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Abstract. Network immunization has often been conducted by remov-
ing nodes with large network centrality so that the whole network can
be fragmented into smaller subgraphs. Since contamination (e.g., virus)
is propagated among subgraphs (communities) along links in a network,
besides centrality, utilization of community structure seems effective for
immunization. We have proposed community structure based node scores
in terms of a vector representation of nodes in a network. In this paper
we report a comparative study of our node scores over both synthetic
and real-world networks. The characteristics of the node scores are clar-
ified through the visualization of networks. Extensive experiments are
conducted to compare the node scores with other centrality based im-
munization strategies. The results are encouraging and indicate that the
node scores are promising.

1 Introduction

Contamination (e.g., virus) is usually propagated among subgraphs (communi-
ties) along links in a network. For preventing the spread of contamination over
the whole network, it is necessary to remove (or, vaccinate) contaminated nodes.
Since contamination is propagated among communities in a network, for effec-
tive network immunization, it is important to identify nodes which play the role
of intermediating or connecting communities.

Most previous work on network analysis considers the community structure
of a network in terms of links in a network (e.g., graph cut) [7]; however, we
consider it in terms of nodes in a network, and proposed community structure
based node scores for network immunization [11]. Based on a quality measure
of communities for node partitioning [4], a vector representation of nodes in a
network is constructed, and the community structure in terms of the distribution
of node vectors is utilized for calculating node scores. Two types of node score are
proposed based on the direction and the norm of the constructed node vectors.

In this paper we report a comparative study of our node scores over both
synthetic and real-world networks. The characteristics of node scores are clari-
fied through network visualization, and they are compared with other centrality
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based immunization strategies. Comparison with other centrality based immu-
nization strategies shows that our node scores are promising, since they can
exploit the community structure of a network without relying on the externally
supplied community labels of nodes.

Section 2 explains network immunization and centralities. Section 3 describes
our community structure based node scores. Section 4 reports a comparative
study and discusses the results. Section 5 summarizes our contributions.

2 Network Immunization

2.1 Preliminaries

We use a bold italic lowercase letter to denote a vector, and a bold normal
uppercase letter to denote a matrix. Xij stands for the element in a matrix X,
and XT stands for the transposition of X. 1n ∈ R

n stands for a vector where
each element is 1.

Let n stands for the number of nodes in a network G, and m stands for the
number of links in G 1. Since most social networks are represented as undirected
graph without self-loops [6], we focus on this type of networks in this paper.

The connectivity of a network is represented as a square matrixA ∈ {0, 1}n×n,
which is called an adjacency matrix. Aij = 1 if the pair of vertices (i,j) is
connected; otherwise, 0. For an undirected graph without self-loops, its adjacency
matrix A is symmetric and its diagonal elements are set to zeros.

2.2 Network Immunization

node 
removal

|LCC| = 7

Fig. 1. Network immunization

Epidemics (e.g, virus) are often propa-
gated through the interaction between
nodes (e.g., individuals, computers) in a
network. If a contaminated node inter-
acts with other nodes, contamination can
spread over the whole network. In order
to protect the nodes in the network as
much as possible, it is necessary to dis-
connect (or, remove) the contaminated node so that the major part of the net-
work. For instance, the largest connected component (LCC) of a network can be
prevented from the contamination by removing several nodes (see Fig. 1).

2.3 Network Centrality

Various notions of “network centrality” have been studied in social network
analysis [6,8]. Since nodes with many links can be considered as a hub in a
network, the degree (number of links) of a node is called degree centrality. On
the other hand, betweenness centrality focuses on the shortest path along which

1 We also call a network as a graph, a node as a vertex, and a link as an edge.
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information is propagated over a network. By enumerating the shortest paths
between each pair of nodes, betweenness centrality of a node is defined as the
number of shortest paths which go through the node.

Similar to the famous Page Rank, eigenvector centrality utilizes the leading
eigenvector of the adjacency matrix A of a network, and each element (value) of
the eigenvector is considered as the score of the corresponding node. Based on
the approximate calculation of eigenvector centrality via perturbation analysis,
another centrality (called dynamical importance) was also proposed in [9].

By assuming that community labels of nodes in a network can be provided,
perturbation analysis of node centrality is utilized for exploiting the relation
among communities in [5]. However, although various methods have been pro-
posed for community discovery from networks [8,10], it is still difficult to identify
the true community labels.

3 Community Structure Based Node Scores

Our node scores consider the community structure in terms of nodes, not links as
in most previous approaches [7]. A vector representation of nodes is constructed
based on modularity to reflect the community structure of a network.

