
An Approach to Define Flexible Structural

Constraints in XQuery

Emanuele Panzeri and Gabriella Pasi

University of Milano-Bicocca
Viale Sarca 336, 20126 Milano, Italy
{panzeri,pasi}@disco.unimib.it

Abstract. This paper presents a formal definition of an extension of the
XQuery Full-Text language: the proposed extension consists in adding
two new flexible axes, named below and near, which express structural
constraints that can be specified by the user. Both constraints are evalu-
ated in an approximate way with respect to a considered path, and their
evaluation produces a path relevance score for each retrieved element.
The formal syntax and the semantics of the two new axis are presented
and discussed.

1 Introduction

The increasing number of huge collections of highly structured XML documents
has stimulated in recent years a wealth of research aimed at improving XML
querying to both increase query languages expressiveness, and to provide an
approximate matching of queries with the consequent ranking of the retrieved
elements [3,18]. The first XML query languages were designed based on a data-
centric view of XML repositories to allow an efficient access to complex data
structures; these languages were finalized to the specification of structural con-
straints as well as content-related constraints (specification of exact values for
XML element contents) in a Data Base style: the results produced by such
constraints evaluation is a set of relevant elements. Later, several proposals ap-
peared based on a document-centric view of XML repositories; such approaches
have been classified by the information retrieval (IR) community as content-only
search (CO) and content and structure search (CAS) [14]. CO approaches were
mainly aimed at allowing the specification of keyword based queries in an IR
style, where query evaluation produces a ranking of the retrieved XML elements
[5]. CAS approaches were defined to allow the formulation of constraints on both
documents content and structure [14]. CAS approaches that were based on the
syntax of XPath [15], constituted a first attempt to merge the IR and DB search
paradigms. Since then, the importance of merging the IR and the DB search per-
spectives has been widely recognized, and it has recently culminated in the W3C
standard XQuery Full-Text (XQ-FT) [17] extension. The evaluation of XQ-FT
queries produces a set of weighted elements, where scoring is based on a keyword
based matching in textual elements. The problem of providing a ranking of XML

R. Huang et al. (Eds.): AMT 2012, LNCS 7669, pp. 307–317, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

308 E. Panzeri and G. Pasi

elements retrieved by a query based on both content and structural constraints
has been addressed in [3], where a query relaxation technique that provides an
approximate structural matching was introduced.

None of the above approaches allows users to directly specify the structural
relaxations via ad-hoc predicates with a score computation. More recently, in
[6], an approach to structural relaxation in XPath via new user specified con-
straints is proposed; a RDBMS is extended to evaluate relaxed structure match-
ing. However the query evaluation does not provide any ranking of the retrieved
fragments. As outlined in [18] and [6], querying highly structured databases or
document repositories via structured query models (as XQuery is) forces the
users to be well aware of the underlying structure, which is not trivial. In the
above cases, users could benefit of a query language that allows a direct specifi-
cation of flexible structural constraints that easily allow to require the relative
position of important nodes, independently of an exact knowledge of the un-
derlying structure(s). To achieve this aim, in this paper, we propose a formal
extension of XQuery Full-Text, where two new flexible structural axes, specified
by the predicates below and near are defined. The work reported in this paper
was originated by a previous research where a flexible extension of the XQuery
language was advocated and informally sketched in [9,7]. This is the first work
that proposes the full syntax and semantics of the formal extension.

The proposed extension allows to obtain: (1) a ranking based on content
predicates evaluation only (as in the original XQ-FT), (2) a ranking based on
the flexible structural constraints evaluation (based on our proposal), or (3) a
ranking based on a linear combination of the two above scores, which the user
may also specify via the order-by clause, as it will be explained in the paper.

In summary, the main contributions of this paper are: (1) to define a formal
extension of XQ-FT with two new flexible axes, thus allowing users to explicitly
specify their tolerance to an approximate structural matching, while not forcing
them to be aware of all the possible structural variations of the data/document
structure; (2) to define an ad-hoc approximate matching of the flexible structural
constraints thus allowing both a ranking only based on approximate structure
matching, and a ranking based on a combination of content predicates and the
new flexible structural predicates (while preserving a ranking based only on
content predicates).

