

R. Huang et al. (Eds.): AMT 2012, LNCS 7669, pp. 155–164, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Event Calculus-Based Adaptive Services Composition
Policy for AmI Systems

Huibing Zhang1,2, Jingwei Zhang1,2,*, Ya Zhou2, and Junyan Qian1

1 Guangxi KeyLaboratory of Trusted Software, Guilin University of Electronic Technology,
Guilin, Guangxi, China

2 Research Center on Data Science and Social Computing,
Guilin University of Electronic Technology, Guilin, Guangxi, China
zhanghuibing@guet.edu.cn, gtzjw@hotmail.com

Abstract. Services composition technology which is used in Ambient Intelli-
gence should have the features of context-aware, partial order and concurrent. It
should adaptive to the dynamic change of user preference and context. To meet
these requirements, the paper puts forward an adaptive dynamic services com-
position framework and its implementation mechanism based on event calculus.
It studies the basic principles and technologies for descripting domain services,
context information and domain rules based on event calculus. On the basis, it
details the composition planning mechanism. At last, a prototype system, intel-
ligence application control, is built to verify the effectiveness and availability of
the services composition policy.

Keywords: services composition, event calculus, context-aware.

1 Introduction

Ambient Intelligence (AmI) is a “user-centered” system which should provide kinds
of services for users adaptively [1]. However, both system resource with feature of
heterogeneous, dynamic and distribution and user requirements with feature of perso-
nalize, so it’s difficult to meet the AmI’s requirements [2]. This problem can be
solved effectively by using the service-oriented computing (SOC) technology. Any
accessible resource in AmI, such as program, sensor, device, can be modeled as Web
service by using SOC, so the device-oriented physical space is transmitted into ser-
vice-oriented information space [3-4]. The user requirement can be meet by composit-
ing some services: according to the dynamic requirement and context, a composite
service is created instance and discomposed it after completing the task [5].

Compare with other services composition application system, AmI is more empha-
sis on context-aware and personalization which should dynamic adjust its behavior to
adaptive the special context and user preferences. At the same time, there are lots of
concurrent operations and event-triggered activities. The system behavior is partial
order in time dimension.So, the services composition framework for AmI should have

* Corresponding author.

156 H. Zhang et al.

the following features: ○1 It should have the good ability of context modeling which
can model the run-time context, preferences and states constraint; ○2 It should have
the good ability of reasoning which can describe states transition and time constraints;
○3 It should have the good ability of converting the Web service(OWL-S) into other
forms which can be used to automatic services composition flexible and efficient. In
order to meet these requirements, the paper puts forward an event calculus-based
context-aware service composition framework and its implementation methods. It
uses event calculus (EC)as formalize logic and adductive logic programming as rea-
soning technology to implement context-aware services composition [6-7].

2 Instruction of Event Calculus and Related Works

First-order predicate logic-based event calculus is suitable for description and analysis
event-based time-varying domain [8-10]. As a programming framework, event calcu-
lus includes ontology, predicates and axioms [11]. The ontology contains events
(actions), fluents and time-points which define the basic concepts, attributes, relation-
ships and constraints. The fluents can represent anything which value or state may
change with time, such as emotion, room temperature, lamp state (open/close), and so
on. The actions can represent any operations which can lead to the change of world
states. It can initiates, terminates or releases the values of fluents. Event calculus pre-
dicates define the ontology properties and its relationships. The 9 predicates and their
meaning are shown in Table 1.

