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Abstract. We developed a framework for systematic evaluation of
brain-computer interface (BCI) systems. This framework is intended to
compare features extracted from a variety of spectral measures related
to functional connectivity, effective connectivity, or instantaneous power.
Different measures are treated in a consistent manner, allowing fair com-
parison within a repeated measures design. We applied the framework to
BCI data from 14 subjects recorded on two days each, and demonstrated
the framework’s feasibility by confirming results from the literature. Fur-
thermore, we could show that electrode selection becomes more focal in
the second BCI session, but classification accuracy stays unchanged.
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1 Introduction

Diseases such as amyotrophic lateral sclerosis (ALS) or cerebral palsy (CP) dis-
turb nervous system functions, limiting affected individuals in their abilities to
interact with their environment. Voluntary movement or communication can be
difficult or even impossible due to loss or impairment of motor functions. A
brain-computer interface (BCI) could potentially help to improve quality of life
for such individuals by allowing them to communicate or interact with their en-
vironment without relying on motor functions [21]. BCIs measure a user’s brain
signals and translate them into control commands for applications [10, 14].

A commonly used brain signal for BCI control is the electroencephalogram
(EEG) [16], which records cortical electrical activity from the scalp. The EEG
contains several typical rhythmic activities such as the sensorimotor rhythm
(SMR). Individuals can modulate SMR by motor imagery (MI), that is, imag-
ining movement of their extremities, which causes power changes in specific
frequency bands. These changes occur in different cortical areas, depending on
which movement is imagined [15].

The state-of-the-art method for detecting different MI patterns is classification
of band power (BP) features [3]. BP is the instantaneous power in pre-defined
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frequency bands of single EEG channels. Although BP features allow a BCI to
reliably detect different MI tasks [16], no information about the interaction of
different brain areas can be obtained. However, such information could provide
more insight in the neurological processes involved, and might improve classifi-
cation of MI tasks.

The interaction of brain areas is expressed in functional or effective con-
nectivity [6]. While functional connectivity measures correlated activation of
brain areas, effective connectivity measures causal information flow. Numerous
connectivity measures have been developed and proposed in BCI-related stud-
ies [4, 9, 12, 19]. Since these studies vary greatly in procedure, comparing their
results is not easily possible. Hence, there is a clear need for a unified proce-
dure to systematically compare feature extraction methods based on different
measures of connectivity.

In this article, we present a framework for systematically evaluating BCI sys-
tems. This framework supports many different spectral connectivity measures,
as well as non-connectivity measures such as BP. This allows fair comparison
within a broad range of methods.

Although connectivity measures provide only three dimensional data (source,
destination, frequency), they lead to a high dimensional feature space for classi-
fying MI tasks. The number of features usually greatly outnumbers the number
of available training samples. Thus, our framework also performs channel and
frequency band selection based on statistical significance. This reduces the num-
ber of features and helps the researcher to interpret brain interactions relevant
for BCI use [7, 8].

2 Methods

2.1 Connectivity Measures

Different measures related to connectivity can be derived from a vector autore-
gressive model (VAR) representation of the observed signals. The number of free
parameters in a VAR model is M2p, which limits the minimum estimation win-
dow length. The number of channels M , model order p, and window length N
determine spatial, spectral and temporal resolution of derived measures.

Time resolution of VAR models can be increased by obtaining multiple real-
izations of the observed time series. This is a common procedure in neurophysio-
logical studies, where repeated trials of a task are performed [13]. Unfortunately,
MI BCIs are required to respond to single trials. Thus, a careful trade-off be-
tween temporal, spectral and spatial resolutions must be found. While we limit
spatial resolution with automatic channel selection, model order and estimation
window length are set manually.

2.2 BCI Framework

Fig. 1 shows an overview of the BCI framework. The outer cross-validation loop
serves to test the framework as a whole. It resembles the flow of typical BCI
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operation, where parameters selected from available data are applied to novel
data. The optimal time segment for classifier training during MI is determined
in the inner cross-validation loop. A detailed description of each functional unit
follows below.

Electrode Selection

• Connectivity Estimator

• Class Correlator

• Significance Mapper

• Electrode Selector

Band Selection

• Connectivity Estimator

• Class Correlator

• Significance Mapper

• Band Selector

Classifier Training

• Running Classifier

Inner Crossvalidation
(leave-one-trial-out + margin)

Training Set Testing Set

Classifier Testing

• median κ

Fig. 1. Framework for the BCI based on functional or effective connectivity. The frame-
work resembles the work-flow of a typical BCI, where the system is optimized on avail-
able data and applied to novel data, possibly in an online setting. This work-flow is
embedded in a cross-validation procedure, where parts of the pre-recorded data serve
as the novel testing set.

