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Abstract. It has been proved that ensemble learning is a solid approach to reach 
more accurate, stable, robust, and novel results in all data mining tasks such as 
clustering, classification, regression and etc. Clustering ensemble as a sub-field 
of ensemble learning is a general approach to improve the performance of clus-
tering task. In this paper by defining a new criterion for clusters validation 
named Modified Normalized Mutual Information (MNMI), a clustering ensem-
ble framework is proposed. In the framework first a large number of clusters are 
prepared and then some of them are selected for the final ensemble. The clus-
ters which satisfy a threshold of the proposed metric are selected to participate 
in final clustering ensemble. For combining the chosen clusters, a co-
association based consensus function is applied. Since the Evidence Accumula-
tion Clustering (EAC) method can't derive the co-association matrix from a 
subset of clusters, Extended Evidence Accumulation Clustering (EEAC), is ap-
plied for constructing the co-association matrix from the subset of clusters. Em-
ploying this new cluster validation criterion, the obtained ensemble is evaluated 
on some well-known and standard datasets. The empirical studies show promis-
ing results for the ensemble obtained using the proposed criterion comparing 
with the ensemble obtained using the standard clusters validation criterion. 
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1 Introduction 

Nowadays, usage of recognition systems has found many applications in almost all 
fields [15]-[28]. Many researches are done to improve their performance. Most of 
these algorithms have provided good performance for specific problem, but they have 
not enough robustness for other problems. Because of the difficulty that these algo-
rithms are faced to, recent researches are directed to the combinational methods. En-
semble learning has been proved to be a solid way to reach more accurate and stable 
results in data mining. Classifier ensemble as a sub-field of ensemble learning is a 
general method to improve the performance of classification. At first glance, usage of 
ensemble learning in clustering sounds similar to the widely prevalent use of combin-
ing multiple classifiers to solve difficult classification problems, using techniques 
such as bagging and boosting. 
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Data clustering or unsupervised learning is an important and very difficult prob-
lem. The objective of clustering is to partition a set of unlabeled objects into homoge-
neous groups or clusters [3], [4] and [10]. There are many applications that use  
clustering techniques to discover latent structures of data, such as data mining [11], 
information retrieval [2], image segmentation [9], linkage learning [15], and machine 
learning. In real-world problems, clusters can appear with different shapes, sizes, 
degrees of data sparseness, and degrees of separation. Clustering techniques require 
the definition of a similarity measure between patterns. Some of the most typical clus-
tering algorithms include: (a) Hierarchical clustering algorithms build clusters based 
on distance connectivity, (b) Centroid clustering algorithms such as k-means algo-
rithm represents each cluster by a single mean vector, and (c) Density clustering algo-
rithms such as DBSCAN define clusters as connected dense regions in the data space. 

DBSCAN (stands for Density-Based Spatial Clustering of Applications with 
Noise) is a data clustering algorithm proposed by Ester et al. [32]. It is named density-
based clustering because it searches for some partitions beginning at the estimated 
density distribution of corresponding nodes. DBSCAN is one of the most common 
clustering algorithms. Hierarchical clustering is another approach in clustering algo-
rithms that seeks to build a hierarchy of partitions. It uses a number of the merge (or 
split) operators to reach the goal. The operators are employed in a greedy manner. 
The results of hierarchical clustering are usually presented in a dendrogram [33]. 

Since there is no prior knowledge about cluster shapes, choosing a specific cluster-
ing method is not easy [29]. Studies in the last few years have tended to combination-
al methods. Cluster ensemble methods attempt to find better and more robust  
clustering solutions by fusing information from several primary data partitions [8]. 

Fern and Lin [8] have offered a clustering ensemble framework that selects a few 
of the base partitionings to make a thinner but better ensemble than using all primary 
the base partitionings. The ensemble selection approach is designed based on quality 
and diversity, the only two factors that have been proven to effect cluster ensemble 
performance. Their method tries to select a subset of the base partitionings which 
simultaneously has both the highest quality and the most diversity. The Sum of Nor-
malized Mutual Information, SNMI [5], [6] and [30], is used to measure the quality of 
each individual partition with respect to other partitions. Also, the Normalized Mutual 
Information, NMI, is employed to measure the diversity among partitions. Although 
the ensemble size in this method is relatively small, this method achieves significant 
performance improvement over full ensembles. Law et al. proposed a multi-objective 
data clustering method based on the selection of individual clusters produced by sev-
eral clustering algorithms through an optimization procedure [13]. This technique 
chooses the best set of objective functions for different parts of the feature space from 
the results of base clustering algorithms. Fred and Jain [7] have offered a new cluster-
ing ensemble method which learns the pairwise similarities between points in order to 
facilitate a proper partition of the data without the a priori knowledge of the number 
and the shape of the clusters. This method which is based on cluster stability evaluates 
the primary clustering results instead of final clustering. 

