd.edu
2 Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan

tan@wing.ncc.u-tokai.ac.jp
3 Department of Computer Science

Utah State University, Logan, UT 84322, USA
haitao.wang@usu.edu

4 State Key Lab. for Novel Software Technology
Nanjing University, Hankou Road 22, Nanjing 210093, China

gswu@nju.edu.cn

Abstract. Given n points in a circular region C in the plane, we study
the problem of moving these points to the boundary of C to form a reg-
ular n-gon such that the maximum of the Euclidean distances traveled
by the points is minimized. These problems find applications in mobile
sensor barrier coverage of wireless sensor networks. The problem further
has two versions: the decision version and optimization version. In this
paper, we present an O(n log2 n) time algorithm for the decision version
and an O(n log3 n) time algorithm for the optimization version. The pre-
viously best algorithms for these two problem versions take O(n3.5) time
and O(n3.5 log n) time, respectively. A by-product of our techniques is
an algorithm for dynamically maintaining the maximum matching of a
circular convex bipartite graph; our algorithm performs each vertex in-
sertion or deletion on the graph in O(log2 n) time. This result may be
interesting in its own right.

1 Introduction

Given n points in a circular region C in the plane, we study the problem of
moving these points to the boundary of C to form a regular n-gon such that
the maximum of the Euclidean distances traveled by the points is minimized.
Let |ab| denote the Euclidean length of the line segment with two endpoints a
and b. Let C be a circular region in the plane. Given a set of n points, S =
{A0, A1, . . . , An−1}, in C (i.e., in the interior or on the boundary of C), we wish

� Chen’s research was supported in part by NSF under Grant CCF-0916606. Work by
Tan was partially supported by Grant-in-Aid (MEXT/JPSP KAKENHI 23500024)
for Scientific Research from Japan Society for the Promotion of Science.

�� Corresponding author.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 332–341, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Optimal Point Movement for Covering Circular Regions 333

to move all n points to n positions A′0, A
′
1, . . . , A

′
n−1 on the boundary of C to

form a regular n-gon, such that the maximum Euclidean distance traveled by
the points, i.e., max0≤i≤n−1{|AiA

′
i|}, is minimized.

Further, given a value λ ≥ 0, the decision version of the problem is to deter-
mine whether it is possible to move all points of S to the boundary of C to form
a regular n-gon such that the distance traveled by each point is no more than λ.
For discrimination, we refer to the original problem as the optimization version.

As discussed in [1], the problem finds applications in mobile sensor barrier
coverage of wireless sensor networks [1,5,14]. Bhattacharya et al. [1] proposed
an O(n3.5) time algorithm for the decision version and an O(n3.5 logn) time
algorithm for the optimization version, where the decision algorithm uses a brute
force method and the optimization algorithm is based on a parametric search
approach [8,16]. Recently, it was claimed in [18] that these two problem versions
were solvable in O(n2.5) time and O(n2.5 logn) time, respectively. However, the
announced algorithms in [18] contain errors. In this paper, we solve the decision
version in O(n log2 n) time and the optimization version in O(n log3 n) time,
which significantly improve the previous results.

A by-product of our techniques that may be interesting in its own right is an al-
gorithm for dynamically maintaining the maximum matchings of circular convex
bipartite graphs. Our algorithm performs each (online) vertex insertion or dele-
tion on an n-vertex circular convex bipartite graph in (deterministic) O(log2 n)
time. This matches the performance of the best known dynamic matching al-
gorithm for convex bipartite graphs [3]. Note that convex bipartite graphs are a
subclass of circular convex bipartite graphs [15].

In fact, the optimization version is equivalent to finding a regular n-gon on the
boundary of C such that the bottleneck matching distance between the points in
S and the vertices of the n-gon is minimized. The bottleneck matching problems
have been studied before, e.g., [4,10,11]. Another related work given by Bremner
et al. [2] concerns two sets of points on a cycle (neither set of points have to
form a regular n-gon) and one wants to rotate one set of points to minimize the
matching distance between the two sets.

To distinguish from normal points in the plane, henceforth in the paper, we
refer to each point Ai ∈ S as a sensor.

2 The Decision Version

For simplicity, we assume the radius of the circle C is 1. Denote by ∂C the bound-
ary of C. Let λC be the maximum distance traveled by the sensors in S in an opti-
mal solution for the optimization problem, i.e., λC = min{max0≤i≤n−1{|AiA

′
i|}}.

Since the sensors are all in C, λC ≤ 2. Given a value λ, we aim to determine
whether λC ≤ λ. We present an O(n log2 n) time algorithm.

We first discuss some concepts. A bipartite graph G = (V1, V2, E) with |V1| =
O(n) and |V2| = O(n) is convex on the vertex set V2 if there is a linear ordering
on V2, say, V2 = {v0, v1, . . . , vn−1}, such that if any two edges (v, vj) ∈ E and
(v, vk) ∈ E with vj , vk ∈ V2, v ∈ V1, and j < k, then (v, vl) ∈ E for all j ≤ l ≤ k.

334 D.Z. Chen et al.

In other words, for any vertex v ∈ V1, the subset of vertices in V2 connected
to v forms an interval on the linear ordering of V2. For any v ∈ V1, suppose
the subset of vertices in V2 connected to v is {vj, vj+1, . . . , vk}; then we denote
begin(v ,G) = j and end(v ,G) = k . Although E may have O(n2) edges, it
can be represented implicitly by specifying begin(v ,G) and end(v ,G) for each
v ∈ V1. A vertex insertion on G is to insert a vertex v into V1 with an edge
interval [begin(v ,G), end(v ,G)] and implicitly connect v to every vi ∈ V2 with
begin(v ,G) ≤ i ≤ end(v ,G). Similarly, a vertex deletion on G is to delete a
vertex v from V1 as well as all its adjacent edges.

A bipartite graph G = (V1, V2, E) is circular convex on the vertex set V2 if
there is a circular ordering on V2 such that for each vertex v ∈ V1, the subset
of vertices in V2 connected to v forms a circular-arc interval on that ordering.
Precisely, suppose such a clockwise circular ordering of V2 is v0, v1, . . . , vn−1.
For any two edges (v, vj) ∈ E and (v, vk) ∈ E with vj , vk ∈ V2, v ∈ V1, and
j < k, either (v, vl) ∈ E for all j ≤ l ≤ k, or (v, vl) ∈ E for all k ≤ l ≤ n − 1
and (v, vl) ∈ E for all 0 ≤ l ≤ j. For each v ∈ V1, suppose the vertices of V2

connected to v are from vj to vk clockwise on the ordering, then begin(v ,G) and
end(v ,G) are defined to be j and k, respectively. Vertex insertions and deletions
on G are defined similarly.

A maximum matching in a convex bipartite graph can be found in O(n) time
[12,13,17]. The same time bound holds for a circular convex bipartite graph
[15]. Brotal et al. [3] designed a data structure for dynamically maintaining the
maximum matchings of a convex bipartite graph that can support each vertex
insertion or deletion in (deterministic) O(log2 n) amortized time. For circular
convex bipartite graphs, however, to our best knowledge, we are not aware of
any previous work on dynamically maintaining their maximum matchings.

The main idea of our algorithm for determining whether λC ≤ λ is as follows.
First, we model the problem as finding the maximum matchings in a sequence of
O(n) circular convex bipartite graphs, which is further modeled as dynamically
maintaining the maximum matching of a circular convex bipartite graph under
a sequence of O(n) vertex insertion and deletion operations. Second, we develop
an approach for solving the latter problem.

2.1 The Problem Modeling

Our goal is to determine whether λC ≤ λ. Let P be an arbitrary regular n-gon
with its vertices P0, P1, . . . , Pn−1 ordered clockwise on ∂C. We first consider
the following sub-problem: Determine whether we can move all sensors to the
vertices of P such that the maximum distance traveled by the sensors is at most
λ. Let GP be the bipartite graph between the sensors A0, . . . , An−1 and the
vertices of P , such that a sensor Ai is connected to a vertex Pj in GP if and
only if |AiPj | ≤ λ. The following lemma is obvious.

Lemma 1. The bipartite graph GP is circular convex.

To solve the above sub-problem, it suffices to compute a maximum matching M
in GP [15]. If M is a perfect matching, then the answer to the sub-problem is

Optimal Point Movement for Covering Circular Regions 335

“yes”; otherwise, the answer is “no”. Thus, the sub-problem can be solved in
O(n) time (note that the graph GP can be constructed implicitly in O(n) time,
after O(n log n) time preprocessing). If the answer to the sub-problem is “yes”,
then we say that P is feasible with respect to the value λ.

If P is feasible, then clearly λC ≤ λ. If P is not feasible, however, λC > λ
does not necessarily hold, because P may not be positioned “right” (i.e., P may
not be the regular n-gon in an optimal solution of the optimization version). To
further decide whether λC ≤ λ, we rotate P clockwise on ∂C by an arc distance
at most 2π/n. Since the perimeter of C is 2π, the arc distance between any
two neighboring vertices of P is 2π/n. A simple yet critical observation is that
λC ≤ λ holds if and only if during the rotation of P , there is a moment (called a
feasible moment) at which P becomes feasible with respect to λ. Thus, our task
is to determine whether a feasible moment exists during the rotation of P .

Consider the graph GP . For each sensor Ai, let E(Ai) = {Pj, Pj+1, . . . , Pk}
be the subset of vertices of P connected to Ai in GP , where the indices of the
vertices of P are taken as module by n. We assume that E(Ai) does not contain
all vertices of P (otherwise, it is trivial). Since the arc distance from Pj−1 to Pj is
2π/n, during the (clockwise) rotation of P , there must be a moment after which
Pj−1 becomes connected to Ai, and we say that Pj−1 is added to E(Ai); similarly,
there must be a moment after which Pk becomes disconnected to Ai, and we say
that Pk is removed from E(Ai). Note that these are the moments when the edges
of Ai (and thus the graph GP) are changed due to the rotation of P . Also, note
that during the rotation, all vertices in E(Ai)\{Pk} remain connected to Ai and
all vertices in P \{E(Ai)∪{Pj−1}} remain disconnected to Ai. Hence throughout
this rotation, there are totally n additions and n removals on the graph GP . If
we sort all these additions and removals based on the time moments when they
occur, then we obtain a sequence of 2n circular convex bipartite graphs, and
determining whether there exists a feasible moment is equivalent to determining
whether there is a graph in this sequence that has a perfect matching. With the
O(n) time maximum matching algorithm for circular convex bipartite graphs of
n vertices in [15], a straightforward solution for determining whether there is a
feasible moment would take O(n2) time.

To do better, we further model the problem as follows. Consider the addition
of Pj−1 to E(Ai). This can be done by deleting the vertex of GP corresponding to
Ai and then inserting a new vertex corresponding to Ai with its edges connecting
to the vertices in {Pj−1}∪E(Ai). The removal of Pk from E(Ai) can be handled
similarly. Thus, each addition or removal on E(Ai) can be transformed to one
vertex deletion and one vertex insertion on GP . If we sort all vertex updates
(i.e., insertions and deletions) by the time moments when they occur, then the
problem of determining whether there is a feasible moment is transformed to
determining whether there exists a perfect matching in a sequence of vertex
updates on the graph GP . In other words, we need to dynamically maintain the
maximum matching in a circular convex bipartite graph to support a sequence
of 2n vertex insertions and 2n vertex deletions. This problem is handled in the
next subsection, where we treat all vertex updates in an online fashion.

336 D.Z. Chen et al.

2.2 Dynamic Maximum Matching

Let G = (V1, V2, E) with |V1| = O(n) and |V2| = O(n) be a circular convex bipar-
tite graph on the vertex set V2, i.e., the vertices of V2 connected to each vertex in
V1 form a circular-arc interval on the sequence of the vertex indices of V2. Sup-
pose V2 = {v0, v1, . . . , vn−1} is ordered clockwise. Recall that a vertex insertion
on G is to insert a vertex v into V1 with an edge interval [begin(v ,G), end(v ,G)]
such that v is (implicitly) connected to all vertices of V2 from begin(v ,G) clock-
wise to end(v ,G). A vertex deletion is to delete a vertex v from V1 and all its
adjacent edges (implicitly). Our task is to design an algorithm for maintaining
the maximum matching of G to support such update operations (i.e., vertex in-
sertions and deletions) efficiently. We present an algorithm that takes O(log2 n)
time in the worst case for each update operation.

Our approach can be viewed as a combination of the data structure given
by Brodal, Georgiadis, Hansen, and Katriel [3] for dynamically maintaining the
maximum matching in a convex bipartite graph and the linear time algorithm
given by Liang and Blum [15] for computing a maximum matching in a circular
convex bipartite graph. Denote by M(G) the maximum matching in G. We have
the following Theorem 1. Due to the space limit, our algorithm for Theorem 1
is omitted and can be found in the full paper [6].

Theorem 1. A data structure on a circular convex bipartite graph
G = (V1, V2, E) can be built in O(n log2 n) time for maintaining its maximum
matching M(G) so that each online vertex insertion or deletion on V1 can be
done in O(log2 n) time in the worst case. After each update operation, the value
|M(G)| can be obtained in O(1) time and the maximum matching M(G) can be
reported in O(|M(G)|) time.

Recall that we have reduced the problem of determining whether λC ≤ λ to
dynamically maintaining the maximum matching in a circular convex bipartite
graph with a sequence of 2n vertex insertions and 2n vertex decisions. We deter-
mine whether λC ≤ λ as follows. After each update operation, we check whether
|M(G)| = n, and if this is true, then we report λC ≤ λ and halt the algorithm. If
all 4n updates have been processed but it is always |M(G)| < n, then we report
λC > λ. Based on Theorem 1, we have the result below.

Theorem 2. Given a value λ, we can determine whether λC ≤ λ in O(n log2 n)
time for the decision version.

3 The Optimization Version

In this section, we present an O(n log3 n) time algorithm for the optimization
version. The main task is to compute the value λC .

Let o be the center of C. For simplicity of discussion, we assume that no sensor
lies at o. Denote by Xi and Yi the two points on ∂C which are closest and farthest
to each sensor Ai, respectively. Clearly, Xi and Yi are the two intersection points
of ∂C with the line passing through Ai and the center o of C (see Figure 1(a)).
The lemma below has been proved in [18].

Optimal Point Movement for Covering Circular Regions 337

Ai

Y
i

Xi
A'i

C

A i

A
j

A'
j

A'
i

C

(a) (b)

o o

Fig. 1. (a) The points Xi and Yi on ∂C for Ai; (b) |AiA
′
i| = |AjA

′
j |

Lemma 2. [18] Suppose an optimal solution for the optimization problem is
achieved with λC = |AiA

′
i| for some i ∈ {0, . . . , n − 1}. Then either A′i is the

point Xi, or there is another sensor Aj (j �= i) such that λC = |AjA
′
j | also holds.

In the latter case, any slight rotation of the regular n-gon that achieves λC in
either direction causes the value of λC to increase (i.e., it makes one of the two
distances |AiA

′
i| and |AjA

′
j | increase and the other one decrease).

The points on ∂C satisfying the conditions specified in Lemma 2 may be con-
sidered as those defining candidate values for λC , i.e., they can be considered
as some vertices of possible regular n-gons on ∂C in an optimal solution. The
points Xh of all sensors Ah (0 ≤ h ≤ n − 1) can be easily determined. Define
D1 = ∪n−1

h=0{|AhXh|}, which can be computed in O(n) time. But, the challenging
task is to handle all the pairs (Ai, Aj) (i �= j) such that the distance from Ai to
a vertex of a regular n-gon is equal to the distance from Aj to another vertex
of that n-gon and a slight rotation of the n-gon in either direction monotoni-
cally increases one of these two distances but decreases the other. We refer to
such distances as the critical equal distances. Denote by D2 the set of all critical
equal distances. Let D = D1 ∪ D2. By Lemma 2, λC ∈ D. Thus, if D is some-
how available, then λC can be determined by using our algorithm in Theorem
2 in a binary search process. Since D1 is readily available, the key is to deal
with D2 efficiently. An easy observation is max0≤h≤n−1 |AhXh| ≤ λC . We can
use the algorithm in Theorem 2 to check whether λC ≤ max0≤h≤n−1 |AhXh|,
after which we know whether λC = max0≤h≤n−1 |AhXh|. Below, we assume
max0≤h≤n−1 |AhXh| < λC (otherwise, we are done). Thus, we only need to fo-
cus on finding λC from the set D2.

It has been shown in [18] that |D2| = O(n3). Of course, we need to avoid
computing D2. To do so, first we determine a subset D′2 of D2 such that λC ∈
D′2 but with |D′2| = O(n2). Furthermore, we do not compute D′2 explicitly.
Specifically, our idea is as follows. We show that the elements of D′2 are the y-
coordinates of a subset of intersection points among a set F of O(n) functional
curves in the plane such that each curve is x-monotone and any two such curves
intersect in at most one point at which the two curves cross each other. (Such a
set of curves is sometimes referred to as pseudolines in the literature.) Let AF

338 D.Z. Chen et al.

be the arrangement of F and |AF | be the number of vertices of AF . Without
computing AF explicitly, we will generalize the techniques in [9] to compute the
k-th highest vertex ofAF for any integer k with 1 ≤ k ≤ |AF | in O(n log2 n) time.
Consequently, with Theorem 2, the value λC can be computed in O(n log3 n)
time. The details are given below.

Let P be an arbitrary regular n-gon with its vertices P0, P1, . . ., Pn−1 clock-
wise on ∂C. Suppose the distances of all the pairs between a sensor and a vertex
of P are d1 ≤ d2 ≤ · · · ≤ dn2 in sorted order. Let d0 = 0. Clearly, d0 < λC ≤ dn2

(the case of λC = 0 is trivial). Hence, there exists an integer k with 0 ≤ k < n2

such that λC ∈ (dk, dk+1]. One can find dk and dk+1 by first computing all these
n2 distances explicitly and then utilizing our algorithm in Theorem 2 in a binary
search process. But that would take Ω(n2) time. The following lemma gives a
faster procedure without having to compute these n2 distances explicitly.

Lemma 3. The two distances dk and dk+1 can be obtained in O(n log3 n) time.

Proof. We apply a technique, called binary search in sorted arrays, as follows.
Given M arrays Ai, 1 ≤ i ≤M , each containing O(N) elements in sorted order,
the task is to find a certain unknown element δ ∈ A = ∪M

i=1Ai. Further, there
is a “black-box” decision procedure Π available, such that given any value a, Π
reports a ≤ δ or a > δ in O(T) time. An algorithm is given in [7] that can find
the sought element δ in O((M + T) log(NM)) time. We use this technique to
find dk and dk+1, as follows.

Consider a sensor Ai. Let S(Ai) be the set of distances between Ai and all
vertices of P . In O(log n) time, we can implicitly partition S(Ai) into two sorted
arrays in the following way. By binary search, we can determine an index j such
that Xi lies on the arc of ∂C from Pj to Pj+1 clockwise (the indices are taken as
module by n). Recall that Xi is the point on ∂C closest to Ai. If a vertex of P is
on Xi, then define j to be the index of that vertex. Similarly, we can determine
an index h such that Yi (i.e., the farthest point on ∂C to Ai) lies on the arc from
Ph to Ph+1 clockwise. If a vertex of P is on Yi, then define h to be the index
of that vertex. Both j and h can be determined in O(log n) time, after which
we implicitly partition S(Ai) into two sorted arrays: One array consists of all
distances from Ai to Pj , Pj−1, . . . , Ph+1, and the other consists of all distances
from Ai to Pj+1, Pj+2, . . . , Ph (again, all indices are taken as module by n).
Note that both arrays are sorted increasingly and each element of them can be
obtained in O(1) time by using its index in the corresponding array.

Thus, we obtain 2n sorted arrays (represented implicitly) for all n sensors
in O(n log n) time, and each array has no more than n elements. Therefore, by
using the technique of binary search in sorted arrays, with our algorithm in
Theorem 2 as the black-box decision procedure, both dk and dk+1 can be found
in O(n log3 n) time. The lemma thus follows.

By applying Lemma 3, we have λC ∈ (dk, dk+1]. Below, for simplicity of discus-
sion, we assume λC �= dk+1. Thus λC ∈ (dk, dk+1). Since max0≤h≤n−1 |AhXh| <
λC , we redefine dk := max{dk,max0≤h≤n−1 |AhXh|}. We still have λC ∈
(dk, dk+1). Let D′2 be the set of all critical equal distances in the range (dk, dk+1).

Optimal Point Movement for Covering Circular Regions 339

Then λC ∈ D′2. We show below that |D′2| = O(n2) and λC can be found in
O(n log3 n) time without computing D′2 explicitly.

Suppose we rotate the regular n-gon P = (P0, P1, . . . , Pn−1) on ∂C clockwise
by an arc distance 2π/n (this is the arc distance between any two adjacent
vertices of P). Let Ai(Ph(t)) denote the distance function from a sensor Ai to
a vertex Ph of P with the time parameter t during the rotation. Clearly, the
function Ai(Ph(t)) increases or decreases monotonically, unless the interval of
∂C in which Ph moves contains the point Xi or Yi; if that interval contains Xi

or Yi, then we can further divide the interval into two sub-intervals at Xi or Yi,
such that Ai(Ph(t)) is monotone in each sub-interval. The functions Ai(Ph(t)),
for all Ph’s of P , can thus be put into two sets Si1 and Si2 such that all functions
in Si1 monotonically increase and all functions in Si2 monotonically decrease.
Let m = |Si1|. Then m ≤ n. Denote by di1 < di2 < · · · < dim the sorted sequence
of the initial values of the functions in Si1. Also, let di0 = 0 and dim+1 = 2 (recall
that the radius of C is 1). It is easy to see that the range (dk, dk+1) obtained
in Lemma 3 is contained in [dij , d

i
j+1] for some 0 ≤ j ≤ m. The same discussion

can be made for the distance functions in the set Si2 as well.
Since we rotate P by only an arc distance 2π/n, during the rotation of P ,

each sensor Ai can have at most two distance functions (i.e., one decreasing
and one increasing) whose values may vary in the range (dk, dk+1). We can
easily identify these at most 2n distance functions for the n sensors in O(n log n)
time. Denote by F ′ the set of all such distance functions. Clearly, all critical
equal distances in the range (dk, dk+1) can be generated by the functions in F ′

during the rotation of P . Because every such distance function either increases
or decreases monotonically during the rotation of P , each pair of one increasing
function and one decreasing function can generate at most one critical equal
distance during the rotation. (Note that by Lemma 2, a critical equal distance
cannot be generated by two increasing functions or two decreasing functions.)
Since |F ′| ≤ 2n, the total number of critical equal distances in (dk, dk+1) is
bounded by O(n2), i.e., |D′2| = O(n2). For convenience of discussion, since we are
concerned only with the critical equal distances in (dk, dk+1), for each function
in F ′, we restrict it to the range (dk, dk+1) only.

Let the time t be the x-coordinate and the function values be the y-coordinates
of the plane. Then each function in F ′ defines a curve segment that lies in the
strip of the plane between the two horizontal lines y = dk and y = dk+1. We refer
to a function in F ′ and its curve segment interchangeably, i.e., F ′ is also a set
of curve segments. Clearly, a critical equal distance generated by an increasing
function and a decreasing function is the y-coordinate of the intersection point
of the two corresponding curve segments. Note that every function in F ′ has a
simple mathematical description. Below, we simply assume that each function in
F ′ is of O(1) complexity. Thus, many operations on them can each be performed
in O(1) time, e.g., computing the intersection of a decreasing function and an
increasing function.

The set D′2 can be computed explicitly in O(n2) time, after which λC can
be easily found. Below, we develop a faster solution without computing D′2

340 D.Z. Chen et al.

explicitly, by utilizing the property that each element of D′2 is the y-coordinate
of the intersection point of a decreasing function and an increasing function in
F ′ and generalizing the techniques in [9].

A slope selection algorithm for a set of points in the plane was given in [9].
We will extend this approach to help solve our problem. To this end, we need
the following lemma, whose proof can be found in the full paper [6].

Lemma 4. For any two increasing (resp., decreasing) functions in F ′, if the
curve segments defined by them are not identical to each other, then the two
curve segments intersect in at most one point and they cross each other at their
intersection point (if any).

We further extend every curve segment in F ′ into an x-monotone curve, as
follows. For each increasing (resp., decreasing) curve segment, we extend it by
attaching two half-lines with slope 1 (resp., −1) at the two endpoints of that
curve segment, respectively, such that the resulting new curve is still monoton-
ically increasing (resp., decreasing). Denote the resulting new curve set by F .
Obviously, an increasing curve and a decreasing curve in F intersect once and
they cross each other at their intersection point. For any two different increasing
(resp., decreasing) curves in F , by Lemma 4 and the way we extend the corre-
sponding curve segments, they can intersect in at most one point and cross each
other at their intersection point (if any). In other words, F can be viewed as a
set of pseudolines. Let AF be the arrangement of F . Observe that the elements
in D′2 are the y-coordinates of a subset of the vertices of AF . Since λC ∈ D′2,
λC is the y-coordinate of a vertex of AF . Denote by |AF | the number of vertices
in AF . Of course, we do not want to compute the vertices of AF explicitly. By
generalizing some techniques in [9], we have the following lemma, whose proof
can be found in the full paper [6].

Lemma 5. The value |AF | can be computed in O(n log n) time. Given an integer
k with 1 ≤ k ≤ |AF |, the k-th highest vertex of AF can be found in O(n log2 n)
time.

Recall that λC is the y-coordinate of a vertex ofAF . Our algorithm for computing
λC works as follows. First, compute |AF |. Next, find the (|AF |/2)-th highest
vertex of AF , and denote its y-coordinate by λm. Determine whether λC ≤ λm

by the algorithm in Theorem 2, after which one half of the vertices of AF can
be pruned away. We apply the above procedure recursively on the remaining
vertices of AF , until λC is found. Since there are O(log n) recursive calls to this
procedure, each of which takes O(n log2 n), the total time for computing λC is
O(n log3 n).

Theorem 3. The optimization version is solvable in O(n log3 n) time.

References

1. Bhattacharya, B., Burmester, B., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal
movement of mobile sensors for barrier coverage of a planar region. Theoretical
Computer Science 410(52), 5515–5528 (2009)

Optimal Point Movement for Covering Circular Regions 341

2. Bremner, D., Chan, T., Demaine, E., Erickson, J., Hurtado, F., Iacono, J., Langer-
man, S., Taslakian, P.: Necklaces, convolutions, and X + Y. In: Proc. of the 14th
conference on Annual European Symposium on Algorithms, pp. 160–171 (2006)

3. Brodal, G.S., Georgiadis, L., Hansen, K.A., Katriel, I.: Dynamic Matchings in
Convex Bipartite Graphs. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS,
vol. 4708, pp. 406–417. Springer, Heidelberg (2007)

4. Chang, M., Tang, C., Lee, R.: Solving the Euclidean bottleneck matching problem
by k-relative neighborhood graphs. Algorithmica 8, 177–194 (1992)

5. Chen, A., Kumar, S., Lai, T.: Designing localized algorithms for barrier coverage.
In: Proc. of the 13th Annual ACM International Conference on Mobile Computing
and Networking, pp. 63–73 (2007)

6. Chen, D., Tan, X., Wang, H., Wu, G.: Optimal point movement for covering circular
regions. arXiv:1107.1012v1 (2012)

7. Chen, D., Wang, C., Wang, H.: Representing a functional curve by curves with
fewer peaks. Discrete and Computational Geometry 46(2), 334–360 (2011)

8. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. Jour-
nal of the ACM 34(1), 200–208 (1987)

9. Cole, R., Salowe, J., Steiger, W., Szemerédi, E.: An optimal-time algorithm for
slope selection. SIAM Journal on Computing 18(4), 792–810 (1989)

10. Efrat, A., Itai, A., Katz, M.: Geometry helps in bottleneck matching and related
problems. Algorithmica 31(1), 1–28 (2001)

11. Efrat, A., Katz, M.: Computing Euclidean bottleneck matchings in higher dimen-
sions. Information Processing Letters 75, 169–174 (2000)

12. Gabow, H., Tarjan, R.: A linear-time algorithm for a special case of disjoint set
union. Journal of Computer and System Sciences 30, 209–221 (1985)

13. Lipski Jr., W., Preparata, F.P.: Efficient algorithms for finding maximum match-
ings in convex bipartite graphs and related problems. Acta Informatica 15(4), 329–
346 (1981)

14. Kumar, S., Lai, T., Arora, A.: Barrier coverage with wireless sensors. Wireless
Networks 13(6), 817–834 (2007)

15. Liang, Y., Blum, N.: Circular convex bipartite graphs: Maximum matching and
Hamiltonian circuits. Information Processing Letters 56, 215–219 (1995)

16. Megiddo, N.: Applying parallel computation algorithms in the design of serial al-
gorithms. Journal of the ACM 30(4), 852–865 (1983)

17. Steiner, G., Yeomans, J.: A linear time algorithm for maximum matchings in con-
vex, bipartite graphs. Computers and Mathematics with Applications 31(2), 91–96
(1996)

18. Tan, X., Wu, G.: New Algorithms for Barrier Coverage with Mobile Sensors. In:
Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 327–338.
Springer, Heidelberg (2010)

Solving Circular Integral Block Decomposition

in Polynomial Time

Yunlong Liu1 and Xiaodong Wu1,2

1 Electrical and Computer Engineering, The University of Iowa
2 Department of Radiation Oncology, The University of Iowa

Abstract. The circular integral block decomposition (CIBD) problem
seeks an optimal set of circular blocks that stack up to approximate
a given reference integral function defined on a circular interval. This
problem models the radiation dose delivery in Dynamic Rotating-Shield
Brachytherapy (D-RSBT). The challenge lies in the circularity of the
problem domain and the maximum length constraint of the circular
blocks. We give an efficient polynomial time algorithm for solving the
CIBD problem. The key idea is based on several new observations, en-
abling us to formulate the CIBD problem as the convex cost integer dual
network flow. Implementation results show that our CIBD algorithm
runs fast and produces promising D-RSBT treatment plans.

1 Introduction

In this paper, we study an interesting geometric optimization problem: the Cir-
cular Integral Block Decomposition (CIBD). Consider two integer parameters
w > 0 and H > 0, and a nonnegative integral function t defined on a circu-
lar interval C = [0, n − 1]. We define a circular window function fk(x), with

fk(x) =

{
hk, if x ∈ Ik ⊂ C,
0, otherwise,

where hk > 0 is an integer constant and the size

of the circular interval |Ik| ≤ w. Intuitively, the CIBD problem seeks to find a
set of circular window functions fk(x) that “approximates” the given function t
by “tiling” them up and the total height of the window functions

∑
hk ≤ H .

As shown by Fig. 1, a function t is defined on a circular interval with size
n = 4, namely x ∈ {0, 1, 2, 3} (CCW) and t(x) = {4, 5, 2, 4}. The function is then
perfectly decomposed to a set of 4 circular window functions, denoted as B =
{〈0, 2, 2〉, 〈1, 0, 1〉, 〈2, 0, 1〉, 〈3, 2, 2〉}, where each triplet 〈ak, bk, hk〉 represents a
circular window function, with

fk(x) =

⎧⎪⎨⎪⎩
hk, if ak < bk, x ∈ Ik = [ak, bk − 1]

hk, if ak ≥ bk, x ∈ Ik = [ak, n− 1] ∪ [0, bk − 1]

0, otherwise

(1)

We thus also call the circular window function a block. The maximal window
size w among those blocks is 3 and the total height of all window functions is

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 342–351, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Solving Circular Integral Block Decomposition in Polynomial Time 343

=0

1

2

3

+0

1

2

3

+0

1

2

3

+0

1

2

3

0

1

2

3

Fig. 1. Illustration of a CIBD example

0

1
23

4

5

6

7
8 9

10

11

Trailing field edge
βk = 2ϕ

Leading field edge
αk = 1ϕ

0◦

Fig. 2. D-RSBT model

∑
hk = 6. The function attained by tiling up all the window functions in B is

defined as
FB(x) =

∑
fk∈B,x∈Ik

hk (2)

and ∀x ∈ [0, n− 1],FB(x) = t(x) in the example shown in Fig. 1.
In general, due to the constraint

∑
hk ≤ H , a perfect decomposition of t may

not be found. Formally, the CIBD problem is defined as the following optimiza-
tion problem:

min E(B) =

n−1∑
x=0

(FB(x) − t(x))
2

s.t. 1 ≤ bk − ak ≤ w or 1 ≤ bk + n− ak ≤ w, k ∈ [1, |B|] (3a)

|B|∑
k=1

hk ≤ H (3b)

ak, bk ∈ [0, n− 1], hk > 0, ak, bk, hk ∈ Z, k ∈ [1, |B|] (3c)

1.1 Application Background

The CIBD problems first presented itself during the development of a new
brachytherapy technique called Dynamic Rotating-Shield Brachytherapy (D-
RSBT). This is an intensity-modulation technology for delivering radiation doses
in during brachytherapy.

In D-RSBT, the radiation source is partially-covered by a multi-layered
radiation-attenuating shield, forming directed apertures called “beamlets” by
rotating the field edges [7] (See Fig. 2). The leading and trailing field edge can
rotate independently, stopping at n discrete positions distributed evenly along
the circle. Each beamlet can be defined by the direction of the leading and
trailing field edges with their rotation angles related to reference angle 0◦.

344 Y. Liu and X. Wu

For any known set of beamlets, a dose optimizer can assign emission times for
those beamlets to optimize the dose distribution. However, as the quality of a
dose distribution is typically evaluated based on dose-volume metrics [3,4,9,10],
such as D90(the minimum dose that covers 90% of the high risk clinical tumor
volume) and D2cc(the minimum dose that is absorbed in the most irradiated
2 cm3 of each individual organ at risk), and these metrics are non-convex. Due
to their non-convexity in nature, optimizing the dose distribution regarding with
respect to the emission times is time-consuming. Instead of using O(n2) possible
beamlets, the optimization is typically done with a set of n beamlets with a fine
azimuthal emission angle ϕ, which are referred to as the baseline beamlets. Dose
optimization with the baseline beamlets yields high-quality dose distributions,
but the delivery is typically impractical as the total emission time is prohibitively
long. The output of dose optimization, in fact, defines an integral function t as-
signing each baseline beamlet an integral emission time. Unlike Intensity Mod-
ulated RadiationTherapy (IMRT), the field edges can rotate at a sufficiently
fast speed (e.g. 1 rotation per second) so that the set up time for D-RSBT is
negligible compared to the emission time. Therefore, the total D-RSBT emission
time dominants the time cost for the whole delivery. RSBT is time-critical since
the process must occur rapidly in order to ensure effective utilization of clinical
resources, as the patient is under general, epidural throughout the process. An
additional sequencing step is needed to make a compromise between the delivery
time and the dose quality. To reduce the delivery time, we can combine several
consecutive baseline beamlets into a larger deliverable beamlet Bk, denoted by
〈ak, bk, hk〉 with the leading field edge pointing to αk = akϕ and the trailing field
edge pointing to βk = bkϕ with an emission time hk. The delivery time is then
the total sum of hk of all the deliverable beamlets used. Given a delivery time
threshold H , the sequencing problem is to find a set B of deliverable beamlets
whose total delivery time is no larger than H and well approximates the dose
distribution output by the dose optimization with minimum dose errors, that is,∑n−1

x=0(FB(x) − t(x))2 is minimized. In addition, due to the physical constraint
of the shielding device (Fig. 2), there is a maximum opening w of the deliverable
beamlets. Hence, the D-RSBT sequencing problem can be modeled as a CIBD
problem.

1.2 Related Works

Although the CIBD problem arises with D-RSBT, it is similar to the Coupled
Path Planning (CPP) problems [2] encountered with IMRT. The CIBD prob-
lem, however is different from CPP since it is defined on a circular interval with
the maximum window constraint; while the CPP problem is defined on a lin-
ear interval. The circularity of the problem domain and the maximum window
constraint complicates the CIBD problem.

The CIBD problem is also closely related to the CTP0 problem, in which
the energy function E0(y) =

∑
(u,v)∈E Vuv(xv − xu) is minimized subject to

y ∈ ZV , where Vuv are convex functions [6]. CTP0 can be solved by the algorithm
proposed by Ahuja et al. [1] with time O(nm log(n2/m) log(nK)), which is the

Solving Circular Integral Block Decomposition in Polynomial Time 345

best known algorithm on this problem. The basic differences between the CIBD
problem and the CTP0 problem are that: (i) CIBD is not L�-convex due to
the maximal window constraints and the circular domain constraint [5]; (ii) the
number of functions Vuv is bounded by O(n).

1.3 Our Contributions

By fully exploiting the problem structures, we solved the challenges brought up
by the maximal window constraint and the circularity of the CIBD problem by
formulating them as convex cost integer dual network flow problems. Thus, we
are able to solve the CIBD problem in O(n2 lognH) time. Due to the space
constraints, some proofs may be found in the journal version of this paper.

2 Canonical Blocksets and Admissible Function Pairs

Note that the CIBD problem is defined on a circular interval C = [0, n − 1],
and a window function (a block) is defined on a sub-interval [ak, bk] ⊂ C with
ak, bk ∈ [0, n − 1]. Without loss of generality, we unify the representation of a
block, that is, a block is a feasible one if and only if 〈ak, bk, hk〉 with bk > ak ≥
0, (bk − ak) ≤ w, ak < n and hk > 0. Thus, we will have ak ∈ [0, n − 1] and
bk ∈ [0, n+ w − 1].

Definition 1. A blockset B is feasible if and only if every Bk ∈ B is feasible.

Definition 2. Two blockset B and B′ are equivalent if and only if FB = FB′

and HB = HB′ , where FB = FB′ stands for a function equivalence: ∀x ∈ [0, n−
1],FB(x) = FB′(x); and HB =

∑
k hk stands for the total height of blocks in a

blockset B.

Definition 3. A feasible blockset B = {〈ak, bk, hk〉|k ∈ [1,K]} is canonical if
and only if B satisfies the following properties:

CB1. ∀k ∈ [1,K − 1], ak ≤ ak+1, bk ≤ bk+1;
CB2. bK − n ≤ b1;

Lemma 1. For any feasible blockset B, there exists a canonical blockset B̄ =
{〈āk, b̄k, h̄k〉|k ∈ [1, K̄]} such that B̄ and B are equivalent.

According to Lemma 1, the CIBD problem can be solved by considering canonical
blocksets only.

For each canonical blockset B = {B1, B2, . . . , BK}, a pair of functions (L,R)
is defined, as follows:

L(x) =
∑

Bk∈B,ak≤x
hk, ∀x ∈ [0, n− 1] (4a)

R(x) =
∑

Bk∈B,bk≤x
hk, ∀x ∈ [0, n+ w − 1] (4b)

346 Y. Liu and X. Wu

F(L,R)(x) =

{
L(x)−R(x) + L(n− 1)−R(n + x), ∀x < w

L(x)−R(x), ∀x ≥ w
(5)

Notice that L(n− 1) =
∑

k,ak≤n−1 hk =
∑K

k=1 hk = HB.

Lemma 2. If (L,R) is defined with a canonical blockset B, then F(L,R)(x) =
FB(x) for any x ∈ [0, n+ w − 1].

Definition 4. A function pair (L,R) with L : [0, n − 1] → Z and R : [0, n +
w − 1]→ Z is admissible if and only if (L,R) satisfies the following properties:

AD1: L and R are non-negative, R(0) = 0;
AD2: L and R are monotonically non-decreasing, i.e. ∀x ∈ [0, n − 2],L(x) ≤

L(x + 1); ∀x ∈ [0, n+ w − 2],R(x) ≤ R(x + 1);
AD3: ∀x ∈ [0, n − 1],L(x) ≥ R(x); ∀x ∈ [n, n + w − 1],L(n − 1) ≥ R(x);

particularly, R(n + w − 1) = L(n− 1);
AD4: ∀x ∈ [0, n− 1], L(x) ≤ R(x + w);
AD5: ∀x ∈ [0, n− 1], L(x) ≥ R(x + 1);
AD6: ∀x ≥ b1 + n,R(x) = L(n− 1), where b1 = min arg(R(x) > 0).

Theorem 1. For any canonical blockset B, we can find an admissible function
pair (L,R) with FB(x) = F(L,R)(x), HB = L(n− 1), and vice versa.

Then, according to Theorem 1, the objective of the CIBD problem can be for-
mulated as:

min E(L,R) =

w−1∑
x=0

(L(x) −R(x) + L(n− 1)−R(n + x)− t(x))2

+

n−1∑
x=w

(L(x) −R(x)− t(x))2 (6)

However, not all properties can be expressed with linear constraints defined with
(L,R) since b1 in (AD6) remains unknown until (L(x),R(x)) is known. More-
over, Equation (6) is not submodular since not all off-diagonal coefficients in the
constraint matrix are nonpositive with more than 2 variables in a single term of
the quadratic objective function(Prop 2.6 [8]). Further the lack of submodularity
makes this problem hard to solve.

We introduce the following transformation for admissible function pairs (L,R):

R̄(x) =

{
R(n + x) − L(n− 1), ∀x ∈ [0, b1 − 1]

R(x), ∀x ∈ [b1, n− 1]
(7)

The CIBD problem is then formulated, as follows.

min E(L, R̄) =

n−1∑
x=0

(L(x) − R̄(x)− t(x))2

Solving Circular Integral Block Decomposition in Polynomial Time 347

s.t. L(x) ≤ L(x + 1), ∀x ∈ [0, n− 2] (8a)

R̄(x) ≤ R̄(x + 1), ∀x ∈ [0, n− 2] (8b)

L(x) ≤ R̄(x + w), ∀x ∈ [0, n− w − 1] (8c)

L(x) ≤ R̄(x + w − n) + L(n− 1), ∀x ∈ [n− w, n− 1] (8d)

R̄(x) ≤ L(x − 1), ∀x ∈ [1, n− 1] (8e)

R̄(0) ≤ 0,L(0) ≥ 0,L(n− 1) ≤ H (8f)

Lemma 3. For any admissible function pair (L,R), (L, R̄) is feasible to Equa-
tion (8) with E(L,R) = E(L, R̄); and for any feasible solution (L, R̄) to Equa-
tion (8), there exist an admissible function pair (L,R) such that E(L,R) =
E(L, R̄).

Proof. (Sketch.) To proof Lemma 3, first, we can show the one-to-one correspon-
dence between admissible function pairs (L,R) and feasible solutions (L, R̄) to
Equation (8).

L
R

0 1 2 3 4 5 6
(n)

L

R̄
0 1 2 3

Fig. 3. Visual illustration of mapping from (L,R) to (L, R̄)

According to Equation (7), any admissible function pairs (L,R) can be uniquely
mapped to a solution (L, R̄) by shifting R(x ∈ [n, n+ w − 1]) n units leftwards
and L(n− 1) units downwards, as illustrated by Fig. 3. Notice that, the domain
of R̄ is reduced from [0, n + w − 1] to [0, n − 1] compared to R as the shifting
operation overlapped the intervals [0, w − 1] and [n, n + w − 1]. According to
(AD6), ∀x ∈ [0, b1],R(x) = 0, and ∀x ∈ [b1, w − 1],R(n + x) = L(n − 1); i.e.
∀x ∈ [0, w − 1], either R(x) = 0 or R(n + x) = L(n− 1) (or both). That serves
as the key for making a unique mapping from (L, R̄) back to (L,R) with the
following equation:

R(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R̄(x), x ∈ [w, n− 1] or (x < w, R̄(x) ≥ 0)

0, x < w, R̄(x) < 0

L(n− 1), x ≥ n, R̄(x− n) ≥ 0

L(n− 1) + R̄(x− n), x ≥ n, R̄(x− n) < 0

(9)

Together with Equation (9), Equations (8a) and (8b) are used to enforce the non-
decreasing property AD2; Equations (8c) and (8d) enforce the maximal window

348 Y. Liu and X. Wu

constraint AD4; Equation (8e) encodes AD5 which excludes infeasible blocks
with 0 width; AD6 is enforced by R̄(0) ≤ 0 based on Equations (7) and (9); the
non-negativity AD1 can be inferred from L(0) ≥ 0, Equations (8a) and (8b);
and L(n − 1) ≤ H is used to enforce the constraint on total height of blocks.
AD3 is inferred by AD2 and AD5.

The optimization problem in Equation (8) is similar to the problem addressed by
Ahuja’s algorithm [1], except that the constraint matrices in Ahuja’s problems
are network matrices (i.e. every column contains two non-zero entries, one of
them is +1, and the other is −1). The constraint matrices in Equation (8) are
not network matrices unless L(n− 1) is known. Thus, by enumerating L(n− 1),
Equation (8) can be solved in O(n2H log(nH)) time. However, we can do much
better by discovering the following property of the problem.

Theorem 2. If there exist some feasible solution to Equation (8), i.e. dom E �=
∅, and H ≤

∑n−1
x=0 t(x), then there exist a solution y∗ = (L∗, R̄∗) such that

L∗(n− 1) = H and ∀y ∈ dom E, E(y∗) ≤ E(y).

Proof. (Sketch.) Theorem 2 can be proved in a constructive way, i.e. suppose
there exist some other optimal solution y′ = (L′, R̄′) such that H ′ = L′(n −
1) ≤ H and ∀y ∈ dom E , E(y′) ≤ E(y), then we can find another solution
y∗ = (L∗, R̄∗) with L∗(n− 1) = H and E(y∗) ≤ E(y′).

The construction of y∗ differs in two different cases. For the first case, if
H ≤

∑n−1
x=0(L′(x)− R̄′(x)), set y∗ = (L′ + δ, R̄′ + δ), where

δ(x) =

{
min{−R̄′(0), H −H ′} x = 0

min{L′(x − 1)− R̄′(x) + δ(x− 1), H −H ′}, x > 0
(10)

Essentially, the function δ is applied to y′ in order to make the new solution
y∗ = (L∗, R̄∗) satisfy L∗(n− 1) = H without changing the objective value while
preserving all the constraints.

For the second case, where H >
∑n−1

x=0(L′(x) − R̄′(x)), let y′′ = (L′′, R̄′′) =
(L′ + δ, R̄′ + δ), where δ is the same as defined in Equation (10). As same
as the previous case y′′ is feasible to Equation (8) and E(y′′) = E(y′), however,
L′′(n−1) < H . But, y′′ has its specialties: R̄′′(0) = 0 and ∀x ∈ [0, n−1], R̄′′(x) =
L′′(x− 1) (define L′′(−1) = 0). By enforcing these two specialties into Equation
(8), Equation (8b)-(8e) becomes redundant, and Equation (8f) can be rewrote
to L(n − 1) ≤ H , L(0) = 0. We denote the problem by further relaxing the
constraint L(0) = 0 as CIBD′′. Assume L◦(n − 1) = H , finding the solution
y◦ = L◦ with E ′′(L◦) = 0 to CIBD′′ can be done in linear time (the objective

function of CIBD′′ is defined as E ′′(L) =
∑n−1

x=0(L(x)−L(x− 1)− t(x))2, the R̄
part of the solution is omit since it can be determined by L).

Then, y∗ = (L∗, R̄∗) can be assigned with ∀x ∈ [0, n − 1],L∗(x) = (L′′ ∧
L◦)(x), R̄∗(x) = (L′′ ∧ L◦)(x − 1). According to the L�-convexity of CIBD′′,
E(y∗) = E ′(L′′ ∨ L◦) ≤ E ′(L′′) = E(y′). By further showing (L′′ ∨ L◦)(−1) =
L′′(−1) = 0, (L′′ ∨L◦)(n− 1) = L◦(n− 1) = H , we can show that y∗ is feasible
to Equation (8) and it is also a global optimizer.

Solving Circular Integral Block Decomposition in Polynomial Time 349

According to Theorem 2, whenever H ≤
∑n−1

x=0 t(x), Equation (8) can be
solved by setting L(n− 1) = H . And setting L(n− 1) = H makes Equation (8)
an instance of convex cost integer dual network flow problem, which can be
solved in time O(n2 log(nH)) for this case [1]. If H >

∑n−1
x=0 t(x), it can be

intuitively solved in linear time.

3 Experimental Results

Although Ahuja’s algorithm has the best know theoretical complexity, Kol-
mogorov et al. demonstrate that their algorithm runs better in practice [6]. We
implemented our CIBD algorithm using the C++ based on Kolmogorov’s frame-
work [6] with a specialized local search step and the total time complexity is
O(n3 log n logH). For the combinations of parameters n and H , 100 computer-
generated testcases were used to test the efficiency of our algorithm on an Intel
Xeon workstation (Xeon 2.66 GHz, 16 GB memory, Linux 2.6.37 64bit). Fig. 4(a)
and 4(b) show the impact of parameters n and H on the running time, re-
spectively. Based on the experimental results, the running time quadratically
increases with n but is not noticeably impacted by H .

We also validated our algorithm with 5 clinical cases from 5 different patients.
An example of a DVH (Dose-Volumn Histogram) plot for one of the 5 cases is
shown in Fig. 5. In a DVH plot, each point on the curve represents the volume of
the structure (y-axis) receiving greater than or equal to that dose (x-axis). The
baseline plans were generated by a simulated annealing dose optimizer developed
by ourselves and used as the inputs for the CIBD algorithm. The delivery plans
were evaluated with HRCTV (High Risk Clinical Tumor Volume) D90 and the
delivery time in minutes per fraction. All the testcases were finished within 1
second. The plan quality comparisons are shown in Table 1.

Our implementation also features the tradeoff between the delivery time and
D90 such that the users may choose the best tradeoff by selecting different time
budgets or quality goals.

Table 1. Clinical verification results for 5 patient cases

Case #
Baseline plans CIBD plans

D90 time D90 time

#1 101 Gy10 151 min/fx 100 Gy10 20 min/fx
#2 107 Gy10 234 min/fx 91 Gy10 20 min/fx
#3 92 Gy10 260 min/fx 81 Gy10 19 min/fx
#4 91 Gy10 369 min/fx 84 Gy10 30 min/fx
#5 95 Gy10 205 min/fx 95 Gy10 20 min/fx

350 Y. Liu and X. Wu

16 24 32 40 48 56 64 72 80 88 96
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
T
im

e
 (

s
)

(a) Impact of parameter n on running
time, H = 10000

1000 2000 3000 4000 5000 6000 7000 8000 900010000

H

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

T
im

e
 (

s
)

(b) Impact of parameter H on running
time, n = 128

Fig. 4. Running time analyses with phantom testcases

50 75 90100 125 150 175
0

2

5

10

15

20

dose(GyEQD2)

vo
lu
m
e(
cc
)

0%

20%

40%

60%

80%

90%

100%

vo
lu
m
e(
%
)

Baseline CIBD

HRCTV

Sigmoid

Rectum

Bladder

Fig. 5. DVH plot for case #2

References

1. Ahuja, R.K., Hochbaum, D.S., Orlin, J.B.: Solving the convex cost integer dual
network flow problem. Management Science 49(7), 950–964 (2003)

2. Chen, D., Luan, S., Wang, C.: Coupled path planning, region optimization, and
applications in intensity-modulated radiation therapy. Algorithmica 60, 152–174
(2011)

3. Dimopoulos, J., Lang, S., Kirisits, C., et al.: Dose-Volume histogram param-
eters and local tumor control in magnetic resonance Image-Guided cervical
cancer brachytherapy. International Journal of Radiation Oncology* Biology*
Physics 75(1), 56–63 (2009)

4. Haie-Meder, C., Pötter, R., Van Limbergen, E., et al.: Recommendations from
gynaecological (GYN) GEC-ESTRO working group[star, open] (I). Radiotherapy
and Oncology 74(3), 235–245 (2005)

5. Hochbaum, D., Levin, A.: Optimizing over consecutive 1’s and circular 1’s con-
straints. SIAM Journal on Optimization 17(2), 311–330 (2006)

6. Kolmogorov, V., Shioura, A.: New algorithms for convex cost tension problem with
application to computer vision. Discrete Optimization 6(4), 378–393 (2009)

7. Liu, Y., Flynn, R., Kim, Y., Wu, X.: Dynamic-shield intensity modulated
brachytherapy (IMBT) for cervical cancer. International Journal of Radiation On-
cology* Biology* Physics 81(2), S201 (2011)

8. Murota, K.: Discrete Convex Analysis. Siam Monographs on Discrete Mathematics
and Applications. Society for Industrial and Applied Mathematics (2003)

Solving Circular Integral Block Decomposition in Polynomial Time 351

9. Pötter, R., Dimopoulos, J., Georg, P., Lang, S., et al.: Clinical impact of MRI
assisted dose volume adaptation and dose escalation in brachytherapy of locally
advanced cervix cancer. Radiotherapy and Oncology 83(2), 148–155 (2007)

10. Pötter, R., Haie-Meder, C., Limbergen, E.V., et al.: Recommendations from gy-
naecological (GYN) GEC ESTRO working group (II). Radiotherapy and Oncol-
ogy 78(1), 67–77 (2006)

The Canadian Traveller Problem Revisited

Yamming Huang and Chung-Shou Liao�

Department of Industrial Engineering and Engineering Management,
National Tsing Hua University, Hsinchu 30013, Taiwan

csliao@ie.nthu.edu.tw

Abstract. This study investigates a generalization of the Canadian

Traveller Problem (CTP), which finds real applications in dynamic
navigation systems used to avoid traffic congestion. Given a road network
G = (V,E) in which there is a source s and a destination t in V , every
edge e in E is associated with two possible distances: original d(e) and
jam d+(e). A traveller only finds out which one of the two distances of
an edge upon reaching an end vertex incident to the edge. The objective
is to derive an adaptive strategy for travelling from s to t so that the
competitive ratio, which compares the distance traversed with that of
the static s, t-shortest path in hindsight, is minimized. This problem
was defined by Papadimitriou and Yannakakis. They proved that it is
PSPACE-complete to obtain an algorithm with a bounded competitive
ratio. In this paper, we propose tight lower bounds of the problem when
the number of “traffic jams” is a given constant k; and we introduce a
simple deterministic algorithm with a min{r, 2k + 1}-ratio, which meets
the proposed lower bound, where r is the worst-case performance ratio.
We also consider the uniform jam cost model, i.e., for every edge e,
d+(e) = d(e)+ c, for a constant c. Finally, we discuss an extension to the
metric Travelling Salesman Problem (TSP) and propose a touring
strategy within an O(

√
k)-competitive ratio.

Keywords: Canadian traveller problem, competitive ratio, travelling
salesman problem.

1 Introduction

Consider a road map G = (V,E) represented by a set V of vertices connected
by edges, where each edge e ∈ E is associated with the time it takes for the
traveller to traverse the edge. From an online perspective, the traveller is aware
of the entire structure of the road network in advance; however, some edges may
be blocked by accidents during the trip, but the problem would only become
evident when the traveller reaches an end vertex incident to the blocked edge.
This problem, called the Canadian Traveller Problem (CTP), was defined
by Papadimitriou and Yannakakis [9] in 1991. The objective is to design an
efficient routing policy from a source to a destination under this condition of

� Supported by the National Science Council of Taiwan under Grants NSC100-2221-
E-007-108-MY3 and NSC100-3113-P-002-012.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 352–361, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Canadian Traveller Problem Revisited 353

uncertainty. The CTP is actually a two-player game between a traveller and a
malicious adversary who sets up road blockages in order to maximize the gap
between the performance of the online strategy and that of the offline optimum
(with the blocked edges removed). The criterion for measuring the quality of
an online strategy is usually the competitive ratio of the algorithm [3,10]. The
competitive ratio can be defined as follows: for any instance, the total cost of the
online algorithm is at most its ratio times that of the optimal offline approach
(under complete information). We will provide the formal definition later in the
paper. Papadimitriou and Yannakakis [9] showed that it is PSPACE-complete
for the CTP to devise a strategy that guarantees a bounded competitive ratio.

For several years, there has been no significant progress in the development of
approximation algorithms for this problem. Bor-Noy and Schieber [1] explored
several variations of the CTP from the worst-case scenario perspective, where the
objective is to find a static (offline) algorithm that minimizes the maximum travel
cost [2]. They considered the k-CTP in which the number of blockages is bounded
from below by k. Note that for an arbitrary k, the problem of designing a strategy
that guarantees a given travel time remains PSPACE-complete, as shown in [1,9].
In addition, Bor-Noy and Schieber discussed the Recoverable k-CTP, where each
blocked edge is associated with a recovery time, which is not very long relative
to the traversed time, to reopen. They also studied the stochastic model, where
an independent blockage probability for each edge is given in advance. This
model, which tries to minimize the expected ratio to the offline optimum, is
known to be P-hard [9]. Subsequently, Karger and Nikolova [8] investigated
the stochastic CTP in special graph classes and developed exact algorithms by
applying techniques from the theory of Markov Decision Processes.

Recently, Westphal [13] proved that there are no deterministic online algo-
rithms within a (2k + 1)-competitive ratio for the k-CTP. The author designed
a simple reposition algorithm that satisfies the lower bound, and also proposed
a lower bound of k + 1 for the competitive ratio of any randomized online al-
gorithms. Xu et al. [14] developed two deterministic adaptive policies: a greedy
strategy and a comparison strategy that incorporates the concept of reposition.
The latter strategy also achieves the tight lower bound.

In this paper, we study a natural generalization of CTP, called the Double-

valued Graph, which was initiated by Papadimitriou and Yannakakis [9].
Given a graph G = (V,E) with a source s and a destination t in V , each edge e in
E is associated with two possible distances: original d(e) and jam d+(e), where
d, d+ : E → R+ and d(e) < d+(e), for each e ∈ E. A traveller only learns about
the distance cost (d(e) or d+(e)) of an edge e on arrival at one of its end ver-
tices. The goal is to develop an adaptive strategy for traversing the graph from
s to t under incomplete information about traffic conditions so that the compet-
itive ratio is minimized. This problem is also PSPACE-complete, as shown by
a reduction from quantified SAT (QSAT) [9]. Here, for a graph G without any
jammed edges, i.e., d+(e) = d(e), for any e ∈ E, the length of the s, t-shortest
path is denoted by d(s, t). On the other hand, consider the s, t-shortest path P
with k jammed edges that have the maximum jam costs. More precisely, select

354 Y. Huang and C.-S. Liao

an edge e∗ in P with the maximum jam cost and add it to an edge subset E′,
where e∗ = argmaxe∈P {d+(e)− d(e)}, and repeat the argument until |E′| = k,
if any. The distance of such a path from s to t is d(s, t) +

∑
e∈E′(d+(e)− d(e)),

denoted by d+k(s, t).

Our Contribution. The main results of this study are detailed below.

1. We provide tight lower bounds for deterministic and randomized algorithms

forDouble-valued Graph in terms of k and r = d+k(s,t)
d(s,t) when the number

of traffic jams is up to a given constant k.
2. We present a simple deterministic adaptive strategy with a min{r, 2k + 1}-

competitive ratio that meets the proposed lower bound. The algorithm can
also be applied directly to the Recoverable k-CTP that assumes the blocked
edges are not found to be blocked again.

3. We also study the uniform jam cost model of this problem, i.e., for every
edge e, d+(e) = d(e)+ c, for a constant c [5], and derive a tight lower bound
with an additive ratio.

4. Finally, the main contribution of this study is that we investigate an exten-
sion of the k-CTP to the metric Travelling Salesman Problem (TSP).
The goal is to design a tour of a set of vertices whereby the traveller vis-
its each vertex and returns to the origin under the same uncertainty as the
k-CTP, such that the competitive ratio is minimized. We propose a touring
strategy within an O(

√
k)-competitive ratio.

2 Preliminaries

We consider the Double-valued Graph problem with at most k traffic jams.
Given a connected graph G = (V,E) with a source s and a destination t, we
denote the sequence of traffic jams in E learned by an online algorithm A during
the trip as SA

i = (e1, e2, . . . , ei), where 1 ≤ i ≤ k. Let EA
i = {e1, e2, . . . , ei} ⊆ E,

1 ≤ i ≤ k, consist of these jammed edges, and let Ek be the set of all jammed
edges. In addition, let d : E → R+ be the original distance function. The (traffic)
jam distance function is d+ : E → R+; that is, for each edge e = (u, v) ∈ E,
d(u, v) < d+(u, v). Moreover, in the online problem, let dEA

i
(s, t) denote the

travel cost from s to t derived by an adaptive algorithm A that learns about
traffic jam informationEi during the trip; and let dEk

(s, t) be the offline optimum
from s to t under complete information Ek. We have the following property
immediately, where E1 ⊆ E2 ⊆ . . . ⊆ Ek.

d(s, t) ≤ dE1(s, t) ≤ · · · ≤ dEk
(s, t). (1)

We refer to [3,10] and formally define the competitive ratio as follows: an online
algorithm A is cA-competitive for the Double-valued Graph problem if

dEA
i
(s, t) ≤ cA · dEk

(s, t) + ε, 1 ≤ i ≤ k.

where cA and ε are constants.

The Canadian Traveller Problem Revisited 355

Similar to the proof in [13], we propose tight lower bounds for Double-

valued Graphs when we use deterministic and randomized algorithms. Due to
space limitations, we present the following theorems without proofs. For further
details, readers may refer to [7].

Lemma 1. For the Double-valued Graph problem, there is no deterministic
online algorithm within a min{r, 2k + 1}-competitive ratio, when the number of
jammed edges is up to k.

Next, given the independent probabilities of traffic congestion on all the edges,
we consider randomized strategies to solve this online problem.

Lemma 2. For the Double-valued Graph problem, there is no randomized
online algorithm with a competitive ratio less than min{r, k+1} when the number
of jammed edges is up to k.

Based on the proofs of Lemmas 1 and 2, we introduce two strategies: the greedy
algorithm and the reposition algorithm [13,14], which will be used later. We
denote them as GA and RA respectively.

Greedy Algorithm (GA): Starting at a vertex v (including the source s), the
traveller selects the shortest path from v to t by using Dijkstra’s algorithm [6]
in a greedy manner based on the current information Ei; that is, the distance
cost of the path is dEi(v, t). Note that if all the k jammed edges are known at
the outset, the cost of the path derived by GA from the source s is the same as
that of the offline optimum, dEk

(s, t).

Reposition Algorithm (RA): The traveller begins at the source s and follows
the s, t-path with the cost d(s, t). When the traveller learns about a jammed
edge on the path to t, he/she returns to s and takes the s, t-path with the cost
dEi(s, t) based on the current information Ei. The traveller repeats this strategy
until he/she arrives at t.

3 Double-Valued Graph

In this section, we present a simple algorithm called GR, which combines GA
with RA to solve the Double-valued Graph problem. Its ratio meets the pro-
posed lower bound. We also study the uniform jam cost model. For convenience,
let ei = (vi, vi′), 1 ≤ i ≤ k, be a jammed edge learned by the traveller; and let
vi be the first end vertex of the jammed edge ei the traveller visits during the
trip.

Note that the ratio r has to be updated while the traveller is learning about
a new jammed edge. In addition, because 2(k− i) + 1 decreases during the trip,

r ≤ d+k(s,t)
d(s,t)

once the traveller follows a path derived by GA.

356 Y. Huang and C.-S. Liao

Algorithm 1. Greedy&Reposition Algorithm (GR)

Input : G = (V,E), d : E → R+, d+ : E → R+ and a constant k;
Output : A route from s to t;
1: Initialize i = 0;
2: while the traveller does not arrive at t do
3: Let r = d+(k−i)(vi,t)

dEi
(s,t)

; � v0 = s and E0 = ∅
4: if r ≤ 2(k − i) + 1 then
5: the traveller traverses a path from vi to t derived by GA;
6: else
7: if dEGR

i−1
(s, t) + dEi(vi, t) ≤ (i+ 1) · dEi(s, t) then

8: the traveller moves from vi to t via GA unless he finds a jammed edge;
9: else
10: the traveller moves from vi to t via RA unless he finds a jammed edge;
11: end if
12: end if
13: Let i = i+ 1 and let the new jammed edge be ei = (vi, vi′) during the trip;
14: end while

Lemma 3. If the ratio r = d+(k−i)(vi,t)
dEi

(s,t) > 2(k − i) + 1, for each i during the

whole trip, then the total distance cost of GR satisfies the following property,
where 1 ≤ i ≤ k, provided there is a set of jammed edges Ei .

dEGR
i

(s, t) ≤
{
(i + 1) · dEi(s, t), if the traveller uses GA at vi;

(2i + 1) · dEi(s, t), if the traveller uses RA at vi.

The above lemma shows the competitive ratio without following a path derived
by GA irrespective of whether the traveller finds a jammed edge. We prove that
the GR algorithm is min{r, 2k + 1}-competitive.

Theorem 1. For the Double-valued Graph problem with at most k traffic

jams, the competitive ratio of GR is at most min{r, 2k + 1}, where r = d+k(s,t)
d(s,t)

and r might decrease during the trip.

Regarding the time complexity analysis, the number of iterations in the while
loop, i.e., the number of updates for the ratio r, is at most k. Each of the three
strategies can apply Dijkstra’s algorithm [6] to devise a path from s or vi to t,
for some i. In addition, RA just takes the original s, vi-path when the traveller
needs to return to s from vi. Thus, for a given constant k, the running time is a
constant factor times D(n), where n is the order of a graph G and D(n) is the
running time of Dijkstra’s algorithm.

The GR algorithm can be extended to the Multiple-valued Graph prob-
lem in which each edge is associated with more than two possible distances. We
regard the largest distance of each edge e as d+(e) and GR performs in a similar
way to travel from s to t. Hence, the competitive ratio remains the same.

The Canadian Traveller Problem Revisited 357

Corollary 1. The Multiple-valued Graph problem can be approximated
within a competitive ratio min{r, 2k + 1} when the number of traffic jams is
up to a given constant k.

In addition, we consider the Recoverable k-CTP in which each blocked edge
e is associated with a recovery time r(e) to reopen. In this online problem, it
is assumed that the blocked edges will not be blocked again. An instance I of
the Recoverable k-CTP can be transformed into an instance I ′ of the Double-

valued Graph problem by letting r(e) be represented in terms of the distance
and letting d+(e) = d(e) + r(e) for every edge e ∈ E in I ′.

Corollary 2. The Recoverable k-CTP can be approximated within a competitive
ratio min{r, 2k + 1}, when the number of blockages is bounded from below by k.

Su et al. [11,12] considered the Recoverable k-CTP and proposed two policies: a
waiting strategy and a greedy strategy. For example, if r(e) ≤ d(e), i.e., d+(e) ≤
2d(e) in the Double-valued Graph problem, then r = d+k(s,t)

d(s,t) ≤ 2 and GR

will follow the path derived by GA initially. Thus, we have the competitive ratio

r ≤ 2. Besides, if r(e) ≤ d(s, t), it implies that r = d+k(s,t)
d(s,t) ≤ k + 1. Therefore,

GR will follow a path derived by GA and obtain the competitive ratio r ≤ k+1.
The results show that the GR approach is at least as good as the previous result
in [11,12].

3.1 The Uniform Jam Cost Model

We refer to [5] and suppose the jam cost of each edge is a constant c. We propose
a tight lower bound below.

Lemma 4. For the uniform jam cost model of the Double-valued Graph

problem with at most k traffic jams, there is no deterministic online algorithm
within a kc additive ratio; that is, given a uniform jam cost c, the derived solution
cannot be better than dEk

(s, t) + kc.

By Lemma 4, no deterministic algorithm can derive a better additive ratio than
kc. Actually, the traveller can use a very straightforward algorithm to achieve the
lower bound: following the s, t-path with the cost d(s, t) irrespective of whether
the traveller finds jammed edges. However, it is possible to improve the ratio
slightly under some conditions.

For instance, if c ≥ 2δ · d(s, t) for some δ > 1, we let a threshold be c
2ε , for

a constant 1 ≤ ε < δ. Assume there is a nonempty subset of jammed edges Ei

such that dEi(s, t) ≤ c
2ε for some i ≤ k, when the traveller learns about jammed

edges. Based on this assumption, when dEj (s, t) ≤ c
2ε , the traveller will use RA;

however, when dEj (s, t) > c
2ε , the traveller will use GA until he/she arrives at t.

Thus, we let e� be the first jammed edge such that dE�
(s, t) > c

2ε , if any. That
is, {

dEj (s, t) ≤ c
2ε , if 1 ≤ j < �;

dEj (s, t) > c
2ε , if � ≤ j ≤ k.

358 Y. Huang and C.-S. Liao

Then, the total travel cost can be formulated as follows:

2 · d(s, t) + . . . + 2 · dE�−2
(s, t) + dE�−1

(s, t) + (k − � + 1)c

≤ 2(�− 1) · c

2ε
+ dEk

(s, t) + (k − � + 1)c

≤ dEk
(s, t) + kc− (�− 1)(1− 1

ε
)c.

If there is no such �, the traveller uses RA until he/she arrives at t. The above
equation implies that the total travel cost is at most 2k(c

2ε) + dEk
(s, t) = kc

ε +
dEk

(s, t).

4 k-CTP for Metric TSP

In this section, we extend the k-CTP to the metric travelling salesman problem
(TSP). We refer to [14] and present several natural assumptions in the following.
Given a complete graph G = (V,E) of order n, i.e., |V | = n, the graph is still
connected even if blocked edges are removed. Otherwise, the traveller would not
be able to visit all the vertices in G. Moreover, we assume that the upper bound
of the number of blockages is k < n − 1 for the same reason. In addition, the
traveller will only find a blockage upon reaching an end vertex of the blocked
edge, and the state of the edge will not change again after the traveller learns
about the blockage. The objective is to design a tour that enables the traveller to
visit every vertex and return to the origin under the uncertainty, such that the
competitive ratio is minimized. Note that the problem allows the traveller to visit
a vertex more than once because the blocked edges may cause the assumption
to occur.

The rationale behind our approach is that the traveller will visit as many
vertices as possible via alternative routes based on a tour derived by Christofides’
algorithm [4], denoted by P : s = v1 − v2 − . . . − vn − s. Assume the traveller
takes the tour P , which is supposed to visit all the vertices in V in m∗ rounds.
Let Vm be the set of unvisited vertices in the mth round, 1 ≤ m ≤ m∗ + 1,
and V1 = V \ {s}. Then, we have V ⊃ V1 ⊇ V2 ⊇ . . . ⊇ Vm∗ ⊃ Vm∗+1 = ∅. In
addition, we denote a path over Vm as Pm : vm,0− vm,1− . . .− vm,|Vm| when the

traveller tries to visit the vertices in Vm in the mth round by using the Cyclic
Routing (CR) algorithm (see Algorithm 2). Note that vm,0 is the last vertex
visited in the (m− 1)th round when m > 1, i.e., vm,0 /∈ Vm.

As mentioned earlier, we let ECR
i consist of the blocked edges revealed by

the CR algorithm, 1 ≤ i ≤ k. We decompose ECR
i into m∗ subsets called

ECR
m,i . Each subset is learned by the traveller in the mth round, 1 ≤ m ≤ m∗,

i.e., Ei = {e1, . . . , ei} =
⋃m∗

m=1 ECR
m,i . For convenience, we use E′m instead of

ECR
m,i ; and we denote a path p from u to v as p : u ∼ v. Note that in the mth

round, the traveller may traverse the path Pm in a either clockwise direction or
counterclockwise direction 1 ≤ m ≤ m∗.

The Canadian Traveller Problem Revisited 359

Algorithm 2. Cyclic Routing Algorithm (CR)

Input : G = (V,E) of order n, d : E → R+ and a constant k;
Output : A tour P ∗ that visits every vertex in V ;
1: Use Christofides’ algorithm to find a tour P : s = v1 − v2 − . . .− vn − s that visits

every vertex exactly once from s and return to s, and initialize P ∗ = ∅, m = 1,
Vm = V \ {s}, and vm,0 = s;

2: while Vm �= ∅ do
3: Let a path over Vm be Pm : vm,0 − vm,1 − . . .− vm,|Vm|;
4: if m = 1 or vm,0 = vm−1,|Vm−1| then
5: Perform procedure Detour in the same direction as that in the (m− 1)th

round or in a clockwise direction when m = 1;
6: if Vm+1 = Vm then
7: Perform procedure Detour in the opposite direction;
8: end if
9: else
10: Perform procedure Detour in the opposite direction to that in the

(m− 1)th round;
11: end if
12: m = m+ 1;
13: end while
14: The traveller returns to s directly or finds a previously visited vertex u such that

vm,0 − u− s is not blocked and traverse the alternative route;
15: P ∗ = P ∗ ∪ {vm,0 ∼ s};
16: return P ∗;

Lemma 5. The traveller can visit at least one vertex in Vm by using CR in the
mth round, 1 ≤ m ≤ m∗; that is, |V1| > |V2| > . . . > |Vm| > |Vm+1| > . . . >
|Vm∗ |.

Based on the above key lemma, the tour P ∗ derived by the CR algorithm tra-
verses all the vertices in V until Vm∗+1 = ∅; that is, P ∗ is a feasible solution.
The next lemmas follow immediately.

Lemma 6. E′i ∩ E′j = ∅ for any 1 ≤ i < j ≤ m∗.

Lemma 7. The number of new blockages learned in the mth round is not less
than the number of unvisited vertices in the (m+1)th round, i.e., |E′m| ≥ |Vm+1|,
1 ≤ m ≤ m∗.

We develop the CR strategy based on a tour P derived by Christofides’ algorithm
for the original metric TSP. It combines the minimum spanning tree of G with
the minimum weight perfect matching on the vertices with odd degree in the
tree to obtain a Hamiltonian tour with a 3

2 -approximation ratio if G satisfies
the triangle inequality property. Let OPT be the offline optimum of the k-CTP
for the metric TSP. Obviously, OPT cannot be less than the optimum of the
original TSP.

360 Y. Huang and C.-S. Liao

1: procedure Detour

2: Let Vm+1 = Vm and E′
m = ∅;

3: for i = 1 to |Vm| do
4: if vm,i−1 − vm,i is not blocked or there is an internal visited vertex u in

vm,i−1 ∼ vm,i of P such that vm,i−1 − u− vm,i is not blocked then
5: Vm+1 = Vm+1 \ {vm,i} and P ∗ = P ∗ ∪ {vm,i−1 ∼ vm,i};
6: else
7: Let vm,i = vm,i−1;
8: end if
9: E′

m = E′
m ∪ {e}, for each new blockage e the traveller just learned;

10: end for
11: end procedure

Lemma 8. When the traveller uses CR to traverse Pm in the mth round, 1 ≤
m ≤ m∗, the travel cost is not larger than 3OPT ; and for the (m∗+1)th round,
the travel cost is OPT at most.

Theorem 2. The k-CTP for the metric TSP can be approximated within an
O(
√

k)-competitive ratio when the number of blockages is bounded from below
by k.

The next corollary shows the tightness of the analysis of the competitive ratio
and provides a tight example that attains the ratio.

Corollary 3. The analysis of an O(
√

k)-competitive ratio of the CR algorithm
is tight.

5 Concluding Remarks

In this paper, we have studied the Double-valued Graph problem, which is
a generalization of k-CTP when the number of traffic jams is up to k. We have
presented tight lower bounds and a simple adaptive algorithm that can satisfy the
lower bound. In addition, we have derived a lower bound with an additive ratio
for the uniform jam cost model. We have also extended this problem to the metric
TSP and proposed an online touring O(

√
k)-competitive algorithm. It would

be worthwhile investigating these online route planning problems because they
find real applications in dynamic navigation systems designed to avoid traffic
congestion. We conclude the study with two observations: First, compared with
the larger lower bound of deterministic algorithms, it would be very interesting to
develop a randomized online algorithm that can yield a better competitive ratio.
On the other hand, a traveller could learn about a blockage or traffic congestion
in advance from road sensor networks; for example, a GPS navigation system
could indicate traffic conditions as the traveller approaches within a distance �
of an end vertex of a blocked edge (or a jammed edge) for a given constant �.
The question is how much the earlier information could improve online route
planning. We will consider these issues in our future research.

The Canadian Traveller Problem Revisited 361

References

1. Bar-Noy, A., Schieber, B.: The Canadian traveller problem. In: Proc. of the 2nd
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 261–270 (1991)

2. Ben-David, S., Borodin, A.: A new measure for the study of online algorithms.
Algorithmica 11(1), 73–91 (1994)

3. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cam-
bridge Univeristy Press, Cambridge (1998)

4. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman
problem. Techical report, Graduate School of Industrial Administration, Carnegie-
Mellon University (1976)

5. Chuzhoy, J.: Routing in undirected graphs with constant congestion. In: Proc. of
the 44th ACM Symposium on Theory of Computing, STOC (2012)

6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269–271 (1959)

7. Huang, Y., Liao, C.S.: The Canadian traveller problem revisited (2012)
(manuscripts), http://acolab.ie.nthu.edu.tw/draft/ctp.pdf

8. Karger, D., Nikolova, E.: Exact algorithms for the Canadian traveller problem on
paths and trees. Technical report, MIT Computer Science & Artificial Intelligence
Lab (2008), http://hdl.handle.net/1721.1/40093

9. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theoretical
Computer Science 84(1), 127–150 (1991)

10. Sleator, D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28, 202–208 (1985)

11. Su, B., Xu, Y.F.: Online recoverable Canadian traveller problem. In: Proc. of the
International Conference on Management Science and Engineering, pp. 633–639
(2004)

12. Su, B., Xu, Y., Xiao, P., Tian, L.: A Risk-Reward Competitive Analysis for the
Recoverable Canadian Traveller Problem. In: Yang, B., Du, D.-Z., Wang, C.A.
(eds.) COCOA 2008. LNCS, vol. 5165, pp. 417–426. Springer, Heidelberg (2008)

13. Westphal, S.: A note on the k-Canadian traveller problem. Information Processing
Letters 106, 87–89 (2008)

14. Xu, Y.F., Hu, M.L., Su, B., Zhu, B.H., Zhu, Z.J.: The Canadian traveller problem
and its competitive analysis. Journal of Combinatorial Optimization 18, 195–205
(2009)

15. Zhang, H., Xu, Y.: The k-Canadian Travelers Problem with Communication. In:
Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp.
17–28. Springer, Heidelberg (2011)

http://acolab.ie.nthu.edu.tw/draft/ctp.pdf
http://hdl.handle.net/1721.1/40093

Vehicle Scheduling on a Graph Revisited�

Wei Yu1,2, Mordecai Golin2, and Guochuan Zhang1

1 College of Computer Science, Zhejiang University, Hangzhou, 310027, China
{yuwei2006831,zgc}@zju.edu.cn

2 Department of Computer Science and Engineering, Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong

golin@cse.ust.hk

Abstract. We consider a generalization of the well-known Traveling
Salesman Problem, called the Vehicle Scheduling Problem (VSP), in
which each city is associated with a release time and a service time.
The salesman has to visit each city at or after its release time. Our
main results are three-fold. First, we devise an approximation algorithm
for VSP with performance ratio less than 5/2 when the number of dis-
tinct release times is fixed, improving the previous algorithm proposed
by Nagamochi et al. [12]. Then we analyze a natural class of algorithms
and show that no performance ratio better than 5/2 is possible unless
the Metric TSP can be approximated with a ratio strictly less than 3/2,
which is a well-known longstanding open question. Finally, we consider a
special case of VSP, that has a heavy edge, and present an approximation
algorithm with performance ratio less than 5/2 as well.

1 Introduction

The Traveling Salesman Problem (TSP) is one of the most intensively studied
problems in combinatorial optimization. The input to the problem is a complete
graph in which vertices represent cities and edge lengths indicate the travel times
between the cities. The goal is to find a route for a salesman to visit all the cities
and return to his starting point such that (i) each city is visited exactly once,
and (ii) the total travel time of the salesman is minimum. This is a fundamental
problem that finds applications in most areas of discrete optimization. Unfor-
tunately, it turns out that TSP is NP-hard [7] and one cannot give an efficient
algorithm to produce the optimal route for each instance of TSP unless P = NP .
For this reason, researchers concentrate on designing approximation algorithms
for TSP. However, as shown in Sahni and Gonzalez [13], if the travel times are ar-
bitrary, for any constant c > 0 it is NP-hard to approximate TSP within ratio c.
If the travel times obey the triangle inequality (called Metric TSP), Christofides
[5] presents an elegant 3/2-approximation algorithm, which is currently the best
available, though the problem is still NP-hard [7].

Given a graph G, we can naturally induce a complete graph Gc (called the
closure of G) with edge lengths satisfying the triangle inequality. In Gc, the

� Research supported in part by NSFC (10971192).

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 362–371, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Vehicle Scheduling on a Graph Revisited 363

vertex set is the same as G and the length of edge (u, v) is equal to the length
of the shortest path between u and v in G. In this work, we focus on the Vehicle
Scheduling Problem (VSP), a natural generalization of Metric TSP in which each
city has a release time, the earliest possible time at which the salesman can visit
the city, and a service time indicating the duration for the visit. The problem
also specifies a home city at which the salesman starts and finishes the tour.

The literature contains a large body of research devoted to some special cases
of VSP, in which the complete graph is the closure of a line (or a cycle, a tree)
network. For VSP on a line, Tsitsiklis [15] proves the NP-hardness. Karuno et al.
[10] give a 3/2-approximation algorithm when the home is one of the end vertices
of the line. Gaur et al. [8] develop a 5/3-approximation algorithm when the home
is located at an arbitrary point, which is further improved to a PTAS by Karuno,
Nagamochi [11] and Augustine, Seiden [2], independently. Bhattacharya et al.
[4], Yu and Liu [16] devise faster 3/2-approximation algorithms for VSP on a
line as well as its variants. For VSP on a cycle and a tree, Bhattacharya et
al. [4] design approximation algorithms with performance ratios 9/5 and 11/6,
respectively, which are improved to 12/7 and 9/5 by Bao and Liu [3] recently.

For the general case, as far as we know, there is only a 5/2-approximation
algorithm proposed by Nagamochi et al. [12]. The algorithm simply works as
follows: the salesman waits at home till all cities are available to visit (at the
largest release time), and then visits the vertices along a tour generated by
Christofides’ Algorithm. It leaves a natural question if one can do better by
serving some cities that are released earlier. Along this line, in this work, we
achieve the following nontrivial results.

When the number of distinct release times is fixed, we are able to approximate
VSP with a ratio better than 5/2. In contrast, for an arbitrary number of distinct
release times, we carefully analyze a class of algorithms, called partition-based
algorithms, that group cities based on the release times and employ approxima-
tion algorithms for the metric TSP to serve the cities in a group. We show that
the performance ratio for such algorithms cannot be better than 5/2 unless met-
ric TSP can be approximated strictly better than 3/2. This implies that in order
to break the barrier of 5/2 it is necessary to introduce some new approaches. Fi-
nally, we deal with a special case of VSP, that has a heavy edge. Such a problem
admits an approximation algorithm with performance ratio better than 5/2.

The remainder of the paper is organized as follows. Section 2 describes the prob-
lem formally, and introduces some notations. In Section 3 we present a recursive
algorithm and analyze its performance ratio. A negative result is showed in Sec-
tion 4 for partition-based algorithms which generalize the algorithm in Section 3.
In Section 5 we discuss the case with a heavy edge. Section 6 concludes the paper.

2 Problem Formulation and Notations

VSP is formally described below. Given a complete graph G = (V,E) with
vertex set V = {0, 1, 2, . . . , n} and edge set E, each edge has a non-negative
length satisfying the triangle inequality. Each vertex u ∈ V \ {0} corresponds

364 W. Yu, M. Golin, and G. Zhang

to exactly one customer. Except for vertex 0 we use the terms vertices and
customers interchangeably if no confusion is caused. A vehicle (or salesman),
initially located at vertex 0 (called its home), travels along the graph to serve
all the customers. The travel time tu,v of edge (u, v) for the vehicle is equal to
the length of this edge. It takes a time duration of p(u) (called the service time)
to serve customer u, but this service cannot start before its release time r(u).
The goal is to find a route for the vehicle to serve all the customers and return
home as soon as possible.

For a customer set A, a schedule S on A with starting vertex u and ending
vertex v is an order of vertices on A∪{u, v} in which u is the first element and v
is the last. The makespan of S, denoted by Cmax(S), is the least time needed for
the vehicle to start from u, serve all the customers in A following S and arrive
at v. If we refer to a schedule without mentioning its starting vertex (or ending
vertex), then the starting point (or ending point) is automatically the vertex
0. Therefore, the goal of VSP is to find a schedule on V \ {0} to minimize the
makespan.

As a subroutine we will often be required to solve (approximately) the Shortest
Hamiltonian Path Problem (SHPP), in which we are required to find a shortest
Hamiltonian path with one (or two) specified ending vertices, ignoring release
and service times. SHPP is clearly NP-hard. Hoogeveen [9] presents an algorithm,
which we refer to as Hoogeveen’s algorithm, to find an approximate Hamiltonian
path. We will always denote a Hamiltonian path on a vertex set V ′ ∪ {l} (resp.
V ′∪{l′, l}) with one specified ending vertex l (resp. two specified ending vertices
{l′, l}) by an order of the vertices in V ′ ∪ {l} (resp. V ′ ∪ {l′, l}) such that vertex
l is the last element in this order.

Given an instance I of VSP, let 0 ≤ r1 < r2 < · · · < rm be the m distinct
release times of the customers. Clearly, m ≤ n (if the release times are all
distinct then m = n). Denote by Vi the set of vertices released at time ri .
Set Vi,j = ∪j

k=iVk . We write V≤i , V≥i , respectively, for V1,i , Vi,m . P≤i denotes
the total service time of vertices in V≤i . P≥i are defined similarly for V≥i . We
simply write P for P≤m . For V≤i ∪ {0} , we denote respectively by F≤i , H≤i
the minimum spanning tree and the optimal Hamiltonian path with one ending
vertex 0 on the specified vertex set. We similarly define F≥i , H≥i for V≥i ∪ {0}.
Denote by T the optimal tour on V (ignoring release and service times). Finally,
OPT (I) is the optimal value of I, i.e., the minimum possible makespan of a
schedule on V \ {0}, which is usually replaced by OPT if the instance is explicit
in the context.

For simplicity, the notation for a tour (path, tree) also represents its length,
i.e., the sum of travel times along it. Then we can show the following useful facts
and lower bounds on the optimal value of I.

Lemma 1. (i) F≤i ≤ H≤i ≤ T ; (ii) OPT ≥ P+T ; (iii) OPT ≥ ri+P≥i+H≥i .

Proof. The inequalities (i) and (ii) are obvious. For the correctness of (iii), we
only need to note the following facts. No vertex in V≥i is available before time ri
and the vehicle is required to return home. Thus, in any feasible schedule, after

Vehicle Scheduling on a Graph Revisited 365

time ri the vehicle has to serve all the vertices in V≥i and travel along a path
going through all the vertices in V≥i ∪ {0} with ending vertex 0.

Observe that (i) still holds by substituting F≥i , H≥i for F≤i , H≤i , respectively.
Due to the page limit, the proofs of all the following lemmas and Theorem 4

are omitted and will appear in the full version of this paper.

3 A Recursive Algorithm

In this section, we present an approximation algorithm for VSP and analyze its
performance ratio. Consider an instance I with m distinct release times. Since
the salesman starts from vertex 0 to serve the customers and returns home
eventually, we can get a schedule directly from a Hamiltonian path on V≤m with
two specified ending vertices {0, 0}, which is actually a tour on V . Moreover, we
observe that for each 1 ≤ i ≤ m − 1, a schedule on V≤m can be obtained by
appending a schedule on V≥i+1 with some starting vertex u to a schedule on V≤i
that ends at u.

Since the vehicle has to return home, the schedule on V≥i+1 can be generated

by computing a Hamiltonian path H̃≥i+1 with one specified ending vertex 0. Let

l be the other ending vertex of H̃≥i+1 in the generated schedule. Next we obtain
a schedule on V≤i with ending vertex l. Such a schedule can be found recursively
by replacing V≤m and 0 with V≤i and l, respectively.

In summary, we have the following procedure to compute a best available
schedule on V≤i with ending vertex l for all pairs (i, l) such that either (1) i = m
and l = 0 or (2) 1 ≤ i ≤ m− 1 and l ∈ V≥i+1.

Algorithm Recur(i, l)

Step 1. If i > 1, for each j = 1, 2, . . . , i − 1, run Hoogeveen’s algorithm to
compute a Hamiltonian path H̃j+1,i on Vj+1,i∪{l} with one specified ending

vertex l. Let l′ be the other ending vertex of H̃j+1,i. By a recursive call
Recur(j, l′), we obtain a schedule on V≤j with ending vertex l′ and makespan

tj . After that follow H̃j+1,i to serve the vertices in Vj+1,i. Let Sj be the
resulting schedule with ending vertex l.

Step 2. Run Hoogeveen’s algorithm to compute a Hamiltonian path H̃≤i on

V≤i ∪ {0, l} with two specified ending vertices {0, l}. Follow H̃≤i to serve all
the vertices in V≤i. The obtained schedule with ending vertex l is denoted
by Si.

Step 3. Choose one among S1, S2, . . . , Si with minimum makespan as the out-
put.

For any instance I with m distinct release times, we run Recur(m, 0) to obtain an
approximate solution S∗ which is concatenated by a series of paths. Since each
call of Recur(i, l) takes a polynomial time by employing all Recur(j, l′) with
j < i and l′ ∈ V≥j+1 and there are at most O(mn) recursive calls to compute,
S∗ can be found in polynomial time. Next we analyze the performance of this
algorithm. First we present some bounds on the length of the constructed path.

366 W. Yu, M. Golin, and G. Zhang

Lemma 2. (i) H̃j+1,i ≤ 3
2H≥j+1 ; (ii) H̃≤j ≤ F≥1 +

1
2T ≤

3
2T .

Remark 1. Note that Hoogeveen’s algorithm has a performance ratio of 5/3 for
a shortest Hamiltonian path with two specified ending vertices [9], which is
improved by An et al. [1] who propose a better algorithm with an upper bound
of (1 +

√
5)/2. However, as shown in Lemma 2(ii), if comparing the length of

the path produced by Hoogeveen’s algorithm to the optimal tour length the
ratio is at most 3/2. Note that this ratio is currently the best available since a
smaller ratio implies an improvement for the Metric TSP. Similarly, the ratio
3/2 in Lemma 2(i) is also the best available unless there exists an approximation
algorithm for SHPP with one specified ending vertex whose performance ratio
is less than 3/2.

We can bound the makespan of Sj and tj as follows.

Lemma 3. (i) Cmax(Sj) ≤ max{tj, ri}+P≥j+1+
3
2H≥j+1 , for j = 1, . . . , i−1 ;

(ii) Cmax(Si) ≤ ri + P≤i + H̃≤i ; (iii) tj ≤ rj + P≤j + H̃≤j .

In the following, by an induction on i we prove that each recursive call Recur(i, l)
returns a schedule on V≤i with ending vertex l whose makespan is at most ρiOPT
for some ρi . Using Lemmas 2 and 3, for i = 1, 2, we have

Lemma 4. ρ1 ≤ 3
2 .

Lemma 5. ρ2 ≤ 2
5ρ1 +

3
2 .

Now we move to the general case that i ≥ 3.

Lemma 6. For any 0 < λ ≤ 1, if both rj+1 ≥ λri and tj ≤ ri hold, we have
Cmax(Sj) ≤ g(λ)OPT , where

g(λ) =

{
5
2 −

3
2λ, if 0 < λ < 2

3
3
2 , if λ ≥ 2

3 .

Lemma 7. For any 0 < λ ≤ 1, if ri−1 ≤ λri holds, then

min{Cmax(Si−1), Cmax(Si)} ≤
21− 6λ

10− 4λ
OPT.

Lemma 8. For i ≥ 3, ρi ≤ 4
19ρi−2 +

75
38 .

Using Lemmas 4, 5, 8 we can establish the following theorem.

Theorem 1. There exists a polynomial time algorithm that produces a ρm-
approximate solution for any instance I with m distinct release times, where

ρm ≤
{

5
2 −

(
4
19

)(m−1)/2
, m is odd ,

5
2 −

√
19
5

(
4
19

)(m−1)/2
, m is even .

Vehicle Scheduling on a Graph Revisited 367

Proof. For any instance I with m distinct release times we run Recur(m, 0) to
obtain a ρm-approximate solution.

If m is an odd number, by Lemmas 8, 4 we have

ρm ≤
4

19
ρm−2 +

75

38
≤

(
4

19

)2

ρm−4 +
75

38

(
4

19
+ 1

)
≤ · · · · · ·

≤
(

4

19

)(m−1)/2
ρ1 +

75

38

((
4

19

)(m−3)/2
+ · · ·+ 4

19
+ 1

)

≤ 5

2
−
(

4

19

)(m−1)/2
.

Similarly, if m is an even number, using Lemmas 8, 5 we can prove the other
inequality in the theorem.

By the above theorem, for VSP with a fixed number of distinct release times,
we have an approximation algorithm with performance ratio less than 5/2. The
following theorem reveals the relation between algorithms for VSP and those for
VSP with a fixed number of distinct release times.

Theorem 2. For any fixed m ≥ 1, given an algorithm with performance ratio at
most ρ(m) for VSP with m distinct release times, one can build a new algorithm
for VSP with performance ratio at most ρ(m) + 1

m .

Proof. Given an instance I of VSP, let rmax be the maximum release time, we

round the release times such that r′(u) = �mr(u)
rmax

� rmax

m to get an instance I ′ with
m distinct release times. Run the algorithm for I ′ to obtain a solution S′ with
makespan at most ρ(m)OPT (I ′) . By delaying the serving of each vertex for rmax

m
time units in S′ we obtain a solution of I with makespan at most

ρ(m)OPT (I ′) +
rmax

m
≤

(
ρ(m) +

1

m

)
OPT (I) .

By the above theorem, we can obtain an approximation algorithm for VSP with
performance ratio less than 5/2 if there is an algorithm for VSP with two distinct
release times whose performance ratio is less than 2.

4 The Bottleneck of Partition-Based Algorithms

We generalize the algorithm in the previous section to a natural class of algo-
rithms, called partition-based algorithms, and figure out the bottleneck of using
this class of algorithms to obtain an algorithm for VSP with performance ratio
less than 5/2.

Recall that in the algorithm by Nagamochi et al.[12], for any instance I with
m release times, the vehicle waits at the home until the largest release time rm
and then serves all the customers along a shortest possible approximate tour. To

368 W. Yu, M. Golin, and G. Zhang

improve the algorithm, the vehicle may serve some customers before rm instead
of waiting at the home. However, the problem arises that we have to carefully
choose these customers first served. Like our algorithm in the last section, a
natural choice is V≤i, which motivates us to introduce partition-based schedules.
For any l ∈ V≥i+1 ∪ {0}, let H(i, l) be a Hamiltonian path on V≤i ∪ {0, l} with
two specified ending vertices {0, l}. Note that such a path must be computed by
a polynomial time oracle (Hoogeveen’s algorithm is one of such oracles), so that
the following schedule can be achieved polynomially.

Definition 1. A schedule S is called a partition-based schedule, if in S there
exists some vertex l ∈ V≥i+1 ∪{0} with 1 ≤ i ≤ m such that all the customers in
V≤i are served before l along with H(i, l), while all the customers in V≥i+1 are
served after l. A partition-based algorithm is a polynomial time algorithm that
always produces partition-based schedules.

Next we derive a lower bound of any partition-based algorithm. This bound holds
even for a special case of VSP, called Traveling Salesman Problem with release
times(TSPR), in which all the service times are zero. We achieve this bound by
considering an oracle for a special kind of metric graphs, called bounded metric
graphs (see Trevisan [14] and Engebretsen, Karpinski [6]), in which all the edge
lengths lie in {1, 2, . . . , B} for some fixed integer B independent of the number
of the vertices. Defining

γ0 = inf{γ | there is an oracle that produces for any bounded metric graph a

Hamiltonian path with two specified vertices of length at most γ

times that of the optimal tour on the graph },

we can show that

Theorem 3. The performance ratio of any partition-based algorithm on TSPR
is at least 1 + γ0.

Proof. Given any partition-based algorithm, let BL be the oracle to compute
schedules. Suppose Gn is a series of worst-case bounded metric graphs for BL
with vertex set Vn = {0, 1, . . . , n}, then there exist two vertices un , vn such
that BL returns for the input (Gn , un , vn) a Hamiltonian path from un to vn
with length at least γ0 times that of the optimal tour, say T (n) . Without loss
of generality we assume that T (n) = (0, 1, 2, . . . , n). Since Gn is a bounded
metric graph, we have T (n) ≥ n ≥ n

B ti,j , for all i, j, which implies for any two
specified vertices {u, v}, BL will output a Hamiltonian path of length at least(
γ0 − 2B

n

)
T (n) , since a Hamiltonian path with ending vertices {u, v} can be

transformed into a Hamiltonian path with ending vertices {un, vn} by adding
two edges (u, un), (v, vn).

Next we construct an instance of TSPR defined on a complete graph G, which
is obtained from Gn by adding i − 1 copies of vertex i for i = 1, 2, . . . , n and n
copies of vertex 0. For i = 1, 2, . . . , n, the release times of vertex i and its i− 1
copies are ri , ri−1 , . . . , r1 , respectively, where ri is the length of the path from

Vehicle Scheduling on a Graph Revisited 369

vertex 0 to vertex i along T (n) . The release times of the n copies of vertex 0 are
rn , rn−1 , . . . , r1, respectively. It can be seen that the optimal solution simply
travels along T (n) to visit all the vertices with makespan T (n).

Now consider a partition-based schedule S(i, l) , where l represents vertex l
as well as its copies, we have H(i, l) ≥

(
γ0 − 2B

n

)
T (n) . Note that the optimal

path on V≥i+1 ∪{0} with two specified ending vertices {0, l} is of length at least
T (n)− ri − ti,i+1 − ti+1,l (tn+1,j = t0,j), otherwise contradicts the optimality of
T (n) . Moreover, since there is a copy of vertex 0 with release time ri , we have

Cmax(S(i, l)) ≥ ri + H(i, l) + T (n)− ri − ti,i+1 − ti+1,l

≥ (1 + γ0)T (n)− 2B

n
T (n)− ti,i+1 − ti+1,l

≥ (1 + γ0)T (n)− 4B

n
T (n) .

Since i and l are arbitrary, the theorem follows by letting n tend to infinity.

Remark 2. It can be verified that the above proof still holds even if we modify
the definition of γ0 by replacing bounded metric graphs with a more general
class of graphs G0, in which the ratio of the maximum edge length to the length
of the optimal tour approaches 0 when the number of vertices tends to infinity.

By Theorem 3 and Remark 2, to obtain a partition-based algorithm on TSPR
with performance ratio less than 5

2 , it is necessary to show the value of γ0
defined with respect to G0 is less than 3

2 , which asks to improve the currently
best-known approximation algorithm for TSP defined on graphs in G0.

5 VSP with a Heavy Edge

In the last section, we have shown that there is a bottleneck to obtain a partition-
based algorithm for TSPR on graphs in G0 . In this section we discuss VSP with
a heavy edge, which is a generalization of TSPR on graphs not in G0 , and
give a simple approximation algorithm with performance ratio less than 5

2 . To
characterize the class of graphs not in G0, we introduce heavy edges.

Definition 2. Given some c0 > 0 , an edge (v, w) of an instance of VSP is
called a heavy edge if p(v) + p(w) + tv,w ≥ 2c0(P + T).

VSP with a heavy edge consists of only VSP instances with heavy edges. Now we
describe an algorithm, called HeavyEdge, for VSP with a heavy edge. Given any
instance I, let (v, w) be the heavy edge with p(v)+p(w)+ tv,w ≥ 2c0(P +T) . By
the triangle inequality max{p(v) + t0,v, p(w) + t0,w} ≥ 1

2 (p(v) + p(w) + tv,w) ≥
c0(P + T) . Without loss of generality we assume that p(v) + t0,v ≥ c0(P + T) .
The algorithm generates two schedules. The first one is S1 in which the vehicle
first travels to vertex v and then serves all the customers along a Hamiltonian
path H̃ with specified vertices {v, 0} obtained by Hoogeveen’s algorithm. The
construction of the other schedule S2 is identical to Nagamochi et al. [12] in

370 W. Yu, M. Golin, and G. Zhang

which the vehicle waits at the home until the largest release time rm and then
serves all the customers by following an approximate tour T̃ on V computed
by Christofides’ Algorithm. The best one of S1 , S2 is taken as the approximate
solution.

Next we analyze the performance ratio of Algorithm HeavyEdge.

Theorem 4. Algorithm HeavyEdge is a ρ(c0)-approximation algorithm for VSP
with a heavy edge, where

ρ(c0) =

(
6√

(6 + c0)2 + 12c0 + c0
+

3

2

)
<

5

2
.

By this theorem, a ρ-approximation algorithm, say A0 , for TSP defined on
graphs in G0 with ρ < 3

2 is sufficient to obtain an algorithm for VSP with
performance ratio less than 5

2 . And this algorithm works in the following way:
given any instance I, if the complete graph of I is in G0, run Nagamochi’s
algorithm with subroutine A0 instead of Christofides’ algorithm; otherwise, run
Algorithm HeavyEdge.

6 Concluding Remarks

In this paper, we derive an approximation algorithm for VSP whose performance
ratio is less than 5/2 when the number of distinct release times is fixed. And we
show that the performance ratio of any algorithm belonging to a natural class of
algorithms, called partition-based algorithms, is at least 5/2, unless TSP defined
on graphs in G0 can be approximated within ratio 3/2. Moreover, for VSP with
a heavy edge, we develop an approximation algorithm with performance ratio
less than 5/2.

To get a better algorithm for VSP, we have the following possibilities. If
we only concentrate on partition-based algorithms and Algorithm HeavyEdge in
Section 5, it is necessary and sufficient to show an approximation algorithm with
performance ratio less than 3/2 for TSP defined on graphs in G0. Otherwise, we
need to consider non-partition-based algorithm besides Algorithm HeavyEdge.
Finally, as shown by Theorem 2 finding a better algorithm for VSP with a fixed
number of distinct release times can be helpful. Particularly, we can break the
barrier of 5/2 by designing an algorithm for VSP with two distinct release times
with performance ratio less than 2.

References

1. An, H.-C., Kleinberg, R., Shmoys, D.B.: Improving Christofides’ Algorithm for the
s-t path TSP. In: the Proceedings of the 44th Annual ACM Symposium on Theory
of Computing, pp. 875–886 (2012)

2. Augustine, J.E., Seiden, S.: Linear time approximation schemes for vehicle schedul-
ing problems. Theoretical Computer Science 324, 147–160 (2004)

Vehicle Scheduling on a Graph Revisited 371

3. Bao, X., Liu, Z.: Approximation algorithms for single vehicle scheduling problems
with release and service times on a tree or cycle. Theoretical Computer Science 434,
1–10 (2012)

4. Bhattacharya, B., Carmi, P., Hu, Y., Shi, Q.: Single Vehicle Scheduling Problems
on Path/Tree/Cycle Networks with Release and Handling Times. In: Hong, S.-H.,
Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 800–811.
Springer, Heidelberg (2008)

5. Christofides, N.: Worst-case analysis of a new heuristic for the traveling sales-
man problem. Technical Report, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, PA (1976)

6. Engebretsen, L., Karpinski, M.: TSP with bounded metrics. Journal of Computer
and System Sciences 72, 509–546 (2006)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, San Francisco (1979)

8. Gaur, D.R., Gupta, A., Krishnamurti, R.: A 5
3
-approximation algorithm for

scheduling vehicles on a path with release and handling times. Information Pro-
cessing Letters 86, 87–91 (2003)

9. Hoogeveen, J.A.: Analysis of Christofide’s heuristic: some paths are more difficult
than cycles. Operations Research Letters 10, 291–295 (1991)

10. Karuno, Y., Nagamochi, H., Ibaraki, T.: A 1.5-approximation for single vehicle
scheduling problem on a line with release and handling times. In: Proceedings of
ISCIE/ASME 1998 Japan-USA Symposium on Flexible Automation, vol. 3, pp.
1363–1368 (1998)

11. Karuno, Y., Nagamochi, H.: An approximability result of the multi-vehicle schedul-
ing problem on a path with release and handling times. Theoretical Computer
Science 312, 267–280 (2004)

12. Nagamochi, H., Mochizuki, K., Ibaraki, T.: Complexity of the single vehicle
scheduling problems on graphs. Information Systems and Operations Research 35,
256–276 (1997)

13. Sahni, S., Gonzalez, T.: P-complete approximation problems. Journal of the Asso-
ciation for Computing Machinery 23, 555–565 (1976)

14. Trevisan, L.: When Hamming meets Euclid: the approximability of geometric TSP
and Steiner tree. SIAM Journal on Computing 30, 475–485 (2000)

15. Tsitsiklis, J.N.: Special cases of traveling salesman and repairman problems with
time windows. Networks 22, 263–282 (1992)

16. Yu, W., Liu, Z.: Single-vehicle scheduling problems with release and service times
on a line. Networks 57, 128–134 (2011)

A 4.31-Approximation for the Geometric Unique

Coverage Problem on Unit Disks�

Takehiro Ito1, Shin-ichi Nakano2, Yoshio Okamoto3,
Yota Otachi4, Ryuhei Uehara4, Takeaki Uno5, and Yushi Uno6

1 Tohoku University, Aoba-yama 6-6-05, Sendai, 980-8579, Japan
2 Gunma University, Kiryu, 376-8515, Japan

3 University of Electro-Communications,
Chofugaoka 1-5-1, Chofu, Tokyo 182-8585, Japan

4 Japan Advanced Institute of Science and Technology,
Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan

5 National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

6 Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531, Japan
takehiro@ecei.tohoku.ac.jp, nakano@cs.gunma-u.ac.jp, okamotoy@uec.ac.jp,
{otachi,uehara}@jaist.ac.jp, uno@nii.ac.jp, uno@mi.s.osakafu-u.ac.jp

Abstract. We give an improved approximation algorithm for the unique
unit-disk coverage problem: Given a set of points and a set of unit disks,
both in the plane, we wish to find a subset of disks that maximizes the
number of points contained in exactly one disk in the subset. Erlebach
and van Leeuwen (2008) introduced this problem as the geometric ver-
sion of the unique coverage problem, and gave a polynomial-time 18-
approximation algorithm. In this paper, we improve this approximation
ratio 18 to 2 + 4/

√
3 + ε (< 4.3095 + ε) for any fixed constant ε > 0.

Our algorithm runs in polynomial time which depends exponentially on
1/ε. The algorithm can be generalized to the budgeted unique unit-disk
coverage problem in which each point has a profit, each disk has a cost,
and we wish to maximize the total profit of the uniquely covered points
under the condition that the total cost is at most a given bound.

1 Introduction

Motivated by applications from wireless networks, Erlebach and van Leeuwen [2]
study the following problem. Let P be a set of points and D a set of unit disks,
both in the plane R2. For a subset C ⊆ D of unit disks, we say that a point
p ∈ P is uniquely covered by C if there is exactly one disk D ∈ C containing p.
In the (maximum) unique unit-disk coverage problem, we are given a pair 〈P ,D〉
of a set P of points and a set D of unit disks as input, and we are asked to
find a subset C ⊆ D such that the number of points in P uniquely covered by C
� This work is partially supported by Grant-in-Aid for Scientific Research, and by the
Funding Program for World-Leading Innovative R&D on Science and Technology,
Japan.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 372–381, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A 4.31-Approximation for the Geometric Unique Coverage Problem 373

(a) (b)

Fig. 1. (a) An instance 〈P ,D〉 of the unique unit-disk coverage problem, and (b) an
optimal solution C∗ to 〈P ,D〉, where each disk in C∗ is hatched and each uniquely
covered point is drawn as a small white circle

is maximized. For example, Fig. 1(b) illustrates an optimal solution C∗ for the
instance in Fig. 1(a).

In the context of wireless networks, as described by Erlebach and van
Leeuwen [2], each point corresponds to a customer location, and the center of
each disk corresponds to a place where the provider can build a base station.
If several base stations cover a certain customer location, then the resulting in-
terference might cause this customer to receive no service at all. Ideally, each
customer should be serviced by exactly one base station, and service should be
provided to as many customers as possible. This situation corresponds to the
unique unit-disk coverage problem.

[Past Work and Motivation]
Demaine et al. [1] formulated the non-geometric unique coverage problem in
a more general setting. They gave a polynomial-time O(log n)-approximation
algorithm1 for the non-geometric unique coverage problem, where n is the num-
ber of elements (in the geometric version, n corresponds to the number of points).
Guruswami and Trevisan [3] studied the same problem and its generalization,
which they called 1-in-k SAT. The appearance of the unique coverage problem
is not restricted to wireless networks. The previous papers [1,3] provide a con-
nection with unlimited-supply single-minded envy-free pricing. The maximum
cut problem can also be modeled as the unique coverage problem [1,3].

Erlebach and van Leeuwen [2] studied geometric versions of the unique cover-
age problem. They showed that the unique unit-disk coverage problem is strongly
NP-hard, and gave a polynomial-time 18-approximation algorithm. They also
consider the problem on unit squares, and gave a polynomial-time (4 + ε)-
approximation algorithm for any ε > 0. Later, van Leeuwen [6] gave a proof
that the unit-square version is strongly NP-hard, and improved the approxi-
mation ratio for unit squares to 2 + ε. Recently, we exhibit a polynomial-time
approximation scheme (PTAS) for the unique unit-square coverage problem [5].

1 Throughout the paper, we say that an algorithm for a maximization problem is
α-approximation if it returns a solution with the objective value APX such that
OPT ≤ αAPX, where OPT is the optimal objective value, and hence α ≥ 1.

374 T. Ito et al.

[Contribution of This Paper]
In this paper, we improve the approximation ratio 18 for the unique unit-disk
coverage problem [2] to 2+4/

√
3+ε (< 4.3095+ε) for any fixed constant ε > 0.

Our algorithm runs in polynomial time which depends exponentially on 1/ε.

2 Technique Highlight

An instance is denoted by 〈P ,D〉, where P is a set of points in the plane, and
D is a set of unit disks in the plane. A unit disk in this paper means a closed
disk with radius 1/2, and hence has the boundary. Without loss of generality,
we assume that any two points in P (resp., any two centers of disks in D) have
distinct x-coordinates and distinct y-coordinates [6]. We also assume that no
two disks in D touch, and no point in P lies on the boundary of any disk in
D [6]. For brevity, the x-coordinate of the center of a disk is referred to as the
x-coordinate of the disk. The same applies to the y-coordinate too.

[Our Approach]
We use the following two general techniques. (1) The shifting technique by
Hochbaum and Maass [4]: This subdivides the whole plane into some smaller
pieces, and ignores some points so that the combination of approximate solu-
tions to smaller pieces will yield an approximate solution to the whole plane.
(2) A classification of disks: Namely, for each instance on a smaller piece, we
partition the set of disks into a few classes so that the instance on a restricted
set of disks can be handled in polynomial time. Taking the best solution in those
classes yields a constant-factor approximation.

More specifically, our algorithm in this work exploits the techniques above
in the following way. (1) Our smaller pieces are stripes, which consists of some
number of horizontal ribbons such that each ribbon is of height h =

√
3/4 and the

gap between ribbons is of height b = 1/2. At this step, we lose the approximation
ratio of 1+b/h = 1+2/

√
3, as shown later in Lemma 1. (2) We classify the disks

intersecting a stripe into two classes. The first class consists of the disks whose
centers lie outside the ribbons in the stripe, and the second class consists of the
disks whose centers lie inside the ribbons. It is important to notice that we will
not solve the classified instances exactly, but rather we design a PTAS for each of
them. Namely, we provide a polynomial-time algorithm for each of the classified
instances with approximation ratio 1+ ε′, where ε′ > 0 is a fixed constant. Note
that the polynomial running times depend exponentially on 1/ε′. Then, since
we have two classes, we only lose the approximation ratio of 2(1 + ε′) at this
step (Lemma 2). Thus, choosing ε′ appropriately, we can achieve the overall
approximation ratio of (1 + 2/

√
3)× 2(1 + ε′) = 2 + 4/

√
3 + ε.

[Comparison with the Unit-Square Case]
The PTAS in this paper for each of the classified instances uses an idea similar
to our PTAS for unit squares [5]. However, there is a big difference, as explained
below, that makes us unable to give a PTAS for the original instance on unit
disks. Look at a horizontal ribbon. For the unit-square case, the intersection of

A 4.31-Approximation for the Geometric Unique Coverage Problem 375

the ribbon and a unit square is a rectangle. Then, its boundary is an x-monotone
curve. The monotonicity enables us to provide a PTAS. However, for the unit-
disk case, if we look at the intersection of the ribbon and a unit disk, then its
boundary is not necessarily x-monotone. To make it x-monotone, we need to
give a gap between ribbons; this is why we classified the disks into two classes,
as mentioned above. It should be noted that, by this disk classification, we can
get the x-monotonicity only for the disks whose centers lie outside the ribbons.
To obtain the approximation ratio of 2+4/

√
3+ε, we need to construct a PTAS

for the classified instance in which the centers of disks lie inside the ribbons. We
thus develop several new techniques to deal with such disks.

3 Main Result and Outline

The following is the main result of the paper.

Theorem 1. For any fixed constant ε > 0, there is a polynomial-time (2 +
4/
√
3 + ε)-approximation algorithm for the unique unit-disk coverage problem.

In the remainder of the paper, we give a polynomial-time 2(1 + ε′)(1 + 2/
√
3)-

approximation algorithm for the unique unit-disk coverage problem, where ε′ is
a fixed positive constant such that 2ε′(1+2/

√
3) = ε. (However, due to the page

limitation, we omit proofs from this extended abstract.)

[Restricting the Problem to a Stripe]
A rectangle is axis-parallel if its boundary consists of horizontal and vertical line
segments. Let RW be an (unbounded) axis-parallel rectangle of width W and
height∞ which properly contains all points in P and all unit disks in D. We fix
the origin of the coordinate system on the left vertical boundary of RW . For two
positive real numbers h, b and a non-negative real number q ∈ [0, h+b), we define
a stripe RW (q, h, b) as follows:RW (q, h, b) = {[0,W]×[q+i(h+b), q+(i+1)h+ib) |
i ∈ Z}, that is, RW (q, h, b) is a set of rectangles with width W and height h;
each rectangle in RW (q, h, b) is called a ribbon. It should be noted that the upper
boundary of each ribbon is open, while the lower boundary is closed. We denote
by P ∩ RW (q, h, b) the set of all points in P contained in RW (q, h, b). We have
the following lemma, by applying the well-known shifting technique [2,4].

Lemma 1. Suppose that there is a polynomial-time α-approximation algorithm
for the unique unit-disk coverage problem on 〈P ∩ RW (q, h, b),D〉 for arbitrary
constant q and fixed constants h, b. Then, there is a polynomial-time α(1+ b/h)-
approximation algorithm for the unique unit-disk coverage problem on 〈P ,D〉.

For the sake of further simplification, we assume without loss of generality that
no ribbon has a point of P or the center of a disk of D on its boundary (of the
closure).

[Approximating the Problem on a Stripe]
In the rest of the paper, we fix a stripe RW (q, h, b) for h =

√
3/4, b = 1/2

and some real number q ∈ [0, h + b). Then, using Lemma 1, one can obtain

376 T. Ito et al.

a polynomial-time α(1 + 2/
√
3)-approximation algorithm for the problem on

〈P ,D〉. Therefore, to complete the proof of Theorem 1, we give a polynomial-
time 2(1 + ε′)-approximation algorithm for the problem on 〈P ∩RW (q, h, b),D〉
for any fixed constant ε′ > 0.

We first partition the disk set D into two subsets DO and DI under the stripe
RW (q, h, b). Let DO ⊆ D be the set of unit disks whose centers are not contained
in the stripe RW (q, h, b). Let DI = D\DO, then DI is the set of unit disks whose
centers are contained in RW (q, h, b). Let Pq = P ∩RW (q, h, b). In Sections 4 and
5, we will show that each of the problems on 〈Pq,DO〉 and 〈Pq,DI〉 admits a
polynomial-time (1+ ε′)-approximation algorithm for any fixed constant ε′ > 0,
respectively. We choose a better solution from 〈Pq,DO〉 and 〈Pq,DI〉 as our
approximate solution to 〈Pq,D〉. The following lemma shows that this choice
gives rise to a 2(1 + ε′)-approximation for the problem on 〈Pq,D〉.

Lemma 2. Let 〈P ,D〉 be an instance of the unique unit-disk coverage problem,
and let D1 and D2 partition D (i.e., D1∪D2 = D and D1∩D2 = ∅). Let C1 ⊆ D1

and C2 ⊆ D2 be β-approximate solutions to the instances 〈P ,D1〉 and 〈P ,D2〉,
respectively. Then, the better of C1 and C2 is a 2β-approximate solution to 〈P ,D〉.

We may assume without loss of generality that each ribbon in RW (q, h, b)
contains at least one point in P . (We can simply ignore the ribbons contain-
ing no points.) We thus deal with only a polynomial number of ribbons. Let
R1, R2, . . . , Rt be the ribbons in RW (q, h, b) ordered from bottom to top.

4 PTAS for the Problem on 〈Pq,DO〉
In this section, we give a PTAS for the problem on 〈Pq,DO〉.

Lemma 3. For any fixed constant ε′ > 0, there is a polynomial-time (1 + ε′)-
approximation algorithm for the unique unit-disk coverage problem on 〈Pq,DO〉.

Let k = �1/ε′�. A proof of Lemma 3 is given by the following two lemmas.

Lemma 4. Suppose that we can obtain an optimal solution to 〈Pq ∩G,DO〉 in
polynomial time for every set G consisting of at most k ribbons. Then, we can
obtain a (1 + ε′)-approximate solution to 〈Pq,DO〉 in polynomial time.

Lemma 5. We can obtain an optimal solution to 〈Pq ∩ G,DO〉 in polynomial
time for every set G consisting of at most k ribbons.

The proof of Lemma 5 is one of the cruxes in this paper. We give a constructive
proof, namely, we give such an algorithm.

[Basic Ideas]
Our algorithm employs a dynamic programming approach based on the line-
sweep paradigm. Namely, we look at points and disks from left to right, and
extend the uniquely covered region sequentially. However, adding one disk D at
the rightmost position can influence a lot of disks that were already chosen, and

A 4.31-Approximation for the Geometric Unique Coverage Problem 377

can change the situation drastically (we say that D influences a disk D′ if the
region uniquely covered by D′ changes after the addition of D). We therefore
need to keep track of the disks that are possibly influenced by a newly added disk.
Unless the number of those disks is bounded by some constant (or the logarithm
of the input size), this approach cannot lead to a polynomial-time algorithm.
Unfortunately, new disks may influence a super-constant (or super-logarithmic)
number of disks.

Instead of adding a disk at the rightmost position, we add a disk D such
that the number of disks that were already chosen and influenced by D can be
bounded by a constant. Lemmas 6 and 7 state that we can do this for any set
of disks, as long as a trivial condition for the disk set to be an optimal solution
is satisfied. Furthermore, such a disk can be found in polynomial time.

[Basic Definitions]
We may assume without loss of generality that the set G consists of consecutive
ribbons forming a group; otherwise we can simply solve the problem for each
group, because those groups have pairwise distance more than one. Suppose
that G consists of k consecutive ribbons Rj+1, Rj+2, . . . , Rj+k in RW (q, h, b),
ordered from bottom to top, for some integer j. If a disk in DO can cover points
in Pq ∩G, then its center lies between Rj+i and Rj+i+1 for some i ∈ {0, . . . , k}.
For notational convenience, we assume j = 0 without loss of generality. Note
that the two ribbons R0 and Rk+1 are not in G.

For each i ∈ {0, . . . , k}, we denote by Di,i+1 the set of all disks in DO with
their centers lying between Ri and Ri+1. Then, each disk in Di,i+1 intersects Ri

and Ri+1. Note that D0,1,D1,2, . . . ,Dk,k+1 form a partition of the disks in DO

intersecting G.
For a disk set C ⊆ D, let A0(C), A1(C), A2(C) and A≥3(C) be the areas covered

by no disk, exactly one disk, exactly two disks, and three or more disks in C,
respectively. Then, each point contained in A1(C) is uniquely covered by C.

[Properties on Disk Subsets of Di,i+1]
We first deal with disks only in a set C ⊆ Di,i+1 and the region uniquely covered
by them. Of course, disks in Di−1,i ∪ Di+1,i+2 may influence disks in C; this
difficulty will be discussed later. We sometimes denote by Ri,i+1 the set of two
consecutive ribbons Ri and Ri+1.

Upper and Lower Envelopes. Let C ⊆ Di,i+1 be a disk set. Since any two unit
disks have distinct x-coordinates and distinct y-coordinates, we can partition the
boundary of the closure of A1(C) into two types: the boundary between A0(C)
and A1(C); and that between A1(C) and A2(C). We call the former type of the
boundaries above the lower boundary of Ri+1 (and below the upper boundary
of Ri) the upper (resp., lower) envelope of C. (See Fig. 2.) We say that a disk
D forms the boundary of an area A if a part of the boundary of D is a part of
that of A. Let UE(C) and LE(C) be the sequences of disks that form the upper
and lower envelopes of C, from right to left, respectively. Note that a disk D ∈ C
may appear in both UE(C) and LE(C).

378 T. Ito et al.

Ri

Ri+1

Fig. 2. A set C of disks in Di,i+1, together with A1(C) ∩ Ri,i+1 (gray), the upper
envelope (red), the lower envelope (blue) and the other part of the boundary between
A0(C) and A1(C) (green). The dotted lines show the boundaries of Ri and Ri+1

D

Fig. 3. The gray region shows Δ(C, D) for the thick disk D

Consider an arbitrary optimal solution C∗ ⊆ Di,i+1 to 〈Pq ∩ Ri,i+1,Di,i+1〉.
If there is a disk D ∈ C∗ that is not part of A1(C∗), we can simply remove it
from C∗ without losing the optimality. Thus, hereafter we deal with a disk set
C ⊆ Di,i+1 such that every disk D in C forms the upper or lower boundaries of
C, that is, D ∈ UE(C) or D ∈ LE(C) holds. This property enables us to sweep
the ribbons Ri,i+1, roughly speaking from left to right, and to extend the upper
and lower envelopes sequentially.

Top Disks and the Key Lemma. When we add a “new” disk D to the current
disk set C \ {D}, we need to know the symmetric difference between A1(C) and
A1(C \ {D}): the area A1(C) \A1(C \ {D}) ⊆ A1(C) is the uniquely covered area
obtained newly by adding the disk D, and the area A1(C \{D})\A1(C) ⊆ A2(C)
is the non-uniquely covered area due to D. However, it suffices to know the area
A1(C\{D})\A1(C) and its boundary, because the boundary of A1(C)\A1(C\{D})
is formed only by D and disks forming the boundary of A1(C \ {D}) \A1(C).

For a disk D in a set C ⊆ D, let Δ(C, D) be the area A1(C \ {D}) \ A1(C),
and Δ(C, D) be the set of all disks in C that form the boundary of Δ(C, D).
(See Fig. 3.) Clearly, every disk in Δ(C, D) has non-empty intersection with D.
As we mentioned, Δ(C, D) may contain a super-constant (or super-logarithmic)
number of disks if we simply choose the rightmost disk D in C. We will show
that, for any disk set C ⊆ Di,i+1, there always exists a disk D ∈ C such that
Δ(C, D) contains at most 16 disks, called top disks, and D itself is a top disk.

For a disk set C ⊆ Di,i+1, a disk D ∈ C is called a top disk of C if one of the
following conditions (i)–(iv) holds:

A 4.31-Approximation for the Geometric Unique Coverage Problem 379

(i) (ii)

(iii) (iv)

Fig. 4. An example of top disks. The (blue) thick disks are top disks, and the numbers
correspond to the conditions in the definition.

(i) D is one of the first six disks of UE(C);
(ii) D is one of the first six disks of LE(C);
(iii) D is one of the first two disks of UE(LE(C) \ UE(C)); and
(iv) D is one of the first two disks of LE(UE(C) \ LE(C)).

An example is given in Fig. 4. Remember that the disks in UE(C) and LE(C)
are ordered from right to left. We denote by Top(C) the set of top disks of C.
Note that a disk may satisfy more than one of the conditions above. A disk set
T ⊆ Di,i+1 is feasible on Di,i+1 if Top(T) = T . For a feasible disk set T on
Di,i+1, we denote by Ci,i+1(T) the set of all disk sets whose top disks are equal
to T , that is, Ci,i+1(T) = {C ⊆ Di,i+1 | Top(C) = T }. A top disk D in a feasible
set T is said to be stable in T if Δ(C, D) consists only of top disks in T for any
disk set C ∈ Ci,i+1(T). Indeed, stable top disks will be crucial to our algorithm:
if a top disk D is stable in a feasible set T ⊆ Di,i+1, then Δ(C, D) contains at
most 16 top disks in T for any disk set C ∈ Ci,i+1(T); and hence we can compute
Δ(C, D) in polynomial time. Therefore, below is the key lemma.

Lemma 6. For any feasible disk set T on Di,i+1, at least one top disk K(T) is
stable in T . Moreover, K(T) can be found in polynomial time.

[Properties on Disk Subsets of DO]
A disk set T ⊆ DO is feasible on DO if Top(T ∩ Di,i+1) = T ∩ Di,i+1

for each i ∈ {0, . . . , k}. For a feasible disk set T on DO and i ∈
{0, . . . , k}, let Ti,i+1 = T ∩ Di,i+1, and let C(T) = {C ⊆ DO | Top(C ∩
Di,i+1) = Ti,i+1 for each i ∈ {0, . . . , k}}. We say that Ti,i+1 is safe for T if
Δ(C,K(Ti,i+1)) ⊂ T for any disk set C ∈ C(T), where K(Ti,i+1) is the top
disk in Ti,i+1 selected by Lemma 6.

Lemma 7. For any feasible disk set T on DO, there exists an index s ∈
{0, . . . , k} such that Ts,s+1 is safe for T .

[Algorithm for the Problem on 〈Pq ∩G,DO〉]
For a feasible disk set T on DO, let f(T) be the maximum number of points
in Pq ∩ G uniquely covered by a disk set in C(T). Then, the optimal value

380 T. Ito et al.

OPT(Pq ∩ G,DO) for 〈Pq ∩ G,DO〉 can be computed as OPT(Pq ∩ G,DO) =
max{f(T) | T is feasible on DO}. Since |T | < 16(k + 1), this computation can
be done in polynomial time if we have the values f(T) for all feasible disk sets
T on DO.

