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Abstract. Supervised and unsupervised prototype based vector quanti-
zation frequently are proceeded in the Euclidean space. In the last years,
also non-standard metrics became popular. For classification by support
vector machines, Hilbert space representations are very successful based
on so-called kernel metrics. In this paper we give the mathematical jus-
tification that gradient based learning in prototype-based vector quan-
tization is possible by means of kernel metrics instead of the standard
Euclidean distance. We will show that an appropriate handling requires
differentiable universal kernels defining the kernel metric. This allows
a prototype adaptation in the original data space but equipped with a
metric determined by the kernel. This approach avoids the Hilbert space
representation as known for support vector machines. Moreover, we give
prominent examples for differentiable universal kernels based on infor-
mation theoretic concepts and show exemplary applications.

1 Introduction

Prototype based vector quantization is an ongoing topic of research with ap-
plications in unsupervised and supervised data modeling. Famous unsupervised
models applied in data clustering or visualization are the self-organizing map
(SOM,[21]), neural gas (NG, [26]) or respective fuzzy variants like fuzzy-c-means
(FCM, [3,4] ). Supervised approaches comprise the family of learning vector
quantizers (LVQ, [21]) as well as support vector machines (SVM,[41]). LVQ mod-
els generate class typical prototypes whereas SVMs determine prototypes (sup-
port vectors) defining the class borders. Both paradigms are margin classifiers
[11]. Recent developments in the field address the utilization of non-standard
metrics to improve the model performance for domain specific problems like
processing of functional data, e.g. spectra, time series, etc. [20,29,47], or better
interpretability of the adapted models (relevance/matrix learning, [16,42]).

One of the most challenging ideas in classification learning is the kernel trick
realized in SVMs. According to this idea, the data as well as the prototypes are
implicitly mapped into a high-dimensional (infinite) feature mapping Hilbert
space (FMHS) uniquely determined by the kernel, but the dissimilarities still
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are calculated using the original data whereas model adaptation is processed in
the dual space of the FMHS. This implicit mapping frequently offers a great
flexibility and good separation possibility. This advantage, however, makes it
more difficult to interpret the model because the prototypes in these models are
given as infinite-dimensional representations in the FMHS. Moreover, the sup-
port vectors are not typical representatives of the classes, as mentioned before.
Several variants of LVQ were established also integrating the kernel mapping con-
cept in those models to keep the idea of class-typical prototypes (Kernel GLVQ,
KGLVQ) [35,34]. Yet, these models also have to the infinity of the mapping space.
Usually, it is approximated by a finite one using the Nystrøm-approximation
technique [40], which obviously leads to an information loss in general.

In this paper we offer an alternative for the integration of kernels in prototype
based vector quantization. For this purpose, we consider differentiable universal
kernels determining a new differentiable metric in the data space to be used in
the vector quantization model. Thus gradient based learning becomes available
whereby the topological structure of the new metric space is isomorphic to the
FMHS.

The paper is structured as follows: First we briefly review the idea and jus-
tification of kernel mapping into FHMS. Thereafter, we present the theoreti-
cal justification of the differentiable kernel online vector quantization approach.
Subsequently, we present information theoretic kernels. Sample applications and
concluding remarks complete the contribution.

2 Reproducing Kernels for Hilbert Spaces and Kernel
Mapping

We start with a brief review of the kernel theory. For that we assume the data
space as a compact metric space (V, dV ), i.e. a vector space V equipped with a
metric dV . A function

κΦ : V × V → C (1)

is a kernel, if there exists a Hilbert space H and a map

Φ : V � v �−→ Φ(v) ∈ H (2)

with
κΦ(v,w) = 〈Φ(v), Φ(w)〉H (3)

for all v,w ∈ V and 〈·, ·〉H is the inner product of this Hilbert space. As a
consequence the kernel is Hermitian, i.e. κΦ (v,w) = κΦ (w,v) and, therefore,
sesquilinear. The mapping Φ is called feature map and H the feature space of
V . Without further restrictions on the kernel κΦ both H and Φ are not unique.
A function f : V −→ C is induced by κΦ if there exists an element g ∈ H with
f (w) = 〈g, Φ(w)〉H. The following important Lemma is shown in [46]:
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Lemma 1. Let κΦ be a kernel of a metric space (V, dV ) and Φ a corresponding
feature map into a Hilbert space H. Then κΦ is continuous iff Φ does. In this
case

dκΦ(v,w) = ‖Φ(v) − Φ(w)‖H (4)

defines a semi-metric1 on V and the identity map Ψ between the different metric
spaces over the vector space V

Ψ : (V, dV ) −→ (V, dκΦ) (5)

is continuous. If the feature map Φ is injective dκΦ is even a metric.

