
SPTrack: Visual Analysis of Information Flows

within SELinux Policies and Attack Logs

Patrice Clemente1, Bangaly Kaba1, Jonathan Rouzaud-Cornabas2,
Marc Alexandre1, and Guillaume Aujay1

1 ENSI de Bourges – LIFO
88 Bd Lahitolle, 18020 Bourges, France
Patrice.Clemente@ensi-bourges.fr

2 LIP – INRIA – ENS Lyon
9 rue du Vercors, 69007 Lyon, France

Abstract. Analyzing and administrating system security policies is dif-
ficult as policies become larger and more complex every day. The paper
present work toward analyzing security policies and sessions in terms of
security properties. Our intuition was that combining both visualization
tools that could benefit from the expert’s eyes, and software analysis
abilities, should lead to a new interesting way to study and manage se-
curity policies as well as users’ sessions. Rather than trying to mine large
and complex policies to find possible flaws within, work may concentrate
on which potential flaws are really exploited by attackers.

Actually, the paper presents some methods and tools to visualize and
manipulate large SELinux policies, with algorithms allowing to search
for paths, such as information flows within policies.

The paper also introduces a complementary original approach to an-
alyze and visualize real attack logs as session graphs or information flow
graphs, or even aggregated multiple-sessions graphs.

Our wishes is that in the future, when those tools will be mature
enough, security administrator can then confront the statical security
view given by the security policy analysis and the dynamical and real-
world view given by the parts of attacks that most often occurred.

1 Introduction

In the field of computer security, system administrators become more and more
confronted with large and complex security policies without tools to analyze
those policies. Even on security hardened systems enforcing Mandatory Access
Control mechanisms like GrSecurity or SELinux, very precise and accurate poli-
cies always allow numerous security breaches. In [1], the authors show that on
a finely defined SELinux security policy, there remain over than 1 million of po-
tential security breaches, using indirect sequences of interactions on the system.
For example, a user can connect on a system and can gain privileges exploiting a
flaw in a legitimate program; he can then access to confidential root data. Thus,
to analyze such potential flaws, one should need to see and analyze policies, in

R. Huang et al. (Eds.): AMT 2012, LNCS 7669, pp. 596–605, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



SPTrack: Visual Analysis of Information Flows 597

the most natural way. As all flows rely on sequences of multiple interactions, the
best way is to visualize them as visual graphs.

But visually analyzing policy graphs with thousands of nodes and edges is
not that useful and easy. Users should be able to focus their attention of specific
parts, properties or sub-paths in the policies. More than that, one can need to
visualize policies in terms of security properties violations.

Thus, the paper focuses on an abstract view of confidentiality and integrity
security properties: information flows. Our approach provides a method and a
tool to track information flows within security policies.

Although the paper presents preliminary work, the approach should fulfill
multiple objectives in the future: allowing to detect security breaches in the
security policy and modify it in consequence.

Sometimes, analyzing policies is inefficient or lacks experimental or practical
feedback. That is why in a second part, the paper faces the problem of system
session logs visualization. It provide methods and tools to efficiently aggregate
numerous system sessions into one graph, showing several interesting things.
First, those graphs show events occurring often within particular sessions or
within all sessions. The color of edges is related to that frequency. Applying that
method to attack logs gathered from honeypots allow us to detect what potential
flaws (of the policy) where actually exploited by real attackers. We concentrate
on information flows during attacks. Those are valuable results, as we whish to
be able in the future to react on those policies and concentrate on the more
dangerous paths on the graph among the millions of flaws in the policy.

The paper is organized as follows. Section 2 surveys related work. Section 3
presents our approach for SELinux system policies visualization using interaction
graphs, information flow graphs and tracking information flows within policies.
Section 4 presents our approach for the visualization of SElinux system logs and,
in particular, system logs of attacks. It introduces session graphs, multiple session
graphs and multiple session information flow graphs in order to provide statistical
views of attacks and information flows during attacks. Section 5 presents the tool
and particular algorithms before concluding with perspectives in Section 6.

