
A Self-organization Method for Reorganizing

Resources in a Distributed Network

Xiaolong Guo and Jiajin Huang

International WIC Institute, Beijing University of Technology,
Beijing, 100124, China

{gxlvip,hjj}@emails.bjut.edu.cn

Abstract. Using bio-inspired agents to reorganize resource has been
adopted to address the distributed resource optimization issue in dis-
tributed networks. This paper presents a self-organization algorithm to
reorganize resources by the use of autonomous agents which can exchange
their resources each other. Agents are equipped with two operations (pull
and push operation) and three behaviors (best selection, better selection
and random selection). And at every moment, agents probabilistically
choose a behavior to perform. Experimental results indicate that the
strategy has a positive influence on system performance.

1 Introduction

A distributed network (e.g. P2P networks) consists of a number of connected
nodes while there is no central controller in the distributed network. So how to
find the resource descriptors in the distributed network becomes a key problem
because those resources of the network need be obtained and accessed effec-
tively [1]. To discovery a number of useful descriptors in a short time, a solution
is to put similar resource descriptors together effectively in restricted regions by
the use of a self-organization method.

How to solve these problems in distributed environments is also a key prob-
lem in Web Intelligence [2,3]. By using bio-inspired algorithms to reorganize
resource has been adopted in distributed networks. The So-grid system employs
several mobile agents to reorganize resources. In So-grid, the agent travel the
Grid through P2P interconnections. While the agent is traveling, it picks up the
resource descriptor if the resource descriptor is different from others in the avail-
able region and it drops down the resource descriptors at appropriate nodes [1].
As same as mentioned in [4], agents in the So-grid system may make a large
amount of random movements before they pick up or drop down resource de-
scriptors, therefore some nodes may not be visited. In this case, these descriptors
in non-visited nodes may not be placed at suitable nodes. The work of [5] uses
an agent-view to connect the agent society. An agent-view contains agents whose
contents are similar. However, these agents exchange their all contents in their
agent-views with each other, which results in much more communication costs.
In order to overcome the shortcoming of the above work, this paper presents

R. Huang et al. (Eds.): AMT 2012, LNCS 7669, pp. 348–356, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Self-organization Method for Reorganizing Resources 349

a method to reorganize descriptors by using agents that reside on the nodes.
These agents can (1) select descriptors which are not suitable to stay the node
and then push these descriptors to other nodes until that a suitable node can
keep these descriptors; (2) decide whether they keep these descriptors or not
according to their local environments when they receive descriptors pushed by
other agents. This paper is partly inspired by the work of [4], who proposed an
ant clustering algorithm in which data are placed in a 2-Dimension Grid and an
agent represents a data object. However, our work is different from the appli-
cation domain of [4]. Our work faces a large-scale, dynamic and distributed
network environment. So we need a method to be adapted to the network
environment.

In [4], agents can be clustered dynamically by collaboration based on local
information in a 2-Dimension Grid. In other words, moving behaviors of agents
have autonomy features. An autonomous agent system includes the environment
of agents, agent’s profiles and the behavior rules of agent [6,7]. In this paper, we
design a kind of agent which resides on the node of a network. An agent’s local
environment is the set of descriptors in a restricted region. Agents push or pull
the resource descriptors to put similar resource descriptors together dynamically.
By the certification of experiments, the method is valid in networks with different
structures, different scales, and dynamically changing numbers of nodes.

2 The Formulation of the Self-organization Strategy

According to [6,7,8], an agent essentially has the following properties: it can live
in an environment; it can sense its local environment since there is no central
controller and it has some behaviors driven by certain purposes.

A network is represented as graph G =< V,E >, where V = {v1, v2, · · · vN}
is a set of nodes and L = {(vi, vj)|1 ≤ i, j ≤ N, i �= j, vi, vj ∈ V } is a set of
edges. N = |V | represents the total number of nodes in a network, and (vi, vj)
indicates that an edge exists between node vi and vj . As a result, vi and vj are
so-called neighbor nodes with each other.

The profile of node v is defined by v = {nodeID, Γ,D}, where nodeID de-
notes the identifier of a node, Γ represents total neighbors of node v (v.Γ =
{vi|(v, vi) ∈ L}), D represents the set of descriptors in node v.

