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Abstract. Flow visualization plays an important role in many scientific 
visualization applications. It is effective to visualize flow fields with moving 
textures which vividly capture the properties of flow field through varying 
texture appearances.Texture-optimization-based (TOB) flow visuliaztion  can 
produce excellent visualization results of flow fields. However, TOB flow visu-
alization without acceleration is time-consuming. In this paper, we propose fast 
flow visualization based on the accelerated parallel TOB flow visualization 
which is entirely implemented on CUDA. High performance is achieved since 
most time-consuming computations are performed in parallel on GPU and data 
transmission between CPU and GPU are arranged properly. The experimental 
results show that our TOB flow visualization generates results with fast synthe-
sis speed and high synthesis quality. 

Keywords: CUDA, flow visualization, texture optimization, GPU parallel 
computing.  

1 Introduction 

Flow visualization is a very important branch of scientific visualization which can be 
applied to lots of fields, such as automotive design, meteorology, medical imaging 
and water conservancy.  

In recent years, the rapidly developing methods of texture-based flow visualization 
[1-2], [6-7]  not only capture the rich details of a static flow field, but also vividly 
show the movements of the dynamic flow field. LIC (Line Integral Convolution) [1] 
and spot noise [2] are two basic algorithms of texture-based flow visualization. Both 
methods can generate directional features of textures which are suitable for the flow 
field visualization. However the textures generated by these methods are blurry to 
some extent. In addition, most of them use random noise texture to visualize the flow 
field instead of the real-world pictures with rich visual patterns. 

Kwatra et al. proposed a texture-optimization-based (TOB) flow visualization to 
solve the problem [3-4]. Flow fields are visualized and animated with the  
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user-provided textures, and it produces good visualization effects. But this method 
involves much iterative optimization which makes it computationally expensive and 
limits its applicability to visualizations with the requirement of fast speed. Han et al 
[9] and Huang et al [19] accelerated the texture optimization by a GPU-based algo-
rithms. Their algorithms are implemented on traditional GPU by specific GPU  
programming interface involving a lot of tricky GPU operations which makes them 
difficult and inefficient to realize. In this paper, we propose the CUDA (Compute Uni-
fied Device Architecture)-based flow visualization algorithm which is entirely imple-
mented on GPU. CUDA is a parallel computing platform and programming model 
launched by NVIDIA [14]. It enables dramatic increases in computing performance 
by harnessing the power of GPU. It has several advantages over traditional general 
GPUs, such as shared memory, faster downloads and reads back to and from the 
GPU. Besides, the GPU program with CUDA is easier to understand and implement.  

In this paper, our contribution is utilizing the powerful performance of CUDA ar-
chitecture to implement a parallel algorithm of TOB flow visualization, which greatly 
increases the synthesis efficiency. 

The rest of the paper is organized as follows: A brief overview of the related work 
is given in Section 2. Section 3 describes the TOB flow visualization in detail. In 
Section 4, we describe how to use CUDA to realize the parallel algorithm of TOB 
flow visualization. Experimental results are presented and discussed in Section 5. 
Section 6 concludes the paper with suggestions for future work. 

2 Related Work 

Texture-based flow visualization plays an important role in the flow visualization 
field. Most of previous methods were based on Line Integral Convolution (LIC)  
[1, 5]. Van Wijk [6] extended LIC-based visualization with texture animation to vi-
sualize the flow field. These methods adopt the random noise as visual texture pat-
terns. It can depict rich details of the flow field effectively but is not suitable for vi-
sualize more complex flow field which comes from the real-world flow, like water, 
cloud and fire etc [9]. 

In recent years, some methods have been proposed to visualize flow field by using 
the real-world textures. Zhang et al. proposed the progressively-variant texture tech-
nique which synthesized the textures according to the user-specified vector fields 
[10]. Taponecco et al. presented the steerable texture synthesis technique [11] in 
which several samples with different rotations and scales are used to generate textures 
with the same vector filed. A similar approach was proposed by Lefebvre et al [12]. 
And Fisher et al .extended this method to three dimension surface flow field [23]. 
However, all of the above methods were applied only to static flow fields and were 
not extended to deal with the dynamic flow fields. Using the animated sequence of 
general textures to visualize the flow on 3D surfaces flow is a rising technique in 
recent years. It deals with both the static and dynamic flow field, and is more effective 
than the noise methods. The consecutive animated sequences of textures were gener-
ated by warping the texture image according to the surface flow field in [6-7]. How-
ever, the textures are made to stretch, compact or twist during the process, especially 
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in the vicinity of singularity (such as sink and source) in flow field. This method 
would produce the results which appear different from the sample texture. Lefebvre et 
al [4] solved the problem by re-synthesizing the large deformed texture region, which 
ensured the similarity between the synthesis results and sample texture but did not 
ensure the consistency between the consecutive frames. 