2 Related Work

2.1 System Policies Visualization

There have been some work done in the field of analysis and visualization of se-
curity policies. In [2], the author surveys more than 20 papers about security vi-
sualization, and the most parts of them are focused on policies for network tools.
Only a part is related to operating systems: it deals with Rule based Resource
Access Control (RBAC) security policies visualization [3], but do not provide
any ways to track RBAC violation attempts for example. However, some other
work on the visualization of system security policies exist. In [4], the authors
deal with the hierarchical visualization of NTFS access control policies. Their
approach, transforming Access Control Lists subtrees into (sub-)rectangles can-
not be applied to whole operating systems policies. The authors of [5] provide a



598 P. Clemente et al.

tool for the visualization and comparison of security policies, to determine their
conflicts for example. But the paper do not deal with risks or flaws within a
single policy alone. In [6], the authors provide a tool for analyzing and visualize
security properties but only deals with small policies and do not confront visu-
alization of static policies with real system execution, or attack sessions. The
interesting work of [7] go a step further. The authors provide a tool to query
about policies violation of simple security properties based on information flows,
or others (e.g. separation of duties). But they do not provide a tool to render,
explore and filter large policies. They neither consider the problem of confront
policies with real system usage or attacks against it.

2.2 System Logs Visualization

Generally speaking, security monitoring or visualization often rely on network
security. Visualization of system session logs neither attack logs do not make an
exception to that. In [8], the author largely explain how to deal with information
security visualization, but the attention is focused on network information. Even
when talking about system events, it is focused on exploiting them to gain IPs of
the attackers. In [9,10], the authors provides approach and a research prototype
in order to deal with large amount of network data but not provide any consid-
eration of system logs and data. Indeed, many work deal with very specific but
deeply studied ways of visualizing networks logs and data, such as [11,12]. Many
work, such as [13,14] provides interesting ideas for the visualization of attacks,
such as displaying the attacks as a force directed graph or visualizing multiple
attacks into one single representation. In [15] the approach is to interactively
build the graph, which is quite impossible with large ones. In [16], the authors
go a step further with providing statistical view of network attacks.

However, all work are strictly focused on network attacks, with logs collected
from NIDS (Networks Intrusion Detection Systems). To our knowledge, there
exists no work on the visualization of operating system logs of attacks based on
HIDS (Host Based Intrusion Detection System) logs. We think this is a gap that
should be filled regarding the objectives previously given: better comprehension
of system attacks; further comparing system sessions with system policies; and
comparing potential flaws in system policies with real exploits in system attacks.
Those are our major motivations for this paper.

3 Visualizing Security Policies

In this section we present our method and related tool designed in order to
allow the manipulation of real SELinux security policies, and Security Properties
violations among them.

Figure 1 describes the functional architecture of our approach. Starting from
a SELinux MAC (Mandatory Access Control) policy, we build a policy graph
and possibly an information flow graph.



SPTrack: Visual Analysis of Information Flows 599

Administrator

MAC Policy

Write

PolicyGraph
Generate

FlowGraph

Translate

Visualization

Send

Send

Filter

Filter

SPTrack

Fig. 1. Functional architecture

3.1 Security Policy Graph

On operating systems, there are entities performing interactions (i.e. operations)
on other entities of the system. Under SELinux, such entities are called security
contexts. The active ones, e.g. users, processes are called subjects and passive
ones (files resources, sockets) are called objects. A SELinux security policy is
defined by rules giving “security permissions” (e.g. read/write, exec) between
subjects and objects, regarding the “security class” of the object (e.g. file). Se-
curity contexts are represented as a 3-uple of user, role an type related to a given
entity. For example, many contexts are related to root. They can be for example
like the following: user = system u (i.e. acting as, or belong to), role = object r
(i.e. a passive entity), and type = home t (i.e. the root’s home directory). Such
a context will represented as: system u : object r : home t.

We represent SELinux security policies as graphs of contexts where nodes
are security contexts subjects or objects and where edges are interactions
permissions. More precisely, each interaction is a couple of (security class,
security permissions).

A complete SELinux policy is very complex to define and to administrate :
thousands of contexts and interactions. Obviously, it is difficult to visualize in a
useful way. This is why we introduce information flow graphs.

3.2 Information Flow Graph

Moreover, as we focus here of information flows related security properties, we
introduce the notion of information flow graph (ifg). An information flow graph
related to a given policy is a sub-graph representing only interactions (edges)
able to transfer information between contexts.