We thus compute f(T) in polynomial time for all feasible disk sets T on
DO, according to the “parent-child relation.” For a disk set C ⊆ DO, we denote
simply by Top(C) =

⋃
0≤i≤k Top(C ∩ Di,i+1). For a feasible disk set T on DO,

let K(T) = K(Ts,s+1) where Ts,s+1 = T ∩ Ds,s+1 is safe for T . For two feasible
disk sets T and T ′ on DO, we say that T ′ is a child of T if there exists a disk
set C ∈ C(T) such that Top(C \ {K(T)}) = T ′.

Lemma 8. The parent-child relation for the feasible disk sets on DO can be
constructed in polynomial time. The parent-child relation is acyclic.

We finally give our algorithm to solve the problem on 〈Pq ∩G,DO〉.
For each i ∈ {0, . . . , k}, let T 0

i,i+1 be the disk set consisting of the first 16

disks in Di,i+1 having the smallest x-coordinates. Let T 0 =
⋃

0≤i≤k T 0
i,i+1, then

|T 0| ≤ 16(k+1). As the initialization, we first compute f(T) for all feasible sets
T on T 0. Since |T 0| is a constant, the total number of feasible sets T on T 0 is
also a constant. Therefore, this initialization can be done in polynomial time.

We then compute f(T) for a feasible disk set T on DO from f(T ′) for all
children T ′ of T . Since the parent-child relation is acyclic, we can find a feasible
disk set T such that f(T ′) are already computed for all children T ′ of T . For
a disk set C ⊆ DO and a disk D ∈ C, we denote by z(C, D) the difference of
uniquely covered points in Pq ∩ G caused by adding D to C \ {D}, that is, the
number of points in Pq ∩G that are included in D∩A1(C) minus the number of
points in Pq ∩G that are included in D ∩A1(C \ {D}). Since K(T) = K(Ts,s+1)
and Ts,s+1 = T ∩ Ds,s+1 is safe for T , we have z(T ,K(T)) = z(C,K(T)) for
all disk sets C ∈ C(T). Therefore, we can correctly update f(T) by f(T) :=
max{f(T ′) | T ′ is a child of T }+z(T ,K(T)). This way, the algorithm correctly
solves the problem on 〈Pq ∩G,DO〉 in polynomial time.

This completes the proof of Lemma 5. ��

5 PTAS for the Problem on 〈Pq,DI〉
We finally give the following lemma, which completes the proof of Theorem 1.

Lemma 9. For any fixed constant ε′ > 0, there is a polynomial-time (1 + ε′)-
approximation algorithm for the unique unit-disk coverage problem on 〈Pq,DI〉.

Remember that the upper boundary of each ribbon Ri in the stripe RW (q, h, b)
is open. Therefore, the ribbons in RW (q, h, b) have pairwise distance strictly
greater than b = 1/2. Since DI consists of unit disks (with radius 1/2) whose
centers are contained in ribbons, no disk in DI can cover points in two distinct
ribbons. Therefore, we can independently solve the problem on 〈Pq ∩ Ri,DI〉
for each ribbon Ri in RW (q, h, b). Thus, if there is a PTAS for the problem
on 〈Pq ∩ Ri,DI〉, then we can obtain a PTAS for the problem on 〈Pq,DI〉;

A 4.31-Approximation for the Geometric Unique Coverage Problem 381

we combine the approximate solutions to 〈Pq ∩ Ri,DI〉, and output it as our
approximate solution to 〈Pq,DI〉.

We now give a PTAS for the problem on 〈Pq ∩Ri,DI〉 for each ribbon Ri. We
first vertically divide Ri into rectangles, called cells, so that the diagonal of each
cell is of length exactly 1/2. Let Wc be the width of each cell, that is, Wc = 1/4
since h =

√
3/4. We may assume that, in each cell, the left boundary is closed

and the right boundary is open. Let r = 4, then rWc = 1.
Let k = �1/ε′�. Similarly as in the PTAS for 〈Pq,DO〉, we remove r consecutive

cells from every r(1+k) consecutive cells, and obtain the “sub-ribbon” consisting
of “groups,” each of which contains at most rk consecutive cells. Then, these
groups have pairwise distance more than one, and hence no unit disk (with radius
1/2) can cover points in two distinct groups. Therefore, we can independently
solve the problem on 〈Pq ∩ G,DI〉 for each group G in the sub-ribbon. The
similar arguments in Lemma 4 establishes that the problem on 〈Pq ∩ Ri,DI〉
admits a PTAS if there is a polynomial-time algorithm which optimally solves
the problem on 〈Pq ∩ G,DI〉 for each group G. Therefore, the following lemma
completes the proof of Lemma 9.

Lemma 10. There is a polynomial-time algorithm which optimally solves the
problem on 〈Pq ∩G,DI〉 for a group G consisting of at most rk consecutive cells.

6 Concluding Remark

Consider the budgeted unique unit-disk coverage problem, in which we are given
a budget B, each point in P has a profit, each disk in D has a cost, and we wish
to find C ⊆ D that maximizes the total profit of the uniquely covered points by
C under the condition that the total cost of C is at most B. The generality of
our approach enables us to give a polynomial-time (2+4/

√
3+ε)-approximation

algorithm, for any fixed constant ε > 0, for the budgeted version, too.

References

1. Demaine, E.D., Hajiaghayi, M.T., Feige, U., Salavatipour, M.R.: Combination can
be hard: approximability of the unique coverage problem. SIAM J. on Computing 38,
1464–1483 (2008)

2. Erlebach, T., van Leeuwen, E.J.: Approximating geometric coverage problems. In:
SODA 2008, pp. 1267–1276 (2008)

3. Guruswami, V., Trevisan, L.: The Complexity of Making Unique Choices: Approxi-
mating 1-in-k SAT. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) AP-
PROXandRANDOM2005. LNCS, vol. 3624, pp. 99–110. Springer, Heidelberg (2005)

4. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing prob-
lems in image processing and VLSI. J. ACM 32, 130–136 (1985)

5. Ito, T., Nakano, S.-I., Okamoto, Y., Otachi, Y., Uehara, R., Uno, T., Uno, Y.:
A Polynomial-Time Approximation Scheme for the Geometric Unique Coverage
Problem on Unit Squares. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS,
vol. 7357, pp. 24–35. Springer, Heidelberg (2012)

6. van Leeuwen, E.J.: Optimization and approximation on systems of geometric ob-
jects. Ph.D. Thesis, University of Amsterdam (2009)

The Minimum Vulnerability Problem

Sepehr Assadi1, Ehsan Emamjomeh-Zadeh1, Ashkan Norouzi-Fard1,
Sadra Yazdanbod1, and Hamid Zarrabi-Zadeh1,2,�

1 Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran

{s asadi,emamjomeh,noroozifard,yazdanbod}@ce.sharif.edu,
zarrabi@sharif.edu

2 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Abstract. We revisit the problem of finding k paths with a minimum
number of shared edges between two vertices of a graph. An edge is
called shared if it is used in more than one of the k paths. We pro-
vide a �k/2�-approximation algorithm for this problem, improving the
best previous approximation factor of k − 1. We also provide the first
approximation algorithm for the problem with a sublinear approxima-
tion factor of O(n3/4), where n is the number of vertices in the input
graph. For sparse graphs, such as bounded-degree and planar graphs, we
show that the approximation factor of our algorithm can be improved to
O(

√
n). While the problem is NP-hard, and even hard to approximate

to within an O(log n) factor, we show that the problem is polynomially
solvable when k is a constant. This settles an open problem posed by
Omran et al. regarding the complexity of the problem for small val-
ues of k. We present most of our results in a more general form where
each edge of the graph has a sharing cost and a sharing capacity, and
there is vulnerability parameter r that determines the number of times
an edge can be used among different paths before it is counted as a
shared/vulnerable edge.

1 Introduction

In this paper, we investigate a family of NP-Hard network design problems.
Our study is motivated by the minimum shared edges (MSE) problem, formally
defined as follows:

Problem 1 (Minimum Shared Edges). Given a directed graph G = (V,E), an
integer k > 0, and two distinct vertices s and t in V , find k paths from s to t
minimizing the number of shared edges. An edge is called shared if it is used in
more than one of the k paths.

The minimum shared edges problem arises in a number of transportation and
communication network design problems. As an example, consider a VIP who
wishes to travel safely between two places of a network (see [10]). To achieve a

� This author’s research was partially supported by IPM under grant No: CS1391-4-04.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 382–391, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Minimum Vulnerability Problem 383

minimum level of security assurance, the usual strategy is to pre-select k paths,
and then, choose one of the k paths at random just before the actual trip. To
bound the probability of being attacked by an adversary (who knows the strategy
and the paths) to at most 1/k, we need to put guards on high-risk edges, i.e.,
those edges shared among more than one of the pre-selected paths. To reduce the
guarding cost, the obvious objective is to find paths with a minimum number of
shared edges. A similar problem arises in the context of communication network
design, e.g., in designing reliable client-server networks [13], reliable multicast
communications [11], and distributed communication protocols [3].

In this work, we obtain results for a generalized version of the minimum
shared edges problem. More precisely, we generalize MSE (Problem 1) in three
directions. Firstly, we assign a cost ce to each edge e, which represents the cost of
guarding the edge. This weighted version is closer to the practical applications,
in which guarding edges have different costs, depending on, say, the length of
the edges. Secondly, we make the problem capacitated by assigning to each edge
an upper bound specifying the maximum number of times an edge can be used
among the k paths. Thirdly, we generalize the problem by adding a parameter r
that specifies a threshold on the number of times an edge can be used before it
becomes vulnerable, and needs to be guarded. The generalized problem, which
we call minimum vulnerability, is formally defined as follows:

Problem 2 (Minimum Vulnerability). Given a directed graph G = (V,E) with
nonnegative edge costs ce and maximum edge capacities Ue assigned to the edges
e ∈ E, two distinct vertices s, t ∈ V , and two integers r and k with 0 � r < k,
find k paths from s to t so as to minimize the total cost of r-vulnerable edges.
An edge is called r-vulnerable if it is used in more than r of the k paths.

Clearly, the minimum 1-vulnerability problem (i.e., when r = 1) is equiva-
lent to the weighted capacitated MSE problem. Furthermore, the minimum
0-vulnerability problem is equivalent to the classic minimum edge-cost flow
(MECF) problem, in which we are given a graph G = (V,E) with nonnega-
tive edge costs and capacities, and the goal is to find a min-cost subset A ⊆ E so
that the flow from s to t in (V,A) is at least a given value k. The MECF problem
is one of the fundamental NP-hard problems in network design (see Garey and
Johnson [4]). It includes several other interesting problems as special case, such
as the Steiner tree problem [4] and some of its generalizations [5,8].

Previous Work. The best previous approximation algorithm for the MSE
problem has an approximation factor of k − 1 [10], which is based on a k-
approximation algorithm for the MECF problem, proposed by Krumke et al. [9].
Both the MSE and MECF problems are known to be hard to approximate to
within a factor of 2log

1−ε n, for any constant ε > 0 [2,10].
A restriction of the minimum vulnerability problem to the case where no r-

vulnerable edge (r > 0) is allowed is equivalent to the well-known disjoint paths
problem, which can be solved polynomially using a standard maximum flow
algorithm (e.g., [6]). A closely related problem studied in the literature [13,14]
is the minimum sharability problem in which the cost of sharing each edge is

384 S. Assadi et al.

equal to the number of times the edge is shared (i.e., the flow of the edge minus
one) times the cost of the edge. This sharability problem can be solved efficiently
using minimum-cost flow algorithms. Another related problem is the fixed-charge
flow problem in which each edge has a fixed building cost as well as a per-unit
flow cost, and the objective is to select a subset of edges to route a flow of size
k between two nodes s and t such that the total cost of building the network
and sending the flow is minimized. The best current approximation factor for
this problem is β(G) + 1+ ε where β(G) is the size of a maximum s-t cut in the
graph [1].

Our Results. In this paper, we study the minimum vulnerability problem as
a generalization of the MSE and MECF problems, and obtain several results, a
summary of which is listed below.

– We present a primal-dual algorithm for the minimum r-vulnerability problem
that achieves an approximation factor of � k

r+1�. This improves, in particular,
the best previous approximation factor of k − 1 for the MSE problem to
�k/2�. It also yields an alternative k-approximation algorithm for the MECF
problem.

– We show that for any r � 0 and ε > 0, the minimum r-vulnerability
problem is hard to approximate to within a factor of 2log

1−ε n unless
NP ⊆ DTIME(npolylogn). This eliminates the possibility of obtaining a poly-
logarithmic approximation factor for the minimum vulnerability problem.

– Despite the fact that the minimum vulnerability problem is NP-hard (and
even hard to approximate), we show that for any constant k and any r > 0,
the minimum r-vulnerability problem can be solved exactly in polynomial
time. This settles an open problem posed by Omran et al. [10] regarding
the complexity of the MSE problem for small values of k. Our result indeed
shows that the hardness of the minimum r-vulnerability problem, for any
r > 0, crucially relies on the number of paths in the problem instance.

– For the MSE problem, we present an approximation algorithm that achieves
an approximation guarantee of O(n3/4), where n is the number of vertices in
the graph. This improves upon the trivial factor-n approximation available
for the problem, and is the first algorithm for the problem with a sublinear
approximation factor. When the input graph is sparse—which is the case
in most real-world applications, e.g., in road-map networks with bounded
vertex-degrees—we show that the approximation factor of our algorithm
can be further improved to O(

√
n).

Our results are mainly based on a clever use of max-flow min-cut duality. In
Section 2, we use a primal-dual method to pick a bounded-cost set of edges, out
of which the final vulnerable edges are selected. In Section 3, we find an ordered
set of min-cuts that leads to an exact solution to the minimum r-vulnerability
problem for any fixed k via a dynamic programming approach. In Section 4, we
use a combination of the primal-dual method and a shortest path algorithm to
obtain the first sublinear approximation factor for the MSE problem.

The Minimum Vulnerability Problem 385

2 A Primal-Dual Algorithm

In this section, we present a primal-dual1 algorithm for the minimum
r-vulnerability problem with an approximation factor of � k

r+1�.
A s-t cut is defined as a minimal set of edges whose removal disconnects t

from s. Let S be the set of all s-t cuts of size less than �k/r� in G. For the
special case of r = 0, we define S to be the set of all s-t cuts in G. An obvious
constraint is that in any feasible solution, at least one edge from each cut C ∈ S
must be r-vulnerable. If not, at most (�k/r�−1)× r < k paths can pass through
C, making the solution infeasible. Let xe be a 0/1 variable which is set to 1 if
edge e is r-vulnerable in our solution, and is set to 0 otherwise. The minimum
vulnerability problem with no capacity bounds (i.e., when Ue =∞ for all edges)
can be expressed as the following integer program:

min
∑
e∈E

cexe (IP)

s.t.
∑
e∈C

xe � 1 ∀ C ∈ S

xe ∈ {0, 1} ∀ e ∈ E

We relax the integer program to a linear program by replacing the constraint
xe ∈ {0, 1} with xe � 0. The following is the dual of the resulting linear program:

max
∑
C∈S

yC

s.t.
∑
C�e

yC � ce ∀ e ∈ E

yC � 0 ∀ C ∈ S

Our primal-dual algorithm is presented in Algorithm 1. We start with a feasible
dual solution y = 0, and an empty set of vulnerable edges R, that represents
an infeasible primal solution. We initialize the capacity ue of each edge to r,
allowing each edge to pass at most r paths initially. We then iteratively improve
the feasibility of the primal solution by choosing a s-t cut C whose capacity is
less than k, and increase its corresponding variable yC , until a dual constraint∑

C�e yC � ce becomes tight for some edge e. We then add e to the set of
vulnerable edges, and set its capacity to Ue. The loop is terminated when all s-t
cuts have capacity at least k, admitting a s-t flow f of value k, which is returned
as the final solution.

Let OPT be the cost of an optimal solution for the minimum vulnerability
problem, let ZIP be the optimal value of the objective function of (IP), and
APX be the cost of the solution returned by our algorithm. Obviously, ZIP �
OPT, because every feasible solution to the capacitated problem is also a feasible
solution for the uncapacitated one. We further prove the following.

1 Readers not familiar with the primal-dual framework are referred to the textbooks
on approximation algorithms, e.g., [12].

386 S. Assadi et al.

Algorithm 1. Primal-Dual

1: y ← 0, R ← ∅
2: set ue ← r for all e ∈ E

3: while there exists a s-t cut C of capacity less than k in G do

4: increase yC until
∑

C�e yC = ce for some edge e

5: R ← R ∪ {e}, ue ← Ue

6: find an integral s-t flow f of value k in graph G with edge capacities ue

7: return f

Lemma 3. APX � � k
r+1�OPT.

Proof. Let T be the set of edges carrying a flow more than r in f . Clearly, T ⊆ R.
Now,

APX =
∑
e∈T

ce

=
∑
e∈T

∑
C�e

yC (by line 4 of algorithm)

=
∑
C∈S

yC × |{e ∈ T ∩ C}|

�
⌊

k

r + 1

⌋ ∑
C∈S

yC (*)

�
⌊

k

r + 1

⌋
ZIP (by weak duality)

where the inequality (*) holds, because at most � k
r+1� edges of each cut C can

have a flow more than r in f . The lemma follows by the fact ZIP � OPT. ��

Theorem 4. There is a � k
r+1�-approximation algorithm for the minimum vul-

nerability problem that runs in O(nm2 log(n2/m)) time on a graph with n vertices
and m edges.

Proof. The approximation factor of Algorithm 1 follows from Lemma 3. The
main loop iterates at most m times. At each iteration, we need to compute
a min-cut, which can be done in O(nm log(n2/m)) time [7]. Line 4 involves
comparing at most k values, taking O(k) = O(n) time. The total time is therefore
O(nm2 log(n2/m)). ��

3 An Exact Algorithm for Fixed k

The minimum vulnerability problem is not only NP-hard, but is also hard to
approximate to within a factor of 2log

1−ε n, for any ε > 0 (the proof is omitted

The Minimum Vulnerability Problem 387

e1

e2

e|C|

s t

G′
1 G′

2

s

G′
1

t′ t

G′
2

s′

G G1 G2

e1 e1

e2 e2

e|C| e|C|

Fig. 1. A graph G with a s-t cut C is divided into two graphs G1 and G2

in this version). Despite this fact, we show in this section that if k is a constant,
then the minimum r-vulnerability problem, for any r > 0, can be solved exactly
in polynomial time.

Given a directed graph G and a s-t cut C, we say that an edge e = (u, v) �∈ C
is before C if there is a path from s to u not using any edge of C, and we say
that e is after C if a path exists from v to t with no edge from C. Note that an
edge cannot be both before and after C because C is a s-t cut. Given two s-t
cuts C1 and C2, we write C1 � C2 if each edge of C1 is either before or in C2.

Consider an instance of the minimum r-vulnerability problem. We call a ca-
pacity function u : E → Z+ proper if there exists a s-t flow f of value k such
that f(e) � u(e) for all edges e ∈ E. A proper capacity function is minimal if
decreasing the capacity of any edge e with u(e) > r makes u improper.

Lemma 5. Given a minimal capacity function u, a sequence C1 � · · · � Cγ of
s-t cuts can be found such that

∑
e∈Ci

u(e) = k for all 1 � i � γ, and that each
edge e ∈ E with u(e) > r lies in at least one of the γ cuts.

Proof. Pick an arbitrary edge e ∈ E with u(e) > r such that its head is not t
and its tail is not s. If no such e exists, we are done. There must exist a s-t cut
C containing e such that

∑
e∈C u(e) = k by the minimality of u. We construct

a graph G1 from G by removing all edges after C, and then, merging all heads
of the edges in C into a new vertex t′ (see Figure 1). Similarly, we construct G2

from G by removing all edges before C, and merging all tails of the edges in C
into a new vertex s′. For any set P of k paths from s to t, all edges of P are
either in G1 or G2. Therefore, the problem of finding k paths from s to t in G
can be reduced into two subproblems: finding k paths from s to t′ in G1 and
finding k paths from s′ to t in G2. By induction, there exists a sequence of cuts
for each of G1 and G2 as stated in the lemma. Therefore, the sequence of cuts
in G1, followed by C and then the sequence of cuts in G2 yields the desired cut
sequence. ��

Theorem 6. If k is a constant, then the minimum r-vulnerability problem can
be solved exactly in polynomial time for any r > 0.

Proof. We define a state as a pair (C, θ), where C is a s-t cut, and θ is a |C|-tuple
with

∑
e∈C θe = k and θe � Ue. A set of k paths from s to t, represented by a

s-t flow f of value k, is suitable for the state (C, θ) if f(e) � θe for all e ∈ C,
and f(e) � Ue for all e ∈ E \ C.

388 S. Assadi et al.

Algorithm 2. find-cost(C, θ)

1: costC ←
∑

e∈C,θe>r ce

2: if (C, θ) is a final state then

3: return costC

4: for each edge e ∈ C do

5: if θe > Ue then

6: return ∞
7: ans ← ∞
8: for each cut C′ with C � C′ do

9: for each θ′ = (θ′1, θ
′
2, . . . , θ

′
|C′|) with

∑|C′|
i=1 θ′i = k do

10: if (C′, θ′) is immediately after (C, θ) then

11: ans ← min{ans, find-cost(C′, θ′) + costC}
12: return ans

The answer to the state (C, θ) is defined as the minimum total cost of r-
vulnerable edges either in C or after it, over all suitable sets of k paths. Obviously,
if there exists a suitable set of k paths for a state (C, θ) such that no edge after
C is r-vulnerable, then the answer to this state is equal to the total cost of
r-vulnerable edges in C. We call such states the final states.

A state (C′, θ′) is immediately after (C, θ), if C � C′, and there exists a set of
k paths suitable for both (C, θ) and (C′, θ′), with no r-vulnerable edge between
C and C′ (i.e., after C and before C′). Given two states (C, θ) and (C′, θ′), we
define the following capacity function:

w(e) =

⎧⎪⎪⎨⎪⎪⎩
θe if e ∈ C
θ′e if e ∈ C′

min{Ue, r} if e between C and C′

Ue otherwise

Observe that the maximum flow in graph G with capacity function w is at least
k if and only if (C′, θ′) is immediately after (C, θ). We use this observation to
check whether a state is immediately after another one.

Algorithm 2 computes the answer to the state (C, θ) recursively, based on
the answers to the states immediately after it. The algorithm works as follows.
Given a state (C, θ), we find all states (C′, θ′) immediately after (C, θ), solve the
problem recursively for (C′, θ′), add the cost of the current cut (i.e., sum of costs
of edges e ∈ C with θe > r), and then return the minimum of all these values.
The final answer to the problem is the minimum answer to the states (C, θ) such
that there exists a suitable set of k paths with no r-vulnerable edge before C.

The correctness of the algorithm follows from Lemma 5, since all possible
sequences of s-t cuts that can be the sequence of cuts in an optimal solution
are examined by the algorithm. We can use dynamic programming to store the
answers to the states, and avoid recomputing. Note that the number of s-t cuts
of size less than k is O(mk−1) (where m = |E|), and the number of solutions

The Minimum Vulnerability Problem 389

to
∑|C|

i=1 θi = k is at most
(
2k−1
k−1

)
= O(1), implying that the number of states

is O(mk−1). On the other hand, checking if a state is final, and checking if a
state is immediately after another one can be both done in O(n3) time using a
standard max flow algorithm. Therefore, the total running time of the algorithm
is O(m2(k−1)n3). ��

4 A Sublinear Approximation Factor

In this section, we present an approximation algorithm for the MSE problem
(Problem 1) with a sublinear approximation factor. Our algorithm is a combi-
nation of the primal-dual method presented in Section 2 and a simple shortest
path algorithm. The pseudo-code is presented in Algorithm 3.

Algorithm 3. sublinear-approx

1: let P1 be the output of Algorithm 1, having w shared edges

2: let P2 be a shortest s-t path of length �

3: return P1 if w < � else P2

The feasibility of the returned solution is clear, as we can route all the k paths
through a shortest s-t path. Let P ∗ be an optimal solution to the MSE problem
with a minimum number of used edges (i.e., edges carrying non-zero flow). Let
D be the graph induced by P ∗, and m∗ be the number of its edges. Denote by
OPT the number of shared edges in any optimal solution. We assume, w.l.o.g.,
that OPT �= 0.

Lemma 7. D is a DAG.

Proof. Suppose that there is a cycle in D. Reduce the capacity of each edge
in the cycle by the minimum amount of flow along the edges of the cycle. This
results in decreasing the number of edges in D by at least one without increasing
the number of shared edges, contradicting the minimality of the number of edges
in D. ��

Lemma 8. k�−m∗

k � OPT, where � is the length of a shortest s-t path.

Proof. Let f be a s-t flow of value k in D. We have:∑
e∈E

max {0, f(e)− 1} � kOPT, (1)

where the the left-hand side counts the number of shared edges in f . On the
other hand, any shared edge can be in at most k paths, so the inequality above
holds. Furthermore: ∑

e∈E
max {0, f(e)− 1} =

∑
e∈E

f(e)−m∗. (2)

390 S. Assadi et al.

The length of every s-t path is at least �. Therefore, the total number of edges
used in the k paths is at least k�. Combined with (1) and (2) we get:

k�−m∗ �
∑
e∈E

f(e)−m∗ � kOPT.
��

Lemma 9. Let G = (V,E) be a DAG with n vertices such that for all, but k
vertices, in-degree equals out-degree. Then G has O(kn

√
n+ k2) edges.

(Proof can be found in the full version.)

Theorem 10. Algorithm 3 is an O(min{n 3
4 ,m

1
2 })-approximation algorithm for

the MSE problem.

Proof. Let α = �/OPT be the approximation factor achievable by just return-
ing the shortest path. Algorithm 3 has therefore an approximation factor of
min{k, α}. We consider two cases.

case 1. k� � 2m∗. By Lemma 8, α � k�
k�−m∗ . Therefore,

α � k�

k�−m∗
� 2m∗

2m∗ −m∗
= 2.

Hence, min{k, α} � 2 in this case.

case 2. k� < 2m∗. In this case

kα � kαOPT = k� < 2m∗ � 2m.

Therefore, min{k, α} <
√
2m, implying an approximation factor of O(

√
m).

We can put a second upper bound on the approximation factor. Consider
the DAG D defined earlier in this section. In this graph, except for the end-
points of shared edges and s and t, all other vertices have equal in/out degrees,
because each path enters a vertex with an edge, and exits it with another edge.
By Lemma 9, the number of edges in D is O(n

√
nOPT+OPT

2). Observe that
if OPT � √

n, a shortest path is a
√

n-approximation to MSE, because � � n.
If OPT <

√
n, then m∗ is upper-bounded by O(n

√
nOPT), resulting in:

k� < 2m∗ < cn
√

nOPT ⇒ kαOPT < cn
√

nOPT

⇒ kα < cn
√

n ⇒ min{k, α} <

√
cn
√

n

Combined with the previous result we get min{k, α} = O(min {n 3
4 ,m

1
2 }). ��

Corollary 11. For sparse graphs with m = O(n), such as planar graphs and
bounded-degree graphs, Algorithm 3 yields an O(

√
n) approximation factor.

The Minimum Vulnerability Problem 391

5 Conclusion

In this paper, we introduced the minimum vulnerability problem which is an
extension of the two previously-known problems, MECF and MSE. We obtained
a � k

r+1�-approximation algorithm for the problem in general form, and the first
sublinear approximation factor for the MSE problem. While the problem is hard
to approximate, we showed that the minimum (r > 0)-vulnerability problem can
be solved exactly in polynomial time for any fixed k. We leave this question open
whether a same poly-time algorithm can be obtained for the case of r = 0, i.e.,
for the MECF problem. Another open problem is whether better approximation
factors can be obtained for MSE, and in general, for the minimum vulnerability
problem.

References

1. Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality
gaps for capacitated network design and covering problems. In: Proc. 11th ACM-
SIAM Sympos. Discrete Algorithms, pp. 106–115 (2000)

2. Even, G., Kortsarz, G., Slany, W.: On network design problems: fixed cost flows
and the covering steiner problem. ACM Trans. Algorithms 1(1), 74–101 (2005)

3. Franklin, M.K.: Complexity and security of distributed protocols. PhD thesis, Dept.
of Computer Science, Columbia University (1994)

4. Garey, M., Johnson, D.S.: Computers and intractability: A guide to the theory of
NP-completeness. W.H. Freeman (1979)

5. Garg, N., Ravi, R., Konjevod, G.: A polylogarithmic approximation algorithm for
the group Steiner tree problem. J. Algorithms 37(1) (2000)

6. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45(5),
783–797 (1998)

7. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J.
ACM 35(4), 921–940 (1988)

8. Konjevod, G., Ravi, R., Srinivasan, A.: Approximation algorithms for the covering
steiner problem. Random Structures & Algorithms 20(3), 465–482 (2002)

9. Krumke, S.O., Noltemeier, H., Schwarz, S., Wirth, H.-C., Ravi, R.: Flow improve-
ment and network flows with fixed costs. In: Proc. Internat. Conf. Oper. Res.: OR
1998, pp. 158–167 (1998)

10. Omran, M.T., Sack, J.-R., Zarrabi-Zadeh, H.: Finding Paths with Minimum Shared
Edges. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 567–578.
Springer, Heidelberg (2011)

11. Wang, J., Yang, M., Yang, B., Zheng, S.Q.: Dual-homing based scalable partial
multicast protection. IEEE Trans. Comput. 55(9), 1130–1141 (2006)

12. Williamson, D.P., Shmoys, D.B.: The design of approximation algorithms. Cam-
bridge University Press (2011)

13. Yang, B., Yang, M., Wang, J., Zheng, S.Q.: Minimum cost paths subject to mini-
mum vulnerability for reliable communications. In: Proc. 8th Internat. Symp. Par-
allel Architectures, Algorithms and Networks, ISPAN 2005, pp. 334–339. IEEE
Computer Society (2005)

14. Zheng, S.Q., Wang, J., Yang, B., Yang, M.: Minimum-cost multiple paths subject
to minimum link and node sharing in a network. IEEE/ACM Trans. Network-
ing 18(5), 1436–1449 (2010)

A Strongly Polynomial Time Algorithm

for the Shortest Path Problem on Coherent
Planar Periodic Graphs

Norie Fu

Department of Computer Science, University of Tokyo
f norie@is.s.u-tokyo.ac.jp

Abstract. A periodic graph is an infinite graph obtained by copying a
finite graph to each room of Zd-lattice and connecting them regularly.
Höfting and Wanke formulated the shortest path problem on periodic
graphs as an integer programming and showed that it is NP-hard, to-
gether with a pseudopolynomial time algorithm for bounded d. Using
Iwano and Steiglitz’s result, the time complexity can be shown to be
weakly polynomial on planar periodic graphs with d = 2. In this pa-
per, we show a strongly polynomial time algorithm for the shortest path
problem on coherent planar periodic graphs with d = 2. The coherence
is a combinatorial property of periodic graphs introduced in this paper,
which naturally holds for planar regular tilings, etc. We show that the
coherence is the necessary and sufficient condition that an optimal so-
lution to the integer programming is still optimal if the connectedness
constraint is removed. Using the theory of toric ideal, we further show
that the incidence-transit matrix describing the linear constraints in the
integer linear programming for planar cases with d = 2 form a new class
of unimodular matrices, which itself is of theoretical interest and leads
to the strongly polynomial time algorithm.

1 Introduction

A periodic graph is an infinite graph which has a finite description by a finite
directed graph with vector labels on its edges, called a static graph. The periodic
graph is obtained as follows: Copy the vertices of the static graph to each cell of
Zd-lattice and make a directed edge from the vertex s in the cell z to the vertex
t in the cell z′ if an edge from s to t with edge label z′−z is in the static graph.
Periodic graphs naturally arise as a model of various periodic structures; crystal
structure [5], VLSI circuits [10], systems of uniform recurrence equations [12] and
so on. Thus fundamental problems on them are widely investigated; connectivity
by Cohen and Megiddo [4], planarity by Iwano and Steiglitz [11], for instance.

The shortest path problem on the periodic graph is the problem to find a path
from s in the cell z′ to t in the cell z′ + z with the minimum number of edges,
for given s, t and z ∈ Zd. By Höfting and Wanke [9], the shortest path problem
on general periodic graph is formulated as an integer programming obtained by
adding the connectedness constraint to the integer linear programming defined

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 392–401, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Strongly Polynomial Time Algorithm for the Shortest Path Problem 393

by the incidence-transit matrix encoding the static graph. They showed the NP-
hardness of this problem and a pseudopolynomial time algorithm on periodic
graphs with bounded d, which solves the problem by enumerating pseudopoly-
nomial number of possible decompositions of the shortest path into a path and
cycles and then solving an integer linear programming for each decomposition.

For efficient use of the nanotechnology to construct an intended configuration
of atoms on a physical crystal surface by repeated swaps of atoms [1], an efficient
algorithm for the shortest path problem on planar periodic graph is necessary.
Motivated by this application, we are interested in the next question: Is it possible
to construct a strongly polynomial time algorithm for the shortest path problem on
planar periodic graph? Using the result of Iwano and Steiglitz [11], the complexity
of Höfting and Wanke’s algorithm on a planar periodic graph turns out to be
weakly polynomial, where the size of the vector z appears, however, we still need
to solve strongly polynomial number of integer linear programmings.

In this paper we show an O(n8) time algorithm on a planar periodic graph
with d = 2, which outputs the shortest path if the given planar periodic graph
is coherent and otherwise outputs “no”, where n is the number or the vertices
and m is the number of the edges of the static graph. Here the coherence is
a combinatorial property of periodic graphs introduced in this paper, which
makes it possible to compute the shortest path by solving only one integer linear
programming defined by the incidence-transit matrix and then converting it into
the shortest path. The time complexity for testing coherence and this convert
are both O(n8) on planar periodic graphs. We also show that there are infinite
number of coherent periodic graphs by establishing that the periodic graphs with
the well-studied property �1-rigidity [7] are coherent. A catalog of �1-rigid planar
periodic graphs is provided by Deza, Grishukhin and Shtogrin [6].

Furthermore we show that the incidence-transit matrix of a planar periodic
graph with d = 2 forms a new class of unimodular matrices. By the theory of
integer and linear programming [15], this means that the integer linear program-
ming defined by the incidence-transit matrix can be solved by computing its LP
relaxation. Using Iwano and Steiglitz’s theory mentioned above, we can also show
that this LP relaxation can be solved in O(n6.5 logn) time using Orlin’s dual ver-
sion [14] of Tardos’ strongly polynomial algorithm for the linear programming
defined by a matrix with bounded entries [18]. Note that the incidence-transit
matrix of a planar periodic graph is not always totally unimodular and we can-
not use Seymour’s decomposition theorem for totally unimodular matrices [16]
to prove this result. We utilize the theory of computational algebra, especially
the theory on toric ideal [17] for the proof.

The time complexity of our algorithm is large, however, we can use fast algo-
rithms such as the simplex method for the LP relaxation. The bottleneck of the
algorithm is thus the convert into the shortest path, but the computations for
the convert into are also necessary in the execution of Höfting and Wanke’s algo-
rithm. A more sophisticated way or a new theory to deal with the connectedness
condition may be necessary to overcome this bottleneck.

394 N. Fu

2 Preliminaries

Definition 1. The pair G = (V , E) of a vertex set V = {1, . . . , n} and a set of
directed edges with vector labels E = {e(1), . . . , e(m)} ⊆ {((i, j), g) : i, j ∈ V , g ∈
Zd} is called a static graph. For a static graph G = (V , E), the periodic graph
G = (V,E) generated by G is defined by V = V × Zd, E = {((i,h), (j,h + g)) :
h ∈ Zd, ((i, j), g) ∈ E}.

For an edge e = ((i, j), g) ∈ E , g is called the transit vector of e, denoted by
tran(e). By definition, periodic graphs are generally directed graphs. However, if
for all ((i, j), g) ∈ E its reversed edge ((j, i),−g) is also in E , the periodic graph
can be regarded as an undirected graph. An example is shown in Figure 1.

(a) (b)

Fig. 1. (a) is a static graph G with d = 2 and (b) is the periodic graph G generated
by G. The multiple edges with different edge labels on G are represented by an edge
with multiple edge labels. The periodic graph G can be regarded as undirected, since
for every directed edge there exists an oppositely-oriented edge of it. The oppositely-
oriented edges on G are induced by the reversed edges on the static graph G.

Note that different two static graphs can generate isomorphic periodic graphs.
In the rest, we assume that G is undirected and connected, and d = 2. By

G = (V , E) we denote a static graph with V = {1, . . . , n} and E = {e(1), . . . , e(m)}
and by G = (V,E) the corresponding periodic graph.

A semi-walk is an alternating sequence of vertices and edges v(1), f (1), . . . ,
v(k−1), f (k−1), v(k), where f (i) is an edge from vi to vi+1 or else f (i) is an edge
from vi+1 to vi. If v

(1) = v(k), the semi-walk is closed and otherwise the semi-walk
is open. The semi-walk is a semi-path if it has no cycle as a proper subsequence.
A closed semi-walk is called cycle and said to be simple if it is a semi-path. In
the former case edge f (i) is a forward edge of the semi-walk, and in the latter
case edge f (i) is a backward edge. A semi-walk is a directed walk (or simply walk)
if it has no backward edges. For a semi-walk P on G with the forward edges F
and the backward edges B, we call

∑
e∈F tran(e) −

∑
e′∈B tran(e

′) the transit
vector of P , denoted by tran(P). We denote the number of edges in P by len(P).

A Strongly Polynomial Time Algorithm for the Shortest Path Problem 395

Denote by u(k) ∈ Z(n+2) the k-th unit vector and by gk the k-th entry of a
vector g. For e = ((i, j), g) ∈ E , let a(e) be the column vector (u(i) − u(j)) +
(g1u

(n+1) + g2u
(n+2)). When i �= j, a(e) = (. . . , 1, . . . ,−1, . . . , g1, g2)T and

otherwise a(e) = (0, . . . , 0, g1, g2)
T .

Definition 2. The incidence-transit matrix of G, denoted by AG, is the matrix(
a(e(1)), . . . ,a(e(m))

)
.

For a multiset S on the set {s1, . . . , sm}, we call the vector v = (v1, . . . , vm)T

the characteristic vector of S if vi is the multiplicity of si in S. We also refer to
the characteristic vector of a semi-walk by regarding it as a multiset of edges.

Theorem 1 ([9]). Let s, t ∈ V and z ∈ Z2. Then the characteristic vector of
a shortest walk P on G from s to t with tran(P) = z can be computed by the
following mathematical programming denoted by IPG(s, t, z): min1 · x subject
to (1)AGx = (u(s) − u(t)) + (z1u

(n+1) + z2u
(n+2)), (2)x ≥ 0, (3)x ∈ Zm and

(4){e(i) ∈ E : xi > 0} is weakly connected and is incident to s and t on G.

For a fixed z′ ∈ Z2, there is a one-to-one correspondence between a walk con-
necting (s, z′) and (t, z′+z) on G and a walk from s to t on G with transit vector
z. Thus IPG(s, t, z) also computes a shortest path from (s, z′) to (t, z′ + z) on
G. By Höfting and Wanke, a pseudopolynomial time algorithm for IPG(s, t, z)
is proposed [9]. By ILPG(s, t, z) (resp. LPG(s, t, z)) let us denote the integer
linear programming (resp. the linear programming) obtained by removing the
constraint (4) (resp. the constraint (3) and (4)) from IPG(s, t, z). The next propo-
sition is easy to verify.

Proposition 1. Let p, q ∈ Nm, s, t ∈ V and z ∈ Z2. A multiset E ′ with its
characteristic vector p + q satisfies 1, 2 and 3 if and only if AG(p − q) =
u(s) − u(t) + (z1u

(n+1) + z2u
(n+2)).

1. E ′ is the union of vertex-disjoint weakly connected multisets corresponding
to semi-walks P(1), . . . ,P(k) (k ≥ 1) on G such that

∑k
i=1 tran(P(i)) = z.

2. p is the characteristic vector of the multiset of the forward edges in E ′ and
q is that of the backward edges in E ′.

3. P(1) is a semi-walk from s to t and P(2), . . . ,P(k) are closed semi-walks.

A drawing of a graph is a function Γ which maps each vertex v to a distinct
point Γ (v) ∈ R2 and each directed edge (u, v) to a simple open curve Γ (u, v)
with endpoints Γ (u) and Γ (v) so that Γ (u, v) = Γ (v, u). If the curves Γ (u, v)
and Γ (u′, v′) do not intersect for any (u, v) �= (u′, v′), then Γ is called a planar
drawing. For a planar drawing Γ , a point K ∈ R2 is called a vertex accumulation
point, abbreviated by VAP, if for every ε > 0 there exist an infinite vertex set U ⊂
V such that Γ (U) ⊆ {K ′ ∈ R2 : ‖K−K ′‖�2 < ε}. A graph is VAP-free planar if
it admits a planar drawing with no VAP. Proposition 2 and Proposition 3 hold
by Theorem 5.1 and Theorem 6.1 in [11], respectively.

Proposition 2. If G is VAP-free planar, then there exists a static graph G′ of
G such that AG′ is a {0,±1}-matrix. Such a static graph can be computed in
O(m) time from a given static graph of G.

396 N. Fu

Proposition 3. If G is VAP-free planar, then m is O(n).

The next follows as a corollary of Corollary 4.9 in [9] and Proposition 2.

Corollary 1. On a connected VAP-free planar periodic graph with d = 2, there
exists a weakly polynomial time algorithm for IPG(s, t, z).

Theorem 2. A connected periodic graph with d = 2 is planar if and only if it
is VAP-free planar.

Theorem 2 can be derived using Ayala, Domı́nguez, Márquez and Quintero’s
theory on planar infinite graphs using the end, which is an equivalence relation
on the rays on infinite graphs [2]. Due to the page limitation, we omit the proof.

3 Coherence of Periodic Graphs

In this section, we use the notations IP∗G(s, t, z), ILP
∗
G(s, t, z) to describe the

optimal value 1 · x to IPG(s, t, z), ILPG(s, t, z), respectively.

Definition 3. The periodic graph G generated by a static graph G is coherent
if for any s, t ∈ V and z ∈ Z2, IP∗G(s, s, z) = IP∗G(t, t, z).

First we present a pseudopolynomial time algorithm to compute an optimal
solution to IPG(s, t, z) from a given optimal solution to ILPG(s, t, z). Let P
be a walk on G. Then, P decomposes into a path and simple cycles on G.
Note that when P is a cycle, the path is an empty path. Suppose P decom-
poses into a path P ′ and yi simple cycles Ci starting at the vertex si with
tran(Ci) = z(i) and len(Ci) = ci where i runs in {1, . . . , k}. Then the system
(P ′, (y1, s1, z(1), c1), . . . , (yk, sk, z

(k), ck)) is called a complete path decomposition
of P [9]. By Proposition 1, the edge multiset corresponding to the solution to
ILPG(s, t, z) decomposes into one (possibly empty) walk and cycles on G such
that each of them is vertex-disjoint and corresponds to a shortest path on G.
Each of them also have its complete path decomposition. We use the same no-
tation (P ′, (y1, s1, z(1), c1), . . . , (yk, sk, z

(k), ck)) to describe the sum of the com-
plete path decompositions of the walk and cycles in the solution to ILPG(s, t, z)
and by abusing the term call it the complete path decomposition of the solution.

By ZG , let us denote the maximum value in {‖tran(e)‖�∞ : e ∈ E}.

Lemma 1. On a coherent periodic graph an optimal solution to IPG(s, t, z) can
be computed in O(n7mZ4

G) time if an optimal solution to ILPG(s, t, z) is given.

Proof. Let x∗ be an optimal solution to ILPG(s, t, z) and E ′ := {e(i) : x∗i > 0}.
The complete path decomposition (P ′, (y1, s1, z(1), c1), . . . , (yk, sk, z

(k), ck)) of
x∗ can be computed in O(n + m) time by computing the depth-first forest of
E ′ and decomposing each components to a path and simple cycles. For each
i = 1, . . . , k let x(i) be an optimal solution to IPG(s, s, z

(i)) and x′ be the

characteristic vector of P ′. Let x := x′+
∑k

i=1 x
(i). Since G is coherent, for each

i = 1, . . . , k, IPG(s, s, z
(i)) = ci. Hence 1 ·x = 1 ·x∗ and x is an optimal solution

A Strongly Polynomial Time Algorithm for the Shortest Path Problem 397

to ILPG(s, t, z). Since the edge set {e(i) : xi > 0} is weakly-connected, x is also
an optimal solution to IPG(s, t, z). Since (si, z

(i)) �= (sj , z
(j)) for all i �= j by

definition of complete path decomposition, by Fact 4.1.2 in [9] k ≤ n·(2ZGn+1)2.
Since each cycle in the complete path decomposition is simple, ci < n and each
x(i) can be computed in O(n4mZ2

G) time by Fact 4.1.3 in [9]. ��

Paying attention to the fact that each cycle in the complete path decomposition
in the proof of Lemma 1, the next lemma can be easily established.

Lemma 2. Let C1, . . . , Ck be all simple cycles on G such that each Ci corresponds
to a shortest path on G generated by G. G is coherent if and only if for all s ∈ V
and i ∈ {1, . . . , k}, IPG(s, s, tran(Ci)) = len(Ci).

Theorem 3. It can be computed whether a periodic graph generated by a given
static graph G is coherent or not in O(n7mZ4

G) time.

Theorem 3 can be shown by using the breadth-first search in Fact 4.1 of [9], the
fact that the length of a simple cycle is at most n and Lemma 2.

Theorem 4. G is coherent if and only if for all s, t ∈ V and z∈Z2, IP∗G(s, t, z)=
ILP∗G(s, t, z).

Proof. By the proof of Lemma 1, the sufficiency of the coherence obviously
holds. If the latter condition holds, then for any s, t ∈ V and any z ∈ Z2,
IP∗G(s, s, z) = ILP∗G(s, s, z) = ILP∗G(t, t, z) = IP∗G(t, t, z). ��

Finally we show that periodic graphs with a well-known property �1-rigidity
are coherent. An infinite graph with vertex set U is �1-embeddable if for some
λ, d ∈ N, there exists a map φ : U → Zd such that for any s1, s2 ∈ U , the length
of the shortest path between s1 and s2 is 1

λ‖φ(s1)−φ(s2)‖�1 . An �1-embeddable
infinite graph is �1-rigid if it has a unique �1-embedding into Zd, up to the
symmetry of Zd. For sufficient conditions for �1-rigidity, see Corollary 2 in [3].
In chapter 9 of [6], a catalog of �1-rigid periodic graphs is given.

Theorem 5. If a periodic graph is �1-rigid, then it is coherent.

Proof. Let φ be the �1-embedding of G. For all s, t ∈ V and any z ∈ Z2,
IP∗G(s, s, z) = IP∗G(t, t, z) since φ((s, z)) − φ((s, 0)) = φ((t, z)) − φ((t, 0)) by
Proposition 2 in [8]. ��

4 Unimodularity of the Incidence-Transit Matrices of
Planar Periodic Graphs

The objective of this section is to show the following theorem:

Theorem 6. The incidence-transit matrix AG of a connected planar periodic
graph with d = 2 is unimodular, i.e., every r × r minor of AG has determinant
1, 0 or −1 where r = rankAG.

398 N. Fu

To show Theorem 6, we need some preparations shown below.

Theorem 7 ([11]). For an edge f := ((s,y), (t, z)) on G and a vector g ∈ Z2,
denote the edge ((s,y + g), (t, z + g)) by fg. If G is VAP-free planar, then G
has a planar drawing Γ such that for any edge f on G and g ∈ Z2, Γ (fg) is the
translation Γ (f) + g of the simple open curve Γ (f).

By Theorem 2, Theorem 7 holds on any planar periodic graphs. In the rest,
whenever we refer to a planar drawing, it is the one in Theorem 7.

For a given p = (p1, . . . , pm) ∈ Nm, we denote the monomial xp1

1 . . . xpm
m by

xp. When xp divides xq, we denote xp | xq.

Definition 4. Let A ∈ Zn′×m′
be a matrix. The toric ideal IA of A is the ideal

generated by the set ker(A) = {xp − xq : Ap = Aq, and p, q ∈ Nm′}, i.e., the
set of polynomials {g1b1 + · · ·+ glbl : gi ∈ k[x1, . . . , xm′], bi ∈ ker(A), l ∈ N}.

Definition 5. A binomial xp − xq ∈ IA is primitive if there exists no other
binomial xp′ − xq′ ∈ IA such that xp′ |xp and xq′ |xq.

Theorem 8 ([17]). If every primitive binomial xp−xq in the toric ideal IA is
square-free, i.e., each pi and qi are at most 1, then the matrix A is unimodular.

In the rest of this section, we prove the next theorem.

Theorem 9. If G is planar, then every primitive binomial in IAG is square-free.

By Theorem 8, Theorem 6 follows as a corollary of Theorem 9.
The i-th variable xi of IAG corresponds to the i-th column of AG , which

corresponds to the i-th edge e(i) in E . A binomial xp − xq ∈ IAG induces the
multiset of edges in E such that its characteristic vector is p+ q.

Proposition 4. Let xp−xq be a binomial in IAG . The edge multiset E ′ induced
by xp−xq corresponds to a set of vertex-disjoint closed semi-walks P(1), . . . ,P(k)

with
∑k

i=1 tran(P(i)) = 0 and k ≥ 1. Furthermore, if xp − xq is primitive, then
E ′ has no closed semi-walk C with tran(C) = 0 as a proper multisubset.

Fig. 2. The closed semi-path on the
left is induced by b1 and the set of
two open semi-paths on the right is
induced by b2

Proposition 4 can be easily shown using
Proposition 1 and the definition of primitive
binomials. Note that in Proposition 4 if the
binomial is primitive and k = 1 then P(1)

corresponds to a closed semi-path on G and
if the binomial is primitive and k ≥ 2 then
P(1), . . . ,P(k) correspond to k open semi-
paths on G.

Example 1. Let G, G be the static graph
and the periodic graph in Figure 1. b1 :=
x2x12x19−x1x18 and b2 := x2x15x19−x1 are
both primitive binomials in IAG . As shown in
Figure 2, b1 induces a closed semi-path on G,
and b2 induces two open semi-paths on G.

A Strongly Polynomial Time Algorithm for the Shortest Path Problem 399

Lemma 3. Let b = xp − xq ∈ IAG be a binomial inducing a closed semi-path
on G. If G is planar and b is not square-free, then there exists a square-free
binomial b′ = xp′ − xq′ ∈ IAG inducing another closed semi-path on G and

satisfying xp′ | xp and xq′ | xq.

Proof (Sketch). We construct such b′ from the given binomial b, by making a

sequence of binomials b = b(0), b(1), . . . , b(k) = b′ with b(i) = xp(i) − xq(i)

such

that xp(i+1) | xp(i)

and xq(i+1) | xq(i)

for i = 0, . . . , k− 1. Let C (resp. C) be the
closed semi-path on G (resp. the closed semi-walk on G) induced by b(0). Since
b(0) is not square-free, two directed edges f, f ′ with f �= f ′ in C correspond to
the same edge of G. Via the drawing Γ of G, C corresponds to a Jordan curve
J on the plane. Since f and f ′ correspond to the same edge of G, there exists
z �= 0 ∈ Z2 such that Γ (f ′) = Γ (f) + z. Let F := Γ (f ′). The Jordan curve
J and its copy J ′ := J + z has F as their intersection. Note that by definition
of Γ , the copy J ′ corresponds to another simple closed semi-path on G induced
by C. It is not hard to prove that J and J ′ must have another intersection F ′

because J passes through both of the exterior and the interior of J ′.
Let K (resp. K ′) be a point in F (resp. F ′). Let JL (resp. J ′L) be the curve

obtained by following J (resp. J ′) from K to K ′ counterclockwise and JR (resp.
J ′R) be the curve obtained by following J (resp. J ′) from K to K ′ clockwise.
Then, it is easy to show that one of the follows holds: (a) (JL + z) ⊂ J ′L and
J ′R ⊂ (JR + z), or (b) J ′L ⊂ (JL + z) and (JR + z) ⊂ J ′R. If (a) holds then let
J ′′ := JL ∪ J ′R and let J ′′ := J ′L ∪ JR if (b) holds. Since G is a planar graph,
J ′′ induces a closed semi-path C′′ on G via Γ . The closed semi-walk C′′ on G
corresponding to C′′ is a proper submultiset of C, regarding C and C′′ as multisets

of edges. Thus there exists a binomial b(1) := xp(1) − xq(1) ∈ IAG inducing C′′

such that xp(1) | xp(0)

, xq(1) | xq(0)

and |b(1)| < |b(0)|. Here, for b(i), by |b(i)| we
denote the sum

∑m
j=1 pj +

∑m
j=1 qj .

If one of the terms of b(1) is not square-free, we can obtain the next binomial

b(2) ∈ IAG inducing a simple closed semi-walk on G such that xp(2) | xp(1)

,

xq(2) | xq(1)

and |b(2)| < |b(1)|, by applying the above construction to b(1) again.
Since |b(0)| is finite, the repeated construction must stop with finite k steps

and the obtained binomial b(k) = xp(k) − xq(k)

inducing a closed semi-path

on G is square-free. Since xp(i+1) | xp(i)

and and xq(i+1) | xq(i)

for each i,

xp(k) | xp(0)

= xp and xq(k) | xq(0)

= xq. Thus b(k) is the objective binomial.
��

Corollary 2. If G is planar, then a primitive binomial b ∈ IAG inducing a
closed semi-path on G must be square-free.

A proof of Proposition 5 can be found in Maehara’s concise proof of the Jordan
curve theorem using Brouwer’s fix point theorem [13].

Proposition 5. Consider a rectangular ABCD. Let F (resp. F ′) be a contin-
uous curve in ABCD from A to C (resp. from B to D). Then, F and F ′ have
an intersection in the boundary or the interior of ABCD.

400 N. Fu

Lemma 4. Let b ∈ IAG be a primitive binomial inducing a set of vertex-disjoint
closed semi-walks P(1), . . . ,P(k) (k ≥ 2) on G and z(i) be the transit vector of
P(i). If G is planar, then all z(1), . . . , z(k) are parallel to each other.

Proof (Sketch). We prove the lemma by contradiction, assuming that z(1) and
z(2) are not parallel without loss of generality. Since b is primitive, z(1) and z(2)

are not 0. For i = 1, 2, let P
(i)
∞ be the doubly infinite path on G corresponding to

the infinite walk on G obtained by combining P(i) infinite times. By the definition

of the drawing Γ , for all λ ∈ Z, Γ (P
(i)
∞) = Γ (P

(i)
∞) + λz(i) and thus Γ (P

(i)
∞) =⋃

λ∈Z

((
Γ (P

(i)
∞) ∩

(
[0, z

(i)
1]× [0, z

(i)
2]

))
+ λz(i)

)
. Hence there exists a straight

line L(i) with slope z(i) and a constant ε(i) such that Γ (P
(i)
∞) is contained in the

relative interior of the strip S(i) consisting of the points whose distance from L(i)

is equal to or less than ε(i). The region S = S(1) ∩S(2) is a parallelogram. Using

Proposition 5, it is easy to prove that the curves Γ (P
(1)
∞) ∩ S and Γ (P

(2)
∞) ∩ S

have an intersection K∗. Since Γ is a planar drawing, K∗ corresponds to a

vertex. Thus the doubly infinite paths P
(1)
∞ and P

(2)
∞ have a common vertex,

contradicting to the assumption that P(1) and P(2) are vertex-disjoint. ��

Lemma 5. Let xp−xq ∈ IAG be a primitive binomial inducing a set of vertex-
disjoint closed semi-walks P(1), . . . ,P(k) (k ≥ 2) on G. If G is planar, then
xp − xq is square-free.

Lemma 5 follows from Lemma 3 and Lemma 4, without further use of planarity.
Theorem 9 follows by combining Proposition 4, Corollary 2 and Lemma 5.

5 The Strongly Polynomial Time Algorithm for the
Shortest Path Problem

Lemma 6. On planar periodic graphs, there exists an O(n6.5 logn) time algo-
rithm to compute an optimal solution to ILPG(s, t, z).

Proof. By Proposition 2, Proposition 3 and Theorem 2, if G is planar then an
optimal solution to LPG(s, t, z) can be computed in O(n6.5 logn) arithmetic steps
using Orlin’s strongly polynomial time algorithm for the linear programming
defined by a matrix with bounded entries [14]. The optimal solution to the
linear programming defined by a unimodular matrix is integral [15]. Thus by
Theorem 6, the optimal solution is also an optimal solution to ILPG(s, t, z). ��

Theorem 10. There is an O(n8) time algorithm on a planar periodic graph
G which outputs “no” if G is not coherent and otherwise outputs an optimal
solution to IPG(s, t, z) for given s, t ∈ V and z ∈ Z2.

Proof. By Proposition 2, Theorem 2 and Theorem 3, it can be determined
whether a given planar periodic graph is coherent or not in O(n8) time. Suppose
G is found to be coherent. An optimal solution to ILPG(s, t, z) can be found
in O(n6.5 logn) time by Lemma 6. By Proposition 3 and Lemma 1, an optimal
solution to IPG(s, t, z) can be computed in O(n8) time. ��

A Strongly Polynomial Time Algorithm for the Shortest Path Problem 401

Acknowledgement. The author appreciate constructive comments and tol-
erant support of Prof. Imai. She is grateful to Prof. Avis for pointing out the
incompleteness in the prototype of the proof. She would like to thank Prof.
Ohsugi and Dr. Shibuta for fruitful discussions. This work is supported by the
Grant-in-Aid for JSPS Fellows.

References

1. Abe, M., Sugimoto, Y., Namikawa, T., Morita, K., Oyabu, N., Morita, S.: Drift-
compensated data acquisition performed at room temperature with frequecy mod-
ulation atomic force microscopy. Applied Physics Letters 90, 203103 (2007)

2. Ayala, R., Domı́nguez, E., Márquez, A., Quintero, A.: On the graphs which are
the edge of a plane tiling. Mathematica Scandinavica 77, 5–16 (1995)

3. Chepoi, V., Deza, M., Grishukhin, V.: Clin d’oeil on L1-embeddable planar graphs.
Discrete Applied Mathematics 80(1), 3–19 (1997)

4. Cohen, E., Megiddo, N.: Recognizing properties of periodic graphs. Applied Ge-
ometry and Discrete Mathematics 4, 135–146 (1991)

5. Delgado-Friedrichs, O., O’Keeffe, M.: Crystal nets as graphs: Terminology and
definitions. Journal of Solid State Chemistry 178, 2480–2485 (2005)

6. Deza, M., Grishukhin, V., Shtogrin, M.: Scale-Isometric Polytopal Graphs in Hy-
percubes and Cubic Lattices, ch. 9. World Scientific Publishing Company (2004)

7. Deza, M., Laurent, M.: Geometry of Cuts and Metrics, ch. 21. Springer (1997)
8. Fu, N., Hashikura, A., Imai, H.: Geometrical treatment of periodic graphs with

coordinate system using axis-fiber and an application to a motion planning. In:
Proceedings of the Ninth International Symposium on Voronoi Diagrams in Science
and Engineering, pp. 115–121 (2012)

9. Höfting, F., Wanke, E.: Minimum cost paths in periodic graphs. SIAM Journal on
Computing 24(5), 1051–1067 (1995)

10. Iwano, K., Steiglitz, K.: Optimization of one-bit full adders embedded in regular
structures. IEEE Transaction on Acoustics, Speech and Signal Processing 34, 1289–
1300 (1986)

11. Iwano, K., Steiglitz, K.: Planarity testing of doubly periodic infinite graphs. Net-
works 18, 205–222 (1988)

12. Karp, R., Miller, R., Winograd, A.: The organization of computations for uniform
recurrence equiations. Journal of the ACM 14, 563–590 (1967)

13. Maehara, R.: The Jordan curve theorem via the Brouwer fixed point theorem. The
American Mathematical Monthly 91(10), 641–643 (1984)

14. Orlin, J.B.: A dual version of Tardos’s algorithm for linear programming. Opera-
tions Research Letters 5(5), 221–226 (1985)

15. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Inc.
(1986)

16. Seymour, P.D.: Decomposition of regular matroids. Journal of Combinatorial The-
ory (B) 28, 305–359 (1980)

17. Sturmfels, B.: Gröbner Basis and Convex Polytopes. American Mathematical So-
ciety (1995)

18. Tardos, É.: A strongly polynomial algorithm to solve combinatorial linear pro-
grams. Operation Research 34, 250–256 (1986)

Cubic Augmentation of Planar Graphs

Tanja Hartmann", Jonathan Rollin, and Ignaz Rutter

Karlsruhe Institute of Technology (KIT)
{firstname.lastname}@kit.edu

Abstract. In this paper we study the problem of augmenting a planar graph such
that it becomes 3-regular and remains planar. We show that it is NP-hard to de-
cide whether such an augmentation exists. On the other hand, we give an efficient
algorithm for the variant of the problem where the input graph has a fixed planar
(topological) embedding that has to be preserved by the augmentation. We further
generalize this algorithm to test efficiently whether a 3-regular planar augmenta-
tion exists that additionally makes the input graph connected or biconnected.

1 Introduction

An augmentation of a graph G = (V,E) is a set W ⊆ Ec of edges of the complement
graph. The augmented graph G′ = (V,E ∪W) is denoted by G+W . We study several
problems where the task is to augment a given planar graph to be 3-regular while pre-
serving planarity. The problem of augmenting a graph such that the resulting graph
has some additional properties is well-studied and has applications in network plan-
ning [4]. Often the goal is to increase the connectivity of the graph while adding few
edges. Nagamochi and Ibaraki [9] study the problem making a graph biconnected by
adding few edges. Watanabe and Nakamura [13] give an O(cmin{c,n}n4(cn+m)) al-
gorithm for minimizing the number of edges to make a graph c-edge-connected. The
problem of biconnecting a graph at minimum cost is NP-hard, even if all weights are
in {1,2} [9]. Motivated by graph drawing algorithms that require biconnected input
graphs, Kant and Bodlaender [8] initiated the study of augmenting the connectivity
of planar graphs, while preserving planarity. They show that minimizing the number
of edges for the biconnected case is NP-hard and give efficient 2-approximation al-
gorithms for both variants. Rutter and Wolff [11] give a corresponding NP-hardness
result for planar 2-edge connectivity and study the complexity of geometric augmenta-
tion problems, where the input graph is a plane geometric graph and additional edges
have to be drawn as straight-line segments. On plane geometric graph augmentation see
also [7]. Abellanas et al. [1], Tóth [12] and Al-Jubeh et al. [2] give upper bounds on the
number of edges required to make a plane straight-line graph c-connected for c = 2,3.

We study the problem of augmenting a graph to be 3-regular while preserving pla-
narity. In doing so, we additionally seek to raise the connectivity as much as possible.
Specifically, we study the following problems.

Problem: PLANAR 3-REGULAR AUGMENTATION (PRA)
Instance: Planar graph G = (V,E)
Task: Find an augmentation W such that G+W is 3-regular and planar.

" Partially supported by the DFG under grant WA 654/15 within the Priority Programme ”Algo-
rithm Engineering”.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 402–412, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Cubic Augmentation of Planar Graphs 403

Problem: FIXED-EMBEDDING PLANAR 3-REGULAR AUGMENTATION (FERA)
Instance: Planar graph G = (V,E) with a fixed planar (topological) embedding
Task: Find an augmentation W such that G+W is 3-regular, planar, and W can be added
in a planar way to the fixed embedding of G.

Moreover, we study c-connected FERA, for c= 1,2, where the goal is to find a solution
to FERA, such that the resulting graph additionally is c-connected.

Contribution and Outline. Using a modified version of an NP-hardness reduction by
Rutter and Wolff [11], we show that PRA is NP-hard; the proof is in the full paper [6].

Theorem 1. PRA is NP-complete, even if the input graph is biconnected.

Our main result is an efficient algorithm for FERA and c-connected FERA for c =
1,2. We note that Pilz [10] has simultaneously and independently studied the planar
3-regular augmentation problem. He showed that it is NP-hard and posed the question
on the complexity if the embedding is fixed. Our hardness proof strengthens his result
(to biconnected input graphs) and our algorithmic results answer his open question. In
the full paper [6] we further show that for c = 3 c-connected FERA is again NP-hard.

We introduce basic notions used throughout the paper in Section 2. We present our
results on FERA in Section 3. The problem is equivalent to finding a node assignment
that assigns the vertices with degree less than 3 to the faces of the graph, such that for
each face f an augmentation exists that can be embedded in f in a planar way and
raises the degrees of all its assigned vertices to 3. We completely characterize these
assignments and show that their existence can be tested efficiently. We strengthen our
characterizations to the case where the graph should become c-connected for c = 1,2 in
Section 4 and show that our algorithm can be extended to incorporate these constraints.
Proofs omitted due to space constraints can be found in the full version [6].

2 Preliminaries

A graph G=(V,E) is 3-regular if all vertices have degree 3. It is a maxdeg-3 graph if all
vertices have at most degree 3. For a vertex set V , we denote by V 0 ,V 1 and V 2 the set
of vertices with degree 0,1 and 2, respectively. For convenience, we use V " =V 0 ∪V 1 ∪
V 2 to denote the set of vertices with degree less than 3. Clearly, an augmentationW such
that G+W is 3-regular must contain 3− i edges incident to a vertex V i . We say that
a vertex v ∈V i has 3− i (free) valencies and that an edge of an augmentation incident
to v satisfies a valency of v. Two valencies are adjacent if their vertices are adjacent.

Recall that a graph G is connected if it contains a path between any pair of vertices,
and it is c-(edge)-connected if it is connected and removing any set of at most c− 1
vertices (edges) leaves G connected. A 2-connected graph is also called biconnected.
We note that the notions of c-connectivity and c-edge-connectivity coincide on maxdeg-
3 graphs. Hence a maxdeg-3 graph is biconnected if and only if it is connected and does
not contain a bridge, i.e., an edge whose removal disconnects the graph.

A graph is planar if it admits a planar embedding into the Euclidean plane, where
each vertex (edge) is mapped to a distinct point (Jordan curve between its endpoints)
such that curves representing distinct edges do not cross. A planar embedding of a

404 T. Hartmann, J. Rollin, and I. Rutter

graph subdivides the Euclidean plane into faces. When we seek a planar augmentation
preserving a fixed embedding, we require that the additional edges can be embedded
into these faces in a planar way.

3 Planar 3-Regular Augmentation with Fixed Embedding

In this section we study the problem FERA of deciding for a graph G = (V,E) with
fixed planar embedding, whether there exists an augmentation W such that G+W is
3-regular and the edges in W can be embedded into the faces of G in a planar way.

An augmentation W is valid only if the endpoints of each edge in W share a common
face in G. We assume that a valid augmentation is associated with a (not necessarily
planar) embedding of its edges into the faces of G such that each edge is embedded into
a face shared by its endpoint. A valid augmentation is planar if the edges can be further
embedded in a planar way into the faces of G.

Let F denote the set of faces of G and recall that V " is the set of vertices with free
valencies. A node assignment is a mapping A : V " →F such that each v∈V " is incident
to A(v). Each valid 3-regular augmentation W induces a node assignment by assigning
each vertex v to the face where its incident edges in W are embedded: this is well-
defined since vertices in V 0 ∪V 1 are incident to a single face. A node assignment A is
realizable if it is induced by a valid augmentation W . If W is also planar, A is further
realizable in a planar way. We call the corresponding augmentation a realization. A
realizable node assignment can be found efficiently by computing a matching in the
subgraph of Gc that contains edges only between vertices that share a common face.
The existence of such a matching is a necessary condition for the existence of a planar
realization. The main result of this section is that this condition is also sufficient.

Both valid augmentations and node assignments are local by nature, and can be con-
sidered independently for distinct faces. Let A be a node assignment and let f be a face.
We denote by Vf the vertices that are assigned to f . We say that A is realizable for f
if there exists an augmentation Wf ⊆

(Vf
2

)
such that in G+Wf all vertices of Vf have

degree 3. It is realizable for f in a planar way if additionally Wf can be embedded in f
without crossings. We call the corresponding augmentations (planar) realizations for f .
The following lemma is obtained by glueing (planar) realizations for all faces.

Lemma 1. A node assignment is realizable (in a planar way) for a graph G if and only
if it is realizable (in a planar way) for each face f of G.

Note that a node assignment induces a unique corresponding assignment of free valen-
cies, and we also refer to the node assignment as assigning free valencies to faces. In
the spirit of the notation G+W we use f +Wf to denote the graph G+Wf , where the
edges in Wf are embedded into the face f . If Wf consists of a single edge e, we write
f + e. For a fixed node assignment A we sometimes consider an augmentation Wf that
realizes A for f only in parts by allowing that some vertices assigned to f have still
a degree less than 3 in f +Wf . We then seek an augmentation W ′

f such that Wf ∪W ′
f

forms a realization of A for f . We interpret A as a node assignment for f +Wf that
assigns to f all vertices that were originally assigned to f by A and do not yet have
degree 3 in f +Wf . Observe that in doing so, we still assign to the faces of G but when
considering free valencies and adjacencies, we consider G+Wf .

Cubic Augmentation of Planar Graphs 405

3.1 (Planarly) Realizable Assignments for a Face

Throughout this section we consider an embedded graph G together with a fixed node
assignment A and a fixed face f of G. The goal of this section is to characterize when
A is realizable (in a planar way) for f . We first collect some necessary conditions for a
realizable assignment.

Condition 1 (parity). The number of free valencies assigned to f is even.

Furthermore, we list certain indicator sets of vertices assigned to f that demand addi-
tional valencies outside the set to which they can be matched, as otherwise an augmen-
tation is impossible. Note that these sets may overlap.
(1) Joker: A vertex in V 2 whose neighbors are not assigned to f demands one valency.
(2) Pair: Two adjacent vertices in V 2 demand two valencies.
(3) Leaf: A vertex in V 1 whose neighbor has degree 3 demands two valencies from

two distinct vertices.
(4) Branch: A vertex in V 1 and an adjacent vertex in V 2 demand three valencies from

at least two distinct vertices with at most one valency adjacent to the vertex in V 2 .
(5) Island: A vertex in V 0 demands three valencies from distinct vertices.
(6) Stick: Two adjacent vertices of degree 1 demand four valencies of which at most

two belong to the same vertex.
(7) Two vertices in V 0 demand four valencies; at most two from the same vertex.
(8) 3-cycle: A cycle of three vertices in V 2 demands three valencies.

Condition 2 (matching). The demands of all indicator sets formed by vertices as-
signed to f are satisfied.

Each indicator set contains at most three vertices and provides at least the number of
valencies it demands; only sets of type (7) provide more. The demand of a joker is
implicitly satisfied by the parity condition. We call an indicator set with maximum
demand maximum indicator set, and we denote its demand by kmax. Note that kmax ≤
4. We observe that inserting edges does not increase kmax; see Observation 1 in the
full paper [6]. Lemma 2 reveals the special role of maximum indicator sets. While the
necessity of the parity and the matching condition is obvious, Theorem 2 states that
they are also sufficient for a node assignment to be realizable for f .

Lemma 2. Let S be a maximum indicator set in f . Then A satisfies the matching con-
dition for f if and only if the demand of S is satisfied.

Theorem 2. A is realizable for f ⇔ A satisfies the parity and matching condition for f .

Sketch of proof. The case that A assigns less than seven vertices to f is handled by
a case distinction; see Lemma 3 in [6]. Assume A assigns at least seven vertices to f
and satisfies the parity and the matching condition for f . Suppose there exists a partial
augmentationW1 of f such that A still assigns k≥ 6 vertices to f +W1 and each assigned
vertex is in V 2 . Consider the graph Hc that consists of the vertices assigned to f +W1

and contains an edge if and only if the endpoints are not adjacent in f +W1. Since each
vertex assigned to f +W1 is in V 2 , it has at most two adjacencies in f +W1 and at
least k− 1− 2≥ k/2 (for k ≥ 6) adjacencies in Hc. Thus, by a theorem of Dirac [3], a
Hamiltonian cycle exists in Hc, which induces a perfect matching W2 of the degree-2

406 T. Hartmann, J. Rollin, and I. Rutter

vertices in f +W1. Hence W1∪W2 is a 3-regular augmentation for f . The proof proceeds
by showing that such a partial augmentation W1 always exists, distinguishing cases on
the number of assigned vertices in V 0 and V 1 . ��

Given a node assignment A that satisfies the parity and the matching condition for
a face f , the following rule picks an edge that can be inserted into f . Lemma 4 states
that afterwards the remaining assignment still satisfies the parity and the matching con-
dition. Iteratively applying Rule 1 hence yields a (not necessarily planar) realization.

Rule 1. 1. If kmax ≥ 3 let S denote a maximum indicator set. Choose a vertex u of
lowest degree in S and connect this to an arbitrary assigned vertex v /∈ S.

2. If kmax = 2 and u is a leaf, choose S = {u}, and connect u to an assigned vertex v.
3. If kmax = 2 and there is no leaf, let S denote a path xuy of assigned vertices in V 2 .

Connect u to an arbitrary assigned vertex v /∈ S.
4. If kmax = 2 and there is neither a leaf nor a path of three assigned vertices in V 2 ,

let S denote a pair uw. Connect u to an arbitrary assigned vertex v /∈ S.
5. If kmax = 1, choose S = {u}, where u is a joker, and connect u to another joker v.

Lemma 4. Assume A satisfies the parity and matching condition for f and let e denote
an edge chosen according to Rule 1. Then A satisfies the same conditions for f + e.

Sketch of proof. We use Theorem 2 and rather show that there exists a realization of A
for f that contains e. Since A satisfies the parity and the matching condition for f , there
exists a realization Wf for f . If e ∈Wf , we are done. Otherwise, recall that besides the
edge e = uv the rule also determines a set S (which except for subrule 3 is a maxi-
mum indicator set). We remove from Wf all edges incident to S and, if afterwards v still
has degree 3, we remove an additional arbitrary edge incident to v. Then we insert the
edge e, and it remains to show that the small and quite restricted problem of having
assigned to f only the vertices that have free valencies after these steps admits a solu-
tion. To this end, we show that the demand of any maximum indicator set of this small
instance is satisfied. This is done by a case distinction on kmax of the small instance,
using the fact that (in most cases) S was a maximum indicator set in f . ��

Our next goal is to extend this characterization and the construction of the assignment
to the planar case. Consider a path of degree-2 vertices that are incident to two distinct
faces f and f ′ but are all assigned to f . Then a planar realization for f may not connect
any two vertices of the path. Hence the following sets of vertices demand additional
valencies, which gives a new condition.
(1) A path π of k > 2 assigned degree-2 vertices that are incident to two distinct faces

(end vertices not adjacent) demands either k further valencies or at least one valency
from a different connected component.

(2) A cycle π of k > 3 assigned degree-2 vertices that are incident to two distinct faces
demands either k further valencies or at least two valencies from two distinct con-
nected components different from π .

Condition 3 (planarity). The demand of each path of k > 2 and each cycle of k > 3
degree-2 vertices that are incident to two faces and that are assigned to f , is satisfied.

Obviously, the planarity condition is satisfied if and only if the demand of a longest
such path or cycle is satisfied. We prove for a node assignment A and a face f that the

Cubic Augmentation of Planar Graphs 407

parity, matching, and planarity condition together are necessary and sufficient for the
existence of a planar realization for a face f . To construct a corresponding realization
we give a refined selection rule that iteratively chooses edges that can be embedded
in f , such that the resulting augmentation is a planar realization of A for f . The new
rule considers the demands of both maximum paths and cycles and maximum indicator
sets, and at each moment picks a set with highest demand. If an indicator set is chosen,
essentially Rule 1 is applied. However, we exploit the freedom to choose the endpoint v
of e = uv arbitrarily, and choose v either from a different connected component incident
to f (if possible) or by a right-first (or left-first) search along the boundary of f . This
guarantees that even if inserting the edge uv splits f into two faces f1 and f2, one of
them is incident to all vertices that are assigned to f . Slightly overloading notation, we
denote this face by f + e and consider all remaining valencies assigned to it. We show
in Lemma 5 that A then satisfies all three conditions for f + e again.

Rule 2. Phase 1: Different connected components assign valencies to f .
1. If there exists a path (or cycle) of more than kmax assigned degree-2 vertices, let

u denote the middle vertex v�k/2� of the longest such path (or cycle) π = v1, . . .vk.
Connect u to an arbitrary assigned vertex v in another component.

2. If all paths (or cycles) of assigned degree-2 vertices have length at most kmax, apply
Rule 1, choosing the vertex v in another component.

Phase 2: All assigned valencies are on the same connected component. Consider only
paths of assigned degree-2 vertices that are incident to two distinct faces:
1. If there exists a path that is longer than kmax, let u denote the right endvertex vk

of the longest path π = v1, . . .vk. Choose v as the first assigned vertex found by a
right-first search along the boundary of f , starting from u.

2. If all paths have length at most kmax, apply Rule 1, choosing v as follows:
Let v1,v2 denote the first assigned vertices not adjacent to u found by a left- and
right-first search along the boundary of f , starting at u. If S is a branch and one
of v1,v2 has degree 2, choose it as v. In all other cases choose v = v1.

Lemma 5. Assume A satisfies the parity, matching, and planarity condition for f and
let e be an edge chosen according to Rule 2. Then A satisfies all conditions also for f +e.

Sketch of proof. Clearly, the parity condition is always preserved. In both phases, when
applying subrule 1, after connecting one vertex of a path of length k to a vertex of
a different connected component, the remainder of this path still provides k− 1 free
valencies. This is enough to satisfy both the planarity condition and the matching con-
dition for any other set of vertices disjoint from this path. Hence the matching condition
and the planarity condition are preserved.

In subrule 2 of both phases, the matching condition follows directly from the cor-
rectness of Rule 1 (Lemma 4). For the planarity condition observe that since kmax ≤ 4
is at least as large as the longest path or cycle in the planarity condition, all these paths
and cycles are relatively short. The matching condition and the fact that the planarity
condition holds for f then imply that a sufficient number of valencies is provided to
ensure the planarity condition for f + e. ��
Given a node assignment A and a face f satisfying the parity, matching, and planarity
condition, iteratively picking edges according to Rule 2 hence yields a planar realization
of A for f . Applying this to every face yields the following theorem.

408 T. Hartmann, J. Rollin, and I. Rutter

Theorem 3. There exists a planar realization W of A if and only if A satisfies for each
face the parity, matching, and planarity condition; W can be computed in O(n) time.

3.2 Globally Realizable Node Assignments and Planarity

In this section we show how to compute a node assignment that is realizable in a planar
way if one exists. By Theorem 3, this is equivalent to finding a node assignment satisfy-
ing for each face the parity, matching, and planarity condition. In a first step, we show
that the planarity condition can be neglected as an assignment satisfying the other two
conditions can always be modified to additionally satisfy the planarity condition.

Lemma 6. Given a node assignment A that satisfies the parity and matching condition
for all faces, a node assignment A′ that additionally satisfies the planarity condition
can be computed in O(n) time.

Sketch of proof. To produce A′ from A we traverse all faces. Let f be a face and let π =
v1, . . . ,vk be a path (or a cycle) in V 2 that is incident to f and another face f ′. Further
assume that π violates the planarity condition for f. Let u= v1 and choose v= v�(k+2)/2�.
We reassign u and v to f ′. Note that the edge uv can be embedded in a planar way into f ′

such that all remaining vertices assigned to f ′ again share a common face. Hence reas-
signing preserves all conditions of f ′. We argue that it also ensures the planarity con-
dition for f . Namely, the remaining vertices of π provide k− 2 free valencies. Since π
violated the planarity condition all other paths in V 2 incident to two faces demand at
most k− 1 free valencies; the missing valency exists due to the parity condition. Simi-
larly, since we reassigned the middle vertex, the two subpaths of π remaining assigned
to f satisfy each others demands, up to one valency given by the parity condition. A
similar argument holds for the matching condition since a maximum indicator set is
either contained in π or it is disjoint, but then π provides enough free valencies. ��
Lemma 6 and Theorem 3 together imply the following characterization.

Theorem 4. G admits a planar 3-regular augmentation if and only if it admits a node
assignment that satisfies for all faces the parity and matching condition.

To find a node assignment satisfying the parity and matching condition, we compute
a (generalized) perfect matching in the following (multi-)graph GA = (V " ,E ′), called
assignment graph. It is defined on V " , and the demand of a vertex in V i is 3− i for i =
0,1,2. For a face f let V "

f ⊆V " denote the vertices incident to f . For each face f of G,

GA contains the edge set E f =
(V "

f
2

)
\E , connecting non-adjacent vertices in V " that

share the face f . We seek a perfect (generalized) matching M of GA satisfying exactly
the demands of all vertices. The interpretation is that we assign a vertex v to a face f if
and only if M contains an edge incident to v that belongs to E f . It is not hard to see that
for each face f the edges in M ∩E f are a (non-planar) realization of this assignment,
implying the parity condition and the matching condition; the converse holds too.

Lemma 7. A perfect matching of GA corresponds to a node assignment that satisfies
the parity and matching condition for all faces, and vice versa.

Cubic Augmentation of Planar Graphs 409

Since testing whether the assignment graph admits a perfect matching can be done in
O(n2.5) time [5], this immediately implies the following theorem.

Theorem 5. FERA can be solved in O(n2.5) time.

4 C-Connected FERA

In this section, we extend our results to testing for augmentations that additionally make
the input graph connected or biconnected. We start with the connected case. Observe
that an augmentation makes G connected if and only if in each face all incident con-
nected components are connected by the augmentation. We characterize the node as-
signments admitting such connected realizations and modify the assignment graph from
the previous section to yield such assignments.

Let G = (V,E) be a planar graph with a fixed planar embedding, let f be a face
of G, and let z f denote the number of connected components incident to f . Obviously,
an augmentation connecting all these components must contain at least a spanning tree
on these components, which consists of z f − 1 edges. Thus the following connectivity
condition is necessary for a node assignment to admit a connected realization for f .

Condition 4 (connectivity).
(1) If z f > 1, each connected component incident to f must have at least one vertex

assigned to f .
(2) The number of valencies assigned to f must be at least 2z f − 2.

It is not difficult to see that this condition is also sufficient (both in the planar and in the
non-planar case) since both Rule 1 and Rule 2 gives us freedom to choose the second
vertex v arbitrarily. We employ this degree of freedom to find a connected augmentation
by choosing v in a connected component distinct from the one of u, which is always
possible due to the connectivity condition.

Theorem 6. There exists a connected realization W of A if and only if A satisfies the
parity, matching, and connectivity condition for all faces. Moreover, W can be chosen
in a planar way if and only if A additionally satisfies the planarity condition for all
faces. Corresponding realizations can be computed in O(n) time.

The following corollary follows from Theorem 3 by showing that the reassignment
which establishes the planarity condition preserves the connectivity condition.

Corollary 1. Given a node assignment A that satisfies the parity, matching and con-
nectivity condition for all faces, a node assignment A′ that additionally satisfies the
planarity condition can be computed in O(n) time.

Corollary 1 and Theorem 6 together imply the following characterization.

Theorem 7. G admits a connected planar 3-regular augmentation iff it admits a node
assignment that satisfies the parity, matching and connectivity condition for all faces.

We describe a modified assignment graph, the connectivity assignment graph G′A, whose
construction is such that there is a correspondence between the perfect matchings of G′A
and node assignments satisfying the parity, matching and connectivity condition.

410 T. Hartmann, J. Rollin, and I. Rutter

To construct the connectivity assignment graph a more detailed look at the faces and
how vertices are assigned, is necessary. A triangle is a cycle of three degree-2 vertices
in G. An empty triangle is a triangle that is incident to a face that does not contain
any further vertices. The set Vin (for inside) contains all vertices from V 0 ∪V 1 , all
degree-2 vertices incident to bridges (they are all incident to only a single face), and
all vertices of empty triangles (although technically they are incident to two faces, no
augmentation edges can be embedded on the empty side of the triangle). We call the
set of remaining vertices Vb (for boundary). We construct a preliminary assignment Ã
that assigns the vertices in the set Vin of G whose assignment is basically unique. The
remaining degree of freedom is to assign vertices in Vb to one of their incident faces. The
connectivity assignment graph G′A again has an edge set E ′f for each face f of G. Again
the interpretation will be that a perfect matching M of G induces a node assignment by
assigning to f all vertices that are incident to edges in M∩E ′f .

vC2,f

vC1,f
vf

f

C1

C2

Fig. 1. Graph (dashed lines; preassigned
vertices are empty) and its connectivity
assignment graph (solid lines, dummy
vertices as boxes)

If a face f is incident to a single connected
component, we use for E ′f the ordinary assign-
ment graph; the connectivity condition is trivial
in this case. Now let f be a face with z f > 1
incident connected components. For each com-
ponent C incident to f that does not contain a
vertex that is preassigned to f , we add a dummy
vertex vC, f with demand 1 and connect it to all
degree-2 vertices of C incident to f ; this en-
sures connectivity condition (1). Let c f denote
the number of these dummy vertices, and note
that there are exactly c f valencies assigned to f due to these dummy vertices. Let ã f de-
note the number of free valencies assigned by Ã, and let d̃ f denote the number of valen-
cies a maximum indicator set in f with respect to Ã misses. To ensure that the necessary
valencies for the matching condition are present, we need that at least d̃ f − c f vertices
of Vb are assigned to f . For connectivity condition (2) we need at least 2z f −2− ã f −c f

such vertices assigned to f . We thus create a dummy vertex v f whose demand is set
to s f = max{2z f − 2− ã f − c f , d̃ f − c f ,0}, possibly increasing this demand by 1 to
guarantee the parity condition. Finally, we wish to allow an arbitrary even number of
vertices in Vb to be assigned to f . Since some valencies are already taken by dummy
vertices, we do not just add to E ′f edges between non-adjacent vertices of Vb incident

to f but for all such pairs. The valencies assigned by Ã and the dummy vertices satisfy
the demand of any indicator set. Fig. 1 shows an example; for clarity edges connecting
vertices in Vb are omitted in f and the outer face.

Lemma 8. A perfect matching of G′A (together with Ã) induces a node assignment that
satisfies parity, matching, and connectivity condition for all faces, and vice versa.

Together with the previous observations this directly implies an algorithm for finding
connected 3-regular augmentations.

Theorem 8. Connected FERA can be solved in O(n2.5) time.

Cubic Augmentation of Planar Graphs 411

Biconnected case. For the biconnected case we consider the bridge forest B f of a face f ,
whose nodes and edges correspond to the 2-edge connected components and bridges
of G incident to f . A 2-edge connected component is a leaf component if its node
in B f has degree 1. To find an augmentation for a face f with z f incident connected
components, such that no bridges remain in f , the following condition is necessary.

Condition 5 (biconnectivity). (1) If z f > 1, each connected component incident to f
must have at least two valencies assigned to f , and (2) each leaf component of f must
assign at least one valency to f .

Again condition 5 is also sufficient, and with similar techniques as in the connected
case, a biconnectivity assignment graph can be constructed, whose perfect matchings
correspond to node assignments satisfying the parity, matching, and biconnectivity con-
dition. Again reassigning some valencies further ensures the planarity condition (see the
full paper [6] for a proof).

Theorem 9. Biconnected FERA can be solved in O(n2.5) time.

5 Conclusion

In this paper we have given efficient algorithms for deciding whether a given planar
graph with a fixed embedding admits a 3-regular planar augmentation. We note that the
running time of O(n2.5) is due to the potentially quadratic size of our assignment graphs.
Recently, we succeeded in constructing equivalent assignment graphs with only O(n)
edges. This immediately improves the running time of all our algorithms to O(n1.5).

References

1. Abellanas, M., Garcı́a, A., Hurtado, F., Tejel, J., Urrutia, J.: Augmenting the connectivity of
geometric graphs. Comp. Geom. Theor. Appl. 40(3), 220–230 (2008)

2. Al-Jubeh, M., Ishaque, M., Rédei, K., Souvaine, D.L., Tóth, C.D.: Tri-Edge-Connectivity
Augmentation for Planar Straight Line Graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 902–912. Springer, Heidelberg (2009)

3. Dirac, G.A.: Some theorems on abstract graphs. Proceedings of the London Mathematical
Society s3-2, 69–81 (1952)

4. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM Journal on Computing 5(4),
653–665 (1976)

5. Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and bidi-
rected network flow problems. In: STOC 1983, pp. 448–456. ACM (1983)

6. Hartmann, T., Rollin, J., Rutter, I.: Cubic augmentation of planar graphs. arXiv e-print
(2012), http://arxiv.org/abs/1209.3865

7. Hurtado, F., Tóth, C.D.: Plane geometric graph augmentation: a generic perspective. In: Pach,
J. (ed.) Thirty Essays on Geometric Graph Theory, vol. 29 (2012)

8. Kant, G., Bodlaender, H.L.: Planar Graph Augmentation Problems. In: Dehne, F., Sack, J.-R.,
Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 286–298. Springer, Heidelberg (1991)

9. Nagamochi, H., Ibaraki, T.: Graph connectivity and its augmentation: applications of ma
orderings. Discrete Applied Mathematics (1-3), 447–472 (2002)

http://arxiv.org/abs/1209.3865

412 T. Hartmann, J. Rollin, and I. Rutter

10. Pilz, A.: Augmentability to cubic graphs. In: Proceedings of the 28th European Workshop
on Computational Geometry (EuroCG 2012), pp. 29–32 (2012)

11. Rutter, I., Wolff, A.: Augmenting the connectivity of planar and geometric graphs. Journal
of Graph Algorithms and Applications 16(2), 599–628 (2012)

12. Tóth, C.D.: Connectivity augmentation in plane straight line graphs. Electronic Notes in
Discrete Mathematics 31, 49–52 (2008)

13. Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. Journal of Com-
puter and System Sciences 35(1), 96–144 (1987)

On the Number of Upward Planar Orientations
of Maximal Planar Graphs

Fabrizio Frati1, Joachim Gudmundsson1, and Emo Welzl2,�

1 School of Information Technologies – The University of Sydney
brillo@it.usyd.edu.au,

joachim.gudmundsson@sydney.edu.au
2 Institute of Theoretical Computer Science – ETH Zurich

emo@inf.ethz.ch

Abstract. We consider the problem of determining the maximum and the min-
imum number of upward planar orientations a maximal planar graph can have.
We show that n-vertex maximal planar graphs have at least Ω(n · 1.189n) and at
most O(n · 4n) upward planar orientations. Moreover, there exist n-vertex max-
imal planar graphs having as few as O(n · 2n) upward planar orientations and
n-vertex maximal planar graphs having Ω(2.599n) upward planar orientations.

1 Introduction

A drawing of a graph G in the plane is upward if every edge is represented by a y-
monotone Jordan curve, and it is planar if no two such curves meet other than at com-
mon endpoints. An upward drawing induces an orientation of the edges of G (where
each edge is oriented from the vertex with smaller y-coordinate to the one with larger
y-coordinate) – this provides a directed graph G. An orientation G of a planar graph G
is upward planar, if there exists an upward planar drawing of G that induces G. In this
paper we study the number of possible upward planar orientations of an n-vertex planar
graph; in fact, we concentrate on maximal planar graphs (also called triangulations,
since all faces in any planar drawing are triangles).

Upward planarity is a natural generalization of planarity to directed graphs. When
dealing with the visualization of directed graphs, one usually requires an upward draw-
ing, i.e., a drawing such that each edge monotonically increases in the y-direction. As
a consequence, there has been a lot of work on testing whether a directed graph ad-
mits an upward planar drawing (a directed graph that admits such a drawing is called
upward planar graph) and on constructing upward planar drawings of directed graphs
(see, e.g., [1,6]). Remarkable results in the area are that every upward planar graph is a
subgraph of a planar st-graph and that every upward planar graph admits a straight-line
upward planar drawing [4,9]. Here we study the minimum and the maximum number of
upward planar orientations of maximal planar graphs providing the following results.

Theorem 1. Every n-vertex maximal planar graph has at most O(n·4n) upward planar
orientations. Moreover, there exists an n-vertex maximal planar graph that has
Ω((23 + 3

√
57)n/4) = Ω(2.599n) upward planar orientations.

� Support from EuroCores/EuroGiga/ComPoSe SNF 20GG21 134318/1 is acknowledged.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 413–422, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

414 F. Frati, J. Gudmundsson, and E. Welzl

Theorem 2. Every n-vertex maximal planar graph has at least Ω(n · 2n/4) =
Ω(n · 1.189n) upward planar orientations. Moreover, there exists an n-vertex maximal
planar graph that has O(n · 2n) upward planar orientations.

The proof of the upper bound in Theorem 1 relies on a “canonical ordering” for maximal
upward planar graphs and on a counting argument that uses such a canonical ordering
(Sect. 3). The proofs of the lower bound in Theorem 1 and of the upper bound in The-
orem 2 are constructive, as they show maximal planar graphs with the claimed number
of upward planar orientations (Sect. 4). The proof of the lower bound in Theorem 2 ex-
ploits the decomposition of a maximal planar graph G into outerplanar levels in order
to construct, level by level, many upward planar orientations of G (Sect. 5).

2 Preliminaries

A planar drawing of a graph maps each vertex to a distinct point in the plane and
each edge to a Jordan curve between its endpoints so that no two edges cross. A planar
drawing partitions the plane into topologically connected regions, called faces. The
bounded faces are called internal, while the unbounded face is the outer face. A planar
graph is a graph admitting a planar drawing. A planar graph is maximal if no edge can
be added to it while maintaining its planarity. Any two drawings of the same maximal
planar graph determine the same faces; however, their outer faces might be different.
An internally-triangulated planar graph is a planar graph with a fixed outer face whose
every internal face is delimited by three edges.

Let G be a directed graph. A vertex v of G is a source (sink) if v has no incoming
(outgoing) edges. A monotone path P = (v1, v2, . . . , vk) is such that edge (vi, vi+1)
is directed from vi to vi+1, for i = 1, 2, . . . , k − 1. An upward drawing of a directed
graph is such that each edge is represented by a curve monotonically increasing in the
y-direction. An upward planar graph is a directed graph that admits an upward planar
drawing. An orientation of a graph G is an assignment of directions to the edges of G.
An orientation is acyclic if it contains no directed cycle. An orientation is bimodal if, in
any planar embedding of G, the edges incident to each vertex v of G can be partitioned
into two sets of consecutive edges, one containing all the edges outgoing v and one
containing all the edges incoming v. An orientation of a graph G is upward planar if
the resulting directed graph is upward planar. Observe that an upward planar orientation
is both acyclic and bimodal. Two upward planar orientations G1 and G2 of a graph G
are distinct if there exists an edge (u, v) in G which is directed from u to v in G1 and
from v to u in G2. We say that a maximal planar graph G has a fixed orientation for its
outer face if all the considered upward planar orientations of G lead to upward planar
drawings in which the outer face is the same and its incident edges are oriented in the
same way. If G is an internally-triangulated upward planar graph and (u, v, z) is a cycle
delimiting an internal face of G, we say that (u, v, z) is a (u, z)-monotone face if u and
z are the source and the sink of (u, v, z), respectively. If G is an internally-triangulated
upward planar graph whose outer face is delimited by two monotone paths P1 and P2

connecting the unique source s of G and the unique sink t of G, the leftmost path (the
rightmost path) of G is the one of P1 and P2 whose edges flow in clockwise (resp.
counter-clockwise) direction along the outer face of G.

Number of Upward Planar Orientations of Maximal Planar Graphs 415

3 Upper Bound for Theorem 1

In this section we show a proof for the upper bound of Theorem 1. The proof is based
on two ingredients. First, we show a “canonical” construction for upward planar ori-
entations. That is, we prove that every internally-triangulated upward planar graph can
be constructed starting from its leftmost path and repeatedly adding a single vertex or
a single edge to the current graph while maintaining strong monotonicity properties.
Such a construction is equivalent to a construction presented by Mehlhorn in [11]; still,
for sake of completeness, we explicitly state it and prove its correctness in Lemma 1.
Second, we use an inductive argument (and the canonical construction) to count the
number of upward planar orientations of an internally-triangulated planar graph.

Lemma 1. Let G be an internally-triangulated upward planar graph whose outer face
is delimited by two monotone paths connecting the unique source s of G to the unique
sink t of G. Then, there exists a sequence G1,G2, . . . ,Gk of upward planar graphs
such that: (1) G1 coincides with the leftmost path of G; (2) Gk coincides with G; (3)
for 1 ≤ i ≤ k, all the vertices and edges in G and not in Gi lie in the outer face of Gi;
(4) for 1 ≤ i ≤ k, the rightmost path of Gi is a monotone path connecting s and t, and
(5) for 2 ≤ i ≤ k, Gi is obtained from Gi−1 by

– either adding a vertex in the outer face of Gi−1 and connecting it to two vertices
in the rightmost path of Gi−1,

– or adding an edge in the outer face of Gi−1.

Proof: Properties (1)–(5) of the lemma are clearly satisfied if i = 1, given that G1

coincides with the leftmost path of G. Next, assume that Gi−1 satisfies Properties (1)–
(5). We show how to construct Gi so that it also satisfies Properties (1)–(5). Denote by
(s = v1, v2, . . . , vm = t) the rightmost path of Gi−1.

Case 1: Suppose that, for some 1 ≤ j ≤ m − 2, there exists an edge (vj , vj+2)
in G such that: (a) (vj , vj+2) is not in Gi−1; and (b) (vj , vj+1, vj+2) is a face of G.
Then, let Gi = Gi−1 ∪ {(vj , vj+2)}. Observe that Gi trivially satisfies Properties
(1)–(2). Further, Gi satisfies Property (3) since Gi−1 satisfies Property (3) and since
(vj , vj+1, vj+2) is a face of G. Moreover, Gi satisfies Property (4), since (a) its right-
most path is (v1, v2, . . . , vj , vj+2, vj+3, . . . , vm), (b) Gi−1 satisfies Property (4), and
(c) edge (vj , vj+2) is outgoing vj , as otherwise (vj , vj+1, vj+2) would be a directed
cycle in G. Finally, Gi satisfies Property (5) given that (vj , vj+2) is in the outer face of
Gi−1, since Gi−1 satisfies Property (3).

Case 2: Consider, for any 1 ≤ j ≤ m− 2, a vertex uj in G such that: (a) uj is not in
Gi−1; and (b) (vj , vj+1, uj) is a (vj , vj+1)-monotone face of G. The existence of such
a vertex uj implies that Gi = Gi−1∪{uj, (vj , uj), (uj , vj+1)} satisfies Properties (1)–
(5). Namely, Gi trivially satisfies Properties (1)–(2). Further, Gi satisfies Property (3)
since Gi−1 satisfies Property (3) and since (vj , vj+1, uj) is a face of G. Moreover, Gi

satisfies Property (4), since (a) its rightmost path is (v1, v2, . . . , vj , uj , vj+1, . . . , vm),
(b) Gi−1 satisfies Property (4), and (c) edges (vj , uj) and (uj , vj+1) are outgoing vj
and uj , respectively. Finally, Gi satisfies Property (5) given that uj is in the outer face
of Gi−1, since Gi−1 satisfies Property (3).

416 F. Frati, J. Gudmundsson, and E. Welzl

It remains to prove that, if Case 1 does not apply, then such a vertex uj always exists.
Consider the vertex u1 of G that forms a face with edge (v1, v2) such that (v1, v2, u1)
is not a face of Gi−1. Since v1 is the source of G, edge (v1, u1) is outgoing v1. Hence,
if edge (u1, v2) is outgoing u1, then u1 is the desired vertex. Otherwise, edge (v2, u1)
is outgoing v2. Since Case 1 does not apply, then (v2, u1) �= (v2, v3). Suppose that, for
some 1 ≤ j ≤ m−2, a vertex uj has been found such that (vj , vj+1, uj) is not a face of
Gi−1 and is a (vj , uj)-monotone face of G, and such that (vj+1, uj) �= (vj+1, vj+2).
Then, consider the vertex uj+1 that forms a face with edge (vj+1, vj+2) such that
(vj+1, vj+2, uj+1) is not a face of Gi−1. Since (vj+1, uj+1) �= (vj+1, vj) and since
(vj , vj+1, uj) is a (vj , uj)-monotone face of G, edge (vj+1, uj+1) is outgoing vj+1,
as otherwise the upward planarity of G would be violated. Hence, if edge (uj+1, vj+2)
is outgoing uj+1, then uj+1 is the desired vertex, otherwise (vj+1, vj+2, uj+1) is a
(vj+1, uj+1)-monotone face of G, with (vj+2, uj+1) �= (vj+2, vj+3). Assuming that,
for each 1 ≤ j ≤ m− 2, vertex uj is not the desired vertex, consider the vertex um−1
that forms a face with edge (vm−1, vm) such that (vm−1, vm, um−1) is not a face of
Gi−1 and such that edge (vm−1, um−1) is outgoing vm−1. Since vm is a sink of G,
edge (um−1, vm) is outgoing um−1, hence um−1 is the desired vertex. �
Now let G be an internally-triangulated planar graph. Let s and t be two consecutive
vertices on the outer face of G. Let P = (s = v0, v1, . . . , vk = t) be the path connect-
ing s and t along the outer face of G different from edge (s, t). Let p be any integer
such that 0 ≤ p ≤ k − 1 and such that no internal edge (vj , vj+2) of G is such that
(vj , vj+1, vj+2) is an internal face of G, for any 0 ≤ j ≤ p− 2. Let l be the number of
internal vertices of G. Denote by N(l, k, p) the number of upward planar orientations
G of G such that: (1) The outer face of G is delimited by two monotone paths P and
(s, t) connecting s and t; and (2) for 0 ≤ j ≤ p, the internal face of G having (vj , vj+1)
as an incident edge is not (vj , vj+1)-monotone. We have the following:

Lemma 2. N(l, k, p) ≤ 4l2k−p.

Proof: The proof is by induction on l and, secondarily, on k. If l = 0, then, in any
upward planar orientation G of G, every internal edge (vj , vj′) of G, with j′ ≥ j,
is oriented from vj to vj′ , as otherwise (vj , vj+1, . . . , vj′) would be a directed cycle.
Hence G has a unique upward planar orientation. Then, the bound follows from 2k−p >
1, given that k > p. Suppose next that l > 0. By Lemma 1, either (Case 1) there exists
an edge (vj , vj+2) such that (vj , vj+1, vj+2) is a (vj , vj+2)-monotone face of G or
(Case 2) there exists a vertex uj , for some p ≤ j ≤ k − 1, such that (vj , vj+1, uj) is a
(vj , vj+1)-monotone face of G and Case 1 does not apply.

We discuss Case 1. By assumption, j ≥ p − 1. Since (vj , vj+2) is outgoing vj , the
number of upward planar orientations of G satisfying Properties (1) and (2) is equal to
the number of upward planar orientations of G′ = G \ {vj+1, (vj , vj+1), (vj+1, vj+2)}
satisfying Properties (1) and (2), where p′ = p− 1 if j = p− 1, and p′ = p otherwise.
Observe that G′ has l′ = l internal vertices and that the path delimiting the outer face of
G′ different from edge (s, t) has k′ = k−1 edges. No internal edge of G′ connects two
vertices among (v0, v1, . . . , vp′) given that no internal edge of G connects two vertices
among (v0, v1, . . . , vp). By induction on k, we have that G′ (and hence G) has at most
N(l′, k′, p′) ≤ 4l2k−p upward planar orientations satisfying Properties (1) and (2).

Number of Upward Planar Orientations of Maximal Planar Graphs 417

We now discuss Case 2. We partition the upward planar orientations of G satisfying
Properties (1) and (2) into sets S(p), S(p + 1), . . . , S(k − 1) where, for each p ≤ j ≤
k−1, each upward planar orientationG of G in S(j) is such that j is the minimum index
for which there exists a vertex uj for which (vj , vj+1, uj) is a (vj , vj+1)-monotone
face of G. Observe that the number of upward planar orientations G of G satisfying
Properties (1) and (2) is at most |S(p)| + |S(p + 1)| + . . . + |S(k − 1)|. For any
p ≤ j ≤ k − 1, the number of upward planar orientations of G in S(j) is equal to the
number of upward planar orientations of G′ = G \ {(vj , vj+1)} satisfying Properties
(1) and (2), where p′ = j. Namely, by assumption, in any of such orientations there
exists no edge (vh, vh+2) such that (vh, vh+1, vh+2) is an internal face of G, for any
0 ≤ h ≤ j − 2, and there exists no vertex uh such that (vh, vh+1, uh) is a (vh, vh+1)-
monotone face of G, for any h < j. Observe that G′ has l′ = l − 1 internal vertices
and that the path delimiting the outer face of G′ different from edge (s, t) has k′ =
k + 1 edges. By induction on l, |S(j)| ≤ N(l′, k′, p′) ≤ 4l−12(k+1)−j . Thus the total
number of upward planar orientations of G satisfying Properties (1) and (2) is at most∑k−1

j=p |S(j)| ≤
∑k−1

j=p 4
l−12(k+1)−j = 4l−12k−p+1

∑k−p−1
j=0 2−j < 4l2k−p. �

Lemma 2 implies the upper bound of Theorem 1. Namely, consider any n-vertex maxi-
mal planar graph G. Arbitrarily choose the outer face of G and fix an orientation for it
(this can be done in O(n) ways). By Lemma 2 with l = n − 3, k = 2, and p = 0, we
have that G has at most 4n−2 upward planar orientations with a fixed orientation for its
outer face, hence G has at most O(n · 4n) upward planar orientations.

4 Upper Bound for Theorem 2 and Lower Bound for Theorem 1

In this section we show two classes of maximal planar graphs, the first one providing
the upper bound in Theorem 2, the second one providing the lower bound in Theorem 1.

The class of maximal planar graphs providing the upper bound for Theorem 2 is the
one of planar 3-trees. A planar 3-tree is inductively defined as follows (see Fig. 1(a)). A
3-cycle is the only planar 3-tree with 3 vertices; every planar 3-tree Gn with n vertices
can be obtained from a planar 3-tree Gn−1 with n − 1 vertices by inserting a vertex w
inside an internal face (u, v, z) of Gn−1 and connecting w with u, v, and z. We prove
the following statement: Every n-vertex planar 3-tree with a fixed orientation for the
outer face has 2n−3 upward planar orientations. The proof is by induction on n.

If n = 3 the statement holds since the outer face of G has a fixed orientation. Suppose
that n > 3. Consider any n-vertex planar 3-tree Gn and let w be a degree-3 vertex of
Gn whose removal yields an (n− 1)-vertex planar 3-tree Gn−1. Let u, v, and z be the
neighbors of w in Gn. Consider any upward planar orientation Gn−1 of Gn−1. Assume
w.l.o.g. that u is the source and z is the sink of 3-cycle (u, v, z). We claim that, in
any upward planar orientation Gn of Gn in which the orientation of Gn−1 is Gn−1,
edge (u,w) is outgoing u. See Fig. 1(b)–(c). If u is the source of Gn−1, then u is the
source of Gn, hence (u,w) is outgoing u in Gn. Otherwise, u contains an incoming
edge (x, u). In order for Gn to be bimodal, edge (u,w) has to be oriented from u to
w, given that edges (x, u), (u, v), (u,w), and (u, z) appear in this circular order around
u. An analogous argument proves that edge (w, z) is incoming z in Gn. On the other
hand, the two orientations of (v, w) lead to two distinct upward planar orientations G1

n

418 F. Frati, J. Gudmundsson, and E. Welzl

x

u

v

z

w

x

u

v

z

w

a1b1

c1 d1

(a) (b) (c) (d)

Fig. 1. (a) A planar 3-tree. (b)–(c) Orientations of the edges incident to a vertex w. (d) Graph G
in the proof of the lower bound in Theorem 1.

and G2
n of Gn in which the orientation of Gn−1 is Gn−1. By induction Gn−1 has 2n−4

upward planar orientations with a fixed orientation for its outer face, hence Gn has 2n−3

upward planar orientations with a fixed orientation for its outer face, thus proving the
claim. Finally, every maximal planar graph has O(n) choices for its outer face and, for
each choice, the cycle delimiting the outer face has O(1) orientations (observe that a
planar 3-tree Gn can be constructed by iteratively adding a degree-3 internal vertex for
every choice of the outer face of Gn). It follows that G has O(n · 2n) upward planar
orientations, thus proving the upper bound in Theorem 2.

Next, we are going to prove the lower bound in Theorem 1.
Let G be the n-vertex maximal planar graph, where n is a multiple of 4, defined as

follows (see Fig. 1(d)). For i = 1, 2, . . . , n
4 , G contains a cycle Ci = (ai, bi, ci, di);

for i = 1, 2, . . . , n
4 − 1, G contains edges (ai, ai+1), (bi, bi+1), (ci, ci+1), (di, di+1),

(ai, bi+1), (bi, ci+1), (ci, di+1), and (di, ai+1); finally, G contains edges (a1, c1) and
(an/4, cn/4). The outer face of G is delimited by cycle (a1, b1, c1), that is oriented so
that a1 and c1 are its source and sink, respectively. We are going to prove that G has
Ω((23 + 3

√
57)n/4) upward planar orientations.

An orientation Ci of Ci is of type A if Ci has one source and one sink, and such
vertices are not adjacent in Ci; further, Ci is of type B if Ci has one source and one
sink, and such vertices are adjacent in Ci; finally, Ci is of type C if Ci has two sources
and two sinks. Denote by Ci,i+1 the subgraph of G induced by the vertices of Ci and
by the vertices of Ci+1, for any 1 ≤ i ≤ n

4 − 1 (minus edge (a1, c1) if i = 1 and minus
edge (an/4, cn/4) if i = n/4 − 1). Denote by N(j, k) the number of upward planar
orientations of Ci,i+1 such that each edge of Ci has a fixed orientation of type j and
the orientation of Ci+1 is any orientation of type k, for each j, k ∈ {A,B,C}. The
following inequalities hold: (1) N(A,A) ≥ 20; (2) N(A,B) ≥ 30; (3) N(A,C) ≥ 12;
(4) N(B,A) ≥ 14; (5) N(B,B) ≥ 24; (6) N(B,C) ≥ 10; (7) N(C,A) ≥ 4; (8)
N(C,B) ≥ 8; and (9) N(C,C) ≥ 4. The proof of such inequalities can be conducted
by exhibiting, for each j, k ∈ {A,B,C}, N(j, k) upward planar orientations in which
Ci has an orientation of type j, Ci+1 has an orientation of type k, and Ci has exactly
the same sources and sinks in each of the N(j, k) orientations. Figures illustrating such
orientations are shown in the extended version of the paper.

For each 1 ≤ i ≤ n
4 − 1, let C∗i be the subgraph of G induced by the vertices in

Cn
4
−i, Cn

4
−i+1, . . . , Cn

4
−1 (excluding edge (a1, c1) when i = n

4 − 1). Observe that
C∗n

4−1
coincides with G minus vertices an/4, bn/4, cn/4, and dn/4, and minus edge

(a1, c1). Denote by A(i), B(i), and C(i) the number of upward planar orientations of
C∗i such that Cn

4−i has a fixed orientation of type A, B, and C, respectively. Clearly, we

Number of Upward Planar Orientations of Maximal Planar Graphs 419

have A(1) = B(1) = C(1) = 1. From the lower bounds on N(j, k) we immediately
get the following: (a) A(i) ≥ 20A(i − 1) + 30B(i − 1) + 12C(i − 1), (b) B(i) ≥
14A(i−1)+24B(i−1)+10C(i−1), and (c) C(i) ≥ 4A(i−1)+8B(i−1)+4C(i−1).

We are going to prove that (d) A(i) ≥ ati−1, (e) B(i) ≥ bti−1, and (f) C(i) ≥ cti−1,
for some constants 0 < a, b, c ≤ 1 and t > 0 to be determined later. Observe that (d),
(e), and (f) hold true if i = 1 (given that a, b, c ≤ 1). Suppose that (d), (e), and (f) hold
true for i− 1. We compute for which values of a, b, c, and t they hold true for i.

From (a), (b), and (c) we have that (d), (e), and (f) hold true if (g) 20ati−1+30bti−1+
12cti−1 = ati, (h) 14ati−1 + 24bti−1 + 10cti−1 = bti, and (i) 4ati−1 + 8bti−1 +
4cti−1 = cti hold true. Simplifying (g), (h), and (i), we get (j) (20−t)a+30b+12c= 0,
(k) 14a+ (24− t)b+ 10c = 0, and (l) 4a+ 8b+ (4− t)c = 0.

Whenever equations (j), (k), and (l) are linearly independent, the only solution to
such equalities is a = b = c = 0. However, when the determinant of the matrix associ-
ated with (j), (k), and (l) is equal to zero, one of such equations is a linear combination
of the others. Simple calculations show that this happens if t = 2, t = 23− 3

√
57, and

t = 23 + 3
√
57. Focusing on the value t = 23 + 3

√
57, we get that (j) and (k) become

(m) (−3− 3
√
57)a + 30b+ 12c = 0 and (n) 14a+ (1 − 3

√
57)b + 10c = 0. Solving

(n) with respect to c we get (o) c = − 14a+(1−3
√
57)b

10 . Plugging such a value in (m)

and solving with respect to b we get (p) b = 33+5
√
57

48+6
√
57

a. From (p) and (o), we get (q)

c = 15+
√
57

48+6
√
57

a. Hence, we have that (a, b, c, t) = (1, 33+5
√
57

48+6
√
57

, 15+
√
57

48+6
√
57

, 23 + 3
√
57)

solves (j), (k), and (l). Observe that a, b, c ≤ 1. Thus, it holds A(i) ≥ (23 + 3
√
57)i−1,

and hence graph C∗n
4−1

admits A(n4 − 1) ≥ (23 + 3
√
57)

n
4−2 upward planar orienta-

tions with a fixed outer face of Type A having a1 as a source and c1 as a sink. In order
to conclude the proof of the lower bound in Theorem 1, it suffices to observe that, for
every upward planar orientation C∗n

4−1
of C∗n

4−1
with a fixed outer face of Type A hav-

ing a1 as a source and c1 as a sink, it is possible to suitably orient edge (a1, c1) together
with the edges incident to the vertices in G that do not belong to C∗n

4−1
(that is, an/4,

bn/4, cn/4, and dn/4) in such a way that the resulting orientation of G is upward planar.

5 Lower Bound for Theorem 2

In this section we show a proof for the lower bound of Theorem 2.
Let G be any n-vertex maximal planar graph. For i = 0, . . . , t, denote by Gi the

subgraph of G induced by the vertices at graph-theoretic distance i from the outer face
of G. Observe that the outerplanarity of G is t+1. Also, for i = 0, . . . , t, denote by G∗i
the subgraph of G induced by the vertices at graph-theoretic distance less than or equal
to i from the outer face of G. Observe that G∗0 = G0 and G∗t = G. Let ni = |Gi|.

In the following, whenever we say that we construct a certain number of upward pla-
nar drawings of a graph, we always mean that such upward planar drawings correspond
to distinct upward planar orientations of the graph with a fixed outer face.

In order to prove the lower bound of Theorem 2, we exhibit two algorithms, Algo-
rithm A and Algorithm B, that construct a set SA(t) and a set SB(t) of upward planar
drawings of G∗t = G, respectively. Both algorithms construct upward planar drawings
one outerplanar level at a time, i.e., upward planar drawings of G∗i+1 are constructed

420 F. Frati, J. Gudmundsson, and E. Welzl

u1=u=v1

ul=v=vm

v2
v3

u3

u2

u1=u=v1

ul=v=vm

v2 v3

u3u2

(a) (b)

Fig. 2. (a) An x-monotone face. (b) An (x, y)-monotone face.

by plugging upward planar drawings of Gi+1 into upward planar drawings of G∗i (and
drawing the edges connecting the vertices in Gi to the vertices in Gi+1). In fact, for
each 0 ≤ i ≤ t, Algorithm A and Algorithm B construct two sets SA(i) and SB(i) of
upward planar drawings of G∗i , respectively. Algorithm A and Algorithm B both main-
tain strong invariants on the geometry of the faces of G∗i in any constructed upward
planar drawing. Call new face any face that is delimited exclusively by edges of Gi.

Algorithm A maintains the invariant that, in every upward planar drawing of G∗i in
SA(i), all the new faces of G∗i are x-monotone: Denote by u and v two vertices in-
cident to any new face f of G∗i , and denote by (u = v1 = u1, u2, . . . , ul = v =
vm, vm−1, . . . , v2) the clockwise order of the vertices on the border of f ; a drawing of
f is x-monotone if it is either positively x-monotone or negatively x-monotone, where
f is positively x-monotone if (see Fig. 2(a)): (1) x(v1) < x(v2) < . . . < x(vm−1) <
x(u2) < x(u3) < . . . < x(ul−1) < x(ul) and (2) y(v1), y(v2), . . . , y(vm−1) <
y(u2), y(u3), . . . , y(ul−1), y(ul); moreover,f is negatively x-monotone if: (1) x(u1) <
x(u2) < x(u3) < . . . < x(ul−1) < x(v2) < . . . < x(vm−1) < x(vm) and (2)
y(v2), y(v3), . . . , y(vm−1), y(vm) < y(u1), y(u2), y(u3), . . . , y(ul−1), y(ul).

Algorithm B maintains the invariant that, in every upward planar drawing of G∗i in
SB(i), all the new faces of G∗i are (x, y)-monotone: Denote by u and v two vertices
incident to any new face f of G∗i , and denote by (u = v1 = u1, u2, . . . , ul = v =
vm, vm−1, . . . , v2) the clockwise order of the vertices on the border of f ; a drawing
of f is (x, y)-monotone if it positively (x, y)-monotone or negatively (x, y)-monotone,
where a drawing of f is positively (x, y)-monotone if it is positively x-monotone and
further (see Fig. 2(b)): (3) y(v1) < y(v2) < . . . < y(vm−1) < y(vm) and (4) y(u1) <
y(u2) < . . . < y(ul−1) < y(ul); a drawing of f is negatively (x, y)-monotone if it is
negatively x-monotone and if: (3) y(v1) > y(v2) > . . . > y(vm−1) > y(vm) and (4)
y(u1) > y(u2) > . . . > y(ul−1) > y(ul).

Algorithm A constructs the upward planar drawings in SA(i+1) by plugging upward
planar drawings of Gi+1 into each of the upward planar drawings of G∗i that are in
SA(i). Analogously, Algorithm B constructs the upward planar drawings in SB(i + 1)
by plugging upward planar drawings of Gi+1 into each of the upward planar drawings
of G∗i that are in SB(i).

Algorithms A and B construct the upward planar drawings in SA(t) and the up-
ward planar drawings in SB(t), respectively, so that (at least) one of SA(t) and SB(t)
contains “many” upward planar drawings of G∗t = G. The overall idea behind this argu-
ment is as follows. Graph Gi, for 1 ≤ i ≤ t, consists of several connected components
G1

i , G
2
i , . . . , G

k(i)
i . For each 1 ≤ i ≤ t and for each 1 ≤ j ≤ k(i), if Gj

i is a tree,
then denote by hj

i the number of vertices of Gj
i , otherwise denote by hj

i the number of

Number of Upward Planar Orientations of Maximal Planar Graphs 421

bridges of Gj
i (where a bridge is a maximal biconnected component of Gj

i consisting

of a single edge). Further, let hi =
∑k(i)

j=1 hj
i and let h =

∑t
i=1 hi. If h is “small”, then

SA(t) contains many upward planar drawings of G∗t , while if h is “large”, then SB(t)
contains many upward planar drawings of G∗t . This is formalized as follows.

Lemma 3. Consider any upward planar drawing Γ ∗i of G∗i such that all the new faces
of G∗i are x-monotone. Then, there exist 2(ni+1−hi+1)/3 upward planar drawings of
G∗i+1 such that, for each of such drawings Γ ∗i+1, all the new faces of G∗i+1 are x-
monotone in Γ ∗i+1 and such that the restriction of Γ ∗i+1 to G∗i coincides with Γ ∗i .

Lemma 4. Consider any upward planar drawing Γ ∗i of G∗i such that all the new faces
of G∗i are (x, y)-monotone. Then, there exist 2hi+1 upward planar drawings of G∗i+1

such that, for each of such drawings Γ ∗i+1, all the new faces of G∗i+1 are (x, y)-monotone
in Γ ∗i+1 and such that the restriction of Γ ∗i+1 to G∗i coincides with Γ ∗i .

Algorithm A initializes SA(0) with one upward planar drawing, corresponding to the
fixed orientation of G0. For 0 ≤ i ≤ t− 1, Algorithm A constructs SA(i + 1) by con-
sidering each upward planar drawing Γ ∗i in SA(i), whose new faces are x-monotone,
and by inserting 2(ni+1−hi+1)/3 upward planar drawings of G∗i+1 into SA(i+1) so that,
for each of such drawings Γ ∗i+1, all the new faces of G∗i+1 are x-monotone in Γ ∗i+1 and
the restriction of Γ ∗i+1 to G∗i coincides with Γ ∗i (this can be done by Lemma 3).

Algorithm B initializes SB(0) with one upward planar drawing, corresponding to
the fixed orientation of G0. For 0 ≤ i ≤ t − 1, Algorithm B constructs SB(i + 1)
by considering each upward planar drawing Γ ∗i in SB(i), whose new faces are (x, y)-
monotone, and by inserting 2hi+1 upward planar drawings of G∗i+1 into SB(i + 1) so
that, for each of such drawings Γ ∗i+1, all the new faces of G∗i+1 are (x, y)-monotone in
Γ ∗i+1 and the restriction of Γ ∗i+1 to G∗i coincides with Γ ∗i (this can be done by Lemma 4).

By Lemma 3, we have |SA(t)| = 2((n1−h1)+(n2−h2)+...+(nt−ht))/3. Moreover, by
Lemma 4, we have |SB(t)| = 2h1+h2+...+ht . Observe that n1+n2+. . .+nt = n−3 (the
only vertices of G that do not belong to any graph Gi, with 1 ≤ i ≤ t, are the vertices
in G0). Hence, we have |SA(t)| = 2(n−h−3)/3 and |SB(t)| = 2h. Thus, if h ≤ n/4,
we have that |SA(t)| ∈ Ω(2n/4), while if h > n/4, we have that |SB(t)| ∈ Ω(2n/4).
Thus, one of SA(t) and SB(t) contains Ω(2n/4) upward planar drawings of distinct
upward planar orientations of G with fixed outer face. Since there are Ω(n) choices for
the outer face of G, the lower bound in Theorem 2 follows.

6 Conclusions

In this paper we considered the problem of determining the maximum and the minimum
number of upward planar orientations a maximal planar graph can have. Tightening
the bounds we provided in this paper is an interesting open problem. In particular, we
suspect that a suitable combination of Algorithms A and B presented in Section 5 would
lead to improve the lower bound in Theorem 2. Deep techniques that might be helpful
for improving the bounds we presented in this paper are provided by the large body of
literature on bipolar orientations of biconnected planar graphs (see, e.g., [3,5]).

422 F. Frati, J. Gudmundsson, and E. Welzl

Extending our results to general planar graphs is, in our opinion, worth research
efforts. In particular, we pose the following question: Is it true that if an n-vertex planar
graph G has x upward planar orientations then an n-vertex maximal planar graph exists
containing G as a subgraph and having at least x upward planar orientations?

Any upward planar orientation of a graph is acyclic, thus our investigations relate
to counting the number of acyclic orientations of a graph, which has a rich body of
literature, with links to chromatic polynomials. Surprisingly, we did not find any work
dealing with the asymptotic number of acyclic orientations of n-vertex planar graphs.
Still, there is a general “trick” to derive an upper bound, due to Fredman (see [7] and
[10]): Fixing the out-degree of each vertex of a planar graph G completely determines
the orientation itself. This easily gives an upper bound of

∏
v(degv +1) (where the sum

is over all the vertices v of the graph and degv represented the degree of v). With the
use of appropriate inequalities and the fact that planar graphs have average degree at
most 6, this entails an upper bound of O(7n) for the number of acyclic orientations of
a planar graph and an upper bound of O(n25n) for the number of acyclic orientations
with unique source and sink of a planar graph. Also observe that, if we count acyclic
orientations of planar graphs with a unique source and multiple sinks, then this number
is upper bounded by the number of spanning trees, see [8], which is at most O(5.3n),
see [2]. It is also easy to see that there exist maximal planar graphs, namely planar 3-
trees, having Θ(4n) acyclic orientations. Deepening the study of the number of acyclic
orientations a planar graph can have seems to us an interesting research direction.

References

1. Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected
digraphs. Algorithmica 12(6), 476–497 (1994)

2. Buchin, K., Schulz, A.: On the Number of Spanning Trees a Planar Graph Can Have. In:
de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 110–121. Springer,
Heidelberg (2010)

3. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: Bipolar orientations revisited. Discr. Appl.
Math. 56(2-3), 157–179 (1995)

4. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor.
Comput. Sci. 61, 175–198 (1988)

5. Fusy, E., Poulalhon, D., Schaeffer, G.: Bijective counting of plane bipolar orientations. Elec.
Notes Discr. Math. 29, 283–287 (2007)

6. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity
testing. SIAM J. Comput. 31(2), 601–625 (2001)

7. Graham, R.L., Yao, A.C., Yao, F.F.: Information bounds are weak in the shortest distance
problem. J. ACM 27(3), 428–444 (1980)

8. Kahale, N., Schulman, L.J.: Bounds on the chromatic polynomial and on the number of
acyclic orientations of a graph. Combinatorica 16(3), 383–397 (1996)

9. Kelly, D.: Fundamentals of planar ordered sets. Disc. Math. 63(2-3), 197–216 (1987)
10. Manber, U., Tompa, M.: The effect of number of hamiltonian paths on the complexity of a

vertex-coloring problem. SIAM J. Comput. 13(1), 109–115 (1984)
11. Mehlhorn, K.: Data Structures and Algorithms: Multi-dimensional Searching and Computa-

tional Geometry, vol. 3. Springer (1984)

Universal Point Subsets for Planar Graphs

Patrizio Angelini1, Carla Binucci2, William Evans3, Ferran Hurtado4,
Giuseppe Liotta2, Tamara Mchedlidze5, Henk Meijer6, and Yoshio Okamoto7

1 Roma Tre University, Italy
2 University of Perugia, Italy

3 University of British Columbia, Canada
4 Universitat Politécnica de Catalunya, Spain
5 Karlsruhe Institute of Technology, Germany

6 Roosevelt Academy, Netherlands
7 University of Electro-Communications, Japan

Abstract. A set S of k points in the plane is a universal point subset for a class
G of planar graphs if every graph belonging to G admits a planar straight-line
drawing such that k of its vertices are represented by the points of S. In this
paper we study the following main problem: For a given class of graphs, what
is the maximum k such that there exists a universal point subset of size k? We
provide a �

√
n � lower bound on k for the class of planar graphs with n ver-

tices. In addition, we consider the value F (n,G) such that every set of F (n,G)
points in general position is a universal subset for all graphs with n vertices be-
longing to the family G, and we establish upper and lower bounds for F (n,G)
for different families of planar graphs, including 4-connected planar graphs and
nested-triangles graphs.