The paper is organized as follows: Section 2 reviews the research work re-
lated to introducing flexibility in XML query evaluation. Section 3 presents the
proposed extension of the XQuery Full-Text language with the new flexible struc-
tural constraints: both the syntax and the semantics of the new constraints are
formalized as well as some usage examples. Section 4 concludes the paper.

2 Related Work

As outlined in Section 1, several approaches to introduce some flexibility in
XML retrieval have been proposed in last years, by both the database and the
IR communities [8,10,12,16] In IR, the approaches to inquiry XML documents

An Approach to Define Flexible Structural Constraints in XQuery 309

have been classified as content-only search (CO), and both content and structure
search (CAS). CAS approaches (proposed in the IR research context) consider
both document content and structure in query formulation and evaluation. CAS
approaches include: TopX [13], NEXI [15], TeXQuery [1], and FleXPath [4].

Most CAS approaches, like TopX [13], do not consider the content-related
and the structural constraints equally important; in fact, they employ a two
stage evaluation strategy by which the evaluation of content predicates is first
performed (as done with CO queries), and then the obtained results are analysed,
and eventually filtered out from the final result set, based on the structural
constraints satisfaction. Amer-Yahia et al. [2] define some relaxations in XML
structure and content querying such as the introduction of generalized data-
types, the adoption of edit distances on paths, and some operations to modify
the structure such as delete node, insert intermediate nodes or rename nodes.
The aim of these approaches is to modify the structure specified in the query in
order to relax the selection of a candidate fragment during a query evaluation.
The language NEXI [15] was defined to propose a common language for CAS
approaches: it is a reduced version of XPath where the only supported axis are the
descendant and self axis. Another important XML query language is TeXQuery
[1] which provides a set of full-text search features, such as Boolean connectives,
phrase matching, proximity distance. TexQuery is the precursor of the XQuery
Full-Text[17] language extension of single path pattern queries or more complex
twig pattern queries.

FleXPath [4] is the first approach proposing an approximate matching of
structural query constraints by a formalization of relaxations in the evaluation
of the structure specified in the queries; it constitutes the first algebraic frame-
work for spanning relaxations. This approach has been further developed in [3],
where path scoring is formalized as an approximation of twig scoring by loos-
ing correlations between query nodes in score computation. After the two above
seminal contributions, subsequent research has addressed the problem of approx-
imate structural matching of XML data [18]. It should be noted that all previous
approaches introduce flexibility in the evaluation process of conventional queries,
and therefore these approaches do not allow users to specify flexible constraints
that explicitly require the application of an approximate structural matching
providing fragment scores distinct from scores produced by the keyword-based
evaluation. This means that the user has no way to distinguish between struc-
tural constraints in the query the evaluation of which has to produce a set of
fragments, and flexible structural constraints the evaluation of which has to
produce weighted fragments, with structural fragment scores distinct from con-
tent related fragment scores (usually computed by CAS approaches, XQ-FT
included).

The novelty of our approach is to rely on users’ specification of flexible struc-
tural constraints which require an approximate matching of XML nodes. It is
worth noticing that also in the DB community a formalization of flexible struc-
tural queries was proposed in [16] and [6]; the authors defined in fact two new
axes to introduce flexibility in XML structural matching. However, the above

310 E. Panzeri and G. Pasi

approaches neither compute a relevance score for each matched fragment, nor
offer users the possibility to combine content and structural scores in a user-
defined fragment ranking as proposed in this work.

3 The Proposed Extension

In this section, we introduce the proposed extension that integrates the new
predicates below and near with the XQ-FT syntax. Like the descendant axis,
also the constraint below is specified as a flexible axis of a path expression:
its evaluation is aimed at identifying elements (called target nodes) that are
direct descendants of a node (called the context node). However, differently from
the descendant evaluation, the below constraint computes a numeric score for
each retrieved node. The constraint near is specified as a flexible axis of a path
expression; it allows to identify XML elements (target nodes) connected to the
context node through any path. Also by this axis, for each retrieved fragment a
score is computed.