Criticality level of interactions. We use a mapping table to build this sub-
graph regarding for each couple (security class, security permission) which



600 P. Clemente et al.

type of flow it is and how much its criticality level is. The criticality refers
to the potential erasability provided by the interaction (syscall) for the subject
to alter the integrity or the confidentiality of the object. For example, the inter-
action couple (signal, send) from a context a to another context b is seen as an
information flow from a to b with a low level criticality. On the other hand, the
context user u (user u : user r : user t) performing a (file, write) operation
to a context user home t (user u : user r : user home t) as a direct flow from
user u to user home t, called a write like operation, is highly critical because
it alter the integrity of the object. Typically, read and write syscall are the most
critical, whereas signals for example are the less ones. Typically, when consid-
ering only highly critical flows, the resulting sub-graph of information flows is
generally very smaller than the full one. The criticality level is used to color the
graph from the potential danger of the flow. An example is given in the next
subsection.

Such a vision is quite more interesting to focus on than any previous work.
We defined 4 levels of criticality regarding the values of our mapping table. In
terms of colors, the lowest criticality can be green (level 0 to 7), blue (8 to 15),
yellow (16 to 25), red (26 to 40): the most dangerous flows.

For example, in order to maintain an acceptable confidentiality property be-
tween any root context (system u : ∗) and the user (user u : user r : user t),
one would have to verify for any flow from system u : ∗ to any user’s exists above
the yellow level. For a completely restrictive property, no flow at all should be
possible.

Our visualization tool provides many classical search algorithms that takes
into account the criticality level of the edges.

Fig. 2. Security policy graph vs information flow graph

The left part of Fig. 2 shows an example of the visualization of a small security
policy with only 71 nodes and 71 edges. The nodes’ labels have been removed
in order to only show the reduction scale of using the ifg. The right part of the
figure presents the corresponding information flow subgraph, recolored according
to criticality values. On Fig. 2, only mid-critical (yellow) and highly critical (red)
flows were kept from the left side.



SPTrack: Visual Analysis of Information Flows 601

With large ifg, it can be more visually helpful to filter graphs to only paths
between nodes (or superset of nodes), especially for information flow paths. For
example, in Fig. 3, the graph is filtered in order to display only information
flows between two security contexts (root u : object r : nscd var run t and
sysadm u : sysadm r : bootloader t), and the labeling of nodes is made only on
the highly critical level (in red). The red path here is composed of 4 nodes (i.e.
includes 2 intermediary nodes).

Fig. 3. A potential flow in a filtered policy

Thanks to that approach, the administrator can list the remaining security
contexts involved in the information flows displayed. He can then select some of
them to precisely analyze and track to/from what contexts can information flow
occur with them.

For the real policy we used in our experiments, i.e., a SELinux Gentoo hard-
ened policy, having 1703 security contexts and 175190 aggregated1 edges between
contexts, filtering should be guided by more concrete and actual information.
That is why we worked on the analysis of real system sessions, and in particular,
real attacks sessions, gathered on our high interaction honeypots. This is the
purpose of the next section: visualizing system logs and in particular attacks
system logs.

4 Visualizing Attack Session Logs

The purpose of this section is to present how we deal with attack session logs
in order to create graph representing system sessions of attacks. Figure 4 de-
scribes the global system logs visualization architecture: the construction of ses-
sions graphs (itg), multiple session graphs and multiple session information flow
graphs (see below).

Firstofall, we propose to factorize multiple sessions into one single graph.
These session logs were gathered during two years from our high interaction

1 Each edge contains all possible permissions between the 2 linked context, thus leading
to an average compression ratio of the number of edges by 75%.



602 P. Clemente et al.

honeypots2 and thus represents attack sessions, generated with SELinux under
auditing mode. Each session logs has been formatted and stored on a large db2
database with a unique session number. The database stores 130Gb of data
divided into 200 millions lines, representing more than 31,000 attack sessions.

4.1 Session Graph

For each attack log, we are able to construct the corresponding so-called session
graph. (sg). That graph contains all interactions made since the beginning of
the attacks session (e.g. login via ssh) till its end (e.g. logout). The sg shares
the same structure as the security policy graph detailed in the previous section.
The main difference is that its edges represent interactions that were actually
performed during the session.

GNU/Linux
SELinux MAC

DB2
Logs Interaction

Graph

SQL Request

FlowGraph

Translate

Visualization

Send

Send

Filter

Filter

GNU/Linux
SELinux MAC

HoneyPots

Logs

SPTrack

Fig. 4. Session visualization architecture

4.2 Multiple Session Graph

Sessions graphs are very useful to analyze session under our tool. Moreover, as we
collected multiple attack sessions, we wanted to make some statistical visualiza-
tion of multiple sessions, by using one single graph, called multiple session graph
(msg), synthesizing all sessions, with the hypothesis that this will let emerge
repetitive behaviors of attackers, or very odd ones.

