
R. Huang et al. (Eds.): AMT 2012, LNCS 7669, pp. 257–267, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Fast Flow Visualization on CUDA Based on Texture
Optimization

Ying Tang1, Zhan Zhou1, Xiao-Ying Shi1,2, and Jing Fan1,*

1 School of Computer Science and Technology,
Zhejiang University of Technology, Hangzhou,China

2 School of Information Engineering,
Zhejiang University of Technology, Hangzhou,China

{Ytang,fanjing}@zjut.edu.cn, zhanzhanlove.hi@gmail.com,
shixiaoying8888@yahoo.com.cn

Abstract. Flow visualization plays an important role in many scientific
visualization applications. It is effective to visualize flow fields with moving
textures which vividly capture the properties of flow field through varying
texture appearances.Texture-optimization-based (TOB) flow visuliaztion can
produce excellent visualization results of flow fields. However, TOB flow visu-
alization without acceleration is time-consuming. In this paper, we propose fast
flow visualization based on the accelerated parallel TOB flow visualization
which is entirely implemented on CUDA. High performance is achieved since
most time-consuming computations are performed in parallel on GPU and data
transmission between CPU and GPU are arranged properly. The experimental
results show that our TOB flow visualization generates results with fast synthe-
sis speed and high synthesis quality.

Keywords: CUDA, flow visualization, texture optimization, GPU parallel
computing.

1 Introduction

Flow visualization is a very important branch of scientific visualization which can be
applied to lots of fields, such as automotive design, meteorology, medical imaging
and water conservancy.

In recent years, the rapidly developing methods of texture-based flow visualization
[1-2], [6-7] not only capture the rich details of a static flow field, but also vividly
show the movements of the dynamic flow field. LIC (Line Integral Convolution) [1]
and spot noise [2] are two basic algorithms of texture-based flow visualization. Both
methods can generate directional features of textures which are suitable for the flow
field visualization. However the textures generated by these methods are blurry to
some extent. In addition, most of them use random noise texture to visualize the flow
field instead of the real-world pictures with rich visual patterns.

Kwatra et al. proposed a texture-optimization-based (TOB) flow visualization to
solve the problem [3-4]. Flow fields are visualized and animated with the

* Corresponding author.

258 Y. Tang et al.

user-provided textures, and it produces good visualization effects. But this method
involves much iterative optimization which makes it computationally expensive and
limits its applicability to visualizations with the requirement of fast speed. Han et al
[9] and Huang et al [19] accelerated the texture optimization by a GPU-based algo-
rithms. Their algorithms are implemented on traditional GPU by specific GPU
programming interface involving a lot of tricky GPU operations which makes them
difficult and inefficient to realize. In this paper, we propose the CUDA (Compute Uni-
fied Device Architecture)-based flow visualization algorithm which is entirely imple-
mented on GPU. CUDA is a parallel computing platform and programming model
launched by NVIDIA [14]. It enables dramatic increases in computing performance
by harnessing the power of GPU. It has several advantages over traditional general
GPUs, such as shared memory, faster downloads and reads back to and from the
GPU. Besides, the GPU program with CUDA is easier to understand and implement.

In this paper, our contribution is utilizing the powerful performance of CUDA ar-
chitecture to implement a parallel algorithm of TOB flow visualization, which greatly
increases the synthesis efficiency.

The rest of the paper is organized as follows: A brief overview of the related work
is given in Section 2. Section 3 describes the TOB flow visualization in detail. In
Section 4, we describe how to use CUDA to realize the parallel algorithm of TOB
flow visualization. Experimental results are presented and discussed in Section 5.
Section 6 concludes the paper with suggestions for future work.

2 Related Work

Texture-based flow visualization plays an important role in the flow visualization
field. Most of previous methods were based on Line Integral Convolution (LIC)
[1, 5]. Van Wijk [6] extended LIC-based visualization with texture animation to vi-
sualize the flow field. These methods adopt the random noise as visual texture pat-
terns. It can depict rich details of the flow field effectively but is not suitable for vi-
sualize more complex flow field which comes from the real-world flow, like water,
cloud and fire etc [9].