Table 1. Predicates of the Event Calculus

Formula Meaning
Initiates(α, β, τ) Fluent β holds after action α at time τ
Terminates(α, β, τ) Fluent β does not hold after action α at time τ
Releases(α, β, τ) Fluent β is not subject to the common sense law of inertia after

action α at time τ
Initially P(β) Fluent β holds from time 0
Initially N(β) Fluent β does not hold from time 0
Happens(α, τ1, τ2) Action α starts at time τ1 and ends at time τ2

HoldsAt(β, τ) Fluent β holds at time τ

Clipped (τ1, β, τ2) Fluent β is terminated between times τ1 and τ2

Declipped(τ1, β, τ2) Fluent β is initiated between times τ1 and τ2

Shanahan pointed that Partial order planning = event calculus + abduction.Let Γ be
a goal, let Σ be a domain description, letΔ0be an initial situation, and let Ω be the con-
junction of a pair of uniqueness-of-names axioms for theactions and fluents men-
tioned inΣ, and let ψbe a finite conjunction of stateconstraints. A plan for Γ is a
narrativeΔsuch that:

CIRC[Σ; Initiates, Terminates, Releases]∧CIRC[Δ0∧Δ; Happens]∧ψ∧EC∧Ω╞ Γ

A
uxiliary

predicates
B

ase predicates

 Event Calculus-Based Adaptive Services Composition Policy for AmI Systems 157

Event calculus-based services composition planning is an open study domain.
Ozorhan and Okutan introduced event calculus into service composition and imple-
mented 4 types of service composition: Monolithic, Interleaved, Templatebased and
Staged [12-13]. They detailed the methods which can transform Web service
(OWL-S) into event calculus axioms (ECA). The article [14-15] proposed a method
for formal verification of Web service composition by using event calculus. [16]
adopted event calculus and workflow to realized services composition. Ishikawa and
Chen researched the event calculus-based services composition from other aspects
[17-18]. The above mentioned studies achieved good results at Web service modeling
and verification based on event calculus. But, as far as we know, there are no study
focusing on the AmI’s complex context information modeling based on event calculus
and using it in AmI system.

3 EC Based Services Composition Framework for AmI

According to the AmI system’s special demands, the paper proposed a context-aware
dynamic service composition framework based on event calculus. It includes 6 mod-
ules, as shown in Figure 1.

Fig. 1. Event calculus-based context-aware services composition framework

Natural human computer interaction and context-aware processing module imple-
ment intelligent interaction and context fusion. The former provides natural langue
analysis based on conceptual graph. The latter combines context information into user
basic requirement and gets a complete, definite requirement. Figure 2 denotes the
processing of requirement “open TV”. The module, CR to ECA, submits final
requirement to planner.

Fig. 2. Conceptual Graph of user’s requirement

158 H. Zhang et al.

3.1 OWL-S to ECA

All of the resources deployed in AmI system modeled as Web services can be de-
scribed as a 4-tuple:WSFunctional=(Input, Output, Precondition, Effect). Every ser-
vice in service space can be mapped as an event in event space: Service invoking
corresponds to event happens. Service’s input parameters correspond to known para-
meters of event. Service’s precondition corresponds to precondition of event happen.
Service’s output and effect correspond to fluents which are generated by event hap-
pen. The details can be seen inarticles [12-13].

3.2 Context to ECA

Context information is rich and it is the key factor for operating action in AmI system.
Moreover, context is dynamically changing: ○1 All kinds of resource (services)
evolve independently, and they may be unavailable momentarily. A better service
may substitute the old one or new services are published. ○2 As user movies, availa-
ble services are differences. ○3 Sometime-related context information changes with
the time. So it is important to get, model, analyze and use context information in AmI
environment. The paper focuses on the rules of each kind of context and their model-
ing based on event calculus axioms (ECA).

1. Location based service

Location information is an important context and it determines available service.
Firstly, location determines the environment and spatiotemporal. Therefore, the loca-
tion changes often leading to other related context change. Secondly, many services
directly related to location. There are always different services at different locations.
Last, location can influence system’s operating action. For one requirement, the sys-
tem may have different response because of different location. So it needs to update
the context and domain services according to the current location. For example, TV
available in the parlor or computer available in the study can be expressed follows:

axiom(initially(have(TV)),[holds_at(at(parlor),t)]).
axiom(initially(have(computer)), [holds_at(at(study),t)]).