Our approach consider two criteria for the construction of the msg, and in
particular, for each edge of this graph: (a) the absolute number of occurrences
of a given interaction among all the sessions where it occurs; (b) the number of
sessions where this interaction occurs.

To ponder the first criterion, we took its logarithm as we thought that the
number of sessions if more relevant for the consideration of all attackers be-
haviors. The following equation 1 is used to assign a score to each edge dur-
ing the construction of the graph, i.e. during the parsing of the attack logs

2 High interactions honeypots are real machines, not emulated ones, in order to capture
attackers’ activities.



SPTrack: Visual Analysis of Information Flows 603

stored on our database. edge number represent the criterion (a) above, whereas
session number is second criterion (b).

score =
(
1 + ln(edge number)

)× session number (1)

As a result for visual exploitation, we defined a color set related to four score
ranges following a logarithmic scale, that can be intuitively explained as the
following;

– blue: the interaction occurred only one time,
– green: the interaction occurred few times,
– yellow: the interaction occurred multiple times,
– red: the interaction occurred in all stored sessions.

In our experiments, 50 attack sessions that consist of 2 millions of lines of sessions
logs were reduced to a graph with 150 nodes and 130 edges. Actuelly, the msg
aggregates as many sessions logs as we can have. In practice, it is easy to build
the total graph of the 31,000 attacks sessions we gathered of the honeypots.

4.3 Multiple Sessions Information Flow Graph

In order to compare potential flaws in policies and real exploit by attackers,
we introduce multiple session information flow graphs msifg. They are build
following the same pattern as the policy ifg. We use the criticality value for
each elementary operation. Higher the criticality of elementary operation is,
higher the risk of a real information flow has happened on the system. The
criticality level can be also used to reduce the graph size by only displaying
the real sensitive operations (e.g. red edges) within all sessions. Thus, we are
able to find critical paths within the aggregated sessions based on the computed
score. Within figure 5, a path can be seen, between the ssh daemon (system u :

Fig. 5. Flow within a msifg



604 P. Clemente et al.

system r : sshd t) and user (user u : user r : user t) through the the http port
(system u : object r : http port t) that goes. It seems to be a path of an attacker
getting an interactive shell (ssh) via an http port. Such a path is quite surprising
and would motivate the administrator to closer look at the entire session of that
attack. He would then also be able to react adequatively. Moreover, he should
track on the policy all possible paths between user and the ssh daemon for
example.

5 Conclusion

In this paper, we have presented a global platform called SPTrack3 for the visu-
alization of both SELinux security policies and SELinux system logs. We have
provided method and algorithms to apply the visualization tool to the detection
and the visualization of possible information flows on the system regarding its
security policy. To do that we transform interaction graphs into information flow
graphs, where paths are information flows and edges’ colors are criticality level
of edges. In parallel, we have provided implemented algorithms to the visualiza-
tion of SELinux system logs applied to attack sessions gathered from our high
interaction honeypots. We have exhibited methods to aggregate thousands or
even millions of attack sessions into one single msg. By transforming msgs into
msifgs, we have finally provided ways to analyze the most/least usual informa-
tion flows among numerous attacks, and furthermore we abled to track those
flows given a criticality level.

Currently, our solution can only deal with security properties designed in
terms of information flows. However, information flows can be sufficient to model
many security properties (integrity and confidentiality of data, subjects, users,
domains, binaries, groups). We are working to express more precisely what secu-
rity property one can analyze. Moreover, we may extend the security properties
available: the user should be able to specify which security property he wants to
study in the policy/logs. Moreover, the user should be able to select a criticality
threshold to those studies, in order to focus ‘more dangerous’ paths.

Those properties should also be non-information flow based properties, such
as separation of duties (no modification of an object followed by its execution
from the same user), or trusted path execution for examples (all execution are
made within specific binaries repositories).