Kwatra et al [3] presented a global optimization solution algorithm to address this 
issue. It added a correction step after warping the former frame to keep the consisten-
cy and similarity. The correction step adopted the energy minimization function. This 
technique is capable to generate good visual appearances, but with slow computation 
speed. Han et al [9] accelerated it by a GPU-based parallel algorithm. However, the 
algorithm based on traditional GPU involves many programming optimization tricks 
which make it difficult to implement. In this paper, we study and implement the TOB 
flow visualization algorithm based on CUDA architecture. 

3 Texture Optimization-Based Flow Visualization 

The texture sequences are synthesized to keep consistency and similarity, namely the 
textures not only flow in a coherent fashion (consistency) but also maintain their 
structural elements (similarity) under the control of flow field. Fig.1 shows two crite-
ria to be satisfied the texture sequences are synthesized: 1) Flow Consistency: the 
motion of synthesized textures should be in accordance with the flow; 2) Texture 
Similarity: the visual appearance of target textures should be similar to the source. 

 

Fig. 1. Two criteria for texture optimization-based flow visualization 

Kwatra et al [3] proposed that textures are synthesized in a frame-by-frame fashion 
to visualize the flow and two steps are performed when a new frame is synthesized. 
At first, the warp step warps the former frame according to the flow field. After the 
first step, a correction step is adopted to make the warped frame look similar to the 
exemplar. The two steps are described in the following subsections.  
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3.1 Warp Step  

Let Xi+1 denote the synthesized texture and Xi denote its former one. Let fi denote the 
flow field function for frame Xi.  

To get next frame Xi+1, Xi is first warped by flow function fi and get the result 
fi(Xi). In order to get the pixel value q of warped frame, we start from q backtracks 
along with the flow field to find p which means q=fi(p). Fig.2 shows the result of the 
warp step. 

 

            (a)                     (b)                   (c)                   (d) 

Fig. 2. Result of warp step. From the pictures we can see that warp step can keep the flow 
consistency but can’t keep the texture similarity. Indeed it will disappear at last along the sink 
flow.   

3.2 Correction Step 

Fig.2 demonstrates that when only use the warp step the synthesized sequences will 
not maintain the similarity of the texture just the flow consistency. So after warp step 
the correction step should be applied.  

In correction step the synthesized frame needs to be close to the warped frame to 
ensure flow consistency and also be similar to the source texture to ensure texture 
similarity. Correction step is casted as an optimization problem where the energy is 
defined for maintaining each goal of correction step. 

To keep the flow consistency, flow energy is defined to make sure the synthesized 
frame as close as the warped frame. And to keep the texture similarity, texture energy 
is defined to make sure the synthesized frame as similar as the source texture. Equa-
tion (1) (2) (3) shows the flow energy, texture energy and the energy sum of them. 

                    2||||)(E wxXf −=                         (1) 
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Ef(X) is computed as the squared differences between the warped frame and the  
synthesized frame. And Et(X) is computed as the total of all individual neighborhood 
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energy where individual neighborhood energy refers to the squared difference be-
tween the neighborhood of one pixel in the subset of synthesized texture X+ and its 
nearest neighborhood in the source texture. X refers to the synthesized texture, X+ 
refers to the subset of X , x is the vectorized X, w is the vectorized warped texture, xp 

is the neighborhood of p , zp is the vectorized pixel neighborhood in Z (source texture) 
who is most similar to xp,λis a relative weighting coefficient. 

The problem to visualize flow fields is formulated to minimize the energy E(X). A 
EM-like algorithm is applied to solve the optimization problem. 

EM-like iterative algorithm is divided into two steps: E-step and M-step. In E-step, 
according to the energy minimum requirement, the output pixels’ neighborhoods {xp} 
are updated while neighborhoods {zp} are unchanged; in M-step, {xp} are fixed while 
{zp} are updated. E-step and M-step are processed in turn, and the optimized global 
solution is obtained until it is convergent or reaches the specific iterative number. 
Table 1 shows the procedure of correction step which are derived from [3]. 