2. Data input

In many case, context can be used as data input. System can transmit the data into
service’s input implicitly and user transparently. So it can effective reduce user in-
puts, improve user experience and reduce mistakes. For example, a user wants to
browse a road map from current location to railway station. He only needs to input the
phrase: view the map to train station. The system gets user’s current location and train
station location automatically, and then takes this information as input data. The con-
text information which acts as input data is converted to known or initial state, and is
added to event calculus domain axioms in form of fact clauses. It can be expressed as:

axiom(initially(at(person，location,)),[]).
axiom(initially(at(trainStation，location)),[]).

 Event Calculus-Based Adaptive Services Composition Policy for AmI Systems 159

3. User preference and intelligent reasoning

The personalized of AmI system is mainly presented as user preference. Here, the
preference refers to anticipatory affect or behavior disposition under special scenario.
So it has significant individual difference and closely related to context. In order to
meet user’s special preference, AmI system dynamically adjusts its behaviors accord-
ing to sensed context. Therefore, user preference is a key factor for intelligent reason-
ing which influences operating action. In event calculus based service planning, user
preference can be acted as parameters or precondition of action. For example, a user
like TV sports news after going home. It can be expressed as:

axiom(initially(known(channnelsportsNews),
[holds_at(at(parlor),t),holds_at(time(cur_time),t)]).
axiom(initially(known(channnel cartoon),
holds_at(at(parlor),t),holds_at(time(cur_time),t)]).
axiom(initiates(e_Open(Device,TVID,sportsNewts),
On(TVID,sportsNews),t),[holds_at(at(parlor),t),holds_at(time(cur_time),t),holds_at(known
(channnelsportsNews),t),
holds_at(known(channelcartoon),t),holds_at(neg(others(son)),t)]).

At last, user preference also can be acted as implicit requirement which expects some
objects in a certain states. The implicit and explicit requirement consist a complete
task requirement.

4. Trigger events

Some context can trigger related events which make AmI system adapt to environ-
ment. For instance, temperature or humidity can trigger events (actions) of air-
conditioning in AmI space: While the temperature exceeded high_temperature, the
air-conditioning opens refrigeration. While the humidity exceeded high_humidity, the
air-conditioning opens dehumidification. It can be expressed as follows:

axiom(initiates(turnOnCool(x),CoolOn(x),t),
[holds_at(temperature(cur_temperature),t)，holds_at(higher
(current_temperature,high_temperature))，holds_at(neg(CoolOn(x)),t)]).

axiom(initiates(turnOnDehumidification (x),
DehumidificationOn(x),t),[holds_at(humidity
 (cur_high_humidity),t)，holds_at(higher(cur_high_humidity ,

high_humidity)),holds_at(neg(Dehumidification (x)),t)]).

5. State constraints

State constraints are a kind of constraints relationship that similar to rules of object’s
fluents in domain. It reflects the mutual restriction among fluents during system run-
ning. In event calculus, state constraints are expressed as predicates holds_at and
¬holds_at. For instance, people will feel comfortable while the temperature and hu-
midity maintained at a value. It can be expressed as follows:

axiom(holds_at(Comfortable,t),[holds_at(temperatureValue,t),holds_at(humidityValue,t)])

160 H. Zhang et al.

6. Precondition

Only meet all preconditions, the service can run and get right results. Context can
provide some preconditions. In event calculus, it uses holds_at to express precondi-
tions. For instance, TV should close if there is no human around it. It can be ex-
pressed as follow:

axiom(initiates(turnOff(TV),Off(TV),t), [holds_at(neg(at(personID,person_location)),t)]).

3.3 Abductive EC Planning

As practical execution module of service planning, abductive EC planner uses Prolog
as its logic programming platform1, event calculus and abductive theory prover (ATP)
as its reasoning logic. It can deal with kinds of special requirement, such as concur-
rent, trigger, partial-order, continuous variation and so on, in AmI. Event calculus
based service composition planning can be expressed as 4-tuple (SEA, ECA, ConA,
Q), where SEA is domain event calculus axioms which are converted from domain
services. SEA is used to describe domain state altering or information transformation.
ECA is domain independent axioms. It is the core of event calculus meta interpreter.
ConA is domain axioms which get from context. It acts as initial states or state con-
strains. Q is target states which contain some query clauses and represent user re-
quirement.

