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Abstract. In this paper we introduce a general model framework based
on Self Organizing Maps (SOMs) to explore the behavior of populations
mortality rates and life expectancy. In particular, we show how to em-
ploy SOM clustering capabilities to construct coherent mortality rates,
i.e. mortality rates that can be applied unchanged to a wide range of
countries. To such purpose, we will employ various countries mortality
data downloaded from the Human Mortality Database. Our aim is two–
fold. On the one hand, we are going to prove that a data mining approach
can be meaningful to build mortality forecasts in a way which is less pre-
tending (in terms of both computing time and parameters to estimate)
than traditional techniques. This issue is very important, provided that
mortality forecasts are widely employed to develop insurance products.
On the other hand, we will show that SOM clustering can be very effec-
tive to extract similar mortality patterns from apparently very different
countries, thus highlighting non–linear hidden features that are missing
for more standard techniques.

Keywords: Longevity risk, Self Organizing Maps, Clustering, Mortality
forecasting.

1 Background

Mortality forecasting is an important topic, as it may considered the basis of
social and economic planning, and fundamental to many other forecasting exer-
cises as well. In particular, in this paper we are concerned with the link existing
between mortality trends and insurance contracts, namely those contracts pro-
viding individuals with annuities, pensions and other benefits paid during their
lifetime (the so–called living benefits).

The main issue is of financial (and balancing) nature: on the one hand, paying
benefits implies that insurance companies must have a proper reserve, i.e. a fund
from which money can be retrieved; on the other hand, pensions and annuities are
usually paid depending on proper amounts of money (premium) the individuals
have conveyed throughout their active (i.e.: at work) life. The balance between
such different amounts of money is guaranteed if and only if the behavior of
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mortality rates is correctly estimated. However, since mortality rates in many
countries are persistently decreasing, the systematic misunderstanding of such
behavior could lead to serious financial consequences in the longer term, as far
as their premiums and reserves are concerned. This focus has led to identify
longevity risk [9] as a new type of risk affecting the management of annuity and
pensions portfolios.

Provided the importance of the issue, a number of methodologies have been
proposed to model (and forecast) the dynamics of mortality rates, although it
aids to remember that choosing of methodology is not without controversy, since
it can lead to very marked difference in forecasts [7], [8]. Actually more popular
models are trend–based, and they can be viewed as belonging to the research
vein pionereed by the Lee–Carter model –LCM–[4], we will explain in detail in
Section 2. In a nutshell, LCM assumes to represent mortality rates as functions
of age x and time t, identifying a single time index which summarises past trends,
which affects mortality at time t at all ages simultaneously, and which can be
modelled with a view to extrapolation. Over the past decades several weaknesses
of LCM have been highlighted, and various modification of the original model
have been suggested (see among others: [3], [1], [6]).

Despite of the wide literary corpus, however, the techniques actually in use are
of heavily statistical type, and soft computing approaches are rather unexplored.
With this is mind, we are going to introduce a general model framework based
on Self Organizing Maps (SOMs) [2], to explore the behavior of populations
mortality rates. In particular, we will focus on so–called coherent models, and
we will explore mortality data of various countries (downloaded from the Human
Mortality Database–HMD) in search of similar mortality experiences. In this way
we will be able to show how to employ SOM clustering capabilities to construct
coherent mortality rates, i.e. mortality rates that can be applied unchanged to
a wide range of countries. Our aim is two–fold. On the one hand, we are going
to prove that a data mining approach can be meaningful to build mortality
forecasts in a way which is less pretending (in terms of both computing time
and parameters to estimate) than traditional techniques. On the other hand, we
will show that SOM clustering can be very effective to extract similar mortality
patterns from apparently very different countries, thus highlighting non–linear
hidden features that are missing for more standard techniques.

The structure of the paper is therefore as follows. In Section 2 we will introduce
definitions and notational conventions related to the notion of mortality trend, to
move then to the description of the Lee-Carter model. Section 3 will be devoted
to the presentation of our simulations and to the discussion of related results.
Section 4 will conclude.