Table 1. pseudo-code of correction step (Algorithm 1) and TOB flow visualization 
(Algorihthm 2)  

Algorithm 1. Correction Step 

zp
0 ← random  neighborhood in Z +∈∀ Xp  

for iteration n=0: M do 
xn+1 ← argminx ]||w-x||||||[ 2

Xp

2n
+∈

+− λpp zx //E step 

zp
n+1 ← argminv ]||y||||[|| 22 wvxp −+− λ  

// M-step , v is neighborhood in Z and y is the same as x 
//except for neighborhood  xp which is replaced with v 
If zp

n+1=zp
n +∈∀ Xp  then 

x=xn+1 break 
end if 

end for 
Algorithm 2. Texture Optimization-Based Flow Visualization 

for i=1:N  
Xi+1 ← fi(Xi) //warp step 

for j=1:K  // K is the consecutive neighborhood number  
CorrectionStep(Xi+1,fi)  //correction step 

end for  
end for  

3.3 Flow Visualization 

Let ),...,,(f 1N21 −= fff  denote the input flow fields and (X1 ,X2 ,…,XN) denote the 

texture sequences being synthesized, X1 is the initial frame which can be synthesized 
by texture optimization [3]. During synthesis of frame i+1, fi(Xi) is the warped texture 
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which is the result of Warp step, then the Correction step is used to synthesize frame 
i+1.  Table 1 shows the algorithm of TOB flow visualization. 

4 Fast TOB Flow Visualization on CUDA 

In [3], the hierarchical tree search is utilized in M-step which makes the EM-like al-
gorithm time-consuming and the least squares solver is used in E-step which makes 
the result blurry to some extent. To solve the problem, paper [9] incorporated k-
coherence [8] into both E-step and M-step of the original EM solver in [3]. And in our 
implementation, we have used a CUDA-friendly k-coherence algorithm [21] to acce-
lerate the flow visualization speed. The warped step and correction step are also im-
plemented on CUDA architecture system. 

In CUDA a thread hierarchical model is used which is: “ thread” → ”thread 
blocks” → ”thread-block grid”. Each thread block contains a certain number of 
threads. A thread block grid can be divided into multiple thread blocks. 

Our method can be divided into two phrases: Warp and Correction step. In order to 
fully utilize CUDA, we design the algorithm deliberately, including data transfer be-
tween CPU and GPU, allocating graphic memory appropriately and designing the 
dimension of both block and grid carefully. 

When synthesizing a new frame before Correction step, the warped frame and ini-
tial new frame are obtained by warping the former frame. Before warping, the number 
of blocks is set to be the size of Xi+1, and the number of threads in each block is 1, 
such that each block processes one pixel. Xi and the flow field are bounded with tex-
ture memory.  

4.1 Correction Step 

During correction step, the basic step is divided into E-step and M-step. Table 2 
shows correction step which incorporates the parallel k-coherence. 

Table 2. Pseudo-code of correction step with k-coherence 

Algorithm 3. Correction Step with k-coherence 

zp
0 ← random  neighborhood in  Z +∈∀ Xp  

for iteration n=0: M do 

xn+1 ← ]||||||||[minarg 2
)()(, 

+∈
∈ −+−

Xp

n
pppkpxx wxzx λ //E -step

 
zp

n+1 ← ]||||||[||minarg 22
)(, wyvx ppkvv −+−∈ λ // M-step 

if zp
n+1=zp

n +∈∀ Xp then 

     x=xn+1 break 
end if 

end for 
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In M-step, the CUDA-friendly k-coherence search is used to solve the neighbor-
hood searching problem. For each q in the synthesizing frame, candidate set c(q) is 
built by the union of the neighborhood’s similar set of q. And then search in c(q) to 
find the neighborhood that closet to q’s neighborhood using an improved parallel 
reduction algorithm. The searched nearest neighborhood is saved in the corresponding 
array. Since each output pixel is independent on any other output pixels, the number 
of blocks is equal to the size of X+, and the number of threads in one block is equal to 
the number of candidates. We copy the sample texture, pre-computed similarity set, 
warped texture (fi(Xi)) and Xi+1 to texture memory (due to un-changing of them during 
the whole M step ) , use shared memory and registers to complete parallel k-
coherence search and copy result back to host, since access to shared memory is much 
faster than to global memory. In the kernel function of M-step kernel we pre-cache 
the k-coherence candidate set in shared memory. 