The local environment of agent ai is defined as El, which is a set of resource
descriptors both in the node resided by agent ai and the node’s neighbors. At
time t, the local environment of agent ai residing on node vi is El(ai(t)) = {d|d ∈⋃
v.D, v ∈ vi.Γ

⋃{vi}}. Corresponding to the agent’s local environment, we will
set the entire network G as an agent’s living environment Eg. It is impossible for
agents to know about the situation of Eg in distributed environments. Therefore
the local environment is most important for an agent. Each agent can only sense
their own local environments and the local environments El could be better if
there are more same class of descriptors. Each agent’s local environment El is
not static, which can be modified by other agents’ behaviors which are defined
by the profile of agent ai.

350 X. Guo and J. Huang

The profile of agent ai is {ID, nodeID, behaviors, rules}, where ID denotes
the identifier of the agent ai.nodeID represents the identifier of a node resided
by agent ai.behaviors includes the pull and push behaviors. According to the
local environment, an agent decides whether it pushes resource descriptors from
the node resided by it to other nodes or pull the suitable resource descriptor
to the node resided by it from other nodes. Thus, rules are used to decide the
two behaviors. By these behaviors, each agent changes their local environments.
Agents interact with each other in the changing local environments.

Borrowing the concept of fitness measure in [1,9], we also let agent a decide
whether it will pull or push the descriptor d at time t based on a fitness function
fa(d, t) given by

fa(d, t) =
|El(a(t))|

Rd
, (1)

where Rd is the number of the descriptors of the whole class in the local envi-
ronment El(a(t)) of agent a at time t, and |El(a(t))| is the overall number of
descriptors that are accumulated in the local environment at time t. From Equ.
(1), we can see the more there are the same class of descriptors d in the local
environment of agent a, the more the descriptor d is suitable in the node resided
by agent a.

At time t, agent a selects descriptor d ∈ a(t).nodeID.D with least fitness
fa(d, t) and then evaluates push probability function to decide whether or not
to push descriptor d out of the resided node. The push probability is shown by

papush(d, t) = (
k1

k1 + fa(d, t)
)2, d ∈ a(t).nodeID.D. (2)

When f is much lower than the constant k1 (i.e. there are no descriptors as same
class as descriptor d in the local environment of agent a), the push probability is
higher. As more descriptors as the same class as descriptor d are accumulated in
the local environment of agent a, the fitness of the descriptor d increases. With
the increase of the fitness (specially f is much higher than k1), the value of the
push probability for descriptor d becomes lower. So at time t, given a random
value r, agent a does not select descriptor d when papush(d, t) < r; agent a finds
the node is not suitable to descriptor d when papush(d, t) > r and then will push
descriptor d out of the node. One of three push behaviors based on the primitive
behaviors of autonomous agents are probabilistically performed [6,7]. (a) agent
a pushes the descriptor d to the node selected randomly from a.nodeID.Γ . (b)
agent a pushes the descriptor d to the node with the most f for the descriptor
from a.nodeID.Γ . (c) agent a randomly selects two nodes from a.nodeID.Γ , and
then push the descriptor to the node with more f for the descriptor d between
the two nodes.

When agent a receives a descriptor d from agent a′ at time t, the agent eval-
uates pull probability function in order to decide whether it will pull descriptor
d to the node resided by it or not. The pull probability is shown by

papull(d, t) = (
fa(d, t)

k2 + fa(d, t)
)2, d ∈ a(t).nodeID.D. (3)

A Self-organization Method for Reorganizing Resources 351

As opposite to the push probability, the more same descriptors are accumulated
in the agent’s local environment, the higher the pull probability for this class
of descriptors becomes. When papull(d, t) < r, the agent does not receive the de-
scriptor d. When papull(d, t) > r, the agent receives the descriptor d. Let Da

pull(t)
be the set of descriptors pulled by agent a from others nodes at time t. And at
the next time t+1, we have a(t+1).nodeID.D = a(t).nodeID.D

⋃
Da

pull(t). By
these behaviors, each agent’s local environment are changed. At the next time,
agents decide their behaviors in new local environments. From this perspective,
we can see agents interact with each other in the changing local environment.

The measures of push and pull probability function are similar to the pick
and drop probability function shown in [1,9]. However, agents in [1,9] can move
in the enviroment, where agents in this paper need not move in the network and
each agent resides in a node of the network. The push and pull operations could
be embedded in the push-pull protocol of P2P [10] to implement a real-world
application. According to the algorithm framework in [1,4,9], we summarize our
algorithm as Algorithm 1.