Alizadeh et al. discuss the drawbacks of the common approaches and then have 
proposed a new asymmetric criterion to assess the association between a cluster and a 
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partition which is called Alizadeh-Parvin-Minaei criterion, APM. The APM criterion 
compensates the drawbacks of the common method. Also, a clustering ensemble me-
thod is proposed which is based on aggregating a subset of primary clusters. This 
method uses the Average APM as fitness measure to select a number of clusters. The 
clusters which satisfy a predefined threshold of the mentioned measure are selected to 
participate in the clustering ensemble. To combine the chosen clusters, a co-
association based consensus function is employed [12], [31]. 

To evaluate a cluster, the NMI method has many weaknesses that are described in 
[31]. Alizadeh et al. propose another version of NMI named max method. They also 
show that the max method also has some drawbacks, so they propose another metric 
named APMM, which is first of their author names [12].  

This paper proposes a new measure to evaluate a cluster in that it is desired to  
evaluate the average similarity of the cluster with other clusters by eliminating its 
complement. We employ this criterion to select the more robust clusters in the final 
ensemble. To aggregate the final partitionings into consensus partitioning, a number 
of well-known methods are employed to make a decisive conclusion.  

Rest of this paper is organized as follows. In section 2, we explain the proposed 
method. Section 3 demonstrates results of our proposed method against traditional 
comparatively. Finally, we conclude in section 4. 

 

Fig. 1. Clustering Ensemble Framework 

2 Proposed Method 

In this section, first our proposed clustering ensemble method is briefly outlined, and 
then its phases are described in detail. The main idea of our proposed clustering en-
semble framework is similar to Max and APMM [20] to utilize a subset of the best  
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performing primary clusters in the ensemble, rather than using all of clusters. Only the 
clusters which satisfy a stability criterion are better to participate in the consensus 
function.  

The proposed framework is depicted in Fig 1. It has four steps. In the first step  
partitionings are extracted out of dataset. The partitioning  is denoted by 

. The  is obtained by a k-means algorithm with a new 
initialization of the seed points. Note that the  is to extract  clus-
ters out of dataset. Then each partitioning is broken in some distinct partitions (or 
clusters). It means  converted to  clusters denoted by , , …    respectively. After obtaining a pool of clusters, in the second step, 
a stability value is computed as a tag for each of them. The stability value of the clus-
ter  is denoted by .  

The manner of computing stability for each cluster is described in the sections 2.2 
in more detail. A subset of stable clusters having a good diversity is selected by a 
thresholding scheme in the third step. This step is explained in detail in section 2.3. In 
the next step, the selected clusters are used to construct the consensus partitioning. 
This is done in two subparts: (a) to extract a co-association matrix from them (section 
2.4) along with (b) a linkage clustering. Since the original EAC method [8] cannot 
truly identify the pairwise similarities between dataitems when there is only a subset 
of clusters, we use a method explained in [1] to construct the co-association matrix 
from the base selected clusters. This method is called EEAC: Extended Evidence 
Accumulation Clustering method. Finally, we use a hierarchical clustering algorithm, 
like single-link method, to extract the final clusters out of this matrix. For more gene-
rality, some heuristic consensus functions are also used as aggregators of selected 
clusters [30]. These heuristic consensus functions that are based on hypergraph parti-
tioning and have first introduced by Strehl and Ghosh, are HyperGraph Partitioning 
Algorithm (HGPA), Meta-Clustering Algorithm (MCLA) and Cluster-based Similari-
ty Partitioning Algorithm (CSPA) [30]. 

In the first step  partitionings are extracted out of dataset by  independent run-
nings of the k-means algorithm. The  is obtained by the i-th running of 
the k-means algorithm with a new initialization of the seed points. To produce the 
diverse cluster as much as possible the k-means algorithms are run, aiming at extract-
ing different number of clusters out of dataset. It means that the  ex-
tracts  clusters out of dataset. As it is mentioned the proposed method tries to 
select a subset of well-performing clusters (or equivalently partitions) instead of a 
subset of clusterings (or equivalently partitionings). So each partitioning is broken in 
some distinct partitions clusters (or equivalently partitions). 