In recent years, some methods have been proposed to visualize flow field by using
the real-world textures. Zhang et al. proposed the progressively-variant texture tech-
nique which synthesized the textures according to the user-specified vector fields
[10]. Taponecco et al. presented the steerable texture synthesis technique [11] in
which several samples with different rotations and scales are used to generate textures
with the same vector filed. A similar approach was proposed by Lefebvre et al [12].
And Fisher et al .extended this method to three dimension surface flow field [23].
However, all of the above methods were applied only to static flow fields and were
not extended to deal with the dynamic flow fields. Using the animated sequence of
general textures to visualize the flow on 3D surfaces flow is a rising technique in
recent years. It deals with both the static and dynamic flow field, and is more effective
than the noise methods. The consecutive animated sequences of textures were gener-
ated by warping the texture image according to the surface flow field in [6-7]. How-
ever, the textures are made to stretch, compact or twist during the process, especially

 Fast Flow Visualization on CUDA Based on Texture Optimization 259

in the vicinity of singularity (such as sink and source) in flow field. This method
would produce the results which appear different from the sample texture. Lefebvre et
al [4] solved the problem by re-synthesizing the large deformed texture region, which
ensured the similarity between the synthesis results and sample texture but did not
ensure the consistency between the consecutive frames.

Kwatra et al [3] presented a global optimization solution algorithm to address this
issue. It added a correction step after warping the former frame to keep the consisten-
cy and similarity. The correction step adopted the energy minimization function. This
technique is capable to generate good visual appearances, but with slow computation
speed. Han et al [9] accelerated it by a GPU-based parallel algorithm. However, the
algorithm based on traditional GPU involves many programming optimization tricks
which make it difficult to implement. In this paper, we study and implement the TOB
flow visualization algorithm based on CUDA architecture.

3 Texture Optimization-Based Flow Visualization

The texture sequences are synthesized to keep consistency and similarity, namely the
textures not only flow in a coherent fashion (consistency) but also maintain their
structural elements (similarity) under the control of flow field. Fig.1 shows two crite-
ria to be satisfied the texture sequences are synthesized: 1) Flow Consistency: the
motion of synthesized textures should be in accordance with the flow; 2) Texture
Similarity: the visual appearance of target textures should be similar to the source.

Fig. 1. Two criteria for texture optimization-based flow visualization

Kwatra et al [3] proposed that textures are synthesized in a frame-by-frame fashion
to visualize the flow and two steps are performed when a new frame is synthesized.
At first, the warp step warps the former frame according to the flow field. After the
first step, a correction step is adopted to make the warped frame look similar to the
exemplar. The two steps are described in the following subsections.

260 Y. Tang et al.

3.1 Warp Step

Let Xi+1 denote the synthesized texture and Xi denote its former one. Let fi denote the
flow field function for frame Xi.

To get next frame Xi+1, Xi is first warped by flow function fi and get the result
fi(Xi). In order to get the pixel value q of warped frame, we start from q backtracks
along with the flow field to find p which means q=fi(p). Fig.2 shows the result of the
warp step.

 (a) (b) (c) (d)

Fig. 2. Result of warp step. From the pictures we can see that warp step can keep the flow
consistency but can’t keep the texture similarity. Indeed it will disappear at last along the sink
flow.

3.2 Correction Step

Fig.2 demonstrates that when only use the warp step the synthesized sequences will
not maintain the similarity of the texture just the flow consistency. So after warp step
the correction step should be applied.

In correction step the synthesized frame needs to be close to the warped frame to
ensure flow consistency and also be similar to the source texture to ensure texture
similarity. Correction step is casted as an optimization problem where the energy is
defined for maintaining each goal of correction step.