We have to to state the following important remark:

Remark 1. In the proof of this lemma the inner product property (3) of the kernel
is never used. Only the norm properties of Hilbert spaces and their completeness
are required. Hence, the lemma is also valid if Φ would map into a Banach space
B with metric dκΦ .

To ensure the separability of the feature map Φ the kernel has to be universal [46].
Further, Steinwart has also proofed that continuous universal kernel imply the
injectivity of the corresponding feature map Φ. Again, we have to emphasize that
the proof of this theorem does not utilize the inner product property (3) of the
kernel. Only, the semi-metric properties of the corresponding metric are needed,
which would remain valid also regarding Banach spaces instead of Hilbert spaces.

An important role in feature mapping play positive definite kernels, which
uniquely correspond to Hilbert spaces H in a canonical manner according to the
Mercer-theorem [1,27]. The kernel κΦ is said to be (strictly) positive definite if
for all finite subsets Vn ⊆ V with cardinality #Vn = n, the Gram-Matrix

Gn = [κ (vi,vj) : i, j = 1 . . . n] (6)

is (strictly) positive semi-definite [1]. In that case, the Hilbert space H is
a so-called reproducing kernel Hilbert space (RKHS), i.e. the kernel function
κΦ(v, ·) ∈ H and for each v ∈ V and all f ∈ H and w ∈ V the relation
f (w) = 〈f, κΦ(w, ·)〉H is valid according to the Riesz representation theorem
[1,22]. Here, κΦ is denoted as a reproducing kernel obviously being symmetric,
real and, hence, bi-linear. The space IκΦ of kernel induced functions is given as
the set

IκΦ = {κΦ(w, ·)|w ∈ V } (7)

with IκΦ ⊆ H. For positive kernels the associated inner product implies a
norm ‖Φ(v)‖H =

√〈Φ(v), Φ(v)〉H and, hence, also a metric dH (Φ(v), Φ(w)) =
‖Φ(v) − Φ(w)‖H . Hence, the positive semi-definiteness of the kernel ensures
the metric properties in comparison to the semi-metric (4) obtained for general
kernels. Because κΦ is a kernel, the metric dH (Φ(v), Φ(w)) can be rewritten as

dH (Φ(v), Φ(w)) =
√

κΦ(v,v) − 2κΦ(v,w) + κΦ(w,w) (8)

using the bi-linearity and the symmetry of the positive kernel.
1 Note, for a semi-metric the triangle inequality does not hold [32].
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Remark 2. Obviously, the semi-metric dκΦ from (4) coincides with dH on IκΦ

for positive kernels.
This last remark allows an important conclusion regarding the mapping Ψ from
(5) in relation to a given positive continuous kernel κΦ:
Lemma 2. Let (V, dV ) be a compact metric space, κΦ : V ×V → R a continuous
positive kernel with the feature map Φ : V −→ H, and the kernel determining a
metric dH in H by (8). If the space of the induced functions IκΦ is dense in the
space of continuous functions C (V ), then the metric space (V, dH) is topologically
equivalent to induced space IκΦ ⊆ H with the metric dH. Moreover, both spaces
are isometric, and, hence, (V, dH) is a Hilbert space, too. In consequence, the
generally non-linear mapping Ψ from (5) is an bijective, separable and continuous
mapping. The result of the Lemma 2 is visualized in Fig.1.

Fig. 1. Visualization of Lemma 2: For universal kernels κΦ the metric spaces (V, dH)
and

(Iκ⊕ , dH
)

are topologically equivalent and isometric by means of the continuous
bijective mapping Φ ◦ Ψ−1

Proof. The kernel κΦ is assumed to be positive, continuous and generating a space
of induced functions IκΦ , which is dense in the space of continuous functions
C (V ). Hence, κΦ is universal and, therefore, the uniquely corresponding feature
map Φ : V −→ H is injective according to [46]. Hence, it is bijective for Φ :
V −→ IκΦ ⊆ H, whereby H is equipped with the Hilbert space metric dH.
Because (V, dV ) is compact and the bijective mapping Φ is continuous, it follows
immediately that IκΦ is a subspace of H and, therefore, a Hilbert space itself.
Moreover, it follows from Lemma 1 that Φ is also continuous as well as the
obviously bijective identity map Ψ : (V, dV ) −→ (V, dH) from (5). Hence, the
map Φ

(
Ψ−1 (v)

)
= Φ ◦ Ψ−1 (v) with v ∈ (V, dH) is bijective and continuous.