1 Introduction

A classic result in graph theory states that every planar graph G = (V,E) can be drawn
without crossings on the plane using some set S of points as vertices, and straight-line
segments with endpoints in S to represent the edges [7,16,21]. However, not every set
S with n = |S| = |V | is suitable for such a representation; for example, the drawing
is impossible if G is a maximal planar graph with n > 3 vertices and S is in convex
position, because in this case |E| = 3n − 6 while at most 2n − 3 segments can be
drawn between points of S without crossings. In fact, Cabello [4] proved that deciding
whether there is a planar straight-line drawing of G = (V,E) using a point set S with
|S| = |V | is an NP-complete problem.

As the number of combinatorially different sets of n points is finite [8], it is obvious
that there exist some adequate yet huge sets of points U , such that given any planar
graph G with n vertices, some n-subset of U admits a planar straight-line drawing of
G. The challenge though, is to find sets U with that property, yet as small as possible.
We define next this problem more precisely.

A set U of k points in the plane is a universal point set if every planar graph with n
vertices admits a planar straight-line drawing whose vertices are a subset of the points
of U . From the literature it is known that if U is a universal point set for planar graphs

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 423–432, 2012.
© Springer-Verlag Berlin Heidelberg 2012

424 P. Angelini et al.

then 1.235n ≤ |U | ≤ 8n2/9. Indeed, Kurowski [10] proved that the size of U requires
at least 1.235n points, while de Fraysseix, Pach, and Pollack [5], Schnyder [15] and
Brandenburg [3] showed that a O(n)×O(n) grid of points is a universal point set.

This topic has been a very active area of research since it was introduced, and several
variations have been considered. For example, one can restrict the family of graphs to
be represented. In this sense, Gritzman, Mohar, Pach and Pollack [9] proved that every
set of n distinct points in the plane in general position (no three collinear) is universal
for the class of outerplanar graphs with n vertices.

In this paper we introduce and study the notion of a universal point subset. A set S
of k points is a universal point subset for a class G of planar graphs if every graph in G
admits a planar straight-line drawing such that k of its vertices are represented by the
points of S.

In Section 2 we prove that a particular, very flat convex chain of �
√

n � points is a
universal point subset for the class of (maximal) planar graphs with n vertices.

For a certain subfamily of 4-connected planar graphs we have been able to obtain
a bound that is stronger in a particular sense, namely that every set of � lgn

4 � points
in general position is a universal point subset for all the graphs with n vertices in this
family. Inspired by this result, we consider in Section 3 the value F (n,G) such that
every set of F (n,G) points in general position is a universal subset for the planar graphs
with n vertices belonging to G. It is trivial to prove that every set of 1, 2, or 3 points in
general position is a universal point subset for every planar graph and every value of n
(Tutte’s algorithm [19,20]). On the other hand there exists a set of 4 points in general
position that is not a universal point subset for planar graphs having n = 5 vertices.

We show lower and upper bounds for F (n,G) for different families of planar graphs.
In particular, we show that every set of 4 points in general position is a universal point
subset for all planar graphs with at least 6 vertices and, on the other hand, we show that
there exists a set of 2�n3 � + 2 points in convex position that is not a universal subset
for the class of planar graphs. In other words, we prove that 4 ≤ F (n,G) ≤ 2�n3 �+ 1,
for all n ≥ 6, when G is the class of all planar graphs. In addition, we improve the
lower bound and the upper bound for some subfamilies of planar graphs; specifically,
we study the case that G is the class of 4-connected planar graphs whose outer face is a
quadrilateral, and the case that G is the class of nested-triangles graphs.

We conclude in Section 4 with some remarks and open problems. In that section we
also briefly discuss the relationships between our problem and the related allocation
problem that has been the subject of recent studies (see, e.g. [11,13]).

Definitions and Notation

Point Sets. A set S of points is in general position if no three points are collinear. The
convex hull CH(S) of S is the point set obtained as a convex combination of the points
of S. If no point is in the convex hull of the others, then S is in convex position. A set S
in convex position is one-sided if it can be rotated in such a way that the leftmost and
rightmost points are consecutive in the convex hull.

Graphs. We denote by (u, v) both an undirected and a directed edge, in the latter case
meaning the edge is directed from u to v. Also, we use the term triangle to denote

Universal Point Subsets for Planar Graphs 425

both a 3-cycle and its drawing. A graph G = (V,E) is planar if it has a drawing Γ
without edge crossings. Drawing Γ splits the plane into connected regions called faces;
the unbounded region is the outer face and the other faces are the internal faces. The
cyclic ordering of edges around each vertex of Γ together with a choice of the outer face
is a planar embedding of G. A plane graph is a graph with a fixed planar embedding.
A planar (plane) graph is maximal if each face of the graph is a triangle, thus no edge
can be added to it without violating planarity. A graph G is k-connected if it does not
contain a set of k − 1 vertices whose removal disconnects it.

Let G = (V,E) be a maximal plane graph with outer face (v1, v2, vn). A canonical
ordering [5] of G is an order σ = (v1, v2, v3, . . . , vn) of its vertices satisfying the
following properties: (1) The subgraph Gi−1 induced by v1, v2, . . . , vi−1 is 2-connected
and the boundary of the outer face of Gi−1 is a cycle Ci−1 containing edge (v1, v2);
(2) vertex vi is in the outer face of Gi and its neighbors in Gi−1 form a (non-trivial)
subpath of path Ci−1 − (v1, v2).

Let G be a planar graph with a planar drawing Γ . Let t1 and t2 be two disjoint
triangles of G. We say that t2 is nested in t1, and write t2 < t1, if t2 is in the bounded
region of the plane delimited by t1. A nested-triangles graph G with n vertices (n is
a multiple of 3) is a 3-connected graph admitting a planar drawing Γ in which n/3
disjoint triangles t1, t2, . . . , tn/3 exist such that t1 > t2 > · · · > tn/3.

2 A Universal Point Subset for Planar Graphs

In this section we provide a universal point subset of size �
√

n � for (maximal) planar
graphs with n vertices. Note that considering maximal planar graphs is not a limitation,
since any planar graph is a subgraph of a maximal planar graph.

Let G be a maximal planar graph with n vertices. Let σ = (v1, v2, . . . , vn) be a
canonical ordering of the vertices of G for some planar embedding of G. Let Gi be the
subgraph of G induced by the first i vertices in σ and let Ci be the outer face of Gi.
Bose et al. [2] define the frame Gσ of G with respect to σ to be a directed subgraph of
G with edges: (v1, v2) and, for every vi (i ≥ 3), (va(i), vi) and (vi, vb(i)) where va(i) is
the first and vb(i) the last vertex that are adjacent to vi on path Ci−1 − (v1, v2).

Let <σ be the partial order on the vertices of G where u <σ v if and only if Gσ

contains a path from u to v. Notice that va(i) is the smallest vertex and vb(i) is the largest
vertex according to <σ that are adjacent to vi in G and precede vi in σ. A sequence of
numbers (x1, x2, . . . , xn) obeys the partial order <σ if xa < xb for all va <σ vb.

Lemma 1. Given a canonical ordering σ = (v1, v2, . . . , vn) of the vertices of a max-
imal planar graph G and a sequence of x-coordinates (x1, x2, . . . , xn) that obeys the
partial order <σ with xi ∈ [1, n], for any sequence of y-coordinates (y1, y2, . . . , yn)
satisfying y1 = y2 = 0 and yi > n−1

Δ yi−1 for i ≥ 3, where 0 < Δ ≤ minva<σvb xb −
xa, the drawing of G with vi at point (xi, yi) for all i ∈ [n] is a plane drawing.

Proof: Suppose that the drawing of Gi−1 with vj at point (xj , yj) for j ∈ [i − 1] is a
plane drawing, and furthermore that Ci−1 is an x-monotone chain. Clearly, this holds
for i − 1 = 2. If the vertex vi at point (xi, yi) lies in the intersection of the half-planes
above the lines defined by consecutive vertices on the chain, then vi can connect to any

426 P. Angelini et al.

subsequence of chain vertices without intersecting the drawing of Gi−1. By adding vi at
(xi, yi), we obtain a plane drawing of Gi since (v1, v2, . . . , vn) is a canonical ordering.
Since the sequence (x1, x2, . . . , xn) obeys the partial order <σ , Ci is x-monotone.

It remains to show that (xi, yi) is above the lines through every pair of adjacent
vertices in Ci−1. Let va precede vb on the chain Ci−1. Since va <σ vb, xa < xb.
The point (xi, yi) lies above the line through (xa, ya) and (xb, yb) if yi(xb − xa) >
ya(xb − xi) + yb(xi − xa). By choosing yi > n−1

Δ yi−1 this inequality holds for any
xi ∈ [1, n], since xb − xa ≥ Δ, ya, yb ≤ yi−1, and xa, xb ∈ [1, n].

Let Uk = {((2n)−ni, (2n)ni) | i ∈ [k]} be a nearly vertical set of k points in convex
position. Observe that Uk is a one-sided convex set.

Lemma 2. If a maximal planar graph G has a canonical ordering σ so that <σ has an
anti-chain of size k, then G admits a planar straight-line drawing with k of its vertices
placed on Uk.

Proof: Let v1, v2, . . . , vn be the vertices of G in canonical order σ. Let A = {vi1 ,
vi2 , . . . , vik} be an anti-chain in <σ with i1 < i2 < · · · < ik. Note that i1 > 2
(unless k = 1) since v1 and v2 cannot be part of an anti-chain of size greater than one:
v1 <σ v for all v �= v1 and v <σ v2 for all v �= v2. Let A∗ be the set of vertices
less than (according to <σ) some vertex in A. We create a sequence of x-coordinates
(x1, x2, . . . , xn) that obeys the partial order <σ with each xi an integer in [1, n] for
vi �∈ A and xij = |S| + 1 + (2n)−nj for all j ∈ [k]. This is easy to achieve using a
topological sort of A∗ and a topological sort of V \ (A∗ ∪ A).

We create a sequence of y-coordinates (y1, y2, . . . , yn) with y1 = y2 = 0 and yi =
(2n)jn+(i−ij) for ij ≤ i < ij+1 where, for convenience, we have assumed i0 = 1
and ik+1 = n + 1. This assigns the jth vertex in the anti-chain a y-coordinate of the
form (2n)jn, and it assigns vertices not in the anti-chain, that are between the jth and
(j+1)th anti-chain vertices (in the canonical ordering σ), y-coordinates between (2n)jn

and (2n)(j+1)n. Since no two vertices in A are related by <σ, the minimum of xb − xa

for va <σ vb is at least 1 − (2n)−n > 1/2 = Δ. Thus the sequence (y1, y2, . . . , yn)
satisfies the conditions of Lemma 1. By that lemma, there is a plane drawing of G with
these x- and y-coordinates. Shifting this drawing by −|A∗| − 1 in the x-coordinate
places the anti-chain A on the points Uk.

Lemma 3. Let π be a maximal chain of <σ. Then, the subgraph of G induced by the
vertices of π is outerplanar.

Proof: Since π is a maximal chain, it corresponds to a directed path, P , in Gσ from v1
to v2. Let C be the undirected cycle in G composed of P and the edge (v1, v2). We
prove that all the chords of C in G lie inside it with respect to the embedding used to
derive the canonical ordering σ. Assume, for a contradiction, that C has a chord (u, v)
outside C, where u occurs before v on P . Let P ′ = (u,w, . . . , z, v) be the subpath of
P from u to v. Suppose that u precedes v in σ. Since (u, v) is an outside chord, the
vertices in P ′−v precede v in σ. However, the fact that both u and z precede v in σ and
u <σ z contradicts the fact that (z, v) is an edge of Gσ . Indeed, Gσ contains only one
directed edge to v from a vertex that precedes v in σ. The edge is from the first vertex
in <σ among the neighbors of v in G that precede v in σ. Since u <σ z and since u

Universal Point Subsets for Planar Graphs 427

v1 v2

v4

v8v9

f

v1 v2
v3

v4
v6v5

v7 v8

v9

v10

v11

v12

v′1 v′2

v′3

v′4v′5

v′6

v′7

v′8

(a) (b) (c) (d)

Fig. 1. (a) A maximal planar graph G. The edges of Gσ are directed and black, while edges not
in Gσ are gray. π = (v1, v9, v8, v4, v2) is a maximal chain of <σ. (b) A drawing of the subgraph
G(π) of G on a one-sided convex point set. (c) Extending the drawing of G(π). (d) The final
drawing after filling in the faces of G(π).

precedes v in σ, vertex z cannot be the first neighbor. Hence, edge (z, v) cannot be in
Gσ . Similarly, if v precedes u in σ, both v and w precede u, and w <σ v contradicts
the fact that (u,w) is an edge of Gσ .

Lemma 4. If a maximal planar graph G has a canonical ordering σ such that <σ has
a maximal chain π of size k, then G admits a planar straight-line drawing with k of its
vertices placed on any one-sided convex set of size k.

Proof: Consider any one-sided convex point set S of size k. Assume, without loss of
generality up to a rotation of the coordinate system, that such points are ordered based
on their x-coordinate and that the leftmost and the rightmost points are also the bot-
tommost ones. By Lemma 3, the subgraph G(π) of G induced by the vertices of π is
outerplanar. Hence, such a subgraph can be drawn [1] on the points of S in such a way
that the vertices of π are assigned increasing x-coordinates according to the order they
appear on π. Figure 1(a) illustrates a maximal planar graph G, together with the frame
Gσ associated with a partial order <σ of G. Figure 1(b) illustrates a drawing of the
subgraph G(π) of G on a one-sided convex point set.

Further, consider the planar graph G′ obtained from G by removing every vertex
that is internal to some face of G(π). Since G(π) is outerplanar, there exists a canonical
ordering σ′ of the vertices of G′ such that the k vertices of G(π) appear in the first k
positions of σ′, that is, G(π) = G′k. Since the drawing of G(π) = G′k obtained by
placing its vertices on S is such that C′k is an x-monotone chain, such a drawing can be
extended to a planar drawing of G′ by applying an algorithm that is analogous to the
one given by de Fraysseix, et al. [5] to construct polynomial area drawings of planar
graphs. Namely, place each vertex v′j of G′, with j > k, in such a way that G′j is an
x-monotone chain. Note that this is always possible, since vertices v′j , with j > k, do
not need to be placed on prescribed points (neither a point of the prescribed point set
nor an integer grid point, as it happens in [5]). See Fig. 1(c).

Finally, for each face f of G(π), consider the subgraph Gf of G induced by the ver-
tices of f and by the vertices that are internal to f . Then, apply Tutte’s algorithm [19,20]

428 P. Angelini et al.

to construct a planar drawing Γf of Gf such that the outer face of Gf is represented in
Γf by the polygon delimiting f in the drawing of G(π) obtained by placing its vertices
on S. Again, such a drawing can always be constructed since the internal vertices of
Gf do not need to be placed on prescribed points. The final drawing of the graph in
Fig. 1(a) is depicted in Fig. 1(d).

The following theorem follows from Lemmas 2 and 4.

Theorem 1. There exists a set of �
√

n � points that is a universal point subset for
planar graphs with n vertices.

Proof: Let H be any planar graph. By adding edges to H , we obtain a maximal planar
graph G. Let σ be a canonical ordering of G for some planar embedding of G. Let Gσ be
a frame of G and let <σ be the corresponding partial order. By Dilworth’s theorem [6],
there exists in <σ either a chain of �

√
n � vertices or an anti-chain of �

√
n � vertices.

In either case, by Lemma 2 or 4, G admits an embedding-preserving planar straight-
line drawing with k = �

√
n � of its vertices placed on the points of the one-sided

convex point set Uk = {((2n)−ni, (2n)ni) | i ∈ [k]}. Removing the added edges gives
a drawing of H .

3 Universalizing the Size of Universal Point Subsets

Let G be a class of planar graphs. We define F (n,G) as the maximum value such that
every set of F (n,G) points in general position is a universal point subset for the graphs
in G with n vertices. When G coincides with the class of all planar graphs, we simply
denote this value by F (n). In this section we give lower and upper bounds for F (n,G)
for some classes of planar graphs.

3.1 Planar Graphs

When G coincides with the class of all planar graphs, we show that F (5) = 3, F (6) = 4,
and 4 ≤ F (n) ≤ 2�n3 �+ 1 for all the other values of n.

First observe that there exists a set of 4 points in general position that is not a uni-
versal point subset for planar graphs with n = 5 vertices. Indeed, consider the set S of
4 points at the corners of a unit square. The claim follows from the fact that the outer
face of every maximal planar graph with 5 vertices can use at most one point of S, as
otherwise it could not contain all the remaining points of S in its interior. This, together
with the fact that, by Tutte’s theorem [19,20], every set of 3 points in general position
is a universal point subset for planar graphs, implies that F (5) = 3. Then, we consider
planar graphs with n = 6. Again, with the same argument as the one used for n = 5,
we can prove that a set of 5 points composed of the corners of a regular pentagon is not
a universal point subset for all planar graphs of size 6, which means F (6) ≤ 4. In the
following lemma we prove that also this bound is tight (that is, F (6) = 4). First, we
note that all maximal planar graphs with six vertices are those depicted in Fig. 2(a-d).

Lemma 5. F (6) = 4.

Universal Point Subsets for Planar Graphs 429

v1 v2

v6

v4v3

v5

v1 v2

v6

v4v3

v5

v1 v2

v6

v3

v4

v5

v1 v2

v6

v3

v4

v5

s5
s1

s6

s4

s2

s3

v1
v2

v6

v5

v4

v3

(e) (f)

(a) (b) (c) (d)

Fig. 2. (a-d) All maximal six-vertex planar graphs. (e) The common structure used to draw them
on a set of four points in convex position. (f) The corresponding drawing of the graph in (a).

Proof: Let S be a set of 4 points in general position. If S is not in convex position, we
map the vertices of the outer face of G to the three points on the convex hull CH(S)
of S. For all cases of Fig. 2(a-d), the remaining vertices are drawn inside CH(S), by
using the fourth point of S to place one of them.

If the points of S are in convex position, let s1, s2, s3, and s4 be the points of CH(S)
in clockwise order. Let s5 and s6 be points not in S so that triangle s1s5s6 contains
S \ {s1} in its interior; s5 sees s3, s4, s2, and s1 in clockwise order; and s6 sees s3, s4,
s2, and s1 in counterclockwise order. It is straightforward to confirm that such points
exist since S is in convex position. Add segments s1s2, s2s4, s4s3, s5s6, s5s3, s5s2,
s5s1, s6s3, s6s4, and s6s1. See Fig. 2(e). For each case of Fig. 2(a-d), we map the outer
vertices of G to the points s1, s5, s6, we map the internal vertices of G to the points s2,
s3, s4 and we insert the remaining edges of G. As an example, the drawing of the graph
in Fig. 2(a) is shown in Fig. 2(f).

Finally, we consider the general case, namely planar graphs with n > 6 vertices. We
first observe that, by using an argument similar to the one used to prove F (5) ≤ 3 and
F (6) ≤ 4, we can prove that F (n) ≤ n− 2. Indeed, a set of n− 1 points composed of
the corners of a regular (n−1)-gon is not a universal point subset for all maximal planar
graphs of size n, as at most one point in this point set can be used to place vertices of
the outer face. However, as shown in the following theorem, in the general case we can
prove a better upper bound. On the other hand, the lower bound of 4 is obtained by
extending the result for planar graphs with six vertices.

Theorem 2. If n > 6 then 4 ≤ F (n) ≤ 2�n3 �+ 1.

Proof: We first prove the lower bound. Let S be a set of 4 points in general position.
Consider a maximal planar graph G with n ≥ 6 vertices. The proof is by induction on
the number of vertices of G. In the base case G has n = 6 vertices, and the statement
follows from Lemma 5. For n > 6, we can use Read’s algorithm [14] to produce a

430 P. Angelini et al.

straight-line drawing of G given a planar embedding of G. Let u be an internal ver-
tex of G and denote by N(u) the set of neighbors of u. We can have three cases: (i)
if deg(u) = 3, then remove u; (ii) if deg(u) = 4, then let v ∈ N(u) be a vertex
with exactly two neighbors in N(u): remove u and triangulate the quadrilateral face by
adding an edge (v, x) such that x ∈ N(u) and x /∈ N(v); (iii) if deg(u) = 5, then let
v ∈ N(u) be a vertex with exactly two neighbors in N(u): remove u and triangulate
the pentagonal face by adding two edges (v, x) and (v, y) such that x, y ∈ N(u) and
x, y /∈ N(v). Denote by G′ the reduced graph. Note that, by Euler’s formula, G always
contains a vertex of degree 3, 4, or 5. Moreover, G′ and G have the same outer face
and in all the above cases the neighbors of v in G′ that are neighbors of u in G occur
consecutively in clockwise order around v. Since G′ has n − 1 vertices and it is maxi-
mal planar, S is a universal point subset for G′ by induction. Let Γ ′ be an embedding
preserving drawing of G′ that uses the points of S. Consider the cycle C composed by
the vertices that were adjacent to u before its removal. Depending on deg(u), C can be
a triangle, a quadrilateral, or a pentagon. For each of these cases, by construction, there
exists a point p inside C sufficiently close to v on which we can draw u and obtain an
embedding preserving drawing of G [14].

Now we prove the upper bound. Let G be a graph with n > 6 vertices that contains
�n/3� nested triangles. Let S be a set of n− (�n3 � − 2) ≤ 2�n3 � + 2 points in convex
position. All but �n/3� − 2 vertices of G must map to points of S. Thus, there are at
least two nested triangles t1 and t2 of G that have all three vertices mapped on points
of S. However, since S is in convex position, t1 cannot include t2 and vice-versa.

3.2 4-Connected Planar Graphs

Next, we consider the value of F (n,G) when G coincides with the class of 4-connected
planar graphs whose outer face is a 4-cycle. For this class we can prove a stronger lower
bound than for planar graphs, namely F (n,G) ≥ lgn

4 .

Theorem 3. Let G be the class of 4-connected planar graphs whose outer face has size
at least 4. Then, lgn

4 ≤ F (n,G) ≤ n− 2.

Proof: The upper bound comes analogously to F (n) ≤ n − 2 for planar graphs. In
fact, consider a 4-connected planar graph with n > 8 vertices and whose outer face is
a 4-cycle, and consider a point set S composed of the corners of a regular (n− 1)-gon.
Again, at least two points not in S have to be used to place the vertices of the outer face.

We prove the lower bound. Let S be any set of � lgn
4 � points in general position. Let

G be an internally 4-connected plane graph with n vertices and outer face of size at least
4. Thomassen [17] showed that G is the dual of a rectangular subdivision of a rectangle.
Tóth [18] showed that there exists a horizontal or vertical line (called a stabber) that
intersects at least lgn

4 rectangles in this rectangular subdivision. Find such a stabber
that intersects rectangles r1, r2, ..., rk (k ≥ lgn

4). Add points to S to create a set S′

of k points. Choose axes so that no two points of S′ have the same x-coordinate. Let
p1, p2, ..., pk be the points of S′ sorted by x-coordinate. Place the vertex corresponding
to rectangle ri at pi for i ∈ [k]. So S′ supports the x-monotone drawing of a path in
G, and the vertices corresponding to p1 and pk lie on the outer face of G. This path
divides G into two subgraphs G1 and G2, one on each side of the path. So we can use
the construction by de Fraysseix, et al. [5] twice, once for G1 and once for G2.

Universal Point Subsets for Planar Graphs 431

3.3 Nested-Triangles Graphs

Finally, we consider the value of F (n,G) when G coincides with the class of nested-
triangles graphs. We prove that for this class F (n,G) ≥ n

3 , almost matching the upper
bound.

Theorem 4. Let G be the class of nested-triangles graphs. Then, n
3 ≤ F (n,G) ≤

2�n3 �+ 1.

Proof: The upper bound is the same proved in Theorem 2. As for the lower bound, let S
be any set of n

3 points in general position and choose the coordinate axes in such a way
that no two points have the same y-coordinate. Let G be a nested-triangles graph with a
given planar embedding. Let v be a vertex of the triangle t representing the outer face of
G and let p be the point of S having the largest y-coordinate. Map v to p and represent
t as a triangle that encloses all remaining points of S. Remove the outer face of G and
repeat the argument on S \ {p}; at every step, the sides of the triangles that represent
the outer face are drawn parallel to one another in such a way that the inclusion of the
triangular faces is respected and no two edges cross.

4 Final Remarks and Open Problems

We remark that in this paper we assumed the points to be in general position. This is co-
herent with most of the literature in combinatorial and computational geometry, where
geometric graphs (i.e. planar straight line drawings) are defined on point sets in general
position [12]. However, one might also consider point sets allowing collinearities. In
this scenario, some of our results should definitely be reformulated. For example, it is
easy to see that a point set of four collinear points cannot be a universal point subset
for the class of maximal planar graphs with six vertices. For a class G of planar graphs
one could define F (n,G) as the maximum value such that every set of F (n,G) distinct
points, whether it contains collinearities or not, is a universal point subset for the graphs
in G with n vertices, and analogously define F (n) for planar graphs. Note that, allowing
collinearities makes it possible to relate the problem of determining the value of F (n)
with the allocation problem for planar graphs [11,13]. In this problem, the input is an
n-vertex planar graph G and a point set X of size n, possibly with collinearities, and
the goal is to construct a planar drawing Γ of G such that as many vertices of G as
possible are placed in Γ on points of X . In particular, by exploiting this relationship, a
slightly sublinear upper bound can be proved for F (n) via a construction from [13] that
makes heavy use of collinearity.

We conclude with a few open problems that we find particularly interesting. (i) Nar-
row the gaps between the upper and lower bounds of Section 3. (ii) Prove/disprove
a sublinear upper bound for F (n) when points are in general position. (iii) Does the
limn→∞ F (n) = ∞ hold? (iv) Is there any universal subset for the set of all planar
graphs with n vertices that consists of more than �

√
n � points?

Acknowledgments. Work on this problem began at the BICI Workshop on Graph
Drawing, held in Bertinoro, Italy, in March 2012. We thank all the participants for many

432 P. Angelini et al.

fruitful discussions. Research supported in part by the MIUR project “AlgoDEEP” prot.
2008TFBWL4 and by the ESF project 10-EuroGIGA-OP-003 GraDR “Graph Drawings
and Representations”. William Evans is partially supported by NSERC of Canada. Fer-
ran Hurtado is partially supported by projects MICINN MTM2009-07242, Gen. Cat.
DGR2009SGR1040, and ESF EUROCORES programme EuroGIGA, CRP ComPoSe:
MICINN Project EUI-EURC-2011-4306. Yoshio Okamoto is partially supported by
Grand-in-Aid for Scientific Research from Ministry of Education, Science and Culture,
Japan and Japan Society for the Promotion of Science.

References

1. Bose, P.: On embedding an outer-planar graph in a point set. Comp. Geom. 23(3), 303–312
(2002)

2. Bose, P., Dujmovic, V., Hurtado, F., Langerman, S., Morin, P., Wood, D.R.: A polynomial
bound for untangling geometric planar graphs. Discrete & Comp. Geom. 42(4), 570–585
(2009)

3. Brandenburg, F.-J.: Drawing planar graphs on 8
9
n2 area. Electronic Notes in Discrete Math-

ematics 31, 37–40 (2008)
4. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard.

J. Graph Algor. and Applic. 10(2), 353–363 (2006)
5. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinator-

ica 10(1), 41–51 (1990)
6. Dilworth, R.: A decomposition theorem for partially ordered sets. Annals of Mathemat-

ics 51(1), 161–166 (1950)
7. Fáry, I.: On straight-line representation of planar graphs. Acta Sci. Math. (Szeged) 11, 229–

233 (1948)
8. Goodman, J.E., Pollack, R.: Allowable sequences and order types in discrete and computa-

tional geometry. In: New Trends in Discrete and Comp. Geom., pp. 103–134 (1993)
9. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with ver-

tices at specified points. Amer. Math. Monthly 98(2), 165–166 (1991)
10. Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex

planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)
11. Olaverri, A.G., Hurtado, F., Huemer, C., Tejel, J., Valtr, P.: On triconnected and cubic plane

graphs on given point sets. Comput. Geom. 42(9), 913–922 (2009)
12. Pach, J., Agarwal, P.K.: Geometric graphs. In: Comb. Geom., pp. 223–239. Wiley (1995)
13. Ravsky, A., Verbitsky, O.: On Collinear Sets in Straight-Line Drawings. In: Kolman, P., Kra-

tochvı́l, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 295–306. Springer, Heidelberg (2011)
14. Read, R.: A new method for drawing a planar graph given the cyclic order of the edges at

each vertex. Congressus Numeration 56, 31–44 (1987)
15. Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) SODA, pp. 138–

148. SIAM (1990)
16. Stein, S.K.: Convex maps. Proc. of the Amer. Math. Society 2(3), 464–466 (1951)
17. Thomassen, C.: Interval representations of planar graphs. J. of Comb. Theory, Series B 40(1),

9–20 (1986)
18. Tóth, C.D.: Axis-aligned subdivisions with low stabbing numbers. SIAM J. Discrete

Math. 22(3), 1187–1204 (2008)
19. Tutte, W.T.: Convex representations of graphs. Proc. London Math. Soc. 10, 304–320 (1960)
20. Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 13, 743–768 (1963)
21. Wagner, K.: Bemerkungen zum vierfarbenproblem. Jahresbericht. German. Math.-

Verein. 46, 26–32 (1936)

Abstract Flows over Time: A First Step

towards Solving Dynamic Packing Problems

Jan-Philipp W. Kappmeier, Jannik Matuschke, and Britta Peis

TU Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany
{kappmeier,matuschke,peis}@math.tu-berlin.de

Abstract. Flows over time [4] generalize classical network flows by in-
troducing a notion of time. Each arc is equipped with a transit time that
specifies how long flow takes to traverse it, while flow rates may vary
over time within the given edge capacities. In this paper, we extend this
concept of a dynamic optimization problem to the more general setting
of abstract flows [8]. In this model, the underlying network is replaced by
an abstract system of linearly ordered sets, called “paths” satisfying a
simple switching property: Whenever two paths P and Q intersect, there
must be another path that is contained in the beginning of P and the
end of Q.

We show that a maximum abstract flow over time can be obtained
by solving a weighted abstract flow problem and constructing a tempo-
rally repeated flow from its solution. In the course of the proof, we also
show that the relatively modest switching property of abstract networks
already captures many essential properties of classical networks.

1 Introduction

Time plays a crucial role in many applications of combinatorial optimization,
e.g., in the context of transportation, communication, or productional planning.
Therefore, extending classical problem formulations by a temporal dimension is
of particular interest. So far the most prominent example in this direction is the
concept of flows over time – also called “dynamic flows” in the literature – which
was first introduced and investigated by Ford and Fulkerson [4]. A key challenge
in the context of flows over time is that an explicit specification of all flow
values at each time step leads to an output that is exponential in the input size.
Ford and Fulkerson resolved this issue by showing that the maximum flow over
time problem allows for a so-called temporally repeated solution, which can be
obtained by solving a single static flow problem. Since then, numerous results on
different variants of flow over time problems have emerged. Outstanding results
include [2,10,12], see [16] for a general survey.

Network flows can be interpreted as a special case of packing problems: we try
to pack the capacitated edges of the graph by assigning flow values to the source-
sink-paths. Given the impact of Ford and Fulkerson’s result, which spawned a
whole theory of flows over time, one now might ask how the concept of time can

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 433–443, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

434 J.-P.W. Kappmeier, J. Matuschke, and B. Peis

be extended to other packing problems. A first natural candidate are general-
izations of static network flows, as, e.g., abstract flows. The notion of abstract
flows goes back to Hoffman [8], who observed that Ford and Fulkerson’s original
proof of the max flow/min cut theorem [3] does not use the underlying network
structure directly but only exploits one particular property of the path system,
the so-called switching property. Hoffman succeeded in showing that packing
problems defined on general set systems (called abstract networks) with this
switching property are totally dual integral (TDI). These structural results were
later complemented by the combinatorial primal-dual algorithms of Martens and
McCormick [14,13]. Inspired by Hoffman’s work, further abstractions based on
uncrossing axioms have been proposed and corresponding TDI results have been
established, e.g., lattice polyhedra [9] or switchdec polyhedra [5], see [15] for a
survey. In light of these generalizations, abstract flows appear to serve as an ideal
first stepstone in our endeavour towards dynamic formulations of more general
packing integer programs.

Our Contribution. In this paper, we introduce and investigate abstract flows
over time and show how a temporally repeated abstract flow and a corresponding
minimum cut can be computed by solving a single static weighted abstract flow
problem. This immediately leads to the max flow/min cut theorem for abstract
flows over time as our main result. Although our construction resembles that
of Ford and Fulkerson’s original result [4] on (non-abstract) flows over time,
the proof turns out to be considerably more involved and we will need to take
a detour via a relaxed version of abstract flows over time that also considers
storage of flow at intermediate elements. However, our results also imply that
this relaxation is not proper and there always is an optimal solution that does
not wait at intermediate nodes. In the course of our proof, we also establish
some interesting structural properties of abstract networks, showing that the
relatively modest switching property of abstract path systems already captures
many essential properties of classical networks.

Structure of This Paper. In the remainder of this section, we introduce Hoff-
man’s model of abstract flows in detail. In Section 2, we show how to conduct
a time expansion on this model and point out differences to the time expanded
network for classical network flows by Ford and Fulkerson [4]. In Section 3, we
will show how to construct the temporally repeated abstract flow and a corre-
sponding minimum abstract cut of same value. In order to validate feasibility
of this cut, we will prove the necessary properties on the structure of abstract
networks in Section 4. Using these results, we can finally show in Section 5 that
the cut actually intersects all temporal paths, completing the proof of our main
theorem.

Introduction to Abstract Flows

An abstract path system consists of a ground set E of elements and a family
of paths P ⊆ 2E . For every P ∈ P there is an order <P of the elements in P .

Abstract Flows over Time 435

A path system is an abstract network, if the switching property is fulfilled: For
every P,Q ∈ P and every e ∈ P ∩Q, there is a path

P ×e Q ⊆ {p ∈ P : p ≤P e} ∪ {q ∈ Q : q ≥Q e}.

For the sake of convenience, we define [P, e] := {p ∈ P : p ≤P e}, [e, P] := {p ∈
P : p ≥P e}, (P, e) := {p ∈ P : p <P e}, and (e, P) := {p ∈ P : p >P e}.

Given an abstract network with capacities c ∈ RE
+ for all elements, the maxi-

mum abstract flow problem asks for an assignment of flow values x ∈ RP+ to the
paths such as to maximize the total flow value while not violating the capacity
of any element. The problem can be generalized further by introducing a weight
function r ∈ RP+ that specifies the “reward” per unit of flow sent along each
path. It is easy to see that allowing general weight functions renders the prob-
lem NP -hard. Thus, the choice of weight functions is restricted to supermodular
functions, i.e., we require r(P×eQ)+r(Q×eP) ≥ r(P)+r(Q) for every P,Q ∈ P
and e ∈ P ∩Q.

The dual of the maximum weighted abstract flow problem is the minimum
weighted abstract cut problem, which assigns a value y(e) to every element e ∈ E
so as to cover every path according to its weight. The two problems can be stated
as follows.

max
∑
P∈P

r(P)x(P)

s.t.
∑

P∈P:e∈P
x(P) ≤ c(e) ∀e ∈ E

x(P) ≥ 0 ∀P ∈ P

min
∑
e∈E

c(e)y(e)

s.t.
∑
e∈P

y(e) ≥ r(P) ∀P ∈ P

y(e) ≥ 0 ∀e ∈ E

Hoffman [8] showed that for every integral supermodular weight function, the
abstract cut LP is totally dual integral. This implies a generalized version of
Ford and Fulkerson’s max flow/min cut result in two ways: On the one hand,
the switching property represents a significant abstraction, allowing for more
general structures. On the other hand, supermodular weight functions lead to
weighted cuts, i.e., elements can appear multiple times in the cut. We will later
see a useful example of such weights in the context of temporally repeated flows,
which also yields an intuitive interpretation of these cut values.

Hoffman’s structural result was extended by McCormick [14], who presented a
combinatorial algorithm that solves the unweighted version (r ≡ 1) of the max-
imum abstract flow problem in time polynomial in |E|, if the abstract network
is given by a separation oracle for the abstract cut LP (in the unweighted case,
this is equivalent to deciding whether a given set of elements contains a path or
not). Later, Martens and McCormick [13] extended this result and presented an
algorithm that also solves the weighted case.

While these results indicate that the switching property is the essential force
behind max flow/min cut and similar total dual integrality results for flow based
problems, we want to close this section by pointing out an example that shows
how abstract networks actually may differ from classical networks. In classical

436 J.-P.W. Kappmeier, J. Matuschke, and B. Peis

networks, if two paths P and Q both intersect a third path R, then there either
is a path from the beginning of P to the end of Q or the other way around. The
following example shows that this is not true in abstract networks, even in cases
where the switching property preserves the order of intersecting abstract paths.

Example. Consider the abstract network (E,P) with E = {1, 2, 3, 4, a, b, c, d}
and P = {(1, 2, 3, 4), (a, 2, c), (b, 3, d), (1, c), (1, d), (a, 4), (b, 4)}. Although both
(a, 2, c) and (b, 3, d) intersect the path (1, 2, 3, 4), there is neither a path that
starts with a and ends with d nor one that starts with b and ends with c.

2 Time Expansion of Abstract Networks

Time plays an important role in many application areas of network flows. Flow
rates can vary over time, and flow also takes time to travel within the network.
One concept to capture these temporal effects is the so-called time expanded
network introduced by Ford and Fulkerson [4]. The basic idea is to introduce
multiple copies of the nodes in the network, one for each point in time. Then
arcs connect copies of vertices according to their travel time. We extend this
concept to the world of abstract flows by introducing the time expansion of an
abstract network. In the spirit of Ford and Fulkerson’s idea, we will introduce
multiple copies of the abstract network. In contrast to the classical case however,
not copies of individual arcs but of whole paths will be introduced.

The time expansion of an abstract network consists of a (static) abstract
network with capacities c ∈ RE

+, transit times τ ∈ ZE
+ and a time horizon

T ∈ Z+. The time from 0 to T is discretized into T intervals [0, 1), . . . , [T − 1, T)
which we identify with the set of their starting times T := {0, . . . , T − 1}. For
each interval, a copy of the ground set E is introduced, i.e., the time expanded
ground set is ET := E × T .

A temporal path is denoted by Pt, where P is a path of the underlying static
abstract network and t ∈ T specifies the starting time of the path. Flow sent
along the temporal path Pt enters element e at time t +

∑
p∈(P,e) τ(e), which is

the time it needs for traversing all preceeding elements plus the initial offset of
the path. Accordingly, we identify Pt with the set of its temporal elemtents by
defining

Pt :=
{
(e, θ) ∈ ET : e ∈ P, θ = t+

∑
p∈(P,e) τ(p)

}
.

The arrival time of the temporal path Pt is t +
∑

e∈P τ(e), i.e., the time at
which the flow arrives the end of the path. Since all flow is supposed to arrive
its destination within the time horizon, we only allow copies of paths with a
maximum arrival time of T − 1, which is the final element of T . Thus, the set
of temporal paths is defined by

PT :=
{
Pt : P ∈ P , t ∈ T , t+

∑
p∈P τ(p) < T

}
.

We now can define the maximum abstract flow over time problem in analogy to
the (static) maximum abstract flow problem. An abstract flow over time is an

Abstract Flows over Time 437

assignment x : PT → R+ of non-negative flow values to all temporal paths. It
is feasible if and only if the capacity of every element at every point in time is
respected. The maximum abstract flow over time problem asks for an abstract
flow over time that maximizes the total value of the flow:

max
∑

Pt∈PT

x(Pt)

s.t.
∑

Pt∈PT : (e,θ)∈Pt

x(Pt) ≤ c(e) ∀e ∈ E, θ ∈ T

x(Pt) ≥ 0 ∀Pt ∈ PT .

In analogy to the static case, the maximum value of an abstract flow over time
can be bounded by an abstract cut over time, i.e., a subset C ⊆ ET of the time
expanded ground set such that for each Pt ∈ PT the set Pt ∩ C is nonempty. It
is not hard to observe that the sum of capacities of the elements in such a cut
is an upper bound on the value of a flow over time (see [11] for a formal proof).

Lemma 1. Let x be an abstract flow over time and let C be an abstract cut over
time. Then

∑
Pt∈PT

x(Pt) ≤
∑

(e,θ)∈C c(e).

Remark. (Time expansion of an abstract network vs. time expanded network)
While the time expansion of abstract networks as defined above is similar to the
notion of a time expanded network as defined by Ford and Fulkerson [4] for clas-
sical network flows, the two definitions are not quite identical. Time expanded
networks are based on the arc formulation of network flows. They are constructed
by introducing copies of both the nodes and arcs of the underlying static net-
work and adjusting the end points of the arcs according to their transit times.
By construction, the resulting structure is guaranteed to be a network again.
Unfortunately, there is no correspondence to the arc formulation for abstract
flows – their definition is inherently tied to the path system, which does not
allow for local concepts such as flow conservation at a particular element. Our
model of time expansion therefore introduces copies of each path as a whole. In
contrast to time expanded networks, the time expansion of an abstract network
is not an abstract network in general, as can be seen in the following example.

Example. Let E = {s, a, b, t} and P = {P,Q,R, S} with P = (s, a, b, t), Q =
(s, b, a, t), R = (s, a, t), and S = (a, b, t). It is easy to verify that P in fact fulfills
the switching property. Now assume all elements have unit transit times, i.e.,
τ ≡ 1. The temporal paths P0 and Q1 intersect in the element (b, 2). However,
there is no temporal path in PT that can be constructed from the elements
{(s, 1), (b, 2), (t, 4)}, as there is a “time gap” between (b, 2) and (t, 4). Thus, the
time expansion violates the switching property.

In view of this example, it is not even clear whether max flow/min cut results are
still valid in the context of abstract flows over time or how far existing algorithms
for abstract flow problems can be applied to the time expansion of the abstract
network. Fortunately, the proof of our main result in the following sections will
dissipate these concerns.

438 J.-P.W. Kappmeier, J. Matuschke, and B. Peis

Theorem 2 (Abstract max flow/min cut over time). The value of a max-
imum abstract flow over time equals the capacity of a minimum abstract cut over
time. Both a maximum flow and a minimum cut over time can be computed by
solving a single (static) maximum weighted abstract flow problem.

Our proof of Theorem 2 involves constructing an abstract cut over time. In order
to show feasibility of this cut, we will have to introduce the possibility of waiting
at intermediate elements as an important device in our proof (see Section 4).
Storage of flow at intermediate nodes plays an interesting role in the field of
flows over time: While in some settings, such as the maximum flow over time
problem or the NP-hard minimum cost flow over time problem, there always
exist optimal solutions that do not wait at intermediate nodes [4,1], this is not
true in other settings: e.g., for multi-commodity flows over time, the decision
of allowing flow storage at intermediate nodes has an influence on the value of
the solution and also on the complexity [7,6]. In the context of abstract flows
over time, our results imply that the possibility of waiting has no influence on
the problem, as we prove in Section 5 that the temporally repeated solution
constructed in Section 3 is optimal even if waiting is allowed.

Theorem 3. If waiting at intermediate elements is allowed, there still is a max-
imum abstract flow over time that does not wait at intermediate elements.

3 Constructing a Maximum Abstract Flow over Time

The number of paths created by applying the time expansion is linear in T
and thus exponential in the size of the input. Hence, even encoding a solution
in the straightforward way results in an exponentially sized output. Ford and
Fulkerson [4] resolved this problem for the classical (non-abstract) flow over time
problem by introducing so-called temporally repeated flows, i.e., a flow over time
constructed by temporally repeating a static flow pattern.

A temporally repeated abstract flow is an abstract flow over time x that is
constructed from a static abstract flow x̃ by setting x(Pt) := x̃(P) for P ∈
P and 0 ≤ t < T −

∑
e∈P τ(e). In other words, the static flow on each path is

repeatedly sent as long as possible before the time horizon is reached. It is easy
to check that feasibility of the underlying static flow implies feasibility of the
temporally repeated flow (see [11] for a formal proof).

Lemma 4. A temporally repeated abstract flow derived from a feasible abstract
flow is a feasible abstract flow over time.

In order to construct a maximum temporally repeated abstract flow, we first
observe that flow can be sent along path P ∈ P up to time r(P) := T −∑

e∈P τ(e), i.e., the flow value x̃(P) is repeated r(P) times. Thus, the total
flow value of the temporally repeated flow x resulting from the static flow x̃
is
∑

P∈P r(P)x̃(P) and a maximum temporally repeated flow corresponds to a
static abstract flow that is maximum with respect to the weights r(P). It is not
hard to see that the weight function defined in this way is supermodular (see
[11] for a formal proof).

Abstract Flows over Time 439

Observation 5. The weight function r(P) := T −
∑

e∈P τ(e) is supermodular.

Thus, we can solve the weighted abstract flow problem defined by these weights
using the algorithm from [13], yielding a (static) abstract flow x̃∗ of maximum
weight and the corresponding temporally repeated flow x∗. We will show that
the value of x∗ is not only maximum among the temporally repeated abstract
flows but also among all abstract flows over time. To this end, we now construct
an abstract cut over time whose capacity matches the flow value of x∗. Let ỹ
be an optimal solution to the dual of the static weighted abstract flow problem
with the weights r(P) used to construct the temporally repeated flow. Note that
by [8], we can assume ỹ to be integral. We will interpret the values ỹ(e) as the
number of time steps for which element e is contained in the cut. We define the
time at which e ∈ E enters the cut by setting

α(e) := minP∈P
∑

e∈P (τ(e) + ỹ(e))

and define
C := {(e, θ) ∈ ET : α(e) ≤ θ < α(e) + ỹ(e)} .

Theorem 6. C is a feasible abstract cut over time.

The proof of Theorem 6 involves some additional results on the structure of
abstract networks, which we will elaborate on in the following sections. Using LP
duality, Theorem 6 immediately leads to the following corollary, which implies
Theorem 2 (see [11] for a formal proof).

Corollary 7. The temporally repeated abstract flow x∗ is a maximum abstract
flow over time, and C is a minimum abstract cut over time whose capacity is
equal to the flow value.

4 Waiting at Intermediate Elements and the Structure of
Abstract Networks

In order to prove that the set C constructed in the preceeding section actually
covers all temporal paths, we need to show that we can ensure w.l.o.g. that the
switching operation ×· preserves the order of the intersecting paths. We start by
showing a weaker version of this statement, asserting that we can always choose
the path resulting from an application of ×· in such a way that the two subpaths
used for its construction are not mixed.

Lemma 8. Let P,Q ∈ P, e ∈ P ∩Q, then there is a path R ⊆ [P, e]∪ [e,Q] such
that a ∈ R ∩ [P, e] and b ∈ R \ [P, e] implies a <R b.

Proof. Let P,Q ∈ P and e ∈ P ∩Q. Let R to be a path contained in [P, e]∪ [e,Q]
such that |R \ [P, e]| is minimal. By contradiction assume there is a ∈ R ∩ [P, e]
and b ∈ R\ [P, e] with b <R a. Let R′ := P ×aR. Observe that R′ ⊂ [P, e]∪ [e,Q]
and R′ \ [P, e] ⊂ R \ [P, e] as a /∈ R′, contradicting the choice of R. ��

440 J.-P.W. Kappmeier, J. Matuschke, and B. Peis

As a result of Lemma 8, the following assumption is without loss of generality.

Assumption A. If a ∈ P ×e Q∩ [P, e] and b ∈ P ×e Q \ [P, e], then a <P×eQ b.

In order to show that ×· actually preserves the internal order of P and Q, we
will – temporally – extend our model of time expansion by allowing flow to
deliberately delay its traversal at intermediate elements.

Waitingat IntermediateElements. A temporal pathwith intermediatewaiting
is denoted by Pσ, where P ∈ P is a path of the underlying static abstract network
and σ : P → T specifies the waiting time σ(e) before traversing element e ∈ P .
Flow sent along Pσ enters element e at time γ(Pσ, e) :=

∑
p∈(P,e)(σ(p) + τ(p)) +

σ(e) which is the time it needs for traversing all preceeding elements and the time
it spends waiting at those elements and at e itself. Accordingly, we identify Pσ with
the set of its temporal elemtents by defining

Pσ := {(e, θ) ∈ ET : e ∈ P, θ = γ(Pσ, e)} .

The set of all temporal paths with intermediate waiting is denoted by

P∗T :=
{
Pσ : P ∈ P , σ ∈ T P ,

∑
e∈P (σ(e) + τ(e)) < T

}
.

We will identify Pt ∈ PT with P(t,0,...,0) ∈ P∗T . Note that the maximum abstract
flow over time problem with waiting at intermediate elements is a relaxation
of the maximum abstract flow over time without waiting, and the temporally
repeated abstract flow x∗ defined in Section 3 is a feasible solution to this re-
laxation. We will show that C actually covers all paths in P∗T , and thus x∗ is
optimal even if waiting is allowed. This implies that the relaxation is not proper,
i.e., the possibility of waiting does not have any effect on the value of the optimal
solution.

However, the extension of the model allows us to delete certain paths from
the network. Observe that if Q is a strict subset of P , and <Q is identical
to the restriction of <P to Q, then there always is an optimal abstract flow
over time that does not use any copy of P (since it can wait at intermediate
elements and use Q instead). Thus we can safely erase P from the base network
in this case (without violating the switching axiom as Q can always replace P
as switching choice). Hence, if we allow waiting at intermediate elements, the
following assumption is without loss of generality.

Assumption B. If Q ⊂ P then there are a, b ∈ Q with a <P b and b <Q a.

In the remainder of this section, we will show that Assumption B implies the
following lemma. As a corollary, we can assume w.l.o.g. the switching operation
to preserve order (see [11] for a proof of the corollary).

Lemma 9. There are no paths P,Q ∈ P such that Q ⊂ P .

Corollary 10. Let R := P ×e Q. If a, b ∈ R ∩ [P, e] and a <P b then a <R b. If
a, b ∈ R \ [P, e] and a <Q b then a <R b.

Abstract Flows over Time 441

Proof of Lemma 9. By contradiction assume there are P,Q ∈ P with Q ⊂ P .
Let P ∗ be such that |P ∗| is minimal among all possible choices of such a P .

For Q ⊂ P ∗ define b(Q) ∈ Q to be the maximal element w.r.t. <Q such
that p <P∗ b(Q) for all p ∈ (Q, b(Q)), i.e., until element b(Q) the order of Q is
identical to that of P . By Assumption B, b(Q) cannot be the last element of Q.
So let a(Q) ∈ Q be the successor of b(Q) in Q. Note that this implies a <P∗ b by
definition of b(Q). Among all paths Q ⊂ P ∗, choose Q∗ such that b∗ := b(Q∗) is
maximal w.r.t. <P∗ . Let a∗ := a(Q∗).

Let R := Q∗ ×b∗ P ∗. Note that a∗ /∈ R, as a∗ >Q∗ b∗, and therefore R ⊂ P ∗.
We now claim that <R is identical to <Q∗ on the (Q∗, b∗)-part of R.

Claim. For all c, d ∈ R ∩ (Q∗, b∗) with c <Q∗ d, we have c <R d.

Proof. If c <Q∗ d but d <R c, let R′ := R ×d Q∗. Note that c /∈ R′ and by
Assumption A, we have chosen R such that [R, d] ⊂ Q∗. Thus R′ ⊂ Q∗ ⊂ P ∗

which contradicts the choice of P ∗. ��
By definition of b(Q∗), the order <Q∗ is identical to <P∗ on (Q∗, b∗) and thus <R

is identical to <P∗ on the (Q∗, b∗)-part of R. This implies that a(R), b(R) cannot
be both in the (Q∗, b∗)-part of R. Thus, a(R) ∈ [b∗, P ∗], which by a(R) <P∗ b(R)
implies that b(R) ∈ (b∗, P ∗). However this means b(R) >P∗ b∗ contradicting our
choice of Q∗ maximizing b∗. ��

5 Proof of Theorem 6

We will show that C not only covers all paths in PT but even those paths that
use waiting at intermediate elements, implying optimality of the constructed
temporally repeated abstract flow for the relaxation of the problem. We are thus
allowed to use the results from Section 4 in the proof, which is only sketched
here (a complete proof can be found in [11]).

Theorem 6a. C ∩ Pσ �= ∅ for every Pσ ∈ P∗T .
Proof (sketch). By contradiction assume there is a path that is not covered by
C. Among all uncovered paths choose Pσ ∈ PT such that

∑
e∈P (τ(e) + ỹ(e)) is

minimal. We will show that there is an uncovered path R whose length is strictly
shorter, yielding a contradiction.

Let ē ∈ P be maximal w.r.t. <P among all elements on P with γ(Pσ, ē) ≥ α(ē)
By multiple careful applications of the switching operation, we can show that
α(ē) <

∑
e∈(P,ē)(τ(e) + ỹ(e)).

Now let Q ∈ P be a path with
∑

e∈(Q,ē)(τ(e) + ỹ(e)) = α(ē). We consider

the path R := Q ×ē P . Let t :=
∑

e∈[Q,ē] ỹ(e) +
∑

e∈[Q,ē]\R τ(e). Our results
from Section 4 ensure that R inherited its internal order from Q and P . Thus,
our choice of t guarantees that Rt arrives at elements from [Q, ē] after they left
the cut, but arrives at the elements from (ē, P) before they enter the cut. This
implies that Rt is not covered by C. However, observe that∑

e∈R(τ(e) + ỹ(e)) ≤ α(ē) +
∑

e∈(ē,P)(τ(e) + ỹ(e)) <
∑

e∈P (τ(e) + ỹ(e)),

contradicting the choice of P . ��

442 J.-P.W. Kappmeier, J. Matuschke, and B. Peis

6 Conclusion

We presented abstract flows over time, an extension of flows over time that can
be viewed as a first approach towards more general dynamic packing IPs. Our
main result shows that the max flow/min cut result of Ford and Fulkerson still
is valid in Hoffman’s setting of abstract flows, emphasizing the robustness of the
concept. At their heart, our proofs relied exclusively on the switching axiom for
abstract networks, showing how this abstraction actually captures the essence
of total dual integrality in network-based packing problems.

Acknowledgements. This work was supported by Deutsche Forschungsge-
meinschaft (DFG) as part of the Priority Program “Algorithm Engineering”
(1307), by DFG Research Center Matheon “Mathematics for key technologies”
in Berlin, and the Berlin Mathematical School.

References

1. Fleischer, L., Skutella, M.: Minimum cost flows over time without intermediate
storage. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 66–75 (2003)

2. Fleischer, L., Tardos, E.: Efficient continuous-time dynamic network flow algo-
rithms. Operations Research Letters 23(3-5), 71–80 (1998)

3. Ford, L., Fulkerson, D.: Maximal flow through a network (1954)
4. Ford, L., Fulkerson, D.: Flows in networks. Princeton University Press (1962)
5. Gaillard, A.: Switchdec polyhedra. Discrete Appl. Math. 76(1), 141–163 (1997)
6. Groß, M., Skutella, M.: Maximum Multicommodity Flows over Time without Inter-

mediate Storage. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501,
pp. 539–550. Springer, Heidelberg (2012)

7. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: Efficient algo-
rithms and complexity. Theoretical Computer Science 379(3), 387–404 (2007)

8. Hoffman, A.: A generalization of max flow-min cut. Mathematical Program-
ming 6(1), 352–359 (1974)

9. Hoffman, A., Schwartz, D.: On lattice polyhedra. In: Proceedings of the 5th
Hungarian Coll. on Combinatorics, pp. 593–598. North Holland (1978)

10. Hoppe, B., Tardos, E.: The quickest transshipment problem. Mathematics of Op-
erations Research 25(1), 36–62 (2000)

11. Kappmeier, J.-P., Matuschke, J., Peis, B.: Abstract flows over time: A first step
towards solving dynamic packing problems. Preprint 001-2012, TU Berlin

12. Klinz, B., Woeginger, G.: Minimum-cost dynamic flows: The series-parallel case.
Networks 43(3), 153–162 (2004)

13. Martens, M., McCormick, S.T.: A Polynomial Algorithm for Weighted Abstract
Flow. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035,
pp. 97–111. Springer, Heidelberg (2008)

Abstract Flows over Time 443

14. McCormick, S.T.: A polynomial algorithm for abstract maximum flow. In: Pro-
ceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 490–497 (1996)

15. Schrijver, A.: Total dual integrality from directed graphs, crossing families and sub-
and supermodular functions. Progress in combinatorial optimization, pp. 315–361
(1984)

16. Skutella, M.: An introduction to network flows over time. In: Research Trends in
Combinatorial Optimization, pp. 451–482 (2009)

Extending Partial Representations

of Subclasses of Chordal Graphs

Pavel Klav́ık1,�, Jan Kratochv́ıl1,�, Yota Otachi2, and Toshiki Saitoh3

1 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Malostranské náměst́ı 25, 118 00 Prague, Czech Republic

{klavik,honza}@kam.mff.cuni.cz
2 School of Information Science, Japan Advanced Institute of Science and

Technology. Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
otachi@jaist.ac.jp

3 Graduate School of Engineering, Kobe University, Rokkodai 1-1,
Nada, Kobe, 657-8501, Japan
saitoh@eedept.kobe-u.ac.jp

Abstract. Chordal graphs are intersection graphs of subtrees in a tree.
We investigate complexity of the partial representation extension prob-
lem for chordal graphs. A partial representation specifies a tree T ′ and
some pre-drawn subtrees. It asks whether it is possible to construct a
representation inside a modified tree T which extends the partial repre-
sentation (keeps the pre-drawn subtrees unchanged).

We consider four modifications of T ′ and get vastly different problems.
In some cases, the problem is interesting even if just T ′ is given and no
subtree is pre-drawn. Also, we consider three well-known subclasses of
chordal graphs: Proper interval graphs, interval graphs and path graphs.
We give an almost complete complexity characterization.

In addition, we study parametrized complexity by the number of pre-
drawn subtrees, the number of components and the size of the tree T ′.
We describe an interesting relation with integer partition problems. The
problem 3-Partition is used in theNP-completeness reductions. TheBin-

Packingproblem is closely related to the extension of interval graphswhen
space in T ′ is limited, and we obtain “equivalency” with BinPacking.

1 Introduction

Geometric representations of graphs and graph drawing are well-studied topics
in graph theory. We study intersection representations of graphs where the goal
is to assign geometrical objects to the vertices of the graph and encode edges by
intersections of the objects. An intersection-defined class restricts the geometrical
objects and contains all graphs representable by these restricted objects; for
example, interval graphs are intersection graphs of closed intervals of the real
line. Intersection-defined classes have many interesting properties and appear
naturally in numerous applications; for details see for example [8].

For a fixed class, its recognition problem asks whether an input graph belongs
to this class; in other words, whether it has an intersection representation of this

� Supported by ESF Eurogiga project GraDR as GAČR GIG/11/E023.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 444–454, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Extending Partial Representations of Subclasses of Chordal Graphs 445

c
a

b

d e

f g

Ra

Rb Rc

Rd

Re

Rf

Rg

T

Fig. 1. An example of a chordal graph with one of its representations

class. The complexity of recognition is for many classes well-understood; for
example interval graphs can be recognized in linear-time [2,4].

A recent paper [12] introduced the following new problem called partial repre-
sentation extension. Given a graph and a partial representation (a representation
of an induced subgraph), it asks whether it is possible to extend this represen-
tation to the entire graph. This problems falls into the paradigm of extending
partial solutions, an approach that has been studied frequently in other circum-
stances. Often it proves to be much harder than building a solution from scratch,
for example for graph coloring. Surprisingly, a very natural problem of partial
representation extension was only considered recently.

The paper [12] gives an O(n2)-algorithm for interval graphs and an O(nm)-
algorithm for proper interval graphs. Also, several other papers consider this
problem. Interval graphs can be extended in time O(n+m) [1]; proper interval
graphs in time O(n + m) and unit interval graphs in time O(n2) [11]; function
and permutation graphs in polynomial time [10].

In this paper, we follow this recent trend and investigate the complexity of par-
tial representation extension for chordal graphs. Our mostly negative results are
interesting since chordal graphs are the first class for which the partial represen-
tation problem becomes harder than the original recognition problem. Also, we
investigate three well-known subclasses proper interval graphs, interval graphs
and path graphs, for which the complexity results are more rich. We believe
that better understanding of these simpler cases will give tools to attack chordal
graphs and beyond (for example, from the point of parametrized complexity).

1.1 Chordal Graphs and Their Subclasses

A graph is chordal if it does not contain an induced cycle of the length four or
more, i.e., each “long” cycle is triangulated. The class of chordal graphs, denoted
by CHOR, is well-studied and has many wonderful properties. Chordal graphs are
closed under induced subgraphs and admit so-called perfect elimination schemes,
closely related to optimal ways for Gaussian elimination for sparse matrices.
Chordal graphs are perfect and many hard combinatorial problems are easy to
solve on chordal graphs: maximum clique, maximum independent set, k-coloring,
etc. Chordal graphs can be recognized in time O(n + m) [14].

Chordal graphs have the following intersection representations [7]. For every
chordal graph G there exists a tree T and a collection {Rv : v ∈ V (G)} of
subtrees of T such that Ru ∩Rv �= ∅ if and only if uv ∈ E(G). For an example
of a chordal graph and one of its intersection representations, see Figure 1.

446 P. Klav́ık et al.

When chordal graphs are viewed as subtrees-in-tree graphs, it is natural to con-
sider two other possibilities: subpaths-in-path which gives interval graphs (INT),
and subpaths-in-tree which gives path graphs (PATH). For example the graph in
Figure 1 is a path graph but not an interval graph. This subpaths-in-path rep-
resentations of interval graphs can be viewed as a discretizations of the real-line
representations. Interval graphs can be recognized in time O(n+m) [2] and path
graphs in time O(nm) [15].

In addition, we consider proper interval graphs (PINT). An interval graphs
is a proper interval graph if it has a representation R for which Ru ⊆ Rv

implies Ru = Rv; so no interval is a proper subset of another. From point of
our results, PINT behaves very similar to INT, but there are subtle differences
which we consider interesting. Also, partial representation extension of PINT
is surprisingly very closely related to partial representation extension of unit
interval graphs considered in [11]; in details discussed below. Proper interval
graphs can be recognized in time O(n + m) [13,3].

1.2 Partial Representation Extension

For a class C, we denote the recognition problem by Recog(C). For an in-
put graph G, it asks whether it belongs to C, and moreover we may certify it
by a representation. The partial representation extension problem denoted by
RepExt(C) asks whether a part of the representation given by the input can be
extended to a representation of the whole graph.

A partial representation R′ of G is a representation of an induced subgraph
G′. The vertices of G′ are called pre-drawn. A representation R extends R′ if
Rv = R′v for every v ∈ V (G′). The meta-problem we deal with is the following.

Problem: RepExt(C) (Partial Representation Extension of C)
Input: A graph G with a partial representation R′.

Output: Does G have a representation R that extends R′?

In this paper, we study complexity of the partial representation extension prob-
lems for CHOR, PATH and INT in the setting of subtree-representations. Here the
partial representation R′ fixes subtrees belonging to G′ and also specifies some
tree T ′ in which these subtrees are placed. The representation R is placed in a
tree T which is created by some modification of T ′. We consider four possible
modifications and get different extension problems:

– Fixed – the tree can not be modified at all, T = T ′.

– Sub – the tree can only be subdivided; T is a subdivision of T ′.1

– Add – we can add branches to the tree; T ′ is a subgraph of T .

– Both – we can both add branches and subdivide; a subgraph of T is a
subdivision of T ′, or in other words T ′ is a topological minor of T .

1 Let an edge xy ∈ E(T ′) be subdivided (with a vertex z added in the middle). Then
also pre-drawn subtrees containing both x and y are modified and contain z as well.
So technically in the case of subdivision, it is not true that R′

u = Ru for every
pre-drawn interval but from the topological point of view the partial representation
is extended.

Extending Partial Representations of Subclasses of Chordal Graphs 447

We denote the problems by RepExt(C, type). Constructing a representation in
a specified tree T ′ is interesting even if no subtree is pre-drawn, i.e., G′ is empty;
this problem is denoted by Recog

∗(C, type). Clearly, hardness of the Recog
∗

problem implies the hardness of the corresponding RepExt problem.
Concerning chordal graphs, the types Add and Both allow to construct an

arbitrary tree T , so the Recog
∗ problem is equivalent to the standard Recog

problem. For interval graphs, the types Add and Sub behave differently. The
type Add allows to extend the ends of the paths. The type Sub allows to expand
the middle of the path but if the endpoint of the path is contained in some
pre-drawn subpath, it remains there even after subdivision. The type Both is
equivalent to the Recog and RepExt problems for the real line.

1.3 Our Results

We consider the complexity of the Recog
∗ and RepExt problems for all four

classes and all four types. Our results are displayed in the table in Figure 2.

– All NP-complete results are reduced from the 3-Partition problem. The
reductions are very similar and the basic case is RepExt(PINT,Fixed).

– Polynomial cases for INT and PINT are based on the known algorithm for
recognition and extension. But since the space in T is limited, we adapt the
algorithm for the specific problems.

Also, we study parametrized complexity of these problems with respect to three
parameters: The number of pre-drawn subtrees k, the number of components c
and the size t of the tree T ′. In some cases, the parametrization does not help
and the problem is NP-complete even if the value of the parameter is zero or one.
In other cases, the problems are fixed-parameter tractable (FPT), W[1]-hard or
in XP.

The main result concerning parametrization is the following. TheBinPacking

problem is awell-knownproblem concerning integer partitions;more details in Sec-
tion 3. For two problems A and B, we denote by A ≤ B a polynomial reduction

PINT INT PATH CHOR

F
i
x
e
d

S
u
b

A
d
d

B
o
t
h

Recog
∗

RepExt

Recog
∗

RepExt

Recog
∗

RepExt

Recog
∗

RepExt

O(n + m)

NP-complete

O(n + m)

NP-complete

NP-complete

NP-complete

NP-complete

NP-complete

O(n + m) [15, 3]

O(n + m)

O(n + m) [2]

O(n + m)

NP-complete

NP-complete

NP-complete

NP-complete

O(n + m) [15, 3]

O(n + m)

O(n + m) [2]

NP-complete

O(nm) [17]

NP-complete

O(n + m) [16]

NP-complete

O(n + m) [15, 3]

O(n + m) [13]

O(n + m) [2]

O(n + m) [1]

O(nm) [17]

open

O(n + m) [16]

NP-complete

Fig. 2. Table of the complexity of different problems for all four considered classes.
Results without references are new results of this paper.

448 P. Klav́ık et al.

and by A ≤wtt B a weak truth-table reduction (roughly, we may use a number of
B-oraculum questions bounded by a computable function to solve A):

Theorem 1. BinPacking ≤ RepExt(PINT,Fixed) ≤wtt BinPacking where
the weak truth-table reduction needs to solve 2k instances of BinPacking.

We note that due to space limitations, this paper contains only sketches of the
techniques and the proofs. Refer to the full version attached in the end.

2 Preliminaries

Notation. We reserve n for the number of vertices and m for the number of
edges of the main considered graph G. The set of vertices is denoted by V (G) and
the set of edges by E(G). For a vertex v ∈ V (G), we let N(v) = {x : vx ∈ E(G)}
denote the open neighborhood, and N [v] = N(v) ∪ {v} the closed neighborhood.

Basic Concepts. A component C is called a located component if it has at least
one vertex pre-drawn, and called unlocated otherwise. For interval graphs, the
located components have to be ordered from left to right, otherwise the partial
representation is clearly not extendible.

Let u and v be two vertices of G such that N [u] = N [v]. These two ver-
tices are called indistinguishable since they can be represented exactly the same,
having Ru = Rv (a common property of all intersection representations). We
assume that all input graphs are pruned, having only one vertex per group of
indistinguishable vertices. It can be done in time O(n + m). We need to be a
little careful since we cannot prune pre-drawn vertices.

To every maximal clique K, there is a subtree RK contained exactly in Ru’s
of u ∈ K (due to the Helly property). Moreover, these subtrees are for different
maximal cliques pairwise disjoint. So for example, if |T | is smaller than the
number of maximal cliques of G, the graph is clearly not representable in T .

3 Interval Graphs

In this section, we deal with classes PINT and INT. The results obtained here
are used as tools for PATH and CHOR graphs in Section 4.

3.1 Polynomial Cases

First we deal with all polynomial cases. Also, we describe several concepts as
minimum span, useful in the rest of the paper.

Non-Fixed Type Recognition. The only limitation for recognition of interval
graphs inside a given path is the length of the path. In all three types Sub,
Add and Both, we can produce a path as long as necessary. Every possible
representation can be realized in a tree T with at least 2n vertices. Thus the
problems are equivalent to the standard recognition on the real line. For PINT,
it can be solved in time O(n + m), for example [13,3]. Similarly for INT, it can
be solved in time O(n + m) [2].

Extending Partial Representations of Subclasses of Chordal Graphs 449

Both Type Extension. Similarly, the path T ′ can be extended as much as
necessary which makes the problem equivalent to the partial representation ex-
tension problems on the real line, both solvable in time O(n + m) [11,1].

Sub Type Extension. It is possible to modify the above algorithms for partial
representation extension of INT and PINT. Since we do not want to go in details
of these algorithms, we instead reduce to the Both type extensions which we
can solve in time O(n + m) (as discussed above):

Theorem 2. The problems RepExt(PINT,Sub) and RepExt(INT,Sub) can
be solved in time O(n + m).

Proof (Sketch). We extend the paths at the ends by one and add two pre-drawn
intervals v← and v→ in such a way that the entire graph G has to live in between
Rv← and Rv→ . Thus only subdivision involves G. ��

General Properties. A basic tool for proper interval graphs is uniqueness of
the ordering of the intervals from left to right. For each component, there exists a
unique ordering < up to complete reversal (and possibly reordering of groups of
indistinguishable intervals which are pruned) [5]. For each partial representation,
the pre-drawn intervals appear in some specific order. This order has to be
compatible with < or its reversal (possibly both), otherwise the component is
clearly not extendible.

For types Fixed and Add, the space is limited and we need to save it. For
a component C, we denote by minspan(C) the size of the smallest possible
representation, taking as little vertices of T as possible. We can compute this
value and construct such a representation:

Lemma 1. For every component C (both located, or unlocated) of PINT, the
value minspan(C) can be computed in time O(n + m) (together with a realizing
representation).

Proof (Sketch). Process the component according to < and leave the gaps be-
tween intervals as small as possible. If the component is located, the pre-drawn
intervals are fixed and for the rest of the intervals we minimize the gaps. ��

For INT, let cl(C) denote the number of maximal cliques of C.

Lemma 2. For an unlocated component C of INT, minspan(C) = cl(C). We
can find a smallest representation in time O(n + m).

Proof (Sketch). We identify maximal cliques [14] and construct the repre-
sentation of size cl(C) using PQ-trees [2], both in time O(n + m). Clearly
minspan(C) ≥ cl(C). ��

Fixed Type Recognition. We just need to use the values minspan we already
know how to compute.

Proposition 1. Both Recog
∗(PINT,Fixed) and Recog

∗(INT,Fixed) can be
solved in time O(n + m).

450 P. Klav́ık et al.

Proof. We process components C1, . . . , Cc one-by-one and place them from left
to right on T ′. If

∑c
i=1 minspan(Ci) ≤ |T ′|, we can place the components using

the smallest representation from Lemma 1 for PINT, resp. Lemma 2 for INT.
Otherwise, the path is too small and the representation cannot be constructed.

��
Add Type Extension, PINT. Again, we approach this problem using mini-
mum spans and Lemma 1.

Theorem 3. The problem RepExt(PINT,Add) can be solved in time O(n+m).

Proof (Sketch). We place unlocated components far to the left (since the path
can be arbitrary stretched). Now, we process components in the ordering C1 <
· · · < Cc from left to right. We try to place each component as far to the left as
possible, while on the right of the previously placed component. We have two
possible representations and we choose the one more to the left. ��

3.2 NP-Complete Cases

Our reductions are from 3-Partition. The input of 3-Partition consists of
integers k, M and A1, . . . , A3k such that M

4 < Ai < M
2 for each Ai and

∑
Ai =

kM . It asks whether it is possible to partition Ai’s into k triples such that the
sets Ai of each triple sum to exactly M . This problem is known to be strongly
NP-complete (even with all integers of a polynomial size) [6].

Theorem 4. The problems RepExt(PINT,Fixed) and RepExt(INT,Fixed)
are NP-complete.

Proof (Sketch). We describe just the case of INT. For a given input of 3-

Partition, we construct a graph G as follows. It consists of split gadgets making
k gaps of size M and take gadgets representing sets Ai, all as separate compo-
nents. The split gadgets are single pre-drawn vertices v0, . . . , vk, pre-drawn as
depicted in Figure 3. The take gadgets corresponding to Ai is just a path PAi .
Notice that minspan(Pk) = k. The take gadgets are distributed into k gaps
which gives a solution to the partition problem. ��

Corollary 1. The problem RepExt(INT,Add) is NP-complete.

Proof. Use the above reduction with one additional pre-drawn interval v at-
tached to everything in G. We put Rv = {p0, . . . , p(M+1)k}, so it contains the
whole tree T ′. Now since the representation of each take gadget has to intersect
Rv, it has to be placed inside of the k gaps as before. ��

v0 v1 v2PA1
PA6

PA3
PA4

PA2
PA5

Fig. 3. An example of the reduction for the input set of 3-Partition: k = 2, M = 7,
A1 = A2 = A3 = A4 = 2 and A5 = A6 = 3. The partial representation (depicted in
bold) is extended, giving a solution to 3-Partition.

Extending Partial Representations of Subclasses of Chordal Graphs 451

3.3 Parametrized Complexity

In this subsection, we study parametrized complexity of the above NP-complete
problems. The parameters are the number c of components, the number k of
pre-drawn intervals and the size t of the tree.

By Number of Components. For INT, it clearly does not help, we can add a
vertex attached to everything. For PINT, the hardness lies in c:

Proposition 2. The problem RepExt(PINT,Fixed) is fixed-parameter trac-
table in the number of components c, solvable in time O((n + m)c!).

Proof. There are c! possible orderings of the components from left to right,
we test each (some orderings may be excluded by pre-drawn intervals), using
similar approach as in the proof of Theorem 3 (only here we deal with unlocated
components as well). ��

By Number of Pre-drawn Intervals. In the reduction in Theorem 4, we need
to have k pre-drawn intervals. One could ask, whether the problems becomes
simpler with a small number of pre-drawn intervals. We answer this negatively,
for PINT the problem is in XP and W[1]-hard with respect to k. This is closely
related a well-known integer partition problem called BinPacking:

Problem: BinPacking

Input: Integers k, �, V and A1, . . . , A�.
Output: Does there exist a k-partition P1, . . . ,Pk of A1, . . . , A� such that∑

Ai∈Pj
Ai ≤ V for every Pj .

When the sizes are encoded in unary, BinPacking can be solved in time
tO(k) using dynamic programming where t is the total size of all items.
And it is W[1]-hard with respect to the parameter k [9]. Similar holds for
RepExt(PINT,Fixed):

Proof (Sketch of Theorem 1). Modify the reduction in Theorem 4 to solve Bin-

Packing. For the other implication, we first deal with located components using
Lemma 1, there are at most 2k possible smallest representations (for each com-
ponent, we have two possible orderings). For unlocated components, we have
k + 1 gaps in which we can place them. This involves integer partiton of mini-
mum spans which we can solve using a generalization of BinPacking. ��

Corollary 2. The problem RepExt(PINT,Fixed) is W[1]-hard and belongs to
XP with respect to the parameter k, solvable in time nO(k), where k is the number
of pre-drawn intervals.

Proposition 3. The problems RepExt(INT,Fixed) and RepExt(INT,Add)
are W[1]-hard with respect to the parameter k.

By Size of the Path. When the tree is fixed, it is easy to construct an FPT
algorithm by a brute-force testing:

452 P. Klav́ık et al.

Proposition 4. For t the size of T ′, the problems RepExt(PINT,Fixed) and

RepExt(INT,Fixed) can be solved in time O(n + m+ f(t)) where f(t) = t2t
2

.

Proof. We can have at most t2 different subpaths and at most t2 different vertices
in G, so we test all possible representations. ��

4 Path and Chordal Graphs

We present several results concerning PATH and CHOR classes. We use many
results from Section 3 as basic tools here.

4.1 Polynomial Cases

The recognition problem for types Add and Both is equivalent to standard
recognition without any additional tree T ′. For path graphs, the current fastest
algorithm is by Schäffer [15] in time O(nm). For chordal graphs, there is a
beautiful simple algorithm in time O(n + m) by Rose et al. [14].

4.2 NP-Complete Cases

In all cases, we modify the reduction in Theorem 4.

Proposition 5. Both Recog
∗(PATH,Fixed) and Recog

∗(CHOR,Fixed) are
NP-complete.

Proof (Sketch). As the split gadget, we consider a subdivided star. The tree
T is a path P(M+1)k with three paths of length two attached to every vertex
p(M+1)i. The split gadgets can be represented only in the attached stars to T ,
thus spliting T into k gaps of size M . The take gadgets are the same. ��

Theorem 5. The problems Recog
∗(PATH,Sub) and Recog

∗(CHOR,Sub) are
NP-complete.

Proof (Sketch). Subdivision can produce more vertices of degree two. We modify
both gadgets so they require a certain number of vertices of degree at least three.
Each split gadget is a larger tree than before. For the take gadget, we consider
a caterpillar-like structure of length Ai. ��

Theorem 6. Even with only a single subtree pre-drawn, i.e, |G′| = 1, the prob-
lems RepExt(CHOR,Add) and RepExt(CHOR,Both) are NP-complete.

Proof (Sketch). Modify the above reductions by adding one pre-drawn vertex v
attached to everything, such that Rv = T ′. Every intersection has to happen
inside of T ′. ��

To use the same technique for path graphs, we need the input partial tree T ′ to
be a path. The complexity of RepExt(PATH,Both) remains open.

Proposition 6. The problem RepExt(PATH,Add) is NP-complete.

Proof. Modify the reduction in Theorem 4 as above, with Rv = T ′. ��

Extending Partial Representations of Subclasses of Chordal Graphs 453

5 Conclusions

In this paper, we have considered different problems concerning extending partial
representations of chordal graphs and their three subclasses. One of the main
goals of this paper is to stimulate future research in this area. Therefore, we
conclude with two open problems.

The first problems concerns the only open case in the table in Figure 2.

Problem 1. What is complexity of RepExt(PATH,Both)?

Concerning parametrized complexity, we believe it is useful to first attack prob-
lems related to interval graphs. This allows to develop tools for more complicated
chordal graphs. A generalization of Theorem 1 and Corollary 2 for INT seems to
be particularly interesting. The PQ-tree approach seems to be a good starting
point.

Problem 2. Does RepExt(INT,Fixed) belong to XP with respect to k where k
is the number of pre-drawn intervals?

References

1. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained
embedding problems. CoRR abs/1112.0245 (2011)

2. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and planarity using pq-tree algorithms. Journal of Computational Systems
Science 13, 335–379 (1976)

3. Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time
recognition of unit interval graphs. Information Processing Letters 55(2), 99–104
(1995)

4. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of
interval graphs. SIAM Journal on Discrete Mathematics 23(4), 1905–1953 (2009)

5. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403
(1996)

6. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling un-
der resource constraints. SIAM Journal on Computing 4(4), 397–411 (1975)

7. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. Journal of Combinatorial Theory, Series B 16(1), 47–56 (1974)

8. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. North-Holland
Publishing Co. (2004)

9. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin Packing with Fixed Number
of Bins Revisited. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 260–272.
Springer, Heidelberg (2010)

10. Klav́ık, P., Kratochv́ıl, J., Krawczyk, T., Walczak, B.: Extending Partial Represen-
tations of Function Graphs and Permutation Graphs. In: Epstein, L., Ferragina,
P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 671–682. Springer, Heidelberg (2012)

11. Klav́ık, P., Kratochv́ıl, J., Otachi, Y., Ignaz, R., Saitoh, T., Saumell, M., Vyskočil,
T.: Extending partial representations of proper and unit interval graphs (in prepa-
ration, 2012)

454 P. Klav́ık et al.

12. Klav́ık, P., Kratochv́ıl, J., Vyskočil, T.: Extending Partial Representations of In-
terval Graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp.
276–285. Springer, Heidelberg (2011)

13. Looges, P.J., Olariu, S.: Optimal greedy algorithms for indifference graphs. Com-
put. Math. Appl. 25, 15–25 (1993)

14. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination
on graphs. SIAM Journal on Computing 5(2), 266–283 (1976)

15. Schäffer, A.A.: A faster algorithm to recognize undirected path graphs. Discrete
Appl. Math. 43, 261–295 (1993)

Isomorphism for Graphs of Bounded

Connected-Path-Distance-Width

Yota Otachi

School of Information Science, Japan Advanced Institute of Science and Technology
Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan

Abstract. We show that Graph Isomorphism problem (GI) can be
solved in O(n2) time for graphs of bounded connected-path-distance-
width, and more generally, in O(nc+1) time for graphs of bounded
c-connected-path-distance-width, where n is the number of vertices.
These results extend the result of Yamazaki, Bodlaender, de Fluiter, and
Thilikos [Isomorphism for graphs of bounded distance width. Algorith-
mica 24, 105–127 (1999)], who showed the fixed-parameter tractability
of GI parameterized by rooted-path-distance-width.

Keywords: Graph isomorphism, Fixed-parameter tractability,
Connected-path-distance-width, Treewidth.

1 Introduction

Graph Isomorphism problem (GI, for short) is a practically and theoretically
important graph problem of determining whether two graphs have the same
structure. More precisely, GI asks the existence of a bijective correspondence
between the vertex sets of two graphs in which the edge relation is preserved.
Despite intensive efforts, GI for general graphs is not known to be polynomial-
time solvable nor NP-complete (see [10,15,21]). It is known that if GI is NP-
complete, then polynomial hierarchy collapses to its second level [22].

For some restricted classes of graphs, tractability of GI is known (see [14] and
the references therein). It is notable that, quite recently, Grohe and Marx [11]
have shown that GI for graphs excluding a graphH as a topological subgraph can
be solved in O(nf(H)) time, where n is the number of vertices of the input graphs
and f is a computable function. For some graph parameters, such as maximum
degree [17], genus [8,18], eigenvalue multiplicity [1,7], and treewidth [2], GI is
known to be in P. However, the running times of the algorithms, except for one
for bounded eigenvalue multiplicity [7], exponentially depend on the parameters.
For instance, Bodlaender’s algorithm for GI parameterized by treewidth runs
in O(nk+4.5) time, where k is the treewidth [2]. To give an O(f(k) · nc) time
algorithm for GI parameterized by treewidth is an important open problem in
parameterized complexity theory [3].

Some partial answers for the open problem are known. Yamazaki, Bodlaender,
de Fluiter, and Thilikos [24] studied GI for graphs of bounded distance-width
that form subsets of the class of bounded treewidth graphs, and presented some

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 455–464, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

456 Y. Otachi

polynomial-time algorithms. Their algorithm for graphs of rooted-tree-distance-
width at most k runs in O(f(k) ·n3) time. They also presented an algorithm for
graphs of rooted-path-distance-width at most k with running time O(f(k) · n2).
Recently, Kratsch and Schweitzer [16] have investigated GI for graphs of bounded
feedback vertex set number that also form a subset of the class of bounded
treewidth graphs. They presented an O(f(k) · n2)-time algorithm for deciding
GI for graphs of feedback vertex number at most k. The results of these groups
are incomparable by the definition of their graph parameters.

In this paper, we introduce (c-)connected-path-distance-width of graphs, and
present an O(f(k) · n2)-time algorithm for deciding GI for graphs of connected-
path-distance-width at most k and an O(f(k) · nc+1)-time algorithm for graphs
of c-connected-path-distance-width at most k. Thus we show that GI is fixed-
parameter tractable when parameterized by these graph parameters. By the
definitions of the graph parameters, we can show that our result is an extension
of one of the results by Yamazaki et al. [24].

The rest of this paper is organized as follows. In Section 2, we introduce basic
concepts of graphs and define graph parameters. We also briefly review the
theory of parameterized complexity there. In Section 3, we show hardness and
fixed-parameter tractability of newly introduced graph parameters. In Section 4,
using the results in the previous section, we present the algorithms solving GI
for graphs of bounded connected-path-distance-width and for graphs of bounded
c-connected-path-distance-width. In Section 5, we discuss relationships among
graph parameters, and show that our results properly extend a known result. In
Section 6, we conclude the paper with some open problems.

Due to the space limitation, the proofs in Section 5 are omitted.

2 Preliminaries

The graphs considered are undirected, simple, and connected. We denote by
V (G) and E(G) the vertex set and the edge set of a graph G, respectively. For
S ⊆ G, we denote by G[S] the subgraph of G induced by S. If G[S] is connected,
then we say that S is connected in G.

Let G be a connected graph. The distance between u ∈ V (G) and v ∈ V (G)
in G, denoted dG(u, v), is the length of a shortest u–v path in G. We define the
distance between S ⊆ V (G) and v ∈ V (G) in G as dG(S, v) = minu∈S dG(u, v).
The diameter of G is diam(G) = maxu,v∈V (G) dG(u, v), and the radius of G
is rad(G) = minu∈V (G) maxv∈V (G) dG(u, v). A vertex v ∈ V (G) is a center of
G if maxv∈V (G) dG(u, v) = rad(G). It is not difficult to see that diam(G) ≤
|V (G)| − 1 and rad(G) ≤ �|V (G)|/2�. The (open) neighborhood of a vertex v
in G, denoted NG(v), is the set of vertices adjacent to v; that is NG(v) = {u |
{u, v} ∈ E(G)}. The closed neighborhood of v in G, denoted NG[v], is the set
{v} ∪ NG(v). The open neighborhood of a vertex set S ⊆ V (G) in G, denoted
NG(S), is the set of vertices not in S and adjacent to some vertex v ∈ S; that is
NG(S) =

⋃
v∈S NG(v) \ S.

Isomorphism for Graphs of Bounded Connected-Path-Distance-Width 457

Path-distance-width and other graph parameters Path-distance-width is a graph
parameter to measure how close a graph is to a path [24,23], and is a restricted
variant of bandwidth (and thus, of pathwidth and of treewidth). It is known that

tw(G) ≤ pw(G) ≤ bw(G) < 2 · pdw(G)

for any connected graph G [12,24], where tw is treewidth, pw is pathwidth, bw
is bandwidth, and pdw is path-distance-width.

A sequence (L0, . . . , Lt) of subsets of vertices is a distance structure of a graph
G if

⋃
0≤i≤t Li = V (G) and Li = {v ∈ V (G) | dG(L0, v) = i} for 0 ≤ i ≤ t. Each

Li is a level and especially L0 is the initial set. The width of (L0, . . . , Lt), denoted
pdwL0

(G), is max0≤i≤t |Li|. The path-distance-width of G, denoted pdw(G), is
defined as

pdw(G) = min{pdwS(G) | S ⊆ V (G)}.

The distance structure with a given initial set can be computed in linear time.

Lemma 2.1 ([24]). Given a vertex set S ⊆ V (G) of a graph G, the distance
structure of G with initial set S can be constructed in O(|E(G)|) time. As a
consequence, pdwS(G) can be computed in the same time complexity.

A distance structure of G is connected if its initial set is connected in G. The
connected-path-distance-width of G, denoted cpdw(G), is the minimum width
over all its connected distance structures; that is,

cpdw(G) = min{pdwS(G) | S ⊆ V (G), G[S] is connected}.

As a generalization of connected-path-distance-width, we define c-connected-
path-distance-width of a graph G, denoted c-cpdw(G), in which an initial set in-
duces a graph with at most c connected components. For instance, 1 -cpdw(G) =
cpdw(G), and 2 -cpdw(G) is defined as follows:

2 -cpdw(G) = min{pdwS(G) | S ⊆ V (G), G[S] has at most two components}.

If the initial set of a distance structure of G is a set that consists of only one
vertex, then we say that it is a rooted distance structure of G. The rooted-path-
distance-width of G, denoted rpdw(G), is the minimum width over all its rooted
distance structures; that is,

rpdw(G) = min{pdw{v}(G) | v ∈ V (G)}.

The following relations follow immediately from the definitions.

Proposition 2.2. For any connected graph G,

rpdw(G) ≥ cpdw(G) ≥ 2-cpdw(G) ≥ pdw(G) ≥ |V (G)|/(diam(G) + 1).

458 Y. Otachi

Parameterized complexity A parameterized problem is a subset L ⊆ Σ∗ × N,
where Σ is a fixed alphabet, Σ∗ is the set of all finite length strings over Σ, and
N is the set of natural numbers. An input (x, k) to a parameterized problem
consists of two parts: the main part x of the input and the parameter k. In this
paper, the main part of the input is a graph or a pair of graphs. A parameterized
problem L is fixed-parameter tractable if there exists an algorithm that decides
whether (x, k) ∈ L in f(k) · nc time, where f is a computable function, c is a
fixed constant, and n = |x|+ k. The class of fixed-parameter tractable problems
is FPT. The class of parameterized problems that can be solved in O(nf(k))
time is XP. As like NP-hardness in classical computational complexity theory,
we have the concept of W[t]-hardness, where t is a positive integer. We only
mention here that if FPT = W[1], then 3-SAT can be solved in time 2o(n) (see
[4]), and that

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[t] ⊆ XP.

See standard textbooks [6,9,19] on parameterized complexity and fixed-parameter
algorithms.

3 Hardness and Fixed-Parameter Tractability of cpdw

In this section, we present the main tool for developing the fixed-parameter
tractable algorithm for GI parameterized by cpdw. We first show NP-hardness of
the problem of determining cpdw. Next we show that the parameterized problem
of cpdw parameterized by itself is fixed-parameter tractable. Indeed, we show a
slightly stronger fact: all connected set with width at most k in a graph can be
listed in O(f(k) · n2) time. This stronger fact is necessary for our GI algorithm.

3.1 NP-Hardness

It is known that rpdw can be determined in linear time, while determining pdw
is NP-hard [24]. Here we show that determining cpdw is NP-hard even for co-
bipartite graphs. A graph G is cobipartite if its vertices can be partitioned into
two cliques, where a clique is a set of pairwise adjacent vertices. The following
fact was shown in our work on approximability of pdw for AT-free graphs.

Theorem 3.1 ([20]). Given a cobipartite graph G, it is NP-complete to decide
whether pdw(G) ≤ |V (G)|/3.

Using the fact above, we can show the analogous result for cpdw.

Theorem 3.2. Given a cobipartite graph G, it is NP-complete to decide whether
c-cpdw(G) ≤ |V (G)|/3 for any c ≥ 1.

Proof. Let G be a cobipartite graph. We shall show that c-cpdw(G) ≤ |V (G)|/3
if and only if pdw(G) ≤ |V (G)|/3. The only-if part is trivial. For the if part
assume that pdwS(G) ≤ |V (G)|/3 for some S. Let (X,Y) be a partition of
V (G) such that both X and Y are cliques. If S intersects both X and Y , then

Isomorphism for Graphs of Bounded Connected-Path-Distance-Width 459

every vertex is included in NG[S]. Hence the distance structure with S as its
initial set has at most two levels. Therefore, it follows pdwS(G) ≥ |V (G)|/2, a
contradiction. Now we have S ⊆ X or S ⊆ Y , and thus S is connected in G. ��

Corollary 3.3. Given a cobipartite graph G, it is NP-complete to decide whether
cpdw(G) ≤ |V (G)|/3.

3.2 Fixed-Parameter Tractability

A vertex set S ⊆ V (G) is feasible with G and k if S is connected in G and
pdwS(G) ≤ k. In other words, a feasible set with G and k is a certificate for the
fact cpdw(G) ≤ k. Similarly, a c-feasible set with G and k is a set S ⊆ V (G)
such that pdwS(G) ≤ k and G[S] has at most c connected components. To show
the fixed-parameter tractability of cpdw parameterized by itself, it suffices to
present a fixed-parameter tractable algorithm that finds a feasible set or decides
nonexistence of such a set. However, to show the fixed-parameter tractability
of GI parameterized by cpdw, we have to present a fixed-parameter tractable
algorithm that finds all the feasible sets.

The following two simple facts are crucial for developing our fixed-parameter
tractable algorithm.

Lemma 3.4. Let G be a graph and S ⊆ V (G). If there exists S′ ⊆ V (G) such
that S ⊆ S′ and pdwS′(G) ≤ k, then |S| ≤ k and |N [S]| ≤ 2k.

Proof. The fact |S| ≤ k is trivially true. Let (L0, . . . , Lt) be the distance struc-
ture with L0 = S′. Since N [S′] = L0 ∪ L1, it follows that N [S] ⊆ L0 ∪ L1. As
pdwS′(G) = maxi |Li| ≤ k, the lemma holds. ��

Lemma 3.5. Let G be a graph. If S � S′ ⊆ V (G) and S′ is connected in G,
then there is a vertex u ∈ S′ \ S such that u ∈ NG(S).

Proof. If there is no such vertex u, then S′ is not connected. ��

Now we are ready to present the main theorem in this section.

Theorem 3.6. All the feasible sets with a graph G and an integer k can be
enumerated in O(n2(2k)!/(k!)) time, where n = |V (G)|.

Proof. First observe that if pdw(G) ≤ k, then degG(v) ≤ 3k − 1 for each v ∈
V (G). This is because the vertices in N [v] can be distributed to at most three
consecutive levels. Hence if |E(G)| > n(3k − 1)/2, then we can conclude that
there is no feasible sets with G and k. This check can be done in linear time. In
the following, we assume that |E(G)| ≤ n(3k − 1)/2.

The algorithm and its correctness Now we describe our algorithm. See Algo-
rithm 1. For each v ∈ V (G), we enumerate all the feasible sets that include v.
Lines 1–3 in Algorithm 1 correspond to this loop. Procedure Enum(S) enumer-
ate all the feasible sets that contain S. If |S| > k or |N [S]| > 2k, then there is

460 Y. Otachi

no feasible superset of S with G and k by Lemma 3.4 (Lines 5–7). If S itself is
feasible, then the algorithm outputs S (Lines 8–10). Now it finds feasible sets
that contain S as a proper subset (Lines 11–13). By Lemma 3.5, if S is a proper
subset of a feasible set S′, then there is a vertex u ∈ S′ \S such that u ∈ NG(S).
Thus for each u ∈ NG(S) we compute Enum(S ∪ {u}). Clearly, every feasible
set is listed by the algorithm.1

Algorithm 1. Enumerate all the feasible sets with G and k

1: for all v ∈ V (G) do
2: Enum({v})
3: end for

4: procedure Enum(S)
5: if |S| > k or |N [S]| > 2k then
6: return
7: end if
8: if pdwS(G) ≤ k then
9: Output S
10: end if
11: for all u ∈ NG(S) do
12: Enum(S ∪ {u})
13: end for
14: end procedure

The running time of the algorithm In the for loop, we have n branches corre-
sponding to the calls of Enum({v}) for all v ∈ V (G). Each call of Enum(S)
has |NG(S)| branches corresponding to the calls of Enum(S ∪ {u}) for each
u ∈ NG(S) if |S| ≤ k and |N [S]| ≤ 2k. Therefore, the search-tree has depth k
in which the root has n children, and each node in the depth d ∈ {1, . . . , k − 1}
has at most 2k− d children. Thus it has at most n(2k − 1)(2k− 2) · · · (k + 1) =
n(2k − 1)!/(k!) leaves, and hence it has less than 2n(2k − 1)!/(k!) nodes. Since
the algorithm takes O(|E(G)|) = O(nk) time to check whether pdwS(G) ≤ k for
each node of the search-tree, the total running time is O(n2(2k)!/(k!)). ��

By the theorem above, the following fact, which can be of independent interest,
immediately follows.

Corollary 3.7. Given a graph G and an integer k, the problem of deciding
whether cpdw(G) ≤ k can be solved in O(n2(2k)!/(k!)) time. ��

Now we generalize the algorithm so that it works for c-feasible sets. The modifi-
cation is very simple. We just start with each set with at most c vertices in the
outer loop.

1 The algorithm may output a feasible set more than once. This fact does not affect
the correctness of our algorithm.

Isomorphism for Graphs of Bounded Connected-Path-Distance-Width 461

Theorem 3.8. All the c-feasible sets with a graph G and an integer k can be
enumerated in O(nc+1(2k)!/(k!)) time, where n = |V (G)|.

Proof. We first guess c′ ≤ c vertices that belong to different components. This
needs O(nc) first branches instead of O(n) first branches in Algorithm 1. The
other steps are the same. See Algorithm 2. ��

Corollary 3.9. Given a graph G and an integer k, the problem of deciding
whether c-cpdw(G) ≤ k can be solved in O(nc+1(2k)!/(k!)) time. ��

Algorithm 2. Enumerate all the c-feasible sets with G and k

1: for all S ⊆ V (G) such that |S| ≤ c do
2: Enum(S)
3: end for

4 Fixed-Parameter Tractable Algorithms for GI

Using the algorithms in the previous section, we present the main algorithm
of this paper here. Two distance structures (L0, . . . , Lt) of G and (L′0, . . . , L

′
t)

of H are isomorphic if there exists an isomorphism η from G to H such that
η(Li) = L′i for 0 ≤ i ≤ t. It is easy to see that two graphs G and H are isomorphic
if and only if there exist isomorphic distance structures of them.

Yamazaki et al. [24] presented a procedure SUB-RPDW that takes two dis-
tance structures of graphs as input and decides whether the distance structures
are isomorphic in O(k!2k2 · n) time.

Theorem 4.1. Isomorphism for graphs of connected-path-distance-width at most
k can be decided in O((2k)!k!k · n2) time, where n is the number of vertices.

Proof. Assume that |V (G)| = |V (H)| = n and |E(G)| = |E(H)| ≤ n(3k − 1)/2.
The algorithm first finds a feasible set S with G and k by Algorithm 1. It next
enumerates all the feasible sets S′ with H and k, and for each S′ determines
whether the distance structures with initial sets S and S′ are isomorphic by
using SUB-RPDW. This can be done by slightly modifying Algorithm 1. See
Algorithm 3 for the full description. The correctness of Algorithm 3 follows from
the correctness of Algorithm 1 and SUB-RPDW.

Now we analyze the running time. The first step takes O(n2(2k)!/(k!)) time.
The second step takes O(|E(G)|) = O(nk) time. In the for loop (Lines 3–8), the
algorithm traverses its search tree of less than 2n(2k − 1)!/(k!) nodes. At each
node, the algorithm takes O(nk) time for constructing the distance structure L′

of H , and O(k!2k2 ·n) time for calling SUB-RPDW(L, L′). Therefore, the total
running time is O((2k)!k!k · n2). ��

462 Y. Otachi

Algorithm 3. Isomorphism for graphs G and H of cpdw at most k

1: Find a minimal feasible set S with G and k.
2: Let L = (L0, . . . , Lt) be the distance structure of G with L0 = S.
3: for all minimal feasible set S′ with H and k do
4: Let L′ = (L′

0, . . . , L
′
t′) be the distance structure of H with L′

0 = S′.
5: if SUB-RPDW(L, L′) = true then
6: return yes
7: end if
8: end for
9: return no

Generalizing the algorithm above for c-cpdw can be done by using c-feasible sets
instead of feasible sets.

Theorem 4.2. Isomorphism for graphs of c-connected-path-distance-width at
most k can be decided in O((2k)!k!k · nc+1) time. ��
The running time O((2k)!k!k · nc+1) is unacceptable if c can be large. However,
if we fix c to be a constant, then we have a fixed-parameter tractable algorithm
for a larger class. For example, we can decide GI for graphs of bounded 2 -cpdw
in O(f(k) · n3) time.

5 Relationships among Graph Parameters

To clarify the significance of our results, we discuss the relationships among some
graph parameters related to parameterized complexity of GI.

By the definition, rtdw(G) ≤ rpdw(G) and 2 -cpdw(G) ≤ cpdw(G) ≤ rpdw(G)
for any graph G, where rtdw(G) is rooted-tree-distance-width. Here we obtain
two nontrivial relations. First we show that rpdw of a graph is bounded by a
function that depends only on its cpdw. This relation implies that, although
our algorithm is significantly faster than theirs in the worst case, the algorithm
by Yamazaki et al. [24] for GI parameterized by rpdw also runs in O(f(k) · n2)
time for GI parameterized by cpdw. Next we show that there is no such relation
between rtdw and 2 -cpdw, that is, there is a family of graphs that has constant
2 -cpdw and unbounded rtdw. Thus we show that graphs of bounded 2 -cpdw form
a new subclass of graphs of bounded treewidth that admits a fixed-parameter
tractable algorithm for GI.

5.1 Upper Bounding rpdw by cpdw

The next two propositions show that rpdw(G) ≤ (cpdw(G)/2 + 1)cpdw(G), and
that this bound is tight up to a constant factor.

Proposition 5.1. If cpdw(G) = k, then rpdw(G) ≤ (�k/2�+ 1)k.

Proposition 5.2. For any integer k ≥ 2, there is a graph G such that cpdw(G) ≤
2k and rpdw(G) ≥ k(k + 1)/2.

Isomorphism for Graphs of Bounded Connected-Path-Distance-Width 463

5.2 The Classes of Bounded 2 -cpdw and of Unbounded rtdw

Now we show that the classes of bounded 2 -cpdw and of bounded rtdw are
incomparable. Observe that rtdw(K1,n) = 1 since the star K1,n is a tree, while
2 -cpdw(K1,n) ≥ pdw(K1,n) = �n/2�. Thus any function only depends on rtdw
cannot be an upper bound of 2 -cpdw. In what follows, we show that any function
only depends on 2 -cpdw cannot be an upper bound of rtdw as well.

Yamazaki et al. [24] showed that a class of trees has bounded pdw and un-
bounded rpdw. We can modify each tree in the class so that the new class consists
of all the modified graphs has bounded 2 -cpdw and unbounded rtdw.

Proposition 5.3. For any positive integer k ≥ 3, there is a graph G such that
2 -cpdw(G) ≤ 6 and rtdw(G) ≥ k.

6 Concluding Remarks

We show that new subclasses of the class of bounded treewidth graphs admit
fixed-parameter tractable algorithms for GI. However, the original open problem
is still unsettled.

Open Problem . Is GI parameterized by treewidth fixed-parameter tractable?

It would be also interesting to study GI parameterized by pathwidth, tree-
distance-width, and path-distance-width.

There is another aspect of study on GI for bounded treewidth graphs. Das,
Torán, and Wagner [5] studied space complexity of the problem. They showed
that GI for graphs of bounded tree-distance-width is L-complete, and that GI
for graphs of bounded treewidth is in LogCFL. Whether the latter result can be
improved to L is unknown. Recently, in his blog post, Kintali [13] has announced
that GI for graphs of treewidth 4 is ⊕L-hard, which means that GI for graphs
of bounded treewidth (at least 4) is not in L unless L = ⊕L.

References

1. Babai, L., Grigoryev, D., Mount, D.: Isomorphism of graphs with bounded eigen-
value multiplicity. In: 14th Annual ACM Symposium on Theory of Computing
(STOC 1982), pp. 310–324 (1982)

2. Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. J. Algorithms 11, 631–643 (1990)

3. Bodlaender, H.L., Demaine, E.D., Fellows, M.R., Guo, J., Hermelin, D., Loksh-
tanov, D., Müller, M., Raman, V., van Rooij, J., Rosamond, F.A.: Open problems
in parameterized and exact computation — IWPEC 2008. Tech. Rep. UU-CS-
2008-017, Department of Information and Computing Sciences, Utrecht University
(2008)

4. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms.
J. Comput. System Sci. 67, 789–807 (2003)

464 Y. Otachi

5. Das, B., Torán, J., Wagner, F.: Restricted space algorithms for isomorphism on
bounded treewidth graphs. In: 27th International Symposium on Theoretical As-
pects of Computer Science (STACS 2010). LIPIcs, vol. 5, pp. 227–238 (2010)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1998)
7. Evdokimov, S., Ponomarenko, I.: Isomorphism of coloured graphs with slowly in-

creasing multiplicity of jordan blocks. Combinatorica 19, 321–333 (1999)
8. Filotti, I.S., Mayer, J.N.: A polynomial-time algorithm for determining the isomor-

phism of graphs of fixed genus. In: 12th Annual ACM Symposium on Theory of
Computing (STOC 1980), pp. 236–243 (1980)

9. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman (1979)
11. Grohe, M., Marx, D.: Structure theorem and isomorphism test for graphs with

excluded topological subgraphs. In: 44th Annual ACM Symposium on Theory of
Computing (STOC 2012), pp. 173–192 (2012)

12. Kaplan, H., Shamir, R.: Pathwidth, bandwidth, and completion problems to proper
interval graphs with small cliques. SIAM J. Comput. 25, 540–561 (1996)

13. Kintali, S.: Hardness of graph isomorphism of bounded treewidth graphs,
http://kintali.wordpress.com/2011/11/16/

14. Köbler, J.: On Graph Isomorphism for Restricted Graph Classes. In: Beckmann, A.,
Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 241–256.
Springer, Heidelberg (2006)

15. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its Struc-
tural Complexity. Birkhauser Verlag (1993)

16. Kratsch, S., Schweitzer, P.: Isomorphism for Graphs of Bounded Feedback Ver-
tex Set Number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81–92.
Springer, Heidelberg (2010)

17. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. System Sci. 25, 42–65 (1982)

18. Miller, G.: Isomorphism testing for graphs of bounded genus. In: 12th Annual ACM
Symposium on Theory of Computing (STOC 1980), pp. 225–235 (1980)

19. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford University
Press (2006)

20. Otachi, Y., Saitoh, T., Yamanaka, K., Kijima, S., Okamoto, Y., Ono, H., Uno, Y.,
Yamazaki, K.: Approximability of the Path-Distance-Width for AT-free Graphs.
In: Kolman, P., Kratochv́ıl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 271–282.
Springer, Heidelberg (2011)

21. Read, R.C., Corneil, D.G.: The graph isomorphism disease. J. Graph Theory 1,
339–363 (1977)

22. Schöning, U.: Graph isomorphism is in the low hierarchy. J. Comput. System
Sci. 37, 312–323 (1988)

23. Yamazaki, K.: On approximation intractability of the path-distance-width prob-
lem. Discrete Appl. Math. 110, 317–325 (2001)

24. Yamazaki, K., Bodlaender, H.L., de Fluiter, B., Thilikos, D.M.: Isomorphism for
graphs of bounded distance width. Algorithmica 24, 105–127 (1999)

http://kintali.wordpress.com/2011/11/16/

Algorithmic Aspects of the Intersection

and Overlap Numbers of a Graph

Danny Hermelin1, Romeo Rizzi2, and Stéphane Vialette3,�

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
hermelin@mpi-inf.mpg.de

2 Dipartimento di Matematica ed Informatica, Universit degli Studi di Udine, Italy
rrizzi@dimi.uniud.it

3 LIGM CNRS UMR 8049, Université Paris-Est, France
vialette@univ-mlv.fr

Abstract. The intersection number of a graph G is the minimum size
of a set S such that G is an intersection graph of some family of subsets
F ⊆ 2S. The overlap number of G is defined similarly, except that G is
required to be an overlap graph of F . Computing the overlap number of
a graph has been stated as an open problem in [B. Rosgen and L. Stew-
art, 2010, arXiv:1008.2170v2] and [D.W. Cranston, et al., J. Graph The-
ory., 2011]. In this paper we show two algorithmic aspects concerning
both these graph invariants. On the one hand, we show that the corre-
sponding optimization problems associated with these numbers are both
APX-hard, where for the intersection number our results hold even for
biconnected graphs of maximum degree 7, strengthening the previously
known hardness result. On the other hand, we show that the recognition
problem for any specific intersection graph class (e.g. interval, unit disc,
. . .) is easy when restricted to graphs with fixed intersection number.

1 Introduction

An intersection graph is a graph that represents the pattern of intersections of
a family of sets. Any undirected graph G may be represented as an intersection
graph: For each vertex of G, form a set consisting of the edges incident to this
vertex; then two such sets have a nonempty intersection if and only if the cor-
responding vertices share an edge. Erdős, Goodman, and Pósa [5] provided a
construction that is more efficient in which the total number of set elements is
at most n2/4, where n is the number of vertices in the graph. Many important
graph families can be described as intersection graphs of more restricted types
of set families, in particular sets corresponding to geometric objects. Examples
of such graph classes are interval graphs (intersection graphs of intervals on the
real line), circle graphs (intersection graphs of chords in a circle), and unit disc
graphs (intersection graphs of unit discs in the plane).

� Partially supported by ANR project BIRDS JCJC SIMI 2-2010.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 465–474, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

466 D. Hermelin, R. Rizzi, and S. Vialette

The intersection number of a graph G, denoted i(G), is defined to be the mini-
mum cardinality of a (ground) set S such that G is an intersection graph of a fam-
ily of subsets F ⊆ 2S of S. In [5], it was shown that i(G) also equals the minimum
number of complete subgraphs needed to cover the edges ofG. This latter number
is known as the edge-clique cover number of G, and is denoted θ(G). (The best
general reference is [14].) Computing θ(G) (and hence i(G)) is NP-hard [11,16],
even when restricted to planar graphs [3] or graphs with maximum degree 6 [9].
It is polynomial-time solvable for chordal graphs [13], graphs with maximum
degree 5 [9], line graphs [16], and circular-arc graphs [10]. By way of contrast, it
is not approximable within ratio nε for some ε > 0 unless P = NP [12], and so

far nothing better than a polynomial ratio of O(n2 (log logn)2

(logn)3) is known [2]. As

for its parameterized complexity, computing θ(G) is fixed-parameter tractable
under the standard parameterization [6]. Computing θ(G) is very widely appli-
cable to discover underlying structure in complex real-world networks [7], and
[15] gives a bioinformatic application for this problem.

The overlap model for graph representations arose much later and is not as
well studied [4]. The overlap graph of a family of sets F = {S1, S2, . . . , Sn},
denoted O(F), is the graph having F as vertex set with Si adjacent to Sj if
and only if Si and Sj intersect and neither set is contained in the other, i.e.,
Si ∩ Sj �= ∅, Si \ Sj �= ∅, and Sj \ Si �= ∅. Notice that some graph classes can
play it both ways: A graph is an intersection graph of chords in a circle if and
only if it is has an overlap representation using intervals on a line. The overlap
number of a graph G, denoted ϕ(G), is the minimum size of the ground set
in any overlap representation of G. Extending an overlap representation and
finding a minimum overlap representation with limited containment have been
shown to be NP-hard problems [19]. However, the general problem of computing
the overlap number of a graph has been stated as an open problem in [19] and
[4]. The following upper bounds for the overlap number of a n-vertex graph are
known [18,19]: n+1 for trees, 2n for chordal graphs, 10

3 n− 6 for planar graphs,
and

⌊
n2/4

⌋
+ n for general graphs. In [4], it is shown among other results that

an optimal overlap representation of a tree can be produced in linear-time, and
its size is the number of vertices in the largest subtree in which the neighbor of
any leaf has degree 2.

The results in this paper are twofold. In the first part of the paper, we consider
the Intersection Number andOverlap Number problems, the optimization
problems that ask to respectively determine the intersection and overlap number
of a given input graph. We show that both problems are APX-hard. While for
Intersection Number this was already known for general graphs [12], our
result proves this is the case also for graphs of maximum degree 7. Moreover,
this result is used to show the APX-hardness of Overlap Number. In the
second part of the paper, we show that for any intersection graph class G, i.e. any
graph class defined by specifying the allowed intersection model, the recognition
problem associated with G is linear-time solvable when restricted to graphs with
bounded fixed intersection number.

Algorithmic Aspects of the Intersection 467

2 Notations

Let G be a graph. We write V(G) for the set of vertices and E(G) for the set of
edges of G. The neighborhood of a vertex u, denoted NG(u) or (when the graph
is unambiguous) N(u), is the set of adjacent vertices to u. We let N [v] denote
the set {v}∪N(v). The degree of a vertex u ∈ V(G), denoted d(u), is the number
of vertices adjacent to u. The maximum degree of G, denoted by Δ(G), is the
maximum degree of its vertices. A biconnected graph is a connected graph that is
not broken into disconnected pieces by deleting any single vertex (and its incident
edges). An edge-clique cover of G is any family E = {Q1, Q2, . . . , Qk} of complete
subgraphs of G such that every edge of G is in at least one of Q1, Q2, . . . , Qk.
The minimum cardinality of an edge-clique cover of G is denoted θ(G), and we
write Edge-Clique Cover for the combinatorial problem of computing θ(G).

The Cartesian product G × H of graphs G and H is the graph such that
the vertex set of G × H is the Cartesian product V(G) ×V(H), and any two
vertices (u, u′) and (v, v′) are adjacent in G × H if and only if either u = v
and u′ is adjacent with v′ in H , or u′ = v′ and u is adjacent with v in G. A
column of G × H is the set of vertices {(u, u′) : u ∈ V(G)} for some vertex
u′ ∈ V(H), and a row of G ×H is the set of vertices {(u, u′) : u′ ∈ V(H)} for
some vertex u ∈ V(G). Observe that each row induces a copy of H , and each
column induces a copy of G (see Figure 1). This terminology is consistent with a
representation of G×H by the points of the |V(G)|× |V(H)| grid. (See Figure 1
for an illustration.)

× =

Fig. 1. The cartesian products of two graphs

3 Hardness of Approximating i(G)

Since i(G) = θ(G) [5], we prove hardness of approximation for bounded degree
graphs in terms of edge-clique covers. Notice that this result will be the main
ingredient of upcoming Proposition 2.

Proposition 1. Edge-Clique Cover is APX-hard for biconnected graphs
with maximum degree 7.

468 D. Hermelin, R. Rizzi, and S. Vialette

Proof. The reduction is from Vertex Cover in cubic graphs, which is known
to be APX-hard [17,1]. Let G be a cubic n-vertex graph. We construct a new
graph H as follows. We represent each vertex u ∈ V(G) by a triangle Tu with
vertices u0, u1 and u2 in the new graph H . These n triangles are all vertex dis-
joint in H , and each of them can offer a different edge for three connections. Let
us be more specific. For each vertex u ∈ V(G) with incident edges eu[0], eu[1]
and eu[2] (the order is arbitrary), the edge {ui, ui+1 (mod 3)} ∈ Tu, 0 ≤ i ≤ 2, is
devoted to the edge eu[i] ∈ E(G). Now, to represent an edge {u, v} ∈ E(G) in H ,
where {ui, ui+1 (mod 3)}, 0 ≤ i ≤ 2, is the edge of the triangle Tu devoted to rep-
resenting {u, v}, and {vj , vj+1 (mod 3)}, 0 ≤ j ≤ 2, is the edge of the triangle Tv

devoted to representing {u, v}, we introduce two new vertices Au,v and Bu,v and
the 6 edges {Au,v, ui}, {Au,v, vj}, {Bu,v, ui+1 (mod 3)}, {Bu,v, vj+1 (mod 3)}, and
{ui, vj}. What is left is to add m non-incident edges to H (one additional edge
for each edge of G): For each edge {u, v} ∈ E(G) in H , where {ui, ui+1 (mod 3)},
0 ≤ i ≤ 2, is the edge of the triangle Tu devoted to representing {u, v}, and
{vj , vj+1 (mod 3)}, 0 ≤ j ≤ 2, is the edge of the triangle Tv devoted to represent-
ing {u, v}, we add the edge {ui, vj+1 (mod 3)} or {ui+1 (mod 3), vj} (the choice is
made so that these m additional edges form a matching). We refer the reader to
Figure 2 for an illustration. Clearly |V(H)| = 9

2n and |E(H)| = 27
2 n. Moreover,

it follows from the construction that H is a biconnected graph with maximum de-
gree 7. We claim that G has a vertex cover of size k if and only if θ(H) ≤ k+3m,
where m = 3

2n is the number of edges of G.
Suppose G has a vertex cover V ′ ⊆ V(G) of size k. Construct an edge-

clique cover E of H as follows. For each u ∈ V ′, add Tu to E . For each edge
{u, v} ∈ E(G), let {ui, ui+1 (mod 3)}, i ∈ {0, 1, 2}, be the edge of triangle Tu

devoted to representing edge {u, v}, and {vj , vj+1 (mod 3)}, j ∈ {0, 1, 2}, be the
edge of triangle Tv devoted to representing edge {u, v}. Without loss of gener-
ality, assume {ui, vj+1 (mod 3)} ∈ E(H). Add the two cliques {ui, vj , Au,v} and
{ui+1 (mod 3), vj+1 (mod 3), Bu,v} to E . Furthermore, if u ∈ V ′, add the clique
{ui, vj , vj+1 (mod 3)} to E , and {ui, ui+1 (mod 3), vj+1 (mod 3)} otherwise. Since
V ′ is a vertex cover of G, it follows that E is an edge-clique cover of H of
cardinality k + 3m.

For the reverse direction, let E be an edge-clique cover of H . Let {u, v} be
any edge of G, and let {ui, ui+1 (mod 3)}, i ∈ {0, 1, 2}, be the edge of triangle Tu

devoted to representing edge {u, v}, and {vj , vj+1 (mod 3)}, j ∈ {0, 1, 2}, be the
edge of triangle Tv devoted to representing edge {u, v}. Without loss of generality,
assume {ui, vj+1 (mod 3)} ∈ E(H). If we let Hu,v stand for be the subgraph of H
induced by the subset {ui, ui+1 (mod 3), Au,v, Bu,v, vj , vj+1 (mod 3)}, we make the
easy observations (see Figure 2) that (i) 4 cliques are needed to cover the edges of
Hu,v, and (ii) 3 cliques are needed to cover the edges of Hu,v if {ui, ui+1 (mod 3)}
or {vj , vj+1 (mod 3)} (possibly both) is removed. Therefore, |E| = 3m+k for some
non-negative integer k ≤ m. But each triangle Tw, w ∈ V(G), can be covered by
1 clique, and hence there is no loss of generality in assuming k ≤ n. Furthermore,
there is no loss go generality in assuming that E satisfies the following property:
for every edge {u, v} ∈ E(G), either Tu or Tv (possibly both) is in E . Let V ′ ⊆

Algorithmic Aspects of the Intersection 469

u1

u0
u2 Tu

Bu,v

Au,v

v2
v1

v0

Tv

Au,w

Bu,w

w1
w2

w0
Tw

Bu,x

Au,x

x2
x0

x1

Tx

Fig. 2. The three edge-gadgets used in the proof of Proposition 1 for vertex u ∈ V(G)
with edges eu[0] = {u, v}, eu[1] = {u, w}, and eu[2] = {u, x}

V(G) be the subset defined as follows: u ∈ V ′ if Tu ∈ E . According to the above,
if |E| = 3m + k for some non-negative integer k ≤ n, then |V ′| = k is a vertex
cover of G. ��

4 Hardness of Approximating ϕ(G)

This section is devoted to proving that there exists a constant c > 1 such that
computing the overlap number of a graph is hard to approximate to within c.

Proposition 2. Overlap Number is APX-hard.

Proof. According to Proposition 1, there exists a constant c > 0 such that θ(G)
cannot be approximated to within c (unless P = NP). We shall prove that a

√
c-

approximation algorithm for Overlap Number would yield a c-approximation
algorithm for Edge-Clique Cover

Let G be a n-vertex graph with maximum degree 7 for which we are asked
to c-approximate θ(G). Without loss of generality, we assume that G has no
isolated vertices and is biconnected (see Proposition 1). Let m be the smallest

470 D. Hermelin, R. Rizzi, and S. Vialette

integer such that m ≥ n and m
m−1 <

√
c, and let Km be the complete graph on

m vertices. Let H = Km×G be the Cartesian product of Km by G. For the sake
of simplicity, write V(Km) = {u1, u2, . . . , um} and V(G) = {v1, v2, . . . , vn}. We
have divided the proof into a sequence of claims.

Claim. ϕ(H) ≤ n+ mθ(G).

Proof (Of Claim 4). Let k = θ(G) and let E = {Q1, Q2, . . . , Qk} be a size-
k edge-clique cover of G. To every node (ui, vj) ∈ V(H), we associate the
set S(ui,vj) defined as follows: S(ui,vj) = {vj} ∪ {(ui, p) : vj ∈ Qp}. Con-
sider the family F = {S(ui,vj) : (ui, vj) ∈ V(H)} defined over the ground set
X =

⋃
(ui,vj)∈V(H) S(ui,vj) = V(G) ∪ (V(Km) × [k]), where [k] is the set of the

first k integers {1, 2, . . . , k}. Notice that |X | = n + km. We prove that O(F)
and H are isomorphic graphs, thereby proving the claim. Indeed, let S(ui,vj) and
S(ur,vs) be two subsets of F . We need to consider 3 cases.

– If ui �= ur and vj �= vs, then (ui, vj) and (ur, vs) are not adjacent vertices
in H . It can be easily verified that S(ui,vj) and S(ur,vs) are disjoint subsets,
and hence S(ui,vj) and S(ur,vs) are not adjacent vertices in O(F).

– If ui �= ur and vj = vs, then (ui, vj) and (ur, vs) are adjacent vertices in H
since Km is a clique. Firstly, vj ∈ S(ui,vj) and vj ∈ S(ur ,vs) since vj = vs,
and hence S(ui,vj) ∩ S(ur ,vs) �= ∅. Secondly, both vj ∈ S(ui,vj) \ S(ur,vs) and
vs ∈ S(ur,vs) \ S(ui,vj) are non-empty (i.e., the two sets have some private
element) since ui �= ur and vj is not an isolated vertex of G. Therefore,
S(ui,vj) and S(ur ,vs) overlap, and hence S(ui,vj) and S(ur,vs) are adjacent
vertices in O(F).

– If ui = ur and vj �= vs, then (ui, vj) and (ur, vs) are adjacent vertices
in H if and only if {vi, vj} ∈ E(G). We have vj ∈ S(ui,vj) \ S(ur,vs) and
vs ∈ S(ur ,vs)\S(ui,vj) (i.e., the two sets have some private element) Therefore,
the two sets overlap if and only if vj and vj belong to a same Qp for some
1 ≤ p ≤ k, which amounts to saying that {vi, vj} ∈ E(G). Hence, S(ui,vj)

and S(ur ,vs) are adjacent vertices in O(F) if and only if {vi, vj} ∈ E(G).
��

Now we proceed to the reduction in the reverse direction. For this we will need
the following technical result.

Claim. Let (F = {S(ui,vj) : (ui, vj) ∈ V(H)}, X) be an overlap representation
of H . If S(ur ,vs) ⊂ S(ui,vj) for some vertices (ui, vj) and (ur, vs) of H , then
S(up,vq) ⊂ S(ui,vj) for every vertex (up, vq) of H which is not adjacent to vertex
(ui, vj).

Proof (Of claim 4). First, if S(ur ,vs) ⊂ S(ui,vj) then vertices (ur, vs) and (ui, vj)
are not adjacent in H since (F , X) is an overlap representation of H . Now, let
(up, vq) be any vertex of H distinct from (ur, vs) that is not adjacent to (ui, vj).
Also, let H ′ be the graph obtained from H by deleting every vertex in the close
neighborhood of vertex (ui, vj). Notice that, since (ur, vs) and (up, vq) are not
adjacent to (ui, vj) in H , they are both vertices of H ′. We claim that there

Algorithmic Aspects of the Intersection 471

exists a path between vertices (ur, vs) and (up, vq) in H ′. Indeed, since G is
biconnected there exists a path in G between vertices vs and vq that does not go
through vertex vj , and hence there exists a path in H ′ between vertices (ur, vs)
and (ur, vq). If ur = up we are done. Otherwise, since each column of H ′ is a
clique then the two vertices (ur, vq) and (up, vq) are connected by an edge in H ′.

To prove the claim it is now enough to show that S(up,vq) ⊂ S(ui,vj) for any
vertex (up, vq) of H that is adjacent to (ur, vs) but not to (ui, vj). The proof
follows from an easy contradiction. Suppose S(up,vq) �⊂ S(ui,vj). Since S(up,vq) �= ∅
(H does not contain any isolated vertex), then there exists x ∈ X such that
x ∈ S(up,vq) and x /∈ S(ui,vj), and hence S(up,vq) \ S(ui,vj) �= ∅. Furthermore,
(up, vq) and (ur, vs) are adjacent vertices in H , and hence (since S(up,vq) and
S(ur,vs) have to overlap) there exist x′, x′′ ∈ X such that (i) x′ ∈ S(up,vq) and
x′ ∈ S(ur ,vs), and (ii) x′′ /∈ S(up,vq) and x′′ ∈ S(ur,vs). But S(ur,vs) ⊂ S(ui,vj), and
hence x′ ∈ S(ui,vj) and x′′ ∈ S(ui,vj). Then it follows that S(ui,vj) \ S(up,vq) �= ∅
and S(up,vq) ∩ S(ui,vj) �= ∅, and hence S(up,vq) and S(ui,vj) overlap. This is the
sought contradiction since this would result in (up, vq) and (ui, vj) being adjacent
in H . ��

Claim. θ(G) ≤ ϕ(H)−n−1
m−1 + 7.