2 Mortality Trends and Related Issues

2.1 Understanding Actuarial Notations

Modelling the dynamics of mortality rates over time implies to understand the
data we are dealing with. Assume the random variableDx,t to denote the number
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of deaths in a population at age x and time t. Corresponding realizations are
generally denoted by dx,t, and represent the observed number of deaths, while
ex,t generally refers to the matching exposure (in person-years) to the risk of
death. The probability of death at age x for a given time t is then given by:
qx,t =

dx,t

dx−1,t
. Finally, empirical mortality rates are given by: mx,t =

dx,t

ex,t
whose

stochastic counterpart is the hazard rate (or force of mortality) for age x and
time t: μx,t. In order to provide a cross classification, one can fix a calendar year
t in the range [t1, tn], and an age x in the interval [x1, xk], either grouped into k
ordered categories, or by individual year (range k). The main issue an actuary
must face is how to model μx,t for every t ∈ [t1, tn] and x ∈ [x1, xk].

2.2 The Lee–Carter Model

As said in Section 1, Lee and Carter [4] suggested a framework to model the
force of mortality μx,t for age x and time t:

lnμx,t = αx + βx κt + εx,t, (1)

subject to the constraints:

tn∑

t=t1

κt = 0, and:

xk∑

x=x1

βx = 1 (2)

Here αx is a fixed parameter exploiting the age profile; by Eqs.(1)–(2) it is
possible to prove [4] that the least squares estimator of αx is given by:

α̂x = ln

tn∏

t=t1

μ
1/h
x,t , h = tn − t1 + 1. (3)

In this way αx expresses the fixed general shape of the logarithmic transforma-
tion of the age–specific mortality rates. For what it concerns remaining parame-
ters, κt describes the underlying time trend, while (constant) βx is the sensitivity
of lnμx,t at age x to the time trend represented by κt. Finally, εx,t renders age
and time specific effects not captured by the model, and it is assumed to be an
independent, identically distributed random variable.

In order to fit the model, [4] proposed a three–steps procedure detailed on
following.

Step 1. Estimate αx as from Eq.(3) above.
Step 2. Compute the matrix of statistics [Zx,t] = [lnmx,t − α̂x,t] and then

estimate κt and βx as, respectively, first right and first left singular vectors in
the Singular Value Decomposition (SVD) [10] of the matrix [Zx,t] subject to the
above constraints.

Step 3. Adjust the estimated κt such that, for each t:

xk∑

x=x1

dx,t =

xk∑

x=x1

ex,texp
(
α̂x + β̂xκ̂t

)
, for all t (4)
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By running the procedure one can get proper estimates for μx,t, and hence it
will be able to derive any other related actuarial variable.

3 Simulation and Results

3.1 Experimental Settings

We build a framework aimed to develop coherent mortality forecasts. This choice
may be easily justified: over the past two decades the populations of the world
have become more closely linked by communication, transportation, trade, tech-
nology, and disease [5]. It is then reasonable and perfectly straightforward to
forecast mortality for a pool of countries (and hence populations), taking advan-
tage of commonalities in their historical experience and age patterns. Obviously
populations that are sufficiently similar to be grouped together might have some-
what different mortality histories; however, such past differences should not lead
to continuing long-run divergence in the future.

With this in mind we employed data extracted from the Human Mortality
Database (HMD)1, that contains original calculations of death rates and life
tables for national populations (countries or areas), as well as the input data
(death counts from vital statistics, census counts, birth counts, and population
estimates from various sources) used in constructing those tables. Six data types
are available from the HMD: births, deaths, population size (annual estimates),
exposure to risk of death, death rates, and life tables. At present the database
contains detailed data for 37 countries: Table 1 lists the countries as well as the
acronym we employed to refer to them in our simulations.