Connectivity Estimator. The Connectivity Estimator fits a sliding window
VAR model to multiple EEG channels and subsequently extracts any required
connectivity measures. For details about retrieving connectivity measures from
VAR models see [18].

This results in a four-dimensional data set ck(i, j, f, t) for each trial k, which
describes a measure of connectivity from channel j to i at frequency f and time
t relative to the cue. BP can be estimated from the EEG’s autospectra obtained
by discrete Fourier transform (DFT). In this case ck(i, j, f, t) = 0 for i �= j.

Class Correlator. The correlation coefficient r(i, j, f, t) is calculated between
ck and corresponding class labels yk. p(i, j, f, t)-values are obtained from the
asymptotic normal distribution, which are used for testing against the null-
hypothesis of no correlation.

Significance Mapper. A modified version of the direct estimation of false
discovery rate (FDR) [20] is used to determine which correlations are significant
at a specified FDR. Similar to [1], instead of accepting all hypotheses with p-
values below a certain threshold, only those p-values are accepted that form
clusters of a minimum size in the t/f -plane.

Electrode Selector. Electrode selection is performed in two steps, with a
ranking criteria el based on the squared correlation coefficient:

el =
∑

f

∑

t

⎛

⎝
∑

i

r2(i, l, f, t) +
∑

j

r2(l, j, f, t)

⎞

⎠ (1)
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Electrodes l with the highest el are selected. First, only significant r are con-
sidered. If the procedure cannot find a pre-defined number of electrodes, more
electrodes are added to the selection based on all r.

Band Selector. Band selection identifies a list of all channel pair frequency
bands, in which the measure ck correlates significantly with the class labels.
Bands are identified for each channel pair (i, j) as the frequency ranges in
which there is significantly correlated activity of at least two seconds. For func-
tional connectivity measures, where ck(i, j, f, t) = ck(j, i, f, t) or ck(i, j, f, t) =
−ck(j, i, f, t), only one of the channel pairs (i, j) and (j, i) is used.

If no frequency bands are found, the system chooses a set of default bands,
which were defined as the frequency range of 5 to 25Hz for each channel pair.

Classification. First, the optimal time segment for training the linear discrimi-
nant analysis (LDA) classifier is determined. This is accomplished by estimating
the classification accuracy for each time segment with inner cross–validation.
In a leave-one-out procedure, each trial is used as the validation set once and
a margin of 10 trials before and after the validation trial is excluded from the
training set [11].

Subsequently, the classifier is trained on the full training set in the time seg-
ment with the highest accuracy. Testing is performed by applying the classifier
to the testing set. This is the only place in the framework where the testing set
is used. Thus, the classifier is tested on completely unseen data.

2.3 Data Acquisition

Three electrooculogram (EOG) and 45 EEG channels were recorded. Electrodes
were placed according to the international 10–20 System. Fig. 2 (left) shows the
exact electrode positions. Signals were recorded at a sampling rate of 300Hz
using three synchronized g.USBamp amplifiers (g.tec, Guger Technologies OEG,
Graz, Austria) with passive Ag/AgCl ring electrodes and filtered between 0.5
and 100Hz. The notch filter was set to 50Hz to suppress line noise.

14 healthy volunteers without prior experience in BCI control participated
in a BCI experiment. On each of two separate days (sessions) six training runs
and three feedback runs were performed. During feedback, the participants were
instructed to control a virtual plane along a path with two different MI tasks (for
details, see [2]). The training paradigm was based on the synchronous Graz BCI
training paradigm [16], modified to visually resemble the continuous feedback
paradigm. At the beginning of each session, an artifact run was performed to
estimate the influence of artifacts such as eye movement and eye blinks on the
EEG. Subsequently, four training runs were followed by one feedback run, two
further training runs, and two final feedback runs. In this article, we only use
the data recorded during training.
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Fig. 2. Left: EEG electrode placement. Right: experimental paradigm.

From each session a total of 90 trials of right hand MI and 90 trials of feet
MI are available. Fig. 2 (right) shows the timing of a trial. Trial duration is 7 s,
followed by a break of 3 ± 0.5 s. Trial start was indicated by an acoustic beep
and appearance of the fixation object. At t = 2.5 s an arrow appeared, pointing
up or down, to cue the participant to perform hand or feet MI, respectively.