Proof (Of claim 4). Let (F = {S(ui,vj) : (ui, vj) ∈ V(H)}, X) be an overlap
representation of H . Suppose that there exists some subset S(ui,vj) ∈ F that
strictly contains at least one set of F . Then, according to Claim 4, S(ui,vj)

contains all subsets S(ur ,vs) ∈ F such that ui �= ur and vj �= vs (i.e., S(ui,vj)

contains all those subsets of F that are associated to vertices of H that are
not in the same row nor column of vertex (ui, vj)). Furthermore, if there exist
subsets S(ur ,vs), S(up,vq) ∈ F distinct from S(ui,vj) such that S(ur,vs) ⊂ S(up,vq),
then ui = up or vj = vq (i.e., vertex (up, vq) is on the same row or on the same
column of vertex (ui, uj)). Indeed, assuming ui �= up and vj �= vq, Claim 4 would
yield to S(ui,vj) ⊂ S(up,vq) and S(ui,vj) ⊂ S(up,vq), a contradiction. Now, let H ′

be the graph obtained from H by deleting all vertices (ur, vs) such that ur = ui

or vs = vj (i.e., deleting all vertices that are in the same row or column of vertex
(ui, vj)). Also, let F ′ ⊆ F be those subsets of F that correspond to vertices of
H ′, and X ′ ⊆ X be the union of the subsets in F ′ (X ′ is the ground set of F ′).
Notice that F ′ is an overlap representation of H ′ where no subset being a subset
of another, and that |X ′| ≤ |S(ui,vj)| since every subset of F ′ is strictly contained
in S(ui,vj). Moreover, if we let G′ stand for the graph obtained from G by deleting

vertex vj we have H ′ = Km−1×G′. We now claim that θ(G′) ≤ |X|−n−1m−1 . Indeed,
consider the “edge-multi-coloring” procedure of H ′ defined by assigning to every
edge e = {(ur, vs), (up, vq)} of H ′ the “colors” col(e) = S(ur ,vs) ∩ S(up,vq). Since
F ′ is an overlap representation of H ′, it follows that at least one color is assigned
to every edge of H ′. Furthermore, since no subset being a subset of another in
F ′, it follows that for every color c, {e ∈ E(H ′) : c ∈ col(e)} induces a clique
in G′, and hence H ′ can be covered with at most |X | cliques. But the maximal
cliques of H ′ are either columns (there are n − 1 of these and at least n − 1
vertical edges must have received a different color), or are contained in a single

472 D. Hermelin, R. Rizzi, and S. Vialette

row and correspond to maximal clique of G. Therefore, m− 1 disjoint copies of

G′ can be covered with at most |X |−n−1 cliques. This proves θ(G′) ≤ |X|−n−1m−1 .

What is left is to prove θ(G) ≤ ϕ(H)−n−1
m−1 +7. This follows from θ(G′) ≤ |X|−n−1m−1

and θ(G) ≤ θ(G′) + Δ(G). ��

Suppose, aiming at a contradiction, that there exists a
√

c-approximation algo-
rithm B for Edge-Clique Cover. Then, we have B(H) ≤ √c ϕ(H). Combin-
ing this inequality with Claim 4 yield B(H) ≤

√
c (n + mθ(G)). We now apply

the constructive proof of Claim 4 to obtain an approximate A(G) of θ(G). We

have A(G) ≤ B(H)−n−1
m−1 + 7 = B(H)

m−1 −
n+1
m−1 + 7 ≤

√
c (n+mθ(G))

m−1 − n+1
m−1 + 7 ≤

n
√
c

m−1 + (
√
c)2 θ(G)
m−1 − n+1

m−1 + 7 ≤ (
√

c)2 θ(G) + n
√
c

m−1 −
n+1
m−1 + 7 = c θ(G) + O(1).

The constant makes no problem since θ(G) is bound to grow with n since we
assume Δ(G) is bounded. ��

5 Recognizing Intersection Graph Classes

A central algorithmic problem corresponding to an intersection graph class G
is the so called G-Recognition problem: Given a graph G, is G ∈ G? In this
section, we show that this problem is linear-time solvable for graphs G with fixed
intersection number i(G). Our proof here uses the fact that i(G) = θ(G) [5]. For
ease of presentation, we assume all graphs have no isolated vertices.

Proposition 3. Let G be any intersection graph class, and let k ∈ N. The G-
Recognition problem can be solved in linear-time when restricted to graphs
with intersection number at most k.

The proof of proposition 3 heavily relies on the notion of well quasi orders. A
quasi order (i.e., a binary reflexive transitive relation) is a well quasi order (or
wqo for short) if it does not contain infinitely descending sequences nor infinite
antichains. For example, the standard order ≤ of the natural numbers N is a
well quasi order. Another less obvious example is given by considering vectors
in Nk. For two vectors −→x ,−→y ∈ Nk, let us write −→x ≤ −→y if xi ≤ yi for 1 ≤ i ≤ k.
The following lemma follows directly from a classical result known as Higman’s
Lemma [8].

Lemma 1. The set NK is well quasi ordered by ≤ for any fixed K ∈ N.

Let G be a graph with an edge-clique cover E = {Q1, Q2, . . . , Qk} (here, and
in what follows, we allow E to be a multiset). A characteristic vector of E for

G is a vector −→c ∈ N2k that is indexed by subsets S ⊆ {1, . . . , k} such that
−→c [S] = |

⋂
i∈S Qi|. In other words, −→c contains the number of vertices in the

intersection of any subset of cliques in E . We say that a vector −→c ∈ N2k is
a characteristic vector of G if −→c is characteristic vector of some E , |E| = k,
for G. Notice that there can be several characteristic vectors for a graph. The
following lemma shows the connection between characteristic vectors and the
induced subgraph order.

Algorithmic Aspects of the Intersection 473

Lemma 2. Let H and G be two graphs, and let −→c (G) ∈ N2θ(G)

be a char-
acteristic vector for G. Then H is an induced subgraph of G if and only if
−→c (H) ≤ −→c (G) for some characteristic vector −→c (H) ∈ N2θ(G)

for H.

Proof. Let EG := {Q1, Q2, . . . , Qk} denote the edge clique cover of G correspond-
ing to −→c (G), and let −→c (H) be some characteristic vector for H of dimension
2k with −→c (H) ≤ −→c (G). Let EH := {P1, P2, . . . , Pk} denote an edge clique cover
for H corresponding to −→c (H). We map H to G by mapping each vertex in Pi

to a vertex in Qi for all i ∈ {1, . . . , k}. Since −→c (H)[{i}] ≤ −→c [{i}] for each i, an
injective mapping f obeying this property can easily be constructed. Further-
more, it can easily be seen that {u, v} ∈ E(H) ⇒ {f(u), f(v)} ∈ E(G) for any
pair u, v ∈ V(H), since two vertices in any graph are adjacent if and only if they
belong together in some clique of the graph. This implies one direction of the
lemma. The converse direction can be obtained by similar arguments. ��

We next show two applications of Lemma 2. The first application allows us
to show that graphs of bounded intersection number are wqo by the induced
subgraph order.

Lemma 3. Let k ∈ N. The set of all graphs G with θ(G) ≤ k is wqo by the
induced subgraph order.

For a fixed graph H , the H-Induced Subgraph problem asks to determine
whether H is an induced subgraph of an input graph G. The second application
of Lemma 2 is that H-Induced Subgraph can be solved in linear-time for any
fixed H , when its input is restricted to graphs of bounded edge clique cover
number. The proof of this lemma uses the fact that for any fixed k, there is a
linear-time algorithm for constructing an edge clique cover of size k for an input
graph G with θ(G) ≤ k [6].

Lemma 4. Let H be an arbitrary graph, and let k ∈ N. There is a linear time al-
gorithm for H-Induced Subgraph when restricted to graphs G with θ(G) ≤ k.

We are now ready to give the proof of Proposition 3.

Proof (of proposition 3). Let G be any intersection graph class, and let G denote
the set of all finite graphs not in G. Also, let H denote the set of all minimal
graphs in G w.r.t. the induced subgraph order. That is, H = {H ∈ G : �H ′ ∈
G such that H ′ is an induced subgraph of H}. Observe that G is closed under
induced subgraphs (i.e., H ∈ G whenever H is an induced subgraph of some
graph G ∈ G). This implies that a graph G belongs to G if and only if no graph
H ∈ H is an induced subgraph of G. Now by Lemma 3, the set H is finite, and
its size depends only on G. Thus our recognition algorithm for G has the set of
graphs H “hard-wired” into it, and on given input graph G, it simply checks
whether any H ∈ H is an induced subgraph of G, determining that G /∈ G if and
only if any of these checks turns out positive. The running-time of this algorithm
is linear by Lemma 4, and since the number and sizes of graphs in H is constant
w.r.t. the size of G. ��

474 D. Hermelin, R. Rizzi, and S. Vialette

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs.
TCS 237(1-2), 123–134 (2000)

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,
Protasi, M.: Complexity and Approximation: Combinatorial optimization problems
and their approximability properties. Springer (1999)

3. Chang, M.-S., Müller, H.: On the Tree-Degree of Graphs. In: Brandstädt, A., Le,
V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 44–54. Springer, Heidelberg (2001)

4. Cranston, D.W., Korula, N., LeSaulnier, T.D., Milans, K., Stocker, C., Vanden-
bussche, J., West, D.B.: Overlap number of graphs. J. Graph Theory 70(1), 10–28
(2012)

5. Erdős, P., Goodman, A.W., Pósa, L.: The intersection of a graph by set intersec-
tions. Canad. J. Math. 18, 106–112 (1966)

6. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data reduction and exact algo-
rithms for clique cover. ACM J. of Experimental Algo. 13, 2.2:1–2.2:15 (2008)

7. Guillaume, J.-L., Latapy, M.: Bipartite structure of all complex networks.
IPL 90(5), 215–221 (2004)

8. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math.
Society III 2(7), 326–336 (1952)

9. Hoover, D.N.: Complexity of graph covering problems for graphs of low degree. J.
Comb. Math. and Comb. Comp. 11, 187–200 (1992)

10. Hsu, W.-L., Tsai, K.-H.: Linear time algorithms on circular-arc graphs. IPL 40(3),
123–129 (1991)

11. Kou, L.T., Stockmeyer, L.J., Wong, C.K.: Covering graphs by cliques with regard
to keyword conflicts and intersection graphs. Comm. ACM 21, 135–139 (1978)

12. Lund, C., Yannakakis, M.: The Approximation of Maximum Subgraph Problems.
In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 40–51.
Springer, Heidelberg (1994)

13. Ma, S., Wallis, W.D., Wu, J.: Clique covering of chordal graphs. Utilitas Mathe-
matica 36, 151–152 (1989)

14. McKee, T.A., McMorris, F.R.: Topics in intersection graph theory. SIAM Mono-
graphs on Discrete Mathematics and Applications (1999)

15. Nor, I., Hermelin, D., Charlat, S., Engelstadter, J., Reuter, M., Duron, O., Sagot,
M.-F.: Mod/Resc Parsimony Inference. In: Amir, A., Parida, L. (eds.) CPM 2010.
LNCS, vol. 6129, pp. 202–213. Springer, Heidelberg (2010)

16. Orlin, J.B.: Contentment in graph theory: Covering graphs with cliques. Indaga-
tiones Mathematicae (Proc.) 80(5), 406–424 (1977)

17. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation and complex-
ity classes. J. Comp. Sys. Sc. 43, 425–440 (1991)

18. Rosgen, B.: Set representations of graphs. Master’s thesis, Univ. Alberta (2005)
19. Rosgen, B., Stewart, L.: The overlap number of a graph (2010) (submitted,

arXiv:1008.2170v2)

Linear Layouts in Submodular Systems

Hiroshi Nagamochi

Graduate School of Informatics, Kyoto University, Japan
nag@amp.i.kyoto-u.ac.jp

Abstract. Linear layout of graphs/digraphs is one of the classical and
important optimization problems that have many practical applications.
Recently Tamaki proposed an O(mnk+1)-time and O(nk)-space algo-
rithm for testing whether the pathwidth (or vertex separation) of a
given digraph with n vertices and m edges is at most k. In this pa-
per, we show that linear layout of digraphs with an objective function
such as cutwidth, minimum linear arrangement, vertex separation (or
pathwidth) and sum cut can be formulated as a linear layout problem
on a submodular system (V, f) and then propose a simple framework of
search tree algorithms for finding a linear layout (a sequence of V) with
a bounded width that minimizes a given cost function. According to our
framework, we obtain an O(kmn2k)-time and O(n+m)-space algorithm
for testing whether the pathwidth of a given digraph is at most k.

1 Introduction

Let G = (V,E) stand for an undirected or directed graph with a set V of
n vertices and a set E of m edges. Linear layout of graphs is a problem of
finding a linear arrangement (a sequence of V) σ = (v1, . . . , vn) of the vertex
set V of G so that a prescribed cost function cost(σ) is minimized. The problem
is one of the classical and important optimization problems that have many
practical applications (e.g., see [4]). From practical point of views, there have
been introduced several different choices of cost functions, among which the
following ones can be described by vertex/edge-cut functions of digraphs (where
we regard an undirected graph as a symmetric digraphi i.e., treat each undirected
edge uv as two oppositely directed edges (u, v) and (v, u)):

– Cutwidth: costCW(σ) = max{d+G({v1, . . . , vi}) | 1 ≤ i ≤ n − 1}, where
d+G(X) denotes the number of directed edges with a tail in X and a head in
V −X ;

– Minimum Linear Arrangement: costMLA(σ) =
∑
{d+G({v1, . . . , vi}) | 1 ≤

i ≤ n− 1};
– Vertex Separation (or Pathwidth): costVS(σ) = max{Γ+

G ({v1, . . . , vi}) |
1 ≤ i ≤ n− 1}, where Γ+

G (X) denotes the number of out-neighbors of a sub-
set X (the vertices v ∈ X that have directed edges from v to a vertex in
V −X); and

– Sum Cut: costSC(σ) =
∑
{Γ+

G ({v1, . . . , vi}) | 1 ≤ i ≤ n− 1}.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 475–484, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

476 H. Nagamochi

In these functions, directed edges with the backward direction in a sequence σ
are ignored. The cutwitdh (resp., vertex separation) of G is defined to be the
minimum of costCW(σ) (resp., costVS(σ)) over all sequences σ of V . The vertex
separation of a digraph G is equal to the “pathwidth” of G (e.g., [12]), which is
a width of a path-decomposition of G.

Bodlaender et al. [3] showed that a class of linear layout problems including
the above four can be solved (i) in O∗(2n) time and O∗(2n) space by a dynamic
programming; and (ii) in O∗(4n) time and polynomial space by a search tree
algorithm (where the O∗-notation suppresses factors that are polynomial in n).

When a problem is parameterized by value k of its cost function, it is known
that Cutwidth andVertex Separation admit faster exact algorithms. We let
Cutwidth(k) (resp., Vertex Separation(k)) stand for the problem of testing
whether a given graph/digraphG has a sequence σ of V such that costCW(σ) ≤ k
(resp., costVS(σ) ≤ k) or not. Gurari and Sudborough [8] presented an O(nk)-
time and exponential-space dynamic programming algorithm for Cutwidth(k)
in undirected graphs, and Makedon and Sudborough [13] later improved the
time bound to O(nk−1). For Cutwidth(k) in undirected graphs with a fixed
k, Fellows and Langston [6] obtained an O(n2)-time algorithm, and the time
bound is improved to linear by Abrahamson and Fellows [1] and Thilikos et al.
[20]. For Vertex Separation(k) in undirected graphs with a fixed k, Fellows
and Langston [6] designed an O(n3)-time algorithm, and afterwards Bodlaender
[2] gave a linear time algorithm. For undirected graphs, it is known that the
graph minor theorem by Robertson and Seymour [17] implies polynomial-time
algorithms for problems Cutwidth(k) and Vertex Separation(k) with fixed
k and that the theorem, however, cannot be applied to the directed case (e.g.,
see [19,20])

Recently Tamaki [19] proposed an O(mnk+1)-time and O(nk)-space algorithm
for testing whether the pathwidth (or vertex separation) of a given digraph with
n vertices and m edges is at most k. Although it remains open whether Vertex

Separation(k) in digraphs is fixed-parameter tractable or not, it is the first
nontrivial step toward design of efficient exact algorithms for computing graph
parameters of digraphs. His algorithm is a search tree algorithm equipped with
a pruning procedure that tries to discard one of two partial sequences with the
same length by a dominance relationship. It is proven that the number of all
partial sequences with the same length during an execution is always O(nk),
which ensures the claimed time and space complexities of the algorithm. More
interestingly, although the submodularity of function Γ+

G is used to derive the
upper bound O(nk), the mechanism of the algorithm is self-contained in the sense
that it never relies on any other optimization mechanism such as submodular
minimization and dynamic programming to attain the nontrivial upper bound. In
fact, recently Nagamochi [14] proved that the new mechanism can be conversely
used to solve the submodular minimization problem, the most representative
optimization problem.

From these observations, it would be natural to find a way of applying sub-
modular minimization to the pathwidth problem in digraphs. Our research group

Linear Layouts in Submodular Systems 477

has implemented Tamaki’s algorithm to investigate the distribution of pathwidth
of chemical graphs, and it turned out that the O(nk)-space algorithm easily uses
up the memory allowed for graphs with over 100 vertices [9]. This is another
motivation for us to develop a more space-efficient algorithm for the problem.

In this paper, we show that linear layout of digraphs with an objective function
such as cutwidth, minimum linear arrangement, vertex separation (or pathwidth)
and sum cut can be formulated as a linear layout problem on a submodular
system (V, f), and then propose a simple framework of search tree algorithms
for finding a linear layout (a sequence of V) with a bounded width that minimizes
a given cost function. When a cost function is given as

∑
1≤i≤n−1 f({v1, . . . , vi}),

the linear layout problem on a submodular system (V, f) has been introduced by
Iwata et al. [11], and they proposed a (2 − 2/(n+ 1))-approximation algorithm
to the problem when f is a monotone submodular function.

The paper is organized as follows. Section 2 reviews basic results on submodu-
lar functions and introduces a layout problem in submodular systems. Section 3
presents a key property on sequences in submodular systems, based on which a
search tree algorithm is designed. Section 4 analyzes the time complexity of the
algorithm applied to the problem of testing whether the cutwidth/pathwidth of
a given digraph is at most k. Finally Section 5 makes concluding remarks.

2 Preliminaries

Submodular Systems. Let V denote a given finite set with n ≥ 1 elements. A
set function f on V is called submodular if f(X)+ f(Y) ≥ f(X ∩Y)+ f(X ∪Y)
for every pair of subsets X,Y ⊆ V . There are numerous examples of submodular
set functions such as cut function of digraphs and hypergraphs, matroid rank
function, and entropy function. The problem of finding a subset X that mini-
mizes f(X) over a submodular set function f is one of the most fundamental
and important issues in optimization. Grotschel, Lovasz, and Schrijver gave the
first polynomial time algorithm for minimizing a submodular set function [7].
Schrijver [18] and Iwata, Fleischer, and Fujishige [10] independently developed
strongly polynomial time combinatorial algorithms for the submodular mini-
mization. Currently an O(n6 + n5θ)-time minimization algorithm is obtained
by Orlin [15], where n = |V | and θ is the time to evaluate f(X) of a specified
subset X .

For two disjoint subsets S, T ⊆ V , an (S, T)-separator is defined to be a subset
X such that S ⊆ X ⊆ V − T , and let fmin(S, T) denote the minimum f(X) of
an (S, T)-separator X , where such a set X is called a minimum (S, T)-separator.
We denote (S, T) with S = {s} and T = {t} by (s, t).

We here remark that the problem of finding a subset X with minimum f(X) in
a submodular system (V, f) is essentially equivalent to that of finding a minimum
(S, T)-separator in a submodular system.

Sequences. For two integers i ≤ j, the set of all integers h with i ≤ h ≤ j
is denoted by [i, j]. A sequence σ consisting of some elements in a finite set
V is called non-duplicating if each element of V occurs at most once in σ. We

478 H. Nagamochi

denote by Σi the set of all non-duplicating sequences of exactly i elements in
V , where Σ0 contains only the null sequence (the sequence of length zero). We
denote ∪0≤i≤nΣi by Σ. Let σ ∈ Σ be a sequence. We denote by V (σ) the
set of elements constituting σ and by |σ| = |V (σ)| the length of σ. Let σ(i)
denote the ith element in a sequence σ, and let σi be the sequence that consists
of the first i elements of σ, i.e., σi = (σ(1), σ(2), . . . , σ(i)). Given two disjoint
subsets S, T ⊆ V , a sequence σ is called an (S, T)-sequence if V (σ|S|) = S and

V − V (σ|V−T |) = T . We let X denote V −X .
For two sequences α, β ∈ Σ such that V (α) ∩ V (β) = ∅, we denote by αβ

the sequence σ ∈ Σ|α|+|β| obtained by appending β to α so that σ(i) = α(i) for
i ≤ |α| and σ(i) = β(i − |α|) otherwise.

For a subset X ⊆ V , let σ[X] denote the sequence σ′ ∈ Σ|V (σ)∩X| such that
V (σ′) = V (σ)∩X and for every two elements u, v ∈ V (σ′), u precedes v in σ′ if
and only if u precedes v in σ.

Linear Layouts. We consider a cost function cost on sequences σ ∈ Σ. A
cost function cost is called non-decreasing if cost(σ) is determined only by
{f(σ1), f(σ2), . . . , f(σ�−1)} (� = |σ|) and cost(σ) does not decrease when f(σi)
for some i increases, where we regard {f(σ1), . . . , f(σ�−1)} as a multiset con-
sisting of exactly � numbers. For example, the following three functions are all
non-decreasing:

fmin(σ) = min{f(σi) | 1 ≤ i ≤ �− 1},

fmax(σ) = max{f(σi) | 1 ≤ i ≤ �− 1},

fsum(σ) =
∑
{f(σi) | 1 ≤ i ≤ �− 1}.

We call fmax(σ) the f -width of σ.
For a subset X of a digraph G = (V,E), let Γ−G (X) denote the number of

in-neighbors of a subset X (the vertices v ∈ V −X that have directed edges from
v to a vertex in X), and let d−G(X) = d+G(V −X). Observe that costCW = fmax

and costMLA = fsum for the edge-cut function f = d+G, and costVS = fmax and
costSC = fsum for the vertex-cut function f = Γ+

G .
We are ready formulate a general form of the problems studied in this paper:

Linear Layouts in Submodular Systems. Given a nonnegative sub-
modular system (V, f) with f(∅) = f(V) = 0 (n = |V |), a positive real
k > 0 and a non-decreasing cost function cost, find a sequence σ ∈ Σn

with f -width at most k that minimizes cost(σ) among all sequences with
f -width at most k.

Note that there is a chance that a sequence τ ∈ Σn with f -width greater than
k attains cost(τ) smaller than the minimum cost(σ) of the above problem when
cost is not given by fmax. However our main result (Theorem 1) still suggests
that for the problem of minimizing costMLA or costSC, fmax is a useful measure
to parameterize these problems, since values of these cost functions in strongly
connected digraphs are not less than n are inadequate to measure the computa-
tional tractability.

Linear Layouts in Submodular Systems 479

Precedent Constraint. In some application of arrangement of elements such as
scheduling problems (e.g., see section 11.2 in [4]), an output sequence is required
to meet a precedent relation among elements such that an element u precedes
another element v, denoted by u ≺ v. The set of such ordered pairs (u, v) can
be given by a poset P on V , where P is represented by a set of directed edges
(u, v) such that u ≺ v and there is no element w with u ≺ w and w ≺ v (in
general P is not necessarily equal to a given digraph G itself). We can naturally
include the side constraint as a penalty function into a given submodular system
(V, f). Define the DAG (V, P), and let p be the submodular function on V by
defining p(X) = (k + 1)d−P (X) for each subset X ⊆ V , where d−P (X) denotes
the the number of directed edges of (V, P) with a tail in V −X and a head in
X . Clearly (V, f ′ = f + g) remains a submodular system, and any sequence σ
of V with f ′max(σ) ≤ k satisfies fmax(σi) = f ′max(σi) ≤ k for i = 1, 2, . . . , n− 1,
which indicates that there is no edge (u, v) ∈ P such that i > j for σ(i) = u and
σ(j) = v, i.e., the given precedent constraint is met.

Main Result. In this paper, we prove the next.

Theorem 1. Given a submodular system (V, f), a real k, and a non-decreasing
function cost, a minimum cost sequence σ with f -width at most k (if any) can
be obtained by solving submodular minimization O(n2Δ(k)+2) times using O(|V |)
work space except for storage of f , where Δ(k) denotes the number of distinct
values in {f(X) ≤ k | ∅ � X � V }.

In particular, when f is integer-valued and k is a positive integer, it holds Δ(k) ≤
k −min∅�X�V f(X).

3 Algorithm

This section proves Theorem 1 by presenting a search tree algorithm that solves
the problem. All we need to design our new algorithm is the following observa-
tion.

Lemma 1. For a submodular system (V, f), let τ be an (S, T)-sequence τ ∈ Σn

of V . For a minimum (S, T)-separator A in (V, f), let σ = τ [A]τ [A] ∈ Σn, and
ψ be a bijection on [|S| + 1, n − |T |] such that ψ(i) is the index j such that
σ(i) = τ(j). Then

f(σi) ≤ f(τψ(i)) for all i ∈ [|S|+ 1, n− |T |]. (1)

Proof. Fix i ∈ [|S|+1, n−|T |], and let j = ψ(i). Since V (τj)∪A and V (τj)∩A are
(S, T)-separators, we have f(A) = fmin(S, T) ≤ min{f(V (τj)∪A), f(V (τj)∩A)}.
Hence by the submodularity of f , it holds f(A)+f(τj) ≥ f(V (τj)∩A)+f(V (τj)∪
A), from which we have f(τj) ≥ max{f(V (τj) ∩ A), f(V (τj) ∩ A)}.

We first consider the case where |S| + 1 ≤ i ≤ |A|. In this case it holds
V (σi) = V (τj) ∩ A and we have f(σi) = f(V (τj) ∩ A) ≤ f(τj). On the other
hand (|A| + 1 ≤ i ≤ n− |T |), it holds V (σi) = V (τj) ∪ A and we have f(σi) =
f(V (τj) ∪ A) ≤ f(τj).

480 H. Nagamochi

Note that (1) implies that cost(σ[V − S− T]) ≤ cost(τ [V − S− T]) for any
non-decreasing cost function cost.

Fix a nonnegative submodular system (V, f) with f(∅) = f(V) = 0 and a real
number k, an instance of our problem is specified by an ordered pair (S, T) of
disjoint subsets S, T ⊆ V , to which we wish to find an (S, T)-sequence σ such
that the f -width of the subsequence σ[V−S−T] is at most k and cost(σ[V−S−T])
is minimized among all such sequences σ. Such an (S, T)-sequence σ is called a
solution to the instance (S, T).

To find a solution to a given instance (S, T) by a search tree algorithm, we
introduce branch operations based on Lemma 1.

For every two elements s, t ∈ V in a given submodular system (V, f), we first
genetare an instance (S = {s}, T = {t}). There are at most n2 such instances.
Let f∗ = min{f(X) | ∅ � X � V }.

An instance (S, T) with |V−S−T | ≤ 1 is trivial since it has a unique solution (if
any). Let |V−S−T | ≥ 2 Compute fmin(S, T) invoking submodular minimization
on f . Assume that fmin(S, T) ≤ k, since otherwise there is no (S, T)-sequence σ
such that the f -width of σ[V − S− T] is at most k.

Case 1. fmin(S, T) = k: In this case, we can reduce (S, T) into trivial one.
Choose an arbitrary element u ∈ V −S−T such that f(S ∪{u}) = k (if no such
element u ∈ V − S− T exits then the instance (S, T) has no solution either).
By Lemma 1, a solution to (S, T) can be obtained by combining solutions to
(S, T ′ = V − S− {u}) and (S′ = S ∪ {u}, T). Since (S, T ′ = V − S− {u}) has
a unique solution, this reduces the current instance (S, T) to (S′ = S ∪ {u}, T),
where fmin(S

′, T) = k still holds. Hence we can apply the above procedure until
the instance becomes trivial (or we find out infeasibility of (S, T)).

Case 2. fmin(S, T) < k: We further test whether there is a minimum (S, T)-
separator A with S � A � V − T (this can be done by computing fmin(S ∪
{u}, T ∪ {v}) for all pairs u, v ∈ V − S− T , thus O(|V − S− T |2) times of
submodular minimization).

Case 2a. A minimum (S, T)-separator A with S � A � V − T exists: We
split the current instance into two instances (S, T ′ = V − A) and (S′ = A, T).
By Lemma 1, a solution to (S, T) can be obtained by combining solutions to
(S, T ′ = V − A) and (S′ = A, T).

Case 2b. No minimum (S, T)-separator A with S � A � V − T exists; i.e.,
only S or V − T is a minimum (S, T)-separator:

(i) Exactly one of S and V − T , say S is a minimum (S, T)-separator: We
branch into |V − S− T | instances Iu = (Su = S ∪ {u}, T), u ∈ V − S− T , and
select an (S, T)-sequence with minimum cost among solutions to Iu, u ∈ V−S−T
as a solution to (S, T). Note that fmin(Su, T) > fmin(S, T).

(ii) Both of S and V − T are minimum (S, T)-separators: We branch into
|V−S− T |(|V−S−T |− 1) instances Iuv = (Su = S ∪ {u}, Tv = T ∪{v}), u, v ∈
V−S− T , and select an (S, T)-sequence with minimum cost among solutions to
Iuv, u, v ∈ V−S−T as a solution to (S, T). Note that fmin(Su, Tv) > fmin(S, T).

The above branching rules give our search tree algorithm.
We now analyze the time and space complexities of our algorithm.

Linear Layouts in Submodular Systems 481

For each instance (S, T), we solve submodular minimization O(|V − S− T |2)
times to generate a set of instances in Case 2. Let Δ(a, b) denote the number
of distinct values in {f(X) | a ≤ f(X) < b, X ⊆ V }. It is not difficult to see
that the number of instances in the search tree rooted at an instance (S, T) is at
most |V − S− T |2Δ(fmin(S,T),k) since the number of branches is |V − S− T | and
the depth of the rooted tree is Δ(fmin(S, T), k). Hence we have the next (the
proof is omitted due to space limitation).

Lemma 2. From an instance (S, T), at most |V−S−T |2Δ(fmin(S,T),k) instances
that invoke submodular minimization will be generated.

It always holds fmin(S, T) ≥ f∗ for any generated instances (S, T). By Lemma 2,
our algorithm generates from each instance (S = {s}, T = {t}), at most
n2Δ(f∗,k) = n2(Δ(k)−1) instances that invokes submodular minimization, where
Δ(k) = |{f(X) ≤ k | ∅ � X � V }|. Since there are at most n2 pairs of (s, t) and
each instance invokes at most n2 submodular minimization, the number of times
for solving submodular minimizations is at most n2n2Δ(k)−2n2 = n2Δ(k)+2. This
proves Theorem 1.

4 Digraph Case

In this section, we consider layout of a digraph G = (V,E) with cost functions
costCW, costMLA, costVS and costSC, and analyze upper bounds on the time
and space complexities of our algorithm applied to these problems using flow
technique. We consider the problem of finding a minimum cost of an (S, T)-
sequence σ with f -width at most k.

4.1 Cutwidth and Minimum Linear Arrangement

We here show how to find a minimum cost layout of a digraph under a fixed
cutwidth. First consider the case where there is no precedent constraint, i.e.,
we set f = d+G; we assume that G is connected and m ≥ n − 1. Let λ denote
the edge-connectivity of G, i.e., λ = min∅�X�V d+(X). In this case, fmin(S, T)
and a minimum (S, T)-separator can be obtained by computing a maximum
(s′, t′)-flow ϕ in a directed network G′ obtained from G by contracting S and
T into single vertices s′ and t′, where the capacity of each directed edge is 1.
From a maximum (s′, t′)-flow ϕ, we can find a minimum (S, T)-separator A with
S � A � V −T in G in linear time (if any) by constructing a DAG representation
of all minimum (S, T)-separators in linear time [16] without newly solving O(n2)
minimization problems. Hence for each instance (S, T), we need to solve a single
maximum flow problem, which takes O(k(m + n)) time and O(n + m) space
[5], where we do not need to find any minimum (S, T)-separator when the flow
value exceeds k. Since the total number of instances to be generated is at most
n2n2Δ(k)−2 ≤ n2n2(k−λ+1)−2, the entire time complexity is O(kmn2(k−λ+1)).

482 H. Nagamochi

Theorem 2. Given a digraph G = (V,E) with n vertices and m edges and an
integer k ≥ 1, whether there is a sequence of V with pathwidth at most k can
be tested in O(kmn2(k−λ+1)) time and O(n + m) space. When such a sequence
exists, a sequence σ ∈ Σn with pathwidth at most k that minimizes costCW can
be found in the same time and space complexities.

We next consider the case where a precedent constraint is imposed as a poset
P ⊆ V × V i.e., we set f = d+G + (k + 1)d−P (note that f -width at most k is
equal to d+G-width in any sequences). In this case, let P = {(v, u) | (u, v) ∈ P},
and augment G by adding all edges (v, u) ∈ P to obtain a directed network,
where the capacity of each directed edge in E is 1 and we treat each (v, u) ∈ P
as k + 1 multiple edges with capacity 1. Hence the number m′ of edges in the
augmented multigraph is at most m + (k + 1)|P |. For a given (S, T), we can
obtain fmin(S, T) and a minimum (S, T)-separator in a similar way; we compute
a maximum (s′, t′)-flow in the directed network after contracting S and T into
single vertices s′ and t′, taking O(km′n2(k−λ+1)) = O(k(m+n+k|P |)n2(k−λ+1))
time and O(n + m+ |P |) space.
Theorem 3. Given a digraph G = (V,E) with n vertices and m edges, a poset
P ⊆ V ×V and an integer k ≥ 1, whether there is a sequence of V with pathwidth
at most k which meets the precedent constraint by P can be tested in O(k(m +
n+k|P |)n2(k−λ+1)) time and O(n+m+|P |) space. When such a sequence exists,
a sequence σ ∈ Σn with pathwidth at most k that minimizes costCW under the
precedent constraint by P can be found in the same time and space complexities.

For the layout of digraphs with sum cut costCW, the same statements of Theo-
rems 2 and 3 hold by replacing costCW with costMLA.

4.2 Vertex Separation and Sum Cut

We here show how to find a minimum cost layout of a digraph under a fixed path-
width (or vertex separation). We consider the case where a precedent constraint
where a precedent constraint is imposed as a poset P ⊆ V × V i.e., we set f =
Γ+
G +(k+1)d−P (note that f -width atmostk is equal toΓ+

G -width in any sequences).
In this case, we can compute a minimum (S, T)-separator by computing a

maximum flow applying the standard technique of converting vertex-cuts into
edge-cuts (however min∅�X�V Γ+(X) ≤ minv∈V Γ+(V − {v}) ≤ 1 is not the
vertex-connectivity of G). For this, we construct a digraph GP = (V ′∪V ′′, AE ∪
AV ∪ AP) as follows. Let P = {(v, u) | (u, v) ∈ P}. Replace each vertex v ∈ V
with two copies v′ and v′′ with a new directed edge (v′, v′′), and let AV =
{(v′, v′′) | v ∈ V }. For each directed edge (u, v) ∈ E, we set a directed edge
(u′′, v′) in GP , and let AE = {(u′′, v′) | (u, v) ∈ E}. For each directed edge
(v, u) ∈ P , we set a directed edge (v′′, u′′), and let AP = {(v′′, u′′) | (v, u) ∈ P},
where we treat each edge (v′′, u′′) in GP as k+1 multiple edges. The number m′

of edges in the multigraph GP is at most m + n + (k + 1)|P |. The next lemma
verifies that we can obtain a minimum (S, T)-separator A with Γ+(A) ≤ k
(if any) by computing a minimum (Ŝ, T̂)-separator in GP for Ŝ = {u′, u′′ | u ∈ S}
and T̂ = {u′′ | u ∈ T }(the proof is omitted due to space limitation).

Linear Layouts in Submodular Systems 483

Lemma 3. For the vertex-cut function Γ+
G of a digraph G = (V,E), and the

penalty function p = (k + 1)d−P defined by a poset P on V , let f = Γ+
G + p be a

set function on V . Let g be the edge-cut function d+GP
of GP = (V ′∪V ′′, AE∪AV ∪

AP) defined from (G,P, k) in the above. Given two disjoint subsets S, T ⊆ V ,

let Ŝ = {u′, u′′ | u ∈ S} and T̂ = {u′′ | u ∈ T }. Then fmin(S, T) > k if and only
if gmin(Ŝ, T̂) > k; and if fmin(S, T) ≤ k, then gmin(Ŝ, T̂) = fmin(S, T).

Since a minimum (Ŝ, T̂)-separator in GP can be obtained by computing a maxi-
mum (s′, t′)-flow after contracting Ŝ and T̂ into single vertices s′ and t′. The sin-
gle maximum flow problem can be solved in O(km′) = O(k(m+n+|P |)) time and
O(n+m′) = O(m+n+ |P |) space analogously with the case of cutwidth. Hence
the time bound is O(k(m+n+ |P |)n2n2Δ(k)−2) = O(k(m+n+ |P |)n2n2(k+1)−2).
In particular, when no precedent constraint is imposed, we can assume that G
is strongly connected (otherwise a solution is easily obtained) and we can set
Δ(k) ≤ k and |P | = 0 in these bounds. Therefore we obtain the following results.

Theorem 4. Given a digraph G = (V,E) with n vertices and m edges and an
integer k ≥ 1, whether there is a sequence of V with pathwidth at most k can be
tested in O(kmn2k) time and O(n + m) space. When such a sequence exists, a
sequence σ ∈ Σn with pathwidth at most k that minimizes costVS can be found
in the same time and space complexities.

Theorem 5. Given a digraph G = (V,E) with n vertices and m edges, a poset
P ⊆ V ×V and an integer k ≥ 1, whether there is a sequence of V with pathwidth
at most k which meets the precedent constraint by P can be tested in O(k(m +
n + k|P |)n2k+2) time and O(n + m + |P |) space. When such a sequence exists,
a sequence σ ∈ Σn with pathwidth at most k that minimizes costVS under the
precedent constraint by P can be found in the same time and space complexities.

For the layout of digraphs with sum cut costSC, the same statements of Theo-
rems 4 and 5 hold by replacing costVS with costSC.

5 Concluding Remarks

In this paper, we introduced a linear layout in submodular systems (V, f),
which includes several linear layout problems in graphs/digraphs, defining non-
decreasing cost functions and f -width. We proposed a framework for search tree
algorithms of finding a minimum cost layout with a bounded f -width. Our result
in contrast to Tamak’s algorithm has a similar trade-off between the O∗(2n)-time
and space algorithm and the O∗(4n)-time and polynomial-space algorithms; re-
ducing the space complexity to polynomial one increases the time complexity
up to the square of it (the work complexity). Theorem 1 would indicate that
f -width is a useful parameter to investigate the tractability of layout problems
with cost functions whose value is as large as n.

Acknowledgment. The author would like to thank Prof. Hisao Tamaki for
useful discussions.

484 H. Nagamochi

References

1. K. Abrahamson, M. Fellows. Finite automata, bounded treewidth and well-
quasiordering. in: Contemp. Math., 147: Amer. Math. Soc., Providence, RI, 539–
563, 1993.

2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

3. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: A
note on exact algorithms for vertex ordering problems on graphs. Theory Comput.
Syst. 50, 420–432 (2012)

4. Dı́az, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Computing
Surveys (CSUR) 34(3), 313–356 (2002)

5. Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. SIAM J.
Comput. 4, 507–518 (1975)

6. Fellows, M.R., Langston, M.A.: Layout permutation problems and well-partially
ordered sets. In: Advanced Research in VLSI, pp. 315–327. MIT Press, Cambridge
(1988)

7. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid algorithm and its conse-
quences in combinatorial optimization. Combinatorica 1, 499–513 (1981)

8. Gurari, E., Sudborough, I.H.: Improved dynamic programming algorithms for the
bandwidth minimization and the mincut linear arrangement problem. J. Algo-
rithm 5, 531–546 (1984)

9. Ikeda, M., Nagamochi, H.: A method for computing the pathwidth of chemical
graphs. In: The 15th Japan-Korea Joint Workshop on Algorithms and Computa-
tion, Tokyo, Japan, July 10-11, pp. 140–145 (2012)

10. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial, strongly polynomial-time
algorithm for minimizing submodular functions. J. ACM 48, 761–777 (2001)

11. Iwata, S., Tetali, P., Tripathi, P.: Approximating Minimum Linear Ordering Prob-
lems. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX 2012 and
RANDOM 2012. LNCS, vol. 7408, pp. 206–217. Springer, Heidelberg (2012)

12. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width.
Inf. Proc. Lett. 42, 345–350 (1992)

13. Makedon, F., Sudborough, I.H.: On minimizing width in linear layouts. Dis. Appl.
Math. 23(3), 243–265 (1989)

14. Nagamochi, H.: Submodular Minimization via Pathwidth. In: Agrawal, M., Cooper,
S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 584–593. Springer, Heidelberg
(2012)

15. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function
minimization. Math. Program., Ser. A 118, 237–251 (2009)

16. Picard, J.-C., Queyranne, M.: On the structure of all minimum cuts in a network
and applications. Math. Prog. Study 13, 8–16 (1980)

17. Robertson, N., Seymour, P.: Graph Minors. XX. Wagner’s conjecture. J. Combin.
Theory Ser. B 92(2), 325–335 (2004)

18. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. J. Combin. Theory Ser. B 80, 346–355 (2000)

19. Tamaki, H.: A Polynomial Time Algorithm for Bounded Directed Pathwidth. In:
Kolman, P., Kratochv́ıl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 331–342. Springer,
Heidelberg (2011)

20. Thilikos, D.M., Serna, M., Bodlaender, H.L.: Cutwidth I: A linear time fixed pa-
rameter algorithm. J. of Algorithms 56, 1–24 (2005)

Segmental Mapping and Distance

for Rooted Labeled Ordered Trees�

Tomohiro Kan1, Shoichi Higuchi1, and Kouichi Hirata2

1 Graduage School of Computer Science and Systems Engineering
2 Department of Artificial Intelligence & Biomedical Informatics R&D Center

Kyushu Institute of Technology Kawazu 680-4, Iizuka 820-8502, Japan
{kan,syou hig,hirata}@dumbo.ai.kyutech.ac.jp

Abstract. In this paper, as a variation of a Tai mapping between trees,
we introduce a segmental mapping to preserve the parent-children rela-
tionship as possible. Then, we show that the segmental mapping provides
a new hierarchy for the classes of Tai mappings in addition to a well-
known one. Also we show that the segmental distance as the minimum
cost of segmental mappings is a metric. Finally, we design the algorithm
to compute the segmental distance in quadratic time and space.

1 Introduction

Comparing tree-structured data such as HTML and XML data for web mining
or DNA and glycan data for bioinformatics is one of the important tasks for
data mining. In this paper, we formulate such data as rooted labeled ordered
trees (trees , for short) and then focus on distance measures between trees.

The most famous distance measure between trees is the edit distance [5]. The
edit distance is formulated as the minimum cost to transform from a tree to
another tree by applying edit operations of a substitution, a deletion and an
insertion to trees. It is known that the edit distance is closely related to the
notion of a Tai mapping (Tai) [5], which is a one-to-one node correspondence
between trees preserving ancestor and sibling relations. The minimum cost of
possible mappings coincides with the edit distance [5]. After introducing the
edit distance, the time complexity to compute it has been improved as O(n3)
time [2], where n is the maximum number of nodes in given two trees.

While the edit distance is the standard measure for comparing trees, it is too
general for several applications. Therefore, more structural sensitive variations
of the edit distance such as the top-down (or degree-1) distance [1,4], the degree-
2 distance [10], the accordant distance [3], the isolated-subtree (or constrained)
distance [7,9] and the bottom-up distance [6] are required for these applications.
Such variations are formulated as the minimum cost of restricted mappings such

� This work is partially supported by Grand-in-Aid for Scientific Research 22240010,
24240021 and 24300060 from the Ministry of Education, Culture, Sports, Science
and Technology, Japan.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 485–494, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

486 T. Kan, S. Higuchi, and K. Hirata

as top-down (Top), degree-2 (Dg2), accordant (Acc), isolated-subtree (IsSt)
and bottom-up (Bot) mappings, respectively, and computed in O(n2) time1.

It is known that these mappings provide the hierarchy described in Figure 1
(left) [3,7] as a Hasse diagram. This diagram claims that if M ∈ A then M ∈ B
for a mapping M , a lower class A and an upper class B in Figure 1 (left).

���

����

�		

��

�� ��

��

���

���� ��

	

��� ����

��������� ��

���

Fig. 1. A mapping hierarchy [3,7] (left) and a new mapping hierarchy (right)

In the above mappings, the parent-children relationship is just preserved by
both top-down and bottom-up mappings, which are too restricted. On the other
hand, it is sometimes important in several applications such as the function
determination of glycan data, the parse trees of programs, the trace patterns of
procedure calls and the change detection of XML documents (cf., [1,3,6]).

As the generalization of top-down and bottom-up mappings, we introduce a
segmental mapping (Sg) preserving the parent-children relationship as possible.
The segmental mapping requires that, for every pair of nodes in a mapping, if
the mapping contains a pair of the ancestors of the nodes, then it always contains
the pair of the parents of the nodes. Also we formulate top-down and bottom-up
segmental mappings (TopSg and BotSg) that are segmental mappings always
containing the pair of the roots and the pair of leaves as descendants, respectively.

In this paper, first we show that Sg, TopSg and BotSg provide a new
hierarchy in Figure 1 (right). Next, we show that the segmental distance and
the bottom-up segmental distance as the minimum cost of Sg and BotSg are
metrics. Finally, we design the algorithm to compute the segmental distance in
O(n2) time and space.

2 Preliminaries

A tree is a connected graph without cycles. For a tree T = (V,E), we denote V
and E by V (T) and E(T), respectively. Also the size of T is |V | and denoted by
|T |. We sometime denote v ∈ V (T) by v ∈ T . We denote an empty tree by ∅.
1 While Valiente [6] has first introduced a bottom-up distance, his distance does not
allow the substitution. Then, his distance is an indel distance, which runs in O(n)
time, rather than an edit distance, which runs in O(n2) time. See [8].

Segmental Mapping and Distance for Rooted Labeled Ordered Trees 487

A rooted tree is a tree with one node r chosen as its root . We denote the root
of a rooted tree T by r(T). For each node v in a rooted tree with the root r, let
UPr(v) be the unique path from v to r. The parent of v(�= r), which we denote
by par(v), is its adjacent node on UPr(v) and the ancestors of v(�= r) are the
nodes on UPr(v) − {v}. We denote the set of all ancestors of v by anc(v). We
say that u is a child of v if v is the parent of u, and u is a descendant of v if v
is an ancestor of u. In this paper, we use the ancestor orders < and ≤, that is,
u < v if v is an ancestor of u and u ≤ v if u < v or u = v. We say that w is the
least common ancestor of u and v, denoted by u � v, if u ≤ w, v ≤ w and there
exists no w′ such that w′ ≤ w, u ≤ w′ and v ≤ w′.

A leaf is a node having no children. We denote the set of all leaves in T by
lv(T). The degree of a node v ∈ V (T), denoted by deg(v), is the number of
children of v. A (complete) subtree of T rooted by v, denoted by T (v), is a tree
consisting of v and all of the descendants of v.

We say that a rooted tree is ordered if a left-to-right order among siblings
is given. For a rooted ordered tree T , a node v in T and its children v1, . . . , vi,
the preorder traversal of T (v) is obtained by visiting v and then recursively
visiting T (vk) (1 ≤ k ≤ i) in order. Similarly, the postorder traversal of T (v) is
obtained by first visiting T (vk) (1 ≤ k ≤ i) and then visiting v. The preorder
(resp., postorder) number of v ∈ T is the number of nodes preceding v in the
preorder (resp. postorder) traversal of T and denote it by pre(v) (resp., post(v)).
The nodes to the left of v ∈ T is the set of nodes u ∈ T satisfying that (1)
pre(u) ≤ pre(v) and (2) post(u) ≤ post(v). If u is to the left of v, then v is to
the right of u. We denote that u is to the left of v by u + v.

We say that a rooted tree is labeled if each node is assigned a symbol from
a fixed finite alphabet Σ. For a node v, we denote the label of v by l(v), and
sometimes identify v with l(v). In this paper, we call a rooted labeled ordered
tree a tree simply. A(n ordered) forest is a sequence of trees. We denote a forest
consisting of trees T1, . . . , Tm by [T1, . . . , Tm].

Definition 1 (Edit operations). We define edit operations of a tree T as
follows. See Figure 2.

1. Substitution: Change the label of the node v in T .
2. Deletion: Delete a non-root node v in T with parent v′, making the children

of v become the children of v′. The children are inserted in the place of v as
a subsequence in the left-to-right order of the children of v′.

3. Insertion: The complement of deletion. Insert a node v as a child of v′ in T
making v the parent of a consecutive subsequence of the children of v′.

Let ε �∈ Σ denote a special blank symbol and define Σε = Σ ∪ {ε}. Then, we
represent each edit operation by (l1 4→ l2), where (l1, l2) ∈ (Σε ×Σε − {(ε, ε)}).
The operation is a substitution if l1 �= ε and l2 �= ε, a deletion if l2 = ε, and an
insertion if l1 = ε. For nodes v and w, we also denote (l(v) 4→ l(w)) by (v 4→ w).

We define a cost function γ : (Σε ×Σε −{(ε, ε)}) 4→ R on pairs of labels. We
often constrain a cost function γ to be a metric, that is, γ(l1, l2) ≥ 0, γ(l1, l2) = 0
iff l1 = l2, γ(l1, l2) = γ(l2, l1) and γ(l1, l3) ≤ γ(l1, l2) + γ(l2, l3).

488 T. Kan, S. Higuchi, and K. Hirata

Substitution (v �→ w)

v �→ v

Deletion (v �→ ε) Insertion (ε �→ v)

v′

v
�→ v′ v′ �→

v′

v

Fig. 2. Edit operations for trees

Definition 2 (Edit distance). For a cost function γ, the cost of an edit opera-
tion e = l1 4→ l2 is given by γ(e) = γ(l1, l2). The cost of a sequence E = e1, . . . , ek
of edit operations is given by γ(E) =

∑k
i=1 γ(ei). Then, an edit distance τ(T1, T2)

between trees T1 and T2 is defined as follows:

τ(T1, T2) = min

{
γ(E)

∣∣∣∣E is a sequence of edit operations
transforming T1 to T2

}
.

Definition 3 (Mapping). Let T1 and T2 be trees. We say that a
triple (M,T1, T2) (or simply M when there is no confusion) is a Tai mapping
(a mapping, for short) between T1 and T2, which we denote by M ∈ Tai, if
M ⊆ V (T1) × V (T2) and every pair (v1, w1) and (v2, w2) in M satisfies the
following three conditions.

1. v1 = v2 iff w1 = w2. 2. v1 ≤ v2 iff w1 ≤ w2. 3. v1 + v2 iff w1 + w2.

Let M be a mapping between T1 and T2. Let I and J be the sets of nodes in T1

and T2 but not in M . Then, the cost of M is given as follows.

γ(M) =
∑

(v,w)∈M
γ(v 4→ w) +

∑
v∈I

γ(v 4→ ε) +
∑
w∈J

γ(ε 4→ w).

Theorem 1 (Tai [5]). τ(T1, T2) = min{γ(M) |M ∈ Tai}.

Trees T1 and T2 are isomorphic, denoted by T1 ≡ T2, if there exists a mapping
M between T1 and T2 such that γ(M) = 0, which we denote by M ∈ Iso.

Definition 4 (Variations). Let T1 and T2 be trees and M ⊆ V (T1)×V (T2) a
mapping between T1 and T2. Also we denote M − {(r(T1), r(T2))} by M−.

1. We say that M is an isolated-subtree mapping [7] (or a constrained map-
ping [9]), denoted by M ∈ IlSt, if M satisfies the following condition.

∀(v1, w1), (v2, w2), (v3, w3) ∈M
(
v3 < v1 � v2 ⇐⇒ w3 < w1 � w2

)
.

2. We say that M is an accordant mapping [3], denoted by M ∈ Acc, if M
satisfies the following condition.

∀(v1, w1), (v2, w2), (v3, w3) ∈M

(
v1 � v2 = v1 � v3
⇐⇒ w1 � w2 = w1 � w3

)
.

Segmental Mapping and Distance for Rooted Labeled Ordered Trees 489

3. We say that M is a degree-2 mapping [10], denoted by M ∈ Dg2, if M
satisfies the following condition.

∀(v1, w1), (v2, w2) ∈M−
(
(v1 � v2, w1 �w2) ∈M

)
.

4. We say that M is a top-down mapping [1,4], denoted by M ∈ Top, if M
satisfies the following condition.

∀(v, w) ∈M−
(
(par (v), par (w)) ∈M

)
.

5. We say that M is a bottom-up mapping [3,6,8]2, denoted by M ∈ Bot, if M
satisfies the following condition.

∀(v, w) ∈M

⎛⎝∀v′ ∈ T1(v)∃w′ ∈ T2(w)
(
(v′, w′) ∈M

)
∧∀w′ ∈ T2(w)∃v′ ∈ T1(v)

(
(v′, w′) ∈M

)⎞⎠ .

Also we define the top-down distance τ�(T1, T2) as min{γ(M) |M ∈ Top}.

Example 1. Consider the mappings Mi (1 ≤ i ≤ 6) in Figure 3. Then, it holds
that M1 ∈ Top; M2 �∈ Top but M2 ∈ Dg2; M3 �∈ Dg2 but M3 ∈ Acc;
M4 �∈ Acc but M4 ∈ IlSt; M5 �∈ IlSt but M5 ∈ Tai. Also it holds that
M6 ∈ Bot but M6 �∈ IlSt. Furthermore, it holds that Mi �∈ Bot (1 ≤ i ≤ 5).

�

� �

�

� �

�

�

� � �

�

�

� �

�

�

� �

�

�

� �

M1 M2 M3

�

� �

�

�

� �

�

� � �

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

M4 M5 M6

Fig. 3. Mappings Mi (1 ≤ i ≤ 6) in Example 1

3 Segmental Mapping and Distance

In this section, we introduce a segmental mapping and a segmental distance.

Definition 5 (Segmental mapping). Let T1 and T2 be trees andM ⊆ V (T1)×
V (T2) a mapping between T1 and T2.

2 While Valiente [6] has introduced a bottom-up mapping that requires an isolated-
subtree mapping, his algorithm computes one that is not an isolated-subtree distance.
Then, we adopt the revised definition of a bottom-up mapping [3,8].

490 T. Kan, S. Higuchi, and K. Hirata

1. We say that M is a segmental mapping, denoted by M ∈ Sg, if M satisfies
the following condition.

∀(v, w) ∈M−

(((
(v′, w′) ∈M

)
∧
(
v′ ∈ anc(v)

)
∧
(
w′ ∈ anc(w)

))
=⇒ (par (v), par (w)) ∈M

)
.

2. We say that M is a top-down segmental mapping, denoted by M ∈ TopSg,
if M is a segmental mapping such that (r(T1), r(T2)) ∈M .

3. We say that M is a bottom-up segmental mapping, denoted by M ∈ BotSg,
if M is a segmental mapping satisfying the following condition.

∀(v, w) ∈M

⎛⎜⎜⎜⎝∃(v
′, w′) ∈M

⎛⎝(
v ∈ anc(v′)

)
∧
(
w ∈ anc(w′)

)
∧
(
v′ ∈ lv(T1)

)
∧
(
w′ ∈ lv (T2)

)⎞⎠
∨
((

v ∈ lv(T1)
)
∧
(
w ∈ lv (T1)

))
⎞⎟⎟⎟⎠.

Example 2. Consider the mappings Mi (7 ≤ i ≤ 9) in Figure 4. For M7, it holds
that M7 ∈ Top, M7 ∈ TopSg, M7 ∈ BotSg and M7 ∈ Sg but M7 �∈ Bot. For
M8, it holds that M8 ∈ BotSg and M8 ∈ Sg but M8 �∈ Top and M8 �∈ TopSg.
For M9, it holds that M9 ∈ Sg but M9 �∈ BotSg, M9 �∈ TopSg and M9 �∈ Top.
Also it holds that M9 �∈ IlSt. Furthermore, for M3 and M6 in Example 1, it
holds that M3 ∈ IlSt but M3 �∈ Sg; M6 ∈ BotSg and M6 ∈ Sg but M6 �∈ IlSt.

�

� �

�

�

�

� �

�

�

�

� �

�

�

�

�

�

�

� �

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

M7 M8 M9

Fig. 4. Mappings Mi (7 ≤ i ≤ 9) in Example 2

Theorem 2 (Mapping hierarchy). The mapping hierarchy illustrated in Fig-
ure 1 (right) in Section 1 holds. that is:

1. Top = TopSg ⊂ Sg ⊂ Tai and Bot ⊂ BotSg ⊂ Sg ⊂ Tai.
2. A �⊆ B and B �⊆ A for A ∈ {BotSg,Sg} and B ∈ {Top,Dg2,Acc, IlSt}.

Proof. The formula in Definition 5 implies that Top = TopSg. Other inclusion,
properness and incomparability follow from Definition 5 and Example 2. ��

For segmental mappings Mi (i = 1, 2) between Ti and Ti+1, we define the com-
position M1 ◦M2 as {(u,w) | ∃v ∈ T2 s.t. (u, v) ∈ M1 and (v, w) ∈ M2}. Then,
we can show the following lemma from Definition 5 as similar as [9].

Lemma 1. 1. M1 ◦M2 is a segmental mapping between T1 and T3.
2. For a cost function γ that is a metric, γ(M1 ◦M2) ≤ γ(M1) + γ(M2).

Segmental Mapping and Distance for Rooted Labeled Ordered Trees 491

Definition 6 (Segmental distance). A segmental distance δ(T1, T2) and a
bottom-up segmental distance δ⊥(T1, T2) between T1 and T2 are defined as:

δ(T1, T2) = min{γ(M) |M ∈ Sg}, δ⊥(T1, T2) = min{γ(M) |M ∈ BotSg}.

Theorem 3. Both δ and δ⊥ are metrics.

Proof. It is sufficient to show the triangle inequality for δ. Let M1 (resp., M2)
be the minimum cost segmental mapping between T1 and T2 (resp., between T2

and T3). By Lemma 1, it holds that δ(T1, T3) ≤ γ(M1 ◦M2) ≤ γ(M1)+γ(M2) =
δ(T1, T2) + δ(T2, T3), so δ is a metric. Similarly, δ⊥ is also a metric ��

4 Computing Segmental Distance

In this section, we identify a node in T1 (resp., T2) with its postorder number
i (1 ≤ i ≤ |T1|) (resp., j (1 ≤ j ≤ |T2|)) of T1 (resp., T2), where 0 denotes
the empty tree. We denote the postorder number of the leftmost leaf of T1(i)
(resp., T2(j)) by ll (i) (resp., ll(j)). Also let F1(i) (resp., F2(j)) denote the forest
obtained by deleting i (resp., j) from T1(i) (resp., T2(j)). Let n = max{|T1|, |T2|}.

Let M be a segmental mapping between T1 and T2. Then, there exists at least
one pair (i, j) ∈M such that (i′, j′) �∈M for every ancestor i′ of i in T1 and every
ancestor j′ of j in T2. We call such a pair a maximal pair of M and denote the set
of all maximal pairs of M by PM . Also, for every (i, j) ∈ PM , we can obtain the
subset M(i,j) ⊆ M such that M(i,j) = {(i′, j′) ∈ M | i′ ∈ T1(i), j

′ ∈ T2(j)}. We
denote the set of nodes that are not descendants of every i (resp., j) such that
(i, j) ∈ PM by R1

M (resp., R2
M). Then, the following equation is straightforward.

γ(M) =
∑

(i,j)∈PM

γ(M(i,j)) +
∑

v∈R1
M

γ(v 4→ ε) +
∑

w∈R2
M

γ(ε 4→ w). (1)

Lemma 2. For every (i, j) ∈ PM , M(i,j) is a top-down mapping between T1(i)
and T2(j). Hence, it holds that γ(M(i,j)) ≥ τ�(T1(i), T2(j)).

Proof. For (i′, j′) ∈M(i,j), it holds that i′ ≤ i in T1 and j′ ≤ j in T2. Since M(i,j)

is a segmental mapping, there exists a sequence (i′1, j
′
1), . . . , (i

′
a, j
′
a) of pairs in

M(i,j) such that i′1 = i, j′1 = j, i′a = i′, j′a = j′, i′b = par (i′b+1) and j′b = par (j′b+1)
for 1 ≤ b ≤ a− 1. This implies that M(i,j) is a top-down mapping. ��

Lemma 3. Let M∗ be the minimum cost segmental mapping between T1 and
T2. Then, the following equation holds.

δ(T1, T2) =
∑

(i,j)∈PM∗

τ�(T1(i), T2(j)) +
∑

v∈R1
M∗

γ(v 4→ ε) +
∑

w∈R2
M∗

γ(ε 4→ w). (2)

Proof. Since γ(M∗) = δ(T1, T2) and the minimality of γ(M∗) implies that
γ(M∗(i,j)) = τ�(T1(i), T2(j)), the equation (2) follows from the equation (1). ��

492 T. Kan, S. Higuchi, and K. Hirata

procedure SegDist(T1, T2, γ)
/* T1, T2 : trees, γ : cost function */
for i = 1 to |T1| do1

for j = 1 to |T2| do2

TD [i, j] ← TopDownPair(i, j, γ);3

D[0, 0] ← 0;4

for i = 1 to |T1| do5

D[i, 0] ← D[i − 1, 0] + γ(i �→ ε);6

for j = 1 to |T2| do7

D[0, j] ← D[0, j − 1] + γ(ε �→ j);8

for i = 1 to |T1| do9

for j = 1 to |T2| do10

D[i, j] ← min

{
D[i− 1, j] + γ(i �→ ε), D[i, j − 1] + γ(ε �→ j),
D[ll(i)− 1, ll(j) − 1] + TD [i, j]

}
;

11

output D[|T1|, |T2|];12

procedure TopDownPair(i, j, γ)
/* i ∈ T1, F1(i) = [T1(i1), . . . , T1(im)], where i0 = 0 */
/* j ∈ T2, F2(j) = [T2(j1), . . . , T2(jn)], where j0 = 0 */
F [0, 0] ← 0;13

for k = 1 to m do14

F [ik, 0] ← F [ik−1, 0] + |T1(ik)| × γ(ik �→ ε);15

for l = 1 to n do16

F [0, jl] ← F [0, jl−1] + |T2(jl)| × γ(ε �→ jl);17

for k = 1 to m do18

for l = 1 to n do19

F [ik, jl] ← min

⎧⎨
⎩

F [ik−1, jl] + |T1(ik)| × γ(ik �→ ε),
F [ik, jl−1] + |T2(jl)| × γ(ε �→ jl),
F [ik−1, jl−1] + TD[ik, jl]

⎫⎬
⎭;

20

output F [im, jn] + γ(i �→ j);21

Algorithm 1. SegDist

The equation (2) claims that we can compute the segmental distance δ(T1, T2)
by first computing the top-down distance τ�(T1(i), T2(j)) for every pair (i, j) ∈
T1 × T2 and then combining pairs such that the total cost of a mapping is
minimum, which we achieve in O(n4) time by using a naive method [1,4]. In this
paper, we design an O(n2) time algorithm SegDist in Algorithm 1.

Lemma 4. For i ∈ T1 and j ∈ T2, the algorithm TopDownPair(i, j, γ) com-
putes the top-down distance τ�(T1(i), T2(j)) in O(deg(i)× deg(j)) time.

Proof. Let i1, . . . , im be the children of i in T1 and j1, . . . , jn the children of j
in T2, that is, let F1(i) = [T1(i1), . . . , T1(im)] and F2(j) = [T2(j1), . . . , T2(jn)].
Also let I = {i1, . . . , im} and J = {j1, . . . , jn}. Furthermore, since the for-loop
of lines 1 and 2 in SegDist executes in postorder traversal, we can suppose

Segmental Mapping and Distance for Rooted Labeled Ordered Trees 493

that TD [ia, jb](= τ�(T1(ia), T2(jb))) has been already computed for 1 ≤ ia < i
(1 ≤ a ≤ m) and 1 ≤ jb < j (1 ≤ b ≤ n) when computing τ�(T1(i), T2(j)).

Since γ(i 4→ j) in line 21 is the cost of the pair (i, j), which is contained from
every top-down mapping between T1(i) and T2(j), we can obtain the top-down
distance τ�(T1(i), T2(j)) by adding γ(i 4→ j) to the combination of I and J
providing the minimum cost. As the same discussion of [9], we can regard such
a combination as the string edit distance between i1 · · · im and j1 · · · jn under
the cost function c such that c(ia, ε) = |T1(ia)| × γ(ia 4→ ε) = τ�(T1(ia), ∅),
c(ε, jb) = |T2(jb)| × γ(ε 4→ jb) = τ�(∅, T2(ja)) and c(ia, jb) = τ�(T1(ia), T2(jb))
for 1 ≤ a ≤ m and 1 ≤ b ≤ n, each of which is a formula in line 20. It is obvious
that the algorithm TopDownPair(i, j, γ) runs in O(deg(i)× deg(j)) time. ��

Theorem 4. The algorithm SegDist computes the segmental distance δ(T1, T2)
between T1 and T2 in O(n2) time and space.

Proof. Let F1[i] (resp., F2[j]) be the forest of T1 (resp., T2) constructing the
nodes from 1 to i (resp., from 1 to j) in postorder of T1 (resp., T2). By the
definition of ll , ll(i)−1 and ll (j)−1 are the left siblings of i in F1[i] and j in F2[j],
that is, F1[i] = [. . . , T1(ll(i)− 1), T1(i)] and F2[j] = [. . . , T2(ll(j)− 1), T2(j)].

Suppose that D[k, l] is the segmental distance between F1[k] and F2[l] for
1 ≤ k ≤ i and 1 ≤ l ≤ j, and consider the segmental distance between F1[i] and
F2[j]. If j is inserted, then D[i, j] is the sum of the segmental distance D[i, j−1]
between F1[i] and F2[j − 1] and the cost γ(ε 4→ j) of the insertion of j. If i
is deleted, then D[i, j] is the sum of the segmental distance D[i − 1, j] between
F1[i−1] and F2[j] and the cost γ(i 4→ ε) of the deletion of i. If i is substituted to j,
then, by Lemma 3, D[i, j] is the sum of the segmental distance D[ll (i)−1, ll(j)−1]
between F1[ll(i)−1] and F2[ll(j)−1] and the top-down distance TD [i, j] between
T1(i) and T2(j). Hence, δ(T1, T2) is given as D[|T1|, |T2|].

The algorithm SegDist uses O(|T1| × |T2|) space. Also, by Lemma 4, the

time complexity of the algorithm SegDist is given as
∑|T1|

i=1

∑|T2|
j=1 O(deg(i) ×

deg(j))+O(|T1|)+O(|T2|)+O(|T1|× |T2|) ≤ O
(∑|T1|

i=1 deg(i)×
∑|T2|

j=1 deg(j)
)
+

O(|T1| × |T2|) ≤ O(|T1| × |T2|). ��

Furthermore, we can design the algorithm to compute the bottom-up segmental
distance δ⊥(T1, T2) in O(n2) time and space, by adding the routine of determin-
ing that a current top-down mapping contains a pair of leaves when the third
statement of F [ik−1, jl−1] + TD [ik, jl] in line 20 is executed to SegDist.

Figure 5 illustrates distributions and the correlation diagrams to the edit dis-
tance τ of segmental, top-down and bottom-up distances for N-glycan data pro-
vided from KEGG3. Hence, the segmental distance preserves the parent-children
relationship more than the top-down and the bottom-up distances nearer to τ .

3 Kyoto Encyclopedia of Genes and Genomes, http://www.kegg.jp/. The number of
N-glycan data is 2142, the average number of nodes is 11.09, the average number of
labels is 5.43 and the average depth and degree are 5.38 and 2.07, respectively.

494 T. Kan, S. Higuchi, and K. Hirata

%

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40

tree-edit-distance
segmental-distance
bottom-up-distance
top-down-distance

segmental distance top-down distance bottom-up distance

0

20

40

60

80

100

0 10 20 30 40 50

0

20

40

60

80

100

0 10 20 30 40 50

0

20

40

60

80

100

0 10 20 30 40 50τ τ τ

Fig. 5. The distributions (upper) and the correlation diagrams (lower) of segmental,
top-down and bottom-up distances to an edit distance τ for N-glycan data

References

1. Chawathe, S.S.: Comparing hierarchical data in external memory. In: Proc. VLDB
1999, pp. 90–101 (1999)

2. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition
algorithm for tree edit distance. ACM Trans. Algorithms 6 (2009)

3. Kuboyama, T.: Matching and learning in trees. Ph.D thesis, University of Tokyo
(2007), http://tk.cc.gakushuin.ac.jp/doc/kuboyama2007phd.pdf

4. Selkow, S.M.: The tree-to-tree editing problem. Inform. Process. Lett. 6, 184–186
(1977)

5. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26, 422–433 (1979)
6. Valiente, G.: An efficient bottom-up distance between trees. In: Proc. SPIRE 2001,

pp. 212–219 (2001)
7. Wang, J.T.L., Zhang, K.: Finding similar consensus between trees: An algorithm

and a distance hierarchy. Pattern Recog. 34, 127–137 (2001)
8. Yamamoto, Y., Hirata, K., Kuboyama, T.: A bottom-up edit distance between

rooted labeled trees. In: Proc. LLLL 2011, pp. 26–33 (2011)
9. Zhang, K.: Algorithms for the constrained editing distance between ordered labeled

trees and related problems. Pattern Recog. 28, 463–474 (1995)
10. Zhang, K., Wang, J.T.L., Shasha, D.: On the editing distance between undirected

acyclic graph. Int. J. Found. Comput. Sci. 7, 43–58 (1995)

http://tk.cc.gakushuin.ac.jp/doc/kuboyama2007phd.pdf

Detecting Induced Minors in AT-Free Graphs�

Petr A. Golovach1, Dieter Kratsch2, and Daniël Paulusma3

1 Department of Informatics, Bergen University, PB 7803, 5020 Bergen, Norway
petr.golovach@ii.uib.no

2 Laboratoire d’Informatique Théorique et Appliquée,
Université de Lorraine, 57045 Metz Cedex 01, France

kratsch@univ-metz.fr
3 School of Engineering and Computing Sciences, Durham University,

South Road, Durham DH1 3LE, UK
daniel.paulusma@durham.ac.uk

Abstract. The problem Induced Minor is to test whether a graph
G can be modified into a graph H by a sequence of vertex deletions
and edge contractions. We prove that Induced Minor is polynomial-
time solvable when G is AT-free, and H is fixed, i.e., not part of the
input. Our result can be considered to be optimal in some sense as we
also prove that Induced Minor is W[1]-hard on AT-free graphs, when
parameterized by |VH |. In order to obtain it we prove that the Set-

Restricted k-Disjoint Paths problem can be solved in polynomial
time on AT-free graphs for any fixed k. We also use the latter result to
prove that the Set-Restricted k-Disjoint Connected Subgraphs

problem is polynomial-time solvable on AT-free graphs for any fixed k.

1 Introduction

In this paper we study graph containment problems. Whether or not a graph
contains some other graph depends on the notion of containment used. In the lit-
erature several natural definitions have been studied such as containing a graph
as a contraction, dissolution, immersion, (induced) minor, (induced) topological
minor, (induced) subgraph, or (induced) spanning subgraph. We focus on the
containment relation “induced minor”. A graph G contains a graph H as an
induced minor if G can be modified into a graph H by a sequence of vertex
deletions and edge contractions. Here, the operation edge contraction removes
the end-vertices u and v of an edge from G and replaces them by a new vertex
adjacent to precisely those vertices to which u or v were adjacent. The corre-
sponding decision problem asking whether H is an induced minor of G is called
Induced Minor. This problem is NP-complete even when G and H are trees of
bounded diameter or trees, the vertices of which have degree at most 3 except
for at most one vertex, as shown by Matoušek and Thomas [14]. It is therefore
natural to fix the graph H and to consider only the graph G to be part of the
input. We denote this variant as H-Induced Minor.

� Supported by EPSRC (EP/G043434/1) and ERC (267959).

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 495–505, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

496 P.A. Golovach, D. Kratsch, and D. Paulusma

The computational complexity classification ofH-Induced Minor is far from
being settled, although both polynomial-time and NP-complete cases are known.
In contrast, the two related problems H-Minor and H-Topological Minor,
which are to test whether a graphG contains a graphH as a minor or topological
minor, respectively, can be solved in cubic time for any fixed graph H , as shown
by Robertson and Seymour [16] and Grohe et al. [9], respectively. Fellows et
al. [5] showed that there exists a graph H for which H-Induced Minor is NP-
complete. This specific graph H has 68 vertices and is still the smallest H for
which H-Induced Minor is known to be NP-complete. The question whether
H-Induced Minor is polynomial-time solvable for any fixed tree H was posed
as an open problem at the AMS-IMS-SIAM Joint Summer Research Conference
on Graph Minors in 1991. So far this question could only be answered for trees
on at most 7 vertices except for one case [6].

Due to the notorious difficulty of solving H-Induced Minor for general
graphs, the input has been restricted to special graph classes. Fellows et al. [5]
showed that for every fixed graph H , the H-Induced Minor problem can be
solved in linear time on planar graphs. Van ’t Hof et al. [10] extended this result
by proving that for every fixed planar graphH , the H-Induced Minor problem
is polynomial-time solvable on any minor-closed graph class not containing all
graphs. Belmonte et al. [1] showed that for every fixed graph H , the H-Induced
Minor problem is polynomial-time solvable for chordal graphs, whereas for claw-
free graphs a number of partial results, which only include polynomial-time
solvable cases, are known [7].

We consider H-Induced Minor restricted to the class of asteroidal triple-
free graphs, also known as AT-free graphs. An asteroidal triple is a set of three
mutually non-adjacent vertices such that each two of them are joined by a path
that avoids the neighborhood of the third, and AT-free graphs are exactly those
graphs that contain no such triple. AT-free graphs, defined fifty years ago by
Lekkerkerker and Boland [13], are well studied in the literature and contain many
well-known classes, e.g., cobipartite graphs, cocomparability graphs, cographs,
interval graphs, permutation graphs, and trapezoid graphs (cf. [3]). All these
graph classes have geometric intersection models being extremely useful when
designing polynomial-time algorithms for hard problems. No such model is avail-
able for AT-free graphs. Recently, Golovach et al. [8] showed that theH-Induced

Topological Minor problem is polynomial-time solvable on AT-free graphs
for every fixed H . They also showed that this problem is W[1]-hard when pa-
rameterized by |VH |.
Our Results. We show that H-Induced Minor can be solved in polynomial
time on AT-free graphs for any fixed graph H . Consequently, on AT-free graphs,
all four problemsH-Minor,H-Induced Minor,H-Topological Minor and
H-Induced Topological Minor are polynomial-time solvable for any fixed
graph H . In addition, we prove that Induced Minor is W[1]-hard when pa-
rameterized by |VH |. Our proof also implies the NP-completeness of Induced
Minor for AT-free graphs, which was not known before.

Detecting Induced Minors in AT-Free Graphs 497

The celebrated result by Robertson and Seymour that H-Minor is FPT on
general graphs [16] is closely connected to the fact that k-Disjoint Paths is
FPT with parameter k. To solve H-Induced Topological Minor on AT-free
graphs, Golovach et al. [8] considered the variant k-Induced Disjoint Paths,
in which the paths must not only be vertex-disjoint but also mutually induced,
i.e., edges between vertices of any two distinct paths are forbidden. Here we
must consider another variant, which was introduced by Belmonte et al. [1].
A terminal pair in a graph G = (V,E) is a specified pair of vertices s and t
called terminals, and the domain of a terminal pair (s, t) is a specified subset
U ⊆ V containing both s and t. We say that two paths, each of which is between
some terminal pair, are vertex-disjoint if they have no common vertices except
possibly the vertices of the terminal pairs. This leads to the following decision
problem, which is NP-complete on general graphs even when k = 2 [1].

Set-Restricted k-Disjoint Paths

Instance: a graphG, terminal pairs (s1, t1), . . . , (sk, tk), and domains U1, . . . , Uk.
Question: does G contain k mutually vertex-disjoint paths P1, . . . , Pk such that

Pi is a path from si to ti using only vertices from Ui for i = 1, . . . , k?

Note that the domains U1, . . . , Uk are not necessarily pairwise disjoint. If we
let every domain contain all vertices of G, we obtain exactly the Disjoint

Paths problem. We give an algorithm that solves Set-Restricted k-Disjoint

Paths in polynomial time on AT-free graphs for any fixed integer k. We then
use this algorithm as a subroutine in our polynomial-time algorithm that solves
H-Induced Minor on AT-free graphs for any fixed graph H . We emphasize
that we can not apply the algorithm for k-Induced Disjoint Paths on AT-
free graphs [8] as a subroutine to solve H-Induced Minor on AT-free graphs.
Also, the techniques used in that algorithm are quite different from the tech-
niques we use here to solve Set-Restricted k-Disjoint Paths on AT-free
graphs. Moreover, when k is in the input, k-Induced Disjoint Paths and
Set-Restricted k-Disjoint Paths have a different complexity for AT-free
graphs. Golovach et al. [8] proved that in that case k-Induced Disjoint Paths

is polynomial-time solvable for AT-free graphs, whereas k-Disjoint Paths, and
consequently Set-Restricted k-Disjoint Paths, is already NP-complete for
interval graphs [15], a subclass of AT-free graphs.

We use our algorithm for solving Set-Restricted k-Disjoint Paths to
obtain two additional results on AT-free graphs. The first result is that we can
solve the problem Set-Restricted k-Disjoint Connected Subgraphs in
polynomial time on AT-free graphs for any fixed integer k. A terminal set in a
graph G = (V,E) is a specified subset Si ⊆ V .

Set-Restricted k-Disjoint Connected Subgraphs

Instance: a graph G, terminal sets S1, . . . , Sk, and domains U1, . . . , Uk.
Question: doesG have k pairwise vertex-disjoint connected subgraphsG1, . . . , Gk,

such that Si ⊆ VGi ⊆ Ui, for 1 ≤ i ≤ k?

If |Si| = 2 for all 1 ≤ i ≤ k, then we obtain the Set-Restricted k-Disjoint

Paths problem. If Ui = VG then we obtain the k-Disjoint Connected Sub-

graphs problem. The latter problem has been introduced by Robertson and

498 P.A. Golovach, D. Kratsch, and D. Paulusma

Seymour [16] and is NP-complete on general graphs even when k = 2 and
min{|Z1|, |Z2|} = 2 [11]. The second result is that we can solve the problem H-

Contractibility in polynomial time on AT-free graphs for any fixed triangle-
free graph H . This problem is to test whether a graph G can be modified into a
graph H by a sequence of contractions only. For general graphs, its complexity
classification is still open but among other things it is known that the problem
is already NP-complete when H is the 4-vertex path or the 4-vertex cycle [2].

2 Preliminaries

We only consider finite undirected graphs without loops and multiple edges. Let
G be a graph. We denote the vertex set of G by VG and the edge set by EG. The
subgraph of G induced by a subset U ⊆ VG is denoted by G[U]. We say that
U ⊆ VG is connected if G[U] is a connected graph. The graph G−U is the graph
obtained from G by removing all vertices in U . If U = {u}, we also write G− u.
The open neighborhood of a vertex u ∈ VG is defined as NG(u) = {v | uv ∈ EG},
and its closed neighborhood is defined as NG[u] = NG(u) ∪ {u}. For U ⊆ VG,
NG[U] = ∪u∈UNG[u]. The degree of a vertex u ∈ VG is denoted dG(u) = |NG(u)|.
The distance distG(u, v) between a pair of vertices u and v of G is the number of
edges of a shortest path between them. Two sets U,U ′ ⊆ VG are called adjacent
if there exist vertices u ∈ U and u′ ∈ U ′ such that uu′ ∈ EG. A set U ⊆ VG

dominates a vertex w if w ∈ NG[U], and U dominates a set W ⊆ VG if U
dominates each vertex of W . In these two cases, we also say that G[U] dominates
w or W , respectively. A set U ⊆ VG is a dominating set of G if U dominates VG.

The graph P = u1 · · ·uk denotes the path with vertices u1, . . . , uk and edges
uiui+1 for i = 1, . . . , k − 1. We also say that P is a (u1, uk)-path. For a path P
with some specified end-vertex s, we write x ≺s y if x ∈ VP lies in P between s
and y ∈ VP ; in this definition, we allow that x = s or x = y. A pair of vertices
{x, y} is a dominating pair if the vertex set of every (x, y)-path is a dominating
set of G. Corneil et al. [3,4] proved the following structural theorem.

Theorem 1 ([3,4]). Every connected AT-free graph has a dominating pair and
such a pair can be found in linear time.

Using these results, Kloks et al. [12] gave the following tool for constructing
dynamic programming algorithms on AT-free graphs. For a vertex u of a graph
G, we call the sets Li(u) = {v ∈ VG | distG(u, v) = i} the BFS-levels of G.
Note that the BFS-levels of a vertex can be determined in linear time by the
Breadth-First Search algorithm (BFS).

Theorem 2 ([12]). Every connected AT-free graph contains a dominating path
P = u0 · · ·u� that can be found in linear time such that i) � is the number of
BFS-levels of u0, ii) ui ∈ Li(u0) for i = 1, . . . , �, and iii) each z ∈ Li(u0) is
adjacent to ui−1 or to ui for all 1 ≤ i ≤ �.

Detecting Induced Minors in AT-Free Graphs 499

3 Set-Restricted Disjoint Paths

We show that Set-Restricted k-Disjoint Paths can be solved in polynomial
time on AT-free graphs for any fixed integer k. We need some extra terminology.
Let G be a graph, and let W ⊆ VG. Consider an induced path P in G. Then
VP ∩W and VP \W induce a collection of subpaths of P called W -segments, or
segments if no confusion is possible. Segments induced by VP ∩W are said to
lie inside W , whereas segments induced by VP \W lie outside W . We need the
following three lemmas (two proofs are omitted due to space restrictions).

Lemma 1. Let P be an induced path in an AT-free graph G. Let U ⊆ VG be
connected. Then P has at most three segments inside NG[U].

Lemma 2. Let P be an induced path in an AT-free graph G. Let U ⊆ VG be
connected. Then every segment of P outside NG[U] that contains no end-vertex
of P has at most two vertices.

The next lemma directly follows from the condition on the path P to be induced.

Lemma 3. Let u be a vertex of an induced path P in a graph G. Then P has
one segment inside NG[u] and this segment has at most three vertices.

Let G be a graph with terminal pairs (s1, t1), . . . (sk, tk) and corresponding do-
mains U1, . . . , Uk. Let {P1, . . . , Pk} be a set of mutually vertex-disjoint paths,
such that Pi is a path from si to ti using only vertices from Ui for i = 1, . . . , k.
We say that {P1, . . . , Pk} is a solution. A solution {P1, . . . , Pk} is minimal if
no Pi can be replaced by a shorter (si, ti)-path P ′i that uses only vertices of Ui

in such a way that P1, . . . , Pi−1, P
′
i , Pi+1, . . . , Pk are mutually vertex-disjoint.

Clearly, every yes-instance of Set-Restricted k-Disjoint Paths has a min-
imal solution. We also observe that any path in a minimal solution is induced.
We need Lemma 4 (proof omitted).

Lemma 4. Let G be a graph with terminal pairs (s1, t1), . . . (sk, tk) and cor-
responding domains U1, . . . , Uk. Let u ∈ Ui for some 1 ≤ i ≤ k, and let
{P1, . . . , Pk} be a minimal solution with u /∈

⋃k
j=1 VPj . Then Pi has at most

two segments inside NG[u]. Moreover, if Pi has one segment inside NG[u], then
Pi has at most three vertices. If Pi has two segments Q1 and Q2 inside NG[u],
then Q1 and Q2 each has precisely one vertex, and the segment Q′ outside NG[u]
that lies between Q1 and Q2 in Pi also has one vertex.

We apply dynamic programming to prove that Set-Restricted k-Disjoint

Paths is polynomial-time solvable on AT-free graphs for every fixed integer k.
Our algorithm solves the decision problem, but can easily be modified to produce
the desired paths if they exist. It is based on the following idea. We find a shortest
dominating path u0 . . . u� in G as described in Theorem 2. For 0 ≤ i ≤ �, we
trace the segments of (sj , tj)-paths inside NG[{u0, . . . , ui}] by extending the
segments inside NG[{u0, . . . , ui−1}] in NG[ui] \NG[{u0, . . . , ui−1}]. Note that if
some path is traced from the middle, then we have to extend the corresponding

500 P.A. Golovach, D. Kratsch, and D. Paulusma

segment in two directions, i.e., we have to trace two paths. The paths inside
NG[ui] \NG[{u0, . . . , ui−1}] are constructed recursively, as by Lemmas 3 and 4
we can reduce the number of domains by distinguishing whether ui is used by
one of the paths or not. Hence, it is convenient for us to generalize as follows:

Set-Restricted r-Group Disjoint Paths

Instance: A graph H , positive integers p1, . . . , pr, terminal pairs (sji , t
j
i) for

i ∈ {1, . . . , r} and j ∈ {1, . . . , pi}, and domains U1, . . . , Ur.
Question: Does H contain mutually vertex-disjoint paths P j

i , where i ∈
{1, . . . , r} and j ∈ {1, . . . , pi}, such that P j

i is a path from sji to tji using only
vertices from Ui for i = 1, . . . , r?

Note that if p1 = . . . = pr = 1, then we have Set-Restricted r-Disjoint

Paths. We say that for each 1 ≤ i ≤ r, the pairs (s1i , t
1
i), . . . , (s

pi

i , tpi

i) (or
corresponding paths) form a group. We are going to solve Set-Restricted r-
Group Disjoint Paths for induced subgraphs H of G and r ≤ k recursively
to obtain a solution that can be extended to a solution of Set-Restricted

k-Disjoint Paths in such a way that P 1
i , . . . , P

pi

i are disjoint subpaths of the
(si, ti)-path Pi in the solution of Set-Restricted k-Disjoint Paths. Hence,
we are interested only in some special solutions of Set-Restricted r-Group

Disjoint Paths.
For r = 1, Set-Restricted r-Group Disjoint Paths is the p1-Disjoint

Paths problem in H [U1]. By the celebrated result of Robertson and Sey-
mour [16], we immediately get the following lemma.

Lemma 5. For r = 1 and any fixed positive integer p1, Set-Restricted r-
Group Disjoint Paths can be solved in O(n3) time on n-vertex graphs.

Now we are ready to describe our algorithm for Set-Restricted r-Group

Disjoint Paths. First, we recursively apply the following preprocessing rules.

Rule 1. If H has a vertex u /∈ ∪r
i=1Ui, then we delete it and solve the problem

on H − u.

Rule 2. If there are i ∈ {1, . . . , r} and j ∈ {1, . . . , pi} such that sji and tji are in
different components of H [Ui], then stop and return No.

Rule 3. If H has components H1, . . . , Hq and q > 1, then solve the problem

for each component Hh for the pairs of terminals (sji , t
j
i) such that sji , t

j
i ∈ VHh

and the corresponding domains. We return Yes if we get a solution for each
component Hh, and we return No otherwise.

Rule 4. If r = 1, then solve the problem by Lemma 5.

From now we assume that r ≥ 2 and H is connected. Let p = p1 + . . .+ pr.
By Theorem 2, we can find a vertex u0 ∈ VH and a dominating path P =

u0 . . . u� in H with the property that for i ∈ {1, . . . , �}, ui ∈ Li and for any
z ∈ Li, z is adjacent to ui−1 or ui, where L0, . . . L� are the BFS-levels of u0. For
i ∈ {0, . . . , �}, let Wi = NH [{u0, . . . , ui}], W−1 = ∅, and Si = NG[ui] \Wi−1.
To simplify notations, we assume that for i > �, Si = ∅, and S−1 = ∅. Notice
that by the choice of P , there are no edges xy ∈ EH with x ∈ Sj and y ∈
NH [{u0, . . . , ui}] if j − i > 2.

Detecting Induced Minors in AT-Free Graphs 501

Our dynamic programming algorithm keeps a table for each i ∈ {0, . . . , �},
Xi ⊆ Si+1 and Yi ⊆ Si+2, where |Xi| ≤ 4p, |Yi| ≤ 4p, and an integer nexti ∈
{0, . . . , r}. The table stores information about segments of (shj , t

h
j)-paths inside

Wi. Recall that each path can have more than one segment inside Wi, but in
this case by Lemma 1, there are at most three such segments, and by Lemma 2,
the number of vertices of the segments outside Wi, that join the segments inside,
is bounded. We keep information about these vertices in Xi, Yi. If nexti = 0,
then no path in the partial solution includes ui+1, and if nexti = j > 0, then
only (shj , t̃

h
j), (s̃hj , t

h
j), (s̃hj , t̃

h
j)-paths can use ui+1 (if i = �, then we assume

that nexti = 0). For each i,Xi, Yi, nexti, the table stores a collection of records
R(i,Xi, Yi, nexti) with the elements

{(Statehj , Rh
j)|1 ≤ j ≤ r, 1 ≤ h ≤ pi},

where Rh
j are ordered multisets of size at most two without common vertices

except (possibly) terminals s1, . . . , sk, t1, . . . , tk of the original instance of Set-
Restricted k-Disjoint Paths, Rh

j ⊆ Uj , and where each Statehj can have one
of the following five values:

Not initialized, Started from s, Started from t, Started from middle, Completed.

These records correspond to a partial solution of Set-Restricted r-Group

Disjoint Paths for Hi = H [Wi ∪Xi ∪ Yi] with the following properties.

– If Statehj = Not initialized, then (shj , t
h
j)-paths have no vertices in Hi in the

partial solution and Rh
j = ∅.

– If Statehj = Started from s, then shj ∈ Wi, t
h
j /∈ VHi and Rh

j contains one

vertex. Let Rj = (t̃hj). Then t̃hj ∈ Si−1 ∪ Si and the partial solution contains

an (shj , t̃
h
j)-path.

– If Statehj = Started from t, then shj /∈ VHi , t
h
j ∈ Wi and Rh

j contains one

vertex. Let Rh
j = (s̃hj). Then s̃hj ∈ Si−1∪Si and the partial solution contains

an (s̃hj , t
h
j)-path.

– If Statehj = Started from middle, then shj , t
h
j /∈ VHi and Rh

j contains two

vertices. Let Rh
j = (s̃hj , t̃

h
j) (it can happen that t̃hj = s̃hj). Then s̃hj , t̃

h
j ∈

Si−1 ∪ Si and the partial solution contains an (s̃hj , t̃
h
j)-path.

– If Statehj = Completed, then shj , t
h
j ∈Wi, R

h
j = ∅, and it is assumed that the

partial solution contains an (shj , t
h
j)-path.

We consequently construct the tables for i = 0, . . . , �. The algorithm returns Yes
if R(�,X�, Y�, next�) for X� = Y� = ∅ contains the record {(Statehj , Rh

j)|1 ≤ j ≤
r, 1 ≤ h ≤ pi}, where each Statehj =(Completed). The details and the proof of
the main theorem have been omitted.

Theorem 3. Set-Restricted k-Disjoint Paths can be solved in O(nf(k))
time for n-vertex AT-free graphs for some function f(k) that only depends on k.

502 P.A. Golovach, D. Kratsch, and D. Paulusma

4 Induced Minors

In this section we consider the H-Induced Minor problem. It is convenient for
us to represent this problem in the following way. An H-witness structure of G
is a collection of |VH | non-empty mutually disjoint sets W (x) ⊆ VG, one set for
each x ∈ VH , called H-witness sets, such that

(i) each W (x) is a connected set; and
(ii) for all x, y ∈ VH with x �= y, sets W (x) and W (y) are adjacent in G if and

only if x and y are adjacent in H .

Observe that H is an induced minor of G if and only if G has an H-witness
structure.

Theorem 4. H-Induced Minor can be solved in polynomial time on AT-free
graphs for any fixed graph H.

Proof. Suppose that H is an induced minor of G. Then G has an H-witness
structure, i.e., sets W (x) ⊆ VG for x ∈ VH . For each x ∈ VH , G[W (x)] is a
connected AT-free graph. Hence, by Theorem 1, G[W (x)] has a dominating pair
(ux, vx).

For each x ∈ VH , we guess the pair (ux, vx) (it can happen that ux = vx), and
guess at most six vertices of a shortest (ux, vx)-path Px in G[W (x)] as follows:
if Px has at most five vertices, then we guess all vertices of Px, and if Px has
at least six vertices, then we guess the first three vertices ux

1 , u
x
2 , u

x
3 and the last

three vertices vx1 , v
x
2 , v

x
3 such that ux = ux

1 , vx = vx3 and ux
1 ≺ux ux

2 ≺ux ux
3 ≺ux

vx1 ≺ux vx2 ≺ux vx3 in Px. Observe that Px is an induced path. We denote by
X1, X2 the partition of VH (one of the sets can be empty), where for x ∈ X1,
all at most five vertices of Px were chosen, and for x ∈ X2, we have the vertices
ux
1 , u

x
2 , u

x
3 , v

x
1 , v

x
2 , v

x
3 . Further, for each edge xy ∈ EH , we guess adjacent vertices

sxy, syx ∈ VG, where sxy ∈ W (x) and syx ∈ W (y). Notice that the vertices sxy
are not necessarily distinct, and some of them can coincide with the vertices
chosen to represent Px. Let S(x) = {sxy|xy ∈ EH}. All the guesses should be
consistent with the witness structure, i.e., vertices included in distinct W (x)
should be distinct, and if xy /∈ EH , then the vertices included in W (x) and
W (y) should be non-adjacent in G.

For x ∈ X1, we check whether the guessed path Px dominates S(x), and if it
is so, then we let W ′(x) = VPx ∪ S(x). Otherwise we discard our choice.

Recall that we already selected some vertices, and that we cannot use these
vertices and also not their neighbors in case non-adjacencies in H forbid this.
Hence, for each x ∈ X2, we obtain the set

Ux = VG \
(
(∪y∈X1,xy∈EHW

′(y)) ∪ (∪y∈X1,xy/∈EH
NG[W

′(y)])∪
∪ (∪y∈X2,xy∈EH (S(y) ∪ {uy

1, u
y
2, u

y
3 , v

y
1 , v

y
2 , v

y
3})∪

∪ (∪y∈X2\{x},xy/∈EH
NG[S(y) ∪ {uy

1, u
y
2, u

y
3 , v

y
1 , v

y
2 , v

y
3}]∪

∪NG[{ux
1 , u

x
2 , v

x
2 , v

x
3}]

)
∪ {ux

1 , u
x
2 , u

x
3 , v

x
1 , v

x
2 , v

x
3}.

Detecting Induced Minors in AT-Free Graphs 503

Then for each x ∈ X2, we check whether S′(x) = S(x) \ NG[{ux
1 , u

x
2 , v

x
2 , v

x
3}] is

included in one component of G[Ux]. If it is not so, then we discard our choice,
since we cannot have a path with the first vertices ux

1 , u
x
2 , u

x
3 and the last vertices

vx1 , v
x
2 , v

x
3 that dominates S(x). Otherwise we denote by U ′x the set of vertices of

the component of G[Ux] that contains S
′(x). Notice that (ux

1 , v
x
3) is a dominating

pair in G[U ′x] for x ∈ X2. To show it, consider a dominating pair (u, v) in G[U ′x].
Any (u, v)-path P dominates ux

1 and vx3 . It follows that one vertex of the pair
is in {ux

1 , u
x
2} and another is in {vx2 , vx3}. It remains to observe that if ux

2 (vx2
respectively) is in the pair, then it can be replaced by ux

1 (vx3 respectively). We
solve Set-Restricted |X2|-Disjoint Paths for the pairs of terminals (ux

1 , v
x
3)

with domains U ′x for x ∈ X2. If we get a No-answer, then we discard our guess
since there are no Px that satisfy our choices. Otherwise, let P ′x be the (ux

1 , v
x
3)-

path in the obtained solution for x ∈ X2. We let W ′(x) = P ′x ∪ S(x).
We claim that the sets W ′(x) compose an H-witness structure. To show

it, observe first that by the construction of these sets, W ′(x) are disjoint. If
xy ∈ EH , then as sxy ∈ W ′(x) and syx ∈ W ′(y), W ′(x) and W ′(y) are ad-
jacent. It remains to prove that if xy /∈ EG, then W ′(x) and W ′(y) are not
adjacent. To obtain a contradiction, assume that W ′(x) and W ′(y) are adjacent
for some x, y ∈ VH , i.e., there is uv ∈ EG with u ∈ W ′(x) and v ∈ W ′(y),
where xy /∈ EH . By the construction of W ′(x),W ′(y), x, y ∈ X2. Moreover,
u /∈ NG[{ux

1 , u
x
2 , v

x
2 , v

x
3}] or v /∈ NG[{uy

1, u
y
2 , v

y
2 , v

y
3}]. If u /∈ NG[{ux

1 , u
x
2 , v

x
2 , v

x
3}],

then we consider ux
1 , v

x
3 , u

y
1 and observe that these vertices compose an asteroidal

triple. Clearly, the (ux
1 , v

x
3)-path P ′x avoids NG[u

y
1], because NG[u

y
1] ∩ Ux = ∅.

Because u /∈ NG[{ux
1 , u

x
2 , v

x
2 , v

x
3}], u is either in P ′x or adjacent to a vertex in P ′x

and v is either in P ′y or adjacent to a vertex in P ′y, G[W ′(x)∪W ′[y]]−NG[u
x
1] and

G[W ′(x)∪W ′[y]]−NG[v
x
3] are connected. Hence, there are (u

x
1 , u

y
1) and (vx3 , u

y
1)-

paths that avoid NG[v
x
3] and NG[u

x
1] respectively. By symmetry, we conclude

that if v /∈ NG[{uy
1, u

y
2, v

y
2 , v

y
3}], then uy

1, v
y
3 , u

x
1 is an asteroidal triple. This con-

tradiction proves our claim. To complete the proof, note that we guess at most
6|VH | + 2|EH | vertices of G, and we can consider all possible choices in time
nO(|VH |+|EH |), where n = |VG|. If for one of the choices we get an H-witness
structure, then H is an induced minor of G, otherwise we return No. As we can
solve Set-Restricted |X2|-Disjoint Paths in time nf(|VH |) by Theorem 3,
the claim follows. ��

A graph is cobipartite if its vertex set can be partitioned into two cliques. Such a
graph is AT-free. Hence, the next theorem complements Theorem 4. It is proven
by a reduction from the Clique problem; the details have been omitted.

Theorem 5. The H-Induced Minor problem is NP-complete for cobipartite
graphs, and W[1]-hard for cobipartite graphs when parameterized by |VH |.

5 Concluding Remarks

We have presented a polynomial-time algorithm that solves Set-Restricted

k-Disjoint Paths on AT-free graphs for any fixed integer k, and applied this

504 P.A. Golovach, D. Kratsch, and D. Paulusma

algorithm to solve H-Induced Minor in polynomial time on this graph class
for any fixed graph H . We give (without proofs) two further applications of our
algorithm for Set-Restricted k-Disjoint Paths.

Theorem 6. Set-Restricted k-Disjoint Connected Subgraphs can be
solved in polynomial time on AT-free graphs for any fixed integer k.

Theorem 7. H-Contractibility can be solved in polynomial time on AT-free
graphs for any fixed triangle-free graph H.

The join of two vertex-disjoint graphs G1 = (V1, E1) and G2 = (V2, E2) is the
graph G1 �� G2 = (V1 ∪V2, E1 ∪E2 ∪{uv | u ∈ V1, v ∈ V2}). A graph G contains
a graph H as an induced minor if and only if K1 �� G contains K1 �� H as a
contraction [10]. This fact together with Theorem 5 yields Corollary 1.

Corollary 1. H-Contractibility is NP-complete for cobipartite graphs, and
W[1]-hard for cobipartite graphs when parameterized by |VH |.

Determining the complexity classification of H-Contractibility on AT-free
graphs when H is a fixed graph that is not triangle-free is an open problem.

References

1. Belmonte, R., Golovach, P.A., Heggernes, P., van ’t Hof, P., Kamiński, M.,
Paulusma, D.: Finding Contractions and Induced Minors in Chordal Graphs via
Disjoint Paths. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.)
ISAAC 2011. LNCS, vol. 7074, pp. 110–119. Springer, Heidelberg (2011)

2. Brouwer, A.E., Veldman, H.J.: Contractibility and NP-completeness. Journal of
Graph Theory 11, 71–79 (1987)

3. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM Journal
on Discrete Mathematics 10, 299–430 (1997)

4. Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs
in asteroidal triple-free graphs. SIAM Journal on Computing 28, 1284–1297 (1999)

5. Fellows, M.R., Kratochv́ıl, J., Middendorf, M., Pfeiffer, F.: The complexity of in-
duced minors and related problems. Algorithmica 13, 266–282 (1995)

6. Fiala, J., Kamiński, M., Paulusma, D.: Detecting induced star-like minors in poly-
nomial time (preprint)

7. Fiala, J., Kamiński, M., Paulusma, D.: A note on contracting claw-free graphs
(preprint)

8. Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced Disjoint Paths in AT-
Free Graphs. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp.
153–164. Springer, Heidelberg (2012)

9. Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological sub-
graphs is fixed-parameter tractable. In: Proceedings of STOC 2011, pp. 479–488
(2011)

10. van’ t Hof, P., Kaminski, M., Paulusma, D., Szeider, S., Thilikos, D.M.: On graph
contractions and induced minors. Discrete Applied Mathematics 160, 799–809
(2012)

Detecting Induced Minors in AT-Free Graphs 505

11. van’ t Hof, P., Paulusma, D., Woeginger, G.J.: Partitioning graphs in connected
parts. Theoretical Computer Science 410, 4834–4843 (2009)

12. Kloks, T., Kratsch, D., Müller, H.: Approximating the bandwidth for AT-free
graphs. Journal of Algorithms 32, 41–57 (1999)

13. Lekkerkerker, C.G., Boland, J.Ch.: Representation of a finite graph by a set of
intervals on the real line. Fundamenta Mathematicae 51, 45–64 (1962)

14. Matoušek, J., Thomas, R.: On the complexity of finding iso- and other morphisms
for partial k-trees. Discrete Mathematics 108, 343–364 (1992)

15. Natarajan, S., Sprague, A.P.: Disjoint paths in circular arc graphs. Nordic Journal
of Computing 3, 256–270 (1996)

16. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory B 63, 65–110 (1995)

Degree-Constrained Orientations

of Embedded Graphs

Yann Disser1 and Jannik Matuschke2

1 ETH Zurich, Institute of Theoretical Computer Science
ydisser@inf.ethz.ch

2 TU Berlin, Institut für Mathematik
matuschke@math.tu-berlin.de

Abstract. We investigate the problem of orienting the edges of an em-
bedded graph in such a way that the in-degrees of both the nodes and
faces meet given values. We show that the number of feasible solutions
is bounded by 22g , where g is the genus of the embedding, and all so-
lutions can be determined within time O(22g |E|2 + |E|3). In particular,
for planar graphs the solution is unique if it exists, and in general the
problem of finding a feasible orientation is fixed-parameter tractable in g.
In sharp contrast to these results, we show that the problem becomes
NP-complete even for a fixed genus if only upper and lower bounds on
the in-degrees are specified instead of exact values.

1 Introduction

Graph orientation is an area of combinatorial optimization that deals with the
problem of assigning directions to the edges of an undirected graph, subject
to certain problem-specific requirements. Besides yielding useful structural in-
sights, e.g., with respect to connectivity of graphs [14] and hypergraphs [11],
research in graph orientation is motivated by applications in areas such as graph
drawing [2,5] or efficient data structures for planar graphs [3].

A particularly well-studied class of orientation problems are degree-constrai-
ned problems, i.e., where the in-degree of each vertex in the resulting orientation
has to lie within certain bounds. Hakimi [12] and Frank [10] provided good
characterizations1 for the existence of such orientations. In this paper, we answer
a question raised by András Frank [9], asking for a good characterization for the
following problem: Given an embedding of a graph in the plane, is there an
orientation of the edges that meets prescribed in-degrees both in the primal
and the dual graph at the same time? We show that if such an orientation
exists, it is unique and can be computed by combining a feasible orientation
for the primal graph with a feasible orientation for the dual graph. Our result
generalizes to graph embeddings of higher genus, showing that the number of

1 A good characterization of a decision problem in the sense of Edmonds [6] is a
description of polynomially verifiable certificates for both yes- and no-instances of
the problem.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 506–516, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Degree-Constrained Orientations of Embedded Graphs 507

feasible orientations is bounded by a function of the genus, and the set of all
solutions can be computed efficiently as long as the genus is fixed. We also show
that the problem becomes NP-complete as soon as upper and lower bounds on
the in-degrees are specified instead of exact values.

Related Work. Research in graph orientation has a long history that revealed
many interesting structural insights and applications. E.g., a classical result by
Robbins [14] states that an undirected graph is 2-edge-connected if and only if
it has an orientation that is strongly connected. This result was translated to
hypergraphs by Frank et al. [11]. Graph orientation is also closely connected
to graph drawing. For example, Eades and Wormald [5] showed hardness of
a fixed edge-length graph drawing problem using an orientation problem on a
planar graph as an important device in their reduction. More recently, Biedl et
al. [2] provided a 13/8-approximation algorithm for finding a balanced acyclic
orientation, with implications for orthogonal graph drawing.

Regarding degree-constrained orientation problems, Hakimi [12] gave a good
characterization for the existence of orientations that match given prescribed
in-degrees exactly and also for the existence of orientations that fulfill either
lower or upper bounds on the in-degrees. Frank and Gyárfás [10] observed that
the results for lower and upper bounds can easily be combined in a constructive
way to find orientations that fulfill upper and lower bounds at the same time.
Asahiro et al. [1] consider an optimization version of the degree-constrained
orientation problem where a penalty function on the violated degree-bounds is
to be minimized. They find that the problem is solvable in polynomial time if the
penalty function is convex, but APX-hard in case of concave penalty functions.

Orientations of planar graphs received special attention by the research com-
munity because they revealed several interesting properties. Based on the insight
that every planar graph allows for an orientation with maximum in-degree 3,
Chrobak and Eppstein [3] designed a highly efficient data structure for adja-
cency queries in planar graphs. In a distinct line of research, Felsner [7] showed
that the set of orientations fulfilling a prescribed in-degree in a planar graph
carries the structure of a distributive lattice.

Contribution and Structure of the Paper. In this paper, we consider an extension
of the degree-constrained problem, which we call primal-dual orientation prob-
lem. The input to this problem is an embedding of a graph in a surface and we
require in-degree prescriptions not only to be met for every vertex but also for
every face of the embedding (in this context, the in-degree of a face refers to the
number of edges on its boundary oriented in counter-clockwise direction). This
variant of the problem was first proposed by András Frank for the special case
of plane graphs [9] in conjunction with the question for a good characterization
of the existence of such an orientation.

Before we present our results, we give a short introduction to orientations
and embedded graphs in Section 2. Section 3 then deals with the primal-dual
orientation problem with fixed in-degrees and contains two different proofs that
yield the answer to Frank’s question. Subsection 3.1 comprises a combinatorial

508 Y. Disser and J. Matuschke

proof for the uniqueness of the solution in plane graphs, also reducing the prob-
lem to solving the original degree-constrained orientation problem once in the
primal and once in the dual graph. In Subsection 3.2, an alternative proof based
on a simple linear algebra argument also yields a bound on the number of fea-
sible orientations in embeddings of higher genus—showing that the problem is
fixed-parameter tractable in terms of the genus. In Section 4, we show that if we
accept bounds on the in-degrees instead of exact values, the problem becomes
NP-complete. In Section 5, we point out an open question, which will be subject
of future research.

2 Preliminaries

We give a short introduction on graph embeddings and orientations of those
embeddings. Throughout this paper we will assume all graphs to be connected
but not necessarily simple, i.e., loops and multi-edges are allowed. While the
connectedness assumption is very common in the context of graph embeddings,
all results presented here can be extended to non-connected graphs by tem-
porarily introducing additional edges (and adjusting the in-degree specifications
accordingly) so as to render the graph connected.

Embedded Graphs. An embedding of a graph is a mapping of its vertices and
edges onto a closed surface (e.g., a sphere or a torus) such that edges meet only
at common vertices. This mapping partitions the surface into several regions,
called faces. The dual of an embedded graph is the graph that is obtained by
the following procedure: For every face in the embedding, introduce a vertex in
the dual graph. For every edge of primal graph, introduce an edge in the dual
graph that connects the faces that are adjacent to the original edge. The genus
g of the embedding is determined by Euler’s formula: If E is the set of edges, V
is the set of vertices and V ∗ is the set of faces, then |V |+ |V ∗| − |E| = 2− 2g.

If g = 0, i.e., the graph is embedded in a sphere, the embedding is called planar
(as embeddings in spheres and planes are combinatorially equivalent). Planar
embeddings have several features that make them particularly interesting. In
this work, we will make use of the following fact, called cycle-cut duality [15],
which holds (exclusively) in planar embeddings: A set of edges is a simple cycle
in the primal if and only if it is a simple cut2 in the dual and vice versa.

Orientations of Primal and Dual Graphs. An orientation of a graph is an as-
signment of directions to the edges, i.e., for every edge we specify one of the
two endpoints of the edge as its head and the other as its tail. By convention,
we orient the edges in the dual graph in such a way that they cross their pri-
mal “alter egos” from right to left (cf. Figure 1). Thus every orientation of the
primal graph induces an orientation of the dual graph and vice versa. Given an
orientation D, we denote the set of edges whose head is the vertex v by δ−D(v)

2 A simple cut is a cut whose edge set is minimal w.r.t. inclusion. In a connected graph,
a cut is simple if and only if it splits the graph into two connected components.

Degree-Constrained Orientations of Embedded Graphs 509

Fig. 1. Induced orientations of the edges in the dual graph. An edge in the dual graph
crosses its corresponding edge in the primal graph from right to left.

and the set of edges whose tail is v by δ+D(v). In accordance with our convention
for dual orientations, we let δ−D(f) be the set of edges whose left face is f , and
δ+D(f) be the set of edges whose right face is f .

We mention that our convention for primal and dual orientations extends
cycle/cut duality in the sense that a directed simple cycle in the primal is a
directed simple cut in the dual and vice versa.3

3 Orientations with Fixed In-degrees

We consider the problem of finding an orientation that meets given fixed in-
degrees for both the vertices and faces of the embedded graph, called the primal-
dual orientation problem. We start this section by stating a formal description
of the problem.

Problem 1. (Primal-dual orientation problem)

Given: an embedded graph G = (V,E),
two functions α : V → N0, α

∗ : V ∗ → N0

Task: Find an orientation D of the edges E such that |δ−D(v)| = α(v) for
all v ∈ V and |δ−D(f)| = α∗(f) for all f ∈ V ∗, or prove that there is
none.

Primal and Dual Feasibility. The following notation will be useful throughout the
proofs in this section. Given an instance of the primal-dual orientation problem,
we call an orientation D

– primally feasible if |δ−D(v)| = α(v) for all v ∈ V .
– dually feasible if |δ−D(f)| = α∗(f) for all f ∈ V ∗.
– totally feasible if it is primally and dually feasible.

3 A cut or cycle is directed if all its edges are oriented in the same direction.

510 Y. Disser and J. Matuschke

The primal-dual orientation problem thus asks for a totally feasible orientation.
It is clear that the existence of both primally feasible solutions and dually feasible
solutions is necessary for the existence of such a totally feasible orientation.
However, it can easily be checked that this is not sufficient: For example, consider
a planar graph with two vertices and two parallel edges connecting them, and
let α(v) = 1 and α∗(f) = 1 for all v ∈ V and f ∈ V ∗. While orienting both edges
in opposite directions in the primal graph is primally feasible, orienting them
in the same direction (which is orienting them in oposite directions in the dual
graph) is dually feasible. However, none of the orientations is totally feasible.

In this section, we will present two approaches for obtaining necessary and
sufficient conditions for the existence of totally feasible solutions.

3.1 A Combinatorial Approach for Planar Embeddings

In this section we want to provide a combinatorial argument for the uniqueness
of a feasible solution to the primal-dual orientation problem in the planar case.
We show how to construct a totally feasible solution from an orientation that is
feasible in the primal graph and an orientation that is feasible in the dual graph.

Rigid Edges. Hakimi [12] showed that a primally feasible orientation exists if
and only if

∑
v∈V α(v) = |E| and

∑
v∈S α(v) ≥ |E[S]| for all S ⊆ V , where E[S]

is the set of edges with both endpoints in S. The necessity follows from the fact
that every edge in E[S] contributes to the in-degree of a node in S, independent
of its orientation.

Now consider a subset S ⊆ V with
∑

v∈S α(v) = |E[S]|. All edges that have
one end point in S and one end point in V \ S must be oriented from S to
V \ S in all primally feasible orientations. We call edges whose orientation is
fixed in this way primally rigid4 and denote the set of all primally rigid edges
by R. Analogously, we define the set of dually rigid edges R∗ as those that are
fixed for all dually feasible orientations due to a tight set S∗ ⊆ V ∗ of faces with∑

f∈S∗ α∗(f) = |E[S∗]|. It is easy to check that an edge is primally rigid if and
only if it is on a directed cut in the primal graph with respect to any primally
feasible orientation. Likewise, an edge is dually rigid if it is on a directed cut
in the dual graph with respect to any dually feasible orientation. Furthermore,
note that the set of edges on directed cuts is invariant for all feasible solutions.

Our main result in this section follows from this characterization of rigid edges
and the duality of cycles and cuts in planar graphs.

Theorem 1. In case of a planar embedding, there exists a totally feasible ori-
entation if and only if the following three conditions are fulfilled.

(1) There exists both a primally feasible orientation D and a dually feasible
orientation D∗.

(2) The edge set can be partitioned into primally and dually rigid edges (E =
R∪̇R∗).

4 The term “rigid” for edges on a directed cut of an orientation is taken from [7].

Degree-Constrained Orientations of Embedded Graphs 511

(3) The orientation obtained by orienting all primally rigid edges in the same
direction as they are oriented in D and all dually rigid edges in the same
orientation as they are oriented in D∗ is totally feasible.

If it exists, the solution is unique.

Proof. The sufficiency of the conditions is trivial, as the third condition requires
the existence of a totally feasible orientation. In order to show necessity, assume
there exists a totally feasible orientation D0. As D0 is both primally and dually
feasible, it fulfills Condition (1) of the theorem. An edge is primally rigid if and
only if it is on a directed cut (w.r.t. D0) in the primal graph. It is dually rigid, if
and only if it is on a directed cut in the dual graph. Thus, by cycle/cut duality of
planar graphs, an edge is dually rigid if and only if it is on a directed cycle in the
primal graph. As every edge in the primal graph is either on a directed cut or on
a directed cycle, the sets of primally and dually rigid edges comprise a partition
of E, proving Condition (2). Now, let D be a primally feasible orientation and
D∗ be a dually feasible orientation. As D0 equals D on all primally rigid edges
and equals D∗ on all dually rigid edges, the construction described in Condition
(3) yields D0 and is feasible. As all edges are either primally of dually rigid,
they must have the same orientation in all totally feasible solutions, and D0 is
unique.

Note that the totally feasible solution constructed in the third condition does
not depend on the choice of D and D∗. Theorem 1 also yields a polynomial time
algorithm to solve the problem for planar embeddings.

Corollary 2. The primal-dual orientation problem in planar embeddings can be
solved in time O(|E|2).

Proof. By Theorem 1, the problem can be solved by computing a primally fea-
sible solution and a dually feasible solution and identifying the corresponding
rigid edges. A primally feasible orientation can be found in time O(|V ||E|) by
using a simple push/relabel type algorithm [8]. Now applying the same result to
the dual gives a total time of O((|V |+ |V ∗|) · |E|) = O(|E|2) for determining the
two orientations. Identifying directed cuts is equivalent to identifying strongly
connected components, which can be done in time O(|E|).

3.2 A Linear Algebra Analysis for General Embeddings

The primal-dual orientation problem can be formulated as a system of linear
equalities over binary variables. To this end, we fix an arbitrary orientation D
of the graph and introduce for every edge e ∈ E a decision variable x(e) that
determines whether the orientation of the edge should be reversed (if it is 1) or
not (if it is 0) in order to become totally feasible. The vector x ∈ {0, 1}E yields
a feasible orientation if and only if it satisfies the following system of equalities:

512 Y. Disser and J. Matuschke

Fig. 2. Construction of an instance with 22g feasible orientations, showing the tightness
of the bound in Theorem 3. The base graph consists of two cycles of length 3 intersecting
in a common vertex and is embedded in a torus. Examples of genus g are obtained by
introducing g copies of the base graph.

∑
e∈δ+D(v)

x(e)−
∑

e∈δ−D(v)

x(e) = α(v) − |δ−D(v)| ∀v ∈ V∑
e∈δ+D(f)

x(e)−
∑

e∈δ−D(f)

x(e) = α∗(f)− |δ−D(f)| ∀f ∈ V ∗

The matrix corresponding to the first set of equalities is the incidence matrix of
the primal graph, while the matrix corresponding to the second type of equalities
is the incidence matrix of the dual graph (both graphs directed according to the
orientation D). As we assume the graph to be connected, we know that the rank
of the former matrix is |V | − 1, while the rank of the latter matrix is |V ∗| − 1.
Using the fact that the boundary of a face is a closed walk in the primal graph,
it is easy to see that the rows of the first matrix are orthogonal to the rows
of the second matrix. This implies that all feasible solutions are contained in a
subspace of RE of dimension |E| − |V | − |V ∗|+ 2 = 2g.

Theorem 3. There are at most 22g distinct solutions to the primal-dual orien-
tation problem. The set of all totally feasible orientations can be determined in
time O(22g|E|2 + |E|3). The bound on the number of orientations is tight, i.e.,
there are embedded graphs of genus g that allow for 22g distinct orientations.

Proof. By basis augmentation, there is a set A ⊆ E of 2g edges such that adding
equalities x(e) = a(e) with a(e) ∈ {0, 1} for all e ∈ A results in a system with
full rank, i.e., it has at most one solution. If for some a ∈ {0, 1}A the unique
solution exists and is a 0-1-vector, it corresponds to the unique totally feasible
orientation that orients the edges of A according to the values a(e). Otherwise,
there is no such totally feasible orientation. Thus, solving the equality system for
all |{0, 1}A| = 22g possible values of a yields all possible solutions to the primal-
dual orientation problem. This takes time O(|E|3) for inverting the |E| × |E|-
matrix and O(22g|E|2) for multiplying the 22g distinct right hand side vectors.

To see that the bound on the number of orientations is tight, consider the
example depicted in Figure 2. It is constructed from a base graph consisting of
two cycles of length 3 sharing a common vertex. The base graph is embedded in

Degree-Constrained Orientations of Embedded Graphs 513

a torus, thus featuring only a single face f . When setting α∗(f) = |E| = 6, any
orientation is dually feasible as all dual edges are self-loops. We set the in-degree
specification to 2 for the vertex at the intersection of the cycles and to 1 for
the other vertices. Now, an orientation of the base graph is primally feasible,
if and only if the edges of each cycle are all orientented in the same direction.
As the two cycles can be oriented independently, the base graph has 4 feasible
orientations. Examples of higher genus can be obtained by introducing g copies of
the embedding described above. The graphs are joined via an edge from node bi
to ai+1 for i ∈ {1, . . . , g − 1}. The resulting embedding has 5g vertices and 7g−1
edges and still has only a single face. We increase the in-degree specifications
of each base graph by setting α(ai+1) = 2 for i ∈ {1, . . . , g − 1}, so that the
new edges joining the copies have to be oriented from copy i to copy i+ 1. The
in-degree specification of the face is set to |E| = 7g − 1. Now each copy of the
base graph still has its 4 feasible orientations, so in total there are 4g feasible
orientations.5

4 Orientations with Upper and Lower Bounds

A generalization of the primal-dual orientation problem asks for an orientation
that fulfills upper and lower bounds on the in-degrees of vertices and faces instead
of attaining fixed values. We show that this problem becomes NP-complete,
even when restricted to instances with embeddings of a fixed genus (e.g., planar
graphs).

Problem 2. (Bounded primal-dual orientation problem)

Given: an embedded graph G = (V,E),
two pairs of functions α, β : V → N0 and α∗, β∗ : V ∗ → N0

Task: Find an orientation D of the edges E such that α(v) ≤ |δ−D(v)| ≤ β(v)
for all v ∈ V and α∗(f) ≤ |δ−D(f)| ≤ β∗(f) for all f ∈ V ∗, or prove that
there is none.

Theorem 4. The bounded primal-dual orientation problem is NP-complete for
graphs with any fixed genus.

Proof sketch. An orientation that solves the bounded primal-dual orientation
problem can easily be verified in polynomial time. Hence, it remains to show
that the problem is NP-hard. It is sufficient to do this for planar graphs. We use
a reduction from planar 3-SAT, which is known to be an NP-hard problem [13].
We construct an instance of the bounded primal-dual orientation problem that

5 Note that while the primal graph in the construction described above could also
be embedded in a plane, this can be avoided by introducing additional vertices and
edges.

514 Y. Disser and J. Matuschke

Fig. 3. Illustration of the variable gadget (left) and the clause gadget (right). The de-
gree (number of occurrences) of variable vi is denoted by d(vi). The labels of the nodes
correspond to their prescribed in-degrees, and the intervals on the faces correspond to
a range of permitted in-degrees. The orientation of the edge (vTi , v

F
i) corresponds to a

truth assignment to variable vi. The orientation of the edge (cl,Tj , cl,Fj) corresponds to
a truth assignment to literal l in clause Cj .

has a solution if and only if the instance of planar 3-SAT has a solution. The
construction consists of three main devices: For each variable, there is a variable
gadget, for each clause, there is a clause gadget, and whenever a clause contains
a variable, the corresponding gadgets are connected by an edge gadget. Figures
3 and 4 illustrate the construction. For a complete proof, please refer to the full
version of this paper [4].

Corollary 5. The bounded primal-dual orientation problem is NP-complete even
when restricted to instances with α = β or α∗ = β∗.

Fig. 4. Illustration of the edge gadget for an edge connecting variable vi with clause
Cj . The gadget on the left is used when vi appears in a positive literal in Cj , and the
one on the right is used when vi appears in a negative literal.

Degree-Constrained Orientations of Embedded Graphs 515

Proof. This follows from the fact that the construction in the proof of Theorem 4
has α = β. By duality, the reduction can also be achieved by an instance with
α∗ = β∗.

5 Conclusion

We have shown that the primal-dual orientation problem in an embedded graph
of genus g has at most 22g feasible solutions and the set of all solutions can be
computed in time O(22g|E|2 + |E|3). In particular, the solution is unique if the
embedding is planar. However, the problem becomes NP-hard immediately, if
only upper and lower bounds on the in-degrees are specified.

While these results give a relatively clear characterization of the complexity of
the primal-dual orientation problem, we still want to point out an open question
resulting from our research: The algorithm proposed in the proof of Theorem
3 has a running time that is exponential in the genus of the embedding. Is it
possible to devise an algorithm that finds a totally feasible orientation in time
polynomial in the size of the graph and the genus of the embedding? In the case
of the bounded primal-dual orientation problem, our results imply that parame-
terization by the genus did not have any effect on the complexity of the problem.
This might be an indication that the primal-dual orientation problem with exact
degree specifications is not only fixed-parameter tractable but actually solvable
in polynomial time.

Acknowledgements. We thank Kristóf Bérczi and Júlia Pap for providing
many helpful suggestions. This work has been supported by the Berlin Mathe-
matical School and by Deutsche Forschungsgemeinschaft (DFG) as part of the
Priority Program “Algorithm Engineering” (1307).

References

1. Asahiro, Y., Jansson, J., Miyano, E., Ono, H.: Upper and Lower Degree Bounded
Graph Orientation with Minimum Penalty. In: Proceedings of the 18th Computing:
The Australasian Theory Symposium (CATS 2012). CRPIT, vol. 128, pp. 139–146
(2012)

2. Biedl, T., Chan, T., Ganjali, Y., Hajiaghayi, M.T., Wood, D.R.: Balanced vertex-
orderings of graphs. Discrete Applied Mathematics 148(1), 27–48 (2005)

3. Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and com-
paction of adjacency matrices. Theoretical Computer Science 86(2), 243–266 (1991)

4. Disser, Y., Matuschke, J.: Degree-constrained orientations of embedded graphs.
Technical Report 032, TU Berlin (2011)

5. Eades, P., Wormald, N.C.: Fixed edge-length graph drawing is NP-hard. Discrete
Applied Mathematics 28(2), 111–134 (1990)

6. Edmonds, J.: Minimum partition of a matroid into independent subsets. Journal
of Research National Bureau of Standards Section B 69, 67–72 (1965)

7. Felsner, S.: Lattice structures from planar graphs. Journal of Combinatorics 11(1),
15 (2004)

516 Y. Disser and J. Matuschke

8. Frank, A.: Connections in combinatorial optimization. Oxford University Press
(2011)

9. Frank, A.: Personal communication (February 2010)
10. Frank, A., Gyárfás, A.: How to orient the edges of a graph. Colloquia Mathematica

Societatis Janos Bolyai 18, 353–364 (1976)
11. Frank, A., Király, T., Király, Z.: On the orientation of graphs and hypergraphs.

Discrete Applied Mathematics 131(2), 385–400 (2003)
12. Hakimi, S.L.: On the degrees of the vertices of a directed graph. Journal of the

Franklin Institute 279(4), 290–308 (1965)
13. Lichtenstein, D.: Planar formulae and their uses. SIAM Journal on Comput-

ing 11(2), 329–343 (1982)
14. Robbins, H.: A theorem on graphs, with an application to a problem of traffic

control. The American Mathematical Monthly 46(5), 281–283 (1939)
15. Whitney, H.: Non-separable and planar graphs. Transactions of the American

Mathematical Society 34(2), 339–362 (1932)

Interval Graph Representation

with Given Interval and Intersection Lengths

Johannes Köbler1, Sebastian Kuhnert1,�, and Osamu Watanabe2

1 Humboldt-Universität zu Berlin, Inst. für Informatik
2 Tokyo Institute of Technology, Dept. of Mathematical and Computing Sciences

Abstract. We consider the problem of finding interval representations
of graphs that additionally respect given interval lengths and/or pairwise
intersection lengths, which are represented as weight functions on the ver-
tices and edges, respectively. Pe’er and Shamir proved that the problem
is NP-complete if only the former are given [SIAM J. Discr. Math. 10.4,
1997]. We give both a linear-time and a logspace algorithm for the case
when both are given, and both an O(n·m) time and a logspace algorithm
when only the latter are given. We also show that the resulting interval
systems are unique up to isomorphism.