Table 1. Countries included in theHumanMortalityDatabase and related abbreviations

Country & ID Country & ID Country & ID

Australia (AUS) Germany (GER) Norway (NOR)
Austria (AUT) Hungary (HUN) Poland (POL)
Belarus (BIE) Iceland (ICE) Portugal (POR)
Belgium (BEL) Ireland (EIRE) Russia (RUS)
Bulgaria (BUL) Israel (ISR) Slovakia (SLK)
Canada (CAN) Italy (ITA) Slovenia (SLO)
Chile (CHI) Japan (JAP) Spain (SP)
Czech Rep. (CR) Latvia (LAT) Sweden (SWE)
Denmark (DEN) Lithuania (LIT) Switzerland (SWI)
Estonia (EST) Luxembourg (LUX) Taiwan (TW)
Finland (FIN) Netherlands (NL) United Kingdom (UK)
France (FRA) New Zealand (NZ) U.S.A. (USA)

Ukraine (UKR)

1 http:\www.mortality.org

http:\www.mortality.org
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In our simulations we employed life tables: we can think to them as matrices
whose components are time (t), age (x), observed number of deaths (dx,t), expo-
sure to risk of death (ex,t), probability of death (qx,t), and empirical mortality
rates (mx,t): while generally it is x ∈ [0, 110], since all ages from birth (x = 0)
to extremal age (i.e. the highest age at which someone in the population is still
living, e.g.: x = 110) are represented, t depends on the year from which the
country’s demographic bureau began to collect data. In the case of Sweden, for
instance, data began to be collected since 1751, so that the available life table
has more than 28, 000 entries (obtained as 111 × 258, i.e. 111 years for each
collection time t = 1751, . . . , 2009). Moving to Russia and Ukraine, on the other
hand, the dataset is sensitively smaller (approximately 6, 000 rows), because data
began to be collected after 1953. In order to make meaningful comparisons, we
use as starting time t = 1960, thus having for each country an input matrix of
5439 rows. Moreover, although it is possibile to access and examine separated
life tables for both male and female populations, we considered global life tables,
giving statistics for the population as whole.

We then implemented a three steps procedure running as follows.

Step 1. For each country’s lifetable we run a separate SOM, with rectangular
topology, initialization at random, and logarithmic transformation of all input
variables (with the exception of time and age that have been used to label the
data and hence have not been processed).

Step 2. We then examined the similarity among maps obtained in the previ-
ous step, thus getting a 37× 37 symmetric scores table SCT , whose generic i, j
entry represents the degree of similarity between the i–th and j–th map. Using
SCT values we were then able to group countries hence defining the number of
populations sharing common mortality features.

Step 3. For each group defined in Step 2. we have then built mortality fore-
casts, according to formulas already provided in Eqs. (1)–(4).

3.2 Discussion

As said in previous rows, SOMs operate in two stages over three of the im-
plemented procedure. For what is concerning Step 1., Figure 1, representing
Australian life tables, offers some insights about the kind of information SOMs
can provide.

From left to right, the first picture in Figure 1 represents age–time clusters
for the Australian population in the period: 1960–2009. Note that five cluster
emerged: data were at least equally distributed among them. Independently from
the reference time t, Cluster 1 (CL01) collects data for population aged in the
interval [75−97], Cluster 2 (CL02) gathers individuals whose age is in the range
[98, 111], Cluster 3 (CL03) refers to ages x ∈ [31, 60], Cluster 4 (CL04) to ages
x ∈ [0, 30], and Cluster 5 (CL05) considers x ∈ [61, 74]. Moving to the sec-
ond picture, it offers a view into the map organization by time, that is how life
tables data referring to different years are spread on the SOM: various gray tones
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(a) (b)

Fig. 1. From left to right: age–time clusters, and map organization by time in a sample
country (AUS). Various gray tones represent different years.

(from white to black) represent different years (in the interval 1960–2009), so
that one can easily view that latest years statistics are mainly concentrated on
the left hand side of the map, years around later 20th century and earlier 21th
century are essentially represented in the internal part of the SOM, while in the
center of the map we find data referring to initial years of the sample.

In the second step, we turn to evaluate the similarity among the various maps.
This was done by looking at the following factors: (i) number of clusters; (ii)
representativeness of each cluster; (iii) ages collected in each cluster. In this way
we were able to find out six homogeneous groups (given in Table 2), for which it
is then possible to move to Step 3, and hence to coherent mortality forecastings.