SEA, ECA and ConAconstitute the event calculus based logic reasoning knowledge
baseK. Each clause in Krepresents an action, fact or rule. UsingQ as the starting point
of reasoning, it can get an event sequence or fail to exit by match, resolution, back-
tracking. The event sequence represents a service composition planning.

4 Experiments and Analysis

We apply the event calculus based service planning to our test-bed AmI-Space [1] and
use intelligence application control (IAC) to test availability of the service planning.
The physical deployment of IAC is shown in figure 3. Ten services are used in IAC:

TurnOnTV(TVID, TVOff,TVOn); TurnOffTV(TVID, TVOn, TVOff);ChannelSelection((TVID, Channel), TVOn, Play on the

selection channel); TurnOnLight(LightID, LightOff, LightOn); TurnOffLight(LightID, LightOn, LightOff); TurnOnAircondi-

tion(AirconditionID, AirConditonOff, AirConditoinOn); TemperatureSet((AirconditionID, Temperature, CurrentTemperature),

,AirConditionOn, AirConditoin On temperature);TurnOffAircondition(AirconditionID, AirConditonOn, AirConditinOff); Open-

Curtain(CurtainID, CurtainClose, CurtainOpen); CloseCurtain(CurtainID, ,CurtainOpen, CurtainClose).

4.1 Scenario and Experiments

Event calculus based service composition planning in IAC can be illustrated by fol-
lowing scenario.

1 http://www.swi-prolog.org

 Event Calculus-Based Adaptive Services Composition Policy for AmI Systems 161

Fig. 3. Architecture of IAC

When comes home, Kevin sits on the sofa and lightly speaks out “open TV” by using his
smart phone. Then TV opens automatically and selects the sports news. Curtain closes lightly
and gentle light illuminate the parlor. The gentle breeze blows out from air-conditioning. …

The working process of this scenario as follows:
At the services planning side, it needs to convert domain services into domain

axioms, as shown in Figure 4. All of the domain event calculus axioms, domain facts
and rules composea complete domain axiom.

axiom(initiates(channelselection(Tvid,Channel),tvplay(Tvid,
Channel),T),[holds_at(tvon(Tvid),T)]).
axiom(initiates(turnontv(Tvid), tvon(Tvid), T), [holds_at(tvoff(Tvid),T)]).
axiom(initiates(turnofftv(Tvid),tvoff(Tvid),T), [holds_at(tvon(Tvid),T)]).
axiom(initiates(turnonlight(Lightid),lighton(Lightid),T),[holds_at(lightoff(Lightid),T)]).
axiom(initiates(turnofflight(Lightid),lightoff(Lightid),T),[holds_at(lighton(Lightid),T)]).
axiom(initiates(turnonaircondition(Airconditionid),
airconditionon(Airconditionid),T),[holds_at(airconditionoff(Airconditionid),T)]).
axiom(initiates(temperatureset(Airconditionid,Preferencetemperature),
temperature(Airconditionid,Preferencetemperature, Currenttemperature),T),
holds_at(airconditionon(Airconditionid),T),
diff(Preferencetemperature,Currenttemperature)]).
axiom(initiates(closecurtain(Curtainid),curtainclose
(Curtainid),T),[holds_at(curtainopen(Curtainid),T)]).
axiom(initiates(opencurtain(Curtainid),curtainopen
(Curtainid),T),[holds_at(curtainclose(Curtainid),T)]).
axiom(initiates(turnoffaircondition(Airconditionid),
airconditinoff(Airconditionid),T),[holds_at(airconditonon(Airconditionid),T)]).

Fig. 4. Services described by event calculus

At services requester side:

1. When Kevin enters AmI-Space, the system can get complete context information,
such as time, location, preference, and so on. All these information are transmitted
to the AmI-Box for modeling, analysis and storage by AmI-Adaptor.