3.1 Flexible Structural Constraints

The main innovative characteristics of the below and near constraints are: (i)
they are user-specified, and (ii) their evaluation produces a weighted set of nodes.
A node weight is computed based on the node closeness to the ideal paths iden-
tified by the flexible constraints. We outline that ranking based on user specified
structural constraints is a new approach to XML querying, and that, to our
knowledge, no XML query engine provides this feature. The proposed approach
allows to obtain a node ranking either based on structural constraints evalua-
tion only, or based on content constraints evaluation only, or on a combination
of them, which may also be decided by a user. It is important to notice that the
integration of the below and near axes in the XQuery syntax allows to specify
them in any XQuery predicate, as explained in Section 3.2.

The flexible axes can also be used in conjunction with positional predicates: as
the matched elements are returned in decreasing order of relevance, the positional
predicates are referred to the rank of the fragments. The following definitions,
as well as the provided examples, make use of the unabbreviated language form
where each axis is explicitly specified. For example, the query //book/description
is written as /descendant :: book/child :: description.

The Constraint “Below”: The evaluation of the constraint below extends the
XQuery descendant axis evaluation by computing, for each retrieved node, a
path relevance score that is inversely proportional to the path distance from the
ideal path identified by the below constraint. The ideal path is the one where
the target node is a direct descendant (direct child) of the context node.

An example of the below evaluation is graphically sketched in Fig. 1(a): the
query “/descendant:: person/below::name” is evaluated against the XML

An Approach to Define Flexible Structural Constraints in XQuery 311

(a) (b)

Fig. 1. (a) Graphical representation of the below constraint evaluation for the query:
/descendant::person/below::name (b) The near constraint evaluation for the query:
“a/near(3)::e”

document1 fragment shown in the figure. The node labeled person is the context
node for the below axis evaluation, while all nodes labeled name are the target
nodes. The different filling of the name nodes indicates the ranking produced
by the below constraint evaluation: the name element filled with horizontal lines
represents the ideal element, due to the fact that it is the direct descendant of the
person element. The nodes filled with vertical lines, instead, do not have a direct
child relationship with the context node, and thus their score is proportional to
their distance from the person element. Based on the example in Fig. 1(a) the
elements retrieved in decreasing order of relevance estimate, are: (i) the node
person/name; and (ii) the nodes person/name/other names/name filled with
vertical lines. An important observation is that, although the XQ-FT standard
constraints could allow to formulate complex queries with a behavior similar to
the one associated with below, the use of explicit flexible constraints is clearly
more user-oriented and better complies with the XQ-FT scoring mechanism.

The Constraint “Near”: The near constraint requires to find target nodes
that are ”in the neighborhoods” of the context node, in all directions (not only on
the descendant axis, but also with respect to siblings and ancestors). A parameter
can be specified with the near constraint to indicate the maximum distance
between the context node and the target node: nodes reachable with more than
n arcs form the context node will be excluded from the retrieved elements. The
parameter allows users to control the near evaluation by avoiding to search in the
whole XML graph for matching target nodes. The syntax of the near constraint
is: /near(n)::label (based on the considered application, it could make sense
to specify a default value for n). The near constraint evaluation computes a
relevance score for each matching node: this score is inversely proportional to
the distance of the target node from the context node (by considering that the
ideal node is directly connected to the context node). The evaluation function
of the near constraint is formally defined in Section 3.5.

1 In the example the document is taken from the INEX DataCentric collection created
from the IMDD movie database.

312 E. Panzeri and G. Pasi

As an example, in Fig. 1(b) the evaluation of the query “a/near(3)::e” is
shown: the node labeled a with bold border is the context node, while the e

nodes with the filled background are the nodes matched by the example query.
Note that the e node with path /b/h/e will not be retrieved because its distance
from the context node is more than 3 arcs. To summarize the example in Fig.
1(b) the nodes matched by the query “a/near(3)::e”, in decreasing order of
relevance estimate, are: (i) node /a/d/e; and (ii) nodes /b/e and /c/e.