To keep the flow consistency, flow energy is defined to make sure the synthesized
frame as close as the warped frame. And to keep the texture similarity, texture energy
is defined to make sure the synthesized frame as similar as the source texture. Equa-
tion (1) (2) (3) shows the flow energy, texture energy and the energy sum of them.

 2||||)(E wxXf −= (1)

+∈

−=
Xp

ppt zxXE 2||||)(
 (2)

22 ||||||||)(E
+∈

−+−=
Xp

pp wxzxX λ
 (3)

Ef(X) is computed as the squared differences between the warped frame and the
synthesized frame. And Et(X) is computed as the total of all individual neighborhood

 Fast Flow Visualization on CUDA Based on Texture Optimization 261

energy where individual neighborhood energy refers to the squared difference be-
tween the neighborhood of one pixel in the subset of synthesized texture X+ and its
nearest neighborhood in the source texture. X refers to the synthesized texture, X+
refers to the subset of X , x is the vectorized X, w is the vectorized warped texture, xp

is the neighborhood of p , zp is the vectorized pixel neighborhood in Z (source texture)
who is most similar to xp,λis a relative weighting coefficient.

The problem to visualize flow fields is formulated to minimize the energy E(X). A
EM-like algorithm is applied to solve the optimization problem.

EM-like iterative algorithm is divided into two steps: E-step and M-step. In E-step,
according to the energy minimum requirement, the output pixels’ neighborhoods {xp}
are updated while neighborhoods {zp} are unchanged; in M-step, {xp} are fixed while
{zp} are updated. E-step and M-step are processed in turn, and the optimized global
solution is obtained until it is convergent or reaches the specific iterative number.
Table 1 shows the procedure of correction step which are derived from [3].

Table 1. pseudo-code of correction step (Algorithm 1) and TOB flow visualization
(Algorihthm 2)

Algorithm 1. Correction Step

zp
0 ← random neighborhood in Z +∈∀ Xp

for iteration n=0: M do
xn+1 ← argminx]||w-x||||||[2

Xp

2n
+∈

+− λpp zx //E step

zp
n+1 ← argminv]||y||||[|| 22 wvxp −+− λ

// M-step , v is neighborhood in Z and y is the same as x
//except for neighborhood xp which is replaced with v
If zp

n+1=zp
n +∈∀ Xp then

x=xn+1 break
end if

end for
Algorithm 2. Texture Optimization-Based Flow Visualization

for i=1:N
Xi+1 ← fi(Xi) //warp step

for j=1:K // K is the consecutive neighborhood number
CorrectionStep(Xi+1,fi) //correction step

end for
end for

3.3 Flow Visualization

Let),...,,(f 1N21 −= fff denote the input flow fields and (X1 ,X2 ,…,XN) denote the

texture sequences being synthesized, X1 is the initial frame which can be synthesized
by texture optimization [3]. During synthesis of frame i+1, fi(Xi) is the warped texture

262 Y. Tang et al.

which is the result of Warp step, then the Correction step is used to synthesize frame
i+1. Table 1 shows the algorithm of TOB flow visualization.

4 Fast TOB Flow Visualization on CUDA

In [3], the hierarchical tree search is utilized in M-step which makes the EM-like al-
gorithm time-consuming and the least squares solver is used in E-step which makes
the result blurry to some extent. To solve the problem, paper [9] incorporated k-
coherence [8] into both E-step and M-step of the original EM solver in [3]. And in our
implementation, we have used a CUDA-friendly k-coherence algorithm [21] to acce-
lerate the flow visualization speed. The warped step and correction step are also im-
plemented on CUDA architecture system.

In CUDA a thread hierarchical model is used which is: “ thread” → ”thread
blocks” → ”thread-block grid”. Each thread block contains a certain number of
threads. A thread block grid can be divided into multiple thread blocks.