Therefore, (V, dH) and IκΦ are isomorphic and, according to the Remark 2,
also isometric. The separability of Ψ follows immediately from the separability
property of Φ.

It is well known that the Gaussian kernel κΦ (u,v) = exp
(−||u−v||2E

2σ2

)
, the

Student-type Gaussian kernel κΦ (u,v) =
(
β + ||u−v||2E

σ2

)−α

with α, β > 0 and
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the exponential kernel κΦ (u,v) = exp (〈u,v〉E) are universal on every compact
subset of Rn. Other universal kernel can be found in [28,43,46]. At this point
we remark that these kernels are also differentiable, which becomes important
in Sect. 4.

Another class of kernels are information theoretic kernels based on divergences
[25,33]. This class is investigated in the light of universality in the next subsec-
tion. The relation of universal kernels to characteristic kernels is addressed in
[45].

3 Universal Kernels Based on Divergences

Information theoretic kernels based on divergences are considered in many ap-
plications [8,23,25,33]. Here we relate them to universal differentiable kernels,
such that the diagram in Fig.1 holds also for those kernels. For this purpose,
we introduce the class of radial kernels κr : Rm × Rm −→ R [19,41,43]. These
kernels are defined as

κr (u,v) = g (d (u,v)) (9)

where d (u,v) is a metric and g is a function on R
+
0 = {x ∈ R|x ≥ 0}. Equiva-

lently, d (u,v) could be a norm of the difference (u− v). One important point
to be emphasized here is that the argument of a radial kernel is required to be a
metric or, equivalently, a norm. Radial kernels stand out due to its close relation
to universal kernels. The following lemma holds for radial kernels [45]:

Lemma 3. If the radial kernel is strictly positive definite then it is also
universal.

If we want to obtain a differentiable universal kernel based on divergences, we
have, hence, to ensure that the divergence is differentiable, metric, and that the
corresponding radial kernel is positive definite. Generally, divergences are not
symmetric and, therefore, cannot serve as a metric [9,10,14]. Yet, there exist
some special divergences for vectorized data, which are metrics at the same time
under the assumption that the data vectors represent probability densities or at
least positive functions [47]. For example, the Euclidean distance is a so-called η-
divergence belonging to the class of Bregman-divergences with parameter η = 2
[30]. Österreicher and Vajda considered a subset of Csiszár’s f -divergences
to be metric [31,47]. To this class belongs the subclass of fβ-divergences, a promi-
nent member of which is the squared Hellinger distance

DH (u‖v) =
m∑

i=1

(
√

ui −√
vi)

2 (10)

obtained for the value β = 1
2 . Another example is the Jensen-Shannon-divergence

DJS (u‖v) =
DKL (u‖w) + DKL (v‖w)

2
(11)
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obtained for β = 1 with w = u+v
2 and

DKL (u‖w) =
m∑

i=1

ui log
ui

vi
(12)

being the Kullback-Leibler-divergence [24]. It can be calculated based on the
Shannon-entropy

H (v) = −
m∑

i=1

vi log vi (13)

as
DJS (u‖v) = H

(
u + v

2

)
−

(
H (u) + H (v)

2

)
(14)

as shown in [25,44].
An analog divergence can be installed using the Rényis α-entropy

Hα (v) =
1

1 − α
log

(
m∑

i=1

(vi)
α

)

(15)

defined for α > 0 [36,37]. In the limit α → 1 Hα (v) converges to the Shannon-
entropy H (v) from (13). Based on the Rényi-entropy (15) the Jensen-Rényi-α-
divergence is defined as

Dα
JR (u‖v) = Hα

(
u + v

2

)
−

(
Hα (u) + Hα (v)

2

)
(16)

in complete analogy to (14) [2]. It turns out that both,
√

DJS (u‖v) and√
Dα

JR (u‖v), are metrics [25] or, more precisely, they are Hilbertian metrics
[17]. Moreover it is shown in the paper [25] by Martin et al. that the follow-
ing lemma holds:

Lemma 4. The kernels

1. κ1
JS (u,v) = exp (−t · DJS (u‖v)), t > 0,

2. κ1
JR (u,v, α) = exp (−t · Dα

JR (u‖v)), t > 0,
3. κ2

JS (u,v) = (t + DJS (u‖v))−1, t > 0 and
4. κ2

JR (u,v, α) = (t + Dα
JR (u‖v))−1, t > 0

are strictly positive definite. For the kernels κ1
JR and κ2

JR the additional condition
of α ∈ [0, 1] has to be fulfilled for positive definiteness.