3.2 Syntax

The extended grammar (based on the Core XPath grammar as defined in [11])
that includes the below and near constraints is expressed in EBNF (Extended
Backus–Naur Form) as follows:

locpath ::= ’/’ locpath | locpath ’/’ locpath | locpath ’|’ locpath|locstep

locstep ::= axis ’::’ t | locstep ’[’ bexpr ’]’

axis ::= xpathAxis | axisNear | axisBelow

xpathAxis::= ’self’ | ’child’ | ’parent’ | ...

axisNear ::= ’near’ | ’near(’ number ’)’

axisBelow::= ’below’

where locpath is the start symbol, named the location path; bexpr represents
a boolean filter expression used as a filter for location paths; t denotes tag la-
bels of document nodes; axis denotes the axis relations in the XPath language
(xpathAxis represents all the standard axes, not fully listed for sake of readabil-
ity) as well as the new flexible axis near and below. As outlined in Section 3.1
the below constraint produces the same node-set of the XPath axis descendant;
however the evaluation of the below constraint associates a score with each node
in the retrieved node-set. To manage such numeric scores, an optional Score Vari-
able named score-structure has been introduced, in addition to the XQ-FT
score variable, in the for FLWOR2 clause. We extend the XQuery for clause,
defined in [17], as follows:

ForClause ::= "for" "$" VarName TypeDeclaration? PositionalVar?

FTScoreVar? StructScoreVar? "in" ExprSingle ("," "$" VarName

TypeDeclaration? PositionalVar? FTScoreVar? "in" ExprSingle)*

FTScoreVar ::= "score" "$" VarName

StructScoreVar::= "score-structure" "$" VarName

where Varname is a variable name; TypeDeclaration is a variable type decla-
ration; and ExprSingle is the actual query for node selection as defined in the
XQuery language. An example of XQuery expression including both the Full-
Text and below axis evaluation is the following:

2 The FLWOR acronym stands for For-Let-Where- OrderBy-Return that represents
the ability of the XQuery language to support selection and iterations over XML
elements.

An Approach to Define Flexible Structural Constraints in XQuery 313

for $item score $scoreFT score-structure $scoreS in

person/below:name[text() contains text "brad"] order by $scoreS

return <i scS=’{$scoreS}’ scFT=’{$scoreFT}’>$item</i>

By this query the user declares her/his interest in all nodes labeled name that
contain the text brad ; such nodes must have a person node as ancestor. The
resulting name nodes are then ranked based on their distance from the context
node person (as obtained by the below axis evaluation), and stored in the
$scoreS variable. The results are then returned from the XQuery expression
evaluation in an XML form where both structural and Full-Text scores are stored
as well as the name node textual contents. An example of obtained results is the
following:

1) <i scS="1" scFT="1">Brad</i>

2) <i scS="0.3" scFT="0.62">Brad Winsley</i>

A linear combination of the two scores can be provided by the user to obtain an
overall ranking score. Further details on the below axis evaluation and scoring
computation will be given in Section 3.5.

3.3 Semantics

In this section, we present the formal definition of the semantics of the proposed
flexible structural constraints. An important observation here is that a key fea-
ture of the new structural constraints is the computation of a relevance score,
that should be formally defined in the constraint semantics. However, in this
paper, we comply to the formal definition of the XQ-FT scores semantics, where
to justify the computation of scores in the evaluation of XQ-FT expressions, we
introduce second-order functions. The produced scores are then used in FLWOR

clauses to assign scoring-variables values. For further details, refer to [17, Chap-
ter 4.4]. We extend then the semantic function S of Core XPath (as defined in
[11]) by adding the below and the near semantics to define the node-sets re-
trieved by the axis constraint evaluation. In Equation (1), the semantics of the
axis evaluation is provided as a reference:

S�χ :: t�(N0) := χ(N0) ∩ T (t) (1)

where the axis relation function χ : 2dom → 2dom is defined as χ(N0) = {x |
∃x0 ∈ X0 : x0χx} (thus overloading the χ relation name), N0 is a set of context
nodes, and a query π evaluates as S�π�(N0). It should be noticed that in the
presented EBNF, the flexible constraints below and near can be nested without
any limit in any query.