162 H. Zhang et al.

2. Some of context information, for example TV or lamp’s state and its attribute value
are expressed as initial states or state constraints. The following event calculus
axioms represent this information.
axiom(initially(curtainopen(Curtainid)),[]).
axiom(initially(tvoff(Tvid)),[]).
axiom(initially(lightoff(Lightid)),[]).
axiom(initially(airconditionoff(Airconditionid)),[]).

3. User speaks out his request “watch TV”, then speech- to- text system converts the
voice to text and sends to the CGGenerator in AmI-Box.

4. CGGenerator converts the user requirement to conceptual graph, and then gene-
rates a complete service request conceptual graph by using domain ontology and
context information, as shown in figure 2.

5. Convert the conceptual graph based service request to event calculus query clause
which is submitted to service planner. The figure 2.b is expressed as :
?-abdemo([holds_at(tvplay(01,sportsnews),t)],R).

6. In the AmI environment, preferences contain user’s requirements which are the
expected target states. So some preference information should be expressed as
query of event calculus.
?-abdemo([holds_at(curtainclose(02),t),holds_at(temperature(04,22,29),t),
holds_at(lighton(03),t)],R).

7. Combining query of step 5) and step 6), we can get a complete service request
query which are submitted to planner. When planner receives the query, it returns
an event sequences. Each event corresponds to a service. The system will reach at
target state after executing each service according to the time sequence ordered in
event sequence.

4.2 Results and Analysis

The planner returns a partial-order event sequences after it receives the query.
Figure 5 shows the query and its planning results.

Query:?-abdemo([holds_at(tvplay(01,sportsnews),t),holds_at(curtainclose(02),t),

holds_at(temperature(04,22,29),t), holds_at(lighton(03),t)],R).
Planning Results:
R=[[happens(turnonlight(lightid),t6,t6), happens(turnonaircondition(airconditionid), t5, t5),
happens(temperatureset(airconditionid, preferencetemperature),t4,t4),
happens(closecurtain(curtainid),t3,t3),happens(turnontv(tvid),t2,t2),
happens(channelselection(tvid, channel), t1, t1)], [before(t6, t), before(t5, t4),
before(t4, t), before(t3, t), before(t2, t1), before(t1, t)]] .

Fig. 5. Query and planning results

The planning results include 6 atomic services. The time sequence among these
services is shown in Figure 6. It has 4 concurrent processes: process P2 and P3 are
both single atomic services. Process P1 and P4 are both include two atomic services

 Event Calculus-Based Adaptive Services Composition Policy for AmI Systems 163

Fig. 6. Services composition corresponding to the planning results

which are sequence structure. From the planning results and its planning procedure
we can see that event-based service composition planning method can meet AmI’s
demands:○1 It suitable for three control logic: concurrent, sequence and partial-order.
○2 It suitable both event logic based and state constraints services composition. Many
input/output match based services composition algorithms can only suitable for in-
formation transmit service composition. But there are many states altering in AmI
environment, the services often only have effects instead of output. Hence, it needs
the event logic based services composition. ○3 Services composition procedure can
naturally reflect user preferences and context constraints.

5 Conclusions

In this paper, we put forward a context-aware automatic service composition frame-
work based on event calculus. It can improve the intelligence of the AmI system and
reduce the complexity for AmI developers. And by using event calculus, the services
composition mechanism can meet concurrent, partial-order, event state logic. Event
calculus based context modeling technology can provide context-aware adaptive ser-
vices composition. At last, it shows that the planning technology is available and ef-
fective by the IAC system. In the future, we will focus on the mechanism of domain
axiom automatic generating technology. Another question is time efficiency of event
calculus based reasoning.