Our method can be divided into two phrases: Warp and Correction step. In order to
fully utilize CUDA, we design the algorithm deliberately, including data transfer be-
tween CPU and GPU, allocating graphic memory appropriately and designing the
dimension of both block and grid carefully.

When synthesizing a new frame before Correction step, the warped frame and ini-
tial new frame are obtained by warping the former frame. Before warping, the number
of blocks is set to be the size of Xi+1, and the number of threads in each block is 1,
such that each block processes one pixel. Xi and the flow field are bounded with tex-
ture memory.

4.1 Correction Step

During correction step, the basic step is divided into E-step and M-step. Table 2
shows correction step which incorporates the parallel k-coherence.

Table 2. Pseudo-code of correction step with k-coherence

Algorithm 3. Correction Step with k-coherence

zp
0 ← random neighborhood in Z +∈∀ Xp

for iteration n=0: M do

xn+1 ←]||||||||[minarg 2
)()(,

+∈
∈ −+−

Xp

n
pppkpxx wxzx λ //E -step

zp

n+1 ←]||||||[||minarg 22
)(, wyvx ppkvv −+−∈ λ // M-step

if zp
n+1=zp

n +∈∀ Xp then

 x=xn+1 break
end if

end for

 Fast Flow Visualization on CUDA Based on Texture Optimization 263

In M-step, the CUDA-friendly k-coherence search is used to solve the neighbor-
hood searching problem. For each q in the synthesizing frame, candidate set c(q) is
built by the union of the neighborhood’s similar set of q. And then search in c(q) to
find the neighborhood that closet to q’s neighborhood using an improved parallel
reduction algorithm. The searched nearest neighborhood is saved in the corresponding
array. Since each output pixel is independent on any other output pixels, the number
of blocks is equal to the size of X+, and the number of threads in one block is equal to
the number of candidates. We copy the sample texture, pre-computed similarity set,
warped texture (fi(Xi)) and Xi+1 to texture memory (due to un-changing of them during
the whole M step) , use shared memory and registers to complete parallel k-
coherence search and copy result back to host, since access to shared memory is much
faster than to global memory. In the kernel function of M-step kernel we pre-cache
the k-coherence candidate set in shared memory.

The adoption of improved parallel reduction is to avoid time expensing of data
transfer between CPU and GPU and improve the efficiency of the whole execution
processing. The idea of parallel reduction is similar to the merging sort algorithm.
Fig.3(a) shows the procedure of reduction algorithm in one block. In our reduction
process, the plus operation is replaced by compare operation. In thread block, each
thread processes the data respectively; the former half threads compare the first half
data in data set with the second half, and the smaller ones are moved to the first half
of data set. After one process, the number that needs to be compared is half down, and
all of them are stored in the first half of data set. After certain iteration, the lowest one
in data set is the first item .To all blocks and all threads in the blocks this process is
parallel and the number we need to compare is constant, so the parallel reduction has
constant time complexity. Fig.2 (b) shows the improved parallel reduction.

 (a) Parallel reduction (b) improved parallel reduction

Fig. 3. Parallel reduction theory

After M-step, E-step follows. During E-step, in order to minimize the energy func-
tion (3), we copy the warped texture (fi(Xi)) to the texture memory. In E-step we also
use CUDA-based k-coherence search to find {xp}. The number of blocks equals to the

264 Y. Tang et al.

size of Xi+1 and the threads number in each block is equal to the candidate number.
The allocated uchar4 global array cu_CorrectCoord has the same size as that of Xi+1.
Since in E-step the value of {zp} does not change, we copy cu_MatchCoord, pre-
computed similarity set and fi(Xi) to texture memory.

The E-step kernel function executes as follow:

1. Declare an int4 array distance and an uchar2 array kcoh in the shared memory.
Since when calculating the energy, an average value will be accessed by all
threads, a float4 type variable ref_color should be declared in the shared memory.
And another float4 type shared variable ref_color_con is needed as the warped
color. Then according to the similarity set, compute candidate coordinates and
store them in kcoh.