Complementing their hardness result, Pe’er and Shamir give a
polynomial-time algorithm for the case that the input graph has a unique
interval ordering of its maxcliques. For such graphs, their algorithm com-
putes an interval representation that respects a given set of distance in-
equalities between the interval endpoints (if it exists). We observe that
deciding if such a representation exists is NL-complete.

1 Introduction

Algorithmic aspects of interval graphs have been the subject of ongoing research
for several decades, stimulated by their numerous applications; see e.g. [Gol04].

The interval representation problem asks, given a graph G, if G is an inter-
val graph, and if so, to compute an interval representation for it. Booth and
Lueker [BL76] solve this problem in linear time, introducing the widely used
concept of PQ-trees to efficiently encode all possible orderings of the maximal
cliques. Hsu and Ma [HM99] give a simpler linear-time algorithm that relies on
modular decomposition instead. Corneil, Olariu, and Stewart [COS09] show a
further simplification, avoiding ordering the maximal cliques, by using lexico-
graphic breadth first search. Klein gave a parallel AC2 algorithm [Kle96]. Köbler
et al. [KKLV11] show that the interval representation problem is complete for
logspace.

In this paper, we consider the problems whether a graph with a weight func-
tion � on its vertices and/or a weight function s on its edges admits �-respecting
interval representations (where for each vertex v, its weight �(v) prescribes
the length of its interval), s-respecting interval representations (where for each

� Supported by DFG grant KO1053/7–1.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 517–526, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

518 J. Köbler, S. Kuhnert, and O. Watanabe

edge {u, v}, its weight s({u, v}) prescribes the length of the intersection of the
intervals of u and v), and (�, s)-respecting interval representations (which are
required to fulfill both these restrictions). Pe’er and Shamir showed that it is
NP-complete to decide if a graph G admits an �-respecting interval represen-
tation [PS97]. The problem of finding s-respecting interval representations was
introduced in [Yam07].

Our Results. We show how to construct (�, s)-respecting interval representations
in linear time or alternatively in logspace, and s-respecting interval representa-
tions in O(n ·m) time or alternatively in logspace. Since computing �-respecting
interval representations is NP-hard, our result illustrates that the information
on interval intersections is quite helpful.

The first step towards our algorithms is to show that all interval representa-
tions of the appropriate type have the same inclusion and overlap relationships,
and that these relations can be computed efficiently when G, � (and s) are given
as input. This is described in Section 3.

To obtain our results on (�, s)-respecting interval representations (which are in
Section 4), we first focus on graphs with overlap-connected representations. We
show that these representations are unique up to reflection and can be computed
efficiently (if they exist). For graphs with several overlap components we arrange
these components into a tree, and combine their (�, s)-respecting interval repre-
sentations into one for the whole graph. We also show that all (�, s)-respecting
interval representations are isomorphic.

In Section 5 we show how to compute s-respecting interval representations
efficiently. To obtain our result, we repeatedly use our algorithm for computing
an (�, s)-respecting interval representation as a subroutine. We prove that the
lengths of the pairwise intersections already determine the interval lengths (up
to insertion of points that are only present in a single interval). The resulting
s-respecting interval representation is minimal, i.e., it contains no superfluous
points. We also show that all minimal s-respecting interval representations are
isomorphic.

In Section 6, we consider the variant of the interval representation problem
for which Pe’er and Shamir gave a polynomial time algorithm [PS97]: On the
one hand, the input graph is required to have a unique interval ordering of its
inclusion-maximal cliques (up to reflection); on the other hand, general lower
and upper bounds on distances between interval endpoints are allowed. We ob-
serve that this variant is in fact NL-complete. That is, it is unlikely that this
generalization of the �-respecting interval representation problem is solvable in
deterministic logspace even for the restricted input graphs.

2 Preliminaries

We say that two sets A and B overlap and write A
 B, if A∩B �= ∅, A\B �= ∅,
and B \A �= ∅. The cardinality of a finite set A is denoted by ‖A‖.

For a graph G = (V,E), the set of neighbors of a vertex v ∈ V is denoted
byN(v). G is an interval graph if there is a system I of nonempty intervals over N

Interval Graph Representation with Given Interval and Intersection Lengths 519

(we allow I to be a multiset) and a bijection ρ : V → I such that {u, v} ∈ E ⇔
ρ(u)∩ρ(v) �= ∅. In this case, ρ is called an interval representation of G and I is
called an interval model of G. The latter is also denoted by ρ(G).

We write [l, r] to denote the interval {i ∈ N | l ≤ i ≤ r}. With the length of an
interval we denote the number of points in it.1 For an interval model I we always
suppose

⋃
I∈I I = [1, k] for some k, i.e., we disallow shifting and gaps between

connected components. I can be regarded as hypergraph with nodes [1, k] and
hyperedges I. Two interval models I and I ′ with points [1, k] are isomorphic if
they are isomorphic as hypergraphs, i.e., if there is a permutation π : [1, k] →
[1, k] of the points that induces a bijection between the intervals of I and I ′
(preserving multiplicities). We call two interval representations ρ1 and ρ2 of a
graph G isomorphic if ρ1(G) and ρ2(G) are isomorphic. The slots of I are the
equivalence classes on [1, k] w.r.t. containment in the intervals in I. That is, two
vertices are in the same slot, if all hyperedges contain either both or none of
them.

For functions � : V → N and s : E → N, an interval representation ρ : V → I
of G = (V,E) is called �-respecting if ‖ρ(v)‖ = �(v) for all v ∈ V , s-respecting
if ‖ρ(u) ∩ ρ(v)‖ = s({u, v}) for all {u, v} ∈ E, and (�, s)-respecting if both con-
ditions hold. An s-respecting interval representation ρ of G is called minimal if
there is no s-respecting interval representation ρ′ of G that uses fewer points,
i.e., that satisfies

∥∥⋃
v∈V ρ′(v)

∥∥ <
∥∥⋃

v∈V ρ(v)
∥∥.

As usual, L is the class of all languages decidable by Turing machines with a
read-only input tape using only O(logN) space on the working tapes, where N
is the input size. FL is the class of all functions computable by such machines
that additionally have a write-only output tape. Note that FL is closed under
composition: To compute f(g(x)) for f, g ∈ FL, simulate the Turing machine
for f and keep track of the position of its input head. Every time this simulation
needs a character from f ’s input tape, simulate the Turing machine for g on input
x until it outputs the required character. Note also that g can first output a copy
of its input x and afterwards compute additional information to be used by f .
This construction can be iterated a constant number of times, still preserving
the logarithmic space bound. We will utilize this closure property in our logspace
algorithms by employing pre- and post-processing steps.

This closure property can also be used to generalize our logspace results
to the case where the prescribed lengths are rational: Bring all lengths to
a common denominator and use the resulting numerators. This transforma-
tion is possible in logspace as iterative integer multiplication is in DLOGTIME-
uniform TC0 [HAB02].

3 Deriving Structural Information

Let G = (V,E) be a graph, let n = ‖V ‖ and m = ‖E‖, and let � : V → N and
s : E → N specify the desired interval and intersection lengths. For convenience,

1 This does not coincide with the usual notion of length r − l. However, if we use the
real interval (l − 0.5, r + 0.5), then both measures coincide.

520 J. Köbler, S. Kuhnert, and O. Watanabe

we write s(u, v) instead of s({u, v}) for {u, v} ∈ E; for {u, v} /∈ E we let s(u, v) =
0. Using this convention, we define two relations R�,s, Rs ⊆ V 2:

(u, v) ∈ R�,s ⇔ {u, v} ∈ E ∧ �(u) > s(u, v)

(u, v) ∈ Rs ⇔ {u, v} ∈ E ∧ ∃w ∈ V \ {u, v} : s(w, u) > min {s(w, v), s(u, v)}

By the following lemma, these relations characterize a structural property that
all (�, s)-respecting (resp., minimal s-respecting) interval representations of G
have in common.

Lemma 1.
(a) Let ρ : V → I be any (�, s)-respecting interval representation of G, and let

{u, v} ∈ E. Then ρ(u) \ ρ(v) �= ∅ if and only if (u, v) ∈ R�,s.
(b) Let ρ : V → I be any minimal s-respecting interval representation of G, and

let {u, v} ∈ E. Then ρ(u) \ ρ(v) �= ∅ if and only if (u, v) ∈ Rs.

Proof. Part (a) follows directly from the definitions.
We now show part (b). By definition, (u, v) ∈ Rs means that there is a w ∈ V

such that s(w, u) > s(w, v) or s(w, u) > s(u, v). Either way, there must be a
point p ∈ ρ(w) ∩ (ρ(u) \ ρ(v)), implying ρ(u) \ ρ(v) �= ∅.

For the backward direction, consider a point p ∈ ρ(u) \ ρ(v). By minimality
of ρ, there is a vertex w ∈ V \{u} with p ∈ ρ(w). Note that w �= v by choice of p.
If ρ(w) ⊃ ρ(u) ∩ ρ(v), it follows that s(w, u) > s(u, v). Otherwise ρ(w) ∩ ρ(u) �
ρ(w) ∩ ρ(v) and thus s(w, u) > s(w, v). ��

Lemma 2. R�,s and Rs can be enumerated in time O(m) and O(n ·m), respec-
tively, and both can be enumerated in logspace.

Proof. The logspace part is obvious. To enumerate R�,s in linear time, loop over
all edges {u, v} ∈ E (considering both orientations) and output (u, v) if �(u) >
s(u, v). To enumerate Rs, loop over all edges {w, u} ∈ E (again, considering
both orientations) and all nodes v ∈ V \ {w, u}, and output (u, v) if s(w, u) >
min {s(w, v), s(u, v)}. ��

We write u
�,s v if (u, v) ∈ R�,s ∧ (v, u) ∈ R�,s, and u ⊆�,s v if {u, v} ∈
E ∧ (u, v) /∈ R�,s. The relations
s and ⊆s are defined analogously using Rs. By
Lemma 1, these relations describe the situation in any appropriate representa-
tion of G, e.g. we have u
�,s v ⇔ ρ(u)
 ρ(v) in any (�, s)-respecting interval
representation ρ of G, and u
s v ⇔ ρ′(u)
 ρ′(v) in any minimal s-respecting
interval representation ρ′ of G.

Lemma 3. Let ρ : V → I be any s-respecting interval representation of G. For
any three vertices v, w1, w2 ∈ V such that ρ(w1)
 ρ(v)
 ρ(w2), the intervals
ρ(w1) and ρ(w2) overlap ρ(v) from the same side if and only if s(w1, w2) >
min {s(w1, v), s(w2, v)}.

Note that this condition can be decided both in constant time and in logspace.

Interval Graph Representation with Given Interval and Intersection Lengths 521

Proof. If ρ(w1) and ρ(w2) overlap ρ(v) from the same side, then ρ(w1) and ρ(w2)
contain at least one common point outside ρ(v), making their intersection larger
than the minimum of ‖ρ(w1) ∩ ρ(v)‖ and ‖ρ(w2) ∩ ρ(v)‖.

Now suppose to the contrary that ρ(w1) and ρ(w2) overlap ρ(v) from different
sides. In this case (ρ(w1)∩ρ(v)) \ ρ(w2) and (ρ(w2)∩ρ(v)) \ ρ(w1) are both non-
empty, implying that ‖ρ(w1) ∩ ρ(w2)‖ is smaller than both ‖ρ(w1) ∩ ρ(v)‖ and
‖ρ(w2) ∩ ρ(v)‖. ��

4 Given Interval and Intersection Lengths

Let G = (V,E) be a graph, and let � : V → N and s : E → N specify the
desired interval and intersection lengths, respectively. In this section, we give
linear-time and logspace algorithms that construct an (�, s)-respecting interval
representation of G, or detect that such a representation does not exist.

We define E�,s = {{u, v} ∈ E | u
�,s v} and G�,s = (V,E�,s) and call the
connected components of G�,s the overlap components of G. As a first step, we
consider overlap-connected graphs.

Lemma 4. Given G = (V,E), � and s, such that G�,s is connected, it is possible
in linear time (resp., in logspace) to compute an (�, s)-respecting interval repre-
sentation ρ : V → I of G, or to detect that none exists. Moreover, if existent,
ρ is unique up to reflection.

Proof. Let v1, v2, . . . , vN be a walk in G�,s that visits every vertex at least once;
such a walk can be constructed in linear time using depth first search or in
logspace using Reingold’s universal exploration sequences [Rei08]. The following
algorithm computes an interval representation ρ : V → I of G by moving along
this walk (which we assume has been computed in a pre-processing step). It
computes an interval Ii for vi at each step and outputs ρ(vi) = Ii, if there
is no j < i with vj = vi. Define I1 = [1, �(v1)] and I2 = [�(v1) − s(v1, v2) +
1, �(v1)−s(v1, v2)+ �(v2)]. Note that after I1 has been placed, there are only two
possibilities for I2 that respect (�, s); see Fig. 1 for an illustration. After that,
all further intervals are completely determined because of Lemma 3, and can be
computed from the walk, � and s, remembering only the two previous intervals.

In a post-processing step, check that ρ is (�, s)-respecting. Additionally, shift
the resulting intervals such that 1 becomes the smallest point.

ρ(vi−1)

ρ(vi)

�(vi−1)

�(vi) �(vi)

s(vi−1, vi) s(vi−1, vi)

Fig. 1. Proof of Lemma 4: If vi
�,s vi−1, and if ρ(vi−1) is already determined, there
remain only the two dashed possibilities for ρ(vi)

522 J. Köbler, S. Kuhnert, and O. Watanabe

The uniqueness up to reflection follows from the fact that the only arbitrary
decision (except shifting) was to place ρ(v2) right of ρ(v1). ��

The next step is to generalize Lemma 4 to the case that G�,s is not connected.
We can assume that there are no vertices v and v′ such that both v ⊆�,s v

′ and
v′ ⊆�,s v hold; otherwise compute an (�, s)-respecting interval representation for
G \ {v′} and extend it by v′ 4→ ρ(v) afterwards. Let C = {G1, . . . , Gk} be the
connected components of G�,s. We write Gi ≤�,s Gj if i = j or if there are
vertices u in Gi and v in Gj such that v ⊆�,s u. The latter implies that, for
any (�, s)-respecting interval representation ρ of G, the interval

⋃
u∈Gi

ρ(u) is
contained in some slot S ⊆ ρ(v) of ρ(Gj), because otherwise there would be an
overlap-path from ρ(Gi) to ρ(Gj). Thus ≤�,s is a partial order on the overlap
components of G. If G is connected, (C,≤�,s) is also connected; by removing
reflexive and transitive edges, we obtain a rooted tree T�,s, which we call the
overlap component tree of G.

Theorem 5. Given G = (V,E), � and s, it is possible in linear time (resp.,
logspace) to compute an (�, s)-respecting interval representation ρ : V → I of G,
or to detect that none exists. Moreover, ρ is unique up to isomorphism.

Proof. We assume that G is connected, otherwise consider its connected compo-
nents separately and concatenate their representations afterwards.

The algorithm works as follows: As pre-processing steps, compute the con-
nected components G1, . . . , Gk of G�,s, an (�, s)-respecting interval representa-
tion for each of them, and the overlap component tree T�,s. The main part of the
algorithm constructs an (�, s)-respecting interval representation of G by combin-
ing appropriately shifted copies of the representations of the overlap components.
This is done in a depth-first traversal of the overlap component tree. The repre-
sentation of the root component is not shifted. The representations of the other
components are shifted to the appropriate slot of their parent component; if
several child components are contained in the same slot, they are placed beside
each other in the order in which they are encountered. It remains to check that
the result is indeed an (�, s)-respecting interval representation of G.

If G admits an (�, s)-respecting interval representation, then this algorithm
will find it: The representations of the components are unique up to reflection by
Lemma 4, implying that they have the same length in all representations; and
in every (�, s)-respecting interval representation of G, each overlap component
must be placed in the appropriate slot of its parent overlap component. In the
construction of the representation, the only arbitrary choices are the precise
placement of overlap components within their containing slot, the order of the
connected components of G, and whether the representations of the individual
overlap components are reflected. All these choices can be transformed into one
another by isomorphisms of the resulting interval system, so ρ is unique up to
isomorphism.

To finish the proof, we show that the algorithm can be implemented in linear
time or logspace. Connected components can be found in linear time using depth
first search, and in logspace using Reingold’s connectivity algorithm [Rei08]. The

Interval Graph Representation with Given Interval and Intersection Lengths 523

(�, s)-respecting representations of the components of G�,s can be computed us-
ing Lemma 4. The construction of the overlap component tree T�,s can easily be
implemented in logspace. To obtain it in linear time, compute ≤�,s by iterating
over the edges of G, and remove reflexive and transitive arcs; see [HMR93, Propo-
sition 3.6] for how the latter is possible in linear time. Computing the offsets for
shifting is clearly possible in linear time, and also in logspace if during the tree
traversal (see e.g. [Lin92] for how to do this in logspace) a current shift-offset is
maintained. ��

5 Given Intersection Lengths

Let G = (V,E) be a graph and let s : E → I prescribe the desired intersection
lengths. In this section, we reduce finding a minimal s-respecting interval repre-
sentation of G to finding (�, s)-respecting interval representations. In particular,
we show that the lengths of the intervals in a minimal s-respecting representation
are determined by G and s, and can be computed efficiently.

Note that we need minimality here, in contrast to the case of (�, s)-respecting
representations. The reason is that adding a point to an interval of an (�, s)-
respecting representation always destroys this property, while in an s-respecting
representation, we can always duplicate points that are contained in a single
interval.

Lemma 6. Let G = (V,E) be an interval graph with length function s : E → N,
and let ρ : V → I be an arbitrary minimal s-respecting interval representation
of G. Then the interval lengths �(v) = ‖ρ(v)‖ do not depend on the choice of ρ
and can be computed from G and s in logspace; or in O(n + m) time, if Rs is
given as additional input.

Proof. We first describe the algorithm. For each v ∈ V , consider these cases:
1. If N(v) = ∅, set �(v) := 1.
2. If ∃w ∈ N(v) : v ⊆s w, then set �(v) := s(v, w).
3. Else, if ∃w1, w2 ∈ N(v) such that v
s w1
s w2
s v and s(w1, w2) <

min {s(w1, v), s(w2, v)}, then set �(v) := s(w1, v) + s(w2, v)− s(w1, w2).
4. Otherwise, consider the subgraph G[N(v)] and define �v : N(v) → N by

�v(w) = s(w, v) for all w ∈ N(v). Additionally, define sv :
(
E ∩

(
N(v)
2

))
→

N by sv(w1, w2) = min {s(w1, v), s(w2, v)} if w1 and w2 overlap v from
the same side, and sv(w1, w2) = s(w1, w2) otherwise. Compute an (�v, sv)-
respecting interval representation ρv : N(v)→ Iv of G[N(v)], and set �(v) :=∥∥⋃

I∈Iv I
∥∥.

Next, we show that the computed � satisfies �(v) = ‖ρ(v)‖ for each v ∈ V . For
an isolated vertex v, as considered in case 1, we have ‖ρ(v)‖ = 1 by minimality
of ρ, so �(v) = 1 is correct. By Lemma 1(b) and the definitions of
s and ⊆s, we
have u
s v ⇔ ρ(u)
 ρ(v) and u ⊆s v ⇔ ρ(u) ⊆ ρ(v). In case 2, this immediately
implies �(v) = s(v, w) = ‖ρ(v) ∩ ρ(w)‖ = ‖ρ(v)‖.

In case 3, ρ(w1) and ρ(w2) cover ρ(v), overlapping it from different sides
(the latter is true by Lemma 3), so we have the situation depicted in Fig. 2.

524 J. Köbler, S. Kuhnert, and O. Watanabe

ρ(v)

ρ(w1)

ρ(w2)

�(v)

s(w1, v)

s(w2, v)

s(w1, w2)

Fig. 2. Proof of Lemma 6, case 3: ρ(w1) and ρ(w2) cover ρ(v), overlapping it from
different sides

Thus, �(v) = s(w1, v)+s(w2, v)−s(w1, w2) = ‖ρ(w1) ∩ ρ(v)‖+‖ρ(w2) ∩ ρ(v)‖−
‖ρ(w1) ∩ ρ(w2)‖ = ‖(ρ(w1) ∪ ρ(w2)) ∩ ρ(v)‖ = ‖ρ(v)‖.

In case 4, the definitions of �v and sv truncate the intervals of the vertices
in N(v) to include only their intersections with ρ(v). We have ‖ρv(u)‖ = ‖ρ(u)‖
for all u ⊆s v, and ‖ρv(w)‖ = ‖ρ(w) ∩ ρ(v)‖ for all w
s v. So truncating
ρ(G[N(v)]) gives an (�v, sv)-respecting model ρv(G[N(v)]) of G[N(v)]. By The-
orem 5, this model is unique up to isomorphism; in particular, its length is
uniquely determined, implying ‖ρ(v)‖ ≥ �(v). By minimality of ρ, both values
are equal.

It is obvious that this algorithm can be implemented in logspace. To see that
it is also possible in linear time, observe that in case 3, Lemma 3 allows us to
partition the
s-neighbors of v into two sets W1 and W2, where neighbors that
overlap from the same side are in the same set, and that we can require w1 ∈ W1

and w2 ∈ W2. For the linear-time implementation of case 4, observe that each
vertex u of G can occur in at most three of the auxiliary graphs: Suppose to
the contrary that there are vertices v1, v2, v3, v4 such that for each i ∈ [1, 4],
u ∈ N(vi) and case 4 is reached for vi. The latter implies that no ρ(vi) = [v−i , v

+
i]

is contained in any other interval, and that none of them is covered by two
overlapping intervals. Because case 2 does not hold, there are no containments,
so we can assume v−1 < v−2 < v−3 < v−4 and v+1 < v+2 < v+3 < v+4 . As case 3 holds
neither, it follows that v+1 < v−3 and v+2 < v−4 . Now let ρ(u) = [u−, u+]. As u
is a neighbor of all vi, we know u− ≤ v+1 and v−4 ≤ u+. But this implies that
ρ(u) either covers ρ(v2) alone or together with ρ(v1), contradicting that case 4
is reached for v2. ��

The following is a consequence of Theorem 5 and Lemmas 2 and 6.

Corollary 7. Given G = (V,E) and s, it is possible in O(n ·m) time (resp., in
logspace) to compute a minimal s-respecting interval representation ρ : V → I
of G, or to detect that none exists. Moreover, ρ is unique up to isomorphism.

6 Interval Graphs with Unique Maxclique Ordering

As mentioned before, deciding if a graph has an �-respecting interval representa-
tion is NP-complete [PS97]. However, if the input graph G is required to have a

Interval Graph Representation with Given Interval and Intersection Lengths 525

unique interval ordering of its inclusion-maximal cliques (up to reflection), even
the more general problem DCIG (short for distance constrained interval graph)
becomes tractable: Additionally to G, a system of difference inequalities of the
form xi − xj ≥ c is given, where the variables are the left and right endpoints
of the intervals (strict inequalities are allowed, too). The problem is to decide if
G has an interval model that satisfies these inequalities. Pe’er and Shamir show
that DCIG is linear-time equivalent to the problem NegCycle, i.e., deciding if
a digraph has a negative cycle [PS97]. Based on the following facts, we observe
that this problem is NL-complete.

Fact 8 NegCycle is NL-complete.

Proof. The problem is in NL, because one can check if a nondeterministically
chosen path is a negative cycle, storing only the first vertex, the number of steps
taken so far and the accumulated weight. To prove the hardness, we reduce from
the NL-complete problem s-t-Con to decide if there is a directed path from s to t
in a given digraph: Let all arcs have weight 1, except (t, s), which is introduced
if not yet present, and assigned the weight −n. ��

Fact 9 The linear-time reductions between NegCycle and DCIG for interval
graphs with unique maxclique ordering can be implemented in logspace.

Proof idea. For most steps of the reductions in [PS97] this is obvious, only com-
puting the unique maxclique ordering requires the algorithm from [KKLV11].

��

We remark that the reduction from NegCycle to DCIG generates only lower
and upper bounds on interval lengths, so NL-hardness holds for this special case,
too.

7 Conclusion

We have shown how to compute (�, s)- and s-respecting interval representations,
giving a linear-time algorithm for the former, an O(n · m) time algorithm for
the latter, and logspace algorithms for both. We remark that deciding whether
a graph admits an (�, s)- or s-respecting interval representation is L-complete:
In the reduction proving that recognizing interval graphs is L-hard [KKLV11,
Theorem 7.7], all generated yes-instances are paths; so these graphs have (�, s)-
and s-respecting interval representations if we let �(v) = 2 and s(e) = 1 for all
vertices u and edges e.

We also have shown that (�, s)- and minimal s-respecting interval represen-
tations are unique up to isomorphism. This implies that any algorithm that
computes canonical interval representations of interval hypergraphs can be used
to obtain canonical (�, s)- and s-respecting interval representations. The algo-
rithm given in [KKLV11, Theorem 4.6] solves this in logspace, and it can also
be done in linear time using the PQ-tree algorithms of [BL76].

526 J. Köbler, S. Kuhnert, and O. Watanabe

Open Questions. The bottleneck in our O(n ·m) time algorithm for computing
s-respecting interval representations is the enumeration of Rs (see Lemma 2).
Can this also be implemented in linear, or at least O(n2), time?

Does the complexity of computing (�, s)- and s-respecting interval represen-
tations increase, when the interval and intersection lengths are restricted only
for some vertices? Our techniques are not directly applicable in this case, as the
algorithm of Lemma 4 relies on the uniqueness of the representation, which is
not necessarily preserved in the modified scenario.

Acknowledgement. We thank Oleg Verbitsky for interesting discussions about
these results.

References

[BL76] Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, inter-
val graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst.
Sci. 13(3), 335–379 (1976)

[COS09] Corneil, D.G., Olariu, S., Stewart, L.: The LBFS Structure and Recognition
of Interval Graphs. SIAM J. Discr. Math. 23(4), 1905–1953 (2009)

[Gol04] Golumbic, M.C.: Algorithmic graph theory and perfect graphs, 2nd edn.
Annals of Discrete Mathematics 57. Elsevier, Amsterdam (2004)

[HAB02] Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth
threshold circuits for division and iterated multiplication. J. Comput. Syst.
Sci. 65(4), 695–716 (2002)

[HM99] Hsu, W.-L., Ma, T.-H.: Fast and simple algorithms for recognizing chordal
comparability graphs and interval graphs. SIAM J. Comput. 28(3), 1004–
1020 (1999)

[HMR93] Habib, M., Morvan, M., Rampon, J.-X.: On the calculation of transitive
reduction—closure of orders. Discrete Math. 111(1-3), 289–303 (1993)

[KKLV11] Köbler, J., Kuhnert, S., Laubner, B., Verbitsky, O.: Interval graphs: Canon-
ical representations in logspace. SIAM J. Comput. 40(5), 1292–1315 (2011)

[Kle96] Klein, P.N.: Efficient parallel algorithms for chordal graphs. SIAM J. Com-
put. 25(4), 797–827 (1996)

[Lin92] Lindell, S.: A logspace algorithm for tree canonization. extended abstract.
In: Proc. 24th STOC, pp. 400–404 (1992)

[PS97] Pe’er, I., Shamir, R.: Realizing interval graphs with size and distance con-
straints. SIAM J. Discr. Math. 10(4), 662–687 (1997)

[Rei08] Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–
17:24 (2008)

[Yam07] Yamamoto, N.: Weighted interval graphs and their representations. Mas-
ter’s Thesis. Tokyo Inst. of Technology (2007) (in Japanese)

Finger Search in the Implicit Model

Gerth Stølting Brodal, Jesper Sindahl Nielsen, and Jakob Truelsen

MADALGO�, Department of Computer Science, Aarhus University, Denmark
{gerth,jasn,jakobt}@madalgo.au.dk

Abstract. We address the problem of creating a dictionary with the
finger search property in the strict implicit model, where no information
is stored between operations, except the array of elements. We show that
for any implicit dictionary supporting finger searches in q(t) = Ω(log t)
time, the time to move the finger to another element is Ω(q−1(log n)),
where t is the rank distance between the query element and the fin-
ger. We present an optimal implicit static structure matching this lower
bound. We furthermore present a near optimal implicit dynamic struc-
ture supporting search, change-finger, insert, and delete in times
O(q(t)), O(q−1(log n) log n), O(log n), and O(log n), respectively, for any
q(t) = Ω(log t). Finally we show that the search operation must take
Ω(log n) time for the special case where the finger is always changed to
the element returned by the last query.

1 Introduction

We consider the problem of creating an implicit dictionary [4] that supports
finger search. A dictionary is a data structure storing a set of elements with
distinct comparable keys such that an element can be located efficiently given
its key. It may also support predecessor and successor queries where given a
query k it must return the element with the greatest key less than k or the
element with smallest key greater than k. A dynamic dictionary also supports
insertion the and deletion of elements.

A dictionary has the finger search property if the time for searching is de-
pendent on the rank distance t between a specific element f , called the finger,
and the query key k. In the static case O(log t) search can be achieved by ex-
ponential search on a sorted array of elements starting at the finger. Dynamic
finger search data structures have been widely studied, e.g. some of the famous
dynamic structures that support finger searches are splay trees, randomized skip
lists and level linked (2-4)-trees. These all support finger search in O(log t) time,
respectively in the amortized, expected and worst case sense. For an overview of
data structures that support finger search see [3].

We consider two variants of finger search structures. The first variant is the
finger search dictionary where the search operation also changes the finger
to the returned element. The second variant is the change finger dictionary

� Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 527–536, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

528 G.S. Brodal, J.S. Nielsen, and J. Truelsen

where the change-finger operation is separate from the search operation. We
consider the two problems in the strict implicit model where we are only allowed
to explicitly store the elements and the number of elements n between operations
as defined in [1,6]. Note that the static sorted array solution does not fit into
this model, since we are not allowed to use additional space to store the index
of f between operations. Other papers allow O(1) additional words [4,5,8]. We
call this the weak implicit model. In both models almost all structure has to be
encoded in the order of the elements. In either model the only allowed operations
on elements are comparisons and swaps. As there is no agreement on the exact
definition of the implicit model, it is interesting to study the limits of the strict
model. We show that for a static dictionary in the strict model, if we want a
search time of O(log t), then change-finger must take time Ω(nε), while in
the weak model a sorted array achieves O(1) change-finger time.

Much effort has gone into finding a worst case optimal implicit dictionary.
Among the first [7] gave a dictionary supporting insert, delete and search in
O(log2 n) time. In [5] an implicit B-tree is presented, and finally in [4] a worst
case optimal and cache oblivious dictionary is presented. To prove our dynamic
upper bounds we use the movable implicit dictionary presented in [2], supporting
insert, delete, predecessor, successor, move-left and move-right. The
operation move-rightmoves the dictionary laid out in cells i through j to i+ 1
through j + 1 and move-left moves the dictionary the other direction.

Preliminaries. A common implicit data structure technique is the pair encoding
of bits. When we have two distinct consecutive elements x and y, then they
encode a 1 if x ≤ y and 0 otherwise. The running time of the search operation
is hereafter denoted by q(t, n). Throughout the paper we require that q(t, n)
is non decreasing in both t and n, q(t, n) ≥ log t and that q(0, n) < log n

2 . We
define Zq(n) = min{t ∈ N | q(t, n) ≥ log n

2 }, i.e. Zq(n) is the smallest rank
distance t, such that q(t, n) > log n

2 . Note that Zq(n) ≤ n
2 (since by assumption

q(t, n) ≥ log t), and if q is a function of only t, then Zq is essentially equiv-
alent to q−1(log n

2). As an example q(t, n) = 1
ε log t, gives Zq(n) =

⌈
(n2)

ε
⌉
,

for 0 < ε ≤ 1. We require that for a given q, Zq(n) can be evaluated in constant
time, and that Zq(n+ 1)− Zq(n) is bounded by a fixed constant for all n.

We will use set notation on a data structure when appropriate, e.g. |X | will
denote the number of elements in the structure X and e ∈ X will denote that
the element e is in the structure X . Given two data structures or sets X and Y ,
we say that X ≺ Y ⇔ ∀(x, y) ∈ X × Y : x < y. We use d(e1, e2) to denote
the rank distance between two elements, that is the difference of the index of e1
and e2 in the sorted key order of all elements in the structure. At any time f
will denote the current finger element and t the rank distance between this and
the current search key.

Our Results. In Section 2 we present a static change-finger implicit dictio-
nary supporting predecessor in time O(q(t, n)), and change-finger in time
O(Zq(n)+logn), for any function q(t, n). Note that by choosing q(t, n) = 1

ε log t,

Finger Search in the Implicit Model 529

we get a search time of O(log t) and a change finger time of O(nε) for
any 0 < ε ≤ 1.

In Section 3 we prove our lower bounds. First we prove (Lemma 1) that for
any algorithm A on a strict implicit data structure of size n that runs in time at
most τ , whose arguments are keys or elements from the structure, there exists
a set XA,n of at most O(2τ) array entries, such that A touches only array entries
from XA,n, no matter the arguments to A or the content of the data structure. We
use this to show that for any change-finger implicit dictionary with a search time
of q(t, n), change-fingerwill take time Ω(Zq(n)+logn) for some t (Theorem 1).
We prove that for any change-finger implicit dictionary search will take time
at least log t (Theorem 2). A similar argument applies for predecessor and
successor. This means that the requirement q(t, n) ≥ log t is necessary. We
show that for any finger-search implicit dictionary search must take at least
logn time as a function of both t and n, i.e. it is impossible to create any
meaningful finger-search dictionary in the strict implicit model (Theorem 3).

By Theorem 1 and 2 the static data structure presented in Section 2 is optimal
w.r.t. search and change-finger time trade off, for any function q(t, n) as
defined above. In the special case where the restriction q(0, n) < log n

2 does not
hold [4] provides the optimal trade off.

Finally in Section 4 we outline a construction for creating a dynamic change-
finger implicit dictionary, supporting insert and delete in time O(log n),
predecessor and successor in time O(q(t, n)) and change-finger in time
O(Zq(n) logn). Note that by setting q(t, n) = 2

ε log t, we get a search time of

O(log t) and a change-finger time of O(nε/2 logn) = O(nε) for any 0 < ε ≤ 1,
which is asymptotically optimal in the strict model. It remains an open problem
if one can get better bounds in the dynamic case by using O(1) additional words.

2 Static Finger Search

In this section we present a simple change-finger implicit dictionary, achieving
an optimal trade off between the time for search and changer-finger.

Given some function q(t, n), as defined in Section 1, we are aiming for a search
time of O(q(t, n)). Let Δ = Zq(n). Note that we are allowed to use O(log n)
time searching for elements with rank-distance t ≥ Δ from the finger, since
q(t, n) = Ω(log n) for t ≥ Δ.

Intuitively, we start with a sorted list of elements. We cut the 2Δ + 1 ele-
ments closest to f (f being in the center), from this list, and swap them with
the first 2Δ+ 1 elements, such that the finger element is at position Δ + 1.
The elements that were cut out form the proximity structure P , the rest of the
elements are in the overflow structure O (see Figure 2). A search for x is per-
formed by first doing an exponential search for x in the proximity structure, and
if x is not found there, by doing binary searches for it in the remaining sorted
sequences.

The proximity structure consists of sorted lists XS ≺ S ≺ {f} ≺ L ≺ XL. The
list S contains the up to Δ elements smaller then f that are closest to f w.r.t.

530 G.S. Brodal, J.S. Nielsen, and J. Truelsen

XL S f L XS l1 l2 l3

P O

Δ Δ

Fig. 1. Memory layout of the static dictonary

rank distance. The list L contains the up to Δ closest to f , but larger than f .
Both are sorted in ascending order.XL contains a possibly empty sorted sequence
of elements larger than elements from L, and XS contains a possibly empty
sorted sequence of elements smaller than elements from S. Here |XL| + |S| =
Δ = |L|+ |XS |, |S| = min{Δ, rank(f)− 1} and |L| = min{Δ,n− rank(f)}. The
overflow structure consists of three sorted sequences l2 ≺ l1 ≺ {f} ≺ l3, each
possibly empty.

To perform a change-finger operation, we first revert the array back to one
sorted list and the index of f is found by doing a binary search. Once f is found
there are 4 cases to consider, as illustrated in Figure 2. Note that in each case, at
most 2|P | elements have to be moved. Furthermore the elements can be moved
such that at most O(|P |) swaps are needed. In particular case 2 and 4 can be
solved by a constant number of list reversals.

For reverting to a sorted array and for doing search, we need to compute the
lengths of all sorted sequences. These lengths uniquely determine the case used
for construction, and the construction can thus be undone. To find |S| a binary
search for the split point between XL and S, is done within the first Δ elements
of P . This is possible since S ≺ {f} ≺ XL. Similarly |L| and |XS | can be found.
The separation between l2 and l3, can be found by doing a binary search for f
in O, since l1 ∪ l2 ≺ {f} ≺ l3. Finally if |l3| < |O|, the separation between l1
and l2 can be found by a binary search, comparing candidates against the largest
element from l2, since l2 ≺ l1.

When performing the search operation for some key k, we first determine
if k < f . If this is the case, an exponential search for k in S is performed. We

Case 1l1

Case 2

Case 3

Case 4

2Δ + 1 O

f f

f

ff

f f

n − (2Δ + 1) P

l1

l3

l3

l3l2

l2

l2

f

Fig. 2. Cases for the change-finger operation. The left side is the sorted array. In all
cases the horizontally marked segment contains the new finger element and must be
moved to the beginning. In the final two cases, there are not enough elements around f
so P is padded with what was already there. The emphasized bar in the array is
the 2Δ + 1 break point between the proximity structure and the overflow structure.

Finger Search in the Implicit Model 531

can detect if we have crossed the boundary to XL, since S ≺ {f} ≺ XL. If the
element is found it can be returned. If k > f we do an identical search in L.
Otherwise the element is neither located in S nor L, and therefore d(k, f) > Δ.
All lengths are reconstructed as above, and the element is searched for using
binary search in Xl and l3 if k > f and, otherwise in Xs, l1 and l2.

Analysis. The change-finger operation first computes the lengths of all lists in
O(log n) time. The case used for constructing the current layout is then identified
and reversed in O(Δ) time. We locate the new finger f ′ by binary search in
O(log n) time and afterwards the O(Δ) elements closest to f ′ are moved to P .
We get O(Δ + logn) time for change-finger.

For searches there are two cases to consider. If t ≤ Δ, it will be located by
the exponential search in P in O(log t) = O(q(t, n)) time, since by assumption
q(t, n) ≥ log t. Otherwise the lengths of the sorted sequences will be recovered
in O(logn) time, and a constant number of binary searches will be performed in
O(log n) time total. Since t ≥ Δ ⇒ q(t, n) ≥ log n

2 , we again get a search time
of O(q(t, n)).

3 Lower Bounds

To prove our lower bounds we use an abstracted version of the strict implicit
model. The strict model requires that nothing but the elements and the number
of elements are stored between operations, and that during computation elements
can only be used for comparison. With these assumptions a decision tree can be
formed for a given n, where nodes correspond to element comparisons and loads
and leaves contain the answers. Note that in the weak model a node could probe
a cell containing an integer, giving it a degree of n, which prevents any of our
lower bound arguments.

Lemma 1. Let A be an operation on an implicit data structure of length n,
running in time τ worst case, that takes any number of keys as arguments. Then
there exists a set XA,n of size 2τ , such that executing A with any arguments will
touch only cells from XA,n no matter the content of the data structure.

Proof. Before loading any elements from the data structure, A can reach only a
single state which gives rise to a root in a decision tree. When A is in some node s,
the next execution step may load some cell in the data structure, and transition
into another fixed node, or A may compare two previously loaded elements or
arguments, and given the result of this comparison transition into one of two
distinct nodes. It follows that the total number of nodes A can enter within its τ
steps is

∑τ−1
i=0 2i < 2τ . Now each node can access at most one cell, so it follows

that at most 2τ different cells can be probed by any execution of A within τ
steps. ��

Observe that no matter how many times an operation that take at most τ time is
performed they will only be able to reach the same set of cells, since the decision
tree is the same for all invocations.

532 G.S. Brodal, J.S. Nielsen, and J. Truelsen

Theorem 1. For any change-finger implicit dictionary with a search time
of q(t, n) as defined in Section 1, change-finger requires Ω(Zq(n)+logn) time.

Proof. Let e1 . . . en be a set of elements in sorted order with respect to the
keys k1 . . . kn. Let t = Zq(n) − 1. By definition q(t + 1, n) ≥ log n

2 > q(t, n).
Consider the following sequence of operations:

for i = 0 . . . nt :
change-finger(kit)
for j = 0 . . . t− 1: search(kit+j)

Since the rank distance of any query element is at most t from the current finger
and q is non-decreasing each search operation takes time at most q(t, n). By
Lemma 1 there exists a set X of size 2q(t,n) such that all queries only touch cells
in X . We note that |X | ≤ 2q(t,n) ≤ 2log(n/2) = n

2 .
Since all n elements were returned by the query set, the change-finger oper-

ations, must have copied at least n− |X | ≥ n
2 elements into X . We performed n

t
change-finger operations, thus on average the change-finger operations must
have moved at least t

2 = Ω(Zq(n)) elements into X .
For the logn term in the lower bound, we consider the sequence of operations

change-finger(ki) followed by search(ki) for i between 1 and n. Since the rank
distance of any search is 0 and q(0, n) < log n

2 (by assumption), we know from
Lemma 1 that there exists a set Xs of size at most 2log(n/2), such that search
only touches cells from Xs. Assume that change-finger runs in time c(n), then
from Lemma 1 we get a set Xc of size at most 2c(n) such that change-finger only
touches cells from Xc. Since every element is returned, the cell initially containing
the element must be touched by either change-finger or search at some point,
thus |Xc|+|Xs| ≥ n. We see that 2c(n) ≥ |Xc| ≥ n−|Xs| ≥ n−2log(n/2) = 2log(n/2),
i.e. c(n) ≥ log n

2 . ��

Theorem 2. For a change-finger implicit dictionary with search time q′(t, n),
where q′ is none decreasing in both t and n, it holds that q′(t, n) ≥ log t.

Proof. Let e1 . . . en be a set of elements with keys k1 . . . kn in sorted order.
Let t ≤ n be given. First perform change-finger(k1), then for i between 1
and t perform search(ki). From Lemma 1 we know there exists a set X of
size at most 2q

′(t,n), such that any of the search operations touch only cells
from X (since any element searched for has rank distance at most t from the
finger). The search operations return t distinct elements so t ≤ |X | ≤ 2q

′(t,n),
and q′(t, n) ≥ log t. ��

Theorem 3. For finger-search implicit dictionary, the finger-search opera-
tion requires at least g(t, n) ≥ logn time for any rank distance t > 0 where
g(t, n) is non decreasing in both t and n.

Proof. Let e1 . . . en be a set of elements with keys k1 . . . kn in sorted order. First
perform finger-search(k1), then perform finger-search(ki) for i between 1
and n. Now for all queries except the first, the rank distance t ≤ 1 and by

Finger Search in the Implicit Model 533

C1
· · · · · ·

f

D1 Ci Di C� D� O

B1 Bi B�

2i+1 22
i

P

Fig. 3. Memory layout

Lemma 1 there exists a set of memory cells X of size 2g(1,n) such that all these
queries only touch cells in X . Since all elements are returned by the queries we
have |X | = n, so g(1, n) ≥ logn, since this holds for t = 1 it holds for all t. ��

We can conclude that it is not possible to achieve any form of meaningful finger-
search in the strict implicit model. The static change-finger implicit dictionary
from Section 2 is by Theorem 1 optimal within a constant factor, with respect
to the search to change-finger time trade off, assuming the running time of
change-finger depends only on the size of the structure.

4 A Dynamic Structure

For any function q(t, n), as defined in the introduction, we present a dynamic
change-finger implicit dictionary that supports change-finger, search, insert
and delete in O(Δ log n),O(q(t, n)),O(log n) and O(log n) time respectively,
where Δ = Zq(n) and n is the number of elements when the operation was
started.

The data structure consists of two parts: a proximity structure P which con-
tains the elements near f and an overflow structure O which contains elements
further from f w.r.t. rank distance. We partition P into several smaller structures
B1, . . . , B�. Elements in Bi are closer to f than elements in Bi+1. The overflow
structure O is an implicit movable dictionary [2] that supports move-left and
move-right as described in the Section 1. See Figure 3 for the layout of the data
structure. During a change-finger operation the proximity structure is rebuilt
such that B1, . . . , B� correspond to the new finger, and the remaining elements
are put in O.

The total size of P is 2Δ+1. The i’th block Bi consists of a counter Ci and an
implicit movable dictionary Di. The counter Ci contains a pair encoded number
ci, where ci is the number of elements in Di smaller than f . The sizes within Bi

are |Ci| = 2i+1 and |Di| = 22
i

, except in the final block B� where they might be
smaller (B� might be empty). In particular we define:

� = min
{
�′ ∈ N

∣∣∣ �′∑
i=0

(
2i+1 + 22

i
)
> 2Δ

}
.

534 G.S. Brodal, J.S. Nielsen, and J. Truelsen

We will maintain the following invariants for the structure:

I.1 ∀i < j, e1 ∈ Bi, e2 ∈ Bj : d(f, e1) < d(f, e2)
I.2 ∀e1 ∈ B1 ∪ · · · ∪B�, e2 ∈ O : d(f, e1) ≤ d(f, e2)
I.3 |P | = 2Δ+ 1
I.4 |Ci| ≤ 2i+1

I.5 |Di| > 0⇒ |Ci| = 2i+1

I.6 |D�| < 22
�

and ∀i < � : |Di| = 22
i

I.7 |Di| > 0⇒ ci = |{e ∈ Di | e < f}|

We observe that the above invariants imply:

O.1 ∀i < � : |Bi| = 2i+1 + 22
i

(From I.5 and I.6)

O.2 |B�| < 2�+1 + 22
�

(From I.4 and I.6)

O.3 d(e, f) ≤ 22
k−1 ≤ Δ⇒ e ∈ Bj for some j ≤ k (From I.1 – I.6)

4.1 Block Operations

The following operations operate on a single block and are internal helper func-
tions for the operations described in Section 4.2.

block delete(k, Bi): Removes the element e with key k from the block Bi.
This element must be located in Bi. First we scan Ci to find e. If it is not found
it must be in Di, so we delete it from Di. If e < f we decrement ci. In the case
where e ∈ Ci and Di is nonempty, an arbitrary element g is deleted from Di and
if g < f we decrement ci. We then overwrite e with g, and fix Ci to encode the
new number ci. In the final case where e ∈ Ci and Di is empty, we overwrite e
with the last element from Ci.

block insert(e, Bi): Inserts e into block Bi. If |Ci| < 2i+1, e is inserted
into Ci and we return. Else we insert e into Di. If Di was empty we set ci = 0.
In either case if e < f we increment ci.

block search(k, Bi): Searches for an element e with key k in the block Bi.
We scan Ci for e, if it is found we return it. Otherwise if Di is nonempty we
perform a search on it, to find e and we return it. If the element is not found
nil is returned.

block predecessor(k,Bi): Finds the predecessor element for the key k in Bi.
Do a linear scan through Ci and find the element l1 with largest key less than
k. Afterwards do a predecessor search for key k on Di, call the result l2. Return
max(l1, l2), or that no element in Bi has key less than k.

4.2 Operations

In order to maintain correct sizes of P and O as the entire structure expands
or contracts a rebalance operation is called in the end of every insert and
delete operation. This is an internal operation that does not require I.3 to be
valid before invocation.

rebalance(): Balance B� such that the number of elements in P less than f
is as close to the number of elements greater than f as possible. We start by

Finger Search in the Implicit Model 535

evaluating Δ = Zq(n), the new desired proximity size. Let s be the number of
elements in B� less than f which can be computed as c� + |{e ∈ C� | e < f}|.
While 2Δ+ 1 > |P | we move elements from O to P . We move the predecessor
of f from O to B� if O ≺ {f} ∨ (s < |B�|

2 ∧ ¬({f} ≺ O)) and otherwise we move
the successor of f to O. While 2Δ + 1 < |P | we move elements from B� to O.
We move the largest element from B� to O if s < B�

2 . Otherwise we move the
smallest element.

change-finger(k): To change the finger of the structure to k, we first insert
every element of B� . . . B1 into O. We then remove the element e with key k
from O, and place it at index 1 as the new f , and finish by performing rebalance.

insert(e): Assume e > f . The case e < f can be handled similarly. Find the
first block Bi where e is smaller than the largest element li from Bi (which can
be found using a predecessor search) or li < f . Now if li > f for all blocks j ≥ i,
block delete the largest element and block insert it into Bj+1. In the other
case where li < f for all blocks j ≥ i, block delete the smallest element and
block insert it into Bj+1. The final element that does not have a block to go
into, will be put into O, then we put e into Bi. In the special case where e did
not fit in any block, we insert e into O. In all cases we perform rebalance.

delete(k): We perform a block search on all blocks and a search in O to
find out which structure the element e with key k is located in. If it is in O
we just delete it from O. Otherwise assume k < f (the case k > f can be
handled similarly), and assume that e is in Bi, then block delete e from Bi. For
each j > i we block delete the predecessor of f in Bj, and insert it into Bj−1
(in the case where there is no predecessor, we block delete the successor of f
instead). We also delete the predecessor of f from O and insert it in B�. The
special case where k = f , is handled similarly to k < f , we note that after this
the predecessor of f will be the new finger element. In all cases we perform a
rebalance.

search(k), predecessor(k) and successor(k), all follow the same general
pattern. For each block Bi starting from B1, we compute the largest and the
smallest element in the block. If k is between these two elements we return the
result of block search, block predecessor or block successor respectively
on Bi, otherwise we continue with the next block. In case k is not within the
bounds of any block, we return the result of search(k), predecessor(k) or
successor(k) respectively on O.

4.3 Analysis

By the invariants, we see that every Ci and Di except the last, have fixed size.
Since O is a movable dictionary it can be moved right or left as this final Ci or
Di expands or contracts. Thus the structure can be maintained in a contiguous
memory layout.

The correctness of the operations follows from the fact that I.1 and I.2, im-
plies that elements in Bj or O are further away from f than elements from Bi

where i < j. We now argue that search runs in time O(q(t, n)). Let e be
the element we are searching for. If e is located in some Bi then at least half

536 G.S. Brodal, J.S. Nielsen, and J. Truelsen

the elements in Bi−1 will be between f and e by I.1. We know from O.1 that
t = d(f, e) ≥ |Bi−1|

2 ≥ 22
i−1−1. The time spent searching is O(

∑i
j=1 log |Bj |) =

O(2i) = O(log t) = O(q(t, n)). If on the other hand e is in O, then by I.3
there are 2Δ + 1 elements in P , of these at least half are between f and e
by I.2, so t ≥ Δ, and the time used for searching is O(log n+

∑k
j=1 log |Bj |) =

O(log n) = O(q(t, n)). The last equality follows by the definition of Zq. The same
arguments work for predecessor and successor.

Before the change-finger operation the number of elements in the proximity
structure by I.3 is 2Δ+ 1. During the operation all these elements are inserted
into O, and the same number of elements are extracted again by rebalance.
Each of these operations are just insert or delete on a movable dictionary or
a block taking time O(log n). In total we use time O(Δ log n).

Finally to see that both Insert and Delete run in O(logn) time, notice that
in the proximity structure doing a constant number of queries in every block is
asymptotically bounded by the time to do the queries in the last block. This is
because their sizes increase double-exponentially. Since the size of the last block
is bounded by n we can guarantee O(logn) time for doing a constant number of
queries on every block (this includes predecessor/successor queries). In the worst
case, we need to insert an element in the first block of the proximity structure,
and “bubble” elements all the way through the proximity structure and finally
insert an element in the overflow structure. This will take O(logn) time. At this
point we might have to rebalance the structure, but this merely requires deleting
and inserting a constant number of elements from one structure to the other,
since we assumed Zq(n) and Zq(n + 1) differ by at most a constant. Deletion
works in a similar manner.

References

1. Borodin, A., Fich, F.E., Meyer auf der Heide, F., Upfal, E., Wigderson, A.: A Trade-
off Between Search and Update Time for the Implicit Dictionary Problem. In: Kott,
L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 50–59. Springer, Heidelberg (1986)

2. Brodal, G.S., Kejlberg-Rasmussen, C., Truelsen, J.: A Cache-Oblivious Implicit Dic-
tionary with the Working Set Property. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.)
ISAAC 2010, Part II. LNCS, vol. 6507, pp. 37–48. Springer, Heidelberg (2010)

3. Brodal, G.S.: Finger search trees. In: Mehta, D., Sahni, S. (eds.) Handbook of Data
Structures and Applications, ch. 11. CRC Press (2005)

4. Franceschini, G., Grossi, R.: Optimal Worst-Case Operations for Implicit Cache-
Oblivious Search Trees. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003.
LNCS, vol. 2748, pp. 114–126. Springer, Heidelberg (2003)

5. Franceschini, G., Grossi, R., Munro, J.I., Pagli, L.: Implicit B-Trees: New results for
the dictionary problem. In: Proc. 43rd FOCS, pp. 145–154. IEEE (2002)

6. Frederickson, G.N.: Implicit data structures for the dictionary problem.
JACM 30(1), 80–94 (1983)

7. Munro, J.I.: An implicit data structure supporting insertion, deletion, and search
in O(log2 n) time. JCSS 33(1), 66–74 (1986)

8. Munro, J.I., Suwanda, H.: Implicit data structures for fast search and update.
JCSS 21(2), 236–250 (1980)

A Framework for Succinct Labeled Ordinal

Trees over Large Alphabets�

Meng He1, J. Ian Munro2, and Gelin Zhou2

1 Faculty of Computer Science, Dalhousie University, Canada
mhe@cs.dal.ca

2 David R. Cheriton School of Computer Science, University of Waterloo, Canada
{imunro,g5zhou}@uwaterloo.ca

Abstract. We consider succinct representations of labeled ordinal trees
that support a rich set of operations. Our new representations support a
much broader collection of operations than previous work [10,8,1]. In our
approach, labels of nodes are stored in a preorder label sequence, which
can be compressed using any succinct index for strings that supports
rankα and selectα operations. In other words, we present a framework
for succinct representations of labeled ordinal trees that allows alphabets
to be large. This answers an open problem presented by Geary et al. [10].
We further extend our work and present the first succinct representation
of dynamic labeled ordinal trees that supports several label-based oper-
ations including finding the level ancestor with a given label.

1 Introduction

We address the issue of succinct representations of ordinal (or ordered) trees
with satellite data over a large alphabet. Much of this is motivated by the needs
of large text-dominated databases that store and manipulate XML documents,
which can be essentially modeled as ordinal trees in which each node is assigned
a tag drawn from a tag set.

Our representations support a much broader collection of operations than
previous work [10,8,1], particularly those operations that aim at XML-style doc-
ument retrieval, such as queries written in the XML path language (XPath). Our
data structures are succinct, occupying space close to the information-theoretic
lower bound, which are essential to systems and applications that deal with very
large data sets.

Our approach is based on “tree extraction”, that is, constructing subtrees con-
sisting of nodes with appropriate labels (and their parents). The basic idea of
tree extraction was introduced by He et al. [14,15], where it was used to answer
queries that are generalizations of geometric queries such as range counting from
planar point sets to trees. Here we follow a different approach for a completely
different class of operations that originate from text databases. Most of these
operations are not required in [14,15]. In our data structures, an input tree is

� This work was supported by NSERC and the Canada Research Chairs Program.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 537–547, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

538 M. He, J.I. Munro, and G. Zhou

split according to labels of nodes, such that we can maintain structural informa-
tion and labels jointly in a space-efficiently way. Previous solutions to the same
problem are all based on different ideas [10,8,1].

In this paper, we consider the operations listed in Table 1, in which DFUDS
denotes depth-first unary degree sequence order as defined by Benoit et al. [3].
We list only the labeled versions of these operations. The unlabeled versions
simply include all nodes. In other words, the support for unlabeled versions can
be reduced to the support for labeled versions by setting the alphabet size to 1.
For simplicity, we refer to the labeled versions of operations as α-operations. We
call a node that has label α an α-node (hence α-children, α-ancestor, etc). In
addition, we define the α-rank of node x in a list to be the number of α-nodes
to the left of x in the list.

Table 1. Operations considered in this paper. Here we give only the definitions of the
labeled versions of operations.

Operation Description

depthα(x) α-depth of x, i.e., number of α-nodes from x to the root
parentα(x) closest α-ancestor of x
level ancα(x, i) α-ancestor y of x satisfying depthα(x)− depthα(y) = i
degα(x) number of α-children of x
child rankα(x) α-rank of x in the list of children of parent(x)
child selectα(x, i) i-th α-child of x
nbdescα(x) number of α-nodes in the subtree rooted at x
pre rankα(x)/pre selectα(i) α-rank of x in preorder/i-th α-node in preorder
post rankα(x)/post selectα(i) α-rank of x in postorder/i-th α-node in postorder

heightα(x) α-height of x, i.e., maximum number of α-nodes from x to
its leaf descendant

LCAα(x, y) lowest common α-ancestor of nodes x and y
dfuds rankα(x)/dfuds selectα(i) α-rank of x in DFUDS order/i-th α-node in DFUDS order
leaf lmostα(x)/leaf rmostα(x) leftmost/rightmost α-leaf in the subtree rooted at x
leaf rankα(x) number of α-leaves to the left of x in preorder
leaf selectα(i) i-th α-leaf in preorder
nbleafα(x) number of α-leaves in the subtree rooted at node x

insertα(x) insert an α-node x as an internal node or a leaf
delete(x) delete non-root node x

Geary et al. [10] presented data structures to support in constant time the first
group of α-operations in Table 1 and their unlabeled versions. The overall space
cost of their data structures is n(lg σ+2)+O(nσ lg lg lgn

lg lgn) bits, which is much more

than the information-theoretic lower bound of n(lg σ + 2) − O(lg n) bits when
σ = Ω(lg lg n). Ferragina et al. [8] and Barbay et al. [1] designed data structures
for labeled trees that use space close to the information-theoretic lower bound,
but supporting a more restricted set of α-operations. Ferragina et al.’s [8] xbw-
based representation supports only child selectα(x, i) and degα(x)

1, while

1 It also supports SubPathSearch queries, which return the number of nodes whose
upward paths start with a given query string.

A Framework for Succinct Labeled Ordinal Trees 539

Barbay et al.’s [1] data structure supports only pre rankα(x), pre selectα(i)
and nbdescα(x). These results are for static labeled trees; to the best of our
knowledge, there is no succinct data structure for dynamic labeled ordinal trees
with efficient query and update time.

Our results for static and dynamic labeled ordinal trees are summarized in
Theorems 1 to 3. First, as a preliminary result, we improve the succinct repre-
sentation of labeled ordinal trees of Geary et al. [10]. As shown in Theorem 1, the
improved representation supports more operations while occupying less space,
where PLST is the preorder label sequence of T , and Hk is the k-th order empir-
ical entropy [16], which is bounded above by lg σ. However, this data structure
is succinct only if the size of alphabet is very small, i.e., σ = o(lg lg n).

deepestα and min depthα are auxiliary α-operations used in Section 3:
deepestα(i, j) returns a node (there could be a tie) with preorder rank in [i, j]
that has the maximum α-depth, and min depthα(i, j) returns an α-node with
preorder rank in [i, j] that has the minimum depth (i.e., is closest to the root).

Theorem 1. Let T be a static ordinal tree on n nodes, each having a label drawn
from an alphabet of size σ = o(lg lg n). Under the word RAM with word size w =
Ω(lg n), for any k = o(logσ n), there exists a data structure that encodes T using

n(Hk(PLST) + 2) + O(n(k lg σ+lg lgn)
logσ n) + O(nσ lg lg lgn

lg lgn) bits of space, supporting

the first two groups of α-operations in Table 1 and their unlabeled versions, plus
two additional α-operations deepestα and min depthα, in constant time.

Theorem 2 is the main result in this paper. To achieve this result, we present
a framework for succinct representations of labeled ordinal trees, in which an
α-operation is reduced to a constant number of well-supported operations on
simpler data structures such as bit vectors, preorder label sequences, and un-
labeled and 0/1-labeled ordinal trees, where a 0/1-labeled ordinal tree is an
ordinal tree over the alphabet {0, 1}. This creative reduction allows us to deal
with large alphabets, and to compress labels of nodes into entropy bounds. Thus
our framework answers an open problem proposed by Geary et al. [10].

Theorem 2. Let T be a static ordinal tree on n nodes, each having a label drawn
from an alphabet Σ of size σ. Under the word RAM with word size w = Ω(lg n),

(a) for σ = O(polylog(n)), T can be encoded using n(H0(PLST) + 9) + o(n)
bits of space to support the first two groups of α-operations in Table 1 in
constant time;

(b) for general Σ, T can be encoded using nH0(PLST) + O(n) bits of space to
support the first two groups of α-operations in Table 1 in O(lg lg σ) time;

(c) for general Σ and k = o(logσ n), T can be encoded using nHk(PLST) +
lg σ ·o(n)+O(n lg σ

lg lg lg σ) bits to support the first two groups of α-operations in

Table 1 in O(lg lg σ(lg lg lg σ)2) time.

In addition, these data structures support the unlabeled versions of these α-
operations in constant time.

540 M. He, J.I. Munro, and G. Zhou

Theorem 3 further extends our work to the dynamic case. Here we only list the
result with the fastest query time. One can make use of the dynamic strings
in [12,17] when worst-case update time is desired.

Theorem 3. Let T be a dynamic ordinal tree on n nodes, each having a la-
bel drawn from an alphabet Σ of size σ. Under the word RAM with word size

w = Ω(lg n), T can be represented using n(H0(PLST)+5)+O(n(1+H0(PLST))
lg1−ε n

+

σ(lg σ + lg1+ε n)) bits of space, for any constant 0 < ε < 1, such that depthα,
parentα, nbdescα, LCAα, pre rankα, pre selectα, post rankα, post selectα,

and the leaf α-operations can be supported in O(lgn
lg lgn) time, level ancα can be

supported in O(lg n) time, and insertα and delete can be supported in O(lgn
lg lgn)

amortized time.

The rest of this paper is organized as follows. In Section 2 we review the data
structures and the techniques used in this paper. In Section 3 we describe the
construction of our data structures for static trees over large alphabets, i.e., the
proof of Theorem 2. In Section 4, we sketch our data structures for dynamic
trees, i.e., the proof of Theorem 3. Due to space limitations, we omit the proof
of Theorem 1.

2 Preliminaries

2.1 Bit Vectors, Strings and the Related Operations

In this subsection, we review bit vectors, strings, and the operations performed
on them. Bit vector plays a central role in many succinct data structures. For a
bit vector B[1..n], rank0(i) and rank1(i) return the numbers of 0-bits and 1-bits
in B[1..i], respectively. select0(i) and select1(i) return the positions of the
i-th 0-bit and the i-th 1-bit in B, respectively. Bit vectors can be generalized to
strings, in which characters are drawn from an alphabet Σ of size σ. For a string
S[1..n] and α ∈ Σ, rankα(i) returns the number of α’s in S[1..i], and selectα(i)
returns the position of the i-th α. Another operation studied by researchers is
the random access to any substring of length O(logσ n).

2.2 Tree Extraction

Tree extraction [14,15], based on the deletion operation of tree edit distance [4],
is a technique used to decompose a tree by deleting nodes, moving their children
into their positions in the sibling order. A crucial fact is that the ancestor-
descendant and preorder/postorder relationships between the remaining nodes
are preserved. To support the α-operations related to children, we develop a new
space-efficient approach based on tree extraction that is very different from the
strategy used in [14,15], so that the parent-child relationship is preserved.

Let V (T) be the set of nodes in T . For any set X ⊆ V (T) that contains the
root of T , we denote by TX the ordinal tree obtained by deleting all the nodes
that are not in X from T , where the nodes are deleted in level order. TX is

A Framework for Succinct Labeled Ordinal Trees 541

called the X-extraction of T . It is easy to see that there is a natural one-to-one
correspondence between the nodes in X and the nodes in TX . Lemma 1 captures
an essential property of tree extraction. The proof is omitted here.

Lemma 1. For any two sets of nodes X,X ′ ⊆ V (T), the nodes in X ∩X ′ have
the same relative positions in the preorder and the postorder traversal sequences
of TX and TX′ .

3 Static Trees over Large Alphabets: Theorem 2

For each possible subscript α ∈ Σ, we could support the first two groups of
operations in Table 1 by relabeling T into a 0/1-labeled tree and indexing the
relabeled tree, where a node is relabeled 1 if and only if it is an α-node in T .
However, we would have to store σ trees that have nσ nodes in total if we simply
apply this idea for each α ∈ Σ, which we could not afford.

Instead of storing all the n nodes for each α ∈ Σ, we store only the nodes that
are closely relevant to α, i.e., the α-nodes and their parents, and the ancestor-
descendant relationship between these nodes. We apply tree extraction to sum-
marize the information, where the tree constructed for label α is denoted by Tα.

For α ∈ Σ, we create a new root rα, and make the original root of T be the
only child of rα. The structure of Tα is obtained by computing the Xα-extraction
of the augmented tree rooted at rα, where Xα is the union of rα, the α-nodes
in T , and the parents of the α-nodes. The natural one-to-one mapping between
the nodes in Xα and Tα determines the labels of the nodes in Tα. The root of
Tα is always labeled 0. A non-root node in Tα is labeled 1 if its corresponding
node in T is an α-node, and 0 otherwise. Thus, the number of 1-nodes in Tα is
equal to the number of α-nodes in T . Let nα denote both values.

To clarify notation, the nodes in T are denoted by lowercase letters, while the
nodes in Tα are denoted by lowercase letters plus prime symbols. To illustrate
the one-to-one mapping, we denote by x′ a node in Tα if and only if its corre-
sponding node in T is denoted by x. The root of Tα, which corresponds to rα,
is denoted by r′α. We show how to convert the corresponding nodes in T and Tα

using the preorder label sequence of T in Subsection 3.2.
Since the structure of Tα is different from T , we need also store the structure

of T and the labels of the nodes in T so that we can perform conversions between
the nodes in T and Tα. In addition, to support the leaf α-operations, we store
for each α ∈ Σ a bit vector Lα[1..nα] in which the i-th bit is one if and only if
the i-th 1-node in preorder of Tα corresponds to a leaf in T .

Following this approach, our succinct representation consists of four compo-
nents: (a) the structure of T ; (b) PLST , the preorder label sequence of T ; (c)
a 0/1-labeled tree Tα for each α ∈ Σ; (d) and a bit vector Lα for each α ∈ Σ.
The unlabeled versions of the first two groups of operations in Table 1 are di-
rectly supported by the data structure that maintains the structure of T . For
α-operations, our basic idea is to reduce an α-operation to a constant number of
well-supported operations on T , PLST , Tα’s, and Lα’s, for which we summarize
the previous work in Subsection 3.5. In the following subsections, we describe our

542 M. He, J.I. Munro, and G. Zhou

algorithms in terms of T , PLST , Tα’s and Lα’s. For each operation, we specify
the component on which it performs as the first parameter. If such a component
is not specified in context, then this operation is performed on T .

3.1 pre rankα, pre selectα and nbdescα

By the definitions, we have pre rankα(x) = rankα(PLST , pre rank(x)) and
pre selectα(i) = pre select(selectα(PLST , i)). We make use of them to
find the α-predecessor and the α-successor of node x, which are defined to be
the last α-node preceding x and the first α-node succeeding x in preorder (both
can be x itself).

We support nbdescα(x) in the same way as [1]. The descendants of x form
a consecutive substring in PLST , which starts at index pre rank(x) and ends
at index pre rank(x) + nbdesc(x)− 1. We can compute the number of α-nodes
lying in this range using rankα on PLST . Providing that x has an α-descendant,
we can further compute the first and the last α-descendant of node x in pre-
order, which are the α-successor of x and the α-predecessor of the node that has
preorder rank pre rank(x) + nbdesc(x) − 1, respectively. Let these α-nodes be
u and v. For simplicity, we call [u, v] the α-boundary of the subtree rooted at x.

3.2 Conversion between the Nodes in T and Tα

The conversion between node x in T and the corresponding node x′ in Tα

plays an important role in supporting α-operations. If x is an α-node, then
x′ must exist in Tα. By Lemma 1, the conversion can be done using x′ =
pre select1(Tα, rankα(PLST , x)), and x = pre selectα(pre rank1(Tα, x

′)).
The other case in which x is not an α-node is more complex, since the node

in Tα that corresponds to x may or may not exist. By the definition of Tα, x
must have an α-child if x′ exists in Tα. In addition, every α-child of x in T must
appear as a 1-child of x′ in Tα. Using this, we can compute x from x′: We first
find the first 1-child of x′, say y′ = child select1(Tα, x

′, 1), and compute node
y in T that corresponds to y′ using the equation in the first paragraph. Then x
must be the parent of y in T .

Algorithm 1. Compute x′ when x is not an α-node

1 if x has no α-descendant then return NULL;
2 [u, v] ← the α-boundary of the subtree rooted at x;
3 if x �= LCA(u, v) then
4 y ← the child of x that is an ancestor of LCA(u, v);
5 if y is an α-node then return parent(Tα, y

′);
6 else return NULL;

7 else
8 w′ = LCA(Tα, u

′, v′);
9 if w′ corresponds to x then return w′;

10 else return NULL;

A Framework for Succinct Labeled Ordinal Trees 543

Algorithm 1 shows how to compute x′ from x when x is not an α-node, and
it returns NULL if no such x′ exists. We first verify whether x has at least one
α-descendant in line 1 using nbdescα. x

′ does not exist in Tα if x has no α-
descendant. Otherwise, we compute the α-boundary, [u, v], of the subtree rooted
at x in line 2. We have two cases, depending on whether x is the lowest common
ancestor of u and v. If x �= LCA(u, v), then x must have a child y that is a
common ancestor of u and v. All α-descendants of x must also be descendants
of y, or an α-descendant of x may precede u or succeed v in preorder. Thus,
we need only check if y is an α-node, as shown in lines 5 and 6. Now suppose
x = LCA(u, v). We claim that x′ must be the lowest common ancestor of u′ and
v′ if x′ exists in Tα. Thus, we need only compute w′ = LCA(Tα, u

′, v′) in line 8,
and verify if w′ corresponds to x in lines 9 and 10.

3.3 parentα, level ancα, LCAα and depthα

We first show how to compute parentα(x) in Algorithm 2. The case in which x
is an α-node is solved in lines 2 to 3. We simply compute y′ = parent1(Tα, x

′)
and return y. Suppose x is not an α-node. We compute u, the α-predecessor of x
in preorder, in line 4. We claim that x has no α-parent if x has no α-predecessor
in preorder, since the ancestors of x precede x in preorder. If such u exists, we
take a look at v = LCA(u, x) in line 6. We further claim that there is no α-
node on the path between v and x (excluding v), because u would not be the
α-predecessor if such an α-node exists. In addition, we know that v has at least
one α-descendant because of the existence of u. We return v if v is an α-node.
Otherwise, we compute the first α-descendant, w, of v. It is clear that there is
no α-node on the path between w and v (excluding w). Thus, the α-parent of
w, being computed in line 9, must be the α-parent of both v and x.

Algorithm 2. parentα(x)

1 if x is an α-node then
2 y′ ← parent1(Tα, x

′);
3 return y;

4 u ← the α-predecessor of x in preorder of T ;
5 if x has no α-predecessor then return NULL;
6 v ← LCA(u, x);
7 if v is an α-node then return v;
8 w ← the first α-descendant of v in preorder ;
9 y′ ← parent1(Tα, w

′);
10 return y;

Then we make use of parentα(x) to support level ancα(x, i): We first com-
pute y = parentα(x), where y must be an α-node or NULL. We return y if
y = NULL or i = 1. Otherwise, we compute z′ = level anc1(Tα, y

′, i − 1) and
return z.

544 M. He, J.I. Munro, and G. Zhou

LCAα and depthα can also be easily supported using parentα. LCAα(x, y)
is equal to LCA(x, y) if the lowest common ancestor of x and y is an α-node;
otherwise it is equal to parentα(LCA(x, y)). To compute depthα(x), let y = x if
x is an α-node, or y = parentα(x) if x is not. It is then clear that depthα(x) =
depthα(y) = depth1(Tα, y

′), since each α-ancestor of y in T corresponds to a
1-ancestor of y′ in Tα.

3.4 child rankα, child selectα and degα

We can support child selectα(x, i) and degα(x) using the techniques shown
in Subsection 3.2. We first try to find x′, the node in Tα that corresponds to
x. If such x′ does not exist, then x must have no α-child. Thus, we return
NULL for child selectα(x, i) and return 0 for degα(x). Otherwise, we compute
y′ = child select1(Tα, x

′, i) and return y for child selectα(x, i), as well as
return deg1(Tα, x

′) for degα(x).

Algorithm 3. child rankα(x)

1 if x is an α-node then return child rank1(Tα, x
′);

2 u ← parent(x);
3 if u has no α-child then return 0 ;
4 v ← the α-predecessor of x in preorder ;
5 if x has no α-predecessor or pre rank(v) ≤ pre rank(u) then return 0 ;
6 compute u′ and v′, the nodes in Tα that correspond to u and v;
7 w′ ← the child of u′ that is an ancestor of v′;
8 return child rank1(Tα, w

′);

The algorithm to support child rankα(x) is shown as Algorithm 3. The case
in which x is an α-node is easy to handle, as shown in line 1. We consider only
the case in which the label of x is not α. In lines 2 to 3, we compute node u
that is the parent of x, and verify if u has an α-child using degα. We return 0 if
u has no α-child. Otherwise, we compute the α-predecessor, v, of x in preorder.
If such v does not exist, or v is not a proper descendant of u, then x has no
α-sibling preceding it and we can return 0, since an sibling preceding x occurs
before x in preorder. Suppose v exists as a proper descendant of u. We can find
u′ and v′, the nodes in Tα that correspond to u and v, since both u and v are
α-nodes. In addition, we find the child, w′, of u′ that is an ancestor of v′. We
claim that each α-child of u in T that precedes x corresponds to a 1-child of u′

in Tα that precedes w′. Otherwise, v would not be the α-predecessor. Finally,
we return child rank1(Tα, w

′) as the answer.

3.5 Completing the Proof of Theorem 2

Due to space limitations, the support for the other static α-operations is omitted
here. In the current state, we have σ 0/1-labeled trees and σ bit vectors. To

A Framework for Succinct Labeled Ordinal Trees 545

reduce redundancy, we merge Tα’s into a single tree T , and merge Lα’s into a
single bit vector L. We list the characters in Σ as α1, · · · , ασ. Initially, T contains
a root node R only, on which the label is 0. Then, for i = 1 to σ, we append r′αi

,
the root of Tαi , to the list of children of R. Let nα be the number of α-nodes in
T . For α ∈ Σ, Tα has at most 2nα + 1 nodes, since each α-node adds a 1-node
and at most one 0-node into Tα. In addition, the Tα that corresponds to the
label of the root of T has at most 2nα nodes, since the root does not add an
0-node to Tα. Hence, T has at most 2n+σ nodes in total. By the construction of
T , the preorder/postorder traversal sequence of Tα occurs as a substring in the
preorder/postorder traversal sequence of T . Also, the DFUDS traversal sequence
of Tα with r′α removed occurs as a substring in the DFUDS traversal sequence
of T .

In addition, we append Lαi to L, which is initially empty, for i = 1 to σ. The
length of L is clearly n. It is not hard to verify that the reductions described in
early subsections can still be performed on the merged tree T and the merged
bit vector L. The following lemma generalizes the discussion.

Lemma 2. Let T be an ordinal tree on n nodes, each having a label drawn from
an alphabet Σ of size σ. Suppose that there exist

– a data structure D1 that represents a unlabeled ordinal tree on n nodes using
S1(n) bits and supports the unlabeled versions of the first two groups of α-
operations in Table 1;

– a data structure D2 that represents a string S using S2(S) bits and supports
rankα and selectα for α ∈ Σ;

– a data structure D3 that represents a 0/1-labeled ordinal tree on n nodes
using S3(n) bits and supports the first two groups of α-operations in Table 1
and their unlabeled versions, plus two additional α-operations deepestα and
min depthα;

– and a data structure D4 that represents a bit vector of length n using S4(n)
bits and supports rankα and selectα for α ∈ {0, 1}.

Then there exists a data structure that encodes T using S1(n) + S2(PLST) +
S3(2n+ σ) + S4(n) bits of space, supporting the first two groups of α-operations
in Table 1 and their unlabeled versions using a constant number of operations
mentioned above on D1, D2, D3 and D4.

Proof. The unlabeled versions are supported by D1 directly. The reductions for
the α-operations are shown in Subsections 3.1 to 3.4, and more details are omit-
ted due to space limitations. Here we consider the space cost only. We maintain
the structure of T , PLST , T , and L using D1, D2, D3, and D4, respectively. The
overall space cost is S1(n) + S2(PLST) + S3(2n+ σ) + S4(n) bits. ��

With the following three lemmas the proof of Theorem 2 follows.

Lemma 3 ([9,11,2]). Let S be a string of length n over an alphabet of size σ.
Under the word RAM with word size w = Ω(lg n),

(a) for σ = O(polylog(n)), S can be represented using nH0(S) + o(n) bits of
space to support rankα and selectα in O(1) time;

546 M. He, J.I. Munro, and G. Zhou

(b) for general Σ, S can be represented using nH0(S) + O(n) bits of space to
support rankα and selectα in O(lg lg σ) time;

(c) for any k = o(logσ n), S can be represented using nHk(S) + lg σ · o(n) +
O(n lg σ

lg lg lg σ) bits to support rankα and selectα in O(lg lg σ(lg lg lg σ)2) time.

Lemma 4 ([5]). A bit vector of length n can be represented in n + o(n) bits to
support rankα and selectα in constant time, for α ∈ {0, 1}.

Lemma 5 ([13,6,7,17]). Let T be an ordinal tree on n nodes. T can be repre-
sented using 2n+o(n) bits such that the unlabeled versions of the first two groups
of α-operations in Table 1 can be supported in constant time.

Proof (Theorem 2). Applying Lemma 5, one of Lemma 3 (a,b,c), Theorem 1,
and Lemma 4 for D1, D2, D3, and D4, respectively, we obtain the conclusion. ��

4 Dynamic Trees that Support Level-Ancestor
Operations : Theorem 3

Our succinct representation of dynamic trees also consists of four components:
the structure of T , PLST , Tα’s and Lα’s. The construction of Tα is different in
this scenario in order to facilitate update operations. For each α ∈ Σ, we still
add a new root rα to T , and compute the Xα-extraction of the augmented tree
rooted at rα. However, Xα contains rα and the α-nodes in T only, and we do
not assign labels to the nodes in Tα. Finally, we still merge Tα’s into a single
tree T , and merge Lα’s into a single bit vector L. T has exactly n+σ+1 nodes.
We omit the details of supporting operations due to space constraints.

References

1. Barbay, J., Golynski, A., Munro, J.I., Rao, S.S.: Adaptive searching in suc-
cinctly encoded binary relations and tree-structured documents. Theor. Comput.
Sci. 387(3), 284–297 (2007)

2. Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary
relations and multilabeled trees. ACM Transactions on Algorithms 7(4), 52 (2011)

3. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Repre-
senting trees of higher degree. Algorithmica 43(4), 275–292 (2005)

4. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput.
Sci. 337(1-3), 217–239 (2005)

5. Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage (extended ab-
stract). In: SODA, pp. 383–391 (1996)

6. Farzan, A., Munro, J.I.: A Uniform Approach Towards Succinct Representation
of Trees. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 173–184.
Springer, Heidelberg (2008)

7. Farzan, A., Raman, R., Rao, S.S.: Universal Succinct Representations of Trees?
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 451–462. Springer, Heidelberg
(2009)

A Framework for Succinct Labeled Ordinal Trees 547

8. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and index-
ing labeled trees, with applications. J. ACM 57(1) (2009)

9. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms 3(2) (2007)

10. Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor
queries. ACM Transactions on Algorithms 2(4), 510–534 (2006)

11. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a
tool for text indexing. In: SODA, pp. 368–373 (2006)

12. He, M., Munro, J.I.: Succinct Representations of Dynamic Strings. In: Chavez, E.,
Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 334–346. Springer, Heidelberg
(2010)

13. He, M., Munro, J.I., Rao, S.S.: Succinct Ordinal Trees Based on Tree Covering.
In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 509–520. Springer, Heidelberg (2007)

14. He, M., Munro, J.I., Zhou, G.: Path Queries in Weighted Trees. In: Asano, T.,
Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074,
pp. 140–149. Springer, Heidelberg (2011)

15. He, M., Munro, J.I., Zhou, G.: Succinct Data Structures for Path Queries. In:
Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 575–586. Springer,
Heidelberg (2012)

16. Manzini, G.: An analysis of the burrows-wheeler transform. J. ACM 48(3), 407–430
(2001)

17. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: SODA, pp. 134–149
(2010)

A Space-Efficient Framework

for Dynamic Point Location

Meng He1, Patrick K. Nicholson2, and Norbert Zeh1

1 Faculty of Computer Science, Dalhousie University, Canada
{mhe,nzeh}@cs.dal.ca

2 Cheriton School of Computer Science, University of Waterloo, Canada
p3nichol@uwaterloo.ca

Abstract. Let G be a planar subdivision with n vertices. A succinct
geometric index for G is a data structure that occupies o(n) bits beyond
the space required to store the coordinates of the vertices of G, while
supporting efficient queries. We describe a general framework for con-
verting dynamic data structures for planar point location into succinct
geometric indexes, provided that the subdivision G to be maintained
has bounded face size. Using this framework, we obtain several succinct
geometric indexes for dynamic planar point location on G with query
times matching the currently best (non-succinct) data structures and
polylogarithmic update times.

1 Introduction

Many fundamental problems in computational geometry involve constructing
data structures over large geometric data sets to support efficient queries on
the data. Such queries include point location, ray shooting, nearest neighbour
searching, as well as a plethora of range searching variants (see [5,1]). Data struc-
tures supporting these types of queries provide the building blocks of software
in many important application areas, such as geographic information systems,
network traffic monitoring, database systems, computer aided design (e.g., very-
large-scale integration), and numerous graphical applications.

One of the most heavily studied queries of this type is that of planar point
location: Given an n-vertex planar subdivision, the goal is to support queries
of the form, “Which region of the subdivision contains the query point?” Start-
ing with Kirkpatrick’s work [14], many linear-space data structures have been
proposed to support planar point location queries in O(lg n) time1, which is the
asymptotically optimal number of point-line comparisons. Further research has
focused on determining the exact number of point-line comparisons [12,17], de-
veloping data structures that bound the query time based on the entropy of the
query distribution [13], and exploiting word-RAM parallelism [8,7].

Recently, Bose et al. [6] presented a space-efficient framework for planar point
location in the word-RAM model. In this framework, the coordinates of the

1 We use lgn to denote �log2 n�.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 548–557, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Space-Efficient Framework for Dynamic Point Location 549

Table 1. Previous results for linear-space data structures for dynamic planar point
location. In the model column, “PM” denotes the pointer machine, and “RAM” the
word-RAM model. In the restrictions column, “General” denotes an arbitrary planar
subdivision, and “Horizontal” denotes point location among horizontal segments (verti-
cal ray shooting). The letters “a” and “p” in the columns showing query, insertion, and
deletion bounds indicate amortized bounds and high-probability bounds (i.e., proba-
bility 1−O(1)/nc, for some c ≥ 1), respectively. The value ε is any positive constant.

Source Model Restrictions Query Insert Delete

CJ92 [9] PM General O(lg2 n) O(lg n) O(lg n)
BJM94 [4] PM General O(lg n lg lg n) O(lg n lg lg n)a O(lg2 n)a

ABG06 [3] PM General O(lg n) O(lg1+ε n)a O(lg2+ε)a

ABG06 [3] RAM General O(lg n) O(lg n lg1+ε lgn)a,p O(lg
2+ε n

lg lgn
)a,p

GK09 [11] RAM Horizontal O(lg n) O(lg n) O(lg n)

N10 [15] RAM Horizontal O(lgn
lg lg n

) O(lg1+ε n)a O(lg1+ε n)a

n vertices of the subdivision are permuted and stored along with an auxil-
iary data structure called a succinct geometric index. The succinct geometric
index occupies only o(n) bits, which is asymptotically negligible compared to
the space occupied by the coordinates. With only this index and access to the
permuted sequence, they showed how to match the efficiency of many of the
previous data structures for planar point location. Specifically, they presented
several succinct geometric indexes that can answer point location queries in
O(lg n) time; O(H + 1) time, where H is the entropy of the query distribution;
O(min{lgn/ lg lg n,

√
lgU}) time, if the coordinates are integers in the range

[1, U]; and, finally, lg n + 2
√
lg n + O(lg1/4 n) point-line comparisons. Further-

more, they showed how to make their data structure implicit. Their implicit
data structure uses only O(1) words of space beyond the permuted sequence of
coordinates for the vertices and supports point location queries in O(lg2 n) time.

But what about the dynamic case, where we are allowed to modify the struc-
ture of the planar subdivision? Many data structures have been proposed to
solve this problem, though the best choice depends on whether we desire fast
queries, fast updates, worst-case behaviour, deterministic behaviour, or are oper-
ating on a restricted class of subdivisions. Table 1 summarizes the skyline results
for dynamic planar point location. Note that we consider only linear-space data
structures that are fully dynamic, i.e., support insertions and deletions. So far,
no point location data structures have been proposed that are dynamic and use
only o(n) bits of memory beyond the space required for the coordinates of the
vertices. Developing such structures is the focus of this paper.

1.1 Our Results

Our main result is a framework for creating succinct geometric indexes for dy-
namic point location in planar subdivisions with bounded face size: i.e., the
maximum number of vertices defining a face is a fixed constant that does not

550 M. He, P.K. Nicholson, and N. Zeh

depend on n. This framework allows us to convert any existing linear-space data
structure for dynamic planar point location into a succinct geometric index,
subject to the constraint that the subdivision to be maintained have bounded
face size2. The query times of our data structures can be set to match any of the
data structures for general subdivisions from Table 1, since our framework intro-
duces only an additive o(lg n) term to the query cost. Updates are supported in
polylogarithmic time, where the exact update time depends on the choice of the
underlying data structure. Our update operations allow for insertion and dele-
tion of vertices and edges into/from G, with some restrictions that we describe
in Section 3. We note that the types of update operations are similar to previous
work [9], and complete in the sense that they allow the assembly and disassem-
bly of any planar subdivision of bounded face size. All our results hold in the
word-RAM model with word size Θ(lg n) bits. The following theorem, which is
a consequence of our main theorem (Theorem 3 on page 556), summarizes our
contributions.

Theorem 1. Let G be an n-vertex planar subdivision with bounded face size
and each of whose vertices has coordinates occupying M = O(lg n) bits. For any
constant ε > 0, there exists a data structure for dynamic planar point location
in G that occupies nM + o(n) bits and

– Supports queries in O(lg n) time and updates in O(lg3+ε n) amortized time
with high probability (using [3]),

– Supports queries in O(lg n lg lg n) time and updates in O(lg2+ε n) amortized
time (using [4]), or

– Supports queries in O(lg2 n) time and updates in O(lg2+ε n) worst-case time
(using [9]).

Techniques and Overview: Our point location framework is based on the two-
level decomposition used in Bose et al.’s framework for obtaining succinct indexes
for static planar point location [6]. This framework uses a two-level partition
of the subdivision using planar separators. The main challenge in obtaining a
dynamic framework based on these ideas is to maintain the separator decompo-
sition under updates of the subdivision. Aleksandrov and Djidjev [2] introduced
the P-tree, a linear-space data structure for maintaining planar graph partitions
under updates of the graph. Our main technical contribution is to develop a suc-
cinct version of this data structure that requires only o(n) bits of space beyond
the space required to store the coordinates of the vertices of the graph. Ob-
taining this structure requires a non-trivial combination of the original P-tree
data structure with the labelling scheme by Bose et al. [6]. While our motivation
to develop this data structure was its importance as part of our point location
framework, we expect it to be of independent interest, as graph partitions find
applications in a wide range of algorithms.

2 Previous results for general subdivisions, e.g., [9], do not have this constraint.

A Space-Efficient Framework for Dynamic Point Location 551

2 Definitions and Preliminaries

We require the following definitions, closely following Aleksandrov and Djid-
jev [2], but making some slight modifications. For a graph G, let V (G) and
E(G) denote the vertex and edge sets of G, respectively. A planar graph G is
any graph that can be embedded (drawn) in the plane so that its edges in-
tersect only at their endpoints. A straight-line embedding of G represents each
edge as a line segment. A planar subdivision is a straight-line embedding of a
2-edge-connected planar graph. The faces of the subdivision are the connected
components of R2 \ (V (G) ∪ E(G)). We denote the set of faces by F (G), the
number of faces by N , and the number of vertices by n.

A region R is any set of faces, and we use G(R) to denote the subgraph
spanned by the edges on their boundaries. An edge e ∈ E(G(R)) is a boundary
edge of R if only one of the faces in F (G) incident to e is in G(R). All other
edges of G(R) are referred to as interior edges. The boundary of R, denoted
∂R, is the subgraph induced by the boundary edges of R. We say a region is
connected if the dual of G(R) is connected.

A partition R = {R1, ..., Rr} of G is a set of regions such that each face in
F (G) appears in exactly one region in R. A partition is weakly connected if every
region is either connected or adjacent to (i.e., shares a boundary edge with) at
most two other regions, in which case these two adjacent regions are connected.
The boundary of partition R, denoted ∂R, is the the union of the boundaries
∂Ri, 1 ≤ i ≤ r, of its regions.

Let G be a planar graph with N faces, and ε > 0. A partition R is an ε-
partition of G if no region of R contains more than εN faces. In the remainder
of this paper we deal with graphs whose face size is bounded by a constant. We
note that the number of vertices, n, is Θ(N) in this case.

We now review some preliminary lemmas that we will use extensively. The
following lemma is an extension of the result of [10], and is used throughout our
data structures to save space.

Lemma 1 ([6], Lemma 4.1). Given a planar subdivision of n vertices, for a
sufficiently large n, there exists an algorithm that can encode it as a permutation
of its point set in O(n) time and such that the subdivision can be decoded from
this permutation in O(n) time.

For a sequence S of length n, let S[i] denote the ith symbol in S. We use
rankb(S, i) to denote the frequency of symbol b in the prefix S[1], ..., S[i]. Simi-
larly, we use selectb(S, i) to denote the index j containing the ith occurrence
of symbol b in S. We make use of the following lemma, which can be used to
support rank and select operations on a bit sequence, while also compressing
the sequence if it sparse.

Lemma 2 ([16]). Given a sequence S of n bits, with m one bits 1, there exists a
data structure that represents S using m lg(n/m)+1.92m+o(m) bits and supports
rank and select operation in O(lg(n/m) + (lg4 m)/ lgn) and O((lg4 m)/ lgn)
time, respectively. Construction of the data structure takes O(n) time.

552 M. He, P.K. Nicholson, and N. Zeh

3 P-Trees

The P-tree, introduced by Aleksandrov and Djidjev [2], is a dynamic data struc-
ture for maintaining ε-partitions of a planar graph under the following opera-
tions, assuming the face size is bounded by a constant d:

– insert vertex(v, e) : Create a new vertex v and replace the edge e = (u,w)
with two new edges e1 = (u, v) and e2 = (v, w).

– insert edge(u,w, f) : Insert a new edge e = (u,w) across face f . Vertices
u and w have to be on the boundary of face f .

– delete vertex(v): Assuming v is a degree-2 vertex with neighbours u and w,
delete v and replace the edges (u, v) and (v, w) with a single edge (u,w).

– delete edge(e): Delete the edge e = (u,w), assuming both u and w are of
degree greater than two.

– list partition(ε): Return an ε-partition of G.

As noted by Aleksandrov and Djidjev [2], these operations can be used to trans-
form any planar graph into any other planar graph, as long as neither contains
a vertex of degree less than two. Next we give a brief summary of this data
structure. For full details, refer to [2].

The P-tree represents a hierarchy of graphs G0, G1, . . . , G�, where G0 = G
and |G�| = O(1). For 1 ≤ i ≤ �, Gi is obtained from Gi−1 by computing a
weakly connected h/Ni−1-partition Ri−1 of Gi−1, where Ni−1 is the number of
faces of Gi−1 and h is an appropriate constant. The faces of Gi represent the
regions in this partition. Every edge of Gi represents a maximal list of boundary
edges on the boundaries of the two adjacent regions. Every face f of Gi has
the faces of Gi−1 in the corresponding region of Ri−1 as its children in the P-
tree and stores a pointer to the list of edges on its boundary. Every edge of Gi

stores pointers to the edges of Gi−1 it represents. By following these pointers
recursively, every face f of Gi represents a collection of faces of G, a region
R(f), and every edge of Gi represents a collection of edges of G. The edges of
G corresponding to the edges on the boundary of a face f of Gi are exactly the
boundary edges of the region R(f). We define the cost of an edge of Gi as the
number of edges in G it represents. For a P-tree T , we use R(T, i) to denote the
partition {R(f1), ..., R(fr)}, where f1, ..., fr are the faces of Gi, that is, the faces
represented by nodes in T at distance i from the leaf level.

We call a node z of a P-tree T with children z1, z2, . . . , zq balanced if it satisfies
three properties:

(B1) z, z1, z2, . . . , zq have at most h children each, for an appropriate constant h.

(B2) If #c(z) and #g(z) respectively denote the number of children and the
number of grandchildren of z, then #c(z)/#g(z) ≤ c/h, for an appropriate
constant c ≤ h/2.

(B3) Let k be the level of z in the P -tree, i.e., its distance from the leaf level.
Then the total cost of all edges on zi’s boundary, for every 1 ≤ i ≤ q, is at
most dh(k−1)/2.

A Space-Efficient Framework for Dynamic Point Location 553

We note that all nodes of the P-tree are balanced after applying the described
construction algorithm. Furthermore, using these balancing conditions, it is easy
to prove the following lemma.

Lemma 3. Let 1 ≤ k ≤ � and εk = hk/N , where N is the number of faces in G.
The partition R(T, k) is an εk-partition of G with boundary size not exceeding
d
√
(Nc2k)/εk.

By Lemma 3, a list partition(ε) query amounts to finding the right level in
the P -tree and reporting the regions corresponding to the nodes at this level and
their boundaries.

The update operations supported by the P-tree may create or destroy a con-
stant number of leaves (faces of G) and change the boundary of a constant
number of leaves. For example, insert edge increases the number of leaves by
one. This may affect the balancing of the ancestors of these leaves. In order to
rebalance the tree, the path from each such leaf to the root is traversed and
every unbalanced node z is rebalanced using the following lemma.3

Lemma 4. Let G be a planar graph with N faces, assume the edges of G have
associated costs, and assume the total cost of the edges bounding each face
is bounded by some parameter b. Then there exists a weakly connected h/N -
partition R = {R1, ..., Rr} such that the cost of each region’s boundary is at most
b
√
h and r ≤ cN/h, for some constant c. Furthermore, R can be constructed in

O(N lgN) time.

We apply this lemma to every unbalanced node z we encounter. Since we rebal-
ance nodes in a bottom-up fashion, z can violate condition (B1) only if one of
its children has too many children. While rebalancing, we maintain the invariant
that every node, balanced or not, has at most 2ch children and every node below
the current node is balanced. Thus, once we are done processing the root, the
entire tree is balanced.

Now consider an unbalanced level-k node z with at most h children z1, . . . , zq
that each satisfy the conditions for z to be balanced, except one which may have
between h and 2ch children or boundary cost greater than dh(k−1)/2. Moreover,
z may violate condition (B2). To rebalance z, we consider the constant-size
subgraph of Gk−2 consisting of z’s grandchildren and their boundaries, and par-
tition it into subgraphs with at most h faces each. Each region in this partition
becomes a new face of Gk−1, and these faces become the new children of z.
By Lemma 4, this restores condition (B2), the part of condition (B1) bounding
the number of children of each child of z and, since each grandchild of z has
boundary cost at most b ≤ dh(k−2)/2, condition (B3). Since z has at most h
children before rebalancing, one of which has up to 2ch children, while all others
have at most h children, z has less than h2 + 2ch ≤ 2h2 grandchildren. Thus,

3 In [2, Theorem 1], this result was stated incorrectly, but apparently the remainder of
the paper applied it correctly. The running time stated in the lemma can be reduced
to O(N), but it would have no effect on our data structure and would require a
significantly more tedious analysis.

554 M. He, P.K. Nicholson, and N. Zeh

by Lemma 4, we partition the subgraph defined by these grandchildren into at
most 2h2 ·c/h ≤ 2ch regions, each of which becomes a child of z. Thus, z satisfies
the upper bound on its number of children necessary to proceed to rebalancing
its parent. Since each rebalancing operation works with a graph of constant size
and the height of the tree is O(lgN), each update takes O(lgN) time.

Based on Lemmas 3 and 4, we get the following corollary:

Corollary 1. Let h ≥ cα, for some α > 2, and let k = logh lg
λ N , for some

λ > 0. The partition R(T, k) is a (lgλ N/N)-partition with boundary size that

does not exceed dN/ lgλ/2−λ/α N . Furthermore, the number of regions in R(T, k)

does not exceed N/ lgλ−λ/α N .

4 Succinct P-Trees

In this section we introduce the succinct P-tree, which uses only nM + o(n)
bits of space to represent an n-vertex planar graph whose vertices have M -
bit coordinates in the plane. The price we pay for this space reduction is a
polylogarithmic slowdown in update time.

The main idea of the succinct P-tree is to prune all nodes below level logh lg
λ N

in the tree, for some λ > 0, referred to as the pruning level. We call the nodes at
the pruning level pruned nodes and the nodes above the pruning level internal
nodes. By Corollary 1, there are r ≤ N/ lgλ−λ/α N pruned nodes. We refer to
the regions defined by the pruned nodes as pruned regions.

Suppose we apply Lemma 1 to a pruned subgraph G(R(z)), obtaining a per-
mutation of the coordinates of its vertices that uniquely identifies the structure
of G(R(z)). Storing this permuted sequence of coordinates in the nodes at the
pruning level allows us to perform operations as in the original P-tree, at the cost
of decoding and re-encoding a subgraph of size O(lgλ N) during each update.
However, explicitly storing this permutation in each pruned node causes the co-
ordinates of the boundary vertices to be duplicated in several pruned regions.
To avoid this, we adapt the labelling scheme of Bose et al. [6] to the dynamic
setting. The details are as follows.

Data Structures of Pruned Nodes: Let πz denote the permutation of vertices
obtained by applying Lemma 1 to G(R(z)), for a fixed pruned node z ∈ T .
We denote the ith vertex in the permutation as πz(i). We separate the vertices
into two categories: vertices that are endpoints of edges on the boundary of
the pruned region are boundary vertices ; all other vertices are interior vertices.
Every interior vertex belongs to exactly one pruned region. Every boundary
vertex belongs to more than one pruned region. Each pruned node z now stores
the following data structures, where ∂R(z) and nz denote the boundary of and
the number of vertices in R(z), respectively.

– A binary sequence Bz , where Bz[j] = 0 if πz(j) is an interior vertex, and
Bz[j] = 1 if πz(j) is a boundary vertex of R(z). We represent Bz using the
data structure of Lemma 2.

A Space-Efficient Framework for Dynamic Point Location 555

– An array Iz that stores the coordinates for interior vertices. Entry Iz [j] stores
the coordinates for the vertex πz(select0(Bz , j)), for 1 ≤ j ≤ rank0(Bz, nz).

– An array Xz that stores pointers to records external to node z. For 1 ≤ j ≤
rank1(Bz, nz), the record pointed to by entry Xz[j] stores the coordinates
of vertex πz(select1(Bz, j)): the jth boundary vertex in R(z).

– An array Ez that stores pointers to records representing the edges on the
boundary of ∂R(z). The ordering of Ez is any canonical ordering based on
the permutation πz. For example, we can order the edges lexicographically
by the positions of their endpoints in πz . Let C be the record representing
the jth boundary edge e of R(z) in this ordering, pointed to by entry Ez [j].
C stores the indices of e’s endpoints in arrays Xz, as well as a pointer to
z. Furthermore, C stores the symmetric information about the other pruned
region R(z′) that has e on its boundary.

Each internal node stores the same information as in a standard P-tree. Using
Corollary 1 and Lemma 2, we can bound the space occupied by the succinct
P-tree data structure as follows.

Lemma 5. The succinct P-tree occupies nM + O(n/ lgλ/2−β−1 n) bits, for any
constant β > 0.

We next state the following lemma about supporting updates. Intuitively, the
idea is to simulate the operation of a standard P-tree. Above the pruning level,
each update operation proceeds identically as if it were run on a standard P-tree
and, thus, takes O(lg n) time. In order to implement the portion of the update
operation that operates on nodes below the pruning level, we reconstruct the
affected pruned region from its succinct representation and build a P-tree from
it. This takes O(lgλ n lg lg n) time. Since each update affects only a constant
number of pruned regions, the lemma follows.

Lemma 6. A succinct P-tree supports the operations insert vertex,
insert edge, delete vertex, and delete edge in O(lgλ n lg lgn) time.

Combining Lemmas 5 and 6, and setting λ > 2 leads us to our main theorem of
this section.

Theorem 2. Let G be a planar subdivision with n vertices and N faces, where
each face has at most d vertices, for some constant d ≥ 3. Each vertex is as-
sumed to store M -bit coordinates. Let ε be any positive constant. There exists
a data structure representing G in nM + o(n) bits of space that can perform
the operations insert vertex, delete vertex, insert edge, and delete edge

in O(lg2+ε n) time. The operation list partition(ε′) can be performed in time
proportional to the partition’s size, for lg2+ε N/N ≤ ε′ ≤ 1. The boundary size of
the partition returned by list partition(ε′) does not exceed d

√
(N1+δ)/(ε′1−δ),

where δ > 0 is an arbitrarily small constant but depends on our choice of ε.

556 M. He, P.K. Nicholson, and N. Zeh

5 Dynamic Planar Point Location

As an application of Theorem 2, we develop a succinct geometric index for
dynamic planar point location. To do this, we add extra data structures to the
pruned nodes of the succinct P-tree. These extra data structures are analogous
to the subregion level data structures of the two-level index of Bose et al. [6].

Let γ be a positive constant in the range (0, 2]. We refer to the regions in
R(T, logh lg

γ n) as γ-subregions. Since λ > 2, each γ-subregion is contained in
a pruned region and thus is not accessible without decoding this pruned region.
The next lemma states that we can augment the succinct P-tree to provide
efficient access to γ-subregions.

Lemma 7. The succinct P-tree can be augmented to support extraction of the
graph structure of an arbitrary γ-subregion (within a specified pruned region) in
O(lgγ(n)polyloglog(n)) time, where γ ∈ (0, 2] is fixed at construction time. The

space bound becomes nM+O((n lg lg n)/ lgγ/2−γ/α n), which is o(n) for γ ∈ (0, 2]
and α > 2, and the update costs remain as stated in Theorem 2.

We now sketch how to use γ-subregion extraction to efficiently support point
location queries, resulting in our main theorem:

Theorem 3. Let D be a dynamic point location data structure that uses O(n)
words of space to store an n-vertex subdivision and supports queries and updates
on this subdivision in Q(n) and U(n) time, respectively. We assume Q(n) +
U(n) = O(polylog(n)). Let G be a planar subdivision, each of whose faces has
a constant number of vertices, and assume the coordinates of each vertex can be
stored in M bits. Let ε > 0 be any positive constant, and choose any constant γ ∈
(0, 2]. There exists a data structure for dynamic planar point location that occu-
pies nM+o(n) bits of space, supports queries in O(lgγ(n)polyloglog(n)+Q(n))
time, and supports the operations insert vertex, delete vertex, insert edge,
and delete edge in O(U(n) lg1+ε/2 n+ lg2+ε n) time.

Proof (Sketch).WemaintainG in a succinct P-tree T , augmented as in Lemma 7.
The planar subdivision defined by the boundaries of the pruned regions of G is
stored in the data structure D. This is the first level point location structure.
Inside each pruned node z, we also store another instance of D, denoted Dz. This
second-level point location structure stores the planar subdivision defined by the
boundaries of the γ-subregions contained in R(z). Each face f of this subdivision
corresponds to a connected component of a γ-subregion Si. We store its index i
with f . To answer a query for a point p, we first query D to identify the pruned
region R(z) that contains p. Next we query Dz to identify the γ-subregion Si

that contains p. Finally, we extract Si and perform a brute-force search to find
the face of Si that contains p. The queries to D and Dz require Q(n) time,
and the γ-subregion extraction step requires O(lgγ(n)polyloglog(n)) time, by
Lemma 7. The total query time is therefore O(Q(n) + lgγ(n)polyloglog(n)).
The key idea of achieving the claimed update time is to use condition (B3) to
bound the number of edges and vertices in D that are changed by an update. ��

A Space-Efficient Framework for Dynamic Point Location 557

By choosing the data structures from Table 1 as D in the previous theorem, and
setting γ appropriately, we get the result of Theorem 1.

References

1. Agarwal, P., Erickson, J.: Geometric range searching and its relatives. Contempo-
rary Mathematics 223, 1–56 (1999)

2. Aleksandrov, L.G., Djidjev, H.N.: A Dynamic Algorithm for Maintaining Graph
Partitions. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, p. 71.
Springer, Heidelberg (2000)

3. Arge, L., Brodal, G., Georgiadis, L.: Improved dynamic planar point location. In:
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science, pp. 305–314. IEEE Computer Society (2006)

4. Baumgarten, N., Jung, H., Mehlhorn, K.: Dynamic point location in general sub-
divisions. Journal of Algorithms 17(3), 342–380 (1994)

5. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications, 3rd edn. Springer, Santa Clara (2008)

6. Bose, P., Chen, E., He, M., Maheshwari, A., Morin, P.: Succinct geometric indexes
supporting point location queries. ACM Trans. on Algorithms 8(2), 10 (2012)

7. Chan, T.M.: Persistent predecessor search and orthogonal point location on the
word ram. In: SODA, pp. 1131–1145 (2011)

8. Chan, T.M., Patrascu, M.: Transdichotomous Results in Computational Geometry,
I: Point Location in Sublogarithmic Time. SIAM J. Comput. 39(2), 703–729 (2009)

9. Cheng, S., Janardan, R.: New results on dynamic planar point location. SIAM
Journal on Computing 21, 972 (1992)

10. Denny, M., Sohler, C.: Encoding a triangulation as a permutation of its point set.
In: Proc. CCCG (1997)

11. Giora, Y., Kaplan, H.: Optimal dynamic vertical ray shooting in rectilinear planar
subdivisions. ACM Transactions on Algorithms (TALG) 5(3), 28 (2009)

12. Goodrich, M., Orletsky, M., Ramaiyer, K.: Methods for achieving fast query times
in point location data structures. In: Proc. SODA, pp. 757–766. SIAM (1997)

13. Iacono, J.: A static optimality transformation with applications to planar point
location. In: Symposium on Computational Geometry, pp. 21–26 (2011)

14. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1),
28–35 (1983)

15. Nekrich, Y.: Searching in dynamic catalogs on a tree. Arxiv preprint
arXiv:1007.3415 (2010)

16. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: ALENEX (2007)

17. Seidel, R., Adamy, U.: On the exact worst case query complexity of planar point
location. Journal of Algorithms 37(1), 189–217 (2000)

Selection in the Presence of Memory Faults,

with Applications to In-place Resilient Sorting�

Tsvi Kopelowitz and Nimrod Talmon

Weizmann Institute of Science, Rehovot, Israel
{kopelot,nimrodtalmon77}@gmail.com

Abstract. The selection problem, where one wishes to locate the kth

smallest element in an unsorted array of size n, is one of the basic prob-
lems studied in computer science. The main focus of this work is de-
signing algorithms for solving the selection problem in the presence of
memory faults.

Specifically, the computationalmodel assumed here is a faulty variant of
the RAMmodel (abbreviated as FRAM), which was introduced by Finoc-
chi and Italiano [FI04]. In this model, the content of memory cells might
get corrupted adversarially during the execution, and the algorithm can-
not distinguish between corrupted cells and uncorrupted cells. The model
assumes a constant number of reliable memory cells that never become
corrupted, and an upper bound δ on the number of corruptions that may
occur, which is given as an auxiliary input to the algorithm.

The main contribution of this work is a deterministic resilient selection
algorithm with optimal O(n) worst-case running time. Interestingly, the
running time does not depend on the number of faults, and the algorithm
does not need to know δ. As part of the solution, several techniques that
allow to sometimes use non-tail recursion algorithms in the FRAM model
are developed. Notice that using recursive algorithms in this model is
problematic, as the stack might be too large to fit in reliable memory.

The aforementioned resilient selection algorithm can be used to im-
prove the complexity bounds for resilient k-d trees developed by Gieseke,
Moruz and Vahrenhold [GMV10]. Specifically, the time complexity for
constructing a k-d tree is improved from O(n log2 n+ δ2) to O(n log n).

Besides the deterministic algorithm, a randomized resilient selection
algorithm is developed, which is simpler than the deterministic one, and
has O(n+α) expected time complexity and O(1) space complexity (i.e.,
is in-place). This algorithm is used to develop the first resilient sorting
algorithm that is in-place and achieves optimal O(n log n+αδ) expected
running time.

1 Introduction

Computing devices are becoming smaller and faster. As a result, the likelihood
of soft memory errors (which are not caused by permanent failures) is increased.

� A full version appears at http://arxiv.org/abs/1204.5229. This work was supported
in part by The Israel Science Foundation (grant #452/08), by a US-Israel BSF grant
#2010418, and by the Citi Foundation.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 558–567, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Selection in the Presence of Memory Faults 559

In fact, a recent practical survey [Sem04] concludes that a few thousands of
soft errors per billion hours per megabit is fairly typical, which would imply
roughly one soft error every five hours on a modern PC with 24 gigabytes
of memory [CDK11]. The causes of these soft errors vary and include cosmic
rays [Bau05], alpha particles [MW79], or hardware failures [LHSC10].

To deal with these faults, the faulty RAM (FRAM) model has been proposed
by Finocchi and Italiano [FI04], and has received some attention
[BFF+07, BJM09, BJMM09, CFFS11, FGI09a, FGI09b, GMV10, JMM07]. In
this model, an upper bound on the number of corruptions is given to the al-
gorithm, and is denoted by δ, while the actual number of faults is denoted by
α (α ≤ δ). Memory cells may become corrupted at any time during an algo-
rithm’s execution and the algorithm cannot distinguish between corrupted cells
and uncorrupted cells. The same memory cell may become corrupted multiple
times during a single execution of an algorithm. In addition, the model assumes
the existence of O(1) reliable memory cells, which are needed, for example, to
reliably store the code itself. A cell is assumed to contain Θ(log n) bits, where n
is the size of the input, as is usual in the RAM model.

One of the interesting aspects of developing algorithms in the FRAM model is
that the notion of correctness is not always clear. Usually, correctness is defined
with respect to the subset of uncorrupted memory cells and in a worst-case sense,
implying that for an algorithm to be correct, it must be correct in the presence of
any faulty environment, including an adversarial environment. In this model, an
algorithm that is always correct (which is problem dependent) is called resilient.

The main focus of this work is on the selection problem (sometimes called the
k-order statistic problem) in the FRAM model, where one wishes to locate the
kth smallest element in an unsorted array of size n, in the presence of memory
faults. The following main theorem is proved in Section 3.

Theorem 1. There exists a deterministic resilient selection algorithm with time
complexity O(n).

Interestingly, the running time does not depend on the number of faults. More-
over, the algorithm does not need to know δ explicitly. The selection problem
is a classic problem in computer science. Along with searching and sorting, it
is one of the basic problems studied in the field, taught already at undergrad-
uate level (e.g., [CLRS09]). There are numerous applications for the selection
problem, thus devising efficient algorithms is of practical interest.

When considering the selection problem in the FRAM model, the first diffi-
culty is to define correctness1. To this end, the correctness definition used here
allows to return an element, which may even be corrupted, whose rank is be-
tween k − α to k + α in the input array. Notice that when α = 0 this definition
coincides with the non-faulty definition (for a formal definition see Section 2).

1 The common notion of considering only the non-corrupted elements is somewhat
misleading in the selection problem. This is because of the difficulty of not being
able to distinguish between corrupted and uncorrupted data.

560 T. Kopelowitz and N. Talmon

Besides the deterministic algorithm, a randomized and in-place counterpart
is developed as well. Specifically, a randomized and in-place resilient selection
algorithm with expected time complexity O(n+α) is developed. The randomized
selection algorithm is simpler than to the deterministic one, and is likely to beat
the deterministic algorithm in practice. Details are left for the full paper.

The selection algorithm presented here can be used to improve the complexity
bounds for resilient k-d trees developed by Gieseke et al. [GMV10]. There, a
deterministic resilient algorithm for constructing a k-d tree with O(n log2 n+δ2)
time complexity is shown. This can be improved to O(n log n) by using the
deterministic resilient selection algorithm developed here. Details are left for the
full paper.

The problem of sorting in the FRAM model is also revisited, as an application
of the resilient selection algorithm. Finocchi et al. [FGI09a], already developed
a resilient Mergesort algorithm, sorting an array of size n in O(n log n + αδ)
time, where the uncorrupted subset of the array is guaranteed to be sorted.
They also proved that this bound is tight. A new in-place randomized sorting
algorithm which resembles Quicksort and runs in O(n log n+αδ) expected time
is presented. This sorting algorithm uses the randomized selection algorithm as
a black box. Details are left for the full paper.

In the (non-faulty) RAM model the recursion stack needs to reliably store
the local variables, as well as the frame pointer and the program counter. Cor-
ruptions of this data can cause the algorithm to behave unexpectedly, and in
general the recursion stack cannot fit in reliable memory. Some new techniques
for implementing a specific recursion stack which suffices for solving the selec-
tion problem are developed in Section 4, and are used to develop the resilient
deterministic selection algorithm presented in Section 3. It is likely that these
techniques can be used to help implement recursive algorithms for other prob-
lems in the FRAM model, as these techniques are somewhat general and can be
used due to the following four points: (i) Easily Inverted Size Function: When
performing a recursive call, the function which determines the size of the input to
the recursive call is easily inverted, while needing only O(1) bits to maintain the
data needed to perform the inversion. (ii) Bounded Depth: The depth of the re-
cursion is bounded by O(log n) and so using O(1) bits per level can fit in reliable
memory. (iii) Verification: A linear verification procedure is used such that once
a recursive call is returned, if the procedure accepts, then the algorithm may
proceed even if some errors did occur in the recursive call. (iv) Amortization:
If the verification procedure fails, then the number of errors which caused the
failure is linear in the amount of time spent on the recursive call. This allows to
amortize the cost of work on the number of errors, up to a multiplicative factor.

The only previous work done in the FRAM model for non-tail recursion was
done by Caminiti et al. [CFFS11] where they developed a recursive algorithm for
solving dynamic programming. However, the recursion inherited in the problem
of dynamic programming is simpler compared to the recursion treated in the
selection problem, due to the structural behavior of the dynamic programming
table (the recursions depend on positioning within the table, and not on the

Selection in the Presence of Memory Faults 561

actual data). Moreover, their solution only works with high probability (due to
using fingerprints for the verification procedure).

2 Preliminaries

2.1 Definitions

Let X be an array of size n of elements taken from a totally ordered set. Let
X0 denote the state of X at the beginning of the execution of an algorithm A
executed on X . Let α ≤ δ be the number of corruptions that occurred during
such execution.

Definition 1. Let X be an array and let e be an element. The rank of e in X
is defined as rankX(e) = |{i : X [i] ≤ e}|. The α-rank of k in X is defined as
α-rankX(k) = {e : rankX(e) ∈ [k − α, k + α]}.

Notice that the α-rank of k in X is an interval containing the elements whose
rank in X is not smaller than k − α and not larger than k + α. In particular, if
α ≥ n, this interval is equal to [−∞,∞]. Moreover, if α = 0, then this interval
is equal to the k-order statistic, thus coincides with the non-faulty definition.

Definition 2. A resilient k-selection algorithm is an algorithm that is given an
array X of size n and an integer k, and returns an element e ∈ α-rankX0(k),
where α ≤ δ is the number of faults that occurred during the execution of the
algorithm.

2.2 Basic Procedures

Lemma 1. There exists a resilient ranking procedure with time complexity
O(n), that is given an array X of size n and an element e, and returns an
integer k such that e ∈ α-rankX0(k).

Proof. A resilient ranking procedure can be implemented by scanning X while
counting the number of elements smaller or equal to e, denoted by k. If α = 0,
then k = rankX(e). If α > 0, then e ∈ α-rankX0(k), because each corrup-
tion can change at most one memory cell, changing the rank of e in X by
at most 1.

Lemma 2. There exists a resilient partition procedure with time complexity
O(n) and space complexity O(1), that is given an array X of size n and an ele-
ment e, and reorders X such that the uncorrupted elements smaller (larger) than
e are placed before (after) e, and returns an element k such that e ∈ α-rankX0(k).

Proof. A resilient partition procedure can be implemented by scanning X while
counting the number of elements smaller or equal to e, denoted by k, such that
whenever an element smaller than e is encountered it is swapped with the element
at position k + 1.

562 T. Kopelowitz and N. Talmon

Notice that both procedures compute an integer k such that e ∈ α-rankX0(k).
Let rankcX(e) denote the value k computed by either procedure, such that when-
ever the notation rankcX(e) will be used, it will be understood from the context
which procedure is used. Notice that if α = 0, then rankcX(e) = rankX(e).

3 Deterministic Resilient Selection Algorithm

The following deterministic resilient selection algorithm is similar in nature to
the non-resilient algorithm by Blum, Floyd, Pratt, Rivest, and Tarjan [BFP+73],
but several major modifications are introduced in order to make it resilient. The
algorithm is presented in a recursive form, but the recursion is implemented in
a very specific way, as explained in Section 4.

Generally, a recursive computation can be thought of as a traversal on a recur-
sion tree T , where the computation begins at the root. Each internal node u ∈ T
performs several recursive calls, which can be partitioned into two types: the first
type and the second type. Each node performs at least one call of each type, and
the calls may be interleaved. The idea is for each node u, to locate the kthu smallest
element in the array Xu of size nu. However, due to corruptions, this cannot be
guaranteed, therefore a weaker guarantee is used, as explained later.

3.1 Algorithm Description

The root of the recursion tree is a call to Determinstic-Select(X, k, −∞, ∞).
The computation of an inner node u has two phases.

First Phase. The goal of the first phase is to find a good pivot, specifically, a
pivot whose rank is in the range [fu, nu − fu], where fu = � 3nu

10 � − �
nu

11 � − 6.2

Finding a pivot is done by computing the median of each group of five consecutive
elements in X , followed by a recursive call of the first type, to compute the
median of these medians. The process is repeated until a good pivot is found.

Second Phase. The goal of the second phase is to find a good element. Specif-
ically, an element whose rank is in [ku ± nv] where v is a second type child of u.
This will be shown to be sufficient3. This is done by making a recursive call of
the second type, which considers only the relevant sub-array with the updated

2 The exact choice of fu (which is a function of nu, the size of the node u) relates
to the recursion implementation as explained in Section 4. The idea is to always
partition the array at a predetermined ratio, in order to provide more structure to
the recursion, and this is what allows for the recursion size function to be easily
invertible, as mentioned in Section 1. Notice that the �nu

11
� could be picked to be

�ε · nu� for any constant ε < 1
10
, because this is needed for the running time of the

algorithm, as explained in the proof of Theorem 2.
3 The exact choice of [ku ± nv] relates to the proof by induction for the correctness of
the algorithm. The idea is that as long as less then nv corruptions occurred during the
computation of v, the rank of the element located by v is guaranteed, by induction,
to be in these bounds.

Selection in the Presence of Memory Faults 563

order statistic. Notice that, unlike the non-faulty selection algorithm, here the
appropriate sub-array might be padded with more elements, so that the size of
the sub-array is nu− fu. This is important for the recursion implementation, as
explained in Section 4. If the returned value from the recursive call is not in the
accepted range, the entire computation of the node repeats, starting from the
first phase. Once a good element is found, it is returned to the caller.

Algorithm 1. Deterministic-Select(X , n, k, lb, ub)

1 # The algorithm uses the recursion implementation from Lemma 3
2 repeat
3 # Let f denote � 3n10 � − �

n
11� − 6

4 begin First Phase
5 repeat
6 Xm ← []
7 for i ∈ [1..�n/5�] do
8 Xm[i]← median of X [5i, 5i+min(4, n− 5i)]

9 xp ← Deterministic-Select(Xm, �|Xm|/2�, lb, ub)
10 partition X around xp # using the algorithm from Lemma 2
11 # Let p denote rankcX(xp)

12 until p ∈ [f, n− f]

13 begin Second Phase
14 if p = k then return e = min(max(xp, lb), ub)
15 else if p > k then e← Deterministic-Select(X [1, n− f], k, lb, xp)
16 else if p < k then e← Deterministic-Select(X [f, n], k− f , xp, ub)

17 until rankcX(e) ∈ [k ± nv] # v is a second type child of the node
18 return e = min(max(e, lb), ub)

Let αu be the number of corruptions that occurred in u’s sub-tree. Each node
uses two boundary values lbu and ubu which are used similarly to the bounds
used in the randomized resilient algorithm.

The recursive calls are made with the parameters Xu, nu, ku, lbu, ubu, and
each recursive call returns an element x. In Section 4, a recursion implementation
with the following properties is described.

Lemma 3. There exists a recursion implementation for the resilient determin-
istic selection algorithm with the following properties:

1. The position of Xu, nu, the return value, and program counter are reliable.4

2. If αu ≤ nu, then lbu, ubu, ku are reliable.5

3. The time overhead induced by the implementation is O(nu) per call.

4 This means that these variables are correct, as long as no more than δ faults occurred.
5 This means that these variables are correct, as long as no more than nu faults
occurred.

564 T. Kopelowitz and N. Talmon

The proof of the Lemma is given in Section 4.

3.2 Analysis

Let u be a node. Let V = (v1, . . . , v|V |) be u’s children. v1 is always a first type
node, and v|V | is always a second type node. Every second type child, except
v|V |, is followed by a first type child, therefore there cannot be two adjacent
second type children. Let αu denote the number of corruptions that occur in u’s
sub-tree and let αlocal

u denote the number of corruptions that occur only in u’s
data. Let αvi

u denote the number of corruptions that occur in u’s data between
the execution of vi and the execution of vi+1 (or until u finishes its computation,
if vi is the last child of u) and let α0

v denote the number of corruptions that
occur in u’s data before the execution of v1. It follows that, αu = αlocal

u +∑|V |
v=0 αvi =

∑|V |
v=1(α

vi
u + αvi). Let X

0
u denote the state of Xu at the beginning

of u’s computation. Let Xvi
u denote the state of Xu at the moment of the call

to vi.
The following Lemmas are used to prove the correctness and the running time

of Deterministic-Select in Thm. 2. The proofs of the Lemmas are left for the full
paper.

Lemma 4. If αu ≤ nu, then eu ∈ αu-rankX0
u
(ku).

Lemma 5. Let w = vi be a first type child of u. If vi+1 is not a second type
node, then αw

u + αw ≥ Ω(nu).

Lemma 6. Let w = vi be a second type child of u. If w is not the last child of
u, then αw

u + αw ≥ Ω(nu).

Theorem 2. Deterministic-Select is a deterministic resilient selection algorithm
with time complexity O(n+ α).

Proof. First, Deterministic-Select is shown to be resilient. Let u be the root of
the recursion tree, T . If δ ≤ n = nu, then by Lemma 4, e ∈ α-rankX0 (k), as
needed. Otherwise, if δ ≥ n, then there are two cases to consider. If α ≤ n,
then by Lemma 4, e ∈ α-rankX0(k), as before. Otherwise, if α ≥ n, then by
definition, [−∞,∞] = n-rankX0 (k) = α-rankX0(k). Therefore, for any element
e, e ∈ α-rankX0 (k). In particular, the element returned is correct.

With regard to the time complexity, consider a non-faulty execution (i.e.,
α = 0). The time complexity T (n) = T (�n/5�)+T (�7n/10�+�n/11�+6)+O(n) =
O(n) follows, because �n/5�+ �7n/10�+ �n/11� < n.

If α > 0, then there might be some repetitions. Lemma 5 and Lemma 6 show
that enough corruptions can be charged for the time spent in those repetitions.
In particular, the Ω(nu) corruptions that cause a first type child repetition pay
for the O(nu) computation time of the child, and the Ω(nu) corruptions that
cause a second type child repetition pay for the O(nu) computation time of the
child, and for the O(nu) computation time of the first type child that precedes it.
In both cases there is O(1) amortized cost per corruption. Therefore, the overall
time complexity is O(n + α).

Selection in the Presence of Memory Faults 565

Theorem 3. There exists a deterministic resilient selection algorithm with time
complexity O(n).

The idea is to maintain a counter, which is a lower bound on the number of
corruptions that occurred. The full proof is left for the full paper.

4 Recursion Implementation

In this section, an abstract recursion stack for Deterministic-Select is developed.
The data structures used by this abstract stack are described, followed by the
implementation of the operations on it. This leads to the proof of Lemma 3 at
the end of this section.

4.1 Data Structures

Two stacks, one reliable and the other one faulty, together with a constant
number of reliable memory cells, are used to implement the recursion for the al-
gorithm Deterministic-Select. An execution path in the recursion tree, T , starts
from the root and ends at the current node. In each stack, the entire execu-
tion path is stored in a contiguous region in memory, where the root is at the
beginning, and the current node is at the end.

Reliable Stack. The reliable stack stores only 9 bits of information per node.
The height of T is O(log n), therefore it can be stored in a constant number of
reliable memory cells. For each inner node u ∈ T , the reliable stack stores 1 bit
to distinguish between a first type child and a second type child. Let ρyx denote
the remainder of the division of x by y. For a node of the first type, ρ5nu

is stored.

For a node of the second type, ρ
10/3
nu and ρ11nu

are stored. Notice that the O(1)
reliable memory cells are used down to the bit level.

Faulty Stack. The faulty stack stores O(nu) words of information per node.
For each node u ∈ T , the faulty stack stores the elements of Xu, as well as ku,
lbu, and ubu. The elements of Xu are stored using 1 copy per element, while ku,
lbu, and ubu are stored using 2nu + 1 copies per variable.

Global Variables. Each one of the following global variables is stored using a
reliable memory cell: The current array size, the reliable stack’s frame pointer,
the faulty stack’s frame pointer, the program counter, and the return value.