Acknowledgments. The authors would like to thank the Foundation of Guangxi Key
Laboratory of Trusted Software (kx201214, kx201203, kx201114),Nature Science
Foundation of Guangxi (No. 2012GXNSFBA053171), National Nature Science
Foundation of China (No.61063002,No.61063038),and the Education Department of
Guangxi (No. 201010LX154)for their support incurrent research.

References

1. Chen, R., Hou, Y., Huang, Z., He, J.: Modeling the ambient intelligence application sys-
tem: concept, software, data, and network. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part C: Applications and Reviews 39(3), 299–314 (2009)

164 H. Zhang et al.

2. Lindenberg, J., Pasman, W., Kranenborg, K., et al.: Improving service matching and selec-
tion inubiquitous computing environments: a user study. Personal Ubiquitous Compu-
ting 11(1), 59–68 (2006)

3. Benazzouz, Y., Sabouret, N., Chikhaoui, B.: Dynamic Service Composition in Ambient In-
telligence Environment. In: 2009 IEEE International Conference on Services Computing,
pp. 411–418 (2009)

4. Martin, D., Burstein, M., et al.: OWL-S: Semantic Markup for Web Services (2010),
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.5.10

5. Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing web services on the semantic
web. The VLDB Journal 12(4), 333–351 (2003)

6. Shanahan, M.: An abductive event calculus planner. The Journal of Logic Program-
ming 44, 207–239 (2000)

7. Shanahan, M.: The Event Calculus Explained (June 10, 2011),
http://www.doc.ic.ac.uk/~mpsha/ECExplained.pdf

8. Kowalski, R.A., Sergot, M.J.: A Logic-Based Calculus of Events. New Generation Com-
puting 4, 67–95 (1986)

9. Shanahan, M.P.: Solving the Frame Problem: A Mathematical Investigation of the Com-
mon Sense Law of Inertia. MIT Press (1997)

10. Barros, L.N.D., Santos, P.E.: The nature of knowledge in an abductive event calculus
planner. In: Proceedings of the 12th European Workshop on Knowledge Acquisition,
Modeling and Management, pp. 328–343. Springer, London (2000)

11. Shanahan, M.: The Event Calculus Explained. In: Veloso, M.M., Wooldridge, M.J. (eds.)
Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer, Heidelberg
(1999)

12. Okutan, C., Cicekli, N.K.: A monolithic approach to automated composition of semantic
web services with the Event Calculus. Knowledge-Based Systems 23, 440–454 (2010)

13. Ozorhan, E.K., Kuban, E.K., Cicekli, N.K.: Automated composition of web services with
the abductive event calculus. Information Sciences 180(19), 3589–3613 (2010)

14. Rouached, M., Perrin, O., Godart, C.: Towards Formal Verification of Web Service Com-
position. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102,
pp. 257–273. Springer, Heidelberg (2006)

15. Rouached, M., Godart, C.: An event based model for web service coordination. In: Second
International Conference on Web Information Systems and Technologies, pp. 81–88
(2006)

16. Aydın, O., Cicekli, N.K., Cicekli, I.: Automated Web Services Composition with the Event
Calculus. In: Artikis, A., O’Hare, G.M.P., Stathis, K., Vouros, G. (eds.) ESAW 2007.
LNCS (LNAI), vol. 4995, pp. 142–157. Springer, Heidelberg (2008)

17. Ishikawa, F., Yoshioka, N., Honiden, S.: Developing consistent contractual policies in ser-
vice composition. In: Proceedings of the Second IEEE Asia-Pacific Service Computing
Conference, pp. 527–534 (2007)

18. Chen, L., Yang, X.: Applying AI planning to semantic web services for workflow genera-
tion. In: The First International Conference on Semantics, Knowledge and Grid, pp. 323–
325 (2005)

	Event Calculus-Based Adaptive Services Composition Policy for AmI Systems
	Introduction
	Instruction of Event Calculus and Related Works
	EC Based Services Composition Framework for AmI
	OWL-S to ECA
	Context to ECA
	Abductive EC Planning

	Experiments and Analysis
	Scenario and Experiments
	Results and Analysis

	Conclusions
	References