Second step is stability computation. Since the goodness of a cluster  is deter-
mined by all of the data points, the goodness function ,  depends on both 
the cluster  and the entire dataset , instead of  alone. The stability as a measure 
of cluster goodness is used in [1], [13] and [20]. A stable cluster is the one that has a 
high likelihood of recurrence across multiple applications of a clustering algorithm. 
Stable clusters are usually preferable, since they are robust with respect to minor 
changes in the dataset [14]. 
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Fig. 2. Computing the stability of Cluster 1 of the partition in Fig. 2 (a) considering the parti-
tion in the Fig. 2 (b) of the reference set using NMI method 

Now assume that the stability of cluster  is to be computed. In this method first a 
set of partitionings over dataset is provided which is called the reference set. One can 
consider the partitionings obtained in the first step as reference set for decreasing the 
runtime. In this notation  is dataset and  is a partitioning over . Now, the 
problem is: “How many times is the cluster  repeated in the reference partitions?” 
Assume that the NMI between the cluster  and a reference partition  is  
denoted by , . While the most of previous works only compare a parti-
tion with another partition [18], however, the stability used in [14] evaluates the simi-
larity between a cluster and a partition by transforming the cluster  to a partition 
and after that by employing the common partition-to-partition NMI. To illustrate this 
method let , /  be a partition with two clusters, where /  de-
notes the set of data points in  that are not in . Then we may assume a second 
partition , / , where  denotes the union of all “positive” clus-
ters in  and others are in / . A cluster  in  is positive cluster for 

 if more than half of its data points also belongs to . 
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Now, define ,  by ,  which is calculated as [9]: 

, ∑ ∑ .
∑ ∑   (1)

where  is the total number of samples and  denotes the number of shared patterns 
between clusters  and ;  is the number of patterns in the cluster  

of partition ; also  are the number of patterns in the cluster  of partition . This 
computation is done between the cluster  and all partitions available in the reference 
set. This method is named NMI method. Fig. 2 illustrates the NMI method. 

After producing , if we assume a second partition , 
where  denotes the same clusters in  defined by APM [1] and for each of 
other data we consider a cluster. The set of these clusters is denoted by . Fig. 3 
shows the method explained above which is named Edited APM, EAPM. 

 in the paper shows the stability of cluster  with respect to the hth partition 
in reference set. The total stability of cluster  is defined as: ∑

  (2)

This procedure is applied for each cluster available in the pool clusters obtained in the 
first step. It means this procedure must be iterated  times, where  is computed as 
equation 3. ∑     (3

Third step is simply done be a thresholding. It means that the clusters with higher 
stability values are selected for next step and other are omitted. 

In forth step, the selected clusters are used to produce final clusters in a co-
association based model. In the step it is to construct the co-association matrix and 
then to apply a hierarchical clustering. To construct the co-association matrix from the 
selected clusters EEAC is employed. In the EAC method the  primary partitions 
from dataset are accumulated in a  co-association matrix. Each entry in this 
matrix is computed from equation 4.      (4)

where  counts the number of clusters shared by objects with indices  and  in 
the pool of all clusters obtained in the first step. It is worthy to note that the maximum 
possible value of  computed as equation 3.  Also  is the number of partitions 
where this pair of objects is simultaneously present in the selected clusters. Note that 
the value of  is at most as many as the number of selected clusters which is less 
than the value of . 

3 Experimental Study 

After producing the consensus partition, the most important question is "how good a 
partition is?". The evaluation of a partition is very important as it is mentioned. Here 
the NMI between the consensus partition and real labels of the dataset is considered  
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4 Conclusion and Future Works 

In this paper a new clustering ensemble method that is based on a subset of total prima-
ry spurious clusters is offered. Since the worth of the base partitions is not identical and 
also existence of a subset of them may yet result to a better performance, here an ap-
proach to choose a subset of more effective partitions is offered. A common metric 
based on that this subset is derived is normalized mutual information. Recently some 
drawbacks of NMI criterion are discussed and some alternative criterions, such as APM 
and Max, are proposed. In the paper while mentioning some drawbacks unhandled by 
APM and Max, a new metric that is named EAPM is proposed to solve the new raised 
drawbacks. The empirical studies over several datasets robustly show that the quality of 
the proposed method is usually better than other ones. The experiments confirm that the 
EAPM criterion does slightly better than NMI criterion generally; however it signifi-
cantly outperforms the NMI criterion in the case of synthetic datasets. Because of the 
symmetry which is concealed in NMI criterion and also in NMI based stability, it yields 
to lower performance whenever symmetry is also appeared in the dataset. The experi-
ments also show that the EAPM criterion does better than Max and APM criterions. 
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