Notice that at a given moment in an execution only one value per each global
variable needs to be stored.

4.2 Operations

Two operations are implemented by the recursion implementation. A push opera-
tion corresponds to a recursive call, and a pop operation corresponds to returning
from a recursive call.

566 T. Kopelowitz and N. Talmon

Push. When a node u calls its child v, the following is done. The information
of whether v is a first type child or a second type child of u is written to the

reliable stack, as well as the relevant remainders (i.e., ρ5nu
or ρ

10/3
nu and ρ11nu

), and
the reliable stack’s frame pointer is incremented by 9 bits. Then, the relevant
sub-array is pushed to the faulty stack, followed by the values lbv, ubv, and kv.
If v is a first type child, then nv is updated to �nu/5�. If v is a second type
child, then nv is updated to nu−fu. The faulty stack’s frame pointer is updated
accordingly, and the program counter is set to line 1. Then, the computation
continues to v.

Pop. When v finishes its computation, the following is done. First, the reliable
stack’s frame pointer is decremented by 9 bits, and the information of whether
v is a first type or a second type child of u is read, as well as the remainder (i.e.,

ρ5nu
or ρ

10/3
nu and ρ11nu

).
If v is a first type child, then nu is updated to 5(nv− 1)+ρ5nu

. If v is a second

type child, then nu is updated to (110/87) · (nv − ρ
10/3
nu /(10/3) + ρ11nu

/11 − 6).
Notice that this function is the inverse function of nu− fu, which is the function
used to update n when calling a second type child, as explained before. The
faulty stack’s frame pointer is decremented by nu + 3(2nu + 1) words.

The 2nu+1 copies of lbu, ubu, and ku are read, and the computed majority of
their copies are stored in reliable memory and used as the values for lbu, ubu, and
ku. Then, the computation returns to u, either to line 8 or to line 18, depending
on the type of u.

4.3 Proof of Lemma 3

Proof. The frame pointers, the return value, and the program counter were
shown to be reliable, as well as the location of the array Xu and its size nu.
lbu, ubu, and ku are stored using 2nu+1 copies each, therefore, if αu ≤ nu, then
these parameters are reliable. The time overhead induced by the frame pointers,
return value, program counter, location of the array Xu and its size nu is a
constant. The time overhead induced by lbu, ubu, and ku is O(nu). Therefore,
the time overhead of the recursive implementation is O(nu).

References

[Bau05] Baumann, R.C.: Radiation-induced soft errors in advanced semiconductor
technologies. IEEE Transactions on Device and Materials Reliability 5(3),
305–316 (2005)

[BFF+07] Brodal, G.S., Fagerberg, R., Finocchi, I., Grandoni, F., Italiano, G.F.,
Jørgensen, A.G., Moruz, G., Mølhave, T.: Optimal Resilient Dynamic Dic-
tionaries. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 347–358. Springer, Heidelberg (2007)

[BFP+73] Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time
bounds for selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

Selection in the Presence of Memory Faults 567

[BJM09] Brodal, G.S., Jørgensen, A.G., Mølhave, T.: Fault Tolerant External Mem-
ory Algorithms. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.)
WADS 2009. LNCS, vol. 5664, pp. 411–422. Springer, Heidelberg (2009)

[BJMM09] Brodal, G.S., Jørgensen, A.G., Moruz, G., Mølhave, T.: Counting in the
Presence of Memory Faults. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 842–851. Springer, Heidelberg (2009)

[CDK11] Christiano, P., Demaine, E.D., Kishore, S.: Lossless Fault-Tolerant Data
Structures with Additive Overhead. In: Dehne, F., Iacono, J., Sack, J.-R.
(eds.) WADS 2011. LNCS, vol. 6844, pp. 243–254. Springer, Heidelberg
(2011)

[CFFS11] Caminiti, S., Finocchi, I., Fusco, E.G., Silvestri, F.: Dynamic program-
ming in faulty memory hierarchies (cache-obliviously). In: Proceedings of
FSTTCS, pp. 433–444 (2011)

[CLRS09] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to
Algorithms, 3rd edn. The MIT Press (2009)

[FGI09a] Finocchi, I., Grandoni, F., Italiano, G.F.: Optimal resilient sorting and
searching in the presence of memory faults. Theor. Comput. Sci. 410(44),
4457–4470 (2009)

[FGI09b] Finocchi, I., Grandoni, F., Italiano, G.F.: Resilient dictionaries. ACM
Transactions on Algorithms 6(1) (2009)

[FI04] Finocchi, I., Italiano, G.F.: Sorting and searching in the presence of mem-
ory faults (without redundancy). In: Proceedings of STOC, pp. 101–110
(2004)

[GMV10] Gieseke, F., Moruz, G., Vahrenhold, J.: Resilient k-d trees: K-means in
space revisited. In: Proceedings of ICDM, pp. 815–820 (2010)

[JMM07] Jørgensen, A.G., Moruz, G., Mølhave, T.: Priority Queues Resilient to
Memory Faults. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007.
LNCS, vol. 4619, pp. 127–138. Springer, Heidelberg (2007)

[LHSC10] Li, X., Huang, M.C., Shen, K., Chu, L.: A realistic evaluation of mem-
ory hardware errors and software system susceptibility. In: Proceedings of
USENIX, p. 6 (2010)

[MW79] May, T.C., Woods, M.H.: Alpha-particle-induced soft errors in dynamic
memories. IEEE Transactions on Electron Devices 26(1), 2–9 (1979)

[Sem04] Tezzaron Semiconductor. Soft errors in electronic memory - a white paper
(2004),
http://www.tezzaron.com/about/papers/soft_errors_1_1_secure.pdf

http://www.tezzaron.com/about/papers/soft_errors_1_1_secure.pdf

An Improved Algorithm for Static 3D

Dominance Reporting in the Pointer Machine

Christos Makris and Konstantinos Tsakalidis

Computer Engineering and Informatics Department,
University of Patras, 26500 Patras, Greece

{makri,tsakalid}@ceid.upatras.gr

Abstract. We present an efficient algorithm for the pointer machine
model that preprocesses a set of n three-dimensional points in O(n log n)
worst case time to construct an O(n) space data structure that supports
three-dimensional dominance reporting queries in O(log n+t) worst case
time, when t points are reported. Previous results achieved either O(n2)
worst case or O(n log n) expected preprocessing time. The novelty of
our approach is that we employ persistent data structures and exploit
geometric observations of previous works, in order to achieve a drastic
reduction in the worst case preprocessing time.

Keywords: computational geometry, dominance reporting, persistent
data structures, pointer machine.

1 Introduction

We study static dominance reporting in three dimensions for the pointer ma-
chine model of computation. Dominance reporting is an important special case
of the orthogonal range reporting problem [2,3]. Let P be a set of n points in R3.
A point p=(px, py, pz) dominates another point q=(qx, qy, qz), if px>qx, py>qy
and pz>qz hold. A three-dimensional (3d) dominance reporting query reports
all the points that dominate a given query point. We study the problem of effi-
ciently constructing a static data structure that supports 3d dominance reporting
queries, using minimal space.

Previous Work. The first static pointer-based data structures for 3d domi-
nance reporting were presented by Chazelle and Edelsbrunner [8]. They present
two linear space data structures with O(log n(1+t)) and O(log2 n+t) worst
case query time when t points are reported, and with O(n2) and O(n log2 n)
worst case preprocessing time, respectively. Notice that by employing the al-
gorithm of Nekrich [12] for 3d layers of maxima, the worst case preprocessing
time of the first data structure is improved to O(n log n). Makris and Tsaka-
lidis [11] improved the query time to O(log n log logn+t) with a linear space
data structure that is preprocessed in O(n log2 n) worst case time. Afshani [1]
further improved the query time to optimal O(log n+t) with a linear space
data structure. However, the preprocessing algorithm uses shallow cuttings and

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 568–577, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Improved Algorithm for Static 3D Dominance Reporting 569

Table 1. Linear space pointer-based data structures for 3d dominance reporting with
input size n and output size t. † Expected bound.

Space Query Preprocessing

[8] n log n(1+t) n log n
[8] n log2 n+t n log2 n

[11] n log n log log n+t n log2 n
[1] n log n+t polynomial(n)

[1] n log n+t n log n†

New n log n+t n log n

hence it needs O(n log n) expected or polynomial worst case time. We should
also note that Saxena [14] presents a simplified structure for the RAM model
with O(log n+t) and O(n logn) worst case query and preprocessing time, respec-
tively, however using O(n log n) space. Table 1 summarizes the results.

Our Results. In Section 3 we present a static data structure for the pointer
machine model that supports 3d dominance reporting queries in O(log n+t)
worst case time and is preprocessed in O(n log n) worst case time, using O(n)
space. The preprocessing time improves the previous deterministic polynomial
time and randomizedO(n log n) time preprocessing algorithms. The result can be
considered of significance, since efficient preprocessing time is important when
the static data structure is employed as a subroutine for solving the off-line
version of the problem in three and higher dimensional spaces. See the relevant
discussion in the conclusion of the paper.

In order to achieve the result, we follow the approach of Chazelle and Edels-
brunner [8], who in general compute the layers of maxima of the pointset and
preprocess each layer in a data structure that supports reporting the points of
the layer that dominate a given query point. The implementation of the data
structure for each layer follows in principle the hive graph approach [7] that
reduces the problem to point location queries on isothetic planar subdivisions.
Nonetheless, we replace this approach with an implementation based on sim-
ple partially persistent data structures that moreover allows for simultaneous
point location queries to a logarithmic number of layers, by use of colored data
structures. Finally, we modify the filtering search approach of [8] to support 3d
dominance reporting queries efficiently on a set of general points.

2 Preliminaries

3d Layers of Maxima. Let P be a set of n points in R3. A point is calledmax-
imal in P , if it is not dominated by any other point in P . Let layer P1 denote
the set of maximal points in P . Layer Pi is defined as the set of maximal points
among the points in the set P\ ∪i−1

j=1 Pj , where the layers P1 to Pi−1 have been
iteratively removed. The three-dimensional layers of maxima problem asks to
assign integer i to every point in P that belongs to layer Pi. The O(n) space

570 C. Makris and K. Tsakalidis

algorithm of Nekrich [12] solves the problem in the pointer machine in O(n log n)
worst case time.

3d Maxima Dominance Reporting. Given a set of n three-dimensional max-
imal points, a linear space data structure that supports the reporting of the t
maximal points that dominate a given query point in O(log n + t) worst case
time, can be constructed in O(n log n) worst case time [8, Lemma 5]. The set of
weighted two-dimensional points P , obtained by projecting the nmaximal points
to the xy-plane and assigning their z-coordinate as weight, satisfies the appear-
ance property. Namely, for any two points p and q in P with weights wp and wq

respectively, when p dominates q then wq>wp holds [8].
The data structure consists of an isothetic planar subdivision calledmap M(P)

and a directed acyclic planar graph G(P). The map M(P) associates every
point p=(px, py)∈P of weight w with a horizontal segment ph and a vertical seg-
ment pv, for which p is called the anchor point. In particular, point h=(hx, py)
(resp. v=(px, vy)) has the x-coordinate hx≤px (resp. y-coordinate vy≤py) of the
point with maximum x-coordinate (resp. y-coordinate) among the points p′∈P
with weight w′>w, where p′y>py (resp. p′x>px) holds. Refer to Figure 1. The
graph G(P)=(V,E) encodes the adjacency relationship of the anchor points
in M(P) with respect to the intersections of their segments. In particular, there
exists a node u∈V for every anchor point p(u)∈M(P), and there exists a directed
edge (u, u′)∈E from node u to node u′, if and only if p(u)x=hx (resp. p(u)y=vy),
where p(u′)h (resp. p(u′)v) is the horizontal (resp. vertical) segment in M(P)
with anchor point p(u′).

Given a three-dimensional query point q=(qx, qy, qz), a ray intersection query
on M(P) determines the two-dimensional anchor points whose associated seg-
ments intersect the upwards vertical and rightwards horizontal rays that emanate
from the xy-projection (qx, qy) of the query point toward the non-decreasing y-
and x-directions, respectively. A crucial observation is that the appearance prop-
erty allows for reporting all maximal points that dominate q in time linear in the
output size, by accessing the determined anchor points a by non-decreasing y-
and x-coordinate respectively, and by traversing G(P) from the corresponding
nodes a(u), if the weight of a is more than qz.

Persistent Data Structures. Ordinary dynamic data structures are ephemeral,
meaning that updates create a new version of the data structure without main-
taining previous versions. A persistent data structure remembers all versions as
updates are performed to it. The data structure is called partially persistent,
when the previous versions can only be queried and only the last version can be
updated. In this case the versions form a list, called the version list. Brodal [4]
presents a method that makes any pointer-based ephemeral data structure par-
tially persistent with O(1) worst case time overhead per access step and O(1)
worst case time and space overhead per update step, given that any node of the
underlying graph has in-degree bounded by a constant.

An Improved Algorithm for Static 3D Dominance Reporting 571

Sarnak and Tarjan [13] utilize partially persistent red-black trees in order to
solve the point location problem for planar polygonal subdivisions. In a sim-
ilar manner, we apply the persistence method [4] on the lazy red-black trees
presented by Driscoll et al. [9]. Since they induce O(1) worst case extra re-
balancing cost per update operation, we obtain partially persistent red-black
trees that store a set of elements from a total order, and support the follow-
ing operations in O(logm) worst case time and O(m) space, after m updates:
Predecessor(value x, version i) and Successor(value x, version i) that access
the element stored in the i-th version of the red-black tree with the largest value
smaller or equal to x and the smallest value larger or equal to x, respectively,
Insert(element e) and Delete(element e) that inserts and deletes element e to
the latest version of the red-black tree, respectively, creating a new version.

Interval trees store a set of n intervals on the one-dimensional axis, and sup-
port the operations: Stab(value x) that returns all stored intervals [l, r] such
that l≤x≤r holds, Insert(interval [l, r]) and Delete(interval [l, r]) that inserts
and deletes interval [l, r] to the interval tree, respectively. By applying the persis-
tence method [4] to binary interval trees, we obtain partially persistent interval
trees that report the t stabbed intervals at any version in O(logm+t) worst case
time, and support updates to the latest version in O(logm) worst case time,
using O(m) space.

3 3d Dominance Reporting

In this Section we present a pointer-based data structure that preprocesses a
set of n three-dimensional points in O(n logn) worst case time and supports
reporting the t points that dominate a given query point in O(log n+t) worst case
time, using O(n) space. The main intuition behind our approach is to redesign
the 3d maxima dominance reporting structure of [8] by employing persistent
data structures, and to redesign their filtering search approach for 3d dominance
reporting when dealing with a general set of points.

3.1 Maximal Input Points

We first design a data structure that stores a set P of n maximal points and
supports reporting the t maximal points that dominate a given query point.
We follow the approach of [8], namely we compute the map M(P) and the
graph G(P). To implement the dominance query, we perform a ray intersection
query on M(P) that determines the anchor points within the output. We then
visit the respective nodes in G(P) and report the remaining output points. The
novelty in our construction is that instead of using a hive graph to implement
the map M(P) [8], we preprocess it by employing persistent and sweep like
techniques. In particular, to support the upwards ray shooting queries, we use a
persistent sorted list S that stores y-coordinates as elements and is implemented
as a persistent leaf-oriented red-black tree, whose leaves are threaded as a linked
list by non-decreasing y-coordinate [13]. The versions of S are stored in a linked
version list.

572 C. Makris and K. Tsakalidis

p

v

a

b

d
c

ii+1

q

Fig. 1. The input horizontal and vertical segments of the planar subdivision for one
maximal layer are shown by thick lines and their anchor points by black dots. A version
of the persistent red-black tree for the layer corresponds to the x-range between two
consecutive vertical dotted lines. Version i contains elements a, b, c, d. Version i+1 is
created by the insertion of the input vertical segment pv. In particular, elements b and c
are removed (shown by crosses) and element p is inserted. A query for q accesses first
element b in the i-th version.

Preprocessing Operation. To preprocess the construction, we sweep the anchor
points in M(P) by non-increasing x-coordinate. For every anchor point p with
associated vertical segment pv in M(P), we insert py to S and remove the y-
coordinates that are strictly smaller than py and strictly larger than vy. This
operation creates a new version of S that we associate with px and store in
the version list. Notice that by definition vy already belongs to S and is in fact
the predecessor of py in the new version. In this way, the versions of S divide
the x-plane into disjoint x-ranges, defined by two consecutive vertical segments
of M(P). The x-range of every version is in turn divided into disjoint y-ranges,
defined by horizontal segments that span the x-range at the y-coordinates stored
in the version. See Figure 1 for an example.

Query Operation. To answer an upward ray shooting query for a query point
q=(qx, qy) with weight qz , we perform a binary search for the predecessor version
of qx in the version list of S, and search in the returned version for the successor
element e of qy. If the anchor point of e has z-coordinate more than qz , we
return it to G(P) and access recursively the next larger y-coordinate in the
version of S by traversing its leaf linked list. The query returns the version of S
with the x-range that contains qx, and the largest y-coordinate in the y-range of
the version’s x-range that contains qy. Thus, the anchor points whose horizontal
segments intersect the upward vertical ray that emanates from q are accessed
by non-decreasing y-coordinate. To support rightwards ray shooting queries we
preprocess and query M(P) symmetrically.

Lemma 1. There exists an O(n) space data structure for the pointer machine
that preprocesses a set of n maximal three-dimensional points in O(n log n) worst
case time and supports reporting the t points that dominate a given query point
in O(log n+t) worst case time.

An Improved Algorithm for Static 3D Dominance Reporting 573

Proof. M(P) and G(P) are preprocessed in O(n log n) time and occupy O(n)
space [8, Lemma 5]. All points are inserted to the persistent sorted list S, and
each point is inserted at most once. In particular, let p be the point associated
with the horizontal segment ph. Point h has the x-coordinate of the point p′,
where p′x<px, p

′
y>py and p′z>pz. When we insert p′ to S, py is deleted from S

and p is never inserted again. Thus the number of versions of S is O(n). Thus,
the space of S and its version list is O(n). An update takes O(log n) time, which
yields O(n log n) total worst case preprocessing time.

Querying the version list and searching in a version of S for element e
costs O(log n) time. The anchor points accessed by the traversal of the linked
list occur by non-decreasing y-coordinate, and by the appearance property [8,
Lemma 1] they also occur by non-increasing weight. Thus the t′ anchor
points within the output are accessed in O(t′+1) time, and traversing G(P)
takes O(t+t′) time. Since t′≤t, the total worst case query time is O(log n+t).

��

3.2 General Input Points

Although similar to [8, Lemma 5], the data structure of Lemma 1 allows for
supporting general 3d dominance reporting queries more efficiently, by using
techniques that permit processing of multiple layers simultaneously. In particu-
lar, let P be a set of n three-dimensional points. We first compute the layers of
maxima of P [12]. To achieve O(k+t) query time for a parameter k, we follow
an approach similar to the filtering search approach of [8]. We divide the layers
into groups of at most k consecutive layers in a top-down manner, where k is
a parameter chosen so that the time complexity for reporting all the ti output
points in the i-th group of layers is O(k+ti). To perform a query, we start from
the topmost group and check if there exists an output point in any of its layers.
If there exists no such point the search stops, otherwise it reports all the output
points in the current group, and continues to the next group. Since the O(k)
cost in each of the queried groups, except from the last one, can be charged to
the output, as each maximal layer has at least one output point, the total worst
case query time cost is O(k+t).

It remains to show how to perform a 3d dominance query simultaneously to
all the at most k layers of a group. To support upwards ray intersection queries,
we design a data structure that supports interval stabbing queries on a set of
vertical colored intervals, and combine it with our previous structure for 3d
maxima dominance reporting. In particular, we color the points of each layer
with the same color, such that every layer in the group has a different color.
We use a persistent interval tree T that stores colored vertical intervals, and we
preprocess the points of every color i to a persistent red-black tree Si as described
before. We model every two consecutive y-coordinates in every version of Si as an
interval of color i in T . In particular, we implement T as a static binary base tree
built on the y-coordinates of all points in the group. We associate every internal
node with the median y-coordinate of the y-coordinates stored in its subtree. An
interval [�, r] is associated with the highest node u whose y-coordinate stabs [�, r].

574 C. Makris and K. Tsakalidis

3 1

p

v

v′

r1

r2

p′

r0
245

a

q

Fig. 2. The input horizontal and vertical segments of the planar subdivisions for two
maximal layers are shown; the background layer with thin lines and its anchor points
with small squares, and the foreground layer with thick lines and its anchor points
with black dots. A version of the persistent interval tree corresponds to the x-range
between two consecutive vertical lines. Versions 1, 2, 3, 4 contain the vertical inter-
vals [r2y , p

′
y], [r1y , r2y], [r0y , r1y] with foreground color. Their upper endpoints are shown

with white dots. Version 5 is created by the insertion of the input vertical segment pv
with foreground color to version 4. In particular, intervals [r1y , r2y], [r0y , r1y] are re-
moved (their upper endpoints shown by crosses) and interval [r2y , p

′
y] is replaced by

intervals [py, p
′
y] and [vy , py] with foreground color.

Node u stores respectively the lower and upper endpoint � and r of its associated
intervals in two sorted list Lu and Ru, which are implemented as persistent red-
black trees. Moreover, for every interval [�, r] of color i stored in T , we maintain
a pointer −→r from the occurence of the upper endpoint r at a particular version j
of T to the occurence of the y-coordinate ry at the version of Si that in a temporal
sense is the latest version that precedes or equals j. The structure T and each
one of the structures Si separately have indegree bounded by a constant, and
thus they can be rendered partially persistent [4]. We store the versions of T in
a linked version list.

Preprocessing Operation. To preprocess the construction, we sweep all the points
in the group by non-increasing x-coordinate. For every anchor point p of color i
associated with the vertical segment pv in M(P), we update Si as described for
Lemma 1. Then, for every removed y-coordinate from Si that corresponds to
anchor point r, we stab T with ry to remove from T the interval with color i
that has r as its upper endpoint. We perform a stabbing query to T with py,
remove the stabbed interval [v′y, p

′
y] with color i from T , and insert the vertical

intervals [py, p
′
y] and [vy, py] with color i to T . These update operations create

a new version of Si and of T respectively, that we associate with px and store
to the corresponding version lists. We set a new pointer −→p from the occurence
of upper endpoint py in the new version of T to the inserted occurrence of y-
coordinate py in the new version of Si. Due to the workings of the persistence
method [4], the new version of Si may contain new copies of some elements p′y,

An Improved Algorithm for Static 3D Dominance Reporting 575

besides element py. To update the pointer −→p ′ in the new version of T to correctly
point to the new copy, during the sweep we maintain for every anchor point p a
temporary indirection pointer to the position of pointer −→p in the latest version
of T . The indirection pointer is traversed, whenever a new copy of element py
is created in Si. It is created when the sweep algorithm accesses anchor point p
for the first time, and it is removed when element py is removed from Si.

Geometrically the correctness of the above procedure is derived from the fact
that the vertical intervals of color i in every version of T divide the y-range of
the version into disjoint y-ranges. In particular, the removed elements r from Si

correspond to the upper endpoints of the vertical intervals of color i in the old
version of T that stab the y-range [vy , py]. In fact, v′y is equal to the upper
endpoint of the highest removed vertical interval, and vy is equal to the lower
endpoint of the lowest removed vertical interval. We ensure that the vertical
intervals of color i cover the y-range of the new version of T , by replacing the
remaining vertical interval [v′y, p

′
y] with intervals [py, p

′
y] and [vy, py] with color i.

See Figure 2 for an example.

Query Operation. To support the upwards ray intersection query for a query
point (qx, qy, qz) simultaneously on all layers of a group, we perform a binary
search for the predecessor of qx on the version list of T , and stab the returned
version with qy. For every returned interval [�, r] of color i, we traverse the
pointer −→r to the occurrence of ry in the pointed version of Si. We report the
points in layer i that dominate q, by traversing the linked list of the accessed
version of Si starting from ry, as described before.

When the preprocessing algorithm creates a new version of T associated
with px, it also creates a new version of Si for at most one color i. Since the
rest of the persistent red-black trees Si′ remain unchanged, the x-coordinates
associated with their latest versions are predecessors of px for all i′ �=i. Therefore
the version of T that precedes the query parameter qx contains the pointers −→p
that point to the versions of Si that precede qx for all colors i. Moreover, since
the intervals of a particular color in T do not overlap, at most one interval of
color i is stabbed, and thus a layer is visited at most once. To support rightwards
ray shooting queries we preprocess and query the construction symmetrically.

Theorem 1. There exists an O(n) space data structure for the pointer ma-
chine that preprocesses a set of n three-dimensional points in O(n logn) worst
case time and supports reporting the t points that dominate a given query point
in O(log n+t) worst case time.

Proof. Computing the layers of maxima, M(P) and G(P) takes O(n logn) time
and O(n) space [12,8]. Let the j-th group of layers Pj contain nj points, where
j∈[1, �n/k�]. Since the total number of employed intervals is O(nj) we get that
the size of T is also O(nj). An update operation to T takes O(log nj) worst case
time, and incurs O(1) worst case structural changes to its secondary structures.
Moreover, an update operation to persistent lazy red-black trees also incurs O(1)
structural changes in the worst case. Therefore creating, updating and removing
the temporary indirection pointers incurs no extra cost. Since there are O(nj)

576 C. Makris and K. Tsakalidis

versions, the j-th group is preprocessed in O(nj lognj) worst case time, us-
ing O(nj) space [4]. Since a point can participate in only one layer, we get

that Σ
�n/k�
j=1 nj=n. Thus the persistent interval trees for all groups of layers are

preprocessed in O(n log n) worst case time and occupy O(n) space. Moreover,
by Lemma 1 it follows that the persistent sorted lists for all groups of layers
take O(n logn) preprocessing time and O(n) space.

Querying a version of the persistent interval tree for the group of layers Pj

takes O(log nj+k′) time, where k′≤k is the number of stabbed intervals in the
group. Since at most one interval is returned for every color, k′ is also the number
of layers in Pj that contain at least one output point. By following the pointers
from the upper endpoint of the stabbed interval of color i to the version of Si,
and using a similar procedure for the rightward ray intersection query, we locate
the ti output points in the layer of color i in extra O(ti+1) time. Hence, the
overall time for querying a group of layers is O(log nj+k′+t′), where t′=Σk′

i=1ti
is the output points in the group. Since when a point is dominated by a point in
group j, it is also dominated by at least one point in each of the other groups j′

such that j′≤j, and since we stop at the bottommost group that can produce
useful output, it follows that the time to report all t output points is O(log n+t)
time, when parameter k=�logn�. ��

4 Conclusion

We have presented a static algorithm for the 3-dimensional dominance reporting
problem in the pointer machine that improves upon the preprocessing cost of the
previous optimal solution [1]. It would be interesting to exploit this contribution
in order to improve upon the static offline four-dimensional variant of the prob-
lem in the pointer machine, also known as rectangle enclosure reporting [10,6]. In
particular our idea of performing simultaneously dominance reporting in groups
of maximal layers, empowered with the fast maximal layers computation algo-
rithm of [12] could possibly exploit techniques described in [6], designed for the
rectangle enclosure reporting problem in the RAM model, in order to lead to an
optimal solution for the problem in the pointer machine model.

Moreover we plan to investigate the applicability of our technique in the I/O
model of computation (either the classical two level, or the cache oblivious model)
in order to obtain an algorithm optimal in query, space and preprocessing time
complexity. Finally, it should be noted that our technique of replacing point loca-
tion with persistence-based sweep-like techniques is not directly applicable in the
RAM model of computation. There, utilizing the existing partially persistent van
Emde Boas trees [5] does not achieve worst case efficient preprocessing cost, since
their update time is efficient in the expected and not in the worst case sense.

References

1. Afshani, P.: On Dominance Reporting in 3D. In: Halperin, D., Mehlhorn, K. (eds.)
ESA 2008. LNCS, vol. 5193, pp. 41–51. Springer, Heidelberg (2008)

An Improved Algorithm for Static 3D Dominance Reporting 577

2. Agarwal, P.K.: Range searching. In: Handbook of Discrete and Computational
Geometry, pp. 575–598. CRC Press, Inc. (1997)

3. Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Ad-
vances in Discrete and Computational Geometry, pp. 1–56. American Mathemati-
cal Society (1999)

4. Brodal, G.S.: Partially persistent data structures of bounded degree with constant
update time. Nord. J. Comput. 3(3), 238–255 (1996)

5. Chan, T.M.: Persistent predecessor search and orthogonal point location on the
word ram. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, pp. 1131–1145. SIAM (2011)

6. Chan, T.M., Larsen, K.G., Patrascu, M.: Orthogonal range searching on the RAM,
revisited. In: Hurtado, F., van Kreveld, M.J. (eds.) Symposium on Computational
Geometry, pp. 1–10. ACM (2011)

7. Chazelle, B.: Filtering search: A new approach to query-answering. SIAM J. Com-
put. 15(3), 703–724 (1986)

8. Chazelle, B., Edelsbrunner, H.: Linear space data structures for two types of range
search. Discrete & Computational Geometry 2, 113–126 (1987)

9. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. J. Comput. Syst. Sci. 38, 86–124 (1989)

10. Lee, D.-T., Preparata, F.P.: An improved algorithm for the rectangle enclosure
problem. J. Algorithms 3(3), 218–224 (1982)

11. Makris, C., Tsakalidis, A.K.: Algorithms for three-dimensional dominance search-
ing in linear space. Inf. Process. Lett. 66(6), 277–283 (1998)

12. Nekrich, Y.: A Fast Algorithm for Three-Dimensional Layers of Maxima Problem.
In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp.
607–618. Springer, Heidelberg (2011)

13. Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Com-
mun. ACM 29(7), 669–679 (1986)

14. Saxena, S.: Dominance made simple. Inf. Process. Lett. 109(9), 419–421 (2009)

The Multi-Service Center Problem�

Hung-I Yu1 and Cheng-Chung Li2

1 Institute of Information Science, Academia Sinica,
Nankang, Taipei 115, Taiwan
herbert@iis.sinica.edu.tw

2 Intel-NTU Connected Context Computing Center,
National Taiwan University, Taipei 106, Taiwan

f92922087@ntu.edu.tw

Abstract. We propose a new type of multiple facilities location prob-
lem, called the p-service center problem. In this problem, we are to locate
p facilities in the graph, each of which provides distinct service required
by all vertices. For each vertex, its p-service distance is the summation
of its weighted distances to the p facilities. The objective is to minimize
the maximum value among the p-service distances of all vertices.

In this paper, we show that the p-service center problem on a general
graph is NP-hard, and propose a polynomial-time approximation algo-
rithm. Moreover, we study the basic case p = 2 on paths and trees, and
provide linear and near-linear time algorithms.

Keywords: location theory, p-service center, general graphs, paths, trees.

1 Introduction

Network location problems have received much attention from researchers in
the fields of transportation and communication over four decades [1,2,3,5,6,8,9].
Traditionally, network location problems consider only identical facilities while
determining the optimal location of multiple facilities, and each client will thus
be served by its closest facility. For example, the well-known p-center problem
is to place p identical facilities in the network such that the maximum distance
from each client to its closest facility is minimized.

However, while providing large-scale and integrated services, it is possible
that each single facility cannot afford to provide all kinds of services due to the
complexity and cost. Take the freight traffic of logistics centers as an example. We
want to setup several logistics centers in the transportation network to provide
many kinds of goods, but various factors make it difficult to store all kinds
of goods in each single logistics center, such as places of production, storage
cost, market demand, and so on. It is more efficient for each logistics center
to store only one or several kinds of goods, and together they still meet all

� Research supported by the National Science Council, National Taiwan University
and Intel Corporation under Grants No. 100-2911-I-002-001, 101-2221-E-005-019,
101-2221-E-005-026, 101-2811-E-005-005, and 101R7501.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 578–587, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Multi-Service Center Problem 579

kinds of requirements from everywhere in the network. Obviously, the optimal
placement of such distinct but cooperative facilities will be very different from
that of identical facilities. We are interested in this new kind of network location
problems, and call them the multi-service location problems.

In this paper, we define the first problem of this kind, the p-service center
problem. There are p facilities to be placed in a network of n clients, each of
which provides one distinct kind of service. Each client has its own need for each
kind of service, and how well the client is served is measured by its p-service
distance, the total transportation cost from the p facilities to the client. The
objective of the p-service center problem is to find a placement of the p facilities
minimizing the maximum value among the p-service distances of all clients.

We study the p-service center problem and obtain approximate and exact
solutions for different cases. When the underlying graph is a general graph, we
show that the p-service center problem for general p is NP-hard, and propose an
approximation algorithm of factor p/c, where c is an arbitrary integer constant.
This is based on a procedure that can solve the p-service center problem in
polynomial time when p is a fixed value. We further consider the case that
p = 2 and provide efficient solutions on paths and trees. When the underlying
graph is a path, we solve this problem in linear time. For a tree, we propose an
O(n log n)-time algorithm for the weighted case and a linear-time algorithm for
the unweighted case. Due to page limits, the proofs are omitted.

The rest of this paper is organized as follows. Section 2 gives formal definitions
and basic properties. In Section 3, we study p-service center problem on general
graphs. Then, in Section 4, we discuss the 2-service center problem on paths and
trees. Finally, in Section 5, we conclude the paper.

2 Notation and Preliminaries

Let p ≥ 1 be an integer, and G = (V,E,W) be an undirected connected graph,
where V is the vertex set, E is the edge set, and W is an n-by-p matrix of
positive weights [wi,j]n×p. Let V = {1, 2, . . . , n} and m = |E|. Each vertex i ∈ V
is associated with p positive weights wi,1, wi,2, . . . , wi,p, which correspond to the
p elements in the i-th row of W . Each edge e ∈ E has a nonnegative length and
is assumed to be rectifiable. Thus, we will refer to interior points on an edge by
their distances (along the edge) from the two nodes of the edge. Let G also denote
the set of all points of the graph. For any two points a, b ∈ G, let P (a, b) be the
shortest path between a and b, and d(a, b) be the distance of length of P (a, b).
Suppose that the matrix of shortest distances between vertices of G is given. A
p-location is a tuple (x1, x2, . . . , xp) of p points in G (not necessarily distinct).
For an arbitrary p-locationX = (x1, x2, . . . , xp) and a vertex i ∈ V , the p-service
distance from i to X is defined to be D(i,X) =

∑
1≤j≤p wi,j × d(i, xj), and the

p-service cost ofX is defined to be F (X) = maxi∈V D(i,X). The p-service center
problem is to find a p-location X that minimizes F (X). Note that, in the case
that p = 1, the p-service center problem is equivalent to the p-center problem.

A p-family is a tuple (H1, H2, . . . , Hp) of p subgraphs of G (not necessarily dis-
tinct). Given a p-location X = (x1, x2, . . . , xp) and a p-family (H1, H2, . . . , Hp),

580 H.-I Yu and C.-C. Li

we write X ∈ (H1, H2, . . . , Hp) to mean that xj ∈ Hj for 1 ≤ j ≤ p, and
X /∈ (H1, H2, . . . , Hp) if there exists at least one index j such that xj /∈ Hj .
For a p-family (H1, H2, . . . , Hp), a p-location X ∈ (H1, H2, . . . , Hp) is called
an (H1, H2, . . . , Hp)-optimal solution if F (X) = minX′∈(H1,H2,...,Hp) F (X ′). For
simplicity, let Hp denote the p-family (H,H, . . . , H) for any subgraph H ⊆ G. A
Gp-optimal solution is thus an optimal solution to the p-service center problem.

3 The p-Service Center Problem on a General Graph

In this section, we study the complexity results of the p-service center problem
on a general graph. In Subsection 3.1, we first show that this problem is NP-
hard for general p. As a procedure required by the approximation algorithm, in
Subsection 3.2, we develop a polynomial-time algorithm for solving this problem
exactly when p is a constant. Finally, in Subsection 3.3, we give a factor p/c
approximation algorithm for general p, where c is an arbitrary integer constant.

3.1 NP-Hardness

We show that finding a p-service center in a general graph is an NP-hard opti-
mization problem by a reduction from 3-CNF-SAT [4]. A 3-CNF-SAT instance
(B,C) consists of a set ofM clausesC = {c1, c2, . . . , cM} and a set ofN Boolean
variables B = {b1,b2, . . . ,bN}. A literal is either a Boolean variable b� or its
negation b�. Each clause ck is the disjunction of three distinct literals. The in-
stance is satisfiable if there exists a truth assignment to B such that all clauses
in C are True under the assignment. The 3-CNF-SAT problem is to determine
whether a given instance is satisfiable, which is known to be NP-complete [4].
Without loss of generality, we assume that for each variable at least one clause
contains its literal, and no clause contains both b� and b� for any �.

Given a 3-CNF-SAT instance (B,C), we construct a graph G = (V,E,W) as
an instance of the p-service center problem, where p = N . (In the remaining of
this subsection, we replace p by N in order to avoid confusion.) First, we create
vertices to represent literals and clauses. For each variable b� ∈ B, two Boolean
vertices bT� and bF� are created to represent True and False of b�, respectively.
For each clause ck ∈ C, a clause vertex ck is created to represent ck. Then,
we create edges between Boolean vertices and clause vertices. For each clause
ck ∈ C, if ck contains the literal b�, an edge is introduced to connect ck and bT� ;
on the other hand, if ck contains b�, ck and bF� are connected. By assumption,
each clause vertex connects to three distinct Boolean vertices. Furthermore, we
create two types of auxiliary vertices: N Type-1 vertices aI1, a

I
2, · · · , aIN and N+1

Type-2 vertices aII0 , a
II
1 , · · · , aIIN . For each Type-1 vertex aI�, 1 ≤ � ≤ N , two edges

are introduced for connecting aI� to bT� and bF� . On the other hand, we connect
each Type-2 vertex aII� to all Boolean vertices, 0 ≤ � ≤ N .

The N weights of each vertex are set as follows. For each Boolean vertex
bT� , let wbT� ,j = 1 for 1 ≤ j ≤ N . Similarly, let wbF� ,j = 1 for all j. For each

clause vertex ck, let wck,j = 10/9 if ck contains either bj or bj, and wck,j = 1

The Multi-Service Center Problem 581

otherwise. For each Type-1 vertex aI�, 1 ≤ � ≤ N , let waI
�,j

= 3 if j = � and

waI
�,j

= 1 otherwise; for each Type-2 vertex aII� , 0 ≤ � ≤ N , let waII
� ,j = 3 for

all j. Finally, the lengths of all edges are set to 1. It is easy to see that the
transformation can be done in time polynomial to N and M .

Given an N -location X = (x1, x2, · · · , xN) ∈ GN , a point xj in X is said to
be assigned to the Boolean variable b� if xj is located at either bT� or bF� . The N -
location X is said to be legally-assigned if xj is assigned to bj for 1 ≤ j ≤ N . In
other words, X represents a truth assignment to B. From the setting of auxiliary
vertices, the following lemma can be obtained by pigeonhole principle.

Lemma 1. For any N -location X = (x1, x2, · · · , xN) ∈ GN , F (X) ≥ 3N . If X
is not legally-assigned, F (X) > 3N .

Then, the connectivity of clause vertices guarantees the following.

Lemma 2. The 3-CNF-SAT instance (B,C) is satisfiable if and only if any
GN -optimal solution X∗ has its N -service cost F (X∗) = 3N .

Lemma 2 enables us to decide the satisfiability of (B,C) by finding an N -service
center X∗ in G. Moreover, if satisfiable, X∗ must be legally-assigned by Lemma
1, and the satisfying truth assignment can be directly obtained from the location
of X∗. Therefore, we have the following result.

Theorem 1. The p-service center problem on a general graph is NP-hard.

3.2 Exact Algorithm for Fixed p

Given a general graph G = (V,E,W), in this subsection, we propose a polyno-
mial algorithm for solving the p-service center problem onG when p is a constant.
Let e = (i, i′) be an arbitrary edge in G. A point x ∈ e is called a bottleneck point
of e if there exists a vertex k such that d(k, i) + d(i, x) = d(k, i′) + d(i′, x). By
definition, there are at most n bottleneck points on e (including i and i′), which
partition e into O(n) segments. Similarly, every edge in G can be partitioned
into O(n) segments by its bottleneck points. Let I denote the set of all seg-
ments in G, and F denote the collection of p-families {(I1, I2, . . . , Ip) | Ij ∈ I for
1 ≤ j ≤ p}. The p-service center problem on G can be solved by computing the
(I1, I2, . . . , Ip)-optimal solution for each p-family (I1, I2, . . . , Ip) ∈ F and then
choosing a solution with minimum p-service cost as the Gp-optimal solution.

Let (I1, I2, . . . , Ip) be a fixed p-family in F . In the following, we discuss how
to compute the (I1, I2, . . . , Ip)-optimal solution. For 1 ≤ j ≤ p, let qj and rj be
the endpoints of the segment Ij , and lj = d(qj , rj) be the length of Ij . For ease of
description, each Ij is regarded as an interval [0, lj] on the real line, and the points
along Ij are identified by the values of a real number 0 ≤ x ≤ lj , where x = 0
represents qj and x = lj represents rj . For any vertex i ∈ V , d(i, x) is a linear
function on Ij , since by definition Ij does not contain any bottleneck point in its
interior. Let si,j be the slope of d(i, x) on Ij , where si,j = +1 if d(i, lj) > d(i, 0)
and si,j = −1 otherwise. We then have that d(i, x) = d(i, 0) + si,jx for x ∈ Ij .

582 H.-I Yu and C.-C. Li

For 1 ≤ j ≤ p, let xj ∈ Ij be a variable. The tuple X = (x1, x2, . . . , xp) thus
represents a variable p-location in (I1, I2, . . . , Ip). For each i ∈ V , the p-service
distance from i to X can be formulated as D(i,X) =

∑
1≤j≤p wi,j × d(i, xj) =∑

1≤j≤p si,jwi,jxj +
∑

1≤j≤p wi,jd(i, 0). Together with the variables xj , we add
an auxiliary variable z for simulating F (X), and construct a linear program:

Minimize z

Subject to z ≥
∑

1≤j≤p
si,jwi,jxj +

∑
1≤j≤p

wi,jd(i, 0), for i ∈ V,

0 ≤ xj ≤ lj , for 1 ≤ j ≤ p,

z ≥ 0.

(1)

In this linear program, the constraints ensure that z ≥ D(i,X) for i ∈ V , which
implies that z ≥ maxi∈V D(i,X) = F (X). The objective of minimizing z ensures
that z = F (X) for any X ∈ (I1, I2, . . . , Ip), and then plays the role of finding
the solution that minimizes F (X). Therefore, solving this linear program gives
us the (I1, I2, . . . , Ip)-optimal solution. Since p is a constant, this linear program
can be solved in O(n) time by applying Megiddo’s linear-time algorithm for
constant-variable linear programming [7].

Thus, the Gp-optimal solution can be obtained by constructing and solving
the linear programs for all p-families in F in O(n|F|) time and then choosing
a solution with minimum objective value in |F| time. Since |I| = m × O(n) =
O(mn) and |F| = |I|p by definition, we have the following result.

Theorem 2. The p-service center problem on a general graph can be solved in
O(mpnp+1) time when p is a constant.

3.3 Approximation Algorithm for General p

Using the algorithm developed in Subsection 3.2, we propose an algorithm to
find an approximate p-service center in a given graph G = (V,E,W) for general
p. Let c be an arbitrary integer constant. Suppose that p > c, otherwise the
problem can be directly solved by Theorem 2. Furthermore, we assume that
p is divisible by c for brevity’s sake. Let pc = p/c. We partition the weight
matrix W into pc submatricesW0,W1, · · · ,Wpc−1, where Wk is an n-by-cmatrix
corresponding to the (ck + 1)st to the (ck + c)th columns of W . For each 0 ≤
k ≤ pc − 1, we duplicate the vertices and edges of G, and construct an instance
Gk = (V,E,Wk) of the c-service center problem. Since c is a constant, for each k a
(Gk)

c-optimal solution Xk = (xk,1, xk,2, · · · , xk,c) can be computed by Theorem
2. We then create a p-location X by concatenating X0, X1, · · · , Xpc−1, that is,
X = (x0,1, x0,2, · · · , x0,c, x1,1, x1,2, · · · , x1,c, · · ·). The following lemma can be
obtained for the solution X .

Lemma 3. F (X) ≤ pc×F (X∗), where X∗ is an arbitrary Gp-optimal solution.

The pc instances have total pcn vertices, pcm edges and pn weights, which can
be constructed in O(pcm+ pn) time. Computing optimal solutions for them by
Theorem 2 takes O(pcm

cnc+1) time. Therefore, we have the following result.

The Multi-Service Center Problem 583

Theorem 3. Let c ≥ 1 be an arbitrary integer constant. There is a (p/c)-
approximation algorithm for the p-service center problem on a general graph,
which runs in O((p/c)mcnc+1) time.

4 The 2-Service Center Problem on a Path and a Tree

In this section, we focus on the basic case p = 2 of the p-service center problem.
In Subsection 4.1, we obtain an O(n)-time algorithm for the 2-service center
problem on a path. In Subsections 4.2 and 4.3, we consider the problem on a
tree, and propose an O(n logn)-time algorithm for a weighted tree and an O(n)-
time algorithm for an unweighted tree (all weights are equal to 1), respectively.

4.1 Algorithm on a Path

In this subsection, we assume the underlying graph G is a path P = (V,E,W)
and propose an O(n)-time algorithm, improved from the O(n5)-time result which
follows from directly applying Theorem 2.

Without loss of generality, suppose that E = {(1, 2), (2, 3), . . . , (n− 1, n)}.
For i ∈ V , let di = d(1, i). For convenience, the whole path P is regarded as
an interval [0, dn] on the real line, and the points along P are identified by the
values of a real number 0 ≤ x ≤ dn, where x = di represents the vertex i for
i ∈ V . For any vertex i ∈ V , it is easy to see that d(i, x) = max{di − x, x− di}.

Again, we use linear programming to find a P 2-optimal solution. Let x1 and
x2 be two points in P . For each i ∈ V , the 2-service distance from i to the
tuple X = (x1, x2) is D(i,X) = wi,1 ×max{di − x1, x1 − di}+wi,2 ×max{di −
x2, x2 − di}. To ensure that z ≥ D(i,X) for each i ∈ V , we use four constraints
z ≥ ±wi,1(di − x1)± wi,2(di − x2) in the linear program. Similar to Subsection
3.2, we have that z ≥ maxi∈V D(i,X) = F (X). Thus, solving the linear program
in O(n) time by [7] gives a P 2-optimal solution, and the theorem follows.

Theorem 4. The 2-service center problem on a path can be solved in O(n) time.

4.2 Algorithm on a Tree

In this subsection, we assume the underlying graphG is a tree T = (V,E,W) and
propose an O(n log n)-time algorithm for finding a T 2-optimal solution in T . The
approach is to perform two mutually dependent prune-and-search procedures on
two specified subtrees T1 and T2, which iteratively pick two paths in T1 and T2,
compute the local optimal solution of the paths, and then prune T1 and T2.

The algorithm itself is fairly simple, but establishing its theoretical basis is
quite lengthy. In the following, we begin from the exploration of the relationship
between the local optimal solution of paths and the T 2-optimal solution. Based
on the relationship, we describe the algorithm and analyze its time complexity.

584 H.-I Yu and C.-C. Li

Properties. Let x be an arbitrary point in T . Removing x will break T into
several partial trees, called the open x-branches, each of which consists of a
subtree B of T and a partial edge connecting x and B. The union of x and any
open x-branch is called an x-branch. For any point y �= x in T , let B−(x, y) and
B(x, y) denote the open x-branch and x-branch that contain y, respectively.

For any two subgraphs H1, H2 ⊆ T , we say H1 intersects H2 if there exists
a vertex i such that i ∈ H1 and i ∈ H2. For any 2-location X = (x1, x2) ∈ T 2,
a vertex i ∈ V is called a critical vertex of X if D(i,X) = F (X). Let CR(X)
denote the set of critical vertices of X .

Let c∗ be the point that minimizes F ((c∗, c∗)), and C∗ denote the 2-location
(c∗, c∗). Note that c∗ corresponds to the weighted 1-center of the tree T ′ =
(V,E,W ′), where W ′ is an n-by-1 matrix [w′i = wi,1 + wi,2]n×1. The properties
of the weighted 1-center ensure that c∗ is unique [6] and CR(C∗) intersects at
least 2 open c∗-branches [5]. Furthermore, we obtain the following lemma.

Lemma 4. If CR(C∗) intersects 3 or more open c∗-branches, C∗ is the only
T 2-optimal solution.

In the following, suppose that CR(C∗) intersects exactly 2 open c∗-branches. Let
δmax = maxi∈CR(C∗) wi,1/wi,2, and i1 be an arbitrary vertex in CR(C∗) such
that wi1,1/wi1,2 = δmax. Let T1 denote the c∗-branch that contains i1 and T2

denote the other c∗-branch that intersects CR(C∗). We can simplify the finding
of a T 2-optimal solution by the following lemma.

Lemma 5. A (T1, T2)-optimal solution is also a T 2-optimal solution.

By Lemma 5, we can concentrate on the finding of a (T1, T2)-optimal solution. A
(T1, T2)-optimal solution X = (x1, x2) is called a (T1, T2)-extreme solution if, for
any other (T1, T2)-optimal solution X ′ = (x′1, x

′
2), P (x1, x2) � P (x′1, x

′
2). The

following lemma shows the uniqueness of the (T1, T2)-extreme solution.

Lemma 6. There exists exactly one (T1, T2)-extreme solution.

Let X∗ = (x∗1, x
∗
2) denote the unique (T1, T2)-extreme solution. Our objective is

to find X∗ as the T 2-optimal solution. This can be done by building relationships
between X∗ and the local optimal solution of specified paths in T . For any leaf
i ∈ T1(T2), the path P (c∗, i) is called a T1-arm (T2-arm). Consider an arbitrary
T1-arm P1 and an arbitrary T2-arm P2. A (P1, P2)-optimal solution Y = (y1, y2)
is called a (P1, P2)-extreme solution if, for any other (P1, P2)-optimal solution
Y ′ = (y′1, y

′
2), P (y1, y2) � P (y′1, y

′
2). We have the following lemma.

Lemma 7. There exists exactly one (P1, P2)-extreme solution.

Let Y ∗ = (y∗1 , y
∗
2) denote the unique (P1, P2)-extreme solution. If X∗ ∈ (P1, P2),

we obviously have that Y ∗ = X∗. In the following, by assuming that X∗ /∈
(P1, P2), we develop several lemmas that describe the relationship between X∗

and Y ∗. Note that the assumption X∗ /∈ (P1, P2) implies that x∗1 �= x∗2, otherwise
x∗1 = x∗2 = c∗ makes X∗ ∈ (P1, P2).

The Multi-Service Center Problem 585

Let b1 denote the point closest to x∗1 on P1 and b2 denote the point closest to
x∗2 on P2, which are called the boundary points of P1 and P2, respectively. Let
P in
1 = P (c∗, b1)−{x∗1} and P in

2 = P (c∗, b2)−{x∗2}. For j = 1, 2, if x∗j /∈ Pj , bj is a

vertex and belongs to P in
j by definition. If otherwise x∗j ∈ Pj , bj = x∗j and hence

bj /∈ P in
j . The following lemma tells us that the (P1, P2)-extreme solution Y ∗

always appears in between the boundary points and includes a boundary point.

Lemma 8. If X∗ /∈ (P1, P2), either Y ∗ ∈ (P in
1 , {b2}) or Y ∗ ∈ ({b1}, P in

2).

For any 2-location Y ∈ (T1, T2), let CR1(Y) = CR(Y)
⋂
T1 and CR2(Y) =

CR(Y)
⋂
T2. The following two lemmas summarize the above discussion and

play the key role in the finding of X∗.

Lemma 9. If X∗ /∈ (P1, P2), there always exists an index j ∈ {1, 2} for Y ∗,
such that y∗j = bj satisfies the following conditions:

(A) There is an open y∗j -branch B− that does not intersect Pj,
(B) x∗j ∈ B−,
(C) CRj(Y

∗) ⊂ B−.

Lemma 10. Let P1 and P2 be two arbitrary T1-arm and T2-arm, respectively,
and Y ∗ = (y∗1 , y

∗
2) be the (P1, P2)-extreme solution. If there exists an index j that

satisfies the following conditions:

(A) y∗j is a vertex,
(B) There is an open y∗j -branch B− that does not intersect Pj,
(C) CRj(Y

∗) ⊂ B−,

then all open y∗j -branches other than B− do not contain x∗j .

Lemmas 9 and 10 in pairs provide a basic idea for finding X∗. For any given P1

and P2, if X
∗ /∈ (P1, P2), by Lemma 9, there must exist some open branch B−

satisfying the conditions of Lemma 10. Thus, we can redirect one of the arms
toward B− so that the next Y ∗ better approaches X∗. Iteratively applying the
arguments will eventually make Y ∗ = X∗.

Algorithm. Now, we are ready to propose the algorithm for finding a 2-service
center in T . The algorithm is based on the idea mentioned above, but directs
the arms in a simple and efficient way. In the following, we give its high level
description and then analyze its time complexity.

At first, we compute c∗ and check whether (c∗, c∗) satisfies Lemma 4. If yes,
(c∗, c∗) serves as a T 2-optimal solution. Otherwise, by Lemmas 5 and 6, we
can identify T1 and T2 so that the problem is reduced to the finding of the
(T1, T2)-extreme solution X∗. The finding of X∗ is based on performing the idea
of redirection iteratively, and further applies the prune-and-search strategy to
both T1-arms and T2-arms.

Some notation is required for discussion. For each leaf i ∈ T , let ord(i) denote
the order of i visited by a depth-first traversal starting from c∗ to all leaves.

586 H.-I Yu and C.-C. Li

Given a set L of leaves, let med(L) be the median of the set {ord(i) | i ∈ L}.
Also, we identify and prune the arms by their ending leaves. A leaf i ∈ T is
called a candidate if P (c∗, i) might contain x∗1 or x∗2. Let L1 and L2 denotes the
sets of candidates in T1 and T2, which initially consist of all leaves in T1 and T2,
respectively.

The prune-and-search process is performed as follows. At each iteration, we
pick the T1-arm P1 = P (c∗, l1) and the T2-arm P2 = P (c∗, l2), where l1 ∈ L1 is
the leaf with ord(l1) = med(L1) and l2 ∈ L2 is the leaf with ord(l2) = med(L2).
Then, we compute the (P1, P2)-extreme solution Y ∗ and determine whether Y ∗

satisfies the conditions in Lemma 10.
When Y ∗ satisfies the conditions, Lemma 10 can be applied for pruning candi-

dates. If it is y∗1 and the open y∗1-branch B−1 that satisfy the conditions, Lemma
10 shows that x∗1 is not contained in all open y∗1-branches except B−1 . It fol-
lows that all leaves outside B−1 are no longer candidates. Thus, we remove these
leaves from L1. Similarly, if it is y∗2 and the open y∗2-branch B−2 that satisfy the
conditions, we remove from L2 all leaves not in B−2 .

The prune-and-search process iterates until Y ∗ violates the conditions. Since
Lemma 9 guarantees that Y ∗ always satisfies the conditions if X∗ /∈ (P1, P2), the
violation implies that X∗ ∈ (P1, P2) and Y ∗ = X∗, thereby solves the problem.

The time complexity of the algorithm is analyzed as follows. Computing c∗

can be done in O(n) time by Megiddo’s algorithm for finding the weighted 1-
center on a tree [6]. Then, identifying T1 and T2 and assigning the order labels
to their leaves also takes O(n) time.

For the prune-and-search process, we first show that it performs at most
O(log n) iterations. By Lemma 9, at each iteration before termination, Y ∗ satis-
fies the conditions in Lemma 10 for either j = 1 or 2, which means that B− does
not intersect Pj . Since the leaf labels are assigned by depth-first traversal, either
ord(lj) > ord(i)∀ i ∈ B− or ord(lj) < ord(i)∀ i ∈ B−. By the chosen rule of lj ,
B− contains at most half of the leaves in Lj. Removing all leaves outside B−

thus reduces the size of Lj by a factor of at least 2. It follows that the pruning
is done at most O(log n) times for j = 1 and at most O(log n) times for j = 2.

For each fixed iteration, picking arms and verifying conditions for Y ∗ take
O(n) time. By a simple extension from the algorithm in Subsection 4.1, we can
obtain the following result to find Y ∗ in O(n) time.

Lemma 11. Given an arbitrary T1-arm P1 and an arbitrary T2-arm P2, the
(P1, P2)-extreme solution Y ∗ can be computed in O(n) time.

Consequently, each iteration of the loop takes O(n) time in total, and the algo-
rithm requires O(n) +O(n) ×O(log n) = O(n logn) time.

Theorem 5. The 2-service center problem on a weighted tree can be solved in
O(n log n) time.

4.3 Algorithm on an Unweighted Tree

The 2-service center problem on an unweighted tree, where wi,j = 1 for i ∈ V
and j = 1, 2, is far more simple. Suppose that (c∗, c∗) does not satisfy Lemma 4

The Multi-Service Center Problem 587

so that T1 and T2 can be identified. Let l∗1 be a leaf in T1 farthest from c∗ and
l∗2 be a leaf in T2 farthest from c∗. We can directly find the arms that containing
X∗ as shown below, and then solving the problem by Lemma 11.

Lemma 12. The (T1, T2)-extreme solution X∗ ∈ (P (c∗, l∗1), P (c∗, l∗2)).

Theorem 6. The 2-service center problem on an unweighted tree can be solved
in O(n) time.

5 Concluding Remarks

In this paper, we have proposed a whole new topic in location theory. The
multi-service location problems have very different properties from traditional
ones. In traditional location problems, facilities serve only their nearby vertices,
and naturally partition the graph into relatively independent regions. On the
other hand, in multi-service location problems, every vertex receives services
from all facilities, so the placement of facilities are mutually related. Thus, new
observation and approach are required for better solving this kind of problems.

As a good starting point, we obtained several algorithms for the p-service
center problem. However, some of these results are yet to be improved. For the
problem on general graphs, the p/c approximation factor does not sound good
and is possible for further refinement. For the 2-service center problem on trees,
there is still a gap of factor O(log n) (in terms of time complexity) between the
weighted and unweighted cases. It would be challenging to close the gap.

References

1. Ben-Moshe, B., Bhattacharya, B., Shi, Q.: An Optimal Algorithm for the Continu-
ous/Discrete Weighted 2-Center Problem in Trees. In: Correa, J.R., Hevia, A., Kiwi,
M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 166–177. Springer, Heidelberg (2006)

2. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. J.
ACM 34, 200–208 (1987)

3. Frederickson, G.: Parametric Search and Locating Supply Centers in Trees. In:
Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 299–319.
Springer, Heidelberg (1991), 10.1007/BFb0028271

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman & Co., New York (1979)

5. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems. I:
The p-centers. SIAM Journal on Applied Mathematics 37(3), 513–538 (1979)

6. Megiddo, N.: Linear-time algorithms for linear programming in R3 and related prob-
lems. SIAM Journal on Computing 12(4), 759–776 (1983)

7. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J.
ACM 31, 114–127 (1984)

8. Plesńık, J.: On the computational complexity of centers locating in a graph. Apl.
Mat. 25, 445–452 (1980)

9. Plesńık, J.: A heuristic for the p-center problems in graphs. Discrete Applied Math-
ematics 17(3), 263–268 (1987)

Computing Minmax Regret 1-Median on a Tree

Network with Positive/Negative Vertex Weights

Binay Bhattacharya�, Tsunehiko Kameda�, and Zhao Song

School of Computing Science, Simon Fraser University, Canada
{binay,tiko,zhaos}@sfu.ca

Abstract. In a facility location problem, if the vertex weights are un-
certain one may look for a “robust” solution that minimizes “regret.”
The most efficient previously known algorithm for finding the minmax
regret 1-median on trees with positive and negative vertex weights takes
O(n2) time. In this paper, we improve it to O(n log2 n).

1 Introduction

Deciding where to locate facilities to minimize the communication or travel costs
is known as the facility location problem. For a recent review of this subject, the
reader is referred to [11]. In the 1-median problem, the objective function is
formulated as the sum of the distances from the customer sites weighted by the
weights of the sites. In the minmax regret version of this problem, there is uncer-
tainty in the weights of the vertices and/or edge lengths, and only their ranges
are known [10,13]. In this paper, our model assumes that the edge lengths are
nonnegative and fixed, and uncertainty is only in the weights of the vertices.1

A particular realization (assignment of a weight to each vertex) is called a sce-
nario. Intuitively, the minmax regret 1-median problem can be understood as a
2-person game as follows. The first player picks a location x to place a facility.
The opponent’s move is to pick a scenario s. The payoff to the second player is
the cost of x minus the cost of the median, both under s, and he wants to pick
the scenario s that maximizes his payoff. Our objective (as the first player) is to
select x that minimizes this payoff in the worst case (i.e., over all scenarios).

The problem of finding the minmax regret median in a network, and a tree in
particular, has attracted great research interest in recent years. Many researchers
have worked on this problem. Kouvelis et al. [13] discussed the problem of finding
the minmax regret 1-median on a tree and proposed an O(n4) solution, where
n is the number of vertices. Chen and Lin [10] improved it to O(n3). Averbakh
and Berman then found a simple O(n2) algorithm [1] and improved it later to
O(n log2 n) [2]. Yu et al. [15] and Brodal et al. [6] independently proposed an
O(n log n) implementation of the algorithm in [2]. More recently, Bhattacharya

� Supported in part by the NSERC of Canada.
1 Theorem 1 in [10] shows that for trees it is sufficient to set all edge lengths at their
maximum values.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 588–597, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Computing Minmax Regret 1-Median on a Tree Network 589

and Kameda [5] came up with the optimal O(n) time algorithm. When the
vertices can have negative weights, Burkard and Dollani have an O(n2) time
algorithm [7]. A vertex with a negative weight has an interesting interpretation
as an obnoxious site [8]. In this paper, we present an O(n log2 n) time algorithm
for trees where each vertex may have a positive or negative weight from an
interval.

The paper is organized as follows. In Sec. 2, we introduce basic terms that are
used throughout the paper, and review some properties of the median in a tree.
Sec. 3 computes (classical) medians and their costs. We then present our main
result in Sec. 4 that shows the minmax 1-median can be computed in O(n log2 n)
time. Sec. 5 concludes the paper.

2 Preliminaries

2.1 Definitions

Let T = (V,E) be a tree network with vertex set V and edge set E, where
|V |= n. We also use T to denote the set of all points (vertices and points on
edges) on T . Each vertex v∈V is associated with an interval of integer weights
W (v) = [wv, wv], and each edge e∈E is associated with a non-negative length
(or distance). For any two points x, y∈T , let d(x, y) denote the distance between
x and y on T , and π[x, y], π(x, y), and π[x, y) denote the closed, open, and half-
open path from x to y, respectively. For an interior point x of an edge e=(u, v),
we assume d(x, u) is a prorated fraction of the length of e. Let S be the Cartesian
product of all W (v), v∈V :

S �
∏
v∈V

[wv, wv].

Under a scenario s∈S, we define the cost of a point x∈T by

F s(x) �
∑
v∈V

d(v, x)ws
v ,

A point that minimizes the above cost is called a weighted 1-median, or just a
median for short. We call

Rs(x) � F s(x)− F s(m(s)) (1)

the regret of x, where m(s) denotes a median under s. We finally define the
maximum regret of x by

R∗(x) � max
s∈S

Rs(x). (2)

Note that R∗(x) is the maximum payoff with respect to x that we mentioned in
the Introduction. We seek location x∗ ∈ T , called the minimum regret median,
that minimizes R∗(x). Suppose s= ŝ(x) maximizes (1) for a given x∈T . We call
ŝ(x) and m(ŝ(x)) the worst case scenario and the worst case alternative for x,
respectively. We thus have

R∗(x) = Rŝ(x)(x). (3)

590 B. Bhattacharya, T. Kameda, and Z. Song

2.2 Basic Properties of Trees

Lemma 1. [12] In a tree there is always a median at a vertex. ��

The above lemma is proved in [12], assuming that the vertex weights are positive,
but it holds without this assumption. However, the minmax regret median may
not be at a vertex [13]. If there exists a vertex u that is a median for all the
scenarios in S, then clearly u is the min-regret location. In such a case, the
problem instance is said to be degenerate [5].

Lemma 2. [5] In a general network, we have R∗(x∗) = 0 if and only if the
problem instance is degenerate. ��

Let e = (u, u′) be any edge of T , and let Tu (resp. Tu′) denote the subtree
containing u (resp. u′) but not e. Let s(u) be a scenario such that ws

v =wv for
each vertex v∈Tu, and ws

v=wv for each vertex v∈Tu′ . Such a scenario s is called
a bipartite scenario, and u is the front of s, denoted by f(s) [5]. Let S∗ ⊂ S be the
set of all bipartite scenarios. Under s(u), we call Tu the max-weighted component
and Tu′ the min-weighted component. Chen and Lin showed

Lemma 3. (Theorem 1(a) in [10])

∀x ∈ T : R∗(x) = max
s∈S∗

Rs(x). (4)

��

Let S̃ ⊂ S∗ be the set of bipartite scenarios such that the median is in the max-
weighted component. The proof of Lemma 3, together with Lemma 2, implies

Lemma 4.
∀x ∈ T : R∗(x) = max

s∈S̃
Rs(x). (5)

��

Thus, we only consider scenarios in S̃ in the rest of this paper. We sometimes
refer to R∗(x) as the upper envelope of {Rs(x) |s∈S̃}.

2.3 Weight and Cost Arrays

We pick an arbitrary vertex as the root r, and from now on consider T as a rooted
tree. For v∈V such that v �=r, we denote the parent of v by p(v). Let T (v) denote
the subtree of T rooted at v, and call T c(v)=T \T (v) the complement of T (v).
We define two arrays for subtree weights, W t[·] and W t[·], and two arrays for
complement weights, W c[·] and W c[·], as follows.

W t[v] �
∑

u∈T (v)∩V
wu, W t[v] �

∑
u∈T (v)∩V

wu,

W c[v] �
∑

u∈T c(v)∩V
wu, W c[v] �

∑
u∈T c(v)∩V

wu.

Computing Minmax Regret 1-Median on a Tree Network 591

We can compute W t[·] and W t[·] easily, using the post-order depth first search
in O(n) time. Once they have been computed, to compute W c[v], for example,
we simply use the relation [7]

W c[v] = W t[r]−W t[v].

Note that W c[r]=W c[r] = 0. We now define the subtree costs (with subscript t)
and complement costs (with subscript c) as follows:

Ct[v] �
∑

u∈T (v)∩V
d(u, v)wu, Ct[v] �

∑
u∈T (v)∩V

d(u, v)wu,

Cc[v] �
∑

u∈T c(v)∩V
d(u, v)wu, Cc[v] �

∑
u∈T c(v)∩V

d(u, v)wu.

ArraysCt[·], Ct[·], Cc[·], and Cc[·] can be computed inO(n) time [7]. For compact
representation, we also introduce the following notation:

C±t [u] � Ct[u]−Ct[u], C±c [u] � Cc[u]−Cc[u],

W±t [u] � W t[u]−W t[u], W±c [u] � W c[u]−W c[u].

3 Medians and Their Costs

3.1 Computing m(s) and F s(m(s)) for all s ∈ S̃
Let s(u) (resp. sc(u)) denote the scenario under which all the vertices of T (u)
(resp. T c(u)) have the maximum weights, and the rest of the vertices have the
minimum weights. Fig. 1(a) (resp. (b)) illustrates scenario s(u) (resp. sc(u)),

(a) (b)

Fig. 1. (a) Scenario s(u); (b) Scenario sc(u)

where a vertex with the maximum (resp. minimum) weight is indicated by a +
(resp. −). Let us consider the contributions to the cost of vertex v from different
parts of tree T .

Case (a) [F s(u)(v). Fig. 1(a)]:

592 B. Bhattacharya, T. Kameda, and Z. Song

1. From T (v): Ct[v].
2. From T (u)\T (v) (if v �=u): Cc[v]− {Cc[u] + d(u, v)W c[u]}.
3. From T c(u): Cc[u] + d(u, v)W c[u].

It is clear that, using arrays C∗[·], C∗[·] (∗∈{t, c}), W c[·], and W c[·], the above
three quantities can be computed in constant time. Adding all of them, we obtain

F s(u)(v) = {Ct[v] + Cc[v]} − {C±c [u] + d(u, v)W±c [u]}. (6)

We introduce the notation gv(u)�F s(u)(v), with the intention of treating it as
a function of u with parameter v. For two vertices v1, v2 ∈ T (u), the difference
in their costs under s(u) is

gv2(u)−gv1(u) = {Ct[v2]+Cc[v2]}−{Ct[v1]+Cc[v1]}−{d(u, v2)−d(u, v1)}W±c [u].

Let w be the lowest common ancestor of v1 and v2. Then d(u, vi) = d(w, vi)+
d(w, u), so that the common part d(w, u) cancels in the above equation, and

gv2(u)−gv1(u) = {Ct[v2]+Cc[v2]}−{Ct[v1]+Cc[v1]}−{d(w, v2)−d(w, v1)}W±c [u].
(7)

Note that the only term in (7) that depends on u is W±c [u]. If we define X(u)�
W±c [u], then (7) is a linear function of X(u). Clearly, X(u) has O(n) distinct
values. Let us define function g′v(·) by g′v(X(u))�gv(u).

We compute Xmin (resp. Xmax) by finding the vertex umin (resp. umax) that
minimizes (resp. maximizes) X(u). Clearly, we have umin=r and umax is a leaf.
Thus the range ofX(�X(u)) is I=[Xmin, Xmax]. In the next paragraph we show
how to find the lower envelope of {g′v(X) | v∈T (u)}. Using the lower envelope,
for each u∈V , we can identify one or more vertices v such that g′v(X(u)) takes
the minimum over all vertices, which implies that v is a median under s(u).

To find the lower envelope of {g′v(X) | v ∈ T (u)}, we perform “sweeping,”
pretending that X is a continuous variable. Let us first evaluate gv(umin) for
all v and order them from the smallest to the largest, which takes O(n log n)
time. Let L = 〈v1, v2, . . . , vl〉 be the corresponding sorted list of vertices. For
each vi ∈ L, we compute the intersection points of g′vi(X) with g′vi−1

(X) and
g′vi+1

(X). It can be done in constant time, since they are linear functions of
X . From among those intersection points, find the one that corresponds to the
smallest X , and let it be the intersection point of g′vj (X) and g′vj+1

(X). If j=1,
then the first interval of the lower envelope is from Xmin to this intersection
point. If j>1 on the other hand, then we remove vj from L, since g′vj (X(u)) will
never be the minimum for any value of X ∈ I. When vj is removed, vj−1 and
vj+1 become adjacent in L, so we compute their intersection point, and repeat
the above process. It is easy to see that the whole process of identifying all the
segments of the lower envelope can be carried out in O(n logn) time.

Case (b) [F sc(u)(v). Fig. 1(b)]: A scenario of the type sc(u) is shown in Fig. 1(b).
In this case, we have

F sc(u)(v) = Ct[v] + Cc[v]− {C±t [u] + d(u, v)W±t [u]}, (8)

Computing Minmax Regret 1-Median on a Tree Network 593

which is essentially the same as (6). Formula (8) is also valid if v and u are in
the same subtree of T . Therefore, we can find the vertex v that minimizes it as
above, thus obtaining m(sc(u)).

Lemma 5. We can compute {m(s) |s∈ S̃} and {F s(m(s)) |s∈ S̃} in O(n log n)
time.

Proof. We showed how to compute m(s) above. We can plug v=m(s) in (6) or
(8) to compute F s(u)(v) or F sc(u)(v), respectively, which takes constant time.

��

4 Optimal Facility Location

We assume that the given T (V,E) is a balanced binary tree, rooted at vertex
r, and having n vertices, hence of height O(log n). We will discuss a general
tree later in Sec. 4.3. For subtree T (v) of T , let Nn(T (v)) denote the number of
vertices in T (v), and let S(T (v))⊆ S̃ be the set of scenarios whose max weighted
components are totally contained in T (v).

4.1 Algorithm

For x /∈T (v), let us introduce

Rs
T (v)(x) �

∑
u∈T (v)∩V

d(u, x)ws
u − F s(m(s))

R∗T (v)(x) � max
s∈S(T (v))

Rs
T (v)(x), (9)

ignoring the cost contributions from the vertices in T c(v). In the preprocessing
phase, for each v ∈ V , we compute the upper envelope, i.e., R∗T (v)(x), which is

valid for x /∈T (v).

Lemma 6. Let u, v ∈ V be the two child vertices of a non-root vertex y in
T . If R∗T (u)(x) and R∗T (v)(x) are available, then we can compute R∗T (y)(x) for

x∈(y, p(y)) in O(Nn(T (y))) time.

Proof. Note that R∗T (u)(x) consists of O(Nn(T (u))) line segments for x /∈ T (u).

In order to compute R∗T (y)(x), we merge R∗T (u)(x), R
∗
T (v)(x) and R

s(y)
T (y)(x) for

points x /∈ T (y). Note that d(x, y)wy must be added to R∗T (u)(x) and R∗T (v)(x)
before computing the upper envelope of these three functions. It is easy to see
that all this can be done in O(Nn(T (y))) time. ��

Note that the subtrees at each level of T have disjoint sets of descendant leaves.
By Lemma 6, therefore, the total time need to compute their upper envelopes is
O(n). Since there are O(log n) levels in T , we have

Lemma 7. The total preprocessing time for computing {R∗T (v)(x) | v∈V } for a

balanced binary tree T is O(n log n). ��

594 B. Bhattacharya, T. Kameda, and Z. Song

x

T(v)

u

v

r

T(z)

z

a

b

T(b)

T(a)

T(c)

c

Fig. 2. Finding median for point x∈e=(u, v)

From now on we assume that R∗T (v)(x) is stored at v in terms of its bending

points. Let e=(u, v)∈E, where v is farther than u from the root r of T . We now
show how to compute R∗(x) (global upper envelope) for x∈ e, with the help of
Fig. 2, which shows the path from v to r and the O(log n) subtrees hanging from
it, T (v), T (a), T (b), . . . , T (z). Assume that R∗T (v)(x), R

∗
T (a)(x), . . . , R

∗
T (z)(x) are

available (by Lemma 7). Note that R∗(x) is the upper envelope of the following
functions:

1. The scenarios in S(T (v)):

R∗T (v)(x)+{Cc[v]−d(v, x)W c[v]}. (10)

2. For k=a, b, . . . , z:

R∗T (k)(x) + {Ct(v) + d(x, v)W t(v)}
+{Cc(v)− d(v, x)W c(v)} − {Ct(k) + d(x, k)W t(k)}. (11)

3. Scenario sc(k′) for k=a, b, . . . , z, where k′ is the sibling of k:

{Ct(v) + d(x, v)W t(v)} + {Cc(v)− d(v, x)W c(v)}
+{C±c [k′] + d(x, p(k′))W±c [k′]} − F sc(k′)(m(sc(k′))), (12)

where p(k′) is the parent of k′. The first (resp. second (in brackets)) term in (11)
is the contribution from T (k) (resp. T (v)) for the scenarios in S(T (k)), and (12)
is the contribution from T \{T (v) ∪ T (k)}.
Lemma 8. Given x∈e, where e∈E, we can evaluate R∗(x) in O(log2 n) time.

Proof. For any scenario s ∈ S̃, Rs(x) is linear over the entire e, which implies
that R∗(x) is convex over e. Note that each of the functions of x listed above
consists of a sequence of linear segments over e, so that it can be represented by a
sequence of bending points. Thus, for any x, evaluating each such function takes
O(log n) time by binary search, and the total for all of them is O(log2 n). ��
When we evaluate R∗(x) at x ∈ e, we can identify the scenario s such that
Rs(x) = R∗(x) and the slope of F s(x) at x. This slope (positive or negative)
indicates which side of x, the optimal location on that edge lies. Thus we can
use binary search to find the optimal location on e in O(log n) steps. Thus the
globally optimal location x∗ among all the edges can be found in O(n log3 n)
time. In the next subsection, we improve this to O(n log2 n).

Computing Minmax Regret 1-Median on a Tree Network 595

4.2 Efficient Implementation

In the proof of Lemma 8, we found the dominating scenario at x, performing bi-
nary search separately for O(log n) upper envelopes, resulting in O(log2 n) total
time. Here we perform binary search “simultaneously,” and use the result indi-
vidually, reducing the total time down to O(log n). This method is reminiscent of
fractional cascading [9]. Fig. 3(a) illustrates the idea. The three lines, labeled u,

(a)

r

u3

u1
u2

x

u4

(b)

Fig. 3. “Cascading” pointers: (a) Principle; (b) Rightward pointers (rightward arrows)
and leftward pointers (leftward arrows)

u′, and u′′, represent the sequence of the linear intervals of three precomputed
upper envelopes at vertices u, u′, and u′′, respectively, namely, the bending
points of R∗T (u)(x), R

∗
T (u′)(x), and R∗T (u′′)(x), respectively. In the “Merged” se-

quence at the top, all bending points are merged together. In general, as many as
O(log n) sequences may be merged, instead of just three in this illustration. The
downward arrows and dashed lines represent pointers. From the left end of each
interval (which is a bending point) in the “Merged” sequence, there are three
pointers (k pointers if k sequences are merged.) For example, the first marker to
the left of point x has a pointer pointing to y (resp. y′, y′′) in the sequence of u
(resp. u′, u′′). This means that y (resp. y′, y′′) is the start of the linear interval
of R∗T (u)(x) (resp. R∗T (u′)(x), R

∗
T (u′′)(x)) that contains point x. Thus, once the

interval in which x lies in the “Merged” sequence is determined by binary search,
the intervals in which x lies in the sequences of u, u′, and u′′ can be found in
constant time by tracing the appropriate pointers. The pointer to the sequence
of u′′ is shown by a dashed line, because the marker itself represents the bending
point y′′ on u′′.

Fig. 3(b) shows which upper envelopes should be merged. Let u′ be any vertex
that lies on the leftmost (resp. rightmost) path from the root of T and u′ be its
sibling. Let v be the left (resp. right) child of any vertex belonging to T (u′). Then
we merge R∗T (v)(x) with R∗T (u)(x). In Fig. 3(b), for example, the bending point
sequences at the seven vertices that are reachable by following leftward arrows
from u4 are merged with the bending point sequence at u4. Binary search for x
needs to be performed only on the merged sequences at u4 and u3. In general, we

596 B. Bhattacharya, T. Kameda, and Z. Song

need to perform binary search at at most two vertices, to evaluate the functions
(10) and (11).

In Fig. 3(b), vertex u1 is the root of the subtree just “below” the edge on
which x lies. The vertices on the path from x to the root r are indicated by
squares, and the roots (i.e., u2, u3, and u4) of the subtrees hanging from this
path are indicated by black circles. In terms of Fig. 2, we have u1 = v, u2 = a,
u3=c, and u4=z. We need to examine the upper envelopes stored at these four
vertices. The bending point sequence of the upper envelope of u1 was merged
with that of u3, and the bending point sequence of the upper envelope of u2 was
merged with that of u4 in the preprocessing phase. Binary search for x needs to
be performed on the two merged sequences at u3 and u4. The result at u3 will
indicate not only the linear interval of R∗T (u3)

(x) that x is on, but also the linear

interval of R∗T (u1)
(x) where x is located, obviating the need to perform separate

binary search on the sequence at u1.
Given a balanced binary tree T = (V,E), for u ∈ V , let Nl(T (u)) de-

note the number of leaf vertices of subtree T (u). It is easy to show that
Nl(T (p(u)))/Nl(T (u))≥3/2 for any non-root vertex u. The equality holds for a
vertex that has two left descendants and just one right descendant. In the above
scheme, the number of bending points in the merged sequence at node v is at
most

Nl(T (v)) + {Nl(T (v))+1}/(3/2)+{Nl(T (v))+1}/(3/2)2+· · ·
< 3{Nl(T (v)) + 1}. (13)

Note that sib(v) may have one more descendant leaf than v.

Lemma 9. The total number of pointers at all levels is O(n log2 n).

Proof. Since each bending point in a merged sequence has O(log n) pointers, and
the sum of Nl(T (v)) for all nodes v at any level of T is O(n), the total number
of pointers stored at a level of T is O(n logn). This should be multiplied by the
number of levels in T , i.e., O(log n), resulting in O(n log2 n). ��

Theorem 1. The minmax regret 1-median for a balanced binary tree with pos-
itive/negative vertex weights can be found in O(n log2 n) time. ��

4.3 General Trees

Given a tree network, it is is not binary, then we first convert it into a binary
tree, introducing O(n) new vertices with 0 weight and O(n) new edges of 0
length [14]. Using spine decomposition [3,4], we can convert the binary tree into
a structure that has properties of a balanced binary tree, introducing O(n) new
vertices and O(n) new edges. Then we can apply our algorithm described above
to this structure.

Computing Minmax Regret 1-Median on a Tree Network 597

5 Conclusion

We have presented an O(n log2 n) time algorithm for computing the minmax
regret 1-median for trees with positive/negative vertex weights. This is an im-
provement over the best previously known time complexity of O(n2) [8].

References

1. Averbakh, I., Berman, O.: Minmax regret median location on a network under
uncertainty. INFORMS Journal of Computing 12(2), 104–110 (2000)

2. Averbakh, I., Berman, O.: An improved algorithm for the minmax regret median
problem on a tree. Networks 41, 97–103 (2003)

3. Benkoczi, R.: Cardinality constrained facility location problems in trees. Ph.D.
thesis, School of Computing Science, Simon Fraser University, Canada (2004)

4. Benkoczi, R., Bhattacharya, B., Chrobak, M., Larmore, L.L., Rytter, W.: Faster
Algorithms for k-Medians in Trees. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003.
LNCS, vol. 2747, pp. 218–227. Springer, Heidelberg (2003)

5. Bhattacharya, B., Kameda, T.: A Linear Time Algorithm for Computing Minmax
Regret 1-Median on a Tree. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.)
COCOON 2012. LNCS, vol. 7434, pp. 1–12. Springer, Heidelberg (2012)

6. Brodal, G.S., Georgiadis, L., Katriel, I.: An O(n log n) version of the Averbakh–
Berman algorithm for the robust median of a tree. Operations Research Letters 36,
14–18 (2008)

7. Burkard, R.E., Dollani, H.: Robust location problems with pos/neg-weights on a
tree. Tech. Rep. Diskrete Optimierung Bericht Nr. 148, Karl-Franzens-Universiät
Graz & Technische Universiät Graz (1999)

8. Burkard, R., Krarup, J.: A linear algorithm for the pos/neg-weighted 1-median
problem on a cactus. Computing 60, 193–215 (1998)

9. Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique.
Algorithmica 1, 133–162 (1986)

10. Chen, B., Lin, C.S.: Minmax-regret robust 1-median location on a tree. Net-
works 31, 93–103 (1998)

11. Hale, T.S., Moberg, C.R.: Location science research: A review. Annals of Opera-
tions Research 123, 21–35 (2003)

12. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems, part
2: The p-median. SIAM J. Appl. Math. 37, 539–560 (1979)

13. Kouvelis, P., Vairaktarakis, G., Yu, G.: Robust 1-median location on a tree in
the presence of demand and transportation cost uncertainty. Tech. Rep. Working
Paper 93/94-3-4, Department of Management Science, The University of Texas,
Austin (1993)

14. Tamir, A.: An O(pn2) algorithm for the p-median and the related problems in tree
graphs. Operations Research Letters 19, 59–64 (1996)

15. Yu, H.I., Lin, T.C., Wang, B.F.: Improved algorithms for the minmax-regret 1-
center and 1-median problem. ACM Transactions on Algorithms 4(3), 1–1 (2008)

Fence Patrolling by Mobile Agents

with Distinct Speeds

Akitoshi Kawamura� and Yusuke Kobayashi��

University of Tokyo, Tokyo, Japan
kawamura@is.s.u-tokyo.ac.jp,

kobayashi@mist.i.u-tokyo.ac.jp

Abstract. Suppose we want to patrol a fence (line segment) using k
mobile agents with speeds v1, . . . , vk so that every point on the fence is
visited by an agent at least once in every unit time period. Czyzowicz
et al. conjectured that the maximum length of the fence that can be
patrolled is (v1 + · · · + vk)/2, which is achieved by the simple strategy
where each agent i moves back and forth in a segment of length vi/2.
We disprove this conjecture by a counterexample involving k = 6 agents.
We also show that the conjecture is true for k ≤ 3.

1 Introduction

In patrolling problems, a set of mobile agents move around a given area to pro-
tect or surveil it. We want to make sure that each point in the area is visited
frequently. Although there are many ways to measure frequency, our objective in
this paper is to find a strategy such that each point is visited by an agent at least
once in every fixed time period T . Patrolling problems have been well-studied in
robotics, motivated by practical situations such as tracking chemical spills and
surveilling an environment (see e.g. [3,6]). Most of the previous studies suggest
heuristic patrolling strategies and analyze their performance theoretically or ex-
perimentally [1,2,5,6,8]. Recently, theoretical optimality of patrolling strategies
has been studied for some cases [4,7]. Czyzowicz et al. [4] consider two prob-
lems called boundary patrolling and fence patrolling. In the boundary patrolling
problem, k mobile agents patrol the boundary of a planar object represented
by a cycle; in the fence patrolling problem, they patrol a fence represented by a
segment. For the boundary patrolling problem, they show that a simple partition-
based strategy is optimal in some restricted cases but not in general. For the
fence patrolling problem, they showed that a similar partition-based strategy is
optimal for k = 2, and conjectured that it is true for every k. In this paper, we
prove that this conjecture holds also for k = 3 but not in general.

� Supported by Grant-in-Aid for Scientific Research, Japan.
�� Supported by Grant-in-Aid for Scientific Research and by the Global COE Program

“The research and training center for new development in mathematics”, MEXT,
Japan.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 598–608, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Fence Patrolling by Mobile Agents with Distinct Speeds 599

Formal Description of the Fence Patrolling Problem. We are given a segment
of length l, which is identified with the interval [0, l]. The set of mobile agents
a1, a2, . . . , ak are moving along the segment, and they are allowed to move in
both directions. The speed of each agent ai may vary during its motion, but its
absolute value is bounded by the predefined maximum speed vi. The position of
agent ai at time t ∈ [0,∞) is denoted by ai(t) ∈ [0, l]. Thus, for any t > 0 and
ε > 0,

|ai(t)− ai(t+ ε)| ≤ vi · ε. (1)

We say that the segment [0, l] is patrolled by a1, . . . , ak with idle time T > 0 if
for any x ∈ [0, l] and t∗ ∈ [T,+∞), the pair (x; t∗) is covered by some ai, where
ai is said to cover (x; t∗) if ai(t) = x for some t ∈ [t∗ − T, t∗). In the original
setting [4], the definition of coverage merely required t ∈ [t∗ − T, t∗] instead of
t ∈ [t∗ − T, t∗), but this makes no difference, because each ai(t) satisfying (1) is
a continuous function.

The Partition-Based Strategy. A simple strategy for fence patrolling is as follows:

1. Partition the segment [0, l] into k segments such that the length of the ith
segment is lvi

v1+···+vk
.

2. Each mobile agent ai patrols the ith segment by alternately visiting both
endpoints with maximum speed.

Performance of a patrolling strategy is measured by the length of the longest
fence that can be patrolled with fixed idle time T > 0 (or equivalently, the
minimum idle time that is needed to patrol a fence of fixed length). Since each
mobile agent ai can patrol a segment of length viT

2 , the partition-based strategy

can patrol a segment of length l =
∑k

i=1
viT
2 . Czyzowicz et al. [4] showed that

this is optimal when k = 2. They also conjectured that it is true for any k, that
is, a segment of length l >

∑k
i=1

viT
2 cannot be patrolled with idle time T .

In this paper, we disprove this conjecture by demonstrating k = 6 agents
that patrol a fence of length greater than

∑k
i=1

viT
2 (Theorem 1). On the other

hand, we show that the partition-based strategy is optimal when k = 3 (The-
orem 4). We also show that the partition-based strategy is optimal when all
agents have the same speed (Theorem 2), but not when there are two distinct
speeds (Theorem 1).

The Weighted Setting. We also consider the weighted fence patrolling problem in
which the idle time Ti > 0 depends on the agent ai. Here, Ti is called the weight
of ai, and can be interpreted as a power of influence. For the weighted problem,
we say that the segment [0, l] is patrolled by a1, . . . , ak if for any x ∈ [0, l] and
t∗ ∈ [maxi(Ti),+∞), the pair (x; t∗) is covered by some ai, where ai is said to
cover (x; t∗) if ai(t) = x for some t ∈ [t∗ − Ti, t

∗).
As in the unweighted case, we can consider the partition-based strategy: par-

tition the segment [0, l] into k segments so that the length of the ith segment is
lviTi

v1T1+···+vkTk
, and let each agent ai patrol the ith segment. For the weighted case,

we show that the partition-based strategy is optimal when there are two agents
with different speeds (Theorem 3), but not when there are three (Theorem 1).

600 A. Kawamura and Y. Kobayashi

7/2

1

3
3/2

1

1

1

sp
ee
d
1
−→

ti
m
e

fence

7/6 7/6 7/6

4

1

1

1

1

←− speed 7/3

fence

7/6 7/6 7/6

1

2/3

1/3

7/3

1/6

←
−
sp
eed

1/2 7/2

fence

Fig. 1. Six agents patrolling a longer fence than they would with the partition-based
strategy. The four agents on the left diagram can also be seen as one agent of weight 4.

Organization of the Paper. In Section 2, we present our counterexamples to the
conjecture of Czyzowicz et al. [4]. Section 3 is about the case where all agents
have one speed. After discussing the case of k = 2 in Section 4, we show that the
partition-based strategy is optimal for (unweighted) fence patrolling with k = 3
in Section 5.

2 The Partition-Based Strategy Is Not Always Optimal

Fig. 1 shows six (unweighted) agents with speeds 1, 1, 1, 1, 7/3, 1/2 who patrol
a fence of length 7/2 with idle time T = 1. The fence is placed horizontally and
time flows upwards. The regions covered by each agent are shown shaded (i.e.,
the agent itself moves along the lower edge of each shaded band of height 1). The
four agents with speed 1, shown in the diagram on the left, visit the two endpoints
alternately. Another agent with speed 7/3 in the middle diagram almost covers
the remaining regions (whose boundaries are shown in dotted lines), but misses
some small triangles. They are covered by the last agent with speed 1/2 in the

Fence Patrolling by Mobile Agents with Distinct Speeds 601

5/6

25/3

5/6 5/6 5/6

25/3

1

1

1

1/3

fence

ti
m
e

5/6

25/3

5/6 5/6 5/6

25/3

1

1/3

fence

ti
m
e

Fig. 2. Six agents with speed 5 (top) and three agents with speed 1 (bottom) patrolling
a longer fence than they would with the partition-based strategy

diagram on the right. This disproves [4, Conjecture 1], since the partition-based
strategy with these agents would only patrol the length (1 + 1 + 1 + 1 + 7/3 +
1/2)/2 = 41/12 < 7/2. Note that the first four agents can also be seen as one
agent of weight 4, so that there are three agents altogether with different weights.

Another counterexample involving more agents but perhaps simpler is shown
in Fig. 2, where six agents with speed 5 and three with speed 1 patrol a fence of
length 50/3 with idle time T = 1. Thus,

Theorem 1. There are settings of agents’ speeds and weights for which the
partition-based strategy is not the one that patrols the longest possible fence.
Such an example can consist of

– three agents (with different weights and speeds),

– six agents of equal weights, or

– nine agents of equal weights but having two distinct speeds.

602 A. Kawamura and Y. Kobayashi

3 Agents with Equal Speeds

When all agents have the same speed v (and the same weight T), the partition-
based strategy achieving l = kvT/2 is optimal. This can be proved by induction
on the number k of the agents: First, note that in this case we may assume that
the agents never switch positions, so that a1(t) ≤ · · · ≤ ak(t) for all t, because
two agents passing each other could as well each turn back. Since the agent a1
visits the point 0 once in every time interval T , it is confined to the interval
[0, vT/2]. The rest of the fence must be patrolled by the other k−1 agents, who,
by the induction hypothesis, cannot do better than the partition-based strategy.

The partition-based strategy is still optimal when the agents have different
weights Ti (but the same speed v). For suppose that we could patrol a fence of

length l = α +
∑k

i=1 vTi/2 for some α > 0. Let τ = 2α/kv. Because an agent
of weight Ti can be simulated by �Ti/τ� agents of weight τ moving in parallel,

this fence can be patrolled by κ =
∑k

i=1�Ti/τ� agents, all with weight τ (and
speed v). This contradicts what we know from the previous paragraph, because

l = kτv/2 +
∑k

i=1 Tiv/2 =
∑k

i=1(Ti/τ + 1)vτ/2 > κvτ/2.

Theorem 2. If all agents have equal speeds (and possibly different weights), no
strategy can patrol a longer fence than the partition-based strategy.

A similar partition-based strategy for agents with equal speeds is shown to be
optimal also in the setting where the time and locations are discretized in a
certain way [7, Section III].

4 Two Agents

In this section, we show that the partition-based strategy is optimal when the
number of agents is k = 2. Although this is shown in [4] for two agents with
equal weight, our proof is simpler even for this special case. Some ideas in the
proof will be used for the case of three unweighted agents in Section 5.

Theorem 3. For two agents (of possibly distinct weights), no strategy patrols a
longer fence than the partition-based strategy.

Proof. To derive a contradiction, assume that the segment [0, l] can be patrolled
by agents a1 and a2 for some l > v1T1/2+ v2T2/2. Let l1 = v1T1l/(v1T1 + v2T2)
and l2 = v2T2l/(v1T1 + v2T2). Then, l = l1 + l2 and li > viTi/2 for i = 1, 2.
Without loss of generality, we may assume that v1 ≥ v2.

For any time t ≥ 0, each agent must visit one of the endpoints 0 and l some
time after t. To see this, note that clearly one of the agents visits 0 after time t,
say at t0 > t. Then (l; t0 + l/v1) cannot be covered by this agent, and thus has
to be covered by the other agent.

We may therefore assume that the slower agent a2 visits 0 at some time
t2 > max{T1, T2}. Since (l2; t2 +

l2
v2
) cannot be covered by a2, the other agent

a1 must visit l2 at some time t1 ∈ [t2 +
l2
v2
−T1, t2 +

l2
v2
). Then neither a1 nor a2

can cover (l; t1 +
l1
v1
), which is a contradiction. ��

Fence Patrolling by Mobile Agents with Distinct Speeds 603

t

x = 0 x = l

t2

t1

≤ 2 not covered

a2

a1

Fig. 3. Proof of Lemma 2

5 Three Agents of Equal Weights

In this section, we show that Czyzowicz et al.’s conjecture is true for three agents:

Theorem 4. For three agents with equal weights, no strategy patrols a longer
fence than the partition-based strategy.

By scaling all speeds, we may assume that T = 2. For a contradiction, suppose
that agents a1, a2, a3 with speeds v1 ≥ v2 ≥ v3 can patrol [0, l], where l >
v1 + v2 + v3. For i = 1, 2, 3 let li =

vil
v1+v2+v3

, so that l = l1 + l2 + l3 and li > vi.

5.1 Some Observations

In this subsection, we give some properties of the case k = 3.

Lemma 1. For any t∗ ≥ 0, at least two different agents visit 0 after the time
t∗, and at least two different agents visit l after the time t∗.

Proof. Assume that a1 is the only agent that visits 0 after time t∗. This forces
it to stay (after time t∗ + 1) in the part [0, l1], so the remaining part [l1, l] of
length l2 + l3 has to be patrolled by a2 and a3, contradicting Theorem 3.

Similarly, neither a2 nor a3 can be the only agent that visits 0 after t∗. The
same argument applies to the other endpoint l. ��

Lemma 2. For any t∗ ≥ 0 and for each i = 1, 2, 3, the agent ai visits at least
one of 0 and l after the time t∗.

Proof. Assume that a3 does not visit 0 after t∗. By Lemma 1, both a1 and a2
visit 0 infinitely often after t∗. Thus, a1(t1) = a2(t2) = 0 for some t1, t2 > t∗+1
with t1 ≤ t2 ≤ t1 + 2 (see Fig. 3). The pair (l; t1 + l

v1
) is not covered by a1,

because
(
t1 +

l
v1

)
−
(
t1 − l

v1

)
> 2. It is not covered by a2 either, because(

t1 +
l

v1

)
−
(
t2 −

l

v2

)
> (t1 − t2) + 2 +

(
v2
v1

+
v1
v2

)
≥ 2.

604 A. Kawamura and Y. Kobayashi

t

x = 0 x = l

t3

t2
a2

≤ 2 not covered

covered by a1

a1

l2 + l3

t1

a3

Fig. 4. Proof of Lemma 3

Hence, it must be covered by a3, which means that a3 visits l after the time t∗.
The same argument can be applied to a1 and a2. ��

Lemma 3. Suppose that a2(t2) = a3(t3) = 0 (resp. = l) for some t2, t3 > 2.
Then a1(t1) = 0 (resp. = l) for some t1 ∈ [t2, t3] (or t1 ∈ [t3, t2]).

Proof. Assume that a2(t2) = a3(t3) = 0 for some t3 ≥ t2 > 2 such that a1(t1) �=
0 for any t1 ∈ [t2, t3]. By choosing t2 and t3 that minimize t3−t2, we may assume
that t3 − t2 ≤ 2 (see Fig. 4).

The pair (l2 + l3; t2 +
l2+l3
v2

) is not covered by a2, because
(
t2 +

l2+l3
v2

)
−
(
t2−

l2+l3
v2

)
> 2. It is not covered by a3 either, because(
t2 +

l2 + l3
v2

)
−
(
t3 −

l2 + l3
v3

)
> (t2 − t3) + 2 +

(
v3
v2

+
v2
v3

)
≥ 2.

Hence, it must be covered by a1, which means that a1(t1) = l2 + l3 for some t1
with t2 +

l2+l3
v2

− 2 ≤ t1 < t2 +
l2+l3
v2

. Since v1 ≥ v2 ≥ v3, (l; t1 +
l1
v1
) is covered

by none of a1, a2, and a3, which is a contradiction.
The same argument can be applied to the case of t2 ≥ t3 and to the case of

a2(t2) = a3(t3) = l. ��

By Lemmas 2 and 3, for any t∗ ≥ 2, there exist t2 ≥ t1 > t∗ such that either
a1(t1) = a2(t2) = 0 and a3(t) �= 0 for any t ∈ [t1, t2] or a1(t1) = a2(t2) = l and
a3(t) �= l for any t ∈ [t1, t2]. Let t

∗ be a sufficiently large number (e.g. t∗ = 10).
By choosing t1 and t2 with a minimal interval [t1, t2], without loss of generality,
we may assume that t∗ < t1 ≤ t2 ≤ t1 + 2 and a1(t1) = a2(t2) = 0.

We consider the cases of v1 ≥ 2v2 + v3 and v1 ≤ 2v2 + v3 in Sections 5.2
and 5.3, respectively.

5.2 Case of v1 ≥ 2v2 + v3

As in Section 5.1, let t1 and t2 be such that t∗ < t1 ≤ t2 ≤ t1 + 2 and a1(t1) =
a2(t2) = 0. The pair (l1 + l2 − l3; t1 + l1+l2−l3

v1
) is not covered by a1, because

Fence Patrolling by Mobile Agents with Distinct Speeds 605

t

x = 0 x = l

t2

t1
a1

≤ 2
not covered

covered by a3

a3

l1 + l2 − l3

t3

a2

Fig. 5. Case of v1 ≥ 2v2 + v3

(
t1 +

l1+l2−l3
v1

)
−
(
t1 − l1+l2−l3

v1

)
> 2. It is not covered by a2 either, because(

t1 +
l1 + l2 − l3

v1

)
−
(
t2 −

l1 + l2 − l3
v2

)
> (t1 − t2) + 2 +

v1 − v3
v2

≥ 2.

Hence, it must be covered by a3, which means that a3(t3) = l1+ l2− l3 for some
t3 with t1 +

l1+l2−l3
v1

− 2 ≤ t3 < t1 +
l1+l2−l3

v1
(see Fig. 5).

If t3 +
2l3
v3
≤ t1 +

l
v1
, then (l; t3 +

2l3
v3

) is covered by none of a1, a2, a3 (see

Fig. 5). Otherwise, (l; t1+
l
v1
) is covered by none of a1, a2, a3 (not by a3 because

(t1 +
l
v1
)− (t3 − 2l3

v3
) > t3 − (t3 − 2) = 2).

5.3 Case of v1 ≤ 2v2 + v3

Again, let t1 and t2 be such that t∗ < t1 ≤ t2 ≤ t1 + 2 and a1(t1) = a2(t2) = 0.

Lemma 4. a2(t) �= l for any t ∈ [t1 − l
v1
, t1 +

l
v1
].

Proof. By the same argument as in Lemma 2, (l; t1+
l
v1
) is covered by a3. Since

a1 cannot visit l during [t1− l
v1
, t1+

l
v1
], neither can a2, because of Lemma 3. ��

Lemma 5. a3(t) �= l1 + l2 for any t ∈ [t1 − l2+l3
v1

, t1 +
l2+l3
v1

] (see Fig. 6).

Proof. Assume that a3(t) = l1 + l2 for some t ∈ [t1 − l2+l3
v1

, t1 +
l2+l3
v1

]. Then,

since [t− 1, t+ 1] ⊆ [t1 − l
v1
, t1 +

l
v1
], (l; t+ 1) is covered by neither a1 nor a3.

Furthermore, by Lemma 4, it is not covered by a2, which is a contradiction. ��

Lemma 6. a3(t) = l1+l2 for some t with t1+
l2+l3
v1

< t < t1+
l1+l2
v1

(see Fig. 6).

Proof. The pair (l1 + l2; t1 +
l1+l2
v1

) is not covered by a1, because
(
t1 +

l1+l2
v1

)
−(

t1 − l1+l2
v1

)
> 2. It is not covered by a2 either, because(

t1 +
l1 + l2
v1

)
−
(
t2 −

l1 + l2
v2

)
> (t1 − t2) + 2 +

(
v2
v1

+
v1
v2

)
≥ 2.

606 A. Kawamura and Y. Kobayashi

t

x = 0 x = l

t1
a1 not containing a3

covered by a3

a3

l1 + l2

t3

t1 − l2+l3
v1

(Lemma 5)

t2

t1 +
l2+l3
v1

Fig. 6. Lemmas 5 and 6

Hence, it must be covered by a3, which means that a3(t) = l1 + l2 for some t
with t1 +

l1+l2
v1

− 2 ≤ t < t1 +
l1+l2
v1

.

Since (t1 + l1+l2
v1

− 2) − (t1 − l2+l3
v1

) > 2l2+l3
v1

− 1 > 0 by the assumption

v1 ≤ 2v2+v3, we have t1+
l1+l2
v1
−2 > t1− l2+l3

v1
. Hence, by Lemma 5, a3(t) = l1+l2

for some t with t1 +
l2+l3
v1

< t < t1 +
l1+l2
v1

. ��

In what follows, let t3 be the minimum number such that a3(t3) = l1 + l2 and
t1 +

l2+l3
v1

< t3 < t1 +
l1+l2
v1

(see Fig. 6).

Lemma 7. a3(t) = l for some t ∈ [t1 +
l
v1
− 2, t3 − l3

v3
].

Proof. By Lemma 4, (l; t1 +
l
v1
) is covered by neither a1 nor a2, which means

that a3(t) = l for some t with t1 +
l
v1
− 2 ≤ t < t1 +

l
v1
. On the other hand,

since a3(t3) = l1 + l2, we have a3(t) �= l for any t with t3 − l3
v3

< t < t3 +
l3
v3
. By

combining them, we have that a3(t) = l for some t ∈ [t1 +
l
v1
− 2, t3 − l3

v3
]. ��

t

x = 0 x = l

a3

l1 + l2

t3

t′3

l1

t′2

not covered

a2

a1

t′1

Fig. 7. Construction of t′3, t
′
2, and t′1

Fence Patrolling by Mobile Agents with Distinct Speeds 607

Let t′3 be the maximum number such that a3(t
′
3) = l and t′3 ∈ [t1+

l
v1
−2, t3− l3

v3
].

Then, the pair (l1 + l2; t3) is not covered by a3, because t3 > (t′3 − l3
v3
) + 2 and

t′3 +
l3
v3

> t1 − l2+l3
v1

. It is not covered by a1 either, because t3 > t1 +
l2+l3
v1

>

(t1 − l1+l2
v1

) + 2 by v1 ≤ 2v2 + v3. Hence, it is covered by a2, which means that
a2(t

′
2) = l1 + l2 for some t′2 with t3 − 2 ≤ t′2 < t3 (see Fig. 7).

Since (l1; t
′
2 +

l2
v2
) is covered by neither a2 nor a3, it is covered by a1, which

means that a1(t
′
1) = l1 for some t′1 with t′2 +

l2
v2
− 2 ≤ t′1 < t′2 +

l2
v2
. In this case,

(0; t′1 +
l1
v1
) is covered by none of a1, a2, and a3, which is a contradiction.

6 Conclusion

We have proved:

– The partition-based strategy is optimal when all agents have the same speed
(Theorem 2), but not when there are two distinct speeds (Fig. 2).

– The partition-based strategy is optimal when there are two agents with dif-
ferent speeds and weights (Theorem 3), but not when there are three (Fig. 1).

– The partition-based strategy is optimal when there are three agents with the
same weight (Theorem 4), but not when there are six (Fig. 1).

The third result settles a conjecture of Czyzowicz et al. [4]. It remains open
whether the partition-based strategy is optimal for four and five (unweighted)
agents.

Our examples in Theorem 1 outperform the partition-based strategy only
slightly. Thus we propose a revised conjecture: there is some constant c < 1 such
that a fence of length exceeding c

∑k
i=1 vi can never be patrolled.

Acknowledgements. The authors thank Yoshio Okamoto for suggesting this
research. They also thank Kohei Shimane and Yushi Uno for helpful comments.

References

1. Almeida, A., Ramalho, G., Santana, H., Tedesco, P., Menezes, T., Corruble, V.,
Chevaleyre, Y.: Recent advances on multi-agent patrolling. In: Proc. 17th Brazilian
Symposium on Artificial Intelligence, pp. 474–483 (2004)

2. Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In: Proc.
IEEE/WIC/ACM Int. Conf. Intelligent Agent Technology, pp. 302–308 (2004)

3. Clark, J., Fierro, R.: Mobile robotic sensors for perimeter detection and tracking.
ISA Transactions 46, 3–13 (2007)

4. Czyzowicz, J., G ¸asieniec, L., Kosowski, A., Kranakis, E.: Boundary Patrolling by
Mobile Agents with Distinct Maximal Speeds. In: Demetrescu, C., Halldórsson,
M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011)

5. Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot area patrol under frequency
constraints. Ann. Math. Artif. Intell. 57, 293–320 (2009)

608 A. Kawamura and Y. Kobayashi

6. Elmaliach, Y., Shiloni, A., Kaminka, G.A.: A realistic model of frequency-based
multi-robot polyline patrolling. In: Proc. 7th Int. Conf. Autonomous Agents and
Multiagent Systems, pp. 63–70 (2008)

7. Pasqualetti, F., Franchi, A., Bullo, F.: On optimal cooperative patrolling. In: Proc.
49th IEEE Conference on Decision and Control, pp. 7153–7158 (2010)

8. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for effi-
ciently patrolling a network. Algorithmica 37, 165–186 (2003)

Weak Visibility Queries of Line Segments

in Simple Polygons

Danny Z. Chen1,� and Haitao Wang2,��

1 Department of Computer Science and Engineering
University of Notre Dame, Notre Dame, IN 46556, USA

dchen@cse.nd.edu
2 Department of Computer Science

Utah State University, Logan, UT 84322, USA
haitao.wang@usu.edu

Abstract. Given a simple polygon in the plane, we study the problem
of computing the weak visibility polygon from any query line segment in
the polygon. This is a basic problem in computational geometry and has
been studied extensively before. In this paper, we present new algorithms
and data structures that improve the previous results.

1 Introduction

Given a simple polygon P of n vertices in the plane, two points in P are visible
to each other if the line segment joining them lies in P . For a line segment s in
P , a point p is weakly visible (or visible for short) to s if s has at least one point
that is visible to p. The weak visibility polygon (or visibility polygon for short) of
s, denoted by V is(s), is the set of all points in P that are visible to s. The weak
visibility query problem is to build a data structure for P such that V is(s) can
be computed efficiently for any query line segment s in P .

This problem has been studied before. Bose et al. [4] built a data structure
of O(n3) size in O(n3 log n) time that can compute V is(s) in O(k logn) time for
any query, where k is the size of V is(s). Throughout this paper, we always let
k be the size of V is(s) for any query line segment s. Bygi and Ghodsi [5] gave
an improved data structure with the same size and preprocessing time as that
in [4] but its query time is O(k + logn). Aronov et al. [1] proposed a smaller
data structure of O(n2) size with O(n2 logn) preprocessing time and O(k log2 n)
query time. Table 1 gives a summary. If the problem is to compute V is(s) for a
single segment (not queries), then there is an O(n) time algorithm [10].

In this paper, we present two new data structures whose performances are
also given in Table 1. Let K be the size of the visibility graph of P [12], which
is proportional to the number of pairs of vertices of P that are mutually visible.
Note that K = O(n2). Our first data structure can be built in O(K) preprocess-
ing time, its size is O(K), and it can compute V is(s) in O(k logn) time for any

� Chen’s research was supported in part by NSF under Grant CCF-0916606.
�� Corresponding author.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 609–618, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

610 D.Z. Chen and H. Wang

Table 1. A summary of the data structures. The value k is the size of V is(s) for any
query s and K = O(n2) is the size of the visibility graph of P

Data Structure Preprocessing Time Size Query Time

[4] O(n3 log n) O(n3) O(k log n)
[5] O(n3 log n) O(n3) O(k + log n)
[1] O(n2 log n) O(n2) O(k log2 n)
Our Result 1 O(K) O(K) O(k log n)
Our Result 2 O(n3) O(n3) O(k + log n)

query. Comparing with the data structure in [1], our data structure reduces the
query time by a logarithmic factor and uses less preprocessing time and space.

The preprocessing time and size of our second data structure are both O(n3),
and each query time is O(k + logn). Comparing with the result in [5], our data
structure has less preprocessing time. Our techniques explore many geometric
observations on the problem that may be useful elsewhere. For example, we
prove a tight combinatorial bound for the “zone” in a line segment arrangement
contained in a simple polygon, which is interesting in its own right.

2 Preliminaries

In this section, we review some geometric structures and discuss an algorithmic
scheme that will be used by the query algorithms of both our data structures
given in Sections 3 and 4. For simplicity of discussion, we assume no three vertices
of P are collinear; we also assume for any query segment s, s is not collinear with
any vertex of P and each endpoint of s is not collinear with any two vertices of
P . As in [1,4], our approaches can be easily extended to the general situation.

Denote by ∂P the boundary of P . The visibility graph of P is a graph whose
vertex set consists of all vertices of P and whose edge set consists of edges defined
by all visible pairs of vertices of P . Note that two adjacent vertices on ∂P are
considered visible to each other. In this paper, we always use K to denote the
size of the visibility graph of P . Clearly, K = O(n2). The visibility graph can be
computed in O(K) time [12].

We discuss the visibility decomposition of P [1,4]. Consider a point p in P
and a vertex v of P . Suppose the line segment pv is in P , i.e., p is visible to
v. We extend pv along the direction from p to v and suppose we stay inside
P (when this happens, v must be a reflex vertex). Let w be the point on the
boundary P that is hit first by our above extension of pv (e.g., see Fig. 1). We
call the line segment vw the window of p. The point p is called the defining point
of the window and the vertex v is called the anchor vertex of the window. It
is commonly known that the boundary of the visibility polygon of the point p
consists of parts of ∂P and the windows of p [1,4]. If the point p is a vertex of
P , then the window vw is called a critical constraint of P and p is called the
defining vertex of the critical constraint. For example, in Fig. 2, the two critical

Weak Visibility Queries of Line Segments in Simple Polygons 611

p v
w

Fig. 1. Illustrating a window vw of p

pv

pu

u v

Fig. 2. Illustrating the two critical con-
straints vpv and upu defined by the two
mutually visible vertices u and v

constraints upu and vpv are both defined by u and v; for upu, its anchor vertex
is u and its defining vertex is v, and for vpv, its anchor vertex is v and defining
vertex is u. It is easy to see that the total number of critical constraints is O(K)
because each critical constraint corresponds to a visible vertex pair of P and a
visible vertex pair corresponds to at most two critical constraints.

As in [1,4], we can represent the visibility polygon V is(s) of a segment s by a
cyclic list of the vertices and edges of P in the order in which they appear on the
boundary of V is(s), and we call the above list the combinatorial representation
of V is(s) [1]. With the combinatorial representation, V is(s) can be explicitly
determined in linear time in terms of the size of V is(s). Our query algorithms
given later always report the combinatorial representation of V is(s).

The critical constraints of P partition P into cells, called the visibility decom-
position of P and denoted by VD(P). The visibility decomposition VD(P) has a
property that for any two points p and q in the same cell of VD(P), the two vis-
ibility polygons V is(p) and V is(q) have the same combinatorial representation.
Also, the combinatorial representations of the visibility polygons of two adjacent
cells in VD(P) have only O(1) differences. The visibility decomposition has been
used for computing visibility polygons of query points (not line segments) [1,4].

Consider a query segment s in P . In the following, we discuss an algorithmic
scheme for computing V is(s). Denote by a and b the two endpoints of s. Suppose
we move a point p on s from a to b. We want to capture the combinatorial
representation changes of V is(p) of the point p during its movement. Initially, p is
at a and we have V is(p) = V is(a). As p moves, the combinatorial representation
of V is(p) changes if and only if p crosses a critical constraint of P [1,4]. V is(s)
is the union of all such visibility polygons as p moves from a to b. Therefore, to
compute V is(s), as in [1,4], we use the following approach. Initially, let V is(s) =
V is(p) = V is(a). As p moves from a to b, when p crosses a critical constraint,
either p sees one more vertex/edge, or p sees one less vertex/edge. If p sees one
more vertex/edge, then we update V is(s) in constant time by inserting the new
vertex/edge to the appropriate position of the combinatorial representation of
V is(s). Otherwise, we do nothing (because although a vertex/edge is not visible
to p any more, it is visible to s and thus should be kept; refer to [4] for details).

The above algorithm has two remaining issues. The first one is how to compute
V is(a) of the point a. The second issue is how to determine the next critical
constraint that will be crossed by p as p moves. Each of our two data structures

612 D.Z. Chen and H. Wang

p

v

w

Fig. 3. Illustrating the principle child w of v in T (p)

given in Sections 3 and 4 does some preprocessing such that the corresponding
query algorithm can resolve the above two issues efficiently.

3 The First Data Structure

Our goal is to compute V is(s) for any query segment s. Again, let s = ab. As dis-
cussed before, we need to resolve two issues. The first issue is to compute V is(a).
For this, we use a ray-shooting data structure [7,13], which, with O(n) time pre-
processing, can answer a ray-shooting query in O(log n) time. As discussed in [1],
by using the ray-shooting data structure, with O(n) time preprocessing, we can
compute V is(a) in O(|V is(a)| logn) time, where |V is(a)| is the size of V is(a).

The second issue is how to determine the next critical constraint of P that
will be crossed by the point p as p moves from a to b. Suppose at the moment we
know V is(p) (initially, V is(p) = V is(a)). Let β be the critical constraint that is
crossed next by p. To determine β, we sketch an observation given in [1].

Denote by T (p) the shortest path tree rooted at p, which is the union of the
shortest paths in P from p to all vertices of P . A vertex of P is in V is(p) if and
only if it is a child of p in T (p). For a node v of the tree T (p) with v �= p, suppose
u is the parent of v; define the principal child of v to be the vertex w among the
children of v such that the angle formed by −→vw and −→uv is the smallest among
all such angles (see Fig. 3, where u = p). In other words, if we go from p to any
child of v along the shortest path and we turn to the left (resp., right), then w
is the first child of v that is hit by rotating counterclockwise (resp., clockwise)
the line containing uv around v. To determine the next critical constraint β, the
following observation was shown in [1]. Two children of p in T (p) are consecutive
if there are no other children of p between them in the cyclic order.

Observation 1. [1] The next critical constraint β is defined by two vertices of
P that are either two consecutive children of p or one, say v, is a child of p and
the other is the principal child of v.

Based on Observation 1, Aronov et al. [1] maintain T (p) as p moves and used
the balanced triangulation of P to determine the principal children. Here, we use
a different approach, although we still need Observation 1. Our data structure
consists of the following: the ray-shooting data structure [7,13], the visibility
graph of P , denoted by G, and a priority queue Q.

The ray-shooting data structure is used to compute V is(a) inO(|V is(a)| logn)
time. The visibility graph G is used to determine the principal children of all

Weak Visibility Queries of Line Segments in Simple Polygons 613

children of p, as follows. First of all, since we already know V is(p), we have all p’s
children in T (p), sorted cyclically around p. Note that we do not store the entire
tree T (p). For any child v of p, the vertices of P that are visible to v are those
adjacent vertices of v in the visibility graph G. (For simplicity, vertices of G also
refer to the corresponding vertices of P , and vice versa.) Denote by adj(v) the
set of the vertices of P visible to v. Let w be the principal child of v that we are
looking for. Clearly, w ∈ adj(v). Consider the ray ρ(v) originating from v with
the direction from p to v. By the definition of principle children, w is the vertex
hit first by the ray ρ(v) if we rotate ρ(v) along the direction that is consistent
with the turning direction of the shortest path from p to the children of v in
T (p). It is easy to see that once we know the above direction, we can obtain w
in O(log n) time by binary search with the help of the visibility graph G. To
determine the above direction, we only need to look at the relationship between
the line containing ρ(v) and the two edges of P adjacent to v. Specifically, assume
the line containing ρ(v) has the same direction as ρ(v). If the two adjacent edges
of v lie to the left of the above line (e.g., see Fig. 3), then we should rotate ρ(v)
counterclockwise to determine w; otherwise we rotate ρ(v) clockwise. Hence, we
can determine the principle child of v in O(log n) time. Initially, p = a and we
determine the principle children of all children of a in T (a) in O(|V is(a)| logn)
time since a has O(|V is(a)|) children.

We use the priority queue Q to store the critical constraints stated in Obser-
vation 1 that intersect the line segment s, where the key of each such critical
constraint is the position of its intersection with s. Initially when p = a, we
compute the critical constraints defined by all pairs of consecutive children of p
in T (p). Similarly, for each child v of T (p), we compute the critical constraint
defined by v and its principal child. Note that the total number of the above
critical constraints are O(|V is(a)|). For each such critical constraint, we check
whether it intersects s. If so, we insert it into Q; otherwise, we do nothing. Then,
the first critical constraint in Q is the next critical constraint that p will cross as
it moves. In general, after p crosses a critical constraint, p either sees one more
vertex or sees one less vertex. In either case, there are only a constant number of
insertion or deletion operations on Q. Specifically, consider the case where p sees
one more vertex u (and an adjacent edge of u). By the implementation given in
[4], we can update the combinatorial representation of V is(p) in constant time
(i.e., insert u and the adjacent edge to the appropriate positions of the cyclic list
of V is(p)). After this, u becomes a child of p in the new tree T (p), and we can
determine p’s two other children, say, u1 and u2, which are neighbors of u, in
constant time. Then, for u1, we check whether the critical constraint defined by
u and u1 intersects s, and if so, we insert it into Q. For u2, we do the same thing.
Further, we compute the principal child of u in T (p), in O(log n) time, by the
approach discussed before. For the other case where p sees one less vertex after
it crosses the critical constraint, we do similar processing. After p arrives at the
other endpoint b of s, we obtain the combinatorial representation of V is(s).

614 D.Z. Chen and H. Wang

We claim that the above algorithm takes O(k logn) time (recall k = |V is(s)|).
Indeed, the initialization takes O(|V is(a)| logn) time. Clearly, |V is(a)| = O(k)
since each vertex of P that is in V is(a) also appears in V is(s). If we consider
every time p crosses a critical constraint as an event, each event takes O(log n)
time. It has been shown in [1] that the total number of events as p moves from a
to b is O(k). Hence, the overall running time for computing V is(s) is O(k logn).

For the preprocessing, the ray-shooting data structure needs O(n) time and
space to build. Computing the visibility graph G takes O(K) time and space.
Further, in our query algorithm, the space used in the priority queue Q is always
bounded by O(k). We conclude this section with the following theorem.

Theorem 1. For any simple polygon P, we can build a data structure of size
O(K) in O(K) time that can compute V is(s) in O(|V is(s)| logn) time for each
query segment s, where K = O(n2) is the size of the visibility graph of P.

4 The Second Data Structure

In general, the preprocessing of our second data structure is very similar to that
in [4], and we make it faster by using better tools. Our improvement on the query
algorithm is due to many new observations, e.g., a combinatorial bound of the
“zone” of the line segment arrangements in simple polygons. For completeness,
we briefly discuss the approach in [4].

The preprocessing in [4] has several steps, whose running time is O(n3 logn)
and is dominated by the first two steps. The other steps together take O(n3)
time. We show below that the first two steps can be implemented in O(n3) time.

The preprocessing in [4] first computes the visibility decomposition VD(P) of
P . Although there may be Ω(n2) critical constraints in P , it has been shown [4]
that any line segment in P can intersect only O(n) critical constraints, which
implies the size of VD(P) isO(n3) instead ofO(n4). As discussed in [4], all critical
constraints of P can be easily computed in O(n2) time. After that, to compute
VD(P), the authors in [4] used the algorithm in [2], which takes O(n3 logn)
time. In fact, a faster algorithm is available for computing VD(P). Chazelle
and Edelsbrunner’s algorithm [6] can compute the planar subdivision induced
by a set of m line segments in O(m logm + I) time, where I is the number of
intersections of all lines. In our problem, we have O(n2) critical constraints each
of which is a line segment and the boundary of P has n edges. Therefore, by
using the algorithm in [6], we can compute VD(P) in O(n3) time.

The second step of the preprocessing in [4] is to build a point location data
structure on VD(P) in O(n3 log n) time. By the approaches in [9] or [14], we can
build a point location data structure in O(n3) time.

The remaining steps of our preprocessing algorithm are the same as those
in [4], which together take O(n3) time. Hence, the total preprocessing time is
O(n3). With the preprocessing, for each query point q in P , we can compute the
visibility polygon V is(q) of q in O(|V is(q)|+ logn) time.

For a query segment s = ab, the query algorithm in [4] first computes V is(a).
Then, again, let a point p move on s from a to b. The algorithm maintains V is(p)

Weak Visibility Queries of Line Segments in Simple Polygons 615

as p moves, and initially V is(p) = V is(a). Again, whenever p crosses a critical
constraint, the combinatorial representation of V is(p) changes. Unlike our first
data structure in Section 3, here we have VD(P) explicitly. Therefore, we can
determine the next critical constraint much easier. Specifically, the algorithm
in [4] uses the following approach. Suppose p is currently in a cell of VD(P);
then the next critical constraint crossed by p must be on the boundary of the
cell. Since each cell is convex, we can determine the above critical constraint in
O(log n) time. The algorithm stops when p arrives at b. The total running time
of the query algorithm is O(k logn), where k = |V is(s)|.

We propose a new and simpler query algorithm. We follow the previous query
algorithmic scheme. The only difference is when we determine the next critical
constraint that will be crossed by p, we simply check each edge in the boundary
of the current cell that contains p, and the running time is linear in terms of
the number of edges of the cell. Therefore, the total running time of finding all
critical constraints crossed by p as it moves on s is proportional to the total
number of edges on all faces of VD(P) that intersect s, and denote by F (s) the
set of such faces of VD(P). Let E(s) denote the set of edges of the faces in F (s).
The total running time of finding all critical constraints crossed by p is O(|E(s)|).
Note that the running time of the overall query algorithm is the sum of the time
for computing V is(a) and the time for finding all critical constraints crossed by
p. Since V is(a) can be found in O(|V is(a)| + logn), the running time of the
query algorithm is O(log n + |V is(a)| + |E(s)|). Recall that |V is(a)| = O(k).
In the following Lemma 1, we will prove that |E(s)| = O(k). Consequently, the
query algorithm takes O(log n+ k) time and Theorem 2 thus follows.

Lemma 1. The size of the set E(s) is O(k).

Theorem 2. For any simple polygon P, we can build a data structure of size
O(n3) in O(n3) time that can compute V is(s) in O(|V is(s)| + logn) time for
each query segment s.

It remains to prove Lemma 1. Note that each edge of E(s) lies either on ∂P or
on a critical constraint. We partition the set E(s) into two subsets E1(s) and
E2(s). For each edge of E(s), if it lies on ∂P , then it is in E1(s); otherwise, it is
in E2(s). We will show that both |E1(s)| = O(k) and E2(s) = O(k) hold.

Denote by C(s) the set of all critical constraints each of which contains at
least one edge of E(s). Due to the space limit, the proof of Lemma 2 is omitted
and can be found in our full paper.

Lemma 2. The size of the set C(s) is O(k).

In the next lemma, we bound the size of the subset E1(s).

Lemma 3. The size of the set E1(s) is O(k).

Proof. Denote by V (s) the set of vertices of P visible to s. Clearly, |V (s)| ≤ k.
Consider an edge e in E1(s). To prove the lemma, we will charge e either to a
vertex of V (s) or to a critical constraint of C(s). We will also show that each

616 D.Z. Chen and H. Wang

vertex of V (s) will be charged at most twice and each critical constraint of
C(s) will be charged at most four times. Consequently, due to |V (s)| ≤ k and
|C(s)| = O(k) (by Lemma 2), the lemma follows.

By the definition of E1(s), e is on an edge of P . If e has an endpoint that is
a vertex of P , say u, then clearly, u is visible to s. We charge e to u. Otherwise,
both endpoints of e are endpoints of critical constraints, and we charge e to an
arbitrary one of the above two critical constraints.

For each vertex of P , it has two adjacent edges in P , and therefore, it has at
most two adjacent edges in E1(s). Hence, each vertex of V (s) can be charged at
most twice. On the other hand, each critical constraint has two endpoints, and
each endpoint is adjacent to at most two edges in E1(s). Therefore, each critical
constraint of C(s) can be charged at most four times.