References

1. Briffaut, J., Lalande, J., Toinard, C.: Formalization of security properties: enforce-
ment for mac operating systems and verification of dynamic mac policies. Interna-
tional Journal on Advances in Security 2(4), 325–343 (2010)

2. Tamassia, R., Palazzi, B., Papamanthou, C.: Graph Drawing for Security Visual-
ization. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 2–13.
Springer, Heidelberg (2009)

3 SPTrack is based on Walrus open source code [17].



SPTrack: Visual Analysis of Information Flows 605

3. Montemayor, J., Freeman, A., Gersh, J., Llanso, T., Patrone, D.: Information vi-
sualization for Rule-Based Resource Access Control. In: Proc. of Int. Symposium
on Usable Privacy and Security (SOUPS), Citeseer (2006)

4. Heitzmann, A., Palazzi, B., Papamanthou, C., Tamassia, R.: Effective visualization
of file system access-control. Visualization for Computer Security, 18–25 (2008)

5. Rao, P., Ghinita, G., Bertino, E., Lobo, J.: Visualization for Access Control Policy
Analysis Results Using Multi-level Grids. In: 2009 IEEE International Symposium
on Policies for Distributed Systems and Networks, pp. 25–28. IEEE (July 2009)

6. Wahsheh, L.A., Leon, D.C.D., Alves-Foss, J.: Formal Verification and Visualization
of Security Policies. Journal of Computers 3(6), 22–31 (2008)

7. Xu, W., Shehab, M., Ahn, G.J.: Visualization based policy analysis: case study in
SELinux. In: SACMAT 2008: Proceedings of the 13th ACM Symposium on Access
Control Models and Technologies, pp. 165–174. ACM, New York (2008)

8. Marty, R.: Applied Security Visualization. Addison-Wesley Professional (2008)
9. Kolano, P.Z.: A Scalable Aural-Visual Environment for Security Event Monitoring,

Analysis, and Response. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios,
N., Tanveer, S.-M., Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T.,
Malzbender, T. (eds.) ISVC 2007, Part I. LNCS, vol. 4841, pp. 564–575. Springer,
Heidelberg (2007)

10. McPherson, J., Ma, K.L., Krystosk, P., Bartoletti, T., Christensen, M.: Portvis: a
tool for port-based detection of security events. In: VizSEC/DMSEC 2004: Pro-
ceedings of the 2004 ACM Workshop on Visualization and Data Mining for Com-
puter Security, pp. 73–81. ACM, New York (2004)

11. Ma, K.: Cyber security through visualization. In: Proceedings of the 2006 Asia-
Pacific Symposium on Information Visualisation, vol. 60, p. 7. Australian Computer
Society, Inc. (2006)

12. Ball, R., Fink, G., North, C.: Home-centric visualization of network traffic for secu-
rity administration. In: Proceedings of the 2004 ACM Workshop on Visualization
and Data Mining for Computer Security, pp. 55–64. ACM (2004)

13. Mansmann, F., Fischer, F., Keim, D.A., North, S.C.: Visual support for analyzing
network traffic and intrusion detection events using TreeMap and graph representa-
tions. In: Proceedings of the Symposium on Computer Human Interaction for the
Management of Information Technology, CHiMiT 2009, pp. 19–28. ACM Press,
New York (2009)

14. Hideshima, Y., Koike, H.: Starmine: a visualization system for cyber attacks. In:
APVis 2006: Proceedings of the 2006 Asia-Pacific Symposium on Information Vi-
sualisation, pp. 131–138. Australian Computer Society, Inc., Darlinghurst (2006)

15. Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchical
aggregation. In: Proceedings of the 2004 ACMWorkshop on Visualization and Data
Mining for Computer Security, VizSEC/DMSEC 2004, p. 109 (2004)

16. Luse, A., Scheibe, K., Townsend, A.: A Component-Based Framework for Visu-
alization of Intrusion Detection Events. Information Security Journal: A Global
Perspective 17(2), 95–107 (2008)

17. CAIDA: Walrus - Graph Visualization Tool (2009),
http://www.caida.org/tools/visualization/walrus/

http://www.caida.org/tools/visualization/walrus/

	SPTrack: Visual Analysis of Information Flows within SELinux Policies and Attack Logs
	Introduction
	Related Work
	System Policies Visualization
	System Logs Visualization

	Visualizing Security Policies
	Security Policy Graph
	Information Flow Graph

	Visualizing Attack Session Logs
	Session Graph
	Multiple Session Graph
	Multiple Sessions Information Flow Graph

	Conclusion
	References