The adoption of improved parallel reduction is to avoid time expensing of data 
transfer between CPU and GPU and improve the efficiency of the whole execution 
processing. The idea of parallel reduction is similar to the merging sort algorithm. 
Fig.3(a) shows the procedure of reduction algorithm in one block. In our reduction 
process, the plus operation is replaced by compare operation. In thread block, each 
thread processes the data respectively; the former half threads compare the first half 
data in data set with the second half, and the smaller ones are moved to the first half 
of data set. After one process, the number that needs to be compared is half down, and 
all of them are stored in the first half of data set. After certain iteration, the lowest one 
in data set is the first item .To all blocks and all threads in the blocks this process is 
parallel and the number we need to compare is constant, so the parallel reduction has 
constant time complexity. Fig.2 (b) shows the improved parallel reduction. 

 

     

    (a)  Parallel reduction         (b) improved parallel reduction 

Fig. 3. Parallel reduction theory 

After M-step, E-step follows. During E-step, in order to minimize the energy func-
tion (3), we copy the warped texture (fi(Xi)) to the texture memory. In E-step we also 
use CUDA-based k-coherence search to find {xp}. The number of blocks equals to the  
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size of Xi+1 and the threads number in each block is equal to the candidate number. 
The allocated uchar4 global array cu_CorrectCoord has the same size as that of Xi+1. 
Since in E-step the value of {zp} does not change, we copy cu_MatchCoord, pre-
computed similarity set and fi(Xi) to texture memory. 

The E-step kernel function executes as follow: 

1. Declare an int4 array distance and an uchar2 array kcoh in the shared memory. 
Since when calculating the energy, an average value will be accessed by all 
threads, a float4 type variable ref_color should be declared in the shared memory. 
And another float4 type shared variable ref_color_con is needed as the warped 
color. Then according to the similarity set, compute candidate coordinates and 
store them in kcoh. 

2. According to blockIdx.x and blockIdx.y get the position p2 of the pixel being syn-
thesized. According to p2 the average value ref_color and the constrained color 
value ref_color_con is calculated. Then to the current thread we get the corres-
ponding candidate p1.The energy value among p1, ref_color and ref_color_con is 
calculated, it is stored in distance.  

3. Synchronize all operations above. After that we use the improved parallel reduc-
tion algorithm to search the candidate point with lowest energy. This candidate 
point will be stored to corresponding position in cu_CorrectCoord. 

At last cu_CorrectCoord is copied back to host.  

5 Results 

We have implemented our algorithm with the following experimental hardware con-
figuration: CPU: Intel Core™ 2Duo 2.83 GHz, Memory: 2GB, Graphics card: Ge-
Force 8800 GTX. The algorithm is developed in Visual Studio 2008 with CUDA4.0. 

In our CUDA implementation, we use successive neighborhood sizes of 16*16 and 
8*8 pixels at each frame, and perform 1~2 iterations for each neighborhood. 

We follow the method in [15-16] to define several user-specified flow fields. 
Similar to the pre-computation in [9], for k-coherence search, the similarity set is 

pre-computed for each neighborhood. During pre-processing, an improved CUDA-
based KNN search [17, 21] is used.  

Fig.4 presents the results of our TOB flow visualization on CUDA, which shows 
that our technique is able to achieve high quality flow visualization by keeping con-
sistency and similarity. 

From Table 3, we can see that our method is almost 200+ faster than the original 
method and 10 times faster than the discrete solver [9]. We utilize the powerful paral-
lel computation capacity of GPU under CUDA to implement the accelerated E-step 
and M-step, which makes the execution time of TOB flow visualization reduce one 
order of magnitude compared with previous methods.  

 
 



 Fast Flow Visualization on CUDA Based on Texture Optimization 265 

Table 3. Synthesis Time for Different Synthesis Schemes 

                                      Flow-guided  synthesis (2562—>2562) (each frame) 
Original texture optimization[3]                                             20~60s 
Discrete texture optimization[9]                                              >1.2s 
Texture optimization-base flow                                  180ms~200ms 
visualization on CUDA    

 

 
 

 
 

 

(a)                    (b)                  (c)             (d)                (e) 

Fig. 4. The results of flow visualization. Pictures of column (a) are flow fields. For the first row 
column (b) gives frame1, and column (c) is frame 20. (d) is frame 1 and (e) is frame 20. The 
second row is similar to first.  At the last row, from (b) to (e) are frame 1, frame 10, frame 50 
and frame 100, respectively. 

6 Conclusion 

We adopt the k-coherence parallel algorithm to the CUDA-based algorithm, which 
greatly accelerates the Correction step. Experimental results show that our CUDA-
based flow visualization algorithm can not only achieve the similarity and consistency 
goals but also produce texture sequence at high speed.  

In our future work, we will continue to study CUDA parallel techniques, and fur-
ther explore how to use the general texture to achieve efficient flow visualization 
which can vividly simulate the feature details of the flow and has a higher speed.  
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