To prove Lemma 1, it remains to show |E2(s)| = O(k). To this end, we discuss
a more general problem, in the following.

Assume we have a set S of line segments in P such that the endpoints of each
segment are on ∂P . Let A be the arrangement formed by the line segments in
S and the edges of ∂P . For any line segment s in P (the endpoints of s do not
need to be on ∂P), the zone of s is defined to be the set of all faces of A that s
intersects. Denote by Z(s) the zone of s. For each edge of a face in A, it either
lies on a line segment of S or lies on ∂P ; if it is the former case, we call the edge
the S-edge. We define the complexity of Z(s) as the number of S-edges of the
faces in Z(s) (namely, the edges on ∂P are not considered), denoted by Λ. Our
goal is to find a good upper bound for Λ. By using the zone theorem for the
general line segment arrangement [8], we can easily obtain Λ = O(|S|α(|S|)),
where α(·) is the functional inverse of Ackermann’s function [11].

Denote by Ss the set of line segments in S that intersect Z(s), i.e., each
segment in Ss contains at least one S-edge of Z(s). Let m = |Ss| (note that
m ≤ |S|). By using the property that each segment in S has both endpoints on
∂P , we show that Λ = O(m) in the following Theorem 3, which we call the zone
theorem. The proof of Theorem 3 is given in Section 4.1.

Theorem 3. The complexity of Z(s) is O(m).

Now consider our original problem for proving |E2(s)| = O(k). By using the zone
theorem, we have the following corollary.

Corollary 1. The size of the set E2(s) is O(k).

Proof. The set E2(s) consists of all edges of E(s) that lie on critical constraints.
Consider the arrangement formed by all critical constraints of P and ∂P . The
complexity of the zone Z(s) of the query segment s in the arrangement is exactly
|E2(s)|. Let C′(s) be the set of critical constraints of P each of which contains
at least one edge in E2(s). Then, by the zone theorem (Theorem 3), we have
|E2(s)| = O(|C′(s)|). Note that C′(s) ⊆ C(s). Due to |C(s)| = O(k) (Lemma 2),
we have |E2(s)| = O(k). The corollary thus follows.

Lemma 3 and Corollary 1 together lead to Lemma 1.

Weak Visibility Queries of Line Segments in Simple Polygons 617

4.1 Proving the Zone Theorem (i.e., Theorem 3)

This subsection is entirely devoted to proving the zone theorem, i.e., Theorem
3. All notations here follow those defined before.

We partition the set Ss into two subsets: S1
s and S2

s . For each segment in Ss,
if it does not intersect the interior of s, then it is in S1

s ; otherwise, it is in S2
s .

Let m1 = |S1
s | and m2 = |S2

s |. Hence, m = m1 +m2. Consider the arrangement
formed by the line segments in S1

s and ∂P . Since no segment in S1
s intersects

the interior of s, s must be contained in a face of the above arrangement and we
denote by Fs the face. For each edge of Fs, if it lies on a segment of S, we also
call it an S-edge. Note that edges of Fs that are not S-edges are on ∂P .

Lemma 4. The number of S-edges of the face Fs is O(m1); the shortest path
in P between any two points in Fs is contained in Fs.

Proof. For each segment s′ in S1
s , since both endpoints of s′ are on ∂P , s′

partitions P into two simple polygons and one of them contains s, which we
denote by P(s′). Note that the face Fs is the common intersection of P(s′)’s for
all s′ in S1

s . To prove the lemma, it is sufficient to show that each segment s′ in
S1
s has only one (maximal) continuous portion on the boundary of Fs, as follows.
For any two points p and q in P , denote by π(p, q) the shortest path between

p and q in P . Note that since P is a simple polygon, π(p, q) is unique. We claim
that for any two points p and q in the face Fs, π(p, q) is contained in Fs. Indeed,
suppose to the contrary that π(p, q) is not contained in Fs. Then, π(p, q) must
cross the boundary of Fs. Since π(p, q) cannot cross the boundary of P , π(p, q)
must cross an S-edge of Fs, and we assume s′ is the segment in S1

s that contains
the above S-edge. That implies π(p, q) is also not contained in the polygon P(s′).
Recall that the line segment s′ partitions P into two simple polygons and one of
them is P(s′). It is easy to show that for any two points in P(s′), their shortest
path in P must be contained in P(s′). Therefore, we obtain a contradiction.

Now assume to the contrary that a segment s′ in S1
s have two different con-

tinuous portions on the boundary of Fs. Let p and q be two points on the two
portions of s′, respectively. Thus, both p and q are in Fs. Since these are two
discontinuous portions of s′ on the boundary of Fs, the line segment pq is not
contained in Fs. Since pq is on s′, the shortest path π(p, q) is pq. But this means
π(p, q) is not contained in Fs, which incurs contradiction with our previous claim
that π(p, q) should be contained in Fs. Hence, we obtain that each segment s′

in S1
s has only one continuous portion on the boundary of Fs, and consequently,

the number of S-edges of the face Fs is O(m1).

Lemma 5 below shows a property of the face Fs.

Lemma 5. For any line segment s′ in P with two endpoints on ∂P, s′ has at
most one (maximal) continuous portion intersecting Fs; consequently, s

′ inter-
sects at most two edges of Fs.

Proof. Assume to the contrary that s′ has two continuous portions intersecting
Fs. Let p and q be two points on the two portions of s′, respectively. Thus, both

618 D.Z. Chen and H. Wang

p and q are in Fs. Clearly, the line segment pq is not contained in Fs. Since pq
is on s′, pq is the shortest path π(p, q) between p and q in P . But this means
π(p, q) is not contained in Fs, which incurs a contradiction with Lemma 4.

For each S-edge of Z(s), it lies either on a segment in S1
s or on a segment in

S2
s ; we call it an S1

s -edge if it lies on a segment in S1
s and an S2

s -edge otherwise.
Due to m = m1 + m2, our zone theorem is an immediate consequence of the
following Lemma 6. Note that we can obtain the zone Z(s) of s by adding the
segments in S2

s to Fs. To prove Lemma 6, we use induction on m2, i.e., |S2
s |. The

approach is very similar to that in [3] used for line arrangements. Here, although
we have line segments, the property that each line segment has both endpoints
on ∂P makes the approach in [3] applicable with some modifications. The proof
of Lemma 6 can be found in our full paper.

Lemma 6. The zone Z(s) has O(m2) S
2
s -edges and O(m1 +m2) S

1
s -edges.

References

1. Aronov, B., Guibas, L., Teichmann, M., Zhang, L.: Visibility queries and mainte-
nance in simple polygons. Discrete and Computational Geometry 27(4), 461–483
(2002)

2. Bentley, J., Ottmann, T.: Algorithms for reporting and counting geometric inter-
sections. IEEE Transactions on Computers 28(9), 643–647 (1979)

3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry
— Algorithms and Applications, 3rd edn. Springer, Berlin (2008)

4. Bose, P., Lubiw, A., Munro, J.: Efficient visibility queries in simple polygons. Com-
putational Geometry: Theory and Applications 23(3), 313–335 (2002)

5. Bygi, M., Ghodsi, M.: Weak visibility queries in simple polygons. In: Proc. of the
23rd Canadian Conference on Computational Geometry, CCCG (2011)

6. Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line segments
in the plane. Journal of the ACM 39(1), 1–54 (1992)

7. Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L., Hershberger, J., Sharir,
J., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorith-
mica 12(1), 54–68 (1994)

8. Edelsbrunner, H., Guibas, L., Pach, J., Pollack, R., Seidel, R., Sharir, M.: Arrange-
ments of curves in the plane topology, combinatorics, and algorithms. Theoretical
Computer Science 92(2), 319–336 (1992)

9. Edelsbrunner, H., Guibas, L., Stolfi, J.: Optimal point location in a monotone
subdivision. SIAM Journal on Computing 15(2), 317–340 (1986)

10. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear-time algo-
rithms for visibility and shortest path problems inside triangulated simple poly-
gons. Algorithmica 2(1-4), 209–233 (1987)

11. Hart, S., Sharir, M.: Nonlinearity of Davenport–Schinzel sequences and of gener-
alized path compression schemes. Combinatorica 6(2), 151–177 (1986)

12. Hershberger, J.: An optimal visibility graph algorithm for triangulated simple poly-
gons. Algorithmica 4, 141–155 (1989)

13. Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: Shoot a ray, take
a walk. Journal of Algorithms 18(3), 403–431 (1995)

14. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM Journal on Comput-
ing 12(1), 28–35 (1983)

Beyond Homothetic Polygons:
Recognition and Maximum Clique�

Konstanty Junosza-Szaniawski1, Jan Kratochvíl2,
Martin Pergel3, and Paweł Rzążewski1

1 Warsaw University of Technology, Faculty of Mathematics and Information Science,
Koszykowa 75, 00-662 Warszawa, Poland

{k.szaniawski,p.rzazewski}@mini.pw.edu.pl
2 Department of Applied Mathematics, and Institute for Theoretical Computer

Science, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic
honza@kam.ms.mff.cuni.cz

3 Department of Software and Computer Science Education, Charles University,
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

perm@kam.mff.cuni.cz

Abstract. We study the Clique problem in classes of intersection
graphs of convex sets in the plane. The problem is known to be NP-
complete in convex-sets intersection graphs and straight-line-segments
intersection graphs, but solvable in polynomial time in intersection graphs
of homothetic triangles. We extend the latter result by showing that for
every convex polygon P with k sides, every n-vertex graph which is
an intersection graph of homothetic copies of P contains at most n2k

inclusion-wise maximal cliques. We actually prove this result for a more
general class of graphs, so called kDIR-CONV, which are intersection
graphs of convex polygons whose all sides are parallel to at most k di-
rections. We further provide lower bounds on the numbers of maximal
cliques, discuss the complexity of recognizing these classes of graphs and
present relationship with other classes of convex-sets intersection graphs.

1 Introduction

Geometric representations of graphs, and intersection graphs in particular, are
widely studied both for their practical applications and motivations, and for
their interesting theoretical and structural properties. It is often the case that
optimization problems NP-hard for general graphs can be solved, or at least
approximated, in polynomial time on such graphs. Classical examples are the
Stable set, Clique or Coloring problems for interval graphs, one of the old-
est intersection defined classes of graphs [4]. The former two problems remain
polynomially solvable in circle and polygon-circle graphs, while the last one al-
ready becomes NP-complete. For definitions and more results about these issues,
the interested reader is referred to [5] or [18].

� This work was supported by a Czech research grant GAČR GIG/11/E023.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 619–628, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

620 K. Junosza-Szaniawski et al.

In this paper we want to investigate subclasses of the class of intersection
graphs of convex sets in the plane, denoted by CONV, and the computational
complexity of the problem of finding a maximum clique in such graphs. This has
been inspired by a few starting points. First, the Clique problem was shown
polynomial time solvable for intersection graphs of homothetic triangles in the
plane by Kaufmann et al. [8]. (It has been shown that these graphs are equivalent
to the so called max-tolerance graphs, and as such found direct application in
DNA sequencing.) Secondly, the Clique problem is known to be NP-complete
in CONV graphs [12], and so it is interesting to inspect the boundary between
easy and hard instances more closely. Straight line segments are the simplest
convex sets, and it is thus natural to ask how difficult is Clique in intersection
graphs of segments in the plane (this class is denoted by SEG). Kratochvíl and
Nešetřil posed this problem in [14] after they observed that if the number of
different directions of the segments is bounded by a constant, say k, a maximum
clique can be found in time O(nk+1) (this class of graphs is denoted by k-DIR).
This question has been answered very recently by Cabello et al. [2] who showed
that Clique is NP-complete in SEG graphs.

In [15], Kratochvíl and Pergel initiated a study of Phom graphs, defined as
intersection graphs of convex polygons homothetic to a single polygon P . They
announced that for every convex polygon P , recognition of Phom graphs is NP-
hard, and asked in Problem 3.1 if Phom graphs can have superpolynomial number
of maximal cliques. Our main result shows that for every convex k-gon P , every
Phom graph with n vertices contains at most n2k maximal cliques, and hence
Clique is solvable in polynomial time on Phom graphs for every fixed polygon
P . For the sake of completeness, we will also present the proof of NP-hardness
of Phom recognition.

In [19], E.J. and J. van Leeuwens considered a more general class of graphs
based on affine transformations of one (or more) master objects, called P-
intersection graphs, where P = (S, T) is a signature consisting of a set of master
objects S and a set of transformations T . They prove that if all objects in the
signature are described by rational numbers, such graphs have representations of
polynomial size and the recognition problem is in NP. As a corollary, recognition
of Phom graphs is in NP (and hence NP-complete) for every rational polygon P .
In [16], van Leeuwens and T. Müller prove tight bounds on the maximum sizes
of representations (in terms of coordinate sizes) of Ptranslate and Phom graphs.

In proving the main result of our paper, the polynomial bound on the num-
ber of maximal cliques, we go beyond the homothetic intersection graphs. We
observe that in any representation by polygons homothetic to a master one (or
to one of a finite set of master polygons), the sides of the polygons are parallel
to a bounded number of directions in the plane. So we relax the requirement on
homothetic relation of the polygons in the representation and we simply consider
consider a finite set of directions and look after graphs that have intersection
representations by convex polygons with sides parallel to (some of) these direc-
tions (see Figure 1). We prove that every such graph has at most n2k maximal
cliques, where k is the number of chosen directions. We find this fact worth

Beyond Homothetic Polygons: Recognition and Maximum Clique 621

emphasizing, as it also covers van Leeuwens’ P-intersection graphs for transfor-
mations without rotations. So we further investigate the class of kDIR-CONV
graphs (i.e. intersection graphs of convex polygons whose all sides are parallel to
at most k directions), discuss the complexity of its recognition and relationship
to other relevant graph classes (SEG, k-DIR, and Phom).

In the last section we pay a closer attention to maximal cliques in Phom

graphs for specific polygons P . We show that under certain conditions on the
shape of P (parallel opposite sides or certain angles of consecutive sides), one
can improve the upper bounds. We also show that, for every fixed polygon but
parallelograms, there exists a Phom graph with Ω(n3) maximal cliques (by a
modification of a construction for triangles from [8]). It is worth noting that also
for the max-coordinate results of [16], parallelograms play an exceptional role.

Fig. 1. Homothetic pentagons (left) and polygons with 5 directions of sides (right)

2 Preliminaries and Basic Definitions

In the paper we deal with intersection graphs of subsets of the Euclidean plane
R2. The following concepts are standard and we only briefly overview them to
make the paper self-contained. For a collection of sets R the intersection graph of
R is denoted by IG(R); its vertices are in 1-1 correspondence with the sets and
two vertices are adjacent if and only if the corresponding sets are non-disjoint.
In such a case the collection R is called an (intersection) representation of G,
and the set corresponding to a vertex v ∈ V (G) is denoted by Rv.

The intersection graphs of straight-line segments are called the SEG graphs,
of convex sets the CONV graphs, and k-DIR is used for SEG graphs having a
representation with all the segments being parallel to at most k directions (thus
1-DIR are exactly the interval graphs). For a fixed set (in most cases a convex
polygon) P , the class of intersection graphs of sets homothetic to P is denoted
by Phom (two sets are homothetic if one can be obtained from the other one by
scaling and/or translating). If P is a disk, we get disk-intersection graphs, a well
studied class of graphs. Pseudodisk intersection graphs are intersection graphs
of collections of sets that are pairwise in the pseudodisk relationship, i.e., both
differences A\B and B \A are arc-connected. It is well known that Phom graphs
are pseudodisk intersection graphs for every convex set P .

622 K. Junosza-Szaniawski et al.

Now we introduce the main character of the paper. Let L be the set of all
distinct lines in R2 that contain the point (0, 0). For a k-tuple of lines L =
{�1, .., �k} ∈

(L
k

)
, we denote by P(L) the family of all polygons P such that every

side of P is parallel to some � ∈ L and we denote by kDIR(L)-CONV the class
of intersection graphs of polygons of P(L). Moreover, we define kDIR-CONV =⋃

L∈(Lk) kDIR(L)-CONV. Fig. 1 shows examples of representations of the same
graph by intersections of homothetic pentagons and as a 5DIR-CONV graph.
The following property of disjoint convex polygons is well known.

Lemma 1 (Folklore). Let L ⊆ L. Any two disjoint convex polygons in P(L)
can be separated by a line parallel to some � ∈ L.

3 kDIR-CONV Graphs

In this section we present results on the newly introduced class of graphs, in-
cluding the main result on the upper bound on the number of maximal cliques.

3.1 Recognition and Relations with other Graph Classes

Theorem 1. For every fixed k ≥ 2, it is NP-complete to recognize
1. kDIR(L)-CONV graphs for any L ∈

(L
k

)
,

2. kDIR-CONV graphs.

Proof. As 2DIR-CONV graphs are exactly graphs of boxicity at most 2, they are
NP-complete to recognize [10].

For k > 2, the class of kDIR-CONV graphs contains the class of 3-DIR graphs
and simultaneously is contained in CONV, thus to show NP-hardness we may
apply the reduction from [10]. This is a unified reduction that shows NP-hardness
of k-DIR graphs (for any k ≥ 3) and CONV graphs in one step (reducing from
satisfiability and showing that the obtained graph is in 3-DIR if the initial for-
mula is satisfiable, but is not in CONV if it is not). Since for k = 3 all triples of
directions are equivalent under an affine transformation of the plane, this shows
that for k > 2, recognition of kDIR-CONV, and also of kDIR(L)-CONV for any
L ∈

(L
k

)
, are NP-hard.

Similarly to [13] we show that the recognition problem for both kDIR(L)-CONV
and kDIR-CONV is in NP. We have to establish a polynomially-large certificate.
As this certificate we take a combinatorial description of the arrangement, i.e.,
we guess a description saying in what order individual sides of individual poly-
gons get intersected. We also need the information about particular corners of
individual polygons. For individual sides of polygons we also need the informa-
tion what direction they follow (for the direction it is sufficient to keep the index
of the direction, i.e. a number in {1, .., k}). To make the situation formally eas-
ier, instead of segments we consider a description of the whole underlying lines.
Note that a corner of a polygon and the intersection of boundaries appear here
as intersection of two lines.

Beyond Homothetic Polygons: Recognition and Maximum Clique 623

Now we have to verify the realizability of such an arrangement (again, in
the same way as [13]). To do this we construct a linear program consisting of
inequalities describing the ordering of the intersections along each side of each
polygon. For a line p described by the equation y = apx+bp the intersection with
q precedes the intersection with r ("from the left to the right") if bq−bp

ap−aq
<

br−bp

ap−ar
.

In the case of prescribed directions (ap, aq, ar) we have a linear program (whose
variables are the b’s) and this linear program can be solved in a polynomial time.
This shows NP-membership for kDIR(L)-CONV.

For kDIR-CONV we follow the argument of [13], which argues that the direc-
tions (obtained as solutions of this linear program) are of polynomial size and
thus they may be also a part of a polynomial certificate. �	

We observe that for every k ≥ 2, each k-DIR graph (see [13] for more information
about this class of graphs) is also a kDIR-CONV graph. To show that, let us
consider a segment representation of some G ∈ k-DIR. It is enough to extend
every segment from a segment representation ofG to a very narrow parallelogram
in such a way that no new intersections appear. Moreover, one can show that
this inclusion is proper, i.e. kDIR-CONV �⊆ k-DIR.

3.2 The Number of Maximal Cliques

Theorem 2. The number of maximal cliques in any n-vertex graph
in kDIR-CONV is at most n2k.

Proof. Let G be an n-vertex graph in kDIR-CONV and let R be its representation
by convex sets with sides parallel to k directions. Let L = {�1, .., �k} ∈

(L
k

)
be the

set of lines determined by the sides of the polygons (without loss of generality
we may assume that the representation determines exactly k directions). Let Q
be an arbitrary maximal clique in G.

For i ∈ {1, .., k}, let wi be a normal vector of �i (there are two possible
orientations for wi). Let W = {wi,−wi : i ∈ {1, .., k}}. For every w ∈ W , let
Pw denote the last polygon in {Rv : v ∈ Q} encountered by a sweeping line
perpendicular to w, in the direction of w. Let Q̃ = {v ∈ V (G) : Rv ∩ Pw �=
∅ for all w ∈ W}.

Since Q is a clique, obviously Q ⊆ Q̃. Suppose that there exists x ∈ Q and
y ∈ Q̃ such that xy /∈ E(G) (and therefore Rx ∩ Ry = ∅). From Lemma 1 we
know that there exists a line � separating Rx and Ry, which is perpendicular
to some w ∈ W . Since both w and −w belong to W , without loss of generality
we may assume that Rx is above � and Ry is below � with respect to direction
w. Since Pw was the last polygon found by the sweeping line in the direction
w, it is clearly above � and therefore Ry does not intersect it – a contradiction.
Therefore every y ∈ Q̃ is adjacent to every x ∈ Q. Since Q is a maximal clique,
we obtain that Q = Q̃.

Notice that we can choose the set Q̃ in at most n2k ways – there are 2k vectors
w in W and for each of them we choose one polygon Pw out of n. �	

624 K. Junosza-Szaniawski et al.

Theorem 3. For any k ≥ 2, the maximum number of maximal cliques over all
n-vertex graphs in kDIR-CONV is Ω(nk(1−ε)), for any ε > 0.

Proof (Sketch). Because every k-DIR graph is kDIR-CONV, it is enough to give
the construction for k-DIR graphs. For each direction we take n

k segments and
position them in such a way that every pair of non-parallel segments intersect.
Every maximal clique contains exactly one segment from each direction, so the
number of maximal cliques is (n

k)k = Ω(nk−log k) = Ω(nk(1−ε)) for any ε > 0. �	

4 Phom Graphs

In this section we deal with intersection graphs of homothetic polygons. We first
present the proof of the NP-hardness result that was announced in [15] and
relationships with other subclasses of CONV. Then we present improved upper
bounds on the number of maximal cliques for special shapes of P and cubic lower
bounds.

4.1 Recognition and Relations with other Graph Classes

Theorem 4. For every convex polygon P , the recognition problem of Phom

graphs is NP-hard.

Proof. As the first step we refer to [8] which proves the NP-hardness for homo-
thetic triangles.

For polygons with more corners, we use the same reduction as is used in
[6]. The reduction establishes a graph from an instance of a special version of
NAE-SAT problem, in which each clause contains three literals and each variable
occurs at most four times. The formula is satisfiable iff the graph corresponding
to it is a pseudodisk intersection graph, and if the formula is satisfiable, the
graph is even a disk intersection one. We show that the same holds also for Phom

graphs.
Given a formula, we establish a graph such that the variables get replaced by

variable-gadgets, clauses get replaced by clause-gadgets. The variable gadget is
a cycle (from which individual pairs of paths depart). The truth assignment is
reflected by the orientation of the cycle (in the representation the cycle is repre-
sented either "clockwise" or "counter-clockwise"). Each occurrence of a variable
is represented by a pair of paths forming a ladder. In any representation by
pseudodisks, one (path) is always to the left, the other to the right. This ori-
entation carries the truth-assignment from variable-gadget to the clause-gadget.
The ladders are further connected by cross-over gadgets that allow the ladders
either to cross or just to touch, depending on what is needed in the construction
(while still keeping the left-right order within the ladders). All these gadgets are
the same as in [6].

Beyond Homothetic Polygons: Recognition and Maximum Clique 625

First we observe use the fact that the graph constructed from a nonsatisfiable
formula is not a pseudodisk intersection graph, and hence not a Phom one.

The counterpart (showing that graph corresponding to satisfiable formulas are
in Phom) is rather technical and we just sketch it. For a given polygon P , we first
find a bounding box. The bounding box is (for our purpose) a parallelogram such
that each of its sides contains exactly one corner of P , and none of the corners
of the bounding box belongs to P . The rest is just a technical analysis that the
appropriate gadgets can be represented using the fact that the shape contains
at least the convex combination of the corners on the sides of the parallelogram
and that the sides of that parallelogram contain no other points from the shape.

Note that for the analysis we may consider the parallelogram to be a rectangle
(if it is not, we apply a linear transformation on the whole arrangement to get
a rectangle, we find a representation with rectangles and we apply the inverse
transformation).

To show representability of clause-gadgets, it is necessary to draw appropriate
pictures which we omit due to the page-limit. They can be found in [17]. �	
The NP-membership of the recognition of Phom graphs has been shown in [19].
We quickly review an argument based on an approach of [13]. We proceed exactly
in the same way as for kDIR-CONV graphs, but we extend the linear program
with equations controlling the ratios of side-lengths (for individual polygons).
For intersections of a line p with neighboring sides q and r or a polygon A
instead of the inequality checking the ordering of the intersections we add the
following equation: br−bp

ap−ar
− bq−bp

ap−aq
= kp · sA, where sA (a variable) represents

the size of a polygon A. Note that the denominators are again constants, again
we obtain a linear program. If the shape is fixed, we are done. But even if the
polygon P is not given, we can regard the directions of its sides as variables and
use the same trick as in the proof of Theorem 1. Thus we obtain the following
strengthening, which partially solves Problem 6.3 in [16].

Theorem 5. For every fixed k, the problem of deciding whether there exists a
convex k-gon P such that an input graph is in Phom is NP-complete.

We conclude this subsection by pointing out the relationships of Phom with the
classes kDIR-CONV and k-DIR. One can show that kDIR-CONV �⊆ Phom for any
k and P . Moreover, k-DIR �⊆ Phom and Phom �⊆ k-DIR for any P and k ≥ 2.

4.2 The Number of Maximal Cliques

By considering directions of the sides we observe that for any convex p-gon P
with q pairs of parallel sides, every Phom graph is also a (p−q)DIR-CONV graph.
From Theorem 2 then follows that there are at most n2(p−q) maximal cliques
in any Phom graph, for such a P . We can improve this bound, but we need one
more definition.
Definition 1. For a polygon P , let F1, F2 and F3 be three consecutive sides and
let �1, �2 and �3 denote the lines containing them, respectively. Let h be a half-
space with boundary �2, which does not contain P . A side F2 is weak if �1 and
�3 do not intersect in h and there is no side parallel to F2.

626 K. Junosza-Szaniawski et al.

For a polygon P and a vector w let � be a supporting line of P perpendicular to
w such that P is above � in the direction of w, by F (P,w) we denote the side of
P contained in �.

Lemma 2. Let P1 and P2 be two homothetic polygons. Let w be a vector per-
pendicular to a side of P1 (and therefore to a side of P2). Assume P1 and P2

intersect and that P2 is below P1 in the direction of w (i.e. a sweeping line in
direction of w encounters P1 after P2). If the side F (P1, w) is weak, then P2

intersects it.

Analogously as in Theorem 2 we can show the following theorem. The improve-
ment is based on Lemma 2 and the observation that for each weak side we need
only one normal vector instead of two opposite ones.

Theorem 6. Let P be a convex p-gon with q pairs of parallel sides and s weak
sides, which is not a parallelogram. Any Phom graph contains at most n2(p−q)−s

maximal cliques.

Finally we list explicit upper bounds for special shapes P , accompanied also by
lower bounds.

Theorem 7. Let fP (n) denote the maximum number of maximal cliques over
all n-vertex Phom graphs for a polygon P . Then:
1. fP (n) = Θ(n2) if P is a parallelogram,
2. fP (n) = Θ(n3) if P is a triangle,
3. fP (n) = O(n4) if P is a trapezoid,
4. fP (n) = O(n6) if P is an arbitrary tetragon,
5. fP (n) = Ω(n3) if P is not a parallelogram.

Proof (Sketch). 1. The proof for the upper bound is similar to the proof of
Theorem 6. The difference is that in the case of parallelograms it is enough to
consider just two normal vectors, one for each pair of parallel sides.

For the lower bound it is enough to consider the family of squares {S(i
n/2−1 , 1−

i
n/2−1), S(1

2 + i
n/2−1 ,

3
2 − i

n/2−1) : i ∈ {0, .., n
2 − 1}}, where S(x, y) denotes the

unit square with left-bottom corner at the point (x, y). This construction can be
generalized for an arbitrary parallelogram.

2. For the upper bound it is easy to notice that every side of a triangle is
weak. Therefore, from Theorem 6 we obtain fP (n) ≤ n2(3−0)−3 = n3. The lower
bound is obtained with the construction presented by Kaufmann et al. [8].

3. Suppose that P , but not a parallelogram. In every such trapezoid both
non-parallel sides are weak. Therefore, fP (n) ≤ n2(4−1)−2 = n4.

4. Suppose P is not a trapezoid. Notice that if a side of P is not weak, then
the sum of the angles adjacent to this side is greater than π. Since the sum of
all angles in a tetragon is 2π, for every pair of opposite sides, at least one side
is weak. Therefore, fP (n) ≤ n2(4−0)−2 = n6.

5. For a line �, let D(�) be the side of P parallel to � (if there is such) or the
corner of P at the largest distance from �.

Beyond Homothetic Polygons: Recognition and Maximum Clique 627

Choose a side of P and call it F1, let �1 be the line containing F1 and P1 = D(�1).
Let F2, F3 be sides of P adjacent to P1 and let �2, �3 be lines containing F2, F3,
respectively and let P2 = D(�2) and P3 = D(�3).

Let h, r, t, v be four copies of P . By Fh
i , F

r
i , F

t
i , F

v
i , P

h
i , P

r
i , P

t
i , P

v
i we denote

the sides or corners in polygons h, r, t, v corresponding to Fi, Pi in polygon P for
i ∈ {1, 2, 3}, respectively (see Figure 2). We can adjust the sizes and positions of
h, r, t, v in such a way that (i) t and h are touching and F t

1 intersects with P h
1 ,

(ii) t and v are touching and F t
1 intersects with P v

1 , (iii) h and v are touching
and Fh

2 intersects with P v
2 , (iv) r and t are touching and F r

3 intersects with P t
3 ,

(v) r and h intersect, (vi) r and v intersect.
For every polygon x ∈ {h, r, t, v} we make n

4 copies x1, ..xn
4

and move them
slightly comparing to the position of h, r, t, v in such a way that: (i) ti and vj

intersect iff i ≥ j, (ii) hi and vj intersect iff i ≤ j, (iii) hj and tj intersect iff
i ≤ j, (iv) ri and tj intersect iff i ≥ j, (v) ri and vj intersect for all i, j ∈
{1, .., n

4 }, (vi) ri and hj intersect for all i, j ∈ {1, .., n
4 }. For any α, β, γ such that

1 ≤ α ≤ β ≤ γ ≤ n
4 the set {h1, . . . , hα, vα, . . . , vβ , tβ , . . . , tγ , rγ , . . . , rn

4
} is a

maximal clique in G. Hence there are
(n

4
3

)
= Ω(n3) maximal cliques in total. �	

F1

F2

F3

P1

P2

P3

t1

h1
r1

v1

t2

h2
r2

v2

t3

h3 r3

v3

t4

h4 r4

v4

t5
h5 r5

v5

Fig. 2. Idea of the construction (for n = 20)

5 Conclusion

In this paper we have shown that the number of maximal cliques in any
kDIR-CONV graph (and therefore any Phom graph for a k-gon P) is at most
n2k. Since maximal cliques can be enumerated with polynomial delay [7], the

628 K. Junosza-Szaniawski et al.

Clique problem can be solved in time O(nf(k)) for any G ∈ kDIR-CONV, and
therefore is in XP when parameterized by k. It is interesting to know if this
problem is in FPT.

Acknowledgement. We thank Michael Kaufmann for valuable discussions on
the topic.

References
1. Badent, M., Binucci, C., Di Giacomo, E., Didimo, W., Felsner, S., Giordano, F.,

Kratochvíl, J., Palladino, P., Patrignani, M., Trotta, F.: Homothetic Triangle Con-
tact Representations of Planar Graphs. In: Proc. CCCG 2007, pp. 233–236 (2007)

2. Cabello, S., Cardinal, J., Langerman, S.: The Clique Problem in Ray Intersection
Graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 241–
252. Springer, Heidelberg (2012)

3. Corneil, D.G., Olariu, O., Stewart, L.: The LBFS Structure and Recognition of
Interval Graphs. SIAM J. Discrete Math. 23, 1905–1953 (2009)

4. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of
interval graphs. Can. J. Math. 16, 539–548 (1964)

5. Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs. Acad. Press (1980)
6. Hliněný, P., Kratochvíl, J.: Representing graphs by disks and balls (a survey of

recognition-complexity results). Discrete Mathematics 229, 101–124 (2001)
7. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On GeneraLemmating All

Maximal Independent Sets. Information Processing Letters 27, 119–123 (1988)
8. Kaufmann, M., Kratochvíl, J., Lehmann, K., Subramanian, A.: Max-tolerance

graphs as intersection graphs: cliques, cycles, and recognition. In: Proc. SODA
2006, pp. 832–841 (2006)

9. Kim, S.-J., Kostochka, A., Nakprasit, K.: On the chromatic number of intersection
graphs of convex sets in the plane. Electronic J. of Combinatorics 11, #R52 (2004)

10. Kratochvíl, J.: A special planar satisfiability problem and a consequence of its
NP-completeness. Discrete Applied Mathematics 52, 233–252 (1994)

11. Kratochvíl, J.: Intersection Graphs of Noncrossing Arc-Connected Sets in the
Plane. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 257–270. Springer,
Heidelberg (1997)

12. Kratochvíl, J., Kuběna, A.: On intersection representations of co-planar graphs.
Discrete Mathematics 178, 251–255 (1998)

13. Kratochvíl, J., Matoušek, J.: Intersection Graphs of Segments. Journal of Combi-
natorial Theory, Series B 62, 289–315 (1994)

14. Kratochvíl, J., Nešetřil, J.: Independent Set and Clique problems in intersection-
defined classes of graphs. Comm. Math. Uni. Car. 31, 85–93 (1990)

15. Kratochvíl, J., Pergel, M.: Intersection graphs of homothetic polygons. Electronic
Notes in Discrete Mathematics 31, 277–280 (2008)

16. Müller, T., van Leeuwen, E.J., van Leeuwen, J.: Integer representations of convex
polygon intersection graphs. In: Symposium on Comput. Geometry, pp. 300–307
(2011)

17. Pergel, M.: Special graph classes and algorithms on them. Ph.D.-thesis, Charles
University (2008)

18. Spinrad, J.: Efficient Graph Representations. Fields Institute Monographs 19.
American Mathematical Society, Providence (2003)

19. van Leeuwen, E.J., van Leeuwen, J.: Convex Polygon Intersection Graphs. In: Bran-
des, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 377–388. Springer,
Heidelberg (2011)

Area Bounds of Rectilinear Polygons Realized

by Angle Sequences�

Sang Won Bae1, Yoshio Okamoto2, and Chan-Su Shin3

1 Dept. of Computer Science, Kyonggi University, Korea
swbae@kgu.ac.kr

2 Dept. of Communication Engineering and Informatics,
University of Electro-Communications, Japan

okamotoy@uec.ac.jp
3 Dept. of Digital Information Engineering,
Hankuk University of Foreign Studies, Korea

cssin@hufs.ac.kr

Abstract. Given a sequence S of angles at n vertices of a rectilinear
polygon, S directly defines (or realizes) a set of rectilinear polygons in
the integer grid. Among such realizations, we consider the one P (S) with
minimum area. Let δ(n) be the minimum of the area of P (S) over all
angle sequences S of length n, and Δ(n) be the maximum. In this paper,
we provide the explicit formula for δ(n) and Δ(n).

1 Introduction

A rectilinear polygon is a simple polygon whose edges are either horizontal or
vertical segments. The vertices are ordered in counterclockwise order. An edge
meets its adjacent edges only at right angles, 90◦ or 270◦. If we associate each
vertex with its angle, then we can represent a rectilinear polygon of n vertices
as an angle sequence or a turn sequence S of L and R of length n, where L means
“left turn” at convex vertices, i.e., 90◦ angle and R means “right turn” at reflex
vertices, i.e., 270◦ angle. For example, if S := LLLL, then the rectilinear polygon
induced from S is a rectangle consisting of four convex vertices. It is well known
in [5] that n = 2r+4 where r is the number of reflex vertices. Thus the number
of L’s in S is four more than the number of R’s in S.

Observe that the converse also holds. Namely, if a sequence S of L and R has
even length and four more L’s than R’s, then there exists a rectilinear polygon
that has S as its turn sequence. Thus, it makes sense to call such a sequence a
turn sequence without referring to a polygon. Then the following natural ques-
tion arises.
� Work by S.W. Bae was supported by National Research Foundation of Ko-
rea(NRF) grant funded by Korea government(MEST)(No. 2011-0005512). Work by
Y. Okamoto was supported by Grand-in-Aid for Scientific Research from Ministry
of Education, Science and Culture, Japan and Japan Society for the Promotion of
Science. Work by C.-S. Shin was supported by research grant funded by Hankuk
University of Foreign Studies.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 629–638, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

630 S.W. Bae, Y. Okamoto, and C.-S. Shin

δ(8) = 4 δ(10) = 5 δ(12) = 5 Δ(8) = 6 Δ(10) = 10δ(4) = 1
Δ(4) = 1

δ(6) = 3
Δ(6) = 3

Fig. 1. The values of δ(n) and Δ(n) for small n

Given a turn sequence S of length n, we can realize (or draw) a rectilinear
polygon on the integer grid such that the vertices of the polygon have integer
coordinates and S is its turn sequence. There are infinitely many drawings for
a fixed S. In this paper, we consider only a drawing P (S) with minimum area
that realizes S. We denote the area of P (S) by area(P (S)). Let us define δ(n) to
be the minimum of area(P (S)) over all turn sequences S of length n, and Δ(n)
the maximum of area(P (S)) over all turn sequences S of length n. A natural
question here is to determine δ(n) and Δ(n). In this paper, we give a complete
answer to this question; for small n, we can easily guess what δ(n) and Δ(n) are,
as listed in Fig. 1, which give us hints for the exact values of δ(n) and Δ(n).

Theorem 1. For n (= 2r + 4) ≥ 4,

δ(n) =

{
n
2 − 1 (= r + 1) if n ≡ 4 mod 8,
n
2 (= r + 2) otherwise.

Theorem 2. For n (= 2r+4) ≥ 4, Δ(n) = 1
8 (n−2)(n+4) (= 1

2 (r+1)(r+2)).

Reconstruction of a polygon from partial information is a hot topic in computa-
tional geometry. There are several variations depending on the information that
we may use. One variation dealt with the problem of reconstructing a simple
polygon from a sequence of angles defined by all the visible vertices [3,4]. An
algorithm proposed by [4] runs in O(n3 logn) time, which was improved to the
worst-case optimal O(n2) time [3]. Another variation considers reconstructing
rectilinear polygons from a set of points [2,6], i.e., coordinates of the vertices,
instead of angles, which could be obtained by laser scanning devices [2].

To the best of authors’ knowledge, the variation in this paper has not been
investigated in the literature. As a related problem, Bajuelos et al. [1] studied
the minimum and maximum area of the drawing of rectilinear polygons in the
integer grid without collinear edges, i.e., any grid line contains at most one edge
of the drawing. They claimed that the minimum area is at least 2r + 1 = n− 3
and the maximum area is at most r2+3 = (n2 −2)2+3, but no formal proofs were
provided. The main difference with our problem is the collinearity restriction,
which makes the problem quite different. In this paper, we want to draw a
polygon with the “minimum area”, thus we do allow the collinearity.

We omit the proofs of most lemmas in this version due to the space limitation.
The readers will find the proofs in the journal version.

Area Bounds of Rectilinear Polygons Realized by Angle Sequences 631

u
pocH(u)

pocV (u)

q

q

u u u

(a) (b) (c) (d)

Fig. 2. (a) Horizontal and vertical pockets of a reflex vertex u. (b) A C-type canonical
pocket. (c) An H-type canonical pocket. (d) A pocket containing a canonical pocket.

2 Preliminaries

A turn sequence is an even-length sequence of L and R such that the number of
L’s is four more than the number of R’s. Let S be a turn sequence of length n.
Let P (S) be a rectilinear polygon on the integer grid with minimum area that
realizes S. Note that the ordered LR-sequence of the angles at the vertices of
P in counterclockwise order is identical to S, provided that the starting vertex
is the same. As noted already, L corresponds to a convex vertex of P , and R

corresponds to a reflex vertx of P . From now on, we simply use P instead of
P (S) if there is no ambiguity. A cell of the grid is a unit square.

We can easily prove that δ(n) for n > 4 is at least the half of the number of
convex vertices, i.e., δ(n) ≥ (r + 4)/2 = (n+ 4)/4 since a grid cell contained in
P can be surrounded by at most two convex vertices when n > 4. By a similar
argument, a grid cell in P can be surrounded by at most three edges of P when
n > 4, so δ(n) ≥ 1

3peri(P), where peri(P) is the perimeter of the polygon P .
Thus we have a rough bound on δ(n) that

δ(n) ≥ max

{
1

4
n+ 1,

1

3
peri(P)

}
if n > 4.

This bound on δ(n) is not tight. We will show the tight bound of δ(n) in Section 3.
As an upper bound on Δ(n), we have Δ(n) ≤ (r + 1)2 since we can always

realize any turn sequence S of length n in (r+1)× (r+1) grid [7]. This directly
implies that a smallest bounding rectangle R containing P has a dimension
(r+1)×(r+1) at most. Consider a grid cell of R\P which is incident to a reflex
vertex of P . It is not difficult to show that the cell can have at most two reflex
vertices at its corners. Thus there must be at least r/2 such cells in R\P , which
means area(P) ≤ area(R) − r/2 = (r + 1)2 − r/2. Thus Δ(n) ≤ (r + 1)2 − r/2.
However, this is still far from what we guess from Fig. 1, Δ(n) ≤ 1

2 (r+1)(r+2),
which is the minimum area of a certain class of monotone polygons. We show
the tight bound on Δ(n) in Section 4.

A reflex vertex u has two incident edges, one horizontal and the other vertical.
Draw a ray from u along the direction of the horizontal incident edge toward
the interior of P , then it first hits the boundary of P at some point q. The line
segment uq is completely contained in P . We cut P along uq, then P is divided

632 S.W. Bae, Y. Okamoto, and C.-S. Shin

uw

H1 H2 H3 H4 H5

pocH(u)

u′w′ u′ u′ u′w′ w′ w′

uw uw uw uw

Fig. 3. Five subtypes of H-type canonical pockets. Symmetric ones are omitted.

into two smaller polygons. See Fig. 2(a). We call the one including the vertical
edge incident to u the horizontal pocket for u, denoted by pocH(u). Similarly, we
define the vertical pocket for u, denoted by pocV (u), by shooting the ray along
the vertical edge incident to u.

A pocket is said to be canonical if the pocket is a rectangle and contains no
other pocket. Fig. 2(b)-(d) shows three types of pockets. The last type is not
canonical since it contains another pocket inside. We call the first two types C-
type (Cup-type) and H-type (Hat-type), respectively. Namely, a canonical pocket
is C-type if the cutting line segment is incident to only one reflex vertex, and
H-type if incident to two reflex vertices.

We need to mention that the area of the canonical pocket should be one in
the minimum-area drawing P (S), that is, it occupies one grid cell; otherwise
we can push the edge incident to u of the pocket so that its area becomes one
while keeping the other drawn parts of the polygon untouched. We now show
the lemma on the canonical pocket of P as follows.

Lemma 1. For any turn sequence S of length > 4 and any minimum-area draw-
ing P that realizes S, there are at least two canonical pockets in P .

We will look into H-type pockets more. Consider a horizontal H-type canonical
pocket pocH(u) at some reflex vertex u. According to the configuration around
pocH(u), we classify the five cases as in Fig. 3. Let w be the reflex vertex which
defines the canonical pocket together with u. Define u′ and w′ as the first points
on the boundary of P just below u and w, respectively. The points would not be
convex vertices, so they would be either reflex vertices or points in the interior of
edges. Then we can easily verify that if we ignore the symmetric configurations,
then there are only five cases as in Fig. 3. Remember that a canonical pocket
has area one in P . The following lemma allows us to consider only the first four
cases (subtypes).

Lemma 2. For any n > 4, P has at least one canonical pocket which is not of
H5-type ones.

3 Bounds on δ(n)

3.1 Proving δ(n) ≥ n/2 − 1 and Tightness for n ≡ 4 mod 8

We first prove a lower bound δ(n) ≥ n/2− 1.

Area Bounds of Rectilinear Polygons Realized by Angle Sequences 633

uw

H1 H2 H3 H4

P0

P1 P2

P3

P1 P2

P0P0 P0

P1 P2 P2P1

Fig. 4. The proof of Lemma 3

Fig. 5. Tightness for n ≡ 4 mod 8. Four drawings for n = 4, 12, 20, 28. For other n, P
is constructed by attaching a part of 8 vertices whose area 4 to the right.

Lemma 3. For any n ≥ 4, δ(n) ≥ n/2− 1.

Proof. We prove the lemma by induction on n. When n = 4, P is a unit square,
thus it holds. For general n, if P has a C-type canonical pocket, say pocH(u),
then we divide P into two smaller polygons P0 and P1; P0 := pocH(u) and
P1 := P \pocH(u). Let ni denote the number of vertices of Pi. Then area(P0) = 1
and area(P1) ≥ n1/2 − 1 by induction hypothesis. Since n0 + n1 − 2 = n and
n0 = 4, area(P) = area(P0) + area(P1) ≥ 1 + (n1/2− 1) = n1/2 = n/2− 1. We
now suppose that P has no C-type canonical pockets. Then by Lemma 1 P has
at least two H-type canonical pockets. Furthermore, we have four subtypes for
H-type pockets by Lemma 2.

For H-type, we partition P into three or four parts as in Fig. 4, where P0

contains the H-type canonical pocket and area(P0) ≥ 2. For H1-type and H2-
type, we partition P into three small polygons P0, P1, P2 as in Fig. 4. Since
n1 + n2 = n, area(P) = area(P0) + area(P1) + area(P2) ≥ 2 + (n1/2 − 1) +
(n2/2 − 1) = n/2, so it is done. For H3-type, n1 + n2 = n − 2. So we have
area(P) ≥ 2+ (n1+n2)/2− 2 ≥ n/2− 1. For H4-type, P is partitioned into four
parts such that n1+n2+n3 = n, thus area(P) ≥ 2+(n1+n2+n3)/2−3 = n/2−1.
Therefore, area(P) ≥ n/2 for H1-type and H2-type and area(P) ≥ n/2 − 1 for
H3-type and H4-type, which completes the proof. ��

This bound is tight when n ≡ 4 mod 8 because we can construct P of any such
n having the area of n/2− 1 as in Fig. 5. So we have the following result.

Lemma 4. For n ≥ 4 and n ≡ 4 mod 8, δ(n) = n/2− 1.

634 S.W. Bae, Y. Okamoto, and C.-S. Shin

3.2 Proving δ(n) = n/2 for n 	≡ 4 mod 8

We suppose that n �≡ 4 mod 8. We prove this by induction on n as before, but we
will handle three cases, n ≡ 0, 2, 6 mod 8, separately. For small n = 6, 8, 10, it
is true by Fig. 1. In what follows, we prove the induction step for general n, but
we will hide some detail of the proof because it exploits a tedious case analysis.

As already mentioned in the proof of Lemma 3, if P has at least one of H1-
type and H2-type canonical pockets, then area(P) ≥ n/2. In addition, if P has
an H4-type canonical pocket, it is also true that area(P) ≥ n/2 as follows.

Lemma 5. For n �≡ 4 mod 8, if P has an H4-type canonical pocket, then
area(P) ≥ n/2.

Proof. P can be divided into four parts like Fig. 4 such that n0 = 4 and n =
n1 + n2 + n3. Since n �≡ 4 mod 8, at least one of n1, n2, and n3 should be
�≡ 4 mod 8, say n1. Then by induction hypothesis, area(P) ≥ 2+n1/2+(n2/2−
1) + (n3/2− 1) = (n1 + n2 + n3)/2 = n/2. ��

It thus suffices to consider two types only, C-type and H3-type in the induction
step. We have the following result.

Lemma 6. For n �≡ 4 mod 8, δ(n) = n/2.

As a result, Lemma 6 completes the proof of Theorem 1.

4 Bounds on Δ(n)

Let S be a turn sequence with r right turns (or reflex angles). We also use Sr to
emphasize the number of reflex angles. We first consider the special case that Sr

is realized as monotone polygons in both axes, and then present an algorithm
to give a realization Q(Sr) for arbitrary sequence Sr such that area(Q(Sr)) ≤
1
2 (r + 1)(r + 2).

4.1 Realizing Monotone Sequences

A rectilinear polygon is monotone in an axis if any line orthogonal to the axis
intersects the polygon in at most one connected component. An XY -monotone
polygon is a monotone polygon in both axes. We first need the following two
observations on the monotonicity.

Observation 1. If a sequence S is realized as an XY -monotone polygon, then
all the polygons realized by S are XY -monotone.

By the above observation, a turn sequence S is said to be XY -monotone if a
realization by S is XY -monotone.

Observation 2. A sequence S is XY -monotone if and only if S does not con-
tain a pattern RR.

Area Bounds of Rectilinear Polygons Realized by Angle Sequences 635

(a) (b)

(c)

(d)

el

er

et

eb

eb

er

et

el

stretch by
1 unit

overlapped
column

Q(Sr1)

Q(Sr2)

Q′

Fig. 6. (a) Four extreme edges for XY -monotone polygon. (b) Split Sr into four “stair-
case” sequences. (c) Scale Q(Sr1). (d) Combine Q(Sr1) and Q(Sr2) into Q′.

In what follows, we suppose that Sr is XY -monotone. See Fig. 6(a). By the
monotone property, any XY -monotone rectilinear polygon Q with r reflex ver-
tices must have four extreme edges, leftmost, rightmost, topmost, and bottom-
most edges, which all have a form of LL. Then the boundary of Q contains at
most four staircase chains between the extreme edges. We can split Q into at
most four staircase polygons. For instance, see Fig. 6(b). The turn sequences cor-
responding to such staircase polygons have a form of LL(RL)kLL for some k > 0.
So we can now split Sr into (at most) four sequences Sr1 , Sr2 , Sr3 , and Sr4 from
the original sequence Sr such that they are realized as four staircase polygons.
Then we know that r = r1 + r2 + r3 + r4.

We first get a realization Q(Sri) for each 1 ≤ i ≤ 4, and then combine four
realizations to get the final realization Q(Sr). To get Q(Sri) in the minimum
area, we simply draw it in the staircase shape as in Fig. 6(b). Its area is exactly
1 + 2 + · · ·+ (ri + 1) = 1

2 (ri + 1)(ri + 2). Furthermore, its width and height are
both ri+1. We next combine them together into Q(Sr) such that area(Q(Sr)) ≤
1
2 (r + 1)(r + 2) as follows.

We first combine Q(Sr1) and Q(Sr2). We assume that r1 ≤ r2. Let e and e′

be the leftmost and the second leftmost vertical edges in Q(Sr1), respectively.
In fact, these edges are incident to et, and they are one unit apart from each
other. We scale Q(Sr1) in vertical direction so that its height becomes r2 + 1
by stretching e and e′ at the same time, as in Fig. 6(c). Then their length
increases by r2 − r1, so the number of cells added newly is also r2 − r1. The
total number of cells of the scaled Q(Sr1), i.e., its area is at most 1 + 2 + · · ·+
r1 + (r1 + 1) + (r2 − r1). We next overlay the scaled Q(Sr1) onto Q(Sr2) such
that the leftmost column of the cells in Q(Sr1) overlaps with the rightmost
column in Q(Sr2). This combined drawing Q′ has the same height as Q(Sr1)
and Q(Sr2), i.e., r2 + 1. The number of cells in Q′ is at most the sum of the
number of cells in Q(Sr2) and Q(Sr1) minus the number of cells in the overlapped
column, that is, (1 + · · ·+ r2 + 1) + ((1 + · · ·+ r1 + 1) + (r2 − r1))− (r2 + 1) =
(1+· · ·+r2+1)+(1+· · ·+r1) ≤ (1+2+· · ·+r1+r2+1) = (r1+r2+1)(r1+r2+2)/2.
In the same way, we get a combined drawing Q′′ of Q(Sr3) and Q(Sr4) such that
area(Q′′) ≤ (r3 + r4 + 1)(r3 + r4 + 2)/2.

636 S.W. Bae, Y. Okamoto, and C.-S. Shin

Finally, to get Q(Sr), we again combine Q′ and Q′′ in a similar way that
the one with smaller width is scaled in the horizontal direction and they are
overlayed by sharing one row of the cells. By the same argument, the area of
Q(Sr) is at most (r+1)(r+2)/2. In addition, both of the width and the height
of Q(Sr) is at most r + 1. Since we have XY -monotone sequences Sr in Fig. 1
whose area(P (Sr)) is exactly (r + 1)(r + 2)/2, we have the following result.

Lemma 7. For any XY -monotone sequence Sr, we can have a realization Q(Sr)
such that area(Q(Sr)) ≤ (r + 1)(r + 2)/2, and the width and the height are at
most r + 1. This is tight in the worst case.

4.2 Realizing Arbitrary Sequences

Let Sr be an arbitrary turn sequence with r reflex angles. We now present an
algorithm to give a realization Q(Sr) such that area(Q(Sr)) ≤ 1

2 (r + 1)(r + 2).

The Outline of the Algorithm. By Lemma 7, if Sr is XY -monotone, then we
are done, so assume that Sr is not monotone in at least one axis. Then, by
Observation 2, there must be at least one RR in Sr. Furthermore, we can find RRL

in Sr. We now represent Sr := Sr′ RRLSr′′ for r
′, r′′ ≥ 0 such that r = r′+r′′+2.

Define a shorter sequence Sr−1 by replacing RRL by R, i.e., Sr−1 := Sr′ RSr′′ .
We repeat this replacement process until we get Sr0 such that it no longer has
RR. By Observation 2, Sr0 is XY -monotone. As did in Section 4.1, we split
Sr0 into (at most) four XY -monotone sequences, and realize them separately
as staircase rectilinear polygons. Then we have four initial staircase realizations.
We reconstruct the original sequence by inserting RRL back into one of the initial
realizations one by one in the reverse order of the replacement process. As the
last step, we combine the four realizations into Q(Sr) by the same method as
done in Section 4.1.

Realization from a Staircase Subsequence. The realization from four initial stair-
case polygons can be separately handled in the symmetric way, so we consider
the realization only from a fixed staircase polygon as in Fig. 7(a).

Let Sa be the sequence corresponding to the northwest staircase polygon
Q(Sa). Let Sb be the original sequence which we have to reconstruct from Sa.
Clearly b ≥ a > 0. Sa has a form of LL(RL)aLL, thus Q(Sa) has a reflex vertices
u1, u2, . . . , ua which correspond to R in (RL)a. The replacement process of RRL
by R implies that Sb has a form of LL(RSr1L)(RSr2L) · · · (RSraL)LL such that
b = a+ r1 + · · ·+ ra for ri ≥ 0. We now have to reconstruct Q(Sb) from Q(Sa)
by realizing each Sri for 1 ≤ i ≤ a. We will realize these Sri one by one in the
order of i = 1, 2, . . . , a.

To realize Sri , we need some free space to accommodate the edges for RRL in
Sri . For this, as in Fig. 7(a), we will make a room in the cell incident to ui by
inserting ri rows and ri columns in total; one row and one column are inserted
in the cell whenever a pattern RRL is reconstructed.

Area Bounds of Rectilinear Polygons Realized by Angle Sequences 637

u1

ui

ua

ek(u)

σk(u)

ri columns

ri rows

ui

ui+1

u

vertical
cut of u

horizontal
cut of u

u
L

R R

ui

ui+1

(a) (b) (c)

φk+1(u)

v w

z

Fig. 7. (a) The initial realization Q(Sa). Realize each Sri by inserting ri rows and ri
columns in the shaded cell incident to ui. (b) Two cuts of u, ek(u), and σk(u) in Q(Sk).
(c) Reconstruct the pattern RRL in Q(Sk) by inserting one row and one column.

Suppose that the current realization is Q(Sk) for some a+(r1 + · · ·+ ri−1) <
k ≤ a+ (r1 + · · ·+ ri). Refer to Fig. 7(b) for the notations. For a reflex vertex
u in Q(Sk), we denote by ek(u) an edge incident to u which comes next u in
counterclockwise order, and by σk(u) a unit cell in Q(Sk) whose side is contained
in ek(u) and one corner coincides with u. We call σk(u) the ground cell of u in
Q(Sk). A horizontal line (resp., vertical line) through the center of σk(u) is called
a horizontal cut of u (resp., vertical cut of u) in Q(Sk). The cut number cnk(u)
is the number of the cells in Q(Sk) intersected by at least one of two cuts of u.

We are now going to reconstruct the next pattern RRL into Q(Sk), which
results in Q(Sk+1). Let u be a reflex vertex in Q(Sk) which will be replaced by
the next RRL. For drawing the edges for the pattern, we need a free space in
σk(u). Actually, as in Fig. 7(c), one free row and one free column of the grid
cells are sufficient. We first insert one empty row just above ek(u), which is done
by stretching all the edges of Q(Sk) intersected by the horizontal cut of u by
one unit. We next insert one empty column by stretching the edges of Q(Sk)
intersected by the vertical cut of u. Then σk(u) changes to a square region of
side length two and its interior is empty. As the final step, we simply draw the
edges for RRL along the added row and column. After this drawing step, we
get Q(Sk+1). Note that the unit cell surrounded by RRL belongs to the exterior
of Q(Sk+1), specially called the exterior cell of u in Q(Sk+1), and denoted by
φk+1(u). In fact, the exterior cell of u in Q(Sk+1) was the ground cell of u in
Q(Sk). As a result, the reflex vertex u (corresponding to the old R) is deleted in
Q(Sk+1), but two new reflex vertices v, w and one convex vertex z (corresponding
to the new RRL) are created in Q(Sk+1).

How many new cells were inserted in this single reconstruction step? There
were two insertions for free row and column. The insertion of the free column
(resp., the free row) actually “copies” the cells intersected by the vertical cut
(resp., horizontal cut) of u in Q(Sk). In other words, the number of copied cells
for the free column and row is the cut number of u in Q(Sk) plus two, i.e.,
cnk(u) + 2 cells. But φk+1(u) is excluded from the interior of Q(Sk+1), thus the
actual number of inserted cells is at most cnk(u) + 1.

638 S.W. Bae, Y. Okamoto, and C.-S. Shin

During the subsequent reconstructions, we want to keep three invariants for
the current realization, say Q(Sk) for each a ≤ k ≤ b, as follows.

I1: area(Q(Sk)) ≤ 1
2 (k + 1)(k + 2).

I2: Q(Sk) is contained in a (k + 1)× (k + 1) square grid.
I3: For any reflex vertex u in Q(Sk), cnk(u) ≤ k + 1.

The initial staircase polygons Q(Sa) clearly satisfies all the three invariants. For
any k > a, we can show that I1 and I2 hold for Q(Sk) in the following way. A
reconstruction step of RRL inserts at most cnk−1(u)+ 1 cells more into Q(Sk−1).
By I3, the inserted cells are at most k + 1. Thus the area of Q(Sk) is simply
no more than area(Q(Sk−1)) + k + 1 ≤ 1

2k(k + 1) + k + 1 = 1
2 (k + 1)(k + 2), so

I1 holds. The invariant I2 holds because one row and one column are inserted
exactly whenever a pattern RRL is reconstructed. Hence what remains is to check
if I3 holds for Q(Sk). We omit the proof in this version.

Combining Four Realizations. Let us return to the original problem to realize
Sr in the area of 1

2 (r + 1)(r + 2). We now have four pieces of the realizations
which are reconstructed from four XY -monotone staircase polygons. Since each
realization satisfies I1 and I2, we can combine them as Q(Sr) by the similar
method explained in Section 4.1, and prove that its area is at most 1

2 (r+1)(r+2).
Therefore, we can show that the upper bound Δ(n) ≤ 1

2 (r + 1)(r + 2) and its
equality holds for the sequences shown in Fig. 1, which completes the proof of
Theorem 2.

References

1. Bajuelos, A.L., Tomás, A.P., Marques, F.: Partitioning Orthogonal Polygons by
Extension of All Edges Incident to Reflex Vertices: Lower and Upper Bounds on
the Number of Pieces. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan,
C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 127–136. Springer,
Heidelberg (2004)

2. Biedl, T., Durocher, S., Snoeyink, J.: Reconstructing polygons from scanner data.
Theoretical Computer Science 412, 4161–4172 (2011)

3. Chen, D.Z., Wang, H.: An improved algorithm for reconstructing a simple polygon
from its visibility angles. Computational Geometry: Theory and Applications 45,
254–257 (2012)

4. Disser, Y., Mihalák, M., Widmayer, P.: Reconstructing a simple polygon from its
angles. Computational Geometry: Theory and Applications 44, 418–426 (2011)

5. O’Rourke, J.: An alternate proof of the rectilinear art gallery theorem. Journal of
Geometry 21, 118–130 (1983)

6. O’Rourke, J.: Uniqueness of orthogonal connect-the-dots. In: Toussaint, G.T. (ed.)
Computational Morphology, pp. 97–104 (1988)

7. Tomás, A.P., Bajuelos, A.L.: Generating Random Orthogonal Polygons. In: Conejo,
R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003. LNCS
(LNAI), vol. 3040, pp. 364–373. Springer, Heidelberg (2004)

A Time-Efficient Output-Sensitive Quantum

Algorithm for Boolean Matrix Multiplication

François Le Gall

Department of Computer Science, The University of Tokyo
legall@is.s.u-tokyo.ac.jp

Abstract. This paper presents a quantum algorithm that computes the
product of two n×n Boolean matrices in Õ(n

√
�+ �

√
n) time, where � is

the number of non-zero entries in the product. This improves the previous
output-sensitive quantum algorithms for Boolean matrix multiplication
in the time complexity setting by Buhrman and Špalek (SODA’06) and
Le Gall (SODA’12). We also show that our approach cannot be further
improved unless a breakthrough is made: we prove that any significant
improvement would imply the existence of an algorithm based on quan-
tum search that multiplies two n×n Boolean matrices in O(n5/2−ε) time,
for some constant ε > 0.

1 Introduction

Multiplying two Boolean matrices, where addition is interpreted as a logical OR
and multiplication as a logical AND, is a fundamental problem that have found
applications in many areas of computer science (for instance, computing the tran-
sitive closure of a graph [7,8,15] or solving all-pairs path problems [5,9,17,18]).
The product of two n × n Boolean matrices can be trivially computed in time
O(n3). The best known algorithm is obtained by seeing the input matrices as
integer matrices, computing the product, and converting the product matrix to a
Boolean matrix. Using the algorithm by Coppersmith and Winograd [4] for mul-
tiplying integer matrices (and more generally for multiplying matrices over any
ring), or its recent improvements by Stothers [19] and Vassilevska Williams [20],
this gives a classical algorithm for Boolean matrix multiplication with time com-
plexity O(n2.38).

This algebraic approach has nevertheless many disadvantages, the main be-
ing that the huge constants involved in the complexities make these algorithms
impractical. Indeed, in the classical setting, much attention has focused on al-
gorithms that do not use reductions to matrix multiplication over rings, but
instead are based on search or on combinatorial arguments. Such algorithms are
often called combinatorial algorithms, and the main open problem in this field is
to understand whether a O(n3−ε)-time combinatorial algorithm, for some con-
stant ε > 0, exists for Boolean matrix multiplication. Unfortunately, there have
been little progress on this question. The best known combinatorial classical al-
gorithm for Boolean matrix multiplication, by Bansal and Williams [2], has time
complexity O(n3/ log2.25(n)).

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 639–648, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

640 F. Le Gall

In the quantum setting, there exists a straightforward Õ(n5/2)-time1 algo-
rithm that computes the product of two n × n Boolean matrices A and B:
for each pair of indexes i, j ∈ {1, 2, . . . , n}, check if there exists an index k ∈
{1, . . . , n} such that A[i, k] = B[k, j] = 1 in time Õ(

√
n) using Grover’s quan-

tum search algorithm [10]. Buhrman and Špalek [3] observed that a similar
approach leads to a quantum algorithm that computes the product AB in
Õ(n3/2

√
�) time, where � denotes the number on non-zero entries in AB. Since

the parameter � ∈ {0, . . . , n2} represents the sparsity of the output matrix,
such an algorithm will be referred as output-sensitive. Classical output-sensitive
algorithms for Boolean matrix multiplication have also been constructed re-
cently: Amossen and Pagh [1] constructed an algorithm with time complexity
Õ(n1.724�0.408 + n4/3�2/3 + n2), while Lingas [14] constructed an algorithm with
time complexity Õ(n2�0.188). The above Õ(n3/2

√
�)-time quantum algorithm

beats both of them when � ≤ n1.602. Note that these two classical algorithms
are based on the approach by Coppersmith and Winograd [4] and are thus not
combinatorial.

Le Gall [13] has shown recently that there exists an output-sensitive quan-
tum algorithm that computes the product of two n × n Boolean matrices with
time complexity O(n3/2) if 1 ≤ � ≤ n2/3 and O(n�3/4) if n2/3 ≤ � ≤ n2. This
algorithm, which improves the quantum algorithm by Buhrman and Špalek [3],
was constructed by combining ideas from works by Vassilevska Williams and
Williams [21] and Lingas [14].

Several developments concerning the quantum query complexity of this prob-
lem, where the complexity under consideration is the number of queries to the
entries of the input matrices A and B, have also happened. Output-sensitive
quantum algorithms for Boolean matrix multiplication in the query complexity
setting were first proposed in [21], and then improved in [13]. Very recently, Jef-
fery, Kothari and Magniez [11] significantly improved those results: they showed
that the quantum query complexity of computing the product of two n × n
Boolean matrices with � non-zero entries is Õ(n

√
�), and gave a matching (up to

polylogarithmic factors) lower bound Ω(n
√
�). The quantum query complexity

of Boolean matrix multiplication may thus be considered as settled.
Can the quantum time complexity of Boolean matrix multiplication can be

further improved as well? The most fundamental question is of course whether
there exists a quantum algorithm that uses only quantum search or similar tech-
niques with time complexity O(n5/2−ε), for some constant ε > 0, when � ≈ n2.
This question is especially motivated by its apparently deep connection to the
design of subcubic-time classical combinatorial algorithms for Boolean matrix
multiplication: a O(n5/2−ε)-time quantum algorithm would correspond to an
amortized cost of O(n1/2−ε) per entry of the product, which may provides us
with a new approach to develop a subcubic-time classical combinatorial algo-
rithm, i.e., an algorithm with amortized cost of O(n1−ε′) per entry of the prod-
uct. Studying quantum algorithms for Boolean matrix multiplication in the time
complexity setting can then, besides its own interest, be considered as a way to

1 In this paper the notation Õ suppresses poly(log n) factors.

A Time-Efficient Output-Sensitive Quantum Algorithm 641

gain new insight about the optimal value of the exponent of matrix multiplica-
tion in the general case (i.e., for dense output matrices). In comparison, when
the output matrix is dense, the classical and the quantum query complexities of
matrix multiplication are both trivially equal to Θ(n2).

1.1 Statement of Our Results

In this paper we build on the recent approach by Jeffery, Kothari and Mag-
niez [11] to construct a new time-efficient output-sensitive quantum algorithm
for Boolean matrix multiplication. Our main result is stated in the following
theorem.

Theorem 1. There exists a quantum algorithm that computes the product of two
n × n Boolean matrices with time complexity Õ(n

√
� + �

√
n), where � denotes

the number of non-zero entries in the product.

Our algorithm improves the quantum algorithm by Le Gall [13] for any value
of � other than � ≈ n2 (we obtain the same upper bound Õ(n2.5) for � ≈ n2).
It also beats the classical algorithms by Amossen and Pagh [1] and Lingas [14]
mentioned earlier, which are based on the algebraic approach, for any value
� ≤ n1.847 (i.e., whenever �

√
n ≤ n2�0.188).

As will be explained in more details below, for � ≤ n our result can be seen
as a time-efficient version of the quantum algorithm constructed for the query
complexity setting in [11]. The query complexity lower bound Ω(n

√
�) proved in

[11] shows that the time complexity of our algorithm is optimal, up to a possible
polylogarithmic factor, for � ≤ n. The most interesting part of our results is
perhaps the upper bound Õ(�

√
n) we obtain for � ≥ n, which corresponds to

the case where the output matrix is reasonably dense and differs from the query
complexity upper bounds obtained in [11]. We also show that, for values � ≥ n,
no quantum algorithm based on search can perform better than ours unless there
exists a quantum algorithm based on search that computes the product of two
arbitrary n× n Boolean matrices with time complexity significantly better that
n5/2. The formal statement follows.

Theorem 2. Let δ be any function such that δ(n) > 0 for all n ∈ N+. Suppose
that, for some value λ ≥ n, there exists a quantum algorithm Q that, given as
input any n × n Boolean matrices A and B such that the number of non-zero
entries in the product AB is at most λ, computes AB in O

(
λ
√
n · n−δ(n)

)
time.

Then there exists an algorithm using Q as a black-box that computes the product
of two n× n Boolean matrices with overall time complexity Õ(n5/2−δ(n) + n).

The reduction stated in Theorem 2 is actually classical and combinatorial: the
whole algorithm uses only classical combinatorial operations and calls toQ. Thus
Theorem 2 implies that, if for a given value � ≥ n the complexity of Theorem 1
can be improved to O (�

√
n/nε), for some constant ε > 0, using techniques

similar to ours (i.e., based on quantum search), then there exists an algorithm
based on quantum search (and classical combinatorial operations) that computes
the product of two n×n Boolean matrices with time complexity Õ(n5/2−ε +n).

642 F. Le Gall

1.2 Overview of Our Techniques

The main tool used to obtain our improvements is the new approach by Jeffery,
Kothari and Magniez [11] to find collisions in the graph associated with the
multiplication of two n × n Boolean matrices. More precisely, it was shown in
[11] how to find up to t collisions in this graph, on a quantum computer, using
Õ(
√
nt+

√
�) queries, where � is the number of non-zero entries in the product.

We construct (in Section 3) a time-efficient version of this algorithm that finds
one collision in Õ(

√
n+
√
�) time. We then use this algorithm to design a quantum

algorithm that computes the matrix product in time Õ(n
√
�) when � = O(n),

which proves Theorem 1 for � = O(n). Our key technique is the introduction
of a small data structure that is still powerful enough to enable time-efficient
access to exactly all the information about the graph needed by the quantum
searches. More precisely, while the size of the graph considered is O(n2), we
show that the size of this data structure can be kept much smaller — roughly
speaking, the idea is to keep a record of the non-edges of the graph. Moreover,
the data structure is carefully chosen so that constructing it, at the beginning
of the algorithm, can be done very efficiently (in Õ(n) time), and updating it
during the execution of the algorithm can be done at a cost less than the running
time of the quantum searches.

We then prove that the ability of finding up to n non-zero entries of the matrix
product is enough by showing (in Section 4) a classical reduction, for � > n, from
the problem of computing the product of two n × n Boolean matrices with at
most � non-zero entries in the product to the problem of computing �/n separate
products of two Boolean matrices, each product having at most O(n) non-zero
entries. The idea is to randomly permute the rows and columns of the input
matrices in order to make the output matrix homogeneous (in the sense that
the non-zero entries are distributed almost uniformly), in which case we can
decompose the input matrices into smaller blocks and ensure that each product
of two smaller blocks contains, with non-negligible probability, at most O(n) non-
zero entries. This approach is inspired by a technique introduced by Lingas [14]
and then generalized in [12,13]. The main difference is that here we focus on the
number of non-zero entries in the product of each pair of blocks, while [12,13,14]
focused mainly on the size of the blocks. The upper bounds of Theorem 1 for
� ≥ n follow directly from our reduction, and a stronger version of this reduction
leads to the proof of Theorem 2.

2 Preliminaries

In this paper we suppose that the reader is familiar with quantum computation,
and especially with quantum search and its variants. We present below the model
we are considering for accessing the input matrices on a quantum computer, and
computing their product. This model is the same as the one used in [3,13].

Let A and B be two n× n Boolean matrices, for any positive integer n (the
model presented below can be generalized to deal with rectangular matrices in a
straightforward way). We suppose that these matrices can be accessed directly

A Time-Efficient Output-Sensitive Quantum Algorithm 643

by a quantum algorithm. More precisely, we have an oracle OA that, for any
i, j ∈ {1, . . . , n}, any a ∈ {0, 1} and any z ∈ {0, 1}∗, performs the unitary
mapping OA : |i〉|j〉|a〉|z〉 4→ |i〉|j〉|a⊕A[i, j]〉|z〉, where ⊕ denotes the bit parity
(i.e., the logical XOR). We have a similar oracle OB for B. Since we are interested
in time complexity, we will count all the computational steps of the algorithm
and assign a cost of one for each call to OA or OB , which corresponds to the
cases where quantum access to the inputs A and B can be done at unit cost, for
example in a random access model working in quantum superposition (we refer
to [16] for an extensive treatment of such quantum random access memories).

Let C = AB denote the product of the two matrices A and B. Given any
indices i, j ∈ {1, . . . , n} such that C[i, j] = 1, a witness for this non-zero entry
is defined as an index k ∈ {1, . . . , n} such that A[i, k] = B[k, j] = 1. We define
a quantum algorithm for Boolean matrix multiplication as follows.

Definition 1. A quantum algorithm for Boolean matrix multiplication is a quan-
tum algorithm that, when given access to oracles OA and OB corresponding to
Boolean matrices A and B, outputs with probability at least 2/3 all the non-zero
entries of the product AB along with one witness for each non-zero entry.

The complexity of several algorithms in this paper will be stated using an upper
bound λ on the number � of non-zero entries in the product AB. The same com-
plexity, up to a logarithmic factor, can actually be obtained even if no nontrivial
upper bound on � is known a priori. The idea is, similarly to what was done in
[21,13], to try successively λ = 2 (and find up to 2 non-zero entries), λ = 4 (and
find up to 4 non-zero entries), . . . and stop when no new non-zero entry is found.
The complexity of this approach is, up to a logarithmic factor, the complexity of
the last iteration (in which the value of λ is λ = 2�log2 ��+1 if � is a power of two,
and λ = 2�log2 �� otherwise). In this paper we will then assume, without loss of
generality, that a value λ such that � ≤ λ ≤ 2� is always available.

3 Finding Up to O(n) Non-zero Entries

Let A and B be the two n × n Boolean matrices of which we want to compute
the product. In this section we define, following [11], a graph collision problem
and use it to show how to compute up to O(n) non-zero entries of AB.

Let G = (I, J, E) be a bipartite undirected graph over two disjoint sets I
and J , each of size n. The edge set E is then a subset of I × J . When there is
no ambiguity it will be convenient to write I = {1, . . . , n} and J = {1, . . . , n}.
We now define the concept of a collision for the graph G.

Definition 2. For any index k ∈ {1, . . . , n}, a k-collision for G is an edge
(i, j) ∈ E such that A[i, k] = B[k, j] = 1. A collision for G is an edge (i, j) ∈ E
that is a k-collision for some index k ∈ {1, . . . , n}.

We suppose that the graph G is given by a data structure M that contains the
following information:

644 F. Le Gall

• for each vertex u in I, the degree of u;
• for each vertex u in I, a list of all the vertices of J not connected to u.

The size of M is at most Õ(n2), but the key idea is that its size will be much
smaller when G is “close to” a complete bipartite graph. Using adequate data
structures to implement M (e.g., using self-balancing binary search trees), we
can perform the following four access operations in poly(log n) time.

get-degree(u): get the degree of a vertex u ∈ I
check-connection(u, v): check if the vertices u ∈ I and v ∈ J are connected
get-vertI(r, d): get the r-th smallest vertex in I that has degree at most d
get-vertJ(r, u): get the r-th smallest vertex in J not connected to u ∈ I

For the latter two access operations, the order on the vertices refer to the usual
order ≤ obtained when seeing vertices in I and J as integers in {1, . . . , n}. We
assume that these two access operations output an error message when the query
is not well-defined (i.e, when r is too large).

Similarly, we can update M in poly(logn) time to take in consideration the
removal of one edge (u, v) from E (i.e., update the degree of u and update the
list of vertices not connected to u). This low complexity will be crucial since our
main algorithm (in Proposition 2 below) will remove successively edges from E.

Let L be an integer such that 0 ≤ L ≤ n2. We will define our graph collision
problem, denoted Graph Collision(n,L), as the problem of finding a collision
for G under the promise that |E| ≥ n2 − L, i.e., there are at most L missing
edges in G. The formal definition is as follows.

Graph Collision(n,L) [here n ≥ 1 and 0 ≤ L ≤ n2]
input: two n× n Boolean matrices A and B

a bipartite graph G = (I ∪ J,E), with |I| = |J | = n, given by M
an index k ∈ {1, . . . , n}

promise: |E| ≥ n2 − L
output: one k-collision if such a collision exists

The following proposition shows that there exists a time-efficient quantum al-
gorithm solving this problem. The algorithm is similar to the query-efficient
quantum algorithm given in [11], but uses the data structureM in order to keep
the time complexity low.

Proposition 1. There exists a quantum algorithm running in time Õ(
√
L+

√
n)

that solves, with high probability, the problem Graph Collision(n,L).

Proof. We will say that a vertex i ∈ I is marked if A[i, k] = 1, and that a vertex
j ∈ J is marked if B[k, j] = 1. Our goal is thus to find a pair (i, j) ∈ E of marked
vertices. The algorithm is as follows.

We first use the minimum finding quantum algorithm from [6] to find the
marked vertex u of largest degree in I, in Õ(

√
n) time using get-degree(·) to

obtain the order of a vertex from the data structureM. Let d denote the degree
of u, let I ′ denote the set of vertices in I with degree at most d, and let S denote

A Time-Efficient Output-Sensitive Quantum Algorithm 645

the set of vertices in J connected to u. We then search for one marked vertex in S,
using Grover’s algorithm [10] with check-connection(u, ·), in Õ(

√
n) time. If

we find one, then this gives us a k-collision and we end the algorithm. Otherwise
we proceed as follows. Note that, since each vertex in I ′ has at most d neighbors,
by considering the number of missing edges we obtain:

|I ′| · (n− d) ≤ n2 − |E| ≤ L.

Also note that |J\S| = n − d. We do a quantum search on I ′ × (J\S) to find
one pair of connected marked vertices in time Õ(

√
|I ′| · |J\S|) = Õ(

√
L), using

get-vertI(·, d) to access the vertices in I ′ and get-vertJ(·, u) to access the
vertices in J\S. ��

We now show how an efficient quantum algorithm that computes up to O(n)
non-zero entries of the product of two n× n matrices can be constructed using
Proposition 1.

Proposition 2. Let λ be a known value such that λ = O(n). Then there exists
a quantum algorithm that, given any n×n Boolean matrices A and B such that
the number of non-zero entries in the product AB is at most λ, computes AB
in time Õ(n

√
λ).

Proof. Let A and B be two n × n Boolean matrices such that the product AB
has at most λ non-zero entries.

We associate with this matrix multiplication the bipartite graph G = (V,E),
where V = I ∪ J with I = J = {1, . . . , n}, and define the edge set as E = I × J .
The two components I and J of G are then fully connected: there is no missing
edge. It is easy to see that computing the product of A and B is equivalent to
computing all the collisions, since a pair (i, j) is a collision if and only if the
entry in the i-th row and the j-th column of the product AB is 1.

To find all the collisions, we will basically repeat the following approach: for
a given k, search for a new k-collision in G and remove the corresponding edge
from E by updating the data structure M corresponding to G. Since we know
that there are at most λ non-zero entries in the matrix product AB, at most λ
collisions will be found (and then removed). We are thus precisely interested in
finding collisions when |E| ≥ n2−λ, i.e., when there are at most λ missing edges
in G. We can then use the algorithm of Proposition 1. The main subtlety is that
we cannot simply try all the indexes k successively since the cost would be too
high. Instead, we will search for good indexes in a quantum way, as described in
the next paragraph.

We partition the set of potential witnessesK = {1, . . . , n} into m = max(λ, n)
subsets K1, . . . ,Km, each of size at most �n/m�. Starting with s = 1, we repeat-
edly search for a pair (i, j) that is a k-collision for some k ∈ Ks. This is done
by doing a Grover search over Ks that invokes the algorithm of Proposition 1.
Each time a new collision (i, j) is found (which is a k-collision for some k ∈ Ks),
we immediately remove the edge (i, j) from E by updating the data structure
M. When no other collision is found, we move to Ks+1. We end the algorithm
when the last set Km has been processed.

646 F. Le Gall

This algorithm will find, with high probability, all the collisions in the initial
graph, and thus all the non-zero entries of AB. Let us examine its time complex-
ity. We first discuss the complexity of creating the data structureM (remember
that updating M to take in consideration the removal of one edge from E has
polylogarithmic cost). Initially |E| = n2, so each vertex of I has the same de-
gree n. Moreover, for each vertex u ∈ I, there is no vertex in J not connected
to u. The cost for creatingM is thus Õ(n) time. Next, we discuss the cost of the
quantum search. Let λs denote the number of collisions found when examining
the set Ks. Note that the search for collisions (the Grover search that invokes
the algorithm of Proposition 1) is done λs + 1 times when examining Ks (we
need one additional search to decide that there is no other collision). Moreover,
we have λ1 + · · ·+ λm ≤ λ. The time complexity of the search is thus

Õ

(
m∑
s=1

√
|Ks| × (

√
λ+

√
n)× (λs + 1)

)
= Õ

(√
nλ+ n

√
λ
)
= Õ

(
n
√
λ
)
.

The overall time complexity of the algorithm is thus Õ(n
√
λ+n) = Õ(n

√
λ). ��

4 Reduction to Several Matrix Multiplications

Suppose that we have a randomized (or quantum) algorithm A that, given any
m×n Boolean matrix A and any n×m Boolean matrix B such that the number
of non-zero entries in the product AB is known to be at most L, computes AB
with time complexity T (m,n, L). For the sake of simplicity, we will make the
following assumptions on A:

(1) the time complexity of A does not exceed T (m,n, L) even if the input matri-
ces do not satisfy the promise (i.e., if there are more than L non-zero entries
in the product);

(2) the algorithm A never outputs that a zero entry of the product is non-zero;

(3) if the matrix product has at most L non-zero entries, then with probability
at least 1− 1/n3 all these entries are found.

These assumptions can be done without loss of generality when considering
quantum algorithms for Boolean matrix multiplication as defined in Section 2.
Assumption (1) can be guaranteed simply by supposing that the algorithm sys-
tematically stops after T (m,n, L) steps. Assumption (2) can be guaranteed since
a witness is output for each potential non-zero entry found (the witness can be
used to immediately check the result). Assumption (3) can be guaranted by
repeating the original algorithm (which has success probability at least 2/3) a
logarithmic number of times.

The goal of this section is to show the following proposition.

Proposition 3. Let L be a known value such that L ≥ n. Then, for any value
r ∈ {1, . . . , n}, there exists an algorithm that, given any n×n Boolean matrices A

A Time-Efficient Output-Sensitive Quantum Algorithm 647

and B such that the number of non-zero entries in the product AB is at most L,
uses algorithm A to compute with high probability the product AB in time

Õ

(
r2 × T

(
�n/r� , n, 100(n+ L/r)

r

)
+ n

)
.

The proof of Proposition 3 is omitted due to space constraints, but can be found
in the full version of the paper. The idea is to show a classical (combinatorial)
reduction from the computation of AB to the computation of Õ(r2) distinct
Boolean matrix products, each having at most 100

r (n+ L/r) non-zero entries in
the product.

5 Proofs of Theorems 1 and 2

In this section we give the proofs of Theorems 1 and 2.

Proof (of Theorem 1). Let A and B be two n×n Boolean matrices such that the
product AB has � non-zero entries. Remember that, as discussed in Section 2,
an integer λ ∈ {1, . . . , n2} such that � ≤ λ ≤ 2� is known.

If λ ≤ n then the product AB can be computed in time Õ(n
√
λ) = Õ(n

√
�)

by the algorithm of Proposition 2. Now consider the case n ≤ λ ≤ n2. By
Proposition 3 (with the value r = �

√
λ/n�), the product of A and B can be

computed with complexity Õ
(
λ
n × T (n, n,Δ) + n

)
, whereΔ = O(n). Combined

with Proposition 2, this gives a quantum algorithm that computes the product
AB in Õ (λ

√
n) = Õ (�

√
n) time. ��

Proof (of Theorem 2). Suppose the existence of a quantum algorithm that com-
putes in time O

(
λ
√
n · n−δ(n)

)
the product of any two n× n Boolean matrices

such that the number of non-zero entries in their product is at most λ. Let c
be a positive constant. Using Proposition 3 with the values r = �cn/

√
λ� and

L = n2, we obtain a quantum algorithm that computes the product of two n×n
Boolean matrices in time

Õ

(
n2

λ
× T

(
n, n,

100n

�cn/
√
λ�

+
100n2

�cn/
√
λ�2

)
+ n

)
.

By choosing the constant c large enough, we can rewrite this upper bound as

Õ
(

n2

λ × T (n, n, λ) + n
)
= Õ

(
n5/2−δ(n) + n

)
. ��

Acknowledgments. The author is grateful to Stacey Jeffery, Robin Kothari
and Frédéric Magniez for helpful discussions and comments, and for communi-
cating to him preliminary versions of their works. He also acknowledges support
from the JSPS and the MEXT, under the grant-in-aids Nos. 24700005, 24106009
and 24240001.

648 F. Le Gall

References

1. Amossen, R.R., Pagh, R.: Faster join-projects and sparse matrix multiplications.
In: Proceedings of Database Theory, ICDT, pp. 121–126 (2009)

2. Bansal, N., Williams, R.: Regularity lemmas and combinatorial algorithms. In:
Proceedings of FOCS 2009, pp. 745–754 (2009)

3. Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proceedings
of SODA 2006, pp. 880–889 (2006)

4. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation 9(3), 251–280 (1990)

5. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM Journal on
Computing 29(5), 1740–1759 (2000)

6. Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. arXiv:quant-
ph/9607014v2 (1996)

7. Fischer, M.J., Meyer, A.R.: Boolean matrix multiplication and transitive closure.
In: Proceedings of the 12th Annual Symposium on Switching and Automata The-
ory, pp. 129–131 (1971)

8. Furman, M.E.: Application of a method of fast multiplication of matrices in the
problem of finding the transitive closure of a graph. Soviet Mathematics Doklady
(English Translation) 11(5), 1252 (1970)

9. Galil, Z., Margalit, O.: All pairs shortest distances for graphs with small integer
length edges. Information and Computation 134(2), 103–139 (1997)

10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of STOC 1996, pp. 212–219 (1996)

11. Jeffery, S., Kothari, R., Magniez, F.: Improving Quantum Query Complexity of
Boolean Matrix Multiplication Using Graph Collision. In: Czumaj, A., Mehlhorn,
K., Pitts, A., Wattenhofer, R. (eds.) Automata, Languages, and Programming.
LNCS, vol. 7391, pp. 522–532. Springer, Heidelberg (2012)

12. Jeffery, S., Magniez, F.: Improving quantum query complexity of Boolean matrix
multiplication using graph collision. arXiv:1112.5855v1 (December 2011)

13. Le Gall, F.: Improved output-sensitive quantum algorithms for Boolean matrix
multiplication. In: Proceedings of SODA 2012, pp. 1464–1476 (2012)

14. Lingas, A.: A fast output-sensitive algorithm for boolean matrix multiplication.
Algorithmica 61(1), 36–50 (2011)

15. Munro, J.I.: Efficient determination of the transitive closure of a directed graph.
Information Processing Letters 1(2), 56–58 (1971)

16. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press (2000)

17. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs.
Journal of Computer and System Sciences 51(3), 400–403 (1995)

18. Shoshan, A., Zwick, U.: All pairs shortest paths in undirected graphs with integer
weights. In: Proceedings of FOCS 1999, pp. 605–615 (1999)

19. Stothers, A.: On the Complexity of Matrix Multiplication. PhD thesis, University
of Edinburgh (2010)

20. Vassilevska Williams, V.: Multiplying matrices faster than Coppersmith-Winograd.
In: Proceedings of STOC 2012, pp. 887–898 (2012)

21. Vassilevska Williams, V., Williams, R.: Subcubic equivalences between path, ma-
trix and triangle problems. In: Proceedings of FOCS 2010, pp. 645–654 (2010)

On Almost Disjunct Matrices for Group Testing

Arya Mazumdar�

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

aryam@mit.edu

Abstract. In a group testing scheme, a set of tests is designed to identify a small
number t of defective items among a large set (of size N) of items. In the non-
adaptive scenario the set of tests has to be designed in one-shot. In this setting, de-
signing a testing scheme is equivalent to the construction of a disjunct matrix, an
M×N matrix where the union of supports of any t columns does not contain the
support of any other column. In principle, one wants to have such a matrix with
minimum possible number M of rows (tests). One of the main ways of construct-
ing disjunct matrices relies on constant weight error-correcting codes and their
minimum distance. In this paper, we consider a relaxed definition of a disjunct
matrix known as almost disjunct matrix. This concept is also studied under the
name of weakly separated design in the literature. The relaxed definition allows
one to come up with group testing schemes where a close-to-one fraction of all
possible sets of defective items are identifiable. Our main contribution is twofold.
First, we go beyond the minimum distance analysis and connect the average dis-
tance of a constant weight code to the parameters of an almost disjunct matrix
constructed from it. Next we show as a consequence an explicit construction of
almost disjunct matrices based on our average distance analysis. The parameters
of our construction can be varied to cover a large range of relations for t and N .
As an example of parameters, consider any absolute constant ε > 0 and t propor-
tional to Nδ , δ > 0. With our method it is possible to explicitly construct a group
testing scheme that identifies (1 − ε) proportion of all possible defective sets of

size t using only O
(
t3/2

√
log(N/ε)

)
tests (as opposed to O(t2 logN) required

to identify all defective sets).

1 Introduction

Combinatorial group testing is an old and well-studied problem. In the most general
form it is assumed that there is a set of N elements among which at most t are defective,
i.e., special. This set of defective items is called the defective set or configuration. To
find the defective set, one might test all the elements individually for defects, requiring
N tests. Intuitively, that would be a waste of resource if t (N . On the other hand, to
identify the defective configuration it is required to ask at least log

∑t
i=0

(
N
i

)
≈ t log N

t
yes-no questions. The main objective is to identify the defective configuration with
a number of tests that is as close to this minimum as possible. In the group testing

� This work was supported in part by the US Air Force Office of Scientific Research under
Grant No. FA9550-11-1-0183, and by the National Science Foundation under Grant No. CCF-
1017772.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 649–658, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

650 A. Mazumdar

problem, a group of elements are tested together and if this particular group contains
any defective element the test result is positive. Based on the test results of this kind
one identifies (with an efficient algorithm) the defective set with minimum possible
number of tests. The schemes (grouping of elements) can be adaptive, where the design
of one test may depend on the results of preceding tests. For a comprehensive survey of
adaptive group testing schemes we refer the reader to [7].

In this paper we are interested in non-adaptive group testing schemes: here all the
tests are designed together. If the number of designed tests is M , then a non-adaptive
group testing scheme is equivalent to the design of a so-called binary test matrix of
size M ×N where the (i, j)th entry is 1 if the ith test includes the jth element; it is 0
otherwise. As the test results, we see the Boolean OR of the columns corresponding to
the defective entries. Extensive research has been performed to find out the minimum
number of required tests M in terms of the number of elements N and the maximum
number of defective elements t. The best known lower bound says that it is necessary
to have M = Ω(t2

log t logN) tests [8, 10]. The existence of non-adaptive group testing

schemes with M = O(t2 logN) is also known for quite some time [7, 15]. Evidently,
there is a gap by the factor of O(log t) in these upper and lower bounds. It is generally
believed that it is hard to close the gap. In contrast, for the adaptive setting, schemes
have been constructed with the optimal number, O(t logN), of tests [7, 14].

A construction of group testing schemes from error-correcting code matrices and us-
ing code concatenation [19] appeared in the seminal paper by Kautz and Singleton [16].
In [16], the authors concatenate a q-ary (q > 2) Reed-Solomon code with a unit weight
code to use the resulting codewords as the columns of the testing matrix. Recently in [24],
an explicit construction of a scheme with M = O(t2 logN) tests is provided. The con-
struction of [24] is based on the idea of [16]: instead of the Reed-Solomon code, they take
a low-rate code that achieves the Gilbert-Varshamov bound of coding theory [19, 25].
Papers, such as [9,29], also consider construction of non-adaptivegroup testing schemes.

In this paper we explicitly construct a non-adaptive scheme that requires a number
of test proportional to t3/2. However, we needed to relax the requirement of identifi-
cations of defective elements in a way that makes it amenable for our analysis. This
relaxed requirement schemes were considered under the name of weakly separated
designs in [20] and [30]. Our definition of this relaxation appeared previously in the
paper [18]. We (and [18, 20, 30]) aim for a scheme that successfully identifies a large
fraction of all possible defective configurations. Non-adaptive group testing has found
applications in multiple different areas, such as, multi-user communication [2,28], DNA
screening [23], pattern finding [17] etc. It can be observed that in many of these appli-
cations it would have been still useful to have a scheme that identifies almost all dif-
ferent defective configurations if not all possible defective configurations. It is known
(see, [30]) that with this relaxation it might be possible to reduce the number of tests to
be proportional to t logN . However this result is not constructive. The above relaxation
and weakly separated designs form a parallel of similar works in compressive sensing
(see, [3, 21]) where recovery of almost all sparse signals from a generic random model
is considered. In the literature, other relaxed versions of the group testing problem have
been studied as well. For example, in [13] it is assumed that recovering a large fraction
of defective elements is sufficient.

On Almost Disjunct Matrices for Group Testing 651

The constructions of [16,24] and many others are based on so-called constant weight
error-correcting codes, a set of binary vectors of same Hamming weight (number of
ones). The group-testing recovery property relies on the pairwise minimum distance
between the vectors of the code [16]. In this work, we go beyond this minimum distance
analysis and relate the group-testing parameters to the average distance of the constant
weight code. This allows us to connect weakly separated designs to error-correcting
codes in a general way. Previously the connection between distances of the code and
weakly separated designs was only known for the very specific family of maximum
distance separable codes [18], where much more than the average distance is known.

Based on the newfound connection, we construct an explicit (constructible determin-
istically in polynomial time) scheme of non-adaptive group testing that can identify all
except an ε > 0 fraction of all defective sets of size at most t. To be specific, we show
that it is possible to explicitly construct a group testing scheme that identifies (1−ε) pro-

portion of all possible defective sets of size t using only 8et3/2 logN

√
log 2(N−t)

ε

log t−log log 2(N−t)
ε

tests for any ε > 2(N − t)e−t. It can be seen that, with the relaxation in requirement,
the number of tests is brought down to be proportional to t3/2 from t2. This allows us
to operate with a number of tests that was previously not possible in explicit construc-
tions of non-adaptive group testing. For a large range of values of t, namely t being
proportional to any positive power of N , i.e., t ∼ N δ, and constant ε our scheme has
number of tests only about 8e

δ t
3/2

√
log(N/ε). Our construction scheme is same as that

of [16,24], however relies on a finer analysis on the distance properties of a linear code.
This construction is only an example of the consequence of the our main result, and by
no mean optimal. Better constructions might be possible using our technique.

In Section 2, we provide the necessary definitions and discuss the main result: we
state the connection between the parameters of a weakly separated design and the av-
erage distance of a constant weight code. In Section 3 we discuss our construction
scheme. The proofs of our claims can be found in Sections 2.3 and 3.

The author has recently been made aware of a parallel and independent unpublished
work [12] that claims to construct weakly separated designs with O(t poly(logN))
tests. However the technique of this paper is completely different, and the main em-
phasis here is to show for the first time the relation between the disjunct-property and
average distance of codes which leaves a lot of scope for future explorations.

2 Almost Disjunct Matrices from Codes

It is easy to see that, if an M × N binary matrix gives a non-adaptive group testing
scheme that identify up to t defective elements, then,

∑t
i=0

(
N
i

)
≤ 2M . This means

that for any group testing scheme, M ≥ log
∑t

i=0

(
N
i

)
≥ t log N

t , which is a loose
bound. Consider the case when one is interested in a scheme that identifies all possible
except an ε fraction of the different defective sets. Then it is required that,

M ≥ log
(
(1− ε)

(
N

t

))
≥ t log

N

t
+ log(1− ε). (1)

It is shown in [20, 30] that (1) is tight.

652 A. Mazumdar

2.1 Disjunct Matrices

The support of a vector x is the set of coordinates where the vector has nonzero entries.
It is denoted by supp(x). We use the usual set terminology, where a set A contains B
if B ⊆ A.

Definition 1. An M × N binary matrix A is called t-disjunct if the support of any
column is not contained in the union of the supports of any other t columns.

It is not very difficult to see that a t-disjunct matrix gives a group testing scheme that
identifies any defective set up to size t. On the other hand any group testing scheme
that identifies any defective set up to size t must be a (t − 1)-disjunct matrix [7]. To a
great advantage, disjunct matrices allow for a simple identification algorithm that runs
in time O(Nt). Below we define relaxed disjunct matrices. This definition appeared
very closely in [20, 30] and independently exactly in [18].

Definition 2. For any ε > 0, an M ×N matrix A is called type-1 (t, ε)-disjunct if the
set of t-tuple of columns (of size

(
N
t

)
) has a subset B of size at least (1 − ε)

(
N
t

)
with

the following property: for all J ∈ B, ∪κ∈J supp(κ) does not contain support of any
column ν /∈ J.

In other words, the union of supports of a randomly and uniformly chosen set of t
columns from a type-1 (t, ε)-disjunct matrix does not contain the support of any other
column with probability at least 1− ε. It is easy to see the following fact.

Proposition 1. A type-1 (t, ε)-disjunct matrix gives a group testing scheme that can
identify all but at most a fraction ε > 0 of all defective configurations of size at most t.

The definition of disjunct matrix can be restated as follows: a matrix is t-disjunct if
any t+ 1 columns indexed by i1, . . . , it+1 of the matrix form a sub matrix which must
have a row that has exactly one 1 in the ij th position and zeros in the other positions, for
j = 1, . . . , t+1. Recall that, a permutation matrix is a square binary {0, 1}-matrix with
exactly one 1 in each row and each column. Hence, for a t-disjunct matrix, any t + 1
columns form a sub-matrix that must contain t + 1 rows such that a (t + 1) × (t + 1)
permutation matrix is formed of these rows and columns. A statistical relaxation of the
above definition gives the following.

Definition 3. For any ε > 0, an M ×N matrix A is called type-2 (t, ε)-disjunct if the
set of (t+1)-tuples of columns (of size

(
N
t+1

)
) has a subset B of size at least (1−ε)

(
N
t+1

)
with the following property: the M × (t+1) matrix formed by any element J ∈ B must
contain t+ 1 rows that form a (t+ 1)× (t+ 1) permutation matrix.

In other words, with probability at least 1− ε, any randomly and uniformly chosen t+1
columns from a type-2 (t, ε)-disjunct matrix form a sub-matrix that must has t+1 rows
such that a (t+1)× (t+1) permutation matrix can be formed. It is clear that for ε = 0,
the type-1 and type-2 (t, ε)-disjunct matrices are same (i.e., t-disjunct). In the rest of the
paper, we concentrate on the design of an M×N matrix A that is type-2 (t, ε)-disjunct.
Our technique can be easily extended to the construction of type-1 disjunct matrices.

On Almost Disjunct Matrices for Group Testing 653

2.2 Constant Weight Codes and Disjunct Matrices

A binary (M,N, d) code C is a set of size N consisting of {0, 1}-vectors of length M .
Here d is the largest integer such that any two vectors (codewords) of C are at least
Hamming distance d apart. d is called the minimum distance (or distance) of C. If all
the codewords of C have Hamming weight w, then it is called a constant weight code.
In that case we write C is an (M,N, d, w) constant weight binary code.

Constant weight codes can give constructions of group testing schemes. One just
arranges the codewords as the columns of the test matrix. Kautz and Singleton proved
the following in [16].

Proposition 2. An (M,N, d, w) constant weight binary code provides a t-disjunct ma-

trix where, t =
⌊

w−1
w−d/2

⌋
.

Proof. The intersection of supports of any two columns has size at most w−d/2. Hence
if w > t(w−d/2), support of any column will not be contained in the union of supports
of any t other columns.

We extend Prop. 2 to have one of our main theorems. However, to do that we need to
define the average distance D of a code C:

D(C) = 1

|C| − 1
min
x∈C

∑
y∈C\{x}

dH(x,y). (2)

Here dH(x,y) denotes the Hamming distance between x and y.

Theorem 1. Suppose, we have a constant weight binary code C of size N , minimum
distance d and average distance D such that every codeword has length M and weight
w. The test matrix obtained from the code is type-2 (t, ε)-disjunct for the largest t such

that, α
√
t ln 2(t+1)

ε ≤ w−1−t(w−D/2)
w−d/2 holds. Here α is any absolute constant greater

than or equal to
√
2(1 + t/(N − 1)).

The proof of this theorem is deferred until after the following remarks.

Remark: By a simple change in the proof of the Theorem 1, it is possible to see

that the test matrix is type-1 (t, ε)-disjunct if, α
√
t ln 2(N−t)

ε ≤ w−1−t(w−D/2)
w−d/2 , for an

absolute constant α.
One can compare the results of Prop. 2 and Theorem 1 to see the improvement

achieved as we relax the definition of disjunct matrices. This will lead to the final im-
provement on the parameters of Porat-Rothschild construction [24], as we will see in
Section 3.

2.3 Proof of Theorem 1

This section is dedicated to the proof of Theorem 1. Suppose, we have a constant weight
binary code C of size N and minimum distance d such that every codeword has length

654 A. Mazumdar

M and weight w. Let the average distance of the code be D. Note that this code is fixed:
we will prove a property of this code by probabilistic method .

Let us now chose (t+1) codewords randomly and uniformly from all possible
(

N
t+1

)
choices. Let the randomly chosen codewords are {c1, c2, . . . , ct+1}. In what follows,
we adapt the proof of Prop. 2 in a probabilistic setting.

Define the random variables for i = 1, . . . , t+ 1, Zi =
∑t+1

j=1j �=i

(
w − dH(ci,cj)

2

)
.

Clearly, Zi is the maximum possible size of the portion of the support of ci that is
common to at least one of cj , j = 1, . . . , t + 1, j �= i. Note that the size of support
of ci is w. Hence, as we have seen in the proof of Prop. 2, if Zi is less than w for all
i = 1, . . . , t + 1, then the M × (t + 1) matrix formed by the t + 1 codewords must
contain t + 1 rows such that a (t + 1) × (t + 1) permutation matrix can be formed.
Therefore, we aim to find the probability Pr(∃i ∈ {1, . . . , t+ 1} : Zi ≥ w) and show
it to be bounded above by ε under the condition of the theorem.

As the variable Zis are identically distributed, we see that, Pr(∃i ∈ {1, . . . , t+ 1} :
Zi ≥ w) ≤ (t + 1)Pr(Z1 ≥ w). In the following, we will find an upper bound on
Pr(Z1 ≥ w).

Define, Zi = E
(∑t+1

j=2

(
w − dH(c1,cj)

2

)
| dH(c1, ck), k = 2, 3, . . . , i

)
. Clearly,

Z1 = E
(∑t+1

j=2

(
w − dH(c1,cj)

2

))
, and Zt+1 =

∑t+1
j=2

(
w − dH(c1,cj)

2

)
= Z1.

We have the following three lemmas whose proofs are omitted here.

Lemma 1. Z1 ≤ t(w −D/2).

Lemma 2. The sequence of random variables Zi, i = 1, . . . , t+1, forms a martingale.

The statement is true by construction. Once we have proved that the sequence is a
martingale, we show that it is a bounded-difference martingale.

Lemma 3. For any i = 2, . . . , t+ 1, |Zi − Zi−1| ≤ (w − d/2)
(
1 + t−i+1

N−i

)
.

Now using Azuma’s inequality for martingale with bounded difference [22], we have,

Pr
(
|Zt+1 − Z1| > ν) ≤ 2 exp

(
− ν2

2(w − d/2)2
∑t+1

i=2 c
2
i

)
,

where, ci = 1 + t−i+1
N−i . This implies,

Pr
(
|Zt+1| > ν + t(w −D/2)

)
≤ 2 exp

(
− ν2

2(w − d/2)2
∑t+1

i=2 c
2
i

)
.

Setting, ν = w − 1− t(w −D/2), we have,

Pr
(
Z1 > w − 1

)
≤ 2 exp

(
− (w − 1− t(w −D/2))2

2(w − d/2)2
∑t+1

i=2 c
2
i

)
.

Now,
∑t+1

i=2 c
2
i ≤ t

(
1 + t−1

N−2

)2

. Hence, Pr(∃i ∈ {1, . . . , t + 1} : Zi ≥ w) ≤ 2(t +

1) exp
(
− (w−1−t(w−D/2))2

2t(w−d/2)2
(
1+ t−1

N−2

)2

)
< ε, when, d/2 ≥ w − w−1−t(w−D/2)

α

√
t ln 2(t+1)

ε

, and α is a

constant greater than
√
2
(
1 + t−1

N−2

)
.

On Almost Disjunct Matrices for Group Testing 655

3 Construction

As we have seen in Section 2, constant weight codes can be used to produce disjunct
matrices. Kautz and Singleton [16] gives a construction of constant weight codes that
results in good disjunct matrices. In their construction, they start with a Reed-Solomon
(RS) code, a q-ary error-correcting code of length q − 1. For a detailed discussion of
RS codes we refer the reader to the standard textbooks of coding theory [19, 25]. Next
they replace the q-ary symbols in the codewords by unit weight binary vectors of length
q. The mapping from q-ary symbols to length-q unit weight binary vectors is bijective:
i.e., it is 0 → 100 . . .0; 1→ 010 . . .0; . . . ; q − 1 → 0 . . . 01. We refer to this mapping
as φ. As a result, one obtains a set of binary vectors of length q(q − 1) and constant
weight q. The size of the resulting binary code is same as the size of the RS code, and
the distance of the binary code is twice that of the distance of the RS code.

3.1 Consequence of Theorem 1 in Kautz-Singleton Construction

For a q-ary RS code of size N and length q−1, the minimum distance is q−1−logq N+
1 = q−logq N. Hence, the Kautz-Singleton construction is a constant-weight code with
length M = q(q−1), weight w = q−1, size N and distance 2(q− logq N). Therefore,
from Prop. 2, we have a t-disjunct matrix with,

t =
q − 1− 1

q − 1− q + logq N
=

q − 2

logq N − 1
≈ q log q

logN
≈
√
M logM

2 logN
.

On the other hand, note that, the average distance of the RS code is N
N−1 (q−1)(1−1/q).

Hence the average distance of the resulting constant weight code from Kautz-Singleton

construction will be D = 2N(q−1)2
q(N−1) . Now, substituting these values in Theorem 1, we

have a type-1 (t, ε) disjunct matrix, where,

α

√
t ln

2(N − t)

ε
≤ (q − t) log q

logN
≈ (

√
M − t) logM

2 logN
.

Suppose t ≤
√
M/2. Then, M(lnM)2 ≥ 4α2t(lnN)2 ln 2(N−t)

ε This restricts t to
be about O(

√
M). Hence, Theorem 1 does not obtain any meaningful asymptotic im-

provement from the Kautz-Singleton construction except in special cases.

Example: Consider a 4096-ary Reed-Solomon code of length 4095 and size N =
40963 ≈ 6.8 × 1010 (number of elements). From the above discussion we see that,
with number of tests M = 4096 · 4095 ≈ 1.6 × 107, the resulting matrix is type-1
(2700, 2−4)-disjunct. Although the number of defectives t seems quite large here, it
is very small compared to N . On the other hand the straight-forward Kautz-Singleton
construction guarantees that for the same dimension of a matrix, we can have a 2047-
disjunct matrix. Roughly speaking, in this example it is possible to identify, by the merit
of Theorem 1, 31.9% more defective items, but the tests are successful in 93.75% of the
cases. It can be inferred that the improvement suggested in Theorem 1 appear only for

656 A. Mazumdar

very large values of N . However, in the asymptotic limits Kautz-Singleton construction
is not optimal, as shown by the next construction.

There are two places where the Kautz-Singleton construction can be improved: 1)
instead of Reed-Solomon code one can use any other q-ary code of different length, and
2) instead of the mapping φ any binary constant weight code of size q might have been
used. For a general discussion we refer the reader to [7, §7.4]. In the recent work [24],
the mapping φ is kept the same, while the RS code has been changed to a q-ary code
that achieve the Gilbert-Varshamov bound [19, 25].

In our construction of disjunct matrices we follow the footsteps of [16,24]. However,
we exploit some property of the resulting scheme (namely, the average distance) and do
a finer analysis that was absent from the previous works such as [24].

3.2 q-ary Code Construction

We choose q > (2eα
√
a + 1)t, for some constant a > 0 and α being the constant of

Theorem 1, to be a power of a prime number. Next, we construct a linear q-ary code of
size N , length Mq and minimum distance dq that achieves the Gilbert-Varshamov (GV)
bound [19, 25], i.e.,

logq N

Mq
≥ 1− hq

(dq
Mq

)
− o(1), (3)

where hq is the q-ary entropy function defined by, hq(x)=x logq
q−1
x +(1−x) logq 1

1−x .
Porat and Rothschild [24] show that it is possible to construct in time O(MqN) a

q-ary code that achieves the GV bound. To have such construction, they exploit the
following well-known fact: a q-ary linear code with random generator matrix achieves
the GV bound with high probability [25]. To have an explicit construction of such codes,
a derandomization method known as the method of conditional expectation [1] is used.
In this method, the entries of the generator matrix of the code are chosen one-by-one so
that the minimum distance of the resulting code does not go below the value prescribed
by (3). For a detail description of the procedure, see [24].

Next, the q-ary symbols of the codewords of the above code are replaced by binary
vectors according to the map φ. The N binary vectors of length M = qMq are used as
the rows of the test matrix. This construction with proper parameters gives us a disjunct
matrix with the following property.

Theorem 2. Suppose ε > 2(t + 1)e−at for some constant a > 1. It is possible to
explicitly construct a type-2 (t, ε)-disjunct matrix of size M ×N where

M = O
(
t3/2 lnN

√
ln 2(t+1)

ε

ln t− ln ln 2(t+1)
ε + ln(4a)

)
. (4)

The proof of this theorem is omitted.
Note that the implicit constant in Theorem 2 is proportional to

√
a. We have not

particularly tried to optimize the constant, and got the value of about 8e
√
a.

Remark: As in the case of Theorem 1, with a simple change in the proof, it is easy to
see that one can construct a test matrix that is type-1 (t, ε)-disjunct if the condition of
(4) is satisfied with (t+ 1) replaced by (N − t) in the expression.

On Almost Disjunct Matrices for Group Testing 657

It is clear from Prop. 1 that a type-1 (t, ε) disjunct matrix is equivalent to a group
testing scheme. Hence, as a consequence of Theorem 2 (specifically, the remark above),

we will be able to construct a testing scheme with O
(
t3/2 logN

√
log 2(N−t)

ε

log t−log log 2(N−t)
ε

)
tests. Whenever the defect-model is such that all the possible defective sets of size t are
equally likely and there are no more than t defective elements, the above group testing
scheme will be successful with probability at lease 1− ε.

Note that, if t is proportional to any positive power of N , then logN and log t
are of same order. Hence it will be possible to have the above testing scheme with
O(t3/2

√
log(N/ε)) tests, for any ε > 2(N − t)e−t.

4 Conclusion

In this work we show that it is possible to construct non-adaptive group testing schemes
with small number of tests that identify a uniformly chosen random defective configu-
ration with high probability. To construct a t-disjunct matrix one starts with the simple
relation between the minimum distance d of a constant w-weight code and t. This is an
example of a scenario where a pairwise property (i.e., distance) of the elements of a set
is translated into a property of t-tuples.

Our method of analysis provides a general way to prove that a property holds for
almost all t-tuples of elements from a set based on the mean pairwise statistics of the
set. Our method will be useful in many areas of applied combinatorics, such as digital
fingerprinting or design of key-distribution schemes, where such a translation is evident.
For example, with our method new results can be obtained for the cases of cover-free
codes [11, 16, 27], traceability and frameproof codes [5, 26]. This is the subject of our
ongoing work.

References

1. Alon, N., Spencer, J.: The Probabilistic Method. Wiley & Sons (2000)
2. Berger, T., Mehravari, N., Towsley, D., Wolf, J.: Random multiple-access communications

and group testing. IEEE Transactions on Communications 32(7), 769–779 (1984)
3. Calderbank, R., Howard, S., Jafarpour, S.: Construction of a large class of deterministic sens-

ing Matrices that satisfy a statistical isometry property. IEEE Journal of Selected Topics in
Signal Processing 4(4), 358–374 (2010)

4. Cheraghchi, M.: Improved Constructions for Non-adaptive Threshold Group Testing. In:
Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.)
ICALP 2010. LNCS, vol. 6198, pp. 552–564. Springer, Heidelberg (2010)

5. Chor, B., Fiat, A., Naor, M.: Tracing Traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS,
vol. 839, pp. 257–270. Springer, Heidelberg (1994)

6. Doob, J.L.: Stochastic Processes. John Wiley & Sons, New York (1953)
7. Du, D., Hwang, F.: Combinatorial Group Testing and Applications. World Scientific Publish-

ing (2000)
8. Dyachkov, A., Rykov, V.: Bounds on the length of disjunctive codes. Problemy Peredachi

Informatsii 18, 7–13 (1982)
9. D’yachkov, A., Rykov, V., Macula, A.: New constructions of superimposed codes. IEEE

Transactions on Information Theory 46(1) (2000)

658 A. Mazumdar

10. Dyachkov, A., Rykov, V., Rashad, A.: Superimposed distance codes. Problems of Control
and Information Theory 18(4), 237–250 (1989)

11. Dyachkov, A., Vilenkin, P., Torney, D., Macula, A.: Families of finite sets in which no inter-
section of l sets is covered by the union of s other. Journal of Combinatorial Theory, Series
A 99(2), 195–218 (2002)

12. Gilbert, A., Hemenway, B., Rudra, A., Strauss, M., Wootters, M.: Recovering simple signals
(manuscript, 2012)

13. Gilbert, A., Iwen, M., Strauss, M.: Group testing and sparse signal recovery. In: Proc. 42nd
Asilomar Conference on Signals, Systems and Computers (2008)

14. Hwang, F.: A method for detecting all defective members in a population by group testing.
Journal of American Statistical Association 67, 605–608 (1972)

15. Hwang, F., Sos, V.: Non-adaptive hypergeometric group testing. Studia Scient. Math. Hun-
garica. 22, 257–263 (1987)

16. Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Transaction on In-
formation Theory 10(4), 185–191 (1964)

17. Macula, A., Popyack, L.: A group testing method for finding patterns in data. Discrete Ap-
plied Mathematics 144(1-2), 149–157 (2004)

18. Macula, A., Rykov, V., Yekhanin, S.: Trivial two-stage group testing for complexes using
almost disjunct matrices. Discrete Applied Mathematics 137(1), 97–107 (2004)

19. Macwilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North-Holland (1977)
20. Malyutov, M.: The separating property of random matrices. Mathematical Notes 23(1), 84–

91 (1978)
21. Mazumdar, A., Barg, A.: Sparse-Recovery Properties of Statistical RIP Matrices. In: Proc.

49th Allerton Conference on Communication, Control and Computing, Monticello, IL,
September 28–30 (2011)

22. McDiarmid, C.: On the method of bounded differences. In: Surveys in Combinatorics, Cam-
bridge. London Math. Soc. Lectures Notes, pp. 148–188 (1989)

23. Ngo, H., Du, D.: A survey on combinatorial group testing algorithms with applications to
DNA library screening. In: Discrete Mathematical Problems with Medical Applications. DI-
MACS Series Discrete Mathematics and Theoretical Computer Science, vol. 55, pp. 171–182
(1999)

24. Porat, E., Rothschild, A.: Explicit Non-adaptive Combinatorial Group Testing Schemes. In:
Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 748–759. Springer, Heidelberg (2008)

25. R. Roth, Introduction to Coding Theory, Cambridge, 2006.
26. Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and traceabil-

ity codes. IEEE Transaction on Information Theory 47(3), 1042–1049 (2001)
27. Stinson, D.R., Wei, R., Zhu, L.: Some new bounds for cover-free families. Journal of Com-

binatorial Theory, Series A 90(1), 224–234 (2000)
28. Wolf, J.: Born again group testing: multiaccess communications. IEEE Transaction on Infor-

mation Theory 31, 185–191 (1985)
29. Yekhanin, S.: Some new constructions of optimal superimposed designs. In: Proc. of Inter-

national Conference on Algebraic and Combinatorial Coding Theory (ACCT), pp. 232–235
(1998)

30. Zhigljavsky, A.: Probabilistic existence theorems in group testing. Journal of Statistical Plan-
ning and Inference 115(1), 1–43 (2003)

Parameterized Clique on Scale-Free Networks

Tobias Friedrich and Anton Krohmer

Friedrich-Schiller-Universität Jena, Germany

Abstract. Finding cliques in graphs is a classical problem which is in
general NP-hard and parameterized intractable. However, in typical ap-
plications like social networks or protein-protein interaction networks,
the considered graphs are scale-free, i.e., their degree sequence follows a
power law. Their specific structure can be algorithmically exploited and
makes it possible to solve clique much more efficiently. We prove that
on inhomogeneous random graphs with n nodes and power law expo-
nent γ, cliques of size k can be found in time O(n2) for γ ≥ 3 and in
time O(n exp(k4)) for 2 < γ < 3.

1 Introduction

The clique problem numbers among the most studied problems in theoretical
computer science. Its decision version calls for determining whether a given graph
with n vertices contains a clique of size k, i.e., a complete subgraph on k vertices.
It is one of Karp’s original NP-complete problems [16] and is complete for the
class W[1], the parameterized analog of NP [8]. Its optimization variant is a
classical example of a problem that is NP-hard to approximate within a factor
of n1−ε for any ε > 0 [11, 31]. Also, on Erdős-Rényi random graphs, the problem
is believed to be intractable in general, which is even used for cryptographic
schemes [15]. For all functions p, Rossman [27] presented an average-case lower
bound of ω(nk/4) on the size of monotone circuits for solving k-Clique.

The term “clique” was first used 1949 by Luce and Perry [19], to describe
a group of mutual friends in a social network. Since then, social networks, and
likewise the study thereof, increased tremendously. There exist numerous models,
most of them having in common a so-called scale-free behavior. This means that
there is a constant γ such that the fraction of nodes that have degree d is
proportional to d−γ . Besides social networks, many other real-world networks
are scale-free, too. Examples are the internet, citation graphs, co-author graphs,
protein-protein interaction networks and power supply networks [7, 20, 22].

It is therefore natural to study the clique problem on scale-free graphs. This
is not only of theoretical interest, as this question occurs in different application
domains. One example for this is bioinformatics. Here, cliques in protein-protein
interaction networks are sought in order to identify clusters of proteins that in-
teract tightly with each other [29]. Another bioinformatics example is the clus-
tering of large scale gene expression data using cliques [4]. A different direction
is internet marketing, where it is e.g. valuable to find large cliques on Facebook.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 659–668, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

660 T. Friedrich and A. Krohmer

We are interested in the complexity of the clique problem on inhomoge-
neous random graphs, where each node i has a weight wi and an edge {i, j}
is present independently with probability proportional to wiwj . This is a gen-
eralization of several scale-free random graph models like Chung-Lu [1, 2, 6],
Norros-Reittu [23], and generalized random graphs [30].

Our Results

The behavior of scale-free networks depends significantly on the exponent γ of
the power law degree distribution. If γ > 3, the expected maximal size of a clique
is constant [5, 13]. This implies that large cliques are very unlikely, but does not
imply a fast algorithm that always answers correctly. The difficulty is certifying
a negative answer. We prove the following theorem.

Theorem 1. The k-Clique problem can be solved in expected time O(n2) on
inhomogeneous random graphs with power law exponent γ ≥ 3.

All our algorithms are deterministic and always return the correct answer. Note
that the above theorem implies that k-Clique, which is NP-complete in general,
in this setting becomes avgP, which is the average-case analog of P [18].

On the other hand, many scale-free networks (e.g. the internet) have a power
law exponent γ with 2 < γ < 3 [21]. In this case, the expected maximal size of
a clique diverges [5, 13]. and there exists a giant component of polynomial size,
the core. The core is a subgraph that has a diameter of O(log logn) and contains
a dense Erdős-Rényi graph [6, 30]. As this is a known hard problem, we cannot
expect similarly good results as for γ ≥ 3. We prove the following theorem.

Theorem 2. The k-Clique problem can be solved in time O(n exp(k4)) with
overwhelming1 probability on inhomogeneous random graphs with power law ex-
ponent 2 < γ < 3.

While in general k-Clique is not believed to be parameterized tractable, i.e.
in FPT, the above theorem shows that in this setting k-Clique is typically
parameterized tractable, i.e. in typFPT, which is an average-case analog of FPT
as defined in [9].

Related Work

Much previous research on cliques in random graphs focuses on Erdős-Rényi
random graphs [12]. Rossman [26, 27, 28] provides lower bounds for solving the
problem where he uses bounded-depth Boolean circuits and unbounded-depth
monotone circuits as the computation model. Using a greedy approach, a clique
of size logn can be found in a G(n, 1

2) [10], whereas Jerrum [14] showed that one
cannot use the Metropolis algorithm to find cliques of size (1+ε) logn in G(n, 1

2),

1 We use the terms high probability for probability 1 − o(1), negligible probability for
probability 1/f(n), and overwhelming probability for probability 1 − 1/f(n), where
f(n) is any superpolynomially increasing function.

Parameterized Clique on Scale-Free Networks 661

and Peinado [24, 25] proved that several randomized algorithms are also bound
to fail on this problem. Kučera [17] shows that a planted clique (i.e., a clique
which is explicitly added after drawing a random graph) of size Ω(

√
n logn) is

easy to find in the G(n, 1
2), and Alon et al. [3] further improve this bound to

Ω(
√
n).

The inspiration for our work was Fountoulakis et al. [9]. They introduce an
average-case analog of FPT and show that the k-Clique problem on G(n, p)
can be solved for all edge probabilities p(n) in expected FPT-time and in FPT-
time with high probability. Janson et al. [13] also showed that on Norros-Reittu
random graphs [23] a simple algorithm with access to the weights of the model
can find a (1− o(1))-approximation of maximum clique in polynomial time with
high probability.

2 Preliminaries

In order to achieve high general validity, we use the inhomogeneous random
graph model of van der Hofstad [30], which generalizes the models of Chung-Lu
[1, 2, 6] and Norros-Reittu [23] as well as the generalized random graphs. The
model has two adjustable parameters: the exponent of the scale-free network γ
and the average degree a. Depending on these two parameters, each node i has
a weight wi. This determines the edge probability pij := Pr[{i, j} ∈ E], which
should be set proportional to wiwj .

Weights wi. A simple way to fix the weights would be for example wi =

a(n/i)
1

γ−1 . However, we aim for a more general setting and proceed differ-
ently. Given the weights wi, we can use the empirical distribution function
Fn(w) = 1

n

∑n
i=1 � [wi ≥ w]. This gives us Fn(w) = Pr[W ≥ w], where W is

a random variable chosen uniformly from the weights w1, . . . , wn. Instead of
fixing wi, it is now easier to start from Fn(w) and assume the following.

Definition 1 (Power-Law Weights). We say that an empirical distribution
function Fn(w) follows the power law with exponent γ, if there exist two positive
constants α1, α2 such that

α1w
−γ+1 ≤ Fn(w) ≤ α2w

−γ+1.

Then, we require that weights w1, . . . , wn have the empirical distribution func-
tion Fn(w). Following van der Hofstad [30], we moreover require that the empir-
ical distribution function Fn satisfies the following properties.

Definition 2 (Regularity Conditions for Vertex Weights).

(1) Weak convergence of vertex weights. There exists a function F such
that limn→∞ Fn(x) = F (x).

(2) Convergence of average vertex weight. Let Wn and W have distribu-
tion functions Fn and F , respectively. Then, limn→∞ E[Wn] = E[W] holds.
Furthermore, E[W] > 0.

662 T. Friedrich and A. Krohmer

The regularity of Fn guarantees that the intuition Fn(w) = Pr [W ≥ w] indeed
holds. Furthermore, it guarantees that the average degree in the inhomogeneous
random graphs converges, and that the largest weight is asymptotically bounded
by o(n), i.e. maxi∈{1,...,n} wi = o(n). Both assumptions are sufficient to generate
a scale-free network. [30]

Edge Probability pij. Other inhomogeneous random graph models use the fol-
lowing definitions:

pij = min
{

wiwj∑
n
k=1 wk

, 1
}

(Chung-Lu)

pij =
wiwj∑n

k=1 wk+wiwj
(Generalized Random Graph)

pij = 1− exp
{
− wiwj∑n

k=1 wk

}
(Norros-Reittu)

We use a more general approach and only assume the following.

Definition 3. We call pij the edge probability between nodes i and j of the
inhomogeneous random graph, if it is 0 for i = j, and otherwise fulfills

pij = O
(wiwj

n

)
and pij = Ω

(
wiwj

n+ wiwj

)
.

In order to see that this is a generalization of all aforementioned scale-free
random graph models, we observe that when γ ≥ 2, wmin = Θ(1) and
w−γ+2

min > w−γ+2
max and compute

n∑
k=1

wk = n · E[W] = n ·
∫ wmax

wmin

Fn(w) dw = Θ(n · w−γ+2
min) = Θ(n). (1)

It is useful to observe that the expected degree of each vertex can be asymptot-
ically upper bounded by its weight:

E [deg(i, G)] =

n∑
j=1

pij = O
(wi

n

n∑
j=1

wj

)
= O(wi) (2)

This bound is in fact tight, as shown by the following lemma. The proof is
omitted due to space limitations.

Lemma 1. E [deg(i, G)] = Θ(wi) for γ ≥ 2.

Notation. We use GSF (γ) to refer to the probability space of inhomogeneous
random graphs that were created as described above, and G to represent a graph
drawn from GSF (γ). By deg(v,G) we refer to the degree of a node v in a graph
G. We expect the nodes to be ordered from smallest to greatest weight. Finally,
we use the induced subgraph Gi := G[i, . . . , n] that describes an inhomogeneous
random graph G ← GSF where nodes 1, . . . , i − 1 have been removed from the
vertex set.