2. According to blockIdx.x and blockIdx.y get the position p2 of the pixel being syn-
thesized. According to p2 the average value ref_color and the constrained color
value ref_color_con is calculated. Then to the current thread we get the corres-
ponding candidate p1.The energy value among p1, ref_color and ref_color_con is
calculated, it is stored in distance.

3. Synchronize all operations above. After that we use the improved parallel reduc-
tion algorithm to search the candidate point with lowest energy. This candidate
point will be stored to corresponding position in cu_CorrectCoord.

At last cu_CorrectCoord is copied back to host.

5 Results

We have implemented our algorithm with the following experimental hardware con-
figuration: CPU: Intel Core™ 2Duo 2.83 GHz, Memory: 2GB, Graphics card: Ge-
Force 8800 GTX. The algorithm is developed in Visual Studio 2008 with CUDA4.0.

In our CUDA implementation, we use successive neighborhood sizes of 16*16 and
8*8 pixels at each frame, and perform 1~2 iterations for each neighborhood.

We follow the method in [15-16] to define several user-specified flow fields.
Similar to the pre-computation in [9], for k-coherence search, the similarity set is

pre-computed for each neighborhood. During pre-processing, an improved CUDA-
based KNN search [17, 21] is used.

Fig.4 presents the results of our TOB flow visualization on CUDA, which shows
that our technique is able to achieve high quality flow visualization by keeping con-
sistency and similarity.

From Table 3, we can see that our method is almost 200+ faster than the original
method and 10 times faster than the discrete solver [9]. We utilize the powerful paral-
lel computation capacity of GPU under CUDA to implement the accelerated E-step
and M-step, which makes the execution time of TOB flow visualization reduce one
order of magnitude compared with previous methods.

 Fast Flow Visualization on CUDA Based on Texture Optimization 265

Table 3. Synthesis Time for Different Synthesis Schemes

 Flow-guided synthesis (2562—>2562) (each frame)
Original texture optimization[3] 20~60s
Discrete texture optimization[9] >1.2s
Texture optimization-base flow 180ms~200ms
visualization on CUDA

(a) (b) (c) (d) (e)

Fig. 4. The results of flow visualization. Pictures of column (a) are flow fields. For the first row
column (b) gives frame1, and column (c) is frame 20. (d) is frame 1 and (e) is frame 20. The
second row is similar to first. At the last row, from (b) to (e) are frame 1, frame 10, frame 50
and frame 100, respectively.

6 Conclusion

We adopt the k-coherence parallel algorithm to the CUDA-based algorithm, which
greatly accelerates the Correction step. Experimental results show that our CUDA-
based flow visualization algorithm can not only achieve the similarity and consistency
goals but also produce texture sequence at high speed.

In our future work, we will continue to study CUDA parallel techniques, and fur-
ther explore how to use the general texture to achieve efficient flow visualization
which can vividly simulate the feature details of the flow and has a higher speed.

266 Y. Tang et al.

Acknowledgements. This work is supported by National Natural Science Foundation of
China (61173097, 61003265), Zhejiang Natural Science Foundation of China (Z1090459),
Zhejiang Science and Technology Planning Project of China (No. 2010C33046), and Tsing-
hua–Tencent Joint Laboratory for Internet Innovation Technology.

References

1. Falk, M., Weiskopf, D.: Output-Sensitive 3D Line Integral Convolution. IEEE Transac-
tions on Visualization and Computer Graphics, 820–834 (2008)

2. Falk, M., Seizinger, A., Sadlo, F., Uffinger, M., Weiskopf, D.: Trajectory-Augmented Vi-
sualization of Lagrangian Coherent Structures in Unsteady Flow. In: 14th International
Symposium on Flow Visualization (2010)

3. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture Optimization for example-based syn-
thesis. ACM Transactions on Graphic 24(3), 795–802 (2005)