The “Below” Semantics: As previously outlined the definitions provided in
this section are finalized to identify the set of nodes retrieved by the new axes
evaluation. In this sense, the formal semantics of the constraint below is the
same formal semantics of the descendant constraint, as both of them identify
the same set of nodes, i.e., those having node t as a descendant of context node

314 E. Panzeri and G. Pasi

N0. In other words, both of them allow to match all the descending nodes of the
context node n0 with a given label t. The only and important difference between
the below and the descendant constraints is the computation of path relevance
scores that are produced by the below constraint evaluation: for each fragment
matching the descendant constraint (and thus returned in the set of retrieved
fragments) a score is computed, as it will be described at an operational level in
section 3.5. Based on this assumption, we may then assert that:

S�below :: t�(N0) = S�descendant :: t�(N0) (2)

As defined in Section 3.2, the below constraint can be inserted in any query with
an unlimited nesting. The relevance score of a retrieved fragment is computed as
an aggregation of all the nested below axes evaluation. To achieve this aim, we
use the functionmin as an aggregation operator as we require that all constraints
be satisfied. We will further address in a future work the important issue of the
selection of alternative aggregation operators.

The “Near” Semantics: The near axis allows to define a maximum distance
x that acts as a threshold on the number of arcs between the context node and
the target node; nodes the distance of which is more then x arcs are filtered out
from the possible results. Following the CoreXPath semantics introduced before,
we define here below the near constraint semantics; also in this case (as already
outlined for the below constraint) the score computation is formally defined as
in [17]. The semantics is:

S�near(x) :: t�(N0) := Near(N0, x) ∩ T (t) (3)

where Near(N0, x) is the function that returns all nodes with a maximum dis-
tance of x from the set of nodes in N0. As an example we present the near(3)
semantics. In this example the constraint near(3) specifies a maximum distance
of 3 nodes between the context node and the target node. Here below all the
matching paths of /near(3)::l are listed.

S�/near(3) :: l�(n0) := S�/child :: l�(n0) (4)

∪S�/child :: ∗/child :: l�(n0) ∪ S�/child :: ∗/child :: ∗/child :: l�(n0)

∪S�/parent :: l�(n0) ∪ S�/parent :: ∗/parent :: l�(n0)

∪S�/parent :: ∗/parent :: ∗/parent :: l�(n0) ∪ S�/parent :: ∗/child :: l�(n0)

∪S�/parent :: ∗/child :: ∗/child :: l�(n0) ∪ S�/parent :: ∗/parent :: ∗/child :: l�(n0)

For each matching path represented in (4) a path relevance score is computed.

3.4 Flexible Constraints and Query Branching

An important issue related to the flexible axis evaluation concerns the aggrega-
tion of queries involving multiple flexible constraints and branching in fragment
selection. The flexible constraints, as described in Section 3.1, allow to associate
with each node involved in the flexible part of the query a relevance score in the
range [0, 1], which is used to compute a ranking of the selected fragments. While
in flat queries this can be done without any difficulties, a particular observation

An Approach to Define Flexible Structural Constraints in XQuery 315

should be made for branching queries where the selection node that needs to
be ranked appears in a different branch than the one/ones that use the flexible
constraints, thus obtaining a path relevance score.