Parameterized Clique on Scale-Free Networks 663

3 Analysis for Power Law Exponent γ ≥ 3

In this section, we describe an algorithm to solve the clique problem in O(n2)
on average whenever the scale-free network exhibits an exponent of γ ≥ 3.

Greedy Algorithm. We exploit the scale-free structure by processing low-degree
nodes first. The algorithm repeats the following steps: Choose a node v with
minimum degree. If there is a (k − 1)-subset of neighbors of v that is a clique,
return the resulting k-clique. Otherwise, remove v from the graph. This implies
that when the algorithm reaches the high-degree nodes, the graph is almost
empty, which means that those nodes are of small degree, too. We use adjacency
lists to store the edges. A careful implementation then allows finding a node
with minimum degree in expected amortized constant time: An array of length
n stores in each position i all nodes of degree i. By memorizing an index in the
array, one can extract the currently smallest degree node in constant time. As
removing a node from the graph means removing the node from the array and
all adjacency lists of its neighbors, the overall runtime for updating the graph is
proportional to the sum of all degrees. By equation (2), this is O(n). We show
that the greedy algorithm has an expected runtime of O(n2).

Weight Algorithm. The difficulty in the analysis of the greedy algorithm is that
the node with the smallest degree may not have the smallest weight, and vice
versa.We therefore take a slight detour and analyze another approach, the weight
algorithm. We prove in the following Lemma 2 that it is at mostO(n) faster than
the greedy algorithm. The weight algorithm works like the greedy algorithm,
the only difference being that instead of taking the node with smallest degree,
it chooses a node v with minimum weight wv. This makes it more practical for
bounding the runtime. As we only use the weight algorithm for our analysis, it
does not matter that the weights are not available for real networks.

Lemma 2. On all inputs, the greedy algorithm is at most a factor of O(n) slower
than the weight algorithm.

Proof. Consider a graph G = (V,E) and let nodes v1, . . . , vn be ordered as
they are processed by the greedy algorithm. Let dmax be the largest degree
that occurs during the greedy algorithm, and let t be an iteration in which
this happens. Then, using some constant c, we can upper bound the runtime
of this algorithm by Tgreedy = c · n ·

(
dmax

k−1
)
· (k − 1)2. Therefore, by definition,

the subgraph Gt = G[vt, . . . , vn] of graph G has minimum degree dmax, and the
weight algorithm needs at least

(
dmax

k−1
)
· (k− 1)2 time for processing a node from

this subgraph.

We now examine the expected degree of a node i in the weight algorithm, when
the processed nodes 1, . . . , i− 1 were already removed from the graph.

Lemma 3. Let G = (V,E) be a random graph drawn from GSF (γ), where γ ≥ 3,
and let Gi = G[i, . . . , n]. Then, we have

E [deg(i, Gi)] = O(1).

664 T. Friedrich and A. Krohmer

Proof. We use the indicator variable �[{i, j} ∈ E], which attains value 1 if {i, j}
is an edge and 0 otherwise. Whenever possible, we hide constants in O(1).

E [deg(i, Gi)] =
n∑

j=i+1

E [�[{i, j} ∈ E]] =
n∑

j=i+1

pij = O
(wi

n

n∑
j=1

wj · �[wj > wi]
)

We now use the random variable W as described in equation (1), yielding

E [deg(i, Gi)] = O
(
wi · E [W · �[W ≥ wi]]

)
= O

(
wi · E [W |W ≥ wi] · Pr[W ≥ wi]

)
= O

(
wi · Fn(wi) ·

∫ wn

w1

Pr[W ≥ w |W ≥ wi] dw
)
.

To determine the probability that a weightW drawn uniformly at random admits
W ≥ w given that W ≥ wi holds, we distinguish two cases:

(1) w ≤ wi: Since we know that W ≥ wi, it is also larger than w.

(2) w > wi: The conditional probability simplifies to Pr[W≥w]
Pr[W≥wi]

= Fn(w)
Fn(wi)

.

This simplifies the integral and yields

E [deg(i, Gi)] = O
(
wi · Fn(wi) ·

(∫ wi

w1

1 dw +

∫ wn

wi

Fn(w)

Fn(wi)
dw

))
= O

(
wi(wi − w1) · Fn(wi) +

wi

−γ + 2

[
w−γ+2

]wn

wi

)
= O(w−γ+3

i).

For γ ≥ 3, this term is constant, as the weights wi are in Ω(1).

For proving Theorem 1, it remains to show that the processed nodes are very
unlikely to have high degrees during the course of the weight algorithm.

Proof of Theorem 1. Let Tgreedy and Tweight be the running time of the greedy
and the weight algorithms, respectively. The runtime for processing node i in
the weight algorithm is denoted by Ti.

The number of (k − 1)-subsets of vertices a node with x neighbors allows
is

(
x

k−1
)
≤ 2x, and the time needed to check whether a subset is a clique is

(k− 1)2 ≤ x2. For the expected degree of node i we write μi. Thus, we can write

E[Tgreedy] = O(n · E [Tweight]) = O
(
n

n∑
i=1

E [Ti]

)

= O
(
n

n∑
i=1

n∑
x=1

(
x

k − 1

)
· (k − 1)2 · Pr [deg(i, Gi) = x]

)

= O
(
n

n∑
i=1

n∑
x=1

2xx2 · Pr
[
deg(i, Gi) ≥

(
1 +

(
x

μi
− 1

))
μi

])
.

Parameterized Clique on Scale-Free Networks 665

By Lemma 3, μi is constant. Applying a Chernoff bound gives

E[Tgreedy] = O
(
n

n∑
i=1

n∑
x=1

2xx2 ·
(
exp

(
x

μi
− 1

)/(
x

μi

)x/μi
)μi

)

= O
(
n

n∑
i=1

∞∑
x=1

(2eμi)
xx2−x

)
.

Since the inner sum converges to a constant, E[Tgreedy] = O(n2).

4 Analysis for Power Law Exponent γ ∈ (2, 3)

Using the greedy algorithm of the previous section for this case would imply a su-
perpolynomial runtime of poly(n)k since the neighborhood sizes in the algorithm
increase with n. This only yields the result that k-Clique is in expectation in
the parameterized class XP [8]. We therefore have to apply a third algorithm to
prove a better result. Instead of hoping that there will be few edges and therefore
cliques, we hope that the probability that the core contains a k-clique is high.
However, this approach is only feasible for small values of k. This shows that
k-Clique is parameterized tractable for the parameter k with high probability.

Partitioning Algorithm. To find a k-clique, the partitioning algorithm first
removes all nodes with degree below

√
n/ log logn. The obtained subgraph

G′ = (V ′, E′) is arbitrarily partitioned into components of size k. Each com-
ponent is then individually checked to determine if it is a clique. If no clique is
found, the algorithm searches exhaustively all k-subsets of V . It is easy to see
that this algorithm is correct.

We now want to prove that when k is small, the exhaustive search is triggered
only with negligible probability. For this, we first show that there are polynomi-
ally many nodes in V ′ and that their mutual edge probabilities are ≥ 1/ logn.
We then use this to prove that one of the partitions is likely to be a clique.
Note that a slightly larger threshold like

√
n would yield an edge probability of

1 − o(1), but the core V ′ is then empty if γ is close to 3. The chosen thresh-
old

√
n/ log logn is therefore more suitable for our analysis. As in the previous

section, the analysis would be much easier if, when choosing V ′, the algorithm
was allowed to choose the nodes according to their weight, but unfortunately it
only has access to their degree in the given graph. We do know, however, that
the weight and the expected degree of a node are equal up to a constant. Using
that, we can prove the two following lemmas:

Lemma 4 (Partitioning algorithm keeps polynomially many nodes).
Let γ ∈ (2, 3), and G = (V,E) be a scale-free graph drawn from GSF (γ). Then,

Pr
[
∃i > n− n

3−γ
2 : deg(i, G) <

√
n/ log logn

]
≤ exp

(
−Θ(

√
n)
)
.

666 T. Friedrich and A. Krohmer

Lemma 5 (Partitioning algorithm keeps only high-weight nodes). Let
γ ∈ (2, 3), and G = (V,E) be a scale-free graph drawn from GSF (γ). Then,

Pr
[
∃i ∈ V ′ : wi <

√
α1n/ logn

]
≤ exp

(
−Θ(n

1
3)
)
.

Both proofs will be given in the full version of the paper. It remains to show
that the partitioning algorithm needs more than k2n time only with negligible
probability, if k is small enough. The idea is that the core V ′ of the scale-free
network has larger edge probabilities than a dense Erdős-Rényi random graph,
which is known to allow finding cliques fast [9].

Proof of Theorem 2. If k > log
1
3 n, then n < ek

3

, which implies that the exhaus-
tive search of the partitioning algorithm runs in time nk < ek

4

and proves the

claim. We can therefore assume k ≤ log
1
3 n.

As excluding unlikely events does not affect small failure probabilities, we can
condition on the statements of Lemmas 4 and 5 and assume that there are more
than n

3−γ
2 nodes in V ′ and all nodes in V ′ have weight ≥

√
α1n/ logn. This

implies that wiwj ≥ α1n
logn and the edge probability between nodes i, j ∈ V ′ is

pij = Ω

(
wiwj

n+ wiwj

)
= Ω

(
1

logn

)
.

By choosing g(n) = log logn−Θ(1)
logn suitably, we can write the edge probability as

p := pij ≥ n−g(n).

A k-partition is a k-clique with probability ≥ p(
k
2). The probability of not

finding a clique before the exhaustive search is thus

≤
(
1− p(

k
2)
)⌊

n
3−γ
2 /k

⌋
≤ exp

(
−
⌊
n

3−γ
2

k

⌋
p(

k
2)

)

≤ exp

(
− n

3−γ
2

2k
p(

k
2)

)
= exp

(
− n

3−γ
2 −g(n)(

k
2)

2k

)
,

since we have k ≤ log
1
3 n ≤ n

3−γ
2 /2 for large n and therefore �p1(n)/k� ≥

p1(n)/k − 1 ≥ p1(n)/(2k).

Since k ≤ log
1
3 n, we can also assume that k ≤

√
(3 − γ)/(10 g(n)) holds

for large n. Similarly, we have that k ≤ n
3−γ
20 /2. Then, we obtain

(
k
2

)
g(n) ≤

(3 − γ)/10 and thus 3−γ
2 − g(n)

(
k
2

)
≥ 3−γ

10 . Therefore n
3−γ
2 −g(n)(

k
2) ≥ n

3−γ
10 .

Hence, as 2k < n
3−γ
20 , it follows that the probability of doing the exhaustive

search is ≤ exp
(
−n 3−γ

20

)
.

5 Conclusion

Social networks are becoming ubiquitous. There is a significant body of research
on the structural properties of such networks, but very little on how this can

Parameterized Clique on Scale-Free Networks 667

be exploited algorithmically. We have shown that for scale-free networks with
n nodes and power-law exponent γ, the notoriously hard k-Clique problem
becomes parameterized tractable for 2 < γ < 3 (runtime O(n exp(k4))) and
even polynomial time solvable for γ ≥ 3 (runtime O(n2)). In the future, we plan
to improve the latter runtime bound for the greedy algorithm, as well as examine
other NP-hard combinatorial problems (e.g. from bioinformatics) on scale-free
networks.

Acknowledgements. We thank Jiong Guo and Danny Hermelin for helpful dis-
cussions. This work is part of the project “Average-Case Analysis of Parameter-
ized Problems and Algorithms (ACAPA)” of the German Research Foundation
(DFG).

References

[1] Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: 32nd
Symp. Theory of Computing (STOC), pp. 171–180 (2000)

[2] Aiello, W., Chung, F., Lu, L.: A random graph model for power law graphs.
Experimental Mathematics 10(1), 53–66 (2001)

[3] Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random
graph. In: 9th Symp. Discrete Algorithms (SODA), pp. 594–598 (1998)

[4] Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. Journal
of Computational Biology 6(3-4), 281–297 (1999)

[5] Bianconi, G., Marsili, M.: Number of cliques in random scale-free network ensem-
bles. Physica D: Nonlinear Phenomena 224(1-2), 1–6 (2006)

[6] Chung, F., Lu, L.: Connected components in random graphs with given expected
degree sequences. Annals of Combinatorics 6(2), 125–145 (2002)

[7] Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical
data. SIAM Review 51(4), 661–703 (2009)

[8] Fellows, M.R., Downey, R.G.: Parameterized Complexity. Springer (1998)
[9] Fountoulakis, N., Friedrich, T., Hermelin, D.: On the average-case complexity of

parameterized clique (unpublished manuscript)
[10] Grimmett, G.R., McDiarmid, C.J.H.: On colouring random graphs. Mathematical

Proceedings of the Cambridge Philosophical Society 77(02), 313–324 (1975)
[11] H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182(1),

105–142 (1999)
[12] Janson, S., �Luczak, T., Rucinsky, A.: Random Graphs. John Wiley & Sons (2000)
[13] Janson, S., �Luczak, T., Norros, I.: Large cliques in a power-law random graph. J.

Appl. Probab. 47(4), 1124–1135 (2010)
[14] Jerrum, M.: Large cliques elude the metropolis process. Random Structures &

Algorithms 3(4), 347–360 (1992)
[15] Juels, A., Peinado, M.: Hiding cliques for cryptographic security. Designs, Codes

And Cryptography 20(3), 269–280 (2000)
[16] Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-

puter Computations, pp. 85–103. Plenum Press (1972)
[17] Kučera, L.: Expected complexity of graph partitioning problems. Discrete Applied

Mathematics 57(2-3), 193–212 (1995)

668 T. Friedrich and A. Krohmer

[18] Levin, L.A.: Average case complete problems. SIAM Journal on Computing 15(1),
285–286 (1986)

[19] Luce, R., Perry, A.: A method of matrix analysis of group structure. Psychome-
trika 14(2), 95–116 (1949)

[20] Mitzenmacher, M.: A brief history of generative models for power law and lognor-
mal distributions. Internet Mathematics 1(2), 226–251 (2004)

[21] Newman, M.E.J.: The structure and function of complex networks. SIAM Re-
view 45(2), 167–256 (2003)

[22] Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemporary
Physics 46(5), 323–351 (2005)

[23] Norros, I., Reittu, H.: On a conditionally Poissonian graph process. Advances in
Applied Probability 38(1), 59–75 (2006)

[24] Peinado, M.: Hard graphs for the randomized Boppana-Halldórsson algorithm for
maxclique. Nordic Journal of Computing 1(4), 493–515 (1994)

[25] Peinado, M.: Go with the winners algorithms for cliques in random graphs. In:
12th Intl. Symp. Algorithms and Computation (ISAAC), pp. 525–536 (2001)

[26] Rossman, B.: On the constant-depth complexity of k-clique. In: 40th Symp. Theory
of Computing (STOC), pp. 721–730 (2008)

[27] Rossman, B.: The monotone complexity of k-clique on random graphs. In: 51st
Symp. Foundations of Computer Science (FOCS), pp. 193–201 (2010a)

[28] Rossman, B.: Average-case complexity of detecting cliques. PhD thesis, Mas-
sachusetts Institute of Technology (2010b)

[29] Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular
networks. Proceedings of the National Academy of Sciences 100(21), 12123–12128
(2003)

[30] van der Hofstad, R.: Random graphs and complex networks (2009),
http://www.win.tue.nl/~rhofstad/NotesRGCN.pdf

[31] Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing 3(1), 103–128 (2007)

http://www.win.tue.nl/~rhofstad/NotesRGCN.pdf

Multi-unit Auctions with Budgets

and Non-uniform Valuations

H.F. Ting and Xiangzhong Xiang

Department of Computer Science, The University of Hong Kong, Hong Kong
{hfting,xzxiang}@cs.hku.hk

Abstract. This paper proposes and studies a model of multi-unit auc-
tion that allows each bidder to specify a budget and a quantity con-
straint. The budget tells the auctioneer how much a bidder is willing to
pay and the quantity constraint specifies the maximum number of items
he wants. Unlike previous studies, which assume uniform valuation (i.e.,
the value of an item to a bidder is fixed, no matter how many items are
allocated to him), we assume that the total value of the items allocated
to a bidder stops increasing, or may even start to decrease, if the number
of items exceeds his acceptable quantity. We give an auction mechanism
for this model and prove that when the budgets and the quantity con-
straints are publicly known, then our mechanism is Pareto Optimal and
Incentive Compatible. On the other hand, we show that if the quantity
constraints are private, then no mechanism can be both Pareto Optimal
and Incentive Compatible, even if the budgets are public. We also study
the revenue generated by our mechanism.

1 Introduction

In this paper, we study the allocational efficiency of multi-unit auction, in which
individual bidders may bid for more than one items. A famous example of such
auction is the Dutch flower auction. It has also found applications in auctioning
goods such as Treasury bills and radio spectrum licences. A more recent exam-
ple is Google’s auction for TV Ads [11], in which a bidder selects shows, times,
and days he wishes to advertise on, and then bids for time slots for showing
his advertisement. Ausubel [4] was the first to study the allocational efficiency
of such auction. He proposed an interesting ascending auction mechanism, now
commonly known as Ausubel’s Clinching Auction, and proved that under a rea-
sonable assumption, namely the bidders have downward sloping demand curves,
his mechanism yields exactly the VCG prices and is thus incentive compatible.
It should be noted that Ausubel’s Clinching Auction has been used in the FCC
spectrum auctions [3, 4, 10].

In [7], Dobzinski, Lavi and Nisan observed that bidders usually have budgets
on their payments to the auction, but these budgets constraints were not ade-
quately considered in previous studies on multi-unit auction. As a consequence,
when implementing the auctions from these studies, a mismatch between the-
ory and practice emerged immediately. Hence, they proposed and studied the
following model of multi-unit auction with budget constraints :

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 669–678, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

670 H.F. Ting and X. Xiang

There is a set of identical items for bidding. For every bidder i, if x items
are allocated to i, these x items have a total value of Vi(x) to i. It is
assumed that each item has a uniform value vi to i, and Vi(x) = x · vi.
Bidder i also has a budget limit bi, and if i is charged a price of pi for
the x items allocated to him, the utility for i is Vi(x)−pi if pi is no more
than i’s budget bi, and −∞ otherwise. Every bidder wants to maximize
his utility.

Dobzinski et al. [8] concentrated on two properties related to allocational effi-
ciency, namely Incentive-compatible, which encourages bidders to reveal their
true values and budgets, and Pareto-optimal, which ensures that it is impossible
to strictly improve the utility of some bidder without hurting those of others.
They proposed an adaptive version of Ausubel’s Clinching auction mechanism for
their model, and proved that when the budgets of all bidders are publicly known
(or equivalently, when every bidder always tells the auctioneer its true bud-
get), this mechanism is pareto-optimal and incentive-compatible. Furthermore,
they proved that the mechanism is the unique mechanism which simultaneously
satisfies pareto-optimality and incentive-compatibility. On the other hand, they
proved that when bidders’ budgets are private, there is no incentive-compatible
auction that always produces a Pareto-optimal allocation.

We observe that although the introduction of budget constraints makes the
multi-unit auction model more realistic, its uniform valuation assumption is not
universally applicable. Recall that we assume Vi(x) = x · vi for every integer
x ≥ 0, no matter how large x is. However, in some applications, the marginal
value gained by a new item acquired will be diminished. For example, consider
an auction for used cars. Suppose someone wants to buy two cars for personal
use. Then the marginal value of the third car allocated to him is 0, or even
worse, may be negative. This motivates us to generalize the uniform valuation
assumption as follows:

Every bidder i has an acceptable quantity qi and a value per item vi. If
x ≤ qi items are allocated to i, the total value of these items is Vi(x) =
x · vi, as before. However, the total value stops increasing, or may even
start decreasing, when the number of items allocated to i reaches his
acceptable quantity qi.

In this paper, we study the multi-unit auction with budget constraints under
the above non-uniform valuation assumption. We prove that if the acceptable
quantity of every bidder is private, then even when the budgets are public,
there is no auction mechanism for our model that is both incentive-compatible
and Pareto-optimal. On the other hand, we extend Ausubel’s Clinching auction
mechanism for our model and prove that when both budgets and acceptable
quantities are publicly known, the mechanism is both incentive compatible and
Pareto-optimal.

We also consider the revenue of the adaptive clinching auction. The revenue
is compared to that of a non-discriminatory monopoly that knows the bud-
gets, demands and values of all bidders, and determines a single unit-price at

Multi-unit Auctions with Budgets and Non-uniform Valuations 671

which all items will be sold. Results show that the adaptive clinching auction
extracts a large fraction of the optimal monopoly revenue generally. Because
of the page limits, we move the discussion into the full version of this paper
(http://www.cs.hku.hk/~xzxiang/papers/mulauc.pdf).

Related Works. There are many work related to the multi-auction with bud-
get constraints model. In [9], Fiat et al. extended the model from the case of
multiple identical items to a combinatorial setting where items are distinct and
different bidders may be interested in different items. They gave an auction mech-
anism which is incentive compatible and achieves Pareto-optimality, under the
assumption that the sets of interests of the bidders are public knowledge. In [5],
Bhattacharya et al. showed that for one infinitely divisible good, a bidder cannot
improve her utility by under reporting her budget. This leads to a randomized,
truthful in expectation mechanism (of one infinitely divisible good) with private
budgets and private valuations. Bhattacharya et al. [6] also considered revenue
optimal Bayesian incentive compatible auctions with budgets.

It should be noted that there are also studies on the budget constraints for
the single-unit auction. Aggarwal et al. [1], and independently Ashlagi et al. [2]
gave incentive compatible auctions for this model with budgets constraints.

2 Preliminaries

In the auction, there are m identical items and n bidders. Each bidder i has a
non-uniform valuation function Vi(x) for x items. When x is no greater than
bidder i’s acceptable quantity constraint qi, Vi(x) is x ·vi; when x is no less than
qi, Vi(x) is a non-increasing function of x. In other words, the marginal value of
each item for bidder i is vi if x ≤ qi and non-positive if x > qi. Each bidder also
has a budget bi on his payment.

An allocation of the auction is a vector of quantities (x1, . . . , xn) and a vector
of payments (p1, . . . , pn). We define feasible allocation as follows:

Definition 21. An allocation {(xi, pi)} is a feasible allocation if it satisfies the
following properties:

1. (Feasibility) xi ∈ N and
∑

i xi ≤ m.
2. (Indivisible Rationality) pi ≤ Vi(xi) and

∑
pi ≥ 0.

3. (Budget Limit) pi ≤ bi.

We define the utility of bidder i in an allocation {(xi, pi)} as ui = Vi(x) − pi, if
pi ≤ bi; otherwise, ui is defined as −∞. In the auction, every bidder always aims
at getting as high utility as possible. Wlog, we assume the sum of all quantity
constraints is large enough, i.e.

∑
i qi ≥ m.

Definition 22. A mechanism is incentive compatible if for every v1, . . . , vn,
b1, . . . , bn and q1, . . . , qn and every possible manipulation v′i, b

′
i and q′i, we have

that ui = Vi(xi) − pi ≥ Vi(x
′
i) − p′i = u′i, where (xi, pi) are the allocation and

payment of i for input (vi, bi, qi) and (x′i, p
′
i) are the allocation and payment of i

http://www.cs.hku.hk/~xzxiang/papers/mulauc.pdf

672 H.F. Ting and X. Xiang

for input (v′i, b
′
i, q
′
i). A mechanism is incentive compatible for the case of publicly

known budgets and quantity constraints if for any v′i and fixed b′i = bi, q
′
i = qi,

the above definition holds.

Definition 23. An allocation {(xi, pi)} is Pareto-optimal if there is no other
allocation {(x′i, p′i)} such that u′i = Vi(x

′
i) − p′i ≥ Vi(xi) − pi = ui for all i, and∑

i p
′
i ≥

∑
i pi, with at least one of the inequalities strict.

In our multi-unit auction model, Pareto optimality is equivalent to a “no trade”
condition: no bidder can resell the items he received to other bidders and make
a profit. Rename all bidders such that v1 ≥ v2 ≥ . . . ≥ vn.

Lemma 24. An allocation {(xk, pk)} is Pareto-optimal if and only if (a) for
any k, xk ≤ qk, and (b)

∑
1≤k≤n xk = m, and (c) for any 1 ≤ i, j ≤ n such that

vi > vj and xj > 0, we have either xi = qi or bi − pi < vj.

Proof. The proof could be found in the full version of this paper.

3 The Adaptive Clinching Auction

In this section, we revise the adaptive clinching auction in [7] for model, and
prove its allocation is individual rational (IR), incentive compatible (IC) and
Pareto optimal (PO), when budgets and quantity constraints are publicly known.

The auction keeps for each bidder i the current number of items xi which is
already allocated to i, the current payment pi, the remaining budget Bi = bi−pi
and the remaining quantity constraint Qi = qi − xi. The auction also keeps the
global unit-price p and the remaining number of available items M (M is initially
equal to m and p is zero). The price p ascends gradually as long as the total
demand of all bidders at price p is strictly larger than the total supply M . We
define the demand of bidder i at price p by:

Di(p) =

{
min(�Bi

p �, Qi) p < vi
0 otherwise

It is obvious that the above demand functions are not continuous. In particular,
there are change points: when the price reaches the remaining budget Bi, and
when the price reaches the value vi. The former point is identified by using
D+

i (p) = limt→p+ Di(t) as, for p = Bi and Qi > 0, we have Di(p) > 0 and
D+

i (p) = 0. The latter point is identified by using: D−i (p) = limt→p− Di(t) as,
for p = vi ≤ Bi and Qi > 0, we have Di(p) = 0 and D−i (p) > 0.

Below we describe the Adaptive Clinching Auction:

1. Initialize all variables appropriately.
2. While

∑
iD

+
i (p) > M ,

(a) If ∃ i such that D+
−i(p) =

∑
j �=i D

+
i (p) < M , allocate M −D+

−i(p) items
to bidder i for a unit price p. Update all running variables and repeat.

(b) Otherwise increase the price p, recompute the demands, and repeat.

Multi-unit Auctions with Budgets and Non-uniform Valuations 673

3. Otherwise (
∑

iD
−
i (p) ≥M ≥

∑
i D

+
i (p)):

(a) For each bidder i with D+
i (p) > 0, allocate D+

i (p) units to bidder i for
a unit-price p and update all variables.

(b) While M > 0 and there exists a bidder i with Di(p) > 0, allocate
min{Di(p),M} units to bidder i for a unit-price p and update all vari-
ables.

(c) While M > 0 and there exists a bidder i with D−i (p) > 0, allocate
min{D−i (p),M} units to bidder i for a unit-price p.

(d) Terminate.

Recall that bidder i has budget bi and quantity constraint qi. For simplicity, we
introduce some new notations:

– P (t): The current price in the auction at time t.
– xi(t): The number of all items that have already been allocated to bidder i

at time t.
– pi(t): The total payment that bidder i has already paid at time t.

Assume bidder i gets some items just before time t. Define marginal utility
mui(t) as the utility of the latest item bidder i gets. Note that when xi(t) > qi,
the marginal value of that item is non-positive which implies its marginal utility
is negative. So:

mui(t) =

{
vi − P (t) xi(t) ≤ qi and pi(t) ≤ bi
negative otherwise

Fact 31. If one bidder i gets some items in step 3c just before time t, then
P (t) = vi.

Proof. As i is allocated some items in step 3c, we knowM > 0 andD−i (P) > 0 at
the beginning of 3c. (We use P to denote P (t) for simplicity as price is unchanged
it step 3.) So it is also true that M > 0 at the end of step 3b. We can claim that
Di(P) must be 0 at the end of step 3b. Otherwise, as M > 0 and Di(P) > 0,
the iteration in 3b would not end. Now we know Di(P) = 0 and D−i (P) > 0 at
the beginning of 3c. This can only happen when P = vi.

Lemma 32. mui(t) ≥ 0 if and only if P (t) ≤ vi.

Proof. If mui(t) ≥ 0, it is trivial that vi − P (t) ≥ 0. We only need to prove
that if P (t) ≤ vi then mui(t) ≥ 0, which is equivalent to that if P (t) ≤ vi then
xi(t) ≤ qi and pi(t) ≤ bi. Use x to denote the number of items newly allocated
to bidder i just before time t. We consider two cases:

Case 1: x items are allocated to bidder i in step 2a, 3a or 3b.

– If this happens in 2a, x = M −
∑

j �=i D
+
i (P). As

∑
iD

+
i (P) > M , x <

D+
i (P) ≤ Di(P).

– In 3a, x = D+
i (P) ≤ Di(P).

– In 3b, x ≤ Di(P).

674 H.F. Ting and X. Xiang

Above all, i gets at most Di(P) new items just before time t. Assume i gets these
x items just after time t− ε. Then: xi(t) = xi(t− ε) + x ≤ xi(t− ε) +Di(P) =

xi(t − ε) + min
(
� bi−pi(t−ε)

P �, qi − xi(t− ε)
)
≤ xi(t − ε) + (qi − xi(t− ε)) =

qi, and pi(t) = pi(t − ε) + x · P ≤ pi(t − ε) + Di(P) · P = pi(t − ε) +

min
(
� bi−pi(t−ε)

P �, qi − xi(t− ε)
)
· P ≤ pi(t − ε) +

(
bi−pi(t−ε)

P

)
· P = bi. Note

that xi(t) and pi(t) are monotonically increasing and xi(0) = 0, pi(0) = 0.
Case 2: x items are allocated to i in 3c. From Fact 31, this can only hap-

pen when P (t) = vi. As D−i (P) = limγ→v−
i
Di(γ) = limγ→v−

i
min(�Bi

γ �, Qi) =

min(�Bi

vi
�, Qi) = min(�Bi

P �, Qi) and x ≤ D−i (P), then x ≤ min(� bi−pi(t−ε)
P �, qi−

xi(t− ε)). Similar to case 1, we can prove that xi(t) ≤ qi and pi(t) ≤ bi.

Lemma 33. The adaptive clinching auction produces a feasible allocation and
makes sure that all bidders’ quantity constraints are not exceeded.

Proof. For a truthful bidder i, the auction can guarantee he only gets items
at price p ≤ vi. From lemma 32, the marginal utility of each clinched item is
non-negative. So at the end of the auction, the bidder’s budget and quantity
constraint are not exceeded, i.e., xi ≤ qi and pi ≤ bi. As i’s payment pi is the
sum of the price of each clinched item, pi ≤ xi · vi = Vi(xi). On the other hand,
as pi ≥ 0 for all i,

∑
i pi ≥ 0.

The above lemma implies Individual Rationality and that each truthful bidder
obtains a non-negative utility.

Lemma 34. The adaptive clinching auction satisfies Incentive Compatibility
(IC), i.e. a truthful bidder cannot increase his utility by declaring any value
different from his true value.

Proof. Observe that declaring a value in the auction means to decide the price
at which the bidder completely drops from the auction. By lemma 32, any item
clinched after price p = vi has strictly negative utility. So declaring ṽi > vi can
only decrease the total utility. Similarly, as any item clinched before or at price
p = vi has non-negative utility, declaring ṽi < vi can only decrease the total
utility.

Define D(p) =
∑

i Di(p) and define D+(p) and D−(p) similarly. It is obvious
that these functions are monotonically decreasing. For any continuity point of
D(p), D(p) = D+(p) = D−(p). We consider discontinuity point.

Fact 35. If p∗ is a discontinuity point of D(p) and D+(p) > M for any p < p∗,
then D−(p∗) > M .

Proof. D(p) is discontinued at point p∗. However, we can find a point p′ < p∗

such that D(p) is continual in the interval [p′, p∗). As D(p) =
∑

i Di(p), Di(p)
should also be continual in [p′, p∗) for any i. We compare D−i (p

∗) and D+
i (p
′):

D−i (p
∗) = lim

γ→p∗−
Di(γ) = lim

γ→p∗−
Di(p

′ + (γ − p′)) = lim
γ→p∗−

Di(p
′) = Di(p

′)

Multi-unit Auctions with Budgets and Non-uniform Valuations 675

D+
i (p
′) = lim

γ→p′+
Di(γ) = lim

γ→p′+
Di(p

′ + (γ − p′)) = lim
γ→p′+

Di(p
′) = Di(p

′)

The third equalities are true as p′ < p∗ and Di(p) is continual in the interval
[p′, p∗). So we know for all i, D−i (p

∗) = D+
i (p
′). Then D−(p∗) = D+(p′). As

p′ < p∗, we get D+(p′) > M , which implies D−(p∗) > M .

Lemma 36. The adaptive clinching auction always allocates all items.

Proof. Assume the auction enters step 3 at price p∗. D+(p∗) ≤M and p∗ must
be a discontinuity point of D(p).

Firstly, we would prove that D−(p∗) > M at the beginning of step 3. For
any p < p∗, at the beginning of step 2a we had D+(p) > M . In step 2a, for
any bidder i who is allocated x items at price p, D+

i (p) would decrease by x as
Bi ← Bi−x·p and Qi ← Qi−x.M also decreases by x. So D+(p) would decrease
by x and D+(p) > M still holds at the end of step 2a. After p is increased in
step 2b, we have D+(p) > M or D+(p) ≤ M . If D+(p) ≤ M , the auction enter
step 3 and the current price p is just the discontinuity point p∗ of D(p). Using
the above Fact, D−(p∗) > M at the beginning of step 3.

In step 3a, for any bidder i who is allocated x items at price p∗, D−i (p
∗) would

decrease by x as Bi ← Bi − x · p∗ and Qi ← Qi − x. The remaining number
of available items M also decreases by x. So D−(p∗) would decrease by x and
D−(p∗) > M still holds at the end of step 3a. Similarly, D−(p∗) > M at the end
of step 3b. In step 3c, while M > 0, allocate min{D−i (p∗),M} items to bidder
with D−i (p

∗) > 0. Because D−(p∗) > M , M must be 0 at the end of step 3c,
which implies all items are allocated.

Lemma 37. The adaptive clinching auction satisfies Pareto optimality (PO).

Proof. We would prove the lemma by checking the three conditions in lemma
24. First,

∑
i xi = m could be induced easily by lemma 36. All items would be

allocated. Secondly, lemma 33 shows all xi are no more than qi. It remains to
check condition (c). Use B′i = bi − pi and Q′i = qi − xi to denote the remaining
budget and quantity constraint of bidder i at the end of the auction respectively.
Fix an arbitrary bidder j who received at least one item. For any bidder i with
vi > vj , we need to prove that B′i < vj or Q′i = 0 at the end of the auction.
Consider the last price p at which j received his last item.

Firstly, assume p is not the price that ended the auction. In this case, j
received the last item in step 2a. As D+

j (p) �= 0, p < vj . After that, M ←
M − (M −D+

−j(p)). So M = D+
−j(p). Since all items were allocated and j did

not get any items any more, we get that each bidder i �= j received after the the
step exactly D+

i (p) items, his demand at the price p, at some price no less than
p. Consider two cases: (1) D+

i (p) > 0. Then D+
i (p) = min(limt→p+�Bi

t �, Qi).

If Qi ≤ limt→p+�Bi

t �, then Q′i = 0 at the end of the auction. Otherwise, the

remaining budget of i at the end of auction is: B′i ≤ Bi−limt→p+�Bi

t �·p ≤ p < vj .

(2) D+
i (p) = 0. As vi > vj > p, we get Bi ≤ p or Qi = 0. If Bi ≤ p, then

B′i = Bi < vj . If Qi = 0, then Q′i = 0. So it is always true that B′i < vj or
Q′i = 0 at the end of the auction.

676 H.F. Ting and X. Xiang

Now assume p is the price that ended the auction. We can get that bidder j
received his last item at price p in step 3 and vj ≥ p. We consider four cases
about bidder i’s demand at the beginning of step 3: (1) D+

i (p) > 0. He could
receive all his demand D+

i (p) in step 3a. Similar to the above argument, Q′i = 0
or B′i ≤ p. If vj > p, we can conclude Q′i = 0 or B′i ≤ p < vj . Otherwise
vj = p. Bidder j must get his last item in step 3c. In the special case Q′i > 0 and
B′i = p, i would get another item in step 3b (Di(p) = 1). After that, B′i ← 0.
So it is always true that B′i < vj or Q′i = 0 at the end. (2) D+

i (p) = 0 and
Di(p) > 0. This happens when p = Bi and Qi > 0. If i got one item (in step 3b),
B′i = Bi − �Bi

p � · p < p ≤ vj . Otherwise, M must be 0 at the beginning of step

3c and j got his last item in step 3a or 3b. So vj > p = B′i. (3) Di(p) = 0 and
D−i (p) > 0. This only happens when p = vi, contradicting with vi > vj ≥ p. (4)
D−i (p) = 0. Then p > vi or Bi < p or Qi = 0. p > vi cannot happen and Bi < p
implies B′i < p.

4 Impossibility Results

For multi-unit auctions with budgets and quantity constraints, we have designed
a mechanism which is individual rational, incentive compatible with respect to
value per item and Pareto-optimal. However, for any bidder i, we have made
several assumptions: (a) bi is public; (b) qi is public; (c) bidder must have uniform
value per item when allocated no more than qi items.

In this section, we talk about the possibility of removing these assumptions.
In [7], there is no quantity constraint and it has been proved that there is no
truthful, rational and Pareto-optimal auction with private budgets and valua-
tions. We will prove other assumptions are also necessary by contradiction.

Focus on multi-unit auction with two bidders 1, 2 and two items. Bidder 1’s
quantity constraint is one while bidder 2’s is two. Both v1 and v2 are positive.

Lemma 41. In any individual rational, incentive compatible and Pareto-optimal
clinching auction: if bidder 2 wins two items then the payment of bidder 1 p1
is 0.

Proof. Consider the special case when v1 = 0 and v2 > 0. By Pareto-optimality
of the auction, both of the two items have to be allocated to bidder 2. Otherwise
we could increase bidder 2’s utility by allocating more items to bidder 2 without
changing any payment. Because of incentive compatibility, bidder 2 should pay
p2 = 0. Otherwise, he would lower his reported value and still attain these two
items at a lower price. As the auctioneer rationality, p1 + p2 ≥ 0. So p1 ≥ 0. As
bidder rationality, 0− p1 ≥ 0 (bidder 1 wins no item). We get that p1 = 0 .

Now consider the case when v1 > 0 and v2 > 0. In any instance where
bidder 1 wins no item it must be that p1 = 0. This follows since by incentive
compatibility one’s payment cannot depend on his valuation. When bidder 1
reports a valuation of zero, he wins no item and p1 is zero; when bidder 1
reports v1 and wins no item, his payment should still be zero.

Multi-unit Auctions with Budgets and Non-uniform Valuations 677

Lemma 42. In any individual rational, incentive compatible and Pareto-optimal
clinching auction: if bidder 2 wins only one item then his payment p2 is 0.

Proof. Consider the special case when v1 > 0 and v2 = ε (ε is positive and small
enough). As in the previous proof, by Pareto-optimality, the auction has to assign
one item to bidder 1 and the other one to bidder 2. By incentive compatibility,
p1 = 0 otherwise bidder 1 would lower his reported valuation and still win one
item. As ε− p2 ≥ 0 and p1 + p2 ≥ 0, p2 = 0.

Now consider the case when v1 > 0 and v2 > 0. In any instance where bidder 2
wins one item, it must be that p2 = 0, this follows since by incentive compatibility
p2 cannot depend on v2 and p2 is zero when bidder 2 reports a valuation of ε.

Theorem 43. There is no individual rational, incentive compatible and Pareto-
optimal auction with public budgets, private valuations and quantity constraints.

Proof. We prove the theorem by contradiction. Assume there is such an auction
called A. Recall the uniqueness result of [7]:

Theorem 44 (Theorem 5.1 in [7]). Let A′ be a truthful, individual rational
and Pareto-optimal auction with 2 bidders with known budgets b1, b2 that are
generic. Then if v1 �= v2 the allocation produced by A′ is identical to that produced
by the clinch auction of [7].

Consider the case of two bidder 1, 2 and two items. Let q1 = 2 and q2 = 2.
Additionally, fix v1 = 5, v2 = 6, b1 = 4 and b2 = 5. There is no demand
constraint in [7]. However, in this case q1, q2 are equal to the total number of
available items. Then the allocation of A must coincide with the result of the
clinching auction in [7]. Bidder 2 wins one item at price of 2; bidder 1 wins the
other item at price of 3. x1 = 1, p1 = 3; x2 = 1, p2 = 2.

Consider a similar case where q1 = 1 instead of q1 = 2. We will argue that
A will not allocate any item to bidder 1 and p1 = 0. As A is Pareto-optimal,
both items will be allocated and bidder 1 wins at most one item; otherwise we
could increase bidder 2’s utility by allocating one more item to bidder 2 without
changing any payment. All possible allocations are as follows: Case 1: x1 = 1,
x2 = 1. By lemma 41, p2 = 0. In this case, bidder 2 can buy one item from
bidder 1 at price v1 and both of two bidders are better off (x′1 = 0, x′2 = 2,
p′1 = p1 − v1, p

′
2 = v1; u

′
1 = v1 − p1 = u1, u

′
2 = v2 + (v2 − v1) > v2 = u2). This

contradicts with the Pareto-optimality of A and this case is impossible. Case 2:
x1 = 0, x2 = 2. By lemma 42, p1 = 0. So case 2 is the only possible allocation,
bidder 1 will not be allocated any item and his payment is 0.

Now assume that bidder 1’s true quantity constraint is q1 = 1. If he reports
q1 truthfully, x1 = 0, p1 = 0 and his utility u1 = 0. If he lies and reports q1 as 2,
A would allocate him one item, x1 = 1, p1 = 3 and u1 = v1 − p1 = 2. Bidder 1
has incentive to lie in order to increase his utility. We can conclude that in any
individual rational, incentive compatible and Pareto-optimal multi-unit auction
A, bidder 1 has incentive to lie.

Throughout the paper, we assume that bidder i has uniform value per item vi
when allocated x ≤ qi items. A more general model is that bidder i has valuation

678 H.F. Ting and X. Xiang

vi,x for the x-th item when x ≤ qi (if vi,x is non-increasing, we say bidder i has
diminishing marginal valuations).

Corollary 45. There is no individual rational, incentive compatible and Pareto-
optimal multi-unit auction with public budgets, public quantity constraints and
private general valuations (even for diminishing marginal valuations).

Proof. This follows directly from Theorem 43. Consider the case where v1,1 = 5,
v1,2 = 0, v2,1 = v2,2 = 6; b1 = 4, b2 = 5; q1 = q2 = 2. (Note that bidders have
diminishing marginal valuations in this case.) As shown above, in any individual
rational, incentive compatible and Pareto-optimal multi-unit auction, bidder 1
has incentive to lie and report the value of the second item v1,2 as 5 instead of 0.

References

1. Aggarwal, G., Muthukrishnan, S., Pál, D., Pál, M.: General auction mechanism for
search advertising. In: Proceedings of the 18th International Conference on World
Wide Web, pp. 241–250. ACM (2009)

2. Ashlagi, I., Braverman, M., Hassidim, A., Lavi, R., Tennenholtz, M.: Position auc-
tions with budgets: Existence and uniqueness (2010)

3. Ausubel, L.M.: An efficient ascending-bid auction for multiple objects. The Amer-
ican Economic Review 94(5), 1452–1475 (2004)

4. Ausubel, L.M., Milgrom, P.: Ascending auctions with package bidding. Frontiers
of Theoretical Economics 1(1), 1–42 (2002)

5. Bhattacharya, S., Conitzer, V., Munagala, K., Xia, L.: Incentive compatible bud-
get elicitation in multi-unit auctions. In: Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 554–572. Society for Indus-
trial and Applied Mathematics (2010)

6. Bhattacharya, S., Goel, G., Gollapudi, S., Munagala, K.: Budget constrained auc-
tions with heterogeneous items. In: Proceedings of the 42nd ACM Symposium on
Theory of Computing, pp. 379–388. ACM (2010)

7. Dobzinski, S., Lavi, R., Nisan, N.: Multi-unit auctions with budget limits. In: 2008
49th Annual IEEE Symposium on Foundations of Computer Science, pp. 260–269.
IEEE (2008)

8. Dobzinski, S., Lavi, R., Nisan, N.: Multi-unit auctions with budget limits. Games
and Economic Behavior (2011)

9. Fiat, A., Leonardi, S., Saia, J., Sankowski, P.: Single valued combinatorial auc-
tions with budgets. In: Proceedings of the 12th ACM Conference on Electronic
Commerce, pp. 223–232. ACM (2011)

10. Milgrom, P.: Putting auction theory to work: The simultaneous ascending auction.
Journal of Political Economy 108(2), 245–272 (1999)

11. Nisan, N., Bayer, J., Chandra, D., Franji, T., Gardner, R., Matias, Y., Rhodes, N.,
Seltzer, M., Tom, D., Varian, H., et al.: Googles auction for tv ads. In: Automata,
Languages and Programming, pp. 309–327 (2009)

Efficient Computation of Power Indices for Weighted
Majority Games

Takeaki Uno

National Institute of Informatics
2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

uno@nii.jp

Abstract. Power indices of weighted majority games are measures of the effects
of parties on the voting in a council. Among the many kinds of power indices,
the Banzhaf index, the Shapley–Shubik index, and the Deegan–Packel index have
been studied well. For computing these power indices, dynamic programming
algorithms have been proposed. The time complexities of these algorithms are
O(n2q), O(n3q), and O(n4q), respectively. We propose new algorithms for the
problems whose time complexities areO(nq), O(n2q), andO(n2q), respectively.

1 Introduction

Power indices are measures for evaluating the power of a party in a council. Let
{p1, . . . , pn} be a set of players, and w1, . . . , wn be the respective weights. We con-
sider a council composed of parties each of which corresponds to a player. Suppose that
the weight of a party is the number of members of that party. For each proposal, each
party (player) votes “yes” or “no”. If the sum of the weights of the “yes” votes is larger
than a constant q, the proposal is accepted. Constant q is called a quota. A weighted
majority game is a game dealing with this situation, composed of these players, their
weights, and the quota. Because each player has a distinct weight for their vote, the
effect of each player on the voting is different. Many kinds of power indices have been
proposed for measuring the differences.

Among the power indices proposed for weighted majority games, the Banzhaf index,
the Shapley–Shubik index, and the Deegan–Packel index have been studied well. When
the number of player is large, computing exact values of these indices by a straight-
forward exponential time algorithms requires very long time. When all the weights are
integers, these indices can be computed in polynomial time in n and q by using dy-
namic programming algorithms[4,6,7]. The computation time of the Banzhaf index,
the Shapley–Shubik index, and the Deegan–Packel index for one player is O(nq)[4,6],
O(n2q)[6,4], and O(n3q)[7], respectively. For computing indices for all players, these
algorithms take O(n2q), O(n3q), and O(n4q) time, respectively.

In recent studies, power indices have been considered for many kinds of problem,
such as network flow games[2] and spanning tree games[1], and applicable to auc-
tions, management science, and so on[9]. In these studies, the number of players can
be large. Moreover, basic problems such as computing power indices are often solved
many times repeatedly, or solved as a sub-problem of another large complicated prob-
lem. Algorithms with a small time complexity with respect to the number of players
becomes more important.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 679–689, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

680 T. Uno

In this paper, we propose new algorithms for computing the abovementioned three
power indices for all players. The framework of our algorithms is to compute the power
indices of two players by existing dynamic programming algorithms in two directions,
and then to compute the indices of other players by combining the results. As a result,
the Banzhaf and the Shapley–Shubik indices for all players can be computed with the
same time complexity as computing these indices for just one player, that is, O(nq)
time and O(n2q) time, respectively. These reduce the time complexities of the existing
algorithms by a factor of n. Our algorithm for the Deegan–Packel index is based on a
new dynamic programming running in O(n2q) time for one player, and also O(n2q)
time for all players.

These algorithms are described in the following sections. Section 2 explains our
algorithm for the Banzhaf index, which is the simplest algorithm among our three pro-
posed algorithms; in this section, we explain the common basic idea of our algorithms.
In Section 3, we explain a way to save unnecessary computation. Sections 4 and 5
describe our algorithms for the Shapley–Shubik index and the Deegan–Packel index,
respectively. We conclude the paper in Section 6.

2 Algorithm for the Banzhaf Index

We begin with some definitions. A set of players is called a coalition. For a coali-
tion S, we define the weight of S by

∑
pi∈S wi and denote it by w(S). In particu-

lar, we define w(∅) = 0. S is called a winner if w(S) ≥ q, and a loser otherwise.
We assume that wi > 0 for any i. Let Pi be the set of players from p1 through pi,
i.e., Pi = {p1, p2, . . . , pi}, and let P̄i be the set of players from pi through pn, i.e.,
P̄i = {pi, pi+1, . . . , pn}. We define P0 and ¯Pn+1 by the emptyset. For a function
g(pi, a, b, . . .) mapping a combination of numbers to an integer, we define V (g(pi)) by
the set of the values of g for all possible values of parameters pi, a, b, As previous
papers, we assume that any arithmetic operation with respect to (large) combinatorial
numbers can be done in O(1) time.

Let S be a winner including player pi. If S becomes a loser when pi exits from
S, then pi is considered to have a power in S. Assuming that every coalition occurs
randomly at the same probability, the probability that pi belongs to the coalition with
having a power in the coalition is

| {S|S ⊆ {p1, . . . , pn}, pi ∈ S,w(S) ≥ q, w(S \ {pi}) < q} | / 2n.

This probability is the Banzhaf index[3] of player pi, denoted by BZ(pi).
A dynamic programming algorithm for computing BZ(pn) was proposed in [4,6],

that computes the index by computing all the values of a function, denoted herein as f .
For any player pi and any y, 0 ≤ y ≤ q − 1, f is defined by the number of coalitions
S ⊆ Pi satisfying w(S) = y, i.e.,

f(i, y) = | {S|S ⊆ Pi, w(S) = y} |.

Note that f is defined for p0, so that f(0, y) = 1 if y = 0 and 0 otherwise. Since

Efficient Computation of Power Indices for Weighted Majority Games 681

BZ(pn)× 2n = | {S|S ⊆ Pn, pn ∈ S,w(S) ≥ q, w(S \ {pn}) < q} |
= | {S|S ⊆ Pn−1, q − wn ≤ w(S) ≤ q − 1} |

=

q−1∑
y=q−wn

f(n− 1, y),

we can compute BZ(pn) from V (f(n− 1)) in O(q) time. To compute the values of f ,
the following property is used.

Property 1. For any i, y such that 1 ≤ i ≤ n and 0 ≤ y ≤ q − 1,

f(i, y) =

{
f(i− 1, y) + f(i− 1, y − wi) if y ≥ wi

f(i− 1, y) if y < wi
.

��

This property implies that V (f(i)) is computed from V (f(i − 1)) in O(q) time. Since
each value of V (f(1)) can be computed directly in O(1) time, V (f(n − 1)) can be
computed in O(nq) time. This is the basic idea of the existing dynamic programming
algorithms[6,4]. For player pi, i < n, we exchange the indices of players pi and pn, and
compute BZ(pn). Therefore, the time complexity of the existing dynamic program-
ming algorithm is O(n2q) for computing the indices for all players.

This dynamic programming algorithm might seem to do no unnecessary operations
to compute BZ(pn). Hence, reducing time complexity of the dynamic programming
algorithm for computing BZ(pn) would seem to be difficult. However, the algorithm
does quite similar operations for computingBZ(pn) as done to computeBZ(pi). Here,
we can see possibility for improvement. In the following, we introduce a new function
b(i, y), that is a fuction symmetric to f(i, y) such that b(i, y) stands for players i to n
where f(i, y) stands for 1 to i. We also define a function h, and propose an algorithm
for computing BZ(p1), BZ(p2), . . . , BZ(pn) using these functions, instead of solving
n similar dynamic programming problems.

The functions are defined as follows:

b(i, y) = | {S|S ⊆ P̄i, w(S) = y} |, and h(i, z) =

z∑
y=0

b(i, y).

For y < 0, we define h(i, y) = 0. The function f is used to solve the dynamic pro-
gramming problem in the forward direction, and b is used to solve the problem in the
backward direction. Since f and b are symmetric, the following equation holds for any
1 ≤ i ≤ n according to Property 1.

b(i, y) =

{
b(i+ 1, y) + b(i+ 1, y − wi) if y ≥ wi

b(i+ 1, y) if y < wi
.

This shows that V (b(i)) can be computed from V (b(i + 1)) in O(q) time in the same
way as f . Also, V (h(i)) can be computed from V (b(i)) in O(q) time.

682 T. Uno

Now we explain how to compute BZ(pi) using f , b and h. For each coalition S not
including pi, consider the partition of S into S∩Pi−1 and S∩P̄i+1. Thus, the condition
q − wi ≤ w(S) ≤ q − 1 is equivalent to

q − wi ≤ w(S ∩ Pi−1) + w(S ∩ P̄i+1) ≤ q − 1.

Hence,

BZ(pi)× 2n = |{S|pi �∈ S, q −wi ≤ w(S) ≤ q − 1}|
= |{S|pi �∈ S, q −wi ≤ w(S ∩ Pi) + w(S ∩ P̄i) ≤ q − 1}|
= |{(S1, S2)|S1 ⊆ Pi−1, S2 ⊆ P̄i+1, q −wi ≤ w(S1)+w(S2) ≤ q − 1}|

=

q−1∑

z=0

|{S1|S1 ⊆ Pi−1, w(S1) = z}| ×
q−1−z∑

y=max{q−wi−z,0}
|{S2|S2 ⊆ P̄i+1, w(S2) = y}|.

In the last line, the left side and right side can be computed by using f and b, respec-
tively. Specifically, for any 1 ≤ i ≤ n,

BZ(pi)× 2n =

q−1∑
z=0

f(i− 1, z)×
q−1−z∑

y=max{q−wi−z,0}
b(i+ 1, y)

=

q−1∑
z=0

f(i− 1, z)× (h(i, q − 1− z)− h(i,max{q − wi − z, 0} − 1)) .

The algorithm computes all values for f(1, 0), . . . , f(n, q) and b(1, 0), . . . , b(n, q), and
then compute h(1, 0), . . . , h(n, q) from b. We have the following theorem.

Theorem 1. The Banzhaf indices of all n players with quota q can be computed in
O(nq) time and O(nq) space if the weights of players are all integers. ��

3 Reducing Space Complexity and Unnecessary Operations

The algorithm described in the previous section is quite basic. Hence, slight modifica-
tions can reduce its computation time and the space complexity. Note that the modifi-
cations do not reduce the time complexity.

First, we will explain the technique for reducing the space complexity. Transforming
the statement of Property 1 gives the following equation. For 1 ≤ i ≤ n,

f(i− 1, y) =

{
f(i, y) if 0 ≤ y ≤ wi

f(i, y)− f(i− 1, y − wi) if wi ≤ y ≤ q − 1.
.

From this, we can compute V (f(i)) from V (f(i+1)) in O(q) time. First, we compute
V (f(n − 1)). After computing BZ(pn), we compute V (f(i − 1)) and V (b(i + 1))
for i = 1, ..., n − 1, and compute BZ(pi), in decreasing order of i. After computing
V (f(i−2)) and V (b(i)), we delete V (f(i−1)) and V (b(i+1)) from the memory since
they will never be referred. As a result of this deletion, when we compute BZ(pi), only
V (f(i − 1)) and V (b(i + 1)) are in memory. Hence, the space complexity is reduced
to O(q).

Theorem 2. The Banzhaf indices of all n players with quota q can be computed in
O(nq) time and O(q) space if the weights of players are all integers. ��

Efficient Computation of Power Indices for Weighted Majority Games 683

4 Algorithm for Shapley–Shubik Index

Suppose that, at first, a coalition S is the empty set, and players join the coalition one by
one, in an order. We suppose that the coalition changes from a loser to a winner when
player pi participates in S. Then, we can naturally consider that pi has power. Let Πn

be the set of permutations with length n. We note that |Πn| = n!. If the order of the
coalition building is uniformly random, then the probability that pi has power is

| {(j1, . . . , jn) ∈ Πn|q ≤ w({pj1 , pj2 , . . . , pi}) < q + wi} | / n!.

This is the definition of the Shapley–Shubik index[8] of player pi, denoted by SS(pi).
For computing the Shapley–Shubik index, a dynamic programming algorithm has

previously been proposed [6,4] that computes the indices by computing the values of
a function defined in a way similar to that of the Banzhaf index. We will again use
f to denote this function central to the computation of the index. For 0 ≤ i ≤ n,
0 ≤ y ≤ q − 1, and 0 ≤ k ≤ i, function f is defined as f(i, k, y) = | {S|S ⊆
Pi, w(S) = y, |S| = k} |. Note that f(0, k, y) is 1 if k, y = 0, and is 0 otherwise. For
any player pi, the number of permutations (j1, . . . , jn) satisfying {pj1 , pj2 . . . , pi} = S
is (|S| − 1)!(n− |S|)!, and thus,

SS(pi)× n! = | {(j1, . . . , jn) ∈ Πn|q ≤ w({pj1 , pj2 , . . . , pi}) < q + wi} |
=

∑
S|pi �∈S,q−wi≤w(S)≤q−1

|S|!(n− |S| − 1)!

=

q−1∑
y=q−wi

i−1∑
k=0

∑
S|pi �∈S,w(S)=y,|S|=k

k!(n− k − 1)!.

Therefore, SS(pn) can be computed from V (f(n − 1)). To compute f , the following
property similar to Property 1 is used.

Property 2. For any i, k, and y satisfying 1 ≤ i ≤ n, 1 ≤ k ≤ i and 0 ≤ y ≤ q − 1,

f(i, k, y) =

{
f(i− 1, k, y) + f(i− 1, k − 1, y − wi) if y ≥ wi

f(i− 1, k, y) if y < wi
. ��

This property implies that V (f(i)) can be computed from V (f(i − 1)) in O(nq) time.
Since each element of V (f(1)) can be computed directly, V (f(n − 1)) and SS(pn)
can be computed in O(n2q) time. The indices of the other players can be computed in
the same way by exchanging the indices. Thus, computing SS(pi) for all players takes
O(n3q) time. This is the framework of the algorithm in [4,6].

This algorithm also seems to have no unnecessary operations involved in the dynamic
programming. However, as in the case of the Banzhaf index, computing SS(pi) for
all players involves unnecessary operations in that n similar dynamic programming
problems are solved.

Although the idea for the algorithm for the Banzhaf index described in Section 2
might seem to be applicable to the Shapley–Shubik index, applying it directly does not
lead to an efficient algorithm. If b is defined in the same way for the Banzhaf index as
follows,

684 T. Uno

b(i, k, y) = | {S|S ⊆ P̄i, w(S) = y, |S| = k} |,

then SS(pi) is given by

SS(pi)×n! =

q−1∑

z=0

i−1∑

k=0

q−1−z∑

y=max{0,q−wi−z}

n−(i−1)∑

l=0

f(i−1, k, z)×b(i+1, l, y)×(k+l)!(n−k−l−1)!.

The right-hand side of the equation includes four summations. Using function h defined
in the previous section, the third summation can be eliminated, however three summa-
tions still remain. Hence, we need O(n2q) time to compute SS(pi) for each player.
This does not decrease the time complexity.

Our improved algorithm instead uses the following definitions for b and h:

b(i, k, y) =
∑

S,S⊆P̄i,w(S)=y

(|S|+ k)!(n− |S| − k − 1)!, and

h(i, k, y) =

{∑y
z=0 b(i, k, z) if 0 ≤ y ≤ q − 1

0 if y < 0
.

Note that b(n+ 1, k, y) is k!(n− k − 1)! if y = 0 and 0 otherwise.

Lemma 1. For i and k such that 1 ≤ i ≤ n and 0 ≤ k ≤ i,

b(i, k, y) =

{
b(i+ 1, k, y) + b(i+ 1, k + 1, y − wi) if y ≥ wi

b(i+ 1, k, y) if y < wi
.

Proof. The equation holds when i = n, and thus we consider the case i < n. For any
S ⊆ P̄i, if w(S) < wi then pi �∈ S. Hence, b(i, k, y) = b(i + 1, k, y) holds if y < wi.
If y ≥ wi, then

b(i, k, y) =
∑

S|S⊆P̄i,w(S)=y

(|S|+ k)!(n− |S| − k − 1)!

=
∑

S|S⊆P̄i,w(S)=y,pi �∈S

(|S|+ k)!(n− |S| − k − 1)!

+
∑

S|S⊆P̄i,w(S)=y,pi∈S

(|S|+ k)!(n− |S| − k − 1)!

= b(i+ 1, k, y) +
∑

S′|S′⊆P̄i+1,w(S′)=y−wi

(|S′|+ k + 1)!(n− |S′| − k − 2)!

= b(i+ 1, k, y) + b(i+ 1, k + 1, y − wi). ��

Lemma 2. For any i such that 1 ≤ i ≤ n,

SS(pi)× n!=

q−1∑

y=0

i−1∑

k=0

(f(i− 1, k, y) × (h(i, k, q − 1− y)− h(i, k,max{q − wi − y, 0} − 1))) ..

Proof. We consider a partition of a coalition S, given by S ∩ Pi−1 and S ∩ P̄i+1. The
condition w(S) = y is equivalent to w(S ∩ Pi−1) + w(S ∩ P̄i+1) = y. Hence,

Efficient Computation of Power Indices for Weighted Majority Games 685

SS(pi)× n! =
∑

S|pi �∈S,q−wi≤w(S)≤q−1

|S|!(n− |S| − 1)!

=
∑

S1⊆Pi−1

⎛⎝ ∑
S2⊆P̄i+1,q−wi≤w(S1)+w(S2)≤q−1

(|S1|+ |S2|)!(n− |S1| − |S2| − 1)!

⎞⎠
=

q−1∑
y=0

i−1∑
k=0

⎛⎝ ∑
S1⊆Pi−1,w(S1)=y,|S1|=k

⎛⎝ q−1−y∑
y=max{q−wi−y,0}

∑
S2⊆P̄i+1,w(S2)=y

(k + |S2|)!(n− k − |S2| − 1)!

⎞⎠⎞⎠
=

q−1∑
y=0

i−1∑
k=0

⎛⎝| {S1|S1 ⊆ Pi−1, w(S1) = y, |S1| = k} | ×
q−1−y∑

y=max{q−wi−y,0}
b(i+ 1, k, y)

⎞⎠
=

q−1∑
y=0

i−1∑
k=0

⎛⎝f(i− 1, k, y)×
q−1−y∑

y=max{q−wi−y,0}
b(i+ 1, k, y)

⎞⎠
=

q−1∑
y=0

i−1∑
k=0

f(i− 1, k, y)× (h(i, k, q − 1− y)− h(i, k,max{q − wi − y, 0} − 1)) . ��

Using the equations of the above lemmas, we can compute f , b and h iteratively in
O(nq) time, and thereby SS(pi) is obtained in O(nq) time by combining f and h.
Using the technique described in Section 3, we can compute the values of f in the
backward direction, hence the required memory space is O(qn).

Theorem 3. The Shapley–Shubik indices of all n players with quota q can be computed
in O(n2q) time and O(nq) space if the weights of players are all integers. ��

5 Algorithm for Deegan–Packel Index

A winner is called a minimal winner if the removal of any player from the winner caused
it to become a loser. If a player belongs to a minimal winner S, then the player can be
considered to have power. This power can be considered to be proportional to |S|, hence
we define the player’s power to be 1/|S|. The definition of the Deegan–Packel index
DP (pi)[5] of player pi is the expected value of the power of pi under the assumption
that every minimal winner occurs with equal probability.

For computing the Deegan–Packel index, a dynamic programming algorithm similar
to those for computing the Banzhaf and Shapley–Shubik indices has been proposed [7].
The function used has parameters player, weight, size, and minimum weight player of
the coalition. Thus, the algorithm takes O(n3q) time for computing the index of one
player, and O(n4q) time for computing indices for all players.

In this section, to compute DP (pi), we use a new function f having only three pa-
rameters. Using this new function, we can construct a dynamic programming algorithm
that computes DP (pi) in O(n2q) time. As in the cases of the Banzhaf and Shapley–
Shubik indices described in the previous sections, computing DP (pi) for all players
can be done in O(n2q) time.

Assume that the indices are assigned to players in decreasing order of their weights,
i.e., wi ≥ wj for any 1 ≤ i < j ≤ n. This order enables the minimal winners to be

686 T. Uno

characterized in a useful way. Let d(S) be the coalition obtained from S by removing
the player with maximum index among players in S, and let X be the set of all minimal
winners. Then,

S ∈ X ⇔ w(S) ≥ q and w(d(S)) < q.

Thus,
DP (pi)× |X | =

∑
S|S⊆Pn,pi∈S,w(S)≥q,w(d(S))<q

1

|S| .

For any i, y, and k such that 0 ≤ i ≤ n, 0 ≤ y ≤ q, and 0 ≤ k ≤ i, we define

f(i, k, y) = | {S|S ⊆ Pi, w(S) = y, |S| = k} |,

and for any i and y such that 1 ≤ i ≤ n and 0 ≤ y ≤ q − 1, we define

b(i, k, y) =
∑

S,S⊆P̄i,pi∈S,w(S)≥y,w(d(S))<y

1

|S|+ k
.

Note that b(i, k, y) is 0 if either k = 0 or y = 0 holds. The definition of f is the same
as in the previous section.
Property 3. For any 1 ≤ i ≤ n, 0 ≤ k ≤ i and wi ≤ y ≤ q − 1,

b(i, k, y) =

⎧⎨⎩
b(i+ 1, k, y − wi + wi+1) + b(i+ 1, k + 1, y − wi) if y ≥ wi

1/(k + 1) if 1 ≤ y ≤ wi

0 if y = 0
.

Proof. The equation holds when i = n or y ≤ wi. For other cases,

b(i, k, y) =
∑

S|S⊆P̄i,pi∈S,w(S)≥y,w(d(S))<y

1

|S|+ k

=
∑

S|S⊆P̄i+1,w(S)≥y−wi,w(d(S))<y−wi,pi+1 �∈S

1

|S|+ k + 1

+
∑

S|S⊆P̄i+1,w(S)≥y−wi,w(d(S))<y−wi,pi+1∈S

1

|S|+ k + 1

=
∑

S|S⊆P̄i+1,pi+1∈S,w(S)≥y−wi+wi+1,w(d(S))<y−wi+wi+1

1

|S|+ k

+ b(i+ 1, k + 1, y − wi)

= b(i+ 1, k, y − wi + wi+1) + b(i+ 1, k + 1, y − wi). ��
Lemma 3.

DP (pi)× |X | =
q−1∑
y=0

i−1∑
k=0

(f(i− 1, k, y)× b(i, k, q − y))

Proof. As in Sections 2 and 4, consider a partition of a coalition S including pi into
S ∩ Pi−1 and S ∩ P̄i. Then, the condition w(S) ≥ q and w(d(S)) < q is equivalent
to

q ≤ w(S ∩ Pi−1) + w(S ∩ P̄i) and w(S ∩ Pi−1) + w(d(S ∩ P̄i)) < q,

Efficient Computation of Power Indices for Weighted Majority Games 687

since S ∩ P̄i is always non-empty. Hence,

DP (pi) × |X| =
∑

S|S⊆Pn,pi∈S,w(S)≥q,w(d(S))<q

1

|S|

=
∑

(S1,S2)|S1⊆Pi−1,S2⊆P̄i,pi∈S2,w(S1)+w(S2)≥q,w(S1)+w(d(S2))<q

1

|S1| + |S2|

=
∑

S1⊆Pi−1

⎛
⎝ ∑

S2⊆P̄i,pi∈S2,q≤w(S1)+w(S2),w(S1)+w(d(S2))<q

1

|S1| + |S2|

⎞
⎠

=

q−1∑
y=0

i−1∑
k=0

⎛
⎝ ∑

S1⊆Pi−1,w(S1)=y,|S1|=k

∑
S2⊆P̄i,pi∈S2,q≤y+w(S2),y+w(d(S2))<q

1

|S1| + |S2|

⎞
⎠

=

q−1∑
y=0

i−1∑
k=0

⎛
⎝|{S1|S1 ⊆ Pi−1, w(S1) = y, |S1| = k}| ×

∑
S2⊆P̄i,pi∈S2,q≤y+w(S2),y+w(d(S2))<q

1

|S1| + |S2|

⎞
⎠ .

Substituting f and b into the last line of the above equation gives

q−1∑
y=0

i−1∑
k=0

(f(i− 1, k, y)× b(i, k, q − y)) .

��
If i = n or y < wi, then b(i, k, y) can be computed in constant time.

Theorem 4. The Deegan–Packel indices of all n players with quota q can be computed
in O(n2q) time and O(nq) space if the weights of players are all integers. ��

Table 1. Results of the computational experiments

#players 25 50 100 200 400 800 1,600 3,200 6,400

Banzhaf uniform 0.002 0.01 0.03 0.09 0.43 2.6 25 197 1,460
time (sec.) scale free 0.002 0.01 0.03 0.09 0.43 2.6 23 175 1,350

power law x2 0.002 0.003 0.03 0.08 0.37 2 15 122 960
memory uniform 14 14 14 15 18 25 50 141 484

scale free 14 14 14 15 18 27 57 167 597
power law x2 14 14 14 15 18 26 54 152 532

Shapley–Shubik uniform 0.03 0.12 1.3 15.1 211 3,350
time (sec.) scale free 0.016 0.12 1.1 10.7 126 1,950

power law x2 0.021 0.12 0.9 8.8 90 1,170
memory (MB) uniform 17 27 76 401 2,741 21,815

scale free 17 26 69 305 1,717 11,626
power law x2 17 26 62 227 976 5,023

Deegan–Packel uniform 0.015 0.13 1.2 14.5 208 3,480
time (sec.) scale free 0.019 0.13 1.1 11.4 134 2,050

power law x2 0.024 0.12 1 9.2 93 1,190
memory (MB) uniform 17 27 84 430 2,948 23,363

scale free 17 26 72 317 1,806 12,298
power law x2 17 26 63 230 986 5,040

688 T. Uno

6 Implementation and Experiments

The above-described algorithms are implemented in C code and are available at the au-
thor’s Web site (http://research.nii.ac.jp/ũno/codes.html), along with the GMP library
for multi-precision integers, used for handling large integers coming from combinatorial
numbers. This section shows results of some computational experiments of the imple-
mentation, specifically, computation time, memory usage, and the ratio of empty cells,
that is, the combinations of i and y (and k) such that f(i, y) = 0 (f(i, k, y) = 0). All
experiments were done on a 3.2 GHz Core i7-960 with a Linux operating system with
24GB of RAM memory. Note that none of the implementations used multiple cores.
The instances are generated randomly with the uniform distribution and the power law
distribution. In all the instances, the average weight of a player is 100, and the quota
is set to 50n; thus, the time complexities of our algorithms will be O(n2) and O(n3).
The instances are generated by giving unit weight to a player randomly: the ith player
receives unit weight with probability proportional to 1/n, 1/i (scale free, power law),
or 1/i2 (power law). The instances and the instance generator are also available at the
author’s Web site.

Table 1 shows the results for computation time. The computation time is almost
O(n3) for the Banzhaf index, and O(n3.5) to O(n4) for the Shapley–Shubik and the
Deegan–Packel indices, respectively. Since multi-precision integers need much time
for usual arithmetic operations, the computation time is above the time complexity we
stated. Since the dynamic programs involve arithmetic operations exactly proportional
to 50n2 and 50n3, we can see that each multi-precision integer requires O(n1/2) to
O(n) time for one arithmetic operation, on average. In the worst case, each value of
f and b can require n-bits, and products of two n bit numbers requires O(n2) time;
thus, the worst case computation time is longer by a factor of n2. In contrast our imple-
mentations need much less time. Computation times for scale free instances and power
law instances are less because many players have the same small weights, and thus
have the same power indices, thereby can be omitted. Table 2 shows the computation
time relative to that for computing the index of just one player. Although our algo-
rithms compute the indices for all players, the factor of the increase is less than four
in most cases, with the most significant exceptions being for the Shapley–Shubik and
the Deegan–Packel indices for uniform random instances. The high factor of increase
in these cases are because, although the values of f require few bits, the values of b
require many bits because they involve products of combinatorial numbers or rational
numbers. The memory usage is slightly smaller than O(n2) for the Banzhaf index, and
O(n2.5) to O(n3) for the Shapley–Shubik and the Deegan–Packel indices. This implies

Table 2. Comparison of computation time for computing the index for one player

uniform scale free power law 1/x2

50 100 200 400 800 50 100 200 400 800 50 100 200 400 800
Banzhaf 2.5 2.5 3.33 3.02 3.37 3.33 4.28 2.30 2.86 2.95 0.75 2.3 2.16 2.60 2.53
Shapley–Shubik 2.66 4.67 6.83 11.72 - 2.92 3.09 3.50 4.06 - 2.22 2.50 2.78 2.90 -
Deegan–Packel 2.65 4.25 6.44 11.01 - 2.92 3.09 3.71 4.28 - 2.4 2.83 2.93 2.92 -

Efficient Computation of Power Indices for Weighted Majority Games 689

that the multi-precision integers use o(n) bits, less than O(n). The proportion of empty
cells was not especially large in any instance. Those were between 1% and 70%, and
therefore even if we use lists of non-zero cells to save space for zero-cells, we can not
increase the performance significantly.

Acknowledgment. This research is supported by Funding Program for World-Leading
Innovative R&D on Science and Technology, Japan.

References

1. Aziz, H., Lachish, O., Paterson, M., Savani, R.: Power Indices in Spanning Connectiv-
ity Games. In: Goldberg, A.V., Zhou, Y. (eds.) AAIM 2009. LNCS, vol. 5564, pp. 55–67.
Springer, Heidelberg (2009)

2. Bachrach, Y., Rosenschein, J.S.: Computing the Banzhaf Power Index in Network Flow
Games. In: AAMAS 2007 (2007)

3. Banzhaf III, J.F.: Weighted Voting doesn’t work. Rutgers Law Review 19, 317–343 (1965)
4. Brams, S.J., Affuso, P.J.: Power and size: a new paradox. Theory and Decision 7, 29–56 (1975)
5. Deegan, J., Packel, E.W.: A New Index of Power for Simple n-person Games. International

Journal of Game Theory 7, 113–123 (1978)
6. Lucas, W.F.: Measuring Power in Weighted Voting Systems. In: Brams, S.J., Lucas, W.F.,

Straffin, P.D. (eds.) Political and Related Models, pp. 183–238. Springer (1983)
7. Matsui, T., Matsui, Y.: A Survey of Algorithms for Calculating Power Indices of Weighted

Majority Games. Journal of the Operations Research Society of Japan 43, 71–86 (2000)
8. Shapley, L.S., Shubik, M.: A Method for Evaluating the Distribution of Power in a Committee

System. American Political Science Review 48, 787–792 (1954)
9. Shapley, L.S.: The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge University

Press (1988)

Revenue Maximization in a Bayesian Double

Auction Market

Xiaotie Deng, Paul Goldberg�, Bo Tang, and Jinshan Zhang

Dept. of Computer Science, University of Liverpool, United Kingdom
{Xiaotie.Deng,P.W.Goldberg,Bo.Tang,Jinshan.Zhang}@liv.ac.uk

Abstract. We study double auction market design where the market
maker wants to maximize its total revenue by buying low from the sell-
ers and selling high to the buyers. We consider a Bayesian setting where
buyers and sellers have independent probability distributions on the val-
ues of products on the market.

For the simplest setting where each seller has one kind of item that can
be sold in whole to a buyer, and each buyer’s value can be represented by
a single parameter, i.e., single-parameter setting, we develop a maximum
mechanism for the market maker to maximize its own revenue.

For the more general case where the product may be different, we
consider various models in terms of supplies and demands constraints.
For each of them, we develop a polynomial time computable truthful
mechanism for the market maker to achieve a revenue at least a constant
α times the revenue of any other truthful mechanism.

1 Introduction

We consider a double auction market maker who collects valuations from buy-
ers and sellers about a certain product to decide on the prices each seller gets
and each buyer pays. The buyers may want to buy many units and the sellers
may have many units to part with. The buyers and sellers may have different
valuations of the product, and there is public knowledge of the probability dis-
tributions of the valuations (but each valuation, sampled from its distribution,
is known only to its own buyer or seller). For simplicity, we assume that the
probability distributions are independent. For the sellers and buyers, they know
their own private values exactly. The market maker purchases the products from
the sellers and sell them to the buyers. Our goal is to design a market mechanism
that maximizes the revenue of the market maker. In other words, the market
maker is to buy the same amount of products from the sellers as the amount
sold to the buyers with the objective of maximizing the difference of its collected
payment from the buyers and the total amount paid to the sellers. When in addi-
tion we assume public knowledge of distributions of buyers’ private values from
the previous sales, we call it a revenue maximization Bayesian double auction
market maker.
� Supported by EPSRC grant EP/G069239/1 “Efficient Decentralised Approaches in
Algorithmic Game Theory”.

K.-M. Chao, T.-s. Hsu, and D.-T. Lee (Eds.): ISAAC 2012, LNCS 7676, pp. 690–699, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Revenue Maximization in a Bayesian Double Auction Market 691

There have been many double auction institutions, each of which may be suit-
able for one type of market environment [9]. Ours is motivated by the growing
use of discriminative pricing models over the Internet such as one that is studied
in [7] for the prior-free market environment. A possible realistic setting for ap-
plications of our model could be Google’s ad exchange where Google could play
a market maker for advertisers and webpage owners [12]. One may also use it
for a market model of Groupon. Our use of the Bayesian model is justified by
the repeated uses of a commercial system by registered users. It allows the mar-
ket maker to gain Bayesian information of the users’ valuations of the products
being sold. Therefore, the Bayesian model adequately describes the knowledge
of the market maker, buyers and sellers for the optimal mechanism design.

Our Results. We provide optimal or constant approximate mechanisms for
various settings for double auction design. There are important parameters in the
market design issues. The problem can be one or multi dimensional (meaning, one
product or multiple different types of products). The buyers can have demand
constraints or not, and sellers are supply constrained or not. Players’ values are
drawn from a continuous or discrete distribution. Our results are summarized in
the following table.

Table 1. Results

Dimension Demand Supply Distribution Results

Sec. 3 Single Arbitrary Arbitrary Continuous Optimal

Sec. 4 Multi Arbitrary Arbitrary Continuous 1/4-Approx

Sec. 4 Multi Arbitrary Arbitrary Discrete 1/4-Approx

Sec. 5 Multi Unlimited Arbitrary Discrete Optimal

Sec. 5 Multi Arbitrary Unlimited Discrete Optimal

For the demand column, “Arbitrary” refers to the case where buyers can buy at most
di items where di can be an arbitrary number and “Unlimited” means di = +∞. The
supply column is similar.

In the Bayesian Mechanism Design problems, there are two computational
processes involved. The first one is, given the distribution, to design an optimal
or approximate mechanism which can be viewed as a function mapping bidders’
profiles to allocation and payment outcomes. Since the function maps potentially
exponentially many profiles to outcomes, a succinct representation of the func-
tion is also an important part in the Bayesian mechanism design. The second
process is the implementation of the mechanism, i.e., given a bid profile, we run
the mechanism to compute the outcome. Our results imply that all mechanisms
described in the table can be represented in polynomial size and be found and
implemented in polynomial time.

Related Works. Auction design play an important role in economics in gen-
eral and especially in electronic commerce [11]. Of particular interest, a number
of research works focus on maximizing the auctioneer’s revenue, referred as the

692 X. Deng et al.

optimal auction design problem. Myerson, in his seminal paper [13], character-
ized the optimal auction for the single-item setting in the Bayesian model. Re-
cently, efforts have been made on extending Myerson’s results to border settings
[8,15,17].

Unlike Myerson’s optimal auction result, finding the optimal solution is not
easy for multi-dimensional settings. Recent research interest has turned toward
approximate mechanisms [1,5]. Cai et al. [4] presented a characterization of a
rather general multi-dimensional setting and proposed an efficient mechanism for
the special case where no bidders are demand constrained. Using similar ideas,
Alaei et al. [2] present a general framework for reducing multi-agent service
problems to single-agent ones.

The double auction design problem becomes more complicated since the mar-
ket maker acts as the middle man to bring buyers and sellers together. A guide
to the literature in micro-economics on this topic can be found in [9]. The profit
maximization problem for the single buyer/single seller setting has been studied
by Myerson and Satterthwaite [14]. Our optimal double auction is a direct ex-
tension of their work and, to our best knowledge, fills a clear gap in the economic
theory of double auctions. Deshmukh et al. [7], studied the revenue maximiza-
tion problem for double auctions when the auctioneer has no prior knowledge
about bids. Their prior-free model is essentially different from ours. More auction
mechanism design problems were studied by many researchers in recent years,
but as far as we know, not in the context of optimal double auction design in
the Bayesian setting. While our setting assumes the existence of a monopoly
platform, Rochet and Tirole [16] and Armstrong [3] introduced several different
models for two-sided markets and studied platform competition.

2 Preliminaries

Throughout the paper we consider Bayesian incentive compatible mechanisms
only. Informally, a mechanism is Bayesian incentive compatible if it is optimal
for each buyer and each seller to bid its true value of the items. We will formally
define this concept later. As a consequence, we should consider their bids to be
their true valuations and restrict our discussion to mechanisms that result in
less or equal utility if one deviates to report a false value.

Therefore, we will use the notation vij to represent the ith buyer’s (true) bid
for one of the jth seller’s items and wj for the jth seller’s (true) bid. We will
drop the “(true)” subsequently as deviations of bids from the true valuations
will be marked. The ith buyer’s bid can be denoted by a vector vi and bids of all
buyers can be denoted by v or sometimes (vi; v−i) where v−i is the joint profile
of all other bidders. Similarly, we use w and (wj ;w−j) for the sellers’ bid. 1

In our model, all players’ bids are assumed to be distributed independently
according to publicly known distributions, V for buyers, W for sellers. Note
that we also assume that V and W should be bounded, i.e. vij ∈ [vij , vij] and
wj ∈ [wj , wj].

1 We use semi-colon to separate the profile of a special player with others and use
comma to separate the buyers’ profiles with sellers’.

Revenue Maximization in a Bayesian Double Auction Market 693

The outcome of a mechanism M consists of four random variables (x, p, y, q)
where x and p are the allocation function and payment functions for buyers,
y and q for sellers. That is, buyer i receives item j with probability xij(v, w)
and pays pi(v, w); seller j sells her item with probability yj(v, w) and gets a
payment qj(v, w). Thus, the expected revenue of the mechanism is R(M) =
Ev,w[

∑
i pi(v, w) −

∑
j qj(v, w)] where Ev,w is short for Ev∼V,w∼W .

In general, a buyer may buy more than one item from the mechanism. We
assume buyers’ valuation functions are additive, i.e. vi(S) =

∑
j∈S vij . For each

buyer i, let di denote the demand constraint for buyer i, i.e. buyer i cannot
buy more than di items. Similarly, let kj be the supply constraint for seller
j, i.e. seller j cannot sell more than kj items. By the Birkhoff-von Neumann
theorem [10][8][6], it suffices to satisfy

∑
j xij ≤ di and yj =

∑
i xij ≤ kj .

Let Ui(v, w) =
∑

j xij(v, w)vij − pi(v, w) be the expected utility of buyer i
when the profile of all players is (v, w) and Tj(v, w) = qj(v, w) − yj(v, w)wj

be the expected utility of seller j. We proceed to formally define the concepts
of Bayesian Incentive Compatibility of mechanisms and ex-interim Individual
Rationality of the buyers and sellers:

Definition 1. A double auction mechanism M is said to be Bayesian Incentive
Compatible (BIC) iff the following inequalities hold for all i, j, v, w.

Ev−i,w[Ui(v, w)] ≥ Ev−i,w[Ui((v
′
i; v−i), w)]

Ev,w−j [Tj(v, w)] ≥ Ev,w−j [Tj(v, (w
′
j ;w−j))]

(1)

We note that, if Ui(v, w) ≥ Ui((v
′
i; v−i), w) and Tj(v, w) ≥ Tj(v, (w

′
j ;w−j)) for

all v, w, v′i, w
′
j , we say M is Incentive Compatible.

Definition 2. A double auction mechanism M is said to be ex-interim Individ-
ual Rational (IR) iff the following inequalities hold for all i, j, v, w.

Ev−i,w[Ui(v, w)] ≥ 0

Ev,w−j [Tj(v, w)] ≥ 0
(2)

Similarly, we note that, if Ui(v, w) ≥ 0 and Tj(v, w) ≥ 0 for all v, w, we say M
is ex-post Individual Rational.

Finally, we present the formal definition of approximate mechanism.

Definition 3 (α-approximate Mechanism[17]). Given a set M of feasible
mechanisms, we say mechanism M ∈M is an α-approximate mechanism in M iff
for each mechanism M ′ ∈ M, for any set of buyer and sellers α ·R(M ′) ≤ R(M).
A mechanism is optimal in M if it is an 1-approximate mechanism in M.

3 Optimal Single-Dimensional Double Auction

In this section, we consider the single-dimensional double auction design problem
where all sellers sell identical items, that is for all j, j′ ∈ [m], vij = vij′ . Moreover,

694 X. Deng et al.

as shown in Table 1, in this section we assume the bidders’ bids are drawn from
continuous distributions. Let fi, Fi be the probability density function (PDF)
and cumulative distribution function (CDF) for buyer i’s value, gj , Gj be the
PDF and CDF for seller j’s value.

Our mechanism can be viewed as a generalization of the classical Myerson’s
Optimal Auction [13]. It is well known that Myerson’s approach is powerful and
extensive in the single-dimensional setting. We strengthen this by showing that
a similar optimal double auction can be found in this single-dimensional setting.
In addition, in Section 4 this optimal mechanism will be used to construct a
constant approximate mechanism for a multi-dimensional setting.

Recall that Myerson’s virtual value function is defined as ci(vi) = vi− 1−Fi(vi)
fi(vi)

for each buyer. In the double auction, we define the virtual value functions

for buyers and sellers as ci(vi) = vi − 1−Fi(vi)
fi(vi)

and rj(wj) = wj +
Gj(wj)
gj(wj)

.

If ci(vi) is not an increasing function of vi or rj is not decreasing, by Myer-
son’s ironing technique, we can use the ironed virtual value function c̄i and
r̄j . W.l.o.g, we assume the buyers are sorted in decreasing order with respect
to c̄i(vi) and all sellers are in increasing order with respect to r̄j(wj). Let

D = maxi,j{min{
∑i

s=1 ds,
∑j

t=1 kj}|c̄i(vi) > r̄j(wj)}. Thus, we can define the
optimal auction in the spirit of maximizing virtual surplus.

xi(v, w) =

⎧⎨⎩
di if

∑
s≤i ds ≤ D

D −
∑

s<i ds if
∑

s<i ds < D <
∑

s≤i ds
0 otherwise

yj(v, w) =

⎧⎨⎩
kj if

∑
t≤j kt ≤ D

D −
∑

s<j ks if
∑

t<j kt < D <
∑

t≤j kt
0 otherwise

pi(v, w) = xi(v, w)vi −
∫ vi

vi

xi((s; v−i), w)ds

qj(v, w) = yj(v, w)wj +

∫ wj

wj

yj(v, (t;w−j))dt

Theorem 1. The above mechanism is an optimal (revenue) mechanism for the
single-dimensional double auction setting. Under the assumption that the inte-
gration and convex hull of f , g can be computed in polynomial time, the mecha-
nism can be found and implemented. Moreover, the mechanism is deterministic,
incentive compatible and ex-post Individual Rational.

4 Approximate Multi-dimensional Double Auction

In this section, we provide a general framework for approximately reducing the
double auction design problem for multiple buyers and sellers to single pair
of buyer and seller sub-problems. As an application, we apply the framework to

Revenue Maximization in a Bayesian Double Auction Market 695

construct a 1/4-approximate mechanism for the multi-dimensional setting. Our
approach is inspired by the work of Alaei [1] which provide a general framework
for the one sided auction.

Recall that all bids are drawn from public known distributions and our goal
is to maximize the expected revenue for the auctioneer. It should be empha-
sized that, in this section, we assume the buyers’ values for different items are
independent, i.e. vij and vij′ are independent.

First of all, we introduce the concept of Primary Mechanism which can be
viewed as a mechanism between one buyer and one seller.

Definition 4 (Primary Mechanism/Primary Benchmark).
A primary mechanism denoted by Mij for buyer i and seller j is a single buyer
and single seller mechanism which allows specifying an upper bound on the ex-
ante expected probability k̄ij of allocating jth item to buyer i. A primary bench-
mark denoted by R̄ij is a concave function such that the optimal revenue of any
primary mechanism Mij subject to k̄ij is upper bounded by R̄ij(k̄ij).

Intuitively, for any allocation rule, define the ex-ante probability of assigning
jth seller’s items to buyer i as k̄ij = Evi,wj [xij(vi, wj)]. Then we can relax the
supply constraints

∑
i xij(v, w) ≤ kj and demand constraints

∑
j xij(v, w) ≤ di

to the ex-ante probability constraints,
∑

i k̄ij ≤ kj and
∑

j k̄ij ≤ di. Then we
compute the optimal ex-ante probability by convex programming. Obviously,
the optimal solution of the relaxed problem must be an upper bound for any
original solution. Unfortunately, the solution solved by convex programming may
not be a feasible solution of the original problem. To solve this problem, Alaei
introduced the following rounding process to round the relaxed solution to a
feasible one.

Lemma 1 (γ-Conservative Magician (Theorem 2 in [1])). In the Magi-
cian problem, a magician is presented with a series of boxes one by one. He has
k magic wands that can be used to open the boxes. On each box is written a
probability qi. If a wand is used on a box, it opens, but with at most probability
qi the wand breaks. Given

∑
i qi ≤ k and any γ ≤ 1 − 1√

k+3
, a γ-conservative

magician guarantees that each box is opened with an ex-ante expected probability
at least γ.

Using above lemma, we describe our mechanism for multi-dimensional double
auction problem. Recall that in the classical auction setting, all items are sold
by the auctioneer. However, in the double auction setting, items are sold by dif-
ferent sellers and more efforts should be taken to handle the truthfulness issue of
sellers. We extend Alaei’s rounding mechanism from one-dimension (considering
buyers one by one) to two-dimension (considering each pair of buyer and seller
sequentially) as follows.

696 X. Deng et al.

Mechanism (Modified γ-Pre-Rounding Mechanism)

(I) Solve the following convex program and let k̄ij denote an optimal assignment
for it.

Maximize:
∑

i∈[n],j∈[m]

R̄ij(xij) (CP)

Subject to:
∑
j∈[m]

xij ≤ di for all i ∈ [n]

∑
i∈[n]

xij ≤ kj for all j ∈ [m]

xij ≥ 0 for all i ∈ [n], j ∈ [m]

(II) For each buyer i, create an instance of γ-conservative magician with di
wands (this will be referred to as the buyer i’s magician). For each item j
create an instance of γ-conservative magician with kj wands (this will be
referred to as the seller j’s magician).

(III) For each pair of buyer and seller (i, j):
(a) Write k̄ij on a box and present it to the buyer i’s magician and the
seller j’s magician.
(b) If both of them open the box, run Mij(k̄ij) on buyer i and seller j
otherwise consider next pair.
(c) If the mechanism buys an item from seller j and sells it to buyer i, then
break the wands of buyer i’s magician and seller j’s magician.

Theorem 2 (Modified γ-Pre-Rounding Mechanism). Suppose for each
buyer and seller pair (i, j), we have an α-approximate primary mechanism Mij

and a corresponding primary benchmark R̄ij . Then for any γ ∈ [0, 1 − 1√
k∗+3

]

where k∗ = mini,j{di, kj}, the Modified γ-Pre-Rounding Mechanism is a γ2 · α-
approximation mechanism.

Proof. The proof is similar to the one in [1]. First, we prove that the expected
revenue of any mechanism is upper bounded by

∑
i

∑
j R̄ij(k̄ij). For any mech-

anism M = (x, p, y, q), let kij = Ev,wxij(v, w). Due to the feasibility of M , kij
must be a feasible solution of the convex programming (CP). So we have,

R(M) =
∑
i

∑
j

Rij(kij) ≤
∑
i

∑
j

R̄ij(kij) ≤
∑
i

∑
j

R̄ij(k̄ij)

Then it suffices to show that for each pair (i, j), our mechanism can gain the
revenue R̄ij(k̄ij) with probability at least γ2 · α, i.e. each box will be opened
with probability at least γ2. This can be deduced from Lemma 1 easily. ��

Then we consider the multi-dimensional double auction design problem and
present a constant approximate mechanism. For each buyer and seller pair i, j,
we use the mechanism in Section 3 for one-dimensional cases to be the primary
mechanism Mij and the expected revenue of Mij to be the primary bench-
mark R̄ij .

Revenue Maximization in a Bayesian Double Auction Market 697

Theorem 3. Assume that all bidders’ bids are drawn from continuous distribu-
tions. A 1/4 approximate double auction for the multi-dimensional setting can
be found and implemented in polynomial time.

For the discrete distribution case, the optimal mechanism for single buyer and
single seller can be computed by Linear Programming. So we have the similar
result.

Theorem 4. Assume that all bidders’ bids are drawn from discrete distribu-
tions. A 1/4 approximate double auction for the multi-dimensional setting can
be found and implemented in polynomial time.

5 Optimal Mechanism for Discrete Distributions

In this section, we consider the multi-dimensional double auction when all the
bidders’ value distributions are discrete. Unlike Section 4, we consider two special
cases of the problem. One is the case where all buyers have unlimited demand,
i.e., di = +∞ for all buyer i and the other one is the case where all sellers have
unlimited supply, i.e. kj = +∞ for all seller j. In this section, we focus on the
previous case. The mechanism and the proof of the latter case are similar.

Recall that, in the multi-dimensional setting, the auctioneer collects each
buyer’s bid, denoted by a vector vi = (vi1, . . . , vim) drawn from a public known
distribution Vi and seller’s bid denoted by wj drawn from Wj . Throughout this
section, Vi and Wj are discrete distributions and we use fi and gj to denote
their probability mass function, i.e. fi(t) = Pr[vi = t] and gj(t) = Pr[wj = t].
It should be emphasized that, unlike Section 4, we do not need to assume that
the buyer’s bids for each item should be independent, i.e. vij and vij′ can be
correlated in this section. We also add a dummy buyer 0 with only one type v0
for buyers and seller 0 with w0 for sellers.

Our approach is motivated by the recent results of Cai et al. [4] and Aleai
et al. [2] which require a reduced form of x, y, p, q denoted by x̄, ȳ, p̄ and q̄
respectively, defined as follows:

x̄ij(vi, wj) = Ev−i,w−j [xij(v, w)] ȳj(vi, wj) = Ev−i,w−j [yj(v, w)]
p̄i(vi, wj) = Ev−i,w−j [pi(v, w)] q̄j(vi, wj) = Ev−i,w−j [qj(v, w)]

Now we are ready to convert an optimization problem of x, p, y, q to a problem
of x̄, p̄, ȳ, q̄ which can be represented by a Linear Program with polynomial size
in T , n and m where T is the maximum among all |Vi| and |Wj |.

Then BIC constraints (1) and IR constraints (2) can be rewritten as

Ewj [
∑

j x̄ij(vi, wj)vij − p̄i(vi, wj)] ≥ Ewj [
∑

j x̄ij(v
′
i, wj)vij − p̄i(v

′
i, wj)]

Evi [q̄j(vi, wj)− ȳj(vi, wj)wj)] ≥ Evi [q̄j(vi, w
′
j)− ȳj(vi, w

′
j)wj]

Ewj [
∑

j x̄ij(vi, wj)vij − p̄i(vi, wj)] ≥ 0

Evi [q̄j(vi, wj)− ȳj(vi, wj)wj)] ≥ 0

(3)

Finally, all mechanism should satisfy the supply constraints, i.e., for each item
j and profiles v, w,yj(v, w) =

∑
i xij(v, w) ≤ kj . Note that there is no demand

698 X. Deng et al.

constraint on buyers. With loss of generality, we assume that kj = 1 for all j.
Otherwise, we can normalize x by setting x′ij(v, w) = xij(v, w)/kj and refine
v, w by setting v′ij = kjvij and w′j = kjwj such that k′j = 1 for all item j.

For the single-item setting of classical auction, i.e. m = 1 and seller’s value for
his item is always 0, Alaei et al. [2] prove a sufficient and necessary condition for
the supply constraint. We generalize their result to a multi-dimensional double
auction setting.

Lemma 2. Given a reduced form x̄, there exists an ex-post implementation x
such that xij(v, w) ≥ 0,

∑
i xij(v, w) ≤ 1 and x̄ij(vi, wj) = Ev−i,w−j [xij(v, w)] iff

there exists (s, z) such that, for each seller j and wj ∈Wj

s
(j)
0 (v0, wj , 0) = 1

s
(j)
i (vi, wj , i) =

∑i−1
k=0

∑
vk∈Vk

z
(j)
ki (vk, vi, wj) ∀i, vi ∈ Vi

s
(j)
k (vk, wj , i) = s

(j)
k (vk, wj , i− 1)−

∑
vi∈Vi

z
(j)
ki (vk, vi, wj) ∀i, k < i, vk ∈ Vk

z
(j)
ki (vk, vi, wj) ≤ s

(j)
k (vk, wj , i− 1)fi(vi) ∀i, k < i, vi ∈ Vi, vk ∈ Vk

x̄ij(vi, wj)fi(vi) = s
(j)
i (vi, wj , n) ∀i, vi ∈ Vi

(4)

Moreover, given any feasible reduced allocation rule x̄, the ex-post of x̄ can be
found efficiently.

Finally, we convert the problem of multi-dimensional double auction design prob-
lem to a Linear Program with reduced form which can be solved in polynomial
time in m,n, T .

Theorem 5. Assume all bidders’ bids are drawn from discrete distributions and
all bidders are without demand constraints. An optimal double auction for multi-
dimensional setting can be found and implemented in polynomial time.

Theorem 6. Assume that all bidders’ bids are drawn from discrete distributions
and all sellers are without supply constraints. An optimal double auction for
multi-dimensional setting can be found and implemented in polynomial time.

6 Conclusion

In this paper, we present several optimal or approximately-optimal auctions
for a double auction market. Double auction platforms have started to gain
importance in electronic commerce. One possible example is the ad exchange
market proposed to bring advertisers and web publishers together [12]. There is
other potential in setting up electronic platforms for sellers and buyers of other
types of resources in the context of cloud computing.

Our results on the one hand show the power of recent significant progress in
one-sided markets, and on the other hand raise new challenges in the develop-
ment of mathematical and algorithmic tools for market design.

Revenue Maximization in a Bayesian Double Auction Market 699

References

1. Alaei, S.: Bayesian combinatorial auctions: Expanding single buyer mechanisms to
many buyers. In: Procs. of 52nd IEEE FOCS Symposium, pp. 512–521 (2011)

2. Alaei, S., Fu, H., Haghpanah, N., Hartline, J., Malekian, A.: Bayesian optimal
auctions via multi- to single-agent reduction. In: Proceedings of the 14th ACM
Conference on Electronic Commerce, pp. 17–17 (2012)

3. Armstrong, M.: Competition in two-sided markets. The RAND Journal of Eco-
nomics 37(3), 668–691 (2006)

4. Cai, Y., Daskalakis, C., Weinberg, S.M.: An algorithmic characterization of multi-
dimensional mechanisms. In: Procs. of the 44th Annual ACM STOC Symposium,
pp. 459–478 (2012)

5. Chawla, S., Hartline, J.D., Malec, D.L., Ivan, B.S.: Multi-parameter mechanism
design and sequential posted pricing. In: Proceedings of the 42nd ACM Symposium
on Theory of Computing, STOC 2010, New York, NY, USA, pp. 311–320 (2010)

6. Daskalakis, C., Weinberg, S.M.: Symmetries and optimal multi-dimensional mecha-
nism design. In: Proceedings of the 13th ACM Conference on Electronic Commerce,
EC 2012, pp. 370–387. ACM, New York (2012)

7. Deshmukh, K., Goldberg, A.V., Hartline, J.D., Karlin, A.R.: Truthful and Com-
petitive Double Auctions. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS,
vol. 2461, pp. 361–373. Springer, Heidelberg (2002)

8. Dobzinski, S., Fu, H., Kleinberg, R.D.: Optimal auctions with correlated bidders
are easy. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Com-
puting, STOC 2011, pp. 129–138. ACM, New York (2011)

9. Friedman, D.: The double auction market institution: A survey. The Double Auc-
tion Market Institutions Theories and Evidence 14, 3–25 (1993)

10. Johnson, D.M., Dulmage, A.L., Mendelsohn, N.S.: On an algorithm of G. Birkhoff
concerning doubly stochastic matrices. Canadian Mathematical Bulletin (1960)

11. Klemperer, P.: The economic theory of auctions. Edward Elgar Publishing (2000)
12. Muthukrishnan, S.: Ad Exchanges: Research Issues. In: Leonardi, S. (ed.) WINE

2009. LNCS, vol. 5929, pp. 1–12. Springer, Heidelberg (2009)
13. Myerson, R.: Optimal auction design. Mathematics of Operations Research 6(1),

58–73 (1981)
14. Myerson, R.B., Satterthwaite, M.A.: Efficient mechanisms for bilateral trading.

Journal of Economic Theory 29(2), 265–281 (1983)
15. Papadimitriou, C.H., Pierrakos, G.: On optimal single-item auctions. In: Procs. of

the 43rd Annual ACM STOC Symposium, pp. 119–128 (2011)
16. Rochet, J.-C., Tirole, J.: Platform competition in two-sided markets. Journal of

the European Economic Association 1(4), 990–1029 (2003)
17. Ronen, A.: On approximating optimal auctions. In: Procs. of the 3rd ACM Con-

ference on Electronic Commerce, EC 2001, pp. 11–17 (2001)

Author Index

Ahn, Hee-Kap 54, 309
Akutsu, Tatsuya 146
Angelini, Patrizio 423
Assadi, Sepehr 382

Bae, Sang Won 309, 629
Bampis, Evripidis 106
Belmonte, Rémy 299
Bhattacharya, Binay 588
Binucci, Carla 423
Brandstädt, Andreas 267
Brodal, Gerth Stølting 527
Brodnik, Andrej 156
Burcea, Mihai 44

Chan, Timothy M. 2
Cheilaris, Panagiotis 4
Chen, Danny Z. 332, 609
Chen, Jian-Jia 75
Chen, Wei 278

Demaine, Erik D. 3
Deng, Xiaotie 690
Dey, Sandeep Kumar 187
Disser, Yann 506
Dorrigiv, Reza 136
Durocher, Stephane 319
Dutta, Chinmoy 257

Emamjomeh-Zadeh, Ehsan 382
Evans, William 423

Fang, Wenjie 278
Frati, Fabrizio 413
Friedrich, Tobias 659
Fu, Norie 392

Ganguly, Sumit 64
Gargano, Luisa 4
Goldberg, Paul 690
Golin, Mordecai 362
Golovach, Petr A. 14, 495
Grgurovič, Marko 156
Gudmundsson, Joachim 413
Guo, Jiong 126

Hartmann, Tanja 95, 402
He, Meng 136, 537, 548
Hell, Pavol 227
Hermann, Miki 227
Hermelin, Danny 465
Higuchi, Shoichi 485
Hirata, Kouichi 485
Hopcroft, John E. 1
Hu, Guangda 278
Huang, Yamming 352
Hurtado, Ferran 423

Ito, Takehiro 34, 372

Junosza-Szaniawski, Konstanty 619

Kameda, Tsunehiko 588
Kamiński, Marcin 299
Kan, Tomohiro 485
Kanté, Mamadou Moustapha 289
Kao, Mong-Jen 75
Kappmeier, Jan-Philipp W. 433
Kawamura, Akitoshi 598
Kawamura, Kazuto 34
Kim, Hyo-Sil 54
Kim, Sang-Sub 54
Kita, Nanao 85
Klav́ık, Pavel 444
Kobayashi, Yusuke 598
Köbler, Johannes 517
Kociumaka, Tomasz 207
Kopelowitz, Tsvi 558
Kratochv́ıl, Jan 444, 619
Kratsch, Dieter 495
Kreveld, Marc van 166
Krohmer, Anton 659
Kuhnert, Sebastian 517
Kuo, Ching-Chen 24

Leblanc, Alexandre 319
Le Gall, François 639
Leitert, Arne 267
Letsios, Dimitrios 106
Li, Cheng-Chung 578
Liao, Chung-Shou 352

702 Author Index

Limouzy, Vincent 289
Liotta, Giuseppe 423
Liu, Yunlong 342
Löffler, Maarten 166
Lu, Hsueh-I 24
Lucarelli, Giorgio 106

Mahoney, Michael W. 278
Makris, Christos 568
Mary, Arnaud 289
Matuschke, Jannik 433, 506
Mazumdar, Arya 649
Mchedlidze, Tamara 423
Meijer, Henk 423
Mnich, Matthias 247
Morrison, Jason 319
Munro, J. Ian 537

Nagamochi, Hiroshi 475
Nakano, Shin-ichi 372
Nevisi, Mayssam Mohammadi 227
Nicholson, Patrick K. 548
Niedermeier, Rolf 247
Nielsen, Jesper Sindahl 527
Norouzi-Fard, Ashkan 382
Nourine, Lhouari 289

Okamoto, Yoshio 372, 423, 629
Ono, Hirotaka 34
Otachi, Yota 372, 444, 455

Pach, János 166
Pachocki, Jakub 207
Paluch, Katarzyna 116
Papadopoulou, Evanthia 177, 187
Paulusma, Daniël 14, 495
Peis, Britta 433
Pergel, Martin 619

Radhakrishnan, Jaikumar 257
Radoszewski, Jakub 207
Rautenbach, Dieter 267
Rescigno, Adele A. 4
Rizzi, Romeo 465
Rollin, Jonathan 402
Rutter, Ignaz 75, 402
Rytter, Wojciech 207
Rz ↪ażewski, Pawe�l 619

Saikkonen, Riku 217
Saitoh, Toshiki 444
Sakai, Yoshifumi 197

Shin, Chan-Su 629
Shrestha, Yash Raj 126
Skala, Matthew 319
Smorodinsky, Shakhar 4
Soisalon-Soininen, Eljas 217
Son, Wanbin 54
Song, Jian 14
Song, Zhao 588

Talmon, Nimrod 558
Tamura, Takeyuki 146
Tan, Xuehou 332
Tang, Bo 690
Tanigawa, Shin-ichi 309
Ting, H.F. 669
Truelsen, Jakob 527
Tsakalidis, Konstantinos 568

Uehara, Ryuhei 372
Uno, Takeaki 372, 679
Uno, Yushi 372

van Bevern, René 247
van ’t Hof, Pim 299
Vialette, Stéphane 465

Wagner, Dorothea 75, 95
Waleń, Tomasz 207
Wang, Haitao 332, 609
Watanabe, Osamu 517
Weller, Mathias 247
Welzl, Emo 413
Wong, Prudence W.H. 44
Wu, Gangshan 332
Wu, Xiaodong 342

Xiang, Xiangzhong 669

Yamakami, Tomoyuki 237
Yazdanbod, Sadra 382
Yu, Hung-I 578
Yu, Wei 362
Yung, Fencol C.C. 44

Zarrabi-Zadeh, Hamid 382
Zavershynskyi, Maksym 177
Zeh, Norbert 136, 548
Zhang, Guochuan 362
Zhang, Jinshan 690
Zhou, Gelin 537
Zhou, Xiao 34

	Title
	Preface
	Organization
	Table of Contents
	Invited Talk (I)
	Future Directions in Computer Science Research

	Invited Talk (II)
	Combinatorial Geometry and ApproximationAlgorithms

	Invited Talk (III)
	Origami Robots and Star Trek Replicators

	Graph Algorithms (I)
	Strong Conflict-Free Coloring for Intervals
	Introduction
	A k-SCF Coloring Algorithm
	Correctness of Algorithm k-COLOR
	Analysis of Algorithm k-COLOR(I)

	A k-SCF Coloring Algorithm for Hn
	A Quasipolynomial Time Algorithm
	Conclusions, Further Work, and Open Problems
	References

	Closing Complexity Gapsfor Coloring Problems on H-Free Graphs
	Introduction
	Classifying Precoloring Extension and 3-List Coloring
	List Coloring for Complete Graphs Minus a Matching
	List 4-Coloring for P6-Free Graphs
	Concluding Remarks
	References

	Randomly Coloring Regular Bipartite Graphsand Graphs with Bounded Common Neighbors
	Introduction
	Preliminaries
	Rapid Mixing on Regular Bipartite Graphs
	Proof of the First Part of Theorem 1

	Rapid Mixing on Graphs with Bounded Common Neighbors
	Proof of the Second Part of Theorem 1

	References

	Reconfigurationof List L(2, 1)-Labelings in a Graph
	Introduction
	Definitions
	PSPACE-Completeness
	Linear-Time Algorithm
	Sufficient Condition for Trees
	Concluding Remarks
	References

	Online and Streaming Algorithms
	An 8/3 Lower Bound for Online Dynamic BinPacking
	Introduction
	Preliminaries
	Op-Inc and Op-Comp
	Operation Op-Inc
	Operation Op-Comp
	A 2.5 Lower Bound Using Op-Inc and Op-Comp

	The 8/3 Lower Bound
	Conclusion
	References

	Computing k-center over StreamingData for Small k
	Introduction
	Preliminaries
	The Case >2r
	The Case 2r
	LayerPartition
	DoublingGrid

	Conclusions
	References

	Precision vs Confidence Tradeoffs for 2-BasedFrequency Estimation in Data Streams
	Introduction
	The ACSK Algorithms
	Lower Bound on Frequency Estimation
	References

	Competitive Design and Analysis for Machine-Minimizing JobScheduling Problem
	Introduction
	Notations and Problem Model
	Problem Complexity
	Why the Known Algorithm Fails to Produce Feasible Schedules
	Lower Bound on the Competitive Factor

	5.2-Competitive Packing-via-Density
	Conclusion
	References

	Combinatorial Optimization (I)
	A Partially Ordered Structure and a Generalization of the Canonical Partitionfor General Graphs with Perfect Matchings
	Introduction
	Preliminaries
	A Partially Ordered Structure in Factorizable Graphs
	A Generalization of the Canonical Partition
	Correlations between and g
	Algorithmic Result
	References

	Fast and Simple Fully-Dynamic Cut Tree Construction
	Introduction
	The Static Algorithm and Insights on Reusable Cuts
	The Dynamic Cut Tree Algorithm
	Performance of the Algorithm
	Conclusion
	References

	Green Scheduling, Flows and Matchings
	Introduction
	Preliminaries

	Energy Minimization on Parallel Processors
	Energy Minimization in an Open Shop
	Mean Completion Time Plus Energy Minimization on Parallel Processors
	References

	Popular and Clan-Popular b-Matchings
	Introduction
	Characterisations
	Polynomial Algorithms for Clan-Popular b-matchings
	References

	Computational Complexity (I)
	Kernelization and Parameterized Complexityof Star Editing and Union Editing
	Introduction
	Preliminaries
	Improved Kernel for Star Editing with Total Recoloring
	Kernelization for Star Editing
	Hardness Results for Star Editing
	Union Editing
	References

	On the Advice Complexity of BufferManagement
	Introduction
	Optimal Preemptive Online Buffer Management
	The Lower Bound
	The Upper Bound

	Optimal Nonpreemptive Online Buffer Management
	Advice Does Not Help Ratio Partition
	References

	On the Complexity of the Maximum Common Subgraph Problem for Partial k-Treesof Bounded Degree
	Introduction
	Preliminaries
	Hardness Results
	Exponential-Time Algorithms
	Concluding Remarks
	References

	Speeding Up Shortest Path Algorithms
	Introduction
	Preliminaries
	The Algorithm
	Time and Space Complexity
	Implications

	Improving the Time Bound
	Directed Acyclic Graphs
	Discussion
	References

	Computational Geometry (I)
	How Many Potatoes Are in a Mesh?
	Introduction
	Preliminaries
	Potatoes in General Meshes
	Potatoes in Fat Meshes
	Carrots in Fat Meshes
	References

	On Higher Order Voronoi Diagramsof Line Segments
	Introduction
	Preliminaries
	Disconnected Regions
	Structural Complexity
	Line Segments Forming a Planar Straight-Line Graph
	Intersecting Line Segments
	Concluding Remarks
	References

	On the Farthest Line-Segment Voronoi Diagram
	Introduction
	Definitions and the Farthest Hull
	Improved Combinatorial Bounds
	Algorithms for the Farthest Line-Segment Hull
	Divide and Conquer or Incremental Constructions
	Output Sensitive Approaches

	Concluding Remarks
	References

	String Algorithms
	Computing the Longest Common Subsequenceof Two Run-Length Encoded Strings
	Introduction
	Preliminaries
	Algorithm
	Outline of the Algorithm
	Simple Implementation
	Proposed Implementation
	Preprocessing

	References

	Efficient Counting of Square Substrings in a Tree
	Introduction
	Algorithmic Toolbox for Trees
	Compact Representations of Sets of Squares
	Main Algorithm
	Construction of the Basic Tables
	Computation of PREF
	Computation of SUF
	Computation of SHIFT and SHIFTR

	References

	A General Method for ImprovingInsertion-Based Adaptive Sorting
	Introduction
	The Bulk Tree
	Inserting Bulks
	Analysis
	Optimization: Making Small Bulks Larger

	Experiments
	Other Sorting Algorithms
	Results

	Conclusions
	References

	Computational Complexity (II)
	Counting Partitions of Graphs
	Introduction
	Decomposition Techniques
	A Special Polynomial Case
	Dichotomy
	References

	Constant Unary Constraints and SymmetricReal-Weighted Counting CSPs
	Roles of Constant Unary Constraints
	Fundamental Notions and Notations
	Constraints and #CSPs
	FPA and AP-Reducibility
	Effective T-Constructibility

	Approximation of the Constant Unary Constraints
	Notion of Complement Stability
	Basis Case: k = 1, 2
	General Case: k3

	AP-Reductions without Auxiliary Unary Constraints
	References

	Interval Schedulingand Colorful Independent Sets
	Introduction
	Independent Set and 2-Union Graphs
	Colorful Independent Sets and Strip Graphs
	Outlook
	References

	More on a Problem of Zarankiewicz
	Introduction
	Building a Bipartite Graph from Smaller Symmetric Bipartite Graphs
	Building a Bipartite Graph from Smaller Asymmetric Bipartite Graphs
	Depth-two Superconcentrators
	References

	Graph Algorithms (II)
	Efficient Dominating and Edge Dominating Setsfor Graphs and Hypergraphs
	Introduction and Basic Notions
	Further Basic Notions
	Basic Notions and Properties of Graphs
	Basic Notions and Properties of Hypergraphs

	Efficient (Edge) Domination in General
	Efficient Domination in Graphs
	Efficient Edge Domination in Graphs
	Some Results for Hypergraphs
	Conclusion
	References

	On the Hyperbolicity of Small-Worldand Tree-Like Random Graphs
	Introduction
	Preliminaries on Hyperbolic Spaces and Graphs
	Gromov's -Hyperbolicity
	Poincaré Disk

	-Hyperbolicity of Grid-Based Small-World Random Graphs
	-Hyperbolicity of Ringed Trees
	Discussions and Open Problems
	References

	On the Neighbourhood Helly of Some GraphClasses and Applications to the Enumerationof Minimal Dominating Sets
	Introduction
	Some Remarks on the k-conformality
	Line graphs
	Path Graphs
	(C4,C5,claw)-Free Graphs
	Proofs of Theorems
	Conclusion
	References

	Induced Immersions
	Introduction
	Preliminaries
	Finding a Fixed Multigraph as an Induced Immersion
	Excluding a Fixed Multigraph as an Induced Immersion
	Concluding Remarks
	References

	Computational Geometry (II)
	Rectilinear Covering for Imprecise Input Points
	Introduction
	Preliminaries
	General Structure of Optimal Covering-Family
	Optimal Covering-Family for k2
	Optimal Covering-Family for k=3
	Properties of Covering-Family for k=3
	Bounds on |U(C)| and |C*|
	Algorithm

	References

	Robust Nonparametric Data Approximationof Point Sets via Data Reduction
	Introduction
	Related Work
	A Crossing Measure and Its Computation
	Crossing Measure
	Counting Crossings with a Segment
	Counting Crossings Due to Neighbouring Approximation Segments

	Finding a Polyline That Maximizes the Crossing Measure
	Results
	Discussion and Conclusions
	References

	Optimal Point Movement for Covering CircularRegions
	Introduction
	The Decision Version
	The Problem Modeling
	Dynamic Maximum Matching

	The Optimization Version
	References

	Solving Circular Integral Block Decompositionin Polynomial Time
	Introduction
	Application Background
	Related Works
	Our Contributions

	Canonical Blocksets and Admissible Function Pairs
	Experimental Results
	References

	Approximation Algorithms
	The Canadian Traveller Problem Revisited
	Introduction
	Preliminaries
	Double-Valued Graph
	The Uniform Jam Cost Model

	k-CTP for Metric TSP
	Concluding Remarks
	References

	Vehicle Scheduling on a Graph Revisited
	Introduction
	Problem Formulation and Notations
	A Recursive Algorithm
	The Bottleneck of Partition-Based Algorithms
	VSP with a Heavy Edge
	Concluding Remarks
	References

	A 4.31-Approximation for the Geometric UniqueCoverage Problem on Unit Disks
	Introduction
	Technique Highlight
	Main Result and Outline
	PTAS for the Problem on "426830A Pq, DO "526930B
	PTAS for the Problem on "426830A Pq, DI "526930B
	Concluding Remark
	References

	The Minimum Vulnerability Problem
	Introduction
	A Primal-Dual Algorithm
	An Exact Algorithm for Fixed k
	A Sublinear Approximation Factor
	Conclusion
	References

	Graph Algorithms (III)
	A Strongly Polynomial Time Algorithm for the Shortest Path Problem on CoherentPlanar Periodic Graphs
	Introduction
	Preliminaries
	Coherence of Periodic Graphs
	Unimodularity of the Incidence-Transit Matrices of Planar Periodic Graphs
	The Strongly Polynomial Time Algorithm for the Shortest Path Problem
	References

	Cubic Augmentation of Planar Graphs
	Introduction
	Preliminaries
	Planar 3-Regular Augmentation with Fixed Embedding
	 (Planarly) Realizable Assignments for a Face
	Globally Realizable Node Assignments and Planarity

	C-Connected FERA
	Conclusion
	References

	On the Number of Upward Planar Orientationsof Maximal Planar Graphs
	Introduction
	Preliminaries
	Upper Bound for Theorem 1
	Upper Bound for Theorem 2 and Lower Bound for Theorem 1
	Lower Bound for Theorem 2
	Conclusions
	References

	Universal Point Subsets for Planar Graphs
	Introduction
	A Universal Point Subset for Planar Graphs
	Universalizing the Size of Universal Point Subsets
	Planar Graphs
	4-Connected Planar Graphs
	Nested-Triangles Graphs

	Final Remarks and Open Problems
	References

	Computational Complexity (III)
	Abstract Flows over Time: A First Steptowards Solving Dynamic Packing Problems
	Introduction
	Time Expansion of Abstract Networks
	Constructing a Maximum Abstract Flow over Time
	Waiting at Intermediate Elements and the Structure of Abstract Networks
	Proof of Theorem 6
	Conclusion
	References

	Extending Partial Representationsof Subclasses of Chordal Graphs
	Introduction
	Preliminaries
	Interval Graphs
	Path and Chordal Graphs
	Conclusions
	References

	Isomorphism for Graphs of BoundedConnected-Path-Distance-Width
	Introduction
	Preliminaries
	Hardness and Fixed-Parameter Tractability of cpdw
	NP-Hardness
	Fixed-Parameter Tractability

	Fixed-Parameter Tractable Algorithms for GI
	Relationships among Graph Parameters
	Upper Bounding rpdw by cpdw
	The Classes of Bounded 2-cpdw and of Unbounded rtdw

	Concluding Remarks
	References

	Algorithmic Aspects of the Intersectionand Overlap Numbers of a Graph
	Introduction
	Notations
	Hardness of Approximating i(G)
	Hardness of Approximating (G)
	Recognizing Intersection Graph Classes
	References

	Graph Drawing
	Linear Layouts in Submodular Systems
	Introduction
	Preliminaries
	Algorithm
	Digraph Case
	Cutwidth and Minimum Linear Arrangement
	Vertex Separation and Sum Cut

	Concluding Remarks
	References

	Segmental Mapping and Distancefor Rooted Labeled Ordered Trees
	Introduction
	Preliminaries
	Segmental Mapping and Distance
	Computing Segmental Distance
	References

	Detecting Induced Minors in AT-Free Graphs
	Introduction
	Preliminaries
	Set-Restricted Disjoint Paths
	Induced Minors
	Concluding Remarks
	References

	Degree-Constrained Orientationsof Embedded Graphs
	Introduction
	Preliminaries
	Orientations with Fixed In-degrees
	A Combinatorial Approach for Planar Embeddings
	A Linear Algebra Analysis for General Embeddings

	Orientations with Upper and Lower Bounds
	Conclusion
	References

	Interval Graph Representationwith Given Interval and Intersection Lengths
	Introduction
	Preliminaries
	Deriving Structural Information
	Given Interval and Intersection Lengths
	Given Intersection Lengths
	Interval Graphs with Unique Maxclique Ordering
	Conclusion
	References

	Data Structures
	Finger Search in the Implicit Model
	Introduction
	Static Finger Search
	Lower Bounds
	A Dynamic Structure
	Block Operations
	Operations
	Analysis

	References

	A Framework for Succinct Labeled OrdinalTrees over Large Alphabets
	Introduction
	Preliminaries
	Bit Vectors, Strings and the Related Operations
	Tree Extraction

	Static Trees over Large Alphabets: Theorem 2
	pre_rank, pre_select and nbdesc
	Conversion between the Nodes in T and T
	parent, level_anc, LCA and depth
	child_rank, child_select and deg
	Completing the Proof of Theorem 2

	Dynamic Trees that Support Level-Ancestor Operations : Theorem 3
	References

	A Space-Efficient Frameworkfor Dynamic Point Location
	Introduction
	Our Results

	Definitions and Preliminaries
	P-Trees
	Succinct P-Trees
	Dynamic Planar Point Location
	References

	Selection in the Presence of Memory Faults,with Applications to In-place Resilient Sorting
	Introduction
	Preliminaries
	Definitions
	Basic Procedures

	Deterministic Resilient Selection Algorithm
	Algorithm Description
	Analysis

	Recursion Implementation
	Data Structures
	Operations
	Proof of Lemma 3

	References

	An Improved Algorithm for Static 3DDominance Reporting in the Pointer Machine
	Introduction
	Preliminaries
	3d Dominance Reporting
	Maximal Input Points
	General Input Points

	Conclusion
	References

	Combinatorial Optimization (II)
	The Multi-Service Center Problem
	Introduction
	Notation and Preliminaries
	The p-Service Center Problem on a General Graph
	NP-Hardness
	Exact Algorithm for Fixed p
	Approximation Algorithm for General p

	The 2-Service Center Problem on a Path and a Tree
	Algorithm on a Path
	Algorithm on a Tree
	Algorithm on an Unweighted Tree

	Concluding Remarks
	References

	Computing Minmax Regret 1-Median on a TreeNetwork with Positive/Negative Vertex Weights
	Introduction
	Preliminaries
	Definitions
	Basic Properties of Trees
	Weight and Cost Arrays

	Medians and Their Costs
	Computing m(s) and Fs(m(s)) for all s

	Optimal Facility Location
	Algorithm
	Efficient Implementation
	General Trees

	Conclusion
	References

	Fence Patrolling by Mobile Agentswith Distinct Speeds
	Introduction
	The Partition-Based Strategy Is Not Always Optimal
	Agents with Equal Speeds
	Two Agents
	Three Agents of Equal Weights
	Some Observations
	Case of v1 2v2+v3
	Case of v1 2v2+v3

	Conclusion
	References

	Computational Geometry (III)
	Weak Visibility Queries of Line Segmentsin Simple Polygons
	Introduction
	Preliminaries
	The First Data Structure
	The Second Data Structure
	Proving the Zone Theorem (i.e., Theorem 3)

	References

	Beyond Homothetic Polygons:Recognition and Maximum Clique
	Introduction
	Preliminaries and Basic Definitions
	kDIR-CONV Graphs
	Recognition and Relations with other Graph Classes
	The Number of Maximal Cliques

	Phom Graphs
	Recognition and Relations with other Graph Classes
	The Number of Maximal Cliques

	Conclusion
	References

	Area Bounds of Rectilinear Polygons Realizedby Angle Sequences
	Introduction
	Preliminaries
	Bounds on (n)
	Proving (n)n/2 - 1 and Tightness for n4-5mumod5mu-8
	Proving (n)=n/2 for n4-5mumod5mu-8

	Bounds on (n)
	Realizing Monotone Sequences
	Realizing Arbitrary Sequences

	References

	Randomized Algorithms�
	A Time-Efficient Output-Sensitive QuantumAlgorithm for Boolean Matrix Multiplication
	Introduction
	Statement of Our Results
	Overview of Our Techniques

	Preliminaries
	Finding Up to O(n) Non-zero Entries
	Reduction to Several Matrix Multiplications
	Proofs of Theorems 1 and 2
	References

	On Almost Disjunct Matrices for Group Testing
	Introduction
	Almost Disjunct Matrices from Codes
	Disjunct Matrices
	Constant Weight Codes and Disjunct Matrices
	Proof of Theorem 1

	Construction
	Consequence of Theorem 1 in Kautz-Singleton Construction
	q-ary Code Construction

	Conclusion
	References

	Parameterized Clique on Scale-Free Networks
	Introduction
	Preliminaries
	Analysis for Power Law Exponent 3
	Analysis for Power Law Exponent (2,3)
	Conclusion
	References

	Algorithmic Game Theory
	Multi-unit Auctions with Budgetsand Non-uniform Valuations
	Introduction
	Preliminaries
	The Adaptive Clinching Auction
	Impossibility Results
	References

	Efficient Computation of Power Indices forWeightedMajority Games
	Introduction
	Algorithm for the Banzhaf Index
	Reducing Space Complexity and Unnecessary Operations
	Algorithm for Shapley–Shubik Index
	Algorithm for Deegan–Packel Index
	Implementation and Experiments
	References

	Revenue Maximization in a Bayesian DoubleAuction Market
	Introduction
	Preliminaries
	Optimal Single-Dimensional Double Auction
	Approximate Multi-dimensional Double Auction
	Optimal Mechanism for Discrete Distributions
	Conclusion
	References

	Author Index