2.4 Data Analysis

Prior to application of the framework to the data, some pre-processing steps were
performed. The EOG was removed from the EEG using a regression based ap-
proach [17]. Subsequently, the EEG data was down-sampled from 300 to 100Hz.

The VAR model order was chosen as p = 9. This allows reasonable frequency
resolution with reasonable window lengths. Window length was set to 3 s prior
to electrode selection, and to 1.5 s after electrode selection. The number of elec-
trodes selected was 10.

The framework was applied to the comparison of BP, coherence (COH), and
directed transfer function (DTF) features. BP is known to work well with this
kind of task and serves as the reference method. COH is a measure for func-
tional connectivity, and DTF is a measure for effective connectivity. Each mea-
sure was independently applied to the electrode selection and the classification
step.

The electrode selection step is evaluated using the concept of entropy. En-
tropy is a measure of uncertainty in a probability distribution, defined in (2),
where pl is the probability that each electrode l is selected from the set of all
electrodes L.
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E = −
∑

l∈L

pl log2(pl) (2)

The probabilities pl are estimated from the electrode selection step in the outer
cross-validation. An entropy of E = 0 corresponds to perfectly consistent selec-
tion, where always the same set of electrodes is selected. Increasing values of E
indicate increasing uncertainty.

Classification performance is measured with Cohen’s Kappa κ. To obtain a
robust measure, κ is estimated for each time segment between cue and end of
trial, and the median value of κ is reported as classification performance.

The results of electrode selection were analyzed using a repeated measures
analysis of variance (ANOVA), with the dependent variable entropy, and the
factors selection (measure used for selection) and session. Similiarly, classifica-
tion performance was analyzed with the dependent variable κ, and the factors
selection, method (measure used for classification) and session. Sphericity correc-
tions were applied when required. Factors found to be significant by the ANOVAs
were subject to paired t-tests with Holm-Bonferroni correction.

3 Results

Table 1 lists the ANOVA results for electrode selection. Factors selection and
session are both highly significant (p < 0.01), and there are no significant in-
teraction effects between factors. Fig. 3 shows the results of post tests on both
significant factors. BP has the lowest selection entropy of all methods. Also,
entropy is significantly lower in the second session. Fig. 4 shows an example
of electrode selection from both sessions for one subject. In the first session,
the distribution of selection probabilities is more spread out than in the second
session, which is indicated by a higher entropy value.

Table 1. ANOVA results for electrode selection. d1 and d2 are the between-group and
within-group degrees of freedom of the F -statistic F .

Effect d1 d2 F p sig

selection 2 26 13.956 0.00008 **
session 1 13 9.292 0.00933 **

selection:session 2 26 2.169 0.13458

Table 2 lists the ANOVA results for classification. Factor selection is significant
(p < 0.05), and factor method is highly significant (p < 0.01). All other main
and interaction effects are not significant. Fig. 5 shows the results of post tests
on both significant factors. Electrode selection with DTF leads to the highest
classification performance, while classification with DTF is significantly worst.
Differences between BP and COH are not significant.
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Fig. 3. Entropy of electrode selection. Left: comparison of connectivity measures (aver-
aged over both sessions). Right: comparison of first and second session (averaged over
all selection methods). The brackets below the bar charts indicate if differences are
significant (p < 0.05, *) or highly significant (p < 0.01, **).

Fig. 4. Exemplary electrode selection probability for subject BV3, using COH. Left:
first session. Right: second session. Bigger circles indicate higher probability of an
electrode to be selected.

Table 2. ANOVA results for classification performance. The column p[GG] contains
Greenhouse-Geisser corrected p-values for factors that violate sphericity assumptions.

Effect DFn DFd F p p[GG] sig

selection 2 26 5.386 0.01104 *
method 2 26 17.980 0.00001 0.00015 **
session 1 13 0.758 0.39964

selection:method 4 52 0.534 0.71136
selection:session 2 26 0.458 0.63760
method :session 2 26 1.130 0.33849

selection:method :session 4 52 0.549 0.70077
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Fig. 5. Classification performance (Cohen’s Kappa). Left: comparison of connectivity
measures used for electrode selection. Right comparison of connectivity measures used
for classification. The brackets below are explained in Fig. 3.

4 Discussion

We proposed a framework for simulating offline BCIs based on spectral fea-
tures. Features are selected from connectivity or band power measures. To avoid
overfitting, the whole work flow is embedded in nested cross-validation proce-
dures. The framework is designed to be modular. Thus, components can easily be
replaced or added. For example, the simple LDA could be replaced by more so-
phisticated classifiers. Additional connectivity measures or pre-processing steps
can be added with little effort.