Let us consider the complex query person[descendant::act/near(4)::

title[contains(.,‘gran torino’)]]/child::name and the XML document
fragment shown in Fig. 2(b). Let us suppose that the user is interested in finding
the names of people involved in the movie entitled “Gran Torino.” The user
interest is mainly in, but not limited to, people who acted in such movie: by using
the constraint near the user requires also to find people who worked as director,
producer, etc. (even if with a lower structural relevance). In Fig. 2(a), the tree
representation of the query is shown: the underlined name element identifies the
selection node; the edges between two nodes identify the axes-constraints (the
label identifies the specified axis, i.e., child and near). Dotted lines represent
filtering functions, in this example the contains function. The element person
is also called branching point.

(a) (b)

Fig. 2. (a)The tree-representation of the query person[descendant::act/near(4)

::title[contains(.,‘gran torino’)]]/child::name (b) the XML fragment graph

From the above example is clear how the evaluation of the right branch of
Fig. 2(a) can produce a set of elements for a single person (i.e., Clint Eastwood
was involved in the movie as the main actor, the director and the producer). In
this case, each retrieved fragment has a score associated, and it is not clear how
the final score should be computed and assigned to the branching point to allow
a ranking of the elements matched in the left branch of the example.

As a first reasonable solution to address this situation, we assign to the branch-
ing point element (in our example the person element), a score which is the
maximum value among those obtained by evaluating the right branches. Al-
though the choice of applying the max() aggregation is quite natural to obtain
an optimistic aggregation, other aggregation schemes will be investigated.

3.5 The Proposed Approximate Evaluation

In this section, the evaluation functions of the new axes near and below are
defined; each function computes the path relevance score of a document path with
respect to the query path. Each score is in the interval [0, 1] where 1 represents
a full satisfaction of the axis constraint evaluation, while values less than 1 are
assigned to target nodes far from the context node. Nodes with a path relevance
score of zero will not be retrieved as they are not relevant to the user query.

316 E. Panzeri and G. Pasi

As previously outlined the notion of path closeness is related to the concept
of node distance (intended as the number of arcs connecting two nodes). Both
the near and the below evaluation functions are based on a count of the of arcs
between the context node and the target node to compute the path relevance
score; however alternative evaluation functions can be easily implemented.

The “Below” Constraint Evaluation Function: As previously stated, the
below axis produces the same node-set result as the XPath descendant axis;
however, for each node, a score is computed based on the distance between the
context node and the target node. The path relevance score for the below axis
evaluation, with a context node c and a target node t, can be computed as :

wbelow(c, t) =
1

|desc arcs(c, t)| . (5)

Where desc arcs(c, t) is a function that, given two XML nodes c and t (where t
must be a descendant of node c), returns the set of descending arcs from c to t.
The score computed for the below axis is inversely proportional to the distance
of the nodes c and t, thus giving to nodes closer to the context node a higher
score than the one given to nodes far from the context node.

The “Near” Constraint Evaluation Function: As explained in Section 3.3,
the near axis evaluation allows to retrieve nodes that are close to the given
context node in every path direction; in the near axis evaluation the maximum
allowed distance that can occur between the two nodes is taken into account.

In Equation (6), the evaluation function used to compute the path relevance
score based on the near axis is defined, where c is the context node, t is the cur-
rent target node, l is the maximum allowed distance and arcs(c, e) is a function
that returns the set of arcs in the shortest path between c and t.

wnear(c, t, l) =

{ 1
|arcs(c,t)| if |arcs(c, t)| ≤ l

0 else.
(6)

Like the below scoring, score is inversely proportional to the distance of the
context node from the target node. The function assign higher values if the
target node is closer to the context node, while the relevance score decreases to
zero as the distance increases.

4 Conclusions and Future Work

In this work, a new approach to XML querying has been presented: two new
flexible axes, named below and near, have been introduced into the XQuery
Full-Text language, to give users the possibility of specifying flexible structural
constraints. For each axis evaluation, a path relevance score is computed to
produce a ranked list of elements. Each retrieved XML element is evaluated
based on the notion of path closeness between the considered element and the
ideal element specified in the query. In this work, the syntax, the semantics and
the axes evaluation functions have been defined, as well as an initial analysis

An Approach to Define Flexible Structural Constraints in XQuery 317

of the branching issue for the proposed axis evaluation. Further research will
address the branching issue for the below and the near axes evaluation, as well
as the definition of meaningful aggregation strategies for such cases.