3.1 Node Vectors Based on Community Structure

Modularity has been utilized as a standard for community discovery in network
analysis[4]. It was shown that the maximization of modularity can be sought by
finding the eigenvector for the largest eigenvalue of the following matrix [7]:

B = A−P (1)

where P = kkT /2m for k = A1n (k is the degree vector).
By utilizing several eigenvectors of B in eq.(1) with several largest positive

eigenvalues, the modularity matrix B can be approximately decomposed as:

B � UΛUT (2)

where U=[u1, · · · ,uq] are the eigenvectors of B with the descending order of
eigenvalues, and Λ is the diagonal matrix with the corresponding eigenvalues.
Based on eq.(2), the following data representation was proposed [7]:

X = UΛ1/2 (3)

In our approach, the i-th row of X in eq.(3) is used as the vector representation
of the i-th node, and is called as a node vector.

3.2 Inverse Vector Density

A node score was proposed in terms of the mutual angle between node vectors
in eq.(3) [11]. The number of “near-by” node vectors is utilized for identifying
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Fig. 2. Synthetic network (CL * * ) Fig. 3. Synthetic network (CL *)

border nodes. This node score is defined as:

D = diag(‖x1‖ , . . . , ‖xn‖) (4)

X1 = D−1X (5)

Θ = cos−1(X1X1
T ) (6)

f(Θij , θ) =

{
1 (Θij < θ)
0 (otherwise)

(7)

ivd(xi) =
1∑n

j f(Θij , θ)
(8)

where D in eq.(4) is a diagonal matrix with elements ‖x1‖ , . . . , ‖xn‖, and θ is
a threshold. The value of ivd(·) in eq.(8) corresponds to the score.

The function f in eq.(7) checks if the angle θij in eq.(6) is less than the
specified threshold θ. Finally, since border nodes have relatively small number
of near-by node vectors, the node score is calculated by taking the inverse of the
number of near-by vectors. This node score is called IVD (inverse vector density).

3.3 Community Centrality Based Inverse Vector Density

Removal of hub nodes, which act as mediators of information diffusion over the
network, also seems effective for network immunization. However, the node score
of a hub node gets rather small with IVD. One of the reasons is that, the direction
of each node vector is utilized in IVD, but its norm is not yet utilized.

The square norm of a node vector was regarded to what extent the node is
central to a community [7], and was named as community centrality: cc(xi)=xT

i xi.
This was reflected on IVD, and another node score was proposed as [11]:

ccivd(xi) = cc(xi)× ivd(xi) (9)

This is called CCIVD (Community Centrality based Inverse Vector Density).

4 Evaluations

4.1 Experimental Settings

Networks Extensive experiments were conducted over both synthetic and real-
world networks. Utilized networks are shown in Table 1 and Table 2.
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Table 1. Synthetic networks

dataset #nodes #links (ave.)

CL 2 5 1 105 708

CL 3 5 1 165 1064

CL 2 100 355.7

CL 3 150 548.1

CL 4 200 744.3

CL 5 250 931.3

Table 2. Real-world networks

dataset #nodes #links

karate 34 78

dolphins 62 159

lesmis 77 254

polbooks 105 441

netscience 379 914

celegansneural 297 2148

When constructing synthetic networks, each component (community) was
generated using Barabási-Albert (BA) model [1] by setting the degree distri-
bution p(k) ∝ k−3, where k denotes the degree of a node. The initial degree
was set to 4 in order to generate sparse networks. After generating communi-
ties, they were connected either through five intermediate nodes (as illustrated
in Fig. 2) or directly with links (Fig. 3). Since synthetic networks are generated
based on random networks, we constructed 10 networks for each type and report
the average result.

As real world networks, we used three networks in Table 2, which are available
as GML (graph markup language) format 2.

Quality Measures. Following the quality measure in [5], the relative size S of
the largest connected component (LCC) in a network was measured against the
node occupation probability p. After removing some nodes from a network with
n nodes, these are calculated as:

S =
|LCC|

n
, p =

#remaining nodes

n
(10)

where |LCC| is the number of nodes in LCC. The smaller S is, the better a
immunization strategy of networks is, since it can prevent the spreading of con-
tamination over the whole network (see Fig. 1).

Compared Methods. For comparison, network immunization based on various
concepts of network centrality in Section 2.3 were compared. The node with the
maximum centrality was repeatedly selected and removed in each method:

D : degree centrality
B : betweenness centrality
EVC : eigenvector centrality
CC : community centrality
ModC : meta-graph based centrality [5]

In our methods, parameters (q and θ) were set based on preliminary experiments.

2 http://www-personal.umich.edu/~mejn/netdata/
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Fig. 4. Visualization result (CL 2 5 1) Fig. 5. Visualization result (CL 5)

Immunization Strategies Network immunization was conducted by removing
the node with the maximal node score (e.g., centrality). The following strategies
were evaluated for the calculation of node scores:

single : scores were calculated only once with respect to the whole network.
recalc : scores were re-calculated when a node is removed from a network.