Our simulation results show that BP and COH work equally well for clas-
sification. This finding is in line with [9], who argue that this is caused by a
bias towards zero-phase between electrodes. Although DTF provides the worst
features for classification, it gives the best electrode selection in terms of clas-
sification performance. This is an interesting finding that will require further
investigation.

The issue of zero-phase bias is inherent to autoregressive models, since instan-
taneous terms are not directly modeled. This is addressed in [5], who propose an
extension to VAR models to include an instantaneous term. An alternative could
be to use independent component analysis (ICA) for pre-processing, which max-
imizes independence between components, and effectively removes zero-phase
components.

Electrode selection entropy is lower in the second session. This could indicate
a training effect induced by the feedback. Activation becomes more focused as
the subjects get accustomed to the task. However, this effect has no influence
on classification accuracy.

The framework helps researchers to manage their knowledge at various levels.
On the methodological level, any number of measures, each providing a high
dimensional feature space, are reduced to their respective classification perfor-
mance. Statistical comparison allows to easily comprehend their suitability for
BCI use (Figs. 3, 5). On the level of individual measures, relevant electrodes are
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identified from the multitude of possible connectivities between all channel pairs
in all frequency bins (Fig. 4). Furthermore, the subset of actual connectivities
can be further analysed, deepening the understanding of brain connectivity in
respect to specific tasks.

5 Conclusions

We could demonstrate that the proposed framework for BCI evaluation works
correctly by confirming some of the results of [9]. Thus, the framework could be
used to determine the best set of methods and electrodes to be used in individuals
or patient groups.

The DTF, a measure of effective connectivity, appears to be useful for elec-
trode selection. This indicates that connectivity measures can provide useful
information for BCIs. However, to realize a BCI based on connectivity features,
more work is required to address the issue of zero-phase bias between EEG
channels.

Acknowledgments. This work was supported by the FP7 Framework EU Re-
search Project ABC (No. 287774) and the FWF Project Coupling Measures
for BCIs (P20848-N15). This paper only reflects the authors’ views and funding
agencies are not liable for any use that may be made of the information contained
herein.

References

1. Billinger, M., Kaiser, V., Neuper, C., Brunner, C.: Automatic frequency band selec-
tion for BCIs with ERDS difference maps. In: Proceedings of the 5th International
Brain–Computer Interface Conference (2011)

2. Billinger, M., Neuper, C., Müller-Putz, G.R., Brunner, C.: User-centric perfor-
mance estimation in a continuous online BCI. In: Proceedings of the 3rd TOBI
Workshop (2012)

3. Brunner, C., Billinger, M., Vidaurre, C., Neuper, C.: A comparison of univariate,
vector, bilinear autoregressive, and band power features for brain computer inter-
faces. Medical and Biological Engineering and Computing 49, 1337–1346 (2011),
http://dx.doi.org/10.1007/s11517-011-0828-x ,
doi:10.1007/s11517-011-0828-x

4. Brunner, C., Scherer, R., Graimann, B., Supp, G., Pfurtscheller, G.: Online control
of a brain-computer interface using phase synchronization. IEEE Transactions on
Biomedical Engineering 53, 2501–2506 (2006)

5. Erla, S., Faes, L., Tranquillini, E., Orrico, D., Nollo, G.: Multivariate autoregres-
sive model with instantaneous effects to improve brain connectivity estimation.
International Journal of Bioelectromagnetism 11(2), 74–79 (2009)

6. Friston, K.J.: Functional and effective connectivity in neuroimaging: A synthesis.
Hum. Brain Mapping 2, 56–78 (1994)

http://dx.doi.org/10.1007/s11517-011-0828-x


A Connectivity Based Framework for Knowledge Discovery in BCI 667

7. Holzinger, A.: On knowledge discovery and interactive intelligent visualization of
biomedical data - challenges in human-computer interaction & biomedical infor-
matics. In: Proceedings of the 9th International Joint Conference on e-Business
and Telecommunications (ICETE 2012), Rome, Italy, pp. IS9–IS20 (2012)

8. Holzinger, A., Scherer, R., Seeber, M., Wagner, J., Müller-Putz, G.: Computa-
tional Sensemaking on Examples of Knowledge Discovery from Neuroscience Data:
Towards Enhancing Stroke Rehabilitation. In: Böhm, C., Khuri, S., Lhotská, L.,
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