Algorithm 1. A Self-organization Algorithm for Reorganizing Resources

01. Initialize the parameters
02. FOR t=1 to T
03. FOR each agent a DO
04. a(t).nodeID.D = a(t− 1).nodeID.D

⋃
Da

pull(t− 1)
05. Da

pull(t) = ∅
06. IF agent a receives the non-acceptance message from other agents
07. Keep descriptors pushed by agent a at time t-1
08. END IF
09. Select a descriptor d in a.nodeID.D with least fitness fa(d, t)
10. Compute the push probability papush(d, t)
11. r=random([0,1])
12. IF papush(d, t) > r
13. Probabilistically determine a primitive behavior to select a node in a(t).nodeID.Γ
14. Push descriptor d to the node
15. END IF
16. FOR each descriptor d′ pushed by other agents
17. Compute the pull probability papull(d

′, t)
18. r′=random([0,1])
19. IF papull(d

′, t) > r′

20. Da
pull(t) = Da

pull(t)
⋃{d′}

21. ELSE
22. Send the non-acceptance message to the agent pushing descriptor d′

23. END IF
24. END FOR
25. END FOR
26. END FOR

352 X. Guo and J. Huang

3 Experiment

To prove the effectiveness of the proposed algorithm, we set a series of exper-
iments to answer the following questions. Can the strategy remain effective in
different networks? The networks include networks generated by different net-
work generators, networks with different numbers of networks, and networks
with the dynamically growing scale. Firstly, we get a network topology by the
use of a network generator, store a certain number of descriptors on nodes, and
then assign each agent in each node. We use three kinds of complex networks
which are listed in the Table 1. The GLP [11] and WS [12] networks are used
to test the effectiveness in networks generated by different network generators
and networks with different numbers of networks. The active network is used to
test the effectiveness networks with the dynamically growing scale. Then, we let
agents operate the resource descriptors by the push or pull operation as shown
in Algorithm 1.

Table 1. The structures of networks

Network Parameter

GLP Power law network with α=2
WS Small World network (the neighbor connection is 5)
Active Dynamic network (increasing 20 nodes at a moment)

The effectiveness of the strategy is evaluated trough a spatial entropy function.
For agent a, let fra(i) denote the percent of descriptors of class Ci in the local
environment of agent a and Nc denote the number of classes. The local entropy
Enl(a) [1] is given by

Enl(a) =
−∑Nc

i=1 fra(i) lg fra(i)

lgNc
. (4)

Based on the local entropy, the overall entropy Eo is defined as the average of
Enl of all agents. According to the well-known Shannon’s formula, the more
minimal is the Eo, the more effective is the strategy. In each experiment, we run
the algorithm ten times and the shown results are an average value of the ten
results.

The experiment about the effectiveness in different kinds of networks is done
in WS and GLP networks. In each kinds of network, the numbers of nodes are
1000 and 2000 respectively. The results are shown in Fig. 1. Fig. 1(a) shows that
the value of overall entropy decreases from 0.96 to 0.4 after 1000 cycle times
(T=1000) and then tends to a stable state in the WS network with 1000 nodes;
the value of overall entropy is stable at 0.6 in the GLP network with 1000 nodes.
Fig. 1(b) shows the similar result in networks with 2000 nodes. From Fig. 1,

A Self-organization Method for Reorganizing Resources 353

Fig. 1. Results in two kinds of networks. (a) results in networks with 1000 nodes; (b)
results in networks with 2000 nodes.

we can see that the presented algorithm is useful for the WS network and the
ability of clustering is better in the WS network.

The results of the experiment in the WS networks with different number of
nodes are shown in Fig. 2. The number of nodes is from 100 to 5000. Fig. 2(a)
shows that the value of overall entropy becomes stable with the increasing of the
cycle times. And from Fig. 2(b), we know that the results of experiment could
be better if the network contains more nodes.

Fig. 2. Results in a kind of network with different numbers of nodes

The results of the experiment in the active network are shown in Fig. 3. The
active network is a WS-based network with dynamically increasing 20 nodes at
a moment. From Fig. 3, we can see that the value of overall entropy is about 0.4
at the stable state which is as same as the result in WS networks shown in Fig. 1
and Fig. 2. These results of experiments tell us that the ability of the clustering
is similar whatever the network is dynamic or not.