Table 2. Groups identified by SOM for coherent mortality forecasts. The underlined
country is the group central country.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

AUS DEN BIE AUT CHI CR
CAN FIN BUL BEL ICE HUN
EIRE NOR EST FRA ISR POL
NZ SWE LAT GER POR RUS
UK LIT ITA TW SLO
USA UKR JAP SLK

LUX
NL
SP
SWI

The groups evidence strong coherence among anglo–saxon countries (Group
1), Northern Europe countries (Group 2), Baltic countries (Group 3), (mainly)
Western Europe countries (Group 4) and Eastern Europe countries (Group 6).
Group 5 appears of residual nature. In order to stress the difference among



A Model for Mortality Forecasting Based on Self Organizing Maps 341

(a) (b) (c)

(d) (e) (f)

Fig. 2. From top to bottom and from left to right: SOM organization corresponding
to Groups 1 to 6 central countries identified by our procedure. In the top row, moving
in clockwise sense, the picture labelled by (a) is associated to Group 1 central country
SOM, the picture labelled by (b) corresponds to Group 2 central country SOM, and
so on. In the second row, once again in clockwise sense, the picture labelled by (d) is
associated to Group 4 central country SOM, and son on up to the picture labelled by
(f) which represents Group 6 central country SOM.

countries in the groups, Figure 2 shows the SOM appearance for the central
country of each group.

Using data from central countries, we then performed the final stage of our
procedure, i.e. mortality forecasting. The main gain deriving from our technique
is primarily in the fact that instead of needing to provide different estimations
for 37 countries, we are now asked to give six estimations, at each age x, and
for every time t in a proper time range. This means obviously a gain in terms of
both time and computational efforts.

Figure 3 shows thirty-year life expectancy forecasts (ex,t) obtained in the final
stage of our procedure for each group central country.

4 Final Remarks

In this paper we introduced a SOM–based framework to model and forecast
mortality rates dynamics.

The importance of the topic is related to the emergence of longevity risk, as
a new type of risk affecting the management of annuity and pensions portfolios,
due to misundertandings in the behaviour of mortality.
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Fig. 3. Coherent life expectancy forecasts for each group central country

The main issue faced by existing methods relies in the fact that in order
to provide forecasts at a given time t in future and every age x ∈ [0, 110],
they need a very big amount of information going back in time as much as
possible. Moreover, according to the traditional approach, each country must be
considered as a unique experience, so that generally forecasts for a population
cannot be tout–court applied to people in a different geographical area.

Our contribution moves in the research vein of coherent mortality forecasts,
assuming that if countries share proper common features (e.g. geographic, politic
or economic ones) then they are coherent and hence they can also share mortal-
ity statistics and forecasts. We then introduced a three–stages procedure which
offers a way to create coherent groups. SOM operate in two of three steps, since
in the first phase they are employed to get a representation of countries lifeta-
bles, while in the second step the clusters originated by SOMs (in particular:
their number, as well as their stastistical representativeness) are used to build
coherent groups. Data of central country groups are then employed to provide
mortality forecasts.

We tested our approach on 37 countries dataset, as resulting from the Human
Mortality Database (HMD). The procedure lets us to identify six meaningful
groups, whose composition seems to mirror mainly geopolitic differences: we
have groups gathering Anglo–Saxon countries (Group 1), Northern and Eastern
Europe countries respectively (Groups 2 and 6), Baltic countries (Group 3),
and Western Europe lands (Group 4). Group 5, on the other hand, appears of
residual nature, collecting areas with apparently no immediate connections.

The results we have obtained prove the effectiveness of a data mining approach
to build mortality forecasts. Besides in this way the estimation procedure is less
pretending (in terms of both computing time and parameters to estimate) than
traditional techniques. This issue is very important, provided that mortality
forecasts are widely employed to develop insurance products. Finally we have
shown that SOM clustering can be effective to extract similar mortality patterns
from apparently very different countries, thus highlighting non–linear hidden
features that are missing for more standard techniques.
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