Therefore, we can finally state the following corollary for divergence based ker-
nels:

Corollary 1. The kernels given in Lemma 4 based on the Jensen-Shannon-
divergence (14) and the Jensen-Rényi-α-divergence (16) are universal.

Proof. This property follows immediately from Lemma 4 together with the
Lemma 3.

Last but not least we remark again that the kernels defined in Lemma 4 are
differentiable [47], which relates them to the considerations in Sect. 4.
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4 Differentiable Kernel and Gradient Based Vector
Quantization

Vector quantization can be distinguished into unsupervised and supervised ap-
proaches. The main task for unsupervised models is to minimize some recon-
struction error E for a given data set V ⊆ R

n of vectors v with respect to set
of prototypes W = {wk}k∈A, where A is a finite index set. Prominent examples
are the self-organizing map (SOM,[21]), neural gas (NG, [26]), whereby for the
SOM the variant of Heskes is taken [18]. For those models, the reconstruction
error is given in terms of the dissimilarity measure d (v,wk) between data and
prototypes, which is assumed to be differentiable. Adaptation for these models
is frequently realized as a stochastic gradient descent. In that case, the gradient
∂E/∂wk contains the derivative ∂d (v,wk) /∂wk originating from the chain rule
of differentiation. For example, the cost function of the Heskes variant of SOM is

ESOM =
ˆ

P (v)
∑

r∈A

δs(v)
r

∑

r′∈A

hSOM
σ (r, r′)
2K(σ)

d(v,wr′)dv (17)

with the so-called neighborhood function hSOM
σ (r, r′) = exp

(
−‖r−r′‖

A

2σ2

)
and

‖r − r′‖A is the distance in the SOM-lattice A according to its topological struc-
ture [18]. Further, P (v is the data density and the Kronegger symbol δs(v)

r assigns
a data vector v to the winning unit s(v). K(σ) is a normalization constant de-
pending on the neighborhood range σ. Then the stochastic gradient prototype
update for all prototypes is given as [18]:

wr = −εhSOM
σ (r, s(v))

∂d (v,wr)
∂wr

. (18)

depending on the derivatives of the used dissimilarity measure d, which allows
the application of differentiable kernel metrics.

Prototype based classification in the context of learning vector quantization
models (LVQ, [21]) was renewed by the idea of Sato&Yamada to approximate
the non-differentiable classification error C by a differentiable function EC re-
ferred as Generalized LVQ (GLVQ,[39,38]). As in unsupervised vector quantiza-
tion, EC depends on the underlying dissimilarity measure d (v,wk) according to

EC(W ) =
1
2

∑

v∈V

f(μ(v)) with μ(v) =
d+(v) − d−(v)
d+(v) + d−(v)

. (19)

with d+(v) = d(v,w+) denoting the distance between the data point v and the
nearest prototype w+, belonging to the same class as the presented data point
v. Analogously, d−(v) is defined as the distance to the best matching prototype
of all other classes. The function μ(v) is the classifier function. Like in SOMs,
d(v,w) in (19) is required to be some differentiable dissimilarity measure with
respect to w. Then the cost function can be minimized by gradient descent
learning based on the (stochastic) derivatives
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∂sE

∂w+
=

2d− · f ′(μ(v))
(d+ + d−)2

∂d+

∂w+
,

∂sE

∂w− = −2d+ · f ′(μ(v))
(d+ + d−)2

∂d−

∂w− , (20)

where we used the abbreviations d+ for d+(v) for simplicity and d+, analogously.
Thus, stochastic gradient learning in supervised and unsupervised vector

quantization can be seen as a gradient descent learning of an error function
in the metric space (V, d (v,wk)). Obviously, under gentle conditions on V (con-
tinuous, local convex, ...) it can be assumed that ∂d (v,wk) /∂wk ∈ V is valid.
Yet, the choice of the metric is free except the necessary differentiability. Hence,
metrics determined by differentiable kernel are applicable [15]. Obviously, the
kernels presented in Sec.2 and 3 are differentiable (for the latter kernels, see [47]
for differentiability of the respective divergences). If such a metric is obtained
from an universal kernel κΦ for RKHS, respectively, the Lemma 2 ensures the
topological and isometric equivalence to the respective FMHS. Hence, the al-
gorithm operates in the same structural space as SVMs do and, therefore, can
profit from its richness in shape, which frequently delivers excellent performance.
At this point we empasize the following essential drawn from the Lemma 2:

Remark 3. The take home message of the Lemma 2 in context of gradient based
online learning is: Assume a set of prototypes W ′, which has to be learned in
the induced image space IκΦ ⊆ H. Because IκΦ is a subspace of H any linear
combinations of prototypes belongs to H. Further, if the corresponding universal
kernel κΦ is continuous and differentiable, it is sufficient to train prototypes W by
gradient descent learning in the isomorph-isometric space (V, dH) induced by the
mapping Ψ . Lemma 2 ensures the unique equivalence. An analogous statement
obviously holds also for the Banach space problem.