354 X. Guo and J. Huang

Fig. 3. Results in a dynamic network

The experimental results of relevant parameters are shown in Fig. 4. The
network is a WS network with 1000 nodes. Fig. 4 shows that the value of en-
tropy is lower and the result is better when the parameter k1 is bigger than the
parameter k2.

Fig. 4. Results with different combinations of k1 and k2 parameters

Fig. 5 shows how the random selection affects the result. We set the ratio of
random selection is 0%, 5%, 10%, and 15% respectively. From Fig. 5, we can
see that the random selection behavior affects the value of overall entropy and
the stability of the entropy curve. When the percent of the random selection is
lower, the overall entropy value is lower. But the entropy value is a little higher
if there is lack of the random selection, as the strategy maybe stuck in a local
optima without random selection [7].

A Self-organization Method for Reorganizing Resources 355

Fig. 5. Results with different assignment of random selection

4 Conclusions

This paper presents a self-organization algorithms for the resource reorganization
in a decentralized network which is no central control. Inspired by the work of [9],
two different kinds of agent behaviors are defined as push and pull operation.
These behaviors change agents’ local environments and agents exchange descrip-
tors with each other. Simulated experiential results showed that the algorithm
is effective in the controlled propagation and reorganization of information. In
this primary method, we only transplant the similar data cluster method of [4]
into the network environment. The future work will focus on how to balance
data distribution in nodes and how to design effective positive feedback [7] and
self-learning [8] principles for agents to speed up the reorganization.

Acknowledgements. This work is supported by Beijing Natural Science Foun-
dation (4102007), the CAS/SAFEA International Partnership Program for
Creative Research Teams, the China Postdoctoral Science Foundation Funded
Project (2012M510298), Projected by Beijing Postdoctoral Research Founda-
tion (2012ZZ-04), and the doctor foundation of Beijing University of Technology
(X0002020201101).

References

1. Forestiero, A., Mastroianni, C., Spezzano, G.: So-Grid: a Self-organizing Grid Fea-
turing Bio-inspired Algorithms. ACM Transactions on Autonomous and Adaptive
System 3(2), 1–37 (2008)

2. Zhong, N., Liu, J.M., Yao, Y.Y.: In Search of the Wisdom Web. IEEE Com-
puter 35(11), 27–31 (2002)

3. Zhong, N., Liu, J.M., Yao, Y.Y.: Envisioning Intelligent Information Technolo-
gies (iIT) From the Stand-Point of Web Intelligence (WI). Communications of the
ACM 50(3), 89–94 (2007)

356 X. Guo and J. Huang

4. Xu, X.H., Chen, L., He, P.: A Novel Ant Clustering Algorithm Based on Cellular
Automata. Web Intelligence and Agent Systems 5(1), 1–14 (2007)

5. Zhang, H.Z., Croft, W.B., Levine, B.N., Lesser, V.R.: A Multi-agent Approach
for Peer-to-peer Based Information Retrieval System. In: Proceeding of the 3rd
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), pp. 456–463 (2004)

6. Gao, C., Liu, J.M., Zhong, N.: Network Immunization with Distributed Autonomy-
oriented Entities. IEEE Transactions on Parallel Distributed Systems 22(7), 1222–
1229 (2011)

7. Liu, J.M., Jin, X.L., Tsui, K.C.: Autonomy Oriented Computing (AOC): from
Problem Solving to Complex System Modeling. Kluwer Academic Publishers
(2005)

8. Liu, J., Zhong, W.C., Jiao, L.C.: A Multiagent Evolutionary Algorithm for Com-
binatorial Optimization Problems. IEEE Transactions on Systems, Man, and Cy-
bernetics - Part B: Cybernetics 40(1), 229–240 (2010)

9. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: from Natural to
Artificial Systems. Oxford University Press (1999)

10. Gueret, C.: Nature-Inspired Dissemination of Information in P2P Networks. In:
Abraham, A., et al. (eds.) Computational Social Network Analysis, pp. 267–290
(2010)

11. Bu, T., Towsley, D.: On Distinguishing between Internet Power Law Topology
Generators. In: Proceeding of 2002 IEEE International Conference on Computer
Communications (INFOCOM 2002), pp. 638–647 (2002)

12. Watts, D.J., Strogatz, S.H.: Collecive dynamics of ’small-world’ networks. Na-
ture 393, 440–442 (1998)

	A Self-organization Method for Reorganizing Resources in a Distributed Network

	Introduction
	The Formulation of the Self-organization Strategy
	Experiment
	Conclusions
	References