4. Wei, L.Y., Lefebvre, S., Kwatra, V., Turk, G.: State of art in example-based texture syn-
thesis. In: Eurographics 2009, State of the Art Report, EG Association (2009)

5. Cabral, B., Leedoml, C.: Imaging vector fields using line integral convolution. In: Pro-
ceedings of ACM SIGGRAPH 1993, p. 263. ACM, New York (1993)

6. VanWijk, J.J.: Imagebased flow visualization. ACM Transactions on Graphics 21(3), 7
(2002)

7. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S.,
Fedkiw, R.: Directable photorealistic liquids. In: 2004 ACM SIGGRAPH. Eurographics
Symposium on Computer Animation, pp. 193–202 (2004)

8. Lefebvre, S., Hoppe, H.: Parallel controllable texture synthesis. ACM Transactions on
Graphic 24(3), 777–786 (2005)

9. Han, J., Zhou, K., Wei, L., Gong, M., Bao, H., Zhang, X., Guo, B.: Fast example-based
surface texture synthesis via discrete optimization. The Visual Computer 22(9), 918–925
(2006)

10. Zhang, J., Zhou, K., Velho, L., Guo, B., Shum, B.Y.: Synthesis of progressively-variant
textures on arbitrary surfaces. ACM Transactions on Graphics 22(3), 295–302 (2003)

11. Taponecco, F.: Steerable texturesynthesis. In: Proceedings of Eurographics, pp. 57–60
(2004)

12. Lefebvre, S., Hoppe, H.: Appearance-space texture synthesis. ACM Transactions on
Graphics 25(3), 541–548 (2006)

13. Yu, Q., Neyret, F., Bruneton, E., Holzschuch, N.: Scalable real-time animation of rivers.
Computer Graphics Forum (Proceedings of Eurographics 2009) 28(2) (March 2009)

14. CUDA Programming Guide ver. 1.0, NVIDIA (2007)
15. Zhang, E., Mischaikow, K., Turk, G.: Vector field design on surfaces. Tech. Rep. 04-16,

Gerogia Institute of Technology (2004)
16. Chen, G., Kwatra, V., Wei, L.Y., Hansen, C.D., Zhang, E.: Design of 2D Time-Varying

Vector Fields. IEEE Transactions on Visualization and Computer Graphics (2011)
17. Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using GPU. In: IEEE

Computer Society Conference on Computer Vision and Pattern Recognition Workshops,
pp. 1–6 (2008)

18. Huang, H., Tong, X., Wang, W.: Accelerated parallel texture optimization. Journals of
Computer Science and Technology 22(5), 761–769 (2007)

19. CUDA C Best Practices Guide v4.0, Navidia (2011)

 Fast Flow Visualization on CUDA Based on Texture Optimization 267

20. Laramee, R.S., Hauser, H., Doleisch, H., Vrolijk, B., Post, F.H., Weiskopf, D.: The State
of the Art in Flow Visualization: Dense and Texture-Based Techniques. Proc. Computer
Graphics Forum 23(2), 203–221 (2004)

21. Tang, Y., Shi, X., Xiao, T., Fan, J.: An improved image analogy method based on adaptive
CUDA-accelerated neighborhood matching framework. Vis. Comput. 28, 743–753 (2012)

22. Van Wijk, J.J.: Spot noise-Texture Synthesis for Data Visualization. Computer Graphics
(Proceedings of ACM SIGGRAPH 1991) 25, 309–318 (1991)

23. Fisher, M., Schroder, P., Desbrun, M., Hoppe, H.: Design of tangent vector fields. ACM
Transactions on Graphics 26(3), 56:1–56:9 (2007)

	Fast Flow Visualization on CUDA Based on Texture Optimization
	Introduction
	Related Work
	Texture Optimization-Based Flow Visualization
	Warp Step
	Correction Step
	Flow Visualization

	Fast TOB Flow Visualization on CUDA
	Correction Step

	Results
	Conclusion
	References