The strategy recalc can utilize up-to-date node scores even after some nodes are
removed, in compensation for the additional computational cost. Since ModC
requires re-calculation of centrality, it was not evaluated for single strategy.

4.2 Visualization of Node Scores

Fig. 6. Visualization result (dolphins)

In order to verify that our node scores
can identify nodes which connect com-
munities in a network, we compared
the node scores and the score with B
(betweenness centrality). The size of
each node is depicted proportional to
its node score in each method. The
results with single strategy are shown
in Fig. 4(CL 2 5 1), Fig. 5(CL 5), and
Fig. 6 (dolphins). The left-hand side in these figures corresponds to B (between-
ness centrality), and the right-hand side to IVD (the result of CCIVD was similar
to IVD and thus not shown here).

By comparing the visualized networks, we can see that IVD could identify
nodes which connect communities (encompassed with dotted red circles the fig-
ures). Since the visualized networks with IVD is similar to those with B, which
is known to be effective for immunization despite its rather large time complex-
ity, the node score can be said as effective for identifying intermediating nodes
among communities.

4.3 Results of Synthetic Networks

Results of synthetic networks (average of 10 runs) are shown in Fig. 7 and Fig. 8.
The horizontal axis is the node occupation probability p, and the vertical one
is the relative size S of LCC in eq.(10). In the legend, gray lines with “x” are
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Fig. 7. Results on synthetic networks (single)
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Fig. 8. Results of synthetic networks (recalc)

for D, black lines with “+” for B, yellow lines with squares for EVC, blue lines
with upper triangles for CC, and water blue lines with diamonds for ModC. The
proposed node scores are shown with lower triangle (IVD (green lines) and CCIVD
(red lines)) in Fig. 7. For recalc strategy (Fig. 8), prefix “R” is put on the method
name (except for ModC).
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As shown in Fig. 7 and Fig. 8, IVD effectively immunized the networks in both
single and recalc strategies. Especially, it showed the best performance for single
strategy (rapid decrease of S with respect to p), and showed similar result with
RB for recalc strategy around p ≥ 0.8. On the other hand, unfortunately, CCIVD
did not outperform B for single strategy, but it showed good performance for
recalc strategy when p gets small (i.e., after large number of nodes are removed
from a network). Compared with ModC, which also utilizes the community struc-
ture of a network (but requires community labels), RIVD outperformed ModC
for all p, and RCCIVD showed better performance when p gets small.

4.4 Results of Real-World Networks

Results of real world networks in Table 2 are shown in Fig. 9 and Fig. 10. Both
IVD and CCIVD showed almost equivalent performance with B for single strat-
egy. For recalc strategy, the performance of RCCIVD was similar to RB (especially
for karate and lesmis), and CCIVD outperformed IVD for real-world networks.
This would be because the removal of hub nodes (with large community cen-
trality) is effective for immunization of real-world networks. As in synthetic
networks, the performance of ModC saturated after a network was divided into
disconnected components. On the other hand, with the proposed methods, the
value of S continued to fall even after a network was divided into disconnected
components.
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Fig. 9. Results of real-world networks (single)
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Fig. 10. Results of real-world networks (recalc)

4.5 Discussions

Our node scores (IVD and CCIVD) showed comparable performance with B (be-
tweenness centrality), which is known to be effective for network immunization,
in most networks. As in RB, the performance of these methods improved with
recalc strategy, albeit this strategy requires much more computational effort. In
addition, CCIVD showed better performance than CC, which is solely based on
the norm of node vectors. This indicates the effectiveness of IVD for reflecting the
community structure of a network in terms of the distribution of node vectors.

As shown in [5], utilization of the community structure of a network is effective
for network immunization. However, finding community labels of nodes with
maximum modularity is NP-complete [3]. The proposed approach can exploit the
community structure of a network in terms of the distribution of node vectors,
without relying on the externally supplied community labels of nodes.

5 Concluding Remarks

This paper reported a comparative study of community structure based node
scores over both synthetic and real-world networks. Since contamination is prop-
agated among groups of nodes (communities) through intermediating nodes in
a networks, such nodes are identified based on the community structure of a
network without requiring community labels of nodes. The characteristics of the
proposed node vectors was analyzed. Extensive experiments were conducted to
compare the node scores with other centrality based immunization strategies.
The results are encouraging, and indicate that the node scores are promising.
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Immediate future work includes more in-depth analysis of the node vectors and
their relations. Especially, we plan to conduct the analysis of kernel density in
terms of the histogram of node vectors for determining the appropriate parameter
(e.g., θ) in our approach.
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