Ongoing works are being conducted related to the implementation of the two
new axes inside a XML Query engine, able to handle both the XQuery Full-Text
specification and the flexible structural constraints below and near.

References
1. Amer-Yahia, S., Botev, C., Shanmugasundaram, J.: TeXQuery: A Full-Text Search

Extension to XQuery. In: WWW 2004, pp. 583–594. ACM (2004)
2. Amer-Yahia, S., Cho, S., Srivastava, D.: Tree Pattern Relaxation. In: Jensen, C.S.,

Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT
2002. LNCS, vol. 2287, pp. 496–513. Springer, Heidelberg (2002)

3. Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., Toman, D.: Structure and
Content Scoring for XML. In: VLDB 2005, pp. 361–372 (2005)

4. Amer-Yahia, S., Lakshmanan, L.V.S., Pandit, S.: FleXPath: flexible structure and
full-text querying for XML. In: SIGMOD 2004, pp. 83–94 (2004)

5. Amer-Yahia, S., Lalmas, M.: XML search: languages, INEX and scoring. In: SIG-
MOD 2006, pp. 16–23 (2006)

6. Bhowmick, S.S., Dyreson, C., Leonardi, E., Ng, Z.: Towards non-directional Xpath
evaluation in a RDBMS. In: CIKM 2009, pp. 1501–1504 (2009)

7. Campi, A., Damiani, E., Guinea, S., Marrara, S., Pasi, G., Spoletini, P.: A fuzzy
extension of the xpath query language. J. Intell. Inf. Syst., 285–305 (2009)

8. Chinenyanga, T.T., Kushmerick, N.: An expressive and efficient language for XML
Information Retrieval. JASIST 53, 438–453 (2002)

9. Damiani, E., Marrara, S., Pasi, G.: A flexible extension of XPath to improve XML
querying. In: SIGIR 2008, pp. 849–850 (2008)

10. Fuhr, N., Großjohann, K.: XIRQL: A Query Language for Information Retrieval
in XML Documents. In: SIGIR, pp. 172–180 (2001)

11. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing xpath queries.
ACM Trans. Database Syst. 30, 444–491 (2005)

12. Theobald, A., Weikum, G.: Adding Relevance to XML. In: Suciu, D., Vossen, G.
(eds.) WebDB 2000. LNCS, vol. 1997, pp. 105–124. Springer, Heidelberg (2001)

13. Theobald, M., Schenkel, R., Weikum, G.: TopX and XXL at INEX 2005. In: Fuhr,
N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 282–
295. Springer, Heidelberg (2006)

14. Trotman, A., Lalmas, M.: The Interpretation of CAS. In: Fuhr, N., Lalmas, M.,
Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 58–71. Springer,
Heidelberg (2006)

15. Trotman, A., Sigurbjörnsson, B.: Narrowed Extended XPath I (NEXI). In: Fuhr,
N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp.
16–40. Springer, Heidelberg (2005)

16. Truong, B.Q., Bhowmick, S.S., Dyreson, C.: SINBAD: Towards Structure-
Independent Querying of Common Neighbors in XML Databases. In: Lee, S.-g.,
Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part
I. LNCS, vol. 7238, pp. 156–171. Springer, Heidelberg (2012)

17. W3C. XQuery/XPath FullText (March 2011),
http://www.w3.org/TR/xpath-full-text-10

18. Yu, C., Jagadish, H.V.: Querying Complex Structured Databases. In: VLDB 2007,
pp. 1010–1021 (2007)

http://www.w3.org/TR/xpath-full-text-10

	An Approach to Define Flexible Structural Constraints in XQuery
	Introduction
	Related Work
	The Proposed Extension
	Flexible Structural Constraints
	Syntax
	Semantics
	Flexible Constraints and Query Branching
	The Proposed Approximate Evaluation

	Conclusions and Future Work
	References