More properties of differentiable Mercer-like kernels and their reproducing
properties can be found in [12,48].

5 Exemplary Applications

In this section we briefly give results from exemplary applications for classifica-
tion problems. We compare the GLVQ with differentiable kernels (DK-GLVQ)
with several state-of-the-art prototype based classification algorithms including
SVMs using Gaussian kernels based on an Extreme Learning Kernel (ELM,[13])
and improved GLVQ variants. For the latter we consider standard GLVQ with
Euclidean metric, and the powerful variant based on matrix learning (GMLVQ,
[42]) as a generalization of the relevance learning approach [16]. The GMLVQ
uses the distance d (v,w) = (Ω (v − w))2 with a here squared matrix Ω, which
is automatically adapted during learning for optimal classification performance.
Moreover, we include the recently proposed kernel GLVQ (KGLVQ) based on a
Nystrøm-approximation [40]. For the DK-GLVQ we applied two variants: The
first one used a Gaussian kernel with self-adapting kernel-with σ. The second
one uses the kernel κΦ (v,w) = exp

(
− (Ω (v − w))2

)
with a self-adapting non-

degenerating (squared) matrix for comparison with GMLVQ. We refer to this
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variant as DK-GMLVQ. This variant is much more stable than the σ-adjusting
variant which may be addressed to the regularizing properties of matrix learning
known from GMLVQ [5,6].

We applied these algorithms to two standard benchmark data sets taken from
UCI repository [7]. Both data sets are two-class problems to to establish com-
patibility with SVMs. The first one is breast cancer data set (WDBC) consisting
of 569 samples with 32 dimensions. The second data set is a diabetes study
(PIMA) with 768 eight-dimensional samples. All experiments were performed
by three-fold cross-validation. For the GLVQ variants we used one prototype for
each class. The SVM resulted in 512 and 691 support vectors for both problems,
respectively. The results are depicted in Tab. 1

Table 1. Classification accuracies in % together with their variances for the several
algorithms and datasets (PIMA and WDBC). Results are obtained by three-fold cross-
validation.

Dataset GLVQ KGLVQ DK-GLVQ GMLVQ DK-GMLVQ SVM-ELM
PIMA 75.1(±0.062) 71.1 (±0.031) 76.2 (±0.031) 77.7 (±0.016) 78.3 (±0.025) 76.4 (±0.042)
WDBC 93.49(±0.016) 92.3(±0.034) 92.2(±0.009) 94.7 (±0.020) 95.4 (±0.025) 97.7 (±0.014)

We observe a good performance of both kernel GLVQ variants using differen-
tiable kernels. These are significantly improved compared to KGLVQ, which
uses approximation techniques. Hence, we can conclude that the Nystrøm-
approximation leads to a significant loss in accuracy. Further, comparison to
GLVQ and GMLVQ also shows clear improvements, although standard GM-
LVQ achieved high performance. Last but not least, comparison to the SVM
demonstrates that differentiable kernel are an excellent alternative to SVM. In
particular we emphasize the drastically reduced model complexity taking only
two prototypes compared to hundreds of support vectors while achieving similar
accuracies.

6 Conclusion

In this paper we considered the theoretical framework of differentiable kernels for
application in gradient based learning in supervised and unsupervised prototype
based vector quantization. We show that utilization of a data metric determined
by universal kernels as known from support vector machines leads to an opti-
mization space equivalent and isometric to a reproducing kernel Hilbert space.
Hence, gradient based vector quantization schemes with differentiable universal
kernels can benefit from this property. The main results of topological and iso-
metric equivalence is the Lemma 2. An extension of this theory for reproducing
kernel Banach spaces can be found in [48], which assume weaker restrictions
and, therefore, offer greater flexibility [49]. Last but not least we provide some
examples of differentiable universal kernels based on divergences as fundamen-
tal information theoretic concepts. Further, we demonstrated abilities of GLVQ
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using differentiable kernel for exemplary datasets, which show high performance
also compared to SVMs but with lower model complexity.

Otherwise, the presented approach cannot deal with arbitrary kernels such as
structure kernels. So the method trades increased efficiency by reduced flexibility
in kernel choice.
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